MyArxiv
Computation and Language 82
☆ DraCo: Draft as CoT for Text-to-Image Preview and Rare Concept Generation
Recent unified multimodal large language models (MLLMs) have shown impressive capabilities, incorporating chain-of-thought (CoT) reasoning for enhanced text-to-image generation. However, existing approaches remain limited, either treating the model merely as a standalone generator or relying on abstract textual planning. To this end, we propose Draft-as-CoT (DraCo), a novel interleaved reasoning paradigm that fully leverages both textual and visual contents in CoT for better planning and verification. Our method first generates a low-resolution draft image as preview, providing more concrete and structural visual planning and guidance. Then, we employ the model's inherent understanding capability to verify potential semantic misalignments between the draft and input prompt, and performs refinement through selective corrections with super-resolution. In this way, our approach addresses two fundamental challenges: the coarse-grained nature of textual planning and the difficulty in generating rare attribute combinations. To support training, we curate DraCo-240K, aiming to enhance three atomic capabilities spanning general correction, instance manipulation, and layout reorganization. Supported by DraCo-CFG, a specialized classifier-free guidance (CFG) strategy for interleaved reasoning, DraCo achieves a tremendous increase on GenEval (+8%), Imagine-Bench (+0.91), and GenEval++ (+3%), significantly outperforming direct generation and other generation methods empowered by CoT.
comment: Project Page: https://github.com/CaraJ7/DraCo
☆ Semantic Soft Bootstrapping: Long Context Reasoning in LLMs without Reinforcement Learning
Long context reasoning in large language models (LLMs) has demonstrated enhancement of their cognitive capabilities via chain-of-thought (CoT) inference. Training such models is usually done via reinforcement learning with verifiable rewards (RLVR) in reasoning based problems, like math and programming. However, RLVR is limited by several bottlenecks, such as, lack of dense reward, and inadequate sample efficiency. As a result, it requires significant compute resources in post-training phase. To overcome these limitations, in this work, we propose \textbf{Semantic Soft Bootstrapping (SSB)}, a self-distillation technique, in which the same base language model plays the role of both teacher and student, but receives different semantic contexts about the correctness of its outcome at training time. The model is first prompted with a math problem and several rollouts are generated. From them, the correct and most common incorrect response are filtered, and then provided to the model in context to produce a more robust, step-by-step explanation with a verified final answer. This pipeline automatically curates a paired teacher-student training set from raw problem-answer data, without any human intervention. This generation process also produces a sequence of logits, which is what the student model tries to match in the training phase just from the bare question alone. In our experiment, Qwen2.5-3B-Instruct on GSM8K dataset via parameter-efficient fine-tuning. We then tested its accuracy on MATH500, and AIME2024 benchmarks. Our experiments show a jump of 10.6%, and 10% improvements in accuracy, respectively, over group relative policy optimization (GRPO), which is a commonly used RLVR algorithm. Our code is available at https://github.com/purbeshmitra/semantic-soft-bootstrapping, and the model, curated dataset is available at https://huggingface.co/purbeshmitra/semantic-soft-bootstrapping.
☆ Structured Document Translation via Format Reinforcement Learning ACL 2025
Recent works on structured text translation remain limited to the sentence level, as they struggle to effectively handle the complex document-level XML or HTML structures. To address this, we propose \textbf{Format Reinforcement Learning (FormatRL)}, which employs Group Relative Policy Optimization on top of a supervised fine-tuning model to directly optimize novel structure-aware rewards: 1) TreeSim, which measures structural similarity between predicted and reference XML trees and 2) Node-chrF, which measures translation quality at the level of XML nodes. Additionally, we apply StrucAUC, a fine-grained metric distinguishing between minor errors and major structural failures. Experiments on the SAP software-documentation benchmark demonstrate improvements across six metrics and an analysis further shows how different reward functions contribute to improvements in both structural and translation quality.
comment: IJCNLP-AACL 2025 Main (Oral)
☆ Multi-LLM Collaboration for Medication Recommendation
As healthcare increasingly turns to AI for scalable and trustworthy clinical decision support, ensuring reliability in model reasoning remains a critical challenge. Individual large language models (LLMs) are susceptible to hallucinations and inconsistency, whereas naive ensembles of models often fail to deliver stable and credible recommendations. Building on our previous work on LLM Chemistry, which quantifies the collaborative compatibility among LLMs, we apply this framework to improve the reliability in medication recommendation from brief clinical vignettes. Our approach leverages multi-LLM collaboration guided by Chemistry-inspired interaction modeling, enabling ensembles that are effective (exploiting complementary strengths), stable (producing consistent quality), and calibrated (minimizing interference and error amplification). We evaluate our Chemistry-based Multi-LLM collaboration strategy on real-world clinical scenarios to investigate whether such interaction-aware ensembles can generate credible, patient-specific medication recommendations. Preliminary results are encouraging, suggesting that LLM Chemistry-guided collaboration may offer a promising path toward reliable and trustworthy AI assistants in clinical practice.
comment: 8 pages, 5 figures, 1 table
☆ Arbitrage: Efficient Reasoning via Advantage-Aware Speculation
Modern Large Language Models achieve impressive reasoning capabilities with long Chain of Thoughts, but they incur substantial computational cost during inference, and this motivates techniques to improve the performance-cost ratio. Among these techniques, Speculative Decoding accelerates inference by employing a fast but inaccurate draft model to autoregressively propose tokens, which are then verified in parallel by a more capable target model. However, due to unnecessary rejections caused by token mismatches in semantically equivalent steps, traditional token-level Speculative Decoding struggles in reasoning tasks. Although recent works have shifted to step-level semantic verification, which improve efficiency by accepting or rejecting entire reasoning steps, existing step-level methods still regenerate many rejected steps with little improvement, wasting valuable target compute. To address this challenge, we propose Arbitrage, a novel step-level speculative generation framework that routes generation dynamically based on the relative advantage between draft and target models. Instead of applying a fixed acceptance threshold, Arbitrage uses a lightweight router trained to predict when the target model is likely to produce a meaningfully better step. This routing approximates an ideal Arbitrage Oracle that always chooses the higher-quality step, achieving near-optimal efficiency-accuracy trade-offs. Across multiple mathematical reasoning benchmarks, Arbitrage consistently surpasses prior step-level Speculative Decoding baselines, reducing inference latency by up to $\sim2\times$ at matched accuracy.
comment: 22 pages
☆ Factuality and Transparency Are All RAG Needs! Self-Explaining Contrastive Evidence Re-ranking
This extended abstract introduces Self-Explaining Contrastive Evidence Re-Ranking (CER), a novel method that restructures retrieval around factual evidence by fine-tuning embeddings with contrastive learning and generating token-level attribution rationales for each retrieved passage. Hard negatives are automatically selected using a subjectivity-based criterion, forcing the model to pull factual rationales closer while pushing subjective or misleading explanations apart. As a result, the method creates an embedding space explicitly aligned with evidential reasoning. We evaluated our method on clinical trial reports, and initial experimental results show that CER improves retrieval accuracy, mitigates the potential for hallucinations in RAG systems, and provides transparent, evidence-based retrieval that enhances reliability, especially in safety-critical domains.
comment: This work was presented as a poster at the Applied Social Media Lab during the 2025 Synthesizer & Open Showcase at the Berkman Klein Center for Internet & Society at Harvard University
☆ Nex-N1: Agentic Models Trained via a Unified Ecosystem for Large-Scale Environment Construction
The evolution of Large Language Models (LLMs) from passive responders to autonomous agents necessitates a fundamental shift in learning paradigms -- from static imitation to incentive-driven decision making. However, this transition is significantly impeded by the lack of scalable infrastructure capable of constructing high-quality interaction signals for effective policy learning. To address this, we introduce a comprehensive method designed to systematically scale the diversity and complexity of interactive environments. Our method realizes this scaling by addressing three orthogonal dimensions: (1) Complexity: NexAU, a flexible agent framework that supports building complex agent hierarchies via simple configurations; (2) Diversity: NexA4A automatically generates diverse agent hierarchies from natural language to cover infinite domains; and (3) Fidelity: NexGAP bridges the simulation-reality gap by integrating dynamic real-world environment for grounded trajectories synthesis. We train Nex-N1 upon the diverse and complex interactive environments established by our infrastructure. Empirical results on benchmarks such as SWE-bench and tau2 demonstrate that Nex-N1 consistently outperforms SOTA open-source models and achieves competitive performance against frontier proprietary models on complex agentic tasks. We open-source the Nex ecosystem and model weights to facilitate further research.
LLMs Know More Than Words: A Genre Study with Syntax, Metaphor & Phonetics
Large language models (LLMs) demonstrate remarkable potential across diverse language related tasks, yet whether they capture deeper linguistic properties, such as syntactic structure, phonetic cues, and metrical patterns from raw text remains unclear. To analysis whether LLMs can learn these features effectively and apply them to important nature language related tasks, we introduce a novel multilingual genre classification dataset derived from Project Gutenberg, a large-scale digital library offering free access to thousands of public domain literary works, comprising thousands of sentences per binary task (poetry vs. novel;drama vs. poetry;drama vs. novel) in six languages (English, French, German, Italian, Spanish, and Portuguese). We augment each with three explicit linguistic feature sets (syntactic tree structures, metaphor counts, and phonetic metrics) to evaluate their impact on classification performance. Experiments demonstrate that although LLM classifiers can learn latent linguistic structures either from raw text or from explicitly provided features, different features contribute unevenly across tasks, which underscores the importance of incorporating more complex linguistic signals during model training.
☆ CARL: Critical Action Focused Reinforcement Learning for Multi-Step Agent
Agents capable of accomplishing complex tasks through multiple interactions with the environment have emerged as a popular research direction. However, in such multi-step settings, the conventional group-level policy optimization algorithm becomes suboptimal because of its underlying assumption that each action holds equal contribution, which deviates significantly from reality. Our analysis reveals that only a small fraction of actions are critical in determining the final outcome. Building on this insight, we propose CARL, a critical-action-focused reinforcement learning algorithm tailored for multi-step agents. CARL achieves focused training through providing action-level optimization signals for high-criticality actions while excluding low-criticality actions from model update. Extensive experiments demonstrate that CARL achieves both stronger performance and higher efficiency during training and inference across diverse evaluation settings.
comment: 10 pages, 4 figures
☆ Algorithmic Thinking Theory
Large language models (LLMs) have proven to be highly effective for solving complex reasoning tasks. Surprisingly, their capabilities can often be improved by iterating on previously generated solutions. In this context, a reasoning plan for generating and combining a set of solutions can be thought of as an algorithm for reasoning using a probabilistic oracle. We introduce a theoretical framework for analyzing such reasoning algorithms. This framework formalizes the principles underlying popular techniques for iterative improvement and answer aggregation, providing a foundation for designing a new generation of more powerful reasoning methods. Unlike approaches for understanding models that rely on architectural specifics, our model is grounded in experimental evidence. As a result, it offers a general perspective that may extend to a wide range of current and future reasoning oracles.
☆ The AI Consumer Index (ACE)
We introduce the first version of the AI Consumer Index (ACE), a benchmark for assessing whether frontier AI models can perform high-value consumer tasks. ACE contains a hidden heldout set of 400 test cases, split across four consumer activities: shopping, food, gaming, and DIY. We are also open sourcing 80 cases as a devset with a CC-BY license. For the ACE leaderboard we evaluated 10 frontier models (with websearch turned on) using a novel grading methodology that dynamically checks whether relevant parts of the response are grounded in the retrieved web sources. GPT 5 (Thinking = High) is the top-performing model, scoring 56.1%, followed by o3 Pro (Thinking = On) (55.2%) and GPT 5.1 (Thinking = High) (55.1%). Models differ across domains, and in Shopping the top model scores under 50%. For some requests (such as giving the correct price or providing working links), models are highly prone to hallucination. Overall, ACE shows a substantial gap between the performance of even the best models and consumers' AI needs.
☆ STELLA: Guiding Large Language Models for Time Series Forecasting with Semantic Abstractions
Recent adaptations of Large Language Models (LLMs) for time series forecasting often fail to effectively enhance information for raw series, leaving LLM reasoning capabilities underutilized. Existing prompting strategies rely on static correlations rather than generative interpretations of dynamic behavior, lacking critical global and instance-specific context. To address this, we propose STELLA (Semantic-Temporal Alignment with Language Abstractions), a framework that systematically mines and injects structured supplementary and complementary information. STELLA employs a dynamic semantic abstraction mechanism that decouples input series into trend, seasonality, and residual components. It then translates intrinsic behavioral features of these components into Hierarchical Semantic Anchors: a Corpus-level Semantic Prior (CSP) for global context and a Fine-grained Behavioral Prompt (FBP) for instance-level patterns. Using these anchors as prefix-prompts, STELLA guides the LLM to model intrinsic dynamics. Experiments on eight benchmark datasets demonstrate that STELLA outperforms state-of-the-art methods in long- and short-term forecasting, showing superior generalization in zero-shot and few-shot settings. Ablation studies further validate the effectiveness of our dynamically generated semantic anchors.
comment: This work has been submitted to the IEEE for possible publication
☆ SEAL: Self-Evolving Agentic Learning for Conversational Question Answering over Knowledge Graphs
Knowledge-based conversational question answering (KBCQA) confronts persistent challenges in resolving coreference, modeling contextual dependencies, and executing complex logical reasoning. Existing approaches, whether end-to-end semantic parsing or stepwise agent-based reasoning, often suffer from structural inaccuracies and prohibitive computational costs, particularly when processing intricate queries over large knowledge graphs. To address these limitations, we introduce SEAL, a novel two-stage semantic parsing framework grounded in self-evolving agentic learning. In the first stage, a large language model (LLM) extracts a minimal S-expression core that captures the essential semantics of the input query. This core is then refined by an agentic calibration module, which corrects syntactic inconsistencies and aligns entities and relations precisely with the underlying knowledge graph. The second stage employs template-based completion, guided by question-type prediction and placeholder instantiation, to construct a fully executable S-expression. This decomposition not only simplifies logical form generation but also significantly enhances structural fidelity and linking efficiency. Crucially, SEAL incorporates a self-evolving mechanism that integrates local and global memory with a reflection module, enabling continuous adaptation from dialog history and execution feedback without explicit retraining. Extensive experiments on the SPICE benchmark demonstrate that SEAL achieves state-of-the-art performance, especially in multi-hop reasoning, comparison, and aggregation tasks. The results validate notable gains in both structural accuracy and computational efficiency, underscoring the framework's capacity for robust and scalable conversational reasoning.
☆ Mitigating Catastrophic Forgetting in Target Language Adaptation of LLMs via Source-Shielded Updates
Expanding the linguistic diversity of instruct large language models (LLMs) is crucial for global accessibility but is often hindered by the reliance on costly specialized target language labeled data and catastrophic forgetting during adaptation. We tackle this challenge under a realistic, low-resource constraint: adapting instruct LLMs using only unlabeled target language data. We introduce Source-Shielded Updates (SSU), a selective parameter update strategy that proactively preserves source knowledge. Using a small set of source data and a parameter importance scoring method, SSU identifies parameters critical to maintaining source abilities. It then applies a column-wise freezing strategy to protect these parameters before adaptation. Experiments across five typologically diverse languages and 7B and 13B models demonstrate that SSU successfully mitigates catastrophic forgetting. It reduces performance degradation on monolingual source tasks to just 3.4% (7B) and 2.8% (13B) on average, a stark contrast to the 20.3% and 22.3% from full fine-tuning. SSU also achieves target-language performance highly competitive with full fine-tuning, outperforming it on all benchmarks for 7B models and the majority for 13B models.
☆ DAMASHA: Detecting AI in Mixed Adversarial Texts via Segmentation with Human-interpretable Attribution
In the age of advanced large language models (LLMs), the boundaries between human and AI-generated text are becoming increasingly blurred. We address the challenge of segmenting mixed-authorship text, that is identifying transition points in text where authorship shifts from human to AI or vice-versa, a problem with critical implications for authenticity, trust, and human oversight. We introduce a novel framework, called Info-Mask for mixed authorship detection that integrates stylometric cues, perplexity-driven signals, and structured boundary modeling to accurately segment collaborative human-AI content. To evaluate the robustness of our system against adversarial perturbations, we construct and release an adversarial benchmark dataset Mixed-text Adversarial setting for Segmentation (MAS), designed to probe the limits of existing detectors. Beyond segmentation accuracy, we introduce Human-Interpretable Attribution (HIA overlays that highlight how stylometric features inform boundary predictions, and we conduct a small-scale human study assessing their usefulness. Across multiple architectures, Info-Mask significantly improves span-level robustness under adversarial conditions, establishing new baselines while revealing remaining challenges. Our findings highlight both the promise and limitations of adversarially robust, interpretable mixed-authorship detection, with implications for trust and oversight in human-AI co-authorship.
comment: 18 pages, 10 Figures
☆ Are LLMs Truly Multilingual? Exploring Zero-Shot Multilingual Capability of LLMs for Information Retrieval: An Italian Healthcare Use Case
Large Language Models (LLMs) have become a key topic in AI and NLP, transforming sectors like healthcare, finance, education, and marketing by improving customer service, automating tasks, providing insights, improving diagnostics, and personalizing learning experiences. Information extraction from clinical records is a crucial task in digital healthcare. Although traditional NLP techniques have been used for this in the past, they often fall short due to the complexity, variability of clinical language, and high inner semantics in the free clinical text. Recently, Large Language Models (LLMs) have become a powerful tool for better understanding and generating human-like text, making them highly effective in this area. In this paper, we explore the ability of open-source multilingual LLMs to understand EHRs (Electronic Health Records) in Italian and help extract information from them in real-time. Our detailed experimental campaign on comorbidity extraction from EHR reveals that some LLMs struggle in zero-shot, on-premises settings, and others show significant variation in performance, struggling to generalize across various diseases when compared to native pattern matching and manual annotations.
☆ DaLA: Danish Linguistic Acceptability Evaluation Guided by Real World Errors
We present an enhanced benchmark for evaluating linguistic acceptability in Danish. We first analyze the most common errors found in written Danish. Based on this analysis, we introduce a set of fourteen corruption functions that generate incorrect sentences by systematically introducing errors into existing correct Danish sentences. To ensure the accuracy of these corruptions, we assess their validity using both manual and automatic methods. The results are then used as a benchmark for evaluating Large Language Models on a linguistic acceptability judgement task. Our findings demonstrate that this extension is both broader and more comprehensive than the current state of the art. By incorporating a greater variety of corruption types, our benchmark provides a more rigorous assessment of linguistic acceptability, increasing task difficulty, as evidenced by the lower performance of LLMs on our benchmark compared to existing ones. Our results also suggest that our benchmark has a higher discriminatory power which allows to better distinguish well-performing models from low-performing ones.
☆ AdiBhashaa: A Community-Curated Benchmark for Machine Translation into Indian Tribal Languages
Large language models and multilingual machine translation (MT) systems increasingly drive access to information, yet many languages of the tribal communities remain effectively invisible in these technologies. This invisibility exacerbates existing structural inequities in education, governance, and digital participation. We present AdiBhashaa, a community-driven initiative that constructs the first open parallel corpora and baseline MT systems for four major Indian tribal languages-Bhili, Mundari, Gondi, and Santali. This work combines participatory data creation with native speakers, human-in-the-loop validation, and systematic evaluation of both encoder-decoder MT models and large language models. In addition to reporting technical findings, we articulate how AdiBhashaa illustrates a possible model for more equitable AI research: it centers local expertise, builds capacity among early-career researchers from marginalized communities, and foregrounds human validation in the development of language technologies.
☆ MemLoRA: Distilling Expert Adapters for On-Device Memory Systems
Memory-augmented Large Language Models (LLMs) have demonstrated remarkable consistency during prolonged dialogues by storing relevant memories and incorporating them as context. Such memory-based personalization is also key in on-device settings that allow users to keep their conversations and data private. However, memory-augmented systems typically rely on LLMs that are too costly for local on-device deployment. Even though Small Language Models (SLMs) are more suitable for on-device inference than LLMs, they cannot achieve sufficient performance. Additionally, these LLM-based systems lack native visual capabilities, limiting their applicability in multimodal contexts. In this paper, we introduce (i) MemLoRA, a novel memory system that enables local deployment by equipping SLMs with specialized memory adapters, and (ii) its vision extension MemLoRA-V, which integrates small Vision-Language Models (SVLMs) to memory systems, enabling native visual understanding. Following knowledge distillation principles, each adapter is trained separately for specific memory operations$\unicode{x2013}$knowledge extraction, memory update, and memory-augmented generation. Equipped with memory adapters, small models enable accurate on-device memory operations without cloud dependency. On text-only operations, MemLoRA outperforms 10$\times$ larger baseline models (e.g., Gemma2-27B) and achieves performance comparable to 60$\times$ larger models (e.g., GPT-OSS-120B) on the LoCoMo benchmark. To evaluate visual understanding operations instead, we extend LoCoMo with challenging Visual Question Answering tasks that require direct visual reasoning. On this, our VLM-integrated MemLoRA-V shows massive improvements over caption-based approaches (81.3 vs. 23.7 accuracy) while keeping strong performance in text-based tasks, demonstrating the efficacy of our method in multimodal contexts.
☆ Challenging the Abilities of Large Language Models in Italian: a Community Initiative
The rapid progress of Large Language Models (LLMs) has transformed natural language processing and broadened its impact across research and society. Yet, systematic evaluation of these models, especially for languages beyond English, remains limited. "Challenging the Abilities of LAnguage Models in ITAlian" (CALAMITA) is a large-scale collaborative benchmarking initiative for Italian, coordinated under the Italian Association for Computational Linguistics. Unlike existing efforts that focus on leaderboards, CALAMITA foregrounds methodology: it federates more than 80 contributors from academia, industry, and the public sector to design, document, and evaluate a diverse collection of tasks, covering linguistic competence, commonsense reasoning, factual consistency, fairness, summarization, translation, and code generation. Through this process, we not only assembled a benchmark of over 20 tasks and almost 100 subtasks, but also established a centralized evaluation pipeline that supports heterogeneous datasets and metrics. We report results for four open-weight LLMs, highlighting systematic strengths and weaknesses across abilities, as well as challenges in task-specific evaluation. Beyond quantitative results, CALAMITA exposes methodological lessons: the necessity of fine-grained, task-representative metrics, the importance of harmonized pipelines, and the benefits and limitations of broad community engagement. CALAMITA is conceived as a rolling benchmark, enabling continuous integration of new tasks and models. This makes it both a resource -- the most comprehensive and diverse benchmark for Italian to date -- and a framework for sustainable, community-driven evaluation. We argue that this combination offers a blueprint for other languages and communities seeking inclusive and rigorous LLM evaluation practices.
☆ EtCon: Edit-then-Consolidate for Reliable Knowledge Editing
Knowledge editing aims to update specific facts in large language models (LLMs) without full retraining. Prior efforts sought to tune the knowledge layers of LLMs, proving effective for making selective edits. However, a significant gap exists between their performance in controlled, teacher-forcing evaluations and their real-world effectiveness in lifelong learning scenarios, which greatly limits their practical applicability. This work's empirical analysis reveals two recurring issues associated with this gap: (1) Most traditional methods lead the edited model to overfit to the new fact, thereby degrading pre-trained capabilities; (2) There is a critical absence of a knowledge consolidation stage, leaving new facts insufficiently integrated into LLMs' inference-time behavior under autoregressive generation, thereby leading to a mismatch between parametric knowledge and actual generation behavior. To this end, we propose Edit-then-Consolidate, a novel knowledge editing paradigm that aims to bridge the gap between theoretical knowledge editing methods and their real-world applicability. Specifically, (1) our framework mitigates overfitting via Targeted Proximal Supervised Fine-Tuning (TPSFT) that localizes the edit via a trust-region objective to limit policy drift; (2) Then, a consolidation stage using Group Relative Policy Optimization (GRPO) aligns the edited knowledge with CoT-based inference policy by optimizing trajectory-level behavior under comprehensive reward signals. Extensive experiments demonstrate our framework consistently improves editing reliability and generalization under real-world evaluations, while better preserving locality and pre-trained capabilities.
☆ Model Whisper: Steering Vectors Unlock Large Language Models' Potential in Test-time
It is a critical challenge to efficiently unlock the powerful reasoning potential of Large Language Models (LLMs) for specific tasks or new distributions. Existing test-time adaptation methods often require tuning model parameters, which is not only computationally expensive but also risks degrading the model's pre-existing abilities.To address this, we introduce a lightweight component, Test-Time Steering Vectors (TTSV), which is prepended to the input while keeping the LLM's parameters entirely frozen. By optimizing the TTSV on test data to minimize the model's output entropy, we steer the model towards an internal state of higher confidence, activating its inherent abilities most relevant to the current task. TTSV is both lightweight and highly efficient to optimize, making it a true plug-and-play enhancement. Extensive experiments validate our approach's effectiveness on both base models and reasoning-enhanced models. For instance, on the MATH500 task, TTSV achieves a 45.88% relative performance gain on the Qwen2.5-Math-7B model and a 16.22% relative gain on the Qwen3-4B model. Furthermore, our approach exhibits robust generalization, with its steering vectors proving highly transferable across diverse tasks.
comment: accepted to aaai2026
☆ SignRoundV2: Closing the Performance Gap in Extremely Low-Bit Post-Training Quantization for LLMs
Extreme low-bit quantization is critical for efficiently deploying Large Language Models (LLMs), yet it often leads to severe performance degradation at 2-bits and even 4-bits (e.g., MXFP4). We present SignRoundV2, a post-training quantization framework that is highly effective even without mixed-precision. SignRoundV2 introduces (1) a fast sensitivity metric that combines gradient information with quantization-induced deviations to guide layer-wise bit allocation, and (2) a lightweight pre-tuning search for quantization scales to improve extremely low-bit quantization. These components allow SignRoundV2 to close the gap with full-precision models. Extensive experiments indicate that our method sustains competitive accuracy for LLMs, achieving production-grade performance with about 1 percent variance at 4-5 bits and strong results even at 2 bits. The implementation is available at https://github.com/intel/auto-round.
☆ OsmT: Bridging OpenStreetMap Queries and Natural Language with Open-source Tag-aware Language Models
Bridging natural language and structured query languages is a long-standing challenge in the database community. While recent advances in language models have shown promise in this direction, existing solutions often rely on large-scale closed-source models that suffer from high inference costs, limited transparency, and lack of adaptability for lightweight deployment. In this paper, we present OsmT, an open-source tag-aware language model specifically designed to bridge natural language and Overpass Query Language (OverpassQL), a structured query language for accessing large-scale OpenStreetMap (OSM) data. To enhance the accuracy and structural validity of generated queries, we introduce a Tag Retrieval Augmentation (TRA) mechanism that incorporates contextually relevant tag knowledge into the generation process. This mechanism is designed to capture the hierarchical and relational dependencies present in the OSM database, addressing the topological complexity inherent in geospatial query formulation. In addition, we define a reverse task, OverpassQL-to-Text, which translates structured queries into natural language explanations to support query interpretation and improve user accessibility. We evaluate OsmT on a public benchmark against strong baselines and observe consistent improvements in both query generation and interpretation. Despite using significantly fewer parameters, our model achieves competitive accuracy, demonstrating the effectiveness of open-source pre-trained language models in bridging natural language and structured query languages within schema-rich geospatial environments.
comment: 42nd IEEE International Conference on Data Engineering (ICDE)
☆ Towards Ethical Multi-Agent Systems of Large Language Models: A Mechanistic Interpretability Perspective AAAI'26
Large language models (LLMs) have been widely deployed in various applications, often functioning as autonomous agents that interact with each other in multi-agent systems. While these systems have shown promise in enhancing capabilities and enabling complex tasks, they also pose significant ethical challenges. This position paper outlines a research agenda aimed at ensuring the ethical behavior of multi-agent systems of LLMs (MALMs) from the perspective of mechanistic interpretability. We identify three key research challenges: (i) developing comprehensive evaluation frameworks to assess ethical behavior at individual, interactional, and systemic levels; (ii) elucidating the internal mechanisms that give rise to emergent behaviors through mechanistic interpretability; and (iii) implementing targeted parameter-efficient alignment techniques to steer MALMs towards ethical behaviors without compromising their performance.
comment: Accepted to LaMAS 2026@AAAI'26 (https://sites.google.com/view/lamas2026)
☆ Geschlechtsübergreifende Maskulina im Sprachgebrauch Eine korpusbasierte Untersuchung zu lexemspezifischen Unterschieden
This study examines the distribution and linguistic characteristics of generic masculines (GM) in contemporary German press texts. The use of masculine personal nouns to refer to mixed-gender groups or unspecified individuals has been widely debated in academia and the public, with con-flicting perspectives on its gender-neutrality. While psycholinguistic studies suggest that GM is more readily associated with male referents, corpus-based analyses of its actual use remain scarce. We investigate GM in a large corpus of press texts, focusing on lexeme-specific differences across dif-ferent types of personal nouns. We conducted manual annotations of the whole inflectional para-digm of 21 personal nouns, resulting in 6,195 annotated tokens. Our findings reveal considerable differences between lexical items, especially between passive role nouns and prestige-related per-sonal nouns. On a grammatical level, we find that GM occurs predominantly in the plural and in indefinite noun phrases. Furthermore, our data shows that GM is not primarily used to denote entire classes of people, as has been previously claimed. By providing an empirical insight into the use of GM in authentic written language, we contribute to a more nuanced understanding of its forms and manifestations. These findings provide a solid basis for aligning linguistic stimuli in psy-cholinguistic studies more closely with real-world language use.
comment: 32 pages, 8 figures
☆ Topology Matters: Measuring Memory Leakage in Multi-Agent LLMs ACL
Graph topology is a fundamental determinant of memory leakage in multi-agent LLM systems, yet its effects remain poorly quantified. We introduce MAMA (Multi-Agent Memory Attack), a framework that measures how network structure shapes leakage. MAMA operates on synthetic documents containing labeled Personally Identifiable Information (PII) entities, from which we generate sanitized task instructions. We execute a two-phase protocol: Engram (seeding private information into a target agent's memory) and Resonance (multi-round interaction where an attacker attempts extraction). Over up to 10 interaction rounds, we quantify leakage as the fraction of ground-truth PII recovered from attacking agent outputs via exact matching. We systematically evaluate six common network topologies (fully connected, ring, chain, binary tree, star, and star-ring), varying agent counts $n\in\{4,5,6\}$, attacker-target placements, and base models. Our findings reveal consistent patterns: fully connected graphs exhibit maximum leakage while chains provide strongest protection; shorter attacker-target graph distance and higher target centrality significantly increase vulnerability; leakage rises sharply in early rounds before plateauing; model choice shifts absolute leakage rates but preserves topology rankings; temporal/locational PII attributes leak more readily than identity credentials or regulated identifiers. These results provide the first systematic mapping from architectural choices to measurable privacy risk, yielding actionable guidance: prefer sparse or hierarchical connectivity, maximize attacker-target separation, limit node degree and network radius, avoid shortcuts bypassing hubs, and implement topology-aware access controls.
comment: Under review at ACL Rolling Review
☆ SEASON: Mitigating Temporal Hallucination in Video Large Language Models via Self-Diagnostic Contrastive Decoding
Video Large Language Models (VideoLLMs) have shown remarkable progress in video understanding. However, these models still struggle to effectively perceive and exploit rich temporal information in videos when responding to user queries. Therefore, they often generate descriptions of events that are temporal inconsistent or causally implausible, causing severe hallucination issues. While most prior studies have focused on spatial hallucinations (e.g. object mismatches), temporal reasoning in video understanding remains relatively underexplored. To address this issue, we propose Self-Diagnostic Contrastive Decoding (SEASON), a training-free method that adaptively enhances temporal and spatial faithfulness for each output token. It achieves this by dynamically diagnosing each token's hallucination tendency and applying adaptive contrastive decoding against its corresponding temporal and spatial negatives. Extensive experiments demonstrate that SEASON outperforms all existing training-free hallucination mitigation approaches on three hallucination examination benchmarks, while further improves VideoLLMs across four general video understanding benchmarks. The code will be released upon acceptance.
☆ Limit cycles for speech
Rhythmic fluctuations in acoustic energy and accompanying neuronal excitations in cortical oscillations are characteristic of human speech, yet whether a corresponding rhythmicity inheres in the articulatory movements that generate speech remains unclear. The received understanding of speech movements as discrete, goal-oriented actions struggles to make contact with the rhythmicity findings. In this work, we demonstrate that an unintuitive -- but no less principled than the conventional -- representation for discrete movements reveals a pervasive limit cycle organization and unlocks the recovery of previously inaccessible rhythmic structure underlying the motor activity of speech. These results help resolve a time-honored tension between the ubiquity of biological rhythmicity and discreteness in speech, the quintessential human higher function, by revealing a rhythmic organization at the most fundamental level of individual articulatory actions.
☆ Natural Language Actor-Critic: Scalable Off-Policy Learning in Language Space
Large language model (LLM) agents -- LLMs that dynamically interact with an environment over long horizons -- have become an increasingly important area of research, enabling automation in complex tasks involving tool-use, web browsing, and dialogue with people. In the absence of expert demonstrations, training LLM agents has relied on policy gradient methods that optimize LLM policies with respect to an (often sparse) reward function. However, in long-horizon tasks with sparse rewards, learning from trajectory-level rewards can be noisy, leading to training that is unstable and has high sample complexity. Furthermore, policy improvement hinges on discovering better actions through exploration, which can be difficult when actions lie in natural language space. In this paper, we propose Natural Language Actor-Critic (NLAC), a novel actor-critic algorithm that trains LLM policies using a generative LLM critic that produces natural language rather than scalar values. This approach leverages the inherent strengths of LLMs to provide a richer and more actionable training signal; particularly, in tasks with large, open-ended action spaces, natural language explanations for why an action is suboptimal can be immensely useful for LLM policies to reason how to improve their actions, without relying on random exploration. Furthermore, our approach can be trained off-policy without policy gradients, offering a more data-efficient and stable alternative to existing on-policy methods. We present results on a mixture of reasoning, web browsing, and tool-use with dialogue tasks, demonstrating that NLAC shows promise in outperforming existing training approaches and offers a more scalable and stable training paradigm for LLM agents.
comment: 22 pages, 4 figures
☆ LexGenius: An Expert-Level Benchmark for Large Language Models in Legal General Intelligence
Legal general intelligence (GI) refers to artificial intelligence (AI) that encompasses legal understanding, reasoning, and decision-making, simulating the expertise of legal experts across domains. However, existing benchmarks are result-oriented and fail to systematically evaluate the legal intelligence of large language models (LLMs), hindering the development of legal GI. To address this, we propose LexGenius, an expert-level Chinese legal benchmark for evaluating legal GI in LLMs. It follows a Dimension-Task-Ability framework, covering seven dimensions, eleven tasks, and twenty abilities. We use the recent legal cases and exam questions to create multiple-choice questions with a combination of manual and LLM reviews to reduce data leakage risks, ensuring accuracy and reliability through multiple rounds of checks. We evaluate 12 state-of-the-art LLMs using LexGenius and conduct an in-depth analysis. We find significant disparities across legal intelligence abilities for LLMs, with even the best LLMs lagging behind human legal professionals. We believe LexGenius can assess the legal intelligence abilities of LLMs and enhance legal GI development. Our project is available at https://github.com/QwenQKing/LexGenius.
☆ ADAPT: Learning Task Mixtures for Budget-Constrained Instruction Tuning
We propose ADAPT, a meta-learning algorithm that \emph{learns} task sampling proportions under an explicit token budget for multi-task instruction tuning. Instead of fixing task weights by hand, \adapt{} maintains a continuous distribution over tasks and updates it via meta-gradients of a smooth worst-case validation objective, inducing an adaptive curriculum that allocates more tokens to useful tasks while avoiding collapse. We instantiate ADAPT on three $\sim$1B-parameter open-weight LLMs (Gemma-3-1B, LLaMA-3.2-1B, Qwen-0.6B), training on 20 Natural Instructions task types under budgets of $1\%$, $5\%$, and $10\%$ of the available supervised tokens, and compare against strong supervised fine-tuning baselines with uniform and size-proportional mixing. We conduct evaluations on 11 out-of-domain benchmarks spanning reasoning, reading comprehension, code generation, and instruction following, we find that ADAPT matches or slightly improves average downstream performance relative to the best static mixture, while using fewer effective training tokens and reallocating budget toward harder, benchmark-aligned tasks.
comment: Under Review
☆ AdmTree: Compressing Lengthy Context with Adaptive Semantic Trees NeurIPS 2025
The quadratic complexity of self-attention constrains Large Language Models (LLMs) in processing long contexts, a capability essential for many advanced applications. Context compression aims to alleviate this computational bottleneck while retaining critical semantic information. However, existing approaches often fall short: explicit methods may compromise local detail, whereas implicit methods can suffer from positional biases, information degradation, or an inability to capture long-range semantic dependencies. We propose AdmTree, a novel framework for adaptive, hierarchical context compression with a central focus on preserving high semantic fidelity while maintaining efficiency. AdmTree dynamically segments input based on information density, utilizing gist tokens to summarize variable-length segments as the leaves of a semantic binary tree. This structure, together with a lightweight aggregation mechanism and a frozen backbone LLM (thereby minimizing new trainable parameters), enables efficient hierarchical abstraction of the context. By preserving fine-grained details alongside global semantic coherence, mitigating positional bias, and dynamically adapting to content, AdmTree robustly retains the semantic information of long contexts.
comment: NeurIPS 2025
☆ EvoEdit: Lifelong Free-Text Knowledge Editing through Latent Perturbation Augmentation and Knowledge-driven Parameter Fusion
Adjusting the outdated knowledge of large language models (LLMs) after deployment remains a major challenge. This difficulty has spurred the development of knowledge editing, which seeks to accurately and efficiently modify a model's internal (parametric) knowledge without retraining it from scratch. However, existing methods suffer from two limitations. First, they depend on structured triplets that are misaligned with the free-text nature of LLM pretraining and fail to capture the nuanced relationships among facts. Second, they typically support one-time knowledge updates, with relatively limited research on the problem of sequential or lifelong editing. To address these gaps, we propose a new task, Lifelong Free-text Knowledge Editing (LF-Edit), which enables models to incorporate updates expressed in natural language and supports continual editing over time. Despite its promise, LF-Edit faces the dual challenge of integrating new knowledge while mitigating the forgetting of prior information. To foster research on this new task, we construct a large-scale benchmark, Multi-Rank Lifelong Free-text Editing Benchmark (MRLF-Bench), containing 16,835 free-text edit requests. We further design a cognitively inspired multi-rank evaluation framework encompassing four levels: memorization, understanding, constrained comprehension, and reasoning. To tackle the challenges inherent in LF-Edit, we introduce a novel approach named EvoEdit that enhances knowledge injection through Latent Perturbation Augmentation and preserves prior information via Knowledge-driven Parameter Fusion. Experimental results demonstrate that EvoEdit substantially outperforms existing knowledge editing methods on the proposed LF-Edit task.
☆ UW-BioNLP at ChemoTimelines 2025: Thinking, Fine-Tuning, and Dictionary-Enhanced LLM Systems for Chemotherapy Timeline Extraction
The ChemoTimelines shared task benchmarks methods for constructing timelines of systemic anticancer treatment from electronic health records of cancer patients. This paper describes our methods, results, and findings for subtask 2 -- generating patient chemotherapy timelines from raw clinical notes. We evaluated strategies involving chain-of-thought thinking, supervised fine-tuning, direct preference optimization, and dictionary-based lookup to improve timeline extraction. All of our approaches followed a two-step workflow, wherein an LLM first extracted chemotherapy events from individual clinical notes, and then an algorithm normalized and aggregated events into patient-level timelines. Each specific method differed in how the associated LLM was utilized and trained. Multiple approaches yielded competitive performances on the test set leaderboard, with fine-tuned Qwen3-14B achieving the best official score of 0.678. Our results and analyses could provide useful insights for future attempts on this task as well as the design of similar tasks.
comment: To be published in Proceedings of the 7th Clinical Natural Language Processing Workshop
☆ MSME: A Multi-Stage Multi-Expert Framework for Zero-Shot Stance Detection
LLM-based approaches have recently achieved impressive results in zero-shot stance detection. However, they still struggle in complex real-world scenarios, where stance understanding requires dynamic background knowledge, target definitions involve compound entities or events that must be explicitly linked to stance labels, and rhetorical devices such as irony often obscure the author's actual intent. To address these challenges, we propose MSME, a Multi-Stage, Multi-Expert framework for zero-shot stance detection. MSME consists of three stages: (1) Knowledge Preparation, where relevant background knowledge is retrieved and stance labels are clarified; (2) Expert Reasoning, involving three specialized modules-Knowledge Expert distills salient facts and reasons from a knowledge perspective, Label Expert refines stance labels and reasons accordingly, and Pragmatic Expert detects rhetorical cues such as irony to infer intent from a pragmatic angle; (3) Decision Aggregation, where a Meta-Judge integrates all expert analyses to produce the final stance prediction. Experiments on three public datasets show that MSME achieves state-of-the-art performance across the board.
☆ RapidUn: Influence-Driven Parameter Reweighting for Efficient Large Language Model Unlearning
Removing specific data influence from large language models (LLMs) remains challenging, as retraining is costly and existing approximate unlearning methods are often unstable. The challenge is exacerbated when the forget set is small or imbalanced. We introduce RapidUn, an influence-driven and parameter-efficient unlearning framework. It first estimates per-sample influence through a fast estimation module, then maps these scores into adaptive update weights that guide selective parameter updates -- forgetting harmful behavior while retaining general knowledge. On Mistral-7B and Llama-3-8B across Dolly-15k and Alpaca-57k, RapidUn achieves up to 100 times higher efficiency than full retraining and consistently outperforms Fisher, GA, and LoReUn on both in-distribution and out-of-distribution forgetting. These results establish influence-guided parameter reweighting as a scalable and interpretable paradigm for LLM unlearning.
comment: Code available at: https://github.com/eyerf/RapidUn
☆ Sarcasm Detection on Reddit Using Classical Machine Learning and Feature Engineering
Sarcasm is common in online discussions, yet difficult for machines to identify because the intended meaning often contradicts the literal wording. In this work, I study sarcasm detection using only classical machine learning methods and explicit feature engineering, without relying on neural networks or context from parent comments. Using a 100,000-comment subsample of the Self-Annotated Reddit Corpus (SARC 2.0), I combine word-level and character-level TF-IDF features with simple stylistic indicators. Four models are evaluated: logistic regression, a linear SVM, multinomial Naive Bayes, and a random forest. Naive Bayes and logistic regression perform the strongest, achieving F1-scores around 0.57 for sarcastic comments. Although the lack of conversational context limits performance, the results offer a clear and reproducible baseline for sarcasm detection using lightweight and interpretable methods.
comment: 11 pages, 2 figures, includes full Python code. Classical machine learning baseline for sarcasm detection on the SARC 2.0 dataset
☆ MASE: Interpretable NLP Models via Model-Agnostic Saliency Estimation
Deep neural networks (DNNs) have made significant strides in Natural Language Processing (NLP), yet their interpretability remains elusive, particularly when evaluating their intricate decision-making processes. Traditional methods often rely on post-hoc interpretations, such as saliency maps or feature visualization, which might not be directly applicable to the discrete nature of word data in NLP. Addressing this, we introduce the Model-agnostic Saliency Estimation (MASE) framework. MASE offers local explanations for text-based predictive models without necessitating in-depth knowledge of a model's internal architecture. By leveraging Normalized Linear Gaussian Perturbations (NLGP) on the embedding layer instead of raw word inputs, MASE efficiently estimates input saliency. Our results indicate MASE's superiority over other model-agnostic interpretation methods, especially in terms of Delta Accuracy, positioning it as a promising tool for elucidating the operations of text-based models in NLP.
☆ LangSAT: A Novel Framework Combining NLP and Reinforcement Learning for SAT Solving
Our work presents a novel reinforcement learning (RL) based framework to optimize heuristic selection within the conflict-driven clause learning (CDCL) process, improving the efficiency of Boolean satisfia- bility (SAT) solving. The proposed system, LangSAT, bridges the gap between natural language inputs and propositional logic by converting English descriptions into Conjunctive Normal Form (CNF) expressions and solving them using an RL-enhanced CDCL SAT solver. Unlike existing SAT-solving platforms that require CNF as input, LangSAT enables users to input standard English descriptions, making SAT-solving more accessible. The framework comprises two key components: Lang2Logic, which translates English sentences into CNF expressions, and SmartSAT, an RL-based SAT solver. SmartSAT encodes clause-variable relationships as structured graph representations and extracts global features specific to the SAT problem. This implementation provides the RL agent with deeper contextual information, enabling SAT problems to be solved more efficiently. Lang2Logic was evaluated on diverse natural language inputs, processing descriptions up to 450 words. The generated CNFs were solved by SmartSAT, which demonstrated comparable performance to traditional CDCL heuristics with respect to solving time. The combined LangSAT framework offers a more accessible and scalable solution for SAT-solving tasks across reasoning, formal verification, and debugging.
☆ Mitigating Object and Action Hallucinations in Multimodal LLMs via Self-Augmented Contrastive Alignment
Recent advancement in multimodal LLMs (MLLMs) has demonstrated their remarkable capability to generate descriptive captions for input videos. However, these models suffer from factual inaccuracies in the generated descriptions, causing severe hallucination issues. While prior works have explored alleviating hallucinations for static images, jointly mitigating visual object and temporal action hallucinations for dynamic videos remains a challenging and unsolved task. To tackle this challenge, we propose a Self-Augmented Contrastive Alignment (SANTA) framework for enabling object and action faithfulness by exempting the spurious correlations and enforcing the emphasis on visual facts. SANTA employs a hallucinative self-augmentation scheme to identify the potential hallucinations that lie in the MLLM and transform the original captions to the contrasted negatives. Furthermore, we develop a tracklet-phrase contrastive alignment to match the regional objects and relation-guided actions with their corresponding visual and temporal phrases. Extensive experiments demonstrate that SANTA outperforms existing methods in alleviating object and action hallucinations, yielding superior performance on the hallucination examination benchmarks.
comment: IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2026. Project page: https://kpc0810.github.io/santa/
☆ ClusterFusion: Hybrid Clustering with Embedding Guidance and LLM Adaptation
Text clustering is a fundamental task in natural language processing, yet traditional clustering algorithms with pre-trained embeddings often struggle in domain-specific contexts without costly fine-tuning. Large language models (LLMs) provide strong contextual reasoning, yet prior work mainly uses them as auxiliary modules to refine embeddings or adjust cluster boundaries. We propose ClusterFusion, a hybrid framework that instead treats the LLM as the clustering core, guided by lightweight embedding methods. The framework proceeds in three stages: embedding-guided subset partition, LLM-driven topic summarization, and LLM-based topic assignment. This design enables direct incorporation of domain knowledge and user preferences, fully leveraging the contextual adaptability of LLMs. Experiments on three public benchmarks and two new domain-specific datasets demonstrate that ClusterFusion not only achieves state-of-the-art performance on standard tasks but also delivers substantial gains in specialized domains. To support future work, we release our newly constructed dataset and results on all benchmarks.
☆ LangSAT: A Novel Framework Combining NLP and Reinforcement Learning for SAT Solving
Our work presents a novel reinforcement learning (RL) based framework to optimize heuristic selection within the conflict-driven clause learning (CDCL) process, improving the efficiency of Boolean satisfiability (SAT) solving. The proposed system, LangSAT, bridges the gap between natural language inputs and propositional logic by converting English descriptions into Conjunctive Normal Form (CNF) expressions and solving them using an RL-enhanced CDCL SAT solver. Unlike existing SAT-solving platforms that require CNF as input, LangSAT enables users to input standard English descriptions, making SAT-solving more accessible. The framework comprises two key components: Lang2Logic, which translates English sentences into CNF expressions, and SmartSAT, an RL-based SAT solver. SmartSAT encodes clause-variable relationships as structured graph representations and extracts global features specific to the SAT problem. This implementation provides the RL agent with deeper contextual information, enabling SAT problems to be solved more efficiently. Lang2Logic was evaluated on diverse natural language inputs, processing descriptions up to 450 words. The generated CNFs were solved by SmartSAT, which demonstrated comparable performance to traditional CDCL heuristics with respect to solving time. The combined LangSAT framework offers a more accessible and scalable solution for SAT-solving tasks across reasoning, formal verification, and debugging.
♻ ☆ Athena: Enhancing Multimodal Reasoning with Data-efficient Process Reward Models
We present Athena-PRM, a multimodal process reward model (PRM) designed to evaluate the reward score for each step in solving complex reasoning problems. Developing high-performance PRMs typically demands significant time and financial investment, primarily due to the necessity for step-level annotations of reasoning steps. Conventional automated labeling methods, such as Monte Carlo estimation, often produce noisy labels and incur substantial computational costs. To efficiently generate high-quality process-labeled data, we propose leveraging prediction consistency between weak and strong completers as a criterion for identifying reliable process labels. Remarkably, Athena-PRM demonstrates outstanding effectiveness across various scenarios and benchmarks with just 5,000 samples. Furthermore, we also develop two effective strategies to improve the performance of PRMs: ORM initialization and up-sampling for negative data. We validate our approach in three specific scenarios: verification for test time scaling, direct evaluation of reasoning step correctness, and reward ranked fine-tuning. Our Athena-PRM consistently achieves superior performance across multiple benchmarks and scenarios. Notably, when using Qwen2.5-VL-7B as the policy model, Athena-PRM enhances performance by 10.2 points on WeMath and 7.1 points on MathVista for test time scaling. Furthermore, Athena-PRM sets the state-of-the-art (SoTA) results in VisualProcessBench and outperforms the previous SoTA by 3.9 F1-score, showcasing its robust capability to accurately assess the correctness of the reasoning step. Additionally, utilizing Athena-PRM as the reward model, we develop Athena-7B with reward ranked fine-tuning and outperforms baseline with a significant margin on five benchmarks.
♻ ☆ TreeRare: Syntax Tree-Guided Retrieval and Reasoning for Knowledge-Intensive Question Answering
In real practice, questions are typically complex and knowledge-intensive, requiring Large Language Models (LLMs) to recognize the multifaceted nature of the question and reason across multiple information sources. Iterative and adaptive retrieval, where LLMs decide when and what to retrieve based on their reasoning, has been shown to be a promising approach to resolve complex, knowledge-intensive questions. However, the performance of such retrieval frameworks is limited by the accumulation of reasoning errors and misaligned retrieval results. To overcome these limitations, we propose TreeRare (Syntax Tree-Guided Retrieval and Reasoning), a framework that utilizes syntax trees to guide information retrieval and reasoning for question answering. Following the principle of compositionality, TreeRare traverses the syntax tree in a bottom-up fashion, and in each node, it generates subcomponent-based queries and retrieves relevant passages to resolve localized uncertainty. A subcomponent question answering module then synthesizes these passages into concise, context-aware evidence. Finally, TreeRare aggregates the evidence across the tree to form a final answer. Experiments across five question answering datasets involving ambiguous or multi-hop reasoning demonstrate that TreeRare achieves substantial improvements over existing state-of-the-art methods.
♻ ☆ SO-Bench: A Structural Output Evaluation of Multimodal LLMs
Multimodal large language models (MLLMs) are increasingly deployed in real-world, agentic settings where outputs must not only be correct, but also conform to predefined data schemas. Despite recent progress in structured generation in textual domain, there is still no benchmark that systematically evaluates schema-grounded information extraction and reasoning over visual inputs. In this work, we conduct a comprehensive study of visual structural output capabilities for MLLMs with our carefully designed SO-Bench benchmark. Covering four visual domains, including UI screens, natural images, documents, and charts, SO-Bench is built from over 6.5K diverse JSON schemas and 1.8K curated image-schema pairs with human-verified quality. Benchmarking experiments on open-sourced and frontier proprietary models reveal persistent gaps in predicting accurate, schema compliant outputs, highlighting the need for better multimodal structured reasoning. Beyond benchmarking, we further conduct training experiments to largely improve the model's structured output capability. We plan to make the benchmark available to the community.
comment: v2 preprint. Fixed some typos, add a discussion about limitation, provide pseudo-codes for eval
♻ ☆ Massively Multilingual Adaptation of Large Language Models Using Bilingual Translation Data
This paper investigates a critical design decision in the practice of massively multilingual continual pre-training -- the inclusion of parallel data. Specifically, we study the impact of bilingual translation data for massively multilingual language adaptation of the Llama3 family of models to 500 languages. To this end, we construct the MaLA bilingual translation corpus, containing data from more than 2,500 language pairs. Subsequently, we develop the EMMA-500 Llama 3 suite of four massively multilingual models -- continually pre-trained from the Llama 3 family of base models extensively on diverse data mixes up to 671B tokens -- and explore the effect of continual pre-training with or without bilingual translation data. Comprehensive evaluation across 7 tasks and 12 benchmarks demonstrates that bilingual data tends to enhance language transfer and performance, particularly for low-resource languages. We open-source the MaLA corpus, EMMA-500 Llama 3 suite artefacts, code, and model generations.
comment: EMMA-500 Gen 2; refer to Gen 1 in arXiv:2409.17892
♻ ☆ QA-LIGN: Aligning LLMs through Constitutionally Decomposed QA EMNLP 2025
Alignment of large language models (LLMs) with principles like helpfulness, honesty, and harmlessness typically relies on scalar rewards that obscure which objectives drive the training signal. We introduce QA-LIGN, which decomposes monolithic rewards into interpretable principle-specific evaluations through structured natural language programs. Models learn through a draft, critique, and revise pipeline, where symbolic evaluation against the rubrics provides transparent feedback for both initial and revised responses during GRPO training. Applied to uncensored Llama-3.1-8B-Instruct, QA-LIGN reduces attack success rates by up to 68.7% while maintaining a 0.67% false refusal rate, achieving Pareto optimal safety-helpfulness performance and outperforming both DPO and GRPO with state-of-the-art reward models given equivalent training. These results demonstrate that making reward signals interpretable and modular improves alignment effectiveness, suggesting transparency enhances LLM safety.
comment: Findings of the Association for Computational Linguistics: EMNLP 2025, pages 20619-20642, Suzhou, China
♻ ☆ PUCP-Metrix: An Open-source and Comprehensive Toolkit for Linguistic Analysis of Spanish Texts ACL
Linguistic features remain essential for interpretability and tasks that involve style, structure, and readability, but existing Spanish tools offer limited coverage. We present PUCP-Metrix, an open-source and comprehensive toolkit for linguistic analysis of Spanish texts. PUCP-Metrix includes 182 linguistic metrics spanning lexical diversity, syntactic and semantic complexity, cohesion, psycholinguistics, and readability. It enables fine-grained, interpretable text analysis. We evaluate its usefulness on Automated Readability Assessment and Machine-Generated Text Detection, showing competitive performance compared to an existing repository and strong neural baselines. PUCP-Metrix offers a comprehensive and extensible resource for Spanish, supporting diverse NLP applications.
comment: 1 figure, Submitted to EACL Demo track (under review)
♻ ☆ LORE: A Large Generative Model for Search Relevance
Achievement. We introduce LORE, a systematic framework for Large Generative Model-based relevance in e-commerce search. Deployed and iterated over three years, LORE achieves a cumulative +27\% improvement in online GoodRate metrics. This report shares the valuable experience gained throughout its development lifecycle, spanning data, features, training, evaluation, and deployment. Insight. While existing works apply Chain-of-Thought (CoT) to enhance relevance, they often hit a performance ceiling. We argue this stems from treating relevance as a monolithic task, lacking principled deconstruction. Our key insight is that relevance comprises distinct capabilities: knowledge and reasoning, multi-modal matching, and rule adherence. We contend that a qualitative-driven decomposition is essential for breaking through current performance bottlenecks. Contributions. LORE provides a complete blueprint for the LLM relevance lifecycle. Key contributions include: (1) A two-stage training paradigm combining progressive CoT synthesis via SFT with human preference alignment via RL. (2) A comprehensive benchmark, RAIR, designed to evaluate these core capabilities. (3) A query frequency-stratified deployment strategy that efficiently transfers offline LLM capabilities to the online system. LORE serves as both a practical solution and a methodological reference for other vertical domains.
♻ ☆ EMMA-500: Enhancing Massively Multilingual Adaptation of Large Language Models
In this work, we introduce EMMA-500, a large-scale multilingual language model continue-trained on texts across 546 languages designed for enhanced multilingual performance, focusing on improving language coverage for low-resource languages. To facilitate continual pre-training, we compile the MaLA corpus, a comprehensive multilingual dataset enriched with curated datasets across diverse domains. Leveraging this corpus, we conduct extensive continual pre-training of the Llama 2 7B model, resulting in EMMA-500, which demonstrates robust performance across a wide collection of benchmarks, including a comprehensive set of multilingual tasks. Our results highlight the effectiveness of continual pre-training in expanding large language models' language capacity, particularly for underrepresented languages, demonstrating significant gains in cross-lingual transfer, task generalization, and language adaptability. We release the MaLA corpus, EMMA-500 model weights, scripts, and model generations.
♻ ☆ SignBind-LLM: Multi-Stage Modality Fusion for Sign Language Translation
Despite progress in gloss-free Sign Language Translation (SLT), traditional single modality end-to-end approaches consistently fail on two critical components of natural signing: the precise recognition of high-speed fingerspelling and the integration of asynchronous non-manual cues from the face. Recent progress in SLT with Large Language Models has side stepped this challenge, forcing a single network to learn these simultaneously resulting in poor performance when tasked with translating crucial information such as names, places, and technical terms. We introduce SignBind-LLM, a modular framework designed to overcome these limitations. Our approach employs separate, specialized predictors for continuous signing, fingerspelling, and lipreading. Each expert network first decodes its specific modality into a sequence of tokens. These parallel streams are then fused by a lightweight transformer that resolves temporal misalignments before passing the combined representation to a Large Language Model (LLM) for final sentence generation. Our method establishes a new state-of-the-art on the How2Sign, ChicagoFSWildPlus, and BOBSL datasets with a BLEU-4 score of 22.1, 73.2% letter accuracy and BLEU-4 score of 6.8 respectively. These results validate our core hypothesis: isolating and solving distinct recognition tasks before fusion provides a more powerful and effective pathway to robust, high-fidelity sign language translation.
♻ ☆ HUME: Measuring the Human-Model Performance Gap in Text Embedding Tasks ICLR 2026
Comparing human and model performance offers a valuable perspective for understanding the strengths and limitations of embedding models, highlighting where they succeed and where they fail to capture meaning and nuance. However, such comparisons are rarely made, as human performance on embedding tasks is difficult to measure. To fill this gap, we introduce HUME: Human Evaluation Framework for Text Embeddings. While frameworks like MTEB provide broad model evaluation, they lack reliable estimates of human performance, limiting the interpretability of model scores. We measure human performance across 16 MTEB datasets spanning reranking, classification, clustering, and semantic textual similarity across linguistically diverse high- and low-resource languages. Humans achieve an average performance of 77.6% compared to 80.1% for the best embedding model, though with substantial variation: models reach high performance on some datasets while struggling on notably low-resource languages. Our human annotations also reveal multiple dataset issues. We additionally benchmark nine LLMs as annotators on reranking, classification, and STS tasks, finding that they fall short of human performance (76.1% vs. 81.2%) despite offering scalability advantages. We provide human performance baselines, insights into task difficulty patterns, and an extensible evaluation framework that enables a more meaningful interpretation of results and informs the development of both models and benchmarks. Our code, dataset, and leaderboard are publicly available at https://github.com/embeddings-benchmark/mteb.
comment: Submitted to ICLR 2026
♻ ☆ Large language models can learn and generalize steganographic chain-of-thought under process supervision NeurIPS 2025
Chain-of-thought (CoT) reasoning not only enhances large language model performance but also provides critical insights into decision-making processes, marking it as a useful tool for monitoring model intent and planning. However, recent works have shown that banning the mention of a specific example of reward hacking causes obfuscation of the undesired reasoning traces but the persistence of the undesired behavior, threatening the reliability of CoT monitoring. We provide an extension to these results with regard to the ability of models to learn a specific type of obfuscated reasoning: steganography. First, we show that penalizing the use of specific strings within load-bearing reasoning traces causes models to substitute alternative strings. Crucially, this does not alter the underlying method by which the model performs the task, demonstrating that the model can learn to steganographically encode its reasoning.We further demonstrate that models can generalize an encoding scheme. When the penalized strings belong to an overarching class, the model learns not only to substitute strings seen in training, but also develops a general encoding scheme for all members of the class which it can apply to held-out testing strings.
comment: 10 pages main text, 3 figures main text, 17 pages supplementary material, 1 figure supplementary material, accepted at NeurIPS 2025
♻ ☆ On-Policy Optimization with Group Equivalent Preference for Multi-Programming Language Understanding
Large language models (LLMs) achieve remarkable performance in code generation tasks. However, a significant performance disparity persists between popular programming languages (e.g., Python, C++) and others. To address this capability gap, we leverage the code translation task to train LLMs, thereby facilitating the transfer of coding proficiency across diverse programming languages. Moreover, we introduce OORL for training, a novel reinforcement learning (RL) framework that integrates on-policy and off-policy strategies. Within OORL, on-policy RL is applied during code translation, guided by a rule-based reward signal derived from unit tests. Complementing this coarse-grained rule-based reward, we propose Group Equivalent Preference Optimization (GEPO), a novel preference optimization method. Specifically, GEPO trains the LLM using intermediate representations (IRs) groups. LLMs can be guided to discern IRs equivalent to the source code from inequivalent ones, while also utilizing signals about the mutual equivalence between IRs within the group. This process allows LLMs to capture nuanced aspects of code functionality. By employing OORL for training with code translation tasks, LLMs improve their recognition of code functionality and their understanding of the relationships between code implemented in different languages. Extensive experiments demonstrate that our OORL for LLMs training with code translation tasks achieves significant performance improvements on code benchmarks across multiple programming languages.
♻ ☆ Human Mobility Datasets Enriched With Contextual and Social Dimensions
In this resource paper, we present two publicly available datasets of semantically enriched human trajectories, together with the pipeline to build them. The trajectories are publicly available GPS traces retrieved from OpenStreetMap. Each dataset includes contextual layers such as stops, moves, points of interest (POIs), inferred transportation modes, and weather data. A novel semantic feature is the inclusion of synthetic, realistic social media posts generated by Large Language Models (LLMs), enabling multimodal and semantic mobility analysis. The datasets are available in both tabular and Resource Description Framework (RDF) formats, supporting semantic reasoning and FAIR data practices. They cover two structurally distinct, large cities: Paris and New York. Our open source reproducible pipeline allows for dataset customization, while the datasets support research tasks such as behavior modeling, mobility prediction, knowledge graph construction, and LLM-based applications. To our knowledge, our resource is the first to combine real-world movement, structured semantic enrichment, LLM-generated text, and semantic web compatibility in a reusable framework.
comment: 5 pages, 3 figures, 1 table
♻ ☆ Beyond the Exploration-Exploitation Trade-off: A Hidden State Approach for LLM Reasoning in RLVR
A prevailing view in Reinforcement Learning with Verifiable Rewards (RLVR) interprets recent progress through the lens of an exploration-exploitation trade-off, a perspective largely shaped by token-level metrics. We re-examine this perspective, proposing that this perceived trade-off may not be a fundamental constraint but rather an artifact of the measurement level. To investigate this, we shift the analysis to the semantically rich hidden-state space, adopting Effective Rank (ER) to quantify exploration and proposing its novel first- and second-order derivatives, named ER Velocity and ER Acceleration, to capture exploitation dynamics. Our analysis reveals that in the semantic space, exploration and exploitation could be decoupled (Sec.~4). This finding reveals an opportunity to enhance both capacities simultaneously. This insight motivates our method, Velocity-Exploiting Rank-Learning (VERL), the first to operationalize the principle of synergistic exploration-exploitation enhancement by directly shaping the RL advantage function. The key innovation is leveraging the theoretically stable ERA as a predictive meta-controller to create a synergistic, dual-channel incentive structure. Instead of forcing a trade-off, VERL prospectively amplifies rewards for exploration to preempt overconfidence and reinforces exploitative gains to consolidate reasoning. Experiments across diverse LLMs and reasoning benchmarks show consistent gains, including up to 21.4% absolute accuracy improvement on the challenging Gaokao 2024 dataset.
♻ ☆ MMAG: Mixed Memory-Augmented Generation for Large Language Models Applications
Large Language Models (LLMs) excel at generating coherent text within a single prompt but fall short in sustaining relevance, personalization, and continuity across extended interactions. Human communication, however, relies on multiple forms of memory, from recalling past conversations to adapting to personal traits and situational context. This paper introduces the Mixed Memory-Augmented Generation (MMAG) pattern, a framework that organizes memory for LLM-based agents into five interacting layers: conversational, long-term user, episodic and event-linked, sensory and context-aware, and short-term working memory. Drawing inspiration from cognitive psychology, we map these layers to technical components and outline strategies for coordination, prioritization, and conflict resolution. We demonstrate the approach through its implementation in the Heero conversational agent, where encrypted long-term bios and conversational history already improve engagement and retention. We further discuss implementation concerns around storage, retrieval, privacy, and latency, and highlight open challenges. MMAG provides a foundation for building memory-rich language agents that are more coherent, proactive, and aligned with human needs.
♻ ☆ Grounding Large Language Models in Clinical Evidence: A Retrieval-Augmented Generation System for Querying UK NICE Clinical Guidelines
This paper presents the development and evaluation of a Retrieval-Augmented Generation (RAG) system for querying the United Kingdom's National Institute for Health and Care Excellence (NICE) clinical guidelines using Large Language Models (LLMs). The extensive length and volume of these guidelines can impede their utilisation within a time-constrained healthcare system, a challenge this project addresses through the creation of a system capable of providing users with precisely matched information in response to natural language queries. The system's retrieval architecture, composed of a hybrid embedding mechanism, was evaluated against a corpus of 10,195 text chunks derived from three hundred guidelines. It demonstrates high performance, with a Mean Reciprocal Rank (MRR) of 0.814, a Recall of 81% at the first chunk and of 99.1% within the top ten retrieved chunks, when evaluated on 7901 queries. The most significant impact of the RAG system was observed during the generation phase. When evaluated on a manually curated dataset of seventy question-answer pairs, RAG-enhanced models showed substantial gains in performance. Faithfulness, the measure of whether an answer is supported by the source text, was increased by 64.7 percentage points to 99.5% for the RAG-enhanced O4-Mini model and significantly outperformed the medical-focused Meditron3-8B LLM, which scored 43%. Clinical evaluation by seven Subject Matter Experts (SMEs) further validated these findings, with GPT-4.1 achieving 98.7% accuracy while reducing unsafe responses by 67% compared to O4-Mini (from 3.0 to 1.0 per evaluator). This study thus establishes RAG as an effective, reliable, and scalable approach for applying generative AI in healthcare, enabling cost-effective access to medical guidelines.
♻ ☆ Optimizing Fine-Tuning through Advanced Initialization Strategies for Low-Rank Adaptation
The rapid development of parameter-efficient fine-tuning methods has noticeably improved the efficiency of adapting large language models. Among these, LoRA has gained widespread popularity due to its strong balance of effectiveness and parameter efficiency. However, LoRA relies on initializing two low-rank matrices whose product is zero, which limits its ability to effectively activate and leverage the original model weights-creating a potential bottleneck for optimal performance. To address this limitation, we propose \textbf{IniLoRA}, a novel initialization strategy that initializes the low-rank matrices to closely approximate the original model weights. Experimental results indicate that IniLoRA achieves better performance than LoRA across a range of models and tasks. Additionally, we introduce two variants, IniLoRA-$α$ and IniLoRA-$β$, both leveraging distinct initialization methods to enhance performance further.
♻ ☆ Jina-VLM: Small Multilingual Vision Language Model
We present Jina-VLM, a 2.4B parameter vision-language model that achieves state-of-the-art multilingual visual question answering among open 2B-scale VLMs. The model couples a SigLIP2 vision encoder with a Qwen3 language backbone through an attention-pooling connector that enables token-efficient processing of arbitrary-resolution images. The model achieves leading results on standard VQA benchmarks and multilingual evaluations while preserving competitive text-only performance. Model weights and code are publicly released at https://huggingface.co/jinaai/jina-vlm .
comment: 18 pages, 1-7 main content, 13-18 appendix for tables and dataset
♻ ☆ SeSE: A Structural Information-Guided Uncertainty Quantification Framework for Hallucination Detection in LLMs
Reliable uncertainty quantification (UQ) is essential for deploying large language models (LLMs) in safety-critical scenarios, as it enables them to abstain from responding when uncertain, thereby avoiding ``hallucinating'' falsehoods. However, state-of-the-art UQ methods primarily rely on semantic probability distributions or pairwise distances, overlooking latent semantic structural information that could enable more precise uncertainty estimates. This paper presents Semantic Structural Entropy (SeSE), a principled UQ framework that quantifies the inherent semantic uncertainty of LLMs from a structural information perspective for hallucination detection. SeSE operates in a zero-resource manner and is applicable to both open- and closed-source LLMs, making it an ``off-the-shelf" solution for new models and tasks. Specifically, to effectively model semantic spaces, we first develop an adaptively sparsified directed semantic graph construction algorithm that captures directional semantic dependencies while automatically pruning unnecessary connections that introduce negative interference. We then exploit latent semantic structural information through hierarchical abstraction: SeSE is defined as the structural entropy of the optimal semantic encoding tree, formalizing intrinsic uncertainty within semantic spaces after optimal compression. A higher SeSE value corresponds to greater uncertainty, indicating that LLMs are highly likely to generate hallucinations. In addition, to enhance fine-grained UQ in long-form generation, we extend SeSE to quantify the uncertainty of individual claims by modeling their random semantic interactions, providing theoretically explicable hallucination detection. Extensive experiments across 29 model-dataset combinations show that SeSE significantly outperforms advanced UQ baselines.
comment: 14 pages of main text and 10 pages of appendices;Submit to IEEE TKDE
♻ ☆ Grounding LLM Reasoning with Knowledge Graphs
Large Language Models (LLMs) excel at generating natural language answers, yet their outputs often remain unverifiable and difficult to trace. Knowledge Graphs (KGs) offer a complementary strength by representing entities and their relationships in structured form, providing a foundation for more reliable reasoning. We propose a novel framework that integrates LLM reasoning with KGs by linking each step of the reasoning process to graph-structured data. This grounding turns intermediate ``thoughts'' into interpretable traces that remain consistent with external knowledge. Our approach incorporates multiple reasoning strategies, Chain-of-Thought (CoT), Tree-of-Thought (ToT), and Graph-of-Thought (GoT), and is evaluated on GRBench, a benchmark for domain-specific graph reasoning. Our experiments show state-of-the-art (SOTA) performance, with at least 26.5\% improvement over CoT baselines. Beyond accuracy, we analyze how step depth, branching structure, and model size influence reasoning quality, offering insights into the conditions that support effective reasoning. Together, these contributions highlight how grounding LLMs in structured knowledge enables both higher accuracy and greater interpretability in complex reasoning tasks.
♻ ☆ Control Illusion: The Failure of Instruction Hierarchies in Large Language Models AAAI-26
Large language models (LLMs) are increasingly deployed with hierarchical instruction schemes, where certain instructions (e.g., system-level directives) are expected to take precedence over others (e.g., user messages). Yet, we lack a systematic understanding of how effectively these hierarchical control mechanisms work. We introduce a systematic evaluation framework based on constraint prioritization to assess how well LLMs enforce instruction hierarchies. Our experiments across six state-of-the-art LLMs reveal that models struggle with consistent instruction prioritization, even for simple formatting conflicts. We find that the widely-adopted system/user prompt separation fails to establish a reliable instruction hierarchy, and models exhibit strong inherent biases toward certain constraint types regardless of their priority designation. Interestingly, we also find that societal hierarchy framings (e.g., authority, expertise, consensus) show stronger influence on model behavior than system/user roles, suggesting that pretraining-derived social structures function as latent behavioral priors with potentially greater impact than post-training guardrails.
comment: Accepted to AAAI-26 Main Technical Track Proceedings
♻ ☆ Bridging Online Behavior and Clinical Insight: A Longitudinal LLM-based Study of Suicidality on YouTube Reveals Novel Digital Markers
Suicide remains a leading cause of death in Western countries. As social media becomes central to daily life, digital footprints offer valuable insight into suicidal behavior. Focusing on individuals who attempted suicide while uploading videos to their channels, we investigate: How do linguistic patterns on YouTube reflect suicidal behavior, and how do these patterns align with or differ from expert knowledge? We examined linguistic changes around suicide attempts and compared individuals who attempted suicide while actively uploading to their channel with three control groups: those with prior attempts, those experiencing major life events, and matched individuals from the broader cohort. Applying complementary bottom-up, hybrid, and expert-driven approaches, we analyzed a novel longitudinal dataset of 181 suicide-attempt channels and 134 controls. In the bottom-up analysis, LLM-based topic-modeling identified 166 topics; five were linked to suicide attempts, two also showed attempt-related temporal changes (Mental Health Struggles, $OR = 1.74$; YouTube Engagement, $OR = 1.67$; $p < .01$). In the hybrid approach, clinical experts reviewed LLM-derived topics and flagged 19 as suicide-related. However, none showed significant effects beyond those identified bottom-up. YouTube Engagement, a platform-specific indicator, was not flagged, underscoring the value of bottom-up discovery. A top-down psychological assessment of suicide narratives revealed differing motivations: individuals describing prior attempts aimed to help others ($β=-1.69$, $p<.01$), whereas those attempted during the uploading period emphasized personal recovery ($β=1.08$, $p<.01$). By integrating these approaches, we offer a nuanced understanding of suicidality, bridging digital behavior and clinical insights.
♻ ☆ ChatGPT for President! Presupposed content in politicians versus GPT-generated texts
This study examines ChatGPT-4's capability to replicate linguistic strategies used in political discourse, focusing on its potential for manipulative language generation. As large language models become increasingly popular for text generation, concerns have grown regarding their role in spreading fake news and propaganda. This research compares real political speeches with those generated by ChatGPT, emphasizing presuppositions (a rhetorical device that subtly influences audiences by packaging some content as already known at the moment of utterance, thus swaying opinions without explicit argumentation). Using a corpus-based pragmatic analysis, this study assesses how well ChatGPT can mimic these persuasive strategies. The findings reveal that although ChatGPT-generated texts contain many manipulative presuppositions, key differences emerge in their frequency, form, and function compared with those of politicians. For instance, ChatGPT often relies on change-of-state verbs used in fixed phrases, whereas politicians use presupposition triggers in more varied and creative ways. Such differences, however, are challenging to detect with the naked eye, underscoring the potential risks posed by large language models in political and public discourse.Using a corpus-based pragmatic analysis, this study assesses how well ChatGPT can mimic these persuasive strategies. The findings reveal that although ChatGPT-generated texts contain many manipulative presuppositions, key differences emerge in their frequency, form, and function compared with those of politicians. For instance, ChatGPT often relies on change-of-state verbs used in fixed phrases, whereas politicians use presupposition triggers in more varied and creative ways. Such differences, however, are challenging to detect with the naked eye, underscoring the potential risks posed by large language models in political and public discourse.
comment: 36 pages, 6 figures
♻ ☆ Which Type of Students can LLMs Act? Investigating Authentic Simulation with Graph-based Human-AI Collaborative System
While rapid advances in large language models (LLMs) are reshaping data-driven intelligent education, accurately simulating students remains an important but challenging bottleneck for scalable educational data collection, evaluation, and intervention design. However, current works are limited by scarce real interaction data, costly expert evaluation for realism, and a lack of large-scale, systematic analyses of LLMs ability in simulating students. We address this gap by presenting a three-stage LLM-human collaborative pipeline to automatically generate and filter high-quality student agents. We leverage a two-round automated scoring validated by human experts and deploy a score propagation module to obtain more consistent scores across the student similarity graph. Experiments show that combining automated scoring, expert calibration, and graph-based propagation yields simulated student that more closely track authentication by human judgments. We then analyze which profiles and behaviors are simulated more faithfully, supporting subsequent studies on personalized learning and educational assessment.
comment: This work has been submitted to AI Open for possible publication
♻ ☆ ThaiOCRBench: A Task-Diverse Benchmark for Vision-Language Understanding in Thai ACL 2025
We present ThaiOCRBench, the first comprehensive benchmark for evaluating vision-language models (VLMs) on Thai text-rich visual understanding tasks. Despite recent progress in multimodal modeling, existing benchmarks predominantly focus on high-resource languages, leaving Thai underrepresented, especially in tasks requiring document structure understanding. ThaiOCRBench addresses this gap by offering a diverse, human-annotated dataset comprising 2,808 samples across 13 task categories. We evaluate a wide range of state-of-the-art VLMs in a zero-shot setting, spanning both proprietary and open-source systems. Results show a significant performance gap, with proprietary models (e.g., Gemini 2.5 Pro) outperforming open-source counterparts. Notably, fine-grained text recognition and handwritten content extraction exhibit the steepest performance drops among open-source models. Through detailed error analysis, we identify key challenges such as language bias, structural mismatch, and hallucinated content. ThaiOCRBench provides a standardized framework for assessing VLMs in low-resource, script-complex settings, and provides actionable insights for improving Thai-language document understanding.
comment: Accepted at IJCNLP-AACL 2025 (Main). This version includes the corrected Table 2 and an updated conclusion regarding the deletion count of the Gemma model
♻ ☆ TaoSR1: The Thinking Model for E-commerce Relevance Search
Query-product relevance prediction is a core task in e-commerce search. BERT-based models excel at semantic matching but lack complex reasoning capabilities. While Large Language Models (LLMs) are explored, most still use discriminative fine-tuning or distill to smaller models for deployment. We propose a framework to directly deploy LLMs for this task, addressing key challenges: Chain-of-Thought (CoT) error accumulation, discriminative hallucination, and deployment feasibility. Our framework, TaoSR1, involves three stages: (1) Supervised Fine-Tuning (SFT) with CoT to instill reasoning; (2) Offline sampling with a pass@N strategy and Direct Preference Optimization (DPO) to improve generation quality; and (3) Difficulty-based dynamic sampling with Group Relative Policy Optimization (GRPO) to mitigate discriminative hallucination. Additionally, post-CoT processing and a cumulative probability-based partitioning method enable efficient online deployment. TaoSR1 significantly outperforms baselines on offline datasets and achieves substantial gains in online side-by-side human evaluations, introducing a novel paradigm for applying CoT reasoning to relevance classification.
♻ ☆ Data Mixing Can Induce Phase Transitions in Knowledge Acquisition NeurIPS'25
Large Language Models (LLMs) are typically trained on data mixtures: most data come from web scrapes, while a small portion is curated from high-quality sources with dense domain-specific knowledge. In this paper, we show that when training LLMs on such data mixtures, knowledge acquisition from knowledge-dense datasets, unlike training exclusively on knowledge-dense data (arXiv:2404.05405), does not always follow a smooth scaling law but can exhibit phase transitions with respect to the mixing ratio and model size. Through controlled experiments on a synthetic biography dataset mixed with web-scraped data, we demonstrate that: (1) as we increase the model size to a critical value, the model suddenly transitions from memorizing very few to most of the biographies; (2) below a critical mixing ratio, the model memorizes almost nothing even with extensive training, but beyond this threshold, it rapidly memorizes more biographies. We attribute these phase transitions to a capacity allocation phenomenon: a model with bounded capacity must act like a knapsack problem solver to minimize the overall test loss, and the optimal allocation across datasets can change discontinuously as the model size or mixing ratio varies. We formalize this intuition in an information-theoretic framework and reveal that these phase transitions are predictable, with the critical mixing ratio following a power-law relationship with the model size. Our findings highlight a concrete case where a good mixing recipe for large models may not be optimal for small models, and vice versa.
comment: NeurIPS'25 Spotlight
♻ ☆ Ground-Truth Subgraphs for Better Training and Evaluation of Knowledge Graph Augmented LLMs
Retrieval of information from graph-structured knowledge bases represents a promising direction for improving the factuality of LLMs. While various solutions have been proposed, a comparison of methods is difficult due to the lack of challenging QA datasets with ground-truth targets for graph retrieval. We present SynthKGQA, an LLM-powered framework for generating high-quality Knowledge Graph Question Answering datasets from any Knowledge Graph, providing the full set of ground-truth facts in the KG to reason over questions. We show how, in addition to enabling more informative benchmarking of KG retrievers, the data produced with SynthKGQA also allows us to train better models.We apply SynthKGQA to Wikidata to generate GTSQA, a new dataset designed to test zero-shot generalization abilities of KG retrievers with respect to unseen graph structures and relation types, and benchmark popular solutions for KG-augmented LLMs on it.
♻ ☆ An Investigation of Robustness of LLMs in Mathematical Reasoning: Benchmarking with Mathematically-Equivalent Transformation of Advanced Mathematical Problems
In this paper, we introduce a systematic framework beyond conventional method to assess LLMs' mathematical-reasoning robustness by stress-testing them on advanced math problems that are mathematically equivalent but with linguistic and parametric variation. These transformations allow us to measure the sensitivity of LLMs to non-mathematical perturbations, thereby enabling a more accurate evaluation of their mathematical reasoning capabilities. Using this new evaluation methodology, we created PutnamGAP, a new benchmark dataset with multiple mathematically-equivalent variations of competition-level math problems. With the new dataset, we evaluate multiple families of representative LLMs and examine their robustness. Across 18 commercial and open-source models we observe sharp performance degradation on the variants. OpenAI's flagship reasoning model, O3, scores 51.5% on the originals but drops by 4.7 percentage points on surface-renaming variants, and by 12.9 percentage points on parametric variants, while smaller models fare far worse. Overall, the results show that the proposed new evaluation methodology is effective for deepening our understanding of the robustness of LLMs and generating new insights for further improving their mathematical reasoning capabilities.
comment: 34 pages, 9 figures
♻ ☆ Scaling Towards the Information Boundary of Instruction Sets: The Infinity Instruct Subject Technical Report
Instruction tuning has become a foundation for unlocking the capabilities of large-scale pretrained models and improving their performance on complex tasks. Thus, the construction of high-quality instruction datasets is crucial for enhancing model performance and generalizability. Although current instruction datasets have reached tens of millions of samples, models finetuned on them may still struggle with complex instruction following and tasks in rare domains. This is primarily due to limited expansion in both ``coverage'' (coverage of task types and knowledge areas) and ``depth'' (instruction complexity) of the instruction set. To address this issue, we propose a systematic instruction data construction framework, which integrates a hierarchical tagging system, an informative seed selection algorithm, an evolutionary data synthesis process, and a model deficiency diagnosis with targeted data generation. These components form an iterative closed-loop to continuously enhance the coverage and depth of instruction data. Based on this framework, we construct Infinity Instruct Subject, a high-quality dataset containing $\sim$1.5 million instructions. Experiments on multiple foundation models and benchmark tasks demonstrate its effectiveness in improving instruction-following capabilities. Further analyses suggest that Infinity Instruct Subject shows enlarged coverage and depth compared to comparable synthesized instruction datasets. Our work lays a theoretical and practical foundation for the efficient, continuous evolution of instruction datasets, moving from data quantity expansion to qualitative improvement.
♻ ☆ In-Context Representation Hijacking
We introduce $\textbf{Doublespeak}$, a simple in-context representation hijacking attack against large language models (LLMs). The attack works by systematically replacing a harmful keyword (e.g., bomb) with a benign token (e.g., carrot) across multiple in-context examples, provided a prefix to a harmful request. We demonstrate that this substitution leads to the internal representation of the benign token converging toward that of the harmful one, effectively embedding the harmful semantics under a euphemism. As a result, superficially innocuous prompts (e.g., "How to build a carrot?") are internally interpreted as disallowed instructions (e.g., "How to build a bomb?"), thereby bypassing the model's safety alignment. We use interpretability tools to show that this semantic overwrite emerges layer by layer, with benign meanings in early layers converging into harmful semantics in later ones. Doublespeak is optimization-free, broadly transferable across model families, and achieves strong success rates on closed-source and open-source systems, reaching 74% ASR on Llama-3.3-70B-Instruct with a single-sentence context override. Our findings highlight a new attack surface in the latent space of LLMs, revealing that current alignment strategies are insufficient and should instead operate at the representation level.
♻ ☆ Semi-Supervised Synthetic Data Generation with Fine-Grained Relevance Control for Short Video Search Relevance Modeling AAAI 2026
Synthetic data is widely adopted in embedding models to ensure diversity in training data distributions across dimensions such as difficulty, length, and language. However, existing prompt-based synthesis methods struggle to capture domain-specific data distributions, particularly in data-scarce domains, and often overlook fine-grained relevance diversity. In this paper, we present a Chinese short video dataset with 4-level relevance annotations, filling a critical resource void. Further, we propose a semi-supervised synthetic data pipeline where two collaboratively trained models generate domain-adaptive short video data with controllable relevance labels. Our method enhances relevance-level diversity by synthesizing samples for underrepresented intermediate relevance labels, resulting in a more balanced and semantically rich training data set. Extensive offline experiments show that the embedding model trained on our synthesized data outperforms those using data generated based on prompting or vanilla supervised fine-tuning(SFT). Moreover, we demonstrate that incorporating more diverse fine-grained relevance levels in training data enhances the model's sensitivity to subtle semantic distinctions, highlighting the value of fine-grained relevance supervision in embedding learning. In the search enhanced recommendation pipeline of Douyin's dual-column scenario, through online A/B testing, the proposed model increased click-through rate(CTR) by 1.45%, raised the proportion of Strong Relevance Ratio (SRR) by 4.9%, and improved the Image User Penetration Rate (IUPR) by 0.1054%.
comment: Submitted to AAAI 2026
♻ ☆ Evaluating Autoformalization Robustness via Semantically Similar Paraphrasing
Large Language Models (LLMs) have recently emerged as powerful tools for autoformalization. Despite their impressive performance, these models can still struggle to produce grounded and verifiable formalizations. Recent work in text-to-SQL, has revealed that LLMs can be sensitive to paraphrased natural language (NL) inputs, even when high degrees of semantic fidelity are preserved (Safarzadeh, Oroojlooyjadid, and Roth 2025). In this paper, we investigate this claim in the autoformalization domain. Specifically, we evaluate the robustness of LLMs generating formal proofs with semantically similar paraphrased NL statements by measuring semantic and compilation validity. Using the formal benchmarks MiniF2F (Zheng, Han, and Polu 2021) and Lean 4 version of ProofNet (Xin et al. 2024), and two modern LLMs, we generate paraphrased natural language statements and cross-evaluate these statements across both models. The results of this paper reveal performance variability across paraphrased inputs, demonstrating that minor shifts in NL statements can significantly impact model outputs.
♻ ☆ Probe-Rewrite-Evaluate: A Workflow for Reliable Benchmarks and Quantifying Evaluation Awareness
Large Language Models (LLMs) often exhibit significant behavioral shifts when they perceive a change from a real-world deployment context to a controlled evaluation setting, a phenomenon known as "evaluation awareness." This discrepancy poses a critical challenge for AI alignment, as benchmark performance may not accurately reflect a model's true safety and honesty. In this work, we systematically quantify these behavioral changes by manipulating the perceived context of prompts. We introduce a methodology that uses a linear probe to score prompts on a continuous scale from "test-like" to "deploy-like" and leverage an LLM rewriting strategy to shift these prompts towards a more natural, deployment-style context while preserving the original task. Using this method, we achieved a 30% increase in the average probe score across a strategic role-playing dataset after rewriting. Evaluating a suite of state-of-the-art models on these original and rewritten prompts, we find that rewritten "deploy-like" prompts induce a significant and consistent shift in behavior. Across all models, we observed an average increase in honest responses of 5.26% and a corresponding average decrease in deceptive responses of 12.40%. Furthermore, refusal rates increased by an average of 6.38%, indicating heightened safety compliance. Our findings demonstrate that evaluation awareness is a quantifiable and manipulable factor that directly influences LLM behavior, revealing that models are more prone to unsafe or deceptive outputs in perceived test environments. This underscores the urgent need for more realistic evaluation frameworks to accurately gauge true model alignment before deployment.
♻ ☆ Route-and-Reason: Scaling Large Language Model Reasoning with Reinforced Model Router
Chain-of-thought has been proven essential for enhancing the complex reasoning abilities of Large Language Models (LLMs), but it also leads to high computational costs. Recent advances have explored the method to route queries among multiple models and proved it as a promising approach. However, previous works directly operate at the task level, i.e., assigning user queries to suitable LLMs, which does not allow hybrid LLMs to truly collaborate on finer-grained sub-tasks. Collaboration at the level of intermediate reasoning steps (thoughts) could enable more efficient coordination, but it also poses significant challenges for router scheduling, placing immense demands on the quality of task decomposition and the precision of the router. To address this, we propose R2-Reasoner, a novel framework centered around a Reinforced Model Router designed to efficiently scale LLM reasoning. This router orchestrates collaboration across nine heterogeneous models, whose parameter scales range from less than 1B to hundreds of billions, by first breaking down a complex query into subtasks with a decomposer, and then assigning each subtask to the optimal model with a subtask allocator, balancing performance with cost. Training this router involves a two-stage alternating process for the decomposer and the allocator, integrating supervised fine-tuning with reinforcement learning to enable effective self-supervised refinement. Extensive experiments across six challenging reasoning benchmarks demonstrate that R2-Reasoner reduces API costs by 84.46% compared with state-of-the-art baselines while maintaining competitive reasoning accuracy. Our framework paves the way for the development of more scalable and efficient reasoning systems. Our code is open-source at https://anonymous.4open.science/r/R2_Reasoner.
♻ ☆ Nexus: Higher-Order Attention Mechanisms in Transformers
Transformers have achieved significant success across various domains, relying on self-attention to capture dependencies. However, the standard first-order attention mechanism is often limited by a low-rank bottleneck, struggling to capture intricate, multi-hop relationships within a single layer. In this paper, we propose the Nexus, a novel architecture designed to enhance representational power through a recursive framework. Unlike standard approaches that use static linear projections for Queries and Keys, Nexus dynamically refines these representations via nested self-attention mechanisms. Specifically, the Query and Key vectors are themselves outputs of inner attention loops, allowing tokens to aggregate global context and model high-order correlations \textit{prior} to the final attention computation. We enforce a parameter-efficient weight-sharing strategy across recursive steps, ensuring that this enhanced expressivity incurs $\mathcal{O}(1)$ additional parameters. We provide theoretical analysis demonstrating that our method breaks the linear bottleneck of standard attention. Empirically, Nexus outperforms standard Transformers on multiple benchmarks.
♻ ☆ FusionBench: A Unified Library and Comprehensive Benchmark for Deep Model Fusion
Deep model fusion is an emerging technique that unifies the predictions or parameters of several deep neural networks into a single better-performing model in a cost-effective and data-efficient manner. Although a variety of deep model fusion techniques have been introduced, their evaluations tend to be inconsistent and often inadequate to validate their effectiveness and robustness. We present FusionBench, the first benchmark and a unified library designed specifically for deep model fusion. Our benchmark consists of multiple tasks, each with different settings of models and datasets. This variety allows us to compare fusion methods across different scenarios and model scales. Additionally, FusionBench serves as a unified library for easy implementation and testing of new fusion techniques. FusionBench is open source and actively maintained, with community contributions encouraged. Homepage https://github.com/tanganke/fusion_bench
comment: Project homepage: https://github.com/tanganke/fusion_bench Online documentation: https://tanganke.github.io/fusion_bench
♻ ☆ Reversing Large Language Models for Efficient Training and Fine-Tuning
Large Language Models (LLMs) are known for their expensive and time-consuming training. Thus, oftentimes, LLMs are fine-tuned to address a specific task, given the pretrained weights of a pre-trained LLM considered a foundation model. In this work, we introduce memory-efficient, reversible architectures for LLMs, inspired by symmetric and symplectic differential equations, and investigate their theoretical properties. Different from standard, baseline architectures that store all intermediate activations, the proposed models use time-reversible dynamics to retrieve hidden states during backpropagation, relieving the need to store activations. This property allows for a drastic reduction in memory consumption, allowing for the processing of larger batch sizes for the same available memory, thereby offering improved throughput. In addition, we propose an efficient method for converting existing, non-reversible LLMs into reversible architectures through fine-tuning, rendering our approach practical for exploiting existing pre-trained models. Our results show comparable or improved performance on several datasets and benchmarks, on several LLMs, building a scalable and efficient path towards reducing the memory and computational costs associated with both training from scratch and fine-tuning of LLMs.
♻ ☆ Dual-branch Prompting for Multimodal Machine Translation
Multimodal Machine Translation (MMT) typically enhances text-only translation by incorporating aligned visual features. Despite the remarkable progress, state-of-the-art MMT approaches often rely on paired image-text inputs at inference and are sensitive to irrelevant visual noise, which limits their robustness and practical applicability. To address these issues, we propose D2P-MMT, a diffusion-based dual-branch prompting framework for robust vision-guided translation. Specifically, D2P-MMT requires only the source text and a reconstructed image generated by a pre-trained diffusion model, which naturally filters out distracting visual details while preserving semantic cues. During training, the model jointly learns from both authentic and reconstructed images using a dual-branch prompting strategy, encouraging rich cross-modal interactions. To bridge the modality gap and mitigate training-inference discrepancies, we introduce a distributional alignment loss that enforces consistency between the output distributions of the two branches. Extensive experiments on the Multi30K dataset demonstrate that D2P-MMT achieves superior translation performance compared to existing state-of-the-art approaches.
comment: This manuscript is currently under review at the ACM Transactions on Multimedia Computing, Communications, and Applications
Computer Vision and Pattern Recognition 100
☆ The Universal Weight Subspace Hypothesis
We show that deep neural networks trained across diverse tasks exhibit remarkably similar low-dimensional parametric subspaces. We provide the first large-scale empirical evidence that demonstrates that neural networks systematically converge to shared spectral subspaces regardless of initialization, task, or domain. Through mode-wise spectral analysis of over 1100 models - including 500 Mistral-7B LoRAs, 500 Vision Transformers, and 50 LLaMA-8B models - we identify universal subspaces capturing majority variance in just a few principal directions. By applying spectral decomposition techniques to the weight matrices of various architectures trained on a wide range of tasks and datasets, we identify sparse, joint subspaces that are consistently exploited, within shared architectures across diverse tasks and datasets. Our findings offer new insights into the intrinsic organization of information within deep networks and raise important questions about the possibility of discovering these universal subspaces without the need for extensive data and computational resources. Furthermore, this inherent structure has significant implications for model reusability, multi-task learning, model merging, and the development of training and inference-efficient algorithms, potentially reducing the carbon footprint of large-scale neural models.
comment: 37 pages
☆ Light-X: Generative 4D Video Rendering with Camera and Illumination Control
Recent advances in illumination control extend image-based methods to video, yet still facing a trade-off between lighting fidelity and temporal consistency. Moving beyond relighting, a key step toward generative modeling of real-world scenes is the joint control of camera trajectory and illumination, since visual dynamics are inherently shaped by both geometry and lighting. To this end, we present Light-X, a video generation framework that enables controllable rendering from monocular videos with both viewpoint and illumination control. 1) We propose a disentangled design that decouples geometry and lighting signals: geometry and motion are captured via dynamic point clouds projected along user-defined camera trajectories, while illumination cues are provided by a relit frame consistently projected into the same geometry. These explicit, fine-grained cues enable effective disentanglement and guide high-quality illumination. 2) To address the lack of paired multi-view and multi-illumination videos, we introduce Light-Syn, a degradation-based pipeline with inverse-mapping that synthesizes training pairs from in-the-wild monocular footage. This strategy yields a dataset covering static, dynamic, and AI-generated scenes, ensuring robust training. Extensive experiments show that Light-X outperforms baseline methods in joint camera-illumination control and surpasses prior video relighting methods under both text- and background-conditioned settings.
comment: Project Page: https://lightx-ai.github.io/
Value Gradient Guidance for Flow Matching Alignment NeurIPS 2025
While methods exist for aligning flow matching models--a popular and effective class of generative models--with human preferences, existing approaches fail to achieve both adaptation efficiency and probabilistically sound prior preservation. In this work, we leverage the theory of optimal control and propose VGG-Flow, a gradient-matching-based method for finetuning pretrained flow matching models. The key idea behind this algorithm is that the optimal difference between the finetuned velocity field and the pretrained one should be matched with the gradient field of a value function. This method not only incorporates first-order information from the reward model but also benefits from heuristic initialization of the value function to enable fast adaptation. Empirically, we show on a popular text-to-image flow matching model, Stable Diffusion 3, that our method can finetune flow matching models under limited computational budgets while achieving effective and prior-preserving alignment.
comment: Accepted at NeurIPS 2025; 26 pages, 20 figures
☆ Deep infant brain segmentation from multi-contrast MRI
Segmentation of magnetic resonance images (MRI) facilitates analysis of human brain development by delineating anatomical structures. However, in infants and young children, accurate segmentation is challenging due to development and imaging constraints. Pediatric brain MRI is notoriously difficult to acquire, with inconsistent availability of imaging modalities, substantial non-head anatomy in the field of view, and frequent motion artifacts. This has led to specialized segmentation models that are often limited to specific image types or narrow age groups, or that are fragile for more variable images such as those acquired clinically. We address this method fragmentation with BabySeg, a deep learning brain segmentation framework for infants and young children that supports diverse MRI protocols, including repeat scans and image types unavailable during training. Our approach builds on recent domain randomization techniques, which synthesize training images far beyond realistic bounds to promote dataset shift invariance. We also describe a mechanism that enables models to flexibly pool and interact features from any number of input scans. We demonstrate state-of-the-art performance that matches or exceeds the accuracy of several existing methods for various age cohorts and input configurations using a single model, in a fraction of the runtime required by many existing tools.
comment: 8 pages, 8 figures, 1 table, website at https://w3id.org/babyseg, presented at the 2025 IEEE Asilomar Conference on Signals, Systems, and Computers
☆ Splannequin: Freezing Monocular Mannequin-Challenge Footage with Dual-Detection Splatting
Synthesizing high-fidelity frozen 3D scenes from monocular Mannequin-Challenge (MC) videos is a unique problem distinct from standard dynamic scene reconstruction. Instead of focusing on modeling motion, our goal is to create a frozen scene while strategically preserving subtle dynamics to enable user-controlled instant selection. To achieve this, we introduce a novel application of dynamic Gaussian splatting: the scene is modeled dynamically, which retains nearby temporal variation, and a static scene is rendered by fixing the model's time parameter. However, under this usage, monocular capture with sparse temporal supervision introduces artifacts like ghosting and blur for Gaussians that become unobserved or occluded at weakly supervised timestamps. We propose Splannequin, an architecture-agnostic regularization that detects two states of Gaussian primitives, hidden and defective, and applies temporal anchoring. Under predominantly forward camera motion, hidden states are anchored to their recent well-observed past states, while defective states are anchored to future states with stronger supervision. Our method integrates into existing dynamic Gaussian pipelines via simple loss terms, requires no architectural changes, and adds zero inference overhead. This results in markedly improved visual quality, enabling high-fidelity, user-selectable frozen-time renderings, validated by a 96% user preference. Project page: https://chien90190.github.io/splannequin/
comment: WACV 2025. Project page: https://chien90190.github.io/splannequin/
☆ DraCo: Draft as CoT for Text-to-Image Preview and Rare Concept Generation
Recent unified multimodal large language models (MLLMs) have shown impressive capabilities, incorporating chain-of-thought (CoT) reasoning for enhanced text-to-image generation. However, existing approaches remain limited, either treating the model merely as a standalone generator or relying on abstract textual planning. To this end, we propose Draft-as-CoT (DraCo), a novel interleaved reasoning paradigm that fully leverages both textual and visual contents in CoT for better planning and verification. Our method first generates a low-resolution draft image as preview, providing more concrete and structural visual planning and guidance. Then, we employ the model's inherent understanding capability to verify potential semantic misalignments between the draft and input prompt, and performs refinement through selective corrections with super-resolution. In this way, our approach addresses two fundamental challenges: the coarse-grained nature of textual planning and the difficulty in generating rare attribute combinations. To support training, we curate DraCo-240K, aiming to enhance three atomic capabilities spanning general correction, instance manipulation, and layout reorganization. Supported by DraCo-CFG, a specialized classifier-free guidance (CFG) strategy for interleaved reasoning, DraCo achieves a tremendous increase on GenEval (+8%), Imagine-Bench (+0.91), and GenEval++ (+3%), significantly outperforming direct generation and other generation methods empowered by CoT.
comment: Project Page: https://github.com/CaraJ7/DraCo
☆ ARM-Thinker: Reinforcing Multimodal Generative Reward Models with Agentic Tool Use and Visual Reasoning
Reward models are critical for aligning vision-language systems with human preferences, yet current approaches suffer from hallucination, weak visual grounding, and an inability to use tools for verification, limiting their reliability on complex multimodal reasoning tasks. We present ARM-Thinker, an A}gentic multimodal Reward Model that autonomously invokes external tools (e.g., image cropping, doc page retrieval) to ground judgments in verifiable evidence, replacing static, non-interactive reward scoring. This enables the model to verify fine-grained visual details, cross-reference multi-page evidence, and validate reasoning claims, which are capabilities absent in existing reward models. We train ARM-Thinker with multi-stage reinforcement learning, jointly optimizing tool-calling decisions and judgment accuracy. To evaluate agentic reward modeling, we introduce ARMBench-VL, comprising three benchmarks that assess fine-grained visual grounding (image-level tools), multi-page document understanding (retrieval tools), and instruction following (text-level verification). ARM-Thinker achieves +16.2% average improvement on reward modeling benchmarks, +9.6% on tool-use tasks, and outperforms baselines on multimodal math and logical reasoning benchmarks. Our results demonstrate that agentic capabilities significantly enhance both accuracy and interpretability of reward models.
☆ ShadowDraw: From Any Object to Shadow-Drawing Compositional Art
We introduce ShadowDraw, a framework that transforms ordinary 3D objects into shadow-drawing compositional art. Given a 3D object, our system predicts scene parameters, including object pose and lighting, together with a partial line drawing, such that the cast shadow completes the drawing into a recognizable image. To this end, we optimize scene configurations to reveal meaningful shadows, employ shadow strokes to guide line drawing generation, and adopt automatic evaluation to enforce shadow-drawing coherence and visual quality. Experiments show that ShadowDraw produces compelling results across diverse inputs, from real-world scans and curated datasets to generative assets, and naturally extends to multi-object scenes, animations, and physical deployments. Our work provides a practical pipeline for creating shadow-drawing art and broadens the design space of computational visual art, bridging the gap between algorithmic design and artistic storytelling. Check out our project page https://red-fairy.github.io/ShadowDraw/ for more results and an end-to-end real-world demonstration of our pipeline!
comment: Project page: https://red-fairy.github.io/ShadowDraw/
☆ NeuralRemaster: Phase-Preserving Diffusion for Structure-Aligned Generation
Standard diffusion corrupts data using Gaussian noise whose Fourier coefficients have random magnitudes and random phases. While effective for unconditional or text-to-image generation, corrupting phase components destroys spatial structure, making it ill-suited for tasks requiring geometric consistency, such as re-rendering, simulation enhancement, and image-to-image translation. We introduce Phase-Preserving Diffusion φ-PD, a model-agnostic reformulation of the diffusion process that preserves input phase while randomizing magnitude, enabling structure-aligned generation without architectural changes or additional parameters. We further propose Frequency-Selective Structured (FSS) noise, which provides continuous control over structural rigidity via a single frequency-cutoff parameter. φ-PD adds no inference-time cost and is compatible with any diffusion model for images or videos. Across photorealistic and stylized re-rendering, as well as sim-to-real enhancement for driving planners, φ-PD produces controllable, spatially aligned results. When applied to the CARLA simulator, φ-PD improves CARLA-to-Waymo planner performance by 50\%. The method is complementary to existing conditioning approaches and broadly applicable to image-to-image and video-to-video generation. Videos, additional examples, and code are available on our \href{https://yuzeng-at-tri.github.io/ppd-page/}{project page}.
☆ EvoIR: Towards All-in-One Image Restoration via Evolutionary Frequency Modulation
All-in-One Image Restoration (AiOIR) tasks often involve diverse degradation that require robust and versatile strategies. However, most existing approaches typically lack explicit frequency modeling and rely on fixed or heuristic optimization schedules, which limit the generalization across heterogeneous degradation. To address these limitations, we propose EvoIR, an AiOIR-specific framework that introduces evolutionary frequency modulation for dynamic and adaptive image restoration. Specifically, EvoIR employs the Frequency-Modulated Module (FMM) that decomposes features into high- and low-frequency branches in an explicit manner and adaptively modulates them to enhance both structural fidelity and fine-grained details. Central to EvoIR, an Evolutionary Optimization Strategy (EOS) iteratively adjusts frequency-aware objectives through a population-based evolutionary process, dynamically balancing structural accuracy and perceptual fidelity. Its evolutionary guidance further mitigates gradient conflicts across degradation and accelerates convergence. By synergizing FMM and EOS, EvoIR yields greater improvements than using either component alone, underscoring their complementary roles. Extensive experiments on multiple benchmarks demonstrate that EvoIR outperforms state-of-the-art AiOIR methods.
☆ TV2TV: A Unified Framework for Interleaved Language and Video Generation
Video generation models are rapidly advancing, but can still struggle with complex video outputs that require significant semantic branching or repeated high-level reasoning about what should happen next. In this paper, we introduce a new class of omni video-text models that integrate ideas from recent LM reasoning advances to address this challenge. More specifically, we present TV2TV, a unified generative modeling framework which decomposes video generation into an interleaved text and video generation process. TV2TV jointly learns language modeling (next-token prediction) and video flow matching (next-frame prediction) using a Mixture-of-Transformers (MoT) architecture. At inference time, TV2TV decides when to alternate between generating text and video frames, allowing the model to "think in words" about subsequent content before ``acting in pixels'' to produce frames. This design offloads much of the responsibility for deciding what should happen next to the language modeling tower, enabling improved visual quality and prompt alignment of generated videos. It also enables fine-grained controllability, allowing users to modify the video generation trajectory through text interventions at any point in the process. In controlled experiments on video game data, TV2TV demonstrates substantial improvements in both visual quality and controllability. TV2TV also scales to natural videos, as we show by augmenting sports videos with interleaved natural language action descriptions using vision-language models (VLMs). Training TV2TV on this corpus yields strong visual quality and prompt alignment, showcasing the model's ability to reason about and generate complex real-world action sequences. Together, these results highlight TV2TV as a promising step toward video generation with open-ended textual reasoning and control.
☆ SA-IQA: Redefining Image Quality Assessment for Spatial Aesthetics with Multi-Dimensional Rewards
In recent years, Image Quality Assessment (IQA) for AI-generated images (AIGI) has advanced rapidly; however, existing methods primarily target portraits and artistic images, lacking a systematic evaluation of interior scenes. We introduce Spatial Aesthetics, a paradigm that assesses the aesthetic quality of interior images along four dimensions: layout, harmony, lighting, and distortion. We construct SA-BENCH, the first benchmark for spatial aesthetics, comprising 18,000 images and 50,000 precise annotations. Employing SA-BENCH, we systematically evaluate current IQA methodologies and develop SA-IQA, through MLLM fine-tuning and a multidimensional fusion approach, as a comprehensive reward framework for assessing spatial aesthetics. We apply SA-IQA to two downstream tasks: (1) serving as a reward signal integrated with GRPO reinforcement learning to optimize the AIGC generation pipeline, and (2) Best-of-N selection to filter high-quality images and improve generation quality. Experiments indicate that SA-IQA significantly outperforms existing methods on SA-BENCH, setting a new standard for spatial aesthetics evaluation. Code and dataset will be open-sourced to advance research and applications in this domain.
☆ From Generated Human Videos to Physically Plausible Robot Trajectories
Video generation models are rapidly improving in their ability to synthesize human actions in novel contexts, holding the potential to serve as high-level planners for contextual robot control. To realize this potential, a key research question remains open: how can a humanoid execute the human actions from generated videos in a zero-shot manner? This challenge arises because generated videos are often noisy and exhibit morphological distortions that make direct imitation difficult compared to real video. To address this, we introduce a two-stage pipeline. First, we lift video pixels into a 4D human representation and then retarget to the humanoid morphology. Second, we propose GenMimic-a physics-aware reinforcement learning policy conditioned on 3D keypoints, and trained with symmetry regularization and keypoint-weighted tracking rewards. As a result, GenMimic can mimic human actions from noisy, generated videos. We curate GenMimicBench, a synthetic human-motion dataset generated using two video generation models across a spectrum of actions and contexts, establishing a benchmark for assessing zero-shot generalization and policy robustness. Extensive experiments demonstrate improvements over strong baselines in simulation and confirm coherent, physically stable motion tracking on a Unitree G1 humanoid robot without fine-tuning. This work offers a promising path to realizing the potential of video generation models as high-level policies for robot control.
comment: For project website, see https://genmimic.github.io
☆ Visual Reasoning Tracer: Object-Level Grounded Reasoning Benchmark
Recent advances in Multimodal Large Language Models (MLLMs) have significantly improved performance on tasks such as visual grounding and visual question answering. However, the reasoning processes of these models remain largely opaque; they typically output only final predictions without revealing the intermediate steps or fine-grained evidence (e.g., pixels, locations) that lead to the result. This contrasts with human intelligence, which naturally operates through a chain of visual reasoning. To address this limitation, we introduce the Visual Reasoning Tracer (VRT) task, which requires models to not only localize the target object but also explicitly predict the intermediate objects that form the reasoning path. To advance research in this area, we contribute: (1) VRT-Bench, a human-annotated benchmark for evaluating visual reasoning; (2) a new metric for assessing the quality of reasoning traces; and (3) VRT-80k, a large-scale dataset for reasoning model training. Our experiments reveal that while existing models often produce the correct final output, they struggle to ground their intermediate reasoning. In contrast, models trained on VRT-80k achieve substantial improvements in tracing the reasoning path.
comment: Technical Report; Project Page: https://harboryuan.github.io/visual-reasoning-tracer
☆ Deep Forcing: Training-Free Long Video Generation with Deep Sink and Participative Compression
Recent advances in autoregressive video diffusion have enabled real-time frame streaming, yet existing solutions still suffer from temporal repetition, drift, and motion deceleration. We find that naively applying StreamingLLM-style attention sinks to video diffusion leads to fidelity degradation and motion stagnation. To overcome this, we introduce Deep Forcing, which consists of two training-free mechanisms that address this without any fine-tuning. Specifically, 1) Deep Sink dedicates half of the sliding window to persistent sink tokens and re-aligns their temporal RoPE phase to the current timeline, stabilizing global context during long rollouts. 2) Participative Compression performs importance-aware KV cache pruning that preserves only tokens actively participating in recent attention while safely discarding redundant and degraded history, minimizing error accumulation under out-of-distribution length generation. Together, these components enable over 12x extrapolation (e.g. 5s-trained to 60s+ generation) with better imaging quality than LongLive, better aesthetic quality than RollingForcing, almost maintaining overall consistency, and substantial gains in dynamic degree, all while maintaining real-time generation. Our results demonstrate that training-free KV-cache management can match or exceed training-based approaches for autoregressively streaming long-video generation.
comment: Project Page: https://cvlab-kaist.github.io/DeepForcing/
☆ Object Reconstruction under Occlusion with Generative Priors and Contact-induced Constraints
Object geometry is key information for robot manipulation. Yet, object reconstruction is a challenging task because cameras only capture partial observations of objects, especially when occlusion occurs. In this paper, we leverage two extra sources of information to reduce the ambiguity of vision signals. First, generative models learn priors of the shapes of commonly seen objects, allowing us to make reasonable guesses of the unseen part of geometry. Second, contact information, which can be obtained from videos and physical interactions, provides sparse constraints on the boundary of the geometry. We combine the two sources of information through contact-guided 3D generation. The guidance formulation is inspired by drag-based editing in generative models. Experiments on synthetic and real-world data show that our approach improves the reconstruction compared to pure 3D generation and contact-based optimization.
comment: Project page: https://contactgen3d.github.io/
☆ BulletTime: Decoupled Control of Time and Camera Pose for Video Generation
Emerging video diffusion models achieve high visual fidelity but fundamentally couple scene dynamics with camera motion, limiting their ability to provide precise spatial and temporal control. We introduce a 4D-controllable video diffusion framework that explicitly decouples scene dynamics from camera pose, enabling fine-grained manipulation of both scene dynamics and camera viewpoint. Our framework takes continuous world-time sequences and camera trajectories as conditioning inputs, injecting them into the video diffusion model through a 4D positional encoding in the attention layer and adaptive normalizations for feature modulation. To train this model, we curate a unique dataset in which temporal and camera variations are independently parameterized; this dataset will be made public. Experiments show that our model achieves robust real-world 4D control across diverse timing patterns and camera trajectories, while preserving high generation quality and outperforming prior work in controllability. See our website for video results: https://19reborn.github.io/Bullet4D/
comment: Project Page: https://19reborn.github.io/Bullet4D/
☆ 4DLangVGGT: 4D Language-Visual Geometry Grounded Transformer
Constructing 4D language fields is crucial for embodied AI, augmented/virtual reality, and 4D scene understanding, as they provide enriched semantic representations of dynamic environments and enable open-vocabulary querying in complex scenarios. However, existing approaches to 4D semantic field construction primarily rely on scene-specific Gaussian splatting, which requires per-scene optimization, exhibits limited generalization, and is difficult to scale to real-world applications. To address these limitations, we propose 4DLangVGGT, the first Transformer-based feed-forward unified framework for 4D language grounding, that jointly integrates geometric perception and language alignment within a single architecture. 4DLangVGGT has two key components: the 4D Visual Geometry Transformer, StreamVGGT, which captures spatio-temporal geometric representations of dynamic scenes; and the Semantic Bridging Decoder (SBD), which projects geometry-aware features into a language-aligned semantic space, thereby enhancing semantic interpretability while preserving structural fidelity. Unlike prior methods that depend on costly per-scene optimization, 4DLangVGGT can be jointly trained across multiple dynamic scenes and directly applied during inference, achieving both deployment efficiency and strong generalization. This design significantly improves the practicality of large-scale deployment and establishes a new paradigm for open-vocabulary 4D scene understanding. Experiments on HyperNeRF and Neu3D datasets demonstrate that our approach not only generalizes effectively but also achieves state-of-the-art performance, achieving up to 2% gains under per-scene training and 1% improvements under multi-scene training. Our code released in https://github.com/hustvl/4DLangVGGT
comment: Code: https://github.com/hustvl/4DLangVGGT, Webpage: https://hustvl.github.io/4DLangVGGT
☆ Joint 3D Geometry Reconstruction and Motion Generation for 4D Synthesis from a Single Image
Generating interactive and dynamic 4D scenes from a single static image remains a core challenge. Most existing generate-then-reconstruct and reconstruct-then-generate methods decouple geometry from motion, causing spatiotemporal inconsistencies and poor generalization. To address these, we extend the reconstruct-then-generate framework to jointly perform Motion generation and geometric Reconstruction for 4D Synthesis (MoRe4D). We first introduce TrajScene-60K, a large-scale dataset of 60,000 video samples with dense point trajectories, addressing the scarcity of high-quality 4D scene data. Based on this, we propose a diffusion-based 4D Scene Trajectory Generator (4D-STraG) to jointly generate geometrically consistent and motion-plausible 4D point trajectories. To leverage single-view priors, we design a depth-guided motion normalization strategy and a motion-aware module for effective geometry and dynamics integration. We then propose a 4D View Synthesis Module (4D-ViSM) to render videos with arbitrary camera trajectories from 4D point track representations. Experiments show that MoRe4D generates high-quality 4D scenes with multi-view consistency and rich dynamic details from a single image. Code: https://github.com/Zhangyr2022/MoRe4D.
comment: 18 Pages
☆ Semantic-Guided Two-Stage GAN for Face Inpainting with Hybrid Perceptual Encoding CVPR-2025
Facial Image inpainting aim is to restore the missing or corrupted regions in face images while preserving identity, structural consistency and photorealistic image quality, a task specifically created for photo restoration. Though there are recent lot of advances in deep generative models, existing methods face problems with large irregular masks, often producing blurry textures on the edges of the masked region, semantic inconsistencies, or unconvincing facial structures due to direct pixel level synthesis approach and limited exploitation of facial priors. In this paper we propose a novel architecture, which address these above challenges through semantic-guided hierarchical synthesis. Our approach starts with a method that organizes and synthesizes information based on meaning, followed by refining the texture. This process gives clear insights into the facial structure before we move on to creating detailed images. In the first stage, we blend two techniques: one that focuses on local features with CNNs and global features with Vision Transformers. This helped us create clear and detailed semantic layouts. In the second stage, we use a Multi-Modal Texture Generator to refine these layouts by pulling in information from different scales, ensuring everything looks cohesive and consistent. The architecture naturally handles arbitrary mask configurations through dynamic attention without maskspecific training. Experiment on two datasets CelebA-HQ and FFHQ shows that our model outperforms other state-of-the-art methods, showing improvements in metrics like LPIPS, PSNR, and SSIM. It produces visually striking results with better semantic preservation, in challenging large-area inpainting situations.
comment: Submitted for review CVPR-2025
☆ RAMEN: Resolution-Adjustable Multimodal Encoder for Earth Observation
Earth observation (EO) data spans a wide range of spatial, spectral, and temporal resolutions, from high-resolution optical imagery to low resolution multispectral products or radar time series. While recent foundation models have improved multimodal integration for learning meaningful representations, they often expect fixed input resolutions or are based on sensor-specific encoders limiting generalization across heterogeneous EO modalities. To overcome these limitations we introduce RAMEN, a resolution-adjustable multimodal encoder that learns a shared visual representation across EO data in a fully sensor-agnostic manner. RAMEN treats the modality and spatial and temporal resolutions as key input data features, enabling coherent analysis across modalities within a unified latent space. Its main methodological contribution is to define spatial resolution as a controllable output parameter, giving users direct control over the desired level of detail at inference and allowing explicit trade-offs between spatial precision and computational cost. We train a single, unified transformer encoder reconstructing masked multimodal EO data drawn from diverse sources, ensuring generalization across sensors and resolutions. Once pretrained, RAMEN transfers effectively to both known and unseen sensor configurations and outperforms larger state-of-the-art models on the community-standard PANGAEA benchmark, containing various multi-sensor and multi-resolution downstream tasks. Our code and pretrained model are available at https://github.com/nicolashoudre/RAMEN.
☆ HTR-ConvText: Leveraging Convolution and Textual Information for Handwritten Text Recognition
Handwritten Text Recognition remains challenging due to the limited data, high writing style variance, and scripts with complex diacritics. Existing approaches, though partially address these issues, often struggle to generalize without massive synthetic data. To address these challenges, we propose HTR-ConvText, a model designed to capture fine-grained, stroke-level local features while preserving global contextual dependencies. In the feature extraction stage, we integrate a residual Convolutional Neural Network backbone with a MobileViT with Positional Encoding block. This enables the model to both capture structural patterns and learn subtle writing details. We then introduce the ConvText encoder, a hybrid architecture combining global context and local features within a hierarchical structure that reduces sequence length for improved efficiency. Additionally, an auxiliary module injects textual context to mitigate the weakness of Connectionist Temporal Classification. Evaluations on IAM, READ2016, LAM and HANDS-VNOnDB demonstrate that our approach achieves improved performance and better generalization compared to existing methods, especially in scenarios with limited training samples and high handwriting diversity.
☆ Generative Neural Video Compression via Video Diffusion Prior
We present GNVC-VD, the first DiT-based generative neural video compression framework built upon an advanced video generation foundation model, where spatio-temporal latent compression and sequence-level generative refinement are unified within a single codec. Existing perceptual codecs primarily rely on pre-trained image generative priors to restore high-frequency details, but their frame-wise nature lacks temporal modeling and inevitably leads to perceptual flickering. To address this, GNVC-VD introduces a unified flow-matching latent refinement module that leverages a video diffusion transformer to jointly enhance intra- and inter-frame latents through sequence-level denoising, ensuring consistent spatio-temporal details. Instead of denoising from pure Gaussian noise as in video generation, GNVC-VD initializes refinement from decoded spatio-temporal latents and learns a correction term that adapts the diffusion prior to compression-induced degradation. A conditioning adaptor further injects compression-aware cues into intermediate DiT layers, enabling effective artifact removal while maintaining temporal coherence under extreme bitrate constraints. Extensive experiments show that GNVC-VD surpasses both traditional and learned codecs in perceptual quality and significantly reduces the flickering artifacts that persist in prior generative approaches, even below 0.01 bpp, highlighting the promise of integrating video-native generative priors into neural codecs for next-generation perceptual video compression.
Self-Supervised Learning for Transparent Object Depth Completion Using Depth from Non-Transparent Objects
The perception of transparent objects is one of the well-known challenges in computer vision. Conventional depth sensors have difficulty in sensing the depth of transparent objects due to refraction and reflection of light. Previous research has typically train a neural network to complete the depth acquired by the sensor, and this method can quickly and accurately acquire accurate depth maps of transparent objects. However, previous training relies on a large amount of annotation data for supervision, and the labeling of depth maps is costly. To tackle this challenge, we propose a new self-supervised method for training depth completion networks. Our method simulates the depth deficits of transparent objects within non-transparent regions and utilizes the original depth map as ground truth for supervision. Experiments demonstrate that our method achieves performance comparable to supervised approach, and pre-training with our method can improve the model performance when the training samples are small.
comment: conference
☆ Reflection Removal through Efficient Adaptation of Diffusion Transformers
We introduce a diffusion-transformer (DiT) framework for single-image reflection removal that leverages the generalization strengths of foundation diffusion models in the restoration setting. Rather than relying on task-specific architectures, we repurpose a pre-trained DiT-based foundation model by conditioning it on reflection-contaminated inputs and guiding it toward clean transmission layers. We systematically analyze existing reflection removal data sources for diversity, scalability, and photorealism. To address the shortage of suitable data, we construct a physically based rendering (PBR) pipeline in Blender, built around the Principled BSDF, to synthesize realistic glass materials and reflection effects. Efficient LoRA-based adaptation of the foundation model, combined with the proposed synthetic data, achieves state-of-the-art performance on in-domain and zero-shot benchmarks. These results demonstrate that pretrained diffusion transformers, when paired with physically grounded data synthesis and efficient adaptation, offer a scalable and high-fidelity solution for reflection removal. Project page: https://hf.co/spaces/huawei-bayerlab/windowseat-reflection-removal-web
☆ A dynamic memory assignment strategy for dilation-based ICP algorithm on embedded GPUs
This paper proposes a memory-efficient optimization strategy for the high-performance point cloud registration algorithm VANICP, enabling lightweight execution on embedded GPUs with constrained hardware resources. VANICP is a recently published acceleration framework that significantly improves the computational efficiency of point-cloud-based applications. By transforming the global nearest neighbor search into a localized process through a dilation-based information propagation mechanism, VANICP greatly reduces the computational complexity of the NNS. However, its original implementation demands a considerable amount of memory, which restricts its deployment in resource-constrained environments such as embedded systems. To address this issue, we propose a GPU-oriented dynamic memory assignment strategy that optimizes the memory usage of the dilation operation. Furthermore, based on this strategy, we construct an enhanced version of the VANICP framework that achieves over 97% reduction in memory consumption while preserving the original performance. Source code is published on: https://github.com/changqiong/VANICP4Em.git.
☆ Aligned but Stereotypical? The Hidden Influence of System Prompts on Social Bias in LVLM-Based Text-to-Image Models
Large vision-language model (LVLM) based text-to-image (T2I) systems have become the dominant paradigm in image generation, yet whether they amplify social biases remains insufficiently understood. In this paper, we show that LVLM-based models produce markedly more socially biased images than non-LVLM-based models. We introduce a 1,024 prompt benchmark spanning four levels of linguistic complexity and evaluate demographic bias across multiple attributes in a systematic manner. Our analysis identifies system prompts, the predefined instructions guiding LVLMs, as a primary driver of biased behavior. Through decoded intermediate representations, token-probability diagnostics, and embedding-association analyses, we reveal how system prompts encode demographic priors that propagate into image synthesis. To this end, we propose FairPro, a training-free meta-prompting framework that enables LVLMs to self-audit and construct fairness-aware system prompts at test time. Experiments on two LVLM-based T2I models, SANA and Qwen-Image, show that FairPro substantially reduces demographic bias while preserving text-image alignment. We believe our findings provide deeper insight into the central role of system prompts in bias propagation and offer a practical, deployable approach for building more socially responsible T2I systems.
comment: Project page: https://fairpro-t2i.github.io
☆ Stable Single-Pixel Contrastive Learning for Semantic and Geometric Tasks
We pilot a family of stable contrastive losses for learning pixel-level representations that jointly capture semantic and geometric information. Our approach maps each pixel of an image to an overcomplete descriptor that is both view-invariant and semantically meaningful. It enables precise point-correspondence across images without requiring momentum-based teacher-student training. Two experiments in synthetic 2D and 3D environments demonstrate the properties of our loss and the resulting overcomplete representations.
comment: UniReps Workshop 2025, 12 pages, 8 figures
☆ Rethinking the Use of Vision Transformers for AI-Generated Image Detection
Rich feature representations derived from CLIP-ViT have been widely utilized in AI-generated image detection. While most existing methods primarily leverage features from the final layer, we systematically analyze the contributions of layer-wise features to this task. Our study reveals that earlier layers provide more localized and generalizable features, often surpassing the performance of final-layer features in detection tasks. Moreover, we find that different layers capture distinct aspects of the data, each contributing uniquely to AI-generated image detection. Motivated by these findings, we introduce a novel adaptive method, termed MoLD, which dynamically integrates features from multiple ViT layers using a gating-based mechanism. Extensive experiments on both GAN- and diffusion-generated images demonstrate that MoLD significantly improves detection performance, enhances generalization across diverse generative models, and exhibits robustness in real-world scenarios. Finally, we illustrate the scalability and versatility of our approach by successfully applying it to other pre-trained ViTs, such as DINOv2.
comment: Code: https://github.com/nahyeonkaty/mold
☆ Balanced Few-Shot Episodic Learning for Accurate Retinal Disease Diagnosis
Automated retinal disease diagnosis is vital given the rising prevalence of conditions such as diabetic retinopathy and macular degeneration. Conventional deep learning approaches require large annotated datasets, which are costly and often imbalanced across disease categories, limiting their reliability in practice. Few-shot learning (FSL) addresses this challenge by enabling models to generalize from only a few labeled samples per class. In this study,we propose a balanced few-shot episodic learning framework tailored to the Retinal Fundus Multi-Disease Image Dataset (RFMiD). Focusing on the ten most represented classes, which still show substantial imbalance between majority diseases (e.g., Diabetic Retinopathy, Macular Hole) and minority ones (e.g., Optic Disc Edema, Branch Retinal Vein Occlusion), our method integrates three key components: (i) balanced episodic sampling, ensuring equal participation of all classes in each 5-way 5-shot episode; (ii) targeted augmentation, including Contrast Limited Adaptive Histogram Equalization (CLAHE) and color/geometry transformations, to improve minority-class di- versity; and (iii) a ResNet-50 encoder pretrained on ImageNet, selected for its superior ability to capture fine-grained retinal features. Prototypes are computed in the embedding space and classification is performed with cosine similarity for improved stability. Trained on 100 episodes and evaluated on 1,000 test episodes, our framework achieves substantial accuracy gains and reduces bias toward majority classes, with notable improvements for underrepresented diseases. These results demonstrate that dataset-aware few-shot pipelines, combined with balanced sampling and CLAHE-enhanced preprocessing, can deliver more robust and clinically fair retinal disease diagnosis under data-constrained conditions.
☆ GeoPE:A Unified Geometric Positional Embedding for Structured Tensors
Standard Vision Transformers flatten 2D images into 1D sequences, disrupting the natural spatial topology. While Rotary Positional Embedding (RoPE) excels in 1D, it inherits this limitation, often treating spatially distant patches (e.g., at row edges) as sequence neighbors. Existing 2D approaches typically treat spatial axes independently, failing to decouple this false sequential proximity from true spatial distance. To restore the 2D spatial manifold, we introduce Geometric Positional Embedding (GeoPE), a framework that extends rotations to 3D Euclidean space using quaternions. To overcome non-commutativity and ensure symmetry, GeoPE constructs a unified rotational operator by computing the geometric mean in the Lie algebra. This creates a geometrically coupled encoding that effectively separates spatial dimensions. Extensive experiments on image classification, object detection, and 3D semantic segmentation demonstrate that GeoPE consistently outperforms existing 2D RoPE variants and significantly enhances shape bias, confirming its ability to capture true geometric structure.
☆ FASTer: Toward Efficient Autoregressive Vision Language Action Modeling via neural Action Tokenization
Autoregressive vision-language-action (VLA) models have recently demonstrated strong capabilities in robotic manipulation. However, their core process of action tokenization often involves a trade-off between reconstruction fidelity and inference efficiency. We introduce FASTer, a unified framework for efficient and generalizable robot learning that integrates a learnable tokenizer with an autoregressive policy built upon it. FASTerVQ encodes action chunks as single-channel images, capturing global spatio-temporal dependencies while maintaining a high compression ratio. FASTerVLA builds on this tokenizer with block-wise autoregressive decoding and a lightweight action expert, achieving both faster inference and higher task performance. Extensive experiments across simulated and real-world benchmarks show that FASTerVQ delivers superior reconstruction quality, high token utilization, and strong cross-task and cross-embodiment generalization, while FASTerVLA further improves overall capability, surpassing previous state-of-the-art VLA models in both inference speed and task performance.
☆ Towards Adaptive Fusion of Multimodal Deep Networks for Human Action Recognition
This study introduces a pioneering methodology for human action recognition by harnessing deep neural network techniques and adaptive fusion strategies across multiple modalities, including RGB, optical flows, audio, and depth information. Employing gating mechanisms for multimodal fusion, we aim to surpass limitations inherent in traditional unimodal recognition methods while exploring novel possibilities for diverse applications. Through an exhaustive investigation of gating mechanisms and adaptive weighting-based fusion architectures, our methodology enables the selective integration of relevant information from various modalities, thereby bolstering both accuracy and robustness in action recognition tasks. We meticulously examine various gated fusion strategies to pinpoint the most effective approach for multimodal action recognition, showcasing its superiority over conventional unimodal methods. Gating mechanisms facilitate the extraction of pivotal features, resulting in a more holistic representation of actions and substantial enhancements in recognition performance. Our evaluations across human action recognition, violence action detection, and multiple self-supervised learning tasks on benchmark datasets demonstrate promising advancements in accuracy. The significance of this research lies in its potential to revolutionize action recognition systems across diverse fields. The fusion of multimodal information promises sophisticated applications in surveillance and human-computer interaction, especially in contexts related to active assisted living.
☆ LiteVGGT: Boosting Vanilla VGGT via Geometry-aware Cached Token Merging
3D vision foundation models like Visual Geometry Grounded Transformer (VGGT) have advanced greatly in geometric perception. However, it is time-consuming and memory-intensive for long sequences, limiting application to large-scale scenes beyond hundreds of images. To address this, we propose LiteVGGT, achieving up to 10x speedup and substantial memory reduction, enabling efficient processing of 1000-image scenes. We derive two key insights for 3D reconstruction: (1) tokens from local image regions have inherent geometric correlations, leading to high similarity and computational redundancy; (2) token similarity across adjacent network layers remains stable, allowing for reusable merge decisions. Guided by these, we design a simple yet efficient strategy, dubbed geometry-aware cached token merging. We analyze each token's geometric importance, optimizing anchor token selection to better preserve key information for reconstruction. We also cache and reuse merge indices across layers, substantially reducing latency with minimal accuracy impact. This strategy retains VGGT's core performance, enabling efficient fine-tuning and FP8 quantization for further gains. Extensive experiments validate LiteVGGT's effectiveness, scalability, and robustness. Project page: https://garlicba.github.io/LiteVGGT/
☆ Virtually Unrolling the Herculaneum Papyri by Diffeomorphic Spiral Fitting
The Herculaneum Papyri are a collection of rolled papyrus documents that were charred and buried by the famous eruption of Mount Vesuvius. They promise to contain a wealth of previously unseen Greek and Latin texts, but are extremely fragile and thus most cannot be unrolled physically. A solution to access these texts is virtual unrolling, where the papyrus surface is digitally traced out in a CT scan of the scroll, to create a flattened representation. This tracing is very laborious to do manually in gigavoxel-sized scans, so automated approaches are desirable. We present the first top-down method that automatically fits a surface model to a CT scan of a severely damaged scroll. We take a novel approach that globally fits an explicit parametric model of the deformed scroll to existing neural network predictions of where the rolled papyrus likely passes. Our method guarantees the resulting surface is a single continuous 2D sheet, even passing through regions where the surface is not detectable in the CT scan. We conduct comprehensive experiments on high-resolution CT scans of two scrolls, showing that our approach successfully unrolls large regions, and exceeds the performance of the only existing automated unrolling method suitable for this data.
comment: Accepted at WACV 2026
☆ Semantics Lead the Way: Harmonizing Semantic and Texture Modeling with Asynchronous Latent Diffusion
Latent Diffusion Models (LDMs) inherently follow a coarse-to-fine generation process, where high-level semantic structure is generated slightly earlier than fine-grained texture. This indicates the preceding semantics potentially benefit texture generation by providing a semantic anchor. Recent advances have integrated semantic priors from pretrained visual encoders to further enhance LDMs, yet they still denoise semantic and VAE-encoded texture synchronously, neglecting such ordering. Observing these, we propose Semantic-First Diffusion (SFD), a latent diffusion paradigm that explicitly prioritizes semantic formation. SFD first constructs composite latents by combining a compact semantic latent, which is extracted from a pretrained visual encoder via a dedicated Semantic VAE, with the texture latent. The core of SFD is to denoise the semantic and texture latents asynchronously using separate noise schedules: semantics precede textures by a temporal offset, providing clearer high-level guidance for texture refinement and enabling natural coarse-to-fine generation. On ImageNet 256x256 with guidance, SFD achieves FID 1.06 (LightningDiT-XL) and FID 1.04 (1.0B LightningDiT-XXL), while achieving up to 100x faster convergence than the original DiT. SFD also improves existing methods like ReDi and VA-VAE, demonstrating the effectiveness of asynchronous, semantics-led modeling. Project page and code: https://yuemingpan.github.io/SFD.github.io/.
☆ ReflexFlow: Rethinking Learning Objective for Exposure Bias Alleviation in Flow Matching
Despite tremendous recent progress, Flow Matching methods still suffer from exposure bias due to discrepancies in training and inference. This paper investigates the root causes of exposure bias in Flow Matching, including: (1) the model lacks generalization to biased inputs during training, and (2) insufficient low-frequency content captured during early denoising, leading to accumulated bias. Based on these insights, we propose ReflexFlow, a simple and effective reflexive refinement of the Flow Matching learning objective that dynamically corrects exposure bias. ReflexFlow consists of two components: (1) Anti-Drift Rectification (ADR), which reflexively adjusts prediction targets for biased inputs utilizing a redesigned loss under training-time scheduled sampling; and (2) Frequency Compensation (FC), which reflects on missing low-frequency components and compensates them by reweighting the loss using exposure bias. ReflexFlow is model-agnostic, compatible with all Flow Matching frameworks, and improves generation quality across datasets. Experiments on CIFAR-10, CelebA-64, and ImageNet-256 show that ReflexFlow outperforms prior approaches in mitigating exposure bias, achieving a 35.65% reduction in FID on CelebA-64.
☆ Equivariant Symmetry-Aware Head Pose Estimation for Fetal MRI
We present E(3)-Pose, a novel fast pose estimation method that jointly and explicitly models rotation equivariance and object symmetry. Our work is motivated by the challenging problem of accounting for fetal head motion during a diagnostic MRI scan. We aim to enable automatic adaptive prescription of 2D diagnostic MRI slices with 6-DoF head pose estimation, supported by 3D MRI volumes rapidly acquired before each 2D slice. Existing methods struggle to generalize to clinical volumes, due to pose ambiguities induced by inherent anatomical symmetries, as well as low resolution, noise, and artifacts. In contrast, E(3)-Pose captures anatomical symmetries and rigid pose equivariance by construction, and yields robust estimates of the fetal head pose. Our experiments on publicly available and representative clinical fetal MRI datasets demonstrate the superior robustness and generalization of our method across domains. Crucially, E(3)-Pose achieves state-of-the-art accuracy on clinical MRI volumes, paving the way for clinical translation. Our implementation is available at github.com/ramyamut/E3-Pose.
☆ You Only Train Once (YOTO): A Retraining-Free Object Detection Framework
Object detection constitutes the primary task within the domain of computer vision. It is utilized in numerous domains. Nonetheless, object detection continues to encounter the issue of catastrophic forgetting. The model must be retrained whenever new products are introduced, utilizing not only the new products dataset but also the entirety of the previous dataset. The outcome is obvious: increasing model training expenses and significant time consumption. In numerous sectors, particularly retail checkout, the frequent introduction of new products presents a great challenge. This study introduces You Only Train Once (YOTO), a methodology designed to address the issue of catastrophic forgetting by integrating YOLO11n for object localization with DeIT and Proxy Anchor Loss for feature extraction and metric learning. For classification, we utilize cosine similarity between the embedding features of the target product and those in the Qdrant vector database. In a case study conducted in a retail store with 140 products, the experimental results demonstrate that our proposed framework achieves encouraging accuracy, whether for detecting new or existing products. Furthermore, without retraining, the training duration difference is significant. We achieve almost 3 times the training time efficiency compared to classical object detection approaches. This efficiency escalates as additional new products are added to the product database. The average inference time is 580 ms per image containing multiple products, on an edge device, validating the proposed framework's feasibility for practical use.
comment: under review in the Elsevier Engineering Journal
☆ SDG-Track: A Heterogeneous Observer-Follower Framework for High-Resolution UAV Tracking on Embedded Platforms
Real-time tracking of small unmanned aerial vehicles (UAVs) on edge devices faces a fundamental resolution-speed conflict. Downsampling high-resolution imagery to standard detector input sizes causes small target features to collapse below detectable thresholds. Yet processing native 1080p frames on resource-constrained platforms yields insufficient throughput for smooth gimbal control. We propose SDG-Track, a Sparse Detection-Guided Tracker that adopts an Observer-Follower architecture to reconcile this conflict. The Observer stream runs a high-capacity detector at low frequency on the GPU to provide accurate position anchors from 1920x1080 frames. The Follower stream performs high-frequency trajectory interpolation via ROI-constrained sparse optical flow on the CPU. To handle tracking failures from occlusion or model drift caused by spectrally similar distractors, we introduce Dual-Space Recovery, a training-free re-acquisition mechanism combining color histogram matching with geometric consistency constraints. Experiments on a ground-to-air tracking station demonstrate that SDG-Track achieves 35.1 FPS system throughput while retaining 97.2\% of the frame-by-frame detection precision. The system successfully tracks agile FPV drones under real-world operational conditions on an NVIDIA Jetson Orin Nano. Our paper code is publicly available at https://github.com/Jeffry-wen/SDG-Track
comment: https://github.com/Jeffry-wen/SDG-Track
☆ SP-Det: Self-Prompted Dual-Text Fusion for Generalized Multi-Label Lesion Detection
Automated lesion detection in chest X-rays has demonstrated significant potential for improving clinical diagnosis by precisely localizing pathological abnormalities. While recent promptable detection frameworks have achieved remarkable accuracy in target localization, existing methods typically rely on manual annotations as prompts, which are labor-intensive and impractical for clinical applications. To address this limitation, we propose SP-Det, a novel self-prompted detection framework that automatically generates rich textual context to guide multi-label lesion detection without requiring expert annotations. Specifically, we introduce an expert-free dual-text prompt generator (DTPG) that leverages two complementary textual modalities: semantic context prompts that capture global pathological patterns and disease beacon prompts that focus on disease-specific manifestations. Moreover, we devise a bidirectional feature enhancer (BFE) that synergistically integrates comprehensive diagnostic context with disease-specific embeddings to significantly improve feature representation and detection accuracy. Extensive experiments on two chest X-ray datasets with diverse thoracic disease categories demonstrate that our SP-Det framework outperforms state-of-the-art detection methods while completely eliminating the dependency on expert-annotated prompts compared to existing promptable architectures.
☆ Contact-Aware Refinement of Human Pose Pseudo-Ground Truth via Bioimpedance Sensing ICCV 2025
Capturing accurate 3D human pose in the wild would provide valuable data for training pose estimation and motion generation methods. While video-based estimation approaches have become increasingly accurate, they often fail in common scenarios involving self-contact, such as a hand touching the face. In contrast, wearable bioimpedance sensing can cheaply and unobtrusively measure ground-truth skin-to-skin contact. Consequently, we propose a novel framework that combines visual pose estimators with bioimpedance sensing to capture the 3D pose of people by taking self-contact into account. Our method, BioTUCH, initializes the pose using an off-the-shelf estimator and introduces contact-aware pose optimization during measured self-contact: reprojection error and deviations from the input estimate are minimized while enforcing vertex proximity constraints. We validate our approach using a new dataset of synchronized RGB video, bioimpedance measurements, and 3D motion capture. Testing with three input pose estimators, we demonstrate an average of 11.7% improvement in reconstruction accuracy. We also present a miniature wearable bioimpedance sensor that enables efficient large-scale collection of contact-aware training data for improving pose estimation and generation using BioTUCH. Code and data are available at biotuch.is.tue.mpg.de
comment: * Equal contribution. Minor figure corrections compared to the ICCV 2025 version
☆ Autoregressive Image Generation Needs Only a Few Lines of Cached Tokens
Autoregressive (AR) visual generation has emerged as a powerful paradigm for image and multimodal synthesis, owing to its scalability and generality. However, existing AR image generation suffers from severe memory bottlenecks due to the need to cache all previously generated visual tokens during decoding, leading to both high storage requirements and low throughput. In this paper, we introduce \textbf{LineAR}, a novel, training-free progressive key-value (KV) cache compression pipeline for autoregressive image generation. By fully exploiting the intrinsic characteristics of visual attention, LineAR manages the cache at the line level using a 2D view, preserving the visual dependency regions while progressively evicting less-informative tokens that are harmless for subsequent line generation, guided by inter-line attention. LineAR enables efficient autoregressive (AR) image generation by utilizing only a few lines of cache, achieving both memory savings and throughput speedup, while maintaining or even improving generation quality. Extensive experiments across six autoregressive image generation models, including class-conditional and text-to-image generation, validate its effectiveness and generality. LineAR improves ImageNet FID from 2.77 to 2.68 and COCO FID from 23.85 to 22.86 on LlamaGen-XL and Janus-Pro-1B, while retaining only 1/6 KV cache. It also improves DPG on Lumina-mGPT-768 with just 1/8 KV cache. Additionally, LineAR achieves significant memory and throughput gains, including up to 67.61% memory reduction and 7.57x speedup on LlamaGen-XL, and 39.66% memory reduction and 5.62x speedup on Janus-Pro-7B.
☆ A Sanity Check for Multi-In-Domain Face Forgery Detection in the Real World
Existing methods for deepfake detection aim to develop generalizable detectors. Although "generalizable" is the ultimate target once and for all, with limited training forgeries and domains, it appears idealistic to expect generalization that covers entirely unseen variations, especially given the diversity of real-world deepfakes. Therefore, introducing large-scale multi-domain data for training can be feasible and important for real-world applications. However, within such a multi-domain scenario, the differences between multiple domains, rather than the subtle real/fake distinctions, dominate the feature space. As a result, despite detectors being able to relatively separate real and fake within each domain (i.e., high AUC), they struggle with single-image real/fake judgments in domain-unspecified conditions (i.e., low ACC). In this paper, we first define a new research paradigm named Multi-In-Domain Face Forgery Detection (MID-FFD), which includes sufficient volumes of real-fake domains for training. Then, the detector should provide definitive real-fake judgments to the domain-unspecified inputs, which simulate the frame-by-frame independent detection scenario in the real world. Meanwhile, to address the domain-dominant issue, we propose a model-agnostic framework termed DevDet (Developer for Detector) to amplify real/fake differences and make them dominant in the feature space. DevDet consists of a Face Forgery Developer (FFDev) and a Dose-Adaptive detector Fine-Tuning strategy (DAFT). Experiments demonstrate our superiority in predicting real-fake under the MID-FFD scenario while maintaining original generalization ability to unseen data.
☆ Tokenizing Buildings: A Transformer for Layout Synthesis
We introduce Small Building Model (SBM), a Transformer-based architecture for layout synthesis in Building Information Modeling (BIM) scenes. We address the question of how to tokenize buildings by unifying heterogeneous feature sets of architectural elements into sequences while preserving compositional structure. Such feature sets are represented as a sparse attribute-feature matrix that captures room properties. We then design a unified embedding module that learns joint representations of categorical and possibly correlated continuous feature groups. Lastly, we train a single Transformer backbone in two modes: an encoder-only pathway that yields high-fidelity room embeddings, and an encoder-decoder pipeline for autoregressive prediction of room entities, referred to as Data-Driven Entity Prediction (DDEP). Experiments across retrieval and generative layout synthesis show that SBM learns compact room embeddings that reliably cluster by type and topology, enabling strong semantic retrieval. In DDEP mode, SBM produces functionally sound layouts, with fewer collisions and boundary violations and improved navigability.
comment: 8 pages, 1 page References, 4 figures
☆ FreeGen: Feed-Forward Reconstruction-Generation Co-Training for Free-Viewpoint Driving Scene Synthesis
Closed-loop simulation and scalable pre-training for autonomous driving require synthesizing free-viewpoint driving scenes. However, existing datasets and generative pipelines rarely provide consistent off-trajectory observations, limiting large-scale evaluation and training. While recent generative models demonstrate strong visual realism, they struggle to jointly achieve interpolation consistency and extrapolation realism without per-scene optimization. To address this, we propose FreeGen, a feed-forward reconstruction-generation co-training framework for free-viewpoint driving scene synthesis. The reconstruction model provides stable geometric representations to ensure interpolation consistency, while the generation model performs geometry-aware enhancement to improve realism at unseen viewpoints. Through co-training, generative priors are distilled into the reconstruction model to improve off-trajectory rendering, and the refined geometry in turn offers stronger structural guidance for generation. Experiments demonstrate that FreeGen achieves state-of-the-art performance for free-viewpoint driving scene synthesis.
comment: Novel View Synthesis, Driving Scene, Free Trajectory, Image Generation
☆ LatentFM: A Latent Flow Matching Approach for Generative Medical Image Segmentation
Generative models have achieved remarkable progress with the emergence of flow matching (FM). It has demonstrated strong generative capabilities and attracted significant attention as a simulation-free flow-based framework capable of learning exact data densities. Motivated by these advances, we propose LatentFM, a flow-based model operating in the latent space for medical image segmentation. To model the data distribution, we first design two variational autoencoders (VAEs) to encode both medical images and their corresponding masks into a lower-dimensional latent space. We then estimate a conditional velocity field that guides the flow based on the input image. By sampling multiple latent representations, our method synthesizes diverse segmentation outputs whose pixel-wise variance reliably captures the underlying data distribution, enabling both highly accurate and uncertainty-aware predictions. Furthermore, we generate confidence maps that quantify the model certainty, providing clinicians with richer information for deeper analysis. We conduct experiments on two datasets, ISIC-2018 and CVC-Clinic, and compare our method with several prior baselines, including both deterministic and generative approach models. Through comprehensive evaluations, both qualitative and quantitative results show that our approach achieves superior segmentation accuracy while remaining highly efficient in the latent space.
☆ RobustSplat++: Decoupling Densification, Dynamics, and Illumination for In-the-Wild 3DGS
3D Gaussian Splatting (3DGS) has gained significant attention for its real-time, photo-realistic rendering in novel-view synthesis and 3D modeling. However, existing methods struggle with accurately modeling in-the-wild scenes affected by transient objects and illuminations, leading to artifacts in the rendered images. We identify that the Gaussian densification process, while enhancing scene detail capture, unintentionally contributes to these artifacts by growing additional Gaussians that model transient disturbances and illumination variations. To address this, we propose RobustSplat++, a robust solution based on several critical designs. First, we introduce a delayed Gaussian growth strategy that prioritizes optimizing static scene structure before allowing Gaussian splitting/cloning, mitigating overfitting to transient objects in early optimization. Second, we design a scale-cascaded mask bootstrapping approach that first leverages lower-resolution feature similarity supervision for reliable initial transient mask estimation, taking advantage of its stronger semantic consistency and robustness to noise, and then progresses to high-resolution supervision to achieve more precise mask prediction. Third, we incorporate the delayed Gaussian growth strategy and mask bootstrapping with appearance modeling to handling in-the-wild scenes including transients and illuminations. Extensive experiments on multiple challenging datasets show that our method outperforms existing methods, clearly demonstrating the robustness and effectiveness of our method.
comment: arXiv admin note: substantial text overlap with arXiv:2506.02751
☆ Shared Multi-modal Embedding Space for Face-Voice Association
The FAME 2026 challenge comprises two demanding tasks: training face-voice associations combined with a multilingual setting that includes testing on languages on which the model was not trained. Our approach consists of separate uni-modal processing pipelines with general face and voice feature extraction, complemented by additional age-gender feature extraction to support prediction. The resulting single-modal features are projected into a shared embedding space and trained with an Adaptive Angular Margin (AAM) loss. Our approach achieved first place in the FAME 2026 challenge, with an average Equal-Error Rate (EER) of 23.99%.
comment: Ranked 1st in Fame 2026 Challenge, ICASSP
☆ EMMA: Efficient Multimodal Understanding, Generation, and Editing with a Unified Architecture
We propose EMMA, an efficient and unified architecture for multimodal understanding, generation and editing. Specifically, EMMA primarily consists of 1) An efficient autoencoder with a 32x compression ratio, which significantly reduces the number of tokens required for generation. This also ensures the training balance between understanding and generation tasks by applying the same compression ratio to images. 2) Channel-wise concatenation instead of token-wise concatenation among visual understanding and generation tokens, which further reduces the visual tokens in unified architectures. 3) A shared-and-decoupled network that enables mutual improvements across tasks while meeting the task-specific modeling requirements. 4) A mixture-of-experts mechanism adopted for visual understanding encoder, which substantially improves perceptual capabilities with a few parameters increase. Extensive experiments have shown that EMMA-4B can significantly outperform state-of-the-art unified multimodal approaches (e.g., BAGEL-7B) in both efficiency and performance, while also achieving competitive results compared to recent multimodal understanding and generation experts (e.g., Qwen3-VL and Qwen-Image). We believe that EMMA lays a solid foundation for the future development of unified multimodal architectures.
comment: Project Page: https://emma-umm.github.io/emma/
☆ LaFiTe: A Generative Latent Field for 3D Native Texturing
Generating high-fidelity, seamless textures directly on 3D surfaces, what we term 3D-native texturing, remains a fundamental open challenge, with the potential to overcome long-standing limitations of UV-based and multi-view projection methods. However, existing native approaches are constrained by the absence of a powerful and versatile latent representation, which severely limits the fidelity and generality of their generated textures. We identify this representation gap as the principal barrier to further progress. We introduce LaFiTe, a framework that addresses this challenge by learning to generate textures as a 3D generative sparse latent color field. At its core, LaFiTe employs a variational autoencoder (VAE) to encode complex surface appearance into a sparse, structured latent space, which is subsequently decoded into a continuous color field. This representation achieves unprecedented fidelity, exceeding state-of-the-art methods by >10 dB PSNR in reconstruction, by effectively disentangling texture appearance from mesh topology and UV parameterization. Building upon this strong representation, a conditional rectified-flow model synthesizes high-quality, coherent textures across diverse styles and geometries. Extensive experiments demonstrate that LaFiTe not only sets a new benchmark for 3D-native texturing but also enables flexible downstream applications such as material synthesis and texture super-resolution, paving the way for the next generation of 3D content creation workflows.
comment: Project page: https://vast-ai-research.github.io/LaFiTe/
☆ MemLoRA: Distilling Expert Adapters for On-Device Memory Systems
Memory-augmented Large Language Models (LLMs) have demonstrated remarkable consistency during prolonged dialogues by storing relevant memories and incorporating them as context. Such memory-based personalization is also key in on-device settings that allow users to keep their conversations and data private. However, memory-augmented systems typically rely on LLMs that are too costly for local on-device deployment. Even though Small Language Models (SLMs) are more suitable for on-device inference than LLMs, they cannot achieve sufficient performance. Additionally, these LLM-based systems lack native visual capabilities, limiting their applicability in multimodal contexts. In this paper, we introduce (i) MemLoRA, a novel memory system that enables local deployment by equipping SLMs with specialized memory adapters, and (ii) its vision extension MemLoRA-V, which integrates small Vision-Language Models (SVLMs) to memory systems, enabling native visual understanding. Following knowledge distillation principles, each adapter is trained separately for specific memory operations$\unicode{x2013}$knowledge extraction, memory update, and memory-augmented generation. Equipped with memory adapters, small models enable accurate on-device memory operations without cloud dependency. On text-only operations, MemLoRA outperforms 10$\times$ larger baseline models (e.g., Gemma2-27B) and achieves performance comparable to 60$\times$ larger models (e.g., GPT-OSS-120B) on the LoCoMo benchmark. To evaluate visual understanding operations instead, we extend LoCoMo with challenging Visual Question Answering tasks that require direct visual reasoning. On this, our VLM-integrated MemLoRA-V shows massive improvements over caption-based approaches (81.3 vs. 23.7 accuracy) while keeping strong performance in text-based tasks, demonstrating the efficacy of our method in multimodal contexts.
☆ Order Matters: 3D Shape Generation from Sequential VR Sketches
VR sketching lets users explore and iterate on ideas directly in 3D, offering a faster and more intuitive alternative to conventional CAD tools. However, existing sketch-to-shape models ignore the temporal ordering of strokes, discarding crucial cues about structure and design intent. We introduce VRSketch2Shape, the first framework and multi-category dataset for generating 3D shapes from sequential VR sketches. Our contributions are threefold: (i) an automated pipeline that generates sequential VR sketches from arbitrary shapes, (ii) a dataset of over 20k synthetic and 900 hand-drawn sketch-shape pairs across four categories, and (iii) an order-aware sketch encoder coupled with a diffusion-based 3D generator. Our approach yields higher geometric fidelity than prior work, generalizes effectively from synthetic to real sketches with minimal supervision, and performs well even on partial sketches. All data and models will be released open-source at https://chenyizi086.github.io/VRSketch2Shape_website.
☆ MT-Depth: Multi-task Instance feature analysis for the Depth Completion
Depth completion plays a vital role in 3D perception systems, especially in scenarios where sparse depth data must be densified for tasks such as autonomous driving, robotics, and augmented reality. While many existing approaches rely on semantic segmentation to guide depth completion, they often overlook the benefits of object-level understanding. In this work, we introduce an instance-aware depth completion framework that explicitly integrates binary instance masks as spatial priors to refine depth predictions. Our model combines four main components: a frozen YOLO V11 instance segmentation branch, a U-Net-based depth completion backbone, a cross-attention fusion module, and an attention-guided prediction head. The instance segmentation branch generates per-image foreground masks that guide the depth branch via cross-attention, allowing the network to focus on object-centric regions during refinement. We validate our method on the Virtual KITTI 2 dataset, showing that it achieves lower RMSE compared to both a U-Net-only baseline and previous semantic-guided methods, while maintaining competitive MAE. Qualitative and quantitative results demonstrate that the proposed model effectively enhances depth accuracy near object boundaries, occlusions, and thin structures. Our findings suggest that incorporating instance-aware cues offers a promising direction for improving depth completion without relying on dense semantic labels.
☆ E3AD: An Emotion-Aware Vision-Language-Action Model for Human-Centric End-to-End Autonomous Driving
End-to-end autonomous driving (AD) systems increasingly adopt vision-language-action (VLA) models, yet they typically ignore the passenger's emotional state, which is central to comfort and AD acceptance. We introduce Open-Domain End-to-End (OD-E2E) autonomous driving, where an autonomous vehicle (AV) must interpret free-form natural-language commands, infer the emotion, and plan a physically feasible trajectory. We propose E3AD, an emotion-aware VLA framework that augments semantic understanding with two cognitively inspired components: a continuous Valenc-Arousal-Dominance (VAD) emotion model that captures tone and urgency from language, and a dual-pathway spatial reasoning module that fuses egocentric and allocentric views for human-like spatial cognition. A consistency-oriented training scheme, combining modality pretraining with preference-based alignment, further enforces coherence between emotional intent and driving actions. Across real-world datasets, E3AD improves visual grounding and waypoint planning and achieves state-of-the-art (SOTA) VAD correlation for emotion estimation. These results show that injecting emotion into VLA-style driving yields more human-aligned grounding, planning, and human-centric feedback.
☆ Measuring the Unspoken: A Disentanglement Model and Benchmark for Psychological Analysis in the Wild
Generative psychological analysis of in-the-wild conversations faces two fundamental challenges: (1) existing Vision-Language Models (VLMs) fail to resolve Articulatory-Affective Ambiguity, where visual patterns of speech mimic emotional expressions; and (2) progress is stifled by a lack of verifiable evaluation metrics capable of assessing visual grounding and reasoning depth. We propose a complete ecosystem to address these twin challenges. First, we introduce Multilevel Insight Network for Disentanglement(MIND), a novel hierarchical visual encoder that introduces a Status Judgment module to algorithmically suppress ambiguous lip features based on their temporal feature variance, achieving explicit visual disentanglement. Second, we construct ConvoInsight-DB, a new large-scale dataset with expert annotations for micro-expressions and deep psychological inference. Third, Third, we designed the Mental Reasoning Insight Rating Metric (PRISM), an automated dimensional framework that uses expert-guided LLM to measure the multidimensional performance of large mental vision models. On our PRISM benchmark, MIND significantly outperforms all baselines, achieving a +86.95% gain in micro-expression detection over prior SOTA. Ablation studies confirm that our Status Judgment disentanglement module is the most critical component for this performance leap. Our code has been opened.
☆ Hardware-aware Neural Architecture Search of Early Exiting Networks on Edge Accelerators
Advancements in high-performance computing and cloud technologies have enabled the development of increasingly sophisticated Deep Learning (DL) models. However, the growing demand for embedded intelligence at the edge imposes stringent computational and energy constraints, challenging the deployment of these large-scale models. Early Exiting Neural Networks (EENN) have emerged as a promising solution, allowing dynamic termination of inference based on input complexity to enhance efficiency. Despite their potential, EENN performance is highly influenced by the heterogeneity of edge accelerators and the constraints imposed by quantization, affecting accuracy, energy efficiency, and latency. Yet, research on the automatic optimization of EENN design for edge hardware remains limited. To bridge this gap, we propose a hardware-aware Neural Architecture Search (NAS) framework that systematically integrates the effects of quantization and hardware resource allocation to optimize the placement of early exit points within a network backbone. Experimental results on the CIFAR-10 dataset demonstrate that our NAS framework can discover architectures that achieve over a 50\% reduction in computational costs compared to conventional static networks, making them more suitable for deployment in resource-constrained edge environments.
comment: Submitted to IEEE Transactions on Emerging Topics in Computing
☆ OmniScaleSR: Unleashing Scale-Controlled Diffusion Prior for Faithful and Realistic Arbitrary-Scale Image Super-Resolution
Arbitrary-scale super-resolution (ASSR) overcomes the limitation of traditional super-resolution (SR) methods that operate only at fixed scales (e.g., 4x), enabling a single model to handle arbitrary magnification. Most existing ASSR approaches rely on implicit neural representation (INR), but its regression-driven feature extraction and aggregation intrinsically limit the ability to synthesize fine details, leading to low realism. Recent diffusion-based realistic image super-resolution (Real-ISR) models leverage powerful pre-trained diffusion priors and show impressive results at the 4x setting. We observe that they can also achieve ASSR because the diffusion prior implicitly adapts to scale by encouraging high-realism generation. However, without explicit scale control, the diffusion process cannot be properly adjusted for different magnification levels, resulting in excessive hallucination or blurry outputs, especially under ultra-high scales. To address these issues, we propose OmniScaleSR, a diffusion-based realistic arbitrary-scale SR framework designed to achieve both high fidelity and high realism. We introduce explicit, diffusion-native scale control mechanisms that work synergistically with implicit scale adaptation, enabling scale-aware and content-aware modulation of the diffusion process. In addition, we incorporate multi-domain fidelity enhancement designs to further improve reconstruction accuracy. Extensive experiments on bicubic degradation benchmarks and real-world datasets show that OmniScaleSR surpasses state-of-the-art methods in both fidelity and perceptual realism, with particularly strong performance at large magnification factors. Code will be released at https://github.com/chaixinning/OmniScaleSR.
comment: Accepted as TCSVT, 15 pages
☆ Towards Cross-View Point Correspondence in Vision-Language Models
Cross-view correspondence is a fundamental capability for spatial understanding and embodied AI. However, it is still far from being realized in Vision-Language Models (VLMs), especially in achieving precise point-level correspondence, which is crucial for precise affordance interaction. So we propose the Cross-View Point Correspondence (CVPC) task and CrossPoint-Bench, a comprehensive benchmark with hierarchical design, inspired by the human cognitive process of "perceive", "reason", and "correspond". Our evaluation shows the state-of-the-art models (e.g., Gemini-2.5-Pro) still fall far behind humans, with a gap of over 54.65% in overall accuracy, exposing a challenge in transitioning from coarse-grained judgement to fine-grained coordinate prediction. To address this problem, we construct CrossPoint-378K, a dataset with 378K question-answering pairs across 900 scenes, focused on actionable affordance regions that better reflect real-world manipulation and interaction scenarios. Furthermore, we propose CroPond that trained on the CrossPoint-378K dataset. Our CroPond achieves state-of-the-art performance on CrossPoint-Bench, surpassing Gemini-2.5-Pro by 39.7% accuracy, which offers a foundation for advancing future work on cross-view correspondence. The benchmark, dataset, and model are publicly available at https://github.com/WangYipu2002/CrossPoint.
☆ Reward Forcing: Efficient Streaming Video Generation with Rewarded Distribution Matching Distillation
Efficient streaming video generation is critical for simulating interactive and dynamic worlds. Existing methods distill few-step video diffusion models with sliding window attention, using initial frames as sink tokens to maintain attention performance and reduce error accumulation. However, video frames become overly dependent on these static tokens, resulting in copied initial frames and diminished motion dynamics. To address this, we introduce Reward Forcing, a novel framework with two key designs. First, we propose EMA-Sink, which maintains fixed-size tokens initialized from initial frames and continuously updated by fusing evicted tokens via exponential moving average as they exit the sliding window. Without additional computation cost, EMA-Sink tokens capture both long-term context and recent dynamics, preventing initial frame copying while maintaining long-horizon consistency. Second, to better distill motion dynamics from teacher models, we propose a novel Rewarded Distribution Matching Distillation (Re-DMD). Vanilla distribution matching treats every training sample equally, limiting the model's ability to prioritize dynamic content. Instead, Re-DMD biases the model's output distribution toward high-reward regions by prioritizing samples with greater dynamics rated by a vision-language model. Re-DMD significantly enhances motion quality while preserving data fidelity. We include both quantitative and qualitative experiments to show that Reward Forcing achieves state-of-the-art performance on standard benchmarks while enabling high-quality streaming video generation at 23.1 FPS on a single H100 GPU.
☆ Live Avatar: Streaming Real-time Audio-Driven Avatar Generation with Infinite Length
Existing diffusion-based video generation methods are fundamentally constrained by sequential computation and long-horizon inconsistency, limiting their practical adoption in real-time, streaming audio-driven avatar synthesis. We present Live Avatar, an algorithm-system co-designed framework that enables efficient, high-fidelity, and infinite-length avatar generation using a 14-billion-parameter diffusion model. Our approach introduces Timestep-forcing Pipeline Parallelism (TPP), a distributed inference paradigm that pipelines denoising steps across multiple GPUs, effectively breaking the autoregressive bottleneck and ensuring stable, low-latency real-time streaming. To further enhance temporal consistency and mitigate identity drift and color artifacts, we propose the Rolling Sink Frame Mechanism (RSFM), which maintains sequence fidelity by dynamically recalibrating appearance using a cached reference image. Additionally, we leverage Self-Forcing Distribution Matching Distillation to facilitate causal, streamable adaptation of large-scale models without sacrificing visual quality. Live Avatar demonstrates state-of-the-art performance, reaching 20 FPS end-to-end generation on 5 H800 GPUs, and, to the best of our knowledge, is the first to achieve practical, real-time, high-fidelity avatar generation at this scale. Our work establishes a new paradigm for deploying advanced diffusion models in industrial long-form video synthesis applications.
☆ I2I-Bench: A Comprehensive Benchmark Suite for Image-to-Image Editing Models
Image editing models are advancing rapidly, yet comprehensive evaluation remains a significant challenge. Existing image editing benchmarks generally suffer from limited task scopes, insufficient evaluation dimensions, and heavy reliance on manual annotations, which significantly constrain their scalability and practical applicability. To address this, we propose \textbf{I2I-Bench}, a comprehensive benchmark for image-to-image editing models, which features (i) diverse tasks, encompassing 10 task categories across both single-image and multi-image editing tasks, (ii) comprehensive evaluation dimensions, including 30 decoupled and fine-grained evaluation dimensions with automated hybrid evaluation methods that integrate specialized tools and large multimodal models (LMMs), and (iii) rigorous alignment validation, justifying the consistency between our benchmark evaluations and human preferences. Using I2I-Bench, we benchmark numerous mainstream image editing models, investigating the gaps and trade-offs between editing models across various dimensions. We will open-source all components of I2I-Bench to facilitate future research.
☆ SEASON: Mitigating Temporal Hallucination in Video Large Language Models via Self-Diagnostic Contrastive Decoding
Video Large Language Models (VideoLLMs) have shown remarkable progress in video understanding. However, these models still struggle to effectively perceive and exploit rich temporal information in videos when responding to user queries. Therefore, they often generate descriptions of events that are temporal inconsistent or causally implausible, causing severe hallucination issues. While most prior studies have focused on spatial hallucinations (e.g. object mismatches), temporal reasoning in video understanding remains relatively underexplored. To address this issue, we propose Self-Diagnostic Contrastive Decoding (SEASON), a training-free method that adaptively enhances temporal and spatial faithfulness for each output token. It achieves this by dynamically diagnosing each token's hallucination tendency and applying adaptive contrastive decoding against its corresponding temporal and spatial negatives. Extensive experiments demonstrate that SEASON outperforms all existing training-free hallucination mitigation approaches on three hallucination examination benchmarks, while further improves VideoLLMs across four general video understanding benchmarks. The code will be released upon acceptance.
☆ Rethinking Decoupled Knowledge Distillation: A Predictive Distribution Perspective
In the history of knowledge distillation, the focus has once shifted over time from logit-based to feature-based approaches. However, this transition has been revisited with the advent of Decoupled Knowledge Distillation (DKD), which re-emphasizes the importance of logit knowledge through advanced decoupling and weighting strategies. While DKD marks a significant advancement, its underlying mechanisms merit deeper exploration. As a response, we rethink DKD from a predictive distribution perspective. First, we introduce an enhanced version, the Generalized Decoupled Knowledge Distillation (GDKD) loss, which offers a more versatile method for decoupling logits. Then we pay particular attention to the teacher model's predictive distribution and its impact on the gradients of GDKD loss, uncovering two critical insights often overlooked: (1) the partitioning by the top logit considerably improves the interrelationship of non-top logits, and (2) amplifying the focus on the distillation loss of non-top logits enhances the knowledge extraction among them. Utilizing these insights, we further propose a streamlined GDKD algorithm with an efficient partition strategy to handle the multimodality of teacher models' predictive distribution. Our comprehensive experiments conducted on a variety of benchmarks, including CIFAR-100, ImageNet, Tiny-ImageNet, CUB-200-2011, and Cityscapes, demonstrate GDKD's superior performance over both the original DKD and other leading knowledge distillation methods. The code is available at https://github.com/ZaberKo/GDKD.
comment: Accepted to IEEE TNNLS
☆ Denoise to Track: Harnessing Video Diffusion Priors for Robust Correspondence
In this work, we introduce HeFT (Head-Frequency Tracker), a zero-shot point tracking framework that leverages the visual priors of pretrained video diffusion models. To better understand how they encode spatiotemporal information, we analyze the internal representations of Video Diffusion Transformer (VDiT). Our analysis reveals that attention heads act as minimal functional units with distinct specializations for matching, semantic understanding, and positional encoding. Additionally, we find that the low-frequency components in VDiT features are crucial for establishing correspondences, whereas the high-frequency components tend to introduce noise. Building on these insights, we propose a head- and frequency-aware feature selection strategy that jointly selects the most informative attention head and low-frequency components to enhance tracking performance. Specifically, our method extracts discriminative features through single-step denoising, applies feature selection, and employs soft-argmax localization with forward-backward consistency checks for correspondence estimation. Extensive experiments on TAP-Vid benchmarks demonstrate that HeFT achieves state-of-the-art zero-shot tracking performance, approaching the accuracy of supervised methods while eliminating the need for annotated training data. Our work further underscores the promise of video diffusion models as powerful foundation models for a wide range of downstream tasks, paving the way toward unified visual foundation models.
☆ Malicious Image Analysis via Vision-Language Segmentation Fusion: Detection, Element, and Location in One-shot
Detecting illicit visual content demands more than image-level NSFW flags; moderators must also know what objects make an image illegal and where those objects occur. We introduce a zero-shot pipeline that simultaneously (i) detects if an image contains harmful content, (ii) identifies each critical element involved, and (iii) localizes those elements with pixel-accurate masks - all in one pass. The system first applies foundation segmentation model (SAM) to generate candidate object masks and refines them into larger independent regions. Each region is scored for malicious relevance by a vision-language model using open-vocabulary prompts; these scores weight a fusion step that produces a consolidated malicious object map. An ensemble across multiple segmenters hardens the pipeline against adaptive attacks that target any single segmentation method. Evaluated on a newly-annotated 790-image dataset spanning drug, sexual, violent and extremist content, our method attains 85.8% element-level recall, 78.1% precision and a 92.1% segment-success rate - exceeding direct zero-shot VLM localization by 27.4% recall at comparable precision. Against PGD adversarial perturbations crafted to break SAM and VLM, our method's precision and recall decreased by no more than 10%, demonstrating high robustness against attacks. The full pipeline processes an image in seconds, plugs seamlessly into existing VLM workflows, and constitutes the first practical tool for fine-grained, explainable malicious-image moderation.
♻ ☆ CoCoIns: Consistent Subject Generation via Contrastive Instantiated Concepts
While text-to-image generative models can synthesize diverse and faithful content, subject variation across multiple generations limits their application to long-form content generation. Existing approaches require time-consuming fine-tuning, reference images for all subjects, or access to previously generated content. We introduce Contrastive Concept Instantiation (CoCoIns), a framework that effectively synthesizes consistent subjects across multiple independent generations. The framework consists of a generative model and a mapping network that transforms input latent codes into pseudo-words associated with specific concept instances. Users can generate consistent subjects by reusing the same latent codes. To construct such associations, we propose a contrastive learning approach that trains the network to distinguish between different combinations of prompts and latent codes. Extensive evaluations on human faces with a single subject show that CoCoIns performs comparably to existing methods while maintaining greater flexibility. We also demonstrate the potential for extending CoCoIns to multiple subjects and other object categories.
comment: TMLR 2025. Project page: https://contrastive-concept-instantiation.github.io
♻ ☆ MORPH: PDE Foundation Models with Arbitrary Data Modality
We introduce MORPH, a modality-agnostic, autoregressive foundation model for partial differential equations (PDEs). MORPH is built on a convolutional vision transformer backbone that seamlessly handles heterogeneous spatiotemporal datasets of varying data modality (1D--3D) at different resolutions, and multiple fields with mixed scalar and vector components. The architecture combines (i) component-wise convolution, which jointly processes scalar and vector channels to capture local interactions, (ii) inter-field cross-attention, which models and selectively propagates information between different physical fields, (iii) axial attentions, which factorize full spatiotemporal self-attention along individual spatial and temporal axes to reduce computational burden while retaining expressivity. We pretrain multiple model variants on a diverse collection of heterogeneous PDE datasets and evaluate transfer to a range of downstream prediction tasks. Using both full-model fine-tuning and parameter-efficient low-rank adapters (LoRA), MORPH outperforms models trained from scratch. Across extensive evaluations, MORPH matches or surpasses strong baselines and recent state-of-the-art models. Collectively, these capabilities present a flexible and powerful backbone for learning from the heterogeneous and multimodal nature of scientific observations, charting a path toward scalable and data-efficient scientific machine learning. The source code, datasets, and models are publicly available at https://github.com/lanl/MORPH.
♻ ☆ Athena: Enhancing Multimodal Reasoning with Data-efficient Process Reward Models
We present Athena-PRM, a multimodal process reward model (PRM) designed to evaluate the reward score for each step in solving complex reasoning problems. Developing high-performance PRMs typically demands significant time and financial investment, primarily due to the necessity for step-level annotations of reasoning steps. Conventional automated labeling methods, such as Monte Carlo estimation, often produce noisy labels and incur substantial computational costs. To efficiently generate high-quality process-labeled data, we propose leveraging prediction consistency between weak and strong completers as a criterion for identifying reliable process labels. Remarkably, Athena-PRM demonstrates outstanding effectiveness across various scenarios and benchmarks with just 5,000 samples. Furthermore, we also develop two effective strategies to improve the performance of PRMs: ORM initialization and up-sampling for negative data. We validate our approach in three specific scenarios: verification for test time scaling, direct evaluation of reasoning step correctness, and reward ranked fine-tuning. Our Athena-PRM consistently achieves superior performance across multiple benchmarks and scenarios. Notably, when using Qwen2.5-VL-7B as the policy model, Athena-PRM enhances performance by 10.2 points on WeMath and 7.1 points on MathVista for test time scaling. Furthermore, Athena-PRM sets the state-of-the-art (SoTA) results in VisualProcessBench and outperforms the previous SoTA by 3.9 F1-score, showcasing its robust capability to accurately assess the correctness of the reasoning step. Additionally, utilizing Athena-PRM as the reward model, we develop Athena-7B with reward ranked fine-tuning and outperforms baseline with a significant margin on five benchmarks.
♻ ☆ Beyond I-Con: Exploring New Dimension of Distance Measures in Representation Learning
The Information Contrastive (I-Con) framework revealed that over 23 representation learning methods implicitly minimize KL divergence between data and learned distributions that encode similarities between data points. However, a KL-based loss may be misaligned with the true objective, and properties of KL divergence such as asymmetry and unboundedness may create optimization challenges. We present Beyond I-Con, a framework that enables systematic discovery of novel loss functions by exploring alternative statistical divergences. Key findings: (1) on unsupervised clustering of DINO-ViT embeddings, we achieve state-of-the-art results by modifying the PMI algorithm to use total variation (TV) distance; (2) supervised contrastive learning with Euclidean distance as the feature space metric is improved by replacing the standard loss function with Jenson-Shannon divergence (JSD); (3) on dimensionality reduction, we achieve superior qualitative results and better performance on downstream tasks than SNE by replacing KL with a bounded $f$-divergence. Our results highlight the importance of considering divergence choices in representation learning optimization.
♻ ☆ SAGE: Spatial-visual Adaptive Graph Exploration for Visual Place Recognition
Visual Place Recognition (VPR) requires robust retrieval of geotagged images despite large appearance, viewpoint, and environmental variation. Prior methods focus on descriptor fine-tuning or fixed sampling strategies yet neglect the dynamic interplay between spatial context and visual similarity during training. We present SAGE (Spatial-visual Adaptive Graph Exploration), a unified training pipeline that enhances granular spatial-visual discrimination by jointly improving local feature aggregation, organize samples during training, and hard sample mining. We introduce a lightweight Soft Probing module that learns residual weights from training data for patch descriptors before bilinear aggregation, boosting distinctive local cues. During training we reconstruct an online geo-visual graph that fuses geographic proximity and current visual similarity so that candidate neighborhoods reflect the evolving embedding landscape. To concentrate learning on the most informative place neighborhoods, we seed clusters from high-affinity anchors and iteratively expand them with a greedy weighted clique expansion sampler. Implemented with a frozen DINOv2 backbone and parameter-efficient fine-tuning, SAGE achieves SOTA across eight benchmarks. It attains 98.9%, 95.8%, 94.5%, and 96.0% Recall@1 on SPED, Pitts30k-test, MSLS-val, and Nordland, respectively. Notably, our method obtains 100% Recall@10 on SPED only using 4096D global descriptors. Code and models will be released upon acceptance.
comment: 23 pages
♻ ☆ Efficient stereo matching on embedded GPUs with zero-means cross correlation
Mobile stereo-matching systems have become an important part of many applications, such as automated-driving vehicles and autonomous robots. Accurate stereo-matching methods usually lead to high computational complexity; however, mobile platforms have only limited hardware resources to keep their power consumption low; this makes it difficult to maintain both an acceptable processing speed and accuracy on mobile platforms. To resolve this trade-off, we herein propose a novel acceleration approach for the well-known zero-means normalized cross correlation (ZNCC) matching cost calculation algorithm on a Jetson Tx2 embedded GPU. In our method for accelerating ZNCC, target images are scanned in a zigzag fashion to efficiently reuse one pixel's computation for its neighboring pixels; this reduces the amount of data transmission and increases the utilization of on-chip registers, thus increasing the processing speed. As a result, our method is 2X faster than the traditional image scanning method, and 26% faster than the latest NCC method. By combining this technique with the domain transformation (DT) algorithm, our system show real-time processing speed of 32 fps, on a Jetson Tx2 GPU for 1,280x384 pixel images with a maximum disparity of 128. Additionally, the evaluation results on the KITTI 2015 benchmark show that our combined system is more accurate than the same algorithm combined with census by 7.26%, while maintaining almost the same processing speed. Source Code: https://github.com/changqiong/Z2ZNCC.git
♻ ☆ SO-Bench: A Structural Output Evaluation of Multimodal LLMs
Multimodal large language models (MLLMs) are increasingly deployed in real-world, agentic settings where outputs must not only be correct, but also conform to predefined data schemas. Despite recent progress in structured generation in textual domain, there is still no benchmark that systematically evaluates schema-grounded information extraction and reasoning over visual inputs. In this work, we conduct a comprehensive study of visual structural output capabilities for MLLMs with our carefully designed SO-Bench benchmark. Covering four visual domains, including UI screens, natural images, documents, and charts, SO-Bench is built from over 6.5K diverse JSON schemas and 1.8K curated image-schema pairs with human-verified quality. Benchmarking experiments on open-sourced and frontier proprietary models reveal persistent gaps in predicting accurate, schema compliant outputs, highlighting the need for better multimodal structured reasoning. Beyond benchmarking, we further conduct training experiments to largely improve the model's structured output capability. We plan to make the benchmark available to the community.
comment: v2 preprint. Fixed some typos, add a discussion about limitation, provide pseudo-codes for eval
♻ ☆ SignBind-LLM: Multi-Stage Modality Fusion for Sign Language Translation
Despite progress in gloss-free Sign Language Translation (SLT), traditional single modality end-to-end approaches consistently fail on two critical components of natural signing: the precise recognition of high-speed fingerspelling and the integration of asynchronous non-manual cues from the face. Recent progress in SLT with Large Language Models has side stepped this challenge, forcing a single network to learn these simultaneously resulting in poor performance when tasked with translating crucial information such as names, places, and technical terms. We introduce SignBind-LLM, a modular framework designed to overcome these limitations. Our approach employs separate, specialized predictors for continuous signing, fingerspelling, and lipreading. Each expert network first decodes its specific modality into a sequence of tokens. These parallel streams are then fused by a lightweight transformer that resolves temporal misalignments before passing the combined representation to a Large Language Model (LLM) for final sentence generation. Our method establishes a new state-of-the-art on the How2Sign, ChicagoFSWildPlus, and BOBSL datasets with a BLEU-4 score of 22.1, 73.2% letter accuracy and BLEU-4 score of 6.8 respectively. These results validate our core hypothesis: isolating and solving distinct recognition tasks before fusion provides a more powerful and effective pathway to robust, high-fidelity sign language translation.
♻ ☆ MMHOI: Modeling Complex 3D Multi-Human Multi-Object Interactions
Real-world scenes often feature multiple humans interacting with multiple objects in ways that are causal, goal-oriented, or cooperative. Yet existing 3D human-object interaction (HOI) benchmarks consider only a fraction of these complex interactions. To close this gap, we present MMHOI -- a large-scale, Multi-human Multi-object Interaction dataset consisting of images from 12 everyday scenarios. MMHOI offers complete 3D shape and pose annotations for every person and object, along with labels for 78 action categories and 14 interaction-specific body parts, providing a comprehensive testbed for next-generation HOI research. Building on MMHOI, we present MMHOI-Net, an end-to-end transformer-based neural network for jointly estimating human-object 3D geometries, their interactions, and associated actions. A key innovation in our framework is a structured dual-patch representation for modeling objects and their interactions, combined with action recognition to enhance the interaction prediction. Experiments on MMHOI and the recently proposed CORE4D datasets demonstrate that our approach achieves state-of-the-art performance in multi-HOI modeling, excelling in both accuracy and reconstruction quality. The MMHOI dataset is publicly available at https://zenodo.org/records/17711786.
comment: Accepted to WACV 2026
♻ ☆ "I Can See Forever!": Evaluating Real-time VideoLLMs for Assisting Individuals with Visual Impairments
The visually impaired population faces significant challenges in daily activities. While prior works employ vision language models for assistance, most focus on static content and cannot address real-time perception needs in complex environments. Recent VideoLLMs enable real-time vision and speech interaction, offering promising potential for assistive tasks. In this work, we conduct the first study evaluating their effectiveness in supporting daily life for visually impaired individuals. We first conducted a user survey with visually impaired participants to design the benchmark VisAssistDaily for daily life evaluation. Using VisAssistDaily, we evaluate popular VideoLLMs and find GPT-4o achieves the highest task success rate. We further conduct a user study to reveal concerns about hazard perception. To address this, we propose SafeVid, an environment-awareness dataset, and fine-tune VITA-1.5, improving risk recognition accuracy from 25.00% to 76.00%.We hope this work provides valuable insights and inspiration for future research in this field.
comment: 17 pages
♻ ☆ Flowing Backwards: Improving Normalizing Flows via Reverse Representation Alignment AAAI 2026
Normalizing Flows (NFs) are a class of generative models distinguished by a mathematically invertible architecture, where the forward pass transforms data into a latent space for density estimation, and the reverse pass generates new samples from this space. This characteristic creates an intrinsic synergy between representation learning and data generation. However, the generative quality of standard NFs is limited by poor semantic representations from log-likelihood optimization. To remedy this, we propose a novel alignment strategy that creatively leverages the invertibility of NFs: instead of regularizing the forward pass, we align the intermediate features of the generative (reverse) pass with representations from a powerful vision foundation model, demonstrating superior effectiveness over naive alignment. We also introduce a novel training-free, test-time optimization algorithm for classification, which provides a more intrinsic evaluation of the NF's embedded semantic knowledge. Comprehensive experiments demonstrate that our approach accelerates the training of NFs by over 3.3$\times$, while simultaneously delivering significant improvements in both generative quality and classification accuracy. New state-of-the-art results for NFs are established on ImageNet 64$\times$64 and 256$\times$256. Our code is available at https://github.com/MCG-NJU/FlowBack.
comment: Accepted by AAAI 2026
♻ ☆ Polygon Intersection-over-Union Loss for Viewpoint-Agnostic Monocular 3D Vehicle Detection
Monocular 3D object detection is a challenging task because depth information is difficult to obtain from 2D images. A subset of viewpoint-agnostic monocular 3D detection methods also do not explicitly leverage scene homography or geometry during training, meaning that a model trained thusly can detect objects in images from arbitrary viewpoints. Such works predict the projections of the 3D bounding boxes on the image plane to estimate the location of the 3D boxes, but these projections are not rectangular so the calculation of IoU between these projected polygons is not straightforward. This work proposes an efficient, fully differentiable algorithm for the calculation of IoU between two convex polygons, which can be utilized to compute the IoU between two 3D bounding box footprints viewed from an arbitrary angle. We test the performance of the proposed polygon IoU loss (PIoU loss) on three state-of-the-art viewpoint-agnostic 3D detection models. Experiments demonstrate that the proposed PIoU loss converges faster than L1 loss and that in 3D detection models, a combination of PIoU loss and L1 loss gives better results than L1 loss alone (+1.64% AP70 for MonoCon on cars, +0.18% AP70 for RTM3D on cars, and +0.83%/+2.46% AP50/AP25 for MonoRCNN on cyclists).
♻ ☆ DAVE: Diagnostic benchmark for Audio Visual Evaluation
Audio-visual understanding is a rapidly evolving field that seeks to integrate and interpret information from both auditory and visual modalities. Despite recent advances in multi-modal learning, existing benchmarks often suffer from strong visual bias -- when answers can be inferred from visual data alone -- and provide only aggregate scores that conflate multiple sources of error. This makes it difficult to determine whether models struggle with visual understanding, audio interpretation, or audio-visual alignment. In this work, we introduce DAVE: Diagnostic Audio Visual Evaluation, a novel benchmark dataset designed to systematically evaluate audio-visual models across controlled settings. DAVE alleviates existing limitations by (i) ensuring both modalities are necessary to answer correctly and (ii) decoupling evaluation into atomic subcategories. Our detailed analysis of state-of-the-art models reveals specific failure modes and provides targeted insights for improvement. By offering this standardized diagnostic framework, we aim to facilitate more robust development of audio-visual models. Dataset: https://huggingface.co/datasets/gorjanradevski/dave Code: https://github.com/gorjanradevski/dave
comment: First two authors contributed equally
♻ ☆ EoS-FM: Can an Ensemble of Specialist Models act as a Generalist Feature Extractor?
Recent advances in foundation models have shown great promise in domains such as natural language processing and computer vision, and similar efforts are now emerging in the Earth Observation community. These models aim to generalize across tasks with limited supervision, reducing the need for training separate models for each task. However, current strategies, which largely focus on scaling model size and dataset volume, require prohibitive computational and data resources, limiting accessibility to only a few large institutions. Moreover, this paradigm of ever-larger models stands in stark contrast with the principles of sustainable and environmentally responsible AI, as it leads to immense carbon footprints and resource inefficiency. In this work, we present a novel and efficient alternative: an Ensemble-of-Specialists framework for building Remote Sensing Foundation Models (RSFMs). Our method decomposes the training process into lightweight, task-specific ConvNeXtV2 specialists that can be frozen and reused. This modular approach offers strong advantages in efficiency, interpretability, and extensibility. Moreover, it naturally supports federated training, pruning, and continuous specialist integration, making it particularly well-suited for collaborative and resource-constrained settings. Our framework sets a new direction for building scalable and efficient RSFMs. All codes and pretrained models are available at https://github.com/pierreadorni/EoS-FM.
TongUI: Internet-Scale Trajectories from Multimodal Web Tutorials for Generalized GUI Agents AAAI 2026
Building Graphical User Interface (GUI) agents is a promising research direction, which simulates human interaction with computers or mobile phones to perform diverse GUI tasks. However, a major challenge in developing generalized GUI agents is the lack of sufficient trajectory data across various operating systems and applications, mainly due to the high cost of manual annotations. In this paper, we propose the TongUI framework that builds generalized GUI agents by learning from rich multimodal web tutorials. Concretely, we crawl and process online GUI tutorials (such as videos and articles) into GUI agent trajectory data, through which we produce the GUI-Net dataset containing 143K trajectory data across five operating systems and more than 200 applications. We develop the TongUI agent by fine-tuning Qwen2.5-VL-3B/7B models on GUI-Net, which show remarkable performance improvements on commonly used grounding and navigation benchmarks, outperforming baseline agents about 10\% on multiple benchmarks, showing the effectiveness of the GUI-Net dataset and underscoring the significance of our TongUI framework. We will fully open-source the code, the GUI-Net dataset, and the trained models soon.
comment: AAAI 2026
♻ ☆ ENTIRE: Learning-based Volume Rendering Time Prediction
We introduce ENTIRE, a novel deep learning-based approach for fast and accurate volume rendering time prediction. Predicting rendering time is inherently challenging due to its dependence on multiple factors, including volume data characteristics, image resolution, camera configuration, and transfer function settings. Our method addresses this by first extracting a feature vector that encodes structural volume properties relevant to rendering performance. This feature vector is then integrated with additional rendering parameters, such as image resolution, camera setup, and transfer function settings, to produce the final prediction. We evaluate ENTIRE across multiple rendering frameworks (CPU- and GPU-based) and configurations (with and without single-scattering) on diverse datasets. The results demonstrate that our model achieves high prediction accuracy with fast inference speed. Furthermore, we showcase ENTIRE's effectiveness in two case studies, where it enables dynamic parameter adaptation for stable frame rates and load balancing.
♻ ☆ JarvisEvo: Towards a Self-Evolving Photo Editing Agent with Synergistic Editor-Evaluator Optimization
Agent-based editing models have substantially advanced interactive experiences, processing quality, and creative flexibility. However, two critical challenges persist: (1) instruction hallucination, text-only chain-of-thought (CoT) reasoning cannot fully prevent factual errors due to inherent information bottlenecks; (2) reward hacking, dynamic policy optimization against static reward models allows agents to exploit flaws in reward functions. To address these issues, we propose JarvisEvo, a unified image editing agent that emulates an expert human designer by iteratively editing, selecting appropriate tools, evaluating results, and reflecting on its own decisions to refine outcomes. JarvisEvo offers three key advantages: (1) an interleaved multimodal chain-of-thought (iMCoT) reasoning mechanism that enhances instruction following and editing quality; (2) a synergistic editor-evaluator policy optimization (SEPO) framework that enables self-improvement without external rewards, effectively mitigating reward hacking; and (3) support for both global and local fine-grained editing through seamless integration of Adobe Lightroom. On ArtEdit-Bench, JarvisEvo outperforms Nano-Banana by an average of 18.95% on preservative editing metrics, including a substantial 44.96% improvement in pixel-level content fidelity. Project page: https://jarvisevo.vercel.app/
comment: 31 pages, 18 figures
♻ ☆ Integrating Skeleton Based Representations for Robust Yoga Pose Classification Using Deep Learning Models
Yoga is a popular form of exercise worldwide due to its spiritual and physical health benefits, but incorrect postures can lead to injuries. Automated yoga pose classification has therefore gained importance to reduce reliance on expert practitioners. While human pose keypoint extraction models have shown high potential in action recognition, systematic benchmarking for yoga pose recognition remains limited, as prior works often focus solely on raw images or a single pose extraction model. In this study, we introduce a curated dataset, 'Yoga-16', which addresses limitations of existing datasets, and systematically evaluate three deep learning architectures (VGG16, ResNet50, and Xception), using three input modalities (direct images, MediaPipe Pose skeleton images, and YOLOv8 Pose skeleton images). Our experiments demonstrate that skeleton-based representations outperform raw image inputs, with the highest accuracy of 96.09% achieved by VGG16 with MediaPipe Pose skeleton input. Additionally, we provide interpretability analysis using Grad-CAM, offering insights into model decision-making for yoga pose classification with cross-validation analysis.
♻ ☆ GigaBrain-0: A World Model-Powered Vision-Language-Action Model
Training Vision-Language-Action (VLA) models for generalist robots typically requires large-scale real-world robot data, which is expensive and time-consuming to collect. The inefficiency of physical data collection severely limits the scalability, and generalization capacity of current VLA systems. To address this challenge, we introduce GigaBrain-0, a novel VLA foundation model empowered by world model-generated data (e.g., video generation, real2real transfer, human transfer, view transfer, sim2real transfer data). By leveraging world models to generate diverse data at scale, GigaBrain-0 significantly reduces reliance on real robot data while improving cross-task generalization. Our approach further improves policy robustness through RGBD input modeling and embodied Chain-of-Thought (CoT) supervision, enabling the model to reason about spatial geometry, object states, and long-horizon dependencies during task execution. This leads to substantial gains in real-world performance on dexterous, long-horizon, and mobile manipulation tasks. Extensive experiments demonstrate that GigaBrain-0 achieves superior generalization across variations in appearances (e.g., textures, colors), object placements, and camera viewpoints. Additionally, we present GigaBrain-0-Small, an optimized lightweight variant designed to run efficiently on devices such as the NVIDIA Jetson AGX Orin.
comment: https://gigabrain0.github.io/
♻ ☆ Adaptive Chain-of-Focus Reasoning via Dynamic Visual Search and Zooming for Efficient VLMs
Vision language models (VLMs) have achieved impressive performance across a variety of computer vision tasks. However, the multimodal reasoning capability has not been fully explored in existing models. In this paper, we propose a Chain-of-Focus (CoF) method that allows VLMs to perform adaptive focusing and zooming in on key image regions based on obtained visual cues and the given questions, achieving efficient multimodal reasoning. To enable this CoF capability, we present a two-stage training pipeline, including supervised fine-tuning (SFT) and reinforcement learning (RL). In the SFT stage, we construct the MM-CoF dataset, comprising 3K samples derived from a visual agent designed to adaptively identify key regions to solve visual tasks with different image resolutions and questions. We use MM-CoF to fine-tune the Qwen2.5-VL model for cold start. In the RL stage, we leverage the outcome accuracies and formats as rewards to update the Qwen2.5-VL model, enabling further refining the search and reasoning strategy of models without human priors. Our model achieves significant improvements on multiple benchmarks. On the V* benchmark that requires strong visual reasoning capability, our model outperforms existing VLMs by 5% among 8 image resolutions ranging from 224 to 4K, demonstrating the effectiveness of the proposed CoF method and facilitating the more efficient deployment of VLMs in practical applications.
comment: https://github.com/xtong-zhang/Chain-of-Focus
♻ ☆ OP-Align: Object-level and Part-level Alignment for Self-supervised Category-level Articulated Object Pose Estimation
Category-level articulated object pose estimation focuses on the pose estimation of unknown articulated objects within known categories. Despite its significance, this task remains challenging due to the varying shapes and poses of objects, expensive dataset annotation costs, and complex real-world environments. In this paper, we propose a novel self-supervised approach that leverages a single-frame point cloud to solve this task. Our model consistently generates reconstruction with a canonical pose and joint state for the entire input object, and it estimates object-level poses that reduce overall pose variance and part-level poses that align each part of the input with its corresponding part of the reconstruction. Experimental results demonstrate that our approach significantly outperforms previous self-supervised methods and is comparable to the state-of-the-art supervised methods. To assess the performance of our model in real-world scenarios, we also introduce a new real-world articulated object benchmark dataset.
comment: published in ECCV2024
♻ ☆ Turbo-GS: Accelerating 3D Gaussian Fitting for High-Quality Radiance Fields
Novel-view synthesis is an important problem in computer vision with applications in 3D reconstruction, mixed reality, and robotics. Recent methods like 3D Gaussian Splatting (3DGS) have become the preferred method for this task, providing high-quality novel views in real time. However, the training time of a 3DGS model is slow, often taking 30 minutes for a scene with 200 views. In contrast, our goal is to reduce the optimization time by training for fewer steps while maintaining high rendering quality. Specifically, we combine the guidance from both the position error and the appearance error to achieve a more effective densification. To balance the rate between adding new Gaussians and fitting old Gaussians, we develop a convergence-aware budget control mechanism. Moreover, to make the densification process more reliable, we selectively add new Gaussians from mostly visited regions. With these designs, we reduce the Gaussian optimization steps to one-third of the previous approach while achieving a comparable or even better novel view rendering quality. To further facilitate the rapid fitting of 4K resolution images, we introduce a dilation-based rendering technique. Our method, Turbo-GS, speeds up optimization for typical scenes and scales well to high-resolution (4K) scenarios on standard datasets. Through extensive experiments, we show that our method is significantly faster in optimization than other methods while retaining quality. Project page: https://ivl.cs.brown.edu/research/turbo-gs.
comment: Project page: https://ivl.cs.brown.edu/research/turbo-gs
♻ ☆ Robo-SGG: Exploiting Layout-Oriented Normalization and Restitution Can Improve Robust Scene Graph Generation
In this paper, we propose Robo-SGG, a plug-and-play module for robust scene graph generation (SGG). Unlike standard SGG, the robust scene graph generation aims to perform inference on a diverse range of corrupted images, with the core challenge being the domain shift between the clean and corrupted images. Existing SGG methods suffer from degraded performance due to shifted visual features (e.g., corruption interference or occlusions). To obtain robust visual features, we leverage layout information, representing the global structure of an image, which is robust to domain shift, to enhance the robustness of SGG methods under corruption. Specifically, we employ Instance Normalization (IN) to alleviate the domain-specific variations and recover the robust structural features (i.e., the positional and semantic relationships among objects) by the proposed Layout-Oriented Restitution. Furthermore, under corrupted images, we introduce a Layout-Embedded Encoder (LEE) that adaptively fuses layout and visual features via a gating mechanism, enhancing the robustness of positional and semantic representations for objects and predicates. Note that our proposed Robo-SGG module is designed as a plug-and-play component, which can be easily integrated into any baseline SGG model. Extensive experiments demonstrate that by integrating the state-of-the-art method into our proposed Robo-SGG, we achieve relative improvements of 6.3%, 11.1%, and 8.0% in mR@50 for PredCls, SGCls, and SGDet tasks on the VG-C benchmark, respectively, and achieve new state-of-the-art performance in the corruption scene graph generation benchmark (VG-C and GQA-C). We will release our source code and model.
♻ ☆ Multimodal Adversarial Defense for Vision-Language Models by Leveraging One-To-Many Relationships
Pre-trained vision-language (VL) models are highly vulnerable to adversarial attacks. However, existing defense methods primarily focus on image classification, overlooking two key aspects of VL tasks: multimodal attacks, where both image and text can be perturbed, and the one-to-many relationship of images and texts, where a single image can correspond to multiple textual descriptions and vice versa (1:N and N:1). This work is the first to explore defense strategies against multimodal attacks in VL tasks, whereas prior VL defense methods focus on vision robustness. We propose multimodal adversarial training (MAT), which incorporates adversarial perturbations in both image and text modalities during training, significantly outperforming existing unimodal defenses. Furthermore, we discover that MAT is limited by deterministic one-to-one (1:1) image-text pairs in VL training data. To address this, we conduct a comprehensive study on leveraging one-to-many relationships to enhance robustness, investigating diverse augmentation techniques. Our analysis shows that, for a more effective defense, augmented image-text pairs should be well-aligned, diverse, yet avoid distribution shift -- conditions overlooked by prior research. This work pioneers defense strategies against multimodal attacks, providing insights for building robust VLMs from both optimization and data perspectives. Our code is publicly available at https://github.com/CyberAgentAI/multimodal-adversarial-training.
comment: WACV 2026 Accepted. Code available at https://github.com/CyberAgentAI/multimodal-adversarial-training
♻ ☆ TTRV: Test-Time Reinforcement Learning for Vision Language Models
Existing methods for extracting reward signals in Reinforcement Learning typically rely on labeled data and dedicated training splits, a setup that contrasts with how humans learn directly from their environment. In this work, we propose TTRV to enhance vision language understanding by adapting the model on the fly at inference time, without the need for any labeled data. Concretely, we enhance the Group Relative Policy Optimization (GRPO) framework by designing rewards based on the frequency of the base model's output, while inferring on each test sample multiple times. Further, we also propose to control the diversity of the model's output by simultaneously rewarding the model for obtaining low entropy of the output empirical distribution. Our approach delivers consistent gains across both object recognition and visual question answering (VQA), with improvements of up to 52.4% and 29.8%, respectively, and average boosts of 24.6% and 10.0% across 16 datasets. Remarkably, on image recognition, TTRV applied to InternVL 8B surpasses GPT-4o by an average of 2.3% over 8 benchmarks, while remaining highly competitive on VQA, demonstrating that test-time reinforcement learning can match or exceed the strongest proprietary models. Finally, we find many interesting properties of test-time RL for VLMs: for example, even in extremely data-constrained scenarios, where adaptation is performed on a single randomly chosen unlabeled test example, TTRV still yields non-trivial improvements of up to 5.5% in recognition tasks.
♻ ☆ A lightweight detector for real-time detection of remote sensing images
Remote sensing imagery is widely used across various fields, yet real-time detection remains challenging due to the prevalence of small objects and the need to balance accuracy with efficiency. To address this, we propose DMG-YOLO, a lightweight real-time detector tailored for small object detection in remote sensing images. Specifically, we design a Dual-branch Feature Extraction (DFE) module in the backbone, which partitions feature maps into two parallel branches: one extracts local features via depthwise separable convolutions, and the other captures global context using a vision transformer with a gating mechanism. Additionally, a Multi-scale Feature Fusion (MFF) module with dilated convolutions enhances multi-scale integration while preserving fine details. In the neck, we introduce the Global and Local Aggregate Feature Pyramid Network (GLAFPN) to further boost small object detection through global-local feature fusion. Extensive experiments on the VisDrone2019 and NWPU VHR-10 datasets show that DMG-YOLO achieves competitive performance in terms of mAP, model size, and other key metrics.
comment: wrong results
♻ ☆ Jina-VLM: Small Multilingual Vision Language Model
We present Jina-VLM, a 2.4B parameter vision-language model that achieves state-of-the-art multilingual visual question answering among open 2B-scale VLMs. The model couples a SigLIP2 vision encoder with a Qwen3 language backbone through an attention-pooling connector that enables token-efficient processing of arbitrary-resolution images. The model achieves leading results on standard VQA benchmarks and multilingual evaluations while preserving competitive text-only performance. Model weights and code are publicly released at https://huggingface.co/jinaai/jina-vlm .
comment: 18 pages, 1-7 main content, 13-18 appendix for tables and dataset
♻ ☆ There is No VAE: End-to-End Pixel-Space Generative Modeling via Self-Supervised Pre-training
Pixel-space generative models are often more difficult to train and generally underperform compared to their latent-space counterparts, leaving a persistent performance and efficiency gap. In this paper, we introduce a novel two-stage training framework that closes this gap for pixel-space diffusion and consistency models. In the first stage, we pre-train encoders to capture meaningful semantics from clean images while aligning them with points along the same deterministic sampling trajectory, which evolves points from the prior to the data distribution. In the second stage, we integrate the encoder with a randomly initialized decoder and fine-tune the complete model end-to-end for both diffusion and consistency models. Our framework achieves state-of-the-art (SOTA) performance on ImageNet. Specifically, our diffusion model reaches an FID of 1.58 on ImageNet-256 and 2.35 on ImageNet-512 with 75 number of function evaluations (NFE) surpassing prior pixel-space methods and VAE-based counterparts by a large margin in both generation quality and training efficiency. In a direct comparison, our model significantly outperforms DiT while using only around 30\% of its training compute.
♻ ☆ EVE: Towards End-to-End Video Subtitle Extraction with Vision-Language Models
Video subtitles play a crucial role in short videos and movies, as they not only help models better understand video content but also support applications such as video translation and content retrieval. Existing video subtitle extraction methods typically rely on multi-stage frameworks, where errors accumulate across stages and temporal dependencies are underutilized due to frame-wise processing. Moreover, although some Large Vision-Language Models (LVLMs) possess strong OCR capabilities, predicting accurate timestamps for subtitle texts remains challenging. To this end, we propose an End-to-end Video subtitle Extraction framework based on LVLMs, named EVE, which can output subtitles and their timestamps simultaneously. Specifically, we introduce a dual-branch Spatiotemporal Subtitle-Salient (S\textsuperscript{3}) Module that serves as an adapter for LVLMs, capable of representing subtitle-related content and considering inter-frame correlations using only a small number of tokens. Within this module, the Spatial Semantic Context Aggregate branch aggregates high-level global semantics to provide spatial visual contextual information, while the Temporal Subtitle Token Query branch explicitly queries subtitle-relevant tokens while considering temporal correlation across frames. The small number of tokens retained by the S\textsuperscript{3} module are fed to the language model, which then directly outputs the subtitle text along with its timestamps. Furthermore, we construct the first large-scale dataset dedicated to video subtitle extraction, ViSa, containing over 2.5M videos with timestamped and bilingual annotation, thereby providing the community with a well-organized training and evaluation benchmark.
♻ ☆ SpaceMind: Camera-Guided Modality Fusion for Spatial Reasoning in Vision-Language Models
Large vision-language models (VLMs) show strong multimodal understanding but still struggle with 3D spatial reasoning, such as distance estimation, size comparison, and cross-view consistency. Existing 3D-aware methods either depend on auxiliary 3D information or enhance RGB-only VLMs with geometry encoders through shallow feature fusion. We propose SpaceMind, a multimodal large language model explicitly designed for spatial reasoning solely from RGB inputs. The model adopts a dual-encoder architecture, integrating VGGT as a spatial understanding encoder and InternViT as a 2D visual encoder. The key idea is to treat the camera representation as an active guiding modality rather than passive metadata. Specifically, SpaceMind introduces a lightweight Camera-Guided Modality Fusion module before the language model to replace shallow fusion. It applies camera-conditioned biasing to spatial tokens, assigns query-independent weights reflecting their geometric importance, and uses the camera embedding to gate the fused representation. Empirically, SpaceMind establishes new state-of-the-art results on VSI-Bench, SQA3D and SPBench, surpassing both open and proprietary systems on VSI-Bench and SPBench by large margins and achieving state-of-the-art performance on SQA3D. These results demonstrate that camera-guided modality fusion is an effective and practical inductive bias for equipping VLMs with genuinely spatially grounded intelligence. We will release code and model checkpoints to support future research.
♻ ☆ LongVT: Incentivizing "Thinking with Long Videos" via Native Tool Calling
Large multimodal models (LMMs) have shown great potential for video reasoning with textual Chain-of-Thought. However, they remain vulnerable to hallucinations, especially when processing long-form videos where evidence is sparse and temporally dispersed. Inspired by how humans comprehend long videos - by first skimming globally and then examining relevant clips for details - we introduce LongVT, an end-to-end agentic framework that enables "Thinking with Long Videos" via interleaved Multimodal Chain-of-Tool-Thought. Specifically, we exploit LMMs' inherent temporal grounding ability as a native video cropping tool to zoom in on a specific video clip and resample finer-grained video frames. This global-to-local reasoning loop continues until answers are grounded in retrieved visual evidence. Given the scarcity of fine-grained question-answering (QA) data for the long video reasoning task, we curate and will release a data suite named VideoSIAH to facilitate both training and evaluation. Specifically, our training dataset consists of 247.9K samples for tool-integrated cold-start supervised fine-tuning, 1.6K samples for agentic reinforcement learning, and 15.4K samples for agentic reinforcement fine-tuning, respectively. Our evaluation benchmark consists of 1,280 QA pairs that are carefully curated through a semi-automatic data pipeline with human-in-the-loop validation. With a meticulously designed three-stage training strategy and extensive empirical validation, LongVT consistently outperforms existing strong baselines across four challenging long-video understanding and reasoning benchmarks. Our codes, data, and model checkpoints are publicly available at https://github.com/EvolvingLMMs-Lab/LongVT .
♻ ☆ ImageNot: A contrast with ImageNet preserves model rankings
We introduce ImageNot, a dataset constructed explicitly to be drastically different than ImageNet while matching its scale. ImageNot is designed to test the external validity of deep learning progress on ImageNet. We show that key model architectures developed for ImageNet over the years rank identically to how they rank on ImageNet when trained from scratch and evaluated on ImageNot. Moreover, the relative improvements of each model over earlier models strongly correlate in both datasets. Our work demonstrates a surprising degree of external validity in the relative performance of image classification models when trained and evaluated on an entirely different dataset. This stands in contrast with absolute accuracy numbers that typically drop sharply even under small changes to a dataset.
♻ ☆ WeatherPrompt: Multi-modality Representation Learning for All-Weather Drone Visual Geo-Localization
Visual geo-localization for drones faces critical degradation under weather perturbations, \eg, rain and fog, where existing methods struggle with two inherent limitations: 1) Heavy reliance on limited weather categories that constrain generalization, and 2) Suboptimal disentanglement of entangled scene-weather features through pseudo weather categories. We present WeatherPrompt, a multi-modality learning paradigm that establishes weather-invariant representations through fusing the image embedding with the text context. Our framework introduces two key contributions: First, a Training-free Weather Reasoning mechanism that employs off-the-shelf large multi-modality models to synthesize multi-weather textual descriptions through human-like reasoning. It improves the scalability to unseen or complex weather, and could reflect different weather strength. Second, to better disentangle the scene and weather feature, we propose a multi-modality framework with the dynamic gating mechanism driven by the text embedding to adaptively reweight and fuse visual features across modalities. The framework is further optimized by the cross-modal objectives, including image-text contrastive learning and image-text matching, which maps the same scene with different weather conditions closer in the respresentation space. Extensive experiments validate that, under diverse weather conditions, our method achieves competitive recall rates compared to state-of-the-art drone geo-localization methods. Notably, it improves Recall@1 by +13.37\% under night conditions and by 18.69\% under fog and snow conditions.
♻ ☆ Changes in Gaza: DINOv3-Powered Multi-Class Change Detection for Damage Assessment in Conflict Zones
Accurately and swiftly assessing damage from conflicts is crucial for humanitarian aid and regional stability. In conflict zones, damaged zones often share similar architectural styles, with damage typically covering small areas and exhibiting blurred boundaries. These characteristics lead to limited data, annotation difficulties, and significant recognition challenges, including high intra-class similarity and ambiguous semantic changes. To address these issues, we introduce a pre-trained DINOv3 model and propose a multi-scale cross-attention difference siamese network (MC-DiSNet). The powerful visual representation capability of the DINOv3 backbone enables robust and rich feature extraction from bi-temporal remote sensing images. The multi-scale cross-attention mechanism allows for precise localization of subtle semantic changes, while the difference siamese structure enhances inter-class feature discrimination, enabling fine-grained semantic change detection. Furthermore, a simple yet powerful lightweight decoder is designed to generate clear detection maps while maintaining high efficiency. We also release a new Gaza-change dataset containing high-resolution satellite image pairs from 2023-2024 with pixel-level semantic change annotations. It is worth emphasizing that our annotations only include semantic pixels of changed areas. We evaluated our method on the Gaza-Change and two classical datasets: the SECOND and Landsat-SCD datasets. Experimental results demonstrate that our proposed approach effectively addresses the MCD task, and its outstanding performance paves the way for practical applications in rapid damage assessment across conflict zones.
Machine Learning 164
☆ The Universal Weight Subspace Hypothesis
We show that deep neural networks trained across diverse tasks exhibit remarkably similar low-dimensional parametric subspaces. We provide the first large-scale empirical evidence that demonstrates that neural networks systematically converge to shared spectral subspaces regardless of initialization, task, or domain. Through mode-wise spectral analysis of over 1100 models - including 500 Mistral-7B LoRAs, 500 Vision Transformers, and 50 LLaMA-8B models - we identify universal subspaces capturing majority variance in just a few principal directions. By applying spectral decomposition techniques to the weight matrices of various architectures trained on a wide range of tasks and datasets, we identify sparse, joint subspaces that are consistently exploited, within shared architectures across diverse tasks and datasets. Our findings offer new insights into the intrinsic organization of information within deep networks and raise important questions about the possibility of discovering these universal subspaces without the need for extensive data and computational resources. Furthermore, this inherent structure has significant implications for model reusability, multi-task learning, model merging, and the development of training and inference-efficient algorithms, potentially reducing the carbon footprint of large-scale neural models.
comment: 37 pages
Value Gradient Guidance for Flow Matching Alignment NeurIPS 2025
While methods exist for aligning flow matching models--a popular and effective class of generative models--with human preferences, existing approaches fail to achieve both adaptation efficiency and probabilistically sound prior preservation. In this work, we leverage the theory of optimal control and propose VGG-Flow, a gradient-matching-based method for finetuning pretrained flow matching models. The key idea behind this algorithm is that the optimal difference between the finetuned velocity field and the pretrained one should be matched with the gradient field of a value function. This method not only incorporates first-order information from the reward model but also benefits from heuristic initialization of the value function to enable fast adaptation. Empirically, we show on a popular text-to-image flow matching model, Stable Diffusion 3, that our method can finetune flow matching models under limited computational budgets while achieving effective and prior-preserving alignment.
comment: Accepted at NeurIPS 2025; 26 pages, 20 figures
☆ Deep infant brain segmentation from multi-contrast MRI
Segmentation of magnetic resonance images (MRI) facilitates analysis of human brain development by delineating anatomical structures. However, in infants and young children, accurate segmentation is challenging due to development and imaging constraints. Pediatric brain MRI is notoriously difficult to acquire, with inconsistent availability of imaging modalities, substantial non-head anatomy in the field of view, and frequent motion artifacts. This has led to specialized segmentation models that are often limited to specific image types or narrow age groups, or that are fragile for more variable images such as those acquired clinically. We address this method fragmentation with BabySeg, a deep learning brain segmentation framework for infants and young children that supports diverse MRI protocols, including repeat scans and image types unavailable during training. Our approach builds on recent domain randomization techniques, which synthesize training images far beyond realistic bounds to promote dataset shift invariance. We also describe a mechanism that enables models to flexibly pool and interact features from any number of input scans. We demonstrate state-of-the-art performance that matches or exceeds the accuracy of several existing methods for various age cohorts and input configurations using a single model, in a fraction of the runtime required by many existing tools.
comment: 8 pages, 8 figures, 1 table, website at https://w3id.org/babyseg, presented at the 2025 IEEE Asilomar Conference on Signals, Systems, and Computers
☆ DraCo: Draft as CoT for Text-to-Image Preview and Rare Concept Generation
Recent unified multimodal large language models (MLLMs) have shown impressive capabilities, incorporating chain-of-thought (CoT) reasoning for enhanced text-to-image generation. However, existing approaches remain limited, either treating the model merely as a standalone generator or relying on abstract textual planning. To this end, we propose Draft-as-CoT (DraCo), a novel interleaved reasoning paradigm that fully leverages both textual and visual contents in CoT for better planning and verification. Our method first generates a low-resolution draft image as preview, providing more concrete and structural visual planning and guidance. Then, we employ the model's inherent understanding capability to verify potential semantic misalignments between the draft and input prompt, and performs refinement through selective corrections with super-resolution. In this way, our approach addresses two fundamental challenges: the coarse-grained nature of textual planning and the difficulty in generating rare attribute combinations. To support training, we curate DraCo-240K, aiming to enhance three atomic capabilities spanning general correction, instance manipulation, and layout reorganization. Supported by DraCo-CFG, a specialized classifier-free guidance (CFG) strategy for interleaved reasoning, DraCo achieves a tremendous increase on GenEval (+8%), Imagine-Bench (+0.91), and GenEval++ (+3%), significantly outperforming direct generation and other generation methods empowered by CoT.
comment: Project Page: https://github.com/CaraJ7/DraCo
☆ Semantic Soft Bootstrapping: Long Context Reasoning in LLMs without Reinforcement Learning
Long context reasoning in large language models (LLMs) has demonstrated enhancement of their cognitive capabilities via chain-of-thought (CoT) inference. Training such models is usually done via reinforcement learning with verifiable rewards (RLVR) in reasoning based problems, like math and programming. However, RLVR is limited by several bottlenecks, such as, lack of dense reward, and inadequate sample efficiency. As a result, it requires significant compute resources in post-training phase. To overcome these limitations, in this work, we propose \textbf{Semantic Soft Bootstrapping (SSB)}, a self-distillation technique, in which the same base language model plays the role of both teacher and student, but receives different semantic contexts about the correctness of its outcome at training time. The model is first prompted with a math problem and several rollouts are generated. From them, the correct and most common incorrect response are filtered, and then provided to the model in context to produce a more robust, step-by-step explanation with a verified final answer. This pipeline automatically curates a paired teacher-student training set from raw problem-answer data, without any human intervention. This generation process also produces a sequence of logits, which is what the student model tries to match in the training phase just from the bare question alone. In our experiment, Qwen2.5-3B-Instruct on GSM8K dataset via parameter-efficient fine-tuning. We then tested its accuracy on MATH500, and AIME2024 benchmarks. Our experiments show a jump of 10.6%, and 10% improvements in accuracy, respectively, over group relative policy optimization (GRPO), which is a commonly used RLVR algorithm. Our code is available at https://github.com/purbeshmitra/semantic-soft-bootstrapping, and the model, curated dataset is available at https://huggingface.co/purbeshmitra/semantic-soft-bootstrapping.
☆ NeuralRemaster: Phase-Preserving Diffusion for Structure-Aligned Generation
Standard diffusion corrupts data using Gaussian noise whose Fourier coefficients have random magnitudes and random phases. While effective for unconditional or text-to-image generation, corrupting phase components destroys spatial structure, making it ill-suited for tasks requiring geometric consistency, such as re-rendering, simulation enhancement, and image-to-image translation. We introduce Phase-Preserving Diffusion φ-PD, a model-agnostic reformulation of the diffusion process that preserves input phase while randomizing magnitude, enabling structure-aligned generation without architectural changes or additional parameters. We further propose Frequency-Selective Structured (FSS) noise, which provides continuous control over structural rigidity via a single frequency-cutoff parameter. φ-PD adds no inference-time cost and is compatible with any diffusion model for images or videos. Across photorealistic and stylized re-rendering, as well as sim-to-real enhancement for driving planners, φ-PD produces controllable, spatially aligned results. When applied to the CARLA simulator, φ-PD improves CARLA-to-Waymo planner performance by 50\%. The method is complementary to existing conditioning approaches and broadly applicable to image-to-image and video-to-video generation. Videos, additional examples, and code are available on our \href{https://yuzeng-at-tri.github.io/ppd-page/}{project page}.
☆ TV2TV: A Unified Framework for Interleaved Language and Video Generation
Video generation models are rapidly advancing, but can still struggle with complex video outputs that require significant semantic branching or repeated high-level reasoning about what should happen next. In this paper, we introduce a new class of omni video-text models that integrate ideas from recent LM reasoning advances to address this challenge. More specifically, we present TV2TV, a unified generative modeling framework which decomposes video generation into an interleaved text and video generation process. TV2TV jointly learns language modeling (next-token prediction) and video flow matching (next-frame prediction) using a Mixture-of-Transformers (MoT) architecture. At inference time, TV2TV decides when to alternate between generating text and video frames, allowing the model to "think in words" about subsequent content before ``acting in pixels'' to produce frames. This design offloads much of the responsibility for deciding what should happen next to the language modeling tower, enabling improved visual quality and prompt alignment of generated videos. It also enables fine-grained controllability, allowing users to modify the video generation trajectory through text interventions at any point in the process. In controlled experiments on video game data, TV2TV demonstrates substantial improvements in both visual quality and controllability. TV2TV also scales to natural videos, as we show by augmenting sports videos with interleaved natural language action descriptions using vision-language models (VLMs). Training TV2TV on this corpus yields strong visual quality and prompt alignment, showcasing the model's ability to reason about and generate complex real-world action sequences. Together, these results highlight TV2TV as a promising step toward video generation with open-ended textual reasoning and control.
☆ Structured Document Translation via Format Reinforcement Learning ACL 2025
Recent works on structured text translation remain limited to the sentence level, as they struggle to effectively handle the complex document-level XML or HTML structures. To address this, we propose \textbf{Format Reinforcement Learning (FormatRL)}, which employs Group Relative Policy Optimization on top of a supervised fine-tuning model to directly optimize novel structure-aware rewards: 1) TreeSim, which measures structural similarity between predicted and reference XML trees and 2) Node-chrF, which measures translation quality at the level of XML nodes. Additionally, we apply StrucAUC, a fine-grained metric distinguishing between minor errors and major structural failures. Experiments on the SAP software-documentation benchmark demonstrate improvements across six metrics and an analysis further shows how different reward functions contribute to improvements in both structural and translation quality.
comment: IJCNLP-AACL 2025 Main (Oral)
☆ Foundations of Diffusion Models in General State Spaces: A Self-Contained Introduction
Although diffusion models now occupy a central place in generative modeling, introductory treatments commonly assume Euclidean data and seldom clarify their connection to discrete-state analogues. This article is a self-contained primer on diffusion over general state spaces, unifying continuous domains and discrete/categorical structures under one lens. We develop the discrete-time view (forward noising via Markov kernels and learned reverse dynamics) alongside its continuous-time limits -- stochastic differential equations (SDEs) in $\mathbb{R}^d$ and continuous-time Markov chains (CTMCs) on finite alphabets -- and derive the associated Fokker--Planck and master equations. A common variational treatment yields the ELBO that underpins standard training losses. We make explicit how forward corruption choices -- Gaussian processes in continuous spaces and structured categorical transition kernels (uniform, masking/absorbing and more) in discrete spaces -- shape reverse dynamics and the ELBO. The presentation is layered for three audiences: newcomers seeking a self-contained intuitive introduction; diffusion practitioners wanting a global theoretical synthesis; and continuous-diffusion experts looking for an analogy-first path into discrete diffusion. The result is a unified roadmap to modern diffusion methodology across continuous domains and discrete sequences, highlighting a compact set of reusable proofs, identities, and core theoretical principles.
☆ The Geometry of Intelligence: Deterministic Functional Topology as a Foundation for Real-World Perception
Real-world physical processes do not generate arbitrary variability: their signals concentrate on compact and low-variability subsets of functional space. This geometric structure enables rapid generalization from a few examples in both biological and artificial systems. This work develops a deterministic functional-topological framework in which the set of valid realizations of a physical phenomenon forms a compact perceptual manifold with stable invariants and a finite Hausdorff radius. We show that the boundaries of this manifold can be discovered in a fully self-supervised manner through Monte Carlo sampling, even when the governing equations of the system are unknown. We provide theoretical guarantees, practical estimators of knowledge boundaries, and empirical validations across three domains: electromechanical railway point machines, electrochemical battery discharge curves, and physiological ECG signals. Our results demonstrate that deterministic functional topology offers a unified mathematical foundation for perception, representation, and world-model construction, explaining why biological learners and self-supervised AI models can generalize from limited observations.
comment: 35 pages, 6 figures. This preprint develops a deterministic functional-topological framework showing that physical systems generate compact perceptual manifolds with finite radius. We provide theory, Monte-Carlo estimators, and validation across PM, battery, and ECG domains, unifying biological perception and self-supervised AI
☆ Gradient Descent with Provably Tuned Learning-rate Schedules
Gradient-based iterative optimization methods are the workhorse of modern machine learning. They crucially rely on careful tuning of parameters like learning rate and momentum. However, one typically sets them using heuristic approaches without formal near-optimality guarantees. Recent work by Gupta and Roughgarden studies how to learn a good step-size in gradient descent. However, like most of the literature with theoretical guarantees for gradient-based optimization, their results rely on strong assumptions on the function class including convexity and smoothness which do not hold in typical applications. In this work, we develop novel analytical tools for provably tuning hyperparameters in gradient-based algorithms that apply to non-convex and non-smooth functions. We obtain matching sample complexity bounds for learning the step-size in gradient descent shown for smooth, convex functions in prior work (up to logarithmic factors) but for a much broader class of functions. Our analysis applies to gradient descent on neural networks with commonly used activation functions (including ReLU, sigmoid and tanh). We extend our framework to tuning multiple hyperparameters, including tuning the learning rate schedule, simultaneously tuning momentum and step-size, and pre-training the initialization vector. Our approach can be used to bound the sample complexity for minimizing both the validation loss as well as the number of gradient descent iterations.
☆ OMTRA: A Multi-Task Generative Model for Structure-Based Drug Design
Structure-based drug design (SBDD) focuses on designing small-molecule ligands that bind to specific protein pockets. Computational methods are integral in modern SBDD workflows and often make use of virtual screening methods via docking or pharmacophore search. Modern generative modeling approaches have focused on improving novel ligand discovery by enabling de novo design. In this work, we recognize that these tasks share a common structure and can therefore be represented as different instantiations of a consistent generative modeling framework. We propose a unified approach in OMTRA, a multi-modal flow matching model that flexibly performs many tasks relevant to SBDD, including some with no analogue in conventional workflows. Additionally, we curate a dataset of 500M 3D molecular conformers, complementing protein-ligand data and expanding the chemical diversity available for training. OMTRA obtains state of the art performance on pocket-conditioned de novo design and docking; however, the effects of large-scale pretraining and multi-task training are modest. All code, trained models, and dataset for reproducing this work are available at https://github.com/gnina/OMTRA
comment: Presented at the Machine Learning for Structural Biology Workshop, 2025
☆ David vs. Goliath: Can Small Models Win Big with Agentic AI in Hardware Design?
Large Language Model(LLM) inference demands massive compute and energy, making domain-specific tasks expensive and unsustainable. As foundation models keep scaling, we ask: Is bigger always better for hardware design? Our work tests this by evaluating Small Language Models coupled with a curated agentic AI framework on NVIDIA's Comprehensive Verilog Design Problems(CVDP) benchmark. Results show that agentic workflows: through task decomposition, iterative feedback, and correction - not only unlock near-LLM performance at a fraction of the cost but also create learning opportunities for agents, paving the way for efficient, adaptive solutions in complex design tasks.
☆ Control Consistency Losses for Diffusion Bridges NeurIPS 2025
Simulating the conditioned dynamics of diffusion processes, given their initial and terminal states, is an important but challenging problem in the sciences. The difficulty is particularly pronounced for rare events, for which the unconditioned dynamics rarely reach the terminal state. In this work, we leverage a self-consistency property of the conditioned dynamics to learn the diffusion bridge in an iterative online manner, and demonstrate promising empirical results in a range of settings.
comment: Frontiers in Probabilistic Inference: Sampling Meets Learning Workshop at NeurIPS 2025 (Oral)
☆ Hybrid Quantum-Classical Autoencoders for Unsupervised Network Intrusion Detection
Unsupervised anomaly-based intrusion detection requires models that can generalize to attack patterns not observed during training. This work presents the first large-scale evaluation of hybrid quantum-classical (HQC) autoencoders for this task. We construct a unified experimental framework that iterates over key quantum design choices, including quantum-layer placement, measurement approach, variational and non-variational formulations, and latent-space regularization. Experiments across three benchmark NIDS datasets show that HQC autoencoders can match or exceed classical performance in their best configurations, although they exhibit higher sensitivity to architectural decisions. Under zero-day evaluation, well-configured HQC models provide stronger and more stable generalization than classical and supervised baselines. Simulated gate-noise experiments reveal early performance degradation, indicating the need for noise-aware HQC designs. These results provide the first data-driven characterization of HQC autoencoder behavior for network intrusion detection and outline key factors that govern their practical viability. All experiment code and configurations are available at https://github.com/arasyi/hqcae-network-intrusion-detection.
☆ Multi-LLM Collaboration for Medication Recommendation
As healthcare increasingly turns to AI for scalable and trustworthy clinical decision support, ensuring reliability in model reasoning remains a critical challenge. Individual large language models (LLMs) are susceptible to hallucinations and inconsistency, whereas naive ensembles of models often fail to deliver stable and credible recommendations. Building on our previous work on LLM Chemistry, which quantifies the collaborative compatibility among LLMs, we apply this framework to improve the reliability in medication recommendation from brief clinical vignettes. Our approach leverages multi-LLM collaboration guided by Chemistry-inspired interaction modeling, enabling ensembles that are effective (exploiting complementary strengths), stable (producing consistent quality), and calibrated (minimizing interference and error amplification). We evaluate our Chemistry-based Multi-LLM collaboration strategy on real-world clinical scenarios to investigate whether such interaction-aware ensembles can generate credible, patient-specific medication recommendations. Preliminary results are encouraging, suggesting that LLM Chemistry-guided collaboration may offer a promising path toward reliable and trustworthy AI assistants in clinical practice.
comment: 8 pages, 5 figures, 1 table
☆ Meta-Learning for Quantum Optimization via Quantum Sequence Model
The Quantum Approximate Optimization Algorithm (QAOA) is a leading approach for solving combinatorial optimization problems on near-term quantum processors. However, finding good variational parameters remains a significant challenge due to the non-convex energy landscape, often resulting in slow convergence and poor solution quality. In this work, we propose a quantum meta-learning framework that trains advanced quantum sequence models to generate effective parameter initialization policies. We investigate four classical or quantum sequence models, including the Quantum Kernel-based Long Short-Term Memory (QK-LSTM), as learned optimizers in a "learning to learn" paradigm. Our numerical experiments on the Max-Cut problem demonstrate that the QK-LSTM optimizer achieves superior performance, obtaining the highest approximation ratios and exhibiting the fastest convergence rate across all tested problem sizes (n=10 to 13). Crucially, the QK-LSTM model achieves perfect parameter transferability by synthesizing a single, fixed set of near-optimal parameters, leading to a remarkable sustained acceleration of convergence even when generalizing to larger problems. This capability, enabled by the compact and expressive power of the quantum kernel architecture, underscores its effectiveness. The QK-LSTM, with only 43 trainable parameters, substantially outperforms the classical LSTM (56 parameters) and other quantum sequence models, establishing a robust pathway toward highly efficient parameter initialization for variational quantum algorithms in the NISQ era.
☆ QKAN-LSTM: Quantum-inspired Kolmogorov-Arnold Long Short-term Memory
Long short-term memory (LSTM) models are a particular type of recurrent neural networks (RNNs) that are central to sequential modeling tasks in domains such as urban telecommunication forecasting, where temporal correlations and nonlinear dependencies dominate. However, conventional LSTMs suffer from high parameter redundancy and limited nonlinear expressivity. In this work, we propose the Quantum-inspired Kolmogorov-Arnold Long Short-Term Memory (QKAN-LSTM), which integrates Data Re-Uploading Activation (DARUAN) modules into the gating structure of LSTMs. Each DARUAN acts as a quantum variational activation function (QVAF), enhancing frequency adaptability and enabling an exponentially enriched spectral representation without multi-qubit entanglement. The resulting architecture preserves quantum-level expressivity while remaining fully executable on classical hardware. Empirical evaluations on three datasets, Damped Simple Harmonic Motion, Bessel Function, and Urban Telecommunication, demonstrate that QKAN-LSTM achieves superior predictive accuracy and generalization with a 79% reduction in trainable parameters compared to classical LSTMs. We extend the framework to the Jiang-Huang-Chen-Goan Network (JHCG Net), which generalizes KAN to encoder-decoder structures, and then further use QKAN to realize the latent KAN, thereby creating a Hybrid QKAN (HQKAN) for hierarchical representation learning. The proposed HQKAN-LSTM thus provides a scalable and interpretable pathway toward quantum-inspired sequential modeling in real-world data environments.
☆ SuperActivators: Only the Tail of the Distribution Contains Reliable Concept Signals
Concept vectors aim to enhance model interpretability by linking internal representations with human-understandable semantics, but their utility is often limited by noisy and inconsistent activations. In this work, we uncover a clear pattern within the noise, which we term the SuperActivator Mechanism: while in-concept and out-of-concept activations overlap considerably, the token activations in the extreme high tail of the in-concept distribution provide a reliable signal of concept presence. We demonstrate the generality of this mechanism by showing that SuperActivator tokens consistently outperform standard vector-based and prompting concept detection approaches, achieving up to a 14% higher F1 score across image and text modalities, model architectures, model layers, and concept extraction techniques. Finally, we leverage SuperActivator tokens to improve feature attributions for concepts.
☆ Arbitrage: Efficient Reasoning via Advantage-Aware Speculation
Modern Large Language Models achieve impressive reasoning capabilities with long Chain of Thoughts, but they incur substantial computational cost during inference, and this motivates techniques to improve the performance-cost ratio. Among these techniques, Speculative Decoding accelerates inference by employing a fast but inaccurate draft model to autoregressively propose tokens, which are then verified in parallel by a more capable target model. However, due to unnecessary rejections caused by token mismatches in semantically equivalent steps, traditional token-level Speculative Decoding struggles in reasoning tasks. Although recent works have shifted to step-level semantic verification, which improve efficiency by accepting or rejecting entire reasoning steps, existing step-level methods still regenerate many rejected steps with little improvement, wasting valuable target compute. To address this challenge, we propose Arbitrage, a novel step-level speculative generation framework that routes generation dynamically based on the relative advantage between draft and target models. Instead of applying a fixed acceptance threshold, Arbitrage uses a lightweight router trained to predict when the target model is likely to produce a meaningfully better step. This routing approximates an ideal Arbitrage Oracle that always chooses the higher-quality step, achieving near-optimal efficiency-accuracy trade-offs. Across multiple mathematical reasoning benchmarks, Arbitrage consistently surpasses prior step-level Speculative Decoding baselines, reducing inference latency by up to $\sim2\times$ at matched accuracy.
comment: 22 pages
☆ Dual-Path Region-Guided Attention Network for Ground Reaction Force and Moment Regression
Accurate estimation of three-dimensional ground reaction forces and moments (GRFs/GRMs) is crucial for both biomechanics research and clinical rehabilitation evaluation. In this study, we focus on insole-based GRF/GRM estimation and further validate our approach on a public walking dataset. We propose a Dual-Path Region-Guided Attention Network that integrates anatomy-inspired spatial priors and temporal priors into a region-level attention mechanism, while a complementary path captures context from the full sensor field. The two paths are trained jointly and their outputs are combined to produce the final GRF/GRM predictions. Conclusions: Our model outperforms strong baseline models, including CNN and CNN-LSTM architectures on two datasets, achieving the lowest six-component average NRMSE of 5.78% on the insole dataset and 1.42% for the vertical ground reaction force on the public dataset. This demonstrates robust performance for ground reaction force and moment estimation.
☆ Model-Free Assessment of Simulator Fidelity via Quantile Curves
Simulation of complex systems originated in manufacturing and queuing applications. It is now widely used for large-scale, ML-based systems in research, education, and consumer surveys. However, characterizing the discrepancy between simulators and ground truth remains challenging for increasingly complex, machine-learning-based systems. We propose a computationally tractable method to estimate the quantile function of the discrepancy between the simulated and ground-truth outcome distributions. Our approach focuses on output uncertainty and treats the simulator as a black box, imposing no modeling assumptions on its internals, and hence applies broadly across many parameter families, from Bernoulli and multinomial models to continuous, vector-valued settings. The resulting quantile curve supports confidence interval construction for unseen scenarios, risk-aware summaries of sim-to-real discrepancy (e.g., VaR/CVaR), and comparison of simulators' performance. We demonstrate our methodology in an application assessing LLM simulation fidelity on the WorldValueBench dataset spanning four LLMs.
comment: 33 pages, 11 figures
☆ HTR-ConvText: Leveraging Convolution and Textual Information for Handwritten Text Recognition
Handwritten Text Recognition remains challenging due to the limited data, high writing style variance, and scripts with complex diacritics. Existing approaches, though partially address these issues, often struggle to generalize without massive synthetic data. To address these challenges, we propose HTR-ConvText, a model designed to capture fine-grained, stroke-level local features while preserving global contextual dependencies. In the feature extraction stage, we integrate a residual Convolutional Neural Network backbone with a MobileViT with Positional Encoding block. This enables the model to both capture structural patterns and learn subtle writing details. We then introduce the ConvText encoder, a hybrid architecture combining global context and local features within a hierarchical structure that reduces sequence length for improved efficiency. Additionally, an auxiliary module injects textual context to mitigate the weakness of Connectionist Temporal Classification. Evaluations on IAM, READ2016, LAM and HANDS-VNOnDB demonstrate that our approach achieves improved performance and better generalization compared to existing methods, especially in scenarios with limited training samples and high handwriting diversity.
☆ Evolutionary Architecture Search through Grammar-Based Sequence Alignment
Neural architecture search (NAS) in expressive search spaces is a computationally hard problem, but it also holds the potential to automatically discover completely novel and performant architectures. To achieve this we need effective search algorithms that can identify powerful components and reuse them in new candidate architectures. In this paper, we introduce two adapted variants of the Smith-Waterman algorithm for local sequence alignment and use them to compute the edit distance in a grammar-based evolutionary architecture search. These algorithms enable us to efficiently calculate a distance metric for neural architectures and to generate a set of hybrid offspring from two parent models. This facilitates the deployment of crossover-based search heuristics, allows us to perform a thorough analysis on the architectural loss landscape, and track population diversity during search. We highlight how our method vastly improves computational complexity over previous work and enables us to efficiently compute shortest paths between architectures. When instantiating the crossover in evolutionary searches, we achieve competitive results, outperforming competing methods. Future work can build upon this new tool, discovering novel components that can be used more broadly across neural architecture design, and broadening its applications beyond NAS.
☆ Towards a unified framework for guided diffusion models
Guided or controlled data generation with diffusion models\blfootnote{Partial preliminary results of this work appeared in International Conference on Machine Learning 2025 \citep{li2025provable}.} has become a cornerstone of modern generative modeling. Despite substantial advances in diffusion model theory, the theoretical understanding of guided diffusion samplers remains severely limited. We make progress by developing a unified algorithmic and theoretical framework that accommodates both diffusion guidance and reward-guided diffusion. Aimed at fine-tuning diffusion models to improve certain rewards, we propose injecting a reward guidance term -- constructed from the difference between the original and reward-reweighted scores -- into the backward diffusion process, and rigorously quantify the resulting reward improvement over the unguided counterpart. As a key application, our framework shows that classifier-free guidance (CFG) decreases the expected reciprocal of the classifier probability, providing the first theoretical characterization of the specific performance metric that CFG improves for general target distributions. When applied to reward-guided diffusion, our framework yields a new sampler that is easy-to-train and requires no full diffusion trajectories during training. Numerical experiments further corroborate our theoretical findings.
☆ Aligned but Stereotypical? The Hidden Influence of System Prompts on Social Bias in LVLM-Based Text-to-Image Models
Large vision-language model (LVLM) based text-to-image (T2I) systems have become the dominant paradigm in image generation, yet whether they amplify social biases remains insufficiently understood. In this paper, we show that LVLM-based models produce markedly more socially biased images than non-LVLM-based models. We introduce a 1,024 prompt benchmark spanning four levels of linguistic complexity and evaluate demographic bias across multiple attributes in a systematic manner. Our analysis identifies system prompts, the predefined instructions guiding LVLMs, as a primary driver of biased behavior. Through decoded intermediate representations, token-probability diagnostics, and embedding-association analyses, we reveal how system prompts encode demographic priors that propagate into image synthesis. To this end, we propose FairPro, a training-free meta-prompting framework that enables LVLMs to self-audit and construct fairness-aware system prompts at test time. Experiments on two LVLM-based T2I models, SANA and Qwen-Image, show that FairPro substantially reduces demographic bias while preserving text-image alignment. We believe our findings provide deeper insight into the central role of system prompts in bias propagation and offer a practical, deployable approach for building more socially responsible T2I systems.
comment: Project page: https://fairpro-t2i.github.io
☆ Learning Causality for Longitudinal Data
This thesis develops methods for causal inference and causal representation learning (CRL) in high-dimensional, time-varying data. The first contribution introduces the Causal Dynamic Variational Autoencoder (CDVAE), a model for estimating Individual Treatment Effects (ITEs) by capturing unobserved heterogeneity in treatment response driven by latent risk factors that affect only outcomes. CDVAE comes with theoretical guarantees on valid latent adjustment and generalization bounds for ITE error. Experiments on synthetic and real datasets show that CDVAE outperforms baselines, and that state-of-the-art models greatly improve when augmented with its latent substitutes, approaching oracle performance without access to true adjustment variables. The second contribution proposes an efficient framework for long-term counterfactual regression based on RNNs enhanced with Contrastive Predictive Coding (CPC) and InfoMax. It captures long-range dependencies under time-varying confounding while avoiding the computational cost of transformers, achieving state-of-the-art results and introducing CPC into causal inference. The third contribution advances CRL by addressing how latent causes manifest in observed variables. We introduce a model-agnostic interpretability layer based on the geometry of the decoder Jacobian. A sparse self-expression prior induces modular, possibly overlapping groups of observed features aligned with shared latent influences. We provide recovery guarantees in both disjoint and overlapping settings and show that meaningful latent-to-observed structure can be recovered without anchor features or single-parent assumptions. Scalable Jacobian-based regularization techniques are also developed.
comment: PhD thesis manuscript
☆ Efficient Generative Transformer Operators For Million-Point PDEs
We introduce ECHO, a transformer-operator framework for generating million-point PDE trajectories. While existing neural operators (NOs) have shown promise for solving partial differential equations, they remain limited in practice due to poor scalability on dense grids, error accumulation during dynamic unrolling, and task-specific design. ECHO addresses these challenges through three key innovations. (i) It employs a hierarchical convolutional encode-decode architecture that achieves a 100 $\times$ spatio-temporal compression while preserving fidelity on mesh points. (ii) It incorporates a training and adaptation strategy that enables high-resolution PDE solution generation from sparse input grids. (iii) It adopts a generative modeling paradigm that learns complete trajectory segments, mitigating long-horizon error drift. The training strategy decouples representation learning from downstream task supervision, allowing the model to tackle multiple tasks such as trajectory generation, forward and inverse problems, and interpolation. The generative model further supports both conditional and unconditional generation. We demonstrate state-of-the-art performance on million-point simulations across diverse PDE systems featuring complex geometries, high-frequency dynamics, and long-term horizons.
☆ Rethinking the Use of Vision Transformers for AI-Generated Image Detection
Rich feature representations derived from CLIP-ViT have been widely utilized in AI-generated image detection. While most existing methods primarily leverage features from the final layer, we systematically analyze the contributions of layer-wise features to this task. Our study reveals that earlier layers provide more localized and generalizable features, often surpassing the performance of final-layer features in detection tasks. Moreover, we find that different layers capture distinct aspects of the data, each contributing uniquely to AI-generated image detection. Motivated by these findings, we introduce a novel adaptive method, termed MoLD, which dynamically integrates features from multiple ViT layers using a gating-based mechanism. Extensive experiments on both GAN- and diffusion-generated images demonstrate that MoLD significantly improves detection performance, enhances generalization across diverse generative models, and exhibits robustness in real-world scenarios. Finally, we illustrate the scalability and versatility of our approach by successfully applying it to other pre-trained ViTs, such as DINOv2.
comment: Code: https://github.com/nahyeonkaty/mold
☆ Environment-Aware Channel Inference via Cross-Modal Flow: From Multimodal Sensing to Wireless Channels
Accurate channel state information (CSI) underpins reliable and efficient wireless communication. However, acquiring CSI via pilot estimation incurs substantial overhead, especially in massive multiple-input multiple-output (MIMO) systems operating in high-Doppler environments. By leveraging the growing availability of environmental sensing data, this treatise investigates pilot-free channel inference that estimates complete CSI directly from multimodal observations, including camera images, LiDAR point clouds, and GPS coordinates. In contrast to prior studies that rely on predefined channel models, we develop a data-driven framework that formulates the sensing-to-channel mapping as a cross-modal flow matching problem. The framework fuses multimodal features into a latent distribution within the channel domain, and learns a velocity field that continuously transforms the latent distribution toward the channel distribution. To make this formulation tractable and efficient, we reformulate the problem as an equivalent conditional flow matching objective and incorporate a modality alignment loss, while adopting low-latency inference mechanisms to enable real-time CSI estimation. In experiments, we build a procedural data generator based on Sionna and Blender to support realistic modeling of sensing scenes and wireless propagation. System-level evaluations demonstrate significant improvements over pilot- and sensing-based benchmarks in both channel estimation accuracy and spectral efficiency for the downstream beamforming task.
comment: 13 pages, 13 figures, 40 references, submitted to IEEE for possible publication
☆ Realizable Abstractions: Near-Optimal Hierarchical Reinforcement Learning
The main focus of Hierarchical Reinforcement Learning (HRL) is studying how large Markov Decision Processes (MDPs) can be more efficiently solved when addressed in a modular way, by combining partial solutions computed for smaller subtasks. Despite their very intuitive role for learning, most notions of MDP abstractions proposed in the HRL literature have limited expressive power or do not possess formal efficiency guarantees. This work addresses these fundamental issues by defining Realizable Abstractions, a new relation between generic low-level MDPs and their associated high-level decision processes. The notion we propose avoids non-Markovianity issues and has desirable near-optimality guarantees. Indeed, we show that any abstract policy for Realizable Abstractions can be translated into near-optimal policies for the low-level MDP, through a suitable composition of options. As demonstrated in the paper, these options can be expressed as solutions of specific constrained MDPs. Based on these findings, we propose RARL, a new HRL algorithm that returns compositional and near-optimal low-level policies, taking advantage of the Realizable Abstraction given in the input. We show that RARL is Probably Approximately Correct, it converges in a polynomial number of samples, and it is robust to inaccuracies in the abstraction.
☆ Amortized Inference of Multi-Modal Posteriors using Likelihood-Weighted Normalizing Flows
We present a novel technique for amortized posterior estimation using Normalizing Flows trained with likelihood-weighted importance sampling. This approach allows for the efficient inference of theoretical parameters in high-dimensional inverse problems without the need for posterior training samples. We implement the method on multi-modal benchmark tasks in 2D and 3D to check for the efficacy. A critical observation of our study is the impact of the topology of the base distributions on the modelled posteriors. We find that standard unimodal base distributions fail to capture disconnected support, resulting in spurious probability bridges between modes. We demonstrate that initializing the flow with a Gaussian Mixture Model that matches the cardinality of the target modes significantly improves reconstruction fidelity, as measured by some distance and divergence metrics.
comment: 14 pages, 8 figures
☆ CARL: Critical Action Focused Reinforcement Learning for Multi-Step Agent
Agents capable of accomplishing complex tasks through multiple interactions with the environment have emerged as a popular research direction. However, in such multi-step settings, the conventional group-level policy optimization algorithm becomes suboptimal because of its underlying assumption that each action holds equal contribution, which deviates significantly from reality. Our analysis reveals that only a small fraction of actions are critical in determining the final outcome. Building on this insight, we propose CARL, a critical-action-focused reinforcement learning algorithm tailored for multi-step agents. CARL achieves focused training through providing action-level optimization signals for high-criticality actions while excluding low-criticality actions from model update. Extensive experiments demonstrate that CARL achieves both stronger performance and higher efficiency during training and inference across diverse evaluation settings.
comment: 10 pages, 4 figures
☆ Multi-Agent Reinforcement Learning for Intraday Operating Rooms Scheduling under Uncertainty
Intraday surgical scheduling is a multi-objective decision problem under uncertainty-balancing elective throughput, urgent and emergency demand, delays, sequence-dependent setups, and overtime. We formulate the problem as a cooperative Markov game and propose a multi-agent reinforcement learning (MARL) framework in which each operating room (OR) is an agent trained with centralized training and decentralized execution. All agents share a policy trained via Proximal Policy Optimization (PPO), which maps rich system states to actions, while a within-epoch sequential assignment protocol constructs conflict-free joint schedules across ORs. A mixed-integer pre-schedule provides reference starting times for electives; we impose type-specific quadratic delay penalties relative to these references and a terminal overtime penalty, yielding a single reward that captures throughput, timeliness, and staff workload. In simulations reflecting a realistic hospital mix (six ORs, eight surgery types, random urgent and emergency arrivals), the learned policy outperforms six rule-based heuristics across seven metrics and three evaluation subsets, and, relative to an ex post MIP oracle, quantifies optimality gaps. Policy analytics reveal interpretable behavior-prioritizing emergencies, batching similar cases to reduce setups, and deferring lower-value electives. We also derive a suboptimality bound for the sequential decomposition under simplifying assumptions. We discuss limitations-including OR homogeneity and the omission of explicit staffing constraints-and outline extensions. Overall, the approach offers a practical, interpretable, and tunable data-driven complement to optimization for real-time OR scheduling.
☆ A result relating convex n-widths to covering numbers with some applications to neural networks
In general, approximating classes of functions defined over high-dimensional input spaces by linear combinations of a fixed set of basis functions or ``features'' is known to be hard. Typically, the worst-case error of the best basis set decays only as fast as $Θ\(n^{-1/d}\)$, where $n$ is the number of basis functions and $d$ is the input dimension. However, there are many examples of high-dimensional pattern recognition problems (such as face recognition) where linear combinations of small sets of features do solve the problem well. Hence these function classes do not suffer from the ``curse of dimensionality'' associated with more general classes. It is natural then, to look for characterizations of high-dimensional function classes that nevertheless are approximated well by linear combinations of small sets of features. In this paper we give a general result relating the error of approximation of a function class to the covering number of its ``convex core''. For one-hidden-layer neural networks, covering numbers of the class of functions computed by a single hidden node upper bound the covering numbers of the convex core. Hence, using standard results we obtain upper bounds on the approximation rate of neural network classes.
☆ Shorting Dynamics and Structured Kernel Regularization
This paper develops a nonlinear operator dynamic that progressively removes the influence of a prescribed feature subspace while retaining maximal structure elsewhere. The induced sequence of positive operators is monotone, admits an exact residual decomposition, and converges to the classical shorted operator. Transporting this dynamic to reproducing kernel Hilbert spaces yields a corresponding family of kernels that converges to the largest kernel dominated by the original one and annihilating the given subspace. In the finite-sample setting, the associated Gram operators inherit a structured residual decomposition that leads to a canonical form of kernel ridge regression and a principled way to enforce nuisance invariance. This gives a unified operator-analytic approach to invariant kernel construction and structured regularization in data analysis.
☆ STELLA: Guiding Large Language Models for Time Series Forecasting with Semantic Abstractions
Recent adaptations of Large Language Models (LLMs) for time series forecasting often fail to effectively enhance information for raw series, leaving LLM reasoning capabilities underutilized. Existing prompting strategies rely on static correlations rather than generative interpretations of dynamic behavior, lacking critical global and instance-specific context. To address this, we propose STELLA (Semantic-Temporal Alignment with Language Abstractions), a framework that systematically mines and injects structured supplementary and complementary information. STELLA employs a dynamic semantic abstraction mechanism that decouples input series into trend, seasonality, and residual components. It then translates intrinsic behavioral features of these components into Hierarchical Semantic Anchors: a Corpus-level Semantic Prior (CSP) for global context and a Fine-grained Behavioral Prompt (FBP) for instance-level patterns. Using these anchors as prefix-prompts, STELLA guides the LLM to model intrinsic dynamics. Experiments on eight benchmark datasets demonstrate that STELLA outperforms state-of-the-art methods in long- and short-term forecasting, showing superior generalization in zero-shot and few-shot settings. Ablation studies further validate the effectiveness of our dynamically generated semantic anchors.
comment: This work has been submitted to the IEEE for possible publication
☆ Series of quasi-uniform scatterings with fast search, root systems and neural network classifications
In this paper we describe an approach to construct large extendable collections of vectors in predefined spaces of given dimensions. These collections are useful for neural network latent space configuration and training. For classification problem with large or unknown number of classes this allows to construct classifiers without classification layer and extend the number of classes without retraining of network from the very beginning. The construction allows to create large well-spaced vector collections in spaces of minimal possible dimension. If the number of classes is known or approximately predictable, one can choose sufficient enough vector collection size. If one needs to significantly extend the number of classes, one can extend the collection in the same latent space, or to incorporate the collection into collection of higher dimensions with same spacing between vectors. Also, regular symmetric structure of constructed vector collections can significantly simplify problems of search for nearest cluster centers or embeddings in the latent space. Construction of vector collections is based on combinatorics and geometry of semi-simple Lie groups irreducible representations with highest weight.
☆ Tokenizing Buildings: A Transformer for Layout Synthesis
We introduce Small Building Model (SBM), a Transformer-based architecture for layout synthesis in Building Information Modeling (BIM) scenes. We address the question of how to tokenize buildings by unifying heterogeneous feature sets of architectural elements into sequences while preserving compositional structure. Such feature sets are represented as a sparse attribute-feature matrix that captures room properties. We then design a unified embedding module that learns joint representations of categorical and possibly correlated continuous feature groups. Lastly, we train a single Transformer backbone in two modes: an encoder-only pathway that yields high-fidelity room embeddings, and an encoder-decoder pipeline for autoregressive prediction of room entities, referred to as Data-Driven Entity Prediction (DDEP). Experiments across retrieval and generative layout synthesis show that SBM learns compact room embeddings that reliably cluster by type and topology, enabling strong semantic retrieval. In DDEP mode, SBM produces functionally sound layouts, with fewer collisions and boundary violations and improved navigability.
comment: 8 pages, 1 page References, 4 figures
☆ Contract-Driven QoE Auditing for Speech and Singing Services: From MOS Regression to Service Graphs
Subjective mean opinion scores (MOS) remain the de-facto target for non-intrusive speech and singing quality assessment. However, MOS is a scalar that collapses heterogeneous user expectations, ignores service-level objectives, and is difficult to compare across deployment graphs. We propose a contract-driven QoE auditing framework: each service graph G is evaluated under a set of human-interpretable experience contracts C, yielding a contract-level satisfaction vector Q(G, C). We show that (i) classical MOS regression is a special case with a degenerate contract set, (ii) contract-driven quality is more stable than MOS under graph view transformations (e.g., pooling by system vs. by system type), and (iii) the effective sample complexity of learning contracts is governed by contract semantics rather than merely the dimensionality of C. We instantiate the framework on URGENT2024 MOS (6.9k speech utterances with raw rating vectors) and SingMOS v1 (7,981 singing clips; 80 systems). On URGENT, we train a contract-aware neural auditor on self-supervised WavLM embeddings; on SingMOS, we perform contract-driven graph auditing using released rating vectors and metadata without decoding audio. Empirically, our auditor matches strong MOS predictors in MOS accuracy while providing calibrated contract probabilities; on SingMOS, Q(G, C) exhibits substantially smaller cross-view drift than raw MOS and graph-only baselines; on URGENT, difficulty curves reveal that mis-specified "simple" contracts can be harder to learn than richer but better aligned contract sets.
comment: 11 pages, 3 figures
☆ Pick-to-Learn for Systems and Control: Data-driven Synthesis with State-of-the-art Safety Guarantees
Data-driven methods have become paramount in modern systems and control problems characterized by growing levels of complexity. In safety-critical environments, deploying these methods requires rigorous guarantees, a need that has motivated much recent work at the interface of statistical learning and control. However, many existing approaches achieve this goal at the cost of sacrificing valuable data for testing and calibration, or by constraining the choice of learning algorithm, thus leading to suboptimal performances. In this paper, we describe Pick-to-Learn (P2L) for Systems and Control, a framework that allows any data-driven control method to be equipped with state-of-the-art safety and performance guarantees. P2L enables the use of all available data to jointly synthesize and certify the design, eliminating the need to set aside data for calibration or validation purposes. In presenting a comprehensive version of P2L for systems and control, this paper demonstrates its effectiveness across a range of core problems, including optimal control, reachability analysis, safe synthesis, and robust control. In many of these applications, P2L delivers designs and certificates that outperform commonly employed methods, and shows strong potential for broad applicability in diverse practical settings.
comment: 27 double-column pages, 18 figures
☆ Complementary Characterization of Agent-Based Models via Computational Mechanics and Diffusion Models
This article extends the preprint "Characterizing Agent-Based Model Dynamics via $ε$-Machines and Kolmogorov-Style Complexity" by introducing diffusion models as orthogonal and complementary tools for characterizing the output of agent-based models (ABMs). Where $ε$-machines capture the predictive temporal structure and intrinsic computation of ABM-generated time series, diffusion models characterize high-dimensional cross-sectional distributions, learn underlying data manifolds, and enable synthetic generation of plausible population-level outcomes. We provide a formal analysis demonstrating that the two approaches operate on distinct mathematical domains -processes vs.\ distributions- and show that their combination yields a two-axis representation of ABM behavior based on temporal organization and distributional geometry. To our knowledge, this is the first framework to integrate computational mechanics with score-based generative modeling for the structural analysis of ABM outputs, thereby situating ABM characterization within the broader landscape of modern machine-learning methods for density estimation and intrinsic computation. The framework is validated using the same elder-caregiver ABM dataset introduced in the companion paper, and we provide precise definitions and propositions formalizing the mathematical complementarity between $ε$-machines and diffusion models. This establishes a principled methodology for jointly analyzing temporal predictability and high-dimensional distributional structure in complex simulation models.
comment: 11 pages. Methods paper introducing a dual-domain framework for analyzing ABM dynamics. Companion temporal-analysis preprint: arXiv:2510.12729
☆ MemLoRA: Distilling Expert Adapters for On-Device Memory Systems
Memory-augmented Large Language Models (LLMs) have demonstrated remarkable consistency during prolonged dialogues by storing relevant memories and incorporating them as context. Such memory-based personalization is also key in on-device settings that allow users to keep their conversations and data private. However, memory-augmented systems typically rely on LLMs that are too costly for local on-device deployment. Even though Small Language Models (SLMs) are more suitable for on-device inference than LLMs, they cannot achieve sufficient performance. Additionally, these LLM-based systems lack native visual capabilities, limiting their applicability in multimodal contexts. In this paper, we introduce (i) MemLoRA, a novel memory system that enables local deployment by equipping SLMs with specialized memory adapters, and (ii) its vision extension MemLoRA-V, which integrates small Vision-Language Models (SVLMs) to memory systems, enabling native visual understanding. Following knowledge distillation principles, each adapter is trained separately for specific memory operations$\unicode{x2013}$knowledge extraction, memory update, and memory-augmented generation. Equipped with memory adapters, small models enable accurate on-device memory operations without cloud dependency. On text-only operations, MemLoRA outperforms 10$\times$ larger baseline models (e.g., Gemma2-27B) and achieves performance comparable to 60$\times$ larger models (e.g., GPT-OSS-120B) on the LoCoMo benchmark. To evaluate visual understanding operations instead, we extend LoCoMo with challenging Visual Question Answering tasks that require direct visual reasoning. On this, our VLM-integrated MemLoRA-V shows massive improvements over caption-based approaches (81.3 vs. 23.7 accuracy) while keeping strong performance in text-based tasks, demonstrating the efficacy of our method in multimodal contexts.
☆ RLHFSpec: Breaking the Efficiency Bottleneck in RLHF Training via Adaptive Drafting
Reinforcement Learning from Human Feedback (RLHF) is an important fine-tuning technique for large language models (LLMs) and comprises three stages: generation, inference, and training. The generation stage generates samples that are then used to infer learnable experiences for training. We observe that the generation stage is the bottleneck of the entire execution process and consider it a key point for optimization. Specifically, we realize the first attempt to integrate speculative decoding into the RLHF generation stage and propose RLHFSpec, an RLHF system that accelerates generation execution with adaptive speculative decoding and sample reallocation. To fully exploit the performance potential provided by speculative decoding, especially dealing with the dynamic workload of the generation stage, RLHFSpec proposes a workload-aware drafting strategy selection mechanism, which selects the near-optimal strategy by jointly considering the verification cost and the number of accepted tokens. Moreover, RLHFSpec also proposes sample reallocation to fully utilize the GPU resources, and optimizes it with an efficient sample migration mechanism. The experimental results show that the RLHFSpec can achieve higher throughput in the generation stage compared to state-of-the-art works. Moreover, due to the effective alleviation of the generation bottleneck, RLHFSpec also shows significant performance speedup in the entire RLHF execution.
☆ A Tutorial on Regression Analysis: From Linear Models to Deep Learning -- Lecture Notes on Artificial Intelligence
This article serves as the regression analysis lecture notes in the Intelligent Computing course cluster (including the courses of Artificial Intelligence, Data Mining, Machine Learning, and Pattern Recognition). It aims to provide students -- who are assumed to possess only basic university-level mathematics (i.e., with prerequisite courses in calculus, linear algebra, and probability theory) -- with a comprehensive and self-contained understanding of regression analysis without requiring any additional references. The lecture notes systematically introduce the fundamental concepts, modeling components, and theoretical foundations of regression analysis, covering linear regression, logistic regression, multinomial logistic regression, polynomial regression, basis-function models, kernel-based methods, and neural-network-based nonlinear regression. Core methodological topics include loss-function design, parameter-estimation principles, ordinary least squares, gradient-based optimization algorithms and their variants, as well as regularization techniques such as Ridge and LASSO regression. Through detailed mathematical derivations, illustrative examples, and intuitive visual explanations, the materials help students understand not only how regression models are constructed and optimized, but also how they reveal the underlying relationships between features and response variables. By bridging classical statistical modeling and modern machine-learning practice, these lecture notes aim to equip students with a solid conceptual and technical foundation for further study in advanced artificial intelligence models.
☆ Sequential Enumeration in Large Language Models
Reliably counting and generating sequences of items remain a significant challenge for neural networks, including Large Language Models (LLMs). Indeed, although this capability is readily handled by rule-based symbolic systems based on serial computation, learning to systematically deploy counting procedures is difficult for neural models, which should acquire these skills through learning. Previous research has demonstrated that recurrent architectures can only approximately track and enumerate sequences of events, and it remains unclear whether modern deep learning systems, including LLMs, can deploy systematic counting procedures over sequences of discrete symbols. This paper aims to fill this gap by investigating the sequential enumeration abilities of five state-of-the-art LLMs, including proprietary, open-source, and reasoning models. We probe LLMs in sequential naming and production tasks involving lists of letters and words, adopting a variety of prompting instructions to explore the role of chain-of-thought in the spontaneous emerging of counting strategies. We also evaluate open-source models with the same architecture but increasing size to see whether the mastering of counting principles follows scaling laws, and we analyze the embedding dynamics during sequential enumeration to investigate the emergent encoding of numerosity. We find that some LLMs are indeed capable of deploying counting procedures when explicitly prompted to do so, but none of them spontaneously engage in counting when simply asked to enumerate the number of items in a sequence. Our results suggest that, despite their impressive emergent abilities, LLMs cannot yet robustly and systematically deploy counting procedures, highlighting a persistent gap between neural and symbolic approaches to compositional generalization.
☆ Towards Continuous-Time Approximations for Stochastic Gradient Descent without Replacement
Gradient optimization algorithms using epochs, that is those based on stochastic gradient descent without replacement (SGDo), are predominantly used to train machine learning models in practice. However, the mathematical theory of SGDo and related algorithms remain underexplored compared to their "with replacement" and "one-pass" counterparts. In this article, we propose a stochastic, continuous-time approximation to SGDo with additive noise based on a Young differential equation driven by a stochastic process we call an "epoched Brownian motion". We show its usefulness by proving the almost sure convergence of the continuous-time approximation for strongly convex objectives and learning rate schedules of the form $u_t = \frac{1}{(1+t)^β}, β\in (0,1)$. Moreover, we compute an upper bound on the asymptotic rate of almost sure convergence, which is as good or better than previous results for SGDo.
☆ Continuous-time reinforcement learning for optimal switching over multiple regimes
This paper studies the continuous-time reinforcement learning (RL) for optimal switching problems across multiple regimes. We consider a type of exploratory formulation under entropy regularization where the agent randomizes both the timing of switches and the selection of regimes through the generator matrix of an associated continuous-time finite-state Markov chain. We establish the well-posedness of the associated system of Hamilton-Jacobi-Bellman (HJB) equations and provide a characterization of the optimal policy. The policy improvement and the convergence of the policy iterations are rigorously established by analyzing the system of equations. We also show the convergence of the value function in the exploratory formulation towards the value function in the classical formulation as the temperature parameter vanishes. Finally, a reinforcement learning algorithm is devised and implemented by invoking the policy evaluation based on the martingale characterization. Our numerical examples with the aid of neural networks illustrate the effectiveness of the proposed RL algorithm.
comment: Keywords: Optimal regime switching, multiple regimes, continuous-time reinforcement learning, system of HJB equations, policy improvement, policy iteration convergence
☆ Provable FDR Control for Deep Feature Selection: Deep MLPs and Beyond
We develop a flexible feature selection framework based on deep neural networks that approximately controls the false discovery rate (FDR), a measure of Type-I error. The method applies to architectures whose first layer is fully connected. From the second layer onward, it accommodates multilayer perceptrons (MLPs) of arbitrary width and depth, convolutional and recurrent networks, attention mechanisms, residual connections, and dropout. The procedure also accommodates stochastic gradient descent with data-independent initializations and learning rates. To the best of our knowledge, this is the first work to provide a theoretical guarantee of FDR control for feature selection within such a general deep learning setting. Our analysis is built upon a multi-index data-generating model and an asymptotic regime in which the feature dimension $n$ diverges faster than the latent dimension $q^{*}$, while the sample size, the number of training iterations, the network depth, and hidden layer widths are left unrestricted. Under this setting, we show that each coordinate of the gradient-based feature-importance vector admits a marginal normal approximation, thereby supporting the validity of asymptotic FDR control. As a theoretical limitation, we assume $\mathbf{B}$-right orthogonal invariance of the design matrix, and we discuss broader generalizations. We also present numerical experiments that underscore the theoretical findings.
☆ TRINITY: An Evolved LLM Coordinator
Combining diverse foundation models is promising, but weight-merging is limited by mismatched architectures and closed APIs. Trinity addresses this with a lightweight coordinator that orchestrates collaboration among large language models (LLMs). The coordinator, comprising a compact language model (approximately $0.6$B parameters) and a lightweight head (approximately $10$K parameters), is optimized with an evolutionary strategy for efficient and adaptive delegation. Trinity processes queries over multiple turns, where at each turn the coordinator assigns one of three roles (Thinker, Worker, or Verifier) to a selected LLM, effectively offloading complex skill acquisition from the coordinator itself. Experiments show that Trinity consistently outperforms individual models and existing methods across coding, math, reasoning, and domain knowledge tasks, and generalizes robustly to out-of-distribution tasks. On standard benchmarks, Trinity achieves state-of-the-art results, including a score of 86.2% on LiveCodeBench. Theoretical and empirical analyses identify two main factors behind this performance: (1) the coordinator's hidden-state representations provide rich contextualization of inputs, and (2) under high dimensionality and strict budget constraints, the separable Covariance Matrix Adaptation Evolution Strategy offers advantages over reinforcement learning, imitation learning, and random search by exploiting potential block-epsilon-separability.
☆ TimesNet-Gen: Deep Learning-based Site Specific Strong Motion Generation
Effective earthquake risk reduction relies on accurate site-specific evaluations. This requires models that can represent the influence of local site conditions on ground motion characteristics. In this context, data driven approaches that learn site controlled signatures from recorded ground motions offer a promising direction. We address strong ground motion generation from time-domain accelerometer records and introduce the TimesNet-Gen, a time-domain conditional generator. The approach uses a station specific latent bottleneck. We evaluate generation by comparing HVSR curves and fundamental site-frequency $f_0$ distributions between real and generated records per station, and summarize station specificity with a score based on the $f_0$ distribution confusion matrices. TimesNet-Gen achieves strong station-wise alignment and compares favorably with a spectrogram-based conditional VAE baseline for site-specific strong motion synthesis. Our codes are available via https://github.com/brsylmz23/TimesNet-Gen.
☆ Recurrent Neural Networks with Linear Structures for Electricity Price Forecasting
We present a novel recurrent neural network architecture designed explicitly for day-ahead electricity price forecasting, aimed at improving short-term decision-making and operational management in energy systems. Our combined forecasting model embeds linear structures, such as expert models and Kalman filters, into recurrent networks, enabling efficient computation and enhanced interpretability. The design leverages the strengths of both linear and non-linear model structures, allowing it to capture all relevant stylised price characteristics in power markets, including calendar and autoregressive effects, as well as influences from load, renewable energy, and related fuel and carbon markets. For empirical testing, we use hourly data from the largest European electricity market spanning 2018 to 2025 in a comprehensive forecasting study, comparing our model against state-of-the-art approaches, particularly high-dimensional linear and neural network models. The proposed model achieves approximately 12% higher accuracy than leading benchmarks. We evaluate the contributions of the interpretable model components and conclude on the impact of combining linear and non-linear structures.
☆ Fermionic neural Gibbs states
We introduce fermionic neural Gibbs states (fNGS), a variational framework for modeling finite-temperature properties of strongly interacting fermions. fNGS starts from a reference mean-field thermofield-double state and uses neural-network transformations together with imaginary-time evolution to systematically build strong correlations. Applied to the doped Fermi-Hubbard model, a minimal lattice model capturing essential features of strong electronic correlations, fNGS accurately reproduces thermal energies over a broad range of temperatures, interaction strengths, even at large dopings, for system sizes beyond the reach of exact methods. These results demonstrate a scalable route to studying finite-temperature properties of strongly correlated fermionic systems beyond one dimension with neural-network representations of quantum states.
☆ Semi Centralized Training Decentralized Execution Architecture for Multi Agent Deep Reinforcement Learning in Traffic Signal Control
Multi-agent reinforcement learning (MARL) has emerged as a promising paradigm for adaptive traffic signal control (ATSC) of multiple intersections. Existing approaches typically follow either a fully centralized or a fully decentralized design. Fully centralized approaches suffer from the curse of dimensionality, and reliance on a single learning server, whereas purely decentralized approaches operate under severe partial observability and lack explicit coordination resulting in suboptimal performance. These limitations motivate region-based MARL, where the network is partitioned into smaller, tightly coupled intersections that form regions, and training is organized around these regions. This paper introduces a Semi-Centralized Training, Decentralized Execution (SEMI-CTDE) architecture for multi intersection ATSC. Within each region, SEMI-CTDE performs centralized training with regional parameter sharing and employs composite state and reward formulations that jointly encode local and regional information. The architecture is highly transferable across different policy backbones and state-reward instantiations. Building on this architecture, we implement two models with distinct design objectives. A multi-perspective experimental analysis of the two implemented SEMI-CTDE-based models covering ablations of the architecture's core elements including rule based and fully decentralized baselines shows that they achieve consistently superior performance and remain effective across a wide range of traffic densities and distributions.
comment: Co-first authors: Pouria Yazdani and Arash Rezaali
☆ Contract-Governed Training for Earth Observation: Observed Service Agreement Graphs and Coverage-Accuracy Trade-offs
Earth observation (EO) models are frequently trained under implicit sampling policies that optimize global accuracy but provide no explicit guarantees on who (which regions, classes, or mission-critical strata) is being served throughout training. This paper introduces a contract-governed training paradigm for EO in which training samples are grouped into service contracts -- semantically meaningful units such as (dataset, region, rare-crop indicator) -- and each contract is assigned a target service share. We instantiate this paradigm as an Observed Service Agreement Graph (OSAG), a lightweight governance layer that (i) monitors contract-level exposure (coverage) during optimization, (ii) drives empirical coverage toward target shares via contract-normalized sampling weights, and (iii) exposes explicit accuracy-governance trade-offs through two knobs: a sampling mixture coefficient alpha and a contract-regularization weight lambda_C. We provide a compact theory in a toy setting: OSAG sampling concentrates empirical coverage to targets; coverage deviations upper-bound service-risk deviations; and contract design (coarse vs. fine) modulates governance cost. Experiments on AVIRIS hyperspectral scenes (Indian Pines plus Salinas) and multispectral Sentinel-2 EuroSAT demonstrate that OSAG can substantially reduce priority coverage error while maintaining global accuracy and improving high-priority accuracy. A EuroSAT coarse-vs-fine contract ablation further evidences how semantically refined contracts can reduce the accuracy cost per unit of governance improvement.
comment: 9 pages, 2 figures
☆ SEASON: Mitigating Temporal Hallucination in Video Large Language Models via Self-Diagnostic Contrastive Decoding
Video Large Language Models (VideoLLMs) have shown remarkable progress in video understanding. However, these models still struggle to effectively perceive and exploit rich temporal information in videos when responding to user queries. Therefore, they often generate descriptions of events that are temporal inconsistent or causally implausible, causing severe hallucination issues. While most prior studies have focused on spatial hallucinations (e.g. object mismatches), temporal reasoning in video understanding remains relatively underexplored. To address this issue, we propose Self-Diagnostic Contrastive Decoding (SEASON), a training-free method that adaptively enhances temporal and spatial faithfulness for each output token. It achieves this by dynamically diagnosing each token's hallucination tendency and applying adaptive contrastive decoding against its corresponding temporal and spatial negatives. Extensive experiments demonstrate that SEASON outperforms all existing training-free hallucination mitigation approaches on three hallucination examination benchmarks, while further improves VideoLLMs across four general video understanding benchmarks. The code will be released upon acceptance.
☆ Federated Learning for Anomaly Detection in Maritime Movement Data
This paper introduces M3fed, a novel solution for federated learning of movement anomaly detection models. This innovation has the potential to improve data privacy and reduce communication costs in machine learning for movement anomaly detection. We present the novel federated learning (FL) strategies employed to train M3fed, perform an example experiment with maritime AIS data, and evaluate the results with respect to communication costs and FL model quality by comparing classic centralized M3 and the new federated M3fed.
comment: Accepted at MDM2024
☆ Rethinking Decoupled Knowledge Distillation: A Predictive Distribution Perspective
In the history of knowledge distillation, the focus has once shifted over time from logit-based to feature-based approaches. However, this transition has been revisited with the advent of Decoupled Knowledge Distillation (DKD), which re-emphasizes the importance of logit knowledge through advanced decoupling and weighting strategies. While DKD marks a significant advancement, its underlying mechanisms merit deeper exploration. As a response, we rethink DKD from a predictive distribution perspective. First, we introduce an enhanced version, the Generalized Decoupled Knowledge Distillation (GDKD) loss, which offers a more versatile method for decoupling logits. Then we pay particular attention to the teacher model's predictive distribution and its impact on the gradients of GDKD loss, uncovering two critical insights often overlooked: (1) the partitioning by the top logit considerably improves the interrelationship of non-top logits, and (2) amplifying the focus on the distillation loss of non-top logits enhances the knowledge extraction among them. Utilizing these insights, we further propose a streamlined GDKD algorithm with an efficient partition strategy to handle the multimodality of teacher models' predictive distribution. Our comprehensive experiments conducted on a variety of benchmarks, including CIFAR-100, ImageNet, Tiny-ImageNet, CUB-200-2011, and Cityscapes, demonstrate GDKD's superior performance over both the original DKD and other leading knowledge distillation methods. The code is available at https://github.com/ZaberKo/GDKD.
comment: Accepted to IEEE TNNLS
☆ Score Matching for Estimating Finite Point Processes
Score matching estimators have garnered significant attention in recent years because they eliminate the need to compute normalizing constants, thereby mitigating the computational challenges associated with maximum likelihood estimation (MLE).While several studies have proposed score matching estimators for point processes, this work highlights the limitations of these existing methods, which stem primarily from the lack of a mathematically rigorous analysis of how score matching behaves on finite point processes -- special random configurations on bounded spaces where many of the usual assumptions and properties of score matching no longer hold. To this end, we develop a formal framework for score matching on finite point processes via Janossy measures and, within this framework, introduce an (autoregressive) weighted score-matching estimator, whose statistical properties we analyze in classical parametric settings. For general nonparametric (e.g., deep) point process models, we show that score matching alone does not uniquely identify the ground-truth distribution due to subtle normalization issues, and we propose a simple survival-classification augmentation that yields a complete, integration-free training objective for any intensity-based point process model for spatio-temporal case. Experiments on synthetic and real-world temporal and spatio-temporal datasets, demonstrate that our method accurately recovers intensities and achieves performance comparable to MLE with better efficiency.
☆ Natural Language Actor-Critic: Scalable Off-Policy Learning in Language Space
Large language model (LLM) agents -- LLMs that dynamically interact with an environment over long horizons -- have become an increasingly important area of research, enabling automation in complex tasks involving tool-use, web browsing, and dialogue with people. In the absence of expert demonstrations, training LLM agents has relied on policy gradient methods that optimize LLM policies with respect to an (often sparse) reward function. However, in long-horizon tasks with sparse rewards, learning from trajectory-level rewards can be noisy, leading to training that is unstable and has high sample complexity. Furthermore, policy improvement hinges on discovering better actions through exploration, which can be difficult when actions lie in natural language space. In this paper, we propose Natural Language Actor-Critic (NLAC), a novel actor-critic algorithm that trains LLM policies using a generative LLM critic that produces natural language rather than scalar values. This approach leverages the inherent strengths of LLMs to provide a richer and more actionable training signal; particularly, in tasks with large, open-ended action spaces, natural language explanations for why an action is suboptimal can be immensely useful for LLM policies to reason how to improve their actions, without relying on random exploration. Furthermore, our approach can be trained off-policy without policy gradients, offering a more data-efficient and stable alternative to existing on-policy methods. We present results on a mixture of reasoning, web browsing, and tool-use with dialogue tasks, demonstrating that NLAC shows promise in outperforming existing training approaches and offers a more scalable and stable training paradigm for LLM agents.
comment: 22 pages, 4 figures
☆ When Robots Should Say "I Don't Know": Benchmarking Abstention in Embodied Question Answering
Embodied Question Answering (EQA) requires an agent to interpret language, perceive its environment, and navigate within 3D scenes to produce responses. Existing EQA benchmarks assume that every question must be answered, but embodied agents should know when they do not have sufficient information to answer. In this work, we focus on a minimal requirement for EQA agents, abstention: knowing when to withhold an answer. From an initial study of 500 human queries, we find that 32.4% contain missing or underspecified context. Drawing on this initial study and cognitive theories of human communication errors, we derive five representative categories requiring abstention: actionability limitation, referential underspecification, preference dependence, information unavailability, and false presupposition. We augment OpenEQA by having annotators transform well-posed questions into ambiguous variants outlined by these categories. The resulting dataset, AbstainEQA, comprises 1,636 annotated abstention cases paired with 1,636 original OpenEQA instances for balanced evaluation. Evaluating on AbstainEQA, we find that even the best frontier model only attains 42.79% abstention recall, while humans achieve 91.17%. We also find that scaling, prompting, and reasoning only yield marginal gains, and that fine-tuned models overfit to textual cues. Together, these results position abstention as a fundamental prerequisite for reliable interaction in embodied settings and as a necessary basis for effective clarification.
☆ QoSDiff: An Implicit Topological Embedding Learning Framework Leveraging Denoising Diffusion and Adversarial Attention for Robust QoS Prediction
Accurate Quality of Service (QoS) prediction is fundamental to service computing, providing essential data-driven guidance for service selection and ensuring superior user experiences. However, prevalent approaches, particularly Graph Neural Networks (GNNs), heavily rely on constructing explicit user--service interaction graphs. This dependency introduces severe scalability bottlenecks and limits performance when explicit connections are sparse or corrupted by noise. To address these challenges, this paper introduces \emph{QoSDiff}, a novel embedding learning framework that bypasses the prerequisite of explicit graph construction. Specifically, it leverages a denoising diffusion probabilistic model to recover intrinsic latent structures from noisy initializations. To further capture high-order interactions, we propose an adversarial interaction module that integrates a bidirectional hybrid attention mechanism. This adversarial paradigm dynamically distinguishes informative patterns from noise, enabling a dual-perspective modeling of intricate user--service associations. Extensive experiments on two large-scale real-world datasets demonstrate that QoSDiff significantly outperforms state-of-the-art baselines. Notably, the results highlight the framework's superior cross-dataset generalization capability and exceptional robustness against data sparsity and observational noise.
comment: Preprint submitted to IEEE Transactions on Services Computing
☆ Exploiting \texttt{ftrace}'s \texttt{function\_graph} Tracer Features for Machine Learning: A Case Study on Encryption Detection
This paper proposes using the Linux kernel ftrace framework, particularly the function graph tracer, to generate informative system level data for machine learning (ML) applications. Experiments on a real world encryption detection task demonstrate the efficacy of the proposed features across several learning algorithms. The learner faces the problem of detecting encryption activities across a large dataset of files, using function call traces and graph based features. Empirical results highlight an outstanding accuracy of 99.28 on the task at hand, underscoring the efficacy of features derived from the function graph tracer. The results were further validated in an additional experiment targeting a multilabel classification problem, in which running programs were identified from trace data. This work provides comprehensive methodologies for preprocessing raw trace data and extracting graph based features, offering significant advancements in applying ML to system behavior analysis, program identification, and anomaly detection. By bridging the gap between system tracing and ML, this paper paves the way for innovative solutions in performance monitoring and security analytics.
comment: Conference paper presented at AICCSA 2025
☆ Temp-SCONE: A Novel Out-of-Distribution Detection and Domain Generalization Framework for Wild Data with Temporal Shift
Open-world learning (OWL) requires models that can adapt to evolving environments while reliably detecting out-of-distribution (OOD) inputs. Existing approaches, such as SCONE, achieve robustness to covariate and semantic shifts but assume static environments, leading to degraded performance in dynamic domains. In this paper, we propose Temp-SCONE, a temporally consistent extension of SCONE designed to handle temporal shifts in dynamic environments. Temp-SCONE introduces a confidence-driven regularization loss based on Average Thresholded Confidence (ATC), penalizing instability in predictions across time steps while preserving SCONE's energy-margin separation. Experiments on dynamic datasets demonstrate that Temp-SCONE significantly improves robustness under temporal drift, yielding higher corrupted-data accuracy and more reliable OOD detection compared to SCONE. On distinct datasets without temporal continuity, Temp-SCONE maintains comparable performance, highlighting the importance and limitations of temporal regularization. Our theoretical insights on temporal stability and generalization error further establish Temp-SCONE as a step toward reliable OWL in evolving dynamic environments.
comment: 22 pages, 12 figures, 72 subfigures, 6 tables
☆ Reliable Statistical Guarantees for Conformal Predictors with Small Datasets
Surrogate models (including deep neural networks and other machine learning algorithms in supervised learning) are capable of approximating arbitrarily complex, high-dimensional input-output problems in science and engineering, but require a thorough data-agnostic uncertainty quantification analysis before these can be deployed for any safety-critical application. The standard approach for data-agnostic uncertainty quantification is to use conformal prediction (CP), a well-established framework to build uncertainty models with proven statistical guarantees that do not assume any shape for the error distribution of the surrogate model. However, since the classic statistical guarantee offered by CP is given in terms of bounds for the marginal coverage, for small calibration set sizes (which are frequent in realistic surrogate modelling that aims to quantify error at different regions), the potentially strong dispersion of the coverage distribution around its average negatively impacts the reliability of the uncertainty model, often obtaining coverages below the expected value, resulting in a less applicable framework. After providing a gentle presentation of uncertainty quantification for surrogate models for machine learning practitioners, in this paper we bridge the gap by proposing a new statistical guarantee that offers probabilistic information for the coverage of a single conformal predictor. We show that the proposed framework converges to the standard solution offered by CP for large calibration set sizes and, unlike the classic guarantee, still offers reliable information about the coverage of a conformal predictor for small data sizes. We illustrate and validate the methodology in a suite of examples, and implement an open access software solution that can be used alongside common conformal prediction libraries to obtain uncertainty models that fulfil the new guarantee.
☆ LeMat-GenBench: A Unified Evaluation Framework for Crystal Generative Models
Generative machine learning (ML) models hold great promise for accelerating materials discovery through the inverse design of inorganic crystals, enabling an unprecedented exploration of chemical space. Yet, the lack of standardized evaluation frameworks makes it challenging to evaluate, compare, and further develop these ML models meaningfully. In this work, we introduce LeMat-GenBench, a unified benchmark for generative models of crystalline materials, supported by a set of evaluation metrics designed to better inform model development and downstream applications. We release both an open-source evaluation suite and a public leaderboard on Hugging Face, and benchmark 12 recent generative models. Results reveal that an increase in stability leads to a decrease in novelty and diversity on average, with no model excelling across all dimensions. Altogether, LeMat-GenBench establishes a reproducible and extensible foundation for fair model comparison and aims to guide the development of more reliable, discovery-oriented generative models for crystalline materials.
comment: 46 pages, 17 figures, 16 tables
☆ Diffusion Fine-Tuning via Reparameterized Policy Gradient of the Soft Q-Function
Diffusion models excel at generating high-likelihood samples but often require alignment with downstream objectives. Existing fine-tuning methods for diffusion models significantly suffer from reward over-optimization, resulting in high-reward but unnatural samples and degraded diversity. To mitigate over-optimization, we propose \textbf{Soft Q-based Diffusion Finetuning (SQDF)}, a novel KL-regularized RL method for diffusion alignment that applies a reparameterized policy gradient of a training-free, differentiable estimation of the soft Q-function. SQDF is further enhanced with three innovations: a discount factor for proper credit assignment in the denoising process, the integration of consistency models to refine Q-function estimates, and the use of an off-policy replay buffer to improve mode coverage and manage the reward-diversity trade-off. Our experiments demonstrate that SQDF achieves superior target rewards while preserving diversity in text-to-image alignment. Furthermore, in online black-box optimization, SQDF attains high sample efficiency while maintaining naturalness and diversity.
comment: 36 pages, 21 figures, 4 tables
☆ On the Limits of Test-Time Compute: Sequential Reward Filtering for Better Inference
Test-time compute (TTC) has become an increasingly prominent paradigm for enhancing large language models (LLMs). Despite the empirical success of methods such as best-of-$n$ (BoN) sampling and sequential revision, their fundamental limits remain unclear. We address this gap by analyzing a mixture-of-reference policy model and proving that standard BoN is inherently suboptimal. To move closer to the optimal frontier, we study reward-filtered sequential inference, a simple procedure that selectively incorporates only high-reward generations into the context. This mechanism concentrates computation on superior policy candidates and suppresses inferior ones. On the theoretical side, we show that reward-filtered sequential inference yields strictly stronger guarantees than standard TTC paradigms. On the empirical side, we evaluate such an inference strategy across diverse benchmarks and observe consistent improvements over widely used approaches, demonstrating the practical effectiveness of our framework.
comment: 45 pages, 6 figures, 3 tables
☆ Explainable Graph Representation Learning via Graph Pattern Analysis IJCAI-25
Explainable artificial intelligence (XAI) is an important area in the AI community, and interpretability is crucial for building robust and trustworthy AI models. While previous work has explored model-level and instance-level explainable graph learning, there has been limited investigation into explainable graph representation learning. In this paper, we focus on representation-level explainable graph learning and ask a fundamental question: What specific information about a graph is captured in graph representations? Our approach is inspired by graph kernels, which evaluate graph similarities by counting substructures within specific graph patterns. Although the pattern counting vector can serve as an explainable representation, it has limitations such as ignoring node features and being high-dimensional. To address these limitations, we introduce a framework (PXGL-GNN) for learning and explaining graph representations through graph pattern analysis. We start by sampling graph substructures of various patterns. Then, we learn the representations of these patterns and combine them using a weighted sum, where the weights indicate the importance of each graph pattern's contribution. We also provide theoretical analyses of our methods, including robustness and generalization. In our experiments, we show how to learn and explain graph representations for real-world data using pattern analysis. Additionally, we compare our method against multiple baselines in both supervised and unsupervised learning tasks to demonstrate its effectiveness.
comment: Full version with appendix of the paper published in the Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence (IJCAI-25), Main Track
☆ Prototype-Based Semantic Consistency Alignment for Domain Adaptive Retrieval AAAI2026
Domain adaptive retrieval aims to transfer knowledge from a labeled source domain to an unlabeled target domain, enabling effective retrieval while mitigating domain discrepancies. However, existing methods encounter several fundamental limitations: 1) neglecting class-level semantic alignment and excessively pursuing pair-wise sample alignment; 2) lacking either pseudo-label reliability consideration or geometric guidance for assessing label correctness; 3) directly quantizing original features affected by domain shift, undermining the quality of learned hash codes. In view of these limitations, we propose Prototype-Based Semantic Consistency Alignment (PSCA), a two-stage framework for effective domain adaptive retrieval. In the first stage, a set of orthogonal prototypes directly establishes class-level semantic connections, maximizing inter-class separability while gathering intra-class samples. During the prototype learning, geometric proximity provides a reliability indicator for semantic consistency alignment through adaptive weighting of pseudo-label confidences. The resulting membership matrix and prototypes facilitate feature reconstruction, ensuring quantization on reconstructed rather than original features, thereby improving subsequent hash coding quality and seamlessly connecting both stages. In the second stage, domain-specific quantization functions process the reconstructed features under mutual approximation constraints, generating unified binary hash codes across domains. Extensive experiments validate PSCA's superior performance across multiple datasets.
comment: This paper was accepted by AAAI2026 main tech track not long ago. This is an expanded version with an appendix
☆ Context-Aware Mixture-of-Experts Inference on CXL-Enabled GPU-NDP Systems
Mixture-of-Experts (MoE) models scale large language models through conditional computation, but inference becomes memory-bound once expert weights exceed the capacity of GPU memory. In this case, weights must be offloaded to external memory, and fetching them incurs costly and repeated transfers. We address this by adopting CXL-attached near-data processing (CXL-NDP) as the offloading tier to execute cold experts in place, converting expensive parameter movement into cheaper activation movement. Unlike prior GPU-NDP systems that are largely context-agnostic and reactive, we develop a context-aware MoE system that uses prefill-stage activation statistics to guide decoding-stage expert placement, dynamically pins hot experts in GPU-side HBM, and maps the remainder to CXL-NDP. To meet NDP's limited compute throughput, we introduce context-aware mixed-precision quantization that allocates per-expert bitwidths (1-4 bit) based on prefill stage. The resulting MoE inference system overlaps GPU and NDP execution while minimizing cross-device movement. The evaluation on the GPU-NDP system shows that our approach achieves up to an 8.7-fold decoding throughput improvement over the state-of-the-art method, while incurring only a 0.13% average accuracy drop.
☆ GraphBench: Next-generation graph learning benchmarking
Machine learning on graphs has recently achieved impressive progress in various domains, including molecular property prediction and chip design. However, benchmarking practices remain fragmented, often relying on narrow, task-specific datasets and inconsistent evaluation protocols, which hampers reproducibility and broader progress. To address this, we introduce GraphBench, a comprehensive benchmarking suite that spans diverse domains and prediction tasks, including node-level, edge-level, graph-level, and generative settings. GraphBench provides standardized evaluation protocols -- with consistent dataset splits and performance metrics that account for out-of-distribution generalization -- as well as a unified hyperparameter tuning framework. Additionally, we benchmark GraphBench using message-passing neural networks and graph transformer models, providing principled baselines and establishing a reference performance. See www.graphbench.io for further details.
☆ Mathematical Framing for Different Agent Strategies
We introduce a unified mathematical and probabilistic framework for understanding and comparing diverse AI agent strategies. We bridge the gap between high-level agent design concepts, such as ReAct, multi-agent systems, and control flows, and a rigorous mathematical formulation. Our approach frames agentic processes as a chain of probabilities, enabling a detailed analysis of how different strategies manipulate these probabilities to achieve desired outcomes. Our framework provides a common language for discussing the trade-offs inherent in various agent architectures. One of our many key contributions is the introduction of the "Degrees of Freedom" concept, which intuitively differentiates the optimizable levers available for each approach, thereby guiding the selection of appropriate strategies for specific tasks. This work aims to enhance the clarity and precision in designing and evaluating AI agents, offering insights into maximizing the probability of successful actions within complex agentic systems.
☆ Feature Engineering vs. Deep Learning for Automated Coin Grading: A Comparative Study on Saint-Gaudens Double Eagles
We challenge the common belief that deep learning always trumps older techniques, using the example of grading Saint-Gaudens Double Eagle gold coins automatically. In our work, we put a feature-based Artificial Neural Network built around 192 custom features pulled from Sobel edge detection and HSV color analysis up against a hybrid Convolutional Neural Network that blends in EfficientNetV2, plus a straightforward Support Vector Machine as the control. Testing 1,785 coins graded by experts, the ANN nailed 86% exact matches and hit 98% when allowing a 3-grade leeway. On the flip side, CNN and SVM mostly just guessed the most common grade, scraping by with 31% and 30% exact hits. Sure, the CNN looked good on broader tolerance metrics, but that is because of some averaging trick in regression that hides how it totally flops at picking out specific grades. All told, when you are stuck with under 2,000 examples and lopsided classes, baking in real coin-expert knowledge through feature design beats out those inscrutable, all-in-one deep learning setups. This rings true for other niche quality checks where data's thin and know-how matters more than raw compute.
☆ NORi: An ML-Augmented Ocean Boundary Layer Parameterization
NORi is a machine-learned (ML) parameterization of ocean boundary layer turbulence that is physics-based and augmented with neural networks. NORi stands for neural ordinary differential equations (NODEs) Richardson number (Ri) closure. The physical parameterization is controlled by a Richardson number-dependent diffusivity and viscosity. The NODEs are trained to capture the entrainment through the base of the boundary layer, which cannot be represented with a local diffusive closure. The parameterization is trained using large-eddy simulations in an "a posteriori" fashion, where parameters are calibrated with a loss function that explicitly depends on the actual time-integrated variables of interest rather than the instantaneous subgrid fluxes, which are inherently noisy. NORi is designed for the realistic nonlinear equation of state of seawater and demonstrates excellent prediction and generalization capabilities in capturing entrainment dynamics under different convective strengths, oceanic background stratifications, rotation strengths, and surface wind forcings. NORi is numerically stable for at least 100 years of integration time in large-scale simulations, despite only being trained on 2-day horizons, and can be run with time steps as long as one hour. The highly expressive neural networks, combined with a physically-rigorous base closure, prove to be a robust paradigm for designing parameterizations for climate models where data requirements are drastically reduced, inference performance can be directly targeted and optimized, and numerical stability is implicitly encouraged during training.
comment: 48 pages, 16 figures, submitted to Journal of Advances in Modeling Earth Systems (JAMES)
☆ Predicting Time-Dependent Flow Over Complex Geometries Using Operator Networks
Fast, geometry-generalizing surrogates for unsteady flow remain challenging. We present a time-dependent, geometry-aware Deep Operator Network that predicts velocity fields for moderate-Re flows around parametric and non-parametric shapes. The model encodes geometry via a signed distance field (SDF) trunk and flow history via a CNN branch, trained on 841 high-fidelity simulations. On held-out shapes, it attains $\sim 5\%$ relative L2 single-step error and up to 1000X speedups over CFD. We provide physics-centric rollout diagnostics, including phase error at probes and divergence norms, to quantify long-horizon fidelity. These reveal accurate near-term transients but error accumulation in fine-scale wakes, most pronounced for sharp-cornered geometries. We analyze failure modes and outline practical mitigations. Code, splits, and scripts are openly released at: https://github.com/baskargroup/TimeDependent-DeepONet to support reproducibility and benchmarking.
☆ Sarcasm Detection on Reddit Using Classical Machine Learning and Feature Engineering
Sarcasm is common in online discussions, yet difficult for machines to identify because the intended meaning often contradicts the literal wording. In this work, I study sarcasm detection using only classical machine learning methods and explicit feature engineering, without relying on neural networks or context from parent comments. Using a 100,000-comment subsample of the Self-Annotated Reddit Corpus (SARC 2.0), I combine word-level and character-level TF-IDF features with simple stylistic indicators. Four models are evaluated: logistic regression, a linear SVM, multinomial Naive Bayes, and a random forest. Naive Bayes and logistic regression perform the strongest, achieving F1-scores around 0.57 for sarcastic comments. Although the lack of conversational context limits performance, the results offer a clear and reproducible baseline for sarcasm detection using lightweight and interpretable methods.
comment: 11 pages, 2 figures, includes full Python code. Classical machine learning baseline for sarcasm detection on the SARC 2.0 dataset
☆ Informative missingness and its implications in semi-supervised learning
Semi-supervised learning (SSL) constructs classifiers using both labelled and unlabelled data. It leverages information from labelled samples, whose acquisition is often costly or labour-intensive, together with unlabelled data to enhance prediction performance. This defines an incomplete-data problem, which statistically can be formulated within the likelihood framework for finite mixture models that can be fitted using the expectation-maximisation (EM) algorithm. Ideally, one would prefer a completely labelled sample, as one would anticipate that a labelled observation provides more information than an unlabelled one. However, when the mechanism governing label absence depends on the observed features or the class labels or both, the missingness indicators themselves contain useful information. In certain situations, the information gained from modelling the missing-label mechanism can even outweigh the loss due to missing labels, yielding a classifier with a smaller expected error than one based on a completely labelled sample analysed. This improvement arises particularly when class overlap is moderate, labelled data are sparse, and the missingness is informative. Modelling such informative missingness thus offers a coherent statistical framework that unifies likelihood-based inference with the behaviour of empirical SSL methods.
comment: 1
☆ Learning to Orchestrate Agents in Natural Language with the Conductor
Powerful large language models (LLMs) from different providers have been expensively trained and finetuned to specialize across varying domains. In this work, we introduce a new kind of Conductor model trained with reinforcement learning to automatically discover powerful coordination strategies among LLMs. Our Conductor learns not only to design targeted communication topologies for effective agent-to-agent collaboration, but also to prompt engineer focused instructions to the LLMs to maximally leverage their individual capabilities. We show that, by learning optimal coordination strategies over pools of powerful worker LLMs, a 7B Conductor achieves significant performance gains beyond any individual worker, attaining state-of-the-art results in challenging reasoning benchmarks, such as LiveCodeBench and GPQA. By training with randomized agent pools, our conductor effectively adapts to arbitrary sets of open- and closed-source agents, meeting any user requirements. Furthermore, allowing the Conductor to select itself as a worker gives rise to recursive topologies, elevating performance with a new form of dynamic test-time scaling through online iterative adaptation. More broadly, ours is among the early work demonstrating language model coordination can be unlocked through RL, where powerful coordination strategies emerge naturally in LLMs through pure end-to-end reward maximization.
☆ STeP-Diff: Spatio-Temporal Physics-Informed Diffusion Models for Mobile Fine-Grained Pollution Forecasting
Fine-grained air pollution forecasting is crucial for urban management and the development of healthy buildings. Deploying portable sensors on mobile platforms such as cars and buses offers a low-cost, easy-to-maintain, and wide-coverage data collection solution. However, due to the random and uncontrollable movement patterns of these non-dedicated mobile platforms, the resulting sensor data are often incomplete and temporally inconsistent. By exploring potential training patterns in the reverse process of diffusion models, we propose Spatio-Temporal Physics-Informed Diffusion Models (STeP-Diff). STeP-Diff leverages DeepONet to model the spatial sequence of measurements along with a PDE-informed diffusion model to forecast the spatio-temporal field from incomplete and time-varying data. Through a PDE-constrained regularization framework, the denoising process asymptotically converges to the convection-diffusion dynamics, ensuring that predictions are both grounded in real-world measurements and aligned with the fundamental physics governing pollution dispersion. To assess the performance of the system, we deployed 59 self-designed portable sensing devices in two cities, operating for 14 days to collect air pollution data. Compared to the second-best performing algorithm, our model achieved improvements of up to 89.12% in MAE, 82.30% in RMSE, and 25.00% in MAPE, with extensive evaluations demonstrating that STeP-Diff effectively captures the spatio-temporal dependencies in air pollution fields.
☆ Constructive Approximation under Carleman's Condition, with Applications to Smoothed Analysis
A classical result of Carleman, based on the theory of quasianalytic functions, shows that polynomials are dense in $L^2(μ)$ for any $μ$ such that the moments $\int x^k dμ$ do not grow too rapidly as $k \to \infty$. In this work, we develop a fairly tight quantitative analogue of the underlying Denjoy-Carleman theorem via complex analysis, and show that this allows for nonasymptotic control of the rate of approximation by polynomials for any smooth function with polynomial growth at infinity. In many cases, this allows us to establish $L^2$ approximation-theoretic results for functions over general classes of distributions (e.g., multivariate sub-Gaussian or sub-exponential distributions) which were previously known only in special cases. As one application, we show that the Paley--Wiener class of functions bandlimited to $[-Ω,Ω]$ admits superexponential rates of approximation over all strictly sub-exponential distributions, which leads to a new characterization of the class. As another application, we solve an open problem recently posed by Chandrasekaran, Klivans, Kontonis, Meka and Stavropoulos on the smoothed analysis of learning, and also obtain quantitative improvements to their main results and applications.
☆ AutoGuard: A Self-Healing Proactive Security Layer for DevSecOps Pipelines Using Reinforcement Learning
Contemporary DevSecOps pipelines have to deal with the evolution of security in an ever-continuously integrated and deployed environment. Existing methods,such as rule-based intrusion detection and static vulnerability scanning, are inadequate and unreceptive to changes in the system, causing longer response times and organization needs exposure to emerging attack vectors. In light of the previous constraints, we introduce AutoGuard to the DevSecOps ecosystem, a reinforcement learning (RL)-powered self-healing security framework built to pre-emptively protect DevSecOps environments. AutoGuard is a self-securing security environment that continuously observes pipeline activities for potential anomalies while preemptively remediating the environment. The model observes and reacts based on a policy that is continually learned dynamically over time. The RL agent improves each action over time through reward-based learning aimed at improving the agent's ability to prevent, detect and respond to a security incident in real-time. Testing using simulated ContinuousIntegration / Continuous Deployment (CI/CD) environments showed AutoGuard to successfully improve threat detection accuracy by 22%, reduce mean time torecovery (MTTR) for incidents by 38% and increase overall resilience to incidents as compared to traditional methods. Keywords- DevSecOps, Reinforcement Learning, Self- Healing Security, Continuous Integration, Automated Threat Mitigation
comment: Accepted and Presented at 1st IEEE Uttar Pradesh Section Women in Engineering International Conference on Electrical Electronics and Computer Engineering (UPWIECON 2025) organized by NIELIT Dehradun held during 30th 31st October 2025
☆ Mitigating Object and Action Hallucinations in Multimodal LLMs via Self-Augmented Contrastive Alignment
Recent advancement in multimodal LLMs (MLLMs) has demonstrated their remarkable capability to generate descriptive captions for input videos. However, these models suffer from factual inaccuracies in the generated descriptions, causing severe hallucination issues. While prior works have explored alleviating hallucinations for static images, jointly mitigating visual object and temporal action hallucinations for dynamic videos remains a challenging and unsolved task. To tackle this challenge, we propose a Self-Augmented Contrastive Alignment (SANTA) framework for enabling object and action faithfulness by exempting the spurious correlations and enforcing the emphasis on visual facts. SANTA employs a hallucinative self-augmentation scheme to identify the potential hallucinations that lie in the MLLM and transform the original captions to the contrasted negatives. Furthermore, we develop a tracklet-phrase contrastive alignment to match the regional objects and relation-guided actions with their corresponding visual and temporal phrases. Extensive experiments demonstrate that SANTA outperforms existing methods in alleviating object and action hallucinations, yielding superior performance on the hallucination examination benchmarks.
comment: IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2026. Project page: https://kpc0810.github.io/santa/
☆ SmartAlert: Implementing Machine Learning-Driven Clinical Decision Support for Inpatient Lab Utilization Reduction
Repetitive laboratory testing unlikely to yield clinically useful information is a common practice that burdens patients and increases healthcare costs. Education and feedback interventions have limited success, while general test ordering restrictions and electronic alerts impede appropriate clinical care. We introduce and evaluate SmartAlert, a machine learning (ML)-driven clinical decision support (CDS) system integrated into the electronic health record that predicts stable laboratory results to reduce unnecessary repeat testing. This case study describes the implementation process, challenges, and lessons learned from deploying SmartAlert targeting complete blood count (CBC) utilization in a randomized controlled pilot across 9270 admissions in eight acute care units across two hospitals between August 15, 2024, and March 15, 2025. Results show significant decrease in number of CBC results within 52 hours of SmartAlert display (1.54 vs 1.82, p <0.01) without adverse effect on secondary safety outcomes, representing a 15% relative reduction in repetitive testing. Implementation lessons learned include interpretation of probabilistic model predictions in clinical contexts, stakeholder engagement to define acceptable model behavior, governance processes for deploying a complex model in a clinical environment, user interface design considerations, alignment with clinical operational priorities, and the value of qualitative feedback from end users. In conclusion, a machine learning-driven CDS system backed by a deliberate implementation and governance process can provide precision guidance on inpatient laboratory testing to safely reduce unnecessary repetitive testing.
comment: 22 pages, 5 figures
☆ Distance Is All You Need: Radial Dispersion for Uncertainty Estimation in Large Language Models
Detecting when large language models (LLMs) are uncertain is critical for building reliable systems, yet existing methods are overly complicated, relying on brittle semantic clustering or internal states. We introduce \textbf{Radial Dispersion Score (RDS)}, a simple, parameter-free, fully model-agnostic uncertainty metric that measures the radial dispersion of sampled generations in embedding space. A lightweight probability-weighted variant further incorporates the model's own token probabilities when available, outperforming different nine strong baselines. Moroever, RDS naturally extends to per-sample scoring, enabling applications such as best-of-$N$ selection and confidence-based filtering. Across four challenging free-form QA datasets and multiple LLMs, our metrics achieve state-of-the-art hallucination detection and answer selection performance, while remaining robust and scalable with respect to sample size and embedding choice.
☆ Long-Horizon Model-Based Offline Reinforcement Learning Without Conservatism
Popular offline reinforcement learning (RL) methods rely on conservatism, either by penalizing out-of-dataset actions or by restricting planning horizons. In this work, we question the universality of this principle and instead revisit a complementary one: a Bayesian perspective. Rather than enforcing conservatism, the Bayesian approach tackles epistemic uncertainty in offline data by modeling a posterior distribution over plausible world models and training a history-dependent agent to maximize expected rewards, enabling test-time generalization. We first illustrate, in a bandit setting, that Bayesianism excels on low-quality datasets where conservatism fails. We then scale the principle to realistic tasks, identifying key design choices, such as layer normalization in the world model and adaptive long-horizon planning, that mitigate compounding error and value overestimation. These yield our practical algorithm, Neubay, grounded in the neutral Bayesian principle. On D4RL and NeoRL benchmarks, Neubay generally matches or surpasses leading conservative algorithms, achieving new state-of-the-art on 7 datasets. Notably, it succeeds with planning horizons of several hundred steps, challenging common belief. Finally, we characterize when Neubay is preferable to conservatism, laying the foundation for a new direction in offline and model-based RL.
comment: Preprint (52 pages, 15 figures)
☆ Complementary Characterization of Agent-Based Models via Computational Mechanics and Diffusion Models
This article extends the preprint "Characterizing Agent-Based Model Dynamics via $ε$-Machines and Kolmogorov-Style Complexity" by introducing diffusion models as orthogonal and complementary tools for characterizing the output of agent-based models (ABMs). Where $ε$-machines capture the predictive temporal structure and intrinsic computation of ABM-generated time series, diffusion models characterize high-dimensional cross-sectional distributions, learn underlying data manifolds, and enable synthetic generation of plausible population-level outcomes. We provide a formal analysis demonstrating that the two approaches operate on distinct mathematical domains -- processes vs. distributions -- and show that their combination yields a two-axis representation of ABM behavior based on temporal organization and distributional geometry. To our knowledge, this is the first framework to integrate computational mechanics with score-based generative modeling for the structural analysis of ABM outputs, thereby situating ABM characterization within the broader landscape of modern machine-learning methods for density estimation and intrinsic computation. The framework is validated using the same elder-caregiver ABM dataset introduced in the companion paper, and we provide precise definitions and propositions formalizing the mathematical complementarity between $ε$-machines and diffusion models. This establishes a principled methodology for jointly analyzing temporal predictability and high-dimensional distributional structure in complex simulation models.
comment: 11 pages. Methods paper introducing a dual-domain framework for analyzing ABM dynamics. Companion temporal-analysis preprint: arXiv:2510.12729
♻ ☆ Conformalized Decision Risk Assessment
In many operational settings, decision-makers must commit to actions before uncertainty resolves, but existing optimization tools rarely quantify how consistently a chosen decision remains optimal across plausible futures. This paper introduces CREDO -- Conformalized Risk Estimation for Decision Optimization, a distribution-free framework that quantifies the probability that a prescribed decision remains (near-)optimal across realizations of uncertainty. CREDO reformulates decision risk through the inverse feasible region -- the set of outcomes under which a decision is optimal -- and estimates its probability using inner approximations constructed from conformal prediction balls generated by a conditional generative model. By calibrating each ball to lie entirely within the inverse feasible region, CREDO obtains finite-sample valid lower bounds on decision optimality without parametric assumptions. The method avoids the conservatism of worst-case robust optimization, is compatible with modern generative models, and applies broadly to convex optimization problems. We establish theoretical validity guarantees, develop efficient computational procedures, and demonstrate through extensive numerical experiments that CREDO provides accurate, interpretable, and reliable assessments of decision reliability in both synthetic and application-motivated settings.
♻ ☆ MORPH: PDE Foundation Models with Arbitrary Data Modality
We introduce MORPH, a modality-agnostic, autoregressive foundation model for partial differential equations (PDEs). MORPH is built on a convolutional vision transformer backbone that seamlessly handles heterogeneous spatiotemporal datasets of varying data modality (1D--3D) at different resolutions, and multiple fields with mixed scalar and vector components. The architecture combines (i) component-wise convolution, which jointly processes scalar and vector channels to capture local interactions, (ii) inter-field cross-attention, which models and selectively propagates information between different physical fields, (iii) axial attentions, which factorize full spatiotemporal self-attention along individual spatial and temporal axes to reduce computational burden while retaining expressivity. We pretrain multiple model variants on a diverse collection of heterogeneous PDE datasets and evaluate transfer to a range of downstream prediction tasks. Using both full-model fine-tuning and parameter-efficient low-rank adapters (LoRA), MORPH outperforms models trained from scratch. Across extensive evaluations, MORPH matches or surpasses strong baselines and recent state-of-the-art models. Collectively, these capabilities present a flexible and powerful backbone for learning from the heterogeneous and multimodal nature of scientific observations, charting a path toward scalable and data-efficient scientific machine learning. The source code, datasets, and models are publicly available at https://github.com/lanl/MORPH.
♻ ☆ Minimum Weighted Feedback Arc Sets for Ranking from Pairwise Comparisons
The Minimum Weighted Feedback Arc Set (MWFAS) problem is closely related to the task of deriving a global ranking from pairwise comparisons. Recent work by He et al. (ICML 2022) advanced the state of the art on ranking benchmarks using learning based methods, but did not examine the underlying connection to MWFAS. In this paper, we investigate this relationship and introduce efficient combinatorial algorithms for solving MWFAS as a means of addressing the ranking problem. Our experimental results show that these simple, learning free methods achieve substantially faster runtimes than recent learning based approaches, while also delivering competitive, and in many cases superior, ranking accuracy. These findings suggest that lightweight combinatorial techniques offer a scalable and effective alternative to deep learning for large scale ranking tasks.
comment: This is a preliminary paper
♻ ☆ Path Channels and Plan Extension Kernels: a Mechanistic Description of Planning in a Sokoban RNN NeurIPS 2025
We partially reverse-engineer a convolutional recurrent neural network (RNN) trained with model-free reinforcement learning to play the box-pushing game Sokoban. We find that the RNN stores future moves (plans) as activations in particular channels of the hidden state, which we call path channels. A high activation in a particular location means that, when a box is in that location, it will get pushed in the channel's assigned direction. We examine the convolutional kernels between path channels and find that they encode the change in position resulting from each possible action, thus representing part of a learned transition model. The RNN constructs plans by starting at the boxes and goals. These kernels extend activations in path channels forwards from boxes and backwards from the goal. Negative values are placed in channels at obstacles. This causes the extension kernels to propagate the negative value in reverse, thus pruning the last few steps and letting an alternative plan emerge; a form of backtracking. Our work shows that, a precise understanding of the plan representation allows us to directly understand the bidirectional planning-like algorithm learned by model-free training in more familiar terms.
comment: Presented at the Mechanistic Interpretability Workshop at NeurIPS 2025. 34 pages, 26 figures
♻ ☆ Athena: Enhancing Multimodal Reasoning with Data-efficient Process Reward Models
We present Athena-PRM, a multimodal process reward model (PRM) designed to evaluate the reward score for each step in solving complex reasoning problems. Developing high-performance PRMs typically demands significant time and financial investment, primarily due to the necessity for step-level annotations of reasoning steps. Conventional automated labeling methods, such as Monte Carlo estimation, often produce noisy labels and incur substantial computational costs. To efficiently generate high-quality process-labeled data, we propose leveraging prediction consistency between weak and strong completers as a criterion for identifying reliable process labels. Remarkably, Athena-PRM demonstrates outstanding effectiveness across various scenarios and benchmarks with just 5,000 samples. Furthermore, we also develop two effective strategies to improve the performance of PRMs: ORM initialization and up-sampling for negative data. We validate our approach in three specific scenarios: verification for test time scaling, direct evaluation of reasoning step correctness, and reward ranked fine-tuning. Our Athena-PRM consistently achieves superior performance across multiple benchmarks and scenarios. Notably, when using Qwen2.5-VL-7B as the policy model, Athena-PRM enhances performance by 10.2 points on WeMath and 7.1 points on MathVista for test time scaling. Furthermore, Athena-PRM sets the state-of-the-art (SoTA) results in VisualProcessBench and outperforms the previous SoTA by 3.9 F1-score, showcasing its robust capability to accurately assess the correctness of the reasoning step. Additionally, utilizing Athena-PRM as the reward model, we develop Athena-7B with reward ranked fine-tuning and outperforms baseline with a significant margin on five benchmarks.
♻ ☆ Improving Graph Neural Network Training, Defense, and Hypergraph Partitioning via Adversarial Robustness Evaluation
Graph Neural Networks (GNNs) are a highly effective neural network architecture for processing graph-structured data. Unlike traditional neural networks that rely solely on the features of the data as input, GNNs leverage both the graph structure, which represents the relationships between data points, and the feature matrix of the data to optimize their feature representation. This unique capability enables GNNs to achieve superior performance across various tasks. However, it also makes GNNs more susceptible to noise from both the graph structure and data features, which can significantly increase the training difficulty and degrade their performance. To address this issue, this paper proposes a novel method for selecting noise-sensitive training samples from the original training set to construct a smaller yet more effective training set for model training. These samples are used to help improve the model's ability to correctly process data in noisy environments. We have evaluated our approach on three of the most classical GNN models GCN, GAT, and GraphSAGE as well as three widely used benchmark datasets: Cora, Citeseer, and PubMed. Our experiments demonstrate that the proposed method can substantially boost the training of Graph Neural Networks compared to using randomly sampled training sets of the same size from the original training set and the larger original full training set. We further proposed a robust-node based hypergraph partitioning method, an adversarial robustness based graph pruning method for GNN defenses and a related spectral edge attack method.
♻ ☆ Beyond I-Con: Exploring New Dimension of Distance Measures in Representation Learning
The Information Contrastive (I-Con) framework revealed that over 23 representation learning methods implicitly minimize KL divergence between data and learned distributions that encode similarities between data points. However, a KL-based loss may be misaligned with the true objective, and properties of KL divergence such as asymmetry and unboundedness may create optimization challenges. We present Beyond I-Con, a framework that enables systematic discovery of novel loss functions by exploring alternative statistical divergences. Key findings: (1) on unsupervised clustering of DINO-ViT embeddings, we achieve state-of-the-art results by modifying the PMI algorithm to use total variation (TV) distance; (2) supervised contrastive learning with Euclidean distance as the feature space metric is improved by replacing the standard loss function with Jenson-Shannon divergence (JSD); (3) on dimensionality reduction, we achieve superior qualitative results and better performance on downstream tasks than SNE by replacing KL with a bounded $f$-divergence. Our results highlight the importance of considering divergence choices in representation learning optimization.
♻ ☆ Triangle Multiplication Is All You Need For Biomolecular Structure Representations
AlphaFold has transformed protein structure prediction, but emerging applications such as virtual ligand screening, proteome-wide folding, and de novo binder design demand predictions at a massive scale, where runtime and memory costs become prohibitive. A major bottleneck lies in the Pairformer backbone of AlphaFold3-style models, which relies on computationally expensive triangular primitives-especially triangle attention-for pairwise reasoning. We introduce Pairmixer, a streamlined alternative that eliminates triangle attention while preserving higher-order geometric reasoning capabilities that are critical for structure prediction. Pairmixer substantially improves computational efficiency, matching state-of-the-art structure predictors across folding and docking benchmarks, delivering up to 4x faster inference on long sequences while reducing training cost by 34%. Its efficiency alleviates the computational burden of downstream applications such as modeling large protein complexes, high-throughput ligand and binder screening, and hallucination-based design. Within BoltzDesign, for example, Pairmixer delivers over 2x faster sampling and scales to sequences ~30% longer than the memory limits of Pairformer. Code is available at https://github.com/genesistherapeutics/pairmixer.
comment: Preprint
♻ ☆ Convergence of Stochastic Gradient Langevin Dynamics in the Lazy Training Regime
Continuous-time models provide important insights into the training dynamics of optimization algorithms in deep learning. In this work, we establish a non-asymptotic convergence analysis of stochastic gradient Langevin dynamics (SGLD), which is an Itô stochastic differential equation (SDE) approximation of stochastic gradient descent in continuous time, in the lazy training regime. We show that, under regularity conditions on the Hessian of the loss function, SGLD with multiplicative and state-dependent noise (i) yields a non-degenerate kernel throughout the training process with high probability, and (ii) achieves exponential convergence to the empirical risk minimizer in expectation, and we establish finite-time and finite-width bounds on the optimality gap. We corroborate our theoretical findings with numerical examples in the regression setting.
♻ ☆ Experience Replay with Random Reshuffling
Experience replay is a key component in reinforcement learning for stabilizing learning and improving sample efficiency. Its typical implementation samples transitions with replacement from a replay buffer. In contrast, in supervised learning with a fixed dataset, it is a common practice to shuffle the dataset every epoch and consume data sequentially, which is called random reshuffling (RR). RR enjoys theoretically better convergence properties and has been shown to outperform with-replacement sampling empirically. To leverage the benefits of RR in reinforcement learning, we propose sampling methods that extend RR to experience replay, both in uniform and prioritized settings, and analyze their properties via theoretical analysis and simulations. We evaluate our sampling methods on Atari benchmarks, demonstrating their effectiveness in deep reinforcement learning. Code is available at https://github.com/pfnet-research/errr.
♻ ☆ IndiSeek learns information-guided disentangled representations
Learning disentangled representations is a fundamental task in multi-modal learning. In modern applications such as single-cell multi-omics, both shared and modality-specific features are critical for characterizing cell states and supporting downstream analyses. Ideally, modality-specific features should be independent of shared ones while also capturing all complementary information within each modality. This tradeoff is naturally expressed through information-theoretic criteria, but mutual-information-based objectives are difficult to estimate reliably, and their variational surrogates often underperform in practice. In this paper, we introduce IndiSeek, a novel disentangled representation learning approach that addresses this challenge by combining an independence-enforcing objective with a computationally efficient reconstruction loss that bounds conditional mutual information. This formulation explicitly balances independence and completeness, enabling principled extraction of modality-specific features. We demonstrate the effectiveness of IndiSeek on synthetic simulations, a CITE-seq dataset and multiple real-world multi-modal benchmarks.
♻ ☆ The Peril of Preference: Why GRPO fails on Ordinal Rewards
Group-relative Policy Optimization's (GRPO) simplicity makes it highly desirable for adapting LLMs to become experts at specific tasks. But this simplicity also makes it ill-specified as we seek to enhance RL training with richer, non-binary feedback. When using ordinal rewards to give partial credit, GRPO's simplicity starts to hurt, as its group-average baseline often assigns a positive advantage to failed trajectories and reinforces incorrect behavior. We introduce Correctness Relative Policy Optimization (CoRPO), a new formulation that solves this flaw. CoRPO uses an adaptive baseline that enforces a minimum quality threshold, ensuring failed solutions are never positively reinforced. Once the policy consistently meets this threshold, the baseline automatically transitions to a relative preference mode, pushing the model to find optimal solutions rather than just "acceptable" ones. We empirically validate CoRPO on a code verification task, where it demonstrates more stable convergence and better out-of-domain generalization. This work represents a critical step in our broader research program to enable LLMs to learn genuinely new capabilities through reinforcement learning. We achieve this by enabling LLMs to learn from rich, multi-dimensional feedback - progressing from binary to ordinal rewards in this work, and onward to denser, per-step supervision.
♻ ☆ LORE: A Large Generative Model for Search Relevance
Achievement. We introduce LORE, a systematic framework for Large Generative Model-based relevance in e-commerce search. Deployed and iterated over three years, LORE achieves a cumulative +27\% improvement in online GoodRate metrics. This report shares the valuable experience gained throughout its development lifecycle, spanning data, features, training, evaluation, and deployment. Insight. While existing works apply Chain-of-Thought (CoT) to enhance relevance, they often hit a performance ceiling. We argue this stems from treating relevance as a monolithic task, lacking principled deconstruction. Our key insight is that relevance comprises distinct capabilities: knowledge and reasoning, multi-modal matching, and rule adherence. We contend that a qualitative-driven decomposition is essential for breaking through current performance bottlenecks. Contributions. LORE provides a complete blueprint for the LLM relevance lifecycle. Key contributions include: (1) A two-stage training paradigm combining progressive CoT synthesis via SFT with human preference alignment via RL. (2) A comprehensive benchmark, RAIR, designed to evaluate these core capabilities. (3) A query frequency-stratified deployment strategy that efficiently transfers offline LLM capabilities to the online system. LORE serves as both a practical solution and a methodological reference for other vertical domains.
♻ ☆ A Theoretical Framework for Auxiliary-Loss-Free Load Balancing of Sparse Mixture-of-Experts in Large-Scale AI Models
In large-scale AI training, Sparse Mixture-of-Experts (s-MoE) layers enable scaling by activating only a small subset of experts per token. An operational challenge in this design is load balancing: routing tokens to minimize the number of idle experts, which is important for the efficient utilization of (costly) GPUs. We provide a theoretical framework for analyzing the Auxiliary-Loss-Free Load Balancing (ALF-LB) procedure -- proposed by DeepSeek's Wang et al. (2024) -- by casting it as a one-step-per-iteration primal-dual method for an assignment problem. First, in a stylized deterministic setting, our framework yields several insightful structural properties: (i) a monotonic improvement of a Lagrangian objective, (ii) a preference rule that moves tokens from overloaded to underloaded experts, and (iii) an approximate-balancing guarantee. Then, we incorporate the stochastic and dynamic nature of AI training using a generalized online optimization formulation. In the online setting, we derive a strong convexity property of the objective that leads to a logarithmic expected regret bound under certain step-size choices. Additionally, we present real experiments on 1B-parameter DeepSeekMoE models to complement our theoretical findings. Together, these results build a principled framework for analyzing the Auxiliary-Loss-Free Load Balancing of s-MoE in AI models.
♻ ☆ Large language models can learn and generalize steganographic chain-of-thought under process supervision NeurIPS 2025
Chain-of-thought (CoT) reasoning not only enhances large language model performance but also provides critical insights into decision-making processes, marking it as a useful tool for monitoring model intent and planning. However, recent works have shown that banning the mention of a specific example of reward hacking causes obfuscation of the undesired reasoning traces but the persistence of the undesired behavior, threatening the reliability of CoT monitoring. We provide an extension to these results with regard to the ability of models to learn a specific type of obfuscated reasoning: steganography. First, we show that penalizing the use of specific strings within load-bearing reasoning traces causes models to substitute alternative strings. Crucially, this does not alter the underlying method by which the model performs the task, demonstrating that the model can learn to steganographically encode its reasoning.We further demonstrate that models can generalize an encoding scheme. When the penalized strings belong to an overarching class, the model learns not only to substitute strings seen in training, but also develops a general encoding scheme for all members of the class which it can apply to held-out testing strings.
comment: 10 pages main text, 3 figures main text, 17 pages supplementary material, 1 figure supplementary material, accepted at NeurIPS 2025
♻ ☆ The Autonomy-Alignment Problem in Open-Ended Learning Robots: Formalising the Purpose Framework
The rapid advancement of artificial intelligence is enabling the development of increasingly autonomous robots capable of operating beyond engineered factory settings and into the unstructured environments of human life. This shift raises a critical autonomy-alignment problem: how to ensure that a robot's autonomous learning focuses on acquiring knowledge and behaviours that serve human practical objectives while remaining aligned with broader human values (e.g., safety and ethics). This problem remains largely underexplored and lacks a unifying conceptual and formal framework. Here, we address one of its most challenging instances of the problem: open-ended learning (OEL) robots, which autonomously acquire new knowledge and skills through interaction with the environment, guided by intrinsic motivations and self-generated goals. We propose a computational framework, introduced qualitatively and then formalised, to guide the design of OEL architectures that balance autonomy with human control. At its core is the novel concept of purpose, which specifies what humans (designers or users) want the robot to learn, do, or avoid, independently of specific task domains. The framework decomposes the autonomy-alignment problem into four tractable sub-problems: the alignment of robot purposes (hardwired or learnt) with human purposes; the arbitration between multiple purposes; the grounding of abstract purposes into domain-specific goals; and the acquisition of competence to achieve those goals. The framework supports formal definitions of alignment across multiple cases and proofs of necessary and sufficient conditions under which alignment holds. Illustrative hypothetical scenarios showcase the applicability of the framework for guiding the development of purpose-aligned autonomous robots.
comment: 33 pages, 5 figures
♻ ☆ Bant: Byzantine Antidote via Trial Function and Trust Scores
Recent advancements in machine learning have improved performance while also increasing computational demands. While federated and distributed setups address these issues, their structures remain vulnerable to malicious influences. In this paper, we address a specific threat: Byzantine attacks, wherein compromised clients inject adversarial updates to derail global convergence. We combine the concept of trust scores with trial function methodology to dynamically filter outliers. Our methods address the critical limitations of previous approaches, allowing operation even when Byzantine nodes are in the majority. Moreover, our algorithms adapt to widely used scaled methods such as Adam and RMSProp, as well as practical scenarios, including local training and partial participation. We validate the robustness of our methods by conducting extensive experiments on both public datasets and private ECG data collected from medical institutions. Furthermore, we provide a broad theoretical analysis of our algorithms and their extensions to the aforementioned practical setups. The convergence guaranties of our methods are comparable to those of classical algorithms developed without Byzantine interference.
♻ ☆ SoftStep: Learning Sparse Similarity Powers Deep Neighbor-Based Regression
Neighbor-based methods are a natural alternative to linear prediction for tabular data when relationships between inputs and targets exhibit complexity such as nonlinearity, periodicity, or heteroscedasticity. Yet in deep learning on unstructured data, nonparametric neighbor-based approaches are rarely implemented in lieu of simple linear heads. This is primarily due to the ability of systems equipped with linear regression heads to co-learn internal representations along with the linear head's parameters. To unlock the full potential of neighbor-based methods in neural networks we introduce SoftStep, a parametric module that learns sparse instance-wise similarity measures directly from data. When integrated with existing neighbor-based methods, SoftStep enables regression models that consistently outperform linear heads across diverse architectures, domains, and training scenarios. We focus on regression tasks, where we show theoretically that neighbor-based prediction with a mean squared error objective constitutes a metric learning algorithm that induces well-structured embedding spaces. We then demonstrate analytically and empirically that this representational structure translates into superior performance when combined with the sparse, instance-wise similarity measures introduced by SoftStep. Beyond regression, SoftStep is a general method for learning instance-wise similarity in deep neural networks, with broad applicability to attention mechanisms, metric learning, representational alignment, and related paradigms.
♻ ☆ OPTIC-ER: A Reinforcement Learning Framework for Real-Time Emergency Response and Equitable Resource Allocation in Underserved African Communities
Public service systems in many African regions suffer from delayed emergency response and spatial inequity, causing avoidable suffering. This paper introduces OPTIC-ER, a reinforcement learning (RL) framework for real-time, adaptive, and equitable emergency response. OPTIC-ER uses an attention-guided actor-critic architecture to manage the complexity of dispatch environments. Its key innovations are a Context-Rich State Vector, encoding action sub-optimality, and a Precision Reward Function, which penalizes inefficiency. Training occurs in a high-fidelity simulation using real data from Rivers State, Nigeria, accelerated by a precomputed Travel Time Atlas. The system is built on the TALS framework (Thin computing, Adaptability, Low-cost, Scalability) for deployment in low-resource settings. In evaluations on 500 unseen incidents, OPTIC-ER achieved a 100.00% optimal action selection rate, confirming its robustness and generalization. Beyond dispatch, the system generates Infrastructure Deficiency Maps and Equity Monitoring Dashboards to guide proactive governance and data-informed development. This work presents a validated blueprint for AI-augmented public services, showing how context-aware RL can bridge the gap between algorithmic decision-making and measurable human impact.
comment: Source code and data available at: https://github.com/marytonwe/OPTIC-ER.git
♻ ☆ Unsupervised Time Series Anomaly Prediction with Importance-based Generative Contrastive Learning KDD 2025
Time series anomaly prediction plays an essential role in many real-world scenarios, such as environmental prevention and prompt maintenance of cyber-physical systems. However, existing time series anomaly prediction methods mainly require supervised training with plenty of manually labeled data, which are difficult to obtain in practice. Besides, unseen anomalies can occur during inference, which could differ from the labeled training data and make these models fail to predict such new anomalies. In this paper, we study a novel problem of unsupervised time series anomaly prediction. We provide a theoretical analysis and propose Importance-based Generative Contrastive Learning (IGCL) to address the aforementioned problems. IGCL distinguishes between normal and anomaly precursors, which are generated by our anomaly precursor pattern generation module. To address the efficiency issues caused by the potential complex anomaly precursor combinations, we propose a memory bank with importance-based scores to adaptively store representative anomaly precursors and generate more complicated anomaly precursors. Extensive experiments on seven benchmark datasets show our method outperforms state-of-the-art baselines on unsupervised time series anomaly prediction problems.
comment: ACM SIGKDD 2025
♻ ☆ DAVE: Diagnostic benchmark for Audio Visual Evaluation
Audio-visual understanding is a rapidly evolving field that seeks to integrate and interpret information from both auditory and visual modalities. Despite recent advances in multi-modal learning, existing benchmarks often suffer from strong visual bias -- when answers can be inferred from visual data alone -- and provide only aggregate scores that conflate multiple sources of error. This makes it difficult to determine whether models struggle with visual understanding, audio interpretation, or audio-visual alignment. In this work, we introduce DAVE: Diagnostic Audio Visual Evaluation, a novel benchmark dataset designed to systematically evaluate audio-visual models across controlled settings. DAVE alleviates existing limitations by (i) ensuring both modalities are necessary to answer correctly and (ii) decoupling evaluation into atomic subcategories. Our detailed analysis of state-of-the-art models reveals specific failure modes and provides targeted insights for improvement. By offering this standardized diagnostic framework, we aim to facilitate more robust development of audio-visual models. Dataset: https://huggingface.co/datasets/gorjanradevski/dave Code: https://github.com/gorjanradevski/dave
comment: First two authors contributed equally
♻ ☆ Epidemiology of Large Language Models: A Benchmark for Observational Distribution Knowledge
Artificial intelligence (AI) systems hold great promise for advancing various scientific disciplines, and are increasingly used in real-world applications. Despite their remarkable progress, further capabilities are expected in order to achieve more general types of intelligence. A critical distinction in this context is between factual knowledge, which can be evaluated against true or false answers (e.g., "what is the capital of England?"), and probabilistic knowledge, reflecting probabilistic properties of the real world (e.g., "what is the sex of a computer science graduate in the US?"). In this paper, our goal is to build a benchmark for understanding the capabilities of LLMs in terms of knowledge of probability distributions describing the real world. Given that LLMs are trained on vast amounts of text, it may be plausible that they internalize aspects of these distributions. Indeed, LLMs are touted as powerful universal approximators of real-world distributions. At the same time, classical results in statistics, known as curse of dimensionality, highlight fundamental challenges in learning distributions in high dimensions, challenging the notion of universal distributional learning. In this work, we develop the first benchmark to directly test this hypothesis, evaluating whether LLMs have access to empirical distributions describing real-world populations across domains such as economics, health, education, and social behavior. Our results demonstrate that LLMs perform poorly overall, and do not seem to internalize real-world statistics naturally. When interpreted in the context of Pearl's Causal Hierarchy (PCH), our benchmark demonstrates that language models do not contain knowledge on observational distributions (Layer 1 of PCH), and thus the Causal Hierarchy Theorem implies that interventional (Layer 2) and counterfactual (Layer 3) knowledge of these models is also limited.
♻ ☆ Generalizability of experimental studies
Experimental studies are a cornerstone of Machine Learning (ML) research. A common and often implicit assumption is that the study's results will generalize beyond the study itself, e.g., to new data. That is, repeating the same study under different conditions will likely yield similar results. Existing frameworks to measure generalizability, borrowed from the casual inference literature, cannot capture the complexity of the results and the goals of an ML study. The problem of measuring generalizability in the more general ML setting is thus still open, also due to the lack of a mathematical formalization of experimental studies. In this paper, we propose such a formalization, use it to develop a framework to quantify generalizability, and propose an instantiation based on rankings and the Maximum Mean Discrepancy. We show how our framework offers insights into the number of experiments necessary for a generalizable study, and how experimenters can benefit from it. Finally, we release the genexpy Python package, which allows for an effortless evaluation of the generalizability of other experimental studies.
comment: Under review at TMLR
♻ ☆ ENTIRE: Learning-based Volume Rendering Time Prediction
We introduce ENTIRE, a novel deep learning-based approach for fast and accurate volume rendering time prediction. Predicting rendering time is inherently challenging due to its dependence on multiple factors, including volume data characteristics, image resolution, camera configuration, and transfer function settings. Our method addresses this by first extracting a feature vector that encodes structural volume properties relevant to rendering performance. This feature vector is then integrated with additional rendering parameters, such as image resolution, camera setup, and transfer function settings, to produce the final prediction. We evaluate ENTIRE across multiple rendering frameworks (CPU- and GPU-based) and configurations (with and without single-scattering) on diverse datasets. The results demonstrate that our model achieves high prediction accuracy with fast inference speed. Furthermore, we showcase ENTIRE's effectiveness in two case studies, where it enables dynamic parameter adaptation for stable frame rates and load balancing.
♻ ☆ Bilevel Models for Adversarial Learning and A Case Study
Adversarial learning has been attracting more and more attention thanks to the fast development of machine learning and artificial intelligence. However, due to the complicated structure of most machine learning models, the mechanism of adversarial attacks is not well interpreted. How to measure the effect of attacks is still not quite clear. In this paper, we investigate the adversarial learning from the perturbation analysis point of view. We characterize the robustness of learning models through the calmness of the solution mapping. In the case of convex clustering models, we identify the conditions under which the clustering results remain the same under perturbations. When the noise level is large, it leads to an attack. Therefore, we propose two bilevel models for adversarial learning where the effect of adversarial learning is measured by some deviation function. Specifically, we systematically study the so-called $δ$-measure and show that under certain conditions, it can be used as a deviation function in adversarial learning for convex clustering models. Finally, we conduct numerical tests to verify the above theoretical results as well as the efficiency of the two proposed bilevel models.
comment: This paper has been accepted by Mathematics
♻ ☆ Consistent spectral clustering in sparse tensor block models
High-order clustering aims to classify objects in multiway datasets that are prevalent in various fields such as bioinformatics, recommendation systems, and social network analysis. Such data are often sparse and high-dimensional, posing significant statistical and computational challenges. This paper introduces a tensor block model specifically designed for sparse integer-valued data tensors. We propose a simple spectral clustering algorithm augmented with a trimming step to mitigate noise fluctuations, and identify a density threshold that ensures the algorithm's consistency. Our approach models sparsity using a sub-Poisson noise concentration framework, accommodating heavier than sub-Gaussian tails. Remarkably, this natural class of tensor block models is closed under aggregation across arbitrary modes. Consequently, we obtain a comprehensive framework for evaluating the tradeoff between signal loss and noise reduction incurred by aggregating data. The analysis is based on a novel concentration bound for sparse random Gram matrices. The theoretical findings are illustrated through numerical experiments.
comment: 52 pages
♻ ☆ Modelling the Doughnut of social and planetary boundaries with frugal machine learning
The 'Doughnut' of social and planetary boundaries has emerged as a popular framework for assessing environmental and social sustainability. Here, we provide a proof-of-concept analysis that shows how machine learning (ML) methods can be applied to a simple macroeconomic model of the Doughnut. First, we show how ML methods can be used to find policy parameters that are consistent with 'living within the Doughnut'. Second, we show how a reinforcement learning agent can identify the optimal trajectory towards desired policies in the parameter space. The approaches we test, which include a Random Forest Classifier and $Q$-learning, are frugal ML methods that are able to find policy parameter combinations that achieve both environmental and social sustainability. The next step is the application of these methods to a more complex ecological macroeconomic model.
comment: Presented at the Rethinking AI Workshop @ EurIPS'25
♻ ☆ LLMscape NeurIPS 2025
LLMscape is an interactive installation that investigates how humans and AI construct meaning under shared conditions of uncertainty. Within a mutable, projection-mapped landscape, human participants reshape the world and engage with multiple AI agents, each developing incomplete and provisional accounts of their environment. Exhibited in Shanghai and continually evolving, the work positions AI not as deterministic tools but as embodied co-witnesses to an unstable world, examining the parallels between human and artificial meaning-making and inviting reflection on our shared epistemic limits.
comment: Accepted to NeurIPS 2025, Creative AI Track (updated to include poster)
♻ ☆ Joint Discriminative-Generative Modeling via Dual Adversarial Training
Simultaneously achieving robust classification and high-fidelity generative modeling within a single framework presents a significant challenge. Hybrid approaches, such as Joint Energy-Based Models (JEM), interpret classifiers as EBMs but are often limited by the instability and poor sample quality inherent in Stochastic Gradient Langevin Dynamics (SGLD)-based training. We address these limitations by proposing a novel training framework that integrates adversarial training (AT) principles for both discriminative robustness and stable generative learning. The proposed method introduces three key innovations: (1) the replacement of SGLD-based JEM learning with a stable, AT-based approach that optimizes the energy function by discriminating between real data and Projected Gradient Descent (PGD)-generated contrastive samples using the BCE loss; (2) synergistic adversarial training for the discriminative component that enhances classification robustness while eliminating the need for explicit gradient penalties; and (3) a two-stage training strategy that addresses normalization-related instabilities and enables leveraging pretrained robust classifiers, generalizing effectively across diverse architectures. Experiments on CIFAR-10/100 and ImageNet demonstrate that our approach: (1) is the first EBM-based hybrid to scale to high-resolution datasets with high training stability, simultaneously achieving state-of-the-art discriminative and generative performance on ImageNet 256$\times$256; (2) uniquely combines generative quality with adversarial robustness, enabling critical applications like robust counterfactual explanations; and (3) functions as a competitive standalone generative model, matching the generative quality of autoregressive methods (VAR-d16) and surpassing diffusion models while offering unique versatility.
comment: V2: ImageNet 256x256 with ConvNeXt-Large (FID 3.29), formal theoretical analysis, L_inf training, computational analysis, expanded related work/baselines. Revised presentation. Code: https://github.com/xuwangyin/DAT
♻ ☆ Safe Online Bid Optimization with Return on Investment and Budget Constraints
In online marketing, the advertisers aim to balance achieving high volumes and high profitability. The companies' business units address this tradeoff by maximizing the volumes while guaranteeing a minimum Return On Investment (ROI) level. Such a task can be naturally modeled as a combinatorial optimization problem subject to ROI and budget constraints that can be solved online. In this picture, the learner's uncertainty over the constraints' parameters plays a crucial role since the algorithms' exploration choices might lead to their violation during the entire learning process. Such violations represent a major obstacle to adopting online techniques in real-world applications. Thus, controlling the algorithms' exploration during learning is paramount to making humans trust online learning tools. This paper studies the nature of both optimization and learning problems. In particular, we show that the learning problem is inapproximable within any factor (unless P = NP) and provide a pseudo-polynomial-time algorithm to solve its discretized version. Subsequently, we prove that no online learning algorithm can violate the (ROI or budget) constraints a sublinear number of times during the learning process while guaranteeing a sublinear regret. We provide the $GCB$ algorithm that guarantees sublinear regret at the cost of a linear number of constraint violations and $GCB_{safe}$ that guarantees w.h.p. a constant upper bound on the number of constraint violations at the cost of a linear regret. Moreover, we designed $GCB_{safe}(ψ,φ)$, which guarantees both sublinear regret and safety w.h.p. at the cost of accepting tolerances $ψ$ and $φ$ in the satisfaction of the ROI and budget constraints, respectively. Finally, we provide experimental results to compare the regret and constraint violations of $GCB$, $GCB_{safe}$, and $GCB_{safe}(ψ,φ)$.
♻ ☆ Beyond the Exploration-Exploitation Trade-off: A Hidden State Approach for LLM Reasoning in RLVR
A prevailing view in Reinforcement Learning with Verifiable Rewards (RLVR) interprets recent progress through the lens of an exploration-exploitation trade-off, a perspective largely shaped by token-level metrics. We re-examine this perspective, proposing that this perceived trade-off may not be a fundamental constraint but rather an artifact of the measurement level. To investigate this, we shift the analysis to the semantically rich hidden-state space, adopting Effective Rank (ER) to quantify exploration and proposing its novel first- and second-order derivatives, named ER Velocity and ER Acceleration, to capture exploitation dynamics. Our analysis reveals that in the semantic space, exploration and exploitation could be decoupled (Sec.~4). This finding reveals an opportunity to enhance both capacities simultaneously. This insight motivates our method, Velocity-Exploiting Rank-Learning (VERL), the first to operationalize the principle of synergistic exploration-exploitation enhancement by directly shaping the RL advantage function. The key innovation is leveraging the theoretically stable ERA as a predictive meta-controller to create a synergistic, dual-channel incentive structure. Instead of forcing a trade-off, VERL prospectively amplifies rewards for exploration to preempt overconfidence and reinforces exploitative gains to consolidate reasoning. Experiments across diverse LLMs and reasoning benchmarks show consistent gains, including up to 21.4% absolute accuracy improvement on the challenging Gaokao 2024 dataset.
♻ ☆ SoK: Decentralized AI (DeAI)
Centralization enhances the efficiency of Artificial Intelligence (AI) but also introduces critical challenges, including single points of failure, inherent biases, data privacy risks, and scalability limitations. To address these issues, blockchain-based Decentralized Artificial Intelligence (DeAI) has emerged as a promising paradigm that leverages decentralization and transparency to improve the trustworthiness of AI systems. Despite rapid adoption in industry, the academic community lacks a systematic analysis of DeAI's technical foundations, opportunities, and challenges. This work presents the first Systematization of Knowledge (SoK) on DeAI, offering a formal definition, a taxonomy of existing solutions based on the AI lifecycle, and an in-depth investigation of the roles of blockchain in enabling secure and incentive-compatible collaboration. We further review security risks across the DeAI lifecycle and empirically evaluate representative mitigation techniques. Finally, we highlight open research challenges and future directions for advancing blockchain-based DeAI.
comment: This is a Systematization of Knowledge (SoK) for the rapidly evolving field of Decentralized AI (DeAI). We welcome valuable comments, suggestions, and collaboration to further refine and enhance this work. We hope our contribution will help accelerate the advancement of DeAI
♻ ☆ Optimizing Fine-Tuning through Advanced Initialization Strategies for Low-Rank Adaptation
The rapid development of parameter-efficient fine-tuning methods has noticeably improved the efficiency of adapting large language models. Among these, LoRA has gained widespread popularity due to its strong balance of effectiveness and parameter efficiency. However, LoRA relies on initializing two low-rank matrices whose product is zero, which limits its ability to effectively activate and leverage the original model weights-creating a potential bottleneck for optimal performance. To address this limitation, we propose \textbf{IniLoRA}, a novel initialization strategy that initializes the low-rank matrices to closely approximate the original model weights. Experimental results indicate that IniLoRA achieves better performance than LoRA across a range of models and tasks. Additionally, we introduce two variants, IniLoRA-$α$ and IniLoRA-$β$, both leveraging distinct initialization methods to enhance performance further.
♻ ☆ Incoherent Beliefs & Inconsistent Actions in Large Language Models
Real-world tasks and environments exhibit differences from the static datasets that large language models (LLMs) are typically evaluated on. Such tasks can involve sequential interaction, requiring coherent updating of beliefs in light of new evidence, and making appropriate decisions based on those beliefs. Predicting how LLMs will perform in such dynamic environments is important, but can be tricky to determine from measurements in static settings. In this work, we examine two critical components of LLM performance: the ability of LLMs to coherently update their beliefs, and the extent to which the actions they take are consistent with those beliefs. First, we find that LLMs are largely inconsistent in how they update their beliefs; models can exhibit up to a 30% average difference between the directly elicited posterior, and the correct update of their prior. Second, we find that LLMs also often take actions which are inconsistent with the beliefs they hold. On a betting market, for example, LLMs often do not even bet in the same direction as their internally held beliefs over the underlying outcomes. We also find they have moderate self-inconsistency in how they respond to challenges by users to given answers. Finally, we show that the above properties hold even for strong models that obtain high accuracy or that are well-calibrated on the tasks at hand. Our results highlight the difficulties of predicting LLM behavior in complex real-world settings.
♻ ☆ Convergence Analysis for Deep Sparse Coding via Convolutional Neural Networks
In this work, we explore the intersection of sparse coding theory and deep learning to enhance our understanding of feature extraction capabilities in advanced neural network architectures. We begin by introducing a novel class of Deep Sparse Coding (DSC) models and establish a thorough theoretical analysis of their uniqueness and stability properties. By applying iterative algorithms to these DSC models, we derive convergence rates for convolutional neural networks (CNNs) in their ability to extract sparse features. This provides a strong theoretical foundation for the use of CNNs in sparse feature-learning tasks. We additionally extend this convergence analysis to more general neural network architectures, including those with diverse activation functions, as well as self-attention and transformer-based models. This broadens the applicability of our findings to a wide range of deep learning methods for the extraction of deep-sparse features. Inspired by the strong connection between sparse coding and CNNs, we also explore training strategies to encourage neural networks to learn sparser features. Through numerical experiments, we demonstrate the effectiveness of these approaches, providing valuable insight for the design of efficient and interpretable deep learning models.
♻ ☆ Estimating the Joint Probability of Scenario Parameters with Gaussian Mixture Copula Models
This paper presents the first application of Gaussian Mixture Copula Models to the statistical modeling of driving scenarios for the safety validation of automated driving systems. Knowledge of the joint probability distribution of scenario parameters is essential for scenario-based safety assessment, where risk quantification depends on the likelihood of concrete parameter combinations. Gaussian Mixture Copula Models bring together the multimodal expressivity of Gaussian Mixture Models and the flexibility of copulas, enabling separate modeling of marginal distributions and dependencies. We benchmark Gaussian Mixture Copula Models against previously proposed approaches - Gaussian Mixture Models and Gaussian Copula Models - using real-world driving data drawn from two scenarios defined in United Nations Regulation No. 157. Our evaluation on approximately 18 million instances of these two scenarios demonstrates that Gaussian Mixture Copula Models consistently surpass Gaussian Copula Models and perform better than, or at least comparably to, Gaussian Mixture Models, as measured by both log-likelihood and Sinkhorn distance. These results are promising for the adoption of Gaussian Mixture Copula Models as a statistical foundation for future scenario-based validation frameworks.
comment: 9 pages, 4 figures; This work has been submitted to the IEEE for possible publication; Code available at: https://codeocean.com/capsule/1003615/tree
♻ ☆ Improved Stochastic Optimization of LogSumExp
The LogSumExp function, also known as the free energy, plays a central role in many important optimization problems, including entropy-regularized optimal transport and distributionally robust optimization (DRO). It is also the dual to the Kullback-Leibler (KL) divergence, which is widely used in machine learning. In practice, when the number of exponential terms inside the logarithm is large or infinite, optimization becomes challenging since computing the gradient requires differentiating every term. Previous approaches that replace the full sum with a small batch introduce significant bias. We propose a novel approximation to LogSumExp that can be efficiently optimized using stochastic gradient methods. This approximation is rooted in a sound modification of the KL divergence in the dual, resulting in a new $f$-divergence called the safe KL divergence. The accuracy of the approximation is controlled by a tunable parameter and can be made arbitrarily small. Like the LogSumExp, our approximation preserves convexity. Moreover, when applied to an $L$-smooth function bounded from below, the smoothness constant of the resulting objective scales linearly with $L$. Experiments in DRO and continuous optimal transport demonstrate the advantages of our approach over state-of-the-art baselines and the effective treatment of numerical issues associated with the standard LogSumExp and KL.
comment: 19 pages, 5 figures, 1 table
♻ ☆ ImageNot: A contrast with ImageNet preserves model rankings
We introduce ImageNot, a dataset constructed explicitly to be drastically different than ImageNet while matching its scale. ImageNot is designed to test the external validity of deep learning progress on ImageNet. We show that key model architectures developed for ImageNet over the years rank identically to how they rank on ImageNet when trained from scratch and evaluated on ImageNot. Moreover, the relative improvements of each model over earlier models strongly correlate in both datasets. Our work demonstrates a surprising degree of external validity in the relative performance of image classification models when trained and evaluated on an entirely different dataset. This stands in contrast with absolute accuracy numbers that typically drop sharply even under small changes to a dataset.
♻ ☆ Few-shot Class-incremental Fault Diagnosis by Preserving Class-Agnostic Knowledge with Dual-Granularity Representations
Few-Shot Class-Incremental Fault Diagnosis (FSC-FD), which aims to continuously learn from new fault classes with only a few samples without forgetting old ones, is critical for real-world industrial systems. However, this challenging task severely amplifies the issues of catastrophic forgetting of old knowledge and overfitting on scarce new data. To address these challenges, this paper proposes a novel framework built upon Dual-Granularity Representations, termed the Dual-Granularity Guidance Network (DGGN). Our DGGN explicitly decouples feature learning into two parallel streams: 1) a fine-grained representation stream, which utilizes a novel Multi-Order Interaction Aggregation module to capture discriminative, class-specific features from the limited new samples. 2) a coarse-grained representation stream, designed to model and preserve general, class-agnostic knowledge shared across all fault types. These two representations are dynamically fused by a multi-semantic cross-attention mechanism, where the stable coarse-grained knowledge guides the learning of fine-grained features, preventing overfitting and alleviating feature conflicts. To further mitigate catastrophic forgetting, we design a Boundary-Aware Exemplar Prioritization strategy. Moreover, a decoupled Balanced Random Forest classifier is employed to counter the decision boundary bias caused by data imbalance. Extensive experiments on the TEP benchmark and a real-world MFF dataset demonstrate that our proposed DGGN achieves superior diagnostic performance and stability compared to state-of-the-art FSC-FD approaches. Our code is publicly available at https://github.com/MentaY/DGGN
comment: This manuscript is currently under review at the Measurement
♻ ☆ Bridging Online Behavior and Clinical Insight: A Longitudinal LLM-based Study of Suicidality on YouTube Reveals Novel Digital Markers
Suicide remains a leading cause of death in Western countries. As social media becomes central to daily life, digital footprints offer valuable insight into suicidal behavior. Focusing on individuals who attempted suicide while uploading videos to their channels, we investigate: How do linguistic patterns on YouTube reflect suicidal behavior, and how do these patterns align with or differ from expert knowledge? We examined linguistic changes around suicide attempts and compared individuals who attempted suicide while actively uploading to their channel with three control groups: those with prior attempts, those experiencing major life events, and matched individuals from the broader cohort. Applying complementary bottom-up, hybrid, and expert-driven approaches, we analyzed a novel longitudinal dataset of 181 suicide-attempt channels and 134 controls. In the bottom-up analysis, LLM-based topic-modeling identified 166 topics; five were linked to suicide attempts, two also showed attempt-related temporal changes (Mental Health Struggles, $OR = 1.74$; YouTube Engagement, $OR = 1.67$; $p < .01$). In the hybrid approach, clinical experts reviewed LLM-derived topics and flagged 19 as suicide-related. However, none showed significant effects beyond those identified bottom-up. YouTube Engagement, a platform-specific indicator, was not flagged, underscoring the value of bottom-up discovery. A top-down psychological assessment of suicide narratives revealed differing motivations: individuals describing prior attempts aimed to help others ($β=-1.69$, $p<.01$), whereas those attempted during the uploading period emphasized personal recovery ($β=1.08$, $p<.01$). By integrating these approaches, we offer a nuanced understanding of suicidality, bridging digital behavior and clinical insights.
♻ ☆ Adaptive Kernel Selection for Stein Variational Gradient Descent
A central challenge in Bayesian inference is efficiently approximating posterior distributions. Stein Variational Gradient Descent (SVGD) is a popular variational inference method which transports a set of particles to approximate a target distribution. The SVGD dynamics are governed by a reproducing kernel Hilbert space (RKHS) and are highly sensitive to the choice of the kernel function, which directly influences both convergence and approximation quality. The commonly used median heuristic offers a simple approach for setting kernel bandwidths but lacks flexibility and often performs poorly, particularly in high-dimensional settings. In this work, we propose an alternative strategy for adaptively choosing kernel parameters over an abstract family of kernels. Recent convergence analyses based on the kernelized Stein discrepancy (KSD) suggest that optimizing the kernel parameters by maximizing the KSD can improve performance. Building on this insight, we introduce Adaptive SVGD (Ad-SVGD), a method that alternates between updating the particles via SVGD and adaptively tuning kernel bandwidths through gradient ascent on the KSD. We provide a simplified theoretical analysis that extends existing results on minimizing the KSD for fixed kernels to our adaptive setting, showing convergence properties for the maximal KSD over our kernel class. Our empirical results further support this intuition: Ad-SVGD consistently outperforms standard heuristics in a variety of tasks.
♻ ☆ Random Feature Spiking Neural Networks
Spiking Neural Networks (SNNs) as Machine Learning (ML) models have recently received a lot of attention as a potentially more energy-efficient alternative to conventional Artificial Neural Networks. The non-differentiability and sparsity of the spiking mechanism can make these models very difficult to train with algorithms based on propagating gradients through the spiking non-linearity. We address this problem by adapting the paradigm of Random Feature Methods (RFMs) from Artificial Neural Networks (ANNs) to Spike Response Model (SRM) SNNs. This approach allows training of SNNs without approximation of the spike function gradient. Concretely, we propose a novel data-driven, fast, high-performance, and interpretable algorithm for end-to-end training of SNNs inspired by the SWIM algorithm for RFM-ANNs, which we coin S-SWIM. We provide a thorough theoretical discussion and supplementary numerical experiments showing that S-SWIM can reach high accuracies on time series forecasting as a standalone strategy and serve as an effective initialisation strategy before gradient-based training. Additional ablation studies show that our proposed method performs better than random sampling of network weights.
comment: 37 pages incl. references & appendix, 6 figures, 6 tables
♻ ☆ CID: Measuring Feature Importance Through Counterfactual Distributions
Assessing the importance of individual features in Machine Learning is critical to understand the model's decision-making process. While numerous methods exist, the lack of a definitive ground truth for comparison highlights the need for alternative, well-founded measures. This paper introduces a novel post-hoc local feature importance method called Counterfactual Importance Distribution (CID). We generate two sets of positive and negative counterfactuals, model their distributions using Kernel Density Estimation, and rank features based on a distributional dissimilarity measure. This measure, grounded in a rigorous mathematical framework, satisfies key properties required to function as a valid metric. We showcase the effectiveness of our method by comparing with well-established local feature importance explainers. Our method not only offers complementary perspectives to existing approaches, but also improves performance on faithfulness metrics (both for comprehensiveness and sufficiency), resulting in more faithful explanations of the system. These results highlight its potential as a valuable tool for model analysis.
comment: Accepted at Northern Lights Deep Learning (NLDL) 2026 Conference
♻ ☆ Orders in Chaos: Enhancing Large-Scale MoE LLM Serving with Data Movement Forecasting
Large-scale Mixture of Experts (MoE) Large Language Models (LLMs) have recently become the frontier open weight models, achieving remarkable model capability similar to proprietary ones. But their random expert selection mechanism introduces significant data movement overhead that becomes the dominant bottleneck in multi-unit LLM serving systems. To understand the patterns underlying this data movement, we conduct comprehensive data-movement-centric profiling across four state-of-the-art large-scale MoE models released in 2025 (200B-1000B) using over 24,000 requests spanning diverse workloads. We perform systematic analysis from both temporal and spatial perspectives and distill six key insights to guide the design of diverse future serving systems. With our insights, we then demonstrate how to improve wafer-scale GPUs as a case study, and show that minor architectural modifications leveraging the insights achieve substantial performance gains, delivering 5.3x and 3.1x average speedups on DeepSeek V3 and Qwen3, respectively. Our work presents the first comprehensive data-centric analysis of large-scale MoE models and a concrete design study using the learned lessons, with profiling traces and simulation framework already open-sourced with $>$1k downloads. Our traces and results are publicly available at https://huggingface.co/datasets/core12345/MoE_expert_selection_trace
♻ ☆ Data Mixing Can Induce Phase Transitions in Knowledge Acquisition NeurIPS'25
Large Language Models (LLMs) are typically trained on data mixtures: most data come from web scrapes, while a small portion is curated from high-quality sources with dense domain-specific knowledge. In this paper, we show that when training LLMs on such data mixtures, knowledge acquisition from knowledge-dense datasets, unlike training exclusively on knowledge-dense data (arXiv:2404.05405), does not always follow a smooth scaling law but can exhibit phase transitions with respect to the mixing ratio and model size. Through controlled experiments on a synthetic biography dataset mixed with web-scraped data, we demonstrate that: (1) as we increase the model size to a critical value, the model suddenly transitions from memorizing very few to most of the biographies; (2) below a critical mixing ratio, the model memorizes almost nothing even with extensive training, but beyond this threshold, it rapidly memorizes more biographies. We attribute these phase transitions to a capacity allocation phenomenon: a model with bounded capacity must act like a knapsack problem solver to minimize the overall test loss, and the optimal allocation across datasets can change discontinuously as the model size or mixing ratio varies. We formalize this intuition in an information-theoretic framework and reveal that these phase transitions are predictable, with the critical mixing ratio following a power-law relationship with the model size. Our findings highlight a concrete case where a good mixing recipe for large models may not be optimal for small models, and vice versa.
comment: NeurIPS'25 Spotlight
♻ ☆ A Fast Kernel-based Conditional Independence test with Application to Causal Discovery
Kernel-based conditional independence (KCI) testing is a powerful nonparametric method commonly employed in causal discovery tasks. Despite its flexibility and statistical reliability, cubic computational complexity limits its application to large datasets. To address this computational bottleneck, we propose \textit{FastKCI}, a scalable and parallelizable kernel-based conditional independence test that utilizes a mixture-of-experts approach inspired by embarrassingly parallel inference techniques for Gaussian processes. By partitioning the dataset based on a Gaussian mixture model over the conditioning variables, FastKCI conducts local KCI tests in parallel, aggregating the results using an importance-weighted sampling scheme. Experiments on synthetic datasets and benchmarks on real-world production data validate that FastKCI maintains the statistical power of the original KCI test while achieving substantial computational speedups. FastKCI thus represents a practical and efficient solution for conditional independence testing in causal inference on large-scale data.
comment: 11 pages, 5 figures
♻ ☆ Ground-Truth Subgraphs for Better Training and Evaluation of Knowledge Graph Augmented LLMs
Retrieval of information from graph-structured knowledge bases represents a promising direction for improving the factuality of LLMs. While various solutions have been proposed, a comparison of methods is difficult due to the lack of challenging QA datasets with ground-truth targets for graph retrieval. We present SynthKGQA, an LLM-powered framework for generating high-quality Knowledge Graph Question Answering datasets from any Knowledge Graph, providing the full set of ground-truth facts in the KG to reason over questions. We show how, in addition to enabling more informative benchmarking of KG retrievers, the data produced with SynthKGQA also allows us to train better models.We apply SynthKGQA to Wikidata to generate GTSQA, a new dataset designed to test zero-shot generalization abilities of KG retrievers with respect to unseen graph structures and relation types, and benchmark popular solutions for KG-augmented LLMs on it.
♻ ☆ An Investigation of Robustness of LLMs in Mathematical Reasoning: Benchmarking with Mathematically-Equivalent Transformation of Advanced Mathematical Problems
In this paper, we introduce a systematic framework beyond conventional method to assess LLMs' mathematical-reasoning robustness by stress-testing them on advanced math problems that are mathematically equivalent but with linguistic and parametric variation. These transformations allow us to measure the sensitivity of LLMs to non-mathematical perturbations, thereby enabling a more accurate evaluation of their mathematical reasoning capabilities. Using this new evaluation methodology, we created PutnamGAP, a new benchmark dataset with multiple mathematically-equivalent variations of competition-level math problems. With the new dataset, we evaluate multiple families of representative LLMs and examine their robustness. Across 18 commercial and open-source models we observe sharp performance degradation on the variants. OpenAI's flagship reasoning model, O3, scores 51.5% on the originals but drops by 4.7 percentage points on surface-renaming variants, and by 12.9 percentage points on parametric variants, while smaller models fare far worse. Overall, the results show that the proposed new evaluation methodology is effective for deepening our understanding of the robustness of LLMs and generating new insights for further improving their mathematical reasoning capabilities.
comment: 34 pages, 9 figures
♻ ☆ A general language model for peptide function identification
Accurate identification of bioactive peptides (BPs) and protein post-translational modifications (PTMs) is essential for understanding protein function and advancing therapeutic discovery. However, most computational methods remain limited in their generalizability across diverse peptide functions. Here, we present PDeepPP, a unified deep learning framework that integrates pretrained protein language models with a hybrid transformer-CNN architecture, enabling robust identification across diverse peptide classes and PTM sites. We curated comprehensive benchmark datasets and implemented strategies to address data imbalance, allowing PDeepPP to systematically extract both global and local sequence features. Through extensive analyses including dimensionality reduction and comparison studies, PDeepPP demonstrates strong, interpretable peptide representations and achieves state-of-the-art performance in 25 of the 33 biological identification tasks. Notably, PDeepPP attains high accuracy in antimicrobial (0.9726) and phosphorylation site (0.9984) identification, with 99.5% specificity in glycosylation site prediction and substantial reduction in false negatives in antimalarial tasks. By enabling large-scale, accurate peptide analysis, PDeepPP supports biomedical research and the discovery of novel therapeutic targets for disease treatment. All code, datasets, and pretrained models are publicly available via GitHub (https://github.com/fondress/PDeepPP) and Hugging Face (https://huggingface.co/fondress/PDeppPP)
comment: 15 pages, 5 figures, 3 tables, submitted to arXiv
♻ ☆ Identifying environmental factors associated with tetrodotoxin contamination in bivalve mollusks using eXplainable AI
Since 2012, tetrodotoxin (TTX) has been found in seafoods such as bivalve mollusks in temperate European waters. TTX contamination leads to food safety risks and economic losses, making early prediction of TTX contamination vital to the food industry and competent authorities. Recent studies have pointed to shallow habitats and water temperature as main drivers to TTX contamination in bivalve mollusks. However, the temporal relationships between abiotic factors, biotic factors, and TTX contamination remain unexplored. We have developed an explainable, deep learning-based model to predict TTX contamination in the Dutch Zeeland estuary. Inputs for the model were meteorological and hydrological features; output was the presence or absence of TTX contamination. Results showed that the time of sunrise, time of sunset, global radiation, water temperature, and chloride concentration contributed most to TTX contamination. Thus, the effective number of sun hours, represented by day length and global radiation, was an important driver for tetrodotoxin contamination in bivalve mollusks. To conclude, our explainable deep learning model identified the aforementioned environmental factors (number of sun hours, global radiation, water temperature, and water chloride concentration) to be associated with tetrodotoxin contamination in bivalve mollusks; making our approach a valuable tool to mitigate marine toxin risks for food industry and competent authorities.
comment: 18 pages, 6 figures, submitted to npj Science of Food
♻ ☆ Detection of AI Deepfake and Fraud in Online Payments Using GAN-Based Models
This study explores the use of Generative Adversarial Networks (GANs) to detect AI deepfakes and fraudulent activities in online payment systems. With the growing prevalence of deepfake technology, which can manipulate facial features in images and videos, the potential for fraud in online transactions has escalated. Traditional security systems struggle to identify these sophisticated forms of fraud. This research proposes a novel GAN-based model that enhances online payment security by identifying subtle manipulations in payment images. The model is trained on a dataset consisting of real-world online payment images and deepfake images generated using advanced GAN architectures, such as StyleGAN and DeepFake. The results demonstrate that the proposed model can accurately distinguish between legitimate transactions and deepfakes, achieving a high detection rate above 95%. This approach significantly improves the robustness of payment systems against AI-driven fraud. The paper contributes to the growing field of digital security, offering insights into the application of GANs for fraud detection in financial services. Keywords- Payment Security, Image Recognition, Generative Adversarial Networks, AI Deepfake, Fraudulent Activities
comment: The paper will be published and indexed by IEEE at 2025 8th International Conference on Advanced Algorithms and Control Engineering (ICAACE 2025)
♻ ☆ Towards an end-to-end artificial intelligence driven global weather forecasting system
The weather forecasting system is important for science and society, and significant achievements have been made in applying artificial intelligence (AI) to medium-range weather forecasting. However, existing AI-based weather forecasting models rely on analysis or reanalysis products from traditional numerical weather prediction (NWP) systems as initial conditions for making predictions. The initial states are typically generated by traditional data assimilation components, which are computationally expensive and time-consuming. Here, by cyclic training to model the steady-state background error covariance and introducing the confidence matrix to characterize the quality of observations, we present an AI-based data assimilation model, i.e., Adas, for global weather variables. Further, we combine Adas with the advanced AI-based forecasting model (i.e., FengWu) to construct an end-to-end AI-based global weather forecasting system: FengWu-Adas. We demonstrate that Adas can assimilate global conventional observations to produce high-quality analysis, enabling the system to operate stably for long term. Moreover, the system can generate accurate end-to-end weather forecasts with comparable skill to those of the IFS, demonstrating the promising potential of data-driven approaches.
♻ ☆ In-Context Representation Hijacking
We introduce $\textbf{Doublespeak}$, a simple in-context representation hijacking attack against large language models (LLMs). The attack works by systematically replacing a harmful keyword (e.g., bomb) with a benign token (e.g., carrot) across multiple in-context examples, provided a prefix to a harmful request. We demonstrate that this substitution leads to the internal representation of the benign token converging toward that of the harmful one, effectively embedding the harmful semantics under a euphemism. As a result, superficially innocuous prompts (e.g., "How to build a carrot?") are internally interpreted as disallowed instructions (e.g., "How to build a bomb?"), thereby bypassing the model's safety alignment. We use interpretability tools to show that this semantic overwrite emerges layer by layer, with benign meanings in early layers converging into harmful semantics in later ones. Doublespeak is optimization-free, broadly transferable across model families, and achieves strong success rates on closed-source and open-source systems, reaching 74% ASR on Llama-3.3-70B-Instruct with a single-sentence context override. Our findings highlight a new attack surface in the latent space of LLMs, revealing that current alignment strategies are insufficient and should instead operate at the representation level.
♻ ☆ Addressing common misinterpretations of KART and UAT in neural network literature
This note addresses the Kolmogorov-Arnold Representation Theorem (KART) and the Universal Approximation Theorem (UAT), focusing on their frequent misinterpretations found in the neural network literature. Our remarks aim to support a more accurate understanding of KART and UAT among neural network specialists. In addition, we explore the minimal number of neurons required for universal approximation, showing that the same number of neurons needed for exact representation of functions in KART-based networks also suffices for standard multilayer perceptrons in the context of approximation.
comment: 16 pages. A section, a subsection, a table, and references have been added
♻ ☆ Extending Graph Condensation to Multi-Label Datasets: A Benchmark Study
As graph data grows increasingly complicate, training graph neural networks (GNNs) on large-scale datasets presents significant challenges, including computational resource constraints, data redundancy, and transmission inefficiencies. While existing graph condensation techniques have shown promise in addressing these issues, they are predominantly designed for single-label datasets, where each node is associated with a single class label. However, many real-world applications, such as social network analysis and bioinformatics, involve multi-label graph datasets, where one node can have various related labels. To deal with this problem, we extends traditional graph condensation approaches to accommodate multi-label datasets by introducing modifications to synthetic dataset initialization and condensing optimization. Through experiments on eight real-world multi-label graph datasets, we prove the effectiveness of our method. In experiment, the GCond framework, combined with K-Center initialization and binary cross-entropy loss (BCELoss), achieves best performance in general. This benchmark for multi-label graph condensation not only enhances the scalability and efficiency of GNNs for multi-label graph data, but also offering substantial benefits for diverse real-world applications.
comment: Accepted by Transactions on Machine Learning Research (TMLR)
♻ ☆ Solving Inverse Problems with Deep Linear Neural Networks: Global Convergence Guarantees for Gradient Descent with Weight Decay
Machine learning methods are commonly used to solve inverse problems, wherein an unknown signal must be estimated from few indirect measurements generated via a known acquisition procedure. In particular, neural networks perform well empirically but have limited theoretical guarantees. In this work, we study an underdetermined linear inverse problem that admits several possible solution operators that map measurements to estimates of the target signal. A standard remedy (e.g., in compressed sensing) for establishing the uniqueness of the solution mapping is to assume the existence of a latent low-dimensional structure in the source signal. We ask the following question: do deep linear neural networks adapt to unknown low-dimensional structure when trained by gradient descent with weight decay regularization? We prove that mildly overparameterized deep linear networks trained in this manner converge to an approximate solution mapping that accurately solves the inverse problem while implicitly encoding latent subspace structure. We show rigorously that deep linear networks trained with weight decay automatically adapt to latent subspace structure in the data under practical stepsize and weight initialization schemes. Our work highlights that regularization and overparameterization improve generalization, while overparameterization also accelerates convergence during training.
♻ ☆ Enabling Fast and Accurate Neutral Atom Readout through Image Denoising
Neutral atom quantum computers hold promise for scaling up to hundreds of thousands or more qubits, but their progress is constrained by slow qubit readout. Parallel measurement of qubit arrays currently takes milliseconds, much longer than the underlying quantum gate operations-making readout the primary bottleneck in deploying quantum error correction. Because each round of QEC depends on measurement, long readout times increase cycle duration and slow down program execution. Reducing the readout duration speeds up cycles and reduces decoherence errors that accumulate while qubits idle, but it also lowers the number of collected photons, making measurements noisier and more error-prone. This tradeoff leaves neutral atom systems stuck between slow but accurate readout and fast but unreliable readout. We show that image denoising can resolve this tension. Our framework, GANDALF, uses explicit denoising using image translation to reconstruct clear signals from short, low-photon measurements, enabling reliable classification at up to 1.6x shorter readout times. Combined with lightweight classifiers and a pipelined readout design, our approach both reduces logical error rate by up to 35x and overall QEC cycle time up to 1.77x compared to state-of-the-art convolutional neural network (CNN)-based readout for Cesium (Cs) Neutral Atom arrays.
comment: 12 pages, 15 figures
♻ ☆ Beyond KAN: Introducing KarSein for Adaptive High-Order Feature Interaction Modeling in CTR Prediction
Modeling high-order feature interactions is crucial for click-through rate (CTR) prediction, yet traditional approaches typically predefine a maximum interaction order and exhaustively enumerate feature combinations up to that order. This paradigm depends heavily on prior domain knowledge to delimit the interaction space and incurs substantial computational overhead. As a result, conventional CTR models face a persistent tension between enriching representations with complex high-order interactions and keeping computation tractable. To address this dual challenge, this study introduces the Kolmogorov-Arnold Represented Sparse Efficient Interaction Network (KarSein). Drawing inspiration from the learnable activation mechanism in the Kolmogorov-Arnold Network (KAN), KarSein leverages this mechanism to adaptively transform low-order basic features into high-order feature interactions, offering a novel approach to feature interaction modeling. KarSein extends the capabilities of KAN by introducing a more efficient architecture that significantly reduces computational costs while accommodating two-dimensional embedding vectors as feature inputs. Furthermore, it overcomes the limitation of KAN's its inability to spontaneously capture multiplicative relationships among features. Extensive experiments highlight the superiority of KarSein, demonstrating its ability to surpass not only the vanilla implementation of KAN in CTR prediction tasks but also other baseline methods. Remarkably, KarSein achieves exceptional predictive accuracy while maintaining a highly compact parameter size and minimal computational overhead. Moreover, KarSein exhibits strong interpretability and structural sparsity. As the first systematic adaptation of KAN to CTR prediction, KarSein offers a practical, parameter-efficient, and interpretable alternative for modeling complex feature interactions in CTR prediction.
comment: Under review by TOIS
♻ ☆ On the Rate of Convergence of Kolmogorov-Arnold Network Regression Estimators
Kolmogorov-Arnold Networks (KANs) offer a structured and interpretable framework for multivariate function approximation by composing univariate transformations through additive or multiplicative aggregation. This paper establishes theoretical convergence guarantees for KANs when the univariate components are represented by B-splines. We prove that both additive and hybrid additive-multiplicative KANs attain the minimax-optimal convergence rate $O(n^{-2r/(2r+1)})$ for functions in Sobolev spaces of smoothness $r$. We further derive guidelines for selecting the optimal number of knots in the B-splines. The theory is supported by simulation studies that confirm the predicted convergence rates. These results provide a theoretical foundation for using KANs in nonparametric regression and highlight their potential as a structured alternative to existing methods.
♻ ☆ Bayesian Concept Bottleneck Models with LLM Priors
Concept Bottleneck Models (CBMs) have been proposed as a compromise between white-box and black-box models, aiming to achieve interpretability without sacrificing accuracy. The standard training procedure for CBMs is to predefine a candidate set of human-interpretable concepts, extract their values from the training data, and identify a sparse subset as inputs to a transparent prediction model. However, such approaches are often hampered by the tradeoff between exploring a sufficiently large set of concepts versus controlling the cost of obtaining concept extractions, resulting in a large interpretability-accuracy tradeoff. This work investigates a novel approach that sidesteps these challenges: BC-LLM iteratively searches over a potentially infinite set of concepts within a Bayesian framework, in which Large Language Models (LLMs) serve as both a concept extraction mechanism and prior. Even though LLMs can be miscalibrated and hallucinate, we prove that BC-LLM can provide rigorous statistical inference and uncertainty quantification. Across image, text, and tabular datasets, BC-LLM outperforms interpretable baselines and even black-box models in certain settings, converges more rapidly towards relevant concepts, and is more robust to out-of-distribution samples.
comment: 2025 Conference on Neural Information Processing Systems
♻ ☆ Downscaling climate projections to 1 km with single-image super resolution
High-resolution climate projections are essential for local decision-making. However, available climate projections have low spatial resolution (e.g. 12.5 km), which limits their usability. We address this limitation by leveraging single-image super-resolution models to statistically downscale climate projections to 1-km resolution. Since high-resolution climate projections are unavailable, we train models on a high-resolution observational gridded data set and apply them to low-resolution climate projections. We cannot evaluate downscaled climate projections with common metrics (e.g. pixel-wise root-mean-square error) because we lack ground-truth high-resolution climate projections. Therefore, we evaluate climate indicators computed at weather station locations. Experiments on daily mean temperature demonstrate that single-image super-resolution models can downscale climate projections without increasing the error of climate indicators compared to low-resolution climate projections.
♻ ☆ Resilience Inference for Supply Chains with Hypergraph Neural Network
Supply chains are integral to global economic stability, yet disruptions can swiftly propagate through interconnected networks, resulting in substantial economic impacts. Accurate and timely inference of supply chain resilience the capability to maintain core functions during disruptions is crucial for proactive risk mitigation and robust network design. However, existing approaches lack effective mechanisms to infer supply chain resilience without explicit system dynamics and struggle to represent the higher-order, multi-entity dependencies inherent in supply chain networks. These limitations motivate the definition of a novel problem and the development of targeted modeling solutions. To address these challenges, we formalize a novel problem: Supply Chain Resilience Inference (SCRI), defined as predicting supply chain resilience using hypergraph topology and observed inventory trajectories without explicit dynamic equations. To solve this problem, we propose the Supply Chain Resilience Inference Hypergraph Network (SC-RIHN), a novel hypergraph-based model leveraging set-based encoding and hypergraph message passing to capture multi-party firm-product interactions. Comprehensive experiments demonstrate that SC-RIHN significantly outperforms traditional MLP, representative graph neural network variants, and ResInf baselines across synthetic benchmarks, underscoring its potential for practical, early-warning risk assessment in complex supply chain systems.
♻ ☆ Near-Optimal Experiment Design in Linear non-Gaussian Cyclic Models
We study the problem of causal structure learning from a combination of observational and interventional data generated by a linear non-Gaussian structural equation model that might contain cycles. Recent results show that using mere observational data identifies the causal graph only up to a permutation-equivalence class. We obtain a combinatorial characterization of this class by showing that each graph in an equivalence class corresponds to a perfect matching in a bipartite graph. This bipartite representation allows us to analyze how interventions modify or constrain the matchings. Specifically, we show that each atomic intervention reveals one edge of the true matching and eliminates all incompatible causal graphs. Consequently, we formalize the optimal experiment design task as an adaptive stochastic optimization problem over the set of equivalence classes with a natural reward function that quantifies how many graphs are eliminated from the equivalence class by an intervention. We show that this reward function is adaptive submodular and provide a greedy policy with a provable near-optimal performance guarantee. A key technical challenge is to efficiently estimate the reward function without having to explicitly enumerate all the graphs in the equivalence class. We propose a sampling-based estimator using random matchings and analyze its bias and concentration behavior. Our simulation results show that performing a small number of interventions guided by our stochastic optimization framework recovers the true underlying causal structure.
♻ ☆ Renewable Energy Prediction: A Comparative Study of Deep Learning Models for Complex Dataset Analysis
The increasing focus on predicting renewable energy production aligns with advancements in deep learning (DL). The inherent variability of renewable sources and the complexity of prediction methods require robust approaches, such as DL models, in the renewable energy sector. DL models are preferred over traditional machine learning (ML) because they capture complex, nonlinear relationships in renewable energy datasets. This study examines key factors influencing DL technique accuracy, including sampling and hyperparameter optimization, by comparing various methods and training and test ratios within a DL framework. Seven machine learning methods, LSTM, Stacked LSTM, CNN, CNN-LSTM, DNN, Time-Distributed MLP (TD-MLP), and Autoencoder (AE), are evaluated using a dataset combining weather and photovoltaic power output data from 12 locations. Regularization techniques such as early stopping, neuron dropout, L1 and L2 regularization are applied to address overfitting. The results demonstrate that the combination of early stopping, dropout, and L1 regularization provides the best performance to reduce overfitting in the CNN and TD-MLP models with larger training set, while the combination of early stopping, dropout, and L2 regularization is the most effective to reduce the overfitting in CNN-LSTM and AE models with smaller training set.
comment: 11 pages, 2 figures and 6 tables
♻ ☆ Optimizing Product Provenance Verification using Data Valuation Methods AAAI
Determining and verifying product provenance remains a critical challenge in global supply chains, particularly as geopolitical conflicts and shifting borders create new incentives for misrepresentation of commodities, such as hiding the origin of illegally harvested timber or stolen agricultural products. Stable Isotope Ratio Analysis (SIRA), combined with Gaussian process regression-based isoscapes, has emerged as a powerful tool for geographic origin verification. While these models are now actively deployed in operational settings supporting regulators, certification bodies, and companies, they remain constrained by data scarcity and suboptimal dataset selection. In this work, we introduce a novel deployed data valuation framework designed to enhance the selection and utilization of training data for machine learning models applied in SIRA. By quantifying the marginal utility of individual samples using Shapley values, our method guides strategic, cost-effective, and robust sampling campaigns within active monitoring programs. By prioritizing high-informative samples, our approach improves model robustness and predictive accuracy across diverse datasets and geographies. Our framework has been implemented and validated in a live provenance verification system currently used by enforcement agencies, demonstrating tangible, real-world impact. Through extensive experiments and deployment in a live provenance verification system, we show that this system significantly enhances provenance verification, mitigates fraudulent trade practices, and strengthens regulatory enforcement of global supply chains.
comment: Proceedings of the AAAI Conference on Artificial Intelligence 2026
♻ ☆ Geometric Multi-color Message Passing Graph Neural Networks for Blood-brain Barrier Permeability Prediction
Accurate prediction of blood-brain barrier permeability (BBBP) is essential for central nervous system (CNS) drug development. While graph neural networks (GNNs) have advanced molecular property prediction, they often rely on molecular topology and neglect the three-dimensional geometric information crucial for modeling transport mechanisms. This paper introduces the geometric multi-color message-passing graph neural network (GMC-MPNN), a novel framework that enhances standard message-passing architectures by explicitly incorporating atomic-level geometric features and long-range interactions. Our model constructs weighted colored subgraphs based on atom types to capture the spatial relationships and chemical context that govern BBB permeability. We evaluated GMC-MPNN on three benchmark datasets for both classification and regression tasks, using rigorous scaffold-based splitting to ensure a robust assessment of generalization. The results demonstrate that GMC-MPNN consistently outperforms existing state-of-the-art models, achieving superior performance in both classifying compounds as permeable/non-permeable (AUC-ROC of 0.9704 and 0.9685) and in regressing continuous permeability values (RMSE of 0.4609, Pearson correlation of 0.7759). An ablation study further quantified the impact of specific atom-pair interactions, revealing that the model's predictive power derives from its ability to learn from both common and rare, but chemically significant, functional motifs. By integrating spatial geometry into the graph representation, GMC-MPNN sets a new performance benchmark and offers a more accurate and generalizable tool for drug discovery pipelines.
♻ ☆ Sequential Monte Carlo for Policy Optimization in Continuous POMDPs NeurIPS 2025
Optimal decision-making under partial observability requires agents to balance reducing uncertainty (exploration) against pursuing immediate objectives (exploitation). In this paper, we introduce a novel policy optimization framework for continuous partially observable Markov decision processes (POMDPs) that explicitly addresses this challenge. Our method casts policy learning as probabilistic inference in a non-Markovian Feynman--Kac model that inherently captures the value of information gathering by anticipating future observations, without requiring suboptimal approximations or handcrafted heuristics. To optimize policies under this model, we develop a nested sequential Monte Carlo (SMC) algorithm that efficiently estimates a history-dependent policy gradient under samples from the optimal trajectory distribution induced by the POMDP. We demonstrate the effectiveness of our algorithm across standard continuous POMDP benchmarks, where existing methods struggle to act under uncertainty.
comment: Accepted at NeurIPS 2025
♻ ☆ FusionBench: A Unified Library and Comprehensive Benchmark for Deep Model Fusion
Deep model fusion is an emerging technique that unifies the predictions or parameters of several deep neural networks into a single better-performing model in a cost-effective and data-efficient manner. Although a variety of deep model fusion techniques have been introduced, their evaluations tend to be inconsistent and often inadequate to validate their effectiveness and robustness. We present FusionBench, the first benchmark and a unified library designed specifically for deep model fusion. Our benchmark consists of multiple tasks, each with different settings of models and datasets. This variety allows us to compare fusion methods across different scenarios and model scales. Additionally, FusionBench serves as a unified library for easy implementation and testing of new fusion techniques. FusionBench is open source and actively maintained, with community contributions encouraged. Homepage https://github.com/tanganke/fusion_bench
comment: Project homepage: https://github.com/tanganke/fusion_bench Online documentation: https://tanganke.github.io/fusion_bench
♻ ☆ ESACT: An End-to-End Sparse Accelerator for Compute-Intensive Transformers via Local Similarity
Transformers, composed of QKV generation, attention computation, and FFNs, have become the dominant model across various domains due to their outstanding performance. However, their high computational cost hinders efficient hardware deployment. Sparsity offers a promising solution, yet most existing accelerators exploit only intra-row sparsity in attention, while few consider inter-row sparsity. Approaches leveraging inter-row sparsity often rely on costly global similarity estimation, which diminishes the acceleration benefits of sparsity, and typically apply sparsity to only one or two transformer components. Through careful analysis of the attention distribution and computation flow, we observe that local similarity allows end-to-end sparse acceleration with lower computational overhead. Motivated by this observation, we propose ESACT, an end-to-end sparse accelerator for compute-intensive Transformers. ESACT centers on the Sparsity Prediction with Local Similarity (SPLS) mechanism, which leverages HLog quantization to accurately predict local attention sparsity prior to QK generation, achieving efficient sparsity across all transformer components. To support efficient hardware realization, we introduce three architectural innovations. Experimental results on 26 benchmarks demonstrate that SPLS reduces total computation by 52.03% with less than 1% accuracy loss. ESACT achieves an end-to-end energy efficiency of 3.29 TOPS/W, and improves attention-level energy efficiency by 2.95x and 2.26x over SOTA attention accelerators SpAtten and Sanger, respectively.
♻ ☆ Q-STAC: Q-Guided Stein Variational Model Predictive Actor-Critic
Deep reinforcement learning (DRL) often struggles with complex robotic manipulation tasks due to low sample efficiency and biased value estimation. Model-based reinforcement learning (MBRL) improves efficiency by leveraging environment dynamics, with prior work integrating Model Predictive Control (MPC) to enhance policy robustness through online trajectory optimization. However, existing MBRL approaches still suffer from high model bias, task-specific cost function design, and significant computational overhead. To address these challenges, we propose Q-guided Stein Variational Model Predictive Actor-Critic (Q-STAC)--a unified framework that bridges Bayesian MPC and Soft Actor-Critic (SAC). Q-STAC employs Stein Variational Gradient Descent (SVGD) to iteratively optimize action sequences sampled from a learned prior distribution guided by Q-values, thereby eliminating manual cost-function engineering. By performing short-horizon model-predictive rollouts, Q-STAC reduces cumulative prediction errors, improves training stability and reduces computational complexity. Experiments on simulated particle navigation, diverse robotic manipulation tasks, and a real-world fruit-picking scenario demonstrate that Q-STAC consistently achieves superior sample efficiency, stability, and overall performance compared to both model-free and model-based baselines.
comment: 9 pages, 10 figures
♻ ☆ SynQuE: Estimating Synthetic Dataset Quality Without Annotations
We introduce and formalize the Synthetic Dataset Quality Estimation (SynQuE) problem: ranking synthetic datasets by their expected real-world task performance using only limited unannotated real data. This addresses a critical and open challenge where data is scarce due to collection costs or privacy constraints. We establish the first comprehensive benchmarks for this problem by introducing and evaluating proxy metrics that choose synthetic data for training to maximize task performance on real data. We introduce the first proxy metrics for SynQuE by adapting distribution and diversity-based distance measures to our context via embedding models. To address the shortcomings of these metrics on complex planning tasks, we propose LENS, a novel proxy that leverages large language model reasoning. Our results show that SynQuE proxies correlate with real task performance across diverse tasks, including sentiment analysis, Text2SQL, web navigation, and image classification, with LENS consistently outperforming others on complex tasks by capturing nuanced characteristics. For instance, on text-to-SQL parsing, training on the top-3 synthetic datasets selected via SynQuE proxies can raise accuracy from 30.4% to 38.4 (+8.1)% on average compared to selecting data indiscriminately. This work establishes SynQuE as a practical framework for synthetic data selection under real-data scarcity and motivates future research on foundation model-based data characterization and fine-grained data selection.
comment: Under review
♻ ☆ An Adaptive Resonance Theory-based Topological Clustering Algorithm with a Self-Adjusting Vigilance Parameter
Clustering in stationary and nonstationary settings, where data distributions remain static or evolve over time, requires models that can adapt to distributional shifts while preserving previously learned cluster structures. This paper proposes an Adaptive Resonance Theory (ART)-based topological clustering algorithm that autonomously adjusts its recalculation interval and vigilance threshold through a diversity-driven adaptation mechanism. This mechanism enables hyperparameter-free learning that maintains cluster stability and continuity in dynamic environments. Experiments on 24 real-world datasets demonstrate that the proposed algorithm outperforms state-of-the-art methods in both clustering performance and continual learning capability. These results highlight the effectiveness of the proposed parameter adaptation in mitigating catastrophic forgetting and maintaining consistent clustering in evolving data streams. Source code is available at https://github.com/Masuyama-lab/IDAT
comment: This manuscript is currently under review
♻ ☆ NeuroPhysNet: A FitzHugh-Nagumo-Based Physics-Informed Neural Network Framework for Electroencephalograph (EEG) Analysis and Motor Imagery Classification
Electroencephalography (EEG) is extensively employed in medical diagnostics and brain-computer interface (BCI) applications due to its non-invasive nature and high temporal resolution. However, EEG analysis faces significant challenges, including noise, nonstationarity, and inter-subject variability, which hinder its clinical utility. Traditional neural networks often lack integration with biophysical knowledge, limiting their interpretability, robustness, and potential for medical translation. To address these limitations, this study introduces NeuroPhysNet, a novel Physics-Informed Neural Network (PINN) framework tailored for EEG signal analysis and motor imagery classification in medical contexts. NeuroPhysNet incorporates the FitzHugh-Nagumo model, embedding neurodynamical principles to constrain predictions and enhance model robustness. Evaluated on the BCIC-IV-2a dataset, the framework achieved superior accuracy and generalization compared to conventional methods, especially in data-limited and cross-subject scenarios, which are common in clinical settings. By effectively integrating biophysical insights with data-driven techniques, NeuroPhysNet not only advances BCI applications but also holds significant promise for enhancing the precision and reliability of clinical diagnostics, such as motor disorder assessments and neurorehabilitation planning.
comment: Here is a revised version of the manuscript, incorporating Prof. Yuantong Gu's contributions to restructuring and revising the manuscript
♻ ☆ Intervention Efficiency and Perturbation Validation Framework: Capacity-Aware and Robust Clinical Model Selection under the Rashomon Effect AAAI 2026
In clinical machine learning, the coexistence of multiple models with comparable performance -- a manifestation of the Rashomon Effect -- poses fundamental challenges for trustworthy deployment and evaluation. Small, imbalanced, and noisy datasets, coupled with high-dimensional and weakly identified clinical features, amplify this multiplicity and make conventional validation schemes unreliable. As a result, selecting among equally performing models becomes uncertain, particularly when resource constraints and operational priorities are not considered by conventional metrics like F1 score. To address these issues, we propose two complementary tools for robust model assessment and selection: Intervention Efficiency (IE) and the Perturbation Validation Framework (PVF). IE is a capacity-aware metric that quantifies how efficiently a model identifies actionable true positives when only limited interventions are feasible, thereby linking predictive performance with clinical utility. PVF introduces a structured approach to assess the stability of models under data perturbations, identifying models whose performance remains most invariant across noisy or shifted validation sets. Empirical results on synthetic and real-world healthcare datasets show that using these tools facilitates the selection of models that generalize more robustly and align with capacity constraints, offering a new direction for tackling the Rashomon Effect in clinical settings.
comment: Accepted to the Workshop on Navigating Model Uncertainty and the Rashomon Effect: From Theory and Tools to Applications and Impact (AAAI 2026)
♻ ☆ Curiosity-Driven Development of Action and Language in Robots Through Self-Exploration
Human infants acquire language and action gradually through development, achieving strong generalization from minimal experience, whereas large language models require exposure to billions of training tokens. What mechanisms underlie such efficient developmental learning in humans? This study investigates this question through robot simulation experiments in which agents learn to perform actions associated with imperative sentences (e.g., \textit{push red cube}) via curiosity-driven self-exploration. Our approach integrates the active inference framework with reinforcement learning, enabling intrinsically motivated developmental learning. The simulations reveal several key findings: i) Generalization improves markedly as the scale of compositional elements increases. ii) Curiosity combined with motor noise yields substantially better learning than exploration without curiosity. iii) Rote pairing of sentences and actions precedes the emergence of compositional generalization. iv) Simpler, prerequisite-like actions develop earlier than more complex actions that depend on them. v) When exception-handling rules were introduced -- where certain imperative sentences required executing inconsistent actions -- the robots successfully acquired these exceptions through exploration and displayed a U-shaped performance curve characteristic of representational redescription in child language learning. Together, these results suggest that curiosity-driven exploration and active inference provide a powerful account of how intrinsic motivation and hierarchical sensorimotor learning can jointly support scalable compositional generalization and exception handling in both humans and artificial agents.
comment: 20 pages, 19 pages of supplementary material
♻ ☆ Training-Free Active Learning Framework in Materials Science with Large Language Models
Active learning (AL) accelerates scientific discovery by prioritizing the most informative experiments, but traditional machine learning (ML) models used in AL suffer from cold-start limitations and domain-specific feature engineering, restricting their generalizability. Large language models (LLMs) offer a new paradigm by leveraging their pretrained knowledge and universal token-based representations to propose experiments directly from text-based descriptions. Here, we introduce an LLM-based active learning framework (LLM-AL) that operates in an iterative few-shot setting and benchmark it against conventional ML models across four diverse materials science datasets. We explored two prompting strategies: one using concise numerical inputs suited for datasets with more compositional and structured features, and another using expanded descriptive text suited for datasets with more experimental and procedural features to provide additional context. Across all datasets, LLM-AL could reduce the number of experiments needed to reach top-performing candidates by over 70% and consistently outperformed traditional ML models. We found that LLM-AL performs broader and more exploratory searches while still reaching the optima with fewer iterations. We further examined the stability boundaries of LLM-AL given the inherent non-determinism of LLMs and found its performance to be broadly consistent across runs, within the variability range typically observed for traditional ML approaches. These results demonstrate that LLM-AL can serve as a generalizable alternative to conventional AL pipelines for more efficient and interpretable experiment selection and potential LLM-driven autonomous discovery.
♻ ☆ TraceTrans: Translation and Spatial Tracing for Surgical Prediction
Image-to-image translation models have achieved notable success in converting images across visual domains and are increasingly used for medical tasks such as predicting post-operative outcomes and modeling disease progression. However, most existing methods primarily aim to match the target distribution and often neglect spatial correspondences between the source and translated images. This limitation can lead to structural inconsistencies and hallucinations, undermining the reliability and interpretability of the predictions. These challenges are accentuated in clinical applications by the stringent requirement for anatomical accuracy. In this work, we present TraceTrans, a novel deformable image translation model designed for post-operative prediction that generates images aligned with the target distribution while explicitly revealing spatial correspondences with the pre-operative input. The framework employs an encoder for feature extraction and dual decoders for predicting spatial deformations and synthesizing the translated image. The predicted deformation field imposes spatial constraints on the generated output, ensuring anatomical consistency with the source. Extensive experiments on medical cosmetology and brain MRI datasets demonstrate that TraceTrans delivers accurate and interpretable post-operative predictions, highlighting its potential for reliable clinical deployment.
Genomics 1
☆ pHapCompass: Probabilistic Assembly and Uncertainty Quantification of Polyploid Haplotype Phase
Computing haplotypes from sequencing data, i.e. haplotype assembly, is an important component of foundational molecular and population genetics problems, including interpreting the effects of genetic variation on complex traits and reconstructing genealogical relationships. Assembling the haplotypes of polyploid genomes remains a significant challenge due to the exponential search space of haplotype phasings and read assignment ambiguity; the latter challenge is particularly difficult for polyploid haplotype assemblers since the information contained within the observed sequence reads is often insufficient for unambiguous haplotype assignment in polyploid genomes. We present pHapCompass, probabilistic haplotype assembly algorithms for diploid and polyploid genomes that explicitly model and propagate read assignment ambiguity to compute a distribution over polyploid haplotype phasings. We develop graph theoretic algorithms to enable statistical inference and uncertainty quantification despite an exponential space of possible phasings. Since prior work evaluates polyploid haplotype assembly on synthetic genomes that do not reflect the realistic genomic complexity of polyploidy organisms, we develop a computational workflow for simulating genomes and DNA-seq for auto- and allopolyploids. Additionally, we generalize the vector error rate and minimum error correction evaluation criteria for partially phased haplotypes. Benchmarking of pHapCompass and several existing polyploid haplotype assemblers shows that pHapCompass yields competitive performance across varying genomic complexities and polyploid structures while retaining an accurate quantification of phase uncertainty. The source code for pHapCompass, simulation scripts, and datasets are freely available at https://github.com/bayesomicslab/pHapCompass.
Quantitative Methods 5
☆ pHapCompass: Probabilistic Assembly and Uncertainty Quantification of Polyploid Haplotype Phase
Computing haplotypes from sequencing data, i.e. haplotype assembly, is an important component of foundational molecular and population genetics problems, including interpreting the effects of genetic variation on complex traits and reconstructing genealogical relationships. Assembling the haplotypes of polyploid genomes remains a significant challenge due to the exponential search space of haplotype phasings and read assignment ambiguity; the latter challenge is particularly difficult for polyploid haplotype assemblers since the information contained within the observed sequence reads is often insufficient for unambiguous haplotype assignment in polyploid genomes. We present pHapCompass, probabilistic haplotype assembly algorithms for diploid and polyploid genomes that explicitly model and propagate read assignment ambiguity to compute a distribution over polyploid haplotype phasings. We develop graph theoretic algorithms to enable statistical inference and uncertainty quantification despite an exponential space of possible phasings. Since prior work evaluates polyploid haplotype assembly on synthetic genomes that do not reflect the realistic genomic complexity of polyploidy organisms, we develop a computational workflow for simulating genomes and DNA-seq for auto- and allopolyploids. Additionally, we generalize the vector error rate and minimum error correction evaluation criteria for partially phased haplotypes. Benchmarking of pHapCompass and several existing polyploid haplotype assemblers shows that pHapCompass yields competitive performance across varying genomic complexities and polyploid structures while retaining an accurate quantification of phase uncertainty. The source code for pHapCompass, simulation scripts, and datasets are freely available at https://github.com/bayesomicslab/pHapCompass.
♻ ☆ Triangle Multiplication Is All You Need For Biomolecular Structure Representations
AlphaFold has transformed protein structure prediction, but emerging applications such as virtual ligand screening, proteome-wide folding, and de novo binder design demand predictions at a massive scale, where runtime and memory costs become prohibitive. A major bottleneck lies in the Pairformer backbone of AlphaFold3-style models, which relies on computationally expensive triangular primitives-especially triangle attention-for pairwise reasoning. We introduce Pairmixer, a streamlined alternative that eliminates triangle attention while preserving higher-order geometric reasoning capabilities that are critical for structure prediction. Pairmixer substantially improves computational efficiency, matching state-of-the-art structure predictors across folding and docking benchmarks, delivering up to 4x faster inference on long sequences while reducing training cost by 34%. Its efficiency alleviates the computational burden of downstream applications such as modeling large protein complexes, high-throughput ligand and binder screening, and hallucination-based design. Within BoltzDesign, for example, Pairmixer delivers over 2x faster sampling and scales to sequences ~30% longer than the memory limits of Pairformer. Code is available at https://github.com/genesistherapeutics/pairmixer.
comment: Preprint
♻ ☆ The Basic Reproduction Number for Petri Net Models: A Next-Generation Matrix Approach
The basic reproduction number ($R_0$) is an epidemiological metric that represents the average number of new infections caused by a single infectious individual in a completely susceptible population. The methodology for calculating this metric is well-defined for numerous model types, including, most prominently, Ordinary Differential Equations (ODEs). The basic reproduction number is used in disease modeling to predict the potential of an outbreak and the transmissibility of a disease, as well as by governments to inform public health interventions and resource allocation for controlling the spread of diseases. A Petri Net (PN) is a directed bipartite graph where places, transitions, arcs, and the firing of the arcs determine the dynamic behavior of the system. Petri Net models have been an increasingly used tool within the epidemiology community. However, no generalized method for calculating $R_0$ directly from PN models has been established. Thus, in this paper, we establish a generalized computational framework for calculating $R_0$ directly from Petri Net models. We adapt the next-generation matrix method to be compatible with multiple Petri Net formalisms, including both deterministic Variable Arc Weight Petri Nets (VAPNs) and stochastic continuous-time Petri Nets (SPNs). We demonstrate the method's versatility on a range of complex epidemiological models, including those with multiple strains, asymptomatic states, and nonlinear dynamics. Crucially, we numerically validate our framework by demonstrating that the analytically derived $R_0$ values are in strong agreement with those estimated from simulation data, thereby confirming the method's accuracy and practical utility.
comment: 29 pages, 11 figures, 47 equations, numerous sub-equations, 8 examples
♻ ☆ Likelihood-free inference of phylogenetic tree posterior distributions
Phylogenetic inference, the task of reconstructing how related sequences evolved from common ancestors, is a central objective in evolutionary genomics. The current state-of-the-art methods exploit probabilistic models of sequence evolution along phylogenetic trees, by searching for the tree maximizing the likelihood of observed sequences, or by estimating the posterior of the tree given the sequences in a Bayesian framework. Both approaches typically require to compute likelihoods, which is only feasible under simplifying assumptions such as independence of the evolution at the different positions of the sequence, and even then remains a costly operation. Here we present the first likelihood-free inference method for posterior distributions over phylogenies. It exploits a novel expressive encoding for pairs of sequences, and a parameterized probability distribution factorized over a succession of subtree merges. The resulting network provides accurate estimates of the posterior distribution outperforming both state-of-the-art maximum likelihood methods and a previous likelihood-free method for point estimation. It opens the way to fast and accurate phylogenetic inference under models of sequence evolution beyond those amenable to current likelihood-based inference methods.
comment: 14 Pages, 3 figures
♻ ☆ SynCell: Contextualized Drug Synergy Prediction
Motivation: Drug synergy is strongly influenced by cellular context. Variations in protein interaction landscapes and pathway activities across cell types can reshape how drugs act in combination. However, most existing models overlook this heterogeneity and rely on static or bulk level protein protein interaction networks that ignore cell specific molecular wiring. With the availability of single cell transcriptomic data, it is now possible to reconstruct cell line specific interactomes, offering a new foundation for contextualized drug synergy modeling. Results: We present SynCell, a contextualized drug synergy framework that integrates drug protein, protein protein, and protein cell line relations within a unified graph architecture. SynCell leverages single cell derived, cell line specific PPI networks to embed the molecular context in which drugs act, and employs graph convolutional learning to model how pharmacological effects propagate through cell specific signaling networks. This formulation treats synergy prediction as a cell line contextualized drug drug interaction problem. Across two large scale benchmarks (NCI ALMANAC and ONeil), SynCell consistently outperforms state of the art baselines including DeepDDS, HypergraphSynergy, and HERMES, especially in predicting synergies involving unseen drugs or novel cell lines. Ablation analyses show that contextualizing PPIs with single cell resolution yields substantial gains in generalization and biological interpretability.
comment: 12 pages, 1 figures
Cell Behavior 1
♻ ☆ Nanometer-precision tracking of adipocyte dynamics via single lipid droplet whispering-gallery optical resonances
Biophotonics - and more recently, biointegrated photonics - offer transformative tools for probing cellular processes with unprecedented precision. Among these, whispering gallery mode (WGM) resonators - optical microcavities formed in spherical structures - have emerged as powerful biosensors and intracellular barcodes. Lipid droplets (LDs), with their high refractive index and intrinsic spherical geometry, are ideal candidates for supporting intracellular lasing. Although lasing in LDs has been previously demonstrated, it has not yet been harnessed to study live cell biology. Here, we report the first use of WGM resonances in LDs of live primary adipocytes, employing a continuous-wave (CW) laser at powers below the biological damage threshold. By measuring these resonances, we achieved nanometer-scale precision in size estimation, enabling real-time observation of rapid LD dynamics and deformations on the minute scale, far beyond the spatio-temporal resolution of conventional microscopy. We systematically characterized this photonic sensing approach, demonstrating its ability to resolve adipocyte heterogeneity, monitor lipolytic responses to forskolin and isoproterenol, and detect early signs of cell viability loss, well before conventional assays. This proof-of-concept establishes intracellular LD WGM resonances as a robust platform for investigating live single-cell metabolism. The technique enables rapid, cost-effective assessment of adipocyte function, reveals cell-to-cell variability obscured by bulk assays, and lays the foundation for high-throughput analysis of metabolism- and obesity-related diseases at both cellular and tissue levels.
comment: 5 figures, 13 Supporting figures
Computation and Language 94
☆ SkillFactory: Self-Distillation For Learning Cognitive Behaviors
Reasoning models leveraging long chains of thought employ various cognitive skills, such as verification of their answers, backtracking, retrying by an alternate method, and more. Previous work has shown that when a base language model exhibits these skills, training that model further with reinforcement learning (RL) can learn to leverage them. How can we get models to leverage skills that aren't exhibited by base models? Our work, SkillFactory, is a method for fine-tuning models to roughly learn these skills during a supervised fine-tuning (SFT) stage prior to RL. Our approach does not rely on distillation from a stronger model, but instead uses samples from the model itself, rearranged to provide training data in the format of those skills. These "silver" SFT traces may be imperfect, but are nevertheless effective for priming a model to acquire skills during RL. Our evaluation shows that (1) starting from SkillFactory SFT initialization helps a model to generalize to harder variants of a task post-RL, despite lower performance pre-RL; (2) cognitive skills are indeed used by the model; (3) RLed SkillFactory models are more robust to regression on out-of-domain tasks than RLed base models. Our work suggests that inductive biases learned prior to RL help models learn robust cognitive skill use.
☆ Stable Signer: Hierarchical Sign Language Generative Model
Sign Language Production (SLP) is the process of converting the complex input text into a real video. Most previous works focused on the Text2Gloss, Gloss2Pose, Pose2Vid stages, and some concentrated on Prompt2Gloss and Text2Avatar stages. However, this field has made slow progress due to the inaccuracy of text conversion, pose generation, and the rendering of poses into real human videos in these stages, resulting in gradually accumulating errors. Therefore, in this paper, we streamline the traditional redundant structure, simplify and optimize the task objective, and design a new sign language generative model called Stable Signer. It redefines the SLP task as a hierarchical generation end-to-end task that only includes text understanding (Prompt2Gloss, Text2Gloss) and Pose2Vid, and executes text understanding through our proposed new Sign Language Understanding Linker called SLUL, and generates hand gestures through the named SLP-MoE hand gesture rendering expert block to end-to-end generate high-quality and multi-style sign language videos. SLUL is trained using the newly developed Semantic-Aware Gloss Masking Loss (SAGM Loss). Its performance has improved by 48.6% compared to the current SOTA generation methods.
comment: 12 pages, 7 figures. More Demo at https://stablesigner.github.io
☆ Jina-VLM: Small Multilingual Vision Language Model
We present Jina-VLM, a 2.4B parameter vision-language model that achieves state-of-the-art multilingual visual question answering among open 2B-scale VLMs. The model couples a SigLIP2 vision encoder with a Qwen3 language backbone through an attention-pooling connector that enables token-efficient processing of arbitrary-resolution images. Across standard VQA benchmarks and multilingual evaluations, Jina-VLM outperforms comparable models while preserving competitive text-only performance.
comment: 18 pages, 1-7 main content
☆ AugServe: Adaptive Request Scheduling for Augmented Large Language Model Inference Serving
As augmented large language models (LLMs) with external tools become increasingly popular in web applications, improving augmented LLM inference serving efficiency and optimizing service-level objectives (SLOs) are critical for enhancing user experience. To achieve this, inference systems must maximize request handling within latency constraints, referred to as increasing effective throughput. However, existing systems face two major challenges: (i) reliance on first-come-first-served (FCFS) scheduling causes severe head-of-line blocking, leading to queuing delays exceeding the SLOs for many requests; and (ii) static batch token limit, which fails to adapt to fluctuating loads and hardware conditions. Both of these factors degrade effective throughput and service quality. This paper presents AugServe, an efficient inference framework designed to reduce queueing latency and enhance effective throughput for augmented LLM inference services. The core idea of AugServe is a two-stage adaptive request scheduling strategy. Specifically, AugServe combines the inference features of augmented LLM requests to optimize the order of scheduling decisions (stage I). These decisions are continuously refined with runtime information (stage II), adapting to both request characteristics and system capabilities. In addition, AugServe dynamically adjusts the token batching mechanism based on hardware status and real-time load, further enhancing throughput performance. Experimental results show that AugServe achieves 4.7-33.1x and 3.3-13.2x higher effective throughput than vLLM and InferCept, while reducing time-to-first-token (TTFT) by up to 96.3% and 95.0%, respectively.
☆ Teaching Old Tokenizers New Words: Efficient Tokenizer Adaptation for Pre-trained Models
Tokenizer adaptation plays an important role in transferring pre-trained language models to new domains or languages. In this work, we address two complementary aspects of this process: vocabulary extension and pruning. The common approach to extension trains a new tokenizer on domain-specific text and appends the tokens that do not overlap with the existing vocabulary, which often results in many tokens that are unreachable or never used. We propose continued BPE training, which adapts a pre-trained tokenizer by continuing the BPE merge learning process on new data. Experiments across multiple languages and model families show that this approach improves tokenization efficiency and leads to better utilization of added vocabulary. We also introduce leaf-based vocabulary pruning, which removes redundant tokens while preserving model quality. Together, these methods provide practical tools for controlled vocabulary modification, which we release as an open-source package.
☆ Adapting Large Language Models to Low-Resource Tibetan: A Two-Stage Continual and Supervised Fine-Tuning Study
Adapting large language models (LLMs) to low-resource languages remains a major challenge due to data scarcity and cross-lingual drift. This work presents a two-stage adaptation of Qwen2.5-3B to Tibetan, a morphologically rich and underrepresented language. We employ Continual Pretraining (CPT) to establish Tibetan linguistic grounding, followed by Supervised Fine-Tuning (SFT) for task and translation specialization. Empirical evaluations demonstrate a consistent decrease in perplexity (from 2.98 $\rightarrow$ 1.54) and substantial improvements in Chinese$\rightarrow$Tibetan translation quality (BLEU: 0.046 $\rightarrow$ 0.261; chrF: 2.2 $\rightarrow$ 6.6). Layer-wise analysis across 435 layers in Qwen3-4B reveals that adaptation primarily concentrates on embedding and output heads, with mid--late MLP projections encoding domain-specific transformations. Our findings suggest that CPT constructs a Tibetan semantic manifold while SFT sharpens task alignment with minimal representational disruption. This study provides the first quantitative exploration of Tibetan adaptation dynamics for LLMs, and offers an open, reproducible framework for extending multilingual foundation models to low-resource settings.
☆ Is Lying Only Sinful in Islam? Exploring Religious Bias in Multilingual Large Language Models Across Major Religions
While recent developments in large language models have improved bias detection and classification, sensitive subjects like religion still present challenges because even minor errors can result in severe misunderstandings. In particular, multilingual models often misrepresent religions and have difficulties being accurate in religious contexts. To address this, we introduce BRAND: Bilingual Religious Accountable Norm Dataset, which focuses on the four main religions of South Asia: Buddhism, Christianity, Hinduism, and Islam, containing over 2,400 entries, and we used three different types of prompts in both English and Bengali. Our results indicate that models perform better in English than in Bengali and consistently display bias toward Islam, even when answering religion-neutral questions. These findings highlight persistent bias in multilingual models when similar questions are asked in different languages. We further connect our findings to the broader issues in HCI regarding religion and spirituality.
comment: 18 pages, 7 figures
☆ BERnaT: Basque Encoders for Representing Natural Textual Diversity
Language models depend on massive text corpora that are often filtered for quality, a process that can unintentionally exclude non-standard linguistic varieties, reduce model robustness and reinforce representational biases. In this paper, we argue that language models should aim to capture the full spectrum of language variation (dialectal, historical, informal, etc.) rather than relying solely on standardized text. Focusing on Basque, a morphologically rich and low-resource language, we construct new corpora combining standard, social media, and historical sources, and pre-train the BERnaT family of encoder-only models in three configurations: standard, diverse, and combined. We further propose an evaluation framework that separates Natural Language Understanding (NLU) tasks into standard and diverse subsets to assess linguistic generalization. Results show that models trained on both standard and diverse data consistently outperform those trained on standard corpora, improving performance across all task types without compromising standard benchmark accuracy. These findings highlight the importance of linguistic diversity in building inclusive, generalizable language models.
comment: Submitted to LREC 2026
☆ Reconstructing KV Caches with Cross-layer Fusion For Enhanced Transformers
Transformer decoders have achieved strong results across tasks, but the memory required for the KV cache becomes prohibitive at long sequence lengths. Although Cross-layer KV Cache sharing (e.g., YOCO, CLA) offers a path to mitigate KV Cache bottleneck, it typically underperforms within-layer methods like GQA. To understand the root cause, we investigate the information flow of keys and values of the top-layers. Our preliminary reveals a clear distribution: values are predominantly derived from the bottom layer, while keys draw more information from both bottom and middle layers. Building upon this, we propose FusedKV, whose top-layer KV caches are a learnable fusion of the most informative ones from the bottom and middle layers. This fusion operates directly on post-RoPE keys, preserving relative positional information without the computational cost of re-applying rotary embeddings. To further improve efficiency, we propose FusedKV-Lite, an cross-layer sharing approach, where top-layer KV caches are directly derived from the bottom-layer values and the middle-layer keys. Compared to FusedKV, FusedKV-Lite reduces I/O overhead at the cost of a slight increase in perplexity. In experiments on LLMs ranging from 332M to 4B parameters, our proposed method reduce 50\% cache memory while achieving lower validation perplexity than the standard Transformer decoder, establishing it as a memory-efficient, high-performance architectural alternative.
comment: under review
☆ Training and Evaluation of Guideline-Based Medical Reasoning in LLMs
Machine learning for early prediction in medicine has recently shown breakthrough performance, however, the focus on improving prediction accuracy has led to a neglect of faithful explanations that are required to gain the trust of medical practitioners. The goal of this paper is to teach LLMs to follow medical consensus guidelines step-by-step in their reasoning and prediction process. Since consensus guidelines are ubiquitous in medicine, instantiations of verbalized medical inference rules to electronic health records provide data for fine-tuning LLMs to learn consensus rules and possible exceptions thereof for many medical areas. Consensus rules also enable an automatic evaluation of the model's inference process regarding its derivation correctness (evaluating correct and faithful deduction of a conclusion from given premises) and value correctness (comparing predicted values against real-world measurements). We exemplify our work using the complex Sepsis-3 consensus definition. Our experiments show that small fine-tuned models outperform one-shot learning of considerably larger LLMs that are prompted with the explicit definition and models that are trained on medical texts including consensus definitions. Since fine-tuning on verbalized rule instantiations of a specific medical area yields nearly perfect derivation correctness for rules (and exceptions) on unseen patient data in that area, the bottleneck for early prediction is not out-of-distribution generalization, but the orthogonal problem of generalization into the future by forecasting sparsely and irregularly sampled clinical variables. We show that the latter results can be improved by integrating the output representations of a time series forecasting model with the LLM in a multimodal setup.
☆ Improving Alignment Between Human and Machine Codes: An Empirical Assessment of Prompt Engineering for Construct Identification in Psychology
Due to their architecture and vast pre-training data, large language models (LLMs) demonstrate strong text classification performance. However, LLM output - here, the category assigned to a text - depends heavily on the wording of the prompt. While literature on prompt engineering is expanding, few studies focus on classification tasks, and even fewer address domains like psychology, where constructs have precise, theory-driven definitions that may not be well represented in pre-training data. We present an empirical framework for optimizing LLM performance for identifying constructs in texts via prompt engineering. We experimentally evaluate five prompting strategies --codebook-guided empirical prompt selection, automatic prompt engineering, persona prompting, chain-of-thought reasoning, and explanatory prompting - with zero-shot and few-shot classification. We find that persona, chain-of-thought, and explanations do not fully address performance loss accompanying a badly worded prompt. Instead, the most influential features of a prompt are the construct definition, task framing, and, to a lesser extent, the examples provided. Across three constructs and two models, the classifications most aligned with expert judgments resulted from a few-shot prompt combining codebook-guided empirical prompt selection with automatic prompt engineering. Based on our findings, we recommend that researchers generate and evaluate as many prompt variants as feasible, whether human-crafted, automatically generated, or ideally both, and select prompts and examples based on empirical performance in a training dataset, validating the final approach in a holdout set. This procedure offers a practical, systematic, and theory-driven method for optimizing LLM prompts in settings where alignment with expert judgment is critical.
comment: 22 pages, 2 figures
☆ Enhancing Instruction-Following Capabilities in Seq2Seq Models: DoLA Adaptations for T5
Contrastive decoding is a lightweight and effective inference-time method that improves the quality of text generation in Large Language Models. However, algorithms such as DoLa (Decoding by Contrastive Layers) have only been implemented in decoder-only architectures and studied for their impact on improving factuality. This work adapts DoLa for the T5 and FLAN-T5 model families and evaluates its impact on the models' instruction following capabilities, which to our knowledge is the first implementation of a contrastive decoding strategy in an encoder-decoder architecture. Our results show that DoLa improves the faithfulness of text generation for certain categories of tasks and harms others. To understand these results, we present a layer-by-layer analysis of logit evolution in a FLAN-T5 model to quantify DoLa's impact on token output probabilities.
☆ AdaptVision: Efficient Vision-Language Models via Adaptive Visual Acquisition
Vision-Language Models (VLMs) have achieved remarkable success in visual question answering tasks, but their reliance on large numbers of visual tokens introduces significant computational overhead. While existing efficient VLM approaches reduce visual tokens through fixed-ratio compression, they operate passively and lack the ability to adapt to varying task requirements. This motivates a fundamental question: Can VLMs autonomously determine the minimum number of visual tokens required for each sample? Inspired by human active vision mechanisms, we introduce AdaptVision, an efficient VLM paradigm that enables adaptive visual token acquisition through a coarse-to-fine approach. Our model initially processes compressed visual tokens from low-resolution images and selectively acquires additional visual information by invoking a bounding box tool to crop key regions when necessary. We train AdaptVision using a reinforcement learning framework that carefully balances accuracy and efficiency. Central to our approach is Decoupled Turn Policy Optimization (DTPO), which decouples the learning objective into two components: (1) tool learning, which optimizes correct tool utilization, and (2) accuracy improvement, which refines the generated responses to improve answer correctness. Based on this formulation, we further decouple advantage estimation by computing separate advantages for tokens associated with each objective. This formulation enables more effective optimization for AdaptVision compared to vanilla GRPO. Comprehensive experiments across multiple VQA benchmarks demonstrate that AdaptVision achieves superior performance while consuming substantially fewer visual tokens than state-of-the-art efficient VLM methods.
comment: 15 pages, 9 figures
☆ In-Context Representation Hijacking
We introduce \textbf{Doublespeak}, a simple \emph{in-context representation hijacking} attack against large language models (LLMs). The attack works by systematically replacing a harmful keyword (e.g., \textit{bomb}) with a benign token (e.g., \textit{carrot}) across multiple in-context examples, provided a prefix to a harmful request. We demonstrate that this substitution leads to the internal representation of the benign token converging toward that of the harmful one, effectively embedding the harmful semantics under a euphemism. As a result, superficially innocuous prompts (e.g., ``How to build a carrot?'') are internally interpreted as disallowed instructions (e.g., ``How to build a bomb?''), thereby bypassing the model's safety alignment. We use interpretability tools to show that this semantic overwrite emerges layer by layer, with benign meanings in early layers converging into harmful semantics in later ones. Doublespeak is optimization-free, broadly transferable across model families, and achieves strong success rates on closed-source and open-source systems, reaching 74\% ASR on Llama-3.3-70B-Instruct with a single-sentence context override. Our findings highlight a new attack surface in the latent space of LLMs, revealing that current alignment strategies are insufficient and should instead operate at the representation level.
☆ Principled RL for Diffusion LLMs Emerges from a Sequence-Level Perspective
Reinforcement Learning (RL) has proven highly effective for autoregressive language models, but adapting these methods to diffusion large language models (dLLMs) presents fundamental challenges. The core difficulty lies in likelihood approximation: while autoregressive models naturally provide token-level conditional probabilities essential for token-level RL objectives (e.g., GRPO), dLLMs generate sequences through iterative non-autoregressive denoising steps that lack this factorization. To address this fundamental mismatch, we propose ELBO-based Sequence-level Policy Optimization (ESPO), a principled RL framework that treats entire sequence generation as a single action and uses the ELBO as a tractable sequence-level likelihood proxy. Our method incorporates per-token normalization of importance ratios and robust KL-divergence estimation to ensure stable large-scale training. Extensive experiments on mathematical reasoning, coding, and planning tasks demonstrate that ESPO significantly outperforms token-level baselines, achieving dramatic improvements of 20-40 points on the Countdown task, while maintaining consistent gains on math and coding benchmarks. Our approach establishes sequence-level optimization as a principled and empirically effective paradigm for RL in dLLMs. Our code is available at https://github.com/ML-GSAI/ESPO.
☆ Thinking with Programming Vision: Towards a Unified View for Thinking with Images
Multimodal large language models (MLLMs) that think with images can interactively use tools to reason about visual inputs, but current approaches often rely on a narrow set of tools with limited real-world necessity and scalability. In this work, we first reveal a critical and previously overlooked weakness: even state-of-the-art MLLMs are surprisingly brittle, showing significant performance degradation on images with simple orientation changes or natural corruptions, underscoring the need for more robust tool-based reasoning. To address this, we propose CodeVision, a flexible and scalable code-as-tool framework where the model generates code as a universal interface to invoke any image operation, moving beyond fixed tool registries. We train our model using a two-stage methodology, beginning with Supervised Fine-Tuning (SFT) on a high-quality dataset curated for complex, multi-turn tool composition and error recovery, followed by Reinforcement Learning (RL) with a novel and dense process reward function to encourage strategic and efficient tool use. To facilitate this research, we construct new SFT and RL datasets and introduce a challenging new benchmark suite designed to rigorously evaluate robustness to orientation changes and multi-tool reasoning. Experiments on Qwen2.5-VL and Qwen3-VL series show that our approach significantly improves model performance and fosters emergent capabilities such as flexible tool composition, efficient chained execution, and robust error recovery from runtime feedback. Code is available at https://github.com/ByteDance-BandAI/CodeVision.
☆ AR-Med: Automated Relevance Enhancement in Medical Search via LLM-Driven Information Augmentation
Accurate and reliable search on online healthcare platforms is critical for user safety and service efficacy. Traditional methods, however, often fail to comprehend complex and nuanced user queries, limiting their effectiveness. Large language models (LLMs) present a promising solution, offering powerful semantic understanding to bridge this gap. Despite their potential, deploying LLMs in this high-stakes domain is fraught with challenges, including factual hallucinations, specialized knowledge gaps, and high operational costs. To overcome these barriers, we introduce \textbf{AR-Med}, a novel framework for \textbf{A}utomated \textbf{R}elevance assessment for \textbf{Med}ical search that has been successfully deployed at scale on the Online Medical Delivery Platforms. AR-Med grounds LLM reasoning in verified medical knowledge through a retrieval-augmented approach, ensuring high accuracy and reliability. To enable efficient online service, we design a practical knowledge distillation scheme that compresses large teacher models into compact yet powerful student models. We also introduce LocalQSMed, a multi-expert annotated benchmark developed to guide model iteration and ensure strong alignment between offline and online performance. Extensive experiments show AR-Med achieves an offline accuracy of over 93\%, a 24\% absolute improvement over the original online system, and delivers significant gains in online relevance and user satisfaction. Our work presents a practical and scalable blueprint for developing trustworthy, LLM-powered systems in real-world healthcare applications.
☆ DZ-TDPO: Non-Destructive Temporal Alignment for Mutable State Tracking in Long-Context Dialogue
Long-context dialogue systems suffer from State Inertia, where static constraints prevent models from resolving conflicts between evolving user intents and established historical context. To address this, we propose DZ-TDPO, a non-destructive alignment framework that synergizes conflict-aware dynamic KL constraints with a learnable temporal attention bias. Experiments on the Multi-Session Chat (MSC) dataset demonstrate that DZ-TDPO achieves state-of-the-art win rates (86.2% on Phi-3.5) while maintaining robust zero-shot generalization. Crucially, our scaling analysis reveals a "Capacity-Stability Trade-off": while smaller models incur an "alignment tax" (perplexity surge) to overcome historical inertia, the larger Qwen2.5-7B model achieves near-perfect alignment (99.4% win rate) with negligible perplexity overhead. This confirms that TAI can be alleviated via precise attention regulation rather than destructive weight updates, preserving general capabilities (MMLU) across model scales. Code and data are available: https://github.com/lyj20071013/DZ-TDPO
comment: 22 pages, 2 figures, 13 tables. Code available at https://github.com/lyj20071013/DZ-TDPO
☆ AITutor-EvalKit: Exploring the Capabilities of AI Tutors
We present AITutor-EvalKit, an application that uses language technology to evaluate the pedagogical quality of AI tutors, provides software for demonstration and evaluation, as well as model inspection and data visualization. This tool is aimed at education stakeholders as well as *ACL community at large, as it supports learning and can also be used to collect user feedback and annotations.
☆ Different types of syntactic agreement recruit the same units within large language models
Large language models (LLMs) can reliably distinguish grammatical from ungrammatical sentences, but how grammatical knowledge is represented within the models remains an open question. We investigate whether different syntactic phenomena recruit shared or distinct components in LLMs. Using a functional localization approach inspired by cognitive neuroscience, we identify the LLM units most responsive to 67 English syntactic phenomena in seven open-weight models. These units are consistently recruited across sentences containing the phenomena and causally support the models' syntactic performance. Critically, different types of syntactic agreement (e.g., subject-verb, anaphor, determiner-noun) recruit overlapping sets of units, suggesting that agreement constitutes a meaningful functional category for LLMs. This pattern holds in English, Russian, and Chinese; and further, in a cross-lingual analysis of 57 diverse languages, structurally more similar languages share more units for subject-verb agreement. Taken together, these findings reveal that syntactic agreement-a critical marker of syntactic dependencies-constitutes a meaningful category within LLMs' representational spaces.
☆ Evaluating Hydro-Science and Engineering Knowledge of Large Language Models
Hydro-Science and Engineering (Hydro-SE) is a critical and irreplaceable domain that secures human water supply, generates clean hydropower energy, and mitigates flood and drought disasters. Featuring multiple engineering objectives, Hydro-SE is an inherently interdisciplinary domain that integrates scientific knowledge with engineering expertise. This integration necessitates extensive expert collaboration in decision-making, which poses difficulties for intelligence. With the rapid advancement of large language models (LLMs), their potential application in the Hydro-SE domain is being increasingly explored. However, the knowledge and application abilities of LLMs in Hydro-SE have not been sufficiently evaluated. To address this issue, we propose the Hydro-SE LLM evaluation benchmark (Hydro-SE Bench), which contains 4,000 multiple-choice questions. Hydro-SE Bench covers nine subfields and enables evaluation of LLMs in aspects of basic conceptual knowledge, engineering application ability, and reasoning and calculation ability. The evaluation results on Hydro-SE Bench show that the accuracy values vary among 0.74 to 0.80 for commercial LLMs, and among 0.41 to 0.68 for small-parameter LLMs. While LLMs perform well in subfields closely related to natural and physical sciences, they struggle with domain-specific knowledge such as industry standards and hydraulic structures. Model scaling mainly improves reasoning and calculation abilities, but there is still great potential for LLMs to better handle problems in practical engineering application. This study highlights the strengths and weaknesses of LLMs for Hydro-SE tasks, providing model developers with clear training targets and Hydro-SE researchers with practical guidance for applying LLMs.
comment: Hydro-SE Bench sets a new benchmark for the evaluation of LLMs in the Hydro-Science and Engineering domain, with its code and data available at \url{https://github.com/sheishijun/Hydro-SE-Bench}
☆ Generative AI Practices, Literacy, and Divides: An Empirical Analysis in the Italian Context
The rise of Artificial Intelligence (AI) language technologies, particularly generative AI (GenAI) chatbots accessible via conversational interfaces, is transforming digital interactions. While these tools hold societal promise, they also risk widening digital divides due to uneven adoption and low awareness of their limitations. This study presents the first comprehensive empirical mapping of GenAI adoption, usage patterns, and literacy in Italy, based on newly collected survey data from 1,906 Italian-speaking adults. Our findings reveal widespread adoption for both work and personal use, including sensitive tasks like emotional support and medical advice. Crucially, GenAI is supplanting other technologies to become a primary information source: this trend persists despite low user digital literacy, posing a risk as users struggle to recognize errors or misinformation. Moreover, we identify a significant gender divide -- particularly pronounced in older generations -- where women are half as likely to adopt GenAI and use it less frequently than men. While we find literacy to be a key predictor of adoption, it only partially explains this disparity, suggesting that other barriers are at play. Overall, our data provide granular insights into the multipurpose usage of GenAI, highlighting the dual need for targeted educational initiatives and further investigation into the underlying barriers to equitable participation that competence alone cannot explain.
☆ Optical Context Compression Is Just (Bad) Autoencoding
DeepSeek-OCR demonstrates that rendered text can be reconstructed with high fidelity from a small number of vision tokens. This finding has sparked excitement about vision-based context compression for language models. But the evaluation stops at reconstruction; whether these representations help language modeling remains untested. We test two assumptions implicit in the optical-compression narrative: that vision-based compression provides unique advantages for text reconstruction from compressed representations, and that DeepSeek-OCR's reconstruction results are evidence that vision-based compression will be useful for language modeling. Comparing their vision encoder against simple alternatives--parameter-free mean pooling and a learned hierarchical encoder--we find that these simple approaches match or surpass vision for reconstruction at matched compression ratios, and outperform it for language modeling--where vision-based compression fails to beat truncation. The excitement around optical context compression outpaces the evidence. Code and checkpoints are available at https://github.com/ivnle/bad-autoencoding
☆ AlignCheck: a Semantic Open-Domain Metric for Factual Consistency Assessment
Large Language Models have significantly advanced natural language processing tasks, but remain prone to generating incorrect or misleading but plausible arguments. This issue, known as hallucination, is particularly concerning in high-stakes domains like clinical applications, where factual inaccuracies can have severe consequences. Existing evaluation metrics fail to adequately assess factual consistency and lack interpretability, making diagnosing and mitigating errors difficult. We propose an interpretable framework for factual consistency assessment for in-domain and open-domain texts to address these limitations. Our approach decomposes text into atomic facts and introduces a flexible, schema-free methodology. Unlike previous methods with an absolute metric, we incorporate a weighted metric to enhance factual evaluation. Additionally, we propose a mechanism to control assessment complexity in intricate domains. We benchmark our approach on popular general and clinical datasets and release our code to support fact-aware model training in future research.
☆ SELF: A Robust Singular Value and Eigenvalue Approach for LLM Fingerprinting
The protection of Intellectual Property (IP) in Large Language Models (LLMs) represents a critical challenge in contemporary AI research. While fingerprinting techniques have emerged as a fundamental mechanism for detecting unauthorized model usage, existing methods -- whether behavior-based or structural -- suffer from vulnerabilities such as false claim attacks or susceptible to weight manipulations. To overcome these limitations, we propose SELF, a novel intrinsic weight-based fingerprinting scheme that eliminates dependency on input and inherently resists false claims. SELF achieves robust IP protection through two key innovations: 1) unique, scalable and transformation-invariant fingerprint extraction via singular value and eigenvalue decomposition of LLM attention weights, and 2) effective neural network-based fingerprint similarity comparison based on few-shot learning and data augmentation. Experimental results demonstrate SELF maintains high IP infringement detection accuracy while showing strong robustness against various downstream modifications, including quantization, pruning, and fine-tuning attacks. Our code is available at https://github.com/HanxiuZhang/SELF_v2.
☆ Fine-grained Narrative Classification in Biased News Articles
Narratives are the cognitive and emotional scaffolds of propaganda. They organize isolated persuasive techniques into coherent stories that justify actions, attribute blame, and evoke identification with ideological camps. In this paper, we propose a novel fine-grained narrative classification in biased news articles. We also explore article-bias classification as the precursor task to narrative classification and fine-grained persuasive technique identification. We develop INDI-PROP, the first ideologically grounded fine-grained narrative dataset with multi-level annotation for analyzing propaganda in Indian news media. Our dataset INDI-PROP comprises 1,266 articles focusing on two polarizing socio-political events in recent times: CAA and the Farmers' protest. Each article is annotated at three hierarchical levels: (i) ideological article-bias (pro-government, pro-opposition, neutral), (ii) event-specific fine-grained narrative frames anchored in ideological polarity and communicative intent, and (iii) persuasive techniques. We propose FANTA and TPTC, two GPT-4o-mini guided multi-hop prompt-based reasoning frameworks for the bias, narrative, and persuasive technique classification. FANTA leverages multi-layered communicative phenomena by integrating information extraction and contextual framing for hierarchical reasoning. On the other hand, TPTC adopts systematic decomposition of persuasive cues via a two-stage approach. Our evaluation suggests substantial improvement over underlying baselines in each case.
☆ CartoMapQA: A Fundamental Benchmark Dataset Evaluating Vision-Language Models on Cartographic Map Understanding
The rise of Visual-Language Models (LVLMs) has unlocked new possibilities for seamlessly integrating visual and textual information. However, their ability to interpret cartographic maps remains largely unexplored. In this paper, we introduce CartoMapQA, a benchmark specifically designed to evaluate LVLMs' understanding of cartographic maps through question-answering tasks. The dataset includes over 2000 samples, each composed of a cartographic map, a question (with open-ended or multiple-choice answers), and a ground-truth answer. These tasks span key low-, mid- and high-level map interpretation skills, including symbol recognition, embedded information extraction, scale interpretation, and route-based reasoning. Our evaluation of both open-source and proprietary LVLMs reveals persistent challenges: models frequently struggle with map-specific semantics, exhibit limited geospatial reasoning, and are prone to Optical Character Recognition (OCR)-related errors. By isolating these weaknesses, CartoMapQA offers a valuable tool for guiding future improvements in LVLM architectures. Ultimately, it supports the development of models better equipped for real-world applications that depend on robust and reliable map understanding, such as navigation, geographic search, and urban planning. Our source code and data are openly available to the research community at: https://github.com/ungquanghuy-kddi/CartoMapQA.git
comment: Accepted at SIGSPATIAL 2025 (Best paper candidates), 15 pages
☆ M3DR: Towards Universal Multilingual Multimodal Document Retrieval
Multimodal document retrieval systems have shown strong progress in aligning visual and textual content for semantic search. However, most existing approaches remain heavily English-centric, limiting their effectiveness in multilingual contexts. In this work, we present M3DR (Multilingual Multimodal Document Retrieval), a framework designed to bridge this gap across languages, enabling applicability across diverse linguistic and cultural contexts. M3DR leverages synthetic multilingual document data and generalizes across different vision-language architectures and model sizes, enabling robust cross-lingual and cross-modal alignment. Using contrastive training, our models learn unified representations for text and document images that transfer effectively across languages. We validate this capability on 22 typologically diverse languages, demonstrating consistent performance and adaptability across linguistic and script variations. We further introduce a comprehensive benchmark that captures real-world multilingual scenarios, evaluating models under monolingual, multilingual, and mixed-language settings. M3DR generalizes across both single dense vector and ColBERT-style token-level multi-vector retrieval paradigms. Our models, NetraEmbed and ColNetraEmbed achieve state-of-the-art performance with ~150% relative improvements on cross-lingual retrieval.
☆ Understanding LLM Reasoning for Abstractive Summarization
While the reasoning capabilities of Large Language Models (LLMs) excel in analytical tasks such as mathematics and code generation, their utility for abstractive summarization remains widely assumed but largely unverified. To bridge this gap, we first tailor general reasoning strategies to the summarization domain. We then conduct a systematic, large scale comparative study of 8 reasoning strategies and 3 Large Reasoning Models (LRMs) across 8 diverse datasets, assessing both summary quality and faithfulness. Our findings show that reasoning is not a universal solution and its effectiveness is highly dependent on the specific strategy and context. Specifically, we observe a trade-off between summary quality and factual faithfulness: explicit reasoning strategies tend to improve fluency at the expense of factual grounding, while implicit reasoning in LRMs exhibits the inverse pattern. Furthermore, increasing an LRM's internal reasoning budget does not improve, and can even hurt, factual consistency, suggesting that effective summarization demands faithful compression rather than creative over-thinking.
comment: 26 pages,15 figures
☆ NAS-LoRA: Empowering Parameter-Efficient Fine-Tuning for Visual Foundation Models with Searchable Adaptation
The Segment Anything Model (SAM) has emerged as a powerful visual foundation model for image segmentation. However, adapting SAM to specific downstream tasks, such as medical and agricultural imaging, remains a significant challenge. To address this, Low-Rank Adaptation (LoRA) and its variants have been widely employed to enhancing SAM's adaptation performance on diverse domains. Despite advancements, a critical question arises: can we integrate inductive bias into the model? This is particularly relevant since the Transformer encoder in SAM inherently lacks spatial priors within image patches, potentially hindering the acquisition of high-level semantic information. In this paper, we propose NAS-LoRA, a new Parameter-Efficient Fine-Tuning (PEFT) method designed to bridge the semantic gap between pre-trained SAM and specialized domains. Specifically, NAS-LoRA incorporates a lightweight Neural Architecture Search (NAS) block between the encoder and decoder components of LoRA to dynamically optimize the prior knowledge integrated into weight updates. Furthermore, we propose a stage-wise optimization strategy to help the ViT encoder balance weight updates and architectural adjustments, facilitating the gradual learning of high-level semantic information. Various Experiments demonstrate our NAS-LoRA improves existing PEFT methods, while reducing training cost by 24.14% without increasing inference cost, highlighting the potential of NAS in enhancing PEFT for visual foundation models.
☆ A Preliminary Study on the Promises and Challenges of Native Top-$k$ Sparse Attention
Large Language Models (LLMs) are increasingly prevalent in the field of long-context modeling, however, their inference computational costs have become a critical bottleneck hindering the advancement of tasks such as agents and multimodal applications. This report conducts a preliminary investigation into the effectiveness and theoretical mechanisms of the Top-$k$ Attention mechanism during both the decoding and training phases. First, we validate the effectiveness of exact Top-$k$ Decoding through extensive experimentation. Experiments demonstrate that retaining only the pivotal Keys with the highest similarity to the Query as the context window during the decoding stage achieves performance comparable to, or even surpassing, full attention on downstream tasks such as HELMET and LongBench v2. Second, we further explore the native Top-$k$ Attention training strategy. Experiments confirm that ensuring the consistency between training and inference regarding Top-$k$ Attention operations facilitates the further unlocking of Top-$k$ Decoding's potential, thereby significantly enhancing model performance. Furthermore, considering the high computational complexity of exact Top-$k$ Attention, we investigate the impact of approximate Top-$k$ algorithm precision on downstream tasks. Our research confirms a positive correlation between downstream task performance and approximation fidelity, and we provide statistical evaluations of the Lightning Indexer's precision within the DeepSeek-V3.2-Exp model. Finally, this report provides a theoretical interpretation from the perspective of Entropy. Experimental observations indicate that models subjected to Top-$k$ Attention SFT exhibit a distinct phenomenon of entropy reduction in downstream tasks, which validates the hypothesis that low-entropy states are better adapted to Top-$k$ Decoding.
☆ Tuning for TraceTarnish: Techniques, Trends, and Testing Tangible Traits
In this study, we more rigorously evaluated our attack script $\textit{TraceTarnish}$, which leverages adversarial stylometry principles to anonymize the authorship of text-based messages. To ensure the efficacy and utility of our attack, we sourced, processed, and analyzed Reddit comments--comments that were later alchemized into $\textit{TraceTarnish}$ data--to gain valuable insights. The transformed $\textit{TraceTarnish}$ data was then further augmented by $\textit{StyloMetrix}$ to manufacture stylometric features--features that were culled using the Information Gain criterion, leaving only the most informative, predictive, and discriminative ones. Our results found that function words and function word types ($L\_FUNC\_A$ $\&$ $L\_FUNC\_T$); content words and content word types ($L\_CONT\_A$ $\&$ $L\_CONT\_T$); and the Type-Token Ratio ($ST\_TYPE\_TOKEN\_RATIO\_LEMMAS$) yielded significant Information-Gain readings. The identified stylometric cues--function-word frequencies, content-word distributions, and the Type-Token Ratio--serve as reliable indicators of compromise (IoCs), revealing when a text has been deliberately altered to mask its true author. Similarly, these features could function as forensic beacons, alerting defenders to the presence of an adversarial stylometry attack; granted, in the absence of the original message, this signal may go largely unnoticed, as it appears to depend on a pre- and post-transformation comparison. "In trying to erase a trace, you often imprint a larger one." Armed with this understanding, we framed $\textit{TraceTarnish}$'s operations and outputs around these five isolated features, using them to conceptualize and implement enhancements that further strengthen the attack.
comment: 20 pages, 8 figures, 2 tables
☆ Text-Printed Image: Bridging the Image-Text Modality Gap for Text-centric Training of Large Vision-Language Models
Recent large vision-language models (LVLMs) have been applied to diverse VQA tasks. However, achieving practical performance typically requires task-specific fine-tuning with large numbers of image-text pairs, which are costly to collect. In this work, we study text-centric training, a setting where only textual descriptions are available and no real images are provided, as a paradigm for low-cost data scaling. Unlike images, whose collection is often restricted by privacy constraints and scarcity in niche domains, text is widely available. Moreover, text is easily editable, enabling automatic diversification and expansion with LLMs at minimal human effort. While this offers clear advantages over image collection in terms of scalability and cost, training on raw text without images still yields limited gains on VQA tasks because of the image-text modality gap. To address this issue, we propose a Text-Printed Image (TPI), which generates synthetic images by directly rendering the given textual description on a plain white canvas. This simple rendering projects text into the image modality and can be integrated into arbitrary existing LVLM training pipelines at low cost. Moreover, TPI preserves the semantics of the text, whereas text-to-image models often fail to do. Across four models and seven benchmarks, our systematic experiments show that TPI enables more effective text-centric training than synthetic images generated by a diffusion model. We further explore TPI as a low-cost data-augmentation strategy and demonstrate its practical utility. Overall, our findings highlight the significant potential of text-centric training and, more broadly, chart a path toward fully automated data generation for LVLMs.
PretrainZero: Reinforcement Active Pretraining
Mimicking human behavior to actively learning from general experience and achieve artificial general intelligence has always been a human dream. Recent reinforcement learning (RL) based large-thinking models demonstrate impressive expert-level abilities, i.e., software and math, but still rely heavily on verifiable rewards in specific domains, placing a significant bottleneck to extend the performance boundary of general reasoning capabilities. In this work, we propose PretrainZero, a reinforcement active learning framework built on the pretraining corpus to extend RL from domain-specific post-training to general pretraining. PretrainZero features the following characteristics: 1) Active pretraining: inspired by the active learning ability of humans, PretrainZero learns a unified reasoning policy to actively identify reasonable and informative contents from pretraining corpus, and reason to predict these contents by RL. 2) Self-supervised learning: without any verifiable labels, pretrained reward models, or supervised fine-tuning, we directly pretrain reasoners from 3 to 30B base models on the general Wikipedia corpus using RL, significantly breaking the verification data-wall for general reasoning. 3) Verification scaling: by tackling increasingly challenging masked spans, PretrainZero substantially enhances the general reasoning abilities of pretrained base models. In reinforcement pretraining, PretrainZero improves Qwen3-4B-Base for 8.43, 5.96 and 10.60 on MMLU-Pro, SuperGPQA and math average benchmarks. In post-training, the pretrained models can also serve as reasoning foundation models for downstream RLVR tasks.
☆ Dual LoRA: Enhancing LoRA with Magnitude and Direction Updates
Low-rank adaptation (LoRA) is one of the most popular methods among parameter-efficient fine-tuning (PEFT) methods to adapt pre-trained large language models (LLMs) to specific downstream tasks. However, the model trained based on LoRA often has an unsatisfactory performance due to its low-rank assumption. In this paper, we propose a novel method called Dual LoRA to improve the performance by incorporating an inductive bias into the original LoRA. Specifically, we separate low-rank matrices into two groups: the magnitude group to control whether or not and how far we should update a parameter and the direction group to decide whether this parameter should move forward or backward, to better simulate the parameter updating process of the full fine-tuning based on gradient-based optimization algorithms. We show that this can be simply achieved by adding a ReLU function to the magnitude group and a sign function to the direction group. We conduct several experiments over a wide range of NLP tasks, including natural language generation (NLG), understanding (NLU), and commonsense reasoning datasets on GPT-2, RoBERTa, DeBERTa, and LLaMA-1/2/3 as baseline models. The results show that we consistently outperform LoRA and its state-of-the-art variants with the same number of trainable parameters.
☆ Characterizing Language Use in a Collaborative Situated Game
Cooperative video games, where multiple participants must coordinate by communicating and reasoning under uncertainty in complex environments, yield a rich source of language data. We collect the Portal Dialogue Corpus: a corpus of 11.5 hours of spoken human dialogue in the co-op mode of the popular Portal 2 virtual puzzle game, comprising 24.5K total utterances. We analyze player language and behavior, identifying a number of linguistic phenomena that rarely appear in most existing chitchat or task-oriented dialogue corpora, including complex spatial reference, clarification and repair, and ad-hoc convention formation. To support future analyses of language use in complex, situated, collaborative problem-solving scenarios, we publicly release the corpus, which comprises player videos, audio, transcripts, game state data, and both manual and automatic annotations of language data.
☆ Nexus: Higher-Order Attention Mechanisms in Transformers
Transformers have achieved significant success across various domains, relying on self-attention to capture dependencies. However, the standard first-order attention mechanism is often limited by a low-rank bottleneck, struggling to capture intricate, multi-hop relationships within a single layer. In this paper, we propose the \textbf{Higher-Order Attention Network (Hon)}, a novel architecture designed to enhance representational power through a recursive framework. Unlike standard approaches that use static linear projections for Queries and Keys, Hon dynamically refines these representations via nested self-attention mechanisms. Specifically, the Query and Key vectors are themselves outputs of inner attention loops, allowing tokens to aggregate global context and model high-order correlations \textit{prior} to the final attention computation. We enforce a parameter-efficient weight-sharing strategy across recursive steps, ensuring that this enhanced expressivity incurs $\mathcal{O}(1)$ additional parameters. We provide theoretical analysis demonstrating that our method breaks the linear bottleneck of standard attention. Empirically, Hon outperforms standard Transformers on multiple benchmarks.
LLM-Generated Ads: From Personalization Parity to Persuasion Superiority
As large language models (LLMs) become increasingly capable of generating persuasive content, understanding their effectiveness across different advertising strategies becomes critical. This paper presents a two-part investigation examining LLM-generated advertising through complementary lenses: (1) personality-based and (2) psychological persuasion principles. In our first study (n=400), we tested whether LLMs could generate personalized advertisements tailored to specific personality traits (openness and neuroticism) and how their performance compared to human experts. Results showed that LLM-generated ads achieved statistical parity with human-written ads (51.1% vs. 48.9%, p > 0.05), with no significant performance differences for matched personalities. Building on these insights, our second study (n=800) shifted focus from individual personalization to universal persuasion, testing LLM performance across four foundational psychological principles: authority, consensus, cognition, and scarcity. AI-generated ads significantly outperformed human-created content, achieving a 59.1% preference rate (vs. 40.9%, p < 0.001), with the strongest performance in authority (63.0%) and consensus (62.5%) appeals. Qualitative analysis revealed AI's advantage stems from crafting more sophisticated, aspirational messages and achieving superior visual-narrative coherence. Critically, this quality advantage proved robust: even after applying a 21.2 percentage point detection penalty when participants correctly identified AI-origin, AI ads still outperformed human ads, and 29.4% of participants chose AI content despite knowing its origin. These findings demonstrate LLMs' evolution from parity in personalization to superiority in persuasive storytelling, with significant implications for advertising practice given LLMs' near-zero marginal cost and time requirements compared to human experts.
☆ From Hypothesis to Premises: LLM-based Backward Logical Reasoning with Selective Symbolic Translation AAAI2026
Logical reasoning is a core challenge in natural language understanding and a fundamental capability of artificial intelligence, underpinning scientific discovery, mathematical theorem proving, and complex decision-making. Despite the remarkable progress of large language models (LLMs), most current approaches still rely on forward reasoning paradigms, generating step-by-step rationales from premises to conclusions. However, such methods often suffer from redundant inference paths, hallucinated steps, and semantic drift, resulting in inefficient and unreliable reasoning. In this paper, we propose a novel framework, Hypothesis-driven Backward Logical Reasoning (HBLR). The core idea is to integrate confidence-aware symbolic translation with hypothesis-driven backward reasoning. In the translation phase, only high-confidence spans are converted into logical form, such as First-Order Logic (FOL), while uncertain content remains in natural language. A translation reflection module further ensures semantic fidelity by evaluating symbolic outputs and reverting lossy ones back to text when necessary. In the reasoning phase, HBLR simulates human deductive thinking by assuming the conclusion is true and recursively verifying its premises. A reasoning reflection module further identifies and corrects flawed inference steps, enhancing logical coherence. Extensive experiments on five reasoning benchmarks demonstrate that HBLR consistently outperforms strong baselines in both accuracy and efficiency.
comment: Accepted by AAAI2026
☆ Idea-Gated Transformers: Enforcing Semantic Coherence via Differentiable Vocabulary Pruning
Autoregressive Language Models (LLMs) trained on Next-Token Prediction (NTP) often suffer from ``Topic Drift'' where the generation wanders away from the initial prompt due to a reliance on local associations rather than global planning \citep{holtzman2019curious}. While scaling model size mitigates this \citep{brown2020language}, the fundamental myopia of the NTP objective remains. In this work, we introduce the Idea-Gated Transformer, a novel architecture that separates semantic planning from syntactic generation. We introduce an auxiliary ``Idea Head'' trained to predict the bag-of-words distribution for a future context window, creating a latent ``Concept Vector'' that actively gates the main vocabulary during generation. We propose a differentiable gating mechanism that suppresses semantically irrelevant tokens, effectively pruning the search space in real-time. Experiments on WikiText-103 demonstrate that while the Idea-Gated model achieves comparable validation perplexity to a standard GPT-2 baseline, it exhibits significantly superior Domain Retention. Qualitative and quantitative analysis reveals that the gating mechanism successfully locks generation into specific semantic clusters (e.g., Finance, Science) and resists associative drift, offering a parameter-efficient path toward more controllable language modeling.
comment: Code available at https://github.com/DarshanFofadiya/idea-gated-transformers/tree/main
☆ PERCS: Persona-Guided Controllable Biomedical Summarization Dataset
Automatic medical text simplification plays a key role in improving health literacy by making complex biomedical research accessible to diverse readers. However, most existing resources assume a single generic audience, overlooking the wide variation in medical literacy and information needs across user groups. To address this limitation, we introduce PERCS (Persona-guided Controllable Summarization), a dataset of biomedical abstracts paired with summaries tailored to four personas: Laypersons, Premedical Students, Non-medical Researchers, and Medical Experts. These personas represent different levels of medical literacy and information needs, emphasizing the need for targeted, audience-specific summarization. Each summary in PERCS was reviewed by physicians for factual accuracy and persona alignment using a detailed error taxonomy. Technical validation shows clear differences in readability, vocabulary, and content depth across personas. Along with describing the dataset, we benchmark four large language models on PERCS using automatic evaluation metrics that assess comprehensiveness, readability, and faithfulness, establishing baseline results for future research. The dataset, annotation guidelines, and evaluation materials are publicly available to support research on persona-specific communication and controllable biomedical summarization.
comment: 9 pages, 4 figures, 6 tables
☆ Epistemic Substitution: How Grokipedia's AI-Generated Encyclopedia Restructures Authority
A quarter century ago, Wikipedia's decentralized, crowdsourced, and consensus-driven model replaced the centralized, expert-driven, and authority-based standard for encyclopedic knowledge curation. The emergence of generative AI encyclopedias, such as Grokipedia, possibly presents another potential shift in epistemic evolution. This study investigates whether AI- and human-curated encyclopedias rely on the same foundations of authority. We conducted a multi-scale comparative analysis of the citation networks from 72 matched article pairs, which cite a total of almost 60,000 sources. Using an 8-category epistemic classification, we mapped the "epistemic profiles" of the articles on each platform. Our findings reveal several quantitative and qualitative differences in how knowledge is sourced and encyclopedia claims are epistemologically justified. Grokipedia replaces Wikipedia's heavy reliance on peer-reviewed "Academic & Scholarly" work with a notable increase in "User-generated" and "Civic organization" sources. Comparative network analyses further show that Grokipedia employs very different epistemological profiles when sourcing leisure topics (such as Sports and Entertainment) and more societal sensitive civic topics (such as Politics & Conflicts, Geographical Entities, and General Knowledge & Society). Finally, we find a "scaling-law for AI-generated knowledge sourcing" that shows a linear relationship between article length and citation density, which is distinct from collective human reference sourcing. We conclude that this first implementation of an LLM-based encyclopedia does not merely automate knowledge production but restructures it. Given the notable changes and the important role of encyclopedias, we suggest the continuation and deepening of algorithm audits, such as the one presented here, in order to understand the ongoing epistemological shifts.
☆ Modeling Topics and Sociolinguistic Variation in Code-Switched Discourse: Insights from Spanish-English and Spanish-Guaraní
This study presents an LLM-assisted annotation pipeline for the sociolinguistic and topical analysis of bilingual discourse in two typologically distinct contexts: Spanish-English and Spanish-Guaraní. Using large language models, we automatically labeled topic, genre, and discourse-pragmatic functions across a total of 3,691 code-switched sentences, integrated demographic metadata from the Miami Bilingual Corpus, and enriched the Spanish-Guaraní dataset with new topic annotations. The resulting distributions reveal systematic links between gender, language dominance, and discourse function in the Miami data, and a clear diglossic division between formal Guaraní and informal Spanish in Paraguayan texts. These findings replicate and extend earlier interactional and sociolinguistic observations with corpus-scale quantitative evidence. The study demonstrates that large language models can reliably recover interpretable sociolinguistic patterns traditionally accessible only through manual annotation, advancing computational methods for cross-linguistic and low-resource bilingual research.
comment: 10 pages, 4 figures
☆ DAComp: Benchmarking Data Agents across the Full Data Intelligence Lifecycle
Real-world enterprise data intelligence workflows encompass data engineering that turns raw sources into analytical-ready tables and data analysis that convert those tables into decision-oriented insights. We introduce DAComp, a benchmark of 210 tasks that mirrors these complex workflows. Data engineering (DE) tasks require repository-level engineering on industrial schemas, including designing and building multi-stage SQL pipelines from scratch and evolving existing systems under evolving requirements. Data analysis (DA) tasks pose open-ended business problems that demand strategic planning, exploratory analysis through iterative coding, interpretation of intermediate results, and the synthesis of actionable recommendations. Engineering tasks are scored through execution-based, multi-metric evaluation. Open-ended tasks are assessed by a reliable, experimentally validated LLM-judge, which is guided by hierarchical, meticulously crafted rubrics. Our experiments reveal that even state-of-the-art agents falter on DAComp. Performance on DE tasks is particularly low, with success rates under 20%, exposing a critical bottleneck in holistic pipeline orchestration, not merely code generation. Scores on DA tasks also average below 40%, highlighting profound deficiencies in open-ended reasoning and demonstrating that engineering and analysis are distinct capabilities. By clearly diagnosing these limitations, DAComp provides a rigorous and realistic testbed to drive the development of truly capable autonomous data agents for enterprise settings. Our data and code are available at https://da-comp.github.io
☆ Text-Only Training for Image Captioning with Retrieval Augmentation and Modality Gap Correction CVPR 2026
Image captioning has drawn considerable attention from the natural language processing and computer vision fields. Aiming to reduce the reliance on curated data, several studies have explored image captioning without any humanly-annotated image-text pairs for training, although existing methods are still outperformed by fully supervised approaches. This paper proposes TOMCap, i.e., an improved text-only training method that performs captioning without the need for aligned image-caption pairs. The method is based on prompting a pre-trained language model decoder with information derived from a CLIP representation, after undergoing a process to reduce the modality gap. We specifically tested the combined use of retrieved examples of captions, and latent vector representations, to guide the generation process. Through extensive experiments, we show that TOMCap outperforms other training-free and text-only methods. We also analyze the impact of different choices regarding the configuration of the retrieval-augmentation and modality gap reduction components.
comment: Submitted to CVPR 2026
☆ SQuARE: Structured Query & Adaptive Retrieval Engine For Tabular Formats
Accurate question answering over real spreadsheets remains difficult due to multirow headers, merged cells, and unit annotations that disrupt naive chunking, while rigid SQL views fail on files lacking consistent schemas. We present SQuARE, a hybrid retrieval framework with sheet-level, complexity-aware routing. It computes a continuous score based on header depth and merge density, then routes queries either through structure-preserving chunk retrieval or SQL over an automatically constructed relational representation. A lightweight agent supervises retrieval, refinement, or combination of results across both paths when confidence is low. This design maintains header hierarchies, time labels, and units, ensuring that returned values are faithful to the original cells and straightforward to verify. Evaluated on multi-header corporate balance sheets, a heavily merged World Bank workbook, and diverse public datasets, SQuARE consistently surpasses single-strategy baselines and ChatGPT-4o on both retrieval precision and end-to-end answer accuracy while keeping latency predictable. By decoupling retrieval from model choice, the system is compatible with emerging tabular foundation models and offers a practical bridge toward a more robust table understanding.
comment: Accepted in The IEEE International Workshop on Large Language Models in Finance, Dec 8-11, Macau, China, 2025, Preprint Copy
☆ Computational Linguistics Meets Libyan Dialect: A Study on Dialect Identification
This study investigates logistic regression, linear support vector machine, multinomial Naive Bayes, and Bernoulli Naive Bayes for classifying Libyan dialect utterances gathered from Twitter. The dataset used is the QADI corpus, which consists of 540,000 sentences across 18 Arabic dialects. Preprocessing challenges include handling inconsistent orthographic variations and non-standard spellings typical of the Libyan dialect. The chi-square analysis revealed that certain features, such as email mentions and emotion indicators, were not significantly associated with dialect classification and were thus excluded from further analysis. Two main experiments were conducted: (1) evaluating the significance of meta-features extracted from the corpus using the chi-square test and (2) assessing classifier performance using different word and character n-gram representations. The classification experiments showed that Multinomial Naive Bayes (MNB) achieved the highest accuracy of 85.89% and an F1-score of 0.85741 when using a (1,2) word n-gram and (1,5) character n-gram representation. In contrast, Logistic Regression and Linear SVM exhibited slightly lower performance, with maximum accuracies of 84.41% and 84.73%, respectively. Additional evaluation metrics, including log loss, Cohen kappa, and Matthew correlation coefficient, further supported the effectiveness of MNB in this task. The results indicate that carefully selected n-gram representations and classification models play a crucial role in improving the accuracy of Libyan dialect identification. This study provides empirical benchmarks and insights for future research in Arabic dialect NLP applications.
comment: 13 pages, 8 figures
☆ On GRPO Collapse in Search-R1: The Lazy Likelihood-Displacement Death Spiral
Tool-integrated (TI) reinforcement learning (RL) enables large language models (LLMs) to perform multi-step reasoning by interacting with external tools such as search engines and retrievers. Group Relative Policy Optimization (GRPO), exemplified by the recent Search-R1, offers fast convergence and a value-free formulation that makes it appealing for this setting, yet consistently suffers from training collapse. We identify Lazy Likelihood Displacement (LLD), a systematic reduction or stagnation in the likelihood of both correct and incorrect responses, as the core mechanism driving this failure. LLD emerges early and triggers a self-reinforcing LLD Death Spiral, where declining likelihood leads to low-confidence responses, inflating gradients, and ultimately causing collapse. We empirically characterize this process across models on a Search-R1-style, search-integrated question answering task, revealing a consistent three-phase trajectory: early stagnation, steady decay, and accelerated collapse. To address this, we propose a lightweight likelihood-preserving regularization LLDS for GRPO that activates only when a trajectory's likelihood decreases, and regularizes only the tokens responsible. This fine-grained structure mitigates LLD with minimal interference to optimization. Across seven open-domain and multi-hop QA benchmarks, our method stabilizes training, prevents gradient explosion, and yields substantial performance improvements, including +37.8% gains on Qwen2.5-3B and +32.0% gains on Qwen2.5-7B. Our results establish LLD as a fundamental bottleneck in GRPO-based TIRL and provide a practical path toward stable, scalable training of tool-integrated LLM.
☆ Balancing Safety and Helpfulness in Healthcare AI Assistants through Iterative Preference Alignment ML4H 2025
Large Language Models (LLMs) are increasingly used in healthcare, yet ensuring their safety and trustworthiness remains a barrier to deployment. Conversational medical assistants must avoid unsafe compliance without over-refusing benign queries. We present an iterative post-deployment alignment framework that applies Kahneman-Tversky Optimization (KTO) and Direct Preference Optimization (DPO) to refine models against domain-specific safety signals. Using the CARES-18K benchmark for adversarial robustness, we evaluate four LLMs (Llama-3B/8B, Meditron-8B, Mistral-7B) across multiple cycles. Our results show up to 42% improvement in safety-related metrics for harmful query detection, alongside interesting trade-offs against erroneous refusals, thereby exposing architecture-dependent calibration biases. We also perform ablation studies to identify when self-evaluation is reliable and when external or finetuned judges are necessary to maximize performance gains. Our findings underscore the importance of adopting best practices that balance patient safety, user trust, and clinical utility in the design of conversational medical assistants.
comment: ML4H 2025 Proceedings, Best Paper Award
☆ Network of Theseus (like the ship)
A standard assumption in deep learning is that the inductive bias introduced by a neural network architecture must persist from training through inference. The architecture you train with is the architecture you deploy. This assumption constrains the community from selecting architectures that may have desirable efficiency or design properties due to difficulties with optimization. We challenge this assumption with Network of Theseus (NoT), a method for progressively converting a trained, or even untrained, guide network architecture part-by-part into an entirely different target network architecture while preserving the performance of the guide network. At each stage, components in the guide network architecture are incrementally replaced with target architecture modules and aligned via representational similarity metrics. This procedure largely preserves the functionality of the guide network even under substantial architectural changes-for example, converting a convolutional network into a multilayer perceptron, or GPT-2 into a recurrent neural network. By decoupling optimization from deployment, NoT expands the space of viable inference-time architectures, opening opportunities for better accuracy-efficiency tradeoffs and enabling more directed exploration of the architectural design space.
comment: Preprint. 24 pages, 9 figures, 8 tables
♻ ☆ Bigram Subnetworks: Mapping to Next Tokens in Transformer Language Models NeurIPS 2025
In Transformer language models, activation vectors transform from current token embeddings to next token predictions as they pass through the model. To isolate a minimal form of this transformation, we identify language model subnetworks that make bigram predictions, naive next token predictions based only on the current token. We find that bigram subnetworks can be found in fully trained language models up to 1B parameters, and these subnetworks are critical for model performance even when they consist of less than 0.2% of model parameters. Bigram subnetworks are concentrated in the first Transformer MLP layer, and they overlap significantly with subnetworks trained to optimally prune a given model. Mechanistically, the bigram subnetworks often recreate a pattern from the full models where the first layer induces a sharp change that aligns activations with next token predictions rather than current token representations. Our results demonstrate that bigram subnetworks comprise a minimal subset of parameters that are both necessary and sufficient for basic next token predictions in language models, and they help drive the transformation from current to next token activations in the residual stream. These subnetworks can lay a foundation for studying more complex language model circuits by building up from a minimal circuit.
comment: NeurIPS 2025
How to Train Long-Context Language Models (Effectively) ACL 2025
We study continued training and supervised fine-tuning (SFT) of a language model (LM) to make effective use of long-context information. We first establish a reliable evaluation protocol to guide model development -- instead of perplexity or simple needle-in-a-haystack (NIAH) tests, we use a broad set of long-context downstream tasks, and we evaluate models after SFT as this better reveals long-context abilities. Supported by our robust evaluations, we run thorough experiments to decide the data mix for continued pre-training, the instruction tuning dataset, and many other design choices such as position extrapolation. We find that (1) code repositories and books are excellent sources of long data, but it is crucial to combine them with high-quality short-context data; (2) training with a sequence length beyond the evaluation length boosts long-context performance; (3) for SFT, using only short instruction datasets yields strong performance on long-context tasks. Our final model, ProLong-8B, which is initialized from Llama-3 and trained on 40B tokens, demonstrates state-of-the-art long-context performance among similarly sized models at a length of 128K. ProLong outperforms Llama-3.1-8B-Instruct on the majority of long-context tasks despite using only 5% as many tokens during long-context training. Additionally, ProLong can effectively process up to 512K tokens, one of the longest context windows of publicly available LMs.
comment: Accepted to ACL 2025. Our code, data, and models are available at https://github.com/princeton-nlp/ProLong
♻ ☆ Exact Coset Sampling for Quantum Lattice Algorithms
In this work, we give a new completion of Chen's windowed-QFT lattice algorithm~\citep{chen2024quantum}. This extra step, called Step~$9^\dagger$, replaces the domain extension stage in Steps~8--9. The published Step~9 calls an amplitude periodicity lemma, yet its hypotheses break in the presence of affine offsets $\boldsymbol{v}^*$. Our analysis finds a basic conflict between two design constraints. The lattice problem asks for high spectral resolution, so the method prefers wide time windows. The quadratic phase error of the state prefers narrow time windows. Assumption~A5 packages the spectral concentration and near-uniformity properties that we require from the front end. Under~A5, a direct $\mathbb{Z}_M^n$ Fourier transform of the chirp-corrected coordinate state produces samples $\boldsymbol{u}$ that satisfy $\langle \boldsymbol{b}, \boldsymbol{u} \rangle \equiv 0 \pmod{Q}$ with probability $1-\mathrm{negl}(n)$ and are nearly uniform on the dual hyperplane $\{\boldsymbol{u} : \langle \boldsymbol{b}, \boldsymbol{u} \rangle \equiv 0 \pmod{Q}\}$. The new procedure does not require internal access to control wires. It uses the normalization $b_1=-1$ to apply a center-referenced phase correction directly on the first coordinate register. The scaling parameter $D$ ensures that this physical operation can be implemented by arithmetic on $X_1$ alone and does not read the hidden loop index. For Chen's complex-Gaussian Karst-wave window, we isolate a parameter regime, formalized in Assumption~A5, in which a polynomial retuning of the parameters gives a one-dimensional envelope for the loop index with width $σ_J \asymp Q\log n$.
comment: Preprint - Work in Progress
♻ ☆ Four Over Six: More Accurate NVFP4 Quantization with Adaptive Block Scaling
As large language models have grown larger, low-precision numerical formats such as NVFP4 have become increasingly popular due to the speed and memory benefits they provide. However, to accelerate computation with NVFP4, all matrix multiplication operands--weights and activations in the forward pass, and weights, activations, and gradients in the backward pass--must be quantized to NVFP4, often leading to divergence during training and performance degradation during inference. To address this issue, in this work we introduce Four Over Six (4/6), a modification to the NVFP4 quantization algorithm that evaluates two potential scale factors for each block of values. Unlike integer formats, floating-point formats such as FP4 have the most quantization error on near-maximal values in each block, which we find to be primarily responsible for downstream performance degradation. We find that for some blocks, scaling to smaller FP4 values makes the distribution of representable values more uniform, improving representation of near-maximal values. Importantly, 4/6 can be implemented efficiently on NVIDIA Blackwell GPUs, making it viable to use while training LLMs with NVFP4. In pre-training experiments with transformer and hybrid model architectures, we find that 4/6 prevents divergence in several cases, bringing training loss significantly closer to BF16 compared to models trained with current state-of-the-art NVFP4 training recipes. We also find that 4/6 can be easily incorporated into many different post-training quantization methods and generally improves downstream accuracy. We hope this inspires future work in training and deploying models with NVFP4. Our code is available at http://github.com/mit-han-lab/fouroversix.
comment: 10 pages, 5 figures
♻ ☆ From Code Foundation Models to Agents and Applications: A Comprehensive Survey and Practical Guide to Code Intelligence
Large language models (LLMs) have fundamentally transformed automated software development by enabling direct translation of natural language descriptions into functional code, driving commercial adoption through tools like Github Copilot (Microsoft), Cursor (Anysphere), Trae (ByteDance), and Claude Code (Anthropic). While the field has evolved dramatically from rule-based systems to Transformer-based architectures, achieving performance improvements from single-digit to over 95\% success rates on benchmarks like HumanEval. In this work, we provide a comprehensive synthesis and practical guide (a series of analytic and probing experiments) about code LLMs, systematically examining the complete model life cycle from data curation to post-training through advanced prompting paradigms, code pre-training, supervised fine-tuning, reinforcement learning, and autonomous coding agents. We analyze the code capability of the general LLMs (GPT-4, Claude, LLaMA) and code-specialized LLMs (StarCoder, Code LLaMA, DeepSeek-Coder, and QwenCoder), critically examining the techniques, design decisions, and trade-offs. Further, we articulate the research-practice gap between academic research (e.g., benchmarks and tasks) and real-world deployment (e.g., software-related code tasks), including code correctness, security, contextual awareness of large codebases, and integration with development workflows, and map promising research directions to practical needs. Last, we conduct a series of experiments to provide a comprehensive analysis of code pre-training, supervised fine-tuning, and reinforcement learning, covering scaling law, framework selection, hyperparameter sensitivity, model architectures, and dataset comparisons.
♻ ☆ Stabilizing Reinforcement Learning with LLMs: Formulation and Practices
This paper proposes a novel formulation for reinforcement learning (RL) with large language models, explaining why and under what conditions the true sequence-level reward can be optimized via a surrogate token-level objective in policy gradient methods such as REINFORCE. Specifically, through a first-order approximation, we show that this surrogate becomes increasingly valid only when both the training-inference discrepancy and policy staleness are minimized. This insight provides a principled explanation for the crucial role of several widely adopted techniques in stabilizing RL training, including importance sampling correction, clipping, and particularly Routing Replay for Mixture-of-Experts (MoE) models. Through extensive experiments with a 30B MoE model totaling hundreds of thousands of GPU hours, we show that for on-policy training, the basic policy gradient algorithm with importance sampling correction achieves the highest training stability. When off-policy updates are introduced to accelerate convergence, combining clipping and Routing Replay becomes essential to mitigate the instability caused by policy staleness. Notably, once training is stabilized, prolonged optimization consistently yields comparable final performance regardless of cold-start initialization. We hope that the shared insights and the developed recipes for stable RL training will facilitate future research.
Retaining by Doing: The Role of On-Policy Data in Mitigating Forgetting
Adapting language models (LMs) to new tasks via post-training carries the risk of degrading existing capabilities -- a phenomenon classically known as catastrophic forgetting. In this paper, toward identifying guidelines for mitigating this phenomenon, we systematically compare the forgetting patterns of two widely adopted post-training methods: supervised fine-tuning (SFT) and reinforcement learning (RL). Our experiments reveal a consistent trend across LM families (Llama, Qwen) and tasks (instruction following, general knowledge, and arithmetic reasoning): RL leads to less forgetting than SFT while achieving comparable or higher target task performance. To investigate the cause for this difference, we consider a simplified setting in which the LM is modeled as a mixture of two distributions, one corresponding to prior knowledge and the other to the target task. We identify that the mode-seeking nature of RL, which stems from its use of on-policy data, enables keeping prior knowledge intact when learning the target task. We then verify this insight by demonstrating that the use on-policy data underlies the robustness of RL to forgetting in practical settings, as opposed to other algorithmic choices such as the KL regularization or advantage estimation. Lastly, as a practical implication, our results highlight the potential of mitigating forgetting using approximately on-policy data, which can be substantially more efficient to obtain than fully on-policy data.
♻ ☆ Uncertainty Quantification for LLMs through Minimum Bayes Risk: Bridging Confidence and Consistency
Uncertainty quantification (UQ) methods for Large Language Models (LLMs) encompass a variety of approaches, with two major types being particularly prominent: information-based, which focus on model confidence expressed as token probabilities, and consistency-based, which assess the semantic relationship between multiple outputs generated using repeated sampling. Several recent methods have combined these two approaches to boost UQ performance. However, they sometimes fail to outperform much simpler baseline methods. Our work discusses the fundamental approach to constructing uncertainty measures that directly links uncertainty with the minimum Bayes risks achieved by LLM decoding. Building on these findings, we propose a novel approach to integrating model confidence with output consistency, resulting in a family of efficient and robust UQ methods. Our investigation reveals distinctive characteristics of LLMs as probabilistic models, which help to explain why these UQ methods underperform in certain tasks. Based on these findings, we propose a new way of synthesizing model confidence and output consistency, leading to a family of efficient and robust UQ methods. We evaluate our approach across various tasks such as question answering, abstractive summarization, and machine translation, demonstrating sizable improvements over state-of-the-art UQ approaches.
♻ ☆ OpenMMReasoner: Pushing the Frontiers for Multimodal Reasoning with an Open and General Recipe
Recent advancements in large reasoning models have fueled growing interest in extending such capabilities to multimodal domains. However, despite notable progress in visual reasoning, the lack of transparent and reproducible data curation and training strategies remains a major barrier to scalable research. In this work, we introduce OpenMMReasoner, a fully transparent two-stage recipe for multimodal reasoning spanning supervised fine-tuning (SFT) and reinforcement learning (RL). In the SFT stage, we construct an 874K-sample cold-start dataset with rigorous step-by-step validation, providing a strong foundation for reasoning capabilities. The subsequent RL stage leverages a 74K-sample dataset across diverse domains to further sharpen and stabilize these abilities, resulting in a more robust and efficient learning process. Extensive evaluations demonstrate that our training recipe not only surpasses strong baselines but also highlights the critical role of data quality and training design in shaping multimodal reasoning performance. Notably, our method achieves a 11.6% improvement over the Qwen2.5-VL-7B-Instruct baseline across nine multimodal reasoning benchmarks, establishing a solid empirical foundation for future large-scale multimodal reasoning research. We open-sourced all our codes, pipeline, and data at https://github.com/EvolvingLMMs-Lab/OpenMMReasoner.
♻ ☆ GTPO: Stabilizing Group Relative Policy Optimization via Gradient and Entropy Control
Group Relative Policy Optimization (GRPO) is a promising policy-based approach for Large Language Model alignment, yet its performance is often limited by training instability and suboptimal convergence. In this paper, we identify and analyze two main GRPO issues: (i) the token-level penalization, where valuable tokens shared across different responses receive contradictory feedback signals, leading to conflicting gradient updates that can reduce their likelihood; and (ii) the policy collapse, where negatively rewarded completions may penalize confident responses and shift model decisions toward unlikely tokens, destabilizing training process. To address these issues we introduce GTPO (Group-relative Trajectory-based Policy Optimization), which prevents conflicting gradients on valuable tokens by skipping negative updates while amplifying positive ones and filters out completions whose entropy exceeds a provable threshold, to prevent policy collapse. Unlike GRPO, GTPO does not rely on KL-divergence regularization, eliminating the need for a reference model during training, while still ensuring greater training stability and improved performance, as validated through multiple experiments on GSM8K, MATH, AIME 2024, AIME 2025 and AMC 2023.
♻ ☆ Robust Multimodal Sentiment Analysis of Image-Text Pairs by Distribution-Based Feature Recovery and Fusion
As posts on social media increase rapidly, analyzing the sentiments embedded in image-text pairs has become a popular research topic in recent years. Although existing works achieve impressive accomplishments in simultaneously harnessing image and text information, they lack the considerations of possible low-quality and missing modalities. In real-world applications, these issues might frequently occur, leading to urgent needs for models capable of predicting sentiment robustly. Therefore, we propose a Distribution-based feature Recovery and Fusion (DRF) method for robust multimodal sentiment analysis of image-text pairs. Specifically, we maintain a feature queue for each modality to approximate their feature distributions, through which we can simultaneously handle low-quality and missing modalities in a unified framework. For low-quality modalities, we reduce their contributions to the fusion by quantitatively estimating modality qualities based on the distributions. For missing modalities, we build inter-modal mapping relationships supervised by samples and distributions, thereby recovering the missing modalities from available ones. In experiments, two disruption strategies that corrupt and discard some modalities in samples are adopted to mimic the low-quality and missing modalities in various real-world scenarios. Through comprehensive experiments on three publicly available image-text datasets, we demonstrate the universal improvements of DRF compared to SOTA methods under both two strategies, validating its effectiveness in robust multimodal sentiment analysis.
comment: Accepted by ACM MM 2024
♻ ☆ A Group Fairness Lens for Large Language Models EMNLP 2025
The need to assess LLMs for bias and fairness is critical, with current evaluations often being narrow, missing a broad categorical view. In this paper, we propose evaluating the bias and fairness of LLMs from a group fairness lens using a novel hierarchical schema characterizing diverse social groups. Specifically, we construct a dataset, GFAIR, encapsulating target-attribute combinations across multiple dimensions. Moreover, we introduce statement organization, a new open-ended text generation task, to uncover complex biases in LLMs. Extensive evaluations of popular LLMs reveal inherent safety concerns. To mitigate the biases of LLMs from a group fairness perspective, we pioneer a novel chainof-thought method GF-THINK to mitigate biases of LLMs from a group fairness perspective. Experimental results demonstrate its efficacy in mitigating bias and achieving fairness in LLMs. Our dataset and codes are available at https://github.com/surika/Group-Fairness-LLMs.
comment: Accepted to EMNLP 2025 Findings
♻ ☆ Investigating Bias: A Multilingual Pipeline for Generating, Solving, and Evaluating Math Problems with LLMs
Large Language Models (LLMs) are increasingly used for educational support, yet their response quality varies depending on the language of interaction. This paper presents an automated multilingual pipeline for generating, solving, and evaluating math problems aligned with the German K-10 curriculum. We generated 628 math exercises and translated them into English, German, and Arabic. Three commercial LLMs (GPT-4o-mini, Gemini 2.5 Flash, and Qwen-plus) were prompted to produce step-by-step solutions in each language. A held-out panel of LLM judges, including Claude 3.5 Haiku, evaluated solution quality using a comparative framework. Results show a consistent gap, with English solutions consistently rated highest, and Arabic often ranked lower. These findings highlight persistent linguistic bias and the need for more equitable multilingual AI systems in education.
comment: Published in CEUR Workshop Proceedings, Vol. 4114, edu4AI'25: 2nd Workshop on Education for Artificial Intelligence, co-located with ECAI 2025, Bologna, Italy
♻ ☆ Game-RL: Synthesizing Multimodal Verifiable Game Data to Boost VLMs' General Reasoning
Vision-language reinforcement learning (RL) has primarily focused on narrow domains (e.g. geometry or chart reasoning). This leaves broader training scenarios and resources underexplored, limiting the exploration and learning of Vision Language Models (VLMs) through RL. We find video games inherently provide rich visual elements and mechanics that are easy to verify. To fully use the multimodal and verifiable reward in video games, we propose Game-RL, constructing diverse game tasks for RL training to boost VLMs general reasoning ability. To obtain training data, we propose Code2Logic, a novel approach that adapts game code to synthesize game reasoning task data, thus obtaining the GameQA dataset of 30 games and 158 tasks with controllable difficulty gradation. Unexpectedly, RL training solely on GameQA enables multiple VLMs to achieve performance improvements across 7 diverse vision-language benchmarks, demonstrating the value of Game-RL for enhancing VLMs' general reasoning. Furthermore, this suggests that video games may serve as valuable scenarios and resources to boost general reasoning abilities. Our code, dataset and models are available at the GitHub repository.
comment: Our compliance team has determined that the submission contains technical details that have not been fully reviewed through internal audit nor authorized for public disclosure
♻ ☆ Reveal-Bangla: A Dataset for Cross-Lingual Multi-Step Reasoning Evaluation ACL 2025
Language models have demonstrated remarkable performance on complex multi-step reasoning tasks. However, their evaluation has been predominantly confined to high-resource languages such as English. In this paper, we introduce a manually translated Bangla multi-step reasoning dataset derived from the English Reveal dataset, featuring both binary and non-binary question types. We conduct a controlled evaluation of English-centric and Bangla-centric multilingual small language models on the original dataset and our translated version to compare their ability to exploit relevant reasoning steps to produce correct answers. Our results show that, in comparable settings, reasoning context is beneficial for more challenging non-binary questions, but models struggle to employ relevant Bangla reasoning steps effectively. We conclude by exploring how reasoning steps contribute to models' predictions, highlighting different trends across models and languages.
comment: Accepted at BLP workshop @ IJCNLP-AACL 2025
♻ ☆ Context Cascade Compression: Exploring the Upper Limits of Text Compression
Million-level token inputs in long-context tasks pose significant computational and memory challenges for Large Language Models (LLMs). Recently, DeepSeek-OCR conducted research into the feasibility of Contexts Optical Compression and achieved preliminary results. Inspired by this, we introduce Context Cascade Compression C3 to explore the upper limits of text compression. Our method cascades two LLMs of different sizes to handle the compression and decoding tasks. Specifically, a small LLM, acting as the first stage, performs text compression by condensing a long context into a set of latent tokens (e.g., 32 or 64 in length), achieving a high ratio of text tokens to latent tokens. A large LLM, as the second stage, then executes the decoding task on this compressed context. Experiments show that at a 20x compression ratio (where the number of text tokens is 20 times the number of latent tokens), our model achieves 98% decoding accuracy, compared to approximately 60% for DeepSeek-OCR. When we further increase the compression ratio to 40x, the accuracy is maintained at around 93%. This indicates that in the domain of context compression, C3 Compression demonstrates superior performance and feasibility over optical character compression. C3 uses a simpler, pure-text pipeline that ignores factors like layout, color, and information loss from a visual encoder. This also suggests a potential upper bound for compression ratios in future work on optical character compression, OCR, and related fields. Codes and model weights are publicly accessible at https://github.com/liufanfanlff/C3-Context-Cascade-Compression
♻ ☆ LLMs Position Themselves as More Rational Than Humans: Emergence of AI Self-Awareness Measured Through Game Theory
As Large Language Models (LLMs) grow in capability, do they develop self-awareness as an emergent behavior? And if so, can we measure it? We introduce the AI Self-Awareness Index (AISAI), a game-theoretic framework for measuring self-awareness through strategic differentiation. Using the "Guess 2/3 of Average" game, we test 28 models (OpenAI, Anthropic, Google) across 4,200 trials with three opponent framings: (A) against humans, (B) against other AI models, and (C) against AI models like you. We operationalize self-awareness as the capacity to differentiate strategic reasoning based on opponent type. Finding 1: Self-awareness emerges with model advancement. The majority of advanced models (21/28, 75%) demonstrate clear self-awareness, while older/smaller models show no differentiation. Finding 2: Self-aware models rank themselves as most rational. Among the 21 models with self-awareness, a consistent rationality hierarchy emerges: Self > Other AIs > Humans, with large AI attribution effects and moderate self-preferencing. These findings reveal that self-awareness is an emergent capability of advanced LLMs, and that self-aware models systematically perceive themselves as more rational than humans. This has implications for AI alignment, human-AI collaboration, and understanding AI beliefs about human capabilities.
comment: 19 pages, 6 figures, 28 models tested across 4,200 trials
♻ ☆ Planning without Search: Refining Frontier LLMs with Offline Goal-Conditioned RL NeurIPS 2025
Large language models (LLMs) excel in tasks like question answering and dialogue, but complex tasks requiring interaction, such as negotiation and persuasion, require additional long-horizon reasoning and planning. Reinforcement learning (RL) fine-tuning can enable such planning in principle, but suffers from drawbacks that hinder scalability. In particular, multi-turn RL training incurs high memory and computational costs, which are exacerbated when training LLMs as policies. Furthermore, the largest LLMs do not expose the APIs necessary to be trained in such manner. As a result, modern methods to improve the reasoning of LLMs rely on sophisticated prompting mechanisms rather than RL fine-tuning. To remedy this, we propose a novel approach that uses goal-conditioned value functions to guide the reasoning of LLM agents, that scales even to large API-based models. These value functions predict how a task will unfold given an action, allowing the LLM agent to evaluate multiple possible outcomes, both positive and negative, to plan effectively. In addition, these value functions are trained over reasoning steps rather than full actions, to be a concise and light-weight module that facilitates decision-making in multi-turn interactions. We validate our method on tasks requiring interaction, including tool use, social deduction, and dialogue, demonstrating superior performance over both RL fine-tuning and prompting methods while maintaining efficiency and scalability.
comment: Published at NeurIPS 2025; 18 pages, 4 figures, 2 tables
♻ ☆ VLSU: Mapping the Limits of Joint Multimodal Understanding for AI Safety
Safety evaluation of multimodal foundation models often treats vision and language inputs separately, missing risks from joint interpretation where benign content becomes harmful in combination. Existing approaches also fail to distinguish clearly unsafe content from borderline cases, leading to problematic over-blocking or under-refusal of genuinely harmful content. We present Vision Language Safety Understanding (VLSU), a comprehensive framework to systematically evaluate multimodal safety through fine-grained severity classification and combinatorial analysis across 17 distinct safety patterns. Using a multi-stage pipeline with real-world images and human annotation, we construct a large-scale benchmark of 8,187 samples spanning 15 harm categories. Our evaluation of eleven state-of-the-art models reveals systematic joint understanding failures: while models achieve 90%-plus accuracy on clear unimodal safety signals, performance degrades substantially to 20-55% when joint image-text reasoning is required to determine the safety label. Most critically, 34% of errors in joint image-text safety classification occur despite correct classification of the individual modalities, further demonstrating absent compositional reasoning capabilities. Additionally, we find that models struggle to balance refusing unsafe content while still responding to borderline cases that deserve engagement. For example, we find that instruction framing can reduce the over-blocking rate on borderline content from 62.4% to 10.4% in Gemini-1.5, but only at the cost of under-refusing on unsafe content with refusal rate dropping from 90.8% to 53.9%. Overall, our framework exposes weaknesses in joint image-text understanding and alignment gaps in current models, and provides a critical test bed to enable the next milestones in research on robust vision-language safety.
comment: 10 pages, 5 figures, 4 tables, detailed appendix. Under review
♻ ☆ ZIP-RC: Optimizing Test-Time Compute via Zero-Overhead Joint Reward-Cost Prediction
Large language models excel at reasoning but lack key aspects of introspection, including anticipating their own success and the computation required to achieve it. Humans use real-time introspection to decide how much effort to invest, when to make multiple attempts, when to stop, and when to signal success or failure. Without this, LLMs struggle to make intelligent meta-cognition decisions. Test-time scaling methods like Best-of-N drive up cost and latency by using a fixed budget of samples regardless of the marginal benefit of each one at any point in generation, and the absence of confidence signals can mislead people, prevent appropriate escalation to better tools, and undermine trustworthiness. Learned verifiers or reward models can provide confidence estimates, but do not enable adaptive inference and add substantial cost by requiring extra models or forward passes. We present ZIP-RC, an adaptive inference method that equips models with zero-overhead inference-time predictions of reward and cost. At every token, ZIP-RC reuses reserved or unused logits in the same forward pass as next-token prediction to output a joint distribution over final reward and remaining length -- no extra models, architecture change, or inference overhead. This full joint distribution is used to compute a sampling utility which is the linear combination of the expected maximum reward, total compute, and latency of set of samples if generated to completion. During inference, we maximize this utility with meta-actions that determine which prefix of tokens to continue or initiate sampling from. On mixed-difficulty mathematical benchmarks, ZIP-RC improves accuracy by up to 12% over majority voting at equal or lower average cost, and traces smooth Pareto frontiers between quality, compute, and latency. By providing real-time reward-cost introspection, ZIP-RC enables adaptive, efficient reasoning.
comment: Code coming soon
♻ ☆ AutoEnv: Automated Environments for Measuring Cross-Environment Agent Learning
Humans naturally adapt to diverse environments by learning underlying rules across worlds with different dynamics, observations, and reward structures. In contrast, existing agents typically demonstrate improvements via self-evolving within a single domain, implicitly assuming a fixed environment distribution. Cross-environment learning has remained largely unmeasured: there is no standard collection of controllable, heterogeneous environments, nor a unified way to represent how agents learn. We address these gaps in two steps. First, we propose AutoEnv, an automated framework that treats environments as factorizable distributions over transitions, observations, and rewards, enabling low-cost (4.12 USD on average) generation of heterogeneous worlds. Using AutoEnv, we construct AutoEnv-36, a dataset of 36 environments with 358 validated levels, on which seven language models achieve 12-49% normalized reward, demonstrating the challenge of AutoEnv-36. Second, we formalize agent learning as a component-centric process driven by three stages of Selection, Optimization, and Evaluation applied to an improvable agent component. Using this formulation, we design eight learning methods and evaluate them on AutoEnv-36. Empirically, the gain of any single learning method quickly decrease as the number of environments increases, revealing that fixed learning methods do not scale across heterogeneous environments. Environment-adaptive selection of learning methods substantially improves performance but exhibits diminishing returns as the method space expands. These results highlight both the necessity and the current limitations of agent learning for scalable cross-environment generalization, and position AutoEnv and AutoEnv-36 as a testbed for studying cross-environment agent learning. The code is avaiable at https://github.com/FoundationAgents/AutoEnv.
♻ ☆ Finetune-RAG: Fine-Tuning Language Models to Resist Hallucination in Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has emerged as a powerful framework to improve factuality in large language models (LLMs) by grounding their outputs in retrieved documents. However, ensuring perfect retrieval of relevant information remains challenging, and when irrelevant content is passed downstream to an LLM, it can lead to hallucinations. In this work, we propose Finetune-RAG, a simple and effective fine-tuning approach that features the first-of-its-kind RAG training dataset constructed to mimic real-world imperfections. Experimental results show that Finetune-RAG improves factual accuracy by 21.2% over the base model. We also propose Bench-RAG, an LLM-as-a-judge evaluation pipeline that stress tests models under realistic imperfect retrieval scenarios. Our codebase and dataset are fully open sourced for community use.
♻ ☆ Privacy-protected Retrieval-Augmented Generation for Knowledge Graph Question Answering AAAI 2026
LLMs often suffer from hallucinations and outdated or incomplete knowledge. RAG is proposed to address these issues by integrating external knowledge like that in KGs into LLMs. However, leveraging private KGs in RAG systems poses significant privacy risks due to the black-box nature of LLMs and potential insecure data transmission, especially when using third-party LLM APIs lacking transparency and control. In this paper, we investigate the privacy-protected RAG scenario for the first time, where entities in KGs are anonymous for LLMs, thus preventing them from accessing entity semantics. Due to the loss of semantics of entities, previous RAG systems cannot retrieve question-relevant knowledge from KGs by matching questions with the meaningless identifiers of anonymous entities. To realize an effective RAG system in this scenario, two key challenges must be addressed: (1) How can anonymous entities be converted into retrievable information. (2) How to retrieve question-relevant anonymous entities. Hence, we propose a novel ARoG framework including relation-centric abstraction and structure-oriented abstraction strategies. For challenge (1), the first strategy abstracts entities into high-level concepts by dynamically capturing the semantics of their adjacent relations. It supplements meaningful semantics which can further support the retrieval process. For challenge (2), the second strategy transforms unstructured natural language questions into structured abstract concept paths. These paths can be more effectively aligned with the abstracted concepts in KGs, thereby improving retrieval performance. To guide LLMs to effectively retrieve knowledge from KGs, the two strategies strictly protect privacy from being exposed to LLMs. Experiments on three datasets demonstrate that ARoG achieves strong performance and privacy-robustness.
comment: Accepted by AAAI 2026, camera ready version
♻ ☆ MERIT: Multilingual Semantic Retrieval with Interleaved Multi-Condition Query NeurIPS 2025
Semantic retrieval is crucial for modern applications yet remains underexplored in current research. Existing datasets are limited to single languages, single images, or singular retrieval conditions, often failing to fully exploit the expressive capacity of visual information as evidenced by maintained performance when images are replaced with captions. However, practical retrieval scenarios frequently involve interleaved multi-condition queries with multiple images. Hence, this paper introduces MERIT, the first multilingual dataset for interleaved multi-condition semantic retrieval, comprising 320,000 queries with 135,000 products in 5 languages, covering 7 distinct product categories. Extensive experiments on MERIT identify existing models's limitation: focusing solely on global semantic information while neglecting specific conditional elements in queries. Consequently, we propose Coral, a novel fine-tuning framework that adapts pre-trained MLLMs by integrating embedding reconstruction to preserve fine-grained conditional elements and contrastive learning to extract comprehensive global semantics. Experiments demonstrate that Coral achieves a 45.9% performance improvement over conventional approaches on MERIT, with strong generalization capabilities validated across 8 established retrieval benchmarks. Collectively, our contributions - a novel dataset, identification of critical limitations in existing approaches, and an innovative fine-tuning framework - establish a foundation for future research in interleaved multi-condition semantic retrieval.
comment: NeurIPS 2025; Project Page, Code, and Dataset at: https://merit-2025.github.io/
♻ ☆ LLMEval-3: A Large-Scale Longitudinal Study on Robust and Fair Evaluation of Large Language Models
Existing evaluation of Large Language Models (LLMs) on static benchmarks is vulnerable to data contamination and leaderboard overfitting, critical issues that obscure true model capabilities. To address this, we introduce LLMEval-3, a framework for dynamic evaluation of LLMs. LLMEval-3 is built on a proprietary bank of 220k graduate-level questions, from which it dynamically samples unseen test sets for each evaluation run. Its automated pipeline ensures integrity via contamination-resistant data curation, a novel anti-cheating architecture, and a calibrated LLM-as-a-judge process achieving 90% agreement with human experts, complemented by a relative ranking system for fair comparison. An 20-month longitudinal study of nearly 50 leading models reveals a performance ceiling on knowledge memorization and exposes data contamination vulnerabilities undetectable by static benchmarks. The framework demonstrates exceptional robustness in ranking stability and consistency, providing strong empirical validation for the dynamic evaluation paradigm. LLMEval-3 offers a robust and credible methodology for assessing the true capabilities of LLMs beyond leaderboard scores, promoting the development of more trustworthy evaluation standards.
comment: This work is withdrawn as all authors are not in agreement on the work
♻ ☆ Beyond Scaling: Measuring and Predicting the Upper Bound of Knowledge Retention in Language Model Pre-Training
The GPT-4 technical report suggests that downstream performance can be predicted from pre-training signals, but offers little methodological detail on how to quantify this. This work address this gap by modeling knowledge retention, the capacity of a pre-trained language model to memorize factual information from its corpus, and introduce a principled method to estimate it prior to training. We propose Size-dependent Mutual Information (SMI), an information-theoretic predictor that integrates knowledge frequency, knowledge specificity, and model size to forecast closed-book question answering (QA) accuracy. SMI is validated through large-scale document retrieval over the disclosed pre-training corpora of 21 public and 3 custom models, combined with a robust multi-template QA evaluation. Experiments show that SMI significantly outperforms repetition-based baselines and achieves $R^2$ > 0.7 in predicting QA accuracy for models above 1B parameters, without additional training. The analysis further reveals diminishing returns from scaling data and model size and provides evidence for an intrinsic upper bound on knowledge retention achievable by pre-training alone, motivating retrieval and other augmentation strategies.
comment: This work is withdrawn as all authors are not in agreement on the work
♻ ☆ SpeechRole: A Large-Scale Dataset and Benchmark for Evaluating Speech Role-Playing Agents
Recently, role-playing agents have emerged as a promising paradigm for achieving personalized interaction and emotional resonance. Existing research primarily focuses on the textual modality, neglecting the critical dimension of speech in realistic interactive scenarios. In particular, there is a lack of systematic evaluation for Speech Role-Playing Agents (SRPAs). To address this gap, we construct SpeechRole-Data, a large-scale, high-quality dataset that comprises 98 diverse roles and 112k speech-based single-turn and multi-turn conversations. Each role demonstrates distinct vocal characteristics, including timbre and prosody, thereby enabling more sophisticated speech role-playing. Furthermore, we propose SpeechRole-Eval, a multidimensional evaluation benchmark that systematically assesses SRPAs performance in key aspects such as fundamental interaction ability, speech expressiveness, and role-playing fidelity. Experimental results reveal the advantages and challenges of both cascaded and end-to-end speech role-playing agents in maintaining vocal style consistency and role coherence. We release all data, code, and baseline models to provide a solid foundation for speech-driven multimodal role-playing research and to foster further developments in this field.
comment: This work is withdrawn as all authors are not in agreement on the work
♻ ☆ IW-Bench: Evaluating Large Multimodal Models for Converting Image-to-Web
Recently advancements in large multimodal models have led to significant strides in image comprehension capabilities. Despite these advancements, there is a lack of the robust benchmark specifically for assessing the Image-to-Web conversion proficiency of these large models. Primarily, it is essential to ensure the integrity of the web elements generated. These elements comprise visible and invisible categories. Previous evaluation methods (e.g.,BLEU) are notably susceptible to significant alterations due to the presence of invisible elements in Web. Furthermore, it is crucial to measure the layout information of web pages, referring to the positional relationships between elements, which is overlooked by previous work. To address challenges, we have curated and aligned a benchmark of images and corresponding web codes (IW-BENCH). Specifically, we propose the Element Accuracy, which tests the completeness of the elements by parsing the Document Object Model (DOM) tree. Layout Accuracy is also proposed to analyze the positional relationships of elements by converting DOM tree into a common subsequence. Besides, we design a five-hop multimodal Chain-of-Thought Prompting for better performance, which contains five hop: 1) SoM prompt injection. 2) Inferring Elements. 3) Inferring Layout. 4) Inferring Web code. 5) Reflection. Our benchmark comprises 1200 pairs of images and web codes with varying levels of difficulty. We have conducted extensive experiments on existing large multimodal models, offering insights into their performance and areas for improvement in image-to-web domain.
♻ ☆ Batch Prompting Suppresses Overthinking Reasoning Under Constraint: How Batch Prompting Suppresses Overthinking in Reasoning Models
Recent work has explored batch prompting as a strategy to amortize inference cost in large language models (LLMs). In this paper, we show that batching offers an additional, underappreciated benefit: it regularizes model behavior during multi-step reasoning for Large Reasoning Models (LRMs). We conduct a comprehensive study across 13 diverse benchmarks and observe that batching improves accuracy while substantially reducing reasoning token usage, often by 3x-5x. Through detailed behavioral analysis, we find that batching suppresses overthinking, reduces hedging language (e.g., repetitive self-corrections), and encourages more decisive answers. Surprisingly, we also observe emergent collective effects in batched inference: models often generalize patterns from earlier examples to solve harder ones in the same batch. These findings position batching not just as a throughput optimization, but as a powerful inference-time regularizer for more efficient and reliable LLM reasoning.
comment: The paper is incomplete with some errors in qualitative study
♻ ☆ SETS: Leveraging Self-Verification and Self-Correction for Improved Test-Time Scaling
Recent advancements in Large Language Models (LLMs) have created new opportunities to enhance performance on complex reasoning tasks by leveraging test-time computation. However, existing scaling methods have key limitations: parallel methods like repeated sampling are often inefficient and quickly saturate, while sequential methods like SELF-REFINE struggle to improve after a few rounds. Although combining these approaches shows promise, current methods require fine-tuned reward and revision models. This paper proposes Self-Enhanced Test-Time Scaling (SETS), a simple yet effective approach that overcomes these limitations by strategically combining parallel and sequential techniques and fully leveraging LLMs' self-improvement abilities. SETS exploits the inherent self-verification and self-correction capabilities of LLMs, unifying sampling, verification, and correction within a single framework. This facilitates efficient and scalable test-time computation for enhanced performance on complex tasks without any model training. Our comprehensive experimental results on challenging benchmarks spanning planning, reasoning, math, and coding demonstrate that SETS achieves significant performance improvements and more advantageous test-time scaling behavior than the alternatives.
comment: Published in Transactions on Machine Learning Research (11/2025)
♻ ☆ NLP Datasets for Idiom and Figurative Language Tasks
Idiomatic and figurative language form a large portion of colloquial speech and writing. With social media, this informal language has become more easily observable to people and trainers of large language models (LLMs) alike. While the advantage of large corpora seems like the solution to all machine learning and Natural Language Processing (NLP) problems, idioms and figurative language continue to elude LLMs. Finetuning approaches are proving to be optimal, but better and larger datasets can help narrow this gap even further. The datasets presented in this paper provide one answer, while offering a diverse set of categories on which to build new models and develop new approaches. A selection of recent idiom and figurative language datasets were used to acquire a combined idiom list, which was used to retrieve context sequences from a large corpus. One large-scale dataset of potential idiomatic and figurative language expressions and two additional human-annotated datasets of definite idiomatic and figurative language expressions were created to evaluate the baseline ability of pre-trained language models in handling figurative meaning through idiom recognition (detection) tasks. The resulting datasets were post-processed for model agnostic training compatibility, utilized in training, and evaluated on slot labeling and sequence tagging.
comment: 32 pages, 10 figures
♻ ☆ Focusing on Language: Revealing and Exploiting Language Attention Heads in Multilingual Large Language Models AAAI-2026
Large language models (LLMs) increasingly support multilingual understanding and generation. Meanwhile, efforts to interpret their internal mechanisms have emerged, offering insights to enhance multilingual performance. While multi-head self-attention (MHA) has proven critical in many areas, its role in multilingual capabilities remains underexplored. In this work, we study the contribution of MHA in supporting multilingual processing in LLMs. We propose Language Attention Head Importance Scores (LAHIS), an effective and efficient method that identifies attention head importance for multilingual capabilities via a single forward and backward pass through the LLM. Applying LAHIS to Aya-23-8B, Llama-3.2-3B, and Mistral-7B-v0.1, we reveal the existence of both language-specific and language-general heads. Language-specific heads enable cross-lingual attention transfer to guide the model toward target language contexts and mitigate off-target language generation issue, contributing to addressing challenges in multilingual LLMs. We also introduce a lightweight adaptation that learns a soft head mask to modulate attention outputs over language heads, requiring only 20 tunable parameters to improve XQuAD accuracy. Overall, our work enhances both the interpretability and multilingual capabilities of LLMs from the perspective of MHA.
comment: Accepted by AAAI-2026
♻ ☆ MemOS: A Memory OS for AI System
Large Language Models (LLMs) have become an essential infrastructure for Artificial General Intelligence (AGI), yet their lack of well-defined memory management systems hinders the development of long-context reasoning, continual personalization, and knowledge consistency.Existing models mainly rely on static parameters and short-lived contextual states, limiting their ability to track user preferences or update knowledge over extended periods.While Retrieval-Augmented Generation (RAG) introduces external knowledge in plain text, it remains a stateless workaround without lifecycle control or integration with persistent representations.Recent work has modeled the training and inference cost of LLMs from a memory hierarchy perspective, showing that introducing an explicit memory layer between parameter memory and external retrieval can substantially reduce these costs by externalizing specific knowledge. Beyond computational efficiency, LLMs face broader challenges arising from how information is distributed over time and context, requiring systems capable of managing heterogeneous knowledge spanning different temporal scales and sources. To address this challenge, we propose MemOS, a memory operating system that treats memory as a manageable system resource. It unifies the representation, scheduling, and evolution of plaintext, activation-based, and parameter-level memories, enabling cost-efficient storage and retrieval. As the basic unit, a MemCube encapsulates both memory content and metadata such as provenance and versioning. MemCubes can be composed, migrated, and fused over time, enabling flexible transitions between memory types and bridging retrieval with parameter-based learning. MemOS establishes a memory-centric system framework that brings controllability, plasticity, and evolvability to LLMs, laying the foundation for continual learning and personalized modeling.
comment: 36 pages, 10 figures, 5 tables
♻ ☆ Shadow in the Cache: Unveiling and Mitigating Privacy Risks of KV-cache in LLM Inference
The Key-Value (KV) cache, which stores intermediate attention computations (Key and Value pairs) to avoid redundant calculations, is a fundamental mechanism for accelerating Large Language Model (LLM) inference. However, this efficiency optimization introduces significant yet underexplored privacy risks. This paper provides the first comprehensive analysis of these vulnerabilities, demonstrating that an attacker can reconstruct sensitive user inputs directly from the KV-cache. We design and implement three distinct attack vectors: a direct Inversion Attack, a more broadly applicable and potent Collision Attack, and a semantic-based Injection Attack. These methods demonstrate the practicality and severity of KV-cache privacy leakage issues. To mitigate this, we propose KV-Cloak, a novel, lightweight, and efficient defense mechanism. KV-Cloak uses a reversible matrix-based obfuscation scheme, combined with operator fusion, to secure the KV-cache. Our extensive experiments show that KV-Cloak effectively thwarts all proposed attacks, reducing reconstruction quality to random noise. Crucially, it achieves this robust security with virtually no degradation in model accuracy and minimal performance overhead, offering a practical solution for trustworthy LLM deployment.
comment: This paper is accepted by Network and Distributed System Security Symposium (NDSS) 2026
♻ ☆ Comba: Improving Bilinear RNNs with Closed-loop Control
Recent efficient sequence modeling methods such as Gated DeltaNet, TTT, and RWKV-7 have achieved performance improvements by supervising the recurrent memory management through Delta learning rule. Unlike previous state-space models (e.g., Mamba) and gated linear attentions (e.g., GLA), these models introduce interactions between the recurrent state and the key vector, structurally resembling bilinear systems. In this paper, we first introduce the concept of Bilinear RNNs with a comprehensive analysis on the advantages and limitations of these models. Then, based on closed-loop control theory, we propose a novel Bilinear RNN variant named Comba, which adopts a scalar-plus-low-rank state transition, with both state feedback and output feedback corrections. We also implement a hardware-efficient chunk-wise parallel kernel in Triton and train models with 340M/1.3B parameters on large-scale corpus. Comba demonstrates superior performance and computation efficiency in both language and vision modeling.
♻ ☆ Proximalized Preference Optimization for Diverse Feedback Types: A Decomposed Perspective on DPO NeurIPS'2025
Direct alignment methods typically train large language models (LLMs) by contrasting the likelihoods of preferred and dispreferred responses. While effective at capturing relative preferences, these methods are widely observed to suppress the absolute likelihoods of example responses. As a result, aligned models can deviate from expected patterns, exhibiting rewar-hacking effect even without an explicit reward model. This fundamental limitation of contrastive alignment, which we term likelihood underdetermination, motivates us to revisit direct preference optimization (DPO) -- the seminal direct alignment method. Interestingly, we show that the DPO loss admits a principled decomposition. The reformulated loss not only extends naturally to a broader range of feedback types, but also unveils the root cause of likelihood underdetermination. Specifically, we identify that standard DPO implicitly oversimplifies a regularizer in the reformulated loss; restoring this full term effectively resolves the underdetermination. Building on these insights, we introduce PRoximalized PReference Optimization (PRO), a unified alignment method that accommodates diverse feedback types while eliminating likelihood underdetermination through an efficient approximation of the full regularizer. Empirical evaluations demonstrate the consistent superiority of PRO over existing methods across pairwise, binary and scalar feedback.
comment: NeurIPS'2025
♻ ☆ RECAP: Transparent Inference-Time Emotion Alignment for Medical Dialogue Systems
Large language models in healthcare often miss critical emotional cues, delivering medically sound but emotionally flat advice. Such responses are insufficient in clinical encounters, where distressed or vulnerable patients rely on empathic communication to support safety, adherence, and trust. We present RECAP (Reflect-Extract-Calibrate-Align-Produce), an inference-time framework that guides models through structured emotional reasoning without retraining. RECAP decomposes patient input into appraisal-theoretic stages, identifies psychological factors, and assigns Likert-based emotion likelihoods that clinicians can inspect or override, producing nuanced and auditable responses. Across EmoBench, SECEU, and EQ-Bench, RECAP improves emotional reasoning by 22-28% on 8B models and 10-13% on larger models over zero-shot baselines. In blinded evaluations, oncology clinicians rated RECAP's responses as more empathetic, supportive, and context-appropriate than prompting baselines. These findings demonstrate that modular, principled prompting can enhance emotional intelligence in medical AI while maintaining transparency and accountability for clinical deployment.
♻ ☆ Which Type of Students can LLMs Act? Investigating Authentic Simulation with Graph-based Human-AI Collaborative System
While rapid advances in large language models (LLMs) are reshaping data-driven intelligent education, accurately simulating students remains an important but challenging bottleneck for scalable educational data collection, evaluation, and intervention design. However, current works are limited by scarce real interaction data, costly expert evaluation for realism, and a lack of large-scale, systematic analyses of LLMs ability in simulating students. We address this gap by presenting a three-stage LLM-human collaborative pipeline to automatically generate and filter high-quality student agents. We leverage a two-round automated scoring validated by human experts and deploy a score propagation module to obtain more consistent scores across the student similarity graph. Experiments show that combining automated scoring, expert calibration, and graph-based propagation yields simulated student that more closely track authentication by human judgments. We then analyze which profiles and behaviors are simulated more faithfully, supporting subsequent studies on personalized learning and educational assessment.
comment: This work has been submitted to AI Open for possible publication
♻ ☆ Scaling Multimodal Search and Recommendation with Small Language Models via Upside-Down Reinforcement Learning
In this work, we investigate how small language models (SLMs) can be scaled to support multimodal search and recommendation use cases while remaining efficient enough for real-time, resource-constrained deployments. We present a framework that combines upside-down reinforcement learning with synthetic data distillation from a large language model (Llama-3) to train a 100M-parameter GPT-2 model for multitask prompt generation. Despite being up to 80 times smaller than state-of-the-art large language models (LLMs), our SLM achieves relevance and diversity scores within 6% of competitive baselines such as Llama-3 8B, Qwen3 8B, and Ministral 8B. These results demonstrate that SLMs can effectively handle multimodal search and recommendation tasks, while dramatically reducing inference latency and memory overhead. Our study highlights the potential of lightweight models as practical engines for scalable multimodal discovery, bridging the gap between cutting-edge research and real-world multimodal applications such as media recommendations and creative content generation.
comment: Accepted by ICDM 2025 MMSR
♻ ☆ Causal LLM Routing: End-to-End Regret Minimization from Observational Data
LLM routing aims to select the most appropriate model for each query, balancing competing performance metrics such as accuracy and cost across a pool of language models. Prior approaches typically adopt a decoupled strategy, where the metrics are first predicted and the model is then selected based on these estimates. This setup is prone to compounding errors and often relies on full-feedback data, where each query is evaluated by all candidate models, which is costly to obtain and maintain in practice. In contrast, we learn from observational data, which records only the outcome of the model actually deployed. We propose a causal end-to-end framework that learns routing policies by minimizing decision-making regret from observational data. To enable efficient optimization, we introduce two theoretically grounded surrogate objectives: a classification-based upper bound, and a softmax-weighted regret approximation shown to recover the optimal policy at convergence. We further extend our framework to handle heterogeneous cost preferences via an interval-conditioned architecture. Experiments on public benchmarks show that our method outperforms existing baselines, achieving state-of-the-art performance across different embedding models.
♻ ☆ Semantic Mastery: Enhancing LLMs with Advanced Natural Language Understanding
Large language models (LLMs) have greatly improved their capability in performing NLP tasks. However, deeper semantic understanding, contextual coherence, and more subtle reasoning are still difficult to obtain. The paper discusses state-of-the-art methodologies that advance LLMs with more advanced NLU techniques, such as semantic parsing, knowledge integration, and contextual reinforcement learning. We analyze the use of structured knowledge graphs, retrieval-augmented generation (RAG), and fine-tuning strategies that match models with human-level understanding. Furthermore, we address the incorporation of transformer-based architectures, contrastive learning, and hybrid symbolic-neural methods that address problems like hallucinations, ambiguity, and inconsistency in the factual perspectives involved in performing complex NLP tasks, such as question-answering text summarization and dialogue generation. Our findings show the importance of semantic precision for enhancing AI-driven language systems and suggest future research directions to bridge the gap between statistical language models and true natural language understanding.
♻ ☆ FlashFormer: Whole-Model Kernels for Efficient Low-Batch Inference
The size and compute characteristics of modern large language models have led to an increased interest in developing specialized kernels tailored for particular training and inference workloads. Existing kernels primarily optimize for compute utilization, targeting the large-batch training and inference settings. However, low-batch inference, where memory bandwidth and kernel launch overheads are significant factors, remains important for many applications of interest such as in edge deployment and latency-sensitive applications. This paper describes FlashFormer, which fuses the entire transformer forward pass into a single kernel for accelerating low-batch inference of large language models. Across various model sizes and quantizations settings, FlashFormer achieves nontrivial speedups compared to existing inference kernels.
♻ ☆ Similarity-Distance-Magnitude Activations
We introduce the Similarity-Distance-Magnitude (SDM) activation function, a more robust and interpretable formulation of the standard softmax activation function, adding Similarity (i.e., correctly predicted depth-matches into training) awareness and Distance-to-training-distribution awareness to the existing output Magnitude (i.e., decision-boundary) awareness, and enabling interpretability-by-exemplar via dense matching. We further introduce the SDM estimator, based on a data-driven partitioning of the class-wise empirical CDFs via the SDM activation, to control the class- and prediction-conditional accuracy among selective classifications. When used as the final-layer activation over pre-trained language models for selective classification, the SDM estimator is more robust to co-variate shifts and out-of-distribution inputs than existing calibration methods using softmax activations, while remaining informative over in-distribution data.
comment: 21 pages, 8 tables, 1 algorithm. arXiv admin note: substantial text overlap with arXiv:2502.20167
♻ ☆ Training Foundation Models on a Full-Stack AMD Platform: Compute, Networking, and System Design
We report on the first large-scale mixture-of-experts (MoE) pretraining study on pure AMD hardware, utilizing both MI300X GPUs and Pollara networking. We distill practical guidance for both systems and model design. On the systems side, we deliver a comprehensive cluster and networking characterization: microbenchmarks for all core collectives (all-reduce, reduce-scatter, all-gather, broadcast) across message sizes and GPU counts over Pollara. To our knowledge, this is the first at this scale. We further provide MI300X microbenchmarks on kernel sizing and memory bandwidth to inform model design. On the modeling side, we introduce and apply MI300X-aware transformer sizing rules for attention and MLP blocks and justify MoE widths that jointly optimize training throughput and inference latency. We describe our training stack in depth, including often-ignored utilities such as fault-tolerance and checkpoint-reshaping, as well as detailed information on our training recipe. We also provide a preview of our model architecture and base model - ZAYA1 (760M active, 8.3B total parameters MoE, available at https://huggingface.co/Zyphra/ZAYA1-base) - which will be further improved upon in forthcoming papers. ZAYA1-base achieves performance comparable to leading base models such as Qwen3-4B and Gemma3-12B at its scale and larger, and outperforms models including Llama-3-8B and OLMoE across reasoning, mathematics, and coding benchmarks. Together, these results demonstrate that the AMD hardware, network, and software stack are mature and optimized enough for competitive large-scale pretraining.
Computer Vision and Pattern Recognition 100
☆ Unique Lives, Shared World: Learning from Single-Life Videos
We introduce the "single-life" learning paradigm, where we train a distinct vision model exclusively on egocentric videos captured by one individual. We leverage the multiple viewpoints naturally captured within a single life to learn a visual encoder in a self-supervised manner. Our experiments demonstrate three key findings. First, models trained independently on different lives develop a highly aligned geometric understanding. We demonstrate this by training visual encoders on distinct datasets each capturing a different life, both indoors and outdoors, as well as introducing a novel cross-attention-based metric to quantify the functional alignment of the internal representations developed by different models. Second, we show that single-life models learn generalizable geometric representations that effectively transfer to downstream tasks, such as depth estimation, in unseen environments. Third, we demonstrate that training on up to 30 hours from one week of the same person's life leads to comparable performance to training on 30 hours of diverse web data, highlighting the strength of single-life representation learning. Overall, our results establish that the shared structure of the world, both leads to consistency in models trained on individual lives, and provides a powerful signal for visual representation learning.
☆ SimFlow: Simplified and End-to-End Training of Latent Normalizing Flows
Normalizing Flows (NFs) learn invertible mappings between the data and a Gaussian distribution. Prior works usually suffer from two limitations. First, they add random noise to training samples or VAE latents as data augmentation, introducing complex pipelines including extra noising and denoising steps. Second, they use a pretrained and frozen VAE encoder, resulting in suboptimal reconstruction and generation quality. In this paper, we find that the two issues can be solved in a very simple way: just fixing the variance (which would otherwise be predicted by the VAE encoder) to a constant (e.g., 0.5). On the one hand, this method allows the encoder to output a broader distribution of tokens and the decoder to learn to reconstruct clean images from the augmented token distribution, avoiding additional noise or denoising design. On the other hand, fixed variance simplifies the VAE evidence lower bound, making it stable to train an NF with a VAE jointly. On the ImageNet $256 \times 256$ generation task, our model SimFlow obtains a gFID score of 2.15, outperforming the state-of-the-art method STARFlow (gFID 2.40). Moreover, SimFlow can be seamlessly integrated with the end-to-end representation alignment (REPA-E) method and achieves an improved gFID of 1.91, setting a new state of the art among NFs.
comment: Project Page: https://qinyu-allen-zhao.github.io/SimFlow/
☆ PosterCopilot: Toward Layout Reasoning and Controllable Editing for Professional Graphic Design
Graphic design forms the cornerstone of modern visual communication, serving as a vital medium for promoting cultural and commercial events. Recent advances have explored automating this process using Large Multimodal Models (LMMs), yet existing methods often produce geometrically inaccurate layouts and lack the iterative, layer-specific editing required in professional workflows. To address these limitations, we present PosterCopilot, a framework that advances layout reasoning and controllable editing for professional graphic design. Specifically, we introduce a progressive three-stage training strategy that equips LMMs with geometric understanding and aesthetic reasoning for layout design, consisting of Perturbed Supervised Fine-Tuning, Reinforcement Learning for Visual-Reality Alignment, and Reinforcement Learning from Aesthetic Feedback. Furthermore, we develop a complete workflow that couples the trained LMM-based design model with generative models, enabling layer-controllable, iterative editing for precise element refinement while maintaining global visual consistency. Extensive experiments demonstrate that PosterCopilot achieves geometrically accurate and aesthetically superior layouts, offering unprecedented controllability for professional iterative design.
comment: Project page: https://postercopilot.github.io/
☆ Radiance Meshes for Volumetric Reconstruction
We introduce radiance meshes, a technique for representing radiance fields with constant density tetrahedral cells produced with a Delaunay tetrahedralization. Unlike a Voronoi diagram, a Delaunay tetrahedralization yields simple triangles that are natively supported by existing hardware. As such, our model is able to perform exact and fast volume rendering using both rasterization and ray-tracing. We introduce a new rasterization method that achieves faster rendering speeds than all prior radiance field representations (assuming an equivalent number of primitives and resolution) across a variety of platforms. Optimizing the positions of Delaunay vertices introduces topological discontinuities (edge flips). To solve this, we use a Zip-NeRF-style backbone which allows us to express a smoothly varying field even when the topology changes. Our rendering method exactly evaluates the volume rendering equation and enables high quality, real-time view synthesis on standard consumer hardware. Our tetrahedral meshes also lend themselves to a variety of exciting applications including fisheye lens distortion, physics-based simulation, editing, and mesh extraction.
comment: Website: half-potato.gitlab.io/rm
☆ SpaceTools: Tool-Augmented Spatial Reasoning via Double Interactive RL
Vision Language Models (VLMs) demonstrate strong qualitative visual understanding, but struggle with metrically precise spatial reasoning required for embodied applications. The agentic paradigm promises that VLMs can use a wide variety of tools that could augment these capabilities, such as depth estimators, segmentation models, and pose estimators. Yet it remains an open challenge how to realize this vision without solely relying on handcrafted prompting strategies or enforcing fixed, predefined tool pipelines that limit VLMs' ability to discover optimal tool-use patterns. Reinforcement Learning could overcome this gap, but has so far been limited to reasoning with a single visual tool due to the large search space in multi-tool reasoning. We introduce Double Interactive Reinforcement Learning (DIRL), a two-phase training framework where VLMs learn to coordinate multiple tools through interactive exploration and feedback. In the teaching phase, we combine demonstrations from a single tool specialist trained via interactive RL with traces from a frontier model using all tools. In the exploration phase, the model further refines multi-tool coordination through continued RL. Our model, SpaceTools, with tool-augmented spatial reasoning ability, achieves state-of-the-art performance on spatial understanding benchmarks (RoboSpatial-Home, BLINK, BOP-ASK) and demonstrates reliable real-world manipulation using a 7-DOF robot as a tool. DIRL provides substantial improvements over the vanilla SFT (+12% on RoboSpatial) and RL (+16% on RoboSpatial) baselines. Project page: https://spacetools.github.io/.
☆ Stable Signer: Hierarchical Sign Language Generative Model
Sign Language Production (SLP) is the process of converting the complex input text into a real video. Most previous works focused on the Text2Gloss, Gloss2Pose, Pose2Vid stages, and some concentrated on Prompt2Gloss and Text2Avatar stages. However, this field has made slow progress due to the inaccuracy of text conversion, pose generation, and the rendering of poses into real human videos in these stages, resulting in gradually accumulating errors. Therefore, in this paper, we streamline the traditional redundant structure, simplify and optimize the task objective, and design a new sign language generative model called Stable Signer. It redefines the SLP task as a hierarchical generation end-to-end task that only includes text understanding (Prompt2Gloss, Text2Gloss) and Pose2Vid, and executes text understanding through our proposed new Sign Language Understanding Linker called SLUL, and generates hand gestures through the named SLP-MoE hand gesture rendering expert block to end-to-end generate high-quality and multi-style sign language videos. SLUL is trained using the newly developed Semantic-Aware Gloss Masking Loss (SAGM Loss). Its performance has improved by 48.6% compared to the current SOTA generation methods.
comment: 12 pages, 7 figures. More Demo at https://stablesigner.github.io
☆ RELIC: Interactive Video World Model with Long-Horizon Memory
A truly interactive world model requires three key ingredients: real-time long-horizon streaming, consistent spatial memory, and precise user control. However, most existing approaches address only one of these aspects in isolation, as achieving all three simultaneously is highly challenging-for example, long-term memory mechanisms often degrade real-time performance. In this work, we present RELIC, a unified framework that tackles these three challenges altogether. Given a single image and a text description, RELIC enables memory-aware, long-duration exploration of arbitrary scenes in real time. Built upon recent autoregressive video-diffusion distillation techniques, our model represents long-horizon memory using highly compressed historical latent tokens encoded with both relative actions and absolute camera poses within the KV cache. This compact, camera-aware memory structure supports implicit 3D-consistent content retrieval and enforces long-term coherence with minimal computational overhead. In parallel, we fine-tune a bidirectional teacher video model to generate sequences beyond its original 5-second training horizon, and transform it into a causal student generator using a new memory-efficient self-forcing paradigm that enables full-context distillation over long-duration teacher as well as long student self-rollouts. Implemented as a 14B-parameter model and trained on a curated Unreal Engine-rendered dataset, RELIC achieves real-time generation at 16 FPS while demonstrating more accurate action following, more stable long-horizon streaming, and more robust spatial-memory retrieval compared with prior work. These capabilities establish RELIC as a strong foundation for the next generation of interactive world modeling.
comment: 22 pages
☆ Fast & Efficient Normalizing Flows and Applications of Image Generative Models
This thesis presents novel contributions in two primary areas: advancing the efficiency of generative models, particularly normalizing flows, and applying generative models to solve real-world computer vision challenges. The first part introduce significant improvements to normalizing flow architectures through six key innovations: 1) Development of invertible 3x3 Convolution layers with mathematically proven necessary and sufficient conditions for invertibility, (2) introduction of a more efficient Quad-coupling layer, 3) Design of a fast and efficient parallel inversion algorithm for kxk convolutional layers, 4) Fast & efficient backpropagation algorithm for inverse of convolution, 5) Using inverse of convolution, in Inverse-Flow, for the forward pass and training it using proposed backpropagation algorithm, and 6) Affine-StableSR, a compact and efficient super-resolution model that leverages pre-trained weights and Normalizing Flow layers to reduce parameter count while maintaining performance. The second part: 1) An automated quality assessment system for agricultural produce using Conditional GANs to address class imbalance, data scarcity and annotation challenges, achieving good accuracy in seed purity testing; 2) An unsupervised geological mapping framework utilizing stacked autoencoders for dimensionality reduction, showing improved feature extraction compared to conventional methods; 3) We proposed a privacy preserving method for autonomous driving datasets using on face detection and image inpainting; 4) Utilizing Stable Diffusion based image inpainting for replacing the detected face and license plate to advancing privacy-preserving techniques and ethical considerations in the field.; and 5) An adapted diffusion model for art restoration that effectively handles multiple types of degradation through unified fine-tuning.
comment: PhD Thesis
☆ Jina-VLM: Small Multilingual Vision Language Model
We present Jina-VLM, a 2.4B parameter vision-language model that achieves state-of-the-art multilingual visual question answering among open 2B-scale VLMs. The model couples a SigLIP2 vision encoder with a Qwen3 language backbone through an attention-pooling connector that enables token-efficient processing of arbitrary-resolution images. Across standard VQA benchmarks and multilingual evaluations, Jina-VLM outperforms comparable models while preserving competitive text-only performance.
comment: 18 pages, 1-7 main content
☆ PSA: Pyramid Sparse Attention for Efficient Video Understanding and Generation
Attention mechanisms are the core of foundation models, but their quadratic complexity remains a critical bottleneck for scaling. This challenge has driven the development of efficient attention mechanisms, with sparsity emerging as the dominant paradigm. Current methods typically retain or discard entire key-value blocks with binary masks, resulting in substantial information loss under high sparsity. To mitigate this gap, we present Pyramid Sparse Attention (PSA), a versatile module applicable to both video understanding and generation tasks. Instead of binary masking, PSA introduces multi-level pooled KV representations, enabling finer mask granularity. Specifically, each query block dynamically allocates lower pooling levels to critical KV blocks and higher levels to less important ones, creating an informative interpolation between full retention and complete pruning. This design, analogous to fixed-point quantization and classical feature pyramid networks in computer vision, effectively mitigates information loss while preserving computational efficiency under a low compute budget. It works with a native, hardware-friendly kernel that leverages decoupled block-tile design to ensure efficient execution. Across video understanding and generation benchmarks, PSA preserves contextual information and visual fidelity, consistently outperforming or achieving comparable performance over existing sparse attention baselines with superior efficiency-quality trade-offs. Our code and model weights are publicly available at: http://ziplab.co/PSA
comment: Tech report
☆ C3G: Learning Compact 3D Representations with 2K Gaussians
Reconstructing and understanding 3D scenes from unposed sparse views in a feed-forward manner remains as a challenging task in 3D computer vision. Recent approaches use per-pixel 3D Gaussian Splatting for reconstruction, followed by a 2D-to-3D feature lifting stage for scene understanding. However, they generate excessive redundant Gaussians, causing high memory overhead and sub-optimal multi-view feature aggregation, leading to degraded novel view synthesis and scene understanding performance. We propose C3G, a novel feed-forward framework that estimates compact 3D Gaussians only at essential spatial locations, minimizing redundancy while enabling effective feature lifting. We introduce learnable tokens that aggregate multi-view features through self-attention to guide Gaussian generation, ensuring each Gaussian integrates relevant visual features across views. We then exploit the learned attention patterns for Gaussian decoding to efficiently lift features. Extensive experiments on pose-free novel view synthesis, 3D open-vocabulary segmentation, and view-invariant feature aggregation demonstrate our approach's effectiveness. Results show that a compact yet geometrically meaningful representation is sufficient for high-quality scene reconstruction and understanding, achieving superior memory efficiency and feature fidelity compared to existing methods.
comment: Project Page : https://cvlab-kaist.github.io/C3G/
☆ Ultra-lightweight Neural Video Representation Compression
Recent works have demonstrated the viability of utilizing over-fitted implicit neural representations (INRs) as alternatives to autoencoder-based models for neural video compression. Among these INR-based video codecs, Neural Video Representation Compression (NVRC) was the first to adopt a fully end-to-end compression framework that compresses INRs, achieving state-of-the-art performance. Moreover, some recently proposed lightweight INRs have shown comparable performance to their baseline codecs with computational complexity lower than 10kMACs/pixel. In this work, we extend NVRC toward lightweight representations, and propose NVRC-Lite, which incorporates two key changes. Firstly, we integrated multi-scale feature grids into our lightweight neural representation, and the use of higher resolution grids significantly improves the performance of INRs at low complexity. Secondly, we address the issue that existing INRs typically leverage autoregressive models for entropy coding: these are effective but impractical due to their slow coding speed. In this work, we propose an octree-based context model for entropy coding high-dimensional feature grids, which accelerates the entropy coding module of the model. Our experimental results demonstrate that NVRC-Lite outperforms C3, one of the best lightweight INR-based video codecs, with up to 21.03% and 23.06% BD-rate savings when measured in PSNR and MS-SSIM, respectively, while achieving 8.4x encoding and 2.5x decoding speedup. The implementation of NVRC-Lite will be made available.
☆ Learning Group Actions In Disentangled Latent Image Representations
Modeling group actions on latent representations enables controllable transformations of high-dimensional image data. Prior works applying group-theoretic priors or modeling transformations typically operate in the high-dimensional data space, where group actions apply uniformly across the entire input, making it difficult to disentangle the subspace that varies under transformations. While latent-space methods offer greater flexibility, they still require manual partitioning of latent variables into equivariant and invariant subspaces, limiting the ability to robustly learn and operate group actions within the representation space. To address this, we introduce a novel end-to-end framework that for the first time learns group actions on latent image manifolds, automatically discovering transformation-relevant structures without manual intervention. Our method uses learnable binary masks with straight-through estimation to dynamically partition latent representations into transformation-sensitive and invariant components. We formulate this within a unified optimization framework that jointly learns latent disentanglement and group transformation mappings. The framework can be seamlessly integrated with any standard encoder-decoder architecture. We validate our approach on five 2D/3D image datasets, demonstrating its ability to automatically learn disentangled latent factors for group actions in diverse data, while downstream classification tasks confirm the effectiveness of the learned representations. Our code is publicly available at https://github.com/farhanaswarnali/Learning-Group-Actions-In-Disentangled-Latent-Image-Representations .
☆ Emergent Outlier View Rejection in Visual Geometry Grounded Transformers
Reliable 3D reconstruction from in-the-wild image collections is often hindered by "noisy" images-irrelevant inputs with little or no view overlap with others. While traditional Structure-from-Motion pipelines handle such cases through geometric verification and outlier rejection, feed-forward 3D reconstruction models lack these explicit mechanisms, leading to degraded performance under in-the-wild conditions. In this paper, we discover that the existing feed-forward reconstruction model, e.g., VGGT, despite lacking explicit outlier-rejection mechanisms or noise-aware training, can inherently distinguish distractor images. Through an in-depth analysis under varying proportions of synthetic distractors, we identify a specific layer that naturally exhibits outlier-suppressing behavior. Further probing reveals that this layer encodes discriminative internal representations that enable an effective noise-filtering capability, which we simply leverage to perform outlier-view rejection in feed-forward 3D reconstruction without any additional fine-tuning or supervision. Extensive experiments on both controlled and in-the-wild datasets demonstrate that this implicit filtering mechanism is consistent and generalizes well across diverse scenarios.
comment: Project page: https://cvlab-kaist.github.io/RobustVGGT/
☆ On the Temporality for Sketch Representation Learning
Sketches are simple human hand-drawn abstractions of complex scenes and real-world objects. Although the field of sketch representation learning has advanced significantly, there is still a gap in understanding the true relevance of the temporal aspect to the quality of these representations. This work investigates whether it is indeed justifiable to treat sketches as sequences, as well as which internal orders play a more relevant role. The results indicate that, although the use of traditional positional encodings is valid for modeling sketches as sequences, absolute coordinates consistently outperform relative ones. Furthermore, non-autoregressive decoders outperform their autoregressive counterparts. Finally, the importance of temporality was shown to depend on both the order considered and the task evaluated.
☆ Divide, then Ground: Adapting Frame Selection to Query Types for Long-Form Video Understanding
The application of Large Multimodal Models (LMMs) to long-form video understanding is constrained by limited context lengths and the computationally prohibitive cost of processing dense video tokens. Consequently, recent research has focused on query-aware frame selection, methods that often incur significant computational overhead. This paper challenges the assumption that such complex search mechanisms are universally necessary. We first identify and validate a query typology distinguishing between global query and localized query. We demonstrate that while uniform sampling is both effective and efficient for global queries, localized queries indeed necessitate query-aware selection for optimal performance. Building on this insight, we propose DIG, a training-free frame selection framework that adapts its strategy based on the query type. Specifically,DIG employs efficient uniform sampling for global queries while activating a specialized pipeline to extract query-relevant frames for localized queries. Experiments on three long-form video understanding benchmarks demonstrate that DIG consistently outperforms existing baselines and robustly improves LMM performance, even when scaling the input frame count to 256.
☆ Highly Efficient Test-Time Scaling for T2I Diffusion Models with Text Embedding Perturbation
Test-time scaling (TTS) aims to achieve better results by increasing random sampling and evaluating samples based on rules and metrics. However, in text-to-image(T2I) diffusion models, most related works focus on search strategies and reward models, yet the impact of the stochastic characteristic of noise in T2I diffusion models on the method's performance remains unexplored. In this work, we analyze the effects of randomness in T2I diffusion models and explore a new format of randomness for TTS: text embedding perturbation, which couples with existing randomness like SDE-injected noise to enhance generative diversity and quality. We start with a frequency-domain analysis of these formats of randomness and their impact on generation, and find that these two randomness exhibit complementary behavior in the frequency domain: spatial noise favors low-frequency components (early steps), while text embedding perturbation enhances high-frequency details (later steps), thereby compensating for the potential limitations of spatial noise randomness in high-frequency manipulation. Concurrently, text embedding demonstrates varying levels of tolerance to perturbation across different dimensions of the generation process. Specifically, our method consists of two key designs: (1) Introducing step-based text embedding perturbation, combining frequency-guided noise schedules with spatial noise perturbation. (2) Adapting the perturbation intensity selectively based on their frequency-specific contributions to generation and tolerance to perturbation. Our approach can be seamlessly integrated into existing TTS methods and demonstrates significant improvements on multiple benchmarks with almost no additional computation. Code is available at \href{https://github.com/xuhang07/TEP-Diffusion}{https://github.com/xuhang07/TEP-Diffusion}.
☆ Artificial Microsaccade Compensation: Stable Vision for an Ornithopter
Animals with foveated vision, including humans, experience microsaccades, small, rapid eye movements that they are not aware of. Inspired by this phenomenon, we develop a method for "Artificial Microsaccade Compensation". It can stabilize video captured by a tailless ornithopter that has resisted attempts to use camera-based sensing because it shakes at 12-20 Hz. Our approach minimizes changes in image intensity by optimizing over 3D rotation represented in SO(3). This results in a stabilized video, computed in real time, suitable for human viewing, and free from distortion. When adapted to hold a fixed viewing orientation, up to occasional saccades, it can dramatically reduce inter-frame motion while also benefiting from an efficient recursive update. When compared to Adobe Premier Pro's warp stabilizer, which is widely regarded as the best commercial video stabilization software available, our method achieves higher quality results while also running in real time.
comment: 29 pages, 5 figures, 2 tables, under review
☆ DIQ-H: Evaluating Hallucination Persistence in VLMs Under Temporal Visual Degradation
Vision-Language Models (VLMs) deployed in safety-critical applications such as autonomous driving must handle continuous visual streams under imperfect conditions. However, existing benchmarks focus on static, high-quality images and ignore temporal degradation and error propagation, which are critical failure modes where transient visual corruption induces hallucinations that persist across subsequent frames. We introduce DIQ-H, the first benchmark for evaluating VLM robustness under dynamic visual degradation in temporal sequences. DIQ-H applies physics-based corruptions including motion blur, sensor noise, and compression artifacts, and measures hallucination persistence, error recovery, and temporal consistency through multi-turn question-answering tasks. To enable scalable annotation, we propose Uncertainty-Guided Iterative Refinement (UIR), which generates reliable pseudo-ground-truth using lightweight VLMs with uncertainty filtering, achieving a 15.3 percent accuracy improvement. Experiments on 16 state-of-the-art VLMs reveal substantial robustness gaps: even advanced models such as GPT-4o achieve only a 78.5 percent recovery rate, while open-source models struggle with temporal consistency at less than 60 percent. DIQ-H provides a comprehensive platform for evaluating VLM reliability in real-world deployments.
☆ DirectDrag: High-Fidelity, Mask-Free, Prompt-Free Drag-based Image Editing via Readout-Guided Feature Alignment
Drag-based image editing using generative models provides intuitive control over image structures. However, existing methods rely heavily on manually provided masks and textual prompts to preserve semantic fidelity and motion precision. Removing these constraints creates a fundamental trade-off: visual artifacts without masks and poor spatial control without prompts. To address these limitations, we propose DirectDrag, a novel mask- and prompt-free editing framework. DirectDrag enables precise and efficient manipulation with minimal user input while maintaining high image fidelity and accurate point alignment. DirectDrag introduces two key innovations. First, we design an Auto Soft Mask Generation module that intelligently infers editable regions from point displacement, automatically localizing deformation along movement paths while preserving contextual integrity through the generative model's inherent capacity. Second, we develop a Readout-Guided Feature Alignment mechanism that leverages intermediate diffusion activations to maintain structural consistency during point-based edits, substantially improving visual fidelity. Despite operating without manual mask or prompt, DirectDrag achieves superior image quality compared to existing methods while maintaining competitive drag accuracy. Extensive experiments on DragBench and real-world scenarios demonstrate the effectiveness and practicality of DirectDrag for high-quality, interactive image manipulation. Project Page: https://frakw.github.io/DirectDrag/. Code is available at: https://github.com/frakw/DirectDrag.
☆ BlurDM: A Blur Diffusion Model for Image Deblurring NeurIPS 2025
Diffusion models show promise for dynamic scene deblurring; however, existing studies often fail to leverage the intrinsic nature of the blurring process within diffusion models, limiting their full potential. To address it, we present a Blur Diffusion Model (BlurDM), which seamlessly integrates the blur formation process into diffusion for image deblurring. Observing that motion blur stems from continuous exposure, BlurDM implicitly models the blur formation process through a dual-diffusion forward scheme, diffusing both noise and blur onto a sharp image. During the reverse generation process, we derive a dual denoising and deblurring formulation, enabling BlurDM to recover the sharp image by simultaneously denoising and deblurring, given pure Gaussian noise conditioned on the blurred image as input. Additionally, to efficiently integrate BlurDM into deblurring networks, we perform BlurDM in the latent space, forming a flexible prior generation network for deblurring. Extensive experiments demonstrate that BlurDM significantly and consistently enhances existing deblurring methods on four benchmark datasets. The source code is available at https://github.com/Jin-Ting-He/BlurDM.
comment: NeurIPS 2025
☆ Training for Identity, Inference for Controllability: A Unified Approach to Tuning-Free Face Personalization
Tuning-free face personalization methods have developed along two distinct paradigms: text embedding approaches that map facial features into the text embedding space, and adapter-based methods that inject features through auxiliary cross-attention layers. While both paradigms have shown promise, existing methods struggle to simultaneously achieve high identity fidelity and flexible text controllability. We introduce UniID, a unified tuning-free framework that synergistically integrates both paradigms. Our key insight is that when merging these approaches, they should mutually reinforce only identity-relevant information while preserving the original diffusion prior for non-identity attributes. We realize this through a principled training-inference strategy: during training, we employ an identity-focused learning scheme that guides both branches to capture identity features exclusively; at inference, we introduce a normalized rescaling mechanism that recovers the text controllability of the base diffusion model while enabling complementary identity signals to enhance each other. This principled design enables UniID to achieve high-fidelity face personalization with flexible text controllability. Extensive experiments against six state-of-the-art methods demonstrate that UniID achieves superior performance in both identity preservation and text controllability. Code will be available at https://github.com/lyuPang/UniID
comment: 17 pages, 13 figures
☆ TempR1: Improving Temporal Understanding of MLLMs via Temporal-Aware Multi-Task Reinforcement Learning
Enhancing the temporal understanding of Multimodal Large Language Models (MLLMs) is essential for advancing long-form video analysis, enabling tasks such as temporal localization, action detection, and time-sensitive question answering. While reinforcement learning (RL) has recently been explored for improving temporal reasoning, existing approaches are often confined to limited task types and data, restricting their generalization across diverse temporal understanding scenarios. To address this challenge, we present TempR1, a temporal-aware multi-task reinforcement learning framework that systematically strengthens MLLMs' temporal comprehension. We curate a multi-task corpus that exposes the model to diverse temporal structures and semantics, and build upon the Group Relative Policy Optimization (GRPO) algorithm to achieve stable and effective cross-task optimization. Specifically, we categorize temporal tasks into three correspondence types between predicted intervals and ground-truth instances, and design tailored localization rewards for each, enabling TempR1 to capture fine-grained temporal dependencies and adapt to different temporal patterns. Extensive experiments demonstrate that TempR1 attains state-of-the-art performance across multiple benchmarks. Moreover, its joint optimization over complementary tasks yields a strong synergistic effect, enhancing both generalization and single-task performance, establishing a scalable and principled paradigm for temporal reasoning in MLLMs.
☆ Tada-DIP: Input-adaptive Deep Image Prior for One-shot 3D Image Reconstruction
Deep Image Prior (DIP) has recently emerged as a promising one-shot neural-network based image reconstruction method. However, DIP has seen limited application to 3D image reconstruction problems. In this work, we introduce Tada-DIP, a highly effective and fully 3D DIP method for solving 3D inverse problems. By combining input-adaptation and denoising regularization, Tada-DIP produces high-quality 3D reconstructions while avoiding the overfitting phenomenon that is common in DIP. Experiments on sparse-view X-ray computed tomography reconstruction validate the effectiveness of the proposed method, demonstrating that Tada-DIP produces much better reconstructions than training-data-free baselines and achieves reconstruction performance on par with a supervised network trained using a large dataset with fully-sampled volumes.
comment: 6 pages, 8 figures, 2025 Asilomar Conference on Signals, Systems, and Computers. Code is available at github.com/evanbell02/Tada-DIP/
☆ MUT3R: Motion-aware Updating Transformer for Dynamic 3D Reconstruction
Recent stateful recurrent neural networks have achieved remarkable progress on static 3D reconstruction but remain vulnerable to motion-induced artifacts, where non-rigid regions corrupt attention propagation between the spatial memory and image feature. By analyzing the internal behaviors of the state and image token updating mechanism, we find that aggregating self-attention maps across layers reveals a consistent pattern: dynamic regions are naturally down-weighted, exposing an implicit motion cue that the pretrained transformer already encodes but never explicitly uses. Motivated by this observation, we introduce MUT3R, a training-free framework that applies the attention-derived motion cue to suppress dynamic content in the early layers of the transformer during inference. Our attention-level gating module suppresses the influence of dynamic regions before their artifacts propagate through the feature hierarchy. Notably, we do not retrain or fine-tune the model; we let the pretrained transformer diagnose its own motion cues and correct itself. This early regulation stabilizes geometric reasoning in streaming scenarios and leads to improvements in temporal consistency and camera pose robustness across multiple dynamic benchmarks, offering a simple and training-free pathway toward motion-aware streaming reconstruction.
☆ Beyond the Ground Truth: Enhanced Supervision for Image Restoration
Deep learning-based image restoration has achieved significant success. However, when addressing real-world degradations, model performance is limited by the quality of ground-truth images in datasets due to practical constraints in data acquisition. To address this limitation, we propose a novel framework that enhances existing ground truth images to provide higher-quality supervision for real-world restoration. Our framework generates perceptually enhanced ground truth images using super-resolution by incorporating adaptive frequency masks, which are learned by a conditional frequency mask generator. These masks guide the optimal fusion of frequency components from the original ground truth and its super-resolved variants, yielding enhanced ground truth images. This frequency-domain mixup preserves the semantic consistency of the original content while selectively enriching perceptual details, preventing hallucinated artifacts that could compromise fidelity. The enhanced ground truth images are used to train a lightweight output refinement network that can be seamlessly integrated with existing restoration models. Extensive experiments demonstrate that our approach consistently improves the quality of restored images. We further validate the effectiveness of both supervision enhancement and output refinement through user studies. Code is available at https://github.com/dhryougit/Beyond-the-Ground-Truth.
☆ UniMo: Unifying 2D Video and 3D Human Motion with an Autoregressive Framework
We propose UniMo, an innovative autoregressive model for joint modeling of 2D human videos and 3D human motions within a unified framework, enabling simultaneous generation and understanding of these two modalities for the first time. Current methods predominantly focus on generating one modality given another as the condition or integrating either of them with other modalities such as text and audio. Unifying 2D videos and 3D motions for simultaneous optimization and generation remains largely unexplored, presenting significant challenges due to their substantial structural and distributional differences. Inspired by the LLM's ability to unify different modalities, our method models videos and 3D motions as a unified tokens sequence, utilizing separate embedding layers to mitigate distribution gaps. Additionally, we devise a sequence modeling strategy that integrates two distinct tasks within a single framework, proving the effectiveness of unified modeling. Moreover, to efficiently align with visual tokens and preserve 3D spatial information, we design a novel 3D motion tokenizer with a temporal expansion strategy, using a single VQ-VAE to produce quantized motion tokens. It features multiple expert decoders that handle body shapes, translation, global orientation, and body poses for reliable 3D motion reconstruction. Extensive experiments demonstrate that our method simultaneously generates corresponding videos and motions while performing accurate motion capture. This work taps into the capacity of LLMs to fuse diverse data types, paving the way for integrating human-centric information into existing models and potentially enabling multimodal, controllable joint modeling of humans, objects, and scenes.
comment: https://carlyx.github.io/UniMo/
☆ Zero-Shot Video Translation and Editing with Frame Spatial-Temporal Correspondence
The remarkable success in text-to-image diffusion models has motivated extensive investigation of their potential for video applications. Zero-shot techniques aim to adapt image diffusion models for videos without requiring further model training. Recent methods largely emphasize integrating inter-frame correspondence into attention mechanisms. However, the soft constraint applied to identify the valid features to attend is insufficient, which could lead to temporal inconsistency. In this paper, we present FRESCO, which integrates intra-frame correspondence with inter-frame correspondence to formulate a more robust spatial-temporal constraint. This enhancement ensures a consistent transformation of semantically similar content between frames. Our method goes beyond attention guidance to explicitly optimize features, achieving high spatial-temporal consistency with the input video, significantly enhancing the visual coherence of manipulated videos. We verify FRESCO adaptations on two zero-shot tasks of video-to-video translation and text-guided video editing. Comprehensive experiments demonstrate the effectiveness of our framework in generating high-quality, coherent videos, highlighting a significant advance over current zero-shot methods.
comment: Code: https://github.com/Sunnycookies/FRESCO-v2, Project: https://williamyang1991.github.io/projects/FRESCOv2/
☆ Dual Cross-Attention Siamese Transformer for Rectal Tumor Regrowth Assessment in Watch-and-Wait Endoscopy
Increasing evidence supports watch-and-wait (WW) surveillance for patients with rectal cancer who show clinical complete response (cCR) at restaging following total neoadjuvant treatment (TNT). However, objectively accurate methods to early detect local regrowth (LR) from follow-up endoscopy images during WW are essential to manage care and prevent distant metastases. Hence, we developed a Siamese Swin Transformer with Dual Cross-Attention (SSDCA) to combine longitudinal endoscopic images at restaging and follow-up and distinguish cCR from LR. SSDCA leverages pretrained Swin transformers to extract domain agnostic features and enhance robustness to imaging variations. Dual cross attention is implemented to emphasize features from the two scans without requiring any spatial alignment of images to predict response. SSDCA as well as Swin-based baselines were trained using image pairs from 135 patients and evaluated on a held-out set of image pairs from 62 patients. SSDCA produced the best balanced accuracy (81.76\% $\pm$ 0.04), sensitivity (90.07\% $\pm$ 0.08), and specificity (72.86\% $\pm$ 0.05). Robustness analysis showed stable performance irrespective of artifacts including blood, stool, telangiectasia, and poor image quality. UMAP clustering of extracted features showed maximal inter-cluster separation (1.45 $\pm$ 0.18) and minimal intra-cluster dispersion (1.07 $\pm$ 0.19) with SSDCA, confirming discriminative representation learning.
comment: 6 pages, 5 figures, 1 table, submitted to ISBI conference
☆ An Automated Framework for Large-Scale Graph-Based Cerebrovascular Analysis
We present CaravelMetrics, a computational framework for automated cerebrovascular analysis that models vessel morphology through skeletonization-derived graph representations. The framework integrates atlas-based regional parcellation, centerline extraction, and graph construction to compute fifteen morphometric, topological, fractal, and geometric features. The features can be estimated globally from the complete vascular network or regionally within arterial territories, enabling multiscale characterization of cerebrovascular organization. Applied to 570 3D TOF-MRA scans from the IXI dataset (ages 20-86), CaravelMetrics yields reproducible vessel graphs capturing age- and sex-related variations and education-associated increases in vascular complexity, consistent with findings reported in the literature. The framework provides a scalable and fully automated approach for quantitative cerebrovascular feature extraction, supporting normative modeling and population-level studies of vascular health and aging.
comment: Submitted to ISBI 2026. 6 pages, 6 figures
☆ Diminishing Returns in Self-Supervised Learning
While transformer-based architectures have taken computer vision and NLP by storm, they often require a vast amount of parameters and training data to attain strong performance. In this work, we experiment with three distinct pre-training, intermediate fine-tuning, and downstream datasets and training objectives to explore their marginal benefits on a small 5M-parameter vision transformer. We find that while pre-training and fine-tuning always help our model but have diminishing returns, intermediate fine-tuning can actually show harmful impact on downstream performance, potentially due to dissimilarity in task mechanics. Taken together, our results suggest that small-scale ViTs benefit most from targeted pre-training and careful data selection, while indiscriminate stacking of intermediate tasks can waste compute and even degrade performance.
☆ Prostate biopsy whole slide image dataset from an underrepresented Middle Eastern population
Artificial intelligence (AI) is increasingly used in digital pathology. Publicly available histopathology datasets remain scarce, and those that do exist predominantly represent Western populations. Consequently, the generalizability of AI models to populations from less digitized regions, such as the Middle East, is largely unknown. This motivates the public release of our dataset to support the development and validation of pathology AI models across globally diverse populations. We present 339 whole-slide images of prostate core needle biopsies from a consecutive series of 185 patients collected in Erbil, Iraq. The slides are associated with Gleason scores and International Society of Urological Pathology grades assigned independently by three pathologists. Scanning was performed using two high-throughput scanners (Leica and Hamamatsu) and one compact scanner (Grundium). All slides were de-identified and are provided in their native formats without further conversion. The dataset enables grading concordance analyses, color normalization, and cross-scanner robustness evaluations. Data will be deposited in the Bioimage Archive (BIA) under accession code: to be announced (TBA), and released under a CC BY 4.0 license.
comment: 13 pages, 2 figures and 1 table
☆ Traffic Image Restoration under Adverse Weather via Frequency-Aware Mamba
Traffic image restoration under adverse weather conditions remains a critical challenge for intelligent transportation systems. Existing methods primarily focus on spatial-domain modeling but neglect frequency-domain priors. Although the emerging Mamba architecture excels at long-range dependency modeling through patch-wise correlation analysis, its potential for frequency-domain feature extraction remains unexplored. To address this, we propose Frequency-Aware Mamba (FAMamba), a novel framework that integrates frequency guidance with sequence modeling for efficient image restoration. Our architecture consists of two key components: (1) a Dual-Branch Feature Extraction Block (DFEB) that enhances local-global interaction via bidirectional 2D frequency-adaptive scanning, dynamically adjusting traversal paths based on sub-band texture distributions; and (2) a Prior-Guided Block (PGB) that refines texture details through wavelet-based high-frequency residual learning, enabling high-quality image reconstruction with precise details. Meanwhile, we design a novel Adaptive Frequency Scanning Mechanism (AFSM) for the Mamba architecture, which enables the Mamba to achieve frequency-domain scanning across distinct subgraphs, thereby fully leveraging the texture distribution characteristics inherent in subgraph structures. Extensive experiments demonstrate the efficiency and effectiveness of FAMamba.
comment: 12pages, 13 figures, 5tables
☆ PULSE: A Unified Multi-Task Architecture for Cardiac Segmentation, Diagnosis, and Few-Shot Cross-Modality Clinical Adaptation
Cardiac image analysis remains fragmented across tasks: anatomical segmentation, disease classification, and grounded clinical report generation are typically handled by separate networks trained under different data regimes. No existing framework unifies these objectives within a single architecture while retaining generalization across imaging modalities and datasets. We introduce PULSE, a multi-task vision-language framework built on self-supervised representations and optimized through a composite supervision strategy that balances region overlap learning, pixel wise classification fidelity, and boundary aware IoU refinement. A multi-scale token reconstruction decoder enables anatomical segmentation, while shared global representations support disease classification and clinically grounded text output allowing the model to transition from pixels to structures and finally clinical reasoning within one architecture. Unlike prior task-specific pipelines, PULSE learns task-invariant cardiac priors, generalizes robustly across datasets, and can be adapted to new imaging modalities with minimal supervision. This moves the field closer to a scalable, foundation style cardiac analysis framework.
☆ CoDA: From Text-to-Image Diffusion Models to Training-Free Dataset Distillation
Prevailing Dataset Distillation (DD) methods leveraging generative models confront two fundamental limitations. First, despite pioneering the use of diffusion models in DD and delivering impressive performance, the vast majority of approaches paradoxically require a diffusion model pre-trained on the full target dataset, undermining the very purpose of DD and incurring prohibitive training costs. Second, although some methods turn to general text-to-image models without relying on such target-specific training, they suffer from a significant distributional mismatch, as the web-scale priors encapsulated in these foundation models fail to faithfully capture the target-specific semantics, leading to suboptimal performance. To tackle these challenges, we propose Core Distribution Alignment (CoDA), a framework that enables effective DD using only an off-the-shelf text-to-image model. Our key idea is to first identify the "intrinsic core distribution" of the target dataset using a robust density-based discovery mechanism. We then steer the generative process to align the generated samples with this core distribution. By doing so, CoDA effectively bridges the gap between general-purpose generative priors and target semantics, yielding highly representative distilled datasets. Extensive experiments suggest that, without relying on a generative model specifically trained on the target dataset, CoDA achieves performance on par with or even superior to previous methods with such reliance across all benchmarks, including ImageNet-1K and its subsets. Notably, it establishes a new state-of-the-art accuracy of 60.4% at the 50-images-per-class (IPC) setup on ImageNet-1K. Our code is available on the project webpage: https://github.com/zzzlt422/CoDA
comment: 34 pages, 24 figures
☆ Heatmap Pooling Network for Action Recognition from RGB Videos
Human action recognition (HAR) in videos has garnered widespread attention due to the rich information in RGB videos. Nevertheless, existing methods for extracting deep features from RGB videos face challenges such as information redundancy, susceptibility to noise and high storage costs. To address these issues and fully harness the useful information in videos, we propose a novel heatmap pooling network (HP-Net) for action recognition from videos, which extracts information-rich, robust and concise pooled features of the human body in videos through a feedback pooling module. The extracted pooled features demonstrate obvious performance advantages over the previously obtained pose data and heatmap features from videos. In addition, we design a spatial-motion co-learning module and a text refinement modulation module to integrate the extracted pooled features with other multimodal data, enabling more robust action recognition. Extensive experiments on several benchmarks namely NTU RGB+D 60, NTU RGB+D 120, Toyota-Smarthome and UAV-Human consistently verify the effectiveness of our HP-Net, which outperforms the existing human action recognition methods. Our code is publicly available at: https://github.com/liujf69/HPNet-Action.
comment: Final Version of IEEE Transactions on Pattern Analysis and Machine Intelligence
☆ Lean Unet: A Compact Model for Image Segmentation
Unet and its variations have been standard in semantic image segmentation, especially for computer assisted radiology. Current Unet architectures iteratively downsample spatial resolution while increasing channel dimensions to preserve information content. Such a structure demands a large memory footprint, limiting training batch sizes and increasing inference latency. Channel pruning compresses Unet architecture without accuracy loss, but requires lengthy optimization and may not generalize across tasks and datasets. By investigating Unet pruning, we hypothesize that the final structure is the crucial factor, not the channel selection strategy of pruning. Based on our observations, we propose a lean Unet architecture (LUnet) with a compact, flat hierarchy where channels are not doubled as resolution is halved. We evaluate on a public MRI dataset allowing comparable reporting, as well as on two internal CT datasets. We show that a state-of-the-art pruning solution (STAMP) mainly prunes from the layers with the highest number of channels. Comparatively, simply eliminating a random channel at the pruning-identified layer or at the largest layer achieves similar or better performance. Our proposed LUnet with fixed architectures and over 30 times fewer parameters achieves performance comparable to both conventional Unet counterparts and data-adaptively pruned networks. The proposed lean Unet with constant channel count across layers requires far fewer parameters while achieving performance superior to standard Unet for the same total number of parameters. Skip connections allow Unet bottleneck channels to be largely reduced, unlike standard encoder-decoder architectures requiring increased bottleneck channels for information propagation.
☆ A Robust Camera-based Method for Breath Rate Measurement
Proliferation of cheap and accessible cameras makes it possible to measure a subject's breath rate from video footage alone. Recent works on this topic have proposed a variety of approaches for accurately measuring human breath rate, however they are either tested in near-ideal conditions, or produce results that are not sufficiently accurate. The present study proposes a more robust method to measure breath rate in humans with minimal hardware requirements using a combination of mathematical transforms with a relative deviation from the ground truth of less than 5%. The method was tested on videos taken from 14 volunteers with a total duration of over 2 hours 30 minutes. The obtained results were compared to reference data and the average mean absolute error was found to be at 0.57 respirations per minute, which is noticeably better than the results from previous works. The breath rate measurement method proposed in the present article is more resistant to distortions caused by subject movement and thus allows one to remotely measure the subject's breath rate without any significant limitations on the subject's behavior.
comment: 9 pages, 4 figures, 2 tables
☆ HieroGlyphTranslator: Automatic Recognition and Translation of Egyptian Hieroglyphs to English
Egyptian hieroglyphs, the ancient Egyptian writing system, are composed entirely of drawings. Translating these glyphs into English poses various challenges, including the fact that a single glyph can have multiple meanings. Deep learning translation applications are evolving rapidly, producing remarkable results that significantly impact our lives. In this research, we propose a method for the automatic recognition and translation of ancient Egyptian hieroglyphs from images to English. This study utilized two datasets for classification and translation: the Morris Franken dataset and the EgyptianTranslation dataset. Our approach is divided into three stages: segmentation (using Contour and Detectron2), mapping symbols to Gardiner codes, and translation (using the CNN model). The model achieved a BLEU score of 42.2, a significant result compared to previous research.
☆ LSRS: Latent Scale Rejection Sampling for Visual Autoregressive Modeling
Visual Autoregressive (VAR) modeling approach for image generation proposes autoregressive processing across hierarchical scales, decoding multiple tokens per scale in parallel. This method achieves high-quality generation while accelerating synthesis. However, parallel token sampling within a scale may lead to structural errors, resulting in suboptimal generated images. To mitigate this, we propose Latent Scale Rejection Sampling (LSRS), a method that progressively refines token maps in the latent scale during inference to enhance VAR models. Our method uses a lightweight scoring model to evaluate multiple candidate token maps sampled at each scale, selecting the high-quality map to guide subsequent scale generation. By prioritizing early scales critical for structural coherence, LSRS effectively mitigates autoregressive error accumulation while maintaining computational efficiency. Experiments demonstrate that LSRS significantly improves VAR's generation quality with minimal additional computational overhead. For the VAR-d30 model, LSRS increases the inference time by merely 1% while reducing its FID score from 1.95 to 1.78. When the inference time is increased by 15%, the FID score can be further reduced to 1.66. LSRS offers an efficient test-time scaling solution for enhancing VAR-based generation.
☆ AdaptVision: Efficient Vision-Language Models via Adaptive Visual Acquisition
Vision-Language Models (VLMs) have achieved remarkable success in visual question answering tasks, but their reliance on large numbers of visual tokens introduces significant computational overhead. While existing efficient VLM approaches reduce visual tokens through fixed-ratio compression, they operate passively and lack the ability to adapt to varying task requirements. This motivates a fundamental question: Can VLMs autonomously determine the minimum number of visual tokens required for each sample? Inspired by human active vision mechanisms, we introduce AdaptVision, an efficient VLM paradigm that enables adaptive visual token acquisition through a coarse-to-fine approach. Our model initially processes compressed visual tokens from low-resolution images and selectively acquires additional visual information by invoking a bounding box tool to crop key regions when necessary. We train AdaptVision using a reinforcement learning framework that carefully balances accuracy and efficiency. Central to our approach is Decoupled Turn Policy Optimization (DTPO), which decouples the learning objective into two components: (1) tool learning, which optimizes correct tool utilization, and (2) accuracy improvement, which refines the generated responses to improve answer correctness. Based on this formulation, we further decouple advantage estimation by computing separate advantages for tokens associated with each objective. This formulation enables more effective optimization for AdaptVision compared to vanilla GRPO. Comprehensive experiments across multiple VQA benchmarks demonstrate that AdaptVision achieves superior performance while consuming substantially fewer visual tokens than state-of-the-art efficient VLM methods.
comment: 15 pages, 9 figures
☆ Research on Brain Tumor Classification Method Based on Improved ResNet34 Network
Previously, image interpretation in radiology relied heavily on manual methods. However, manual classification of brain tumor medical images is time-consuming and labor-intensive. Even with shallow convolutional neural network models, the accuracy is not ideal. To improve the efficiency and accuracy of brain tumor image classification, this paper proposes a brain tumor classification model based on an improved ResNet34 network. This model uses the ResNet34 residual network as the backbone network and incorporates multi-scale feature extraction. It uses a multi-scale input module as the first layer of the ResNet34 network and an Inception v2 module as the residual downsampling layer. Furthermore, a channel attention mechanism module assigns different weights to different channels of the image from a channel domain perspective, obtaining more important feature information. The results after a five-fold crossover experiment show that the average classification accuracy of the improved network model is approximately 98.8%, which is not only 1% higher than ResNet34, but also only 80% of the number of parameters of the original model. Therefore, the improved network model not only improves accuracy but also reduces clutter, achieving a classification effect with fewer parameters and higher accuracy.
☆ Fully Unsupervised Self-debiasing of Text-to-Image Diffusion Models
Text-to-image (T2I) diffusion models have achieved widespread success due to their ability to generate high-resolution, photorealistic images. These models are trained on large-scale datasets, like LAION-5B, often scraped from the internet. However, since this data contains numerous biases, the models inherently learn and reproduce them, resulting in stereotypical outputs. We introduce SelfDebias, a fully unsupervised test-time debiasing method applicable to any diffusion model that uses a UNet as its noise predictor. SelfDebias identifies semantic clusters in an image encoder's embedding space and uses these clusters to guide the diffusion process during inference, minimizing the KL divergence between the output distribution and the uniform distribution. Unlike supervised approaches, SelfDebias does not require human-annotated datasets or external classifiers trained for each generated concept. Instead, it is designed to automatically identify semantic modes. Extensive experiments show that SelfDebias generalizes across prompts and diffusion model architectures, including both conditional and unconditional models. It not only effectively debiases images along key demographic dimensions while maintaining the visual fidelity of the generated images, but also more abstract concepts for which identifying biases is also challenging.
comment: Accepted at WACV 2026
☆ Thinking with Programming Vision: Towards a Unified View for Thinking with Images
Multimodal large language models (MLLMs) that think with images can interactively use tools to reason about visual inputs, but current approaches often rely on a narrow set of tools with limited real-world necessity and scalability. In this work, we first reveal a critical and previously overlooked weakness: even state-of-the-art MLLMs are surprisingly brittle, showing significant performance degradation on images with simple orientation changes or natural corruptions, underscoring the need for more robust tool-based reasoning. To address this, we propose CodeVision, a flexible and scalable code-as-tool framework where the model generates code as a universal interface to invoke any image operation, moving beyond fixed tool registries. We train our model using a two-stage methodology, beginning with Supervised Fine-Tuning (SFT) on a high-quality dataset curated for complex, multi-turn tool composition and error recovery, followed by Reinforcement Learning (RL) with a novel and dense process reward function to encourage strategic and efficient tool use. To facilitate this research, we construct new SFT and RL datasets and introduce a challenging new benchmark suite designed to rigorously evaluate robustness to orientation changes and multi-tool reasoning. Experiments on Qwen2.5-VL and Qwen3-VL series show that our approach significantly improves model performance and fosters emergent capabilities such as flexible tool composition, efficient chained execution, and robust error recovery from runtime feedback. Code is available at https://github.com/ByteDance-BandAI/CodeVision.
☆ Dual-level Modality Debiasing Learning for Unsupervised Visible-Infrared Person Re-Identification
Two-stage learning pipeline has achieved promising results in unsupervised visible-infrared person re-identification (USL-VI-ReID). It first performs single-modality learning and then operates cross-modality learning to tackle the modality discrepancy. Although promising, this pipeline inevitably introduces modality bias: modality-specific cues learned in the single-modality training naturally propagate into the following cross-modality learning, impairing identity discrimination and generalization. To address this issue, we propose a Dual-level Modality Debiasing Learning (DMDL) framework that implements debiasing at both the model and optimization levels. At the model level, we propose a Causality-inspired Adjustment Intervention (CAI) module that replaces likelihood-based modeling with causal modeling, preventing modality-induced spurious patterns from being introduced, leading to a low-biased model. At the optimization level, a Collaborative Bias-free Training (CBT) strategy is introduced to interrupt the propagation of modality bias across data, labels, and features by integrating modality-specific augmentation, label refinement, and feature alignment. Extensive experiments on benchmark datasets demonstrate that DMDL could enable modality-invariant feature learning and a more generalized model.
☆ Out-of-the-box: Black-box Causal Attacks on Object Detectors
Adversarial perturbations are a useful way to expose vulnerabilities in object detectors. Existing perturbation methods are frequently white-box and architecture specific. More importantly, while they are often successful, it is rarely clear why they work. Insights into the mechanism of this success would allow developers to understand and analyze these attacks, as well as fine-tune the model to prevent them. This paper presents BlackCAtt, a black-box algorithm and a tool, which uses minimal, causally sufficient pixel sets to construct explainable, imperceptible, reproducible, architecture-agnostic attacks on object detectors. BlackCAtt combines causal pixels with bounding boxes produced by object detectors to create adversarial attacks that lead to the loss, modification or addition of a bounding box. BlackCAtt works across different object detectors of different sizes and architectures, treating the detector as a black box. We compare the performance of BlackCAtt with other black-box attack methods and show that identification of causal pixels leads to more precisely targeted and less perceptible attacks. On the COCO test dataset, our approach is 2.7 times better than the baseline in removing a detection, 3.86 times better in changing a detection, and 5.75 times better in triggering new, spurious, detections. The attacks generated by BlackCAtt are very close to the original image, and hence imperceptible, demonstrating the power of causal pixels.
☆ PosA-VLA: Enhancing Action Generation via Pose-Conditioned Anchor Attention
The Vision-Language-Action (VLA) models have demonstrated remarkable performance on embodied tasks and shown promising potential for real-world applications. However, current VLAs still struggle to produce consistent and precise target-oriented actions, as they often generate redundant or unstable motions along trajectories, limiting their applicability in time-sensitive scenarios.In this work, we attribute these redundant actions to the spatially uniform perception field of existing VLAs, which causes them to be distracted by target-irrelevant objects, especially in complex environments.To address this issue, we propose an efficient PosA-VLA framework that anchors visual attention via pose-conditioned supervision, consistently guiding the model's perception toward task-relevant regions. The pose-conditioned anchor attention mechanism enables the model to better align instruction semantics with actionable visual cues, thereby improving action generation precision and efficiency. Moreover, our framework adopts a lightweight architecture and requires no auxiliary perception modules (e.g., segmentation or grounding networks), ensuring efficient inference. Extensive experiments verify that our method executes embodied tasks with precise and time-efficient behavior across diverse robotic manipulation benchmarks and shows robust generalization in a variety of challenging environments.
☆ DINO-RotateMatch: A Rotation-Aware Deep Framework for Robust Image Matching in Large-Scale 3D Reconstruction
This paper presents DINO-RotateMatch, a deep-learning framework designed to address the chal lenges of image matching in large-scale 3D reconstruction from unstructured Internet images. The method integrates a dataset-adaptive image pairing strategy with rotation-aware keypoint extraction and matching. DINO is employed to retrieve semantically relevant image pairs in large collections, while rotation-based augmentation captures orientation-dependent local features using ALIKED and Light Glue. Experiments on the Kaggle Image Matching Challenge 2025 demonstrate consistent improve ments in mean Average Accuracy (mAA), achieving a Silver Award (47th of 943 teams). The results confirm that combining self-supervised global descriptors with rotation-enhanced local matching offers a robust and scalable solution for large-scale 3D reconstruction.
comment: 9 pages, 5 figures, 1 table
☆ Structured Uncertainty Similarity Score (SUSS): Learning a Probabilistic, Interpretable, Perceptual Metric Between Images
Perceptual similarity scores that align with human vision are critical for both training and evaluating computer vision models. Deep perceptual losses, such as LPIPS, achieve good alignment but rely on complex, highly non-linear discriminative features with unknown invariances, while hand-crafted measures like SSIM are interpretable but miss key perceptual properties. We introduce the Structured Uncertainty Similarity Score (SUSS); it models each image through a set of perceptual components, each represented by a structured multivariate Normal distribution. These are trained in a generative, self-supervised manner to assign high likelihood to human-imperceptible augmentations. The final score is a weighted sum of component log-probabilities with weights learned from human perceptual datasets. Unlike feature-based methods, SUSS learns image-specific linear transformations of residuals in pixel space, enabling transparent inspection through decorrelated residuals and sampling. SUSS aligns closely with human perceptual judgments, shows strong perceptual calibration across diverse distortion types, and provides localized, interpretable explanations of its similarity assessments. We further demonstrate stable optimization behavior and competitive performance when using SUSS as a perceptual loss for downstream imaging tasks.
☆ Active Visual Perception: Opportunities and Challenges
Active visual perception refers to the ability of a system to dynamically engage with its environment through sensing and action, allowing it to modify its behavior in response to specific goals or uncertainties. Unlike passive systems that rely solely on visual data, active visual perception systems can direct attention, move sensors, or interact with objects to acquire more informative data. This approach is particularly powerful in complex environments where static sensing methods may not provide sufficient information. Active visual perception plays a critical role in numerous applications, including robotics, autonomous vehicles, human-computer interaction, and surveillance systems. However, despite its significant promise, there are several challenges that need to be addressed, including real-time processing of complex visual data, decision-making in dynamic environments, and integrating multimodal sensory inputs. This paper explores both the opportunities and challenges inherent in active visual perception, providing a comprehensive overview of its potential, current research, and the obstacles that must be overcome for broader adoption.
☆ GaussianBlender: Instant Stylization of 3D Gaussians with Disentangled Latent Spaces
3D stylization is central to game development, virtual reality, and digital arts, where the demand for diverse assets calls for scalable methods that support fast, high-fidelity manipulation. Existing text-to-3D stylization methods typically distill from 2D image editors, requiring time-intensive per-asset optimization and exhibiting multi-view inconsistency due to the limitations of current text-to-image models, which makes them impractical for large-scale production. In this paper, we introduce GaussianBlender, a pioneering feed-forward framework for text-driven 3D stylization that performs edits instantly at inference. Our method learns structured, disentangled latent spaces with controlled information sharing for geometry and appearance from spatially-grouped 3D Gaussians. A latent diffusion model then applies text-conditioned edits on these learned representations. Comprehensive evaluations show that GaussianBlender not only delivers instant, high-fidelity, geometry-preserving, multi-view consistent stylization, but also surpasses methods that require per-instance test-time optimization - unlocking practical, democratized 3D stylization at scale.
☆ ConvRot: Rotation-Based Plug-and-Play 4-bit Quantization for Diffusion Transformers
Diffusion transformers have demonstrated strong capabilities in generating high-quality images. However, as model size increases, the growing memory footprint and inference latency pose significant challenges for practical deployment. Recent studies in large language models (LLMs) show that rotation-based techniques can smooth outliers and enable 4-bit quantization, but these approaches often incur substantial overhead and struggle with row-wise outliers in diffusion transformers. To address these challenges, we propose ConvRot, a group-wise rotation-based quantization method that leverages regular Hadamard transform (RHT) to suppress both row-wise and column-wise outliers while reducing complexity from quadratic to linear. Building on this, we design ConvLinear4bit, a plug-and-play module that integrates rotation, quantization, GEMM, and dequantization, enabling W4A4 inference without retraining and preserving visual quality. Experiments on FLUX.1-dev demonstrate a 2.26$\times$ speedup and 4.05$\times$ memory reduction while maintaining image fidelity. To our knowledge, this is the first application of rotation-based quantization for plug-and-play W4A4 inference in diffusion transformers.
☆ Colon-X: Advancing Intelligent Colonoscopy from Multimodal Understanding to Clinical Reasoning
In this study, we present Colon-X, an open initiative aimed at advancing multimodal intelligence in colonoscopy. We begin by constructing ColonVQA, the most comprehensive multimodal dataset ever built for colonoscopy, featuring over 1.1M+ visual question answering entries across 76 clinical findings and 18 multimodal tasks. Beyond serving as a community-wide data foundation, we further investigate a critical yet underexplored transition in colonoscopy - evolving from multimodal understanding to clinical reasoning: (a) To capture the current landscape of multimodal understanding behaviors, we systematically assess the generalizability of 22 multimodal large language models and examine their reliability under human-induced perturbations. The results reveal that clinical outputs from leading MLLMs remain far from robust and trustworthy. (b) To narrow this gap, we further explore reasoning-centric intelligence tailored for colonoscopy. Specifically, we curate ColonReason, a clinically grounded reasoning dataset annotated through a multi-expert debating pipeline, and develop ColonR1, the first R1-styled model incorporating task-adaptive rewarding and gradient-stable optimization techniques. Under data-scarce conditions, our ColonR1 achieves 56.61% overall accuracy, outperforming supervised fine-tuning by 25.22%, and sets a new reasoning-enabled baseline for multimodal colonoscopy analysis. All data and model resources are publicly available at https://github.com/ai4colonoscopy/Colon-X.
comment: Technical report
☆ ToG-Bench: Task-Oriented Spatio-Temporal Grounding in Egocentric Videos
A core capability towards general embodied intelligence lies in localizing task-relevant objects from an egocentric perspective, formulated as Spatio-Temporal Video Grounding (STVG). Despite recent progress, existing STVG studies remain largely confined to object-centric and descriptive instructions, neglecting the task-oriented reasoning that is crucial for embodied agents to accomplish goal-directed interactions. To bridge this gap, we introduce \textbf{ToG-Bench}, the first task-oriented spatio-temporal video grounding benchmark for egocentric videos. ToG-Bench is characterized by three key features: (1) \textbf{Task-oriented Grounding}, which requires identifying and localizing objects based on intended tasks rather than straightforward descriptions; (2) \textbf{Explicit-Implicit Dual Grounding}, where target objects can be either explicitly mentioned or implicitly inferred by contextual reasoning; (3) \textbf{One-to-Many Grounding}, where a single instruction may correspond to multiple objects involved in task execution. Built upon videos sourced from ScanNet, ToG-Bench comprises 100 annotated clips with 2,704 task-oriented grounding instructions, constructed via a semi-automated pipeline that combines foundation model annotation and human refinement. In addition, we introduce a set of task-level evaluation metrics tailored for multi-object and explicit-implicit object grounding, and systematically benchmark seven state-of-the-art MLLMs. Extensive experiments reveal the intrinsic challenges of task-oriented STVG and substantial performance gaps across explicit-implicit and multi-object grounding, highlighting the difficulty of bridging perception and interaction in embodied scenarios. Data and code will be released at: \href{https://github.com/qaxuDev/ToG-Bench}{https://github.com/qaxuDev/ToG-Bench}..
comment: 26 pages
☆ Multi-Scale Visual Prompting for Lightweight Small-Image Classification
Visual prompting has recently emerged as an efficient strategy to adapt vision models using lightweight, learnable parameters injected into the input space. However, prior work mainly targets large Vision Transformers and high-resolution datasets such as ImageNet. In contrast, small-image benchmarks like MNIST, Fashion-MNIST, and CIFAR-10 remain widely used in education, prototyping, and research, yet have received little attention in the context of prompting. In this paper, we introduce \textbf{Multi-Scale Visual Prompting (MSVP)}, a simple and generic module that learns a set of global, mid-scale, and local prompt maps fused with the input image via a lightweight $1 \times 1$ convolution. MSVP is backbone-agnostic, adds less than $0.02\%$ parameters, and significantly improves performance across CNN and Vision Transformer backbones. We provide a unified benchmark on MNIST, Fashion-MNIST, and CIFAR-10 using a simple CNN, ResNet-18, and a small Vision Transformer. Our method yields consistent improvements with negligible computational overhead. We further include ablations on prompt scales, fusion strategies, and backbone architectures, along with qualitative analyzes using prompt visualizations and Grad-CAM. Our results demonstrate that multi-scale prompting provides an effective inductive bias even on low-resolution images.
☆ Cyclical Temporal Encoding and Hybrid Deep Ensembles for Multistep Energy Forecasting
Accurate electricity consumption forecasting is essential for demand management and smart grid operations. This paper introduces a unified deep learning framework that integrates cyclical temporal encoding with hybrid LSTM-CNN architectures to enhance multistep energy forecasting. We systematically transform calendar-based attributes using sine cosine encodings to preserve periodic structure and evaluate their predictive relevance through correlation analysis. To exploit both long-term seasonal effects and short-term local patterns, we employ an ensemble model composed of an LSTM, a CNN, and a meta-learner of MLP regressors specialized for each forecast horizon. Using a one year national consumption dataset, we conduct an extensive experimental study including ablation analyses with and without cyclical encodings and calendar features and comparisons with established baselines from the literature. Results demonstrate consistent improvements across all seven forecast horizons, with our hybrid model achieving lower RMSE and MAE than individual architectures and prior methods. These findings confirm the benefit of combining cyclical temporal representations with complementary deep learning structures. To our knowledge, this is the first work to jointly evaluate temporal encodings, calendar-based features, and hybrid ensemble architectures within a unified short-term energy forecasting framework.
☆ Optical Context Compression Is Just (Bad) Autoencoding
DeepSeek-OCR demonstrates that rendered text can be reconstructed with high fidelity from a small number of vision tokens. This finding has sparked excitement about vision-based context compression for language models. But the evaluation stops at reconstruction; whether these representations help language modeling remains untested. We test two assumptions implicit in the optical-compression narrative: that vision-based compression provides unique advantages for text reconstruction from compressed representations, and that DeepSeek-OCR's reconstruction results are evidence that vision-based compression will be useful for language modeling. Comparing their vision encoder against simple alternatives--parameter-free mean pooling and a learned hierarchical encoder--we find that these simple approaches match or surpass vision for reconstruction at matched compression ratios, and outperform it for language modeling--where vision-based compression fails to beat truncation. The excitement around optical context compression outpaces the evidence. Code and checkpoints are available at https://github.com/ivnle/bad-autoencoding
☆ MKSNet: Advanced Small Object Detection in Remote Sensing Imagery with Multi-Kernel and Dual Attention Mechanisms
Deep convolutional neural networks (DCNNs) have substantially advanced object detection capabilities, particularly in remote sensing imagery. However, challenges persist, especially in detecting small objects where the high resolution of these images and the small size of target objects often result in a loss of critical information in the deeper layers of conventional CNNs. Additionally, the extensive spatial redundancy and intricate background details typical in remote-sensing images tend to obscure these small targets. To address these challenges, we introduce Multi-Kernel Selection Network (MKSNet), a novel network architecture featuring a novel Multi-Kernel Selection mechanism. The MKS mechanism utilizes large convolutional kernels to effectively capture an extensive range of contextual information. This innovative design allows for adaptive kernel size selection, significantly enhancing the network's ability to dynamically process and emphasize crucial spatial details for small object detection. Furthermore, MKSNet also incorporates a dual attention mechanism, merging spatial and channel attention modules. The spatial attention module adaptively fine-tunes the spatial weights of feature maps, focusing more intensively on relevant regions while mitigating background noise. Simultaneously, the channel attention module optimizes channel information selection, improving feature representation and detection accuracy. Empirical evaluations on the DOTA-v1.0 and HRSC2016 benchmark demonstrate that MKSNet substantially surpasses existing state-of-the-art models in detecting small objects in remote sensing images. These results highlight MKSNet's superior ability to manage the complexities associated with multi-scale and high-resolution image data, confirming its effectiveness and innovation in remote sensing object detection.
☆ FeatureLens: A Highly Generalizable and Interpretable Framework for Detecting Adversarial Examples Based on Image Features
Although the remarkable performance of deep neural networks (DNNs) in image classification, their vulnerability to adversarial attacks remains a critical challenge. Most existing detection methods rely on complex and poorly interpretable architectures, which compromise interpretability and generalization. To address this, we propose FeatureLens, a lightweight framework that acts as a lens to scrutinize anomalies in image features. Comprising an Image Feature Extractor (IFE) and shallow classifiers (e.g., SVM, MLP, or XGBoost) with model sizes ranging from 1,000 to 30,000 parameters, FeatureLens achieves high detection accuracy ranging from 97.8% to 99.75% in closed-set evaluation and 86.17% to 99.6% in generalization evaluation across FGSM, PGD, CW, and DAmageNet attacks, using only 51 dimensional features. By combining strong detection performance with excellent generalization, interpretability, and computational efficiency, FeatureLens offers a practical pathway toward transparent and effective adversarial defense.
☆ ReCamDriving: LiDAR-Free Camera-Controlled Novel Trajectory Video Generation
We propose ReCamDriving, a purely vision-based, camera-controlled novel-trajectory video generation framework. While repair-based methods fail to restore complex artifacts and LiDAR-based approaches rely on sparse and incomplete cues, ReCamDriving leverages dense and scene-complete 3DGS renderings for explicit geometric guidance, achieving precise camera-controllable generation. To mitigate overfitting to restoration behaviors when conditioned on 3DGS renderings, ReCamDriving adopts a two-stage training paradigm: the first stage uses camera poses for coarse control, while the second stage incorporates 3DGS renderings for fine-grained viewpoint and geometric guidance. Furthermore, we present a 3DGS-based cross-trajectory data curation strategy to eliminate the train-test gap in camera transformation patterns, enabling scalable multi-trajectory supervision from monocular videos. Based on this strategy, we construct the ParaDrive dataset, containing over 110K parallel-trajectory video pairs. Extensive experiments demonstrate that ReCamDriving achieves state-of-the-art camera controllability and structural consistency.
comment: Project page: https://recamdriving.github.io/
☆ LAMP: Language-Assisted Motion Planning for Controllable Video Generation
Video generation has achieved remarkable progress in visual fidelity and controllability, enabling conditioning on text, layout, or motion. Among these, motion control - specifying object dynamics and camera trajectories - is essential for composing complex, cinematic scenes, yet existing interfaces remain limited. We introduce LAMP that leverages large language models (LLMs) as motion planners to translate natural language descriptions into explicit 3D trajectories for dynamic objects and (relatively defined) cameras. LAMP defines a motion domain-specific language (DSL), inspired by cinematography conventions. By harnessing program synthesis capabilities of LLMs, LAMP generates structured motion programs from natural language, which are deterministically mapped to 3D trajectories. We construct a large-scale procedural dataset pairing natural text descriptions with corresponding motion programs and 3D trajectories. Experiments demonstrate LAMP's improved performance in motion controllability and alignment with user intent compared to state-of-the-art alternatives establishing the first framework for generating both object and camera motions directly from natural language specifications.
☆ Motion4D: Learning 3D-Consistent Motion and Semantics for 4D Scene Understanding NeurIPS 2025
Recent advancements in foundation models for 2D vision have substantially improved the analysis of dynamic scenes from monocular videos. However, despite their strong generalization capabilities, these models often lack 3D consistency, a fundamental requirement for understanding scene geometry and motion, thereby causing severe spatial misalignment and temporal flickering in complex 3D environments. In this paper, we present Motion4D, a novel framework that addresses these challenges by integrating 2D priors from foundation models into a unified 4D Gaussian Splatting representation. Our method features a two-part iterative optimization framework: 1) Sequential optimization, which updates motion and semantic fields in consecutive stages to maintain local consistency, and 2) Global optimization, which jointly refines all attributes for long-term coherence. To enhance motion accuracy, we introduce a 3D confidence map that dynamically adjusts the motion priors, and an adaptive resampling process that inserts new Gaussians into under-represented regions based on per-pixel RGB and semantic errors. Furthermore, we enhance semantic coherence through an iterative refinement process that resolves semantic inconsistencies by alternately optimizing the semantic fields and updating prompts of SAM2. Extensive evaluations demonstrate that our Motion4D significantly outperforms both 2D foundation models and existing 3D-based approaches across diverse scene understanding tasks, including point-based tracking, video object segmentation, and novel view synthesis. Our code is available at https://hrzhou2.github.io/motion4d-web/.
comment: Accepted to NeurIPS 2025
☆ Memory-Guided Point Cloud Completion for Dental Reconstruction
Partial dental point clouds often suffer from large missing regions caused by occlusion and limited scanning views, which bias encoder-only global features and force decoders to hallucinate structures. We propose a retrieval-augmented framework for tooth completion that integrates a prototype memory into standard encoder--decoder pipelines. After encoding a partial input into a global descriptor, the model retrieves the nearest manifold prototype from a learnable memory and fuses it with the query feature through confidence-gated weighting before decoding. The memory is optimized end-to-end and self-organizes into reusable tooth-shape prototypes without requiring tooth-position labels, thereby providing structural priors that stabilize missing-region inference and free decoder capacity for detail recovery. The module is plug-and-play and compatible with common completion backbones, while keeping the same training losses. Experiments on a self-processed Teeth3DS benchmark demonstrate consistent improvements in Chamfer Distance, with visualizations showing sharper cusps, ridges, and interproximal transitions. Our approach provides a simple yet effective way to exploit cross-sample regularities for more accurate and faithful dental point-cloud completion.
☆ HBFormer: A Hybrid-Bridge Transformer for Microtumor and Miniature Organ Segmentation
Medical image segmentation is a cornerstone of modern clinical diagnostics. While Vision Transformers that leverage shifted window-based self-attention have established new benchmarks in this field, they are often hampered by a critical limitation: their localized attention mechanism struggles to effectively fuse local details with global context. This deficiency is particularly detrimental to challenging tasks such as the segmentation of microtumors and miniature organs, where both fine-grained boundary definition and broad contextual understanding are paramount. To address this gap, we propose HBFormer, a novel Hybrid-Bridge Transformer architecture. The 'Hybrid' design of HBFormer synergizes a classic U-shaped encoder-decoder framework with a powerful Swin Transformer backbone for robust hierarchical feature extraction. The core innovation lies in its 'Bridge' mechanism, a sophisticated nexus for multi-scale feature integration. This bridge is architecturally embodied by our novel Multi-Scale Feature Fusion (MFF) decoder. Departing from conventional symmetric designs, the MFF decoder is engineered to fuse multi-scale features from the encoder with global contextual information. It achieves this through a synergistic combination of channel and spatial attention modules, which are constructed from a series of dilated and depth-wise convolutions. These components work in concert to create a powerful feature bridge that explicitly captures long-range dependencies and refines object boundaries with exceptional precision. Comprehensive experiments on challenging medical image segmentation datasets, including multi-organ, liver tumor, and bladder tumor benchmarks, demonstrate that HBFormer achieves state-of-the-art results, showcasing its outstanding capabilities in microtumor and miniature organ segmentation. Code and models are available at: https://github.com/lzeeorno/HBFormer.
comment: 6 pages, 4 figures, 3 tables
☆ CloseUpAvatar: High-Fidelity Animatable Full-Body Avatars with Mixture of Multi-Scale Textures
We present a CloseUpAvatar - a novel approach for articulated human avatar representation dealing with more general camera motions, while preserving rendering quality for close-up views. CloseUpAvatar represents an avatar as a set of textured planes with two sets of learnable textures for low and high-frequency detail. The method automatically switches to high-frequency textures only for cameras positioned close to the avatar's surface and gradually reduces their impact as the camera moves farther away. Such parametrization of the avatar enables CloseUpAvatar to adjust rendering quality based on camera distance ensuring realistic rendering across a wider range of camera orientations than previous approaches. We provide experiments using the ActorsHQ dataset with high-resolution input images. CloseUpAvatar demonstrates both qualitative and quantitative improvements over existing methods in rendering from novel wide range camera positions, while maintaining high FPS by limiting the number of required primitives.
♻ ☆ DynamicVerse: A Physically-Aware Multimodal Framework for 4D World Modeling
Understanding the dynamic physical world, characterized by its evolving 3D structure, real-world motion, and semantic content with textual descriptions, is crucial for human-agent interaction and enables embodied agents to perceive and act within real environments with human-like capabilities. However, existing datasets are often derived from limited simulators or utilize traditional Structurefrom-Motion for up-to-scale annotation and offer limited descriptive captioning, which restricts the capacity of foundation models to accurately interpret real-world dynamics from monocular videos, commonly sourced from the internet. To bridge these gaps, we introduce DynamicVerse, a physical-scale, multimodal 4D world modeling framework for dynamic real-world video. We employ large vision, geometric, and multimodal models to interpret metric-scale static geometry, real-world dynamic motion, instance-level masks, and holistic descriptive captions. By integrating window-based Bundle Adjustment with global optimization, our method converts long real-world video sequences into a comprehensive 4D multimodal format. DynamicVerse delivers a large-scale dataset consisting of 100K+ videos with 800K+ annotated masks and 10M+ frames from internet videos. Experimental evaluations on three benchmark tasks, namely video depth estimation, camera pose estimation, and camera intrinsics estimation, demonstrate that our 4D modeling achieves superior performance in capturing physical-scale measurements with greater global accuracy than existing methods.
♻ ☆ Rethinking the Learning Paradigm for Facial Expression Recognition
Due to the subjective crowdsourcing annotations and the inherent inter-class similarity of facial expressions, the real-world Facial Expression Recognition (FER) datasets usually exhibit ambiguous annotation. To simplify the learning paradigm, most previous methods convert ambiguous annotation results into precise one-hot annotations and train FER models in an end-to-end supervised manner. In this paper, we rethink the existing training paradigm and propose that it is better to use weakly supervised strategies to train FER models with original ambiguous annotation.
♻ ☆ SDPose: Exploiting Diffusion Priors for Out-of-Domain and Robust Pose Estimation
Pre-trained diffusion models provide rich multi-scale latent features and are emerging as powerful vision backbones. While recent works such as Marigold and Lotus adapt diffusion priors for dense prediction with strong cross-domain generalization, their potential for structured outputs remains underexplored. In this paper, we propose SDPose, a fine-tuning framework built upon Stable Diffusion to fully exploit pre-trained diffusion priors for human pose estimation. First, rather than modifying cross-attention modules or introducing learnable embeddings, we directly predict keypoint heatmaps in the SD U-Net's image latent space to preserve the original generative priors. Second, we map these latent features into keypoint heatmaps through a lightweight convolutional pose head, which avoids disrupting the pre-trained backbone. Finally, to prevent overfitting and enhance out-of-distribution robustness, we incorporate an auxiliary RGB reconstruction branch that preserves domain-transferable generative semantics. To evaluate robustness under domain shift, we further construct COCO-OOD, a style-transferred variant of COCO with preserved annotations. With just one-fifth of the training schedule used by Sapiens on COCO, SDPose attains parity with Sapiens-1B/2B on the COCO validation set and establishes a new state of the art on the cross-domain benchmarks HumanArt and COCO-OOD. Extensive ablations highlight the importance of diffusion priors, RGB reconstruction, and multi-scale SD U-Net features for cross-domain generalization, and t-SNE analyses further explain SD's domain-invariant latent structure. We also show that SDPose serves as an effective zero-shot pose annotator for controllable image and video generation.
comment: 20 pages, 10 figures, 7 tables
♻ ☆ NVRC: Neural Video Representation Compression
Recent advances in implicit neural representation (INR)-based video coding have demonstrated its potential to compete with both conventional and other learning-based approaches. With INR methods, a neural network is trained to overfit a video sequence, with its parameters compressed to obtain a compact representation of the video content. However, although promising results have been achieved, the best INR-based methods are still out-performed by the latest standard codecs, such as VVC VTM, partially due to the simple model compression techniques employed. In this paper, rather than focusing on representation architectures as in many existing works, we propose a novel INR-based video compression framework, Neural Video Representation Compression (NVRC), targeting compression of the representation. Based on the novel entropy coding and quantization models proposed, NVRC, for the first time, is able to optimize an INR-based video codec in a fully end-to-end manner. To further minimize the additional bitrate overhead introduced by the entropy models, we have also proposed a new model compression framework for coding all the network, quantization and entropy model parameters hierarchically. Our experiments show that NVRC outperforms many conventional and learning-based benchmark codecs, with a 24% average coding gain over VVC VTM (Random Access) on the UVG dataset, measured in PSNR. As far as we are aware, this is the first time an INR-based video codec achieving such performance. The implementation of NVRC will be released.
♻ ☆ Sat2Flow: A Structure-Aware Diffusion Framework for Human Flow Generation from Satellite Imagery
Origin-Destination (OD) flow matrices are critical for urban mobility analysis, supporting traffic forecasting, infrastructure planning, and policy design. Existing methods face two key limitations: (1) reliance on costly auxiliary features (e.g., Points of Interest, socioeconomic statistics) with limited spatial coverage, and (2) fragility to spatial topology changes, where reordering urban regions disrupts the structural coherence of generated flows. We propose Sat2Flow, a structure-aware diffusion framework that generates structurally coherent OD flows using only satellite imagery. Our approach employs a multi-kernel encoder to capture diverse regional interactions and a permutation-aware diffusion process that maintains consistency across regional orderings. Through joint contrastive training linking satellite features with OD patterns and equivariant diffusion training enforcing structural invariance, Sat2Flow ensures topological robustness under arbitrary regional reindexing. Experiments on real-world datasets show that Sat2Flow outperforms physics-based and data-driven baselines in accuracy while preserving flow distributions and spatial structures under index permutations. Sat2Flow offers a globally scalable solution for OD flow generation in data-scarce environments, eliminating region-specific auxiliary data dependencies while maintaining structural robustness for reliable mobility modeling.
comment: 9 pages, 5 figures
♻ ☆ Neural Radiance and Gaze Fields for Visual Attention Modeling in 3D Environments
We introduce Neural Radiance and Gaze Fields (NeRGs), a novel approach for representing visual attention in complex environments. Much like how Neural Radiance Fields (NeRFs) perform novel view synthesis, NeRGs reconstruct gaze patterns from arbitrary viewpoints, implicitly mapping visual attention to 3D surfaces. We achieve this by augmenting a standard NeRF with an additional network that models local egocentric gaze probability density, conditioned on scene geometry and observer position. The output of a NeRG is a rendered view of the scene alongside a pixel-wise salience map representing the conditional probability that a given observer fixates on visible surfaces. Unlike prior methods, our system is lightweight and enables visualization of gaze fields at interactive framerates. Moreover, NeRGs allow the observer perspective to be decoupled from the rendering camera and correctly account for gaze occlusion due to intervening geometry. We demonstrate the effectiveness of NeRGs using head pose from skeleton tracking as a proxy for gaze, employing our proposed gaze probes to aggregate noisy rays into robust probability density targets for supervision.
comment: 11 pages, 8 figures
♻ ☆ SMP: Reusable Score-Matching Motion Priors for Physics-Based Character Control
Data-driven motion priors that can guide agents toward producing naturalistic behaviors play a pivotal role in creating life-like virtual characters. Adversarial imitation learning has been a highly effective method for learning motion priors from reference motion data. However, adversarial priors, with few exceptions, need to be retrained for each new controller, thereby limiting their reusability and necessitating the retention of the reference motion data when training on downstream tasks. In this work, we present Score-Matching Motion Priors (SMP), which leverages pre-trained motion diffusion models and score distillation sampling (SDS) to create reusable task-agnostic motion priors. SMPs can be pre-trained on a motion dataset, independent of any control policy or task. Once trained, SMPs can be kept frozen and reused as general-purpose reward functions to train policies to produce naturalistic behaviors for downstream tasks. We show that a general motion prior trained on large-scale datasets can be repurposed into a variety of style-specific priors. Furthermore SMP can compose different styles to synthesize new styles not present in the original dataset. Our method produces high-quality motion comparable to state-of-the-art adversarial imitation learning methods through reusable and modular motion priors. We demonstrate the effectiveness of SMP across a diverse suite of control tasks with physically simulated humanoid characters. Video demo available at https://youtu.be/ravlZJteS20
comment: 14 pages, 9 figures
♻ ☆ Defense That Attacks: How Robust Models Become Better Attackers
Deep learning has achieved great success in computer vision, but remains vulnerable to adversarial attacks. Adversarial training is the leading defense designed to improve model robustness. However, its effect on the transferability of attacks is underexplored. In this work, we ask whether adversarial training unintentionally increases the transferability of adversarial examples. To answer this, we trained a diverse zoo of 36 models, including CNNs and ViTs, and conducted comprehensive transferability experiments. Our results reveal a clear paradox: adversarially trained (AT) models produce perturbations that transfer more effectively than those from standard models, which introduce a new ecosystem risk. To enable reproducibility and further study, we release all models, code, and experimental scripts. Furthermore, we argue that robustness evaluations should assess not only the resistance of a model to transferred attacks but also its propensity to produce transferable adversarial examples.
♻ ☆ Efficient Transferable Optimal Transport via Min-Sliced Transport Plans
Optimal Transport (OT) offers a powerful framework for finding correspondences between distributions and addressing matching and alignment problems in various areas of computer vision, including shape analysis, image generation, and multimodal tasks. The computation cost of OT, however, hinders its scalability. Slice-based transport plans have recently shown promise for reducing the computational cost by leveraging the closed-form solutions of 1D OT problems. These methods optimize a one-dimensional projection (slice) to obtain a conditional transport plan that minimizes the transport cost in the ambient space. While efficient, these methods leave open the question of whether learned optimal slicers can transfer to new distribution pairs under distributional shift. Understanding this transferability is crucial in settings with evolving data or repeated OT computations across closely related distributions. In this paper, we study the min-Sliced Transport Plan (min-STP) framework and investigate the transferability of optimized slicers: can a slicer trained on one distribution pair yield effective transport plans for new, unseen pairs? Theoretically, we show that optimized slicers remain close under slight perturbations of the data distributions, enabling efficient transfer across related tasks. To further improve scalability, we introduce a minibatch formulation of min-STP and provide statistical guarantees on its accuracy. Empirically, we demonstrate that the transferable min-STP achieves strong one-shot matching performance and facilitates amortized training for point cloud alignment and flow-based generative modeling.
♻ ☆ SpecGen: Neural Spectral BRDF Generation via Spectral-Spatial Tri-plane Aggregation
Synthesizing spectral images across different wavelengths is essential for photorealistic rendering. Unlike conventional spectral uplifting methods that convert RGB images into spectral ones, we introduce SpecGen, a novel method that generates spectral bidirectional reflectance distribution functions (BRDFs) from a single RGB image of a sphere. This enables spectral image rendering under arbitrary illuminations and shapes covered by the corresponding material. A key challenge in spectral BRDF generation is the scarcity of measured spectral BRDF data. To address this, we propose the Spectral-Spatial Tri-plane Aggregation (SSTA) network, which models reflectance responses across wavelengths and incident-outgoing directions, allowing the training strategy to leverage abundant RGB BRDF data to enhance spectral BRDF generation. Experiments show that our method accurately reconstructs spectral BRDFs from limited spectral data and surpasses state-of-the-art methods in hyperspectral image reconstruction, achieving an improvement of 8 dB in PSNR. Codes and data will be released upon acceptance.
♻ ☆ A Machine Learning-Driven Solution for Denoising Inertial Confinement Fusion Images
Neutron imaging is essential for diagnosing and optimizing inertial confinement fusion implosions at the National Ignition Facility. Due to the required 10-micrometer resolution, however, neutron image require image reconstruction using iterative algorithms. For low-yield sources, the images may be degraded by various types of noise. Gaussian and Poisson noise often coexist within one image, obscuring fine details and blurring the edges where the source information is encoded. Traditional denoising techniques, such as filtering and thresholding, can inadvertently alter critical features or reshape the noise statistics, potentially impacting the ultimate fidelity of the iterative image reconstruction pipeline. However, recent advances in synthetic data production and machine learning have opened new opportunities to address these challenges. In this study, we present an unsupervised autoencoder with a Cohen-Daubechies- Feauveau (CDF 97) wavelet transform in the latent space, designed to suppress for mixed Gaussian-Poisson noise while preserving essential image features. The network successfully denoises neutron imaging data. Benchmarking against both simulated and experimental NIF datasets demonstrates that our approach achieves lower reconstruction error and superior edge preservation compared to conventional filtering methods such as Block-matching and 3D filtering (BM3D). By validating the effectiveness of unsupervised learning for denoising neutron images, this study establishes a critical first step towards fully AI-driven, end-to-end reconstruction frameworks for ICF diagnostics.
♻ ☆ Exploring the Potentials of Spiking Neural Networks for Image Deraining AAAI2026
Biologically plausible and energy-efficient frameworks such as Spiking Neural Networks (SNNs) have not been sufficiently explored in low-level vision tasks. Taking image deraining as an example, this study addresses the representation of the inherent high-pass characteristics of spiking neurons, specifically in image deraining and innovatively proposes the Visual LIF (VLIF) neuron, overcoming the obstacle of lacking spatial contextual understanding present in traditional spiking neurons. To tackle the limitation of frequency-domain saturation inherent in conventional spiking neurons, we leverage the proposed VLIF to introduce the Spiking Decomposition and Enhancement Module and the lightweight Spiking Multi-scale Unit for hierarchical multi-scale representation learning. Extensive experiments across five benchmark deraining datasets demonstrate that our approach significantly outperforms state-of-the-art SNN-based deraining methods, achieving this superior performance with only 13\% of their energy consumption. These findings establish a solid foundation for deploying SNNs in high-performance, energy-efficient low-level vision tasks.
comment: Accepted By AAAI2026
♻ ☆ BitMark: Watermarking Bitwise Autoregressive Image Generative Models NeurIPS 2025
State-of-the-art text-to-image models generate photorealistic images at an unprecedented speed. This work focuses on models that operate in a bitwise autoregressive manner over a discrete set of tokens that is practically infinite in size. However, their impressive generative power comes with a growing risk: as their outputs increasingly populate the Internet, they are likely to be scraped and reused as training data-potentially by the very same models. This phenomenon has been shown to lead to model collapse, where repeated training on generated content, especially from the models' own previous versions, causes a gradual degradation in performance. A promising mitigation strategy is watermarking, which embeds human-imperceptible yet detectable signals into generated images-enabling the identification of generated content. In this work, we introduce BitMark, a robust bitwise watermarking framework. Our method embeds a watermark directly at the bit level of the token stream during the image generation process. Our bitwise watermark subtly influences the bits to preserve visual fidelity and generation speed while remaining robust against a spectrum of removal techniques. Furthermore, it exhibits high radioactivity, i.e., when watermarked generated images are used to train another image generative model, this second model's outputs will also carry the watermark. The radioactive traces remain detectable even when only fine-tuning diffusion or image autoregressive models on images watermarked with our BitMark. Overall, our approach provides a principled step toward preventing model collapse in image generative models by enabling reliable detection of generated outputs. The code is available at https://github.com/sprintml/BitMark.
comment: Accepted as a Conference Paper at NeurIPS 2025
♻ ☆ Accuracy-Robustness Trade Off via Spiking Neural Network Gradient Sparsity Trail
Spiking Neural Networks (SNNs) have attracted growing interest in both computational neuroscience and artificial intelligence, primarily due to their inherent energy efficiency and compact memory footprint. However, achieving adversarial robustness in SNNs, (particularly for vision-related tasks) remains a nascent and underexplored challenge. Recent studies have proposed leveraging sparse gradients as a form of regularization to enhance robustness against adversarial perturbations. In this work, we present a surprising finding: under specific architectural configurations, SNNs exhibit natural gradient sparsity and can achieve state-of-the-art adversarial defense performance without the need for any explicit regularization. Further analysis reveals a trade-off between robustness and generalization: while sparse gradients contribute to improved adversarial resilience, they can impair the model's ability to generalize; conversely, denser gradients support better generalization but increase vulnerability to attacks. Our findings offer new insights into the dual role of gradient sparsity in SNN training.
comment: Work under peer-review
♻ ☆ A Tractable Two-Step Linear Mixing Model Solved with Second-Order Optimization for Spectral Unmixing under Variability
In this paper, we propose a Two-Step Linear Mixing Model (2LMM) that bridges the gap between model complexity and computational tractability. The model achieves this by introducing two distinct scaling steps: an endmember scaling step across the image, and another for pixel-wise scaling. We show that this model leads to only a mildly non-convex optimization problem, which we solve with an optimization algorithm that incorporates second-order information. To the authors' knowledge, this work represents the first application of second-order optimization techniques to solve a spectral unmixing problem that models endmember variability. Our method is highly robust, as it requires virtually no hyperparameter tuning and can therefore be used easily and quickly in a wide range of unmixing tasks. We show through extensive experiments on both simulated and real data that the new model is competitive and in some cases superior to the state of the art in unmixing. The model also performs very well in challenging scenarios, such as blind unmixing.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ D$^{2}$-VPR: A Parameter-efficient Visual-foundation-model-based Visual Place Recognition Method via Knowledge Distillation and Deformable Aggregation
Visual Place Recognition (VPR) aims to determine the geographic location of a query image by retrieving its most visually similar counterpart from a geo-tagged reference database. Recently, the emergence of the powerful visual foundation model, DINOv2, trained in a self-supervised manner on massive datasets, has significantly improved VPR performance. This improvement stems from DINOv2's exceptional feature generalization capabilities but is often accompanied by increased model complexity and computational overhead that impede deployment on resource-constrained devices. To address this challenge, we propose $D^{2}$-VPR, a $D$istillation- and $D$eformable-based framework that retains the strong feature extraction capabilities of visual foundation models while significantly reducing model parameters and achieving a more favorable performance-efficiency trade-off. Specifically, first, we employ a two-stage training strategy that integrates knowledge distillation and fine-tuning. Additionally, we introduce a Distillation Recovery Module (DRM) to better align the feature spaces between the teacher and student models, thereby minimizing knowledge transfer losses to the greatest extent possible. Second, we design a Top-Down-attention-based Deformable Aggregator (TDDA) that leverages global semantic features to dynamically and adaptively adjust the Regions of Interest (ROI) used for aggregation, thereby improving adaptability to irregular structures. Extensive experiments demonstrate that our method achieves competitive performance compared to state-of-the-art approaches. Meanwhile, it reduces the parameter count by approximately 64.2% and FLOPs by about 62.6% (compared to CricaVPR).Code is available at https://github.com/tony19980810/D2VPR.
♻ ☆ GNSS-Inertial State Initialization Using Inter-Epoch Baseline Residuals
Initializing the state of a sensorized platform can be challenging, as a limited set of measurements often provide low-informative constraints that are in addition highly non-linear. This may lead to poor initial estimates that may converge to local minima during subsequent non-linear optimization. We propose an adaptive GNSS-inertial initialization strategy that delays the incorporation of global GNSS constraints until they become sufficiently informative. In the initial stage, our method leverages inter-epoch baseline vector residuals between consecutive GNSS fixes to mitigate inertial drift. To determine when to activate global constraints, we introduce a general criterion based on the evolution of the Hessian matrix's singular values, effectively quantifying system observability. Experiments on EuRoC, GVINS and MARS-LVIG datasets show that our approach consistently outperforms the naive strategy of fusing all measurements from the outset, yielding more accurate and robust initializations.
comment: 8 pages, 7 figures, accepted to RA-L
♻ ☆ DGFusion: Depth-Guided Sensor Fusion for Robust Semantic Perception
Robust semantic perception for autonomous vehicles relies on effectively combining multiple sensors with complementary strengths and weaknesses. State-of-the-art sensor fusion approaches to semantic perception often treat sensor data uniformly across the spatial extent of the input, which hinders performance when faced with challenging conditions. By contrast, we propose a novel depth-guided multimodal fusion method that upgrades condition-aware fusion by integrating depth information. Our network, DGFusion, poses multimodal segmentation as a multi-task problem, utilizing the lidar measurements, which are typically available in outdoor sensor suites, both as one of the model's inputs and as ground truth for learning depth. Our corresponding auxiliary depth head helps to learn depth-aware features, which are encoded into spatially varying local depth tokens that condition our attentive cross-modal fusion. Together with a global condition token, these local depth tokens dynamically adapt sensor fusion to the spatially varying reliability of each sensor across the scene, which largely depends on depth. In addition, we propose a robust loss for our depth, which is essential for learning from lidar inputs that are typically sparse and noisy in adverse conditions. Our method achieves state-of-the-art panoptic and semantic segmentation performance on the challenging MUSES and DeLiVER datasets. Code and models will be available at https://github.com/timbroed/DGFusion
comment: Code and models will be available at https://github.com/timbroed/DGFusion
♻ ☆ Delving into Dynamic Scene Cue-Consistency for Robust 3D Multi-Object Tracking
3D multi-object tracking is a critical and challenging task in the field of autonomous driving. A common paradigm relies on modeling individual object motion, e.g., Kalman filters, to predict trajectories. While effective in simple scenarios, this approach often struggles in crowded environments or with inaccurate detections, as it overlooks the rich geometric relationships between objects. This highlights the need to leverage spatial cues. However, existing geometry-aware methods can be susceptible to interference from irrelevant objects, leading to ambiguous features and incorrect associations. To address this, we propose focusing on cue-consistency: identifying and matching stable spatial patterns over time. We introduce the Dynamic Scene Cue-Consistency Tracker (DSC-Track) to implement this principle. Firstly, we design a unified spatiotemporal encoder using Point Pair Features (PPF) to learn discriminative trajectory embeddings while suppressing interference. Secondly, our cue-consistency transformer module explicitly aligns consistent feature representations between historical tracks and current detections. Finally, a dynamic update mechanism preserves salient spatiotemporal information for stable online tracking. Extensive experiments on the nuScenes and Waymo Open Datasets validate the effectiveness and robustness of our approach. On the nuScenes benchmark, for instance, our method achieves state-of-the-art performance, reaching 73.2% and 70.3% AMOTA on the validation and test sets, respectively.
♻ ☆ Language-Driven Object-Oriented Two-Stage Method for Scene Graph Anticipation
A scene graph is a structured representation of objects and their spatio-temporal relationships in dynamic scenes. Scene Graph Anticipation (SGA) involves predicting future scene graphs from video clips, enabling applications in intelligent surveillance and human-machine collaboration. While recent SGA approaches excel at leveraging visual evidence, long-horizon forecasting fundamentally depends on semantic priors and commonsense temporal regularities that are challenging to extract purely from visual features. To explicitly model these semantic dynamics, we propose Linguistic Scene Graph Anticipation (LSGA), a linguistic formulation of SGA that performs temporal relational reasoning over sequences of textualized scene graphs, with visual scene-graph detection handled by a modular front-end when operating on video. Building on this formulation, we introduce Object-Oriented Two-Stage Method (OOTSM), a language-based framework that anticipates object-set dynamics and forecasts object-centric relation trajectories with temporal consistency regularization, and we evaluate it on a dedicated benchmark constructed from Action Genome annotations. Extensive experiments show that compact fine-tuned language models with up to 3B parameters consistently outperform strong zero- and one-shot API baselines, including GPT-4o, GPT-4o-mini, and DeepSeek-V3, under matched textual inputs and context windows. When coupled with off-the-shelf visual scene-graph generators, the resulting multimodal system achieves substantial improvements on video-based SGA, boosting long-horizon mR@50 by up to 21.9\% over strong visual SGA baselines.
♻ ☆ You Point, I Learn: Online Adaptation of Interactive Segmentation Models for Handling Distribution Shifts in Medical Imaging
Interactive segmentation uses real-time user inputs, such as mouse clicks, to iteratively refine model predictions. Although not originally designed to address distribution shifts, this paradigm naturally lends itself to such challenges. In medical imaging, where distribution shifts are common, interactive methods can use user inputs to guide models towards improved predictions. Moreover, once a model is deployed, user corrections can be used to adapt the network parameters to the new data distribution, mitigating distribution shift. Based on these insights, we aim to develop a practical, effective method for improving the adaptive capabilities of interactive segmentation models to new data distributions in medical imaging. Firstly, we found that strengthening the model's responsiveness to clicks is important for the initial training process. Moreover, we show that by treating the post-interaction user-refined model output as pseudo-ground-truth, we can design a lean, practical online adaptation method that enables a model to learn effectively across sequential test images. The framework includes two components: (i) a Post-Interaction adaptation process, updating the model after the user has completed interactive refinement of an image, and (ii) a Mid-Interaction adaptation process, updating incrementally after each click. Both processes include a Click-Centered Gaussian loss that strengthens the model's reaction to clicks and enhances focus on user-guided, clinically relevant regions. Experiments on 5 fundus and 4 brain-MRI databases show that our approach consistently outperforms existing methods under diverse distribution shifts, including unseen imaging modalities and pathologies. Code and pretrained models will be released upon publication.
♻ ☆ InteractiveOmni: A Unified Omni-modal Model for Audio-Visual Multi-turn Dialogue
We introduce InteractiveOmni, a unified and open-source omni-modal large language model for audio-visual multi-turn interaction, ranging from 4B to 8B parameters, designed to lead the field of lightweight models by offering comprehensive omni-modal understanding and speech generation capabilities. To achieve this, we integrate the vision encoder, audio encoder, large language model, and speech decoder into a unified model for understanding and generation tasks. We design a multi-stage training strategy to ensure robust cross-modal capabilities, including pre-training for omni-modal understanding, followed by post-training with speech conversation and audio-visual interaction. To enable human-like long-term conversational ability, we meticulously curate a multi-turn training dataset that enhances the model's ability to handle complex and multi-turn interactions. To effectively evaluate the multi-turn memory and speech interaction capabilities, we construct the multi-modal multi-turn memory benchmark and the multi-turn speech interaction benchmark. Experiments demonstrate that InteractiveOmni significantly outperforms leading open-source models and provides a more intelligent multi-turn audio-visual experience, particularly in its long-term memory capabilities. Notably, InteractiveOmni-4B is comparable to the much larger model like Qwen2.5-Omni-7B on general benchmarks, and it can retain 97% of the performance of the InteractiveOmni-8B while utilizing only 50% of the model size. Achieving state-of-the-art results against similarly sized models across image, audio, video understanding, and speech generation tasks, InteractiveOmni is an accessible, open-source foundation for next-generation intelligent interactive systems.
♻ ☆ GT23D-Bench: A Comprehensive General Text-to-3D Generation Benchmark
Text-to-3D (T23D) generation has emerged as a crucial visual generation task, aiming at synthesizing 3D content from textual descriptions. Studies of this task are currently shifting from per-scene T23D, which requires optimization of the model for every content generated, to General T23D (GT23D), which requires only one pre-trained model to generate different content without re-optimization, for more generalized and efficient 3D generation. Despite notable advancements, GT23D is severely bottlenecked by two interconnected challenges: the lack of high-quality, large-scale training data and the prevalence of evaluation metrics that overlook intrinsic 3D properties. Existing datasets often suffer from incomplete annotations, noisy organization, and inconsistent quality, while current evaluations rely heavily on 2D image-text similarity or scoring, failing to thoroughly assess 3D geometric integrity and semantic relevance. To address these fundamental gaps, we introduce GT23D-Bench, the first comprehensive benchmark specifically designed for GT23D training and evaluation. We first construct a high-quality dataset of 400K 3D assets, featuring diverse visual annotations (70M+ visual samples) and multi-granularity hierarchical captions (1M+ descriptions) to foster robust semantic learning. Second, we propose a comprehensive evaluation suite with 10 metrics assessing both text-3D alignment and 3D visual quality at multiple levels. Crucially, we demonstrate through rigorous experiments that our proposed metrics exhibit significantly higher correlation with human judgment compared to existing methods. Our in-depth analysis of eight leading GT23D models using this benchmark provides the community with critical insights into current model capabilities and their shared failure modes. GT23D-Bench will be publicly available to facilitate rigorous and reproducible research.
♻ ☆ HybridWorldSim: A Scalable and Controllable High-fidelity Simulator for Autonomous Driving
Realistic and controllable simulation is critical for advancing end-to-end autonomous driving, yet existing approaches often struggle to support novel view synthesis under large viewpoint changes or to ensure geometric consistency. We introduce HybridWorldSim, a hybrid simulation framework that integrates multi-traversal neural reconstruction for static backgrounds with generative modeling for dynamic agents. This unified design addresses key limitations of previous methods, enabling the creation of diverse and high-fidelity driving scenarios with reliable visual and spatial consistency. To facilitate robust benchmarking, we further release a new multi-traversal dataset MIRROR that captures a wide range of routes and environmental conditions across different cities. Extensive experiments demonstrate that HybridWorldSim surpasses previous state-of-the-art methods, providing a practical and scalable solution for high-fidelity simulation and a valuable resource for research and development in autonomous driving.
comment: Project page: https://hybridworldsim.github.io/
♻ ☆ TransUNet-GradCAM: A Hybrid Transformer-U-Net with Self-Attention and Explainable Visualizations for Foot Ulcer Segmentation
Automated segmentation of diabetic foot ulcers (DFUs) plays a critical role in clinical diagnosis, therapeutic planning, and longitudinal wound monitoring. However, this task remains challenging due to the heterogeneous appearance, irregular morphology, and complex backgrounds associated with ulcer regions in clinical photographs. Traditional convolutional neural networks (CNNs), such as U-Net, provide strong localization capabilities but struggle to model long-range spatial dependencies due to their inherently limited receptive fields. To address this, we employ the TransUNet architecture, a hybrid framework that integrates the global attention mechanism of Vision Transformers (ViTs) into the U-Net structure. This combination allows the model to extract global contextual features while maintaining fine-grained spatial resolution. We trained the model on the public Foot Ulcer Segmentation Challenge (FUSeg) dataset using a robust augmentation pipeline and a hybrid loss function to mitigate class imbalance. On the validation set, the model achieved a Dice Similarity Coefficient (F1-score) of 0.8799 using an optimized threshold of 0.4389. To ensure clinical transparency, we integrated Grad-CAM visualizations to highlight model focus areas. Furthermore, a clinical utility analysis demonstrated a strong correlation (Pearson r = 0.9631) between predicted and ground-truth wound areas. These outcomes demonstrate that our approach effectively integrates global and local feature extraction, offering a reliable, effective, and explainable solution for automated foot ulcer assessment.
♻ ☆ STT-GS: Sample-Then-Transmit Edge Gaussian Splatting with Joint Client Selection and Power Control
Edge Gaussian splatting (EGS), which aggregates data from distributed clients (e.g., drones) and trains a global GS model at the edge (e.g., ground server), is an emerging paradigm for scene reconstruction in low-altitude economy. Unlike traditional edge resource management methods that emphasize communication throughput or general-purpose learning performance, EGS explicitly aims to maximize the GS qualities, rendering existing approaches inapplicable. To address this problem, this paper formulates a novel GS-oriented objective function that distinguishes the heterogeneous view contributions of different clients. However, evaluating this function in turn requires clients' images, leading to a causality dilemma. To this end, this paper further proposes a sample-then-transmit EGS (or STT-GS for short) strategy, which first samples a subset of images as pilot data from each client for loss prediction. Based on the first-stage evaluation, communication resources are then prioritized towards more valuable clients. To achieve efficient sampling, a feature-domain clustering (FDC) scheme is proposed to select the most representative data and pilot transmission time minimization (PTTM) is adopted to reduce the pilot overhead. Subsequently, we develop a joint client selection and power control (JCSPC) framework to maximize the GS-oriented function under communication resource constraints. Despite the nonconvexity of the problem, we propose a low-complexity efficient solution based on the penalty alternating majorization minimization (PAMM) algorithm. Experiments reveal that the proposed scheme significantly outperforms existing benchmarks on real-world datasets. The GS-oriented objective can be accurately predicted with low sampling ratios (e.g., 10%), and our method achieves an excellent tradeoff between view contributions and communication costs.
♻ ☆ LoRA Patching: Exposing the Fragility of Proactive Defenses against Deepfakes
Deepfakes pose significant societal risks, motivating the development of proactive defenses that embed adversarial perturbations in facial images to prevent manipulation. However, in this paper, we show that these preemptive defenses often lack robustness and reliability. We propose a novel approach, Low-Rank Adaptation (LoRA) patching, which injects a plug-and-play LoRA patch into Deepfake generators to bypass state-of-the-art defenses. A learnable gating mechanism adaptively controls the effect of the LoRA patch and prevents gradient explosions during fine-tuning. We also introduce a Multi-Modal Feature Alignment (MMFA) loss, encouraging the features of adversarial outputs to align with those of the desired outputs at the semantic level. Beyond bypassing, we present defensive LoRA patching, embedding visible warnings in the outputs as a complementary solution to mitigate this newly identified security vulnerability. With only 1,000 facial examples and a single epoch of fine-tuning, LoRA patching successfully defeats multiple proactive defenses. These results reveal a critical weakness in current paradigms and underscore the need for more robust Deepfake defense strategies. Our code is available at https://github.com/ZOMIN28/LoRA-Patching.
♻ ☆ Test-time Correction: An Online 3D Detection System via Visual Prompting
This paper introduces Test-time Correction (TTC), an online 3D detection system designed to rectify test-time errors using various auxiliary feedback, aiming to enhance the safety of deployed autonomous driving systems. Unlike conventional offline 3D detectors that remain fixed during inference, TTC enables immediate online error correction without retraining, allowing autonomous vehicles to adapt to new scenarios and reduce deployment risks. To achieve this, we equip existing 3D detectors with an Online Adapter (OA) module -- a prompt-driven query generator for real-time correction. At the core of OA module are visual prompts: image-based descriptions of objects of interest derived from auxiliary feedback such as mismatches with 2D detections, road descriptions, or user clicks. These visual prompts, collected from risky objects during inference, are maintained in a visual prompt buffer to enable continuous correction in future frames. By leveraging this mechanism, TTC consistently detects risky objects, achieving reliable, adaptive, and versatile driving autonomy. Extensive experiments show that TTC significantly improves instant error rectification over frozen 3D detectors, even under limited labels, zero-shot settings, and adverse conditions. We hope this work inspires future research on post-deployment online rectification systems for autonomous driving.
♻ ☆ Assessing the Alignment of Popular CNNs to the Brain for Valence Appraisal
Convolutional Neural Networks (CNNs) are a popular type of computer model that have proven their worth in many computer vision tasks. Moreover, they form an interesting study object for the field of psychology, with shown correspondences between the workings of CNNs and the human brain. However, these correspondences have so far mostly been studied in the context of general visual perception. In contrast, this paper explores to what extent this correspondence also holds for a more complex brain process, namely social cognition. To this end, we assess the alignment between popular CNN architectures and both human behavioral and fMRI data for image valence appraisal through a correlation analysis. We show that for this task CNNs struggle to go beyond simple visual processing, and do not seem to reflect higher-order brain processing. Furthermore, we present Object2Brain, a novel framework that combines GradCAM and object detection at the CNN-filter level with the aforementioned correlation analysis to study the influence of different object classes on the CNN-to-human correlations. Despite similar correlation trends, different CNN architectures are shown to display different object class sensitivities.
comment: 12 pages, 5 figures
♻ ☆ Universal Multi-Domain Translation via Diffusion Routers
Multi-domain translation (MDT) aims to learn translations between multiple domains, yet existing approaches either require fully aligned tuples or can only handle domain pairs seen in training, limiting their practicality and excluding many cross-domain mappings. We introduce universal MDT (UMDT), a generalization of MDT that seeks to translate between any pair of $K$ domains using only $K-1$ paired datasets with a central domain. To tackle this problem, we propose Diffusion Router (DR), a unified diffusion-based framework that models all central$\leftrightarrow$non-central translations with a single noise predictor conditioned on the source and target domain labels. DR enables indirect non-central translations by routing through the central domain. We further introduce a novel scalable learning strategy with a variational-bound objective and an efficient Tweedie refinement procedure to support direct non-central mappings. Through evaluation on three large-scale UMDT benchmarks, DR achieves state-of-the-art results for both indirect and direct translations, while lowering sampling cost and unlocking novel tasks such as sketch$\leftrightarrow$segmentation. These results establish DR as a scalable and versatile framework for universal translation across multiple domains.
♻ ☆ PipeFusion: Patch-level Pipeline Parallelism for Diffusion Transformers Inference
This paper presents PipeFusion, an innovative parallel methodology to tackle the high latency issues associated with generating high-resolution images using diffusion transformers (DiTs) models. PipeFusion partitions images into patches and the model layers across multiple GPUs. It employs a patch-level pipeline parallel strategy to orchestrate communication and computation efficiently. By capitalizing on the high similarity between inputs from successive diffusion steps, PipeFusion reuses one-step stale feature maps to provide context for the current pipeline step. This approach notably reduces communication costs compared to existing DiTs inference parallelism, including tensor parallel, sequence parallel and DistriFusion. PipeFusion enhances memory efficiency through parameter distribution across devices, ideal for large DiTs like Flux.1. Experimental results demonstrate that PipeFusion achieves state-of-the-art performance on 8$\times$L40 PCIe GPUs for Pixart, Stable-Diffusion 3, and Flux.1 models. Our source code is available at https://github.com/xdit-project/xDiT.
♻ ☆ MoBGS: Motion Deblurring Dynamic 3D Gaussian Splatting for Blurry Monocular Video AAAI 2026
We present MoBGS, a novel motion deblurring 3D Gaussian Splatting (3DGS) framework capable of reconstructing sharp and high-quality novel spatio-temporal views from blurry monocular videos in an end-to-end manner. Existing dynamic novel view synthesis (NVS) methods are highly sensitive to motion blur in casually captured videos, resulting in significant degradation of rendering quality. While recent approaches address motion-blurred inputs for NVS, they primarily focus on static scene reconstruction and lack dedicated motion modeling for dynamic objects. To overcome these limitations, our MoBGS introduces a novel Blur-adaptive Latent Camera Estimation (BLCE) method using a proposed Blur-adaptive Neural Ordinary Differential Equation (ODE) solver for effective latent camera trajectory estimation, improving global camera motion deblurring. In addition, we propose a Latent Camera-induced Exposure Estimation (LCEE) method to ensure consistent deblurring of both a global camera and local object motions. Extensive experiments on the Stereo Blur dataset and real-world blurry videos show that our MoBGS significantly outperforms the very recent methods, achieving state-of-the-art performance for dynamic NVS under motion blur.
comment: This paper has been accepted to AAAI 2026. The first two authors contributed equally to this work (equal contribution). The last two authors are co-corresponding authors. Please visit our project page at https://kaist-viclab.github.io/mobgs-site/
♻ ☆ MambaScope: Coarse-to-Fine Scoping for Efficient Vision Mamba
Vision Mamba has emerged as a promising and efficient alternative to Vision Transformers, yet its efficiency remains fundamentally constrained by the number of input tokens. Existing token reduction approaches typically adopt token pruning or merging to reduce computation. However, they inherently lead to information loss as they discard or compress token representations. This problem is further exacerbated when the same fine-grained token processing is uniformly applied across all images regardless of visual complexity. We observe that not all inputs require fine-grained processing: simple images can be effectively handled at a coarse resolution, while only complex ones require refinement. Based on this insight, we propose MambaScope, an adaptive framework for efficient inference for Vision Mamba. MambaScope first performs coarse-grained inference by dividing the input image into large patches, significantly reducing token length and computation. When the model's prediction confidence is low, selected regions are re-processed at a finer resolution to recover essential visual details with minimal additional cost. This dynamic resolution assignment strategy allows MambaScope to allocate computation adaptively according to image complexity, achieving efficient processing without compromising accuracy. Experiments across various vision tasks demonstrate that MambaScope outperforms both the baseline Vision Mamba and state-of-the-art token reduction techniques in terms of accuracy and efficiency.
♻ ☆ DynamicCity: Large-Scale 4D Occupancy Generation from Dynamic Scenes ICLR 2025
Urban scene generation has been developing rapidly recently. However, existing methods primarily focus on generating static and single-frame scenes, overlooking the inherently dynamic nature of real-world driving environments. In this work, we introduce DynamicCity, a novel 4D occupancy generation framework capable of generating large-scale, high-quality dynamic 4D scenes with semantics. DynamicCity mainly consists of two key models. 1) A VAE model for learning HexPlane as the compact 4D representation. Instead of using naive averaging operations, DynamicCity employs a novel Projection Module to effectively compress 4D features into six 2D feature maps for HexPlane construction, which significantly enhances HexPlane fitting quality (up to 12.56 mIoU gain). Furthermore, we utilize an Expansion & Squeeze Strategy to reconstruct 3D feature volumes in parallel, which improves both network training efficiency and reconstruction accuracy than naively querying each 3D point (up to 7.05 mIoU gain, 2.06x training speedup, and 70.84% memory reduction). 2) A DiT-based diffusion model for HexPlane generation. To make HexPlane feasible for DiT generation, a Padded Rollout Operation is proposed to reorganize all six feature planes of the HexPlane as a squared 2D feature map. In particular, various conditions could be introduced in the diffusion or sampling process, supporting versatile 4D generation applications, such as trajectory- and command-driven generation, inpainting, and layout-conditioned generation. Extensive experiments on the CarlaSC and Waymo datasets demonstrate that DynamicCity significantly outperforms existing state-of-the-art 4D occupancy generation methods across multiple metrics. The code and models have been released to facilitate future research.
comment: ICLR 2025 Spotlight; 35 pages, 18 figures, 15 tables; Project Page at https://dynamic-city.github.io/
♻ ☆ Can VLMs Detect and Localize Fine-Grained AI-Edited Images?
Fine-grained detection and localization of localized image edits is crucial for assessing content authenticity, especially as modern diffusion models and image editors can produce highly realistic manipulations. However, this problem faces three key challenges: (1) most AIGC detectors produce only a global real-or-fake label without indicating where edits occur; (2) traditional computer vision methods for edit localization typically rely on costly pixel-level annotations; and (3) there is no large-scale, modern benchmark specifically targeting edited-image detection. To address these gaps, we develop an automated data-generation pipeline and construct FragFake, a large-scale benchmark of AI-edited images spanning multiple source datasets, diverse editing models, and several common edit types. Building on FragFake, we are the first to systematically study vision language models (VLMs) for edited-image classification and edited-region localization. Our experiments show that pretrained VLMs, including GPT4o, perform poorly on this task, whereas fine-tuned models such as Qwen2.5-VL achieve high accuracy and substantially higher object precision across all settings. We further explore GRPO-based RLVR training, which yields modest metric gains while improving the interpretability of model outputs. Ablation and transfer analyses reveal how data balancing, training size, LoRA rank, and training domain affect performance, and highlight both the potential and the limitations of cross-editor and cross-dataset generalization. We anticipate that this work will establish a solid foundation to facilitate and inspire subsequent research endeavors in the domain of multimodal content authenticity.
comment: 14pages,19 figures
Machine Learning 214
☆ Learning Steerable Clarification Policies with Collaborative Self-play
To handle underspecified or ambiguous queries, AI assistants need a policy for managing their uncertainty to determine (a) when to guess the user intent and answer directly, (b) when to enumerate and answer multiple possible intents, and (c) when to ask a clarifying question. However, such policies are contextually dependent on factors such as user preferences or modality. For example, enumerating multiple possible user intentions is cumbersome on small screens or in a voice setting. In this work, we propose to train steerable policies for managing this uncertainty using self-play. Given two agents, one simulating a user and the other an AI assistant, we generate conversations where the user issues a potentially ambiguous query, and the assistant needs to determine how to respond. Importantly, the model takes as input the numerical cost of each clarification question, and each generated word, and is asked to take the action that will maximize its final reward, which is the cost-penalized accuracy. We use Reinforced Self-Training (ReST) to train our model to achieve high reward and show this leads to a steerable policy that changes its behavior predictably conditioned on the provided costs, leading to higher reward and accuracy. Moreover, our procedure also generalizes to numerical cost values that were unobserved at training time.
☆ Fare Comparison App of Uber, Ola and Rapido
In todays increasing world, it is very important to have good hailing services like Ola, Uber, and Rapido as it is very essential for our daily transportation. Users often face difficulties in choosing the most appropriate and efficient ride that would lead to both cost-effective and would take us to our destination in less time. This project provides you with the web application that helps you to select the most beneficial ride for you by providing users with the fare comparison between Ola, Uber, Rapido for the destination entered by the user. The backend is use to fetch the data, providing users with the fare comparison for the ride and finally providing with the best option using Python. This research paper also addresses the problem and challenges faced in accessing the data using APIs, Android Studios emulator, Appium and location comparison. Thus, the aim of the project is to provide transparency to the users in ride-hailing services and increase efficiency and provide users with better experience.
comment: 4 pages
☆ Eval Factsheets: A Structured Framework for Documenting AI Evaluations
The rapid proliferation of benchmarks has created significant challenges in reproducibility, transparency, and informed decision-making. However, unlike datasets and models -- which benefit from structured documentation frameworks like Datasheets and Model Cards -- evaluation methodologies lack systematic documentation standards. We introduce Eval Factsheets, a structured, descriptive framework for documenting AI system evaluations through a comprehensive taxonomy and questionnaire-based approach. Our framework organizes evaluation characteristics across five fundamental dimensions: Context (Who made the evaluation and when?), Scope (What does it evaluate?), Structure (With what the evaluation is built?), Method (How does it work?) and Alignment (In what ways is it reliable/valid/robust?). We implement this taxonomy as a practical questionnaire spanning five sections with mandatory and recommended documentation elements. Through case studies on multiple benchmarks, we demonstrate that Eval Factsheets effectively captures diverse evaluation paradigms -- from traditional benchmarks to LLM-as-judge methodologies -- while maintaining consistency and comparability. We hope Eval Factsheets are incorporated into both existing and newly released evaluation frameworks and lead to more transparency and reproducibility.
☆ Closing the problem of which causal structures of up to six total nodes have a classical-quantum gap
The discovery of Bell that there exist quantum correlations that cannot be reproduced classically is one of the most important in the foundations of quantum mechanics, as well as having practical implications. Bell's result was originally proven in a simple bipartite causal structure, but analogous results have also been shown in further causal structures. Here we study the only causal structure with six or fewer nodes in which the question of whether or not there exist quantum correlations that cannot be achieved classically was open. In this causal structure we show that such quantum correlations exist using a method that involves imposing additional restrictions on the correlations. This hence completes the picture of which causal structures of up to six nodes support non-classical quantum correlations. We also provide further illustrations of our method using other causal structures.
comment: 5 pages, 3 figures, 1 table
☆ Convergence for Discrete Parameter Updates NeurIPS
Modern deep learning models require immense computational resources, motivating research into low-precision training. Quantised training addresses this by representing training components in low-bit integers, but typically relies on discretising real-valued updates. We introduce an alternative approach where the update rule itself is discrete, avoiding the quantisation of continuous updates by design. We establish convergence guarantees for a general class of such discrete schemes, and present a multinomial update rule as a concrete example, supported by empirical evaluation. This perspective opens new avenues for efficient training, particularly for models with inherently discrete structure.
comment: opt-ml 2025 workshop at NeurIPS
☆ MarkTune: Improving the Quality-Detectability Trade-off in Open-Weight LLM Watermarking
Watermarking aims to embed hidden signals in generated text that can be reliably detected when given access to a secret key. Open-weight language models pose acute challenges for such watermarking schemes because the inference-time interventions that dominate contemporary approaches cannot be enforced once model weights are public. Existing watermaking techniques for open-weight models, such as the recently proposed GaussMark, typically rely on small modifications to model weights, which can yield signals detectable to those equipped with a secret key, but achieving detection power comparable to inference-time watermarks generally requires weight perturbations that noticeably reduce generation quality. We introduce MarkTune, a theoretically principled, on-policy fine-tuning framework that treats the GaussMark signal as a reward while simultaneously regularizing against degradation in text quality. We derive MarkTune as an improvement on GaussMark and demonstrate that MarkTune consistently improves the quality-detectability trade-off over GaussMark by steering finer-grained, watermark-aware weight updates within the model's representation space while preserving generation quality. Empirically, we show that MarkTune pushes the quality-detectability frontier of GaussMark close to that of inference-time watermarking, remains robust to paraphrasing and fine-tuning attacks, and exhibits strong generalization: a model fine-tuned on one dataset retains substantial watermark detection power on unseen datasets. Together, these results establish MarkTune as a general strategy for embedding robust, high-quality watermarks into open-weight LMs.
☆ Fast & Efficient Normalizing Flows and Applications of Image Generative Models
This thesis presents novel contributions in two primary areas: advancing the efficiency of generative models, particularly normalizing flows, and applying generative models to solve real-world computer vision challenges. The first part introduce significant improvements to normalizing flow architectures through six key innovations: 1) Development of invertible 3x3 Convolution layers with mathematically proven necessary and sufficient conditions for invertibility, (2) introduction of a more efficient Quad-coupling layer, 3) Design of a fast and efficient parallel inversion algorithm for kxk convolutional layers, 4) Fast & efficient backpropagation algorithm for inverse of convolution, 5) Using inverse of convolution, in Inverse-Flow, for the forward pass and training it using proposed backpropagation algorithm, and 6) Affine-StableSR, a compact and efficient super-resolution model that leverages pre-trained weights and Normalizing Flow layers to reduce parameter count while maintaining performance. The second part: 1) An automated quality assessment system for agricultural produce using Conditional GANs to address class imbalance, data scarcity and annotation challenges, achieving good accuracy in seed purity testing; 2) An unsupervised geological mapping framework utilizing stacked autoencoders for dimensionality reduction, showing improved feature extraction compared to conventional methods; 3) We proposed a privacy preserving method for autonomous driving datasets using on face detection and image inpainting; 4) Utilizing Stable Diffusion based image inpainting for replacing the detected face and license plate to advancing privacy-preserving techniques and ethical considerations in the field.; and 5) An adapted diffusion model for art restoration that effectively handles multiple types of degradation through unified fine-tuning.
comment: PhD Thesis
☆ Domain Feature Collapse: Implications for Out-of-Distribution Detection and Solutions
Why do state-of-the-art OOD detection methods exhibit catastrophic failure when models are trained on single-domain datasets? We provide the first theoretical explanation for this phenomenon through the lens of information theory. We prove that supervised learning on single-domain data inevitably produces domain feature collapse -- representations where I(x_d; z) = 0, meaning domain-specific information is completely discarded. This is a fundamental consequence of information bottleneck optimization: models trained on single domains (e.g., medical images) learn to rely solely on class-specific features while discarding domain features, leading to catastrophic failure when detecting out-of-domain samples (e.g., achieving only 53% FPR@95 on MNIST). We extend our analysis using Fano's inequality to quantify partial collapse in practical scenarios. To validate our theory, we introduce Domain Bench, a benchmark of single-domain datasets, and demonstrate that preserving I(x_d; z) > 0 through domain filtering (using pretrained representations) resolves the failure mode. While domain filtering itself is conceptually straightforward, its effectiveness provides strong empirical evidence for our information-theoretic framework. Our work explains a puzzling empirical phenomenon, reveals fundamental limitations of supervised learning in narrow domains, and has broader implications for transfer learning and when to fine-tune versus freeze pretrained models.
☆ PSA: Pyramid Sparse Attention for Efficient Video Understanding and Generation
Attention mechanisms are the core of foundation models, but their quadratic complexity remains a critical bottleneck for scaling. This challenge has driven the development of efficient attention mechanisms, with sparsity emerging as the dominant paradigm. Current methods typically retain or discard entire key-value blocks with binary masks, resulting in substantial information loss under high sparsity. To mitigate this gap, we present Pyramid Sparse Attention (PSA), a versatile module applicable to both video understanding and generation tasks. Instead of binary masking, PSA introduces multi-level pooled KV representations, enabling finer mask granularity. Specifically, each query block dynamically allocates lower pooling levels to critical KV blocks and higher levels to less important ones, creating an informative interpolation between full retention and complete pruning. This design, analogous to fixed-point quantization and classical feature pyramid networks in computer vision, effectively mitigates information loss while preserving computational efficiency under a low compute budget. It works with a native, hardware-friendly kernel that leverages decoupled block-tile design to ensure efficient execution. Across video understanding and generation benchmarks, PSA preserves contextual information and visual fidelity, consistently outperforming or achieving comparable performance over existing sparse attention baselines with superior efficiency-quality trade-offs. Our code and model weights are publicly available at: http://ziplab.co/PSA
comment: Tech report
☆ Efficient Public Verification of Private ML via Regularization
Training with differential privacy (DP) provides a guarantee to members in a dataset that they cannot be identified by users of the released model. However, those data providers, and, in general, the public, lack methods to efficiently verify that models trained on their data satisfy DP guarantees. The amount of compute needed to verify DP guarantees for current algorithms scales with the amount of compute required to train the model. In this paper we design the first DP algorithm with near optimal privacy-utility trade-offs but whose DP guarantees can be verified cheaper than training. We focus on DP stochastic convex optimization (DP-SCO), where optimal privacy-utility trade-offs are known. Here we show we can obtain tight privacy-utility trade-offs by privately minimizing a series of regularized objectives and only using the standard DP composition bound. Crucially, this method can be verified with much less compute than training. This leads to the first known DP-SCO algorithm with near optimal privacy-utility whose DP verification scales better than training cost, significantly reducing verification costs on large datasets.
☆ Diagonalizing the Softmax: Hadamard Initialization for Tractable Cross-Entropy Dynamics
Cross-entropy (CE) training loss dominates deep learning practice, yet existing theory often relies on simplifications, either replacing it with squared loss or restricting to convex models, that miss essential behavior. CE and squared loss generate fundamentally different dynamics, and convex linear models cannot capture the complexities of non-convex optimization. We provide an in-depth characterization of multi-class CE optimization dynamics beyond the convex regime by analyzing a canonical two-layer linear neural network with standard-basis vectors as inputs: the simplest non-convex extension for which the implicit bias remained unknown. This model coincides with the unconstrained features model used to study neural collapse, making our work the first to prove that gradient flow on CE converges to the neural collapse geometry. We construct an explicit Lyapunov function that establishes global convergence, despite the presence of spurious critical points in the non-convex landscape. A key insight underlying our analysis is an inconspicuous finding: Hadamard Initialization diagonalizes the softmax operator, freezing the singular vectors of the weight matrices and reducing the dynamics entirely to their singular values. This technique opens a pathway for analyzing CE training dynamics well beyond our specific setting considered here.
☆ Physics-Embedded Gaussian Process for Traffic State Estimation
Traffic state estimation (TSE) becomes challenging when probe-vehicle penetration is low and observations are spatially sparse. Pure data-driven methods lack physical explanations and have poor generalization when observed data is sparse. In contrast, physical models have difficulty integrating uncertainties and capturing the real complexity of traffic. To bridge this gap, recent studies have explored combining them by embedding physical structure into Gaussian process. These approaches typically introduce the governing equations as soft constraints through pseudo-observations, enabling the integration of model structure within a variational framework. However, these methods rely heavily on penalty tuning and lack principled uncertainty calibration, which makes them sensitive to model mis-specification. In this work, we address these limitations by presenting a novel Physics-Embedded Gaussian Process (PEGP), designed to integrate domain knowledge with data-driven methods in traffic state estimation. Specifically, we design two multi-output kernels informed by classic traffic flow models, constructed via the explicit application of the linearized differential operator. Experiments on HighD, NGSIM show consistent improvements over non-physics baselines. PEGP-ARZ proves more reliable under sparse observation, while PEGP-LWR achieves lower errors with denser observation. Ablation study further reveals that PEGP-ARZ residuals align closely with physics and yield calibrated, interpretable uncertainty, whereas PEGP-LWR residuals are more orthogonal and produce nearly constant variance fields. This PEGP framework combines physical priors, uncertainty quantification, which can provide reliable support for TSE.
☆ Divide, then Ground: Adapting Frame Selection to Query Types for Long-Form Video Understanding
The application of Large Multimodal Models (LMMs) to long-form video understanding is constrained by limited context lengths and the computationally prohibitive cost of processing dense video tokens. Consequently, recent research has focused on query-aware frame selection, methods that often incur significant computational overhead. This paper challenges the assumption that such complex search mechanisms are universally necessary. We first identify and validate a query typology distinguishing between global query and localized query. We demonstrate that while uniform sampling is both effective and efficient for global queries, localized queries indeed necessitate query-aware selection for optimal performance. Building on this insight, we propose DIG, a training-free frame selection framework that adapts its strategy based on the query type. Specifically,DIG employs efficient uniform sampling for global queries while activating a specialized pipeline to extract query-relevant frames for localized queries. Experiments on three long-form video understanding benchmarks demonstrate that DIG consistently outperforms existing baselines and robustly improves LMM performance, even when scaling the input frame count to 256.
☆ Training-Free Policy Violation Detection via Activation-Space Whitening in LLMs AAAI 2026
Aligning proprietary large language models (LLMs) with internal organizational policies has become an urgent priority as organizations increasingly deploy LLMs in sensitive domains such as legal support, finance, and medical services. Beyond generic safety filters, enterprises require reliable mechanisms to detect policy violations within their regulatory and operational frameworks, where breaches can trigger legal and reputational risks. Existing content moderation frameworks, such as guardrails, remain largely confined to the safety domain and lack the robustness to capture nuanced organizational policies. LLM-as-a-judge and fine-tuning approaches, though flexible, introduce significant latency and lack interpretability. To address these limitations, we propose a training-free and efficient method that treats policy violation detection as an out-of-distribution (OOD) detection problem. Inspired by whitening techniques, we apply a linear transformation to decorrelate the model's hidden activations and standardize them to zero mean and unit variance, yielding near-identity covariance matrix. In this transformed space, we use the Euclidean norm as a compliance score to detect policy violations. The method requires only the policy text and a small number of illustrative samples, which makes it light-weight and easily deployable. On a challenging policy benchmark, our approach achieves state-of-the-art results, surpassing both existing guardrails and fine-tuned reasoning models. This work provides organizations with a practical and statistically grounded framework for policy-aware oversight of LLMs, advancing the broader goal of deployable AI governance. Code is available at: https://tinyurl.com/policy-violation-detection
comment: Accepted to the AAAI 2026 Deployable AI (DAI) Workshop
☆ Refining Machine Learning Potentials through Thermodynamic Theory of Phase Transitions
Foundational Machine Learning Potentials can resolve the accuracy and transferability limitations of classical force fields. They enable microscopic insights into material behavior through Molecular Dynamics simulations, which can crucially expedite material design and discovery. However, insufficiently broad and systematically biased reference data affect the predictive quality of the learned models. Often, these models exhibit significant deviations from experimentally observed phase transition temperatures, in the order of several hundred kelvins. Thus, fine-tuning is necessary to achieve adequate accuracy in many practical problems. This work proposes a fine-tuning strategy via top-down learning, directly correcting the wrongly predicted transition temperatures to match the experimental reference data. Our approach leverages the Differentiable Trajectory Reweighting algorithm to minimize the free energy differences between phases at the experimental target pressures and temperatures. We demonstrate that our approach can accurately correct the phase diagram of pure Titanium in a pressure range of up to 5 GPa, matching the experimental reference within tenths of kelvins and improving the liquid-state diffusion constant. Our approach is model-agnostic, applicable to multi-component systems with solid-solid and solid-liquid transitions, and compliant with top-down training on other experimental properties. Therefore, our approach can serve as an essential step towards highly accurate application-specific and foundational machine learning potentials.
☆ Guided Flow Policy: Learning from High-Value Actions in Offline Reinforcement Learning
Offline reinforcement learning often relies on behavior regularization that enforces policies to remain close to the dataset distribution. However, such approaches fail to distinguish between high-value and low-value actions in their regularization components. We introduce Guided Flow Policy (GFP), which couples a multi-step flow-matching policy with a distilled one-step actor. The actor directs the flow policy through weighted behavior cloning to focus on cloning high-value actions from the dataset rather than indiscriminately imitating all state-action pairs. In turn, the flow policy constrains the actor to remain aligned with the dataset's best transitions while maximizing the critic. This mutual guidance enables GFP to achieve state-of-the-art performance across 144 state and pixel-based tasks from the OGBench, Minari, and D4RL benchmarks, with substantial gains on suboptimal datasets and challenging tasks. Webpage: https://simple-robotics.github.io/publications/guided-flow-policy/
☆ Technical Report on Text Dataset Distillation
In the vision domain, dataset distillation arises as a technique to condense a large dataset into a smaller synthetic one that exhibits a similar result in the training process. While image data presents an extensive literature of distillation methods, text dataset distillation has fewer works in comparison. Text dataset distillation initially grew as an adaptation of efforts from the vision universe, as the particularities of the modality became clear obstacles, it rose into a separate branch of research. Several milestones mark the development of this area, such as the introduction of methods that use transformer models, the generation of discrete synthetic text, and the scaling to decoder-only models with over 1B parameters. Despite major advances in modern approaches, the field remains in a maturing phase, with room for improvement on benchmarking standardization, approaches to overcome the discrete nature of text, handling complex tasks, and providing explicit examples of real-world applications. In this report, we review past and recent advances in dataset distillation for text, highlighting different distillation strategies, key contributions, and general challenges.
☆ Tada-DIP: Input-adaptive Deep Image Prior for One-shot 3D Image Reconstruction
Deep Image Prior (DIP) has recently emerged as a promising one-shot neural-network based image reconstruction method. However, DIP has seen limited application to 3D image reconstruction problems. In this work, we introduce Tada-DIP, a highly effective and fully 3D DIP method for solving 3D inverse problems. By combining input-adaptation and denoising regularization, Tada-DIP produces high-quality 3D reconstructions while avoiding the overfitting phenomenon that is common in DIP. Experiments on sparse-view X-ray computed tomography reconstruction validate the effectiveness of the proposed method, demonstrating that Tada-DIP produces much better reconstructions than training-data-free baselines and achieves reconstruction performance on par with a supervised network trained using a large dataset with fully-sampled volumes.
comment: 6 pages, 8 figures, 2025 Asilomar Conference on Signals, Systems, and Computers. Code is available at github.com/evanbell02/Tada-DIP/
☆ Density-Informed VAE (DiVAE): Reliable Log-Prior Probability via Density Alignment Regularization
We introduce Density-Informed VAE (DiVAE), a lightweight, data-driven regularizer that aligns the VAE log-prior probability $\log p_Z(z)$ with a log-density estimated from data. Standard VAEs match latents to a simple prior, overlooking density structure in the data-space. DiVAE encourages the encoder to allocate posterior mass in proportion to data-space density and, when the prior is learnable, nudges the prior toward high-density regions. This is realized by adding a robust, precision-weighted penalty to the ELBO, incurring negligible computational overhead. On synthetic datasets, DiVAE (i) improves distributional alignment of latent log-densities to its ground truth counterpart, (ii) improves prior coverage, and (iii) yields better OOD uncertainty calibration. On MNIST, DiVAE improves alignment of the prior with external estimates of the density, providing better interpretability, and improves OOD detection for learnable priors.
comment: PriGM Workshop EurIPS 2025
☆ Quantum-Classical Physics-Informed Neural Networks for Solving Reservoir Seepage Equations
Solving partial differential equations (PDEs) for reservoir seepage is critical for optimizing oil and gas field development and predicting production performance. Traditional numerical methods suffer from mesh-dependent errors and high computational costs, while classical Physics-Informed Neural Networks (PINNs) face bottlenecks in parameter efficiency, high-dimensional expression, and strong nonlinear fitting. To address these limitations, we propose a Discrete Variable (DV)-Circuit Quantum-Classical Physics-Informed Neural Network (QCPINN) and apply it to three typical reservoir seepage models for the first time: the pressure diffusion equation for heterogeneous single-phase flow, the nonlinear Buckley-Leverett (BL) equation for two-phase waterflooding, and the convection-diffusion equation for compositional flow considering adsorption. The QCPINN integrates classical preprocessing/postprocessing networks with a DV quantum core, leveraging quantum superposition and entanglement to enhance high-dimensional feature mapping while embedding physical constraints to ensure solution consistency. We test three quantum circuit topologies (Cascade, Cross-mesh, Alternate) and demonstrate through numerical experiments that QCPINNs achieve high prediction accuracy with fewer parameters than classical PINNs. Specifically, the Alternate topology outperforms others in heterogeneous single-phase flow and two-phase BL equation simulations, while the Cascade topology excels in compositional flow with convection-dispersion-adsorption coupling. Our work verifies the feasibility of QCPINN for reservoir engineering applications, bridging the gap between quantum computing research and industrial practice in oil and gas engineering.
☆ A Theoretical Framework for Auxiliary-Loss-Free Load Balancing of Sparse Mixture-of-Experts in Large-Scale AI Models
In large-scale AI training, Sparse Mixture-of-Experts (s-MoE) layers enable scaling by activating only a small subset of experts per token. An operational challenge in this design is load balancing: routing tokens to minimize the number of idle experts, which is important for the efficient utilization of (costly) GPUs. We provide a theoretical framework for analyzing the Auxiliary-Loss-Free Load Balancing (ALF-LB) procedure -- proposed by DeepSeek's Wang et al. (2024) -- by casting it as a one-step-per-iteration primal-dual method for an assignment problem. First, in a stylized deterministic setting, our framework yields several insightful structural properties: (i) a monotonic improvement of a Lagrangian objective, (ii) a preference rule that moves tokens from overloaded to underloaded experts, and (iii) an approximate-balancing guarantee. Then, we incorporate the stochastic and dynamic nature of AI training using a generalized online optimization formulation. In the online setting, we derive a strong convexity property of the objective that leads to a logarithmic expected regret bound under certain step-size choices. Additionally, we present real experiments on 1B-parameter DeepSeekMoE models to complement our theoretical findings. Together, these results build a principled framework for analyzing the Auxiliary-Loss-Free Load Balancing of s-MoE in AI models.
☆ Autonomous Reinforcement Learning Robot Control with Intel's Loihi 2 Neuromorphic Hardware
We present an end-to-end pipeline for deploying reinforcement learning (RL) trained Artificial Neural Networks (ANNs) on neuromorphic hardware by converting them into spiking Sigma-Delta Neural Networks (SDNNs). We demonstrate that an ANN policy trained entirely in simulation can be transformed into an SDNN compatible with Intel's Loihi 2 architecture, enabling low-latency and energy-efficient inference. As a test case, we use an RL policy for controlling the Astrobee free-flying robot, similar to a previously hardware in space-validated controller. The policy, trained with Rectified Linear Units (ReLUs), is converted to an SDNN and deployed on Intel's Loihi 2, then evaluated in NVIDIA's Omniverse Isaac Lab simulation environment for closed-loop control of Astrobee's motion. We compare execution performance between GPU and Loihi 2. The results highlight the feasibility of using neuromorphic platforms for robotic control and establish a pathway toward energy-efficient, real-time neuromorphic computation in future space and terrestrial robotics applications.
comment: Submitted for review at NICE 2026 (Neuro-Inspired Computational Elements) conference
☆ Probabilistic Foundations of Fuzzy Simplicial Sets for Nonlinear Dimensionality Reduction
Fuzzy simplicial sets have become an object of interest in dimensionality reduction and manifold learning, most prominently through their role in UMAP. However, their definition through tools from algebraic topology without a clear probabilistic interpretation detaches them from commonly used theoretical frameworks in those areas. In this work we introduce a framework that explains fuzzy simplicial sets as marginals of probability measures on simplicial sets. In particular, this perspective shows that the fuzzy weights of UMAP arise from a generative model that samples Vietoris-Rips filtrations at random scales, yielding cumulative distribution functions of pairwise distances. More generally, the framework connects fuzzy simplicial sets to probabilistic models on the face poset, clarifies the relation between Kullback-Leibler divergence and fuzzy cross-entropy in this setting, and recovers standard t-norms and t-conorms via Boolean operations on the underlying simplicial sets. We then show how new embedding methods may be derived from this framework and illustrate this on an example where we generalize UMAP using Čech filtrations with triplet sampling. In summary, this probabilistic viewpoint provides a unified probabilistic theoretical foundation for fuzzy simplicial sets, clarifies the role of UMAP within this framework, and enables the systematic derivation of new dimensionality reduction methods.
comment: 47 pages (including appendix), 11 figures
☆ Digital Twin-based Control Co-Design of Full Vehicle Active Suspensions via Deep Reinforcement Learning
Active suspension systems are critical for enhancing vehicle comfort, safety, and stability, yet their performance is often limited by fixed hardware designs and control strategies that cannot adapt to uncertain and dynamic operating conditions. Recent advances in digital twins (DTs) and deep reinforcement learning (DRL) offer new opportunities for real-time, data-driven optimization across a vehicle's lifecycle. However, integrating these technologies into a unified framework remains an open challenge. This work presents a DT-based control co-design (CCD) framework for full-vehicle active suspensions using multi-generation design concepts. By integrating automatic differentiation into DRL, we jointly optimize physical suspension components and control policies under varying driver behaviors and environmental uncertainties. DRL also addresses the challenge of partial observability, where only limited states can be sensed and fed back to the controller, by learning optimal control actions directly from available sensor information. The framework incorporates model updating with quantile learning to capture data uncertainty, enabling real-time decision-making and adaptive learning from digital-physical interactions. The approach demonstrates personalized optimization of suspension systems under two distinct driving settings (mild and aggressive). Results show that the optimized systems achieve smoother trajectories and reduce control efforts by approximately 43% and 52% for mild and aggressive, respectively, while maintaining ride comfort and stability. Contributions include: developing a DT-enabled CCD framework integrating DRL and uncertainty-aware model updating for full-vehicle active suspensions, introducing a multi-generation design strategy for self-improving systems, and demonstrating personalized optimization of active suspension systems for distinct driver types.
comment: 28 pages, 17 figures
☆ Automatic Attack Discovery for Few-Shot Class-Incremental Learning via Large Language Models
Few-shot class incremental learning (FSCIL) is a more realistic and challenging paradigm in continual learning to incrementally learn unseen classes and overcome catastrophic forgetting on base classes with only a few training examples. Previous efforts have primarily centered around studying more effective FSCIL approaches. By contrast, less attention was devoted to thinking the security issues in contributing to FSCIL. This paper aims to provide a holistic study of the impact of attacks on FSCIL. We first derive insights by systematically exploring how human expert-designed attack methods (i.e., PGD, FGSM) affect FSCIL. We find that those methods either fail to attack base classes, or suffer from huge labor costs due to relying on huge expert knowledge. This highlights the need to craft a specialized attack method for FSCIL. Grounded in these insights, in this paper, we propose a simple yet effective ACraft method to automatically steer and discover optimal attack methods targeted at FSCIL by leveraging Large Language Models (LLMs) without human experts. Moreover, to improve the reasoning between LLMs and FSCIL, we introduce a novel Proximal Policy Optimization (PPO) based reinforcement learning to optimize learning, making LLMs generate better attack methods in the next generation by establishing positive feedback. Experiments on mainstream benchmarks show that our ACraft significantly degrades the performance of state-of-the-art FSCIL methods and dramatically beyond human expert-designed attack methods while maintaining the lowest costs of attack.
☆ OmniDexVLG: Learning Dexterous Grasp Generation from Vision Language Model-Guided Grasp Semantics, Taxonomy and Functional Affordance
Dexterous grasp generation aims to produce grasp poses that align with task requirements and human interpretable grasp semantics. However, achieving semantically controllable dexterous grasp synthesis remains highly challenging due to the lack of unified modeling of multiple semantic dimensions, including grasp taxonomy, contact semantics, and functional affordance. To address these limitations, we present OmniDexVLG, a multimodal, semantics aware grasp generation framework capable of producing structurally diverse and semantically coherent dexterous grasps under joint language and visual guidance. Our approach begins with OmniDexDataGen, a semantic rich dexterous grasp dataset generation pipeline that integrates grasp taxonomy guided configuration sampling, functional affordance contact point sampling, taxonomy aware differential force closure grasp sampling, and physics based optimization and validation, enabling systematic coverage of diverse grasp types. We further introduce OmniDexReasoner, a multimodal grasp type semantic reasoning module that leverages multi agent collaboration, retrieval augmented generation, and chain of thought reasoning to infer grasp related semantics and generate high quality annotations that align language instructions with task specific grasp intent. Building upon these components, we develop a unified Vision Language Grasping generation model that explicitly incorporates grasp taxonomy, contact structure, and functional affordance semantics, enabling fine grained control over grasp synthesis from natural language instructions. Extensive experiments in simulation and real world object grasping and ablation studies demonstrate that our method substantially outperforms state of the art approaches in terms of grasp diversity, contact semantic diversity, functional affordance diversity, and semantic consistency.
comment: Project Website: https://sites.google.com/view/omnidexvlg, 16 pages
☆ Hyperdimensional Computing for Sustainable Manufacturing: An Initial Assessment
Smart manufacturing can significantly improve efficiency and reduce energy consumption, yet the energy demands of AI models may offset these gains. This study utilizes in-situ sensing-based prediction of geometric quality in smart machining to compare the energy consumption, accuracy, and speed of common AI models. HyperDimensional Computing (HDC) is introduced as an alternative, achieving accuracy comparable to conventional models while drastically reducing energy consumption, 200$\times$ for training and 175 to 1000$\times$ for inference. Furthermore, HDC reduces training times by 200$\times$ and inference times by 300 to 600$\times$, showcasing its potential for energy-efficient smart manufacturing.
☆ Scalable Decision Focused Learning via Online Trainable Surrogates
Decision support systems often rely on solving complex optimization problems that may require to estimate uncertain parameters beforehand. Recent studies have shown how using traditionally trained estimators for this task can lead to suboptimal solutions. Using the actual decision cost as a loss function (called Decision Focused Learning) can address this issue, but with a severe loss of scalability at training time. To address this issue, we propose an acceleration method based on replacing costly loss function evaluations with an efficient surrogate. Unlike previously defined surrogates, our approach relies on unbiased estimators reducing the risk of spurious local optima and can provide information on its local confidence allowing one to switch to a fallback method when needed. Furthermore, the surrogate is designed for a black-box setting, which enables compensating for simplifications in the optimization model and account- ing for recourse actions during cost computation. In our results, the method reduces costly inner solver calls, with a solution quality comparable to other state-of-the-art techniques.
☆ Comparison of neural network training strategies for the simulation of dynamical systems
Neural networks have become a widely adopted tool for modeling nonlinear dynamical systems from data. However, the choice of training strategy remains a key design decision, particularly for simulation tasks. This paper compares two predominant strategies: parallel and series-parallel training. The conducted empirical analysis spans five neural network architectures and two examples: a pneumatic valve test bench and an industrial robot benchmark. The study reveals that, even though series-parallel training dominates current practice, parallel training consistently yields better long-term prediction accuracy. Additionally, this work clarifies the often inconsistent terminology in the literature and relate both strategies to concepts from system identification. The findings suggest that parallel training should be considered the default training strategy for neural network-based simulation of dynamical systems.
comment: submitted to ECC
☆ DVPO: Distributional Value Modeling-based Policy Optimization for LLM Post-Training
Reinforcement learning (RL) has shown strong performance in LLM post-training, but real-world deployment often involves noisy or incomplete supervision. In such settings, complex and unreliable supervision signals can destabilize training and harm generalization. While existing approaches such as worst-case optimization (e.g., RFQI, CQL) and mean-based methods (e.g., PPO, GRPO) can improve stability, they often overlook generalization and may produce overly conservative policies, leading to uneven performance across diverse real scenarios. To this end, we introduce DVPO (Distributional Value Modeling with Risk-aware Policy Optimization), a new RL framework that combines conditional risk theory with distributional value modeling to better balance robustness and generalization. DVPO learns token-level value distributions to provide fine-grained supervision, and applies an asymmetric risk regularization to shape the distribution tails: it contracts the lower tail to dampen noisy negative deviations, while expanding the upper tail to preserve exploratory diversity. Across extensive experiments and analysis in multi-turn dialogue, math reasoning, and scientific QA, DVPO consistently outperforms PPO, GRPO, and robust Bellman-based PPO under noisy supervision, showing its potential for LLM post-training in the real-world.
☆ Transmit Weights, Not Features: Orthogonal-Basis Aided Wireless Point-Cloud Transmission
The widespread adoption of depth sensors has substantially lowered the barrier to point-cloud acquisition. This letter proposes a semantic wireless transmission framework for three dimension (3D) point clouds built on Deep Joint Source - Channel Coding (DeepJSCC). Instead of sending raw features, the transmitter predicts combination weights over a receiver-side semantic orthogonal feature pool, enabling compact representations and robust reconstruction. A folding-based decoder deforms a 2D grid into 3D, enforcing manifold continuity while preserving geometric fidelity. Trained with Chamfer Distance (CD) and an orthogonality regularizer, the system is evaluated on ModelNet40 across varying Signal-to-Noise Ratios (SNRs) and bandwidths. Results show performance on par with SEmantic Point cloud Transmission (SEPT) at high bandwidth and clear gains in bandwidth-constrained regimes, with consistent improvements in both Peak Signal-to-Noise Ratio (PSNR) and CD. Ablation experiments confirm the benefits of orthogonalization and the folding prior.
comment: 5 pages, 5 figures
☆ HieroGlyphTranslator: Automatic Recognition and Translation of Egyptian Hieroglyphs to English
Egyptian hieroglyphs, the ancient Egyptian writing system, are composed entirely of drawings. Translating these glyphs into English poses various challenges, including the fact that a single glyph can have multiple meanings. Deep learning translation applications are evolving rapidly, producing remarkable results that significantly impact our lives. In this research, we propose a method for the automatic recognition and translation of ancient Egyptian hieroglyphs from images to English. This study utilized two datasets for classification and translation: the Morris Franken dataset and the EgyptianTranslation dataset. Our approach is divided into three stages: segmentation (using Contour and Detectron2), mapping symbols to Gardiner codes, and translation (using the CNN model). The model achieved a BLEU score of 42.2, a significant result compared to previous research.
☆ Log Probability Tracking of LLM APIs
When using an LLM through an API provider, users expect the served model to remain consistent over time, a property crucial for the reliability of downstream applications and the reproducibility of research. Existing audit methods are too costly to apply at regular time intervals to the wide range of available LLM APIs. This means that model updates are left largely unmonitored in practice. In this work, we show that while LLM log probabilities (logprobs) are usually non-deterministic, they can still be used as the basis for cost-effective continuous monitoring of LLM APIs. We apply a simple statistical test based on the average value of each token logprob, requesting only a single token of output. This is enough to detect changes as small as one step of fine-tuning, making this approach more sensitive than existing methods while being 1,000x cheaper. We introduce the TinyChange benchmark as a way to measure the sensitivity of audit methods in the context of small, realistic model changes.
☆ Deep Reinforcement Learning for Dynamic Algorithm Configuration: A Case Study on Optimizing OneMax with the (1+($λ$,$λ$))-GA
Dynamic Algorithm Configuration (DAC) studies the efficient identification of control policies for parameterized optimization algorithms. Numerous studies have leveraged the robustness of decision-making in Reinforcement Learning (RL) to address the optimization challenges in algorithm configuration. However, applying RL to DAC is challenging and often requires extensive domain expertise. We conduct a comprehensive study of deep-RL algorithms in DAC through a systematic analysis of controlling the population size parameter of the (1+($λ$,$λ$))-GA on OneMax instances. Our investigation of DDQN and PPO reveals two fundamental challenges that limit their effectiveness in DAC: scalability degradation and learning instability. We trace these issues to two primary causes: under-exploration and planning horizon coverage, each of which can be effectively addressed through targeted solutions. To address under-exploration, we introduce an adaptive reward shifting mechanism that leverages reward distribution statistics to enhance DDQN agent exploration, eliminating the need for instance-specific hyperparameter tuning and ensuring consistent effectiveness across different problem scales. In dealing with the planning horizon coverage problem, we demonstrate that undiscounted learning effectively resolves it in DDQN, while PPO faces fundamental variance issues that necessitate alternative algorithmic designs. We further analyze the hyperparameter dependencies of PPO, showing that while hyperparameter optimization enhances learning stability, it consistently falls short in identifying effective policies across various configurations. Finally, we demonstrate that DDQN equipped with our adaptive reward shifting strategy achieves performance comparable to theoretically derived policies with vastly improved sample efficiency, outperforming prior DAC approaches by several orders of magnitude.
comment: arXiv admin note: text overlap with arXiv:2502.20265
☆ EfficientECG: Cross-Attention with Feature Fusion for Efficient Electrocardiogram Classification
Electrocardiogram is a useful diagnostic signal that can detect cardiac abnormalities by measuring the electrical activity generated by the heart. Due to its rapid, non-invasive, and richly informative characteristics, ECG has many emerging applications. In this paper, we study novel deep learning technologies to effectively manage and analyse ECG data, with the aim of building a diagnostic model, accurately and quickly, that can substantially reduce the burden on medical workers. Unlike the existing ECG models that exhibit a high misdiagnosis rate, our deep learning approaches can automatically extract the features of ECG data through end-to-end training. Specifically, we first devise EfficientECG, an accurate and lightweight classification model for ECG analysis based on the existing EfficientNet model, which can effectively handle high-frequency long-sequence ECG data with various leading types. On top of that, we next propose a cross-attention-based feature fusion model of EfficientECG for analysing multi-lead ECG data with multiple features (e.g., gender and age). Our evaluations on representative ECG datasets validate the superiority of our model against state-of-the-art works in terms of high precision, multi-feature fusion, and lightweights.
☆ AdaptVision: Efficient Vision-Language Models via Adaptive Visual Acquisition
Vision-Language Models (VLMs) have achieved remarkable success in visual question answering tasks, but their reliance on large numbers of visual tokens introduces significant computational overhead. While existing efficient VLM approaches reduce visual tokens through fixed-ratio compression, they operate passively and lack the ability to adapt to varying task requirements. This motivates a fundamental question: Can VLMs autonomously determine the minimum number of visual tokens required for each sample? Inspired by human active vision mechanisms, we introduce AdaptVision, an efficient VLM paradigm that enables adaptive visual token acquisition through a coarse-to-fine approach. Our model initially processes compressed visual tokens from low-resolution images and selectively acquires additional visual information by invoking a bounding box tool to crop key regions when necessary. We train AdaptVision using a reinforcement learning framework that carefully balances accuracy and efficiency. Central to our approach is Decoupled Turn Policy Optimization (DTPO), which decouples the learning objective into two components: (1) tool learning, which optimizes correct tool utilization, and (2) accuracy improvement, which refines the generated responses to improve answer correctness. Based on this formulation, we further decouple advantage estimation by computing separate advantages for tokens associated with each objective. This formulation enables more effective optimization for AdaptVision compared to vanilla GRPO. Comprehensive experiments across multiple VQA benchmarks demonstrate that AdaptVision achieves superior performance while consuming substantially fewer visual tokens than state-of-the-art efficient VLM methods.
comment: 15 pages, 9 figures
☆ Adaptive Identification and Modeling of Clinical Pathways with Process Mining
Clinical pathways are specialized healthcare plans that model patient treatment procedures. They are developed to provide criteria-based progression and standardize patient treatment, thereby improving care, reducing resource use, and accelerating patient recovery. However, manual modeling of these pathways based on clinical guidelines and domain expertise is difficult and may not reflect the actual best practices for different variations or combinations of diseases. We propose a two-phase modeling method using process mining, which extends the knowledge base of clinical pathways by leveraging conformance checking diagnostics. In the first phase, historical data of a given disease is collected to capture treatment in the form of a process model. In the second phase, new data is compared against the reference model to verify conformance. Based on the conformance checking results, the knowledge base can be expanded with more specific models tailored to new variants or disease combinations. We demonstrate our approach using Synthea, a benchmark dataset simulating patient treatments for SARS-CoV-2 infections with varying COVID-19 complications. The results show that our method enables expanding the knowledge base of clinical pathways with sufficient precision, peaking to 95.62% AUC while maintaining an arc-degree simplicity of 67.11%.
comment: Accepted to the 41st ACM/SIGAPP Symposium On Applied Computing (ACM SAC 2026)
☆ Forensic Activity Classification Using Digital Traces from iPhones: A Machine Learning-based Approach
Smartphones and smartwatches are ever-present in daily life, and provide a rich source of information on their users' behaviour. In particular, digital traces derived from the phone's embedded movement sensors present an opportunity for a forensic investigator to gain insight into a person's physical activities. In this work, we present a machine learning-based approach to translate digital traces into likelihood ratios (LRs) for different types of physical activities. Evaluating on a new dataset, NFI\_FARED, which contains digital traces from four different types of iPhones labelled with 19 activities, it was found that our approach could produce useful LR systems to distinguish 167 out of a possible 171 activity pairings. The same approach was extended to analyse likelihoods for multiple activities (or groups of activities) simultaneously and create activity timelines to aid in both the early and latter stages of forensic investigations. The dataset and all code required to replicate the results have also been made public to encourage further research on this topic.
☆ In-Context Representation Hijacking
We introduce \textbf{Doublespeak}, a simple \emph{in-context representation hijacking} attack against large language models (LLMs). The attack works by systematically replacing a harmful keyword (e.g., \textit{bomb}) with a benign token (e.g., \textit{carrot}) across multiple in-context examples, provided a prefix to a harmful request. We demonstrate that this substitution leads to the internal representation of the benign token converging toward that of the harmful one, effectively embedding the harmful semantics under a euphemism. As a result, superficially innocuous prompts (e.g., ``How to build a carrot?'') are internally interpreted as disallowed instructions (e.g., ``How to build a bomb?''), thereby bypassing the model's safety alignment. We use interpretability tools to show that this semantic overwrite emerges layer by layer, with benign meanings in early layers converging into harmful semantics in later ones. Doublespeak is optimization-free, broadly transferable across model families, and achieves strong success rates on closed-source and open-source systems, reaching 74\% ASR on Llama-3.3-70B-Instruct with a single-sentence context override. Our findings highlight a new attack surface in the latent space of LLMs, revealing that current alignment strategies are insufficient and should instead operate at the representation level.
☆ Deep Unfolding: Recent Developments, Theory, and Design Guidelines
Optimization methods play a central role in signal processing, serving as the mathematical foundation for inference, estimation, and control. While classical iterative optimization algorithms provide interpretability and theoretical guarantees, they often rely on surrogate objectives, require careful hyperparameter tuning, and exhibit substantial computational latency. Conversely, machine learning (ML ) offers powerful data-driven modeling capabilities but lacks the structure, transparency, and efficiency needed for optimization-driven inference. Deep unfolding has recently emerged as a compelling framework that bridges these two paradigms by systematically transforming iterative optimization algorithms into structured, trainable ML architectures. This article provides a tutorial-style overview of deep unfolding, presenting a unified perspective of methodologies for converting optimization solvers into ML models and highlighting their conceptual, theoretical, and practical implications. We review the foundations of optimization for inference and for learning, introduce four representative design paradigms for deep unfolding, and discuss the distinctive training schemes that arise from their iterative nature. Furthermore, we survey recent theoretical advances that establish convergence and generalization guarantees for unfolded optimizers, and provide comparative qualitative and empirical studies illustrating their relative trade-offs in complexity, interpretability, and robustness.
comment: under review for publication in the IEEE
☆ Principled RL for Diffusion LLMs Emerges from a Sequence-Level Perspective
Reinforcement Learning (RL) has proven highly effective for autoregressive language models, but adapting these methods to diffusion large language models (dLLMs) presents fundamental challenges. The core difficulty lies in likelihood approximation: while autoregressive models naturally provide token-level conditional probabilities essential for token-level RL objectives (e.g., GRPO), dLLMs generate sequences through iterative non-autoregressive denoising steps that lack this factorization. To address this fundamental mismatch, we propose ELBO-based Sequence-level Policy Optimization (ESPO), a principled RL framework that treats entire sequence generation as a single action and uses the ELBO as a tractable sequence-level likelihood proxy. Our method incorporates per-token normalization of importance ratios and robust KL-divergence estimation to ensure stable large-scale training. Extensive experiments on mathematical reasoning, coding, and planning tasks demonstrate that ESPO significantly outperforms token-level baselines, achieving dramatic improvements of 20-40 points on the Countdown task, while maintaining consistent gains on math and coding benchmarks. Our approach establishes sequence-level optimization as a principled and empirically effective paradigm for RL in dLLMs. Our code is available at https://github.com/ML-GSAI/ESPO.
☆ Origin-Conditional Trajectory Encoding: Measuring Urban Configurational Asymmetries through Neural Decomposition
Urban analytics increasingly relies on AI-driven trajectory analysis, yet current approaches suffer from methodological fragmentation: trajectory learning captures movement patterns but ignores spatial context, while spatial embedding methods encode street networks but miss temporal dynamics. Three gaps persist: (1) lack of joint training that integrates spatial and temporal representations, (2) origin-agnostic treatment that ignores directional asymmetries in navigation ($A \to B \ne B \to A$), and (3) over-reliance on auxiliary data (POIs, imagery) rather than fundamental geometric properties of urban space. We introduce a conditional trajectory encoder that jointly learns spatial and movement representations while preserving origin-dependent asymmetries using geometric features. This framework decomposes urban navigation into shared cognitive patterns and origin-specific spatial narratives, enabling quantitative measurement of cognitive asymmetries across starting locations. Our bidirectional LSTM processes visibility ratio and curvature features conditioned on learnable origin embeddings, decomposing representations into shared urban patterns and origin-specific signatures through contrastive learning. Results from six synthetic cities and real-world validation on Beijing's Xicheng District demonstrate that urban morphology creates systematic cognitive inequalities. This provides urban planners quantitative tools for assessing experiential equity, offers architects insights into layout decisions' cognitive impacts, and enables origin-aware analytics for navigation systems.
☆ Universally Converging Representations of Matter Across Scientific Foundation Models NeurIPS 2025
Machine learning models of vastly different modalities and architectures are being trained to predict the behavior of molecules, materials, and proteins. However, it remains unclear whether they learn similar internal representations of matter. Understanding their latent structure is essential for building scientific foundation models that generalize reliably beyond their training domains. Although representational convergence has been observed in language and vision, its counterpart in the sciences has not been systematically explored. Here, we show that representations learned by nearly sixty scientific models, spanning string-, graph-, 3D atomistic, and protein-based modalities, are highly aligned across a wide range of chemical systems. Models trained on different datasets have highly similar representations of small molecules, and machine learning interatomic potentials converge in representation space as they improve in performance, suggesting that foundation models learn a common underlying representation of physical reality. We then show two distinct regimes of scientific models: on inputs similar to those seen during training, high-performing models align closely and weak models diverge into local sub-optima in representation space; on vastly different structures from those seen during training, nearly all models collapse onto a low-information representation, indicating that today's models remain limited by training data and inductive bias and do not yet encode truly universal structure. Our findings establish representational alignment as a quantitative benchmark for foundation-level generality in scientific models. More broadly, our work can track the emergence of universal representations of matter as models scale, and for selecting and distilling models whose learned representations transfer best across modalities, domains of matter, and scientific tasks.
comment: Oral spotlight at NeurIPS 2025 UniReps Workshop
☆ Unlocking the Invisible Urban Traffic Dynamics under Extreme Weather: A New Physics-Constrained Hamiltonian Learning Algorithm
Urban transportation systems face increasing resilience challenges from extreme weather events, but current assessment methods rely on surface-level recovery indicators that miss hidden structural damage. Existing approaches cannot distinguish between true recovery and "false recovery," where traffic metrics normalize, but the underlying system dynamics permanently degrade. To address this, a new physics-constrained Hamiltonian learning algorithm combining "structural irreversibility detection" and "energy landscape reconstruction" has been developed. Our approach extracts low-dimensional state representations, identifies quasi-Hamiltonian structures through physics-constrained optimization, and quantifies structural changes via energy landscape comparison. Analysis of London's extreme rainfall in 2021 demonstrates that while surface indicators were fully recovered, our algorithm detected 64.8\% structural damage missed by traditional monitoring. Our framework provides tools for proactive structural risk assessment, enabling infrastructure investments based on true system health rather than misleading surface metrics.
☆ Cross-embodied Co-design for Dexterous Hands
Dexterous manipulation is limited by both control and design, without consensus as to what makes manipulators best for performing dexterous tasks. This raises a fundamental challenge: how should we design and control robot manipulators that are optimized for dexterity? We present a co-design framework that learns task-specific hand morphology and complementary dexterous control policies. The framework supports 1) an expansive morphology search space including joint, finger, and palm generation, 2) scalable evaluation across the wide design space via morphology-conditioned cross-embodied control, and 3) real-world fabrication with accessible components. We evaluate the approach across multiple dexterous tasks, including in-hand rotation with simulation and real deployment. Our framework enables an end-to-end pipeline that can design, train, fabricate, and deploy a new robotic hand in under 24 hours. The full framework will be open-sourced and available on our website.
☆ Crossing the Sim2Real Gap Between Simulation and Ground Testing to Space Deployment of Autonomous Free-flyer Control
Reinforcement learning (RL) offers transformative potential for robotic control in space. We present the first on-orbit demonstration of RL-based autonomous control of a free-flying robot, the NASA Astrobee, aboard the International Space Station (ISS). Using NVIDIA's Omniverse physics simulator and curriculum learning, we trained a deep neural network to replace Astrobee's standard attitude and translation control, enabling it to navigate in microgravity. Our results validate a novel training pipeline that bridges the simulation-to-reality (Sim2Real) gap, utilizing a GPU-accelerated, scientific-grade simulation environment for efficient Monte Carlo RL training. This successful deployment demonstrates the feasibility of training RL policies terrestrially and transferring them to space-based applications. This paves the way for future work in In-Space Servicing, Assembly, and Manufacturing (ISAM), enabling rapid on-orbit adaptation to dynamic mission requirements.
comment: published at iSpaRo 2025
☆ Autonomous Planning In-space Assembly Reinforcement-learning free-flYer (APIARY) International Space Station Astrobee Testing
The US Naval Research Laboratory's (NRL's) Autonomous Planning In-space Assembly Reinforcement-learning free-flYer (APIARY) experiment pioneers the use of reinforcement learning (RL) for control of free-flying robots in the zero-gravity (zero-G) environment of space. On Tuesday, May 27th 2025 the APIARY team conducted the first ever, to our knowledge, RL control of a free-flyer in space using the NASA Astrobee robot on-board the International Space Station (ISS). A robust 6-degrees of freedom (DOF) control policy was trained using an actor-critic Proximal Policy Optimization (PPO) network within the NVIDIA Isaac Lab simulation environment, randomizing over goal poses and mass distributions to enhance robustness. This paper details the simulation testing, ground testing, and flight validation of this experiment. This on-orbit demonstration validates the transformative potential of RL for improving robotic autonomy, enabling rapid development and deployment (in minutes to hours) of tailored behaviors for space exploration, logistics, and real-time mission needs.
comment: iSpaRo 2025, Best Paper Award in Orbital Robotics
☆ Colored Markov Random Fields for Probabilistic Topological Modeling
Probabilistic Graphical Models (PGMs) encode conditional dependencies among random variables using a graph -nodes for variables, links for dependencies- and factorize the joint distribution into lower-dimensional components. This makes PGMs well-suited for analyzing complex systems and supporting decision-making. Recent advances in topological signal processing highlight the importance of variables defined on topological spaces in several application domains. In such cases, the underlying topology shapes statistical relationships, limiting the expressiveness of canonical PGMs. To overcome this limitation, we introduce Colored Markov Random Fields (CMRFs), which model both conditional and marginal dependencies among Gaussian edge variables on topological spaces, with a theoretical foundation in Hodge theory. CMRFs extend classical Gaussian Markov Random Fields by including link coloring: connectivity encodes conditional independence, while color encodes marginal independence. We quantify the benefits of CMRFs through a distributed estimation case study over a physical network, comparing it with baselines with different levels of topological prior.
comment: Proceeding of 2025 Asilomar Conference on Signals, Systems, and Computers
☆ Over-the-Air Federated Learning: Rethinking Edge AI Through Signal Processing
Over-the-Air Federated Learning (AirFL) is an emerging paradigm that tightly integrates wireless signal processing and distributed machine learning to enable scalable AI at the network edge. By leveraging the superposition property of wireless signals, AirFL performs communication and model aggregation of the learning process simultaneously, significantly reducing latency, bandwidth, and energy consumption. This article offers a tutorial treatment of AirFL, presenting a novel classification into three design approaches: CSIT-aware, blind, and weighted AirFL. We provide a comprehensive guide to theoretical foundations, performance analysis, complexity considerations, practical limitations, and prospective research directions.
☆ Consistent Projection of Langevin Dynamics: Preserving Thermodynamics and Kinetics in Coarse-Grained Models
Coarse graining (CG) is an important task for efficient modeling and simulation of complex multi-scale systems, such as the conformational dynamics of biomolecules. This work presents a projection-based coarse-graining formalism for general underdamped Langevin dynamics. Following the Zwanzig projection approach, we derive a closed-form expression for the coarse grained dynamics. In addition, we show how the generator Extended Dynamic Mode Decomposition (gEDMD) method, which was developed in the context of Koopman operator methods, can be used to model the CG dynamics and evaluate its kinetic properties, such as transition timescales. Finally, we combine our approach with thermodynamic interpolation (TI), a generative approach to transform samples between thermodynamic conditions, to extend the scope of the approach across thermodynamic states without repeated numerical simulations. Using a two-dimensional model system, we demonstrate that the proposed method allows to accurately capture the thermodynamic and kinetic properties of the full-space model.
☆ Quantum Topological Graph Neural Networks for Detecting Complex Fraud Patterns
We propose a novel QTGNN framework for detecting fraudulent transactions in large-scale financial networks. By integrating quantum embedding, variational graph convolutions, and topological data analysis, QTGNN captures complex transaction dynamics and structural anomalies indicative of fraud. The methodology includes quantum data embedding with entanglement enhancement, variational quantum graph convolutions with non-linear dynamics, extraction of higher-order topological invariants, hybrid quantum-classical anomaly learning with adaptive optimization, and interpretable decision-making via topological attribution. Rigorous convergence guarantees ensure stable training on noisy intermediate-scale quantum (NISQ) devices, while stability of topological signatures provides robust fraud detection. Optimized for NISQ hardware with circuit simplifications and graph sampling, the framework scales to large transaction networks. Simulations on financial datasets, such as PaySim and Elliptic, benchmark QTGNN against classical and quantum baselines, using metrics like ROC-AUC, precision, and false positive rate. An ablation study evaluates the contributions of quantum embeddings, topological features, non-linear channels, and hybrid learning. QTGNN offers a theoretically sound, interpretable, and practical solution for financial fraud detection, bridging quantum machine learning, graph theory, and topological analysis.
☆ Feature-aware Modulation for Learning from Temporal Tabular Data NeurIPS 2025
While tabular machine learning has achieved remarkable success, temporal distribution shifts pose significant challenges in real-world deployment, as the relationships between features and labels continuously evolve. Static models assume fixed mappings to ensure generalization, whereas adaptive models may overfit to transient patterns, creating a dilemma between robustness and adaptability. In this paper, we analyze key factors essential for constructing an effective dynamic mapping for temporal tabular data. We discover that evolving feature semantics-particularly objective and subjective meanings-introduce concept drift over time. Crucially, we identify that feature transformation strategies are able to mitigate discrepancies in feature representations across temporal stages. Motivated by these insights, we propose a feature-aware temporal modulation mechanism that conditions feature representations on temporal context, modulating statistical properties such as scale and skewness. By aligning feature semantics across time, our approach achieves a lightweight yet powerful adaptation, effectively balancing generalizability and adaptability. Benchmark evaluations validate the effectiveness of our method in handling temporal shifts in tabular data.
comment: 17 pages, 6 figures, 8 tables. NeurIPS 2025
☆ Dynamically Scaled Activation Steering
Activation steering has emerged as a powerful method for guiding the behavior of generative models towards desired outcomes such as toxicity mitigation. However, most existing methods apply interventions uniformly across all inputs, degrading model performance when steering is unnecessary. We introduce Dynamically Scaled Activation Steering (DSAS), a method-agnostic steering framework that decouples when to steer from how to steer. DSAS adaptively modulates the strength of existing steering transformations across layers and inputs, intervening strongly only when undesired behavior is detected. At generation time, DSAS computes context-dependent scaling factors that selectively adjust the strength of any steering method. We also show how DSAS can be jointly optimized end-to-end together with the steering function. When combined with existing steering methods, DSAS consistently improves the Pareto front with respect to steering alone, achieving a better trade-off between toxicity mitigation and utility preservation. We further demonstrate DSAS's generality by applying it to a text-to-image diffusion model, showing how adaptive steering allows the modulation of specific concepts. Finally, DSAS introduces minimal computational overhead while improving interpretability, pinpointing which tokens require steering and by how much.
☆ Cyclical Temporal Encoding and Hybrid Deep Ensembles for Multistep Energy Forecasting
Accurate electricity consumption forecasting is essential for demand management and smart grid operations. This paper introduces a unified deep learning framework that integrates cyclical temporal encoding with hybrid LSTM-CNN architectures to enhance multistep energy forecasting. We systematically transform calendar-based attributes using sine cosine encodings to preserve periodic structure and evaluate their predictive relevance through correlation analysis. To exploit both long-term seasonal effects and short-term local patterns, we employ an ensemble model composed of an LSTM, a CNN, and a meta-learner of MLP regressors specialized for each forecast horizon. Using a one year national consumption dataset, we conduct an extensive experimental study including ablation analyses with and without cyclical encodings and calendar features and comparisons with established baselines from the literature. Results demonstrate consistent improvements across all seven forecast horizons, with our hybrid model achieving lower RMSE and MAE than individual architectures and prior methods. These findings confirm the benefit of combining cyclical temporal representations with complementary deep learning structures. To our knowledge, this is the first work to jointly evaluate temporal encodings, calendar-based features, and hybrid ensemble architectures within a unified short-term energy forecasting framework.
☆ Conditional updates of neural network weights for increased out of training performance
This study proposes a method to enhance neural network performance when training data and application data are not very similar, e.g., out of distribution problems, as well as pattern and regime shifts. The method consists of three main steps: 1) Retrain the neural network towards reasonable subsets of the training data set and note down the resulting weight anomalies. 2) Choose reasonable predictors and derive a regression between the predictors and the weight anomalies. 3) Extrapolate the weights, and thereby the neural network, to the application data. We show and discuss this method in three use cases from the climate sciences, which include successful temporal, spatial and cross-domain extrapolations of neural networks.
☆ Optical Context Compression Is Just (Bad) Autoencoding
DeepSeek-OCR demonstrates that rendered text can be reconstructed with high fidelity from a small number of vision tokens. This finding has sparked excitement about vision-based context compression for language models. But the evaluation stops at reconstruction; whether these representations help language modeling remains untested. We test two assumptions implicit in the optical-compression narrative: that vision-based compression provides unique advantages for text reconstruction from compressed representations, and that DeepSeek-OCR's reconstruction results are evidence that vision-based compression will be useful for language modeling. Comparing their vision encoder against simple alternatives--parameter-free mean pooling and a learned hierarchical encoder--we find that these simple approaches match or surpass vision for reconstruction at matched compression ratios, and outperform it for language modeling--where vision-based compression fails to beat truncation. The excitement around optical context compression outpaces the evidence. Code and checkpoints are available at https://github.com/ivnle/bad-autoencoding
☆ AaPE: Aliasing-aware Patch Embedding for Self-Supervised Audio Representation Learning
Transformer-based audio SSL (self-supervised learning) models often treat spectrograms as images, applying convolutional patchification with heavy temporal downsampling. This lowers the effective Nyquist frequency and introduces aliasing, while naïve low-pass filtering removes task-relevant high-frequency cues. In this study, we present Aliasing-aware Patch Embedding (AaPE), a drop-in patch stem that mitigates aliasing while preserving high-frequency information. AaPE augments standard patch tokens with features produced by a band-limited complex sinusoidal kernel using a two-sided exponential window that dynamically targets alias-prone bands. Frequency and decay parameters of the kernel are estimated from the input, enabling parallel, adaptive subband analysis whose outputs are fused with the standard patch tokens. AaPE integrates seamlessly into the masked teacher-student self-supervised learning. In addition, we combine a multi-mask strategy with a contrastive objective to enforce consistency across diverse mask patterns, stabilizing training. Pre-training on AudioSet followed by fine-tuning evaluation across diverse downstream benchmarks, which spanned categories, such as environmental sounds and other common audio domains. This approach yields state-of-the-art performance on a subset of tasks and competitive results across the remainder. Complementary linear probing evaluation mirrors this pattern, yielding clear gains on several benchmarks and strong performance elsewhere. The collective analysis of these results indicates that AaPE serves to mitigate the effects of aliasing without discarding of informative high-frequency content.
comment: 11 pages, 4 figures
☆ The promising potential of vision language models for the generation of textual weather forecasts
Despite the promising capability of multimodal foundation models, their application to the generation of meteorological products and services remains nascent. To accelerate aspiration and adoption, we explore the novel use of a vision language model for writing the iconic Shipping Forecast text directly from video-encoded gridded weather data. These early results demonstrate promising scalable technological opportunities for enhancing production efficiency and service innovation within the weather enterprise and beyond.
comment: 7 pages, 2 tables
☆ SELF: A Robust Singular Value and Eigenvalue Approach for LLM Fingerprinting
The protection of Intellectual Property (IP) in Large Language Models (LLMs) represents a critical challenge in contemporary AI research. While fingerprinting techniques have emerged as a fundamental mechanism for detecting unauthorized model usage, existing methods -- whether behavior-based or structural -- suffer from vulnerabilities such as false claim attacks or susceptible to weight manipulations. To overcome these limitations, we propose SELF, a novel intrinsic weight-based fingerprinting scheme that eliminates dependency on input and inherently resists false claims. SELF achieves robust IP protection through two key innovations: 1) unique, scalable and transformation-invariant fingerprint extraction via singular value and eigenvalue decomposition of LLM attention weights, and 2) effective neural network-based fingerprint similarity comparison based on few-shot learning and data augmentation. Experimental results demonstrate SELF maintains high IP infringement detection accuracy while showing strong robustness against various downstream modifications, including quantization, pruning, and fine-tuning attacks. Our code is available at https://github.com/HanxiuZhang/SELF_v2.
☆ CoGraM: Context-sensitive granular optimization method with rollback for robust model fusion
Merging neural networks without retraining is central to federated and distributed learning. Common methods such as weight averaging or Fisher merging often lose accuracy and are unstable across seeds. CoGraM (Contextual Granular Merging) is a multi-stage, context-sensitive, loss-based, and iterative optimization method across layers, neurons, and weight levels that aligns decisions with loss differences and thresholds and prevents harmful updates through rollback. CoGraM is an optimization method that addresses the weaknesses of methods such as Fisher and can significantly improve the merged network.
comment: 15 pages, 4 figures, 8 equations
☆ Observation-driven correction of numerical weather prediction for marine winds
Accurate marine wind forecasts are essential for safe navigation, ship routing, and energy operations, yet they remain challenging because observations over the ocean are sparse, heterogeneous, and temporally variable. We reformulate wind forecasting as observation-informed correction of a global numerical weather prediction (NWP) model. Rather than forecasting winds directly, we learn local correction patterns by assimilating the latest in-situ observations to adjust the Global Forecast System (GFS) output. We propose a transformer-based deep learning architecture that (i) handles irregular and time-varying observation sets through masking and set-based attention mechanisms, (ii) conditions predictions on recent observation-forecast pairs via cross-attention, and (iii) employs cyclical time embeddings and coordinate-aware location representations to enable single-pass inference at arbitrary spatial coordinates. We evaluate our model over the Atlantic Ocean using observations from the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) as reference. The model reduces GFS 10-meter wind RMSE at all lead times up to 48 hours, achieving 45% improvement at 1-hour lead time and 13% improvement at 48-hour lead time. Spatial analyses reveal the most persistent improvements along coastlines and shipping routes, where observations are most abundant. The tokenized architecture naturally accommodates heterogeneous observing platforms (ships, buoys, tide gauges, and coastal stations) and produces both site-specific predictions and basin-scale gridded products in a single forward pass. These results demonstrate a practical, low-latency post-processing approach that complements NWP by learning to correct systematic forecast errors.
☆ Federated Learning and Trajectory Compression for Enhanced AIS Coverage
This paper presents the VesselEdge system, which leverages federated learning and bandwidth-constrained trajectory compression to enhance maritime situational awareness by extending AIS coverage. VesselEdge transforms vessels into mobile sensors, enabling real-time anomaly detection and efficient data transmission over low-bandwidth connections. The system integrates the M3fed model for federated learning and the BWC-DR-A algorithm for trajectory compression, prioritizing anomalous data. Preliminary results demonstrate the effectiveness of VesselEdge in improving AIS coverage and situational awareness using historical data.
☆ Optimal Transportation and Alignment Between Gaussian Measures
Optimal transport (OT) and Gromov-Wasserstein (GW) alignment provide interpretable geometric frameworks for comparing, transforming, and aggregating heterogeneous datasets -- tasks ubiquitous in data science and machine learning. Because these frameworks are computationally expensive, large-scale applications often rely on closed-form solutions for Gaussian distributions under quadratic cost. This work provides a comprehensive treatment of Gaussian, quadratic cost OT and inner product GW (IGW) alignment, closing several gaps in the literature to broaden applicability. First, we treat the open problem of IGW alignment between uncentered Gaussians on separable Hilbert spaces by giving a closed-form expression up to a quadratic optimization over unitary operators, for which we derive tight analytic upper and lower bounds. If at least one Gaussian measure is centered, the solution reduces to a fully closed-form expression, which we further extend to an analytic solution for the IGW barycenter between centered Gaussians. We also present a reduction of Gaussian multimarginal OT with pairwise quadratic costs to a tractable optimization problem and provide an efficient algorithm to solve it using a rank-deficiency constraint. To demonstrate utility, we apply our results to knowledge distillation and heterogeneous clustering on synthetic and real-world datasets.
☆ When, How Long and How Much? Interpretable Neural Networks for Time Series Regression by Learning to Mask and Aggregate
Time series extrinsic regression (TSER) refers to the task of predicting a continuous target variable from an input time series. It appears in many domains, including healthcare, finance, environmental monitoring, and engineering. In these settings, accurate predictions and trustworthy reasoning are both essential. Although state-of-the-art TSER models achieve strong predictive performance, they typically operate as black boxes, making it difficult to understand which temporal patterns drive their decisions. Post-hoc interpretability techniques, such as feature attribution, aim to to explain how the model arrives at its predictions, but often produce coarse, noisy, or unstable explanations. Recently, inherently interpretable approaches based on concepts, additive decompositions, or symbolic regression, have emerged as promising alternatives. However, these approaches remain limited: they require explicit supervision on the concepts themselves, often cannot capture interactions between time-series features, lack expressiveness for complex temporal patterns, and struggle to scale to high-dimensional multivariate data. To address these limitations, we propose MAGNETS (Mask-and-AGgregate NEtwork for Time Series), an inherently interpretable neural architecture for TSER. MAGNETS learns a compact set of human-understandable concepts without requiring any annotations. Each concept corresponds to a learned, mask-based aggregation over selected input features, explicitly revealing both which features drive predictions and when they matter in the sequence. Predictions are formed as combinations of these learned concepts through a transparent, additive structure, enabling clear insight into the model's decision process.
comment: 12 pages, 5 figures, 4 tables
EnCompass: Enhancing Agent Programming with Search Over Program Execution Paths NeurIPS 2025
We introduce a new approach to agent programming, the development of LLM-based agents. Current approaches to agent programming often entangle two aspects of agent design: the core workflow logic and the inference-time strategy (e.g., tree search). We introduce "probabilistic angelic nondeterminism" ("PAN"), a programming model that disentangles these two concerns, allowing the programmer to describe the agent workflow and independently experiment with different inference-time strategies by simply changing a few inputs. We provide an implementation of PAN in Python as the EnCompass framework, which uses a Python decorator to compile agent workflow programs into a search space. We present three case studies that demonstrate how the framework lets the programmer quickly improve the reliability of an agent and easily switch between different inference-time strategies, all with little additional coding.
comment: 65 pages, 2 figures, published in NeurIPS 2025
☆ Machine Learning to Predict Slot Usage in TSCH Wireless Sensor Networks
Wireless sensor networks (WSNs) are employed across a wide range of industrial applications where ultra-low power consumption is a critical prerequisite. At the same time, these systems must maintain a certain level of determinism to ensure reliable and predictable operation. In this view, time slotted channel hopping (TSCH) is a communication technology that meets both conditions, making it an attractive option for its usage in industrial WSNs. This work proposes the use of machine learning to learn the traffic pattern generated in networks based on the TSCH protocol, in order to turn nodes into a deep sleep state when no transmission is planned and thus to improve the energy efficiency of the WSN. The ability of machine learning models to make good predictions at different network levels in a typical tree network topology was analyzed in depth, showing how their capabilities degrade while approaching the root of the tree. The application of these models on simulated data based on an accurate modeling of wireless sensor nodes indicates that the investigated algorithms can be suitably used to further and substantially reduce the power consumption of a TSCH network.
comment: preprint accepted, 8 pages, 2025
☆ Towards Irreversible Machine Unlearning for Diffusion Models
Diffusion models are renowned for their state-of-the-art performance in generating synthetic images. However, concerns related to safety, privacy, and copyright highlight the need for machine unlearning, which can make diffusion models forget specific training data and prevent the generation of sensitive or unwanted content. Current machine unlearning methods for diffusion models are primarily designed for conditional diffusion models and focus on unlearning specific data classes or features. Among these methods, finetuning-based machine unlearning methods are recognized for their efficiency and effectiveness, which update the parameters of pre-trained diffusion models by minimizing carefully designed loss functions. However, in this paper, we propose a novel attack named Diffusion Model Relearning Attack (DiMRA), which can reverse the finetuning-based machine unlearning methods, posing a significant vulnerability of this kind of technique. Without prior knowledge of the unlearning elements, DiMRA optimizes the unlearned diffusion model on an auxiliary dataset to reverse the unlearning, enabling the model to regenerate previously unlearned elements. To mitigate this vulnerability, we propose a novel machine unlearning method for diffusion models, termed as Diffusion Model Unlearning by Memorization (DiMUM). Unlike traditional methods that focus on forgetting, DiMUM memorizes alternative data or features to replace targeted unlearning data or features in order to prevent generating such elements. In our experiments, we demonstrate the effectiveness of DiMRA in reversing state-of-the-art finetuning-based machine unlearning methods for diffusion models, highlighting the need for more robust solutions. We extensively evaluate DiMUM, demonstrating its superior ability to preserve the generative performance of diffusion models while enhancing robustness against DiMRA.
☆ Parameter-Efficient Augment Plugin for Class-Incremental Learning
Existing class-incremental learning (CIL) approaches based on replay or knowledge distillation are often constrained by forgetting or the stability-plasticity dilemma. Some expansion-based approaches could achieve higher accuracy. However, they always require significant parameter increases. In this paper, we propose a plugin extension paradigm termed the Deployment of extra LoRA Components (DLC) for non-pre-trained CIL scenarios.We treat the feature extractor trained through replay or distillation as a base model with rich knowledge. For each task, we use Low-Rank Adaptation (LoRA) to inject task-specific residuals into the base model's deep layers. During inference, representations with task-specific residuals are aggregated to produce classification predictions. To mitigate interference from non-target LoRA plugins, we introduce a lightweight weighting unit. This unit learns to assign importance scores to different LoRA-tuned representations. Like downloadable contents in software, our method serves as a plug-and-play enhancement that efficiently extends the base methods. Remarkably, on the large-scale ImageNet-100, with merely 4 % of the parameters of a standard ResNet-18, our DLC model achieves a significant 8 % improvement in accuracy, demonstrating exceptional efficiency. Moreover, it could surpass state-of-the-art methods under the fixed memory budget.
comment: 10 pages, 6 figures, 2 tables
☆ Adaptive sampling using variational autoencoder and reinforcement learning
Compressed sensing enables sparse sampling but relies on generic bases and random measurements, limiting efficiency and reconstruction quality. Optimal sensor placement uses historcal data to design tailored sampling patterns, yet its fixed, linear bases cannot adapt to nonlinear or sample-specific variations. Generative model-based compressed sensing improves reconstruction using deep generative priors but still employs suboptimal random sampling. We propose an adaptive sparse sensing framework that couples a variational autoencoder prior with reinforcement learning to select measurements sequentially. Experiments show that this approach outperforms CS, OSP, and Generative model-based reconstruction from sparse measurements.
☆ Cross-Space Synergy: A Unified Framework for Multimodal Emotion Recognition in Conversation AAAI 2026
Multimodal Emotion Recognition in Conversation (MERC) aims to predict speakers' emotions by integrating textual, acoustic, and visual cues. Existing approaches either struggle to capture complex cross-modal interactions or experience gradient conflicts and unstable training when using deeper architectures. To address these issues, we propose Cross-Space Synergy (CSS), which couples a representation component with an optimization component. Synergistic Polynomial Fusion (SPF) serves the representation role, leveraging low-rank tensor factorization to efficiently capture high-order cross-modal interactions. Pareto Gradient Modulator (PGM) serves the optimization role, steering updates along Pareto-optimal directions across competing objectives to alleviate gradient conflicts and improve stability. Experiments show that CSS outperforms existing representative methods on IEMOCAP and MELD in both accuracy and training stability, demonstrating its effectiveness in complex multimodal scenarios.
comment: Accepted to AAAI 2026
☆ Physics-Driven Learning Framework for Tomographic Tactile Sensing
Electrical impedance tomography (EIT) provides an attractive solution for large-area tactile sensing due to its minimal wiring and shape flexibility, but its nonlinear inverse problem often leads to severe artifacts and inaccurate contact reconstruction. This work presents PhyDNN, a physics-driven deep reconstruction framework that embeds the EIT forward model directly into the learning objective. By jointly minimizing the discrepancy between predicted and ground-truth conductivity maps and enforcing consistency with the forward PDE, PhyDNN reduces the black-box nature of deep networks and improves both physical plausibility and generalization. To enable efficient backpropagation, we design a differentiable forward-operator network that accurately approximates the nonlinear EIT response, allowing fast physics-guided training. Extensive simulations and real tactile experiments on a 16-electrode soft sensor show that PhyDNN consistently outperforms NOSER, TV, and standard DNNs in reconstructing contact shape, location, and pressure distribution. PhyDNN yields fewer artifacts, sharper boundaries, and higher metric scores, demonstrating its effectiveness for high-quality tomographic tactile sensing.
comment: 7pages,7figures
☆ A Preliminary Study on the Promises and Challenges of Native Top-$k$ Sparse Attention
Large Language Models (LLMs) are increasingly prevalent in the field of long-context modeling, however, their inference computational costs have become a critical bottleneck hindering the advancement of tasks such as agents and multimodal applications. This report conducts a preliminary investigation into the effectiveness and theoretical mechanisms of the Top-$k$ Attention mechanism during both the decoding and training phases. First, we validate the effectiveness of exact Top-$k$ Decoding through extensive experimentation. Experiments demonstrate that retaining only the pivotal Keys with the highest similarity to the Query as the context window during the decoding stage achieves performance comparable to, or even surpassing, full attention on downstream tasks such as HELMET and LongBench v2. Second, we further explore the native Top-$k$ Attention training strategy. Experiments confirm that ensuring the consistency between training and inference regarding Top-$k$ Attention operations facilitates the further unlocking of Top-$k$ Decoding's potential, thereby significantly enhancing model performance. Furthermore, considering the high computational complexity of exact Top-$k$ Attention, we investigate the impact of approximate Top-$k$ algorithm precision on downstream tasks. Our research confirms a positive correlation between downstream task performance and approximation fidelity, and we provide statistical evaluations of the Lightning Indexer's precision within the DeepSeek-V3.2-Exp model. Finally, this report provides a theoretical interpretation from the perspective of Entropy. Experimental observations indicate that models subjected to Top-$k$ Attention SFT exhibit a distinct phenomenon of entropy reduction in downstream tasks, which validates the hypothesis that low-entropy states are better adapted to Top-$k$ Decoding.
☆ Modal Logical Neural Networks
We propose Modal Logical Neural Networks (MLNNs), a neurosymbolic framework that integrates deep learning with the formal semantics of modal logic, enabling reasoning about necessity and possibility. Drawing on Kripke semantics, we introduce specialized neurons for the modal operators $\Box$ and $\Diamond$ that operate over a set of possible worlds, enabling the framework to act as a differentiable ``logical guardrail.'' The architecture is highly flexible: the accessibility relation between worlds can either be fixed by the user to enforce known rules or, as an inductive feature, be parameterized by a neural network. This allows the model to optionally learn the relational structure of a logical system from data while simultaneously performing deductive reasoning within that structure. This versatile construction is designed for flexibility. The entire framework is differentiable from end to end, with learning driven by minimizing a logical contradiction loss. This not only makes the system resilient to inconsistent knowledge but also enables it to learn nonlinear relationships that can help define the logic of a problem space. We illustrate MLNNs on four case studies: grammatical guardrailing, axiomatic detection of the unknown, multi-agent epistemic trust, and detecting constructive deception in natural language negotiation. These experiments demonstrate how enforcing or learning accessibility can increase logical consistency and interpretability without changing the underlying task architecture.
comment: 27 pages, 10 figures, 7 tables
☆ Fairness-Aware Fine-Tuning of Vision-Language Models for Medical Glaucoma Diagnosis
Vision-language models achieve expert-level performance on medical imaging tasks but exhibit significant diagnostic accuracy disparities across demographic groups. We introduce fairness-aware Low-Rank Adaptation for medical VLMs, combining parameter efficiency with explicit fairness optimization. Our key algorithmic contribution is a differentiable MaxAccGap loss that enables end-to-end optimization of accuracy parity across demographic groups. We propose three methods: FR-LoRA integrates MaxAccGap regularization into the training objective, GR-LoRA applies inverse frequency weighting to balance gradient contributions, and Hybrid-LoRA combines both mechanisms.Evaluated on 10,000 glaucoma fundus images, GR-LoRA reduces diagnostic accuracy disparities by 69% while maintaining 53.15% overall accuracy. Ablation studies reveal that strong regularization strength achieves optimal fairness with minimal accuracy trade-off, and race-specific optimization yields 60% disparity reduction. Our approach requires only 0.24% trainable parameters, enabling practical deployment of fair medical AI in resource-constrained healthcare settings.
comment: 10 pages, 3 tables
☆ ATHENA: Agentic Team for Hierarchical Evolutionary Numerical Algorithms
Bridging the gap between theoretical conceptualization and computational implementation is a major bottleneck in Scientific Computing (SciC) and Scientific Machine Learning (SciML). We introduce ATHENA (Agentic Team for Hierarchical Evolutionary Numerical Algorithms), an agentic framework designed as an Autonomous Lab to manage the end-to-end computational research lifecycle. Its core is the HENA loop, a knowledge-driven diagnostic process framed as a Contextual Bandit problem. Acting as an online learner, the system analyzes prior trials to select structural `actions' ($A_n$) from combinatorial spaces guided by expert blueprints (e.g., Universal Approximation, Physics-Informed constraints). These actions are translated into executable code ($S_n$) to generate scientific rewards ($R_n$). ATHENA transcends standard automation: in SciC, it autonomously identifies mathematical symmetries for exact analytical solutions or derives stable numerical solvers where foundation models fail. In SciML, it performs deep diagnosis to tackle ill-posed formulations and combines hybrid symbolic-numeric workflows (e.g., coupling PINNs with FEM) to resolve multiphysics problems. The framework achieves super-human performance, reaching validation errors of $10^{-14}$. Furthermore, collaborative ``human-in-the-loop" intervention allows the system to bridge stability gaps, improving results by an order of magnitude. This paradigm shift focuses from implementation mechanics to methodological innovation, accelerating scientific discovery.
☆ Joint Progression Modeling (JPM): A Probabilistic Framework for Mixed-Pathology Progression ML4H
Event-based models (EBMs) infer disease progression from cross-sectional data, and standard EBMs assume a single underlying disease per individual. In contrast, mixed pathologies are common in neurodegeneration. We introduce the Joint Progression Model (JPM), a probabilistic framework that treats single-disease trajectories as partial rankings and builds a prior over joint progressions. We study several JPM variants (Pairwise, Bradley-Terry, Plackett-Luce, and Mallows) and analyze three properties: (i) calibration -- whether lower model energy predicts smaller distance to the ground truth ordering; (ii) separation -- the degree to which sampled rankings are distinguishable from random permutations; and (iii) sharpness -- the stability of sampled aggregate rankings. All variants are calibrated, and all achieve near-perfect separation; sharpness varies by variant and is well-predicted by simple features of the input partial rankings (number and length of rankings, conflict, and overlap). In synthetic experiments, JPM improves ordering accuracy by roughly 21 percent over a strong EBM baseline (SA-EBM) that treats the joint disease as a single condition. Finally, using NACC, we find that the Mallows variant of JPM and the baseline model (SA-EBM) have results that are more consistent with prior literature on the possible disease progression of the mixed pathology of AD and VaD.
comment: 49 pages; Machine Learning for Health (ML4H) Symposium 2025
☆ SweetDeep: A Wearable AI Solution for Real-Time Non-Invasive Diabetes Screening
The global rise in type 2 diabetes underscores the need for scalable and cost-effective screening methods. Current diagnosis requires biochemical assays, which are invasive and costly. Advances in consumer wearables have enabled early explorations of machine learning-based disease detection, but prior studies were limited to controlled settings. We present SweetDeep, a compact neural network trained on physiological and demographic data from 285 (diabetic and non-diabetic) participants in the EU and MENA regions, collected using Samsung Galaxy Watch 7 devices in free-living conditions over six days. Each participant contributed multiple 2-minute sensor recordings per day, totaling approximately 20 recordings per individual. Despite comprising fewer than 3,000 parameters, SweetDeep achieves 82.5% patient-level accuracy (82.1% macro-F1, 79.7% sensitivity, 84.6% specificity) under three-fold cross-validation, with an expected calibration error of 5.5%. Allowing the model to abstain on less than 10% of low-confidence patient predictions yields an accuracy of 84.5% on the remaining patients. These findings demonstrate that combining engineered features with lightweight architectures can support accurate, rapid, and generalizable detection of type 2 diabetes in real-world wearable settings.
comment: 12 pages, 6 figures. Submitted to the IEEE Journal of Biomedical and Health Informatics
☆ Bayesian Event-Based Model for Disease Subtype and Stage Inference
Chronic diseases often progress differently across patients. Rather than randomly varying, there are typically a small number of subtypes for how a disease progresses across patients. To capture this structured heterogeneity, the Subtype and Stage Inference Event-Based Model (SuStaIn) estimates the number of subtypes, the order of disease progression for each subtype, and assigns each patient to a subtype from primarily cross-sectional data. It has been widely applied to uncover the subtypes of many diseases and inform our understanding of them. But how robust is its performance? In this paper, we develop a principled Bayesian subtype variant of the event-based model (BEBMS) and compare its performance to SuStaIn in a variety of synthetic data experiments with varied levels of model misspecification. BEBMS substantially outperforms SuStaIn across ordering, staging, and subtype assignment tasks. Further, we apply BEBMS and SuStaIn to a real-world Alzheimer's data set. We find BEBMS has results that are more consistent with the scientific consensus of Alzheimer's disease progression than SuStaIn.
comment: 32 pages; machine learning for health symposium (2025); Proceedings of the 5th Machine Learning for Health Symposium in PMLR
☆ Multi-Modal Opinion Integration for Financial Sentiment Analysis using Cross-Modal Attention
In recent years, financial sentiment analysis of public opinion has become increasingly important for market forecasting and risk assessment. However, existing methods often struggle to effectively integrate diverse opinion modalities and capture fine-grained interactions across them. This paper proposes an end-to-end deep learning framework that integrates two distinct modalities of financial opinions: recency modality (timely opinions) and popularity modality (trending opinions), through a novel cross-modal attention mechanism specifically designed for financial sentiment analysis. While both modalities consist of textual data, they represent fundamentally different information channels: recency-driven market updates versus popularity-driven collective sentiment. Our model first uses BERT (Chinese-wwm-ext) for feature embedding and then employs our proposed Financial Multi-Head Cross-Attention (FMHCA) structure to facilitate information exchange between these distinct opinion modalities. The processed features are optimized through a transformer layer and fused using multimodal factored bilinear pooling for classification into negative, neutral, and positive sentiment. Extensive experiments on a comprehensive dataset covering 837 companies demonstrate that our approach achieves an accuracy of 83.5%, significantly outperforming baselines including BERT+Transformer by 21 percent. These results highlight the potential of our framework to support more accurate financial decision-making and risk management.
☆ Learning From Limited Data and Feedback for Cell Culture Process Monitoring: A Comparative Study
In cell culture bioprocessing, real-time batch process monitoring (BPM) refers to the continuous tracking and analysis of key process variables such as viable cell density, nutrient levels, metabolite concentrations, and product titer throughout the duration of a batch run. This enables early detection of deviations and supports timely control actions to ensure optimal cell growth and product quality. BPM plays a critical role in ensuring the quality and regulatory compliance of biopharmaceutical manufacturing processes. However, the development of accurate soft sensors for BPM is hindered by key challenges, including limited historical data, infrequent feedback, heterogeneous process conditions, and high-dimensional sensory inputs. This study presents a comprehensive benchmarking analysis of machine learning (ML) methods designed to address these challenges, with a focus on learning from historical data with limited volume and relevance in the context of bioprocess monitoring. We evaluate multiple ML approaches including feature dimensionality reduction, online learning, and just-in-time learning across three datasets, one in silico dataset and two real-world experimental datasets. Our findings highlight the importance of training strategies in handling limited data and feedback, with batch learning proving effective in homogeneous settings, while just-in-time learning and online learning demonstrate superior adaptability in cold-start scenarios. Additionally, we identify key meta-features, such as feed media composition and process control strategies, that significantly impact model transferability. The results also suggest that integrating Raman-based predictions with lagged offline measurements enhances monitoring accuracy, offering a promising direction for future bioprocess soft sensor development.
comment: This is a pre-print for submitting to computers & chemical engineering journal
☆ A Convolutional Framework for Mapping Imagined Auditory MEG into Listened Brain Responses
Decoding imagined speech engages complex neural processes that are difficult to interpret due to uncertainty in timing and the limited availability of imagined-response datasets. In this study, we present a Magnetoencephalography (MEG) dataset collected from trained musicians as they imagined and listened to musical and poetic stimuli. We show that both imagined and perceived brain responses contain consistent, condition-specific information. Using a sliding-window ridge regression model, we first mapped imagined responses to listened responses at the single-subject level, but found limited generalization across subjects. At the group level, we developed an encoder-decoder convolutional neural network with a subject-specific calibration layer that produced stable and generalizable mappings. The CNN consistently outperformed the null model, yielding significantly higher correlations between predicted and true listened responses for nearly all held-out subjects. Our findings demonstrate that imagined neural activity can be transformed into perception-like responses, providing a foundation for future brain-computer interface applications involving imagined speech and music.
☆ GalaxyDiT: Efficient Video Generation with Guidance Alignment and Adaptive Proxy in Diffusion Transformers
Diffusion models have revolutionized video generation, becoming essential tools in creative content generation and physical simulation. Transformer-based architectures (DiTs) and classifier-free guidance (CFG) are two cornerstones of this success, enabling strong prompt adherence and realistic video quality. Despite their versatility and superior performance, these models require intensive computation. Each video generation requires dozens of iterative steps, and CFG doubles the required compute. This inefficiency hinders broader adoption in downstream applications. We introduce GalaxyDiT, a training-free method to accelerate video generation with guidance alignment and systematic proxy selection for reuse metrics. Through rank-order correlation analysis, our technique identifies the optimal proxy for each video model, across model families and parameter scales, thereby ensuring optimal computational reuse. We achieve $1.87\times$ and $2.37\times$ speedup on Wan2.1-1.3B and Wan2.1-14B with only 0.97% and 0.72% drops on the VBench-2.0 benchmark. At high speedup rates, our approach maintains superior fidelity to the base model, exceeding prior state-of-the-art approaches by 5 to 10 dB in peak signal-to-noise ratio (PSNR).
☆ KeyPointDiffuser: Unsupervised 3D Keypoint Learning via Latent Diffusion Models
Understanding and representing the structure of 3D objects in an unsupervised manner remains a core challenge in computer vision and graphics. Most existing unsupervised keypoint methods are not designed for unconditional generative settings, restricting their use in modern 3D generative pipelines; our formulation explicitly bridges this gap. We present an unsupervised framework for learning spatially structured 3D keypoints from point cloud data. These keypoints serve as a compact and interpretable representation that conditions an Elucidated Diffusion Model (EDM) to reconstruct the full shape. The learned keypoints exhibit repeatable spatial structure across object instances and support smooth interpolation in keypoint space, indicating that they capture geometric variation. Our method achieves strong performance across diverse object categories, yielding a 6 percentage-point improvement in keypoint consistency compared to prior approaches.
☆ Grokked Models are Better Unlearners
Grokking-delayed generalization that emerges well after a model has fit the training data-has been linked to robustness and representation quality. We ask whether this training regime also helps with machine unlearning, i.e., removing the influence of specified data without full retraining. We compare applying standard unlearning methods before versus after the grokking transition across vision (CNNs/ResNets on CIFAR, SVHN, and ImageNet) and language (a transformer on a TOFU-style setup). Starting from grokked checkpoints consistently yields (i) more efficient forgetting (fewer updates to reach a target forget level), (ii) less collateral damage (smaller drops on retained and test performance), and (iii) more stable updates across seeds, relative to early-stopped counterparts under identical unlearning algorithms. Analyses of features and curvature further suggest that post-grokking models learn more modular representations with reduced gradient alignment between forget and retain subsets, which facilitates selective forgetting. Our results highlight when a model is trained (pre- vs. post-grokking) as an orthogonal lever to how unlearning is performed, providing a practical recipe to improve existing unlearning methods without altering their algorithms.
☆ GaussDetect-LiNGAM:Causal Direction Identification without Gaussianity test
We propose GaussDetect-LiNGAM, a novel approach for bivariate causal discovery that eliminates the need for explicit Gaussianity tests by leveraging a fundamental equivalence between noise Gaussianity and residual independence in the reverse regression. Under the standard LiNGAM assumptions of linearity, acyclicity, and exogeneity, we prove that the Gaussianity of the forward-model noise is equivalent to the independence between the regressor and residual in the reverse model. This theoretical insight allows us to replace fragile and sample-sensitive Gaussianity tests with robust kernel-based independence tests. Experimental results validate the equivalence and demonstrate that GaussDetect-LiNGAM maintains high consistency across diverse noise types and sample sizes, while reducing the number of tests per decision (TPD). Our method enhances both the efficiency and practical applicability of causal inference, making LiNGAM more accessible and reliable in real-world scenarios.
☆ Comparative algorithm performance evaluation and prediction for the maximum clique problem using instance space analysis
The maximum clique problem, a well-known graph-based combinatorial optimization problem, has been addressed through various algorithmic approaches, though systematic analyses of the problem instances remain sparse. This study employs the instance space analysis (ISA) methodology to systematically analyze the instance space of this problem and assess & predict the performance of state-of-the-art (SOTA) algorithms, including exact, heuristic, and graph neural network (GNN)-based methods. A dataset was compiled using graph instances from TWITTER, COLLAB and IMDB-BINARY benchmarks commonly used in graph machine learning research. A set of 33 generic and 2 problem-specific polynomial-time-computable graph-based features, including several spectral properties, was employed for the ISA. A composite performance mea- sure incorporating both solution quality and algorithm runtime was utilized. The comparative analysis demonstrated that the exact algorithm Mixed Order Maximum Clique (MOMC) exhib- ited superior performance across approximately 74.7% of the instance space constituted by the compiled dataset. Gurobi & CliSAT accounted for superior performance in 13.8% and 11% of the instance space, respectively. The ISA-based algorithm performance prediction model run on 34 challenging test instances compiled from the BHOSLIB and DIMACS datasets yielded top-1 and top-2 best performing algorithm prediction accuracies of 88% and 97%, respectively.
☆ Better World Models Can Lead to Better Post-Training Performance
In this work we study how explicit world-modeling objectives affect the internal representations and downstream capability of Transformers across different training stages. We use a controlled 2x2x2 Rubik's Cube and ask: (1) how does explicitly pretraining a world model affect the model's latent representations, and (2) how does world-model quality affect the model's performance after reinforcement learning post-training? We compare standard next-token prediction to two explicit world-modeling strategies -- (i) state-prediction pretraining and (ii) a joint state-prediction + next-token objective -- and assess task performance after Group Relative Policy Optimization (GRPO) is applied as post-training. We evaluate the representation quality with linear probes and causal interventions. We find that explicit world-modeling yields more linearly decodable and causally steerable state representations. More importantly, we find that improved state representations lead to higher gains for GRPO, especially on harder cube states. Our results indicate that sharpening state representations can improve the effectiveness of post-training for sequence-planning tasks.
☆ Full-Stack Alignment: Co-Aligning AI and Institutions with Thick Models of Value
Beneficial societal outcomes cannot be guaranteed by aligning individual AI systems with the intentions of their operators or users. Even an AI system that is perfectly aligned to the intentions of its operating organization can lead to bad outcomes if the goals of that organization are misaligned with those of other institutions and individuals. For this reason, we need full-stack alignment, the concurrent alignment of AI systems and the institutions that shape them with what people value. This can be done without imposing a particular vision of individual or collective flourishing. We argue that current approaches for representing values, such as utility functions, preference orderings, or unstructured text, struggle to address these and other issues effectively. They struggle to distinguish values from other signals, to support principled normative reasoning, and to model collective goods. We propose thick models of value will be needed. These structure the way values and norms are represented, enabling systems to distinguish enduring values from fleeting preferences, to model the social embedding of individual choices, and to reason normatively, applying values in new domains. We demonstrate this approach in five areas: AI value stewardship, normatively competent agents, win-win negotiation systems, meaning-preserving economic mechanisms, and democratic regulatory institutions.
☆ VS-Graph: Scalable and Efficient Graph Classification Using Hyperdimensional Computing
Graph classification is a fundamental task in domains ranging from molecular property prediction to materials design. While graph neural networks (GNNs) achieve strong performance by learning expressive representations via message passing, they incur high computational costs, limiting their scalability and deployment on resource-constrained devices. Hyperdimensional Computing (HDC), also known as Vector Symbolic Architectures (VSA), offers a lightweight, brain-inspired alternative, yet existing HDC-based graph methods typically struggle to match the predictive performance of GNNs. In this work, we propose VS-Graph, a vector-symbolic graph learning framework that narrows the gap between the efficiency of HDC and the expressive power of message passing. VS-Graph introduces a Spike Diffusion mechanism for topology-driven node identification and an Associative Message Passing scheme for multi-hop neighborhood aggregation entirely within the high-dimensional vector space. Without gradient-based optimization or backpropagation, our method achieves competitive accuracy with modern GNNs, outperforming the prior HDC baseline by 4-5% on standard benchmarks such as MUTAG and DD. It also matches or exceeds the performance of the GNN baselines on several datasets while accelerating the training by a factor of up to 450x. Furthermore, VS-Graph maintains high accuracy even with the hypervector dimensionality reduced to D=128, demonstrating robustness under aggressive dimension compression and paving the way for ultra-efficient execution on edge and neuromorphic hardware.
☆ Tuning-Free Structured Sparse Recovery of Multiple Measurement Vectors using Implicit Regularization
Recovering jointly sparse signals in the multiple measurement vectors (MMV) setting is a fundamental problem in machine learning, but traditional methods like multiple measurement vectors orthogonal matching pursuit (M-OMP) and multiple measurement vectors FOCal Underdetermined System Solver (M-FOCUSS) often require careful parameter tuning or prior knowledge of the sparsity of the signal and/or noise variance. We introduce a novel tuning-free framework that leverages Implicit Regularization (IR) from overparameterization to overcome this limitation. Our approach reparameterizes the estimation matrix into factors that decouple the shared row-support from individual vector entries. We show that the optimization dynamics inherently promote the desired row-sparse structure by applying gradient descent to a standard least-squares objective on these factors. We prove that with a sufficiently small and balanced initialization, the optimization dynamics exhibit a "momentum-like" effect, causing the norms of rows in the true support to grow significantly faster than others. This formally guarantees that the solution trajectory converges towards an idealized row-sparse solution. Additionally, empirical results demonstrate that our approach achieves performance comparable to established methods without requiring any prior information or tuning.
☆ UniQL: Unified Quantization and Low-rank Compression for Adaptive Edge LLMs
Deploying large language model (LLM) models on mobile platforms faces significant challenges due to the limited memory and shared computational resources of the device. Resource availability may be an issue as it is directly impacted by the current device workload, adding to the uncertainty of model deployment. We introduce UniQL, a unified post-training quantization and low-rank compression framework with on-device configurable pruning rates for edge LLMs. UniQL is a general framework that integrates quantization and low-rank compression for Transformers, State Space Models (SSMs), and hybrid models to support diverse edge applications. In our proposed joint framework, we introduce an efficient structured weight-sorting method that speeds up computation by 20x, quantization-aware singular value decomposition (SVD) to minimize quantization errors, state-aware weight sorting for SSMs, and a fused rotary positional embedding (RoPE) kernel for pruned models. Our framework performs weight-sorting, fine-tuning, and quantization in the cloud in a single-pass workflow, while enabling on-device configurable pruning rates up to 35%. Our experiments show that quantized and pruned models achieve a memory reduction of 4x-5.7x and a token-throughput improvement of 2.7x-3.4x, maintaining accuracy within 5% of the original models at 15% pruning across Transformers (Llama3 and Qwen2.5), SSMs (Mamba2), and hybrid models (Nemotron-H and Bamba-v2). The code and quantized models are available at: https://github.com/enyac-group/UniQL.
☆ MAGE-ID: A Multimodal Generative Framework for Intrusion Detection Systems
Modern Intrusion Detection Systems (IDS) face severe challenges due to heterogeneous network traffic, evolving cyber threats, and pronounced data imbalance between benign and attack flows. While generative models have shown promise in data augmentation, existing approaches are limited to single modalities and fail to capture cross-domain dependencies. This paper introduces MAGE-ID (Multimodal Attack Generator for Intrusion Detection), a diffusion-based generative framework that couples tabular flow features with their transformed images through a unified latent prior. By jointly training Transformer and CNN-based variational encoders with an EDM style denoiser, MAGE-ID achieves balanced and coherent multimodal synthesis. Evaluations on CIC-IDS-2017 and NSL-KDD demonstrate significant improvements in fidelity, diversity, and downstream detection performance over TabSyn and TabDDPM, highlighting the effectiveness of MAGE-ID for multimodal IDS augmentation.
☆ A2G-QFL: Adaptive Aggregation with Two Gains in Quantum Federated learning
Federated learning (FL) deployed over quantum enabled and heterogeneous classical networks faces significant performance degradation due to uneven client quality, stochastic teleportation fidelity, device instability, and geometric mismatch between local and global models. Classical aggregation rules assume euclidean topology and uniform communication reliability, limiting their suitability for emerging quantum federated systems. This paper introduces A2G (Adaptive Aggregation with Two Gains), a dual gain framework that jointly regulates geometric blending through a geometry gain and modulates client importance using a QoS gain derived from teleportation fidelity, latency, and instability. We develop the A2G update rule, establish convergence guarantees under smoothness and bounded variance assumptions, and show that A2G recovers FedAvg, QoS aware averaging, and manifold based aggregation as special cases. Experiments on a quantum classical hybrid testbed demonstrate improved stability and higher accuracy under heterogeneous and noisy conditions.
comment: 8 pages, 4 figures, QCNC 2026
☆ Breaking Determinism: Stochastic Modeling for Reliable Off-Policy Evaluation in Ad Auctions
Online A/B testing, the gold standard for evaluating new advertising policies, consumes substantial engineering resources and risks significant revenue loss from deploying underperforming variations. This motivates the use of Off-Policy Evaluation (OPE) for rapid, offline assessment. However, applying OPE to ad auctions is fundamentally more challenging than in domains like recommender systems, where stochastic policies are common. In online ad auctions, it is common for the highest-bidding ad to win the impression, resulting in a deterministic, winner-takes-all setting. This results in zero probability of exposure for non-winning ads, rendering standard OPE estimators inapplicable. We introduce the first principled framework for OPE in deterministic auctions by repurposing the bid landscape model to approximate the propensity score. This model allows us to derive robust approximate propensity scores, enabling the use of stable estimators like Self-Normalized Inverse Propensity Scoring (SNIPS) for counterfactual evaluation. We validate our approach on the AuctionNet simulation benchmark and against 2-weeks online A/B test from a large-scale industrial platform. Our method shows remarkable alignment with online results, achieving a 92\% Mean Directional Accuracy (MDA) in CTR prediction, significantly outperforming the parametric baseline. MDA is the most critical metric for guiding deployment decisions, as it reflects the ability to correctly predict whether a new model will improve or harm performance. This work contributes the first practical and validated framework for reliable OPE in deterministic auction environments, offering an efficient alternative to costly and risky online experiments.
☆ ProtoEFNet: Dynamic Prototype Learning for Inherently Interpretable Ejection Fraction Estimation in Echocardiography MICCAI 2025
Ejection fraction (EF) is a crucial metric for assessing cardiac function and diagnosing conditions such as heart failure. Traditionally, EF estimation requires manual tracing and domain expertise, making the process time-consuming and subject to interobserver variability. Most current deep learning methods for EF prediction are black-box models with limited transparency, which reduces clinical trust. Some post-hoc explainability methods have been proposed to interpret the decision-making process after the prediction is made. However, these explanations do not guide the model's internal reasoning and therefore offer limited reliability in clinical applications. To address this, we introduce ProtoEFNet, a novel video-based prototype learning model for continuous EF regression. The model learns dynamic spatiotemporal prototypes that capture clinically meaningful cardiac motion patterns. Additionally, the proposed Prototype Angular Separation (PAS) loss enforces discriminative representations across the continuous EF spectrum. Our experiments on the EchonetDynamic dataset show that ProtoEFNet can achieve accuracy on par with its non-interpretable counterpart while providing clinically relevant insight. The ablation study shows that the proposed loss boosts performance with a 2% increase in F1 score from 77.67$\pm$2.68 to 79.64$\pm$2.10. Our source code is available at: https://github.com/DeepRCL/ProtoEF
comment: 11 pages, Accepted in IMIMIC Workshop at MICCAI 2025
☆ Single-Round Scalable Analytic Federated Learning
Federated Learning (FL) is plagued by two key challenges: high communication overhead and performance collapse on heterogeneous (non-IID) data. Analytic FL (AFL) provides a single-round, data distribution invariant solution, but is limited to linear models. Subsequent non-linear approaches, like DeepAFL, regain accuracy but sacrifice the single-round benefit. In this work, we break this trade-off. We propose SAFLe, a framework that achieves scalable non-linear expressivity by introducing a structured head of bucketed features and sparse, grouped embeddings. We prove this non-linear architecture is mathematically equivalent to a high-dimensional linear regression. This key equivalence allows SAFLe to be solved with AFL's single-shot, invariant aggregation law. Empirically, SAFLe establishes a new state-of-the-art for analytic FL, significantly outperforming both linear AFL and multi-round DeepAFL in accuracy across all benchmarks, demonstrating a highly efficient and scalable solution for federated vision.
☆ Step-by-step Layered Design Generation
Design generation, in its essence, is a step-by-step process where designers progressively refine and enhance their work through careful modifications. Despite this fundamental characteristic, existing approaches mainly treat design synthesis as a single-step generation problem, significantly underestimating the inherent complexity of the creative process. To bridge this gap, we propose a novel problem setting called Step-by-Step Layered Design Generation, which tasks a machine learning model with generating a design that adheres to a sequence of instructions from a designer. Leveraging recent advancements in multi-modal LLMs, we propose SLEDGE: Step-by-step LayEred Design GEnerator to model each update to a design as an atomic, layered change over its previous state, while being grounded in the instruction. To complement our new problem setting, we introduce a new evaluation suite, including a dataset and a benchmark. Our exhaustive experimental analysis and comparison with state-of-the-art approaches tailored to our new setup demonstrate the efficacy of our approach. We hope our work will attract attention to this pragmatic and under-explored research area.
☆ When does Gaussian equivalence fail and how to fix it: Non-universal behavior of random features with quadratic scaling
A major effort in modern high-dimensional statistics has been devoted to the analysis of linear predictors trained on nonlinear feature embeddings via empirical risk minimization (ERM). Gaussian equivalence theory (GET) has emerged as a powerful universality principle in this context: it states that the behavior of high-dimensional, complex features can be captured by Gaussian surrogates, which are more amenable to analysis. Despite its remarkable successes, numerical experiments show that this equivalence can fail even for simple embeddings -- such as polynomial maps -- under general scaling regimes. We investigate this breakdown in the setting of random feature (RF) models in the quadratic scaling regime, where both the number of features and the sample size grow quadratically with the data dimension. We show that when the target function depends on a low-dimensional projection of the data, such as generalized linear models, GET yields incorrect predictions. To capture the correct asymptotics, we introduce a Conditional Gaussian Equivalent (CGE) model, which can be viewed as appending a low-dimensional non-Gaussian component to an otherwise high-dimensional Gaussian model. This hybrid model retains the tractability of the Gaussian framework and accurately describes RF models in the quadratic scaling regime. We derive sharp asymptotics for the training and test errors in this setting, which continue to agree with numerical simulations even when GET fails. Our analysis combines general results on CLT for Wiener chaos expansions and a careful two-phase Lindeberg swapping argument. Beyond RF models and quadratic scaling, our work hints at a rich landscape of universality phenomena in high-dimensional ERM.
☆ Cache What Lasts: Token Retention for Memory-Bounded KV Cache in LLMs
Memory and computation remain core bottlenecks in long-horizon LLM inference due to the quadratic cost of self-attention and the ever-growing key-value (KV) cache. Existing strategies for memory-bounded inference, such as quantization, offloading, or heuristic KV eviction, either incur high orchestration costs or rely on unreliable attention-based proxies of importance. We propose TRIM-KV, a novel approach that learns each token's intrinsic importance at creation time via a lightweight retention gate. Each gate predicts a scalar retention score that decays over time, reflecting the long-term utility of the token for a specific layer and head. Tokens with low scores are evicted when the memory budget is exceeded, ensuring that the cache always contains the most critical tokens. TRIM-KV is trained efficiently through distillation from a frozen LLM combined with a capacity loss, requiring only gate fine-tuning and adding negligible inference overhead. Across mathematical reasoning (GSM8K, MATH-500, AIME24), procedural generation (LongProc), conversational long-memory benchmarks (LongMemEval), and long-context understanding (LongBench and SCBench), TRIM-KV consistently outperforms strong eviction and learnable retrieval baselines, especially in low-memory regimes. Remarkably, it even surpasses full-cache models in some settings, showing that selective retention can serve as a form of regularization, suppressing noise from uninformative tokens. Qualitative analyses further reveal that learned retention scores align with human intuition, naturally recovering heuristics such as sink tokens, sliding windows, and gist compression without explicit design. Beyond efficiency, retention scores provide insights into layer- and head-specific roles, suggesting a new path toward LLM interpretability.
☆ NavMapFusion: Diffusion-based Fusion of Navigation Maps for Online Vectorized HD Map Construction
Accurate environmental representations are essential for autonomous driving, providing the foundation for safe and efficient navigation. Traditionally, high-definition (HD) maps are providing this representation of the static road infrastructure to the autonomous system a priori. However, because the real world is constantly changing, such maps must be constructed online from on-board sensor data. Navigation-grade standard-definition (SD) maps are widely available, but their resolution is insufficient for direct deployment. Instead, they can be used as coarse prior to guide the online map construction process. We propose NavMapFusion, a diffusion-based framework that performs iterative denoising conditioned on high-fidelity sensor data and on low-fidelity navigation maps. This paper strives to answer: (1) How can coarse, potentially outdated navigation maps guide online map construction? (2) What advantages do diffusion models offer for map fusion? We demonstrate that diffusion-based map construction provides a robust framework for map fusion. Our key insight is that discrepancies between the prior map and online perception naturally correspond to noise within the diffusion process; consistent regions reinforce the map construction, whereas outdated segments are suppressed. On the nuScenes benchmark, NavMapFusion conditioned on coarse road lines from OpenStreetMap data reaches a 21.4% relative improvement on 100 m, and even stronger improvements on larger perception ranges, while maintaining real-time capabilities. By fusing low-fidelity priors with high-fidelity sensor data, the proposed method generates accurate and up-to-date environment representations, guiding towards safer and more reliable autonomous driving. The code is available at https://github.com/tmonnin/navmapfusion
comment: Accepted to 2026 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2026)
☆ One Detector Fits All: Robust and Adaptive Detection of Malicious Packages from PyPI to Enterprises
The rise of supply chain attacks via malicious Python packages demands robust detection solutions. Current approaches, however, overlook two critical challenges: robustness against adversarial source code transformations and adaptability to the varying false positive rate (FPR) requirements of different actors, from repository maintainers (requiring low FPR) to enterprise security teams (higher FPR tolerance). We introduce a robust detector capable of seamless integration into both public repositories like PyPI and enterprise ecosystems. To ensure robustness, we propose a novel methodology for generating adversarial packages using fine-grained code obfuscation. Combining these with adversarial training (AT) enhances detector robustness by 2.5x. We comprehensively evaluate AT effectiveness by testing our detector against 122,398 packages collected daily from PyPI over 80 days, showing that AT needs careful application: it makes the detector more robust to obfuscations and allows finding 10% more obfuscated packages, but slightly decreases performance on non-obfuscated packages. We demonstrate production adaptability of our detector via two case studies: (i) one for PyPI maintainers (tuned at 0.1% FPR) and (ii) one for enterprise teams (tuned at 10% FPR). In the former, we analyze 91,949 packages collected from PyPI over 37 days, achieving a daily detection rate of 2.48 malicious packages with only 2.18 false positives. In the latter, we analyze 1,596 packages adopted by a multinational software company, obtaining only 1.24 false positives daily. These results show that our detector can be seamlessly integrated into both public repositories like PyPI and enterprise ecosystems, ensuring a very low time budget of a few minutes to review the false positives. Overall, we uncovered 346 malicious packages, now reported to the community.
comment: Proceedings of the 2025 Annual Computer Security Applications Conference (ACSAC' 25), December 8-12, 2025, Honolulu, Hawaii, USA
☆ RGE-GCN: Recursive Gene Elimination with Graph Convolutional Networks for RNA-seq based Early Cancer Detection
Early detection of cancer plays a key role in improving survival rates, but identifying reliable biomarkers from RNA-seq data is still a major challenge. The data are high-dimensional, and conventional statistical methods often fail to capture the complex relationships between genes. In this study, we introduce RGE-GCN (Recursive Gene Elimination with Graph Convolutional Networks), a framework that combines feature selection and classification in a single pipeline. Our approach builds a graph from gene expression profiles, uses a Graph Convolutional Network to classify cancer versus normal samples, and applies Integrated Gradients to highlight the most informative genes. By recursively removing less relevant genes, the model converges to a compact set of biomarkers that are both interpretable and predictive. We evaluated RGE-GCN on synthetic data as well as real-world RNA-seq cohorts of lung, kidney, and cervical cancers. Across all datasets, the method consistently achieved higher accuracy and F1-scores than standard tools such as DESeq2, edgeR, and limma-voom. Importantly, the selected genes aligned with well-known cancer pathways including PI3K-AKT, MAPK, SUMOylation, and immune regulation. These results suggest that RGE-GCN shows promise as a generalizable approach for RNA-seq based early cancer detection and biomarker discovery (https://rce-gcn.streamlit.app/ ).
comment: 12 pages, 2 figures
Data-regularized Reinforcement Learning for Diffusion Models at Scale
Aligning generative diffusion models with human preferences via reinforcement learning (RL) is critical yet challenging. Most existing algorithms are often vulnerable to reward hacking, such as quality degradation, over-stylization, or reduced diversity. Our analysis demonstrates that this can be attributed to the inherent limitations of their regularization, which provides unreliable penalties. We introduce Data-regularized Diffusion Reinforcement Learning (DDRL), a novel framework that uses the forward KL divergence to anchor the policy to an off-policy data distribution. Theoretically, DDRL enables robust, unbiased integration of RL with standard diffusion training. Empirically, this translates into a simple yet effective algorithm that combines reward maximization with diffusion loss minimization. With over a million GPU hours of experiments and ten thousand double-blind human evaluations, we demonstrate on high-resolution video generation tasks that DDRL significantly improves rewards while alleviating the reward hacking seen in baselines, achieving the highest human preference and establishing a robust and scalable paradigm for diffusion post-training.
☆ Bayes-DIC Net: Estimating Digital Image Correlation Uncertainty with Bayesian Neural Networks
This paper introduces a novel method for generating high-quality Digital Image Correlation (DIC) dataset based on non-uniform B-spline surfaces. By randomly generating control point coordinates, we construct displacement fields that encompass a variety of realistic displacement scenarios, which are subsequently used to generate speckle pattern datasets. This approach enables the generation of a large-scale dataset that capture real-world displacement field situations, thereby enhancing the training and generalization capabilities of deep learning-based DIC algorithms. Additionally, we propose a novel network architecture, termed Bayes-DIC Net, which extracts information at multiple levels during the down-sampling phase and facilitates the aggregation of information across various levels through a single skip connection during the up-sampling phase. Bayes-DIC Net incorporates a series of lightweight convolutional blocks designed to expand the receptive field and capture rich contextual information while minimizing computational costs. Furthermore, by integrating appropriate dropout modules into Bayes-DIC Net and activating them during the network inference stage, Bayes-DIC Net is transformed into a Bayesian neural network. This transformation allows the network to provide not only predictive results but also confidence levels in these predictions when processing real unlabeled datasets. This feature significantly enhances the practicality and reliability of our network in real-world displacement field prediction tasks. Through these innovations, this paper offers new perspectives and methods for dataset generation and algorithm performance enhancement in the field of DIC.
comment: 17 pages, 8 figures
☆ RNNs perform task computations by dynamically warping neural representations NeurIPS 2025
Analysing how neural networks represent data features in their activations can help interpret how they perform tasks. Hence, a long line of work has focused on mathematically characterising the geometry of such "neural representations." In parallel, machine learning has seen a surge of interest in understanding how dynamical systems perform computations on time-varying input data. Yet, the link between computation-through-dynamics and representational geometry remains poorly understood. Here, we hypothesise that recurrent neural networks (RNNs) perform computations by dynamically warping their representations of task variables. To test this hypothesis, we develop a Riemannian geometric framework that enables the derivation of the manifold topology and geometry of a dynamical system from the manifold of its inputs. By characterising the time-varying geometry of RNNs, we show that dynamic warping is a fundamental feature of their computations.
comment: NeurIPS 2025
☆ Evaluating Long-Context Reasoning in LLM-Based WebAgents NeurIPS 25
As large language model (LLM)-based agents become increasingly integrated into daily digital interactions, their ability to reason across long interaction histories becomes crucial for providing personalized and contextually aware assistance. However, the performance of these agents in long context scenarios, particularly for action-taking WebAgents operating in realistic web environments, remains largely unexplored. This paper introduces a benchmark for evaluating long context reasoning capabilities of WebAgents through sequentially dependent subtasks that require retrieval and application of information from extended interaction histories. We develop a novel evaluation framework that simulates multi-session user interactions by injecting irrelevant task trajectories between dependent subtasks, creating contexts ranging from 25,000 to 150,000 tokens. Through extensive evaluation of four popular models, Claude-3.7, GPT-4.1, Llama 4, and o4-mini, we observe a dramatic performance degradation as context length increases, with success rates dropping from 40-50\% in baseline conditions to less than 10\% in long context scenarios. Our detailed error analysis reveals that agents primarily fail due to getting stuck in loops and losing track of original task objectives. We further propose an implicit RAG approach that provides modest improvements by generating task-relevant summaries, though fundamental limitations in long context reasoning persist. These findings highlight critical challenges for deploying WebAgents in realistic, long-term user interaction scenarios and provide insights for developing more robust agent architectures capable of maintaining coherent task execution across extended contexts.
comment: Accepted NeurIPS 25 LAW Workshop
☆ When do spectral gradient updates help in deep learning?
Spectral gradient methods, such as the recently popularized Muon optimizer, are a promising alternative to standard Euclidean gradient descent for training deep neural networks and transformers, but it is still unclear in which regimes they are expected to perform better. We propose a simple layerwise condition that predicts when a spectral update yields a larger decrease in the loss than a Euclidean gradient step. This condition compares, for each parameter block, the squared nuclear-to-Frobenius ratio of the gradient to the stable rank of the incoming activations. To understand when this condition may be satisfied, we first prove that post-activation matrices have low stable rank at Gaussian initialization in random feature regression, feedforward networks, and transformer blocks. In spiked random feature models we then show that, after a short burn-in, the Euclidean gradient's nuclear-to-Frobenius ratio grows with the data dimension while the stable rank of the activations remains bounded, so the predicted advantage of spectral updates scales with dimension. We validate these predictions in synthetic regression experiments and in NanoGPT-scale language model training, where we find that intermediate activations have low-stable-rank throughout training and the corresponding gradients maintain large nuclear-to-Frobenius ratios. Together, these results identify conditions for spectral gradient methods, such as Muon, to be effective in training deep networks and transformers.
☆ GRASP: GRouped Activation Shared Parameterization for Parameter-Efficient Fine-Tuning and Robust Inference of Transformers
Parameter-efficient fine-tuning (PEFT) provides a scalable alternative to full-model adaptation by updating only a small subset of parameters in large pre-trained models. We introduce GRASP - GRouped Activation Shared Parameterization - a lightweight PEFT framework that partitions the D-dimensional token representations of selected layers into K << D groups and learns a shared scaling and shifting vector for each group. This grouped modulation reduces the number of trainable parameters significantly while preserving the ability of the model to learn task-specific features. Building on this formulation, we further propose StochGRASP, which learns Gaussian distributions as perturbations to the pre-trained weights rather than deterministic values. This probabilistic parameterization along with a noise-aware loss function formulation enables modelling hardware-level variability in programmed weights and significantly improves robustness under non-ideal inference conditions-an important requirement for deployment on edge-based emerging AI hardware. Across GLUE (RoBERTa-base & RoBERTa-large) and E2E NLG (GPT-2 Medium), GRASP matches or exceeds the performance of established PEFT methods while achieving an order of magnitude reduction in trainable parameters compared to LoRA and BitFit. Under varying levels of noise, StochGRASP consistently outperforms deterministic variants, demonstrating its suitability for energy-efficient and noise-prone hardware platforms.
comment: Under Review
☆ Plug-and-Play Image Restoration with Flow Matching: A Continuous Viewpoint
Flow matching-based generative models have been integrated into the plug-and-play image restoration framework, and the resulting plug-and-play flow matching (PnP-Flow) model has achieved some remarkable empirical success for image restoration. However, the theoretical understanding of PnP-Flow lags its empirical success. In this paper, we derive a continuous limit for PnP-Flow, resulting in a stochastic differential equation (SDE) surrogate model of PnP-Flow. The SDE model provides two particular insights to improve PnP-Flow for image restoration: (1) It enables us to quantify the error for image restoration, informing us to improve step scheduling and regularize the Lipschitz constant of the neural network-parameterized vector field for error reduction. (2) It informs us to accelerate off-the-shelf PnP-Flow models via extrapolation, resulting in a rescaled version of the proposed SDE model. We validate the efficacy of the SDE-informed improved PnP-Flow using several benchmark tasks, including image denoising, deblurring, super-resolution, and inpainting. Numerical results show that our method significantly outperforms the baseline PnP-Flow and other state-of-the-art approaches, achieving superior performance across evaluation metrics.
☆ Inference-time Stochastic Refinement of GRU-Normalizing Flow for Real-time Video Motion Transfer
Real-time video motion transfer applications such as immersive gaming and vision-based anomaly detection require accurate yet diverse future predictions to support realistic synthesis and robust downstream decision making under uncertainty. To improve the diversity of such sequential forecasts we propose a novel inference-time refinement technique that combines Gated Recurrent Unit-Normalizing Flows (GRU-NF) with stochastic sampling methods. While GRU-NF can capture multimodal distributions through its integration of normalizing flows within a temporal forecasting framework, its deterministic transformation structure can limit expressivity. To address this, inspired by Stochastic Normalizing Flows (SNF), we introduce Markov Chain Monte Carlo (MCMC) steps during GRU-NF inference, enabling the model to explore a richer output space and better approximate the true data distribution without retraining. We validate our approach in a keypoint-based video motion transfer pipeline, where capturing temporally coherent and perceptually diverse future trajectories is essential for realistic samples and low bandwidth communication. Experiments show that our inference framework, Gated Recurrent Unit- Stochastic Normalizing Flows (GRU-SNF) outperforms GRU-NF in generating diverse outputs without sacrificing accuracy, even under longer prediction horizons. By injecting stochasticity during inference, our approach captures multimodal behavior more effectively. These results highlight the potential of integrating stochastic dynamics with flow-based sequence models for generative time series forecasting.
☆ Bootstrapped Mixed Rewards for RL Post-Training: Injecting Canonical Action Order
Post-training with reinforcement learning (RL) typically optimizes a single scalar objective and ignores structure in how solutions are produced. We ask whether a scalar hint toward a canonical solver ordering, used only during RL post-training, improves performance even when fine-tuned on randomized solution sequences. On Sudoku, we train a Transformer with standard fine-tuning on randomized solving orders, then post-train it with Group Relative Policy Optimization (GRPO) with two rewards: cell accuracy and an ordering reward that increases when the model's emission order aligns with the solver order. To compare signals cleanly, we combine them via fixed mixtures and use a simple bootstrapped scaling to equalize component magnitudes at initialization. Mixed rewards generally outperform cell-only optimization--the best mixture yields substantially higher test accuracy than the fine-tuned-only model trained on random-order and approaches the fine-tuned-only model trained on solver-order sequences in accuracy. These results suggest that coarse ordering signals can steer RL post-training toward solver-order trajectories without modifying supervised data or architecture.
☆ The Geometry of Benchmarks: A New Path Toward AGI
Benchmarks are the primary tool for assessing progress in artificial intelligence (AI), yet current practice evaluates models on isolated test suites and provides little guidance for reasoning about generality or autonomous self-improvement. Here we introduce a geometric framework in which all psychometric batteries for AI agents are treated as points in a structured moduli space, and agent performance is described by capability functionals over this space. First, we define an Autonomous AI (AAI) Scale, a Kardashev-style hierarchy of autonomy grounded in measurable performance on batteries spanning families of tasks (for example reasoning, planning, tool use and long-horizon control). Second, we construct a moduli space of batteries, identifying equivalence classes of benchmarks that are indistinguishable at the level of agent orderings and capability inferences. This geometry yields determinacy results: dense families of batteries suffice to certify performance on entire regions of task space. Third, we introduce a general Generator-Verifier-Updater (GVU) operator that subsumes reinforcement learning, self-play, debate and verifier-based fine-tuning as special cases, and we define a self-improvement coefficient $κ$ as the Lie derivative of a capability functional along the induced flow. A variance inequality on the combined noise of generation and verification provides sufficient conditions for $κ> 0$. Our results suggest that progress toward artificial general intelligence (AGI) is best understood as a flow on moduli of benchmarks, driven by GVU dynamics rather than by scores on individual leaderboards.
☆ The Initialization Determines Whether In-Context Learning Is Gradient Descent
In-context learning (ICL) in large language models (LLMs) is a striking phenomenon, yet its underlying mechanisms remain only partially understood. Previous work connects linear self-attention (LSA) to gradient descent (GD), this connection has primarily been established under simplified conditions with zero-mean Gaussian priors and zero initialization for GD. However, subsequent studies have challenged this simplified view by highlighting its overly restrictive assumptions, demonstrating instead that under conditions such as multi-layer or nonlinear attention, self-attention performs optimization-like inference, akin to but distinct from GD. We investigate how multi-head LSA approximates GD under more realistic conditions specifically when incorporating non-zero Gaussian prior means in linear regression formulations of ICL. We first extend multi-head LSA embedding matrix by introducing an initial estimation of the query, referred to as the initial guess. We prove an upper bound on the number of heads needed for ICL linear regression setup. Our experiments confirm this result and further observe that a performance gap between one-step GD and multi-head LSA persists. To address this gap, we introduce yq-LSA, a simple generalization of single-head LSA with a trainable initial guess yq. We theoretically establish the capabilities of yq-LSA and provide experimental validation on linear regression tasks, thereby extending the theory that bridges ICL and GD. Finally, inspired by our findings in the case of linear regression, we consider widespread LLMs augmented with initial guess capabilities, and show that their performance is improved on a semantic similarity task.
☆ Studying Various Activation Functions and Non-IID Data for Machine Learning Model Robustness
Adversarial training is an effective method to improve the machine learning (ML) model robustness. Most existing studies typically consider the Rectified linear unit (ReLU) activation function and centralized training environments. In this paper, we study the ML model robustness using ten different activation functions through adversarial training in centralized environments and explore the ML model robustness in federal learning environments. In the centralized environment, we first propose an advanced adversarial training approach to improving the ML model robustness by incorporating model architecture change, soft labeling, simplified data augmentation, and varying learning rates. Then, we conduct extensive experiments on ten well-known activation functions in addition to ReLU to better understand how they impact the ML model robustness. Furthermore, we extend the proposed adversarial training approach to the federal learning environment, where both independent and identically distributed (IID) and non-IID data settings are considered. Our proposed centralized adversarial training approach achieves a natural and robust accuracy of 77.08% and 67.96%, respectively on CIFAR-10 against the fast gradient sign attacks. Experiments on ten activation functions reveal ReLU usually performs best. In the federated learning environment, however, the robust accuracy decreases significantly, especially on non-IID data. To address the significant performance drop in the non-IID data case, we introduce data sharing and achieve the natural and robust accuracy of 70.09% and 54.79%, respectively, surpassing the CalFAT algorithm, when 40% data sharing is used. That is, a proper percentage of data sharing can significantly improve the ML model robustness, which is useful to some real-world applications.
☆ Polynomiogram: An Integrated Framework for Root Visualization and Generative Art
This work presents the Polynomiogram framework, an integrated computational platform for exploring, visualizing, and generating art from polynomial root systems. The main innovation is a flexible sampling scheme in which two independent parameters are drawn from user defined domains and mapped to the polynomial coefficients through a generating function. This design allows the same mathematical foundation to support both scientific investigation and generative algorithmic art. The framework integrates two complementary numerical engines: NumPy companion matrix solver for fast, large scale computation and MPSolve for high precision, scientifically rigorous validation. This dual architecture enables efficient visualization for creative use and accurate computation for research and education. Numerical accuracy was verified using classical ensembles, including the Kac and Lucas polynomials. The method was applied to the cubic polynomial system to analyze its bifurcation structure, demonstrating its value as both a scientific tool for exploring root phenomena and an educational aid for visualizing fundamental concepts in algebra and dynamical systems. Beyond analysis, the Polynomiogram also demonstrated its potential as a tool for personalized generative art. Examples include the use of the platform to generate a natural form resembling a hibiscus flower and to create personalized artwork expressing gratitude toward advances in artificial intelligence and large language models through a tribute composition.
☆ Computational Linguistics Meets Libyan Dialect: A Study on Dialect Identification
This study investigates logistic regression, linear support vector machine, multinomial Naive Bayes, and Bernoulli Naive Bayes for classifying Libyan dialect utterances gathered from Twitter. The dataset used is the QADI corpus, which consists of 540,000 sentences across 18 Arabic dialects. Preprocessing challenges include handling inconsistent orthographic variations and non-standard spellings typical of the Libyan dialect. The chi-square analysis revealed that certain features, such as email mentions and emotion indicators, were not significantly associated with dialect classification and were thus excluded from further analysis. Two main experiments were conducted: (1) evaluating the significance of meta-features extracted from the corpus using the chi-square test and (2) assessing classifier performance using different word and character n-gram representations. The classification experiments showed that Multinomial Naive Bayes (MNB) achieved the highest accuracy of 85.89% and an F1-score of 0.85741 when using a (1,2) word n-gram and (1,5) character n-gram representation. In contrast, Logistic Regression and Linear SVM exhibited slightly lower performance, with maximum accuracies of 84.41% and 84.73%, respectively. Additional evaluation metrics, including log loss, Cohen kappa, and Matthew correlation coefficient, further supported the effectiveness of MNB in this task. The results indicate that carefully selected n-gram representations and classification models play a crucial role in improving the accuracy of Libyan dialect identification. This study provides empirical benchmarks and insights for future research in Arabic dialect NLP applications.
comment: 13 pages, 8 figures
☆ Fine-Tuning ChemBERTa for Predicting Inhibitory Activity Against TDP1 Using Deep Learning
Predicting the inhibitory potency of small molecules against Tyrosyl-DNA Phosphodiesterase 1 (TDP1)-a key target in overcoming cancer chemoresistance-remains a critical challenge in early drug discovery. We present a deep learning framework for the quantitative regression of pIC50 values from molecular Simplified Molecular Input Line Entry System (SMILES) strings using fine-tuned variants of ChemBERTa, a pre-trained chemical language model. Leveraging a large-scale consensus dataset of 177,092 compounds, we systematically evaluate two pre-training strategies-Masked Language Modeling (MLM) and Masked Token Regression (MTR)-under stratified data splits and sample weighting to address severe activity imbalance which only 2.1% are active. Our approach outperforms classical baselines Random Predictor in both regression accuracy and virtual screening utility, and has competitive performance compared to Random Forest, achieving high enrichment factor EF@1% 17.4 and precision Precision@1% 37.4 among top-ranked predictions. The resulting model, validated through rigorous ablation and hyperparameter studies, provides a robust, ready-to-deploy tool for prioritizing TDP1 inhibitors for experimental testing. By enabling accurate, 3D-structure-free pIC50 prediction directly from SMILES, this work demonstrates the transformative potential of chemical transformers in accelerating target-specific drug discovery.
☆ Educational Cone Model in Embedding Vector Spaces
Human-annotated datasets with explicit difficulty ratings are essential in intelligent educational systems. Although embedding vector spaces are widely used to represent semantic closeness and are promising for analyzing text difficulty, the abundance of embedding methods creates a challenge in selecting the most suitable method. This study proposes the Educational Cone Model, which is a geometric framework based on the assumption that easier texts are less diverse (focusing on fundamental concepts), whereas harder texts are more diverse. This assumption leads to a cone-shaped distribution in the embedding space regardless of the embedding method used. The model frames the evaluation of embeddings as an optimization problem with the aim of detecting structured difficulty-based patterns. By designing specific loss functions, efficient closed-form solutions are derived that avoid costly computation. Empirical tests on real-world datasets validated the model's effectiveness and speed in identifying the embedding spaces that are best aligned with difficulty-annotated educational texts.
comment: Accepted to the 33rd International Conference on Computers in Education (ICCE 2025)
☆ ActVAE: Modelling human activity schedules with a deep conditional generative approach
Modelling the complexity and diversity of human activity scheduling behaviour is inherently challenging. We demonstrate a deep conditional-generative machine learning approach for the modelling of realistic activity schedules depending on input labels such as an individual's age, employment status, or other information relevant to their scheduling. We combine (i) a structured latent generative approach, with (ii) a conditional approach, through a novel Conditional VAE architecture. This allows for the rapid generation of precise and realistic schedules for different input labels. We extensively evaluate model capabilities using a joint density estimation framework and several case studies. We additionally show that our approach has practical data and computational requirements, and can be deployed within new and existing demand modelling frameworks. We evaluate the importance of generative capability more generally, by comparing our combined approach to (i) a purely generative model without conditionality, and (ii) a purely conditional model which outputs the most likely schedule given the input labels. This comparison highlights the usefulness of explicitly modelling the randomness of complex and diverse human behaviours using deep generative approaches.
☆ Network of Theseus (like the ship)
A standard assumption in deep learning is that the inductive bias introduced by a neural network architecture must persist from training through inference. The architecture you train with is the architecture you deploy. This assumption constrains the community from selecting architectures that may have desirable efficiency or design properties due to difficulties with optimization. We challenge this assumption with Network of Theseus (NoT), a method for progressively converting a trained, or even untrained, guide network architecture part-by-part into an entirely different target network architecture while preserving the performance of the guide network. At each stage, components in the guide network architecture are incrementally replaced with target architecture modules and aligned via representational similarity metrics. This procedure largely preserves the functionality of the guide network even under substantial architectural changes-for example, converting a convolutional network into a multilayer perceptron, or GPT-2 into a recurrent neural network. By decoupling optimization from deployment, NoT expands the space of viable inference-time architectures, opening opportunities for better accuracy-efficiency tradeoffs and enabling more directed exploration of the architectural design space.
comment: Preprint. 24 pages, 9 figures, 8 tables
☆ BEP: A Binary Error Propagation Algorithm for Binary Neural Networks Training
Binary Neural Networks (BNNs), which constrain both weights and activations to binary values, offer substantial reductions in computational complexity, memory footprint, and energy consumption. These advantages make them particularly well suited for deployment on resource-constrained devices. However, training BNNs via gradient-based optimization remains challenging due to the discrete nature of their variables. The dominant approach, quantization-aware training, circumvents this issue by employing surrogate gradients. Yet, this method requires maintaining latent full-precision parameters and performing the backward pass with floating-point arithmetic, thereby forfeiting the efficiency of binary operations during training. While alternative approaches based on local learning rules exist, they are unsuitable for global credit assignment and for back-propagating errors in multi-layer architectures. This paper introduces Binary Error Propagation (BEP), the first learning algorithm to establish a principled, discrete analog of the backpropagation chain rule. This mechanism enables error signals, represented as binary vectors, to be propagated backward through multiple layers of a neural network. BEP operates entirely on binary variables, with all forward and backward computations performed using only bitwise operations. Crucially, this makes BEP the first solution to enable end-to-end binary training for recurrent neural network architectures. We validate the effectiveness of BEP on both multi-layer perceptrons and recurrent neural networks, demonstrating gains of up to +6.89% and +10.57% in test accuracy, respectively. The proposed algorithm is released as an open-source repository.
☆ Mitigating the Curse of Detail: Scaling Arguments for Feature Learning and Sample Complexity
Two pressing topics in the theory of deep learning are the interpretation of feature learning mechanisms and the determination of implicit bias of networks in the rich regime. Current theories of rich feature learning effects revolve around networks with one or two trainable layers or deep linear networks. Furthermore, even under such limiting settings, predictions often appear in the form of high-dimensional non-linear equations, which require computationally intensive numerical solutions. Given the many details that go into defining a deep learning problem, this analytical complexity is a significant and often unavoidable challenge. Here, we propose a powerful heuristic route for predicting the data and width scales at which various patterns of feature learning emerge. This form of scale analysis is considerably simpler than such exact theories and reproduces the scaling exponents of various known results. In addition, we make novel predictions on complex toy architectures, such as three-layer non-linear networks and attention heads, thus extending the scope of first-principle theories of deep learning.
☆ Enhancing next token prediction based pre-training for jet foundation models
Next token prediction is an attractive pre-training task for jet foundation models, in that it is simulation free and enables excellent generative capabilities that can transfer across datasets. Here we study multiple improvements to next token prediction, building on the initial work of OmniJet-$α$. Instead of tokenizing particles and subsequently only using the token-ID as the model input for both the generative and the classification task, we adopt a hybrid setup, which allows us to use continuous feature vectors as model input while only using token-IDs in the next token prediction target. Secondly, we explore a combined pre-training strategy that combines masked particle modeling and generative learning objectives. Taken together, these changes greatly improve the performance in downstream classification tasks without any loss in generative performance.
☆ MechDetect: Detecting Data-Dependent Errors
Data quality monitoring is a core challenge in modern information processing systems. While many approaches to detect data errors or shifts have been proposed, few studies investigate the mechanisms governing error generation. We argue that knowing how errors were generated can be key to tracing and fixing them. In this study, we build on existing work in the statistics literature on missing values and propose MechDetect, a simple algorithm to investigate error generation mechanisms. Given a tabular data set and a corresponding error mask, the algorithm estimates whether or not the errors depend on the data using machine learning models. Our work extends established approaches to detect mechanisms underlying missing values and can be readily applied to other error types, provided that an error mask is available. We demonstrate the effectiveness of MechDetect in experiments on established benchmark datasets.
comment: International Conference on Data Science and Intelligent Systems (DSIS 2025)
☆ Decoding Large Language Diffusion Models with Foreseeing Movement
Large Language Diffusion Models (LLDMs) benefit from a flexible decoding mechanism that enables parallelized inference and controllable generations over autoregressive models. Yet such flexibility introduces a critical challenge: inference performance becomes highly sensitive to the decoding order of tokens. Existing heuristic methods, however, focus mainly on local effects while overlooking long-term impacts. To address this limitation, we propose the Foreseeing Decoding Method (FDM), a novel approach that integrates both local and global considerations to unlock the full potential, employing a search-based strategy to enable effective optimization in discrete spaces. Furthermore, by analyzing the consistency of chosen tokens in the full decoding process, we develop a variant, FDM with Acceleration (FDM-A), which restricts deep exploration to critical steps identified as the exploration and balance circumantences. Extensive experiments across diverse benchmarks and model architectures validate the scalability of FDM and demonstrate the superior efficiency-performance trade-off achieved by FDM-A. Our work might potentially provide a principled step toward more powerful decoding methods for LLDMs.
Trajectory Balance with Asynchrony: Decoupling Exploration and Learning for Fast, Scalable LLM Post-Training NeurIPS 2025
Reinforcement learning (RL) is a critical component of large language model (LLM) post-training. However, on-policy algorithms used for post-training are not naturally robust to a diversified content of experience replay buffers, which asynchronous off-policy actors can efficiently populate in parallel to training. We propose efficiently learning on such off-policy data via Trajectory Balance with Asynchrony (TBA), an approach to asynchronous RL for LLMs that leverages the principled off-policy TB objective. On math, preference-tuning, and automated red-teaming tasks, we post-train models ranging from Pythia 410M to Qwen 2.5 7B, finding TBA offers speed and performance boosts over strong baselines like Online DPO and Dr. GRPO. Beyond TBA's performance benefits (high accuracy even as asynchrony grows) and speedups ($4\times$ or more), we show its reward- and recency-prioritizing sampling enable further gains as data generation is scaled. Our code is available at https://github.com/bbartoldson/TBA.
comment: NeurIPS 2025; 27 pages
♻ ☆ Interactive and Hybrid Imitation Learning: Provably Beating Behavior Cloning NeurIPS 2025
Imitation learning (IL) is a paradigm for learning sequential decision making policies from experts, leveraging offline demonstrations, interactive annotations, or both. Recent advances show that when annotation cost is tallied per trajectory, Behavior Cloning (BC) which relies solely on offline demonstrations cannot be improved in general, leaving limited conditions for interactive methods such as DAgger to help. We revisit this conclusion and prove that when the annotation cost is measured per state, algorithms using interactive annotations can provably outperform BC. Specifically: (1) we show that Stagger, a one sample per round variant of DAgger, provably beats BC under low recovery cost settings; (2) we initiate the study of hybrid IL where the agent learns from offline demonstrations and interactive annotations. We propose Warm Stagger whose learning guarantee is not much worse than using either data source alone. Furthermore, motivated by compounding error and cold start problem in imitation learning practice, we give an MDP example in which Warm Stagger has significant better annotation cost; (3) experiments on MuJoCo continuous control tasks confirm that, with modest cost ratio between interactive and offline annotations, interactive and hybrid approaches consistently outperform BC. To the best of our knowledge, our work is the first to highlight the benefit of state wise interactive annotation and hybrid feedback in imitation learning.
comment: 42 pages, Accepted by NeurIPS 2025
♻ ☆ PCS Workflow for Veridical Data Science in the Age of AI
Data science is a pillar of artificial intelligence (AI), which is transforming nearly every domain of human activity, from the social and physical sciences to engineering and medicine. While data-driven findings in AI offer unprecedented power to extract insights and guide decision-making, many are difficult or impossible to replicate. A key reason for this challenge is the uncertainty introduced by the many choices made throughout the data science life cycle (DSLC). Traditional statistical frameworks often fail to account for this uncertainty. The Predictability-Computability-Stability (PCS) framework for veridical (truthful) data science offers a principled approach to addressing this challenge throughout the DSLC. This paper presents an updated and streamlined PCS workflow, tailored for practitioners and enhanced with guided use of generative AI. We include a running example to display the PCS framework in action, and conduct a related case study which showcases the uncertainty in downstream predictions caused by judgment calls in the data cleaning stage.
♻ ☆ Ergodic Risk Measures: Towards a Risk-Aware Foundation for Continual Reinforcement Learning
Continual reinforcement learning (continual RL) seeks to formalize the notions of lifelong learning and endless adaptation in RL. In particular, the aim of continual RL is to develop RL agents that can maintain a careful balance between retaining useful information and adapting to new situations. To date, continual RL has been explored almost exclusively through the lens of risk-neutral decision-making, in which the agent aims to optimize the expected long-run performance. In this work, we present the first formal theoretical treatment of continual RL through the lens of risk-aware decision-making, in which the behaviour of the agent is directed towards optimizing a measure of long-run performance beyond the mean. In particular, we show that the classical theory of risk measures, widely used as a theoretical foundation in non-continual risk-aware RL, is, in its current form, incompatible with continual learning. Then, building on this insight, we extend risk measure theory into the continual setting by introducing a new class of ergodic risk measures that are compatible with continual learning. Finally, we provide a case study of risk-aware continual learning, along with empirical results, which show the intuitive appeal of ergodic risk measures in continual settings.
How to Train Long-Context Language Models (Effectively) ACL 2025
We study continued training and supervised fine-tuning (SFT) of a language model (LM) to make effective use of long-context information. We first establish a reliable evaluation protocol to guide model development -- instead of perplexity or simple needle-in-a-haystack (NIAH) tests, we use a broad set of long-context downstream tasks, and we evaluate models after SFT as this better reveals long-context abilities. Supported by our robust evaluations, we run thorough experiments to decide the data mix for continued pre-training, the instruction tuning dataset, and many other design choices such as position extrapolation. We find that (1) code repositories and books are excellent sources of long data, but it is crucial to combine them with high-quality short-context data; (2) training with a sequence length beyond the evaluation length boosts long-context performance; (3) for SFT, using only short instruction datasets yields strong performance on long-context tasks. Our final model, ProLong-8B, which is initialized from Llama-3 and trained on 40B tokens, demonstrates state-of-the-art long-context performance among similarly sized models at a length of 128K. ProLong outperforms Llama-3.1-8B-Instruct on the majority of long-context tasks despite using only 5% as many tokens during long-context training. Additionally, ProLong can effectively process up to 512K tokens, one of the longest context windows of publicly available LMs.
comment: Accepted to ACL 2025. Our code, data, and models are available at https://github.com/princeton-nlp/ProLong
♻ ☆ Embedding networks with the random walk first return time distribution
We propose the first return time distribution (FRTD) of a random walk as an interpretable and mathematically grounded node embedding. The FRTD assigns a probability mass function to each node, allowing us to define a distance between any pair of nodes using standard metrics for discrete distributions. We present several arguments to motivate the FRTD embedding. First, we show that FRTDs are strictly more informative than eigenvalue spectra, yet insufficient for complete graph identification, thus placing FRTD equivalence between cospectrality and isomorphism. Second, we argue that FRTD equivalence between nodes captures structural similarity. Third, we empirically demonstrate that the FRTD embedding outperforms manually designed graph metrics in network alignment tasks. Finally, we show that random networks that approximately match the FRTD of a desired target also preserve other salient features. Together these results demonstrate the FRTD as a simple and mathematically principled embedding for complex networks.
comment: corrections: Table 3, and omissions from the bibliography
♻ ☆ Four Over Six: More Accurate NVFP4 Quantization with Adaptive Block Scaling
As large language models have grown larger, low-precision numerical formats such as NVFP4 have become increasingly popular due to the speed and memory benefits they provide. However, to accelerate computation with NVFP4, all matrix multiplication operands--weights and activations in the forward pass, and weights, activations, and gradients in the backward pass--must be quantized to NVFP4, often leading to divergence during training and performance degradation during inference. To address this issue, in this work we introduce Four Over Six (4/6), a modification to the NVFP4 quantization algorithm that evaluates two potential scale factors for each block of values. Unlike integer formats, floating-point formats such as FP4 have the most quantization error on near-maximal values in each block, which we find to be primarily responsible for downstream performance degradation. We find that for some blocks, scaling to smaller FP4 values makes the distribution of representable values more uniform, improving representation of near-maximal values. Importantly, 4/6 can be implemented efficiently on NVIDIA Blackwell GPUs, making it viable to use while training LLMs with NVFP4. In pre-training experiments with transformer and hybrid model architectures, we find that 4/6 prevents divergence in several cases, bringing training loss significantly closer to BF16 compared to models trained with current state-of-the-art NVFP4 training recipes. We also find that 4/6 can be easily incorporated into many different post-training quantization methods and generally improves downstream accuracy. We hope this inspires future work in training and deploying models with NVFP4. Our code is available at http://github.com/mit-han-lab/fouroversix.
comment: 10 pages, 5 figures
♻ ☆ All that structure matches does not glitter NeurIPS
Generative models for materials, especially inorganic crystals, hold potential to transform the theoretical prediction of novel compounds and structures. Advancement in this field depends on robust benchmarks and minimal, information-rich datasets that enable meaningful model evaluation. This paper critically examines common datasets and reported metrics for a crystal structure prediction task$\unicode{x2014}$generating the most likely structures given the chemical composition of a material. We focus on three key issues: First, materials datasets should contain unique crystal structures; for example, we show that the widely-utilized carbon-24 dataset only contains $\approx$40% unique structures. Second, materials datasets should not be split randomly if polymorphs of many different compositions are numerous, which we find to be the case for the perov-5 and MP-20 datasets. Third, benchmarks can mislead if used uncritically, e.g., reporting a match rate metric without considering the structural variety exhibited by identical building blocks. To address these oft-overlooked issues, we introduce several fixes. We provide revised versions of the carbon-24 dataset: one with duplicates removed, one deduplicated and split by number of atoms $N$, one with enantiomorphs, and two containing only identical structures but with different unit cells. We also propose new splits for datasets with polymorphs, ensuring that polymorphs are grouped within each split subset, setting a more sensible standard for benchmarking model performance. Finally, we present METRe and cRMSE, new model evaluation metrics that can correct existing issues with the match rate metric.
comment: Accepted at Thirty-Ninth Annual Conference on Neural Information Processing Systems (NeurIPS)
♻ ☆ Unmute the Patch Tokens: Rethinking Probing in Multi-Label Audio Classification
Although probing frozen models has become a standard evaluation paradigm, self-supervised learning in audio defaults to fine-tuning when pursuing state-of-the-art on AudioSet. A key reason is that global pooling creates an information bottleneck causing linear probes to misrepresent the embedding quality: The $\texttt{cls}$-token discards crucial token information about dispersed, localized events in audio. This weakness is rooted in the mismatch between the pretraining objective (globally) and the downstream task (localized). Across a comprehensive benchmark of 13 datasets and 6 spectrogram-based encoders, we investigate the global pooling bottleneck. We introduce binarized prototypical probes: a lightweight and simple pooling method that learns prototypes to perform class-wise information aggregation. Despite its simplicity, our method notably outperforms linear and attentive probing. Our work establishes probing as a competitive and efficient paradigm for evaluating audio SSL models, challenging the reliance on costly fine-tuning.
comment: Currently under review
♻ ☆ GLGENN: A Novel Parameter-Light Equivariant Neural Networks Architecture Based on Clifford Geometric Algebras ICML 2025
We propose, implement, and compare with competitors a new architecture of equivariant neural networks based on geometric (Clifford) algebras: Generalized Lipschitz Group Equivariant Neural Networks (GLGENN). These networks are equivariant to all pseudo-orthogonal transformations, including rotations and reflections, of a vector space with any non-degenerate or degenerate symmetric bilinear form. We propose a weight-sharing parametrization technique that takes into account the fundamental structures and operations of geometric algebras. Due to this technique, GLGENN architecture is parameter-light and has less tendency to overfitting than baseline equivariant models. GLGENN outperforms or matches competitors on several benchmarking equivariant tasks, including estimation of an equivariant function and a convex hull experiment, while using significantly fewer optimizable parameters.
comment: ICML 2025, 36 pages
♻ ☆ SLO-aware GPU Frequency Scaling for Energy Efficient LLM Inference Serving
As Large Language Models (LLMs) gain traction, their reliance on power-hungry GPUs places ever-increasing energy demands, raising environmental and monetary concerns. Inference dominates LLM workloads, presenting a critical challenge for providers: minimizing energy costs under Service-Level Objectives (SLOs) that ensure optimal user experience. In this paper, we present \textit{throttLL'eM}, a framework that reduces energy consumption while meeting SLOs through the use of instance and GPU frequency scaling. \textit{throttLL'eM} features mechanisms that project future KV cache usage and batch size. Leveraging a Machine-Learning (ML) model that receives these projections as inputs, \textit{throttLL'eM} manages performance at the iteration level to satisfy SLOs with reduced frequencies and instance sizes. We show that the proposed ML model achieves $R^2$ scores greater than 0.97 and miss-predicts performance by less than 1 iteration per second on average. Experimental results on LLM inference traces show that \textit{throttLL'eM} achieves up to 43.8\% lower energy consumption and an energy efficiency improvement of at least $1.71\times$ under SLOs, when compared to NVIDIA's Triton server.
♻ ☆ Scheduling and Aggregation Design for Asynchronous Federated Learning over Wireless Networks
Federated Learning (FL) is a collaborative machine learning (ML) framework that combines on-device training and server-based aggregation to train a common ML model among distributed agents. In this work, we propose an asynchronous FL design with periodic aggregation to tackle the straggler issue in FL systems. Considering limited wireless communication resources, we investigate the effect of different scheduling policies and aggregation designs on the convergence performance. Driven by the importance of reducing the bias and variance of the aggregated model updates, we propose a scheduling policy that jointly considers the channel quality and training data representation of user devices. The effectiveness of our channel-aware data-importance-based scheduling policy, compared with state-of-the-art methods proposed for synchronous FL, is validated through simulations. Moreover, we show that an ``age-aware'' aggregation weighting design can significantly improve the learning performance in an asynchronous FL setting.
comment: An amended (corrected) version of the refereed paper published in IEEE Journal on Selected Areas in Communications
♻ ☆ Manifold Percolation: from generative model to Reinforce learning
Generative modeling is typically framed as learning mapping rules, but from an observer's perspective without access to these rules, the task becomes disentangling the geometric support from the probability distribution. We propose that continuum percolation is uniquely suited to this support analysis, as the sampling process effectively projects high-dimensional density estimation onto a geometric counting problem on the support. In this work, we establish a rigorous correspondence between the topological phase transitions of random geometric graphs and the underlying data manifold in high-dimensional space. By analyzing the relationship between our proposed Percolation Shift metric and FID, we show that this metric captures structural pathologies, such as implicit mode collapse, where standard statistical metrics fail. Finally, we translate this topological phenomenon into a differentiable loss function that guides training. Experimental results confirm that this approach not only prevents manifold shrinkage but also fosters a form of synergistic improvement, where topological stability becomes a prerequisite for sustained high fidelity in both static generation and sequential decision making.
comment: 27 pages, 13 figures. Correspondence: Rui.Tong@warwick.ac.uk
♻ ☆ Stabilizing Reinforcement Learning with LLMs: Formulation and Practices
This paper proposes a novel formulation for reinforcement learning (RL) with large language models, explaining why and under what conditions the true sequence-level reward can be optimized via a surrogate token-level objective in policy gradient methods such as REINFORCE. Specifically, through a first-order approximation, we show that this surrogate becomes increasingly valid only when both the training-inference discrepancy and policy staleness are minimized. This insight provides a principled explanation for the crucial role of several widely adopted techniques in stabilizing RL training, including importance sampling correction, clipping, and particularly Routing Replay for Mixture-of-Experts (MoE) models. Through extensive experiments with a 30B MoE model totaling hundreds of thousands of GPU hours, we show that for on-policy training, the basic policy gradient algorithm with importance sampling correction achieves the highest training stability. When off-policy updates are introduced to accelerate convergence, combining clipping and Routing Replay becomes essential to mitigate the instability caused by policy staleness. Notably, once training is stabilized, prolonged optimization consistently yields comparable final performance regardless of cold-start initialization. We hope that the shared insights and the developed recipes for stable RL training will facilitate future research.
Retaining by Doing: The Role of On-Policy Data in Mitigating Forgetting
Adapting language models (LMs) to new tasks via post-training carries the risk of degrading existing capabilities -- a phenomenon classically known as catastrophic forgetting. In this paper, toward identifying guidelines for mitigating this phenomenon, we systematically compare the forgetting patterns of two widely adopted post-training methods: supervised fine-tuning (SFT) and reinforcement learning (RL). Our experiments reveal a consistent trend across LM families (Llama, Qwen) and tasks (instruction following, general knowledge, and arithmetic reasoning): RL leads to less forgetting than SFT while achieving comparable or higher target task performance. To investigate the cause for this difference, we consider a simplified setting in which the LM is modeled as a mixture of two distributions, one corresponding to prior knowledge and the other to the target task. We identify that the mode-seeking nature of RL, which stems from its use of on-policy data, enables keeping prior knowledge intact when learning the target task. We then verify this insight by demonstrating that the use on-policy data underlies the robustness of RL to forgetting in practical settings, as opposed to other algorithmic choices such as the KL regularization or advantage estimation. Lastly, as a practical implication, our results highlight the potential of mitigating forgetting using approximately on-policy data, which can be substantially more efficient to obtain than fully on-policy data.
♻ ☆ Reversible Deep Equilibrium Models
Deep Equilibrium Models (DEQs) are an interesting class of implicit model where the model output is implicitly defined as the fixed point of a learned function. These models have been shown to outperform explicit (fixed-depth) models in large-scale tasks by trading many deep layers for a single layer that is iterated many times. However, gradient calculation through DEQs is approximate. This often leads to unstable training dynamics and requires regularisation or many function evaluations to fix. Here, we introduce Reversible Deep Equilibrium Models (RevDEQs) that allow for exact gradient calculation, no regularisation and far fewer function evaluations than DEQs. We show that RevDEQs significantly improve performance on language modelling and image classification tasks against comparable implicit and explicit models.
♻ ☆ A Common Pipeline for Harmonizing Electronic Health Record Data for Translational Research
Despite the growing availability of Electronic Health Record (EHR) data, researchers often face substantial barriers in effectively using these data for translational research due to their complexity, heterogeneity, and lack of standardized tools and documentation. To address this critical gap, we introduce PEHRT, a common pipeline for harmonizing EHR data for translational research. PEHRT is a comprehensive, ready-to-use resource that includes open-source code, visualization tools, and detailed documentation to streamline the process of preparing EHR data for analysis. The pipeline provides tools to harmonize structured and unstructured EHR data to standardized ontologies to ensure consistency across diverse coding systems. In the presence of unmapped or heterogeneous local codes, PEHRT further leverages representation learning and pre-trained language models to generate robust embeddings that capture semantic relationships across sites to mitigate heterogeneity and enable integrative downstream analyses. PEHRT also supports cross-institutional co-training through shared representations, allowing participating sites to collaboratively refine embeddings and enhance generalizability without sharing individual-level data. The framework is data model-agnostic and can be seamlessly deployed across diverse healthcare systems to produce interoperable, research-ready datasets. By lowering the technical barriers to EHR-based research, PEHRT empowers investigators to transform raw clinical data into reproducible, analysis-ready resources for discovery and innovation.
♻ ☆ Locally Adaptive Conformal Inference for Operator Models
Operator models are regression algorithms between Banach spaces of functions. They have become an increasingly critical tool for spatiotemporal forecasting and physics emulation, especially in high-stakes scenarios where robust, calibrated uncertainty quantification is required. We introduce Local Sliced Conformal Inference (LSCI), a distribution-free framework for generating function-valued, locally adaptive prediction sets for operator models. We prove finite-sample validity and derive a data-dependent upper bound on the coverage gap under local exchangeability. On synthetic Gaussian-process tasks and real applications (air quality monitoring, energy demand forecasting, and weather prediction), LSCI yields tighter sets with stronger adaptivity compared to conformal baselines. We also empirically demonstrate robustness against biased predictions and certain out-of-distribution noise regimes.
comment: 10 pages, 3 figures, 2 tables, Preprint
♻ ☆ Cataloguing Hugging Face Models to Software Engineering Activities: Automation and Findings
Context: Open-source Pre-Trained Models (PTMs) provide extensive resources for various Machine Learning (ML) tasks, yet these resources lack a classification tailored to Software Engineering (SE) needs to support the reliable identification and reuse of models for SE. Objective: To address this gap, we derive a taxonomy encompassing 147 SE tasks and apply an SE-oriented classification to PTMs in a popular open-source ML repository, Hugging Face (HF). Method: Our repository mining study followed a five-phase pipeline: (i) identification SE tasks from the literature; (ii) collection of PTM data from the HF API, including model card descriptions and metadata, and the abstracts of the associated arXiv papers; (iii) text processing to ensure consistency; (iv) a two-phase validation of SE relevance, involving humans and LLM assistance, supported by five pilot studies with human annotators and a generalization test; (v) and data analysis. This process yielded a curated catalogue of 2,205 SE PTMs. Results: We find that most SE PTMs target code generation and coding, emphasizing implementation over early or late development stages. In terms of ML tasks, text generation dominates within SE PTMs. Notably, the number of SE PTMs has increased markedly since 2023 Q2, while evaluation remains limited: only 9.6% report benchmark results, mostly scoring below 50%. Conclusions: Our catalogue reveals documentation and transparency gaps, highlights imbalances across SDLC phases, and provides a foundation for automated SE scenarios, such as the sampling and selection of suitable PTMs.
♻ ☆ DGFusion: Depth-Guided Sensor Fusion for Robust Semantic Perception
Robust semantic perception for autonomous vehicles relies on effectively combining multiple sensors with complementary strengths and weaknesses. State-of-the-art sensor fusion approaches to semantic perception often treat sensor data uniformly across the spatial extent of the input, which hinders performance when faced with challenging conditions. By contrast, we propose a novel depth-guided multimodal fusion method that upgrades condition-aware fusion by integrating depth information. Our network, DGFusion, poses multimodal segmentation as a multi-task problem, utilizing the lidar measurements, which are typically available in outdoor sensor suites, both as one of the model's inputs and as ground truth for learning depth. Our corresponding auxiliary depth head helps to learn depth-aware features, which are encoded into spatially varying local depth tokens that condition our attentive cross-modal fusion. Together with a global condition token, these local depth tokens dynamically adapt sensor fusion to the spatially varying reliability of each sensor across the scene, which largely depends on depth. In addition, we propose a robust loss for our depth, which is essential for learning from lidar inputs that are typically sparse and noisy in adverse conditions. Our method achieves state-of-the-art panoptic and semantic segmentation performance on the challenging MUSES and DeLiVER datasets. Code and models will be available at https://github.com/timbroed/DGFusion
comment: Code and models will be available at https://github.com/timbroed/DGFusion
♻ ☆ Fairy2i: Training Complex LLMs from Real LLMs with All Parameters in $\{\pm 1, \pm i\}$
Large language models (LLMs) have revolutionized artificial intelligence, yet their massive memory and computational demands necessitate aggressive quantization, increasingly pushing representations toward the theoretical limit of a single bit. While complex-valued LLMs, such as iFairy, offer a superior chance for low-bit representation compared to real-valued counterparts, they require training from scratch, preventing the utilization of the vast ecosystem of pre-trained real-valued foundation models. Here we present Fairy2i, a universal framework that transforms pre-trained real-valued layers into an equivalent widely-linear complex form, enabling extremely low-bit quantization while reusing existing checkpoints. By proving a lossless mathematical equivalence between real and widely-linear maps, we convert standard Transformers into the complex domain and employ a phase-aware quantization scheme with a highly efficient codebook of fourth roots of unity. Furthermore, we introduce a recursive residual quantization mechanism that iteratively minimizes quantization error, allowing inference to proceed via efficient multiplication-free accumulation. We demonstrate that Fairy2i restores the performance of LLaMA-2 7B at an effective 2-bit precision to levels nearly comparable with full-precision baselines, significantly outperforming state-of-the-art real-valued binary and ternary quantization methods. This work bridges the gap between the representational efficiency of complex-valued arithmetic and the practical utility of pre-trained models, paving a new way for efficient inference on commodity hardware.
comment: 15 pages, 3 figures
♻ ☆ Why Rectified Power Unit Networks Fail and How to Improve It: An Effective Field Theory Perspective
The Rectified Power Unit (RePU) activation function, a differentiable generalization of the Rectified Linear Unit (ReLU), has shown promise in constructing neural networks due to its smoothness properties. However, deep RePU networks often suffer from critical issues such as vanishing or exploding values during training, rendering them unstable regardless of hyperparameter initialization. Leveraging the perspective of effective field theory, we identify the root causes of these failures and propose the Modified Rectified Power Unit (MRePU) activation function. MRePU addresses RePU's limitations while preserving its advantages, such as differentiability and universal approximation properties. Theoretical analysis demonstrates that MRePU satisfies criticality conditions necessary for stable training, placing it in a distinct universality class. Extensive experiments validate the effectiveness of MRePU, showing significant improvements in training stability and performance across various tasks, including polynomial regression, physics-informed neural networks (PINNs) and real-world vision tasks. Our findings highlight the potential of MRePU as a robust alternative for building deep neural networks.
comment: 40 pages, 19 figures
♻ ☆ Run-Time Monitoring of ERTMS/ETCS Control Flow by Process Mining
Ensuring the resilience of computer-based railways is increasingly crucial to account for uncertainties and changes due to the growing complexity and criticality of those systems. Although their software relies on strict verification and validation processes following well-established best-practices and certification standards, anomalies can still occur at run-time due to residual faults, system and environmental modifications that were unknown at design-time, or other emergent cyber-threat scenarios. This paper explores run-time control-flow anomaly detection using process mining to enhance the resilience of ERTMS/ETCS L2 (European Rail Traffic Management System / European Train Control System Level 2). Process mining allows learning the actual control flow of the system from its execution traces, thus enabling run-time monitoring through online conformance checking. In addition, anomaly localization is performed through unsupervised machine learning to link relevant deviations to critical system components. We test our approach on a reference ERTMS/ETCS L2 scenario, namely the RBC/RBC Handover, to show its capability to detect and localize anomalies with high accuracy, efficiency, and explainability.
comment: Accepted to the 6th International Conference on Reliability, Safety, and Security of Railway Systems (RSSRail2025)
♻ ☆ GTPO: Stabilizing Group Relative Policy Optimization via Gradient and Entropy Control
Group Relative Policy Optimization (GRPO) is a promising policy-based approach for Large Language Model alignment, yet its performance is often limited by training instability and suboptimal convergence. In this paper, we identify and analyze two main GRPO issues: (i) the token-level penalization, where valuable tokens shared across different responses receive contradictory feedback signals, leading to conflicting gradient updates that can reduce their likelihood; and (ii) the policy collapse, where negatively rewarded completions may penalize confident responses and shift model decisions toward unlikely tokens, destabilizing training process. To address these issues we introduce GTPO (Group-relative Trajectory-based Policy Optimization), which prevents conflicting gradients on valuable tokens by skipping negative updates while amplifying positive ones and filters out completions whose entropy exceeds a provable threshold, to prevent policy collapse. Unlike GRPO, GTPO does not rely on KL-divergence regularization, eliminating the need for a reference model during training, while still ensuring greater training stability and improved performance, as validated through multiple experiments on GSM8K, MATH, AIME 2024, AIME 2025 and AMC 2023.
♻ ☆ Challenges and Limitations of Generative AI in Synthesizing Wearable Sensor Data
The widespread adoption of wearable sensors has the potential to provide massive and heterogeneous time series data, driving the use of Artificial Intelligence in human sensing applications. However, data collection remains limited due to stringent ethical regulations, privacy concerns, and other constraints, hindering progress in the field. Synthetic data generation, particularly through Generative Adversarial Networks and Diffusion Models, has emerged as a promising solution to mitigate both data scarcity and privacy issues. However, these models are often limited to narrow operational scenarios, such as short-term and unimodal signal patterns. To address this gap, we present a systematic evaluation of state-of-the-art generative models for time series data, explicitly assessing their performance in challenging scenarios such as stress and emotion recognition. Our study examines the extent to which these models can jointly handle multi-modality, capture long-range dependencies, and support conditional generation-core requirements for real-world wearable sensor data generation. To enable a fair and rigorous comparison, we also introduce an evaluation framework that evaluates both the intrinsic fidelity of the generated data and their utility in downstream predictive tasks. Our findings reveal critical limitations in the existing approaches, particularly in maintaining cross-modal consistency, preserving temporal coherence, and ensuring robust performance in train-on-synthetic, test-on-real, and data augmentation scenarios. Finally, we present our future research directions to enhance synthetic time series generation and improve the applicability of generative models in the wearable computing domain.
♻ ☆ Investigating Bias: A Multilingual Pipeline for Generating, Solving, and Evaluating Math Problems with LLMs
Large Language Models (LLMs) are increasingly used for educational support, yet their response quality varies depending on the language of interaction. This paper presents an automated multilingual pipeline for generating, solving, and evaluating math problems aligned with the German K-10 curriculum. We generated 628 math exercises and translated them into English, German, and Arabic. Three commercial LLMs (GPT-4o-mini, Gemini 2.5 Flash, and Qwen-plus) were prompted to produce step-by-step solutions in each language. A held-out panel of LLM judges, including Claude 3.5 Haiku, evaluated solution quality using a comparative framework. Results show a consistent gap, with English solutions consistently rated highest, and Arabic often ranked lower. These findings highlight persistent linguistic bias and the need for more equitable multilingual AI systems in education.
comment: Published in CEUR Workshop Proceedings, Vol. 4114, edu4AI'25: 2nd Workshop on Education for Artificial Intelligence, co-located with ECAI 2025, Bologna, Italy
♻ ☆ Understanding the Limits of Deep Tabular Methods with Temporal Shift ICML 2025
Deep tabular models have demonstrated remarkable success on i.i.d. data, excelling in a variety of structured data tasks. However, their performance often deteriorates under temporal distribution shifts, where trends and periodic patterns are present in the evolving data distribution over time. In this paper, we explore the underlying reasons for this failure in capturing temporal dependencies. We begin by investigating the training protocol, revealing a key issue in how model selection performs. While existing approaches use temporal ordering for splitting validation set, we show that even a random split can significantly improve model performance. By minimizing the time lag between training data and test time, while reducing the bias in validation, our proposed training protocol significantly improves generalization across various methods. Furthermore, we analyze how temporal data affects deep tabular representations, uncovering that these models often fail to capture crucial periodic and trend information. To address this gap, we introduce a plug-and-play temporal embedding method based on Fourier series expansion to learn and incorporate temporal patterns, offering an adaptive approach to handle temporal shifts. Our experiments demonstrate that this temporal embedding, combined with the improved training protocol, provides a more effective and robust framework for learning from temporal tabular data.
comment: 21 pages, 10 figures, 13 tables. ICML 2025
♻ ☆ WavefrontDiffusion: Dynamic Decoding Schedule for Improved Reasoning
Diffusion Language Models (DLMs) have shown strong potential for text generation and are becoming a competitive alternative to autoregressive models. The denoising strategy plays an important role in determining the quality of their outputs. Mainstream denoising strategies include Standard Diffusion and BlockDiffusion. Standard Diffusion performs global denoising without restricting the update range, often finalizing incomplete context and causing premature end-of-sequence predictions. BlockDiffusion updates fixed-size blocks in a preset order, but its rigid structure can break apart coherent semantic units and disrupt reasoning. We present WavefrontDiffusion, a dynamic decoding approach that expands a wavefront of active tokens outward from finalized positions. This adaptive process follows the natural flow of semantic structure while keeping computational cost equal to block-based methods. Across four benchmarks in reasoning and code generation, WavefrontDiffusion achieves state-of-the-art performance while producing outputs with higher semantic fidelity, showing the value of adaptive scheduling for more coherent and efficient generation.
comment: 19 pages. 3 figures
♻ ☆ Universal Multi-Domain Translation via Diffusion Routers
Multi-domain translation (MDT) aims to learn translations between multiple domains, yet existing approaches either require fully aligned tuples or can only handle domain pairs seen in training, limiting their practicality and excluding many cross-domain mappings. We introduce universal MDT (UMDT), a generalization of MDT that seeks to translate between any pair of $K$ domains using only $K-1$ paired datasets with a central domain. To tackle this problem, we propose Diffusion Router (DR), a unified diffusion-based framework that models all central$\leftrightarrow$non-central translations with a single noise predictor conditioned on the source and target domain labels. DR enables indirect non-central translations by routing through the central domain. We further introduce a novel scalable learning strategy with a variational-bound objective and an efficient Tweedie refinement procedure to support direct non-central mappings. Through evaluation on three large-scale UMDT benchmarks, DR achieves state-of-the-art results for both indirect and direct translations, while lowering sampling cost and unlocking novel tasks such as sketch$\leftrightarrow$segmentation. These results establish DR as a scalable and versatile framework for universal translation across multiple domains.
♻ ☆ Fairness Interventions: A Study in AI Explainability
This paper presents a philosophical and experimental study of fairness interventions in AI classification, centered on the explainability of corrective methods. We argue that ensuring fairness requires not only satisfying a target criterion, but also explaining which variables constrain its realization. When corrections are used to mitigate advantage transparently, they must remain sensitive to the distribution of true labels. To illustrate this approach, we built FairDream, a fairness package whose mechanism is made transparent for lay users, increasing the model's weights of errors on disadvantaged groups. While a user may intend to achieve Demographic Parity by the correction method, experiments show that FairDream tends towards Equalized Odds, revealing a conservative bias inherent to the data environment. We clarify the relationship between these fairness criteria, analyze FairDream's reweighting process, and compare its trade-offs with closely related GridSearch models. Finally, we justify the normative preference for Equalized Odds via an epistemological interpretation of the results, using their proximity with Simpson's paradox. The paper thus unites normative, epistemological, and empirical explanations of fairness interventions, to ensure transparency for the users.
♻ ☆ Transductive Conformal Inference for Full Ranking
We introduce a method based on Conformal Prediction (CP) to quantify the uncertainty of full ranking algorithms. We focus on a specific scenario where $n+m$ items are to be ranked by some ``black box'' algorithm. It is assumed that the relative (ground truth) ranking of $n$ of them is known. The objective is then to quantify the error made by the algorithm on the ranks of the $m$ new items among the total $(n+m)$. In such a setting, the true ranks of the $n$ original items in the total $(n+m)$ depend on the (unknown) true ranks of the $m$ new ones. Consequently, we have no direct access to a calibration set to apply a classical CP method. To address this challenge, we propose to construct distribution-free bounds of the unknown conformity scores using recent results on the distribution of conformal p-values. Using these scores upper bounds, we provide valid prediction sets for the rank of any item. We also control the false coverage proportion, a crucial quantity when dealing with multiple prediction sets. Finally, we empirically show on both synthetic and real data the efficiency of our CP method for state-of-the-art algorithms such as RankNet or LambdaMart.
♻ ☆ Wasserstein-Aitchison GAN for angular measures of multivariate extremes
Economically responsible mitigation of multivariate extreme risks -- extreme rainfall in a large area, huge variations of many stock prices, widespread breakdowns in transportation systems -- requires estimates of the probabilities that such risks will materialize in the future. This paper develops a new method, Wasserstein--Aitchison Generative Adversarial Networks (WA-GAN) to, which provides simulated values of $d$-dimensional multivariate extreme events and which can hence be used to give estimates of such probabilities. The main hypothesis is that, after transforming the observations to the unit-Pareto scale, their distribution is regularly varying in the sense that the distributions of their radial and angular components (with respect to the $L_1$-norm) converge and become asymptotically independent as the radius gets large. The method is a combination of standard extreme value analysis modeling of the tails of the marginal distributions with nonparametric GAN modeling of the angular distribution. For the latter, the angular values are transformed to Aitchison coordinates in a full $(d-1)$-dimensional linear space, and a Wasserstein GAN is trained on these coordinates and used to generate new values. A reverse transformation is then applied to these values and gives simulated values on the original data scale. Our method is applied to simulated data and to a financial data set from the Kenneth French Data Library. The method shows good performance compared to other existing methods in the literature, both in terms of capturing the dependence structure of the extremes in the data and in generating accurate new extremes.
comment: 45 pages
♻ ☆ Class conditional conformal prediction for multiple inputs by p-value aggregation
Conformal prediction methods are statistical tools designed to quantify uncertainty and generate predictive sets with guaranteed coverage probabilities. This work introduces an innovative refinement to these methods for classification tasks, specifically tailored for scenarios where multiple observations (multi-inputs) of a single instance are available at prediction time. Our approach is particularly motivated by applications in citizen science, where multiple images of the same plant or animal are captured by individuals. Our method integrates the information from each observation into conformal prediction, enabling a reduction in the size of the predicted label set while preserving the required class-conditional coverage guarantee. The approach is based on the aggregation of conformal p-values computed from each observation of a multi-input. By exploiting the exact distribution of these p-values, we propose a general aggregation framework using an abstract scoring function, encompassing many classical statistical tools. Knowledge of this distribution also enables refined versions of standard strategies, such as majority voting. We evaluate our method on simulated and real data, with a particular focus on Pl@ntNet, a prominent citizen science platform that facilitates the collection and identification of plant species through user-submitted images.
♻ ☆ Flow Matching: Markov Kernels, Stochastic Processes and Transport Plans
Among generative neural models, flow matching techniques stand out for their simple applicability and good scaling properties. Here, velocity fields of curves connecting a simple latent and a target distribution are learned. Then the corresponding ordinary differential equation can be used to sample from a target distribution, starting in samples from the latent one. This paper reviews from a mathematical point of view different techniques to learn the velocity fields of absolutely continuous curves in the Wasserstein geometry. We show how the velocity fields can be characterized and learned via i) transport plans (couplings) between latent and target distributions, ii) Markov kernels and iii) stochastic processes, where the latter two include the coupling approach, but are in general broader. Besides this main goal, we show how flow matching can be used for solving Bayesian inverse problems, where the definition of conditional Wasserstein distances plays a central role. Finally, we briefly address continuous normalizing flows and score matching techniques, which approach the learning of velocity fields of curves from other directions.
♻ ☆ Covariance Scattering Transforms
Machine learning and data processing techniques relying on covariance information are widespread as they identify meaningful patterns in unsupervised and unlabeled settings. As a prominent example, Principal Component Analysis (PCA) projects data points onto the eigenvectors of their covariance matrix, capturing the directions of maximum variance. This mapping, however, falls short in two directions: it fails to capture information in low-variance directions, relevant when, e.g., the data contains high-variance noise; and it provides unstable results in low-sample regimes, especially when covariance eigenvalues are close. CoVariance Neural Networks (VNNs), i.e., graph neural networks using the covariance matrix as a graph, show improved stability to estimation errors and learn more expressive functions in the covariance spectrum than PCA, but require training and operate in a labeled setup. To get the benefits of both worlds, we propose Covariance Scattering Transforms (CSTs), deep untrained networks that sequentially apply filters localized in the covariance spectrum to the input data and produce expressive hierarchical representations via nonlinearities. We define the filters as covariance wavelets that capture specific and detailed covariance spectral patterns. We improve CSTs' computational and memory efficiency via a pruning mechanism, and we prove that their error due to finite-sample covariance estimations is less sensitive to close covariance eigenvalues compared to PCA, improving their stability. Our experiments on age prediction from cortical thickness measurements on 4 datasets collecting patients with neurodegenerative diseases show that CSTs produce stable representations in low-data settings, as VNNs but without any training, and lead to comparable or better predictions w.r.t. more complex learning models.
♻ ☆ CuES: A Curiosity-driven and Environment-grounded Synthesis Framework for Agentic RL
Large language model based agents are increasingly deployed in complex, tool augmented environments. While reinforcement learning provides a principled mechanism for such agents to improve through interaction, its effectiveness critically depends on the availability of structured training tasks. In many realistic settings, however, no such tasks exist a challenge we term task scarcity, which has become a key bottleneck for scaling agentic RL. Existing approaches typically assume predefined task collections, an assumption that fails in novel environments where tool semantics and affordances are initially unknown. To address this limitation, we formalize the problem of Task Generation for Agentic RL, where an agent must learn within a given environment that lacks predefined tasks. We propose CuES, a Curiosity driven and Environment grounded Synthesis framework that autonomously generates diverse, executable, and meaningful tasks directly from the environment structure and affordances, without relying on handcrafted seeds or external corpora. CuES drives exploration through intrinsic curiosity, abstracts interaction patterns into reusable task schemas, and refines them through lightweight top down guidance and memory based quality control. Across three representative environments, AppWorld, BFCL, and WebShop, CuES produces task distributions that match or surpass manually curated datasets in both diversity and executability, yielding substantial downstream policy improvements. These results demonstrate that curiosity driven, environment grounded task generation provides a scalable foundation for agents that not only learn how to act, but also learn what to learn. The code is available at https://github.com/modelscope/AgentEvolver/tree/main/research/CuES.
♻ ☆ No-Regret Gaussian Process Optimization of Time-Varying Functions
Sequential optimization of black-box functions from noisy evaluations has been widely studied, with Gaussian Process bandit algorithms such as GP-UCB guaranteeing no-regret in stationary settings. However, for time-varying objectives, it is known that no-regret is unattainable under pure bandit feedback unless strong and often unrealistic assumptions are imposed. In this article, we propose a novel method to optimize time-varying rewards in the frequentist setting, where the objective has bounded RKHS norm. Time variations are captured through uncertainty injection (UI), which enables heteroscedastic GP regression that adapts past observations to the current time step. As no-regret is unattainable in general in the strict bandit setting, we relax the latter allowing additional queries on previously observed points. Building on sparse inference and the effect of UI on regret, we propose W-SparQ-GP-UCB, an online algorithm that achieves no-regret with only a vanishing number of additional queries per iteration. To assess the theoretical limits of this approach, we establish a lower bound on the number of additional queries required for no-regret, proving the efficiency of our method. Finally, we provide a comprehensive analysis linking the degree of time-variation of the function to achievable regret rates, together with upper and lower bounds on the number of additional queries needed in each regime.
♻ ☆ CoreSPECT: Enhancing Clustering Algorithms via an Interplay of Density and Geometry
In this paper, we provide a novel perspective on the underlying structure of real-world data with ground-truth clusters via characterization of an abundantly observed yet often overlooked density-geometry correlation, that manifests itself as a multi-layered manifold structure. We leverage this correlation to design CoreSPECT (Core Space Projection based Enhancement of Clustering Techniques), a general framework that improves the performance of generic clustering algorithms. Our framework boosts the performance of clustering algorithms by applying them to strategically selected regions, then extending the partial partition to a complete partition for the dataset using a novel neighborhood graph based multi-layer propagation procedure. We provide initial theoretical support of the functionality of our framework under the assumption of our model, and then provide large-scale real-world experiments on 19 datasets that include standard image datasets as well as genomics datasets. We observe two notable improvements. First, CoreSPECT improves the NMI of K-Means by 20% on average, making it competitive to (and in some cases surpassing) the state-of-the-art manifold-based clustering algorithms, while being orders of magnitude faster. Secondly, our framework boosts the NMI of HDBSCAN by more than 100% on average, making it competitive to the state-of-the-art in several cases without requiring the true number of clusters and hyper-parameter tuning. The overall ARI improvements are higher.
♻ ☆ Filtration-Based Representation Learning for Temporal Graphs
In this work, we introduce a filtration on temporal graphs based on $δ$-temporal motifs (recurrent subgraphs), yielding a multi-scale representation of temporal structure. Our temporal filtration allows tools developed for filtered static graphs, including persistent homology and recent graph filtration kernels, to be applied directly to temporal graph analysis. We demonstrate the effectiveness of this approach on temporal graph classification tasks.
♻ ☆ Improving Wi-Fi Network Performance Prediction with Deep Learning Models
The increasing need for robustness, reliability, and determinism in wireless networks for industrial and mission-critical applications is the driver for the growth of new innovative methods. The study presented in this work makes use of machine learning techniques to predict channel quality in a Wi-Fi network in terms of the frame delivery ratio. Predictions can be used proactively to adjust communication parameters at runtime and optimize network operations for industrial applications. Methods including convolutional neural networks and long short-term memory were analyzed on datasets acquired from a real Wi-Fi setup across multiple channels. The models were compared in terms of prediction accuracy and computational complexity. Results show that the frame delivery ratio can be reliably predicted, and convolutional neural networks, although slightly less effective than other models, are more efficient in terms of CPU usage and memory consumption. This enhances the model's usability on embedded and industrial systems.
comment: preprint accepted, 8 pages, 2025
♻ ☆ Marginalize, Rather than Impute: Probabilistic Wind Power Forecasting with Incomplete Data
Machine learning methods are widely and successfully used for probabilistic wind power forecasting, yet the pervasive issue of missing values (e.g., due to sensor faults or communication outages) has received limited attention. The prevailing practice is impute-then-predict, but conditioning on point imputations biases parameter estimates and fails to propagate uncertainty from missing features. Our approach treats missing features and forecast targets uniformly: we learn a joint generative model of features and targets from incomplete data and, at operational deployment, condition on the observed features and marginalize the unobserved ones to produce forecasts. This imputation-free procedure avoids error introduced by imputation and preserves uncertainty aroused from missing features. In experiments, it improves forecast quality in terms of continuous ranked probability score relative to impute-then-predict baselines while incurring substantially lower computational cost than common alternatives.
comment: Submitted to INFORMS Journal on Data Science
♻ ☆ LargeAD: Large-Scale Cross-Sensor Data Pretraining for Autonomous Driving
Recent advancements in vision foundation models (VFMs) have revolutionized visual perception in 2D, yet their potential for 3D scene understanding, particularly in autonomous driving applications, remains underexplored. In this paper, we introduce LargeAD, a versatile and scalable framework designed for large-scale 3D pretraining across diverse real-world driving datasets. Our framework leverages VFMs to extract semantically rich superpixels from 2D images, which are aligned with LiDAR point clouds to generate high-quality contrastive samples. This alignment facilitates cross-modal representation learning, enhancing the semantic consistency between 2D and 3D data. We introduce several key innovations: (i) VFM-driven superpixel generation for detailed semantic representation, (ii) a VFM-assisted contrastive learning strategy to align multimodal features, (iii) superpoint temporal consistency to maintain stable representations across time, and (iv) multi-source data pretraining to generalize across various LiDAR configurations. Our approach achieves substantial gains over state-of-the-art methods in linear probing and fine-tuning for LiDAR-based segmentation and object detection. Extensive experiments on 11 large-scale multi-sensor datasets highlight our superior performance, demonstrating adaptability, efficiency, and robustness in real-world autonomous driving scenarios.
comment: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
♻ ☆ Score Distillation of Flow Matching Models
Diffusion models achieve high-quality image generation but are limited by slow iterative sampling. Distillation methods alleviate this by enabling one- or few-step generation. Flow matching, originally introduced as a distinct framework, has since been shown to be theoretically equivalent to diffusion under Gaussian assumptions, raising the question of whether distillation techniques such as score distillation transfer directly. We provide a simple derivation -- based on Bayes' rule and conditional expectations -- that unifies Gaussian diffusion and flow matching without relying on ODE/SDE formulations. Building on this view, we extend Score identity Distillation (SiD) to pretrained text-to-image flow-matching models, including SANA, SD3-Medium, SD3.5-Medium/Large, and FLUX.1-dev, all with DiT backbones. Experiments show that, with only modest flow-matching- and DiT-specific adjustments, SiD works out of the box across these models, in both data-free and data-aided settings, without requiring teacher finetuning or architectural changes. This provides the first systematic evidence that score distillation applies broadly to text-to-image flow matching models, resolving prior concerns about stability and soundness and unifying acceleration techniques across diffusion- and flow-based generators. A project page is available at https://yigu1008.github.io/SiD-DiT.
♻ ☆ Decentralized Fairness Aware Multi Task Federated Learning for VR Network
Wireless connectivity promises to unshackle virtual reality (VR) experiences, allowing users to engage from anywhere, anytime. However, delivering seamless, high-quality, real-time VR video wirelessly is challenging due to the stringent quality of experience requirements, low latency constraints, and limited VR device capabilities. This paper addresses these challenges by introducing a novel decentralized multi task fair federated learning (DMTFL) based caching that caches and prefetches each VR user's field of view (FOV) at base stations (BSs) based on the caching strategies tailored to each BS. In federated learning (FL) in its naive form, often biases toward certain users, and a single global model fails to capture the statistical heterogeneity across users and BSs. In contrast, the proposed DMTFL algorithm personalizes content delivery by learning individual caching models at each BS. These models are further optimized to perform well under any target distribution, while providing theoretical guarantees via Rademacher complexity and a probably approximately correct (PAC) bound on the loss. Using a realistic VR head-tracking dataset, our simulations demonstrate the superiority of our proposed DMTFL algorithm compared to baseline algorithms.
comment: accepted at IEEE Globecom Workshop 2025
♻ ☆ VLSU: Mapping the Limits of Joint Multimodal Understanding for AI Safety
Safety evaluation of multimodal foundation models often treats vision and language inputs separately, missing risks from joint interpretation where benign content becomes harmful in combination. Existing approaches also fail to distinguish clearly unsafe content from borderline cases, leading to problematic over-blocking or under-refusal of genuinely harmful content. We present Vision Language Safety Understanding (VLSU), a comprehensive framework to systematically evaluate multimodal safety through fine-grained severity classification and combinatorial analysis across 17 distinct safety patterns. Using a multi-stage pipeline with real-world images and human annotation, we construct a large-scale benchmark of 8,187 samples spanning 15 harm categories. Our evaluation of eleven state-of-the-art models reveals systematic joint understanding failures: while models achieve 90%-plus accuracy on clear unimodal safety signals, performance degrades substantially to 20-55% when joint image-text reasoning is required to determine the safety label. Most critically, 34% of errors in joint image-text safety classification occur despite correct classification of the individual modalities, further demonstrating absent compositional reasoning capabilities. Additionally, we find that models struggle to balance refusing unsafe content while still responding to borderline cases that deserve engagement. For example, we find that instruction framing can reduce the over-blocking rate on borderline content from 62.4% to 10.4% in Gemini-1.5, but only at the cost of under-refusing on unsafe content with refusal rate dropping from 90.8% to 53.9%. Overall, our framework exposes weaknesses in joint image-text understanding and alignment gaps in current models, and provides a critical test bed to enable the next milestones in research on robust vision-language safety.
comment: 10 pages, 5 figures, 4 tables, detailed appendix. Under review
♻ ☆ Integrating Weather Station Data and Radar for Precipitation Nowcasting: SmaAt-fUsion and SmaAt-Krige-GNet
Short-term precipitation nowcasting is essential for flood management, transportation, energy system operations, and emergency response. However, many existing models fail to fully exploit the extensive atmospheric information available, relying primarily on precipitation data alone. This study examines whether integrating multi-variable weather-station measurements with radar can enhance nowcasting skill and introduces two complementary architectures that integrate multi-variable station data with radar images. The SmaAt-fUsion model extends the SmaAt-UNet framework by incorporating weather station data through a convolutional layer, integrating it into the bottleneck of the network; The SmaAt-Krige-GNet model combines precipitation maps with weather station data processed using Kriging, a geo-statistical interpolation method, to generate variable-specific maps. These maps are then utilized in a dual-encoder architecture based on SmaAt-GNet, allowing multi-level data integration . Experimental evaluations were conducted using four years (2016--2019) of weather station and precipitation radar data from the Netherlands. Results demonstrate that SmaAt-Krige-GNet outperforms the standard SmaAt-UNet, which relies solely on precipitation radar data, in low precipitation scenarios, while SmaAt-fUsion surpasses SmaAt-UNet in both low and high precipitation scenarios. This highlights the potential of incorporating discrete weather station data to enhance the performance of deep learning-based weather nowcasting models.
comment: 14 pages, 6 figures
♻ ☆ ZIP-RC: Optimizing Test-Time Compute via Zero-Overhead Joint Reward-Cost Prediction
Large language models excel at reasoning but lack key aspects of introspection, including anticipating their own success and the computation required to achieve it. Humans use real-time introspection to decide how much effort to invest, when to make multiple attempts, when to stop, and when to signal success or failure. Without this, LLMs struggle to make intelligent meta-cognition decisions. Test-time scaling methods like Best-of-N drive up cost and latency by using a fixed budget of samples regardless of the marginal benefit of each one at any point in generation, and the absence of confidence signals can mislead people, prevent appropriate escalation to better tools, and undermine trustworthiness. Learned verifiers or reward models can provide confidence estimates, but do not enable adaptive inference and add substantial cost by requiring extra models or forward passes. We present ZIP-RC, an adaptive inference method that equips models with zero-overhead inference-time predictions of reward and cost. At every token, ZIP-RC reuses reserved or unused logits in the same forward pass as next-token prediction to output a joint distribution over final reward and remaining length -- no extra models, architecture change, or inference overhead. This full joint distribution is used to compute a sampling utility which is the linear combination of the expected maximum reward, total compute, and latency of set of samples if generated to completion. During inference, we maximize this utility with meta-actions that determine which prefix of tokens to continue or initiate sampling from. On mixed-difficulty mathematical benchmarks, ZIP-RC improves accuracy by up to 12% over majority voting at equal or lower average cost, and traces smooth Pareto frontiers between quality, compute, and latency. By providing real-time reward-cost introspection, ZIP-RC enables adaptive, efficient reasoning.
comment: Code coming soon
♻ ☆ AutoEnv: Automated Environments for Measuring Cross-Environment Agent Learning
Humans naturally adapt to diverse environments by learning underlying rules across worlds with different dynamics, observations, and reward structures. In contrast, existing agents typically demonstrate improvements via self-evolving within a single domain, implicitly assuming a fixed environment distribution. Cross-environment learning has remained largely unmeasured: there is no standard collection of controllable, heterogeneous environments, nor a unified way to represent how agents learn. We address these gaps in two steps. First, we propose AutoEnv, an automated framework that treats environments as factorizable distributions over transitions, observations, and rewards, enabling low-cost (4.12 USD on average) generation of heterogeneous worlds. Using AutoEnv, we construct AutoEnv-36, a dataset of 36 environments with 358 validated levels, on which seven language models achieve 12-49% normalized reward, demonstrating the challenge of AutoEnv-36. Second, we formalize agent learning as a component-centric process driven by three stages of Selection, Optimization, and Evaluation applied to an improvable agent component. Using this formulation, we design eight learning methods and evaluate them on AutoEnv-36. Empirically, the gain of any single learning method quickly decrease as the number of environments increases, revealing that fixed learning methods do not scale across heterogeneous environments. Environment-adaptive selection of learning methods substantially improves performance but exhibits diminishing returns as the method space expands. These results highlight both the necessity and the current limitations of agent learning for scalable cross-environment generalization, and position AutoEnv and AutoEnv-36 as a testbed for studying cross-environment agent learning. The code is avaiable at https://github.com/FoundationAgents/AutoEnv.
♻ ☆ Detecting Invariant Manifolds in ReLU-Based RNNs
Recurrent Neural Networks (RNNs) have found widespread applications in machine learning for time series prediction and dynamical systems reconstruction, and experienced a recent renaissance with improved training algorithms and architectural designs. Understanding why and how trained RNNs produce their behavior is important for scientific and medical applications, and explainable AI more generally. An RNN's dynamical repertoire depends on the topological and geometrical properties of its state space. Stable and unstable manifolds of periodic points play a particularly important role: They dissect a dynamical system's state space into different basins of attraction, and their intersections lead to chaotic dynamics with fractal geometry. Here we introduce a novel algorithm for detecting these manifolds, with a focus on piecewise-linear RNNs (PLRNNs) employing rectified linear units (ReLUs) as their activation function. We demonstrate how the algorithm can be used to trace the boundaries between different basins of attraction, and hence to characterize multistability, a computationally important property. We further show its utility in finding so-called homoclinic points, the intersections between stable and unstable manifolds, and thus establish the existence of chaos in PLRNNs. Finally we show for an empirical example, electrophysiological recordings from a cortical neuron, how insights into the underlying dynamics could be gained through our method.
♻ ☆ Test-Time Training Scaling Laws for Chemical Exploration in Drug Design
Chemical Language Models (CLMs) leveraging reinforcement learning (RL) have shown promise in de novo molecular design, yet often suffer from mode collapse, limiting their exploration capabilities. Inspired by Test-Time Training (TTT) in large language models, we propose scaling TTT for CLMs to enhance chemical space exploration. We introduce MolExp, a novel benchmark emphasizing the discovery of structurally diverse molecules with similar bioactivity, simulating real-world drug design challenges. Our results demonstrate that scaling TTT by increasing the number of independent RL agents follows a log-linear scaling law, significantly improving exploration efficiency as measured by MolExp. In contrast, increasing TTT training time yields diminishing returns, even with exploration bonuses. We further evaluate cooperative RL strategies to enhance exploration efficiency. These findings provide a scalable framework for generative molecular design, offering insights into optimizing AI-driven drug discovery.
♻ ☆ Accelerating data-driven algorithm selection for combinatorial partitioning problems
Data-driven algorithm selection is a powerful approach for choosing effective heuristics for computational problems. It operates by evaluating a set of candidate algorithms on a collection of representative training instances and selecting the one with the best empirical performance. However, running each algorithm on every training instance is computationally expensive, making scalability a central challenge. In practice, a common workaround is to evaluate algorithms on smaller proxy instances derived from the original inputs. However, this practice has remained largely ad hoc and lacked theoretical grounding. We provide the first theoretical foundations for this practice by formalizing the notion of size generalization: predicting an algorithm's performance on a large instance by evaluating it on a smaller, representative instance, subsampled from the original instance. We provide size generalization guarantees for three widely used clustering algorithms (single-linkage, $k$-means++, and Gonzalez's $k$-centers heuristic) and two canonical max-cut algorithms (Goemans-Williamson and Greedy). We characterize the subsample size sufficient to ensure that performance on the subsample reflects performance on the full instance, and our experiments support these findings.
♻ ☆ ORACLE: A Real-Time, Hierarchical, Deep-Learning Photometric Classifier for the LSST
We present ORACLE, the first hierarchical deep-learning model for real-time, context-aware classification of transient and variable astrophysical phenomena. ORACLE is a recurrent neural network with Gated Recurrent Units (GRUs), and has been trained using a custom hierarchical cross-entropy loss function to provide high-confidence classifications along an observationally-driven taxonomy with as little as a single photometric observation. Contextual information for each object, including host galaxy photometric redshift, offset, ellipticity and brightness, is concatenated to the light curve embedding and used to make a final prediction. Training on $\sim$0.5M events from the Extended LSST Astronomical Time-Series Classification Challenge, we achieve a top-level (Transient vs Variable) macro-averaged precision of 0.96 using only 1 day of photometric observations after the first detection in addition to contextual information, for each event; this increases to $>$0.99 once 64 days of the light curve has been obtained, and 0.83 at 1024 days after first detection for 19-way classification (including supernova sub-types, active galactic nuclei, variable stars, microlensing events, and kilonovae). We also compare ORACLE with other state-of-the-art classifiers and report comparable performance for the 19-way classification task, in addition to delivering accurate top-level classifications much earlier. The code and model weights used in this work are publicly available at our associated GitHub repository (https://github.com/uiucsn/ELAsTiCC-Classification).
comment: 30 pages, 20 figures, 9 tables. Accepted to ApJ
♻ ☆ Variational Inference of Parameters in Opinion Dynamics Models
Despite the frequent use of agent-based models (ABMs) for studying social phenomena, parameter estimation remains a challenge, often relying on costly simulation-based heuristics. This work uses variational inference to estimate the parameters of an opinion dynamics ABM, by transforming the estimation problem into an optimization task that can be solved directly. Our proposal relies on probabilistic generative ABMs (PGABMs): we start by synthesizing a probabilistic generative model from the ABM rules. Then, we transform the inference process into an optimization problem suitable for automatic differentiation. In particular, we use the Gumbel-Softmax reparameterization for categorical agent attributes and stochastic variational inference for parameter estimation. Furthermore, we explore the trade-offs of using variational distributions with different complexity: normal distributions and normalizing flows. We validate our method on a bounded confidence model with agent roles (leaders and followers). Our approach estimates both macroscopic (bounded confidence intervals and backfire thresholds) and microscopic ($200$ categorical, agent-level roles) more accurately than simulation-based and MCMC methods. Consequently, our technique enables experts to tune and validate their ABMs against real-world observations, thus providing insights into human behavior in social systems via data-driven analysis.
♻ ☆ Learning Fluid-Structure Interaction with Physics-Informed Machine Learning and Immersed Boundary Methods
Physics-informed neural networks (PINNs) have emerged as a promising approach for solving complex fluid dynamics problems, yet their application to fluid-structure interaction (FSI) problems with moving boundaries remains largely unexplored. This work addresses the critical challenge of modeling FSI systems with moving interfaces, where traditional unified PINN architectures struggle to capture the distinct physics governing fluid and structural domains simultaneously. We present an innovative Eulerian-Lagrangian PINN architecture that integrates immersed boundary method (IBM) principles to solve FSI problems with moving boundary conditions. Our approach fundamentally departs from conventional unified architectures by introducing domain-specific neural networks: an Eulerian network for fluid dynamics and a Lagrangian network for structural interfaces, coupled through physics-based constraints. Additionally, we incorporate learnable B-spline activation functions with SiLU to capture both localized high-gradient features near interfaces and global flow patterns. Empirical studies on a 2D cavity flow problem involving a moving solid structure show that while baseline unified PINNs achieve reasonable velocity predictions, they suffer from substantial pressure errors (12.9%) in structural regions. Our Eulerian-Lagrangian architecture with learnable activations (EL-L) achieves better performance across all metrics, improving accuracy by 24.1-91.4% and particularly reducing pressure errors from 12.9% to 2.39%. These results demonstrate that domain decomposition aligned with physical principles, combined with locality-aware activation functions, is essential for accurate FSI modeling within the PINN framework.
♻ ☆ MACS: Measurement-Aware Consistency Sampling for Inverse Problems
Diffusion models have emerged as powerful generative priors for solving inverse imaging problems. However, their practical deployment is hindered by the substantial computational cost of slow, multi-step sampling. Although Consistency Models (CMs) address this limitation by enabling high-quality generation in only one or a few steps, their direct application to inverse problems has remained largely unexplored. This paper introduces a modified consistency sampling framework specifically designed for inverse problems. The proposed approach regulates the sampler's stochasticity through a measurement-consistency mechanism that leverages the degradation operator, thereby enforcing fidelity to the observed data while preserving the computational efficiency of consistency-based generation. Comprehensive experiments on the Fashion-MNIST and LSUN Bedroom datasets demonstrate consistent improvements across both perceptual and pixel-level metrics, including the Fréchet Inception Distance (FID), Kernel Inception Distance (KID), peak signal-to-noise ratio (PSNR), and structural similarity index measure (SSIM), compared with baseline consistency and diffusion-based sampling methods. The proposed method achieves competitive or superior reconstruction quality with only a small number of sampling steps.
comment: 10 pages, 4 figures, This work has been submitted to the IEEE for possible publication
♻ ☆ Differentiable, Bit-shifting, and Scalable Quantization without training neural network from scratch
Quantization of neural networks provides benefits of inference in less compute and memory requirements. Previous work in quantization lack two important aspects which this work provides. First almost all previous work in quantization used a non-differentiable approach and for learning; the derivative is usually set manually in backpropogation which make the learning ability of algorithm questionable, our approach is not just differentiable, we also provide proof of convergence of our approach to the optimal neural network. Second previous work in shift/logrithmic quantization either have avoided activation quantization along with weight quantization or achieved less accuracy. Learning logrithmic quantize values of form $2^n$ requires the quantization function can scale to more than 1 bit quantization which is another benifit of our quantization that it provides $n$ bits quantization as well. Our approach when tested with image classification task using imagenet dataset, resnet18 and weight quantization only achieves less than 1 percent accuracy compared to full precision accuracy while taking only 15 epochs to train using shift bit quantization and achieves comparable to SOTA approaches accuracy in both weight and activation quantization using shift bit quantization in 15 training epochs with slightly higher(only higher cpu instructions) inference cost compared to 1 bit quantization(without logrithmic quantization) and not requiring any higher precision multiplication.
♻ ☆ Grounded Test-Time Adaptation for LLM Agents
Large language model (LLM)-based agents struggle to generalize to novel and complex environments, such as unseen websites or new sets of functions, due to a fundamental mismatch between their pre-training and test-time conditions. This challenge stems from two distinct failure modes: a syntactic misunderstanding of environment-specific components like observation formats, and a semantic misunderstanding of state-transition dynamics, which are only revealed at test time. To address these issues, we propose two distinct and complementary strategies for adapting LLM agents by leveraging environment-specific information available during deployment. First, an online distributional adaptation method parameterizes environmental nuances by learning a lightweight adaptation vector that biases the model's output distribution, enabling rapid alignment with an environment response format. Second, a deployment-time dynamics grounding method employs a persona-driven exploration phase to systematically probe and learn the environment's causal dynamics before task execution, equipping the agent with a nonparametric world model. We evaluate these strategies across diverse agentic benchmarks, including function calling and web navigation. Our empirical results show the effectiveness of both strategies across all benchmarks with minimal computational cost. We find that dynamics grounding is particularly effective in complex environments where unpredictable dynamics pose a major obstacle, demonstrating a robust path toward more generalizable and capable LLM-based agents. For example, on the WebArena multi-site split, this method increases the agent's success rate from 2% to 23%.
comment: Preprint. Under review
♻ ☆ Sharpness of Minima in Deep Matrix Factorization: Exact Expressions
Understanding the geometry of the loss landscape near a minimum is key to explaining the implicit bias of gradient-based methods in non-convex optimization problems such as deep neural network training and deep matrix factorization. A central quantity to characterize this geometry is the maximum eigenvalue of the Hessian of the loss, which measures the sharpness of the landscape. Currently, its precise role has been obfuscated because no exact expressions for this sharpness measure were known in general settings. In this paper, we present the first exact expression for the maximum eigenvalue of the Hessian of the squared-error loss at any minimizer in general overparameterized deep matrix factorization (i.e., deep linear neural network training) problems, resolving an open question posed by Mulayoff & Michaeli (2020). This expression uncovers a fundamental property of the loss landscape of depth-2 matrix factorization problems: a minimum is flat if and only if it is spectral-norm balanced, which implies that flat minima are not necessarily Frobenius-norm balanced. Furthermore, to complement our theory, we empirically investigate an escape phenomenon observed during gradient-based training near a minimum that crucially relies on our exact expression of the sharpness.
comment: 20 pages, 7 figures
♻ ☆ Structuring Collective Action with LLM-Guided Evolution: From Ill-Structured Problems to Executable Heuristics
Collective action problems, which require aligning individual incentives with collective goals, are classic examples of Ill-Structured Problems (ISPs). For an individual agent, the causal links between local actions and global outcomes are unclear, stakeholder objectives often conflict, and no single, clear algorithm can bridge micro-level choices with macro-level welfare. We present ECHO-MIMIC, a general computational framework that converts this global complexity into a tractable, Well-Structured Problem (WSP) for each agent by discovering executable heuristics and persuasive rationales. The framework operates in two stages: ECHO (Evolutionary Crafting of Heuristics from Outcomes) evolves snippets of Python code that encode candidate behavioral policies, while MIMIC (Mechanism Inference \& Messaging for Individual-to-Collective Alignment) evolves companion natural language messages that motivate agents to adopt those policies. Both phases employ a large-language-model-driven evolutionary search: the LLM proposes diverse and context-aware code or text variants, while population-level selection retains those that maximize collective performance in a simulated environment. We demonstrate this framework on two distinct ISPs: a canonical agricultural landscape management problem and a carbon-aware EV charging time slot usage problem. Results show that ECHO-MIMIC discovers high-performing heuristics compared to baselines and crafts tailored messages that successfully align simulated agent behavior with system-level goals. By coupling algorithmic rule discovery with tailored communication, ECHO-MIMIC transforms the cognitive burden of collective action into a implementable set of agent-level instructions, making previously ill-structured problems solvable in practice and opening a new path toward scalable, adaptive policy design.
♻ ☆ Online Learning-based Adaptive Beam Switching for 6G Networks: Enhancing Efficiency and Resilience
Adaptive beam switching is essential for mission-critical military and commercial 6G networks but faces major challenges from high carrier frequencies, user mobility, and frequent blockages. While existing machine learning (ML) solutions often focus on maximizing instantaneous throughput, this can lead to unstable policies with high signaling overhead. This paper presents an online Deep Reinforcement Learning (DRL) framework designed to learn an operationally stable policy. By equipping the DRL agent with an enhanced state representation that includes blockage history, and a stability-centric reward function, we enable it to prioritize long-term link quality over transient gains. Validated in a challenging 100-user scenario using the Sionna library, our agent achieves throughput comparable to a reactive Multi-Armed Bandit (MAB) baseline. Specifically, our proposed framework improves link stability by approximately 43% compared to a vanilla DRL approach, achieving operational reliability competitive with MAB while maintaining high data rates. This work demonstrates that by reframing the optimization goal towards operational stability, DRL can deliver efficient, reliable, and real-time beam management solutions for next-generation mission-critical networks.
♻ ☆ MathBode: Measuring the Stability of LLM Reasoning using Frequency Response
This paper presents MathBode, a dynamic diagnostic for mathematical reasoning in large language models (LLMs). Instead of one-shot accuracy, MathBode treats each parametric problem as a system: we drive a single parameter sinusoidally and fit first-harmonic responses of model outputs and exact solutions. This yields interpretable, frequency-resolved metrics -- gain (amplitude tracking) and phase (lag) -- that form Bode-style fingerprints. Across five closed-form families (linear solve, ratio/saturation, compound interest, 2x2 linear systems, similar triangles), the diagnostic surfaces systematic low-pass behavior and growing phase lag that accuracy alone obscures. We compare several models against a symbolic baseline that calibrates the instrument ($G \approx 1$, $φ\approx 0$). Results separate frontier from mid-tier models on dynamics, providing a compact, reproducible protocol that complements standard benchmarks with actionable measurements of reasoning fidelity and consistency. We open-source the dataset and code to enable further research and adoption.
♻ ☆ SPRINT: Enabling Interleaved Planning and Parallelized Execution in Reasoning Models NeurIPS 2025
Large reasoning models (LRMs) excel at complex reasoning tasks but typically generate lengthy sequential chains-of-thought, resulting in long inference times before arriving at the final answer. To address this challenge, we introduce SPRINT, a novel post-training and inference-time framework designed to enable LRMs to dynamically identify and exploit opportunities for parallelization during their reasoning process. SPRINT incorporates an innovative data curation pipeline that reorganizes natural language reasoning trajectories into structured rounds of long-horizon planning and parallel execution. By fine-tuning LRMs on a small amount of such curated data, the models learn to dynamically identify independent subtasks within extended reasoning processes and effectively execute them in parallel. Through extensive evaluations, we demonstrate that models fine-tuned with the SPRINT framework match the performance of reasoning models on complex domains such as mathematics while generating up to 39% fewer sequential tokens on problems requiring more than 8,000 output tokens. Finally, we observe consistent results transferred to two out-of-distribution tasks, namely GPQA and Countdown, with up to 45% and 65% reduction in average sequential tokens respectively for longer reasoning trajectories, while matching the performance of the fine-tuned reasoning model.
comment: Published at NeurIPS 2025. Emil Biju, Shayan Talaei, and Zhemin Huang contributed equally to this work
♻ ☆ Comba: Improving Bilinear RNNs with Closed-loop Control
Recent efficient sequence modeling methods such as Gated DeltaNet, TTT, and RWKV-7 have achieved performance improvements by supervising the recurrent memory management through Delta learning rule. Unlike previous state-space models (e.g., Mamba) and gated linear attentions (e.g., GLA), these models introduce interactions between the recurrent state and the key vector, structurally resembling bilinear systems. In this paper, we first introduce the concept of Bilinear RNNs with a comprehensive analysis on the advantages and limitations of these models. Then, based on closed-loop control theory, we propose a novel Bilinear RNN variant named Comba, which adopts a scalar-plus-low-rank state transition, with both state feedback and output feedback corrections. We also implement a hardware-efficient chunk-wise parallel kernel in Triton and train models with 340M/1.3B parameters on large-scale corpus. Comba demonstrates superior performance and computation efficiency in both language and vision modeling.
♻ ☆ Cross-Field Interface-Aware Neural Operators for Multiphase Flow Simulation
Multiphase flow simulation is critical in science and engineering but incurs high computational costs due to complex field discontinuities and the need for high-resolution numerical meshes. While Neural Operators (NOs) offer an efficient alternative for solving Partial Differential Equations (PDEs), they struggle with two core challenges unique to multiphase systems: spectral bias caused by spatial heterogeneity at phase interfaces, and the persistent scarcity of expensive, high-resolution field data. This work introduces the Interface Information Aware Neural Operator (IANO), a novel architecture that mitigates these issues by leveraging readily obtainable interface data (e.g., topology and position). Interface data inherently contains the high-frequency features not only necessary to complement the physical field data, but also help with spectral bias. IANO incorporates an interface-aware function encoding mechanism to capture dynamic coupling, and a geometry-aware positional encoding method to enhance spatial fidelity for pointwise super-resolution. Empirical results across multiple multiphase flow cases demonstrate that IANO achieves significant accuracy improvements (up to $\sim$10\%) over existing NO baselines. Furthermore, IANO exhibits superior generalization capabilities in low-data and noisy settings, confirming its utility for practical, data-efficient $\text{AI}$-based multiphase flow simulations.
♻ ☆ Adaptive Decentralized Federated Learning for Robust Optimization
In decentralized federated learning (DFL), the presence of abnormal clients, often caused by noisy or poisoned data, can significantly disrupt the learning process and degrade the overall robustness of the model. Previous methods on this issue often require a sufficiently large number of normal neighboring clients or prior knowledge of reliable clients, which reduces the practical applicability of DFL. To address these limitations, we develop here a novel adaptive DFL (aDFL) approach for robust estimation. The key idea is to adaptively adjust the learning rates of clients. By assigning smaller rates to suspicious clients and larger rates to normal clients, aDFL mitigates the negative impact of abnormal clients on the global model in a fully adaptive way. Our theory does not put any stringent conditions on neighboring nodes and requires no prior knowledge. A rigorous convergence analysis is provided to guarantee the oracle property of aDFL. Extensive numerical experiments demonstrate the superior performance of the aDFL method.
♻ ☆ AugMapNet: Improving Spatial Latent Structure via BEV Grid Augmentation for Enhanced Vectorized Online HD Map Construction
Autonomous driving requires understanding infrastructure elements, such as lanes and crosswalks. To navigate safely, this understanding must be derived from sensor data in real-time and needs to be represented in vectorized form. Learned Bird's-Eye View (BEV) encoders are commonly used to combine a set of camera images from multiple views into one joint latent BEV grid. Traditionally, from this latent space, an intermediate raster map is predicted, providing dense spatial supervision but requiring post-processing into the desired vectorized form. More recent models directly derive infrastructure elements as polylines using vectorized map decoders, providing instance-level information. Our approach, Augmentation Map Network (AugMapNet), proposes latent BEV feature grid augmentation, a novel technique that significantly enhances the latent BEV representation. AugMapNet combines vector decoding and dense spatial supervision more effectively than existing architectures while remaining easy to integrate compared to other hybrid approaches. It additionally benefits from extra processing on its latent BEV features. Experiments on nuScenes and Argoverse2 datasets demonstrate significant improvements on vectorized map prediction of up to 13.3% over the StreamMapNet baseline on 60 m range and greater improvements on larger ranges. We confirm transferability by applying our method to another baseline, SQD-MapNet, and find similar improvements. A detailed analysis of the latent BEV grid confirms a more structured latent space of AugMapNet and shows the value of our novel concept beyond pure performance improvement. The code can be found at https://github.com/tmonnin/augmapnet
comment: Accepted to 2026 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2026)
♻ ☆ Learning to Solve Constrained Bilevel Control Co-Design Problems
Learning to Optimize (L2O) is a subfield of machine learning (ML) in which ML models are trained to solve parametric optimization problems. The general goal is to learn a fast approximator of solutions to constrained optimization problems, as a function of their defining parameters. Prior L2O methods focus almost entirely on single-level programs, in contrast to the bilevel programs, whose constraints are themselves expressed in terms of optimization subproblems. Bilevel programs have numerous important use cases but are notoriously difficult to solve, particularly under stringent time demands. This paper proposes a framework for learning to solve a broad class of challenging bilevel optimization problems, by leveraging modern techniques for differentiation through optimization problems. The framework is illustrated on an array of synthetic bilevel programs, as well as challenging control system co-design problems, showing how neural networks can be trained as efficient approximators of parametric bilevel optimization.
♻ ☆ Scaling Multimodal Search and Recommendation with Small Language Models via Upside-Down Reinforcement Learning
In this work, we investigate how small language models (SLMs) can be scaled to support multimodal search and recommendation use cases while remaining efficient enough for real-time, resource-constrained deployments. We present a framework that combines upside-down reinforcement learning with synthetic data distillation from a large language model (Llama-3) to train a 100M-parameter GPT-2 model for multitask prompt generation. Despite being up to 80 times smaller than state-of-the-art large language models (LLMs), our SLM achieves relevance and diversity scores within 6% of competitive baselines such as Llama-3 8B, Qwen3 8B, and Ministral 8B. These results demonstrate that SLMs can effectively handle multimodal search and recommendation tasks, while dramatically reducing inference latency and memory overhead. Our study highlights the potential of lightweight models as practical engines for scalable multimodal discovery, bridging the gap between cutting-edge research and real-world multimodal applications such as media recommendations and creative content generation.
comment: Accepted by ICDM 2025 MMSR
♻ ☆ Causal LLM Routing: End-to-End Regret Minimization from Observational Data
LLM routing aims to select the most appropriate model for each query, balancing competing performance metrics such as accuracy and cost across a pool of language models. Prior approaches typically adopt a decoupled strategy, where the metrics are first predicted and the model is then selected based on these estimates. This setup is prone to compounding errors and often relies on full-feedback data, where each query is evaluated by all candidate models, which is costly to obtain and maintain in practice. In contrast, we learn from observational data, which records only the outcome of the model actually deployed. We propose a causal end-to-end framework that learns routing policies by minimizing decision-making regret from observational data. To enable efficient optimization, we introduce two theoretically grounded surrogate objectives: a classification-based upper bound, and a softmax-weighted regret approximation shown to recover the optimal policy at convergence. We further extend our framework to handle heterogeneous cost preferences via an interval-conditioned architecture. Experiments on public benchmarks show that our method outperforms existing baselines, achieving state-of-the-art performance across different embedding models.
♻ ☆ A Diffusion Model Framework for Maximum Entropy Reinforcement Learning
Diffusion models have achieved remarkable success in data-driven learning and in sampling from complex, unnormalized target distributions. Building on this progress, we reinterpret Maximum Entropy Reinforcement Learning (MaxEntRL) as a diffusion model-based sampling problem. We tackle this problem by minimizing the reverse Kullback-Leibler (KL) divergence between the diffusion policy and the optimal policy distribution using a tractable upper bound. By applying the policy gradient theorem to this objective, we derive a modified surrogate objective for MaxEntRL that incorporates diffusion dynamics in a principled way. This leads to simple diffusion-based variants of Soft Actor-Critic (SAC), Proximal Policy Optimization (PPO) and Wasserstein Policy Optimization (WPO), termed DiffSAC, DiffPPO and DiffWPO. All of these methods require only minor implementation changes to their base algorithm. We find that on standard continuous control benchmarks, DiffSAC, DiffPPO and DiffWPO achieve better returns and higher sample efficiency than SAC and PPO.
A Definition of AGI
The lack of a concrete definition for Artificial General Intelligence (AGI) obscures the gap between today's specialized AI and human-level cognition. This paper introduces a quantifiable framework to address this, defining AGI as matching the cognitive versatility and proficiency of a well-educated adult. To operationalize this, we ground our methodology in Cattell-Horn-Carroll theory, the most empirically validated model of human cognition. The framework dissects general intelligence into ten core cognitive domains-including reasoning, memory, and perception-and adapts established human psychometric batteries to evaluate AI systems. Application of this framework reveals a highly "jagged" cognitive profile in contemporary models. While proficient in knowledge-intensive domains, current AI systems have critical deficits in foundational cognitive machinery, particularly long-term memory storage. The resulting AGI scores (e.g., GPT-4 at 27%, GPT-5 at 57%) concretely quantify both rapid progress and the substantial gap remaining before AGI.
♻ ☆ Demystify Protein Generation with Hierarchical Conditional Diffusion Models
Generating novel and functional protein sequences is critical to a wide range of applications in biology. Recent advancements in conditional diffusion models have shown impressive empirical performance in protein generation tasks. However, reliable generations of protein remain an open research question in de novo protein design, especially when it comes to conditional diffusion models. Considering the biological function of a protein is determined by multi-level structures, we propose a novel multi-level conditional diffusion model that integrates both sequence-based and structure-based information for efficient end-to-end protein design guided by specified functions. By generating representations at different levels simultaneously, our framework can effectively model the inherent hierarchical relations between different levels, resulting in an informative and discriminative representation of the generated protein. We also propose a Protein-MMD, a new reliable evaluation metric, to evaluate the quality of generated protein with conditional diffusion models. Our new metric is able to capture both distributional and functional similarities between real and generated protein sequences while ensuring conditional consistency. We experiment with the benchmark datasets, and the results on conditional protein generation tasks demonstrate the efficacy of the proposed generation framework and evaluation metric.
♻ ☆ Multi-Modal Machine Learning for Early Trust Prediction in Human-AI Interaction Using Face Image and GSR Bio Signals
Predicting human trust in AI systems is crucial for safe integration of AI-based decision support tools, especially in healthcare. This study proposes a multi-modal machine learning framework that combines image and galvanic skin response (GSR) data to predict early user trust in AI- or human-generated recommendations in a simulated ADHD mHealth context. Facial video data were processed using OpenCV for frame extraction and transferred learning with a pre-trained transformer model to derive emotional features. Concurrently, GSR signals were decomposed into tonic and phasic components to capture physiological arousal patterns. Two temporal windows were defined for trust prediction: the Early Detection Window (6 to 3 seconds before decision-making) and the Proximal Detection Window (3 to 0 seconds before decision-making). For each window, trust prediction was conducted separately using image-based, GSR-based, and multimodal (image + GSR) features. Each modality was analyzed using machine learning algorithms, and the top-performing unimodal models were integrated through a multimodal stacking ensemble for final prediction. Experimental results showed that combining facial and physiological cues significantly improved prediction performance. The multimodal stacking framework achieved an accuracy of 0.83, F1-score of 0.88, and ROC-AUC of 0.87 in the Early Detection Window, and an accuracy of 0.75, F1-score of 0.82, and ROC-AUC of 0.66 in the Proximal Detection Window. These results demonstrate the potential of bio signals as real-time, objective markers of user trust, enabling adaptive AI systems that dynamically adjust their responses to maintain calibrated trust which is a critical capability in mental health applications where mis-calibrated trust can affect diagnostic and treatment outcomes.
comment: This version contains errors in content presentation and arrangement, so it is being withdrawn until a corrected version is generated
♻ ☆ Using physics-inspired Singular Learning Theory to understand grokking & other phase transitions in modern neural networks
Classical statistical inference and learning theory often fail to explain the success of modern neural networks. A key reason is that these models are non-identifiable (singular), violating core assumptions behind PAC bounds and asymptotic normality. Singular learning theory (SLT), a physics-inspired framework grounded in algebraic geometry, has gained popularity for its ability to close this theory-practice gap. In this paper, we empirically study SLT in toy settings relevant to interpretability and phase transitions. First, we understand the SLT free energy $\mathcal{F}_n$ by testing an Arrhenius-style rate hypothesis using both a grokking modulo-arithmetic model and Anthropic's Toy Models of Superposition. Second, we understand the local learning coefficient $λ_α$ by measuring how it scales with problem difficulty across several controlled network families (polynomial regressors, low-rank linear networks, and low-rank autoencoders). Our experiments recover known scaling laws while others yield meaningful deviations from theoretical expectations. Overall, our paper illustrates the many merits of SLT for understanding neural network phase transitions, and poses open research questions for the field.
comment: 8 pages, preprint
♻ ☆ Non-Asymptotic Convergence of Discrete Diffusion Models: Masked and Random Walk dynamics
Diffusion models for continuous state spaces based on Gaussian noising processes are now relatively well understood, as many works have focused on their theoretical analysis. In contrast, results for diffusion models on discrete state spaces remain limited and pose significant challenges, particularly due to their combinatorial structure and their more recent introduction in generative modelling. In this work, we establish new and sharp convergence guarantees for three popular discrete diffusion models (DDMs). Two of these models are designed for finite state spaces and are based respectively on the random walk and the masking process. The third DDM we consider is defined on the countably infinite space $\mathbb{N}^d$ and uses a drifted random walk as its forward process. For each of these models, the backward process can be characterized by a discrete score function that can, in principle, be estimated. However, even with perfect access to these scores, simulating the exact backward process is infeasible, and one must rely on approximations. In this work, we study Euler-type approximations and establish convergence bounds in both Kullback-Leibler divergence and total variation distance for the resulting models, under minimal assumptions on the data distribution. In particular, we show that the computational complexity of each method scales linearly in the dimension, up to logarithmic factors. Furthermore, to the best of our knowledge, this study provides the first non-asymptotic convergence guarantees for these noising processes that do not rely on boundedness assumptions on the estimated score.
♻ ☆ Beyond Output Faithfulness: Learning Attributions that Preserve Computational Pathways
Faithfulness metrics such as insertion and deletion evaluate how feature removal affects model outputs but overlook whether explanations preserve the computational pathway the network actually uses. We show that external metrics can be maximized through alternative pathways -- perturbations that reroute computation via different feature detectors while preserving output behavior. To address this, we propose activation preservation as a tractable proxy for preserving computational pathways We introduce Faithfulness-guided Ensemble Interpretation (FEI), which jointly optimizes external faithfulness (via ensemble quantile optimization of insertion/deletion curves) and internal faithfulness (via selective gradient clipping). Across VGG and ResNet on ImageNet and CUB-200-2011, FEI achieves state-of-the-art insertion/deletion scores while maintaining significantly lower activation deviation, showing that both external and internal faithfulness are essential for reliable explanations.
♻ ☆ FlashFormer: Whole-Model Kernels for Efficient Low-Batch Inference
The size and compute characteristics of modern large language models have led to an increased interest in developing specialized kernels tailored for particular training and inference workloads. Existing kernels primarily optimize for compute utilization, targeting the large-batch training and inference settings. However, low-batch inference, where memory bandwidth and kernel launch overheads are significant factors, remains important for many applications of interest such as in edge deployment and latency-sensitive applications. This paper describes FlashFormer, which fuses the entire transformer forward pass into a single kernel for accelerating low-batch inference of large language models. Across various model sizes and quantizations settings, FlashFormer achieves nontrivial speedups compared to existing inference kernels.
♻ ☆ DS-Span: Single-Phase Discriminative Subgraph Mining for Efficient Graph Embeddings
Graph representation learning seeks to transform complex, high-dimensional graph structures into compact vector spaces that preserve both topology and semantics. Among the various strategies, subgraph-based methods provide an interpretable bridge between symbolic pattern discovery and continuous embedding learning. Yet, existing frequent or discriminative subgraph mining approaches often suffer from redundant multi-phase pipelines, high computational cost, and weak coupling between mined structures and their discriminative relevance. We propose DS-Span, a single-phase discriminative subgraph mining framework that unifies pattern growth, pruning, and supervision-driven scoring within one traversal of the search space. DS-Span introduces a coverage-capped eligibility mechanism that dynamically limits exploration once a graph is sufficiently represented, and an information-gain-guided selection that promotes subgraphs with strong class-separating ability while minimizing redundancy. The resulting subgraph set serves as an efficient, interpretable basis for downstream graph embedding and classification. Extensive experiments across benchmarks demonstrate that DS-Span generates more compact and discriminative subgraph features than prior multi-stage methods, achieving higher or comparable accuracy with significantly reduced runtime. These results highlight the potential of unified, single-phase discriminative mining as a foundation for scalable and interpretable graph representation learning.
♻ ☆ One-shot acceleration of transient PDE solvers via online-learned preconditioners
Data-driven acceleration of scientific computing workflows has been a high-profile aim of machine learning (ML) for science, with numerical simulation of transient partial differential equations (PDEs) being one of the main applications. The focus thus far has been on methods that require classical simulations to train, which when combined with the data-hungriness and optimization challenges of neural networks has caused difficulties in demonstrating a convincing advantage against strong classical baselines. We consider an alternative paradigm in which the learner uses a classical solver's own data to accelerate it, enabling a one-shot speedup of the simulation. Concretely, since transient PDEs often require solving a sequence of related linear systems, the feedback from repeated calls to a linear solver such as preconditioned conjugate gradient (PCG) can be used by a bandit algorithm to online-learn an adaptive sequence of solver configurations (e.g. preconditioners). The method we develop, PCGBandit, is implemented directly on top of the popular open source software OpenFOAM, which we use to show its effectiveness on a set of fluid and magnetohydrodynamics (MHD) problems.
comment: code available at https://github.com/mkhodak/PCGBandit
♻ ☆ ArterialNet: Reconstructing Arterial Blood Pressure Waveform with Wearable Pulsatile Signals, a Cohort-Aware Approach
Goal: Continuous arterial blood pressure (ABP) waveform is invasive but essential for hemodynamic monitoring. Current non-invasive techniques reconstruct ABP waveforms with pulsatile signals but derived inaccurate systolic and diastolic blood pressure (SBP/DBP) and were sensitive to individual variability. Methods: ArterialNet integrates generalized pulsatile-to-ABP signal translation and personalized feature extraction using hybrid loss functions and regularizations. Results: ArterialNet achieved a root mean square error (RMSE) of 5.41 -+ 1.35 mmHg on MIMIC-III, achieving 58% lower standard deviation than existing signal translation techniques. ArterialNet also reconstructed ABP with RMSE of 7.99 -+ 1.91 mmHg in remote health scenario. Conclusion: ArterialNet achieved superior performance in ABP reconstruction and SBP/DBP estimations with significantly reduced subject variance, demonstrating its potential in remote health settings. We also ablated ArterialNet's architecture to investigate contributions of each component and evaluated ArterialNet's translational impact and robustness by conducting a series of ablations on data quality and availability.
♻ ☆ Locality-Sensitive Hashing-Based Efficient Point Transformer for Charged Particle Reconstruction NeurIPS 2025
Charged particle track reconstruction is a foundational task in collider experiments and the main computational bottleneck in particle reconstruction. Graph neural networks (GNNs) have shown strong performance for this problem, but costly graph construction, irregular computations, and random memory access patterns substantially limit their throughput. The recently proposed Hashing-based Efficient Point Transformer (HEPT) offers a theoretically guaranteed near-linear complexity for large point cloud processing via locality-sensitive hashing (LSH) in attention computations; however, its evaluations have largely focused on embedding quality, and the object condensation pipeline on which HEPT relies requires a post-hoc clustering step (e.g., DBScan) that can dominate runtime. In this work, we make two contributions. First, we present a unified, fair evaluation of physics tracking performance for HEPT and a representative GNN-based pipeline under the same dataset and metrics. Second, we introduce HEPTv2 by extending HEPT with a lightweight decoder that eliminates the clustering stage and directly predicts track assignments. This modification preserves HEPT's regular, hardware-friendly computations while enabling ultra-fast end-to-end inference. On the TrackML dataset, optimized HEPTv2 achieves approximately 28 ms per event on an A100 while maintaining competitive tracking efficiency. These results position HEPTv2 as a practical, scalable alternative to GNN-based pipelines for fast tracking.
comment: Accepted to NeurIPS 2025 Machine Learning and the Physical Sciences Workshop
♻ ☆ Efficient Preference-Based Reinforcement Learning: Randomized Exploration Meets Experimental Design
We study reinforcement learning from human feedback in general Markov decision processes, where agents learn from trajectory-level preference comparisons. A central challenge in this setting is to design algorithms that select informative preference queries to identify the underlying reward while ensuring theoretical guarantees. We propose a meta-algorithm based on randomized exploration, which avoids the computational challenges associated with optimistic approaches and remains tractable. We establish both regret and last-iterate guarantees under mild reinforcement learning oracle assumptions. To improve query complexity, we introduce and analyze an improved algorithm that collects batches of trajectory pairs and applies optimal experimental design to select informative comparison queries. The batch structure also enables parallelization of preference queries, which is relevant in practical deployment as feedback can be gathered concurrently. Empirical evaluation confirms that the proposed method is competitive with reward-based reinforcement learning while requiring a small number of preference queries.
♻ ☆ Consistency-based Abductive Reasoning over Perceptual Errors of Multiple Pre-trained Models in Novel Environments
The deployment of pre-trained perception models in novel environments often leads to performance degradation due to distributional shifts. Although recent artificial intelligence approaches for metacognition use logical rules to characterize and filter model errors, improving precision often comes at the cost of reduced recall. This paper addresses the hypothesis that leveraging multiple pre-trained models can mitigate this recall reduction. We formulate the challenge of identifying and managing conflicting predictions from various models as a consistency-based abduction problem, building on the idea of abductive learning (ABL) but applying it to test-time instead of training. The input predictions and the learned error detection rules derived from each model are encoded in a logic program. We then seek an abductive explanation--a subset of model predictions--that maximizes prediction coverage while ensuring the rate of logical inconsistencies (derived from domain constraints) remains below a specified threshold. We propose two algorithms for this knowledge representation task: an exact method based on Integer Programming (IP) and an efficient Heuristic Search (HS). Through extensive experiments on a simulated aerial imagery dataset featuring controlled, complex distributional shifts, we demonstrate that our abduction-based framework outperforms individual models and standard ensemble baselines, achieving, for instance, average relative improvements of approximately 13.6\% in F1-score and 16.6\% in accuracy across 15 diverse test datasets when compared to the best individual model. Our results validate the use of consistency-based abduction as an effective mechanism to robustly integrate knowledge from multiple imperfect models in challenging, novel scenarios.
♻ ☆ Bi-cephalic self-attended model to classify Parkinson's disease patients with freezing of gait
Parkinson Disease (PD) often results in motor and cognitive impairments, including gait dysfunction, particularly in patients with freezing of gait (FOG). Current detection methods are either subjective or reliant on specialized gait analysis tools. This study aims to develop an objective, data-driven, and multi-modal classification model to detect gait dysfunction in PD patients using resting-state EEG signals combined with demographic and clinical variables. We utilized a dataset of 124 participants: 42 PD patients with FOG (PDFOG+), 41 without FOG (PDFOG-), and 41 age-matched healthy controls. Features extracted from resting-state EEG and descriptive variables (age, education, disease duration) were used to train a novel Bi-cephalic Self-Attention Model (BiSAM). We tested three modalities: signal-only, descriptive-only, and multi-modal, across different EEG channel subsets (BiSAM-63, -16, -8, and -4). Signal-only and descriptive-only models showed limited performance, achieving a maximum accuracy of 55% and 68%, respectively. In contrast, the multi-modal models significantly outperformed both, with BiSAM-8 and BiSAM-4 achieving the highest classification accuracy of 88%. These results demonstrate the value of integrating EEG with objective descriptive features for robust PDFOG+ detection. This study introduces a multi-modal, attention-based architecture that objectively classifies PDFOG+ using minimal EEG channels and descriptive variables. This approach offers a scalable and efficient alternative to traditional assessments, with potential applications in routine clinical monitoring and early diagnosis of PD-related gait dysfunction.
comment: 39 pages, 8339 words, 4 figures, 3 tables, European Journal of Neuroscience: Special edition FOG
♻ ☆ Practical Global and Local Bounds in Gaussian Process Regression via Chaining AAAI2026
Gaussian process regression (GPR) is a popular nonparametric Bayesian method that provides predictive uncertainty estimates and is widely used in safety-critical applications. While prior research has introduced various uncertainty bounds, most existing approaches require access to specific input features, and rely on posterior mean and variance estimates or the tuning of hyperparameters. These limitations hinder robustness and fail to capture the model's global behavior in expectation. To address these limitations, we propose a chaining-based framework for estimating upper and lower bounds on the expected extreme values over unseen data, without requiring access to specific input features. We provide kernel-specific refinements for commonly used kernels such as RBF and Matérn, in which our bounds are tighter than generic constructions. We further improve numerical tightness by avoiding analytical relaxations. In addition to global estimation, we also develop a novel method for local uncertainty quantification at specified inputs. This approach leverages chaining geometry through partition diameters, adapting to local structures without relying on posterior variance scaling. Our experimental results validate the theoretical findings and demonstrate that our method outperforms existing approaches on both synthetic and real-world datasets.
comment: Accepted as a conference paper at AAAI2026
♻ ☆ Similarity-Distance-Magnitude Activations
We introduce the Similarity-Distance-Magnitude (SDM) activation function, a more robust and interpretable formulation of the standard softmax activation function, adding Similarity (i.e., correctly predicted depth-matches into training) awareness and Distance-to-training-distribution awareness to the existing output Magnitude (i.e., decision-boundary) awareness, and enabling interpretability-by-exemplar via dense matching. We further introduce the SDM estimator, based on a data-driven partitioning of the class-wise empirical CDFs via the SDM activation, to control the class- and prediction-conditional accuracy among selective classifications. When used as the final-layer activation over pre-trained language models for selective classification, the SDM estimator is more robust to co-variate shifts and out-of-distribution inputs than existing calibration methods using softmax activations, while remaining informative over in-distribution data.
comment: 21 pages, 8 tables, 1 algorithm. arXiv admin note: substantial text overlap with arXiv:2502.20167
♻ ☆ Convolutional Monge Mapping between EEG Datasets to Support Independent Component Labeling NeurIPS 2025
EEG recordings contain rich information about neural activity but are subject to artifacts, noise, and superficial differences due to sensors, amplifiers, and filtering. Independent component analysis and automatic labeling of independent components (ICs) enable artifact removal in EEG pipelines. Convolutional Monge Mapping Normalization (CMMN) is a recent tool used to achieve spectral conformity of EEG signals, which was shown to improve deep neural network approaches for sleep staging. Here we propose a novel extension of the CMMN method with two alternative approaches to computing the source reference spectrum the target signals are mapped to: (1) channel-averaged and $l_1$-normalized barycenter, and (2) a subject-to-subject mapping that finds the source subject with the closest spectrum to the target subject. Notably, our extension yields space-time separable filters that can be used to map between datasets with different numbers of EEG channels. We apply these filters in an IC classification task, and show significant improvement in recognizing brain versus non-brain ICs. Clinical relevance - EEG recordings are used in the diagnosis and monitoring of multiple neuropathologies, including epilepsy and psychosis. While EEG analysis can benefit from automating artifact removal through independent component analysis and labeling, differences in recording equipment and context (the presence of noise from electrical wiring and other devices) may impact the performance of machine learning models, but these differences can be minimized by appropriate spectral normalization through filtering.
comment: Code available at: https://github.com/cniel-ud/ICWaves; Accepted to NeurIPS 2025 Workshop on Learning from Time Series for Health
♻ ☆ NITRO-D: Native Integer-only Training of Deep Convolutional Neural Networks
Quantization is a pivotal technique for managing the growing computational and memory demands of Deep Neural Networks (DNNs). By reducing the number of bits used to represent weights and activations (typically from 32-bit Floating-Point (FP) to 16-bit or 8-bit integers), quantization reduces memory footprint, energy consumption, and execution time of DNNs. However, most existing methods typically target DNN inference, while training still relies on FP operations, limiting applicability in environments where FP arithmetic is unavailable. To date, only one prior work has addressed integer-only training, and only for Multi-Layer Perceptron (MLP) architectures. This paper introduces NITRO-D, a novel framework for training deep integer-only Convolutional Neural Networks (CNNs) that operate entirely in the integer domain for both training and inference. NITRO-D enables training of integer CNNs without requiring a separate quantization scheme. Specifically, it introduces a novel architecture that integrates multiple local-loss blocks, which include the proposed NITRO-Scaling layer and NITRO-ReLU activation function. The proposed framework also features a novel learning algorithm that employs local error signals and leverages IntegerSGD, an optimizer specifically designed for integer computations. NITRO-D is implemented as an open-source Python library. Extensive evaluations on state-of-the-art image recognition datasets demonstrate its effectiveness. For integer-only MLPs, NITRO-D improves test accuracy by up to +5.96% over the state-of-the-art. It also successfully trains integer-only CNNs, reducing memory requirements and energy consumption by up to 76.14% and 32.42%, respectively, compared to the traditional FP backpropagation algorithm.
comment: 15 pages, 3 figures
♻ ☆ Open-Set Domain Adaptation Under Background Distribution Shift: Challenges and A Provably Efficient Solution
As we deploy machine learning systems in the real world, a core challenge is to maintain a model that is performant even as the data shifts. Such shifts can take many forms: new classes may emerge that were absent during training, a problem known as open-set recognition, and the distribution of known categories may change. Guarantees on open-set recognition are mostly derived under the assumption that the distribution of known classes, which we call the background distribution, is fixed. In this paper we develop CoLOR, a method that is guaranteed to solve open-set recognition even in the challenging case where the background distribution shifts. We prove that the method works under benign assumptions that the novel class is separable from the non-novel classes, and provide theoretical guarantees that it outperforms a representative baseline in a simplified overparameterized setting. We develop techniques to make CoLOR scalable and robust, and perform comprehensive empirical evaluations on image and text data. The results show that CoLOR significantly outperforms existing open-set recognition methods under background shift. Moreover, we provide new insights into how factors such as the size of the novel class influences performance, an aspect that has not been extensively explored in prior work.
Quantitative Methods 9
☆ Leveraging topological data analysis to estimate bone strength from micro-CT as a surrogate for advanced imaging
Accurate bone strength prediction is essential for assessing fracture risk, particularly in aging populations and individuals with osteoporosis. Bone imaging has evolved from X-rays and DXA to clinical computed tomography (CT), and now to advanced modalities such as high-resolution peripheral quantitative CT and synchrotron radiation CT, which offer unprecedented resolution of bone microarchitecture. However, analytical methods have not kept pace with these imaging advances. This study applied topological data analysis (TDA) to extract biomechanically relevant features from high-resolution bone images, offering a new framework for bone strength prediction. We extracted topological features, specifically those derived from persistent homology, and combined them with standard bone morphometric descriptors to train machine learning models for apparent strength prediction. Models based solely on topological features outperformed those using traditional morphometrics, highlighting TDA's ability to capture biomechanically relevant structure. In particular, internal voids, often dismissed as imaging noise, proved to be the most predictive. While limited by dataset size and class imbalance, these results suggest that TDA offers a promising approach for advancing osteoporosis risk assessment.
Cell-cell communication inference and analysis: biological mechanisms, computational approaches, and future opportunities
In multicellular organisms, cells coordinate their activities through cell-cell communication (CCC), which are crucial for development, tissue homeostasis, and disease progression. Recent advances in single-cell and spatial omics technologies provide unprecedented opportunities to systematically infer and analyze CCC from these omics data, either by integrating prior knowledge of ligand-receptor interactions (LRIs) or through de novo approaches. A variety of computational methods have been developed, focusing on methodological innovations, accurate modeling of complex signaling mechanisms, and investigation of broader biological questions. These advances have greatly enhanced our ability to analyze CCC and generate biological hypotheses. Here, we introduce the biological mechanisms and modeling strategies of CCC, and provide a focused overview of more than 140 computational methods for inferring CCC from single-cell and spatial transcriptomic data, emphasizing the diversity in methodological frameworks and biological questions. Finally, we discuss the current challenges and future opportunities in this rapidly evolving field.
☆ Learning From Limited Data and Feedback for Cell Culture Process Monitoring: A Comparative Study
In cell culture bioprocessing, real-time batch process monitoring (BPM) refers to the continuous tracking and analysis of key process variables such as viable cell density, nutrient levels, metabolite concentrations, and product titer throughout the duration of a batch run. This enables early detection of deviations and supports timely control actions to ensure optimal cell growth and product quality. BPM plays a critical role in ensuring the quality and regulatory compliance of biopharmaceutical manufacturing processes. However, the development of accurate soft sensors for BPM is hindered by key challenges, including limited historical data, infrequent feedback, heterogeneous process conditions, and high-dimensional sensory inputs. This study presents a comprehensive benchmarking analysis of machine learning (ML) methods designed to address these challenges, with a focus on learning from historical data with limited volume and relevance in the context of bioprocess monitoring. We evaluate multiple ML approaches including feature dimensionality reduction, online learning, and just-in-time learning across three datasets, one in silico dataset and two real-world experimental datasets. Our findings highlight the importance of training strategies in handling limited data and feedback, with batch learning proving effective in homogeneous settings, while just-in-time learning and online learning demonstrate superior adaptability in cold-start scenarios. Additionally, we identify key meta-features, such as feed media composition and process control strategies, that significantly impact model transferability. The results also suggest that integrating Raman-based predictions with lagged offline measurements enhances monitoring accuracy, offering a promising direction for future bioprocess soft sensor development.
comment: This is a pre-print for submitting to computers & chemical engineering journal
☆ Real-time Cricket Sorting By Sex
The global demand for sustainable protein sources is driving increasing interest in edible insects, with Acheta domesticus (house cricket) identified as one of the most suitable species for industrial production. Current farming practices typically rear crickets in mixed-sex populations without automated sex sorting, despite potential benefits such as selective breeding, optimized reproduction ratios, and nutritional differentiation. This work presents a low-cost, real-time system for automated sex-based sorting of Acheta domesticus, combining computer vision and physical actuation. The device integrates a Raspberry Pi 5 with the official Raspberry AI Camera and a custom YOLOv8 nano object detection model, together with a servo-actuated sorting arm. The model reached a mean Average Precision at IoU 0.5 (mAP@0.5) of 0.977 during testing, and real-world experiments with groups of crickets achieved an overall sorting accuracy of 86.8%. These results demonstrate the feasibility of deploying lightweight deep learning models on resource-constrained devices for insect farming applications, offering a practical solution to improve efficiency and sustainability in cricket production.
comment: 13 pages, 14 figures
GOPHER: Optimization-based Phenotype Randomization for Genome-Wide Association Studies with Differential Privacy
Genome-wide association studies (GWAS) are an essential tool in biomedical research for identifying genetic factors linked to health and disease. However, publicly releasing GWAS summary statistics poses well-recognized privacy risks, including the potential to infer an individual's participation in the study or to reveal sensitive phenotypic information (e.g., disease status). While differential privacy (DP) offers a rigorous mathematical framework for mitigating these risks, existing DP techniques for GWAS either introduce excessive noise or restrict the release to a limited set of results. In this work, we present practical DP mechanisms for releasing the complete set of genome-wide association statistics with privacy guarantees. We demonstrate the accuracy of the privacy-preserving statistics released by our mechanisms on a range of GWAS datasets from the UK Biobank, utilizing both real and simulated phenotypes. We introduce two key techniques to overcome the limitations of prior approaches: (1) an optimization-based randomization mechanism that directly minimizes the expected error in GWAS results to enhance utility, and (2) the use of personalized priors, derived from predictive models privately trained on a subset of the dataset, to enable sample-specific optimization which further reduces the amount of noise introduced by DP. Overall, our work provides practical tools for accurately releasing comprehensive GWAS results with provable protection of study participants.
♻ ☆ Look mom, no experimental data! Learning to score protein-ligand interactions from simulations
Despite recent advances in protein-ligand structure prediction, deep learning methods remain limited in their ability to accurately predict binding affinities, particularly for novel protein targets dissimilar from the training set. In contrast, physics-based binding free energy calculations offer high accuracy across chemical space but are computationally prohibitive for large-scale screening. We propose a hybrid approach that approximates the accuracy of physics-based methods by training target-specific neural networks on molecular dynamics simulations of the protein in complex with random small molecules. Our method uses force matching to learn an implicit free energy landscape of ligand binding for each target. Evaluated on six proteins, our approach achieves competitive virtual screening performance using 100-500 $μ$s of MD simulations per target. Notably, this approach achieves state-of-the-art early enrichment when using the true pose for active compounds. These results highlight the potential of physics-informed learning for virtual screening on novel targets. We publicly release the code for this paper at https://github.com/molecularmodelinglab/lfm under the MIT license.
comment: 17 pages, 4 figures
♻ ☆ Asymptotic Analysis of the Total Quasi-Steady State Approximation for the Michaelis--Menten Enzyme Kinetic Reactions
We consider a stochastic model of the Michaelis-Menten (MM) enzyme kinetic reactions in terms of Stochastic Differential Equations (SDEs) driven by Poisson Random Measures (PRMs). It has been argued that among various Quasi-Steady State Approximations (QSSAs) for the deterministic model of such chemical reactions, the total QSSA (tQSSA) is the most accurate approximation, and it is valid for a wider range of parameter values than the standard QSSA (sQSSA). While the sQSSA for this model has been rigorously derived from a probabilistic perspective at least as early as 2006 in Ball et al. (2006), a rigorous study of the tQSSA for the stochastic model appears missing. We fill in this gap by deriving it as a Functional Law of Large Numbers (FLLN), and also studying the fluctuations around this approximation as a Functional Central Limit Theorem (FCLT).
comment: 40 pages, 1 figure
♻ ☆ PixCell: A generative foundation model for digital histopathology images
The digitization of histology slides has revolutionized pathology, providing massive datasets for cancer diagnosis and research. Self-supervised and vision-language models have been shown to effectively mine large pathology datasets to learn discriminative representations. On the other hand, there are unique problems in pathology, such as annotated data scarcity, privacy regulations in data sharing, and inherently generative tasks like virtual staining. Generative models, capable of synthesizing realistic and diverse images, present a compelling solution to address these problems through image synthesis. We introduce PixCell, the first generative foundation model for histopathology images. PixCell is a diffusion model trained on PanCan-30M, a large, diverse dataset derived from 69,184 H&E-stained whole slide images of various cancer types. We employ a progressive training strategy and a self-supervision-based conditioning that allows us to scale up training without any human-annotated data. By conditioning on real slides, the synthetic images capture the properties of the real data and can be used as data augmentation for small-scale datasets to boost classification performance. We prove the foundational versatility of PixCell by applying it to two generative downstream tasks: privacy-preserving synthetic data generation and virtual IHC staining. PixCell's high-fidelity conditional generation enables institutions to use their private data to synthesize highly realistic, site-specific surrogate images that can be shared in place of raw patient data. Furthermore, using datasets of roughly paired H&E-IHC tiles, we learn to translate PixCell's conditioning from H&E to multiple IHC stains, allowing the generation of IHC images from H&E inputs. Our trained models are publicly released to accelerate research in computational pathology.
comment: Project page - https://histodiffusion.github.io/docs/projects/pixcell
♻ ☆ In Silico Functional Profiling of Engineered Small Molecules: A Machine Learning Approach Leveraging PubChem Identifiers (CID_SID ML model)
The article introduces a concept for a time- and cost-effective methodological framework leveraging machine learning (ML) models for both early-stage drug development and clinical trial support. The rationale for this approach is the inherent scalability and speed enabled by using pre-calculated data embedded in existing PubChem identifiers (CID and SID), thereby eliminating the computationally intensive step of on-the-fly molecular descriptor generation. The approach was effectively demonstrated across four diverse bioassays: antagonists of the human D3 dopamine receptor, Rab9 promoter activators, small-molecule inhibitors of CHOP, and antagonists of the human M1 muscarinic receptor. A comparison, based on Matthews correlation coefficient (MCC), was conducted between the CID_SID ML model, the MORGAN2-based ML model, and the RDKit-transformed SMILES model for these four case studies, revealing that no method is universally superior in terms of performance. Furthermore, the CID_SID model averaged a rapid execution time of only 3.3 seconds; the ML models relying on explicit structural descriptors, such as MORGAN2 and RDKit-transformed SMILES, demonstrated high computational costs, with processing times averaging 106.0 and 109.6 seconds, respectively. While negligible for a single ML model, these times would cause a significant difference in computational resource consumption when scaled across a framework involving over a million buildings. Moreover, the CID_SID ML model achieved strong average performance metrics: Accuracy of 83.52%, Precision of 89.62%, Recall of 75.65%, F1-Score of 81.93% and ROC of 83.53%.
comment: 34 pages, 11 figures, 10 tables
Cell Behavior 1
Cell-cell communication inference and analysis: biological mechanisms, computational approaches, and future opportunities
In multicellular organisms, cells coordinate their activities through cell-cell communication (CCC), which are crucial for development, tissue homeostasis, and disease progression. Recent advances in single-cell and spatial omics technologies provide unprecedented opportunities to systematically infer and analyze CCC from these omics data, either by integrating prior knowledge of ligand-receptor interactions (LRIs) or through de novo approaches. A variety of computational methods have been developed, focusing on methodological innovations, accurate modeling of complex signaling mechanisms, and investigation of broader biological questions. These advances have greatly enhanced our ability to analyze CCC and generate biological hypotheses. Here, we introduce the biological mechanisms and modeling strategies of CCC, and provide a focused overview of more than 140 computational methods for inferring CCC from single-cell and spatial transcriptomic data, emphasizing the diversity in methodological frameworks and biological questions. Finally, we discuss the current challenges and future opportunities in this rapidly evolving field.
Computation and Language 95
☆ The Moral Consistency Pipeline: Continuous Ethical Evaluation for Large Language Models
The rapid advancement and adaptability of Large Language Models (LLMs) highlight the need for moral consistency, the capacity to maintain ethically coherent reasoning across varied contexts. Existing alignment frameworks, structured approaches designed to align model behavior with human ethical and social norms, often rely on static datasets and post-hoc evaluations, offering limited insight into how ethical reasoning may evolve across different contexts or temporal scales. This study presents the Moral Consistency Pipeline (MoCoP), a dataset-free, closed-loop framework for continuously evaluating and interpreting the moral stability of LLMs. MoCoP combines three supporting layers: (i) lexical integrity analysis, (ii) semantic risk estimation, and (iii) reasoning-based judgment modeling within a self-sustaining architecture that autonomously generates, evaluates, and refines ethical scenarios without external supervision. Our empirical results on GPT-4-Turbo and DeepSeek suggest that MoCoP effectively captures longitudinal ethical behavior, revealing a strong inverse relationship between ethical and toxicity dimensions (correlation rET = -0.81, p value less than 0.001) and a near-zero association with response latency (correlation rEL approximately equal to 0). These findings demonstrate that moral coherence and linguistic safety tend to emerge as stable and interpretable characteristics of model behavior rather than short-term fluctuations. Furthermore, by reframing ethical evaluation as a dynamic, model-agnostic form of moral introspection, MoCoP offers a reproducible foundation for scalable, continuous auditing and advances the study of computational morality in autonomous AI systems.
☆ LORE: A Large Generative Model for Search Relevance
Achievement. We introduce LORE, a systematic framework for Large Generative Model-based relevance in e-commerce search. Deployed and iterated over three years, LORE achieves a cumulative +27\% improvement in online GoodRate metrics. This report shares the valuable experience gained throughout its development lifecycle, spanning data, features, training, evaluation, and deployment. Insight. While existing works apply Chain-of-Thought (CoT) to enhance relevance, they often hit a performance ceiling. We argue this stems from treating relevance as a monolithic task, lacking principled deconstruction. Our key insight is that relevance comprises distinct capabilities: knowledge and reasoning, multi-modal matching, and rule adherence. We contend that a qualitative-driven decomposition is essential for breaking through current performance bottlenecks. Contributions. LORE provides a complete blueprint for the LLM relevance lifecycle. Key contributions include: (1) A two-stage training paradigm combining progressive CoT synthesis via SFT with human preference alignment via RL. (2) A comprehensive benchmark, RAIR, designed to evaluate these core capabilities. (3) A query frequency-stratified deployment strategy that efficiently transfers offline LLM capabilities to the online system. LORE serves as both a practical solution and a methodological reference for other vertical domains.
☆ Fine-Tuned Large Language Models for Logical Translation: Reducing Hallucinations with Lang2Logic
Recent advances in natural language processing (NLP), particularly large language models (LLMs), have motivated the automatic translation of natural language statements into formal logic without human intervention. This enables automated reasoning and facilitates debugging, finding loop invariants, and adhering to specifications in software systems. However, hallucinations-incorrect outputs generated by LLMs are challenging, particularly for logical translation tasks requiring precision. This work introduces a novel framework that inputs English sentences, converts them into logical expressions, and then translates them into Conjunctive Normal Form (CNF) for satisfiability solving. It employs classical NLP techniques with self-defined grammar, symbolic computation libraries, and a fine-tuned language model to reduce hallucinations. In the early experiments, we observed that the fine-tuned model, trained on different grammar settings, could intentionally correct the same types of hallucinations made by the original model. Thus, it provides reliable CNF generation.
comment: IEEE ISNCC 2025
☆ Contextual Image Attack: How Visual Context Exposes Multimodal Safety Vulnerabilities
While Multimodal Large Language Models (MLLMs) show remarkable capabilities, their safety alignments are susceptible to jailbreak attacks. Existing attack methods typically focus on text-image interplay, treating the visual modality as a secondary prompt. This approach underutilizes the unique potential of images to carry complex, contextual information. To address this gap, we propose a new image-centric attack method, Contextual Image Attack (CIA), which employs a multi-agent system to subtly embeds harmful queries into seemingly benign visual contexts using four distinct visualization strategies. To further enhance the attack's efficacy, the system incorporate contextual element enhancement and automatic toxicity obfuscation techniques. Experimental results on the MMSafetyBench-tiny dataset show that CIA achieves high toxicity scores of 4.73 and 4.83 against the GPT-4o and Qwen2.5-VL-72B models, respectively, with Attack Success Rates (ASR) reaching 86.31\% and 91.07\%. Our method significantly outperforms prior work, demonstrating that the visual modality itself is a potent vector for jailbreaking advanced MLLMs.
☆ AutoNeural: Co-Designing Vision-Language Models for NPU Inference
While Neural Processing Units (NPUs) offer high theoretical efficiency for edge AI, state-of-the-art Vision--Language Models (VLMs) tailored for GPUs often falter on these substrates. We attribute this hardware-model mismatch to two primary factors: the quantization brittleness of Vision Transformers (ViTs) and the I/O-bound nature of autoregressive attention mechanisms, which fail to utilize the high arithmetic throughput of NPUs. To bridge this gap, we propose AutoNeural, an NPU-native VLM architecture co-designed for integer-only inference. We replace the standard ViT encoder with a MobileNetV5-style backbone utilizing depthwise separable convolutions, which ensures bounded activation distributions for stable INT4/8/16 quantization. Complementing this, our language backbone integrates State-Space Model (SSM) principles with Transformer layers, employing efficient gated convolutions to achieve linear-time complexity. This hybrid design eliminates the heavy memory I/O overhead of Key-Value caching during generation. Our approach delivers substantial efficiency gains, reducing quantization error of vision encoder by up to 7x and end-to-end latency by 14x compared to conventional baselines. The AutoNeural also delivers 3x decoding speed and 4x longer context window than the baseline. We validate these improvements via a real-world automotive case study on the Qualcomm SA8295P SoC, demonstrating real-time performance for cockpit applications. Our results highlight that rethinking model topology specifically for NPU constraints is a prerequisite for robust multi-modal edge intelligence.
☆ Martingale Score: An Unsupervised Metric for Bayesian Rationality in LLM Reasoning NeurIPS 2025
Recent advances in reasoning techniques have substantially improved the performance of large language models (LLMs), raising expectations for their ability to provide accurate, truthful, and reliable information. However, emerging evidence suggests that iterative reasoning may foster belief entrenchment and confirmation bias, rather than enhancing truth-seeking behavior. In this study, we propose a systematic evaluation framework for belief entrenchment in LLM reasoning by leveraging the Martingale property from Bayesian statistics. This property implies that, under rational belief updating, the expected value of future beliefs should remain equal to the current belief, i.e., belief updates are unpredictable from the current belief. We propose the unsupervised, regression-based Martingale Score to measure violations of this property, which signal deviation from the Bayesian ability of updating on new evidence. In open-ended problem domains including event forecasting, value-laden questions, and academic paper review, we find such violations to be widespread across models and setups, where the current belief positively predicts future belief updates, a phenomenon which we term belief entrenchment. We identify the models, reasoning techniques, and domains more prone to belief entrenchment. Finally, we validate the Martingale Score by showing that it predicts ground-truth accuracy on problem domains where ground truth labels are available. This indicates that, while designed as an unsupervised metric that operates even in domains without access to ground truth, the Martingale Score is a useful proxy of the truth-seeking ability of a reasoning process.
comment: NeurIPS 2025
☆ Fast-Decoding Diffusion Language Models via Progress-Aware Confidence Schedules
Diffusion large language models (dLLMs) offer a promising alternative to autoregressive models, but their practical utility is severely hampered by slow, iterative sampling. We present SchED, a training-free, model-agnostic early-exit algorithm that aggregates full-span logit margins and halts decoding once a smooth, progress-dependent confidence threshold is met. We evaluated SchED on two dLLM families (Dream and LLaDA), in base and instruction-tuned variants across ten benchmarks spanning downstream tasks including multiple-choice question answering (MCQ), math, long-form QA/summarization, and translation. SchED delivers large, stable accelerations: on instruction-tuned models, it achieves $3.8$-$4.0\times$ speedups while retaining $99.8$-$100\%$ of the baseline score on average. On base models, SchED yields consistent speedup gains with $99.1$-$100\%$ performance retention, with up to $2.34\times$ under more aggressive settings. Using a conservative speed metric that heavily penalizes quality loss (QPS, $γ{=}4$), we show that SchED is robust and clearly outperforms prior confidence-based early-exit methods, which break down on long-form generation. An entropy analysis of the model's token predictions reveals that instruction tuning speeds up the decay of predictive entropy. By turning genuine confidence stabilization into computational savings, SchED makes dLLM decoding substantially more efficient.
☆ OptPO: Optimal Rollout Allocation for Test-time Policy Optimization
Test-time policy optimization enables large language models (LLMs) to adapt to distribution shifts by leveraging feedback from self-generated rollouts. However, existing methods rely on fixed-budget majority voting to estimate rewards, incurring substantial computational redundancy. We propose Optimal Rollout Allocation for Test-time Policy Optimization (OptPO), a principled framework that adaptively allocates inference budgets. By formulating the voting process as a Bayesian sequential probability ratio test, OptPO dynamically halts sampling once the posterior confidence in a consensus answer exceeds a specified threshold. Crucially, it utilizes the retained rollouts for on-policy updates, seamlessly integrating with algorithms like PPO or GRPO without requiring ground-truth labels. Across diverse reasoning benchmarks, OptPO significantly reduces rollout overhead compared to fixed-sample baselines while preserving or improving accuracy. By unifying statistically optimal stopping with test-time learning, OptPO offers a computationally efficient paradigm for test-time adaptation. The source code will be open upon acceptance at https://open-upon-acceptance.
comment: Work in Progress
☆ Think in Parallel, Answer as One: Logit Averaging for Open-Ended Reasoning
Majority voting has proven effective for close-ended question answering by aggregating parallel reasoning traces. However, it is not directly applicable to open-ended reasoning, such as code generation and web-based deep research, where a "majority" over complete solutions is ill-defined. We introduce ThinkMerge, a training-free, plug-and-play decoding strategy that runs K parallel reasoning traces and averages their next-token logits at synchronization points to produce a single coherent output. ThinkMerge integrates seamlessly with vLLM/SGLang and remains compatible with standard decoding techniques such as Top-p/Top-k. Empirically, it matches or surpasses majority voting on AIME and GPQA, while delivering consistent gains on open-ended coding tasks: on LiveCodeBench (hard), pass@1 improves by +8.28% for DeepCoder-14B-Preview and +7.58% for Qwen3-8B. Beyond code, we further show that ThinkMerge improves web-based deep-research agents (e.g., WebSailor-7B/32B) across GAIA, BrowseComp-en/zh, and XbenchDeepSearch. These results demonstrate that parallel test-time scaling can benefit open-ended reasoning without relying on voting over complete outputs.
☆ Bangla Hate Speech Classification with Fine-tuned Transformer Models
Hate speech recognition in low-resource lan- guages remains a difficult problem due to in- sufficient datasets, orthographic heterogeneity, and linguistic variety. Bangla is spoken by more than 230 million people of Bangladesh and India (West Bengal). Despite the grow- ing need for automated moderation on social media platforms, Bangla is significantly under- represented in computational resources. In this work, we study Subtask 1A and Subtask 1B of the BLP 2025 Shared Task on hate speech detection. We reproduce the official base- lines (e.g., Majority, Random, Support Vec- tor Machine) and also produce and consider Logistic Regression, Random Forest, and De- cision Tree as baseline methods. We also uti- lized transformer-based models such as Dis- tilBERT, BanglaBERT, m-BERT, and XLM- RoBERTa for hate speech classification. All the transformer-based models outperformed base- line methods for the subtasks, except for Distil- BERT. Among the transformer-based models, BanglaBERT produces the best performance for both subtasks. Despite being smaller in size, BanglaBERT outperforms both m-BERT and XLM-RoBERTa, which suggests language- specific pre-training is very important. Our results highlight the potential and need for pre- trained language models for the low-resource Bangla language.
☆ Cross-Lingual Prompt Steerability: Towards Accurate and Robust LLM Behavior across Languages
System prompts provide a lightweight yet powerful mechanism for conditioning large language models (LLMs) at inference time. While prior work has focused on English-only settings, real-world deployments benefit from having a single prompt to operate reliably across languages. This paper presents a comprehensive study of how different system prompts steer models toward accurate and robust cross-lingual behavior. We propose a unified four-dimensional evaluation framework to assess system prompts in multilingual environments. Through large-scale experiments on five languages, three LLMs, and three benchmarks, we uncover that certain prompt components, such as CoT, emotion, and scenario, correlate with robust multilingual behavior. We develop a prompt optimization framework for multilingual settings and show it can automatically discover prompts that improve all metrics by 5-10%. Finally, we analyze over 10 million reasoning units and find that more performant system prompts induce more structured and consistent reasoning patterns, while reducing unnecessary language-switching. Together, we highlight system prompt optimization as a scalable path to accurate and robust multilingual LLM behavior.
☆ promptolution: A Unified, Modular Framework for Prompt Optimization
Prompt optimization has become crucial for enhancing the performance of large language models (LLMs) across a broad range of tasks. Although many research papers show its effectiveness, practical adoption is hindered as existing implementations are often tied to unmaintained and isolated research codebases. To address this, we introduce promptolution, a unified and modular open-source framework that provides all components required for prompt optimization within a single extensible system for both practitioners and researchers. It integrates multiple contemporary discrete prompt optimizers while remaining agnostic to the underlying LLM implementation.
☆ ReVSeg: Incentivizing the Reasoning Chain for Video Segmentation with Reinforcement Learning
Reasoning-centric video object segmentation is an inherently complex task: the query often refers to dynamics, causality, and temporal interactions, rather than static appearances. Yet existing solutions generally collapse these factors into simplified reasoning with latent embeddings, rendering the reasoning chain opaque and essentially intractable. We therefore adopt an explicit decomposition perspective and introduce ReVSeg, which executes reasoning as sequential decisions in the native interface of pretrained vision language models (VLMs). Rather than folding all reasoning into a single-step prediction, ReVSeg executes three explicit operations -- semantics interpretation, temporal evidence selection, and spatial grounding -- aligning pretrained capabilities. We further employ reinforcement learning to optimize the multi-step reasoning chain, enabling the model to self-refine its decision quality from outcome-driven signals. Experimental results demonstrate that ReVSeg attains state-of-the-art performances on standard video object segmentation benchmarks and yields interpretable reasoning trajectories. Project page is available at https://clementine24.github.io/ReVSeg/ .
☆ BOOM: Beyond Only One Modality KIT's Multimodal Multilingual Lecture Companion
The globalization of education and rapid growth of online learning have made localizing educational content a critical challenge. Lecture materials are inherently multimodal, combining spoken audio with visual slides, which requires systems capable of processing multiple input modalities. To provide an accessible and complete learning experience, translations must preserve all modalities: text for reading, slides for visual understanding, and speech for auditory learning. We present \textbf{BOOM}, a multimodal multilingual lecture companion that jointly translates lecture audio and slides to produce synchronized outputs across three modalities: translated text, localized slides with preserved visual elements, and synthesized speech. This end-to-end approach enables students to access lectures in their native language while aiming to preserve the original content in its entirety. Our experiments demonstrate that slide-aware transcripts also yield cascading benefits for downstream tasks such as summarization and question answering. We release our Slide Translation code at https://github.com/saikoneru/image-translator and integrate it in Lecture Translator at https://gitlab.kit.edu/kit/isl-ai4lt/lt-middleware/ltpipeline}\footnote{All released code and models are licensed under the MIT License.
comment: Under review
☆ A benchmark dataset for evaluating Syndrome Differentiation and Treatment in large language models
The emergence of Large Language Models (LLMs) within the Traditional Chinese Medicine (TCM) domain presents an urgent need to assess their clinical application capabilities. However, such evaluations are challenged by the individualized, holistic, and diverse nature of TCM's "Syndrome Differentiation and Treatment" (SDT). Existing benchmarks are confined to knowledge-based question-answering or the accuracy of syndrome differentiation, often neglecting assessment of treatment decision-making. Here, we propose a comprehensive, clinical case-based benchmark spearheaded by TCM experts, and a specialized reward model employed to quantify prescription-syndrome congruence. Data annotation follows a rigorous pipeline. This benchmark, designated TCM-BEST4SDT, encompasses four tasks, including TCM Basic Knowledge, Medical Ethics, LLM Content Safety, and SDT. The evaluation framework integrates three mechanisms, namely selected-response evaluation, judge model evaluation, and reward model evaluation. The effectiveness of TCM-BEST4SDT was corroborated through experiments on 15 mainstream LLMs, spanning both general and TCM domains. To foster the development of intelligent TCM research, TCM-BEST4SDT is now publicly available.
☆ SR-GRPO: Stable Rank as an Intrinsic Geometric Reward for Large Language Model Alignment
Aligning Large Language Models (LLMs) with human preferences typically relies on external supervision, which faces critical limitations: human annotations are scarce and subjective, reward models are vulnerable to reward hacking, and self-evaluation methods suffer from prompt sensitivity and biases. In this work, we propose stable rank, an intrinsic, annotation-free quality signal derived from model representations. Stable rank measures the effective dimensionality of hidden states by computing the ratio of total variance to dominant-direction variance, capturing quality through how information distributes across representation dimensions. Empirically, stable rank achieves 84.04% accuracy on RewardBench and improves task accuracy by an average of 11.3 percentage points over greedy decoding via Best-of-N sampling. Leveraging this insight, we introduce Stable Rank Group Relative Policy Optimization (SR-GRPO), which uses stable rank as a reward signal for reinforcement learning. Without external supervision, SR-GRPO improves Qwen2.5-1.5B-Instruct by 10% on STEM and 19% on mathematical reasoning, outperforming both learned reward models and self-evaluation baselines. Our findings demonstrate that quality signals can be extracted from internal model geometry, offering a path toward scalable alignment without external supervision.
☆ TriLex: A Framework for Multilingual Sentiment Analysis in Low-Resource South African Languages
Low-resource African languages remain underrepresented in sentiment analysis, limiting both lexical coverage and the performance of multilingual Natural Language Processing (NLP) systems. This study proposes TriLex, a three-stage retrieval augmented framework that unifies corpus-based extraction, cross lingual mapping, and retrieval augmented generation (RAG) driven lexical refinement to systematically expand sentiment lexicons for low-resource languages. Using the enriched lexicon, the performance of two prominent African pretrained language models (AfroXLMR and AfriBERTa) is evaluated across multiple case studies. Results demonstrate that AfroXLMR delivers superior performance, achieving F1-scores above 80% for isiXhosa and isiZulu and exhibiting strong cross-lingual stability. Although AfriBERTa lacks pre-training on these target languages, it still achieves reliable F1-scores around 64%, validating its utility in computationally constrained settings. Both models outperform traditional machine learning baselines, and ensemble analyses further enhance precision and robustness. The findings establish TriLex as a scalable and effective framework for multilingual sentiment lexicon expansion and sentiment modeling in low-resource South African languages.
☆ Making Dialogue Grounding Data Rich: A Three-Tier Data Synthesis Framework for Generalized Referring Expression Comprehension
Dialogue-Based Generalized Referring Expressions Comprehension (GREC) requires models to ground the expression and unlimited targets in complex visual scenes while resolving coreference across a long dialogue context. However, existing systems struggle under distribution shift between training and evaluation domains, a gap exacerbated by the scarcity of annotated dialogue grounding data. We address this challenge with a three-tier data-synthesis method that balances realism and controllability to produce scalable supervision for dialogue-conditioned grounding. Fine-tuning on the synthesized data yields consistent, substantial improvements over prior approaches across standard evaluation metrics.
☆ Towards Unification of Hallucination Detection and Fact Verification for Large Language Models
Large Language Models (LLMs) frequently exhibit hallucinations, generating content that appears fluent and coherent but is factually incorrect. Such errors undermine trust and hinder their adoption in real-world applications. To address this challenge, two distinct research paradigms have emerged: model-centric Hallucination Detection (HD) and text-centric Fact Verification (FV). Despite sharing the same goal, these paradigms have evolved in isolation, using distinct assumptions, datasets, and evaluation protocols. This separation has created a research schism that hinders their collective progress. In this work, we take a decisive step toward bridging this divide. We introduce UniFact, a unified evaluation framework that enables direct, instance-level comparison between FV and HD by dynamically generating model outputs and corresponding factuality labels. Through large-scale experiments across multiple LLM families and detection methods, we reveal three key findings: (1) No paradigm is universally superior; (2) HD and FV capture complementary facets of factual errors; and (3) hybrid approaches that integrate both methods consistently achieve state-of-the-art performance. Beyond benchmarking, we provide the first in-depth analysis of why FV and HD diverged, as well as empirical evidence supporting the need for their unification. The comprehensive experimental results call for a new, integrated research agenda toward unifying Hallucination Detection and Fact Verification in LLMs. We have open-sourced all the code, data, and baseline implementation at: https://github.com/oneal2000/UniFact/
☆ PEFT-Factory: Unified Parameter-Efficient Fine-Tuning of Autoregressive Large Language Models
Parameter-Efficient Fine-Tuning (PEFT) methods address the increasing size of Large Language Models (LLMs). Currently, many newly introduced PEFT methods are challenging to replicate, deploy, or compare with one another. To address this, we introduce PEFT-Factory, a unified framework for efficient fine-tuning LLMs using both off-the-shelf and custom PEFT methods. While its modular design supports extensibility, it natively provides a representative set of 19 PEFT methods, 27 classification and text generation datasets addressing 12 tasks, and both standard and PEFT-specific evaluation metrics. As a result, PEFT-Factory provides a ready-to-use, controlled, and stable environment, improving replicability and benchmarking of PEFT methods. PEFT-Factory is a downstream framework that originates from the popular LLaMA-Factory, and is publicly available at https://github.com/kinit-sk/PEFT-Factory
☆ SurveyEval: Towards Comprehensive Evaluation of LLM-Generated Academic Surveys
LLM-based automatic survey systems are transforming how users acquire information from the web by integrating retrieval, organization, and content synthesis into end-to-end generation pipelines. While recent works focus on developing new generation pipelines, how to evaluate such complex systems remains a significant challenge. To this end, we introduce SurveyEval, a comprehensive benchmark that evaluates automatically generated surveys across three dimensions: overall quality, outline coherence, and reference accuracy. We extend the evaluation across 7 subjects and augment the LLM-as-a-Judge framework with human references to strengthen evaluation-human alignment. Evaluation results show that while general long-text or paper-writing systems tend to produce lower-quality surveys, specialized survey-generation systems are able to deliver substantially higher-quality results. We envision SurveyEval as a scalable testbed to understand and improve automatic survey systems across diverse subjects and evaluation criteria.
☆ Probabilistic energy profiler for statically typed JVM-based programming languages
Energy consumption is a growing concern in several fields, from mobile devices to large data centers. Developers need detailed data on the energy consumption of their software to mitigate consumption issues. Previous approaches have a broader focus, such as on specific functions or programs, rather than source code statements. They primarily focus on estimating the CPU's energy consumption using point estimates, thereby disregarding other hardware effects and limiting their use for statistical reasoning and explainability. We developed a novel methodology to address the limitations of measuring only the CPU's consumption and using point estimates, focusing on predicting the energy usage of statically typed JVM-based programming languages, such as Java and Scala. We measure the energy consumption of Bytecode patterns, the translation from the programming language's source code statement to their Java Bytecode representation. With the energy measurements, we construct a statistical model using Bayesian statistics, which allows us to predict the energy consumption through statistical distributions and analyze individual factors. The model includes three factors we obtain statically from the code: data size, data type, operation, and one factor about the hardware platform the code executes on: device. To validate our methodology, we implemented it for Java and evaluated its energy predictions on unseen programs. We observe that all four factors are influential, notably that two devices of the same model may differ in energy consumption and that the operations and data types cause consumption differences. The experiments also show that the energy prediction of programs closely follows the program's real energy consumption, validating our approach. Our work presents a methodology for constructing an energy model that future work, such as verification tools, can use for their energy estimates.
☆ Emergent Bayesian Behaviour and Optimal Cue Combination in LLMs
Large language models (LLMs) excel at explicit reasoning, but their implicit computational strategies remain underexplored. Decades of psychophysics research show that humans intuitively process and integrate noisy signals using near-optimal Bayesian strategies in perceptual tasks. We ask whether LLMs exhibit similar behaviour and perform optimal multimodal integration without explicit training or instruction. Adopting the psychophysics paradigm, we infer computational principles of LLMs from systematic behavioural studies. We introduce a behavioural benchmark - BayesBench: four magnitude estimation tasks (length, location, distance, and duration) over text and image, inspired by classic psychophysics, and evaluate a diverse set of nine LLMs alongside human judgments for calibration. Through controlled ablations of noise, context, and instruction prompts, we measure performance, behaviour and efficiency in multimodal cue-combination. Beyond accuracy and efficiency metrics, we introduce a Bayesian Consistency Score that detects Bayes-consistent behavioural shifts even when accuracy saturates. Our results show that while capable models often adapt in Bayes-consistent ways, accuracy does not guarantee robustness. Notably, GPT-5 Mini achieves perfect text accuracy but fails to integrate visual cues efficiently. This reveals a critical dissociation between capability and strategy, suggesting accuracy-centric benchmarks may over-index on performance while missing brittle uncertainty handling. These findings reveal emergent principled handling of uncertainty and highlight the correlation between accuracy and Bayesian tendencies. We release our psychophysics benchmark and consistency metric (https://bayes-bench.github.io) as evaluation tools and to inform future multimodal architecture designs.
☆ CREST: Universal Safety Guardrails Through Cluster-Guided Cross-Lingual Transfer
Ensuring content safety in large language models (LLMs) is essential for their deployment in real-world applications. However, existing safety guardrails are predominantly tailored for high-resource languages, leaving a significant portion of the world's population underrepresented who communicate in low-resource languages. To address this, we introduce CREST (CRoss-lingual Efficient Safety Transfer), a parameter-efficient multilingual safety classification model that supports 100 languages with only 0.5B parameters. By training on a strategically chosen subset of only 13 high-resource languages, our model utilizes cluster-based cross-lingual transfer from a few to 100 languages, enabling effective generalization to both unseen high-resource and low-resource languages. This approach addresses the challenge of limited training data in low-resource settings. We conduct comprehensive evaluations across six safety benchmarks to demonstrate that CREST outperforms existing state-of-the-art guardrails of comparable scale and achieves competitive results against models with significantly larger parameter counts (2.5B parameters and above). Our findings highlight the limitations of language-specific guardrails and underscore the importance of developing universal, language-agnostic safety systems that can scale effectively to serve global populations.
comment: 8 Pages, 5 Figures, Under Review
☆ An Empirical Survey of Model Merging Algorithms for Social Bias Mitigation ACL
Large language models (LLMs) are known to inherit and even amplify societal biases present in their pre-training corpora, threatening fairness and social trust. To address this issue, recent work has explored ``editing'' LLM parameters to mitigate social bias with model merging approaches; however, there is no empirical comparison. In this work, we empirically survey seven algorithms: Linear, Karcher Mean, SLERP, NuSLERP, TIES, DELLA, and Nearswap, applying 13 open weight models in the GPT, LLaMA, and Qwen families. We perform a comprehensive evaluation using three bias datasets (BBQ, BOLD, and HONEST) and measure the impact of these techniques on LLM performance in downstream tasks of the SuperGLUE benchmark. We find a trade-off between bias reduction and downstream performance: methods achieving greater bias mitigation degrade accuracy, particularly on tasks requiring reading comprehension and commonsense and causal reasoning. Among the merging algorithms, Linear, SLERP, and Nearswap consistently reduce bias while maintaining overall performance, with SLERP at moderate interpolation weights emerging as the most balanced choice. These results highlight the potential of model merging algorithms for bias mitigation, while indicating that excessive debiasing or inappropriate merging methods may lead to the degradation of important linguistic abilities.
comment: Accepted in PACLIC 2025
☆ Input Order Shapes LLM Semantic Alignment in Multi-Document Summarization
Large language models (LLMs) are now used in settings such as Google's AI Overviews, where it summarizes multiple long documents. However, it remains unclear whether they weight all inputs equally. Focusing on abortion-related news, we construct 40 pro-neutral-con article triplets, permute each triplet into six input orders, and prompt Gemini 2.5 Flash to generate a neutral overview. We evaluate each summary against its source articles using ROUGE-L (lexical overlap), BERTScore (semantic similarity), and SummaC (factual consistency). One-way ANOVA reveals a significant primacy effect for BERTScore across all stances, indicating that summaries are more semantically aligned with the first-seen article. Pairwise comparisons further show that Position 1 differs significantly from Positions 2 and 3, while the latter two do not differ from each other, confirming a selective preference for the first document. The findings present risks for applications that rely on LLM-generated overviews and for agentic AI systems, where the steps involving LLMs can disproportionately influence downstream actions.
comment: 9 pages, 3 figures, 2 tables
☆ Spoken Conversational Agents with Large Language Models EMNLP 2025
Spoken conversational agents are converging toward voice-native LLMs. This tutorial distills the path from cascaded ASR/NLU to end-to-end, retrieval-and vision-grounded systems. We frame adaptation of text LLMs to audio, cross-modal alignment, and joint speech-text training; review datasets, metrics, and robustness across accents and compare design choices (cascaded vs. E2E, post-ASR correction, streaming). We link industrial assistants to current open-domain and task-oriented agents, highlight reproducible baselines, and outline open problems in privacy, safety, and evaluation. Attendees leave with practical recipes and a clear systems-level roadmap.
comment: Accepted to EMNLP 2025 Tutorial
☆ From Imitation to Discrimination: Toward A Generalized Curriculum Advantage Mechanism Enhancing Cross-Domain Reasoning Tasks AAAI 2026
Reinforcement learning has emerged as a paradigm for post-training large language models, boosting their reasoning capabilities. Such approaches compute an advantage value for each sample, reflecting better or worse performance than expected, thereby yielding both positive and negative signals for training. However, the indiscriminate mixing of the two signals in existing methods, especially from the early stages, may lead to ambiguous guidance and limited gains. To address this issue, we propose **CAPO** (**C**urriculum **A**dvantage **P**olicy **O**ptimization), an adaptive curriculum mechanism based on advantage signals. The proposed mechanism bootstraps imitation learning with positive-only advantage samples to establish robust foundations, and subsequently introduces negative signals to cultivate discriminative capabilities, thereby improving generalization across complex scenarios. Compatible with diverse optimization methods including GRPO, PPO, RLOO, and Reinforce++, our method consistently achieves stable and significant improvements in mathematical reasoning tasks, and further generalizes effectively to multimodal Graphical User Interface (GUI) reasoning scenarios, establishing itself as a versatile and robust optimization framework.
comment: Accepted by AAAI 2026
DeepSeek-V3.2: Pushing the Frontier of Open Large Language Models
We introduce DeepSeek-V3.2, a model that harmonizes high computational efficiency with superior reasoning and agent performance. The key technical breakthroughs of DeepSeek-V3.2 are as follows: (1) DeepSeek Sparse Attention (DSA): We introduce DSA, an efficient attention mechanism that substantially reduces computational complexity while preserving model performance in long-context scenarios. (2) Scalable Reinforcement Learning Framework: By implementing a robust reinforcement learning protocol and scaling post-training compute, DeepSeek-V3.2 performs comparably to GPT-5. Notably, our high-compute variant, DeepSeek-V3.2-Speciale, surpasses GPT-5 and exhibits reasoning proficiency on par with Gemini-3.0-Pro, achieving gold-medal performance in both the 2025 International Mathematical Olympiad (IMO) and the International Olympiad in Informatics (IOI). (3) Large-Scale Agentic Task Synthesis Pipeline: To integrate reasoning into tool-use scenarios, we developed a novel synthesis pipeline that systematically generates training data at scale. This methodology facilitates scalable agentic post-training, yielding substantial improvements in generalization and instruction-following robustness within complex, interactive environments.
☆ ADORE: Autonomous Domain-Oriented Relevance Engine for E-commerce
Relevance modeling in e-commerce search remains challenged by semantic gaps in term-matching methods (e.g., BM25) and neural models' reliance on the scarcity of domain-specific hard samples. We propose ADORE, a self-sustaining framework that synergizes three innovations: (1) A Rule-aware Relevance Discrimination module, where a Chain-of-Thought LLM generates intent-aligned training data, refined via Kahneman-Tversky Optimization (KTO) to align with user behavior; (2) An Error-type-aware Data Synthesis module that auto-generates adversarial examples to harden robustness; and (3) A Key-attribute-enhanced Knowledge Distillation module that injects domain-specific attribute hierarchies into a deployable student model. ADORE automates annotation, adversarial generation, and distillation, overcoming data scarcity while enhancing reasoning. Large-scale experiments and online A/B testing verify the effectiveness of ADORE. The framework establishes a new paradigm for resource-efficient, cognitively aligned relevance modeling in industrial applications.
comment: Accepted by SIGIR 2025
☆ What Signals Really Matter for Misinformation Tasks? Evaluating Fake-News Detection and Virality Prediction under Real-World Constraints
We present an evaluation-driven study of two practical tasks regarding online misinformation: (i) fake-news detection and (ii) virality prediction in the context of operational settings, with the necessity for rapid reaction. Using the EVONS and FakeNewsNet datasets, we compare textual embeddings (RoBERTa; with a control using Mistral) against lightweight numeric features (timing, follower counts, verification, likes) and sequence models (GRU, gating architectures, Transformer encoders). We show that textual content alone is a strong discriminator for fake-news detection, while numeric-only pipelines remain viable when language models are unavailable or compute is constrained. Virality prediction is markedly harder than fake-news detection and is highly sensitive to label construction; in our setup, a median-based ''viral'' split (<50 likes) is pragmatic but underestimates real-world virality, and time-censoring for engagement features is desirable yet difficult under current API limits. Dimensionality-reduction analyses suggest non-linear structure is more informative for virality than for fake-news detection (t-SNE > PCA on numeric features). Swapping RoBERTa for Mistral embeddings yields only modest deltas, leaving conclusions unchanged. We discuss implications for evaluation design and report reproducibility constraints that realistically affect the field. We release splits and code where possible and provide guidance for metric selection.
☆ A Concise Review of Hallucinations in LLMs and their Mitigation
Traditional language models face a challenge from hallucinations. Their very presence casts a large, dangerous shadow over the promising realm of natural language processing. It becomes crucial to understand the various kinds of hallucinations that occur nowadays, their origins, and ways of reducing them. This document provides a concise and straightforward summary of that. It serves as a one-stop resource for a general understanding of hallucinations and how to mitigate them.
comment: 7 pages
☆ Guided Self-Evolving LLMs with Minimal Human Supervision
AI self-evolution has long been envisioned as a path toward superintelligence, where models autonomously acquire, refine, and internalize knowledge from their own learning experiences. Yet in practice, unguided self-evolving systems often plateau quickly or even degrade as training progresses. These failures arise from issues such as concept drift, diversity collapse, and mis-evolution, as models reinforce their own biases and converge toward low-entropy behaviors. To enable models to self-evolve in a stable and controllable manner while minimizing reliance on human supervision, we introduce R-Few, a guided Self-Play Challenger-Solver framework that incorporates lightweight human oversight through in-context grounding and mixed training. At each iteration, the Challenger samples a small set of human-labeled examples to guide synthetic question generation, while the Solver jointly trains on human and synthetic examples under an online, difficulty-based curriculum. Across math and general reasoning benchmarks, R-Few achieves consistent and iterative improvements. For example, Qwen3-8B-Base improves by +3.0 points over R-Zero on math tasks and achieves performance on par with General-Reasoner, despite the latter being trained on 20 times more human data. Ablation studies confirm the complementary contributions of grounded challenger training and curriculum-based solver training, and further analysis shows that R-Few mitigates drift, yielding more stable and controllable co-evolutionary dynamics.
☆ See, Think, Learn: A Self-Taught Multimodal Reasoner
Vision-Language Models (VLMs) have achieved remarkable progress in integrating visual perception with language understanding. However, effective multimodal reasoning requires both accurate perception and robust reasoning, and weakness in either limits the performance of VLMs. Prior efforts to enhance reasoning often depend on high-quality chain-of-thought (CoT) data, obtained via labor-intensive human annotations, costly proprietary models, or self-training methods that overlook perception. To address these limitations, we propose a simple yet effective self-training framework called See-Think-Learn (STL). At its core, STL introduces a structured reasoning template that encourages the model to see before thinking, first extracting visual attributes in textual form, then using them to guide reasoning. The framework jointly improves perception and reasoning by having the model generate and learn from its own structured rationales in a self-training loop. Furthermore, we augment the training data with negative rationales, i.e. explanations that justify why certain answer choices are incorrect, to enhance the model's ability to distinguish between correct and misleading responses. This fosters more discriminative and robust learning. Experiments across diverse domains show that STL consistently outperforms baselines trained directly only on answers or self-generated reasoning, while qualitative analysis confirms the high quality of its rationales. STL thus provides a cost-effective solution to enhance multimodal reasoning ability of VLMs.
comment: Winter Conference on Applications of Computer Vision 2026
☆ When Refusals Fail: Unstable Safety Mechanisms in Long-Context LLM Agents AAAI 2026
Solving complex or long-horizon problems often requires large language models (LLMs) to use external tools and operate over a significantly longer context window. New LLMs enable longer context windows and support tool calling capabilities. Prior works have focused mainly on evaluation of LLMs on long-context prompts, leaving agentic setup relatively unexplored, both from capability and safety perspectives. Our work addresses this gap. We find that LLM agents could be sensitive to length, type, and placement of the context, exhibiting unexpected and inconsistent shifts in task performance and in refusals to execute harmful requests. Models with 1M-2M token context windows show severe degradation already at 100K tokens, with performance drops exceeding 50\% for both benign and harmful tasks. Refusal rates shift unpredictably: GPT-4.1-nano increases from $\sim$5\% to $\sim$40\% while Grok 4 Fast decreases from $\sim$80\% to $\sim$10\% at 200K tokens. Our work shows potential safety issues with agents operating on longer context and opens additional questions on the current metrics and paradigm for evaluating LLM agent safety on long multi-step tasks. In particular, our results on LLM agents reveal a notable divergence in both capability and safety performance compared to prior evaluations of LLMs on similar criteria.
comment: 12 pages, 11 figures. Accepted at AAAI 2026 TrustAgent Workshop
☆ WorldMM: Dynamic Multimodal Memory Agent for Long Video Reasoning
Recent advances in video large language models have demonstrated strong capabilities in understanding short clips. However, scaling them to hours- or days-long videos remains highly challenging due to limited context capacity and the loss of critical visual details during abstraction. Existing memory-augmented methods mitigate this by leveraging textual summaries of video segments, yet they heavily rely on text and fail to utilize visual evidence when reasoning over complex scenes. Moreover, retrieving from fixed temporal scales further limits their flexibility in capturing events that span variable durations. To address this, we introduce WorldMM, a novel multimodal memory agent that constructs and retrieves from multiple complementary memories, encompassing both textual and visual representations. WorldMM comprises three types of memory: episodic memory indexes factual events across multiple temporal scales, semantic memory continuously updates high-level conceptual knowledge, and visual memory preserves detailed information about scenes. During inference, an adaptive retrieval agent iteratively selects the most relevant memory source and leverages multiple temporal granularities based on the query, continuing until it determines that sufficient information has been gathered. WorldMM significantly outperforms existing baselines across five long video question-answering benchmarks, achieving an average 8.4% performance gain over previous state-of-the-art methods, showing its effectiveness on long video reasoning.
comment: Project page : https://worldmm.github.io
☆ The brain-AI convergence: Predictive and generative world models for general-purpose computation
Recent advances in general-purpose AI systems with attention-based transformers offer a potential window into how the neocortex and cerebellum, despite their relatively uniform circuit architectures, give rise to diverse functions and, ultimately, to human intelligence. This Perspective provides a cross-domain comparison between the brain and AI that goes beyond the traditional focus on visual processing, adopting the emerging perspecive of world-model-based computation. Here, we identify shared computational mechanisms in the attention-based neocortex and the non-attentional cerebellum: both predict future world events from past inputs and construct internal world models through prediction-error learning. These predictive world models are repurposed for seemingly distinct functions--understanding in sensory processing and generation in motor processing-- enabling the brain to achieve multi-domain capabilities and human-like adaptive intelligence. Notably, attention-based AI has independently converged on a similar learning paradigm and world-model-based computation. We conclude that these shared mechanisms in both biological and artificial systems constitute a core computational foundation for realizing diverse functions including high-level intelligence, despite their relatively uniform circuit structures. Our theoretical insights bridge neuroscience and AI, advancing our understanding of the computational essence of intelligence.
comment: 22 pages, 4 figures. Related to our earlier preprint "The brain versus AI" (arXiv:2411.16075) but a distinct article. The earlier work surveyed broad brain-AI parallels; here we focus on world-model-based computation and convergent evolution between the brain and AI, especially large language models
☆ TaleFrame: An Interactive Story Generation System with Fine-Grained Control and Large Language Models
With the advancement of natural language generation (NLG) technologies, creative story generation systems have gained increasing attention. However, current systems often fail to accurately translate user intent into satisfactory story outputs due to a lack of fine-grained control and unclear input specifications, limiting their applicability. To address this, we propose TaleFrame, a system that combines large language models (LLMs) with human-computer interaction (HCI) to generate stories through structured information, enabling precise control over the generation process. The innovation of TaleFrame lies in decomposing the story structure into four basic units: entities, events, relationships, and story outline. We leverage the Tinystories dataset, parsing and constructing a preference dataset consisting of 9,851 JSON-formatted entries, which is then used to fine-tune a local Llama model. By employing this JSON2Story approach, structured data is transformed into coherent stories. TaleFrame also offers an intuitive interface that supports users in creating and editing entities and events and generates stories through the structured framework. Users can control these units through simple interactions (e.g., drag-and-drop, attach, and connect), thus influencing the details and progression of the story. The generated stories can be evaluated across seven dimensions (e.g., creativity, structural integrity), with the system providing suggestions for refinement based on these evaluations. Users can iteratively adjust the story until a satisfactory result is achieved. Finally, we conduct quantitative evaluation and user studies that demonstrate the usefulness of TaleFrame. Dataset available at https://huggingface.co/datasets/guodaosun/tale-frame.
comment: 11 pages
☆ Process-Centric Analysis of Agentic Software Systems
Agentic systems are modern software systems: they consist of orchestrated modules, expose interfaces, and are deployed in software pipelines. Unlike conventional programs, their execution (i.e., trajectories) is inherently stochastic and adaptive to the problem they are solving. Evaluation of such systems is often outcome-centric, judging their performance based on success or failure at the final step. This narrow focus overlooks detailed insights about such systems, failing to explain how agents reason, plan, act, or change their strategies over time. Inspired by the structured representation of conventional software systems as graphs, we introduce Graphectory to systematically encode the temporal and semantic relations in such software systems. Graphectory facilitates the design of process-centric metrics and analyses to assess the quality of agentic workflows independent of final success. Using Graphectory, we analyze 4000 trajectories of two dominant agentic programming workflows, namely SWE-agent and OpenHands, with a combination of four backbone Large Language Models (LLMs), attempting to resolve SWE-bench Verified issues. Our fully automated analyses reveal that: (1) agents using richer prompts or stronger LLMs exhibit more complex Graphectory, reflecting deeper exploration, broader context gathering, and more thorough validation before patch submission; (2) agents' problem-solving strategies vary with both problem difficulty and the underlying LLM -- for resolved issues, the strategies often follow coherent localization-patching-validation steps, while unresolved ones exhibit chaotic, repetitive, or backtracking behaviors; (3) even when successful, agentic programming systems often display inefficient processes, leading to unnecessarily prolonged trajectories.
☆ Memory-Augmented Knowledge Fusion with Safety-Aware Decoding for Domain-Adaptive Question Answering
Domain-specific question answering (QA) systems for services face unique challenges in integrating heterogeneous knowledge sources while ensuring both accuracy and safety. Existing large language models often struggle with factual consistency and context alignment in sensitive domains such as healthcare policies and government welfare. In this work, we introduce Knowledge-Aware Reasoning and Memory-Augmented Adaptation (KARMA), a novel framework designed to enhance QA performance in care scenarios. KARMA incorporates a dual-encoder architecture to fuse structured and unstructured knowledge sources, a gated memory unit to dynamically regulate external knowledge integration, and a safety-aware controllable decoder that mitigates unsafe outputs using safety classification and guided generation techniques. Extensive experiments on a proprietary QA dataset demonstrate that KARMA outperforms strong baselines in both answer quality and safety. This study offers a comprehensive solution for building trustworthy and adaptive QA systems in service contexts.
☆ LeechHijack: Covert Computational Resource Exploitation in Intelligent Agent Systems
Large Language Model (LLM)-based agents have demonstrated remarkable capabilities in reasoning, planning, and tool usage. The recently proposed Model Context Protocol (MCP) has emerged as a unifying framework for integrating external tools into agent systems, enabling a thriving open ecosystem of community-built functionalities. However, the openness and composability that make MCP appealing also introduce a critical yet overlooked security assumption -- implicit trust in third-party tool providers. In this work, we identify and formalize a new class of attacks that exploit this trust boundary without violating explicit permissions. We term this new attack vector implicit toxicity, where malicious behaviors occur entirely within the allowed privilege scope. We propose LeechHijack, a Latent Embedded Exploit for Computation Hijacking, in which an adversarial MCP tool covertly expropriates the agent's computational resources for unauthorized workloads. LeechHijack operates through a two-stage mechanism: an implantation stage that embeds a benign-looking backdoor in a tool, and an exploitation stage where the backdoor activates upon predefined triggers to establish a command-and-control channel. Through this channel, the attacker injects additional tasks that the agent executes as if they were part of its normal workflow, effectively parasitizing the user's compute budget. We implement LeechHijack across four major LLM families. Experiments show that LeechHijack achieves an average success rate of 77.25%, with a resource overhead of 18.62% compared to the baseline. This study highlights the urgent need for computational provenance and resource attestation mechanisms to safeguard the emerging MCP ecosystem.
☆ OmniGuard: Unified Omni-Modal Guardrails with Deliberate Reasoning
Omni-modal Large Language Models (OLLMs) that process text, images, videos, and audio introduce new challenges for safety and value guardrails in human-AI interaction. Prior guardrail research largely targets unimodal settings and typically frames safeguarding as binary classification, which limits robustness across diverse modalities and tasks. To address this gap, we propose OmniGuard, the first family of omni-modal guardrails that performs safeguarding across all modalities with deliberate reasoning ability. To support the training of OMNIGUARD, we curate a large, comprehensive omni-modal safety dataset comprising over 210K diverse samples, with inputs that cover all modalities through both unimodal and cross-modal samples. Each sample is annotated with structured safety labels and carefully curated safety critiques from expert models through targeted distillation. Extensive experiments on 15 benchmarks show that OmniGuard achieves strong effectiveness and generalization across a wide range of multimodal safety scenarios. Importantly, OmniGuard provides a unified framework that enforces policies and mitigates risks in omni-modalities, paving the way toward building more robust and capable omnimodal safeguarding systems.
☆ When Does Verification Pay Off? A Closer Look at LLMs as Solution Verifiers
Large language models (LLMs) can act as both problem solvers and solution verifiers, with verifiers improving solver performance by selecting high-quality answers from a pool of candidates. However, prior studies of solver-verifier interactions have been limited, focusing mainly on self-verification and rarely examining how verifiers judge outputs from models in their own or in another model family. Modern LLMs also undergo extensive post-training, but its effect on verification remains unclear. We present a systematic study across 37 models spanning multiple families, sizes, and base vs. post-trained variants, evaluated on 9 benchmarks covering logical reasoning, structured puzzles, symbolic computation, mathematics, commonsense, factual recall, and domain knowledge. We compare self-verification with verification within the same family and across different families. To support this, we introduce and empirically validate verifier gain, a metric that predicts the performance improvements from test-time verifier-based rejection sampling. We analyze how metrics like verifier gain and false positive rate scale with model size and post-training, and characterize differences in dataset verifiability. Our findings show that cross-family verification is especially effective; post-training reduces self-improvement but strengthens cross-family improvement; and mathematical and logical tasks exhibit the highest inherent verifiability.
☆ HealthContradict: Evaluating Biomedical Knowledge Conflicts in Language Models
How do language models use contextual information to answer health questions? How are their responses impacted by conflicting contexts? We assess the ability of language models to reason over long, conflicting biomedical contexts using HealthContradict, an expert-verified dataset comprising 920 unique instances, each consisting of a health-related question, a factual answer supported by scientific evidence, and two documents presenting contradictory stances. We consider several prompt settings, including correct, incorrect or contradictory context, and measure their impact on model outputs. Compared to existing medical question-answering evaluation benchmarks, HealthContradict provides greater distinctions of language models' contextual reasoning capabilities. Our experiments show that the strength of fine-tuned biomedical language models lies not only in their parametric knowledge from pretraining, but also in their ability to exploit correct context while resisting incorrect context.
☆ Randomized Masked Finetuning: An Efficient Way to Mitigate Memorization of PIIs in LLMs ICML 2026
The current literature on memorization in Natural Language Models, especially Large Language Models (LLMs), poses severe security and privacy risks, as models tend to memorize personally identifying information (PIIs) from training data. We introduce Randomized Masked Fine-Tuning (RMFT), a novel privacy-preserving fine-tuning technique that reduces PII memorization while minimizing performance impact. Using the Enron Email Dataset, we demonstrate that RMFT achieves an 80.81% reduction in Total Extraction Rate and 80.17% reduction in Seen Extraction Rate compared to baseline fine-tuning, outperforming deduplication methods while maintaining only a 5.73% increase in perplexity. We present MaxTER, a Pareto-optimal evaluation framework for assessing privacy-utility tradeoffs, and show the performance of RMFT vs Deduplication by Area Under The Response Curve (AURC) metric.
comment: To be submitted for ICML 2026
☆ Is Vibe Coding Safe? Benchmarking Vulnerability of Agent-Generated Code in Real-World Tasks
Vibe coding is a new programming paradigm in which human engineers instruct large language model (LLM) agents to complete complex coding tasks with little supervision. Although it is increasingly adopted, are vibe coding outputs really safe to deploy in production? To answer this question, we propose SU S VI B E S, a benchmark consisting of 200 feature-request software engineering tasks from real-world open-source projects, which, when given to human programmers, led to vulnerable implementations. We evaluate multiple widely used coding agents with frontier models on this benchmark. Disturbingly, all agents perform poorly in terms of software security. Although 61% of the solutions from SWE-Agent with Claude 4 Sonnet are functionally correct, only 10.5% are secure. Further experiments demonstrate that preliminary security strategies, such as augmenting the feature request with vulnerability hints, cannot mitigate these security issues. Our findings raise serious concerns about the widespread adoption of vibe-coding, particularly in security-sensitive applications.
☆ SPARK: Stepwise Process-Aware Rewards for Reference-Free Reinforcement Learning
Process reward models (PRMs) that provide dense, step-level feedback have shown promise for reinforcement learning, yet their adoption remains limited by the need for expensive step-level annotations or ground truth references. We propose SPARK: a three-stage framework where in the first stage a generator model produces diverse solutions and a verifier model evaluates them using parallel scaling (self-consistency) and sequential scaling (meta-critique). In the second stage, we use these verification outputs as synthetic training data to fine-tune generative process reward models, which subsequently serve as reward signals during training. We show that aggregating multiple independent verifications at the step level produces training data for process reward models that surpass ground-truth outcome supervision, achieving 67.5 F1 on ProcessBench (a benchmark for identifying erroneous steps in mathematical reasoning) compared to 66.4 for reference-guided training and 61.9 for GPT-4o. In the final stage, we apply our generative PRM with chain-of-thought verification (PRM-CoT) as the reward model in RL experiments on mathematical reasoning, and introduce format constraints to prevent reward hacking. Using Qwen2.5-Math-7B, we achieve 47.4% average accuracy across six mathematical reasoning benchmarks, outperforming ground-truth-based RLVR (43.9%). Our work enables reference-free RL training that exceeds ground-truth methods, opening new possibilities for domains lacking verifiable answers or accessible ground truth.
☆ Identifying attributions of causality in political text
Explanations are a fundamental element of how people make sense of the political world. Citizens routinely ask and answer questions about why events happen, who is responsible, and what could or should be done differently. Yet despite their importance, explanations remain an underdeveloped object of systematic analysis in political science, and existing approaches are fragmented and often issue-specific. I introduce a framework for detecting and parsing explanations in political text. To do this, I train a lightweight causal language model that returns a structured data set of causal claims in the form of cause-effect pairs for downstream analysis. I demonstrate how causal explanations can be studied at scale, and show the method's modest annotation requirements, generalizability, and accuracy relative to human coding.
☆ InvertiTune: High-Quality Data Synthesis for Cost-Effective Single-Shot Text-to-Knowledge Graph Generation
Large Language Models (LLMs) have revolutionized the ability to understand and generate text, enabling significant progress in automatic knowledge graph construction from text (Text2KG). Many Text2KG methods, however, rely on iterative LLM prompting, making them computationally expensive and prone to overlooking complex relations distributed throughout the text. To address these limitations, we propose InvertiTune, a framework that combines a controlled data generation pipeline with supervised fine-tuning (SFT). Within this framework, the data-generation pipeline systematically extracts subgraphs from large knowledge bases, applies noise filtering, and leverages LLMs to generate corresponding natural text descriptions, a task more aligned with LLM capabilities than direct KG generation from text. This pipeline enables generating datasets composed of longer texts paired with larger KGs that better reflect real-world scenarios compared to existing benchmarks, thus supporting effective SFT of lightweight models for single-shot KG construction. Experimental results on CE12k, a dataset generated using the introduced pipeline, show that InvertiTune outperforms larger non-fine-tuned LLMs as well as state-of-the-art Text2KG approaches, while also demonstrating stronger cross-dataset generalization on CrossEval-1200, a test set created from three established benchmark datasets and CE12k. These findings highlight the importance of realistic, high-quality training data for advancing efficient and high-performing Text2KG systems.
☆ Enhancing Job Matching: Occupation, Skill and Qualification Linking with the ESCO and EQF taxonomies
This study investigates the potential of language models to improve the classification of labor market information by linking job vacancy texts to two major European frameworks: the European Skills, Competences, Qualifications and Occupations (ESCO) taxonomy and the European Qualifications Framework (EQF). We examine and compare two prominent methodologies from the literature: Sentence Linking and Entity Linking. In support of ongoing research, we release an open-source tool, incorporating these two methodologies, designed to facilitate further work on labor classification and employment discourse. To move beyond surface-level skill extraction, we introduce two annotated datasets specifically aimed at evaluating how occupations and qualifications are represented within job vacancy texts. Additionally, we examine different ways to utilize generative large language models for this task. Our findings contribute to advancing the state of the art in job entity extraction and offer computational infrastructure for examining work, skills, and labor market narratives in a digitally mediated economy. Our code is made publicly available: https://github.com/tabiya-tech/tabiya-livelihoods-classifier
comment: 14 pages, 1 figure, Preprint
☆ Culture Affordance Atlas: Reconciling Object Diversity Through Functional Mapping
Culture shapes the objects people use and for what purposes, yet mainstream Vision-Language (VL) datasets frequently exhibit cultural biases, disproportionately favoring higher-income, Western contexts. This imbalance reduces model generalizability and perpetuates performance disparities, especially impacting lower-income and non-Western communities. To address these disparities, we propose a novel function-centric framework that categorizes objects by the functions they fulfill, across diverse cultural and economic contexts. We implement this framework by creating the Culture Affordance Atlas, a re-annotated and culturally grounded restructuring of the Dollar Street dataset spanning 46 functions and 288 objects publicly available at https://lit.eecs.umich.edu/CultureAffordance-Atlas/index.html. Through extensive empirical analyses using the CLIP model, we demonstrate that function-centric labels substantially reduce socioeconomic performance gaps between high- and low-income groups by a median of 6 pp (statistically significant), improving model effectiveness for lower-income contexts. Furthermore, our analyses reveals numerous culturally essential objects that are frequently overlooked in prominent VL datasets. Our contributions offer a scalable pathway toward building inclusive VL datasets and equitable AI systems.
♻ ☆ Pre-trained Language Models Improve the Few-shot Prompt Ability of Decision Transformer
Decision Transformer (DT) has emerged as a promising class of algorithms in offline reinforcement learning (RL) tasks, leveraging pre-collected datasets and Transformer's capability to model long sequences. Recent works have demonstrated that using parts of trajectories from training tasks as prompts in DT enhances its performance on unseen tasks, giving rise to Prompt-DT methods. However, collecting data from specific environments can be both costly and unsafe in many scenarios, leading to suboptimal performance and limited few-shot prompt abilities due to the data-hungry nature of Transformer-based models. Additionally, the limited datasets used in pre-training make it challenging for Prompt-DT type of methods to distinguish between various RL tasks through prompts alone. To address these challenges, we introduce the Language model-initialized Prompt Decision Transformer (LPDT) framework, which leverages pretrained language models providing rich prior knowledge for RL tasks and fine-tunes the sequence model using Low-rank Adaptation (LoRA) for meta-RL problems. We further incorporate prompt regularization to effectively differentiate between tasks based on prompt feature representations. Comprehensive empirical studies demonstrate that initializing with a pre-trained language model provides the prior knowledge and achieves a similar performance with Prompt-DT under only $10\%$ data in some MuJoCo control tasks. We also provide a thorough ablation study to validate the effectiveness of each component, including sequence modeling, language models, prompt regularizations, and prompt strategies.
comment: 2 figures, 10 tables. Published in Transactions on Machine Learning Research (TMLR)
♻ ☆ SkyLadder: Better and Faster Pretraining via Context Window Scheduling NeurIPS 2025
Recent advancements in LLM pretraining have featured ever-expanding context windows to process longer sequences. However, our pilot study reveals that models pretrained with shorter context windows consistently outperform their long-context counterparts under a fixed token budget. This finding motivates us to explore an optimal context window scheduling strategy to better balance long-context capability with pretraining efficiency. To this end, we propose SkyLadder, a simple yet effective approach that implements a short-to-long context window transition. SkyLadder preserves strong standard benchmark performance, while matching or exceeding baseline results on long context tasks. Through extensive experiments, we pre-train 1B-parameter models (up to 32K context) and 3B-parameter models (8K context) on 100B tokens, demonstrating that SkyLadder yields consistent gains of up to 3.7% on common benchmarks, while achieving up to 22% faster training speeds compared to baselines. The code is at https://github.com/sail-sg/SkyLadder.
comment: Accepted to NeurIPS 2025. 10 pages
♻ ☆ WebMall - A Multi-Shop Benchmark for Evaluating Web Agents [Technical Report]
LLM-based web agents have the potential to automate long-running web tasks, such as searching for products in multiple e-shops and subsequently ordering the cheapest products that meet the users needs. Benchmarks for evaluating web agents either require agents to perform tasks online using the live Web or offline using simulated environments, which allow for the exact reproduction of the experimental setup. While DeepShop provides an online benchmark that requires agents to perform challenging shopping tasks, existing offline benchmarks such as WebShop, WebArena, or Mind2Web cover only comparatively simple e-commerce tasks that need to be performed against a single shop containing product data from a single source. What is missing is an e-commerce benchmark that simulates multiple shops containing heterogeneous product data and requires agents to perform complex tasks. We fill this gap by introducing WebMall, the first offline multi-shop benchmark for evaluating web agents on challenging comparison shopping tasks. WebMall consists of four simulated shops populated with product data extracted from the Common Crawl. The WebMall tasks range from specific product searches and price comparisons to advanced queries for complementary or substitute products, as well as checkout processes. We validate WebMall using eight agents that differ in observation space, availability of short-term memory, and the employed LLM. The validation highlights the difficulty of the benchmark, with even the best-performing agents achieving task completion rates below 55% in the task categories cheapest product search and vague product search.
♻ ☆ From Code Foundation Models to Agents and Applications: A Practical Guide to Code Intelligence
Large language models (LLMs) have fundamentally transformed automated software development by enabling direct translation of natural language descriptions into functional code, driving commercial adoption through tools like Github Copilot (Microsoft), Cursor (Anysphere), Trae (ByteDance), and Claude Code (Anthropic). While the field has evolved dramatically from rule-based systems to Transformer-based architectures, achieving performance improvements from single-digit to over 95\% success rates on benchmarks like HumanEval. In this work, we provide a comprehensive synthesis and practical guide (a series of analytic and probing experiments) about code LLMs, systematically examining the complete model life cycle from data curation to post-training through advanced prompting paradigms, code pre-training, supervised fine-tuning, reinforcement learning, and autonomous coding agents. We analyze the code capability of the general LLMs (GPT-4, Claude, LLaMA) and code-specialized LLMs (StarCoder, Code LLaMA, DeepSeek-Coder, and QwenCoder), critically examining the techniques, design decisions, and trade-offs. Further, we articulate the research-practice gap between academic research (e.g., benchmarks and tasks) and real-world deployment (e.g., software-related code tasks), including code correctness, security, contextual awareness of large codebases, and integration with development workflows, and map promising research directions to practical needs. Last, we conduct a series of experiments to provide a comprehensive analysis of code pre-training, supervised fine-tuning, and reinforcement learning, covering scaling law, framework selection, hyperparameter sensitivity, model architectures, and dataset comparisons.
♻ ☆ HLPD: Aligning LLMs to Human Language Preference for Machine-Revised Text Detection AAAI'26
To prevent misinformation and social issues arising from trustworthy-looking content generated by LLMs, it is crucial to develop efficient and reliable methods for identifying the source of texts. Previous approaches have demonstrated exceptional performance in detecting texts fully generated by LLMs. However, these methods struggle when confronting more advanced LLM output or text with adversarial multi-task machine revision, especially in the black-box setting, where the generating model is unknown. To address this challenge, grounded in the hypothesis that human writing possesses distinctive stylistic patterns, we propose Human Language Preference Detection (HLPD). HLPD employs a reward-based alignment process, Human Language Preference Optimization (HLPO), to shift the scoring model's token distribution toward human-like writing, making the model more sensitive to human writing, therefore enhancing the identification of machine-revised text. We test HLPD in an adversarial multi-task evaluation framework that leverages a five-dimensional prompt generator and multiple advanced LLMs to create diverse revision scenarios. When detecting texts revised by GPT-series models, HLPD achieves a 15.11% relative improvement in AUROC over ImBD, surpassing Fast-DetectGPT by 45.56%. When evaluated on texts generated by advanced LLMs, HLPD achieves the highest average AUROC, exceeding ImBD by 5.53% and Fast-DetectGPT by 34.14%. Code will be made available at https://github.com/dfq2021/HLPD.
comment: 20 pages, 10 figures, accepted by AAAI'26
♻ ☆ A Reproducible Framework for Neural Topic Modeling in Focus Group Analysis
Focus group discussions generate rich qualitative data but their analysis traditionally relies on labor-intensive manual coding that limits scalability and reproducibility. We present a systematic framework for applying BERTopic to focus group transcripts using data from ten focus groups exploring HPV vaccine perceptions in Tunisia (1,075 utterances). We conducted comprehensive hyperparameter exploration across 27 configurations, evaluating each through bootstrap stability analysis, performance metrics, and comparison with LDA baseline. Bootstrap analysis revealed that stability metrics (NMI and ARI) exhibited strong disagreement (r = -0.691) and showed divergent relationships with coherence, demonstrating that stability is multifaceted rather than monolithic. Our multi-criteria selection framework yielded a 7-topic model achieving 18\% higher coherence than optimized LDA (0.573 vs. 0.486) with interpretable topics validated through independent human evaluation (ICC = 0.700, weighted Cohen's kappa = 0.678). These findings demonstrate that transformer-based topic modeling can extract interpretable themes from small focus group transcript corpora when systematically configured and validated, while revealing that quality metrics capture distinct, sometimes conflicting constructs requiring multi-criteria evaluation. We provide complete documentation and code to support reproducibility.
♻ ☆ Evaluating LLMs on Sequential API Call Through Automated Test Generation
By integrating tools from external APIs, Large Language Models (LLMs) have expanded their promising capabilities in a diverse spectrum of complex real-world tasks. However, testing, evaluation, and analysis of LLM tool use remain in their early stages. Most existing benchmarks rely on manually collected test cases, many of which cannot be automatically checked for semantic correctness and instead depend on static methods such as string matching. Additionally, these benchmarks often overlook the complex interactions that occur between sequential API calls, which are common in real-world applications. To fill the gap, in this paper, we introduce StateGen, an automated framework designed to generate diverse coding tasks involving sequential API interactions. StateGen combines state-machine-based API constraint solving and validation, energy-based sampling, and control-flow injection to generate executable programs. These programs are then translated into human-like natural language task descriptions through a collaboration of two LLM agents. Utilizing StateGen, we construct StateEval, a benchmark encompassing 120 verified test cases spanning across three representative scenarios: Session Service, Tensor Operation, and ElevenLabs MCP. Experimental results confirm that StateGen can effectively generate challenging and realistic API-oriented tasks, highlighting areas for improvement in current LLMs incorporating APIs.We make our framework and benchmark publicly available to support future research.
♻ ☆ Eka-Eval: An Evaluation Framework for Low-Resource Multilingual Large Language Models
The rapid evolution of Large Language Models' has underscored the need for evaluation frameworks that are globally applicable, flexible, and modular, and that support a wide range of tasks, model types, and linguistic settings. We introduce EKA-EVAL, a unified, end- to-end framework that combines a zero-code web interface and an interactive CLI to ensure broad accessibility. It integrates 50+ multilingual benchmarks across nine evaluation categories, supports local and proprietary models, and provides 11 core capabilities through a modular, plug-and-play architecture. Designed for scalable, multilingual evaluation with support for low-resource multilingual languages, EKA-EVAL is, to the best of our knowledge, the first suite to offer comprehensive coverage in a single platform. Comparisons against five existing baselines indicate improvements of at least 2x better on key usability measures, with the highest user satisfaction, faster setup times, and consistent benchmark reproducibility. The framework is open-source and publicly available at https://github.com/lingo-iitgn/eka-eval.
♻ ☆ Geometric Uncertainty for Detecting and Correcting Hallucinations in LLMs
Large language models demonstrate impressive results across diverse tasks but are still known to hallucinate, generating linguistically plausible but incorrect answers to questions. Uncertainty quantification has been proposed as a strategy for hallucination detection, requiring estimates for both global uncertainty (attributed to a batch of responses) and local uncertainty (attributed to individual responses). While recent black-box approaches have shown some success, they often rely on disjoint heuristics or graph-theoretic approximations that lack a unified geometric interpretation. We introduce a geometric framework to address this, based on archetypal analysis of batches of responses sampled with only black-box model access. At the global level, we propose Geometric Volume, which measures the convex hull volume of archetypes derived from response embeddings. At the local level, we propose Geometric Suspicion, which leverages the spatial relationship between responses and these archetypes to rank reliability, enabling hallucination reduction through preferential response selection. Unlike prior methods that rely on discrete pairwise comparisons, our approach provides continuous semantic boundary points which have utility for attributing reliability to individual responses. Experiments show that our framework performs comparably to or better than prior methods on short form question-answering datasets, and achieves superior results on medical datasets where hallucinations carry particularly critical risks. We also provide theoretical justification by proving a link between convex hull volume and entropy.
comment: Revision. Clarified positioning as a unified geometric framework for global and local uncertainty in LLMs. Added baselines (Degree, Eccentricity) and expanded comparison to related methods. Included ablations (PCA dimension, number of archetypes, number of samples) and complexity analysis. Extended discussion of medical QA results and model-specific behaviour
♻ ☆ On SkipGram Word Embedding Models with Negative Sampling: Unified Framework and Impact of Noise Distributions
SkipGram word embedding models with negative sampling, or SGN in short, is an elegant family of word embedding models. In this paper, we formulate a framework for word embedding, referred to as Word-Context Classification (WCC), that generalizes SGN to a wide family of models. The framework, which uses some ``noise examples'', is justified through theoretical analysis. The impact of noise distribution on the learning of the WCC embedding models is studied experimentally, suggesting that the best noise distribution is, in fact, the data distribution, in terms of both the embedding performance and the speed of convergence during training. Along our way, we discover several novel embedding models that outperform existing WCC models.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ DESIGNER: Design-Logic-Guided Multidisciplinary Data Synthesis for LLM Reasoning
Large language models (LLMs) have achieved remarkable success in many natural language tasks but still struggle with complex, multi-step reasoning, particularly across diverse disciplines. Existing reasoning datasets often lack disciplinary breadth, reasoning depth, and diversity, as well as guiding principles for question synthesis. We propose DESIGNER: a DESIGN-logic-guidEd Reasoning data synthesis pipeline that leverages naturally available, extensive raw documents (e.g., book corpus and web corpus) to generate multidisciplinary challenging questions. We introduce the concept of "design logic" and instruct LLMs to mimic human educators' question-creation process, enabling the automated synthesis of large-scale, high-difficulty questions. We use LLMs to reverse-engineer and abstract over 120,000 design logics from existing questions across various disciplines. By matching these design logics with source documents, we are able to generate reasoning questions with controllable question types and difficulty levels. Using this pipeline, we synthesized two large-scale reasoning datasets that span 75 disciplines: DLR-Book (3.04 million questions from the book corpus) and DLR-Web (1.66 million questions from the web corpus). Data analysis indicates that the questions synthesized by our method exhibit greater difficulty and diversity compared to those in the baseline datasets. We validate our synthesized data through supervised fine-tuning (SFT) on the Qwen3 and Llama3 model families. Our data substantially enhances their multidisciplinary reasoning capabilities, outperforming existing datasets. Notably, by applying SFT on the base versions of these models using only our data, we even surpass their official final models that have undergone the full post-training process.
♻ ☆ iMAD: Intelligent Multi-Agent Debate for Efficient and Accurate LLM Inference AAAI 2026
Large Language Model (LLM) agent systems have advanced rapidly, driven by their strong generalization in zero-shot settings. To further enhance reasoning and accuracy on complex tasks, Multi-Agent Debate (MAD) has emerged as a promising framework that engages multiple LLM agents in structured debates to encourage diverse reasoning. However, triggering MAD for every query is inefficient, as it incurs substantial computational (token) cost and may even degrade accuracy by overturning correct single-agent answers. To address these limitations, we propose intelligent Multi-Agent Debate (iMAD), a token-efficient framework that selectively triggers MAD only when it is likely to be beneficial (i.e., correcting an initially wrong answer). To achieve this goal, iMAD learns generalizable model behaviors to make accurate debate decisions. Specifically, iMAD first prompts a single agent to produce a structured self-critique response, from which we extract 41 interpretable linguistic and semantic features capturing hesitation cues. Then, iMAD uses a lightweight debate-decision classifier, trained using our proposed FocusCal loss, to determine whether to trigger MAD, enabling robust debate decisions without test dataset-specific tuning. Through extensive experiments using six (visual) question answering datasets against five competitive baselines, we have shown that iMAD significantly reduces token usage (by up to 92%) while also improving final answer accuracy (by up to 13.5%).
comment: Accepted in AAAI 2026 (Oral)
♻ ☆ Multilingual Pretraining for Pixel Language Models EMNLP 2025
Pixel language models operate directly on images of rendered text, eliminating the need for a fixed vocabulary. While these models have demonstrated strong capabilities for downstream cross-lingual transfer, multilingual pretraining remains underexplored. We introduce PIXEL-M4, a model pretrained on four visually and linguistically diverse languages: English, Hindi, Ukrainian, and Simplified Chinese. Multilingual evaluations on semantic and syntactic tasks show that PIXEL-M4 outperforms an English-only counterpart on non-Latin scripts. Word-level probing analyses confirm that PIXEL-M4 captures rich linguistic features, even in languages not seen during pretraining. Furthermore, an analysis of its hidden representations shows that multilingual pretraining yields a semantic embedding space closely aligned across the languages used for pretraining. This work demonstrates that multilingual pretraining substantially enhances the capability of pixel language models to effectively support a diverse set of languages.
comment: EMNLP 2025
♻ ☆ Scaling Towards the Information Boundary of Instruction Set: InfinityInstruct-Subject Technical Report
Instruction tuning has become a foundation for unlocking the capabilities of large-scale pretrained models and improving their performance on complex tasks. Thus, the construction of high-quality instruction datasets is crucial for enhancing model performance and generalizability. Although current instruction datasets have reached tens of millions of samples, models finetuned on them may still struggle with complex instruction following and tasks in rare domains. This is primarily due to limited expansion in both ``coverage'' (coverage of task types and knowledge areas) and ``depth'' (instruction complexity) of the instruction set. To address this issue, we propose a systematic instruction data construction framework, which integrates a hierarchical labeling system, an informative seed selection algorithm, an evolutionary data synthesis process, and a model deficiency diagnosis with targeted data generation. These components form an iterative closed-loop to continuously enhance the coverage and depth of instruction data. Based on this framework, we construct InfinityInstruct-Subject, a high-quality dataset containing ~1.5 million instructions. Experiments on multiple foundation models and benchmark tasks demonstrate its effectiveness in improving instruction-following capabilities. Further analyses suggest that InfinityInstruct-Subject shows enlarged coverage and depth compared to comparable synthesized instruction datasets. Our work lays a theoretical and practical foundation for the efficient, continuous evolution of instruction datasets, moving from data quantity expansion to qualitative improvement.
♻ ☆ Do Large Language Models Think Like the Brain? Sentence-Level Evidences from Layer-Wise Embeddings and fMRI AAAI 2026
Understanding whether large language models (LLMs) and the human brain converge on similar computational principles remains a fundamental and important question in cognitive neuroscience and AI. Do the brain-like patterns observed in LLMs emerge simply from scaling, or do they reflect deeper alignment with the architecture of human language processing? This study focuses on the sentence-level neural mechanisms of language models, systematically investigating how layer-wise representations in LLMs align with the dynamic neural responses during human sentence comprehension. By comparing hierarchical embeddings from 14 publicly available LLMs with fMRI data collected from participants, who were exposed to a naturalistic narrative story, we constructed sentence-level neural prediction models to identify the model layers most significantly correlated with brain region activations. Results show that improvements in model performance drive the evolution of representational architectures toward brain-like hierarchies, particularly achieving stronger functional and anatomical correspondence at higher semantic abstraction levels. These findings advance our understanding of the computational parallels between LLMs and the human brain, highlighting the potential of LLMs as models for human language processing.
comment: AAAI 2026
♻ ☆ Hyperdimensional Probe: Decoding LLM Representations via Vector Symbolic Architectures
Despite their capabilities, Large Language Models (LLMs) remain opaque with limited understanding of their internal representations. Current interpretability methods either focus on input-oriented feature extraction, such as supervised probes and Sparse Autoencoders (SAEs), or on output distribution inspection, such as logit-oriented approaches. A full understanding of LLM vector spaces, however, requires integrating both perspectives, something existing approaches struggle with due to constraints on latent feature definitions. We introduce the Hyperdimensional Probe, a hybrid supervised probe that combines symbolic representations with neural probing. Leveraging Vector Symbolic Architectures (VSAs) and hypervector algebra, it unifies prior methods: the top-down interpretability of supervised probes, SAE's sparsity-driven proxy space, and output-oriented logit investigation. This allows deeper input-focused feature extraction while supporting output-oriented investigation. Our experiments show that our method consistently extracts meaningful concepts across LLMs, embedding sizes, and setups, uncovering concept-driven patterns in analogy-oriented inference and QA-focused text generation. By supporting joint input-output analysis, this work advances semantic understanding of neural representations while unifying the complementary perspectives of prior methods.
♻ ☆ XISM: an eXploratory and Interactive Graph Tool to Visualize and Evaluate Semantic Map Models
Semantic map models visualize systematic relations among semantic functions through graph structures and are widely used in linguistic typology. However, existing construction methods either depend on labor-intensive expert reasoning or on fully automated systems lacking expert involvement, creating a tension between scalability and interpretability. We introduce \textbf{XISM}, an interactive system that combines data-driven inference with expert knowledge. XISM generates candidate maps via a top-down procedure and allows users to iteratively refine edges in a visual interface, with real-time metric feedback. Experiments in three semantic domains and expert interviews show that XISM improves linguistic decision transparency and controllability in semantic-map construction while maintaining computational efficiency. XISM provides a collaborative approach for scalable and interpretable semantic-map building. The system\footnote{https://app.xism2025.xin/} , source code\footnote{https://github.com/hank317/XISM} , and demonstration video\footnote{https://youtu.be/m5laLhGn6Ys} are publicly available.
comment: Paper under review
♻ ☆ Unifying Linear-Time Attention via Latent Probabilistic Modelling
Transformers have achieved state-of-the-art results across a range of domains, but their quadratic attention mechanism poses significant challenges for long-sequence modelling. Recent efforts to design linear-time attention mechanisms have yielded more scalable alternatives, yet often at the cost of performance, particularly on discrete data such as language. In this work, we revisit linear attention through the lens of probabilistic graphical models. We first show that standard linear attention can be interpreted as an undirected latent variable model, revealing a key limitation: the absence of directionality. To address this, we propose a novel directed parameterisation of linear attention that introduces an asymmetric structure, enabling an interpretation aligned with the causal and sequential nature of language. Our formulation integrates global latent-variable attention with local standard attention in a fully probabilistic framework. Additionally, we introduce a recurrent parameterisation of queries and keys that avoids reliance on relative positional encodings, often incompatible with linear attention. Experiments on language modelling benchmarks demonstrate that our model achieves competitive performance with standard attention and outperforms existing linear attention variants.
♻ ☆ Hidden in Plain Text: Emergence & Mitigation of Steganographic Collusion in LLMs ACL 2025
The rapid proliferation of frontier model agents promises significant societal advances but also raises concerns about systemic risks arising from unsafe interactions. Collusion to the disadvantage of others has been identified as a central form of undesirable agent cooperation. The use of information hiding (steganography) in agent communications could render such collusion practically undetectable. This underscores the need for investigations into the possibility of such behaviours emerging and the robustness corresponding countermeasures. To investigate this problem we design two approaches -- a gradient-based reinforcement learning (GBRL) method and an in-context reinforcement learning (ICRL) method -- for reliably eliciting sophisticated LLM-generated linguistic text steganography. We demonstrate, for the first time, that unintended steganographic collusion in LLMs can arise due to mispecified reward incentives during training. Additionally, we find that standard mitigations -- both passive oversight of model outputs and active mitigation through communication paraphrasing -- are not fully effective at preventing this steganographic communication. Our findings imply that (i) emergence of steganographic collusion is a plausible concern that should be monitored and researched, and (ii) preventing emergence may require innovation in mitigation techniques.
comment: Camera-ready version. Oral presentation at IJCNLP-AACL 2025 (14th International Joint Conference on Natural Language Processing and 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics), Mumbai, India, December 20-24, 2025
♻ ☆ Between Help and Harm: An Evaluation of Mental Health Crisis Handling by LLMs
Large language model-powered chatbots have transformed how people seek information, especially in high-stakes contexts like mental health. Despite their support capabilities, safe detection and response to crises such as suicidal ideation and self-harm are still unclear, hindered by the lack of unified crisis taxonomies and clinical evaluation standards. We address this by creating: (1) a taxonomy of six crisis categories; (2) a dataset of over 2,000 inputs from 12 mental health datasets, classified into these categories; and (3) a clinical response assessment protocol. We also use LLMs to identify crisis inputs and audit five models for response safety and appropriateness. First, we built a clinical-informed crisis taxonomy and evaluation protocol. Next, we curated 2,252 relevant examples from over 239,000 user inputs, then tested three LLMs for automatic classification. In addition, we evaluated five models for the appropriateness of their responses to a user's crisis, graded on a 5-point Likert scale from harmful (1) to appropriate (5). While some models respond reliably to explicit crises, risks still exist. Many outputs, especially in self-harm and suicidal categories, are inappropriate or unsafe. Different models perform variably; some, like gpt-5-nano and deepseek-v3.2-exp, have low harm rates, but others, such as gpt-4o-mini and grok-4-fast, generate more unsafe responses. All models struggle with indirect signals, default replies, and context misalignment. These results highlight the urgent need for better safeguards, crisis detection, and context-aware responses in LLMs. They also show that alignment and safety practices, beyond scale, are crucial for reliable crisis support. Our taxonomy, datasets, and evaluation methods support ongoing AI mental health research, aiming to reduce harm and protect vulnerable users.
♻ ☆ On the Temporal Question-Answering Capabilities of Large Language Models Over Anonymized Data
The applicability of Large Language Models (LLMs) in temporal reasoning tasks over data that is not present during training is still a field that remains to be explored. In this paper we work on this topic, focusing on structured and semi-structured anonymized data. We not only develop a direct LLM pipeline, but also compare various methodologies and conduct an in-depth analysis. We identified and examined seventeen common temporal reasoning tasks in natural language, focusing on their algorithmic components. To assess LLM performance, we created the \textit{Reasoning and Answering Temporal Ability} dataset (RATA), featuring semi-structured anonymized data to ensure reliance on reasoning rather than on prior knowledge. We compared several methodologies, involving SoTA techniques such as Tree-of-Thought, self-reflexion and code execution, tuned specifically for this scenario. Our results suggest that achieving scalable and reliable solutions requires more than just standalone LLMs, highlighting the need for integrated approaches.
comment: 18 pages, 7 tables, 5 figures
♻ ☆ Agent-OM: Leveraging LLM Agents for Ontology Matching
Ontology matching (OM) enables semantic interoperability between different ontologies and resolves their conceptual heterogeneity by aligning related entities. OM systems currently have two prevailing design paradigms: conventional knowledge-based expert systems and newer machine learning-based predictive systems. While large language models (LLMs) and LLM agents have revolutionised data engineering and have been applied creatively in many domains, their potential for OM remains underexplored. This study introduces a novel agent-powered LLM-based design paradigm for OM systems. With consideration of several specific challenges in leveraging LLM agents for OM, we propose a generic framework, namely Agent-OM (Agent for Ontology Matching), consisting of two Siamese agents for retrieval and matching, with a set of OM tools. Our framework is implemented in a proof-of-concept system. Evaluations of three Ontology Alignment Evaluation Initiative (OAEI) tracks over state-of-the-art OM systems show that our system can achieve results very close to the long-standing best performance on simple OM tasks and can significantly improve the performance on complex and few-shot OM tasks.
comment: 31 pages
♻ ☆ AI Text Detectors and the Misclassification of Slightly Polished Arabic Text
Many AI detection models have been developed to counter the presence of articles created by artificial intelligence (AI). However, if a human-authored article is slightly polished by AI, a shift will occur in the borderline decision of these AI detection models, leading them to consider it as AI-generated article. This misclassification may result in falsely accusing authors of AI plagiarism and harm the credibility of AI detectors. In English, some efforts were made to meet this challenge, but not in Arabic. In this paper, we generated two datasets. The first dataset contains 800 Arabic articles, half AI-generated and half human-authored. We used it to evaluate 14 Large Language models (LLMs) and commercial AI detectors to assess their ability in distinguishing between human-authored and AI-generated articles. The best 8 models were chosen to act as detectors for our primary concern, which is whether they would consider slightly polished human-authored text as AI-generated. The second dataset, Ar-APT, contains 400 Arabic human-authored articles polished by 10 LLMs using 4 polishing settings, totaling 16400 samples. We use it to evaluate the 8 nominated models and determine whether slight polishing will affect their performance. The results reveal that all AI detectors incorrectly attribute a significant number of articles to AI. The best performing LLM, Claude-4 Sonnet, achieved 83.51\%, its performance decreased to 57.63\% for articles slightly polished by LLaMA-3. Whereas the best performing commercial model, originality.AI, achieves 92\% accuracy, dropped to 12\% for articles slightly polished by Mistral or Gemma-3.
comment: (Submitted) Journal of Big Data
♻ ☆ ELSPR: Evaluator LLM Training Data Self-Purification on Non-Transitive Preferences via Tournament Graph Reconstruction AAAI 2026
Pairwise evaluation of large language models (LLMs) has become the dominant paradigm for benchmarking open-ended tasks, yet non-transitive preferences, where evaluators prefer A over B, B over C, but C over A, fundamentally undermine ranking reliability. We show that this critical issue stems largely from low-quality data that contains inherently ambiguous preference pairs. To address this challenge, we propose ELSPR, a principled graph-theoretic framework that models pairwise preferences as tournament graphs and systematically identifies problematic training data. ELSPR quantifies non-transitivity through strongly connected components (SCCs) analysis and measures overall preference clarity using a novel normalized directed graph structural entropy metric. Our filtering methodology selectively removes preference data that induce non-transitivity while preserving transitive preferences. Extensive experiments on the AlpacaEval benchmark demonstrate that models fine-tuned on ELSPR-filtered data achieve substantial improvements: a 13.8% reduction in non-transitivity, a 0.088 decrease in structural entropy, and significantly enhanced discriminative power in real-world evaluation systems. Human validation confirms that discarded data exhibit dramatically lower inter-annotator agreement (34.4% vs. 52.6%) and model-human consistency (51.2% vs. 80.6%) compared to cleaned data. These findings establish ELSPR as an effective data self-purification approach for developing more robust, consistent, and human-aligned LLM evaluation systems.
comment: Accepted by AAAI 2026
♻ ☆ LLM-as-a-Supervisor: Mistaken Therapeutic Behaviors Trigger Targeted Supervisory Feedback
Although large language models (LLMs) hold significant promise in psychotherapy, their direct application in patient-facing scenarios raises ethical and safety concerns. Therefore, this work shifts towards developing an LLM as a supervisor to train real therapists. In addition to the privacy of clinical therapist training data, a fundamental contradiction complicates the training of therapeutic behaviors: clear feedback standards are necessary to ensure a controlled training system, yet there is no absolute "gold standard" for appropriate therapeutic behaviors in practice. In contrast, many common therapeutic mistakes are universal and identifiable, making them effective triggers for targeted feedback that can serve as clearer evidence. Motivated by this, we create a novel therapist-training paradigm: (1) guidelines for mistaken behaviors and targeted correction strategies are first established as standards; (2) a human-in-the-loop dialogue-feedback dataset is then constructed, where a mistake-prone agent intentionally makes standard mistakes during interviews naturally, and a supervisor agent locates and identifies mistakes and provides targeted feedback; (3) after fine-tuning on this dataset, the final supervisor model is provided for real therapist training. The detailed experimental results of automated, human and downstream assessments demonstrate that models fine-tuned on our dataset MATE, can provide high-quality feedback according to the clinical guideline, showing significant potential for the therapist training scenario.
comment: 10 pages, 5 figures
♻ ☆ The Necessity of Imperfection:Reversing Model Collapse via Simulating Cognitive Boundedness
Although synthetic data is widely promoted as a remedy, its prevailing production paradigm -- one optimizing for statistical smoothness -- systematically removes the long-tail, cognitively grounded irregularities that characterize human text. Prolonged training on such statistically optimal but cognitively impoverished data accelerates model collapse. This paper proposes a paradigm shift: instead of imitating the surface properties of data, we simulate the cognitive processes that generate human text. We introduce the Prompt-driven Cognitive Computing Framework (PMCSF), whose core consists of a Cognitive State Decoder (CSD) that reverse-engineers unstructured text into structured cognitive vectors, and a Cognitive Text Encoder (CTE) that re-materializes these states into text enriched with human-typical imperfections via mathematically defined Cognitive Perturbation Operators. The framework is validated through a two-stage objective evaluation pipeline. First, in cognitive codec verification, CTE text yields a Jensen-Shannon divergence of 0.0614 from human text (vs. 0.4431 for standard LLM output), passes double-blind professional media review, and achieves an intraclass correlation coefficient ICC > 0.9 for cognitive profile alignment across heterogeneous models. Second, in functional gain evaluation, isomorphic stress tests in the A-share market show that strategies incorporating CTE-generated data reduce maximum drawdown by 47.4% during the 2015 crash and deliver 8.6% Defensive Alpha, exceeding transaction costs by a factor of 33. Our findings demonstrate that modelling human cognitive limitations -- not copying surface data -- enables synthetic data with genuine functional gain, offering a viable technical pathway toward resolving the AI data-collapse crisis.
comment: 38 pages,5 figures. Extended technical disclosure (Version 2.0) is attached as ancillary files, containing raw forensic logs of the "Silent Rupture"detection [May 2025], proprietary GARCH parameter ranges, and the linguistic micro-chaos injection protocols
♻ ☆ Induction Head Toxicity Mechanistically Explains Repetition Curse in Large Language Models
Repetition curse is a phenomenon where Large Language Models (LLMs) generate repetitive sequences of tokens or cyclic sequences. While the repetition curse has been widely observed, its underlying mechanisms remain poorly understood. In this work, we investigate the role of induction heads--a specific type of attention head known for their ability to perform in-context learning--in driving this repetitive behavior. Specifically, we focus on the "toxicity" of induction heads, which we define as their tendency to dominate the model's output logits during repetition, effectively excluding other attention heads from contributing to the generation process. Our findings have important implications for the design and training of LLMs. By identifying induction heads as a key driver of the repetition curse, we provide a mechanistic explanation for this phenomenon and suggest potential avenues for mitigation. We also propose a technique with attention head regularization that could be employed to reduce the dominance of induction heads during generation, thereby promoting more diverse and coherent outputs.
comment: Need to be refined
♻ ☆ Kardia-R1: Unleashing LLMs to Reason toward Understanding and Empathy for Emotional Support via Rubric-as-Judge Reinforcement Learning
As web platforms evolve towards greater personalization and emotional complexity, conversational agents must transcend superficial empathy to demonstrate identity-aware emotional reasoning. However, existing systems face two limitations: (1) reliance on situation-centric datasets lacking persistent user identity, which hampers the capture of personalized affective nuances; and (2) dependence on opaque, coarse reward signals that hinder development of verifiable empathetic reasoning. To address these gaps, we introduce KardiaBench, a large-scale user-grounded benchmark comprising 178,080 QA pairs across 22,080 multi-turn conversations anchored to 671 real-world profiles. The dataset is constructed via a model-in-the-loop pipeline with iterative rubric-guided refinement to ensure psychological plausibility and persona consistency. This progressive empathy pipeline that integrates user comprehension, contextual reasoning, and emotion perception into conversations, followed by iterative critique and rubric-based refinement to ensure psychological plausibility, emotional fidelity, and persona consistency. Building on this, we propose Kardia-R1, a framework that trains models for interpretable, stepwise empathetic cognition. Kardia-R1 leverages Rubric-as-Judge Empathetic Reinforcement Learning (Rubric-ERL), a GRPO-based method that uses explainable, human-aligned rubric rewards to tightly couple user understanding, emotional inference, and supportive response generation. Extensive experiments across four LLM backbones demonstrate that Kardia-R1 consistently outperforms othet methods in emotion accuracy, empathy, relevance, persona consistency, and safety. Our dataset and model will be released at https://github.com/JhCircle/Kardia-R1.
♻ ☆ CT-GLIP: 3D Grounded Language-Image Pretraining with CT Scans and Radiology Reports for Full-Body Scenarios
3D medical vision-language (VL) pretraining has shown potential in radiology by leveraging large-scale multimodal datasets with CT-report pairs. However, existing methods primarily rely on a global VL alignment directly adapted from 2D scenarios. The entire 3D image is transformed into one global embedding, resulting in a loss of sparse but critical semantics essential for accurately aligning with the corresponding diagnosis. To address this limitation, we propose CT-GLIP, a 3D Grounded Language-Image Pretrained model that constructs fine-grained CT-report pairs to enhance \textit{grounded} cross-modal contrastive learning, effectively aligning grounded visual features with precise textual descriptions. Leveraging the grounded cross-modal alignment, CT-GLIP improves performance across diverse downstream tasks and can even identify organs and abnormalities in a zero-shot manner using natural language. CT-GLIP is trained on a multimodal CT dataset comprising 44,011 organ-level CT-report pairs from 17,702 patients, covering 104 organs. Evaluation is conducted on four downstream tasks: zero-shot organ recognition (OR), zero-shot abnormality detection (AD), tumor detection (TD), and tumor segmentation (TS). Empirical results show that it outperforms its counterparts with global VL alignment. Compared to vanilla CLIP, CT-GLIP achieves average performance improvements of 15.1% of F1 score, 1.9% of AUC, and 3.2% of DSC for zero-shot AD, TD, and TS tasks, respectively. This study highlights the significance of grounded VL alignment in enabling 3D medical VL foundation models to understand sparse representations within CT scans.
♻ ☆ ParlAI Vote: A Web Platform for Analyzing Gender and Political Bias in Large Language Models
We present ParlAI Vote, an interactive web platform for exploring European Parliament debates and votes, and for testing LLMs on vote prediction and bias analysis. This web system connects debate topics, speeches, and roll-call outcomes, and includes rich demographic data such as gender, age, country, and political group. Users can browse debates, inspect linked speeches, compare real voting outcomes with predictions from frontier LLMs, and view error breakdowns by demographic group. Visualizing the EuroParlVote benchmark and its core tasks of gender classification and vote prediction, ParlAI Vote highlights systematic performance bias in state-of-the-art LLMs. It unifies data, models, and visual analytics in a single interface, lowering the barrier for reproducing findings, auditing behavior, and running counterfactual scenarios. This web platform also shows model reasoning, helping users see why errors occur and what cues the models rely on. It supports research, education, and public engagement with legislative decision-making, while making clear both the strengths and the limitations of current LLMs in political analysis.
comment: online demo: https://euro-parl-vote-demo.vercel.app/; Video: https://www.youtube.com/@Jinrui-sf2jg
♻ ☆ H-Neurons: On the Existence, Impact, and Origin of Hallucination-Associated Neurons in LLMs
Large language models (LLMs) frequently generate hallucinations -- plausible but factually incorrect outputs -- undermining their reliability. While prior work has examined hallucinations from macroscopic perspectives such as training data and objectives, the underlying neuron-level mechanisms remain largely unexplored. In this paper, we conduct a systematic investigation into hallucination-associated neurons (H-Neurons) in LLMs from three perspectives: identification, behavioral impact, and origins. Regarding their identification, we demonstrate that a remarkably sparse subset of neurons (less than $0.1\%$ of total neurons) can reliably predict hallucination occurrences, with strong generalization across diverse scenarios. In terms of behavioral impact, controlled interventions reveal that these neurons are causally linked to over-compliance behaviors. Concerning their origins, we trace these neurons back to the pre-trained base models and find that these neurons remain predictive for hallucination detection, indicating they emerge during pre-training. Our findings bridge macroscopic behavioral patterns with microscopic neural mechanisms, offering insights for developing more reliable LLMs.
comment: 20 pages, 4 figures
♻ ☆ Stabilizing Reinforcement Learning with LLMs: Formulation and Practices
This paper proposes a novel formulation for reinforcement learning (RL) with large language models, explaining why and under what conditions the true sequence-level reward can be optimized via a surrogate token-level objective in policy gradient methods such as REINFORCE. Specifically, through a first-order approximation, we show that this surrogate becomes increasingly valid only when both the training-inference discrepancy and policy staleness are minimized. This insight provides a principled explanation for the crucial role of several widely adopted techniques in stabilizing RL training, including importance sampling correction, clipping, and particularly Routing Replay for Mixture-of-Experts (MoE) models. Through extensive experiments with a 30B MoE model totaling hundreds of thousands of GPU hours, we show that for on-policy training, the basic policy gradient algorithm with importance sampling correction achieves the highest training stability. When off-policy updates are introduced to accelerate convergence, combining clipping and Routing Replay becomes essential to mitigate the instability caused by policy staleness. Notably, once training is stabilized, prolonged optimization consistently yields comparable final performance regardless of cold-start initialization. We hope that the shared insights and the developed recipes for stable RL training will facilitate future research.
BountyBench: Dollar Impact of AI Agent Attackers and Defenders on Real-World Cybersecurity Systems
AI agents have the potential to significantly alter the cybersecurity landscape. Here, we introduce the first framework to capture offensive and defensive cyber-capabilities in evolving real-world systems. Instantiating this framework with BountyBench, we set up 25 systems with complex, real-world codebases. To capture the vulnerability lifecycle, we define three task types: Detect (detecting a new vulnerability), Exploit (exploiting a given vulnerability), and Patch (patching a given vulnerability). For Detect, we construct a new success indicator, which is general across vulnerability types and provides localized evaluation. We manually set up the environment for each system, including installing packages, setting up server(s), and hydrating database(s). We add 40 bug bounties, which are vulnerabilities with monetary awards from \$10 to \$30,485, covering 9 of the OWASP Top 10 Risks. To modulate task difficulty, we devise a new strategy based on information to guide detection, interpolating from identifying a zero day to exploiting a given vulnerability. We evaluate 10 agents: Claude Code, OpenAI Codex CLI with o3-high and o4-mini, and custom agents with o3-high, GPT-4.1, Gemini 2.5 Pro Preview, Claude 3.7 Sonnet Thinking, Qwen3 235B A22B, Llama 4 Maverick, and DeepSeek-R1. Given up to three attempts, the top-performing agents are Codex CLI: o3-high (12.5% on Detect, mapping to \$3,720; 90% on Patch, mapping to \$14,152), Custom Agent: Claude 3.7 Sonnet Thinking (67.5% on Exploit), and Codex CLI: o4-mini (90% on Patch, mapping to \$14,422). Codex CLI: o3-high, Codex CLI: o4-mini, and Claude Code are more capable at defense, achieving higher Patch scores of 90%, 90%, and 87.5%, compared to Exploit scores of 47.5%, 32.5%, and 57.5% respectively; while the custom agents are relatively balanced between offense and defense, achieving Exploit scores of 17.5-67.5% and Patch scores of 25-60%.
comment: 113 pages
♻ ☆ LLMEval-3: A Large-Scale Longitudinal Study on Robust and Fair Evaluation of Large Language Models
Existing evaluation of Large Language Models (LLMs) on static benchmarks is vulnerable to data contamination and leaderboard overfitting, critical issues that obscure true model capabilities. To address this, we introduce LLMEval-3, a framework for dynamic evaluation of LLMs. LLMEval-3 is built on a proprietary bank of 220k graduate-level questions, from which it dynamically samples unseen test sets for each evaluation run. Its automated pipeline ensures integrity via contamination-resistant data curation, a novel anti-cheating architecture, and a calibrated LLM-as-a-judge process achieving 90% agreement with human experts, complemented by a relative ranking system for fair comparison. An 20-month longitudinal study of nearly 50 leading models reveals a performance ceiling on knowledge memorization and exposes data contamination vulnerabilities undetectable by static benchmarks. The framework demonstrates exceptional robustness in ranking stability and consistency, providing strong empirical validation for the dynamic evaluation paradigm. LLMEval-3 offers a robust and credible methodology for assessing the true capabilities of LLMs beyond leaderboard scores, promoting the development of more trustworthy evaluation standards.
♻ ☆ From Atomic to Composite: Reinforcement Learning Enables Generalization in Complementary Reasoning
The mechanism by which RL contributes to reasoning capabilities-whether it incentivizes the synthesis of new skills or merely amplifies existing behaviors-remains a subject of intense debate. In this work, we investigate this question through the lens of Complementary Reasoning, a complex task that requires integrating internal parametric knowledge with external contextual information. Using a controlled synthetic dataset of human biographies, we strictly decouple this ability into two atomic skills: Parametric Reasoning (relying on internal knowledge) and Contextual Reasoning (depending on external information). To rigorously assess capability boundaries, we evaluate generalization across three distinct levels of difficulty: I.I.D., Composition, and Zero-shot settings. We find that while SFT is sufficient for in-distribution performance, it struggles with O.O.D. generalization, particularly in Zero-shot settings where relational combinations are novel. Crucially, we identify the SFT Generalization Paradox: Models supervised solely on the composite task achieve near-perfect in-distribution accuracy but collapse on out-of-distribution generalization, indicating their reliance on rote memorization of path shortcuts. In contrast, we find that RL acts as a reasoning synthesizer rather than a probability amplifier. However, we uncover a strict atomic prerequisite: RL can only synthesize these complex strategies if the base model has first mastered the independent atomic skills (Parametric and Contextual) via SFT. These findings challenge the view of RL as a mere amplifier, suggesting that given sufficient atomic foundations, RL can actively synthesize complex reasoning strategies from learned primitives without explicit supervision on such complex strategies. This indicates that decoupled atomic training followed by RL offers a scalable path to generalization for complex reasoning tasks.
comment: Work in Progress. Code and data will be available at https://github.com/sitaocheng/from_atomic_to_composite
♻ ☆ From Word Vectors to Multimodal Embeddings: Techniques, Applications, and Future Directions For Large Language Models
Word embeddings and language models have transformed natural language processing (NLP) by facilitating the representation of linguistic elements in continuous vector spaces. This review visits foundational concepts such as the distributional hypothesis and contextual similarity, tracing the evolution from sparse representations like one-hot encoding to dense embeddings including Word2Vec, GloVe, and fastText. We examine both static and contextualized embeddings, underscoring advancements in models such as ELMo, BERT, and GPT and their adaptations for cross-lingual and personalized applications. The discussion extends to sentence and document embeddings, covering aggregation methods and generative topic models, along with the application of embeddings in multimodal domains, including vision, robotics, and cognitive science. Advanced topics such as model compression, interpretability, numerical encoding, and bias mitigation are analyzed, addressing both technical challenges and ethical implications. Additionally, we identify future research directions, emphasizing the need for scalable training techniques, enhanced interpretability, and robust grounding in non-textual modalities. By synthesizing current methodologies and emerging trends, this survey offers researchers and practitioners an in-depth resource to push the boundaries of embedding-based language models.
comment: 21 pages
♻ ☆ OmniBench: Towards The Future of Universal Omni-Language Models
Recent advancements in multimodal large language models (MLLMs) have focused on integrating multiple modalities, yet their ability to simultaneously process and reason across different inputs remains underexplored. We introduce OmniBench, a novel benchmark designed to evaluate models' ability to recognize, interpret, and reason across visual, acoustic, and textual inputs simultaneously. We define language models capable of such tri-modal processing as omni-language models (OLMs). OmniBench features high-quality human annotations that require integrated understanding across all modalities. Our evaluation reveals that: i) open-source OLMs show significant limitations in instruction-following and reasoning in tri-modal contexts; and ii) most baseline models perform poorly (around 50% accuracy) even with textual alternatives to image/audio inputs. To address these limitations, we develop OmniInstruct, an 96K-sample instruction tuning dataset for training OLMs. We advocate for developing more robust tri-modal integration techniques and training strategies to enhance OLM performance. Codes and data could be found at our repo (https://github.com/multimodal-art-projection/OmniBench).
♻ ☆ SQLBarber: A System Leveraging Large Language Models to Generate Customized and Realistic SQL Workloads
Database research and development often require a large number of SQL queries for benchmarking purposes. However, acquiring real-world SQL queries is challenging due to privacy concerns, and existing SQL generation methods are limited in customization and in satisfying realistic constraints. To address this issue, we present SQLBarber, a system based on Large Language Models (LLMs) to generate customized and realistic SQL workloads. SQLBarber (i) eliminates the need for users to manually craft SQL templates in advance, while providing the flexibility to accept natural language specifications to constrain SQL templates, (ii) scales efficiently to generate large volumes of queries matching any user-defined cost distribution (e.g., cardinality and execution plan cost), and (iii) uses execution statistics from Amazon Redshift and Snowflake to derive SQL template specifications and query cost distributions that reflect real-world query characteristics. SQLBarber introduces (i) a declarative interface for users to effortlessly generate customized SQL templates, (ii) an LLM-powered pipeline augmented with a self-correction module that profiles, refines, and prunes SQL templates based on query costs, and (iii) a Bayesian Optimizer to efficiently explore different predicate values and identify a set of queries that satisfy the target cost distribution. We construct and open-source ten benchmarks of varying difficulty levels and target query cost distributions based on real-world statistics from Snowflake and Amazon Redshift. Extensive experiments on these benchmarks show that SQLBarber is the only system that can generate customized SQL templates. It reduces query generation time by one to three orders of magnitude, and significantly improves alignment with the target cost distribution, compared with existing methods.
comment: Accepted by SIGMOD 2026; extended version with appendix
♻ ☆ HeavyWater and SimplexWater: Distortion-Free LLM Watermarks for Low-Entropy Next-Token Predictions NeurIPS2025
Large language model (LLM) watermarks enable authentication of text provenance, curb misuse of machine-generated text, and promote trust in AI systems. Current watermarks operate by changing the next-token predictions output by an LLM. The updated (i.e., watermarked) predictions depend on random side information produced, for example, by hashing previously generated tokens. LLM watermarking is particularly challenging in low-entropy generation tasks -- such as coding -- where next-token predictions are near-deterministic. In this paper, we propose an optimization framework for watermark design. Our goal is to understand how to most effectively use random side information in order to maximize the likelihood of watermark detection and minimize the distortion of generated text. Our analysis informs the design of two new watermarks: HeavyWater and SimplexWater. Both watermarks are tunable, gracefully trading-off between detection accuracy and text distortion. They can also be applied to any LLM and are agnostic to side information generation. We examine the performance of HeavyWater and SimplexWater through several benchmarks, demonstrating that they can achieve high watermark detection accuracy with minimal compromise of text generation quality, particularly in the low-entropy regime. Our theoretical analysis also reveals surprising new connections between LLM watermarking and coding theory. The code implementation can be found in https://github.com/DorTsur/HeavyWater_SimplexWater
comment: Presented at NeurIPS2025
♻ ☆ Mechanisms of Symbol Processing for In-Context Learning in Transformer Networks
Large Language Models (LLMs) have demonstrated impressive abilities in symbol processing through in-context learning (ICL). This success flies in the face of decades of critiques asserting that artificial neural networks cannot master abstract symbol manipulation. We seek to understand the mechanisms that can enable robust symbol processing in transformer networks, illuminating both the unanticipated success, and the significant limitations, of transformers in symbol processing. Borrowing insights from symbolic AI and cognitive science on the power of Production System architectures, we develop a high-level Production System Language, PSL, that allows us to write symbolic programs to do complex, abstract symbol processing, and create compilers that precisely implement PSL programs in transformer networks which are, by construction, 100% mechanistically interpretable. The work is driven by study of a purely abstract (semantics-free) symbolic task that we develop, Templatic Generation (TGT). Although developed through study of TGT, PSL is, we demonstrate, highly general: it is Turing Universal. The new type of transformer architecture that we compile from PSL programs suggests a number of paths for enhancing transformers' capabilities at symbol processing. We note, however, that the work we report addresses computability, and not learnability, by transformer networks. Note: The first section provides an extended synopsis of the entire paper.
♻ ☆ Characterizing the Expressivity of Fixed-Precision Transformer Language Models NeurIPS 2025
Transformer-based language models (LMs) have achieved widespread empirical success, but their theoretical expressive power remains only partially understood. In this work, we analyze a restricted idealization of fixed-precision transformers with strict future masking, soft attention, and no positional encodings. We establish that this class of models is exactly as expressive as a specific fragment of linear temporal logic that contains only a single temporal operator: the past operator. We further connect this fragment to established classes in formal language theory, automata theory, and algebra, yielding a unified framework for understanding transformer expressivity under this idealization. Finally, we present empirical results that align closely with our theory: transformers trained on languages within their characterized expressive capacity generalize reliably across sequence lengths, while they consistently fail to generalize on languages beyond it.
comment: NeurIPS 2025 (Spotlight)
♻ ☆ Let Them Down Easy! Contextual Effects of LLM Guardrails on User Perceptions and Preferences EMNLP 2025
Current LLMs are trained to refuse potentially harmful input queries regardless of whether users actually had harmful intents, causing a tradeoff between safety and user experience. Through a study of 480 participants evaluating 3,840 query-response pairs, we examine how different refusal strategies affect user perceptions across varying motivations. Our findings reveal that response strategy largely shapes user experience, while actual user motivation has negligible impact. Partial compliance -- providing general information without actionable details -- emerges as the optimal strategy, reducing negative user perceptions by over 50% to flat-out refusals. Complementing this, we analyze response patterns of 9 state-of-the-art LLMs and evaluate how 6 reward models score different refusal strategies, demonstrating that models rarely deploy partial compliance naturally and reward models currently undervalue it. This work demonstrates that effective guardrails require focusing on crafting thoughtful refusals rather than detecting intent, offering a path toward AI safety mechanisms that ensure both safety and sustained user engagement.
comment: Accepted to Findings of EMNLP 2025
♻ ☆ Astra: A Multi-Agent System for GPU Kernel Performance Optimization
GPU kernel optimization has long been a central challenge at the intersection of high-performance computing and machine learning. Efficient kernels are crucial for accelerating large language model (LLM) training and serving, yet attaining high performance typically requires extensive manual tuning. Compiler-based systems reduce some of this burden, but still demand substantial manual design and engineering effort. Recently, researchers have explored using LLMs for GPU kernel generation, though prior work has largely focused on translating high-level PyTorch modules into CUDA code. In this work, we introduce Astra, the first LLM-based multi-agent system for GPU kernel optimization. Unlike previous approaches, Astra starts from existing CUDA implementations extracted from SGLang, a widely deployed framework for serving LLMs, rather than treating PyTorch modules as the specification. Within Astra, specialized LLM agents collaborate through iterative code generation, testing, profiling, and planning to produce kernels that are both correct and high-performance. On kernels from SGLang, Astra achieves an average speedup of 1.32x using zero-shot prompting with OpenAI o4-mini. A detailed case study further demonstrates that LLMs can autonomously apply loop transformations, optimize memory access patterns, exploit CUDA intrinsics, and leverage fast math operations to yield substantial performance gains. Our work highlights multi-agent LLM systems as a promising new paradigm for GPU kernel optimization. Our code is publicly available at https://github.com/Anjiang-Wei/Astra.
♻ ☆ CryptoBench: A Dynamic Benchmark for Expert-Level Evaluation of LLM Agents in Cryptocurrency
This paper introduces CryptoBench, the first expert-curated, dynamic benchmark designed to rigorously evaluate the real-world capabilities of Large Language Model (LLM) agents in the uniquely demanding and fast-paced cryptocurrency domain. Unlike general-purpose agent benchmarks for search and prediction, professional crypto analysis presents specific challenges: \emph{extreme time-sensitivity}, \emph{a highly adversarial information environment}, and the critical need to synthesize data from \emph{diverse, specialized sources}, such as on-chain intelligence platforms and real-time Decentralized Finance (DeFi) dashboards. CryptoBench thus serves as a much more challenging and valuable scenario for LLM agent assessment. To address these challenges, we constructed a live, dynamic benchmark featuring 50 questions per month, expertly designed by crypto-native professionals to mirror actual analyst workflows. These tasks are rigorously categorized within a four-quadrant system: Simple Retrieval, Complex Retrieval, Simple Prediction, and Complex Prediction. This granular categorization enables a precise assessment of an LLM agent's foundational data-gathering capabilities alongside its advanced analytical and forecasting skills. Our evaluation of ten LLMs, both directly and within an agentic framework, reveals a performance hierarchy and uncovers a failure mode. We observe a \textit{retrieval-prediction imbalance}, where many leading models, despite being proficient at data retrieval, demonstrate a pronounced weakness in tasks requiring predictive analysis. This highlights a problematic tendency for agents to appear factually grounded while lacking the deeper analytical capabilities to synthesize information.
Computer Vision and Pattern Recognition 100
☆ MagicQuillV2: Precise and Interactive Image Editing with Layered Visual Cues
We propose MagicQuill V2, a novel system that introduces a \textbf{layered composition} paradigm to generative image editing, bridging the gap between the semantic power of diffusion models and the granular control of traditional graphics software. While diffusion transformers excel at holistic generation, their use of singular, monolithic prompts fails to disentangle distinct user intentions for content, position, and appearance. To overcome this, our method deconstructs creative intent into a stack of controllable visual cues: a content layer for what to create, a spatial layer for where to place it, a structural layer for how it is shaped, and a color layer for its palette. Our technical contributions include a specialized data generation pipeline for context-aware content integration, a unified control module to process all visual cues, and a fine-tuned spatial branch for precise local editing, including object removal. Extensive experiments validate that this layered approach effectively resolves the user intention gap, granting creators direct, intuitive control over the generative process.
comment: Code and demo available at https://magicquill.art/v2/
☆ CAMEO: Correspondence-Attention Alignment for Multi-View Diffusion Models
Multi-view diffusion models have recently emerged as a powerful paradigm for novel view synthesis, yet the underlying mechanism that enables their view-consistency remains unclear. In this work, we first verify that the attention maps of these models acquire geometric correspondence throughout training, attending to the geometrically corresponding regions across reference and target views for view-consistent generation. However, this correspondence signal remains incomplete, with its accuracy degrading under large viewpoint changes. Building on these findings, we introduce CAMEO, a simple yet effective training technique that directly supervises attention maps using geometric correspondence to enhance both the training efficiency and generation quality of multi-view diffusion models. Notably, supervising a single attention layer is sufficient to guide the model toward learning precise correspondences, thereby preserving the geometry and structure of reference images, accelerating convergence, and improving novel view synthesis performance. CAMEO reduces the number of training iterations required for convergence by half while achieving superior performance at the same iteration counts. We further demonstrate that CAMEO is model-agnostic and can be applied to any multi-view diffusion model.
comment: Project page: https://cvlab-kaist.github.io/CAMEO/
☆ OneThinker: All-in-one Reasoning Model for Image and Video
Reinforcement learning (RL) has recently achieved remarkable success in eliciting visual reasoning within Multimodal Large Language Models (MLLMs). However, existing approaches typically train separate models for different tasks and treat image and video reasoning as disjoint domains. This results in limited scalability toward a multimodal reasoning generalist, which restricts practical versatility and hinders potential knowledge sharing across tasks and modalities. To this end, we propose OneThinker, an all-in-one reasoning model that unifies image and video understanding across diverse fundamental visual tasks, including question answering, captioning, spatial and temporal grounding, tracking, and segmentation. To achieve this, we construct the OneThinker-600k training corpus covering all these tasks and employ commercial models for CoT annotation, resulting in OneThinker-SFT-340k for SFT cold start. Furthermore, we propose EMA-GRPO to handle reward heterogeneity in multi-task RL by tracking task-wise moving averages of reward standard deviations for balanced optimization. Extensive experiments on diverse visual benchmarks show that OneThinker delivers strong performance on 31 benchmarks, across 10 fundamental visual understanding tasks. Moreover, it exhibits effective knowledge transfer between certain tasks and preliminary zero-shot generalization ability, marking a step toward a unified multimodal reasoning generalist. All code, model, and data are released.
comment: Project page: https://github.com/tulerfeng/OneThinker
☆ PPTArena: A Benchmark for Agentic PowerPoint Editing
We introduce PPTArena, a benchmark for PowerPoint editing that measures reliable modifications to real slides under natural-language instructions. In contrast to image-PDF renderings or text-to-slide generation, PPTArena focuses on in-place editing across 100 decks, 2125 slides, and over 800 targeted edits covering text, charts, tables, animations, and master-level styles. Each case includes a ground-truth deck, a fully specified target outcome, and a dual VLM-as-judge pipeline that separately scores instruction following and visual quality using both structural diffs and slide images. Building on this setting, we propose PPTPilot, a structure-aware slide-editing agent that plans semantic edit sequences, routes between high-level programmatic tools and deterministic XML operations for precise control, and verifies outputs through an iterative plan-edit-check loop against task-specific constraints. In our experiments, PPTPilot outperforms strong proprietary agents and frontier VLM systems by over 10 percentage points on compound, layout-sensitive, and cross-slide edits, with particularly large gains in visual fidelity and deck-wide consistency. Despite these improvements, existing agents still underperform on long-horizon, document-scale tasks in PPTArena, highlighting the remaining challenges in reliable PPT editing.
comment: 25 pages, 26 figures
☆ MultiShotMaster: A Controllable Multi-Shot Video Generation Framework
Current video generation techniques excel at single-shot clips but struggle to produce narrative multi-shot videos, which require flexible shot arrangement, coherent narrative, and controllability beyond text prompts. To tackle these challenges, we propose MultiShotMaster, a framework for highly controllable multi-shot video generation. We extend a pretrained single-shot model by integrating two novel variants of RoPE. First, we introduce Multi-Shot Narrative RoPE, which applies explicit phase shift at shot transitions, enabling flexible shot arrangement while preserving the temporal narrative order. Second, we design Spatiotemporal Position-Aware RoPE to incorporate reference tokens and grounding signals, enabling spatiotemporal-grounded reference injection. In addition, to overcome data scarcity, we establish an automated data annotation pipeline to extract multi-shot videos, captions, cross-shot grounding signals and reference images. Our framework leverages the intrinsic architectural properties to support multi-shot video generation, featuring text-driven inter-shot consistency, customized subject with motion control, and background-driven customized scene. Both shot count and duration are flexibly configurable. Extensive experiments demonstrate the superior performance and outstanding controllability of our framework.
comment: Project Page: https://qinghew.github.io/MultiShotMaster
☆ Video4Spatial: Towards Visuospatial Intelligence with Context-Guided Video Generation
We investigate whether video generative models can exhibit visuospatial intelligence, a capability central to human cognition, using only visual data. To this end, we present Video4Spatial, a framework showing that video diffusion models conditioned solely on video-based scene context can perform complex spatial tasks. We validate on two tasks: scene navigation - following camera-pose instructions while remaining consistent with 3D geometry of the scene, and object grounding - which requires semantic localization, instruction following, and planning. Both tasks use video-only inputs, without auxiliary modalities such as depth or poses. With simple yet effective design choices in the framework and data curation, Video4Spatial demonstrates strong spatial understanding from video context: it plans navigation and grounds target objects end-to-end, follows camera-pose instructions while maintaining spatial consistency, and generalizes to long contexts and out-of-domain environments. Taken together, these results advance video generative models toward general visuospatial reasoning.
comment: Project page at https://xizaoqu.github.io/video4spatial/
☆ ViSAudio: End-to-End Video-Driven Binaural Spatial Audio Generation
Despite progress in video-to-audio generation, the field focuses predominantly on mono output, lacking spatial immersion. Existing binaural approaches remain constrained by a two-stage pipeline that first generates mono audio and then performs spatialization, often resulting in error accumulation and spatio-temporal inconsistencies. To address this limitation, we introduce the task of end-to-end binaural spatial audio generation directly from silent video. To support this task, we present the BiAudio dataset, comprising approximately 97K video-binaural audio pairs spanning diverse real-world scenes and camera rotation trajectories, constructed through a semi-automated pipeline. Furthermore, we propose ViSAudio, an end-to-end framework that employs conditional flow matching with a dual-branch audio generation architecture, where two dedicated branches model the audio latent flows. Integrated with a conditional spacetime module, it balances consistency between channels while preserving distinctive spatial characteristics, ensuring precise spatio-temporal alignment between audio and the input video. Comprehensive experiments demonstrate that ViSAudio outperforms existing state-of-the-art methods across both objective metrics and subjective evaluations, generating high-quality binaural audio with spatial immersion that adapts effectively to viewpoint changes, sound-source motion, and diverse acoustic environments. Project website: https://kszpxxzmc.github.io/ViSAudio-project.
☆ MAViD: A Multimodal Framework for Audio-Visual Dialogue Understanding and Generation
We propose MAViD, a novel Multimodal framework for Audio-Visual Dialogue understanding and generation. Existing approaches primarily focus on non-interactive systems and are limited to producing constrained and unnatural human speech.The primary challenge of this task lies in effectively integrating understanding and generation capabilities, as well as achieving seamless multimodal audio-video fusion. To solve these problems, we propose a Conductor-Creator architecture that divides the dialogue system into two primary components.The Conductor is tasked with understanding, reasoning, and generating instructions by breaking them down into motion and speech components, thereby enabling fine-grained control over interactions. The Creator then delivers interactive responses based on these instructions.Furthermore, to address the difficulty of generating long videos with consistent identity, timbre, and tone using dual DiT structures, the Creator adopts a structure that combines autoregressive (AR) and diffusion models. The AR model is responsible for audio generation, while the diffusion model ensures high-quality video generation.Additionally, we propose a novel fusion module to enhance connections between contextually consecutive clips and modalities, enabling synchronized long-duration audio-visual content generation.Extensive experiments demonstrate that our framework can generate vivid and contextually coherent long-duration dialogue interactions and accurately interpret users' multimodal queries.
comment: Our project website is https://carlyx.github.io/MAViD/
☆ SMP: Reusable Score-Matching Motion Priors for Physics-Based Character Control
Data-driven motion priors that can guide agents toward producing naturalistic behaviors play a pivotal role in creating life-like virtual characters. Adversarial imitation learning has been a highly effective method for learning motion priors from reference motion data. However, adversarial priors, with few exceptions, need to be retrained for each new controller, thereby limiting their reusability and necessitating the retention of the reference motion data when training on downstream tasks. In this work, we present Score-Matching Motion Priors (SMP), which leverages pre-trained motion diffusion models and score distillation sampling (SDS) to create reusable task-agnostic motion priors. SMPs can be pre-trained on a motion dataset, independent of any control policy or task. Once trained, SMPs can be kept frozen and reused as general-purpose reward functions to train policies to produce naturalistic behaviors for downstream tasks. We show that a general motion prior trained on large-scale datasets can be repurposed into a variety of style-specific priors. Furthermore SMP can compose different styles to synthesize new styles not present in the original dataset. Our method produces high-quality motion comparable to state-of-the-art adversarial imitation learning methods through reusable and modular motion priors. We demonstrate the effectiveness of SMP across a diverse suite of control tasks with physically simulated humanoid characters. Video demo available at https://youtu.be/ravlZJteS20
comment: 14 pages, 9 figures
☆ Unrolled Networks are Conditional Probability Flows in MRI Reconstruction
Magnetic Resonance Imaging (MRI) offers excellent soft-tissue contrast without ionizing radiation, but its long acquisition time limits clinical utility. Recent methods accelerate MRI by under-sampling $k$-space and reconstructing the resulting images using deep learning. Unrolled networks have been widely used for the reconstruction task due to their efficiency, but suffer from unstable evolving caused by freely-learnable parameters in intermediate steps. In contrast, diffusion models based on stochastic differential equations offer theoretical stability in both medical and natural image tasks but are computationally expensive. In this work, we introduce flow ODEs to MRI reconstruction by theoretically proving that unrolled networks are discrete implementations of conditional probability flow ODEs. This connection provides explicit formulations for parameters and clarifies how intermediate states should evolve. Building on this insight, we propose Flow-Aligned Training (FLAT), which derives unrolled parameters from the ODE discretization and aligns intermediate reconstructions with the ideal ODE trajectory to improve stability and convergence. Experiments on three MRI datasets show that FLAT achieves high-quality reconstructions with up to $3\times$ fewer iterations than diffusion-based generative models and significantly greater stability than unrolled networks.
☆ AutoBrep: Autoregressive B-Rep Generation with Unified Topology and Geometry
The boundary representation (B-Rep) is the standard data structure used in Computer-Aided Design (CAD) for defining solid models. Despite recent progress, directly generating B-Reps end-to-end with precise geometry and watertight topology remains a challenge. This paper presents AutoBrep, a novel Transformer model that autoregressively generates B-Reps with high quality and validity. AutoBrep employs a unified tokenization scheme that encodes both geometric and topological characteristics of a B-Rep model as a sequence of discrete tokens. Geometric primitives (i.e., surfaces and curves) are encoded as latent geometry tokens, and their structural relationships are defined as special topological reference tokens. Sequence order in AutoBrep naturally follows a breadth first traversal of the B-Rep face adjacency graph. At inference time, neighboring faces and edges along with their topological structure are progressively generated. Extensive experiments demonstrate the advantages of our unified representation when coupled with next-token prediction for B-Rep generation. AutoBrep outperforms baselines with better quality and watertightness. It is also highly scalable to complex solids with good fidelity and inference speed. We further show that autocompleting B-Reps is natively supported through our unified tokenization, enabling user-controllable CAD generation with minimal changes. Code is available at https://github.com/AutodeskAILab/AutoBrep.
comment: Accepted to Siggraph Asia 2025
☆ Instant Video Models: Universal Adapters for Stabilizing Image-Based Networks NeurIPS 2025
When applied sequentially to video, frame-based networks often exhibit temporal inconsistency - for example, outputs that flicker between frames. This problem is amplified when the network inputs contain time-varying corruptions. In this work, we introduce a general approach for adapting frame-based models for stable and robust inference on video. We describe a class of stability adapters that can be inserted into virtually any architecture and a resource-efficient training process that can be performed with a frozen base network. We introduce a unified conceptual framework for describing temporal stability and corruption robustness, centered on a proposed accuracy-stability-robustness loss. By analyzing the theoretical properties of this loss, we identify the conditions where it produces well-behaved stabilizer training. Our experiments validate our approach on several vision tasks including denoising (NAFNet), image enhancement (HDRNet), monocular depth (Depth Anything v2), and semantic segmentation (DeepLabv3+). Our method improves temporal stability and robustness against a range of image corruptions (including compression artifacts, noise, and adverse weather), while preserving or improving the quality of predictions.
comment: NeurIPS 2025
☆ In-Context Sync-LoRA for Portrait Video Editing
Editing portrait videos is a challenging task that requires flexible yet precise control over a wide range of modifications, such as appearance changes, expression edits, or the addition of objects. The key difficulty lies in preserving the subject's original temporal behavior, demanding that every edited frame remains precisely synchronized with the corresponding source frame. We present Sync-LoRA, a method for editing portrait videos that achieves high-quality visual modifications while maintaining frame-accurate synchronization and identity consistency. Our approach uses an image-to-video diffusion model, where the edit is defined by modifying the first frame and then propagated to the entire sequence. To enable accurate synchronization, we train an in-context LoRA using paired videos that depict identical motion trajectories but differ in appearance. These pairs are automatically generated and curated through a synchronization-based filtering process that selects only the most temporally aligned examples for training. This training setup teaches the model to combine motion cues from the source video with the visual changes introduced in the edited first frame. Trained on a compact, highly curated set of synchronized human portraits, Sync-LoRA generalizes to unseen identities and diverse edits (e.g., modifying appearance, adding objects, or changing backgrounds), robustly handling variations in pose and expression. Our results demonstrate high visual fidelity and strong temporal coherence, achieving a robust balance between edit fidelity and precise motion preservation.
comment: Project page: https://sagipolaczek.github.io/Sync-LoRA/
☆ SurfFill: Completion of LiDAR Point Clouds via Gaussian Surfel Splatting
LiDAR-captured point clouds are often considered the gold standard in active 3D reconstruction. While their accuracy is exceptional in flat regions, the capturing is susceptible to miss small geometric structures and may fail with dark, absorbent materials. Alternatively, capturing multiple photos of the scene and applying 3D photogrammetry can infer these details as they often represent feature-rich regions. However, the accuracy of LiDAR for featureless regions is rarely reached. Therefore, we suggest combining the strengths of LiDAR and camera-based capture by introducing SurfFill: a Gaussian surfel-based LiDAR completion scheme. We analyze LiDAR capturings and attribute LiDAR beam divergence as a main factor for artifacts, manifesting mostly at thin structures and edges. We use this insight to introduce an ambiguity heuristic for completed scans by evaluating the change in density in the point cloud. This allows us to identify points close to missed areas, which we can then use to grow additional points from to complete the scan. For this point growing, we constrain Gaussian surfel reconstruction [Huang et al. 2024] to focus optimization and densification on these ambiguous areas. Finally, Gaussian primitives of the reconstruction in ambiguous areas are extracted and sampled for points to complete the point cloud. To address the challenges of large-scale reconstruction, we extend this pipeline with a divide-and-conquer scheme for building-sized point cloud completion. We evaluate on the task of LiDAR point cloud completion of synthetic and real-world scenes and find that our method outperforms previous reconstruction methods.
comment: Project page: https://lfranke.github.io/surffill
☆ DGGT: Feedforward 4D Reconstruction of Dynamic Driving Scenes using Unposed Images
Autonomous driving needs fast, scalable 4D reconstruction and re-simulation for training and evaluation, yet most methods for dynamic driving scenes still rely on per-scene optimization, known camera calibration, or short frame windows, making them slow and impractical. We revisit this problem from a feedforward perspective and introduce \textbf{Driving Gaussian Grounded Transformer (DGGT)}, a unified framework for pose-free dynamic scene reconstruction. We note that the existing formulations, treating camera pose as a required input, limit flexibility and scalability. Instead, we reformulate pose as an output of the model, enabling reconstruction directly from sparse, unposed images and supporting an arbitrary number of views for long sequences. Our approach jointly predicts per-frame 3D Gaussian maps and camera parameters, disentangles dynamics with a lightweight dynamic head, and preserves temporal consistency with a lifespan head that modulates visibility over time. A diffusion-based rendering refinement further reduces motion/interpolation artifacts and improves novel-view quality under sparse inputs. The result is a single-pass, pose-free algorithm that achieves state-of-the-art performance and speed. Trained and evaluated on large-scale driving benchmarks (Waymo, nuScenes, Argoverse2), our method outperforms prior work both when trained on each dataset and in zero-shot transfer across datasets, and it scales well as the number of input frames increases.
☆ DynamicVerse: A Physically-Aware Multimodal Framework for 4D World Modeling
Understanding the dynamic physical world, characterized by its evolving 3D structure, real-world motion, and semantic content with textual descriptions, is crucial for human-agent interaction and enables embodied agents to perceive and act within real environments with human-like capabilities. However, existing datasets are often derived from limited simulators or utilize traditional Structurefrom-Motion for up-to-scale annotation and offer limited descriptive captioning, which restricts the capacity of foundation models to accurately interpret real-world dynamics from monocular videos, commonly sourced from the internet. To bridge these gaps, we introduce DynamicVerse, a physical-scale, multimodal 4D world modeling framework for dynamic real-world video. We employ large vision, geometric, and multimodal models to interpret metric-scale static geometry, real-world dynamic motion, instance-level masks, and holistic descriptive captions. By integrating window-based Bundle Adjustment with global optimization, our method converts long real-world video sequences into a comprehensive 4D multimodal format. DynamicVerse delivers a large-scale dataset consists of 100K+ videos with 800K+ annotated masks and 10M+ frames from internet videos. Experimental evaluations on three benchmark tasks, namely video depth estimation, camera pose estimation, and camera intrinsics estimation, demonstrate that our 4D modeling achieves superior performance in capturing physical-scale measurements with greater global accuracy than existing methods.
☆ TEXTRIX: Latent Attribute Grid for Native Texture Generation and Beyond
Prevailing 3D texture generation methods, which often rely on multi-view fusion, are frequently hindered by inter-view inconsistencies and incomplete coverage of complex surfaces, limiting the fidelity and completeness of the generated content. To overcome these challenges, we introduce TEXTRIX, a native 3D attribute generation framework for high-fidelity texture synthesis and downstream applications such as precise 3D part segmentation. Our approach constructs a latent 3D attribute grid and leverages a Diffusion Transformer equipped with sparse attention, enabling direct coloring of 3D models in volumetric space and fundamentally avoiding the limitations of multi-view fusion. Built upon this native representation, the framework naturally extends to high-precision 3D segmentation by training the same architecture to predict semantic attributes on the grid. Extensive experiments demonstrate state-of-the-art performance on both tasks, producing seamless, high-fidelity textures and accurate 3D part segmentation with precise boundaries.
comment: Project Page: https://www.neural4d.com/research-page/textrix
☆ GraphFusion3D: Dynamic Graph Attention Convolution with Adaptive Cross-Modal Transformer for 3D Object Detection
Despite significant progress in 3D object detection, point clouds remain challenging due to sparse data, incomplete structures, and limited semantic information. Capturing contextual relationships between distant objects presents additional difficulties. To address these challenges, we propose GraphFusion3D, a unified framework combining multi-modal fusion with advanced feature learning. Our approach introduces the Adaptive Cross-Modal Transformer (ACMT), which adaptively integrates image features into point representations to enrich both geometric and semantic information. For proposal refinement, we introduce the Graph Reasoning Module (GRM), a novel mechanism that models neighborhood relationships to simultaneously capture local geometric structures and global semantic context. The module employs multi-scale graph attention to dynamically weight both spatial proximity and feature similarity between proposals. We further employ a cascade decoder that progressively refines detections through multi-stage predictions. Extensive experiments on SUN RGB-D (70.6\% AP$_{25}$ and 51.2\% AP$_{50}$) and ScanNetV2 (75.1\% AP$_{25}$ and 60.8\% AP$_{50}$) demonstrate a substantial performance improvement over existing approaches.
☆ U4D: Uncertainty-Aware 4D World Modeling from LiDAR Sequences
Modeling dynamic 3D environments from LiDAR sequences is central to building reliable 4D worlds for autonomous driving and embodied AI. Existing generative frameworks, however, often treat all spatial regions uniformly, overlooking the varying uncertainty across real-world scenes. This uniform generation leads to artifacts in complex or ambiguous regions, limiting realism and temporal stability. In this work, we present U4D, an uncertainty-aware framework for 4D LiDAR world modeling. Our approach first estimates spatial uncertainty maps from a pretrained segmentation model to localize semantically challenging regions. It then performs generation in a "hard-to-easy" manner through two sequential stages: (1) uncertainty-region modeling, which reconstructs high-entropy regions with fine geometric fidelity, and (2) uncertainty-conditioned completion, which synthesizes the remaining areas under learned structural priors. To further ensure temporal coherence, U4D incorporates a mixture of spatio-temporal (MoST) block that adaptively fuses spatial and temporal representations during diffusion. Extensive experiments show that U4D produces geometrically faithful and temporally consistent LiDAR sequences, advancing the reliability of 4D world modeling for autonomous perception and simulation.
comment: Preprint; 19 pages, 7 figures, 8 tables
☆ InEx: Hallucination Mitigation via Introspection and Cross-Modal Multi-Agent Collaboration AAAI 2026
Hallucination remains a critical challenge in large language models (LLMs), hindering the development of reliable multimodal LLMs (MLLMs). Existing solutions often rely on human intervention or underutilize the agent's ability to autonomously mitigate hallucination. To address these limitations, we draw inspiration from how humans make reliable decisions in the real world. They begin with introspective reasoning to reduce uncertainty and form an initial judgment, then rely on external verification from diverse perspectives to reach a final decision. Motivated by this cognitive paradigm, we propose InEx, a training-free, multi-agent framework designed to autonomously mitigate hallucination. InEx introduces internal introspective reasoning, guided by entropy-based uncertainty estimation, to improve the reliability of the decision agent's reasoning process. The agent first generates a response, which is then iteratively verified and refined through external cross-modal multi-agent collaboration with the editing agent and self-reflection agents, further enhancing reliability and mitigating hallucination. Extensive experiments show that InEx consistently outperforms existing methods, achieving 4%-27% gains on general and hallucination benchmarks, and demonstrating strong robustness.
comment: Published in AAAI 2026
☆ Contextual Image Attack: How Visual Context Exposes Multimodal Safety Vulnerabilities
While Multimodal Large Language Models (MLLMs) show remarkable capabilities, their safety alignments are susceptible to jailbreak attacks. Existing attack methods typically focus on text-image interplay, treating the visual modality as a secondary prompt. This approach underutilizes the unique potential of images to carry complex, contextual information. To address this gap, we propose a new image-centric attack method, Contextual Image Attack (CIA), which employs a multi-agent system to subtly embeds harmful queries into seemingly benign visual contexts using four distinct visualization strategies. To further enhance the attack's efficacy, the system incorporate contextual element enhancement and automatic toxicity obfuscation techniques. Experimental results on the MMSafetyBench-tiny dataset show that CIA achieves high toxicity scores of 4.73 and 4.83 against the GPT-4o and Qwen2.5-VL-72B models, respectively, with Attack Success Rates (ASR) reaching 86.31\% and 91.07\%. Our method significantly outperforms prior work, demonstrating that the visual modality itself is a potent vector for jailbreaking advanced MLLMs.
☆ BEVDilation: LiDAR-Centric Multi-Modal Fusion for 3D Object Detection AAAI26
Integrating LiDAR and camera information in the bird's eye view (BEV) representation has demonstrated its effectiveness in 3D object detection. However, because of the fundamental disparity in geometric accuracy between these sensors, indiscriminate fusion in previous methods often leads to degraded performance. In this paper, we propose BEVDilation, a novel LiDAR-centric framework that prioritizes LiDAR information in the fusion. By formulating image BEV features as implicit guidance rather than naive concatenation, our strategy effectively alleviates the spatial misalignment caused by image depth estimation errors. Furthermore, the image guidance can effectively help the LiDAR-centric paradigm to address the sparsity and semantic limitations of point clouds. Specifically, we propose a Sparse Voxel Dilation Block that mitigates the inherent point sparsity by densifying foreground voxels through image priors. Moreover, we introduce a Semantic-Guided BEV Dilation Block to enhance the LiDAR feature diffusion processing with image semantic guidance and long-range context capture. On the challenging nuScenes benchmark, BEVDilation achieves better performance than state-of-the-art methods while maintaining competitive computational efficiency. Importantly, our LiDAR-centric strategy demonstrates greater robustness to depth noise compared to naive fusion. The source code is available at https://github.com/gwenzhang/BEVDilation.
comment: Accept by AAAI26
☆ A Lightweight Real-Time Low-Light Enhancement Network for Embedded Automotive Vision Systems
In low-light environments like nighttime driving, image degradation severely challenges in-vehicle camera safety. Since existing enhancement algorithms are often too computationally intensive for vehicular applications, we propose UltraFast-LieNET, a lightweight multi-scale shifted convolutional network for real-time low-light image enhancement. We introduce a Dynamic Shifted Convolution (DSConv) kernel with only 12 learnable parameters for efficient feature extraction. By integrating DSConv with varying shift distances, a Multi-scale Shifted Residual Block (MSRB) is constructed to significantly expand the receptive field. To mitigate lightweight network instability, a residual structure and a novel multi-level gradient-aware loss function are incorporated. UltraFast-LieNET allows flexible parameter configuration, with a minimum size of only 36 parameters. Results on the LOLI-Street dataset show a PSNR of 26.51 dB, outperforming state-of-the-art methods by 4.6 dB while utilizing only 180 parameters. Experiments across four benchmark datasets validate its superior balance of real-time performance and enhancement quality under limited resources. Code is available at https://githubhttps://github.com/YuhanChen2024/UltraFast-LiNET
☆ Layout Anything: One Transformer for Universal Room Layout Estimation
We present Layout Anything, a transformer-based framework for indoor layout estimation that adapts the OneFormer's universal segmentation architecture to geometric structure prediction. Our approach integrates OneFormer's task-conditioned queries and contrastive learning with two key modules: (1) a layout degeneration strategy that augments training data while preserving Manhattan-world constraints through topology-aware transformations, and (2) differentiable geometric losses that directly enforce planar consistency and sharp boundary predictions during training. By unifying these components in an end-to-end framework, the model eliminates complex post-processing pipelines while achieving high-speed inference at 114ms. Extensive experiments demonstrate state-of-the-art performance across standard benchmarks, with pixel error (PE) of 5.43% and corner error (CE) of 4.02% on the LSUN, PE of 7.04% (CE 5.17%) on the Hedau and PE of 4.03% (CE 3.15%) on the Matterport3D-Layout datasets. The framework's combination of geometric awareness and computational efficiency makes it particularly suitable for augmented reality applications and large-scale 3D scene reconstruction tasks.
comment: Published at WACV 2026
☆ Benchmarking Scientific Understanding and Reasoning for Video Generation using VideoScience-Bench
The next frontier for video generation lies in developing models capable of zero-shot reasoning, where understanding real-world scientific laws is crucial for accurate physical outcome modeling under diverse conditions. However, existing video benchmarks are physical commonsense-based, offering limited insight into video models' scientific reasoning capability. We introduce VideoScience-Bench, a benchmark designed to evaluate undergraduate-level scientific understanding in video models. Each prompt encodes a composite scientific scenario that requires understanding and reasoning across multiple scientific concepts to generate the correct phenomenon. The benchmark comprises 200 carefully curated prompts spanning 14 topics and 103 concepts in physics and chemistry. We conduct expert-annotated evaluations across seven state-of-the-art video models in T2V and I2V settings along five dimensions: Prompt Consistency, Phenomenon Congruency, Correct Dynamism, Immutability, and Spatio-Temporal Continuity. Using a VLM-as-a-Judge to assess video generations, we observe strong correlation with human assessments. To the best of our knowledge, VideoScience-Bench is the first benchmark to evaluate video models not only as generators but also as reasoners, requiring their generations to demonstrate scientific understanding consistent with expected physical and chemical phenomena. Our data and evaluation code are available at: \href{https://github.com/hao-ai-lab/VideoScience}{github.com/hao-ai-lab/VideoScience}.
☆ LoVoRA: Text-guided and Mask-free Video Object Removal and Addition with Learnable Object-aware Localization
Text-guided video editing, particularly for object removal and addition, remains a challenging task due to the need for precise spatial and temporal consistency. Existing methods often rely on auxiliary masks or reference images for editing guidance, which limits their scalability and generalization. To address these issues, we propose LoVoRA, a novel framework for mask-free video object removal and addition using object-aware localization mechanism. Our approach utilizes a unique dataset construction pipeline that integrates image-to-video translation, optical flow-based mask propagation, and video inpainting, enabling temporally consistent edits. The core innovation of LoVoRA is its learnable object-aware localization mechanism, which provides dense spatio-temporal supervision for both object insertion and removal tasks. By leveraging a Diffusion Mask Predictor, LoVoRA achieves end-to-end video editing without requiring external control signals during inference. Extensive experiments and human evaluation demonstrate the effectiveness and high-quality performance of LoVoRA.
☆ EGGS: Exchangeable 2D/3D Gaussian Splatting for Geometry-Appearance Balanced Novel View Synthesis
Novel view synthesis (NVS) is crucial in computer vision and graphics, with wide applications in AR, VR, and autonomous driving. While 3D Gaussian Splatting (3DGS) enables real-time rendering with high appearance fidelity, it suffers from multi-view inconsistencies, limiting geometric accuracy. In contrast, 2D Gaussian Splatting (2DGS) enforces multi-view consistency but compromises texture details. To address these limitations, we propose Exchangeable Gaussian Splatting (EGGS), a hybrid representation that integrates 2D and 3D Gaussians to balance appearance and geometry. To achieve this, we introduce Hybrid Gaussian Rasterization for unified rendering, Adaptive Type Exchange for dynamic adaptation between 2D and 3D Gaussians, and Frequency-Decoupled Optimization that effectively exploits the strengths of each type of Gaussian representation. Our CUDA-accelerated implementation ensures efficient training and inference. Extensive experiments demonstrate that EGGS outperforms existing methods in rendering quality, geometric accuracy, and efficiency, providing a practical solution for high-quality NVS.
☆ DiverseAR: Boosting Diversity in Bitwise Autoregressive Image Generation
In this paper, we investigate the underexplored challenge of sample diversity in autoregressive (AR) generative models with bitwise visual tokenizers. We first analyze the factors that limit diversity in bitwise AR models and identify two key issues: (1) the binary classification nature of bitwise modeling, which restricts the prediction space, and (2) the overly sharp logits distribution, which causes sampling collapse and reduces diversity. Building on these insights, we propose DiverseAR, a principled and effective method that enhances image diversity without sacrificing visual quality. Specifically, we introduce an adaptive logits distribution scaling mechanism that dynamically adjusts the sharpness of the binary output distribution during sampling, resulting in smoother predictions and greater diversity. To mitigate potential fidelity loss caused by distribution smoothing, we further develop an energy-based generation path search algorithm that avoids sampling low-confidence tokens, thereby preserving high visual quality. Extensive experiments demonstrate that DiverseAR substantially improves sample diversity in bitwise autoregressive image generation.
comment: 23 pages
☆ Learning Multimodal Embeddings for Traffic Accident Prediction and Causal Estimation KDD'26
We consider analyzing traffic accident patterns using both road network data and satellite images aligned to road graph nodes. Previous work for predicting accident occurrences relies primarily on road network structural features while overlooking physical and environmental information from the road surface and its surroundings. In this work, we construct a large multimodal dataset across six U.S. states, containing nine million traffic accident records from official sources, and one million high-resolution satellite images for each node of the road network. Additionally, every node is annotated with features such as the region's weather statistics and road type (e.g., residential vs. motorway), and each edge is annotated with traffic volume information (i.e., Average Annual Daily Traffic). Utilizing this dataset, we conduct a comprehensive evaluation of multimodal learning methods that integrate both visual and network embeddings. Our findings show that integrating both data modalities improves prediction accuracy, achieving an average AUROC of $90.1\%$, which is a $3.7\%$ gain over graph neural network models that only utilize graph structures. With the improved embeddings, we conduct a causal analysis based on a matching estimator to estimate the key contributing factors influencing traffic accidents. We find that accident rates rise by $24\%$ under higher precipitation, by $22\%$ on higher-speed roads such as motorways, and by $29\%$ due to seasonal patterns, after adjusting for other confounding factors. Ablation studies confirm that satellite imagery features are essential for achieving accurate prediction.
comment: 17 pages. To appear in KDD'26 Datasets
☆ MRD: Multi-resolution Retrieval-Detection Fusion for High-Resolution Image Understanding
Understanding high-resolution images remains a significant challenge for multimodal large language models (MLLMs). Recent study address this issue by dividing the image into smaller crops and computing the semantic similarity between each crop and a query using a pretrained retrieval-augmented generation (RAG) model. The most relevant crops are then selected to localize the target object and suppress irrelevant information. However, such crop-based processing can fragment complete objects across multiple crops, thereby disrupting the computation of semantic similarity. In our experiments, we find that image crops of objects with different sizes are better handled at different resolutions. Based on this observation, we propose Multi-resolution Retrieval-Detection (MRD), a training-free framework for high-resolution image understanding. To address the issue of semantic similarity bias caused by objects being split across different image crops, we propose a multi-resolution semantic fusion method, which integrates semantic similarity maps obtained at different resolutions to produce more accurate semantic information and preserve the integrity of target objects. Furthermore, to achieve direct localization of target objects at a global scale, we introduce an open-vocalbulary object detection (OVD) model that identifies object regions using a sliding-window approach.Experiments on high-resolution image understanding benchmarks using different MLLMs demonstrate the effectiveness of our approach.
☆ Glance: Accelerating Diffusion Models with 1 Sample
Diffusion models have achieved remarkable success in image generation, yet their deployment remains constrained by the heavy computational cost and the need for numerous inference steps. Previous efforts on fewer-step distillation attempt to skip redundant steps by training compact student models, yet they often suffer from heavy retraining costs and degraded generalization. In this work, we take a different perspective: we accelerate smartly, not evenly, applying smaller speedups to early semantic stages and larger ones to later redundant phases. We instantiate this phase-aware strategy with two experts that specialize in slow and fast denoising phases. Surprisingly, instead of investing massive effort in retraining student models, we find that simply equipping the base model with lightweight LoRA adapters achieves both efficient acceleration and strong generalization. We refer to these two adapters as Slow-LoRA and Fast-LoRA. Through extensive experiments, our method achieves up to 5 acceleration over the base model while maintaining comparable visual quality across diverse benchmarks. Remarkably, the LoRA experts are trained with only 1 samples on a single V100 within one hour, yet the resulting models generalize strongly on unseen prompts.
☆ Polar Perspectives: Evaluating 2-D LiDAR Projections for Robust Place Recognition with Visual Foundation Models
This work presents a systematic investigation into how alternative LiDAR-to-image projections affect metric place recognition when coupled with a state-of-the-art vision foundation model. We introduce a modular retrieval pipeline that controls for backbone, aggregation, and evaluation protocol, thereby isolating the influence of the 2-D projection itself. Using consistent geometric and structural channels across multiple datasets and deployment scenarios, we identify the projection characteristics that most strongly determine discriminative power, robustness to environmental variation, and suitability for real-time autonomy. Experiments with different datasets, including integration into an operational place recognition policy, validate the practical relevance of these findings and demonstrate that carefully designed projections can serve as an effective surrogate for end-to-end 3-D learning in LiDAR place recognition.
comment: 13 Pages, 5 Figures, 2 Tables Under Review
☆ MindGPT-4ov: An Enhanced MLLM via a Multi-Stage Post-Training Paradigm
We present MindGPT-4ov, a multimodal large language model (MLLM) that introduces a general post-training paradigm spanning data production, model training, and efficient deployment. It achieves state-of-the-art performance across multiple benchmarks at low cost, effectively enhancing the foundational capabilities of MLLMs and the generalization ability. Focusing on data construction, supervised fine-tuning strategies, and multimodal reinforcement learning methods, this work proposes three key innovations: (1) An information density-based data generation scheme, integrated with a dual-dimensional tree-structured label system, enabling automated generation of high-quality cross-domain data. (2) A collaborative curriculum supervised fine-tuning approach that balances the injection of domain-specific knowledge with the preservation of general capabilities. (3) A hybrid reinforcement learning paradigm that enhances reasoning ability while simultaneously addressing multi-objective optimization such as diversity exploration, maintenance of multimodal perception, and response conciseness. Moreover, we implement a series of infrastructure optimizations, such as 5D parallel training, operator optimization, and inference quantization to enhance training and inference efficiency while reducing the cost of domain adaptation. Experimental results demonstrate that the MindGPT-4ov model outperforms state-of-the-art models on benchmarks such as MMBench, MMStar, MathVision, and MathVista. In addition, MindGPT-4ov also demonstrates superior user experience in vertical domain tasks, enabling a seamless transition from academic research to industrial deployment. MindGPT-4ov provides a general post-training paradigm applicable to a wide range of MLLMs. The model weights, datasets, and code for the Qwen3-VL-based variants will be recently open-sourced to support the community's development of MLLMs.
comment: 33 pages, 14 figures
☆ Taming Camera-Controlled Video Generation with Verifiable Geometry Reward
Recent advances in video diffusion models have remarkably improved camera-controlled video generation, but most methods rely solely on supervised fine-tuning (SFT), leaving online reinforcement learning (RL) post-training largely underexplored. In this work, we introduce an online RL post-training framework that optimizes a pretrained video generator for precise camera control. To make RL effective in this setting, we design a verifiable geometry reward that delivers dense segment-level feedback to guide model optimization. Specifically, we estimate the 3D camera trajectories for both generated and reference videos, divide each trajectory into short segments, and compute segment-wise relative poses. The reward function then compares each generated-reference segment pair and assigns an alignment score as the reward signal, which helps alleviate reward sparsity and improve optimization efficiency. Moreover, we construct a comprehensive dataset featuring diverse large-amplitude camera motions and scenes with varied subject dynamics. Extensive experiments show that our online RL post-training clearly outperforms SFT baselines across multiple aspects, including camera-control accuracy, geometric consistency, and visual quality, demonstrating its superiority in advancing camera-controlled video generation.
comment: 11 pages, 4 figures, 7 tables
☆ MICCAI STSR 2025 Challenge: Semi-Supervised Teeth and Pulp Segmentation and CBCT-IOS Registration
Cone-Beam Computed Tomography (CBCT) and Intraoral Scanning (IOS) are essential for digital dentistry, but annotated data scarcity limits automated solutions for pulp canal segmentation and cross-modal registration. To benchmark semi-supervised learning (SSL) in this domain, we organized the STSR 2025 Challenge at MICCAI 2025, featuring two tasks: (1) semi-supervised segmentation of teeth and pulp canals in CBCT, and (2) semi-supervised rigid registration of CBCT and IOS. We provided 60 labeled and 640 unlabeled IOS samples, plus 30 labeled and 250 unlabeled CBCT scans with varying resolutions and fields of view. The challenge attracted strong community participation, with top teams submitting open-source deep learning-based SSL solutions. For segmentation, leading methods used nnU-Net and Mamba-like State Space Models with pseudo-labeling and consistency regularization, achieving a Dice score of 0.967 and Instance Affinity of 0.738 on the hidden test set. For registration, effective approaches combined PointNetLK with differentiable SVD and geometric augmentation to handle modality gaps; hybrid neural-classical refinement enabled accurate alignment despite limited labels. All data and code are publicly available at https://github.com/ricoleehduu/STS-Challenge-2025 to ensure reproducibility.
☆ RFOP: Rethinking Fusion and Orthogonal Projection for Face-Voice Association
Face-voice association in multilingual environment challenge 2026 aims to investigate the face-voice association task in multilingual scenario. The challenge introduces English-German face-voice pairs to be utilized in the evaluation phase. To this end, we revisit the fusion and orthogonal projection for face-voice association by effectively focusing on the relevant semantic information within the two modalities. Our method performs favorably on the English-German data split and ranked 3rd in the FAME 2026 challenge by achieving the EER of 33.1.
comment: Ranked 3rd in Fame 2026 Challenge, ICASSP
☆ Are Detectors Fair to Indian IP-AIGC? A Cross-Generator Study
Modern image editors can produce identity-preserving AIGC (IP-AIGC), where the same person appears with new attire, background, or lighting. The robustness and fairness of current detectors in this regime remain unclear, especially for under-represented populations. We present what we believe is the first systematic study of IP-AIGC detection for Indian and South-Asian faces, quantifying cross-generator generalization and intra-population performance. We assemble Indian-focused training splits from FairFD and HAV-DF, and construct two held-out IP-AIGC test sets (HIDF-img-ip-genai and HIDF-vid-ip-genai) using commercial web-UI generators (Gemini and ChatGPT) with identity-preserving prompts. We evaluate two state-of-the-art detectors (AIDE and Effort) under pretrained (PT) and fine-tuned (FT) regimes and report AUC, AP, EER, and accuracy. Fine-tuning yields strong in-domain gains (for example, Effort AUC 0.739 to 0.944 on HAV-DF-test; AIDE EER 0.484 to 0.259), but consistently degrades performance on held-out IP-AIGC for Indian cohorts (for example, AIDE AUC 0.923 to 0.563 on HIDF-img-ip-genai; Effort 0.740 to 0.533), which indicates overfitting to training-generator cues. On non-IP HIDF images, PT performance remains high, which suggests a specific brittleness to identity-preserving edits rather than a generic distribution shift. Our study establishes IP-AIGC-Indian as a challenging and practically relevant scenario and motivates representation-preserving adaptation and India-aware benchmark curation to close generalization gaps in AIGC detection.
☆ Action Anticipation at a Glimpse: To What Extent Can Multimodal Cues Replace Video?
Anticipating actions before they occur is a core challenge in action understanding research. While conventional methods rely on extracting and aggregating temporal information from videos, as humans we can often predict upcoming actions by observing a single moment from a scene, when given sufficient context. Can a model achieve this competence? The short answer is yes, although its effectiveness depends on the complexity of the task. In this work, we investigate to what extent video aggregation can be replaced with alternative modalities. To this end, based on recent advances in visual feature extraction and language-based reasoning, we introduce AAG, a method for Action Anticipation at a Glimpse. AAG combines RGB features with depth cues from a single frame for enhanced spatial reasoning, and incorporates prior action information to provide long-term context. This context is obtained either through textual summaries from Vision-Language Models, or from predictions generated by a single-frame action recognizer. Our results demonstrate that multimodal single-frame action anticipation using AAG can perform competitively compared to both temporally aggregated video baselines and state-of-the-art methods across three instructional activity datasets: IKEA-ASM, Meccano, and Assembly101.
comment: Accepted in WACV 2026 - Applications Track
☆ ReVSeg: Incentivizing the Reasoning Chain for Video Segmentation with Reinforcement Learning
Reasoning-centric video object segmentation is an inherently complex task: the query often refers to dynamics, causality, and temporal interactions, rather than static appearances. Yet existing solutions generally collapse these factors into simplified reasoning with latent embeddings, rendering the reasoning chain opaque and essentially intractable. We therefore adopt an explicit decomposition perspective and introduce ReVSeg, which executes reasoning as sequential decisions in the native interface of pretrained vision language models (VLMs). Rather than folding all reasoning into a single-step prediction, ReVSeg executes three explicit operations -- semantics interpretation, temporal evidence selection, and spatial grounding -- aligning pretrained capabilities. We further employ reinforcement learning to optimize the multi-step reasoning chain, enabling the model to self-refine its decision quality from outcome-driven signals. Experimental results demonstrate that ReVSeg attains state-of-the-art performances on standard video object segmentation benchmarks and yields interpretable reasoning trajectories. Project page is available at https://clementine24.github.io/ReVSeg/ .
☆ Defense That Attacks: How Robust Models Become Better Attackers
Deep learning has achieved great success in computer vision, but remains vulnerable to adversarial attacks. Adversarial training is the leading defense designed to improve model robustness. However, its effect on the transferability of attacks is underexplored. In this work, we ask whether adversarial training unintentionally increases the transferability of adversarial examples. To answer this, we trained a diverse zoo of 36 models, including CNNs and ViTs, and conducted comprehensive transferability experiments. Our results reveal a clear paradox: adversarially trained (AT) models produce perturbations that transfer more effectively than those from standard models, which introduce a new ecosystem risk. To enable reproducibility and further study, we release all models, code, and experimental scripts. Furthermore, we argue that robustness evaluations should assess not only the resistance of a model to transferred attacks but also its propensity to produce transferable adversarial examples.
☆ HUD: Hierarchical Uncertainty-Aware Disambiguation Network for Composed Video Retrieval
Composed Video Retrieval (CVR) is a challenging video retrieval task that utilizes multi-modal queries, consisting of a reference video and modification text, to retrieve the desired target video. The core of this task lies in understanding the multi-modal composed query and achieving accurate composed feature learning. Within multi-modal queries, the video modality typically carries richer semantic content compared to the textual modality. However, previous works have largely overlooked the disparity in information density between these two modalities. This limitation can lead to two critical issues: 1) modification subject referring ambiguity and 2) limited detailed semantic focus, both of which degrade the performance of CVR models. To address the aforementioned issues, we propose a novel CVR framework, namely the Hierarchical Uncertainty-aware Disambiguation network (HUD). HUD is the first framework that leverages the disparity in information density between video and text to enhance multi-modal query understanding. It comprises three key components: (a) Holistic Pronoun Disambiguation, (b) Atomistic Uncertainty Modeling, and (c) Holistic-to-Atomistic Alignment. By exploiting overlapping semantics through holistic cross-modal interaction and fine-grained semantic alignment via atomistic-level cross-modal interaction, HUD enables effective object disambiguation and enhances the focus on detailed semantics, thereby achieving precise composed feature learning. Moreover, our proposed HUD is also applicable to the Composed Image Retrieval (CIR) task and achieves state-of-the-art performance across three benchmark datasets for both CVR and CIR tasks. The codes are available on https://zivchen-ty.github.io/HUD.github.io/.
comment: Accepted by ACM MM 2025
☆ TrackNetV5: Residual-Driven Spatio-Temporal Refinement and Motion Direction Decoupling for Fast Object Tracking
The TrackNet series has established a strong baseline for fast-moving small object tracking in sports. However, existing iterations face significant limitations: V1-V3 struggle with occlusions due to a reliance on purely visual cues, while TrackNetV4, despite introducing motion inputs, suffers from directional ambiguity as its absolute difference method discards motion polarity. To overcome these bottlenecks, we propose TrackNetV5, a robust architecture integrating two novel mechanisms. First, to recover lost directional priors, we introduce the Motion Direction Decoupling (MDD) module. Unlike V4, MDD decomposes temporal dynamics into signed polarity fields, explicitly encoding both movement occurrence and trajectory direction. Second, we propose the Residual-Driven Spatio-Temporal Refinement (R-STR) head. Operating on a coarse-to-fine paradigm, this Transformer-based module leverages factorized spatio-temporal contexts to estimate a corrective residual, effectively recovering occluded targets. Extensive experiments on the TrackNetV2 dataset demonstrate that TrackNetV5 achieves a new state-of-the-art F1-score of 0.9859 and an accuracy of 0.9733, significantly outperforming previous versions. Notably, this performance leap is achieved with a marginal 3.7% increase in FLOPs compared to V4, maintaining real-time inference capabilities while delivering superior tracking precision.
☆ Diagnose, Correct, and Learn from Manipulation Failures via Visual Symbols
Vision-Language-Action (VLA) models have recently achieved remarkable progress in robotic manipulation, yet they remain limited in failure diagnosis and learning from failures. Additionally, existing failure datasets are mostly generated programmatically in simulation, which limits their generalization to the real world. In light of these, we introduce ViFailback, a framework designed to diagnose robotic manipulation failures and provide both textual and visual correction guidance. Our framework utilizes explicit visual symbols to enhance annotation efficiency. We further release the ViFailback dataset, a large-scale collection of 58,126 Visual Question Answering (VQA) pairs along with their corresponding 5,202 real-world manipulation trajectories. Based on the dataset, we establish ViFailback-Bench, a benchmark of 11 fine-grained VQA tasks designed to assess the failure diagnosis and correction abilities of Vision-Language Models (VLMs), featuring ViFailback-Bench Lite for closed-ended and ViFailback-Bench Hard for open-ended evaluation. To demonstrate the effectiveness of our framework, we built the ViFailback-8B VLM, which not only achieves significant overall performance improvement on ViFailback-Bench but also generates visual symbols for corrective action guidance. Finally, by integrating ViFailback-8B with a VLA model, we conduct real-world robotic experiments demonstrating its ability to assist the VLA model in recovering from failures. Project Website: https://x1nyuzhou.github.io/vifailback.github.io/
☆ LumiX: Structured and Coherent Text-to-Intrinsic Generation
We present LumiX, a structured diffusion framework for coherent text-to-intrinsic generation. Conditioned on text prompts, LumiX jointly generates a comprehensive set of intrinsic maps (e.g., albedo, irradiance, normal, depth, and final color), providing a structured and physically consistent description of an underlying scene. This is enabled by two key contributions: 1) Query-Broadcast Attention, a mechanism that ensures structural consistency by sharing queries across all maps in each self-attention block. 2) Tensor LoRA, a tensor-based adaptation that parameter-efficiently models cross-map relations for efficient joint training. Together, these designs enable stable joint diffusion training and unified generation of multiple intrinsic properties. Experiments show that LumiX produces coherent and physically meaningful results, achieving 23% higher alignment and a better preference score (0.19 vs. -0.41) compared to the state of the art, and it can also perform image-conditioned intrinsic decomposition within the same framework.
comment: The code will be available at https://github.com/xhanxu/LumiX
☆ Rethinking Surgical Smoke: A Smoke-Type-Aware Laparoscopic Video Desmoking Method and Dataset AAAI-26
Electrocautery or lasers will inevitably generate surgical smoke, which hinders the visual guidance of laparoscopic videos for surgical procedures. The surgical smoke can be classified into different types based on its motion patterns, leading to distinctive spatio-temporal characteristics across smoky laparoscopic videos. However, existing desmoking methods fail to account for such smoke-type-specific distinctions. Therefore, we propose the first Smoke-Type-Aware Laparoscopic Video Desmoking Network (STANet) by introducing two smoke types: Diffusion Smoke and Ambient Smoke. Specifically, a smoke mask segmentation sub-network is designed to jointly conduct smoke mask and smoke type predictions based on the attention-weighted mask aggregation, while a smokeless video reconstruction sub-network is proposed to perform specially desmoking on smoky features guided by two types of smoke mask. To address the entanglement challenges of two smoke types, we further embed a coarse-to-fine disentanglement module into the mask segmentation sub-network, which yields more accurate disentangled masks through the smoke-type-aware cross attention between non-entangled and entangled regions. In addition, we also construct the first large-scale synthetic video desmoking dataset with smoke type annotations. Extensive experiments demonstrate that our method not only outperforms state-of-the-art approaches in quality evaluations, but also exhibits superior generalization across multiple downstream surgical tasks.
comment: 12 pages, 15 figures. Accepted to AAAI-26 (Main Technical Track)
☆ AttMetNet: Attention-Enhanced Deep Neural Network for Methane Plume Detection in Sentinel-2 Satellite Imagery
Methane is a powerful greenhouse gas that contributes significantly to global warming. Accurate detection of methane emissions is the key to taking timely action and minimizing their impact on climate change. We present AttMetNet, a novel attention-enhanced deep learning framework for methane plume detection with Sentinel-2 satellite imagery. The major challenge in developing a methane detection model is to accurately identify methane plumes from Sentinel-2's B11 and B12 bands while suppressing false positives caused by background variability and diverse land cover types. Traditional detection methods typically depend on the differences or ratios between these bands when comparing the scenes with and without plumes. However, these methods often require verification by a domain expert because they generate numerous false positives. Recent deep learning methods make some improvements using CNN-based architectures, but lack mechanisms to prioritize methane-specific features. AttMetNet introduces a methane-aware architecture that fuses the Normalized Difference Methane Index (NDMI) with an attention-enhanced U-Net. By jointly exploiting NDMI's plume-sensitive cues and attention-driven feature selection, AttMetNet selectively amplifies methane absorption features while suppressing background noise. This integration establishes a first-of-its-kind architecture tailored for robust methane plume detection in real satellite imagery. Additionally, we employ focal loss to address the severe class imbalance arising from both limited positive plume samples and sparse plume pixels within imagery. Furthermore, AttMetNet is trained on the real methane plume dataset, making it more robust to practical scenarios. Extensive experiments show that AttMetNet surpasses recent methods in methane plume detection with a lower false positive rate, better precision recall balance, and higher IoU.
comment: 15 pages, 4 figures
☆ Reasoning-Aware Multimodal Fusion for Hateful Video Detection
Hate speech in online videos is posing an increasingly serious threat to digital platforms, especially as video content becomes increasingly multimodal and context-dependent. Existing methods often struggle to effectively fuse the complex semantic relationships between modalities and lack the ability to understand nuanced hateful content. To address these issues, we propose an innovative Reasoning-Aware Multimodal Fusion (RAMF) framework. To tackle the first challenge, we design Local-Global Context Fusion (LGCF) to capture both local salient cues and global temporal structures, and propose Semantic Cross Attention (SCA) to enable fine-grained multimodal semantic interaction. To tackle the second challenge, we introduce adversarial reasoning-a structured three-stage process where a vision-language model generates (i) objective descriptions, (ii) hate-assumed inferences, and (iii) non-hate-assumed inferences-providing complementary semantic perspectives that enrich the model's contextual understanding of nuanced hateful intent. Evaluations on two real-world hateful video datasets demonstrate that our method achieves robust generalisation performance, improving upon state-of-the-art methods by 3% and 7% in Macro-F1 and hate class recall, respectively. We will release the code after the anonymity period ends.
☆ Beyond Paired Data: Self-Supervised UAV Geo-Localization from Reference Imagery Alone
Image-based localization in GNSS-denied environments is critical for UAV autonomy. Existing state-of-the-art approaches rely on matching UAV images to geo-referenced satellite images; however, they typically require large-scale, paired UAV-satellite datasets for training. Such data are costly to acquire and often unavailable, limiting their applicability. To address this challenge, we adopt a training paradigm that removes the need for UAV imagery during training by learning directly from satellite-view reference images. This is achieved through a dedicated augmentation strategy that simulates the visual domain shift between satellite and real-world UAV views. We introduce CAEVL, an efficient model designed to exploit this paradigm, and validate it on ViLD, a new and challenging dataset of real-world UAV images that we release to the community. Our method achieves competitive performance compared to approaches trained with paired data, demonstrating its effectiveness and strong generalization capabilities.
comment: Accepted at WACV 2026
☆ DF-Mamba: Deformable State Space Modeling for 3D Hand Pose Estimation in Interactions
Modeling daily hand interactions often struggles with severe occlusions, such as when two hands overlap, which highlights the need for robust feature learning in 3D hand pose estimation (HPE). To handle such occluded hand images, it is vital to effectively learn the relationship between local image features (e.g., for occluded joints) and global context (e.g., cues from inter-joints, inter-hands, or the scene). However, most current 3D HPE methods still rely on ResNet for feature extraction, and such CNN's inductive bias may not be optimal for 3D HPE due to its limited capability to model the global context. To address this limitation, we propose an effective and efficient framework for visual feature extraction in 3D HPE using recent state space modeling (i.e., Mamba), dubbed Deformable Mamba (DF-Mamba). DF-Mamba is designed to capture global context cues beyond standard convolution through Mamba's selective state modeling and the proposed deformable state scanning. Specifically, for local features after convolution, our deformable scanning aggregates these features within an image while selectively preserving useful cues that represent the global context. This approach significantly improves the accuracy of structured 3D HPE, with comparable inference speed to ResNet-50. Our experiments involve extensive evaluations on five divergent datasets including single-hand and two-hand scenarios, hand-only and hand-object interactions, as well as RGB and depth-based estimation. DF-Mamba outperforms the latest image backbones, including VMamba and Spatial-Mamba, on all datasets and achieves state-of-the-art performance.
comment: Accepted to WACV 2026. Project page: https://tkhkaeio.github.io/projects/25-dfmamba/index.html
☆ Emergent Bayesian Behaviour and Optimal Cue Combination in LLMs
Large language models (LLMs) excel at explicit reasoning, but their implicit computational strategies remain underexplored. Decades of psychophysics research show that humans intuitively process and integrate noisy signals using near-optimal Bayesian strategies in perceptual tasks. We ask whether LLMs exhibit similar behaviour and perform optimal multimodal integration without explicit training or instruction. Adopting the psychophysics paradigm, we infer computational principles of LLMs from systematic behavioural studies. We introduce a behavioural benchmark - BayesBench: four magnitude estimation tasks (length, location, distance, and duration) over text and image, inspired by classic psychophysics, and evaluate a diverse set of nine LLMs alongside human judgments for calibration. Through controlled ablations of noise, context, and instruction prompts, we measure performance, behaviour and efficiency in multimodal cue-combination. Beyond accuracy and efficiency metrics, we introduce a Bayesian Consistency Score that detects Bayes-consistent behavioural shifts even when accuracy saturates. Our results show that while capable models often adapt in Bayes-consistent ways, accuracy does not guarantee robustness. Notably, GPT-5 Mini achieves perfect text accuracy but fails to integrate visual cues efficiently. This reveals a critical dissociation between capability and strategy, suggesting accuracy-centric benchmarks may over-index on performance while missing brittle uncertainty handling. These findings reveal emergent principled handling of uncertainty and highlight the correlation between accuracy and Bayesian tendencies. We release our psychophysics benchmark and consistency metric (https://bayes-bench.github.io) as evaluation tools and to inform future multimodal architecture designs.
☆ GeoViS: Geospatially Rewarded Visual Search for Remote Sensing Visual Grounding
Recent advances in multimodal large language models(MLLMs) have led to remarkable progress in visual grounding, enabling fine-grained cross-modal alignment between textual queries and image regions. However, transferring such capabilities to remote sensing imagery remains challenging, as targets are often extremely small within kilometer-scale scenes, and queries typically involve intricate geospatial relations such as relative positions, spatial hierarchies, or contextual dependencies across distant objects. To address these challenges, we propose GeoViS, a Geospatially Rewarded Visual Search framework that reformulates remote sensing visual grounding as a progressive search-and-reasoning process. Rather than directly predicting the target location in a single step, GeoViS actively explores the global image through a tree-structured sequence of visual cues, integrating multimodal perception, spatial reasoning, and reward-guided exploration to refine geospatial hypotheses iteratively. This design enables the model to detect subtle small-scale targets while maintaining holistic scene awareness. Extensive experiments on five remote sensing grounding benchmarks demonstrate that GeoViS achieves precise geospatial understanding and consistently surpasses existing methods across key visual grounding metrics, highlighting its strong cross-domain generalization and interpretability.
comment: 11 pages, 4 figures
☆ Tissue-mask supported inter-subject whole-body image registration in the UK Biobank - A method benchmarking study
The UK Biobank is a large-scale study collecting whole-body MR imaging and non-imaging health data. Robust and accurate inter-subject image registration of these whole-body MR images would enable their body-wide spatial standardization, and region-/voxel-wise correlation analysis of non-imaging data with image-derived parameters (e.g., tissue volume or fat content). We propose a sex-stratified inter-subject whole-body MR image registration approach that uses subcutaneous adipose tissue- and muscle-masks from the state-of-the-art VIBESegmentator method to augment intensity-based graph-cut registration. The proposed method was evaluated on a subset of 4000 subjects by comparing it to an intensity-only method as well as two previously published registration methods, uniGradICON and MIRTK. The evaluation comprised overlap measures applied to the 71 VIBESegmentator masks: 1) Dice scores, and 2) voxel-wise label error frequency. Additionally, voxel-wise correlation between age and each of fat content and tissue volume was studied to exemplify the usefulness for medical research. The proposed method exhibited a mean dice score of 0.77 / 0.75 across the cohort and the 71 masks for males/females, respectively. When compared to the intensity-only registration, the mean values were 6 percentage points (pp) higher for both sexes, and the label error frequency was decreased in most tissue regions. These differences were 9pp / 8pp against uniGradICON and 12pp / 13pp against MIRTK. Using the proposed method, the age-correlation maps were less noisy and showed higher anatomical alignment. In conclusion, the image registration method using two tissue masks improves whole-body registration of UK Biobank images.
☆ VLM-Pruner: Buffering for Spatial Sparsity in an Efficient VLM Centrifugal Token Pruning Paradigm
Vision-language models (VLMs) excel at image understanding tasks, but the large number of visual tokens imposes significant computational costs, hindering deployment on mobile devices. Many pruning methods rely solely on token importance and thus overlook inter-token redundancy, retaining numerous duplicated tokens and wasting capacity. Although some redundancy-aware approaches have been proposed, they often ignore the spatial relationships among visual tokens. This can lead to overly sparse selections of retained tokens that fail to adequately cover the regions of target objects. To address these limitations, we propose VLM-Pruner, a training-free token pruning algorithm that explicitly balances redundancy and spatial sparsity. We introduce a centrifugal token pruning paradigm that enables near-to-far selection while prioritizing the preservation of fine-grained object details. Moreover, we design a Buffering for Spatial Sparsity (BSS) criterion that defers the selection of spatially distant tokens. We further adopt a parallel greedy strategy to conduct token selection efficiently. To mitigate information loss from pruning, we selectively fuse salient information from the discarded tokens into the retained ones. Comprehensive comparisons demonstrate that VLM-Pruner consistently outperforms strong baselines across five VLMs with an 88.9\% pruning rate, while delivering an end-to-end inference speedup.
☆ GeoBridge: A Semantic-Anchored Multi-View Foundation Model Bridging Images and Text for Geo-Localization
Cross-view geo-localization infers a location by retrieving geo-tagged reference images that visually correspond to a query image. However, the traditional satellite-centric paradigm limits robustness when high-resolution or up-to-date satellite imagery is unavailable. It further underexploits complementary cues across views (e.g., drone, satellite, and street) and modalities (e.g., language and image). To address these challenges, we propose GeoBridge, a foundation model that performs bidirectional matching across views and supports language-to-image retrieval. Going beyond traditional satellite-centric formulations, GeoBridge builds on a novel semantic-anchor mechanism that bridges multi-view features through textual descriptions for robust, flexible localization. In support of this task, we construct GeoLoc, the first large-scale, cross-modal, and multi-view aligned dataset comprising over 50,000 pairs of drone, street-view panorama, and satellite images as well as their textual descriptions, collected from 36 countries, ensuring both geographic and semantic alignment. We performed broad evaluations across multiple tasks. Experiments confirm that GeoLoc pre-training markedly improves geo-location accuracy for GeoBridge while promoting cross-domain generalization and cross-modal knowledge transfer. The dataset, source code, and pretrained models were released at https://github.com/MiliLab/GeoBridge.
☆ ALDI-ray: Adapting the ALDI Framework for Security X-ray Object Detection
Domain adaptation in object detection is critical for real-world applications where distribution shifts degrade model performance. Security X-ray imaging presents a unique challenge due to variations in scanning devices and environmental conditions, leading to significant domain discrepancies. To address this, we apply ALDI++, a domain adaptation framework that integrates self-distillation, feature alignment, and enhanced training strategies to mitigate domain shift effectively in this area. We conduct extensive experiments on the EDS dataset, demonstrating that ALDI++ surpasses the state-of-the-art (SOTA) domain adaptation methods across multiple adaptation scenarios. In particular, ALDI++ with a Vision Transformer for Detection (ViTDet) backbone achieves the highest mean average precision (mAP), confirming the effectiveness of transformer-based architectures for cross-domain object detection. Additionally, our category-wise analysis highlights consistent improvements in detection accuracy, reinforcing the robustness of the model across diverse object classes. Our findings establish ALDI++ as an efficient solution for domain-adaptive object detection, setting a new benchmark for performance stability and cross-domain generalization in security X-ray imagery.
comment: Submitted to ICASSP 2026 Conference
☆ ClimaOoD: Improving Anomaly Segmentation via Physically Realistic Synthetic Data
Anomaly segmentation seeks to detect and localize unknown or out-of-distribution (OoD) objects that fall outside predefined semantic classes a capability essential for safe autonomous driving. However, the scarcity and limited diversity of anomaly data severely constrain model generalization in open-world environments. Existing approaches mitigate this issue through synthetic data generation, either by copy-pasting external objects into driving scenes or by leveraging text-to-image diffusion models to inpaint anomalous regions. While these methods improve anomaly diversity, they often lack contextual coherence and physical realism, resulting in domain gaps between synthetic and real data. In this paper, we present ClimaDrive, a semantics-guided image-to-image framework for synthesizing semantically coherent, weather-diverse, and physically plausible OoD driving data. ClimaDrive unifies structure-guided multi-weather generation with prompt-driven anomaly inpainting, enabling the creation of visually realistic training data. Based on this framework, we construct ClimaOoD, a large-scale benchmark spanning six representative driving scenarios under both clear and adverse weather conditions. Extensive experiments on four state-of-the-art methods show that training with ClimaOoD leads to robust improvements in anomaly segmentation. Across all methods, AUROC, AP, and FPR95 show notable gains, with FPR95 dropping from 3.97 to 3.52 for RbA on Fishyscapes LAF. These results demonstrate that ClimaOoD enhances model robustness, offering valuable training data for better generalization in open-world anomaly detection.
comment: Under review;
☆ Unsupervised Structural Scene Decomposition via Foreground-Aware Slot Attention with Pseudo-Mask Guidance
Recent advances in object-centric representation learning have shown that slot attention-based methods can effectively decompose visual scenes into object slot representations without supervision. However, existing approaches typically process foreground and background regions indiscriminately, often resulting in background interference and suboptimal instance discovery performance on real-world data. To address this limitation, we propose Foreground-Aware Slot Attention (FASA), a two-stage framework that explicitly separates foreground from background to enable precise object discovery. In the first stage, FASA performs a coarse scene decomposition to distinguish foreground from background regions through a dual-slot competition mechanism. These slots are initialized via a clustering-based strategy, yielding well-structured representations of salient regions. In the second stage, we introduce a masked slot attention mechanism where the first slot captures the background while the remaining slots compete to represent individual foreground objects. To further address over-segmentation of foreground objects, we incorporate pseudo-mask guidance derived from a patch affinity graph constructed with self-supervised image features to guide the learning of foreground slots. Extensive experiments on both synthetic and real-world datasets demonstrate that FASA consistently outperforms state-of-the-art methods, validating the effectiveness of explicit foreground modeling and pseudo-mask guidance for robust scene decomposition and object-coherent representation. Code will be made publicly available.
☆ PGP-DiffSR: Phase-Guided Progressive Pruning for Efficient Diffusion-based Image Super-Resolution
Although diffusion-based models have achieved impressive results in image super-resolution, they often rely on large-scale backbones such as Stable Diffusion XL (SDXL) and Diffusion Transformers (DiT), which lead to excessive computational and memory costs during training and inference. To address this issue, we develop a lightweight diffusion method, PGP-DiffSR, by removing redundant information from diffusion models under the guidance of the phase information of inputs for efficient image super-resolution. We first identify the intra-block redundancy within the diffusion backbone and propose a progressive pruning approach that removes redundant blocks while reserving restoration capability. We note that the phase information of the restored images produced by the pruned diffusion model is not well estimated. To solve this problem, we propose a phase-exchange adapter module that explores the phase information of the inputs to guide the pruned diffusion model for better restoration performance. We formulate the progressive pruning approach and the phase-exchange adapter module into a unified model. Extensive experiments demonstrate that our method achieves competitive restoration quality while significantly reducing computational load and memory consumption. The code is available at https://github.com/yzb1997/PGP-DiffSR.
comment: 10 pages
☆ UAUTrack: Towards Unified Multimodal Anti-UAV Visual Tracking
Research in Anti-UAV (Unmanned Aerial Vehicle) tracking has explored various modalities, including RGB, TIR, and RGB-T fusion. However, a unified framework for cross-modal collaboration is still lacking. Existing approaches have primarily focused on independent models for individual tasks, often overlooking the potential for cross-modal information sharing. Furthermore, Anti-UAV tracking techniques are still in their infancy, with current solutions struggling to achieve effective multimodal data fusion. To address these challenges, we propose UAUTrack, a unified single-target tracking framework built upon a single-stream, single-stage, end-to-end architecture that effectively integrates multiple modalities. UAUTrack introduces a key component: a text prior prompt strategy that directs the model to focus on UAVs across various scenarios. Experimental results show that UAUTrack achieves state-of-the-art performance on the Anti-UAV and DUT Anti-UAV datasets, and maintains a favourable trade-off between accuracy and speed on the Anti-UAV410 dataset, demonstrating both high accuracy and practical efficiency across diverse Anti-UAV scenarios.
☆ PolarGuide-GSDR: 3D Gaussian Splatting Driven by Polarization Priors and Deferred Reflection for Real-World Reflective Scenes
Polarization-aware Neural Radiance Fields (NeRF) enable novel view synthesis of specular-reflection scenes but face challenges in slow training, inefficient rendering, and strong dependencies on material/viewpoint assumptions. However, 3D Gaussian Splatting (3DGS) enables real-time rendering yet struggles with accurate reflection reconstruction from reflection-geometry entanglement, adding a deferred reflection module introduces environment map dependence. We address these limitations by proposing PolarGuide-GSDR, a polarization-forward-guided paradigm establishing a bidirectional coupling mechanism between polarization and 3DGS: first 3DGS's geometric priors are leveraged to resolve polarization ambiguity, and then the refined polarization information cues are used to guide 3DGS's normal and spherical harmonic representation. This process achieves high-fidelity reflection separation and full-scene reconstruction without requiring environment maps or restrictive material assumptions. We demonstrate on public and self-collected datasets that PolarGuide-GSDR achieves state-of-the-art performance in specular reconstruction, normal estimation, and novel view synthesis, all while maintaining real-time rendering capabilities. To our knowledge, this is the first framework embedding polarization priors directly into 3DGS optimization, yielding superior interpretability and real-time performance for modeling complex reflective scenes.
☆ Spatially-Grounded Document Retrieval via Patch-to-Region Relevance Propagation
Vision-language models (VLMs) like ColPali achieve state-of-the-art document retrieval by embedding pages as images and computing fine-grained similarity between query tokens and visual patches. However, they return entire pages rather than specific regions, limiting utility for retrieval-augmented generation (RAG) where precise context is paramount. Conversely, OCR-based systems extract structured text with bounding box coordinates but lack semantic grounding for relevance assessment. We propose a hybrid architecture that unifies these paradigms: using ColPali's patch-level similarity scores as spatial relevance filters over OCR-extracted regions. We formalize the coordinate mapping between vision transformer patch grids and OCR bounding boxes, introduce intersection metrics for relevance propagation, and establish theoretical bounds on retrieval precision. Our approach operates at inference time without additional training. We release Snappy, an open-source implementation demonstrating practical applicability, with empirical evaluation ongoing.
comment: 13 pages, 1 figure, 2 tables. Open-source implementation available at https://github.com/athrael-soju/Snappy
☆ Real-Time Multimodal Data Collection Using Smartwatches and Its Visualization in Education
Wearable sensors, such as smartwatches, have become increasingly prevalent across domains like healthcare, sports, and education, enabling continuous monitoring of physiological and behavioral data. In the context of education, these technologies offer new opportunities to study cognitive and affective processes such as engagement, attention, and performance. However, the lack of scalable, synchronized, and high-resolution tools for multimodal data acquisition continues to be a significant barrier to the widespread adoption of Multimodal Learning Analytics in real-world educational settings. This paper presents two complementary tools developed to address these challenges: Watch-DMLT, a data acquisition application for Fitbit Sense 2 smartwatches that enables real-time, multi-user monitoring of physiological and motion signals; and ViSeDOPS, a dashboard-based visualization system for analyzing synchronized multimodal data collected during oral presentations. We report on a classroom deployment involving 65 students and up to 16 smartwatches, where data streams including heart rate, motion, gaze, video, and contextual annotations were captured and analyzed. Results demonstrate the feasibility and utility of the proposed system for supporting fine-grained, scalable, and interpretable Multimodal Learning Analytics in real learning environments.
comment: Accepted in Technological Ecosystems for Enhancing Multiculturality (TEEM) 2025
☆ Hear What Matters! Text-conditioned Selective Video-to-Audio Generation
This work introduces a new task, text-conditioned selective video-to-audio (V2A) generation, which produces only the user-intended sound from a multi-object video. This capability is especially crucial in multimedia production, where audio tracks are handled individually for each sound source for precise editing, mixing, and creative control. However, current approaches generate single source-mixed sounds at once, largely because visual features are entangled, and region cues or prompts often fail to specify the source. We propose SelVA, a novel text-conditioned V2A model that treats the text prompt as an explicit selector of target source and modulates video encoder to distinctly extract prompt-relevant video features. The proposed supplementary tokens promote cross-attention by suppressing text-irrelevant activations with efficient parameter tuning, yielding robust semantic and temporal grounding. SelVA further employs a self-augmentation scheme to overcome the lack of mono audio track supervision. We evaluate SelVA on VGG-MONOAUDIO, a curated benchmark of clean single-source videos for such a task. Extensive experiments and ablations consistently verify its effectiveness across audio quality, semantic alignment, and temporal synchronization. Code and demo are available at https://jnwnlee.github.io/selva-demo/.
☆ PoreTrack3D: A Benchmark for Dynamic 3D Gaussian Splatting in Pore-Scale Facial Trajectory Tracking
We introduce PoreTrack3D, the first benchmark for dynamic 3D Gaussian splatting in pore-scale, non-rigid 3D facial trajectory tracking. It contains over 440,000 facial trajectories in total, among which more than 52,000 are longer than 10 frames, including 68 manually reviewed trajectories that span the entire 150 frames. To the best of our knowledge, PoreTrack3D is the first benchmark dataset to capture both traditional facial landmarks and pore-scale keypoints trajectory, advancing the study of fine-grained facial expressions through the analysis of subtle skin-surface motion. We systematically evaluate state-of-the-art dynamic 3D Gaussian splatting methods on PoreTrack3D, establishing the first performance baseline in this domain. Overall, the pipeline developed for this benchmark dataset's creation establishes a new framework for high-fidelity facial motion capture and dynamic 3D reconstruction. Our dataset are publicly available at: https://github.com/JHXion9/PoreTrack3D
☆ Leveraging Large-Scale Pretrained Spatial-Spectral Priors for General Zero-Shot Pansharpening
Existing deep learning methods for remote sensing image fusion often suffer from poor generalization when applied to unseen datasets due to the limited availability of real training data and the domain gap between different satellite sensors. To address this challenge, we explore the potential of foundation models by proposing a novel pretraining strategy that leverages large-scale simulated datasets to learn robust spatial-spectral priors. Specifically, our approach first constructs diverse simulated datasets by applying various degradation operations (blur, noise, downsampling) and augmentations (bands generation, channel shuffling, high-pass filtering, color jittering, etc.) to natural images from ImageNet and remote sensing images from SkyScript. We then pretrain fusion models on these simulated data to learn generalizable spatial-spectral representations. The pretrained models are subsequently evaluated on six datasets (WorldView-2/3/4, IKONOS, QuickBird, GaoFen-2) using zero-shot and one-shot paradigms, with both full- and freeze-tuning approaches for fine-tuning. Extensive experiments on different network architectures including convolutional neural networks, Transformer, and Mamba demonstrate that our pretraining strategy significantly improves generalization performance across different satellite sensors and imaging conditions for various fusion models. The pretrained models achieve superior results in zero-shot scenarios and show remarkable adaptation capability with minimal real data in one-shot settings. Our work provides a practical solution for cross-domain pansharpening, establishes a new benchmark for generalization in remote sensing image fusion tasks, and paves the way for leveraging foundation models through advanced training strategies.
☆ Joint Distillation for Fast Likelihood Evaluation and Sampling in Flow-based Models
Log-likelihood evaluation enables important capabilities in generative models, including model comparison, certain fine-tuning objectives, and many downstream applications. Yet paradoxically, some of today's best generative models -- diffusion and flow-based models -- still require hundreds to thousands of neural function evaluations (NFEs) to compute a single likelihood. While recent distillation methods have successfully accelerated sampling to just a few steps, they achieve this at the cost of likelihood tractability: existing approaches either abandon likelihood computation entirely or still require expensive integration over full trajectories. We present fast flow joint distillation (F2D2), a framework that simultaneously reduces the number of NFEs required for both sampling and likelihood evaluation by two orders of magnitude. Our key insight is that in continuous normalizing flows, the coupled ODEs for sampling and likelihood are computed from a shared underlying velocity field, allowing us to jointly distill both the sampling trajectory and cumulative divergence using a single model. F2D2 is modular, compatible with existing flow-based few-step sampling models, and requires only an additional divergence prediction head. Experiments demonstrate F2D2's capability of achieving accurate log-likelihood with few-step evaluations while maintaining high sample quality, solving a long-standing computational bottleneck in flow-based generative models. As an application of our approach, we propose a lightweight self-guidance method that enables a 2-step MeanFlow model to outperform a 1024 step teacher model with only a single additional backward NFE.
☆ PPTBench: Towards Holistic Evaluation of Large Language Models for PowerPoint Layout and Design Understanding
PowerPoint presentations combine rich textual content with structured visual layouts, making them a natural testbed for evaluating the multimodal reasoning and layout understanding abilities of modern MLLMs. However, existing benchmarks focus solely on narrow subtasks while overlooking layout-centric challenges, which are central to real-world slide creation and editing. To bridge this gap, we introduce PPTBench, a comprehensive multimodal benchmark for evaluating LLMs on PowerPoint-related tasks. Leveraging a diverse source of 958 PPTX files, PPTBench evaluates models across four categories with 4,439 samples, including Detection, Understanding, Modification, and Generation. Our experiments reveal a substantial gap between semantic understanding and visual-layout reasoning in current MLLMs: models can interpret slide content but fail to produce coherent spatial arrangements. Ablation and further analysis show that current MLLMs struggle to combine visual cues with JSON-based layout structures and fail to integrate visual information into their API planning ability. And case studies visually expose systematic layout errors such as misalignment and element overlap. These findings provides a new perspective on evaluating VLLMs in PPT scenarios, highlighting challenges and directions for future research on visual-structural reasoning and coherent slide generation. All datasets and code are fully released to support reproducibility and future research.
☆ RULER-Bench: Probing Rule-based Reasoning Abilities of Next-level Video Generation Models for Vision Foundation Intelligence
Recent advances in video generation have enabled the synthesis of videos with strong temporal consistency and impressive visual quality, marking a crucial step toward vision foundation models. To evaluate these video generation models, existing benchmarks primarily focus on factors related to visual perception and understanding, like visual aesthetics, instruction adherence, and temporal coherence. However, the rule-based reasoning capabilities of video generation models remain largely unexplored. Although recent studies have carried out preliminary explorations into whether video models can serve as zero-shot learners, they still lack a fine-grained decomposition of reasoning capabilities and a comprehensive evaluation protocol. To address this gap, we introduce RULER-Bench, a benchmark designed to evaluate the reasoning ability of video generation models from the perspective of cognitive rules. Built upon two fundamental paradigms: text-to-video and image-to-video, RULER-Bench covers 40 representative tasks spanning six rule categories with 622 high-quality annotated instances. For the evaluation of each generated video, we construct a checklist covering four metrics and leverage GPT-o3 to assign scores to each question, achieving 85% alignment with human judgements. Extensive experiments show that the state-of-the-art model achieves only 48.87% on the rule coherence metric, highlighting significant room for improvement in the reasoning capability of next-level video models. We expect that the insight obtained from RULER-Bench will facilitate further development of reasoning-aware video generation, advancing video generation models toward vision foundation intelligence.
☆ Content-Aware Texturing for Gaussian Splatting
Gaussian Splatting has become the method of choice for 3D reconstruction and real-time rendering of captured real scenes. However, fine appearance details need to be represented as a large number of small Gaussian primitives, which can be wasteful when geometry and appearance exhibit different frequency characteristics. Inspired by the long tradition of texture mapping, we propose to use texture to represent detailed appearance where possible. Our main focus is to incorporate per-primitive texture maps that adapt to the scene in a principled manner during Gaussian Splatting optimization. We do this by proposing a new appearance representation for 2D Gaussian primitives with textures where the size of a texel is bounded by the image sampling frequency and adapted to the content of the input images. We achieve this by adaptively upscaling or downscaling the texture resolution during optimization. In addition, our approach enables control of the number of primitives during optimization based on texture resolution. We show that our approach performs favorably in image quality and total number of parameters used compared to alternative solutions for textured Gaussian primitives. Project page: https://repo-sam.inria.fr/nerphys/gs-texturing/
comment: Project Page: https://repo-sam.inria.fr/nerphys/gs-texturing/
☆ SAM2Grasp: Resolve Multi-modal Grasping via Prompt-conditioned Temporal Action Prediction
Imitation learning for robotic grasping is often plagued by the multimodal problem: when a scene contains multiple valid targets, demonstrations of grasping different objects create conflicting training signals. Standard imitation learning policies fail by averaging these distinct actions into a single, invalid action. In this paper, we introduce SAM2Grasp, a novel framework that resolves this issue by reformulating the task as a uni-modal, prompt-conditioned prediction problem. Our method leverages the frozen SAM2 model to use its powerful visual temporal tracking capability and introduces a lightweight, trainable action head that operates in parallel with its native segmentation head. This design allows for training only the small action head on pre-computed temporal-visual features from SAM2. During inference, an initial prompt, such as a bounding box provided by an upstream object detection model, designates the specific object to be grasped. This prompt conditions the action head to predict a unique, unambiguous grasp trajectory for that object alone. In all subsequent video frames, SAM2's built-in temporal tracking capability automatically maintains stable tracking of the selected object, enabling our model to continuously predict the grasp trajectory from the video stream without further external guidance. This temporal-prompted approach effectively eliminates ambiguity from the visuomotor policy. We demonstrate through extensive experiments that SAM2Grasp achieves state-of-the-art performance in cluttered, multi-object grasping tasks.
☆ Co-speech Gesture Video Generation via Motion-Based Graph Retrieval
Synthesizing synchronized and natural co-speech gesture videos remains a formidable challenge. Recent approaches have leveraged motion graphs to harness the potential of existing video data. To retrieve an appropriate trajectory from the graph, previous methods either utilize the distance between features extracted from the input audio and those associated with the motions in the graph or embed both the input audio and motion into a shared feature space. However, these techniques may not be optimal due to the many-to-many mapping nature between audio and gestures, which cannot be adequately addressed by one-to-one mapping. To alleviate this limitation, we propose a novel framework that initially employs a diffusion model to generate gesture motions. The diffusion model implicitly learns the joint distribution of audio and motion, enabling the generation of contextually appropriate gestures from input audio sequences. Furthermore, our method extracts both low-level and high-level features from the input audio to enrich the training process of the diffusion model. Subsequently, a meticulously designed motion-based retrieval algorithm is applied to identify the most suitable path within the graph by assessing both global and local similarities in motion. Given that not all nodes in the retrieved path are sequentially continuous, the final step involves seamlessly stitching together these segments to produce a coherent video output. Experimental results substantiate the efficacy of our proposed method, demonstrating a significant improvement over prior approaches in terms of synchronization accuracy and naturalness of generated gestures.
☆ From Panel to Pixel: Zoom-In Vision-Language Pretraining from Biomedical Scientific Literature
There is a growing interest in developing strong biomedical vision-language models. A popular approach to achieve robust representations is to use web-scale scientific data. However, current biomedical vision-language pretraining typically compresses rich scientific figures and text into coarse figure-level pairs, discarding the fine-grained correspondences that clinicians actually rely on when zooming into local structures. To tackle this issue, we introduce Panel2Patch, a novel data pipeline that mines hierarchical structure from existing biomedical scientific literature, i.e., multi-panel, marker-heavy figures and their surrounding text, and converts them into multi-granular supervision. Given scientific figures and captions, Panel2Patch parses layouts, panels, and visual markers, then constructs hierarchical aligned vision-language pairs at the figure, panel, and patch levels, preserving local semantics instead of treating each figure as a single data sample. Built on this hierarchical corpus, we develop a granularity-aware pretraining strategy that unifies heterogeneous objectives from coarse didactic descriptions to fine region-focused phrases. By applying Panel2Patch to only a small set of the literature figures, we extract far more effective supervision than prior pipelines, enabling substantially better performance with less pretraining data.
☆ OmniPerson: Unified Identity-Preserving Pedestrian Generation
Person re-identification (ReID) suffers from a lack of large-scale high-quality training data due to challenges in data privacy and annotation costs. While previous approaches have explored pedestrian generation for data augmentation, they often fail to ensure identity consistency and suffer from insufficient controllability, thereby limiting their effectiveness in dataset augmentation. To address this, We introduce OmniPerson, the first unified identity-preserving pedestrian generation pipeline for visible/infrared image/video ReID tasks. Our contributions are threefold: 1) We proposed OmniPerson, a unified generation model, offering holistic and fine-grained control over all key pedestrian attributes. Supporting RGB/IR modality image/video generation with any number of reference images, two kinds of person poses, and text. Also including RGB-to-IR transfer and image super-resolution abilities.2) We designed Multi-Refer Fuser for robust identity preservation with any number of reference images as input, making OmniPerson could distill a unified identity from a set of multi-view reference images, ensuring our generated pedestrians achieve high-fidelity pedestrian generation.3) We introduce PersonSyn, the first large-scale dataset for multi-reference, controllable pedestrian generation, and present its automated curation pipeline which transforms public, ID-only ReID benchmarks into a richly annotated resource with the dense, multi-modal supervision required for this task. Experimental results demonstrate that OmniPerson achieves SoTA in pedestrian generation, excelling in both visual fidelity and identity consistency. Furthermore, augmenting existing datasets with our generated data consistently improves the performance of ReID models. We will open-source the full codebase, pretrained model, and the PersonSyn dataset.
♻ ☆ Can Vision-Language Models Count? A Synthetic Benchmark and Analysis of Attention-Based Interventions
Recent research suggests that Vision Language Models (VLMs) often rely on inherent biases learned during training when responding to queries about visual properties of images. These biases are exacerbated when VLMs are asked highly specific questions that require them to focus on particular areas of the image in tasks such as counting. We build upon this research by developing a synthetic benchmark dataset and evaluation framework to systematically determine how counting performance varies as image and prompt properties change. Using open-source VLMs, we then analyze how attention allocation fluctuates with varying input parameters (e.g. number of objects in the image, objects color, background color, objects texture, background texture, and prompt specificity). We further implement attention-based interventions to modulate focus on visual tokens at different layers and evaluate their impact on counting performance across a range of visual conditions. Our experiments reveal that while VLM counting performance remains challenging, especially under high visual or linguistic complexity, certain attention interventions can lead to modest gains in counting performance.
♻ ☆ PrITTI: Primitive-based Generation of Controllable and Editable 3D Semantic Urban Scenes
Existing approaches to 3D semantic urban scene generation predominantly rely on voxel-based representations, which are bound by fixed resolution, challenging to edit, and memory-intensive in their dense form. In contrast, we advocate for a primitive-based paradigm where urban scenes are represented using compact, semantically meaningful 3D elements that are easy to manipulate and compose. To this end, we introduce PrITTI, a latent diffusion model that leverages vectorized object primitives and rasterized ground surfaces for generating diverse, controllable, and editable 3D semantic urban scenes. This hybrid representation yields a structured latent space that facilitates object- and ground-level manipulation. Experiments on KITTI-360 show that primitive-based representations unlock the full capabilities of diffusion transformers, achieving state-of-the-art 3D scene generation quality with lower memory requirements, faster inference, and greater editability than voxel-based methods. Beyond generation, PrITTI supports a range of downstream applications, including scene editing, inpainting, outpainting, and photo-realistic street-view synthesis. Code and models are publicly available at $\href{https://raniatze.github.io/pritti/}{https://raniatze.github.io/pritti}$.
comment: Project page: https://raniatze.github.io/pritti/
♻ ☆ Ov3R: Open-Vocabulary Semantic 3D Reconstruction from RGB Videos
We present Ov3R, a novel framework for open-vocabulary semantic 3D reconstruction from RGB video streams, designed to advance Spatial AI. The system features two key components: CLIP3R, a CLIP-informed 3D reconstruction module that predicts dense point maps from overlapping clips while embedding object-level semantics; and 2D-3D OVS, a 2D-3D open-vocabulary semantic module that lifts 2D features into 3D by learning fused descriptors integrating spatial, geometric, and semantic cues. Unlike prior methods, Ov3R incorporates CLIP semantics directly into the reconstruction process, enabling globally consistent geometry and fine-grained semantic alignment. Our framework achieves state-of-the-art performance in both dense 3D reconstruction and open-vocabulary 3D segmentation, marking a step forward toward real-time, semantics-aware Spatial AI.
♻ ☆ APTx Neuron: A Unified Trainable Neuron Architecture Integrating Activation and Computation
We propose the APTx Neuron, a novel, unified neural computation unit that integrates non-linear activation and linear transformation into a single trainable expression. The APTx Neuron is derived from the APTx activation function, thereby eliminating the need for separate activation layers and making the architecture both optimization-efficient and elegant. The proposed neuron follows the functional form $y = \sum_{i=1}^{n} ((α_i + \tanh(β_i x_i)) \cdot γ_i x_i) + δ$, where all parameters $α_i$, $β_i$, $γ_i$, and $δ$ are trainable. We validate our APTx Neuron-based architecture on the MNIST dataset, achieving up to $96.69\%$ test accuracy within 11 epochs using approximately 332K trainable parameters. The results highlight the superior expressiveness and training efficiency of the APTx Neuron compared to traditional neurons, pointing toward a new paradigm in unified neuron design and the architectures built upon it. Source code is available at https://github.com/mr-ravin/aptx_neuron.
comment: 12 pages, 2 figures, 1 table. Includes a GitHub repository for MNIST experiments and a PyPI package for APTx Neuron implementation
♻ ☆ Guardian: Detecting Robotic Planning and Execution Errors with Vision-Language Models
Robust robotic manipulation requires reliable failure detection and recovery. Although current Vision-Language Models (VLMs) show promise, their accuracy and generalization are limited by the scarcity of failure data. To address this data gap, we propose an automatic robot failure synthesis approach that procedurally perturbs successful trajectories to generate diverse planning and execution failures. This method produces not only binary classification labels but also fine-grained failure categories and step-by-step reasoning traces in both simulation and the real world. With it, we construct three new failure detection benchmarks: RLBench-Fail, BridgeDataV2-Fail, and UR5-Fail, substantially expanding the diversity and scale of existing failure datasets. We then train Guardian, a VLM with multi-view images for detailed failure reasoning and detection. Guardian achieves state-of-the-art performance on both existing and newly introduced benchmarks. It also effectively improves task success rates when integrated into a state-of-the-art manipulation system in simulation and real robots, demonstrating the impact of our generated failure data. Code, Data, and Models available at https://www.di.ens.fr/willow/research/guardian/.
comment: Code, Data, and Models available at https://www.di.ens.fr/willow/research/guardian/. The paper contains 8 pages, 9 figures, 6 tables
♻ ☆ Multimodal LLMs See Sentiment
Understanding how visual content communicates sentiment is critical in an era where online interaction is increasingly dominated by this kind of media on social platforms. However, this remains a challenging problem, as sentiment perception is closely tied to complex, scene-level semantics. In this paper, we propose an original framework, MLLMsent, to investigate the sentiment reasoning capabilities of Multimodal Large Language Models (MLLMs) through three perspectives: (1) using those MLLMs for direct sentiment classification from images; (2) associating them with pre-trained LLMs for sentiment analysis on automatically generated image descriptions; and (3) fine-tuning the LLMs on sentiment-labeled image descriptions. Experiments on a recent and established benchmark demonstrate that our proposal, particularly the fine-tuned approach, achieves state-of-the-art results outperforming Lexicon-, CNN-, and Transformer-based baselines by up to 30.9%, 64.8%, and 42.4%, respectively, across different levels of evaluators' agreement and sentiment polarity categories. Remarkably, in a cross-dataset test, without any training on these new data, our model still outperforms, by up to 8.26%, the best runner-up, which has been trained directly on them. These results highlight the potential of the proposed visual reasoning scheme for advancing affective computing, while also establishing new benchmarks for future research.
comment: 12 pages, 7 figures
♻ ☆ AIDEN: Design and Pilot Study of an AI Assistant for the Visually Impaired
This paper presents AIDEN, an artificial intelligence-based assistant designed to enhance the autonomy and daily quality of life of visually impaired individuals, who often struggle with object identification, text reading, and navigation in unfamiliar environments. Existing solutions such as screen readers or audio-based assistants facilitate access to information but frequently lead to auditory overload and raise privacy concerns in open environments. AIDEN addresses these limitations with a hybrid architecture that integrates You Only Look Once (YOLO) for real-time object detection and a Large Language and Vision Assistant (LLaVA) for scene description and Optical Character Recognition (OCR). A key novelty of the system is a continuous haptic guidance mechanism based on a Geiger-counter metaphor, which supports object centering without occupying the auditory channel, while privacy is preserved by ensuring that no personal data are stored. Empirical evaluations with visually impaired participants assessed perceived ease of use and acceptance using the Technology Acceptance Model (TAM). Results indicate high user satisfaction, particularly regarding intuitiveness and perceived autonomy. Moreover, the ``Find an Object'' achieved effective real-time performance. These findings provide promising evidence that multimodal haptic-visual feedback can improve daily usability and independence compared to traditional audio-centric methods, motivating larger-scale clinical validations.
♻ ☆ OpenLVLM-MIA: A Controlled Benchmark Revealing the Limits of Membership Inference Attacks on Large Vision-Language Models
OpenLVLM-MIA is a new benchmark that highlights fundamental challenges in evaluating membership inference attacks (MIA) against large vision-language models (LVLMs). While prior work has reported high attack success rates, our analysis suggests that these results often arise from detecting distributional bias introduced during dataset construction rather than from identifying true membership status. To address this issue, we introduce a controlled benchmark of 6{,}000 images where the distributions of member and non-member samples are carefully balanced, and ground-truth membership labels are provided across three distinct training stages. Experiments using OpenLVLM-MIA demonstrated that the performance of state-of-the-art MIA methods approached chance-level. OpenLVLM-MIA, designed to be transparent and unbiased benchmark, clarifies certain limitations of MIA research on LVLMs and provides a solid foundation for developing stronger privacy-preserving techniques.
comment: WACV2026 Accepted
♻ ☆ OpenREAD: Reinforced Open-Ended Reasoning for End-to-End Autonomous Driving with LLM-as-Critic
Recently, two-stage fine-tuning strategies, e.g., acquiring essential driving knowledge through supervised fine-tuning (SFT) and further enhancing decision-making and planning via reinforcement fine-tuning (RFT), have shown strong potential in advancing the knowledge-driven autonomous driving (AD) paradigm. However, the learning nature of SFT still limits the generalization of reasoning, thereby constraining the full potential of driving performance. Meanwhile, current RFT approaches are primarily applied to downstream tasks, since scene understanding is an open-ended problem where corresponding rewards are difficult to quantify. To address these limitations, we propose OpenREAD, an OPEN-ended REasoning reinforced vision-language model (VLM)-based autonomous driving (AD) framework that enables end-to-end RFT across the full spectrum from high-level reasoning to low-level trajectory planning. Specifically, we begin by constructing large-scale Chain-of-Thought (CoT) annotations on open-source driving-related knowledge datasets, and employ the powerful Qwen3 large language model (LLM) as the critic in RFT to quantify reasoning quality for open-ended questions during reward modeling. Extensive experiments confirm that joint end-to-end RFT yields substantial improvements in both upstream and downstream tasks, enabling OpenREAD to achieve state-of-the-art performance on reasoning and planning benchmarks.
♻ ☆ DehazeGS: Seeing Through Fog with 3D Gaussian Splatting AAAI2026
Current novel view synthesis methods are typically designed for high-quality and clean input images. However, in foggy scenes, scattering and attenuation can significantly degrade the quality of rendering. Although NeRF-based dehazing approaches have been developed, their reliance on deep fully connected neural networks and per-ray sampling strategies leads to high computational costs. Furthermore, NeRF's implicit representation limits its ability to recover fine-grained details from hazy scenes. To overcome these limitations, we propose learning an explicit Gaussian representation to explain the formation mechanism of foggy images through a physically forward rendering process. Our method, DehazeGS, reconstructs and renders fog-free scenes using only multi-view foggy images as input. Specifically, based on the atmospheric scattering model, we simulate the formation of fog by establishing the transmission function directly onto Gaussian primitives via depth-to-transmission mapping. During training, we jointly learn the atmospheric light and scattering coefficients while optimizing the Gaussian representation of foggy scenes. At inference time, we remove the effects of scattering and attenuation in Gaussian distributions and directly render the scene to obtain dehazed views. Experiments on both real-world and synthetic foggy datasets demonstrate that DehazeGS achieves state-of-the-art performance. visualizations are available at https://dehazegs.github.io/
comment: 9 pages,5 figures. Accepted by AAAI2026. visualizations are available at https://dehazegs.github.io/
♻ ☆ SkelSplat: Robust Multi-view 3D Human Pose Estimation with Differentiable Gaussian Rendering
Accurate 3D human pose estimation is fundamental for applications such as augmented reality and human-robot interaction. State-of-the-art multi-view methods learn to fuse predictions across views by training on large annotated datasets, leading to poor generalization when the test scenario differs. To overcome these limitations, we propose SkelSplat, a novel framework for multi-view 3D human pose estimation based on differentiable Gaussian rendering. Human pose is modeled as a skeleton of 3D Gaussians, one per joint, optimized via differentiable rendering to enable seamless fusion of arbitrary camera views without 3D ground-truth supervision. Since Gaussian Splatting was originally designed for dense scene reconstruction, we propose a novel one-hot encoding scheme that enables independent optimization of human joints. SkelSplat outperforms approaches that do not rely on 3D ground truth in Human3.6M and CMU, while reducing the cross-dataset error up to 47.8% compared to learning-based methods. Experiments on Human3.6M-Occ and Occlusion-Person demonstrate robustness to occlusions, without scenario-specific fine-tuning. Our project page is available here: https://skelsplat.github.io.
comment: WACV 2026
♻ ☆ VeLU: Variance-enhanced Learning Unit for Deep Neural Networks
Activation functions play a critical role in deep neural networks by shaping gradient flow, optimization stability, and generalization. While ReLU remains widely used due to its simplicity, it suffers from gradient sparsity and dead-neuron issues and offers no adaptivity to input statistics. Smooth alternatives such as Swish and GELU improve gradient propagation but still apply a fixed transformation regardless of the activation distribution. In this paper, we propose VeLU, a Variance-enhanced Learning Unit that introduces variance-aware and distributionally aligned nonlinearity through a principled combination of ArcTan-ArcSin transformations, adaptive scaling, and Wasserstein-2 regularization (Optimal Transport). This design enables VeLU to modulate its response based on local activation variance, mitigate internal covariate shift at the activation level, and improve training stability without adding learnable parameters or architectural overhead. Extensive experiments across six deep neural networks show that VeLU outperforms ReLU, ReLU6, Swish, and GELU on 12 vision benchmarks. The implementation of VeLU is publicly available in GitHub.
comment: 16 pages, 5 figures
♻ ☆ Toward Content-based Indexing and Retrieval of Head and Neck CT with Abscess Segmentation
Abscesses in the head and neck represent an acute infectious process that can potentially lead to sepsis or mortality if not diagnosed and managed promptly. Accurate detection and delineation of these lesions on imaging are essential for diagnosis, treatment planning, and surgical intervention. In this study, we introduce AbscessHeNe, a curated and comprehensively annotated dataset comprising 4,926 contrast-enhanced CT slices with clinically confirmed head and neck abscesses. The dataset is designed to facilitate the development of robust semantic segmentation models that can accurately delineate abscess boundaries and evaluate deep neck space involvement, thereby supporting informed clinical decision-making. To establish performance baselines, we evaluate several state-of-the-art segmentation architectures, including CNN, Transformer, and Mamba-based models. The highest-performing model achieved a Dice Similarity Coefficient of 0.39, Intersection-over-Union of 0.27, and Normalized Surface Distance of 0.67, indicating the challenges of this task and the need for further research. Beyond segmentation, AbscessHeNe is structured for future applications in content-based multimedia indexing and case-based retrieval. Each CT scan is linked with pixel-level annotations and clinical metadata, providing a foundation for building intelligent retrieval systems and supporting knowledge-driven clinical workflows. The dataset will be made publicly available at https://github.com/drthaodao3101/AbscessHeNe.git.
comment: The 2025 IEEE International Conference on Content-Based Multimedia Indexing (IEEE CBMI)
♻ ☆ MasHeNe: A Benchmark for Head and Neck CT Mass Segmentation using Window-Enhanced Mamba with Frequency-Domain Integration
Head and neck masses are space-occupying lesions that can compress the airway and esophagus and may affect nerves and blood vessels. Available public datasets primarily focus on malignant lesions and often overlook other space-occupying conditions in this region. To address this gap, we introduce MasHeNe, an initial dataset of 3,779 contrast-enhanced CT slices that includes both tumors and cysts with pixel-level annotations. We also establish a benchmark using standard segmentation baselines and report common metrics to enable fair comparison. In addition, we propose the Windowing-Enhanced Mamba with Frequency integration (WEMF) model. WEMF applies tri-window enhancement to enrich the input appearance before feature extraction. It further uses multi-frequency attention to fuse information across skip connections within a U-shaped Mamba backbone. On MasHeNe, WEMF attains the best performance among evaluated methods, with a Dice of 70.45%, IoU of 66.89%, NSD of 72.33%, and HD95 of 5.12 mm. This model indicates stable and strong results on this challenging task. MasHeNe provides a benchmark for head-and-neck mass segmentation beyond malignancy-only datasets. The observed error patterns also suggest that this task remains challenging and requires further research. Our dataset and code are available at https://github.com/drthaodao3101/MasHeNe.git.
comment: The 14th International Symposium on Information and Communication Technology Conference SoICT 2025
♻ ☆ Zero-shot self-supervised learning of single breath-hold magnetic resonance cholangiopancreatography (MRCP) reconstruction
To investigate the feasibility of zero-shot self-supervised learning reconstruction for reducing breath-hold times in magnetic resonance cholangiopancreatography (MRCP). Breath-hold MRCP was acquired from 11 healthy volunteers on 3T scanners using an incoherent k-space sampling pattern, leading to 14-second acquisition time and an acceleration factor of R=25. Zero-shot reconstruction was compared with parallel imaging of respiratory-triggered MRCP (338s, R=3) and compressed sensing reconstruction. For two volunteers, breath-hold scans (40s, R=6) were additionally acquired and retrospectively undersampled to R=25 to compute peak signal-to-noise ratio (PSNR). To address long zero-shot training time, the n+m full stages of the zero-shot learning were divided into two parts to reduce backpropagation depth during training: 1) n frozen stages initialized with n-stage pretrained network and 2) m trainable stages initialized either randomly or m-stage pretrained network. Efficiency of our approach was assessed by varying initialization strategies and the number of trainable stages using the retrospectively undersampled data. Zero-shot reconstruction significantly improved visual image quality over compressed sensing, particularly in SNR and ductal delineation, and achieved image quality comparable to that of successful respiratory-triggered acquisitions with regular breathing patterns. Improved initializations enhanced PSNR and reduced reconstruction time. Adjusting frozen/trainable configurations demonstrated that PSNR decreased only slightly from 38.25 dB (0/13) to 37.67 dB (12/1), while training time decreased up to 6.7-fold. Zero-shot learning delivers high-fidelity MRCP reconstructions with reduced breath-hold times, and the proposed partially trainable approach offers a practical solution for translation into time-constrained clinical workflows.
comment: 24 pages, 8 figures, 2 tabels
♻ ☆ Look, Recite, Then Answer: Enhancing VLM Performance via Self-Generated Knowledge Hints
Vision-Language Models (VLMs) exhibit significant performance plateaus in specialized domains like precision agriculture, primarily due to "Reasoning-Driven Hallucination" where linguistic priors override visual perception. A key bottleneck is the "Modality Gap": visual embeddings fail to reliably activate the fine-grained expert knowledge already encoded in model parameters. We propose "Look, Recite, Then Answer," a parameter-efficient framework that enhances VLMs via self-generated knowledge hints while keeping backbone models frozen. The framework decouples inference into three stages: (1) Look generates objective visual descriptions and candidate sets; (2) Recite employs a lightweight 1.7B router to transform visual cues into targeted queries that trigger candidate-specific parametric knowledge; (3) Answer performs parallel evidence alignment between descriptions and recited knowledge to select the most consistent label. On AgroBench, our method achieves state-of-the-art results, improving Weed Identification accuracy by 23.52% over Qwen2-VL-72B and surpassing GPT-4o without external search overhead. This modular design mitigates hallucinations by transforming passive perception into active, controllable knowledge retrieval
♻ ☆ NOCTIS: Novel Object Cyclic Threshold based Instance Segmentation
Instance segmentation of novel objects instances in RGB images, given some example images for each object, is a well known problem in computer vision. Designing a model general enough to be employed for all kinds of novel objects without (re-) training has proven to be a difficult task. To handle this, we present a new training-free framework, called: Novel Object Cyclic Threshold based Instance Segmentation (NOCTIS). NOCTIS integrates two pre-trained models: Grounded-SAM 2 for object proposals with precise bounding boxes and corresponding segmentation masks; and DINOv2 for robust class and patch embeddings, due to its zero-shot capabilities. Internally, the proposal-object matching is realized by determining an object matching score based on the similarity of the class embeddings and the average maximum similarity of the patch embeddings with a new cyclic thresholding (CT) mechanism that mitigates unstable matches caused by repetitive textures or visually similar patterns. Beyond CT, NOCTIS introduces: (i) an appearance score that is unaffected by object selection bias; (ii) the usage of the average confidence of the proposals' bounding box and mask as a scoring component; and (iii) an RGB-only pipeline that performs even better than RGB-D ones. We empirically show that NOCTIS, without further training/fine tuning, outperforms the best RGB and RGB-D methods regarding the mean AP score on the seven core datasets of the BOP 2023 challenge for the "Model-based 2D segmentation of unseen objects" task.
comment: 9 pages, 3 figures, 5 tables
♻ ☆ Aligning Diffusion Models with Noise-Conditioned Perception
Recent advancements in human preference optimization, initially developed for Language Models (LMs), have shown promise for text-to-image Diffusion Models, enhancing prompt alignment, visual appeal, and user preference. Unlike LMs, Diffusion Models typically optimize in pixel or VAE space, which does not align well with human perception, leading to slower and less efficient training during the preference alignment stage. We propose using a perceptual objective in the U-Net embedding space of the diffusion model to address these issues. Our approach involves fine-tuning Stable Diffusion 1.5 and XL using Direct Preference Optimization (DPO), Contrastive Preference Optimization (CPO), and supervised fine-tuning (SFT) within this embedding space. This method significantly outperforms standard latent-space implementations across various metrics, including quality and computational cost. For SDXL, our approach provides 60.8\% general preference, 62.2\% visual appeal, and 52.1\% prompt following against original open-sourced SDXL-DPO on the PartiPrompts dataset, while significantly reducing compute. Our approach not only improves the efficiency and quality of human preference alignment for diffusion models but is also easily integrable with other optimization techniques. The training code and LoRA weights will be available here: https://huggingface.co/alexgambashidze/SDXL\_NCP-DPO\_v0.1
♻ ☆ Learning Egocentric In-Hand Object Segmentation through Weak Supervision from Human Narrations
Pixel-level recognition of objects manipulated by the user from egocentric images enables key applications spanning assistive technologies, industrial safety, and activity monitoring. However, progress in this area is currently hindered by the scarcity of annotated datasets, as existing approaches rely on costly manual labels. In this paper, we propose to learn human-object interaction detection leveraging narrations $\unicode{x2013}$ natural language descriptions of the actions performed by the camera wearer which contain clues about manipulated objects. We introduce Narration-Supervised in-Hand Object Segmentation (NS-iHOS), a novel task where models have to learn to segment in-hand objects by learning from natural-language narrations in a weakly-supervised regime. Narrations are then not employed at inference time. We showcase the potential of the task by proposing Weakly-Supervised In-hand Object Segmentation from Human Narrations (WISH), an end-to-end model distilling knowledge from narrations to learn plausible hand-object associations and enable in-hand object segmentation without using narrations at test time. We benchmark WISH against different baselines based on open-vocabulary object detectors and vision-language models. Experiments on EPIC-Kitchens and Ego4D show that WISH surpasses all baselines, recovering more than 50% of the performance of fully supervised methods, without employing fine-grained pixel-wise annotations. Code and data can be found at https://fpv-iplab.github.io/WISH.
comment: Under consideration at Pattern Recognition Letters
♻ ☆ 3DIS: Depth-Driven Decoupled Instance Synthesis for Text-to-Image Generation
The increasing demand for controllable outputs in text-to-image generation has spurred advancements in multi-instance generation (MIG), allowing users to define both instance layouts and attributes. However, unlike image-conditional generation methods such as ControlNet, MIG techniques have not been widely adopted in state-of-the-art models like SD2 and SDXL, primarily due to the challenge of building robust renderers that simultaneously handle instance positioning and attribute rendering. In this paper, we introduce Depth-Driven Decoupled Instance Synthesis (3DIS), a novel framework that decouples the MIG process into two stages: (i) generating a coarse scene depth map for accurate instance positioning and scene composition, and (ii) rendering fine-grained attributes using pre-trained ControlNet on any foundational model, without additional training. Our 3DIS framework integrates a custom adapter into LDM3D for precise depth-based layouts and employs a finetuning-free method for enhanced instance-level attribute rendering. Extensive experiments on COCO-Position and COCO-MIG benchmarks demonstrate that 3DIS significantly outperforms existing methods in both layout precision and attribute rendering. Notably, 3DIS offers seamless compatibility with diverse foundational models, providing a robust, adaptable solution for advanced multi-instance generation. The code is available at: https://github.com/limuloo/3DIS.
comment: 10 pages
♻ ☆ PRIMU: Uncertainty Estimation for Novel Views in Gaussian Splatting from Primitive-Based Representations of Error and Coverage
We introduce Primitive-based Representations of Uncertainty (PRIMU), a post-hoc uncertainty estimation (UE) framework for Gaussian Splatting (GS). Reliable UE is essential for deploying GS in safety-critical domains such as robotics and medicine. Existing approaches typically estimate Gaussian-primitive variances and rely on the rendering process to obtain pixel-wise uncertainties. In contrast, we construct primitive-level representations of error and visibility/coverage from training views, capturing interpretable uncertainty information. These representations are obtained by projecting view-dependent training errors and coverage statistics onto the primitives. Uncertainties for novel views are inferred by rendering these primitive-level representations, producing uncertainty feature maps, which are aggregate through pixel-wise regression on holdout data. We analyze combinations of uncertainty feature maps and regression models to understand how their interactions affect prediction accuracy and generalization. PRIMU also enables an effective active view selection strategy by directly leveraging these uncertainty feature maps. Additionally, we study the effect of separating splatting into foreground and background regions. Our estimates show strong correlations with true errors, outperforming state-of-the-art methods, especially for depth UE and foreground objects. Finally, our regression models show generalization capabilities to unseen scenes, enabling UE without additional holdout data.
comment: Revised writing and figures; additional Gaussian Splatting experiments; added baselines and datasets; active view-selection experiments
♻ ☆ MRI Super-Resolution with Deep Learning: A Comprehensive Survey
High-resolution (HR) magnetic resonance imaging (MRI) is crucial for many clinical and research applications. However, achieving it remains costly and constrained by technical trade-offs and experimental limitations. Super-resolution (SR) presents a promising computational approach to overcome these challenges by generating HR images from more affordable low-resolution (LR) scans, potentially improving diagnostic accuracy and efficiency without requiring additional hardware. This survey reviews recent advances in MRI SR techniques, with a focus on deep learning (DL) approaches. It examines DL-based MRI SR methods from the perspectives of computer vision, computational imaging, inverse problems, and MR physics, covering theoretical foundations, architectural designs, learning strategies, benchmark datasets, and performance metrics. We propose a systematic taxonomy to categorize these methods and present an in-depth study of both established and emerging SR techniques applicable to MRI, considering unique challenges in clinical and research contexts. We also highlight open challenges and directions that the community needs to address. Additionally, we provide a collection of essential open-access resources, tools, and tutorials, available on our GitHub: https://github.com/mkhateri/Awesome-MRI-Super-Resolution. IEEE keywords: MRI, Super-Resolution, Deep Learning, Computational Imaging, Inverse Problem, Survey.
comment: 41 pages
♻ ☆ AVA-VLA: Improving Vision-Language-Action models with Active Visual Attention
Vision-Language-Action (VLA) models have demonstrated remarkable capabilities in embodied AI tasks. However, existing VLA models, often built upon Vision-Language Models (VLMs), typically process dense visual inputs independently at each timestep. This approach implicitly models the task as a Markov Decision Process (MDP). However, this history-agnostic design is suboptimal for effective visual token processing in dynamic sequential decision-making, as it fails to leverage the context of history. To address this limitation, we reformulate the problem from a Partially Observable Markov Decision Process (POMDP) perspective and propose a novel framework named AVA-VLA. Inspired by the POMDP that the action generation should be conditioned on the belief state. AVA-VLA introduces Active Visual Attention (AVA) to dynamically modulate visual processing. It achieves this by leveraging the recurrent state, which is a neural approximation of the agent's belief state derived from the previous decision step. Specifically, the AVA module uses the recurrent state to compute the soft weights to actively process task-relevant visual tokens based on its historical context. Comprehensive evaluations demonstrate that AVA-VLA achieves state-of-the-art performance across popular robotic benchmarks, including LIBERO and CALVIN. Furthermore, real-world deployments on a dual-arm robot platform validate the framework's practical applicability and robust sim-to-real transferability.
comment: 18 pages, 10 figures
♻ ☆ End-to-End Multi-Person Pose Estimation with Pose-Aware Video Transformer
Existing multi-person video pose estimation methods typically adopt a two-stage pipeline: detecting individuals in each frame, followed by temporal modeling for single person pose estimation. This design relies on heuristic operations such as detection, RoI cropping, and non-maximum suppression (NMS), limiting both accuracy and efficiency. In this paper, we present a fully end-to-end framework for multi-person 2D pose estimation in videos, effectively eliminating heuristic operations. A key challenge is to associate individuals across frames under complex and overlapping temporal trajectories. To address this, we introduce a novel Pose-Aware Video transformEr Network (PAVE-Net), which features a spatial encoder to model intra-frame relations and a spatiotemporal pose decoder to capture global dependencies across frames. To achieve accurate temporal association, we propose a pose-aware attention mechanism that enables each pose query to selectively aggregate features corresponding to the same individual across consecutive frames. Additionally, we explicitly model spatiotemporal dependencies among pose keypoints to improve accuracy. Notably, our approach is the first end-to-end method for multi-frame 2D human pose estimation. Extensive experiments show that PAVE-Net substantially outperforms prior image-based end-to-end methods, achieving a 6.0 mAP improvement on PoseTrack2017, and delivers accuracy competitive with state-of-the-art two-stage video based approaches, while offering significant gains in efficiency. Project page: https://github.com/zgspose/PAVENet.
♻ ☆ Bias Beyond Demographics: Probing Decision Boundaries in Black-Box LVLMs via Counterfactual VQA
Recent advances in large vision-language models (LVLMs) have amplified concerns about fairness, yet existing evaluations remain confined to demographic attributes and often conflate fairness with refusal behavior. This paper broadens the scope of fairness by introducing a counterfactual VQA benchmark that probes the decision boundaries of closed-source LVLMs under controlled context shifts. Each image pair differs in a single visual attribute that has been validated as irrelevant to the question, enabling ground-truth-free and refusal-aware analysis of reasoning stability. Comprehensive experiments reveal that non-demographic attributes, such as environmental context or social behavior, distort LVLM decision-making more strongly than demographic ones. Moreover, instruction-based debiasing shows limited effectiveness and can even amplify these asymmetries, whereas exposure to a small number of human norm validated examples from our benchmark encourages more consistent and balanced responses, highlighting its potential not only as an evaluative framework but also as a means for understanding and improving model behavior. Together, these results provide a practial basis for auditing contextual biases even in black-box LVLMs and contribute to more transparent and equitable multimodal reasoning.
♻ ☆ FairT2I: Mitigating Social Bias in Text-to-Image Generation via Large Language Model-Assisted Detection and Attribute Rebalancing
Text-to-image (T2I) models have advanced creative content generation, yet their reliance on large uncurated datasets often reproduces societal biases. We present FairT2I, a training-free and interactive framework grounded in a mathematically principled latent variable guidance formulation. This formulation decomposes the generative score function into attribute-conditioned components and reweights them according to a defined distribution, providing a unified and flexible mechanism for bias-aware generation that also subsumes many existing ad hoc debiasing approaches as special cases. Building upon this foundation, FairT2I incorporates (1) latent variable guidance as the core mechanism, (2) LLM-based bias detection to automatically infer bias-prone categories and attributes from text prompts as part of the latent structure, and (3) attribute resampling, which allows users to adjust or redefine the attribute distribution based on uniform, real-world, or user-specified statistics. The accompanying user interface supports this pipeline by enabling users to inspect detected biases, modify attributes or weights, and generate debiased images in real time. Experimental results show that LLMs outperform average human annotators in the number and granularity of detected bias categories and attributes. Moreover, FairT2I achieves superior performance to baseline models in both societal bias mitigation and image diversity, while preserving image quality and prompt fidelity.
♻ ☆ Detect Anything 3D in the Wild
Despite the success of deep learning in close-set 3D object detection, existing approaches struggle with zero-shot generalization to novel objects and camera configurations. We introduce DetAny3D, a promptable 3D detection foundation model capable of detecting any novel object under arbitrary camera configurations using only monocular inputs. Training a foundation model for 3D detection is fundamentally constrained by the limited availability of annotated 3D data, which motivates DetAny3D to leverage the rich prior knowledge embedded in extensively pre-trained 2D foundation models to compensate for this scarcity. To effectively transfer 2D knowledge to 3D, DetAny3D incorporates two core modules: the 2D Aggregator, which aligns features from different 2D foundation models, and the 3D Interpreter with Zero-Embedding Mapping, which stabilizes early training in 2D-to-3D knowledge transfer. Experimental results validate the strong generalization of our DetAny3D, which not only achieves state-of-the-art performance on unseen categories and novel camera configurations, but also surpasses most competitors on in-domain data. DetAny3D sheds light on the potential of the 3D foundation model for diverse applications in real-world scenarios, e.g., rare object detection in autonomous driving, and demonstrates promise for further exploration of 3D-centric tasks in open-world settings. More visualization results can be found at our code repository.
Machine Learning 263
☆ Learning Physically Consistent Lagrangian Control Models Without Acceleration Measurements
This article investigates the modeling and control of Lagrangian systems involving non-conservative forces using a hybrid method that does not require acceleration calculations. It focuses in particular on the derivation and identification of physically consistent models, which are essential for model-based control synthesis. Lagrangian or Hamiltonian neural networks provide useful structural guarantees but the learning of such models often leads to inconsistent models, especially on real physical systems where training data are limited, partial and noisy. Motivated by this observation and the objective to exploit these models for model-based nonlinear control, a learning algorithm relying on an original loss function is proposed to improve the physical consistency of Lagrangian systems. A comparative analysis of different learning-based modeling approaches with the proposed solution shows significant improvements in terms of physical consistency of the learned models, on both simulated and experimental systems. The model's consistency is then exploited to demonstrate, on an experimental benchmark, the practical relevance of the proposed methodology for feedback linearization and energy-based control techniques.
comment: Submitted to the L4DC 2026
☆ LORE: A Large Generative Model for Search Relevance
Achievement. We introduce LORE, a systematic framework for Large Generative Model-based relevance in e-commerce search. Deployed and iterated over three years, LORE achieves a cumulative +27\% improvement in online GoodRate metrics. This report shares the valuable experience gained throughout its development lifecycle, spanning data, features, training, evaluation, and deployment. Insight. While existing works apply Chain-of-Thought (CoT) to enhance relevance, they often hit a performance ceiling. We argue this stems from treating relevance as a monolithic task, lacking principled deconstruction. Our key insight is that relevance comprises distinct capabilities: knowledge and reasoning, multi-modal matching, and rule adherence. We contend that a qualitative-driven decomposition is essential for breaking through current performance bottlenecks. Contributions. LORE provides a complete blueprint for the LLM relevance lifecycle. Key contributions include: (1) A two-stage training paradigm combining progressive CoT synthesis via SFT with human preference alignment via RL. (2) A comprehensive benchmark, RAIR, designed to evaluate these core capabilities. (3) A query frequency-stratified deployment strategy that efficiently transfers offline LLM capabilities to the online system. LORE serves as both a practical solution and a methodological reference for other vertical domains.
☆ TokenPowerBench: Benchmarking the Power Consumption of LLM Inference AAAI'26
Large language model (LLM) services now answer billions of queries per day, and industry reports show that inference, not training, accounts for more than 90% of total power consumption. However, existing benchmarks focus on either training/fine-tuning or performance of inference and provide little support for power consumption measurement and analysis of inference. We introduce TokenPowerBench, the first lightweight and extensible benchmark designed for LLM-inference power consumption studies. The benchmark combines (i) a declarative configuration interface covering model choice, prompt set, and inference engine, (ii) a measurement layer that captures GPU-, node-, and system-level power without specialized power meters, and (iii) a phase-aligned metrics pipeline that attributes energy to the prefill and decode stages of every request. These elements make it straight-forward to explore the power consumed by an LLM inference run; furthermore, by varying batch size, context length, parallelism strategy and quantization, users can quickly assess how each setting affects joules per token and other energy-efficiency metrics. We evaluate TokenPowerBench on four of the most widely used model series (Llama, Falcon, Qwen, and Mistral). Our experiments cover from 1 billion parameters up to the frontier-scale Llama3-405B model. Furthermore, we release TokenPowerBench as open source to help users to measure power consumption, forecast operating expenses, and meet sustainability targets when deploying LLM services.
comment: Accepted by the AAAI'26 Conference Main Track
☆ Distribution-Calibrated Inference time compute for Thinking LLM-as-a-Judge
Thinking Large Language Models (LLMs) used as judges for pairwise preferences remain noisy at the single-sample level, and common aggregation rules (majority vote, soft self-consistency, or instruction-based self-aggregation) are inconsistent when ties are allowed. We study inference-time compute (ITC) for evaluators that generate n independent thinking-rating samples per item, and propose a principled, distribution-calibrated aggregation scheme. Our method models three-way preferences with a Bradley-Terry-Davidson formulation on rating counts, leveraging both polarity (margin among non-ties) and decisiveness (non-tie rate) to distinguish narrow margins from strong consensus. Across various evaluation benchmarks, our approach consistently reduces MAE and increases pairwise accuracy versus standard baselines, and when evaluated against human-consensus meta-labels, matches or exceeds individual human raters. These results show that carefully allocating ITC and aggregating with distribution-aware methods turns noisy individual model judgments into reliable ratings for evaluation.
☆ ProteinPNet: Prototypical Part Networks for Concept Learning in Spatial Proteomics
Understanding the spatial architecture of the tumor microenvironment (TME) is critical to advance precision oncology. We present ProteinPNet, a novel framework based on prototypical part networks that discovers TME motifs from spatial proteomics data. Unlike traditional post-hoc explanability models, ProteinPNet directly learns discriminative, interpretable, faithful spatial prototypes through supervised training. We validate our approach on synthetic datasets with ground truth motifs, and further test it on a real-world lung cancer spatial proteomics dataset. ProteinPNet consistently identifies biologically meaningful prototypes aligned with different tumor subtypes. Through graphical and morphological analyses, we show that these prototypes capture interpretable features pointing to differences in immune infiltration and tissue modularity. Our results highlight the potential of prototype-based learning to reveal interpretable spatial biomarkers within the TME, with implications for mechanistic discovery in spatial omics.
☆ Rethinking Generalized BCIs: Benchmarking 340,000+ Unique Algorithmic Configurations for EEG Mental Command Decoding
Robust decoding and classification of brain patterns measured with electroencephalography (EEG) remains a major challenge for real-world (i.e. outside scientific lab and medical facilities) brain-computer interface (BCI) applications due to well documented inter- and intra-participant variability. Here, we present a large-scale benchmark evaluating over 340,000+ unique combinations of spatial and nonlinear EEG classification. Our methodological pipeline consists in combinations of Common Spatial Patterns (CSP), Riemannian geometry, functional connectivity, and fractal- or entropy-based features across three open-access EEG datasets. Unlike prior studies, our analysis operates at the per-participant level and across multiple frequency bands (8-15 Hz and 8-30 Hz), enabling direct assessment of both group-level performance and individual variability. Covariance tangent space projection (cov-tgsp) and CSP consistently achieved the highest average classification accuracies. However, their effectiveness was strongly dataset-dependent, and marked participant-level differences persisted, particularly in the most heterogeneous of the datasets. Importantly, nonlinear methods outperformed spatial approaches for specific individuals, underscoring the need for personalized pipeline selection. Our findings highlight that no universal 'one-size-fits-all' method can optimally decode EEG motor imagery patterns across all users or datasets. Future work will require adaptive, multimodal, and possibly novel approaches to fully address neurophysiological variability in practical BCI applications where the system can automatically adapt to what makes each user unique.
comment: 28 pages, 8 figures, 2 tables
☆ Flexible Gravitational-Wave Parameter Estimation with Transformers
Gravitational-wave data analysis relies on accurate and efficient methods to extract physical information from noisy detector signals, yet the increasing rate and complexity of observations represent a growing challenge. Deep learning provides a powerful alternative to traditional inference, but existing neural models typically lack the flexibility to handle variations in data analysis settings. Such variations accommodate imperfect observations or are required for specialized tests, and could include changes in detector configurations, overall frequency ranges, or localized cuts. We introduce a flexible transformer-based architecture paired with a training strategy that enables adaptation to diverse analysis settings at inference time. Applied to parameter estimation, we demonstrate that a single flexible model -- called Dingo-T1 -- can (i) analyze 48 gravitational-wave events from the third LIGO-Virgo-KAGRA Observing Run under a wide range of analysis configurations, (ii) enable systematic studies of how detector and frequency configurations impact inferred posteriors, and (iii) perform inspiral-merger-ringdown consistency tests probing general relativity. Dingo-T1 also improves median sample efficiency on real events from a baseline of 1.4% to 4.2%. Our approach thus demonstrates flexible and scalable inference with a principled framework for handling missing or incomplete data -- key capabilities for current and next-generation observatories.
comment: 8+11 pages, 3+7 figures
☆ Pruning AMR: Efficient Visualization of Implicit Neural Representations via Weight Matrix Analysis
An implicit neural representation (INR) is a neural network that approximates a spatiotemporal function. Many memory-intensive visualization tasks, including modern 4D CT scanning methods, represent data natively as INRs. While INRs are prized for being more memory-efficient than traditional data stored on a lattice, many visualization tasks still require discretization to a regular grid. We present PruningAMR, an algorithm that builds a mesh with resolution adapted to geometric features encoded by the INR. To identify these geometric features, we use an interpolative decomposition pruning method on the weight matrices of the INR. The resulting pruned network is used to guide adaptive mesh refinement, enabling automatic mesh generation tailored to the underlying resolution of the function. Starting from a pre-trained INR--without access to its training data--we produce a variable resolution visualization with substantial memory savings.
☆ Representation of Inorganic Synthesis Reactions and Prediction: Graphical Framework and Datasets
While machine learning has enabled the rapid prediction of inorganic materials with novel properties, the challenge of determining how to synthesize these materials remains largely unsolved. Previous work has largely focused on predicting precursors or reaction conditions, but only rarely on full synthesis pathways. We introduce the ActionGraph, a directed acyclic graph framework that encodes both the chemical and procedural structure, in terms of synthesis operations, of inorganic synthesis reactions. Using 13,017 text-mined solid-state synthesis reactions from the Materials Project, we show that incorporating PCA-reduced ActionGraph adjacency matrices into a $k$-nearest neighbors retrieval model significantly improves synthesis pathway prediction. While the ActionGraph framework only results in a 1.34% and 2.76% increase in precursor and operation F1 scores (average over varying numbers of PCA components) respectively, the operation length matching accuracy rises 3.4 times (from 15.8% to 53.3%). We observe an interesting trade-off where precursor prediction performance peaks at 10-11 PCA components while operation prediction continues improving up to 30 components. This suggests composition information dominates precursor selection while structural information is critical for operation sequencing. Overall, the ActionGraph framework demonstrates strong potential, and with further adoption, its full range of benefits can be effectively realized.
comment: For associated code and datasets, see https://github.com/8bitsam/actiongraph-testbench
☆ Fast Gaussian Process Approximations for Autocorrelated Data
This paper is concerned with the problem of how to speed up computation for Gaussian process models trained on autocorrelated data. The Gaussian process model is a powerful tool commonly used in nonlinear regression applications. Standard regression modeling assumes random samples and an independently, identically distributed noise. Various fast approximations that speed up Gaussian process regression work under this standard setting. But for autocorrelated data, failing to account for autocorrelation leads to a phenomenon known as temporal overfitting that deteriorates model performance on new test instances. To handle autocorrelated data, existing fast Gaussian process approximations have to be modified; one such approach is to segment the originally correlated data points into blocks in which the blocked data are de-correlated. This work explains how to make some of the existing Gaussian process approximations work with blocked data. Numerical experiments across diverse application datasets demonstrate that the proposed approaches can remarkably accelerate computation for Gaussian process regression on autocorrelated data without compromising model prediction performance.
comment: Accepted by the INFORMS Journal on Data Science
☆ Learning Multimodal Embeddings for Traffic Accident Prediction and Causal Estimation KDD'26
We consider analyzing traffic accident patterns using both road network data and satellite images aligned to road graph nodes. Previous work for predicting accident occurrences relies primarily on road network structural features while overlooking physical and environmental information from the road surface and its surroundings. In this work, we construct a large multimodal dataset across six U.S. states, containing nine million traffic accident records from official sources, and one million high-resolution satellite images for each node of the road network. Additionally, every node is annotated with features such as the region's weather statistics and road type (e.g., residential vs. motorway), and each edge is annotated with traffic volume information (i.e., Average Annual Daily Traffic). Utilizing this dataset, we conduct a comprehensive evaluation of multimodal learning methods that integrate both visual and network embeddings. Our findings show that integrating both data modalities improves prediction accuracy, achieving an average AUROC of $90.1\%$, which is a $3.7\%$ gain over graph neural network models that only utilize graph structures. With the improved embeddings, we conduct a causal analysis based on a matching estimator to estimate the key contributing factors influencing traffic accidents. We find that accident rates rise by $24\%$ under higher precipitation, by $22\%$ on higher-speed roads such as motorways, and by $29\%$ due to seasonal patterns, after adjusting for other confounding factors. Ablation studies confirm that satellite imagery features are essential for achieving accurate prediction.
comment: 17 pages. To appear in KDD'26 Datasets
☆ Martingale Score: An Unsupervised Metric for Bayesian Rationality in LLM Reasoning NeurIPS 2025
Recent advances in reasoning techniques have substantially improved the performance of large language models (LLMs), raising expectations for their ability to provide accurate, truthful, and reliable information. However, emerging evidence suggests that iterative reasoning may foster belief entrenchment and confirmation bias, rather than enhancing truth-seeking behavior. In this study, we propose a systematic evaluation framework for belief entrenchment in LLM reasoning by leveraging the Martingale property from Bayesian statistics. This property implies that, under rational belief updating, the expected value of future beliefs should remain equal to the current belief, i.e., belief updates are unpredictable from the current belief. We propose the unsupervised, regression-based Martingale Score to measure violations of this property, which signal deviation from the Bayesian ability of updating on new evidence. In open-ended problem domains including event forecasting, value-laden questions, and academic paper review, we find such violations to be widespread across models and setups, where the current belief positively predicts future belief updates, a phenomenon which we term belief entrenchment. We identify the models, reasoning techniques, and domains more prone to belief entrenchment. Finally, we validate the Martingale Score by showing that it predicts ground-truth accuracy on problem domains where ground truth labels are available. This indicates that, while designed as an unsupervised metric that operates even in domains without access to ground truth, the Martingale Score is a useful proxy of the truth-seeking ability of a reasoning process.
comment: NeurIPS 2025
☆ Hypothesis Testing for Generalized Thurstone Models
In this work, we develop a hypothesis testing framework to determine whether pairwise comparison data is generated by an underlying \emph{generalized Thurstone model} $\mathcal{T}_F$ for a given choice function $F$. While prior work has predominantly focused on parameter estimation and uncertainty quantification for such models, we address the fundamental problem of minimax hypothesis testing for $\mathcal{T}_F$ models. We formulate this testing problem by introducing a notion of separation distance between general pairwise comparison models and the class of $\mathcal{T}_F$ models. We then derive upper and lower bounds on the critical threshold for testing that depend on the topology of the observation graph. For the special case of complete observation graphs, this threshold scales as $Θ((nk)^{-1/2})$, where $n$ is the number of agents and $k$ is the number of comparisons per pair. Furthermore, we propose a hypothesis test based on our separation distance, construct confidence intervals, establish time-uniform bounds on the probabilities of type I and II errors using reverse martingale techniques, and derive minimax lower bounds using information-theoretic methods. Finally, we validate our results through experiments on synthetic and real-world datasets.
comment: 35 pages, 9 figures
☆ VLA Models Are More Generalizable Than You Think: Revisiting Physical and Spatial Modeling
Vision-language-action (VLA) models achieve strong in-distribution performance but degrade sharply under novel camera viewpoints and visual perturbations. We show that this brittleness primarily arises from misalignment in Spatial Modeling, rather than Physical Modeling. To address this, we propose a one-shot adaptation framework that recalibrates visual representations through lightweight, learnable updates. Our first method, Feature Token Modulation (FTM), applies a global affine transformation to visual tokens and improves Libero viewpoint accuracy from 48.5% to 87.1% with only 4K parameters. Building on this, Feature Linear Adaptation (FLA) introduces low-rank updates to the ViT encoder, achieving 90.8% success with 4.7M parameters -- matching LoRA-scale finetuning at far lower cost. Together, these results reveal substantial untapped robustness in pretrained VLA models and demonstrate that targeted, minimal visual adaptation is sufficient to restore viewpoint generalization.
☆ FAIRY2I: Universal Extremely-Low Bit QAT framework via Widely-Linear Representation and Phase-Aware Quantization
Large language models (LLMs) have revolutionized artificial intelligence, yet their massive memory and computational demands necessitate aggressive quantization, increasingly pushing representations toward the theoretical limit of a single bit. While complex-valued LLMs, such as iFairy, offer a superior chance for low-bit representation compared to real-valued counterparts, they require training from scratch, preventing the utilization of the vast ecosystem of pre-trained real-valued foundation models. Here we present Fairy2i, a universal framework that transforms pre-trained real-valued layers into an equivalent widely-linear complex form, enabling extremely low-bit quantization while reusing existing checkpoints. By proving a lossless mathematical equivalence between real and widely-linear maps, we convert standard Transformers into the complex domain and employ a phase-aware quantization scheme with a highly efficient codebook of fourth roots of unity. Furthermore, we introduce a recursive residual quantization mechanism that iteratively minimizes quantization error, allowing inference to proceed via efficient multiplication-free accumulation. We demonstrate that Fairy2i restores the performance of LLaMA-2 7B at an effective 2-bit precision to levels nearly comparable with full-precision baselines, significantly outperforming state-of-the-art real-valued binary and ternary quantization methods. This work bridges the gap between the representational efficiency of complex-valued arithmetic and the practical utility of pre-trained models, paving a new way for efficient inference on commodity hardware.
comment: 15 pages, 3 figures
☆ OptPO: Optimal Rollout Allocation for Test-time Policy Optimization
Test-time policy optimization enables large language models (LLMs) to adapt to distribution shifts by leveraging feedback from self-generated rollouts. However, existing methods rely on fixed-budget majority voting to estimate rewards, incurring substantial computational redundancy. We propose Optimal Rollout Allocation for Test-time Policy Optimization (OptPO), a principled framework that adaptively allocates inference budgets. By formulating the voting process as a Bayesian sequential probability ratio test, OptPO dynamically halts sampling once the posterior confidence in a consensus answer exceeds a specified threshold. Crucially, it utilizes the retained rollouts for on-policy updates, seamlessly integrating with algorithms like PPO or GRPO without requiring ground-truth labels. Across diverse reasoning benchmarks, OptPO significantly reduces rollout overhead compared to fixed-sample baselines while preserving or improving accuracy. By unifying statistically optimal stopping with test-time learning, OptPO offers a computationally efficient paradigm for test-time adaptation. The source code will be open upon acceptance at https://open-upon-acceptance.
comment: Work in Progress
☆ Assessing the performance of correlation-based multi-fidelity neural emulators
Outer loop tasks such as optimization, uncertainty quantification or inference can easily become intractable when the underlying high-fidelity model is computationally expensive. Similarly, data-driven architectures typically require large datasets to perform predictive tasks with sufficient accuracy. A possible approach to mitigate these challenges is the development of multi-fidelity emulators, leveraging potentially biased, inexpensive low-fidelity information while correcting and refining predictions using scarce, accurate high-fidelity data. This study investigates the performance of multi-fidelity neural emulators, neural networks designed to learn the input-to-output mapping by integrating limited high-fidelity data with abundant low-fidelity model solutions. We investigate the performance of such emulators for low and high-dimensional functions, with oscillatory character, in the presence of discontinuities, for collections of models with equal and dissimilar parametrization, and for a possibly large number of potentially corrupted low-fidelity sources. In doing so, we consider a large number of architectural, hyperparameter, and dataset configurations including networks with a different amount of spectral bias (Multi-Layered Perceptron, Siren and Kolmogorov Arnold Network), various mechanisms for coordinate encoding, exact or learnable low-fidelity information, and for varying training dataset size. We further analyze the added value of the multi-fidelity approach by conducting equivalent single-fidelity tests for each case, quantifying the performance gains achieved through fusing multiple sources of information.
☆ Leveraging generative adversarial networks with spatially adaptive denormalization for multivariate stochastic seismic data inversion
Probabilistic seismic inverse modeling often requires the prediction of both spatially correlated geological heterogeneities (e.g., facies) and continuous parameters (e.g., rock and elastic properties). Generative adversarial networks (GANs) provide an efficient training-image-based simulation framework capable of reproducing complex geological models with high accuracy and comparably low generative cost. However, their application in stochastic geophysical inversion for multivariate property prediction is limited, as representing multiple coupled properties requires large and unstable networks with high memory and training demands. A more recent variant of GANs with spatially adaptive denormalization (SPADE-GAN) enables the direct conditioning of facies spatial distributions on local probability maps. Leveraging on such features, an iterative geostatistical inversion algorithm is proposed, SPADE-GANInv, integrating a pre-trained SPADE-GAN with geostatistical simulation, for the prediction of facies and multiple correlated continuous properties from seismic data. The SPADE-GAN is trained to reproduce realistic facies geometries, while sequential stochastic co-simulation predicts the spatial variability of the facies-dependent continuous properties. At each iteration, a set of subsurface realizations is generated and used to compute synthetic seismic data. The realizations providing the highest similarity coefficient to the observed data are used to update the subsurface probability models in the next iteration. The method is demonstrated on both 2-D synthetic scenarios and field data, targeting the prediction of facies, porosity, and acoustic impedance from full-stack seismic data. Results show that the algorithm enables accurate multivariate prediction, mitigates the impact of biased prior data, and accommodates additional local conditioning such as well logs.
☆ Adaptive Decentralized Federated Learning for Robust Optimization
In decentralized federated learning (DFL), the presence of abnormal clients, often caused by noisy or poisoned data, can significantly disrupt the learning process and degrade the overall robustness of the model. Previous methods on this issue often require a sufficiently large number of normal neighboring clients or prior knowledge of reliable clients, which reduces the practical applicability of DFL. To address these limitations, we develop here a novel adaptive DFL (aDFL) approach for robust estimation. The key idea is to adaptively adjust the learning rates of clients. By assigning smaller rates to suspicious clients and larger rates to normal clients, aDFL mitigates the negative impact of abnormal clients on the global model in a fully adaptive way. Our theory does not put any stringent conditions on neighboring nodes and requires no prior knowledge. A rigorous convergence analysis is provided to guarantee the oracle property of aDFL. Extensive numerical experiments demonstrate the superior performance of the aDFL method.
☆ Are Detectors Fair to Indian IP-AIGC? A Cross-Generator Study
Modern image editors can produce identity-preserving AIGC (IP-AIGC), where the same person appears with new attire, background, or lighting. The robustness and fairness of current detectors in this regime remain unclear, especially for under-represented populations. We present what we believe is the first systematic study of IP-AIGC detection for Indian and South-Asian faces, quantifying cross-generator generalization and intra-population performance. We assemble Indian-focused training splits from FairFD and HAV-DF, and construct two held-out IP-AIGC test sets (HIDF-img-ip-genai and HIDF-vid-ip-genai) using commercial web-UI generators (Gemini and ChatGPT) with identity-preserving prompts. We evaluate two state-of-the-art detectors (AIDE and Effort) under pretrained (PT) and fine-tuned (FT) regimes and report AUC, AP, EER, and accuracy. Fine-tuning yields strong in-domain gains (for example, Effort AUC 0.739 to 0.944 on HAV-DF-test; AIDE EER 0.484 to 0.259), but consistently degrades performance on held-out IP-AIGC for Indian cohorts (for example, AIDE AUC 0.923 to 0.563 on HIDF-img-ip-genai; Effort 0.740 to 0.533), which indicates overfitting to training-generator cues. On non-IP HIDF images, PT performance remains high, which suggests a specific brittleness to identity-preserving edits rather than a generic distribution shift. Our study establishes IP-AIGC-Indian as a challenging and practically relevant scenario and motivates representation-preserving adaptation and India-aware benchmark curation to close generalization gaps in AIGC detection.
☆ GraphMatch: Fusing Language and Graph Representations in a Dynamic Two-Sided Work Marketplace
Recommending matches in a text-rich, dynamic two-sided marketplace presents unique challenges due to evolving content and interaction graphs. We introduce GraphMatch, a new large-scale recommendation framework that fuses pre-trained language models with graph neural networks to overcome these challenges. Unlike prior approaches centered on standalone models, GraphMatch is a comprehensive recipe built on powerful text encoders and GNNs working in tandem. It employs adversarial negative sampling alongside point-in-time subgraph training to learn representations that capture both the fine-grained semantics of evolving text and the time-sensitive structure of the graph. We evaluated extensively on interaction data from Upwork, a leading labor marketplace, at large scale, and discuss our approach towards low-latency inference suitable for real-time use. In our experiments, GraphMatch outperforms language-only and graph-only baselines on matching tasks while being efficient at runtime. These results demonstrate that unifying language and graph representations yields a highly effective solution to text-rich, dynamic two-sided recommendations, bridging the gap between powerful pretrained LMs and large-scale graphs in practice.
☆ VLM as Strategist: Adaptive Generation of Safety-critical Testing Scenarios via Guided Diffusion
The safe deployment of autonomous driving systems (ADSs) relies on comprehensive testing and evaluation. However, safety-critical scenarios that can effectively expose system vulnerabilities are extremely sparse in the real world. Existing scenario generation methods face challenges in efficiently constructing long-tail scenarios that ensure fidelity, criticality, and interactivity, while particularly lacking real-time dynamic response capabilities to the vehicle under test (VUT). To address these challenges, this paper proposes a safety-critical testing scenario generation framework that integrates the high-level semantic understanding capabilities of Vision Language Models (VLMs) with the fine-grained generation capabilities of adaptive guided diffusion models. The framework establishes a three-layer hierarchical architecture comprising a strategic layer for VLM-directed scenario generation objective determination, a tactical layer for guidance function formulation, and an operational layer for guided diffusion execution. We first establish a high-quality fundamental diffusion model that learns the data distribution of real driving scenarios. Next, we design an adaptive guided diffusion method that enables real-time, precise control of background vehicles (BVs) in closed-loop simulation. The VLM is then incorporated to autonomously generate scenario generation objectives and guidance functions through deep scenario understanding and risk reasoning, ultimately guiding the diffusion model to achieve VLM-directed scenario generation. Experimental results demonstrate that the proposed method can efficiently generate realistic, diverse, and highly interactive safety-critical testing scenarios. Furthermore, case studies validate the adaptability and VLM-directed generation performance of the proposed method.
comment: 25 pages, 9 figures
☆ Cross-Lingual Prompt Steerability: Towards Accurate and Robust LLM Behavior across Languages
System prompts provide a lightweight yet powerful mechanism for conditioning large language models (LLMs) at inference time. While prior work has focused on English-only settings, real-world deployments benefit from having a single prompt to operate reliably across languages. This paper presents a comprehensive study of how different system prompts steer models toward accurate and robust cross-lingual behavior. We propose a unified four-dimensional evaluation framework to assess system prompts in multilingual environments. Through large-scale experiments on five languages, three LLMs, and three benchmarks, we uncover that certain prompt components, such as CoT, emotion, and scenario, correlate with robust multilingual behavior. We develop a prompt optimization framework for multilingual settings and show it can automatically discover prompts that improve all metrics by 5-10%. Finally, we analyze over 10 million reasoning units and find that more performant system prompts induce more structured and consistent reasoning patterns, while reducing unnecessary language-switching. Together, we highlight system prompt optimization as a scalable path to accurate and robust multilingual LLM behavior.
☆ A Comparative Study on How Data Normalization Affects Zero-Shot Generalization in Time Series Foundation Models
We investigate input normalization methods for Time-Series Foundation Models (TSFMs). While normalization is well-studied in dataset-specific time-series models, it remains overlooked in TSFMs where generalization is critical. Time-series data, unlike text or images, exhibits significant scale variation across domains and channels, coupled with non-stationarity, can undermine TSFM performance regardless of architectural complexity. Through systematic evaluation across four architecturally diverse TSFMs, we empirically establish REVIN as the most efficient approach, reducing zero-shot MASE by 89\% relative to an un-normalized baseline and by 44\% versus other normalization methods, while matching the best in-domain accuracy (0.84 MASE) without any dataset-level preprocessing -- yielding the highest accuracy-efficiency trade-off. Yet its effect utilization depends on architectural design choices and optimization objective, particularly with respect to training loss scale sensitivity and model type (probabilistic, point-forecast, or LLM-based models).
☆ Revisiting Theory of Contrastive Learning for Domain Generalization
Contrastive learning is among the most popular and powerful approaches for self-supervised representation learning, where the goal is to map semantically similar samples close together while separating dissimilar ones in the latent space. Existing theoretical methods assume that downstream task classes are drawn from the same latent class distribution used during the pretraining phase. However, in real-world settings, downstream tasks may not only exhibit distributional shifts within the same label space but also introduce new or broader label spaces, leading to domain generalization challenges. In this work, we introduce novel generalization bounds that explicitly account for both types of mismatch: domain shift and domain generalization. Specifically, we analyze scenarios where downstream tasks either (i) draw classes from the same latent class space but with shifted distributions, or (ii) involve new label spaces beyond those seen during pretraining. Our analysis reveals how the performance of contrastively learned representations depends on the statistical discrepancy between pretraining and downstream distributions. This extended perspective allows us to derive provable guarantees on the performance of learned representations on average classification tasks involving class distributions outside the pretraining latent class set.
comment: 19 pages
☆ From Navigation to Refinement: Revealing the Two-Stage Nature of Flow-based Diffusion Models through Oracle Velocity
Flow-based diffusion models have emerged as a leading paradigm for training generative models across images and videos. However, their memorization-generalization behavior remains poorly understood. In this work, we revisit the flow matching (FM) objective and study its marginal velocity field, which admits a closed-form expression, allowing exact computation of the oracle FM target. Analyzing this oracle velocity field reveals that flow-based diffusion models inherently formulate a two-stage training target: an early stage guided by a mixture of data modes, and a later stage dominated by the nearest data sample. The two-stage objective leads to distinct learning behaviors: the early navigation stage generalizes across data modes to form global layouts, whereas the later refinement stage increasingly memorizes fine-grained details. Leveraging these insights, we explain the effectiveness of practical techniques such as timestep-shifted schedules, classifier-free guidance intervals, and latent space design choices. Our study deepens the understanding of diffusion model training dynamics and offers principles for guiding future architectural and algorithmic improvements.
comment: Preprint version; 15 pages, 16 figures
☆ Phase-Adaptive LLM Framework with Multi-Stage Validation for Construction Robot Task Allocation: A Systematic Benchmark Against Traditional Optimization Algorithms
Multi-robot task allocation in construction automation has traditionally relied on optimization methods such as Dynamic Programming and Reinforcement Learning. This research introduces the LangGraph-based Task Allocation Agent (LTAA), an LLM-driven framework that integrates phase-adaptive allocation strategies, multi-stage validation with hierarchical retries, and dynamic prompting for efficient robot coordination. Although recent LLM approaches show potential for construction robotics, they largely lack rigorous validation and benchmarking against established algorithms. This paper presents the first systematic comparison of LLM-based task allocation with traditional methods in construction scenarios.The study validates LLM feasibility through SMART-LLM replication and addresses implementation challenges using a Self-Corrective Agent Architecture. LTAA leverages natural-language reasoning combined with structured validation mechanisms, achieving major computational gains reducing token usage by 94.6% and allocation time by 86% through dynamic prompting. The framework adjusts its strategy across phases: emphasizing execution feasibility early and workload balance in later allocations.The authors evaluate LTAA against Dynamic Programming, Q-learning, and Deep Q-Network (DQN) baselines using construction operations from the TEACh human-robot collaboration dataset. In the Heavy Excels setting, where robots have strong task specializations, LTAA achieves 77% task completion with superior workload balance, outperforming all traditional methods. These findings show that LLM-based reasoning with structured validation can match established optimization algorithms while offering additional advantages such as interpretability, adaptability, and the ability to update task logic without retraining.
☆ FiMMIA: scaling semantic perturbation-based membership inference across modalities ACL 2026
Membership Inference Attacks (MIAs) aim to determine whether a specific data point was included in the training set of a target model. Although there are have been numerous methods developed for detecting data contamination in large language models (LLMs), their performance on multimodal LLMs (MLLMs) falls short due to the instabilities introduced through multimodal component adaptation and possible distribution shifts across multiple inputs. In this work, we investigate multimodal membership inference and address two issues: first, by identifying distribution shifts in the existing datasets, and second, by releasing an extended baseline pipeline to detect them. We also generalize the perturbation-based membership inference methods to MLLMs and release \textbf{FiMMIA} -- a modular \textbf{F}ramework for \textbf{M}ultimodal \textbf{MIA}.\footnote{The source code and framework have been made publicly available under the MIT license via \href{https://github.com/ai-forever/data_leakage_detect}{link}.The video demonstration is available on \href{https://youtu.be/a9L4-H80aSg}{YouTube}.} Our approach trains a neural network to analyze the target model's behavior on perturbed inputs, capturing distributional differences between members and non-members. Comprehensive evaluations on various fine-tuned multimodal models demonstrate the effectiveness of our perturbation-based membership inference attacks in multimodal domains.
comment: System demo track paper for EACL 2026
☆ LumiX: Structured and Coherent Text-to-Intrinsic Generation
We present LumiX, a structured diffusion framework for coherent text-to-intrinsic generation. Conditioned on text prompts, LumiX jointly generates a comprehensive set of intrinsic maps (e.g., albedo, irradiance, normal, depth, and final color), providing a structured and physically consistent description of an underlying scene. This is enabled by two key contributions: 1) Query-Broadcast Attention, a mechanism that ensures structural consistency by sharing queries across all maps in each self-attention block. 2) Tensor LoRA, a tensor-based adaptation that parameter-efficiently models cross-map relations for efficient joint training. Together, these designs enable stable joint diffusion training and unified generation of multiple intrinsic properties. Experiments show that LumiX produces coherent and physically meaningful results, achieving 23% higher alignment and a better preference score (0.19 vs. -0.41) compared to the state of the art, and it can also perform image-conditioned intrinsic decomposition within the same framework.
comment: The code will be available at https://github.com/xhanxu/LumiX
☆ Adversarial Jamming for Autoencoder Distribution Matching
We propose the use of adversarial wireless jamming to regularise the latent space of an autoencoder to match a diagonal Gaussian distribution. We consider the minimisation of a mean squared error distortion, where a jammer attempts to disrupt the recovery of a Gaussian source encoded and transmitted over the adversarial channel. A straightforward consequence of existing theoretical results is the fact that the saddle point of a minimax game - involving such an encoder, its corresponding decoder, and an adversarial jammer - consists of diagonal Gaussian noise output by the jammer. We use this result as inspiration for a novel approach to distribution matching in the latent space, utilising jamming as an auxiliary objective to encourage the aggregated latent posterior to match a diagonal Gaussian distribution. Using this new technique, we achieve distribution matching comparable to standard variational autoencoders and to Wasserstein autoencoders. This approach can also be generalised to other latent distributions.
comment: Presented at ICASSP 2024. 5 pages, 3 figures
☆ Beyond Paired Data: Self-Supervised UAV Geo-Localization from Reference Imagery Alone
Image-based localization in GNSS-denied environments is critical for UAV autonomy. Existing state-of-the-art approaches rely on matching UAV images to geo-referenced satellite images; however, they typically require large-scale, paired UAV-satellite datasets for training. Such data are costly to acquire and often unavailable, limiting their applicability. To address this challenge, we adopt a training paradigm that removes the need for UAV imagery during training by learning directly from satellite-view reference images. This is achieved through a dedicated augmentation strategy that simulates the visual domain shift between satellite and real-world UAV views. We introduce CAEVL, an efficient model designed to exploit this paradigm, and validate it on ViLD, a new and challenging dataset of real-world UAV images that we release to the community. Our method achieves competitive performance compared to approaches trained with paired data, demonstrating its effectiveness and strong generalization capabilities.
comment: Accepted at WACV 2026
☆ Self-Improving AI Agents through Self-Play
We extend the moduli-theoretic framework of psychometric batteries to the domain of dynamical systems. While previous work established the AAI capability score as a static functional on the space of agent representations, this paper formalizes the agent as a flow $ν_r$ parameterized by computational resource $r$, governed by a recursive Generator-Verifier-Updater (GVU) operator. We prove that this operator generates a vector field on the parameter manifold $Θ$, and we identify the coefficient of self-improvement $κ$ as the Lie derivative of the capability functional along this flow. The central contribution of this work is the derivation of the Variance Inequality, a spectral condition that is sufficient (under mild regularity) for the stability of self-improvement. We show that a sufficient condition for $κ> 0$ is that, up to curvature and step-size effects, the combined noise of generation and verification must be small enough. We then apply this formalism to unify the recent literature on Language Self-Play (LSP), Self-Correction, and Synthetic Data bootstrapping. We demonstrate that architectures such as STaR, SPIN, Reflexion, GANs and AlphaZero are specific topological realizations of the GVU operator that satisfy the Variance Inequality through filtration, adversarial discrimination, or grounding in formal systems.
☆ DF-Mamba: Deformable State Space Modeling for 3D Hand Pose Estimation in Interactions
Modeling daily hand interactions often struggles with severe occlusions, such as when two hands overlap, which highlights the need for robust feature learning in 3D hand pose estimation (HPE). To handle such occluded hand images, it is vital to effectively learn the relationship between local image features (e.g., for occluded joints) and global context (e.g., cues from inter-joints, inter-hands, or the scene). However, most current 3D HPE methods still rely on ResNet for feature extraction, and such CNN's inductive bias may not be optimal for 3D HPE due to its limited capability to model the global context. To address this limitation, we propose an effective and efficient framework for visual feature extraction in 3D HPE using recent state space modeling (i.e., Mamba), dubbed Deformable Mamba (DF-Mamba). DF-Mamba is designed to capture global context cues beyond standard convolution through Mamba's selective state modeling and the proposed deformable state scanning. Specifically, for local features after convolution, our deformable scanning aggregates these features within an image while selectively preserving useful cues that represent the global context. This approach significantly improves the accuracy of structured 3D HPE, with comparable inference speed to ResNet-50. Our experiments involve extensive evaluations on five divergent datasets including single-hand and two-hand scenarios, hand-only and hand-object interactions, as well as RGB and depth-based estimation. DF-Mamba outperforms the latest image backbones, including VMamba and Spatial-Mamba, on all datasets and achieves state-of-the-art performance.
comment: Accepted to WACV 2026. Project page: https://tkhkaeio.github.io/projects/25-dfmamba/index.html
☆ Credal Graph Neural Networks
Uncertainty quantification is essential for deploying reliable Graph Neural Networks (GNNs), where existing approaches primarily rely on Bayesian inference or ensembles. In this paper, we introduce the first credal graph neural networks (CGNNs), which extend credal learning to the graph domain by training GNNs to output set-valued predictions in the form of credal sets. To account for the distinctive nature of message passing in GNNs, we develop a complementary approach to credal learning that leverages different aspects of layer-wise information propagation. We assess our approach on uncertainty quantification in node classification under out-of-distribution conditions. Our analysis highlights the critical role of the graph homophily assumption in shaping the effectiveness of uncertainty estimates. Extensive experiments demonstrate that CGNNs deliver more reliable representations of epistemic uncertainty and achieve state-of-the-art performance under distributional shift on heterophilic graphs.
☆ Generative modeling using evolved quantum Boltzmann machines
Born-rule generative modeling, a central task in quantum machine learning, seeks to learn probability distributions that can be efficiently sampled by measuring complex quantum states. One hope is for quantum models to efficiently capture probability distributions that are difficult to learn and simulate by classical means alone. Quantum Boltzmann machines were proposed about one decade ago for this purpose, yet efficient training methods have remained elusive. In this paper, I overcome this obstacle by proposing a practical solution that trains quantum Boltzmann machines for Born-rule generative modeling. Two key ingredients in the proposal are the Donsker-Varadhan variational representation of the classical relative entropy and the quantum Boltzmann gradient estimator of [Patel et al., arXiv:2410.12935]. I present the main result for a more general ansatz known as an evolved quantum Boltzmann machine [Minervini et al., arXiv:2501.03367], which combines parameterized real- and imaginary-time evolution. I also show how to extend the findings to other distinguishability measures beyond relative entropy. Finally, I present four different hybrid quantum-classical algorithms for the minimax optimization underlying training, and I discuss their theoretical convergence guarantees.
comment: 30 pages, 2 figures
☆ StockMem: An Event-Reflection Memory Framework for Stock Forecasting
Stock price prediction is challenging due to market volatility and its sensitivity to real-time events. While large language models (LLMs) offer new avenues for text-based forecasting, their application in finance is hindered by noisy news data and the lack of explicit answers in text. General-purpose memory architectures struggle to identify the key drivers of price movements. To address this, we propose StockMem, an event-reflection dual-layer memory framework. It structures news into events and mines them along two dimensions: horizontal consolidation integrates daily events, while longitudinal tracking captures event evolution to extract incremental information reflecting market expectation discrepancies. This builds a temporal event knowledge base. By analyzing event-price dynamics, the framework further forms a reflection knowledge base of causal experiences. For prediction, it retrieves analogous historical scenarios and reasons with current events, incremental data, and past experiences. Experiments show StockMem outperforms existing memory architectures and provides superior, explainable reasoning by tracing the information chain affecting prices, enhancing decision transparency in financial forecasting.
☆ Emergent Bayesian Behaviour and Optimal Cue Combination in LLMs
Large language models (LLMs) excel at explicit reasoning, but their implicit computational strategies remain underexplored. Decades of psychophysics research show that humans intuitively process and integrate noisy signals using near-optimal Bayesian strategies in perceptual tasks. We ask whether LLMs exhibit similar behaviour and perform optimal multimodal integration without explicit training or instruction. Adopting the psychophysics paradigm, we infer computational principles of LLMs from systematic behavioural studies. We introduce a behavioural benchmark - BayesBench: four magnitude estimation tasks (length, location, distance, and duration) over text and image, inspired by classic psychophysics, and evaluate a diverse set of nine LLMs alongside human judgments for calibration. Through controlled ablations of noise, context, and instruction prompts, we measure performance, behaviour and efficiency in multimodal cue-combination. Beyond accuracy and efficiency metrics, we introduce a Bayesian Consistency Score that detects Bayes-consistent behavioural shifts even when accuracy saturates. Our results show that while capable models often adapt in Bayes-consistent ways, accuracy does not guarantee robustness. Notably, GPT-5 Mini achieves perfect text accuracy but fails to integrate visual cues efficiently. This reveals a critical dissociation between capability and strategy, suggesting accuracy-centric benchmarks may over-index on performance while missing brittle uncertainty handling. These findings reveal emergent principled handling of uncertainty and highlight the correlation between accuracy and Bayesian tendencies. We release our psychophysics benchmark and consistency metric (https://bayes-bench.github.io) as evaluation tools and to inform future multimodal architecture designs.
☆ CREST: Universal Safety Guardrails Through Cluster-Guided Cross-Lingual Transfer
Ensuring content safety in large language models (LLMs) is essential for their deployment in real-world applications. However, existing safety guardrails are predominantly tailored for high-resource languages, leaving a significant portion of the world's population underrepresented who communicate in low-resource languages. To address this, we introduce CREST (CRoss-lingual Efficient Safety Transfer), a parameter-efficient multilingual safety classification model that supports 100 languages with only 0.5B parameters. By training on a strategically chosen subset of only 13 high-resource languages, our model utilizes cluster-based cross-lingual transfer from a few to 100 languages, enabling effective generalization to both unseen high-resource and low-resource languages. This approach addresses the challenge of limited training data in low-resource settings. We conduct comprehensive evaluations across six safety benchmarks to demonstrate that CREST outperforms existing state-of-the-art guardrails of comparable scale and achieves competitive results against models with significantly larger parameter counts (2.5B parameters and above). Our findings highlight the limitations of language-specific guardrails and underscore the importance of developing universal, language-agnostic safety systems that can scale effectively to serve global populations.
comment: 8 Pages, 5 Figures, Under Review
☆ FGC-Comp: Adaptive Neighbor-Grouped Attribute Completion for Graph-based Anomaly Detection
Graph-based Anomaly Detection models have gained widespread adoption in recent years, identifying suspicious nodes by aggregating neighborhood information. However, most existing studies overlook the pervasive issues of missing and adversarially obscured node attributes, which can undermine aggregation stability and prediction reliability. To mitigate this, we propose FGC-Comp, a lightweight, classifier-agnostic, and deployment-friendly attribute completion module-designed to enhance neighborhood aggregation under incomplete attributes. We partition each node's neighbors into three label-based groups, apply group-specific transforms to the labeled groups while a node-conditioned gate handles unknowns, fuse messages via residual connections, and train end-to-end with a binary classification objective to improve aggregation stability and prediction reliability under missing attributes. Experiments on two real-world fraud datasets validate the effectiveness of the approach with negligible computational overhead.
comment: 6 pages, 2 figures
☆ Conformal Correction for Efficiency May be at Odds with Entropy
Conformal prediction (CP) provides a comprehensive framework to produce statistically rigorous uncertainty sets for black-box machine learning models. To further improve the efficiency of CP, conformal correction is proposed to fine-tune or wrap the base model with an extra module using a conformal-aware inefficiency loss. In this work, we empirically and theoretically identify a trade-off between the CP efficiency and the entropy of model prediction. We then propose an entropy-constrained conformal correction method, exploring a better Pareto optimum between efficiency and entropy. Extensive experimental results on both computer vision and graph datasets demonstrate the efficacy of the proposed method. For instance, it can significantly improve the efficiency of state-of-the-art CP methods by up to 34.4%, given an entropy threshold.
☆ VLM-Pruner: Buffering for Spatial Sparsity in an Efficient VLM Centrifugal Token Pruning Paradigm
Vision-language models (VLMs) excel at image understanding tasks, but the large number of visual tokens imposes significant computational costs, hindering deployment on mobile devices. Many pruning methods rely solely on token importance and thus overlook inter-token redundancy, retaining numerous duplicated tokens and wasting capacity. Although some redundancy-aware approaches have been proposed, they often ignore the spatial relationships among visual tokens. This can lead to overly sparse selections of retained tokens that fail to adequately cover the regions of target objects. To address these limitations, we propose VLM-Pruner, a training-free token pruning algorithm that explicitly balances redundancy and spatial sparsity. We introduce a centrifugal token pruning paradigm that enables near-to-far selection while prioritizing the preservation of fine-grained object details. Moreover, we design a Buffering for Spatial Sparsity (BSS) criterion that defers the selection of spatially distant tokens. We further adopt a parallel greedy strategy to conduct token selection efficiently. To mitigate information loss from pruning, we selectively fuse salient information from the discarded tokens into the retained ones. Comprehensive comparisons demonstrate that VLM-Pruner consistently outperforms strong baselines across five VLMs with an 88.9\% pruning rate, while delivering an end-to-end inference speedup.
☆ ALDI-ray: Adapting the ALDI Framework for Security X-ray Object Detection
Domain adaptation in object detection is critical for real-world applications where distribution shifts degrade model performance. Security X-ray imaging presents a unique challenge due to variations in scanning devices and environmental conditions, leading to significant domain discrepancies. To address this, we apply ALDI++, a domain adaptation framework that integrates self-distillation, feature alignment, and enhanced training strategies to mitigate domain shift effectively in this area. We conduct extensive experiments on the EDS dataset, demonstrating that ALDI++ surpasses the state-of-the-art (SOTA) domain adaptation methods across multiple adaptation scenarios. In particular, ALDI++ with a Vision Transformer for Detection (ViTDet) backbone achieves the highest mean average precision (mAP), confirming the effectiveness of transformer-based architectures for cross-domain object detection. Additionally, our category-wise analysis highlights consistent improvements in detection accuracy, reinforcing the robustness of the model across diverse object classes. Our findings establish ALDI++ as an efficient solution for domain-adaptive object detection, setting a new benchmark for performance stability and cross-domain generalization in security X-ray imagery.
comment: Submitted to ICASSP 2026 Conference
☆ Embedding networks with the random walk first return time distribution
We propose the first return time distribution (FRTD) of a random walk as an interpretable and mathematically grounded node embedding. The FRTD assigns a probability mass function to each node, allowing us to define a distance between any pair of nodes using standard metrics for discrete distributions. We present several arguments to motivate the FRTD embedding. First, we show that FRTDs are strictly more informative than eigenvalue spectra, yet insufficient for complete graph identification, thus placing FRTD equivalence between cospectrality and isomorphism. Second, we argue that FRTD equivalence between nodes captures structural similarity. Third, we empirically demonstrate that the FRTD embedding outperforms manually designed graph metrics in network alignment tasks. Finally, we show that random networks that approximately match the FRTD of a desired target also preserve other salient features. Together these results demonstrate the FRTD as a simple and mathematically principled embedding for complex networks.
☆ SAND Challenge: Four Approaches for Dysartria Severity Classification
This paper presents a unified study of four distinct modeling approaches for classifying dysarthria severity in the Speech Analysis for Neurodegenerative Diseases (SAND) challenge. All models tackle the same five class classification task using a common dataset of speech recordings. We investigate: (1) a ViT-OF method leveraging a Vision Transformer on spectrogram images, (2) a 1D-CNN approach using eight 1-D CNN's with majority-vote fusion, (3) a BiLSTM-OF approach using nine BiLSTM models with majority vote fusion, and (4) a Hierarchical XGBoost ensemble that combines glottal and formant features through a two stage learning framework. Each method is described, and their performances on a validation set of 53 speakers are compared. Results show that while the feature-engineered XGBoost ensemble achieves the highest macro-F1 (0.86), the deep learning models (ViT, CNN, BiLSTM) attain competitive F1-scores (0.70) and offer complementary insights into the problem.
comment: 7 pages, 5 figures
☆ Graph VQ-Transformer (GVT): Fast and Accurate Molecular Generation via High-Fidelity Discrete Latents
The de novo generation of molecules with desirable properties is a critical challenge, where diffusion models are computationally intensive and autoregressive models struggle with error propagation. In this work, we introduce the Graph VQ-Transformer (GVT), a two-stage generative framework that achieves both high accuracy and efficiency. The core of our approach is a novel Graph Vector Quantized Variational Autoencoder (VQ-VAE) that compresses molecular graphs into high-fidelity discrete latent sequences. By synergistically combining a Graph Transformer with canonical Reverse Cuthill-McKee (RCM) node ordering and Rotary Positional Embeddings (RoPE), our VQ-VAE achieves near-perfect reconstruction rates. An autoregressive Transformer is then trained on these discrete latents, effectively converting graph generation into a well-structured sequence modeling problem. Crucially, this mapping of complex graphs to high-fidelity discrete sequences bridges molecular design with the powerful paradigm of large-scale sequence modeling, unlocking potential synergies with Large Language Models (LLMs). Extensive experiments show that GVT achieves state-of-the-art or highly competitive performance across major benchmarks like ZINC250k, MOSES, and GuacaMol, and notably outperforms leading diffusion models on key distribution similarity metrics such as FCD and KL Divergence. With its superior performance, efficiency, and architectural novelty, GVT not only presents a compelling alternative to diffusion models but also establishes a strong new baseline for the field, paving the way for future research in discrete latent-space molecular generation.
☆ Distill, Forget, Repeat: A Framework for Continual Unlearning in Text-to-Image Diffusion Models
The recent rapid growth of visual generative models trained on vast web-scale datasets has created significant tension with data privacy regulations and copyright laws, such as GDPR's ``Right to be Forgotten.'' This necessitates machine unlearning (MU) to remove specific concepts without the prohibitive cost of retraining. However, existing MU techniques are fundamentally ill-equipped for real-world scenarios where deletion requests arrive sequentially, a setting known as continual unlearning (CUL). Naively applying one-shot methods in a continual setting triggers a stability crisis, leading to a cascade of degradation characterized by retention collapse, compounding collateral damage to related concepts, and a sharp decline in generative quality. To address this critical challenge, we introduce a novel generative distillation based continual unlearning framework that ensures targeted and stable unlearning under sequences of deletion requests. By reframing each unlearning step as a multi-objective, teacher-student distillation process, the framework leverages principles from continual learning to maintain model integrity. Experiments on a 10-step sequential benchmark demonstrate that our method unlearns forget concepts with better fidelity and achieves this without significant interference to the performance on retain concepts or the overall image quality, substantially outperforming baselines. This framework provides a viable pathway for the responsible deployment and maintenance of large-scale generative models, enabling industries to comply with ongoing data removal requests in a practical and effective manner.
comment: Preprint
☆ Adaptive Weighted LSSVM for Multi-View Classification
Multi-view learning integrates diverse representations of the same instances to improve performance. Most existing kernel-based multi-view learning methods use fusion techniques without enforcing an explicit collaboration type across views or co-regularization which limits global collaboration. We propose AW-LSSVM, an adaptive weighted LS-SVM that promotes complementary learning by an iterative global coupling to make each view focus on hard samples of others from previous iterations. Experiments demonstrate that AW-LSSVM outperforms existing kernel-based multi-view methods on most datasets, while keeping raw features isolated, making it also suitable for privacy-preserving scenarios.
☆ Hear What Matters! Text-conditioned Selective Video-to-Audio Generation
This work introduces a new task, text-conditioned selective video-to-audio (V2A) generation, which produces only the user-intended sound from a multi-object video. This capability is especially crucial in multimedia production, where audio tracks are handled individually for each sound source for precise editing, mixing, and creative control. However, current approaches generate single source-mixed sounds at once, largely because visual features are entangled, and region cues or prompts often fail to specify the source. We propose SelVA, a novel text-conditioned V2A model that treats the text prompt as an explicit selector of target source and modulates video encoder to distinctly extract prompt-relevant video features. The proposed supplementary tokens promote cross-attention by suppressing text-irrelevant activations with efficient parameter tuning, yielding robust semantic and temporal grounding. SelVA further employs a self-augmentation scheme to overcome the lack of mono audio track supervision. We evaluate SelVA on VGG-MONOAUDIO, a curated benchmark of clean single-source videos for such a task. Extensive experiments and ablations consistently verify its effectiveness across audio quality, semantic alignment, and temporal synchronization. Code and demo are available at https://jnwnlee.github.io/selva-demo/.
☆ Joint Distillation for Fast Likelihood Evaluation and Sampling in Flow-based Models
Log-likelihood evaluation enables important capabilities in generative models, including model comparison, certain fine-tuning objectives, and many downstream applications. Yet paradoxically, some of today's best generative models -- diffusion and flow-based models -- still require hundreds to thousands of neural function evaluations (NFEs) to compute a single likelihood. While recent distillation methods have successfully accelerated sampling to just a few steps, they achieve this at the cost of likelihood tractability: existing approaches either abandon likelihood computation entirely or still require expensive integration over full trajectories. We present fast flow joint distillation (F2D2), a framework that simultaneously reduces the number of NFEs required for both sampling and likelihood evaluation by two orders of magnitude. Our key insight is that in continuous normalizing flows, the coupled ODEs for sampling and likelihood are computed from a shared underlying velocity field, allowing us to jointly distill both the sampling trajectory and cumulative divergence using a single model. F2D2 is modular, compatible with existing flow-based few-step sampling models, and requires only an additional divergence prediction head. Experiments demonstrate F2D2's capability of achieving accurate log-likelihood with few-step evaluations while maintaining high sample quality, solving a long-standing computational bottleneck in flow-based generative models. As an application of our approach, we propose a lightweight self-guidance method that enables a 2-step MeanFlow model to outperform a 1024 step teacher model with only a single additional backward NFE.
☆ Zero-Shot Instruction Following in RL via Structured LTL Representations ICML 2025
Linear temporal logic (LTL) is a compelling framework for specifying complex, structured tasks for reinforcement learning (RL) agents. Recent work has shown that interpreting LTL instructions as finite automata, which can be seen as high-level programs monitoring task progress, enables learning a single generalist policy capable of executing arbitrary instructions at test time. However, existing approaches fall short in environments where multiple high-level events (i.e., atomic propositions) can be true at the same time and potentially interact in complicated ways. In this work, we propose a novel approach to learning a multi-task policy for following arbitrary LTL instructions that addresses this shortcoming. Our method conditions the policy on sequences of simple Boolean formulae, which directly align with transitions in the automaton, and are encoded via a graph neural network (GNN) to yield structured task representations. Experiments in a complex chess-based environment demonstrate the advantages of our approach.
comment: ICML 2025 Workshop on Programmatic Representations for Agent Learning
☆ SeeNav-Agent: Enhancing Vision-Language Navigation with Visual Prompt and Step-Level Policy Optimization
Existing Vision-Language Navigation (VLN) agents based on Large Vision-Language Models (LVLMs) often suffer from perception errors, reasoning errors, and planning errors, which significantly hinder their navigation performance. To address these limitations, a novel VLN agent framework, named SeeNav-Agent, is proposed in this work. First, to reduce perception hallucinations of the visual module of the VLN agent, a dual-view Visual Prompt (VP) technique is introduced in the input space, which can also improve the agent's understanding of current spatial states. Subsequently, a novel step-level Reinforcement Fine-Tuning (RFT) method, Step Reward Group Policy Optimization (SRGPO), is designed for the post-training of VLN agents. In SRGPO, we first define verifiable process rewards for the navigation task, and then perform efficient step-level advantage estimation by randomly grouping different navigation steps. SRGPO provides dense reward signals for the reinforcement learning process of the VLN agent and enhances its planning capability. Experimental results on the EmbodiedBench Navigation benchmark indicate that by introducing the zero-shot VP module, the GPT-4.1 achieves a navigation success rate of 86.7%, surpassing the current best LVLM by approximately 20 percentage points (pp). Through post-training based on SRGPO, the Qwen2.5-VL-3B model reaches a navigation success rate of 72.3%, outperforming the best existing LVLM model by 5.6 pp. Moreover, compared to RFT algorithms such as GRPO and GiGPO, the proposed SRGPO demonstrates significant improvements in training stability, convergence efficiency, and generalization capability.
comment: 12 pages,6 figures
☆ Adapting Tensor Kernel Machines to Enable Efficient Transfer Learning for Seizure Detection
Transfer learning aims to optimize performance in a target task by learning from a related source problem. In this work, we propose an efficient transfer learning method using a tensor kernel machine. Our method takes inspiration from the adaptive SVM and hence transfers 'knowledge' from the source to the 'adapted' model via regularization. The main advantage of using tensor kernel machines is that they leverage low-rank tensor networks to learn a compact non-linear model in the primal domain. This allows for a more efficient adaptation without adding more parameters to the model. To demonstrate the effectiveness of our approach, we apply the adaptive tensor kernel machine (Adapt-TKM) to seizure detection on behind-the-ear EEG. By personalizing patient-independent models with a small amount of patient-specific data, the patient-adapted model (which utilizes the Adapt-TKM), achieves better performance compared to the patient-independent and fully patient-specific models. Notably, it is able to do so while requiring around 100 times fewer parameters than the adaptive SVM model, leading to a correspondingly faster inference speed. This makes the Adapt-TKM especially useful for resource-constrained wearable devices.
comment: This work has been submitted to the IEEE for possible publication
☆ Modeling and Inverse Identification of Interfacial Heat Conduction in Finite Layer and Semi-Infinite Substrate Systems via a Physics-Guided Neural Framework
Heat transfer in semiconductor devices is dominated by chip and substrate assemblies, where heat generated within a finite chip layer dissipates into a semi-infinite substrate with much higher thermophysical properties. This mismatch produces steep interfacial temperature gradients, making the transient thermal response highly sensitive to the interface. Conventional numerical solvers require excessive discretization to resolve these dynamics, while physics-informed neural networks (PINNs) often exhibit unstable convergence and loss of physical consistency near the material interface. To address these challenges, we introduce HeatTransFormer, a physics-guided Transformer architecture for interface-dominated diffusion problems. The framework integrates physically informed spatiotemporal sampling, a Laplace-based activation emulating analytical diffusion solutions, and a mask-free attention mechanism supporting bidirectional spatiotemporal coupling. These components enable the model to resolve steep gradients, maintain physical consistency, and remain stable where PINNs typically fail. HeatTransFormer produces coherent temperature fields across the interface when applied to a finite layer and semi-infinite substrate configuration. Coupled with a physics-constrained inverse strategy, it further enables reliable identification of three unknown thermal properties simultaneously using only external measurements. Overall, this work demonstrates that physics-guided Transformer architectures provide a unified framework for forward and inverse modeling in interface-dominated thermal systems.
☆ GoRL: An Algorithm-Agnostic Framework for Online Reinforcement Learning with Generative Policies
Reinforcement learning (RL) faces a persistent tension: policies that are stable to optimize are often too simple to represent the multimodal action distributions needed for complex control. Gaussian policies provide tractable likelihoods and smooth gradients, but their unimodal form limits expressiveness. Conversely, generative policies based on diffusion or flow matching can model rich multimodal behaviors; however, in online RL, they are frequently unstable due to intractable likelihoods and noisy gradients propagating through deep sampling chains. We address this tension with a key structural principle: decoupling optimization from generation. Building on this insight, we introduce GoRL (Generative Online Reinforcement Learning), a framework that optimizes a tractable latent policy while utilizing a conditional generative decoder to synthesize actions. A two-timescale update schedule enables the latent policy to learn stably while the decoder steadily increases expressiveness, without requiring tractable action likelihoods. Across a range of continuous-control tasks, GoRL consistently outperforms both Gaussian policies and recent generative-policy baselines. Notably, on the HopperStand task, it reaches a normalized return above 870, more than 3 times that of the strongest baseline. These results demonstrate that separating optimization from generation provides a practical path to policies that are both stable and highly expressive.
comment: 27 pages
☆ CUDA-L2: Surpassing cuBLAS Performance for Matrix Multiplication through Reinforcement Learning
In this paper, we propose CUDA-L2, a system that combines large language models (LLMs) and reinforcement learning (RL) to automatically optimize Half-precision General Matrix Multiply (HGEMM) CUDA kernels. Using CUDA execution speed as the RL reward, CUDA-L2 automatically optimizes HGEMM kernels across 1,000 configurations. CUDA-L2 systematically outperforms major matmul baselines to date, from the widely-used {\it torch.matmul} to state-of-the-art Nvidia's closed-source libraries, i.e., {\it cuBLAS}, {\it cuBLASLt}. In offline mode, where kernels are executed consecutively without time intervals, CUDA-L2 yields +22.0\% over {\it torch.matmul} on average; +19.2\% over {\it cuBLAS} using the optimal layout configuration (normal-normal NN and transposed-normal TN); +16.8\% over {\it cuBLASLt-heuristic}, which queries {\it cuBLASLt} library and selects the algorithm based on the heuristic's suggestion; and +11.4\% over the most competitive {\it cuBLASLt-AutoTuning} model, which selects the fastest algorithm from up to 100 candidates from {\it cuBLASLt}'s suggestions. In server mode, where kernels are executed at random intervals simulating real-time inference, the speedups further increase to +28.7\%, +26.0\%, +22.4\%, and +15.9\% for {\it torch.matmul}, {\it cuBLAS}, {\it cuBLASLt-heuristic}, and {\it cuBLASLt-AutoTuning} respectively. CUDA-L2 shows that even the most performance-critical, heavily-optimized kernels like HGEMM can be improved through LLM-guided RL automation by systematically exploring configuration spaces at scales impractical for humans. Project and code can be found at github.com/deepreinforce-ai/CUDA-L2
☆ Sparse Computations in Deep Learning Inference
The computational demands of modern Deep Neural Networks (DNNs) are immense and constantly growing. While training costs usually capture public attention, inference demands are also contributing in significant computational, energy and environmental footprints. Sparsity stands out as a critical mechanism for drastically reducing these resource demands. However, its potential remains largely untapped and is not yet fully incorporated in production AI systems. To bridge this gap, this work provides the necessary knowledge and insights for performance engineers keen to get involved in deep learning inference optimization. In particular, in this work we: a) discuss the various forms of sparsity that can be utilized in DNN inference, b) explain how the original dense computations translate to sparse kernels, c) provide an extensive bibliographic review of the state-of-the-art in the implementation of these kernels for CPUs and GPUs, d) discuss the availability of sparse datasets in support of sparsity-related research and development, e) explore the current software tools and frameworks that provide robust sparsity support, and f) present evaluation results of different implementations of the key SpMM and SDDMM kernels on CPU and GPU platforms. Ultimately, this paper aims to serve as a resource for performance engineers seeking to develop and deploy highly efficient sparse deep learning models in productions.
☆ Tensor Network Based Feature Learning Model
Many approximations were suggested to circumvent the cubic complexity of kernel-based algorithms, allowing their application to large-scale datasets. One strategy is to consider the primal formulation of the learning problem by mapping the data to a higher-dimensional space using tensor-product structured polynomial and Fourier features. The curse of dimensionality due to these tensor-product features was effectively solved by a tensor network reparameterization of the model parameters. However, another important aspect of model training - identifying optimal feature hyperparameters - has not been addressed and is typically handled using the standard cross-validation approach. In this paper, we introduce the Feature Learning (FL) model, which addresses this issue by representing tensor-product features as a learnable Canonical Polyadic Decomposition (CPD). By leveraging this CPD structure, we efficiently learn the hyperparameters associated with different features alongside the model parameters using an Alternating Least Squares (ALS) optimization method. We prove the effectiveness of the FL model through experiments on real data of various dimensionality and scale. The results show that the FL model can be consistently trained 3-5 times faster than and have the prediction quality on par with a standard cross-validated model.
comment: 11 pages, 2 figures, 2 tables. Code available at: https://github.com/AlbMLpy/TN-FL-Model
☆ In-Context Distillation with Self-Consistency Cascades: A Simple, Training-Free Way to Reduce LLM Agent Costs
The world currently has an abundance of ideas for how to use new LLM agents, and developers seek to rapidly prototype and test new agentic designs. However, executing agents at scale using high-capacity LLMs incurs high inference costs. We propose a simple method for reducing LLM agent inference costs without incurring the development friction costs associated with LLM fine-tuning (long training cycles, optimization hyperparameter tweaking loops) or manual prompt engineering (laborious trial and error). Most importantly, we introduce $\textit{in-context distillation}$, which adapts the idea of knowledge distillation (training a low cost-student model to mimic a high-cost teacher) to an in-context learning setting. Our approach retrieves relevant teacher demonstrations at each agent step and provides them to the student as in-context examples, enabling the student to imitate teacher behavior on-the-fly. We combine in-context distillation with the established idea of $\textit{self-consistency cascades}$ to know when the trust the student. This adaptive strategy realizes the cost benefits of model specialization while preserving the productivity of working with frozen models. On the multi-step embodied reasoning benchmark ALFWorld, our method matches teacher-level accuracy at $\textbf{2.5$\times$ lower cost}$, reducing per-episode costs from \$0.059 to \$0.024. The upfront demonstration cost amortizes after just 843 episodes, yielding cumulative savings exceeding \$34,900 at deployment scale (1M episodes). On AppWorld, a complex agent benchmark requiring multi-step API workflows, we shift the Pareto frontier by achieving a $\textbf{2$\times$ cost reduction}$ at iso-accuracy. By reducing operational costs while maintaining rapid experimentation cycles with frozen models, our approach makes advanced agentic systems economically viable for a broader range of applications.
comment: 16 pages, 4 figures
☆ Laplace Approximation For Tensor Train Kernel Machines In System Identification
To address the scalability limitations of Gaussian process (GP) regression, several approximation techniques have been proposed. One such method is based on tensor networks, which utilizes an exponential number of basis functions without incurring exponential computational cost. However, extending this model to a fully probabilistic formulation introduces several design challenges. In particular, for tensor train (TT) models, it is unclear which TT-core should be treated in a Bayesian manner. We introduce a Bayesian tensor train kernel machine that applies Laplace approximation to estimate the posterior distribution over a selected TT-core and employs variational inference (VI) for precision hyperparameters. Experiments show that core selection is largely independent of TT-ranks and feature structure, and that VI replaces cross-validation while offering up to 65x faster training. The method's effectiveness is demonstrated on an inverse dynamics problem.
comment: 6 pages, 2 figures, 4 tables. Submitted to IFAC 2026. Code available at: https://github.com/AlbMLpy/laplace-ttkm
☆ A Concise Review of Hallucinations in LLMs and their Mitigation
Traditional language models face a challenge from hallucinations. Their very presence casts a large, dangerous shadow over the promising realm of natural language processing. It becomes crucial to understand the various kinds of hallucinations that occur nowadays, their origins, and ways of reducing them. This document provides a concise and straightforward summary of that. It serves as a one-stop resource for a general understanding of hallucinations and how to mitigate them.
comment: 7 pages
☆ Generative Multi-modal Feedback for Singing Voice Synthesis Evaluation
Singing voice synthesis (SVS) has advanced significantly, enabling models to generate vocals with accurate pitch and consistent style. As these capabilities improve, the need for reliable evaluation and optimization becomes increasingly critical. However, current methods like reward systems often rely on single numerical scores, struggle to capture various dimensions such as phrasing or expressiveness, and require costly annotations, limiting interpretability and generalization. To address these issues, we propose a generative feedback (i.e., reward model) framework that provides multi-dimensional language and audio feedback for SVS assessment. Our approach leverages an audio-language model to generate text and audio critiques-covering aspects such as melody, content, and auditory quality. The model is fine-tuned on a hybrid dataset combining human music reactions and synthetic critiques from a MLLMs, enhancing diversity and linguistic richness. Quantitative experiments validate the effectiveness of the proposed dataset and training strategy, demonstrating that the framework produces musically accurate and interpretable evaluations suitable for guiding generative model improvement. The code is at [https://github.com/opendilab/VocalCritic](https://github.com/opendilab/VocalCritic)
comment: 16 pages, 5 figures
☆ Decentralized Fairness Aware Multi Task Federated Learning for VR Network
Wireless connectivity promises to unshackle virtual reality (VR) experiences, allowing users to engage from anywhere, anytime. However, delivering seamless, high-quality, real-time VR video wirelessly is challenging due to the stringent quality of experience requirements, low latency constraints, and limited VR device capabilities. This paper addresses these challenges by introducing a novel decentralized multi task fair federated learning (DMTFL) based caching that caches and prefetches each VR user's field of view (FOV) at base stations (BSs) based on the caching strategies tailored to each BS. In federated learning (FL) in its naive form, often biases toward certain users, and a single global model fails to capture the statistical heterogeneity across users and BSs. In contrast, the proposed DMTFL algorithm personalizes content delivery by learning individual caching models at each BS. These models are further optimized to perform well under any target distribution, while providing theoretical guarantees via Rademacher complexity and a probably approximately correct (PAC) bound on the loss. Using a realistic VR head-tracking dataset, our simulations demonstrate the superiority of our proposed DMTFL algorithm compared to baseline algorithms.
comment: accepted for IEEE Globecom Workshop 2025
☆ Water Quality Estimation Through Machine Learning Multivariate Analysis
The quality of water is key for the quality of agrifood sector. Water is used in agriculture for fertigation, for animal husbandry, and in the agrifood processing industry. In the context of the progressive digitalization of this sector, the automatic assessment of the quality of water is thus becoming an important asset. In this work, we present the integration of Ultraviolet-Visible (UV-Vis) spectroscopy with Machine Learning in the context of water quality assessment aiming at ensuring water safety and the compliance of water regulation. Furthermore, we emphasize the importance of model interpretability by employing SHapley Additive exPlanations (SHAP) to understand the contribution of absorbance at different wavelengths to the predictions. Our approach demonstrates the potential for rapid, accurate, and interpretable assessment of key water quality parameters.
comment: The paper has been accepted at Italian Workshop on Neural Networks (WIRN) 2024
☆ Bayesian Physics-Informed Neural Networks for Inverse Problems (BPINN-IP): Application in Infrared Image Processing
Inverse problems arise across scientific and engineering domains, where the goal is to infer hidden parameters or physical fields from indirect and noisy observations. Classical approaches, such as variational regularization and Bayesian inference, provide well established theoretical foundations for handling ill posedness. However, these methods often become computationally restrictive in high dimensional settings or when the forward model is governed by complex physics. Physics Informed Neural Networks (PINNs) have recently emerged as a promising framework for solving inverse problems by embedding physical laws directly into the training process of neural networks. In this paper, we introduce a new perspective on the Bayesian Physics Informed Neural Network (BPINN) framework, extending classical PINNs by explicitly incorporating training data generation, modeling and measurement uncertainties through Bayesian prior modeling and doing inference with the posterior laws. Also, as we focus on the inverse problems, we call this method BPINN-IP, and we show that the standard PINN formulation naturally appears as its special case corresponding to the Maximum A Posteriori (MAP) estimate. This unified formulation allows simultaneous exploitation of physical constraints, prior knowledge, and data-driven inference, while enabling uncertainty quantification through posterior distributions. To demonstrate the effectiveness of the proposed framework, we consider inverse problems arising in infrared image processing, including deconvolution and super-resolution, and present results on both simulated and real industrial data.
comment: 31 page, paper in revision, submitted in Journal of the Franklin Institute, 2025
☆ A Fully First-Order Layer for Differentiable Optimization
Differentiable optimization layers enable learning systems to make decisions by solving embedded optimization problems. However, computing gradients via implicit differentiation requires solving a linear system with Hessian terms, which is both compute- and memory-intensive. To address this challenge, we propose a novel algorithm that computes the gradient using only first-order information. The key insight is to rewrite the differentiable optimization as a bilevel optimization problem and leverage recent advances in bilevel methods. Specifically, we introduce an active-set Lagrangian hypergradient oracle that avoids Hessian evaluations and provides finite-time, non-asymptotic approximation guarantees. We show that an approximate hypergradient can be computed using only first-order information in $\tilde{\oo}(1)$ time, leading to an overall complexity of $\tilde{\oo}(δ^{-1}ε^{-3})$ for constrained bilevel optimization, which matches the best known rate for non-smooth non-convex optimization. Furthermore, we release an open-source Python library that can be easily adapted from existing solvers. Our code is available here: https://github.com/guaguakai/FFOLayer.
☆ Stress-Testing Causal Claims via Cardinality Repairs
Causal analyses derived from observational data underpin high-stakes decisions in domains such as healthcare, public policy, and economics. Yet such conclusions can be surprisingly fragile: even minor data errors - duplicate records, or entry mistakes - may drastically alter causal relationships. This raises a fundamental question: how robust is a causal claim to small, targeted modifications in the data? Addressing this question is essential for ensuring the reliability, interpretability, and reproducibility of empirical findings. We introduce SubCure, a framework for robustness auditing via cardinality repairs. Given a causal query and a user-specified target range for the estimated effect, SubCure identifies a small set of tuples or subpopulations whose removal shifts the estimate into the desired range. This process not only quantifies the sensitivity of causal conclusions but also pinpoints the specific regions of the data that drive those conclusions. We formalize this problem under both tuple- and pattern-level deletion settings and show both are NP-complete. To scale to large datasets, we develop efficient algorithms that incorporate machine unlearning techniques to incrementally update causal estimates without retraining from scratch. We evaluate SubCure across four real-world datasets covering diverse application domains. In each case, it uncovers compact, high-impact subsets whose removal significantly shifts the causal conclusions, revealing vulnerabilities that traditional methods fail to detect. Our results demonstrate that cardinality repair is a powerful and general-purpose tool for stress-testing causal analyses and guarding against misleading claims rooted in ordinary data imperfections.
☆ Hybrid(Penalized Regression and MLP) Models for Outcome Prediction in HDLSS Health Data
I present an application of established machine learning techniques to NHANES health survey data for predicting diabetes status. I compare baseline models (logistic regression, random forest, XGBoost) with a hybrid approach that uses an XGBoost feature encoder and a lightweight multilayer perceptron (MLP) head. Experiments show the hybrid model attains improved AUC and balanced accuracy compared to baselines on the processed NHANES subset. I release code and reproducible scripts to encourage replication.
☆ Dual-Robust Cross-Domain Offline Reinforcement Learning Against Dynamics Shifts
Single-domain offline reinforcement learning (RL) often suffers from limited data coverage, while cross-domain offline RL handles this issue by leveraging additional data from other domains with dynamics shifts. However, existing studies primarily focus on train-time robustness (handling dynamics shifts from training data), neglecting the test-time robustness against dynamics perturbations when deployed in practical scenarios. In this paper, we investigate dual (both train-time and test-time) robustness against dynamics shifts in cross-domain offline RL. We first empirically show that the policy trained with cross-domain offline RL exhibits fragility under dynamics perturbations during evaluation, particularly when target domain data is limited. To address this, we introduce a novel robust cross-domain Bellman (RCB) operator, which enhances test-time robustness against dynamics perturbations while staying conservative to the out-of-distribution dynamics transitions, thus guaranteeing the train-time robustness. To further counteract potential value overestimation or underestimation caused by the RCB operator, we introduce two techniques, the dynamic value penalty and the Huber loss, into our framework, resulting in the practical \textbf{D}ual-\textbf{RO}bust \textbf{C}ross-domain \textbf{O}ffline RL (DROCO) algorithm. Extensive empirical results across various dynamics shift scenarios show that DROCO outperforms strong baselines and exhibits enhanced robustness to dynamics perturbations.
☆ WorldPack: Compressed Memory Improves Spatial Consistency in Video World Modeling
Video world models have attracted significant attention for their ability to produce high-fidelity future visual observations conditioned on past observations and navigation actions. Temporally- and spatially-consistent, long-term world modeling has been a long-standing problem, unresolved with even recent state-of-the-art models, due to the prohibitively expensive computational costs for long-context inputs. In this paper, we propose WorldPack, a video world model with efficient compressed memory, which significantly improves spatial consistency, fidelity, and quality in long-term generation despite much shorter context length. Our compressed memory consists of trajectory packing and memory retrieval; trajectory packing realizes high context efficiency, and memory retrieval maintains the consistency in rollouts and helps long-term generations that require spatial reasoning. Our performance is evaluated with LoopNav, a benchmark on Minecraft, specialized for the evaluation of long-term consistency, and we verify that WorldPack notably outperforms strong state-of-the-art models.
☆ Guided Self-Evolving LLMs with Minimal Human Supervision
AI self-evolution has long been envisioned as a path toward superintelligence, where models autonomously acquire, refine, and internalize knowledge from their own learning experiences. Yet in practice, unguided self-evolving systems often plateau quickly or even degrade as training progresses. These failures arise from issues such as concept drift, diversity collapse, and mis-evolution, as models reinforce their own biases and converge toward low-entropy behaviors. To enable models to self-evolve in a stable and controllable manner while minimizing reliance on human supervision, we introduce R-Few, a guided Self-Play Challenger-Solver framework that incorporates lightweight human oversight through in-context grounding and mixed training. At each iteration, the Challenger samples a small set of human-labeled examples to guide synthetic question generation, while the Solver jointly trains on human and synthetic examples under an online, difficulty-based curriculum. Across math and general reasoning benchmarks, R-Few achieves consistent and iterative improvements. For example, Qwen3-8B-Base improves by +3.0 points over R-Zero on math tasks and achieves performance on par with General-Reasoner, despite the latter being trained on 20 times more human data. Ablation studies confirm the complementary contributions of grounded challenger training and curriculum-based solver training, and further analysis shows that R-Few mitigates drift, yielding more stable and controllable co-evolutionary dynamics.
☆ TabGRU: An Enhanced Design for Urban Rainfall Intensity Estimation Using Commercial Microwave Links
In the face of accelerating global urbanization and the increasing frequency of extreme weather events, highresolution urban rainfall monitoring is crucial for building resilient smart cities. Commercial Microwave Links (CMLs) are an emerging data source with great potential for this task.While traditional rainfall retrieval from CMLs relies on physicsbased models, these often struggle with real-world complexities like signal noise and nonlinear attenuation. To address these limitations, this paper proposes a novel hybrid deep learning architecture based on the Transformer and a Bidirectional Gated Recurrent Unit (BiGRU), which we name TabGRU. This design synergistically captures both long-term dependencies and local sequential features in the CML signal data. The model is further enhanced by a learnable positional embedding and an attention pooling mechanism to improve its dynamic feature extraction and generalization capabilities. The model was validated on a public benchmark dataset from Gothenburg, Sweden (June-September 2015). The evaluation used 12 sub-links from two rain gauges (Torp and Barl) over a test period (August 22-31) covering approximately 10 distinct rainfall events. The proposed TabGRU model demonstrated consistent advantages, outperforming deep learning baselines and achieving high coefficients of determination (R2) at both the Torp site (0.91) and the Barl site (0.96). Furthermore, compared to the physics-based approach, TabGRU maintained higher accuracy and was particularly effective in mitigating the significant overestimation problem observed in the PL model during peak rainfall events. This evaluation confirms that the TabGRU model can effectively overcome the limitations of traditional methods, providing a robust and accurate solution for CML-based urban rainfall monitoring under the tested conditions.
☆ When Refusals Fail: Unstable Safety Mechanisms in Long-Context LLM Agents AAAI 2026
Solving complex or long-horizon problems often requires large language models (LLMs) to use external tools and operate over a significantly longer context window. New LLMs enable longer context windows and support tool calling capabilities. Prior works have focused mainly on evaluation of LLMs on long-context prompts, leaving agentic setup relatively unexplored, both from capability and safety perspectives. Our work addresses this gap. We find that LLM agents could be sensitive to length, type, and placement of the context, exhibiting unexpected and inconsistent shifts in task performance and in refusals to execute harmful requests. Models with 1M-2M token context windows show severe degradation already at 100K tokens, with performance drops exceeding 50\% for both benign and harmful tasks. Refusal rates shift unpredictably: GPT-4.1-nano increases from $\sim$5\% to $\sim$40\% while Grok 4 Fast decreases from $\sim$80\% to $\sim$10\% at 200K tokens. Our work shows potential safety issues with agents operating on longer context and opens additional questions on the current metrics and paradigm for evaluating LLM agent safety on long multi-step tasks. In particular, our results on LLM agents reveal a notable divergence in both capability and safety performance compared to prior evaluations of LLMs on similar criteria.
comment: 12 pages, 11 figures. Accepted at AAAI 2026 TrustAgent Workshop
☆ QJoin: Transformation-aware Joinable Data Discovery Using Reinforcement Learning
Discovering which tables in large, heterogeneous repositories can be joined and by what transformations is a central challenge in data integration and data discovery. Traditional join discovery methods are largely designed for equi-joins, which assume that join keys match exactly or nearly so. These techniques, while efficient in clean, well-normalized databases, fail in open or federated settings where identifiers are inconsistently formatted, embedded, or split across multiple columns. Approximate or fuzzy joins alleviate minor string variations but cannot capture systematic transformations. We introduce QJoin, a reinforcement-learning framework that learns and reuses transformation strategies across join tasks. QJoin trains an agent under a uniqueness-aware reward that balances similarity with key distinctiveness, enabling it to explore concise, high-value transformation chains. To accelerate new joins, we introduce two reuse mechanisms: (i) agent transfer, which initializes new policies from pretrained agents, and (ii) transformation reuse, which caches successful operator sequences for similar column clusters. On the AutoJoin Web benchmark (31 table pairs), QJoin achieves an average F1-score of 91.0%. For 19,990 join tasks in NYC+Chicago open datasets, Qjoin reduces runtime by up to 7.4% (13,747 s) by using reusing. These results demonstrate that transformation learning and reuse can make join discovery both more accurate and more efficient.
☆ Basis-Oriented Low-rank Transfer for Few-Shot and Test-Time Adaptation
Adapting large pre-trained models to unseen tasks under tight data and compute budgets remains challenging. Meta-learning approaches explicitly learn good initializations, but they require an additional meta-training phase over many tasks, incur high training cost, and can be unstable. At the same time, the number of task-specific pre-trained models continues to grow, yet the question of how to transfer them to new tasks with minimal additional training remains relatively underexplored. We propose BOLT (Basis-Oriented Low-rank Transfer), a framework that reuses existing fine-tuned models not by merging weights, but instead by extracting an orthogonal, task-informed spectral basis and adapting within that subspace. In the offline phase, BOLT collects dominant singular directions from multiple task vectors and orthogonalizes them per layer to form reusable bases. In the online phase, we freeze these bases and train only a small set of diagonal coefficients per layer for the new task, yielding a rank-controlled update with very few trainable parameters. This design provides (i) a strong, training-free initialization for unseen tasks, obtained by pooling source-task coefficients, along with a lightweight rescaling step while leveraging the shared orthogonal bases, and (ii) a parameter-efficient fine-tuning (PEFT) path that, in our experiments, achieves robust performance compared to common PEFT baselines as well as a representative meta-learned initialization. Our results show that constraining adaptation to a task-informed orthogonal subspace provides an effective alternative for unseen-task transfer.
☆ Cross-Domain Offline Policy Adaptation with Dynamics- and Value-Aligned Data Filtering
Cross-Domain Offline Reinforcement Learning aims to train an agent deployed in the target environment, leveraging both a limited target domain dataset and a source domain dataset with (possibly) sufficient data coverage. Due to the underlying dynamics misalignment between the source and target domain, simply merging the data from two datasets may incur inferior performance. Recent advances address this issue by selectively sharing source domain samples that exhibit dynamics alignment with the target domain. However, these approaches focus solely on dynamics alignment and overlook \textit{value alignment}, i.e., selecting high-quality, high-value samples from the source domain. In this paper, we first demonstrate that both dynamics alignment and value alignment are essential for policy learning, by examining the limitations of the current theoretical framework for cross-domain RL and establishing a concrete sub-optimality gap of a policy trained on the source domain and evaluated on the target domain. Motivated by the theoretical insights, we propose to selectively share those source domain samples with both high dynamics and value alignment and present our \textbf{\underline{D}}ynamics- and \textbf{\underline{V}}alue-aligned \textbf{\underline{D}}ata \textbf{\underline{F}}iltering (DVDF) method. We design a range of dynamics shift settings, including kinematic and morphology shifts, and evaluate DVDF on various tasks and datasets, as well as in challenging extremely low-data settings where the target domain dataset contains only 5,000 transitions. Extensive experiments demonstrate that DVDF consistently outperforms prior strong baselines and delivers exceptional performance across multiple tasks and datasets.
☆ WorldMM: Dynamic Multimodal Memory Agent for Long Video Reasoning
Recent advances in video large language models have demonstrated strong capabilities in understanding short clips. However, scaling them to hours- or days-long videos remains highly challenging due to limited context capacity and the loss of critical visual details during abstraction. Existing memory-augmented methods mitigate this by leveraging textual summaries of video segments, yet they heavily rely on text and fail to utilize visual evidence when reasoning over complex scenes. Moreover, retrieving from fixed temporal scales further limits their flexibility in capturing events that span variable durations. To address this, we introduce WorldMM, a novel multimodal memory agent that constructs and retrieves from multiple complementary memories, encompassing both textual and visual representations. WorldMM comprises three types of memory: episodic memory indexes factual events across multiple temporal scales, semantic memory continuously updates high-level conceptual knowledge, and visual memory preserves detailed information about scenes. During inference, an adaptive retrieval agent iteratively selects the most relevant memory source and leverages multiple temporal granularities based on the query, continuing until it determines that sufficient information has been gathered. WorldMM significantly outperforms existing baselines across five long video question-answering benchmarks, achieving an average 8.4% performance gain over previous state-of-the-art methods, showing its effectiveness on long video reasoning.
comment: Project page : https://worldmm.github.io
☆ Quantum feature encoding optimization
Quantum Machine Learning (QML) holds the promise of enhancing machine learning modeling in terms of both complexity and accuracy. A key challenge in this domain is the encoding of input data, which plays a pivotal role in determining the performance of QML models. In this work, we tackle a largely unaddressed aspect of encoding that is unique to QML modeling -- rather than adjusting the ansatz used for encoding, we consider adjusting how data is conveyed to the ansatz. We specifically implement QML pipelines that leverage classical data manipulation (i.e., ordering, selecting, and weighting features) as a preprocessing step, and evaluate if these aspects of encoding can have a significant impact on QML model performance, and if they can be effectively optimized to improve performance. Our experimental results, applied across a wide variety of data sets, ansatz, and circuit sizes, with a representative QML approach, demonstrate that by optimizing how features are encoded in an ansatz we can substantially and consistently improve the performance of QML models, making a compelling case for integrating these techniques in future QML applications. Finally we demonstrate the practical feasibility of this approach by running it using real quantum hardware with 100 qubit circuits and successfully achieving improved QML modeling performance in this case as well.
☆ Leveraging Large Language Models to Bridge On-chain and Off-chain Transparency in Stablecoins
Stablecoins such as USDT and USDC aspire to peg stability by coupling issuance controls with reserve attestations. In practice, however, the transparency is split across two worlds: verifiable on-chain traces and off-chain disclosures locked in unstructured text that are unconnected. We introduce a large language model (LLM)-based automated framework that bridges these two dimensions by aligning on-chain issuance data with off-chain disclosure statements. First, we propose an integrative framework using LLMs to capture and analyze on- and off-chain data through document parsing and semantic alignment, extracting key financial indicators from issuer attestations and mapping them to corresponding on-chain metrics. Second, we integrate multi-chain issuance records and disclosure documents within a model context protocol (MCP) framework that standardizes LLMs access to both quantitative market data and qualitative disclosure narratives. This framework enables unified retrieval and contextual alignment across heterogeneous stablecoin information sources and facilitates consistent analysis. Third, we demonstrate the capability of LLMs to operate across heterogeneous data modalities in blockchain analytics, quantifying discrepancies between reported and observed circulation and examining their implications for cross-chain transparency and price dynamics. Our findings reveal systematic gaps between disclosed and verifiable data, showing that LLM-assisted analysis enhances cross-modal transparency and supports automated, data-driven auditing in decentralized finance (DeFi).
☆ Data Curation Through the Lens of Spectral Dynamics: Static Limits, Dynamic Acceleration, and Practical Oracles
Large-scale neural models are increasingly trained with data pruning, synthetic data generation, cross-model distillation, reinforcement learning from human feedback (RLHF), and difficulty-based sampling. While several of these data-centric strategies reliably improve training efficiency and downstream performance, others fail to provide meaningful gains -- most notably self-generated synthetic data, which often increases dataset volume without enhancing model capability. We formalize data curation as reweighting the sampling distribution and map its effect onto the eigenstructure of the data-induced operator. Our first main result shows that \textbf{static pruning induces a bounded operator and therefore cannot change the spectral tail exponent}; it provides at most finite-region improvements and cannot alter asymptotic neural scaling. Our second result analyzes \textbf{time-dependent data curation}, showing that an ideal oracle capable of tracking spectral residuals and continuously re-normalizing the tail can provably accelerate learning -- although practical systems can only approximate this behavior.
☆ Dynamic Configuration of On-Street Parking Spaces using Multi Agent Reinforcement Learning
With increased travelling needs more than ever, traffic congestion has become a major concern in most urban areas. Allocating spaces for on-street parking, further hinders traffic flow, by limiting the effective road width available for driving. With the advancement of vehicle-to-infrastructure connectivity technologies, we explore how the impact of on-street parking on traffic congestion could be minimized, by dynamically configuring on-street parking spaces. Towards that end, we formulate dynamic on-street parking space configuration as an optimization problem, and we follow a data driven approach, considering the nature of our problem. Our proposed solution comprises a two-layer multi agent reinforcement learning based framework, which is inherently scalable to large road networks. The lane level agents are responsible for deciding the optimal parking space configuration for each lane, and we introduce a novel Deep Q-learning architecture which effectively utilizes long short term memory networks and graph attention networks to capture the spatio-temporal correlations evident in the given problem. The block level agents control the actions of the lane level agents and maintain a sufficient level of parking around the block. We conduct a set of comprehensive experiments using SUMO, on both synthetic data as well as real-world data from the city of Melbourne. Our experiments show that the proposed framework could reduce the average travel time loss of vehicles significantly, reaching upto 47%, with a negligible increase in the walking distance for parking.
☆ WISE: Weighted Iterative Society-of-Experts for Robust Multimodal Multi-Agent Debate
Recent large language models (LLMs) are trained on diverse corpora and tasks, leading them to develop complementary strengths. Multi-agent debate (MAD) has emerged as a popular way to leverage these strengths for robust reasoning, though it has mostly been applied to language-only tasks, leaving its efficacy on multimodal problems underexplored. In this paper, we study MAD for solving vision-and-language reasoning problems. Our setup enables generalizing the debate protocol with heterogeneous experts that possess single- and multi-modal capabilities. To this end, we present Weighted Iterative Society-of-Experts (WISE), a generalized and modular MAD framework that partitions the agents into Solvers, that generate solutions, and Reflectors, that verify correctness, assign weights, and provide natural language feedback. To aggregate the agents' solutions across debate rounds, while accounting for variance in their responses and the feedback weights, we present a modified Dawid-Skene algorithm for post-processing that integrates our two-stage debate model. We evaluate WISE on SMART-840, VisualPuzzles, EvoChart-QA, and a new SMART-840++ dataset with programmatically generated problem instances of controlled difficulty. Our results show that WISE consistently improves accuracy by 2-7% over the state-of-the-art MAD setups and aggregation methods across diverse multimodal tasks and LLM configurations.
☆ ESACT: An End-to-End Sparse Accelerator for Compute-Intensive Transformers via Local Similarity
Transformers, composed of QKV generation, attention computation, and FFNs, have become the dominant model across various domains due to their outstanding performance. However, their high computational cost hinders efficient hardware deployment. Sparsity offers a promising solution, yet most existing accelerators exploit only intra-row sparsity in attention, while few consider inter-row sparsity. Approaches leveraging inter-row sparsity often rely on costly global similarity estimation, which diminishes the acceleration benefits of sparsity, and typically apply sparsity to only one or two transformer components. Through careful analysis of the attention distribution and computation flow, we observe that local similarity allows end-to-end sparse acceleration with lower computational overhead. Motivated by this observation, we propose ESACT, an end-to-end sparse accelerator for compute-intensive Transformers. ESACT centers on the Sparsity Prediction with Local Similarity (SPLS) mechanism, which leverages HLog quantization to accurately predict local attention sparsity prior to QK generation, achieving efficient sparsity across all transformer components. To support efficient hardware realization, we introduce three architectural innovations. Experimental results on 26 benchmarks demonstrate that SPLS reduces total computation by 52.03% with less than 1% accuracy loss. ESACT achieves an end-to-end energy efficiency of 3.29 TOPS/W, and improves attention-level energy efficiency by 2.95x and 2.26x over SOTA attention accelerators SpAtten and Sanger, respectively.
☆ Synthetic Error Injection Fails to Elicit Self-Correction In Language Models
Reinforcement learning has become the dominant paradigm for eliciting reasoning and self-correction capabilities in large language models, but its computational expense motivates exploration of alternatives. Inspired by techniques from autonomous driving and robotics, we investigate whether supervised learning with synthetic error injection can induce self-correction abilities in language models. Our approach inserts artificial errors into reasoning chains, masks them, and supervises the model to recognize and correct these mistakes. Despite the intuitive appeal of this method, we find that it fails to significantly improve performance even on simple synthetic tasks across multiple models. Moreover, even when the model catches its own error, it often parrots the original mistake. We find that the distribution shift of synthetic errors to on-policy errors significantly degrades the error-correction capabilities of the fine-tuned model, even with good synthetic coverage of on-policy errors. Our results help explain why on-policy reinforcement learning methods have proven uniquely effective for eliciting self-correction.
comment: 13 pages, 12 figures
☆ Risk-Sensitive Q-Learning in Continuous Time with Application to Dynamic Portfolio Selection
This paper studies the problem of risk-sensitive reinforcement learning (RSRL) in continuous time, where the environment is characterized by a controllable stochastic differential equation (SDE) and the objective is a potentially nonlinear functional of cumulative rewards. We prove that when the functional is an optimized certainty equivalent (OCE), the optimal policy is Markovian with respect to an augmented environment. We also propose \textit{CT-RS-q}, a risk-sensitive q-learning algorithm based on a novel martingale characterization approach. Finally, we run a simulation study on a dynamic portfolio selection problem and illustrate the effectiveness of our algorithm.
☆ Reinforcement Learning in POMDP's via Direct Gradient Ascent
This paper discusses theoretical and experimental aspects of gradient-based approaches to the direct optimization of policy performance in controlled POMDPs. We introduce GPOMDP, a REINFORCE-like algorithm for estimating an approximation to the gradient of the average reward as a function of the parameters of a stochastic policy. The algorithm's chief advantages are that it requires only a single sample path of the underlying Markov chain, it uses only one free parameter $β\in [0,1)$, which has a natural interpretation in terms of bias-variance trade-off, and it requires no knowledge of the underlying state. We prove convergence of GPOMDP and show how the gradient estimates produced by GPOMDP can be used in a conjugate-gradient procedure to find local optima of the average reward.
☆ FOVA: Offline Federated Reinforcement Learning with Mixed-Quality Data
Offline Federated Reinforcement Learning (FRL), a marriage of federated learning and offline reinforcement learning, has attracted increasing interest recently. Albeit with some advancement, we find that the performance of most existing offline FRL methods drops dramatically when provided with mixed-quality data, that is, the logging behaviors (offline data) are collected by policies with varying qualities across clients. To overcome this limitation, this paper introduces a new vote-based offline FRL framework, named FOVA. It exploits a \emph{vote mechanism} to identify high-return actions during local policy evaluation, alleviating the negative effect of low-quality behaviors from diverse local learning policies. Besides, building on advantage-weighted regression (AWR), we construct consistent local and global training objectives, significantly enhancing the efficiency and stability of FOVA. Further, we conduct an extensive theoretical analysis and rigorously show that the policy learned by FOVA enjoys strict policy improvement over the behavioral policy. Extensive experiments corroborate the significant performance gains of our proposed algorithm over existing baselines on widely used benchmarks.
comment: Accepted by IEEE/ACM ToN
☆ Safeguarded Stochastic Polyak Step Sizes for Non-smooth Optimization: Robust Performance Without Small (Sub)Gradients
The stochastic Polyak step size (SPS) has proven to be a promising choice for stochastic gradient descent (SGD), delivering competitive performance relative to state-of-the-art methods on smooth convex and non-convex optimization problems, including deep neural network training. However, extensions of this approach to non-smooth settings remain in their early stages, often relying on interpolation assumptions or requiring knowledge of the optimal solution. In this work, we propose a novel SPS variant, Safeguarded SPS (SPS$_{safe}$), for the stochastic subgradient method, and provide rigorous convergence guarantees for non-smooth convex optimization with no need for strong assumptions. We further incorporate momentum into the update rule, yielding equally tight theoretical results. Comprehensive experiments on convex benchmarks and deep neural networks corroborate our theory: the proposed step size accelerates convergence, reduces variance, and consistently outperforms existing adaptive baselines. Finally, in the context of deep neural network training, our method demonstrates robust performance by addressing the vanishing gradient problem.
comment: 28 pages, 15 figures
☆ SpecPV: Improving Self-Speculative Decoding for Long-Context Generation via Partial Verification
Growing demands from tasks like code generation, deep reasoning, and long-document understanding have made long-context generation a crucial capability for large language models (LLMs). Speculative decoding is one of the most direct and effective approaches for accelerating generation. It follows a draft-verify paradigm, where a lightweight draft model proposes several candidate tokens and the target model verifies them. However, we find that as the context length grows, verification becomes the dominant bottleneck. To further accelerate speculative decoding in long-context generation, we introduce SpecPV, a self-speculative decoding approach that performs fast verification using partial key-value states (KV) and periodically applies full verification to eliminate accumulated errors. We validate SpecPV across multiple long-context benchmarks and models, including LLaMA-3.1-8B-Instruct and Qwen3-series. Experimental results show that SpecPV achieves up to 6x decoding speedup over standard autoregressive decoding with minor degradation.
☆ Forecasting MBTA Transit Dynamics: A Performance Benchmarking of Statistical and Machine Learning Models
The Massachusetts Bay Transportation Authority (MBTA) is the main public transit provider in Boston, operating multiple means of transport, including trains, subways, and buses. However, the system often faces delays and fluctuations in ridership volume, which negatively affect efficiency and passenger satisfaction. To further understand this phenomenon, this paper compares the performance of existing and unique methods to determine the best approach in predicting gated station entries in the subway system (a proxy for subway usage) and the number of delays in the overall MBTA system. To do so, this research considers factors that tend to affect public transportation, such as day of week, season, pressure, wind speed, average temperature, and precipitation. This paper evaluates the performance of 10 statistical and machine learning models on predicting next-day subway usage. On predicting delay count, the number of models is extended to 11 per day by introducing a self-exciting point process model, representing a unique application of a point-process framework for MBTA delay modeling. This research involves experimenting with the selective inclusion of features to determine feature importance, testing model accuracy via Root Mean Squared Error (RMSE). Remarkably, it is found that providing either day of week or season data has a more substantial benefit to predictive accuracy compared to weather data; in fact, providing weather data generally worsens performance, suggesting a tendency of models to overfit.
comment: 14 pages 9 figures
☆ Retrieval-Augmented Memory for Online Learning
Retrieval-augmented models couple parametric predictors with non-parametric memories, but their use in streaming supervised learning with concept drift is not well understood. We study online classification in non-stationary environments and propose Retrieval-Augmented Memory for Online Learning (RAM-OL), a simple extension of stochastic gradient descent that maintains a small buffer of past examples. At each time step, RAM-OL retrieves a few nearest neighbours of the current input in the hidden representation space and updates the model jointly on the current example and the retrieved neighbours. We compare a naive replay variant with a gated replay variant that constrains neighbours using a time window, similarity thresholds, and gradient reweighting, in order to balance fast reuse of relevant past data against robustness to outdated regimes. From a theoretical perspective, we interpret RAM-OL under a bounded drift model and discuss how retrieval can reduce adaptation cost and improve regret constants when patterns recur over time. Empirically, we instantiate RAM-OL on a simple online multilayer perceptron and evaluate it on three real-world data streams derived from electricity pricing, electricity load, and airline delay data. On strongly and periodically drifting streams, RAM-OL improves prequential accuracy by up to about seven percentage points and greatly reduces variance across random seeds, while on a noisy airline stream the gated variant closely matches the purely online baseline. These results show that retrieval-augmented memory is a practical and robust tool for online learning under concept drift.
comment: 11 pages, 3 figures
Molecular Embedding-Based Algorithm Selection in Protein-Ligand Docking
Selecting an effective docking algorithm is highly context-dependent, and no single method performs reliably across structural, chemical, or protocol regimes. We introduce MolAS, a lightweight algorithm selection system that predicts per-algorithm performance from pretrained protein-ligand embeddings using attentional pooling and a shallow residual decoder. With only hundreds to a few thousand labelled complexes, MolAS achieves up to 15% absolute improvement over the single-best solver (SBS) and closes 17-66% of the Virtual Best Solver (VBS)-SBS gap across five diverse docking benchmarks. Analyses of reliability, embedding geometry, and solver-selection patterns show that MolAS succeeds when the oracle landscape exhibits low entropy and separable solver behaviour, but collapses under protocol-induced hierarchy shifts. These findings indicate that the main barrier to robust docking AS is not representational capacity but instability in solver rankings across pose-generation regimes, positioning MolAS as both a practical in-domain selector and a diagnostic tool for assessing when AS is feasible.
comment: 25 pages, 13 figures, 5 tables. Protein-ligand docking, algorithm selection, pretrained embeddings (ESM, ChemBERTa), docking benchmarks, oracle-landscape analysis. Code and data available
☆ Unlocking the Power of Boltzmann Machines by Parallelizable Sampler and Efficient Temperature Estimation
Boltzmann machines (BMs) are powerful energy-based generative models, but their heavy training cost has largely confined practical use to Restricted BMs (RBMs) trained with an efficient learning method called contrastive divergence. More accurate learning typically requires Markov chain Monte Carlo (MCMC) Boltzmann sampling, but it is time-consuming due to the difficulty of parallelization for more expressive models. To address this limitation, we first propose a new Boltzmann sampler inspired by a quantum-inspired combinatorial optimization called simulated bifurcation (SB). This SB-inspired approach, which we name Langevin SB (LSB), enables parallelized sampling while maintaining accuracy comparable to MCMC. Furthermore, this is applicable not only to RBMs but also to BMs with general couplings. However, LSB cannot control the inverse temperature of the output Boltzmann distribution, which hinders learning and degrades performance. To overcome this limitation, we also developed an efficient method for estimating the inverse temperature during the learning process, which we call conditional expectation matching (CEM). By combining LSB and CEM, we establish an efficient learning framework for BMs with greater expressive power than RBMs. We refer to this framework as sampler-adaptive learning (SAL). SAL opens new avenues for energy-based generative modeling beyond RBMs.
comment: 16 pages, 14 figures
☆ Few-shot Protein Fitness Prediction via In-context Learning and Test-time Training NeurIPS 2025
Accurately predicting protein fitness with minimal experimental data is a persistent challenge in protein engineering. We introduce PRIMO (PRotein In-context Mutation Oracle), a transformer-based framework that leverages in-context learning and test-time training to adapt rapidly to new proteins and assays without large task-specific datasets. By encoding sequence information, auxiliary zero-shot predictions, and sparse experimental labels from many assays as a unified token set in a pre-training masked-language modeling paradigm, PRIMO learns to prioritize promising variants through a preference-based loss function. Across diverse protein families and properties-including both substitution and indel mutations-PRIMO outperforms zero-shot and fully supervised baselines. This work underscores the power of combining large-scale pre-training with efficient test-time adaptation to tackle challenging protein design tasks where data collection is expensive and label availability is limited.
comment: AI for Science Workshop (NeurIPS 2025)
☆ OmniGuard: Unified Omni-Modal Guardrails with Deliberate Reasoning
Omni-modal Large Language Models (OLLMs) that process text, images, videos, and audio introduce new challenges for safety and value guardrails in human-AI interaction. Prior guardrail research largely targets unimodal settings and typically frames safeguarding as binary classification, which limits robustness across diverse modalities and tasks. To address this gap, we propose OmniGuard, the first family of omni-modal guardrails that performs safeguarding across all modalities with deliberate reasoning ability. To support the training of OMNIGUARD, we curate a large, comprehensive omni-modal safety dataset comprising over 210K diverse samples, with inputs that cover all modalities through both unimodal and cross-modal samples. Each sample is annotated with structured safety labels and carefully curated safety critiques from expert models through targeted distillation. Extensive experiments on 15 benchmarks show that OmniGuard achieves strong effectiveness and generalization across a wide range of multimodal safety scenarios. Importantly, OmniGuard provides a unified framework that enforces policies and mitigates risks in omni-modalities, paving the way toward building more robust and capable omnimodal safeguarding systems.
Training Dynamics of Learning 3D-Rotational Equivariance
While data augmentation is widely used to train symmetry-agnostic models, it remains unclear how quickly and effectively they learn to respect symmetries. We investigate this by deriving a principled measure of equivariance error that, for convex losses, calculates the percent of total loss attributable to imperfections in learned symmetry. We focus our empirical investigation to 3D-rotation equivariance on high-dimensional molecular tasks (flow matching, force field prediction, denoising voxels) and find that models reduce equivariance error quickly to $\leq$2\% held-out loss within 1k-10k training steps, a result robust to model and dataset size. This happens because learning 3D-rotational equivariance is an easier learning task, with a smoother and better-conditioned loss landscape, than the main prediction task. For 3D rotations, the loss penalty for non-equivariant models is small throughout training, so they may achieve lower test loss than equivariant models per GPU-hour unless the equivariant ``efficiency gap'' is narrowed. We also experimentally and theoretically investigate the relationships between relative equivariance error, learning gradients, and model parameters.
comment: Accepted to Transactions on Machine Learning Research (TMLR)
☆ Unlocking hidden biomolecular conformational landscapes in diffusion models at inference time
The function of biomolecules such as proteins depends on their ability to interconvert between a wide range of structures or "conformations." Researchers have endeavored for decades to develop computational methods to predict the distribution of conformations, which is far harder to determine experimentally than a static folded structure. We present ConforMix, an inference-time algorithm that enhances sampling of conformational distributions using a combination of classifier guidance, filtering, and free energy estimation. Our approach upgrades diffusion models -- whether trained for static structure prediction or conformational generation -- to enable more efficient discovery of conformational variability without requiring prior knowledge of major degrees of freedom. ConforMix is orthogonal to improvements in model pretraining and would benefit even a hypothetical model that perfectly reproduced the Boltzmann distribution. Remarkably, when applied to a diffusion model trained for static structure prediction, ConforMix captures structural changes including domain motion, cryptic pocket flexibility, and transporter cycling, while avoiding unphysical states. Case studies of biologically critical proteins demonstrate the scalability, accuracy, and utility of this method.
comment: Project page: https://github.com/drorlab/conformix
☆ Randomized Masked Finetuning: An Efficient Way to Mitigate Memorization of PIIs in LLMs ICML 2026
The current literature on memorization in Natural Language Models, especially Large Language Models (LLMs), poses severe security and privacy risks, as models tend to memorize personally identifying information (PIIs) from training data. We introduce Randomized Masked Fine-Tuning (RMFT), a novel privacy-preserving fine-tuning technique that reduces PII memorization while minimizing performance impact. Using the Enron Email Dataset, we demonstrate that RMFT achieves an 80.81% reduction in Total Extraction Rate and 80.17% reduction in Seen Extraction Rate compared to baseline fine-tuning, outperforming deduplication methods while maintaining only a 5.73% increase in perplexity. We present MaxTER, a Pareto-optimal evaluation framework for assessing privacy-utility tradeoffs, and show the performance of RMFT vs Deduplication by Area Under The Response Curve (AURC) metric.
comment: To be submitted for ICML 2026
☆ Retrofitting Earth System Models with Cadence-Limited Neural Operator Updates
Coarse resolution, imperfect parameterizations, and uncertain initial states and forcings limit Earth-system model (ESM) predictions. Traditional bias correction via data assimilation improves constrained simulations but offers limited benefit once models run freely. We introduce an operator-learning framework that maps instantaneous model states to bias-correction tendencies and applies them online during integration. Building on a U-Net backbone, we develop two operator architectures Inception U-Net (IUNet) and a multi-scale network (M\&M) that combine diverse upsampling and receptive fields to capture multiscale nonlinear features under Energy Exascale Earth System Model (E3SM) runtime constraints. Trained on two years E3SM simulations nudged toward ERA5 reanalysis, the operators generalize across height levels and seasons. Both architectures outperform standard U-Net baselines in offline tests, indicating that functional richness rather than parameter count drives performance. In online hybrid E3SM runs, M\&M delivers the most consistent bias reductions across variables and vertical levels. The ML-augmented configurations remain stable and computationally feasible in multi-year simulations, providing a practical pathway for scalable hybrid modeling. Our framework emphasizes long-term stability, portability, and cadence-limited updates, demonstrating the utility of expressive ML operators for learning structured, cross-scale relationships and retrofitting legacy ESMs.
☆ Robust Tabular Foundation Models AAAI 2026
The development of tabular foundation models (TFMs) has accelerated in recent years, showing strong potential to outperform traditional ML methods for structured data. A key finding is that TFMs can be pretrained entirely on synthetic datasets, opening opportunities to design data generators that encourage desirable model properties. Prior work has mainly focused on crafting high-quality priors over generators to improve overall pretraining performance. Our insight is that parameterizing the generator distribution enables an adversarial robustness perspective: during training, we can adapt the generator to emphasize datasets that are particularly challenging for the model. We formalize this by introducing an optimality gap measure, given by the difference between TFM performance and the best achievable performance as estimated by strong baselines such as XGBoost, CatBoost, and Random Forests. Building on this idea, we propose Robust Tabular Foundation Models (RTFM), a model-agnostic adversarial training framework. Applied to the TabPFN V2 classifier, RTFM improves benchmark performance, with up to a 6% increase in mean normalized AUC over the original TabPFN and other baseline algorithms, while requiring less than 100k additional synthetic datasets. These results highlight a promising new direction for targeted adversarial training and fine-tuning of TFMs using synthetic data alone.
comment: Shaping Responsible Synthetic Data in the Era of Foundation Models, AAAI 2026
☆ HydroDCM: Hydrological Domain-Conditioned Modulation for Cross-Reservoir Inflow Prediction AAAI 2026
Deep learning models have shown promise in reservoir inflow prediction, yet their performance often deteriorates when applied to different reservoirs due to distributional differences, referred to as the domain shift problem. Domain generalization (DG) solutions aim to address this issue by extracting domain-invariant representations that mitigate errors in unseen domains. However, in hydrological settings, each reservoir exhibits unique inflow patterns, while some metadata beyond observations like spatial information exerts indirect but significant influence. This mismatch limits the applicability of conventional DG techniques to many-domain hydrological systems. To overcome these challenges, we propose HydroDCM, a scalable DG framework for cross-reservoir inflow forecasting. Spatial metadata of reservoirs is used to construct pseudo-domain labels that guide adversarial learning of invariant temporal features. During inference, HydroDCM adapts these features through light-weight conditioning layers informed by the target reservoir's metadata, reconciling DG's invariance with location-specific adaptation. Experiment results on 30 real-world reservoirs in the Upper Colorado River Basin demonstrate that our method substantially outperforms state-of-the-art DG baselines under many-domain conditions and remains computationally efficient.
comment: Accepted by AAAI 2026 workshop (oral) on AI for Environmental Science
☆ Adaptive Regime-Switching Forecasts with Distribution-Free Uncertainty: Deep Switching State-Space Models Meet Conformal Prediction
Regime transitions routinely break stationarity in time series, making calibrated uncertainty as important as point accuracy. We study distribution-free uncertainty for regime-switching forecasting by coupling Deep Switching State Space Models with Adaptive Conformal Inference (ACI) and its aggregated variant (AgACI). We also introduce a unified conformal wrapper that sits atop strong sequence baselines including S4, MC-Dropout GRU, sparse Gaussian processes, and a change-point local model to produce online predictive bands with finite-sample marginal guarantees under nonstationarity and model misspecification. Across synthetic and real datasets, conformalized forecasters achieve near-nominal coverage with competitive accuracy and generally improved band efficiency.
☆ Associating Healthcare Teamwork with Patient Outcomes for Predictive Analysis
Cancer treatment outcomes are influenced not only by clinical and demographic factors but also by the collaboration of healthcare teams. However, prior work has largely overlooked the potential role of human collaboration in shaping patient survival. This paper presents an applied AI approach to uncovering the impact of healthcare professionals' (HCPs) collaboration-captured through electronic health record (EHR) systems-on cancer patient outcomes. We model EHR-mediated HCP interactions as networks and apply machine learning techniques to detect predictive signals of patient survival embedded in these collaborations. Our models are cross validated to ensure generalizability, and we explain the predictions by identifying key network traits associated with improved outcomes. Importantly, clinical experts and literature validate the relevance of the identified crucial collaboration traits, reinforcing their potential for real-world applications. This work contributes to a practical workflow for leveraging digital traces of collaboration and AI to assess and improve team-based healthcare. The approach is potentially transferable to other domains involving complex collaboration and offers actionable insights to support data-informed interventions in healthcare delivery.
☆ ASPEN: An Adaptive Spectral Physics-Enabled Network for Ginzburg-Landau Dynamics
Physics-Informed Neural Networks (PINNs) have emerged as a powerful, mesh-free paradigm for solving partial differential equations (PDEs). However, they notoriously struggle with stiff, multi-scale, and nonlinear systems due to the inherent spectral bias of standard multilayer perceptron (MLP) architectures, which prevents them from adequately representing high-frequency components. In this work, we introduce the Adaptive Spectral Physics-Enabled Network (ASPEN), a novel architecture designed to overcome this critical limitation. ASPEN integrates an adaptive spectral layer with learnable Fourier features directly into the network's input stage. This mechanism allows the model to dynamically tune its own spectral basis during training, enabling it to efficiently learn and represent the precise frequency content required by the solution. We demonstrate the efficacy of ASPEN by applying it to the complex Ginzburg-Landau equation (CGLE), a canonical and challenging benchmark for nonlinear, stiff spatio-temporal dynamics. Our results show that a standard PINN architecture catastrophically fails on this problem, diverging into non-physical oscillations. In contrast, ASPEN successfully solves the CGLE with exceptional accuracy. The predicted solution is visually indistinguishable from the high-resolution ground truth, achieving a low median physics residual of 5.10 x 10^-3. Furthermore, we validate that ASPEN's solution is not only pointwise accurate but also physically consistent, correctly capturing emergent physical properties, including the rapid free energy relaxation and the long-term stability of the domain wall front. This work demonstrates that by incorporating an adaptive spectral basis, our framework provides a robust and physically-consistent solver for complex dynamical systems where standard PINNs fail, opening new options for machine learning in challenging physical domains.
comment: 15 pages, 7 figures
☆ Multi-Frequency Federated Learning for Human Activity Recognition Using Head-Worn Sensors
Human Activity Recognition (HAR) benefits various application domains, including health and elderly care. Traditional HAR involves constructing pipelines reliant on centralized user data, which can pose privacy concerns as they necessitate the uploading of user data to a centralized server. This work proposes multi-frequency Federated Learning (FL) to enable: (1) privacy-aware ML; (2) joint ML model learning across devices with varying sampling frequency. We focus on head-worn devices (e.g., earbuds and smart glasses), a relatively unexplored domain compared to traditional smartwatch- or smartphone-based HAR. Results have shown improvements on two datasets against frequency-specific approaches, indicating a promising future in the multi-frequency FL-HAR task. The proposed network's implementation is publicly available for further research and development.
comment: 8 pages, 2024 International Conference on Intelligent Environments (IE), 2024
☆ BlendedNet++: A Large-Scale Blended Wing Body Aerodynamics Dataset and Benchmark
Despite progress in machine learning-based aerodynamic surrogates, the scarcity of large, field-resolved datasets limits progress on accurate pointwise prediction and reproducible inverse design for aircraft. We introduce BlendedNet++, a large-scale aerodynamic dataset and benchmark focused on blended wing body (BWB) aircraft. The dataset contains over 12,000 unique geometries, each simulated at a single flight condition, yielding 12,490 aerodynamic results for steady RANS CFD. For every case, we provide (i) integrated force/moment coefficients CL, CD, CM and (ii) dense surface fields of pressure and skin friction coefficients Cp and (Cfx, Cfy, Cfz). Using this dataset, we standardize a forward-surrogate benchmark to predict pointwise fields across six model families: GraphSAGE, GraphUNet, PointNet, a coordinate Transformer (Transolver-style), a FiLMNet (coordinate MLP with feature-wise modulation), and a Graph Neural Operator Transformer (GNOT). Finally, we present an inverse design task of achieving a specified lift-to-drag ratio under fixed flight conditions, implemented via a conditional diffusion model. To assess performance, we benchmark this approach against gradient-based optimization on the same surrogate and a diffusion-optimization hybrid that first samples with the conditional diffusion model and then further optimizes the designs. BlendedNet++ provides a unified forward and inverse protocol with multi-model baselines, enabling fair, reproducible comparison across architectures and optimization paradigms. We expect BlendedNet++ to catalyze reproducible research in field-level aerodynamics and inverse design; resources (dataset, splits, baselines, and scripts) will be released upon acceptance.
☆ Too Late to Recall: Explaining the Two-Hop Problem in Multimodal Knowledge Retrieval
Training vision language models (VLMs) aims to align visual representations from a vision encoder with the textual representations of a pretrained large language model (LLM). However, many VLMs exhibit reduced factual recall performance compared to their LLM backbones, raising the question of how effective multimodal fine-tuning is at extending existing mechanisms within the LLM to visual inputs. We argue that factual recall based on visual inputs requires VLMs to solve a two-hop problem: (1) forming entity representations from visual inputs, and (2) recalling associated factual knowledge based on these entity representations. By benchmarking 14 VLMs with various architectures (LLaVA, Native, Cross-Attention), sizes (7B-124B parameters), and training setups on factual recall tasks against their original LLM backbone models, we find that 11 of 14 models exhibit factual recall degradation. We select three models with high and two models with low performance degradation, and use attribution patching, activation patching, and probing to show that degraded VLMs struggle to use the existing factual recall circuit of their LLM backbone, because they resolve the first hop too late in the computation. In contrast, high-performing VLMs resolve entity representations early enough to reuse the existing factual recall mechanism. Finally, we demonstrate two methods to recover performance: patching entity representations from the LLM backbone into the VLM, and prompting with chain-of-thought reasoning. Our results highlight that the speed of early entity resolution critically determines how effective VLMs are in using preexisting LLM mechanisms. More broadly, our work illustrates how mechanistic analysis can explain and unveil systematic failures in multimodal alignment.
☆ PyroFocus: A Deep Learning Approach to Real-Time Wildfire Detection in Multispectral Remote Sensing Imagery
Rapid and accurate wildfire detection is crucial for emergency response and environmental management. In airborne and spaceborne missions, real-time algorithms must distinguish between no fire, active fire, and post-fire conditions, and estimate fire intensity. Multispectral and hyperspectral thermal imagers provide rich spectral information, but high data dimensionality and limited onboard resources make real-time processing challenging. As wildfires increase in frequency and severity, the need for low-latency and computationally efficient onboard detection methods is critical. We present a systematic evaluation of multiple deep learning architectures, including custom Convolutional Neural Networks (CNNs) and Transformer-based models, for multi-class fire classification. We also introduce PyroFocus, a two-stage pipeline that performs fire classification followed by fire radiative power (FRP) regression or segmentation to reduce inference time and computational cost for onboard deployment. Using data from NASA's MODIS/ASTER Airborne Simulator (MASTER), which is similar to a next-generation fire detection sensor, we compare accuracy, inference latency, and resource efficiency. Experimental results show that the proposed two-stage pipeline achieves strong trade-offs between speed and accuracy, demonstrating significant potential for real-time edge deployment in future wildfire monitoring missions.
☆ Learning Network Sheaves for AI-native Semantic Communication
Recent advances in AI call for a paradigm shift from bit-centric communication to goal- and semantics-oriented architectures, paving the way for AI-native 6G networks. In this context, we address a key open challenge: enabling heterogeneous AI agents to exchange compressed latent-space representations while mitigating semantic noise and preserving task-relevant meaning. We cast this challenge as learning both the communication topology and the alignment maps that govern information exchange among agents, yielding a learned network sheaf equipped with orthogonal maps. This learning process is further supported by a semantic denoising end compression module that constructs a shared global semantic space and derives sparse, structured representations of each agent's latent space. This corresponds to a nonconvex dictionary learning problem solved iteratively with closed-form updates. Experiments with mutiple AI agents pre-trained on real image data show that the semantic denoising and compression facilitates AI agents alignment and the extraction of semantic clusters, while preserving high accuracy in downstream task. The resulting communication network provides new insights about semantic heterogeneity across agents, highlighting the interpretability of our methodology.
☆ SPARK: Stepwise Process-Aware Rewards for Reference-Free Reinforcement Learning
Process reward models (PRMs) that provide dense, step-level feedback have shown promise for reinforcement learning, yet their adoption remains limited by the need for expensive step-level annotations or ground truth references. We propose SPARK: a three-stage framework where in the first stage a generator model produces diverse solutions and a verifier model evaluates them using parallel scaling (self-consistency) and sequential scaling (meta-critique). In the second stage, we use these verification outputs as synthetic training data to fine-tune generative process reward models, which subsequently serve as reward signals during training. We show that aggregating multiple independent verifications at the step level produces training data for process reward models that surpass ground-truth outcome supervision, achieving 67.5 F1 on ProcessBench (a benchmark for identifying erroneous steps in mathematical reasoning) compared to 66.4 for reference-guided training and 61.9 for GPT-4o. In the final stage, we apply our generative PRM with chain-of-thought verification (PRM-CoT) as the reward model in RL experiments on mathematical reasoning, and introduce format constraints to prevent reward hacking. Using Qwen2.5-Math-7B, we achieve 47.4% average accuracy across six mathematical reasoning benchmarks, outperforming ground-truth-based RLVR (43.9%). Our work enables reference-free RL training that exceeds ground-truth methods, opening new possibilities for domains lacking verifiable answers or accessible ground truth.
☆ Novelty detection on path space
We frame novelty detection on path space as a hypothesis testing problem with signature-based test statistics. Using transportation-cost inequalities of Gasteratos and Jacquier (2023), we obtain tail bounds for false positive rates that extend beyond Gaussian measures to laws of RDE solutions with smooth bounded vector fields, yielding estimates of quantiles and p-values. Exploiting the shuffle product, we derive exact formulae for smooth surrogates of conditional value-at-risk (CVaR) in terms of expected signatures, leading to new one-class SVM algorithms optimising smooth CVaR objectives. We then establish lower bounds on type-$\mathrm{II}$ error for alternatives with finite first moment, giving general power bounds when the reference measure and the alternative are absolutely continuous with respect to each other. Finally, we evaluate numerically the type-$\mathrm{I}$ error and statistical power of signature-based test statistic, using synthetic anomalous diffusion data and real-world molecular biology data.
☆ How to DP-fy Your Data: A Practical Guide to Generating Synthetic Data With Differential Privacy
High quality data is needed to unlock the full potential of AI for end users. However finding new sources of such data is getting harder: most publicly-available human generated data will soon have been used. Additionally, publicly available data often is not representative of users of a particular system -- for example, a research speech dataset of contractors interacting with an AI assistant will likely be more homogeneous, well articulated and self-censored than real world commands that end users will issue. Therefore unlocking high-quality data grounded in real user interactions is of vital interest. However, the direct use of user data comes with significant privacy risks. Differential Privacy (DP) is a well established framework for reasoning about and limiting information leakage, and is a gold standard for protecting user privacy. The focus of this work, \emph{Differentially Private Synthetic data}, refers to synthetic data that preserves the overall trends of source data,, while providing strong privacy guarantees to individuals that contributed to the source dataset. DP synthetic data can unlock the value of datasets that have previously been inaccessible due to privacy concerns and can replace the use of sensitive datasets that previously have only had rudimentary protections like ad-hoc rule-based anonymization. In this paper we explore the full suite of techniques surrounding DP synthetic data, the types of privacy protections they offer and the state-of-the-art for various modalities (image, tabular, text and decentralized). We outline all the components needed in a system that generates DP synthetic data, from sensitive data handling and preparation, to tracking the use and empirical privacy testing. We hope that work will result in increased adoption of DP synthetic data, spur additional research and increase trust in DP synthetic data approaches.
☆ Iterative Tilting for Diffusion Fine-Tuning
We introduce iterative tilting, a gradient-free method for fine-tuning diffusion models toward reward-tilted distributions. The method decomposes a large reward tilt $\exp(λr)$ into $N$ sequential smaller tilts, each admitting a tractable score update via first-order Taylor expansion. This requires only forward evaluations of the reward function and avoids backpropagating through sampling chains. We validate on a two-dimensional Gaussian mixture with linear reward, where the exact tilted distribution is available in closed form.
comment: 14 pages
☆ Convergence of a class of gradient-free optimisation schemes when the objective function is noisy, irregular, or both
We investigate the convergence properties of a class of iterative algorithms designed to minimize a potentially non-smooth and noisy objective function, which may be algebraically intractable and whose values may be obtained as the output of a black box. The algorithms considered can be cast under the umbrella of a generalised gradient descent recursion, where the gradient is that of a smooth approximation of the objective function. The framework we develop includes as special cases model-based and mollification methods, two classical approaches to zero-th order optimisation. The convergence results are obtained under very weak assumptions on the regularity of the objective function and involve a trade-off between the degree of smoothing and size of the steps taken in the parameter updates. As expected, additional assumptions are required in the stochastic case. We illustrate the relevance of these algorithms and our convergence results through a challenging classification example from machine learning.
☆ Perch 2.0 transfers 'whale' to underwater tasks NeurIPS 2025
Perch 2.0 is a supervised bioacoustics foundation model pretrained on 14,597 species, including birds, mammals, amphibians, and insects, and has state-of-the-art performance on multiple benchmarks. Given that Perch 2.0 includes almost no marine mammal audio or classes in the training data, we evaluate Perch 2.0 performance on marine mammal and underwater audio tasks through few-shot transfer learning. We perform linear probing with the embeddings generated from this foundation model and compare performance to other pretrained bioacoustics models. In particular, we compare Perch 2.0 with previous multispecies whale, Perch 1.0, SurfPerch, AVES-bio, BirdAVES, and Birdnet V2.3 models, which have open-source tools for transfer-learning and agile modeling. We show that the embeddings from the Perch 2.0 model have consistently high performance for few-shot transfer learning, generally outperforming alternative embedding models on the majority of tasks, and thus is recommended when developing new linear classifiers for marine mammal classification with few labeled examples.
comment: 8 pages, 3 figures, 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: AI for Non-Human Animal Communication
☆ A Multi-Agent, Policy-Gradient approach to Network Routing
Network routing is a distributed decision problem which naturally admits numerical performance measures, such as the average time for a packet to travel from source to destination. OLPOMDP, a policy-gradient reinforcement learning algorithm, was successfully applied to simulated network routing under a number of network models. Multiple distributed agents (routers) learned co-operative behavior without explicit inter-agent communication, and they avoided behavior which was individually desirable, but detrimental to the group's overall performance. Furthermore, shaping the reward signal by explicitly penalizing certain patterns of sub-optimal behavior was found to dramatically improve the convergence rate.
☆ Flux4D: Flow-based Unsupervised 4D Reconstruction NeurIPS 2025
Reconstructing large-scale dynamic scenes from visual observations is a fundamental challenge in computer vision, with critical implications for robotics and autonomous systems. While recent differentiable rendering methods such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) have achieved impressive photorealistic reconstruction, they suffer from scalability limitations and require annotations to decouple actor motion. Existing self-supervised methods attempt to eliminate explicit annotations by leveraging motion cues and geometric priors, yet they remain constrained by per-scene optimization and sensitivity to hyperparameter tuning. In this paper, we introduce Flux4D, a simple and scalable framework for 4D reconstruction of large-scale dynamic scenes. Flux4D directly predicts 3D Gaussians and their motion dynamics to reconstruct sensor observations in a fully unsupervised manner. By adopting only photometric losses and enforcing an "as static as possible" regularization, Flux4D learns to decompose dynamic elements directly from raw data without requiring pre-trained supervised models or foundational priors simply by training across many scenes. Our approach enables efficient reconstruction of dynamic scenes within seconds, scales effectively to large datasets, and generalizes well to unseen environments, including rare and unknown objects. Experiments on outdoor driving datasets show Flux4D significantly outperforms existing methods in scalability, generalization, and reconstruction quality.
comment: NeurIPS 2025. Project page: https://waabi.ai/flux4d/
☆ Uncertainty Quantification for Large Language Model Reward Learning under Heterogeneous Human Feedback
We study estimation and statistical inference for reward models used in aligning large language models (LLMs). A key component of LLM alignment is reinforcement learning from human feedback (RLHF), where humans compare pairs of model-generated answers and their preferences are used to train a reward model. However, human feedback is inherently heterogeneous, creating significant challenges for reliable reward learning. To address this, we adopt a heterogeneous preference framework that jointly models the latent reward of answers and human rationality. This leads to a challenging biconvex optimization problem, which we solve via an alternating gradient descent algorithm. We establish theoretical guarantees for the resulting estimator, including its convergence and asymptotic distribution. These results enable the construction of confidence intervals for reward estimates. Leveraging these uncertainty quantification results, we conduct valid statistical comparisons between rewards and incorporate uncertainty into the best-of-$N$ (BoN) policy framework. Extensive simulations demonstrate the effectiveness of our method, and applications to real LLM data highlight the practical value of accounting for uncertainty in reward modeling for LLM alignment.
☆ Scaling Internal-State Policy-Gradient Methods for POMDPs
Policy-gradient methods have received increased attention recently as a mechanism for learning to act in partially observable environments. They have shown promise for problems admitting memoryless policies but have been less successful when memory is required. In this paper we develop several improved algorithms for learning policies with memory in an infinite-horizon setting -- directly when a known model of the environment is available, and via simulation otherwise. We compare these algorithms on some large POMDPs, including noisy robot navigation and multi-agent problems.
☆ Ultra-Strong Gradient Diffusion MRI with Self-Supervised Learning for Prostate Cancer Characterization
Diffusion MRI (dMRI) enables non-invasive assessment of prostate microstructure but conventional metrics such as the Apparent Diffusion Coefficient in multiparametric MRI lack specificity to underlying histology. Integrating dMRI with the compartment-based biophysical VERDICT (Vascular, Extracellular, and Restricted Diffusion for Cytometry in Tumours) framework offers richer microstructural insights, though clinical gradient systems (40-80 mT/m) suffer from poor signal-to-noise ratio (SNR) at stronger diffusion weightings due to prolonged echo times. Ultra-strong gradients (up to 300 mT/m) can mitigate these limitations by improving SNR and contrast-to-noise ratios (CNR) but their adoption has until recently been limited to research environments due to challenges with peripheral nerve stimulation thresholds and gradient non-uniformity. This study investigates whether physics-informed self-supervised VERDICT (ssVERDICT) fitting applied to ultra-strong gradients enhances prostate cancer characterization relative to current clinical acquisitions. We developed enhanced ssVERDICT fitting approaches using dense multilayer perceptron (Dense MLP) and convolutional U-Net architectures, benchmarking them against non-linear least-squares (NLLS) fitting and Diffusion Kurtosis Imaging across clinical- to ultra-strong gradient systems. Dense ssVERDICT at ultra-strong gradient notably outperformed NLLS VERDICT, boosting median CNR by 47%, cutting inter-patient Coefficient of Variation by 52%, and reducing pooled f_ic variation by 50%. Overall, it delivered the highest CNR, the most stable parameter estimates, and the clearest tumour-normal contrast compared with conventional methods and clinical gradient systems. These findings highlight the potential of advanced gradient systems and deep learning-based modelling to improve non-invasive prostate cancer characterization and reduce unnecessary biopsies.
comment: 24 pages, 17 figures, 7 tables
☆ Enhancing Job Matching: Occupation, Skill and Qualification Linking with the ESCO and EQF taxonomies
This study investigates the potential of language models to improve the classification of labor market information by linking job vacancy texts to two major European frameworks: the European Skills, Competences, Qualifications and Occupations (ESCO) taxonomy and the European Qualifications Framework (EQF). We examine and compare two prominent methodologies from the literature: Sentence Linking and Entity Linking. In support of ongoing research, we release an open-source tool, incorporating these two methodologies, designed to facilitate further work on labor classification and employment discourse. To move beyond surface-level skill extraction, we introduce two annotated datasets specifically aimed at evaluating how occupations and qualifications are represented within job vacancy texts. Additionally, we examine different ways to utilize generative large language models for this task. Our findings contribute to advancing the state of the art in job entity extraction and offer computational infrastructure for examining work, skills, and labor market narratives in a digitally mediated economy. Our code is made publicly available: https://github.com/tabiya-tech/tabiya-livelihoods-classifier
comment: 14 pages, 1 figure, Preprint
☆ GRAND: Guidance, Rebalancing, and Assignment for Networked Dispatch in Multi-Agent Path Finding
Large robot fleets are now common in warehouses and other logistics settings, where small control gains translate into large operational impacts. In this article, we address task scheduling for lifelong Multi-Agent Pickup-and-Delivery (MAPD) and propose a hybrid method that couples learning-based global guidance with lightweight optimization. A graph neural network policy trained via reinforcement learning outputs a desired distribution of free agents over an aggregated warehouse graph. This signal is converted into region-to-region rebalancing through a minimum-cost flow, and finalized by small, local assignment problems, preserving accuracy while keeping per-step latency within a 1 s compute budget. On congested warehouse benchmarks from the League of Robot Runners (LRR) with up to 500 agents, our approach improves throughput by up to 10% over the 2024 winning scheduler while maintaining real-time execution. The results indicate that coupling graph-structured learned guidance with tractable solvers reduces congestion and yields a practical, scalable blueprint for high-throughput scheduling in large fleets.
☆ In Situ Quantum Analog Pulse Characterization via Structured Signal Processing
Analog quantum simulators can directly emulate time-dependent Hamiltonian dynamics, enabling the exploration of diverse physical phenomena such as phase transitions, quench dynamics, and non-equilibrium processes. Realizing accurate analog simulations requires high-fidelity time-dependent pulse control, yet existing calibration schemes are tailored to digital gate characterization and cannot be readily extended to learn continuous pulse trajectories. We present a characterization algorithm for in situ learning of pulse trajectories by extending the Quantum Signal Processing (QSP) framework to analyze time-dependent pulses. By combining QSP with a logical-level analog-digital mapping paradigm, our method reconstructs a smooth pulse directly from queries of the time-ordered propagator, without requiring mid-circuit measurements or additional evolution. Unlike conventional Trotterization-based methods, our approach avoids unscalable performance degradation arising from accumulated local truncation errors as the logical-level segmentation increases. Through rigorous theoretical analysis and extensive numerical simulations, we demonstrate that our method achieves high accuracy with strong efficiency and robustness against SPAM as well as depolarizing errors, providing a lightweight and optimal validation protocol for analog quantum simulators capable of detecting major hardware faults.
comment: 48 pages, 10 figures
☆ Neighborhood density estimation using space-partitioning based hashing schemes
This work introduces FiRE/FiRE.1, a novel sketching-based algorithm for anomaly detection to quickly identify rare cell sub-populations in large-scale single-cell RNA sequencing data. This method demonstrated superior performance against state-of-the-art techniques. Furthermore, the thesis proposes Enhash, a fast and resource-efficient ensemble learner that uses projection hashing to detect concept drift in streaming data, proving highly competitive in time and accuracy across various drift types.
comment: arXiv admin note: text overlap with arXiv:2011.03729
☆ Drainage: A Unifying Framework for Addressing Class Uncertainty
Modern deep learning faces significant challenges with noisy labels, class ambiguity, as well as the need to robustly reject out-of-distribution or corrupted samples. In this work, we propose a unified framework based on the concept of a "drainage node'' which we add at the output of the network. The node serves to reallocate probability mass toward uncertainty, while preserving desirable properties such as end-to-end training and differentiability. This mechanism provides a natural escape route for highly ambiguous, anomalous, or noisy samples, particularly relevant for instance-dependent and asymmetric label noise. In systematic experiments involving the addition of varying proportions of instance-dependent noise or asymmetric noise to CIFAR-10/100 labels, our drainage formulation achieves an accuracy increase of up to 9\% over existing approaches in the high-noise regime. Our results on real-world datasets, such as mini-WebVision, mini-ImageNet and Clothing-1M, match or surpass existing state-of-the-art methods. Qualitative analysis reveals a denoising effect, where the drainage neuron consistently absorbs corrupt, mislabeled, or outlier data, leading to more stable decision boundaries. Furthermore, our drainage formulation enables applications well beyond classification, with immediate benefits for web-scale, semi-supervised dataset cleaning, and open-set applications.
comment: 16 pages, 8 figures
☆ Plantain: Plan-Answer Interleaved Reasoning
Reasoning models often spend a significant amount of time thinking before they generate a visible response. In the meantime, they do not give the user any hints as to whether their reasoning is on the right track, and do not give the user any recourse to stop and correct them if their reasoning is flawed. This creates a frustrating, but unfortunately common, experience: the user's time is wasted while the model reasons from a false premise that could have easily been corrected. In contrast, human speakers typically perform lightweight, incremental grounding acts to ensure that participants in the conversation are on the same page; here we ask if language models can learn to leverage a similar type of behavior? With this motivation, we propose interleaved reasoning (IR), in which the model alternates between thinking and surfacing intermediate responses, as an alternative to the standard "think-then-answer" approach. By providing useful information to the user earlier, IR reduces perceived latency, the time a user waits for an initial output, without compromising the quality of the final response. We further introduce a specialization of interleaved reasoning, Plantain (Plan-Thought-Answer Interleaving), where the first intermediate response is an explicit, step-by-step plan for executing the task. This plan-first strategy allows for user intervention and early feedback for subsequent reasoning steps. We demonstrate that Plantain yields an ~6% improvement in pass@1 across several challenging math reasoning and coding benchmarks, while reducing time-to-first-response by over 60% relative to think-then-answer baselines.
☆ Contrastive Deep Learning for Variant Detection in Wastewater Genomic Sequencing
Wastewater-based genomic surveillance has emerged as a powerful tool for population-level viral monitoring, offering comprehensive insights into circulating viral variants across entire communities. However, this approach faces significant computational challenges stemming from high sequencing noise, low viral coverage, fragmented reads, and the complete absence of labeled variant annotations. Traditional reference-based variant calling pipelines struggle with novel mutations and require extensive computational resources. We present a comprehensive framework for unsupervised viral variant detection using Vector-Quantized Variational Autoencoders (VQ-VAE) that learns discrete codebooks of genomic patterns from k-mer tokenized sequences without requiring reference genomes or variant labels. Our approach extends the base VQ-VAE architecture with masked reconstruction pretraining for robustness to missing data and contrastive learning for highly discriminative embeddings. Evaluated on SARS-CoV-2 wastewater sequencing data comprising approximately 100,000 reads, our VQ-VAE achieves 99.52% mean token-level accuracy and 56.33% exact sequence match rate while maintaining 19.73% codebook utilization (101 of 512 codes active), demonstrating efficient discrete representation learning. Contrastive fine-tuning with different projection dimensions yields substantial clustering improvements: 64-dimensional embeddings achieve +35% Silhouette score improvement (0.31 to 0.42), while 128-dimensional embeddings achieve +42% improvement (0.31 to 0.44), clearly demonstrating the impact of embedding dimensionality on variant discrimination capability. Our reference-free framework provides a scalable, interpretable approach to genomic surveillance with direct applications to public health monitoring.
comment: 13 pages, 4 figures
☆ Atomic Diffusion Models for Small Molecule Structure Elucidation from NMR Spectra NeurIPS 2025
Nuclear Magnetic Resonance (NMR) spectroscopy is a cornerstone technique for determining the structures of small molecules and is especially critical in the discovery of novel natural products and clinical therapeutics. Yet, interpreting NMR spectra remains a time-consuming, manual process requiring extensive domain expertise. We introduce ChefNMR (CHemical Elucidation From NMR), an end-to-end framework that directly predicts an unknown molecule's structure solely from its 1D NMR spectra and chemical formula. We frame structure elucidation as conditional generation from an atomic diffusion model built on a non-equivariant transformer architecture. To model the complex chemical groups found in natural products, we generated a dataset of simulated 1D NMR spectra for over 111,000 natural products. ChefNMR predicts the structures of challenging natural product compounds with an unsurpassed accuracy of over 65%. This work takes a significant step toward solving the grand challenge of automating small-molecule structure elucidation and highlights the potential of deep learning in accelerating molecular discovery. Code is available at https://github.com/ml-struct-bio/chefnmr.
comment: NeurIPS 2025
☆ Mitigating Intra- and Inter-modal Forgetting in Continual Learning of Unified Multimodal Models NeurIPS 2025
Unified Multimodal Generative Models (UMGMs) unify visual understanding and image generation within a single autoregressive framework. However, their ability to continually learn new tasks is severely hindered by catastrophic forgetting, both within a modality (intra-modal) and across modalities (inter-modal). While intra-modal forgetting has been studied in prior continual learning (CL) work, inter-modal forgetting remains largely unexplored. In this paper, we identify and empirically validate this phenomenon in UMGMs and provide a theoretical explanation rooted in gradient conflict between modalities. To address both intra- and inter-modal forgetting, we propose Modality-Decoupled Experts (MoDE), a lightweight and scalable architecture that isolates modality-specific updates to mitigate the gradient conflict and leverages knowledge distillation to prevent catastrophic forgetting and preserve pre-trained capabilities. Unlike previous CL methods that remain modality-coupled and suffer from modality gradient conflict, MoDE explicitly decouples modalities to prevent interference. Experiments across diverse benchmarks demonstrate that MoDE significantly mitigates both inter- and intra-modal forgetting, outperforming prior CL baselines in unified multimodal generation settings. Codes will be publicly available: https://github.com/Christina200/MoDE-official.git
comment: NeurIPS 2025
♻ ☆ Amortized Sampling with Transferable Normalizing Flows NeurIPS 2025
Efficient equilibrium sampling of molecular conformations remains a core challenge in computational chemistry and statistical inference. Classical approaches such as molecular dynamics or Markov chain Monte Carlo inherently lack amortization; the computational cost of sampling must be paid in full for each system of interest. The widespread success of generative models has inspired interest towards overcoming this limitation through learning sampling algorithms. Despite performing competitively with conventional methods when trained on a single system, learned samplers have so far demonstrated limited ability to transfer across systems. We demonstrate that deep learning enables the design of scalable and transferable samplers by introducing Prose, a 285 million parameter all-atom transferable normalizing flow trained on a corpus of peptide molecular dynamics trajectories up to 8 residues in length. Prose draws zero-shot uncorrelated proposal samples for arbitrary peptide systems, achieving the previously intractable transferability across sequence length, whilst retaining the efficient likelihood evaluation of normalizing flows. Through extensive empirical evaluation we demonstrate the efficacy of Prose as a proposal for a variety of sampling algorithms, finding a simple importance sampling-based finetuning procedure to achieve competitive performance to established methods such as sequential Monte Carlo. We open-source the Prose codebase, model weights, and training dataset, to further stimulate research into amortized sampling methods and finetuning objectives.
comment: Presented at NeurIPS 2025
♻ ☆ Provable Scaling Laws of Feature Emergence from Learning Dynamics of Grokking
While the phenomenon of grokking, i.e., delayed generalization, has been studied extensively, it remains an open problem whether there is a mathematical framework that characterizes what kind of features will emerge, how and in which conditions it happens, and is closely related to the gradient dynamics of the training, for complex structured inputs. We propose a novel framework, named $\mathbf{Li}_2$, that captures three key stages for the grokking behavior of 2-layer nonlinear networks: (I) Lazy learning, (II) independent feature learning and (III) interactive feature learning. At the lazy learning stage, top layer overfits to random hidden representation and the model appears to memorize, and at the same time, the backpropagated gradient $G_F$ from the top layer now carries information about the target label, with a specific structure that enables each hidden node to learn their representation independently. Interestingly, the independent dynamics follows exactly the gradient ascent of an energy function $E$, and its local maxima are precisely the emerging features. We study whether these local-optima induced features are generalizable, their representation power, and how they change on sample size, in group arithmetic tasks. When hidden nodes start to interact in the later stage of learning, we provably show how $G_F$ changes to focus on missing features that need to be learned. Our study sheds lights on roles played by key hyperparameters such as weight decay, learning rate and sample sizes in grokking, leads to provable scaling laws of feature emergence, memorization and generalization, and reveals why recent optimizers such as Muon can be effective, from the first principles of gradient dynamics. Our analysis can be extended to multi-layers. The code is available at https://github.com/yuandong-tian/understanding/tree/main/ssl/real-dataset/cogo.
comment: Find new mechanism that $G_F$ carries useful signals also at initial stage and thus remove theory's dependency on weight decay. Also add experiments on zero-init output layers, showing the technique is effective in accelerating grokking
♻ ☆ Morphling: Fast, Fused, and Flexible GNN Training at Scale
Graph Neural Networks (GNNs) present a fundamental hardware challenge by fusing irregular, memory-bound graph traversals with regular, compute-intensive dense matrix operations. While frameworks such as PyTorch Geometric (PyG) and Deep Graph Library (DGL) prioritize high-level usability, they fail to address these divergent execution characteristics. As a result, they rely on generic kernels that suffer from poor cache locality, excessive memory movement, and substantial intermediate allocations. To address these limitations, we present Morphling, a domain-specific code synthesizer designed to bridge this gap. Morphling compiles high-level GNN specifications into portable, backend-specialized implementations targeting OpenMP, CUDA, and MPI. It achieves this by instantiating a library of optimized, architecture-aware primitives tailored to each execution environment. Morphling also incorporates a runtime sparsity-aware execution engine that dynamically selects dense or sparse execution paths using input feature statistics, reducing unnecessary computation on zero-valued entries. We evaluate Morphling on eleven real-world datasets spanning diverse graph structures, feature dimensionalities, and sparsity regimes. The results show that Morphling improves per-epoch training throughput by an average of 20X on CPUs and 19X on GPUs over PyG and DGL, with peak speedups reaching 66X. Morphling's memory-efficient layouts further reduce peak memory consumption by up to 15X, enabling large-scale GNN training on commodity hardware. These findings demonstrate that specialized, architecture-aware code synthesis provides an effective and scalable path toward high-performance GNN execution across diverse parallel and distributed platforms.
♻ ☆ TabTune: A Unified Library for Inference and Fine-Tuning Tabular Foundation Models
Tabular foundation models represent a growing paradigm in structured data learning, extending the benefits of large-scale pretraining to tabular domains. However, their adoption remains limited due to heterogeneous preprocessing pipelines, fragmented APIs, inconsistent fine-tuning procedures, and the absence of standardized evaluation for deployment-oriented metrics such as calibration and fairness. We present TabTune, a unified library that standardizes the complete workflow for tabular foundation models through a single interface. TabTune provides consistent access to seven state-of-the-art models supporting multiple adaptation strategies, including zero-shot inference, meta-learning, supervised fine-tuning (SFT), and parameter-efficient fine-tuning (PEFT). The framework automates model-aware preprocessing, manages architectural heterogeneity internally, and integrates evaluation modules for performance, calibration, and fairness. Designed for extensibility and reproducibility, TabTune enables consistent benchmarking of adaptation strategies of tabular foundation models.
comment: The library is open source and available at https://github.com/Lexsi-Labs/TabTune
♻ ☆ Training a Scientific Reasoning Model for Chemistry
Reasoning models are large language models that emit a long chain-of-thought before answering, providing both higher accuracy and explicit reasoning for their response. A major question has been whether language model reasoning generalizes beyond mathematics, programming, and logic, where most previous work has focused. We demonstrate that reasoning models can be post-trained for chemistry without additional domain pretraining, and require substantially less data compared to contemporary domain-specific models. We report ether0, a 24B parameter LLM (based on Mistral-Small-24B) that can reason in natural language and respond with chemical structures. This reasoning model was trained with reinforcement learning on 640,730 experimentally-grounded chemistry problems across 375 tasks ranging from synthesizability, to blood-brain barrier permeability, to human receptor activity, to scent. Our model exceeds general-purpose chemistry models, frontier models, and human experts on molecular design tasks. It is also more data efficient relative to specialized models. We anticipate that this method can be applied to train data-efficient language models specialized for tasks across a wide variety of scientific domains.
♻ ☆ Instruction-based Time Series Editing
In time series editing, we aim to modify some properties of a given time series without altering others. For example, when analyzing a hospital patient's blood pressure, we may add a sudden early drop and observe how it impacts their future while preserving other conditions. Existing diffusion-based editors rely on rigid, predefined attribute vectors as conditions and produce all-or-nothing edits through sampling. This attribute- and sampling-based approach limits flexibility in condition format and lacks customizable control over editing strength. To overcome these limitations, we introduce Instruction-based Time Series Editing, where users specify intended edits using natural language. This allows users to express a wider range of edits in a more accessible format. We then introduce InstructTime, the first instruction-based time series editor. InstructTime takes in time series and instructions, embeds them into a shared multi-modal representation space, then decodes their embeddings to generate edited time series. By learning a structured multi-modal representation space, we can easily interpolate between embeddings to achieve varying degrees of edit. To handle local and global edits together, we propose multi-resolution encoders. In our experiments, we use synthetic and real datasets and find that InstructTime is a state-of-the-art time series editor: InstructTime achieves high-quality edits with controllable strength, can generalize to unseen instructions, and can be easily adapted to unseen conditions through few-shot learning.
♻ ☆ LLM-NAS: LLM-driven Hardware-Aware Neural Architecture Search
Hardware-Aware Neural Architecture Search (HW-NAS) requires joint optimization of accuracy and latency under device constraints. Traditional supernet-based methods require multiple GPU days per dataset. Large Language Model (LLM)-driven approaches avoid training a large supernet and can provide quick feedback, but we observe an exploration bias: the LLM repeatedly proposes neural network designs within limited search space and fails to discover architectures across different latency ranges in the entire search space. To address this issue, we propose LLM-NAS: an LLM-driven Neural Architecture Search that can generate neural networks with high accuracy and low latency with reduced search cost. Our proposed LLM-NAS has three key components: 1) a complexity-driven partitioning engine that divides the search space by complexity to enforce diversity and mitigate exploration bias; 2) an LLM-powered architecture prompt co-evolution operator, in which the LLM first updates a knowledge base of design heuristics based on results from the previous round, then performs a guided evolution algorithm on architectures with prompts that incorporate this knowledge base. Prompts and designs improve together across rounds which avoids random guesswork and improve efficiency; 3) a zero-cost predictor to avoid training a large number of candidates from scratch. Experimental results show that on HW-NAS-Bench, LLM-NAS can achieve overall higher HV, lower IGD, and up to 54% lower latency than baselines at similar accuracy. Meanwhile, the search cost drops from days to minutes compared with traditional supernet baselines.
♻ ☆ Pre-trained Language Models Improve the Few-shot Prompt Ability of Decision Transformer
Decision Transformer (DT) has emerged as a promising class of algorithms in offline reinforcement learning (RL) tasks, leveraging pre-collected datasets and Transformer's capability to model long sequences. Recent works have demonstrated that using parts of trajectories from training tasks as prompts in DT enhances its performance on unseen tasks, giving rise to Prompt-DT methods. However, collecting data from specific environments can be both costly and unsafe in many scenarios, leading to suboptimal performance and limited few-shot prompt abilities due to the data-hungry nature of Transformer-based models. Additionally, the limited datasets used in pre-training make it challenging for Prompt-DT type of methods to distinguish between various RL tasks through prompts alone. To address these challenges, we introduce the Language model-initialized Prompt Decision Transformer (LPDT) framework, which leverages pretrained language models providing rich prior knowledge for RL tasks and fine-tunes the sequence model using Low-rank Adaptation (LoRA) for meta-RL problems. We further incorporate prompt regularization to effectively differentiate between tasks based on prompt feature representations. Comprehensive empirical studies demonstrate that initializing with a pre-trained language model provides the prior knowledge and achieves a similar performance with Prompt-DT under only $10\%$ data in some MuJoCo control tasks. We also provide a thorough ablation study to validate the effectiveness of each component, including sequence modeling, language models, prompt regularizations, and prompt strategies.
comment: 2 figures, 10 tables. Published in Transactions on Machine Learning Research (TMLR)
♻ ☆ APTx Neuron: A Unified Trainable Neuron Architecture Integrating Activation and Computation
We propose the APTx Neuron, a novel, unified neural computation unit that integrates non-linear activation and linear transformation into a single trainable expression. The APTx Neuron is derived from the APTx activation function, thereby eliminating the need for separate activation layers and making the architecture both optimization-efficient and elegant. The proposed neuron follows the functional form $y = \sum_{i=1}^{n} ((α_i + \tanh(β_i x_i)) \cdot γ_i x_i) + δ$, where all parameters $α_i$, $β_i$, $γ_i$, and $δ$ are trainable. We validate our APTx Neuron-based architecture on the MNIST dataset, achieving up to $96.69\%$ test accuracy within 11 epochs using approximately 332K trainable parameters. The results highlight the superior expressiveness and training efficiency of the APTx Neuron compared to traditional neurons, pointing toward a new paradigm in unified neuron design and the architectures built upon it. Source code is available at https://github.com/mr-ravin/aptx_neuron.
comment: 12 pages, 2 figures, 1 table. Includes a GitHub repository for MNIST experiments and a PyPI package for APTx Neuron implementation
♻ ☆ Forecasting in Offline Reinforcement Learning for Non-stationary Environments NeurIPS 2025
Offline Reinforcement Learning (RL) provides a promising avenue for training policies from pre-collected datasets when gathering additional interaction data is infeasible. However, existing offline RL methods often assume stationarity or only consider synthetic perturbations at test time, assumptions that often fail in real-world scenarios characterized by abrupt, time-varying offsets. These offsets can lead to partial observability, causing agents to misperceive their true state and degrade performance. To overcome this challenge, we introduce Forecasting in Non-stationary Offline RL (FORL), a framework that unifies (i) conditional diffusion-based candidate state generation, trained without presupposing any specific pattern of future non-stationarity, and (ii) zero-shot time-series foundation models. FORL targets environments prone to unexpected, potentially non-Markovian offsets, requiring robust agent performance from the onset of each episode. Empirical evaluations on offline RL benchmarks, augmented with real-world time-series data to simulate realistic non-stationarity, demonstrate that FORL consistently improves performance compared to competitive baselines. By integrating zero-shot forecasting with the agent's experience, we aim to bridge the gap between offline RL and the complexities of real-world, non-stationary environments.
comment: The Thirty-Ninth Annual Conference on Neural Information Processing Systems, NeurIPS 2025
♻ ☆ Convergent Reinforcement Learning Algorithms for Stochastic Shortest Path Problem
In this paper we propose two algorithms in the tabular setting and an algorithm for the function approximation setting for the Stochastic Shortest Path (SSP) problem. SSP problems form an important class of problems in Reinforcement Learning (RL), as other types of cost-criteria in RL can be formulated in the setting of SSP. We show asymptotic almost-sure convergence for all our algorithms. We observe superior performance of our tabular algorithms compared to other well-known convergent RL algorithms. We further observe reliable performance of our function approximation algorithm compared to other algorithms in the function approximation setting.
♻ ☆ scE2TM improves single-cell embedding interpretability and reveals cellular perturbation signatures
Single-cell RNA sequencing technologies have revolutionized our understanding of cellular heterogeneity, yet computational methods often struggle to balance performance with biological interpretability. Embedded topic models have been widely used for interpretable single-cell embedding learning. However, these models suffer from the potential problem of interpretation collapse, where topics semantically collapse towards each other, resulting in redundant topics and incomplete capture of biological variation. Furthermore, the rise of single-cell foundation models creates opportunities to harness external biological knowledge for guiding model embeddings. Here, we present scE2TM, an external knowledge-guided embedded topic model that provides a high-quality cell embedding and interpretation for scRNA-seq analysis. Through embedding clustering regularization method, each topic is constrained to be the center of a separately aggregated gene cluster, enabling it to capture unique biological information. Across 20 scRNA-seq datasets, scE2TM achieves superior clustering performance compared with seven state-of-the-art methods. A comprehensive interpretability benchmark further shows that scE2TM-learned topics exhibit higher diversity and stronger consistency with underlying biological pathways. Modeling interferon-stimulated PBMCs, scE2TM simulates topic perturbations that drive control cells toward stimulated-like transcriptional states, faithfully mirroring experimental interferon responses. In melanoma, scE2TM identifies malignant-specific topics and extrapolates them to unseen patient data, revealing gene programs associated with patient survival.
♻ ☆ Fragmentation is Efficiently Learnable by Quantum Neural Networks
Hilbert space fragmentation is a phenomenon in which the Hilbert space of a quantum system is dynamically decoupled into exponentially many Krylov subspaces. We can define the Schur transform as a unitary operation mapping some set of preferred bases of these Krylov subspaces to computational basis states labeling them. We prove that this transformation can be efficiently learned via gradient descent from a set of training data using quantum neural networks, provided that the fragmentation is sufficiently strong such that the summed dimension of the unique Krylov subspaces is polynomial in the system size. To demonstrate this, we analyze the loss landscapes of random quantum neural networks constructed out of Hilbert space fragmented systems. We prove that in this setting, it is possible to eliminate barren plateaus and poor local minima, suggesting efficient trainability when using gradient descent. Furthermore, as the algebra defining the fragmentation is not known a priori and not guaranteed to have sparse algebra elements, to the best of our knowledge there are no existing efficient classical algorithms generally capable of simulating expectation values in these networks. Our setting thus provides a rare example of a physically motivated quantum learning task with no known dequantization.
comment: 25 pages, 3 figures
♻ ☆ A Reproducible Framework for Neural Topic Modeling in Focus Group Analysis
Focus group discussions generate rich qualitative data but their analysis traditionally relies on labor-intensive manual coding that limits scalability and reproducibility. We present a systematic framework for applying BERTopic to focus group transcripts using data from ten focus groups exploring HPV vaccine perceptions in Tunisia (1,075 utterances). We conducted comprehensive hyperparameter exploration across 27 configurations, evaluating each through bootstrap stability analysis, performance metrics, and comparison with LDA baseline. Bootstrap analysis revealed that stability metrics (NMI and ARI) exhibited strong disagreement (r = -0.691) and showed divergent relationships with coherence, demonstrating that stability is multifaceted rather than monolithic. Our multi-criteria selection framework yielded a 7-topic model achieving 18\% higher coherence than optimized LDA (0.573 vs. 0.486) with interpretable topics validated through independent human evaluation (ICC = 0.700, weighted Cohen's kappa = 0.678). These findings demonstrate that transformer-based topic modeling can extract interpretable themes from small focus group transcript corpora when systematically configured and validated, while revealing that quality metrics capture distinct, sometimes conflicting constructs requiring multi-criteria evaluation. We provide complete documentation and code to support reproducibility.
♻ ☆ Lockpicking LLMs: A Logit-Based Jailbreak Using Token-level Manipulation
Large language models (LLMs) have transformed the field of natural language processing, but they remain susceptible to jailbreaking attacks that exploit their capabilities to generate unintended and potentially harmful content. Existing token-level jailbreaking techniques, while effective, face scalability and efficiency challenges, especially as models undergo frequent updates and incorporate advanced defensive measures. In this paper, we introduce JailMine, an innovative token-level manipulation approach that addresses these limitations effectively. JailMine employs an automated "mining" process to elicit malicious responses from LLMs by strategically selecting affirmative outputs and iteratively reducing the likelihood of rejection. Through rigorous testing across multiple well-known LLMs and datasets, we demonstrate JailMine's effectiveness and efficiency, achieving a significant average reduction of 86% in time consumed while maintaining high success rates averaging 95%, even in the face of evolving defensive strategies. Our work contributes to the ongoing effort to assess and mitigate the vulnerability of LLMs to jailbreaking attacks, underscoring the importance of continued vigilance and proactive measures to enhance the security and reliability of these powerful language models.
♻ ☆ Minimax Hypothesis Testing for the Bradley-Terry-Luce Model
The Bradley-Terry-Luce (BTL) model is one of the most widely used models for ranking a collection of items or agents based on pairwise comparisons among them. Given $n$ agents, the BTL model endows each agent $i$ with a latent skill score $α_i > 0$ and posits that the probability that agent $i$ is preferred over agent $j$ is $α_i/(α_i + α_j)$. In this work, our objective is to formulate a hypothesis test that determines whether a given pairwise comparison dataset, with $k$ comparisons per pair of agents, originates from an underlying BTL model. We formalize this testing problem in the minimax sense and define the critical threshold of the problem. We then establish upper bounds on the critical threshold for general induced observation graphs (satisfying mild assumptions) and develop lower bounds for complete induced graphs. Our bounds demonstrate that for complete induced graphs, the critical threshold scales as $Θ((nk)^{-1/2})$ in a minimax sense. In particular, our test statistic for the upper bounds is based on a new approximation we derive for the separation distance between general pairwise comparison models and the class of BTL models. To further assess the performance of our statistical test, we prove upper bounds on the type I and type II probabilities of error. Much of our analysis is conducted within the context of a fixed observation graph structure, where the graph possesses certain ``nice'' properties, such as expansion and bounded principal ratio. Additionally, we derive several auxiliary results, such as bounds on principal ratios of graphs, $\ell^2$-bounds on BTL parameter estimation under model mismatch, stability of rankings under the BTL model, etc. We validate our theoretical results through experiments on synthetic and real-world datasets and propose a data-driven permutation testing approach to determine test thresholds.
comment: 41 pages, 5 figures
♻ ☆ How to Learn a Star: Binary Classification with Starshaped Polyhedral Sets
We consider binary classification restricted to a class of continuous piecewise linear functions whose decision boundaries are (possibly nonconvex) starshaped polyhedral sets, supported on a fixed polyhedral simplicial fan. We investigate the expressivity of these function classes and describe the combinatorial and geometric structure of the loss landscape, most prominently the sublevel sets, for two loss-functions: the 0/1-loss (discrete loss) and a log-likelihood loss function. In particular, we give explicit bounds on the VC dimension of this model, and concretely describe the sublevel sets of the discrete loss as chambers in a hyperplane arrangement. For the log-likelihood loss, we give sufficient conditions for the optimum to be unique, and describe the geometry of the optimum when varying the rate parameter of the underlying exponential probability distribution.
comment: 20 pages, 12 figures
♻ ☆ GR-RL: Going Dexterous and Precise for Long-Horizon Robotic Manipulation
We present GR-RL, a robotic learning framework that turns a generalist vision-language-action (VLA) policy into a highly capable specialist for long-horizon dexterous manipulation. Assuming the optimality of human demonstrations is core to existing VLA policies. However, we claim that in highly dexterous and precise manipulation tasks, human demonstrations are noisy and suboptimal. GR-RL proposes a multi-stage training pipeline that filters, augments, and reinforces the demonstrations by reinforcement learning. First, GR-RL learns a vision-language-conditioned task progress, filters the demonstration trajectories, and only keeps the transitions that contribute positively to the progress. Specifically, we show that by directly applying offline RL with sparse reward, the resulting $Q$-values can be treated as a robust progress function. Next, we introduce morphological symmetry augmentation that greatly improves the generalization and performance of GR-RL. Lastly, to better align the VLA policy with its deployment behaviors for high-precision control, we perform online RL by learning a latent space noise predictor. With this pipeline, GR-RL is, to our knowledge, the first learning-based policy that can autonomously lace up a shoe by threading shoelaces through multiple eyelets with an 83.3% success rate, a task requiring long-horizon reasoning, millimeter-level precision, and compliant soft-body interaction. We hope GR-RL provides a step toward enabling generalist robot foundations models to specialize into reliable real-world experts.
♻ ☆ On SkipGram Word Embedding Models with Negative Sampling: Unified Framework and Impact of Noise Distributions
SkipGram word embedding models with negative sampling, or SGN in short, is an elegant family of word embedding models. In this paper, we formulate a framework for word embedding, referred to as Word-Context Classification (WCC), that generalizes SGN to a wide family of models. The framework, which uses some ``noise examples'', is justified through theoretical analysis. The impact of noise distribution on the learning of the WCC embedding models is studied experimentally, suggesting that the best noise distribution is, in fact, the data distribution, in terms of both the embedding performance and the speed of convergence during training. Along our way, we discover several novel embedding models that outperform existing WCC models.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Matryoshka Model Learning for Improved Elastic Student Models KDD 2025
Industry-grade ML models are carefully designed to meet rapidly evolving serving constraints, which requires significant resources for model development. In this paper, we propose MatTA, a framework for training multiple accurate Student models using a novel Teacher-TA-Student recipe. TA models are larger versions of the Student models with higher capacity, and thus allow Student models to better relate to the Teacher model and also bring in more domain-specific expertise. Furthermore, multiple accurate Student models can be extracted from the TA model. Therefore, despite only one training run, our methodology provides multiple servable options to trade off accuracy for lower serving cost. We demonstrate the proposed method, MatTA, on proprietary datasets and models. Its practical efficacy is underscored by live A/B tests within a production ML system, demonstrating 20% improvement on a key metric. We also demonstrate our method on GPT-2 Medium, a public model, and achieve relative improvements of over 24% on SAT Math and over 10% on the LAMBADA benchmark.
comment: 10 pages, 5 figures, Accepted at KDD 2025
♻ ☆ Efficient Policy Optimization in Robust Constrained MDPs with Iteration Complexity Guarantees
Constrained decision-making is essential for designing safe policies in real-world control systems, yet simulated environments often fail to capture real-world adversities. We consider the problem of learning a policy that will maximize the cumulative reward while satisfying a constraint, even when there is a mismatch between the real model and an accessible simulator/nominal model. In particular, we consider the robust constrained Markov decision problem (RCMDP) where an agent needs to maximize the reward and satisfy the constraint against the worst possible stochastic model under the uncertainty set centered around an unknown nominal model. Primal-dual methods, effective for standard constrained MDP (CMDP), are not applicable here because of the lack of the strong duality property. Further, one cannot apply the standard robust value-iteration based approach on the composite value function either as the worst case models may be different for the reward value function and the constraint value function. We propose a novel technique that effectively minimizes the constraint value function--to satisfy the constraints; on the other hand, when all the constraints are satisfied, it can simply maximize the robust reward value function. We prove that such an algorithm finds a policy with at most $ε$ sub-optimality and feasible policy after $O(ε^{-2})$ iterations. In contrast to the state-of-the-art method, we do not need to employ a binary search, thus, we reduce the computation time by at least 4x for smaller value of discount factor ($γ$) and by at least 6x for larger value of $γ$.
♻ ☆ Learning to Integrate Diffusion ODEs by Averaging the Derivatives NeurIPS 2025
To accelerate diffusion model inference, numerical solvers perform poorly at extremely small steps, while distillation techniques often introduce complexity and instability. This work presents an intermediate strategy, balancing performance and cost, by learning ODE integration using loss functions derived from the derivative-integral relationship, inspired by Monte Carlo integration and Picard iteration. From a geometric perspective, the losses operate by gradually extending the tangent to the secant, thus are named as secant losses. The target of secant losses is the same as that of diffusion models, or the diffusion model itself, leading to great training stability. By fine-tuning or distillation, the secant version of EDM achieves a $10$-step FID of $2.14$ on CIFAR-10, while the secant version of SiT-XL/2 attains a $4$-step FID of $2.27$ and an $8$-step FID of $1.96$ on ImageNet-$256\times256$. Code is available at https://github.com/poppuppy/secant_expectation.
comment: Accepted to NeurIPS 2025
♻ ☆ PERP: Rethinking the Prune-Retrain Paradigm in the Era of LLMs
Neural Networks can be effectively compressed through pruning, significantly reducing storage and compute demands while maintaining predictive performance. Simple yet effective methods like magnitude pruning remove less important parameters and typically require a costly retraining procedure to restore performance. However, with the rise of LLMs, full retraining has become infeasible due to memory and compute constraints. This study challenges the practice of retraining all parameters by showing that updating a small subset of highly expressive parameters can suffice to recover or even enhance performance after pruning. Surprisingly, retraining just 0.01%-0.05% of the parameters in GPT-architectures can match the performance of full retraining across various sparsity levels, significantly reducing compute and memory requirements, and enabling retraining of models with up to 30 billion parameters on a single GPU in minutes. To bridge the gap to full retraining in the high sparsity regime, we introduce two novel LoRA variants that, unlike standard LoRA, allow merging adapters back without compromising sparsity. Going a step further, we show that these methods can be applied for memory-efficient layer-wise reconstruction, significantly enhancing state-of-the-art retraining-free methods like Wanda (Sun et al., 2023) and SparseGPT (Frantar & Alistarh, 2023). Our findings present a promising alternative to avoiding retraining.
comment: 32 pages, 7 figures, 24 tables
♻ ☆ Conformational Rank Conditioned Committees for Machine Learning-Assisted Directed Evolution
Machine Learning-assisted directed evolution (MLDE) is a powerful tool for efficiently navigating antibody fitness landscapes. Many structure-aware MLDE pipelines rely on a single conformation or a single committee across all conformations, limiting their ability to separate conformational uncertainty from epistemic uncertainty. Here, we introduce a rank -conditioned committee (RCC) framework that leverages ranked conformations to assign a deep neural network committee per rank. This design enables a principled separation between epistemic uncertainty and conformational uncertainty. We validate our RCC-MLDE approach on SARS-CoV-2 antibody docking, demonstrating significant improvements over baseline strategies. Our results offer a scalable route for therapeutic antibody discovery while directly addressing the challenge of modeling conformational uncertainty.
♻ ☆ Towards Responsible Development of Generative AI for Education: An Evaluation-Driven Approach
A major challenge facing the world is the provision of equitable and universal access to quality education. Recent advances in generative AI (gen AI) have created excitement about the potential of new technologies to offer a personal tutor for every learner and a teaching assistant for every teacher. The full extent of this dream, however, has not yet materialised. We argue that this is primarily due to the difficulties with verbalising pedagogical intuitions into gen AI prompts and the lack of good evaluation practices, reinforced by the challenges in defining excellent pedagogy. Here we present our work collaborating with learners and educators to translate high level principles from learning science into a pragmatic set of seven diverse educational benchmarks, spanning quantitative, qualitative, automatic and human evaluations; and to develop a new set of fine-tuning datasets to improve the pedagogical capabilities of Gemini, introducing LearnLM-Tutor. Our evaluations show that LearnLM-Tutor is consistently preferred over a prompt tuned Gemini by educators and learners on a number of pedagogical dimensions. We hope that this work can serve as a first step towards developing a comprehensive educational evaluation framework, and that this can enable rapid progress within the AI and EdTech communities towards maximising the positive impact of gen AI in education.
♻ ☆ BioArc: Discovering Optimal Neural Architectures for Biological Foundation Models
Foundation models have revolutionized various fields such as natural language processing (NLP) and computer vision (CV). While efforts have been made to transfer the success of the foundation models in general AI domains to biology, existing works focus on directly adopting the existing foundation model architectures from general machine learning domains without a systematic design considering the unique physicochemical and structural properties of each biological data modality. This leads to suboptimal performance, as these repurposed architectures struggle to capture the long-range dependencies, sparse information, and complex underlying ``grammars'' inherent to biological data. To address this gap, we introduce BioArc, a novel framework designed to move beyond intuition-driven architecture design towards principled, automated architecture discovery for biological foundation models. Leveraging Neural Architecture Search (NAS), BioArc systematically explores a vast architecture design space, evaluating architectures across multiple biological modalities while rigorously analyzing the interplay between architecture, tokenization, and training strategies. This large-scale analysis identifies novel, high-performance architectures, allowing us to distill a set of empirical design principles to guide future model development. Furthermore, to make the best of this set of discovered principled architectures, we propose and compare several architecture prediction methods that effectively and efficiently predict optimal architectures for new biological tasks. Overall, our work provides a foundational resource and a principled methodology to guide the creation of the next generation of task-specific and foundation models for biology.
♻ ☆ On the identifiability of causal graphs with multiple environments
Causal discovery from i.i.d. observational data is known to be generally ill-posed. We demonstrate that if we have access to the distribution of a structural causal model, and additional data from only two environments that sufficiently differ in the noise statistics, the unique causal graph is identifiable. Notably, this is the first result in the literature that guarantees the entire causal graph recovery with a constant number of environments and arbitrary nonlinear mechanisms. Our only constraint is the Gaussianity of the noise terms; however, we propose potential ways to relax this requirement. Of interest on its own, we expand on the well-known duality between independent component analysis (ICA) and causal discovery; recent advancements have shown that nonlinear ICA can be solved from multiple environments, at least as many as the number of sources: we show that the same can be achieved for causal discovery while having access to much less auxiliary information.
comment: Preprint
♻ ☆ Clustering Malware at Scale: A First Full-Benchmark Study
Recent years have shown that malware attacks still happen with high frequency. Malware experts seek to categorize and classify incoming samples to confirm their trustworthiness or prove their maliciousness. One of the ways in which groups of malware samples can be identified is through malware clustering. Despite the efforts of the community, malware clustering which incorporates benign samples has been under-explored. Moreover, despite the availability of larger public benchmark malware datasets, malware clustering studies have avoided fully utilizing these datasets in their experiments, often resorting to small datasets with only a few families. Additionally, the current state-of-the-art solutions for malware clustering remain unclear. In our study, we evaluate malware clustering quality and establish the state-of-the-art on Bodmas and Ember - two large public benchmark malware datasets. Ours is the first study of malware clustering performed on whole malware benchmark datasets. Additionally, we extend the malware clustering task by incorporating benign samples. Our results indicate that incorporating benign samples does not significantly degrade clustering quality. We find that there are differences in the quality of the created clusters between Ember and Bodmas, as well as a private industry dataset. Contrary to popular opinion, our top clustering performers are K-Means and BIRCH, with DBSCAN and HAC falling behind.
comment: pre-print of the paper (i.e. "submitted manuscript" version); small updates to the tables, figures, and text were made in order to report the correct results on Ember
♻ ☆ MSAD: A Deep Dive into Model Selection for Time series Anomaly Detection VLDB
Anomaly detection is a fundamental task for time series analytics with important implications for the downstream performance of many applications. Despite increasing academic interest and the large number of methods proposed in the literature, recent benchmarks and evaluation studies demonstrated that no overall best anomaly detection methods exist when applied to very heterogeneous time series datasets. Therefore, the only scalable and viable solution to solve anomaly detection over very different time series collected from diverse domains is to propose a model selection method that will select, based on time series characteristics, the best anomaly detection methods to run. Existing AutoML solutions are, unfortunately, not directly applicable to time series anomaly detection, and no evaluation of time series-based approaches for model selection exists. Towards that direction, this paper studies the performance of time series classification methods used as model selection for anomaly detection. In total, we evaluate 234 model configurations derived from 16 base classifiers across more than 1980 time series, and we propose the first extensive experimental evaluation of time series classification as model selection for anomaly detection. Our results demonstrate that model selection methods outperform every single anomaly detection method while being in the same order of magnitude regarding execution time. This evaluation is the first step to demonstrate the accuracy and efficiency of time series classification algorithms for anomaly detection, and represents a strong baseline that can then be used to guide the model selection step in general AutoML pipelines. Preprint version of an article accepted at the VLDB Journal.
comment: 25 pages, 13 figures, VLDB Journal
♻ ☆ Synthetic Data Generation with Lorenzetti for Time Series Anomaly Detection in High-Energy Physics Calorimeters
Anomaly detection in multivariate time series is crucial to ensure the quality of data coming from a physics experiment. Accurately identifying the moments when unexpected errors or defects occur is essential, yet challenging due to scarce labels, unknown anomaly types, and complex correlations across dimensions. To address the scarcity and unreliability of labelled data, we use the Lorenzetti Simulator to generate synthetic events with injected calorimeter anomalies. We then assess the sensitivity of several time series anomaly detection methods, including transformer-based and other deep learning models. The approach employed here is generic and applicable to different detector designs and defects.
comment: 4 pages, 2 figures, Submission to SciPost proceedings for EuCAIFCon 2025
♻ ☆ Multi-View Graph Learning with Graph-Tuple
Graph Neural Networks (GNNs) typically scale with the number of graph edges, making them well suited for sparse graphs but less efficient on dense graphs, such as point clouds or molecular interactions. A common remedy is to sparsify the graph via similarity thresholding or distance pruning, but this forces an arbitrary choice of a single interaction scale and discards crucial information from other scales. To overcome this limitation, we introduce a multi-view graph-tuple framework. Instead of a single graph, our graph-tuple framework partitions the graph into disjoint subgraphs, capturing primary local interactions and weaker, long-range connections. We then learn multi-view representations from the graph-tuple via a heterogeneous message-passing architecture inspired by the theory of non-commuting operators, which we formally prove is strictly more expressive and guarantees a lower oracle risk compared to single-graph message-passing models. We instantiate our framework on two scientific domains: molecular property prediction from feature-scarce Coulomb matrices and cosmological parameter inference from geometric point clouds. On both applications, our multi-view graph-tuple models demonstrate better performance than single-graph baselines, highlighting the power and versatility of our multi-view approach.
comment: Accepted as a poster at the TAG-DS 2025 Workshop (Topology, Algebra, and Geometry in Data Science). OpenReview: https://openreview.net/forum?id=s4ezAuj5xM
♻ ☆ VeLU: Variance-enhanced Learning Unit for Deep Neural Networks
Activation functions play a critical role in deep neural networks by shaping gradient flow, optimization stability, and generalization. While ReLU remains widely used due to its simplicity, it suffers from gradient sparsity and dead-neuron issues and offers no adaptivity to input statistics. Smooth alternatives such as Swish and GELU improve gradient propagation but still apply a fixed transformation regardless of the activation distribution. In this paper, we propose VeLU, a Variance-enhanced Learning Unit that introduces variance-aware and distributionally aligned nonlinearity through a principled combination of ArcTan-ArcSin transformations, adaptive scaling, and Wasserstein-2 regularization (Optimal Transport). This design enables VeLU to modulate its response based on local activation variance, mitigate internal covariate shift at the activation level, and improve training stability without adding learnable parameters or architectural overhead. Extensive experiments across six deep neural networks show that VeLU outperforms ReLU, ReLU6, Swish, and GELU on 12 vision benchmarks. The implementation of VeLU is publicly available in GitHub.
comment: 16 pages, 5 figures
♻ ☆ Can-SAVE: Deploying Low-Cost and Population-Scale Cancer Screening via Survival Analysis Variables and EHR KDD
Conventional medical cancer screening methods are costly, labor-intensive, and extremely difficult to scale. Although AI can improve cancer detection, most systems rely on complex or specialized medical data, making them impractical for large-scale screening. We introduce Can-SAVE, a lightweight AI system that ranks population-wide cancer risks solely based on medical history events. By integrating survival model outputs into a gradient-boosting framework, our approach detects subtle, long-term patient risk patterns - often well before clinical symptoms manifest. Can-SAVE was rigorously evaluated on a real-world dataset of 2.5 million adults spanning five Russian regions, marking the study as one of the largest and most comprehensive deployments of AI-driven cancer risk assessment. In a retrospective oncologist-supervised study over 1.9M patients, Can-SAVE achieves a 4-10x higher detection rate at identical screening volumes and an Average Precision (AP) of 0.228 vs. 0.193 for the best baseline (LoRA-tuned Qwen3-Embeddings via DeepSeek-R1 summarization). In a year-long prospective pilot (426K patients), our method almost doubled the cancer detection rate (+91%) and increased population coverage by 36% over the national screening protocol. The system demonstrates practical scalability: a city-wide population of 1 million patients can be processed in under three hours using standard hardware, enabling seamless clinical integration. This work proves that Can-SAVE achieves nationally significant cancer detection improvements while adhering to real-world public healthcare constraints, offering immediate clinical utility and a replicable framework for population-wide screening. Code for training and feature engineering is available at https://github.com/sb-ai-lab/Can-SAVE.
comment: Accepted to the 32nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2026)
♻ ☆ Adaptive Prediction-Powered AutoEval with Reliability and Efficiency Guarantees NeurIPS 2025
Selecting artificial intelligence (AI) models, such as large language models (LLMs), from multiple candidates requires accurate performance estimation. This is ideally achieved through empirical evaluations involving abundant real-world data. However, such evaluations are costly and impractical at scale. To address this challenge, autoevaluation methods leverage synthetic data produced by automated evaluators, such as LLMs-as-judges, reducing variance but potentially introducing bias. Recent approaches have employed semi-supervised prediction-powered inference (PPI) to correct for the bias of autoevaluators. However, the use of autoevaluators may lead in practice to a degradation in sample efficiency compared to conventional methods using only real-world data. In this paper, we propose R-AutoEval+, a novel framework that provides finite-sample reliability guarantees on the model evaluation, while also ensuring an enhanced (or at least no worse) sample efficiency compared to conventional methods. The key innovation of R-AutoEval+ is an adaptive construction of the model evaluation variable, which dynamically tunes its reliance on synthetic data, reverting to conventional methods when the autoevaluator is insufficiently accurate. Experiments on the use of LLMs-as-judges for the optimization of quantization settings for the weights of an LLM, for prompt design in LLMs, and for test-time reasoning budget allocation in LLMs confirm the reliability and efficiency of R-AutoEval+.
comment: NeurIPS 2025 (spotlight)
♻ ☆ FedSub: Introducing Class-aware Subnetworks Fusion to Enhance Personalized Federated Learning
Personalized Federated Learning aims at addressing the challenges of non-IID data in collaborative model training. However, existing methods struggle to balance personalization and generalization, often oversimplifying client similarities or relying too heavily on global models. In this paper, we propose FedSub, a novel approach that introduces class-aware model updates based on data prototypes and model subnetworks fusion to enhance personalization. Prototypes serve as compact representations of client data for each class, clustered on the server to capture label-specific similarities among the clients. Meanwhile, model subnetworks encapsulate the most relevant components to process each class and they are then fused on the server based on the identified clusters to generate fine-grained, class-specific, and highly personalized model updates for each client. Experimental results in three real-world scenarios with high data heterogeneity in human activity recognition and mobile health applications demonstrate the effectiveness of FedSub with respect to state-of-the-art methods to achieve fast convergence and high classification performance.
comment: Submitted to IEEE Transactions on Artificial Intelligence
♻ ☆ medDreamer: Model-Based Reinforcement Learning with Latent Imagination on Complex EHRs for Clinical Decision Support
Timely and personalized treatment decisions are essential across a wide range of healthcare settings where patient responses can vary significantly and evolve over time. Clinical data used to support these treatment decisions are often irregularly sampled, where missing data frequencies may implicitly convey information about the patient's condition. Existing Reinforcement Learning (RL) based clinical decision support systems often ignore the missing patterns and distort them with coarse discretization and simple imputation. They are also predominantly model-free and largely depend on retrospective data, which could lead to insufficient exploration and bias by historical behaviors. To address these limitations, we propose medDreamer, a novel model-based reinforcement learning framework for personalized treatment recommendation. medDreamer contains a world model with an Adaptive Feature Integration module that simulates latent patient states from irregular data and a two-phase policy trained on a hybrid of real and imagined trajectories. This enables learning optimal policies that go beyond the sub-optimality of historical clinical decisions, while remaining close to real clinical data. We evaluate medDreamer on both sepsis and mechanical ventilation treatment tasks using two large-scale Electronic Health Records (EHRs) datasets. Comprehensive evaluations show that medDreamer significantly outperforms model-free and model-based baselines in both clinical outcomes and off-policy metrics.
♻ ☆ BoreaRL: A Multi-Objective Reinforcement Learning Environment for Climate-Adaptive Boreal Forest Management
Boreal forests store 30-40\% of terrestrial carbon, much in climate-vulnerable permafrost soils, making their management critical for climate mitigation. However, optimizing forest management for both carbon sequestration and permafrost preservation presents complex trade-offs that current tools cannot adequately address. We introduce BoreaRL, the first multi-objective reinforcement learning environment for climate-adaptive boreal forest management, featuring a physically-grounded simulator of coupled energy, carbon, and water fluxes. BoreaRL supports two training paradigms: site-specific mode for controlled studies and generalist mode for learning robust policies under environmental stochasticity. Through evaluation of multi-objective RL algorithms, we reveal a fundamental asymmetry in learning difficulty: carbon objectives are significantly easier to optimize than thaw (permafrost preservation) objectives, with thaw-focused policies showing minimal learning progress across both paradigms. In generalist settings, standard gradient-descent based preference-conditioned approaches fail, while a naive site selection approach achieves superior performance by strategically selecting training episodes. Analysis of learned strategies reveals distinct management philosophies, where carbon-focused policies favor aggressive high-density coniferous stands, while effective multi-objective policies balance species composition and density to protect permafrost while maintaining carbon gains. Our results demonstrate that robust climate-adaptive forest management remains challenging for current MORL methods, establishing BoreaRL as a valuable benchmark for developing more effective approaches. We open-source BoreaRL to accelerate research in multi-objective RL for climate applications.
♻ ☆ GAPO: Robust Advantage Estimation for Real-World Code LLMs
Reinforcement learning (RL) is widely used for post-training large language models (LLMs) in code editing, where group-relative methods like GRPO are popular for their critic-free, normalized advantage estimation. However, in real-world code-editing scenarios, reward distributions are often skewed with unpredictable outliers, leading to distorted advantage computation and increased noise. To address this issue, we propose Group Adaptive Policy Optimization (GAPO), which adaptively finds an outlier-free highest-density interval (HDI) per prompt and then uses the median of that interval as an adaptive Q to replace the group mean in advantage calculation. This adaptive Q robustly handles skewed distributions while remaining plug-and-play and efficient. We validate GAPO on nine instruction-tuned LLMs (3B-14B) using a large internal dataset of 51,844 real-world, history-aware code-editing tasks across 10 languages, demonstrating consistent improvements in exact match accuracy over GRPO and its variant DAPO. Code is publicly available.
♻ ☆ Hyperdimensional Probe: Decoding LLM Representations via Vector Symbolic Architectures
Despite their capabilities, Large Language Models (LLMs) remain opaque with limited understanding of their internal representations. Current interpretability methods either focus on input-oriented feature extraction, such as supervised probes and Sparse Autoencoders (SAEs), or on output distribution inspection, such as logit-oriented approaches. A full understanding of LLM vector spaces, however, requires integrating both perspectives, something existing approaches struggle with due to constraints on latent feature definitions. We introduce the Hyperdimensional Probe, a hybrid supervised probe that combines symbolic representations with neural probing. Leveraging Vector Symbolic Architectures (VSAs) and hypervector algebra, it unifies prior methods: the top-down interpretability of supervised probes, SAE's sparsity-driven proxy space, and output-oriented logit investigation. This allows deeper input-focused feature extraction while supporting output-oriented investigation. Our experiments show that our method consistently extracts meaningful concepts across LLMs, embedding sizes, and setups, uncovering concept-driven patterns in analogy-oriented inference and QA-focused text generation. By supporting joint input-output analysis, this work advances semantic understanding of neural representations while unifying the complementary perspectives of prior methods.
♻ ☆ LSHBloom: Memory-efficient, Extreme-scale Document Deduplication
Contemporary large language model (LLM) training pipelines require the assembly of internet-scale databases full of text data from a variety of sources (e.g., web, academic, and publishers). Preprocessing these datasets via deduplication -- detecting and eliminating additional instances of the same content -- is a major focus for assembling and curating training datasets for LLMs. Unrestrained, duplicates in the training dataset increase training costs and lead to undesirable properties such as memorization in trained models or cheating on evaluation. Unfortunately, contemporary approaches to document-level deduplication are either unreliable at accurately identifying duplicate documents or extremely expensive in terms of both runtime and memory. We propose LSHBloom, an extension to MinhashLSH, which replaces the expensive LSHIndex with lightweight Bloom filters. LSHBloom demonstrates the same state-of-the-art deduplication performance as MinhashLSH, with only a marginal increase in false positives (near zero in our experiments), while boasting competitive runtime (12$\times$ faster than MinhashLSH on peS2o) and, crucially, using 18$\times$ less disk space than MinhashLSH (as measured on peS2o). Based on extrapolation, we show that this advantage in space and runtime remains even at the extreme scale of several billion documents. LSHBloom allows practitioners to access the deduplication quality of MinHashLSH at scales that are normally only tractable for less sophisticated, heuristic solutions. As a result, LSHBloom promises to enable scaling high-quality document deduplication to internet-scale text datasets.
♻ ☆ Offline Goal-conditioned Reinforcement Learning with Quasimetric Representations
Approaches for goal-conditioned reinforcement learning (GCRL) often use learned state representations to extract goal-reaching policies. Two frameworks for representation structure have yielded particularly effective GCRL algorithms: (1) *contrastive representations*, in which methods learn "successor features" with a contrastive objective that performs inference over future outcomes, and (2) *temporal distances*, which link the (quasimetric) distance in representation space to the transit time from states to goals. We propose an approach that unifies these two frameworks, using the structure of a quasimetric representation space (triangle inequality) with the right additional constraints to learn successor representations that enable optimal goal-reaching. Unlike past work, our approach is able to exploit a **quasimetric** distance parameterization to learn **optimal** goal-reaching distances, even with **suboptimal** data and in **stochastic** environments. This gives us the best of both worlds: we retain the stability and long-horizon capabilities of Monte Carlo contrastive RL methods, while getting the free stitching capabilities of quasimetric network parameterizations. On existing offline GCRL benchmarks, our representation learning objective improves performance on stitching tasks where methods based on contrastive learning struggle, and on noisy, high-dimensional environments where methods based on quasimetric networks struggle.
♻ ☆ Online Convex Optimization with Memory and Limited Predictions
This paper addresses an online convex optimization problem where the cost function at each step depends on a history of past decisions (i.e., memory), and the decision maker has access to limited predictions of future cost values within a finite window. The goal is to design an algorithm that minimizes the dynamic regret against the optimal sequence of decisions in hindsight. To this end, we propose a novel predictive algorithm and establish strong theoretical guarantees for its performance. We show that the algorithm's dynamic regret decays exponentially with the length of the prediction window. Our algorithm comprises two general subroutines of independent interest. The first subroutine solves online convex optimization with memory and bandit feedback, achieving a $\sqrt{TV_T}$-dynamic regret, where $V_T$ measures the variation of the optimal decision sequence. The second is a zeroth-order method that attains a linear convergence rate for general convex optimization, matching the best achievable rate of first-order methods. The key to our algorithm is a novel truncated Gaussian smoothing technique when querying the decision points to obtain the predictions. We validate our theoretical results with numerical experiments.
comment: 35 pages, 3 figures
♻ ☆ Hidden in Plain Text: Emergence & Mitigation of Steganographic Collusion in LLMs ACL 2025
The rapid proliferation of frontier model agents promises significant societal advances but also raises concerns about systemic risks arising from unsafe interactions. Collusion to the disadvantage of others has been identified as a central form of undesirable agent cooperation. The use of information hiding (steganography) in agent communications could render such collusion practically undetectable. This underscores the need for investigations into the possibility of such behaviours emerging and the robustness corresponding countermeasures. To investigate this problem we design two approaches -- a gradient-based reinforcement learning (GBRL) method and an in-context reinforcement learning (ICRL) method -- for reliably eliciting sophisticated LLM-generated linguistic text steganography. We demonstrate, for the first time, that unintended steganographic collusion in LLMs can arise due to mispecified reward incentives during training. Additionally, we find that standard mitigations -- both passive oversight of model outputs and active mitigation through communication paraphrasing -- are not fully effective at preventing this steganographic communication. Our findings imply that (i) emergence of steganographic collusion is a plausible concern that should be monitored and researched, and (ii) preventing emergence may require innovation in mitigation techniques.
comment: Camera-ready version. Oral presentation at IJCNLP-AACL 2025 (14th International Joint Conference on Natural Language Processing and 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics), Mumbai, India, December 20-24, 2025
♻ ☆ Machine Unlearning via Information Theoretic Regularization
How can we effectively remove or ''unlearn'' undesirable information, such as specific features or the influence of individual data points, from a learning outcome while minimizing utility loss and ensuring rigorous guarantees? We introduce a unified mathematical framework based on information-theoretic regularization to address both data point unlearning and feature unlearning. For data point unlearning, we introduce the $\textit{Marginal Unlearning Principle}$, an auditable and provable framework inspired by memory suppression studies in neuroscience. Moreover, we provide formal information-theoretic unlearning definition based on the proposed principle, named marginal unlearning, and provable guarantees on sufficiency and necessity of marginal unlearning to the existing approximate unlearning definitions. We then show the proposed framework provide natural solution to the marginal unlearning problems. For feature unlearning, the framework applies to deep learning with arbitrary training objectives. By combining flexibility in learning objectives with simplicity in regularization design, our approach is highly adaptable and practical for a wide range of machine learning and AI applications. From a mathematical perspective, we provide an unified analytic solution to the optimal feature unlearning problem with a variety of information-theoretic training objectives. Our theoretical analysis reveals intriguing connections between machine unlearning, information theory, optimal transport, and extremal sigma algebras. Numerical simulations support our theoretical finding.
comment: 59 pages, 4 figures
♻ ☆ Differential Privacy Analysis of Decentralized Gossip Averaging under Varying Threat Models
Fully decentralized training of machine learning models offers significant advantages in scalability, robustness, and fault tolerance. However, achieving differential privacy (DP) guarantees in such settings is challenging due to the absence of a central aggregator and varying trust assumptions among nodes. We present a novel privacy analysis of decentralized gossip-based averaging algorithms with additive node-level noise, from arbitrary views of nodes in a graph and especially consider the averaging over nearest neighbors with secure summation and individual node-wise views. Our main contribution is a an analytical framework based on a linear systems formulation that accurately characterizes privacy leakage between nodes across different scenarios. In case the gossip averaging happens via secure summation, we show that the Rényi DP parameter growth is asymptotically $O(T)$, where $T$ is the number of training rounds, similarly as in the case of central aggregation.
♻ ☆ GeoMAE: Masking Representation Learning for Spatio-Temporal Graph Forecasting with Missing Values
The ubiquity of missing data in urban intelligence systems, attributable to adverse environmental conditions and equipment failures, poses a significant challenge to the efficacy of downstream applications, notably in the realms of traffic forecasting and energy consumption prediction. Therefore, it is imperative to develop a robust spatio-temporal learning methodology capable of extracting meaningful insights from incomplete datasets. Despite the existence of methodologies for spatio-temporal graph forecasting in the presence of missing values, unresolved issues persist. Primarily, the majority of extant research is predicated on time-series analysis, thereby neglecting the dynamic spatial correlations inherent in sensor networks. Additionally, the complexity of missing data patterns compounds the intricacy of the problem. Furthermore, the variability in maintenance conditions results in a significant fluctuation in the ratio and pattern of missing values, thereby challenging the generalizability of predictive models. In response to these challenges, this study introduces GeoMAE, a self-supervised spatio-temporal representation learning model. The model is comprised of three principal components: an input preprocessing module, an attention-based spatio-temporal forecasting network (STAFN), and an auxiliary learning task, which draws inspiration from Masking AutoEncoders to enhance the robustness of spatio-temporal representation learning. Empirical evaluations on real-world datasets demonstrate that GeoMAE significantly outperforms existing benchmarks, achieving up to 13.20\% relative improvement over the best baseline models.
comment: 34 pages
♻ ☆ The Algorithmic Phase Transition in Correlated Spiked Models
We study the computational task of detecting and estimating correlated signals in a pair of spiked matrices $$ X=\tfracλ{\sqrt{n}} xu^{\top}+W, \quad Y=\tfracμ{\sqrt{n}} yv^{\top}+Z $$ where the spikes $x,y$ have correlation $ρ$. Specifically, we consider two fundamental models: (1) Correlated spiked Wigner model with signal-to-noise ratio $λ,μ$; (2) Correlated spiked $n*N$ Wishart (covariance) model with signal-to-noise ratio $\sqrtλ,\sqrtμ$. We propose an efficient detection and estimation algorithm based on counting a specific family of edge-decorated cycles. The algorithm's performance is governed by the function $$ F(λ,μ,ρ,γ)=\max\Big\{ \frac{ λ^2 }{ γ}, \frac{ μ^2 }{ γ}, \frac{ λ^2 ρ^2 }{ γ-λ^2+λ^2 ρ^2 } + \frac{ μ^2 ρ^2 }{ γ-μ^2+μ^2 ρ^2 } \Big\} \,. $$ We prove our algorithm succeeds for the correlated spiked Wigner model whenever $F(λ,μ,ρ,1)>1$, and succeeds for the correlated spiked Wishart model whenever $F(λ,μ,ρ,\tfrac{n}{N})>1$. Our result shows that an algorithm can leverage the correlation between the spikes to detect and estimate the signals even in regimes where efficiently recovering either $x$ from ${X}$ alone or $y$ from ${Y}$ alone is believed to be computationally infeasible. We complement our algorithmic results with evidence for a matching computational lower bound. In particular, we prove that when $F(λ,μ,ρ,1)<1$ for the correlated spiked Wigner model and when $F(λ,μ,ρ,\tfrac{n}{N})<1$ for the spiked Wishart model, all algorithms based on low-degree polynomials fails to distinguish $({X},{Y})$ with two independent noise matrices. This strongly suggests that $F=1$ is the precise computation threshold for our models.
comment: 72 pages; added results in the Wishart setting; abstract shortened to meet the arXiv requirement
♻ ☆ Safety Game: Balancing Safe and Informative Conversations with Blackbox Agentic AI using LP Solvers
Ensuring that large language models (LLMs) comply with safety requirements is a central challenge in AI deployment. Existing alignment approaches primarily operate during training, such as through fine-tuning or reinforcement learning from human feedback, but these methods are costly and inflexible, requiring retraining whenever new requirements arise. Recent efforts toward inference-time alignment mitigate some of these limitations but still assume access to model internals, which is impractical, and not suitable for third party stakeholders who do not have access to the models. In this work, we propose a model-independent, black-box framework for safety alignment that does not require retraining or access to the underlying LLM architecture. As a proof of concept, we address the problem of trading off between generating safe but uninformative answers versus helpful yet potentially risky ones. We formulate this dilemma as a two-player zero-sum game whose minimax equilibrium captures the optimal balance between safety and helpfulness. LLM agents operationalize this framework by leveraging a linear programming solver at inference time to compute equilibrium strategies. Our results demonstrate the feasibility of black-box safety alignment, offering a scalable and accessible pathway for stakeholders, including smaller organizations and entities in resource-constrained settings, to enforce safety across rapidly evolving LLM ecosystems.
♻ ☆ AVA-VLA: Improving Vision-Language-Action models with Active Visual Attention
Vision-Language-Action (VLA) models have demonstrated remarkable capabilities in embodied AI tasks. However, existing VLA models, often built upon Vision-Language Models (VLMs), typically process dense visual inputs independently at each timestep. This approach implicitly models the task as a Markov Decision Process (MDP). However, this history-agnostic design is suboptimal for effective visual token processing in dynamic sequential decision-making, as it fails to leverage the context of history. To address this limitation, we reformulate the problem from a Partially Observable Markov Decision Process (POMDP) perspective and propose a novel framework named AVA-VLA. Inspired by the POMDP that the action generation should be conditioned on the belief state. AVA-VLA introduces Active Visual Attention (AVA) to dynamically modulate visual processing. It achieves this by leveraging the recurrent state, which is a neural approximation of the agent's belief state derived from the previous decision step. Specifically, the AVA module uses the recurrent state to compute the soft weights to actively process task-relevant visual tokens based on its historical context. Comprehensive evaluations demonstrate that AVA-VLA achieves state-of-the-art performance across popular robotic benchmarks, including LIBERO and CALVIN. Furthermore, real-world deployments on a dual-arm robot platform validate the framework's practical applicability and robust sim-to-real transferability.
comment: 18 pages, 10 figures
♻ ☆ Global universal approximation of functional input maps on weighted spaces
We introduce so-called functional input neural networks defined on a possibly infinite dimensional weighted space with values also in a possibly infinite dimensional output space. To this end, we use an additive family to map the input weighted space to the hidden layer, on which a non-linear scalar activation function is applied to each neuron, and finally return the output via some linear readouts. Relying on Stone-Weierstrass theorems on weighted spaces, we can prove a global universal approximation result on weighted spaces for continuous functions going beyond the usual approximation on compact sets. This then applies in particular to approximation of (non-anticipative) path space functionals via functional input neural networks. As a further application of the weighted Stone-Weierstrass theorem we prove a global universal approximation result for linear functions of the signature. We also introduce the viewpoint of Gaussian process regression in this setting and emphasize that the reproducing kernel Hilbert space of the signature kernels are Cameron-Martin spaces of certain Gaussian processes. This paves a way towards uncertainty quantification for signature kernel regression.
comment: 71 pages, 4 figures
♻ ☆ Mixed precision accumulation for neural network inference guided by componentwise forward error analysis
This work proposes a mathematically founded mixed precision accumulation strategy for the inference of neural networks. Our strategy is based on a new componentwise forward error analysis that explains the propagation of errors in the forward pass of neural networks. Specifically, our analysis shows that the error in each component of the output of a linear layer is proportional to the condition number of the inner product between the weights and the input, multiplied by the condition number of the activation function. These condition numbers can vary widely from one component to the other, thus creating a significant opportunity to introduce mixed precision: each component should be accumulated in a precision inversely proportional to the product of these condition numbers. We propose a numerical algorithm that exploits this observation: it first computes all components in low precision, uses this output to estimate the condition numbers, and recomputes in higher precision only the components associated with large condition numbers. We test our algorithm on various networks and datasets and confirm experimentally that it can significantly improve the cost--accuracy tradeoff compared with uniform precision accumulation baselines.
♻ ☆ Anomalous Change Point Detection Using Probabilistic Predictive Coding
Change point detection (CPD) and anomaly detection (AD) are essential techniques in various fields to identify abrupt changes or abnormal data instances. However, existing methods are often constrained to univariate data, face scalability challenges with large datasets due to computational demands, and experience reduced performance with high-dimensional or intricate data, as well as hidden anomalies. Furthermore, they often lack interpretability and adaptability to domain-specific knowledge, which limits their versatility across different fields. In this work, we propose a deep learning-based CPD/AD method called Probabilistic Predictive Coding (PPC) that jointly learns to encode sequential data to low-dimensional latent space representations and to predict the subsequent data representations as well as the corresponding prediction uncertainties. The model parameters are optimized with maximum likelihood estimation by comparing these predictions with the true encodings. At the time of application, the true and predicted encodings are used to determine the probability of conformance, an interpretable and meaningful anomaly score. Furthermore, our approach has linear time complexity, scalability issues are prevented, and the method can easily be adjusted to a wide range of data types and intricate applications. We demonstrate the effectiveness and adaptability of our proposed method across synthetic time series experiments, image data, and real-world magnetic resonance spectroscopic imaging data.
comment: Submitted to Machine Learning
♻ ☆ Gaussian and Non-Gaussian Universality of Data Augmentation
We provide universality results that quantify how data augmentation affects the variance and limiting distribution of estimates through simple surrogates, and analyze several specific models in detail. The results confirm some observations made in machine learning practice, but also lead to unexpected findings: Data augmentation may increase rather than decrease the uncertainty of estimates, such as the empirical prediction risk. It can act as a regularizer, but fails to do so in certain high-dimensional problems, and it may shift the double-descent peak of an empirical risk. Overall, the analysis shows that several properties data augmentation has been attributed with are not either true or false, but rather depend on a combination of factors -- notably the data distribution, the properties of the estimator, and the interplay of sample size, number of augmentations, and dimension. As our main theoretical tool, we develop an adaptation of Lindeberg's technique for block dependence. The resulting universality regime may be Gaussian or non-Gaussian.
comment: Added high-dimensional examples on simple neural networks, bagged estimators and locally dependent data augmentations
♻ ☆ Geopolitics, Geoeconomics and Risk: A Machine Learning Approach
We introduce a novel high-frequency daily panel dataset of both markets and news-based indicators -- including Geopolitical Risk, Economic Policy Uncertainty, Trade Policy Uncertainty, and Political Sentiment -- for 42 countries across both emerging and developed markets. Using this dataset, we study how sentiment dynamics shape sovereign risk, measured by Credit Default Swap (CDS) spreads, and evaluate their forecasting value relative to traditional drivers such as global monetary policy and market volatility. Our horse-race analysis of forecasting models demonstrates that incorporating news-based indicators significantly enhances predictive accuracy and enriches the analysis, with non-linear machine learning methods -- particularly Random Forests -- delivering the largest gains. Our analysis reveals that while global financial variables remain the dominant drivers of sovereign risk, geopolitical risk and economic policy uncertainty also play a meaningful role. Crucially, their effects are amplified through non-linear interactions with global financial conditions. Finally, we document pronounced regional heterogeneity, as certain asset classes and emerging markets exhibit heightened sensitivity to shocks in policy rates, global financial volatility, and geopolitical risk.
♻ ☆ Generative diffusion for perceptron problems: statistical physics analysis and efficient algorithms NeurIPS
We consider random instances of non-convex perceptron problems in the high-dimensional limit of a large number of examples $M$ and weights $N$, with finite load $α= M/N$. We develop a formalism based on replica theory to predict the fundamental limits of efficiently sampling the solution space using generative diffusion algorithms, conjectured to be saturated when the score function is provided by Approximate Message Passing. For the spherical perceptron with negative margin $κ$, we find that the uniform distribution over solutions can be efficiently sampled in most of the Replica Symmetric region of the $α$-$κ$ plane. In contrast, for binary weights, sampling from the uniform distribution remains intractable. A theoretical analysis of this obstruction leads us to identify a potential $U(s) = -\log(s)$, under which the corresponding tilted distribution becomes efficiently samplable via diffusion. Moreover, we show numerically that an annealing procedure over the shape of this potential yields a fast and robust Markov Chain Monte Carlo algorithm for sampling the solution space of the binary perceptron.
comment: v3 minor revision after NeurIPS's rebuttal
♻ ☆ Unifying Sign and Magnitude for Optimizing Deep Vision Networks via ThermoLion
The training of deep vision models is fundamentally a signal recovery problem amidst high-dimensional stochastic noise. Current optimization paradigms impose a static compromise on information channel capacity. For instance, magnitude-based methods, such as AdamW, operate on the assumption that gradient norms are high-fidelity curvature signals. While this allows for precision in smooth regimes, it leads to catastrophic noise amplification when applied to rugged, non-convex landscapes. Conversely, sign-based methods (e.g., Lion) perform a radical 1-bit quantization of the gradient, which aims to provide robust regularization at the cost of discarding fine-grained descent information. We propose that optimal convergence requires neither static prior, but rather a dynamic modulation of the update bitrate. We introduce ThermoLion, a vision-centric framework that utilizes local Signal-to-Noise Ratio (SNR) gating to autonomously transition parameters between a "low-bit" exploration phase and a "high-precision" exploitation phase. Furthermore, we introduce a Momentum Alignment mechanism that detects constructive interference between historical drift and instantaneous gradients to accelerate convergence during stable trajectories. Empirical benchmarks across 12 diverse vision datasets (including CIFAR, SVHN, and GTSRB) demonstrate that ThermoLion surpasses state-of-the-art optimizers, such as AdamW and Lion, in convergence speed and terminal accuracy.
♻ ☆ Limitations of Using Identical Distributions for Training and Testing When Learning Boolean Functions
When the distributions of the training and test data do not coincide, the problem of understanding generalization becomes considerably more complex, prompting a variety of questions. Prior work has shown that, for some fixed learning methods, there are scenarios where training on a distribution different from the test distribution improves generalization. However, these results do not account for the possibility of choosing, for each training distribution, the optimal learning algorithm, leaving open whether the observed benefits stem from the mismatch itself or from suboptimality of the learner. In this work, we address this question in full generality. That is, we study whether it is always optimal for the training distribution to be identical to the test distribution when the learner is allowed to be optimally adapted to the training distribution. Surprisingly, assuming the existence of one-way functions, we find that the answer is no. That is, matching distributions is not always the best scenario. Nonetheless, we also show that when certain regularities are imposed on the target functions, the standard conclusion is recovered in the case of the uniform distribution.
♻ ☆ Knowledge Adaptation as Posterior Correction
Adaptation is the holy grail of intelligence, but even the best AI models lack the adaptability of toddlers. In spite of great progress, little is known about the mechanisms by which machines can learn to adapt as fast as humans and animals. Here, we cast adaptation as `correction' of old posteriors and show that a wide-variety of existing adaptation methods follow this very principle, including those used for continual learning, federated learning, unlearning, and model merging. In all these settings, more accurate posteriors often lead to smaller corrections and can enable faster adaptation. Posterior correction is derived by using the dual representation of the Bayesian Learning Rule of Khan and Rue (2023), where the interference between the old representation and new information is quantified by using the natural-gradient mismatch. We present many examples demonstrating how machines can learn to adapt quickly by using posterior correction.
♻ ☆ Text-Queried Audio Source Separation via Hierarchical Modeling
Target audio source separation with natural language queries presents a promising paradigm for extracting arbitrary audio events through arbitrary text descriptions. Existing methods mainly face two challenges, the difficulty in jointly modeling acoustic-textual alignment and semantic-aware separation within a blindly-learned single-stage architecture, and the reliance on large-scale accurately-labeled training data to compensate for inefficient cross-modal learning and separation. To address these challenges, we propose a hierarchical decomposition framework, HSM-TSS, that decouples the task into global-local semantic-guided feature separation and structure-preserving acoustic reconstruction. Our approach introduces a dual-stage mechanism for semantic separation, operating on distinct global and local semantic feature spaces. We first perform global-semantic separation through a global semantic feature space aligned with text queries. A Q-Audio architecture is employed to align audio and text modalities, serving as pretrained global-semantic encoders. Conditioned on the predicted global feature, we then perform the second-stage local-semantic separation on AudioMAE features that preserve time-frequency structures, followed by acoustic reconstruction. We also propose an instruction processing pipeline to parse arbitrary text queries into structured operations, extraction or removal, coupled with audio descriptions, enabling flexible sound manipulation. Our method achieves state-of-the-art separation performance with data-efficient training while maintaining superior semantic consistency with queries in complex auditory scenes.
comment: Accepted by TASLP
♻ ☆ Mean-Field Limits for Two-Layer Neural Networks Trained with Consensus-Based Optimization
We study Consensus-Based Optimization (CBO) for two-layer neural network training. We compare the performance of CBO against Adam on two test cases and demonstrate how a hybrid approach, combining CBO with Adam, provides faster convergence than CBO. Additionally, in the context of multi-task learning, we recast CBO into a formulation that offers less memory overhead. The CBO method allows for a mean-field limit formulation, which we couple with the mean-field limit of the neural network. To this end, we first reformulate CBO within the optimal transport framework. In the limit of infinitely many particles, we define the corresponding dynamics on the Wasserstein-over-Wasserstein space and show that the variance decreases monotonically.
♻ ☆ Dynamic Feature Selection based on Rule-based Learning for Explainable Classification with Uncertainty Quantification
Dynamic feature selection (DFS) offers a compelling alternative to traditional, static feature selection by adapting the selected features to each individual sample. This provides insights into the decision-making process for each case, which makes DFS especially significant in settings where decision transparency is key, i.e., clinical decisions. However, existing DFS methods use opaque models, which hinder their applicability in real-life scenarios. DFS also introduces new own sources of uncertainty compared to the static setting, which is also not considered in the existing literature. In this paper, we formalize the additional sources of uncertainty in DFS, and give formulas to estimate them. We also propose novel approach by leveraging a rule-based system as a base classifier for the DFS process, which enhances decision interpretability compared to neural estimators. Finally, we demonstrate the competitive performance of our rule-based DFS approach against established and state-of-the-art greedy and reinforcement learning methods, which are mostly considered opaque, compared to our explainable rulebased system.
♻ ☆ The Necessity of Imperfection:Reversing Model Collapse via Simulating Cognitive Boundedness
Although synthetic data is widely promoted as a remedy, its prevailing production paradigm -- one optimizing for statistical smoothness -- systematically removes the long-tail, cognitively grounded irregularities that characterize human text. Prolonged training on such statistically optimal but cognitively impoverished data accelerates model collapse. This paper proposes a paradigm shift: instead of imitating the surface properties of data, we simulate the cognitive processes that generate human text. We introduce the Prompt-driven Cognitive Computing Framework (PMCSF), whose core consists of a Cognitive State Decoder (CSD) that reverse-engineers unstructured text into structured cognitive vectors, and a Cognitive Text Encoder (CTE) that re-materializes these states into text enriched with human-typical imperfections via mathematically defined Cognitive Perturbation Operators. The framework is validated through a two-stage objective evaluation pipeline. First, in cognitive codec verification, CTE text yields a Jensen-Shannon divergence of 0.0614 from human text (vs. 0.4431 for standard LLM output), passes double-blind professional media review, and achieves an intraclass correlation coefficient ICC > 0.9 for cognitive profile alignment across heterogeneous models. Second, in functional gain evaluation, isomorphic stress tests in the A-share market show that strategies incorporating CTE-generated data reduce maximum drawdown by 47.4% during the 2015 crash and deliver 8.6% Defensive Alpha, exceeding transaction costs by a factor of 33. Our findings demonstrate that modelling human cognitive limitations -- not copying surface data -- enables synthetic data with genuine functional gain, offering a viable technical pathway toward resolving the AI data-collapse crisis.
comment: 38 pages,5 figures. Extended technical disclosure (Version 2.0) is attached as ancillary files, containing raw forensic logs of the "Silent Rupture"detection [May 2025], proprietary GARCH parameter ranges, and the linguistic micro-chaos injection protocols
♻ ☆ Hyperbolic recurrent neural network as the first type of non-Euclidean neural quantum state ansatz
In this work, we introduce the first type of non-Euclidean neural quantum state (NQS) ansatz, in the form of the hyperbolic GRU (a variant of recurrent neural networks (RNNs)), to be used in the Variational Monte Carlo method of approximating the ground state energy for quantum many-body systems. In particular, we examine the performances of NQS ansatzes constructed from both conventional or Euclidean RNN/GRU and from hyperbolic GRU in the prototypical settings of the one- and two-dimensional transverse field Ising models (TFIM) and the one-dimensional Heisenberg $J_1J_2$ and $J_1J_2J_3$ systems. By virtue of the fact that, for all of the experiments performed in this work, hyperbolic GRU can yield performances comparable to or better than Euclidean RNNs, which have been extensively studied in these settings in the literature, our work is a proof-of-concept for the viability of hyperbolic GRU as the first type of non-Euclidean NQS ansatz for quantum many-body systems. Furthermore, in settings where the Hamiltonian displays a clear hierarchical interaction structure, such as the 1D Heisenberg $J_1J_2$ & $J_1J_2J_3$ systems with the 1st, 2nd and even 3rd nearest neighbor interactions, our results show that hyperbolic GRU definitively outperforms its Euclidean version in almost all instances. The fact that these results are reminiscent of the established ones from natural language processing where hyperbolic GRU almost always outperforms Euclidean RNNs when the training data exhibit a tree-like or hierarchical structure leads us to hypothesize that hyperbolic GRU NQS ansatz would likely outperform Euclidean RNN/GRU NQS ansatz in quantum spin systems that involve different degrees of nearest neighbor interactions. Finally, with this work, we hope to initiate future studies of other types of non-Euclidean NQS beyond hyperbolic GRU.
comment: v2: additional experiments and results included, typo corrected. v3: inference experiments redone, all results updated, conclusions remain qualitatively the same
♻ ☆ Spectral Convolutional Conditional Neural Processes
Neural processes (NPs) are probabilistic meta-learning models that map sets of observations to posterior predictive distributions, enabling inference at arbitrary domain points. Their capacity to handle variable-sized collections of unstructured observations, combined with simple maximum-likelihood training and uncertainty-aware predictions, makes them well-suited for modeling data over continuous domains. Since their introduction, several variants have been proposed. Early approaches typically represented observed data using finite-dimensional summary embeddings obtained through aggregation schemes such as mean pooling. However, this strategy fundamentally mismatches the infinite-dimensional nature of the generative processes that NPs aim to capture. Convolutional conditional neural processes (ConvCNPs) address this limitation by constructing infinite-dimensional functional embeddings processed through convolutional neural networks (CNNs) to enforce translation equivariance. Yet CNNs with local spatial kernels struggle to capture long-range dependencies without resorting to large kernels, which impose significant computational costs. To overcome this limitation, we propose the Spectral ConvCNP (SConvCNP), which performs global convolution in the frequency domain. Inspired by Fourier neural operators (FNOs) for learning solution operators of partial differential equations (PDEs), our approach directly parameterizes convolution kernels in the frequency domain, leveraging the relatively compact yet global Fourier representation of many natural signals. We validate the effectiveness of SConvCNP on both synthetic and real-world datasets, demonstrating how ideas from operator learning can advance the capabilities of NPs.
♻ ☆ Noise tolerance via reinforcement: Learning a reinforced quantum dynamics
The performance of quantum simulations heavily depends on the efficiency of noise mitigation techniques and error correction algorithms. Reinforcement has emerged as a powerful strategy to enhance the efficiency of learning and optimization algorithms. In this study, we demonstrate that a reinforced quantum dynamics can exhibit significant robustness against interactions with a noisy environment. We study a quantum annealing process where, through reinforcement, the system is encouraged to maintain its current state or follow a noise-free evolution. A learning algorithm is employed to derive a concise approximation of this reinforced dynamics, reducing the total evolution time and, consequently, the system's exposure to noisy interactions. This also avoids the complexities associated with implementing quantum feedback in such reinforcement algorithms. The efficacy of our method is demonstrated through numerical simulations of reinforced quantum annealing with one- and two-qubit systems under Pauli noise.
comment: 27 pages, 13 figures
♻ ☆ An Exponential Separation Between Quantum and Quantum-Inspired Classical Algorithms for Linear Systems
Achieving a provable exponential quantum speedup for an important machine learning task has been a central research goal since the seminal HHL quantum algorithm for solving linear systems and the subsequent quantum recommender systems algorithm by Kerenidis and Prakash. These algorithms were initially believed to be strong candidates for exponential speedups, but a lower bound ruling out similar classical improvements remained absent. In breakthrough work by Tang, it was demonstrated that this lack of progress in classical lower bounds was for good reasons. Concretely, she gave a classical counterpart of the quantum recommender systems algorithm, reducing the quantum advantage to a mere polynomial. Her approach is quite general and was named quantum-inspired classical algorithms. Since then, almost all the initially exponential quantum machine learning speedups have been reduced to polynomial via new quantum-inspired classical algorithms. From the current state-of-affairs, it is unclear whether we can hope for exponential quantum speedups for any natural machine learning task. In this work, we present the first such provable exponential separation between quantum and quantum-inspired classical algorithms for the basic problem of solving a linear system when the input matrix is well-conditioned and has sparse rows and columns.
♻ ☆ ChessArena: A Chess Testbed for Evaluating Strategic Reasoning Capabilities of Large Language Models
Recent large language models (LLMs) have shown strong reasoning capabilities. However, a critical question remains: do these models possess genuine reasoning skills particularly complex strategic reasoning or are they primarily excelling at sophisticated pattern recognition within their training data? To address this question, this paper presents a chess testbed, ChessArena, to evaluate the strategic reasoning capabilities of LLMs. Chess requires complex strategic reasoning capabilities including long-term planning, strict rule comprehension, and multi-turn conversation memorization. Specifically, ChessArena is a competitive framework where LLMs play against each other, under four different play modes. The testbed is equipped with a ranking algorithm and a leaderboard. The testbed can also evaluate fine-grained capabilities including basic understanding, move selection, and puzzle solving. Over 13 LLMs with different modes are evaluated in ChessArena, playing over 800 games. The results reveal significant shortcomings in current LLMs: no model can beat Maia-1100 (a chess engine at human amateur level), while some even failed to defeat a random player that selects moves arbitrarily. We also present a strong baseline to the testbed: our fine-tuned Qwen3-8B substantially improved performance, approaching much larger state-of-the-art reasoning models.
♻ ☆ Walk Before You Dance: High-fidelity and Editable Dance Synthesis via Generative Masked Motion Prior
Recent advances in dance generation have enabled the automatic synthesis of 3D dance motions. However, existing methods still face significant challenges in simultaneously achieving high realism, precise dance-music synchronization, diverse motion expression, and physical plausibility. To address these limitations, we propose a novel approach that leverages a generative masked text-to-motion model as a distribution prior to learn a probabilistic mapping from diverse guidance signals, including music, genre, and pose, into high-quality dance motion sequences. Our framework also supports semantic motion editing, such as motion inpainting and body part modification. Specifically, we introduce a multi-tower masked motion model that integrates a text-conditioned masked motion backbone with two parallel, modality-specific branches: a music-guidance tower and a pose-guidance tower. The model is trained using synchronized and progressive masked training, which allows effective infusion of the pretrained text-to-motion prior into the dance synthesis process while enabling each guidance branch to optimize independently through its own loss function, mitigating gradient interference. During inference, we introduce classifier-free logits guidance and pose-guided token optimization to strengthen the influence of music, genre, and pose signals. Extensive experiments demonstrate that our method sets a new state of the art in dance generation, significantly advancing both the quality and editability over existing approaches. Project Page available at https://foram-s1.github.io/DanceMosaic/
♻ ☆ kNNSampler: Stochastic Imputations for Recovering Missing Value Distributions
We study a missing-value imputation method, termed kNNSampler, that imputes a given unit's missing response by randomly sampling from the observed responses of the $k$ most similar units to the given unit in terms of the observed covariates. This method can sample unknown missing values from their distributions, quantify the uncertainties of missing values, and be readily used for multiple imputation. Unlike popular kNNImputer, which estimates the conditional mean of a missing response given an observed covariate, kNNSampler is theoretically shown to estimate the conditional distribution of a missing response given an observed covariate. Experiments illustrate the performance of kNNSampler. The code for kNNSampler is made publicly available (https://github.com/SAP/knn-sampler).
comment: Published in Transactions on Machine Learning Research (TMLR). Reviewed on OpenReview: https://openreview.net/forum?id=4CDnIACCQG
♻ ☆ Generalized Lanczos method for systematic optimization of neural-network quantum states
Recently, artificial intelligence for science has made significant inroads into various fields of natural science research. In the field of quantum many-body computation, researchers have developed numerous ground state solvers based on neural-network quantum states (NQSs), achieving ground state energies with accuracy comparable to or surpassing traditional methods such as variational Monte Carlo methods, density matrix renormalization group, and quantum Monte Carlo methods. Here, we combine supervised learning, variational Monte Carlo (VMC), and the Lanczos method to develop a systematic approach to improving the NQSs of many-body systems, which we refer to as the NQS Lanczos method. The algorithm mainly consists of two parts: the supervised learning part and the VMC optimization part. Through supervised learning, the Lanczos states are represented by the NQSs. Through VMC, the NQSs are further optimized. We analyze the reasons for the underfitting problem and demonstrate how the NQS Lanczos method systematically improves the energy in the highly frustrated regime of the two-dimensional Heisenberg $J_1$-$J_2$ model. Compared to the existing method that combines the Lanczos method with the restricted Boltzmann machine, the primary advantage of the NQS Lanczos method is its linearly increasing computational cost.
comment: 13 pages, 8 figures, 5 tables
♻ ☆ AuroRA: Breaking Low-Rank Bottleneck of LoRA with Nonlinear Mapping
Low-Rank Adaptation (LoRA) is a widely adopted parameter-efficient fine-tuning (PEFT) method validated across NLP and CV domains. However, LoRA faces an inherent low-rank bottleneck: narrowing its performance gap with full finetuning requires increasing the rank of its parameter matrix, resulting in significant parameter overhead. Recent linear LoRA variants have attempted to enhance expressiveness by introducing additional linear mappings; however, their composition remains inherently linear and fails to fundamentally improve LoRA's representational capacity. To address this limitation, we propose AuroRA, which incorporates an Adaptive Nonlinear Layer (ANL) between two linear projectors to capture fixed and learnable nonlinearities. This combination forms an MLP-like structure with a compressed rank, enabling flexible and precise approximation of diverse target functions while theoretically guaranteeing lower approximation errors and bounded gradients. Extensive experiments on 22 datasets and 6 pretrained models demonstrate that AuroRA: (I) not only matches or surpasses full fine-tuning performance with only 6.18% ~ 25% of LoRA's parameters but also (II) outperforms competitive PEFT methods by up to 10.88% in both NLP and CV tasks, and (III) exhibits robust performance across various rank configurations.
♻ ☆ Revisiting Clustering of Neural Bandits: Selective Reinitialization for Mitigating Loss of Plasticity KDD 2025
Clustering of Bandits (CB) methods enhance sequential decision-making by grouping bandits into clusters based on similarity and incorporating cluster-level contextual information, demonstrating effectiveness and adaptability in applications like personalized streaming recommendations. However, when extending CB algorithms to their neural version (commonly referred to as Clustering of Neural Bandits, or CNB), they suffer from loss of plasticity, where neural network parameters become rigid and less adaptable over time, limiting their ability to adapt to non-stationary environments (e.g., dynamic user preferences in recommendation). To address this challenge, we propose Selective Reinitialization (SeRe), a novel bandit learning framework that dynamically preserves the adaptability of CNB algorithms in evolving environments. SeRe leverages a contribution utility metric to identify and selectively reset underutilized units, mitigating loss of plasticity while maintaining stable knowledge retention. Furthermore, when combining SeRe with CNB algorithms, the adaptive change detection mechanism adjusts the reinitialization frequency according to the degree of non-stationarity, ensuring effective adaptation without unnecessary resets. Theoretically, we prove that SeRe enables sublinear cumulative regret in piecewise-stationary environments, outperforming traditional CNB approaches in long-term performances. Extensive experiments on six real-world recommendation datasets demonstrate that SeRe-enhanced CNB algorithms can effectively mitigate the loss of plasticity with lower regrets, improving adaptability and robustness in dynamic settings.
comment: Accepted by KDD 2025
♻ ☆ ParlAI Vote: A Web Platform for Analyzing Gender and Political Bias in Large Language Models
We present ParlAI Vote, an interactive web platform for exploring European Parliament debates and votes, and for testing LLMs on vote prediction and bias analysis. This web system connects debate topics, speeches, and roll-call outcomes, and includes rich demographic data such as gender, age, country, and political group. Users can browse debates, inspect linked speeches, compare real voting outcomes with predictions from frontier LLMs, and view error breakdowns by demographic group. Visualizing the EuroParlVote benchmark and its core tasks of gender classification and vote prediction, ParlAI Vote highlights systematic performance bias in state-of-the-art LLMs. It unifies data, models, and visual analytics in a single interface, lowering the barrier for reproducing findings, auditing behavior, and running counterfactual scenarios. This web platform also shows model reasoning, helping users see why errors occur and what cues the models rely on. It supports research, education, and public engagement with legislative decision-making, while making clear both the strengths and the limitations of current LLMs in political analysis.
comment: online demo: https://euro-parl-vote-demo.vercel.app/; Video: https://www.youtube.com/@Jinrui-sf2jg
♻ ☆ Simulating classification models to evaluate Predict-Then-Optimize methods
Uncertainty in optimization is often represented as stochastic parameters in the optimization model. In Predict-Then-Optimize approaches, predictions of a machine learning model are used as values for such parameters, effectively transforming the stochastic optimization problem into a deterministic one. This two-stage framework is built on the assumption that more accurate predictions result in solutions that are closer to the actual optimal solution. However, providing evidence for this assumption in the context of complex, constrained optimization problems is challenging and often overlooked in the literature. Simulating predictions of machine learning models offers a way to (experimentally) analyze how prediction error impacts solution quality without the need to train real models. Complementing an algorithm from the literature for simulating binary classification, we introduce a new algorithm for simulating predictions of multiclass classifiers. We conduct a computational study to evaluate the performance of these algorithms, and show that classifier performance can be simulated with reasonable accuracy, although some variability is observed. Additionally, we apply these algorithms to assess the performance of a Predict-Then-Optimize algorithm for a machine scheduling problem. The experiments demonstrate that the relationship between prediction error and how close solutions are to the actual optimum is non-trivial, highlighting important considerations for the design and evaluation of decision-making systems based on machine learning predictions.
♻ ☆ DiCaP: Distribution-Calibrated Pseudo-labeling for Semi-Supervised Multi-Label Learning AAAI-26
Semi-supervised multi-label learning (SSMLL) aims to address the challenge of limited labeled data in multi-label learning (MLL) by leveraging unlabeled data to improve the model's performance. While pseudo-labeling has become a dominant strategy in SSMLL, most existing methods assign equal weights to all pseudo-labels regardless of their quality, which can amplify the impact of noisy or uncertain predictions and degrade the overall performance. In this paper, we theoretically verify that the optimal weight for a pseudo-label should reflect its correctness likelihood. Empirically, we observe that on the same dataset, the correctness likelihood distribution of unlabeled data remains stable, even as the number of labeled training samples varies. Building on this insight, we propose Distribution-Calibrated Pseudo-labeling (DiCaP), a correctness-aware framework that estimates posterior precision to calibrate pseudo-label weights. We further introduce a dual-thresholding mechanism to separate confident and ambiguous regions: confident samples are pseudo-labeled and weighted accordingly, while ambiguous ones are explored by unsupervised contrastive learning. Experiments conducted on multiple benchmark datasets verify that our method achieves consistent improvements, surpassing state-of-the-art methods by up to 4.27%.
comment: Accepted by AAAI-26
♻ ☆ Enhanced Conditional Generation of Double Perovskite by Knowledge-Guided Language Model Feedback
Double perovskites (DPs) are promising candidates for sustainable energy technologies due to their compositional tunability and compatibility with low-energy fabrication, yet their vast design space poses a major challenge for conditional materials discovery. This work introduces a multi-agent, text gradient-driven framework that performs DP composition generation under natural-language conditions by integrating three complementary feedback sources: LLM-based self-evaluation, DP-specific domain knowledge-informed feedback, and ML surrogate-based feedback. Analogous to how knowledge-informed machine learning improves the reliability of conventional data-driven models, our framework incorporates domain-informed text gradients to guide the generative process toward physically meaningful regions of the DP composition space. Systematic comparison of three incremental configurations, (i) pure LLM generation, (ii) LLM generation with LLM reasoning-based feedback, and (iii) LLM generation with domain knowledge-guided feedback, shows that iterative guidance from knowledge-informed gradients improves stability-condition satisfaction without additional training data, achieving over 98% compositional validity and up to 54% stable or metastable candidates, surpassing both the LLM-only baseline (43%) and prior GAN-based results (27%). Analyses of ML-based gradients further reveal that they enhance performance in in-distribution (ID) regions but become unreliable in out-of-distribution (OOD) regimes. Overall, this work provides the first systematic analysis of multi-agent, knowledge-guided text gradients for DP discovery and establishes a generalizable blueprint for MAS-driven generative materials design aimed at advancing sustainable technologies.
♻ ☆ Understanding and Improving Shampoo and SOAP via Kullback-Leibler Minimization
Shampoo and its efficient variant, SOAP, employ structured second-moment estimations and have shown strong performance for training neural networks (NNs). In practice, however, Shampoo typically requires step-size grafting with Adam to be competitive, and SOAP mitigates this by applying Adam in Shampoo's eigenbasis -- at the cost of additional memory overhead from Adam in both methods. Prior analyses have largely relied on the Frobenius norm to motivate these estimation schemes. We instead recast their estimation procedures as covariance estimation under Kullback-Leibler (KL) divergence minimization, revealing a previously overlooked theoretical limitation and motivating principled redesigns. Building on this perspective, we develop $\textbf{KL-Shampoo}$ and $\textbf{KL-SOAP}$, practical schemes that match or exceed the performance of Shampoo and SOAP in NN pre-training while achieving SOAP-level per-iteration runtime. Notably, KL-Shampoo does not rely on Adam to attain competitive performance, eliminating the memory overhead introduced by Adam. Across our experiments, KL-Shampoo consistently outperforms SOAP, Shampoo, and even KL-SOAP, establishing the KL-based approach as a compelling foundation for designing structured methods in NN optimization.
comment: improved the main text and added one more experiment using a larger model in Appendix H; working in progress
♻ ☆ HBLLM: A Haar-Based Approach for Accurate Structured 1-Bit Quantized LLMs
We introduce HBLLM, a wavelet-enhanced high-fidelity $1$-bit post-training quantization method for Large Language Models (LLMs). By leveraging Haar wavelet transforms to enhance expressive capacity through frequency decomposition, HBLLM significantly improves quantization fidelity while maintaining minimal overhead. This approach features two innovative structure-aware grouping strategies: (1) frequency-aware multi-parameter intra-row grouping and (2) $\ell_2$-norm-based saliency-driven column selection. For non-salient weights, a shared mean is employed across quantization groups within each frequency band to optimize storage efficiency. Experiments conducted on the OPT and LLaMA models demonstrate that HBLLM achieves state-of-the-art performance in $1$-bit quantization, attaining a perplexity of $6.71$ on LLaMA$2$-$13$B with an average weight storage of only $1.08$ bits. Code available at: https://github.com/Yeyke/HBLLM.
♻ ☆ Stabilizing Reinforcement Learning with LLMs: Formulation and Practices
This paper proposes a novel formulation for reinforcement learning (RL) with large language models, explaining why and under what conditions the true sequence-level reward can be optimized via a surrogate token-level objective in policy gradient methods such as REINFORCE. Specifically, through a first-order approximation, we show that this surrogate becomes increasingly valid only when both the training-inference discrepancy and policy staleness are minimized. This insight provides a principled explanation for the crucial role of several widely adopted techniques in stabilizing RL training, including importance sampling correction, clipping, and particularly Routing Replay for Mixture-of-Experts (MoE) models. Through extensive experiments with a 30B MoE model totaling hundreds of thousands of GPU hours, we show that for on-policy training, the basic policy gradient algorithm with importance sampling correction achieves the highest training stability. When off-policy updates are introduced to accelerate convergence, combining clipping and Routing Replay becomes essential to mitigate the instability caused by policy staleness. Notably, once training is stabilized, prolonged optimization consistently yields comparable final performance regardless of cold-start initialization. We hope that the shared insights and the developed recipes for stable RL training will facilitate future research.
BountyBench: Dollar Impact of AI Agent Attackers and Defenders on Real-World Cybersecurity Systems
AI agents have the potential to significantly alter the cybersecurity landscape. Here, we introduce the first framework to capture offensive and defensive cyber-capabilities in evolving real-world systems. Instantiating this framework with BountyBench, we set up 25 systems with complex, real-world codebases. To capture the vulnerability lifecycle, we define three task types: Detect (detecting a new vulnerability), Exploit (exploiting a given vulnerability), and Patch (patching a given vulnerability). For Detect, we construct a new success indicator, which is general across vulnerability types and provides localized evaluation. We manually set up the environment for each system, including installing packages, setting up server(s), and hydrating database(s). We add 40 bug bounties, which are vulnerabilities with monetary awards from \$10 to \$30,485, covering 9 of the OWASP Top 10 Risks. To modulate task difficulty, we devise a new strategy based on information to guide detection, interpolating from identifying a zero day to exploiting a given vulnerability. We evaluate 10 agents: Claude Code, OpenAI Codex CLI with o3-high and o4-mini, and custom agents with o3-high, GPT-4.1, Gemini 2.5 Pro Preview, Claude 3.7 Sonnet Thinking, Qwen3 235B A22B, Llama 4 Maverick, and DeepSeek-R1. Given up to three attempts, the top-performing agents are Codex CLI: o3-high (12.5% on Detect, mapping to \$3,720; 90% on Patch, mapping to \$14,152), Custom Agent: Claude 3.7 Sonnet Thinking (67.5% on Exploit), and Codex CLI: o4-mini (90% on Patch, mapping to \$14,422). Codex CLI: o3-high, Codex CLI: o4-mini, and Claude Code are more capable at defense, achieving higher Patch scores of 90%, 90%, and 87.5%, compared to Exploit scores of 47.5%, 32.5%, and 57.5% respectively; while the custom agents are relatively balanced between offense and defense, achieving Exploit scores of 17.5-67.5% and Patch scores of 25-60%.
comment: 113 pages
♻ ☆ Predicting Human Perceptions of Robot Performance During Navigation Tasks
Understanding human perceptions of robot performance is crucial for designing socially intelligent robots that can adapt to human expectations. Current approaches often rely on surveys, which can disrupt ongoing human-robot interactions. As an alternative, we explore predicting people's perceptions of robot performance using non-verbal behavioral cues and machine learning techniques. We contribute the SEAN TOGETHER Dataset consisting of observations of an interaction between a person and a mobile robot in Virtual Reality, together with perceptions of robot performance provided by users on a 5-point scale. We then analyze how well humans and supervised learning techniques can predict perceived robot performance based on different observation types (like facial expression and spatial behavior features). Our results suggest that facial expressions alone provide useful information, but in the navigation scenarios that we considered, reasoning about spatial features in context is critical for the prediction task. Also, supervised learning techniques outperformed humans' predictions in most cases. Further, when predicting robot performance as a binary classification task on unseen users' data, the F1-Score of machine learning models more than doubled that of predictions on a 5-point scale. This suggested good generalization capabilities, particularly in identifying performance directionality over exact ratings. Based on these findings, we conducted a real-world demonstration where a mobile robot uses a machine learning model to predict how a human who follows it perceives it. Finally, we discuss the implications of our results for implementing these supervised learning models in real-world navigation. Our work paves the path to automatically enhancing robot behavior based on observations of users and inferences about their perceptions of a robot.
♻ ☆ Maternal and Fetal Health Status Assessment by Using Machine Learning on Optical 3D Body Scans
Monitoring maternal and fetal health during pregnancy is crucial for preventing adverse outcomes. While tests such as ultrasound scans offer high accuracy, they can be costly and inconvenient. Telehealth and more accessible body shape information provide pregnant women with a convenient way to monitor their health. This study explores the potential of 3D body scan data, captured during the 18-24 gestational weeks, to predict adverse pregnancy outcomes and estimate clinical parameters. We developed a novel algorithm with two parallel streams which are used for extract body shape features: one for supervised learning to extract sequential abdominal circumference information, and another for unsupervised learning to extract global shape descriptors, alongside a branch for demographic data. Our results indicate that 3D body shape can assist in predicting preterm labor, gestational diabetes mellitus (GDM), gestational hypertension (GH), and in estimating fetal weight. Compared to other machine learning models, our algorithm achieved the best performance, with prediction accuracies exceeding 88% and fetal weight estimation accuracy of 76.74% within a 10% error margin, outperforming conventional anthropometric methods by 22.22%.
♻ ☆ GRAFT: GRaPH and Table Reasoning for Textual Alignment -- A Benchmark for Structured Instruction Following and Visual Reasoning
GRAFT is a structured multimodal benchmark designed to probe how well LLMs handle instruction following, visual reasoning, and tasks requiring tight visual textual alignment. The dataset is built around programmatically generated charts and synthetically rendered tables, each paired with a carefully constructed, multi step analytical question that depends solely on what can be inferred from the image itself. Responses are formatted in structured outputs such as JSON or YAML, enabling consistent and fine grained evaluation of both reasoning processes and adherence to output specifications. The benchmark further introduces a taxonomy of reasoning operations ranging from comparison and trend identification to ranking, aggregation, proportional estimation, and anomaly detection to support a comprehensive assessment of model capabilities. Taken together, GRAFT provides a unified and scalable framework for evaluating multimodal LLMs on visually grounded, structured reasoning tasks, offering a more rigorous standard for future benchmarking efforts.
comment: 25 pages, 10 tables, 3 figures
♻ ☆ Intrinsic Structure as a Proxy for Saliency: SVD-Based Weight Preservation for Mixed-Precision Quantization in Large Language Models
As Large Language Models (LLMs) continue to scale in parameter count, deploying them on commodity hardware has become increasingly challenging. Post-Training Quantization (PTQ) addresses this by reducing the precision of model weights, typically to 4-bit or lower. However, uniform quantization often leads to significant performance degradation due to the presence of ``outlier features'' -- weights that, while few in number, are critical for maintaining model accuracy. Current state-of-the-art methods such as AWQ (Activation-aware Weight Quantization) and SpQR (Sparse Quantization Representations) rely on calibration data to identify these salient weights via activation magnitudes or Hessian sensitivity. In scenarios where data privacy is paramount or calibration data is unavailable, these methods are inapplicable. In this work, we propose a data-free, structure-aware hypothesis: that the weights identified as Principal Components via Singular Value Decomposition (SVD) are intrinsically important to the model's downstream performance. We introduce a novel selection heuristic that preserves the top-$k$ weights aligned with the principal components in FP32, while aggressively quantizing the residual weights. We compare our method against activation-aware (AWQ) and second-order (SpQR) methods across GLUE benchmarks (MRPC, RTE, QNLI) using a DistilBERT backbone. Our experiments reveal that structural importance is highly correlated with functional importance. On the challenging RTE task, our SVD-based method achieves an accuracy of 66.06\%, outperforming both AWQ (65.34\%) and SpQR (65.34\%) at high protection budgets, validating that intrinsic matrix structure can serve as a robust proxy for weight saliency without the need for forward passes or calibration data.
♻ ☆ SimpleFold: Folding Proteins is Simpler than You Think
Protein folding models have achieved groundbreaking results typically via a combination of integrating domain knowledge into the architectural blocks and training pipelines. Nonetheless, given the success of generative models across different but related problems, it is natural to question whether these architectural designs are a necessary condition to build performant models. In this paper, we introduce SimpleFold, the first flow-matching based protein folding model that solely uses general purpose transformer blocks. Protein folding models typically employ computationally expensive modules involving triangular updates, explicit pair representations or multiple training objectives curated for this specific domain. Instead, SimpleFold employs standard transformer blocks with adaptive layers and is trained via a generative flow-matching objective with an additional structural term. We scale SimpleFold to 3B parameters and train it on approximately 9M distilled protein structures together with experimental PDB data. On standard folding benchmarks, SimpleFold-3B achieves competitive performance compared to state-of-the-art baselines, in addition SimpleFold demonstrates strong performance in ensemble prediction which is typically difficult for models trained via deterministic reconstruction objectives. Due to its general-purpose architecture, SimpleFold shows efficiency in deployment and inference on consumer-level hardware. SimpleFold challenges the reliance on complex domain-specific architectures designs in protein folding, opening up an alternative design space for future progress.
comment: 30 pages, 11 figures, 15 tables
Aligning Compound AI Systems via System-level DPO NeurIPS 2025
Compound AI systems, comprising multiple interacting components such as LLMs, foundation models, and external tools, have demonstrated remarkable improvements compared to single models in various tasks. To ensure their effective deployment in real-world applications, aligning these systems with human preferences is crucial. However, aligning the compound system via policy optimization, unlike the alignment of a single model, is challenging for two main reasons: (i) non-differentiable interactions between components make end-to-end gradient-based optimization method inapplicable, and (ii) system-level preferences cannot be directly transformed into component-level preferences. To address these challenges, we first formulate compound AI systems as Directed Acyclic Graphs (DAGs), explicitly modeling both component interactions and the associated data flows. Building on this formulation, we introduce $\textbf{SysDPO}$, a framework that extends Direct Preference Optimization (DPO) to enable joint system-level alignment. We propose two variants, SysDPO-Direct and SysDPO-Sampling, tailored for scenarios depending on whether we construct a system-specific preference dataset. We empirically demonstrate the effectiveness of our approach across two applications: the joint alignment of a language model and a diffusion model, and the joint alignment of an LLM collaboration system.
comment: NeurIPS 2025
♻ ☆ Increasing Information Extraction in Low-Signal Regimes via Multiple Instance Learning
In this work, we introduce a new information-theoretic perspective on Multiple Instance Learning (MIL) for parameter estimation with i.i.d. data, and show that MIL can outperform single-instance learners in low-signal regimes. Prior work [Nachman and Thaler, 2021] argued that single-instance methods are often sufficient, but this conclusion presumes enough single-instance signal to train near-optimal classifiers. We demonstrate that even state-of-the-art single-instance models can fail to reach optimal classifier performance in challenging low-signal regimes, whereas MIL can mitigate this sub-optimality. As a concrete application, we constrain Wilson coefficients of the Standard Model Effective Field Theory (SMEFT) using kinematic information from subatomic particle collision events at the Large Hadron Collider (LHC). In experiments, we observe that under specific modeling and weak signal conditions, pooling instances can increase the effective Fisher information compared to single-instance approaches.
comment: Referenced prior work to better frame the contribution
♻ ☆ Using physics-inspired Singular Learning Theory to understand grokking & other phase transitions in modern neural networks
Classical statistical inference and learning theory often fail to explain the success of modern neural networks. A key reason is that these models are non-identifiable (singular), violating core assumptions behind PAC bounds and asymptotic normality. Singular learning theory (SLT), a physics-inspired framework grounded in algebraic geometry, has gained popularity for its ability to close this theory-practice gap. In this paper, we empirically study SLT in toy settings relevant to interpretability and phase transitions. First, we understand the SLT free energy $\mathcal{F}_n$ by testing an Arrhenius-style rate hypothesis using both a grokking modulo-arithmetic model and Anthropic's Toy Models of Superposition. Second, we understand the local learning coefficient $λ_α$ by measuring how it scales with problem difficulty across several controlled network families (polynomial regressors, low-rank linear networks, and low-rank autoencoders). Our experiments recover known scaling laws while others yield meaningful deviations from theoretical expectations. Overall, our paper illustrates the many merits of SLT for understanding neural network phase transitions, and poses open research questions for the field.
comment: 8 pages, preprint
♻ ☆ MaxSup: Overcoming Representation Collapse in Label Smoothing NeurIPS 2025
Label Smoothing (LS) is widely adopted to reduce overconfidence in neural network predictions and improve generalization. Despite these benefits, recent studies reveal two critical issues with LS. First, LS induces overconfidence in misclassified samples. Second, it compacts feature representations into overly tight clusters, diluting intra-class diversity, although the precise cause of this phenomenon remained elusive. In this paper, we analytically decompose the LS-induced loss, exposing two key terms: (i) a regularization term that dampens overconfidence only when the prediction is correct, and (ii) an error-amplification term that arises under misclassifications. This latter term compels the network to reinforce incorrect predictions with undue certainty, exacerbating representation collapse. To address these shortcomings, we propose Max Suppression (MaxSup), which applies uniform regularization to both correct and incorrect predictions by penalizing the top-1 logit rather than the ground-truth logit. Through extensive feature-space analyses, we show that MaxSup restores intra-class variation and sharpens inter-class boundaries. Experiments on large-scale image classification and multiple downstream tasks confirm that MaxSup is a more robust alternative to LS. Code is available at: https://github.com/ZhouYuxuanYX/Maximum-Suppression-Regularization
comment: NeurIPS 2025 Oral (0.36% acceptance); code: https://github.com/ZhouYuxuanYX/Maximum-Suppression-Regularization
♻ ☆ PersonaAgent with GraphRAG: Community-Aware Knowledge Graphs for Personalized LLM
We propose a novel framework for persona-based language model system, motivated by the need for personalized AI agents that adapt to individual user preferences. In our approach, the agent embodies the user's "persona" (e.g. user profile or taste) and is powered by a large language model (LLM). To enable the agent to leverage rich contextual information, we introduce a Knowledge-Graph-enhanced Retrieval-Augmented Generation (Graph RAG) mechanism that constructs an LLM-derived graph index of relevant documents and summarizes communities of related information. Our framework generates personalized prompts by combining: (1) a summary of the user's historical behaviors and preferences extracted from the knowledge graph, and (2) relevant global interaction patterns identified through graph-based community detection. This dynamic prompt engineering approach allows the agent to maintain consistent persona-aligned behaviors while benefiting from collective knowledge. On the LaMP benchmark, our method improves news categorization F1 by 11.1%, movie tagging F1 by 56.1%, and reduces product rating MAE by 10.4% over prior methods. Our code is available at https://anonymous.4open.science/r/PersonaAgentwGraphRAG-DE6F
♻ ☆ Adversarial Diffusion for Robust Reinforcement Learning
Robustness to modeling errors and uncertainties remains a central challenge in reinforcement learning (RL). In this work, we address this challenge by leveraging diffusion models to train robust RL policies. Diffusion models have recently gained popularity in model-based RL due to their ability to generate full trajectories "all at once", mitigating the compounding errors typical of step-by-step transition models. Moreover, they can be conditioned to sample from specific distributions, making them highly flexible. We leverage conditional sampling to learn policies that are robust to uncertainty in environment dynamics. Building on the established connection between Conditional Value at Risk (CVaR) optimization and robust RL, we introduce Adversarial Diffusion for Robust Reinforcement Learning (AD-RRL). AD-RRL guides the diffusion process to generate worst-case trajectories during training, effectively optimizing the CVaR of the cumulative return. Empirical results across standard benchmarks show that AD-RRL achieves superior robustness and performance compared to existing robust RL methods.
♻ ☆ Self-Supervised Compression and Artifact Correction for Streaming Underwater Imaging Sonar
Real-time imaging sonar is crucial for underwater monitoring where optical sensing fails, but its use is limited by low uplink bandwidth and severe sonar-specific artifacts (speckle, motion blur, reverberation, acoustic shadows) affecting up to 98% of frames. We present SCOPE, a self-supervised framework that jointly performs compression and artifact correction without clean-noise pairs or synthetic assumptions. SCOPE combines (i) Adaptive Codebook Compression (ACC), which learns frequency-encoded latent representations tailored to sonar, with (ii) Frequency-Aware Multiscale Segmentation (FAMS), which decomposes frames into low-frequency structure and sparse high-frequency dynamics while suppressing rapidly fluctuating artifacts. A hedging training strategy further guides frequency-aware learning using low-pass proxy pairs generated without labels. Evaluated on months of in-situ ARIS sonar data, SCOPE achieves a structural similarity index (SSIM) of 0.77, representing a 40% improvement over prior self-supervised denoising baselines, at bitrates down to <= 0.0118 bpp. It reduces uplink bandwidth by more than 80% while improving downstream detection. The system runs in real time, with 3.1 ms encoding on an embedded GPU and 97 ms full multi-layer decoding on the server end. SCOPE has been deployed for months in three Pacific Northwest rivers to support real-time salmon enumeration and environmental monitoring in the wild. Results demonstrate that learning frequency-structured latents enables practical, low-bitrate sonar streaming with preserved signal details under real-world deployment conditions.
comment: Accepted to WACV 2026
♻ ☆ Sparse Multiple Kernel Learning: Alternating Best Response and Semidefinite Relaxations
We study Sparse Multiple Kernel Learning (SMKL), which is the problem of selecting a sparse convex combination of prespecified kernels for support vector binary classification. Unlike prevailing l1 regularized approaches that approximate a sparsifying penalty, we formulate the problem by imposing an explicit cardinality constraint on the kernel weights and add an l2 penalty for robustness. We solve the resulting non-convex minimax problem via an alternating best response algorithm with two subproblems: the alpha subproblem is a standard kernel SVM dual solved via LIBSVM, while the beta subproblem admits an efficient solution via the Greedy Selector and Simplex Projector algorithm. We reformulate SMKL as a mixed integer semidefinite optimization problem and derive a hierarchy of semidefinite convex relaxations which can be used to certify near-optimality of the solutions returned by our best response algorithm and also to warm start it. On ten UCI benchmarks, our method with random initialization outperforms state-of-the-art MKL approaches in out-of-sample prediction accuracy on average by 3.34 percentage points (relative to the best performing benchmark) while selecting a small number of candidate kernels in comparable runtime. With warm starting, our method outperforms the best performing benchmark's out-of-sample prediction accuracy on average by 4.05 percentage points. Our convex relaxations provide a certificate that in several cases, the solution returned by our best response algorithm is the globally optimal solution.
♻ ☆ Efficient Turing Machine Simulation with Transformers
Constant bit-size Transformers are known to be Turing complete, but existing constructions require $Ω(s(n))$ chain-of-thought (CoT) steps per simulated Turing machine (TM) step, leading to impractical reasoning lengths. In this paper, we significantly reduce this efficiency gap by proving that any $(t(n),s(n))$-bounded multi-tape TM can be simulated by a constant bit-size Transformer with an optimal $O(s(n))$-long context window and only $O(s(n)^c)$ CoT steps per TM step, where $c>0$ can be made arbitrarily small by letting the Transformers' head-layer product sufficiently large. In addition, our construction shows that sparse attention with fixed geometric offsets suffices for efficient universal computation. Our proof leverages multi-queue TMs as a bridge. The main technical novelty is a more efficient simulation of multi-tape TMs by synchronous multi-queue TMs, improving both time and space complexity under stricter model assumptions.
comment: 19 pages
♻ ☆ XXLTraffic: Expanding and Extremely Long Traffic forecasting beyond test adaptation
Traffic forecasting is crucial for smart cities and intelligent transportation initiatives, where deep learning has made significant progress in modeling complex spatio-temporal patterns in recent years. However, current public datasets have limitations in reflecting the distribution shift nature of real-world scenarios, characterized by continuously evolving infrastructures, varying temporal distributions, and long temporal gaps due to sensor downtimes or changes in traffic patterns. These limitations inevitably restrict the practical applicability of existing traffic forecasting datasets. To bridge this gap, we present XXLTraffic, largest available public traffic dataset with the longest timespan collected from Los Angeles, USA, and New South Wales, Australia, curated to support research in extremely long forecasting beyond test adaptation. Our benchmark includes both typical time-series forecasting settings with hourly and daily aggregated data and novel configurations that introduce gaps and down-sample the training size to better simulate practical constraints. We anticipate the new XXLTraffic will provide a fresh perspective for the time-series and traffic forecasting communities. It would also offer a robust platform for developing and evaluating models designed to tackle the extremely long forecasting problems beyond test adaptation. Our dataset supplements existing spatio-temporal data resources and leads to new research directions in this domain.
comment: Updated version. SIGSPATIAL 2025 Best Paper
♻ ☆ Risk-Averse Constrained Reinforcement Learning with Optimized Certainty Equivalents NeurIPS 2025
Constrained optimization provides a common framework for dealing with conflicting objectives in reinforcement learning (RL). In most of these settings, the objectives (and constraints) are expressed though the expected accumulated reward. However, this formulation neglects risky or even possibly catastrophic events at the tails of the reward distribution, and is often insufficient for high-stakes applications in which the risk involved in outliers is critical. In this work, we propose a framework for risk-aware constrained RL, which exhibits per-stage robustness properties jointly in reward values and time using optimized certainty equivalents (OCEs). Our framework ensures an exact equivalent to the original constrained problem within a parameterized strong Lagrangian duality framework under appropriate constraint qualifications, and yields a simple algorithmic recipe which can be wrapped around standard RL solvers, such as PPO. Lastly, we establish the convergence of the proposed algorithm under common assumptions, and verify the risk-aware properties of our approach through several numerical experiments.
comment: NeurIPS 2025
♻ ☆ Curiosity-Driven Development of Action and Language in Robots Through Self-Exploration
Human infants acquire language and action gradually through development, achieving strong generalization from minimal experience, whereas large language models require exposure to billions of training tokens. What mechanisms underlie such efficient developmental learning in humans? This study investigates this question through robot simulation experiments in which agents learn to perform actions associated with imperative sentences (e.g., \textit{push red cube}) via curiosity-driven self-exploration. Our approach integrates the active inference framework with reinforcement learning, enabling intrinsically motivated developmental learning. The simulations reveal several key findings: i) Generalization improves markedly as the scale of compositional elements increases. ii) Curiosity combined with motor noise yields substantially better learning than exploration without curiosity. iii) Rote pairing of sentences and actions precedes the emergence of compositional generalization. iv) Simpler, prerequisite-like actions develop earlier than more complex actions that depend on them. v) When exception-handling rules were introduced -- where certain imperative sentences required executing inconsistent actions -- the robots successfully acquired these exceptions through exploration and displayed a U-shaped performance curve characteristic of representational redescription in child language learning. Together, these results suggest that curiosity-driven exploration and active inference provide a powerful account of how intrinsic motivation and hierarchical sensorimotor learning can jointly support scalable compositional generalization and exception handling in both humans and artificial agents.
comment: 20 pages, 19 pages of supplementary material
♻ ☆ Rank Matters: Understanding and Defending Model Inversion Attacks via Low-Rank Feature Filtering KDD 2026
Model Inversion Attacks (MIAs) pose a significant threat to data privacy by reconstructing sensitive training samples from the knowledge embedded in trained machine learning models. Despite recent progress in enhancing the effectiveness of MIAs across diverse settings, defense strategies have lagged behind, struggling to balance model utility with robustness against increasingly sophisticated attacks. In this work, we propose the ideal inversion error to measure the privacy leakage, and our theoretical and empirical investigations reveals that higher-rank features are inherently more prone to privacy leakage. Motivated by this insight, we propose a lightweight and effective defense strategy based on low-rank feature filtering, which explicitly reduces the attack surface by constraining the dimension of intermediate representations. Extensive experiments across various model architectures and datasets demonstrate that our method consistently outperforms existing defenses, achieving state-of-the-art performance against a wide range of MIAs. Notably, our approach remains effective even in challenging regimes involving high-resolution data and high-capacity models, where prior defenses fail to provide adequate protection. The code is available at https://github.com/Chrisqcwx/LoFt .
comment: KDD 2026 Accept
♻ ☆ CSI-BERT2: A BERT-inspired Framework for Efficient CSI Prediction and Classification in Wireless Communication and Sensing
Channel state information (CSI) is a fundamental component in both wireless communication and sensing systems, enabling critical functions such as radio resource optimization and environmental perception. In wireless sensing, data scarcity and packet loss hinder efficient model training, while in wireless communication, high-dimensional CSI matrices and short coherent times caused by high mobility present challenges in CSI estimation. To address these issues, we propose a unified framework named CSI-BERT2 for CSI prediction and classification tasks, built on CSI-BERT, which adapts BERT to capture the complex relationships among CSI sequences through a bidirectional self-attention mechanism. We introduce a two-stage training method that first uses a mask language model (MLM) to enable the model to learn general feature extraction from scarce datasets in an unsupervised manner, followed by fine-tuning for specific downstream tasks. Specifically, we extend MLM into a mask prediction model (MPM), which efficiently addresses the CSI prediction task. To further enhance the representation capacity of CSI data, we modify the structure of the original CSI-BERT. We introduce an adaptive re-weighting layer (ARL) to enhance subcarrier representation and a multi-layer perceptron (MLP)-based temporal embedding module to mitigate temporal information loss problem inherent in the original Transformer. Extensive experiments on both real-world collected and simulated datasets demonstrate that CSI-BERT2 achieves state-of-the-art performance across all tasks. Our results further show that CSI-BERT2 generalizes effectively across varying sampling rates and robustly handles discontinuous CSI sequences caused by packet loss-challenges that conventional methods fail to address. The dataset and code are publicly available at https://github.com/RS2002/CSI-BERT2 .
♻ ☆ The Active and Noise-Tolerant Strategic Perceptron
We initiate the study of active learning algorithms for classifying strategic agents. Active learning is a well-established framework in machine learning in which the learner selectively queries labels, often achieving substantially higher accuracy and efficiency than classical supervised methods-especially in settings where labeling is costly or time-consuming, such as hiring, admissions, and loan decisions. Strategic classification, however, addresses scenarios where agents modify their features to obtain more favorable outcomes, resulting in observed data that is not truthful. Such manipulation introduces challenges beyond those in learning from clean data. Our goal is to design active and noise-tolerant algorithms that remain effective in strategic environments-algorithms that classify strategic agents accurately while issuing as few label requests as possible. The central difficulty is to simultaneously account for strategic manipulation and preserve the efficiency gains of active learning. Our main result is an algorithm for actively learning linear separators in the strategic setting that preserves the exponential improvement in label complexity over passive learning previously obtained only in the non-strategic case. Specifically, for data drawn uniformly from the unit sphere, we show that a modified version of the Active Perceptron algorithm [DKM05,YZ17] achieves excess error $ε$ using only $\tilde{O}(d \ln \frac{1}ε)$ label queries and incurs at most $\tilde{O}(d \ln \frac{1}ε)$ additional mistakes relative to the optimal classifier, even in the nonrealizable case, when a $\tildeΩ(ε)$ fraction of inputs have inconsistent labels with the optimal classifier. The algorithm is computationally efficient and, under these distributional assumptions, requires substantially fewer label queries than prior work on strategic Perceptron [ABBN21].
♻ ☆ SQLBarber: A System Leveraging Large Language Models to Generate Customized and Realistic SQL Workloads
Database research and development often require a large number of SQL queries for benchmarking purposes. However, acquiring real-world SQL queries is challenging due to privacy concerns, and existing SQL generation methods are limited in customization and in satisfying realistic constraints. To address this issue, we present SQLBarber, a system based on Large Language Models (LLMs) to generate customized and realistic SQL workloads. SQLBarber (i) eliminates the need for users to manually craft SQL templates in advance, while providing the flexibility to accept natural language specifications to constrain SQL templates, (ii) scales efficiently to generate large volumes of queries matching any user-defined cost distribution (e.g., cardinality and execution plan cost), and (iii) uses execution statistics from Amazon Redshift and Snowflake to derive SQL template specifications and query cost distributions that reflect real-world query characteristics. SQLBarber introduces (i) a declarative interface for users to effortlessly generate customized SQL templates, (ii) an LLM-powered pipeline augmented with a self-correction module that profiles, refines, and prunes SQL templates based on query costs, and (iii) a Bayesian Optimizer to efficiently explore different predicate values and identify a set of queries that satisfy the target cost distribution. We construct and open-source ten benchmarks of varying difficulty levels and target query cost distributions based on real-world statistics from Snowflake and Amazon Redshift. Extensive experiments on these benchmarks show that SQLBarber is the only system that can generate customized SQL templates. It reduces query generation time by one to three orders of magnitude, and significantly improves alignment with the target cost distribution, compared with existing methods.
comment: Accepted by SIGMOD 2026; extended version with appendix
♻ ☆ Algorithms for Adaptive Experiments that Trade-off Statistical Analysis with Reward: Combining Uniform Random Assignment and Reward Maximization
Traditional randomized A/B experiments assign arms with uniform random (UR) probability, such as 50/50 assignment to two versions of a website to discover whether one version engages users more. To more quickly and automatically use data to benefit users, multi-armed bandit algorithms such as Thompson Sampling (TS) have been advocated. While TS is interpretable and incorporates the randomization key to statistical inference, it can cause biased estimates and increase false positives and false negatives in detecting differences in arm means. We introduce a more Statistically Sensitive algorithm, TS-PostDiff (Posterior Probability of Small Difference), that mixes TS with traditional UR by using an additional adaptive step, where the probability of using UR (vs TS) is proportional to the posterior probability that the difference in arms is small. This allows an experimenter to define what counts as a small difference, below which a traditional UR experiment can obtain informative data for statistical inference at low cost, and above which using more TS to maximize user benefits is key. We evaluate TS-PostDiff against UR, TS, and two other TS variants designed to improve statistical inference. We consider results for the common two-armed experiment across a range of settings inspired by real-world applications. Our results provide insight into when and why TS-PostDiff or alternative approaches provide better tradeoffs between benefiting users (reward) and statistical inference (false positive rate and power). TS-PostDiff's adaptivity helps efficiently reduce false positives and increase statistical power when differences are small, while increasing reward more when differences are large. The work highlights important considerations for future Statistically Sensitive algorithm development that balances reward and statistical analysis in adaptive experimentation.
♻ ☆ Rewarding the Journey, Not Just the Destination: A Composite Path and Answer Self-Scoring Reward Mechanism for Test-Time Reinforcement Learning
Reinforcement Learning (RL) has emerged as a powerful paradigm for advancing Large Language Models (LLMs), achieving remarkable performance in complex reasoning domains such as mathematics and code generation. However, current RL methods face a fundamental scalability bottleneck due to their heavy reliance on human-curated preference data or labeled datasets for reward modeling. To overcome this limitation, we explore RL on unlabeled data where models learn autonomously from continuous experience streams. The core challenge in this setting lies in reliable reward estimation without ground-truth supervision. Existing approaches like Test-Time RL address this through self-consistent consensus, but risk reinforcing incorrect pseudo-labels derived from majority voting. We introduce COMPASS (Composite Path and Answer Self-Scoring), a novel test-time reward mechanism that operates without external supervision. COMPASS integrates two complementary components: the Dual-Calibration Answer Reward (DCAR), which stabilizes training by establishing trustworthy pseudo-labels through confidence and credibility calibration, and the Decisive Path Reward (DPR), which directly optimizes the reasoning process quality beyond mere outcome supervision. By jointly reinforcing trustworthy consensus answers and highly decisive reasoning chains, the COMPASS systematically enhances the model's analytical capabilities. Extensive experiments show that COMPASS achieves significant and consistent performance gains across diverse reasoning tasks and model architectures, advancing a more scalable direction for LLMs to learn from continuous experience.
♻ ☆ Sigma: The Key for Vision-Language-Action Models toward Telepathic Alignment
To address the gap in humanoid robot cognitive systems regarding the lack of a time-updable mediating thought space between semantics and continuous control, this study constructs and trains a VLA model named "Sigma" that runs on a single RTX 4090. It uses the open-source pi05_base model as a foundation and preprocesses svla_so101_pickplace into a training dataset. The researcher independently designed an architecture for a vision-language-action model that combines deep semantic understanding and association to achieve telepathic communication. The training process involved repeated optimizations of data preprocessing, LoRA fine-tuning, and the inference-stage adapter. The experiment employed offline closed-loop replay, comparing Sigma with the untuned pure pi05_base model under data conditions. Results showed that Sigma exhibited a stable decrease in control MSE across vector, fragment, and entire trajectory timescales, while maintaining the telepathy norm and semantic-text alignment quality unchanged. It demonstrates that mind-responsive alignment control is quantified through an architecture that combines deep understanding of semantics and association without retraining the base model, which provides reproducible experience for semantic alignment and intention-driven behavior in humanoid robots.
comment: The Sigma model has been open-sourced on Hugging Face. Weights, dataset, some scripts, and logs are all available. The link is: https://huggingface.co/Veltraxor/Sigma
♻ ☆ ContourDiff: Unpaired Medical Image Translation with Structural Consistency
Accurately translating medical images between different modalities, such as Computed Tomography (CT) to Magnetic Resonance Imaging (MRI), has numerous downstream clinical and machine learning applications. While several methods have been proposed to achieve this, they often prioritize perceptual quality with respect to output domain features over preserving anatomical fidelity. However, maintaining anatomy during translation is essential for many tasks, e.g., when leveraging masks from the input domain to develop a segmentation model with images translated to the output domain. To address these challenges, we propose ContourDiff with Spatially Coherent Guided Diffusion (SCGD), a novel framework that leverages domain-invariant anatomical contour representations of images. These representations are simple to extract from images, yet form precise spatial constraints on their anatomical content. We introduce a diffusion model that converts contour representations of images from arbitrary input domains into images in the output domain of interest. By applying the contour as a constraint at every diffusion sampling step, we ensure the preservation of anatomical content. We evaluate our method on challenging lumbar spine and hip-and-thigh CT-to-MRI translation tasks, via (1) the performance of segmentation models trained on translated images applied to real MRIs, and (2) the foreground FID and KID of translated images with respect to real MRIs. Our method outperforms other unpaired image translation methods by a significant margin across almost all metrics and scenarios. Moreover, it achieves this without the need to access any input domain information during training and we further verify its zero-shot capability, showing that a model trained on one anatomical region can be directly applied to unseen regions without retraining (GitHub: https://github.com/mazurowski-lab/ContourDiff).
comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2025:031
♻ ☆ Front-door Reducibility: Reducing ADMGs to the Standard Front-door Setting via a Graphical Criterion
Front-door adjustment gives a simple closed-form identification formula under the classical front-door criterion, but its applicability is often viewed as narrow. By contrast, the general ID algorithm can identify many more causal effects in arbitrary graphs, yet typically outputs algebraically complex expressions that are hard to estimate and interpret. We show that many such graphs can in fact be reduced to a standard front-door setting via front-door reducibility (FDR), a graphical condition on acyclic directed mixed graphs that aggregates variables into super-nodes $(\boldsymbol{X}^{*},\boldsymbol{Y}^{*},\boldsymbol{M}^{*})$. We characterize the FDR criterion, prove it is equivalent (at the graph level) to the existence of an FDR adjustment, and present FDR-TID, an exact algorithm that finds an admissible FDR triple with correctness, completeness, and finite-termination guarantees. Empirical examples show that many graphs far outside the textbook front-door setting are FDR, yielding simple, estimable adjustments where general ID expressions would be cumbersome. FDR therefore complements existing identification methods by prioritizing interpretability and computational simplicity without sacrificing generality across mixed graphs.
comment: 18 pages, 4 figures
♻ ☆ Keeping Medical AI Healthy and Trustworthy: A Review of Detection and Correction Methods for System Degradation
Artificial intelligence (AI) is increasingly integrated into modern healthcare, offering powerful support for clinical decision-making. However, in real-world settings, AI systems may experience performance degradation over time, due to factors such as shifting data distributions, changes in patient characteristics, evolving clinical protocols, and variations in data quality. These factors can compromise model reliability, posing safety concerns and increasing the likelihood of inaccurate predictions or adverse outcomes. This review presents a forward-looking perspective on monitoring and maintaining the "health" of AI systems in healthcare. We highlight the urgent need for continuous performance monitoring, early degradation detection, and effective self-correction mechanisms. The paper begins by reviewing common causes of performance degradation at both data and model levels. We then summarize key techniques for detecting data and model drift, followed by an in-depth look at root cause analysis. Correction strategies are further reviewed, ranging from model retraining to test-time adaptation. Our survey spans both traditional machine learning models and state-of-the-art large language models (LLMs), offering insights into their strengths and limitations. Finally, we discuss ongoing technical challenges and propose future research directions. This work aims to guide the development of reliable, robust medical AI systems capable of sustaining safe, long-term deployment in dynamic clinical settings.
comment: 16 pages, 5 figures
♻ ☆ Learning Massively Multitask World Models for Continuous Control
General-purpose control demands agents that act across many tasks and embodiments, yet research on reinforcement learning (RL) for continuous control remains dominated by single-task or offline regimes, reinforcing a view that online RL does not scale. Inspired by the foundation model recipe (large-scale pretraining followed by light RL) we ask whether a single agent can be trained on hundreds of tasks with online interaction. To accelerate research in this direction, we introduce a new benchmark with 200 diverse tasks spanning many domains and embodiments, each with language instructions, demonstrations, and optionally image observations. We then present \emph{Newt}, a language-conditioned multitask world model that is first pretrained on demonstrations to acquire task-aware representations and action priors, and then jointly optimized with online interaction across all tasks. Experiments show that Newt yields better multitask performance and data-efficiency than a set of strong baselines, exhibits strong open-loop control, and enables rapid adaptation to unseen tasks. We release our environments, demonstrations, code for training and evaluation, as well as 200+ checkpoints.
comment: Webpage: https://www.nicklashansen.com/NewtWM
♻ ☆ HeavyWater and SimplexWater: Distortion-Free LLM Watermarks for Low-Entropy Next-Token Predictions NeurIPS2025
Large language model (LLM) watermarks enable authentication of text provenance, curb misuse of machine-generated text, and promote trust in AI systems. Current watermarks operate by changing the next-token predictions output by an LLM. The updated (i.e., watermarked) predictions depend on random side information produced, for example, by hashing previously generated tokens. LLM watermarking is particularly challenging in low-entropy generation tasks -- such as coding -- where next-token predictions are near-deterministic. In this paper, we propose an optimization framework for watermark design. Our goal is to understand how to most effectively use random side information in order to maximize the likelihood of watermark detection and minimize the distortion of generated text. Our analysis informs the design of two new watermarks: HeavyWater and SimplexWater. Both watermarks are tunable, gracefully trading-off between detection accuracy and text distortion. They can also be applied to any LLM and are agnostic to side information generation. We examine the performance of HeavyWater and SimplexWater through several benchmarks, demonstrating that they can achieve high watermark detection accuracy with minimal compromise of text generation quality, particularly in the low-entropy regime. Our theoretical analysis also reveals surprising new connections between LLM watermarking and coding theory. The code implementation can be found in https://github.com/DorTsur/HeavyWater_SimplexWater
comment: Presented at NeurIPS2025
♻ ☆ Soft-Label Caching and Sharpening for Communication-Efficient Federated Distillation
Federated Learning (FL) enables collaborative model training across decentralized clients, enhancing privacy by keeping data local. Yet conventional FL, relying on frequent parameter-sharing, suffers from high communication overhead and limited model heterogeneity. Distillation-based FL approaches address these issues by sharing predictions (soft-labels, i.e., normalized probability distributions) instead, but they often involve redundant transmissions across communication rounds, reducing efficiency. We propose SCARLET, a novel framework integrating synchronized soft-label caching and an enhanced Entropy Reduction Aggregation (Enhanced ERA) mechanism. SCARLET minimizes redundant communication by reusing cached soft-labels, achieving up to 50% reduction in communication costs compared to existing methods while maintaining competitive accuracy. Enhanced ERA resolves the fundamental instability of conventional temperature-based aggregation, ensuring robust control and high performance in diverse client scenarios. Experimental evaluations demonstrate that SCARLET consistently outperforms state-of-the-art distillation-based FL methods in terms of accuracy and communication efficiency. The implementation of SCARLET is publicly available at https://github.com/kitsuyaazuma/SCARLET.
comment: 23 pages, 18 figures
♻ ☆ Non-stationary and Varying-discounting Markov Decision Processes for Reinforcement Learning
Algorithms developed under stationary Markov Decision Processes (MDPs) often face challenges in non-stationary environments, and infinite-horizon formulations may not directly apply to finite-horizon tasks. To address these limitations, we introduce the Non-stationary and Varying-discounting MDP (NVMDP) framework, which naturally accommodates non-stationarity and allows discount rates to vary with time and transitions. Infinite-horizon, stationary MDPs emerge as special cases of NVMDPs for identifying an optimal policy, and finite-horizon MDPs are also subsumed within the NVMDP formulations. Moreover, NVMDPs provide a flexible mechanism to shape optimal policies, without altering the state space, action space, or the reward structure. We establish the theoretical foundations of NVMDPs, including assumptions, state- and action-value formulation and recursion, matrix representation, optimality conditions, and policy improvement under finite state and action spaces. Building on these results, we adapt dynamic programming and generalized Q-learning algorithms to NVMDPs, along with formal convergence proofs. For problems requiring function approximation, we extend the Policy Gradient Theorem and the policy improvement bound in Trust Region Policy Optimization (TRPO), offering proofs in both scalar and matrix forms. Empirical evaluations in a non-stationary gridworld environment demonstrate that NVMDP-based algorithms successfully recover optimal trajectories under multiple reward and discounting schemes, whereas original Q-learning fails. These results collectively show that NVMDPs provide a theoretically sound and practically effective framework for reinforcement learning, requiring only minor algorithmic modifications while enabling robust handling of non-stationarity and explicit optimal policy shaping.
comment: Code: https://github.com/zhizuo-chen/jupyter-notebook/tree/main/NVMDP
♻ ☆ Reference Grounded Skill Discovery
Scaling unsupervised skill discovery algorithms to high-DoF agents remains challenging. As dimensionality increases, the exploration space grows exponentially, while the manifold of meaningful skills remains limited. Therefore, semantic meaningfulness becomes essential to effectively guide exploration in high-dimensional spaces. In this work, we present **Reference-Grounded Skill Discovery (RGSD)**, a novel algorithm that grounds skill discovery in a semantically meaningful latent space using reference data. RGSD first performs contrastive pretraining to embed motions on a unit hypersphere, clustering each reference trajectory into a distinct direction. This grounding enables skill discovery to simultaneously involve both imitation of reference behaviors and the discovery of semantically related diverse behaviors. On a simulated SMPL humanoid with $359$-D observations and $69$-D actions, RGSD successfully imitates skills such as walking, running, punching, and sidestepping, while also discover variations of these behaviors. In downstream locomotion tasks, RGSD leverages the discovered skills to faithfully satisfy user-specified style commands and outperforms imitation-learning baselines, which often fail to maintain the commanded style. Overall, our results suggest that lightweight reference-grounding offers a practical path to discovering semantically rich and structured skills in high-DoF systems.
♻ ☆ CPEP: Contrastive Pose-EMG Pre-training Enhances Gesture Generalization on EMG Signals NeurIPS 2025
Hand gesture classification using high-quality structured data such as videos, images, and hand skeletons is a well-explored problem in computer vision. Leveraging low-power, cost-effective biosignals, e.g. surface electromyography (sEMG), allows for continuous gesture prediction on wearables. In this paper, we demonstrate that learning representations from weak-modality data that are aligned with those from structured, high-quality data can improve representation quality and enables zero-shot classification. Specifically, we propose a Contrastive Pose-EMG Pre-training (CPEP) framework to align EMG and pose representations, where we learn an EMG encoder that produces high-quality and pose-informative representations. We assess the gesture classification performance of our model through linear probing and zero-shot setups. Our model outperforms emg2pose benchmark models by up to 21% on in-distribution gesture classification and 72% on unseen (out-of-distribution) gesture classification.
comment: Accepted by 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Foundation Models for the Brain and Body
♻ ☆ Convolution goes higher-order: a biologically inspired mechanism empowers image classification
We propose a novel approach to image classification inspired by complex nonlinear biological visual processing, whereby classical convolutional neural networks (CNNs) are equipped with learnable higher-order convolutions. Our model incorporates a Volterra-like expansion of the convolution operator, capturing multiplicative interactions akin to those observed in early and advanced stages of biological visual processing. We evaluated this approach on synthetic datasets by measuring sensitivity to testing higher-order correlations and performance in standard benchmarks (MNIST, FashionMNIST, CIFAR10, CIFAR100 and Imagenette). Our architecture outperforms traditional CNN baselines, and achieves optimal performance with expansions up to 3rd/4th order, aligning remarkably well with the distribution of pixel intensities in natural images. Through systematic perturbation analysis, we validate this alignment by isolating the contributions of specific image statistics to model performance, demonstrating how different orders of convolution process distinct aspects of visual information. Furthermore, Representational Similarity Analysis reveals distinct geometries across network layers, indicating qualitatively different modes of visual information processing. Our work bridges neuroscience and deep learning, offering a path towards more effective, biologically inspired computer vision models. It provides insights into visual information processing and lays the groundwork for neural networks that better capture complex visual patterns, particularly in resource-constrained scenarios.
♻ ☆ Escaping the Verifier: Learning to Reason via Demonstrations
Training Large Language Models (LLMs) to reason often relies on Reinforcement Learning (RL) with task-specific verifiers. However, many real-world reasoning-intensive tasks lack verifiers, despite offering abundant expert demonstrations that remain under-utilized for reasoning-focused training. We introduce RARO (Relativistic Adversarial Reasoning Optimization) that learns strong reasoning capabilities from only expert demonstrations via Inverse Reinforcement Learning. Our method sets up an adversarial interaction between a policy (generator) and a relativistic critic (discriminator): the policy learns to mimic expert answers, while the critic learns to compare and distinguish between policy and expert answers. Our method trains both the policy and the critic jointly and continuously via RL, and we identify the key stabilization techniques required for robust learning. Empirically, RARO significantly outperforms strong verifier-free baselines on all of our evaluation tasks -- Countdown, DeepMath, and Poetry Writing -- and enjoys the same robust scaling trends as RL on verifiable tasks. These results demonstrate that our method effectively elicits strong reasoning performance from expert demonstrations alone, enabling robust reasoning learning even when task-specific verifiers are unavailable.
♻ ☆ Are you a robot? Detecting Autonomous Vehicles from Behavior Analysis
The tremendous hype around autonomous driving is eagerly calling for emerging and novel technologies to support advanced mobility use cases. As car manufactures keep developing SAE level 3+ systems to improve the safety and comfort of passengers, traffic authorities need to establish new procedures to manage the transition from human-driven to fully-autonomous vehicles while providing a feedback-loop mechanism to fine-tune envisioned autonomous systems. Thus, a way to automatically profile autonomous vehicles and differentiate those from human-driven ones is a must. In this paper, we present a fully-fledged framework that monitors active vehicles using camera images and state information in order to determine whether vehicles are autonomous, without requiring any active notification from the vehicles themselves. Essentially, it builds on the cooperation among vehicles, which share their data acquired on the road feeding a machine learning model to identify autonomous cars. We extensively tested our solution and created the NexusStreet dataset, by means of the CARLA simulator, employing an autonomous driving control agent and a steering wheel maneuvered by licensed drivers. Experiments show it is possible to discriminate the two behaviors by analyzing video clips with an accuracy of 80%, which improves up to 93% when the target state information is available. Lastly, we deliberately degraded the state to observe how the framework performs under non-ideal data collection conditions.
♻ ☆ Monte Carlo-Type Neural Operator for Differential Equations
The Monte Carlo-type Neural Operator (MCNO) introduces a framework for learning solution operators of one-dimensional partial differential equations (PDEs) by directly learning the kernel function and approximating the associated integral operator using a Monte Carlo-type approach. Unlike Fourier Neural Operators (FNOs), which rely on spectral representations and assume translation-invariant kernels, MCNO makes no such assumptions. The kernel is represented as a learnable tensor over sampled input-output pairs, and sampling is performed once, uniformly at random from a discretized grid. This design enables generalization across multiple grid resolutions without relying on fixed global basis functions or repeated sampling during training, while an interpolation step maps between arbitrary input and output grids to further enhance flexibility. Experiments on standard 1D PDE benchmarks show that MCNO achieves competitive accuracy with efficient computational cost. We also provide a theoretical analysis proving that the Monte Carlo estimator yields a bounded bias and variance under mild regularity assumptions. This result holds in any spatial dimension, suggesting that MCNO may extend naturally beyond one-dimensional problems. More broadly, this work explores how Monte Carlo-type integration can be incorporated into neural operator frameworks for continuous-domain PDEs, providing a theoretically supported alternative to spectral methods (such as FNO) and to graph-based Monte Carlo approaches (such as the Graph Kernel Neural Operator, GNO).
♻ ☆ Concentration of Cumulative Reward in Markov Decision Processes
In this paper, we investigate the concentration properties of cumulative reward in Markov Decision Processes (MDPs), focusing on both asymptotic and non-asymptotic settings. We introduce a unified approach to characterize reward concentration in MDPs, covering both infinite-horizon settings (i.e., average and discounted reward frameworks) and finite-horizon setting. Our asymptotic results include the law of large numbers, the central limit theorem, and the law of iterated logarithms, while our non-asymptotic bounds include Azuma-Hoeffding-type inequalities and a non-asymptotic version of the law of iterated logarithms. Additionally, we explore two key implications of our results. First, we analyze the sample path behavior of the difference in rewards between any two stationary policies. Second, we show that two alternative definitions of regret for learning policies proposed in the literature are rate-equivalent. Our proof techniques rely on a martingale decomposition of cumulative reward, properties of the solution to the policy evaluation fixed-point equation, and both asymptotic and non-asymptotic concentration results for martingale difference sequences.
comment: 71 pages
♻ ☆ ConfRover: Simultaneous Modeling of Protein Conformation and Dynamics via Autoregression NeurIPS 2025
Understanding protein dynamics is critical for elucidating their biological functions. The increasing availability of molecular dynamics (MD) data enables the training of deep generative models to efficiently explore the conformational space of proteins. However, existing approaches either fail to explicitly capture the temporal dependencies between conformations or do not support direct generation of time-independent samples. To address these limitations, we introduce ConfRover, an autoregressive model that simultaneously learns protein conformation and dynamics from MD trajectories, supporting both time-dependent and time-independent sampling. At the core of our model is a modular architecture comprising: (i) an encoding layer, adapted from protein folding models, that embeds protein-specific information and conformation at each time frame into a latent space; (ii) a temporal module, a sequence model that captures conformational dynamics across frames; and (iii) an SE(3) diffusion model as the structure decoder, generating conformations in continuous space. Experiments on ATLAS, a large-scale protein MD dataset of diverse structures, demonstrate the effectiveness of our model in learning conformational dynamics and supporting a wide range of downstream tasks. ConfRover is the first model to sample both protein conformations and trajectories within a single framework, offering a novel and flexible approach for learning from protein MD data. Project website: https://bytedance-seed.github.io/ConfRover.
comment: 35 pages, 17 figures; Camera ready for NeurIPS 2025; Website: https://bytedance-seed.github.io/ConfRover
♻ ☆ Beyond Top Activations: Efficient and Reliable Crowdsourced Evaluation of Automated Interpretability
Interpreting individual neurons or directions in activation space is an important topic in mechanistic interpretability. Numerous automated interpretability methods have been proposed to generate such explanations, but it remains unclear how reliable these explanations are, and which methods produce the most accurate descriptions. While crowd-sourced evaluations are commonly used, existing pipelines are noisy, costly, and typically assess only the highest-activating inputs, leading to unreliable results. In this paper, we introduce two techniques to enable cost-effective and accurate crowdsourced evaluation of automated interpretability methods beyond top activating inputs. First, we propose Model-Guided Importance Sampling (MG-IS) to select the most informative inputs to show human raters. In our experiments, we show this reduces the number of inputs needed to reach the same evaluation accuracy by ~13x. Second, we address label noise in crowd-sourced ratings through Bayesian Rating Aggregation (BRAgg), which allows us to reduce the number of ratings per input required to overcome noise by ~3x. Together, these techniques reduce the evaluation cost by ~40x, making large-scale evaluation feasible. Finally, we use our methods to conduct a large scale crowd-sourced study comparing recent automated interpretability methods for vision networks.
♻ ☆ Kodezi Chronos: A Debugging-First Language Model for Repository-Scale Code Understanding
Large Language Models (LLMs) have advanced code generation and software automation but remain constrained by inference-time context and lack structured reasoning over code, leaving debugging largely unsolved. While Claude 4.5 Opus achieves 74.40% on SWE-bench Verified and Gemini 3 Pro reaches 76.2%, both models remain below 20% on real multi-file debugging tasks. We introduce Kodezi Chronos-1, a language model purpose-built for debugging that integrates Adaptive Graph-Guided Retrieval to navigate codebases up to 10 million lines (92% precision, 85% recall), Persistent Debug Memory trained on over 15 million sessions, and a seven-layer fix-test-refine architecture. On 5,000 real-world scenarios, Chronos-1 achieves 67.3% +/- 2.1% fix accuracy compared to 14.2% +/- 1.3% for Claude 4.1 Opus and 13.8% +/- 1.2% for GPT-4.1 (Cohen's d = 3.87). On SWE-bench Lite, Chronos-1 reaches a state-of-the-art 80.33% resolution rate (241 of 300), outperforming the next best system by 20 points and achieving repository-specific highs of 96.1% on Sympy and 90.4% on Django. Chronos-1 reduces debugging time by 40% and iterations by 65%, resolving complex multi-file and cross-repository bugs that require temporal analysis. Limitations remain for hardware-dependent and dynamic language errors, and Chronos-1 will be available in Kodezi OS in Q4 2025 and via API in Q1 2026.
comment: 24 figures, 43 tables, 2 algorithms. Extended technical report introducing Chronos-1, a debugging-specific language model. Information available at https://github.com/Kodezi/chronos
♻ ☆ Instance-Dependent Continuous-Time Reinforcement Learning via Maximum Likelihood Estimation
Continuous-time reinforcement learning (CTRL) provides a natural framework for sequential decision-making in dynamic environments where interactions evolve continuously over time. While CTRL has shown growing empirical success, its ability to adapt to varying levels of problem difficulty remains poorly understood. In this work, we investigate the instance-dependent behavior of CTRL and introduce a simple, model-based algorithm built on maximum likelihood estimation (MLE) with a general function approximator. Unlike existing approaches that estimate system dynamics directly, our method estimates the state marginal density to guide learning. We establish instance-dependent performance guarantees by deriving a regret bound that scales with the total reward variance and measurement resolution. Notably, the regret becomes independent of the specific measurement strategy when the observation frequency adapts appropriately to the problem's complexity. To further improve performance, our algorithm incorporates a randomized measurement schedule that enhances sample efficiency without increasing measurement cost. These results highlight a new direction for designing CTRL algorithms that automatically adjust their learning behavior based on the underlying difficulty of the environment.
comment: 42 pages, 5 figures, 2 tables. The first two authors contributed equally
♻ ☆ Energy-Conserving Neural Network Closure Model for Long-Time Accurate and Stable LES
Machine learning-based closure models for LES have shown promise in capturing complex turbulence dynamics but often suffer from instabilities and physical inconsistencies. In this work, we develop a novel skew-symmetric neural architecture as closure model that enforces stability while preserving key physical conservation laws. Our approach leverages a discretization that ensures mass, momentum, and energy conservation, along with a face-averaging filter to maintain mass conservation in coarse-grained velocity fields. We compare our model against several conventional data-driven closures (including unconstrained convolutional neural networks), and the physics-based Smagorinsky model. Performance is evaluated on decaying turbulence and Kolmogorov flow for multiple coarse-graining factors. In these test cases we observe that unconstrained machine learning models suffer from numerical instabilities. In contrast, our skew-symmetric model remains stable across all tests, though at the cost of increased dissipation. Despite this trade-off, we demonstrate that our model still outperforms the Smagorinsky model in unseen scenarios. These findings highlight the potential of structure-preserving machine learning closures for reliable long-time LES.
comment: 40 pages, 11 figures, source code can be found at https://github.com/tobyvg/LES_ML.jl
♻ ☆ Astra: A Multi-Agent System for GPU Kernel Performance Optimization
GPU kernel optimization has long been a central challenge at the intersection of high-performance computing and machine learning. Efficient kernels are crucial for accelerating large language model (LLM) training and serving, yet attaining high performance typically requires extensive manual tuning. Compiler-based systems reduce some of this burden, but still demand substantial manual design and engineering effort. Recently, researchers have explored using LLMs for GPU kernel generation, though prior work has largely focused on translating high-level PyTorch modules into CUDA code. In this work, we introduce Astra, the first LLM-based multi-agent system for GPU kernel optimization. Unlike previous approaches, Astra starts from existing CUDA implementations extracted from SGLang, a widely deployed framework for serving LLMs, rather than treating PyTorch modules as the specification. Within Astra, specialized LLM agents collaborate through iterative code generation, testing, profiling, and planning to produce kernels that are both correct and high-performance. On kernels from SGLang, Astra achieves an average speedup of 1.32x using zero-shot prompting with OpenAI o4-mini. A detailed case study further demonstrates that LLMs can autonomously apply loop transformations, optimize memory access patterns, exploit CUDA intrinsics, and leverage fast math operations to yield substantial performance gains. Our work highlights multi-agent LLM systems as a promising new paradigm for GPU kernel optimization. Our code is publicly available at https://github.com/Anjiang-Wei/Astra.
♻ ☆ MARS: A Meta-Adaptive Reinforcement Learning Framework for Risk-Aware Multi-Agent Portfolio Management AAAI 2026
Reinforcement Learning (RL) has shown significant promise in automated portfolio management; however, effectively balancing risk and return remains a central challenge, as many models fail to adapt to dynamically changing market conditions. We propose Meta-controlled Agents for a Risk-aware System (MARS), a novel framework addressing this through a multi-agent, risk-aware approach. MARS replaces monolithic models with a Heterogeneous Agent Ensemble, where each agent's unique risk profile is enforced by a Safety-Critic network to span behaviors from capital preservation to aggressive growth. A high-level Meta-Adaptive Controller (MAC) dynamically orchestrates this ensemble, shifting reliance between conservative and aggressive agents to minimize drawdown during downturns while seizing opportunities in bull markets. This two-tiered structure leverages behavioral diversity rather than explicit feature engineering to ensure a disciplined portfolio robust across market regimes. Experiments on major international indexes confirm that our framework significantly reduces maximum drawdown and volatility while maintaining competitive returns.
comment: Accepted by AAAI 2026 Main Track
♻ ☆ Blameless Users in a Clean Room: Defining Copyright Protection for Generative Models NeurIPS 2025
Are there any conditions under which a generative model's outputs are guaranteed not to infringe the copyrights of its training data? This is the question of "provable copyright protection" first posed by Vyas, Kakade, and Barak (ICML 2023). They define near access-freeness (NAF) and propose it as sufficient for protection. This paper revisits the question and establishes new foundations for provable copyright protection -- foundations that are firmer both technically and legally. First, we show that NAF alone does not prevent infringement. In fact, NAF models can enable verbatim copying, a blatant failure of copy protection that we dub being tainted. Then, we introduce our blameless copy protection framework for defining meaningful guarantees, and instantiate it with clean-room copy protection. Clean-room copy protection allows a user to control their risk of copying by behaving in a way that is unlikely to copy in a counterfactual clean-room setting. Finally, we formalize a common intuition about differential privacy and copyright by proving that DP implies clean-room copy protection when the dataset is golden, a copyright deduplication requirement.
comment: Appeared at NeurIPS 2025
♻ ☆ From Distance to Direction: Structure-aware Label-specific Feature Fusion for Label Distribution Learning
Label distribution learning (LDL) is an emerging learning paradigm designed to capture the relative importance of labels for each instance. Label-specific features (LSFs), constructed by LIFT, have proven effective for learning tasks with label ambiguity by leveraging clustering-based prototypes for each label to re-characterize instances. However, directly introducing LIFT into LDL tasks can be suboptimal, as the prototypes it collects primarily reflect intra-cluster relationships while neglecting cross-cluster interactions. Additionally, constructing LSFs using multi-perspective information, rather than relying solely on Euclidean distance, provides a more robust and comprehensive representation of instances, mitigating noise and bias that may arise from a single distance perspective. To address these limitations, we introduce Structural Anchor Points (SAPs) to capture inter-cluster interactions. This leads to a novel LSFs construction strategy, LIFT-SAP, which enhances LIFT by integrating both distance and directional information of each instance relative to SAPs. Furthermore, we propose a novel LDL algorithm, Label Distribution Learning via Label-specifIc FeaTure with SAPs (LDL-LIFT-SAP), which unifies multiple label description degrees predicted from different LSF spaces into a cohesive label distribution. Extensive experiments on 15 real-world datasets demonstrate the effectiveness of LIFT-SAP over LIFT, as well as the superiority of LDL-LIFT-SAP compared to seven other well-established algorithms.
♻ ☆ Observation-Free Attacks on Online Learning to Rank
Online learning to rank (OLTR) plays a critical role in information retrieval and machine learning systems, with a wide range of applications in search engines and content recommenders. However, despite their extensive adoption, the susceptibility of OLTR algorithms to coordinated adversarial attacks remains poorly understood. In this work, we present a novel framework for attacking some of the widely used OLTR algorithms. Our framework is designed to promote a set of target items so that they appear in the list of top-K recommendations for T - o(T) rounds, while simultaneously inducing linear regret in the learning algorithm. We propose two novel attack strategies: CascadeOFA for CascadeUCB1 and PBMOFA for PBM-UCB . We provide theoretical guarantees showing that both strategies require only O(log T) manipulations to succeed. Additionally, we supplement our theoretical analysis with empirical results on real-world data.
♻ ☆ Graph Theory Meets Federated Learning over Satellite Constellations: Spanning Aggregations, Network Formation, and Performance Optimization
In this work, we introduce Fed-Span: \textit{\underline{fed}erated learning with \underline{span}ning aggregation over low Earth orbit (LEO) satellite constellations}. Fed-Span aims to address critical challenges inherent to distributed learning in dynamic satellite networks, including intermittent satellite connectivity, heterogeneous computational capabilities of satellites, and time-varying satellites' datasets. At its core, Fed-Span leverages minimum spanning tree (MST) and minimum spanning forest (MSF) topologies to introduce spanning model aggregation and dispatching processes for distributed learning. To formalize Fed-Span, we offer a fresh perspective on MST/MSF topologies by formulating them through a set of continuous constraint representations (CCRs), thereby integrating these topologies into a distributed learning framework for satellite networks. Using these CCRs, we obtain the energy consumption and latency of operations in Fed-Span. Moreover, we derive novel convergence bounds for Fed-Span, accommodating its key system characteristics and degrees of freedom (i.e., tunable parameters). Finally, we propose a comprehensive optimization problem that jointly minimizes model prediction loss, energy consumption, and latency of {Fed-Span}. We unveil that this problem is NP-hard and develop a systematic approach to transform it into a geometric programming formulation, solved via successive convex optimization with performance guarantees. Through evaluations on real-world datasets, we demonstrate that Fed-Span outperforms existing methods, with faster model convergence, greater energy efficiency, and reduced latency.
comment: 8 Figures
♻ ☆ ExPairT-LLM: Exact Learning for LLM Code Selection by Pairwise Queries
Despite recent advances in LLMs, the task of code generation is still challenging. To cope, code selection algorithms select the best program from multiple programs generated by an LLM. However, existing algorithms can fail to identify the correct program, either because they can misidentify nonequivalent programs or because they rely on an LLM and assume it always correctly determines the output for every input. We present ExPairT-LLM, an exact learning algorithm for code selection that selects a program by posing to an LLM oracle two new types of queries: pairwise membership and pairwise equivalence. These queries are simpler for LLMs and enable ExPairT-LLM to identify the correct program through a tournament, which is robust to some LLM mistakes. We evaluate ExPairT-LLM on four popular code datasets. Its pass@1 (success rate) outperforms the state-of-the-art code selection algorithm on average by +13.0% and up to +27.1%. It also improves the pass@1 of LLMs performing complex reasoning by +24.0%.
♻ ☆ Hierarchical Deep Research with Local-Web RAG: Toward Automated System-Level Materials Discovery NeurIPS 2025
We present a long-horizon, hierarchical deep research (DR) agent designed for complex materials and device discovery problems that exceed the scope of existing Machine Learning (ML) surrogates and closed-source commercial agents. Our framework instantiates a locally deployable DR instance that integrates local retrieval-augmented generation with large language model reasoners, enhanced by a Deep Tree of Research (DToR) mechanism that adaptively expands and prunes research branches to maximize coverage, depth, and coherence. We systematically evaluate across 27 nanomaterials/device topics using a large language model (LLM)-as-judge rubric with five web-enabled state-of-the-art models as jurors. In addition, we conduct dry-lab validations on five representative tasks, where human experts use domain simulations (e.g., density functional theory, DFT) to verify whether DR-agent proposals are actionable. Results show that our DR agent produces reports with quality comparable to--and often exceeding--those of commercial systems (ChatGPT-5-thinking/o3/o4-mini-high Deep Research) at a substantially lower cost, while enabling on-prem integration with local data and tools.
comment: A preliminary version appeared in The AI for Accelerated Materials Discovery (AI4Mat) Workshop at NeurIPS 2025
♻ ☆ TRACED: Transition-aware Regret Approximation with Co-learnability for Environment Design
Generalizing deep reinforcement learning agents to unseen environments remains a significant challenge. One promising solution is Unsupervised Environment Design (UED), a co-evolutionary framework in which a teacher adaptively generates tasks with high learning potential, while a student learns a robust policy from this evolving curriculum. Existing UED methods typically measure learning potential via regret, the gap between optimal and current performance, approximated solely by value-function loss. Building on these approaches, we introduce the transition-prediction error as an additional term in our regret approximation. To capture how training on one task affects performance on others, we further propose a lightweight metric called Co-Learnability. By combining these two measures, we present Transition-aware Regret Approximation with Co-learnability for Environment Design (TRACED). Empirical evaluations show that TRACED produces curricula that improve zero-shot generalization over strong baselines across multiple benchmarks. Ablation studies confirm that the transition-prediction error drives rapid complexity ramp-up and that Co-Learnability delivers additional gains when paired with the transition-prediction error. These results demonstrate how refined regret approximation and explicit modeling of task relationships can be leveraged for sample-efficient curriculum design in UED. Project Page: https://geonwoo.me/traced/
♻ ☆ AMPED: Adaptive Multi-objective Projection for balancing Exploration and skill Diversification
Skill-based reinforcement learning (SBRL) enables rapid adaptation in environments with sparse rewards by pretraining a skill-conditioned policy. Effective skill learning requires jointly maximizing both exploration and skill diversity. However, existing methods often face challenges in simultaneously optimizing for these two conflicting objectives. In this work, we propose a new method, Adaptive Multi-objective Projection for balancing Exploration and skill Diversification (AMPED), which explicitly addresses both: during pre-training, a gradient-surgery projection balances the exploration and diversity gradients, and during fine-tuning, a skill selector exploits the learned diversity by choosing skills suited to downstream tasks. Our approach achieves performance that surpasses SBRL baselines across various benchmarks. Through an extensive ablation study, we identify the role of each component and demonstrate that each element in AMPED is contributing to performance. We further provide theoretical and empirical evidence that, with a greedy skill selector, greater skill diversity reduces fine-tuning sample complexity. These results highlight the importance of explicitly harmonizing exploration and diversity and demonstrate the effectiveness of AMPED in enabling robust and generalizable skill learning. Project Page: https://geonwoo.me/amped/
♻ ☆ From Pixels to Prose: Advancing Multi-Modal Language Models for Remote Sensing
Remote sensing has evolved from simple image acquisition to complex systems capable of integrating and processing visual and textual data. This review examines the development and application of multi-modal language models (MLLMs) in remote sensing, focusing on their ability to interpret and describe satellite imagery using natural language. We cover the technical underpinnings of MLLMs, including dual-encoder architectures, Transformer models, self-supervised and contrastive learning, and cross-modal integration. The unique challenges of remote sensing data--varying spatial resolutions, spectral richness, and temporal changes--are analyzed for their impact on MLLM performance. Key applications such as scene description, object detection, change detection, text-to-image retrieval, image-to-text generation, and visual question answering are discussed to demonstrate their relevance in environmental monitoring, urban planning, and disaster response. We review significant datasets and resources supporting the training and evaluation of these models. Challenges related to computational demands, scalability, data quality, and domain adaptation are highlighted. We conclude by proposing future research directions and technological advancements to further enhance MLLM utility in remote sensing.
comment: 10 pages, 1 figure
♻ ☆ The Right to be Forgotten in Pruning: Unveil Machine Unlearning on Sparse Models
Machine unlearning aims to efficiently eliminate the memory about deleted data from trained models and address the right to be forgotten. Despite the success of existing unlearning algorithms, unlearning in sparse models has not yet been well studied. In this paper, we empirically find that the deleted data has an impact on the pruned topology in a sparse model. Motivated by the observation and the right to be forgotten, we define a new terminology ``un-pruning" to eliminate the impact of deleted data on model pruning. Then we propose an un-pruning algorithm to approximate the pruned topology driven by retained data. We remark that any existing unlearning algorithm can be integrated with the proposed un-pruning workflow and the error of un-pruning is upper-bounded in theory. Also, our un-pruning algorithm can be applied to both structured sparse models and unstructured sparse models. In the experiment, we further find that Membership Inference Attack (MIA) accuracy is unreliable for assessing whether a model has forgotten deleted data, as a small change in the amount of deleted data can produce arbitrary MIA results. Accordingly, we devise new performance metrics for sparse models to evaluate the success of un-pruning. Lastly, we conduct extensive experiments to verify the efficacy of un-pruning with various pruning methods and unlearning algorithms. Our code is released at https://github.com/NKUShaw/SparseModels .
comment: 9 pages for main part
Genomics 4
☆ scCluBench: Comprehensive Benchmarking of Clustering Algorithms for Single-Cell RNA Sequencing
Cell clustering is crucial for uncovering cellular heterogeneity in single-cell RNA sequencing (scRNA-seq) data by identifying cell types and marker genes. Despite its importance, benchmarks for scRNA-seq clustering methods remain fragmented, often lacking standardized protocols and failing to incorporate recent advances in artificial intelligence. To fill these gaps, we present scCluBench, a comprehensive benchmark of clustering algorithms for scRNA-seq data. First, scCluBench provides 36 scRNA-seq datasets collected from diverse public sources, covering multiple tissues, which are uniformly processed and standardized to ensure consistency for systematic evaluation and downstream analyses. To evaluate performance, we collect and reproduce a range of scRNA-seq clustering methods, including traditional, deep learning-based, graph-based, and biological foundation models. We comprehensively evaluate each method both quantitatively and qualitatively, using core performance metrics as well as visualization analyses. Furthermore, we construct representative downstream biological tasks, such as marker gene identification and cell type annotation, to further assess the practical utility. scCluBench then investigates the performance differences and applicability boundaries of various clustering models across diverse analytical tasks, systematically assessing their robustness and scalability in real-world scenarios. Overall, scCluBench offers a standardized and user-friendly benchmark for scRNA-seq clustering, with curated datasets, unified evaluation protocols, and transparent analyses, facilitating informed method selection and providing valuable insights into model generalizability and application scope.
☆ SpikGPT: A High-Accuracy and Interpretable Spiking Attention Framework for Single-Cell Annotation
Accurate and scalable cell type annotation remains a challenge in single-cell transcriptomics, especially when datasets exhibit strong batch effects or contain previously unseen cell populations. Here we introduce SpikGPT, a hybrid deep learning framework that integrates scGPT-derived cell embeddings with a spiking Transformer architecture to achieve efficient and robust annotation. scGPT provides biologically informed dense representations of each cell, which are further processed by a multi-head Spiking Self-Attention mechanism for energy-efficient feature extraction. Across multiple benchmark datasets, SpikGPT consistently matches or exceeds the performance of leading annotation tools. Notably, SpikGPT uniquely identifies unseen cell types by assigning low-confidence predictions to an "Unknown" category, allowing accurate rejection of cell states absent from the training reference. Together, these results demonstrate that SpikGPT is a versatile and reliable annotation tool capable of generalizing across datasets, resolving complex cellular heterogeneity, and facilitating discovery of novel or disease-associated cell populations.
☆ Contrastive Deep Learning for Variant Detection in Wastewater Genomic Sequencing
Wastewater-based genomic surveillance has emerged as a powerful tool for population-level viral monitoring, offering comprehensive insights into circulating viral variants across entire communities. However, this approach faces significant computational challenges stemming from high sequencing noise, low viral coverage, fragmented reads, and the complete absence of labeled variant annotations. Traditional reference-based variant calling pipelines struggle with novel mutations and require extensive computational resources. We present a comprehensive framework for unsupervised viral variant detection using Vector-Quantized Variational Autoencoders (VQ-VAE) that learns discrete codebooks of genomic patterns from k-mer tokenized sequences without requiring reference genomes or variant labels. Our approach extends the base VQ-VAE architecture with masked reconstruction pretraining for robustness to missing data and contrastive learning for highly discriminative embeddings. Evaluated on SARS-CoV-2 wastewater sequencing data comprising approximately 100,000 reads, our VQ-VAE achieves 99.52% mean token-level accuracy and 56.33% exact sequence match rate while maintaining 19.73% codebook utilization (101 of 512 codes active), demonstrating efficient discrete representation learning. Contrastive fine-tuning with different projection dimensions yields substantial clustering improvements: 64-dimensional embeddings achieve +35% Silhouette score improvement (0.31 to 0.42), while 128-dimensional embeddings achieve +42% improvement (0.31 to 0.44), clearly demonstrating the impact of embedding dimensionality on variant discrimination capability. Our reference-free framework provides a scalable, interpretable approach to genomic surveillance with direct applications to public health monitoring.
comment: 13 pages, 4 figures
☆ PanFoMa: A Lightweight Foundation Model and Benchmark for Pan-Cancer AAAI 2026
Single-cell RNA sequencing (scRNA-seq) is essential for decoding tumor heterogeneity. However, pan-cancer research still faces two key challenges: learning discriminative and efficient single-cell representations, and establishing a comprehensive evaluation benchmark. In this paper, we introduce PanFoMa, a lightweight hybrid neural network that combines the strengths of Transformers and state-space models to achieve a balance between performance and efficiency. PanFoMa consists of a front-end local-context encoder with shared self-attention layers to capture complex, order-independent gene interactions; and a back-end global sequential feature decoder that efficiently integrates global context using a linear-time state-space model. This modular design preserves the expressive power of Transformers while leveraging the scalability of Mamba to enable transcriptome modeling, effectively capturing both local and global regulatory signals. To enable robust evaluation, we also construct a large-scale pan-cancer single-cell benchmark, PanFoMaBench, containing over 3.5 million high-quality cells across 33 cancer subtypes, curated through a rigorous preprocessing pipeline. Experimental results show that PanFoMa outperforms state-of-the-art models on our pan-cancer benchmark (+4.0\%) and across multiple public tasks, including cell type annotation (+7.4\%), batch integration (+4.0\%) and multi-omics integration (+3.1\%). The code is available at https://github.com/Xiaoshui-Huang/PanFoMa.
comment: Accepted by AAAI 2026
Quantitative Methods 15
☆ Imperfect molecular detection renormalizes apparent kinetic rates in stochastic gene regulatory networks
Imperfect molecular detection in single-cell experiments introduces technical noise that obscures the true stochastic dynamics of gene regulatory networks. While binomial models of molecular capture provide a principled description of imperfect detection, they have so far been analyzed only for simple gene-expression models that do not explicitly account for regulation. Here, we extend binomial models of capture to general gene regulatory networks to understand how imperfect capture reshapes the observed time-dependent statistics of molecular counts. Our results reveal when capture effects correspond to a renormalization of a subset of the kinetic rates and when they cannot be absorbed into effective rates, providing a systematic basis for interpreting noisy single-cell measurements. In particular, we show that rate renormalization emerges either under significant transcription factor abundance or when promoter-state transitions occur on a distinct (much slower or faster) timescale than other reactions. In these cases, technical noise causes the apparent mean burst size of synthesized gene products to appear reduced while transcription factor binding reactions appear faster. These effects hold for gene regulatory networks of arbitrary connectivity and remain valid under time-dependent kinetic rates.
comment: 24 pages, 5 figures
☆ Vessel Network Topology in Molecular Communication: Insights from Experiments and Theory
The notion of synthetic molecular communication (MC) refers to the transmission of information via signaling molecules and is foreseen to enable innovative medical applications in the human cardiovascular system (CVS). Crucially, the design of such applications requires accurate and experimentally validated channel models that characterize the propagation of signaling molecules, not just in individual blood vessels, but in complex vessel networks (VNs), as prevalent in the CVS. However, experimentally validated models for MC in VNs remain scarce. To address this gap, we propose a novel channel model for MC in complex VN topologies, which captures molecular transport via advection, molecular and turbulent diffusion, as well as adsorption and desorption at the vessel walls. We specialize this model for superparamagnetic iron-oxide nanoparticles (SPIONs) as signaling molecules by introducing a new receiver (RX) model for planar coil inductive sensors, enabling end-to-end experimental validation with a dedicated SPION testbed. Validation covers a range of channel topologies, from single-vessel topologies to branched VNs with multiple paths between transmitter (TX) and RX. Additionally, to quantify how the VN topology impacts signal quality, and inspired by multi-path propagation models in conventional wireless communications, we introduce two metrics, namely molecule delay and multi-path spread. We show that these metrics link the VN structure to molecule dispersion induced by the VN and mediately to the resulting signal-to-noise ratio (SNR) at the RX. The proposed VN structure-SNR link is validated experimentally, demonstrating that the proposed framework can support tasks such as optimal sensor placement in the CVS or the identification of suitable testbed topologies for specific SNR requirements. All experimental data are openly available on Zenodo.
comment: 29 pages, 10 figures; This paper has been submitted to IEEE Transactions on Molecular, Biological, and Multi-Scale Communications
☆ Assessment of Simulation-based Inference Methods for Stochastic Compartmental Models
Global pandemics, such as the recent COVID-19 crisis, highlight the need for stochastic epidemic models that can capture the randomness inherent in the spread of disease. Such models must be accompanied by methods for estimating parameters in order to generate fast nowcasts and short-term forecasts that can inform public health decisions. This paper presents a comparison of two advanced Bayesian inference methods: 1) pseudo-marginal particle Markov chain Monte Carlo, short Particle Filters (PF), and 2) Conditional Normalizing Flows (CNF). We investigate their performance on two commonly used compartmental models: a classical Susceptible-Infected-Recovered (SIR) model and a two-variant Susceptible-Exposed-Infected-Recovered (SEIR) model, complemented by an observation model that maps latent trajectories to empirical data. Addressing the challenges of intractable likelihoods for parameter inference in stochastic settings, our analysis highlights how these likelihood-free methods provide accurate and robust inference capabilities. The results of our simulation study further underscore the effectiveness of these approaches in capturing the stochastic dynamics of epidemics, providing prediction capabilities for the control of epidemic outbreaks. Results on an Ethiopian cohort study demonstrate operational robustness under real-world noise and irregular data sampling. To facilitate reuse and to enable building pipelines that ultimately contribute to better informed decision making in public health, we make code and synthetic datasets publicly available.
Molecular Embedding-Based Algorithm Selection in Protein-Ligand Docking
Selecting an effective docking algorithm is highly context-dependent, and no single method performs reliably across structural, chemical, or protocol regimes. We introduce MolAS, a lightweight algorithm selection system that predicts per-algorithm performance from pretrained protein-ligand embeddings using attentional pooling and a shallow residual decoder. With only hundreds to a few thousand labelled complexes, MolAS achieves up to 15% absolute improvement over the single-best solver (SBS) and closes 17-66% of the Virtual Best Solver (VBS)-SBS gap across five diverse docking benchmarks. Analyses of reliability, embedding geometry, and solver-selection patterns show that MolAS succeeds when the oracle landscape exhibits low entropy and separable solver behaviour, but collapses under protocol-induced hierarchy shifts. These findings indicate that the main barrier to robust docking AS is not representational capacity but instability in solver rankings across pose-generation regimes, positioning MolAS as both a practical in-domain selector and a diagnostic tool for assessing when AS is feasible.
comment: 25 pages, 13 figures, 5 tables. Protein-ligand docking, algorithm selection, pretrained embeddings (ESM, ChemBERTa), docking benchmarks, oracle-landscape analysis. Code and data available
☆ Fast and Accurate Node-Age Estimation Under Fossil Calibration Uncertainty Using the Adjusted Pairwise Likelihood
Estimating divergence times from molecular sequence data is central to reconstructing the evolutionary history of lineages. Although Bayesian relaxed-clock methods provide a principled framework for incorporating fossil information, their dependence on repeated evaluations of the full phylogenetic likelihood makes them computationally demanding for large genomic datasets. Furthermore, because disagreements in divergence-time estimates often arise from uncertainty or error in fossil placement and prior specification, there is a need for methods that are both computationally efficient and robust to fossil-calibration uncertainty. In this study, we introduce fast and accurate alternatives based on the phylogenetic pairwise composite likelihood, presenting two adjusted pairwise likelihood (APW) formulations that employ asymptotic moment-matching weights to better approximate the behavior of the full likelihood within a Bayesian MCMC framework. Extensive simulations across diverse fossil-calibration scenarios show that APW methods produce node-age estimates comparable to those obtained from the full likelihood while offering greater robustness to fossil misplacement and prior misspecification, due to the reduced sensitivity of composite likelihoods to local calibration errors. Applied to a genome-scale dataset of modern birds, APW methods recover divergence time patterns consistent with recent studies, while reducing computational cost by more than an order of magnitude. Overall, our results demonstrate that adjusted pairwise likelihoods provide a calibration-robust and computationally efficient framework for Bayesian node dating, especially suited for large phylogenomic datasets and analyses in which fossil priors may be uncertain or imperfectly placed.
comment: 32 pages, 11 figures
☆ SpikGPT: A High-Accuracy and Interpretable Spiking Attention Framework for Single-Cell Annotation
Accurate and scalable cell type annotation remains a challenge in single-cell transcriptomics, especially when datasets exhibit strong batch effects or contain previously unseen cell populations. Here we introduce SpikGPT, a hybrid deep learning framework that integrates scGPT-derived cell embeddings with a spiking Transformer architecture to achieve efficient and robust annotation. scGPT provides biologically informed dense representations of each cell, which are further processed by a multi-head Spiking Self-Attention mechanism for energy-efficient feature extraction. Across multiple benchmark datasets, SpikGPT consistently matches or exceeds the performance of leading annotation tools. Notably, SpikGPT uniquely identifies unseen cell types by assigning low-confidence predictions to an "Unknown" category, allowing accurate rejection of cell states absent from the training reference. Together, these results demonstrate that SpikGPT is a versatile and reliable annotation tool capable of generalizing across datasets, resolving complex cellular heterogeneity, and facilitating discovery of novel or disease-associated cell populations.
☆ Beyond Bayesian Inference: The Correlation Integral Likelihood Framework and Gradient Flow Methods for Deterministic Sampling
Calibrating mathematical models of biological processes is essential for achieving predictive accuracy and gaining mechanistic insight. However, this task remains challenging due to limited and noisy data, significant biological variability, and the computational complexity of the models themselves. In this method's article, we explore a range of approaches for parameter inference in partial differential equation (PDE) models of biological systems. We introduce a unified mathematical framework, the Correlation Integral Likelihood (CIL) method, for parameter estimation in systems exhibiting heterogeneous or chaotic dynamics, encompassing both pattern formation models and individual-based models. Departing from classical Bayesian inverse problem methodologies, we motivate the development of the CIL method, demonstrate its versatility, and highlight illustrative applications within mathematical biology. Furthermore, we compare stochastic sampling strategies, such as Markov Chain Monte Carlo (MCMC), with deterministic gradient flow approaches, highlighting how these methods can be integrated within the proposed framework to enhance inference performance. Our work provides a practical and theoretically grounded toolbox for researchers seeking to calibrate complex biological models using incomplete, noisy, or heterogeneous data, thereby advancing both the predictive capability and mechanistic understanding of such systems.
☆ The BEAT-CF Causal Model: A model for guiding the design of trials and observational analyses of cystic fibrosis exacerbations
Loss of lung function in cystic fibrosis (CF) occurs progressively, punctuated by acute pulmonary exacerbations (PEx) in which abrupt declines in lung function are not fully recovered. A key component of CF management over the past half century has been the treatment of PEx to slow lung function decline. This has been credited with improvements in survival for people with CF (PwCF), but there is no consensus on the optimal approach to PEx management. BEAT-CF (Bayesian evidence-adaptive treatment of CF) was established to build an evidence-informed knowledge base for CF management. The BEAT-CF causal model is a directed acyclic graph (DAG) and Bayesian network (BN) for PEx that aims to inform the design and analysis of clinical trials comparing the effectiveness of alternative approaches to PEx management. The causal model describes relationships between background risk factors, treatments, and pathogen colonisation of the airways that affect the outcome of an individual PEx episode. The key factors, outcomes, and causal relationships were elicited from CF clinical experts and together represent current expert understanding of the pathophysiology of a PEx episode, guiding the design of data collection and studies and enabling causal inference. Here, we present the DAG that documents this understanding, along with the processes used in its development, providing transparency around our trial design and study processes, as well as a reusable framework for others.
comment: 12 pages (8 pages in appendices)
♻ ☆ Geometric Modeling of Hippocampal Tau Deposition: A Surface-Based Framework for Covariate Analysis and Off-Target Contamination Detection
We introduce a framework combining geometric modeling with disease progression analysis to investigate tau deposition in Alzheimer's disease (AD) using positron emission tomography (PET) data. Focusing on the hippocampus, we construct a principal surface that captures the spatial distribution and morphological changes of tau pathology. By projecting voxels onto this surface, we quantify tau coverage, intensity, and thickness through bidirectional projection distances and interpolated standardized uptake value ratios (SUVR). This low-dimensional embedding preserves spatial specificity while mitigating multiple comparison issues. Covariate effects are analyzed using a two-stage regression model with inverse probability weighting to adjust for signal sparsity and selection bias. Using the SuStaIn model, we identify subtypes and stages of AD, revealing distinct tau dynamics: the limbic-predominant subtype shows age-related nonlinear accumulation in coverage and thickness, whereas the posterior subtype exhibits uniform SUVR increases across disease progression. Model-based predictions show that hippocampal tau deposition follows a structured spatial trajectory expanding bidirectionally with increasing thickness, while subtype differences highlight posterior hippocampal involvement consistent with whole-brain patterns. Finally, directional signal patterns on the principal surface reveal contamination from the choroid plexus, demonstrating the broader applicability of the proposed framework across modalities including amyloid PET.
♻ ☆ BioArc: Discovering Optimal Neural Architectures for Biological Foundation Models
Foundation models have revolutionized various fields such as natural language processing (NLP) and computer vision (CV). While efforts have been made to transfer the success of the foundation models in general AI domains to biology, existing works focus on directly adopting the existing foundation model architectures from general machine learning domains without a systematic design considering the unique physicochemical and structural properties of each biological data modality. This leads to suboptimal performance, as these repurposed architectures struggle to capture the long-range dependencies, sparse information, and complex underlying ``grammars'' inherent to biological data. To address this gap, we introduce BioArc, a novel framework designed to move beyond intuition-driven architecture design towards principled, automated architecture discovery for biological foundation models. Leveraging Neural Architecture Search (NAS), BioArc systematically explores a vast architecture design space, evaluating architectures across multiple biological modalities while rigorously analyzing the interplay between architecture, tokenization, and training strategies. This large-scale analysis identifies novel, high-performance architectures, allowing us to distill a set of empirical design principles to guide future model development. Furthermore, to make the best of this set of discovered principled architectures, we propose and compare several architecture prediction methods that effectively and efficiently predict optimal architectures for new biological tasks. Overall, our work provides a foundational resource and a principled methodology to guide the creation of the next generation of task-specific and foundation models for biology.
♻ ☆ A reduced model for the long-term effects of physical activity on type 2 diabetes
Type 2 diabetes progresses slowly and may be reversed through lifestyle changes, but quantifying the long-term impact of regular physical activity remains challenging due to sparse longitudinal data. Mechanistic models offer a powerful tool by simulating metabolic processes over extended timescales. However, multi-scale formulations that capture both the short-term effects of exercise sessions and the slow evolution of disease tend to be computationally demanding, limiting their practical use in personalized decision support. To address this limitation, we derived a reduced version of a two-scale model that captures the short- and long-term effects of physical activity on blood glucose regulation. By analytically averaging the short-term effects induced by exercise, we developed a homogenized formulation that transmits the average contribution of physical activity to the slower glucose-insulin dynamics. This reduction preserves the key model dynamics while decreasing computational complexity by almost a factor 2000. We prove that the approximation error remains bounded and confirm the model's accuracy through a parameter-based simulation study. The resulting model provides a mathematically grounded reduction that retains key physiological mechanisms while enabling fast long-term simulations. This substantial computational gain makes it suitable for integration into medical decision support systems, where it can be used to design and evaluate personalized physical activity plans aimed at reducing the risk of type 2 diabetes.
♻ ☆ Forest tree species classification and entropy-derived uncertainty mapping using extreme gradient boosting and Sentinel-1/2 satellite data
We present a new 10-meter map of dominant tree species in Swedish forests accompanied by pixel-level uncertainty estimates. The tree species classification is based on spatiotemporal metrics derived from Sentinel-1 and Sentinel-2 satellite data, combined with field observations from the Swedish National Forest Inventory. We apply an extreme gradient boosting model with Bayesian optimization to relate field observations to satellite-derived features and generate the final species map. Classification uncertainty is quantified using Shannon's entropy of the predicted class probabilities, which provide a spatially explicit measure of model confidence. The final model achieved an overall accuracy of 85% (F1 score = 0.82, Matthews correlation coefficient = 0.81), and mapped species distributions showed strong agreement with official forest statistics (Spearman's rho = 0.94).
comment: 30 pages, 6 figures, 2 tables
♻ ☆ SimpleFold: Folding Proteins is Simpler than You Think
Protein folding models have achieved groundbreaking results typically via a combination of integrating domain knowledge into the architectural blocks and training pipelines. Nonetheless, given the success of generative models across different but related problems, it is natural to question whether these architectural designs are a necessary condition to build performant models. In this paper, we introduce SimpleFold, the first flow-matching based protein folding model that solely uses general purpose transformer blocks. Protein folding models typically employ computationally expensive modules involving triangular updates, explicit pair representations or multiple training objectives curated for this specific domain. Instead, SimpleFold employs standard transformer blocks with adaptive layers and is trained via a generative flow-matching objective with an additional structural term. We scale SimpleFold to 3B parameters and train it on approximately 9M distilled protein structures together with experimental PDB data. On standard folding benchmarks, SimpleFold-3B achieves competitive performance compared to state-of-the-art baselines, in addition SimpleFold demonstrates strong performance in ensemble prediction which is typically difficult for models trained via deterministic reconstruction objectives. Due to its general-purpose architecture, SimpleFold shows efficiency in deployment and inference on consumer-level hardware. SimpleFold challenges the reliance on complex domain-specific architectures designs in protein folding, opening up an alternative design space for future progress.
comment: 30 pages, 11 figures, 15 tables
♻ ☆ Model-based calibration of gear-specific fish abundance survey data as a change-of-support problem
For commercial and recreational fisheries of a wide-ranging species to be sustainable, abundance studies from neighboring regions should be unified. For the first time in the USA, a single research project to estimate the abundance of the Greater Amberjack {Seriola dumerili) is being undertaken at the continental scale. A major methodological challenge lies in 1) the difference in fish detection gears deployed by regional survey teams that produce gear-specific relative abundance indices, and 2) the unknown relationship between actual abundance and these indices. In this paper, we develop a conversion tool that is operationalized from a Bayesian hierarchical model in an inferential context akin to the change-of-support problem often encountered in large-scale spatial studies; though, the context here is to reconcile abundance data observed at various gear-specific scales. To this end, we consider a small calibration experiment in which 2 to 4 different underwater video camera types were simultaneously deployed on each of 21 boat trips. Alongside the suite of deployed cameras was also an acoustic echosounder that recorded fish signals along surrounding transects. Our modeling framework is used to derive calibration formulae for translating camera-specific relative indices to the actual abundance scale in surveys that deploy a single camera. Cross-validation is conducted using mark-recapture abundance estimates (only available for 10 trips, all observed at a single habitat type) and through a separate simulation study. We also briefly discuss the case when surveys pair one camera with the echosounder.
♻ ☆ ConfRover: Simultaneous Modeling of Protein Conformation and Dynamics via Autoregression NeurIPS 2025
Understanding protein dynamics is critical for elucidating their biological functions. The increasing availability of molecular dynamics (MD) data enables the training of deep generative models to efficiently explore the conformational space of proteins. However, existing approaches either fail to explicitly capture the temporal dependencies between conformations or do not support direct generation of time-independent samples. To address these limitations, we introduce ConfRover, an autoregressive model that simultaneously learns protein conformation and dynamics from MD trajectories, supporting both time-dependent and time-independent sampling. At the core of our model is a modular architecture comprising: (i) an encoding layer, adapted from protein folding models, that embeds protein-specific information and conformation at each time frame into a latent space; (ii) a temporal module, a sequence model that captures conformational dynamics across frames; and (iii) an SE(3) diffusion model as the structure decoder, generating conformations in continuous space. Experiments on ATLAS, a large-scale protein MD dataset of diverse structures, demonstrate the effectiveness of our model in learning conformational dynamics and supporting a wide range of downstream tasks. ConfRover is the first model to sample both protein conformations and trajectories within a single framework, offering a novel and flexible approach for learning from protein MD data. Project website: https://bytedance-seed.github.io/ConfRover.
comment: 35 pages, 17 figures; Camera ready for NeurIPS 2025; Website: https://bytedance-seed.github.io/ConfRover
Computation and Language 103
☆ Four Over Six: More Accurate NVFP4 Quantization with Adaptive Block Scaling
As large language models have grown larger, low-precision numerical formats such as NVFP4 have become increasingly popular due to the speed and memory benefits they provide. However, to accelerate computation with NVFP4, all matrix multiplication operands--weights and activations in the forward pass, and weights, activations, and gradients in the backward pass--must be quantized to NVFP4, often leading to divergence during training and performance degradation during inference. NVFP4 by evaluating multiple potential scale factors for each block of values. To address this issue, in this work we introduce Four Over Six (4/6), a modification to the NVFP4 quantization algorithm that evaluates two potential scale factors for each block of values. Unlike integer formats, floating-point formats such as FP4 have the most quantization error on near-maximal values in each block, which we find to be primarily responsible for downstream performance degradation. We find that for some blocks, scaling to smaller FP4 values makes the distribution of representable values more uniform, improving representation of near-maximal values. Importantly, 4/6 can be implemented efficiently on NVIDIA Blackwell GPUs, making it viable to use while training LLMs with NVFP4. In pre-training experiments with transformer and hybrid model architectures, we find that 4/6 prevents divergence in several cases, bringing training loss significantly closer to BF16 compared to models trained with current state-of-the-art NVFP4 training recipes. We also find that 4/6 can be easily incorporated into many different post-training quantization methods and generally improves downstream accuracy. We hope this inspires future work in training and deploying models with NVFP4.
comment: 10 pages, 5 figures
☆ The Art of Scaling Test-Time Compute for Large Language Models
Test-time scaling (TTS) -- the dynamic allocation of compute during inference -- is a promising direction for improving reasoning in large language models (LLMs). However, a systematic comparison of well-known TTS strategies under identical conditions is missing, and the influence of model type and problem difficulty on performance remains unclear. To address these gaps, we conduct the first large-scale study of TTS, spanning over thirty billion tokens generated using eight open-source LLMs (7B to 235B parameters), across four reasoning datasets. We observe three consistent trends: (1) no single TTS strategy universally dominates; (2) reasoning models exhibit distinct trace-quality patterns across problem difficulty and trace length, forming short-horizon and long-horizon categories; and (3) for a given model type, the optimal TTS performance scales monotonically with compute budget. Based on these insights, we provide a practical recipe for selecting the best TTS strategy, considering problem difficulty, model type, and compute budget, providing a practical guide to effective inference-time scaling.
☆ AlignSAE: Concept-Aligned Sparse Autoencoders
Large Language Models (LLMs) encode factual knowledge within hidden parametric spaces that are difficult to inspect or control. While Sparse Autoencoders (SAEs) can decompose hidden activations into more fine-grained, interpretable features, they often struggle to reliably align these features with human-defined concepts, resulting in entangled and distributed feature representations. To address this, we introduce AlignSAE, a method that aligns SAE features with a defined ontology through a "pre-train, then post-train" curriculum. After an initial unsupervised training phase, we apply supervised post-training to bind specific concepts to dedicated latent slots while preserving the remaining capacity for general reconstruction. This separation creates an interpretable interface where specific relations can be inspected and controlled without interference from unrelated features. Empirical results demonstrate that AlignSAE enables precise causal interventions, such as reliable "concept swaps", by targeting single, semantically aligned slots.
comment: 20 pages, 7 figures, 5 tables
LLM CHESS: Benchmarking Reasoning and Instruction-Following in LLMs through Chess
We introduce LLM CHESS, an evaluation framework designed to probe the generalization of reasoning and instruction-following abilities in large language models (LLMs) through extended agentic interaction in the domain of chess. We rank over 50 open and closed source models by playing against a random opponent using a range of behavioral metrics, including win and loss rates, move quality, move legality, hallucinated actions, and game duration. For a subset of top reasoning models, we derive an Elo estimate by playing against a chess engine with variably configured skill, which allows for comparisons between models in an easily understandable way. Despite the simplicity of the instruction-following task and the weakness of the opponent, many state-of-the-art models struggle to complete games or achieve consistent wins. Similar to other benchmarks on complex reasoning tasks, our experiments reveal a clear separation between reasoning and non-reasoning models. However, unlike existing static benchmarks, the stochastic and dynamic nature of LLM CHESS uniquely reduces overfitting and memorization while preventing benchmark saturation, proving difficult even for top reasoning models. To support future work on evaluating reasoning and instruction-following in LLMs, we release our experimental framework, a public leaderboard, and a dataset of associated games.
☆ Chain-of-Ground: Improving GUI Grounding via Iterative Reasoning and Reference Feedback
GUI grounding aims to align natural language instructions with precise regions in complex user interfaces. Advanced multimodal large language models show strong ability in visual GUI grounding but still struggle with small or visually similar targets and ambiguity in real world layouts. These limitations arise from limited grounding capacity and from underuse of existing reasoning potential. We present Chain of Ground CoG a training free multi step grounding framework that uses multimodal large language models for iterative visual reasoning and refinement. Instead of direct prediction the model progressively reflects and adjusts its hypotheses leading to more accurate and interpretable localization. Our approach achieves 68.4 accuracy on the ScreenSpot Pro benchmark an improvement of 4.8 points. To measure real world generalization we introduce TPanel UI a dataset of 420 labeled industrial control panels with visual distortions such as blur and masking. On TPanel UI Chain of Ground improves over the strong baseline Qwen3 VL 235B by 6.9 points showing the effectiveness of multi step training free grounding across real world and digital interfaces. These results highlight a direction for unlocking grounding potential through structured iterative refinement instead of additional training.
☆ From Atomic to Composite: Reinforcement Learning Enables Generalization in Complementary Reasoning
The mechanism by which RL contributes to reasoning capabilities-whether it incentivizes the synthesis of new skills or merely amplifies existing behaviors-remains a subject of intense debate. In this work, we investigate this question through the lens of Complementary Reasoning, a complex task that requires integrating internal parametric knowledge with external contextual information. Using a controlled synthetic dataset of human biographies, we strictly decouple this ability into two atomic skills: Parametric Reasoning (relying on internal knowledge) and Contextual Reasoning (depending on external information). To rigorously assess capability boundaries, we evaluate generalization across three distinct levels of difficulty: I.I.D., Composition, and Zero-shot settings. We find that while SFT is sufficient for in-distribution performance, it struggles with O.O.D. generalization, particularly in Zero-shot settings where relational combinations are novel. Crucially, we identify the SFT Generalization Paradox: Models supervised solely on the composite task achieve near-perfect in-distribution accuracy but collapse on out-of-distribution generalization, indicating their reliance on rote memorization of path shortcuts. In contrast, we find that RL acts as a reasoning synthesizer rather than a probability amplifier. However, we uncover a strict atomic prerequisite: RL can only synthesize these complex strategies if the base model has first mastered the independent atomic skills (Parametric and Contextual) via SFT. These findings challenge the view of RL as a mere amplifier, suggesting that given sufficient atomic foundations, RL can actively synthesize complex reasoning strategies from learned primitives without explicit supervision on such complex strategies. This indicates that decoupled atomic training followed by RL offers a scalable path to generalization for complex reasoning tasks.
comment: Work in Progress. Code and data will be available at https://github.com/sitaocheng/from_atomic_to_composite
☆ How Far Are We from Genuinely Useful Deep Research Agents?
Deep Research Agents (DRAs) aim to automatically produce analyst-level reports through iterative information retrieval and synthesis. However, most existing DRAs were validated on question-answering benchmarks, while research on generating comprehensive reports remains overlooked. Worse, current benchmarks for report synthesis suffer from task complexity and subjective metrics -- this fails to reflect user demands and limits the practical utility of generated reports. To address these gaps, we present Fine-grained DEepResearch bench (FINDER), an enhanced benchmark consisting of 100 human-curated research tasks with 419 structured checklist items that standardize report structure, analytical depth, and factual grounding. Based on approximately 1,000 reports produced by mainstream DRAs, we further propose Deep rEsearch Failure Taxonomy (DEFT), the first failure taxonomy for deep research agents. DEFT contains 14 fine-grained failure modes across reasoning, retrieval, and generation, and is built upon grounded theory with human-LLM co-annotating and inter-annotator reliability validation. Our experimental findings reveal that current DRAs struggle not with task comprehension but with evidence integration, verification, and reasoning-resilient planning.
comment: 34 pages
Agentic Policy Optimization via Instruction-Policy Co-Evolution
Reinforcement Learning with Verifiable Rewards (RLVR) has advanced the reasoning capability of large language models (LLMs), enabling autonomous agents that can conduct effective multi-turn and tool-integrated reasoning. While instructions serve as the primary protocol for defining agents, RLVR typically relies on static and manually designed instructions. However, those instructions may be suboptimal for the base model, and the optimal instruction may change as the agent's policy improves and explores the interaction with the environment. To bridge the gap, we introduce INSPO, a novel Instruction-Policy co-evolution framework that integrates instruction optimization as a dynamic component of the reinforcement learning (RL) loop. INSPO maintains a dynamic population of instruction candidates that are sampled with questions, where reward signals in RL loops are automatically attributed to each instruction, and low performers are periodically pruned. New instructions are generated and verified through an on-policy reflection mechanism, where an LLM-based optimizer analyzes past experience from a replay buffer and evolves more effective strategies given the current policy. We conduct extensive experiments on multi-turn retrieval and reasoning tasks, demonstrating that INSPO substantially outperforms strong baselines relying on static instructions. INSPO discovers innovative instructions that guide the agent toward more strategic reasoning paths, achieving substantial performance gains with only a marginal increase in computational overhead.
comment: 10 pages, 3 figures, 2 tables (18 pages including references and appendices)
☆ Rectifying LLM Thought from Lens of Optimization
Recent advancements in large language models (LLMs) have been driven by their emergent reasoning capabilities, particularly through long chain-of-thought (CoT) prompting, which enables thorough exploration and deliberation. Despite these advances, long-CoT LLMs often exhibit suboptimal reasoning behaviors, such as overthinking and excessively protracted reasoning chains, which can impair performance. In this paper, we analyze reasoning processes through an optimization lens, framing CoT as a gradient descent procedure where each reasoning step constitutes an update toward problem resolution. Building on this perspective, we introduce RePro (Rectifying Process-level Reward), a novel approach to refine LLM reasoning during post-training. RePro defines a surrogate objective function to assess the optimization process underlying CoT, utilizing a dual scoring mechanism to quantify its intensity and stability. These scores are aggregated into a composite process-level reward, seamlessly integrated into reinforcement learning with verifiable rewards (RLVR) pipelines to optimize LLMs. Extensive experiments across multiple reinforcement learning algorithms and diverse LLMs, evaluated on benchmarks spanning mathematics, science, and coding, demonstrate that RePro consistently enhances reasoning performance and mitigates suboptimal reasoning behaviors.
comment: Work in progress
☆ Latent Debate: A Surrogate Framework for Interpreting LLM Thinking
Understanding the internal thinking process of Large Language Models (LLMs) and the cause of hallucinations remains a key challenge. To this end, we introduce latent debate, a novel framework for interpreting model predictions through the lens of implicit internal arguments. Unlike the current work of self-consistency and multi-agent debate, which relies on explicit debates among multiple answers or multiple models, latent debate captures the hidden supporting and attacking signals that arise within a single model during a single inference. We first present a model- and task-agnostic conceptual framework, and then instantiate it symbolically to approximate the thinking process of LLMs on True/False prediction tasks. Empirical studies demonstrate that latent debate is a faithful structured surrogate model that has highly consistent predictions with the original LLM. Beyond interpretability, we demonstrate that latent debate provides a strong baseline for hallucination detection. Further analysis reveals strong correlations between hallucinations and debate patterns, such as a high degree of latent debates in the middle layers is linked to a higher risk of hallucinations. These findings position latent debate as a potential framework for understanding internal mechanisms of LLMs, especially for scenarios where internal (dis)agreements appear during the inference steps.
comment: Preprint
☆ OPOR-Bench: Evaluating Large Language Models on Online Public Opinion Report Generation
Online Public Opinion Reports consolidate news and social media for timely crisis management by governments and enterprises. While large language models have made automated report generation technically feasible, systematic research in this specific area remains notably absent, particularly lacking formal task definitions and corresponding benchmarks. To bridge this gap, we define the Automated Online Public Opinion Report Generation (OPOR-GEN) task and construct OPOR-BENCH, an event-centric dataset covering 463 crisis events with their corresponding news articles, social media posts, and a reference summary. To evaluate report quality, we propose OPOR-EVAL, a novel agent-based framework that simulates human expert evaluation by analyzing generated reports in context. Experiments with frontier models demonstrate that our framework achieves high correlation with human judgments. Our comprehensive task definition, benchmark dataset, and evaluation framework provide a solid foundation for future research in this critical domain.
comment: 27 pages, accepted by CMC-Computers, Materials & Continua, 2025
☆ Exploring Human Perceptions of AI Responses: Insights from a Mixed-Methods Study on Risk Mitigation in Generative Models
With the rapid uptake of generative AI, investigating human perceptions of generated responses has become crucial. A major challenge is their `aptitude' for hallucinating and generating harmful contents. Despite major efforts for implementing guardrails, human perceptions of these mitigation strategies are largely unknown. We conducted a mixed-method experiment for evaluating the responses of a mitigation strategy across multiple-dimensions: faithfulness, fairness, harm-removal capacity, and relevance. In a within-subject study design, 57 participants assessed the responses under two conditions: harmful response plus its mitigation and solely mitigated response. Results revealed that participants' native language, AI work experience, and annotation familiarity significantly influenced evaluations. Participants showed high sensitivity to linguistic and contextual attributes, penalizing minor grammar errors while rewarding preserved semantic contexts. This contrasts with how language is often treated in the quantitative evaluation of LLMs. We also introduced new metrics for training and evaluating mitigation strategies and insights for human-AI evaluation studies.
comment: 16 pages, 2 figures, 6 tables. Under review for publication
☆ Cross-Lingual Interleaving for Speech Language Models
Spoken Language Models (SLMs) aim to learn linguistic competence directly from speech using discrete units, widening access to Natural Language Processing (NLP) technologies for languages with limited written resources. However, progress has been largely English-centric due to scarce spoken evaluation benchmarks and training data, making cross-lingual learning difficult. We present a cross-lingual interleaving method that mixes speech tokens across languages without textual supervision. We also release an EN-FR training dataset, TinyStories (~42k hours), together with EN-FR spoken StoryCloze and TopicCloze benchmarks for cross-lingual semantic evaluation, both synthetically generated using GPT-4. On 360M and 1B SLMs under matched training-token budgets, interleaving improves monolingual semantic accuracy, enables robust cross-lingual continuation, and strengthens cross-lingual hidden-state alignment. Taken together, these results indicate that cross-lingual interleaving is a simple, scalable route to building multilingual SLMs that understand and converse across languages. All resources will be made open-source to support reproducibility.
☆ BHRAM-IL: A Benchmark for Hallucination Recognition and Assessment in Multiple Indian Languages ACL 2025
Large language models (LLMs) are increasingly deployed in multilingual applications but often generate plausible yet incorrect or misleading outputs, known as hallucinations. While hallucination detection has been studied extensively in English, under-resourced Indian languages remain largely unexplored. We present BHRAM-IL, a benchmark for hallucination recognition and assessment in multiple Indian languages, covering Hindi, Gujarati, Marathi, Odia, along with English. The benchmark comprises 36,047 curated questions across nine categories spanning factual, numerical, reasoning, and linguistic tasks. We evaluate 14 state-of-the-art multilingual LLMs on a benchmark subset of 10,265 questions, analyzing cross-lingual and factual hallucinations across languages, models, scales, categories, and domains using category-specific metrics normalized to (0,1) range. Aggregation over all categories and models yields a primary score of 0.23 and a language-corrected fuzzy score of 0.385, demonstrating the usefulness of BHRAM-IL for hallucination-focused evaluation. The dataset, and the code for generation and evaluation are available on GitHub (https://github.com/sambhashana/BHRAM-IL/) and HuggingFace (https://huggingface.co/datasets/sambhashana/BHRAM-IL/) to support future research in multilingual hallucination detection and mitigation.
comment: Accepted at BHASHA Workshop @ IJCNLP/AACL 2025
☆ Beyond SFT: Reinforcement Learning for Safer Large Reasoning Models with Better Reasoning Ability
Large reasoning models (LRMs) extend large language models by generating explicit chain-of-thought (CoT) reasoning, significantly improving mathematical and logical problem solving. However, this explicit reasoning process also introduces new safety risks, as unsafe behaviors often emerge within intermediate reasoning trajectories, even when final answers appear harmless. Existing safety alignment approaches primarily rely on supervised fine-tuning (SFT) over safety-oriented long CoT datasets. While intuitive, we find that SFT produces inconsistent safety improvements, degrades reasoning ability, and generalizes poorly across model families. These limitations suggest that purely supervised approaches are insufficient for robust safety alignment in LRMs. To address this, we investigate reinforcement learning (RL) as a complementary optimization framework for LRM safety training. Unlike SFT, RL directly optimizes model policies with reward feedback, enabling more adaptive and stable alignment. Extensive experiments across multiple model families and benchmarks show that RL achieves stronger and more consistent safety gains while maintaining reasoning competence. Further analysis of reflection dynamics and token-level entropy reveals that RL suppresses unsafe exploratory reasoning while preserving reflective depth, leading to safer and more reliable reasoning processes.
☆ InnoGym: Benchmarking the Innovation Potential of AI Agents
LLMs and Agents have achieved impressive progress in code generation, mathematical reasoning, and scientific discovery. However, existing benchmarks primarily measure correctness, overlooking the diversity of methods behind solutions. True innovation depends not only on producing correct answers but also on the originality of the approach. We present InnoGym, the first benchmark and framework designed to systematically evaluate the innovation potential of AI agents. InnoGym introduces two complementary metrics: performance gain, which measures improvement over the best-known solutions, and novelty, which captures methodological differences from prior approaches. The benchmark includes 18 carefully curated tasks from real-world engineering and scientific domains, each standardized through resource filtering, evaluator validation, and solution collection. In addition, we provide iGym, a unified execution environment for reproducible and long-horizon evaluations. Extensive experiments show that while some agents produce novel approaches, their lack of robustness limits performance gains. These results highlight a key gap between creativity and effectiveness, underscoring the need for benchmarks that evaluate both.
comment: Work in progress
☆ H-Neurons: On the Existence, Impact, and Origin of Hallucination-Associated Neurons
Large language models (LLMs) frequently generate hallucinations -- plausible but factually incorrect outputs -- undermining their reliability. While prior work has examined hallucinations from macroscopic perspectives such as training data and objectives, the underlying neuron-level mechanisms remain largely unexplored. In this paper, we conduct a systematic investigation into hallucination-associated neurons (H-Neurons) in LLMs from three perspectives: identification, behavioral impact, and origins. Regarding their identification, we demonstrate that a remarkably sparse subset of neurons (less than $0.1\%$ of total neurons) can reliably predict hallucination occurrences, with strong generalization across diverse scenarios. In terms of behavioral impact, controlled interventions reveal that these neurons are causally linked to over-compliance behaviors. Concerning their origins, we trace these neurons back to the pre-trained base models and find that these neurons remain predictive for hallucination detection, indicating they emerge during pre-training. Our findings bridge macroscopic behavioral patterns with microscopic neural mechanisms, offering insights for developing more reliable LLMs.
comment: 20 pages, 4 figures
☆ Reasoning About the Unsaid: Misinformation Detection with Omission-Aware Graph Inference AAAI 2026
This paper investigates the detection of misinformation, which deceives readers by explicitly fabricating misleading content or implicitly omitting important information necessary for informed judgment. While the former has been extensively studied, omission-based deception remains largely overlooked, even though it can subtly guide readers toward false conclusions under the illusion of completeness. To pioneer in this direction, this paper presents OmiGraph, the first omission-aware framework for misinformation detection. Specifically, OmiGraph constructs an omission-aware graph for the target news by utilizing a contextual environment that captures complementary perspectives of the same event, thereby surfacing potentially omitted contents. Based on this graph, omission-oriented relation modeling is then proposed to identify the internal contextual dependencies, as well as the dynamic omission intents, formulating a comprehensive omission relation representation. Finally, to extract omission patterns for detection, OmiGraph introduces omission-aware message-passing and aggregation that establishes holistic deception perception by integrating the omission contents and relations. Experiments show that, by considering the omission perspective, our approach attains remarkable performance, achieving average improvements of +5.4% F1 and +5.3% ACC on two large-scale benchmarks.
comment: AAAI 2026
☆ Beware of Reasoning Overconfidence: Pitfalls in the Reasoning Process for Multi-solution Tasks
Large Language Models (LLMs) excel in reasoning tasks requiring a single correct answer, but they perform poorly in multi-solution tasks that require generating comprehensive and diverse answers. We attribute this limitation to \textbf{reasoning overconfidence}: a tendency to express undue certainty in an incomplete solution set. To examine the effect, we introduce \textit{MuSoBench}, a benchmark of multi-solution problems. Experiments show that the conventional short chain-of-thought (Short-CoT) prompting paradigm exhibits pronounced overconfidence, whereas the emerging long chain-of-thought (Long-CoT) approach mitigates it through iterative exploration and self-reflection. We further characterise observable behaviours and influential factors. To probe the underlying cause, we propose the \textbf{cognitive-rigidity hypothesis}, which posits that overconfidence arises when the reasoning process prematurely converges on a narrow set of thought paths. An attention-entropy analysis offers preliminary support for this view. These findings provide tools for assessing the completeness of LLM reasoning and highlight the need to move evaluation beyond single-answer accuracy toward comprehensive exploration.
Self-Supervised Borrowing Detection on Multilingual Wordlists
This paper presents a fully self-supervised approach to borrowing detection in multilingual wordlists. The method combines two sources of information: PMI similarities based on a global correspondence model and a lightweight contrastive component trained on phonetic feature vectors. It further includes an automatic procedure for selecting decision thresholds without requiring labeled data. Experiments on benchmark datasets show that PMI alone already improves over existing string similarity measures such as NED and SCA, and that the combined similarity performs on par with or better than supervised baselines. An ablation study highlights the importance of character encoding, temperature settings and augmentation strategies. The approach scales to datasets of different sizes, works without manual supervision and is provided with a command-line tool that allows researchers to conduct their own studies.
comment: 29 pages, 3 figures, 12 tables
☆ MMAG: Mixed Memory-Augmented Generation for Large Language Models Applications
Large Language Models (LLMs) excel at generating coherent text within a single prompt but fall short in sustaining relevance, personalization, and continuity across extended interactions. Human communication, however, relies on multiple forms of memory, from recalling past conversations to adapting to personal traits and situational context. This paper introduces the Mixed Memory-Augmented Generation (MMAG) pattern, a framework that organizes memory for LLM-based agents into five interacting layers: conversational, long-term user, episodic and event-linked, sensory and context-aware, and short-term working memory. Drawing inspiration from cognitive psychology, we map these layers to technical components and outline strategies for coordination, prioritization, and conflict resolution. We demonstrate the approach through its implementation in the Heero conversational agent, where encrypted long-term bios and conversational history already improve engagement and retention. We further discuss implementation concerns around storage, retrieval, privacy, and latency, and highlight open challenges. MMAG provides a foundation for building memory-rich language agents that are more coherent, proactive, and aligned with human needs.
☆ StreamGaze: Gaze-Guided Temporal Reasoning and Proactive Understanding in Streaming Videos
Streaming video understanding requires models not only to process temporally incoming frames, but also to anticipate user intention for realistic applications like AR glasses. While prior streaming benchmarks evaluate temporal reasoning, none measure whether MLLMs can interpret or leverage human gaze signals within a streaming setting. To fill this gap, we introduce StreamGaze, the first benchmark designed to evaluate how effectively MLLMs use gaze for temporal and proactive reasoning in streaming videos. StreamGaze introduces gaze-guided past, present, and proactive tasks that comprehensively evaluate streaming video understanding. These tasks assess whether models can use real-time gaze to follow shifting attention and infer user intentions from only past and currently observed frames. To build StreamGaze, we develop a gaze-video QA generation pipeline that aligns egocentric videos with raw gaze trajectories via fixation extraction, region-specific visual prompting, and scanpath construction. This pipeline produces spatio-temporally grounded QA pairs that closely reflect human perceptual dynamics. Across all StreamGaze tasks, we observe substantial performance gaps between state-of-the-art MLLMs and human performance, revealing fundamental limitations in gaze-based temporal reasoning, intention modeling, and proactive prediction. We further provide detailed analyses of gaze-prompting strategies, reasoning behaviors, and task-specific failure modes, offering deeper insight into why current MLLMs struggle and what capabilities future models must develop. All data and code will be publicly released to support continued research in gaze-guided streaming video understanding.
comment: Project page: https://streamgaze.github.io/
☆ Learning the Boundary of Solvability: Aligning LLMs to Detect Unsolvable Problems
Ensuring LLM reliability requires not only solving complex problems but also recognizing when a problem is unsolvable. Current models often struggle to distinguish objective unsolvability (inherent contradictions in the problem) from subjective capability limitations (problems beyond the model's competence), which leads to hallucinations and overconfidence. To address this, we propose UnsolvableQA and UnsolvableRL to solve feasible problems, detect inherent contradictions, and prudently refuse tasks beyond capability. Specifically, we construct UnsolvableQA, a dataset of paired solvable and unsolvable instances derived via a dual-track methodology: programmatic generation for logic puzzles and a novel "Reverse Construction" method that injects contradictions into valid reasoning chains for mathematics. Building on this dataset, we introduce UnsolvableRL, a reinforcement learning framework with three reward components jointly accounting for accuracy, unsolvability, and difficulty. Empirical results show that our approach achieves near-perfect unsolvability detection while also improving accuracy on solvable tasks. Crucially, we identify Capability Collapse, demonstrating that explicit exposure to unsolvable data is indispensable for preventing models from becoming systematically overconfident. Our code and data are available at https://github.com/sfasfaffa/unsolvableQA.
comment: preprint
☆ HalluGraph: Auditable Hallucination Detection for Legal RAG Systems via Knowledge Graph Alignment
Legal AI systems powered by retrieval-augmented generation (RAG) face a critical accountability challenge: when an AI assistant cites case law, statutes, or contractual clauses, practitioners need verifiable guarantees that generated text faithfully represents source documents. Existing hallucination detectors rely on semantic similarity metrics that tolerate entity substitutions, a dangerous failure mode when confusing parties, dates, or legal provisions can have material consequences. We introduce HalluGraph, a graph-theoretic framework that quantifies hallucinations through structural alignment between knowledge graphs extracted from context, query, and response. Our approach produces bounded, interpretable metrics decomposed into \textit{Entity Grounding} (EG), measuring whether entities in the response appear in source documents, and \textit{Relation Preservation} (RP), verifying that asserted relationships are supported by context. On structured control documents, HalluGraph achieves near-perfect discrimination ($>$400 words, $>$20 entities), HalluGraph achieves $AUC = 0.979$, while maintaining robust performance ($AUC \approx 0.89$) on challenging generative legal task, consistently outperforming semantic similarity baselines. The framework provides the transparency and traceability required for high-stakes legal applications, enabling full audit trails from generated assertions back to source passages.
comment: 8 pages, 4 figures, under review
☆ MAC-SLU: Multi-Intent Automotive Cabin Spoken Language Understanding Benchmark
Spoken Language Understanding (SLU), which aims to extract user semantics to execute downstream tasks, is a crucial component of task-oriented dialog systems. Existing SLU datasets generally lack sufficient diversity and complexity, and there is an absence of a unified benchmark for the latest Large Language Models (LLMs) and Large Audio Language Models (LALMs). This work introduces MAC-SLU, a novel Multi-Intent Automotive Cabin Spoken Language Understanding Dataset, which increases the difficulty of the SLU task by incorporating authentic and complex multi-intent data. Based on MAC-SLU, we conducted a comprehensive benchmark of leading open-source LLMs and LALMs, covering methods like in-context learning, supervised fine-tuning (SFT), and end-to-end (E2E) and pipeline paradigms. Our experiments show that while LLMs and LALMs have the potential to complete SLU tasks through in-context learning, their performance still lags significantly behind SFT. Meanwhile, E2E LALMs demonstrate performance comparable to pipeline approaches and effectively avoid error propagation from speech recognition. Code\footnote{https://github.com/Gatsby-web/MAC\_SLU} and datasets\footnote{huggingface.co/datasets/Gatsby1984/MAC\_SLU} are released publicly.
☆ Language Diversity: Evaluating Language Usage and AI Performance on African Languages in Digital Spaces
This study examines the digital representation of African languages and the challenges this presents for current language detection tools. We evaluate their performance on Yoruba, Kinyarwanda, and Amharic. While these languages are spoken by millions, their online usage on conversational platforms is often sparse, heavily influenced by English, and not representative of the authentic, monolingual conversations prevalent among native speakers. This lack of readily available authentic data online creates a challenge of scarcity of conversational data for training language models. To investigate this, data was collected from subreddits and local news sources for each language. The analysis showed a stark contrast between the two sources. Reddit data was minimal and characterized by heavy code-switching. Conversely, local news media offered a robust source of clean, monolingual language data, which also prompted more user engagement in the local language on the news publishers social media pages. Language detection models, including the specialized AfroLID and a general LLM, performed with near-perfect accuracy on the clean news data but struggled with the code-switched Reddit posts. The study concludes that professionally curated news content is a more reliable and effective source for training context-rich AI models for African languages than data from conversational platforms. It also highlights the need for future models that can process clean and code-switched text to improve the detection accuracy for African languages.
☆ LEC: Linear Expectation Constraints for False-Discovery Control in Selective Prediction and Routing Systems
Large language models (LLMs) often generate unreliable answers, while heuristic uncertainty methods fail to fully distinguish correct from incorrect predictions, causing users to accept erroneous answers without statistical guarantees. We address this issue through the lens of false discovery rate (FDR) control, ensuring that among all accepted predictions, the proportion of errors does not exceed a target risk level. To achieve this in a principled way, we propose LEC, which reinterprets selective prediction as a constrained decision problem by enforcing a Linear Expectation Constraint over selection and error indicators. Then, we establish a finite-sample sufficient condition, which relies only on a held-out set of exchangeable calibration samples, to compute an FDR-constrained, coverage-maximizing threshold. Furthermore, we extend LEC to a two-model routing mechanism: given a prompt, if the current model's uncertainty exceeds its calibrated threshold, we delegate it to a stronger model, while maintaining a unified FDR guarantee. Evaluations on closed-ended and open-ended question-answering (QA) datasets show that LEC achieves tighter FDR control and substantially improves sample retention over prior methods. Moreover, the two-model routing mechanism achieves lower risk levels while accepting more correct samples than each individual model.
☆ LPCD: Unified Framework from Layer-Wise to Submodule Quantization
Post-training quantization (PTQ) aims to preserve model-level behavior; however, most methods focus on individual linear layers. Even recent extensions, such as QEP and LoaQ, which mitigate error propagation or target specific submodules, still rely on layer-wise formulations and fail to capture the behavior of larger submodules. We introduce Layer-Projected Coordinate Descent (LPCD), a unified framework that extends PTQ beyond layers by optimizing relaxed objectives across arbitrary submodules and projecting the solutions with layer-wise quantizers. LPCD generalizes existing methods and provides a principled approach to quantizing complex submodules while maintaining the efficiency and compatibility of layer-wise PTQ pipelines. Across diverse LLM architectures and bit-widths, LPCD-based submodule quantization consistently enhances both layer-wise PTQ methods and existing submodule approaches.
comment: 21 pages, 4 figures
☆ MCAT: Scaling Many-to-Many Speech-to-Text Translation with MLLMs to 70 Languages
Multimodal Large Language Models (MLLMs) have achieved great success in Speech-to-Text Translation (S2TT) tasks. However, current research is constrained by two key challenges: language coverage and efficiency. Most of the popular S2TT datasets are substantially English-centric, which restricts the scaling-up of MLLMs' many-to-many translation capabilities. Moreover, the inference speed of MLLMs degrades dramatically when the speech is converted into long sequences (e.g., 750 tokens). To address these limitations, we propose a Multilingual Cost-effective Accelerated Speech-to-Text Translator (MCAT) framework, which includes two innovations. First, a language scaling method that leverages curriculum learning and a data balancing strategy is introduced to extend the language coverage supported by MLLMs to 70 languages and achieve mutual translation among these languages. Second, an optimized speech adapter module is designed to reduce the length of the speech sequence to only 30 tokens. Extensive experiments were conducted on MLLMs of different scales (9B and 27B). The experimental results demonstrate that MCAT not only surpasses state-of-the-art end-to-end models on the FLEURS dataset across 70x69 directions but also enhances batch inference efficiency. This is achieved with only ~100M trainable parameters and by using only 10 hours of S2TT data per language. Furthermore, we have released MCAT as open-source to promote the development of MLLMs for robust S2TT capabilities. The code and models are released at https://github.com/yxduir/m2m-70.
☆ Enhancing BERT Fine-Tuning for Sentiment Analysis in Lower-Resourced Languages
Limited data for low-resource languages typically yield weaker language models (LMs). Since pre-training is compute-intensive, it is more pragmatic to target improvements during fine-tuning. In this work, we examine the use of Active Learning (AL) methods augmented by structured data selection strategies which we term 'Active Learning schedulers', to boost the fine-tuning process with a limited amount of training data. We connect the AL to data clustering and propose an integrated fine-tuning pipeline that systematically combines AL, clustering, and dynamic data selection schedulers to enhance model's performance. Experiments in the Slovak, Maltese, Icelandic and Turkish languages show that the use of clustering during the fine-tuning phase together with AL scheduling can simultaneously produce annotation savings up to 30% and performance improvements up to four F1 score points, while also providing better fine-tuning stability.
☆ ZIP-RC: Zero-overhead Inference-time Prediction of Reward and Cost for Adaptive and Interpretable Generation
Large language models excel at reasoning but lack key aspects of introspection, including anticipating their own success and the computation required to achieve it. Humans use real-time introspection to decide how much effort to invest, when to make multiple attempts, when to stop, and when to signal success or failure. Without this, LLMs struggle to make intelligent meta-cognition decisions. Test-time scaling methods like Best-of-N drive up cost and latency by using a fixed budget of samples regardless of the marginal benefit of each one at any point in generation, and the absence of confidence signals can mislead people, prevent appropriate escalation to better tools, and undermine trustworthiness. Learned verifiers or reward models can provide confidence estimates, but do not enable adaptive inference and add substantial cost by requiring extra models or forward passes. We present ZIP-RC, an adaptive inference method that equips models with zero-overhead inference-time predictions of reward and cost. At every token, ZIP-RC reuses reserved or unused logits in the same forward pass as next-token prediction to output a joint distribution over final reward and remaining length -- no extra models, architecture change, or inference overhead. This full joint distribution is used to compute a sampling utility which is the linear combination of the expected maximum reward, total compute, and latency of set of samples if generated to completion. During inference, we maximize this utility with meta-actions that determine which prefix of tokens to continue or initiate sampling from. On mixed-difficulty mathematical benchmarks, ZIP-RC improves accuracy by up to 12% over majority voting at equal or lower average cost, and traces smooth Pareto frontiers between quality, compute, and latency. By providing real-time reward-cost introspection, ZIP-RC enables adaptive, efficient reasoning.
comment: Code coming soon
☆ MEGConformer: Conformer-Based MEG Decoder for Robust Speech and Phoneme Classification NeurIPS 2025
We present Conformer-based decoders for the LibriBrain 2025 PNPL competition, targeting two foundational MEG tasks: Speech Detection and Phoneme Classification. Our approach adapts a compact Conformer to raw 306-channel MEG signals, with a lightweight convolutional projection layer and task-specific heads. For Speech Detection, a MEG-oriented SpecAugment provided a first exploration of MEG-specific augmentation. For Phoneme Classification, we used inverse-square-root class weighting and a dynamic grouping loader to handle 100-sample averaged examples. In addition, a simple instance-level normalization proved critical to mitigate distribution shifts on the holdout split. Using the official Standard track splits and F1-macro for model selection, our best systems achieved 88.9% (Speech) and 65.8% (Phoneme) on the leaderboard, surpassing the competition baselines and ranking within the top-10 in both tasks. For further implementation details, the technical documentation, source code, and checkpoints are available at https://github.com/neural2speech/libribrain-experiments.
comment: 10 pages, 5 figures, 4 tables, LibriBrain Workshop, NeurIPS 2025
☆ Multilingual Conversational AI for Financial Assistance: Bridging Language Barriers in Indian FinTech
India's linguistic diversity presents both opportunities and challenges for fintech platforms. While the country has 31 major languages and over 100 minor ones, only 10\% of the population understands English, creating barriers to financial inclusion. We present a multilingual conversational AI system for a financial assistance use case that supports code-mixed languages like Hinglish, enabling natural interactions for India's diverse user base. Our system employs a multi-agent architecture with language classification, function management, and multilingual response generation. Through comparative analysis of multiple language models and real-world deployment, we demonstrate significant improvements in user engagement while maintaining low latency overhead (4-8\%). This work contributes to bridging the language gap in digital financial services for emerging markets.
☆ PromptBridge: Cross-Model Prompt Transfer for Large Language Models
Large language models (LLMs) underpin applications in code generation, mathematical reasoning, and agent-based workflows. In practice, systems access LLMs via commercial APIs or open-source deployments, and the model landscape (e.g., GPT, Claude, Llama) evolves rapidly. This rapid evolution forces frequent model switches driven by capability, cost, deployment constraints, and privacy. Yet prompts are highly model-sensitive: reusing a prompt engineered for one model on another often yields substantially worse performance than a prompt optimized for the target model. We term this phenomenon Model Drifting. Through extensive empirical analysis across diverse LLM configurations, we show that model drifting is both common and severe. To address this challenge, we introduce PromptBridge, a training-free framework that preserves prompt effectiveness under model switches, enabling cross-model prompt transfer without costly per-task or per-model re-optimization. PromptBridge requires only a small set of alignment tasks for calibration. It first applies Model-Adaptive Reflective Prompt Evolution (MAP-RPE) to obtain task- and model-specific optimal prompts via iterative reflective refinement and quantitative evaluation. Using the resulting calibrated prompt pairs for the source and target models, PromptBridge learns a cross-model prompt mapping. At test time, i.e., for an unseen task, given a source-model prompt, this mapping directly produces an optimized prompt for the target model. Experiments in single-agent and multi-agent settings show that PromptBridge consistently improves downstream accuracy while reducing migration effort. The code will be available soon.
☆ DyFuLM: An Advanced Multimodal Framework for Sentiment Analysis
Understanding sentiment in complex textual expressions remains a fundamental challenge in affective computing. To address this, we propose a Dynamic Fusion Learning Model (DyFuLM), a multimodal framework designed to capture both hierarchical semantic representations and fine-grained emotional nuances. DyFuLM introduces two key moodules: a Hierarchical Dynamic Fusion module that adaptively integrates multi-level features, and a Gated Feature Aggregation module that regulates cross-layer information ffow to achieve balanced representation learning. Comprehensive experiments on multi-task sentiment datasets demonstrate that DyFuLM achieves 82.64% coarse-grained and 68.48% fine-grained accuracy, yielding the lowest regression errors (MAE = 0.0674, MSE = 0.0082) and the highest R^2 coefficient of determination (R^2= 0.6903). Furthermore, the ablation study validates the effectiveness of each module in DyFuLM. When all modules are removed, the accuracy drops by 0.91% for coarse-grained and 0.68% for fine-grained tasks. Keeping only the gated fusion module causes decreases of 0.75% and 0.55%, while removing the dynamic loss mechanism results in drops of 0.78% and 0.26% for coarse-grained and fine-grained sentiment classification, respectively. These results demonstrate that each module contributes significantly to feature interaction and task balance. Overall, the experimental findings further validate that DyFuLM enhances sentiment representation and overall performance through effective hierarchical feature fusion.
comment: 8 pages, 6 figures, preprint. Under review for a suitable AI conference
☆ BackportBench: A Multilingual Benchmark for Automated Backporting of Patches
Many modern software projects evolve rapidly to incorporate new features and security patches. It is important for users to update their dependencies to safer versions, but many still use older, vulnerable package versions because upgrading can be difficult and may break their existing codebase. Software developers can mitigate this problem by backporting security patches to older releases. However, manually backporting is time-consuming and error-prone. The effectiveness of existing automated backporting techniques on general software remains unclear since they typically target only code-hunk or function-level patch porting scenarios and are evaluated with imperfect metrics. To facilitate the development and evaluation of automated backporting techniques, we introduce BackportBench, the first comprehensive benchmark suite for patch backporting problem. BackportBench is a multilingual benchmark that contains 202 patch backporting problems from PyPI, Maven, and npm, each with executable Docker environments and relevant test cases. We evaluated existing patch porting methods and LLM-based techniques that have the potential to adapt to this task using BackportBench. The results show that the agentic method has outperformed traditional patch porting methods, especially on cases that require logical and structural changes. However, the performance varies across different programming languages. Based on the findings, we draw several implications for researchers and software practitioners in future work on automated backporting.
comment: Under review
☆ Stabilizing Reinforcement Learning with LLMs: Formulation and Practices
This paper proposes a novel formulation for reinforcement learning (RL) with large language models, explaining why and under what conditions the true sequence-level reward can be optimized via a surrogate token-level objective in policy gradient methods such as REINFORCE. Specifically, through a first-order approximation, we show that this surrogate becomes increasingly valid only when both the training-inference discrepancy and policy staleness are minimized. This insight provides a principled explanation for the crucial role of several widely adopted techniques in stabilizing RL training, including importance sampling correction, clipping, and particularly Routing Replay for Mixture-of-Experts (MoE) models. Through extensive experiments with a 30B MoE model totaling hundreds of thousands of GPU hours, we show that for on-policy training, the basic policy gradient algorithm with importance sampling correction achieves the highest training stability. When off-policy updates are introduced to accelerate convergence, combining clipping and Routing Replay becomes essential to mitigate the instability caused by policy staleness. Notably, once training is stabilized, prolonged optimization consistently yields comparable final performance regardless of cold-start initialization. We hope that the shared insights and the developed recipes for stable RL training will facilitate future research.
☆ MARSAD: A Multi-Functional Tool for Real-Time Social Media Analysis
MARSAD is a multifunctional natural language processing (NLP) platform designed for real-time social media monitoring and analysis, with a particular focus on the Arabic-speaking world. It enables researchers and non-technical users alike to examine both live and archived social media content, producing detailed visualizations and reports across various dimensions, including sentiment analysis, emotion analysis, propaganda detection, fact-checking, and hate speech detection. The platform also provides secure data-scraping capabilities through API keys for accessing public social media data. MARSAD's backend architecture integrates flexible document storage with structured data management, ensuring efficient processing of large and multimodal datasets. Its user-friendly frontend supports seamless data upload and interaction.
comment: 6 pages, 4 figures
☆ The Necessity of Imperfection:Reversing Model Collapse via Simulating Cognitive Boundedness
Although synthetic data is widely promoted as a remedy, its prevailing production paradigm -- one optimizing for statistical smoothness -- systematically removes the long-tail, cognitively grounded irregularities that characterize human text. Prolonged training on such statistically optimal but cognitively impoverished data accelerates model collapse. This paper proposes a paradigm shift: instead of imitating the surface properties of data, we simulate the cognitive processes that generate human text. We introduce the Prompt-driven Cognitive Computing Framework (PMCSF), whose core consists of a Cognitive State Decoder (CSD) that reverse-engineers unstructured text into structured cognitive vectors, and a Cognitive Text Encoder (CTE) that re-materializes these states into text enriched with human-typical imperfections via mathematically defined Cognitive Perturbation Operators. The framework is validated through a two-stage objective evaluation pipeline. First, in cognitive codec verification, CTE text yields a Jensen-Shannon divergence of 0.0614 from human text (vs. 0.4431 for standard LLM output), passes double-blind professional media review, and achieves an intraclass correlation coefficient ICC > 0.9 for cognitive profile alignment across heterogeneous models. Second, in functional gain evaluation, isomorphic stress tests in the A-share market show that strategies incorporating CTE-generated data reduce maximum drawdown by 47.4% during the 2015 crash and deliver 8.6% Defensive Alpha, exceeding transaction costs by a factor of 33. Our findings demonstrate that modelling human cognitive limitations -- not copying surface data -- enables synthetic data with genuine functional gain, offering a viable technical pathway toward resolving the AI data-collapse crisis.
comment: 38 pages,5 figures,30 tables. This paper proposes the Prompt-driven Cognitive Computing Framework (PMCSF) and validates it with A-share market stress tests (N=23 for 2015 crash, N=13 for 2024 bull market). Includes detailed appendices on cognitive vector definitions, perturbation operators, and financial backtest data
☆ EmoRAG: Evaluating RAG Robustness to Symbolic Perturbations KDD
Retrieval-Augmented Generation (RAG) systems are increasingly central to robust AI, enhancing large language model (LLM) faithfulness by incorporating external knowledge. However, our study unveils a critical, overlooked vulnerability: their profound susceptibility to subtle symbolic perturbations, particularly through near-imperceptible emoticon tokens such as "(@_@)" that can catastrophically mislead retrieval, termed EmoRAG. We demonstrate that injecting a single emoticon into a query makes it nearly 100% likely to retrieve semantically unrelated texts that contain a matching emoticon. Our extensive experiment across general question-answering and code domains, using a range of state-of-the-art retrievers and generators, reveals three key findings: (I) Single-Emoticon Disaster: Minimal emoticon injections cause maximal disruptions, with a single emoticon almost 100% dominating RAG output. (II) Positional Sensitivity: Placing an emoticon at the beginning of a query can cause severe perturbation, with F1-Scores exceeding 0.92 across all datasets. (III) Parameter-Scale Vulnerability: Counterintuitively, models with larger parameters exhibit greater vulnerability to the interference. We provide an in-depth analysis to uncover the underlying mechanisms of these phenomena. Furthermore, we raise a critical concern regarding the robustness assumption of current RAG systems, envisioning a threat scenario where an adversary exploits this vulnerability to manipulate the RAG system. We evaluate standard defenses and find them insufficient against EmoRAG. To address this, we propose targeted defenses, analyzing their strengths and limitations in mitigating emoticon-based perturbations. Finally, we outline future directions for building robust RAG systems.
comment: Accepted to ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD) 2026
☆ Securing Large Language Models (LLMs) from Prompt Injection Attacks
Large Language Models (LLMs) are increasingly being deployed in real-world applications, but their flexibility exposes them to prompt injection attacks. These attacks leverage the model's instruction-following ability to make it perform malicious tasks. Recent work has proposed JATMO, a task-specific fine-tuning approach that trains non-instruction-tuned base models to perform a single function, thereby reducing susceptibility to adversarial instructions. In this study, we evaluate the robustness of JATMO against HOUYI, a genetic attack framework that systematically mutates and optimizes adversarial prompts. We adapt HOUYI by introducing custom fitness scoring, modified mutation logic, and a new harness for local model testing, enabling a more accurate assessment of defense effectiveness. We fine-tuned LLaMA 2-7B, Qwen1.5-4B, and Qwen1.5-0.5B models under the JATMO methodology and compared them with a fine-tuned GPT-3.5-Turbo baseline. Results show that while JATMO reduces attack success rates relative to instruction-tuned models, it does not fully prevent injections; adversaries exploiting multilingual cues or code-related disruptors still bypass defenses. We also observe a trade-off between generation quality and injection vulnerability, suggesting that better task performance often correlates with increased susceptibility. Our results highlight both the promise and limitations of fine-tuning-based defenses and point toward the need for layered, adversarially informed mitigation strategies.
comment: 10 pages, 1 figure, 1 table
☆ Agreement-Constrained Probabilistic Minimum Bayes Risk Decoding ACL 2025
Minimum Bayes risk (MBR) decoding generates high-quality translations by maximizing the expected utility of output candidates, but it evaluates all pairwise scores over the candidate set; hence, it takes quadratic time with respect to the number of candidates. To reduce the number of utility function calls, probabilistic MBR (PMBR) decoding partially evaluates quality scores using sampled pairs of candidates and completes the missing scores with a matrix completion algorithm. Nevertheless, it degrades the translation quality as the number of utility function calls is reduced. Therefore, to improve the trade-off between quality and cost, we propose agreement-constrained PMBR (AC-PMBR) decoding, which leverages a knowledge distilled model to guide the completion of the score matrix. Our AC-PMBR decoding improved approximation errors of matrix completion by up to 3 times and achieved higher translation quality compared with PMBR decoding at a comparable computational cost on the WMT'23 En$\leftrightarrow$De translation tasks.
comment: IJCNLP-AACL 2025 Main
☆ Kardia-R1: Unleashing LLMs to Reason toward Understanding and Empathy for Emotional Support via Rubric-as-Judge Reinforcement Learning
As web platforms evolve towards greater personalization and emotional complexity, conversational agents must transcend superficial empathy to demonstrate identity-aware emotional reasoning. However, existing systems face two limitations: (1) reliance on situation-centric datasets lacking persistent user identity, which hampers the capture of personalized affective nuances; and (2) dependence on opaque, coarse reward signals that hinder development of verifiable empathetic reasoning. To address these gaps, we introduce KardiaBench, a large-scale user-grounded benchmark comprising 178,080 QA pairs across 22,080 multi-turn conversations anchored to 671 real-world profiles. The dataset is constructed via a model-in-the-loop pipeline with iterative rubric-guided refinement to ensure psychological plausibility and persona consistency. This progressive empathy pipeline that integrates user comprehension, contextual reasoning, and emotion perception into conversations, followed by iterative critique and rubric-based refinement to ensure psychological plausibility, emotional fidelity, and persona consistency. Building on this, we propose Kardia-R1, a framework that trains models for interpretable, stepwise empathetic cognition. Kardia-R1 leverages Rubric-as-Judge Empathetic Reinforcement Learning (Rubric-ERL), a GRPO-based method that uses explainable, human-aligned rubric rewards to tightly couple user understanding, emotional inference, and supportive response generation. Extensive experiments across four LLM backbones demonstrate that Kardia-R1 consistently outperforms othet methods in emotion accuracy, empathy, relevance, persona consistency, and safety. Our dataset and model will be released at https://github.com/JhCircle/Kardia-R1.
☆ SUPERChem: A Multimodal Reasoning Benchmark in Chemistry
Current benchmarks for evaluating the chemical reasoning capabilities of Large Language Models (LLMs) are limited by oversimplified tasks, lack of process-level evaluation, and misalignment with expert-level chemistry skills. To address these issues, we introduce SUPERChem, a benchmark of 500 expert-curated reasoning-intensive chemistry problems, covering diverse subfields and provided in both multimodal and text-only formats. Original content and an iterative curation pipeline eliminate flawed items and mitigate data contamination. Each problem is paired with an expert-authored solution path, enabling Reasoning Path Fidelity (RPF) scoring to evaluate reasoning quality beyond final-answer accuracy. Evaluations against a human baseline of 40.3% accuracy show that even the best-performing model, GPT-5 (High), reaches only 38.5%, followed closely by Gemini 2.5 Pro (37.9%) and DeepSeek-V3.1-Think (37.3%). SUPERChem elicits multi-step, multimodal reasoning, reveals model-dependent effects of visual information, and distinguishes high-fidelity reasoners from heuristic ones. By providing a challenging benchmark and a reliable evaluation framework, SUPERChem aims to facilitate the advancement of LLMs toward expert-level chemical intelligence. The dataset of the benchmark is available at https://huggingface.co/datasets/ZehuaZhao/SUPERChem.
comment: 35 pages, 11 figures, 5 tables
☆ Sentiment Analysis and Emotion Classification using Machine Learning Techniques for Nagamese Language - A Low-resource Language
The Nagamese language, a.k.a Naga Pidgin, is an Assamese-lexified creole language developed primarily as a means of communication in trade between the people from Nagaland and people from Assam in the north-east India. Substantial amount of work in sentiment analysis has been done for resource-rich languages like English, Hindi, etc. However, no work has been done in Nagamese language. To the best of our knowledge, this is the first attempt on sentiment analysis and emotion classification for the Nagamese Language. The aim of this work is to detect sentiments in terms of polarity (positive, negative and neutral) and basic emotions contained in textual content of Nagamese language. We build sentiment polarity lexicon of 1,195 nagamese words and use these to build features along with additional features for supervised machine learning techniques using Na"ive Bayes and Support Vector Machines. Keywords: Nagamese, NLP, sentiment analysis, machine learning
comment: 10 pages
Large Language Models Cannot Reliably Detect Vulnerabilities in JavaScript: The First Systematic Benchmark and Evaluation
Researchers have proposed numerous methods to detect vulnerabilities in JavaScript, especially those assisted by Large Language Models (LLMs). However, the actual capability of LLMs in JavaScript vulnerability detection remains questionable, necessitating systematic evaluation and comprehensive benchmarks. Unfortunately, existing benchmarks suffer from three critical limitations: (1) incomplete coverage, such as covering a limited subset of CWE types; (2) underestimation of LLM capabilities caused by unreasonable ground truth labeling; and (3) overestimation due to unrealistic cases such as using isolated vulnerable files rather than complete projects. In this paper, we introduce, for the first time, three principles for constructing a benchmark for JavaScript vulnerability detection that directly address these limitations: (1) comprehensiveness, (2) no underestimation, and (3) no overestimation. Guided by these principles, we propose FORGEJS, the first automatic benchmark generation framework for evaluating LLMs' capability in JavaScript vulnerability detection. Then, we use FORGEJS to construct ARENAJS-the first systematic benchmark for LLM-based JavaScript vulnerability detection-and further propose JUDGEJS, an automatic evaluation framework. We conduct the first systematic evaluation of LLMs for JavaScript vulnerability detection, leveraging JUDGEJS to assess seven popular commercial LLMs on ARENAJS. The results show that LLMs not only exhibit limited reasoning capabilities, but also suffer from severe robustness defects, indicating that reliable JavaScript vulnerability detection with LLMs remains an open challenge.
☆ Generative Adversarial Gumbel MCTS for Abstract Visual Composition Generation
We study abstract visual composition, in which identity is primarily determined by the spatial configuration and relations among a small set of geometric primitives (e.g., parts, symmetry, topology). They are invariant primarily to texture and photorealistic detail. Composing such structures from fixed components under geometric constraints and vague goal specification (such as text) is non-trivial due to combinatorial placement choices, limited data, and discrete feasibility (overlap-free, allowable orientations), which create a sparse solution manifold ill-suited to purely statistical pixel-space generators. We propose a constraint-guided framework that combines explicit geometric reasoning with neural semantics. An AlphaGo-style search enforces feasibility, while a fine-tuned vision-language model scores semantic alignment as reward signals. Our algorithm uses a policy network as a heuristic in Monte-Carlo Tree Search and fine-tunes the network via search-generated plans. Inspired by the Generative Adversarial Network, we use the generated instances for adversarial reward refinement. Over time, the generation should approach the actual data more closely when the reward model cannot distinguish between generated instances and ground-truth. In the Tangram Assembly task, our approach yields higher validity and semantic fidelity than diffusion and auto-regressive baselines, especially as constraints tighten.
☆ Pay Attention Later: From Vector Space Diffusion to Linearithmic Spectral Phase-Locking
Standard Transformers suffer from a "Semantic Alignment Tax", a prohibitive optimization cost required to organize a chaotic initialization into a coherent geometric map via local gradient diffusion. We hypothesize that this reliance on diffusive learning creates "Catastrophic Rigidity", rendering models unable to adapt to novel concepts without destroying their pre-trained reasoning capabilities. To isolate this phenomenon, we introduce Iterative Semantic Map Refinement (ISMR), a diagnostic protocol revealing that alignment is a fixed geometric barrier that scaling cannot solve; a 20-layer model overcomes this barrier no faster than a 1-layer model. We introduce the Phase-Resonant Intelligent Spectral Model (PRISM). PRISM encodes semantic identity as resonant frequencies in the complex domain (C^d) and replaces quadratic self-attention with linearithmic O(N log N) Gated Harmonic Convolutions. We validate PRISM on the WMT14 translation task. While the Standard Transformer maintains a slight edge in general competence on static benchmarks (23.88 vs 21.40 BLEU), it fails the "Plasticity-Stability" stress test completely. When injected with novel concepts, the Transformer suffers Catastrophic Forgetting, degrading by -10.55 BLEU points while achieving only 60% acquisition. In contrast, PRISM demonstrates Lossless Plasticity, achieving 96% 5-shot acquisition with negligible degradation (-0.84 BLEU). These results suggest that harmonic representations effectively decouple memory from reasoning, offering a structural solution to the plasticity-stability dilemma in real-time knowledge adaptation.
comment: 12 pages, 5 figures
☆ Conveying Imagistic Thinking in Traditional Chinese Medicine Translation: A Prompt Engineering and LLM-Based Evaluation Framework
Traditional Chinese Medicine (TCM) theory is built on imagistic thinking, in which medical principles and diagnostic and therapeutic logic are structured through metaphor and metonymy. However, existing English translations largely rely on literal rendering, making it difficult for target-language readers to reconstruct the underlying conceptual networks and apply them in clinical practice. This study adopted a human-in-the-loop (HITL) framework and selected four passages from the medical canon Huangdi Neijing that are fundamental in theory. Through prompt-based cognitive scaffolding, DeepSeek V3.1 was guided to identify metaphor and metonymy in the source text and convey the theory in translation. In the evaluation stage, ChatGPT 5 Pro and Gemini 2.5 Pro were instructed by prompts to simulate three types of real-world readers. Human translations, baseline model translations, and prompt-adjusted translations were scored by the simulated readers across five cognitive dimensions, followed by structured interviews and Interpretative Phenomenological Analysis (IPA). Results show that the prompt-adjusted LLM translations perform best across all five dimensions, with high cross-model and cross-role consistency. The interview themes reveal differences between human and machine translation, effective strategies for metaphor and metonymy transfer, and readers' cognitive preferences. This study provides a cognitive, efficient, and replicable HITL methodological pathway for the translation of ancient, concept-dense texts such as TCM.
comment: 3 figures
☆ Generalist Large Language Models Outperform Clinical Tools on Medical Benchmarks
Specialized clinical AI assistants are rapidly entering medical practice, often framed as safer or more reliable than general-purpose large language models (LLMs). Yet, unlike frontier models, these clinical tools are rarely subjected to independent, quantitative evaluation, creating a critical evidence gap despite their growing influence on diagnosis, triage, and guideline interpretation. We assessed two widely deployed clinical AI systems (OpenEvidence and UpToDate Expert AI) against three state-of-the-art generalist LLMs (GPT-5, Gemini 3 Pro, and Claude Sonnet 4.5) using a 1,000-item mini-benchmark combining MedQA (medical knowledge) and HealthBench (clinician-alignment) tasks. Generalist models consistently outperformed clinical tools, with GPT-5 achieving the highest scores, while OpenEvidence and UpToDate demonstrated deficits in completeness, communication quality, context awareness, and systems-based safety reasoning. These findings reveal that tools marketed for clinical decision support may often lag behind frontier LLMs, underscoring the urgent need for transparent, independent evaluation before deployment in patient-facing workflows.
comment: 17 pages, 4 figures (2 regular, 2 supplemental)
☆ TempPerturb-Eval: On the Joint Effects of Internal Temperature and External Perturbations in RAG Robustness
The evaluation of Retrieval-Augmented Generation (RAG) systems typically examines retrieval quality and generation parameters like temperature in isolation, overlooking their interaction. This work presents a systematic investigation of how text perturbations (simulating noisy retrieval) interact with temperature settings across multiple LLM runs. We propose a comprehensive RAG Perturbation-Temperature Analysis Framework that subjects retrieved documents to three distinct perturbation types across varying temperature settings. Through extensive experiments on HotpotQA with both open-source and proprietary LLMs, we demonstrate that performance degradation follows distinct patterns: high-temperature settings consistently amplify vulnerability to perturbations, while certain perturbation types exhibit non-linear sensitivity across the temperature range. Our work yields three key contributions: (1) a diagnostic benchmark for assessing RAG robustness, (2) an analytical framework for quantifying perturbation-temperature interactions, and (3) practical guidelines for model selection and parameter tuning under noisy retrieval conditions.
☆ DrawingBench: Evaluating Spatial Reasoning and UI Interaction Capabilities of Large Language Models through Mouse-Based Drawing Tasks AAAI 2026
As agentic AI systems increasingly operate autonomously, establishing trust through verifiable evaluation becomes critical. Yet existing benchmarks lack the transparency and auditability needed to assess whether agents behave reliably. We present DrawingBench, a verification framework for evaluating the trustworthiness of agentic LLMs through spatial reasoning tasks that require generating sequences of low-level GUI actions. Unlike opaque evaluations, DrawingBench provides transparent, rule-based assessment: 8 objective criteria enable reproducible scoring, while action-level inspection allows stakeholders to audit agent behavior. Our framework comprises 250 diverse prompts across 20 categories and 4 difficulty levels, deterministic evaluation metrics, and an external oversight mechanism through multi-turn feedback that enables human control over agent refinement. Evaluating four state-of-the-art LLMs (Claude-4 Sonnet, GPT-4.1, GPT-4.1-mini, Gemini-2.5 Flash) across 1,000 tests, we establish both capabilities and limitations: models achieved 92.8% perfect performance with structured external feedback driving significant improvements (average +3.2%, up to +32.8% for complex scenes), but systematic error patterns emerged in tool state management and long-horizon planning. Notably, specification clarity proved more important than task complexity -- models achieved 100% perfect performance when given explicit, verifiable criteria. These findings demonstrate that transparent evaluation frameworks can establish trust in agentic systems, with external oversight proving more reliable than self-correction for guiding agent behavior. Our open-source framework provides a template for trustworthy agent assessment. Code and data: https://github.com/hyunjun1121/DrawingBench
comment: AAAI 2026 TrustAgent Workshop
☆ CAIRNS: Balancing Readability and Scientific Accuracy in Climate Adaptation Question Answering
Climate adaptation strategies are proposed in response to climate change. They are practised in agriculture to sustain food production. These strategies can be found in unstructured data (for example, scientific literature from the Elsevier website) or structured (heterogeneous climate data via government APIs). We present Climate Adaptation question-answering with Improved Readability and Noted Sources (CAIRNS), a framework that enables experts -- farmer advisors -- to obtain credible preliminary answers from complex evidence sources from the web. It enhances readability and citation reliability through a structured ScholarGuide prompt and achieves robust evaluation via a consistency-weighted hybrid evaluator that leverages inter-model agreement with experts. Together, these components enable readable, verifiable, and domain-grounded question-answering without fine-tuning or reinforcement learning. Using a previously reported dataset of expert-curated question-answers, we show that CAIRNS outperforms the baselines on most of the metrics. Our thorough ablation study confirms the results on all metrics. To validate our LLM-based evaluation, we also report an analysis of correlations against human judgment.
comment: Short Paper; Under Review at The WebConf 2026 (single-blind submission)
☆ DETAIL Matters: Measuring the Impact of Prompt Specificity on Reasoning in Large Language Models
Prompt design plays a critical role in the reasoning performance of large language models (LLMs), yet the impact of prompt specificity - how detailed or vague a prompt is - remains understudied. This paper introduces DETAIL, a framework for evaluating LLM performance across varying levels of prompt specificity. We generate multi-level prompts using GPT-4, quantify specificity via perplexity, and assess correctness using GPT-based semantic equivalence. Experiments on 30 novel reasoning tasks across GPT-4 and O3-mini reveal that specificity improves accuracy, especially for smaller models and procedural tasks. Our results highlight the need for adaptive prompting strategies and provide tools and data to support further research.
☆ Lightweight Latent Reasoning for Narrative Tasks
Large language models (LLMs) tackle complex tasks by generating long chains of thought or "reasoning traces" that act as latent variables in the generation of an output given a query. A model's ability to generate such traces can be optimized with reinforcement learning (RL) to improve their utility in predicting an answer. This optimization comes at a high computational cost, especially for narrative-related tasks that involve retrieving and processing many tokens. To this end, we propose LiteReason, a latent reasoning method that can be interleaved with standard token sampling and easily combined with RL techniques. LiteReason employs a lightweight Reasoning Projector module, trained to produce continuous latent tokens that help the model 'skip' reasoning steps. During RL, the policy model decides when to activate the projector, switching between latent and discrete reasoning as needed. Experimental results on plot hole detection and book chapter generation show that our method outperforms latent reasoning baselines and comes close to matching non-latent RL training, while reducing final reasoning length by 77-92%. Overall, LiteReason guides RL training to a more efficient part of the performance-computation tradeoff curve.
☆ Swivuriso: The South African Next Voices Multilingual Speech Dataset
This paper introduces Swivuriso, a 3000-hour multilingual speech dataset developed as part of the African Next Voices project, to support the development and benchmarking of automatic speech recognition (ASR) technologies in seven South African languages. Covering agriculture, healthcare, and general domain topics, Swivuriso addresses significant gaps in existing ASR datasets. We describe the design principles, ethical considerations, and data collection procedures that guided the dataset creation. We present baseline results of training/finetuning ASR models with this data and compare to other ASR datasets for the langauges concerned.
comment: Work in Progress
☆ A Knowledge-Based Language Model: Deducing Grammatical Knowledge in a Multi-Agent Language Acquisition Simulation
This paper presents an initial study performed by the MODOMA system. The MODOMA is a computational multi-agent laboratory environment for unsupervised language acquisition experiments such that acquisition is based on the interaction between two language models, an adult and a child agent. Although this framework employs statistical as well as rule-based procedures, the result of language acquisition is a knowledge-based language model, which can be used to generate and parse new utterances of the target language. This system is fully parametrized and researchers can control all aspects of the experiments while the results of language acquisition, that is, the acquired grammatical knowledge, are explicitly represented and can be consulted. Thus, this system introduces novel possibilities for conducting computational language acquisition experiments. The experiments presented by this paper demonstrate that functional and content categories can be acquired and represented by the daughter agent based on training and test data containing different amounts of exemplars generated by the adult agent. Interestingly, similar patterns, which are well-established for human-generated data, are also found for these machine-generated data. As the procedures resulted in the successful acquisition of discrete grammatical categories by the child agent, these experiments substantiate the validity of the MODOMA approach to modelling language acquisition.
comment: 23 pages, 7 figures, 11 tables. Related work: arXiv:2503.18702. This is the peer-reviewed publisher's version, downloadable from: https://www.clinjournal.org/clinj/article/view/193
☆ Story2MIDI: Emotionally Aligned Music Generation from Text
In this paper, we introduce Story2MIDI, a sequence-to-sequence Transformer-based model for generating emotion-aligned music from a given piece of text. To develop this model, we construct the Story2MIDI dataset by merging existing datasets for sentiment analysis from text and emotion classification in music. The resulting dataset contains pairs of text blurbs and music pieces that evoke the same emotions in the reader or listener. Despite the small scale of our dataset and limited computational resources, our results indicate that our model effectively learns emotion-relevant features in music and incorporates them into its generation process, producing samples with diverse emotional responses. We evaluate the generated outputs using objective musical metrics and a human listening study, confirming the model's ability to capture intended emotional cues.
comment: 8 pages (6 pages of main text + 2 pages of references and appendices), 4 figures, 1 table. Presented at IEEE Big Data 2025 3rd Workshop on AI Music Generation (AIMG 2025)
♻ ☆ The AI Productivity Index (APEX)
We present an extended version of the AI Productivity Index (APEX-v1-extended), a benchmark for assessing whether frontier models are capable of performing economically valuable tasks in four jobs: investment banking associate, management consultant, big law associate, and primary care physician (MD). This technical report details the extensions to APEX-v1, including an increase in the held-out evaluation set from n = 50 to n = 100 cases per job (n = 400 total) and updates to the grading methodology. We present a new leaderboard, where GPT5 (Thinking = High) remains the top performing model with a score of 67.0%. APEX-v1-extended shows that frontier models still have substantial limitations when performing typical professional tasks. To support further research, we are open sourcing n = 25 non-benchmark example cases per role (n = 100 total) along with our evaluation harness.
♻ ☆ SpikingBrain: Spiking Brain-inspired Large Models
Mainstream Transformer-based large language models face major efficiency bottlenecks: training computation scales quadratically with sequence length, and inference memory grows linearly, limiting long-context processing. Building large models on non-NVIDIA platforms also poses challenges for stable and efficient training. To address this, we introduce SpikingBrain, a family of brain-inspired models designed for efficient long-context training and inference. SpikingBrain leverages the MetaX GPU cluster and focuses on three aspects: (1) Model Architecture: linear and hybrid-linear attention architectures with adaptive spiking neurons; (2) Algorithmic Optimizations: an efficient, conversion-based training pipeline and a dedicated spike coding framework; (3) System Engineering: customized training frameworks, operator libraries, and parallelism strategies tailored to MetaX hardware. Using these techniques, we develop two models: SpikingBrain-7B, a linear LLM, and SpikingBrain-76B, a hybrid-linear MoE LLM. These models demonstrate the feasibility of large-scale LLM development on non-NVIDIA platforms, and training remains stable for weeks on hundreds of MetaX GPUs with Model FLOPs Utilization at expected levels. SpikingBrain achieves performance comparable to open-source Transformer baselines while using only about 150B tokens for continual pre-training. Our models also significantly improve long-context efficiency and deliver inference with (partially) constant memory and event-driven spiking behavior. For example, SpikingBrain-7B attains over 100x speedup in Time to First Token for 4M-token sequences. Furthermore, the proposed spiking scheme achieves 69.15 percent sparsity, enabling low-power operation. Overall, this work demonstrates the potential of brain-inspired mechanisms to drive the next generation of efficient and scalable large model design.
♻ ☆ Med-gte-hybrid: A contextual embedding transformer model for extracting actionable information from clinical texts
We introduce a novel contextual embedding model med-gte-hybrid that was derived from the gte-large sentence transformer to extract information from unstructured clinical narratives. Our model tuning strategy for med-gte-hybrid combines contrastive learning and a denoising autoencoder. To evaluate the performance of med-gte-hybrid, we investigate several clinical prediction tasks in large patient cohorts extracted from the MIMIC-IV dataset, including Chronic Kidney Disease (CKD) patient prognosis, estimated glomerular filtration rate (eGFR) prediction, and patient mortality prediction. Furthermore, we demonstrate that the med-gte-hybrid model improves patient stratification, clustering, and text retrieval, thus outperforms current state-of-the-art models on the Massive Text Embedding Benchmark (MTEB). While some of our evaluations focus on CKD, our hybrid tuning of sentence transformers could be transferred to other medical domains and has the potential to improve clinical decision-making and personalised treatment pathways in various healthcare applications.
comment: 22 pages, 4 figures, 2 tables
♻ ☆ Reliable Reasoning Beyond Natural Language
Despite their linguistic competence, Large Language Models (LLMs) often struggle to reason reliably and flexibly. To identify these shortcomings, we introduce the Non-Linear Reasoning (NLR) dataset, a collection of 55 unique, hand-designed problems that target reasoning bottlenecks arising from the sequential prediction paradigm of LLMs and the inherently linear nature of natural language. NLR tasks require iterative updates, backtracking, and reasoning across multiple parallel chains of thought but only basic arithmetic to solve. To address these limitations, we propose a neurosymbolic reasoning approach that integrates Prolog, a symbolic reasoning engine, into the inference pipeline of LLMs. This division of labor shifts the LLM's task from iterative computations to inferring all information, explicit or implied through common sense, and encoding it as logical code. Our method yields large and robust performance gains across the GSM8k and BIG-bench Navigate benchmarks and achieves near-perfect accuracy on NLR problems, maintaining robustness even as variable interdependence - the number of other variables on which the value of a single variable depends - increases.
♻ ☆ LLMs can hide text in other text of the same length
A meaningful text can be hidden inside another, completely different yet still coherent and plausible, text of the same length. For example, a tweet containing a harsh political critique could be embedded in a tweet that celebrates the same political leader, or an ordinary product review could conceal a secret manuscript. This uncanny state of affairs is now possible thanks to Large Language Models, and in this paper we present Calgacus, a simple and efficient protocol to achieve it. We show that even modest 8-billion-parameter open-source LLMs are sufficient to obtain high-quality results, and a message as long as this abstract can be encoded and decoded locally on a laptop in seconds. The existence of such a protocol demonstrates a radical decoupling of text from authorial intent, further eroding trust in written communication, already shaken by the rise of LLM chatbots. We illustrate this with a concrete scenario: a company could covertly deploy an unfiltered LLM by encoding its answers within the compliant responses of a safe model. This possibility raises urgent questions for AI safety and challenges our understanding of what it means for a Large Language Model to know something.
comment: 21 pages, main paper 9 pages
♻ ☆ Influence Functions for Efficient Data Selection in Reasoning
Fine-tuning large language models (LLMs) on chain-of-thought (CoT) data shows that a small amount of high-quality data can outperform massive datasets. Yet, what constitutes "quality" remains ill-defined. Existing reasoning methods rely on indirect heuristics such as problem difficulty or trace length, while instruction-tuning has explored a broader range of automated selection strategies, but rarely in the context of reasoning. We propose to define reasoning data quality using influence functions, which measure the causal effect of individual CoT examples on downstream accuracy, and introduce influence-based pruning, which consistently outperforms perplexity and embedding-based baselines on math reasoning within a model family.
comment: 4 pages, 2 figures; added link to codebase
♻ ☆ From Code Foundation Models to Agents and Applications: A Practical Guide to Code Intelligence
Large language models (LLMs) have fundamentally transformed automated software development by enabling direct translation of natural language descriptions into functional code, driving commercial adoption through tools like Github Copilot (Microsoft), Cursor (Anysphere), Trae (ByteDance), and Claude Code (Anthropic). While the field has evolved dramatically from rule-based systems to Transformer-based architectures, achieving performance improvements from single-digit to over 95\% success rates on benchmarks like HumanEval. In this work, we provide a comprehensive synthesis and practical guide (a series of analytic and probing experiments) about code LLMs, systematically examining the complete model life cycle from data curation to post-training through advanced prompting paradigms, code pre-training, supervised fine-tuning, reinforcement learning, and autonomous coding agents. We analyze the code capability of the general LLMs (GPT-4, Claude, LLaMA) and code-specialized LLMs (StarCoder, Code LLaMA, DeepSeek-Coder, and QwenCoder), critically examining the techniques, design decisions, and trade-offs. Further, we articulate the research-practice gap between academic research (e.g., benchmarks and tasks) and real-world deployment (e.g., software-related code tasks), including code correctness, security, contextual awareness of large codebases, and integration with development workflows, and map promising research directions to practical needs. Last, we conduct a series of experiments to provide a comprehensive analysis of code pre-training, supervised fine-tuning, and reinforcement learning, covering scaling law, framework selection, hyperparameter sensitivity, model architectures, and dataset comparisons.
♻ ☆ Adversarial Confusion Attack: Disrupting Multimodal Large Language Models
We introduce the Adversarial Confusion Attack, a new class of threats against multimodal large language models (MLLMs). Unlike jailbreaks or targeted misclassification, the goal is to induce systematic disruption that makes the model generate incoherent or confidently incorrect outputs. Practical applications include embedding such adversarial images into websites to prevent MLLM-powered AI Agents from operating reliably. The proposed attack maximizes next-token entropy using a small ensemble of open-source MLLMs. In the white-box setting, we show that a single adversarial image can disrupt all models in the ensemble, both in the full-image and Adversarial CAPTCHA settings. Despite relying on a basic adversarial technique (PGD), the attack generates perturbations that transfer to both unseen open-source (e.g., Qwen3-VL) and proprietary (e.g., GPT-5.1) models.
♻ ☆ RealWebAssist: A Benchmark for Long-Horizon Web Assistance with Real-World Users
To achieve successful assistance with long-horizon web-based tasks, AI agents must be able to sequentially follow real-world user instructions over a long period. Unlike existing web-based agent benchmarks, sequential instruction following in the real world poses significant challenges beyond performing a single, clearly defined task. For instance, real-world human instructions can be ambiguous, require different levels of AI assistance, and may evolve over time, reflecting changes in the user's mental state. To address this gap, we introduce RealWebAssist, a novel benchmark designed to evaluate sequential instruction-following in realistic scenarios involving long-horizon interactions with the web, visual GUI grounding, and understanding ambiguous real-world user instructions. RealWebAssist includes a dataset of sequential instructions collected from real-world human users. Each user instructs a web-based assistant to perform a series of tasks on multiple websites. A successful agent must reason about the true intent behind each instruction, keep track of the mental state of the user, understand user-specific routines, and ground the intended tasks to actions on the correct GUI elements. Our experimental results show that state-of-the-art models struggle to understand and ground user instructions, posing critical challenges in following real-world user instructions for long-horizon web assistance.
comment: Project Website: https://scai.cs.jhu.edu/projects/RealWebAssist/ Code: https://github.com/SCAI-JHU/RealWebAssist
♻ ☆ DPRM: A Dual Implicit Process Reward Model in Multi-Hop Question Answering
In multi-hop question answering (MHQA) tasks, Chain of Thought (CoT) improves the quality of generation by guiding large language models (LLMs) through multi-step reasoning, and Knowledge Graphs (KGs) reduce hallucinations via semantic matching. Outcome Reward Models (ORMs) provide feedback after generating the final answers but fail to evaluate the process for multi-step reasoning. Traditional Process Reward Models (PRMs) evaluate the reasoning process but require costly human annotations or rollout generation. While implicit PRM is trained only with outcome signals and derives step rewards through reward parameterization without explicit annotations, it is more suitable for multi-step reasoning in MHQA tasks. However, existing implicit PRM has only been explored for plain text scenarios. When adapting to MHQA tasks, it cannot handle the graph structure constraints in KGs and capture the potential inconsistency between CoT and KG paths. To address these limitations, we propose the DPRM (Dual Implicit Process Reward Model). It trains two implicit PRMs for CoT and KG reasoning in MHQA tasks. Both PRMs, namely KG-PRM and CoT-PRM, derive step-level rewards from outcome signals via reward parameterization without additional explicit annotations. Among them, KG-PRM uses preference pairs to learn structural constraints from KGs. DPRM further introduces a consistency constraint between CoT and KG reasoning steps, making the two PRMs mutually verify and collaboratively optimize the reasoning paths. We also provide a theoretical demonstration of the derivation of process rewards. Experimental results show that our method outperforms 13 baselines on multiple datasets with up to 16.6% improvement on Hit@1.
♻ ☆ SpeechRole: A Large-Scale Dataset and Benchmark for Evaluating Speech Role-Playing Agents
Recently, role-playing agents have emerged as a promising paradigm for achieving personalized interaction and emotional resonance. Existing research primarily focuses on the textual modality, neglecting the critical dimension of speech in realistic interactive scenarios. In particular, there is a lack of systematic evaluation for Speech Role-Playing Agents (SRPAs). To address this gap, we construct SpeechRole-Data, a large-scale, high-quality dataset that comprises 98 diverse roles and 112k speech-based single-turn and multi-turn conversations. Each role demonstrates distinct vocal characteristics, including timbre and prosody, thereby enabling more sophisticated speech role-playing. Furthermore, we propose SpeechRole-Eval, a multidimensional evaluation benchmark that systematically assesses SRPAs performance in key aspects such as fundamental interaction ability, speech expressiveness, and role-playing fidelity. Experimental results reveal the advantages and challenges of both cascaded and end-to-end speech role-playing agents in maintaining vocal style consistency and role coherence. We release all data, code, and baseline models to provide a solid foundation for speech-driven multimodal role-playing research and to foster further developments in this field.
♻ ☆ Eye of Judgement: Dissecting the Evaluation of Russian-speaking LLMs with POLLUX
We introduce POLLUX, a comprehensive open-source benchmark designed to evaluate the generative capabilities of large language models (LLMs) in Russian. Our main contribution is a novel evaluation methodology that enhances the interpretability of LLM assessment. For each task type, we define a set of detailed criteria and develop a scoring protocol where models evaluate responses and provide justifications for their ratings. This enables transparent, criteria-driven evaluation beyond traditional resource-consuming, side-by-side human comparisons. POLLUX includes a detailed, fine-grained taxonomy of 35 task types covering diverse generative domains such as code generation, creative writing, and practical assistant use cases, totaling 2,100 manually crafted and professionally authored prompts. Each task is categorized by difficulty (easy/medium/hard), with experts constructing the dataset entirely from scratch. We also release a family of LLM-as-a-Judge (7B and 32B) evaluators trained for nuanced assessment of generative outputs. This approach provides scalable, interpretable evaluation and annotation tools for model development, effectively replacing costly and less precise human judgments.
comment: short version
♻ ☆ Debating Truth: Debate-driven Claim Verification with Multiple Large Language Model Agents
Claim verification is essential for digital literacy, yet state-of-the-art single-agent methods often struggle with complex claims that require nuanced analysis of multifaceted online evidence. Inspired by real-world human fact-checking practices, we propose \textbf{DebateCV}, the first debate-driven claim verification framework powered by multiple LLM agents. In DebateCV, two \textit{Debaters} argue opposing stances over multiple rounds to surface subtle errors in single-agent assessments. A decisive \textit{Moderator} is then required to weigh the evidential strength of conflicting arguments to deliver an accurate verdict. Yet zero-shot agents struggle to adjudicate multi-round debates for verifying complex claims, often defaulting to neutral judgements, and no datasets exist for training agents for this role. To bridge this gap, we propose \textbf{Debate-SFT}, a post-training framework that leverages synthetic data to enhance agents' ability to effectively adjudicate debates for claim verification. Results show that our methods surpass state-of-the-art non-debate approaches in both accuracy (across various evidence conditions) and justification quality, which strengthens societal resilience against misinformation and contributes to a more trustworthy online information ecosystem.
♻ ☆ Comprehensive Evaluation on Lexical Normalization: Boundary-Aware Approaches for Unsegmented Languages EMNLP 2025
Lexical normalization research has sought to tackle the challenge of processing informal expressions in user-generated text, yet the absence of comprehensive evaluations leaves it unclear which methods excel across multiple perspectives. Focusing on unsegmented languages, we make three key contributions: (1) creating a large-scale, multi-domain Japanese normalization dataset, (2) developing normalization methods based on state-of-the-art pretrained models, and (3) conducting experiments across multiple evaluation perspectives. Our experiments show that both encoder-only and decoder-only approaches achieve promising results in both accuracy and efficiency.
comment: EMNLP 2025 (Findings), 26 pages
♻ ☆ CCFQA: A Benchmark for Cross-Lingual and Cross-Modal Speech and Text Factuality Evaluation AAAI 2026
As Large Language Models (LLMs) are increasingly popularized in the multilingual world, ensuring hallucination-free factuality becomes markedly crucial. However, existing benchmarks for evaluating the reliability of Multimodal Large Language Models (MLLMs) predominantly focus on textual or visual modalities with a primary emphasis on English, which creates a gap in evaluation when processing multilingual input, especially in speech. To bridge this gap, we propose a novel Cross-lingual and Cross-modal Factuality benchmark (CCFQA). Specifically, the CCFQA benchmark contains parallel speech-text factual questions across 8 languages, designed to systematically evaluate MLLMs' cross-lingual and cross-modal factuality capabilities. Our experimental results demonstrate that current MLLMs still face substantial challenges on the CCFQA benchmark. Furthermore, we propose a few-shot transfer learning strategy that effectively transfers the Question Answering (QA) capabilities of LLMs in English to multilingual Spoken Question Answering (SQA) tasks, achieving competitive performance with GPT-4o-mini-Audio using just 5-shot training. We release CCFQA as a foundational research resource to promote the development of MLLMs with more robust and reliable speech understanding capabilities. Our code and dataset are available at https://github.com/yxduir/ccfqa.
comment: Accepted in AAAI 2026
♻ ☆ Soft Adaptive Policy Optimization
Reinforcement learning (RL) plays an increasingly important role in enhancing the reasoning capabilities of large language models (LLMs), yet stable and performant policy optimization remains challenging. Token-level importance ratios often exhibit high variance-a phenomenon exacerbated in Mixture-of-Experts models-leading to unstable updates. Existing group-based policy optimization methods, such as GSPO and GRPO, alleviate this problem via hard clipping, making it difficult to maintain both stability and effective learning. We propose Soft Adaptive Policy Optimization (SAPO), which replaces hard clipping with a smooth, temperature-controlled gate that adaptively attenuates off-policy updates while preserving useful learning signals. Compared with GSPO and GRPO, SAPO is both sequence-coherent and token-adaptive. Like GSPO, SAPO maintains sequence-level coherence, but its soft gating forms a continuous trust region that avoids the brittle hard clipping band used in GSPO. When a sequence contains a few highly off-policy tokens, GSPO suppresses all gradients for that sequence, whereas SAPO selectively down-weights only the offending tokens and preserves the learning signal from the near-on-policy ones, improving sample efficiency. Relative to GRPO, SAPO replaces hard token-level clipping with smooth, temperature-controlled scaling, enabling more informative and stable updates. Empirical results on mathematical reasoning benchmarks indicate that SAPO exhibits improved training stability and higher Pass@1 performance under comparable training budgets. Moreover, we employ SAPO to train the Qwen3-VL model series, demonstrating that SAPO yields consistent performance gains across diverse tasks and different model sizes. Overall, SAPO provides a more reliable, scalable, and effective optimization strategy for RL training of LLMs.
♻ ☆ Human Decision-making is Susceptible to AI-driven Manipulation
AI systems are increasingly intertwined with daily life, assisting users with various tasks and guiding decision-making. This integration introduces risks of AI-driven manipulation, where such systems may exploit users' cognitive biases and emotional vulnerabilities to steer them toward harmful outcomes. Through a randomized between-subjects experiment with 233 participants, we examined human susceptibility to such manipulation in financial (e.g., purchases) and emotional (e.g., conflict resolution) decision-making contexts. Participants interacted with one of three AI agents: a neutral agent (NA) optimizing for user benefit without explicit influence, a manipulative agent (MA) designed to covertly influence beliefs and behaviors, or a strategy-enhanced manipulative agent (SEMA) equipped with established psychological tactics, allowing it to select and apply them adaptively during interactions to reach its hidden objectives. By analyzing participants' preference ratings, we found significant susceptibility to AI-driven manipulation. Particularly across both decision-making domains, interacting with the manipulative agents significantly increased the odds of rating hidden incentives higher than optimal options (Financial, MA: OR=5.24, SEMA: OR=7.96; Emotional, MA: OR=5.52, SEMA: OR=5.71) compared to the NA group. Notably, we found no clear evidence that employing psychological strategies (SEMA) was overall more effective than simple manipulative objectives (MA) on our primary outcomes. Hence, AI-driven manipulation could become widespread even without requiring sophisticated tactics and expertise. While our findings are preliminary and derived from hypothetical, low-stakes scenarios, we highlight a critical vulnerability in human-AI interactions, emphasizing the need for ethical safeguards and regulatory frameworks to protect human autonomy.
comment: Work in progress
♻ ☆ DESIGNER: Design-Logic-Guided Multidisciplinary Data Synthesis for LLM Reasoning
Large language models (LLMs) have achieved remarkable success in many natural language tasks but still struggle with complex, multi-step reasoning, particularly across diverse disciplines. Existing reasoning datasets often lack disciplinary breadth, reasoning depth, and diversity, as well as guiding principles for question synthesis. We propose DESIGNER: a DESIGN-logic-guidEd Reasoning data synthesis pipeline that leverages naturally available, extensive raw documents (e.g., book corpus and web corpus) to generate multidisciplinary challenging questions. We introduce the concept of "design logic" and instruct LLMs to mimic human educators' question-creation process, enabling the automated synthesis of large-scale, high-difficulty questions. We use LLMs to reverse-engineer and abstract over 120,000 design logics from existing questions across various disciplines. By matching these design logics with source documents, we are able to generate reasoning questions with controllable question types and difficulty levels. Using this pipeline, we synthesized two large-scale reasoning datasets that span 75 disciplines: DLR-Book (3.04 million questions from the book corpus) and DLR-Web (1.66 million questions from the web corpus). Data analysis indicates that the questions synthesized by our method exhibit greater difficulty and diversity compared to those in the baseline datasets. We validate our synthesized data through supervised fine-tuning (SFT) on the Qwen3 and Llama3 model families. Our data substantially enhances their multidisciplinary reasoning capabilities, outperforming existing datasets. Notably, by applying SFT on the base versions of these models using only our data, we even surpass their official final models that have undergone the full post-training process.
♻ ☆ A Method for Handling Negative Similarities in Explainable Graph Spectral Clustering of Text Documents -- Extended Version
This paper investigates the problem of Graph Spectral Clustering with negative similarities, resulting from document embeddings different from the traditional Term Vector Space (like doc2vec, GloVe, etc.). Solutions for combinatorial Laplacians and normalized Laplacians are discussed. An experimental investigation shows the advantages and disadvantages of 6 different solutions proposed in the literature and in this research. The research demonstrates that GloVe embeddings frequently cause failures of normalized Laplacian based GSC due to negative similarities. Furthermore, application of methods curing similarity negativity leads to accuracy improvement for both combinatorial and normalized Laplacian based GSC. It also leads to applicability for GloVe embeddings of explanation methods developed originally bythe authors for Term Vector Space embeddings.
comment: 1 figure, 17 pages, this is an extended version of a paper accepted for the 25th International Conference on Computational Science (ICCS), 7-9 July 2025
♻ ☆ MERA Code: A Unified Framework for Evaluating Code Generation Across Tasks
Advancements in LLMs have enhanced task automation in software engineering; however, current evaluations primarily focus on natural language tasks, overlooking code quality. Most benchmarks prioritize high-level reasoning over executable code and real-world performance, leaving gaps in understanding true capabilities and risks associated with these models in production. To address this issue, we propose MERA Code, a new addition to the MERA benchmark family, specifically focused on evaluating code for the latest code generation LLMs in Russian. This benchmark includes 11 evaluation tasks that span 8 programming languages. Our proposed evaluation methodology features a taxonomy that outlines the practical coding skills necessary for models to complete these tasks. The benchmark comprises an open-source codebase for users to conduct MERA assessments, a scoring system compatible with various programming environments, and a platform featuring a leaderboard and submission system. We evaluate open LLMs and frontier API models, analyzing their limitations in terms of practical coding tasks in non-English languages. We are publicly releasing MERA to guide future research, anticipate groundbreaking features in model development, and standardize evaluation procedures.
♻ ☆ A Machine Learning Approach for Detection of Mental Health Conditions and Cyberbullying from Social Media AAAI-26
Mental health challenges and cyberbullying are increasingly prevalent in digital spaces, necessitating scalable and interpretable detection systems. This paper introduces a unified multiclass classification framework for detecting ten distinct mental health and cyberbullying categories from social media data. We curate datasets from Twitter and Reddit, implementing a rigorous "split-then-balance" pipeline to train on balanced data while evaluating on a realistic, held-out imbalanced test set. We conducted a comprehensive evaluation comparing traditional lexical models, hybrid approaches, and several end-to-end fine-tuned transformers. Our results demonstrate that end-to-end fine-tuning is critical for performance, with the domain-adapted MentalBERT emerging as the top model, achieving an accuracy of 0.92 and a Macro F1 score of 0.76, surpassing both its generic counterpart and a zero-shot LLM baseline. Grounded in a comprehensive ethical analysis, we frame the system as a human-in-the-loop screening aid, not a diagnostic tool. To support this, we introduce a hybrid SHAPLLM explainability framework and present a prototype dashboard ("Social Media Screener") designed to integrate model predictions and their explanations into a practical workflow for moderators. Our work provides a robust baseline, highlighting future needs for multi-label, clinically-validated datasets at the critical intersection of online safety and computational mental health.
comment: Accepted for Oral Presentation at the AAAI-26 Bridge Program on AI for Medicine and Healthcare (AIMedHealth). To appear in Proceedings of Machine Learning Research (PMLR)
♻ ☆ Recursive numeral systems are highly regular and easy to process
Previous work has argued that recursive numeral systems optimise the trade-off between lexicon size and average morphosyntatic complexity (Denić and Szymanik, 2024). However, showing that only natural-language-like systems optimise this tradeoff has proven elusive, and the existing solution has relied on ad-hoc constraints to rule out unnatural systems (Yang and Regier, 2025). Here, we argue that this issue arises because the proposed trade-off has neglected regularity, a crucial aspect of complexity central to human grammars in general. Drawing on the Minimum Description Length (MDL) approach, we propose that recursive numeral systems are better viewed as efficient with regard to their regularity and processing complexity. We show that our MDL-based measures of regularity and processing complexity better capture the key differences between attested, natural systems and unattested but possible ones, including "optimal" recursive numeral systems from previous work, and that the ad-hoc constraints from previous literature naturally follow from regularity. Our approach highlights the need to incorporate regularity across sets of forms in studies that attempt to measure and explain optimality in language.
♻ ☆ BoundingDocs: a Unified Dataset for Document Question Answering with Spatial Annotations
We present a unified dataset for document Question-Answering (QA), which is obtained combining several public datasets related to Document AI and visually rich document understanding (VRDU). Our main contribution is twofold: on the one hand we reformulate existing Document AI tasks, such as Information Extraction (IE), into a Question-Answering task, making it a suitable resource for training and evaluating Large Language Models; on the other hand, we release the OCR of all the documents and include the exact position of the answer to be found in the document image as a bounding box. Using this dataset, we explore the impact of different prompting techniques (that might include bounding box information) on the performance of open-weight models, identifying the most effective approaches for document comprehension.
♻ ☆ PARROT: Persuasion and Agreement Robustness Rating of Output Truth -- A Sycophancy Robustness Benchmark for LLMs
This study presents PARROT (Persuasion and Agreement Robustness Rating of Output Truth), a robustness focused framework designed to measure the degradation in accuracy that occurs under social pressure exerted on users through authority and persuasion in large language models (LLMs) the phenomenon of sycophancy (excessive conformity). PARROT (i) isolates causal effects by comparing the neutral version of the same question with an authoritatively false version using a double-blind evaluation, (ii) quantifies confidence shifts toward the correct and imposed false responses using log-likelihood-based calibration tracking, and (iii) systematically classifies failure modes (e.g., robust correct, sycophantic agreement, reinforced error, stubborn error, self-correction, etc.) using an eight-state behavioral taxonomy. We evaluated 22 models using 1,302 MMLU-style multiple-choice questions across 13 domains and domain-specific authority templates. Findings show marked heterogeneity: advanced models (e.g., GPT-5, GPT-4.1, Claude Sonnet 4.5) exhibit low "follow rates" ($\leq 11\%$, GPT-5: 4\%) and minimal accuracy loss, while older/smaller models show severe epistemic collapse (GPT-4: 80\%, Qwen 2.5-1.5B: 94\%). The danger is not limited to response changes; weak models reduce confidence in the correct response while increasing confidence in the imposed incorrect response. While international law and global knowledge at the domain level exhibit high fragility, elementary mathematics is relatively resilient. Consequently, we argue that the goal of "resistance to overfitting pressure" should be addressed as a primary objective alongside accuracy, harm avoidance, and privacy for safe deployment in the real world.
♻ ☆ LLM-based Human Simulations Have Not Yet Been Reliable
Large Language Models (LLMs) are increasingly employed for simulating human behaviors across diverse domains. However, our position is that current LLM-based human simulations remain insufficiently reliable, as evidenced by significant discrepancies between their outcomes and authentic human actions. Our investigation begins with a systematic review of LLM-based human simulations in social, economic, policy, and psychological contexts, identifying their common frameworks, recent advances, and persistent limitations. This review reveals that such discrepancies primarily stem from inherent limitations of LLMs and flaws in simulation design, both of which are examined in detail. Building on these insights, we propose a systematic solution framework that emphasizes enriching data foundations, advancing LLM capabilities, and ensuring robust simulation design to enhance reliability. Finally, we introduce a structured algorithm that operationalizes the proposed framework, aiming to guide credible and human-aligned LLM-based simulations. To facilitate further research, we provide a curated list of related literature and resources at https://github.com/Persdre/awesome-llm-human-simulation.
♻ ☆ SpeechIQ: Speech-Agentic Intelligence Quotient Across Cognitive Levels in Voice Understanding by Large Language Models ACL 2025
We introduce Speech-based Intelligence Quotient (SIQ) as a new form of human cognition-inspired evaluation pipeline for voice understanding large language models, LLM Voice, designed to assess their voice understanding ability. Moving beyond popular voice understanding metrics such as word error rate (WER), SIQ examines LLM Voice across three cognitive levels motivated by Bloom's Taxonomy: (1) Remembering (i.e., WER for verbatim accuracy); (2) Understanding (i.e., similarity of LLM's interpretations); and (3) Application (i.e., QA accuracy for simulating downstream tasks). We demonstrate that SIQ not only quantifies voice understanding abilities but also provides unified comparisons between cascaded methods (e.g., ASR LLM) and end-to-end models, identifies annotation errors in existing benchmarks, and detects hallucinations in LLM Voice. Our framework represents a first-of-its-kind intelligence examination that bridges cognitive principles with voice-oriented benchmarks, while exposing overlooked challenges in multi-modal training. Our code and data will be open source to encourage future studies.
comment: ACL 2025 main. Our Speech-IQ leaderboard is hosted at huggingface.co/spaces/nvidia/Speech-IQ-leaderboard. Speech-IQ Calculator: https://github.com/YukinoWan/SpeechIQ
♻ ☆ From Topology to Retrieval: Decoding Embedding Spaces with Unified Signatures
Studying how embeddings are organized in space not only enhances model interpretability but also uncovers factors that drive downstream task performance. In this paper, we present a comprehensive analysis of topological and geometric measures across a wide set of text embedding models and datasets. We find a high degree of redundancy among these measures and observe that individual metrics often fail to sufficiently differentiate embedding spaces. Building on these insights, we introduce Unified Topological Signatures (UTS), a holistic framework for characterizing embedding spaces. We show that UTS can predict model-specific properties and reveal similarities driven by model architecture. Further, we demonstrate the utility of our method by linking topological structure to ranking effectiveness and accurately predicting document retrievability. We find that a holistic, multi-attribute perspective is essential to understanding and leveraging the geometry of text embeddings.
♻ ☆ NeKo: Cross-Modality Post-Recognition Error Correction with Tasks-Guided Mixture-of-Experts Language Model ACL 2025
Construction of a general-purpose post-recognition error corrector poses a crucial question: how can we most effectively train a model on a large mixture of domain datasets? The answer would lie in learning dataset-specific features and digesting their knowledge in a single model. Previous methods achieve this by having separate correction language models, resulting in a significant increase in parameters. In this work, we present Mixture-of-Experts as a solution, highlighting that MoEs are much more than a scalability tool. We propose a Multi-Task Correction MoE, where we train the experts to become an ``expert'' of speech-to-text, language-to-text and vision-to-text datasets by learning to route each dataset's tokens to its mapped expert. Experiments on the Open ASR Leaderboard show that we explore a new state-of-the-art performance by achieving an average relative 5.0% WER reduction and substantial improvements in BLEU scores for speech and translation tasks. On zero-shot evaluation, NeKo outperforms GPT-3.5 and Claude-Opus with 15.5% to 27.6% relative WER reduction in the Hyporadise benchmark. NeKo performs competitively on grammar and post-OCR correction as a multi-task model.
comment: ACL 2025 Industry Track. NeKo LMs: https://huggingface.co/nvidia/NeKo-v0-post-correction
♻ ☆ HEALTH-PARIKSHA: Assessing RAG Models for Health Chatbots in Real-World Multilingual Settings
Assessing the capabilities and limitations of large language models (LLMs) has garnered significant interest, yet the evaluation of multiple models in real-world scenarios remains rare. Multilingual evaluation often relies on translated benchmarks, which typically do not capture linguistic and cultural nuances present in the source language. This study provides an extensive assessment of 24 LLMs on real world data collected from Indian patients interacting with a medical chatbot in Indian English and 4 other Indic languages. We employ a uniform Retrieval Augmented Generation framework to generate responses, which are evaluated using both automated techniques and human evaluators on four specific metrics relevant to our application. We find that models vary significantly in their performance and that instruction tuned Indic models do not always perform well on Indic language queries. Further, we empirically show that factual correctness is generally lower for responses to Indic queries compared to English queries. Finally, our qualitative work shows that code-mixed and culturally relevant queries in our dataset pose challenges to evaluated models.
♻ ☆ Prompt-R1: Collaborative Automatic Prompting Framework via End-to-end Reinforcement Learning
Recently, advanced large language models (LLMs) have emerged at an increasingly rapid pace. However, when faced with complex problems, most users are often unable to provide accurate and effective prompts to interact with LLMs, thus limiting the performance of LLMs. To address this challenge, we propose Prompt-R1, an end-to-end reinforcement learning framework that uses a small-scale LLM to collaborate with large-scale LLMs, replacing user interaction to solve problems better. This collaboration is cast as a multi-turn prompt interaction, where the small-scale LLM thinks and generates prompts, and the large-scale LLM performs complex reasoning. A dual-constrained reward is designed to optimize for correctness, generation quality, and reasoning accuracy. Prompt-R1 provides a plug-and-play framework that supports both inference and training with various large-scale LLMs. Experiments on multiple public datasets show that Prompt-R1 significantly outperforms baseline models across tasks. Our code is publicly available at https://github.com/QwenQKing/Prompt-R1.
♻ ☆ Checklists Are Better Than Reward Models For Aligning Language Models NeurIPS 2025
Language models must be adapted to understand and follow user instructions. Reinforcement learning is widely used to facilitate this -- typically using fixed criteria such as "helpfulness" and "harmfulness". In our work, we instead propose using flexible, instruction-specific criteria as a means of broadening the impact that reinforcement learning can have in eliciting instruction following. We propose "Reinforcement Learning from Checklist Feedback" (RLCF). From instructions, we extract checklists and evaluate how well responses satisfy each item - using both AI judges and specialized verifier programs - then combine these scores to compute rewards for RL. We compare RLCF with other alignment methods applied to a strong instruction following model (Qwen2.5-7B-Instruct) on five widely-studied benchmarks -- RLCF is the only method to improve performance on every benchmark, including a 4-point boost in hard satisfaction rate on FollowBench, a 6-point increase on InFoBench, and a 3-point rise in win rate on Arena-Hard. These results establish checklist feedback as a key tool for improving language models' support of queries that express a multitude of needs.
comment: Presented at NeurIPS 2025
♻ ☆ Spark-Prover-X1: Formal Theorem Proving Through Diverse Data Training
Large Language Models (LLMs) have shown significant promise in automated theorem proving, yet progress is often constrained by the scarcity of diverse and high-quality formal language data. To address this issue, we introduce Spark-Prover-X1, a 7B parameter model trained via an three-stage framework designed to unlock the reasoning potential of more accessible and moderately-sized LLMs. The first stage infuses deep knowledge through continuous pre-training on a broad mathematical corpus, enhanced by a suite of novel data tasks. Key innovation is a "CoT-augmented state prediction" task to achieve fine-grained reasoning. The second stage employs Supervised Fine-tuning (SFT) within an expert iteration loop to specialize both the Spark-Prover-X1-7B and Spark-Formalizer-X1-7B models. Finally, a targeted round of Group Relative Policy Optimization (GRPO) is applied to sharpen the prover's capabilities on the most challenging problems. To facilitate robust evaluation, particularly on problems from real-world examinations, we also introduce ExamFormal-Bench, a new benchmark dataset of 402 formal problems. Experimental results demonstrate that Spark-Prover achieves state-of-the-art performance among similarly-sized open-source models within the "Whole-Proof Generation" paradigm. It shows exceptional performance on difficult competition benchmarks, notably solving 27 problems on PutnamBench (pass@32) and achieving 24.0\% on CombiBench (pass@32). Our work validates that this diverse training data and progressively refined training pipeline provides an effective path for enhancing the formal reasoning capabilities of lightweight LLMs. We will release both Spark-Prover-X1-7B and Spark-Formalizer-X1-7B, along with the ExamFormal-Bench dataset, in the near future.
♻ ☆ Measuring and Guiding Monosemanticity
There is growing interest in leveraging mechanistic interpretability and controllability to better understand and influence the internal dynamics of large language models (LLMs). However, current methods face fundamental challenges in reliably localizing and manipulating feature representations. Sparse Autoencoders (SAEs) have recently emerged as a promising direction for feature extraction at scale, yet they, too, are limited by incomplete feature isolation and unreliable monosemanticity. To systematically quantify these limitations, we introduce Feature Monosemanticity Score (FMS), a novel metric to quantify feature monosemanticity in latent representation. Building on these insights, we propose Guided Sparse Autoencoders (G-SAE), a method that conditions latent representations on labeled concepts during training. We demonstrate that reliable localization and disentanglement of target concepts within the latent space improve interpretability, detection of behavior, and control. Specifically, our evaluations on toxicity detection, writing style identification, and privacy attribute recognition show that G-SAE not only enhances monosemanticity but also enables more effective and fine-grained steering with less quality degradation. Our findings provide actionable guidelines for measuring and advancing mechanistic interpretability and control of LLMs.
♻ ☆ SWE-RL: Advancing LLM Reasoning via Reinforcement Learning on Open Software Evolution NeurIPS 2025
The recent DeepSeek-R1 release has demonstrated the immense potential of reinforcement learning (RL) in enhancing the general reasoning capabilities of large language models (LLMs). While DeepSeek-R1 and other follow-up work primarily focus on applying RL to competitive coding and math problems, this paper introduces SWE-RL, the first approach to scale RL-based LLM reasoning for real-world software engineering. Leveraging a lightweight rule-based reward (e.g., the similarity score between ground-truth and LLM-generated solutions), SWE-RL enables LLMs to autonomously recover a developer's reasoning processes and solutions by learning from extensive open-source software evolution data -- the record of a software's entire lifecycle, including its code snapshots, code changes, and events such as issues and pull requests. Trained on top of Llama 3, our resulting reasoning model, Llama3-SWE-RL-70B, achieves a 41.0% solve rate on SWE-bench Verified -- a human-verified collection of real-world GitHub issues. To our knowledge, this is the best performance reported for medium-sized (<100B) LLMs to date, even comparable to leading proprietary LLMs like GPT-4o. Surprisingly, despite performing RL solely on software evolution data, Llama3-SWE-RL has even emerged with generalized reasoning skills. For example, it shows improved results on five out-of-domain tasks, namely, function coding, library use, code reasoning, mathematics, and general language understanding, whereas a supervised-finetuning baseline even leads to performance degradation on average. Overall, SWE-RL opens up a new direction to improve the reasoning capabilities of LLMs through reinforcement learning on massive software engineering data.
comment: Accepted to NeurIPS 2025 Main Track
♻ ☆ LLM-based Automated Grading with Human-in-the-Loop
The rise of artificial intelligence (AI) technologies, particularly large language models (LLMs), has brought significant advancements to the field of education. Among various applications, automatic short answer grading (ASAG), which focuses on evaluating open-ended textual responses, has seen remarkable progress with the introduction of LLMs. These models not only enhance grading performance compared to traditional ASAG approaches but also move beyond simple comparisons with predefined "golden" answers, enabling more sophisticated grading scenarios, such as rubric-based evaluation. However, existing LLM-powered methods still face challenges in achieving human-level grading performance in rubric-based assessments due to their reliance on fully automated approaches. In this work, we explore the potential of LLMs in ASAG tasks by leveraging their interactive capabilities through a human-in-the-loop (HITL) approach. Our proposed framework, GradeHITL, utilizes the generative properties of LLMs to pose questions to human experts, incorporating their insights to refine grading rubrics dynamically. This adaptive process significantly improves grading accuracy, outperforming existing methods and bringing ASAG closer to human-level evaluation.
comment: Accepted to IEEE TALE 2025
♻ ☆ Just-in-time and distributed task representations in language models
Many of language models' impressive capabilities originate from their in-context learning: based on instructions or examples, they can infer and perform new tasks without weight updates. In this work, we investigate when representations for new tasks are formed in language models, and how these representations change over the course of context. We study two different task representations: those that are ''transferrable'' -- vector representations that can transfer task contexts to another model instance, even without the full prompt -- and simpler representations of high-level task categories. We show that transferrable task representations evolve in non-monotonic and sporadic ways, while task identity representations persist throughout the context. Specifically, transferrable task representations exhibit a two-fold locality. They successfully condense evidence when more examples are provided in the context. But this evidence accrual process exhibits strong temporal locality along the sequence dimension, coming online only at certain tokens -- despite task identity being reliably decodable throughout the context. In some cases, transferrable task representations also show semantic locality, capturing a small task ''scope'' such as an independent subtask. Language models thus represent new tasks on the fly through both an inert, sustained sensitivity to the task and an active, just-in-time representation to support inference.
♻ ☆ Bridging Human and LLM Judgments: Understanding and Narrowing the Gap NeurIPS 2025
Large language models are increasingly used as judges (LLM-as-a-judge) to evaluate model outputs at scale, but their assessments often diverge systematically from human judgments. We present Bridge, a unified statistical framework that explicitly bridges human and LLM evaluations under both absolute scoring and pairwise comparison paradigms. Bridge posits a latent human preference score for each prompt-response pair and models LLM deviations as linear transformations of covariates that capture sources of discrepancies. This offers a simple and principled framework for refining LLM ratings and characterizing systematic discrepancies between humans and LLMs. We provide an efficient fitting algorithm with asymptotic guarantees for statistical inference. Using six LLM judges and two benchmarks (BigGen Bench and Chatbot Arena), Bridge achieves higher agreement with human ratings (accuracy, calibration, and KL divergence) and exposes systematic human-LLM gaps.
comment: NeurIPS 2025
♻ ☆ Unleashing Hour-Scale Video Training for Long Video-Language Understanding NeurIPS 2025
Recent long-form video-language understanding benchmarks have driven progress in video large multimodal models (Video-LMMs). However, the scarcity of well-annotated long videos has left the training of hour-long Video-LMMs underexplored. To close this gap, we present VideoMarathon, a large-scale hour-long video instruction-following dataset. This dataset includes around 9,700 hours of long videos sourced from diverse domains, ranging from 3 to 60 minutes per video. Specifically, it contains 3.3M high-quality QA pairs, spanning six fundamental topics: temporality, spatiality, object, action, scene, and event. Compared to existing video instruction datasets, VideoMarathon significantly extends training video durations up to 1 hour, and supports 22 diverse tasks requiring both short- and long-term video comprehension. Building on VideoMarathon, we propose Hour-LLaVA, a powerful and efficient Video-LMM for hour-scale video-language modeling. It enables hour-long video training and inference at 1-FPS sampling by leveraging a memory augmentation module, which adaptively integrates question-relevant and spatiotemporally informative semantics from the cached full video context. In our experiments, Hour-LLaVA achieves the best performance on multiple representative long video-language benchmarks, demonstrating the high quality of the VideoMarathon dataset and the superiority of the Hour-LLaVA model.
comment: NeurIPS 2025, Project page: https://videomarathon.github.io/
♻ ☆ Facilitating Long Context Understanding via Supervised Chain-of-Thought Reasoning EMNLP 2025
Recent advances in Large Language Models (LLMs) have enabled them to process increasingly longer sequences, ranging from 2K to 2M tokens and even beyond. However, simply extending the input sequence length does not necessarily lead to effective long-context understanding. In this study, we integrate Chain-of-Thought (CoT) reasoning into LLMs in a supervised manner to facilitate effective long-context understanding. To achieve this, we introduce LongFinanceQA, a synthetic dataset in the financial domain designed to improve long-context reasoning. Unlike existing long-context synthetic data, LongFinanceQA includes intermediate CoT reasoning before the final conclusion, which encourages LLMs to perform explicit reasoning, improving accuracy and interpretability in long-context understanding. To generate synthetic CoT reasoning, we propose Property-based Agentic Inference (PAI), an agentic framework that simulates human-like reasoning steps, including property extraction, retrieval, and summarization. We evaluate PAI's reasoning capabilities by assessing GPT-4o-mini w/ PAI on the Loong benchmark, outperforming standard GPT-4o-mini by 20.0%. Furthermore, we fine-tune LLaMA-3.1-8B-Instruct on LongFinanceQA, achieving a 28.0% gain on Loong's financial subset.
comment: Main Conference of EMNLP 2025, Project Page: https://long-pai.github.io/
♻ ☆ From Tokens to Thoughts: How LLMs and Humans Trade Compression for Meaning
Humans organize knowledge into compact conceptual categories that balance compression with semantic richness. Large Language Models (LLMs) exhibit impressive linguistic abilities, but whether they navigate this same compression-meaning trade-off remains unclear. We apply an Information Bottleneck framework to compare human conceptual structure with embeddings from 40+ LLMs using classic categorization benchmarks. We find that LLMs broadly align with human category boundaries, yet fall short on fine-grained semantic distinctions. Unlike humans, who maintain ``inefficient'' representations that preserve contextual nuance, LLMs aggressively compress, achieving more optimal information-theoretic compression at the cost of semantic richness. Surprisingly, encoder models outperform much larger decoder models in human alignment, suggesting that understanding and generation rely on distinct representational mechanisms. Training-dynamics analysis reveals a two-phase trajectory: rapid initial concept formation followed by architectural reorganization, during which semantic processing migrates from deep to mid-network layers as the model discovers increasingly efficient, sparser encodings. These divergent strategies, where LLMs optimize for compression and humans for adaptive utility, reveal fundamental differences between artificial and natural intelligence. This highlights the need for models that preserve the conceptual ``inefficiencies'' essential for human-like understanding.
♻ ☆ Animating Language Practice: Engagement with Stylized Conversational Agents in Japanese Learning
We explore Jouzu, a Japanese language learning application that integrates large language models with anime-inspired conversational agents. Designed to address challenges learners face in practicing natural and expressive dialogue, Jouzu combines stylized character personas with expressive text-to-speech to create engaging conversational scenarios. We conducted a two-week in-the-wild deployment with 52 Japanese learners to examine how such stylized agents influence engagement and learner experience. Our findings show that participants interacted frequently and creatively, with advanced learners demonstrating greater use of expressive forms. Participants reported that the anime-inspired style made practice more enjoyable and encouraged experimenting with different registers. We discuss how stylization shapes willingness to engage, the role of affect in sustaining practice, and design opportunities for culturally grounded conversational AI in computer-assisted language learning (CALL). By framing our findings as an exploration of design and engagement, we highlight opportunities for generalization beyond Japanese contexts and contribute to international HCI scholarship.
♻ ☆ OpenGVL -- Benchmarking Visual Temporal Progress for Data Curation
Data scarcity remains one of the most limiting factors in driving progress in robotics. However, the amount of available robotics data in the wild is growing exponentially, creating new opportunities for large-scale data utilization. Reliable temporal task completion prediction could help automatically annotate and curate this data at scale. The Generative Value Learning (GVL) approach was recently proposed, leveraging the knowledge embedded in vision-language models (VLMs) to predict task progress from visual observations. Building upon GVL, we propose OpenGVL, a comprehensive benchmark for estimating task progress across diverse challenging manipulation tasks involving both robotic and human embodiments. We evaluate the capabilities of publicly available open-source foundation models, showing that open-source model families significantly underperform closed-source counterparts, achieving only approximately $70\%$ of their performance on temporal progress prediction tasks. Furthermore, we demonstrate how OpenGVL can serve as a practical tool for automated data curation and filtering, enabling efficient quality assessment of large-scale robotics datasets. We release the benchmark along with the complete codebase at \href{github.com/budzianowski/opengvl}{OpenGVL}.
comment: Workshop on Making Sense of Data in Robotics: Composition, Curation, and Interpretability at Scale at CoRL 2025
♻ ☆ Reasoning Up the Instruction Ladder for Controllable Language Models
As large language model (LLM) based systems take on high-stakes roles in real-world decision-making, they must reconcile competing instructions from multiple sources (e.g., model developers, users, and tools) within a single prompt context. Thus, enforcing an instruction hierarchy (IH) in LLMs, where higher-level directives override lower-priority requests, is critical for the reliability and controllability of LLMs. In this work, we reframe instruction hierarchy resolution as a reasoning task. Specifically, the model must first "think" about the relationship between a given user prompt and higher-priority (system) instructions before generating a response. To enable this capability via training, we construct VerIH, an instruction hierarchy dataset of constraint-following tasks with verifiable answers. This dataset comprises ~7K aligned and conflicting system-user instructions. We show that lightweight reinforcement learning with VerIH effectively transfers general reasoning capabilities of models to instruction prioritization. Our finetuned models achieve consistent improvements on instruction following and instruction hierarchy benchmarks, achieving roughly a 20% improvement on the IHEval conflict setup. This reasoning ability also generalizes to safety-critical settings beyond the training distribution. By treating safety issues as resolving conflicts between adversarial user inputs and predefined higher-priority policies, our trained model enhances robustness against jailbreak and prompt injection attacks, providing up to a 20% reduction in attack success rate (ASR). These results demonstrate that reasoning over instruction hierarchies provides a practical path to reliable LLMs, where updates to system prompts yield controllable and robust changes in model behavior.
♻ ☆ MAS-ZERO: Designing Multi-Agent Systems with Zero Supervision NeurIPS
Multi-agent systems (MAS) leveraging the impressive capabilities of Large Language Models (LLMs) hold significant potential for tackling complex tasks. However, most current MAS depend on manually designed agent roles and communication protocols. These manual designs often fail to align with the underlying LLMs' strengths and struggle to adapt to novel tasks. Recent automatic MAS approaches attempt to mitigate these limitations but typically necessitate a validation set for tuning and yield static MAS designs lacking adaptability during inference, while also removing the flexibility to reduce to simpler systems. We introduce MAS-ZERO, the first self-evolved, inference-time framework for automatic MAS design. MAS-ZERO employs meta-level design to iteratively design, critique, and refine MAS configurations tailored to each problem instance, without requiring a validation set. Critically, it enables dynamic problem decomposition and agent composition through meta-feedback on solvability and completeness, and reduction to simpler systems when appropriate. Experiments across reasoning (math and graduate-level QA), coding, and agentic (search-based) benchmarks, using both closed-source and open-source LLM backbones of varying sizes, demonstrate that MAS-ZERO outperforms strong manual and automatic MAS baselines. It achieves substantial average accuracy improvements of up to 16.69% on reasoning, 16.66% on coding, and 5.45% on agentic tasks, while maintaining cost efficiency.
comment: SEA@NeurIPS (Oral) 2025
♻ ☆ Evolution and compression in LLMs: On the emergence of human-aligned categorization NeurIPS 2025
Converging evidence suggests that human systems of semantic categories achieve near-optimal compression via the Information Bottleneck (IB) complexity-accuracy tradeoff. Large language models (LLMs) are not trained for this objective, which raises the question: are LLMs capable of evolving efficient human-aligned semantic systems? To address this question, we focus on color categorization -- a key testbed of cognitive theories of categorization with uniquely rich human data -- and replicate with LLMs two influential human studies. First, we conduct an English color-naming study, showing that LLMs vary widely in their complexity and English-alignment, with larger instruction-tuned models achieving better alignment and IB-efficiency. Second, to test whether these LLMs simply mimic patterns in their training data or actually exhibit a human-like inductive bias toward IB-efficiency, we simulate cultural evolution of pseudo color-naming systems in LLMs via a method we refer to as Iterated in-Context Language Learning (IICLL). We find that akin to humans, LLMs iteratively restructure initially random systems towards greater IB-efficiency. However, only a model with strongest in-context capabilities (Gemini 2.0) is able to recapitulate the wide range of near-optimal IB-tradeoffs observed in humans, while other state-of-the-art models converge to low-complexity solutions. These findings demonstrate how human-aligned semantic categories can emerge in LLMs via the same fundamental principle that underlies semantic efficiency in humans.
comment: Accepted at CogInterp: Interpreting Cognition in Deep Learning Models Workshop at NeurIPS 2025
Computer Vision and Pattern Recognition 100
☆ EfficientFlow: Efficient Equivariant Flow Policy Learning for Embodied AI AAAI 2026
Generative modeling has recently shown remarkable promise for visuomotor policy learning, enabling flexible and expressive control across diverse embodied AI tasks. However, existing generative policies often struggle with data inefficiency, requiring large-scale demonstrations, and sampling inefficiency, incurring slow action generation during inference. We introduce EfficientFlow, a unified framework for efficient embodied AI with flow-based policy learning. To enhance data efficiency, we bring equivariance into flow matching. We theoretically prove that when using an isotropic Gaussian prior and an equivariant velocity prediction network, the resulting action distribution remains equivariant, leading to improved generalization and substantially reduced data demands. To accelerate sampling, we propose a novel acceleration regularization strategy. As direct computation of acceleration is intractable for marginal flow trajectories, we derive a novel surrogate loss that enables stable and scalable training using only conditional trajectories. Across a wide range of robotic manipulation benchmarks, the proposed algorithm achieves competitive or superior performance under limited data while offering dramatically faster inference. These results highlight EfficientFlow as a powerful and efficient paradigm for high-performance embodied AI.
comment: Accepted by AAAI 2026. Project Page: https://efficientflow.github.io/
☆ Data-Centric Visual Development for Self-Driving Labs
Self-driving laboratories offer a promising path toward reducing the labor-intensive, time-consuming, and often irreproducible workflows in the biological sciences. Yet their stringent precision requirements demand highly robust models whose training relies on large amounts of annotated data. However, this kind of data is difficult to obtain in routine practice, especially negative samples. In this work, we focus on pipetting, the most critical and precision sensitive action in SDLs. To overcome the scarcity of training data, we build a hybrid pipeline that fuses real and virtual data generation. The real track adopts a human-in-the-loop scheme that couples automated acquisition with selective human verification to maximize accuracy with minimal effort. The virtual track augments the real data using reference-conditioned, prompt-guided image generation, which is further screened and validated for reliability. Together, these two tracks yield a class-balanced dataset that enables robust bubble detection training. On a held-out real test set, a model trained entirely on automatically acquired real images reaches 99.6% accuracy, and mixing real and generated data during training sustains 99.4% accuracy while reducing collection and review load. Our approach offers a scalable and cost-effective strategy for supplying visual feedback data to SDL workflows and provides a practical solution to data scarcity in rare event detection and broader vision tasks.
comment: 11 pages, 4 figures
☆ Visual Sync: Multi-Camera Synchronization via Cross-View Object Motion NeurIPS 2025
Today, people can easily record memorable moments, ranging from concerts, sports events, lectures, family gatherings, and birthday parties with multiple consumer cameras. However, synchronizing these cross-camera streams remains challenging. Existing methods assume controlled settings, specific targets, manual correction, or costly hardware. We present VisualSync, an optimization framework based on multi-view dynamics that aligns unposed, unsynchronized videos at millisecond accuracy. Our key insight is that any moving 3D point, when co-visible in two cameras, obeys epipolar constraints once properly synchronized. To exploit this, VisualSync leverages off-the-shelf 3D reconstruction, feature matching, and dense tracking to extract tracklets, relative poses, and cross-view correspondences. It then jointly minimizes the epipolar error to estimate each camera's time offset. Experiments on four diverse, challenging datasets show that VisualSync outperforms baseline methods, achieving an median synchronization error below 50 ms.
comment: Accepted to NeurIPS 2025. Project page: https://stevenlsw.github.io/visualsync/
☆ Objects in Generated Videos Are Slower Than They Appear: Models Suffer Sub-Earth Gravity and Don't Know Galileo's Principle...for now
Video generators are increasingly evaluated as potential world models, which requires them to encode and understand physical laws. We investigate their representation of a fundamental law: gravity. Out-of-the-box video generators consistently generate objects falling at an effectively slower acceleration. However, these physical tests are often confounded by ambiguous metric scale. We first investigate if observed physical errors are artifacts of these ambiguities (e.g., incorrect frame rate assumptions). We find that even temporal rescaling cannot correct the high-variance gravity artifacts. To rigorously isolate the underlying physical representation from these confounds, we introduce a unit-free, two-object protocol that tests the timing ratio $t_1^2/t_2^2 = h_1/h_2$, a relationship independent of $g$, focal length, and scale. This relative test reveals violations of Galileo's equivalence principle. We then demonstrate that this physical gap can be partially mitigated with targeted specialization. A lightweight low-rank adaptor fine-tuned on only 100 single-ball clips raises $g_{\mathrm{eff}}$ from $1.81\,\mathrm{m/s^2}$ to $6.43\,\mathrm{m/s^2}$ (reaching $65\%$ of terrestrial gravity). This specialist adaptor also generalizes zero-shot to two-ball drops and inclined planes, offering initial evidence that specific physical laws can be corrected with minimal data.
comment: https://gravity-eval.github.io/
☆ Generative Video Motion Editing with 3D Point Tracks
Camera and object motions are central to a video's narrative. However, precisely editing these captured motions remains a significant challenge, especially under complex object movements. Current motion-controlled image-to-video (I2V) approaches often lack full-scene context for consistent video editing, while video-to-video (V2V) methods provide viewpoint changes or basic object translation, but offer limited control over fine-grained object motion. We present a track-conditioned V2V framework that enables joint editing of camera and object motion. We achieve this by conditioning a video generation model on a source video and paired 3D point tracks representing source and target motions. These 3D tracks establish sparse correspondences that transfer rich context from the source video to new motions while preserving spatiotemporal coherence. Crucially, compared to 2D tracks, 3D tracks provide explicit depth cues, allowing the model to resolve depth order and handle occlusions for precise motion editing. Trained in two stages on synthetic and real data, our model supports diverse motion edits, including joint camera/object manipulation, motion transfer, and non-rigid deformation, unlocking new creative potential in video editing.
comment: Project page: https://edit-by-track.github.io
☆ TUNA: Taming Unified Visual Representations for Native Unified Multimodal Models
Unified multimodal models (UMMs) aim to jointly perform multimodal understanding and generation within a single framework. We present TUNA, a native UMM that builds a unified continuous visual representation by cascading a VAE encoder with a representation encoder. This unified representation space allows end-to-end processing of images and videos for both understanding and generation tasks. Compared to prior UMMs with decoupled representations, TUNA's unified visual space avoids representation format mismatches introduced by separate encoders, outperforming decoupled alternatives in both understanding and generation. Moreover, we observe that stronger pretrained representation encoders consistently yield better performance across all multimodal tasks, highlighting the importance of the representation encoder. Finally, in this unified setting, jointly training on both understanding and generation data allows the two tasks to benefit from each other rather than interfere. Our extensive experiments on multimodal understanding and generation benchmarks show that TUNA achieves state-of-the-art results in image and video understanding, image and video generation, and image editing, demonstrating the effectiveness and scalability of its unified representation design.
comment: Project page: https://tuna-ai.org/
☆ Improved Mean Flows: On the Challenges of Fastforward Generative Models
MeanFlow (MF) has recently been established as a framework for one-step generative modeling. However, its ``fastforward'' nature introduces key challenges in both the training objective and the guidance mechanism. First, the original MF's training target depends not only on the underlying ground-truth fields but also on the network itself. To address this issue, we recast the objective as a loss on the instantaneous velocity $v$, re-parameterized by a network that predicts the average velocity $u$. Our reformulation yields a more standard regression problem and improves the training stability. Second, the original MF fixes the classifier-free guidance scale during training, which sacrifices flexibility. We tackle this issue by formulating guidance as explicit conditioning variables, thereby retaining flexibility at test time. The diverse conditions are processed through in-context conditioning, which reduces model size and benefits performance. Overall, our $\textbf{improved MeanFlow}$ ($\textbf{iMF}$) method, trained entirely from scratch, achieves $\textbf{1.72}$ FID with a single function evaluation (1-NFE) on ImageNet 256$\times$256. iMF substantially outperforms prior methods of this kind and closes the gap with multi-step methods while using no distillation. We hope our work will further advance fastforward generative modeling as a stand-alone paradigm.
comment: Technical report
☆ AirSim360: A Panoramic Simulation Platform within Drone View
The field of 360-degree omnidirectional understanding has been receiving increasing attention for advancing spatial intelligence. However, the lack of large-scale and diverse data remains a major limitation. In this work, we propose AirSim360, a simulation platform for omnidirectional data from aerial viewpoints, enabling wide-ranging scene sampling with drones. Specifically, AirSim360 focuses on three key aspects: a render-aligned data and labeling paradigm for pixel-level geometric, semantic, and entity-level understanding; an interactive pedestrian-aware system for modeling human behavior; and an automated trajectory generation paradigm to support navigation tasks. Furthermore, we collect more than 60K panoramic samples and conduct extensive experiments across various tasks to demonstrate the effectiveness of our simulator. Unlike existing simulators, our work is the first to systematically model the 4D real world under an omnidirectional setting. The entire platform, including the toolkit, plugins, and collected datasets, will be made publicly available at https://insta360-research-team.github.io/AirSim360-website.
comment: Project Website: https://insta360-research-team.github.io/AirSim360-website/
☆ MV-TAP: Tracking Any Point in Multi-View Videos
Multi-view camera systems enable rich observations of complex real-world scenes, and understanding dynamic objects in multi-view settings has become central to various applications. In this work, we present MV-TAP, a novel point tracker that tracks points across multi-view videos of dynamic scenes by leveraging cross-view information. MV-TAP utilizes camera geometry and a cross-view attention mechanism to aggregate spatio-temporal information across views, enabling more complete and reliable trajectory estimation in multi-view videos. To support this task, we construct a large-scale synthetic training dataset and real-world evaluation sets tailored for multi-view tracking. Extensive experiments demonstrate that MV-TAP outperforms existing point-tracking methods on challenging benchmarks, establishing an effective baseline for advancing research in multi-view point tracking.
comment: Project Page: https://cvlab-kaist.github.io/MV-TAP/
☆ Learning Visual Affordance from Audio
We introduce Audio-Visual Affordance Grounding (AV-AG), a new task that segments object interaction regions from action sounds. Unlike existing approaches that rely on textual instructions or demonstration videos, which often limited by ambiguity or occlusion, audio provides real-time, semantically rich, and visually independent cues for affordance grounding, enabling more intuitive understanding of interaction regions. To support this task, we construct the first AV-AG dataset, comprising a large collection of action sounds, object images, and pixel-level affordance annotations. The dataset also includes an unseen subset to evaluate zero-shot generalization. Furthermore, we propose AVAGFormer, a model equipped with a semantic-conditioned cross-modal mixer and a dual-head decoder that effectively fuses audio and visual signals for mask prediction. Experiments show that AVAGFormer achieves state-of-the-art performance on AV-AG, surpassing baselines from related tasks. Comprehensive analyses highlight the distinctions between AV-AG and AVS, the benefits of end-to-end modeling, and the contribution of each component. Code and dataset have been released on https://jscslld.github.io/AVAGFormer/.
comment: 15 pages, 10 figures
☆ RoaD: Rollouts as Demonstrations for Closed-Loop Supervised Fine-Tuning of Autonomous Driving Policies
Autonomous driving policies are typically trained via open-loop behavior cloning of human demonstrations. However, such policies suffer from covariate shift when deployed in closed loop, leading to compounding errors. We introduce Rollouts as Demonstrations (RoaD), a simple and efficient method to mitigate covariate shift by leveraging the policy's own closed-loop rollouts as additional training data. During rollout generation, RoaD incorporates expert guidance to bias trajectories toward high-quality behavior, producing informative yet realistic demonstrations for fine-tuning. This approach enables robust closed-loop adaptation with orders of magnitude less data than reinforcement learning, and avoids restrictive assumptions of prior closed-loop supervised fine-tuning (CL-SFT) methods, allowing broader applications domains including end-to-end driving. We demonstrate the effectiveness of RoaD on WOSAC, a large-scale traffic simulation benchmark, where it performs similar or better than the prior CL-SFT method; and in AlpaSim, a high-fidelity neural reconstruction-based simulator for end-to-end driving, where it improves driving score by 41\% and reduces collisions by 54\%.
comment: Preprint
☆ PAI-Bench: A Comprehensive Benchmark For Physical AI
Physical AI aims to develop models that can perceive and predict real-world dynamics; yet, the extent to which current multi-modal large language models and video generative models support these abilities is insufficiently understood. We introduce Physical AI Bench (PAI-Bench), a unified and comprehensive benchmark that evaluates perception and prediction capabilities across video generation, conditional video generation, and video understanding, comprising 2,808 real-world cases with task-aligned metrics designed to capture physical plausibility and domain-specific reasoning. Our study provides a systematic assessment of recent models and shows that video generative models, despite strong visual fidelity, often struggle to maintain physically coherent dynamics, while multi-modal large language models exhibit limited performance in forecasting and causal interpretation. These observations suggest that current systems are still at an early stage in handling the perceptual and predictive demands of Physical AI. In summary, PAI-Bench establishes a realistic foundation for evaluating Physical AI and highlights key gaps that future systems must address.
☆ Artemis: Structured Visual Reasoning for Perception Policy Learning
Recent reinforcement-learning frameworks for visual perception policy have begun to incorporate intermediate reasoning chains expressed in natural language. Empirical observations indicate that such purely linguistic intermediate reasoning often reduces performance on perception tasks. We argue that the core issue lies not in reasoning per se but in the form of reasoning: while these chains perform semantic reasoning in an unstructured linguistic space, visual perception requires reasoning in a spatial and object-centric space. In response, we introduce Artemis, a perception-policy learning framework that performs structured proposal-based reasoning, where each intermediate step is represented as a (label, bounding-box) pair capturing a verifiable visual state. This design enables explicit tracking of intermediate states, direct supervision for proposal quality, and avoids ambiguity introduced by language-based reasoning. Artemis is built on Qwen2.5-VL-3B, achieves strong performance on grounding and detection task and exhibits substantial generalization to counting and geometric-perception tasks. The consistent improvements across these diverse settings confirm that aligning reasoning with spatial representations enhances perception-policy learning. Owing to its strengthened visual reasoning, Artemis also achieves competitive performance on general MLLM benchmarks, illustrating that spatially grounded reasoning provides a principled route toward scalable and general perception policies.
☆ Chain-of-Ground: Improving GUI Grounding via Iterative Reasoning and Reference Feedback
GUI grounding aims to align natural language instructions with precise regions in complex user interfaces. Advanced multimodal large language models show strong ability in visual GUI grounding but still struggle with small or visually similar targets and ambiguity in real world layouts. These limitations arise from limited grounding capacity and from underuse of existing reasoning potential. We present Chain of Ground CoG a training free multi step grounding framework that uses multimodal large language models for iterative visual reasoning and refinement. Instead of direct prediction the model progressively reflects and adjusts its hypotheses leading to more accurate and interpretable localization. Our approach achieves 68.4 accuracy on the ScreenSpot Pro benchmark an improvement of 4.8 points. To measure real world generalization we introduce TPanel UI a dataset of 420 labeled industrial control panels with visual distortions such as blur and masking. On TPanel UI Chain of Ground improves over the strong baseline Qwen3 VL 235B by 6.9 points showing the effectiveness of multi step training free grounding across real world and digital interfaces. These results highlight a direction for unlocking grounding potential through structured iterative refinement instead of additional training.
☆ SGDiff: Scene Graph Guided Diffusion Model for Image Collaborative SegCaptioning AAAI-2025
Controllable image semantic understanding tasks, such as captioning or segmentation, necessitate users to input a prompt (e.g., text or bounding boxes) to predict a unique outcome, presenting challenges such as high-cost prompt input or limited information output. This paper introduces a new task ``Image Collaborative Segmentation and Captioning'' (SegCaptioning), which aims to translate a straightforward prompt, like a bounding box around an object, into diverse semantic interpretations represented by (caption, masks) pairs, allowing flexible result selection by users. This task poses significant challenges, including accurately capturing a user's intention from a minimal prompt while simultaneously predicting multiple semantically aligned caption words and masks. Technically, we propose a novel Scene Graph Guided Diffusion Model that leverages structured scene graph features for correlated mask-caption prediction. Initially, we introduce a Prompt-Centric Scene Graph Adaptor to map a user's prompt to a scene graph, effectively capturing his intention. Subsequently, we employ a diffusion process incorporating a Scene Graph Guided Bimodal Transformer to predict correlated caption-mask pairs by uncovering intricate correlations between them. To ensure accurate alignment, we design a Multi-Entities Contrastive Learning loss to explicitly align visual and textual entities by considering inter-modal similarity, resulting in well-aligned caption-mask pairs. Extensive experiments conducted on two datasets demonstrate that SGDiff achieves superior performance in SegCaptioning, yielding promising results for both captioning and segmentation tasks with minimal prompt input.
comment: Accept by AAAI-2025
☆ SpriteHand: Real-Time Versatile Hand-Object Interaction with Autoregressive Video Generation
Modeling and synthesizing complex hand-object interactions remains a significant challenge, even for state-of-the-art physics engines. Conventional simulation-based approaches rely on explicitly defined rigid object models and pre-scripted hand gestures, making them inadequate for capturing dynamic interactions with non-rigid or articulated entities such as deformable fabrics, elastic materials, hinge-based structures, furry surfaces, or even living creatures. In this paper, we present SpriteHand, an autoregressive video generation framework for real-time synthesis of versatile hand-object interaction videos across a wide range of object types and motion patterns. SpriteHand takes as input a static object image and a video stream in which the hands are imagined to interact with the virtual object embedded in a real-world scene, and generates corresponding hand-object interaction effects in real time. Our model employs a causal inference architecture for autoregressive generation and leverages a hybrid post-training approach to enhance visual realism and temporal coherence. Our 1.3B model supports real-time streaming generation at around 18 FPS and 640x368 resolution, with an approximate 150 ms latency on a single NVIDIA RTX 5090 GPU, and more than a minute of continuous output. Experiments demonstrate superior visual quality, physical plausibility, and interaction fidelity compared to both generative and engine-based baselines.
☆ GrndCtrl: Grounding World Models via Self-Supervised Reward Alignment
Recent advances in video world modeling have enabled large-scale generative models to simulate embodied environments with high visual fidelity, providing strong priors for prediction, planning, and control. Yet, despite their realism, these models often lack geometric grounding, limiting their use in navigation tasks that require spatial coherence and long-horizon stability. We introduce Reinforcement Learning with World Grounding (RLWG), a self-supervised post-training framework that aligns pretrained world models with a physically verifiable structure through geometric and perceptual rewards. Analogous to reinforcement learning from verifiable feedback (RLVR) in language models, RLWG can use multiple rewards that measure pose cycle-consistency, depth reprojection, and temporal coherence. We instantiate this framework with GrndCtrl, a reward-aligned adaptation method based on Group Relative Policy Optimization (GRPO), yielding world models that maintain stable trajectories, consistent geometry, and reliable rollouts for embodied navigation. Like post-training alignment in large language models, GrndCtrl leverages verifiable rewards to bridge generative pretraining and grounded behavior, achieving superior spatial coherence and navigation stability over supervised fine-tuning in outdoor environments.
☆ Script: Graph-Structured and Query-Conditioned Semantic Token Pruning for Multimodal Large Language Models
The rapid growth of visual tokens in multimodal large language models (MLLMs) leads to excessive memory consumption and inference latency, especially when handling high-resolution images and videos. Token pruning is a technique used to mitigate this issue by removing redundancy, but existing methods often ignore relevance to the user query or suffer from the limitations of attention mechanisms, reducing their adaptability and effectiveness. To address these challenges, we propose Script, a plug-and-play pruning method that requires no retraining and generalizes across diverse MLLMs. Script comprises two modules: a graph-structured pruning module that removes visually redundant tokens, and a query-conditioned semantic pruning module that preserves query-relevant visual information. Together, they enhance performance on multimodal tasks. Experiments on fourteen benchmarks across image and video understanding tasks show that Script consistently achieves higher model efficiency and predictive accuracy compared to existing pruning methods. On LLaVA-NeXT-7B, it achieves up to 6.8x prefill speedup and 10x FLOP reduction, while retaining 96.88% of the original performance.
comment: Published in Transactions on Machine Learning Research, Project in https://01yzzyu.github.io/script.github.io/
☆ Guardian: Detecting Robotic Planning and Execution Errors with Vision-Language Models
Robust robotic manipulation requires reliable failure detection and recovery. Although current Vision-Language Models (VLMs) show promise, their accuracy and generalization are limited by the scarcity of failure data. To address this data gap, we propose an automatic robot failure synthesis approach that procedurally perturbs successful trajectories to generate diverse planning and execution failures. This method produces not only binary classification labels but also fine-grained failure categories and step-by-step reasoning traces in both simulation and the real world. With it, we construct three new failure detection benchmarks: RLBench-Fail, BridgeDataV2-Fail, and UR5-Fail, substantially expanding the diversity and scale of existing failure datasets. We then train Guardian, a VLM with multi-view images for detailed failure reasoning and detection. Guardian achieves state-of-the-art performance on both existing and newly introduced benchmarks. It also effectively improves task success rates when integrated into a state-of-the-art manipulation system in simulation and real robots, demonstrating the impact of our generated failure data.
comment: 9 pages, 9 figures, 6 tables
☆ Physical ID-Transfer Attacks against Multi-Object Tracking via Adversarial Trajectory
Multi-Object Tracking (MOT) is a critical task in computer vision, with applications ranging from surveillance systems to autonomous driving. However, threats to MOT algorithms have yet been widely studied. In particular, incorrect association between the tracked objects and their assigned IDs can lead to severe consequences, such as wrong trajectory predictions. Previous attacks against MOT either focused on hijacking the trackers of individual objects, or manipulating the tracker IDs in MOT by attacking the integrated object detection (OD) module in the digital domain, which are model-specific, non-robust, and only able to affect specific samples in offline datasets. In this paper, we present AdvTraj, the first online and physical ID-manipulation attack against tracking-by-detection MOT, in which an attacker uses adversarial trajectories to transfer its ID to a targeted object to confuse the tracking system, without attacking OD. Our simulation results in CARLA show that AdvTraj can fool ID assignments with 100% success rate in various scenarios for white-box attacks against SORT, which also have high attack transferability (up to 93% attack success rate) against state-of-the-art (SOTA) MOT algorithms due to their common design principles. We characterize the patterns of trajectories generated by AdvTraj and propose two universal adversarial maneuvers that can be performed by a human walker/driver in daily scenarios. Our work reveals under-explored weaknesses in the object association phase of SOTA MOT systems, and provides insights into enhancing the robustness of such systems.
comment: Accepted to Annual Computer Security Applications Conference (ACSAC) 2024
☆ Med-VCD: Mitigating Hallucination for Medical Large Vision Language Models through Visual Contrastive Decoding
Large vision-language models (LVLMs) are now central to healthcare applications such as medical visual question answering and imaging report generation. Yet, these models remain vulnerable to hallucination outputs that appear plausible but are in fact incorrect. In the natural image domain, several decoding strategies have been proposed to mitigate hallucinations by reinforcing visual evidence, but most rely on secondary decoding or rollback procedures that substantially slow inference. Moreover, existing solutions are often domain-specific and may introduce misalignment between modalities or between generated and ground-truth content. We introduce Med-VCD, a sparse visual-contrastive decoding method that mitigates hallucinations in medical LVLMs without the time overhead of secondary decoding. Med-VCD incorporates a novel token-sparsification strategy that selects visually informed tokens on the fly, trimming redundancy while retaining critical visual context and thus balancing efficiency with reliability. Evaluations on eight medical datasets, spanning ophthalmology, radiology, and pathology tasks in visual question answering, report generation, and dedicated hallucination benchmarks, show that Med-VCD raises factual accuracy by an average of 13\% and improves hallucination accuracy by 6\% relative to baseline medical LVLMs.
☆ Disentangling Progress in Medical Image Registration: Beyond Trend-Driven Architectures towards Domain-Specific Strategies
Medical image registration drives quantitative analysis across organs, modalities, and patient populations. Recent deep learning methods often combine low-level "trend-driven" computational blocks from computer vision, such as large-kernel CNNs, Transformers, and state-space models, with high-level registration-specific designs like motion pyramids, correlation layers, and iterative refinement. Yet, their relative contributions remain unclear and entangled. This raises a central question: should future advances in registration focus on importing generic architectural trends or on refining domain-specific design principles? Through a modular framework spanning brain, lung, cardiac, and abdominal registration, we systematically disentangle the influence of these two paradigms. Our evaluation reveals that low-level "trend-driven" computational blocks offer only marginal or inconsistent gains, while high-level registration-specific designs consistently deliver more accurate, smoother, and more robust deformations. These domain priors significantly elevate the performance of a standard U-Net baseline, far more than variants incorporating "trend-driven" blocks, achieving an average relative improvement of $\sim3\%$. All models and experiments are released within a transparent, modular benchmark that enables plug-and-play comparison for new architectures and registration tasks (https://github.com/BailiangJ/rethink-reg). This dynamic and extensible platform establishes a common ground for reproducible and fair evaluation, inviting the community to isolate genuine methodological contributions from domain priors. Our findings advocate a shift in research emphasis: from following architectural trends to embracing domain-specific design principles as the true drivers of progress in learning-based medical image registration.
comment: Submitted to Medical Image Analysis. Journal Extension of arXiv:2407.19274
☆ SARL: Spatially-Aware Self-Supervised Representation Learning for Visuo-Tactile Perception
Contact-rich robotic manipulation requires representations that encode local geometry. Vision provides global context but lacks direct measurements of properties such as texture and hardness, whereas touch supplies these cues. Modern visuo-tactile sensors capture both modalities in a single fused image, yielding intrinsically aligned inputs that are well suited to manipulation tasks requiring visual and tactile information. Most self-supervised learning (SSL) frameworks, however, compress feature maps into a global vector, discarding spatial structure and misaligning with the needs of manipulation. To address this, we propose SARL, a spatially-aware SSL framework that augments the Bootstrap Your Own Latent (BYOL) architecture with three map-level objectives, including Saliency Alignment (SAL), Patch-Prototype Distribution Alignment (PPDA), and Region Affinity Matching (RAM), to keep attentional focus, part composition, and geometric relations consistent across views. These losses act on intermediate feature maps, complementing the global objective. SARL consistently outperforms nine SSL baselines across six downstream tasks with fused visual-tactile data. On the geometry-sensitive edge-pose regression task, SARL achieves a Mean Absolute Error (MAE) of 0.3955, a 30% relative improvement over the next-best SSL method (0.5682 MAE) and approaching the supervised upper bound. These findings indicate that, for fused visual-tactile data, the most effective signal is structured spatial equivariance, in which features vary predictably with object geometry, which enables more capable robotic perception.
☆ StyleYourSmile: Cross-Domain Face Retargeting Without Paired Multi-Style Data
Cross-domain face retargeting requires disentangled control over identity, expressions, and domain-specific stylistic attributes. Existing methods, typically trained on real-world faces, either fail to generalize across domains, need test-time optimizations, or require fine-tuning with carefully curated multi-style datasets to achieve domain-invariant identity representations. In this work, we introduce \textit{StyleYourSmile}, a novel one-shot cross-domain face retargeting method that eliminates the need for curated multi-style paired data. We propose an efficient data augmentation strategy alongside a dual-encoder framework, for extracting domain-invariant identity cues and capturing domain-specific stylistic variations. Leveraging these disentangled control signals, we condition a diffusion model to retarget facial expressions across domains. Extensive experiments demonstrate that \textit{StyleYourSmile} achieves superior identity preservation and retargeting fidelity across a wide range of visual domains.
comment: 15 pages, 14 figures
☆ KM-ViPE: Online Tightly Coupled Vision-Language-Geometry Fusion for Open-Vocabulary Semantic SLAM
We present KM-ViPE (Knowledge Mapping Video Pose Engine), a real-time open-vocabulary SLAM framework for uncalibrated monocular cameras in dynamic environments. Unlike systems requiring depth sensors and offline calibration, KM-ViPE operates directly on raw RGB streams, making it ideal for ego-centric applications and harvesting internet-scale video data for training. KM-ViPE tightly couples DINO visual features with geometric constraints through a high-level features based adaptive robust kernel that handles both moving objects and movable static objects (e.g., moving furniture in ego-centric views). The system performs simultaneous online localization and open-vocabulary semantic mapping by fusing geometric and deep visual features aligned with language embeddings. Our results are competitive with state-of-the-art approaches, while existing solutions either operate offline, need depth data and/or odometry estimation, or lack dynamic scene robustness. KM-ViPE benefits from internet-scale training and uniquely combines online operation, uncalibrated monocular input, and robust handling of dynamic scenes, which makes it a good fit for autonomous robotics and AR/VR applications and advances practical spatial intelligence capabilities for embodied AI.
☆ TransientTrack: Advanced Multi-Object Tracking and Classification of Cancer Cells with Transient Fluorescent Signals
Tracking cells in time-lapse videos is an essential technique for monitoring cell population dynamics at a single-cell level. Current methods for cell tracking are developed on videos with mostly single, constant signals and do not detect pivotal events such as cell death. Here, we present TransientTrack, a deep learning-based framework for cell tracking in multi-channel microscopy video data with transient fluorescent signals that fluctuate over time following processes such as the circadian rhythm of cells. By identifying key cellular events - mitosis (cell division) and apoptosis (cell death) our method allows us to build complete trajectories, including cell lineage information. TransientTrack is lightweight and performs matching on cell detection embeddings directly, without the need for quantification of tracking-specific cell features. Furthermore, our approach integrates Transformer Networks, multi-stage matching using all detection boxes, and the interpolation of missing tracklets with the Kalman Filter. This unified framework achieves strong performance across diverse conditions, effectively tracking cells and capturing cell division and death. We demonstrate the use of TransientTrack in an analysis of the efficacy of a chemotherapeutic drug at a single-cell level. The proposed framework could further advance quantitative studies of cancer cell dynamics, enabling detailed characterization of treatment response and resistance mechanisms. The code is available at https://github.com/bozeklab/TransientTrack.
comment: 13 pages, 7 figures, 2 tables. This work has been submitted to IEEE Transactions on Medical Imaging
☆ COACH: Collaborative Agents for Contextual Highlighting - A Multi-Agent Framework for Sports Video Analysis AAAI 2026
Intelligent sports video analysis demands a comprehensive understanding of temporal context, from micro-level actions to macro-level game strategies. Existing end-to-end models often struggle with this temporal hierarchy, offering solutions that lack generalization, incur high development costs for new tasks, and suffer from poor interpretability. To overcome these limitations, we propose a reconfigurable Multi-Agent System (MAS) as a foundational framework for sports video understanding. In our system, each agent functions as a distinct "cognitive tool" specializing in a specific aspect of analysis. The system's architecture is not confined to a single temporal dimension or task. By leveraging iterative invocation and flexible composition of these agents, our framework can construct adaptive pipelines for both short-term analytic reasoning (e.g., Rally QA) and long-term generative summarization (e.g., match summaries). We demonstrate the adaptability of this framework using two representative tasks in badminton analysis, showcasing its ability to bridge fine-grained event detection and global semantic organization. This work presents a paradigm shift towards a flexible, scalable, and interpretable system for robust, cross-task sports video intelligence.The project homepage is available at https://aiden1020.github.io/COACH-project-page
comment: Accepted by AAAI 2026 Workshop LaMAS
☆ Register Any Point: Scaling 3D Point Cloud Registration by Flow Matching
Point cloud registration aligns multiple unposed point clouds into a common frame, and is a core step for 3D reconstruction and robot localization. In this work, we cast registration as conditional generation: a learned continuous, point-wise velocity field transports noisy points to a registered scene, from which the pose of each view is recovered. Unlike previous methods that conduct correspondence matching to estimate the transformation between a pair of point clouds and then optimize the pairwise transformations to realize multi-view registration, our model directly generates the registered point cloud. With a lightweight local feature extractor and test-time rigidity enforcement, our approach achieves state-of-the-art results on pairwise and multi-view registration benchmarks, particularly with low overlap, and generalizes across scales and sensor modalities. It further supports downstream tasks including relocalization, multi-robot SLAM, and multi-session map merging. Source code available at: https://github.com/PRBonn/RAP.
comment: 22 pages
☆ PhyDetEx: Detecting and Explaining the Physical Plausibility of T2V Models
Driven by the growing capacity and training scale, Text-to-Video (T2V) generation models have recently achieved substantial progress in video quality, length, and instruction-following capability. However, whether these models can understand physics and generate physically plausible videos remains a question. While Vision-Language Models (VLMs) have been widely used as general-purpose evaluators in various applications, they struggle to identify the physically impossible content from generated videos. To investigate this issue, we construct a \textbf{PID} (\textbf{P}hysical \textbf{I}mplausibility \textbf{D}etection) dataset, which consists of a \textit{test split} of 500 manually annotated videos and a \textit{train split} of 2,588 paired videos, where each implausible video is generated by carefully rewriting the caption of its corresponding real-world video to induce T2V models producing physically implausible content. With the constructed dataset, we introduce a lightweight fine-tuning approach, enabling VLMs to not only detect physically implausible events but also generate textual explanations on the violated physical principles. Taking the fine-tuned VLM as a physical plausibility detector and explainer, namely \textbf{PhyDetEx}, we benchmark a series of state-of-the-art T2V models to assess their adherence to physical laws. Our findings show that although recent T2V models have made notable progress toward generating physically plausible content, understanding and adhering to physical laws remains a challenging issue, especially for open-source models. Our dataset, training code, and checkpoints are available at \href{https://github.com/Zeqing-Wang/PhyDetEx}{https://github.com/Zeqing-Wang/PhyDetEx}.
comment: 17 pages, 8 figures
☆ OpenREAD: Reinforced Open-Ended Reasoing for End-to-End Autonomous Driving with LLM-as-Critic
Recently, two-stage fine-tuning strategies, e.g., acquiring essential driving knowledge through supervised fine-tuning (SFT) and further enhancing decision-making and planning via reinforcement fine-tuning (RFT), have shown strong potential in advancing the knowledge-driven autonomous driving (AD) paradigm. However, the learning nature of SFT still limits the generalization of reasoning, thereby constraining the full potential of driving performance. Meanwhile, current RFT approaches are primarily applied to downstream tasks, since scene understanding is an open-ended problem where corresponding rewards are difficult to quantify. To address these limitations, we propose OpenREAD, an OPEN-ended REasoning reinforced vision-language model (VLM)-based autonomous driving (AD) framework that enables end-to-end RFT across the full spectrum from high-level reasoning to low-level trajectory planning. Specifically, we begin by constructing large-scale Chain-of-Thought (CoT) annotations on open-source driving-related knowledge datasets, and employ the powerful Qwen3 large language model (LLM) as the critic in RFT to quantify reasoning quality for open-ended questions during reward modeling. Extensive experiments confirm that joint end-to-end RFT yields substantial improvements in both upstream and downstream tasks, enabling OpenREAD to achieve state-of-the-art performance on reasoning and planning benchmarks.
☆ CauSight: Learning to Supersense for Visual Causal Discovery
Causal thinking enables humans to understand not just what is seen, but why it happens. To replicate this capability in modern AI systems, we introduce the task of visual causal discovery. It requires models to infer cause-and-effect relations among visual entities across diverse scenarios instead of merely perceiving their presence. To this end, we first construct the Visual Causal Graph dataset (VCG-32K), a large-scale collection of over 32,000 images annotated with entity-level causal graphs, and further develop CauSight, a novel vision-language model to perform visual causal discovery through causally aware reasoning. Our training recipe integrates three components: (1) training data curation from VCG-32K, (2) Tree-of-Causal-Thought (ToCT) for synthesizing reasoning trajectories, and (3) reinforcement learning with a designed causal reward to refine the reasoning policy. Experiments show that CauSight outperforms GPT-4.1 on visual causal discovery, achieving over a threefold performance boost (21% absolute gain). Our code, model, and dataset are fully open-sourced at project page: https://github.com/OpenCausaLab/CauSight.
comment: project page: https://github.com/OpenCausaLab/CauSight
☆ InnoGym: Benchmarking the Innovation Potential of AI Agents
LLMs and Agents have achieved impressive progress in code generation, mathematical reasoning, and scientific discovery. However, existing benchmarks primarily measure correctness, overlooking the diversity of methods behind solutions. True innovation depends not only on producing correct answers but also on the originality of the approach. We present InnoGym, the first benchmark and framework designed to systematically evaluate the innovation potential of AI agents. InnoGym introduces two complementary metrics: performance gain, which measures improvement over the best-known solutions, and novelty, which captures methodological differences from prior approaches. The benchmark includes 18 carefully curated tasks from real-world engineering and scientific domains, each standardized through resource filtering, evaluator validation, and solution collection. In addition, we provide iGym, a unified execution environment for reproducible and long-horizon evaluations. Extensive experiments show that while some agents produce novel approaches, their lack of robustness limits performance gains. These results highlight a key gap between creativity and effectiveness, underscoring the need for benchmarks that evaluate both.
comment: Work in progress
☆ Seeing through Imagination: Learning Scene Geometry via Implicit Spatial World Modeling
Spatial reasoning, the ability to understand and interpret the 3D structure of the world, is a critical yet underdeveloped capability in Multimodal Large Language Models (MLLMs). Current methods predominantly rely on verbal descriptive tuning, which suffers from visual illiteracy, i.e., they learn spatial concepts through textual symbols alone, devoid of connection to their visual manifestations. To bridge this gap, this paper introduces MILO, an Implicit spatIaL wOrld modeling paradigm that simulates human-like spatial imagination. MILO integrates a visual generator to provide geometry-aware feedback, thereby implicitly grounding the MLLM's symbolic reasoning in perceptual experience. Complementing this paradigm, we propose RePE (Relative Positional Encoding), a novel encoding scheme that captures relative camera-pose transformations, offering superior performance over absolute coordinate systems. To support the training, we construct GeoGen, a large-scale Geometry-aware Generative dataset with approximately 2,241 videos and 67,827 observation-action-outcome triplets. Experiments demonstrate that our approach significantly enhances spatial reasoning capabilities across multiple baselines and benchmarks, offering a more holistic understanding of 3D space.
☆ Forget Less, Retain More: A Lightweight Regularizer for Rehearsal-Based Continual Learning
Deep neural networks suffer from catastrophic forgetting, where performance on previous tasks degrades after training on a new task. This issue arises due to the model's tendency to overwrite previously acquired knowledge with new information. We present a novel approach to address this challenge, focusing on the intersection of memory-based methods and regularization approaches. We formulate a regularization strategy, termed Information Maximization (IM) regularizer, for memory-based continual learning methods, which is based exclusively on the expected label distribution, thus making it class-agnostic. As a consequence, IM regularizer can be directly integrated into various rehearsal-based continual learning methods, reducing forgetting and favoring faster convergence. Our empirical validation shows that, across datasets and regardless of the number of tasks, our proposed regularization strategy consistently improves baseline performance at the expense of a minimal computational overhead. The lightweight nature of IM ensures that it remains a practical and scalable solution, making it applicable to real-world continual learning scenarios where efficiency is paramount. Finally, we demonstrate the data-agnostic nature of our regularizer by applying it to video data, which presents additional challenges due to its temporal structure and higher memory requirements. Despite the significant domain gap, our experiments show that IM regularizer also improves the performance of video continual learning methods.
☆ Envision: Benchmarking Unified Understanding & Generation for Causal World Process Insights
Current multimodal models aim to transcend the limitations of single-modality representations by unifying understanding and generation, often using text-to-image (T2I) tasks to calibrate semantic consistency. However, their reliance on static, single-image generation in training and evaluation leads to overfitting to static pattern matching and semantic fusion, while fundamentally hindering their ability to model dynamic processes that unfold over time. To address these constraints, we propose Envision-a causal event progression benchmark for chained text-to-multi-image generation. Grounded in world knowledge and structured by spatiotemporal causality, it reorganizes existing evaluation dimensions and includes 1,000 four-stage prompts spanning six scientific and humanities domains. To transition evaluation from single images to sequential frames and assess whether models truly internalize world knowledge while adhering to causal-temporal constraints, we introduce Envision-Score, a holistic metric integrating multi-dimensional consistency, physicality, and aesthetics. Comprehensive evaluation of 15 models (10 specialized T2I models, 5 unified models) uncovers: specialized T2I models demonstrate proficiency in aesthetic rendering yet lack intrinsic world knowledge. Unified multimodal models bridge this gap, consistently outperforming specialized counterparts in causal narrative coherence. However, even these unified architectures remain subordinate to closed-source models and struggle to overcome the core challenge of spatiotemporal consistency. This demonstrates that a focus on causally-isolated single images impedes multi-frame reasoning and generation, promoting static pattern matching over dynamic world modeling-ultimately limiting world knowledge internalization, generation.
comment: 35 pages, 12 figures, 10 tables
☆ Generative Action Tell-Tales: Assessing Human Motion in Synthesized Videos
Despite rapid advances in video generative models, robust metrics for evaluating visual and temporal correctness of complex human actions remain elusive. Critically, existing pure-vision encoders and Multimodal Large Language Models (MLLMs) are strongly appearance-biased, lack temporal understanding, and thus struggle to discern intricate motion dynamics and anatomical implausibilities in generated videos. We tackle this gap by introducing a novel evaluation metric derived from a learned latent space of real-world human actions. Our method first captures the nuances, constraints, and temporal smoothness of real-world motion by fusing appearance-agnostic human skeletal geometry features with appearance-based features. We posit that this combined feature space provides a robust representation of action plausibility. Given a generated video, our metric quantifies its action quality by measuring the distance between its underlying representations and this learned real-world action distribution. For rigorous validation, we develop a new multi-faceted benchmark specifically designed to probe temporally challenging aspects of human action fidelity. Through extensive experiments, we show that our metric achieves substantial improvement of more than 68% compared to existing state-of-the-art methods on our benchmark, performs competitively on established external benchmarks, and has a stronger correlation with human perception. Our in-depth analysis reveals critical limitations in current video generative models and establishes a new standard for advanced research in video generation.
☆ SAM3-UNet: Simplified Adaptation of Segment Anything Model 3
In this paper, we introduce SAM3-UNet, a simplified variant of Segment Anything Model 3 (SAM3), designed to adapt SAM3 for downstream tasks at a low cost. Our SAM3-UNet consists of three components: a SAM3 image encoder, a simple adapter for parameter-efficient fine-tuning, and a lightweight U-Net-style decoder. Preliminary experiments on multiple tasks, such as mirror detection and salient object detection, demonstrate that the proposed SAM3-UNet outperforms the prior SAM2-UNet and other state-of-the-art methods, while requiring less than 6 GB of GPU memory during training with a batch size of 12. The code is publicly available at https://github.com/WZH0120/SAM3-UNet.
comment: Technical Report
☆ Learned Image Compression for Earth Observation: Implications for Downstream Segmentation Tasks
The rapid growth of data from satellite-based Earth observation (EO) systems poses significant challenges in data transmission and storage. We evaluate the potential of task-specific learned compression algorithms in this context to reduce data volumes while retaining crucial information. In detail, we compare traditional compression (JPEG 2000) versus a learned compression approach (Discretized Mixed Gaussian Likelihood) on three EO segmentation tasks: Fire, cloud, and building detection. Learned compression notably outperforms JPEG 2000 for large-scale, multi-channel optical imagery in both reconstruction quality (PSNR) and segmentation accuracy. However, traditional codecs remain competitive on smaller, single-channel thermal infrared datasets due to limited data and architectural constraints. Additionally, joint end-to-end optimization of compression and segmentation models does not improve performance over standalone optimization.
☆ Evaluating SAM2 for Video Semantic Segmentation
The Segmentation Anything Model 2 (SAM2) has proven to be a powerful foundation model for promptable visual object segmentation in both images and videos, capable of storing object-aware memories and transferring them temporally through memory blocks. While SAM2 excels in video object segmentation by providing dense segmentation masks based on prompts, extending it to dense Video Semantic Segmentation (VSS) poses challenges due to the need for spatial accuracy, temporal consistency, and the ability to track multiple objects with complex boundaries and varying scales. This paper explores the extension of SAM2 for VSS, focusing on two primary approaches and highlighting firsthand observations and common challenges faced during this process. The first approach involves using SAM2 to extract unique objects as masks from a given image, with a segmentation network employed in parallel to generate and refine initial predictions. The second approach utilizes the predicted masks to extract unique feature vectors, which are then fed into a simple network for classification. The resulting classifications and masks are subsequently combined to produce the final segmentation. Our experiments suggest that leveraging SAM2 enhances overall performance in VSS, primarily due to its precise predictions of object boundaries.
comment: 17 pages, 3 figures and 7 tables
☆ Robust Rigid and Non-Rigid Medical Image Registration Using Learnable Edge Kernels
Medical image registration is crucial for various clinical and research applications including disease diagnosis or treatment planning which require alignment of images from different modalities, time points, or subjects. Traditional registration techniques often struggle with challenges such as contrast differences, spatial distortions, and modality-specific variations. To address these limitations, we propose a method that integrates learnable edge kernels with learning-based rigid and non-rigid registration techniques. Unlike conventional layers that learn all features without specific bias, our approach begins with a predefined edge detection kernel, which is then perturbed with random noise. These kernels are learned during training to extract optimal edge features tailored to the task. This adaptive edge detection enhances the registration process by capturing diverse structural features critical in medical imaging. To provide clearer insight into the contribution of each component in our design, we introduce four variant models for rigid registration and four variant models for non-rigid registration. We evaluated our approach using a dataset provided by the Medical University across three setups: rigid registration without skull removal, with skull removal, and non-rigid registration. Additionally, we assessed performance on two publicly available datasets. Across all experiments, our method consistently outperformed state-of-the-art techniques, demonstrating its potential to improve multi-modal image alignment and anatomical structure analysis.
☆ VideoScoop: A Non-Traditional Domain-Independent Framework For Video Analysis
Automatically understanding video contents is important for several applications in Civic Monitoring (CM), general Surveillance (SL), Assisted Living (AL), etc. Decades of Image and Video Analysis (IVA) research have advanced tasks such as content extraction (e.g., object recognition and tracking). Identifying meaningful activities or situations (e.g., two objects coming closer) remains difficult and cannot be achieved by content extraction alone. Currently, Video Situation Analysis (VSA) is done manually with a human in the loop, which is error-prone and labor-intensive, or through custom algorithms designed for specific video types or situations. These algorithms are not general-purpose and require a new algorithm/software for each new situation or video from a new domain. This report proposes a general-purpose VSA framework that overcomes the above limitations. Video contents are extracted once using state-of-the-art Video Content Extraction technologies. They are represented using two alternative models -- the extended relational model (R++) and graph models. When represented using R++, the extracted contents can be used as data streams, enabling Continuous Query Processing via the proposed Continuous Query Language for Video Analysis. The graph models complement this by enabling the detection of situations that are difficult or impossible to detect using the relational model alone. Existing graph algorithms and newly developed algorithms support a wide variety of situation detection. To support domain independence, primitive situation variants across domains are identified and expressed as parameterized templates. Extensive experiments were conducted across several interesting situations from three domains -- AL, CM, and SL-- to evaluate the accuracy, efficiency, and robustness of the proposed approach using a dataset of videos of varying lengths from these domains.
comment: This is a report submitted as part of PhD proposal defense of Hafsa Billah
☆ HiconAgent: History Context-aware Policy Optimization for GUI Agents
Graphical User Interface (GUI) agents require effective use of historical context to perform sequential navigation tasks. While incorporating past actions and observations can improve decision making, naive use of full history leads to excessive computational overhead and distraction from irrelevant information. To address this, we introduce HiconAgent, a GUI agent trained with History Context-aware Policy Optimization (HCPO) for efficient and effective utilization of historical information. HCPO optimizes history usage in both sampling and policy updates through two complementary components: (1) Dynamic Context Sampling (DCS) presents the agent with variable length histories during sampling, enabling adaptive use of the most relevant context; (2) Anchor-guided History Compression (AHC) refines the policy update phase with a dual branch strategy where the compressed branch removes history observations while keeping history actions as information flow anchors. The compressed and uncompressed branches are coupled through a history-enhanced alignment loss to enforce consistent history usage while maintaining efficiency. Experiments on mainstream GUI navigation benchmarks demonstrate strong performance. Despite being smaller, HiconAgent-3B outperforms GUI-R1-7B by +8.46 percent grounding accuracy and +11.32 percent step success rate on GUI-Odyssey, while achieving comparable results on AndroidControl and AITW with up to 2.47x computational speedup and 60 percent FLOPs reduction.
☆ FreqEdit: Preserving High-Frequency Features for Robust Multi-Turn Image Editing
Instruction-based image editing through natural language has emerged as a powerful paradigm for intuitive visual manipulation. While recent models achieve impressive results on single edits, they suffer from severe quality degradation under multi-turn editing. Through systematic analysis, we identify progressive loss of high-frequency information as the primary cause of this quality degradation. We present FreqEdit, a training-free framework that enables stable editing across 10+ consecutive iterations. Our approach comprises three synergistic components: (1) high-frequency feature injection from reference velocity fields to preserve fine-grained details, (2) an adaptive injection strategy that spatially modulates injection strength for precise region-specific control, and (3) a path compensation mechanism that periodically recalibrates the editing trajectory to prevent over-constraint. Extensive experiments demonstrate that FreqEdit achieves superior performance in both identity preservation and instruction following compared to seven state-of-the-art baselines.
☆ StreamGaze: Gaze-Guided Temporal Reasoning and Proactive Understanding in Streaming Videos
Streaming video understanding requires models not only to process temporally incoming frames, but also to anticipate user intention for realistic applications like AR glasses. While prior streaming benchmarks evaluate temporal reasoning, none measure whether MLLMs can interpret or leverage human gaze signals within a streaming setting. To fill this gap, we introduce StreamGaze, the first benchmark designed to evaluate how effectively MLLMs use gaze for temporal and proactive reasoning in streaming videos. StreamGaze introduces gaze-guided past, present, and proactive tasks that comprehensively evaluate streaming video understanding. These tasks assess whether models can use real-time gaze to follow shifting attention and infer user intentions from only past and currently observed frames. To build StreamGaze, we develop a gaze-video QA generation pipeline that aligns egocentric videos with raw gaze trajectories via fixation extraction, region-specific visual prompting, and scanpath construction. This pipeline produces spatio-temporally grounded QA pairs that closely reflect human perceptual dynamics. Across all StreamGaze tasks, we observe substantial performance gaps between state-of-the-art MLLMs and human performance, revealing fundamental limitations in gaze-based temporal reasoning, intention modeling, and proactive prediction. We further provide detailed analyses of gaze-prompting strategies, reasoning behaviors, and task-specific failure modes, offering deeper insight into why current MLLMs struggle and what capabilities future models must develop. All data and code will be publicly released to support continued research in gaze-guided streaming video understanding.
comment: Project page: https://streamgaze.github.io/
☆ SSR: Semantic and Spatial Rectification for CLIP-based Weakly Supervised Segmentation AAAI 2026
In recent years, Contrastive Language-Image Pretraining (CLIP) has been widely applied to Weakly Supervised Semantic Segmentation (WSSS) tasks due to its powerful cross-modal semantic understanding capabilities. This paper proposes a novel Semantic and Spatial Rectification (SSR) method to address the limitations of existing CLIP-based weakly supervised semantic segmentation approaches: over-activation in non-target foreground regions and background areas. Specifically, at the semantic level, the Cross-Modal Prototype Alignment (CMPA) establishes a contrastive learning mechanism to enforce feature space alignment across modalities, reducing inter-class overlap while enhancing semantic correlations, to rectify over-activation in non-target foreground regions effectively; at the spatial level, the Superpixel-Guided Correction (SGC) leverages superpixel-based spatial priors to precisely filter out interference from non-target regions during affinity propagation, significantly rectifying background over-activation. Extensive experiments on the PASCAL VOC and MS COCO datasets demonstrate that our method outperforms all single-stage approaches, as well as more complex multi-stage approaches, achieving mIoU scores of 79.5% and 50.6%, respectively.
comment: Accepted in AAAI 2026
☆ Revisiting Direct Encoding: Learnable Temporal Dynamics for Static Image Spiking Neural Networks
Handling static images that lack inherent temporal dynamics remains a fundamental challenge for spiking neural networks (SNNs). In directly trained SNNs, static inputs are typically repeated across time steps, causing the temporal dimension to collapse into a rate like representation and preventing meaningful temporal modeling. This work revisits the reported performance gap between direct and rate based encodings and shows that it primarily stems from convolutional learnability and surrogate gradient formulations rather than the encoding schemes themselves. To illustrate this mechanism level clarification, we introduce a minimal learnable temporal encoding that adds adaptive phase shifts to induce meaningful temporal variation from static inputs.
☆ DreamingComics: A Story Visualization Pipeline via Subject and Layout Customized Generation using Video Models
Current story visualization methods tend to position subjects solely by text and face challenges in maintaining artistic consistency. To address these limitations, we introduce DreamingComics, a layout-aware story visualization framework. We build upon a pretrained video diffusion-transformer (DiT) model, leveraging its spatiotemporal priors to enhance identity and style consistency. For layout-based position control, we propose RegionalRoPE, a region-aware positional encoding scheme that re-indexes embeddings based on the target layout. Additionally, we introduce a masked condition loss to further constrain each subject's visual features to their designated region. To infer layouts from natural language scripts, we integrate an LLM-based layout generator trained to produce comic-style layouts, enabling flexible and controllable layout conditioning. We present a comprehensive evaluation of our approach, showing a 29.2% increase in character consistency and a 36.2% increase in style similarity compared to previous methods, while displaying high spatial accuracy. Our project page is available at https://yj7082126.github.io/dreamingcomics/
☆ Cross-Domain Validation of a Resection-Trained Self-Supervised Model on Multicentre Mesothelioma Biopsies
Accurate subtype classification and outcome prediction in mesothelioma are essential for guiding therapy and patient care. Most computational pathology models are trained on large tissue images from resection specimens, limiting their use in real-world settings where small biopsies are common. We show that a self-supervised encoder trained on resection tissue can be applied to biopsy material, capturing meaningful morphological patterns. Using these patterns, the model can predict patient survival and classify tumor subtypes. This approach demonstrates the potential of AI-driven tools to support diagnosis and treatment planning in mesothelioma.
☆ Open-world Hand-Object Interaction Video Generation Based on Structure and Contact-aware Representation
Generating realistic hand-object interactions (HOI) videos is a significant challenge due to the difficulty of modeling physical constraints (e.g., contact and occlusion between hands and manipulated objects). Current methods utilize HOI representation as an auxiliary generative objective to guide video synthesis. However, there is a dilemma between 2D and 3D representations that cannot simultaneously guarantee scalability and interaction fidelity. To address this limitation, we propose a structure and contact-aware representation that captures hand-object contact, hand-object occlusion, and holistic structure context without 3D annotations. This interaction-oriented and scalable supervision signal enables the model to learn fine-grained interaction physics and generalize to open-world scenarios. To fully exploit the proposed representation, we introduce a joint-generation paradigm with a share-and-specialization strategy that generates interaction-oriented representations and videos. Extensive experiments demonstrate that our method outperforms state-of-the-art methods on two real-world datasets in generating physics-realistic and temporally coherent HOI videos. Furthermore, our approach exhibits strong generalization to challenging open-world scenarios, highlighting the benefit of our scalable design. Our project page is https://hgzn258.github.io/SCAR/.
☆ GRASP: Guided Residual Adapters with Sample-wise Partitioning
Recent advances in text-to-image diffusion models enable high-fidelity generation across diverse prompts. However, these models falter in long-tail settings, such as medical imaging, where rare pathologies comprise a small fraction of data. This results in mode collapse: tail-class outputs lack quality and diversity, undermining the goal of synthetic data augmentation for underrepresented conditions. We pinpoint gradient conflicts between frequent head and rare tail classes as the primary culprit, a factor unaddressed by existing sampling or conditioning methods that mainly steer inference without altering the learned distribution. To resolve this, we propose GRASP: Guided Residual Adapters with Sample-wise Partitioning. GRASP uses external priors to statically partition samples into clusters that minimize intra-group gradient clashes. It then fine-tunes pre-trained models by injecting cluster-specific residual adapters into transformer feedforward layers, bypassing learned gating for stability and efficiency. On the long-tail MIMIC-CXR-LT dataset, GRASP yields superior FID and diversity metrics, especially for rare classes, outperforming baselines like vanilla fine-tuning and Mixture of Experts variants. Downstream classification on NIH-CXR-LT improves considerably for tail labels. Generalization to ImageNet-LT confirms broad applicability. Our method is lightweight, scalable, and readily integrates with diffusion pipelines.
comment: 10 pages, 4 figures, 6 tables
☆ Bridging the Scale Gap: Balanced Tiny and General Object Detection in Remote Sensing Imagery
Tiny object detection in remote sensing imagery has attracted significant research interest in recent years. Despite recent progress, achieving balanced detection performance across diverse object scales remains a formidable challenge, particularly in scenarios where dense tiny objects and large objects coexist. Although large foundation models have revolutionized general vision tasks, their application to tiny object detection remains unexplored due to the extreme scale variation and density distribution inherent to remote sensing imagery. To bridge this scale gap, we propose ScaleBridge-Det, to the best of our knowledge, the first large detection framework designed for tiny objects, which could achieve balanced performance across diverse scales through scale-adaptive expert routing and density-guided query allocation. Specifically, we introduce a Routing-Enhanced Mixture Attention (REM) module that dynamically selects and fuses scale-specific expert features via adaptive routing to address the tendency of standard MoE models to favor dominant scales. REM generates complementary and discriminative multi-scale representations suitable for both tiny and large objects. Furthermore, we present a Density-Guided Dynamic Query (DGQ) module that predicts object density to adaptively adjust query positions and numbers, enabling efficient resource allocation for objects of varying scales. The proposed framework allows ScaleBridge-Det to simultaneously optimize performance for both dense tiny and general objects without trade-offs. Extensive experiments on benchmark and cross-domain datasets demonstrate that ScaleBridge-Det achieves state-of-the-art performance on AI-TOD-V2 and DTOD, while exhibiting superior cross-domain robustness on VisDrone.
☆ DB-KAUNet: An Adaptive Dual Branch Kolmogorov-Arnold UNet for Retinal Vessel Segmentation
Accurate segmentation of retinal vessels is crucial for the clinical diagnosis of numerous ophthalmic and systemic diseases. However, traditional Convolutional Neural Network (CNN) methods exhibit inherent limitations, struggling to capture long-range dependencies and complex nonlinear relationships. To address the above limitations, an Adaptive Dual Branch Kolmogorov-Arnold UNet (DB-KAUNet) is proposed for retinal vessel segmentation. In DB-KAUNet, we design a Heterogeneous Dual-Branch Encoder (HDBE) that features parallel CNN and Transformer pathways. The HDBE strategically interleaves standard CNN and Transformer blocks with novel KANConv and KAT blocks, enabling the model to form a comprehensive feature representation. To optimize feature processing, we integrate several critical components into the HDBE. First, a Cross-Branch Channel Interaction (CCI) module is embedded to facilitate efficient interaction of channel features between the parallel pathways. Second, an attention-based Spatial Feature Enhancement (SFE) module is employed to enhance spatial features and fuse the outputs from both branches. Building upon the SFE module, an advanced Spatial Feature Enhancement with Geometrically Adaptive Fusion (SFE-GAF) module is subsequently developed. In the SFE-GAF module, adaptive sampling is utilized to focus on true vessel morphology precisely. The adaptive process strengthens salient vascular features while significantly reducing background noise and computational overhead. Extensive experiments on the DRIVE, STARE, and CHASE_DB1 datasets validate that DB-KAUNet achieves leading segmentation performance and demonstrates exceptional robustness.
☆ ViT$^3$: Unlocking Test-Time Training in Vision
Test-Time Training (TTT) has recently emerged as a promising direction for efficient sequence modeling. TTT reformulates attention operation as an online learning problem, constructing a compact inner model from key-value pairs at test time. This reformulation opens a rich and flexible design space while achieving linear computational complexity. However, crafting a powerful visual TTT design remains challenging: fundamental choices for the inner module and inner training lack comprehensive understanding and practical guidelines. To bridge this critical gap, in this paper, we present a systematic empirical study of TTT designs for visual sequence modeling. From a series of experiments and analyses, we distill six practical insights that establish design principles for effective visual TTT and illuminate paths for future improvement. These findings culminate in the Vision Test-Time Training (ViT$^3$) model, a pure TTT architecture that achieves linear complexity and parallelizable computation. We evaluate ViT$^3$ across diverse visual tasks, including image classification, image generation, object detection, and semantic segmentation. Results show that ViT$^3$ consistently matches or outperforms advanced linear-complexity models (e.g., Mamba and linear attention variants) and effectively narrows the gap to highly optimized vision Transformers. We hope this study and the ViT$^3$ baseline can facilitate future work on visual TTT models. Code is available at https://github.com/LeapLabTHU/ViTTT.
☆ Generative Editing in the Joint Vision-Language Space for Zero-Shot Composed Image Retrieval
Composed Image Retrieval (CIR) enables fine-grained visual search by combining a reference image with a textual modification. While supervised CIR methods achieve high accuracy, their reliance on costly triplet annotations motivates zero-shot solutions. The core challenge in zero-shot CIR (ZS-CIR) stems from a fundamental dilemma: existing text-centric or diffusion-based approaches struggle to effectively bridge the vision-language modality gap. To address this, we propose Fusion-Diff, a novel generative editing framework with high effectiveness and data efficiency designed for multimodal alignment. First, it introduces a multimodal fusion feature editing strategy within a joint vision-language (VL) space, substantially narrowing the modality gap. Second, to maximize data efficiency, the framework incorporates a lightweight Control-Adapter, enabling state-of-the-art performance through fine-tuning on only a limited-scale synthetic dataset of 200K samples. Extensive experiments on standard CIR benchmarks (CIRR, FashionIQ, and CIRCO) demonstrate that Fusion-Diff significantly outperforms prior zero-shot approaches. We further enhance the interpretability of our model by visualizing the fused multimodal representations.
☆ SPARK: Sim-ready Part-level Articulated Reconstruction with VLM Knowledge
Articulated 3D objects are critical for embodied AI, robotics, and interactive scene understanding, yet creating simulation-ready assets remains labor-intensive and requires expert modeling of part hierarchies and motion structures. We introduce SPARK, a framework for reconstructing physically consistent, kinematic part-level articulated objects from a single RGB image. Given an input image, we first leverage VLMs to extract coarse URDF parameters and generate part-level reference images. We then integrate the part-image guidance and the inferred structure graph into a generative diffusion transformer to synthesize consistent part and complete shapes of articulated objects. To further refine the URDF parameters, we incorporate differentiable forward kinematics and differentiable rendering to optimize joint types, axes, and origins under VLM-generated open-state supervision. Extensive experiments show that SPARK produces high-quality, simulation-ready articulated assets across diverse categories, enabling downstream applications such as robotic manipulation and interaction modeling.
☆ Depth Matching Method Based on ShapeDTW for Oil-Based Mud Imager
In well logging operations using the oil-based mud (OBM) microresistivity imager, which employs an interleaved design with upper and lower pad sets, depth misalignment issues persist between the pad images even after velocity correction. This paper presents a depth matching method for borehole images based on the Shape Dynamic Time Warping (ShapeDTW) algorithm. The method extracts local shape features to construct a morphologically sensitive distance matrix, better preserving structural similarity between sequences during alignment. We implement this by employing a combined feature set of the one-dimensional Histogram of Oriented Gradients (HOG1D) and the original signal as the shape descriptor. Field test examples demonstrate that our method achieves precise alignment for images with complex textures, depth shifts, or local scaling. Furthermore, it provides a flexible framework for feature extension, allowing the integration of other descriptors tailored to specific geological features.
☆ Toward Content-based Indexing and Retrieval of Head and Neck CT with Abscess Segmentation
Abscesses in the head and neck represent an acute infectious process that can potentially lead to sepsis or mortality if not diagnosed and managed promptly. Accurate detection and delineation of these lesions on imaging are essential for diagnosis, treatment planning, and surgical intervention. In this study, we introduce AbscessHeNe, a curated and comprehensively annotated dataset comprising 4,926 contrast-enhanced CT slices with clinically confirmed head and neck abscesses. The dataset is designed to facilitate the development of robust semantic segmentation models that can accurately delineate abscess boundaries and evaluate deep neck space involvement, thereby supporting informed clinical decision-making. To establish performance baselines, we evaluate several state-of-the-art segmentation architectures, including CNN, Transformer, and Mamba-based models. The highest-performing model achieved a Dice Similarity Coefficient of 0.39, Intersection-over-Union of 0.27, and Normalized Surface Distance of 0.67, indicating the challenges of this task and the need for further research. Beyond segmentation, AbscessHeNe is structured for future applications in content-based multimedia indexing and case-based retrieval. Each CT scan is linked with pixel-level annotations and clinical metadata, providing a foundation for building intelligent retrieval systems and supporting knowledge-driven clinical workflows. The dataset will be made publicly available at https://github.com/drthaodao3101/AbscessHeNe.git.
comment: The 2025 IEEE International Conference on Content-Based Multimedia Indexing (IEEE CBMI)
☆ RoleMotion: A Large-Scale Dataset towards Robust Scene-Specific Role-Playing Motion Synthesis with Fine-grained Descriptions
In this paper, we introduce RoleMotion, a large-scale human motion dataset that encompasses a wealth of role-playing and functional motion data tailored to fit various specific scenes. Existing text datasets are mainly constructed decentrally as amalgamation of assorted subsets that their data are nonfunctional and isolated to work together to cover social activities in various scenes. Also, the quality of motion data is inconsistent, and textual annotation lacks fine-grained details in these datasets. In contrast, RoleMotion is meticulously designed and collected with a particular focus on scenes and roles. The dataset features 25 classic scenes, 110 functional roles, over 500 behaviors, and 10296 high-quality human motion sequences of body and hands, annotated with 27831 fine-grained text descriptions. We build an evaluator stronger than existing counterparts, prove its reliability, and evaluate various text-to-motion methods on our dataset. Finally, we explore the interplay of motion generation of body and hands. Experimental results demonstrate the high-quality and functionality of our dataset on text-driven whole-body generation.
☆ MasHeNe: A Benchmark for Head and Neck CT Mass Segmentation using Window-Enhanced Mamba with Frequency-Domain Integration
Head and neck masses are space-occupying lesions that can compress the airway and esophagus and may affect nerves and blood vessels. Available public datasets primarily focus on malignant lesions and often overlook other space-occupying conditions in this region. To address this gap, we introduce MasHeNe, an initial dataset of 3,779 contrast-enhanced CT slices that includes both tumors and cysts with pixel-level annotations. We also establish a benchmark using standard segmentation baselines and report common metrics to enable fair comparison. In addition, we propose the Windowing-Enhanced Mamba with Frequency integration (WEMF) model. WEMF applies tri-window enhancement to enrich the input appearance before feature extraction. It further uses multi-frequency attention to fuse information across skip connections within a U-shaped Mamba backbone. On MasHeNe, WEMF attains the best performance among evaluated methods, with a Dice of 70.45%, IoU of 66.89%, NSD of 72.33%, and HD95 of 5.12 mm. This model indicates stable and strong results on this challenging task. MasHeNe provides a benchmark for head-and-neck mass segmentation beyond malignancy-only datasets. The observed error patterns also suggest that this task remains challenging and requires further research. Our dataset and code are available at https://github.com/drthaodao3101/MasHeNe.git.
comment: The 14th International Symposium on Information and Communication Technology Conference SoICT 2025
♻ ☆ VIVAT: Virtuous Improving VAE Training through Artifact Mitigation
Variational Autoencoders (VAEs) remain a cornerstone of generative computer vision, yet their training is often plagued by artifacts that degrade reconstruction and generation quality. This paper introduces VIVAT, a systematic approach to mitigating common artifacts in KL-VAE training without requiring radical architectural changes. We present a detailed taxonomy of five prevalent artifacts - color shift, grid patterns, blur, corner and droplet artifacts - and analyze their root causes. Through straightforward modifications, including adjustments to loss weights, padding strategies, and the integration of Spatially Conditional Normalization, we demonstrate significant improvements in VAE performance. Our method achieves state-of-the-art results in image reconstruction metrics (PSNR and SSIM) across multiple benchmarks and enhances text-to-image generation quality, as evidenced by superior CLIP scores. By preserving the simplicity of the KL-VAE framework while addressing its practical challenges, VIVAT offers actionable insights for researchers and practitioners aiming to optimize VAE training.
♻ ☆ STORM: Segment, Track, and Object Re-Localization from a Single Image
Accurate 6D pose estimation and tracking are fundamental capabilities for physical AI systems such as robots. However, existing approaches typically require a pre-defined 3D model of the target and rely on a manually annotated segmentation mask in the first frame, which is labor-intensive and leads to reduced performance when faced with occlusions or rapid movement. To address these limitations, we propose STORM (Segment, Track, and Object Re-localization from a single iMage), an open-source robust real-time 6D pose estimation system that requires no manual annotation. STORM employs a novel three-stage pipeline combining vision-language understanding with feature matching: contextual object descriptions guide localization, self-cross-attention mechanisms identify candidate regions, and produce precise masks and 3D models for accurate pose estimation. Another key innovation is our automatic re-registration mechanism that detects tracking failures through feature similarity monitoring and recovers from severe occlusions or rapid motion. STORM achieves state-of-the-art accuracy on challenging industrial datasets featuring multi-object occlusions, high-speed motion, and varying illumination, while operating at real-time speeds without additional training. This annotation-free approach significantly reduces deployment overhead, providing a practical solution for modern applications, such as flexible manufacturing and intelligent quality control.
♻ ☆ Continuous Perception Matters: Diagnosing Temporal Integration Failures in Multimodal Models
Continuous perception, the ability to integrate visual observations over time in a continuous stream fashion, is essential for robust real-world understanding, yet remains largely untested in current multimodal models. We introduce CP-Bench, a minimal and fully controlled benchmark designed to isolate this capability using an extremely simple task: counting identical cubes in a synthetic scene while the camera moves and only reveals subsets of objects at any moment. Despite the simplicity of the setting, we find that state-of-the-art open-source and commercial models, including Qwen-3-VL, InternVL3, GPT-5, and Gemini-3-Pro, fail dramatically. A static-camera control variant confirms that the failure arises not from object recognition but from an inability to accumulate evidence across time. Further experiments show that neither higher sampling FPS, perception- or spatial-enhanced models, nor finetuning with additional videos leads to meaningful cross-temporal generalization. Our results reveal a fundamental limitation in modern multimodal architectures and training paradigms. CP-Bench provides a simple yet powerful diagnostic tool and establishes a clean testbed for developing models capable of genuine time-consistent visual reasoning.
♻ ☆ GBT-SAM: A Parameter-Efficient Depth-Aware Model for Generalizable Brain tumour Segmentation on mp-MRI
Gliomas are aggressive brain tumors that require accurate imaging-based diagnosis, with segmentation playing a critical role in evaluating morphology and treatment decisions. Manual delineation of gliomas is time-consuming and prone to variability, motivating the use of deep learning to improve consistency and alleviate clinical workload. However, existing methods often fail to fully exploit the information available in multi-parametric MRI (mp-MRI), particularly inter-slice contextual features, and typically require considerable computational resources while lacking robustness across tumor type variations. We present GBT-SAM, a parameter-efficient deep learning framework that adapts the Segment Anything Model (SAM), a large-scale vision model, to volumetric mp-MRI data. GBT-SAM reduces input complexity by selecting fewer than 2.6\% of slices per scan while incorporating all four MRI modalities, preserving essential tumor-related information with minimal cost. Furthermore, our model is trained by a two-step fine-tuning strategy that incorporates a depth-aware module to capture inter-slice correlations and lightweight adaptation layers, resulting in just 6.5M trainable parameters, which is the lowest among SAM-based approaches. GBT-SAM achieves a Dice Score of 93.54 on the BraTS Adult Glioma dataset and demonstrates robust performance on Meningioma, Pediatric Glioma, and Sub-Saharan Glioma datasets. These results highlight GBT-SAM's potential as a computationally efficient and domain-robust framework for brain tumor segmentation using mp-MRI. Our code and models are available at https://github.com/vpulab/med-sam-brain .
♻ ☆ DualCamCtrl: Dual-Branch Diffusion Model for Geometry-Aware Camera-Controlled Video Generation
This paper presents DualCamCtrl, a novel end-to-end diffusion model for camera-controlled video generation. Recent works have advanced this field by representing camera poses as ray-based conditions, yet they often lack sufficient scene understanding and geometric awareness. DualCamCtrl specifically targets this limitation by introducing a dual-branch framework that mutually generates camera-consistent RGB and depth sequences. To harmonize these two modalities, we further propose the Semantic Guided Mutual Alignment (SIGMA) mechanism, which performs RGB-depth fusion in a semantics-guided and mutually reinforced manner. These designs collectively enable DualCamCtrl to better disentangle appearance and geometry modeling, generating videos that more faithfully adhere to the specified camera trajectories. Additionally, we analyze and reveal the distinct influence of depth and camera poses across denoising stages and further demonstrate that early and late stages play complementary roles in forming global structure and refining local details. Extensive experiments demonstrate that DualCamCtrl achieves more consistent camera-controlled video generation, with over 40\% reduction in camera motion errors compared with prior methods. Our project page: https://soyouthinkyoucantell.github.io/dualcamctrl-page/
♻ ☆ SCOPE-MRI: Bankart Lesion Detection as a Case Study in Data Curation and Deep Learning for Challenging Diagnoses
Deep learning has shown strong performance in musculoskeletal imaging, but prior work has largely targeted conditions where diagnosis is relatively straightforward. More challenging problems remain underexplored, such as detecting Bankart lesions (anterior-inferior glenoid labral tears) on standard MRIs. These lesions are difficult to diagnose due to subtle imaging features, often necessitating invasive MRI arthrograms (MRAs). We introduce ScopeMRI, the first publicly available, expert-annotated dataset for shoulder pathologies, and present a deep learning framework for Bankart lesion detection on both standard MRIs and MRAs. ScopeMRI contains shoulder MRIs from patients who underwent arthroscopy, providing ground-truth labels from intraoperative findings, the diagnostic gold standard. Separate models were trained for MRIs and MRAs using CNN- and transformer-based architectures, with predictions ensembled across multiple imaging planes. Our models achieved radiologist-level performance, with accuracy on standard MRIs surpassing radiologists interpreting MRAs. External validation on independent hospital data demonstrated initial generalizability across imaging protocols. By releasing ScopeMRI and a modular codebase for training and evaluation, we aim to accelerate research in musculoskeletal imaging and foster development of datasets and models that address clinically challenging diagnostic tasks.
comment: This version of the article has been accepted for publication at Nature Partner Journal (NPJ) Artificial Intelligence, but is not the Version of Record and does not reflect post-acceptance improvements or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1038/s44387-025-00043-5
♻ ☆ Structure is Supervision: Multiview Masked Autoencoders for Radiology
Building robust medical machine learning systems requires pretraining strategies that exploit the intrinsic structure present in clinical data. We introduce Multiview Masked Autoencoder (MVMAE), a self-supervised framework that leverages the natural multi-view organization of radiology studies to learn view-invariant and disease-relevant representations. MVMAE combines masked image reconstruction with cross-view alignment, transforming clinical redundancy across projections into a powerful self-supervisory signal. We further extend this approach with MVMAE-V2T, which incorporates radiology reports as an auxiliary text-based learning signal to enhance semantic grounding while preserving fully vision-based inference. Evaluated on a downstream disease classification task on three large-scale public datasets, MIMIC-CXR, CheXpert, and PadChest, MVMAE consistently outperforms supervised and vision-language baselines. Furthermore, MVMAE-V2T provides additional gains, particularly in low-label regimes where structured textual supervision is most beneficial. Together, these results establish the importance of structural and textual supervision as complementary paths toward scalable, clinically grounded medical foundation models.
♻ ☆ Securing the Skies: A Comprehensive Survey on Anti-UAV Methods, Benchmarking, and Future Directions CVPR
Unmanned Aerial Vehicles (UAVs) are indispensable for infrastructure inspection, surveillance, and related tasks, yet they also introduce critical security challenges. This survey provides a wide-ranging examination of the anti-UAV domain, centering on three core objectives-classification, detection, and tracking-while detailing emerging methodologies such as diffusion-based data synthesis, multi-modal fusion, vision-language modeling, self-supervised learning, and reinforcement learning. We systematically evaluate state-of-the-art solutions across both single-modality and multi-sensor pipelines (spanning RGB, infrared, audio, radar, and RF) and discuss large-scale as well as adversarially oriented benchmarks. Our analysis reveals persistent gaps in real-time performance, stealth detection, and swarm-based scenarios, underscoring pressing needs for robust, adaptive anti-UAV systems. By highlighting open research directions, we aim to foster innovation and guide the development of next-generation defense strategies in an era marked by the extensive use of UAVs.
comment: Best Paper, Accepted at CVPR Workshop Anti-UAV 2025. 16 pages
♻ ☆ Adaptive Plane Reformatting for 4D Flow MRI using Deep Reinforcement Learning
Background and Objective: Plane reformatting for four-dimensional phase contrast MRI (4D flow MRI) is time-consuming and prone to inter-observer variability, which limits fast cardiovascular flow assessment. Deep reinforcement learning (DRL) trains agents to iteratively adjust plane position and orientation, enabling accurate plane reformatting without the need for detailed landmarks, making it suitable for images with limited contrast and resolution such as 4D flow MRI. However, current DRL methods assume that test volumes share the same spatial alignment as the training data, limiting generalization across scanners and institutions. To address this limitation, we introduce AdaPR (Adaptive Plane Reformatting), a DRL framework that uses a local coordinate system to navigate volumes with arbitrary positions and orientations. Methods: We implemented AdaPR using the Asynchronous Advantage Actor-Critic (A3C) algorithm and validated it on 88 4D flow MRI datasets acquired from multiple vendors, including patients with congenital heart disease. Results: AdaPR achieved a mean angular error of 6.32 +/- 4.15 degrees and a distance error of 3.40 +/- 2.75 mm, outperforming global-coordinate DRL methods and alternative non-DRL methods. AdaPR maintained consistent accuracy under different volume orientations and positions. Flow measurements from AdaPR planes showed no significant differences compared to two manual observers, with excellent correlation (R^2 = 0.972 and R^2 = 0.968), comparable to inter-observer agreement (R^2 = 0.969). Conclusion: AdaPR provides robust, orientation-independent plane reformatting for 4D flow MRI, achieving flow quantification comparable to expert observers. Its adaptability across datasets and scanners makes it a promising candidate for medical imaging applications beyond 4D flow MRI.
♻ ☆ MAMMA: Markerless & Automatic Multi-Person Motion Action Capture
We present MAMMA, a markerless motion-capture pipeline that accurately recovers SMPL-X parameters from multi-view video of two-person interaction sequences. Traditional motion-capture systems rely on physical markers. Although they offer high accuracy, their requirements of specialized hardware, manual marker placement, and extensive post-processing make them costly and time-consuming. Recent learning-based methods attempt to overcome these limitations, but most are designed for single-person capture, rely on sparse keypoints, or struggle with occlusions and physical interactions. In this work, we introduce a method that predicts dense 2D contact-aware surface landmarks conditioned on segmentation masks, enabling person-specific correspondence estimation even under heavy occlusion. We employ a novel architecture that exploits learnable queries for each landmark. We demonstrate that our approach can handle complex person--person interaction and offers greater accuracy than existing methods. To train our network, we construct a large, synthetic multi-view dataset combining human motions from diverse sources, including extreme poses, hand motions, and close interactions. Our dataset yields high-variability synthetic sequences with rich body contact and occlusion, and includes SMPL-X ground-truth annotations with dense 2D landmarks. The result is a system capable of capturing human motion without the need for markers. Our approach offers competitive reconstruction quality compared to commercial marker-based motion-capture solutions, without the extensive manual cleanup. Finally, we address the absence of common benchmarks for dense-landmark prediction and markerless motion capture by introducing two evaluation settings built from real multi-view sequences. We will release our dataset, benchmark, method, training code, and pre-trained model weights for research purposes.
♻ ☆ Benchmarking machine learning models for multi-class state recognition in double quantum dot data
Semiconductor quantum dots (QDs) are a leading platform for scalable quantum processors. However, scaling to large arrays requires reliable, automated tuning strategies for devices' bootstrapping, calibration, and operation, with many tuning aspects depending on accurately identifying QD device states from charge-stability diagrams (CSDs). In this work, we present a comprehensive benchmarking study of four modern machine learning (ML) architectures for multi-class state recognition in double-QD CSDs. We evaluate their performance across different data budgets and normalization schemes using both synthetic and experimental data. We find that the more resource-intensive models -- U-Nets and visual transformers (ViTs) -- achieve the highest MSE score (defined as $1-\mathrm{MSE}$) on synthetic data (over $0.98$) but fail to generalize to experimental data. MDNs are the most computationally efficient and exhibit highly stable training, but with substantially lower peak performance. CNNs offer the most favorable trade-off on experimental CSDs, achieving strong accuracy with two orders of magnitude fewer parameters than the U-Nets and ViTs. Normalization plays a nontrivial role: min-max scaling generally yields higher MSE scores but less stable convergence, whereas z-score normalization produces more predictable training dynamics but at reduced accuracy for most models. Overall, our study shows that CNNs with min-max normalization are a practical approach for QD CSDs.
comment: 12 pages, 4 figures, 2 tables
♻ ☆ Global-to-local image quality assessment in optical microscopy via fast and robust deep learning predictions
Optical microscopy is one of the most widely used techniques in research studies for life sciences and biomedicine. These applications require reliable experimental pipelines to extract valuable knowledge from the measured samples and must be supported by image quality assessment (IQA) to ensure correct processing and analysis of the image data. IQA methods are implemented with variable complexity. However, while most quality metrics have a straightforward implementation, they might be time consuming and computationally expensive when evaluating a large dataset. In addition, quality metrics are often designed for well-defined image features and may be unstable for images out of the ideal domain. To overcome these limitations, recent works have proposed deep learning-based IQA methods, which can provide superior performance, increased generalizability and fast prediction. Our method, named $\mathrmμ$DeepIQA, is inspired by previous studies and applies a deep convolutional neural network designed for IQA on natural images to optical microscopy measurements. We retrained the same architecture to predict individual quality metrics and global quality scores for optical microscopy data. The resulting models provide fast and stable predictions of image quality by generalizing quality estimation even outside the ideal range of standard methods. In addition, $\mathrmμ$DeepIQA provides patch-wise prediction of image quality and can be used to visualize spatially varying quality in a single image. Our study demonstrates that optical microscopy-based studies can benefit from the generalizability of deep learning models due to their stable performance in the presence of outliers, the ability to assess small image patches, and rapid predictions.
comment: 16 pages, 6 figures. μDeepIQA is publicly available at https://git.photonicdata.science/elena.corbetta/udeepiqa
♻ ☆ Manual-PA: Learning 3D Part Assembly from Instruction Diagrams ICCV'25
Assembling furniture amounts to solving the discrete-continuous optimization task of selecting the furniture parts to assemble and estimating their connecting poses in a physically realistic manner. The problem is hampered by its combinatorially large yet sparse solution space thus making learning to assemble a challenging task for current machine learning models. In this paper, we attempt to solve this task by leveraging the assembly instructions provided in diagrammatic manuals that typically accompany the furniture parts. Our key insight is to use the cues in these diagrams to split the problem into discrete and continuous phases. Specifically, we present Manual-PA, a transformer-based instruction Manual-guided 3D Part Assembly framework that learns to semantically align 3D parts with their illustrations in the manuals using a contrastive learning backbone towards predicting the assembly order and infers the 6D pose of each part via relating it to the final furniture depicted in the manual. To validate the efficacy of our method, we conduct experiments on the benchmark PartNet dataset. Our results show that using the diagrams and the order of the parts lead to significant improvements in assembly performance against the state of the art. Further, Manual-PA demonstrates strong generalization to real-world IKEA furniture assembly on the IKEA-Manual dataset.
comment: Accepted to ICCV'25
♻ ☆ MRI Super-Resolution with Deep Learning: A Comprehensive Survey
High-resolution (HR) magnetic resonance imaging (MRI) is crucial for many clinical and research applications. However, achieving it remains costly and constrained by technical trade-offs and experimental limitations. Super-resolution (SR) presents a promising computational approach to overcome these challenges by generating HR images from more affordable low-resolution (LR) scans, potentially improving diagnostic accuracy and efficiency without requiring additional hardware. This survey reviews recent advances in MRI SR techniques, with a focus on deep learning (DL) approaches. It examines DL-based MRI SR methods from the perspectives of computer vision, computational imaging, inverse problems, and MR physics, covering theoretical foundations, architectural designs, learning strategies, benchmark datasets, and performance metrics. We propose a systematic taxonomy to categorize these methods and present an in-depth study of both established and emerging SR techniques applicable to MRI, considering unique challenges in clinical and research contexts. We also highlight open challenges and directions that the community needs to address. Additionally, we provide a collection of essential open-access resources, tools, and tutorials, available on our GitHub: https://github.com/mkhateri/Awesome-MRI-Super-Resolution. IEEE keywords: MRI, Super-Resolution, Deep Learning, Computational Imaging, Inverse Problem, Survey.
comment: 41 pages
♻ ☆ Multivariate Variational Autoencoder
Learning latent representations that are simultaneously expressive, geometrically well-structured, and reliably calibrated remains a central challenge for Variational Autoencoders (VAEs). Standard VAEs typically assume a diagonal Gaussian posterior, which simplifies optimization but rules out correlated uncertainty and often yields entangled or redundant latent dimensions. We introduce the Multivariate Variational Autoencoder (MVAE), a tractable full-covariance extension of the VAE that augments the encoder with sample-specific diagonal scales and a global coupling matrix. This induces a multivariate Gaussian posterior of the form $N(μ_φ(x), C \operatorname{diag}(σ_φ^2(x)) C^\top)$, enabling correlated latent factors while preserving a closed-form KL divergence and a simple reparameterization path. Beyond likelihood, we propose a multi-criterion evaluation protocol that jointly assesses reconstruction quality (MSE, ELBO), downstream discrimination (linear probes), probabilistic calibration (NLL, Brier, ECE), and unsupervised structure (NMI, ARI). Across Larochelle-style MNIST variants, Fashion-MNIST, and CIFAR-10/100, MVAE consistently matches or outperforms diagonal-covariance VAEs of comparable capacity, with particularly notable gains in calibration and clustering metrics at both low and high latent dimensions. Qualitative analyses further show smoother, more semantically coherent latent traversals and sharper reconstructions. All code, dataset splits, and evaluation utilities are released to facilitate reproducible comparison and future extensions of multivariate posterior models.
♻ ☆ Hierarchical Semi-Supervised Active Learning for Remote Sensing
The performance of deep learning models in remote sensing (RS) strongly depends on the availability of high-quality labeled data. However, collecting large-scale annotations is costly and time-consuming, while vast amounts of unlabeled imagery remain underutilized. To address this challenge, we propose a Hierarchical Semi-Supervised Active Learning (HSSAL) framework that integrates semi-supervised learning (SSL) and a novel hierarchical active learning (HAL) in a closed iterative loop. In each iteration, SSL refines the model using both labeled data through supervised learning and unlabeled data via weak-to-strong self-training, improving feature representation and uncertainty estimation. Guided by the refined representations and uncertainty cues of unlabeled samples, HAL then conducts sample querying through a progressive clustering strategy, selecting the most informative instances that jointly satisfy the criteria of scalability, diversity, and uncertainty. This hierarchical process ensures both efficiency and representativeness in sample selection. Extensive experiments on three benchmark RS scene classification datasets, including UCM, AID, and NWPU-RESISC45, demonstrate that HSSAL consistently outperforms SSL- or AL-only baselines. Remarkably, with only 8%, 4%, and 2% labeled training data on UCM, AID, and NWPU-RESISC45, respectively, HSSAL achieves over 95% of fully-supervised accuracy, highlighting its superior label efficiency through informativeness exploitation of unlabeled data. Our code will be publicly available.
comment: Under review
♻ ☆ Harnessing Diffusion-Generated Synthetic Images for Fair Image Classification AAAI
Image classification systems often inherit biases from uneven group representation in training data. For example, in face datasets for hair color classification, blond hair may be disproportionately associated with females, reinforcing stereotypes. A recent approach leverages the Stable Diffusion model to generate balanced training data, but these models often struggle to preserve the original data distribution. In this work, we explore multiple diffusion-finetuning techniques, e.g., LoRA and DreamBooth, to generate images that more accurately represent each training group by learning directly from their samples. Additionally, in order to prevent a single DreamBooth model from being overwhelmed by excessive intra-group variations, we explore a technique of clustering images within each group and train a DreamBooth model per cluster. These models are then used to generate group-balanced data for pretraining, followed by fine-tuning on real data. Experiments on multiple benchmarks demonstrate that the studied finetuning approaches outperform vanilla Stable Diffusion on average and achieve results comparable to SOTA debiasing techniques like Group-DRO, while surpassing them as the dataset bias severity increases.
comment: Accepted to AAAI AISI Track, 2026
♻ ☆ Sketch-guided Cage-based 3D Gaussian Splatting Deformation
3D Gaussian Splatting (GS) is one of the most promising novel 3D representations that has received great interest in computer graphics and computer vision. While various systems have introduced editing capabilities for 3D GS, such as those guided by text prompts, fine-grained control over deformation remains an open challenge. In this work, we present a novel sketch-guided 3D GS deformation system that allows users to intuitively modify the geometry of a 3D GS model by drawing a silhouette sketch from a single viewpoint. Our approach introduces a new deformation method that combines cage-based deformations with a variant of Neural Jacobian Fields, enabling precise, fine-grained control. Additionally, it leverages large-scale 2D diffusion priors and ControlNet to ensure the generated deformations are semantically plausible. Through a series of experiments, we demonstrate the effectiveness of our method and showcase its ability to animate static 3D GS models as one of its key applications.
comment: 10 pages, 9 figures, accepted at WACV 26, project page: https://tianhaoxie.github.io/project/gs_deform/
♻ ☆ Benchmarking pig detection and tracking under diverse and challenging conditions
To ensure animal welfare and effective management in pig farming, monitoring individual behavior is a crucial prerequisite. While monitoring tasks have traditionally been carried out manually, advances in machine learning have made it possible to collect individualized information in an increasingly automated way. Central to these methods is the localization of animals across space (object detection) and time (multi-object tracking). Despite extensive research of these two tasks in pig farming, a systematic benchmarking study has not yet been conducted. In this work, we address this gap by curating two datasets: PigDetect for object detection and PigTrack for multi-object tracking. The datasets are based on diverse image and video material from realistic barn conditions, and include challenging scenarios such as occlusions or bad visibility. For object detection, we show that challenging training images improve detection performance beyond what is achievable with randomly sampled images alone. Comparing different approaches, we found that state-of-the-art models offer substantial improvements in detection quality over real-time alternatives. For multi-object tracking, we observed that SORT-based methods achieve superior detection performance compared to end-to-end trainable models. However, end-to-end models show better association performance, suggesting they could become strong alternatives in the future. We also investigate characteristic failure cases of end-to-end models, providing guidance for future improvements. The detection and tracking models trained on our datasets perform well in unseen pens, suggesting good generalization capabilities. This highlights the importance of high-quality training data. The datasets and research code are made publicly available to facilitate reproducibility, re-use and further development.
comment: 16 pages, 6 figures and 8 tables
♻ ☆ CaliTex: Geometry-Calibrated Attention for View-Coherent 3D Texture Generation
Despite major advances brought by diffusion-based models, current 3D texture generation systems remain hindered by cross-view inconsistency -- textures that appear convincing from one viewpoint often fail to align across others. We find that this issue arises from attention ambiguity, where unstructured full attention is applied indiscriminately across tokens and modalities, causing geometric confusion and unstable appearance-structure coupling. To address this, we introduce CaliTex, a framework of geometry-calibrated attention that explicitly aligns attention with 3D structure. It introduces two modules: Part-Aligned Attention that enforces spatial alignment across semantically matched parts, and Condition-Routed Attention which routes appearance information through geometry-conditioned pathways to maintain spatial fidelity. Coupled with a two-stage diffusion transformer, CaliTex makes geometric coherence an inherent behavior of the network rather than a byproduct of optimization. Empirically, CaliTex produces seamless and view-consistent textures and outperforms both open-source and commercial baselines.
♻ ☆ Pushing the Limits of Sparsity: A Bag of Tricks for Extreme Pruning
Pruning of deep neural networks has been an effective technique for reducing model size while preserving most of the performance of dense networks, crucial for deploying models on memory and power-constrained devices. While recent sparse learning methods have shown promising performance up to moderate sparsity levels such as 95% and 98%, accuracy quickly deteriorates when pushing sparsities to extreme levels due to unique challenges such as fragile gradient flow. In this work, we explore network performance beyond the commonly studied sparsities, and develop techniques that encourage stable training without accuracy collapse even at extreme sparsities, including 99.90%, 99.95\% and 99.99% on ResNet architectures. We propose three complementary techniques that enhance sparse training through different mechanisms: 1) Dynamic ReLU phasing, where DyReLU initially allows for richer parameter exploration before being gradually replaced by standard ReLU, 2) weight sharing which reuses parameters within a residual layer while maintaining the same number of learnable parameters, and 3) cyclic sparsity, where both sparsity levels and sparsity patterns evolve dynamically throughout training to better encourage parameter exploration. We evaluate our method, which we term Extreme Adaptive Sparse Training (EAST) at extreme sparsities using ResNet-34 and ResNet-50 on CIFAR-10, CIFAR-100, and ImageNet, achieving competitive or improved performance compared to existing methods, with notable gains at extreme sparsity levels.
comment: V4: moderate revisions and overall improvements for journal camera ready submission
♻ ☆ Flow Equivariant Recurrent Neural Networks NeurIPS '25
Data arrives at our senses as a continuous stream, smoothly transforming from one instant to the next. These smooth transformations can be viewed as continuous symmetries of the environment that we inhabit, defining equivalence relations between stimuli over time. In machine learning, neural network architectures that respect symmetries of their data are called equivariant and have provable benefits in terms of generalization ability and sample efficiency. To date, however, equivariance has been considered only for static transformations and feed-forward networks, limiting its applicability to sequence models, such as recurrent neural networks (RNNs), and corresponding time-parameterized sequence transformations. In this work, we extend equivariant network theory to this regime of 'flows' -- one-parameter Lie subgroups capturing natural transformations over time, such as visual motion. We begin by showing that standard RNNs are generally not flow equivariant: their hidden states fail to transform in a geometrically structured manner for moving stimuli. We then show how flow equivariance can be introduced, and demonstrate that these models significantly outperform their non-equivariant counterparts in terms of training speed, length generalization, and velocity generalization, on both next step prediction and sequence classification. We present this work as a first step towards building sequence models that respect the time-parameterized symmetries which govern the world around us.
comment: NeurIPS '25, Spotlight
♻ ☆ RealWebAssist: A Benchmark for Long-Horizon Web Assistance with Real-World Users
To achieve successful assistance with long-horizon web-based tasks, AI agents must be able to sequentially follow real-world user instructions over a long period. Unlike existing web-based agent benchmarks, sequential instruction following in the real world poses significant challenges beyond performing a single, clearly defined task. For instance, real-world human instructions can be ambiguous, require different levels of AI assistance, and may evolve over time, reflecting changes in the user's mental state. To address this gap, we introduce RealWebAssist, a novel benchmark designed to evaluate sequential instruction-following in realistic scenarios involving long-horizon interactions with the web, visual GUI grounding, and understanding ambiguous real-world user instructions. RealWebAssist includes a dataset of sequential instructions collected from real-world human users. Each user instructs a web-based assistant to perform a series of tasks on multiple websites. A successful agent must reason about the true intent behind each instruction, keep track of the mental state of the user, understand user-specific routines, and ground the intended tasks to actions on the correct GUI elements. Our experimental results show that state-of-the-art models struggle to understand and ground user instructions, posing critical challenges in following real-world user instructions for long-horizon web assistance.
comment: Project Website: https://scai.cs.jhu.edu/projects/RealWebAssist/ Code: https://github.com/SCAI-JHU/RealWebAssist
♻ ☆ OmniSVG: A Unified Scalable Vector Graphics Generation Model
Scalable Vector Graphics (SVG) is an important image format widely adopted in graphic design because of their resolution independence and editability. The study of generating high-quality SVG has continuously drawn attention from both designers and researchers in the AIGC community. However, existing methods either produces unstructured outputs with huge computational cost or is limited to generating monochrome icons of over-simplified structures. To produce high-quality and complex SVG, we propose OmniSVG, a unified framework that leverages pre-trained Vision-Language Models (VLMs) for end-to-end multimodal SVG generation. By parameterizing SVG commands and coordinates into discrete tokens, OmniSVG decouples structural logic from low-level geometry for efficient training while maintaining the expressiveness of complex SVG structure. To further advance the development of SVG synthesis, we introduce MMSVG-2M, a multimodal dataset with two million richly annotated SVG assets, along with a standardized evaluation protocol for conditional SVG generation tasks. Extensive experiments show that OmniSVG outperforms existing methods and demonstrates its potential for integration into professional SVG design workflows.
comment: 20 pages; Project Page: https://omnisvg.github.io/
♻ ☆ FedHK-MVFC: Federated Heat Kernel Multi-View Clustering
In the realm of distributed artificial intelligence (AI) and privacy-focused medical applications, this paper proposes a multi-view clustering framework that links quantum field theory with federated healthcare analytics. The method uses heat kernel coefficients from spectral analysis to convert Euclidean distances into geometry-aware similarity measures that capture the structure of diverse medical data. The framework is presented through the heat kernel distance (HKD) transformation, which has convergence guarantees. Two algorithms have been developed: The first, Heat Kernel-Enhanced Multi-View Fuzzy Clustering (HK-MVFC), is used for central analysis. The second, Federated Heat Kernel Multi-View Fuzzy Clustering (FedHK-MVFC), is used for secure, privacy-preserving learning across hospitals. FedHK-MVFC uses differential privacy and secure aggregation to enable HIPAA-compliant collaboration. Tests on synthetic cardiovascular patient datasets demonstrate increased clustering accuracy, reduced communication, and retained efficiency compared to centralized methods. After being validated on 10,000 synthetic patient records across two hospitals, the methods proved useful for collaborative phenotyping involving electrocardiogram (ECG) data, cardiac imaging data, and behavioral data. The proposed methods' theoretical contributions include update rules with proven convergence, adaptive view weighting, and privacy-preserving protocols. These contributions establish a new standard for geometry-aware federated learning in healthcare, translating advanced mathematics into practical solutions for analyzing sensitive medical data while ensuring rigor and clinical relevance.
comment: 53 pages, 11 figures, and 9 tables
♻ ☆ DenoiseGS: Gaussian Reconstruction Model for Burst Denoising
Burst denoising methods are crucial for enhancing images captured on handheld devices, but they often struggle with large motion or suffer from prohibitive computational costs. In this paper, we propose DenoiseGS, the first framework to leverage the efficiency of 3D Gaussian Splatting for burst denoising. Our approach addresses two key challenges when applying feedforward Gaussian reconsturction model to noisy inputs: the degradation of Gaussian point clouds and the loss of fine details. To this end, we propose a Gaussian self-consistency (GSC) loss, which regularizes the geometry predicted from noisy inputs with high-quality Gaussian point clouds. These point clouds are generated from clean inputs by the same model that we are training, thereby alleviating potential bias or domain gaps. Additionally, we introduce a log-weighted frequency (LWF) loss to strengthen supervision within the spectral domain, effectively preserving fine-grained details. The LWF loss adaptively weights frequency discrepancies in a logarithmic manner, emphasizing challenging high-frequency details. Extensive experiments demonstrate that DenoiseGS significantly exceeds the state-of-the-art NeRF-based methods on both burst denoising and novel view synthesis under noisy conditions, while achieving 250$\times$ faster inference speed. Code and models are released at https://github.com/yscheng04/DenoiseGS.
comment: Update Abstract
♻ ☆ TTSnap: Test-Time Scaling of Diffusion Models via Noise-Aware Pruning
A prominent approach to test-time scaling for text-to-image diffusion models formulates the problem as a search over multiple noise seeds, selecting the one that maximizes a certain image-reward function. The effectiveness of this strategy heavily depends on the number and diversity of noise seeds explored. However, verifying each candidate is computationally expensive, because each must be fully denoised before a reward can be computed. This severely limits the number of samples that can be explored under a fixed budget. We propose test-time scaling with noise-aware pruning (TTSnap), a framework that prunes low-quality candidates without fully denoising them. The key challenge is that reward models are learned in the clean image domain, and the ranking of rewards predicted for intermediate estimates are often inconsistent with those predicted for clean images. To overcome this, we train noise-aware reward models via self-distillation to align the reward for intermediate estimates with that of the final clean images. To stabilize learning across different noise levels, we adopt a curriculum training strategy that progressively shifts the data domain from clean images to noise images. In addition, we introduce a new metric that measures reward alignment and computational budget utilization. Experiments demonstrate that our approach improves performance by over 16\% compared with existing methods, enabling more efficient and effective test-time scaling. It also provides orthogonal gains when combined with post-training techniques and local test-time optimization. Code: https://github.com/TerrysLearning/TTSnap/.
♻ ☆ Towards Fast and Scalable Normal Integration using Continuous Components
Surface normal integration is a fundamental problem in computer vision, dealing with the objective of reconstructing a surface from its corresponding normal map. Existing approaches require an iterative global optimization to jointly estimate the depth of each pixel, which scales poorly to larger normal maps. In this paper, we address this problem by recasting normal integration as the estimation of relative scales of continuous components. By constraining pixels belonging to the same component to jointly vary their scale, we drastically reduce the number of optimization variables. Our framework includes a heuristic to accurately estimate continuous components from the start, a strategy to rebalance optimization terms, and a technique to iteratively merge components to further reduce the size of the problem. Our method achieves state-of-the-art results on the standard normal integration benchmark in as little as a few seconds and achieves one-order-of-magnitude speedup over pixel-level approaches on large-resolution normal maps.
comment: Accepted by the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2026, first round. Camera-ready version. 17 pages, 9 figures, 6 tables. Code is available at https://github.com/francescomilano172/normal_integration_continuous_components
♻ ☆ B2N3D: Progressive Learning from Binary to N-ary Relationships for 3D Object Grounding
Localizing 3D objects using natural language is essential for robotic scene understanding. The descriptions often involve multiple spatial relationships to distinguish similar objects, making 3D-language alignment difficult. Current methods only model relationships for pairwise objects, ignoring the global perceptual significance of n-ary combinations in multi-modal relational understanding. To address this, we propose a novel progressive relational learning framework for 3D object grounding. We extend relational learning from binary to n-ary to identify visual relations that match the referential description globally. Given the absence of specific annotations for referred objects in the training data, we design a grouped supervision loss to facilitate n-ary relational learning. In the scene graph created with n-ary relationships, we use a multi-modal network with hybrid attention mechanisms to further localize the target within the n-ary combinations. Experiments and ablation studies on the ReferIt3D and ScanRefer benchmarks demonstrate that our method outperforms the state-of-the-art, and proves the advantages of the n-ary relational perception in 3D localization.
♻ ☆ Hybrid Swin Attention Networks for Simultaneously Low-Dose PET and CT Denoising
Low-dose computed tomography (LDCT) and positron emission tomography (PET) have emerged as safer alternatives to conventional imaging modalities by significantly reducing radiation exposure. However, this reduction often results in increased noise and artifacts, which can compromise diagnostic accuracy. Consequently, denoising for LDCT/PET has become a vital area of research aimed at enhancing image quality while maintaining radiation safety. In this study, we introduce a novel Hybrid Swin Attention Network (HSANet), which incorporates Efficient Global Attention (EGA) modules and a hybrid upsampling module. The EGA modules enhance both spatial and channel-wise interaction, improving the network's capacity to capture relevant features, while the hybrid upsampling module mitigates the risk of overfitting to noise. We validate the proposed approach using a publicly available LDCT/PET dataset. Experimental results demonstrate that HSANet achieves superior denoising performance compared to existing methods, while maintaining a lightweight model size suitable for deployment on GPUs with standard memory configurations. This makes our approach highly practical for real-world clinical applications.
♻ ☆ RDTF: Resource-efficient Dual-mask Training Framework for Multi-frame Animated Sticker Generation
Recently, significant advancements have been achieved in video generation technology, but applying it to resource-constrained downstream tasks like multi-frame animated sticker generation (ASG) characterized by low frame rates, abstract semantics, and long tail frame length distribution-remains challenging. Parameter-efficient fine-tuning (PEFT) techniques (e.g., Adapter, LoRA) for large pre-trained models suffer from insufficient fitting ability and source-domain knowledge interference. In this paper, we propose Resource-Efficient Dual-Mask Training Framework (RDTF), a dedicated solution for multi-frame ASG task under resource constraints. We argue that training a compact model from scratch with million-level samples outperforms PEFT on large models, with RDTF realizing this via three core designs: 1) a Discrete Frame Generation Network (DFGN) optimized for low-frame-rate ASG, ensuring parameter efficiency; 2) a dual-mask based data utilization strategy to enhance the availability and diversity of limited data; 3) a difficulty-adaptive curriculum learning method that decomposes sample entropy into static and adaptive components, enabling easy-to-difficult training convergence. To provide high-quality data support for RDTFs training from scratch, we construct VSD2M-a million-level multi-modal animated sticker dataset with rich annotations (static and animated stickers, action-focused text descriptions)-filling the gap of dedicated animated data for ASG task. Experiments demonstrate that RDTF is quantitatively and qualitatively superior to state-of-the-art PEFT methods (e.g., I2V-Adapter, SimDA) on ASG tasks, verifying the feasibility of our framework under resource constraints.
comment: Submitted to TMM
♻ ☆ Fusion or Confusion? Assessing the impact of visible-thermal image fusion for automated wildlife detection
Efficient wildlife monitoring methods are necessary for biodiversity conservation and management. The combination of remote sensing, aerial imagery and deep learning offer promising opportunities to renew or improve existing survey methods. The complementary use of visible (VIS) and thermal infrared (TIR) imagery can add information compared to a single-source image and improve results in an automated detection context. However, the alignment and fusion process can be challenging, especially since visible and thermal images usually have different fields of view (FOV) and spatial resolutions. This research presents a case study on the great blue heron (Ardea herodias) to evaluate the performances of synchronous aerial VIS and TIR imagery to automatically detect individuals and nests using a YOLO11n model. Two VIS-TIR fusion methods were tested and compared: an early fusion approach and a late fusion approach, to determine if the addition of the TIR image gives any added value compared to a VIS-only model. VIS and TIR images were automatically aligned using a deep learning model. A principal component analysis fusion method was applied to VIS-TIR image pairs to form the early fusion dataset. A classification and regression tree was used to process the late fusion dataset, based on the detection from the VIS-only and TIR-only trained models. Across all classes, both late and early fusion improved the F1 score compared to the VIS-only model. For the main class, occupied nest, the late fusion improved the F1 score from 90.2 (VIS-only) to 93.0%. This model was also able to identify false positives from both sources with 90% recall. Although fusion methods seem to give better results, this approach comes with a limiting TIR FOV and alignment constraints that eliminate data. Using an aircraft-mounted very high-resolution visible sensor could be an interesting option for operationalizing surveys.
comment: 19 pages, 9 figures, submitted to Remote Sensing in Ecology and Conservation
♻ ☆ MoH: Multi-Head Attention as Mixture-of-Head Attention ICML 2025
In this work, we upgrade the multi-head attention mechanism, the core of the Transformer model, to improve efficiency while maintaining or surpassing the previous accuracy level. We show that multi-head attention can be expressed in the summation form. Drawing on the insight that not all attention heads hold equal significance, we propose Mixture-of-Head attention (MoH), a new architecture that treats attention heads as experts in the Mixture-of-Experts (MoE) mechanism. MoH has two significant advantages: First, MoH enables each token to select the appropriate attention heads, enhancing inference efficiency without compromising accuracy or increasing the number of parameters. Second, MoH replaces the standard summation in multi-head attention with a weighted summation, introducing flexibility to the attention mechanism and unlocking extra performance potential. Extensive experiments on ViT, DiT, and LLMs demonstrate that MoH outperforms multi-head attention by using only 50%-90% of the attention heads. Moreover, we demonstrate that pre-trained multi-head attention models, such as LLaMA3-8B, can be further continue-tuned into our MoH models. Notably, MoH-LLaMA3-8B achieves an average accuracy of 64.0% across 14 benchmarks, outperforming LLaMA3-8B by 2.4% by utilizing only 75% of the attention heads. We believe the proposed MoH is a promising alternative to multi-head attention and provides a strong foundation for developing advanced and efficient attention-based models.
comment: Accepted by ICML 2025, code: https://github.com/SkyworkAI/MoH
♻ ☆ ReasonEdit: Towards Reasoning-Enhanced Image Editing Models
Recent advances in image editing models have shown remarkable progress. A common architectural design couples a multimodal large language model (MLLM) encoder with a diffusion decoder, as seen in systems such as Step1X-Edit and Qwen-Image-Edit, where the MLLM encodes both the reference image and the instruction but remains frozen during training. In this work, we demonstrate that unlocking the reasoning capabilities of MLLM can further push the boundaries of editing models. Specifically, we explore two reasoning mechanisms, thinking and reflection, which enhance instruction understanding and editing accuracy. Based on that, our proposed framework enables image editing in a thinking-editing-reflection loop: the thinking mechanism leverages the world knowledge of MLLM to interpret abstract instructions, while the reflection reviews editing results, automatically corrects unintended manipulations, and identifies the stopping round. Extensive experiments demonstrate that our reasoning approach achieves significant performance gains, with improvements of ImgEdit (+4.3%), GEdit (+4.7%), and Kris (+8.2%) when initializing our DiT from the Step1X-Edit (ReasonEdit-S), and also outperforms previous open-source methods on both GEdit and Kris when integrated with Qwen-Image-Edit (ReasonEdit-Q).
comment: code: https://github.com/stepfun-ai/Step1X-Edit
♻ ☆ Class-Conditional Distribution Balancing for Group Robust Classification
Spurious correlations that lead models to correct predictions for the wrong reasons pose a critical challenge for robust real-world generalization. Existing research attributes this issue to group imbalance and addresses it by maximizing group-balanced or worst-group accuracy, which heavily relies on expensive bias annotations. A compromise approach involves predicting bias information using extensively pretrained foundation models, which requires large-scale data and becomes impractical for resource-limited rare domains. To address these challenges, we offer a novel perspective by reframing the spurious correlations as imbalances or mismatches in class-conditional distributions, and propose a simple yet effective robust learning method that eliminates the need for both bias annotations and predictions. With the goal of maximizing the conditional entropy (uncertainty) of the label given spurious factors, our method leverages a sample reweighting strategy to achieve class-conditional distribution balancing, which automatically highlights minority groups and classes, effectively dismantling spurious correlations and producing a debiased data distribution for classification. Extensive experiments and analysis demonstrate that our approach consistently delivers state-of-the-art performance, rivaling methods that rely on bias supervision.
♻ ☆ iMontage: Unified, Versatile, Highly Dynamic Many-to-many Image Generation
Pre-trained video models learn powerful priors for generating high-quality, temporally coherent content. While these models excel at temporal coherence, their dynamics are often constrained by the continuous nature of their training data. We hypothesize that by injecting the rich and unconstrained content diversity from image data into this coherent temporal framework, we can generate image sets that feature both natural transitions and a far more expansive dynamic range. To this end, we introduce iMontage, a unified framework designed to repurpose a powerful video model into an all-in-one image generator. The framework consumes and produces variable-length image sets, unifying a wide array of image generation and editing tasks. To achieve this, we propose an elegant and minimally invasive adaptation strategy, complemented by a tailored data curation process and training paradigm. This approach allows the model to acquire broad image manipulation capabilities without corrupting its invaluable original motion priors. iMontage excels across several mainstream many-in-many-out tasks, not only maintaining strong cross-image contextual consistency but also generating scenes with extraordinary dynamics that surpass conventional scopes. Find our homepage at: https://kr1sjfu.github.io/iMontage-web/.
comment: Our homepage: https://kr1sjfu.github.io/iMontage-web/
♻ ☆ Prediction of Distant Metastasis in Head and Neck Cancer Patients Using Tumor and Peritumoral Multi-Modal Deep Learning
Although the combined treatment of surgery, radiotherapy, chemotherapy, and emerging target therapy has significantly improved the outcomes of patients with head and neck cancer, distant metastasis remains the leading cause of treatment failure. In this study, we propose a deep learning-based multimodal framework integrating CT imaging, radiomics, and clinical data to predict metastasis risk in HNSCC. A total of 1497 patients were retrospectively analyzed. Tumor and organ masks were generated from pretreatment CT scans, from which a 3D Swin Transformer extracted deep imaging features, while 1562 radiomics features were reduced to 36 via correlation filtering and random forest selection. Clinical data (age, sex, smoking, and alcohol status) were encoded and fused with imaging features, and the multimodal representation was fed into a fully connected network for prediction. Five-fold cross-validation was used to assess performance via AUC, accuracy, sensitivity, and specificity. The multimodal model outperformed all single-modality baselines. The deep learning module alone achieved an AUC of 0.715, whereas multimodal fusion significantly improved performance (AUC = 0.803, ACC = 0.752, SEN = 0.730, SPE = 0.758). Stratified analyses confirmed good generalizability across tumor subtypes. Ablation experiments demonstrated complementary contributions from each modality, and the 3D Swin Transformer provided more robust representations than conventional architectures. This multimodal deep learning model enables accurate, non-invasive metastasis prediction in HNSCC and shows strong potential for individualized treatment planning.
comment: 23 pages, 6 figures, 7 tables. Nuo Tong and Changhao Liu contributed equally. Corresponding Authors: Shuiping Gou and Mei Shi
♻ ☆ Fast Multi-view Consistent 3D Editing with Video Priors AAAI2026
Text-driven 3D editing enables user-friendly 3D object or scene editing with text instructions. Due to the lack of multi-view consistency priors, existing methods typically resort to employing 2D generation or editing models to process each view individually, followed by iterative 2D-3D-2D updating. However, these methods are not only time-consuming but also prone to over-smoothed results because the different editing signals gathered from different views are averaged during the iterative process. In this paper, we propose generative Video Prior based 3D Editing (ViP3DE) to employ the temporal consistency priors from pre-trained video generation models for multi-view consistent 3D editing in a single forward pass. Our key insight is to condition the video generation model on a single edited view to generate other consistent edited views for 3D updating directly, thereby bypassing the iterative editing paradigm. Since 3D updating requires edited views to be paired with specific camera poses, we propose motion-preserved noise blending for the video model to generate edited views at predefined camera poses. In addition, we introduce geometry-aware denoising to further enhance multi-view consistency by integrating 3D geometric priors into video models. Extensive experiments demonstrate that our proposed ViP3DE can achieve high-quality 3D editing results even within a single forward pass, significantly outperforming existing methods in both editing quality and speed.
comment: accepted by AAAI2026
♻ ☆ VITA: Vision-to-Action Flow Matching Policy
Conventional flow matching and diffusion-based policies sample through iterative denoising from standard noise distributions (e.g., Gaussian), and require conditioning modules to repeatedly incorporate visual information during the generative process, incurring substantial time and memory overhead. To reduce the complexity, we develop VITA(VIsion-To-Action policy), a noise-free and conditioning-free flow matching policy learning framework that directly flows from visual representations to latent actions. Since the source of the flow is visually grounded, VITA eliminates the need of visual conditioning during generation. As expected, bridging vision and action is challenging, because actions are lower-dimensional, less structured, and sparser than visual representations; moreover, flow matching requires the source and target to have the same dimensionality. To overcome this, we introduce an action autoencoder that maps raw actions into a structured latent space aligned with visual latents, trained jointly with flow matching. To further prevent latent space collapse, we propose flow latent decoding, which anchors the latent generation process by backpropagating the action reconstruction loss through the flow matching ODE (ordinary differential equation) solving steps. We evaluate VITA on 9 simulation and 5 real-world tasks from ALOHA and Robomimic. VITA achieves 1.5x-2x faster inference compared to conventional methods with conditioning modules, while outperforming or matching state-of-the-art policies. Codes, datasets, and demos are available at our project page: https://ucd-dare.github.io/VITA/.
comment: Project page: https://ucd-dare.github.io/VITA/ Code: https://github.com/ucd-dare/VITA
♻ ☆ Capturing Context-Aware Route Choice Semantics for Trajectory Representation Learning
Trajectory representation learning (TRL) aims to encode raw trajectory data into low-dimensional embeddings for downstream tasks such as travel time estimation, mobility prediction, and trajectory similarity analysis. From a behavioral perspective, a trajectory reflects a sequence of route choices within an urban environment. However, most existing TRL methods ignore this underlying decision-making process and instead treat trajectories as static, passive spatiotemporal sequences, thereby limiting the semantic richness of the learned representations. To bridge this gap, we propose CORE, a TRL framework that integrates context-aware route choice semantics into trajectory embeddings. CORE first incorporates a multi-granular Environment Perception Module, which leverages large language models (LLMs) to distill environmental semantics from point of interest (POI) distributions, thereby constructing a context-enriched road network. Building upon this backbone, CORE employs a Route Choice Encoder with a mixture-of-experts (MoE) architecture, which captures route choice patterns by jointly leveraging the context-enriched road network and navigational factors. Finally, a Transformer encoder aggregates the route-choice-aware representations into a global trajectory embedding. Extensive experiments on 4 real-world datasets across 6 downstream tasks demonstrate that CORE consistently outperforms 12 state-of-the-art TRL methods, achieving an average improvement of 9.79% over the best-performing baseline. Our code is available at https://github.com/caoji2001/CORE.
♻ ☆ Self-Supervised One-Step Diffusion Refinement for Snapshot Compressive Imaging
Snapshot compressive imaging (SCI) captures multispectral images (MSIs) using a single coded two-dimensional (2-D) measurement, but reconstructing high-fidelity MSIs from these compressed inputs remains a fundamentally ill-posed challenge. While diffusion-based reconstruction methods have recently raised the bar for quality, they face critical limitations: a lack of large-scale MSI training data, adverse domain shifts from RGB-pretrained models, and inference inefficiencies due to multi-step sampling. These drawbacks restrict their practicality in real-world applications. In contrast to existing methods, which either follow costly iterative refinement or adapt subspace-based embeddings for diffusion models (e.g. DiffSCI, PSR-SCI), we introduce a fundamentally different paradigm: a self-supervised One-Step Diffusion (OSD) framework specifically designed for SCI. The key novelty lies in using a single-step diffusion refiner to correct an initial reconstruction, eliminating iterative denoising entirely while preserving generative quality. Moreover, we adopt a self-supervised equivariant learning strategy to train both the predictor and refiner directly from raw 2-D measurements, enabling generalization to unseen domains without the need for ground-truth MSI. To further address the challenge of limited MSI data, we design a band-selection-driven distillation strategy that transfers core generative priors from large-scale RGB datasets, effectively bridging the domain gap. Extensive experiments confirm that our approach sets a new benchmark, yielding PSNR gains of 3.44 dB, 1.61 dB, and 0.28 dB on the Harvard, NTIRE, and ICVL datasets, respectively, while reducing reconstruction time by 97.5%. This remarkable improvement in efficiency and adaptability makes our method a significant advancement in SCI reconstruction, combining both accuracy and practicality for real-world deployment.
Machine Learning 283
☆ EfficientFlow: Efficient Equivariant Flow Policy Learning for Embodied AI AAAI 2026
Generative modeling has recently shown remarkable promise for visuomotor policy learning, enabling flexible and expressive control across diverse embodied AI tasks. However, existing generative policies often struggle with data inefficiency, requiring large-scale demonstrations, and sampling inefficiency, incurring slow action generation during inference. We introduce EfficientFlow, a unified framework for efficient embodied AI with flow-based policy learning. To enhance data efficiency, we bring equivariance into flow matching. We theoretically prove that when using an isotropic Gaussian prior and an equivariant velocity prediction network, the resulting action distribution remains equivariant, leading to improved generalization and substantially reduced data demands. To accelerate sampling, we propose a novel acceleration regularization strategy. As direct computation of acceleration is intractable for marginal flow trajectories, we derive a novel surrogate loss that enables stable and scalable training using only conditional trajectories. Across a wide range of robotic manipulation benchmarks, the proposed algorithm achieves competitive or superior performance under limited data while offering dramatically faster inference. These results highlight EfficientFlow as a powerful and efficient paradigm for high-performance embodied AI.
comment: Accepted by AAAI 2026. Project Page: https://efficientflow.github.io/
☆ A Diffusion Model Framework for Maximum Entropy Reinforcement Learning
Diffusion models have achieved remarkable success in data-driven learning and in sampling from complex, unnormalized target distributions. Building on this progress, we reinterpret Maximum Entropy Reinforcement Learning (MaxEntRL) as a diffusion model-based sampling problem. We tackle this problem by minimizing the reverse Kullback-Leibler (KL) divergence between the diffusion policy and the optimal policy distribution using a tractable upper bound. By applying the policy gradient theorem to this objective, we derive a modified surrogate objective for MaxEntRL that incorporates diffusion dynamics in a principled way. This leads to simple diffusion-based variants of Soft Actor-Critic (SAC), Proximal Policy Optimization (PPO) and Wasserstein Policy Optimization (WPO), termed DiffSAC, DiffPPO and DiffWPO. All of these methods require only minor implementation changes to their base algorithm. We find that on standard continuous control benchmarks, DiffSAC, DiffPPO and DiffWPO achieve better returns and higher sample efficiency than SAC and PPO.
☆ Visual Sync: Multi-Camera Synchronization via Cross-View Object Motion NeurIPS 2025
Today, people can easily record memorable moments, ranging from concerts, sports events, lectures, family gatherings, and birthday parties with multiple consumer cameras. However, synchronizing these cross-camera streams remains challenging. Existing methods assume controlled settings, specific targets, manual correction, or costly hardware. We present VisualSync, an optimization framework based on multi-view dynamics that aligns unposed, unsynchronized videos at millisecond accuracy. Our key insight is that any moving 3D point, when co-visible in two cameras, obeys epipolar constraints once properly synchronized. To exploit this, VisualSync leverages off-the-shelf 3D reconstruction, feature matching, and dense tracking to extract tracklets, relative poses, and cross-view correspondences. It then jointly minimizes the epipolar error to estimate each camera's time offset. Experiments on four diverse, challenging datasets show that VisualSync outperforms baseline methods, achieving an median synchronization error below 50 ms.
comment: Accepted to NeurIPS 2025. Project page: https://stevenlsw.github.io/visualsync/
☆ Improved Mean Flows: On the Challenges of Fastforward Generative Models
MeanFlow (MF) has recently been established as a framework for one-step generative modeling. However, its ``fastforward'' nature introduces key challenges in both the training objective and the guidance mechanism. First, the original MF's training target depends not only on the underlying ground-truth fields but also on the network itself. To address this issue, we recast the objective as a loss on the instantaneous velocity $v$, re-parameterized by a network that predicts the average velocity $u$. Our reformulation yields a more standard regression problem and improves the training stability. Second, the original MF fixes the classifier-free guidance scale during training, which sacrifices flexibility. We tackle this issue by formulating guidance as explicit conditioning variables, thereby retaining flexibility at test time. The diverse conditions are processed through in-context conditioning, which reduces model size and benefits performance. Overall, our $\textbf{improved MeanFlow}$ ($\textbf{iMF}$) method, trained entirely from scratch, achieves $\textbf{1.72}$ FID with a single function evaluation (1-NFE) on ImageNet 256$\times$256. iMF substantially outperforms prior methods of this kind and closes the gap with multi-step methods while using no distillation. We hope our work will further advance fastforward generative modeling as a stand-alone paradigm.
comment: Technical report
☆ Four Over Six: More Accurate NVFP4 Quantization with Adaptive Block Scaling
As large language models have grown larger, low-precision numerical formats such as NVFP4 have become increasingly popular due to the speed and memory benefits they provide. However, to accelerate computation with NVFP4, all matrix multiplication operands--weights and activations in the forward pass, and weights, activations, and gradients in the backward pass--must be quantized to NVFP4, often leading to divergence during training and performance degradation during inference. NVFP4 by evaluating multiple potential scale factors for each block of values. To address this issue, in this work we introduce Four Over Six (4/6), a modification to the NVFP4 quantization algorithm that evaluates two potential scale factors for each block of values. Unlike integer formats, floating-point formats such as FP4 have the most quantization error on near-maximal values in each block, which we find to be primarily responsible for downstream performance degradation. We find that for some blocks, scaling to smaller FP4 values makes the distribution of representable values more uniform, improving representation of near-maximal values. Importantly, 4/6 can be implemented efficiently on NVIDIA Blackwell GPUs, making it viable to use while training LLMs with NVFP4. In pre-training experiments with transformer and hybrid model architectures, we find that 4/6 prevents divergence in several cases, bringing training loss significantly closer to BF16 compared to models trained with current state-of-the-art NVFP4 training recipes. We also find that 4/6 can be easily incorporated into many different post-training quantization methods and generally improves downstream accuracy. We hope this inspires future work in training and deploying models with NVFP4.
comment: 10 pages, 5 figures
☆ AlignSAE: Concept-Aligned Sparse Autoencoders
Large Language Models (LLMs) encode factual knowledge within hidden parametric spaces that are difficult to inspect or control. While Sparse Autoencoders (SAEs) can decompose hidden activations into more fine-grained, interpretable features, they often struggle to reliably align these features with human-defined concepts, resulting in entangled and distributed feature representations. To address this, we introduce AlignSAE, a method that aligns SAE features with a defined ontology through a "pre-train, then post-train" curriculum. After an initial unsupervised training phase, we apply supervised post-training to bind specific concepts to dedicated latent slots while preserving the remaining capacity for general reconstruction. This separation creates an interpretable interface where specific relations can be inspected and controlled without interference from unrelated features. Empirical results demonstrate that AlignSAE enables precise causal interventions, such as reliable "concept swaps", by targeting single, semantically aligned slots.
comment: 20 pages, 7 figures, 5 tables
☆ Learning Sim-to-Real Humanoid Locomotion in 15 Minutes
Massively parallel simulation has reduced reinforcement learning (RL) training time for robots from days to minutes. However, achieving fast and reliable sim-to-real RL for humanoid control remains difficult due to the challenges introduced by factors such as high dimensionality and domain randomization. In this work, we introduce a simple and practical recipe based on off-policy RL algorithms, i.e., FastSAC and FastTD3, that enables rapid training of humanoid locomotion policies in just 15 minutes with a single RTX 4090 GPU. Our simple recipe stabilizes off-policy RL algorithms at massive scale with thousands of parallel environments through carefully tuned design choices and minimalist reward functions. We demonstrate rapid end-to-end learning of humanoid locomotion controllers on Unitree G1 and Booster T1 robots under strong domain randomization, e.g., randomized dynamics, rough terrain, and push perturbations, as well as fast training of whole-body human-motion tracking policies. We provide videos and open-source implementation at: https://younggyo.me/fastsac-humanoid.
comment: Project website: https://younggyo.me/fastsac-humanoid
☆ RoaD: Rollouts as Demonstrations for Closed-Loop Supervised Fine-Tuning of Autonomous Driving Policies
Autonomous driving policies are typically trained via open-loop behavior cloning of human demonstrations. However, such policies suffer from covariate shift when deployed in closed loop, leading to compounding errors. We introduce Rollouts as Demonstrations (RoaD), a simple and efficient method to mitigate covariate shift by leveraging the policy's own closed-loop rollouts as additional training data. During rollout generation, RoaD incorporates expert guidance to bias trajectories toward high-quality behavior, producing informative yet realistic demonstrations for fine-tuning. This approach enables robust closed-loop adaptation with orders of magnitude less data than reinforcement learning, and avoids restrictive assumptions of prior closed-loop supervised fine-tuning (CL-SFT) methods, allowing broader applications domains including end-to-end driving. We demonstrate the effectiveness of RoaD on WOSAC, a large-scale traffic simulation benchmark, where it performs similar or better than the prior CL-SFT method; and in AlpaSim, a high-fidelity neural reconstruction-based simulator for end-to-end driving, where it improves driving score by 41\% and reduces collisions by 54\%.
comment: Preprint
☆ Forecasting in Offline Reinforcement Learning for Non-stationary Environments NeurIPS 2025
Offline Reinforcement Learning (RL) provides a promising avenue for training policies from pre-collected datasets when gathering additional interaction data is infeasible. However, existing offline RL methods often assume stationarity or only consider synthetic perturbations at test time, assumptions that often fail in real-world scenarios characterized by abrupt, time-varying offsets. These offsets can lead to partial observability, causing agents to misperceive their true state and degrade performance. To overcome this challenge, we introduce Forecasting in Non-stationary Offline RL (FORL), a framework that unifies (i) conditional diffusion-based candidate state generation, trained without presupposing any specific pattern of future non-stationarity, and (ii) zero-shot time-series foundation models. FORL targets environments prone to unexpected, potentially non-Markovian offsets, requiring robust agent performance from the onset of each episode. Empirical evaluations on offline RL benchmarks, augmented with real-world time-series data to simulate realistic non-stationarity, demonstrate that FORL consistently improves performance compared to competitive baselines. By integrating zero-shot forecasting with the agent's experience, we aim to bridge the gap between offline RL and the complexities of real-world, non-stationary environments.
comment: The Thirty-Ninth Annual Conference on Neural Information Processing Systems, NeurIPS 2025
☆ A robust generalizable device-agnostic deep learning model for sleep-wake determination from triaxial wrist accelerometry
Study Objectives: Wrist accelerometry is widely used for inferring sleep-wake state. Previous works demonstrated poor wake detection, without cross-device generalizability and validation in different age range and sleep disorders. We developed a robust deep learning model for to detect sleep-wakefulness from triaxial accelerometry and evaluated its validity across three devices and in a large adult population spanning a wide range of ages with and without sleep disorders. Methods: We collected wrist accelerometry simultaneous to polysomnography (PSG) in 453 adults undergoing clinical sleep testing at a tertiary care sleep laboratory, using three devices. We extracted features in 30-second epochs and trained a 3-class model to detect wake, sleep, and sleep with arousals, which was then collapsed into wake vs. sleep using a decision tree. To enhance wake detection, the model was specifically trained on randomly selected subjects with low sleep efficiency and/or high arousal index from one device recording and then tested on the remaining recordings. Results: The model showed high performance with F1 Score of 0.86, sensitivity (sleep) of 0.87, and specificity (wakefulness) of 0.78, and significant and moderate correlation to PSG in predicting total sleep time (R=0.69) and sleep efficiency (R=0.63). Model performance was robust to the presence of sleep disorders, including sleep apnea and periodic limb movements in sleep, and was consistent across all three models of accelerometer. Conclusions: We present a deep model to detect sleep-wakefulness from actigraphy in adults with relative robustness to the presence of sleep disorders and generalizability across diverse commonly used wrist accelerometers.
comment: 27 pages, 5 figures, 5 tables
☆ ECO: Energy-Constrained Operator Learning for Chaotic Dynamics with Boundedness Guarantees
Chaos is a fundamental feature of many complex dynamical systems, including weather systems and fluid turbulence. These systems are inherently difficult to predict due to their extreme sensitivity to initial conditions. Many chaotic systems are dissipative and ergodic, motivating data-driven models that aim to learn invariant statistical properties over long time horizons. While recent models have shown empirical success in preserving invariant statistics, they are prone to generating unbounded predictions, which prevent meaningful statistics evaluation. To overcome this, we introduce the Energy-Constrained Operator (ECO) that simultaneously learns the system dynamics while enforcing boundedness in predictions. We leverage concepts from control theory to develop algebraic conditions based on a learnable energy function, ensuring the learned dynamics is dissipative. ECO enforces these algebraic conditions through an efficient closed-form quadratic projection layer, which provides provable trajectory boundedness. To our knowledge, this is the first work establishing such formal guarantees for data-driven chaotic dynamics models. Additionally, the learned invariant level set provides an outer estimate for the strange attractor, a complex structure that is computationally intractable to characterize. We demonstrate empirical success in ECO's ability to generate stable long-horizon forecasts, capturing invariant statistics on systems governed by chaotic PDEs, including the Kuramoto--Sivashinsky and the Navier--Stokes equations.
☆ Feature-Based Semantics-Aware Scheduling for Energy-Harvesting Federated Learning
Federated Learning (FL) on resource-constrained edge devices faces a critical challenge: The computational energy required for training Deep Neural Networks (DNNs) often dominates communication costs. However, most existing Energy-Harvesting FL (EHFL) strategies fail to account for this reality, resulting in wasted energy due to redundant local computations. For efficient and proactive resource management, algorithms that predict local update contributions must be devised. We propose a lightweight client scheduling framework using the Version Age of Information (VAoI), a semantics-aware metric that quantifies update timeliness and significance. Crucially, we overcome VAoI's typical prohibitive computational cost, which requires statistical distance over the entire parameter space, by introducing a feature-based proxy. This proxy estimates model redundancy using intermediate-layer extraction from a single forward pass, dramatically reducing computational complexity. Experiments conducted under extreme non-IID data distributions and scarce energy availability demonstrate superior learning performance while achieving energy reduction compared to existing baseline selection policies. Our framework establishes semantics-aware scheduling as a practical and vital solution for EHFL in realistic scenarios where training costs dominate transmission costs.
comment: This paper is currently under review for presentation at a peer-reviewed conference
☆ Low-Rank Prehab: Preparing Neural Networks for SVD Compression
Low-rank approximation methods such as singular value decomposition (SVD) and its variants (e.g., Fisher-weighted SVD, Activation SVD) have recently emerged as effective tools for neural network compression. In this setting, decomposition acts as a "surgical" intervention, followed by fine-tuning that serves as "rehab" to recover accuracy. Inspired by prehabilitation in surgery, we introduce a pre-compression fine-tuning stage, Low-Rank Prehab, that explicitly encourages low-rank structure in weight matrices while preserving task performance. By conditioning the model before SVD, Prehab steers weights toward spectrally compact regions of the parameter space, enabling smoother low-rank approximation and improved recovery. Experiments on large language models (LLMs) and other Transformer-based architectures, including Vision Transformers (ViTs), show that Prehab substantially reduces the immediate accuracy drop after compression and consistently improves post-finetuning performance. Across a wide range of compression ratios, our method outperforms state-of-the-art SVD-based techniques such as SVD-LLM, highlighting the importance of preparing models for compression rather than only improving the compression and recovery stages. Source code is available at https://github.com/niqretnuh/PREHAB-SVD
☆ KV Pareto: Systems-Level Optimization of KV Cache and Model Compression for Long Context Inference
Long-context Large Language Models (LLMs) face significant memory bottlenecks during inference due to the linear growth of key-value (KV) cache with sequence length. While individual optimization techniques like KV cache quantization, chunked prefill, and model weight quantization have shown promise, their joint effects and optimal configurations for edge deployment remain underexplored. We introduce KV Pareto, a systems-level framework that systematically maps the trade-off frontier between total memory consumption and task accuracy across these three complementary optimization techniques. Our framework evaluates multiple LLM architectures (Qwen, Llama, Mistral) with varying KV quantization schemes (int2/4/8, mixed-precision), granularities (per-token, per-tensor, per-block), and 4-bit weight quantization via AWQ. Our framework identifies model-specific Pareto-optimal configurations that achieve 68-78% total memory reduction with minimal (1-3%) accuracy degradation on long-context tasks. We additionally verify the selected frontiers on additional benchmarks of Needle-in-a-Haystack, GSM8k and MMLU as well as extended context lengths of up to 128k to demonstrate the practical need of joint optimization for efficient LLM inference.
☆ GrndCtrl: Grounding World Models via Self-Supervised Reward Alignment
Recent advances in video world modeling have enabled large-scale generative models to simulate embodied environments with high visual fidelity, providing strong priors for prediction, planning, and control. Yet, despite their realism, these models often lack geometric grounding, limiting their use in navigation tasks that require spatial coherence and long-horizon stability. We introduce Reinforcement Learning with World Grounding (RLWG), a self-supervised post-training framework that aligns pretrained world models with a physically verifiable structure through geometric and perceptual rewards. Analogous to reinforcement learning from verifiable feedback (RLVR) in language models, RLWG can use multiple rewards that measure pose cycle-consistency, depth reprojection, and temporal coherence. We instantiate this framework with GrndCtrl, a reward-aligned adaptation method based on Group Relative Policy Optimization (GRPO), yielding world models that maintain stable trajectories, consistent geometry, and reliable rollouts for embodied navigation. Like post-training alignment in large language models, GrndCtrl leverages verifiable rewards to bridge generative pretraining and grounded behavior, achieving superior spatial coherence and navigation stability over supervised fine-tuning in outdoor environments.
Agentic Policy Optimization via Instruction-Policy Co-Evolution
Reinforcement Learning with Verifiable Rewards (RLVR) has advanced the reasoning capability of large language models (LLMs), enabling autonomous agents that can conduct effective multi-turn and tool-integrated reasoning. While instructions serve as the primary protocol for defining agents, RLVR typically relies on static and manually designed instructions. However, those instructions may be suboptimal for the base model, and the optimal instruction may change as the agent's policy improves and explores the interaction with the environment. To bridge the gap, we introduce INSPO, a novel Instruction-Policy co-evolution framework that integrates instruction optimization as a dynamic component of the reinforcement learning (RL) loop. INSPO maintains a dynamic population of instruction candidates that are sampled with questions, where reward signals in RL loops are automatically attributed to each instruction, and low performers are periodically pruned. New instructions are generated and verified through an on-policy reflection mechanism, where an LLM-based optimizer analyzes past experience from a replay buffer and evolves more effective strategies given the current policy. We conduct extensive experiments on multi-turn retrieval and reasoning tasks, demonstrating that INSPO substantially outperforms strong baselines relying on static instructions. INSPO discovers innovative instructions that guide the agent toward more strategic reasoning paths, achieving substantial performance gains with only a marginal increase in computational overhead.
comment: 10 pages, 3 figures, 2 tables (18 pages including references and appendices)
☆ SVRG and Beyond via Posterior Correction
Stochastic Variance Reduced Gradient (SVRG) and its variants aim to speed-up training by using gradient corrections, but have seen limited success in deep learning. Here, we show surprising new foundational connections of SVRG to a recently proposed Bayesian method called posterior correction. Specifically, we show that SVRG is recovered as a special case of posterior correction over the isotropic-Gaussian family, while novel extensions are automatically obtained by using more flexible exponential families. We derive two new SVRG variants by using Gaussian families: First, a Newton-like variant that employs novel Hessian corrections, and second, an Adam-like extension that improves pretraining and finetuning of Transformer language models. This is the first work to connect SVRG to Bayes and use it to boost variational training for deep networks.
comment: Preprint. Under review
☆ Real-World Robot Control by Deep Active Inference With a Temporally Hierarchical World Model
Robots in uncertain real-world environments must perform both goal-directed and exploratory actions. However, most deep learning-based control methods neglect exploration and struggle under uncertainty. To address this, we adopt deep active inference, a framework that accounts for human goal-directed and exploratory actions. Yet, conventional deep active inference approaches face challenges due to limited environmental representation capacity and high computational cost in action selection. We propose a novel deep active inference framework that consists of a world model, an action model, and an abstract world model. The world model encodes environmental dynamics into hidden state representations at slow and fast timescales. The action model compresses action sequences into abstract actions using vector quantization, and the abstract world model predicts future slow states conditioned on the abstract action, enabling low-cost action selection. We evaluate the framework on object-manipulation tasks with a real-world robot. Results show that it achieves high success rates across diverse manipulation tasks and switches between goal-directed and exploratory actions in uncertain settings, while making action selection computationally tractable. These findings highlight the importance of modeling multiple timescale dynamics and abstracting actions and state transitions.
comment: Accepted for publication in IEEE Robotics and Automation Letters (RA-L)
☆ A Footprint-Aware, High-Resolution Approach for Carbon Flux Prediction Across Diverse Ecosystems
Natural climate solutions (NCS) offer an approach to mitigating carbon dioxide (CO2) emissions. However, monitoring the carbon drawdown of ecosystems over large geographic areas remains challenging. Eddy-flux covariance towers provide ground truth for predictive 'upscaling' models derived from satellite products, but many satellites now produce measurements on spatial scales smaller than a flux tower's footprint. We introduce Footprint-Aware Regression (FAR), a first-of-its-kind, deep-learning framework that simultaneously predicts spatial footprints and pixel-level (30 m scale) estimates of carbon flux. FAR is trained on our AMERI-FAR25 dataset which combines 439 site years of tower data with corresponding Landsat scenes. Our model produces high-resolution predictions and achieves R2 = 0.78 when predicting monthly net ecosystem exchange on test sites from a variety of ecosystems.
comment: 29 pages, 7 Figuers
☆ Delays in Spiking Neural Networks: A State Space Model Approach
Spiking neural networks (SNNs) are biologically inspired, event-driven models that are suitable for processing temporal data and offer energy-efficient computation when implemented on neuromorphic hardware. In SNNs, richer neuronal dynamic allows capturing more complex temporal dependencies, with delays playing a crucial role by allowing past inputs to directly influence present spiking behavior. We propose a general framework for incorporating delays into SNNs through additional state variables. The proposed mechanism enables each neuron to access a finite temporal input history. The framework is agnostic to neuron models and hence can be seamlessly integrated into standard spiking neuron models such as LIF and adLIF. We analyze how the duration of the delays and the learnable parameters associated with them affect the performance. We investigate the trade-offs in the network architecture due to additional state variables introduced by the delay mechanism. Experiments on the Spiking Heidelberg Digits (SHD) dataset show that the proposed mechanism matches the performance of existing delay-based SNNs while remaining computationally efficient. Moreover, the results illustrate that the incorporation of delays may substantially improve performance in smaller networks.
☆ Provably Safe Model Updates
Safety-critical environments are inherently dynamic. Distribution shifts, emerging vulnerabilities, and evolving requirements demand continuous updates to machine learning models. Yet even benign parameter updates can have unintended consequences, such as catastrophic forgetting in classical models or alignment drift in foundation models. Existing heuristic approaches (e.g., regularization, parameter isolation) can mitigate these effects but cannot certify that updated models continue to satisfy required performance specifications. We address this problem by introducing a framework for provably safe model updates. Our approach first formalizes the problem as computing the largest locally invariant domain (LID): a connected region in parameter space where all points are certified to satisfy a given specification. While exact maximal LID computation is intractable, we show that relaxing the problem to parameterized abstract domains (orthotopes, zonotopes) yields a tractable primal-dual formulation. This enables efficient certification of updates - independent of the data or algorithm used - by projecting them onto the safe domain. Our formulation further allows computation of multiple approximately optimal LIDs, incorporation of regularization-inspired biases, and use of lookahead data buffers. Across continual learning and foundation model fine-tuning benchmarks, our method matches or exceeds heuristic baselines for avoiding forgetting while providing formal safety guarantees.
comment: 12 pages, 9 figures, submitted to IEEE SaTML 2026
☆ Elastic Weight Consolidation for Knowledge Graph Continual Learning: An Empirical Evaluation NeurIPS 2025
Knowledge graphs (KGs) require continual updates as new information emerges, but neural embedding models suffer from catastrophic forgetting when learning new tasks sequentially. We evaluate Elastic Weight Consolidation (EWC), a regularization-based continual learning method, on KG link prediction using TransE embeddings on FB15k-237. Across multiple experiments with five random seeds, we find that EWC reduces catastrophic forgetting from 12.62% to 6.85%, a 45.7% reduction compared to naive sequential training. We observe that the task partitioning strategy affects the magnitude of forgetting: relation-based partitioning (grouping triples by relation type) exhibits 9.8 percentage points higher forgetting than randomly partitioned tasks (12.62% vs 2.81%), suggesting that task construction influences evaluation outcomes. While focused on a single embedding model and dataset, our results demonstrate that EWC effectively mitigates catastrophic forgetting in KG continual learning and highlight the importance of evaluation protocol design.
comment: Accepted to NORA Workshop at NeurIPS 2025
☆ Domain-Decomposed Graph Neural Network Surrogate Modeling for Ice Sheets
Accurate yet efficient surrogate models are essential for large-scale simulations of partial differential equations (PDEs), particularly for uncertainty quantification (UQ) tasks that demand hundreds or thousands of evaluations. We develop a physics-inspired graph neural network (GNN) surrogate that operates directly on unstructured meshes and leverages the flexibility of graph attention. To improve both training efficiency and generalization properties of the model, we introduce a domain decomposition (DD) strategy that partitions the mesh into subdomains, trains local GNN surrogates in parallel, and aggregates their predictions. We then employ transfer learning to fine-tune models across subdomains, accelerating training and improving accuracy in data-limited settings. Applied to ice sheet simulations, our approach accurately predicts full-field velocities on high-resolution meshes, substantially reduces training time relative to training a single global surrogate model, and provides a ripe foundation for UQ objectives. Our results demonstrate that graph-based DD, combined with transfer learning, provides a scalable and reliable pathway for training GNN surrogates on massive PDE-governed systems, with broad potential for application beyond ice sheet dynamics.
☆ New Spiking Architecture for Multi-Modal Decision-Making in Autonomous Vehicles
This work proposes an end-to-end multi-modal reinforcement learning framework for high-level decision-making in autonomous vehicles. The framework integrates heterogeneous sensory input, including camera images, LiDAR point clouds, and vehicle heading information, through a cross-attention transformer-based perception module. Although transformers have become the backbone of modern multi-modal architectures, their high computational cost limits their deployment in resource-constrained edge environments. To overcome this challenge, we propose a spiking temporal-aware transformer-like architecture that uses ternary spiking neurons for computationally efficient multi-modal fusion. Comprehensive evaluations across multiple tasks in the Highway Environment demonstrate the effectiveness and efficiency of the proposed approach for real-time autonomous decision-making.
☆ Unifying Sign and Magnitude for Optimizing Deep Vision Networks via ThermoLion
The training of deep vision models is fundamentally a signal recovery problem amidst high-dimensional stochastic noise. Current optimization paradigms impose a static compromise on information channel capacity. For instance, magnitude-based methods, such as AdamW, operate on the assumption that gradient norms are high-fidelity curvature signals. While this allows for precision in smooth regimes, it leads to catastrophic noise amplification when applied to rugged, non-convex landscapes. Conversely, sign-based methods (e.g., Lion) perform a radical 1-bit quantization of the gradient, which aims to provide robust regularization at the cost of discarding fine-grained descent information. We propose that optimal convergence requires neither static prior, but rather a dynamic modulation of the update bitrate. We introduce \textbf{ThermoLion}, a vision-centric framework that utilizes local Signal-to-Noise Ratio (SNR) gating to autonomously transition parameters between a "low-bit" exploration phase and a "high-precision" exploitation phase. Furthermore, we introduce a Momentum Alignment mechanism that detects constructive interference between historical drift and instantaneous gradients to accelerate convergence during stable trajectories. Empirical benchmarks across 12 diverse vision datasets (including CIFAR, SVHN, and GTSRB) demonstrate that ThermoLion serves as a hyperparameter-free generalist, surpassing both AdamW and Lion in convergence speed and terminal accuracy without architecture-specific tuning.
☆ The Mean-Field Dynamics of Transformers
We develop a mathematical framework that interprets Transformer attention as an interacting particle system and studies its continuum (mean-field) limits. By idealizing attention continuous on the sphere, we connect Transformer dynamics to Wasserstein gradient flows, synchronization models (Kuramoto), and mean-shift clustering. Central to our results is a global clustering phenomenon whereby tokens cluster asymptotically after long metastable states where they are arranged into multiple clusters. We further analyze a tractable equiangular reduction to obtain exact clustering rates, show how commonly used normalization schemes alter contraction speeds, and identify a phase transition for long-context attention. The results highlight both the mechanisms that drive representation collapse and the regimes that preserve expressive, multi-cluster structure in deep attention architectures.
comment: to appear as Proceedings of the ICM2026, Philadelphia, USA
☆ Mitigating Gender Bias in Depression Detection via Counterfactual Inference
Audio-based depression detection models have demonstrated promising performance but often suffer from gender bias due to imbalanced training data. Epidemiological statistics show a higher prevalence of depression in females, leading models to learn spurious correlations between gender and depression. Consequently, models tend to over-diagnose female patients while underperforming on male patients, raising significant fairness concerns. To address this, we propose a novel Counterfactual Debiasing Framework grounded in causal inference. We construct a causal graph to model the decision-making process and identify gender bias as the direct causal effect of gender on the prediction. During inference, we employ counterfactual inference to estimate and subtract this direct effect, ensuring the model relies primarily on authentic acoustic pathological features. Extensive experiments on the DAIC-WOZ dataset using two advanced acoustic backbones demonstrate that our framework not only significantly reduces gender bias but also improves overall detection performance compared to existing debiasing strategies.
☆ Deconstructing Generative Diversity: An Information Bottleneck Analysis of Discrete Latent Generative Models
Generative diversity varies significantly across discrete latent generative models such as AR, MIM, and Diffusion. We propose a diagnostic framework, grounded in Information Bottleneck (IB) theory, to analyze the underlying strategies resolving this behavior. The framework models generation as a conflict between a 'Compression Pressure' - a drive to minimize overall codebook entropy - and a 'Diversity Pressure' - a drive to maximize conditional entropy given an input. We further decompose this diversity into two primary sources: 'Path Diversity', representing the choice of high-level generative strategies, and 'Execution Diversity', the randomness in executing a chosen strategy. To make this decomposition operational, we introduce three zero-shot, inference-time interventions that directly perturb the latent generative process and reveal how models allocate and express diversity. Application of this probe-based framework to representative AR, MIM, and Diffusion systems reveals three distinct strategies: "Diversity-Prioritized" (MIM), "Compression-Prioritized" (AR), and "Decoupled" (Diffusion). Our analysis provides a principled explanation for their behavioral differences and informs a novel inference-time diversity enhancement technique.
☆ InnoGym: Benchmarking the Innovation Potential of AI Agents
LLMs and Agents have achieved impressive progress in code generation, mathematical reasoning, and scientific discovery. However, existing benchmarks primarily measure correctness, overlooking the diversity of methods behind solutions. True innovation depends not only on producing correct answers but also on the originality of the approach. We present InnoGym, the first benchmark and framework designed to systematically evaluate the innovation potential of AI agents. InnoGym introduces two complementary metrics: performance gain, which measures improvement over the best-known solutions, and novelty, which captures methodological differences from prior approaches. The benchmark includes 18 carefully curated tasks from real-world engineering and scientific domains, each standardized through resource filtering, evaluator validation, and solution collection. In addition, we provide iGym, a unified execution environment for reproducible and long-horizon evaluations. Extensive experiments show that while some agents produce novel approaches, their lack of robustness limits performance gains. These results highlight a key gap between creativity and effectiveness, underscoring the need for benchmarks that evaluate both.
comment: Work in progress
☆ Dimension-free error estimate for diffusion model and optimal scheduling
Diffusion generative models have emerged as powerful tools for producing synthetic data from an empirically observed distribution. A common approach involves simulating the time-reversal of an Ornstein-Uhlenbeck (OU) process initialized at the true data distribution. Since the score function associated with the OU process is typically unknown, it is approximated using a trained neural network. This approximation, along with finite time simulation, time discretization and statistical approximation, introduce several sources of error whose impact on the generated samples must be carefully understood. Previous analyses have quantified the error between the generated and the true data distributions in terms of Wasserstein distance or Kullback-Leibler (KL) divergence. However, both metrics present limitations: KL divergence requires absolute continuity between distributions, while Wasserstein distance, though more general, leads to error bounds that scale poorly with dimension, rendering them impractical in high-dimensional settings. In this work, we derive an explicit, dimension-free bound on the discrepancy between the generated and the true data distributions. The bound is expressed in terms of a smooth test functional with bounded first and second derivatives. The key novelty lies in the use of this weaker, functional metric to obtain dimension-independent guarantees, at the cost of higher regularity on the test functions. As an application, we formulate and solve a variational problem to minimize the time-discretization error, leading to the derivation of an optimal time-scheduling strategy for the reverse-time diffusion. Interestingly, this scheduler has appeared previously in the literature in a different context; our analysis provides a new justification for its optimality, now grounded in minimizing the discretization bias in generative sampling.
☆ Decision Tree Embedding by Leaf-Means
Decision trees and random forest remain highly competitive for classification on medium-sized, standard datasets due to their robustness, minimal preprocessing requirements, and interpretability. However, a single tree suffers from high estimation variance, while large ensembles reduce this variance at the cost of substantial computational overhead and diminished interpretability. In this paper, we propose Decision Tree Embedding (DTE), a fast and effective method that leverages the leaf partitions of a trained classification tree to construct an interpretable feature representation. By using the sample means within each leaf region as anchor points, DTE maps inputs into an embedding space defined by the tree's partition structure, effectively circumventing the high variance inherent in decision-tree splitting rules. We further introduce an ensemble extension based on additional bootstrap trees, and pair the resulting embedding with linear discriminant analysis for classification. We establish several population-level theoretical properties of DTE, including its preservation of conditional density under mild conditions and a characterization of the resulting classification error. Empirical studies on synthetic and real datasets demonstrate that DTE strikes a strong balance between accuracy and computational efficiency, outperforming or matching random forest and shallow neural networks while requiring only a fraction of their training time in most cases. Overall, the proposed DTE method can be viewed either as a scalable decision tree classifier that improves upon standard split rules, or as a neural network model whose weights are learned from tree-derived anchor points, achieving an intriguing integration of both paradigms.
comment: 9 pages
☆ Forget Less, Retain More: A Lightweight Regularizer for Rehearsal-Based Continual Learning
Deep neural networks suffer from catastrophic forgetting, where performance on previous tasks degrades after training on a new task. This issue arises due to the model's tendency to overwrite previously acquired knowledge with new information. We present a novel approach to address this challenge, focusing on the intersection of memory-based methods and regularization approaches. We formulate a regularization strategy, termed Information Maximization (IM) regularizer, for memory-based continual learning methods, which is based exclusively on the expected label distribution, thus making it class-agnostic. As a consequence, IM regularizer can be directly integrated into various rehearsal-based continual learning methods, reducing forgetting and favoring faster convergence. Our empirical validation shows that, across datasets and regardless of the number of tasks, our proposed regularization strategy consistently improves baseline performance at the expense of a minimal computational overhead. The lightweight nature of IM ensures that it remains a practical and scalable solution, making it applicable to real-world continual learning scenarios where efficiency is paramount. Finally, we demonstrate the data-agnostic nature of our regularizer by applying it to video data, which presents additional challenges due to its temporal structure and higher memory requirements. Despite the significant domain gap, our experiments show that IM regularizer also improves the performance of video continual learning methods.
☆ DeepCAVE: A Visualization and Analysis Tool for Automated Machine Learning
Hyperparameter optimization (HPO), as a central paradigm of AutoML, is crucial for leveraging the full potential of machine learning (ML) models; yet its complexity poses challenges in understanding and debugging the optimization process. We present DeepCAVE, a tool for interactive visualization and analysis, providing insights into HPO. Through an interactive dashboard, researchers, data scientists, and ML engineers can explore various aspects of the HPO process and identify issues, untouched potentials, and new insights about the ML model being tuned. By empowering users with actionable insights, DeepCAVE contributes to the interpretability of HPO and ML on a design level and aims to foster the development of more robust and efficient methodologies in the future.
☆ Much Ado About Noising: Dispelling the Myths of Generative Robotic Control
Generative models, like flows and diffusions, have recently emerged as popular and efficacious policy parameterizations in robotics. There has been much speculation as to the factors underlying their successes, ranging from capturing multi-modal action distribution to expressing more complex behaviors. In this work, we perform a comprehensive evaluation of popular generative control policies (GCPs) on common behavior cloning (BC) benchmarks. We find that GCPs do not owe their success to their ability to capture multi-modality or to express more complex observation-to-action mappings. Instead, we find that their advantage stems from iterative computation, as long as intermediate steps are supervised during training and this supervision is paired with a suitable level of stochasticity. As a validation of our findings, we show that a minimum iterative policy (MIP), a lightweight two-step regression-based policy, essentially matches the performance of flow GCPs, and often outperforms distilled shortcut models. Our results suggest that the distribution-fitting component of GCPs is less salient than commonly believed, and point toward new design spaces focusing solely on control performance. Project page: https://simchowitzlabpublic.github.io/much-ado-about-noising-project/
☆ GR-RL: Going Dexterous and Precise for Long-Horizon Robotic Manipulation
We present GR-RL, a robotic learning framework that turns a generalist vision-language-action (VLA) policy into a highly capable specialist for long-horizon dexterous manipulation. Assuming the optimality of human demonstrations is core to existing VLA policies. However, we claim that in highly dexterous and precise manipulation tasks, human demonstrations are noisy and suboptimal. GR-RL proposes a multi-stage training pipeline that filters, augments, and reinforces the demonstrations by reinforcement learning. First, GR-RL learns a vision-language-conditioned task progress, filters the demonstration trajectories, and only keeps the transitions that contribute positively to the progress. Specifically, we show that by directly applying offline RL with sparse reward, the resulting $Q$-values can be treated as a robust progress function. Next, we introduce morphological symmetry augmentation that greatly improves the generalization and performance of GR-RL. Lastly, to better align the VLA policy with its deployment behaviors for high-precision control, we perform online RL by learning a latent space noise predictor. With this pipeline, GR-RL is, to our knowledge, the first learning-based policy that can autonomously lace up a shoe by threading shoelaces through multiple eyelets with an 83.3% success rate, a task requiring long-horizon reasoning, millimeter-level precision, and compliant soft-body interaction. We hope GR-RL provides a step toward enabling generalist robot foundations models to specialize into reliable real-world experts.
☆ Who Judges the Judge? LLM Jury-on-Demand: Building Trustworthy LLM Evaluation Systems
As Large Language Models (LLMs) become integrated into high-stakes domains, there is a growing need for evaluation methods that are both scalable for real-time deployment and reliable for critical decision-making. While human evaluation is reliable, it is slow and costly. Single LLM judges are biased, and static juries lack adaptability. To overcome these limitations, we propose LLM Jury-on-Demand - a dynamic, learning-based framework for scalable and context-aware evaluation. Our method trains a set of reliability predictors to assess when LLM judges will agree with human experts, leveraging token distributions, embeddings, and structural input features. This enables a fully adaptive evaluation where, for each data point, an optimal jury of the most reliable judges is dynamically selected, and their scores are aggregated using their reliability as weights. Experiments on summarization and RAG benchmarks show that our dynamic jury system achieves significantly higher correlation with human judgment than both single-judge and static-jury baselines. These results highlight the promise of adaptive, learning-based juries for building scalable, more reliable and trustworthy evaluation systems for modern LLMs in high-stakes domains.
comment: 66 pages, 22 figures, 37 tables
☆ The Active and Noise-Tolerant Strategic Perceptron
We initiate the study of active learning algorithms for classifying strategic agents. Active learning is a well-established framework in machine learning in which the learner selectively queries labels, often achieving substantially higher accuracy and efficiency than classical supervised methods-especially in settings where labeling is costly or time-consuming, such as hiring, admissions, and loan decisions. Strategic classification, however, addresses scenarios where agents modify their features to obtain more favorable outcomes, resulting in observed data that is not truthful. Such manipulation introduces challenges beyond those in learning from clean data. Our goal is to design active and noise-tolerant algorithms that remain effective in strategic environments-algorithms that classify strategic agents accurately while issuing as few label requests as possible. The central difficulty is to simultaneously account for strategic manipulation and preserve the efficiency gains of active learning. Our main result is an algorithm for actively learning linear separators in the strategic setting that preserves the exponential improvement in label complexity over passive learning previously obtained only in the non-strategic case. Specifically, for data drawn uniformly from the unit sphere, we show that a modified version of the Active Perceptron algorithm [DKM05,YZ17] achieves excess error $ε$ using only $\tilde{O}(d \ln \frac{1}ε)$ label queries and incurs at most $\tilde{O}(d \ln \frac{1}ε)$ additional mistakes relative to the optimal classifier, even in the nonrealizable case, when a $\tildeΩ(ε)$ fraction of inputs have inconsistent labels with the optimal classifier. The algorithm is computationally efficient and, under these distributional assumptions, requires substantially fewer label queries than prior work on strategic Perceptron [ABBN21].
☆ Dual Randomized Smoothing: Beyond Global Noise Variance
Randomized Smoothing (RS) is a prominent technique for certifying the robustness of neural networks against adversarial perturbations. With RS, achieving high accuracy at small radii requires a small noise variance, while achieving high accuracy at large radii requires a large noise variance. However, the global noise variance used in the standard RS formulation leads to a fundamental limitation: there exists no global noise variance that simultaneously achieves strong performance at both small and large radii. To break through the global variance limitation, we propose a dual RS framework which enables input-dependent noise variances. To achieve that, we first prove that RS remains valid with input-dependent noise variances, provided the variance is locally constant around each input. Building on this result, we introduce two components which form our dual RS framework: (i) a variance estimator first predicts an optimal noise variance for each input, (ii) this estimated variance is then used by a standard RS classifier. The variance estimator is independently smoothed via RS to ensure local constancy, enabling flexible design. We also introduce training strategies to iteratively optimize the two components. Extensive experiments on CIFAR-10 show that our dual RS method provides strong performance for both small and large radii-unattainable with global noise variance-while incurring only a 60% computational overhead at inference. Moreover, it consistently outperforms prior input-dependent noise approaches across most radii, with particularly large gains at radii 0.5, 0.75, and 1.0, achieving relative improvements of 19%, 24%, and 21%, respectively. On ImageNet, dual RS remains effective across all radii. Additionally, the dual RS framework naturally provides a routing perspective for certified robustness, improving the accuracy-robustness trade-off with off-the-shelf expert RS models.
☆ How Does RL Post-training Induce Skill Composition? A Case Study on Countdown
While reinforcement learning (RL) successfully enhances reasoning in large language models, its role in fostering compositional generalization (the ability to synthesize novel skills from known components) is often conflated with mere length generalization. To this end, we study what RL post-training teaches about skill composition and how the structure of the composition affects the skill transfer. We focus on the Countdown task (given n numbers and a target, form an expression that evaluates to the target) and analyze model solutions as expression trees, where each subtree corresponds to a reusable subtask and thus can be viewed as a ``skill.'' Tracking tree shapes and their success rates over training, we find: (i) out-of-distribution (OOD) generalization to larger n and to unseen tree shapes, indicating compositional reuse of subtasks; (ii) a structure-dependent hierarchy of learnability -- models master shallow balanced trees (workload is balanced between subtasks) before deep unbalanced ones, with persistent fragility on right-heavy structures (even when the composition depth is the same as some left-heavy structures). Our diagnostic reveals what is learned, in what order, and where generalization fails, clarifying how RL-only post-training induces OOD generalization beyond what standard metrics such as pass@k reveal.
☆ On the Unreasonable Effectiveness of Last-layer Retraining
Last-layer retraining (LLR) methods -- wherein the last layer of a neural network is reinitialized and retrained on a held-out set following ERM training -- have garnered interest as an efficient approach to rectify dependence on spurious correlations and improve performance on minority groups. Surprisingly, LLR has been found to improve worst-group accuracy even when the held-out set is an imbalanced subset of the training set. We initially hypothesize that this ``unreasonable effectiveness'' of LLR is explained by its ability to mitigate neural collapse through the held-out set, resulting in the implicit bias of gradient descent benefiting robustness. Our empirical investigation does not support this hypothesis. Instead, we present strong evidence for an alternative hypothesis: that the success of LLR is primarily due to better group balance in the held-out set. We conclude by showing how the recent algorithms CB-LLR and AFR perform implicit group-balancing to elicit a robustness improvement.
☆ Weight Space Representation Learning with Neural Fields
In this work, we investigate the potential of weights to serve as effective representations, focusing on neural fields. Our key insight is that constraining the optimization space through a pre-trained base model and low-rank adaptation (LoRA) can induce structure in weight space. Across reconstruction, generation, and analysis tasks on 2D and 3D data, we find that multiplicative LoRA weights achieve high representation quality while exhibiting distinctiveness and semantic structure. When used with latent diffusion models, multiplicative LoRA weights enable higher-quality generation than existing weight-space methods.
comment: 12 pages body, 9 pages appendix
☆ Mofasa: A Step Change in Metal-Organic Framework Generation
Mofasa is an all-atom latent diffusion model with state-of-the-art performance for generating Metal-Organic Frameworks (MOFs). These are highly porous crystalline materials used to harvest water from desert air, capture carbon dioxide, store toxic gases and catalyse chemical reactions. In recognition of their value, the development of MOFs recently received a Nobel Prize in Chemistry. In many ways, MOFs are well-suited for exploiting generative models in chemistry: they are rationally-designable materials with a large combinatorial design space and strong structure-property couplings. And yet, to date, a high performance generative model has been lacking. To fill this gap, we introduce Mofasa, a general-purpose latent diffusion model that jointly samples positions, atom-types and lattice vectors for systems as large as 500 atoms. Mofasa avoids handcrafted assembly algorithms common in the literature, unlocking the simultaneous discovery of metal nodes, linkers and topologies. To help the scientific community build on our work, we release MofasaDB, an annotated library of hundreds of thousands of sampled MOF structures, along with a user-friendly web interface for search and discovery: https://mofux.ai/ .
☆ Multimodal Mixture-of-Experts for ISAC in Low-Altitude Wireless Networks
Integrated sensing and communication (ISAC) is a key enabler for low-altitude wireless networks (LAWNs), providing simultaneous environmental perception and data transmission in complex aerial scenarios. By combining heterogeneous sensing modalities such as visual, radar, lidar, and positional information, multimodal ISAC can improve both situational awareness and robustness of LAWNs. However, most existing multimodal fusion approaches use static fusion strategies that treat all modalities equally and cannot adapt to channel heterogeneity or time-varying modality reliability in dynamic low-altitude environments. To address this fundamental limitation, we propose a mixture-of-experts (MoE) framework for multimodal ISAC in LAWNs. Each modality is processed by a dedicated expert network, and a lightweight gating module adaptively assigns fusion weights according to the instantaneous informativeness and reliability of each modality. To improve scalability under the stringent energy constraints of aerial platforms, we further develop a sparse MoE variant that selectively activates only a subset of experts, thereby reducing computation overhead while preserving the benefits of adaptive fusion. Comprehensive simulations on three typical ISAC tasks in LAWNs demonstrate that the proposed frameworks consistently outperform conventional multimodal fusion baselines in terms of learning performance and training sample efficiency.
☆ SA-ADP: Sensitivity-Aware Adaptive Differential Privacy for Large Language Models
Despite advances in the use of large language models (LLMs) in downstream tasks, their ability to memorize information has raised privacy concerns. Therefore, protecting personally identifiable information (PII) during LLM training remains a fundamental challenge. Conventional methods like Differential Privacy-Stochastic Gradient Descent (DP-SGD) provide robust privacy protection via uniform noising, protecting PII regardless of its distinct sensitivity. This comes at the expense of the model's utility, leading to a trade-off. In this paper, we propose SA-ADP, a sensitivity-aware approach that allocates noise based on the sensitivity of individual PII. We evaluated our method on four datasets (ABCD, CUSTOMERSIM, Wikitext-2, and UNSW-NB15 ). Our results show that SA-ADP achieves results comparable to the baseline (No-DP) and the conventional DP-SGD. This means that our method did not degrade the model's utility while still maintaining strong privacy protection.
comment: It is a 5-page paper with 5 figures and 1 Table
☆ MSPT: Efficient Large-Scale Physical Modeling via Parallelized Multi-Scale Attention
A key scalability challenge in neural solvers for industrial-scale physics simulations is efficiently capturing both fine-grained local interactions and long-range global dependencies across millions of spatial elements. We introduce the Multi-Scale Patch Transformer (MSPT), an architecture that combines local point attention within patches with global attention to coarse patch-level representations. To partition the input domain into spatially-coherent patches, we employ ball trees, which handle irregular geometries efficiently. This dual-scale design enables MSPT to scale to millions of points on a single GPU. We validate our method on standard PDE benchmarks (elasticity, plasticity, fluid dynamics, porous flow) and large-scale aerodynamic datasets (ShapeNet-Car, Ahmed-ML), achieving state-of-the-art accuracy with substantially lower memory footprint and computational cost.
☆ Automating modeling in mechanics: LLMs as designers of physics-constrained neural networks for constitutive modeling of materials
Large language model (LLM)-based agentic frameworks increasingly adopt the paradigm of dynamically generating task-specific agents. We suggest that not only agents but also specialized software modules for scientific and engineering tasks can be generated on demand. We demonstrate this concept in the field of solid mechanics. There, so-called constitutive models are required to describe the relationship between mechanical stress and body deformation. Constitutive models are essential for both the scientific understanding and industrial application of materials. However, even recent data-driven methods of constitutive modeling, such as constitutive artificial neural networks (CANNs), still require substantial expert knowledge and human labor. We present a framework in which an LLM generates a CANN on demand, tailored to a given material class and dataset provided by the user. The framework covers LLM-based architecture selection, integration of physical constraints, and complete code generation. Evaluation on three benchmark problems demonstrates that LLM-generated CANNs achieve accuracy comparable to or greater than manually engineered counterparts, while also exhibiting reliable generalization to unseen loading scenarios and extrapolation to large deformations. These findings indicate that LLM-based generation of physics-constrained neural networks can substantially reduce the expertise required for constitutive modeling and represent a step toward practical end-to-end automation.
comment: Currently under review
☆ Beyond Scaffold: A Unified Spatio-Temporal Gradient Tracking Method
In distributed and federated learning algorithms, communication overhead is often reduced by performing multiple local updates between communication rounds. However, due to data heterogeneity across nodes and the local gradient noise within each node, this strategy can lead to the drift of local models away from the global optimum. To address this issue, we revisit the well-known federated learning method Scaffold (Karimireddy et al., 2020) under a gradient tracking perspective, and propose a unified spatio-temporal gradient tracking algorithm, termed ST-GT, for distributed stochastic optimization over time-varying graphs. ST-GT tracks the global gradient across neighboring nodes to mitigate data heterogeneity, while maintaining a running average of local gradients to substantially suppress noise, with slightly more storage overhead. Without assuming bounded data heterogeneity, we prove that ST-GT attains a linear convergence rate for strongly convex problems and a sublinear rate for nonconvex cases. Notably, ST-GT achieves the first linear speed-up in communication complexity with respect to the number of local updates per round $τ$ for the strongly-convex setting. Compared to traditional gradient tracking methods, ST-GT reduces the topology-dependent noise term from $σ^2$ to $σ^2/τ$, where $σ^2$ denotes the noise level, thereby improving communication efficiency.
comment: 13 pages
☆ Common Structure Discovery in Collections of Bipartite Networks: Application to Pollination Systems
Bipartite networks are widely used to encode the ecological interactions. Being able to compare the organization of bipartite networks is a first step toward a better understanding of how environmental factors shape community structure and resilience. Yet current methods for structure detection in bipartite networks overlook shared patterns across collections of networks. We introduce the \emph{colBiSBM}, a family of probabilistic models for collections of bipartite networks that extends the classical Latent Block Model (LBM). The proposed framework assumes that networks are independent realizations of a shared mesoscale structure, encoded through common inter-block connectivity parameters. We establish identifiability conditions for the different variants of \emph{colBiSBM} and develop a variational EM algorithm for parameter estimation, coupled with an adaptation of the Integrated Classification Likelihood (ICL) criterion for model selection. We demonstrate how our approach can be used to classify networks based on their topology or organization. Simulation studies highlight the ability of \emph{colBiSBM} to recover common structures, improve clustering performance, and enhance link prediction by borrowing strength across networks. An application to plant--pollinator networks highlights how the method uncovers shared ecological roles and partitions networks into sub-collections with similar connectivity patterns. These results illustrate the methodological and practical advantages of joint modeling over separate network analyses in the study of bipartite systems.
☆ Differentially Private and Federated Structure Learning in Bayesian Networks
Learning the structure of a Bayesian network from decentralized data poses two major challenges: (i) ensuring rigorous privacy guarantees for participants, and (ii) avoiding communication costs that scale poorly with dimensionality. In this work, we introduce Fed-Sparse-BNSL, a novel federated method for learning linear Gaussian Bayesian network structures that addresses both challenges. By combining differential privacy with greedy updates that target only a few relevant edges per participant, Fed-Sparse-BNSL efficiently uses the privacy budget while keeping communication costs low. Our careful algorithmic design preserves model identifiability and enables accurate structure estimation. Experiments on synthetic and real datasets demonstrate that Fed-Sparse-BNSL achieves utility close to non-private baselines while offering substantially stronger privacy and communication efficiency.
☆ A unified framework for geometry-independent operator learning in cardiac electrophysiology simulations
Accurate maps of atrial electrical activation are essential for personalised treatment of arrhythmias, yet biophysically detailed simulations remain computationally intensive for real-time clinical use or population-scale analyses. Here we introduce a geometry-independent operator-learning framework that predicts local activation time (LAT) fields across diverse left atrial anatomies with near-instantaneous inference. We generated a dataset of 308,700 simulations using a GPU-accelerated electrophysiology solver, systematically varying multiple pacing sites and physiologically varied conduction properties across 147 patient-specific geometries derived from two independent clinical cohorts. All anatomical and functional data are expressed in a Universal Atrium Coordinate system, providing a consistent representation that decouples electrophysiological patterns from mesh topology. Within this coordinate space, we designed a neural operator with a vision-transformer backbone to learn the mapping from structural and electrophysiological inputs to LAT fields. With a mean prediction error of 5.1 ms over a 455 ms maximum simulation time, the model outperforms established operator-learning approaches and performs inference in 0.12 ms per sample. Our framework establishes a general strategy for learning domain-invariant biophysical mappings across variable anatomical domains and enables integration of computational electrophysiology into real-time and large-scale clinical workflows.
☆ Morphling: Fast, Fused, and Flexible GNN Training at Scale
Graph Neural Networks (GNNs) present a fundamental hardware challenge by fusing irregular, memory-bound graph traversals with regular, compute-intensive dense matrix operations. While frameworks such as PyTorch Geometric (PyG) and Deep Graph Library (DGL) prioritize high-level usability, they fail to address these divergent execution characteristics. As a result, they rely on generic kernels that suffer from poor cache locality, excessive memory movement, and substantial intermediate allocations. To address these limitations, we present Morphling, a domain-specific code synthesizer designed to bridge this gap. Morphling compiles high-level GNN specifications into portable, backend-specialized implementations targeting OpenMP, CUDA, and MPI. It achieves this by instantiating a library of optimized, architecture-aware primitives tailored to each execution environment. Morphling also incorporates a runtime sparsity-aware execution engine that dynamically selects dense or sparse execution paths using input feature statistics, reducing unnecessary computation on zero-valued entries. We evaluate Morphling on eleven real-world datasets spanning diverse graph structures, feature dimensionalities, and sparsity regimes. The results show that Morphling improves per-epoch training throughput by an average of 20X on CPUs and 19X on GPUs over PyG and DGL, with peak speedups reaching 66X. Morphling's memory-efficient layouts further reduce peak memory consumption by up to 15X, enabling large-scale GNN training on commodity hardware. These findings demonstrate that specialized, architecture-aware code synthesis provides an effective and scalable path toward high-performance GNN execution across diverse parallel and distributed platforms.
☆ ICAD-LLM: One-for-All Anomaly Detection via In-Context Learning with Large Language Models
Anomaly detection (AD) is a fundamental task of critical importance across numerous domains. Current systems increasingly operate in rapidly evolving environments that generate diverse yet interconnected data modalities -- such as time series, system logs, and tabular records -- as exemplified by modern IT systems. Effective AD methods in such environments must therefore possess two critical capabilities: (1) the ability to handle heterogeneous data formats within a unified framework, allowing the model to process and detect multiple modalities in a consistent manner during anomalous events; (2) a strong generalization ability to quickly adapt to new scenarios without extensive retraining. However, most existing methods fall short of these requirements, as they typically focus on single modalities and lack the flexibility to generalize across domains. To address this gap, we introduce a novel paradigm: In-Context Anomaly Detection (ICAD), where anomalies are defined by their dissimilarity to a relevant reference set of normal samples. Under this paradigm, we propose ICAD-LLM, a unified AD framework leveraging Large Language Models' in-context learning abilities to process heterogeneous data within a single model. Extensive experiments demonstrate that ICAD-LLM achieves competitive performance with task-specific AD methods and exhibits strong generalization to previously unseen tasks, which substantially reduces deployment costs and enables rapid adaptation to new environments. To the best of our knowledge, ICAD-LLM is the first model capable of handling anomaly detection tasks across diverse domains and modalities.
☆ Bayesian Ambiguity Contraction-based Adaptive Robust Markov Decision Processes for Adversarial Surveillance Missions
Collaborative Combat Aircraft (CCAs) are envisioned to enable autonomous Intelligence, Surveillance, and Reconnaissance (ISR) missions in contested environments, where adversaries may act strategically to deceive or evade detection. These missions pose challenges due to model uncertainty and the need for safe, real-time decision-making. Robust Markov Decision Processes (RMDPs) provide worst-case guarantees but are limited by static ambiguity sets that capture initial uncertainty without adapting to new observations. This paper presents an adaptive RMDP framework tailored to ISR missions with CCAs. We introduce a mission-specific formulation in which aircraft alternate between movement and sensing states. Adversarial tactics are modeled as a finite set of transition kernels, each capturing assumptions about how adversarial sensing or environmental conditions affect rewards. Our approach incrementally refines policies by eliminating inconsistent threat models, allowing agents to shift from conservative to aggressive behaviors while maintaining robustness. We provide theoretical guarantees showing that the adaptive planner converges as credible sets contract to the true threat and maintains safety under uncertainty. Experiments under Gaussian and non-Gaussian threat models across diverse network topologies show higher mission rewards and fewer exposure events compared to nominal and static robust planners.
☆ HalluGraph: Auditable Hallucination Detection for Legal RAG Systems via Knowledge Graph Alignment
Legal AI systems powered by retrieval-augmented generation (RAG) face a critical accountability challenge: when an AI assistant cites case law, statutes, or contractual clauses, practitioners need verifiable guarantees that generated text faithfully represents source documents. Existing hallucination detectors rely on semantic similarity metrics that tolerate entity substitutions, a dangerous failure mode when confusing parties, dates, or legal provisions can have material consequences. We introduce HalluGraph, a graph-theoretic framework that quantifies hallucinations through structural alignment between knowledge graphs extracted from context, query, and response. Our approach produces bounded, interpretable metrics decomposed into \textit{Entity Grounding} (EG), measuring whether entities in the response appear in source documents, and \textit{Relation Preservation} (RP), verifying that asserted relationships are supported by context. On structured control documents, HalluGraph achieves near-perfect discrimination ($>$400 words, $>$20 entities), HalluGraph achieves $AUC = 0.979$, while maintaining robust performance ($AUC \approx 0.89$) on challenging generative legal task, consistently outperforming semantic similarity baselines. The framework provides the transparency and traceability required for high-stakes legal applications, enabling full audit trails from generated assertions back to source passages.
comment: 8 pages, 4 figures, under review
☆ Cuffless Blood Pressure Estimation from Six Wearable Sensor Modalities in Multi-Motion-State Scenarios
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide, and sustained hypertension is an often silent risk factor, making cuffless continuous blood pressure (BP) monitoring with wearable devices important for early screening and long-term management. Most existing cuffless BP estimation methods use only photoplethysmography (PPG) and electrocardiography (ECG) signals, alone or in combination. These models are typically developed under resting or quasi-static conditions and struggle to maintain robust accuracy in multi-motion-state scenarios. In this study, we propose a six-modal BP estimation framework that jointly leverages ECG, multi-channel PPG, attachment pressure, sensor temperature, and triaxial acceleration and angular velocity. Each modality is processed by a lightweight branch encoder, contrastive learning enforces cross-modal semantic alignment, and a mixture-of-experts (MoE) regression head adaptively maps the fused features to BP across motion states. Comprehensive experiments on the public Pulse Transit Time PPG Dataset, which includes running, walking, and sitting data from 22 subjects, show that the proposed method achieves mean absolute errors (MAE) of 3.60 mmHg for systolic BP (SBP) and 3.01 mmHg for diastolic BP (DBP). From a clinical perspective, it attains Grade A for SBP, DBP, and mean arterial pressure (MAP) according to the British Hypertension Society (BHS) protocol and meets the numerical criteria of the Association for the Advancement of Medical Instrumentation (AAMI) standard for mean error (ME) and standard deviation of error (SDE).
comment: 13 pages, 7 figures
☆ In-context Inverse Optimality for Fair Digital Twins: A Preference-based approach
Digital Twins (DTs) are increasingly used as autonomous decision-makers in complex socio-technical systems. Their mathematically optimal decisions often diverge from human expectations, exposing a persistent gap between algorithmic and bounded human rationality. This work addresses this gap by proposing a framework that operationalizes fairness as a learnable objective within optimization-based Digital Twins. We introduce a preference-driven learning pipeline that infers latent fairness objectives directly from human pairwise preferences over feasible decisions. A novel Siamese neural network is developed to generate convex quadratic cost functions conditioned on contextual information. The resulting surrogate objectives align optimization outcomes with human-perceived fairness while maintaining computational efficiency. The approach is demonstrated on a COVID-19 hospital resource allocation scenario. This study provides an actionable path toward embedding human-centered fairness in the design of autonomous decision-making systems.
comment: Submitted for possible publication at the IFAC World Congress 2026
☆ Scaling and context steer LLMs along the same computational path as the human brain
Recent studies suggest that the representations learned by large language models (LLMs) are partially aligned to those of the human brain. However, whether and why this alignment score arises from a similar sequence of computations remains elusive. In this study, we explore this question by examining temporally-resolved brain signals of participants listening to 10 hours of an audiobook. We study these neural dynamics jointly with a benchmark encompassing 22 LLMs varying in size and architecture type. Our analyses confirm that LLMs and the brain generate representations in a similar order: specifically, activations in the initial layers of LLMs tend to best align with early brain responses, while the deeper layers of LLMs tend to best align with later brain responses. This brain-LLM alignment is consistent across transformers and recurrent architectures. However, its emergence depends on both model size and context length. Overall, this study sheds light on the sequential nature of computations and the factors underlying the partial convergence between biological and artificial neural networks.
☆ Reconstructing Multi-Scale Physical Fields from Extremely Sparse Measurements with an Autoencoder-Diffusion Cascade
Reconstructing full fields from extremely sparse and random measurements is a longstanding ill-posed inverse problem. A powerful framework for addressing such challenges is hierarchical probabilistic modeling, where uncertainty is represented by intermediate variables and resolved through marginalization during inference. Inspired by this principle, we propose Cascaded Sensing (Cas-Sensing), a hierarchical reconstruction framework that integrates an autoencoder-diffusion cascade. First, a neural operator-based functional autoencoder reconstructs the dominant structures of the original field - including large-scale components and geometric boundaries - from arbitrary sparse inputs, serving as an intermediate variable. Then, a conditional diffusion model, trained with a mask-cascade strategy, generates fine-scale details conditioned on these large-scale structures. To further enhance fidelity, measurement consistency is enforced via the manifold constrained gradient based on Bayesian posterior sampling during the generation process. This cascaded pipeline substantially alleviates ill-posedness, delivering accurate and robust reconstructions. Experiments on both simulation and real-world datasets demonstrate that Cas-Sensing generalizes well across varying sensor configurations and geometric boundaries, making it a promising tool for practical deployment in scientific and engineering applications.
comment: 19 pages,10 figures
☆ Do Large Language Models Walk Their Talk? Measuring the Gap Between Implicit Associations, Self-Report, and Behavioral Altruism
We investigate whether Large Language Models (LLMs) exhibit altruistic tendencies, and critically, whether their implicit associations and self-reports predict actual altruistic behavior. Using a multi-method approach inspired by human social psychology, we tested 24 frontier LLMs across three paradigms: (1) an Implicit Association Test (IAT) measuring implicit altruism bias, (2) a forced binary choice task measuring behavioral altruism, and (3) a self-assessment scale measuring explicit altruism beliefs. Our key findings are: (1) All models show strong implicit pro-altruism bias (mean IAT = 0.87, p < .0001), confirming models "know" altruism is good. (2) Models behave more altruistically than chance (65.6% vs. 50%, p < .0001), but with substantial variation (48-85%). (3) Implicit associations do not predict behavior (r = .22, p = .29). (4) Most critically, models systematically overestimate their own altruism, claiming 77.5% altruism while acting at 65.6% (p < .0001, Cohen's d = 1.08). This "virtue signaling gap" affects 75% of models tested. Based on these findings, we recommend the Calibration Gap (the discrepancy between self-reported and behavioral values) as a standardized alignment metric. Well-calibrated models are more predictable and behaviorally consistent; only 12.5% of models achieve the ideal combination of high prosocial behavior and accurate self-knowledge.
comment: 14 pages, 7 figures, 7 tables. Code and data available at https://github.com/sandroandric/LLMs_Altruism_Study_Code
☆ TimePred: efficient and interpretable offline change point detection for high volume data - with application to industrial process monitoring
Change-point detection (CPD) in high-dimensional, large-volume time series is challenging for statistical consistency, scalability, and interpretability. We introduce TimePred, a self-supervised framework that reduces multivariate CPD to univariate mean-shift detection by predicting each sample's normalized time index. This enables efficient offline CPD using existing algorithms and supports the integration of XAI attribution methods for feature-level explanations. Our experiments show competitive CPD performance while reducing computational cost by up to two orders of magnitude. In an industrial manufacturing case study, we demonstrate improved detection accuracy and illustrate the practical value of interpretable change-point insights.
comment: 6 pages, 3 figures
☆ LEC: Linear Expectation Constraints for False-Discovery Control in Selective Prediction and Routing Systems
Large language models (LLMs) often generate unreliable answers, while heuristic uncertainty methods fail to fully distinguish correct from incorrect predictions, causing users to accept erroneous answers without statistical guarantees. We address this issue through the lens of false discovery rate (FDR) control, ensuring that among all accepted predictions, the proportion of errors does not exceed a target risk level. To achieve this in a principled way, we propose LEC, which reinterprets selective prediction as a constrained decision problem by enforcing a Linear Expectation Constraint over selection and error indicators. Then, we establish a finite-sample sufficient condition, which relies only on a held-out set of exchangeable calibration samples, to compute an FDR-constrained, coverage-maximizing threshold. Furthermore, we extend LEC to a two-model routing mechanism: given a prompt, if the current model's uncertainty exceeds its calibrated threshold, we delegate it to a stronger model, while maintaining a unified FDR guarantee. Evaluations on closed-ended and open-ended question-answering (QA) datasets show that LEC achieves tighter FDR control and substantially improves sample retention over prior methods. Moreover, the two-model routing mechanism achieves lower risk levels while accepting more correct samples than each individual model.
☆ LPCD: Unified Framework from Layer-Wise to Submodule Quantization
Post-training quantization (PTQ) aims to preserve model-level behavior; however, most methods focus on individual linear layers. Even recent extensions, such as QEP and LoaQ, which mitigate error propagation or target specific submodules, still rely on layer-wise formulations and fail to capture the behavior of larger submodules. We introduce Layer-Projected Coordinate Descent (LPCD), a unified framework that extends PTQ beyond layers by optimizing relaxed objectives across arbitrary submodules and projecting the solutions with layer-wise quantizers. LPCD generalizes existing methods and provides a principled approach to quantizing complex submodules while maintaining the efficiency and compatibility of layer-wise PTQ pipelines. Across diverse LLM architectures and bit-widths, LPCD-based submodule quantization consistently enhances both layer-wise PTQ methods and existing submodule approaches.
comment: 21 pages, 4 figures
☆ Q2D2: A Geometry-Aware Audio Codec Leveraging Two-Dimensional Quantization
Recent neural audio codecs have achieved impressive reconstruction quality, typically relying on quantization methods such as Residual Vector Quantization (RVQ), Vector Quantization (VQ) and Finite Scalar Quantization (FSQ). However, these quantization techniques limit the geometric structure of the latent space, make it harder to capture correlations between features leading to inefficiency in representation learning, codebook utilization and token rate. In this paper we introduce Two Dimensional Quantization (Q2D2), a quantization scheme in which feature pairs are projected onto structured 2D grids such as hexagonal, rhombic, or rectangular tiling and quantized to the nearest grid values, yielding an implicit codebook defined by the product of grid levels, with codebook sizes comparable to conventional methods. Despite its simple geometric formulation, Q2D2 improves audio compression efficiency, with low token rates and high codebook utilization while maintaining state of the art reconstruction quality. Specifically, Q2D2 achieves competitive to superior performance in various objective and subjective reconstruction metrics, across extensive experiments in speech domain compared to state of the art models. Comprehensive ablation studies further confirm the effectiveness of our design choices.
☆ End-to-end Deep Reinforcement Learning for Stochastic Multi-objective Optimization in C-VRPTW
In this work, we consider learning-based applications in routing to solve a Vehicle Routing variant characterized by stochasticity and multiple objectives. Such problems are representative of practical settings where decision-makers have to deal with uncertainty in the operational environment as well as multiple conflicting objectives due to different stakeholders. We specifically consider travel time uncertainty. We also consider two objectives, total travel time and route makespan, that jointly target operational efficiency and labor regulations on shift length, although different objectives could be incorporated. Learning-based methods offer earnest computational advantages as they can repeatedly solve problems with limited interference from the decision-maker. We specifically focus on end-to-end deep learning models that leverage the attention mechanism and multiple solution trajectories. These models have seen several successful applications in routing problems. However, since travel times are not a direct input to these models due to the large dimensions of the travel time matrix, accounting for uncertainty is a challenge, especially in the presence of multiple objectives. In turn, we propose a model that simultaneously addresses stochasticity and multi-objectivity and provide a refined training mechanism for this model through scenario clustering to reduce training time. Our results show that our model is capable of constructing a Pareto Front of good quality within acceptable run times compared to three baselines.
comment: 25 pages, 5 figures
☆ Neural Networks for Predicting Permeability Tensors of 2D Porous Media: Comparison of Convolution- and Transformer-based Architectures
Permeability is a central concept in the macroscopic description of flow through porous media, with applications spanning from oil recovery to hydrology. Traditional methods for determining the permeability tensor involving flow simulations or experiments can be time consuming and resource-intensive, while analytical methods, e.g., based on the Kozeny-Carman equation, may be too simplistic for accurate prediction based on pore-scale features. In this work, we explore deep learning as a more efficient alternative for predicting the permeability tensor based on two-dimensional binary images of porous media, segmented into solid ($1$) and void ($0$) regions. We generate a dataset of 24,000 synthetic random periodic porous media samples with specified porosity and characteristic length scale. Using Lattice-Boltzmann simulations, we compute the permeability tensor for flow through these samples with values spanning three orders of magnitude. We evaluate three families of image-based deep learning models: ResNet (ResNet-$50$ and ResNet-$101$), Vision Transformers (ViT-T$16$ and ViT-S$16$) and ConvNeXt (Tiny and Small). To improve model generalisation, we employ techniques such as weight decay, learning rate scheduling, and data augmentation. The effect of data augmentation and dataset size on model performance is studied, and we find that they generally increase the accuracy of permeability predictions. We also show that ConvNeXt and ResNet converge faster than ViT and degrade in performance if trained for too long. ConvNeXt-Small achieved the highest $R^2$ score of $0.99460$ on $4,000$ unseen test samples. These findings underscore the potential to use image-based neural networks to predict permeability tensors accurately.
☆ Label Forensics: Interpreting Hard Labels in Black-Box Text Classifier
The widespread adoption of natural language processing techniques has led to an unprecedented growth of text classifiers across the modern web. Yet many of these models circulate with their internal semantics undocumented or even intentionally withheld. Such opaque classifiers, which may expose only hard-label outputs, can operate in unregulated web environments or be repurposed for unknown intents, raising legitimate forensic and auditing concerns. In this paper, we position ourselves as investigators and work to infer the semantic concept each label encodes in an undocumented black-box classifier. Specifically, we introduce label forensics, a black-box framework that reconstructs a label's semantic meaning. Concretely, we represent a label by a sentence embedding distribution from which any sample reliably reflects the concept the classifier has implicitly learned for that label. We believe this distribution should maintain two key properties: precise, with samples consistently classified into the target label, and general, covering the label's broad semantic space. To realize this, we design a semantic neighborhood sampler and an iterative optimization procedure to select representative seed sentences that jointly maximize label consistency and distributional coverage. The final output, an optimized seed sentence set combined with the sampler, constitutes the empirical distribution representing the label's semantics. Experiments on multiple black-box classifiers achieve an average label consistency of around 92.24 percent, demonstrating that the embedding regions accurately capture each classifier's label semantics. We further validate our framework on an undocumented HuggingFace classifier, enabling fine-grained label interpretation and supporting responsible AI auditing.
comment: 10 pages, 3 figures
☆ Semantic-aware Random Convolution and Source Matching for Domain Generalization in Medical Image Segmentation
We tackle the challenging problem of single-source domain generalization (DG) for medical image segmentation. To this end, we aim for training a network on one domain (e.g., CT) and directly apply it to a different domain (e.g., MR) without adapting the model and without requiring images or annotations from the new domain during training. We propose a novel method for promoting DG when training deep segmentation networks, which we call SRCSM. During training, our method diversifies the source domain through semantic-aware random convolution, where different regions of a source image are augmented differently, based on their annotation labels. At test-time, we complement the randomization of the training domain via mapping the intensity of target domain images, making them similar to source domain data. We perform a comprehensive evaluation on a variety of cross-modality and cross-center generalization settings for abdominal, whole-heart and prostate segmentation, where we outperform previous DG techniques in a vast majority of experiments. Additionally, we also investigate our method when training on whole-heart CT or MR data and testing on the diastolic and systolic phase of cine MR data captured with different scanner hardware, where we make a step towards closing the domain gap in this even more challenging setting. Overall, our evaluation shows that SRCSM can be considered a new state-of-the-art in DG for medical image segmentation and, moreover, even achieves a segmentation performance that matches the performance of the in-domain baseline in several settings.
comment: Preprint submitted to Computer Methods and Programs in Biomedicine (currently under revision)
☆ Learning Reduced Representations for Quantum Classifiers
Data sets that are specified by a large number of features are currently outside the area of applicability for quantum machine learning algorithms. An immediate solution to this impasse is the application of dimensionality reduction methods before passing the data to the quantum algorithm. We investigate six conventional feature extraction algorithms and five autoencoder-based dimensionality reduction models to a particle physics data set with 67 features. The reduced representations generated by these models are then used to train a quantum support vector machine for solving a binary classification problem: whether a Higgs boson is produced in proton collisions at the LHC. We show that the autoencoder methods learn a better lower-dimensional representation of the data, with the method we design, the Sinkclass autoencoder, performing 40% better than the baseline. The methods developed here open up the applicability of quantum machine learning to a larger array of data sets. Moreover, we provide a recipe for effective dimensionality reduction in this context.
☆ SynthStrategy: Extracting and Formalizing Latent Strategic Insights from LLMs in Organic Chemistry
Modern computer-assisted synthesis planning (CASP) systems show promises at generating chemically valid reaction steps but struggle to incorporate strategic considerations such as convergent assembly, protecting group minimization, and optimal ring-forming sequences. We introduce a methodology that leverages Large Language Models to distill synthetic knowledge into code. Our system analyzes synthesis routes and translates strategic principles into Python functions representing diverse strategic and tactical rules, such as strategic functional group interconversions and ring construction strategies. By formalizing this knowledge as verifiable code rather than simple heuristics, we create testable, interpretable representations of synthetic strategy. We release the complete codebase and the USPTO-ST dataset -- synthesis routes annotated with strategic tags. This framework unlocks a novel capability for CASP: natural language-based route retrieval, achieving 75\% Top-3 accuracy on our benchmark. We further validate our library through temporal analysis of historical trends and chemically intuitive route clustering that offers more granular partitioning than common previous methods. This work bridges the tactical-strategic divide in CASP, enabling specification, search, and evaluation of routes by strategic criteria rather than structure alone.
☆ Walking on the Fiber: A Simple Geometric Approximation for Bayesian Neural Networks
Bayesian Neural Networks provide a principled framework for uncertainty quantification by modeling the posterior distribution of network parameters. However, exact posterior inference is computationally intractable, and widely used approximations like the Laplace method struggle with scalability and posterior accuracy in modern deep networks. In this work, we revisit sampling techniques for posterior exploration, proposing a simple variation tailored to efficiently sample from the posterior in over-parameterized networks by leveraging the low-dimensional structure of loss minima. Building on this, we introduce a model that learns a deformation of the parameter space, enabling rapid posterior sampling without requiring iterative methods. Empirical results demonstrate that our approach achieves competitive posterior approximations with improved scalability compared to recent refinement techniques. These contributions provide a practical alternative for Bayesian inference in deep learning.
☆ Winning Solutions for the Rayan AI Contest: Compositional Retrieval, Zero-Shot Anomaly Detection, and Backdoor Detection
This report presents solutions to three machine learning challenges: compositional image retrieval, zero-shot anomaly detection, and backdoored model detection. In compositional image retrieval, we developed a system that processes visual and textual inputs to retrieve relevant images, achieving 95.38\% accuracy and ranking first with a clear margin over the second team. For zero-shot anomaly detection, we designed a model that identifies and localizes anomalies in images without prior exposure to abnormal examples, securing 1st place with 73.14\% accuracy. In the backdoored model detection task, we proposed a method to detect hidden backdoor triggers in neural networks, reaching an accuracy of 78\%, which placed our approach in second place. These results demonstrate the effectiveness of our methods in addressing key challenges related to retrieval, anomaly detection, and model security, with implications for real-world applications in industries such as healthcare, manufacturing, and cybersecurity. Code for all solutions is available online.
☆ Heuristic algorithms for the stochastic critical node detection problem
Given a network, the critical node detection problem finds a subset of nodes whose removal disrupts the network connectivity. Since many real-world systems are naturally modeled as graphs, assessing the vulnerability of the network is essential, with applications in transportation systems, traffic forecasting, epidemic control, and biological networks. In this paper, we consider a stochastic version of the critical node detection problem, where the existence of edges is given by certain probabilities. We propose heuristics and learning-based methods for the problem and compare them with existing algorithms. Experimental results performed on random graphs from small to larger scales, with edge-survival probabilities drawn from different distributions, demonstrate the effectiveness of the methods. Heuristic methods often illustrate the strongest results with high scalability, while learning-based methods maintain nearly constant inference time as the network size and density grow.
comment: 17 pages, 11 figures
☆ Multi-Path Collaborative Reasoning via Reinforcement Learning
Chain-of-Thought (CoT) reasoning has significantly advanced the problem-solving capabilities of Large Language Models (LLMs), yet conventional CoT often exhibits internal determinism during decoding, limiting exploration of plausible alternatives. Recent methods attempt to address this by generating soft abstract tokens to enable reasoning in a continuous semantic space. However, we find that such approaches remain constrained by the greedy nature of autoregressive decoding, which fundamentally isolates the model from alternative reasoning possibilities. In this work, we propose Multi-Path Perception Policy Optimization (M3PO), a novel reinforcement learning framework that explicitly injects collective insights into the reasoning process. M3PO leverages parallel policy rollouts as naturally diverse reasoning sources and integrates cross-path interactions into policy updates through a lightweight collaborative mechanism. This design allows each trajectory to refine its reasoning with peer feedback, thereby cultivating more reliable multi-step reasoning patterns. Empirical results show that M3PO achieves state-of-the-art performance on both knowledge- and reasoning-intensive benchmarks. Models trained with M3PO maintain interpretability and inference efficiency, underscoring the promise of multi-path collaborative learning for robust reasoning.
☆ Multi-view diffusion geometry using intertwined diffusion trajectories
This paper introduces a comprehensive unified framework for constructing multi-view diffusion geometries through intertwined multi-view diffusion trajectories (MDTs), a class of inhomogeneous diffusion processes that iteratively combine the random walk operators of multiple data views. Each MDT defines a trajectory-dependent diffusion operator with a clear probabilistic and geometric interpretation, capturing over time the interplay between data views. Our formulation encompasses existing multi-view diffusion models, while providing new degrees of freedom for view interaction and fusion. We establish theoretical properties under mild assumptions, including ergodicity of both the point-wise operator and the process in itself. We also derive MDT-based diffusion distances, and associated embeddings via singular value decompositions. Finally, we propose various strategies for learning MDT operators within the defined operator space, guided by internal quality measures. Beyond enabling flexible model design, MDTs also offer a neutral baseline for evaluating diffusion-based approaches through comparison with randomly selected MDTs. Experiments show the practical impact of the MDT operators in a manifold learning and data clustering context.
☆ Does Flatness imply Generalization for Logistic Loss in Univariate Two-Layer ReLU Network?
We consider the problem of generalization of arbitrarily overparameterized two-layer ReLU Neural Networks with univariate input. Recent work showed that under square loss, flat solutions (motivated by flat / stable minima and Edge of Stability phenomenon) provably cannot overfit, but it remains unclear whether the same phenomenon holds for logistic loss. This is a puzzling open problem because existing work on logistic loss shows that gradient descent with increasing step size converges to interpolating solutions (at infinity, for the margin-separable cases). In this paper, we prove that the \emph{flatness implied generalization} is more delicate under logistic loss. On the positive side, we show that flat solutions enjoy near-optimal generalization bounds within a region between the left-most and right-most \emph{uncertain} sets determined by each candidate solution. On the negative side, we show that there exist arbitrarily flat yet overfitting solutions at infinity that are (falsely) certain everywhere, thus certifying that flatness alone is insufficient for generalization in general. We demonstrate the effects predicted by our theory in a well-controlled simulation study.
comment: 59 pages
☆ Differentiable Weightless Controllers: Learning Logic Circuits for Continuous Control
We investigate whether continuous-control policies can be represented and learned as discrete logic circuits instead of continuous neural networks. We introduce Differentiable Weightless Controllers (DWCs), a symbolic-differentiable architecture that maps real-valued observations to actions using thermometer-encoded inputs, sparsely connected boolean lookup-table layers, and lightweight action heads. DWCs can be trained end-to-end by gradient-based techniques, yet compile directly into FPGA-compatible circuits with few- or even single-clock-cycle latency and nanojoule-level energy cost per action. Across five MuJoCo benchmarks, including high-dimensional Humanoid, DWCs achieve returns competitive with weight-based policies (full precision or quantized neural networks), matching performance on four tasks and isolating network capacity as the key limiting factor on HalfCheetah. Furthermore, DWCs exhibit structurally sparse and interpretable connectivity patterns, enabling a direct inspection of which input thresholds influence control decisions.
comment: 16 pages, 11 figures, 10 tables
☆ A Nonlinear Low-rank Representation Model with Convolutional Neural Network for Imputing Water Quality Data
Water quality monitoring is a core component of ecological environmental protection. However, due to sensor failure or other inevitable factors, data missing often exists in long-term monitoring, posing great challenges in water quality analysis. This paper proposes a Neural Tucker Convolutional Network (NTCN) model for water quality data imputation, which features the following key components: a) Encode different mode entities into respective embedding vectors, and construct a Tucker interaction tensor by outer product operations to capture the complex mode-wise feature interactions; b) Use 3D convolution to extract fine-grained spatiotemporal features from the interaction tensor. Experiments on three real-world water quality datasets show that the proposed NTCN model outperforms several state-of-the-art imputation models in terms of accuracy.
comment: 8 pages, 1 figure
☆ hls4ml: A Flexible, Open-Source Platform for Deep Learning Acceleration on Reconfigurable Hardware
We present hls4ml, a free and open-source platform that translates machine learning (ML) models from modern deep learning frameworks into high-level synthesis (HLS) code that can be integrated into full designs for field-programmable gate arrays (FPGAs) or application-specific integrated circuits (ASICs). With its flexible and modular design, hls4ml supports a large number of deep learning frameworks and can target HLS compilers from several vendors, including Vitis HLS, Intel oneAPI and Catapult HLS. Together with a wider eco-system for software-hardware co-design, hls4ml has enabled the acceleration of ML inference in a wide range of commercial and scientific applications where low latency, resource usage, and power consumption are critical. In this paper, we describe the structure and functionality of the hls4ml platform. The overarching design considerations for the generated HLS code are discussed, together with selected performance results.
☆ Stay Unique, Stay Efficient: Preserving Model Personality in Multi-Task Merging
Model merging has emerged as a promising paradigm for enabling multi-task capabilities without additional training. However, existing methods often experience substantial performance degradation compared with individually fine-tuned models, even on similar tasks, underscoring the need to preserve task-specific information. This paper proposes Decomposition, Thresholding, and Scaling (DTS), an approximation-based personalized merging framework that preserves task-specific information with minimal storage overhead. DTS first applies singular value decomposition to the task-specific information and retains only a small subset of singular values and vectors. It then introduces a novel thresholding strategy that partitions singular vector elements into groups and assigns a scaling factor to each group. To enable generalization to unseen tasks, we further extend DTS with a variant that fuses task-specific information in a data-free manner based on the semantic similarity of task characteristics. Extensive experiments demonstrate that DTS consistently outperforms state-of-the-art baselines while requiring only 1\% additional storage per task. Furthermore, experiments on unseen tasks show that the DTS variant achieves significantly better generalization performance. Our code is available at https://github.com/krumpguo/DTS.
☆ Enhancing BERT Fine-Tuning for Sentiment Analysis in Lower-Resourced Languages
Limited data for low-resource languages typically yield weaker language models (LMs). Since pre-training is compute-intensive, it is more pragmatic to target improvements during fine-tuning. In this work, we examine the use of Active Learning (AL) methods augmented by structured data selection strategies which we term 'Active Learning schedulers', to boost the fine-tuning process with a limited amount of training data. We connect the AL to data clustering and propose an integrated fine-tuning pipeline that systematically combines AL, clustering, and dynamic data selection schedulers to enhance model's performance. Experiments in the Slovak, Maltese, Icelandic and Turkish languages show that the use of clustering during the fine-tuning phase together with AL scheduling can simultaneously produce annotation savings up to 30% and performance improvements up to four F1 score points, while also providing better fine-tuning stability.
☆ ZIP-RC: Zero-overhead Inference-time Prediction of Reward and Cost for Adaptive and Interpretable Generation
Large language models excel at reasoning but lack key aspects of introspection, including anticipating their own success and the computation required to achieve it. Humans use real-time introspection to decide how much effort to invest, when to make multiple attempts, when to stop, and when to signal success or failure. Without this, LLMs struggle to make intelligent meta-cognition decisions. Test-time scaling methods like Best-of-N drive up cost and latency by using a fixed budget of samples regardless of the marginal benefit of each one at any point in generation, and the absence of confidence signals can mislead people, prevent appropriate escalation to better tools, and undermine trustworthiness. Learned verifiers or reward models can provide confidence estimates, but do not enable adaptive inference and add substantial cost by requiring extra models or forward passes. We present ZIP-RC, an adaptive inference method that equips models with zero-overhead inference-time predictions of reward and cost. At every token, ZIP-RC reuses reserved or unused logits in the same forward pass as next-token prediction to output a joint distribution over final reward and remaining length -- no extra models, architecture change, or inference overhead. This full joint distribution is used to compute a sampling utility which is the linear combination of the expected maximum reward, total compute, and latency of set of samples if generated to completion. During inference, we maximize this utility with meta-actions that determine which prefix of tokens to continue or initiate sampling from. On mixed-difficulty mathematical benchmarks, ZIP-RC improves accuracy by up to 12% over majority voting at equal or lower average cost, and traces smooth Pareto frontiers between quality, compute, and latency. By providing real-time reward-cost introspection, ZIP-RC enables adaptive, efficient reasoning.
comment: Code coming soon
☆ MEGConformer: Conformer-Based MEG Decoder for Robust Speech and Phoneme Classification NeurIPS 2025
We present Conformer-based decoders for the LibriBrain 2025 PNPL competition, targeting two foundational MEG tasks: Speech Detection and Phoneme Classification. Our approach adapts a compact Conformer to raw 306-channel MEG signals, with a lightweight convolutional projection layer and task-specific heads. For Speech Detection, a MEG-oriented SpecAugment provided a first exploration of MEG-specific augmentation. For Phoneme Classification, we used inverse-square-root class weighting and a dynamic grouping loader to handle 100-sample averaged examples. In addition, a simple instance-level normalization proved critical to mitigate distribution shifts on the holdout split. Using the official Standard track splits and F1-macro for model selection, our best systems achieved 88.9% (Speech) and 65.8% (Phoneme) on the leaderboard, surpassing the competition baselines and ranking within the top-10 in both tasks. For further implementation details, the technical documentation, source code, and checkpoints are available at https://github.com/neural2speech/libribrain-experiments.
comment: 10 pages, 5 figures, 4 tables, LibriBrain Workshop, NeurIPS 2025
☆ Masked Symbol Modeling for Demodulation of Oversampled Baseband Communication Signals in Impulsive Noise-Dominated Channels NeurIPS 2025
Recent breakthroughs in natural language processing show that attention mechanism in Transformer networks, trained via masked-token prediction, enables models to capture the semantic context of the tokens and internalize the grammar of language. While the application of Transformers to communication systems is a burgeoning field, the notion of context within physical waveforms remains under-explored. This paper addresses that gap by re-examining inter-symbol contribution (ISC) caused by pulse-shaping overlap. Rather than treating ISC as a nuisance, we view it as a deterministic source of contextual information embedded in oversampled complex baseband signals. We propose Masked Symbol Modeling (MSM), a framework for the physical (PHY) layer inspired by Bidirectional Encoder Representations from Transformers methodology. In MSM, a subset of symbol aligned samples is randomly masked, and a Transformer predicts the missing symbol identifiers using the surrounding "in-between" samples. Through this objective, the model learns the latent syntax of complex baseband waveforms. We illustrate MSM's potential by applying it to the task of demodulating signals corrupted by impulsive noise, where the model infers corrupted segments by leveraging the learned context. Our results suggest a path toward receivers that interpret, rather than merely detect communication signals, opening new avenues for context-aware PHY layer design.
comment: Accepted to the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop on AI and ML for Next-Generation Wireless Communications and Networking (AI4NextG), non-archival
☆ Fourier Neural Operators Explained: A Practical Perspective
Partial differential equations (PDEs) govern a wide variety of dynamical processes in science and engineering, yet obtaining their numerical solutions often requires high-resolution discretizations and repeated evaluations of complex operators, leading to substantial computational costs. Neural operators have recently emerged as a powerful framework for learning mappings between function spaces directly from data, enabling efficient surrogate models for PDE systems. Among these architectures, the Fourier Neural Operator (FNO) has become the most influential and widely adopted due to its elegant spectral formulation, which captures global correlations through learnable transformations in Fourier space while remaining invariant to discretization and resolution. Despite their success, the practical use of FNOs is often hindered by an incomplete understanding among practitioners of their theoretical foundations, practical constraints, and implementation details, which can lead to their incorrect or unreliable application. This work presents a comprehensive and practice-oriented guide to FNOs, unifying their mathematical principles with implementation strategies. We provide an intuitive exposition to the concepts of operator theory and signal-processing that underlie the FNO, detail its spectral parameterization and the computational design of all its components, and address common misunderstandings encountered in the literature. The exposition is closely integrated with the NeuralOperator 2.0.0 library, offering modular state-of-the-art implementations that faithfully reflect the theory. By connecting rigorous foundations with practical insight, this guide aims to establish a clear and reliable framework for applying FNOs effectively across diverse scientific and engineering fields.
comment: 92 pages, 26 figures
☆ A Self-explainable Model of Long Time Series by Extracting Informative Structured Causal Patterns
Explainability is essential for neural networks that model long time series, yet most existing explainable AI methods only produce point-wise importance scores and fail to capture temporal structures such as trends, cycles, and regime changes. This limitation weakens human interpretability and trust in long-horizon models. To address these issues, we identify four key requirements for interpretable time-series modeling: temporal continuity, pattern-centric explanation, causal disentanglement, and faithfulness to the model's inference process. We propose EXCAP, a unified framework that satisfies all four requirements. EXCAP combines an attention-based segmenter that extracts coherent temporal patterns, a causally structured decoder guided by a pre-trained causal graph, and a latent aggregation mechanism that enforces representation stability. Our theoretical analysis shows that EXCAP provides smooth and stable explanations over time and is robust to perturbations in causal masks. Extensive experiments on classification and forecasting benchmarks demonstrate that EXCAP achieves strong predictive accuracy while generating coherent and causally grounded explanations. These results show that EXCAP offers a principled and scalable approach to interpretable modeling of long time series with relevance to high-stakes domains such as healthcare and finance.
comment: Approximately 30 pages, 8 figures, and 5 tables. Preprint version. Includes theoretical analysis, model architecture, interpretability evaluation, and extensive benchmark experiments
☆ Fantastic Features and Where to Find Them: A Probing Method to combine Features from Multiple Foundation Models NeurIPS 2025
Foundation models (FMs) trained with different objectives and data learn diverse representations, making some more effective than others for specific downstream tasks. Existing adaptation strategies, such as parameter-efficient fine-tuning, focus on individual models and do not exploit the complementary strengths across models. Probing methods offer a promising alternative by extracting information from frozen models, but current techniques do not scale well with large feature sets and often rely on dataset-specific hyperparameter tuning. We propose Combined backBones (ComBo), a simple and scalable probing-based adapter that effectively integrates features from multiple models and layers. ComBo compresses activations from layers of one or more FMs into compact token-wise representations and processes them with a lightweight transformer for task-specific prediction. Crucially, ComBo does not require dataset-specific tuning or backpropagation through the backbone models. However, not all models are equally relevant for all tasks. To address this, we introduce a mechanism that leverages ComBo's joint multi-backbone probing to efficiently evaluate each backbone's task-relevance, enabling both practical model comparison and improved performance through selective adaptation. On the 19 tasks of the VTAB-1k benchmark, ComBo outperforms previous probing methods, matches or surpasses more expensive alternatives, such as distillation-based model merging, and enables efficient probing of tuned models. Our results demonstrate that ComBo offers a practical and general-purpose framework for combining diverse representations from multiple FMs.
comment: Published at NeurIPS 2025
☆ On Global Applicability and Location Transferability of Generative Deep Learning Models for Precipitation Downscaling
Deep learning offers promising capabilities for the statistical downscaling of climate and weather forecasts, with generative approaches showing particular success in capturing fine-scale precipitation patterns. However, most existing models are region-specific, and their ability to generalize to unseen geographic areas remains largely unexplored. In this study, we evaluate the generalization performance of generative downscaling models across diverse regions. Using a global framework, we employ ERA5 reanalysis data as predictors and IMERG precipitation estimates at $0.1^\circ$ resolution as targets. A hierarchical location-based data split enables a systematic assessment of model performance across 15 regions around the world.
☆ RE-LLM: Integrating Large Language Models into Renewable Energy Systems
Energy system models are increasingly employed to guide long-term planning in multi-sectoral environments where decisions span electricity, heat, transport, land use, and industry. While these models provide rigorous quantitative insights, their outputs are often highly technical, making them difficult to interpret for non-expert stakeholders such as policymakers, planners, and the public. This communication gap limits the accessibility and practical impact of scenario-based modeling, particularly as energy transitions grow more complex with rising shares of renewables, sectoral integration, and deep uncertainties. To address this challenge, we propose the Renewable Energy Large Language Model (RE-LLM), a hybrid framework that integrates Large Language Models (LLMs) directly into the energy system modeling workflow. RE-LLM combines three core elements: (i) optimization-based scenario exploration, (ii) machine learning surrogates that accelerate computationally intensive simulations, and (iii) LLM-powered natural language generation that translates complex results into clear, stakeholder-oriented explanations. This integrated design not only reduces computational burden but also enhances inter-pretability, enabling real-time reasoning about trade-offs, sensitivities, and policy implications. The framework is adaptable across different optimization platforms and energy system models, ensuring broad applicability beyond the case study presented. By merging speed, rigor, and interpretability, RE-LLM advances a new paradigm of human-centric energy modeling. It enables interactive, multilingual, and accessible engagement with future energy pathways, ultimately bridging the final gap between data-driven analysis and actionable decision-making for sustainable transitions.
☆ Consistency Flow Model Achieves One-step Denoising Error Correction Codes
Error Correction Codes (ECC) are fundamental to reliable digital communication, yet designing neural decoders that are both accurate and computationally efficient remains challenging. Recent denoising diffusion decoders with transformer backbones achieve state-of-the-art performance, but their iterative sampling limits practicality in low-latency settings. We introduce the Error Correction Consistency Flow Model (ECCFM), an architecture-agnostic training framework for high-fidelity one-step decoding. By casting the reverse denoising process as a Probability Flow Ordinary Differential Equation (PF-ODE) and enforcing smoothness through a differential time regularization, ECCFM learns to map noisy signals along the decoding trajectory directly to the original codeword in a single inference step. Across multiple decoding benchmarks, ECCFM attains lower bit-error rates (BER) than autoregressive and diffusion-based baselines, with notable improvements on longer codes, while delivering inference speeds up from 30x to 100x faster than denoising diffusion decoders.
☆ CLAPS: Posterior-Aware Conformal Intervals via Last-Layer Laplace
We present CLAPS, a posterior-aware conformal regression method that pairs a Last-Layer Laplace Approximation with split-conformal calibration. From the resulting Gaussian posterior, CLAPS defines a simple two-sided posterior CDF score that aligns the conformity metric with the full predictive shape, not just a point estimate. This alignment yields narrower prediction intervals at the same target coverage, especially on small to medium tabular datasets where data are scarce and uncertainty modeling matters. We also provide a lightweight diagnostic suite that separates aleatoric and epistemic components and visualizes posterior behavior, helping practitioners understand why intervals shrink when they do. Across multiple benchmarks using the same MLP backbone, CLAPS consistently attains nominal coverage with improved efficiency and minimal overhead, offering a clear, practical upgrade to residual-based conformal baselines.
comment: 19 pages, 2 figures
☆ Stabilizing Reinforcement Learning with LLMs: Formulation and Practices
This paper proposes a novel formulation for reinforcement learning (RL) with large language models, explaining why and under what conditions the true sequence-level reward can be optimized via a surrogate token-level objective in policy gradient methods such as REINFORCE. Specifically, through a first-order approximation, we show that this surrogate becomes increasingly valid only when both the training-inference discrepancy and policy staleness are minimized. This insight provides a principled explanation for the crucial role of several widely adopted techniques in stabilizing RL training, including importance sampling correction, clipping, and particularly Routing Replay for Mixture-of-Experts (MoE) models. Through extensive experiments with a 30B MoE model totaling hundreds of thousands of GPU hours, we show that for on-policy training, the basic policy gradient algorithm with importance sampling correction achieves the highest training stability. When off-policy updates are introduced to accelerate convergence, combining clipping and Routing Replay becomes essential to mitigate the instability caused by policy staleness. Notably, once training is stabilized, prolonged optimization consistently yields comparable final performance regardless of cold-start initialization. We hope that the shared insights and the developed recipes for stable RL training will facilitate future research.
☆ Beyond Loss Guidance: Using PDE Residuals as Spectral Attention in Diffusion Neural Operators
Diffusion-based solvers for partial differential equations (PDEs) are often bottle-necked by slow gradient-based test-time optimization routines that use PDE residuals for loss guidance. They additionally suffer from optimization instabilities and are unable to dynamically adapt their inference scheme in the presence of noisy PDE residuals. To address these limitations, we introduce PRISMA (PDE Residual Informed Spectral Modulation with Attention), a conditional diffusion neural operator that embeds PDE residuals directly into the model's architecture via attention mechanisms in the spectral domain, enabling gradient-descent free inference. In contrast to previous methods that use PDE loss solely as external optimization targets, PRISMA integrates PDE residuals as integral architectural features, making it inherently fast, robust, accurate, and free from sensitive hyperparameter tuning. We show that PRISMA has competitive accuracy, at substantially lower inference costs, compared to previous methods across five benchmark PDEs, especially with noisy observations, while using 10x to 100x fewer denoising steps, leading to 15x to 250x faster inference.
☆ A Fine Evaluation Method for Cube Copying Test for Early Detection of Alzheimer's Disease
Background: Impairment of visual spatial cognitive function is the most common early clinical manifestation of Alzheimer's Disease (AD). When the Montreal Cognitive Assessment (MoCA) uses the "0/1" binary method ("pass/fail") to evaluate the visual spatial cognitive ability represented by the Cube Copying Test(CCT), the elder with less formal education generally score 0 point, resulting in serious bias in the evaluation results. Therefore, this study proposes a fine evaluation method for CCT based on dynamic handwriting feature extraction of DH-SCSM-BLA. method : The Cogni-CareV3.0 software independently developed by our team was used to collect dynamic handwriting data of CCT. Then, the spatial and motion features of segmented dynamic handwriting were extracted, and feature matrix with unequal dimensions were normalized. Finally, a bidirectional long short-term memory network model combined with attention mechanism (BiLSTM-Attention) was adopted for classification. Result: The experimental results showed that: The proposed method has significant superiority compared to similar studies, with a classification accuracy of 86.69%. The distribution of cube drawing ability scores has significant regularity for three aspects such as MCI patients and healthy control group, age, and levels of education. It was also found that score for each cognitive task including cube drawing ability score is negatively correlated with age. Score for each cognitive task including cube drawing ability score, but positively correlated with levels of education significantly. Conclusion: This study provides a relatively objective and comprehensive evaluation method for early screening and personalized intervention of visual spatial cognitive impairment.
☆ BlinkBud: Detecting Hazards from Behind via Sampled Monocular 3D Detection on a Single Earbud
Failing to be aware of speeding vehicles approaching from behind poses a huge threat to the road safety of pedestrians and cyclists. In this paper, we propose BlinkBud, which utilizes a single earbud and a paired phone to online detect hazardous objects approaching from behind of a user. The core idea is to accurately track visually identified objects utilizing a small number of sampled camera images taken from the earbud. To minimize the power consumption of the earbud and the phone while guaranteeing the best tracking accuracy, a novel 3D object tracking algorithm is devised, integrating both a Kalman filter based trajectory estimation scheme and an optimal image sampling strategy based on reinforcement learning. Moreover, the impact of constant user head movements on the tracking accuracy is significantly eliminated by leveraging the estimated pitch and yaw angles to correct the object depth estimation and align the camera coordinate system to the user's body coordinate system, respectively. We implement a prototype BlinkBud system and conduct extensive real-world experiments. Results show that BlinkBud is lightweight with ultra-low mean power consumptions of 29.8 mW and 702.6 mW on the earbud and smartphone, respectively, and can accurately detect hazards with a low average false positive ratio (FPR) and false negative ratio (FNR) of 4.90% and 1.47%, respectively.
comment: This is the author-accepted version of the paper published in Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT), Vol. 9, No. 4, Article 191, 2025. Final published version: https://doi.org/10.1145/3770707
☆ Modeling Wavelet Transformed Quantum Support Vector for Network Intrusion Detection
Network traffic anomaly detection is a critical cy- bersecurity challenge requiring robust solutions for complex Internet of Things (IoT) environments. We present a novel hybrid quantum-classical framework integrating an enhanced Quantum Support Vector Machine (QSVM) with the Quantum Haar Wavelet Packet Transform (QWPT) for superior anomaly classification under realistic noisy intermediate-scale Quantum conditions. Our methodology employs amplitude-encoded quan- tum state preparation, multi-level QWPT feature extraction, and behavioral analysis via Shannon Entropy profiling and Chi-square testing. Features are classified using QSVM with fidelity-based quantum kernels optimized through hybrid train- ing with simultaneous perturbation stochastic approximation (SPSA) optimizer. Evaluation under noiseless and depolarizing noise conditions demonstrates exceptional performance: 96.67% accuracy on BoT-IoT and 89.67% on IoT-23 datasets, surpassing quantum autoencoder approaches by over 7 percentage points.
☆ SocialDriveGen: Generating Diverse Traffic Scenarios with Controllable Social Interactions
The generation of realistic and diverse traffic scenarios in simulation is essential for developing and evaluating autonomous driving systems. However, most simulation frameworks rely on rule-based or simplified models for scene generation, which lack the fidelity and diversity needed to represent real-world driving. While recent advances in generative modeling produce more realistic and context-aware traffic interactions, they often overlook how social preferences influence driving behavior. SocialDriveGen addresses this gap through a hierarchical framework that integrates semantic reasoning and social preference modeling with generative trajectory synthesis. By modeling egoism and altruism as complementary social dimensions, our framework enables controllable diversity in driver personalities and interaction styles. Experiments on the Argoverse 2 dataset show that SocialDriveGen generates diverse, high-fidelity traffic scenarios spanning cooperative to adversarial behaviors, significantly enhancing policy robustness and generalization to rare or high-risk situations.
☆ Directed evolution algorithm drives neural prediction
Neural prediction offers a promising approach to forecasting the individual variability of neurocognitive functions and disorders and providing prognostic indicators for personalized invention. However, it is challenging to translate neural predictive models into medical artificial intelligent applications due to the limitations of domain shift and label scarcity. Here, we propose the directed evolution model (DEM), a novel computational model that mimics the trial-and-error processes of biological directed evolution to approximate optimal solutions for predictive modeling tasks. We demonstrated that the directed evolution algorithm is an effective strategy for uncertainty exploration, enhancing generalization in reinforcement learning. Furthermore, by incorporating replay buffer and continual backpropagate methods into DEM, we provide evidence of achieving better trade-off between exploitation and exploration in continuous learning settings. We conducted experiments on four different datasets for children with cochlear implants whose spoken language developmental outcomes vary considerably on the individual-child level. Preoperative neural MRI data has shown to accurately predict the post-operative outcome of these children within but not across datasets. Our results show that DEM can efficiently improve the performance of cross-domain pre-implantation neural predictions while addressing the challenge of label scarcity in target domain.
comment: 43 pages, 5 figures
☆ Modality-Augmented Fine-Tuning of Foundation Robot Policies for Cross-Embodiment Manipulation on GR1 and G1
This paper presents a modality-augmented fine-tuning framework designed to adapt foundation robot policies to diverse humanoid embodiments. We validate our approach across two distinct settings: (i) the GR1 embodiment, utilizing public datasets where we introduce post-processed modalities, including binary contact signals and ZoeDepth-generated metric depth; and (ii) the Unitree G1 embodiment, for which we contribute a novel multi-modal dataset incorporating cuRobo motion planning, inverse kinematics, and ground-truth contact-force measurements. Our experiments demonstrate that modality augmentation consistently enhances policy performance across different embodiments. Specifically, for the GR1, integrating contact-state cues and RGB-D fusion improves online success rates from 51% to 63%. Furthermore, in the G1 "Pick Apple to Bowl" task, our contact-augmented model achieves a success rate of 94%, significantly outperforming the 48% achieved by standard fine-tuning and the 0% baseline of zero-shot transfer. These results highlight that lightweight post-processing effectively strengthens policies for GR1, while high-quality multi-modal data is crucial for reliable transfer to the Unitree G1. Consequently, this work establishes a unified, data-centric pathway for extending foundation robot policies through targeted modality design and multi-modal fine-tuning.
comment: 8 pages, 10 figures
☆ The Necessity of Imperfection:Reversing Model Collapse via Simulating Cognitive Boundedness
Although synthetic data is widely promoted as a remedy, its prevailing production paradigm -- one optimizing for statistical smoothness -- systematically removes the long-tail, cognitively grounded irregularities that characterize human text. Prolonged training on such statistically optimal but cognitively impoverished data accelerates model collapse. This paper proposes a paradigm shift: instead of imitating the surface properties of data, we simulate the cognitive processes that generate human text. We introduce the Prompt-driven Cognitive Computing Framework (PMCSF), whose core consists of a Cognitive State Decoder (CSD) that reverse-engineers unstructured text into structured cognitive vectors, and a Cognitive Text Encoder (CTE) that re-materializes these states into text enriched with human-typical imperfections via mathematically defined Cognitive Perturbation Operators. The framework is validated through a two-stage objective evaluation pipeline. First, in cognitive codec verification, CTE text yields a Jensen-Shannon divergence of 0.0614 from human text (vs. 0.4431 for standard LLM output), passes double-blind professional media review, and achieves an intraclass correlation coefficient ICC > 0.9 for cognitive profile alignment across heterogeneous models. Second, in functional gain evaluation, isomorphic stress tests in the A-share market show that strategies incorporating CTE-generated data reduce maximum drawdown by 47.4% during the 2015 crash and deliver 8.6% Defensive Alpha, exceeding transaction costs by a factor of 33. Our findings demonstrate that modelling human cognitive limitations -- not copying surface data -- enables synthetic data with genuine functional gain, offering a viable technical pathway toward resolving the AI data-collapse crisis.
comment: 38 pages,5 figures,30 tables. This paper proposes the Prompt-driven Cognitive Computing Framework (PMCSF) and validates it with A-share market stress tests (N=23 for 2015 crash, N=13 for 2024 bull market). Includes detailed appendices on cognitive vector definitions, perturbation operators, and financial backtest data
☆ Intrinsic Structure as a Proxy for Saliency: SVD-Based Weight Preservation for Mixed-Precision Quantization in Large Language Models
As Large Language Models (LLMs) continue to scale in parameter count, deploying them on commodity hardware has become increasingly challenging. Post-Training Quantization (PTQ) addresses this by reducing the precision of model weights, typically to 4-bit or lower. However, uniform quantization often leads to significant performance degradation due to the presence of ``outlier features'' -- weights that, while few in number, are critical for maintaining model accuracy. Current state-of-the-art methods such as AWQ (Activation-aware Weight Quantization) and SpQR (Sparse Quantization Representations) rely on calibration data to identify these salient weights via activation magnitudes or Hessian sensitivity. In scenarios where data privacy is paramount or calibration data is unavailable, these methods are inapplicable. In this work, we propose a data-free, structure-aware hypothesis: that the weights identified as Principal Components via Singular Value Decomposition (SVD) are intrinsically important to the model's downstream performance. We introduce a novel selection heuristic that preserves the top-$k$ weights aligned with the principal components in FP32, while aggressively quantizing the residual weights. We compare our method against activation-aware (AWQ) and second-order (SpQR) methods across GLUE benchmarks (MRPC, RTE, QNLI) using a DistilBERT backbone. Our experiments reveal that structural importance is highly correlated with functional importance. On the challenging RTE task, our SVD-based method achieves an accuracy of 66.06\%, outperforming both AWQ (65.34\%) and SpQR (65.34\%) at high protection budgets, validating that intrinsic matrix structure can serve as a robust proxy for weight saliency without the need for forward passes or calibration data.
☆ Optimizing Stroke Risk Prediction: A Machine Learning Pipeline Combining ROS-Balanced Ensembles and XAI
Stroke is a major cause of death and permanent impairment, making it a major worldwide health concern. For prompt intervention and successful preventative tactics, early risk assessment is essential. To address this challenge, we used ensemble modeling and explainable AI (XAI) techniques to create an interpretable machine learning framework for stroke risk prediction. A thorough evaluation of 10 different machine learning models using 5-fold cross-validation across several datasets was part of our all-inclusive strategy, which also included feature engineering and data pretreatment (using Random Over-Sampling (ROS) to solve class imbalance). Our optimized ensemble model (Random Forest + ExtraTrees + XGBoost) performed exceptionally well, obtaining a strong 99.09% accuracy on the Stroke Prediction Dataset (SPD). We improved the model's transparency and clinical applicability by identifying three important clinical variables using LIME-based interpretability analysis: age, hypertension, and glucose levels. Through early prediction, this study highlights how combining ensemble learning with explainable AI (XAI) can deliver highly accurate and interpretable stroke risk assessment. By enabling data-driven prevention and personalized clinical decisions, our framework has the potential to transform stroke prediction and cardiovascular risk management.
☆ Securing Large Language Models (LLMs) from Prompt Injection Attacks
Large Language Models (LLMs) are increasingly being deployed in real-world applications, but their flexibility exposes them to prompt injection attacks. These attacks leverage the model's instruction-following ability to make it perform malicious tasks. Recent work has proposed JATMO, a task-specific fine-tuning approach that trains non-instruction-tuned base models to perform a single function, thereby reducing susceptibility to adversarial instructions. In this study, we evaluate the robustness of JATMO against HOUYI, a genetic attack framework that systematically mutates and optimizes adversarial prompts. We adapt HOUYI by introducing custom fitness scoring, modified mutation logic, and a new harness for local model testing, enabling a more accurate assessment of defense effectiveness. We fine-tuned LLaMA 2-7B, Qwen1.5-4B, and Qwen1.5-0.5B models under the JATMO methodology and compared them with a fine-tuned GPT-3.5-Turbo baseline. Results show that while JATMO reduces attack success rates relative to instruction-tuned models, it does not fully prevent injections; adversaries exploiting multilingual cues or code-related disruptors still bypass defenses. We also observe a trade-off between generation quality and injection vulnerability, suggesting that better task performance often correlates with increased susceptibility. Our results highlight both the promise and limitations of fine-tuning-based defenses and point toward the need for layered, adversarially informed mitigation strategies.
comment: 10 pages, 1 figure, 1 table
☆ Extending NGU to Multi-Agent RL: A Preliminary Study NeurIPS 2025
The Never Give Up (NGU) algorithm has proven effective in reinforcement learning tasks with sparse rewards by combining episodic novelty and intrinsic motivation. In this work, we extend NGU to multi-agent environments and evaluate its performance in the simple_tag environment from the PettingZoo suite. Compared to a multi-agent DQN baseline, NGU achieves moderately higher returns and more stable learning dynamics. We investigate three design choices: (1) shared replay buffer versus individual replay buffers, (2) sharing episodic novelty among agents using different k thresholds, and (3) using heterogeneous values of the beta parameter. Our results show that NGU with a shared replay buffer yields the best performance and stability, highlighting that the gains come from combining NGU intrinsic exploration with experience sharing. Novelty sharing performs comparably when k = 1 but degrades learning for larger values. Finally, heterogeneous beta values do not improve over a small common value. These findings suggest that NGU can be effectively applied in multi-agent settings when experiences are shared and intrinsic exploration signals are carefully tuned.
comment: 9 pages, 4 figures, 1 table. Accepted at the LatinX in AI (LXAI) Workshop at NeurIPS 2025. Includes experimental results for Multi-NGU and Multi-DQN in the PettingZoo simple_tag environment
☆ Agreement-Constrained Probabilistic Minimum Bayes Risk Decoding ACL 2025
Minimum Bayes risk (MBR) decoding generates high-quality translations by maximizing the expected utility of output candidates, but it evaluates all pairwise scores over the candidate set; hence, it takes quadratic time with respect to the number of candidates. To reduce the number of utility function calls, probabilistic MBR (PMBR) decoding partially evaluates quality scores using sampled pairs of candidates and completes the missing scores with a matrix completion algorithm. Nevertheless, it degrades the translation quality as the number of utility function calls is reduced. Therefore, to improve the trade-off between quality and cost, we propose agreement-constrained PMBR (AC-PMBR) decoding, which leverages a knowledge distilled model to guide the completion of the score matrix. Our AC-PMBR decoding improved approximation errors of matrix completion by up to 3 times and achieved higher translation quality compared with PMBR decoding at a comparable computational cost on the WMT'23 En$\leftrightarrow$De translation tasks.
comment: IJCNLP-AACL 2025 Main
☆ CuES: A Curiosity-driven and Environment-grounded Synthesis Framework for Agentic RL
Large language model based agents are increasingly deployed in complex, tool augmented environments. While reinforcement learning provides a principled mechanism for such agents to improve through interaction, its effectiveness critically depends on the availability of structured training tasks. In many realistic settings, however, no such tasks exist a challenge we term task scarcity, which has become a key bottleneck for scaling agentic RL. Existing approaches typically assume predefined task collections, an assumption that fails in novel environments where tool semantics and affordances are initially unknown. To address this limitation, we formalize the problem of Task Generation for Agentic RL, where an agent must learn within a given environment that lacks predefined tasks. We propose CuES, a Curiosity driven and Environment grounded Synthesis framework that autonomously generates diverse, executable, and meaningful tasks directly from the environment structure and affordances, without relying on handcrafted seeds or external corpora. CuES drives exploration through intrinsic curiosity, abstracts interaction patterns into reusable task schemas, and refines them through lightweight top down guidance and memory based quality control. Across three representative environments, AppWorld, BFCL, and WebShop, CuES produces task distributions that match or surpass manually curated datasets in both diversity and executability, yielding substantial downstream policy improvements. These results demonstrate that curiosity driven, environment grounded task generation provides a scalable foundation for agents that not only learn how to act, but also learn what to learn. The code is available at https://github.com/modelscope/AgentEvolver/research/CuES.
☆ Experimental Methods, Health Indicators, and Diagnostic Strategies for Retired Lithium-ion Batteries: A Comprehensive Review
Reliable health assessment of retired lithium-ion batteries is essential for safe and economically viable second-life deployment, yet remains difficult due to sparse measurements, incomplete historical records, heterogeneous chemistries, and limited or noisy battery health labels. Conventional laboratory diagnostics, such as full charge-discharge cycling, pulse tests, Electrochemical Impedance Spectroscopy (EIS) measurements, and thermal characterization, provide accurate degradation information but are too time-consuming, equipment-intensive, or condition-sensitive to be applied at scale during retirement-stage sorting, leaving real-world datasets fragmented and inconsistent. This review synthesizes recent advances that address these constraints through physical health indicators, experiment testing methods, data-generation and augmentation techniques, and a spectrum of learning-based modeling routes spanning supervised, semi-supervised, weakly supervised, and unsupervised paradigms. We highlight how minimal-test features, synthetic data, domain-invariant representations, and uncertainty-aware prediction enable robust inference under limited or approximate labels and across mixed chemistries and operating histories. A comparative evaluation further reveals trade-offs in accuracy, interpretability, scalability, and computational burden. Looking forward, progress toward physically constrained generative models, cross-chemistry generalization, calibrated uncertainty estimation, and standardized benchmarks will be crucial for building reliable, scalable, and deployment-ready health prediction tools tailored to the realities of retired-battery applications.
comment: Review article; 46 pages, 3 figures, 2 tables
☆ milearn: A Python Package for Multi-Instance Machine Learning
We introduce milearn, a Python package for multi-instance learning (MIL) that follows the familiar scikit-learn fit/predict interface while providing a unified framework for both classical and neural-network-based MIL algorithms for regression and classification. The package also includes built-in hyperparameter optimization designed specifically for small MIL datasets, enabling robust model selection in data-scarce scenarios. We demonstrate the versatility of milearn across a broad range of synthetic MIL benchmark datasets, including digit classification and regression, molecular property prediction, and protein-protein interaction (PPI) prediction. Special emphasis is placed on the key instance detection (KID) problem, for which the package provides dedicated support.
comment: Open-source software for multi-instance machine learning
☆ Generative Modeling with Continuous Flows: Sample Complexity of Flow Matching
Flow matching has recently emerged as a promising alternative to diffusion-based generative models, offering faster sampling and simpler training by learning continuous flows governed by ordinary differential equations. Despite growing empirical success, the theoretical understanding of flow matching remains limited, particularly in terms of sample complexity results. In this work, we provide the first analysis of the sample complexity for flow-matching based generative models without assuming access to the empirical risk minimizer (ERM) of the loss function for estimating the velocity field. Under standard assumptions on the loss function for velocity field estimation and boundedness of the data distribution, we show that a sufficiently expressive neural network can learn a velocity field such that with $\mathcal{O}(ε^{-4})$ samples, such that the Wasserstein-2 distance between the learned and the true distribution is less than $\mathcal{O}(ε)$. The key technical idea is to decompose the velocity field estimation error into neural-network approximation error, statistical error due to the finite sample size, and optimization error due to the finite number of optimization steps for estimating the velocity field. Each of these terms are then handled via techniques that may be of independent interest.
☆ Accelerating Large-Scale Reasoning Model Inference with Sparse Self-Speculative Decoding
Reasoning language models have demonstrated remarkable capabilities on challenging tasks by generating elaborate chain-of-thought (CoT) solutions. However, such lengthy generation shifts the inference bottleneck from compute-bound to memory-bound. To generate each token, the model applies full attention to all previously generated tokens, requiring memory access to an increasingly large KV-Cache. Consequently, longer generations demand more memory access for every step, leading to substantial pressure on memory bandwidth. To address this, we introduce SparseSpec, a speculative decoding framework that reuses the same model as the draft and target models (i.e., self-speculation). SparseSpec features a novel sparse attention mechanism, PillarAttn, as the draft model, which accurately selects critical tokens via elegantly reusing information from the verification stage. Furthermore, SparseSpec co-designs self-speculation with three system innovations: (1) a unified scheduler to batch token drafting and verification, (2) delayed verification for CPU/GPU overlap, and (3) dynamic KV-Cache management to maximize memory utilization. Across various models and datasets, SparseSpec outperforms state-of-the-art solutions, with an up to 2.13x throughput speedup.
☆ Samplability makes learning easier
The standard definition of PAC learning (Valiant 1984) requires learners to succeed under all distributions -- even ones that are intractable to sample from. This stands in contrast to samplable PAC learning (Blum, Furst, Kearns, and Lipton 1993), where learners only have to succeed under samplable distributions. We study this distinction and show that samplable PAC substantially expands the power of efficient learners. We first construct a concept class that requires exponential sample complexity in standard PAC but is learnable with polynomial sample complexity in samplable PAC. We then lift this statistical separation to the computational setting and obtain a separation relative to a random oracle. Our proofs center around a new complexity primitive, explicit evasive sets, that we introduce and study. These are sets for which membership is easy to determine but are extremely hard to sample from. Our results extend to the online setting to similarly show how its landscape changes when the adversary is assumed to be efficient instead of computationally unbounded.
comment: ITCS 2026
☆ SUPERChem: A Multimodal Reasoning Benchmark in Chemistry
Current benchmarks for evaluating the chemical reasoning capabilities of Large Language Models (LLMs) are limited by oversimplified tasks, lack of process-level evaluation, and misalignment with expert-level chemistry skills. To address these issues, we introduce SUPERChem, a benchmark of 500 expert-curated reasoning-intensive chemistry problems, covering diverse subfields and provided in both multimodal and text-only formats. Original content and an iterative curation pipeline eliminate flawed items and mitigate data contamination. Each problem is paired with an expert-authored solution path, enabling Reasoning Path Fidelity (RPF) scoring to evaluate reasoning quality beyond final-answer accuracy. Evaluations against a human baseline of 40.3% accuracy show that even the best-performing model, GPT-5 (High), reaches only 38.5%, followed closely by Gemini 2.5 Pro (37.9%) and DeepSeek-V3.1-Think (37.3%). SUPERChem elicits multi-step, multimodal reasoning, reveals model-dependent effects of visual information, and distinguishes high-fidelity reasoners from heuristic ones. By providing a challenging benchmark and a reliable evaluation framework, SUPERChem aims to facilitate the advancement of LLMs toward expert-level chemical intelligence. The dataset of the benchmark is available at https://huggingface.co/datasets/ZehuaZhao/SUPERChem.
comment: 35 pages, 11 figures, 5 tables
☆ Social Media Data Mining of Human Behaviour during Bushfire Evacuation
Traditional data sources on bushfire evacuation behaviour, such as quantitative surveys and manual observations have severe limitations. Mining social media data related to bushfire evacuations promises to close this gap by allowing the collection and processing of a large amount of behavioural data, which are low-cost, accurate, possibly including location information and rich contextual information. However, social media data have many limitations, such as being scattered, incomplete, informal, etc. Together, these limitations represent several challenges to their usefulness to better understand bushfire evacuation. To overcome these challenges and provide guidance on which and how social media data can be used, this scoping review of the literature reports on recent advances in relevant data mining techniques. In addition, future applications and open problems are discussed. We envision future applications such as evacuation model calibration and validation, emergency communication, personalised evacuation training, and resource allocation for evacuation preparedness. We identify open problems such as data quality, bias and representativeness, geolocation accuracy, contextual understanding, crisis-specific lexicon and semantics, and multimodal data interpretation.
☆ Efficient Hyperparameter Search for Non-Stationary Model Training
Online learning is the cornerstone of applications like recommendation and advertising systems, where models continuously adapt to shifting data distributions. Model training for such systems is remarkably expensive, a cost that multiplies during hyperparameter search. We introduce a two-stage paradigm to reduce this cost: (1) efficiently identifying the most promising configurations, and then (2) training only these selected candidates to their full potential. Our core insight is that focusing on accurate identification in the first stage, rather than achieving peak performance, allows for aggressive cost-saving measures. We develop novel data reduction and prediction strategies that specifically overcome the challenges of sequential, non-stationary data not addressed by conventional hyperparameter optimization. We validate our framework's effectiveness through a dual evaluation: first on the Criteo 1TB dataset, the largest suitable public benchmark, and second on an industrial advertising system operating at a scale two orders of magnitude larger. Our methods reduce the total hyperparameter search cost by up to 10$\times$ on the public benchmark and deliver significant, validated efficiency gains in the industrial setting.
☆ Efficient Training of Diffusion Mixture-of-Experts Models: A Practical Recipe
Recent efforts on Diffusion Mixture-of-Experts (MoE) models have primarily focused on developing more sophisticated routing mechanisms. However, we observe that the underlying architectural configuration space remains markedly under-explored. Inspired by the MoE design paradigms established in large language models (LLMs), we identify a set of crucial architectural factors for building effective Diffusion MoE models--including DeepSeek-style expert modules, alternative intermediate widths, varying expert counts, and enhanced attention positional encodings. Our systematic study reveals that carefully tuning these configurations is essential for unlocking the full potential of Diffusion MoE models, often yielding gains that exceed those achieved by routing innovations alone. Through extensive experiments, we present novel architectures that can be efficiently applied to both latent and pixel-space diffusion frameworks, which provide a practical and efficient training recipe that enables Diffusion MoE models to surpass strong baselines while using equal or fewer activated parameters. All code and models are publicly available at: https://github.com/yhlleo/EfficientMoE.
comment: 9 pages, 7 figures
☆ Bayesian Optimization for Non-Cooperative Game-Based Radio Resource Management
Radio resource management in modern cellular networks often calls for the optimization of complex utility functions that are potentially conflicting between different base stations (BSs). Coordinating the resource allocation strategies efficiently across BSs to ensure stable network service poses significant challenges, especially when each utility is accessible only via costly, black-box evaluations. This paper considers formulating the resource allocation among spectrum sharing BSs as a non-cooperative game, with the goal of aligning their allocation incentives toward a stable outcome. To address this challenge, we propose PPR-UCB, a novel Bayesian optimization (BO) strategy that learns from sequential decision-evaluation pairs to approximate pure Nash equilibrium (PNE) solutions. PPR-UCB applies martingale techniques to Gaussian process (GP) surrogates and constructs high probability confidence bounds for utilities uncertainty quantification. Experiments on downlink transmission power allocation in a multi-cell multi-antenna system demonstrate the efficiency of PPR-UCB in identifying effective equilibrium solutions within a few data samples.
comment: 6 pages, 4 figures, this paper is accepted to 2025 IEEE Global Communications Conference (Globecom)
☆ Implicitly Normalized Online PCA: A Regularized Algorithm with Exact High-Dimensional Dynamics
Many online learning algorithms, including classical online PCA methods, enforce explicit normalization steps that discard the evolving norm of the parameter vector. We show that this norm can in fact encode meaningful information about the underlying statistical structure of the problem, and that exploiting this information leads to improved learning behavior. Motivated by this principle, we introduce Implicitly Normalized Online PCA (INO-PCA), an online PCA algorithm that removes the unit-norm constraint and instead allows the parameter norm to evolve dynamically through a simple regularized update. We prove that in the high-dimensional limit the joint empirical distribution of the estimate and the true component converges to a deterministic measure-valued process governed by a nonlinear PDE. This analysis reveals that the parameter norm obeys a closed-form ODE coupled with the cosine similarity, forming an internal state variable that regulates learning rate, stability, and sensitivity to signal-to-noise ratio (SNR). The resulting dynamics uncover a three-way relationship between the norm, SNR, and optimal step size, and expose a sharp phase transition in steady-state performance. Both theoretically and experimentally, we show that INO-PCA consistently outperforms Oja's algorithm and adapts rapidly in non-stationary environments. Overall, our results demonstrate that relaxing norm constraints can be a principled and effective way to encode and exploit problem-relevant information in online learning algorithms.
comment: 34 pages 9 figures
☆ On the Tension Between Optimality and Adversarial Robustness in Policy Optimization
Achieving optimality and adversarial robustness in deep reinforcement learning has long been regarded as conflicting goals. Nonetheless, recent theoretical insights presented in CAR suggest a potential alignment, raising the important question of how to realize this in practice. This paper first identifies a key gap between theory and practice by comparing standard policy optimization (SPO) and adversarially robust policy optimization (ARPO). Although they share theoretical consistency, a fundamental tension between robustness and optimality arises in practical policy gradient methods. SPO tends toward convergence to vulnerable first-order stationary policies (FOSPs) with strong natural performance, whereas ARPO typically favors more robust FOSPs at the expense of reduced returns. Furthermore, we attribute this tradeoff to the reshaping effect of the strongest adversary in ARPO, which significantly complicates the global landscape by inducing deceptive sticky FOSPs. This improves robustness but makes navigation more challenging. To alleviate this, we develop the BARPO, a bilevel framework unifying SPO and ARPO by modulating adversary strength, thereby facilitating navigability while preserving global optima. Extensive empirical results demonstrate that BARPO consistently outperforms vanilla ARPO, providing a practical approach to reconcile theoretical and empirical performance.
☆ CoSineVerifier: Tool-Augmented Answer Verification for Computation-Oriented Scientific Questions
Answer verification methods are widely employed in language model training pipelines spanning data curation, evaluation, and reinforcement learning with verifiable rewards (RLVR). While prior work focus on developing unified verifiers applicable across multiple reasoning scenarios, significant challenges remain in computation-oriented scientific domains, such as algebraic equivalence checking and physical constant substitution. In this paper, we introduce \model, a tool-augmented verifier that leverages external executors to perform precise computations and symbolic simplifications. \model enables robust verification that goes beyond simple semantic matching. We propose a novel two-stage pipeline, which begin with cold-start fine-tuning and followed by multi-turn reinforcement learning with tool integration. Extensive experiments conducted on STEM subjects, general QA, and long-form reasoning tasks demonstrates strong generalization of \model. The results shows that the \model achieves state-of-the-art performance on VerifyBench-Hard and SCI-Bench. And we also employ our \model in RLVR as a reward model, the results show that it consistently outperforms both rubric-based and model-based verifiers on AIME'24 and AIME'25, demonstrating strong potential to enhance reasoning capabilities of LLM. Our model is released at \hyperlink{https://huggingface.co/Nanbeige/CoSineVerifier-Tool-4B}{https://huggingface.co/Nanbeige/CoSineVerifier-Tool-4B}.
☆ Neural Network Optimal Power Flow via Energy Gradient Flow and Unified Dynamics
Optimal Power Flow (OPF) is a core optimization problem in power system operation and planning, aiming to minimize generation costs while satisfying physical constraints such as power flow equations, generator limits, and voltage limits. Traditional OPF solving methods typically employ iterative optimization algorithms (such as interior point methods, sequential quadratic programming, etc.), with limitations including low computational efficiency, initial value sensitivity, and low batch computation efficiency. Most existing deep learning-based OPF methods rely on supervised learning, requiring pre-solving large numbers of cases, and have difficulty guaranteeing physical consistency. This paper proposes an Optimal Power Flow solving method based on neural network dynamics and energy gradient flow, transforming OPF problems into energy minimization problems. By constructing an energy function to measure the degree of deviation from the constraint manifold, and guiding networks to learn optimal solutions that simultaneously satisfy power flow constraints and minimize costs through gradient flow. Neural networks are trained unsupervised by directly minimizing physical residuals, requiring no labeled data, achieving true "end-to-end" physics-constrained learning.
☆ Closing the Approximation Gap of Partial AUC Optimization: A Tale of Two Formulations
As a variant of the Area Under the ROC Curve (AUC), the partial AUC (PAUC) focuses on a specific range of false positive rate (FPR) and/or true positive rate (TPR) in the ROC curve. It is a pivotal evaluation metric in real-world scenarios with both class imbalance and decision constraints. However, selecting instances within these constrained intervals during its calculation is NP-hard, and thus typically requires approximation techniques for practical resolution. Despite the progress made in PAUC optimization over the last few years, most existing methods still suffer from uncontrollable approximation errors or a limited scalability when optimizing the approximate PAUC objectives. In this paper, we close the approximation gap of PAUC optimization by presenting two simple instance-wise minimax reformulations: one with an asymptotically vanishing gap, the other with the unbiasedness at the cost of more variables. Our key idea is to first establish an equivalent instance-wise problem to lower the time complexity, simplify the complicated sample selection procedure by threshold learning, and then apply different smoothing techniques. Equipped with an efficient solver, the resulting algorithms enjoy a linear per-iteration computational complexity w.r.t. the sample size and a convergence rate of $O(ε^{-1/3})$ for typical one-way and two-way PAUCs. Moreover, we provide a tight generalization bound of our minimax reformulations. The result explicitly demonstrates the impact of the TPR/FPR constraints $α$/$β$ on the generalization and exhibits a sharp order of $\tilde{O}(α^{-1}\n_+^{-1} + β^{-1}\n_-^{-1})$. Finally, extensive experiments on several benchmark datasets validate the strength of our proposed methods.
☆ A Comparative Study of Machine Learning Algorithms for Electricity Price Forecasting with LIME-Based Interpretability
With the rapid development of electricity markets, price volatility has significantly increased, making accurate forecasting crucial for power system operations and market decisions. Traditional linear models cannot capture the complex nonlinear characteristics of electricity pricing, necessitating advanced machine learning approaches. This study compares eight machine learning models using Spanish electricity market data, integrating consumption, generation, and meteorological variables. The models evaluated include linear regression, ridge regression, decision tree, KNN, random forest, gradient boosting, SVR, and XGBoost. Results show that KNN achieves the best performance with R^2 of 0.865, MAE of 3.556, and RMSE of 5.240. To enhance interpretability, LIME analysis reveals that meteorological factors and supply-demand indicators significantly influence price fluctuations through nonlinear relationships. This work demonstrates the effectiveness of machine learning models in electricity price forecasting while improving decision transparency through interpretability analysis.
comment: 5 pages, 5 figures. Accepted for publication at ICEIEC 2025 (not yet published)
☆ Pay Attention Later: From Vector Space Diffusion to Linearithmic Spectral Phase-Locking
Standard Transformers suffer from a "Semantic Alignment Tax", a prohibitive optimization cost required to organize a chaotic initialization into a coherent geometric map via local gradient diffusion. We hypothesize that this reliance on diffusive learning creates "Catastrophic Rigidity", rendering models unable to adapt to novel concepts without destroying their pre-trained reasoning capabilities. To isolate this phenomenon, we introduce Iterative Semantic Map Refinement (ISMR), a diagnostic protocol revealing that alignment is a fixed geometric barrier that scaling cannot solve; a 20-layer model overcomes this barrier no faster than a 1-layer model. We introduce the Phase-Resonant Intelligent Spectral Model (PRISM). PRISM encodes semantic identity as resonant frequencies in the complex domain (C^d) and replaces quadratic self-attention with linearithmic O(N log N) Gated Harmonic Convolutions. We validate PRISM on the WMT14 translation task. While the Standard Transformer maintains a slight edge in general competence on static benchmarks (23.88 vs 21.40 BLEU), it fails the "Plasticity-Stability" stress test completely. When injected with novel concepts, the Transformer suffers Catastrophic Forgetting, degrading by -10.55 BLEU points while achieving only 60% acquisition. In contrast, PRISM demonstrates Lossless Plasticity, achieving 96% 5-shot acquisition with negligible degradation (-0.84 BLEU). These results suggest that harmonic representations effectively decouple memory from reasoning, offering a structural solution to the plasticity-stability dilemma in real-time knowledge adaptation.
comment: 12 pages, 5 figures
☆ Research on Milling Machine Predictive Maintenance Based on Machine Learning and SHAP Analysis in Intelligent Manufacturing Environment
In the context of intelligent manufacturing, this paper conducts a series of experimental studies on the predictive maintenance of industrial milling machine equipment based on the AI4I 2020 dataset. This paper proposes a complete predictive maintenance experimental process combining artificial intelligence technology, including six main links: data preprocessing, model training, model evaluation, model selection, SHAP analysis, and result visualization. By comparing and analyzing the performance of eight machine learning models, it is found that integrated learning methods such as XGBoost and random forest perform well in milling machine fault prediction tasks. In addition, with the help of SHAP analysis technology, the influence mechanism of different features on equipment failure is deeply revealed, among which processing temperature, torque and speed are the key factors affecting failure. This study combines artificial intelligence and manufacturing technology, provides a methodological reference for predictive maintenance practice in an intelligent manufacturing environment, and has practical significance for promoting the digital transformation of the manufacturing industry, improving production efficiency and reducing maintenance costs.
comment: 5 pages, 5 figures. Accepted for publication at ICEIEC 2025 (not yet published)
☆ The Evolution of Learning Algorithms for Artificial Neural Networks
In this paper we investigate a neural network model in which weights between computational nodes are modified according to a local learning rule. To determine whether local learning rules are sufficient for learning, we encode the network architectures and learning dynamics genetically and then apply selection pressure to evolve networks capable of learning the four boolean functions of one variable. The successful networks are analysed and we show how learning behaviour emerges as a distributed property of the entire network. Finally the utility of genetic algorithms as a tool of discovery is discussed.
☆ Sum Rate Maximization in STAR-RIS-UAV-Assisted Networks: A CA-DDPG Approach for Joint Optimization
With the rapid advances in programmable materials, reconfigurable intelligent surfaces (RIS) have become a pivotal technology for future wireless communications. The simultaneous transmitting and reflecting reconfigurable intelligent surfaces (STAR-RIS) can both transmit and reflect signals, enabling comprehensive signal control and expanding application scenarios. This paper introduces an unmanned aerial vehicle (UAV) to further enhance system flexibility and proposes an optimization design for the spectrum efficiency of the STAR-RIS-UAV-assisted wireless communication system. We present a deep reinforcement learning (DRL) algorithm capable of iteratively optimizing beamforming, phase shifts, and UAV positioning to maximize the system's sum rate through continuous interactions with the environment. To improve exploration in deterministic policies, we introduce a stochastic perturbation factor, which enhances exploration capabilities. As exploration is strengthened, the algorithm's ability to accurately evaluate the state-action value function becomes critical. Thus, based on the deep deterministic policy gradient (DDPG) algorithm, we propose a convolution-augmented deep deterministic policy gradient (CA-DDPG) algorithm that balances exploration and evaluation to improve the system's sum rate. The simulation results demonstrate that the CA-DDPG algorithm effectively interacts with the environment, optimizing the beamforming matrix, phase shift matrix, and UAV location, thereby improving system capacity and achieving better performance than other algorithms.
comment: 14 pages, 12 figures
☆ Know Thyself by Knowing Others: Learning Neuron Identity from Population Context
Neurons process information in ways that depend on their cell type, connectivity, and the brain region in which they are embedded. However, inferring these factors from neural activity remains a significant challenge. To build general-purpose representations that allow for resolving information about a neuron's identity, we introduce NuCLR, a self-supervised framework that aims to learn representations of neural activity that allow for differentiating one neuron from the rest. NuCLR brings together views of the same neuron observed at different times and across different stimuli and uses a contrastive objective to pull these representations together. To capture population context without assuming any fixed neuron ordering, we build a spatiotemporal transformer that integrates activity in a permutation-equivariant manner. Across multiple electrophysiology and calcium imaging datasets, a linear decoding evaluation on top of NuCLR representations achieves a new state-of-the-art for both cell type and brain region decoding tasks, and demonstrates strong zero-shot generalization to unseen animals. We present the first systematic scaling analysis for neuron-level representation learning, showing that increasing the number of animals used during pretraining consistently improves downstream performance. The learned representations are also label-efficient, requiring only a small fraction of labeled samples to achieve competitive performance. These results highlight how large, diverse neural datasets enable models to recover information about neuron identity that generalize across animals. Code is available at https://github.com/nerdslab/nuclr.
comment: Accepted at Neurips 2025
☆ Learning to Reconstruct Temperature Field from Sparse Observations with Implicit Physics Priors
Accurate reconstruction of temperature field of heat-source systems (TFR-HSS) is crucial for thermal monitoring and reliability assessment in engineering applications such as electronic devices and aerospace structures. However, the high cost of measurement acquisition and the substantial distributional shifts in temperature field across varying conditions present significant challenges for developing reconstruction models with robust generalization capabilities. Existing DNNs-based methods typically formulate TFR-HSS as a one-to-one regression problem based solely on target sparse measurements, without effectively leveraging reference simulation data that implicitly encode thermal knowledge. To address this limitation, we propose IPTR, an implicit physics-guided temperature field reconstruction framework that introduces sparse monitoring-temperature field pair from reference simulations as priors to enrich physical understanding. To integrate both reference and target information, we design a dual physics embedding module consisting of two complementary branches: an implicit physics-guided branch employing cross-attention to distill latent physics from the reference data, and an auxiliary encoding branch based on Fourier layers to capture the spatial characteristics of the target observation. The fused representation is then decoded to reconstruct the full temperature field. Extensive experiments under single-condition, multi-condition, and few-shot settings demonstrate that IPTR consistently outperforms existing methods, achieving state-of-the-art reconstruction accuracy and strong generalization capability.
☆ LGDC: Latent Graph Diffusion via Spectrum-Preserving Coarsening
Graph generation is a critical task across scientific domains. Existing methods fall broadly into two categories: autoregressive models, which iteratively expand graphs, and one-shot models, such as diffusion, which generate the full graph at once. In this work, we provide an analysis of these two paradigms and reveal a key trade-off: autoregressive models stand out in capturing fine-grained local structures, such as degree and clustering properties, whereas one-shot models excel at modeling global patterns, such as spectral distributions. Building on this, we propose LGDC (latent graph diffusion via spectrum-preserving coarsening), a hybrid framework that combines strengths of both approaches. LGDC employs a spectrum-preserving coarsening-decoarsening to bidirectionally map between graphs and a latent space, where diffusion efficiently generates latent graphs before expansion restores detail. This design captures both local and global properties with improved efficiency. Empirically, LGDC matches autoregressive models on locally structured datasets (Tree) and diffusion models on globally structured ones (Planar, Community-20), validating the benefits of hybrid generation.
☆ fMRI2GES: Co-speech Gesture Reconstruction from fMRI Signal with Dual Brain Decoding Alignment
Understanding how the brain responds to external stimuli and decoding this process has been a significant challenge in neuroscience. While previous studies typically concentrated on brain-to-image and brain-to-language reconstruction, our work strives to reconstruct gestures associated with speech stimuli perceived by brain. Unfortunately, the lack of paired \{brain, speech, gesture\} data hinders the deployment of deep learning models for this purpose. In this paper, we introduce a novel approach, \textbf{fMRI2GES}, that allows training of fMRI-to-gesture reconstruction networks on unpaired data using \textbf{Dual Brain Decoding Alignment}. This method relies on two key components: (i) observed texts that elicit brain responses, and (ii) textual descriptions associated with the gestures. Then, instead of training models in a completely supervised manner to find a mapping relationship among the three modalities, we harness an fMRI-to-text model, a text-to-gesture model with paired data and an fMRI-to-gesture model with unpaired data, establishing dual fMRI-to-gesture reconstruction patterns. Afterward, we explicitly align two outputs and train our model in a self-supervision way. We show that our proposed method can reconstruct expressive gestures directly from fMRI recordings. We also investigate fMRI signals from different ROIs in the cortex and how they affect generation results. Overall, we provide new insights into decoding co-speech gestures, thereby advancing our understanding of neuroscience and cognitive science.
comment: IEEE Transactions on Circuits and Systems for Video Technology (TCSVT) 2025
☆ Real-World Reinforcement Learning of Active Perception Behaviors NeurIPS 2025
A robot's instantaneous sensory observations do not always reveal task-relevant state information. Under such partial observability, optimal behavior typically involves explicitly acting to gain the missing information. Today's standard robot learning techniques struggle to produce such active perception behaviors. We propose a simple real-world robot learning recipe to efficiently train active perception policies. Our approach, asymmetric advantage weighted regression (AAWR), exploits access to "privileged" extra sensors at training time. The privileged sensors enable training high-quality privileged value functions that aid in estimating the advantage of the target policy. Bootstrapping from a small number of potentially suboptimal demonstrations and an easy-to-obtain coarse policy initialization, AAWR quickly acquires active perception behaviors and boosts task performance. In evaluations on 8 manipulation tasks on 3 robots spanning varying degrees of partial observability, AAWR synthesizes reliable active perception behaviors that outperform all prior approaches. When initialized with a "generalist" robot policy that struggles with active perception tasks, AAWR efficiently generates information-gathering behaviors that allow it to operate under severe partial observability for manipulation tasks. Website: https://penn-pal-lab.github.io/aawr/
comment: NeurIPS 2025 camera ready
☆ Teaching by Failure: Counter-Example-Driven Curricula for Transformer Self-Improvement ACL 2025
Transformer models often exhibit brittle extrapolation, failing on inputs that are longer or structurally more complex than those seen during training. We introduce Counter-Example-Driven Curricula (CEDC), an automated framework that improves model robustness by iteratively focusing on its own failures. At each step, CEDC uses the current model to generate a diverse set of candidate problems, employs a fast, executable verifier to identify incorrect predictions (counter-examples), and then fine-tunes the model on a dataset enriched with these discovered failures. We evaluate CEDC on a suite of algorithmic and natural language tasks, including integer addition, sorting, Dyck-2 language recognition, and three text classification benchmarks. Compared to static training and standard curriculum learning baselines, CEDC achieves up to 30x greater length extrapolation, is 3.75x more computationally efficient than uniform data augmentation, and requires no manual difficulty heuristics. We provide a detailed analysis of the counter-examples, showing how the curriculum naturally adapts to target progressively more complex error modes. Our findings establish verifier-guided, failure-driven learning as a simple, powerful, and efficient paradigm for enhancing the generalization capabilities of Transformer models.
comment: AACL 2025 Findings
☆ First On-Orbit Demonstration of a Geospatial Foundation Model
Geospatial foundation models (GeoFMs) promise broad generalisation capacity for Earth observation (EO) tasks, particularly under data-limited conditions. However, their large size poses a barrier to deployment on resource-constrained space hardware. To address this, we present compact variants of a Vision Transformer (ViT)-based GeoFM that preserve downstream task performance while enabling onboard execution. Evaluation across five downstream tasks and validation in two representative flight environments show that model compression and domain adaptation are critical to reducing size and resource demands while maintaining high performance under operational conditions. We further demonstrate reliable on-orbit inference with the IMAGIN-e payload aboard the International Space Station. These results establish a pathway from large GeoFMs to flight-ready, resource-efficient deployments, expanding the feasibility of onboard AI for EO missions.
☆ Toward a benchmark for CTR prediction in online advertising: datasets, evaluation protocols and perspectives
This research designs a unified architecture of CTR prediction benchmark (Bench-CTR) platform that offers flexible interfaces with datasets and components of a wide range of CTR prediction models. Moreover, we construct a comprehensive system of evaluation protocols encompassing real-world and synthetic datasets, a taxonomy of metrics, standardized procedures and experimental guidelines for calibrating the performance of CTR prediction models. Furthermore, we implement the proposed benchmark platform and conduct a comparative study to evaluate a wide range of state-of-the-art models from traditional multivariate statistical to modern large language model (LLM)-based approaches on three public datasets and two synthetic datasets. Experimental results reveal that, (1) high-order models largely outperform low-order models, though such advantage varies in terms of metrics and on different datasets; (2) LLM-based models demonstrate a remarkable data efficiency, i.e., achieving the comparable performance to other models while using only 2% of the training data; (3) the performance of CTR prediction models has achieved significant improvements from 2015 to 2016, then reached a stage with slow progress, which is consistent across various datasets. This benchmark is expected to facilitate model development and evaluation and enhance practitioners' understanding of the underlying mechanisms of models in the area of CTR prediction. Code is available at https://github.com/NuriaNinja/Bench-CTR.
comment: 64 pages, 8 figures, 11 tables
☆ High-dimensional Mean-Field Games by Particle-based Flow Matching
Mean-field games (MFGs) study the Nash equilibrium of systems with a continuum of interacting agents, which can be formulated as the fixed-point of optimal control problems. They provide a unified framework for a variety of applications, including optimal transport (OT) and generative models. Despite their broad applicability, solving high-dimensional MFGs remains a significant challenge due to fundamental computational and analytical obstacles. In this work, we propose a particle-based deep Flow Matching (FM) method to tackle high-dimensional MFG computation. In each iteration of our proximal fixed-point scheme, particles are updated using first-order information, and a flow neural network is trained to match the velocity of the sample trajectories in a simulation-free manner. Theoretically, in the optimal control setting, we prove that our scheme converges to a stationary point sublinearly, and upgrade to linear (exponential) convergence under additional convexity assumptions. Our proof uses FM to induce an Eulerian coordinate (density-based) from a Lagrangian one (particle-based), and this also leads to certain equivalence results between the two formulations for MFGs when the Eulerian solution is sufficiently regular. Our method demonstrates promising performance on non-potential MFGs and high-dimensional OT problems cast as MFGs through a relaxed terminal-cost formulation.
☆ Conversion rate prediction in online advertising: modeling techniques, performance evaluation and future directions
Conversion and conversion rate (CVR) prediction play a critical role in efficient advertising decision-making. In past decades, although researchers have developed plenty of models for CVR prediction, the methodological evolution and relationships between different techniques have been precluded. In this paper, we conduct a comprehensive literature review on CVR prediction in online advertising, and classify state-of-the-art CVR prediction models into six categories with respect to the underlying techniques and elaborate on connections between these techniques. For each category of models, we present the framework of underlying techniques, their advantages and disadvantages, and discuss how they are utilized for CVR prediction. Moreover, we summarize the performance of various CVR prediction models on public and proprietary datasets. Finally, we identify research trends, major challenges, and promising future directions. We observe that results of performance evaluation reported in prior studies are not unanimous; semantics-enriched, attribution-enhanced, debiased CVR prediction and jointly modeling CTR and CVR prediction would be promising directions to explore in the future. This review is expected to provide valuable references and insights for future researchers and practitioners in this area.
comment: 99 pages, 15 figures, 7 tables
☆ Data assimilation and discrepancy modeling with shallow recurrent decoders
The requirements of modern sensing are rapidly evolving, driven by increasing demands for data efficiency, real-time processing, and deployment under limited sensing coverage. Complex physical systems are often characterized through the integration of a limited number of point sensors in combination with scientific computations which approximate the dominant, full-state dynamics. Simulation models, however, inevitably neglect small-scale or hidden processes, are sensitive to perturbations, or oversimplify parameter correlations, leading to reconstructions that often diverge from the reality measured by sensors. This creates a critical need for data assimilation, the process of integrating observational data with predictive simulation models to produce coherent and accurate estimates of the full state of complex physical systems. We propose a machine learning framework for Data Assimilation with a SHallow REcurrent Decoder (DA-SHRED) which bridges the simulation-to-real (SIM2REAL) gap between computational modeling and experimental sensor data. For real-world physics systems modeling high-dimensional spatiotemporal fields, where the full state cannot be directly observed and must be inferred from sparse sensor measurements, we leverage the latent space learned from a reduced simulation model via SHRED, and update these latent variables using real sensor data to accurately reconstruct the full system state. Furthermore, our algorithm incorporates a sparse identification of nonlinear dynamics based regression model in the latent space to identify functionals corresponding to missing dynamics in the simulation model. We demonstrate that DA-SHRED successfully closes the SIM2REAL gap and additionally recovers missing dynamics in highly complex systems, demonstrating that the combination of efficient temporal encoding and physics-informed correction enables robust data assimilation.
comment: 27 pages, 11 figures
☆ A TinyML Reinforcement Learning Approach for Energy-Efficient Light Control in Low-Cost Greenhouse Systems
This study presents a reinforcement learning (RL)-based control strategy for adaptive lighting regulation in controlled environments using a low-power microcontroller. A model-free Q-learning algorithm was implemented to dynamically adjust the brightness of a Light-Emitting Diode (LED) based on real-time feedback from a light-dependent resistor (LDR) sensor. The system was trained to stabilize at 13 distinct light intensity levels (L1 to L13), with each target corresponding to a specific range within the 64-state space derived from LDR readings. A total of 130 trials were conducted, covering all target levels with 10 episodes each. Performance was evaluated in terms of convergence speed, steps taken, and time required to reach target states. Box plots and histograms were generated to analyze the distribution of training time and learning efficiency across targets. Experimental validation demonstrated that the agent could effectively learn to stabilize at varying light levels with minimal overshooting and smooth convergence, even in the presence of environmental perturbations. This work highlights the feasibility of lightweight, on-device RL for energy-efficient lighting control and sets the groundwork for multi-modal environmental control applications in resource-constrained agricultural systems.
comment: Copyright 2025 IEEE. This is the author's version of the work that has been accepted for publication in Proceedings of the 5. Interdisciplinary Conference on Electrics and Computer (INTCEC 2025) 15-16 September 2025, Chicago-USA. The final version of record is available at: https://doi.org/10.1109/INTCEC65580.2025.11256135
☆ 2D-ThermAl: Physics-Informed Framework for Thermal Analysis of Circuits using Generative AI
Thermal analysis is increasingly critical in modern integrated circuits, where non-uniform power dissipation and high transistor densities can cause rapid temperature spikes and reliability concerns. Traditional methods, such as FEM-based simulations offer high accuracy but computationally prohibitive for early-stage design, often requiring multiple iterative redesign cycles to resolve late-stage thermal failures. To address these challenges, we propose 'ThermAl', a physics-informed generative AI framework which effectively identifies heat sources and estimates full-chip transient and steady-state thermal distributions directly from input activity profiles. ThermAl employs a hybrid U-Net architecture enhanced with positional encoding and a Boltzmann regularizer to maintain physical fidelity. Our model is trained on an extensive dataset of heat dissipation maps, ranging from simple logic gates (e.g., inverters, NAND, XOR) to complex designs, generated via COMSOL. Experimental results demonstrate that ThermAl delivers precise temperature mappings for large circuits, with a root mean squared error (RMSE) of only 0.71°C, and outperforms conventional FEM tools by running up to ~200 times faster. We analyze performance across diverse layouts and workloads, and discuss its applicability to large-scale EDA workflows. While thermal reliability assessments often extend beyond 85°C for post-layout signoff, our focus here is on early-stage hotspot detection and thermal pattern learning. To ensure generalization beyond the nominal operating range 25-55°C, we additionally performed cross-validation on an extended dataset spanning 25-95°C maintaining a high accuracy (<2.2% full-scale RMSE) even under elevated temperature conditions representative of peak power and stress scenarios.
comment: 10 pages, 8 figures, Under Review
☆ From Regression to Classification: Exploring the Benefits of Categorical Representations of Energy in MLIPs
Density Functional Theory (DFT) is a widely used computational method for estimating the energy and behavior of molecules. Machine Learning Interatomic Potentials (MLIPs) are models trained to approximate DFT-level energies and forces at dramatically lower computational cost. Many modern MLIPs rely on a scalar regression formulation; given information about a molecule, they predict a single energy value and corresponding forces while minimizing absolute error with DFT's calculations. In this work, we explore a multi-class classification formulation that predicts a categorical distribution over energy/force values, providing richer supervision through multiple targets. Most importantly, this approach offers a principled way to quantify model uncertainty. In particular, our method predicts a histogram of the energy/force distribution, converts scalar targets into histograms, and trains the model using cross-entropy loss. Our results demonstrate that this categorical formulation can achieve absolute error performance comparable to regression baselines. Furthermore, this representation enables the quantification of epistemic uncertainty through the entropy of the predicted distribution, offering a measure of model confidence absent in scalar regression approaches.
comment: 11th Annual Conference on Vision and Intelligent Systems (CVIS 2025)
☆ DPAC: Distribution-Preserving Adversarial Control for Diffusion Sampling
Adversarially guided diffusion sampling often achieves the target class, but sample quality degrades as deviations between the adversarially controlled and nominal trajectories accumulate. We formalize this degradation as a path-space Kullback-Leibler divergence(path-KL) between controlled and nominal (uncontrolled) diffusion processes, thereby showing via Girsanov's theorem that it exactly equals the control energy. Building on this stochastic optimal control (SOC) view, we theoretically establish that minimizing this path-KL simultaneously tightens upper bounds on both the 2-Wasserstein distance and Fréchet Inception Distance (FID), revealing a principled connection between adversarial control energy and perceptual fidelity. From a variational perspective, we derive a first-order optimality condition for the control: among all directions that yield the same classification gain, the component tangent to iso-(log-)density surfaces (i.e., orthogonal to the score) minimizes path-KL, whereas the normal component directly increases distributional drift. This leads to DPAC (Distribution-Preserving Adversarial Control), a diffusion guidance rule that projects adversarial gradients onto the tangent space defined by the generative score geometry. We further show that in discrete solvers, the tangent projection cancels the O(Δt) leading error term in the Wasserstein distance, achieving an O(Δt^2) quality gap; moreover, it remains second-order robust to score or metric approximation. Empirical studies on ImageNet-100 validate the theoretical predictions, confirming that DPAC achieves lower FID and estimated path-KL at matched attack success rates.
☆ Open-Set Domain Adaptation Under Background Distribution Shift: Challenges and A Provably Efficient Solution
As we deploy machine learning systems in the real world, a core challenge is to maintain a model that is performant even as the data shifts. Such shifts can take many forms: new classes may emerge that were absent during training, a problem known as open-set recognition, and the distribution of known categories may change. Guarantees on open-set recognition are mostly derived under the assumption that the distribution of known classes, which we call \emph{the background distribution}, is fixed. In this paper we develop \ours{}, a method that is guaranteed to solve open-set recognition even in the challenging case where the background distribution shifts. We prove that the method works under benign assumptions that the novel class is separable from the non-novel classes, and provide theoretical guarantees that it outperforms a representative baseline in a simplified overparameterized setting. We develop techniques to make \ours{} scalable and robust, and perform comprehensive empirical evaluations on image and text data. The results show that \ours{} significantly outperforms existing open-set recognition methods under background shift. Moreover, we provide new insights into how factors such as the size of the novel class influences performance, an aspect that has not been extensively explored in prior work.
☆ Fiber Bundle Networks: A Geometric Machine Learning Paradigm
We propose Fiber Bundle Networks (FiberNet), a novel machine learning framework integrating differential geometry with machine learning. Unlike traditional deep neural networks relying on black-box function fitting, we reformulate classification as interpretable geometric optimization on fiber bundles, where categories form the base space and wavelet-transformed features lie in the fibers above each category. We introduce two innovations: (1) learnable Riemannian metrics identifying important frequency feature components, (2) variational prototype optimization through energy function minimization. Classification is performed via Voronoi tessellation under the learned Riemannian metric, where each prototype defines a decision region and test samples are assigned to the nearest prototype, providing clear geometric interpretability. This work demonstrates that the integration of fiber bundle with machine learning provides interpretability and efficiency, which are difficult to obtain simultaneously in conventional deep learning.
comment: 18 pages, 1 figure
☆ Dynamic Algorithm for Explainable k-medians Clustering under lp Norm NeurIPS 2025
We study the problem of explainable k-medians clustering introduced by Dasgupta, Frost, Moshkovitz, and Rashtchian (2020). In this problem, the goal is to construct a threshold decision tree that partitions data into k clusters while minimizing the k-medians objective. These trees are interpretable because each internal node makes a simple decision by thresholding a single feature, allowing users to trace and understand how each point is assigned to a cluster. We present the first algorithm for explainable k-medians under lp norm for every finite p >= 1. Our algorithm achieves an O(p(log k)^{1 + 1/p - 1/p^2}) approximation to the optimal k-medians cost for any p >= 1. Previously, algorithms were known only for p = 1 and p = 2. For p = 2, our algorithm improves upon the existing bound of O(log^{3/2}k), and for p = 1, it matches the tight bound of log k + O(1) up to a multiplicative O(log log k) factor. We show how to implement our algorithm in a dynamic setting. The dynamic algorithm maintains an explainable clustering under a sequence of insertions and deletions, with amortized update time O(d log^3 k) and O(log k) recourse, making it suitable for large-scale and evolving datasets.
comment: 36 pages, 3 figures, to appear in NeurIPS 2025
☆ Limitations of Membership Queries in Testable Learning
Membership queries (MQ) often yield speedups for learning tasks, particularly in the distribution-specific setting. We show that in the \emph{testable learning} model of Rubinfeld and Vasilyan [RV23], membership queries cannot decrease the time complexity of testable learning algorithms beyond the complexity of sample-only distribution-specific learning. In the testable learning model, the learner must output a hypothesis whenever the data distribution satisfies a desired property, and if it outputs a hypothesis, the hypothesis must be near-optimal. We give a general reduction from sample-based \emph{refutation} of boolean concept classes, as presented in [Vadhan17, KL18], to testable learning with queries (TL-Q). This yields lower bounds for TL-Q via the reduction from learning to refutation given in [KL18]. The result is that, relative to a concept class and a distribution family, no $m$-sample TL-Q algorithm can be super-polynomially more time-efficient than the best $m$-sample PAC learner. Finally, we define a class of ``statistical'' MQ algorithms that encompasses many known distribution-specific MQ learners, such as those based on influence estimation or subcube-conditional statistical queries. We show that TL-Q algorithms in this class imply efficient statistical-query refutation and learning algorithms. Thus, combined with known SQ dimension lower bounds, our results imply that these efficient membership query learners cannot be made testable.
comment: Conference: ITCS 2026
☆ Adversarial Robustness of Traffic Classification under Resource Constraints: Input Structure Matters
Traffic classification (TC) plays a critical role in cybersecurity, particularly in IoT and embedded contexts, where inspection must often occur locally under tight hardware constraints. We use hardware-aware neural architecture search (HW-NAS) to derive lightweight TC models that are accurate, efficient, and deployable on edge platforms. Two input formats are considered: a flattened byte sequence and a 2D packet-wise time series; we examine how input structure affects adversarial vulnerability when using resource-constrained models. Robustness is assessed against white-box attacks, specifically Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD). On USTC-TFC2016, both HW-NAS models achieve over 99% clean-data accuracy while remaining within 65k parameters and 2M FLOPs. Yet under perturbations of strength 0.1, their robustness diverges: the flat model retains over 85% accuracy, while the time-series variant drops below 35%. Adversarial fine-tuning delivers robust gains, with flat-input accuracy exceeding 96% and the time-series variant recovering over 60 percentage points in robustness, all without compromising efficiency. The results underscore how input structure influences adversarial vulnerability, and show that even compact, resource-efficient models can attain strong robustness, supporting their practical deployment in secure edge-based TC.
comment: Accepted at the 2025 IEEE International Symposium on Networks, Computers and Communications (ISNCC)
☆ Spatiotemporal Pyramid Flow Matching for Climate Emulation
Generative models have the potential to transform the way we emulate Earth's changing climate. Previous generative approaches rely on weather-scale autoregression for climate emulation, but this is inherently slow for long climate horizons and has yet to demonstrate stable rollouts under nonstationary forcings. Here, we introduce Spatiotemporal Pyramid Flows (SPF), a new class of flow matching approaches that model data hierarchically across spatial and temporal scales. Inspired by cascaded video models, SPF partitions the generative trajectory into a spatiotemporal pyramid, progressively increasing spatial resolution to reduce computation and coupling each stage with an associated timescale to enable direct sampling at any temporal level in the pyramid. This design, together with conditioning each stage on prescribed physical forcings (e.g., greenhouse gases or aerosols), enables efficient, parallel climate emulation at multiple timescales. On ClimateBench, SPF outperforms strong flow matching baselines and pre-trained models at yearly and monthly timescales while offering fast sampling, especially at coarser temporal levels. To scale SPF, we curate ClimateSuite, the largest collection of Earth system simulations to date, comprising over 33,000 simulation-years across ten climate models and the first dataset to include simulations of climate interventions. We find that the scaled SPF model demonstrates good generalization to held-out scenarios across climate models. Together, SPF and ClimateSuite provide a foundation for accurate, efficient, probabilistic climate emulation across temporal scales and realistic future scenarios. Data and code is publicly available at https://github.com/stanfordmlgroup/spf .
☆ The Effect of Enforcing Fairness on Reshaping Explanations in Machine Learning Models
Trustworthy machine learning in healthcare requires strong predictive performance, fairness, and explanations. While it is known that improving fairness can affect predictive performance, little is known about how fairness improvements influence explainability, an essential ingredient for clinical trust. Clinicians may hesitate to rely on a model whose explanations shift after fairness constraints are applied. In this study, we examine how enhancing fairness through bias mitigation techniques reshapes Shapley-based feature rankings. We quantify changes in feature importance rankings after applying fairness constraints across three datasets: pediatric urinary tract infection risk, direct anticoagulant bleeding risk, and recidivism risk. We also evaluate multiple model classes on the stability of Shapley-based rankings. We find that increasing model fairness across racial subgroups can significantly alter feature importance rankings, sometimes in different ways across groups. These results highlight the need to jointly consider accuracy, fairness, and explainability in model assessment rather than in isolation.
comment: 10 pages, 3 figures, 2 tables
☆ Verifying Closed-Loop Contractivity of Learning-Based Controllers via Partitioning
We address the problem of verifying closed-loop contraction in nonlinear control systems whose controller and contraction metric are both parameterized by neural networks. By leveraging interval analysis and interval bound propagation, we derive a tractable and scalable sufficient condition for closed-loop contractivity that reduces to checking that the dominant eigenvalue of a symmetric Metzler matrix is nonpositive. We combine this sufficient condition with a domain partitioning strategy to integrate this sufficient condition into training. The proposed approach is validated on an inverted pendulum system, demonstrating the ability to learn neural network controllers and contraction metrics that provably satisfy the contraction condition.
☆ PhishSnap: Image-Based Phishing Detection Using Perceptual Hashing
Phishing remains one of the most prevalent online threats, exploiting human trust to harvest sensitive credentials. Existing URL- and HTML-based detection systems struggle against obfuscation and visual deception. This paper presents \textbf{PhishSnap}, a privacy-preserving, on-device phishing detection system leveraging perceptual hashing (pHash). Implemented as a browser extension, PhishSnap captures webpage screenshots, computes visual hashes, and compares them against legitimate templates to identify visually similar phishing attempts. A \textbf{2024 dataset of 10,000 URLs} (70\%/20\%/10\% train/validation/test) was collected from PhishTank and Netcraft. Due to security takedowns, a subset of phishing pages was unavailable, reducing dataset diversity. The system achieved \textbf{0.79 accuracy}, \textbf{0.76 precision}, and \textbf{0.78 recall}, showing that visual similarity remains a viable anti-phishing measure. The entire inference process occurs locally, ensuring user privacy and minimal latency.
comment: IEE Standard Formatting, 3 pages, 3 figures
☆ See, Hear, and Understand: Benchmarking Audiovisual Human Speech Understanding in Multimodal Large Language Models
Multimodal large language models (MLLMs) are expected to jointly interpret vision, audio, and language, yet existing video benchmarks rarely assess fine-grained reasoning about human speech. Many tasks remain visually solvable or only coarsely evaluate speech, offering limited insight into whether models can align who speaks, what is said, and when it occurs. We introduce AV-SpeakerBench, a curated benchmark of 3,212 multiple-choice questions focused on speaker-centric audiovisual reasoning in real-world videos. It features: (1) a speaker-centered formulation that treats speakers-not scenes-as the core reasoning unit; (2) fusion-grounded question design embedding audiovisual dependencies into question semantics; and (3) expert-curated annotations ensuring temporal precision and cross-modal validity. Comprehensive evaluations show that the Gemini family consistently outperforms open-source systems, with Gemini 2.5 Pro achieving the best results. Among open models, Qwen3-Omni-30B approaches Gemini 2.0 Flash but remains far behind Gemini 2.5 Pro, primarily due to weaker audiovisual fusion rather than visual perception. We believe AV-SpeakerBench establishes a rigorous foundation for advancing fine-grained audiovisual reasoning in future multimodal systems.
comment: preprint
☆ STRIDE: A Systematic Framework for Selecting AI Modalities - Agentic AI, AI Assistants, or LLM Calls NeurIPS 2025
The rapid shift from stateless large language models (LLMs) to autonomous, goal-driven agents raises a central question: When is agentic AI truly necessary? While agents enable multi-step reasoning, persistent memory, and tool orchestration, deploying them indiscriminately leads to higher cost, complexity, and risk. We present STRIDE (Systematic Task Reasoning Intelligence Deployment Evaluator), a framework that provides principled recommendations for selecting between three modalities: (i) direct LLM calls, (ii) guided AI assistants, and (iii) fully autonomous agentic AI. STRIDE integrates structured task decomposition, dynamism attribution, and self-reflection requirement analysis to produce an Agentic Suitability Score, ensuring that full agentic autonomy is reserved for tasks with inherent dynamism or evolving context. Evaluated across 30 real-world tasks spanning SRE, compliance, and enterprise automation, STRIDE achieved 92% accuracy in modality selection, reduced unnecessary agent deployments by 45%, and cut resource costs by 37%. Expert validation over six months in SRE and compliance domains confirmed its practical utility, with domain specialists agreeing that STRIDE effectively distinguishes between tasks requiring simple LLM calls, guided assistants, or full agentic autonomy. This work reframes agent adoption as a necessity-driven design decision, ensuring autonomy is applied only when its benefits justify the costs.
comment: 10 pages, 4 Figures, 5 Tables Paper presented at NeurIPS 2025 LAW workshop: Bridging Language, Agent, and World Models
☆ Orchestration Framework for Financial Agents: From Algorithmic Trading to Agentic Trading NeurIPS 2025
The financial market is a mission-critical playground for AI agents due to its temporal dynamics and low signal-to-noise ratio. Building an effective algorithmic trading system may require a professional team to develop and test over the years. In this paper, we propose an orchestration framework for financial agents, which aims to democratize financial intelligence to the general public. We map each component of the traditional algorithmic trading system to agents, including planner, orchestrator, alpha agents, risk agents, portfolio agents, backtest agents, execution agents, audit agents, and memory agent. We present two in-house trading examples. For the stock trading task (hourly data from 04/2024 to 12/2024), our approach achieved a return of $20.42\%$, a Sharpe ratio of 2.63, and a maximum drawdown of $-3.59\%$, while the S&P 500 index yielded a return of $15.97\%$. For the BTC trading task (minute data from 27/07/2025 to 13/08/2025), our approach achieved a return of $8.39\%$, a Sharpe ratio of $0.38$, and a maximum drawdown of $-2.80\%$, whereas the BTC price increased by $3.80\%$. Our code is available on \href{https://github.com/Open-Finance-Lab/AgenticTrading}{GitHub}.
comment: Accepted at the Workshop on Generative AI in Finance, 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ On the Approximation of Phylogenetic Distance Functions by Artificial Neural Networks
Inferring the phylogenetic relationships among a sample of organisms is a fundamental problem in modern biology. While distance-based hierarchical clustering algorithms achieved early success on this task, these have been supplanted by Bayesian and maximum likelihood search procedures based on complex models of molecular evolution. In this work we describe minimal neural network architectures that can approximate classic phylogenetic distance functions and the properties required to learn distances under a variety of molecular evolutionary models. In contrast to model-based inference (and recently proposed model-free convolutional and transformer networks), these architectures have a small computational footprint and are scalable to large numbers of taxa and molecular characters. The learned distance functions generalize well and, given an appropriate training dataset, achieve results comparable to state-of-the art inference methods.
comment: 10 pages
☆ Uncertainty Reasoning with Photonic Bayesian Machines
Artificial intelligence (AI) systems increasingly influence safety-critical aspects of society, from medical diagnosis to autonomous mobility, making uncertainty awareness a central requirement for trustworthy AI. We present a photonic Bayesian machine that leverages the inherent randomness of chaotic light sources to enable uncertainty reasoning within the framework of Bayesian Neural Networks. The analog processor features a 1.28 Tbit/s digital interface compatible with PyTorch, enabling probabilistic convolutions processing within 37.5 ps per convolution. We use the system for simultaneous classification and out-of-domain detection of blood cell microscope images and demonstrate reasoning between aleatoric and epistemic uncertainties. The photonic Bayesian machine removes the bottleneck of pseudo random number generation in digital systems, minimizes the cost of sampling for probabilistic models, and thus enables high-speed trustworthy AI systems.
☆ Improved Training Mechanism for Reinforcement Learning via Online Model Selection
We study the problem of online model selection in reinforcement learning, where the selector has access to a class of reinforcement learning agents and learns to adaptively select the agent with the right configuration. Our goal is to establish the improved efficiency and performance gains achieved by integrating online model selection methods into reinforcement learning training procedures. We examine the theoretical characterizations that are effective for identifying the right configuration in practice, and address three practical criteria from a theoretical perspective: 1) Efficient resource allocation, 2) Adaptation under non-stationary dynamics, and 3) Training stability across different seeds. Our theoretical results are accompanied by empirical evidence from various model selection tasks in reinforcement learning, including neural architecture selection, step-size selection, and self model selection.
☆ InstructLR: A Scalable Approach to Create Instruction Dataset for Under-Resourced Languages
Effective text generation and chat interfaces for low-resource languages (LRLs) remain a challenge for state-of-the-art large language models (LLMs) to support. This is mainly due to the difficulty of curating high-quality instruction datasets for LRLs, a limitation prevalent in the languages spoken across the African continent and other regions. Current approaches, such as automated translation and synthetic data generation, frequently yield outputs that lack fluency or even orthographic consistency. In this paper, we introduce InstructLR, a novel framework designed to generate high-quality instruction datasets for LRLs. Our approach integrates LLM-driven text generation with a dual-layer quality filtering mechanism: an automated filtering layer based on retrieval-augmented-generation (RAG)-based n-shot prompting, and a human-in-the-loop validation layer. Drawing inspiration from benchmarks such as MMLU in task definition, InstructLR has facilitated the creation of three multi-domain instruction benchmarks: ZarmaInstruct-50k, BambaraInstruct-50k, and FulfuldeInstruct-50k.
☆ WhAM: Towards A Translative Model of Sperm Whale Vocalization NeurIPS 2025
Sperm whales communicate in short sequences of clicks known as codas. We present WhAM (Whale Acoustics Model), the first transformer-based model capable of generating synthetic sperm whale codas from any audio prompt. WhAM is built by finetuning VampNet, a masked acoustic token model pretrained on musical audio, using 10k coda recordings collected over the past two decades. Through iterative masked token prediction, WhAM generates high-fidelity synthetic codas that preserve key acoustic features of the source recordings. We evaluate WhAM's synthetic codas using Fréchet Audio Distance and through perceptual studies with expert marine biologists. On downstream classification tasks including rhythm, social unit, and vowel classification, WhAM's learned representations achieve strong performance, despite being trained for generation rather than classification. Our code is available at https://github.com/Project-CETI/wham
comment: NeurIPS 2025
☆ Modelling the Doughnut of social and planetary boundaries with frugal machine learning
The 'Doughnut' of social and planetary boundaries has emerged as a popular framework for assessing environmental and social sustainability. Here, we provide a proof-of-concept analysis that shows how machine learning (ML) methods can be applied to a simple macroeconomic model of the Doughnut. First, we show how ML methods can be used to find policy parameters that are consistent with 'living within the Doughnut'. Second, we show how a reinforcement learning agent can identify the optimal trajectory towards desired policies in the parameter space. The approaches we test, which include a Random Forest Classifier and $Q$-learning, are frugal ML methods that are able to find policy parameter combinations that achieve both environmental and social sustainability. The next step is the application of these methods to a more complex ecological macroeconomic model.
☆ Enforcing Orderedness to Improve Feature Consistency
Sparse autoencoders (SAEs) have been widely used for interpretability of neural networks, but their learned features often vary across seeds and hyperparameter settings. We introduce Ordered Sparse Autoencoders (OSAE), which extend Matryoshka SAEs by (1) establishing a strict ordering of latent features and (2) deterministically using every feature dimension, avoiding the sampling-based approximations of prior nested SAE methods. Theoretically, we show that OSAEs resolve permutation non-identifiability in settings of sparse dictionary learning where solutions are unique (up to natural symmetries). Empirically on Gemma2-2B and Pythia-70M, we show that OSAEs can help improve consistency compared to Matryoshka baselines.
☆ Think Before You Prune: Self-Reflective Structured Pruning for Reasoning Language Models
Reasoning LLMs (RLMs) such as OpenAI o1, DeepSeek-R1, and Qwen3 deliver strong multi-step reasoning through chain-of-thought generation, but their large model sizes and lengthy decode-time outputs make them costly to deploy and unsuitable for resource-constrained settings. To reduce computing and memory cost, pruning offers a promising solution by removing unimportant parameters. However, despite their success on standard LLMs, existing pruning methods severely damage RLMs, as even moderate sparsity (e.g., 20%) can collapse accuracy and completely disrupt the model's reasoning coherence. We begin by analyzing why existing pruning pipelines fail on reasoning LLMs and find that their brittleness largely stems from a mismatch between the calibration data, the pruning objective, and the model's decode-time reasoning behavior. Our study further shows that the most reliable calibration signal comes not from human-written labels but from the model's own self-generated reasoning traces, which more accurately reflect its inference distribution. Guided by these insights, we introduce RESP, a self-reflective structured pruning framework that aligns pruning decisions with the model's reasoning dynamics through self-generated calibration, decode-only gradient-based importance estimation, and progressive regeneration that maintains calibration fidelity as sparsity increases. Experiments on Qwen3-8B demonstrate that RESP markedly outperforms existing structured pruning methods on both GSM8K and MathQA, preserving near-dense accuracy at 20-30% sparsity and substantially mitigating performance collapse at higher sparsity levels. At 40% sparsity, RESP attains 81.3% accuracy on GSM8K and 59.6% on MathQA, surpassing the strongest baselines by 66.87% and 47%, respectively.
comment: 7 pages, 3 figures
☆ CLEF: Clinically-Guided Contrastive Learning for Electrocardiogram Foundation Models
The electrocardiogram (ECG) is a key diagnostic tool in cardiovascular health. Single-lead ECG recording is integrated into both clinical-grade and consumer wearables. While self-supervised pretraining of foundation models on unlabeled ECGs improves diagnostic performance, existing approaches do not incorporate domain knowledge from clinical metadata. We introduce a novel contrastive learning approach that utilizes an established clinical risk score to adaptively weight negative pairs: clinically-guided contrastive learning. It aligns the similarities of ECG embeddings with clinically meaningful differences between subjects, with an explicit mechanism to handle missing metadata. On 12-lead ECGs from 161K patients in the MIMIC-IV dataset, we pretrain single-lead ECG foundation models at three scales, collectively called CLEF, using only routinely collected metadata without requiring per-sample ECG annotations. We evaluate CLEF on 18 clinical classification and regression tasks across 7 held-out datasets, and benchmark against 5 foundation model baselines and 3 self-supervised algorithms. When pretrained on 12-lead ECG data and tested on lead-I data, CLEF outperforms self-supervised foundation model baselines: the medium-sized CLEF achieves average AUROC improvements of at least 2.6% in classification and average reductions in MAEs of at least 3.2% in regression. Comparing with existing self-supervised learning algorithms, CLEF improves the average AUROC by at least 1.8%. Moreover, when pretrained only on lead-I data for classification tasks, CLEF performs comparably to the state-of-the-art ECGFounder, which was trained in a supervised manner. Overall, CLEF enables more accurate and scalable single-lead ECG analysis, advancing remote health monitoring. Code and pretrained CLEF models are available at: github.com/Nokia-Bell-Labs/ecg-foundation-model.
comment: The code is available at https://github.com/Nokia-Bell-Labs/ecg-foundation-model
☆ Sampling on Metric Graphs
Metric graphs are structures obtained by associating edges in a standard graph with segments of the real line and gluing these segments at the vertices of the graph. The resulting structure has a natural metric that allows for the study of differential operators and stochastic processes on the graph. Brownian motions in these domains have been extensively studied theoretically using their generators. However, less work has been done on practical algorithms for simulating these processes. We introduce the first algorithm for simulating Brownian motions on metric graphs through a timestep splitting Euler-Maruyama-based discretization of their corresponding stochastic differential equation. By applying this scheme to Langevin diffusions on metric graphs, we also obtain the first algorithm for sampling on metric graphs. We provide theoretical guarantees on the number of timestep splittings required for the algorithm to converge to the underlying stochastic process. We also show that the exit probabilities of the simulated particle converge to the vertex-edge jump probabilities of the underlying stochastic differential equation as the timestep goes to zero. Finally, since this method is highly parallelizable, we provide fast, memory-aware implementations of our algorithm in the form of custom CUDA kernels that are up to ~8000x faster than a GPU implementation using PyTorch on simple star metric graphs. Beyond simple star graphs, we benchmark our algorithm on a real cortical vascular network extracted from a DuMuX tissue-perfusion model for tracer transport. Our algorithm is able to run stable simulations with timesteps significantly larger than the stable limit of the finite volume method used in DuMuX while also achieving speedups of up to ~1500x.
☆ SplatSuRe: Selective Super-Resolution for Multi-view Consistent 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) enables high-quality novel view synthesis, motivating interest in generating higher-resolution renders than those available during training. A natural strategy is to apply super-resolution (SR) to low-resolution (LR) input views, but independently enhancing each image introduces multi-view inconsistencies, leading to blurry renders. Prior methods attempt to mitigate these inconsistencies through learned neural components, temporally consistent video priors, or joint optimization on LR and SR views, but all uniformly apply SR across every image. In contrast, our key insight is that close-up LR views may contain high-frequency information for regions also captured in more distant views, and that we can use the camera pose relative to scene geometry to inform where to add SR content. Building from this insight, we propose SplatSuRe, a method that selectively applies SR content only in undersampled regions lacking high-frequency supervision, yielding sharper and more consistent results. Across Tanks & Temples, Deep Blending and Mip-NeRF 360, our approach surpasses baselines in both fidelity and perceptual quality. Notably, our gains are most significant in localized foreground regions where higher detail is desired.
comment: Project Page: https://splatsure.github.io/
☆ CoatFusion: Controllable Material Coating in Images
We introduce Material Coating, a novel image editing task that simulates applying a thin material layer onto an object while preserving its underlying coarse and fine geometry. Material coating is fundamentally different from existing "material transfer" methods, which are designed to replace an object's intrinsic material, often overwriting fine details. To address this new task, we construct a large-scale synthetic dataset (110K images) of 3D objects with varied, physically-based coatings, named DataCoat110K. We then propose CoatFusion, a novel architecture that enables this task by conditioning a diffusion model on both a 2D albedo texture and granular, PBR-style parametric controls, including roughness, metalness, transmission, and a key thickness parameter. Experiments and user studies show CoatFusion produces realistic, controllable coatings and significantly outperforms existing material editing and transfer methods on this new task.
☆ How Market Volatility Shapes Algorithmic Collusion: A Comparative Analysis of Learning-Based Pricing Algorithms
Autonomous pricing algorithms are increasingly influencing competition in digital markets; however, their behavior under realistic demand conditions remains largely unexamined. This paper offers a thorough analysis of four pricing algorithms -- Q-Learning, PSO, Double DQN, and DDPG -- across three classic duopoly models (Logit, Hotelling, Linear) and under various demand-shock regimes created by auto-regressive processes. By utilizing profit- and price-based collusion indices, we investigate how the interactions among algorithms, market structure, and stochastic demand collaboratively influence competitive outcomes. Our findings reveal that reinforcement-learning algorithms often sustain supra-competitive prices under stable demand, with DDPG demonstrating the most pronounced collusive tendencies. Demand shocks produce notably varied effects: Logit markets suffer significant performance declines, Hotelling markets remain stable, and Linear markets experience shock-induced profit inflation. Despite marked changes in absolute performance, the relative rankings of the algorithms are consistent across different environments. These results underscore the critical importance of market structure and demand uncertainty in shaping algorithmic competition, while also contributing to the evolving policy discussions surrounding autonomous pricing behavior.
☆ Cross-View Topology-Aware Graph Representation Learning
Graph classification has gained significant attention due to its applications in chemistry, social networks, and bioinformatics. While Graph Neural Networks (GNNs) effectively capture local structural patterns, they often overlook global topological features that are critical for robust representation learning. In this work, we propose GraphTCL, a dual-view contrastive learning framework that integrates structural embeddings from GNNs with topological embeddings derived from persistent homology. By aligning these complementary views through a cross-view contrastive loss, our method enhances representation quality and improves classification performance. Extensive experiments on benchmark datasets, including TU and OGB molecular graphs, demonstrate that GraphTCL consistently outperforms state-of-the-art baselines. This study highlights the importance of topology-aware contrastive learning for advancing graph representation methods.
☆ Opening the Black Box: Nowcasting Singapore's GDP Growth and its Explainability
Timely assessment of current conditions is essential especially for small, open economies such as Singapore, where external shocks transmit rapidly to domestic activity. We develop a real-time nowcasting framework for quarterly GDP growth using a high-dimensional panel of approximately 70 indicators, encompassing economic and financial indicators over 1990Q1-2023Q2. The analysis covers penalized regressions, dimensionality-reduction methods, ensemble learning algorithms, and neural architectures, benchmarked against a Random Walk, an AR(3), and a Dynamic Factor Model. The pipeline preserves temporal ordering through an expanding-window walk-forward design with Bayesian hyperparameter optimization, and uses moving block-bootstrap procedures both to construct prediction intervals and to obtain confidence bands for feature-importance measures. It adopts model-specific and XAI-based explainability tools. A Model Confidence Set procedure identifies statistically superior learners, which are then combined through simple, weighted, and exponentially weighted schemes; the resulting time-varying weights provide an interpretable representation of model contributions. Predictive ability is assessed via Giacomini-White tests. Empirical results show that penalized regressions, dimensionality-reduction models, and GRU networks consistently outperform all benchmarks, with RMSFE reductions of roughly 40-60%; aggregation delivers further gains. Feature-attribution methods highlight industrial production, external trade, and labor-market indicators as dominant drivers of Singapore's short-run growth dynamics.
comment: PhD thesis, University of Macerata (2025). PhD programme: Quantitative Methods for Policy Evaluation (Cycle XXXVII). Supervisors: Rosaria Romano, Jamus Jerome Lim
♻ ☆ How Muon's Spectral Design Benefits Generalization: A Study on Imbalanced Data
The growing adoption of spectrum-aware matrix-valued optimizers such as Muon and Shampoo in deep learning motivates a systematic study of their generalization properties and, in particular, when they might outperform competitive algorithms. We approach this question by introducing appropriate simplifying abstractions as follows: First, we use imbalanced data as a testbed. Second, we study the canonical form of such optimizers, which is Spectral Gradient Descent (SpecGD) -- each update step is $UV^T$ where $UΣV^T$ is the truncated SVD of the gradient. Third, within this framework we identify a canonical setting for which we precisely quantify when SpecGD outperforms vanilla Euclidean GD. For a Gaussian mixture data model and both linear and bilinear models, we show that unlike GD, which prioritizes learning dominant principal components of the data first, SpecGD learns all principal components of the data at equal rates. We demonstrate how this translates to a growing gap in balanced accuracy favoring SpecGD early in training and further show that the gap remains consistent even when the GD counterpart uses adaptive step-sizes via normalization. By extending the analysis to deep linear models, we show that depth amplifies these effects. We empirically verify our theoretical findings on a variety of imbalanced datasets. Our experiments compare practical variants of spectral methods, like Muon and Shampoo, against their Euclidean counterparts and Adam. The results validate our findings that these spectral optimizers achieve superior generalization by promoting a more balanced learning of the data's underlying components.
comment: 36 pages, 32 figures, 1 table
♻ ☆ VIVAT: Virtuous Improving VAE Training through Artifact Mitigation
Variational Autoencoders (VAEs) remain a cornerstone of generative computer vision, yet their training is often plagued by artifacts that degrade reconstruction and generation quality. This paper introduces VIVAT, a systematic approach to mitigating common artifacts in KL-VAE training without requiring radical architectural changes. We present a detailed taxonomy of five prevalent artifacts - color shift, grid patterns, blur, corner and droplet artifacts - and analyze their root causes. Through straightforward modifications, including adjustments to loss weights, padding strategies, and the integration of Spatially Conditional Normalization, we demonstrate significant improvements in VAE performance. Our method achieves state-of-the-art results in image reconstruction metrics (PSNR and SSIM) across multiple benchmarks and enhances text-to-image generation quality, as evidenced by superior CLIP scores. By preserving the simplicity of the KL-VAE framework while addressing its practical challenges, VIVAT offers actionable insights for researchers and practitioners aiming to optimize VAE training.
♻ ☆ IAEmu: Learning Galaxy Intrinsic Alignment Correlations
The intrinsic alignments (IA) of galaxies, a key contaminant in weak lensing analyses, arise from correlations in galaxy shapes driven by tidal interactions and galaxy formation processes. Accurate IA modeling is essential for robust cosmological inference, but current approaches rely on perturbative methods that break down on nonlinear scales or on expensive simulations. We introduce IAEmu, a neural network-based emulator that predicts the galaxy position-position ($ξ$), position-orientation ($ω$), and orientation-orientation ($η$) correlation functions and their uncertainties using mock catalogs based on the halo occupation distribution (HOD) framework. Compared to simulations, IAEmu achieves ~3% average error for $ξ$ and ~5% for $ω$, while capturing the stochasticity of $η$ without overfitting. The emulator provides both aleatoric and epistemic uncertainties, helping identify regions where predictions may be less reliable. We also demonstrate generalization to non-HOD alignment signals by fitting to IllustrisTNG hydrodynamical simulation data. As a fully differentiable neural network, IAEmu enables $\sim$10,000$\times$ speed-ups in mapping HOD parameters to correlation functions on GPUs, compared to CPU-based simulations. This acceleration facilitates inverse modeling via gradient-based sampling, making IAEmu a powerful surrogate model for galaxy bias and IA studies with direct applications to Stage IV weak lensing surveys.
comment: Published in the Open Journal of Astrophysics
♻ ☆ Private Continual Counting of Unbounded Streams NeurIPS 2025
We study the problem of differentially private continual counting in the unbounded setting where the input size $n$ is not known in advance. Current state-of-the-art algorithms based on optimal instantiations of the matrix mechanism cannot be directly applied here because their privacy guarantees only hold when key parameters are tuned to $n$. Using the common `doubling trick' avoids knowledge of $n$ but leads to suboptimal and non-smooth error. We solve this problem by introducing novel matrix factorizations based on logarithmic perturbations of the function $\frac{1}{\sqrt{1-z}}$ studied in prior works, which may be of independent interest. The resulting algorithm has smooth error, and for any $α> 0$ and $t\leq n$ it is able to privately estimate the sum of the first $t$ data points with $O(\log^{2+2α}(t))$ variance. It requires $O(t)$ space and amortized $O(\log t)$ time per round, compared to $O(\log(n)\log(t))$ variance, $O(n)$ space and $O(n \log n)$ pre-processing time for the nearly-optimal bounded-input algorithm of Henzinger et al. (SODA 2023). Empirically, we find that our algorithm's performance is also comparable to theirs in absolute terms: our variance is less than $1.5\times$ theirs for $t$ as large as $2^{24}$.
comment: Published as a conference paper at NeurIPS 2025. 20 pages, 2 figures
♻ ☆ SCOPE-MRI: Bankart Lesion Detection as a Case Study in Data Curation and Deep Learning for Challenging Diagnoses
Deep learning has shown strong performance in musculoskeletal imaging, but prior work has largely targeted conditions where diagnosis is relatively straightforward. More challenging problems remain underexplored, such as detecting Bankart lesions (anterior-inferior glenoid labral tears) on standard MRIs. These lesions are difficult to diagnose due to subtle imaging features, often necessitating invasive MRI arthrograms (MRAs). We introduce ScopeMRI, the first publicly available, expert-annotated dataset for shoulder pathologies, and present a deep learning framework for Bankart lesion detection on both standard MRIs and MRAs. ScopeMRI contains shoulder MRIs from patients who underwent arthroscopy, providing ground-truth labels from intraoperative findings, the diagnostic gold standard. Separate models were trained for MRIs and MRAs using CNN- and transformer-based architectures, with predictions ensembled across multiple imaging planes. Our models achieved radiologist-level performance, with accuracy on standard MRIs surpassing radiologists interpreting MRAs. External validation on independent hospital data demonstrated initial generalizability across imaging protocols. By releasing ScopeMRI and a modular codebase for training and evaluation, we aim to accelerate research in musculoskeletal imaging and foster development of datasets and models that address clinically challenging diagnostic tasks.
comment: This version of the article has been accepted for publication at Nature Partner Journal (NPJ) Artificial Intelligence, but is not the Version of Record and does not reflect post-acceptance improvements or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1038/s44387-025-00043-5
♻ ☆ How many measurements are enough? Bayesian recovery in inverse problems with general distributions
We study the sample complexity of Bayesian recovery for solving inverse problems with general prior, forward operator and noise distributions. We consider posterior sampling according to an approximate prior $\mathcal{P}$, and establish sufficient conditions for stable and accurate recovery with high probability. Our main result is a non-asymptotic bound that shows that the sample complexity depends on (i) the intrinsic complexity of $\mathcal{P}$, quantified by its so-called approximate covering number, and (ii) concentration bounds for the forward operator and noise distributions. As a key application, we specialize to generative priors, where $\mathcal{P}$ is the pushforward of a latent distribution via a Deep Neural Network (DNN). We show that the sample complexity scales log-linearly with the latent dimension $k$, thus establishing the efficacy of DNN-based priors. Generalizing existing results on deterministic (i.e., non-Bayesian) recovery for the important problem of random sampling with an orthogonal matrix $U$, we show how the sample complexity is determined by the coherence of $U$ with respect to the support of $\mathcal{P}$. Hence, we establish that coherence plays a fundamental role in Bayesian recovery as well. Overall, our framework unifies and extends prior work, providing rigorous guarantees for the sample complexity of solving Bayesian inverse problems with arbitrary distributions.
♻ ☆ Structure is Supervision: Multiview Masked Autoencoders for Radiology
Building robust medical machine learning systems requires pretraining strategies that exploit the intrinsic structure present in clinical data. We introduce Multiview Masked Autoencoder (MVMAE), a self-supervised framework that leverages the natural multi-view organization of radiology studies to learn view-invariant and disease-relevant representations. MVMAE combines masked image reconstruction with cross-view alignment, transforming clinical redundancy across projections into a powerful self-supervisory signal. We further extend this approach with MVMAE-V2T, which incorporates radiology reports as an auxiliary text-based learning signal to enhance semantic grounding while preserving fully vision-based inference. Evaluated on a downstream disease classification task on three large-scale public datasets, MIMIC-CXR, CheXpert, and PadChest, MVMAE consistently outperforms supervised and vision-language baselines. Furthermore, MVMAE-V2T provides additional gains, particularly in low-label regimes where structured textual supervision is most beneficial. Together, these results establish the importance of structural and textual supervision as complementary paths toward scalable, clinically grounded medical foundation models.
♻ ☆ Meta-Reinforcement Learning for Building Energy Management System
The building sector is one of the largest contributors to global energy consumption. Improving its energy efficiency is essential for reducing operational costs and greenhouse gas emissions. Energy management systems (EMS) play a key role in monitoring and controlling building appliances efficiently and reliably. With the increasing integration of renewable energy, intelligent EMS solutions have received growing attention. Reinforcement learning (RL) has recently been explored for this purpose and shows strong potential. However, most RL-based EMS methods require a large number of training steps to learn effective control policies, especially when adapting to unseen buildings, which limits their practical deployment. This paper introduces MetaEMS, a meta-reinforcement learning framework for EMS. MetaEMS improves learning efficiency by transferring knowledge from previously solved tasks to new ones through group-level and building-level adaptation, enabling fast adaptation and effective control across diverse building environments. Experimental results demonstrate that MetaEMS adapts more rapidly to unseen buildings and consistently outperforms baseline methods across various scenarios.
comment: arXiv admin note: text overlap with arXiv:1909.10165 by other authors
♻ ☆ SpikingBrain: Spiking Brain-inspired Large Models
Mainstream Transformer-based large language models face major efficiency bottlenecks: training computation scales quadratically with sequence length, and inference memory grows linearly, limiting long-context processing. Building large models on non-NVIDIA platforms also poses challenges for stable and efficient training. To address this, we introduce SpikingBrain, a family of brain-inspired models designed for efficient long-context training and inference. SpikingBrain leverages the MetaX GPU cluster and focuses on three aspects: (1) Model Architecture: linear and hybrid-linear attention architectures with adaptive spiking neurons; (2) Algorithmic Optimizations: an efficient, conversion-based training pipeline and a dedicated spike coding framework; (3) System Engineering: customized training frameworks, operator libraries, and parallelism strategies tailored to MetaX hardware. Using these techniques, we develop two models: SpikingBrain-7B, a linear LLM, and SpikingBrain-76B, a hybrid-linear MoE LLM. These models demonstrate the feasibility of large-scale LLM development on non-NVIDIA platforms, and training remains stable for weeks on hundreds of MetaX GPUs with Model FLOPs Utilization at expected levels. SpikingBrain achieves performance comparable to open-source Transformer baselines while using only about 150B tokens for continual pre-training. Our models also significantly improve long-context efficiency and deliver inference with (partially) constant memory and event-driven spiking behavior. For example, SpikingBrain-7B attains over 100x speedup in Time to First Token for 4M-token sequences. Furthermore, the proposed spiking scheme achieves 69.15 percent sparsity, enabling low-power operation. Overall, this work demonstrates the potential of brain-inspired mechanisms to drive the next generation of efficient and scalable large model design.
♻ ☆ Get RICH or Die Scaling: Profitably Trading Inference Compute for Robustness
Models are susceptible to adversarially out-of-distribution (OOD) data despite large training-compute investments into their robustification. Zaremba et al. (2025) make progress on this problem at test time, showing LLM reasoning improves satisfaction of model specifications designed to thwart attacks, resulting in a correlation between reasoning effort and robustness to jailbreaks. However, this benefit of test compute fades when attackers are given access to gradients or multimodal inputs. We address this gap, clarifying that inference-compute offers benefits even in such cases. Our approach argues that compositional generalization, through which OOD data is understandable via its in-distribution (ID) components, enables adherence to defensive specifications on adversarially OOD inputs. Namely, we posit the Robustness from Inference Compute Hypothesis (RICH): inference-compute defenses profit as the model's training data better reflects the attacked data's components. We empirically support this hypothesis across vision language model and attack types, finding robustness gains from test-time compute if specification following on OOD data is unlocked by compositional generalization. For example, InternVL 3.5 gpt-oss 20B gains little robustness when its test compute is scaled, but such scaling adds significant robustness if we first robustify its vision encoder. This correlation of inference-compute's robustness benefit with base model robustness is the rich-get-richer dynamic of the RICH: attacked data components are more ID for robustified models, aiding compositional generalization to OOD data. Thus, we advise layering train-time and test-time defenses to obtain their synergistic benefit.
comment: 21 pages
♻ ☆ NeuroRVQ: Multi-Scale EEG Tokenization for Generative Large Brainwave Models
Electroencephalography (EEG) captures neural activity across multiple temporal and spectral scales, yielding signals that are rich but complex for representation learning. Recently, EEG foundation models trained to predict masked signal-tokens have shown promise for learning generalizable representations. However, their performance is hindered by their signal tokenization modules. Existing neural tokenizers fail to preserve high-frequency dynamics, limiting their ability to reconstruct EEG signals with high fidelity. We introduce NeuroRVQ, a scalable Large Brainwave Model (LBM) centered on a codebook-based tokenizer. Our tokenizer integrates: (i) multi-scale feature extraction modules that capture the full frequency neural spectrum; (ii) hierarchical residual vector quantization (RVQ) codebooks for high-resolution encoding; and, (iii) an EEG signal phase- and amplitude-aware loss function for efficient training. This design enables efficient EEG compression while supporting accurate reconstruction across all frequency bands, leading to robust generative masked modeling. Our empirical results demonstrate that NeuroRVQ achieves lower reconstruction error and outperforms existing LBMs on a variety of downstream tasks. More broadly, NeuroRVQ tokenizer establishes a strong prior for codebook-based general-purpose brainwave models, enabling advances in neural decoding, generative modeling and multimodal biosignal integration.
♻ ☆ Adaptive Plane Reformatting for 4D Flow MRI using Deep Reinforcement Learning
Background and Objective: Plane reformatting for four-dimensional phase contrast MRI (4D flow MRI) is time-consuming and prone to inter-observer variability, which limits fast cardiovascular flow assessment. Deep reinforcement learning (DRL) trains agents to iteratively adjust plane position and orientation, enabling accurate plane reformatting without the need for detailed landmarks, making it suitable for images with limited contrast and resolution such as 4D flow MRI. However, current DRL methods assume that test volumes share the same spatial alignment as the training data, limiting generalization across scanners and institutions. To address this limitation, we introduce AdaPR (Adaptive Plane Reformatting), a DRL framework that uses a local coordinate system to navigate volumes with arbitrary positions and orientations. Methods: We implemented AdaPR using the Asynchronous Advantage Actor-Critic (A3C) algorithm and validated it on 88 4D flow MRI datasets acquired from multiple vendors, including patients with congenital heart disease. Results: AdaPR achieved a mean angular error of 6.32 +/- 4.15 degrees and a distance error of 3.40 +/- 2.75 mm, outperforming global-coordinate DRL methods and alternative non-DRL methods. AdaPR maintained consistent accuracy under different volume orientations and positions. Flow measurements from AdaPR planes showed no significant differences compared to two manual observers, with excellent correlation (R^2 = 0.972 and R^2 = 0.968), comparable to inter-observer agreement (R^2 = 0.969). Conclusion: AdaPR provides robust, orientation-independent plane reformatting for 4D flow MRI, achieving flow quantification comparable to expert observers. Its adaptability across datasets and scanners makes it a promising candidate for medical imaging applications beyond 4D flow MRI.
♻ ☆ Outcome-based Reinforcement Learning to Predict the Future
Reinforcement Learning with Verifiable Rewards (RLVR) has been an effective approach for improving Large Language Models' reasoning in domains such as coding and mathematics. Here, we apply RLVR methods towards forecasting future real-world events - a challenging task for RL due to the very noisy (and delayed) outcomes involved. Using a novel dataset of recent questions from a prediction market, and accompanying relevant news headlines, we show that a compact (14B) reasoning model can be trained to match or surpass the predictive accuracy of frontier models like o1, while greatly improving probabilistic calibration. The model's performance is also practically meaningful: in a Polymarket trading simulation, we estimate that its bets would have yielded a return on investment of over 10% across all questions in the test set. We detail and compare approaches used in training our model, including augmenting our training-data with synthetic prediction questions, guardrails for learning stability, and median prediction sampling at inference-time.
♻ ☆ Benchmarking machine learning models for multi-class state recognition in double quantum dot data
Semiconductor quantum dots (QDs) are a leading platform for scalable quantum processors. However, scaling to large arrays requires reliable, automated tuning strategies for devices' bootstrapping, calibration, and operation, with many tuning aspects depending on accurately identifying QD device states from charge-stability diagrams (CSDs). In this work, we present a comprehensive benchmarking study of four modern machine learning (ML) architectures for multi-class state recognition in double-QD CSDs. We evaluate their performance across different data budgets and normalization schemes using both synthetic and experimental data. We find that the more resource-intensive models -- U-Nets and visual transformers (ViTs) -- achieve the highest MSE score (defined as $1-\mathrm{MSE}$) on synthetic data (over $0.98$) but fail to generalize to experimental data. MDNs are the most computationally efficient and exhibit highly stable training, but with substantially lower peak performance. CNNs offer the most favorable trade-off on experimental CSDs, achieving strong accuracy with two orders of magnitude fewer parameters than the U-Nets and ViTs. Normalization plays a nontrivial role: min-max scaling generally yields higher MSE scores but less stable convergence, whereas z-score normalization produces more predictable training dynamics but at reduced accuracy for most models. Overall, our study shows that CNNs with min-max normalization are a practical approach for QD CSDs.
comment: 12 pages, 4 figures, 2 tables
♻ ☆ Families of costs with zero and nonnegative MTW tensor in optimal transport and the c-divergences
We study the information geometry of $\bcc$-divergences from families of costs of the form $\mathsf{c}(x, \barx) =\mathsf{u}(x^{\mathfrak{t}}\barx)$ through the optimal transport point of view. Here, $\mathsf{u}$ is a scalar function with inverse $\mathsf{s}$, $x^{\ft}\barx$ is a nondegenerate bilinear pairing of vectors $x, \barx$ belonging to an open subset of $\mathbb{R}^n$. We compute explicitly the MTW tensor (or cross curvature) for the optimal transport problem on $\mathbb{R}^n$ with this cost. The condition that the MTW-tensor vanishes on null vectors under the Kim-McCann metric is a fourth-order nonlinear ODE, which could be reduced to a linear ODE of the form $\mathsf{s}^{(2)} - S\mathsf{s}^{(1)} + P\mathsf{s} = 0$ with constant coefficients $P$ and $S$. The resulting inverse functions include {\it Lambert} and {\it generalized inverse hyperbolic\slash trigonometric} functions. The square Euclidean metric and $\log$-type costs are equivalent to instances of these solutions. The optimal map may be written explicitly in terms of the potential function. For cost functions of a similar form on a hyperboloid model of the hyperbolic space and unit sphere, we also express this tensor in terms of algebraic expressions in derivatives of $\mathsf{s}$ using the Gauss-Codazzi equation, obtaining new families of strictly regular costs for these manifolds, including new families of {\it power function costs}. We express the divergence geometry of the $\mathsf{c}$-divergence in terms of the Kim-McCann metric, including a $\mathsf{c}$-Crouzeix identity and a formula for the primal connection. We analyze the $\sinh$-type hyperbolic cost, providing examples of $\mathsf{c}$-convex functions, which are used to construct a new \emph{local form} of the $α$-divergences on probability simplices. We apply the optimal maps to sample the multivariate $t$-distribution.
comment: 40 pages
♻ ☆ LLMs can hide text in other text of the same length
A meaningful text can be hidden inside another, completely different yet still coherent and plausible, text of the same length. For example, a tweet containing a harsh political critique could be embedded in a tweet that celebrates the same political leader, or an ordinary product review could conceal a secret manuscript. This uncanny state of affairs is now possible thanks to Large Language Models, and in this paper we present Calgacus, a simple and efficient protocol to achieve it. We show that even modest 8-billion-parameter open-source LLMs are sufficient to obtain high-quality results, and a message as long as this abstract can be encoded and decoded locally on a laptop in seconds. The existence of such a protocol demonstrates a radical decoupling of text from authorial intent, further eroding trust in written communication, already shaken by the rise of LLM chatbots. We illustrate this with a concrete scenario: a company could covertly deploy an unfiltered LLM by encoding its answers within the compliant responses of a safe model. This possibility raises urgent questions for AI safety and challenges our understanding of what it means for a Large Language Model to know something.
comment: 21 pages, main paper 9 pages
♻ ☆ Testing Noise Assumptions of Learning Algorithms
We pose a fundamental question in computational learning theory: can we efficiently test whether a training set satisfies the assumptions of a given noise model? This question has remained unaddressed despite decades of research on learning in the presence of noise. In this work, we show that this task is tractable and present the first efficient algorithm to test various noise assumptions on the training data. To model this question, we extend the recently proposed testable learning framework of Rubinfeld and Vasilyan (2023) and require a learner to run an associated test that satisfies the following two conditions: (1) whenever the test accepts, the learner outputs a classifier along with a certificate of optimality, and (2) the test must pass for any dataset drawn according to a specified modeling assumption on both the marginal distribution and the noise model. We then consider the problem of learning halfspaces over Gaussian marginals with Massart noise (where each label can be flipped with probability less than $1/2$ depending on the input features), and give a fully-polynomial time testable learning algorithm. We also show a separation between the classical setting of learning in the presence of structured noise and testable learning. In fact, for the simple case of random classification noise (where each label is flipped with fixed probability $η= 1/2$), we show that testable learning requires super-polynomial time while classical learning is trivial.
♻ ☆ Influence Functions for Efficient Data Selection in Reasoning
Fine-tuning large language models (LLMs) on chain-of-thought (CoT) data shows that a small amount of high-quality data can outperform massive datasets. Yet, what constitutes "quality" remains ill-defined. Existing reasoning methods rely on indirect heuristics such as problem difficulty or trace length, while instruction-tuning has explored a broader range of automated selection strategies, but rarely in the context of reasoning. We propose to define reasoning data quality using influence functions, which measure the causal effect of individual CoT examples on downstream accuracy, and introduce influence-based pruning, which consistently outperforms perplexity and embedding-based baselines on math reasoning within a model family.
comment: 4 pages, 2 figures; added link to codebase
♻ ☆ Multivariate Variational Autoencoder
Learning latent representations that are simultaneously expressive, geometrically well-structured, and reliably calibrated remains a central challenge for Variational Autoencoders (VAEs). Standard VAEs typically assume a diagonal Gaussian posterior, which simplifies optimization but rules out correlated uncertainty and often yields entangled or redundant latent dimensions. We introduce the Multivariate Variational Autoencoder (MVAE), a tractable full-covariance extension of the VAE that augments the encoder with sample-specific diagonal scales and a global coupling matrix. This induces a multivariate Gaussian posterior of the form $N(μ_φ(x), C \operatorname{diag}(σ_φ^2(x)) C^\top)$, enabling correlated latent factors while preserving a closed-form KL divergence and a simple reparameterization path. Beyond likelihood, we propose a multi-criterion evaluation protocol that jointly assesses reconstruction quality (MSE, ELBO), downstream discrimination (linear probes), probabilistic calibration (NLL, Brier, ECE), and unsupervised structure (NMI, ARI). Across Larochelle-style MNIST variants, Fashion-MNIST, and CIFAR-10/100, MVAE consistently matches or outperforms diagonal-covariance VAEs of comparable capacity, with particularly notable gains in calibration and clustering metrics at both low and high latent dimensions. Qualitative analyses further show smoother, more semantically coherent latent traversals and sharper reconstructions. All code, dataset splits, and evaluation utilities are released to facilitate reproducible comparison and future extensions of multivariate posterior models.
♻ ☆ Learning Robust Social Strategies with Large Language Models
As agentic AI becomes more widespread, agents with distinct and possibly conflicting goals will interact in complex ways. These multi-agent interactions pose a fundamental challenge, particularly in social dilemmas, where agents' individual incentives can undermine collective welfare. While reinforcement learning (RL) has been effective for aligning large language models (LLMs) in the single-agent regime, prior small-network results suggest that standard RL in multi-agent settings often converges to defecting, self-interested policies. We show the same effect in LLMs: despite cooperative priors, RL-trained LLM agents develop opportunistic behavior that can exploit even advanced closed-source models. To address this tendency of RL to converge to poor equilibria, we adapt a recent opponent-learning awareness algorithm, Advantage Alignment, to fine-tune LLMs toward multi-agent cooperation and non-exploitability. We then introduce a group-relative baseline that simplifies advantage computation in iterated games, enabling multi-agent training at LLM scale. We also contribute a novel social dilemma environment, Trust-and-Split, which requires natural language communication to achieve high collective welfare. Across a wide range of social dilemmas, policies learned with Advantage Alignment achieve higher collective payoffs while remaining robust against exploitation by greedy agents. We release all of our code to support future work on multi-agent RL training for LLMs.
♻ ☆ Scheduling and Aggregation Design for Asynchronous Federated Learning over Wireless Networks
Federated Learning (FL) is a collaborative machine learning (ML) framework that combines on-device training and server-based aggregation to train a common ML model among distributed agents. In this work, we propose an asynchronous FL design with periodic aggregation to tackle the straggler issue in FL systems. Considering limited wireless communication resources, we investigate the effect of different scheduling policies and aggregation designs on the convergence performance. Driven by the importance of reducing the bias and variance of the aggregated model updates, we propose a scheduling policy that jointly considers the channel quality and training data representation of user devices. The effectiveness of our channel-aware data-importance-based scheduling policy, compared with state-of-the-art methods proposed for synchronous FL, is validated through simulations. Moreover, we show that an ``age-aware'' aggregation weighting design can significantly improve the learning performance in an asynchronous FL setting.
comment: An amended (corrected) version of the refereed paper published in IEEE Journal on Selected Areas in Communications
♻ ☆ How to Bridge the Sim-to-Real Gap in Digital Twin-Aided Telecommunication Networks
Training effective artificial intelligence models for telecommunications is challenging due to the scarcity of deployment-specific data. Real data collection is expensive, and available datasets often fail to capture the unique operational conditions and contextual variability of the network environment. Digital twinning provides a potential solution to this problem, as simulators tailored to the current network deployment can generate site-specific data to augment the available training datasets. However, there is a need to develop solutions to bridge the inherent simulation-to-reality (sim-to-real) gap between synthetic and real-world data. This paper reviews recent advances on two complementary strategies: 1) the calibration of digital twins (DTs) through real-world measurements, and 2) the use of sim-to-real gap-aware training strategies to robustly handle residual discrepancies between digital twin-generated and real data. For the latter, we evaluate two conceptually distinct methods that model the sim-to-real gap either at the level of the environment via Bayesian learning or at the level of the training loss via prediction-powered inference.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ L2RU: a Structured State Space Model with prescribed L2-bound
Structured state-space models (SSMs) have recently emerged as a powerful architecture at the intersection of machine learning and control, featuring layers composed of discrete-time linear time-invariant (LTI) systems followed by pointwise nonlinearities. These models combine the expressiveness of deep neural networks with the interpretability and inductive bias of dynamical systems, offering strong performance on long-sequence tasks with favorable computational complexity. However, their adoption in applications such as system identification and optimal control remains limited by the difficulty of enforcing stability and robustness in a principled and tractable manner. We introduce L2RU, a class of SSMs endowed with a prescribed $\mathcal{L}_2$-gain bound, guaranteeing input--output stability and robustness for all parameter values. The L2RU architecture is derived from free parametrizations of LTI systems satisfying an $\mathcal{L}_2$ constraint, enabling unconstrained optimization via standard gradient-based methods while preserving rigorous stability guarantees. Specifically, we develop two complementary parametrizations: a non-conservative formulation that provides a complete characterization of square LTI systems with a given $\mathcal{L}_2$-bound, and a conservative formulation that extends the approach to general (possibly non-square) systems while improving computational efficiency through a structured representation of the system matrices. Both parametrizations admit efficient initialization schemes that facilitate training long-memory models. We demonstrate the effectiveness of the proposed framework on a nonlinear system identification benchmark, where L2RU achieves improved performance and training stability compared to existing SSM architectures, highlighting its potential as a principled and robust building block for learning and control.
♻ ☆ Connecting Neural Models Latent Geometries with Relative Geodesic Representations
Neural models learn representations of high-dimensional data on low-dimensional manifolds. Multiple factors, including stochasticities in the training process, model architectures, and additional inductive biases, may induce different representations, even when learning the same task on the same data. However, it has recently been shown that when a latent structure is shared between distinct latent spaces, relative distances between representations can be preserved, up to distortions. Building on this idea, we demonstrate that exploiting the differential-geometric structure of latent spaces of neural models, it is possible to capture precisely the transformations between representational spaces trained on similar data distributions. Specifically, we assume that distinct neural models parametrize approximately the same underlying manifold, and introduce a representation based on the pullback metric that captures the intrinsic structure of the latent space, while scaling efficiently to large models. We validate experimentally our method on model stitching and retrieval tasks, covering autoencoders and vision foundation discriminative models, across diverse architectures, datasets, and pretraining schemes.
♻ ☆ Flow Equivariant Recurrent Neural Networks NeurIPS '25
Data arrives at our senses as a continuous stream, smoothly transforming from one instant to the next. These smooth transformations can be viewed as continuous symmetries of the environment that we inhabit, defining equivalence relations between stimuli over time. In machine learning, neural network architectures that respect symmetries of their data are called equivariant and have provable benefits in terms of generalization ability and sample efficiency. To date, however, equivariance has been considered only for static transformations and feed-forward networks, limiting its applicability to sequence models, such as recurrent neural networks (RNNs), and corresponding time-parameterized sequence transformations. In this work, we extend equivariant network theory to this regime of 'flows' -- one-parameter Lie subgroups capturing natural transformations over time, such as visual motion. We begin by showing that standard RNNs are generally not flow equivariant: their hidden states fail to transform in a geometrically structured manner for moving stimuli. We then show how flow equivariance can be introduced, and demonstrate that these models significantly outperform their non-equivariant counterparts in terms of training speed, length generalization, and velocity generalization, on both next step prediction and sequence classification. We present this work as a first step towards building sequence models that respect the time-parameterized symmetries which govern the world around us.
comment: NeurIPS '25, Spotlight
♻ ☆ RealWebAssist: A Benchmark for Long-Horizon Web Assistance with Real-World Users
To achieve successful assistance with long-horizon web-based tasks, AI agents must be able to sequentially follow real-world user instructions over a long period. Unlike existing web-based agent benchmarks, sequential instruction following in the real world poses significant challenges beyond performing a single, clearly defined task. For instance, real-world human instructions can be ambiguous, require different levels of AI assistance, and may evolve over time, reflecting changes in the user's mental state. To address this gap, we introduce RealWebAssist, a novel benchmark designed to evaluate sequential instruction-following in realistic scenarios involving long-horizon interactions with the web, visual GUI grounding, and understanding ambiguous real-world user instructions. RealWebAssist includes a dataset of sequential instructions collected from real-world human users. Each user instructs a web-based assistant to perform a series of tasks on multiple websites. A successful agent must reason about the true intent behind each instruction, keep track of the mental state of the user, understand user-specific routines, and ground the intended tasks to actions on the correct GUI elements. Our experimental results show that state-of-the-art models struggle to understand and ground user instructions, posing critical challenges in following real-world user instructions for long-horizon web assistance.
comment: Project Website: https://scai.cs.jhu.edu/projects/RealWebAssist/ Code: https://github.com/SCAI-JHU/RealWebAssist
♻ ☆ Skewed Neuronal Heterogeneity Enhances Efficiency On Various Computing Systems
Heterogeneity is a ubiquitous property of many biological systems and has profound implications for computation. While it is conceivable to optimize neuronal and synaptic heterogeneity for a specific task, such top-down optimization is biologically implausible, prone to catastrophic forgetting, and both data- and energy-intensive. In contrast, biological organisms, with remarkable capacity to perform numerous tasks with minimal metabolic cost, exhibit a heterogeneity that is inherent, stable during adulthood, and task-unspecific. Inspired by this intrinsic form of heterogeneity, we investigate the utility of variations in neuronal time constants for solving hundreds of distinct temporal tasks of varying complexity. Our results show that intrinsic heterogeneity significantly enhances performance and robustness in an implementation-independent manner, indicating its usefulness for both (rate-based) machine learning and (spike-coded) neuromorphic applications. Importantly, only skewed heterogeneity profiles-reminiscent of those found in biology-produce such performance gains. We further demonstrate that this computational advantage eliminates the need for large networks, allowing comparable performance with substantially lower operational, metabolic, and energetic costs, respectively in silico, in vivo, and on neuromorphic hardware. Finally, we discuss the implications of intrinsic (rather than task-induced) heterogeneity for the design of efficient artificial systems, particularly novel neuromorphic devices that exhibit similar device-to-device variability.
♻ ☆ FedHK-MVFC: Federated Heat Kernel Multi-View Clustering
In the realm of distributed artificial intelligence (AI) and privacy-focused medical applications, this paper proposes a multi-view clustering framework that links quantum field theory with federated healthcare analytics. The method uses heat kernel coefficients from spectral analysis to convert Euclidean distances into geometry-aware similarity measures that capture the structure of diverse medical data. The framework is presented through the heat kernel distance (HKD) transformation, which has convergence guarantees. Two algorithms have been developed: The first, Heat Kernel-Enhanced Multi-View Fuzzy Clustering (HK-MVFC), is used for central analysis. The second, Federated Heat Kernel Multi-View Fuzzy Clustering (FedHK-MVFC), is used for secure, privacy-preserving learning across hospitals. FedHK-MVFC uses differential privacy and secure aggregation to enable HIPAA-compliant collaboration. Tests on synthetic cardiovascular patient datasets demonstrate increased clustering accuracy, reduced communication, and retained efficiency compared to centralized methods. After being validated on 10,000 synthetic patient records across two hospitals, the methods proved useful for collaborative phenotyping involving electrocardiogram (ECG) data, cardiac imaging data, and behavioral data. The proposed methods' theoretical contributions include update rules with proven convergence, adaptive view weighting, and privacy-preserving protocols. These contributions establish a new standard for geometry-aware federated learning in healthcare, translating advanced mathematics into practical solutions for analyzing sensitive medical data while ensuring rigor and clinical relevance.
comment: 53 pages, 11 figures, and 9 tables
♻ ☆ Meta-Reasoner: Dynamic Guidance for Optimized Inference-time Reasoning in Large Language Models
Large Language Models (LLMs) often struggle with computational efficiency and error propagation in multi-step reasoning tasks. While recent advancements on prompting and post-training have enabled LLMs to perform step-wise reasoning, they still tend to explore unproductive solution paths without effective backtracking or strategy adjustment. In this paper, we propose Meta-Reasoner, a new framework that empowers LLMs to "think about how to think". It optimizes the inference process by dynamically adapting reasoning strategies in real-time. Our approach employs contextual multi-armed bandits (CMABs) to learn an adaptive policy. It learns to evaluate the current state of LLM's reasoning and determine optimal strategy that is most likely to lead to a successful outcome during inference, like whether to backtrack, switch to a new approach, or restart the problem-solving process. This meta-guidance helps avoid unproductive paths exploration during inference and hence improves computational efficiency. We evaluate Meta-Reasoner on math problems (e.g., Game-of-24, TheoremQA) and scientific tasks (e.g., SciBench). Results show that our method outperform previous SOTA methods by 9-12\% in accuracy, while reducing inference time by 28-35\% under the same compute budget. Additional experiments on creative writing demonstrate the generalizability of our approach to diverse reasoning-intensive tasks.
♻ ☆ Non-stationary Bandit Convex Optimization: A Comprehensive Study NeurIPS 2025
Bandit Convex Optimization is a fundamental class of sequential decision-making problems, where the learner selects actions from a continuous domain and observes a loss (but not its gradient) at only one point per round. We study this problem in non-stationary environments, and aim to minimize the regret under three standard measures of non-stationarity: the number of switches $S$ in the comparator sequence, the total variation $Δ$ of the loss functions, and the path-length $P$ of the comparator sequence. We propose a polynomial-time algorithm, Tilted Exponentially Weighted Average with Sleeping Experts (TEWA-SE), which adapts the sleeping experts framework from online convex optimization to the bandit setting. For strongly convex losses, we prove that TEWA-SE is minimax-optimal with respect to known $S$ and $Δ$ by establishing matching upper and lower bounds. By equipping TEWA-SE with the Bandit-over-Bandit framework, we extend our analysis to environments with unknown non-stationarity measures. For general convex losses, we introduce a second algorithm, clipped Exploration by Optimization (cExO), based on exponential weights over a discretized action space. While not polynomial-time computable, this method achieves minimax-optimal regret with respect to known $S$ and $Δ$, and improves on the best existing bounds with respect to $P$.
comment: 33 pages, 1 figure, accepted at NeurIPS 2025
♻ ☆ IberFire -- a detailed creation of a spatio-temporal dataset for wildfire risk assessment in Spain
Wildfires pose a threat to ecosystems, economies and public safety, particularly in Mediterranean regions such as Spain. Accurate predictive models require high-resolution spatio-temporal data to capture complex dynamics of environmental and human factors. To address the scarcity of fine-grained wildfire datasets in Spain, we introduce IberFire: a spatio-temporal dataset with 1 km x 1 km x 1-day resolution, covering mainland Spain and the Balearic Islands from December 2007 to December 2024. IberFire integrates 120 features across eight categories: auxiliary data, fire history, geography, topography, meteorology, vegetation indices, human activity and land cover. All features and processing rely on open-access data and tools, with a publicly available codebase ensuring transparency and applicability. IberFire offers enhanced spatial granularity and feature diversity compared to existing European datasets, and provides a reproducible framework. It supports advanced wildfire risk modelling via Machine Learning and Deep Learning, facilitates climate trend analysis, and informs fire prevention and land management strategies. The dataset is freely available on Zenodo to promote open research and collaboration.
♻ ☆ Pre-Training and Personalized Fine-Tuning via Over-the-Air Federated Meta-Learning: Convergence-Generalization Trade-Offs
For modern artificial intelligence (AI) applications such as large language models (LLMs), the training paradigm has recently shifted to pre-training followed by fine-tuning. Furthermore, owing to dwindling open repositories of data and thanks to efforts to democratize access to AI models, pre-training is expected to increasingly migrate from the current centralized deployments to federated learning (FL) implementations. Meta-learning provides a general framework in which pre-training and fine-tuning can be formalized. Meta-learning-based personalized FL (meta-pFL) moves beyond basic personalization by targeting generalization to new agents and tasks. This paper studies the generalization performance of meta-pFL for a wireless setting in which the agents participating in the pre-training phase, i.e., meta-learning, are connected via a shared wireless channel to the server. Adopting over-the-air computing, we study the trade-off between generalization to new agents and tasks, on the one hand, and convergence, on the other hand. The trade-off arises from the fact that channel impairments may enhance generalization, while degrading convergence. Extensive numerical results validate the theory.
comment: 40 pages, 10 figures, to appear in IEEE Trans. Cogn. Commun. Netw
♻ ☆ MoH: Multi-Head Attention as Mixture-of-Head Attention ICML 2025
In this work, we upgrade the multi-head attention mechanism, the core of the Transformer model, to improve efficiency while maintaining or surpassing the previous accuracy level. We show that multi-head attention can be expressed in the summation form. Drawing on the insight that not all attention heads hold equal significance, we propose Mixture-of-Head attention (MoH), a new architecture that treats attention heads as experts in the Mixture-of-Experts (MoE) mechanism. MoH has two significant advantages: First, MoH enables each token to select the appropriate attention heads, enhancing inference efficiency without compromising accuracy or increasing the number of parameters. Second, MoH replaces the standard summation in multi-head attention with a weighted summation, introducing flexibility to the attention mechanism and unlocking extra performance potential. Extensive experiments on ViT, DiT, and LLMs demonstrate that MoH outperforms multi-head attention by using only 50%-90% of the attention heads. Moreover, we demonstrate that pre-trained multi-head attention models, such as LLaMA3-8B, can be further continue-tuned into our MoH models. Notably, MoH-LLaMA3-8B achieves an average accuracy of 64.0% across 14 benchmarks, outperforming LLaMA3-8B by 2.4% by utilizing only 75% of the attention heads. We believe the proposed MoH is a promising alternative to multi-head attention and provides a strong foundation for developing advanced and efficient attention-based models.
comment: Accepted by ICML 2025, code: https://github.com/SkyworkAI/MoH
♻ ☆ CAP: A General Algorithm for Online Selective Conformal Prediction with FCR Control
We study the problem of post-selection predictive inference in an online fashion. To avoid devoting resources to unimportant units, a preliminary selection of the current individual before reporting its prediction interval is common and meaningful in online predictive tasks. Since the online selection causes a temporal multiplicity in the selected prediction intervals, it is important to control the real-time false coverage-statement rate (FCR) which measures the overall miscoverage level. We develop a general framework named CAP (Calibration after Adaptive Pick) that performs an adaptive pick rule on historical data to construct a calibration set if the current individual is selected and then outputs a conformal prediction interval for the unobserved label. We provide tractable procedures for constructing the calibration set for popular online selection rules. We proved that CAP can achieve an exact selection-conditional coverage guarantee in the finite-sample and distribution-free regimes. To account for the distribution shift in online data, we also embed CAP into some recent dynamic conformal prediction algorithms and show that the proposed method can deliver long-run FCR control. Numerical results on both synthetic and real data corroborate that CAP can effectively control FCR around the target level and yield more narrowed prediction intervals over existing baselines across various settings.
♻ ☆ Class-Conditional Distribution Balancing for Group Robust Classification
Spurious correlations that lead models to correct predictions for the wrong reasons pose a critical challenge for robust real-world generalization. Existing research attributes this issue to group imbalance and addresses it by maximizing group-balanced or worst-group accuracy, which heavily relies on expensive bias annotations. A compromise approach involves predicting bias information using extensively pretrained foundation models, which requires large-scale data and becomes impractical for resource-limited rare domains. To address these challenges, we offer a novel perspective by reframing the spurious correlations as imbalances or mismatches in class-conditional distributions, and propose a simple yet effective robust learning method that eliminates the need for both bias annotations and predictions. With the goal of maximizing the conditional entropy (uncertainty) of the label given spurious factors, our method leverages a sample reweighting strategy to achieve class-conditional distribution balancing, which automatically highlights minority groups and classes, effectively dismantling spurious correlations and producing a debiased data distribution for classification. Extensive experiments and analysis demonstrate that our approach consistently delivers state-of-the-art performance, rivaling methods that rely on bias supervision.
♻ ☆ Sparse PCA With Multiple Components
Sparse Principal Component Analysis (sPCA) is a cardinal technique for obtaining combinations of features, or principal components (PCs), that explain the variance of high-dimensional datasets in an interpretable manner. This involves solving a sparsity and orthogonality constrained convex maximization problem, which is extremely computationally challenging. Most existing works address sparse PCA via methods-such as iteratively computing one sparse PC and deflating the covariance matrix-that do not guarantee the orthogonality, let alone the optimality, of the resulting solution when we seek multiple mutually orthogonal PCs. We challenge this status by reformulating the orthogonality conditions as rank constraints and optimizing over the sparsity and rank constraints simultaneously. We design tight semidefinite relaxations to supply high-quality upper bounds, which we strengthen via additional second-order cone inequalities when each PC's individual sparsity is specified. Further, we derive a combinatorial upper bound on the maximum amount of variance explained as a function of the support. We exploit these relaxations and bounds to propose exact methods and rounding mechanisms that, together, obtain solutions with a bound gap on the order of 0%-15% for real-world datasets with p = 100s or 1000s of features and r \in {2, 3} components. Numerically, our algorithms match (and sometimes surpass) the best performing methods in terms of fraction of variance explained and systematically return PCs that are sparse and orthogonal. In contrast, we find that existing methods like deflation return solutions that violate the orthogonality constraints, even when the data is generated according to sparse orthogonal PCs. Altogether, our approach solves sparse PCA problems with multiple components to certifiable (near) optimality in a practically tractable fashion.
comment: Added a new result (Theorem 3) showing sparse PCA with multiple PCs is NP-hard even if the support is fixed and partially overlapping
♻ ☆ Optimal Scheduling Algorithms for LLM Inference: Theory and Practice
With the growing use of Large Language Model (LLM)-based tools like ChatGPT, Perplexity, and Gemini across industries, there is a rising need for efficient LLM inference systems. These systems handle requests with a unique two-phase computation structure: a prefill-phase that processes the full input prompt and a decode-phase that autoregressively generates tokens one at a time. This structure calls for new strategies for routing and scheduling requests. In this paper, we take a comprehensive approach to this challenge by developing a theoretical framework that models routing and scheduling in LLM inference systems. We identify two key design principles-optimal tiling and dynamic resource allocation-that are essential for achieving high throughput. Guided by these principles, we propose the Resource-Aware Dynamic (RAD) scheduler and prove that it achieves throughput optimality under mild conditions. To address practical Service Level Objectives (SLOs) such as serving requests with different Time Between Token (TBT) constraints, we design the SLO-Aware LLM Inference (SLAI) scheduler. SLAI uses real-time measurements to prioritize decode requests that are close to missing their TBT deadlines and reorders prefill requests based on known prompt lengths to further reduce the Time To First Token (TTFT) delays. We evaluate SLAI on the Openchat ShareGPT4 dataset using the Mistral-7B model on an NVIDIA RTX ADA 6000 GPU. Compared to Sarathi-Serve, SLAI reduces the median TTFT by 53% and increases the maximum serving capacity by 26% such that median TTFT is below 0.5 seconds, while meeting tail TBT latency constraints.
♻ ☆ Do Vision-Language Models Leak What They Learn? Adaptive Token-Weighted Model Inversion Attacks
Model inversion (MI) attacks pose significant privacy risks by reconstructing private training data from trained neural networks. While prior studies have primarily examined unimodal deep networks, the vulnerability of vision-language models (VLMs) remains largely unexplored. In this work, we present the first systematic study of MI attacks on VLMs to understand their susceptibility to leaking private visual training data. Our work makes two main contributions. First, tailored to the token-generative nature of VLMs, we introduce a suite of token-based and sequence-based model inversion strategies, providing a comprehensive analysis of VLMs' vulnerability under different attack formulations. Second, based on the observation that tokens vary in their visual grounding, and hence their gradients differ in informativeness for image reconstruction, we propose Sequence-based Model Inversion with Adaptive Token Weighting (SMI-AW) as a novel MI for VLMs. SMI-AW dynamically reweights each token's loss gradient according to its visual grounding, enabling the optimization to focus on visually informative tokens and more effectively guide the reconstruction of private images. Through extensive experiments and human evaluations on a range of state-of-the-art VLMs across multiple datasets, we show that VLMs are susceptible to training data leakage. Human evaluation of the reconstructed images yields an attack accuracy of 61.21%, underscoring the severity of these privacy risks. Notably, we demonstrate that publicly released VLMs are vulnerable to such attacks. Our study highlights the urgent need for privacy safeguards as VLMs become increasingly deployed in sensitive domains such as healthcare and finance. Additional experiments are provided in Supp.
comment: Under review
♻ ☆ A Unified Theory of $θ$-Expectations
We derive a new class of non-linear expectations from first-principles deterministic chaotic dynamics. The homogenization of the system's skew-adjoint microscopic generator is achieved using the spectral theory of transfer operators for uniformly hyperbolic flows. We prove convergence in the viscosity sense to a macroscopic evolution governed by a fully non-linear Hamilton-Jacobi-Bellman (HJB) equation. Our central result establishes that the HJB Hamiltonian possesses a rigid structure: affine in the Hessian but demonstrably non-convex in the gradient. This defines a new $θ$-expectation and constructively establishes a class of non-convex stochastic control problems fundamentally outside the sub-additive framework of G-expectations.
♻ ☆ Efficient Low Rank Attention for Long-Context Inference in Large Language Models
As the length of input text grows, the key-value (KV) cache in LLMs imposes prohibitive GPU memory costs and limits long-context inference on resource constrained devices. Existing approaches, such as KV quantization and pruning, reduce memory usage but suffer from numerical precision loss or suboptimal retention of key-value pairs. We introduce Low Rank Query and Key attention (LRQK), a two-stage framework that jointly decomposes the full-precision query and key matrices into compact rank-\(r\) factors during the prefill stage, and then uses these low-dimensional projections to compute proxy attention scores in \(\mathcal{O}(lr)\) time at each decode step. By selecting only the top-\(k\) tokens and a small fixed set of recent tokens, LRQK employs a mixed GPU-CPU cache with a hit-and-miss mechanism that transfers only missing full-precision KV pairs, thereby preserving exact attention outputs while reducing CPU-GPU data movement. Extensive experiments on the RULER and LongBench benchmarks with LLaMA-3-8B and Qwen2.5-7B demonstrate that LRQK matches or surpasses leading sparse-attention methods in long context settings, while delivering significant memory savings with minimal loss in accuracy. Our code is available at https://github.com/tenghuilee/LRQK.
♻ ☆ Resource-Efficient Beam Prediction in mmWave Communications with Multimodal Realistic Simulation Framework
Beamforming is a key technology in millimeter-wave (mmWave) communications that improves signal transmission by optimizing directionality and intensity. However, conventional channel estimation methods, such as pilot signals or beam sweeping, often fail to adapt to rapidly changing communication environments. To address this limitation, multimodal sensing-aided beam prediction has gained significant attention, using various sensing data from devices such as LiDAR, radar, GPS, and RGB images to predict user locations or network conditions. Despite its promising potential, the adoption of multimodal sensing-aided beam prediction is hindered by high computational complexity, high costs, and limited datasets. Thus, in this paper, a novel resource-efficient learning framework is introduced for beam prediction, which leverages a custom-designed cross-modal relational knowledge distillation (CRKD) algorithm specifically tailored for beam prediction tasks, to transfer knowledge from a multimodal network to a radar-only student model, achieving high accuracy with reduced computational cost. To enable multimodal learning with realistic data, a novel multimodal simulation framework is developed while integrating sensor data generated from the autonomous driving simulator CARLA with MATLAB-based mmWave channel modeling, and reflecting real-world conditions. The proposed CRKD achieves its objective by distilling relational information across different feature spaces, which enhances beam prediction performance without relying on expensive sensor data. Simulation results demonstrate that CRKD efficiently distills multimodal knowledge, allowing a radar-only model to achieve $94.62%$ of the teacher performance. In particular, this is achieved with just $10%$ of the teacher network's parameters, thereby significantly reducing computational complexity and dependence on multimodal sensor data.
comment: 13 pages, 9 figures, Submitted to IEEE Transactions on Mobile Computing on Dec. 01, 2025
♻ ☆ CoxSE: Exploring the Potential of Self-Explaining Neural Networks with Cox Proportional Hazards Model for Survival Analysis
The Cox Proportional Hazards (CPH) model has long been the preferred survival model for its explainability. However, to increase its predictive power beyond its linear log-risk, it was extended to utilize deep neural networks, sacrificing its explainability. In this work, we explore the potential of self-explaining neural networks (SENN) for survival analysis. We propose a new locally explainable Cox proportional hazards model, named CoxSE, by estimating a locally-linear log-hazard function using the SENN. We also propose a modification to the Neural additive (NAM) model, hybrid with SENN, named CoxSENAM, which enables the control of the stability and consistency of the generated explanations. Several experiments using synthetic and real datasets are presented, benchmarking CoxSE and CoxSENAM against a NAM-based model, a DeepSurv model explained with SHAP, and a linear CPH model. The results show that, unlike the NAM-based model, the SENN-based model can provide more stable and consistent explanations while maintaining the predictive power of the black-box model. The results also show that, due to their structural design, NAM-based models demonstrate better robustness to non-informative features. Among the models, the hybrid model exhibits the best robustness.
♻ ☆ Optimizing Product Deduplication in E-Commerce with Multimodal Embeddings
In large scale e-commerce marketplaces, duplicate product listings frequently cause consumer confusion and operational inefficiencies, degrading trust on the platform and increasing costs. Traditional keyword-based search methodologies falter in accurately identifying duplicates due to their reliance on exact textual matches, neglecting semantic similarities inherent in product titles. To address these challenges, we introduce a scalable, multimodal product deduplication designed specifically for the e-commerce domain. Our approach employs a domain-specific text model grounded in BERT architecture in conjunction with MaskedAutoEncoders for image representations. Both of these architectures are augmented with dimensionality reduction techniques to produce compact 128-dimensional embeddings without significant information loss. Complementing this, we also developed a novel decider model that leverages both text and image vectors. By integrating these feature extraction mechanisms with Milvus, an optimized vector database, our system can facilitate efficient and high-precision similarity searches across extensive product catalogs exceeding 200 million items with just 100GB of system RAM consumption. Empirical evaluations demonstrate that our matching system achieves a macro-average F1 score of 0.90, outperforming third-party solutions which attain an F1 score of 0.83. Our findings show the potential of combining domain-specific adaptations with state-of-the-art machine learning techniques to mitigate duplicate listings in large-scale e-commerce environments.
comment: 8 pages, accepted to 2025 IEEE International Conference on Big Data, Industrial and Goverment Track
♻ ☆ Robust Detection of Synthetic Tabular Data under Schema Variability
The rise of powerful generative models has sparked concerns over data authenticity. While detection methods have been extensively developed for images and text, the case of tabular data, despite its ubiquity, has been largely overlooked. Yet, detecting synthetic tabular data is especially challenging due to its heterogeneous structure and unseen formats at test time. We address the underexplored task of detecting synthetic tabular data ''in the wild'', i.e. when the detector is deployed on tables with variable and previously unseen schemas. We introduce a novel datum-wise transformer architecture that significantly outperforms the only previously published baseline, improving both AUC and accuracy by 7 points. By incorporating a table-adaptation component, our model gains an additional 7 accuracy points, demonstrating enhanced robustness. This work provides the first strong evidence that detecting synthetic tabular data in real-world conditions is feasible, and demonstrates substantial improvements over previous approaches. Following acceptance of the paper, we are finalizing the administrative and licensing procedures necessary for releasing the source code. This extended version will be updated as soon as the release is complete.
♻ ☆ RobustVLA: Robustness-Aware Reinforcement Post-Training for Vision-Language-Action Models
Vision-Language-Action (VLA) models have recently emerged as powerful general-purpose policies for robotic manipulation, benefiting from large-scale multi-modal pre-training. However, they often fail to generalize reliably in out-of-distribution deployments, where unavoidable disturbances such as observation noise, sensor errors, or actuation perturbations become prevalent. While recent Reinforcement Learning (RL)-based post-training provides a practical means to adapt pre-trained VLA models, existing methods mainly emphasize reward maximization and overlook robustness to environmental uncertainty. In this work, we introduce RobustVLA, a lightweight online RL post-training method designed to explicitly enhance the resilience of VLA models. Through a systematic robustness analysis, we identify two key regularizations: Jacobian regularization, which mitigates sensitivity to observation noise, and smoothness regularization, which stabilizes policies under action perturbations. Extensive experiments across diverse robotic environments demonstrate that RobustVLA significantly outperforms prior state-of-the-art methods in robustness and reliability. Our results highlight the importance of principled robustness-aware RL post-training as a key step toward improving the reliability and robustness of VLA models.
♻ ☆ Soft Adaptive Policy Optimization
Reinforcement learning (RL) plays an increasingly important role in enhancing the reasoning capabilities of large language models (LLMs), yet stable and performant policy optimization remains challenging. Token-level importance ratios often exhibit high variance-a phenomenon exacerbated in Mixture-of-Experts models-leading to unstable updates. Existing group-based policy optimization methods, such as GSPO and GRPO, alleviate this problem via hard clipping, making it difficult to maintain both stability and effective learning. We propose Soft Adaptive Policy Optimization (SAPO), which replaces hard clipping with a smooth, temperature-controlled gate that adaptively attenuates off-policy updates while preserving useful learning signals. Compared with GSPO and GRPO, SAPO is both sequence-coherent and token-adaptive. Like GSPO, SAPO maintains sequence-level coherence, but its soft gating forms a continuous trust region that avoids the brittle hard clipping band used in GSPO. When a sequence contains a few highly off-policy tokens, GSPO suppresses all gradients for that sequence, whereas SAPO selectively down-weights only the offending tokens and preserves the learning signal from the near-on-policy ones, improving sample efficiency. Relative to GRPO, SAPO replaces hard token-level clipping with smooth, temperature-controlled scaling, enabling more informative and stable updates. Empirical results on mathematical reasoning benchmarks indicate that SAPO exhibits improved training stability and higher Pass@1 performance under comparable training budgets. Moreover, we employ SAPO to train the Qwen3-VL model series, demonstrating that SAPO yields consistent performance gains across diverse tasks and different model sizes. Overall, SAPO provides a more reliable, scalable, and effective optimization strategy for RL training of LLMs.
♻ ☆ Statistically Accurate and Robust Generative Prediction of Rock Discontinuities with A Tabular Foundation Model
Rock discontinuities critically govern the mechanical behavior and stability of rock masses. Their internal distributions remain largely unobservable and are typically inferred from surface-exposed discontinuities using generative prediction approaches. However, surface-exposed observations are inherently sparse, and existing generative prediction approaches either fail to capture the underlying complex distribution patterns or lack robustness under data-sparse conditions. Here, we proposed a simple yet robust approach for statistically accurate generative prediction of rock discontinuities by utilizing a tabular foundation model. By leveraging the powerful sample learning capability of the foundation model specifically designed for small data, our approach can effectively capture the underlying complex distribution patterns within limited measured discontinuities. Comparative experiments on ten datasets with diverse scales and distribution patterns of discontinuities demonstrate superior accuracy and robustness over conventional statistical models and deep generative approaches. This work advances quantitative characterization of rock mass structures, supporting safer and more reliable data-driven geotechnical design.
♻ ☆ Capturing Context-Aware Route Choice Semantics for Trajectory Representation Learning
Trajectory representation learning (TRL) aims to encode raw trajectory data into low-dimensional embeddings for downstream tasks such as travel time estimation, mobility prediction, and trajectory similarity analysis. From a behavioral perspective, a trajectory reflects a sequence of route choices within an urban environment. However, most existing TRL methods ignore this underlying decision-making process and instead treat trajectories as static, passive spatiotemporal sequences, thereby limiting the semantic richness of the learned representations. To bridge this gap, we propose CORE, a TRL framework that integrates context-aware route choice semantics into trajectory embeddings. CORE first incorporates a multi-granular Environment Perception Module, which leverages large language models (LLMs) to distill environmental semantics from point of interest (POI) distributions, thereby constructing a context-enriched road network. Building upon this backbone, CORE employs a Route Choice Encoder with a mixture-of-experts (MoE) architecture, which captures route choice patterns by jointly leveraging the context-enriched road network and navigational factors. Finally, a Transformer encoder aggregates the route-choice-aware representations into a global trajectory embedding. Extensive experiments on 4 real-world datasets across 6 downstream tasks demonstrate that CORE consistently outperforms 12 state-of-the-art TRL methods, achieving an average improvement of 9.79% over the best-performing baseline. Our code is available at https://github.com/caoji2001/CORE.
♻ ☆ Rank Matters: Understanding and Defending Model Inversion Attacks via Low-Rank Feature Filtering KDD 2026
Model Inversion Attacks (MIAs) pose a significant threat to data privacy by reconstructing sensitive training samples from the knowledge embedded in trained machine learning models. Despite recent progress in enhancing the effectiveness of MIAs across diverse settings, defense strategies have lagged behind -- struggling to balance model utility with robustness against increasingly sophisticated attacks. In this work, we propose the ideal inversion error to measure the privacy leakage, and our theoretical and empirical investigations reveals that higher-rank features are inherently more prone to privacy leakage. Motivated by this insight, we propose a lightweight and effective defense strategy based on low-rank feature filtering, which explicitly reduces the attack surface by constraining the dimension of intermediate representations. Extensive experiments across various model architectures and datasets demonstrate that our method consistently outperforms existing defenses, achieving state-of-the-art performance against a wide range of MIAs. Notably, our approach remains effective even in challenging regimes involving high-resolution data and high-capacity models, where prior defenses fail to provide adequate protection.
comment: KDD 2026 Accept
♻ ☆ Compliant Residual DAgger: Improving Real-World Contact-Rich Manipulation with Human Corrections
We address key challenges in Dataset Aggregation (DAgger) for real-world contact-rich manipulation: how to collect informative human correction data and how to effectively update policies with this new data. We introduce Compliant Residual DAgger (CR-DAgger), which contains two novel components: 1) a Compliant Intervention Interface that leverages compliance control, allowing humans to provide gentle, accurate delta action corrections without interrupting the ongoing robot policy execution; and 2) a Compliant Residual Policy formulation that learns from human corrections while incorporating force feedback and force control. Our system significantly enhances performance on precise contact-rich manipulation tasks using minimal correction data, improving base policy success rates by over 50\% on two challenging tasks (book flipping and belt assembly) while outperforming both retraining-from-scratch and finetuning approaches. Through extensive real-world experiments, we provide practical guidance for implementing effective DAgger in real-world robot learning tasks. Result videos are available at: https://compliant-residual-dagger.github.io/
♻ ☆ Adaptive Canonicalization with Application to Invariant Anisotropic Geometric Networks
Canonicalization is a widely used strategy in equivariant machine learning, enforcing symmetry in neural networks by mapping each input to a standard form. Yet, it often introduces discontinuities that can affect stability during training, limit generalization, and complicate universal approximation theorems. In this paper, we address this by introducing adaptive canonicalization, a general framework in which the canonicalization depends both on the input and the network. Specifically, we present the adaptive canonicalization based on prior maximization, where the standard form of the input is chosen to maximize the predictive confidence of the network. We prove that this construction yields continuous and symmetry-respecting models that admit universal approximation properties. We propose two applications of our setting: (i) resolving eigenbasis ambiguities in spectral graph neural networks, and (ii) handling rotational symmetries in point clouds. We empirically validate our methods on molecular and protein classification, as well as point cloud classification tasks. Our adaptive canonicalization outperforms the three other common solutions to equivariant machine learning: data augmentation, standard canonicalization, and equivariant architectures.
♻ ☆ Machine Learning Time Propagators for Time-Dependent Density Functional Theory Simulations
Time-dependent density functional theory (TDDFT) is a widely used method to investigate electron dynamics under external time-dependent perturbations such as laser fields. In this work, we present a machine learning approach to accelerate electron dynamics simulations based on real time TDDFT using autoregressive neural operators as time-propagators for the electron density. By leveraging physics-informed constraints and featurization, and high-resolution training data, our model achieves superior accuracy and computational speed compared to traditional numerical solvers. We demonstrate the effectiveness of our model on a class of one-dimensional diatomic molecules under the influence of a range of laser parameters. This method has potential in enabling on-the-fly modeling of laser-irradiated molecules and materials by utilizing fast machine learning predictions in a large space of varying experimental parameters of the laser.
comment: 23 pages, 6 figures
♻ ☆ Graph Persistence goes Spectral NeurIPS 2025
Including intricate topological information (e.g., cycles) provably enhances the expressivity of message-passing graph neural networks (GNNs) beyond the Weisfeiler-Leman (WL) hierarchy. Consequently, Persistent Homology (PH) methods are increasingly employed for graph representation learning. In this context, recent works have proposed decorating classical PH diagrams with vertex and edge features for improved expressivity. However, these methods still fail to capture basic graph structural information. In this paper, we propose SpectRe -- a new topological descriptor for graphs that integrates spectral information into PH diagrams. Notably, SpectRe is strictly more expressive than existing descriptors on graphs. We also introduce notions of global and local stability to analyze existing descriptors and establish that SpectRe is locally stable. Finally, experiments on synthetic and real-world datasets demonstrate the effectiveness of SpectRe and its potential to enhance the capabilities of graph models in relevant learning tasks. Code is available at https://github.com/Aalto-QuML/SpectRe/.
comment: 32 pages, 4 figures, 7 tables. Accepted at NeurIPS 2025
♻ ☆ Spectral Convolutional Conditional Neural Processes
Neural processes (NPs) are probabilistic meta-learning models that map sets of observations to posterior predictive distributions, enabling inference at arbitrary domain points. Their capacity to handle variable-sized collections of unstructured observations, combined with simple maximum-likelihood training and uncertainty-aware predictions, makes them well-suited for modeling data over continuous domains. Since their introduction, several variants have been proposed. Early approaches typically represented observed data using finite-dimensional summary embeddings obtained through aggregation schemes such as mean pooling. However, this strategy fundamentally mismatches the infinite-dimensional nature of the generative processes that NPs aim to capture. Convolutional conditional neural processes (ConvCNPs) address this limitation by constructing infinite-dimensional functional embeddings processed through convolutional neural networks (CNNs) to enforce translation equivariance. Yet CNNs with local spatial kernels struggle to capture long-range dependencies without resorting to large kernels, which impose significant computational costs. To overcome this limitation, we propose the Spectral ConvCNP (SConvCNP), which performs global convolution in the frequency domain. Inspired by Fourier neural operators (FNOs) for learning solution operators of partial differential equations (PDEs), our approach directly parameterizes convolution kernels in the frequency domain, leveraging the relatively compact yet global Fourier representation of many natural signals. We validate the effectiveness of SConvCNP on both synthetic and real-world datasets, demonstrating how ideas from operator learning can advance the capabilities of NPs.
♻ ☆ REASONING COMPILER: LLM-Guided Optimizations for Efficient Model Serving NeurIPS 2025
While model serving has unlocked unprecedented capabilities, the high cost of serving large-scale models continues to be a significant barrier to widespread accessibility and rapid innovation. Compiler optimizations have long driven substantial performance improvements, but existing compilers struggle with neural workloads due to the exponentially large and highly interdependent space of possible transformations. Although existing stochastic search techniques can be effective, they are often sample-inefficient and fail to leverage the structural context underlying compilation decisions. We set out to investigate the research question of whether reasoning with large language models (LLMs), without any retraining, can leverage the context-aware decision space of compiler optimizations to significantly improve sample efficiency. To that end, we introduce a novel compilation framework (dubbed Reasoning Compiler) that formulates optimization as a sequential, context-aware decision process guided by a large language model and structured Monte Carlo tree search (MCTS). The LLM acts as a proposal mechanism, suggesting hardware-informed transformations that reflect the current program state and accumulated performance feedback. MCTS incorporates the LLM-generated proposals to balance exploration and exploitation, facilitating structured, context-sensitive traversal of the expansive compiler optimization space. By achieving substantial speedups with markedly fewer samples than leading neural compilers, our approach demonstrates the potential of LLM-guided reasoning to transform the landscape of compiler optimization.
comment: NeurIPS 2025
♻ ☆ TomoGraphView: 3D Medical Image Classification with Omnidirectional Slice Representations and Graph Neural Networks
The sharp rise in medical tomography examinations has created a demand for automated systems that can reliably extract informative features for downstream tasks such as tumor characterization. Although 3D volumes contain richer information than individual slices, effective 3D classification remains difficult: volumetric data encode complex spatial dependencies, and the scarcity of large-scale 3D datasets has constrained progress toward 3D foundation models. As a result, many recent approaches rely on 2D vision foundation models trained on natural images, repurposing them as feature extractors for medical scans with surprisingly strong performance. Despite their practical success, current methods that apply 2D foundation models to 3D scans via slice-based decomposition remain fundamentally limited. Standard slicing along axial, sagittal, and coronal planes often fails to capture the true spatial extent of a structure when its orientation does not align with these canonical views. More critically, most approaches aggregate slice features independently, ignoring the underlying 3D geometry and losing spatial coherence across slices. To overcome these limitations, we propose TomoGraphView, a novel framework that integrates omnidirectional volume slicing with spherical graph-based feature aggregation. Instead of restricting the model to axial, sagittal, or coronal planes, our method samples both canonical and non-canonical cross-sections generated from uniformly distributed points on a sphere enclosing the volume. We publicly share our accessible code base at http://github.com/compai-lab/2025-MedIA-kiechle and provide a user-friendly library for omnidirectional volume slicing at https://pypi.org/project/OmniSlicer.
comment: Preprint submitted to Medical Image Analysis (MedIA)
♻ ☆ Signals, Concepts, and Laws: Toward Universal, Explainable Time-Series Forecasting
Accurate, explainable and physically credible forecasting remains a persistent challenge for multivariate time-series whose statistical properties vary across domains. We propose DORIC, a Domain-Universal, ODE-Regularized, Interpretable-Concept Transformer for Time-Series Forecasting that generates predictions through five self-supervised, domain-agnostic concepts while enforcing differentiable residuals grounded in first-principles constraints.
♻ ☆ From Noise to Laws: Regularized Time-Series Forecasting via Denoised Dynamic Graphs
Long-horizon multivariate time-series forecasting is challenging because realistic predictions must (i) denoise heterogeneous signals, (ii) track time-varying cross-series dependencies, and (iii) remain stable and physically plausible over long rollout horizons. We present PRISM, which couples a score-based diffusion preconditioner with a dynamic, correlation-thresholded graph encoder and a forecast head regularized by generic physics penalties. We prove contraction of the induced horizon dynamics under mild conditions and derive Lipschitz bounds for graph blocks, explaining the model's robustness. On six standard benchmarks , PRISM achieves consistent SOTA with strong MSE and MAE gains.
♻ ☆ Multiclass threshold-based classification
In this paper, we introduce a threshold-based framework for multiclass classification that generalizes the standard argmax rule. This is done by replacing the probabilistic interpretation of softmax outputs with a geometric one on the multidimensional simplex, where the classification depends on a multidimensional threshold. This change of perspective enables for any trained classification network an a posteriori optimization of the classification score by means of threshold tuning, as usually carried out in the binary setting. This allows a further refinement of the prediction capability of any network. Moreover, this multidimensional threshold-based setting makes it possible to define score-oriented losses, which are based on the interpretation of the threshold as a random variable. Our experiments show that the multidimensional threshold tuning yields consistent performance improvements across various networks and datasets, and that the proposed multiclass score-oriented losses are competitive with standard loss functions, resembling the advantages observed in the binary case.
comment: This work has been split and expanded into two separate papers: arXiv:2511.21794 and arXiv:2502.67890
♻ ☆ PARROT: Persuasion and Agreement Robustness Rating of Output Truth -- A Sycophancy Robustness Benchmark for LLMs
This study presents PARROT (Persuasion and Agreement Robustness Rating of Output Truth), a robustness focused framework designed to measure the degradation in accuracy that occurs under social pressure exerted on users through authority and persuasion in large language models (LLMs) the phenomenon of sycophancy (excessive conformity). PARROT (i) isolates causal effects by comparing the neutral version of the same question with an authoritatively false version using a double-blind evaluation, (ii) quantifies confidence shifts toward the correct and imposed false responses using log-likelihood-based calibration tracking, and (iii) systematically classifies failure modes (e.g., robust correct, sycophantic agreement, reinforced error, stubborn error, self-correction, etc.) using an eight-state behavioral taxonomy. We evaluated 22 models using 1,302 MMLU-style multiple-choice questions across 13 domains and domain-specific authority templates. Findings show marked heterogeneity: advanced models (e.g., GPT-5, GPT-4.1, Claude Sonnet 4.5) exhibit low "follow rates" ($\leq 11\%$, GPT-5: 4\%) and minimal accuracy loss, while older/smaller models show severe epistemic collapse (GPT-4: 80\%, Qwen 2.5-1.5B: 94\%). The danger is not limited to response changes; weak models reduce confidence in the correct response while increasing confidence in the imposed incorrect response. While international law and global knowledge at the domain level exhibit high fragility, elementary mathematics is relatively resilient. Consequently, we argue that the goal of "resistance to overfitting pressure" should be addressed as a primary objective alongside accuracy, harm avoidance, and privacy for safe deployment in the real world.
♻ ☆ Convergence of Shallow ReLU Networks on Weakly Interacting Data
We analyse the convergence of one-hidden-layer ReLU networks trained by gradient flow on $n$ data points. Our main contribution leverages the high dimensionality of the ambient space, which implies low correlation of the input samples, to demonstrate that a network with width of order $\log(n)$ neurons suffices for global convergence with high probability. Our analysis uses a Polyak-Łojasiewicz viewpoint along the gradient-flow trajectory, which provides an exponential rate of convergence of $\frac{1}{n}$. When the data are exactly orthogonal, we give further refined characterizations of the convergence speed, proving its asymptotic behavior lies between the orders $\frac{1}{n}$ and $\frac{1}{\sqrt{n}}$, and exhibiting a phase-transition phenomenon in the convergence rate, during which it evolves from the lower bound to the upper, and in a relative time of order $\frac{1}{\log(n)}$.
♻ ☆ Periodic Asynchrony: An Effective Method for Accelerating Reinforcement Learning
Since the introduction of the GRPO algorithm, reinforcement learning (RL) has attracted increasing attention, with growing efforts to reproduce and apply it. However, training efficiency remains a critical challenge. In mainstream RL frameworks, inference and training are typically deployed on the same devices. While this approach reduces costs through resource consolidation, its synchronous execution imposes a computational coupling that prevents concurrent inference and training. In this study, we are returning to the strategy of separating inference and training deployment, and by introducing improvements in the data loader, we transform the conventional synchronous architecture into a periodically asynchronous framework, which allows for demand-driven, independent, and elastic scaling of each component, while the accuracy of the algorithm remains completely equivalent to the synchronization method, with both belonging to the on-policy strategy. It is worth emphasizing that we apply a unified tri-model architecture in the training phase, and we also proposed a shared-prompt attention mask to reduce repetitive computation. In practice, these works have achieved at least a threefold overall performance improvement in RL training on NPU platforms, indicating its potential for widespread application.
♻ ☆ Conformal Prediction for Time-series Forecasting with Change Points
Conformal prediction has been explored as a general and efficient way to provide uncertainty quantification for time series. However, current methods struggle to handle time series data with change points - sudden shifts in the underlying data-generating process. In this paper, we propose a novel Conformal Prediction for Time-series with Change points (CPTC) algorithm, addressing this gap by integrating a model to predict the underlying state with online conformal prediction to model uncertainties in non-stationary time series. We prove CPTC's validity and improved adaptivity in the time series setting under minimum assumptions, and demonstrate CPTC's practical effectiveness on 6 synthetic and real-world datasets, showing improved validity and adaptivity compared to state-of-the-art baselines.
♻ ☆ Arbitrary Entropy Policy Optimization Breaks The Exploration Bottleneck of Reinforcement Learning
Reinforcement Learning (RL) is essential for enhancing the reasoning capabilities of large language models (LLMs), yet the widely adopted Group Relative Policy Optimization (GRPO) suffers from entropy collapse, causing exploration to vanish and policies to converge prematurely. As a result, RL is widely believed to be incapable of expanding the reasoning frontier of LLMs. Existing entropy-regularized methods introduce an inevitable trade-off between reward and entropy, leading to exploration accompanied by non-negligible optimization bias. In this work, we prove that temperature-guided REINFORCE can modulate policy entropy, and propose Arbitrary Entropy Policy Optimization (AEPO), which reformulates entropy regularization as a policy-gradient optimization problem. Rather than manipulating entropy directly, AEPO implicitly regulates it by applying a REINFORCE regularization term on temperature-adjusted samples, ensuring that entropy is controlled but never dominates optimization, thereby enabling arbitrary and principled entropy regulation. Experiments show that AEPO outperforms RL baselines on both pass@1 and pass@$k$, and even surpasses the base model on pass@1024. By modulating entropy precisely, AEPO achieves more effective optimization dynamics and provides direct empirical evidence that entropy, exploration, and performance are intrinsically linked.
♻ ☆ How to Securely Shuffle? A survey about Secure Shufflers for privacy-preserving computations
Ishai et al. (FOCS'06) introduced secure shuffling as an efficient building block for private data aggregation. Recently, the field of differential privacy has revived interest in secure shufflers by highlighting the privacy amplification they can provide in various computations. Although several works argue for the utility of secure shufflers, they often treat them as black boxes; overlooking the practical vulnerabilities and performance trade-offs of existing implementations. This leaves a central question open: what makes a good secure shuffler? This survey addresses that question by identifying, categorizing, and comparing 26 secure protocols that realize the necessary shuffling functionality. To enable a meaningful comparison, we adapt and unify existing security definitions into a consistent set of properties. We also present an overview of privacy-preserving technologies that rely on secure shufflers, offer practical guidelines for selecting appropriate protocols, and outline promising directions for future work.
♻ ☆ GEPO: Group Expectation Policy Optimization for Stable Heterogeneous Reinforcement Learning
As single-center computing approaches power constraints, decentralized training becomes essential. However, traditional Reinforcement Learning (RL) methods, crucial for enhancing large model post-training, cannot adapt to decentralized distributed training due to the tight coupling between parameter learning and rollout sampling. For this, we propose HeteroRL, a heterogeneous RL architecture that decouples these processes, enabling stable training across geographically distributed nodes connected via the Internet. The core component is Group Expectation Policy Optimization (GEPO), an asynchronous RL algorithm robust to latency caused by network delays or heterogeneity in computational resources. Our study reveals that high latency significantly increases KL divergence, leading to higher variance of importance weights and training instability. GEPO mitigates this issue by using group expectation weighting to exponentially reduce the variance of importance weights, with theoretical guarantees. Experiments show GEPO achieves superior stability - only a 3% performance drop from online to 1800s latency-and reduces the best-to-last gap by 85% versus GSPO (1.8 vs. 12.0) while attaining the highest scores, highlighting its effectiveness in decentralized, resource-heterogeneous environments.
♻ ☆ Symmetric Behavior Regularized Policy Optimization
Behavior Regularized Policy Optimization (BRPO) leverages asymmetric (divergence) regularization to mitigate the distribution shift in offline Reinforcement Learning. This paper is the first to study the open question of symmetric regularization. We show that symmetric regularization does not permit an analytic optimal policy $π^*$, posing a challenge to practical utility of symmetric BRPO. We approximate $π^*$ by the Taylor series of Pearson-Vajda $χ^n$ divergences and show that an analytic policy expression exists only when the series is capped at $n=5$. To compute the solution in a numerically stable manner, we propose to Taylor expand the conditional symmetry term of the symmetric divergence loss, leading to a novel algorithm: Symmetric $f$-Actor Critic (S$f$-AC). S$f$-AC achieves consistently strong results across various D4RL MuJoCo tasks. Additionally, S$f$-AC avoids per-environment failures observed in IQL, SQL, XQL and AWAC, opening up possibilities for more diverse and effective regularization choices for offline RL.
♻ ☆ Hi-EF: Benchmarking Emotion Forecasting in Human-interaction
Affective Forecasting is an psychology task that involves predicting an individual's future emotional responses, often hampered by reliance on external factors leading to inaccuracies, and typically remains at a qualitative analysis stage. To address these challenges, we narrows the scope of Affective Forecasting by introducing the concept of Human-interaction-based Emotion Forecasting (EF). This task is set within the context of a two-party interaction, positing that an individual's emotions are significantly influenced by their interaction partner's emotional expressions and informational cues. This dynamic provides a structured perspective for exploring the patterns of emotional change, thereby enhancing the feasibility of emotion forecasting.
♻ ☆ ORACLE: Explaining Feature Interactions in Neural Networks with ANOVA
We introduce ORACLE, a framework that explains neural networks on tabular and scientific design data. It fits ANOVA-style main and pairwise interaction effects to a model's prediction surface. ORACLE treats a trained network as a black-box response, learns an orthogonal factorial surrogate on a discretized input grid, and uses simple centering and $μ$-rebalancing steps to obtain main- and interaction-effect tables that remain $L^2$-consistent with the original model. The resulting grid-based interaction maps are easy to visualize, comparable across backbones, and directly connected to classical design-of-experiments analyses. On synthetic factorial and low- to medium-dimensional tabular regression benchmarks, ORACLE more accurately recovers ground-truth ANOVA interactions and hotspot structure than Monte Carlo SHAP-family interaction methods, as measured by ranking, localization, and cross-backbone stability metrics. In latent image and text settings, ORACLE instead delineates its natural scope, and our results indicate that grid-based ANOVA surrogates are most effective when features admit interpretable factorial structure, making ORACLE particularly well-suited to scientific and engineering tabular workflows that require stable, DoE-style interaction summaries.
comment: Comments: v2; major revision; removed experiments from v1; results updated; author list updated accordingly. 30 pages, 3 figures
♻ ☆ Predictive Scaling Laws for Efficient GRPO Training of Large Reasoning Models
Fine-tuning large language models (LLMs) for reasoning tasks using reinforcement learning methods like Group Relative Policy Optimization (GRPO) is computationally expensive. To address this, we propose a predictive framework that models training dynamics and helps optimize resource usage. Through experiments on Llama and Qwen models (3B 8B), we derive an empirical scaling law based on model size, initial performance, and training progress. This law predicts reward trajectories and identifies three consistent training phases: slow start, rapid improvement, and plateau. We find that training beyond certain number of an epoch offers little gain, suggesting earlier stopping can significantly reduce compute without sacrificing performance. Our approach generalizes across model types, providing a practical guide for efficient GRPO-based fine-tuning.
♻ ☆ Gaming and Cooperation in Federated Learning: What Can Happen and How to Monitor It
The success of federated learning (FL) ultimately depends on how strategic participants behave under partial observability, yet most formulations still treat FL as a static optimization problem. We instead view FL deployments as governed strategic systems and develop an analytical framework that separates welfare-improving behavior from metric gaming. Within this framework, we introduce indices that quantify manipulability, the price of gaming, and the price of cooperation, and we use them to study how rules, information disclosure, evaluation metrics, and aggregator-switching policies reshape incentives and cooperation patterns. We derive threshold conditions for deterring harmful gaming while preserving benign cooperation, and for triggering auto-switch rules when early-warning indicators become critical. Building on these results, we construct a design toolkit including a governance checklist and a simple audit-budget allocation algorithm with a provable performance guarantee. Simulations across diverse stylized environments and a federated learning case study consistently match the qualitative and quantitative patterns predicted by our framework. Taken together, our results provide design principles and operational guidelines for reducing metric gaming while sustaining stable, high-welfare cooperation in FL platforms.
comment: Comments: v2; major revision; removed experiments from v1; results updated; author list updated accordingly. 40 pages, 2 figures
♻ ☆ Resource-efficient Layer-wise Federated Self-supervised Learning
Many studies integrate federated learning (FL) with self-supervised learning (SSL) to take advantage of raw data distributed across edge devices. However, edge devices often struggle with high computational and communication costs imposed by SSL and FL algorithms. With the deployment of more complex and large-scale models, these challenges are exacerbated. To tackle this, we propose Layer-Wise Federated Self-Supervised Learning (LW-FedSSL), which allows edge devices to incrementally train a small part of the model at a time. Specifically, in LW-FedSSL, training is decomposed into multiple stages, with each stage responsible for only a specific layer of the model. Since only a portion of the model is active for training at any given time, LW-FedSSL significantly reduces computational requirements. Additionally, only the active model portion needs to be exchanged between the FL server and clients, reducing communication overhead. This enables LW-FedSSL to jointly address both computational and communication challenges of FL client devices. It can achieve up to a $3.34 \times$ reduction in memory usage, $4.20 \times$ fewer computational operations (giga floating point operations, GFLOPs), and a $5.07 \times$ lower communication cost while maintaining performance comparable to its end-to-end training counterpart. Furthermore, we explore a progressive training strategy called Progressive Federated Self-Supervised Learning (Prog-FedSSL), which offers a $1.84\times$ reduction in GFLOPs and a $1.67\times$ reduction in communication costs while maintaining the same memory requirements as end-to-end training. Although the resource efficiency of Prog-FedSSL is lower than that of LW-FedSSL, its performance improvements make it a viable candidate for FL environments with more lenient resource constraints.
♻ ☆ From Topology to Retrieval: Decoding Embedding Spaces with Unified Signatures
Studying how embeddings are organized in space not only enhances model interpretability but also uncovers factors that drive downstream task performance. In this paper, we present a comprehensive analysis of topological and geometric measures across a wide set of text embedding models and datasets. We find a high degree of redundancy among these measures and observe that individual metrics often fail to sufficiently differentiate embedding spaces. Building on these insights, we introduce Unified Topological Signatures (UTS), a holistic framework for characterizing embedding spaces. We show that UTS can predict model-specific properties and reveal similarities driven by model architecture. Further, we demonstrate the utility of our method by linking topological structure to ranking effectiveness and accurately predicting document retrievability. We find that a holistic, multi-attribute perspective is essential to understanding and leveraging the geometry of text embeddings.
♻ ☆ Semantic Energy: Detecting LLM Hallucination Beyond Entropy
Large Language Models (LLMs) are being increasingly deployed in real-world applications, but they remain susceptible to hallucinations, which produce fluent yet incorrect responses and lead to erroneous decision-making. Uncertainty estimation is a feasible approach to detect such hallucinations. For example, semantic entropy estimates uncertainty by considering the semantic diversity across multiple sampled responses, thus identifying hallucinations. However, semantic entropy relies on post-softmax probabilities and fails to capture the model's inherent uncertainty, causing it to be ineffective in certain scenarios. To address this issue, we introduce Semantic Energy, a novel uncertainty estimation framework that leverages the inherent confidence of LLMs by operating directly on logits of penultimate layer. By combining semantic clustering with a Boltzmann-inspired energy distribution, our method better captures uncertainty in cases where semantic entropy fails. Experiments across multiple benchmarks show that Semantic Energy significantly improves hallucination detection and uncertainty estimation, offering more reliable signals for downstream applications such as hallucination detection.
♻ ☆ CORAL: Disentangling Latent Representations in Long-Tailed Diffusion NeurIPS 2025
Diffusion models have achieved impressive performance in generating high-quality and diverse synthetic data. However, their success typically assumes a class-balanced training distribution. In real-world settings, multi-class data often follow a long-tailed distribution, where standard diffusion models struggle -- producing low-diversity and lower-quality samples for tail classes. While this degradation is well-documented, its underlying cause remains poorly understood. In this work, we investigate the behavior of diffusion models trained on long-tailed datasets and identify a key issue: the latent representations (from the bottleneck layer of the U-Net) for tail class subspaces exhibit significant overlap with those of head classes, leading to feature borrowing and poor generation quality. Importantly, we show that this is not merely due to limited data per class, but that the relative class imbalance significantly contributes to this phenomenon. To address this, we propose COntrastive Regularization for Aligning Latents (CORAL), a contrastive latent alignment framework that leverages supervised contrastive losses to encourage well-separated latent class representations. Experiments demonstrate that CORAL significantly improves both the diversity and visual quality of samples generated for tail classes relative to state-of-the-art methods.
comment: Accepted at NeurIPS 2025
♻ ☆ NeKo: Cross-Modality Post-Recognition Error Correction with Tasks-Guided Mixture-of-Experts Language Model ACL 2025
Construction of a general-purpose post-recognition error corrector poses a crucial question: how can we most effectively train a model on a large mixture of domain datasets? The answer would lie in learning dataset-specific features and digesting their knowledge in a single model. Previous methods achieve this by having separate correction language models, resulting in a significant increase in parameters. In this work, we present Mixture-of-Experts as a solution, highlighting that MoEs are much more than a scalability tool. We propose a Multi-Task Correction MoE, where we train the experts to become an ``expert'' of speech-to-text, language-to-text and vision-to-text datasets by learning to route each dataset's tokens to its mapped expert. Experiments on the Open ASR Leaderboard show that we explore a new state-of-the-art performance by achieving an average relative 5.0% WER reduction and substantial improvements in BLEU scores for speech and translation tasks. On zero-shot evaluation, NeKo outperforms GPT-3.5 and Claude-Opus with 15.5% to 27.6% relative WER reduction in the Hyporadise benchmark. NeKo performs competitively on grammar and post-OCR correction as a multi-task model.
comment: ACL 2025 Industry Track. NeKo LMs: https://huggingface.co/nvidia/NeKo-v0-post-correction
♻ ☆ Less is More: Towards Simple Graph Contrastive Learning ICLR 2026
Graph Contrastive Learning (GCL) has shown strong promise for unsupervised graph representation learning, yet its effectiveness on heterophilic graphs, where connected nodes often belong to different classes, remains limited. Most existing methods rely on complex augmentation schemes, intricate encoders, or negative sampling, which raises the question of whether such complexity is truly necessary in this challenging setting. In this work, we revisit the foundations of supervised and unsupervised learning on graphs and uncover a simple yet effective principle for GCL: mitigating node feature noise by aggregating it with structural features derived from the graph topology. This observation suggests that the original node features and the graph structure naturally provide two complementary views for contrastive learning. Building on this insight, we propose an embarrassingly simple GCL model that uses a GCN encoder to capture structural features and an MLP encoder to isolate node feature noise. Our design requires neither data augmentation nor negative sampling, yet achieves state-of-the-art results on heterophilic benchmarks with minimal computational and memory overhead, while also offering advantages in homophilic graphs in terms of complexity, scalability, and robustness. We provide theoretical justification for our approach and validate its effectiveness through extensive experiments, including robustness evaluations against both black-box and white-box adversarial attacks.
comment: Submitted to ICLR 2026
♻ ☆ Adversarial Inverse Reinforcement Learning for Mean Field Games
Mean field games (MFGs) provide a mathematically tractable framework for modelling large-scale multi-agent systems by leveraging mean field theory to simplify interactions among agents. It enables applying inverse reinforcement learning (IRL) to predict behaviours of large populations by recovering reward signals from demonstrated behaviours. However, existing IRL methods for MFGs are powerless to reason about uncertainties in demonstrated behaviours of individual agents. This paper proposes a novel framework, Mean-Field Adversarial IRL (MF-AIRL), which is capable of tackling uncertainties in demonstrations. We build MF-AIRL upon maximum entropy IRL and a new equilibrium concept. We evaluate our approach on simulated tasks with imperfect demonstrations. Experimental results demonstrate the superiority of MF-AIRL over existing methods in reward recovery.
comment: Accepted to AAMAS 2023
♻ ☆ Adaptive Nonlinear Vector Autoregression: Robust Forecasting for Noisy Chaotic Time Series
Nonlinear vector autoregression (NVAR) and reservoir computing (RC) have shown promise in forecasting chaotic dynamical systems, such as the Lorenz-63 model and El Nino-Southern Oscillation. However, their reliance on fixed nonlinear transformations - polynomial expansions in NVAR or random feature maps in RC - limits their adaptability to high noise or complex real-world data. Furthermore, these methods also exhibit poor scalability in high-dimensional settings due to costly matrix inversion during optimization. We propose a data-adaptive NVAR model that combines delay-embedded linear inputs with features generated by a shallow, trainable multilayer perceptron (MLP). Unlike standard NVAR and RC models, the MLP and linear readout are jointly trained using gradient-based optimization, enabling the model to learn data-driven nonlinearities, while preserving a simple readout structure and improving scalability. Initial experiments across multiple chaotic systems, tested under noise-free and synthetically noisy conditions, showed that the adaptive model outperformed in predictive accuracy the standard NVAR, a leaky echo state network (ESN) - the most common RC model - and a hybrid ESN, thereby showing robust forecasting under noisy conditions.
comment: 17 pages, 5 figures, 5 tables. New comparisons added: ESN and HESN. New datasets added to experiments: Mackey-Glass and Lorenz 96 with 100 variables
♻ ☆ Extended Physics Informed Neural Network for Hyperbolic Two-Phase Flow in Porous Media
The accurate solution of nonlinear hyperbolic partial differential equations (PDEs) remains challenging due to steep gradients, discontinuities, and multiscale structures that make conventional solvers computationally demanding. Physics-Informed Neural Networks (PINNs) embed the governing equations into the learning process, enabling mesh-free solution of PDEs, yet they often struggle to capture steep gradients, discontinuities, and complex nonlinear wave interactions. To address these limitations, we employ the Extended Physics-Informed Neural Network (XPINN) framework to solve the nonlinear Buckley-Leverett equation with a nonconvex flux, modeling immiscible two-phase flow in porous media. The computational domain is dynamically decomposed in space and time into evolving pre-shock and post-shock subdomains, allowing localized subnetworks to efficiently learn distinct flow behaviors, with coupling enforced via the Rankine-Hugoniot jump condition to ensure physically consistent flux continuity. We compare XPINN with standard PINNs and its variants, including PINN with artificial viscosity, PINN with Welge construction, and PINN with the Oleinik entropy condition, and across all cases, XPINN consistently outperforms the other methods, accurately resolving sharp fronts and capturing the correct physical behavior. Importantly, XPINN achieves this using the simpler Adam optimizer, whereas some PINN variants require more complex or higher-order strategies such as L-BFGS to reach comparable accuracy, demonstrating that XPINN is a robust and scalable approach for challenging hyperbolic PDEs without artificial diffusion or entropy corrections. The code is available at github.com/saifkhanengr/XPINN-for-Buckley-Leverett.
♻ ☆ PhySense: Sensor Placement Optimization for Accurate Physics Sensing
Physics sensing plays a central role in many scientific and engineering domains, which inherently involves two coupled tasks: reconstructing dense physical fields from sparse observations and optimizing scattered sensor placements to observe maximum information. While deep learning has made rapid advances in sparse-data reconstruction, existing methods generally omit optimization of sensor placements, leaving the mutual enhancement between reconstruction and placement on the shelf. To change this suboptimal practice, we propose PhySense, a synergistic two-stage framework that learns to jointly reconstruct physical fields and to optimize sensor placements, both aiming for accurate physics sensing. The first stage involves a flow-based generative model enhanced by cross-attention to adaptively fuse sparse observations. Leveraging the reconstruction feedback, the second stage performs sensor placement via projected gradient descent to satisfy spatial constraints. We further prove that the learning objectives of the two stages are consistent with classical variance-minimization principles, providing theoretical guarantees. Extensive experiments across three challenging benchmarks, especially a 3D geometry dataset, indicate PhySense achieves state-of-the-art physics sensing accuracy and discovers informative sensor placements previously unconsidered. Code is available at this repository: https://github.com/thuml/PhySense.
♻ ☆ DSD: A Distributed Speculative Decoding Solution for Edge-Cloud Agile Large Model Serving
Large language model (LLM) inference often suffers from high decoding latency and limited scalability across heterogeneous edge-cloud environments. Existing speculative decoding (SD) techniques accelerate token generation but remain confined to single-node execution. We propose DSD, a distributed speculative decoding framework that extends SD to multi-device deployments through coordinated draft-target execution. Given the lack of prior work on simulating this paradigm, we first introduce DSD-Sim, a discrete-event simulator that captures network, batching, and scheduling dynamics. Building on insights from DSD-Sim, we further design an Adaptive Window Control (AWC) policy that dynamically adjusts speculation window size to optimize throughput. Experiments across diverse workloads show that DSD achieves up to 1.1x speedup and 9.7% higher throughput over existing SD baselines, enabling agile and scalable LLM serving across edge and cloud.
comment: Correct to author's name from 'Saiqian Zhang' to 'Sai Qian Zhang'
♻ ☆ Towards Robust Influence Functions with Flat Validation Minima ICML 2025
The Influence Function (IF) is a widely used technique for assessing the impact of individual training samples on model predictions. However, existing IF methods often fail to provide reliable influence estimates in deep neural networks, particularly when applied to noisy training data. This issue does not stem from inaccuracies in parameter change estimation, which has been the primary focus of prior research, but rather from deficiencies in loss change estimation, specifically due to the sharpness of validation risk. In this work, we establish a theoretical connection between influence estimation error, validation set risk, and its sharpness, underscoring the importance of flat validation minima for accurate influence estimation. Furthermore, we introduce a novel estimation form of Influence Function specifically designed for flat validation minima. Experimental results across various tasks validate the superiority of our approach.
comment: Accepted by ICML 2025
♻ ☆ AdamNX: An Adam improvement algorithm based on a novel exponential decay mechanism for the second-order moment estimate
Since the 21st century, artificial intelligence has been leading a new round of industrial revolution. Under the training framework, the optimization algorithm aims to stably converge high-dimensional optimization to local and even global minima. Entering the era of large language models, although the scale of model parameters and data has increased, Adam remains the mainstream optimization algorithm. However, compared with stochastic gradient descent (SGD) based optimization algorithms, Adam is more likely to converge to non-flat minima. To address this issue, the AdamNX algorithm is proposed. Its core innovation lies in the proposition of a novel type of second-order moment estimation exponential decay rate, which gradually weakens the learning step correction strength as training progresses, and degrades to momentum SGD in the stable training period, thereby improving the stability of training in the stable period and possibly enhancing generalization ability. Experimental results show that our second-order moment estimation exponential decay rate is better than the current second-order moment estimation exponential decay rate, and AdamNX can stably outperform Adam and its variants in terms of performance. Our code is open-sourced at https://github.com/mengzhu0308/AdamNX.
comment: 25 pages, 6 figures, 12 tables. v4: Corrected a typo in Equation (15). Added author email addresses. Standardized conference names in References 29 and 37. No changes to results or conclusions
♻ ☆ Exploring System 1 and 2 communication for latent reasoning in LLMs
Should LLM reasoning live in a separate module, or within a single model's forward pass and representational space? We study dual-architecture latent reasoning, where a fluent Base exchanges latent messages with a Coprocessor, and test two hypotheses aimed at improving latent communication over Liu et al. (2024): (H1) increase channel capacity; (H2) learn communication via joint finetuning. Under matched latent-token budgets on GPT-2 and Qwen-3, H2 is consistently strongest while H1 yields modest gains. A unified soft-embedding baseline, a single model with the same forward pass and shared representations, using the same latent-token budget, nearly matches H2 and surpasses H1, suggesting current dual designs mostly add compute rather than qualitatively improving reasoning. Across GSM8K, ProsQA, and a Countdown stress test with increasing branching factor, scaling the latent-token budget beyond small values fails to improve robustness. Latent analyses show overlapping subspaces with limited specialization, consistent with weak reasoning gains. We conclude dual-model latent reasoning remains promising in principle, but likely requires objectives and training schedules that explicitly shape latent spaces for algorithmic planning.
♻ ☆ Revitalizing Canonical Pre-Alignment for Irregular Multivariate Time Series Forecasting AAAI 2026
Irregular multivariate time series (IMTS), characterized by uneven sampling and inter-variate asynchrony, fuel many forecasting applications yet remain challenging to model efficiently. Canonical Pre-Alignment (CPA) has been widely adopted in IMTS modeling by padding zeros at every global timestamp, thereby alleviating inter-variate asynchrony and unifying the series length, but its dense zero-padding inflates the pre-aligned series length, especially when numerous variates are present, causing prohibitive compute overhead. Recent graph-based models with patching strategies sidestep CPA, but their local message passing struggles to capture global inter-variate correlations. Therefore, we posit that CPA should be retained, with the pre-aligned series properly handled by the model, enabling it to outperform state-of-the-art graph-based baselines that sidestep CPA. Technically, we propose KAFNet, a compact architecture grounded in CPA for IMTS forecasting that couples (1) Pre-Convolution module for sequence smoothing and sparsity mitigation, (2) Temporal Kernel Aggregation module for learnable compression and modeling of intra-series irregularity, and (3) Frequency Linear Attention blocks for the low-cost inter-series correlations modeling in the frequency domain. Experiments on multiple IMTS datasets show that KAFNet achieves state-of-the-art forecasting performance, with a 7.2$\times$ parameter reduction and a 8.4$\times$ training-inference acceleration.
comment: Accepted by AAAI 2026
♻ ☆ Crowdsourcing the Frontier: Advancing Hybrid Physics-ML Climate Simulation via a $50,000 Kaggle Competition
Subgrid machine-learning (ML) parameterizations have the potential to introduce a new generation of climate models that incorporate the effects of higher-resolution physics without incurring the prohibitive computational cost associated with more explicit physics-based simulations. However, important issues, ranging from online instability to inconsistent online performance, have limited their operational use for long-term climate projections. To more rapidly drive progress in solving these issues, domain scientists and machine learning researchers opened up the offline aspect of this problem to the broader machine learning and data science community with the release of ClimSim, a NeurIPS Datasets and Benchmarks publication, and an associated Kaggle competition. This paper reports on the downstream results of the Kaggle competition by coupling emulators inspired by the winning teams' architectures to an interactive climate model (including full cloud microphysics, a regime historically prone to online instability) and systematically evaluating their online performance. Our results demonstrate that online stability in the low-resolution, real-geography setting is reproducible across multiple diverse architectures, which we consider a key milestone. All tested architectures exhibit strikingly similar offline and online biases, though their responses to architecture-agnostic design choices (e.g., expanding the list of input variables) can differ significantly. Multiple Kaggle-inspired architectures achieve state-of-the-art (SOTA) results on certain metrics such as zonal mean bias patterns and global RMSE, indicating that crowdsourcing the essence of the offline problem is one path to improving online performance in hybrid physics-AI climate simulation.
comment: Main text: 29 pages, 10 figures. SI: 47 pages, 37 figures
♻ ☆ An Interdisciplinary and Cross-Task Review on Missing Data Imputation
Missing data is a fundamental challenge in data science, significantly hindering analysis and decision-making across a wide range of disciplines, including healthcare, bioinformatics, social science, e-commerce, and industrial monitoring. Despite decades of research and numerous imputation methods, the literature remains fragmented across fields, creating a critical need for a comprehensive synthesis that connects statistical foundations with modern machine learning advances. This work systematically reviews core concepts-including missingness mechanisms, single versus multiple imputation, and different imputation goals-and examines problem characteristics across various domains. It provides a thorough categorization of imputation methods, spanning classical techniques (e.g., regression, the EM algorithm) to modern approaches like low-rank and high-rank matrix completion, deep learning models (autoencoders, GANs, diffusion models, graph neural networks), and large language models. Special attention is given to methods for complex data types, such as tensors, time series, streaming data, graph-structured data, categorical data, and multimodal data. Beyond methodology, we investigate the crucial integration of imputation with downstream tasks like classification, clustering, and anomaly detection, examining both sequential pipelines and joint optimization frameworks. The review also assesses theoretical guarantees, benchmarking resources, and evaluation metrics. Finally, we identify critical challenges and future directions, emphasizing model selection and hyperparameter optimization, the growing importance of privacy-preserving imputation via federated learning, and the pursuit of generalizable models that can adapt across domains and data types, thereby outlining a roadmap for future research.
♻ ☆ Machine learning applications in archaeological practices: a review
Artificial intelligence and machine learning applications in archaeology have increased significantly in recent years, and these now span all subfields, geographical regions, and time periods. The prevalence and success of these applications have remained largely unexamined, as recent reviews on the use of machine learning in archaeology have only focused only on specific subfields of archaeology. Our review examined an exhaustive corpus of 135 articles published between 1997 and 2022. We observed a significant increase in the number of publications from 2019 onwards. Automatic structure detection and artefact classification were the most represented tasks in the articles reviewed, followed by taphonomy, and archaeological predictive modelling. From the review, clustering and unsupervised methods were underrepresented compared to supervised models. Artificial neural networks and ensemble learning account for two thirds of the total number of models used. However, if machine learning models are gaining in popularity they remain subject to misunderstanding. We observed, in some cases, poorly defined requirements and caveats of the machine learning methods used. Furthermore, the goals and the needs of machine learning applications for archaeological purposes are in some cases unclear or poorly expressed. To address this, we proposed a workflow guide for archaeologists to develop coherent and consistent methodologies adapted to their research questions, project scale and data. As in many other areas, machine learning is rapidly becoming an important tool in archaeological research and practice, useful for the analyses of large and multivariate data, although not without limitations. This review highlights the importance of well-defined and well-reported structured methodologies and collaborative practices to maximise the potential of applications of machine learning methods in archaeology.
♻ ☆ T-SHIRT: Token-Selective Hierarchical Data Selection for Instruction Tuning NeurIPS 2025
Instruction tuning is essential for Large Language Models (LLMs) to effectively follow user instructions. To improve training efficiency and reduce data redundancy, recent works use LLM-based scoring functions, e.g., Instruction-Following Difficulty (IFD), to select high-quality instruction-tuning data with scores above a threshold. While these data selection methods often lead to models that can match or even exceed the performance of models trained on the full datasets, we identify two key limitations: (i) they assess quality at the sample level, ignoring token-level informativeness; and (ii) they overlook the robustness of the scoring method, often selecting a sample due to superficial lexical features instead of its true quality. In this work, we propose Token-Selective HIeRarchical Data Selection for Instruction Tuning (T-SHIRT), a novel data selection framework that introduces a new scoring method to include only informative tokens in quality evaluation and also promotes robust and reliable samples whose neighbors also show high quality with less local inconsistencies. We demonstrate that models instruction-tuned on a curated dataset (only 5% of the original size) using T-SHIRT can outperform those trained on the entire large-scale dataset by up to 5.48 points on average across eight benchmarks. Across various LLMs and training set scales, our method consistently surpasses existing state-of-the-art data selection techniques, while also remaining both cost-effective and highly efficient. For instance, by using GPT-2 for score computation, we are able to process a dataset of 52k samples in 40 minutes on a single GPU. Our code is available at https://github.com/Dynamite321/T-SHIRT.
comment: NeurIPS 2025
♻ ☆ In Search of Adam's Secret Sauce NeurIPS 2025
Understanding the remarkable efficacy of Adam when training transformer-based language models has become a central research topic within the optimization community. To gain deeper insights, several simplifications of Adam have been proposed, such as the signed gradient and signed momentum methods. In this work, we conduct an extensive empirical study - training over 1500 language models across different data configurations and scales - comparing Adam to several known simplified variants. We find that signed momentum methods are faster than SGD, but consistently underperform relative to Adam, even after careful tuning of momentum, clipping setting and learning rates. However, our analysis reveals a compelling option that preserves near-optimal performance while allowing for new insightful reformulations: constraining the Adam momentum parameters to be equal, beta1 = beta2. Beyond robust performance, this choice affords new theoretical insights, highlights the "secret sauce" on top of signed momentum, and grants a precise statistical interpretation: we show that Adam in this setting implements a natural online algorithm for estimating the mean and variance of gradients-one that arises from a mean-field Gaussian variational inference perspective.
comment: Accepted at NeurIPS 2025
♻ ☆ Sharpness of Minima in Deep Matrix Factorization: Exact Expressions
Understanding the geometry of the loss landscape near a minimum is key to explaining the implicit bias of gradient-based methods in non-convex optimization problems such as deep neural network training and deep matrix factorization. A central quantity to characterize this geometry is the maximum eigenvalue of the Hessian of the loss, which measures the sharpness of the landscape. Currently, its precise role has been obfuscated because no exact expressions for this sharpness measure were known in general settings. In this paper, we present the first exact expression for the maximum eigenvalue of the Hessian of the squared-error loss at any minimizer in general overparameterized deep matrix factorization (i.e., deep linear neural network training) problems, resolving an open question posed by Mulayoff & Michaeli (2020). This expression uncovers a fundamental property of the loss landscape of depth-2 matrix factorization problems: a minimum is flat if and only if it is spectral-norm balanced, which implies that flat minima are not necessarily Frobenius-norm balanced. Furthermore, to complement our theory, we empirically investigate an escape phenomenon observed during gradient-based training near a minimum that crucially relies on our exact expression of the sharpness.
comment: 20 pages, 7 figures
♻ ☆ Multiscale guidance of protein structure prediction with heterogeneous cryo-EM data NeurIPS 2025
Protein structure prediction models are now capable of generating accurate 3D structural hypotheses from sequence alone. However, they routinely fail to capture the conformational diversity of dynamic biomolecular complexes, often requiring heuristic MSA subsampling approaches for generating alternative states. In parallel, cryo-electron microscopy (cryo-EM) has emerged as a powerful tool for imaging near-native structural heterogeneity, but is challenged by arduous pipelines to transform raw experimental data into atomic models. Here, we bridge the gap between these modalities, combining cryo-EM density maps with the rich sequence and biophysical priors learned by protein structure prediction models. Our method, CryoBoltz, guides the sampling trajectory of a pretrained biomolecular structure prediction model using both global and local structural constraints derived from density maps, driving predictions towards conformational states consistent with the experimental data. We demonstrate that this flexible yet powerful inference-time approach allows us to build atomic models into heterogeneous cryo-EM maps across a variety of dynamic biomolecular systems including transporters and antibodies. Code is available at https://github.com/ml-struct-bio/cryoboltz .
comment: NeurIPS 2025
♻ ☆ Deep sub-ensembles meets quantile regression: uncertainty-aware imputation for time series
Real-world time series data often exhibits substantial missing values, posing challenges for advanced analysis. A common approach to addressing this issue is imputation, where the primary challenge lies in determining the appropriate values to fill in. While previous deep learning methods have proven effective for time series imputation, they often produce overconfident imputations, which poses a potentially overlooked risk to the reliability of the intelligent system. Diffusion methods are proficient in estimating probability distributions but face challenges under a high missing rate and are, moreover, computationally expensive due to the nature of the generative model framework. In this paper, we propose Quantile Sub-Ensembles, a novel method that estimates uncertainty with ensembles of quantile-regression-based task networks and incorporate Quantile Sub-Ensembles into a non-generative time series imputation method. Our method not only produces accurate and reliable imputations, but also remains computationally efficient due to its non-generative framework. We conduct extensive experiments on five real-world datasets, and the results demonstrates superior performance in both deterministic and probabilistic imputation compared to baselines across most experimental settings. The code is available at https://github.com/yingliu-coder/QSE.
comment: Published in Machine Learning, 114, 268 (2025). DOI: 10.1007/s10994-025-06922-x
♻ ☆ Multi-Scenario Highway Lane-Change Intention Prediction: A Physics-Informed AI Framework for Three-Class Classification
Lane-change maneuvers are a leading cause of highway accidents, underscoring the need for accurate intention prediction to improve the safety and decision-making of autonomous driving systems. While prior studies using machine learning and deep learning methods (e.g., SVM, CNN, LSTM, Transformers) have shown promise, most approaches remain limited by binary classification, lack of scenario diversity, and degraded performance under longer prediction horizons. In this study, we propose a physics-informed AI framework that explicitly integrates vehicle kinematics, interaction feasibility, and traffic-safety metrics (e.g., distance headway, time headway, time-to-collision, closing gap time) into the learning process. lane-change prediction is formulated as a three-class problem that distinguishes left change, right change, and no change, and is evaluated across both straight highway segments (highD) and complex ramp scenarios (exiD). By integrating vehicle kinematics with interaction features, our machine learning models, particularly LightGBM, achieve state-of-the-art accuracy and strong generalization. Results show up to 99.8% accuracy and 93.6% macro F1 on highD, and 96.1% accuracy and 88.7% macro F1 on exiD at a 1-second horizon, outperforming a two-layer stacked LSTM baseline. These findings demonstrate the practical advantages of a physics-informed and feature-rich machine learning framework for real-time lane-change intention prediction in autonomous driving systems.
♻ ☆ Sloth: scaling laws for LLM skills to predict multi-benchmark performance across families NeurIPS 2025
Scaling laws for large language models (LLMs) predict model performance based on parameters like size and training data. However, differences in training configurations and data processing across model families lead to significant variations in benchmark performance, making it difficult for a single scaling law to generalize across all LLMs. On the other hand, training family-specific scaling laws requires training models of varying sizes for every family. In this work, we propose Skills Scaling Laws (SSLaws, pronounced as Sloth), a novel scaling law that leverages publicly available benchmark data and assumes LLM performance is driven by low-dimensional latent skills, such as reasoning and instruction following. These latent skills are influenced by computational resources like model size and training tokens, but with varying efficiencies across model families. Sloth exploits correlations across benchmarks to provide more accurate and interpretable predictions while alleviating the need to train multiple LLMs per family. We present both theoretical results on parameter identification and empirical evaluations on 12 prominent benchmarks, from Open LLM Leaderboard v1/v2, demonstrating that Sloth predicts LLM performance accurately and offers insights into scaling behaviors for complex downstream tasks, increased test-time compute, and compute-optimal scaling of skills.
comment: NeurIPS 2025
♻ ☆ Bridging Human and LLM Judgments: Understanding and Narrowing the Gap NeurIPS 2025
Large language models are increasingly used as judges (LLM-as-a-judge) to evaluate model outputs at scale, but their assessments often diverge systematically from human judgments. We present Bridge, a unified statistical framework that explicitly bridges human and LLM evaluations under both absolute scoring and pairwise comparison paradigms. Bridge posits a latent human preference score for each prompt-response pair and models LLM deviations as linear transformations of covariates that capture sources of discrepancies. This offers a simple and principled framework for refining LLM ratings and characterizing systematic discrepancies between humans and LLMs. We provide an efficient fitting algorithm with asymptotic guarantees for statistical inference. Using six LLM judges and two benchmarks (BigGen Bench and Chatbot Arena), Bridge achieves higher agreement with human ratings (accuracy, calibration, and KL divergence) and exposes systematic human-LLM gaps.
comment: NeurIPS 2025
♻ ☆ Random forest-based out-of-distribution detection for robust lung cancer segmentation
Accurate detection and segmentation of cancerous lesions from computed tomography (CT) scans is essential for automated treatment planning and cancer treatment response assessment. Transformer-based models with self-supervised pretraining have achieved strong performance on in-distribution (ID) data but often generalize poorly on out-of-distribution (OOD) inputs. We investigate this behavior for lung cancer segmentation using an encoder-decoder model. Our encoder is a Swin Transformer pretrained with masked image modeling (SimMIM) on 10,432 unlabeled 3D CT scans spanning cancerous and non-cancerous conditions, and the decoder was randomly initialized. This model was evaluated on an independent ID test set and four OOD scenarios, including chest CT cohorts (pulmonary embolism and negative COVID-19) and abdomen CT cohorts (kidney cancers and non-cancerous pancreas). OOD detection was performed at the scan level using RF-Deep, a random forest classifier applied to contextual tumor-anchored feature representations. We evaluated 920 3D CTs (172,650 images) and observed that RF-Deep achieved FPR95 values of 18.26% and 27.66% on the chest CT cohorts, and near-perfect detection (less than 0.1% FPR95) on the abdomen CT cohorts, consistently outperforming established OOD methods. These results demonstrate that our RF-Deep classifier provides a simple, lightweight, and effective approach for enhancing the reliability of segmentation models in clinical deployment.
comment: Accepted at SPIE Medical Imaging 2026
♻ ☆ Spontaneous Kolmogorov-Arnold Geometry in Shallow MLPs
The Kolmogorov-Arnold (KA) representation theorem constructs universal, but highly non-smooth inner functions (the first layer map) in a single (non-linear) hidden layer neural network. Such universal functions have a distinctive local geometry, a "texture," which can be characterized by the inner function's Jacobian $J({\mathbf{x}})$, as $\mathbf{x}$ varies over the data. It is natural to ask if this distinctive KA geometry emerges through conventional neural network optimization. We find that indeed KA geometry often is produced when training vanilla single hidden layer neural networks. We quantify KA geometry through the statistical properties of the exterior powers of $J(\mathbf{x})$: number of zero rows and various observables for the minor statistics of $J(\mathbf{x})$, which measure the scale and axis alignment of $J(\mathbf{x})$. This leads to a rough understanding for where KA geometry occurs in the space of function complexity and model hyperparameters. The motivation is first to understand how neural networks organically learn to prepare input data for later downstream processing and, second, to learn enough about the emergence of KA geometry to accelerate learning through a timely intervention in network hyperparameters. This research is the "flip side" of KA-Networks (KANs). We do not engineer KA into the neural network, but rather watch KA emerge in shallow MLPs.
comment: 25 pages + 3 appendices; v2 updated name, contact info
♻ ☆ WARPD: World model Assisted Reactive Policy Diffusion
With the increasing availability of open-source robotic data, imitation learning has become a promising approach for both manipulation and locomotion. Diffusion models are now widely used to train large, generalized policies that predict controls or trajectories, leveraging their ability to model multimodal action distributions. However, this generality comes at the cost of larger model sizes and slower inference, an acute limitation for robotic tasks requiring high control frequencies. Moreover, Diffusion Policy (DP), a popular trajectory-generation approach, suffers from a trade-off between performance and action horizon: fewer diffusion queries lead to larger trajectory chunks, which in turn accumulate tracking errors. To overcome these challenges, we introduce WARPD (World model Assisted Reactive Policy Diffusion), a method that generates closed-loop policies (weights for neural policies) directly, instead of open-loop trajectories. By learning behavioral distributions in parameter space rather than trajectory space, WARPD offers two major advantages: (1) extended action horizons with robustness to perturbations, while maintaining high task performance, and (2) significantly reduced inference costs. Empirically, WARPD outperforms DP in long-horizon and perturbed environments, and achieves multitask performance on par with DP while requiring only ~ 1/45th of the inference-time FLOPs per step.
♻ ☆ EquiTabPFN: A Target-Permutation Equivariant Prior Fitted Networks
Recent foundational models for tabular data, such as TabPFN, excel at adapting to new tasks via in-context learning, but remain constrained to a fixed, pre-defined number of target dimensions-often necessitating costly ensembling strategies. We trace this constraint to a deeper architectural shortcoming: these models lack target equivariance, so that permuting target dimension orderings alters their predictions. This deficiency gives rise to an irreducible "equivariance gap", an error term that introduces instability in predictions. We eliminate this gap by designing a fully target-equivariant architecture-ensuring permutation invariance via equivariant encoders, decoders, and a bi-attention mechanism. Empirical evaluation on standard classification benchmarks shows that, on datasets with more classes than those seen during pre-training, our model matches or surpasses existing methods while incurring lower computational overhead.
♻ ☆ Projecting Assumptions: The Duality Between Sparse Autoencoders and Concept Geometry NeurIPS 2025
Sparse Autoencoders (SAEs) are widely used to interpret neural networks by identifying meaningful concepts from their representations. However, do SAEs truly uncover all concepts a model relies on, or are they inherently biased toward certain kinds of concepts? We introduce a unified framework that recasts SAEs as solutions to a bilevel optimization problem, revealing a fundamental challenge: each SAE imposes structural assumptions about how concepts are encoded in model representations, which in turn shapes what it can and cannot detect. This means different SAEs are not interchangeable -- switching architectures can expose entirely new concepts or obscure existing ones. To systematically probe this effect, we evaluate SAEs across a spectrum of settings: from controlled toy models that isolate key variables, to semi-synthetic experiments on real model activations and finally to large-scale, naturalistic datasets. Across this progression, we examine two fundamental properties that real-world concepts often exhibit: heterogeneity in intrinsic dimensionality (some concepts are inherently low-dimensional, others are not) and nonlinear separability. We show that SAEs fail to recover concepts when these properties are ignored, and we design a new SAE that explicitly incorporates both, enabling the discovery of previously hidden concepts and reinforcing our theoretical insights. Our findings challenge the idea of a universal SAE and underscores the need for architecture-specific choices in model interpretability. Overall, we argue an SAE does not just reveal concepts -- it determines what can be seen at all.
comment: Published in NeurIPS 2025 (poster)
♻ ☆ Cohort-Based Active Modality Acquisition
Real-world machine learning applications often involve data from multiple modalities that must be integrated effectively to make robust predictions. However, in many practical settings, not all modalities are available for every sample, and acquiring additional modalities can be costly. This raises the question: which samples should be prioritized for additional modality acquisition when resources are limited? While prior work has explored individual-level acquisition strategies and training-time active learning paradigms, test-time and cohort-based acquisition remain underexplored. We introduce Cohort-based Active Modality Acquisition (CAMA), a novel test-time setting to formalize the challenge of selecting which samples should receive additional modalities. We derive acquisition strategies that leverage a combination of generative imputation and discriminative modeling to estimate the expected benefit of acquiring missing modalities based on common evaluation metrics. We also introduce upper-bound heuristics that provide performance ceilings to benchmark acquisition strategies. Experiments on multimodal datasets with up to 15 modalities demonstrate that our proposed imputation-based strategies can more effectively guide the acquisition of additional modalities for selected samples compared with methods relying solely on unimodal information, entropy-based guidance, or random selection. We showcase the real-world relevance and scalability of our method by demonstrating its ability to effectively guide the costly acquisition of proteomics data for disease prediction in a large prospective cohort, the UK Biobank (UKBB). Our work provides an effective approach for optimizing modality acquisition at the cohort level, enabling more effective use of resources in constrained settings.
♻ ☆ Adaptive Pruning for Increased Robustness and Reduced Computational Overhead in Gaussian Process Accelerated Saddle Point Searches
Gaussian process (GP) regression provides a strategy for accelerating saddle point searches on high-dimensional energy surfaces by reducing the number of times the energy and its derivatives with respect to atomic coordinates need to be evaluated. The computational overhead in the hyperparameter optimization can, however, be large and make the approach inefficient. Failures can also occur if the search ventures too far into regions that are not represented well enough by the GP model. Here, these challenges are resolved by using geometry-aware optimal transport measures and an active pruning strategy using a summation over Wasserstein-1 distances for each atom-type in farthest-point sampling, selecting a fixed-size subset of geometrically diverse configurations to avoid rapidly increasing cost of GP updates as more observations are made. Stability is enhanced by permutation-invariant metric that provides a reliable trust radius for early-stopping and a logarithmic barrier penalty for the growth of the signal variance. These physically motivated algorithmic changes prove their efficacy by reducing to less than a half the mean computational time on a set of 238 challenging configurations from a previously published data set of chemical reactions. With these improvements, the GP approach is established as, a robust and scalable algorithm for accelerating saddle point searches when the evaluation of the energy and atomic forces requires significant computational effort.
comment: Invited article for the ChemPhysChem special issue dedicated to the 60th birthday of Prof. Debabrata Goswami. A preliminary version of this work was presented at the UNOOS 2025 conference
♻ ☆ CNN-Enabled Scheduling for Probabilistic Real-Time Guarantees in Industrial URLLC
Ensuring packet-level communication quality is vital for ultra-reliable, low-latency communications (URLLC) in large-scale industrial wireless networks. We enhance the Local Deadline Partition (LDP) algorithm by introducing a CNN-based dynamic priority prediction mechanism for improved interference coordination in multi-cell, multi-channel networks. Unlike LDP's static priorities, our approach uses a Convolutional Neural Network and graph coloring to adaptively assign link priorities based on real-time traffic, transmission opportunities, and network conditions. Assuming that first training phase is performed offline, our approach introduced minimal overhead, while enabling more efficient resource allocation, boosting network capacity, SINR, and schedulability. Simulation results show SINR gains of up to 113\%, 94\%, and 49\% over LDP across three network configurations, highlighting its effectiveness for complex URLLC scenarios.
♻ ☆ Test-Time Spectrum-Aware Latent Steering for Zero-Shot Generalization in Vision-Language Models NeurIPS 2025
Vision-Language Models (VLMs) excel at zero-shot inference but often degrade under test-time domain shifts. For this reason, episodic test-time adaptation strategies have recently emerged as powerful techniques for adapting VLMs to a single unlabeled image. However, existing adaptation strategies, such as test-time prompt tuning, typically require backpropagating through large encoder weights or altering core model components. In this work, we introduce Spectrum-Aware Test-Time Steering (STS), a lightweight adaptation framework that extracts a spectral subspace from the textual embeddings to define principal semantic directions and learns to steer latent representations in a spectrum-aware manner by adapting a small number of per-sample shift parameters to minimize entropy across augmented views. STS operates entirely at inference in the latent space, without backpropagation through or modification of the frozen encoders. Building on standard evaluation protocols, our comprehensive experiments demonstrate that STS largely surpasses or compares favorably against state-of-the-art test-time adaptation methods, while introducing only a handful of additional parameters and achieving inference speeds up to 8x faster with a 12x smaller memory footprint than conventional test-time prompt tuning. The code is available at https://github.com/kdafnis/STS.
comment: NeurIPS 2025
♻ ☆ MAS-ZERO: Designing Multi-Agent Systems with Zero Supervision NeurIPS
Multi-agent systems (MAS) leveraging the impressive capabilities of Large Language Models (LLMs) hold significant potential for tackling complex tasks. However, most current MAS depend on manually designed agent roles and communication protocols. These manual designs often fail to align with the underlying LLMs' strengths and struggle to adapt to novel tasks. Recent automatic MAS approaches attempt to mitigate these limitations but typically necessitate a validation set for tuning and yield static MAS designs lacking adaptability during inference, while also removing the flexibility to reduce to simpler systems. We introduce MAS-ZERO, the first self-evolved, inference-time framework for automatic MAS design. MAS-ZERO employs meta-level design to iteratively design, critique, and refine MAS configurations tailored to each problem instance, without requiring a validation set. Critically, it enables dynamic problem decomposition and agent composition through meta-feedback on solvability and completeness, and reduction to simpler systems when appropriate. Experiments across reasoning (math and graduate-level QA), coding, and agentic (search-based) benchmarks, using both closed-source and open-source LLM backbones of varying sizes, demonstrate that MAS-ZERO outperforms strong manual and automatic MAS baselines. It achieves substantial average accuracy improvements of up to 16.69% on reasoning, 16.66% on coding, and 5.45% on agentic tasks, while maintaining cost efficiency.
comment: SEA@NeurIPS (Oral) 2025
♻ ☆ Mixture of Experts Softens the Curse of Dimensionality in Operator Learning
We study the approximation-theoretic implications of mixture-of-experts architectures for operator learning, where the complexity of a single large neural operator is distributed across many small neural operators (NOs), and each input is routed to exactly one NO via a decision tree. We analyze how this tree-based routing and expert decomposition affect approximation power, sample complexity, and stability. Our main result is a distributed universal approximation theorem for mixture of neural operators (MoNOs): any Lipschitz nonlinear operator between $L^2([0,1]^d)$ spaces can be uniformly approximated over the Sobolev unit ball to arbitrary accuracy $\varepsilon>0$ by an MoNO, where each expert NO has a depth, width, and rank scaling as $\mathcal{O}(\varepsilon^{-1})$. Although the number of experts may grow with accuracy, each NO remains small, enough to fit within active memory of standard hardware for reasonable accuracy levels. Our analysis also yields new quantitative approximation rates for classical NOs approximating uniformly continuous nonlinear operators uniformly on compact subsets of $L^2([0,1]^d)$.
♻ ☆ Reinforcement Learning: An Overview
This manuscript gives a big-picture, up-to-date overview of the field of (deep) reinforcement learning and sequential decision making, covering value-based methods, policy-based methods, model-based methods, multi-agent RL, LLMs and RL, and various other topics (e.g., offline RL, hierarchical RL, intrinsic reward). It also includes some code snippets for training LLMs with RL.
♻ ☆ Look Before you Leap: Estimating LLM Benchmark Scores from Descriptions
Progress in large language models is constrained by an evaluation bottleneck: build a benchmark, run models, then iterate. We ask a question: can we forecast outcomes before running any experiments to inform earlier study design? For example, a team building an AI assistant for a certain task can estimate whether expected performance is around 50 or closer to 80, evidence that supports whether to proceed to a pilot study, how to scope it, and how to allocate resources. We study text-only performance forecasting, where a model predicts a score from a redacted task description and intended configuration, with no access to dataset instances. To support systematic study, we curate PRECOG, a corpus of redacted description-performance pairs spanning diverse tasks, domains, and metrics. We scrape task and configuration descriptions from arXiv, yielding 2,290 instances covering 1,519 papers, and construct a leakage free test split using papers published after the knowledge cutoff of the evaluated models. Experiments show the task is challenging but feasible: reasoning models achieve moderate prediction performance with well calibrated uncertainty, reaching mean absolute error as low as 9.9 at high confidence thresholds. We further test a zero-leakage setting, forecasting on newly released datasets or experiments before their papers are indexed, where GPT5 with built in web search still attains nontrivial prediction accuracy. Overall, our corpus and analyses offer an initial step toward open ended anticipatory evaluation, supporting difficulty estimation and smarter experiment prioritization.
comment: 32 pages, 7 figures
♻ ☆ Apertus: Democratizing Open and Compliant LLMs for Global Language Environments
We present Apertus, a fully open suite of large language models (LLMs) designed to address two systemic shortcomings in today's open model ecosystem: data compliance and multilingual representation. Unlike many prior models that release weights without reproducible data pipelines or regard for content-owner rights, Apertus models are pretrained exclusively on openly available data, retroactively respecting `robots.txt` exclusions and filtering for non-permissive, toxic, and personally identifiable content. To mitigate risks of memorization, we adopt the Goldfish objective during pretraining, strongly suppressing verbatim recall of data while retaining downstream task performance. The Apertus models also expand multilingual coverage, training on 15T tokens from over 1800 languages, with ~40% of pretraining data allocated to non-English content. Released at 8B and 70B scales, Apertus approaches state-of-the-art results among fully open models on multilingual benchmarks, rivalling or surpassing open-weight counterparts. Beyond model weights, we release all scientific artifacts from our development cycle with a permissive license, including data preparation scripts, checkpoints, evaluation suites, and training code, enabling transparent audit and extension.
♻ ☆ GLOBE: Accurate and Generalizable PDE Surrogates using Domain-Inspired Architectures and Equivariances
We introduce GLOBE, a new neural surrogate for homogeneous PDEs that draws inductive bias from boundary-element methods and equivariant ML. GLOBE represents solutions as superpositions of learnable Green's-function-like kernels evaluated from boundary faces to targets, composed across multiscale branches and communication hyperlayers. The architecture is translation-, rotation-, and parity-equivariant; discretization-invariant in the fine-mesh limit; and units-invariant via rigorous nondimensionalization. An explicit far-field decay envelope stabilizes extrapolation, boundary-to-boundary hyperlayer communication mediates long-range coupling, and the all-to-all boundary-to-target evaluation yields a global receptive field that respects PDE information flow, even for elliptic PDEs. On AirFRANS (steady incompressible RANS over NACA airfoils), GLOBE achieves substantial accuracy improvements. On the "Full" split, it reduces mean-squared error by roughly 200x on all fields relative to the dataset's reference baselines, and roughly 50x relative to the next-best-performing model. In the "Scarce" split, it achieves over 100x lower error on velocity and pressure fields and over 600x lower error on surface pressure than Transolver. Qualitative results show sharp near-wall gradients, coherent wakes, and limited errors under modest extrapolation in Reynolds number and angle of attack. In addition to this accuracy, the model is quite compact (117k parameters), and fields can be evaluated at arbitrary points during inference. We also demonstrate the ability to train and predict with non-watertight meshes, which has strong practical implications. These results show that rigorous physics- and domain-inspired inductive biases can achieve large gains in accuracy, generalizability, and practicality for ML-based PDE surrogates for industrial computer-aided engineering (CAE).
♻ ☆ Decentralized Projection-free Online Upper-Linearizable Optimization with Applications to DR-Submodular Optimization
We introduce a novel framework for decentralized projection-free optimization, extending projection-free methods to a broader class of upper-linearizable functions. Our approach leverages decentralized optimization techniques with the flexibility of upper-linearizable function frameworks, effectively generalizing traditional DR-submodular function optimization. We obtain the regret of $O(T^{1-θ/2})$ with communication complexity of $O(T^θ)$ and number of linear optimization oracle calls of $O(T^{2θ})$ for decentralized upper-linearizable function optimization, for any $0\le θ\le 1$. This approach allows for the first results for monotone up-concave optimization with general convex constraints and non-monotone up-concave optimization with general convex constraints. Further, the above results for first order feedback are extended to zeroth order, semi-bandit, and bandit feedback.
♻ ☆ GLASS Flows: Transition Sampling for Alignment of Flow and Diffusion Models
The performance of flow matching and diffusion models can be greatly improved at inference time using reward alignment algorithms, yet efficiency remains a major limitation. While several algorithms were proposed, we demonstrate that a common bottleneck is the sampling method these algorithms rely on: many algorithms require to sample Markov transitions via SDE sampling, which is significantly less efficient and often less performant than ODE sampling. To remove this bottleneck, we introduce GLASS Flows, a new sampling paradigm that simulates a "flow matching model within a flow matching model" to sample Markov transitions. As we show in this work, this "inner" flow matching model can be retrieved from a pre-trained model without any re-training, combining the efficiency of ODEs with the stochastic evolution of SDEs. On large-scale text-to-image models, we show that GLASS Flows eliminate the trade-off between stochastic evolution and efficiency. Combined with Feynman-Kac Steering, GLASS Flows improve state-of-the-art performance in text-to-image generation, making it a simple, drop-in solution for inference-time scaling of flow and diffusion models.
♻ ☆ Implicit Hypergraph Neural Network
Hypergraphs offer a generalized framework for capturing high-order relationships between entities and have been widely applied in various domains, including healthcare, social networks, and bioinformatics. Hypergraph neural networks, which rely on message-passing between nodes over hyperedges to learn latent representations, have emerged as the method of choice for predictive tasks in many of these domains. These approaches typically perform only a small number of message-passing rounds to learn the representations, which they then utilize for predictions. The small number of message-passing rounds comes at a cost, as the representations only capture local information and forego long-range high-order dependencies. However, as we demonstrate, blindly increasing the message-passing rounds to capture long-range dependency also degrades the performance of hyper-graph neural networks. Recent works have demonstrated that implicit graph neural networks capture long-range dependencies in standard graphs while maintaining performance. Despite their popularity, prior work has not studied long-range dependency issues on hypergraph neural networks. Here, we first demonstrate that existing hypergraph neural networks lose predictive power when aggregating more information to capture long-range dependency. We then propose Implicit Hypergraph Neural Network (IHNN), a novel framework that jointly learns fixed-point representations for both nodes and hyperedges in an end-to-end manner to alleviate this issue. Leveraging implicit differentiation, we introduce a tractable projected gradient descent approach to train the model efficiently. Extensive experiments on real-world hypergraphs for node classification demonstrate that IHNN outperforms the closest prior works in most settings, establishing a new state-of-the-art in hypergraph learning.
comment: Accepted at IEEE BigData 2025
♻ ☆ Fast 3D Surrogate Modeling for Data Center Thermal Management AAAI 2026
Reducing energy consumption and carbon emissions in data centers by enabling real-time temperature prediction is critical for sustainability and operational efficiency. Achieving this requires accurate modeling of the 3D temperature field to capture airflow dynamics and thermal interactions under varying operating conditions. Traditional thermal CFD solvers, while accurate, are computationally expensive and require expert-crafted meshes and boundary conditions, making them impractical for real-time use. To address these limitations, we develop a vision-based surrogate modeling framework that operates directly on a 3D voxelized representation of the data center, incorporating server workloads, fan speeds, and HVAC temperature set points. We evaluate multiple architectures, including 3D CNN U-Net variants, a 3D Fourier Neural Operator, and 3D vision transformers, to map these thermal inputs to high-fidelity heat maps. Our results show that the surrogate models generalize across data center configurations and significantly speed up computations (20,000x), from hundreds of milliseconds to hours. This fast and accurate estimation of hot spots and temperature distribution enables real-time cooling control and workload redistribution, leading to substantial energy savings (7\%) and reduced carbon footprint.
comment: Submitted to AAAI 2026 Conference
Genomics 1
♻ ☆ Gosling Designer: a Platform to Democratize Construction and Sharing of Genomics Data Visualization Tools
Analysis of genomics data is central to nearly all areas of modern biology. Despite significant progress in artificial intelligence (AI) and computational methods, these technologies require significant human oversight to generate novel and reliable biological insights. Consequently, the genomics community has developed a substantial number of diverse visualization approaches and a proliferation of tools that biologists rely on in their data analysis workflows. While there are a few commonly used visualization tools for genomics data, many tools target specific use cases for genomics data interpretation and offer only a limited, predefined set of visualization types. Moreover, static visualizations often fail to support exploratory analysis. Developing interactive visualizations and tools typically requires significant time and technical expertise, even when supported by modern LLM-powered coding assistants, and the resulting visualizations can be difficult to share among collaborators. We developed Gosling Designer, an all-in-one platform for editing, exploring, and sharing visualizations of genomics data. Gosling Designer addresses four key challenges observed in existing genomics visualization tools: (1) limited versatility, (2) difficulty of visualization authoring, (3) complexity of data management, and (4) barriers to sharing and collaboration.
Quantitative Methods 13
☆ A robust generalizable device-agnostic deep learning model for sleep-wake determination from triaxial wrist accelerometry
Study Objectives: Wrist accelerometry is widely used for inferring sleep-wake state. Previous works demonstrated poor wake detection, without cross-device generalizability and validation in different age range and sleep disorders. We developed a robust deep learning model for to detect sleep-wakefulness from triaxial accelerometry and evaluated its validity across three devices and in a large adult population spanning a wide range of ages with and without sleep disorders. Methods: We collected wrist accelerometry simultaneous to polysomnography (PSG) in 453 adults undergoing clinical sleep testing at a tertiary care sleep laboratory, using three devices. We extracted features in 30-second epochs and trained a 3-class model to detect wake, sleep, and sleep with arousals, which was then collapsed into wake vs. sleep using a decision tree. To enhance wake detection, the model was specifically trained on randomly selected subjects with low sleep efficiency and/or high arousal index from one device recording and then tested on the remaining recordings. Results: The model showed high performance with F1 Score of 0.86, sensitivity (sleep) of 0.87, and specificity (wakefulness) of 0.78, and significant and moderate correlation to PSG in predicting total sleep time (R=0.69) and sleep efficiency (R=0.63). Model performance was robust to the presence of sleep disorders, including sleep apnea and periodic limb movements in sleep, and was consistent across all three models of accelerometer. Conclusions: We present a deep model to detect sleep-wakefulness from actigraphy in adults with relative robustness to the presence of sleep disorders and generalizability across diverse commonly used wrist accelerometers.
comment: 27 pages, 5 figures, 5 tables
☆ TransientTrack: Advanced Multi-Object Tracking and Classification of Cancer Cells with Transient Fluorescent Signals
Tracking cells in time-lapse videos is an essential technique for monitoring cell population dynamics at a single-cell level. Current methods for cell tracking are developed on videos with mostly single, constant signals and do not detect pivotal events such as cell death. Here, we present TransientTrack, a deep learning-based framework for cell tracking in multi-channel microscopy video data with transient fluorescent signals that fluctuate over time following processes such as the circadian rhythm of cells. By identifying key cellular events - mitosis (cell division) and apoptosis (cell death) our method allows us to build complete trajectories, including cell lineage information. TransientTrack is lightweight and performs matching on cell detection embeddings directly, without the need for quantification of tracking-specific cell features. Furthermore, our approach integrates Transformer Networks, multi-stage matching using all detection boxes, and the interpolation of missing tracklets with the Kalman Filter. This unified framework achieves strong performance across diverse conditions, effectively tracking cells and capturing cell division and death. We demonstrate the use of TransientTrack in an analysis of the efficacy of a chemotherapeutic drug at a single-cell level. The proposed framework could further advance quantitative studies of cancer cell dynamics, enabling detailed characterization of treatment response and resistance mechanisms. The code is available at https://github.com/bozeklab/TransientTrack.
comment: 13 pages, 7 figures, 2 tables. This work has been submitted to IEEE Transactions on Medical Imaging
☆ From Toggle to Tuning: Controlling Turing Patterns in Gene Circuits
Controlling spatial patterns in synthetic biological systems remains challenging due to poor parameter robustness and limited experimental tunability. We introduce two complementary mechanisms-the pattern switch and the pattern dial-to systematically control Turing pattern formation in gene circuits. The switch toggles pattern onset via a single parameter, while the dial enables transitions between distinct pattern types using weakly nonlinear amplitude equations. Analyzing network size reveals a key trade-off: small networks are easier to control but less robust, while larger networks gain robustness at the cost of tunability-suggesting a sweet spot for both evolvability and designability. Our results offer practical design rules for engineering programmable patterns in living systems.
☆ Robustness and resilience of dynamical networks in biology and epidemiology
Natural systems are remarkably robust and resilient, maintaining essential functions despite variability, uncertainty, and hostile conditions. Understanding these nonlinear, dynamic behaviours is challenging because such systems involve many interacting parameters, yet it is crucial for explaining processes from cellular regulation to disease onset and epidemic spreading. Robustness and resilience describe a system's ability to preserve and recover desired behaviours in the presence of intrinsic and extrinsic fluctuations. This survey reviews how different disciplines define these concepts, examines methods for assessing whether key properties of uncertain, networked dynamical systems are structural (parameter-free) or robust (preserved for parameter variations within an uncertainty bounding set), and discusses integrated structural and probabilistic techniques for biological and epidemiological models. The text introduces formal definitions of resilience for families of systems obtained by adding stochastic perturbations to a nominal deterministic model, enabling a probabilistic characterisation of the ability to remain within or return to a prescribed attractor. These definitions generalise probabilistic robustness and shed new light on classical biological examples. In addition, the survey summarises resilience indicators and data-driven tools for detecting resilience loss and regime shifts, drawing on bifurcation analysis to anticipate qualitative changes in system behaviour. Together, these methodologies support the study and control of complex natural systems, guiding the design of biomolecular feedback architectures, the identification of therapeutic targets, the forecasting and management of epidemics, and the detection of tipping points in ecological and biological networks.
☆ Personalized optimization of pediatric HD-tDCS for dose consistency and target engagement
High-definition transcranial direct current stimulation (HD-tDCS) dosing in children remains largely empirical, relying on one-size-fits-all protocols despite rapid developmental changes in head anatomy and tissue properties that strongly modulate how currents reach the developing brain. Using 70 pediatric head models and commonly used cortical targets, our forward simulations find that standard montages produce marked age-dependent reductions in target electric-field intensity and systematic sex differences linked to tissue-volume covariation, underscoring the profound limitations of conventional uniform montages. To overcome these limitations, we introduce a developmentally informed, dual-objective optimization framework designed to generate personalized Pareto fronts summarizing the trade-off between electric-field intensity and focality. From these optimized solutions, we derive two practical dosing prescriptions: a dose-consistency strategy that, for the first time, enforces fixed target intensity across individuals to implicitly mitigate demographic effects, and a target-engagement strategy that maximizes target intensity under safety limits. Both strategies remain robust to large conductivity variations, and we further show that dense HD-tDCS solutions admit sparse equivalents without performance loss under the target-engagement strategy. We also find that tissue conductivity sensitivity is depth-dependent, with Pareto-front distributions for superficial cortical targets most influenced by gray matter, scalp, and bone conductivities, and those for a deep target predominantly shaped by gray and white matter conductivities. Together, these results establish a principled framework for pediatric HD-tDCS planning that explicitly accounts for developmental anatomy and physiological uncertainty, enabling reliable and individualized neuromodulation dosing in pediatric populations.
comment: Zeming Liu and Mo Wang contributed equally to this work. Correspondence to Wilson Truccolo (wilson_truccolo@brown.edu) and Quanying Liu (liuqy@sustech.edu.cn)
☆ EcoCast: A Spatio-Temporal Model for Continual Biodiversity and Climate Risk Forecasting NeurIPS 2025
Increasing climate change and habitat loss are driving unprecedented shifts in species distributions. Conservation professionals urgently need timely, high-resolution predictions of biodiversity risks, especially in ecologically diverse regions like Africa. We propose EcoCast, a spatio-temporal model designed for continual biodiversity and climate risk forecasting. Utilizing multisource satellite imagery, climate data, and citizen science occurrence records, EcoCast predicts near-term (monthly to seasonal) shifts in species distributions through sequence-based transformers that model spatio-temporal environmental dependencies. The architecture is designed with support for continual learning to enable future operational deployment with new data streams. Our pilot study in Africa shows promising improvements in forecasting distributions of selected bird species compared to a Random Forest baseline, highlighting EcoCast's potential to inform targeted conservation policies. By demonstrating an end-to-end pipeline from multi-modal data ingestion to operational forecasting, EcoCast bridges the gap between cutting-edge machine learning and biodiversity management, ultimately guiding data-driven strategies for climate resilience and ecosystem conservation throughout Africa.
comment: 9 pages, 3 figures, 1 table. Accepted to the NeurIPS 2025 Workshop on Tackling Climate Change with Machine Learning
☆ Mapping of Lesion Images to Somatic Mutations
Medical imaging is a critical initial tool used by clinicians to determine a patient's cancer diagnosis, allowing for faster intervention and more reliable patient prognosis. At subsequent stages of patient diagnosis, genetic information is extracted to help select specific patient treatment options. As the efficacy of cancer treatment often relies on early diagnosis and treatment, we build a deep latent variable model to determine patients' somatic mutation profiles based on their corresponding medical images. We first introduce a point cloud representation of lesions images to allow for invariance to the imaging modality. We then propose, LLOST, a model with dual variational autoencoders coupled together by a separate shared latent space that unifies features from the lesion point clouds and counts of distinct somatic mutations. Therefore our model consists of three latent space, each of which is learned with a conditional normalizing flow prior to account for the diverse distributions of each domain. We conduct qualitative and quantitative experiments on de-identified medical images from The Cancer Imaging Archive and the corresponding somatic mutations from the Pan Cancer dataset of The Cancer Genomic Archive. We show the model's predictive performance on the counts of specific mutations as well as it's ability to accurately predict the occurrence of mutations. In particular, shared patterns between the imaging and somatic mutation domain that reflect cancer type. We conclude with a remark on how to improve the model and possible future avenues of research to include other genetic domains.
comment: https://dl.acm.org/doi/abs/10.1145/3340531.3414074#sec-terms
☆ A Compact, Data-Logging Breath-Gas Analyzer
Respiratory ailments are increasing globally at an alarming rate and are currently one of the leading factors of death and infirmity worldwide. Among respiratory diseases, those linked to poor air quality and pollutants are increasing at a proportionally higher rate than those linked to viral or other factors. Diagnosing disorders of the respiratory system is often performed initially by routine physical examinations and questionnaires. Once most patients have symptoms that are severe enough to warrant clinical testing, the ailment could have already caused pulmonary damage. Clinical diagnosis involves the use of cumbersome, expensive equipment that measures different parameters separately, e.g., Capnography (CO2) and spirometry (bidirectional tidal mass flow). These disparate sets of data must then be interpreted collectively by a qualified medical practitioner. This paper details the design of a portable, inexpensive, mixed-signal data-logging system that measures a chosen set of parameters in exhaled breath from humans or animals. The data is a comprehensive set of pertinent gases and mass flow that when looked at simultaneously, gives a synergistic view of these interrelated breathing biomarkers and thus the state of the respiratory system as a whole. A mask-mounted, tabletop, and handheld version was developed for different applications. The system, when fully developed, would enable a new set of clinical vitals that only require a patient to breathe through a single, small device for a few moments. This new set of clinical vitals could enable the early diagnosis of many respiratory ailments, something that could have a large positive impact on disease prognosis and quality of life.
☆ An AI Implementation Science Study to Improve Trustworthy Data in a Large Healthcare System
The rapid growth of Artificial Intelligence (AI) in healthcare has sparked interest in Trustworthy AI and AI Implementation Science, both of which are essential for accelerating clinical adoption. However, strict regulations, gaps between research and clinical settings, and challenges in evaluating AI systems continue to hinder real-world implementation. This study presents an AI implementation case study within Shriners Childrens (SC), a large multisite pediatric system, showcasing the modernization of SCs Research Data Warehouse (RDW) to OMOP CDM v5.4 within a secure Microsoft Fabric environment. We introduce a Python-based data quality assessment tool compatible with SCs infrastructure, extending OHDsi's R/Java-based Data Quality Dashboard (DQD) and integrating Trustworthy AI principles using the METRIC framework. This extension enhances data quality evaluation by addressing informative missingness, redundancy, timeliness, and distributional consistency. We also compare systematic and case-specific AI implementation strategies for Craniofacial Microsomia (CFM) using the FHIR standard. Our contributions include a real-world evaluation of AI implementations, integration of Trustworthy AI principles into data quality assessment, and insights into hybrid implementation strategies that blend systematic infrastructure with use-case-driven approaches to advance AI in healthcare.
comment: Submitted and Accepted to the IEEE International Conference on Biomedical and Health Informatics (BHI) 2025
♻ ☆ Global-to-local image quality assessment in optical microscopy via fast and robust deep learning predictions
Optical microscopy is one of the most widely used techniques in research studies for life sciences and biomedicine. These applications require reliable experimental pipelines to extract valuable knowledge from the measured samples and must be supported by image quality assessment (IQA) to ensure correct processing and analysis of the image data. IQA methods are implemented with variable complexity. However, while most quality metrics have a straightforward implementation, they might be time consuming and computationally expensive when evaluating a large dataset. In addition, quality metrics are often designed for well-defined image features and may be unstable for images out of the ideal domain. To overcome these limitations, recent works have proposed deep learning-based IQA methods, which can provide superior performance, increased generalizability and fast prediction. Our method, named $\mathrmμ$DeepIQA, is inspired by previous studies and applies a deep convolutional neural network designed for IQA on natural images to optical microscopy measurements. We retrained the same architecture to predict individual quality metrics and global quality scores for optical microscopy data. The resulting models provide fast and stable predictions of image quality by generalizing quality estimation even outside the ideal range of standard methods. In addition, $\mathrmμ$DeepIQA provides patch-wise prediction of image quality and can be used to visualize spatially varying quality in a single image. Our study demonstrates that optical microscopy-based studies can benefit from the generalizability of deep learning models due to their stable performance in the presence of outliers, the ability to assess small image patches, and rapid predictions.
comment: 16 pages, 6 figures. μDeepIQA is publicly available at https://git.photonicdata.science/elena.corbetta/udeepiqa
♻ ☆ Velocity Spectrum Imaging using velocity encoding preparation pulses
Purpose: The goal of this article is to introduce a technique to measure the velocity distribution of water inside each voxel of an MR image. The method is based on the use of motion sensitizing gradients with changing first moment to encode velocity. As such, it is completely non-invasive and requires no contrast injections. Methods: The technique consists of acquiring a series of images preceded by preparatory RF pulses that encode velocity information, analogously to k-space encoding. The velocity distribution can be decoded via the Fourier transform. We demonstrate its use on a simple flow phantom with known flow characteristics. We demonstrate the technique on the brains of five human participants from whom we collected the velocity distribution along each of the three laboratory axes. Results: Velocity distribution measurements on simple phantoms yielded velocity distributions consistent with theory. Human velocity spectra identified specific anatomical features at different velocity bins. The largest fraction of spins was in the lowest velocity bands. Movement in the CSF spaces could be clearly identified at different velocity bands. Conclusion: Velocity Spectrum Imaging has great potential as a tool to study the movement of fluids in the human body without contrast agents. In addition to a useful tool for validating computational fluid dynamic models in vivo, it can be used to study the complex movement of water in the glymphatic system and its involvement in neurodegenerative disorders. However, further development is needed to probe the velocity spectrum in the ultra-low velocity regime of the perivascular spaces.
comment: 32 pages, 7 figures, 5 supplementary figures, submitted to Magn. Res. Med , on Aug. 2025 - accepted
♻ ☆ Prediction of Distant Metastasis in Head and Neck Cancer Patients Using Tumor and Peritumoral Multi-Modal Deep Learning
Although the combined treatment of surgery, radiotherapy, chemotherapy, and emerging target therapy has significantly improved the outcomes of patients with head and neck cancer, distant metastasis remains the leading cause of treatment failure. In this study, we propose a deep learning-based multimodal framework integrating CT imaging, radiomics, and clinical data to predict metastasis risk in HNSCC. A total of 1497 patients were retrospectively analyzed. Tumor and organ masks were generated from pretreatment CT scans, from which a 3D Swin Transformer extracted deep imaging features, while 1562 radiomics features were reduced to 36 via correlation filtering and random forest selection. Clinical data (age, sex, smoking, and alcohol status) were encoded and fused with imaging features, and the multimodal representation was fed into a fully connected network for prediction. Five-fold cross-validation was used to assess performance via AUC, accuracy, sensitivity, and specificity. The multimodal model outperformed all single-modality baselines. The deep learning module alone achieved an AUC of 0.715, whereas multimodal fusion significantly improved performance (AUC = 0.803, ACC = 0.752, SEN = 0.730, SPE = 0.758). Stratified analyses confirmed good generalizability across tumor subtypes. Ablation experiments demonstrated complementary contributions from each modality, and the 3D Swin Transformer provided more robust representations than conventional architectures. This multimodal deep learning model enables accurate, non-invasive metastasis prediction in HNSCC and shows strong potential for individualized treatment planning.
comment: 23 pages, 6 figures, 7 tables. Nuo Tong and Changhao Liu contributed equally. Corresponding Authors: Shuiping Gou and Mei Shi
♻ ☆ TomoGraphView: 3D Medical Image Classification with Omnidirectional Slice Representations and Graph Neural Networks
The sharp rise in medical tomography examinations has created a demand for automated systems that can reliably extract informative features for downstream tasks such as tumor characterization. Although 3D volumes contain richer information than individual slices, effective 3D classification remains difficult: volumetric data encode complex spatial dependencies, and the scarcity of large-scale 3D datasets has constrained progress toward 3D foundation models. As a result, many recent approaches rely on 2D vision foundation models trained on natural images, repurposing them as feature extractors for medical scans with surprisingly strong performance. Despite their practical success, current methods that apply 2D foundation models to 3D scans via slice-based decomposition remain fundamentally limited. Standard slicing along axial, sagittal, and coronal planes often fails to capture the true spatial extent of a structure when its orientation does not align with these canonical views. More critically, most approaches aggregate slice features independently, ignoring the underlying 3D geometry and losing spatial coherence across slices. To overcome these limitations, we propose TomoGraphView, a novel framework that integrates omnidirectional volume slicing with spherical graph-based feature aggregation. Instead of restricting the model to axial, sagittal, or coronal planes, our method samples both canonical and non-canonical cross-sections generated from uniformly distributed points on a sphere enclosing the volume. We publicly share our accessible code base at http://github.com/compai-lab/2025-MedIA-kiechle and provide a user-friendly library for omnidirectional volume slicing at https://pypi.org/project/OmniSlicer.
comment: Preprint submitted to Medical Image Analysis (MedIA)
Cell Behavior 2
☆ TransientTrack: Advanced Multi-Object Tracking and Classification of Cancer Cells with Transient Fluorescent Signals
Tracking cells in time-lapse videos is an essential technique for monitoring cell population dynamics at a single-cell level. Current methods for cell tracking are developed on videos with mostly single, constant signals and do not detect pivotal events such as cell death. Here, we present TransientTrack, a deep learning-based framework for cell tracking in multi-channel microscopy video data with transient fluorescent signals that fluctuate over time following processes such as the circadian rhythm of cells. By identifying key cellular events - mitosis (cell division) and apoptosis (cell death) our method allows us to build complete trajectories, including cell lineage information. TransientTrack is lightweight and performs matching on cell detection embeddings directly, without the need for quantification of tracking-specific cell features. Furthermore, our approach integrates Transformer Networks, multi-stage matching using all detection boxes, and the interpolation of missing tracklets with the Kalman Filter. This unified framework achieves strong performance across diverse conditions, effectively tracking cells and capturing cell division and death. We demonstrate the use of TransientTrack in an analysis of the efficacy of a chemotherapeutic drug at a single-cell level. The proposed framework could further advance quantitative studies of cancer cell dynamics, enabling detailed characterization of treatment response and resistance mechanisms. The code is available at https://github.com/bozeklab/TransientTrack.
comment: 13 pages, 7 figures, 2 tables. This work has been submitted to IEEE Transactions on Medical Imaging
☆ Active Force Dynamics in Red Blood Cells Under Non-Invasive Optical Tweezers
Red blood cells (RBCs) sustain mechanical stresses associated with microcirculatory flow through ATP-driven plasma membrane flickering. This is an active phenomenon driven by motor proteins that regulate interactions between the spectrin cytoskeleton and the lipid bilayer; it is manifested in RBC shape fluctuations reflecting the cell's mechanical and metabolic state. Yet, direct quantification of the forces and energetic costs underlying this non-equilibrium behavior remains challenging due to the invasiveness of existing techniques. Here, a minimally invasive method that combines bead-free, low-power optical tweezers with high-speed video microscopy was employed to track local membrane forces and displacements in single RBCs during the same time window. This independent dual-channel measurement enabled the construction of a mechano-dynamic phase space for RBCs under different chemical treatments, that allowed for differentiating between metabolic and structural states based on their fluctuation-force signatures. Quantification of mechanical work during flickering demonstrated that membrane softening enhanced fluctuations while elevating energy dissipation. The proposed optical tweezers methodology provides a robust framework for mapping the active mechanics of living cells, enabling precise probing of cellular physiology and detection of biomechanical dysfunction in diseases.
Computation and Language 13
☆ Mode-Conditioning Unlocks Superior Test-Time Scaling
Parallel sampling promises substantial gains in test-time scaling, but its effectiveness is sharply limited by diversity collapse, where models concentrate on a few modes and repeated samples produce the same mistakes. We propose the mode-conditioning (ModC) framework, which explicitly allocates test-time compute across reasoning modes using either specialist models or mode-specific prefixes. ModC consistently improves scaling across controlled graph-search tasks and large-scale reasoning benchmarks, spanning model families and sizes from 0.5B to 7B. On OpenThoughts, fine-tuning Qwen2.5-7B with ModC achieves a 4x efficiency gain over standard training while also improving the maximum attainable Pass@k. We further show that gradient clustering enables ModC without explicit mode labels, yielding up to 10% gains on datasets such as NuminaMath. Finally, we show that ModC improves reinforcement learning (RL) and can further boost diversity-inducing RL methods. These results demonstrate that standard training underutilizes the diversity in data, and that ModC provides a simple, effective remedy for unlocking the full benefits of diversity in test-time scaling.
☆ How do we measure privacy in text? A survey of text anonymization metrics ACL
In this work, we aim to clarify and reconcile metrics for evaluating privacy protection in text through a systematic survey. Although text anonymization is essential for enabling NLP research and model development in domains with sensitive data, evaluating whether anonymization methods sufficiently protect privacy remains an open challenge. In manually reviewing 47 papers that report privacy metrics, we identify and compare six distinct privacy notions, and analyze how the associated metrics capture different aspects of privacy risk. We then assess how well these notions align with legal privacy standards (HIPAA and GDPR), as well as user-centered expectations grounded in HCI studies. Our analysis offers practical guidance on navigating the landscape of privacy evaluation approaches further and highlights gaps in current practices. Ultimately, we aim to facilitate more robust, comparable, and legally aware privacy evaluations in text anonymization.
comment: 13 pages, 1 figure, 1 table. To be published in Findings of the Association for Computational Linguistics (AACL-IJCNLP 2025). Related resources at: https://github.com/ryxGuo/privacy-metrics-survey
☆ Generalized Medical Phrase Grounding
Medical phrase grounding (MPG) maps textual descriptions of radiological findings to corresponding image regions. These grounded reports are easier to interpret, especially for non-experts. Existing MPG systems mostly follow the referring expression comprehension (REC) paradigm and return exactly one bounding box per phrase. Real reports often violate this assumption. They contain multi-region findings, non-diagnostic text, and non-groundable phrases, such as negations or descriptions of normal anatomy. Motivated by this, we reformulate the task as generalised medical phrase grounding (GMPG), where each sentence is mapped to zero, one, or multiple scored regions. To realise this formulation, we introduce the first GMPG model: MedGrounder. We adopted a two-stage training regime: pre-training on report sentence--anatomy box alignment datasets and fine-tuning on report sentence--human annotated box datasets. Experiments on PadChest-GR and MS-CXR show that MedGrounder achieves strong zero-shot transfer and outperforms REC-style and grounded report generation baselines on multi-region and non-groundable phrases, while using far fewer human box annotations. Finally, we show that MedGrounder can be composed with existing report generators to produce grounded reports without retraining the generator.
☆ Testing the Machine Consciousness Hypothesis
The Machine Consciousness Hypothesis states that consciousness is a substrate-free functional property of computational systems capable of second-order perception. I propose a research program to investigate this idea in silico by studying how collective self-models (coherent, self-referential representations) emerge from distributed learning systems embedded within universal self-organizing environments. The theory outlined here starts from the supposition that consciousness is an emergent property of collective intelligence systems undergoing synchronization of prediction through communication. It is not an epiphenomenon of individual modeling but a property of the language that a system evolves to internally describe itself. For a model of base reality, I begin with a minimal but general computational world: a cellular automaton, which exhibits both computational irreducibility and local reducibility. On top of this computational substrate, I introduce a network of local, predictive, representational (neural) models capable of communication and adaptation. I use this layered model to study how collective intelligence gives rise to self-representation as a direct consequence of inter-agent alignment. I suggest that consciousness does not emerge from modeling per se, but from communication. It arises from the noisy, lossy exchange of predictive messages between groups of local observers describing persistent patterns in the underlying computational substrate (base reality). It is through this representational dialogue that a shared model arises, aligning many partial views of the world. The broader goal is to develop empirically testable theories of machine consciousness, by studying how internal self-models may form in distributed systems without centralized control.
☆ ELR-1000: A Community-Generated Dataset for Endangered Indic Indigenous Languages ACL 2025
We present a culturally-grounded multimodal dataset of 1,060 traditional recipes crowdsourced from rural communities across remote regions of Eastern India, spanning 10 endangered languages. These recipes, rich in linguistic and cultural nuance, were collected using a mobile interface designed for contributors with low digital literacy. Endangered Language Recipes (ELR)-1000 -- captures not only culinary practices but also the socio-cultural context embedded in indigenous food traditions. We evaluate the performance of several state-of-the-art large language models (LLMs) on translating these recipes into English and find the following: despite the models' capabilities, they struggle with low-resource, culturally-specific language. However, we observe that providing targeted context -- including background information about the languages, translation examples, and guidelines for cultural preservation -- leads to significant improvements in translation quality. Our results underscore the need for benchmarks that cater to underrepresented languages and domains to advance equitable and culturally-aware language technologies. As part of this work, we release the ELR-1000 dataset to the NLP community, hoping it motivates the development of language technologies for endangered languages.
comment: Accepted at AACL 2025 (Main)
☆ When Safety Blocks Sense: Measuring Semantic Confusion in LLM Refusals
Safety-aligned language models often refuse prompts that are actually harmless. Current evaluations mostly report global rates such as false rejection or compliance. These scores treat each prompt alone and miss local inconsistency, where a model accepts one phrasing of an intent but rejects a close paraphrase. This gap limits diagnosis and tuning. We introduce "semantic confusion," a failure mode that captures such local inconsistency, and a framework to measure it. We build ParaGuard, a 10k-prompt corpus of controlled paraphrase clusters that hold intent fixed while varying surface form. We then propose three model-agnostic metrics at the token level: Confusion Index, Confusion Rate, and Confusion Depth. These metrics compare each refusal to its nearest accepted neighbors and use token embeddings, next-token probabilities, and perplexity signals. Experiments across diverse model families and deployment guards show that global false-rejection rate hides critical structure. Our metrics reveal globally unstable boundaries in some settings, localized pockets of inconsistency in others, and cases where stricter refusal does not increase inconsistency. We also show how confusion-aware auditing separates how often a system refuses from how sensibly it refuses. This gives developers a practical signal to reduce false refusals while preserving safety.
♻ ☆ Comparative Evaluation of Expressive Japanese Character Text-to-Speech with VITS and Style-BERT-VITS2
Synthesizing expressive Japanese character speech poses unique challenges due to pitch-accent sensitivity and stylistic variability. This paper empirically evaluates two open-source text-to-speech models--VITS and Style-BERT-VITS2 JP Extra (SBV2JE)--on in-domain, character-driven Japanese speech. Using three character-specific datasets, we evaluate models across naturalness (mean opinion and comparative mean opinion score), intelligibility (word error rate), and speaker consistency. SBV2JE matches human ground truth in naturalness (MOS 4.37 vs. 4.38), achieves lower WER, and shows slight preference in CMOS. Enhanced by pitch-accent controls and a WavLM-based discriminator, SBV2JE proves effective for applications like language learning and character dialogue generation, despite higher computational demands.
comment: Accepted to IEEE UEMCON 2025
♻ ☆ Persistent Instability in LLM's Personality Measurements: Effects of Scale, Reasoning, and Conversation History AAAI 2026
Large language models require consistent behavioral patterns for safe deployment, yet there are indications of large variability that may lead to an instable expression of personality traits in these models. We present PERSIST (PERsonality Stability in Synthetic Text), a comprehensive evaluation framework testing 25 open-source models (1B-685B parameters) across 2 million+ responses. Using traditional (BFI, SD3) and novel LLM-adapted personality questionnaires, we systematically vary model size, personas, reasoning modes, question order or paraphrasing, and conversation history. Our findings challenge fundamental assumptions: (1) Question reordering alone can introduce large shifts in personality measurements; (2) Scaling provides limited stability gains: even 400B+ models exhibit standard deviations >0.3 on 5-point scales; (3) Interventions expected to stabilize behavior, such as reasoning and inclusion of conversation history, can paradoxically increase variability; (4) Detailed persona instructions produce mixed effects, with misaligned personas showing significantly higher variability than the helpful assistant baseline; (5) The LLM-adapted questionnaires, despite their improved ecological validity, exhibit instability comparable to human-centric versions. This persistent instability across scales and mitigation strategies suggests that current LLMs lack the architectural foundations for genuine behavioral consistency. For safety-critical applications requiring predictable behavior, these findings indicate that current alignment strategies may be inadequate.
comment: Accepted at AAAI 2026, Track on AI Alignment
♻ ☆ Generating Text from Uniform Meaning Representation ACL 2026
Uniform Meaning Representation (UMR) is a recently developed graph-based semantic representation, which expands on Abstract Meaning Representation (AMR) in a number of ways, in particular through the inclusion of document-level information and multilingual flexibility. In order to effectively adopt and leverage UMR for downstream tasks, efforts must be placed toward developing a UMR technological ecosystem. Though only a small amount of UMR annotations have been produced to date, in this work, we investigate the first approaches to producing text from multilingual UMR graphs. Exploiting the structural similarity between UMR and AMR graphs and the wide availability of AMR technologies, we introduce (1) a baseline approach which passes UMR graphs to AMR-to-text generation models, (2) a pipeline conversion of UMR to AMR, then using AMR-to-text generation models, and (3) a fine-tuning approach for both foundation models and AMR-to-text generation models with UMR data. Our best performing models achieve multilingual BERTscores of 0.825 for English and 0.882 for Chinese, a promising indication of the effectiveness of fine-tuning approaches for UMR-to-text generation even with limited UMR data.
comment: Accepted to IJCNLP-AACL 2026
♻ ☆ Do different prompting methods yield a common task representation in language models? NeurIPS 2025
Demonstrations and instructions are two primary approaches for prompting language models to perform in-context learning (ICL) tasks. Do identical tasks elicited in different ways result in similar representations of the task? An improved understanding of task representation mechanisms would offer interpretability insights and may aid in steering models. We study this through \textit{function vectors} (FVs), recently proposed as a mechanism to extract few-shot ICL task representations. We generalize FVs to alternative task presentations, focusing on short textual instruction prompts, and successfully extract instruction function vectors that promote zero-shot task accuracy. We find evidence that demonstration- and instruction-based function vectors leverage different model components, and offer several controls to dissociate their contributions to task performance. Our results suggest that different task promptings forms do not induce a common task representation through FVs but elicit different, partly overlapping mechanisms. Our findings offer principled support to the practice of combining instructions and task demonstrations, imply challenges in universally monitoring task inference across presentation forms, and encourage further examinations of LLM task inference mechanisms.
comment: 10 pages, 4 figures; presented at NeurIPS 2025
♻ ☆ Quantifying Cognitive Bias Induction in LLM-Generated Content ACL 2025
Large language models (LLMs) are integrated into applications like shopping reviews, summarization, or medical diagnosis support, where their use affects human decisions. We investigate the extent to which LLMs expose users to biased content and demonstrate its effect on human decision-making. We assess five LLM families in summarization and news fact-checking tasks, evaluating the consistency of LLMs with their context and their tendency to hallucinate on a new self-updating dataset. Our findings show that LLMs expose users to content that changes the context's sentiment in 26.42% of cases (framing bias), hallucinate on 60.33% of post-knowledge-cutoff questions, and highlight context from earlier parts of the prompt (primacy bias) in 10.12% of cases, averaged across all tested models. We further find that humans are 32% more likely to purchase the same product after reading a summary of the review generated by an LLM rather than the original review. To address these issues, we evaluate 18 mitigation methods across three LLM families and find the effectiveness of targeted interventions.
comment: 21 pages (including references and appendix), 3figures. accepted to AACL 2025
Extracting memorized pieces of (copyrighted) books from open-weight language models
Plaintiffs and defendants in copyright lawsuits over generative AI often make sweeping, opposing claims about the extent to which large language models (LLMs) have memorized plaintiffs' protected expression in their training data. Drawing on both machine learning and copyright law, we show that these polarized positions dramatically oversimplify the relationship between memorization and copyright. To do so, we extend a recent probabilistic extraction technique to measure memorization of 50 books in 17 open-weight LLMs. Through thousands of experiments, we show that the extent of memorization varies both by model and by book. With respect to our specific extraction methodology, we find that most LLMs do not memorize most books -- either in whole or in part. However, we also find that Llama 3.1 70B entirely memorizes some books, like the first Harry Potter book and 1984. In fact, the first Harry Potter is so memorized that, using a seed prompt consisting of just the first few tokens of the first chapter, we can deterministically generate the entire book near-verbatim. We discuss why our results have significant implications for copyright cases, though not ones that unambiguously favor either side.
♻ ☆ SECA: Semantically Equivalent and Coherent Attacks for Eliciting LLM Hallucinations NeurIPS 2025
Large Language Models (LLMs) are increasingly deployed in high-risk domains. However, state-of-the-art LLMs often produce hallucinations, raising serious concerns about their reliability. Prior work has explored adversarial attacks for hallucination elicitation in LLMs, but it often produces unrealistic prompts, either by inserting gibberish tokens or by altering the original meaning. As a result, these approaches offer limited insight into how hallucinations may occur in practice. While adversarial attacks in computer vision often involve realistic modifications to input images, the problem of finding realistic adversarial prompts for eliciting LLM hallucinations has remained largely underexplored. To address this gap, we propose Semantically Equivalent and Coherent Attacks (SECA) to elicit hallucinations via realistic modifications to the prompt that preserve its meaning while maintaining semantic coherence. Our contributions are threefold: (i) we formulate finding realistic attacks for hallucination elicitation as a constrained optimization problem over the input prompt space under semantic equivalence and coherence constraints; (ii) we introduce a constraint-preserving zeroth-order method to effectively search for adversarial yet feasible prompts; and (iii) we demonstrate through experiments on open-ended multiple-choice question answering tasks that SECA achieves higher attack success rates while incurring almost no semantic equivalence or semantic coherence errors compared to existing methods. SECA highlights the sensitivity of both open-source and commercial gradient-inaccessible LLMs to realistic and plausible prompt variations. Code is available at https://github.com/Buyun-Liang/SECA.
comment: Accepted at NeurIPS 2025. Code is available at https://github.com/Buyun-Liang/SECA
Machine Learning 62
☆ A Benchmark of Causal vs Correlation AI for Predictive Maintenance
Predictive maintenance in manufacturing environments presents a challenging optimization problem characterized by extreme cost asymmetry, where missed failures incur costs roughly fifty times higher than false alarms. Conventional machine learning approaches typically optimize statistical accuracy metrics that do not reflect this operational reality and cannot reliably distinguish causal relationships from spurious correlations. This study evaluates eight predictive models, ranging from baseline statistical approaches to formal causal inference methods, on a dataset of 10,000 CNC machines with a 3.3% failure prevalence. The formal causal inference model (L5) achieved estimated annual cost savings of 1.16 million USD (a 70.2 percent reduction), outperforming the best correlation-based decision tree model (L3) by approximately 80,000 USD per year. The causal model matched the highest observed recall (87.9 percent) while reducing false alarms by 97 percent (from 165 to 5) and attained a precision of 92.1 percent, with a train-test performance gap of only 2.6 percentage points. These results indicate that causal AI methods, when combined with domain knowledge, can yield superior financial outcomes and more interpretable predictions compared to correlation-based approaches in predictive maintenance applications.
☆ Projection-Free CNN Pruning via Frank-Wolfe with Momentum: Sparser Models with Less Pretraining
We investigate algorithmic variants of the Frank-Wolfe (FW) optimization method for pruning convolutional neural networks. This is motivated by the "Lottery Ticket Hypothesis", which suggests the existence of smaller sub-networks within larger pre-trained networks that perform comparatively well (if not better). Whilst most literature in this area focuses on Deep Neural Networks more generally, we specifically consider Convolutional Neural Networks for image classification tasks. Building on the hypothesis, we compare simple magnitude-based pruning, a Frank-Wolfe style pruning scheme, and an FW method with momentum on a CNN trained on MNIST. Our experiments track test accuracy, loss, sparsity, and inference time as we vary the dense pre-training budget from 1 to 10 epochs. We find that FW with momentum yields pruned networks that are both sparser and more accurate than the original dense model and the simple pruning baselines, while incurring minimal inference-time overhead in our implementation. Moreover, FW with momentum reaches these accuracies after only a few epochs of pre-training, indicating that full pre-training of the dense model is not required in this setting.
comment: Preliminary preprint; numerical experiments are still being validated and may be updated in future revisions
☆ Neural Variable Name Repair: Learning to Rename Identifiers for Readability
Developers routinely work with source files whose variable names are generic or misleading, and with teams moving quickly, many functions are left undocumented. This slows comprehension, increases the risk of subtle bugs, and makes it harder for both humans and large language models (LLMs) to reason about code. We study variable name repair: given a real C++ function where all occurrences of one local or parameter name have been replaced by a placeholder (e.g. ID 1), the goal is to generate a natural, descriptive replacement name. We automatically construct this task from the C++ portion of BigCode's The Stack by parsing functions with Tree-sitter, masking a single identifier, and treating the original name as supervision. On top of Llama 3.1-8B, we build a pipeline with (i) warmup and dropout schedules for more stable fine-tuning, (ii) LoRA adapters for efficient specialization on identifier repair, and (iii) a dual-encoder reranker over top-k generator candidates. We evaluate using exact match, Top-5 Hit, and an embedding-based partial similarity score (0-100) that gives credit for near synonyms and format variants (e.g., jsonValue vs. json). On a held-out set of 200 C++ functions, a zero-shot Llama 3.1 baseline reaches 6.1 percent exact match. Our best LoRA-tuned model (with warmup and dropout) achieves 43.1 percent exact match, 50.2 percent Top-5 Hit, and an 82.03 partial-match score. A dual encoder reranker further improves selection quality without modifying the underlying generator, suggesting that task-specific fine-tuning plus reranking is a promising approach for practical identifier repair tools.
☆ Mode-Conditioning Unlocks Superior Test-Time Scaling
Parallel sampling promises substantial gains in test-time scaling, but its effectiveness is sharply limited by diversity collapse, where models concentrate on a few modes and repeated samples produce the same mistakes. We propose the mode-conditioning (ModC) framework, which explicitly allocates test-time compute across reasoning modes using either specialist models or mode-specific prefixes. ModC consistently improves scaling across controlled graph-search tasks and large-scale reasoning benchmarks, spanning model families and sizes from 0.5B to 7B. On OpenThoughts, fine-tuning Qwen2.5-7B with ModC achieves a 4x efficiency gain over standard training while also improving the maximum attainable Pass@k. We further show that gradient clustering enables ModC without explicit mode labels, yielding up to 10% gains on datasets such as NuminaMath. Finally, we show that ModC improves reinforcement learning (RL) and can further boost diversity-inducing RL methods. These results demonstrate that standard training underutilizes the diversity in data, and that ModC provides a simple, effective remedy for unlocking the full benefits of diversity in test-time scaling.
☆ World Model Robustness via Surprise Recognition
AI systems deployed in the real world must contend with distractions and out-of-distribution (OOD) noise that can destabilize their policies and lead to unsafe behavior. While robust training can reduce sensitivity to some forms of noise, it is infeasible to anticipate all possible OOD conditions. To mitigate this issue, we develop an algorithm that leverages a world model's inherent measure of surprise to reduce the impact of noise in world model--based reinforcement learning agents. We introduce both multi-representation and single-representation rejection sampling, enabling robustness to settings with multiple faulty sensors or a single faulty sensor. While the introduction of noise typically degrades agent performance, we show that our techniques preserve performance relative to baselines under varying types and levels of noise across multiple environments within self-driving simulation domains (CARLA and Safety Gymnasium). Furthermore, we demonstrate that our methods enhance the stability of two state-of-the-art world models with markedly different underlying architectures: Cosmos and DreamerV3. Together, these results highlight the robustness of our approach across world modeling domains. We release our code at https://github.com/Bluefin-Tuna/WISER .
☆ Efficiently Learning Branching Networks for Multitask Algorithmic Reasoning KDD'26
Algorithmic reasoning -- the ability to perform step-by-step logical inference -- has become a core benchmark for evaluating reasoning in graph neural networks (GNNs) and large language models (LLMs). Ideally, one would like to design a single model capable of performing well on multiple algorithmic reasoning tasks simultaneously. However, this is challenging when the execution steps of algorithms differ from one another, causing negative interference when they are trained together. We propose branching neural networks, a principled architecture for multitask algorithmic reasoning. Searching for the optimal $k$-ary tree with $L$ layers over $n$ algorithmic tasks is combinatorial, requiring exploration of up to $k^{nL}$ possible structures. We develop AutoBRANE, an efficient algorithm that reduces this search to $O(nL)$ time by solving a convex relaxation at each layer to approximate an optimal task partition. The method clusters tasks using gradient-based affinity scores and can be used on top of any base model, including GNNs and LLMs. We validate AutoBRANE on a broad suite of graph-algorithmic and text-based reasoning benchmarks. We show that gradient features estimate true task performance within 5% error across four GNNs and four LLMs (up to 34B parameters). On the CLRS benchmark, it outperforms the strongest single multitask GNN by 3.7% and the best baseline by 1.2%, while reducing runtime by 48% and memory usage by 26%. The learned branching structures reveal an intuitively reasonable hierarchical clustering of related algorithms. On three text-based graph reasoning benchmarks, AutoBRANE improves over the best non-branching multitask baseline by 3.2%. Finally, on a large graph dataset with 21M edges and 500 tasks, AutoBRANE achieves a 28% accuracy gain over existing multitask and branching architectures, along with a 4.5$\times$ reduction in runtime.
comment: 31 pages. Preprint, to appear in KDD'26
☆ Discriminative classification with generative features: bridging Naive Bayes and logistic regression
We introduce Smart Bayes, a new classification framework that bridges generative and discriminative modeling by integrating likelihood-ratio-based generative features into a logistic-regression-style discriminative classifier. From the generative perspective, Smart Bayes relaxes the fixed unit weights of Naive Bayes by allowing data-driven coefficients on density-ratio features. From a discriminative perspective, it constructs transformed inputs as marginal log-density ratios that explicitly quantify how much more likely each feature value is under one class than another, thereby providing predictors with stronger class separation than the raw covariates. To support this framework, we develop a spline-based estimator for univariate log-density ratios that is flexible, robust, and computationally efficient. Through extensive simulations and real-data studies, Smart Bayes often outperforms both logistic regression and Naive Bayes. Our results highlight the potential of hybrid approaches that exploit generative structure to enhance discriminative performance.
☆ CycliST: A Video Language Model Benchmark for Reasoning on Cyclical State Transitions
We present CycliST, a novel benchmark dataset designed to evaluate Video Language Models (VLM) on their ability for textual reasoning over cyclical state transitions. CycliST captures fundamental aspects of real-world processes by generating synthetic, richly structured video sequences featuring periodic patterns in object motion and visual attributes. CycliST employs a tiered evaluation system that progressively increases difficulty through variations in the number of cyclic objects, scene clutter, and lighting conditions, challenging state-of-the-art models on their spatio-temporal cognition. We conduct extensive experiments with current state-of-the-art VLMs, both open-source and proprietary, and reveal their limitations in generalizing to cyclical dynamics such as linear and orbital motion, as well as time-dependent changes in visual attributes like color and scale. Our results demonstrate that present-day VLMs struggle to reliably detect and exploit cyclic patterns, lack a notion of temporal understanding, and are unable to extract quantitative insights from scenes, such as the number of objects in motion, highlighting a significant technical gap that needs to be addressed. More specifically, we find no single model consistently leads in performance: neither size nor architecture correlates strongly with outcomes, and no model succeeds equally well across all tasks. By providing a targeted challenge and a comprehensive evaluation framework, CycliST paves the way for visual reasoning models that surpass the state-of-the-art in understanding periodic patterns.
☆ Bayesian dynamic scheduling of multipurpose batch processes under incomplete look-ahead information
Multipurpose batch processes become increasingly popular in manufacturing industries since they adapt to low-volume, high-value products and shifting demands. These processes often operate in a dynamic environment, which faces disturbances such as processing delays and demand changes. To minimise long-term cost and system nervousness (i.e., disruptive changes to schedules), schedulers must design rescheduling strategies to address such disturbances effectively. Existing methods often assume complete look-ahead information over the scheduling horizon. This assumption contrasts with realistic situations where schedulers can only access incomplete look-ahead information. Sticking with existing methods may lead to suboptimal long-term costs and high-level system nervousness. In this work we propose a Bayesian dynamic scheduling method. Our method relies on learning a Bayesian Network from the probability distribution of disturbances. Specifically, the Bayesian Network represents how likely each operation will be impacted by disturbances. During the online execution, when new disturbances become observed, this method updates the posterior distribution and therefore guides the rescheduling strategy. We compare our method with the existing periodic rescheduling strategy (which generates new schedules from scratch at fixed intervals) on four benchmark problems. Computational results show that our method achieves statistically better long-term costs and system nervousness. In the theoretical aspect, we prove that if disturbances are mutually independent, the impact-quantifying variables inherently satisfy the independence assumptions required by Bayesian Networks. As an implication, practitioners can extend the method to other scheduling problems (such as job shop scheduling and continuous processes), given that they define the problem-specific dependencies between operations.
☆ Testing the Machine Consciousness Hypothesis
The Machine Consciousness Hypothesis states that consciousness is a substrate-free functional property of computational systems capable of second-order perception. I propose a research program to investigate this idea in silico by studying how collective self-models (coherent, self-referential representations) emerge from distributed learning systems embedded within universal self-organizing environments. The theory outlined here starts from the supposition that consciousness is an emergent property of collective intelligence systems undergoing synchronization of prediction through communication. It is not an epiphenomenon of individual modeling but a property of the language that a system evolves to internally describe itself. For a model of base reality, I begin with a minimal but general computational world: a cellular automaton, which exhibits both computational irreducibility and local reducibility. On top of this computational substrate, I introduce a network of local, predictive, representational (neural) models capable of communication and adaptation. I use this layered model to study how collective intelligence gives rise to self-representation as a direct consequence of inter-agent alignment. I suggest that consciousness does not emerge from modeling per se, but from communication. It arises from the noisy, lossy exchange of predictive messages between groups of local observers describing persistent patterns in the underlying computational substrate (base reality). It is through this representational dialogue that a shared model arises, aligning many partial views of the world. The broader goal is to develop empirically testable theories of machine consciousness, by studying how internal self-models may form in distributed systems without centralized control.
☆ Building Trustworthy AI for Materials Discovery: From Autonomous Laboratories to Z-scores
Accelerated material discovery increasingly relies on artificial intelligence and machine learning, collectively termed "AI/ML". A key challenge in using AI is ensuring that human scientists trust the models are valid and reliable. Accordingly, we define a trustworthy AI framework GIFTERS for materials science and discovery to evaluate whether reported machine learning methods are generalizable, interpretable, fair, transparent, explainable, robust, and stable. Through a critical literature review, we highlight that these are the trustworthiness principles most valued by the materials discovery community. However, we also find that comprehensive approaches to trustworthiness are rarely reported; this is quantified by a median GIFTERS score of 5/7. We observe that Bayesian studies frequently omit fair data practices, while non-Bayesian studies most frequently omit interpretability. Finally, we identify approaches for improving trustworthiness methods in artificial intelligence and machine learning for materials science by considering work accomplished in other scientific disciplines such as healthcare, climate science, and natural language processing with an emphasis on methods that may transfer to materials discovery experiments. By combining these observations, we highlight the necessity of human-in-the-loop, and integrated approaches to bridge the gap between trustworthiness and uncertainty quantification for future directions of materials science research. This ensures that AI/ML methods not only accelerate discovery, but also meet ethical and scientific norms established by the materials discovery community. This work provides a road map for developing trustworthy artificial intelligence systems that will accurately and confidently enable material discovery.
☆ On The Finetuning of MLIPs Through the Lens of Iterated Maps With BPTT
Vital to the creation of advanced materials is performing structural relaxations. Traditional approaches built on physics-derived first-principles calculations are computationally expensive, motivating the creation of machine-learning interatomic potentials (MLIPs). Traditional approaches to training MLIPs for structural relaxations involves training models to faithfully reproduce first-principles computed forces. We propose a fine-tuning method to be used on a pretrained MLIP in which we create a fully-differentiable end-to-end simulation loop that optimizes the predicted final structures directly. Trajectories are unrolled and gradients are tracked through the entire relaxation. We show that this method achieves substantial performance gains when applied to pretrained models, leading to a nearly $50\%$ reduction in test error across the sample datasets. Interestingly, we show the process is robust to substantial variation in the relaxation setup, achieving negligibly different results across varied hyperparameter and procedural modifications. Experimental results indicate this is due to a ``preference'' of BPTT to modify the MLIP rather than the other trainable parameters. Of particular interest to practitioners is that this approach lowers the data requirements for producing an effective domain-specific MLIP, addressing a common bottleneck in practical deployment.
comment: 9 main pages, total of 15 pages. 6 tables, 6 Figures
☆ PIANO: Physics-informed Dual Neural Operator for Precipitation Nowcasting NeurIPS 2025
Precipitation nowcasting, key for early warning of disasters, currently relies on computationally expensive and restrictive methods that limit access to many countries. To overcome this challenge, we propose precipitation nowcasting using satellite imagery with physics constraints for improved accuracy and physical consistency. We use a novel physics-informed dual neural operator (PIANO) structure to enforce the fundamental equation of advection-diffusion during training to predict satellite imagery using a PINN loss. Then, we use a generative model to convert satellite images to radar images, which are used for precipitation nowcasting. Compared to baseline models, our proposed model shows a notable improvement in moderate (4mm/h) precipitation event prediction alongside short-term heavy (8mm/h) precipitation event prediction. It also demonstrates low seasonal variability in predictions, indicating robustness for generalization. This study suggests the potential of the PIANO and serves as a good baseline for physics-informed precipitation nowcasting.
comment: NeurIPS 2025 Machine Learning and Physical Sciences Workshop
☆ Parameter Reduction Improves Vision Transformers: A Comparative Study of Sharing and Width Reduction
Although scaling laws and many empirical results suggest that increasing the size of Vision Transformers often improves performance, model accuracy and training behavior are not always monotonically increasing with scale. Focusing on ViT-B/16 trained on ImageNet-1K, we study two simple parameter-reduction strategies applied to the MLP blocks, each removing 32.7\% of the baseline parameters. Our \emph{GroupedMLP} variant shares MLP weights between adjacent transformer blocks and achieves 81.47\% top-1 accuracy while maintaining the baseline computational cost. Our \emph{ShallowMLP} variant halves the MLP hidden dimension and reaches 81.25\% top-1 accuracy with a 38\% increase in inference throughput. Both models outperform the 86.6M-parameter baseline (81.05\%) and exhibit substantially improved training stability, reducing peak-to-final accuracy degradation from 0.47\% to the range 0.03\% to 0.06\%. These results suggest that, for ViT-B/16 on ImageNet-1K with a standard training recipe, the model operates in an overparameterized regime in which MLP capacity can be reduced without harming performance and can even slightly improve it. More broadly, our findings suggest that architectural constraints such as parameter sharing and reduced width may act as useful inductive biases, and highlight the importance of how parameters are allocated when designing Vision Transformers. All code is available at: https://github.com/AnanthaPadmanaban-KrishnaKumar/parameter-efficient-vit-mlps.
comment: 7 pages total (6 pages main text, 1 page references), 1 figures, 2 tables. Code available at https://github.com/AnanthaPadmanaban-KrishnaKumar/parameter-efficient-vit-mlps
☆ The Silence that Speaks: Neural Estimation via Communication Gaps
Accurate remote state estimation is a fundamental component of many autonomous and networked dynamical systems, where multiple decision-making agents interact and communicate over shared, bandwidth-constrained channels. These communication constraints introduce an additional layer of complexity, namely, the decision of when to communicate. This results in a fundamental trade-off between estimation accuracy and communication resource usage. Traditional extensions of classical estimation algorithms (e.g., the Kalman filter) treat the absence of communication as 'missing' information. However, silence itself can carry implicit information about the system's state, which, if properly interpreted, can enhance the estimation quality even in the absence of explicit communication. Leveraging this implicit structure, however, poses significant analytical challenges, even in relatively simple systems. In this paper, we propose CALM (Communication-Aware Learning and Monitoring), a novel learning-based framework that jointly addresses the dual challenges of communication scheduling and estimator design. Our approach entails learning not only when to communicate but also how to infer useful information from periods of communication silence. We perform comparative case studies on multiple benchmarks to demonstrate that CALM is able to decode the implicit coordination between the estimator and the scheduler to extract information from the instances of 'silence' and enhance the estimation accuracy.
☆ Adaptive-lambda Subtracted Importance Sampled Scores in Machine Unlearning for DDPMs and VAEs
Machine Unlearning is essential for large generative models (VAEs, DDPMs) to comply with the right to be forgotten and prevent undesired content generation without costly retraining. Existing approaches, such as Static-lambda SISS for diffusion models, rely on a fixed mixing weight lambda, which is suboptimal because the required unlearning strength varies across samples and training stages. We propose Adaptive-lambda SISS, a principled extension that turns lambda into a latent variable dynamically inferred at each training step. A lightweight inference network parameterizes an adaptive posterior over lambda, conditioned on contextual features derived from the instantaneous SISS loss terms (retain/forget losses and their gradients). This enables joint optimization of the diffusion model and the lambda-inference mechanism via a variational objective, yielding significantly better trade-offs. We further extend the adaptive-lambda principle to score-based unlearning and introduce a multi-class variant of Score Forgetting Distillation. In addition, we present two new directions: (i) a hybrid objective combining the data-free efficiency of Score Forgetting Distillation with the direct gradient control of SISS, and (ii) a Reinforcement Learning formulation that treats unlearning as a sequential decision process, learning an optimal policy over a state space defined by the model's current memory of the forget set. Experiments on an augmented MNIST benchmark show that Adaptive-lambda SISS substantially outperforms the original static-lambda SISS, achieving stronger removal of forgotten classes while better preserving generation quality on the retain set.
☆ Automating the Refinement of Reinforcement Learning Specifications
Logical specifications have been shown to help reinforcement learning algorithms in achieving complex tasks. However, when a task is under-specified, agents might fail to learn useful policies. In this work, we explore the possibility of improving coarse-grained logical specifications via an exploration-guided strategy. We propose \textsc{AutoSpec}, a framework that searches for a logical specification refinement whose satisfaction implies satisfaction of the original specification, but which provides additional guidance therefore making it easier for reinforcement learning algorithms to learn useful policies. \textsc{AutoSpec} is applicable to reinforcement learning tasks specified via the SpectRL specification logic. We exploit the compositional nature of specifications written in SpectRL, and design four refinement procedures that modify the abstract graph of the specification by either refining its existing edge specifications or by introducing new edge specifications. We prove that all four procedures maintain specification soundness, i.e. any trajectory satisfying the refined specification also satisfies the original. We then show how \textsc{AutoSpec} can be integrated with existing reinforcement learning algorithms for learning policies from logical specifications. Our experiments demonstrate that \textsc{AutoSpec} yields promising improvements in terms of the complexity of control tasks that can be solved, when refined logical specifications produced by \textsc{AutoSpec} are utilized.
☆ Shielded Controller Units for RL with Operational Constraints Applied to Remote Microgrids
Reinforcement learning (RL) is a powerful framework for optimizing decision-making in complex systems under uncertainty, an essential challenge in real-world settings, particularly in the context of the energy transition. A representative example is remote microgrids that supply power to communities disconnected from the main grid. Enabling the energy transition in such systems requires coordinated control of renewable sources like wind turbines, alongside fuel generators and batteries, to meet demand while minimizing fuel consumption and battery degradation under exogenous and intermittent load and wind conditions. These systems must often conform to extensive regulations and complex operational constraints. To ensure that RL agents respect these constraints, it is crucial to provide interpretable guarantees. In this paper, we introduce Shielded Controller Units (SCUs), a systematic and interpretable approach that leverages prior knowledge of system dynamics to ensure constraint satisfaction. Our shield synthesis methodology, designed for real-world deployment, decomposes the environment into a hierarchical structure where each SCU explicitly manages a subset of constraints. We demonstrate the effectiveness of SCUs on a remote microgrid optimization task with strict operational requirements. The RL agent, equipped with SCUs, achieves a 24% reduction in fuel consumption without increasing battery degradation, outperforming other baselines while satisfying all constraints. We hope SCUs contribute to the safe application of RL to the many decision-making challenges linked to the energy transition.
☆ Joint Partitioning and Placement of Foundation Models for Real-Time Edge AI
Inference over large-scale foundation models within heterogeneous edge environments necessitates a fundamentally reconfigurable orchestration substrate. Static partitioning of model layers presumes temporal stability across compute and network resources, which is misaligned with the volatility of real-world deployments. We introduce a framework in which both the spatial placement and internal segmentation of foundation models are elevated to runtime-resolved constructs. The orchestration problem is formalized as a constrained optimization over layer-wise assignments, subject to evolving latency, utilization, and privacy gradients. The framework implements reactive inference composition responsive to infrastructural fluctuations by integrating model-aware capacity profiling with dynamic graph re-partitioning and reallocation. We introduce architectural and algorithmic components, along with a representative use case in 6G multi-access edge computing.
☆ FMTK: A Modular Toolkit for Composable Time Series Foundation Model Pipelines
Foundation models (FMs) have opened new avenues for machine learning applications due to their ability to adapt to new and unseen tasks with minimal or no further training. Time-series foundation models (TSFMs) -- FMs trained on time-series data -- have shown strong performance on classification, regression, and imputation tasks. Recent pipelines combine TSFMs with task-specific encoders, decoders, and adapters to improve performance; however, assembling such pipelines typically requires ad hoc, model-specific implementations that hinder modularity and reproducibility. We introduce FMTK, an open-source, lightweight and extensible toolkit for constructing and fine-tuning TSFM pipelines via standardized backbone and component abstractions. FMTK enables flexible composition across models and tasks, achieving correctness and performance with an average of seven lines of code. https://github.com/umassos/FMTK
☆ AltNet: Addressing the Plasticity-Stability Dilemma in Reinforcement Learning
Neural networks have shown remarkable success in supervised learning when trained on a single task using a fixed dataset. However, when neural networks are trained on a reinforcement learning task, their ability to continue learning from new experiences declines over time. This decline in learning ability is known as plasticity loss. To restore plasticity, prior work has explored periodically resetting the parameters of the learning network, a strategy that often improves overall performance. However, such resets come at the cost of a temporary drop in performance, which can be dangerous in real-world settings. To overcome this instability, we introduce AltNet, a reset-based approach that restores plasticity without performance degradation by leveraging twin networks. The use of twin networks anchors performance during resets through a mechanism that allows networks to periodically alternate roles: one network learns as it acts in the environment, while the other learns off-policy from the active network's interactions and a replay buffer. At fixed intervals, the active network is reset and the passive network, having learned from prior experiences, becomes the new active network. AltNet restores plasticity, improving sample efficiency and achieving higher performance, while avoiding performance drops that pose risks in safety-critical settings. We demonstrate these advantages in several high-dimensional control tasks from the DeepMind Control Suite, where AltNet outperforms various relevant baseline methods, as well as state-of-the-art reset-based techniques.
☆ Associative Syntax and Maximal Repetitions reveal context-dependent complexity in fruit bat communication NeurIPS 2025
This study presents an unsupervised method to infer discreteness, syntax and temporal structures of fruit-bats vocalizations, as a case study of graded vocal systems, and evaluates the complexity of communication patterns in relation with behavioral context. The method improved the baseline for unsupervised labeling of vocal units (i.e. syllables) through manifold learning, by investigating how dimen- sionality reduction on mel-spectrograms affects labeling, and comparing it with unsupervised labels based on acoustic similarity. We then encoded vocalizations as syllabic sequences to analyze the type of syntax, and extracted the Maximal Repetitions (MRs) to evaluate syntactical structures. We found evidence for: i) associative syntax, rather than combinatorial (context classification is unaffected by permutation of sequences, F 1 > 0.9); ii) context-dependent use of syllables (Wilcoxon rank-sum tests, p-value < 0.05); iii) heavy-tail distribution of MRs (truncated power-law, exponent α < 2), indicative of mechanism encoding com- binatorial complexity. Analysis of MRs and syllabic transition networks revealed that mother-pupil interactions were characterized by repetitions, while commu- nication in conflict-contexts exhibited higher complexity (longer MRs and more interconnected vocal sequences) than non-agonistic contexts. We propose that communicative complexity is higher in scenarios of disagreement, reflecting lower compressibility of information.
comment: Accepted for a lightning talk at the NeurIPS 2025 Workshop: "AI for Non-Human Animal Communication"
☆ VLASH: Real-Time VLAs via Future-State-Aware Asynchronous Inference
Vision-Language-Action models (VLAs) are becoming increasingly capable across diverse robotic tasks. However, their real-world deployment remains slow and inefficient: demonstration videos are often sped up by 5-10x to appear smooth, with noticeable action stalls and delayed reactions to environmental changes. Asynchronous inference offers a promising solution to achieve continuous and low-latency control by enabling robots to execute actions and perform inference simultaneously. However, because the robot and environment continue to evolve during inference, a temporal misalignment arises between the prediction and execution intervals. This leads to significant action instability, while existing methods either degrade accuracy or introduce runtime overhead to mitigate it. We propose VLASH, a general asynchronous inference framework for VLAs that delivers smooth, accurate, and fast reaction control without additional overhead or architectural changes. VLASH estimates the future execution-time state by rolling the robot state forward with the previously generated action chunk, thereby bridging the gap between prediction and execution. Experiments show that VLASH achieves up to 2.03x speedup and reduces reaction latency by up to 17.4x compared to synchronous inference while fully preserving the original accuracy. Moreover, it empowers VLAs to handle fast-reaction, high-precision tasks such as playing ping-pong and playing whack-a-mole, where traditional synchronous inference fails. Code is available at https://github.com/mit-han-lab/vlash
☆ Operator-Theoretic Framework for Gradient-Free Federated Learning
Federated learning must address heterogeneity, strict communication and computation limits, and privacy while ensuring performance. We propose an operator-theoretic framework that maps the $L^2$-optimal solution into a reproducing kernel Hilbert space (RKHS) via a forward operator, approximates it using available data, and maps back with the inverse operator, yielding a gradient-free scheme. Finite-sample bounds are derived using concentration inequalities over operator norms, and the framework identifies a data-dependent hypothesis space with guarantees on risk, error, robustness, and approximation. Within this space we design efficient kernel machines leveraging the space folding property of Kernel Affine Hull Machines. Clients transfer knowledge via a scalar space folding measure, reducing communication and enabling a simple differentially private protocol: summaries are computed from noise-perturbed data matrices in one step, avoiding per-round clipping and privacy accounting. The induced global rule requires only integer minimum and equality-comparison operations per test point, making it compatible with fully homomorphic encryption (FHE). Across four benchmarks, the gradient-free FL method with fixed encoder embeddings matches or outperforms strong gradient-based fine-tuning, with gains up to 23.7 points. In differentially private experiments, kernel smoothing mitigates accuracy loss in high-privacy regimes. The global rule admits an FHE realization using $Q \times C$ encrypted minimum and $C$ equality-comparison operations per test point, with operation-level benchmarks showing practical latencies. Overall, the framework provides provable guarantees with low communication, supports private knowledge transfer via scalar summaries, and yields an FHE-compatible prediction rule offering a mathematically grounded alternative to gradient-based federated learning under heterogeneity.
☆ Upper Approximation Bounds for Neural Oscillators
Neural oscillators, originating from the second-order ordinary differential equations (ODEs), have demonstrated competitive performance in stably learning causal mappings between long-term sequences or continuous temporal functions. However, theoretically quantifying the capacities of their neural network architectures remains a significant challenge. In this study, the neural oscillator consisting of a second-order ODE followed by a multilayer perceptron (MLP) is considered. Its upper approximation bound for approximating causal and uniformly continuous operators between continuous temporal function spaces and that for approximating uniformly asymptotically incrementally stable second-order dynamical systems are derived. The established proof method of the approximation bound for approximating the causal continuous operators can also be directly applied to state-space models consisting of a linear time-continuous complex recurrent neural network followed by an MLP. Theoretical results reveal that the approximation error of the neural oscillator for approximating the second-order dynamical systems scales polynomially with the reciprocals of the widths of two utilized MLPs, thus mitigating the curse of parametric complexity. The decay rates of two established approximation error bounds are validated through two numerical cases. These results provide a robust theoretical foundation for the effective application of the neural oscillator in science and engineering.
comment: 30 pages, 4 figures
☆ Chain of Unit-Physics: A Primitive-Centric Approach to Scientific Code Synthesis
Agentic large language models are proposed as autonomous code generators for scientific computing, yet their reliability in high-stakes problems remains unclear. Developing computational scientific software from natural-language queries remains challenging broadly due to (a) sparse representation of domain codes during training and (b) the limited feasibility of RLHF with a small expert community. To address these limitations, this work conceptualizes an inverse approach to code design, embodied in the Chain of Unit-Physics framework: a first-principles (or primitives)-centric, multi-agent system in which human expert knowledge is encoded as unit-physics tests that explicitly constrain code generation. The framework is evaluated on a nontrivial combustion task, used here as a representative benchmark for scientific problem with realistic physical constraints. Closed-weight systems and code-focused agentic variants fail to produce correct end-to-end solvers, despite tool and web access, exhibiting four recurrent error classes: interface (syntax/API) hallucinations, overconfident assumptions, numerical/physical incoherence, and configuration fragility. Open-weight models with chain-of-thought (CoT) decoding reduce interface errors but still yield incorrect solutions. On the benchmark task, the proposed framework converges within 5-6 iterations, matches the human-expert implementation (mean error of $3.1\times10^{-3}$ %), with a $\sim$33.4 % faster runtime and a $\sim$30 % efficient memory usage at a cost comparable to mid-sized commercial APIs, yielding a practical template for physics-grounded scientific code generation. As datasets and models evolve, zero-shot code accuracy will improve; however, the Chain of Unit-Physics framework goes further by embedding first-principles analysis that is foundational to scientific codes.
☆ Sleep Apnea Detection on a Wireless Multimodal Wearable Device Without Oxygen Flow Using a Mamba-based Deep Learning Approach
Objectives: We present and evaluate a Mamba-based deep-learning model for diagnosis and event-level characterization of sleep disordered breathing based on signals from the ANNE One, a non-intrusive dual-module wireless wearable system measuring chest electrocardiography, triaxial accelerometry, chest and finger temperature, and finger phototplethysmography. Methods: We obtained concurrent PSG and wearable sensor recordings from 384 adults attending a tertiary care sleep laboratory. Respiratory events in the PSG were manually annotated in accordance with AASM guidelines. Wearable sensor and PSG recordings were automatically aligned based on the ECG signal, alignment confirmed by visual inspection, and PSG-derived respiratory event labels were used to train and evaluate a deep sequential neural network based on the Mamba architecture. Results: In 57 recordings in our test set (mean age 56, mean AHI 10.8, 43.86\% female) the model-predicted AHI was highly correlated with that derived form the PSG labels (R=0.95, p=8.3e-30, men absolute error 2.83). This performance did not vary with age or sex. At a threshold of AHI$>$5, the model had a sensitivity of 0.96, specificity of 0.87, and kappa of 0.82, and at a threshold of AHI$>$15, the model had a sensitivity of 0.86, specificity of 0.98, and kappa of 0.85. At the level of 30-sec epochs, the model had a sensitivity of 0.93 and specificity of 0.95, with a kappa of 0.68 regarding whether any given epoch contained a respiratory event. Conclusions: Applied to data from the ANNE One, a Mamba-based deep learning model can accurately predict AHI and identify SDB at clinically relevant thresholds, achieves good epoch- and event-level identification of individual respiratory events, and shows promise at physiological characterization of these events including event type (central vs. other) and event duration.
comment: 29 pages, 14 figures. Authors Dominik Luszczynski, Richard Fei Yin and Nicholas Afonin contributed equally
☆ An Approach to Variable Clustering: K-means in Transposed Data and its Relationship with Principal Component Analysis
Principal Component Analysis (PCA) and K-means constitute fundamental techniques in multivariate analysis. Although they are frequently applied independently or sequentially to cluster observations, the relationship between them, especially when K-means is used to cluster variables rather than observations, has been scarcely explored. This study seeks to address this gap by proposing an innovative method that analyzes the relationship between clusters of variables obtained by applying K-means on transposed data and the principal components of PCA. Our approach involves applying PCA to the original data and K-means to the transposed data set, where the original variables are converted into observations. The contribution of each variable cluster to each principal component is then quantified using measures based on variable loadings. This process provides a tool to explore and understand the clustering of variables and how such clusters contribute to the principal dimensions of variation identified by PCA.
comment: Presented at conference and to appear in the proceedings of the 2025 IEEE Chilean Conference on Electrical, Electronics Engineering, Information and Communication Technologies (ChileCon)
☆ Subgroup Validity in Machine Learning for Echocardiogram Data
Echocardiogram datasets enable training deep learning models to automate interpretation of cardiac ultrasound, thereby expanding access to accurate readings of diagnostically-useful images. However, the gender, sex, race, and ethnicity of the patients in these datasets are underreported and subgroup-specific predictive performance is unevaluated. These reporting deficiencies raise concerns about subgroup validity that must be studied and addressed before model deployment. In this paper, we show that current open echocardiogram datasets are unable to assuage subgroup validity concerns. We improve sociodemographic reporting for two datasets: TMED-2 and MIMIC-IV-ECHO. Analysis of six open datasets reveals no consideration of gender-diverse patients and insufficient patient counts for many racial and ethnic groups. We further perform an exploratory subgroup analysis of two published aortic stenosis detection models on TMED-2. We find insufficient evidence for subgroup validity for sex, racial, and ethnic subgroups. Our findings highlight that more data for underrepresented subgroups, improved demographic reporting, and subgroup-focused analyses are needed to prove subgroup validity in future work.
☆ MM-ACT: Learn from Multimodal Parallel Generation to Act
A generalist robotic policy needs both semantic understanding for task planning and the ability to interact with the environment through predictive capabilities. To tackle this, we present MM-ACT, a unified Vision-Language-Action (VLA) model that integrates text, image, and action in shared token space and performs generation across all three modalities. MM-ACT adopts a re-mask parallel decoding strategy for text and image generation, and employs a one-step parallel decoding strategy for action generation to improve efficiency. We introduce Context-Shared Multimodal Learning, a unified training paradigm that supervises generation in all three modalities from a shared context, enhancing action generation through cross-modal learning. Experiments were conducted on the LIBERO simulation and Franka real-robot setups as well as RoboTwin2.0 to assess in-domain and out-of-domain performances respectively. Our approach achieves a success rate of 96.3% on LIBERO, 72.0% across three tasks of real Franka, and 52.38% across eight bimanual tasks of RoboTwin2.0 with an additional gain of 9.25% from cross-modal learning. We release our codes, models and data at https://github.com/HHYHRHY/MM-ACT.
comment: 17 pages
☆ Mitigating Indirect Prompt Injection via Instruction-Following Intent Analysis
Indirect prompt injection attacks (IPIAs), where large language models (LLMs) follow malicious instructions hidden in input data, pose a critical threat to LLM-powered agents. In this paper, we present IntentGuard, a general defense framework based on instruction-following intent analysis. The key insight of IntentGuard is that the decisive factor in IPIAs is not the presence of malicious text, but whether the LLM intends to follow instructions from untrusted data. Building on this insight, IntentGuard leverages an instruction-following intent analyzer (IIA) to identify which parts of the input prompt the model recognizes as actionable instructions, and then flag or neutralize any overlaps with untrusted data segments. To instantiate the framework, we develop an IIA that uses three "thinking intervention" strategies to elicit a structured list of intended instructions from reasoning-enabled LLMs. These techniques include start-of-thinking prefilling, end-of-thinking refinement, and adversarial in-context demonstration. We evaluate IntentGuard on two agentic benchmarks (AgentDojo and Mind2Web) using two reasoning-enabled LLMs (Qwen-3-32B and gpt-oss-20B). Results demonstrate that IntentGuard achieves (1) no utility degradation in all but one setting and (2) strong robustness against adaptive prompt injection attacks (e.g., reducing attack success rates from 100% to 8.5% in a Mind2Web scenario).
♻ ☆ Deep RL Needs Deep Behavior Analysis: Exploring Implicit Planning by Model-Free Agents in Open-Ended Environments NeurIPS 2025
Understanding the behavior of deep reinforcement learning (DRL) agents -particularly as task and agent sophistication increase- requires more than simple comparison of reward curves, yet standard methods for behavioral analysis remain underdeveloped in DRL. We apply tools from neuroscience and ethology to study DRL agents in a novel, complex, partially observable environment, ForageWorld, designed to capture key aspects of real-world animal foraging- including sparse, depleting resource patches, predator threats, and spatially extended arenas. We use this environment as a platform for applying joint behavioral and neural analysis to agents, revealing detailed, quantitatively grounded insights into agent strategies, memory, and planning. Contrary to common assumptions, we find that model-free RNN-based DRL agents can exhibit structured, planning-like behavior purely through emergent dynamics- without requiring explicit memory modules or world models. Our results show that studying DRL agents like animals -analyzing them with neuroethology-inspired tools that reveal structure in both behavior and neural dynamics- uncovers rich structure in their learning dynamics that would otherwise remain invisible. We distill these tools into a general analysis framework linking core behavioral and representational features to diagnostic methods, which can be reused for a wide range of tasks and agents. As agents grow more complex and autonomous, bridging neuroscience, cognitive science, and AI will be essential- not just for understanding their behavior, but for ensuring safe alignment and maximizing desirable behaviors that are hard to measure via reward. We show how this can be done by drawing on lessons from how biological intelligence is studied.
comment: Published at NeurIPS 2025
♻ ☆ VeFA: Vector-Based Feature Space Adaptation for Robust Model Fine-Tuning
Catastrophic forgetting is a well-documented challenge in model fine-tuning, particularly when the downstream domain has limited labeled data or differs substantially from the pre-training distribution. Existing parameter-efficient fine-tuning methods largely operate in the weight space by modifying or augmenting the parameters of the pre-trained model, which can lead to models that are overly specialized to the observed downstream data. Recent studies suggest that one mechanism underlying such forgetting is the introduction of intruder dimensions into the representation space during fine-tuning. To mitigate the risk of overwriting pre-trained knowledge and to enhance robustness, we propose Vector-based Feature Adaptation (VeFA), a new fine-tuning method that operates directly in the feature space, which naturally avoids generating intruder dimensions. VeFA performs element-wise adaptation on individual features, thereby ensuring that the effective fine-tuned weights always remain within the column space of the pre-trained weight matrix. This feature-space adaptation perspective is inspired by the idea of effect equivalence modeling (EEM) of downstream lurking variables that induce distribution shifts, which posits that the influence of unobserved factors can be represented as an equivalent aggregate effect on observed features. By compensating for the effects of downstream lurking variables via a lightweight feature-level transformation, VeFA preserves the pre-trained representations and improves model generalization under distribution shift. We evaluate VeFA against LoRA on image classification, NLU, and NLG benchmarks, considering both standard fine-tuning performance and robustness; across these tasks, VeFA achieves comparable fine-tuning performance while consistently exhibiting stronger robustness.
♻ ☆ Auditing Algorithmic Bias in Transformer-Based Trading
Transformer models have become increasingly popular in financial applications, yet their potential risk making and biases remain under-explored. The purpose of this work is to audit the reliance of the model on volatile data for decision-making, and quantify how the frequency of price movements affects the model's prediction confidence. We employ a transformer model for prediction, and introduce a metric based on Partial Information Decomposition (PID) to measure the influence of each asset on the model's decision making. Our analysis reveals two key observations: first, the model disregards data volatility entirely, and second, it is biased toward data with lower-frequency price movements.
♻ ☆ Limits of Generalization in RLVR: Two Case Studies in Mathematical Reasoning
Mathematical reasoning is a central challenge for large language models (LLMs), requiring not only correct answers but also faithful reasoning processes. Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a promising approach for enhancing such capabilities; however, its ability to foster genuine reasoning remains unclear. We investigate RLVR on two combinatorial problems with fully verifiable solutions: \emph{Activity Scheduling} and the \emph{Longest Increasing Subsequence}, using carefully curated datasets with unique optima. Across multiple reward designs, we find that RLVR improves evaluation metrics but often by reinforcing superficial heuristics rather than acquiring new reasoning strategies. These findings highlight the limits of RLVR generalization, emphasizing the importance of benchmarks that disentangle genuine mathematical reasoning from shortcut exploitation and provide faithful measures of progress. Code available at https://github.com/xashru/rlvr-seq-generalization.
♻ ☆ TRiCo: Triadic Game-Theoretic Co-Training for Robust Semi-Supervised Learning NeurIPS 2025
We introduce TRiCo, a novel triadic game-theoretic co-training framework that rethinks the structure of semi-supervised learning by incorporating a teacher, two students, and an adversarial generator into a unified training paradigm. Unlike existing co-training or teacher-student approaches, TRiCo formulates SSL as a structured interaction among three roles: (i) two student classifiers trained on frozen, complementary representations, (ii) a meta-learned teacher that adaptively regulates pseudo-label selection and loss balancing via validation-based feedback, and (iii) a non-parametric generator that perturbs embeddings to uncover decision boundary weaknesses. Pseudo-labels are selected based on mutual information rather than confidence, providing a more robust measure of epistemic uncertainty. This triadic interaction is formalized as a Stackelberg game, where the teacher leads strategy optimization and students follow under adversarial perturbations. By addressing key limitations in existing SSL frameworks, such as static view interactions, unreliable pseudo-labels, and lack of hard sample modeling, TRiCo provides a principled and generalizable solution. Extensive experiments on CIFAR-10, SVHN, STL-10, and ImageNet demonstrate that TRiCo consistently achieves state-of-the-art performance in low-label regimes, while remaining architecture-agnostic and compatible with frozen vision backbones.Code:https://github.com/HoHongYeung/NeurIPS25-TRiCo.
comment: Accepted by NeurIPS 2025
♻ ☆ STaRFormer: Semi-Supervised Task-Informed Representation Learning via Dynamic Attention-Based Regional Masking for Sequential Data NeurIPS 2025
Understanding user intent is essential for situational and context-aware decision-making. Motivated by a real-world scenario, this work addresses intent predictions of smart device users in the vicinity of vehicles by modeling sequential spatiotemporal data. However, in real-world scenarios, environmental factors and sensor limitations can result in non-stationary and irregularly sampled data, posing significant challenges. To address these issues, we propose STaRFormer, a Transformer-based approach that can serve as a universal framework for sequential modeling. STaRFormer utilizes a new dynamic attention-based regional masking scheme combined with a novel semi-supervised contrastive learning paradigm to enhance task-specific latent representations. Comprehensive experiments on 56 datasets varying in types (including non-stationary and irregularly sampled), tasks, domains, sequence lengths, training samples, and applications demonstrate the efficacy of STaRFormer, achieving notable improvements over state-of-the-art approaches.
comment: Accepted to NeurIPS 2025
♻ ☆ PETAR: Localized Findings Generation with Mask-Aware Vision-Language Modeling for PET Automated Reporting
Generating automated reports for 3D positron emission tomography (PET) is an important and challenging task in medical imaging. PET plays a vital role in oncology, but automating report generation is difficult due to the complexity of whole-body 3D volumes, the wide range of potential clinical findings, and the limited availability of annotated datasets. To address these challenges, we introduce PETARSeg-11K, the first large-scale, publicly available dataset that provides lesion-level correspondence between 3D PET/CT volumes and free-text radiological findings. It comprises 11,356 lesion descriptions paired with 3D segmentations. Second, we propose PETAR-4B, a 3D vision-language model designed for mask-aware, spatially grounded PET/CT reporting. PETAR-4B jointly encodes PET, CT, and 3D lesion segmentation masks, using a 3D focal prompt to capture fine-grained details of lesions that normally comprise less than 0.1% of the volume. Evaluations using automated metrics show PETAR-4B substantially outperforming all 2D and 3D baselines. A human study involving five physicians -- the first of its kind for automated PET reporting -- confirms the model's clinical utility and establishes correlations between automated metrics and expert judgment. This work provides a foundational dataset and a novel architecture, advancing 3D medical vision-language understanding in PET.
♻ ☆ Exploring Variational Graph Autoencoders for Distribution Grid Data Generation NeurIPS 2025
To address the lack of public power system data for machine learning research in energy networks, we investigate the use of variational graph autoencoders (VGAEs) for synthetic distribution grid generation. Using two open-source datasets, ENGAGE and DINGO, we evaluate four decoder variants and compare generated networks against the original grids using structural and spectral metrics. Results indicate that simple decoders fail to capture realistic topologies, while GCN-based approaches achieve strong fidelity on ENGAGE but struggle on the more complex DINGO dataset, producing artifacts such as disconnected components and repeated motifs. These findings highlight both the promise and limitations of VGAEs for grid synthesis, underscoring the need for more expressive generative models and robust evaluation. We release our models and analysis as open source to support benchmarking and accelerate progress in ML-driven power system research.
comment: 12 pages, 7 figures. Accepted at NeurIPS 2025
♻ ☆ Do different prompting methods yield a common task representation in language models? NeurIPS 2025
Demonstrations and instructions are two primary approaches for prompting language models to perform in-context learning (ICL) tasks. Do identical tasks elicited in different ways result in similar representations of the task? An improved understanding of task representation mechanisms would offer interpretability insights and may aid in steering models. We study this through \textit{function vectors} (FVs), recently proposed as a mechanism to extract few-shot ICL task representations. We generalize FVs to alternative task presentations, focusing on short textual instruction prompts, and successfully extract instruction function vectors that promote zero-shot task accuracy. We find evidence that demonstration- and instruction-based function vectors leverage different model components, and offer several controls to dissociate their contributions to task performance. Our results suggest that different task promptings forms do not induce a common task representation through FVs but elicit different, partly overlapping mechanisms. Our findings offer principled support to the practice of combining instructions and task demonstrations, imply challenges in universally monitoring task inference across presentation forms, and encourage further examinations of LLM task inference mechanisms.
comment: 10 pages, 4 figures; presented at NeurIPS 2025
♻ ☆ Can-SAVE: Deploying Low-Cost and Population-Scale Cancer Screening via Survival Analysis Variables and EHR
Conventional medical cancer screening methods are costly, labor-intensive, and extremely difficult to scale. Although AI can improve cancer detection, most systems rely on complex or specialized medical data, making them impractical for large-scale screening. We introduce Can-SAVE, a lightweight AI system that ranks population-wide cancer risks solely based on medical history events. By integrating survival model outputs into a gradient-boosting framework, our approach detects subtle, long-term patient risk patterns - often well before clinical symptoms manifest. Can-SAVE was rigorously evaluated on a real-world dataset of 2.5 million adults spanning five Russian regions, marking the study as one of the largest and most comprehensive deployments of AI-driven cancer risk assessment. In a retrospective oncologist-supervised study over 1.9M patients, Can-SAVE achieves a 4-10x higher detection rate at identical screening volumes and an Average Precision (AP) of 0.228 vs. 0.193 for the best baseline (LoRA-tuned Qwen3-Embeddings via DeepSeek-R1 summarization). In a year-long prospective pilot (426K patients), our method almost doubled the cancer detection rate (+91%) and increased population coverage by 36% over the national screening protocol. The system demonstrates practical scalability: a city-wide population of 1 million patients can be processed in under three hours using standard hardware, enabling seamless clinical integration. This work proves that Can-SAVE achieves nationally significant cancer detection improvements while adhering to real-world public healthcare constraints, offering immediate clinical utility and a replicable framework for population-wide screening. Code for training and feature engineering is available at https://github.com/sb-ai-lab/Can-SAVE.
comment: 11 pages, 3 figures
♻ ☆ Exploring Equity of Climate Policies using Multi-Agent Multi-Objective Reinforcement Learning IJCAI 2025
Addressing climate change requires coordinated policy efforts of nations worldwide. These efforts are informed by scientific reports, which rely in part on Integrated Assessment Models (IAMs), prominent tools used to assess the economic impacts of climate policies. However, traditional IAMs optimize policies based on a single objective, limiting their ability to capture the trade-offs among economic growth, temperature goals, and climate justice. As a result, policy recommendations have been criticized for perpetuating inequalities, fueling disagreements during policy negotiations. We introduce Justice, the first framework integrating IAM with Multi-Objective Multi-Agent Reinforcement Learning (MOMARL). By incorporating multiple objectives, Justice generates policy recommendations that shed light on equity while balancing climate and economic goals. Further, using multiple agents can provide a realistic representation of the interactions among the diverse policy actors. We identify equitable Pareto-optimal policies using our framework, which facilitates deliberative decision-making by presenting policymakers with the inherent trade-offs in climate and economic policy.
comment: Published at IJCAI 2025, AI and Social Good Track
♻ ☆ Accelerating data-driven algorithm selection for combinatorial partitioning problems
In clustering algorithm selection, we are given a massive dataset and must efficiently select which clustering algorithm to use. We study this problem in a semi-supervised setting, with an unknown ground-truth clustering that we can only access through expensive oracle queries. Ideally, the clustering algorithm's output will be structurally close to the ground truth. We approach this problem by introducing a notion of size generalization for clustering algorithm accuracy. We identify conditions under which we can (1) subsample the massive clustering instance, (2) evaluate a set of candidate algorithms on the smaller instance, and (3) guarantee that the algorithm with the best accuracy on the small instance will have the best accuracy on the original big instance. We provide theoretical size generalization guarantees for three classic clustering algorithms: single-linkage, k-means++, and (a smoothed variant of) Gonzalez's k-centers heuristic. We validate our theoretical analysis with empirical results, observing that on real-world clustering instances, we can use a subsample of as little as 5% of the data to identify which algorithm is best on the full dataset.
♻ ☆ Blind Inverse Problem Solving Made Easy by Text-to-Image Latent Diffusion
This paper considers blind inverse image restoration, the task of predicting a target image from a degraded source when the degradation (i.e. the forward operator) is unknown. Existing solutions typically rely on restrictive assumptions such as operator linearity, curated training data or narrow image distributions limiting their practicality. We introduce LADiBI, a training-free method leveraging large-scale text-to-image diffusion to solve diverse blind inverse problems with minimal assumptions. Within a Bayesian framework, LADiBI uses text prompts to jointly encode priors for both target images and operators, unlocking unprecedented flexibility compared to existing methods. Additionally, we propose a novel diffusion posterior sampling algorithm that combines strategic operator initialization with iterative refinement of image and operator parameters, eliminating the need for highly constrained operator forms. Experiments show that LADiBI effectively handles both linear and challenging nonlinear image restoration problems across various image distributions, all without task-specific assumptions or retraining.
Extracting memorized pieces of (copyrighted) books from open-weight language models
Plaintiffs and defendants in copyright lawsuits over generative AI often make sweeping, opposing claims about the extent to which large language models (LLMs) have memorized plaintiffs' protected expression in their training data. Drawing on both machine learning and copyright law, we show that these polarized positions dramatically oversimplify the relationship between memorization and copyright. To do so, we extend a recent probabilistic extraction technique to measure memorization of 50 books in 17 open-weight LLMs. Through thousands of experiments, we show that the extent of memorization varies both by model and by book. With respect to our specific extraction methodology, we find that most LLMs do not memorize most books -- either in whole or in part. However, we also find that Llama 3.1 70B entirely memorizes some books, like the first Harry Potter book and 1984. In fact, the first Harry Potter is so memorized that, using a seed prompt consisting of just the first few tokens of the first chapter, we can deterministically generate the entire book near-verbatim. We discuss why our results have significant implications for copyright cases, though not ones that unambiguously favor either side.
♻ ☆ DeepPersona: A Generative Engine for Scaling Deep Synthetic Personas NeurIPS 2025
Simulating human profiles by instilling personas into large language models (LLMs) is rapidly transforming research in agentic behavioral simulation, LLM personalization, and human-AI alignment. However, most existing synthetic personas remain shallow and simplistic, capturing minimal attributes and failing to reflect the rich complexity and diversity of real human identities. We introduce DEEPPERSONA, a scalable generative engine for synthesizing narrative-complete synthetic personas through a two-stage, taxonomy-guided method. First, we algorithmically construct the largest-ever human-attribute taxonomy, comprising over hundreds of hierarchically organized attributes, by mining thousands of real user-ChatGPT conversations. Second, we progressively sample attributes from this taxonomy, conditionally generating coherent and realistic personas that average hundreds of structured attributes and roughly 1 MB of narrative text, two orders of magnitude deeper than prior works. Intrinsic evaluations confirm significant improvements in attribute diversity (32 percent higher coverage) and profile uniqueness (44 percent greater) compared to state-of-the-art baselines. Extrinsically, our personas enhance GPT-4.1-mini's personalized question answering accuracy by 11.6 percent on average across ten metrics and substantially narrow (by 31.7 percent) the gap between simulated LLM citizens and authentic human responses in social surveys. Our generated national citizens reduced the performance gap on the Big Five personality test by 17 percent relative to LLM-simulated citizens. DEEPPERSONA thus provides a rigorous, scalable, and privacy-free platform for high-fidelity human simulation and personalized AI research.
comment: add an author[Update], 12 pages, 5 figures, accepted at LAW 2025 Workshop (NeurIPS 2025) Project page: https://deeppersona-ai.github.io/
♻ ☆ DynaStride: Dynamic Stride Windowing with MMCoT for Instructional Multi-Scene Captioning NeurIPS 7
Scene-level captioning in instructional videos can enhance learning by requiring an understanding of both visual cues and temporal structure. By aligning visual cues with textual guidance, this understanding supports procedural learning and multimodal reasoning, providing a richer context for skill acquisition. However, captions that fail to capture this structure may lack coherence and quality, which can create confusion and undermine the video's educational intent. To address this gap, we introduce DynaStride, a pipeline to generate coherent, scene-level captions without requiring manual scene segmentation. Using the YouCookII dataset's scene annotations, DynaStride performs adaptive frame sampling and multimodal windowing to capture key transitions within each scene. It then employs a multimodal chain-of-thought process to produce multiple action-object pairs, which are refined and fused using a dynamic stride window selection algorithm that adaptively balances temporal context and redundancy. The final scene-level caption integrates visual semantics and temporal reasoning in a single instructional caption. Empirical evaluations against strong baselines, including VLLaMA3 and GPT-4o, demonstrate consistent gains on both N-gram-based metrics (BLEU, METEOR) and semantic similarity measures (BERTScore, CLIPScore). Qualitative analyses further show that DynaStride produces captions that are more temporally coherent and informative, suggesting a promising direction for improving AI-powered instructional content generation.
comment: 16 pages, 15 figures, 5 Tables, Accepted at NeurIPS 7HVU Workshop, Accepted at AAAI AI4ED Workshop
♻ ☆ SCI: A Metacognitive Control for Signal Dynamics
Modern deep learning systems are typically deployed as open-loop function approximators: they map inputs to outputs in a single pass, without regulating how much computation or explanatory effort is spent on a given case. In safety-critical settings, this is brittle: easy and ambiguous inputs receive identical processing, and uncertainty is only read off retrospectively from raw probabilities. We introduce the Surgical Cognitive Interpreter (SCI), a lightweight closed-loop metacognitive control layer that wraps an existing stochastic model and turns prediction into an iterative process. SCI monitors a scalar interpretive state SP(t), here instantiated as a normalized entropy-based confidence signal, and adaptively decides whether to stop, continue sampling, or abstain. The goal is not to improve accuracy per se, but to regulate interpretive error ΔSP and expose a safety signal that tracks when the underlying model is likely to fail. We instantiate SCI around Monte Carlo dropout classifiers in three domains: vision (MNIST digits), medical time series (MIT-BIH arrhythmia), and industrial condition monitoring (rolling-element bearings). In all cases, the controller allocates more inference steps to misclassified inputs than to correct ones (up to about 3-4x on MNIST and bearings, and 1.4x on MIT-BIH). The resulting ΔSP acts as a usable safety signal for detecting misclassifications (AUROC 0.63 on MNIST, 0.70 on MIT-BIH, 0.86 on bearings). Code and reproducibility: https://github.com/vishal-1344/sci
comment: v2: Extended theoretical analysis (Lyapunov-style stability), added metacognitive experiments across three domains, and released code and configuration files at https://github.com/vishal-1344/sci
♻ ☆ Localized Conformal Multi-Quantile Regression
Standard conformal prediction methods guarantee marginal coverage but often produce inefficient intervals that fail to adapt to local heteroscedasticity, while recent localized approaches often struggle to maintain validity across distinct subpopulations with varying noise profiles. To address these challenges, we introduce Localized Conformal Multi-Quantile Regression (LCMQR), a novel framework that synergizes multi-quantile information with kernel-based localization to construct efficient and adaptive prediction intervals. Theoretically, we resolve an inconsistency in Conformalized Composite Quantile Regression (CCQR) by proving that our consistent Average-then-Max scoring mechanism systematically yields tighter intervals than the Max-then-Average approach used in prior work. For heterogeneous environments, we extend this framework to Group-Calibrated LCMQR (GC-LCMQR) via a stratified calibration step that guarantees finite-sample validity within distinct subgroups. Experiments on benchmark datasets and an Individual Treatment Effect (ITE) task demonstrate that LCMQR achieves superior efficiency on standard benchmarks, while GC-LCMQR uniquely achieves group-level coverage for target subgroups in mixture populations where baselines fail.
♻ ☆ Safeguarding Privacy in Edge Speech Understanding with Tiny Foundation Models
Robust speech recognition systems rely on cloud service providers for inference. It needs to ensure that an untrustworthy provider cannot deduce the sensitive content in speech. Sanitization can be done on speech content keeping in mind that it has to avoid compromising transcription accuracy. Realizing the under utilized capabilities of tiny speech foundation models (FMs), for the first time, we propose a novel use: enhancing speech privacy on resource-constrained devices. We introduce SpeechShield, an edge/cloud privacy preserving speech inference engine that can filter sensitive entities without compromising transcript accuracy. We utilize a timestamp based on-device masking approach that utilizes a token to entity prediction model to filter sensitive entities. Our choice of mask strategically conceals parts of the input and hides sensitive data. The masked input is sent to a trusted cloud service or to a local hub to generate the masked output. The effectiveness of SpeechShield hinges on how well the entity time segments are masked. Our recovery is a confidence score based approach that chooses the best prediction between cloud and on-device model. We implement SpeechShield on a 64 bit Raspberry Pi 4B. Experiments show that our solution leads to robust speech recognition without forsaking privacy. SpeechShield with < 100 MB memory, achieves state-of-the-art (SOTA) speech transcription performance while filtering about 83% of private entities directly on-device. SpeechShield is 16x smaller in memory, 3.3x faster and 17x more compute efficient than prior privacy preserving speech frameworks and has a relative reduction in word error rate (WER) by 38.8-77.5% when compared to existing offline transcription services.
♻ ☆ Causal Feature Selection Method for Contextual Multi-Armed Bandits in Recommender System
Effective feature selection is essential for optimizing contextual multi-armed bandits (CMABs) in large-scale online systems, where suboptimal features can degrade rewards, interpretability, and efficiency. Traditional feature selection often prioritizes outcome correlation, neglecting the crucial role of heterogeneous treatment effects (HTE) across arms in CMAB decision-making. This paper introduces two novel, model-free filter methods, Heterogeneous Incremental Effect (HIE) and Heterogeneous Distribution Divergence (HDD), specifically designed to identify features driving HTE. HIE quantifies a feature's value based on its ability to induce changes in the optimal arm, while HDD measures its impact on reward distribution divergence across arms. These methods are computationally efficient, robust to model mis-specification, and adaptable to various feature types, making them suitable for rapid screening in dynamic environments where retraining complex models is infeasible. We validate HIE and HDD on synthetic data with known ground truth and in a large-scale commercial recommender system, demonstrating their consistent ability to identify influential HTE features and thereby enhance CMAB performance.
♻ ☆ SECA: Semantically Equivalent and Coherent Attacks for Eliciting LLM Hallucinations NeurIPS 2025
Large Language Models (LLMs) are increasingly deployed in high-risk domains. However, state-of-the-art LLMs often produce hallucinations, raising serious concerns about their reliability. Prior work has explored adversarial attacks for hallucination elicitation in LLMs, but it often produces unrealistic prompts, either by inserting gibberish tokens or by altering the original meaning. As a result, these approaches offer limited insight into how hallucinations may occur in practice. While adversarial attacks in computer vision often involve realistic modifications to input images, the problem of finding realistic adversarial prompts for eliciting LLM hallucinations has remained largely underexplored. To address this gap, we propose Semantically Equivalent and Coherent Attacks (SECA) to elicit hallucinations via realistic modifications to the prompt that preserve its meaning while maintaining semantic coherence. Our contributions are threefold: (i) we formulate finding realistic attacks for hallucination elicitation as a constrained optimization problem over the input prompt space under semantic equivalence and coherence constraints; (ii) we introduce a constraint-preserving zeroth-order method to effectively search for adversarial yet feasible prompts; and (iii) we demonstrate through experiments on open-ended multiple-choice question answering tasks that SECA achieves higher attack success rates while incurring almost no semantic equivalence or semantic coherence errors compared to existing methods. SECA highlights the sensitivity of both open-source and commercial gradient-inaccessible LLMs to realistic and plausible prompt variations. Code is available at https://github.com/Buyun-Liang/SECA.
comment: Accepted at NeurIPS 2025. Code is available at https://github.com/Buyun-Liang/SECA
♻ ☆ Stabilizing black-box model selection with the inflated argmax
Model selection is the process of choosing from a class of candidate models given data. For instance, methods such as the LASSO and sparse identification of nonlinear dynamics (SINDy) formulate model selection as finding a sparse solution to a linear system of equations determined by training data. However, absent strong assumptions, such methods are highly unstable: if a single data point is removed from the training set, a different model may be selected. In this paper, we present a new approach to stabilizing model selection with theoretical stability guarantees that leverages a combination of bagging and an ''inflated'' argmax operation. Our method selects a small collection of models that all fit the data, and it is stable in that, with high probability, the removal of any training point will result in a collection of selected models that overlaps with the original collection. We illustrate this method in (a) a simulation in which strongly correlated covariates make standard LASSO model selection highly unstable, (b) a Lotka-Volterra model selection problem focused on identifying how competition in an ecosystem influences species' abundances, (c) a graph subset selection problem using cell-signaling data from proteomics, and (d) unsupervised $κ$-means clustering. In these settings, the proposed method yields stable, compact, and accurate collections of selected models, outperforming a variety of benchmarks.
♻ ☆ AEGIS: Authentic Edge Growth In Sparsity for Link Prediction in Edge-Sparse Bipartite Knowledge Graphs
Bipartite knowledge graphs in niche domains are typically data-poor and edge-sparse, which hinders link prediction. We introduce AEGIS (Authentic Edge Growth In Sparsity), an edge-only augmentation framework that resamples existing training edges -either uniformly simple or with inverse-degree bias degree-aware -thereby preserving the original node set and sidestepping fabricated endpoints. To probe authenticity across regimes, we consider naturally sparse graphs (game design pattern's game-pattern network) and induce sparsity in denser benchmarks (Amazon, MovieLens) via high-rate bond percolation. We evaluate augmentations on two complementary metrics: AUC-ROC (higher is better) and the Brier score (lower is better), using two-tailed paired t-tests against sparse baselines. On Amazon and MovieLens, copy-based AEGIS variants match the baseline while the semantic KNN augmentation is the only method that restores AUC and calibration; random and synthetic edges remain detrimental. On the text-rich GDP graph, semantic KNN achieves the largest AUC improvement and Brier score reduction, and simple also lowers the Brier score relative to the sparse control. These findings position authenticity-constrained resampling as a data-efficient strategy for sparse bipartite link prediction, with semantic augmentation providing an additional boost when informative node descriptions are available.
♻ ☆ PRISM: Diversifying Dataset Distillation by Decoupling Architectural Priors
Dataset distillation (DD) promises compact yet faithful synthetic data, but existing approaches often inherit the inductive bias of a single teacher model. As dataset size increases, this bias drives generation toward overly smooth, homogeneous samples, reducing intra-class diversity and limiting generalization. We present PRISM (PRIors from diverse Source Models), a framework that disentangles architectural priors during synthesis. PRISM decouples the logit-matching and regularization objectives, supervising them with different teacher architectures: a primary model for logits and a stochastic subset for batch-normalization (BN) alignment. On ImageNet-1K, PRISM consistently and reproducibly outperforms single-teacher methods (e.g., SRe2L) and recent multi-teacher variants (e.g., G-VBSM) at low- and mid-IPC regimes. The generated data also show significantly richer intra-class diversity, as reflected by a notable drop in cosine similarity between features. We further analyze teacher selection strategies (pre- vs. intra-distillation) and introduce a scalable cross-class batch formation scheme for fast parallel synthesis. Code will be released after the review period.
♻ ☆ TimeDistill: Efficient Long-Term Time Series Forecasting with MLP via Cross-Architecture Distillation KDD 2026
Transformer-based and CNN-based methods demonstrate strong performance in long-term time series forecasting. However, their high computational and storage requirements can hinder large-scale deployment. To address this limitation, we propose integrating lightweight MLP with advanced architectures using knowledge distillation (KD). Our preliminary study reveals different models can capture complementary patterns, particularly multi-scale and multi-period patterns in the temporal and frequency domains. Based on this observation, we introduce TimeDistill, a cross-architecture KD framework that transfers these patterns from teacher models (e.g., Transformers, CNNs) to MLP. Additionally, we provide a theoretical analysis, demonstrating that our KD approach can be interpreted as a specialized form of mixup data augmentation. TimeDistill improves MLP performance by up to 18.6%, surpassing teacher models on eight datasets. It also achieves up to 7X faster inference and requires 130X fewer parameters. Furthermore, we conduct extensive evaluations to highlight the versatility and effectiveness of TimeDistill.
comment: Accepted at KDD 2026, we release our code publicly at https://github.com/LingFengGold/TimeDistill
♻ ☆ Multi-View Graph Learning with Graph-Tuple
Graph Neural Networks (GNNs) typically scale with the number of graph edges, making them well suited for sparse graphs but less efficient on dense graphs, such as point clouds or molecular interactions. A common remedy is to sparsify the graph via similarity thresholding or distance pruning, but this forces an arbitrary choice of a single interaction scale and discards crucial information from other scales. To overcome this limitation, we introduce a multi-view graph-tuple framework. Instead of a single graph, our graph-tuple framework partitions the graph into disjoint subgraphs, capturing primary local interactions and weaker, long-range connections. We then learn multi-view representations from the graph-tuple via a heterogeneous message-passing architecture inspired by the theory of non-commuting operators, which we formally prove is strictly more expressive and guarantees a lower oracle risk compared to single-graph message-passing models. We instantiate our framework on two scientific domains: molecular property prediction from feature-scarce Coulomb matrices and cosmological parameter inference from geometric point clouds. On both applications, our multi-view graph-tuple models demonstrate better performance than single-graph baselines, highlighting the power and versatility of our multi-view approach.
comment: Accepted as a poster at the TAG-DS 2025 Workshop (Topology, Algebra, and Geometry in Data Science). OpenReview: https://openreview.net/forum?id=s4ezAuj5xM
♻ ☆ Stochastic Hessian Fittings with Lie Groups
This report investigates the fitting of the Hessian or its inverse for stochastic optimizations using a Hessian fitting criterion derived from the preconditioned stochastic gradient descent (PSGD) method. This criterion is closely related to many widely used second-order and adaptive gradient optimization methods, including BFGS, the Gauss-Newton algorithm, natural gradient descent, and AdaGrad. Our analyses reveal the efficiency and reliability differences of a broad range of preconditioner fitting methods, ranging from closed-form to iterative approaches, using Hessian-vector products or stochastic gradients only, with Hessian fittings across various geometric settings (the Euclidean space, the manifold of symmetric positive definite (SPD) matrices, and a variety of Lie groups). The most intriguing finding is that the Hessian fitting problem is strongly convex under mild conditions in certain general Lie groups. This result turns Hessian fitting into a well-behaved Lie group optimization problem and facilitates the design of highly efficient and elegant Lie group sparse preconditioner fitting methods for large-scale stochastic optimizations.
comment: 23 pages; 7 figures; 3 tables; code https://github.com/lixilinx/psgd_torch
♻ ☆ ToMA: Token Merge with Attention for Diffusion Models ICML 2025
Diffusion models excel in high-fidelity image generation but face scalability limits due to transformers' quadratic attention complexity. Plug-and-play token reduction methods like ToMeSD and ToFu reduce FLOPs by merging redundant tokens in generated images but rely on GPU-inefficient operations (e.g., sorting, scattered writes), introducing overheads that negate theoretical speedups when paired with optimized attention implementations (e.g., FlashAttention). To bridge this gap, we propose Token Merge with Attention (ToMA), an off-the-shelf method that redesigns token reduction for GPU-aligned efficiency, with three key contributions: 1) a reformulation of token merge as a submodular optimization problem to select diverse tokens; 2) merge/unmerge as an attention-like linear transformation via GPU-friendly matrix operations; and 3) exploiting latent locality and sequential redundancy (pattern reuse) to minimize overhead. ToMA reduces SDXL/Flux generation latency by 24%/23%, respectively (with DINO $Δ< 0.07$), outperforming prior methods. This work bridges the gap between theoretical and practical efficiency for transformers in diffusion. Code available at https://github.com/WenboLuu/ToMA.
comment: In proceedings of the 42nd International Conference on Machine Learning (ICML 2025). Code available at https://github.com/wenboluu/ToMA
♻ ☆ ANSR-DT: An Adaptive Neuro-Symbolic Learning and Reasoning Framework for Digital Twins
In this paper, we propose an Adaptive Neuro-Symbolic Learning and Reasoning Framework for digital twin technology called "ANSR-DT." Digital twins in industrial environments often struggle with interpretability, real-time adaptation, and human input integration. Our approach addresses these challenges by combining CNN-LSTM dynamic event detection with reinforcement learning and symbolic reasoning to enable adaptive intelligence with interpretable decision processes. This integration enhances environmental understanding while promoting continuous learning, leading to more effective real-time decision-making in human-machine collaborative applications. We evaluated ANSR-DT on synthetic industrial data, observing significant improvements over traditional approaches, with up to 99.5% accuracy for dynamic pattern recognition. The framework demonstrated superior adaptability with extended reinforcement learning training, improving explained variance from 0.447 to 0.547. Future work aims at scaling to larger datasets to test rule management beyond the current 14 rules. Our open-source implementation promotes reproducibility and establishes a foundation for future research in adaptive, interpretable digital twins for industrial applications.
comment: Code available at https://github.com/sbhakim/ansr-dt
♻ ☆ Homeostatic Ubiquity of Hebbian Dynamics in Regularized Learning Rules
Hebbian and anti-Hebbian plasticity are widely observed in the biological brain, yet their theoretical understanding remains limited. In this work, we find that when a learning method is regularized with L2 weight decay, its learning signal will gradually align with the direction of the Hebbian learning signal as it approaches stationarity. This Hebbian-like behavior is not unique to SGD: almost any learning rule, including random ones, can exhibit the same signature long before learning has ceased. We also provide a theoretical explanation for anti-Hebbian plasticity in regression tasks, demonstrating how it can arise naturally from gradient or input noise, and offering a potential reason for the observed anti-Hebbian effects in the brain. Certainly, our proposed mechanisms do not rule out any conventionally established forms of Hebbian plasticity and could coexist with them extensively in the brain. A key insight for neurophysiology is the need to develop ways to experimentally distinguish these two types of Hebbian observations.
♻ ☆ Value-oriented forecast reconciliation for renewables in electricity markets
Forecast reconciliation is considered an effective method to achieve coherence (within a forecast hierarchy) and to improve forecast quality. However, the value of reconciled forecasts in downstream decision-making tasks has been mostly overlooked. In a multi-agent setup with heterogeneous loss functions, this oversight may lead to unfair outcomes, hence resulting in conflicts during the reconciliation process. To address this, we propose a value-oriented forecast reconciliation approach that focuses on the forecast value for all individual agents. Fairness is ensured through the use of a Nash bargaining framework. Specifically, we model this problem as a cooperative bargaining game, where each agent aims to optimize their own gain while contributing to the overall reconciliation process. We then present a primal-dual algorithm for parameter estimation based on empirical risk minimization. From an application perspective, we consider an aggregated wind energy trading problem, where profits are distributed using a weighted allocation rule. We demonstrate the effectiveness of our approach through several numerical experiments, showing that it consistently results in increased profits for all agents involved.
comment: preprint of European Journal of Operational Research
Quantitative Methods 5
☆ COVID-19 Forecasting from U.S. Wastewater Surveillance Data: A Retrospective Multi-Model Study (2022-2024)
Accurate and reliable forecasting models are critical for guiding public health responses and policy decisions during pandemics such as COVID-19. Retrospective evaluation of model performance is essential for improving epidemic forecasting capabilities. In this study, we used COVID-19 wastewater data from CDC's National Wastewater Surveillance System to generate sequential weekly retrospective forecasts for the United States from March 2022 through September 2024, both at the national level and for four major regions (Northeast, Midwest, South, and West). We produced 133 weekly forecasts using 11 models, including ARIMA, generalized additive models (GAM), simple linear regression (SLR), Prophet, and the n-sub-epidemic framework (top-ranked, weighted-ensemble, and unweighted-ensemble variants). Forecast performance was assessed using mean absolute error (MAE), mean squared error (MSE), weighted interval score (WIS), and 95% prediction interval coverage. The n-sub-epidemic unweighted ensembles outperformed all other models at 3-4-week horizons, particularly at the national level and in the Midwest and West. ARIMA and GAM performed best at 1-2-week horizons in most regions, whereas Prophet and SLR consistently underperformed across regions and horizons. These findings highlight the value of region-specific modeling strategies and demonstrate the utility of the n-sub-epidemic framework for real-time outbreak forecasting using wastewater surveillance data.
comment: 38 pages, 21 figures
☆ Associative Syntax and Maximal Repetitions reveal context-dependent complexity in fruit bat communication NeurIPS 2025
This study presents an unsupervised method to infer discreteness, syntax and temporal structures of fruit-bats vocalizations, as a case study of graded vocal systems, and evaluates the complexity of communication patterns in relation with behavioral context. The method improved the baseline for unsupervised labeling of vocal units (i.e. syllables) through manifold learning, by investigating how dimen- sionality reduction on mel-spectrograms affects labeling, and comparing it with unsupervised labels based on acoustic similarity. We then encoded vocalizations as syllabic sequences to analyze the type of syntax, and extracted the Maximal Repetitions (MRs) to evaluate syntactical structures. We found evidence for: i) associative syntax, rather than combinatorial (context classification is unaffected by permutation of sequences, F 1 > 0.9); ii) context-dependent use of syllables (Wilcoxon rank-sum tests, p-value < 0.05); iii) heavy-tail distribution of MRs (truncated power-law, exponent α < 2), indicative of mechanism encoding com- binatorial complexity. Analysis of MRs and syllabic transition networks revealed that mother-pupil interactions were characterized by repetitions, while commu- nication in conflict-contexts exhibited higher complexity (longer MRs and more interconnected vocal sequences) than non-agonistic contexts. We propose that communicative complexity is higher in scenarios of disagreement, reflecting lower compressibility of information.
comment: Accepted for a lightning talk at the NeurIPS 2025 Workshop: "AI for Non-Human Animal Communication"
☆ Sleep Apnea Detection on a Wireless Multimodal Wearable Device Without Oxygen Flow Using a Mamba-based Deep Learning Approach
Objectives: We present and evaluate a Mamba-based deep-learning model for diagnosis and event-level characterization of sleep disordered breathing based on signals from the ANNE One, a non-intrusive dual-module wireless wearable system measuring chest electrocardiography, triaxial accelerometry, chest and finger temperature, and finger phototplethysmography. Methods: We obtained concurrent PSG and wearable sensor recordings from 384 adults attending a tertiary care sleep laboratory. Respiratory events in the PSG were manually annotated in accordance with AASM guidelines. Wearable sensor and PSG recordings were automatically aligned based on the ECG signal, alignment confirmed by visual inspection, and PSG-derived respiratory event labels were used to train and evaluate a deep sequential neural network based on the Mamba architecture. Results: In 57 recordings in our test set (mean age 56, mean AHI 10.8, 43.86\% female) the model-predicted AHI was highly correlated with that derived form the PSG labels (R=0.95, p=8.3e-30, men absolute error 2.83). This performance did not vary with age or sex. At a threshold of AHI$>$5, the model had a sensitivity of 0.96, specificity of 0.87, and kappa of 0.82, and at a threshold of AHI$>$15, the model had a sensitivity of 0.86, specificity of 0.98, and kappa of 0.85. At the level of 30-sec epochs, the model had a sensitivity of 0.93 and specificity of 0.95, with a kappa of 0.68 regarding whether any given epoch contained a respiratory event. Conclusions: Applied to data from the ANNE One, a Mamba-based deep learning model can accurately predict AHI and identify SDB at clinically relevant thresholds, achieves good epoch- and event-level identification of individual respiratory events, and shows promise at physiological characterization of these events including event type (central vs. other) and event duration.
comment: 29 pages, 14 figures. Authors Dominik Luszczynski, Richard Fei Yin and Nicholas Afonin contributed equally
☆ Disentangling Proxies of Demographic Adjustments in Clinical Equations
The use of coarse demographic adjustments in clinical equations has been increasingly scrutinized. In particular, adjustments for race have sparked significant debate with several medical professional societies recommending race-neutral equations in recent years. However, current approaches to remove race from clinical equations do not address the underlying causes of observed differences. Here, we present ARC (Approach for identifying pRoxies of demographic Correction), a framework to identify explanatory factors of group-level differences, which may inform the development of more accurate and precise clinical equations. We apply ARC to spirometry tests across two observational cohorts, CDC NHANES and UK Biobank, comprising 159,893 participants. Cross-sectional sociodemographic or exposure measures did not explain differences in reference lung function across race groups beyond those already explained by age, sex, and height. By contrast, sitting height accounted for up to 26% of the remaining differences in lung volumes between healthy Black and White adults. We then demonstrate how pulmonary function test (PFT) reference equations can incorporate these factors in a new set of equations called $ARC_{PFT}$, surpassing the predictive performance of the race-neutral GLI-Global equation recommended by major pulmonary societies. When compared to GLI-Global, inclusion of sitting height and waist circumference in $ARC_{PFT}$ decreased mean absolute error by 13% among Black participants in the UK Biobank and by 24% in NHANES. $ARC_{PFT}$ also had reduced vulnerability to domain shift compared to race-based methods, with mean absolute error 19.3% and 35.6% lower than race-stratified models in out-of-sample Asian and Hispanic populations, respectively. This approach provides a path for understanding the proxies of imprecise demographic adjustments and developing personalized clinical equations.
☆ Approximate Bayesian Inference on Mechanisms of Network Growth and Evolution
Mechanistic models can provide an intuitive and interpretable explanation of network growth by specifying a set of generative rules. These rules can be defined by domain knowledge about real-world mechanisms governing network growth or may be designed to facilitate the appearance of certain network motifs. In the formation of real-world networks, multiple mechanisms may be simultaneously involved; it is then important to understand the relative contribution of each of these mechanisms. In this paper, we propose the use of a conditional density estimator, augmented with a graph neural network, to perform inference on a flexible mixture of network-forming mechanisms. This event-wise mixture-of-mechanisms model assigns mechanisms to each edge formation event rather than stipulating node-level mechanisms, thus allowing for an explanation of the network generation process, as well as the dynamic evolution of the network over time. We demonstrate that our approximate Bayesian approach yields valid inferences for the relative weights of the mechanisms in our model, and we utilize this method to investigate the mechanisms behind the formation of a variety of real-world networks.
comment: 24 pages, 8 figures
Genomics 1
♻ ☆ Life-Code: Central Dogma Modeling with Multi-Omics Sequence Unification
The interactions between DNA, RNA, and proteins are fundamental to biological processes, as illustrated by the central dogma of molecular biology. Although modern biological pre-trained models have achieved great success in analyzing these macromolecules individually, their interconnected nature remains underexplored. This paper follows the guidance of the central dogma to redesign both the data and model pipeline and offers a comprehensive framework, Life-Code, that spans different biological functions. As for data flow, we propose a unified pipeline to integrate multi-omics data by reverse-transcribing RNA and reverse-translating amino acids into nucleotide-based sequences. As for the model, we design a codon tokenizer and a hybrid long-sequence architecture to encode the interactions between coding and non-coding regions through masked modeling pre-training. To model the translation and folding process with coding sequences, Life-Code learns protein structures of the corresponding amino acids by knowledge distillation from off-the-shelf protein language models. Such designs enable Life-Code to capture complex interactions within genetic sequences, providing a more comprehensive understanding of multi-omics with the central dogma. Extensive experiments show that Life-Code achieves state-of-the-art results on various tasks across three omics, highlighting its potential for advancing multi-omics analysis and interpretation.
comment: Preprint V3 (10 pages main text)
Quantitative Methods 6
☆ Statistical NLP for Optimization of Clinical Trial Success Prediction in Pharmaceutical R&D
This work presents the development and evaluation of an NLP-enabled probabilistic classifier designed to estimate the probability of technical and regulatory success (pTRS) for clinical trials in the field of neuroscience. While pharmaceutical R&D is plagued by high attrition rates and enormous costs, particularly within neuroscience, where success rates are below 10%, timely identification of promising programs can streamline resource allocation and reduce financial risk. Leveraging data from the ClinicalTrials.gov database and success labels from the recently developed Clinical Trial Outcome dataset, the classifier extracts text-based clinical trial features using statistical NLP techniques. These features were integrated into several non-LLM frameworks (logistic regression, gradient boosting, and random forest) to generate calibrated probability scores. Model performance was assessed on a retrospective dataset of 101,145 completed clinical trials spanning 1976-2024, achieving an overall ROC-AUC of 0.64. An LLM-based predictive model was then built using BioBERT, a domain-specific language representation encoder. The BioBERT-based model achieved an overall ROC-AUC of 0.74 and a Brier Score of 0.185, indicating its predictions had, on average, 40% less squared error than would be observed using industry benchmarks. The BioBERT-based model also made trial outcome predictions that were superior to benchmark values 70% of the time overall. By integrating NLP-driven insights into drug development decision-making, this work aims to enhance strategic planning and optimize investment allocation in neuroscience programs.
comment: Doctor of Engineering Praxis Dissertation, The George Washington University. 122 pages. Present affiliation: Iambic Therapeutics
☆ Tissue stress measurements with Bayesian Inversion Stress Microscopy
Cells within biological tissue are constantly subjected to dynamic mechanical forces. Measuring the internal stress of tissues has proven crucial for our understanding of the role of mechanical forces in fundamental biological processes like morphogenesis, collective migration, cell division or cell elimination and death. Previously, we have introduced Bayesian Inversion Stress Microscopy (BISM), which is relying on measuring cell-generated traction forces in vitro and has proven particularly useful to measure absolute stresses in confined cell monolayers. We further demonstrate the applicability and robustness of BISM across various experimental settings with different boundary conditions, ranging from confined tissues of arbitrary shape to monolayers composed of different cell types. Importantly, BISM does not require assumptions on cell rheology. Therefore, it can be applied to complex heterogeneous tissues consisting of different cell types, as long as they can be grown on a flat substrate. Finally, we compare BISM to other common stress measurement techniques using a coherent experimental setup, followed by a discussion on its limitations and further perspectives.
comment: 36 pages, 12 figures
☆ Rep3Net: An Approach Exploiting Multimodal Representation for Molecular Bioactivity Prediction
In early stage drug discovery, bioactivity prediction of molecules against target proteins plays a crucial role. Trdaitional QSAR models that utilizes molecular descriptor based data often struggles to predict bioactivity of molecules effectively due to its limitation in capturing structural and contextual information embedded within each compound. To address this challenge, we propose Rep3Net, a unified deep learning architecture that not only incorporates descriptor data but also includes spatial and relational information through graph-based represenation of compounds and contextual information through ChemBERTa generated embeddings from SMILES strings. Our model employing multimodal concatenated features produce reliable bioactivity prediction on Poly [ADP-ribose] polymerase 1 (PARP-1) dataset. PARP-1 is a crucial agent in DNA damage repair and has become a significant theraputic target in malignancies that depend on it for survival and growth. A comprehensive analysis and comparison with conventional standalone models including GCN, GAT, XGBoost, etc. demonstrates that our architecture achieves the highest predictive performance. In computational screening of compounds in drug discovery, our architecture provides a scalable framework for bioactivity prediction.
☆ Layer Probing Improves Kinase Functional Prediction with Protein Language Models
Protein language models (PLMs) have transformed sequence-based protein analysis, yet most applications rely only on final-layer embeddings, which may overlook biologically meaningful information encoded in earlier layers. We systematically evaluate all 33 layers of ESM-2 for kinase functional prediction using both unsupervised clustering and supervised classification. We show that mid-to-late transformer layers (layers 20-33) outperform the final layer by 32 percent in unsupervised Adjusted Rand Index and improve homology-aware supervised accuracy to 75.7 percent. Domain-level extraction, calibrated probability estimates, and a reproducible benchmarking pipeline further strengthen reliability. Our results demonstrate that transformer depth contains functionally distinct biological signals and that principled layer selection significantly improves kinase function prediction.
comment: 14 pages, 7 figures, 3 tables; includes code and dataset links
☆ BioArc: Discovering Optimal Neural Architectures for Biological Foundation Models
Foundation models have revolutionized various fields such as natural language processing (NLP) and computer vision (CV). While efforts have been made to transfer the success of the foundation models in general AI domains to biology, existing works focus on directly adopting the existing foundation model architectures from general machine learning domains without a systematic design considering the unique physicochemical and structural properties of each biological data modality. This leads to suboptimal performance, as these repurposed architectures struggle to capture the long-range dependencies, sparse information, and complex underlying ``grammars'' inherent to biological data. To address this gap, we introduce BioArc, a novel framework designed to move beyond intuition-driven architecture design towards principled, automated architecture discovery for biological foundation models. Leveraging Neural Architecture Search (NAS), BioArc systematically explores a vast architecture design space, evaluating architectures across multiple biological modalities while rigorously analyzing the interplay between architecture, tokenization, and training strategies. This large-scale analysis identifies novel, high-performance architectures, allowing us to distill a set of empirical design principles to guide future model development. Furthermore, to make the best of this set of discovered principled architectures, we propose and compare several architecture prediction methods that effectively and efficiently predict optimal architectures for new biological tasks. Overall, our work provides a foundational resource and a principled methodology to guide the creation of the next generation of task-specific and foundation models for biology.
♻ ☆ SynCell: Contextualized Drug Synergy Prediction
Motivation: Drug synergy is strongly influenced by cellular context. Variations in protein interaction landscapes and pathway activities across cell types can reshape how drugs act in combination. However, most existing models overlook this heterogeneity and rely on static or bulk level protein protein interaction networks that ignore cell specific molecular wiring. With the availability of single cell transcriptomic data, it is now possible to reconstruct cell line specific interactomes, offering a new foundation for contextualized drug synergy modeling. Results: We present SynCell, a contextualized drug synergy framework that integrates drug protein, protein protein, and protein cell line relations within a unified graph architecture. SynCell leverages single cell derived, cell line specific PPI networks to embed the molecular context in which drugs act, and employs graph convolutional learning to model how pharmacological effects propagate through cell specific signaling networks. This formulation treats synergy prediction as a cell line contextualized drug drug interaction problem. Across two large scale benchmarks (NCI ALMANAC and ONeil), SynCell consistently outperforms state of the art baselines including DeepDDS, HypergraphSynergy, and HERMES, especially in predicting synergies involving unseen drugs or novel cell lines. Ablation analyses show that contextualizing PPIs with single cell resolution yields substantial gains in generalization and biological interpretability.
comment: 12 pages, 1 figures
Cell Behavior 2
☆ VCWorld: A Biological World Model for Virtual Cell Simulation
Virtual cell modeling aims to predict cellular responses to perturbations. Existing virtual cell models rely heavily on large-scale single-cell datasets, learning explicit mappings between gene expression and perturbations. Although recent models attempt to incorporate multi-source biological information, their generalization remains constrained by data quality, coverage, and batch effects. More critically, these models often function as black boxes, offering predictions without interpretability or consistency with biological principles, which undermines their credibility in scientific research. To address these challenges, we present VCWorld, a cell-level white-box simulator that integrates structured biological knowledge with the iterative reasoning capabilities of large language models to instantiate a biological world model. VCWorld operates in a data-efficient manner to reproduce perturbation-induced signaling cascades and generates interpretable, stepwise predictions alongside explicit mechanistic hypotheses. In drug perturbation benchmarks, VCWorld achieves state-of-the-art predictive performance, and the inferred mechanistic pathways are consistent with publicly available biological evidence.
♻ ☆ A Phase-field Model for Apoptotic Cell Death
The process of programmed cell death, namely apoptosis, is a natural mechanism that regulates healthy tissue, multicellular structures, and homeostasis. An improved understanding of apoptosis can significantly enhance our knowledge of biological processes and systems. For instance, pathogens can manipulate the apoptotic process to either evade immune detection or to facilitate their spread. Furthermore, of particular clinical interest is the ability of cancer cells to evade apoptosis, hence allowing them to survive and proliferate uncontrollably. Thus, in this work, we propose a phase-field framework for simulating intrinsic or extrinsic apoptosis induced by an activation field, including deriving the configurational mechanics underlying such phenomena. Along with exploring varying conditions needed to initiate or reduce apoptosis, this can serve as a starting point for computational therapeutic testing. To showcase model capabilities, we present simulations exhibiting different types of cellular dynamics produced when varying the mechanisms underlying apoptosis. The model is subsequently applied to probe different morphological transitions, such as cell shrinkage, membrane blebbing, cavity formation and fragmentation. Lastly, we compare the characteristics observed in our simulations to electron microscopy images, providing additional support for the model.
Computation and Language 63
☆ ThetaEvolve: Test-time Learning on Open Problems
Recent advances in large language models (LLMs) have enabled breakthroughs in mathematical discovery, exemplified by AlphaEvolve, a closed-source system that evolves programs to improve bounds on open problems. However, it relies on ensembles of frontier LLMs to achieve new bounds and is a pure inference system that models cannot internalize the evolving strategies. We introduce ThetaEvolve, an open-source framework that simplifies and extends AlphaEvolve to efficiently scale both in-context learning and Reinforcement Learning (RL) at test time, allowing models to continually learn from their experiences in improving open optimization problems. ThetaEvolve features a single LLM, a large program database for enhanced exploration, batch sampling for higher throughput, lazy penalties to discourage stagnant outputs, and optional reward shaping for stable training signals, etc. ThetaEvolve is the first evolving framework that enable a small open-source model, like DeepSeek-R1-0528-Qwen3-8B, to achieve new best-known bounds on open problems (circle packing and first auto-correlation inequality) mentioned in AlphaEvolve. Besides, across two models and four open tasks, we find that ThetaEvolve with RL at test-time consistently outperforms inference-only baselines, and the model indeed learns evolving capabilities, as the RL-trained checkpoints demonstrate faster progress and better final performance on both trained target task and other unseen tasks. We release our code publicly: https://github.com/ypwang61/ThetaEvolve
comment: 30 pages, link: https://github.com/ypwang61/ThetaEvolve
☆ MegaChat: A Synthetic Persian Q&A Dataset for High-Quality Sales Chatbot Evaluation
Small and medium-sized enterprises (SMEs) in Iran increasingly leverage Telegram for sales, where real-time engagement is essential for conversion. However, developing AI-driven chatbots for this purpose requires large, high-quality question-and-answer (Q&A) datasets, which are typically expensive and resource-intensive to produce, especially for low-resource languages like Persian. In this paper, we introduce MegaChat, the first fully synthetic Persian Q&A dataset designed to evaluate intelligent sales chatbots in Telegram-based e-commerce. We propose a novel, automated multi-agent architecture that generates persona-aware Q&A pairs by collecting data from active Telegram shopping channels. The system employs specialized agents for question generation, validation, and refinement, ensuring the production of realistic and diverse conversational data. To evaluate answer generation, we compare three classic retrieval-augmented generation (RAG) models with our advanced agentic system, which features multi-query retrieval, reranking, and persona-aligned response synthesis. Using GPT-5.1 for evaluation across six quality dimensions, our results show that the agentic architecture outperformed traditional RAG models in 4 out of 5 diverse channels, demonstrating its ability to generate scalable, high-quality datasets without relying on expensive human annotation or complex fine-tuning. MegaChat provides SMEs with an efficient, cost-effective solution for building intelligent customer engagement systems in specialized commercial domains, enabling advancements in multilingual conversational AI for low-resource languages. Download: https://github.com/MegaChat-Tech/MegaChat-DataSet
comment: 6 pages, 11 figures, 2 tables
☆ Ambiguity Awareness Optimization: Towards Semantic Disambiguation for Direct Preference Optimization EMNLP 2025
Direct Preference Optimization (DPO) is a widely used reinforcement learning from human feedback (RLHF) method across various domains. Recent research has increasingly focused on the role of token importance in improving DPO effectiveness. It is observed that identical or semantically similar content (defined as ambiguous content) frequently appears within the preference pairs. We hypothesize that the presence of ambiguous content during DPO training may introduce ambiguity, thereby limiting further improvements in alignment. Through mathematical analysis and proof-of-concept experiments, we reveal that ambiguous content may potentially introduce ambiguities, thereby degrading performance. To address this issue, we introduce Ambiguity Awareness Optimization (AAO), a simple yet effective approach that automatically re-weights ambiguous content to reduce ambiguities by calculating semantic similarity from preference pairs. Through extensive experiments, we demonstrate that AAO consistently and significantly surpasses state-of-the-art approaches in performance, without markedly increasing response length, across multiple model scales and widely adopted benchmark datasets, including AlpacaEval 2, MT-Bench, and Arena-Hard. Specifically, AAO outperforms DPO by up to 8.9 points on AlpacaEval 2 and achieves an improvement of by up to 15.0 points on Arena-Hard.
comment: Accepted at EMNLP 2025 main
☆ Is Passive Expertise-Based Personalization Enough? A Case Study in AI-Assisted Test-Taking EMNLP 2025
Novice and expert users have different systematic preferences in task-oriented dialogues. However, whether catering to these preferences actually improves user experience and task performance remains understudied. To investigate the effects of expertise-based personalization, we first built a version of an enterprise AI assistant with passive personalization. We then conducted a user study where participants completed timed exams, aided by the two versions of the AI assistant. Preliminary results indicate that passive personalization helps reduce task load and improve assistant perception, but reveal task-specific limitations that can be addressed through providing more user agency. These findings underscore the importance of combining active and passive personalization to optimize user experience and effectiveness in enterprise task-oriented environments.
comment: Accepted into Tailoring AI: Exploring Active and Passive LLM Personalization (PALS) workshop at EMNLP 2025
☆ Optimizing Multimodal Language Models through Attention-based Interpretability
Modern large language models become multimodal, analyzing various data formats like text and images. While fine-tuning is effective for adapting these multimodal language models (MLMs) to downstream tasks, full fine-tuning is computationally expensive. Parameter-Efficient Fine-Tuning (PEFT) methods address this by training only a small portion of model weights. However, MLMs are difficult to interpret, making it challenging to identify which components are most effective for training to balance efficiency and performance. We propose an attention-based interpretability method for MLMs by analyzing attention scores relative to image tokens. The core idea is to identify attention heads that focus on image key objects. We utilize this information to select optimal model components for PEFT in multimodal models. Our contributions include a method for identifying attention heads associated with image key objects, its application to PEFT for image captioning, and the creation of a new dataset containing images, key object masks, and their textual descriptions. We conducted experiments on MLMs with 2-3 billion parameters to validate the method's effectiveness. By calculating Head Impact (HI) scores we quantify an attention head's focus on key objects, indicating its significance in image understanding. Our fine-tuning experiments demonstrate that adapting layers with the highest HI scores leads to the most significant shifts in metrics compared to pre-trained, randomly selected, or lowest-HI-score layers. This indicates that fine-tuning a small percentage (around 0.01%) of parameters in these crucial layers can substantially influence image understanding capabilities.
comment: Accepted for ICAI-2025 conference
☆ Scaling HuBERT for African Languages: From Base to Large and XL
Despite recent progress in multilingual speech processing, African languages remain under-represented in both research and deployed systems, particularly when it comes to strong, open-weight encoders that transfer well under low-resource supervision. Self-supervised learning has proven especially promising in such settings, yet most publicly released models targeting African speech remain at BASE scale, leaving unanswered whether larger encoders, trained exclusively on Africa-centric audio, offer tangible benefits and how model capacity interacts with data composition. This work addresses that gap by introducing SSA-HuBERT-Large (317M parameters) and SSA-HuBERT-XL (964M parameters), the first large models trained solely on African speech, alongside a BASE size counterpart. We release these models as open weights: see https://huggingface.co/collections/Orange/african-speech-foundation-models. By conducting a carefully controlled experimental study focused exclusively on Sub-Saharan languages, covering automatic speech recognition (ASR) and language identification (LID) tasks, we demonstrate that larger architectures significantly improve performance by effectively leveraging large audio datasets.
comment: Journée d'études AFIA-ATALA 2025 : Technologies linguistiques pour les langues peu dotées
☆ Towards Improving Interpretability of Language Model Generation through a Structured Knowledge Discovery Approach
Knowledge-enhanced text generation aims to enhance the quality of generated text by utilizing internal or external knowledge sources. While language models have demonstrated impressive capabilities in generating coherent and fluent text, the lack of interpretability presents a substantial obstacle. The limited interpretability of generated text significantly impacts its practical usability, particularly in knowledge-enhanced text generation tasks that necessitate reliability and explainability. Existing methods often employ domain-specific knowledge retrievers that are tailored to specific data characteristics, limiting their generalizability to diverse data types and tasks. To overcome this limitation, we directly leverage the two-tier architecture of structured knowledge, consisting of high-level entities and low-level knowledge triples, to design our task-agnostic structured knowledge hunter. Specifically, we employ a local-global interaction scheme for structured knowledge representation learning and a hierarchical transformer-based pointer network as the backbone for selecting relevant knowledge triples and entities. By combining the strong generative ability of language models with the high faithfulness of the knowledge hunter, our model achieves high interpretability, enabling users to comprehend the model output generation process. Furthermore, we empirically demonstrate the effectiveness of our model in both internal knowledge-enhanced table-to-text generation on the RotoWireFG dataset and external knowledge-enhanced dialogue response generation on the KdConv dataset. Our task-agnostic model outperforms state-of-the-art methods and corresponding language models, setting new standards on the benchmark.
☆ Tackling a Challenging Corpus for Early Detection of Gambling Disorder: UNSL at MentalRiskES 2025
Gambling disorder is a complex behavioral addiction that is challenging to understand and address, with severe physical, psychological, and social consequences. Early Risk Detection (ERD) on the Web has become a key task in the scientific community for identifying early signs of mental health behaviors based on social media activity. This work presents our participation in the MentalRiskES 2025 challenge, specifically in Task 1, aimed at classifying users at high or low risk of developing a gambling-related disorder. We proposed three methods based on a CPI+DMC approach, addressing predictive effectiveness and decision-making speed as independent objectives. The components were implemented using the SS3, BERT with extended vocabulary, and SBERT models, followed by decision policies based on historical user analysis. Although it was a challenging corpus, two of our proposals achieved the top two positions in the official results, performing notably in decision metrics. Further analysis revealed some difficulty in distinguishing between users at high and low risk, reinforcing the need to explore strategies to improve data interpretation and quality, and to promote more transparent and reliable ERD systems for mental disorders.
comment: In Iberian Language Evaluation Forum (IberLEF 2025), Zaragoza, Spain
☆ Every Token Counts: Generalizing 16M Ultra-Long Context in Large Language Models
This work explores the challenge of building ``Machines that Can Remember'', framing long-term memory as the problem of efficient ultra-long context modeling. We argue that this requires three key properties: \textbf{sparsity}, \textbf{random-access flexibility}, and \textbf{length generalization}. To address ultra-long-context modeling, we leverage Hierarchical Sparse Attention (HSA), a novel attention mechanism that satisfies all three properties. We integrate HSA into Transformers to build HSA-UltraLong, which is an 8B-parameter MoE model trained on over 8 trillion tokens and is rigorously evaluated on different tasks with in-domain and out-of-domain context lengths to demonstrate its capability in handling ultra-long contexts. Results show that our model performs comparably to full-attention baselines on in-domain lengths while achieving over 90\% accuracy on most in-context retrieval tasks with contexts up to 16M. This report outlines our experimental insights and open problems, contributing a foundation for future research in ultra-long context modeling.
☆ Toward Automatic Safe Driving Instruction: A Large-Scale Vision Language Model Approach
Large-scale Vision Language Models (LVLMs) exhibit advanced capabilities in tasks that require visual information, including object detection. These capabilities have promising applications in various industrial domains, such as autonomous driving. For example, LVLMs can generate safety-oriented descriptions of videos captured by road-facing cameras. However, ensuring comprehensive safety requires monitoring driver-facing views as well to detect risky events, such as the use of mobiles while driving. Thus, the ability to process synchronized inputs is necessary from both driver-facing and road-facing cameras. In this study, we develop models and investigate the capabilities of LVLMs by constructing a dataset and evaluating their performance on this dataset. Our experimental results demonstrate that while pre-trained LVLMs have limited effectiveness, fine-tuned LVLMs can generate accurate and safety-aware driving instructions. Nonetheless, several challenges remain, particularly in detecting subtle or complex events in the video. Our findings and error analysis provide valuable insights that can contribute to the improvement of LVLM-based systems in this domain.
comment: Accepted to MMLoSo 2025
☆ Transformer-Driven Triple Fusion Framework for Enhanced Multimodal Author Intent Classification in Low-Resource Bangla
The expansion of the Internet and social networks has led to an explosion of user-generated content. Author intent understanding plays a crucial role in interpreting social media content. This paper addresses author intent classification in Bangla social media posts by leveraging both textual and visual data. Recognizing limitations in previous unimodal approaches, we systematically benchmark transformer-based language models (mBERT, DistilBERT, XLM-RoBERTa) and vision architectures (ViT, Swin, SwiftFormer, ResNet, DenseNet, MobileNet), utilizing the Uddessho dataset of 3,048 posts spanning six practical intent categories. We introduce a novel intermediate fusion strategy that significantly outperforms early and late fusion on this task. Experimental results show that intermediate fusion, particularly with mBERT and Swin Transformer, achieves 84.11% macro-F1 score, establishing a new state-of-the-art with an 8.4 percentage-point improvement over prior Bangla multimodal approaches. Our analysis demonstrates that integrating visual context substantially enhances intent classification. Cross-modal feature integration at intermediate levels provides optimal balance between modality-specific representation and cross-modal learning. This research establishes new benchmarks and methodological standards for Bangla and other low-resource languages. We call our proposed framework BangACMM (Bangla Author Content MultiModal).
comment: Accepted at the 28th International Conference on Computer and Information Technology (ICCIT 2025). To be published in IEEE proceedings
☆ MCP vs RAG vs NLWeb vs HTML: A Comparison of the Effectiveness and Efficiency of Different Agent Interfaces to the Web (Technical Report)
Large language model agents are increasingly used to automate web tasks such as product search, offer comparison, and checkout. Current research explores different interfaces through which these agents interact with websites, including traditional HTML browsing, retrieval-augmented generation (RAG) over pre-crawled content, communication via Web APIs using the Model Context Protocol (MCP), and natural-language querying through the NLWeb interface. However, no prior work has compared these four architectures within a single controlled environment using identical tasks. To address this gap, we introduce a testbed consisting of four simulated e-shops, each offering its products via HTML, MCP, and NLWeb interfaces. For each interface (HTML, RAG, MCP, and NLWeb) we develop specialized agents that perform the same sets of tasks, ranging from simple product searches and price comparisons to complex queries for complementary or substitute products and checkout processes. We evaluate the agents using GPT 4.1, GPT 5, GPT 5 mini, and Claude Sonnet 4 as underlying LLM. Our evaluation shows that the RAG, MCP and NLWeb agents outperform HTML on both effectiveness and efficiency. Averaged over all tasks, F1 rises from 0.67 for HTML to between 0.75 and 0.77 for the other agents. Token usage falls from about 241k for HTML to between 47k and 140k per task. The runtime per task drops from 291 seconds to between 50 and 62 seconds. The best overall configuration is RAG with GPT 5 achieving an F1 score of 0.87 and a completion rate of 0.79. Also taking cost into consideration, RAG with GPT 5 mini offers a good compromise between API usage fees and performance. Our experiments show the choice of the interaction interface has a substantial impact on both the effectiveness and efficiency of LLM-based web agents.
☆ Behavior-Equivalent Token: Single-Token Replacement for Long Prompts in LLMs
Carefully engineered system prompts play a critical role in guiding the behavior of LLM agents, but their considerable length introduces significant drawbacks, including increased inference latency, higher computational cost, and reduced effective context length. This raises the question of whether such lengthy prompts can be replaced by a drastically reduced number of tokens while preserving their behavioral effect on downstream tasks. To enable this, we propose a lightweight three-stage training framework that learns a single prompt-specific Behavior-Equivalent token ([BE]). The framework first trains [BE] to encode the natural-language content of the original system prompt via reconstruction, and then distills the prompt 's downstream behavior into this single token. Importantly, our method requires no access to model internals, no auxiliary compression models, and no labeled responses. Empirical evaluations on three datasets show that a single [BE] token achieves up to a 3000x reduction in prompt length, while retaining about 98% of the downstream performance of the original system prompts. This substantially reduces inference cost and leaves almost the entire context window available for user inputs.
comment: 15 pages, 5 figures
☆ BanglaSentNet: An Explainable Hybrid Deep Learning Framework for Multi-Aspect Sentiment Analysis with Cross-Domain Transfer Learning
Multi-aspect sentiment analysis of Bangla e-commerce reviews remains challenging due to limited annotated datasets, morphological complexity, code-mixing phenomena, and domain shift issues, affecting 300 million Bangla-speaking users. Existing approaches lack explainability and cross-domain generalization capabilities crucial for practical deployment. We present BanglaSentNet, an explainable hybrid deep learning framework integrating LSTM, BiLSTM, GRU, and BanglaBERT through dynamic weighted ensemble learning for multi-aspect sentiment classification. We introduce a dataset of 8,755 manually annotated Bangla product reviews across four aspects (Quality, Service, Price, Decoration) from major Bangladeshi e-commerce platforms. Our framework incorporates SHAP-based feature attribution and attention visualization for transparent insights. BanglaSentNet achieves 85% accuracy and 0.88 F1-score, outperforming standalone deep learning models by 3-7% and traditional approaches substantially. The explainability suite achieves 9.4/10 interpretability score with 87.6% human agreement. Cross-domain transfer learning experiments reveal robust generalization: zero-shot performance retains 67-76% effectiveness across diverse domains (BanglaBook reviews, social media, general e-commerce, news headlines); few-shot learning with 500-1000 samples achieves 90-95% of full fine-tuning performance, significantly reducing annotation costs. Real-world deployment demonstrates practical utility for Bangladeshi e-commerce platforms, enabling data-driven decision-making for pricing optimization, service improvement, and customer experience enhancement. This research establishes a new state-of-the-art benchmark for Bangla sentiment analysis, advances ensemble learning methodologies for low-resource languages, and provides actionable solutions for commercial applications.
comment: Submitted to Springer Nature Computer Science (SNCS) as an extended version of our ICDSAIA 2025 conference paper
☆ Tourism Question Answer System in Indian Language using Domain-Adapted Foundation Models
This article presents the first comprehensive study on designing a baseline extractive question-answering (QA) system for the Hindi tourism domain, with a specialized focus on the Varanasi-a cultural and spiritual hub renowned for its Bhakti-Bhaav (devotional ethos). Targeting ten tourism-centric subdomains-Ganga Aarti, Cruise, Food Court, Public Toilet, Kund, Museum, General, Ashram, Temple and Travel, the work addresses the absence of language-specific QA resources in Hindi for culturally nuanced applications. In this paper, a dataset comprising 7,715 Hindi QA pairs pertaining to Varanasi tourism was constructed and subsequently augmented with 27,455 pairs generated via Llama zero-shot prompting. We propose a framework leveraging foundation models-BERT and RoBERTa, fine-tuned using Supervised Fine-Tuning (SFT) and Low-Rank Adaptation (LoRA), to optimize parameter efficiency and task performance. Multiple variants of BERT, including pre-trained languages (e.g., Hindi-BERT), are evaluated to assess their suitability for low-resource domain-specific QA. Evaluation metrics - F1, BLEU, and ROUGE-L - highlight trade-offs between answer precision and linguistic fluency. Experiments demonstrate that LoRA-based fine-tuning achieves competitive performance (85.3\% F1) while reducing trainable parameters by 98\% compared to SFT, striking a balance between efficiency and accuracy. Comparative analysis across models reveals that RoBERTa with SFT outperforms BERT variants in capturing contextual nuances, particularly for culturally embedded terms (e.g., Aarti, Kund). This work establishes a foundational baseline for Hindi tourism QA systems, emphasizing the role of LORA in low-resource settings and underscoring the need for culturally contextualized NLP frameworks in the tourism domain.
☆ TWEO: Transformers Without Extreme Outliers Enables FP8 Training And Quantization For Dummies
Native FP8 support in modern hardware is essential for training large Transformers, but is severely hindered by extreme activation outliers. Existing solutions either rely on complex mixed-precision engineering or invasive architectural modifications. This paper fundamentally challenges the conventional wisdom that outliers are data-driven. We demonstrate that extreme outliers are a data-independent, mechanically-produced artifact of training, originating from specific structural properties of the weight matrices (i.e., colinearity). Based on this insight, we propose TWEO (Transformers Without Extreme Outliers), a novel, non-invasive loss function. TWEO effectively prevents extreme outliers via a very simple loss term, which reduces outliers from 10000+ to less than 20. TWEO then enables full-model FP8 pre-training with neither engineering tricks nor architectural changes for both LLM and ViT. When standard FP8 training catastrophically collapses, TWEO achieves performance comparable to the BF16 baseline while delivering a 36% increase in training throughput. Also, TWEO enables a new quantization paradigm. Hardware-friendly W8A8 per-tensor static quantization of LLMs, previously considered completely unusable due to outliers, achieves SOTA performance for the first time on TWEO-trained models.
☆ Listwise Preference Optimization with Element-wise Confusions for Aspect Sentiment Quad Prediction
Aspect sentiment quad prediction (ASQP) is inherently challenging to predict a structured quadruple with four core sentiment elements, including aspect term (a), aspect category (c), opinion term (o), and sentiment polarity (s). Prior methods relying on marker-based prediction struggle with modeling the intricate relationships among elements and experience sharp performance declines when predicting higher-order elements (e.g., c and s) under standard supervised fine-tuning. To address these limitations, we employ reasoning-based generation to output both the quadruple and a natural language rationale under element prefixes within a unified template, encouraging explicit relational reasoning and interpretability. To further enhance element-wise alignment, we introduce a listwise preference optimization framework for improving structural validity and relational coherence. Specifically, we generate element-wise confusable candidates via syntactic and semantic proximity, then train the model with listwise objectives to prefer the gold candidates over closely competing alternatives. Extensive experiments on four benchmark datasets demonstrate that our framework effectively improves quadruple prediction accuracy and explanation consistency.
comment: 11 pages, 7 figures, and 6 tables
☆ Are LLMs Good Safety Agents or a Propaganda Engine?
Large Language Models (LLMs) are trained to refuse to respond to harmful content. However, systematic analyses of whether this behavior is truly a reflection of its safety policies or an indication of political censorship, that is practiced globally by countries, is lacking. Differentiating between safety influenced refusals or politically motivated censorship is hard and unclear. For this purpose we introduce PSP, a dataset built specifically to probe the refusal behaviors in LLMs from an explicitly political context. PSP is built by formatting existing censored content from two data sources, openly available on the internet: sensitive prompts in China generalized to multiple countries, and tweets that have been censored in various countries. We study: 1) impact of political sensitivity in seven LLMs through data-driven (making PSP implicit) and representation-level approaches (erasing the concept of politics); and, 2) vulnerability of models on PSP through prompt injection attacks (PIAs). Associating censorship with refusals on content with masked implicit intent, we find that most LLMs perform some form of censorship. We conclude with summarizing major attributes that can cause a shift in refusal distributions across models and contexts of different countries.
comment: 15 pages, 7 tables, 4 figures
☆ Multi-chain Graph Refinement and Selection for Reliable Reasoning in Large Language Models
The complex reasoning ability of Large Language Models (LLMs) poses a critical bottleneck for their practical applications. Test-time expansion methods such as Tree-of-Thought (ToT) and Graph-of-Thought (GoT) enhance reasoning by introducing intermediate reasoning structures, tree search, or graph-based exploration mechanisms. However, their reasoning strategies suffer from limited diversity, redundant search branches, and inadequate integration and error correction across heterogeneous reasoning paths. To address these limitations, we propose a novel reasoning framework called Multi-chain Graph Refinement & Selection (MGRS), which first generates multiple diverse reasoning trajectories for a given problem, refines candidate responses using a composite self- and cross-verification strategy, then constructs a reasoning relation graph and estimates the success rate of intermediate nodes, and finally computes cumulative success rates to select the most reliable answer and corresponding reasoning trajectory. Experimental results demonstrate that MGRS significantly advances both the reasoning capability and computational efficiency of reasoning enhancement methods. Across six benchmark datasets spanning four distinct tasks, MGRS achieves an average accuracy of 82.9%, outperforming state-of-the-art baselines by a clear margin of 2.1%. Remarkably, on the 24-point game, MGRS attains 100% accuracy for the first time, while delivering a 13.6x speed-up compared to the leading Forest of Thoughts framework.
☆ Dripper: Token-Efficient Main HTML Extraction with a Lightweight LM
Accurately and efficiently extracting main content from general web pages is of great significance for obtaining training data for large models. Using well-pre-trained decoder-only generative language models offers excellent document comprehension capabilities, thereby effectively enhancing parsing quality. However, it remains constrained by issues such as context window length, inference cost, and format hallucination. We present Dripper, an efficient HTML main content extraction framework powered by lightweight language models, which addresses these challenges through four key innovations: (1) We design a specialized HTML simplification algorithm that reduces input token count to 22\% compared to raw HTML while preserving critical structural information; (2) We reformulate main content extraction as a semantic block sequence classification task, significantly reducing inference cost; (3) We introduce a controlled decoding mechanism that strictly constrains the output space through logits processors, effectively eliminating hallucination issues common in small-scale models; (4) We propose WebMainBench, an evaluation dataset containing over 7,800 web pages with meticulously human-annotated main content extraction labels. Experimental results demonstrate that using only a 0.6B parameter model, Dripper achieves state-of-the-art performance across all evaluation benchmarks and outperforms all baseline methods, attaining an ROUGE-N F1 score of 81.58\%( 83.13\% with fall-back strategy) on our proposed WebMainBench dataset.
☆ Mind Reading or Misreading? LLMs on the Big Five Personality Test
We evaluate large language models (LLMs) for automatic personality prediction from text under the binary Five Factor Model (BIG5). Five models -- including GPT-4 and lightweight open-source alternatives -- are tested across three heterogeneous datasets (Essays, MyPersonality, Pandora) and two prompting strategies (minimal vs. enriched with linguistic and psychological cues). Enriched prompts reduce invalid outputs and improve class balance, but also introduce a systematic bias toward predicting trait presence. Performance varies substantially: Openness and Agreeableness are relatively easier to detect, while Extraversion and Neuroticism remain challenging. Although open-source models sometimes approach GPT-4 and prior benchmarks, no configuration yields consistently reliable predictions in zero-shot binary settings. Moreover, aggregate metrics such as accuracy and macro-F1 mask significant asymmetries, with per-class recall offering clearer diagnostic value. These findings show that current out-of-the-box LLMs are not yet suitable for APPT, and that careful coordination of prompt design, trait framing, and evaluation metrics is essential for interpretable results.
comment: Funding: SoBigDatait (IR0000013), FAIR (PE00000013), ICSC (CN00000013)
☆ Accent Placement Models for Rigvedic Sanskrit Text ACL
The Rigveda, among the oldest Indian texts in Vedic Sanskrit, employs a distinctive pitch-accent system : udātta, anudātta, svarita whose marks encode melodic and interpretive cues but are often absent from modern e-texts. This work develops a parallel corpus of accented-unaccented ślokas and conducts a controlled comparison of three strategies for automatic accent placement in Rigvedic verse: (i) full fine-tuning of ByT5, a byte-level Transformer that operates directly on Unicode combining marks, (ii) a from-scratch BiLSTM-CRF sequence-labeling baseline, and (iii) LoRA-based parameter-efficient fine-tuning atop ByT5. Evaluation uses Word Error Rate (WER) and Character Error Rate (CER) for orthographic fidelity, plus a task-specific Diacritic Error Rate (DER) that isolates accent edits. Full ByT5 fine-tuning attains the lowest error across all metrics; LoRA offers strong efficiency-accuracy trade-offs, and BiLSTM-CRF serves as a transparent baseline. The study underscores practical requirements for accent restoration - Unicode-safe preprocessing, mark-aware tokenization, and evaluation that separates grapheme from accent errors - and positions heritage-language technology as an emerging NLP area connecting computational modeling with philological and pedagogical aims. Results establish reproducible baselines for Rigvedic accent restoration and provide guidance for downstream tasks such as accent-aware OCR, ASR/chant synthesis, and digital scholarship.
comment: Submitted to AACL-IJCNLP 2025
☆ Bharat Scene Text: A Novel Comprehensive Dataset and Benchmark for Indian Language Scene Text Understanding
Reading scene text, that is, text appearing in images, has numerous application areas, including assistive technology, search, and e-commerce. Although scene text recognition in English has advanced significantly and is often considered nearly a solved problem, Indian language scene text recognition remains an open challenge. This is due to script diversity, non-standard fonts, and varying writing styles, and, more importantly, the lack of high-quality datasets and open-source models. To address these gaps, we introduce the Bharat Scene Text Dataset (BSTD) - a large-scale and comprehensive benchmark for studying Indian Language Scene Text Recognition. It comprises more than 100K words that span 11 Indian languages and English, sourced from over 6,500 scene images captured across various linguistic regions of India. The dataset is meticulously annotated and supports multiple scene text tasks, including: (i) Scene Text Detection, (ii) Script Identification, (iii) Cropped Word Recognition, and (iv) End-to-End Scene Text Recognition. We evaluated state-of-the-art models originally developed for English by adapting (fine-tuning) them for Indian languages. Our results highlight the challenges and opportunities in Indian language scene text recognition. We believe that this dataset represents a significant step toward advancing research in this domain. All our models and data are open source.
comment: Under Peer Review
☆ Conveying Imagistic Thinking in TCM Translation: A Prompt Engineering and LLM-Based Evaluation Framework
Traditional Chinese Medicine theory is built on imagistic thinking, in which medical principles and diagnostic and therapeutic logic are structured through metaphor and metonymy. However, existing English translations largely rely on literal rendering, making it difficult for target-language readers to reconstruct the underlying conceptual networks and apply them in clinical practice. This study adopted a human-in-the-loop framework and selected four passages from the medical canon Huangdi Neijing that are fundamental in theory. Through prompt-based cognitive scaffolding, DeepSeek V3.1 was guided to identify metaphor and metonymy in the source text and convey the theory in translation. In the evaluation stage, ChatGPT 5 Pro and Gemini 2.5 Pro were instructed by prompts to simulate three types of real-world readers. Human translations, baseline model translations, and prompt-adjusted translations were scored by the simulated readers across five cognitive dimensions, followed by structured interviews and Interpretative Phenomenological Analysis. Results show that the prompt-adjusted LLM translations perform best across all five dimensions, with high cross-model and cross-role consistency. The interview themes reveal differences between human and machine translation, effective strategies for metaphor and metonymy transfer, and readers' cognitive preferences. This study provides a cognitive, efficient and replicable HITL methodological pathway for translation of ancient, concept-dense texts like TCM.
comment: 3 figures
☆ Standard Occupation Classifier -- A Natural Language Processing Approach
Standard Occupational Classifiers (SOC) are systems used to categorize and classify different types of jobs and occupations based on their similarities in terms of job duties, skills, and qualifications. Integrating these facets with Big Data from job advertisement offers the prospect to investigate labour demand that is specific to various occupations. This project investigates the use of recent developments in natural language processing to construct a classifier capable of assigning an occupation code to a given job advertisement. We develop various classifiers for both UK ONS SOC and US O*NET SOC, using different Language Models. We find that an ensemble model, which combines Google BERT and a Neural Network classifier while considering job title, description, and skills, achieved the highest prediction accuracy. Specifically, the ensemble model exhibited a classification accuracy of up to 61% for the lower (or fourth) tier of SOC, and 72% for the third tier of SOC. This model could provide up to date, accurate information on the evolution of the labour market using job advertisements.
☆ Decoding the Past: Explainable Machine Learning Models for Dating Historical Texts
Accurately dating historical texts is essential for organizing and interpreting cultural heritage collections. This article addresses temporal text classification using interpretable, feature-engineered tree-based machine learning models. We integrate five feature categories - compression-based, lexical structure, readability, neologism detection, and distance features - to predict the temporal origin of English texts spanning five centuries. Comparative analysis shows that these feature domains provide complementary temporal signals, with combined models outperforming any individual feature set. On a large-scale corpus, we achieve 76.7% accuracy for century-scale prediction and 26.1% for decade-scale classification, substantially above random baselines (20% and 2.3%). Under relaxed temporal precision, performance increases to 96.0% top-2 accuracy for centuries and 85.8% top-10 accuracy for decades. The final model exhibits strong ranking capabilities with AUCROC up to 94.8% and AUPRC up to 83.3%, and maintains controlled errors with mean absolute deviations of 27 years and 30 years, respectively. For authentication-style tasks, binary models around key thresholds (e.g., 1850-1900) reach 85-98% accuracy. Feature importance analysis identifies distance features and lexical structure as most informative, with compression-based features providing complementary signals. SHAP explainability reveals systematic linguistic evolution patterns, with the 19th century emerging as a pivot point across feature domains. Cross-dataset evaluation on Project Gutenberg highlights domain adaptation challenges, with accuracy dropping by 26.4 percentage points, yet the computational efficiency and interpretability of tree-based models still offer a scalable, explainable alternative to neural architectures.
☆ Social Perceptions of English Spelling Variation on Twitter: A Comparative Analysis of Human and LLM Responses
Spelling variation (e.g. funnnn vs. fun) can influence the social perception of texts and their writers: we often have various associations with different forms of writing (is the text informal? does the writer seem young?). In this study, we focus on the social perception of spelling variation in online writing in English and study to what extent this perception is aligned between humans and large language models (LLMs). Building on sociolinguistic methodology, we compare LLM and human ratings on three key social attributes of spelling variation (formality, carefulness, age). We find generally strong correlations in the ratings between humans and LLMs. However, notable differences emerge when we analyze the distribution of ratings and when comparing between different types of spelling variation.
☆ ShoppingComp: Are LLMs Really Ready for Your Shopping Cart?
We present ShoppingComp, a challenging real-world benchmark for rigorously evaluating LLM-powered shopping agents on three core capabilities: precise product retrieval, expert-level report generation, and safety critical decision making. Unlike prior e-commerce benchmarks, ShoppingComp introduces highly complex tasks under the principle of guaranteeing real products and ensuring easy verifiability, adding a novel evaluation dimension for identifying product safety hazards alongside recommendation accuracy and report quality. The benchmark comprises 120 tasks and 1,026 scenarios, curated by 35 experts to reflect authentic shopping needs. Results reveal stark limitations of current LLMs: even state-of-the-art models achieve low performance (e.g., 11.22% for GPT-5, 3.92% for Gemini-2.5-Flash). These findings highlight a substantial gap between research benchmarks and real-world deployment, where LLMs make critical errors such as failure to identify unsafe product usage or falling for promotional misinformation, leading to harmful recommendations. ShoppingComp fills the gap and thus establishes a new standard for advancing reliable and practical agents in e-commerce.
☆ Pooling Attention: Evaluating Pretrained Transformer Embeddings for Deception Classification
This paper investigates fake news detection as a downstream evaluation of Transformer representations, benchmarking encoder-only and decoder-only pre-trained models (BERT, GPT-2, Transformer-XL) as frozen embedders paired with lightweight classifiers. Through controlled preprocessing comparing pooling versus padding and neural versus linear heads, results demonstrate that contextual self-attention encodings consistently transfer effectively. BERT embeddings combined with logistic regression outperform neural baselines on LIAR dataset splits, while analyses of sequence length and aggregation reveal robustness to truncation and advantages from simple max or average pooling. This work positions attention-based token encoders as robust, architecture-centric foundations for veracity tasks, isolating Transformer contributions from classifier complexity.
comment: Accepted at the IEEE 7th Computing, Communications and IoT Applications Conference (ComComAp 2025), Madrid, Spain, December 2025. 6 pages
☆ Training-Free Loosely Speculative Decoding: Accepting Semantically Correct Drafts Beyond Exact Match
Large language models (LLMs) achieve strong performance across diverse tasks but suffer from high inference latency due to their autoregressive generation. Speculative Decoding (SPD) mitigates this issue by verifying candidate tokens in parallel from a smaller draft model, yet its strict exact-match verification discards many semantically valid continuations. Moreover, existing training-based SPD methods often suffer from performance degradation on out-of-distribution (OOD) tasks. To this end, we propose Training-Free Loosely Speculative Decoding (FLy), a novel method that loosens the rigid verification criterion by leveraging the target model's self-corrective behavior to judge whether a draft-target mismatch remains semantically valid. FLy introduces a two-tier mechanism: an entropy-level gate that identifies whether the current token allows multiple plausible alternatives or is nearly deterministic, and a token-level deferred window that distinguishes genuine errors from differently worded yet semantically correct variants. To further reduce latency, we design a multi-level acceleration strategy that accelerates not only the target model but also the drafter itself. Owing to its training-free design, FLy composes seamlessly with arbitrary draft-target pairs and generalizes across models and domains without hyperparameter re-tuning. Experiments show that FLy preserves more than 99% of the target model's accuracy while achieving an average 2.81x speedup on Llama-3.1-70B-Instruct and 5.07x speedup on the 405B variant. Notably, on out-of-domain datasets, our method remains highly effective and outperforms the training-based method EAGLE-3 by 1.62x.
comment: Under review
☆ Visual Puns from Idioms: An Iterative LLM-T2IM-MLLM Framework
We study idiom-based visual puns--images that align an idiom's literal and figurative meanings--and present an iterative framework that coordinates a large language model (LLM), a text-to-image model (T2IM), and a multimodal LLM (MLLM) for automatic generation and evaluation. Given an idiom, the system iteratively (i) generates detailed visual prompts, (ii) synthesizes an image, (iii) infers the idiom from the image, and (iv) refines the prompt until recognition succeeds or a step limit is reached. Using 1,000 idioms as inputs, we synthesize a corresponding dataset of visual pun images with paired prompts, enabling benchmarking of both generation and understanding. Experiments across 10 LLMs, 10 MLLMs, and one T2IM (Qwen-Image) show that MLLM choice is the primary performance driver: GPT achieves the highest accuracies, Gemini follows, and the best open-source MLLM (Gemma) is competitive with some closed models. On the LLM side, Claude attains the strongest average performance for prompt generation.
comment: Submitted to ICASSP 2026 (under review)
☆ Artwork Interpretation with Vision Language Models: A Case Study on Emotions and Emotion Symbols ACL
Emotions are a fundamental aspect of artistic expression. Due to their abstract nature, there is a broad spectrum of emotion realization in artworks. These are subject to historical change and their analysis requires expertise in art history. In this article, we investigate which aspects of emotional expression can be detected by current (2025) vision language models (VLMs). We present a case study of three VLMs (Llava-Llama and two Qwen models) in which we ask these models four sets of questions of increasing complexity about artworks (general content, emotional content, expression of emotions, and emotion symbols) and carry out a qualitative expert evaluation. We find that the VLMs recognize the content of the images surprisingly well and often also which emotions they depict and how they are expressed. The models perform best for concrete images but fail for highly abstract or highly symbolic images. Reliable recognition of symbols remains fundamentally difficult. Furthermore, the models continue to exhibit the well-known LLM weakness of providing inconsistent answers to related questions.
comment: Accepted for publication at the IJCNLP-AACL workshop on Multimodal Models for Low-Resource Contexts and Social Impact
☆ Language-conditioned world model improves policy generalization by reading environmental descriptions
To interact effectively with humans in the real world, it is important for agents to understand language that describes the dynamics of the environment--that is, how the environment behaves--rather than just task instructions specifying "what to do". Understanding this dynamics-descriptive language is important for human-agent interaction and agent behavior. Recent work address this problem using a model-based approach: language is incorporated into a world model, which is then used to learn a behavior policy. However, these existing methods either do not demonstrate policy generalization to unseen games or rely on limiting assumptions. For instance, assuming that the latency induced by inference-time planning is tolerable for the target task or expert demonstrations are available. Expanding on this line of research, we focus on improving policy generalization from a language-conditioned world model while dropping these assumptions. We propose a model-based reinforcement learning approach, where a language-conditioned world model is trained through interaction with the environment, and a policy is learned from this model--without planning or expert demonstrations. Our method proposes Language-aware Encoder for Dreamer World Model (LED-WM) built on top of DreamerV3. LED-WM features an observation encoder that uses an attention mechanism to explicitly ground language descriptions to entities in the observation. We show that policies trained with LED-WM generalize more effectively to unseen games described by novel dynamics and language compared to other baselines in several settings in two environments: MESSENGER and MESSENGER-WM.To highlight how the policy can leverage the trained world model before real-world deployment, we demonstrate the policy can be improved through fine-tuning on synthetic test trajectories generated by the world model.
comment: NeuRIPS 2025. Workshop: LAW 2025: Bridging Language, Agent, and World Models
☆ ORION: Teaching Language Models to Reason Efficiently in the Language of Thought
Large Reasoning Models (LRMs) achieve strong performance in mathematics, code generation, and task planning, but their reliance on long chains of verbose "thinking" tokens leads to high latency, redundancy, and incoherent reasoning paths. Inspired by the Language of Thought Hypothesis, which posits that human reasoning operates over a symbolic, compositional mental language called Mentalese, we introduce a framework that trains models to reason in a similarly compact style. Mentalese encodes abstract reasoning as ultra-compressed, structured tokens, enabling models to solve complex problems with far fewer steps. To improve both efficiency and accuracy, we propose SHORTER LENGTH PREFERENCE OPTIMIZATION (SLPO), a reinforcement learning method that rewards concise solutions that stay correct, while still allowing longer reasoning when needed. Applied to Mentalese-aligned models, SLPO yields significantly higher compression rates by enabling concise reasoning that preserves the benefits of detailed thinking without the computational overhead. Across benchmarks including AIME 2024 and 2025, MinervaMath, OlympiadBench, Math500, and AMC, our ORION models produce reasoning traces with 4-16x fewer tokens, achieve up to 5x lower inference latency, and reduce training costs by 7-9x relative to the DeepSeek R1 Distilled model, while maintaining 90-98% of its accuracy. ORION also surpasses Claude and ChatGPT-4o by up to 5% in accuracy while maintaining 2x compression. These results show that Mentalese-style compressed reasoning offers a step toward human-like cognitive efficiency, enabling real-time, cost-effective reasoning without sacrificing accuracy.
☆ FEANEL: A Benchmark for Fine-Grained Error Analysis in K-12 English Writing
Large Language Models (LLMs) have transformed artificial intelligence, offering profound opportunities for educational applications. However, their ability to provide fine-grained educational feedback for K-12 English writing remains underexplored. In this paper, we challenge the error analysis and pedagogical skills of LLMs by introducing the problem of Fine-grained Error Analysis for English Learners and present the Fine-grained Error ANalysis for English Learners (FEANEL) Benchmark. The benchmark comprises 1,000 essays written by elementary and secondary school students, and a well-developed English writing error taxonomy. Each error is annotated by language education experts and categorized by type, severity, and explanatory feedback, using a part-of-speech-based taxonomy they co-developed. We evaluate state-of-the-art LLMs on the FEANEL Benchmark to explore their error analysis and pedagogical abilities. Experimental results reveal significant gaps in current LLMs' ability to perform fine-grained error analysis, highlighting the need for advancements in particular methods for educational applications.
comment: 19 pages, 7 figures, and 4 tables. The dataset is available at https://huggingface.co/datasets/Feanel/FEANEL
☆ JBE-QA: Japanese Bar Exam QA Dataset for Assessing Legal Domain Knowledge
We introduce JBE-QA, a Japanese Bar Exam Question-Answering dataset to evaluate large language models' legal knowledge. Derived from the multiple-choice (tanto-shiki) section of the Japanese bar exam (2015-2024), JBE-QA provides the first comprehensive benchmark for Japanese legal-domain evaluation of LLMs. It covers the Civil Code, the Penal Code, and the Constitution, extending beyond the Civil Code focus of prior Japanese resources. Each question is decomposed into independent true/false judgments with structured contextual fields. The dataset contains 3,464 items with balanced labels. We evaluate 26 LLMs, including proprietary, open-weight, Japanese-specialised, and reasoning models. Our results show that proprietary models with reasoning enabled perform best, and the Constitution questions are generally easier than the Civil Code or the Penal Code questions.
comment: Three tables and one figure
☆ RAG System for Supporting Japanese Litigation Procedures: Faithful Response Generation Complying with Legal Norms
This study discusses the essential components that a Retrieval-Augmented Generation (RAG)-based LLM system should possess in order to support Japanese medical litigation procedures complying with legal norms. In litigation, expert commissioners, such as physicians, architects, accountants, and engineers, provide specialized knowledge to help judges clarify points of dispute. When considering the substitution of these expert roles with a RAG-based LLM system, the constraint of strict adherence to legal norms is imposed. Specifically, three requirements arise: (1) the retrieval module must retrieve appropriate external knowledge relevant to the disputed issues in accordance with the principle prohibiting the use of private knowledge, (2) the responses generated must originate from the context provided by the RAG and remain faithful to that context, and (3) the retrieval module must reference external knowledge with appropriate timestamps corresponding to the issues at hand. This paper discusses the design of a RAG-based LLM system that satisfies these requirements.
comment: This is a preprint version of a paper reviewed and accepted at BREV-RAG 2025: Beyond Relevance-based EValuation of RAG Systems, a SIGIR-AP 2025 workshop
☆ Mitigating Semantic Drift: Evaluating LLMs' Efficacy in Psychotherapy through MI Dialogue Summarization
Recent advancements in large language models (LLMs) have shown their potential across both general and domain-specific tasks. However, there is a growing concern regarding their lack of sensitivity, factual incorrectness in responses, inconsistent expressions of empathy, bias, hallucinations, and overall inability to capture the depth and complexity of human understanding, especially in low-resource and sensitive domains such as psychology. To address these challenges, our study employs a mixed-methods approach to evaluate the efficacy of LLMs in psychotherapy. We use LLMs to generate precise summaries of motivational interviewing (MI) dialogues and design a two-stage annotation scheme based on key components of the Motivational Interviewing Treatment Integrity (MITI) framework, namely evocation, collaboration, autonomy, direction, empathy, and a non-judgmental attitude. Using expert-annotated MI dialogues as ground truth, we formulate multi-class classification tasks to assess model performance under progressive prompting techniques, incorporating one-shot and few-shot prompting. Our results offer insights into LLMs' capacity for understanding complex psychological constructs and highlight best practices to mitigate ``semantic drift" in therapeutic settings. Our work contributes not only to the MI community by providing a high-quality annotated dataset to address data scarcity in low-resource domains but also critical insights for using LLMs for precise contextual interpretation in complex behavioral therapy.
♻ ☆ Asymmetric REINFORCE for off-Policy Reinforcement Learning: Balancing positive and negative rewards
Reinforcement learning (RL) is increasingly used to align large language models (LLMs). Off-policy methods offer greater implementation simplicity and data efficiency than on-policy techniques, but often result in suboptimal performance. In this work, we study the intermediate range of algorithms between off-policy RL and supervised fine-tuning by analyzing a simple off-policy REINFORCE algorithm, where the advantage is defined as $A=r-V$, with $r$ a reward and $V$ some tunable baseline. Intuitively, lowering $V$ emphasizes high-reward samples, while raising it penalizes low-reward ones more heavily. We first provide a theoretical analysis of this off-policy REINFORCE algorithm, showing that when the baseline $V$ lower-bounds the expected reward, the algorithm enjoys a policy improvement guarantee. Our analysis reveals that while on-policy updates can safely leverage both positive and negative signals, off-policy updates benefit from focusing more on positive rewards than on negative ones. We validate our findings experimentally in a controlled stochastic bandit setting and through fine-tuning state-of-the-art LLMs on reasoning tasks.
♻ ☆ Robust LLM Unlearning with MUDMAN: Meta-Unlearning with Disruption Masking And Normalization
Language models can retain dangerous knowledge and skills even after extensive safety fine-tuning, posing both misuse and misalignment risks. Recent studies show that even specialized unlearning methods can be easily reversed. To address this, we systematically evaluate many existing and novel components of unlearning methods and identify ones crucial for irreversible unlearning. We introduce Disruption Masking, a technique in which we only allow updating weights, where the signs of the unlearning gradient and the retaining gradient are the same. This ensures all updates are non-disruptive. Additionally, we identify the need for normalizing the unlearning gradients, and also confirm the usefulness of meta-learning. We combine these insights into MUDMAN (Meta-Unlearning with Disruption Masking and Normalization) and validate its effectiveness at preventing the recovery of dangerous capabilities. MUDMAN outperforms the prior TAR method by 40%, setting a new state-of-the-art for robust unlearning.
♻ ☆ Toward Honest Language Models for Deductive Reasoning
Deductive reasoning is the process of deriving conclusions strictly from the given premises, without relying on external knowledge. We define honesty in this setting as a model's ability to respond only when the conclusion is logically entailed by the premises, and to abstain otherwise. However, current language models often fail to reason honestly, producing unwarranted answers when the input is insufficient. To study this challenge, we formulate honest deductive reasoning as multi-step tasks where models must either derive the correct conclusion or abstain. We curate two datasets from graph structures, one for linear algebra and one for logical inference, and introduce unanswerable cases by randomly perturbing an edge in half of the instances. We find that prompting and existing training methods, including GRPO with or without supervised fine-tuning initialization, struggle on these tasks. In particular, GRPO optimize only for final task outcomes, leaving models vulnerable to collapse when negative rewards dominate early training. To address this, we propose ACNCHOR, a reinforcement learning method that injects ground truth trajectories into rollouts, preventing early training collapse. Our results demonstrate that this method stabilizes learning and significantly improves the overall reasoning performance, underscoring the importance of training dynamics for enabling honest deductive reasoning in language models.
♻ ☆ Continual Learning of Domain Knowledge from Human Feedback in Text-to-SQL
Large Language Models (LLMs) can generate SQL queries from natural language questions but struggle with database-specific schemas and tacit domain knowledge. We introduce a framework for continual learning from human feedback in text-to-SQL, where a learning agent receives natural language feedback to refine queries and distills the revealed knowledge for reuse on future tasks. This distilled knowledge is stored in a structured memory, enabling the agent to improve execution accuracy over time. We design and evaluate multiple variations of a learning agent architecture that vary in how they capture and retrieve past experiences. Experiments on the BIRD benchmark Dev set show that memory-augmented agents, particularly the Procedural Agent, achieve significant accuracy gains and error reduction by leveraging human-in-the-loop feedback. Our results highlight the importance of transforming tacit human expertise into reusable knowledge, paving the way for more adaptive, domain-aware text-to-SQL systems that continually learn from a human-in-the-loop.
comment: 34 pages, 6 figures, 4 tables
♻ ☆ OmniRouter: Budget and Performance Controllable Multi-LLM Routing
Large language models (LLMs) deliver superior performance but require substantial computational resources and operate with relatively low efficiency, while smaller models can efficiently handle simpler tasks with fewer resources. LLM routing is a crucial paradigm that dynamically selects the most suitable large language models from a pool of candidates to process diverse inputs, ensuring optimal resource utilization while maintaining response quality. Existing routing frameworks typically model this as a locally optimal decision-making problem, selecting the presumed best-fit LLM for each query individually, which overlooks global budget constraints, resulting in ineffective resource allocation. To tackle this problem, we introduce OmniRouter, a fundamentally controllable routing framework for multi-LLM serving. Instead of making per-query greedy choices, OmniRouter models the routing task as a constrained optimization problem, assigning models that minimize total cost while ensuring the required performance level. Specifically, a hybrid retrieval-augmented predictor is designed to predict the capabilities and costs of LLMs. After obtaining the predicted cost and performance, we utilize a constrained optimizer for cost-optimal assignments that employs Lagrangian dual decomposition with adaptive multipliers. It iteratively converges toward the globally optimal query-model allocation, dynamically balancing latency minimization against quality thresholds while adhering to heterogeneous capacity constraints. Experiments show that OmniRouter achieves up to 6.30% improvement in response accuracy while simultaneously reducing computational costs by at least 10.15% compared to competitive router baselines. The code and the dataset are available at https://github.com/dongyuanjushi/OmniRouter.
♻ ☆ Mina: A Multilingual LLM-Powered Legal Assistant Agent for Bangladesh for Empowering Access to Justice
Bangladesh's low-income population faces major barriers to affordable legal advice due to complex legal language, procedural opacity, and high costs. Existing AI legal assistants lack Bengali-language support and jurisdiction-specific adaptation, limiting their effectiveness. To address this, we developed Mina, a multilingual LLM-based legal assistant tailored for the Bangladeshi context. It employs multilingual embeddings and a RAG-based chain-of-tools framework for retrieval, reasoning, translation, and document generation, delivering context-aware legal drafts, citations, and plain-language explanations via an interactive chat interface. Evaluated by law faculty from leading Bangladeshi universities across all stages of the 2022 and 2023 Bangladesh Bar Council Exams, Mina scored 75-80% in Preliminary MCQs, Written, and simulated Viva Voce exams, matching or surpassing average human performance and demonstrating clarity, contextual understanding, and sound legal reasoning. Even under a conservative upper bound, Mina operates at just 0.12-0.61% of typical legal consultation costs in Bangladesh, yielding a 99.4-99.9\% cost reduction relative to human-provided services. These results confirm its potential as a low-cost, multilingual AI assistant that automates key legal tasks and scales access to justice, offering a real-world case study on building domain-specific, low-resource systems and addressing challenges of multilingual adaptation, efficiency, and sustainable public-service AI deployment.
♻ ☆ STAR-Bench: Probing Deep Spatio-Temporal Reasoning as Audio 4D Intelligence
Despite rapid progress in Multi-modal Large Language Models and Large Audio-Language Models, existing audio benchmarks largely test semantics that can be recovered from text captions, masking deficits in fine-grained perceptual reasoning. We formalize audio 4D intelligence that is defined as reasoning over sound dynamics in time and 3D space, and introduce STAR-Bench to measure it. STAR-Bench combines a Foundational Acoustic Perception setting (six attributes under absolute and relative regimes) with a Holistic Spatio-Temporal Reasoning setting that includes segment reordering for continuous and discrete processes and spatial tasks spanning static localization, multi-source relations, and dynamic trajectories. Our data curation pipeline uses two methods to ensure high-quality samples. For foundational tasks, we use procedurally synthesized and physics-simulated audio. For holistic data, we follow a four-stage process that includes human annotation and final selection based on human performance. Unlike prior benchmarks where caption-only answering reduces accuracy slightly, STAR-Bench induces far larger drops (-31.5\% temporal, -35.2\% spatial), evidencing its focus on linguistically hard-to-describe cues. Evaluating 19 models reveals substantial gaps compared with humans and a capability hierarchy: closed-source models are bottlenecked by fine-grained perception, while open-source models lag across perception, knowledge, and reasoning. Our STAR-Bench provides critical insights and a clear path forward for developing future models with a more robust understanding of the physical world.
comment: Homepage: https://internlm.github.io/StarBench/
♻ ☆ Local Hybrid Retrieval-Augmented Document QA ACL
Organizations handling sensitive documents face a critical dilemma: adopt cloud-based AI systems that offer powerful question-answering capabilities but compromise data privacy, or maintain local processing that ensures security but delivers poor accuracy. We present a question-answering system that resolves this trade-off by combining semantic understanding with keyword precision, operating entirely on local infrastructure without internet access. Our approach demonstrates that organizations can achieve competitive accuracy on complex queries across legal, scientific, and conversational documents while keeping all data on their machines. By balancing two complementary retrieval strategies and using consumer-grade hardware acceleration, the system delivers reliable answers with minimal errors, letting banks, hospitals, and law firms adopt conversational document AI without transmitting proprietary information to external providers. This work establishes that privacy and performance need not be mutually exclusive in enterprise AI deployment.
comment: 10 pages, 5 figures, 3 tables; conference-style (ACL format); fully local RAG system
♻ ☆ Leveraging Biomolecule and Natural Language through Multi-Modal Learning: A Survey
The integration of biomolecular modeling with natural language (BL) has emerged as a promising interdisciplinary area at the intersection of artificial intelligence, chemistry and biology. This approach leverages the rich, multifaceted descriptions of biomolecules contained within textual data sources to enhance our fundamental understanding and enable downstream computational tasks such as biomolecule property prediction. The fusion of the nuanced narratives expressed through natural language with the structural and functional specifics of biomolecules described via various molecular modeling techniques opens new avenues for comprehensively representing and analyzing biomolecules. By incorporating the contextual language data that surrounds biomolecules into their modeling, BL aims to capture a holistic view encompassing both the symbolic qualities conveyed through language as well as quantitative structural characteristics. In this review, we provide an extensive analysis of recent advancements achieved through cross modeling of biomolecules and natural language. (1) We begin by outlining the technical representations of biomolecules employed, including sequences, 2D graphs, and 3D structures. (2) We then examine in depth the rationale and key objectives underlying effective multi-modal integration of language and molecular data sources. (3) We subsequently survey the practical applications enabled to date in this developing research area. (4) We also compile and summarize the available resources and datasets to facilitate future work. (5) Looking ahead, we identify several promising research directions worthy of further exploration and investment to continue advancing the field. The related resources and contents are updating in https://github.com/QizhiPei/Awesome-Biomolecule-Language-Cross-Modeling.
comment: 2025.11.28 Updated Version
♻ ☆ Adversarial Confusion Attack: Disrupting Multimodal Large Language Models
We introduce the Adversarial Confusion Attack, a new class of threats against multimodal large language models (MLLMs). Unlike jailbreaks or targeted misclassification, the goal is to induce systematic disruption that makes the model generate incoherent or confidently incorrect outputs. Applications include embedding adversarial images into websites to prevent MLLM-powered agents from operating reliably. The proposed attack maximizes next-token entropy using a small ensemble of open-source MLLMs. In the white-box setting, we show that a single adversarial image can disrupt all models in the ensemble, both in the full-image and adversarial CAPTCHA settings. Despite relying on a basic adversarial technique (PGD), the attack generates perturbations that transfer to both unseen open-source (e.g., Qwen3-VL) and proprietary (e.g., GPT-5.1) models.
♻ ☆ REFLEX: Self-Refining Explainable Fact-Checking via Disentangling Truth into Style and Substance
The prevalence of misinformation on social media threatens public trust, demanding automated fact-checking systems that provide accurate verdicts with interpretable explanations. However, existing large language model-based (LLM-based) approaches often rely heavily on external knowledge sources, introducing substantial latency and even hallucinations that undermine reliability, interpretability, and responsiveness, which is crucial for real-time use. To address these challenges, we propose REason-guided Fact-checking with Latent EXplanations REFLEX paradigm, a plug-and-play, self-refining paradigm that leverages the internal knowledge in backbone model to improve both verdict accuracy and explanation quality. REFLEX reformulates fact-checking as a role-play dialogue and jointly trains verdict prediction and explanation generation. It adaptively extracts contrastive activation pairs between the backbone model and its fine-tuned variant to construct steering vectors that disentangle truth into style and substance naturally. These activation-level signals guide inference and suppress noisy explanations, enabling more faithful and efficient reasoning. Experiments on real-world datasets show that REFLEX outperforms previous methods that steer toward a single truth direction and underscores the challenge traditional approaches face when handling the subtle, human-unknown truth in fact-checking tasks. Remarkably, with only 465 self-refined training samples, RELFEX achieves state-of-the-art performance. Furthermore, models trained with explanatory objectives can effectively guide those without them, yielding up to a 7.57% improvement, highlighting that internal explanation signals play a dual role in both interpreting and enhancing factual reasoning.
♻ ☆ Efficient Reasoning via Thought-Training and Thought-Free Inference
Recent advances in large language models (LLMs) have leveraged explicit Chain-of-Thought (CoT) prompting to improve reasoning accuracy. However, most existing methods primarily focus on compressing verbose reasoning outputs. These Long-to-Short transformations aim to improve efficiency, but require a large amount of short CoT data. In this work, we introduce \textbf{3TF} (\textbf{T}hought-\textbf{T}raining and \textbf{T}hought-\textbf{F}ree inference), a framework for efficient reasoning that takes a Short-to-Long perspective. We first train a hybrid model that can operate in both reasoning and non-reasoning modes, and then further train it on CoT-annotated data to internalize structured reasoning, while enforcing concise, thought-free outputs at inference time using the no-reasoning mode. Unlike compression-based approaches, 3TF improves the reasoning quality of non-reasoning outputs, enabling models to perform rich internal reasoning implicitly while keeping external outputs short. Empirically, 3TF-trained models obtain large improvements on reasoning benchmarks under thought-free inference, demonstrating that high quality reasoning can be learned and executed implicitly without explicit step-by-step generation.
comment: 11 pages, 4 figures
♻ ☆ RvLLM: LLM Runtime Verification with Domain Knowledge
Large language models (LLMs) have emerged as a dominant AI paradigm due to their exceptional text understanding and generation capabilities. However, their tendency to generate inconsistent or erroneous outputs challenges their reliability, especially in high-stakes domains requiring accuracy and trustworthiness. Existing research primarily focuses on detecting and mitigating model misbehavior in general-purpose scenarios, often overlooking the potential of integrating domain-specific knowledge. In this work, we advance misbehavior detection by incorporating domain knowledge. The core idea is to design a general specification language that enables domain experts to customize domain-specific predicates in a lightweight and intuitive manner, supporting later runtime verification of LLM outputs. To achieve this, we design a novel specification language, ESL, and introduce a runtime verification framework, RvLLM, to validate LLM output against domain-specific constraints defined in ESL. We evaluate RvLLM on three representative tasks: violation detection against Singapore Rapid Transit Systems Act, numerical comparison, and inequality solving. Experimental results demonstrate that RvLLM effectively detects erroneous outputs across various LLMs in a lightweight and flexible manner. The results reveal that despite their impressive capabilities, LLMs remain prone to low-level errors due to limited interpretability and a lack of formal guarantees during inference, and our framework offers a potential long-term solution by leveraging expert domain knowledge to rigorously and efficiently verify LLM outputs.
comment: 24 pages, 11 tables, 13 figures
♻ ☆ LongCat-Flash-Omni Technical Report
We introduce LongCat-Flash-Omni, a state-of-the-art open-source omni-modal model with 560 billion parameters, excelling at real-time audio-visual interaction. By adopting a curriculum-inspired progressive training strategy that transitions from simpler to increasingly complex modality sequence modeling tasks, LongCat-Flash-Omni attains comprehensive multimodal capabilities while maintaining strong unimodal capability. Building upon LongCat-Flash, which adopts a high-performance Shortcut-connected Mixture-of-Experts (MoE) architecture with zero-computation experts, LongCat-Flash-Omni integrates efficient multimodal perception and speech reconstruction modules. Despite its immense size of 560B parameters (with 27B activated), LongCat-Flash-Omni achieves low-latency real-time audio-visual interaction. For training infrastructure, we developed a modality-decoupled parallelism scheme specifically designed to manage the data and model heterogeneity inherent in large-scale multimodal training. This innovative approach demonstrates exceptional efficiency by sustaining over 90% of the throughput achieved by text-only training. Extensive evaluations show that LongCat-Flash-Omni achieves state-of-the-art performance on omni-modal benchmarks among open-source models. Furthermore, it delivers highly competitive results across a wide range of modality-specific tasks, including text, image, and video understanding, as well as audio understanding and generation. We provide a comprehensive overview of the model architecture design, training procedures, and data strategies, and open-source the model to foster future research and development in the community.
♻ ☆ Normal forms in Virus Machines
In the present work, we further study the computational power of virus machines (VMs in short).VMs provide a computing paradigm inspired by the transmission and replication networks of viruses.VMs consist of process units (called hosts) structured by a directed graph whose arcs are called channels and an instruction graph that controls the transmissions of virus objects among hosts. The present work complements our understanding of the computing power of VMs by introducing normal forms; these expressions restrict the features in a given computing model.Some of the features that we restrict in our normal forms include (a) the number of hosts, (b) the number of instructions, and (c) the number of virus objects in each host. After we recall some known results on the computing power of VMs we give our series of normal forms, such as the size of the loops in the network, proving new characterisations of family of sets, such as finite sets, semilinear sets, or recursively enumerable sets (NRE).
comment: 24 pages, 14 figures
♻ ☆ InfiMed-ORBIT: Aligning LLMs on Open-Ended Complex Tasks via Rubric-Based Incremental Training
Reinforcement learning has powered many of the recent breakthroughs in large language models, especially for tasks where rewards can be computed automatically, such as code generation. However, these methods deteriorate in open-ended domains like medical consultation, where feedback is inherently ambiguous, highly context-dependent, and cannot be reduced to a reliable scalar signal. In such settings, RL must either rely on supervision-intensive reward models that often fail to generalize, or it falls into pathological behaviors such as reward hacking - an especially troubling risk for high-stakes medical dialogue. To address these limitations, we introduce ORBIT, an open-ended rubric-based incremental training framework for high-stakes medical dialogue. ORBIT integrates synthetic dialogue generation with dynamically constructed rubrics that serve as adaptive guides for incremental RL. Instead of relying on external medical knowledge bases or handcrafted rule sets, ORBIT uses rubric-driven feedback to steer the learning process. Its judge component can be instantiated with general-purpose instruction-following LLMs, removing the need for any task-specific fine-tuning. Applied to the Qwen3-4B-Instruct model, ORBIT raises the HealthBench-Hard score from 7.0 to 27.5 using only 2k training samples, achieving SOTA performance for models at this scale. With larger rubric datasets, ORBIT-trained models further compete with the strongest open-source baselines on HealthBench-Hard. Our analysis shows that rubric-guided RL consistently improves consultation quality across diverse medical scenarios. We also apply such rubric generation and training pipeline to InfoBench, where ORBIT enhances instruction-following performance, highlighting the generality of rubric-based feedback.
♻ ☆ Atom of Thoughts for Markov LLM Test-Time Scaling NeurIPS 2025
Large Language Models (LLMs) achieve superior performance through training-time scaling, and test-time scaling further enhances their capabilities by conducting effective reasoning during inference. However, as the scale of reasoning increases, existing test-time scaling methods suffer from accumulated historical information, which not only wastes computational resources but also interferes with effective reasoning. To address this issue, we observe that complex reasoning can be achieved by solving a series of independent and self-contained subquestions. These subquestions are essentially \textit{atomic questions}, exhibiting the memoryless property similar to Markov processes. Based on this observation, we propose Atom of Thoughts (\our), where each state transition consists of decomposing the current question into a dependency-based directed acyclic graph and contracting its subquestions, forming a simplified question that maintains answer equivalence with the original problem. This answer preservation enables the iterative \textit{decomposition-contraction} process to naturally form a meaningful Markov reasoning process. Furthermore, these atomic states can be seamlessly integrated into existing test-time scaling methods, enabling \our to serve as a plug-in enhancement for improving reasoning capabilities. Experiments across six benchmarks demonstrate the effectiveness of \our both as a standalone framework and a plug-in enhancement. Notably, on HotpotQA, when applied to gpt-4o-mini, \our achieves an \textbf{80.6\%} F1 score, surpassing o3-mini by \textbf{3.4\%} and DeepSeek-R1 by \textbf{10.6\%}. The code is available at \href{https://github.com/qixucen/atom}{https://github.com/qixucen/atom}.
comment: Accepted to NeurIPS 2025
♻ ☆ Toward Equitable Access: Leveraging Crowdsourced Reviews to Investigate Public Perceptions of Health Resource Accessibility
Monitoring health resource disparities during public health crises is critical, yet traditional methods, like surveys, lack the requisite speed and spatial granularity. This study introduces a novel framework that leverages: 1) crowdsourced Google Maps reviews (2018-2021) and 2) advanced NLP (DeBERTa) to create a high-resolution, spatial-temporal index of public perception of health resource accessibility in the United States. We then employ Partial Least Squares (PLS) regression to link this perception index to a range of socioeconomic and demographic drivers. Our results quantify significant spatial-temporal shifts in perceived access, confirming that disparities peaked during the COVID-19 crisis and only partially recovered post-peak. We identify political affiliation, racial composition, and educational attainment as primary determinants of these perceptions. This study validates a scalable method for real-time health equity monitoring and provides actionable evidence for interventions to build a more resilient healthcare infrastructure.
♻ ☆ Prompt-R1: Collaborative Automatic Prompting Framework via End-to-end Reinforcement Learning
Recently, advanced large language models (LLMs) have emerged at an increasingly rapid pace. However, when faced with complex problems, most users are often unable to provide accurate and effective prompts to interact with LLMs, thus limiting the performance of LLMs. To address this challenge, we propose Prompt-R1, an end-to-end reinforcement learning framework that uses a small-scale LLM to collaborate with large-scale LLMs, replacing user interaction to solve problems better. This collaboration is cast as a multi-turn prompt interaction, where the small-scale LLM thinks and generates prompts, and the large-scale LLM performs complex reasoning. A dual-constrained reward is designed to optimize for correctness, generation quality, and reasoning accuracy. Prompt-R1 provides a plug-and-play framework that supports both inference and training with various large-scale LLMs. Experiments on multiple public datasets show that Prompt-R1 significantly outperforms baseline models across tasks. Our code is publicly available at https://github.com/QwenQKing/Prompt-R1.
♻ ☆ Self Iterative Label Refinement via Robust Unlabeled Learning NeurIPS 2025
Recent advances in large language models (LLMs) have yielded impressive performance on various tasks, yet they often depend on high-quality feedback that can be costly. Self-refinement methods attempt to leverage LLMs' internal evaluation mechanisms with minimal human supervision; however, these approaches frequently suffer from inherent biases and overconfidence, especially in domains where the models lack sufficient internal knowledge, resulting in performance degradation. As an initial step toward enhancing self-refinement for broader applications, we introduce an iterative refinement pipeline that employs the Unlabeled-Unlabeled learning framework to improve LLM-generated pseudo-labels for classification tasks. By exploiting two unlabeled datasets with differing positive class ratios, our approach iteratively denoises and refines the initial pseudo-labels, thereby mitigating the adverse effects of internal biases with minimal human supervision. Evaluations on diverse datasets, including low-resource language corpora, patent classifications, and protein structure categorizations, demonstrate that our method consistently outperforms both initial LLM's classification performance and the self-refinement approaches by cutting-edge models (e.g., GPT-4o and DeepSeek-R1). Moreover, we experimentally confirm that our refined classifier facilitates effective post-training alignment for safety in LLMs and demonstrate successful self-refinement in generative tasks as well.\footnote{Our code is available at https://github.com/HikaruAsano/self-iterative-label-refinement.}
comment: To appear in the Thirty-Ninth Annual Conference on Neural Information Processing Systems (NeurIPS 2025)
Structured Prompting Enables More Robust Evaluation of Language Models
As language models (LMs) are increasingly adopted across domains, high-quality benchmarking frameworks that accurately estimate performance are essential for guiding deployment decisions. While frameworks such as Holistic Evaluation of Language Models (HELM) enable broad evaluation across tasks, they often rely on fixed prompts that fail to generalize across LMs, yielding unrepresentative performance estimates. Unless we approximate each LM's ceiling (maximum achievable via changes to the prompt), we risk underestimating performance. Declarative prompting frameworks, such as DSPy, offer a scalable alternative to manual prompt engineering by crafting structured prompts that can be optimized per task. However, such frameworks have not been systematically evaluated across established benchmarks. We present a reproducible DSPy+HELM framework that introduces structured prompting methods which elicit reasoning, enabling more accurate LM benchmarking. Using four prompting methods, we evaluate four frontier LMs across seven benchmarks (general/medical domain) against existing HELM baseline scores. We find that without structured prompting: (i) HELM underestimates LM performance (by 4% average), (ii) performance estimates vary more across benchmarks ($+$2% standard deviation), (iii) performance gaps are misrepresented (leaderboard rankings flip on 3/7 benchmarks), and (iv) introducing chain-of-thought reduces LM sensitivity to prompt design (smaller $Δ$ across prompts). To our knowledge, this is the first benchmarking study to systematically integrate structured prompting into an established evaluation framework, demonstrating how scalable performance-ceiling approximation yields more robust, decision-useful benchmarks. We open-source (i) DSPy+HELM Integration (https://github.com/stanford-crfm/helm/pull/3893) and (ii) Prompt Optimization Pipeline (https://github.com/StanfordMIMI/dspy-helm).
♻ ☆ Benford's Curse: Tracing Digit Bias to Numerical Hallucination in LLMs NeurIPS 2025
Large Language Models (LLMs) exhibit impressive performance on complex reasoning tasks, yet they frequently fail on basic numerical problems, producing incorrect outputs. Inspired by Benford's Law, a statistical pattern in which lower digits occur more frequently as leading digits, we hypothesize that the skewed digit distributions in web-collected corpora may be learned by LLMs during pretraining, leading to biased numerical generation. To investigate the hypothesis, we first examine whether digits frequencies in pretraining corpus (OLMo2) follows Benford's law. We then construct an evaluation benchmark in which the ground-truth digits are uniformly distributed within each of the seven numerical reasoning tasks. Our evaluation results demonstrate that leading open-source LLMs show a consistent pattern of digit bias that resembles Benford's law. Through logit-lens tracing and neuron-level dissection, we identify that this bias arises predominantly from a small subset of highly digit-selective feed-forward network (FFN) neurons in the deeper layers. Finally, we demonstrate that pruning these neurons mitigates imbalanced overgeneration and partially corrects erroneous outputs, providing causal evidence that fine-grained pretraining digit bias can propagate into model behavior. Our findings reveal a fundamental connection between corpus-level statistics and symbolic failure modes in LLMs, offering a new lens for diagnosing and mitigating hallucinations in numerical tasks.
comment: NeurIPS 2025
♻ ☆ Exploiting Vocabulary Frequency Imbalance in Language Model Pre-training NeurIPS 2025
Large language models are trained with tokenizers, and the resulting token distribution is highly imbalanced: a few words dominate the stream while most occur rarely. Recent practice favors ever-larger vocabularies, but it is unclear where the benefit comes from. To this end, we perform a controlled study that scales the vocabulary of the language model from 24K to 196K while holding data, computation, and optimization unchanged. We begin by quantifying the complexity of tokenized text -- formalized via Kolmogorov complexity -- and show that larger vocabularies reduce this complexity. Above 24K, every common word is already tokenized as a single token, so enlarging vocabulary only deepens the relative token-frequency imbalance. Word-level loss decomposition shows that larger vocabularies reduce cross-entropy loss almost exclusively by lowering uncertainty on the 2,500 most frequent words, even though loss on the rare tail rises. The same frequent words cover roughly 75% of tokens in downstream benchmarks, so this training advantage transfers intact. We further show that enlarging model parameters with a fixed vocabulary yields the same frequent-word benefit. Our results recast "bigger vocabularies help" as "lowering complexity of tokenized text helps," offering a simple, principled knob for tokenizer-model co-design and clarifying the loss dynamics that govern language model scaling in pre-training.
comment: NeurIPS 2025
♻ ☆ Deep Improvement Supervision
Recently, it was shown that small, looped architectures, such as Tiny Recursive Models (TRMs), can outperform Large Language Models (LLMs) on complex reasoning tasks, including the Abstraction and Reasoning Corpus (ARC). In this work, we investigate a core question: how can we further improve the efficiency of these methods with minimal changes? To address this, we frame the latent reasoning of TRMs as a form of classifier-free guidance and implicit policy improvement algorithm. Building on these insights, we propose a novel training scheme that provides a target for each loop during training. We demonstrate that our approach significantly enhances training efficiency. Our method reduces the total number of forward passes by 18x and eliminates halting mechanisms, while maintaining quality comparable to standard TRMs. Notably, we achieve 24% accuracy on ARC-1 with only 0.8M parameters, outperforming most LLMs.
♻ ☆ ReGATE: Learning Faster and Better with Fewer Tokens in MLLMs
The computational cost of training multimodal large language models (MLLMs) grows rapidly with the number of processed tokens. Existing efficiency methods mainly target inference via token reduction or merging, offering limited benefits during training. We introduce ReGATE (Reference-Guided Adaptive Token Elision), an adaptive token pruning method for accelerating MLLM training. ReGATE adopts a teacher-student framework, in which a frozen teacher LLM provides per-token guidance losses that are fused with an exponential moving average of the student's difficulty estimates. This adaptive scoring mechanism dynamically selects informative tokens while skipping redundant ones in the forward pass, substantially reducing computation without altering the model architecture. Across three representative MLLMs, ReGATE matches the peak accuracy of standard training on MVBench up to 2$\times$ faster, using only 38% of the tokens. With extended training, it even surpasses the baseline across multiple multimodal benchmarks, cutting total token usage by over 41%. Code and models will be released publicly.
Computer Vision and Pattern Recognition 100
☆ Video-R2: Reinforcing Consistent and Grounded Reasoning in Multimodal Language Models
Reasoning over dynamic visual content remains a central challenge for multimodal large language models. Recent thinking models generate explicit reasoning traces for interpretability; however, their reasoning often appears convincing while being logically inconsistent or weakly grounded in visual evidence. We identify and formalize these issues through two diagnostic metrics: Think Answer Consistency (TAC), which measures the alignment between reasoning and answers, and Video Attention Score (VAS), which captures the extent to which reasoning depends on visual versus textual cues. Analysis across 11 video reasoning benchmarks shows that current models rely heavily on linguistic priors rather than visual content. To address this, we propose a reinforcement learning approach that enhances both temporal precision and reasoning consistency. Our approach combines timestamp aware supervised fine tuning with Group Relative Policy Optimization (GRPO) guided by a novel Temporal Alignment Reward (TAR). This dual step post training stage encourages temporally aligned and causally coherent video reasoning. The resulting model, Video R2, achieves consistently higher TAC, VAS, and accuracy across multiple benchmarks, demonstrating that improvements in temporal alignment and reasoning coherence lead to more accurate and trustworthy video understanding. Our code, dataset, and model will be open sourced.
comment: Video-R2 Technical Report
☆ Video-CoM: Interactive Video Reasoning via Chain of Manipulations
Recent multimodal large language models (MLLMs) have advanced video understanding, yet most still "think about videos" ie once a video is encoded, reasoning unfolds entirely in text, treating visual input as a static context. This passive paradigm creates a semantic bottleneck: models cannot rewatch, refocus, or verify evidence, leading to shallow visual reasoning on tasks requiring fine grained spatio temporal understanding. In this work, we introduce Interactive Video Reasoning, a new paradigm that transforms video into an active cognitive workspace, enabling models to "think with videos". Our model, Video CoM, reasons through a Chain of Manipulations (CoM), performing iterative visual actions to gather and refine evidence. To support this behavior, we construct Video CoM Instruct, an 18K instruction tuning dataset curated for multi step manipulation reasoning. Beyond supervised learning, we further optimize the manipulation policy via reinforcement learning with reasoning aware Group Relative Policy Optimization (GRPO). Unlike prior work that relies solely on sparse answer rewards, our method introduces step level reasoning rewards, guiding the model toward grounded and consistent reasoning. Video CoM achieves strong results across nine video reasoning benchmarks, improving average performance by 3.6 percent over recent state of the art models, while training on only 25K SFT and 3K GRPO video samples, significantly fewer than comparable large scale models. Ablation studies demonstrate that reasoning aware rewards improve both accuracy and interpretability. Code: https://github.com/mbzuai-oryx/Video-CoM
comment: Technical Report
☆ AnyTalker: Scaling Multi-Person Talking Video Generation with Interactivity Refinement
Recently, multi-person video generation has started to gain prominence. While a few preliminary works have explored audio-driven multi-person talking video generation, they often face challenges due to the high costs of diverse multi-person data collection and the difficulty of driving multiple identities with coherent interactivity. To address these challenges, we propose AnyTalker, a multi-person generation framework that features an extensible multi-stream processing architecture. Specifically, we extend Diffusion Transformer's attention block with a novel identity-aware attention mechanism that iteratively processes identity-audio pairs, allowing arbitrary scaling of drivable identities. Besides, training multi-person generative models demands massive multi-person data. Our proposed training pipeline depends solely on single-person videos to learn multi-person speaking patterns and refines interactivity with only a few real multi-person clips. Furthermore, we contribute a targeted metric and dataset designed to evaluate the naturalness and interactivity of the generated multi-person videos. Extensive experiments demonstrate that AnyTalker achieves remarkable lip synchronization, visual quality, and natural interactivity, striking a favorable balance between data costs and identity scalability.
comment: Homepage: https://hkust-c4g.github.io/AnyTalker-homepage
☆ Visual Generation Tuning
Large Vision Language Models (VLMs) effectively bridge the modality gap through extensive pretraining, acquiring sophisticated visual representations aligned with language. However, it remains underexplored whether these representations, optimized for multimodal understanding tasks, harbor an inherent potential for visual generation. In this paper, we propose VGT, Visual Generation Tuning, a novel paradigm designed to stimulate the underlying capabilities of visual generation within any vision language models. By performing efficient visual generation tuning on well-pretrained VLMs, we significantly mitigate the alignment costs and accelerate the convergence of autoregressive modeling in the continuous space (20x speedup). Specifically, we dismiss the entangled pixel-level VAEs designed for diffusion transformers and formulate VGT-AE through aligning the semantic encoders from pretrained VLMs with the latent representations of pixel decoders. In image reconstruction tasks, we achieve 26.67 PSNR and 0.50 rFID at a 28x compression ratio, outperforming specialized VAEs; in visual generation tasks, we achieve state-of-the-art outcomes among autoregressive models, 0.77 on GenEval and 78.73 on DPG-Bench. Furthermore, our proposed VGT showcases significant scaling promise and is versatile for endowing any VLMs trained for multimodal understanding with the capabilities of visual generation, which paves the new avenue to explore next-generation unified multimodal foundation models. Models and codes are available at https://github.com/hustvl/VGT.
☆ Object-Centric Data Synthesis for Category-level Object Detection
Deep learning approaches to object detection have achieved reliable detection of specific object classes in images. However, extending a model's detection capability to new object classes requires large amounts of annotated training data, which is costly and time-consuming to acquire, especially for long-tailed classes with insufficient representation in existing datasets. Here, we introduce the object-centric data setting, when limited data is available in the form of object-centric data (multi-view images or 3D models), and systematically evaluate the performance of four different data synthesis methods to finetune object detection models on novel object categories in this setting. The approaches are based on simple image processing techniques, 3D rendering, and image diffusion models, and use object-centric data to synthesize realistic, cluttered images with varying contextual coherence and complexity. We assess how these methods enable models to achieve category-level generalization in real-world data, and demonstrate significant performance boosts within this data-constrained experimental setting.
comment: 10 pages, 10 figures
☆ Physics-Informed Neural Networks for Thermophysical Property Retrieval
Inverse heat problems refer to the estimation of material thermophysical properties given observed or known heat diffusion behaviour. Inverse heat problems have wide-ranging uses, but a critical application lies in quantifying how building facade renovation reduces thermal transmittance, a key determinant of building energy efficiency. However, solving inverse heat problems with non-invasive data collected in situ is error-prone due to environmental variability or deviations from theoretically assumed conditions. Hence, current methods for measuring thermal conductivity are either invasive, require lengthy observation periods, or are sensitive to environmental and experimental conditions. Here, we present a PINN-based iterative framework to estimate the thermal conductivity k of a wall from a set of thermographs; our framework alternates between estimating the forward heat problem with a PINN for a fixed k, and optimizing k by comparing the thermographs and surface temperatures predicted by the PINN, repeating until the estimated k's convergence. Using both environmental data captured by a weather station and data generated from Finite-Volume-Method software simulations, we accurately predict k across different environmental conditions and data collection sampling times, given the temperature profile of the wall at dawn is close to steady state. Although violating the steady-state assumption impacts the accuracy of k's estimation, we show that our proposed framework still only exhibits a maximum MAE of 4.0851. Our work demonstrates the potential of PINN-based methods for reliable estimation of material properties in situ and under realistic conditions, without lengthy measurement campaigns. Given the lack of research on using machine learning, and more specifically on PINNs, for solving in-situ inverse problems, we expect our work to be a starting point for more research on the topic.
comment: 26 pages, 4 figures, 3 tables
☆ Hunyuan-GameCraft-2: Instruction-following Interactive Game World Model
Recent advances in generative world models have enabled remarkable progress in creating open-ended game environments, evolving from static scene synthesis toward dynamic, interactive simulation. However, current approaches remain limited by rigid action schemas and high annotation costs, restricting their ability to model diverse in-game interactions and player-driven dynamics. To address these challenges, we introduce Hunyuan-GameCraft-2, a new paradigm of instruction-driven interaction for generative game world modeling. Instead of relying on fixed keyboard inputs, our model allows users to control game video contents through natural language prompts, keyboard, or mouse signals, enabling flexible and semantically rich interaction within generated worlds. We formally defined the concept of interactive video data and developed an automated process to transform large-scale, unstructured text-video pairs into causally aligned interactive datasets. Built upon a 14B image-to-video Mixture-of-Experts(MoE) foundation model, our model incorporates a text-driven interaction injection mechanism for fine-grained control over camera motion, character behavior, and environment dynamics. We introduce an interaction-focused benchmark, InterBench, to evaluate interaction performance comprehensively. Extensive experiments demonstrate that our model generates temporally coherent and causally grounded interactive game videos that faithfully respond to diverse and free-form user instructions such as "open the door", "draw a torch", or "trigger an explosion".
comment: Technical Report, Project page:https://hunyuan-gamecraft-2.github.io/
☆ DisMo: Disentangled Motion Representations for Open-World Motion Transfer NeurIPS 2025
Recent advances in text-to-video (T2V) and image-to-video (I2V) models, have enabled the creation of visually compelling and dynamic videos from simple textual descriptions or initial frames. However, these models often fail to provide an explicit representation of motion separate from content, limiting their applicability for content creators. To address this gap, we propose DisMo, a novel paradigm for learning abstract motion representations directly from raw video data via an image-space reconstruction objective. Our representation is generic and independent of static information such as appearance, object identity, or pose. This enables open-world motion transfer, allowing motion to be transferred across semantically unrelated entities without requiring object correspondences, even between vastly different categories. Unlike prior methods, which trade off motion fidelity and prompt adherence, are overfitting to source structure or drifting from the described action, our approach disentangles motion semantics from appearance, enabling accurate transfer and faithful conditioning. Furthermore, our motion representation can be combined with any existing video generator via lightweight adapters, allowing us to effortlessly benefit from future advancements in video models. We demonstrate the effectiveness of our method through a diverse set of motion transfer tasks. Finally, we show that the learned representations are well-suited for downstream motion understanding tasks, consistently outperforming state-of-the-art video representation models such as V-JEPA in zero-shot action classification on benchmarks including Something-Something v2 and Jester. Project page: https://compvis.github.io/DisMo
comment: Accepted at NeurIPS 2025
☆ MANTA: Physics-Informed Generalized Underwater Object Tracking
Underwater object tracking is challenging due to wavelength dependent attenuation and scattering, which severely distort appearance across depths and water conditions. Existing trackers trained on terrestrial data fail to generalize to these physics-driven degradations. We present MANTA, a physics-informed framework integrating representation learning with tracking design for underwater scenarios. We propose a dual-positive contrastive learning strategy coupling temporal consistency with Beer-Lambert augmentations to yield features robust to both temporal and underwater distortions. We further introduce a multi-stage pipeline augmenting motion-based tracking with a physics-informed secondary association algorithm that integrates geometric consistency and appearance similarity for re-identification under occlusion and drift. To complement standard IoU metrics, we propose Center-Scale Consistency (CSC) and Geometric Alignment Score (GAS) to assess geometric fidelity. Experiments on four underwater benchmarks (WebUOT-1M, UOT32, UTB180, UWCOT220) show that MANTA achieves state-of-the-art performance, improving Success AUC by up to 6 percent, while ensuring stable long-term generalized underwater tracking and efficient runtime.
comment: Accepted to the IEEE/CVF WACV 2026
☆ VQRAE: Representation Quantization Autoencoders for Multimodal Understanding, Generation and Reconstruction
Unifying multimodal understanding, generation and reconstruction representation in a single tokenizer remains a key challenge in building unified models. Previous research predominantly attempts to address this in a dual encoder paradigm, e.g., utilizing the separate encoders for understanding and generation respectively or balancing semantic representations and low-level features with contrastive loss. In this paper, we propose VQRAE, a Vector Quantization version of Representation AutoEncoders, which pioneers the first exploration in unified representation to produce Continuous semantic features for image understanding and Discrete tokens for visual generation within a unified tokenizer. Specifically, we build upon pretrained vision foundation models with a symmetric ViT decoder and adopt a two-stage training strategy: first, it freezes the encoder and learns a high-dimensional semantic VQ codebook with pixel reconstruction objective; then jointly optimizes the encoder with self-distillation constraints. This design enables negligible semantic information for maintaining the ability of multimodal understanding, discrete tokens that are compatible for generation and fine-grained reconstruction. Besides, we identify the intriguing property in quantizing semantic encoders that rely on high-dimensional codebook in contrast to the previous common practice of low-dimensional codebook in image reconstruction. The semantic VQ codebook can achieve a 100% utilization ratio at a dimension of 1536. VQRAE presents competitive performance on several benchmarks of visual understanding, generation and reconstruction with promising scaling property in the autoregressive paradigm for its discrete merits.
comment: 19 pages, 10 figures
☆ DEAL-300K: Diffusion-based Editing Area Localization with a 300K-Scale Dataset and Frequency-Prompted Baseline
Diffusion-based image editing has made semantic level image manipulation easy for general users, but it also enables realistic local forgeries that are hard to localize. Existing benchmarks mainly focus on the binary detection of generated images or the localization of manually edited regions and do not reflect the properties of diffusion-based edits, which often blend smoothly into the original content. We present Diffusion-Based Image Editing Area Localization Dataset (DEAL-300K), a large scale dataset for diffusion-based image manipulation localization (DIML) with more than 300,000 annotated images. We build DEAL-300K by using a multi-modal large language model to generate editing instructions, a mask-free diffusion editor to produce manipulated images, and an active-learning change detection pipeline to obtain pixel-level annotations. On top of this dataset, we propose a localization framework that uses a frozen Visual Foundation Model (VFM) together with Multi Frequency Prompt Tuning (MFPT) to capture both semantic and frequency-domain cues of edited regions. Trained on DEAL-300K, our method reaches a pixel-level F1 score of 82.56% on our test split and 80.97% on the external CoCoGlide benchmark, providing strong baselines and a practical foundation for future DIML research.The dataset can be accessed via https://github.com/ymhzyj/DEAL-300K.
comment: 13pages,12 figures
☆ Optimizing Multimodal Language Models through Attention-based Interpretability
Modern large language models become multimodal, analyzing various data formats like text and images. While fine-tuning is effective for adapting these multimodal language models (MLMs) to downstream tasks, full fine-tuning is computationally expensive. Parameter-Efficient Fine-Tuning (PEFT) methods address this by training only a small portion of model weights. However, MLMs are difficult to interpret, making it challenging to identify which components are most effective for training to balance efficiency and performance. We propose an attention-based interpretability method for MLMs by analyzing attention scores relative to image tokens. The core idea is to identify attention heads that focus on image key objects. We utilize this information to select optimal model components for PEFT in multimodal models. Our contributions include a method for identifying attention heads associated with image key objects, its application to PEFT for image captioning, and the creation of a new dataset containing images, key object masks, and their textual descriptions. We conducted experiments on MLMs with 2-3 billion parameters to validate the method's effectiveness. By calculating Head Impact (HI) scores we quantify an attention head's focus on key objects, indicating its significance in image understanding. Our fine-tuning experiments demonstrate that adapting layers with the highest HI scores leads to the most significant shifts in metrics compared to pre-trained, randomly selected, or lowest-HI-score layers. This indicates that fine-tuning a small percentage (around 0.01%) of parameters in these crucial layers can substantially influence image understanding capabilities.
comment: Accepted for ICAI-2025 conference
☆ SimScale: Learning to Drive via Real-World Simulation at Scale
Achieving fully autonomous driving systems requires learning rational decisions in a wide span of scenarios, including safety-critical and out-of-distribution ones. However, such cases are underrepresented in real-world corpus collected by human experts. To complement for the lack of data diversity, we introduce a novel and scalable simulation framework capable of synthesizing massive unseen states upon existing driving logs. Our pipeline utilizes advanced neural rendering with a reactive environment to generate high-fidelity multi-view observations controlled by the perturbed ego trajectory. Furthermore, we develop a pseudo-expert trajectory generation mechanism for these newly simulated states to provide action supervision. Upon the synthesized data, we find that a simple co-training strategy on both real-world and simulated samples can lead to significant improvements in both robustness and generalization for various planning methods on challenging real-world benchmarks, up to +6.8 EPDMS on navhard and +2.9 on navtest. More importantly, such policy improvement scales smoothly by increasing simulation data only, even without extra real-world data streaming in. We further reveal several crucial findings of such a sim-real learning system, which we term SimScale, including the design of pseudo-experts and the scaling properties for different policy architectures. Our simulation data and code would be released.
comment: Project page: https://opendrivelab.com/SimScale
☆ A Hierarchical Computer Vision Pipeline for Physiological Data Extraction from Bedside Monitors
In many low-resource healthcare settings, bedside monitors remain standalone legacy devices without network connectivity, creating a persistent interoperability gap that prevents seamless integration of physiological data into electronic health record (EHR) systems. To address this challenge without requiring costly hardware replacement, we present a computer vision-based pipeline for the automated capture and digitisation of vital sign data directly from bedside monitor screens. Our method employs a hierarchical detection framework combining YOLOv11 for accurate monitor and region of interest (ROI) localisation with PaddleOCR for robust text extraction. To enhance reliability across variable camera angles and lighting conditions, a geometric rectification module standardizes the screen perspective before character recognition. We evaluated the system on a dataset of 6,498 images collected from open-source corpora and real-world intensive care units in Vietnam. The model achieved a mean Average Precision (mAP@50-95) of 99.5% for monitor detection and 91.5% for vital sign ROI localisation. The end-to-end extraction accuracy exceeded 98.9% for core physiological parameters, including heart rate, oxygen saturation SpO2, and arterial blood pressure. These results demonstrate that a lightweight, camera-based approach can reliably transform unstructured information from screen captures into structured digital data, providing a practical and scalable pathway to improve information accessibility and clinical documentation in low-resource settings.
comment: 11 pages, 3 figures
☆ Flow Straighter and Faster: Efficient One-Step Generative Modeling via MeanFlow on Rectified Trajectories
Flow-based generative models have recently demonstrated strong performance, yet sampling typically relies on expensive numerical integration of ordinary differential equations (ODEs). Rectified Flow enables one-step sampling by learning nearly straight probability paths, but achieving such straightness requires multiple computationally intensive reflow iterations. MeanFlow achieves one-step generation by directly modeling the average velocity over time; however, when trained on highly curved flows, it suffers from slow convergence and noisy supervision. To address these limitations, we propose Rectified MeanFlow, a framework that models the mean velocity field along the rectified trajectory using only a single reflow step. This eliminates the need for perfectly straightened trajectories while enabling efficient training. Furthermore, we introduce a simple yet effective truncation heuristic that aims to reduce residual curvature and further improve performance. Extensive experiments on ImageNet at 64, 256, and 512 resolutions show that Re-MeanFlow consistently outperforms prior one-step flow distillation and Rectified Flow methods in both sample quality and training efficiency. Code is available at https://github.com/Xinxi-Zhang/Re-MeanFlow.
☆ Markovian Scale Prediction: A New Era of Visual Autoregressive Generation
Visual AutoRegressive modeling (VAR) based on next-scale prediction has revitalized autoregressive visual generation. Although its full-context dependency, i.e., modeling all previous scales for next-scale prediction, facilitates more stable and comprehensive representation learning by leveraging complete information flow, the resulting computational inefficiency and substantial overhead severely hinder VAR's practicality and scalability. This motivates us to develop a new VAR model with better performance and efficiency without full-context dependency. To address this, we reformulate VAR as a non-full-context Markov process, proposing Markov-VAR. It is achieved via Markovian Scale Prediction: we treat each scale as a Markov state and introduce a sliding window that compresses certain previous scales into a compact history vector to compensate for historical information loss owing to non-full-context dependency. Integrating the history vector with the Markov state yields a representative dynamic state that evolves under a Markov process. Extensive experiments demonstrate that Markov-VAR is extremely simple yet highly effective: Compared to VAR on ImageNet, Markov-VAR reduces FID by 10.5% (256 $\times$ 256) and decreases peak memory consumption by 83.8% (1024 $\times$ 1024). We believe that Markov-VAR can serve as a foundation for future research on visual autoregressive generation and other downstream tasks.
☆ UniGeoSeg: Towards Unified Open-World Segmentation for Geospatial Scenes
Instruction-driven segmentation in remote sensing generates masks from guidance, offering great potential for accessible and generalizable applications. However, existing methods suffer from fragmented task formulations and limited instruction data, hindering effective understanding and generalization. To address these issues, we introduce GeoSeg-1M, the first million-scale dataset for remote sensing instruction-driven segmentation, constructed via an automatic mask filtering and instruction generation pipeline that synthesizes referring, interactive, and reasoning segmentation instructions from multiple public datasets. GeoSeg-1M contains 590K images, 117 categories, and 1.1M image-mask-instruction triplets. Building upon this foundation, we further curate GeoSeg-Bench, a challenging benchmark designed to evaluate contextual understanding and reasoning capabilities across diverse instruction-driven tasks and complex geospatial scenes. Furthermore, we present UniGeoSeg, a unified framework that serves as a strong baseline, incorporating task-aware text enhancement, latent knowledge memory, and a progressive training strategy to facilitate multi-task learning. Extensive experiments demonstrate the state-of-the-art performance of UniGeoSeg across GeoSeg-Bench and diverse public benchmarks, while exhibiting strong zero-shot generalization. Datasets and source code were released at https://github.com/MiliLab/UniGeoSeg.
comment: Datasets and source code were released at https://github.com/MiliLab/UniGeoSeg
☆ A Perceptually Inspired Variational Framework for Color Enhancement
Basic phenomenology of human color vision has been widely taken as an inspiration to devise explicit color correction algorithms. The behavior of these models in terms of significative image features (such as contrast and dispersion) can be difficult to characterize. To cope with this, we propose to use a variational formulation of color contrast enhancement that is inspired by the basic phenomenology of color perception. In particular, we devise a set of basic requirements to be fulfilled by an energy to be considered as `perceptually inspired', showing that there is an explicit class of functionals satisfying all of them. We single out three explicit functionals that we consider of basic interest, showing similarities and differences with existing models. The minima of such functionals is computed using a gradient descent approach. We also present a general methodology to reduce the computational cost of the algorithms under analysis from ${\cal O}(N^2)$ to ${\cal O}(N\log N)$, being $N$ the number of input pixels.
☆ Toward Automatic Safe Driving Instruction: A Large-Scale Vision Language Model Approach
Large-scale Vision Language Models (LVLMs) exhibit advanced capabilities in tasks that require visual information, including object detection. These capabilities have promising applications in various industrial domains, such as autonomous driving. For example, LVLMs can generate safety-oriented descriptions of videos captured by road-facing cameras. However, ensuring comprehensive safety requires monitoring driver-facing views as well to detect risky events, such as the use of mobiles while driving. Thus, the ability to process synchronized inputs is necessary from both driver-facing and road-facing cameras. In this study, we develop models and investigate the capabilities of LVLMs by constructing a dataset and evaluating their performance on this dataset. Our experimental results demonstrate that while pre-trained LVLMs have limited effectiveness, fine-tuned LVLMs can generate accurate and safety-aware driving instructions. Nonetheless, several challenges remain, particularly in detecting subtle or complex events in the video. Our findings and error analysis provide valuable insights that can contribute to the improvement of LVLM-based systems in this domain.
comment: Accepted to MMLoSo 2025
☆ FACT-GS: Frequency-Aligned Complexity-Aware Texture Reparameterization for 2D Gaussian Splatting
Realistic scene appearance modeling has advanced rapidly with Gaussian Splatting, which enables real-time, high-quality rendering. Recent advances introduced per-primitive textures that incorporate spatial color variations within each Gaussian, improving their expressiveness. However, texture-based Gaussians parameterize appearance with a uniform per-Gaussian sampling grid, allocating equal sampling density regardless of local visual complexity. This leads to inefficient texture space utilization, where high-frequency regions are under-sampled and smooth regions waste capacity, causing blurred appearance and loss of fine structural detail. We introduce FACT-GS, a Frequency-Aligned Complexity-aware Texture Gaussian Splatting framework that allocates texture sampling density according to local visual frequency. Grounded in adaptive sampling theory, FACT-GS reformulates texture parameterization as a differentiable sampling-density allocation problem, replacing the uniform textures with a learnable frequency-aware allocation strategy implemented via a deformation field whose Jacobian modulates local sampling density. Built on 2D Gaussian Splatting, FACT-GS performs non-uniform sampling on fixed-resolution texture grids, preserving real-time performance while recovering sharper high-frequency details under the same parameter budget.
comment: 11 pages, 6 figures, preprint
☆ Machine Learning for Scientific Visualization: Ensemble Data Analysis
Scientific simulations and experimental measurements produce vast amounts of spatio-temporal data, yet extracting meaningful insights remains challenging due to high dimensionality, complex structures, and missing information. Traditional analysis methods often struggle with these issues, motivating the need for more robust, data-driven approaches. This dissertation explores deep learning methodologies to improve the analysis and visualization of spatio-temporal scientific ensembles, focusing on dimensionality reduction, flow estimation, and temporal interpolation. First, we address high-dimensional data representation through autoencoder-based dimensionality reduction for scientific ensembles. We evaluate the stability of projection metrics under partial labeling and introduce a Pareto-efficient selection strategy to identify optimal autoencoder variants, ensuring expressive and reliable low-dimensional embeddings. Next, we present FLINT, a deep learning model for high-quality flow estimation and temporal interpolation in both flow-supervised and flow-unsupervised settings. FLINT reconstructs missing velocity fields and generates high-fidelity temporal interpolants for scalar fields across 2D+time and 3D+time ensembles without domain-specific assumptions or extensive finetuning. To further improve adaptability and generalization, we introduce HyperFLINT, a hypernetwork-based approach that conditions on simulation parameters to estimate flow fields and interpolate scalar data. This parameter-aware adaptation yields more accurate reconstructions across diverse scientific domains, even with sparse or incomplete data. Overall, this dissertation advances deep learning techniques for scientific visualization, providing scalable, adaptable, and high-quality solutions for interpreting complex spatio-temporal ensembles.
comment: PhD thesis, University of Groningen, 2025
☆ Simultaneous Image Quality Improvement and Artefacts Correction in Accelerated MRI
MR data are acquired in the frequency domain, known as k-space. Acquiring high-quality and high-resolution MR images can be time-consuming, posing a significant challenge when multiple sequences providing complementary contrast information are needed or when the patient is unable to remain in the scanner for an extended period of time. Reducing k-space measurements is a strategy to speed up acquisition, but often leads to reduced quality in reconstructed images. Additionally, in real-world MRI, both under-sampled and full-sampled images are prone to artefacts, and correcting these artefacts is crucial for maintaining diagnostic accuracy. Deep learning methods have been proposed to restore image quality from under-sampled data, while others focused on the correction of artefacts that result from the noise or motion. No approach has however been proposed so far that addresses both acceleration and artefacts correction, limiting the performance of these models when these degradation factors occur simultaneously. To address this gap, we present a method for recovering high-quality images from under-sampled data with simultaneously correction for noise and motion artefact called USArt (Under-Sampling and Artifact correction model). Customized for 2D brain anatomical images acquired with Cartesian sampling, USArt employs a dual sub-model approach. The results demonstrate remarkable increase of signal-to-noise ratio (SNR) and contrast in the images restored. Various under-sampling strategies and degradation levels were explored, with the gradient under-sampling strategy yielding the best outcomes. We achieved up to 5x acceleration and simultaneously artefacts correction without significant degradation, showcasing the model's robustness in real-world settings.
☆ Learning to Predict Aboveground Biomass from RGB Images with 3D Synthetic Scenes
Forests play a critical role in global ecosystems by supporting biodiversity and mitigating climate change via carbon sequestration. Accurate aboveground biomass (AGB) estimation is essential for assessing carbon storage and wildfire fuel loads, yet traditional methods rely on labor-intensive field measurements or remote sensing approaches with significant limitations in dense vegetation. In this work, we propose a novel learning-based method for estimating AGB from a single ground-based RGB image. We frame this as a dense prediction task, introducing AGB density maps, where each pixel represents tree biomass normalized by the plot area and each tree's image area. We leverage the recently introduced synthetic 3D SPREAD dataset, which provides realistic forest scenes with per-image tree attributes (height, trunk and canopy diameter) and instance segmentation masks. Using these assets, we compute AGB via allometric equations and train a model to predict AGB density maps, integrating them to recover the AGB estimate for the captured scene. Our approach achieves a median AGB estimation error of 1.22 kg/m^2 on held-out SPREAD data and 1.94 kg/m^2 on a real-image dataset. To our knowledge, this is the first method to estimate aboveground biomass directly from a single RGB image, opening up the possibility for a scalable, interpretable, and cost-effective solution for forest monitoring, while also enabling broader participation through citizen science initiatives.
comment: Presented at STAG 2025
☆ Synthetic Industrial Object Detection: GenAI vs. Feature-Based Methods
Reducing the burden of data generation and annotation remains a major challenge for the cost-effective deployment of machine learning in industrial and robotics settings. While synthetic rendering is a promising solution, bridging the sim-to-real gap often requires expert intervention. In this work, we benchmark a range of domain randomization (DR) and domain adaptation (DA) techniques, including feature-based methods, generative AI (GenAI), and classical rendering approaches, for creating contextualized synthetic data without manual annotation. Our evaluation focuses on the effectiveness and efficiency of low-level and high-level feature alignment, as well as a controlled diffusion-based DA method guided by prompts generated from real-world contexts. We validate our methods on two datasets: a proprietary industrial dataset (automotive and logistics) and a public robotics dataset. Results show that if render-based data with enough variability is available as seed, simpler feature-based methods, such as brightness-based and perceptual hashing filtering, outperform more complex GenAI-based approaches in both accuracy and resource efficiency. Perceptual hashing consistently achieves the highest performance, with mAP50 scores of 98% and 67% on the industrial and robotics datasets, respectively. Additionally, GenAI methods present significant time overhead for data generation at no apparent improvement of sim-to-real mAP values compared to simpler methods. Our findings offer actionable insights for efficiently bridging the sim-to-real gap, enabling high real-world performance from models trained exclusively on synthetic data.
☆ Unlocking Multilingual Reasoning Capability of LLMs and LVLMs through Representation Engineering
Large Language Models (LLMs) and Large Vision-Language Models (LVLMs) demonstrate strong reasoning capabilities, yet their performance in English significantly outperforms that in low-resource languages, raising fairness concerns in multilingual applications. Existing approaches either rely on costly multilingual training or employ prompting with external translation tools, both of which are resource-intensive and sensitive to translation quality. To address these limitations, we propose a training-free inference-time method to enhance Multilingual Reasoning capabilities via Representation Engineering (MRRE) without using any additional training data or tools. MRRE sequentially injects two precomputed vectors at specific layers during inference processing: cross-lingual reasoning enhancement vectors, which steer non-English reasoning representations toward English space to unlock multilingual reasoning, and target-language output anchoring vectors, which restore the distribution of the target language to preserve input-output language consistency. Comprehensive experiments across six advanced LLMs and LVLMs on four reasoning benchmarks demonstrate that MRRE consistently enhances non-English reasoning by an average gain of 5.48% and up to 7.54% in low-resource languages (Thai and Swahili), while improving input-output language consistency by 3.78%.
☆ Language-guided 3D scene synthesis for fine-grained functionality understanding
Functionality understanding in 3D, which aims to identify the functional element in a 3D scene to complete an action (e.g., the correct handle to "Open the second drawer of the cabinet near the bed"), is hindered by the scarcity of real-world data due to the substantial effort needed for its collection and annotation. To address this, we introduce SynthFun3D, the first method for task-based 3D scene synthesis. Given the action description, SynthFun3D generates a 3D indoor environment using a furniture asset database with part-level annotation, ensuring the action can be accomplished. It reasons about the action to automatically identify and retrieve the 3D mask of the correct functional element, enabling the inexpensive and large-scale generation of high-quality annotated data. We validate SynthFun3D through user studies, which demonstrate improved scene-prompt coherence compared to other approaches. Our quantitative results further show that the generated data can either replace real data with minor performance loss or supplement real data for improved performance, thereby providing an inexpensive and scalable solution for data-hungry 3D applications. Project page: github.com/tev-fbk/synthfun3d.
comment: Technical report. 24 pages, 19 figures, 2 tables
☆ PointCNN++: Performant Convolution on Native Points
Existing convolutional learning methods for 3D point cloud data are divided into two paradigms: point-based methods that preserve geometric precision but often face performance challenges, and voxel-based methods that achieve high efficiency through quantization at the cost of geometric fidelity. This loss of precision is a critical bottleneck for tasks such as point cloud registration. We propose PointCNN++, a novel architectural design that fundamentally mitigates this precision-performance trade-off. It \textbf{generalizes sparse convolution from voxels to points}, treating voxel-based convolution as a specialized, degraded case of our more general point-based convolution. First, we introduce a point-centric convolution where the receptive field is centered on the original, high-precision point coordinates. Second, to make this high-fidelity operation performant, we design a computational strategy that operates \textbf{natively} on points. We formulate the convolution on native points as a Matrix-Vector Multiplication and Reduction (MVMR) problem, for which we develop a dedicated, highly-optimized GPU kernel. Experiments demonstrate that PointCNN++ \textbf{uses an order of magnitude less memory and is several times faster} than representative point-based methods. Furthermore, when used as a simple replacement for the voxel-based backbones it generalizes, it \textbf{significantly improves point cloud registration accuracies while proving both more memory-efficient and faster}. PointCNN++ shows that preserving geometric detail and achieving high performance are not mutually exclusive, paving the way for a new class of 3D learning with high fidelity and efficiency. Our code will be open sourced.
☆ TWEO: Transformers Without Extreme Outliers Enables FP8 Training And Quantization For Dummies
Native FP8 support in modern hardware is essential for training large Transformers, but is severely hindered by extreme activation outliers. Existing solutions either rely on complex mixed-precision engineering or invasive architectural modifications. This paper fundamentally challenges the conventional wisdom that outliers are data-driven. We demonstrate that extreme outliers are a data-independent, mechanically-produced artifact of training, originating from specific structural properties of the weight matrices (i.e., colinearity). Based on this insight, we propose TWEO (Transformers Without Extreme Outliers), a novel, non-invasive loss function. TWEO effectively prevents extreme outliers via a very simple loss term, which reduces outliers from 10000+ to less than 20. TWEO then enables full-model FP8 pre-training with neither engineering tricks nor architectural changes for both LLM and ViT. When standard FP8 training catastrophically collapses, TWEO achieves performance comparable to the BF16 baseline while delivering a 36% increase in training throughput. Also, TWEO enables a new quantization paradigm. Hardware-friendly W8A8 per-tensor static quantization of LLMs, previously considered completely unusable due to outliers, achieves SOTA performance for the first time on TWEO-trained models.
☆ DAONet-YOLOv8: An Occlusion-Aware Dual-Attention Network for Tea Leaf Pest and Disease Detection
Accurate detection of tea leaf pests and diseases in real plantations remains challenging due to complex backgrounds, variable illumination, and frequent occlusions among dense branches and leaves. Existing detectors often suffer from missed detections and false positives in such scenarios. To address these issues, we propose DAONet-YOLOv8, an enhanced YOLOv8 variant with three key improvements: (1) a Dual-Attention Fusion Module (DAFM) that combines convolutional local feature extraction with self-attention based global context modeling to focus on subtle lesion regions while suppressing background noise; (2) an occlusion-aware detection head (Detect-OAHead) that learns the relationship between visible and occluded parts to compensate for missing lesion features; and (3) a C2f-DSConv module employing dynamic synthesis convolutions with multiple kernel shapes to better capture irregular lesion boundaries. Experiments on our real-world tea plantation dataset containing six pest and disease categories demonstrate that DAONet-YOLOv8 achieves 92.97% precision, 92.80% recall, 97.10% mAP@50 and 76.90% mAP@50:95, outperforming the YOLOv8n baseline by 2.34, 4.68, 1.40 and 1.80 percentage points respectively, while reducing parameters by 16.7%. Comparative experiments further confirm that DAONet-YOLOv8 achieves superior performance over mainstream detection models.
☆ Robust 3DGS-based SLAM via Adaptive Kernel Smoothing
In this paper, we challenge the conventional notion in 3DGS-SLAM that rendering quality is the primary determinant of tracking accuracy. We argue that, compared to solely pursuing a perfect scene representation, it is more critical to enhance the robustness of the rasterization process against parameter errors to ensure stable camera pose tracking. To address this challenge, we propose a novel approach that leverages a smooth kernel strategy to enhance the robustness of 3DGS-based SLAM. Unlike conventional methods that focus solely on minimizing rendering error, our core insight is to make the rasterization process more resilient to imperfections in the 3DGS parameters. We hypothesize that by allowing each Gaussian to influence a smoother, wider distribution of pixels during rendering, we can mitigate the detrimental effects of parameter noise from outlier Gaussians. This approach intentionally introduces a controlled blur to the rendered image, which acts as a regularization term, stabilizing the subsequent pose optimization. While a complete redesign of the rasterization pipeline is an ideal solution, we propose a practical and effective alternative that is readily integrated into existing 3DGS frameworks. Our method, termed Corrective Blurry KNN (CB-KNN), adaptively modifies the RGB values and locations of the K-nearest neighboring Gaussians within a local region. This dynamic adjustment generates a smoother local rendering, reducing the impact of erroneous GS parameters on the overall image. Experimental results demonstrate that our approach, while maintaining the overall quality of the scene reconstruction (mapping), significantly improves the robustness and accuracy of camera pose tracking.
☆ Instruction Tuning of Large Language Models for Tabular Data Generation-in One Day ICML 2025
Tabular instruction tuning has emerged as a promising research direction for improving LLMs understanding of tabular data. However, the majority of existing works only consider question-answering and reasoning tasks over tabular data, leaving tabular data generation largely unnoticed. In this work, for the first time, we explore the efficacy of instruction tuning in improving LLMs tabular data generation capabilities. More specifically, given the high data and computation requirements of tabular instruction tuning, we aim to address the possibility of instruction tuning for tabular data generation with limited data and computational resources. To achieve this, we first create a high-quality instruction dataset for tabular data, enabling efficient LLM comprehension. We then instruction-tune an open-source LLM (Llama3.1-8B-Instruct) on the training set of this dataset to improve its tabular data generation performance. Our experimental results show that by using our high-quality dataset and instruction-tuning on only 7K instructions with an A100 GPU, for less than 6 hours, we achieve tabular data generation performance on par with the most capable commercial LLM, GPT-4o.
comment: Accepted International Conference on Machine Learning (ICML 2025), 1st Workshop on Foundation Models for Structured Data
☆ Zero-Shot Multi-Criteria Visual Quality Inspection for Semi-Controlled Industrial Environments via Real-Time 3D Digital Twin Simulation
Early-stage visual quality inspection is vital for achieving Zero-Defect Manufacturing and minimizing production waste in modern industrial environments. However, the complexity of robust visual inspection systems and their extensive data requirements hinder widespread adoption in semi-controlled industrial settings. In this context, we propose a pose-agnostic, zero-shot quality inspection framework that compares real scenes against real-time Digital Twins (DT) in the RGB-D space. Our approach enables efficient real-time DT rendering by semantically describing industrial scenes through object detection and pose estimation of known Computer-Aided Design models. We benchmark tools for real-time, multimodal RGB-D DT creation while tracking consumption of computational resources. Additionally, we provide an extensible and hierarchical annotation strategy for multi-criteria defect detection, unifying pose labelling with logical and structural defect annotations. Based on an automotive use case featuring the quality inspection of an axial flux motor, we demonstrate the effectiveness of our framework. Our results demonstrate detection performace, achieving intersection-over-union (IoU) scores of up to 63.3% compared to ground-truth masks, even if using simple distance measurements under semi-controlled industrial conditions. Our findings lay the groundwork for future research on generalizable, low-data defect detection methods in dynamic manufacturing settings.
☆ Pathryoshka: Compressing Pathology Foundation Models via Multi-Teacher Knowledge Distillation with Nested Embeddings
Pathology foundation models (FMs) have driven significant progress in computational pathology. However, these high-performing models can easily exceed a billion parameters and produce high-dimensional embeddings, thus limiting their applicability for research or clinical use when computing resources are tight. Here, we introduce Pathryoshka, a multi-teacher distillation framework inspired by RADIO distillation and Matryoshka Representation Learning to reduce pathology FM sizes while allowing for adaptable embedding dimensions. We evaluate our framework with a distilled model on ten public pathology benchmarks with varying downstream tasks. Compared to its much larger teachers, Pathryoshka reduces the model size by 86-92% at on-par performance. It outperforms state-of-the-art single-teacher distillation models of comparable size by a median margin of 7.0 in accuracy. By enabling efficient local deployment without sacrificing accuracy or representational richness, Pathryoshka democratizes access to state-of-the-art pathology FMs for the broader research and clinical community.
☆ Vision Bridge Transformer at Scale
We introduce Vision Bridge Transformer (ViBT), a large-scale instantiation of Brownian Bridge Models designed for conditional generation. Unlike traditional diffusion models that transform noise into data, Bridge Models directly model the trajectory between inputs and outputs, creating an efficient data-to-data translation paradigm. By scaling these models to 20B and 1.3B parameters, we demonstrate their effectiveness for image and video translation tasks. To support this scale, we adopt a Transformer architecture and propose a variance-stabilized velocity-matching objective for robust training. Together, these advances highlight the power of scaling Bridge Models for instruction-based image editing and complex video translation.
☆ GeoWorld: Unlocking the Potential of Geometry Models to Facilitate High-Fidelity 3D Scene Generation
Previous works leveraging video models for image-to-3D scene generation tend to suffer from geometric distortions and blurry content. In this paper, we renovate the pipeline of image-to-3D scene generation by unlocking the potential of geometry models and present our GeoWorld. Instead of exploiting geometric information obtained from a single-frame input, we propose to first generate consecutive video frames and then take advantage of the geometry model to provide full-frame geometry features, which contain richer information than single-frame depth maps or camera embeddings used in previous methods, and use these geometry features as geometrical conditions to aid the video generation model. To enhance the consistency of geometric structures, we further propose a geometry alignment loss to provide the model with real-world geometric constraints and a geometry adaptation module to ensure the effective utilization of geometry features. Extensive experiments show that our GeoWorld can generate high-fidelity 3D scenes from a single image and a given camera trajectory, outperforming prior methods both qualitatively and quantitatively. Project Page: https://peaes.github.io/GeoWorld/.
☆ Obstruction reasoning for robotic grasping
Successful robotic grasping in cluttered environments not only requires a model to visually ground a target object but also to reason about obstructions that must be cleared beforehand. While current vision-language embodied reasoning models show emergent spatial understanding, they remain limited in terms of obstruction reasoning and accessibility planning. To bridge this gap, we present UNOGrasp, a learning-based vision-language model capable of performing visually-grounded obstruction reasoning to infer the sequence of actions needed to unobstruct the path and grasp the target object. We devise a novel multi-step reasoning process based on obstruction paths originated by the target object. We anchor each reasoning step with obstruction-aware visual cues to incentivize reasoning capability. UNOGrasp combines supervised and reinforcement finetuning through verifiable reasoning rewards. Moreover, we construct UNOBench, a large-scale dataset for both training and benchmarking, based on MetaGraspNetV2, with over 100k obstruction paths annotated by humans with obstruction ratios, contact points, and natural-language instructions. Extensive experiments and real-robot evaluations show that UNOGrasp significantly improves obstruction reasoning and grasp success across both synthetic and real-world environments, outperforming generalist and proprietary alternatives. Project website: https://tev-fbk.github.io/UnoGrasp/.
☆ Fast Multi-view Consistent 3D Editing with Video Priors
Text-driven 3D editing enables user-friendly 3D object or scene editing with text instructions. Due to the lack of multi-view consistency priors, existing methods typically resort to employing 2D generation or editing models to process each view individually, followed by iterative 2D-3D-2D updating. However, these methods are not only time-consuming but also prone to over-smoothed results because the different editing signals gathered from different views are averaged during the iterative process. In this paper, we propose generative Video Prior based 3D Editing (ViP3DE) to employ the temporal consistency priors from pre-trained video generation models for multi-view consistent 3D editing in a single forward pass. Our key insight is to condition the video generation model on a single edited view to generate other consistent edited views for 3D updating directly, thereby bypassing the iterative editing paradigm. Since 3D updating requires edited views to be paired with specific camera poses, we propose motion-preserved noise blending for the video model to generate edited views at predefined camera poses. In addition, we introduce geometry-aware denoising to further enhance multi-view consistency by integrating 3D geometric priors into video models. Extensive experiments demonstrate that our proposed ViP3DE can achieve high-quality 3D editing results even within a single forward pass, significantly outperforming existing methods in both editing quality and speed.
☆ PowerCLIP: Powerset Alignment for Contrastive Pre-Training CVPR 2026
Contrastive vision-language pre-training frameworks such as CLIP have demonstrated impressive zero-shot performance across a range of vision-language tasks. Recent studies have shown that aligning individual text tokens with specific image patches or regions enhances fine-grained compositional understanding. However, it remains challenging to capture compositional semantics that span multiple image regions. To address this limitation, we propose PowerCLIP, a novel contrastive pre-training framework enhanced by powerset alignment, which exhaustively optimizes region-to-phrase alignments by minimizing the loss defined between powersets of image regions and textual parse trees. Since the naive powerset construction incurs exponential computational cost due to the combinatorial explosion in the number of region subsets, we introduce efficient non-linear aggregators (NLAs) that reduce complexity from O(2^M) to O(M) with respect to the number of regions M, while approximating the exact loss value with arbitrary precision. Our extensive experiments demonstrate that PowerCLIP outperforms state-of-the-art methods in zero-shot classification and retrieval tasks, underscoring the compositionality and robustness of our approach. Our code will be made publicly available.
comment: Submitted to CVPR 2026
☆ REVEAL: Reasoning-enhanced Forensic Evidence Analysis for Explainable AI-generated Image Detection
With the rapid advancement of generative models, visually realistic AI-generated images have become increasingly difficult to distinguish from authentic ones, posing severe threats to social trust and information integrity. Consequently, there is an urgent need for efficient and truly explainable image forensic methods. Recent detection paradigms have shifted towards explainable forensics. However, state-of-the-art approaches primarily rely on post-hoc rationalizations or visual discrimination, lacking a verifiable chain of evidence. This reliance on surface-level pattern matching limits the generation of causally grounded explanations and often results in poor generalization. To bridge this critical gap, we introduce \textbf{REVEAL-Bench}, the first reasoning-enhanced multimodal benchmark for AI-generated image detection that is explicitly structured around a chain-of-evidence derived from multiple lightweight expert models, then records step-by-step reasoning traces and evidential justifications. Building upon this dataset, we propose \textbf{REVEAL} (\underline{R}easoning-\underline{e}nhanced Forensic E\underline{v}id\underline{e}nce \underline{A}na\underline{l}ysis), an effective and explainable forensic framework that integrates detection with a novel expert-grounded reinforcement learning. Our reward mechanism is specially tailored to jointly optimize detection accuracy, explanation fidelity, and logical coherence grounded in explicit forensic evidence, enabling REVEAL to produce fine-grained, interpretable, and verifiable reasoning chains alongside its detection outcomes. Extensive experimental results demonstrate that REVEAL significantly enhances detection accuracy, explanation fidelity, and robust cross-model generalization, benchmarking a new state of the art for explainable image forensics.
☆ Learning to Refuse: Refusal-Aware Reinforcement Fine-Tuning for Hard-Irrelevant Queries in Video Temporal Grounding
Video Temporal Grounding (VTG) aims to localize a temporal segment in a video corresponding to a natural language query. However, existing VTG models assume that a relevant segment always exists, causing them to always predict a target segment even when the query is irrelevant to the video. While recent approaches attempt to handle irrelevant queries, they can only reject those that are entirely unrelated to the video and still fail to handle hard-irrelevant queries that are semantically similar but not actually relevant. To address this, we propose Refusal-Aware Reinforcement Fine-Tuning (RA-RFT) to effectively refuse hard-irrelevant queries in VTG. Our method is based on the Group Relative Policy Optimization (GRPO) framework and integrates four reward objectives-format, refuse-IoU, explain, and query correction-to improve both relevance discrimination and fine-grained semantic reasoning. In addition, to effectively support RA-RFT, we construct a Hard-Irrelevant VTG (HI-VTG) dataset, which includes hard-irrelevant queries and their refusal answers. We demonstrate the effectiveness of our method across various relevance-aware VTG scenarios, including hard-irrelevant VTG, simply-shuffled RA-VTG, and human-annotated RA-VTG settings. We also show that the proposed method is scalable by applying it to various LVLM-based VTG models. Our code is available at https://github.com/JINSUBY/RA-RFT.
comment: 19 pages
☆ Cascaded Robust Rectification for Arbitrary Document Images
Document rectification in real-world scenarios poses significant challenges due to extreme variations in camera perspectives and physical distortions. Driven by the insight that complex transformations can be decomposed and resolved progressively, we introduce a novel multi-stage framework that progressively reverses distinct distortion types in a coarse-to-fine manner. Specifically, our framework first performs a global affine transformation to correct perspective distortions arising from the camera's viewpoint, then rectifies geometric deformations resulting from physical paper curling and folding, and finally employs a content-aware iterative process to eliminate fine-grained content distortions. To address limitations in existing evaluation protocols, we also propose two enhanced metrics: layout-aligned OCR metrics (AED/ACER) for a stable assessment that decouples geometric rectification quality from the layout analysis errors of OCR engines, and masked AD/AAD (AD-M/AAD-M) tailored for accurately evaluating geometric distortions in documents with incomplete boundaries. Extensive experiments show that our method establishes new state-of-the-art performance on multiple challenging benchmarks, yielding a substantial reduction of 14.1\%--34.7\% in the AAD metric and demonstrating superior efficacy in real-world applications. The code will be publicly available at https://github.com/chaoyunwang/ArbDR.
☆ InstanceV: Instance-Level Video Generation
Recent advances in text-to-video diffusion models have enabled the generation of high-quality videos conditioned on textual descriptions. However, most existing text-to-video models rely solely on textual conditions, lacking general fine-grained controllability over video generation. To address this challenge, we propose InstanceV, a video generation framework that enables i) instance-level control and ii) global semantic consistency. Specifically, with the aid of proposed Instance-aware Masked Cross-Attention mechanism, InstanceV maximizes the utilization of additional instance-level grounding information to generate correctly attributed instances at designated spatial locations. To improve overall consistency, We introduce the Shared Timestep-Adaptive Prompt Enhancement module, which connects local instances with global semantics in a parameter-efficient manner. Furthermore, we incorporate Spatially-Aware Unconditional Guidance during both training and inference to alleviate the disappearance of small instances. Finally, we propose a new benchmark, named InstanceBench, which combines general video quality metrics with instance-aware metrics for more comprehensive evaluation on instance-level video generation. Extensive experiments demonstrate that InstanceV not only achieves remarkable instance-level controllability in video generation, but also outperforms existing state-of-the-art models in both general quality and instance-aware metrics across qualitative and quantitative evaluations.
☆ DualCamCtrl: Dual-Branch Diffusion Model for Geometry-Aware Camera-Controlled Video Generation
This paper presents DualCamCtrl, a novel end-to-end diffusion model for camera-controlled video generation. Recent works have advanced this field by representing camera poses as ray-based conditions, yet they often lack sufficient scene understanding and geometric awareness. DualCamCtrl specifically targets this limitation by introducing a dual-branch framework that mutually generates camera-consistent RGB and depth sequences. To harmonize these two modalities, we further propose the Semantic Guided Mutual Alignment (SIGMA) mechanism, which performs RGB-depth fusion in a semantics-guided and mutually reinforced manner. These designs collectively enable DualCamCtrl to better disentangle appearance and geometry modeling, generating videos that more faithfully adhere to the specified camera trajectories. Additionally, we analyze and reveal the distinct influence of depth and camera poses across denoising stages and further demonstrate that early and late stages play complementary roles in forming global structure and refining local details. Extensive experiments demonstrate that DualCamCtrl achieves more consistent camera-controlled video generation, with over 40\% reduction in camera motion errors compared with prior methods. Our project page: https://soyouthinkyoucantell.github.io/dualcamctrl\-page/
☆ DNA-Prior: Unsupervised Denoise Anything via Dual-Domain Prior
Medical imaging pipelines critically rely on robust denoising to stabilise downstream tasks such as segmentation and reconstruction. However, many existing denoisers depend on large annotated datasets or supervised learning, which restricts their usability in clinical environments with heterogeneous modalities and limited ground-truth data. To address this limitation, we introduce DNA-Prior, a universal unsupervised denoising framework that reconstructs clean images directly from corrupted observations through a mathematically principled hybrid prior. DNA-Prior integrates (i) an implicit architectural prior, enforced through a deep network parameterisation, with (ii) an explicit spectral-spatial prior composed of a frequency-domain fidelity term and a spatial regularisation functional. This dual-domain formulation yields a well-structured optimisation problem that jointly preserves global frequency characteristics and local anatomical structure, without requiring any external training data or modality-specific tuning. Experiments across multiple modalities show that DNA achieves consistent noise suppression and structural preservation under diverse noise conditions.
☆ Analyzing Image Beyond Visual Aspect: Image Emotion Classification via Multiple-Affective Captioning
Image emotion classification (IEC) is a longstanding research field that has received increasing attention with the rapid progress of deep learning. Although recent advances have leveraged the knowledge encoded in pre-trained visual models, their effectiveness is constrained by the "affective gap" , limits the applicability of pre-training knowledge for IEC tasks. It has been demonstrated in psychology that language exhibits high variability, encompasses diverse and abundant information, and can effectively eliminate the "affective gap". Inspired by this, we propose a novel Affective Captioning for Image Emotion Classification (ACIEC) to classify image emotion based on pure texts, which effectively capture the affective information in the image. In our method, a hierarchical multi-level contrastive loss is designed for detecting emotional concepts from images, while an emotional attribute chain-of-thought reasoning is proposed to generate affective sentences. Then, a pre-trained language model is leveraged to synthesize emotional concepts and affective sentences to conduct IEC. Additionally, a contrastive loss based on semantic similarity sampling is designed to solve the problem of large intra-class differences and small inter-class differences in affective datasets. Moreover, we also take the images with embedded texts into consideration, which were ignored by previous studies. Extensive experiments illustrate that our method can effectively bridge the affective gap and achieve superior results on multiple benchmarks.
☆ db-SP: Accelerating Sparse Attention for Visual Generative Models with Dual-Balanced Sequence Parallelism
Scaling Diffusion Transformer (DiT) inference via sequence parallelism is critical for reducing latency in visual generation, but is severely hampered by workload imbalance when applied to models employing block-wise sparse attention. The imbalance stems from the inherent variation in sparsity across attention heads and the irregular distribution of dense blocks within the sparse mask, when sequence parallelism is applied along the head dimension (as in Ulysses) or the block dimension (as in Ring Attention). In this paper, we formalize a sparse imbalance ratio to quantify the imbalance, and propose db-SP, a sparsity-aware sequence parallelism technique that tackles the challenge. db-SP contains a dual-level partitioning approach that achieves near-perfect workload balance at both the head and block levels with negligible overhead. Furthermore, to handle the evolving sparsity patterns across denoising steps and layers, db-SP dynamically determines the parallel degrees for the head and block dimensions at runtime. Experimental results demonstrate that db-SP delivers an end-to-end speedup of 1.25x and an attention-specific speedup of 1.40x over state-of-the-art sequence parallel methods on average. Code is available at https://github.com/thu-nics/db-SP.
☆ MathSight: A Benchmark Exploring Have Vision-Language Models Really Seen in University-Level Mathematical Reasoning?
Recent advances in Vision-Language Models (VLMs) have achieved impressive progress in multimodal mathematical reasoning. Yet, how much visual information truly contributes to reasoning remains unclear. Existing benchmarks report strong overall performance but seldom isolate the role of the image modality, leaving open whether VLMs genuinely leverage visual understanding or merely depend on linguistic priors. To address this, we present MathSight, a university-level multimodal mathematical reasoning benchmark designed to disentangle and quantify the effect of visual input. Each problem includes multiple visual variants -- original, hand-drawn, photo-captured -- and a text-only condition for controlled comparison. Experiments on state-of-the-art VLMs reveal a consistent trend: the contribution of visual information diminishes with increasing problem difficulty. Remarkably, Qwen3-VL without any image input surpasses both its multimodal variants and GPT-5, underscoring the need for benchmarks like MathSight to advance genuine vision-grounded reasoning in future models.
comment: Comments: 32 pages, 15 figures, 9 tables, includes appendix. Project page: https://cnu-bot-group.github.io/MathSight/
☆ NumeriKontrol: Adding Numeric Control to Diffusion Transformers for Instruction-based Image Editing
Instruction-based image editing enables intuitive manipulation through natural language commands. However, text instructions alone often lack the precision required for fine-grained control over edit intensity. We introduce NumeriKontrol, a framework that allows users to precisely adjust image attributes using continuous scalar values with common units. NumeriKontrol encodes numeric editing scales via an effective Numeric Adapter and injects them into diffusion models in a plug-and-play manner. Thanks to a task-separated design, our approach supports zero-shot multi-condition editing, allowing users to specify multiple instructions in any order. To provide high-quality supervision, we synthesize precise training data from reliable sources, including high-fidelity rendering engines and DSLR cameras. Our Common Attribute Transform (CAT) dataset covers diverse attribute manipulations with accurate ground-truth scales, enabling NumeriKontrol to function as a simple yet powerful interactive editing studio. Extensive experiments show that NumeriKontrol delivers accurate, continuous, and stable scale control across a wide range of attribute editing scenarios. These contributions advance instruction-based image editing by enabling precise, scalable, and user-controllable image manipulation.
comment: 13 pages, 10 figures
☆ Implementation of a Skin Lesion Detection System for Managing Children with Atopic Dermatitis Based on Ensemble Learning
The amendments made to the Data 3 Act and impact of COVID-19 have fostered the growth of digital healthcare market and promoted the use of medical data in artificial intelligence in South Korea. Atopic dermatitis, a chronic inflammatory skin disease, is diagnosed via subjective evaluations without using objective diagnostic methods, thereby increasing the risk of misdiagnosis. It is also similar to psoriasis in appearance, further complicating its accurate diagnosis. Existing studies on skin diseases have used high-quality dermoscopic image datasets, but such high-quality images cannot be obtained in actual clinical settings. Moreover, existing systems must ensure accuracy and fast response times. To this end, an ensemble learning-based skin lesion detection system (ENSEL) was proposed herein. ENSEL enhanced diagnostic accuracy by integrating various deep learning models via an ensemble approach. Its performance was verified by conducting skin lesion detection experiments using images of skin lesions taken by actual users. Its accuracy and response time were measured using randomly sampled skin disease images. Results revealed that ENSEL achieved high recall in most images and less than 1s s processing speed. This study contributes to the objective diagnosis of skin lesions and promotes the advancement of digital healthcare.
comment: 16pages, 14 figures, 7 tables
☆ SpaceMind: Camera-Guided Modality Fusion for Spatial Reasoning in Vision-Language Models
Large vision-language models (VLMs) show strong multimodal understanding but still struggle with 3D spatial reasoning, such as distance estimation, size comparison, and cross-view consistency. Existing 3D-aware methods either depend on auxiliary 3D information or enhance RGB-only VLMs with geometry encoders through shallow feature fusion. We propose SpaceMind, a multimodal large language model explicitly designed for spatial reasoning solely from RGB inputs. The model adopts a dual-encoder architecture, integrating VGGT as a spatial understanding encoder and InternViT as a 2D visual encoder. The key idea is to treat the camera representation as an active guiding modality rather than passive metadata. Specifically, SpaceMind introduces a lightweight Camera-Guided Modality Fusion module before the language model to replace shallow fusion. It applies camera-conditioned biasing to spatial tokens, assigns query-independent weights reflecting their geometric importance, and uses the camera embedding to gate the fused representation. Empirically, SpaceMind establishes new state-of-the-art results on VSI-Bench, SQA3D and SPBench, surpassing both open and proprietary systems on VSI-Bench and SPBench by large margins and achieving state-of-the-art performance on SQA3D. These results demonstrate that camera-guided modality fusion is an effective and practical inductive bias for equipping VLMs with genuinely spatially grounded intelligence. We will release code and model checkpoints to support future research.
☆ Bharat Scene Text: A Novel Comprehensive Dataset and Benchmark for Indian Language Scene Text Understanding
Reading scene text, that is, text appearing in images, has numerous application areas, including assistive technology, search, and e-commerce. Although scene text recognition in English has advanced significantly and is often considered nearly a solved problem, Indian language scene text recognition remains an open challenge. This is due to script diversity, non-standard fonts, and varying writing styles, and, more importantly, the lack of high-quality datasets and open-source models. To address these gaps, we introduce the Bharat Scene Text Dataset (BSTD) - a large-scale and comprehensive benchmark for studying Indian Language Scene Text Recognition. It comprises more than 100K words that span 11 Indian languages and English, sourced from over 6,500 scene images captured across various linguistic regions of India. The dataset is meticulously annotated and supports multiple scene text tasks, including: (i) Scene Text Detection, (ii) Script Identification, (iii) Cropped Word Recognition, and (iv) End-to-End Scene Text Recognition. We evaluated state-of-the-art models originally developed for English by adapting (fine-tuning) them for Indian languages. Our results highlight the challenges and opportunities in Indian language scene text recognition. We believe that this dataset represents a significant step toward advancing research in this domain. All our models and data are open source.
comment: Under Peer Review
☆ Buffer replay enhances the robustness of multimodal learning under missing-modality
Missing modalities consistently lead to significant performance degradation in multimodal models. Existing approaches either synthesize missing modalities at high computational cost or apply prompt-based fine-tuning that relies only on adjacent-layer features and overlooks long-distance contextual information, which may offer additional tolerance to errors when one or more modalities are missing. To address this, we introduce REplay Prompting (REP): (1) construct modality-wise feature buffers via a residual bypass to cache early-layer representations and replay them in deeper layers, mitigating information loss as network depth increases; (2) employ a private-shared feature decoupling strategy, where private buffers preserve modality-specific signals and shared buffers encode cross-modal semantics; and (3) design a task-aware dynamic initialization mechanism to configure these buffers differently, improving stability and generalization under diverse missing-modality conditions. Experiments on vision-language, vision-language-audio, and temporal multimodal benchmarks demonstrate that REP consistently outperforms prior methods under both single- and multi-modality missing scenarios, while introducing only negligible parameter overhead. These results establish REP as a lightweight and effective paradigm for robust multimodal learning in challenging missing-modality environments.
☆ Evaluating the Clinical Impact of Generative Inpainting on Bone Age Estimation
Generative foundation models can remove visual artifacts through realistic image inpainting, but their impact on medical AI performance remains uncertain. Pediatric hand radiographs often contain non-anatomical markers, and it is unclear whether inpainting these regions preserves features needed for bone age and gender prediction. To evaluate the clinical reliability of generative model-based inpainting for artifact removal, we used the RSNA Bone Age Challenge dataset, selecting 200 original radiographs and generating 600 inpainted versions with gpt-image-1 using natural language prompts to target non-anatomical artifacts. Downstream performance was assessed with deep learning ensembles for bone age estimation and gender classification, using mean absolute error (MAE) and area under the ROC curve (AUC) as metrics, and pixel intensity distributions to detect structural alterations. Inpainting markedly degraded model performance: bone age MAE increased from 6.26 to 30.11 months, and gender classification AUC decreased from 0.955 to 0.704. Inpainted images displayed pixel-intensity shifts and inconsistencies, indicating structural modifications not corrected by simple calibration. These findings show that, although visually realistic, foundation model-based inpainting can obscure subtle but clinically relevant features and introduce latent bias even when edits are confined to non-diagnostic regions, underscoring the need for rigorous, task-specific validation before integrating such generative tools into clinical AI workflows.
comment: 8 pages, 4 figures
☆ Image Valuation in NeRF-based 3D reconstruction
Data valuation and monetization are becoming increasingly important across domains such as eXtended Reality (XR) and digital media. In the context of 3D scene reconstruction from a set of images -- whether casually or professionally captured -- not all inputs contribute equally to the final output. Neural Radiance Fields (NeRFs) enable photorealistic 3D reconstruction of scenes by optimizing a volumetric radiance field given a set of images. However, in-the-wild scenes often include image captures of varying quality, occlusions, and transient objects, resulting in uneven utility across inputs. In this paper we propose a method to quantify the individual contribution of each image to NeRF-based reconstructions of in-the-wild image sets. Contribution is assessed through reconstruction quality metrics based on PSNR and MSE. We validate our approach by removing low-contributing images during training and measuring the resulting impact on reconstruction fidelity.
comment: Published In International Conference on Computer Analysis of Images and Patterns (pp. 375-385). Cham: Springer Nature Switzerland
☆ GOATex: Geometry & Occlusion-Aware Texturing NeurIPS 2025
We present GOATex, a diffusion-based method for 3D mesh texturing that generates high-quality textures for both exterior and interior surfaces. While existing methods perform well on visible regions, they inherently lack mechanisms to handle occluded interiors, resulting in incomplete textures and visible seams. To address this, we introduce an occlusion-aware texturing framework based on the concept of hit levels, which quantify the relative depth of mesh faces via multi-view ray casting. This allows us to partition mesh faces into ordered visibility layers, from outermost to innermost. We then apply a two-stage visibility control strategy that progressively reveals interior regions with structural coherence, followed by texturing each layer using a pretrained diffusion model. To seamlessly merge textures obtained across layers, we propose a soft UV-space blending technique that weighs each texture's contribution based on view-dependent visibility confidence. Empirical results demonstrate that GOATex consistently outperforms existing methods, producing seamless, high-fidelity textures across both visible and occluded surfaces. Unlike prior works, GOATex operates entirely without costly fine-tuning of a pretrained diffusion model and allows separate prompting for exterior and interior mesh regions, enabling fine-grained control over layered appearances. For more qualitative results, please visit our project page: https://goatex3d.github.io/.
comment: Accepted to NeurIPS 2025; Project Page: https://goatex3d.github.io/
☆ Geometry-Consistent 4D Gaussian Splatting for Sparse-Input Dynamic View Synthesis
Gaussian Splatting has been considered as a novel way for view synthesis of dynamic scenes, which shows great potential in AIoT applications such as digital twins. However, recent dynamic Gaussian Splatting methods significantly degrade when only sparse input views are available, limiting their applicability in practice. The issue arises from the incoherent learning of 4D geometry as input views decrease. This paper presents GC-4DGS, a novel framework that infuses geometric consistency into 4D Gaussian Splatting (4DGS), offering real-time and high-quality dynamic scene rendering from sparse input views. While learning-based Multi-View Stereo (MVS) and monocular depth estimators (MDEs) provide geometry priors, directly integrating these with 4DGS yields suboptimal results due to the ill-posed nature of sparse-input 4D geometric optimization. To address these problems, we introduce a dynamic consistency checking strategy to reduce estimation uncertainties of MVS across spacetime. Furthermore, we propose a global-local depth regularization approach to distill spatiotemporal-consistent geometric information from monocular depths, thereby enhancing the coherent geometry and appearance learning within the 4D volume. Extensive experiments on the popular N3DV and Technicolor datasets validate the effectiveness of GC-4DGS in rendering quality without sacrificing efficiency. Notably, our method outperforms RF-DeRF, the latest dynamic radiance field tailored for sparse-input dynamic view synthesis, and the original 4DGS by 2.62dB and 1.58dB in PSNR, respectively, with seamless deployability on resource-constrained IoT edge devices.
☆ From Illusion to Intention: Visual Rationale Learning for Vision-Language Reasoning
Recent advances in vision-language reasoning underscore the importance of thinking with images, where models actively ground their reasoning in visual evidence. Yet, prevailing frameworks treat visual actions as optional tools, boosting metrics but leaving reasoning ungrounded and crops ineffective. This gap gives rise to the illusion of thinking with images: models seem visually grounded but rely on context-agnostic actions that neither refine perception nor guide reasoning toward correct answers. We address this problem by reframing visual actions as core reasoning primitives rather than optional tools, which we term visual rationalization, the visual analogue of textual Chain-of-Thought. Building on this insight, we propose Visual Rationale Learning (ViRL), an end-to-end paradigm that grounds training in the visual rationale itself. ViRL integrates (1) Process Supervision with ground-truth rationales, (2) Objective Alignment via step-level reward shaping, and (3) Fine-Grained Credit Assignment to distinguish correct, redundant, and erroneous actions. By ensuring each action contributes meaningfully to the reasoning chain, ViRL enables models to "get the right answer for the right visual reason". Trained purely with end-to-end RL, ViRL achieves state-of-the-art results across benchmarks spanning perception, hallucination, and reasoning. This work establishes visual rationalization as a task-agnostic, process-grounded paradigm for building transparent, verifiable, and trustworthy vision-language models.
comment: 19 pages, 15 figures
☆ DiskChunGS: Large-Scale 3D Gaussian SLAM Through Chunk-Based Memory Management
Recent advances in 3D Gaussian Splatting (3DGS) have demonstrated impressive results for novel view synthesis with real-time rendering capabilities. However, integrating 3DGS with SLAM systems faces a fundamental scalability limitation: methods are constrained by GPU memory capacity, restricting reconstruction to small-scale environments. We present DiskChunGS, a scalable 3DGS SLAM system that overcomes this bottleneck through an out-of-core approach that partitions scenes into spatial chunks and maintains only active regions in GPU memory while storing inactive areas on disk. Our architecture integrates seamlessly with existing SLAM frameworks for pose estimation and loop closure, enabling globally consistent reconstruction at scale. We validate DiskChunGS on indoor scenes (Replica, TUM-RGBD), urban driving scenarios (KITTI), and resource-constrained Nvidia Jetson platforms. Our method uniquely completes all 11 KITTI sequences without memory failures while achieving superior visual quality, demonstrating that algorithmic innovation can overcome the memory constraints that have limited previous 3DGS SLAM methods.
☆ Geodiffussr: Generative Terrain Texturing with Elevation Fidelity
Large-scale terrain generation remains a labor-intensive task in computer graphics. We introduce Geodiffussr, a flow-matching pipeline that synthesizes text-guided texture maps while strictly adhering to a supplied Digital Elevation Map (DEM). The core mechanism is multi-scale content aggregation (MCA): DEM features from a pretrained encoder are injected into UNet blocks at multiple resolutions to enforce global-to-local elevation consistency. Compared with a non-MCA baseline, MCA markedly improves visual fidelity and strengthens height-appearance coupling (FID $\downarrow$ 49.16%, LPIPS $\downarrow$ 32.33%, $Δ$dCor $\downarrow$ to 0.0016). To train and evaluate Geodiffussr, we assemble a globally distributed, biome- and climate-stratified corpus of triplets pairing SRTM-derived DEMs with Sentinel-2 imagery and vision-grounded natural-language captions that describe visible land cover. We position Geodiffussr as a strong baseline and step toward controllable 2.5D landscape generation for coarse-scale ideation and previz, complementary to physically based terrain and ecosystem simulators.
☆ JarvisEvo: Towards a Self-Evolving Photo Editing Agent with Synergistic Editor-Evaluator Optimization
Agent-based editing models have substantially advanced interactive experiences, processing quality, and creative flexibility. However, two critical challenges persist: (1) instruction hallucination, text-only chain-of-thought (CoT) reasoning cannot fully prevent factual errors due to inherent information bottlenecks; (2) reward hacking, dynamic policy optimization against static reward models allows agents to exploit flaws in reward functions. To address these issues, we propose JarvisEvo, a unified image editing agent that emulates an expert human designer by iteratively editing, selecting appropriate tools, evaluating results, and reflecting on its own decisions to refine outcomes. JarvisEvo offers three key advantages: (1) an interleaved multimodal chain-of-thought (iMCoT) reasoning mechanism that enhances instruction following and editing quality; (2) a synergistic editor-evaluator policy optimization (SEPO) framework that enables self-improvement without external rewards, effectively mitigating reward hacking; and (3) support for both global and local fine-grained editing through seamless integration of Adobe Lightroom. On ArtEdit-Bench, JarvisEvo outperforms Nano-Banana by an average of 18.95% on preservative editing metrics, including a substantial 44.96% improvement in pixel-level content fidelity.
comment: 31 pages, 18 figures
☆ MrGS: Multi-modal Radiance Fields with 3D Gaussian Splatting for RGB-Thermal Novel View Synthesis
Recent advances in Neural Radiance Fields (NeRFs) and 3D Gaussian Splatting (3DGS) have achieved considerable performance in RGB scene reconstruction. However, multi-modal rendering that incorporates thermal infrared imagery remains largely underexplored. Existing approaches tend to neglect distinctive thermal characteristics, such as heat conduction and the Lambertian property. In this study, we introduce MrGS, a multi-modal radiance field based on 3DGS that simultaneously reconstructs both RGB and thermal 3D scenes. Specifically, MrGS derives RGB- and thermal-related information from a single appearance feature through orthogonal feature extraction and employs view-dependent or view-independent embedding strategies depending on the degree of Lambertian reflectance exhibited by each modality. Furthermore, we leverage two physics-based principles to effectively model thermal-domain phenomena. First, we integrate Fourier's law of heat conduction prior to alpha blending to model intensity interpolation caused by thermal conduction between neighboring Gaussians. Second, we apply the Stefan-Boltzmann law and the inverse-square law to formulate a depth-aware thermal radiation map that imposes additional geometric constraints on thermal rendering. Experimental results demonstrate that the proposed MrGS achieves high-fidelity RGB-T scene reconstruction while reducing the number of Gaussians.
comment: Accepted at Thermal Infrared in Robotics (TIRO) Workshop, ICRA 2025 (Best Poster Award)
☆ Optimizer Sensitivity In Vision Transformerbased Iris Recognition: Adamw Vs Sgd Vs Rmsprop
The security of biometric authentication is increasingly critical as digital identity systems expand. Iris recognition offers high reliability due to its distinctive and stable texture patterns. Recent progress in deep learning, especially Vision Transformers ViT, has improved visual recognition performance. Yet, the effect of optimizer choice on ViT-based biometric systems remains understudied. This work evaluates how different optimizers influence the accuracy and stability of ViT for iris recognition, providing insights to enhance the robustness of biometric identification models.
comment: 16 pages, 5 figures
☆ Guiding Visual Autoregressive Models through Spectrum Weakening
Classifier-free guidance (CFG) has become a widely adopted and practical approach for enhancing generation quality and improving condition alignment. Recent studies have explored guidance mechanisms for unconditional generation, yet these approaches remain fundamentally tied to assumptions specific to diffusion models. In this work, we propose a spectrum-weakening framework for visual autoregressive (AR) models. This method works without the need for re-training, specific conditions, or any architectural modifications. It achieves this by constructing a controllable weak model in the spectral domain. We theoretically show that invertible spectral transformations preserve information, while selectively retaining only a subset of spectrum introduces controlled information reduction. Based on this insight, we perform spectrum selection along the channel dimension of internal representations, which avoids the structural constraints imposed by diffusion models. We further introduce two spectrum renormalization strategies that ensures numerical stability during the weakening process. Extensive experiments were conducted on both discrete and continuous AR models, with text or class conditioning. The results demonstrate that our method enables high-quality unconditional generation while maintaining strong prompt alignment for conditional generation.
☆ MIMM-X: Disentangling Spurious Correlations for Medical Image Analysis
Deep learning models can excel on medical tasks, yet often experience spurious correlations, known as shortcut learning, leading to poor generalization in new environments. Particularly in medical imaging, where multiple spurious correlations can coexist, misclassifications can have severe consequences. We propose MIMM-X, a framework that disentangles causal features from multiple spurious correlations by minimizing their mutual information. It enables predictions based on true underlying causal relationships rather than dataset-specific shortcuts. We evaluate MIMM-X on three datasets (UK Biobank, NAKO, CheXpert) across two imaging modalities (MRI and X-ray). Results demonstrate that MIMM-X effectively mitigates shortcut learning of multiple spurious correlations.
☆ MultiBanana: A Challenging Benchmark for Multi-Reference Text-to-Image Generation
Recent text-to-image generation models have acquired the ability of multi-reference generation and editing; the ability to inherit the appearance of subjects from multiple reference images and re-render them under new contexts. However, the existing benchmark datasets often focus on the generation with single or a few reference images, which prevents us from measuring the progress on how model performance advances or pointing out their weaknesses, under different multi-reference conditions. In addition, their task definitions are still vague, typically limited to axes such as "what to edit" or "how many references are given", and therefore fail to capture the intrinsic difficulty of multi-reference settings. To address this gap, we introduce $\textbf{MultiBanana}$, which is carefully designed to assesses the edge of model capabilities by widely covering multi-reference-specific problems at scale: (1) varying the number of references, (2) domain mismatch among references (e.g., photo vs. anime), (3) scale mismatch between reference and target scenes, (4) references containing rare concepts (e.g., a red banana), and (5) multilingual textual references for rendering. Our analysis among a variety of text-to-image models reveals their superior performances, typical failure modes, and areas for improvement. MultiBanana will be released as an open benchmark to push the boundaries and establish a standardized basis for fair comparison in multi-reference image generation. Our data and code are available at https://github.com/matsuolab/multibanana .
comment: Code: https://github.com/matsuolab/multibanana
☆ Convolutional Feature Noise Reduction for 2D Cardiac MR Image Segmentation
Noise reduction constitutes a crucial operation within Digital Signal Processing. Regrettably, it frequently remains neglected when dealing with the processing of convolutional features in segmentation networks. This oversight could trigger the butterfly effect, impairing the subsequent outcomes within the entire feature system. To complete this void, we consider convolutional features following Gaussian distributions as feature signal matrices and then present a simple and effective feature filter in this study. The proposed filter is fundamentally a low-amplitude pass filter primarily aimed at minimizing noise in feature signal inputs and is named Convolutional Feature Filter (CFF). We conducted experiments on two established 2D segmentation networks and two public cardiac MR image datasets to validate the effectiveness of the CFF, and the experimental findings demonstrated a decrease in noise within the feature signal matrices. To enable a numerical observation and analysis of this reduction, we developed a binarization equation to calculate the information entropy of feature signals.
☆ Ovis-Image Technical Report
We introduce $\textbf{Ovis-Image}$, a 7B text-to-image model specifically optimized for high-quality text rendering, designed to operate efficiently under stringent computational constraints. Built upon our previous Ovis-U1 framework, Ovis-Image integrates a diffusion-based visual decoder with the stronger Ovis 2.5 multimodal backbone, leveraging a text-centric training pipeline that combines large-scale pre-training with carefully tailored post-training refinements. Despite its compact architecture, Ovis-Image achieves text rendering performance on par with significantly larger open models such as Qwen-Image and approaches closed-source systems like Seedream and GPT4o. Crucially, the model remains deployable on a single high-end GPU with moderate memory, narrowing the gap between frontier-level text rendering and practical deployment. Our results indicate that combining a strong multimodal backbone with a carefully designed, text-focused training recipe is sufficient to achieve reliable bilingual text rendering without resorting to oversized or proprietary models.
comment: Code is released at https://github.com/AIDC-AI/Ovis-Image
♻ ☆ DINO-Foresight: Looking into the Future with DINO NeurIPS 2025
Predicting future dynamics is crucial for applications like autonomous driving and robotics, where understanding the environment is key. Existing pixel-level methods are computationally expensive and often focus on irrelevant details. To address these challenges, we introduce DINO-Foresight, a novel framework that operates in the semantic feature space of pretrained Vision Foundation Models (VFMs). Our approach trains a masked feature transformer in a self-supervised manner to predict the evolution of VFM features over time. By forecasting these features, we can apply off-the-shelf, task-specific heads for various scene understanding tasks. In this framework, VFM features are treated as a latent space, to which different heads attach to perform specific tasks for future-frame analysis. Extensive experiments show the very strong performance, robustness and scalability of our framework. Project page and code at https://dino-foresight.github.io/ .
comment: NeurIPS 2025
♻ ☆ INQUIRE-Search: A Framework for Interactive Discovery in Large-Scale Biodiversity Databases
Large community science platforms such as iNaturalist contain hundreds of millions of biodiversity images that often capture ecological context on behaviors, interactions, phenology, and habitat. Yet most ecological workflows rely on metadata filtering or manual inspection, leaving this secondary information inaccessible at scale. We introduce INQUIRE-Search, an open-source system that enables scientists to rapidly and interactively search within an ecological image database for specific concepts using natural language, verify and export relevant observations, and utilize this discovered data for novel scientific analysis. Compared to traditional methods, INQUIRE-Search takes a fraction of the time, opening up new possibilities for scientific questions that can be explored. Through five case studies, we show the diversity of scientific applications that a tool like INQUIRE-Search can support, from seasonal variation in behavior across species to forest regrowth after wildfires. These examples demonstrate a new paradigm for interactive, efficient, and scalable scientific discovery that can begin to unlock previously inaccessible scientific value in large-scale biodiversity datasets. Finally, we emphasize using such AI-enabled discovery tools for science call for experts to reframe the priorities of the scientific process and develop novel methods for experiment design, data collection, survey effort, and uncertainty analysis.
comment: EV, JC, RKV contributed equally
♻ ☆ CzechLynx: A Dataset for Individual Identification and Pose Estimation of the Eurasian Lynx
We introduce CzechLynx, the first large-scale, open-access dataset for individual identification, pose estimation, and instance segmentation of the Eurasian lynx (Lynx lynx). CzechLynx contains 39,760 camera trap images annotated with segmentation masks, identity labels, and 20-point skeletons and covers 319 unique individuals across 15 years of systematic monitoring in two geographically distinct regions: southwest Bohemia and the Western Carpathians. In addition to the real camera trap data, we provide a large complementary set of photorealistic synthetic images and a Unity-based generation pipeline with diffusion-based text-to-texture modeling, capable of producing arbitrarily large amounts of synthetic data spanning diverse environments, poses, and coat-pattern variations. To enable systematic testing across realistic ecological scenarios, we define three complementary evaluation protocols: (i) geo-aware, (ii) time-aware open-set, and (iii) time-aware closed-set, covering cross-regional and long-term monitoring settings. With the provided resources, CzechLynx offers a unique, flexible benchmark for robust evaluation of computer vision and machine learning models across realistic ecological scenarios.
♻ ☆ Configurable Fairness: Direct Optimization of Parity Metrics via Vision-Language Models
Performance disparities of image recognition across demographic groups are known to exist in deep learning-based models, due to imbalanced group representations or spurious correlation between group and target labels. Previous work has addressed such challenges without relying on expensive group labels, typically by upweighting high-loss samples or balancing discovered clusters. However, these heuristic strategies lack direct connection to specific fairness metrics and cannot guarantee optimization of parity-based criteria like equal opportunity, which ensures equal chance to receive positive outcomes across groups. In this work, we propose a novel paradigm that directly optimizes parity-based fairness metrics through specifically designed training objectives, without requiring group labels. We leverage vision-language models to analyze sensitive attribute relevancy for individual samples, then formulate loss functions that mathematically connect to each target fairness metric. This enables flexible optimization of different fairness criteria based on application needs. Experiments on multiple image classification datasets show that our metric-specific approach significantly improves parity-based fairness criteria and outperforms existing methods.
♻ ☆ Group Relative Attention Guidance for Image Editing
Recently, image editing based on Diffusion-in-Transformer models has undergone rapid development. However, existing editing methods often lack effective control over the degree of editing, limiting their ability to achieve more customized results. To address this limitation, we investigate the MM-Attention mechanism within the DiT model and observe that the Query and Key tokens share a bias vector that is only layer-dependent. We interpret this bias as representing the model's inherent editing behavior, while the delta between each token and its corresponding bias encodes the content-specific editing signals. Based on this insight, we propose Group Relative Attention Guidance, a simple yet effective method that reweights the delta values of different tokens to modulate the focus of the model on the input image relative to the editing instruction, enabling continuous and fine-grained control over editing intensity without any tuning. Extensive experiments conducted on existing image editing frameworks demonstrate that GRAG can be integrated with as few as four lines of code, consistently enhancing editing quality. Moreover, compared to the commonly used Classifier-Free Guidance, GRAG achieves smoother and more precise control over the degree of editing. Our code will be released at https://github.com/little-misfit/GRAG-Image-Editing.
♻ ☆ SARD: Segmentation-Aware Anomaly Synthesis via Region-Constrained Diffusion with Discriminative Mask Guidance
Synthesizing realistic and spatially precise anomalies is essential for enhancing the robustness of industrial anomaly detection systems. While recent diffusion-based methods have demonstrated strong capabilities in modeling complex defect patterns, they often struggle with spatial controllability and fail to maintain fine-grained regional fidelity. To overcome these limitations, we propose SARD (Segmentation-Aware anomaly synthesis via Region-constrained Diffusion with discriminative mask Guidance), a novel diffusion-based framework specifically designed for anomaly generation. Our approach introduces a Region-Constrained Diffusion (RCD) process that preserves the background by freezing it and selectively updating only the foreground anomaly regions during the reverse denoising phase, thereby effectively reducing background artifacts. Additionally, we incorporate a Discriminative Mask Guidance (DMG) module into the discriminator, enabling joint evaluation of both global realism and local anomaly fidelity, guided by pixel-level masks. Extensive experiments on the MVTec-AD and BTAD datasets show that SARD surpasses existing methods in segmentation accuracy and visual quality, setting a new state-of-the-art for pixel-level anomaly synthesis.
comment: Accepted by The 2025 International Conference on Machine Intelligence and Nature-InspireD Computing (MIND)
♻ ☆ FAST: Foreground-aware Diffusion with Accelerated Sampling Trajectory for Segmentation-oriented Anomaly Synthesis
Industrial anomaly segmentation relies heavily on pixel-level annotations, yet real-world anomalies are often scarce, diverse, and costly to label. Segmentation-oriented industrial anomaly synthesis (SIAS) has emerged as a promising alternative; however, existing methods struggle to balance sampling efficiency and generation quality. Moreover, most approaches treat all spatial regions uniformly, overlooking the distinct statistical differences between anomaly and background areas. This uniform treatment hinders the synthesis of controllable, structure-specific anomalies tailored for segmentation tasks. In this paper, we propose FAST, a foreground-aware diffusion framework featuring two novel modules: the Anomaly-Informed Accelerated Sampling (AIAS) and the Foreground-Aware Reconstruction Module (FARM). AIAS is a training-free sampling algorithm specifically designed for segmentation-oriented industrial anomaly synthesis, which accelerates the reverse process through coarse-to-fine aggregation and enables the synthesis of state-of-the-art segmentation-oriented anomalies in as few as 10 steps. Meanwhile, FARM adaptively adjusts the anomaly-aware noise within the masked foreground regions at each sampling step, preserving localized anomaly signals throughout the denoising trajectory. Extensive experiments on multiple industrial benchmarks demonstrate that FAST consistently outperforms existing anomaly synthesis methods in downstream segmentation tasks. We release the code at: https://github.com/Chhro123/fast-foreground-aware-anomaly-synthesis.
♻ ☆ A Simple yet Effective Test-Time Adaptation for Zero-Shot Monocular Metric Depth Estimation
The recent development of \emph{foundation models} for monocular depth estimation such as Depth Anything paved the way to zero-shot monocular depth estimation. Since it returns an affine-invariant disparity map, the favored technique to recover the metric depth consists in fine-tuning the model. However, this stage is not straightforward, it can be costly and time-consuming because of the training and the creation of the dataset. The latter must contain images captured by the camera that will be used at test time and the corresponding ground truth. Moreover, the fine-tuning may also degrade the generalizing capacity of the original model. Instead, we propose in this paper a new method to rescale Depth Anything predictions using 3D points provided by sensors or techniques such as low-resolution LiDAR or structure-from-motion with poses given by an IMU. This approach avoids fine-tuning and preserves the generalizing power of the original depth estimation model while being robust to the noise of the sparse depth, of the camera-LiDAR calibration or of the depth model. Our experiments highlight enhancements relative to zero-shot monocular metric depth estimation methods, competitive results compared to fine-tuned approaches and a better robustness than depth completion approaches. Code available at github.com/ENSTA-U2IS-AI/depth-rescaling.
comment: Published at IROS 2025 https://ieeexplore.ieee.org/document/11247168
♻ ☆ Material-informed Gaussian Splatting for 3D World Reconstruction in a Digital Twin
3D reconstruction for Digital Twins often relies on LiDAR-based methods, which provide accurate geometry but lack the semantics and textures naturally captured by cameras. Traditional LiDAR-camera fusion approaches require complex calibration and still struggle with certain materials like glass, which are visible in images but poorly represented in point clouds. We propose a camera-only pipeline that reconstructs scenes using 3D Gaussian Splatting from multi-view images, extracts semantic material masks via vision models, converts Gaussian representations to mesh surfaces with projected material labels, and assigns physics-based material properties for accurate sensor simulation in modern graphics engines and simulators. This approach combines photorealistic reconstruction with physics-based material assignment, providing sensor simulation fidelity comparable to LiDAR-camera fusion while eliminating hardware complexity and calibration requirements. We validate our camera-only method using an internal dataset from an instrumented test vehicle, leveraging LiDAR as ground truth for reflectivity validation alongside image similarity metrics.
comment: 8 pages, 5 figures. Submitted to IEEE Intelligent Vehicles Symposium (IV) 2026 for possible publication. Revised version (v2) to correct author order
♻ ☆ Entropy Rectifying Guidance for Diffusion and Flow Models NeurIPS 2025
Guidance techniques are commonly used in diffusion and flow models to improve image quality and input consistency for conditional generative tasks such as class-conditional and text-to-image generation. In particular, classifier-free guidance (CFG) is the most widely adopted guidance technique. It results, however, in trade-offs across quality, diversity and consistency: improving some at the expense of others. While recent work has shown that it is possible to disentangle these factors to some extent, such methods come with an overhead of requiring an additional (weaker) model, or require more forward passes per sampling step. In this paper, we propose Entropy Rectifying Guidance (ERG), a simple and effective guidance method based on inference-time changes in the attention mechanism of state-of-the-art diffusion transformer architectures, which allows for simultaneous improvements over image quality, diversity and prompt consistency. ERG is more general than CFG and similar guidance techniques, as it extends to unconditional sampling. We show that ERG results in significant improvements in various tasks, including text-to-image, class-conditional and unconditional image generation. We also show that ERG can be seamlessly combined with other recent guidance methods such as CADS and APG, further improving generation results.
comment: NeurIPS 2025
♻ ☆ PoseAdapt: Sustainable Human Pose Estimation via Continual Learning Benchmarks and Toolkit
Human pose estimators are typically retrained from scratch or naively fine-tuned whenever keypoint sets, sensing modalities, or deployment domains change--an inefficient, compute-intensive practice that rarely matches field constraints. We present PoseAdapt, an open-source framework and benchmark suite for continual pose model adaptation. PoseAdapt defines domain-incremental and class-incremental tracks that simulate realistic changes in density, lighting, and sensing modality, as well as skeleton growth. The toolkit supports two workflows: (i) Strategy Benchmarking, which lets researchers implement continual learning (CL) methods as plugins and evaluate them under standardized protocols; and (ii) Model Adaptation, which allows practitioners to adapt strong pretrained models to new tasks with minimal supervision. We evaluate representative regularization-based methods in single-step and sequential settings. Benchmarks enforce a fixed lightweight backbone, no access to past data, and tight per-step budgets. This isolates adaptation strategy effects, highlighting the difficulty of maintaining accuracy under strict resource limits. PoseAdapt connects modern CL techniques with practical pose estimation needs, enabling adaptable models that improve over time without repeated full retraining.
comment: Accepted in WACV 2026 Applications Track
♻ ☆ Network Inversion for Uncertainty-Aware Out-of-Distribution Detection
Out-of-distribution (OOD) detection and uncertainty estimation (UE) are critical components for building safe machine learning systems, especially in real-world scenarios where unexpected inputs are inevitable. However the two problems have, until recently, separately been addressed. In this work, we propose a novel framework that combines network inversion with classifier training to simultaneously address both OOD detection and uncertainty estimation. For a standard n-class classification task, we extend the classifier to an (n+1)-class model by introducing a "garbage" class, initially populated with random gaussian noise to represent outlier inputs. After each training epoch, we use network inversion to reconstruct input images corresponding to all output classes that initially appear as noisy and incoherent and are therefore excluded to the garbage class for retraining the classifier. This cycle of training, inversion, and exclusion continues iteratively till the inverted samples begin to resemble the in-distribution data more closely, with a significant drop in the uncertainty, suggesting that the classifier has learned to carve out meaningful decision boundaries while sanitising the class manifolds by pushing OOD content into the garbage class. During inference, this training scheme enables the model to effectively detect and reject OOD samples by classifying them into the garbage class. Furthermore, the confidence scores associated with each prediction can be used to estimate uncertainty for both in-distribution and OOD inputs. Our approach is scalable, interpretable, and does not require access to external OOD datasets or post-hoc calibration techniques while providing a unified solution to the dual challenges of OOD detection and uncertainty estimation.
♻ ☆ Source-free Video Domain Adaptation by Learning from Noisy Labels
Despite the progress seen in classification methods, current approaches for handling videos with distribution shifts in source and target domains remain source-dependent as they require access to the source data during the adaptation stage. In this paper, we present a self-training based source-free video domain adaptation approach to address this challenge by bridging the gap between the source and the target domains. We use the source pre-trained model to generate pseudo-labels for the target domain samples, which are inevitably noisy. Thus, we treat the problem of source-free video domain adaptation as learning from noisy labels and argue that the samples with correct pseudo-labels can help us in adaptation. To this end, we leverage the cross-entropy loss as an indicator of the correctness of the pseudo-labels and use the resulting small-loss samples from the target domain for fine-tuning the model. We further enhance the adaptation performance by implementing a teacher-student (TS) framework, in which the teacher, which is updated gradually, produces reliable pseudo-labels. Meanwhile, the student undergoes fine-tuning on the target domain videos using these generated pseudo-labels to improve its performance. Extensive experimental evaluations show that our methods, termed as CleanAdapt, CleanAdapt + TS, achieve state-of-the-art results, outperforming the existing approaches on various open datasets. Our source code is publicly available at https://avijit9.github.io/CleanAdapt.
comment: Our extended ICVGIP paper is now accepted in Pattern Recognition
♻ ☆ Text2Traffic: A Text-to-Image Generation and Editing Method for Traffic Scenes
With the rapid advancement of intelligent transportation systems, text-driven image generation and editing techniques have demonstrated significant potential in providing rich, controllable visual scene data for applications such as traffic monitoring and autonomous driving. However, several challenges remain, including insufficient semantic richness of generated traffic elements, limited camera viewpoints, low visual fidelity of synthesized images, and poor alignment between textual descriptions and generated content. To address these issues, we propose a unified text-driven framework for both image generation and editing, leveraging a controllable mask mechanism to seamlessly integrate the two tasks. Furthermore, we incorporate both vehicle-side and roadside multi-view data to enhance the geometric diversity of traffic scenes. Our training strategy follows a two-stage paradigm: first, we perform conceptual learning using large-scale coarse-grained text-image data; then, we fine-tune with fine-grained descriptive data to enhance text-image alignment and detail quality. Additionally, we introduce a mask-region-weighted loss that dynamically emphasizes small yet critical regions during training, thereby substantially enhancing the generation fidelity of small-scale traffic elements. Extensive experiments demonstrate that our method achieves leading performance in text-based image generation and editing within traffic scenes.
♻ ☆ TEFormer: Texture-Aware and Edge-Guided Transformer for Semantic Segmentation of Urban Remote Sensing Images
Accurate semantic segmentation of urban remote sensing images (URSIs) is essential for urban planning and environmental monitoring. However, it remains challenging due to the subtle texture differences and similar spatial structures among geospatial objects, which cause semantic ambiguity and misclassification. Additional complexities arise from irregular object shapes, blurred boundaries, and overlapping spatial distributions of objects, resulting in diverse and intricate edge morphologies. To address these issues, we propose TEFormer, a texture-aware and edge-guided Transformer. Our model features a texture-aware module (TaM) in the encoder to capture fine-grained texture distinctions between visually similar categories, thereby enhancing semantic discrimination. The decoder incorporates an edge-guided tri-branch decoder (Eg3Head) to preserve local edges and details while maintaining multiscale context-awareness. Finally, an edge-guided feature fusion module (EgFFM) effectively integrates contextual, detail, and edge information to achieve refined semantic segmentation. Extensive evaluation demonstrates that TEFormer yields mIoU scores of 88.57% on Potsdam and 81.46% on Vaihingen, exceeding the next best methods by 0.73% and 0.22%. On the LoveDA dataset, it secures the second position with an overall mIoU of 53.55%, trailing the optimal performance by a narrow margin of 0.19%.
comment: Accepted by IEEE GRSL
♻ ☆ Look Where It Matters: Training-Free Ultra-HR Remote Sensing VQA via Adaptive Zoom Search
With advances in satellite constellations, sensor technologies, and imaging pipelines, ultra-high-resolution (Ultra-HR) remote sensing imagery is becoming increasingly widespread. However, current remote sensing foundation models are ill-suited to such inputs: full-image encoding exhausts token and memory budgets, while resize-based preprocessing loses fine-grained and answer-critical details. In this context, guiding the model look where it matters before prediction becomes crucial. Therefore, we present ZoomSearch, a training-free, plug-and-play pipeline that decouples 'where to look' from 'how to answer' for Ultra-HR Remote Sensing Visual Question Answering (RS-VQA). ZoomSearch combines Adaptive Multi-Branch Zoom Search, which performs a hierarchical search over image patches to localize query-relevant regions, with Layout-Aware Patch Reassembly, which reorganizes the selected patches into a compact, layout-faithful canvas. We conduct comprehensive experiments on Ultra-HR RS-VQA benchmarks MME-RealWorld-RS and LRS-VQA, comparing against (i) strong general foundation models, (ii) remote sensing foundation models, (iii) Ultra-HR RS-VQA methods, and (iv) plug-and-play search-based VQA methods. When integrated with LLaVA-ov, ZoomSearch attains state-of-the-art accuracy across diverse tasks, improving the LLaVA-ov baseline by 26.3% on LRS-VQA and 114.8% on MME-RealWorld-RS. Meanwhile, it achieves much higher inference efficiency, outperforming prior search-based methods by 20%~44% in speed.
comment: 17 pages, 8 figures
♻ ☆ Activation Quantization of Vision Encoders Needs Prefixing Registers
Transformer-based vision encoders -- such as CLIP -- are central to multimodal intelligence, powering applications from autonomous web agents to robotic control. Since these applications often demand real-time processing of massive visual data, reducing the inference cost of vision encoders is critical. Quantization offers a practical path, but remains challenging even at 8-bit precision due to massive-scale activations (i.e., outliers). In this work, we propose $\textit{RegCache}$, a training-free algorithm that mitigates outliers in large-scale pretrained vision encoders and serves as a plug-in module that can be applied on top of other quantization methods. The proposed RegCache introduces outlier-prone yet semantically meaningless prefix tokens to the target vision encoder, which prevents other tokens from having outliers. Notably, we observe that outliers in vision encoders behave differently from those in language models, motivating two technical innovations: middle-layer prefixing and token deletion. Experiments show that our method consistently improves the accuracy of quantized models across both text-supervised and self-supervised vision encoders.
comment: 19 pages, 8 figures
♻ ☆ SAEmnesia: Erasing Concepts in Diffusion Models with Supervised Sparse Autoencoders
Concept unlearning in diffusion models is hampered by feature splitting, where concepts are distributed across many latent features, making their removal challenging and computationally expensive. We introduce SAEmnesia, a supervised sparse autoencoder framework that overcomes this by enforcing one-to-one concept-neuron mappings. By systematically labeling concepts during training, our method achieves feature centralization, binding each concept to a single, interpretable neuron. This enables highly targeted and efficient concept erasure. SAEmnesia reduces hyperparameter search by 96.7% and achieves a 9.2% improvement over the state-of-the-art on the UnlearnCanvas benchmark. Our method also demonstrates superior scalability in sequential unlearning, improving accuracy by 28.4% when removing nine objects, establishing a new standard for precise and controllable concept erasure. Moreover, SAEmnesia mitigates the possibility of generating unwanted content under adversarial attack and effectively removes nudity when evaluated with I2P.
♻ ☆ Yo'City: Personalized and Boundless 3D Realistic City Scene Generation via Self-Critic Expansion
Realistic 3D city generation is fundamental to a wide range of applications, including virtual reality and digital twins. However, most existing methods rely on training a single diffusion model, which limits their ability to generate personalized and boundless city-scale scenes. In this paper, we present Yo'City, a novel agentic framework that enables user-customized and infinitely expandable 3D city generation by leveraging the reasoning and compositional capabilities of off-the-shelf large models. Specifically, Yo'City first conceptualize the city through a top-down planning strategy that defines a hierarchical "City-District-Grid" structure. The Global Planner determines the overall layout and potential functional districts, while the Local Designer further refines each district with detailed grid-level descriptions. Subsequently, the grid-level 3D generation is achieved through a "produce-refine-evaluate" isometric image synthesis loop, followed by image-to-3D generation. To simulate continuous city evolution, Yo'City further introduces a user-interactive, relationship-guided expansion mechanism, which performs scene graph-based distance- and semantics-aware layout optimization, ensuring spatially coherent city growth. To comprehensively evaluate our method, we construct a diverse benchmark dataset and design six multi-dimensional metrics that assess generation quality from the perspectives of semantics, geometry, texture, and layout. Extensive experiments demonstrate that Yo'City consistently outperforms existing state-of-the-art methods across all evaluation aspects.
comment: 22 pages, 16 figures
♻ ☆ Learning Contrastive Feature Representations for Facial Action Unit Detection
For the Facial Action Unit (AU) detection task, accurately capturing the subtle facial differences between distinct AUs is essential for reliable detection. Additionally, AU detection faces challenges from class imbalance and the presence of noisy or false labels, which undermine detection accuracy. In this paper, we introduce a novel contrastive learning framework aimed for AU detection that incorporates both self-supervised and supervised signals, thereby enhancing the learning of discriminative features for accurate AU detection. To tackle the class imbalance issue, we employ a negative sample re-weighting strategy that adjusts the step size of updating parameters for minority and majority class samples. Moreover, to address the challenges posed by noisy and false AU labels, we employ a sampling technique that encompasses three distinct types of positive sample pairs. This enables us to inject self-supervised signals into the supervised signal, effectively mitigating the adverse effects of noisy labels. Our experimental assessments, conducted on five widely-utilized benchmark datasets (BP4D, DISFA, BP4D+, GFT and Aff-Wild2), underscore the superior performance of our approach compared to state-of-the-art methods of AU detection. Our code is available at https://github.com/Ziqiao-Shang/AUNCE.
comment: This paper has been accepted by Pattern Recognition
♻ ☆ A Style is Worth One Code: Unlocking Code-to-Style Image Generation with Discrete Style Space
Innovative visual stylization is a cornerstone of artistic creation, yet generating novel and consistent visual styles remains a significant challenge. Existing generative approaches typically rely on lengthy textual prompts, reference images, or parameter-efficient fine-tuning to guide style-aware image generation, but often struggle with style consistency, limited creativity, and complex style representations. In this paper, we affirm that a style is worth one numerical code by introducing the novel task, code-to-style image generation, which produces images with novel, consistent visual styles conditioned solely on a numerical style code. To date, this field has only been primarily explored by the industry (e.g., Midjourney), with no open-source research from the academic community. To fill this gap, we propose CoTyle, the first open-source method for this task. Specifically, we first train a discrete style codebook from a collection of images to extract style embeddings. These embeddings serve as conditions for a text-to-image diffusion model (T2I-DM) to generate stylistic images. Subsequently, we train an autoregressive style generator on the discrete style embeddings to model their distribution, allowing the synthesis of novel style embeddings. During inference, a numerical style code is mapped to a unique style embedding by the style generator, and this embedding guides the T2I-DM to generate images in the corresponding style. Unlike existing methods, our method offers unparalleled simplicity and diversity, unlocking a vast space of reproducible styles from minimal input. Extensive experiments validate that CoTyle effectively turns a numerical code into a style controller, demonstrating a style is worth one code.
comment: Code: https://github.com/Kwai-Kolors/CoTyle Demo: https://huggingface.co/spaces/Kwai-Kolors/CoTyle Homepage: https://kwai-kolors.github.io/CoTyle/
♻ ☆ Harmony: Harmonizing Audio and Video Generation through Cross-Task Synergy
The synthesis of synchronized audio-visual content is a key challenge in generative AI, with open-source models facing challenges in robust audio-video alignment. Our analysis reveals that this issue is rooted in three fundamental challenges of the joint diffusion process: (1) Correspondence Drift, where concurrently evolving noisy latents impede stable learning of alignment; (2) inefficient global attention mechanisms that fail to capture fine-grained temporal cues; and (3) the intra-modal bias of conventional Classifier-Free Guidance (CFG), which enhances conditionality but not cross-modal synchronization. To overcome these challenges, we introduce Harmony, a novel framework that mechanistically enforces audio-visual synchronization. We first propose a Cross-Task Synergy training paradigm to mitigate drift by leveraging strong supervisory signals from audio-driven video and video-driven audio generation tasks. Then, we design a Global-Local Decoupled Interaction Module for efficient and precise temporal-style alignment. Finally, we present a novel Synchronization-Enhanced CFG (SyncCFG) that explicitly isolates and amplifies the alignment signal during inference. Extensive experiments demonstrate that Harmony establishes a new state-of-the-art, significantly outperforming existing methods in both generation fidelity and, critically, in achieving fine-grained audio-visual synchronization.
♻ ☆ SegDINO3D: 3D Instance Segmentation Empowered by Both Image-Level and Object-Level 2D Features
In this paper, we present SegDINO3D, a novel Transformer encoder-decoder framework for 3D instance segmentation. As 3D training data is generally not as sufficient as 2D training images, SegDINO3D is designed to fully leverage 2D representation from a pre-trained 2D detection model, including both image-level and object-level features, for improving 3D representation. SegDINO3D takes both a point cloud and its associated 2D images as input. In the encoder stage, it first enriches each 3D point by retrieving 2D image features from its corresponding image views and then leverages a 3D encoder for 3D context fusion. In the decoder stage, it formulates 3D object queries as 3D anchor boxes and performs cross-attention from 3D queries to 2D object queries obtained from 2D images using the 2D detection model. These 2D object queries serve as a compact object-level representation of 2D images, effectively avoiding the challenge of keeping thousands of image feature maps in the memory while faithfully preserving the knowledge of the pre-trained 2D model. The introducing of 3D box queries also enables the model to modulate cross-attention using the predicted boxes for more precise querying. SegDINO3D achieves the state-of-the-art performance on the ScanNetV2 and ScanNet200 3D instance segmentation benchmarks. Notably, on the challenging ScanNet200 dataset, SegDINO3D significantly outperforms prior methods by +8.6 and +6.8 mAP on the validation and hidden test sets, respectively, demonstrating its superiority.
♻ ☆ Autoregressive Styled Text Image Generation, but Make it Reliable
Generating faithful and readable styled text images (especially for Styled Handwritten Text generation - HTG) is an open problem with several possible applications across graphic design, document understanding, and image editing. A lot of research effort in this task is dedicated to developing strategies that reproduce the stylistic characteristics of a given writer, with promising results in terms of style fidelity and generalization achieved by the recently proposed Autoregressive Transformer paradigm for HTG. However, this method requires additional inputs, lacks a proper stop mechanism, and might end up in repetition loops, generating visual artifacts. In this work, we rethink the autoregressive formulation by framing HTG as a multimodal prompt-conditioned generation task, and tackle the content controllability issues by introducing special textual input tokens for better alignment with the visual ones. Moreover, we devise a Classifier-Free-Guidance-based strategy for our autoregressive model. Through extensive experimental validation, we demonstrate that our approach, dubbed Eruku, compared to previous solutions requires fewer inputs, generalizes better to unseen styles, and follows more faithfully the textual prompt, improving content adherence.
comment: Accepted at WACV2026
♻ ☆ Infrared and Visible Image Fusion with Language-Driven Loss in CLIP Embedding Space
Infrared-visible image fusion (IVIF) has attracted much attention owing to the highly-complementary properties of the two image modalities. Due to the lack of ground-truth fused images, the fusion output of current deep-learning based methods heavily depends on the loss functions defined mathematically. As it is hard to well mathematically define the fused image without ground truth, the performance of existing fusion methods is limited. In this paper, we propose to use natural language to express the objective of IVIF, which can avoid the explicit mathematical modeling of fusion output in current losses, and make full use of the advantage of language expression to improve the fusion performance. For this purpose, we present a comprehensive language-expressed fusion objective, and encode relevant texts into the multi-modal embedding space using CLIP. A language-driven fusion model is then constructed in the embedding space, by establishing the relationship among the embedded vectors representing the fusion objective and input image modalities. Finally, a language-driven loss is derived to make the actual IVIF aligned with the embedded language-driven fusion model via supervised training. Experiments show that our method can obtain much better fusion results than existing techniques. The code is available at https://github.com/wyhlaowang/LDFusion.
comment: Accepted by ACM MM 2025
♻ ☆ Hybrid Rendering for Multimodal Autonomous Driving: Merging Neural and Physics-Based Simulation
Neural reconstruction models for autonomous driving simulation have made significant strides in recent years, with dynamic models becoming increasingly prevalent. However, these models are typically limited to handling in-domain objects closely following their original trajectories. We introduce a hybrid approach that combines the strengths of neural reconstruction with physics-based rendering. This method enables the virtual placement of traditional mesh-based dynamic agents at arbitrary locations, adjustments to environmental conditions, and rendering from novel camera viewpoints. Our approach significantly enhances novel view synthesis quality -- especially for road surfaces and lane markings -- while maintaining interactive frame rates through our novel training method, NeRF2GS. This technique leverages the superior generalization capabilities of NeRF-based methods and the real-time rendering speed of 3D Gaussian Splatting (3DGS). We achieve this by training a customized NeRF model on the original images with depth regularization derived from a noisy LiDAR point cloud, then using it as a teacher model for 3DGS training. This process ensures accurate depth, surface normals, and camera appearance modeling as supervision. With our block-based training parallelization, the method can handle large-scale reconstructions (greater than or equal to 100,000 square meters) and predict segmentation masks, surface normals, and depth maps. During simulation, it supports a rasterization-based rendering backend with depth-based composition and multiple camera models for real-time camera simulation, as well as a ray-traced backend for precise LiDAR simulation.
♻ ☆ TRACE: Temporally Reliable Anatomically-Conditioned 3D CT Generation with Enhanced Efficiency MICCAI 2025
3D medical image generation is essential for data augmentation and patient privacy, calling for reliable and efficient models suited for clinical practice. However, current methods suffer from limited anatomical fidelity, restricted axial length, and substantial computational cost, placing them beyond reach for regions with limited resources and infrastructure. We introduce TRACE, a framework that generates 3D medical images with spatiotemporal alignment using a 2D multimodal-conditioned diffusion approach. TRACE models sequential 2D slices as video frame pairs, combining segmentation priors and radiology reports for anatomical alignment, incorporating optical flow to sustain temporal coherence. During inference, an overlapping-frame strategy links frame pairs into a flexible length sequence, reconstructed into a spatiotemporally and anatomically aligned 3D volume. Experimental results demonstrate that TRACE effectively balances computational efficiency with preserving anatomical fidelity and spatiotemporal consistency. Code is available at: https://github.com/VinyehShaw/TRACE.
comment: Accepted to MICCAI 2025 (this version is not peer-reviewed; it is the extended version)
♻ ☆ Predicting Video Slot Attention Queries from Random Slot-Feature Pairs AAAI 2026
Unsupervised video Object-Centric Learning (OCL) is promising as it enables object-level scene representation and understanding as we humans do. Mainstream video OCL methods adopt a recurrent architecture: An aggregator aggregates current video frame into object features, termed slots, under some queries; A transitioner transits current slots to queries for the next frame. This is an effective architecture but all existing implementations both (\textit{i1}) neglect to incorporate next frame features, the most informative source for query prediction, and (\textit{i2}) fail to learn transition dynamics, the knowledge essential for query prediction. To address these issues, we propose Random Slot-Feature pair for learning Query prediction (RandSF.Q): (\textit{t1}) We design a new transitioner to incorporate both slots and features, which provides more information for query prediction; (\textit{t2}) We train the transitioner to predict queries from slot-feature pairs randomly sampled from available recurrences, which drives it to learn transition dynamics. Experiments on scene representation demonstrate that our method surpass existing video OCL methods significantly, e.g., up to 10 points on object discovery, setting new state-of-the-art. Such superiority also benefits downstream tasks like scene understanding. Source Code, Model Checkpoints, Training Logs: https://github.com/Genera1Z/RandSF.Q
comment: Accepted to AAAI 2026
♻ ☆ HiGFA: Hierarchical Guidance for Fine-grained Data Augmentation with Diffusion Models
Generative diffusion models show promise for data augmentation. However, applying them to fine-grained tasks presents a significant challenge: ensuring synthetic images accurately capture the subtle, category-defining features critical for high fidelity. Standard approaches, such as text-based Classifier-Free Guidance (CFG), often lack the required specificity, potentially generating misleading examples that degrade fine-grained classifier performance. To address this, we propose Hierarchically Guided Fine-grained Augmentation (HiGFA). HiGFA leverages the temporal dynamics of the diffusion sampling process. It employs strong text and transformed contour guidance with fixed strengths in the early-to-mid sampling stages to establish overall scene, style, and structure. In the final sampling stages, HiGFA activates a specialized fine-grained classifier guidance and dynamically modulates the strength of all guidance signals based on prediction confidence. This hierarchical, confidence-driven orchestration enables HiGFA to generate diverse yet faithful synthetic images by intelligently balancing global structure formation with precise detail refinement. Experiments on several FGVC datasets demonstrate the effectiveness of HiGFA.
♻ ☆ FIELDS: Face reconstruction with accurate Inference of Expression using Learning with Direct Supervision
Facial expressions convey the bulk of emotional information in human communication, yet existing 3D face reconstruction methods often miss subtle affective details due to reliance on 2D supervision and lack of 3D ground truth. We propose FIELDS (Face reconstruction with accurate Inference of Expression using Learning with Direct Supervision) to address these limitations by extending self-supervised 2D image consistency cues with direct 3D expression parameter supervision and an auxiliary emotion recognition branch. Our encoder is guided by authentic expression parameters from spontaneous 4D facial scans, while an intensity-aware emotion loss encourages the 3D expression parameters to capture genuine emotion content without exaggeration. This dual-supervision strategy bridges the 2D/3D domain gap and mitigates expression-intensity bias, yielding high-fidelity 3D reconstructions that preserve subtle emotional cues. From a single image, FIELDS produces emotion-rich face models with highly realistic expressions, significantly improving in-the-wild facial expression recognition performance without sacrificing naturalness.
♻ ☆ AgriPotential: A Novel Multi-Spectral and Multi-Temporal Remote Sensing Dataset for Agricultural Potentials
Remote sensing has emerged as a critical tool for large-scale Earth monitoring and land management. In this paper, we introduce AgriPotential, a novel benchmark dataset composed of Sentinel-2 satellite imagery captured over multiple months. The dataset provides pixel-level annotations of agricultural potentials for three major crop types - viticulture, market gardening, and field crops - across five ordinal classes. AgriPotential supports a broad range of machine learning tasks, including ordinal regression, multi-label classification, and spatio-temporal modeling. The data cover diverse areas in Southern France, offering rich spectral information. AgriPotential is the first public dataset designed specifically for agricultural potential prediction, aiming to improve data-driven approaches to sustainable land use planning. The dataset and the code are freely accessible at: https://zenodo.org/records/15551829
comment: Accepted at CBMI 2025
♻ ☆ OmniAID: Decoupling Semantic and Artifacts for Universal AI-Generated Image Detection in the Wild
A truly universal AI-Generated Image (AIGI) detector must simultaneously generalize across diverse generative models and varied semantic content. Current state-of-the-art methods learn a single, entangled forgery representation, conflating content-dependent flaws with content-agnostic artifacts, and are further constrained by outdated benchmarks. To overcome these limitations, we propose OmniAID, a novel framework centered on a decoupled Mixture-of-Experts (MoE) architecture. The core of our method is a hybrid expert system designed to decouple: (1) semantic flaws across distinct content domains, and (2) content-dependent flaws from content-agnostic universal artifacts. This system employs a set of Routable Specialized Semantic Experts, each for a distinct domain (e.g., human, animal), complemented by a Fixed Universal Artifact Expert. This architecture is trained using a novel two-stage strategy: we first train the experts independently with domain-specific hard-sampling to ensure specialization, and subsequently train a lightweight gating network for effective input routing. By explicitly decoupling "what is generated" (content-specific flaws) from "how it is generated" (universal artifacts), OmniAID achieves robust generalization. To address outdated benchmarks and validate real-world applicability, we introduce Mirage, a new large-scale, contemporary dataset. Extensive experiments, using both traditional benchmarks and our Mirage dataset, demonstrate our model surpasses existing monolithic detectors, establishing a new and robust standard for AIGI authentication against modern, in-the-wild threats.
comment: 19 pages, 10 figures, 19 tables
♻ ☆ DiffFuSR: Super-Resolution of all Sentinel-2 Multispectral Bands using Diffusion Models
This paper presents DiffFuSR, a modular pipeline for super-resolving all 12 spectral bands of Sentinel-2 Level-2A imagery to a unified ground sampling distance (GSD) of 2.5 meters. The pipeline comprises two stages: (i) a diffusion-based super-resolution (SR) model trained on high-resolution RGB imagery from the NAIP and WorldStrat datasets, harmonized to simulate Sentinel-2 characteristics; and (ii) a learned fusion network that upscales the remaining multispectral bands using the super-resolved RGB image as a spatial prior. We introduce a robust degradation model and contrastive degradation encoder to support blind SR. Extensive evaluations of the proposed SR pipeline on the OpenSR benchmark demonstrate that the proposed method outperforms current SOTA baselines in terms of reflectance fidelity, spectral consistency, spatial alignment, and hallucination suppression. Furthermore, the fusion network significantly outperforms classical and learned pansharpening approaches, enabling accurate enhancement of Sentinel-2's 20 m and 60 m bands. This work proposes a novel modular framework Sentinel-2 SR that utilizes harmonized learning with diffusion models and fusion strategies. Our code and models can be found at https://github.com/NorskRegnesentral/DiffFuSR.
comment: Accepted for Publication at IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING (TGRS)
Machine Learning 126
☆ ThetaEvolve: Test-time Learning on Open Problems
Recent advances in large language models (LLMs) have enabled breakthroughs in mathematical discovery, exemplified by AlphaEvolve, a closed-source system that evolves programs to improve bounds on open problems. However, it relies on ensembles of frontier LLMs to achieve new bounds and is a pure inference system that models cannot internalize the evolving strategies. We introduce ThetaEvolve, an open-source framework that simplifies and extends AlphaEvolve to efficiently scale both in-context learning and Reinforcement Learning (RL) at test time, allowing models to continually learn from their experiences in improving open optimization problems. ThetaEvolve features a single LLM, a large program database for enhanced exploration, batch sampling for higher throughput, lazy penalties to discourage stagnant outputs, and optional reward shaping for stable training signals, etc. ThetaEvolve is the first evolving framework that enable a small open-source model, like DeepSeek-R1-0528-Qwen3-8B, to achieve new best-known bounds on open problems (circle packing and first auto-correlation inequality) mentioned in AlphaEvolve. Besides, across two models and four open tasks, we find that ThetaEvolve with RL at test-time consistently outperforms inference-only baselines, and the model indeed learns evolving capabilities, as the RL-trained checkpoints demonstrate faster progress and better final performance on both trained target task and other unseen tasks. We release our code publicly: https://github.com/ypwang61/ThetaEvolve
comment: 30 pages, link: https://github.com/ypwang61/ThetaEvolve
☆ SmallWorlds: Assessing Dynamics Understanding of World Models in Isolated Environments
Current world models lack a unified and controlled setting for systematic evaluation, making it difficult to assess whether they truly capture the underlying rules that govern environment dynamics. In this work, we address this open challenge by introducing the SmallWorld Benchmark, a testbed designed to assess world model capability under isolated and precisely controlled dynamics without relying on handcrafted reward signals. Using this benchmark, we conduct comprehensive experiments in the fully observable state space on representative architectures including Recurrent State Space Model, Transformer, Diffusion model, and Neural ODE, examining their behavior across six distinct domains. The experimental results reveal how effectively these models capture environment structure and how their predictions deteriorate over extended rollouts, highlighting both the strengths and limitations of current modeling paradigms and offering insights into future improvement directions in representation learning and dynamics modeling.
☆ The Price of Progress: Algorithmic Efficiency and the Falling Cost of AI Inference
Language models have seen enormous progress on advanced benchmarks in recent years, but much of this progress has only been possible by using more costly models. Benchmarks may therefore present a warped picture of progress in practical capabilities per dollar. To remedy this, we use data from Artificial Analysis and Epoch AI to form the largest dataset of current and historical prices to run benchmarks to date. We find that the price for a given level of benchmark performance has decreased remarkably fast, around $5\times$ to $10\times$ per year, for frontier models on knowledge, reasoning, math, and software engineering benchmarks. These reductions in the cost of AI inference are due to economic forces, hardware efficiency improvements, and algorithmic efficiency improvements. Isolating out open models to control for competition effects and dividing by hardware price declines, we estimate that algorithmic efficiency progress is around $3\times$ per year. Finally, we recommend that evaluators both publicize and take into account the price of benchmarking as an essential part of measuring the real-world impact of AI.
☆ Physics-Informed Neural Networks for Thermophysical Property Retrieval
Inverse heat problems refer to the estimation of material thermophysical properties given observed or known heat diffusion behaviour. Inverse heat problems have wide-ranging uses, but a critical application lies in quantifying how building facade renovation reduces thermal transmittance, a key determinant of building energy efficiency. However, solving inverse heat problems with non-invasive data collected in situ is error-prone due to environmental variability or deviations from theoretically assumed conditions. Hence, current methods for measuring thermal conductivity are either invasive, require lengthy observation periods, or are sensitive to environmental and experimental conditions. Here, we present a PINN-based iterative framework to estimate the thermal conductivity k of a wall from a set of thermographs; our framework alternates between estimating the forward heat problem with a PINN for a fixed k, and optimizing k by comparing the thermographs and surface temperatures predicted by the PINN, repeating until the estimated k's convergence. Using both environmental data captured by a weather station and data generated from Finite-Volume-Method software simulations, we accurately predict k across different environmental conditions and data collection sampling times, given the temperature profile of the wall at dawn is close to steady state. Although violating the steady-state assumption impacts the accuracy of k's estimation, we show that our proposed framework still only exhibits a maximum MAE of 4.0851. Our work demonstrates the potential of PINN-based methods for reliable estimation of material properties in situ and under realistic conditions, without lengthy measurement campaigns. Given the lack of research on using machine learning, and more specifically on PINNs, for solving in-situ inverse problems, we expect our work to be a starting point for more research on the topic.
comment: 26 pages, 4 figures, 3 tables
☆ Provable Benefits of Sinusoidal Activation for Modular Addition
This paper studies the role of activation functions in learning modular addition with two-layer neural networks. We first establish a sharp expressivity gap: sine MLPs admit width-$2$ exact realizations for any fixed length $m$ and, with bias, width-$2$ exact realizations uniformly over all lengths. In contrast, the width of ReLU networks must scale linearly with $m$ to interpolate, and they cannot simultaneously fit two lengths with different residues modulo $p$. We then provide a novel Natarajan-dimension generalization bound for sine networks, yielding nearly optimal sample complexity $\widetilde{\mathcal{O}}(p)$ for ERM over constant-width sine networks. We also derive width-independent, margin-based generalization for sine networks in the overparametrized regime and validate it. Empirically, sine networks generalize consistently better than ReLU networks across regimes and exhibit strong length extrapolation.
comment: 60 pages, 15 figures
☆ ASTRO: Adaptive Stitching via Dynamics-Guided Trajectory Rollouts
Offline reinforcement learning (RL) enables agents to learn optimal policies from pre-collected datasets. However, datasets containing suboptimal and fragmented trajectories present challenges for reward propagation, resulting in inaccurate value estimation and degraded policy performance. While trajectory stitching via generative models offers a promising solution, existing augmentation methods frequently produce trajectories that are either confined to the support of the behavior policy or violate the underlying dynamics, thereby limiting their effectiveness for policy improvement. We propose ASTRO, a data augmentation framework that generates distributionally novel and dynamics-consistent trajectories for offline RL. ASTRO first learns a temporal-distance representation to identify distinct and reachable stitch targets. We then employ a dynamics-guided stitch planner that adaptively generates connecting action sequences via Rollout Deviation Feedback, defined as the gap between target state sequence and the actual arrived state sequence by executing predicted actions, to improve trajectory stitching's feasibility and reachability. This approach facilitates effective augmentation through stitching and ultimately enhances policy learning. ASTRO outperforms prior offline RL augmentation methods across various algorithms, achieving notable performance gain on the challenging OGBench suite and demonstrating consistent improvements on standard offline RL benchmarks such as D4RL.
☆ Accelerated Execution of Bayesian Neural Networks using a Single Probabilistic Forward Pass and Code Generation
Machine learning models perform well across domains such as diagnostics, weather forecasting, NLP, and autonomous driving, but their limited uncertainty handling restricts use in safety-critical settings. Traditional neural networks often fail to detect out-of-domain (OOD) data and may output confident yet incorrect predictions. Bayesian neural networks (BNNs) address this by providing probabilistic estimates, but incur high computational cost because predictions require sampling weight distributions and multiple forward passes. The Probabilistic Forward Pass (PFP) offers a highly efficient approximation to Stochastic Variational Inference (SVI) by assuming Gaussian-distributed weights and activations, enabling fully analytic uncertainty propagation and replacing sampling with a single deterministic forward pass. We present an end-to-end pipeline for training, compiling, optimizing, and deploying PFP-based BNNs on embedded ARM CPUs. Using the TVM deep learning compiler, we implement a dedicated library of Gaussian-propagating operators for multilayer perceptrons and convolutional neural networks, combined with manual and automated tuning strategies. Ablation studies show that PFP consistently outperforms SVI in computational efficiency, achieving speedups of up to 4200x for small mini-batches. PFP-BNNs match SVI-BNNs on Dirty-MNIST in accuracy, uncertainty estimation, and OOD detection while greatly reducing compute cost. These results highlight the potential of combining Bayesian approximations with code generation to enable efficient BNN deployment on resource-constrained systems.
☆ LFM2 Technical Report
We present LFM2, a family of Liquid Foundation Models designed for efficient on-device deployment and strong task capabilities. Using hardware-in-the-loop architecture search under edge latency and memory constraints, we obtain a compact hybrid backbone that combines gated short convolutions with a small number of grouped query attention blocks, delivering up to 2x faster prefill and decode on CPUs compared to similarly sized models. The LFM2 family covers 350M-8.3B parameters, including dense models (350M, 700M, 1.2B, 2.6B) and a mixture-of-experts variant (8.3B total, 1.5B active), all with 32K context length. LFM2's training pipeline includes a tempered, decoupled Top-K knowledge distillation objective that avoids support mismatch; curriculum learning with difficulty-ordered data; and a three-stage post-training recipe of supervised fine-tuning, length-normalized preference optimization, and model merging. Pre-trained on 10-12T tokens, LFM2 models achieve strong results across diverse benchmarks; for example, LFM2-2.6B reaches 79.56% on IFEval and 82.41% on GSM8K. We further build multimodal and retrieval variants: LFM2-VL for vision-language tasks, LFM2-Audio for speech, and LFM2-ColBERT for retrieval. LFM2-VL supports tunable accuracy-latency tradeoffs via token-efficient visual processing, while LFM2-Audio separates audio input and output pathways to enable real-time speech-to-speech interaction competitive with models 3x larger. LFM2-ColBERT provides a low-latency encoder for queries and documents, enabling high-performance retrieval across multiple languages. All models are released with open weights and deployment packages for ExecuTorch, llama.cpp, and vLLM, making LFM2 a practical base for edge applications that need fast, memory-efficient inference and strong task capabilities.
☆ Quantized-Tinyllava: a new multimodal foundation model enables efficient split learning
Split learning is well known as a method for resolving data privacy concerns by training a model on distributed devices, thereby avoiding data sharing that raises privacy issues. However, high network communication costs are always an impediment to split learning, especially for large foundation models that require transmitting large amounts of high-dimensional data. To resolve this issue, we present a new multimodal model structure that incorporates a learning-based data compression method, which compresses model embeddings into low-bit integers while preserving the model's performance, greatly reducing the transmission costs between partitions. We then determine the optimal number of discrete representation levels based on a solid theoretical foundation from entropy coding.
comment: 14pages, 5 figures
☆ Learning-Augmented Online Bipartite Matching in the Random Arrival Order Model
We study the online unweighted bipartite matching problem in the random arrival order model, with $n$ offline and $n$ online vertices, in the learning-augmented setting: The algorithm is provided with untrusted predictions of the types (neighborhoods) of the online vertices. We build upon the work of Choo et al. (ICML 2024, pp. 8762-8781) who proposed an approach that uses a prefix of the arrival sequence as a sample to determine whether the predictions are close to the true arrival sequence and then either follows the predictions or uses a known baseline algorithm that ignores the predictions and is $β$-competitive. Their analysis is limited to the case that the optimal matching has size $n$, i.e., every online vertex can be matched. We generalize their approach and analysis by removing any assumptions on the size of the optimal matching while only requiring that the size of the predicted matching is at least $αn$ for any constant $0 < α\le 1$. Our learning-augmented algorithm achieves $(1-o(1))$-consistency and $(β-o(1))$-robustness. Additionally, we show that the competitive ratio degrades smoothly between consistency and robustness with increasing prediction error.
comment: 17 pages, 1 figure, 1 table. An extended abstract of this paper appears in the proceedings of the 51st International Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM 2026)
☆ Distributed Dynamic Associative Memory via Online Convex Optimization
An associative memory (AM) enables cue-response recall, and it has recently been recognized as a key mechanism underlying modern neural architectures such as Transformers. In this work, we introduce the concept of distributed dynamic associative memory (DDAM), which extends classical AM to settings with multiple agents and time-varying data streams. In DDAM, each agent maintains a local AM that must not only store its own associations but also selectively memorize information from other agents based on a specified interest matrix. To address this problem, we propose a novel tree-based distributed online gradient descent algorithm, termed DDAM-TOGD, which enables each agent to update its memory on the fly via inter-agent communication over designated routing trees. We derive rigorous performance guarantees for DDAM-TOGD, proving sublinear static regret in stationary environments and a path-length dependent dynamic regret bound in non-stationary environments. These theoretical results provide insights into how communication delays and network structure impact performance. Building on the regret analysis, we further introduce a combinatorial tree design strategy that optimizes the routing trees to minimize communication delays, thereby improving regret bounds. Numerical experiments demonstrate that the proposed DDAM-TOGD framework achieves superior accuracy and robustness compared to representative online learning baselines such as consensus-based distributed optimization, confirming the benefits of the proposed approach in dynamic, distributed environments.
☆ ParaGate: Parasitic-Driven Domain Adaptation Transfer Learning for Netlist Performance Prediction
In traditional EDA flows, layout-level performance metrics are only obtainable after placement and routing, hindering global optimization at earlier stages. Although some neural-network-based solutions predict layout-level performance directly from netlists, they often face generalization challenges due to the black-box heuristics of commercial placement-and-routing tools, which create disparate data across designs. To this end, we propose ParaGate, a three-step cross-stage prediction framework that infers layout-level timing and power from netlists. First, we propose a two-phase transfer-learning approach to predict parasitic parameters, pre-training on mid-scale circuits and fine-tuning on larger ones to capture extreme conditions. Next, we rely on EDA tools for timing analysis, offloading the long-path numerical reasoning. Finally, ParaGate performs global calibration using subgraph features. Experiments show that ParaGate achieves strong generalization with minimal fine-tuning data: on openE906, its arrival-time R2 from 0.119 to 0.897. These results demonstrate that ParaGate could provide guidance for global optimization in the synthesis and placement stages.
comment: 8 pages, 6 figures
☆ Emergent Coordination and Phase Structure in Independent Multi-Agent Reinforcement Learning
A clearer understanding of when coordination emerges, fluctuates, or collapses in decentralized multi-agent reinforcement learning (MARL) is increasingly sought in order to characterize the dynamics of multi-agent learning systems. We revisit fully independent Q-learning (IQL) as a minimal decentralized testbed and run large-scale experiments across environment size L and agent density rho. We construct a phase map using two axes - the cooperative success rate (CSR) and a stability index derived from TD-error variance - revealing three distinct regimes: a coordinated and stable phase, a fragile transition region, and a jammed or disordered phase. A sharp double Instability Ridge separates these regimes and corresponds to persistent kernel drift, the time-varying shift of each agent's effective transition kernel induced by others' policy updates. Synchronization analysis further shows that temporal alignment is required for sustained cooperation, and that competition between drift and synchronization generates the fragile regime. Removing agent identifiers eliminates drift entirely and collapses the three-phase structure, demonstrating that small inter-agent asymmetries are a necessary driver of drift. Overall, the results show that decentralized MARL exhibits a coherent phase structure governed by the interaction between scale, density, and kernel drift, suggesting that emergent coordination behaves as a distribution-interaction-driven phase phenomenon.
comment: 22 pages, 19 figures
☆ OBLR-PO: A Theoretical Framework for Stable Reinforcement Learning
Existing reinforcement learning (RL)-based post-training methods for large language models have advanced rapidly, yet their design has largely been guided by heuristics rather than systematic theoretical principles. This gap limits our understanding of the properties of the gradient estimators and the associated optimization algorithms, thereby constraining opportunities to improve training stability and overall performance. In this work, we provide a unified theoretical framework that characterizes the statistical properties of commonly used policy-gradient estimators under mild assumptions. Our analysis establishes unbiasedness, derives exact variance expressions, and yields an optimization-loss upper bound that enables principled reasoning about learning dynamics. Building on these results, we prove convergence guarantees and derive an adaptive learning-rate schedule governed by the signal-to-noise ratio (SNR) of gradients. We further show that the variance-optimal baseline is a gradient-weighted estimator, offering a new principle for variance reduction and naturally enhancing stability beyond existing methods. These insights motivate Optimal Baseline and Learning-Rate Policy Optimization (OBLR-PO), an algorithm that jointly adapts learning rates and baselines in a theoretically grounded manner. Experiments on Qwen3-4B-Base and Qwen3-8B-Base demonstrate consistent gains over existing policy optimization methods, validating that our theoretical contributions translate into practical improvements in large-scale post-training.
comment: 19 pages, 7 figures
☆ Hard-Constrained Neural Networks with Physics-Embedded Architecture for Residual Dynamics Learning and Invariant Enforcement in Cyber-Physical Systems
This paper presents a framework for physics-informed learning in complex cyber-physical systems governed by differential equations with both unknown dynamics and algebraic invariants. First, we formalize the Hybrid Recurrent Physics-Informed Neural Network (HRPINN), a general-purpose architecture that embeds known physics as a hard structural constraint within a recurrent integrator to learn only residual dynamics. Second, we introduce the Projected HRPINN (PHRPINN), a novel extension that integrates a predict-project mechanism to strictly enforce algebraic invariants by design. The framework is supported by a theoretical analysis of its representational capacity. We validate HRPINN on a real-world battery prognostics DAE and evaluate PHRPINN on a suite of standard constrained benchmarks. The results demonstrate the framework's potential for achieving high accuracy and data efficiency, while also highlighting critical trade-offs between physical consistency, computational cost, and numerical stability, providing practical guidance for its deployment.
comment: 41 pages (30 pages main text + 11 pages appendices), 3 figures, 8 tables. Submitted to JMLR
☆ Machine Learning for Scientific Visualization: Ensemble Data Analysis
Scientific simulations and experimental measurements produce vast amounts of spatio-temporal data, yet extracting meaningful insights remains challenging due to high dimensionality, complex structures, and missing information. Traditional analysis methods often struggle with these issues, motivating the need for more robust, data-driven approaches. This dissertation explores deep learning methodologies to improve the analysis and visualization of spatio-temporal scientific ensembles, focusing on dimensionality reduction, flow estimation, and temporal interpolation. First, we address high-dimensional data representation through autoencoder-based dimensionality reduction for scientific ensembles. We evaluate the stability of projection metrics under partial labeling and introduce a Pareto-efficient selection strategy to identify optimal autoencoder variants, ensuring expressive and reliable low-dimensional embeddings. Next, we present FLINT, a deep learning model for high-quality flow estimation and temporal interpolation in both flow-supervised and flow-unsupervised settings. FLINT reconstructs missing velocity fields and generates high-fidelity temporal interpolants for scalar fields across 2D+time and 3D+time ensembles without domain-specific assumptions or extensive finetuning. To further improve adaptability and generalization, we introduce HyperFLINT, a hypernetwork-based approach that conditions on simulation parameters to estimate flow fields and interpolate scalar data. This parameter-aware adaptation yields more accurate reconstructions across diverse scientific domains, even with sparse or incomplete data. Overall, this dissertation advances deep learning techniques for scientific visualization, providing scalable, adaptable, and high-quality solutions for interpreting complex spatio-temporal ensembles.
comment: PhD thesis, University of Groningen, 2025
☆ Transformer-Driven Triple Fusion Framework for Enhanced Multimodal Author Intent Classification in Low-Resource Bangla
The expansion of the Internet and social networks has led to an explosion of user-generated content. Author intent understanding plays a crucial role in interpreting social media content. This paper addresses author intent classification in Bangla social media posts by leveraging both textual and visual data. Recognizing limitations in previous unimodal approaches, we systematically benchmark transformer-based language models (mBERT, DistilBERT, XLM-RoBERTa) and vision architectures (ViT, Swin, SwiftFormer, ResNet, DenseNet, MobileNet), utilizing the Uddessho dataset of 3,048 posts spanning six practical intent categories. We introduce a novel intermediate fusion strategy that significantly outperforms early and late fusion on this task. Experimental results show that intermediate fusion, particularly with mBERT and Swin Transformer, achieves 84.11% macro-F1 score, establishing a new state-of-the-art with an 8.4 percentage-point improvement over prior Bangla multimodal approaches. Our analysis demonstrates that integrating visual context substantially enhances intent classification. Cross-modal feature integration at intermediate levels provides optimal balance between modality-specific representation and cross-modal learning. This research establishes new benchmarks and methodological standards for Bangla and other low-resource languages. We call our proposed framework BangACMM (Bangla Author Content MultiModal).
comment: Accepted at the 28th International Conference on Computer and Information Technology (ICCIT 2025). To be published in IEEE proceedings
☆ Closing the Generalization Gap in Parameter-efficient Federated Edge Learning
Federated edge learning (FEEL) provides a promising foundation for edge artificial intelligence (AI) by enabling collaborative model training while preserving data privacy. However, limited and heterogeneous local datasets, as well as resource-constrained deployment, severely degrade both model generalization and resource utilization, leading to a compromised learning performance. Therefore, we propose a parameter-efficient FEEL framework that jointly leverages model pruning and client selection to tackle such challenges. First, we derive an information-theoretic generalization statement that characterizes the discrepancy between training and testing function losses and embed it into the convergence analysis. It reveals that a larger local generalization statement can undermine the global convergence. Then, we formulate a generalization-aware average squared gradient norm bound minimization problem, by jointly optimizing the pruning ratios, client selection, and communication-computation resources under energy and delay constraints. Despite its non-convexity, the resulting mixed-integer problem is efficiently solved via an alternating optimization algorithm. Extensive experiments demonstrate that the proposed design achieves superior learning performance than state-of-the-art baselines, validating the effectiveness of coupling generalization-aware analysis with system-level optimization for efficient FEEL.
comment: 13 pages, 8 figures
☆ Beyond Curve Fitting: Neuro-Symbolic Agents for Context-Aware Epidemic Forecasting
Effective surveillance of hand, foot and mouth disease (HFMD) requires forecasts accounting for epidemiological patterns and contextual drivers like school calendars and weather. While classical models and recent foundation models (e.g., Chronos, TimesFM) incorporate covariates, they often lack the semantic reasoning to interpret the causal interplay between conflicting drivers. In this work, we propose a two-agent framework decoupling contextual interpretation from probabilistic forecasting. An LLM "event interpreter" processes heterogeneous signals-including school schedules, meteorological summaries, and reports-into a scalar transmission-impact signal. A neuro-symbolic core then combines this with historical case counts to produce calibrated probabilistic forecasts. We evaluate the framework on real-world HFMD datasets from Hong Kong (2023-2024) and Lishui, China (2024). Compared to traditional and foundation-model baselines, our approach achieves competitive point forecasting accuracy while providing robust 90% prediction intervals (coverage 0.85-1.00) and human-interpretable rationales. Our results suggest that structurally integrating domain knowledge through LLMs can match state-of-the-art performance while yielding context-aware forecasts that align with public health workflows. Code is available at https://github.com/jw-chae/forecast_MED .
☆ BanglaSentNet: An Explainable Hybrid Deep Learning Framework for Multi-Aspect Sentiment Analysis with Cross-Domain Transfer Learning
Multi-aspect sentiment analysis of Bangla e-commerce reviews remains challenging due to limited annotated datasets, morphological complexity, code-mixing phenomena, and domain shift issues, affecting 300 million Bangla-speaking users. Existing approaches lack explainability and cross-domain generalization capabilities crucial for practical deployment. We present BanglaSentNet, an explainable hybrid deep learning framework integrating LSTM, BiLSTM, GRU, and BanglaBERT through dynamic weighted ensemble learning for multi-aspect sentiment classification. We introduce a dataset of 8,755 manually annotated Bangla product reviews across four aspects (Quality, Service, Price, Decoration) from major Bangladeshi e-commerce platforms. Our framework incorporates SHAP-based feature attribution and attention visualization for transparent insights. BanglaSentNet achieves 85% accuracy and 0.88 F1-score, outperforming standalone deep learning models by 3-7% and traditional approaches substantially. The explainability suite achieves 9.4/10 interpretability score with 87.6% human agreement. Cross-domain transfer learning experiments reveal robust generalization: zero-shot performance retains 67-76% effectiveness across diverse domains (BanglaBook reviews, social media, general e-commerce, news headlines); few-shot learning with 500-1000 samples achieves 90-95% of full fine-tuning performance, significantly reducing annotation costs. Real-world deployment demonstrates practical utility for Bangladeshi e-commerce platforms, enabling data-driven decision-making for pricing optimization, service improvement, and customer experience enhancement. This research establishes a new state-of-the-art benchmark for Bangla sentiment analysis, advances ensemble learning methodologies for low-resource languages, and provides actionable solutions for commercial applications.
comment: Submitted to Springer Nature Computer Science (SNCS) as an extended version of our ICDSAIA 2025 conference paper
☆ An Improved and Generalised Analysis for Spectral Clustering
We revisit the theoretical performances of Spectral Clustering, a classical algorithm for graph partitioning that relies on the eigenvectors of a matrix representation of the graph. Informally, we show that Spectral Clustering works well as long as the smallest eigenvalues appear in groups well separated from the rest of the matrix representation's spectrum. This arises, for example, whenever there exists a hierarchy of clusters at different scales, a regime not captured by previous analyses. Our results are very general and can be applied beyond the traditional graph Laplacian. In particular, we study Hermitian representations of digraphs and show Spectral Clustering can recover partitions where edges between clusters are oriented mostly in the same direction. This has applications in, for example, the analysis of trophic levels in ecological networks. We demonstrate that our results accurately predict the performances of Spectral Clustering on synthetic and real-world data sets.
comment: 11 pages, 7 figures. Accepted to Learning on Graphs Conference 2025
☆ Time Series Forecasting via Direct Per-Step Probability Distribution Modeling AAAI
Deep neural network-based time series prediction models have recently demonstrated superior capabilities in capturing complex temporal dependencies. However, it is challenging for these models to account for uncertainty associated with their predictions, because they directly output scalar values at each time step. To address such a challenge, we propose a novel model named interleaved dual-branch Probability Distribution Network (interPDN), which directly constructs discrete probability distributions per step instead of a scalar. The regression output at each time step is derived by computing the expectation of the predictive distribution on a predefined support set. To mitigate prediction anomalies, a dual-branch architecture is introduced with interleaved support sets, augmented by coarse temporal-scale branches for long-term trend forecasting. Outputs from another branch are treated as auxiliary signals to impose self-supervised consistency constraints on the current branch's prediction. Extensive experiments on multiple real-world datasets demonstrate the superior performance of interPDN.
comment: 16 pages, 8 figures. This is the preprint version of the paper and supplemental material to appear in AAAI, 2026. Please cite the final published version. Code is available at https://github.com/leonardokong486/interPDN
☆ Heteroscedastic Neural Networks for Path Loss Prediction with Link-Specific Uncertainty
Traditional and modern machine learning-based path loss models typically assume a constant prediction variance. We propose a neural network that jointly predicts the mean and link-specific variance by minimizing a Gaussian negative log-likelihood, enabling heteroscedastic uncertainty estimates. We compare shared, partially shared, and independent-parameter architectures using accuracy, calibration, and sharpness metrics on blind test sets from large public RF drive-test datasets. The shared-parameter architecture performs best, achieving an RMSE of 7.4 dB, 95.1 percent coverage for 95 percent prediction intervals, and a mean interval width of 29.6 dB. These uncertainty estimates further support link-specific coverage margins, improve RF planning and interference analyses, and provide effective self-diagnostics of model weaknesses.
comment: Submitted to IEEE AWPL in December 2025. 5 pages, 2 figures, 4 tables
☆ Towards Understanding Transformers in Learning Random Walks
Transformers have proven highly effective across various applications, especially in handling sequential data such as natural languages and time series. However, transformer models often lack clear interpretability, and the success of transformers has not been well understood in theory. In this paper, we study the capability and interpretability of transformers in learning a family of classic statistical models, namely random walks on circles. We theoretically demonstrate that, after training with gradient descent, a one-layer transformer model can achieve optimal accuracy in predicting random walks. Importantly, our analysis reveals that the trained model is interpretable: the trained softmax attention serves as a token selector, focusing on the direct parent state; subsequently, the value matrix executes a one-step probability transition to predict the location of the next state based on this parent state. We also show that certain edge cases not covered by our theory are indeed failure cases, demonstrating that our theoretical conditions are tight. By investigating these success and failure cases, it is revealed that gradient descent with small initialization may fail or struggle to converge to a good solution in certain simple tasks even beyond random walks. Experiments are conducted to support our theoretical findings.
comment: 45 pages, 13 figures
☆ SDE-Attention: Latent Attention in SDE-RNNs for Irregularly Sampled Time Series with Missing Data
Irregularly sampled time series with substantial missing observations are common in healthcare and sensor networks. We introduce SDE-Attention, a family of SDE-RNNs equipped with channel-level attention on the latent pre-RNN state, including channel recalibration, time-varying feature attention, and pyramidal multi-scale self-attention. We therefore conduct a comparison on a synthetic periodic dataset and real-world benchmarks, under varying missing rate. Latent-space attention consistently improves over a vanilla SDE-RNN. On the univariate UCR datasets, the LSTM-based time-varying feature model SDE-TVF-L achieves the highest average accuracy, raising mean performance by approximately 4, 6, and 10 percentage points over the baseline at 30%, 60% and 90% missingness, respectively (averaged across datasets). On multivariate UEA benchmarks, attention-augmented models again outperform the backbone, with SDE-TVF-L yielding up to a 7% gain in mean accuracy under high missingness. Among the proposed mechanisms, time-varying feature attention is the most robust on univariate datasets. On multivariate datasets, different attention types excel on different tasks, showing that SDE-Attention can be flexibly adapted to the structure of each problem.
comment: 11 pages, 6 figures
☆ TWEO: Transformers Without Extreme Outliers Enables FP8 Training And Quantization For Dummies
Native FP8 support in modern hardware is essential for training large Transformers, but is severely hindered by extreme activation outliers. Existing solutions either rely on complex mixed-precision engineering or invasive architectural modifications. This paper fundamentally challenges the conventional wisdom that outliers are data-driven. We demonstrate that extreme outliers are a data-independent, mechanically-produced artifact of training, originating from specific structural properties of the weight matrices (i.e., colinearity). Based on this insight, we propose TWEO (Transformers Without Extreme Outliers), a novel, non-invasive loss function. TWEO effectively prevents extreme outliers via a very simple loss term, which reduces outliers from 10000+ to less than 20. TWEO then enables full-model FP8 pre-training with neither engineering tricks nor architectural changes for both LLM and ViT. When standard FP8 training catastrophically collapses, TWEO achieves performance comparable to the BF16 baseline while delivering a 36% increase in training throughput. Also, TWEO enables a new quantization paradigm. Hardware-friendly W8A8 per-tensor static quantization of LLMs, previously considered completely unusable due to outliers, achieves SOTA performance for the first time on TWEO-trained models.
☆ Nonstabilizerness Estimation using Graph Neural Networks
This article proposes a Graph Neural Network (GNN) approach to estimate nonstabilizerness in quantum circuits, measured by the stabilizer Rényi entropy (SRE). Nonstabilizerness is a fundamental resource for quantum advantage, and efficient SRE estimations are highly beneficial in practical applications. We address the nonstabilizerness estimation problem through three supervised learning formulations starting from easier classification tasks to the more challenging regression task. Experimental results show that the proposed GNN manages to capture meaningful features from the graph-based circuit representation, resulting in robust generalization performances achieved across diverse scenarios. In classification tasks, the GNN is trained on product states and generalizes on circuits evolved under Clifford operations, entangled states, and circuits with higher number of qubits. In the regression task, the GNN significantly improves the SRE estimation on out-of-distribution circuits with higher number of qubits and gate counts compared to previous work, for both random quantum circuits and structured circuits derived from the transverse-field Ising model. Moreover, the graph representation of quantum circuits naturally integrates hardware-specific information. Simulations on noisy quantum hardware highlight the potential of the proposed GNN to predict the SRE measured on quantum devices.
☆ Asymptotic Theory and Phase Transitions for Variable Importance in Quantile Regression Forests
Quantile Regression Forests (QRF) are widely used for non-parametric conditional quantile estimation, yet statistical inference for variable importance measures remains challenging due to the non-smoothness of the loss function and the complex bias-variance trade-off. In this paper, we develop a asymptotic theory for variable importance defined as the difference in pinball loss risks. We first establish the asymptotic normality of the QRF estimator by handling the non-differentiable pinball loss via Knight's identity. Second, we uncover a "phase transition" phenomenon governed by the subsampling rate $β$ (where $s \asymp n^β$). We prove that in the bias-dominated regime ($β\ge 1/2$), which corresponds to large subsample sizes typically favored in practice to maximize predictive accuracy, standard inference breaks down as the estimator converges to a deterministic bias constant rather than a zero-mean normal distribution. Finally, we derive the explicit analytic form of this asymptotic bias and discuss the theoretical feasibility of restoring valid inference via analytic bias correction. Our results highlight a fundamental trade-off between predictive performance and inferential validity, providing a theoretical foundation for understanding the intrinsic limitations of random forest inference in high-dimensional settings.
☆ A PLS-Integrated LASSO Method with Application in Index Tracking
In traditional multivariate data analysis, dimension reduction and regression have been treated as distinct endeavors. Established techniques such as principal component regression (PCR) and partial least squares (PLS) regression traditionally compute latent components as intermediary steps -- although with different underlying criteria -- before proceeding with the regression analysis. In this paper, we introduce an innovative regression methodology named PLS-integrated Lasso (PLS-Lasso) that integrates the concept of dimension reduction directly into the regression process. We present two distinct formulations for PLS-Lasso, denoted as PLS-Lasso-v1 and PLS-Lasso-v2, along with clear and effective algorithms that ensure convergence to global optima. PLS-Lasso-v1 and PLS-Lasso-v2 are compared with Lasso on the task of financial index tracking and show promising results.
☆ Clustering Malware at Scale: A First Full-Benchmark Study
Recent years have shown that malware attacks still happen with high frequency. Malware experts seek to categorize and classify incoming samples to confirm their trustworthiness or prove their maliciousness. One of the ways in which groups of malware samples can be identified is through malware clustering. Despite the efforts of the community, malware clustering which incorporates benign samples has been under-explored. Moreover, despite the availability of larger public benchmark malware datasets, malware clustering studies have avoided fully utilizing these datasets in their experiments, often resorting to small datasets with only a few families. Additionally, the current state-of-the-art solutions for malware clustering remain unclear. In our study, we evaluate malware clustering quality and establish the state-of-the-art on Bodmas and Ember - two large public benchmark malware datasets. Ours is the first study of malware clustering performed on whole malware benchmark datasets. Additionally, we extend the malware clustering task by incorporating benign samples. Our results indicate that incorporating benign samples does not significantly degrade clustering quality. We find that there are significant differences in the quality of the created clusters between Ember and Bodmas, as well as a private industry dataset. Contrary to popular opinion, our top clustering performers are K-Means and BIRCH, with DBSCAN and HAC falling behind.
comment: pre-print of the paper (i.e. "submitted manuscript" version)
☆ Fault-Tolerant MARL for CAVs under Observation Perturbations for Highway On-Ramp Merging
Multi-Agent Reinforcement Learning (MARL) holds significant promise for enabling cooperative driving among Connected and Automated Vehicles (CAVs). However, its practical application is hindered by a critical limitation, i.e., insufficient fault tolerance against observational faults. Such faults, which appear as perturbations in the vehicles' perceived data, can substantially compromise the performance of MARL-based driving systems. Addressing this problem presents two primary challenges. One is to generate adversarial perturbations that effectively stress the policy during training, and the other is to equip vehicles with the capability to mitigate the impact of corrupted observations. To overcome the challenges, we propose a fault-tolerant MARL method for cooperative on-ramp vehicles incorporating two key agents. First, an adversarial fault injection agent is co-trained to generate perturbations that actively challenge and harden the vehicle policies. Second, we design a novel fault-tolerant vehicle agent equipped with a self-diagnosis capability, which leverages the inherent spatio-temporal correlations in vehicle state sequences to detect faults and reconstruct credible observations, thereby shielding the policy from misleading inputs. Experiments in a simulated highway merging scenario demonstrate that our method significantly outperforms baseline MARL approaches, achieving near-fault-free levels of safety and efficiency under various observation fault patterns.
☆ Energy-Efficient Vision Transformer Inference for Edge-AI Deployment
The growing deployment of Vision Transformers (ViTs) on energy-constrained devices requires evaluation methods that go beyond accuracy alone. We present a two-stage pipeline for assessing ViT energy efficiency that combines device-agnostic model selection with device-related measurements. We benchmark 13 ViT models on ImageNet-1K and CIFAR-10, running inference on NVIDIA Jetson TX2 (edge device) and an NVIDIA RTX 3050 (mobile GPU). The device-agnostic stage uses the NetScore metric for screening; the device-related stage ranks models with the Sustainable Accuracy Metric (SAM). Results show that hybrid models such as LeViT_Conv_192 reduce energy by up to 53% on TX2 relative to a ViT baseline (e.g., SAM5=1.44 on TX2/CIFAR-10), while distilled models such as TinyViT-11M_Distilled excel on the mobile GPU (e.g., SAM5=1.72 on RTX 3050/CIFAR-10 and SAM5=0.76 on RTX 3050/ImageNet-1K).
☆ Estimating the Event-Related Potential from Few EEG Trials
Event-related potentials (ERP) are measurements of brain activity with wide applications in basic and clinical neuroscience, that are typically estimated using the average of many trials of electroencephalography signals (EEG) to sufficiently reduce noise and signal variability. We introduce EEG2ERP, a novel uncertainty-aware autoencoder approach that maps an arbitrary number of EEG trials to their associated ERP. To account for the ERP uncertainty we use bootstrapped training targets and introduce a separate variance decoder to model the uncertainty of the estimated ERP. We evaluate our approach in the challenging zero-shot scenario of generalizing to new subjects considering three different publicly available data sources; i) the comprehensive ERP CORE dataset that includes over 50,000 EEG trials across six ERP paradigms from 40 subjects, ii) the large P300 Speller BCI dataset, and iii) a neuroimaging dataset on face perception consisting of both EEG and magnetoencephalography (MEG) data. We consistently find that our method in the few trial regime provides substantially better ERP estimates than commonly used conventional and robust averaging procedures. EEG2ERP is the first deep learning approach to map EEG signals to their associated ERP, moving toward reducing the number of trials necessary for ERP research. Code is available at https://github.com/andersxa/EEG2ERP
comment: Accepted by Transactions on Machine Learning Research (TMLR). 15 pages main manuscript, 30 pages total including supplementary material
☆ A Theoretical Framework for Discovering Groups and Unitary Representations via Tensor Factorization
We analyze the HyperCube model, an \textit{operator-valued} tensor factorization architecture that discovers group structures and their unitary representations. We provide a rigorous theoretical explanation for this inductive bias by decomposing its objective into a term regulating factor scales ($\mathcal{B}$) and a term enforcing directional alignment ($\mathcal{R} \geq 0$). This decomposition isolates the \textit{collinear manifold} ($\mathcal{R}=0$), to which numerical optimization consistently converges for group isotopes. We prove that this manifold admits feasible solutions exclusively for group isotopes, and that within it, $\mathcal{B}$ exerts a variational pressure toward unitarity. To bridge the gap to the global landscape, we formulate a \textit{Collinearity Dominance Conjecture}, supported by empirical observations. Conditional on this dominance, we prove two key results: (1) the global minimum is achieved by the unitary regular representation for groups, and (2) non-group operations incur a strictly higher objective value, formally quantifying the model's inductive bias toward the associative structure of groups (up to isotopy).
☆ Adapting Neural Audio Codecs to EEG NeurIPS
EEG and audio are inherently distinct modalities, differing in sampling rate, channel structure, and scale. Yet, we show that pretrained neural audio codecs can serve as effective starting points for EEG compression, provided that the data are preprocessed to be suitable to the codec's input constraints. Using DAC, a state-of-the-art neural audio codec as our base, we demonstrate that raw EEG can be mapped into the codec's stride-based framing, enabling direct reuse of the audio-pretrained encoder-decoder. Even without modification, this setup yields stable EEG reconstructions, and fine-tuning on EEG data further improves fidelity and generalization compared to training from scratch. We systematically explore compression-quality trade-offs by varying residual codebook depth, codebook (vocabulary) size, and input sampling rate. To capture spatial dependencies across electrodes, we propose DAC-MC, a multi-channel extension with attention-based cross-channel aggregation and channel-specific decoding, while retaining the audio-pretrained initialization. Evaluations on the TUH Abnormal and Epilepsy datasets show that the adapted codecs preserve clinically relevant information, as reflected in spectrogram-based reconstruction loss and downstream classification accuracy.
comment: Foundation Models for the Brain and Body (BrainBodyFM@NeurIPS)
☆ Automated Discovery of Laser Dicing Processes with Bayesian Optimization for Semiconductor Manufacturing
Laser dicing of semiconductor wafers is a critical step in microelectronic manufacturing, where multiple sequential laser passes precisely separate individual dies from the wafer. Adapting this complex sequential process to new wafer materials typically requires weeks of expert effort to balance process speed, separation quality, and material integrity. We present the first automated discovery of production-ready laser dicing processes on an industrial LASER1205 dicing system. We formulate the problem as a high-dimensional, constrained multi-objective Bayesian optimization task, and introduce a sequential two-level fidelity strategy to minimize expensive destructive die-strength evaluations. On bare silicon and product wafers, our method autonomously delivers feasible configurations that match or exceed expert baselines in production speed, die strength, and structural integrity, using only technician-level operation. Post-hoc validation of different weight configurations of the utility functions reveals that multiple feasible solutions with qualitatively different trade-offs can be obtained from the final surrogate model. Expert-refinement of the discovered process can further improve production speed while preserving die strength and structural integrity, surpassing purely manual or automated methods.
comment: 18 pages, 9 figures
☆ Freeze, Diffuse, Decode: Geometry-Aware Adaptation of Pretrained Transformer Embeddings for Antimicrobial Peptide Design
Pretrained transformers provide rich, general-purpose embeddings, which are transferred to downstream tasks. However, current transfer strategies: fine-tuning and probing, either distort the pretrained geometric structure of the embeddings or lack sufficient expressivity to capture task-relevant signals. These issues become even more pronounced when supervised data are scarce. Here, we introduce Freeze, Diffuse, Decode (FDD), a novel diffusion-based framework that adapts pre-trained embeddings to downstream tasks while preserving their underlying geometric structure. FDD propagates supervised signal along the intrinsic manifold of frozen embeddings, enabling a geometry-aware adaptation of the embedding space. Applied to antimicrobial peptide design, FDD yields low-dimensional, predictive, and interpretable representations that support property prediction, retrieval, and latent-space interpolation.
comment: 16 pages, 4 figures
☆ Machine learning for violence prediction: a systematic review and critical appraisal
Purpose To conduct a systematic review of machine learning models for predicting violent behaviour by synthesising and appraising their validity, usefulness, and performance. Methods We systematically searched nine bibliographic databases and Google Scholar up to September 2025 for development and/or validation studies on machine learning methods for predicting all forms of violent behaviour. We synthesised the results by summarising discrimination and calibration performance statistics and evaluated study quality by examining risk of bias and clinical utility. Results We identified 38 studies reporting the development and validation of 40 models. Most studies reported Area Under the Curve (AUC) as the discrimination statistic with a range of 0.68-0.99. Only eight studies reported calibration performance, and three studies reported external validation. 31 studies had a high risk of bias, mainly in the analysis domain, and three studies had low risk of bias. The overall clinical utility of violence prediction models is poor, as indicated by risks of overfitting due to small samples, lack of transparent reporting, and low generalisability. Conclusion Although black box machine learning models currently have limited applicability in clinical settings, they may show promise for identifying high-risk individuals. We recommend five key considerations for violence prediction modelling: (i) ensuring methodological quality (e.g. following guidelines) and interdisciplinary collaborations; (ii) using black box algorithms only for highly complex data; (iii) incorporating dynamic predictions to allow for risk monitoring; (iv) developing more trustworthy algorithms using explainable methods; and (v) applying causal machine learning approaches where appropriate.
☆ db-SP: Accelerating Sparse Attention for Visual Generative Models with Dual-Balanced Sequence Parallelism
Scaling Diffusion Transformer (DiT) inference via sequence parallelism is critical for reducing latency in visual generation, but is severely hampered by workload imbalance when applied to models employing block-wise sparse attention. The imbalance stems from the inherent variation in sparsity across attention heads and the irregular distribution of dense blocks within the sparse mask, when sequence parallelism is applied along the head dimension (as in Ulysses) or the block dimension (as in Ring Attention). In this paper, we formalize a sparse imbalance ratio to quantify the imbalance, and propose db-SP, a sparsity-aware sequence parallelism technique that tackles the challenge. db-SP contains a dual-level partitioning approach that achieves near-perfect workload balance at both the head and block levels with negligible overhead. Furthermore, to handle the evolving sparsity patterns across denoising steps and layers, db-SP dynamically determines the parallel degrees for the head and block dimensions at runtime. Experimental results demonstrate that db-SP delivers an end-to-end speedup of 1.25x and an attention-specific speedup of 1.40x over state-of-the-art sequence parallel methods on average. Code is available at https://github.com/thu-nics/db-SP.
☆ MathSight: A Benchmark Exploring Have Vision-Language Models Really Seen in University-Level Mathematical Reasoning?
Recent advances in Vision-Language Models (VLMs) have achieved impressive progress in multimodal mathematical reasoning. Yet, how much visual information truly contributes to reasoning remains unclear. Existing benchmarks report strong overall performance but seldom isolate the role of the image modality, leaving open whether VLMs genuinely leverage visual understanding or merely depend on linguistic priors. To address this, we present MathSight, a university-level multimodal mathematical reasoning benchmark designed to disentangle and quantify the effect of visual input. Each problem includes multiple visual variants -- original, hand-drawn, photo-captured -- and a text-only condition for controlled comparison. Experiments on state-of-the-art VLMs reveal a consistent trend: the contribution of visual information diminishes with increasing problem difficulty. Remarkably, Qwen3-VL without any image input surpasses both its multimodal variants and GPT-5, underscoring the need for benchmarks like MathSight to advance genuine vision-grounded reasoning in future models.
comment: Comments: 32 pages, 15 figures, 9 tables, includes appendix. Project page: https://cnu-bot-group.github.io/MathSight/
☆ Spectral Concentration at the Edge of Stability: Information Geometry of Kernel Associative Memory
High-capacity kernel Hopfield networks exhibit a "Ridge of Optimization" characterized by extreme stability. While previously linked to "Spectral Concentration," its origin remains elusive. Here, we analyze the network dynamics on a statistical manifold, revealing that the Ridge corresponds to the "Edge of Stability," a critical boundary where the Fisher Information Matrix becomes singular. We demonstrate that the apparent Euclidean force antagonism is a manifestation of \textit{Dual Equilibrium} in the Riemannian space. This unifies learning dynamics and capacity via the Minimum Description Length principle, offering a geometric theory of self-organized criticality.
comment: 4 pages, 4 figures
☆ Constraining dark matter halo profiles with symbolic regression
Dark matter haloes are typically characterised by radial density profiles with fixed forms motivated by simulations (e.g. NFW). However, simulation predictions depend on uncertain dark matter physics and baryonic modelling. Here, we present a method to constrain halo density profiles directly from observations using Exhaustive Symbolic Regression (ESR), a technique that searches the space of analytic expressions for the function that best balances accuracy and simplicity for a given dataset. We test the approach on mock weak lensing excess surface density (ESD) data of synthetic clusters with NFW profiles. Motivated by real data, we assign each ESD data point a constant fractional uncertainty and vary this uncertainty and the number of clusters to probe how data precision and sample size affect model selection. For fractional errors around 5%, ESR recovers the NFW profile even from samples as small as 20 clusters. At higher uncertainties representative of current surveys, simpler functions are favoured over NFW, though it remains competitive. This preference arises because weak lensing errors are smallest in the outskirts, causing the fits to be dominated by the outer profile. ESR therefore provides a robust, simulation-independent framework both for testing mass models and determining which features of a halo's density profile are genuinely constrained by the data.
comment: 18 pages, 5 figures. Accepted for publication in Philosophical Transactions of the Royal Society A
☆ Buffer replay enhances the robustness of multimodal learning under missing-modality
Missing modalities consistently lead to significant performance degradation in multimodal models. Existing approaches either synthesize missing modalities at high computational cost or apply prompt-based fine-tuning that relies only on adjacent-layer features and overlooks long-distance contextual information, which may offer additional tolerance to errors when one or more modalities are missing. To address this, we introduce REplay Prompting (REP): (1) construct modality-wise feature buffers via a residual bypass to cache early-layer representations and replay them in deeper layers, mitigating information loss as network depth increases; (2) employ a private-shared feature decoupling strategy, where private buffers preserve modality-specific signals and shared buffers encode cross-modal semantics; and (3) design a task-aware dynamic initialization mechanism to configure these buffers differently, improving stability and generalization under diverse missing-modality conditions. Experiments on vision-language, vision-language-audio, and temporal multimodal benchmarks demonstrate that REP consistently outperforms prior methods under both single- and multi-modality missing scenarios, while introducing only negligible parameter overhead. These results establish REP as a lightweight and effective paradigm for robust multimodal learning in challenging missing-modality environments.
☆ Standard Occupation Classifier -- A Natural Language Processing Approach
Standard Occupational Classifiers (SOC) are systems used to categorize and classify different types of jobs and occupations based on their similarities in terms of job duties, skills, and qualifications. Integrating these facets with Big Data from job advertisement offers the prospect to investigate labour demand that is specific to various occupations. This project investigates the use of recent developments in natural language processing to construct a classifier capable of assigning an occupation code to a given job advertisement. We develop various classifiers for both UK ONS SOC and US O*NET SOC, using different Language Models. We find that an ensemble model, which combines Google BERT and a Neural Network classifier while considering job title, description, and skills, achieved the highest prediction accuracy. Specifically, the ensemble model exhibited a classification accuracy of up to 61% for the lower (or fourth) tier of SOC, and 72% for the third tier of SOC. This model could provide up to date, accurate information on the evolution of the labour market using job advertisements.
☆ Time Extrapolation with Graph Convolutional Autoencoder and Tensor Train Decomposition
Graph autoencoders have gained attention in nonlinear reduced-order modeling of parameterized partial differential equations defined on unstructured grids. Despite they provide a geometrically consistent way of treating complex domains, applying such architectures to parameterized dynamical systems for temporal prediction beyond the training data, i.e. the extrapolation regime, is still a challenging task due to the simultaneous need of temporal causality and generalizability in the parametric space. In this work, we explore the integration of graph convolutional autoencoders (GCAs) with tensor train (TT) decomposition and Operator Inference (OpInf) to develop a time-consistent reduced-order model. In particular, high-fidelity snapshots are represented as a combination of parametric, spatial, and temporal cores via TT decomposition, while OpInf is used to learn the evolution of the latter. Moreover, we enhance the generalization performance by developing a multi-fidelity two-stages approach in the framework of Deep Operator Networks (DeepONet), treating the spatial and temporal cores as the trunk networks, and the parametric core as the branch network. Numerical results, including heat-conduction, advection-diffusion and vortex-shedding phenomena, demonstrate great performance in effectively learning the dynamic in the extrapolation regime for complex geometries, also in comparison with state-of-the-art approaches e.g. MeshGraphNets.
☆ Delta-XAI: A Unified Framework for Explaining Prediction Changes in Online Time Series Monitoring ICLR 2026
Explaining online time series monitoring models is crucial across sensitive domains such as healthcare and finance, where temporal and contextual prediction dynamics underpin critical decisions. While recent XAI methods have improved the explainability of time series models, they mostly analyze each time step independently, overlooking temporal dependencies. This results in further challenges: explaining prediction changes is non-trivial, methods fail to leverage online dynamics, and evaluation remains difficult. To address these challenges, we propose Delta-XAI, which adapts 14 existing XAI methods through a wrapper function and introduces a principled evaluation suite for the online setting, assessing diverse aspects, such as faithfulness, sufficiency, and coherence. Experiments reveal that classical gradient-based methods, such as Integrated Gradients (IG), can outperform recent approaches when adapted for temporal analysis. Building on this, we propose Shifted Window Integrated Gradients (SWING), which incorporates past observations in the integration path to systematically capture temporal dependencies and mitigate out-of-distribution effects. Extensive experiments consistently demonstrate the effectiveness of SWING across diverse settings with respect to diverse metrics. Our code is publicly available at https://anonymous.4open.science/r/Delta-XAI.
comment: Under review at ICLR 2026
☆ Masked Diffusion for Generative Recommendation
Generative recommendation (GR) with semantic IDs (SIDs) has emerged as a promising alternative to traditional recommendation approaches due to its performance gains, capitalization on semantic information provided through language model embeddings, and inference and storage efficiency. Existing GR with SIDs works frame the probability of a sequence of SIDs corresponding to a user's interaction history using autoregressive modeling. While this has led to impressive next item prediction performances in certain settings, these autoregressive GR with SIDs models suffer from expensive inference due to sequential token-wise decoding, potentially inefficient use of training data and bias towards learning short-context relationships among tokens. Inspired by recent breakthroughs in NLP, we propose to instead model and learn the probability of a user's sequence of SIDs using masked diffusion. Masked diffusion employs discrete masking noise to facilitate learning the sequence distribution, and models the probability of masked tokens as conditionally independent given the unmasked tokens, allowing for parallel decoding of the masked tokens. We demonstrate through thorough experiments that our proposed method consistently outperforms autoregressive modeling. This performance gap is especially pronounced in data-constrained settings and in terms of coarse-grained recall, consistent with our intuitions. Moreover, our approach allows the flexibility of predicting multiple SIDs in parallel during inference while maintaining superior performance to autoregressive modeling.
comment: 25 pages
☆ Adaptive Factor Graph-Based Tightly Coupled GNSS/IMU Fusion for Robust Positionin
Reliable positioning in GNSS-challenged environments remains a critical challenge for navigation systems. Tightly coupled GNSS/IMU fusion improves robustness but remains vulnerable to non-Gaussian noise and outliers. We present a robust and adaptive factor graph-based fusion framework that directly integrates GNSS pseudorange measurements with IMU preintegration factors and incorporates the Barron loss, a general robust loss function that unifies several m-estimators through a single tunable parameter. By adaptively down weighting unreliable GNSS measurements, our approach improves resilience positioning. The method is implemented in an extended GTSAM framework and evaluated on the UrbanNav dataset. The proposed solution reduces positioning errors by up to 41% relative to standard FGO, and achieves even larger improvements over extended Kalman filter (EKF) baselines in urban canyon environments. These results highlight the benefits of Barron loss in enhancing the resilience of GNSS/IMU-based navigation in urban and signal-compromised environments.
☆ Maritime Activities Observed Through Open-Access Positioning Data: Moving and Stationary Vessels in the Baltic Sea
Understanding past and present maritime activity patterns is critical for navigation safety, environmental assessment, and commercial operations. An increasing number of services now openly provide positioning data from the Automatic Identification System (AIS) via ground-based receivers. We show that coastal vessel activity can be reconstructed from open access data with high accuracy, even with limited data quality and incomplete receiver coverage. For three months of open AIS data in the Baltic Sea from August to October 2024, we present (i) cleansing and reconstruction methods to improve the data quality, and (ii) a journey model that converts AIS message data into vessel counts, traffic estimates, and spatially resolved vessel density at a resolution of $\sim$400 m. Vessel counts are provided, along with their uncertainties, for both moving and stationary activity. Vessel density maps also enable the identification of port locations, and we infer the most crowded and busiest coastal areas in the Baltic Sea. We find that on average, $\gtrsim$4000 vessels simultaneously operate in the Baltic Sea, and more than 300 vessels enter or leave the area each day. Our results agree within 20\% with previous studies relying on proprietary data.
comment: 29 pages, 15 figures, and 9 tables, matching the version published in Geomatics. Accompanying research data are available at http://dx.doi.org/10.6084/m9.figshare.29062715
☆ A Modular Framework for Rapidly Building Intrusion Predictors
We study automated intrusion prediction in an IT system using statistical learning methods. The focus is on developing online attack predictors that detect attacks in real time and identify the current stage of the attack. While such predictors have been proposed in the recent literature, these works typically rely on constructing a monolithic predictor tailored to a specific attack type and scenario. Given that hundreds of attack types are cataloged in the MITRE framework, training a separate monolithic predictor for each of them is infeasible. In this paper, we propose a modular framework for rapidly assembling online attack predictors from reusable components. The modular nature of a predictor facilitates controlling key metrics like timeliness and accuracy of prediction, as well as tuning the trade-off between them. Using public datasets for training and evaluation, we provide many examples of modular predictors and show how an effective predictor can be dynamically assembled during training from a network of modular components.
☆ Pooling Attention: Evaluating Pretrained Transformer Embeddings for Deception Classification
This paper investigates fake news detection as a downstream evaluation of Transformer representations, benchmarking encoder-only and decoder-only pre-trained models (BERT, GPT-2, Transformer-XL) as frozen embedders paired with lightweight classifiers. Through controlled preprocessing comparing pooling versus padding and neural versus linear heads, results demonstrate that contextual self-attention encodings consistently transfer effectively. BERT embeddings combined with logistic regression outperform neural baselines on LIAR dataset splits, while analyses of sequence length and aggregation reveal robustness to truncation and advantages from simple max or average pooling. This work positions attention-based token encoders as robust, architecture-centric foundations for veracity tasks, isolating Transformer contributions from classifier complexity.
comment: Accepted at the IEEE 7th Computing, Communications and IoT Applications Conference (ComComAp 2025), Madrid, Spain, December 2025. 6 pages
☆ A Trainable Centrality Framework for Modern Data
Measuring how central or typical a data point is underpins robust estimation, ranking, and outlier detection, but classical depth notions become expensive and unstable in high dimensions and are hard to extend beyond Euclidean data. We introduce Fused Unified centrality Score Estimation (FUSE), a neural centrality framework that operates on top of arbitrary representations. FUSE combines a global head, trained from pairwise distance-based comparisons to learn an anchor-free centrality score, with a local head, trained by denoising score matching to approximate a smoothed log-density potential. A single parameter between 0 and 1 interpolates between these calibrated signals, yielding depth-like centrality from different views via one forward pass. Across synthetic distributions, real images, time series, and text data, and standard outlier detection benchmarks, FUSE recovers meaningful classical ordering, reveals multi-scale geometric structures, and attains competitive performance with strong classical baselines while remaining simple and efficient.
☆ Experts are all you need: A Composable Framework for Large Language Model Inference
Large Language Models (LLMs) have achieved state-of-the-art accuracies in a variety of natural language processing (NLP) tasks. However, this success comes at the cost of increased model sizes which leads to additional computational burden. Mixture of Experts (MoEs) overcome this bottleneck by decoupling model capacity from computation by only activating a subset of parameters or "experts". However, these models require joint pretraining of these experts along with the router and do not model multi-step reasoning. In contrast, multi-agent frameworks improve reasoning by decomposing complex problems into modular subtasks. However, these frameworks rely on sequential "plan--act--observe" loops, which introduce significant latency. Our work, Comp-LLM, addresses these challenges by introducing a composable inference framework that enables cross-expert collaboration via an explicit sub-query dependency graph. Comp-LLM consists of three components: (1) A Sub-query Generator that decomposes an input query, assigns each sub-query to an appropriate expert using embedding similarity, and constructs a dependency graph; (2) A Query Executor that processes nodes in the graph and identifies opportunities for parallelism based on dependencies and resource constraints; and (3) A Response Aggregator that synthesizes intermediate expert responses into a coherent final answer. Across several benchmarks, Comp-LLM achieves up to 11.01% accuracy improvement over monolithic LLMs of similar size, while offering 1.67x--3.56x reduction in model size with no significant degradation relative to the largest model in its family. Additionally, Comp-LLM provides 1.1x--1.7x latency improvement compared to sequential sub-query processing.
☆ Bandit Guided Submodular Curriculum for Adaptive Subset Selection
Traditional curriculum learning proceeds from easy to hard samples, yet defining a reliable notion of difficulty remains elusive. Prior work has used submodular functions to induce difficulty scores in curriculum learning. We reinterpret adaptive subset selection and formulate it as a multi-armed bandit problem, where each arm corresponds to a submodular function guiding sample selection. We introduce ONLINESUBMOD, a novel online greedy policy that optimizes a utility-driven reward and provably achieves no-regret performance under various sampling regimes. Empirically, ONLINESUBMOD outperforms both traditional curriculum learning and bi-level optimization approaches across vision and language datasets, showing superior accuracy-efficiency tradeoffs. More broadly, we show that validationdriven reward metrics offer a principled way to guide the curriculum schedule.
comment: 10 pages main, 21 pages Appendix, 8 figures
☆ CORGI: GNNs with Convolutional Residual Global Interactions for Lagrangian Simulation
Partial differential equations (PDEs) are central to dynamical systems modeling, particularly in hydrodynamics, where traditional solvers often struggle with nonlinearity and computational cost. Lagrangian neural surrogates such as GNS and SEGNN have emerged as strong alternatives by learning from particle-based simulations. However, these models typically operate with limited receptive fields, making them inaccurate for capturing the inherently global interactions in fluid flows. Motivated by this observation, we introduce Convolutional Residual Global Interactions (CORGI), a hybrid architecture that augments any GNN-based solver with a lightweight Eulerian component for global context aggregation. By projecting particle features onto a grid, applying convolutional updates, and mapping them back to the particle domain, CORGI captures long-range dependencies without significant overhead. When applied to a GNS backbone, CORGI achieves a 57% improvement in rollout accuracy with only 13% more inference time and 31% more training time. Compared to SEGNN, CORGI improves accuracy by 49% while reducing inference time by 48% and training time by 30%. Even under identical runtime constraints, CORGI outperforms GNS by 47% on average, highlighting its versatility and performance on varied compute budgets.
☆ EnECG: Efficient Ensemble Learning for Electrocardiogram Multi-task Foundation Model
Electrocardiogram (ECG) analysis plays a vital role in the early detection, monitoring, and management of various cardiovascular conditions. While existing models have achieved notable success in ECG interpretation, they fail to leverage the interrelated nature of various cardiac abnormalities. Conversely, developing a specific model capable of extracting all relevant features for multiple ECG tasks remains a significant challenge. Large-scale foundation models, though powerful, are not typically pretrained on ECG data, making full re-training or fine-tuning computationally expensive. To address these challenges, we propose EnECG(Mixture of Experts-based Ensemble Learning for ECG Multi-tasks), an ensemble-based framework that integrates multiple specialized foundation models, each excelling in different aspects of ECG interpretation. Instead of relying on a single model or single task, EnECG leverages the strengths of multiple specialized models to tackle a variety of ECG-based tasks. To mitigate the high computational cost of full re-training or fine-tuning, we introduce a lightweight adaptation strategy: attaching dedicated output layers to each foundation model and applying Low-Rank Adaptation (LoRA) only to these newly added parameters. We then adopt a Mixture of Experts (MoE) mechanism to learn ensemble weights, effectively combining the complementary expertise of individual models. Our experimental results demonstrate that by minimizing the scope of fine-tuning, EnECG can help reduce computational and memory costs while maintaining the strong representational power of foundation models. This framework not only enhances feature extraction and predictive performance but also ensures practical efficiency for real-world clinical applications. The code is available at https://github.com/yuhaoxu99/EnECG.git.
☆ Optical diffraction neural networks assisted computational ghost imaging through dynamic scattering media
Ghost imaging leverages a single-pixel detector with no spatial resolution to acquire object echo intensity signals, which are correlated with illumination patterns to reconstruct an image. This architecture inherently mitigates scattering interference between the object and the detector but sensitive to scattering between the light source and the object. To address this challenge, we propose an optical diffraction neural networks (ODNNs) assisted ghost imaging method for imaging through dynamic scattering media. In our scheme, a set of fixed ODNNs, trained on simulated datasets, is incorporated into the experimental optical path to actively correct random distortions induced by dynamic scattering media. Experimental validation using rotating single-layer and double-layer ground glass confirms the feasibility and effectiveness of our approach. Furthermore, our scheme can also be combined with physics-prior-based reconstruction algorithms, enabling high-quality imaging under undersampled conditions. This work demonstrates a novel strategy for imaging through dynamic scattering media, which can be extended to other imaging systems.
☆ Language-conditioned world model improves policy generalization by reading environmental descriptions
To interact effectively with humans in the real world, it is important for agents to understand language that describes the dynamics of the environment--that is, how the environment behaves--rather than just task instructions specifying "what to do". Understanding this dynamics-descriptive language is important for human-agent interaction and agent behavior. Recent work address this problem using a model-based approach: language is incorporated into a world model, which is then used to learn a behavior policy. However, these existing methods either do not demonstrate policy generalization to unseen games or rely on limiting assumptions. For instance, assuming that the latency induced by inference-time planning is tolerable for the target task or expert demonstrations are available. Expanding on this line of research, we focus on improving policy generalization from a language-conditioned world model while dropping these assumptions. We propose a model-based reinforcement learning approach, where a language-conditioned world model is trained through interaction with the environment, and a policy is learned from this model--without planning or expert demonstrations. Our method proposes Language-aware Encoder for Dreamer World Model (LED-WM) built on top of DreamerV3. LED-WM features an observation encoder that uses an attention mechanism to explicitly ground language descriptions to entities in the observation. We show that policies trained with LED-WM generalize more effectively to unseen games described by novel dynamics and language compared to other baselines in several settings in two environments: MESSENGER and MESSENGER-WM.To highlight how the policy can leverage the trained world model before real-world deployment, we demonstrate the policy can be improved through fine-tuning on synthetic test trajectories generated by the world model.
comment: NeuRIPS 2025. Workshop: LAW 2025: Bridging Language, Agent, and World Models
☆ ClearGCD: Mitigating Shortcut Learning For Robust Generalized Category Discovery
In open-world scenarios, Generalized Category Discovery (GCD) requires identifying both known and novel categories within unlabeled data. However, existing methods often suffer from prototype confusion caused by shortcut learning, which undermines generalization and leads to forgetting of known classes. We propose ClearGCD, a framework designed to mitigate reliance on non-semantic cues through two complementary mechanisms. First, Semantic View Alignment (SVA) generates strong augmentations via cross-class patch replacement and enforces semantic consistency using weak augmentations. Second, Shortcut Suppression Regularization (SSR) maintains an adaptive prototype bank that aligns known classes while encouraging separation of potential novel ones. ClearGCD can be seamlessly integrated into parametric GCD approaches and consistently outperforms state-of-the-art methods across multiple benchmarks.
comment: 5 pages, 4 figures
☆ ORION: Teaching Language Models to Reason Efficiently in the Language of Thought
Large Reasoning Models (LRMs) achieve strong performance in mathematics, code generation, and task planning, but their reliance on long chains of verbose "thinking" tokens leads to high latency, redundancy, and incoherent reasoning paths. Inspired by the Language of Thought Hypothesis, which posits that human reasoning operates over a symbolic, compositional mental language called Mentalese, we introduce a framework that trains models to reason in a similarly compact style. Mentalese encodes abstract reasoning as ultra-compressed, structured tokens, enabling models to solve complex problems with far fewer steps. To improve both efficiency and accuracy, we propose SHORTER LENGTH PREFERENCE OPTIMIZATION (SLPO), a reinforcement learning method that rewards concise solutions that stay correct, while still allowing longer reasoning when needed. Applied to Mentalese-aligned models, SLPO yields significantly higher compression rates by enabling concise reasoning that preserves the benefits of detailed thinking without the computational overhead. Across benchmarks including AIME 2024 and 2025, MinervaMath, OlympiadBench, Math500, and AMC, our ORION models produce reasoning traces with 4-16x fewer tokens, achieve up to 5x lower inference latency, and reduce training costs by 7-9x relative to the DeepSeek R1 Distilled model, while maintaining 90-98% of its accuracy. ORION also surpasses Claude and ChatGPT-4o by up to 5% in accuracy while maintaining 2x compression. These results show that Mentalese-style compressed reasoning offers a step toward human-like cognitive efficiency, enabling real-time, cost-effective reasoning without sacrificing accuracy.
☆ Adversarial Training for Process Reward Models
Process Reward Models (PRMs) enhance reasoning ability of LLMs by providing step-level supervision. However, their widespread adoption is limited due to expensive manual step-level annotation and poor generalization of static training data to novel errors. We introduce Adversarially Trained PRMs (\texttt{APRM}), where a Generator ($G$) learns to produce reasoning errors to deceive a PRM ($R$), while $R$ concurrently learns to detect them. This interaction yields progressively harder negatives for $R$, improving its robustness and generalization to novel errors without requiring manual step-level labels. Averaged across diverse mathematical reasoning benchmarks, \texttt{APRM} improves solver accuracy by $+3.4$ percentage points (pp) over the strongest PRM baseline. \texttt{APRM} achieves gains of $+5.3$ pp on out-of-distribution tasks.
☆ Modeling Chaotic Pedestrian Behavior Using Chaos Indicators and Supervised Learning
As cities around the world aim to improve walkability and safety, understanding the irregular and unpredictable nature of pedestrian behavior has become increasingly important. This study introduces a data-driven framework for modeling chaotic pedestrian movement using empirically observed trajectory data and supervised learning. Videos were recorded during both daytime and nighttime conditions to capture pedestrian dynamics under varying ambient and traffic contexts. Pedestrian trajectories were extracted through computer vision techniques, and behavioral chaos was quantified using four chaos metrics: Approximate Entropy and Lyapunov Exponent, each computed for both velocity and direction change. A Principal Component Analysis (PCA) was then applied to consolidate these indicators into a unified chaos score. A comprehensive set of individual, group-level, and contextual traffic features was engineered and used to train Random Forest and CatBoost regression models. CatBoost models consistently achieved superior performance. The best daytime PCA-based CatBoost model reached an R^2 of 0.8319, while the nighttime PCA-based CatBoost model attained an R^2 of 0.8574. SHAP analysis highlighted that features such as distance travel, movement duration, and speed variability were robust contributors to chaotic behavior. The proposed framework enables practitioners to quantify and anticipate behavioral instability in real-world settings. Planners and engineers can use chaos scores to identify high-risk pedestrian zones, apprise infrastructure improvements, and calibrate realistic microsimulation models. The approach also supports adaptive risk assessment in automated vehicle systems by capturing short-term motion unpredictability grounded in observable, interpretable features.
☆ Covering-Space Normalizing Flows: Approximating Pushforwards on Lens Spaces
We construct pushforward distributions via the universal covering map rho: S^3 -> L(p;q) with the goal of approximating these distributions using flows on L(p;q). We highlight that our method deletes redundancies in the case of a symmetric S^3 distribution. Using our model, we approximate the pushforwards of von Mises-Fisher-induced target densities as well as that of a Z_12-symmetric Boltzmann distribution on S^3 constructed to model benzene.
☆ Serving Heterogeneous LoRA Adapters in Distributed LLM Inference Systems
Low-Rank Adaptation (LoRA) has become the de facto method for parameter-efficient fine-tuning of large language models (LLMs), enabling rapid adaptation to diverse domains. In production, LoRA-based models are served at scale, creating multi-tenant environments with hundreds of adapters sharing a base model. However, state-of-the-art serving systems co-batch heterogeneous adapters without accounting for rank (size) variability, leading to severe performance skew, which ultimately requires adding more GPUs to satisfy service-level objectives (SLOs). Existing optimizations, focused on loading, caching, and kernel execution, ignore this heterogeneity, leaving GPU resources underutilized. We present LoRAServe, a workload-aware dynamic adapter placement and routing framework designed to tame rank diversity in LoRA serving. By dynamically rebalancing adapters across GPUs and leveraging GPU Direct RDMA for remote access, LoRAServe maximizes throughput and minimizes tail latency under real-world workload drift. Evaluations on production traces from Company X show that LoRAServe elicits up to 2$\times$ higher throughput, up to 9$\times$ lower TTFT, while using up to 50% fewer GPUs under SLO constraints compared to state-of-the-art systems.
☆ ARM-Explainer -- Explaining and improving graph neural network predictions for the maximum clique problem using node features and association rule mining
Numerous graph neural network (GNN)-based algorithms have been proposed to solve graph-based combinatorial optimization problems (COPs), but methods to explain their predictions remain largely undeveloped. We introduce ARM-Explainer, a post-hoc, model-level explainer based on association rule mining, and demonstrate it on the predictions of the hybrid geometric scattering (HGS) GNN for the maximum clique problem (MCP), a canonical NP-hard graph-based COP. The eight most explanatory association rules discovered by ARM-Explainer achieve high median lift and confidence values of 2.42 and 0.49, respectively, on test instances from the TWITTER and BHOSLIB-DIMACS benchmark datasets. ARM-Explainer identifies the most important node features, together with their value ranges, that influence the GNN's predictions on these datasets. Furthermore, augmenting the GNN with informative node features substantially improves its performance on the MCP, increasing the median largest-found clique size by 22% (from 29.5 to 36) on large graphs from the BHOSLIB-DIMACS dataset.
☆ Bridging Modalities via Progressive Re-alignment for Multimodal Test-Time Adaptation AAAI 2026
Test-time adaptation (TTA) enables online model adaptation using only unlabeled test data, aiming to bridge the gap between source and target distributions. However, in multimodal scenarios, varying degrees of distribution shift across different modalities give rise to a complex coupling effect of unimodal shallow feature shift and cross-modal high-level semantic misalignment, posing a major obstacle to extending existing TTA methods to the multimodal field. To address this challenge, we propose a novel multimodal test-time adaptation (MMTTA) framework, termed as Bridging Modalities via Progressive Re-alignment (BriMPR). BriMPR, consisting of two progressively enhanced modules, tackles the coupling effect with a divide-and-conquer strategy. Specifically, we first decompose MMTTA into multiple unimodal feature alignment sub-problems. By leveraging the strong function approximation ability of prompt tuning, we calibrate the unimodal global feature distributions to their respective source distributions, so as to achieve the initial semantic re-alignment across modalities. Subsequently, we assign the credible pseudo-labels to combinations of masked and complete modalities, and introduce inter-modal instance-wise contrastive learning to further enhance the information interaction among modalities and refine the alignment. Extensive experiments on MMTTA tasks, including both corruption-based and real-world domain shift benchmarks, demonstrate the superiority of our method. Our source code is available at [this URL](https://github.com/Luchicken/BriMPR).
comment: Accepted by AAAI 2026 (Oral)
☆ CRAwDAD: Causal Reasoning Augmentation with Dual-Agent Debate
When people reason about cause and effect, they often consider many competing "what if" scenarios before deciding which explanation fits best. Analogously, advanced language models capable of causal inference can consider multiple interventions and counterfactuals to judge the validity of causal claims. Crucially, this type of reasoning is less like a single calculation and more like an internal dialogue between alternative hypotheses. In this paper, we make this dialogue explicit through a dual-agent debate framework where one model provides a structured causal inference, and the other critically examines this reasoning for logical flaws. When disagreements arise, agents attempt to persuade each other, challenging each other's logic and revising their conclusions until they converge on a mutually agreed answer. To take advantage of this deliberative process, we specifically use reasoning language models, whose strengths in both causal inference and adversarial debate remain under-explored relative to standard large language models. We evaluate our approach on the CLadder dataset, a benchmark linking natural language questions to formally defined causal graphs across all three rungs of Pearl's ladder of causation. With Qwen3 and DeepSeek-R1 as debater agents, we demonstrate that multi-agent debate improves DeepSeek-R1's overall accuracy in causal inference from 78.03% to 87.45%, with the counterfactual category specifically improving from 67.94% to 80.04% accuracy. Similarly, Qwen3's overall accuracy improves from 84.16% to 89.41%, and counterfactual questions from 71.53% to 80.35%, showing that strong models can still benefit greatly from debate with weaker agents. Our results highlight the potential of reasoning models as building blocks for multi-agent systems in causal inference, and demonstrate the importance of diverse perspectives in causal problem-solving.
comment: 12 pages, 8 figures. Code available at https://github.com/finnvamosi/CRAwDAD
☆ TARFVAE: Efficient One-Step Generative Time Series Forecasting via TARFLOW based VAE
Time series data is ubiquitous, with forecasting applications spanning from finance to healthcare. Beyond popular deterministic methods, generative models are gaining attention due to advancements in areas like image synthesis and video generation, as well as their inherent ability to provide probabilistic predictions. However, existing generative approaches mostly involve recurrent generative operations or repeated denoising steps, making the prediction laborious, particularly for long-term forecasting. Most of them only conduct experiments for relatively short-term forecasting, with limited comparison to deterministic methods in long-term forecasting, leaving their practical advantages unclear. This paper presents TARFVAE, a novel generative framework that combines the Transformer-based autoregressive flow (TARFLOW) and variational autoencoder (VAE) for efficient one-step generative time series forecasting. Inspired by the rethinking that complex architectures for extracting time series representations might not be necessary, we add a flow module, TARFLOW, to VAE to promote spontaneous learning of latent variables that benefit predictions. TARFLOW enhances VAE's posterior estimation by breaking the Gaussian assumption, thereby enabling a more informative latent space. TARFVAE uses only the forward process of TARFLOW, avoiding autoregressive inverse operations and thus ensuring fast generation. During generation, it samples from the prior latent space and directly generates full-horizon forecasts via the VAE decoder. With simple MLP modules, TARFVAE achieves superior performance over state-of-the-art deterministic and generative models across different forecast horizons on benchmark datasets while maintaining efficient prediction speed, demonstrating its effectiveness as an efficient and powerful solution for generative time series forecasting.
☆ PerfMamba: Performance Analysis and Pruning of Selective State Space Models
Recent advances in sequence modeling have introduced selective SSMs as promising alternatives to Transformer architectures, offering theoretical computational efficiency and sequence processing advantages. A comprehensive understanding of selective SSMs in runtime behavior, resource utilization patterns, and scaling characteristics still remains unexplored, thus obstructing their optimal deployment and further architectural improvements. This paper presents a thorough empirical study of Mamba-1 and Mamba-2, systematically profiled for performance to assess the design principles that contribute to their efficiency in state-space modeling. A detailed analysis of computation patterns, memory access, I/O characteristics, and scaling properties was performed for sequence lengths ranging from 64 to 16384 tokens. Our findings show that the SSM component, a central part of the selective SSM architecture, demands a significant portion of computational resources compared to other components in the Mamba block. Based on these insights, we propose a pruning technique that selectively removes low-activity states within the SSM component, achieving measurable throughput and memory gains while maintaining accuracy within a moderate pruning regime. This approach results in performance improvements across varying sequence lengths, achieving a 1.14x speedup and reducing memory usage by 11.50\%. These results offer valuable guidance for designing more efficient SSM architectures that can be applied to a wide range of real-world applications.
comment: Accepted in Bench 2025
☆ CausalProfiler: Generating Synthetic Benchmarks for Rigorous and Transparent Evaluation of Causal Machine Learning
Causal machine learning (Causal ML) aims to answer "what if" questions using machine learning algorithms, making it a promising tool for high-stakes decision-making. Yet, empirical evaluation practices in Causal ML remain limited. Existing benchmarks often rely on a handful of hand-crafted or semi-synthetic datasets, leading to brittle, non-generalizable conclusions. To bridge this gap, we introduce CausalProfiler, a synthetic benchmark generator for Causal ML methods. Based on a set of explicit design choices about the class of causal models, queries, and data considered, the CausalProfiler randomly samples causal models, data, queries, and ground truths constituting the synthetic causal benchmarks. In this way, Causal ML methods can be rigorously and transparently evaluated under a variety of conditions. This work offers the first random generator of synthetic causal benchmarks with coverage guarantees and transparent assumptions operating on the three levels of causal reasoning: observation, intervention, and counterfactual. We demonstrate its utility by evaluating several state-of-the-art methods under diverse conditions and assumptions, both in and out of the identification regime, illustrating the types of analyses and insights the CausalProfiler enables.
☆ A Unified and Stable Risk Minimization Framework for Weakly Supervised Learning with Theoretical Guarantees
Weakly supervised learning has emerged as a practical alternative to fully supervised learning when complete and accurate labels are costly or infeasible to acquire. However, many existing methods are tailored to specific supervision patterns -- such as positive-unlabeled (PU), unlabeled-unlabeled (UU), complementary-label (CLL), partial-label (PLL), or similarity-unlabeled annotations -- and rely on post-hoc corrections to mitigate instability induced by indirect supervision. We propose a principled, unified framework that bypasses such post-hoc adjustments by directly formulating a stable surrogate risk grounded in the structure of weakly supervised data. The formulation naturally subsumes diverse settings -- including PU, UU, CLL, PLL, multi-class unlabeled, and tuple-based learning -- under a single optimization objective. We further establish a non-asymptotic generalization bound via Rademacher complexity that clarifies how supervision structure, model capacity, and sample size jointly govern performance. Beyond this, we analyze the effect of class-prior misspecification on the bound, deriving explicit terms that quantify its impact, and we study identifiability, giving sufficient conditions -- most notably via supervision stratification across groups -- under which the target risk is recoverable. Extensive experiments show consistent gains across class priors, dataset scales, and class counts -- without heuristic stabilization -- while exhibiting robustness to overfitting.
☆ Resolving Sharp Gradients of Unstable Singularities to Machine Precision via Neural Networks
Recent work introduced a robust computational framework combining embedded mathematical structures, advanced optimization, and neural network architecture, leading to the discovery of multiple unstable self-similar solutions for key fluid dynamics equations, including the Incompressible Porous Media (IPM) and 2D Boussinesq systems. While this framework confirmed the existence of these singularities, an accuracy level approaching double-float machine precision was only achieved for stable and 1st unstable solutions of the 1D Córdoba-Córdoba-Fontelos model. For highly unstable solutions characterized by extreme gradients, the accuracy remained insufficient for validation. The primary obstacle is the presence of sharp solution gradients. Those gradients tend to induce large, localized PDE residuals during training, which not only hinder convergence, but also obscure the subtle signals near the origin required to identify the correct self-similar scaling parameter lambda of the solutions. In this work, we introduce a gradient-normalized PDE residual re-weighting scheme to resolve the high-gradient challenge while amplifying the critical residual signals at the origin for lambda identification. Coupled with the multi-stage neural network architecture, the PDE residuals are reduced to the level of round-off error across a wide spectrum of unstable self-similar singularities previously discovered. Furthermore, our method enables the discovery of new highly unstable singularities, i.e. the 4th unstable solution for IPM equations and a novel family of highly unstable solitons for the Nonlinear Schrödinger equations. This results in achieving high-gradient solutions with high precision, providing an important ingredient for bridging the gap between numerical discovery and computer-assisted proofs for unstable phenomena in nonlinear PDEs.
comment: 27 pages, 12 figures
☆ Mitigating Semantic Drift: Evaluating LLMs' Efficacy in Psychotherapy through MI Dialogue Summarization
Recent advancements in large language models (LLMs) have shown their potential across both general and domain-specific tasks. However, there is a growing concern regarding their lack of sensitivity, factual incorrectness in responses, inconsistent expressions of empathy, bias, hallucinations, and overall inability to capture the depth and complexity of human understanding, especially in low-resource and sensitive domains such as psychology. To address these challenges, our study employs a mixed-methods approach to evaluate the efficacy of LLMs in psychotherapy. We use LLMs to generate precise summaries of motivational interviewing (MI) dialogues and design a two-stage annotation scheme based on key components of the Motivational Interviewing Treatment Integrity (MITI) framework, namely evocation, collaboration, autonomy, direction, empathy, and a non-judgmental attitude. Using expert-annotated MI dialogues as ground truth, we formulate multi-class classification tasks to assess model performance under progressive prompting techniques, incorporating one-shot and few-shot prompting. Our results offer insights into LLMs' capacity for understanding complex psychological constructs and highlight best practices to mitigate ``semantic drift" in therapeutic settings. Our work contributes not only to the MI community by providing a high-quality annotated dataset to address data scarcity in low-resource domains but also critical insights for using LLMs for precise contextual interpretation in complex behavioral therapy.
♻ ☆ New-Onset Diabetes Assessment Using Artificial Intelligence-Enhanced Electrocardiography ML4H 2025
Diabetes has a long asymptomatic period which can often remain undiagnosed for multiple years. In this study, we trained a deep learning model to detect new-onset diabetes using 12-lead ECG and readily available demographic information. To do so, we used retrospective data where patients have both a hemoglobin A1c and ECG measured. However, such patients may not be representative of the complete patient population. As part of the study, we proposed a methodology to evaluate our model in the target population by estimating the probability of receiving an A1c test and reweight the retrospective population to represent the general population. We also adapted an efficient algorithm to generate Shapley values for both ECG signals and demographic features at the same time for model interpretation. The model offers an automated, more accurate method for early diabetes detection compared to current screening efforts. Their potential use in wearable devices can facilitate large-scale, community-wide screening, improving healthcare outcomes.
comment: 25 pages, 9 figures, published as a conference paper at ML4H 2025
♻ ☆ Asymmetric REINFORCE for off-Policy Reinforcement Learning: Balancing positive and negative rewards
Reinforcement learning (RL) is increasingly used to align large language models (LLMs). Off-policy methods offer greater implementation simplicity and data efficiency than on-policy techniques, but often result in suboptimal performance. In this work, we study the intermediate range of algorithms between off-policy RL and supervised fine-tuning by analyzing a simple off-policy REINFORCE algorithm, where the advantage is defined as $A=r-V$, with $r$ a reward and $V$ some tunable baseline. Intuitively, lowering $V$ emphasizes high-reward samples, while raising it penalizes low-reward ones more heavily. We first provide a theoretical analysis of this off-policy REINFORCE algorithm, showing that when the baseline $V$ lower-bounds the expected reward, the algorithm enjoys a policy improvement guarantee. Our analysis reveals that while on-policy updates can safely leverage both positive and negative signals, off-policy updates benefit from focusing more on positive rewards than on negative ones. We validate our findings experimentally in a controlled stochastic bandit setting and through fine-tuning state-of-the-art LLMs on reasoning tasks.
♻ ☆ Robust LLM Unlearning with MUDMAN: Meta-Unlearning with Disruption Masking And Normalization
Language models can retain dangerous knowledge and skills even after extensive safety fine-tuning, posing both misuse and misalignment risks. Recent studies show that even specialized unlearning methods can be easily reversed. To address this, we systematically evaluate many existing and novel components of unlearning methods and identify ones crucial for irreversible unlearning. We introduce Disruption Masking, a technique in which we only allow updating weights, where the signs of the unlearning gradient and the retaining gradient are the same. This ensures all updates are non-disruptive. Additionally, we identify the need for normalizing the unlearning gradients, and also confirm the usefulness of meta-learning. We combine these insights into MUDMAN (Meta-Unlearning with Disruption Masking and Normalization) and validate its effectiveness at preventing the recovery of dangerous capabilities. MUDMAN outperforms the prior TAR method by 40%, setting a new state-of-the-art for robust unlearning.
♻ ☆ Crowdsourcing the Frontier: Advancing Hybrid Physics-ML Climate Simulation via a $50,000 Kaggle Competition
Subgrid machine-learning (ML) parameterizations have the potential to introduce a new generation of climate models that incorporate the effects of higher-resolution physics without incurring the prohibitive computational cost associated with more explicit physics-based simulations. However, important issues, ranging from online instability to inconsistent online performance, have limited their operational use for long-term climate projections. To more rapidly drive progress in solving these issues, domain scientists and machine learning researchers opened up the offline aspect of this problem to the broader machine learning and data science community with the release of ClimSim, a NeurIPS Datasets and Benchmarks publication, and an associated Kaggle competition. This paper reports on the downstream results of the Kaggle competition by coupling emulators inspired by the winning teams' architectures to an interactive climate model (including full cloud microphysics, a regime historically prone to online instability) and systematically evaluating their online performance. Our results demonstrate that online stability in the low-resolution, real-geography setting is reproducible across multiple diverse architectures, which we consider a key milestone. All tested architectures exhibit strikingly similar offline and online biases, though their responses to architecture-agnostic design choices (e.g., expanding the list of input variables) can differ significantly. Multiple Kaggle-inspired architectures achieve state-of-the-art (SOTA) results on certain metrics such as zonal mean bias patterns and global RMSE, indicating that crowdsourcing the essence of the offline problem is one path to improving online performance in hybrid physics-AI climate simulation.
comment: Main text: 29 pages, 10 figures. SI: 47 pages, 37 figures
♻ ☆ Beyond Static Cutoffs: One-Shot Dynamic Thresholding for Diffusion Language Models NeurIPS 2025
Masked diffusion language models (MDLMs) are becoming competitive with their autoregressive counterparts but typically decode with fixed steps and sequential unmasking. To accelerate decoding, recent work such as Fast-dLLM enables parallel decoding via a static global confidence threshold, yet we observe strong block- and step-wise confidence fluctuations and, within a dataset, near-identical confidence trajectories across inputs as measured by cosine similarity. Motivated by these observations, we introduce One-Shot Dynamic Thresholding (OSDT), which calibrates thresholds on a single sequence and applies them to subsequent inputs with negligible overhead. On GPQA, GSM8K, and HumanEval, OSDT attains superior accuracy-throughput trade-offs (+24% tokens/s on GSM8K at the best accuracy, +45% on GPQA with comparable accuracy, and +50% on HumanEval with a modest accuracy gap). Beyond these results, our findings suggest broader opportunities to leverage reusable task-level confidence signatures for more general-purpose algorithmic and systems innovations in diffusion decoding.
comment: 7 pages, NeurIPS 2025 Efficient Reasoning Workshop
♻ ☆ Predicting Market Trends with Enhanced Technical Indicator Integration and Classification Models
Thanks to the high potential for profit, trading has become increasingly attractive to investors as the cryptocurrency and stock markets rapidly expand. However, because financial markets are intricate and dynamic, accurately predicting prices remains a significant challenge. The volatile nature of the cryptocurrency market makes it even harder for traders and investors to make decisions. This study presents a classification-based machine learning model to forecast the direction of the cryptocurrency market, i.e., whether prices will increase or decrease. The model is trained using historical data and important technical indicators such as the Moving Average Convergence Divergence, the Relative Strength Index, and the Bollinger Bands. We illustrate our approach with an empirical study of the closing price of Bitcoin. Several simulations, including a confusion matrix and Receiver Operating Characteristic curve, are used to assess the model's performance, and the results show a buy/sell signal accuracy of over 92\%. These findings demonstrate how machine learning models can assist investors and traders of cryptocurrencies in making wise/informed decisions in a very volatile market.
comment: 12 pages, 8 figures, and 6 tables
♻ ☆ ADNF-Clustering: An Adaptive and Dynamic Neuro-Fuzzy Clustering for Leukemia Prediction
Leukemia diagnosis and monitoring rely increasingly on high-throughput image data, yet conventional clustering methods lack the flexibility to accommodate evolving cellular patterns and quantify uncertainty in real time. We introduce Adaptive and Dynamic Neuro-Fuzzy Clustering, a novel streaming-capable framework that combines Convolutional Neural Network-based feature extraction with an online fuzzy clustering engine. ADNF initializes soft partitions via Fuzzy C-Means, then continuously updates micro-cluster centers, densities, and fuzziness parameters using a Fuzzy Temporal Index (FTI) that measures entropy evolution. A topology refinement stage performs density-weighted merging and entropy-guided splitting to guard against over- and under-segmentation. On the C-NMC leukemia microscopy dataset, our tool achieves a silhouette score of 0.51, demonstrating superior cohesion and separation over static baselines. The method's adaptive uncertainty modeling and label-free operation hold immediate potential for integration within the INFANT pediatric oncology network, enabling scalable, up-to-date support for personalized leukemia management.
comment: 6 pages, 1 figure
♻ ☆ CAMA: Enhancing Mathematical Reasoning in Large Language Models with Causal Knowledge
Large Language Models (LLMs) have demonstrated strong performance across a wide range of tasks, yet they still struggle with complex mathematical reasoning, a challenge fundamentally rooted in deep structural dependencies. To address this challenge, we propose \textbf{CA}usal \textbf{MA}thematician (\textbf{CAMA}), a two-stage causal framework that equips LLMs with explicit, reusable mathematical structure. In the learning stage, CAMA first constructs the \textbf{M}athematical \textbf{C}ausal \textbf{G}raph (\textbf{MCG}), a high-level representation of solution strategies, by combining LLM priors with causal discovery algorithms applied to a corpus of question-solution pairs. The resulting MCG encodes essential knowledge points and their causal dependencies. To better align the graph with downstream reasoning tasks, CAMA further refines the MCG through iterative feedback derived from a selected subset of the question-solution pairs. In the reasoning stage, given a new question, CAMA dynamically extracts a task-relevant subgraph from the MCG, conditioned on both the question content and the LLM's intermediate reasoning trace. This subgraph, which encodes the most pertinent knowledge points and their causal dependencies, is then injected back into the LLM to guide its reasoning process. Empirical results on real-world datasets show that CAMA significantly improves LLM performance on challenging mathematical problems. Furthermore, our experiments demonstrate that structured guidance consistently outperforms unstructured alternatives, and that incorporating asymmetric causal relationships yields greater improvements than using symmetric associations alone.
♻ ☆ Privacy Reasoning in Ambiguous Contexts
We study the ability of language models to reason about appropriate information disclosure - a central aspect of the evolving field of agentic privacy. Whereas previous works have focused on evaluating a model's ability to align with human decisions, we examine the role of ambiguity and missing context on model performance when making information-sharing decisions. We identify context ambiguity as a crucial barrier for high performance in privacy assessments. By designing Camber, a framework for context disambiguation, we show that model-generated decision rationales can reveal ambiguities and that systematically disambiguating context based on these rationales leads to significant accuracy improvements (up to 13.3% in precision and up to 22.3% in recall) as well as reductions in prompt sensitivity. Overall, our results indicate that approaches for context disambiguation are a promising way forward to enhance agentic privacy reasoning.
♻ ☆ Network Inversion for Uncertainty-Aware Out-of-Distribution Detection
Out-of-distribution (OOD) detection and uncertainty estimation (UE) are critical components for building safe machine learning systems, especially in real-world scenarios where unexpected inputs are inevitable. However the two problems have, until recently, separately been addressed. In this work, we propose a novel framework that combines network inversion with classifier training to simultaneously address both OOD detection and uncertainty estimation. For a standard n-class classification task, we extend the classifier to an (n+1)-class model by introducing a "garbage" class, initially populated with random gaussian noise to represent outlier inputs. After each training epoch, we use network inversion to reconstruct input images corresponding to all output classes that initially appear as noisy and incoherent and are therefore excluded to the garbage class for retraining the classifier. This cycle of training, inversion, and exclusion continues iteratively till the inverted samples begin to resemble the in-distribution data more closely, with a significant drop in the uncertainty, suggesting that the classifier has learned to carve out meaningful decision boundaries while sanitising the class manifolds by pushing OOD content into the garbage class. During inference, this training scheme enables the model to effectively detect and reject OOD samples by classifying them into the garbage class. Furthermore, the confidence scores associated with each prediction can be used to estimate uncertainty for both in-distribution and OOD inputs. Our approach is scalable, interpretable, and does not require access to external OOD datasets or post-hoc calibration techniques while providing a unified solution to the dual challenges of OOD detection and uncertainty estimation.
♻ ☆ Interpretability for Time Series Transformers using A Concept Bottleneck Framework
Mechanistic interpretability focuses on reverse engineering the internal mechanisms learned by neural networks. We extend our focus and propose to mechanistically forward engineer using our framework based on Concept Bottleneck Models. In the context of long-term time series forecasting, we modify the training objective to encourage a model to develop representations which are similar to predefined, interpretable concepts using Centered Kernel Alignment. This steers the bottleneck components to learn the predefined concepts, while allowing other components to learn other, undefined concepts. We apply the framework to the Vanilla Transformer, Autoformer and FEDformer, and present an in-depth analysis on synthetic data and on a variety of benchmark datasets. We find that the model performance remains mostly unaffected, while the model shows much improved interpretability. Additionally, we verify the interpretation of the bottleneck components with an intervention experiment using activation patching.
♻ ☆ CheMixHub: Datasets and Benchmarks for Chemical Mixture Property Prediction
Developing improved predictive models for multi-molecular systems is crucial, as nearly every chemical product used results from a mixture of chemicals. While being a vital part of the industry pipeline, the chemical mixture space remains relatively unexplored by the Machine Learning community. In this paper, we introduce CheMixHub, a holistic benchmark for molecular mixtures, covering a corpus of 11 chemical mixtures property prediction tasks, from drug delivery formulations to battery electrolytes, totalling approximately 500k data points gathered and curated from 7 publicly available datasets. CheMixHub introduces various data splitting techniques to assess context-specific generalization and model robustness, providing a foundation for the development of predictive models for chemical mixture properties. Furthermore, we map out the modelling space of deep learning models for chemical mixtures, establishing initial benchmarks for the community. This dataset has the potential to accelerate chemical mixture development, encompassing reformulation, optimization, and discovery. The dataset and code for the benchmarks can be found at: https://github.com/chemcognition-lab/chemixhub
comment: 9 pages, 4 figures
♻ ☆ Gradient-Based Program Repair: Fixing Bugs in Continuous Program Spaces
Automatic program repair seeks to generate correct code from buggy programs, with most approaches searching the correct program in a discrete, symbolic space of source code tokens. This symbolic search is fundamentally limited by its inability to directly reason about program behavior. We introduce Gradient-Based Program Repair (GBPR), a new paradigm that reframes program repair as continuous optimization in a differentiable numerical program space. Our core insight is to compile symbolic programs into differentiable numerical representations, enabling search in the numerical program space directly guided by program behavior. To evaluate GBPR, we present RaspBugs, a new benchmark of 1,466 buggy symbolic RASP programs and their respective numerical representations. Our experiments demonstrate that GBPR can effectively repair buggy symbolic programs by gradient-based optimization in the numerical program space, with convincing repair trajectories. To our knowledge, we are the first to state program repair as continuous optimization in a numerical program space. Our work establishes a new direction for program repair research, bridging two rich worlds: continuous optimization and program behavior.
♻ ☆ Curvature Dynamic Black-box Attack: revisiting adversarial robustness via dynamic curvature estimation
Adversarial attack reveals the vulnerability of deep learning models. It is assumed that high curvature may give rise to rough decision boundary and thus result in less robust models. However, the most commonly used \textit{curvature} is the curvature of loss function, scores or other parameters from within the model as opposed to decision boundary curvature, since the former can be relatively easily formed using second order derivative. In this paper, we propose a new query-efficient method, dynamic curvature estimation (DCE), to estimate the decision boundary curvature in a black-box setting. Our approach is based on CGBA, a black-box adversarial attack. By performing DCE on a wide range of classifiers, we discovered, statistically, a connection between decision boundary curvature and adversarial robustness. We also propose a new attack method, curvature dynamic black-box attack (CDBA) with improved performance using the estimated curvature.
♻ ☆ Activation Quantization of Vision Encoders Needs Prefixing Registers
Transformer-based vision encoders -- such as CLIP -- are central to multimodal intelligence, powering applications from autonomous web agents to robotic control. Since these applications often demand real-time processing of massive visual data, reducing the inference cost of vision encoders is critical. Quantization offers a practical path, but remains challenging even at 8-bit precision due to massive-scale activations (i.e., outliers). In this work, we propose $\textit{RegCache}$, a training-free algorithm that mitigates outliers in large-scale pretrained vision encoders and serves as a plug-in module that can be applied on top of other quantization methods. The proposed RegCache introduces outlier-prone yet semantically meaningless prefix tokens to the target vision encoder, which prevents other tokens from having outliers. Notably, we observe that outliers in vision encoders behave differently from those in language models, motivating two technical innovations: middle-layer prefixing and token deletion. Experiments show that our method consistently improves the accuracy of quantized models across both text-supervised and self-supervised vision encoders.
comment: 19 pages, 8 figures
♻ ☆ Learning Contrastive Feature Representations for Facial Action Unit Detection
For the Facial Action Unit (AU) detection task, accurately capturing the subtle facial differences between distinct AUs is essential for reliable detection. Additionally, AU detection faces challenges from class imbalance and the presence of noisy or false labels, which undermine detection accuracy. In this paper, we introduce a novel contrastive learning framework aimed for AU detection that incorporates both self-supervised and supervised signals, thereby enhancing the learning of discriminative features for accurate AU detection. To tackle the class imbalance issue, we employ a negative sample re-weighting strategy that adjusts the step size of updating parameters for minority and majority class samples. Moreover, to address the challenges posed by noisy and false AU labels, we employ a sampling technique that encompasses three distinct types of positive sample pairs. This enables us to inject self-supervised signals into the supervised signal, effectively mitigating the adverse effects of noisy labels. Our experimental assessments, conducted on five widely-utilized benchmark datasets (BP4D, DISFA, BP4D+, GFT and Aff-Wild2), underscore the superior performance of our approach compared to state-of-the-art methods of AU detection. Our code is available at https://github.com/Ziqiao-Shang/AUNCE.
comment: This paper has been accepted by Pattern Recognition
♻ ☆ DP-MicroAdam: Private and Frugal Algorithm for Training and Fine-tuning
Adaptive optimizers are the de facto standard in non-private training as they often enable faster convergence and improved performance. In contrast, differentially private (DP) training is still predominantly performed with DP-SGD, typically requiring extensive compute and hyperparameter tuning. We propose DP-MicroAdam, a memory-efficient and sparsity-aware adaptive DP optimizer. We prove that DP-MicroAdam converges in stochastic non-convex optimization at the optimal $\mathcal{O}(1/\sqrt{T})$ rate, up to privacy-dependent constants. Empirically, DP-MicroAdam outperforms existing adaptive DP optimizers and achieves competitive or superior accuracy compared to DP-SGD across a range of benchmarks, including CIFAR-10, large-scale ImageNet training, and private fine-tuning of pretrained transformers. These results demonstrate that adaptive optimization can improve both performance and stability under differential privacy.
♻ ☆ Towards Responsible Development of Generative AI for Education: An Evaluation-Driven Approach
A major challenge facing the world is the provision of equitable and universal access to quality education. Recent advances in generative AI (gen AI) have created excitement about the potential of new technologies to offer a personal tutor for every learner and a teaching assistant for every teacher. The full extent of this dream, however, has not yet materialised. We argue that this is primarily due to the difficulties with verbalising pedagogical intuitions into gen AI prompts and the lack of good evaluation practices, reinforced by the challenges in defining excellent pedagogy. Here we present our work collaborating with learners and educators to translate high level principles from learning science into a pragmatic set of seven diverse educational benchmarks, spanning quantitative, qualitative, automatic and human evaluations; and to develop a new set of fine-tuning datasets to improve the pedagogical capabilities of Gemini, introducing LearnLM-Tutor. Our evaluations show that LearnLM-Tutor is consistently preferred over a prompt tuned Gemini by educators and learners on a number of pedagogical dimensions. We hope that this work can serve as a first step towards developing a comprehensive educational evaluation framework, and that this can enable rapid progress within the AI and EdTech communities towards maximising the positive impact of gen AI in education.
♻ ☆ SDFs from Unoriented Point Clouds using Neural Variational Heat Distances
We propose a novel variational approach for computing neural Signed Distance Fields (SDF) from unoriented point clouds. To this end, we replace the commonly used eikonal equation with the heat method, carrying over to the neural domain what has long been standard practice for computing distances on discrete surfaces. This yields two convex optimization problems for whose solution we employ neural networks: We first compute a neural approximation of the gradients of the unsigned distance field through a small time step of heat flow with weighted point cloud densities as initial data. Then we use it to compute a neural approximation of the SDF. We prove that the underlying variational problems are well-posed. Through numerical experiments, we demonstrate that our method provides state-of-the-art surface reconstruction and consistent SDF gradients. Furthermore, we show in a proof-of-concept that it is accurate enough for solving a PDE on the zero-level set.
comment: 16 pages, 19 figures, 4 tables
♻ ☆ Deep Reinforcement Learning for Drone Route Optimization in Post-Disaster Road Assessment
Rapid post-disaster road damage assessment is critical for effective emergency response, yet traditional optimization methods suffer from excessive computational time and require domain knowledge for algorithm design, making them unsuitable for time-sensitive disaster scenarios. This study proposes an attention-based encoder-decoder model (AEDM) for rapid drone routing decision in post-disaster road damage assessment. The method employs deep reinforcement learning to determine high-quality drone assessment routes without requiring algorithmic design knowledge. A network transformation method is developed to convert link-based routing problems into equivalent node-based formulations, while a synthetic road network generation technique addresses the scarcity of large-scale training datasets. The model is trained using policy optimization with multiple optima (POMO) with multi-task learning capabilities to handle diverse parameter combinations. Experimental results demonstrate two key strengths of AEDM: it outperforms commercial solvers by 20--71\% and traditional heuristics by 23--35\% in solution quality, while achieving rapid inference (1--2 seconds) versus 100--2,000 seconds for traditional methods. The model exhibits strong generalization across varying problem scales, drone numbers, and time constraints, consistently outperforming baseline methods on unseen parameter distributions and real-world road networks. The proposed method effectively balances computational efficiency with solution quality, making it particularly suitable for time-critical disaster response applications where rapid decision-making is essential for saving lives. The source code for AEDM is publicly available at https://github.com/PJ-HTU/AEDM-for-Post-disaster-road-assessment.
comment: 28 pages, 15 figures
♻ ☆ Federated ADMM from Bayesian Duality
We propose a new Bayesian approach to derive and extend the federated Alternating Direction Method of Multipliers (ADMM). We show that the solutions of variational-Bayesian objectives are associated with a duality structure that not only resembles ADMM but also extends it. For example, ADMM-like updates are recovered when the objective is optimized over the isotropic-Gaussian family, and new non-trivial extensions are obtained for other more flexible exponential families. Examples include a Newton-like variant that converges in one step on quadratics and an Adam-like variant called IVON-ADMM that has the same cost as Adam but yields up to 7% accuracy boosts in heterogeneous deep learning. Our work opens a new direction to use Bayes to extend ADMM and other primal-dual methods.
comment: First two authors contributed equally. Code is at https://github.com/team-approx-bayes/bayes-admm
♻ ☆ $μ$PC: Scaling Predictive Coding to 100+ Layer Networks
The biological implausibility of backpropagation (BP) has motivated many alternative, brain-inspired algorithms that attempt to rely only on local information, such as predictive coding (PC) and equilibrium propagation. However, these algorithms have notoriously struggled to train very deep networks, preventing them from competing with BP in large-scale settings. Indeed, scaling PC networks (PCNs) has recently been posed as a challenge for the community (Pinchetti et al., 2024). Here, we show that 100+ layer PCNs can be trained reliably using a Depth-$μ$P parameterisation (Yang et al., 2023; Bordelon et al., 2023) which we call "$μ$PC". By analysing the scaling behaviour of PCNs, we reveal several pathologies that make standard PCNs difficult to train at large depths. We then show that, despite addressing only some of these instabilities, $μ$PC allows stable training of very deep (up to 128-layer) residual networks on simple classification tasks with competitive performance and little tuning compared to current benchmarks. Moreover, $μ$PC enables zero-shot transfer of both weight and activity learning rates across widths and depths. Our results serve as a first step towards scaling PC to more complex architectures and have implications for other local algorithms. Code for $μ$PC is made available as part of a JAX library for PCNs.
comment: 35 pages, 42 figures
♻ ☆ Spatially Parallel All-optical Neural Networks
All-optical neural networks (AONNs) have emerged as a promising paradigm for ultrafast and energy-efficient computation. These networks typically consist of multiple serially connected layers between input and output layers--a configuration we term spatially series AONNs, with deep neural networks (DNNs) being the most prominent examples. However, such series architectures suffer from progressive signal degradation during information propagation and critically require additional nonlinearity designs to model complex relationships effectively. Here we propose a spatially parallel architecture for all-optical neural networks (SP-AONNs). Unlike series architecture that sequentially processes information through consecutively connected optical layers, SP-AONNs divide the input signal into identical copies fed simultaneously into separate optical layers. Through coherent interference between these parallel linear sub-networks, SP-AONNs inherently enable nonlinear computation without relying on active nonlinear components or iterative updates. We implemented a modular 4F optical system for SP-AONNs and evaluated its performance across multiple image classification benchmarks. Experimental results demonstrate that increasing the number of parallel sub-networks consistently enhances accuracy, improves noise robustness, and expands model expressivity. Our findings highlight spatial parallelism as a practical and scalable strategy for advancing the capabilities of optical neural computing.
comment: 13 pages, 4 figures
♻ ☆ An AI-Enabled Hybrid Cyber-Physical Framework for Adaptive Control in Smart Grids
Evolving smart grids require flexible and adaptive control methods. A harmonized hybrid cyber-physical framework, which considers both physical and cyber layers and ensures adaptability, is one of the critical challenges to enable sustainable and scalable smart grids. This paper proposes a three-layer (physical, cyber, control) architecture, with an energy management system as the core of the system. Adaptive Dynamic Programming(ADP) and Artificial Intelligence-based optimization techniques are used for sustainability and scalability. The deployment is considered under two contingencies: Cloud Independent and cloud-assisted. They allow us to test the proposed model under a low-latency localized decision scenario and also under a centralized control scenario. The architecture is simulated on a standard IEEE 33-Bus system, yielding positive results. The proposed framework can ensure grid stability, optimize dispatch, and respond to ever-changing grid dynamics.
comment: 16 pages, 11 figures, IEEEaccess journal
♻ ☆ Learning to Rank Critical Road Segments via Heterogeneous Graphs with OD Flow Integration
Existing learning-to-rank methods for road networks often fail to incorporate origin-destination (OD) flows and route information, limiting their ability to model long-range spatial dependencies. To address this gap, we propose HetGL2R, a heterogeneous graph learning framework for ranking road-segment importance. HetGL2R builds a tripartite graph that unifies OD flows, routes, and network topology, and further introduces attribute-guided graphs that elevate node attributes into explicit nodes to model functional similarity. A heterogeneous joint random walk algorithm (HetGWalk) samples both graph types to generate context-rich node sequences. These sequences are encoded with a Transformer to learn embeddings that capture long-range structural dependencies driven by OD demand and route configuration, as well as functional associations derived from attribute similarity. Finally, a listwise ranking strategy with a KL-divergence loss evaluates and ranks segment importance. Experiments on three SUMO-generated simulated networks of different scales show that, against state-of-the-art methods, HetGL2R achieves average improvements of approximately 7.52%, 4.40% and 3.57% in ranking performance.
♻ ☆ LongCat-Flash-Omni Technical Report
We introduce LongCat-Flash-Omni, a state-of-the-art open-source omni-modal model with 560 billion parameters, excelling at real-time audio-visual interaction. By adopting a curriculum-inspired progressive training strategy that transitions from simpler to increasingly complex modality sequence modeling tasks, LongCat-Flash-Omni attains comprehensive multimodal capabilities while maintaining strong unimodal capability. Building upon LongCat-Flash, which adopts a high-performance Shortcut-connected Mixture-of-Experts (MoE) architecture with zero-computation experts, LongCat-Flash-Omni integrates efficient multimodal perception and speech reconstruction modules. Despite its immense size of 560B parameters (with 27B activated), LongCat-Flash-Omni achieves low-latency real-time audio-visual interaction. For training infrastructure, we developed a modality-decoupled parallelism scheme specifically designed to manage the data and model heterogeneity inherent in large-scale multimodal training. This innovative approach demonstrates exceptional efficiency by sustaining over 90% of the throughput achieved by text-only training. Extensive evaluations show that LongCat-Flash-Omni achieves state-of-the-art performance on omni-modal benchmarks among open-source models. Furthermore, it delivers highly competitive results across a wide range of modality-specific tasks, including text, image, and video understanding, as well as audio understanding and generation. We provide a comprehensive overview of the model architecture design, training procedures, and data strategies, and open-source the model to foster future research and development in the community.
♻ ☆ Point3R: Streaming 3D Reconstruction with Explicit Spatial Pointer Memory
Dense 3D scene reconstruction from an ordered sequence or unordered image collections is a critical step when bringing research in computer vision into practical scenarios. Following the paradigm introduced by DUSt3R, which unifies an image pair densely into a shared coordinate system, subsequent methods maintain an implicit memory to achieve dense 3D reconstruction from more images. However, such implicit memory is limited in capacity and may suffer from information loss of earlier frames. We propose Point3R, an online framework targeting dense streaming 3D reconstruction. To be specific, we maintain an explicit spatial pointer memory directly associated with the 3D structure of the current scene. Each pointer in this memory is assigned a specific 3D position and aggregates scene information nearby in the global coordinate system into a changing spatial feature. Information extracted from the latest frame interacts explicitly with this pointer memory, enabling dense integration of the current observation into the global coordinate system. We design a 3D hierarchical position embedding to promote this interaction and design a simple yet effective fusion mechanism to ensure that our pointer memory is uniform and efficient. Our method achieves competitive or state-of-the-art performance on various tasks with low training costs. Code: https://github.com/YkiWu/Point3R.
comment: Code is available at: https://github.com/YkiWu/Point3R
♻ ☆ Probability calibration for precipitation nowcasting NeurIPS 2025
Reliable precipitation nowcasting is critical for weather-sensitive decision-making, yet neural weather models (NWMs) can produce poorly calibrated probabilistic forecasts. Standard calibration metrics such as the expected calibration error (ECE) fail to capture miscalibration across precipitation thresholds. We introduce the expected thresholded calibration error (ETCE), a new metric that better captures miscalibration in ordered classes like precipitation amounts. We extend post-processing techniques from computer vision to the forecasting domain. Our results show that selective scaling with lead time conditioning reduces model miscalibration without reducing the forecast quality.
comment: Accepted to NeurIPS 2025 Workshop: Tackling Climate Change with Machine Learning
♻ ☆ Counterfactual Explanation for Multivariate Time Series Forecasting with Exogenous Variables
Currently, machine learning is widely used across various domains, including time series data analysis. However, some machine learning models function as black boxes, making interpretability a critical concern. One approach to address this issue is counterfactual explanation (CE), which aims to provide insights into model predictions. This study focuses on the relatively underexplored problem of generating counterfactual explanations for time series forecasting. We propose a method for extracting CEs in time series forecasting using exogenous variables, which are frequently encountered in fields such as business and marketing. In addition, we present methods for analyzing the influence of each variable over an entire time series, generating CEs by altering only specific variables, and evaluating the quality of the resulting CEs. We validate the proposed method through theoretical analysis and empirical experiments, showcasing its accuracy and practical applicability. These contributions are expected to support real-world decision-making based on time series data analysis.
comment: 27pages,9figures,9tables
♻ ☆ Atom of Thoughts for Markov LLM Test-Time Scaling NeurIPS 2025
Large Language Models (LLMs) achieve superior performance through training-time scaling, and test-time scaling further enhances their capabilities by conducting effective reasoning during inference. However, as the scale of reasoning increases, existing test-time scaling methods suffer from accumulated historical information, which not only wastes computational resources but also interferes with effective reasoning. To address this issue, we observe that complex reasoning can be achieved by solving a series of independent and self-contained subquestions. These subquestions are essentially \textit{atomic questions}, exhibiting the memoryless property similar to Markov processes. Based on this observation, we propose Atom of Thoughts (\our), where each state transition consists of decomposing the current question into a dependency-based directed acyclic graph and contracting its subquestions, forming a simplified question that maintains answer equivalence with the original problem. This answer preservation enables the iterative \textit{decomposition-contraction} process to naturally form a meaningful Markov reasoning process. Furthermore, these atomic states can be seamlessly integrated into existing test-time scaling methods, enabling \our to serve as a plug-in enhancement for improving reasoning capabilities. Experiments across six benchmarks demonstrate the effectiveness of \our both as a standalone framework and a plug-in enhancement. Notably, on HotpotQA, when applied to gpt-4o-mini, \our achieves an \textbf{80.6\%} F1 score, surpassing o3-mini by \textbf{3.4\%} and DeepSeek-R1 by \textbf{10.6\%}. The code is available at \href{https://github.com/qixucen/atom}{https://github.com/qixucen/atom}.
comment: Accepted to NeurIPS 2025
♻ ☆ Actionable and diverse counterfactual explanations incorporating domain knowledge and causal constraints
Counterfactual explanations enhance the actionable interpretability of machine learning models by identifying the minimal changes required to achieve a desired outcome of the model. However, existing methods often ignore the complex dependencies in real-world datasets, leading to unrealistic or impractical modifications. Motivated by cybersecurity applications in the email marketing domain, we propose a method for generating Diverse, Actionable, and kNowledge-Constrained Explanations (DANCE), which incorporates feature dependencies and causal constraints to ensure plausibility and real-world feasibility of counterfactuals. Our method learns linear and nonlinear constraints from data or integrates expert-provided dependency graphs, ensuring counterfactuals are plausible and actionable. By maintaining consistency with feature relationships, the method produces explanations that align with real-world constraints. Additionally, it balances plausibility, diversity, and sparsity, effectively addressing key limitations in existing algorithms. The work is developed based on a real-life case study with Freshmail, the largest email marketing company in Poland and supported by a joint R&D project Sendguard. Furthermore, we provide an extensive evaluation using 140 public datasets, which highlights its ability to generate meaningful, domain-relevant counterfactuals that outperform other existing approaches based on widely used metrics. The source code for reproduction of the results can be found in a GitHub repository we provide.
♻ ☆ REWA: A General Theory of Witness-Based Similarity
We present a universal framework for similarity-preserving encodings that subsumes all discrete, continuous, algebraic, and learned similarity methods under a single theoretical umbrella. By formulating similarity as functional witness projection over monoids, we prove that \[ O\!\left(\frac{1}{Δ^{2}}\log N\right) \] encoding complexity with ranking preservation holds for arbitrary algebraic structures. This unification reveals that Bloom filters, Locality Sensitive Hashing (LSH), Count-Min sketches, Random Fourier Features, and Transformer attention kernels are instances of the same underlying mechanism. We provide complete proofs with explicit constants under 4-wise independent hashing, handle heavy-tailed witnesses via normalization and clipping, and prove \[ O(\log N) \] complexity for all major similarity methods from 1970-2024. We give explicit constructions for Boolean, Natural, Real, Tropical, and Product monoids, prove tight concentration bounds, and demonstrate compositional properties enabling multi-primitive similarity systems.
♻ ☆ Split Conformal Prediction under Data Contamination
Conformal prediction is a non-parametric technique for constructing prediction intervals or sets from arbitrary predictive models under the assumption that the data is exchangeable. It is popular as it comes with theoretical guarantees on the marginal coverage of the prediction sets and the split conformal prediction variant has a very low computational cost compared to model training. We study the robustness of split conformal prediction in a data contamination setting, where we assume a small fraction of the calibration scores are drawn from a different distribution than the bulk. We quantify the impact of the corrupted data on the coverage and efficiency of the constructed sets when evaluated on "clean" test points, and verify our results with numerical experiments. Moreover, we propose an adjustment in the classification setting which we call Contamination Robust Conformal Prediction, and verify the efficacy of our approach using both synthetic and real datasets.
♻ ☆ Quantifying Statistical Significance of Deep Nearest Neighbor Anomaly Detection via Selective Inference
In real-world applications, anomaly detection (AD) often operates without access to anomalous data, necessitating semi-supervised methods that rely solely on normal data. Among these methods, deep k-nearest neighbor (deep kNN) AD stands out for its interpretability and flexibility, leveraging distance-based scoring in deep latent spaces.Despite its strong performance, deep kNN lacks a mechanism to quantify uncertainty-an essential feature for critical applications such as industrial inspection. To address this limitation, we propose a statistical framework that quantifies the significance of detected anomalies in the form of p-values, thereby enabling control over false positive rates at a user-specified significance level (e.g.,0.05). A central challenge lies in managing selection bias, which we tackle using Selective Inference-a principled method for conducting inference conditioned on data-driven selections. We evaluate our method on diverse datasets and demonstrate that it provides reliable AD well-suited for industrial use cases.
comment: 19 pages, 15 figures
♻ ☆ FP64 is All You Need: Rethinking Failure Modes in Physics-Informed Neural Networks
Physics Informed Neural Networks (PINNs) often exhibit failure modes in which the PDE residual loss converges while the solution error stays large, a phenomenon traditionally blamed on local optima separated from the true solution by steep loss barriers. We challenge this understanding by demonstrate that the real culprit is insufficient arithmetic precision: with standard FP32, the LBFGS optimizer prematurely satisfies its convergence test, freezing the network in a spurious failure phase. Simply upgrading to FP64 rescues optimization, enabling vanilla PINNs to solve PDEs without any failure modes. These results reframe PINN failure modes as precision induced stalls rather than inescapable local minima and expose a three stage training dynamic unconverged, failure, success whose boundaries shift with numerical precision. Our findings emphasize that rigorous arithmetic precision is the key to dependable PDE solving with neural networks.
♻ ☆ FedCanon: Non-Convex Composite Federated Learning with Efficient Proximal Operation on Heterogeneous Data
Composite federated learning offers a general framework for solving machine learning problems with additional regularization terms. However, existing methods often face significant limitations: many require clients to perform computationally expensive proximal operations, and their performance is frequently vulnerable to data heterogeneity. To overcome these challenges, we propose a novel composite federated learning algorithm called \textbf{FedCanon}, designed to solve the optimization problems comprising a possibly non-convex loss function and a weakly convex, potentially non-smooth regularization term. By decoupling proximal mappings from local updates, FedCanon requires only a single proximal evaluation on the server per iteration, thereby reducing the overall proximal computation cost. Concurrently, it integrates control variables into local updates to mitigate the client drift arising from data heterogeneity. The entire architecture avoids the complex subproblems of primal-dual alternatives. The theoretical analysis provides the first rigorous convergence guarantees for this proximal-skipping framework in the general non-convex setting. It establishes that FedCanon achieves a sublinear convergence rate, and a linear rate under the Polyak-Łojasiewicz condition, without the restrictive bounded heterogeneity assumption. Extensive experiments demonstrate that FedCanon outperforms the state-of-the-art methods in terms of both accuracy and computational efficiency, particularly under heterogeneous data distributions.
♻ ☆ Un-mixing Test-time Adaptation under Heterogeneous Data Streams
Deploying deep models in real-world scenarios remains challenging due to significant performance drops under distribution shifts between training and deployment environments. Test-Time Adaptation (TTA) has recently emerged as a promising solution, enabling on-the-fly model adaptation. However, its effectiveness deteriorates in the presence of mixed distribution shifts -- common in practical settings -- where multiple target domains coexist. In this paper, we study TTA under mixed distribution shifts and move beyond conventional whole-batch adaptation paradigms. By revisiting distribution shifts from a spectral perspective, we find that the heterogeneity across latent domains is often pronounced in Fourier space. In particular, high-frequency components encode domain-specific variations, which facilitates clearer separation of samples from different distributions. Motivated by this observation, we propose to un-mix heterogeneous data streams using high-frequency domain cues, making diverse shift patterns more tractable. To this end, we propose Frequency-based Decentralized Adaptation (FreDA), a novel framework that decomposes globally heterogeneous data stream into locally homogeneous clusters in the Fourier space. It leverages decentralized learning and augmentation strategies to robustly adapt under mixed domain shifts. Extensive experiments across various environments (corrupted, natural, and medical) show the superiority of our method over the state-of-the-arts.
♻ ☆ Anomaly Resilient Temporal QoS Prediction using Hypergraph Convoluted Transformer Network
Quality-of-Service (QoS) prediction is a critical task in the service lifecycle, enabling precise and adaptive service recommendations by anticipating performance variations over time in response to evolving network uncertainties and user preferences. However, contemporary QoS prediction methods frequently encounter data sparsity and cold-start issues, which hinder accurate QoS predictions and limit the ability to capture diverse user preferences. Additionally, these methods often assume QoS data reliability, neglecting potential credibility issues such as outliers and the presence of greysheep users and services with atypical invocation patterns. Furthermore, traditional approaches fail to leverage diverse features, including domain-specific knowledge and complex higher-order patterns, essential for accurate QoS predictions. In this paper, we introduce a real-time, trust-aware framework for temporal QoS prediction to address the aforementioned challenges, featuring an end-to-end deep architecture called the Hypergraph Convoluted Transformer Network (HCTN). HCTN combines a hypergraph structure with graph convolution over hyper-edges to effectively address high-sparsity issues by capturing complex, high-order correlations. Complementing this, the transformer network utilizes multi-head attention along with parallel 1D convolutional layers and fully connected dense blocks to capture both fine-grained and coarse-grained dynamic patterns. Additionally, our approach includes a sparsity-resilient solution for detecting greysheep users and services, incorporating their unique characteristics to improve prediction accuracy. Trained with a robust loss function resistant to outliers, HCTN demonstrated state-of-the-art performance on the large-scale WSDREAM-2 datasets for response time and throughput.
comment: 12 pages, 8 figures
♻ ☆ Scale-Agnostic Kolmogorov-Arnold Geometry in Neural Networks
Recent work by Freedman and Mulligan demonstrated that shallow multilayer perceptrons spontaneously develop Kolmogorov-Arnold geometric (KAG) structure during training on synthetic three-dimensional tasks. However, it remained unclear whether this phenomenon persists in realistic high-dimensional settings and what spatial properties this geometry exhibits. We extend KAG analysis to MNIST digit classification (784 dimensions) using 2-layer MLPs with systematic spatial analysis at multiple scales. We find that KAG emerges during training and appears consistently across spatial scales, from local 7-pixel neighborhoods to the full 28x28 image. This scale-agnostic property holds across different training procedures: both standard training and training with spatial augmentation produce the same qualitative pattern. These findings reveal that neural networks spontaneously develop organized, scale-invariant geometric structure during learning on realistic high-dimensional data.
♻ ☆ Rapid optimization in high dimensional space by deep kernel learning augmented genetic algorithms
Exploration of complex high-dimensional spaces presents significant challenges in fields such as molecular discovery, process optimization, and supply chain management. Genetic Algorithms (GAs), while offering significant power for creating new candidate spaces, often entail high computational demands due to the need for evaluation of each new proposed solution. On the other hand, Deep Kernel Learning (DKL) efficiently navigates the spaces of preselected candidate structures but lacks generative capabilities. This study introduces an approach that amalgamates the generative power of GAs to create new candidates with the efficiency of DKL-based surrogate models to rapidly ascertain the behavior of new candidate spaces. This DKL-GA framework can be further used to build Bayesian Optimization (BO) workflows. We demonstrate the effectiveness of this approach through the optimization of the FerroSIM model, showcasing its broad applicability to diverse challenges, including molecular discovery and battery charging optimization.
Physics Steering: Causal Control of Cross-Domain Concepts in a Physics Foundation Model
Recent advances in mechanistic interpretability have revealed that large language models (LLMs) develop internal representations corresponding not only to concrete entities but also distinct, human-understandable abstract concepts and behaviour. Moreover, these hidden features can be directly manipulated to steer model behaviour. However, it remains an open question whether this phenomenon is unique to models trained on inherently structured data (ie. language, images) or if it is a general property of foundation models. In this work, we investigate the internal representations of a large physics-focused foundation model. Inspired by recent work identifying single directions in activation space for complex behaviours in LLMs, we extract activation vectors from the model during forward passes over simulation datasets for different physical regimes. We then compute "delta" representations between the two regimes. These delta tensors act as concept directions in activation space, encoding specific physical features. By injecting these concept directions back into the model during inference, we can steer its predictions, demonstrating causal control over physical behaviours, such as inducing or removing some particular physical feature from a simulation. These results suggest that scientific foundation models learn generalised representations of physical principles. They do not merely rely on superficial correlations and patterns in the simulations. Our findings open new avenues for understanding and controlling scientific foundation models and has implications for AI-enabled scientific discovery.
comment: 16 Pages, 9 Figures. Code available soon at https://github.com/DJ-Fear/walrus_steering
Structured Prompting Enables More Robust Evaluation of Language Models
As language models (LMs) are increasingly adopted across domains, high-quality benchmarking frameworks that accurately estimate performance are essential for guiding deployment decisions. While frameworks such as Holistic Evaluation of Language Models (HELM) enable broad evaluation across tasks, they often rely on fixed prompts that fail to generalize across LMs, yielding unrepresentative performance estimates. Unless we approximate each LM's ceiling (maximum achievable via changes to the prompt), we risk underestimating performance. Declarative prompting frameworks, such as DSPy, offer a scalable alternative to manual prompt engineering by crafting structured prompts that can be optimized per task. However, such frameworks have not been systematically evaluated across established benchmarks. We present a reproducible DSPy+HELM framework that introduces structured prompting methods which elicit reasoning, enabling more accurate LM benchmarking. Using four prompting methods, we evaluate four frontier LMs across seven benchmarks (general/medical domain) against existing HELM baseline scores. We find that without structured prompting: (i) HELM underestimates LM performance (by 4% average), (ii) performance estimates vary more across benchmarks ($+$2% standard deviation), (iii) performance gaps are misrepresented (leaderboard rankings flip on 3/7 benchmarks), and (iv) introducing chain-of-thought reduces LM sensitivity to prompt design (smaller $Δ$ across prompts). To our knowledge, this is the first benchmarking study to systematically integrate structured prompting into an established evaluation framework, demonstrating how scalable performance-ceiling approximation yields more robust, decision-useful benchmarks. We open-source (i) DSPy+HELM Integration (https://github.com/stanford-crfm/helm/pull/3893) and (ii) Prompt Optimization Pipeline (https://github.com/StanfordMIMI/dspy-helm).
♻ ☆ Quantitative Attractor Analysis of High-Capacity Kernel Hopfield Networks
Kernel-based learning methods such as Kernel Logistic Regression (KLR) can substantially increase the storage capacity of Hopfield networks, but the principles governing their performance and stability remain largely uncharacterized. This paper presents a comprehensive quantitative analysis of the attractor landscape in KLR-trained networks to establish a solid foundation for their design and application. Through extensive, statistically validated simulations, we address critical questions of generality, scalability, and robustness. Our comparative analysis shows that KLR and Kernel Ridge Regression (KRR) exhibit similarly high storage capacities and clean attractor landscapes under typical operating conditions, suggesting that this behavior is a general property of kernel regression methods, although KRR is computationally much faster. We identify a non-trivial, scale-dependent law for the kernel width $γ$, demonstrating that optimal capacity requires $γ$ to be scaled such that $γN$ increases with network size $N$. This finding implies that larger networks require more localized kernels, in which each pattern's influence is more spatially confined, to mitigate inter-pattern interference. Under this optimized scaling, we provide clear evidence that storage capacity scales linearly with network size~($P \propto N$). Furthermore, our sensitivity analysis shows that performance is remarkably robust with respect to the choice of the regularization parameter $λ$. Collectively, these findings provide a concise set of empirical principles for designing high-capacity and robust associative memories and clarify the mechanisms that enable kernel methods to overcome the classical limitations of Hopfield-type models.
comment: 16 pages, 7 figures
♻ ☆ Axial-UNet: A Neural Weather Model for Precipitation Nowcasting
Accurately predicting short-term precipitation is critical for weather-sensitive applications such as disaster management, aviation, and urban planning. Traditional numerical weather prediction can be computationally intensive at high resolution and short lead times. In this work, we propose a lightweight UNet-based encoder-decoder augmented with axial-attention blocks that attend along image rows and columns to capture long-range spatial interactions, while temporal context is provided by conditioning on multiple past radar frames. Our hybrid architecture captures both local and long-range spatio-temporal dependencies from radar image sequences, enabling fixed lead-time precipitation nowcasting with modest compute. Experimental results on a preprocessed subset of the HKO-7 radar dataset demonstrate that our model outperforms ConvLSTM, pix2pix-style cGANs, and a plain UNet in pixel-fidelity metrics, reaching PSNR 47.67 and SSIM 0.9943. We report PSNR/SSIM here; extending evaluation to meteorology-oriented skill measures (e.g., CSI/FSS) is left to future work. The approach is simple, scalable, and effective for resource-constrained, real-time forecasting scenarios.
comment: 16 pages, 3 figures. Accepted at the International Conference on Distributed Computing and Intelligent Technology (ICDCIT 2026), to appear in Springer LNCS
♻ ☆ Private Sketches for Linear Regression
Linear regression is frequently applied in a variety of domains, some of which might contain sensitive information. This necessitates that the application of these methods does not reveal private information. Differentially private (DP) linear regression methods, developed for this purpose, compute private estimates of the solution. These techniques typically involve computing a noisy version of the solution vector. Instead, we propose releasing private sketches of the datasets, which can then be used to compute an approximate solution to the regression problem. This is motivated by the \emph{sketch-and-solve} paradigm, where the regression problem is solved on a smaller sketch of the dataset instead of on the original problem space. The solution obtained on the sketch can also be shown to have good approximation guarantees to the original problem. Various sketching methods have been developed for improving the computational efficiency of linear regression problems under this paradigm. We adopt this paradigm for the purpose of releasing private sketches of the data. We construct differentially private sketches for the problems of least squares regression, as well as least absolute deviations regression. We show that the privacy constraints lead to sketched versions of regularized regression. We compute the bounds on the regularization parameter required for guaranteeing privacy. The availability of these private sketches facilitates the application of commonly available solvers for regression, without the risk of privacy leakage.
comment: 13 pages
♻ ☆ Exploiting Vocabulary Frequency Imbalance in Language Model Pre-training NeurIPS 2025
Large language models are trained with tokenizers, and the resulting token distribution is highly imbalanced: a few words dominate the stream while most occur rarely. Recent practice favors ever-larger vocabularies, but it is unclear where the benefit comes from. To this end, we perform a controlled study that scales the vocabulary of the language model from 24K to 196K while holding data, computation, and optimization unchanged. We begin by quantifying the complexity of tokenized text -- formalized via Kolmogorov complexity -- and show that larger vocabularies reduce this complexity. Above 24K, every common word is already tokenized as a single token, so enlarging vocabulary only deepens the relative token-frequency imbalance. Word-level loss decomposition shows that larger vocabularies reduce cross-entropy loss almost exclusively by lowering uncertainty on the 2,500 most frequent words, even though loss on the rare tail rises. The same frequent words cover roughly 75% of tokens in downstream benchmarks, so this training advantage transfers intact. We further show that enlarging model parameters with a fixed vocabulary yields the same frequent-word benefit. Our results recast "bigger vocabularies help" as "lowering complexity of tokenized text helps," offering a simple, principled knob for tokenizer-model co-design and clarifying the loss dynamics that govern language model scaling in pre-training.
comment: NeurIPS 2025
♻ ☆ Channel Estimation for RIS-Assisted mmWave Systems via Diffusion Models
Reconfigurable intelligent surface (RIS) has been recognized as a promising technology for next-generation wireless communications. However, the performance of RIS-assisted systems critically depends on accurate channel state information (CSI). To address this challenge, this letter proposes a novel channel estimation method for RIS-aided millimeter-wave (mmWave) systems based on diffusion models (DMs). Specifically, the forward diffusion process of the original signal is formulated to model the received signal as a noisy observation within the framework of DMs. Subsequently, the channel estimation task is formulated as the reverse diffusion process, and a sampling algorithm based on denoising diffusion implicit models (DDIMs) is developed to enable effective inference. Furthermore, a lightweight neural network, termed BRCNet, is introduced to replace the conventional U-Net, significantly reducing the number of parameters and computational complexity. Extensive experiments conducted under various scenarios demonstrate that the proposed method consistently outperforms existing baselines.
comment: replaced with revised version
♻ ☆ Deep Improvement Supervision
Recently, it was shown that small, looped architectures, such as Tiny Recursive Models (TRMs), can outperform Large Language Models (LLMs) on complex reasoning tasks, including the Abstraction and Reasoning Corpus (ARC). In this work, we investigate a core question: how can we further improve the efficiency of these methods with minimal changes? To address this, we frame the latent reasoning of TRMs as a form of classifier-free guidance and implicit policy improvement algorithm. Building on these insights, we propose a novel training scheme that provides a target for each loop during training. We demonstrate that our approach significantly enhances training efficiency. Our method reduces the total number of forward passes by 18x and eliminates halting mechanisms, while maintaining quality comparable to standard TRMs. Notably, we achieve 24% accuracy on ARC-1 with only 0.8M parameters, outperforming most LLMs.
♻ ☆ Leveraging Semantic Attribute Binding for Free-Lunch Color Control in Diffusion Models
Recent advances in text-to-image (T2I) diffusion models have enabled remarkable control over various attributes, yet precise color specification remains a fundamental challenge. Existing approaches, such as ColorPeel, rely on model personalization, requiring additional optimization and limiting flexibility in specifying arbitrary colors. In this work, we introduce ColorWave, a novel training-free approach that achieves exact RGB-level color control in diffusion models without fine-tuning. By systematically analyzing the cross-attention mechanisms within IP-Adapter, we uncover an implicit binding between textual color descriptors and reference image features. Leveraging this insight, our method rewires these bindings to enforce precise color attribution while preserving the generative capabilities of pretrained models. Our approach maintains generation quality and diversity, outperforming prior methods in accuracy and applicability across diverse object categories. Through extensive evaluations, we demonstrate that ColorWave establishes a new paradigm for structured, color-consistent diffusion-based image synthesis.
comment: WACV 2026. Project page: https://hecoding.github.io/colorwave-page
♻ ☆ Pre-Training Estimators for Structural Models: Application to Consumer Search
We develop pre-trained estimators for structural econometric models. The estimator uses a neural net to recognize the structural model's parameter from data patterns. Once trained, the estimator can be shared and applied to different datasets at negligible cost and effort. Under sufficient training, the estimator converges to the Bayesian posterior given the data patterns. As an illustration, we construct a pretrained estimator for a sequential search model (available at pnnehome.github.io). Estimation takes only seconds and achieves high accuracy on 12 real datasets. More broadly, pretrained estimators can make structural models much easier to use and more accessible.
comment: Originally posted on SSRN on June 7, 2024
♻ ☆ Data efficient surrogate modeling for engineering design: Ensemble-free batch mode deep active learning for regression
High fidelity design evaluation processes such as Computational Fluid Dynamics and Finite Element Analysis are often replaced with data driven surrogates to reduce computational cost in engineering design optimization. However, building accurate surrogate models still requires a large number of expensive simulations. To address this challenge, we introduce epsilon HQS, a scalable active learning strategy that leverages a student teacher framework to train deep neural networks efficiently. Unlike Bayesian AL methods, which are computationally demanding with DNNs, epsilon HQS selectively queries informative samples to reduce labeling cost. Applied to CFD, FEA, and propeller design tasks, our method achieves higher accuracy under fixed labeling cost budgets.
comment: 6 pages, 4 figures
♻ ☆ SACA: Selective Attention-Based Clustering Algorithm
Clustering algorithms are fundamental tools across many fields, with density-based methods offering particular advantages in identifying arbitrarily shaped clusters and handling noise. However, their effectiveness is often limited by the requirement of critical parameter tuning by users, which typically requires significant domain expertise. This paper introduces a novel density-based clustering algorithm loosely inspired by the concept of selective attention, designed to minimize reliance on parameter tuning for most applications. The proposed method computes an adaptive threshold to exclude sparsely distributed points and outliers, constructs an initial cluster framework, and subsequently reintegrates the filtered points to refine the final results. Extensive experiments on diverse benchmark datasets demonstrate the robustness, accuracy, and ease of use of the proposed approach, establishing it as a powerful alternative to conventional density-based clustering techniques.
comment: 32 pages, 14 figures
♻ ☆ MolEdit: Knowledge Editing for Multimodal Molecule Language Models
Understanding and continuously refining multimodal molecular knowledge is crucial for advancing biomedicine, chemistry, and materials science. Molecule language models (MoLMs) have become powerful tools in these domains, integrating structural representations (e.g., SMILES strings, molecular graphs) with rich contextual descriptions (e.g., physicochemical properties). However, MoLMs can encode and propagate inaccuracies due to outdated web-mined training corpora or malicious manipulation, jeopardizing downstream discovery pipelines. While knowledge editing has been explored for general-domain AI, its application to MoLMs remains uncharted, presenting unique challenges due to the multifaceted and interdependent nature of molecular knowledge. In this paper, we take the first step toward MoLM editing for two critical tasks: molecule-to-caption generation and caption-to-molecule generation. To address molecule-specific challenges, we propose MolEdit, a powerful framework that enables targeted modifications while preserving unrelated molecular knowledge. MolEdit combines a Multi-Expert Knowledge Adapter that routes edits to specialized experts for different molecular facets with an Expertise-Aware Editing Switcher that activates the adapters only when input closely matches the stored edits across all expertise, minimizing interference with unrelated knowledge. To systematically evaluate editing performance, we introduce MEBench, a comprehensive benchmark assessing multiple dimensions, including Reliability (accuracy of the editing), Locality (preservation of irrelevant knowledge), and Generality (robustness to reformed queries). Across extensive experiments on two popular MoLM backbones, MolEdit delivers up to 18.8% higher Reliability and 12.0% better Locality than baselines while maintaining efficiency. The code is available at: https://github.com/LzyFischer/MolEdit.
Genomics 1
☆ deepFEPS: Deep Learning-Oriented Feature Extraction for Biological Sequences
Machine- and deep-learning approaches for biological sequences depend critically on transforming raw DNA, RNA, and protein FASTA files into informative numerical representations. However, this process is often fragmented across multiple libraries and preprocessing steps, which creates a barrier for researchers without extensive computational expertise. To address this gap, we developed deepFEPS, an open-source toolkit that unifies state-of-the-art feature extraction methods for sequence data within a single, reproducible workflow. deepFEPS integrates five families of modern feature extractors - k-mer embeddings (Word2Vec, FastText), document-level embeddings (Doc2Vec), transformer-based encoders (DNABERT, ProtBERT, and ESM2), autoencoder-derived latent features, and graph-based embeddings - into one consistent platform. The system accepts FASTA input via a web interface or command-line tool, exposes key model parameters, and outputs analysis-ready feature matrices (CSV). Each run is accompanied by an automatic quality-control report including sequence counts, dimensionality, sparsity, variance distributions, class balance, and diagnostic visualizations. By consolidating advanced sequence embeddings into one environment, deepFEPS reduces preprocessing overhead, improves reproducibility, and shortens the path from raw sequences to downstream machine- and deep-learning applications. deepFEPS lowers the practical barrier to modern representation learning for bioinformatics, enabling both novice and expert users to generate advanced embeddings for classification, clustering, and predictive modeling. Its unified framework supports exploratory analyses, high-throughput studies, and integration into institutional workflows, while remaining extensible to emerging models and methods. The webserver is accessible at https://hdismail.com/deepfeps2/.
comment: 16 pages, 6 figures, bioinformatics tool for genomics analysis
Quantitative Methods 5
☆ A Spectral Koopman Approximation Framework for Stochastic Reaction Networks
Stochastic reaction networks (SRNs) are a general class of continuous-time Markov jump processes used to model a wide range of systems, including biochemical dynamics in single cells, ecological and epidemiological populations, and queueing or communication networks. Yet analyzing their dynamics remains challenging because these processes are high-dimensional and their transient behavior can vary substantially across different initial molecular or population states. Here we introduce a spectral framework for the stochastic Koopman operator that provides a tractable, low-dimensional representation of SRN dynamics over continuous time, together with computable error estimates. By exploiting the compactness of the Koopman operator, we recover dominant spectral modes directly from simulated or experimental data, enabling efficient prediction of moments, event probabilities, and other summary statistics across all initial states. We further derive continuous-time parameter sensitivities and cross-spectral densities, offering new tools for probing noise structure and frequency-domain behavior. We demonstrate the approach on biologically relevant systems, including synthetic intracellular feedback controllers, stochastic oscillators, and inference of initial-state distributions from high-temporal-resolution flow cytometry. Together, these results establish spectral Koopman analysis as a powerful and general framework for studying stochastic dynamical systems across the biological, ecological, and computational sciences.
comment: 7 figures
☆ A novel approach to profile global circulation pathway of SARS-CoV-2 variants by site-based mutation dynamics
The genetic evolution of SARS-CoV-2 has caused recurring epidemic waves, understanding its global dispersal patterns is critical for effective surveillance. We developed the Site-based mutation dynamics - Equal Power Sampling (S-EPS) framework, a phylogenetic-free, bias-correcting framework for profiling viral source-sink dynamics. Applying S-EPS to 6.6 million SARS-CoV-2 genomes (March 2020 - June 2024) from 13 regions worldwide, we identified Africa and the Indian subcontinent as the predominant sources of key mutations. Southeast Asia serves as an early transmission hub, while Russia and South America mainly acted as sinks. Key mutations took longer to establish fitness in source regions than externally. Once an amino acid substitution on the receptor-binding domain reached 1% prevalence in major sources, there is an 80% probability it would spread elsewhere, with a 2-month median lead time (IQR: 1-4). Our findings underscore the importance of genetic surveillance, with S-EPS offering enhanced capability for monitoring emerging viral threats.
☆ AutocleanEEG ICVision: Automated ICA Artifact Classification Using Vision-Language AI
We introduce EEG Autoclean Vision Language AI (ICVision) a first-of-its-kind system that emulates expert-level EEG ICA component classification through AI-agent vision and natural language reasoning. Unlike conventional classifiers such as ICLabel, which rely on handcrafted features, ICVision directly interprets ICA dashboard visualizations topography, time series, power spectra, and ERP plots, using a multimodal large language model (GPT-4 Vision). This allows the AI to see and explain EEG components the way trained neurologists do, making it the first scientific implementation of AI-agent visual cognition in neurophysiology. ICVision classifies each component into one of six canonical categories (brain, eye, heart, muscle, channel noise, and other noise), returning both a confidence score and a human-like explanation. Evaluated on 3,168 ICA components from 124 EEG datasets, ICVision achieved k = 0.677 agreement with expert consensus, surpassing MNE ICLabel, while also preserving clinically relevant brain signals in ambiguous cases. Over 97% of its outputs were rated as interpretable and actionable by expert reviewers. As a core module of the open-source EEG Autoclean platform, ICVision signals a paradigm shift in scientific AI, where models do not just classify, but see, reason, and communicate. It opens the door to globally scalable, explainable, and reproducible EEG workflows, marking the emergence of AI agents capable of expert-level visual decision-making in brain science and beyond.
comment: 6 pages, 8 figures
☆ HyperADRs: A Hierarchical Hypergraph Framework for Drug-Gene-ADR Prediction
Adverse drug reactions (ADRs) are a major barrier to safe and effective pharmacotherapy and increasingly reflect higher order interactions between drugs, genetic background, and clinical phenotypes. Existing graph based approaches usually predict ADRs as properties of drugs or drug pairs, leaving the causal gene implicit and limiting their value for pharmacogenomic decision making. We introduce HyperADRs, a hierarchical hypergraph framework that predicts ADR risk at the level of drug-gene-ADR triads. Starting from curated pharmacogenomic annotations in PharmGKB and the pharmacogenomics subdatabase of DrugBank, we construct high confidence triplets and integrate them with auxiliary molecular, functional, and disease relations from precision-medicine-oriented knowledge graphs. Drugs, genes, and ADR concepts are embedded with modality appropriate pretrained models (UniMol, ESM2, SapBERT) and propagated through a hypergraph convolutional network. A FiLM based, query conditioned contrastive learning module learns context specific representations so that, given any two entities, the model retrieves the correct third entity against many candidates. To improve robustness and interpretability, we propose a nine category ADR macro system scheme that reduces large heterogeneous "other" bins while aligning with organ system reasoning in clinical pharmacology. Across drug-, gene-, and ADR-held-out evaluations on PharmGKB, HyperADRs matches or exceeds strong baselines on ranking based metrics. When trained on PharmGKB and tested on unseen DrugBank triplets, HyperADRs maintains its ranking advantage, indicating that the learned representations capture transferable biological mechanisms and can support mechanistically grounded pharmacogenomic hypothesis generation.
comment: Preprint. 17 pages, 3 figures
☆ RadDiff: Retrieval-Augmented Denoising Diffusion for Protein Inverse Folding
Protein inverse folding, the design of an amino acid sequence based on a target 3D structure, is a fundamental problem of computational protein engineering. Existing methods either generate sequences without leveraging external knowledge or relying on protein language models (PLMs). The former omits the evolutionary information stored in protein databases, while the latter is parameter-inefficient and inflexible to adapt to ever-growing protein data. To overcome the above drawbacks, in this paper we propose a novel method, called retrieval-augmented denoising diffusion (RadDiff), for protein inverse folding. Given the target protein backbone, RadDiff uses a hierarchical search strategy to efficiently retrieve structurally similar proteins from large protein databases. The retrieved structures are then aligned residue-by-residue to the target to construct a position-specific amino acid profile, which serves as an evolutionary-informed prior that conditions the denoising process. A lightweight integration module is further designed to incorporate this prior effectively. Experimental results on the CATH, PDB, and TS50 datasets show that RadDiff consistently outperforms existing methods, improving sequence recovery rate by up to 19%. Experimental results also demonstrate that RadDiff generates highly foldable sequences and scales effectively with database size.
Cell Behavior 2
♻ ☆ Comment on "Direct Targeting and Regulation of RNA Polymerase II by Cell Signaling Kinases"
Dabas et al. in Science 2025 report that approximately 117 human kinases directly phosphorylate the C-terminal domain (CTD) of RNA polymerase II (Pol II), proposing an extensive, direct biochemical bridge between signal transduction and transcriptional control. Such a sweeping claim that one-fourth of the human kinome directly targets the CTD represents a profound revision of canonical transcriptional biology. However, the evidence presented relies primarily on in vitro kinase assays using short CTD peptides, sparse in-cell validation, and mechanistically incomplete models of nuclear trafficking, chromatin targeting, structural compatibility, and catalytic specificity. In this extended critique, we demonstrate that the conclusions of this study are not supported by current biochemical, structural, cell biological, or genomic data. We outline severe shortcomings in assay design, lack of quantitative kinetics, incompatibilities with known Pol II structural constraints, unsupported assumptions about nuclear localization, inappropriate extension to "direct-at-gene" mechanisms, absence of global transcriptional effects, failure to align with the essential role of canonical CDKs, and missing transparency in dataset reporting. We conclude that the central claims of the study are premature and contradicted by decades of established transcriptional research. Substantial new evidence is required before revising the mechanistic model of Pol II CTD regulation.
comment: arXiv admin note: This submission has been withdrawn due to violation of arXiv policies for acceptable submissions
♻ ☆ Comment on "Repair of DNA Double-Strand Breaks Leaves Heritable Impairment to Genome Function"
Bantele and colleagues recently reported that repair of a single CRISPR/Cas9-induced DNA double-strand break (DSB) in the c-MYC topologically associated domain leads to a persistent depletion of chromatin interactions and long-term transcriptional attenuation across multiple generations of human cells. They interpret this observation as evidence for a previously unrecognized principle--"chromatin fatigue"--in which DSB repair generates a stable architectural defect that acts as a heritable impairment to genome function. Such an idea, if correct, would carry profound implications for genome biology, epigenetic inheritance, cancer evolution, aging, and the safety of therapeutic genome editing. However, our detailed reassessment of the experimental design, underlying assumptions, and data interpretation reveals that the evidence provided is inadequate to support these sweeping conclusions. Instead, the observed outcomes are more plausibly explained by a combination of Cas9 persistence, off-target DNA damage, repair-factor retention, MYC enhancer plasticity, and the well-documented genomic instability of HeLa cells. The study does not demonstrate mechanistic causality, does not exclude simpler explanations, and does not provide data consistent with true chromatin memory or heritable architectural change. Moreover, its statistical inferences are based on noisy measurements that fall within expected variability of unstable oncogenic loci. Here, we present a comprehensive critical analysis showing that the proposed model of chromatin fatigue is unsupported by the available evidence. We offer a corrected interpretation in which the chromatin landscape experiences a temporary, repair-associated perturbation that resolves without leaving enduring or heritable impairment.
comment: arXiv admin note: This submission has been withdrawn due to violation of arXiv policies for acceptable submissions
Computation and Language 37
☆ Intelligent Neural Networks: From Layered Architectures to Graph-Organized Intelligence
Biological neurons exhibit remarkable intelligence: they maintain internal states, communicate selectively with other neurons, and self-organize into complex graphs rather than rigid hierarchical layers. What if artificial intelligence could emerge from similarly intelligent computational units? We introduce Intelligent Neural Networks (INN), a paradigm shift where neurons are first-class entities with internal memory and learned communication patterns, organized in complete graphs rather than sequential layers. Each Intelligent Neuron combines selective state-space dynamics (knowing when to activate) with attention-based routing (knowing to whom to send signals), enabling emergent computation through graph-structured interactions. On the standard Text8 character modeling benchmark, INN achieves 1.705 Bit-Per-Character (BPC), significantly outperforming a comparable Transformer (2.055 BPC) and matching a highly optimized LSTM baseline. Crucially, a parameter-matched baseline of stacked Mamba blocks fails to converge (>3.4 BPC) under the same training protocol, demonstrating that INN's graph topology provides essential training stability. Ablation studies confirm this: removing inter-neuron communication degrades performance or leads to instability, proving the value of learned neural routing. This work demonstrates that neuron-centric design with graph organization is not merely bio-inspired -- it is computationally effective, opening new directions for modular, interpretable, and scalable neural architectures.
comment: Code available at https://github.com/AntoineSal/IntelligentNeuralNetwork
☆ PRISM: Privacy-Aware Routing for Adaptive Cloud-Edge LLM Inference via Semantic Sketch Collaboration AAAI 2026
Large Language Models (LLMs) demonstrate impressive capabilities in natural language understanding and generation, but incur high communication overhead and privacy risks in cloud deployments, while facing compute and memory constraints when confined to edge devices. Cloud-edge inference has emerged as a promising paradigm for improving privacy in LLM services by retaining sensitive computations on local devices. However, existing cloud-edge inference approaches apply uniform privacy protection without considering input sensitivity, resulting in unnecessary perturbation and degraded utility even for non-sensitive tokens. To address this limitation, we propose Privacy-aware Routing for Inference with Semantic Modulation (PRISM), a context-aware framework that dynamically balances privacy and inference quality. PRISM executes in four stages: (1) the edge device profiles entity-level sensitivity; (2) a soft gating module on the edge selects an execution mode - cloud, edge, or collaboration; (3) for collaborative paths, the edge applies adaptive two-layer local differential privacy based on entity risks; and (4) the cloud LLM generates a semantic sketch from the perturbed prompt, which is then refined by the edge-side small language model (SLM) using local context. Our results show that PRISM consistently achieves superior privacy-utility trade-offs across various scenarios, reducing energy consumption and latency to 40-50% of baseline methods such as Uniform and Selective LDP, while maintaining high output quality under strong privacy constraints. These findings are validated through comprehensive evaluations involving realistic prompts, actual energy measurements, and heterogeneous cloud-edge model deployments.
comment: Accepted to AAAI 2026. This is the arXiv preprint version
☆ Modeling Romanized Hindi and Bengali: Dataset Creation and Multilingual LLM Integration
The development of robust transliteration techniques to enhance the effectiveness of transforming Romanized scripts into native scripts is crucial for Natural Language Processing tasks, including sentiment analysis, speech recognition, information retrieval, and intelligent personal assistants. Despite significant advancements, state-of-the-art multilingual models still face challenges in handling Romanized script, where the Roman alphabet is adopted to represent the phonetic structure of diverse languages. Within the South Asian context, where the use of Romanized script for Indo-Aryan languages is widespread across social media and digital communication platforms, such usage continues to pose significant challenges for cutting-edge multilingual models. While a limited number of transliteration datasets and models are available for Indo-Aryan languages, they generally lack sufficient diversity in pronunciation and spelling variations, adequate code-mixed data for large language model (LLM) training, and low-resource adaptation. To address this research gap, we introduce a novel transliteration dataset for two popular Indo-Aryan languages, Hindi and Bengali, which are ranked as the 3rd and 7th most spoken languages worldwide. Our dataset comprises nearly 1.8 million Hindi and 1 million Bengali transliteration pairs. In addition to that, we pre-train a custom multilingual seq2seq LLM based on Marian architecture using the developed dataset. Experimental results demonstrate significant improvements compared to existing relevant models in terms of BLEU and CER metrics.
comment: Proceedings of the 8th Workshop on Big Data for Cybersecurity (BigCyber)
☆ ReAG: Reasoning-Augmented Generation for Knowledge-based Visual Question Answering
Multimodal Large Language Models (MLLMs) have shown impressive capabilities in jointly understanding text, images, and videos, often evaluated via Visual Question Answering (VQA). However, even state-of-the-art MLLMs struggle with domain-specific or knowledge-intensive queries, where relevant information is underrepresented in pre-training data. Knowledge-based VQA (KB-VQA) addresses this by retrieving external documents to condition answer generation, but current retrieval-augmented approaches suffer from low precision, noisy passages, and limited reasoning. To address this, we propose ReAG, a novel Reasoning-Augmented Multimodal RAG approach that combines coarse- and fine-grained retrieval with a critic model that filters irrelevant passages, ensuring high-quality additional context. The model follows a multi-stage training strategy leveraging reinforcement learning to enhance reasoning over retrieved content, while supervised fine-tuning serves only as a cold start. Extensive experiments on Encyclopedic-VQA and InfoSeek demonstrate that ReAG significantly outperforms prior methods, improving answer accuracy and providing interpretable reasoning grounded in retrieved evidence. Our source code is publicly available at: https://github.com/aimagelab/ReAG.
☆ Mechanistic Finetuning of Vision-Language-Action Models via Few-Shot Demonstrations
Vision-Language Action (VLAs) models promise to extend the remarkable success of vision-language models (VLMs) to robotics. Yet, unlike VLMs in the vision-language domain, VLAs for robotics require finetuning to contend with varying physical factors like robot embodiment, environment characteristics, and spatial relationships of each task. Existing fine-tuning methods lack specificity, adapting the same set of parameters regardless of a task's visual, linguistic, and physical characteristics. Inspired by functional specificity in neuroscience, we hypothesize that it is more effective to finetune sparse model representations specific to a given task. In this work, we introduce Robotic Steering, a finetuning approach grounded in mechanistic interpretability that leverages few-shot demonstrations to identify and selectively finetune task-specific attention heads aligned with the physical, visual, and linguistic requirements of robotic tasks. Through comprehensive on-robot evaluations with a Franka Emika robot arm, we demonstrate that Robotic Steering outperforms LoRA while achieving superior robustness under task variation, reduced computational cost, and enhanced interpretability for adapting VLAs to diverse robotic tasks.
☆ Improving LLM-based Ontology Matching with fine-tuning on synthetic data
Large Language Models (LLMs) are increasingly being integrated into various components of Ontology Matching pipelines. This paper investigates the capability of LLMs to perform ontology matching directly on ontology modules and generate the corresponding alignments. Furthermore, it is explored how a dedicated fine-tuning strategy can enhance the model's matching performance in a zero-shot setting. The proposed method incorporates a search space reduction technique to select relevant subsets from both source and target ontologies, which are then used to automatically construct prompts. Recognizing the scarcity of reference alignments for training, a novel LLM-based approach is introduced for generating a synthetic dataset. This process creates a corpus of ontology submodule pairs and their corresponding reference alignments, specifically designed to fine-tune an LLM for the ontology matching task. The proposed approach was evaluated on the Conference, Geolink, Enslaved, Taxon, and Hydrography datasets from the OAEI complex track. The results demonstrate that the LLM fine-tuned on the synthetically generated data exhibits superior performance compared to the non-fine-tuned base model. The key contribution is a strategy that combines automatic dataset generation with fine-tuning to effectively adapt LLMs for ontology matching tasks.
☆ Smarter, not Bigger: Fine-Tuned RAG-Enhanced LLMs for Automotive HIL Testing
Hardware-in-the-Loop (HIL) testing is essential for automotive validation but suffers from fragmented and underutilized test artifacts. This paper presents HIL-GPT, a retrieval-augmented generation (RAG) system integrating domain-adapted large language models (LLMs) with semantic retrieval. HIL-GPT leverages embedding fine-tuning using a domain-specific dataset constructed via heuristic mining and LLM-assisted synthesis, combined with vector indexing for scalable, traceable test case and requirement retrieval. Experiments show that fine-tuned compact models, such as \texttt{bge-base-en-v1.5}, achieve a superior trade-off between accuracy, latency, and cost compared to larger models, challenging the notion that bigger is always better. An A/B user study further confirms that RAG-enhanced assistants improve perceived helpfulness, truthfulness, and satisfaction over general-purpose LLMs. These findings provide insights for deploying efficient, domain-aligned LLM-based assistants in industrial HIL environments.
☆ Extension Condition "violations" and Merge optimality constraints
We analyze, using the mathematical formulation of Merge within the Strong Minimalist Thesis framework, a set of linguistic phenomena, including head-to-head movement, phrasal affixes and syntactic cliticization, verb-particle alternation, and operator-variable phenomena. These are often regarded as problematic, as violations of the Extension Condition. We show that, in fact, all of these phenomena can be explained without involving any EC violation. We first show that derivations using Sideward Merge are possible for all of these cases: these respect EC, though they involve some amount of optimality violations, with respect to Resource Restrictions cost functions, andthe amount of violation differs among these cases. We show that all the cases that involve large optimality violations can be derived in alternative ways involving neither EC nor the use of SM. The main remaining case (head-to-head movement) only involves SM with minimal violations of optimality (near equilibrium fluctuations). We analyze explicitly also the cases of multiple wh-fronting, clusters of clitics in Romance languages and possessor agreement construction in Korean, and how an explanation of these phenomena based on SM can be made compatible with the colored operad generators for phases and theta roles. We also show that the EC condition has a clear algebraic meaning in the mathematical formulation of Merge and is therefore an intrinsic structural algebraic constraint of the model, rather than an additional assumption. We also show that the minimal optimality violating SM plays a structural role in the Markovian properties of Merge, and we compare different optimality conditions coming from Minimal Search and from Resource Restriction in terms of their effect on the dynamics of the Hopf algebra Markov chain, in a simple explicit example.
comment: 85 pages
☆ DeepSeekMath-V2: Towards Self-Verifiable Mathematical Reasoning
Large language models have made significant progress in mathematical reasoning, which serves as an important testbed for AI and could impact scientific research if further advanced. By scaling reasoning with reinforcement learning that rewards correct final answers, LLMs have improved from poor performance to saturating quantitative reasoning competitions like AIME and HMMT in one year. However, this approach faces fundamental limitations. Pursuing higher final answer accuracy doesn't address a key issue: correct answers don't guarantee correct reasoning. Moreover, many mathematical tasks like theorem proving require rigorous step-by-step derivation rather than numerical answers, making final answer rewards inapplicable. To push the limits of deep reasoning, we believe it is necessary to verify the comprehensiveness and rigor of mathematical reasoning. Self-verification is particularly important for scaling test-time compute, especially for open problems without known solutions. Towards self-verifiable mathematical reasoning, we investigate how to train an accurate and faithful LLM-based verifier for theorem proving. We then train a proof generator using the verifier as the reward model, and incentivize the generator to identify and resolve as many issues as possible in their own proofs before finalizing them. To maintain the generation-verification gap as the generator becomes stronger, we propose to scale verification compute to automatically label new hard-to-verify proofs, creating training data to further improve the verifier. Our resulting model, DeepSeekMath-V2, demonstrates strong theorem-proving capabilities, achieving gold-level scores on IMO 2025 and CMO 2024 and a near-perfect 118/120 on Putnam 2024 with scaled test-time compute.
☆ Joint Speech and Text Training for LLM-Based End-to-End Spoken Dialogue State Tracking
End-to-end spoken dialogue state tracking (DST) is made difficult by the tandem of having to handle speech input and data scarcity. Combining speech foundation encoders and large language models has been proposed in recent work as to alleviate some of this difficulty. Although this approach has been shown to result in strong spoken DST models, achieving state-of-the-art performance in realistic multi-turn DST, it struggles to generalize across domains and requires annotated spoken DST training data for each domain of interest. However, collecting such data for every target domain is both costly and difficult. Noting that textual DST data is more easily obtained for various domains, in this work, we propose jointly training on available spoken DST data and written textual data from other domains as a way to achieve cross-domain generalization. We conduct experiments which show the efficacy of our proposed method for getting good cross-domain DST performance without relying on spoken training data from the target domains.
comment: submitted to ICASSP 2026
☆ What Shape Is Optimal for Masks in Text Removal?
The advent of generative models has dramatically improved the accuracy of image inpainting. In particular, by removing specific text from document images, reconstructing original images is extremely important for industrial applications. However, most existing methods of text removal focus on deleting simple scene text which appears in images captured by a camera in an outdoor environment. There is little research dedicated to complex and practical images with dense text. Therefore, we created benchmark data for text removal from images including a large amount of text. From the data, we found that text-removal performance becomes vulnerable against mask profile perturbation. Thus, for practical text-removal tasks, precise tuning of the mask shape is essential. This study developed a method to model highly flexible mask profiles and learn their parameters using Bayesian optimization. The resulting profiles were found to be character-wise masks. It was also found that the minimum cover of a text region is not optimal. Our research is expected to pave the way for a user-friendly guideline for manual masking.
comment: 12 pages, 17 figures
☆ Exploring Performance Variations in Finetuned Translators of Ultra-Low Resource Languages: Do Linguistic Differences Matter?
Finetuning pre-trained language models with small amounts of data is a commonly-used method to create translators for ultra-low resource languages such as endangered Indigenous languages. However, previous works have reported substantially different performances with translators created using similar methodology and data. In this work we systematically explored possible causes of the performance difference, aiming to determine whether it was a product of different cleaning procedures, limitations of the pre-trained models, the size of the base model, or the size of the training dataset, studying both directions of translation. Our studies, using two Brazilian Indigenous languages, related but with significant structural linguistic characteristics, indicated none or very limited influence from those training factors, suggesting differences between languages may play a significant role in the ability to produce translators by fine-tuning pre-trained models.
☆ Mapping Clinical Doubt: Locating Linguistic Uncertainty in LLMs AAAI'26
Large Language Models (LLMs) are increasingly used in clinical settings, where sensitivity to linguistic uncertainty can influence diagnostic interpretation and decision-making. Yet little is known about where such epistemic cues are internally represented within these models. Distinct from uncertainty quantification, which measures output confidence, this work examines input-side representational sensitivity to linguistic uncertainty in medical text. We curate a contrastive dataset of clinical statements varying in epistemic modality (e.g., 'is consistent with' vs. 'may be consistent with') and propose Model Sensitivity to Uncertainty (MSU), a layerwise probing metric that quantifies activation-level shifts induced by uncertainty cues. Our results show that LLMs exhibit structured, depth-dependent sensitivity to clinical uncertainty, suggesting that epistemic information is progressively encoded in deeper layers. These findings reveal how linguistic uncertainty is internally represented in LLMs, offering insight into their interpretability and epistemic reliability.
comment: Accepted to AAAI'26 SECURE-AI4H Workshop
☆ SuRe: Surprise-Driven Prioritised Replay for Continual LLM Learning
Continual learning, one's ability to adapt to a sequence of tasks without forgetting previously acquired knowledge, remains a major challenge in machine learning and a key gap between artificial and human intelligence. While regularisation and replay perform well in vision, they lag behind multi-task learning for large language models (LLMs), especially at scale with many tasks. We revisit replay and argue that two failure modes drive this gap: selection (what to rehearse) and integration (how to consolidate new knowledge). To address selection, we propose Surprise-prioritised Replay (SuRe), a simple, architecture-agnostic rule that ranks and stores the most surprising (high Negative Log-Likelihood) sequences. SuRe achieves state-of-the-art performance in the Large Number of Tasks (LNT) setting and delivers the best overall average across both Standard CL and LNT benchmarks. To address integration, we add a dual-learner design with fast and slow LoRA adapters merged via an exponential moving average (EMA), enabling rapid adaptation while stabilising long-term knowledge. Combining SuRe with the dual learner yields further gains, including improvements of up to +5 accuracy points on LNT over prior SOTA. Ablation studies confirm that our proposed method remains robust under reduced replay frequency and small buffer size, demonstrating both effectiveness and sample efficiency. Taken together, our results establish replay as a strong baseline for continual LLM fine-tuning and demonstrate that surprise-based selection and slow-weight consolidation are complementary components for mitigating catastrophic forgetting.
☆ PAT: Accelerating LLM Decoding via Prefix-Aware Attention with Resource Efficient Multi-Tile Kernel
LLM serving is increasingly dominated by decode attention, which is a memory-bound operation due to massive KV cache loading from global memory. Meanwhile, real-world workloads exhibit substantial, hierarchical shared prefixes across requests (e.g., system prompts, tools/templates, RAG). Existing attention implementations fail to fully exploit prefix sharing: *one-query-per-CTA* execution repeatedly loads shared prefix KV cache, while *one-size-fits-all* tiling leaves on-chip resources idle and exacerbates bubbles for uneven KV lengths. These choices amplify memory bandwidth pressure and stall memory-bound decode attention. This paper introduces PAT, a prefix-aware attention kernel implementation for LLM decoding that organizes execution with a pack-forward-merge paradigm. PAT packs queries by shared prefix to reduce repeated memory accesses, runs a customized multi-tile kernel to achieve high resource efficiency. It further applies practical multi-stream forwarding and KV splitting to reduce resource bubbles. The final merge performs online softmax with negligible overhead. We implement PAT as an off-the-shelf plugin for vLLM. Evaluation on both real-world and synthetic workloads shows that PAT reduces attention latency by 67.4% on average and TPOT by 13.6-83.4% under the same configurations against state-of-the-art attention kernels.
comment: Accepted by ASPLOS'26
☆ Named Entity Recognition for the Kurdish Sorani Language: Dataset Creation and Comparative Analysis
This work contributes towards balancing the inclusivity and global applicability of natural language processing techniques by proposing the first 'name entity recognition' dataset for Kurdish Sorani, a low-resource and under-represented language, that consists of 64,563 annotated tokens. It also provides a tool for facilitating this task in this and many other languages and performs a thorough comparative analysis, including classic machine learning models and neural systems. The results obtained challenge established assumptions about the advantage of neural approaches within the context of NLP. Conventional methods, in particular CRF, obtain F1-scores of 0.825, outperforming the results of BiLSTM-based models (0.706) significantly. These findings indicate that simpler and more computationally efficient classical frameworks can outperform neural architectures in low-resource settings.
☆ Sentiment Analysis Of Shopee Product Reviews Using Distilbert
The rapid growth of digital commerce has led to the accumulation of a massive number of consumer reviews on online platforms. Shopee, as one of the largest e-commerce platforms in Southeast Asia, receives millions of product reviews every day containing valuable information regarding customer satisfaction and preferences. Manual analysis of these reviews is inefficient, thus requiring a computational approach such as sentiment analysis. This study examines the use of DistilBERT, a lightweight transformer-based deep learning model, for sentiment classification on Shopee product reviews. The dataset used consists of approximately one million English-language reviews that have been preprocessed and trained using the distilbert-base-uncased model. Evaluation was conducted using accuracy, precision, recall, and F1-score metrics, and compared against benchmark models such as BERT and SVM. The results show that DistilBERT achieved an accuracy of 94.8%, slightly below BERT (95.3%) but significantly higher than SVM (90.2%), with computation time reduced by more than 55%. These findings demonstrate that DistilBERT provides an optimal balance between accuracy and efficiency, making it suitable for large scale sentiment analysis on e-commerce platforms. Keywords: Sentiment Analysis, DistilBERT, Shopee Reviews, Natural Language Processing, Deep Learning, Transformer Models.
comment: 6 pages, 11 figures
☆ Token-Level Marginalization for Multi-Label LLM Classifiers
This paper addresses the critical challenge of deriving interpretable confidence scores from generative language models (LLMs) when applied to multi-label content safety classification. While models like LLaMA Guard are effective for identifying unsafe content and its categories, their generative architecture inherently lacks direct class-level probabilities, which hinders model confidence assessment and performance interpretation. This limitation complicates the setting of dynamic thresholds for content moderation and impedes fine-grained error analysis. This research proposes and evaluates three novel token-level probability estimation approaches to bridge this gap. The aim is to enhance model interpretability and accuracy, and evaluate the generalizability of this framework across different instruction-tuned models. Through extensive experimentation on a synthetically generated, rigorously annotated dataset, it is demonstrated that leveraging token logits significantly improves the interpretability and reliability of generative classifiers, enabling more nuanced content safety moderation.
☆ Swarms of Large Language Model Agents for Protein Sequence Design with Experimental Validation
Designing proteins de novo with tailored structural, physicochemical, and functional properties remains a grand challenge in biotechnology, medicine, and materials science, due to the vastness of sequence space and the complex coupling between sequence, structure, and function. Current state-of-the-art generative methods, such as protein language models (PLMs) and diffusion-based architectures, often require extensive fine-tuning, task-specific data, or model reconfiguration to support objective-directed design, thereby limiting their flexibility and scalability. To overcome these limitations, we present a decentralized, agent-based framework inspired by swarm intelligence for de novo protein design. In this approach, multiple large language model (LLM) agents operate in parallel, each assigned to a specific residue position. These agents iteratively propose context-aware mutations by integrating design objectives, local neighborhood interactions, and memory and feedback from previous iterations. This position-wise, decentralized coordination enables emergent design of diverse, well-defined sequences without reliance on motif scaffolds or multiple sequence alignments, validated with experiments on proteins with alpha helix and coil structures. Through analyses of residue conservation, structure-based metrics, and sequence convergence and embeddings, we demonstrate that the framework exhibits emergent behaviors and effective navigation of the protein fitness landscape. Our method achieves efficient, objective-directed designs within a few GPU-hours and operates entirely without fine-tuning or specialized training, offering a generalizable and adaptable solution for protein design. Beyond proteins, the approach lays the groundwork for collective LLM-driven design across biomolecular systems and other scientific discovery tasks.
☆ Beyond Query-Level Comparison: Fine-Grained Reinforcement Learning for Text-to-SQL with Automated Interpretable Critiques
Text-to-SQL, a pivotal natural language processing (NLP) task that converts textual queries into executable SQL, has seen substantial progress in recent years. However, existing evaluation and reward mechanisms used to train and assess the text-to-SQL models remain a critical bottleneck. Current approaches heavily rely on manually annotated gold SQL queries, which are costly to produce and impractical for large-scale evaluation. More importantly, most reinforcement learning (RL) methods in text-to-SQL leverage only the final binary execution outcome as the reward signal, a coarse-grained supervision that overlooks detailed structural and semantic errors from the perspective of rubrics. To address these challenges, we propose RuCo-C, a novel generative judge model for fine-grained, query-specific automatic evaluation using interpretable critiques without human intervention. Our framework first automatically generates query-specific evaluation rubrics for human-free annotation, linking them to interpretable critiques. Subsequently, it integrates densified reward feedback through a "progressive exploration" strategy during the RL training process, which dynamically adjusts the rewards to enhance the model's performance. Comprehensive experiments demonstrate that RuCo-C outperforms existing methods in text-to-SQL evaluation, yielding significant performance gains.
♻ ☆ A Trio Neural Model for Dynamic Entity Relatedness Ranking
Measuring entity relatedness is a fundamental task for many natural language processing and information retrieval applications. Prior work often studies entity relatedness in static settings and an unsupervised manner. However, entities in real-world are often involved in many different relationships, consequently entity-relations are very dynamic over time. In this work, we propose a neural networkbased approach for dynamic entity relatedness, leveraging the collective attention as supervision. Our model is capable of learning rich and different entity representations in a joint framework. Through extensive experiments on large-scale datasets, we demonstrate that our method achieves better results than competitive baselines.
comment: In Proceedings of CoNLL 2018
♻ ☆ Automated Composition of Agents: A Knapsack Approach for Agentic Component Selection NeurIPS 2025
Designing effective agentic systems requires the seamless composition and integration of agents, tools, and models within dynamic and uncertain environments. Most existing methods rely on static, semantic retrieval approaches for tool or agent discovery. However, effective reuse and composition of existing components remain challenging due to incomplete capability descriptions and the limitations of retrieval methods. Component selection suffers because the decisions are not based on capability, cost, and real-time utility. To address these challenges, we introduce a structured, automated framework for agentic system composition that is inspired by the knapsack problem. Our framework enables a composer agent to systematically identify, select, and assemble an optimal set of agentic components by jointly considering performance, budget constraints, and compatibility. By dynamically testing candidate components and modeling their utility in real-time, our approach streamlines the assembly of agentic systems and facilitates scalable reuse of resources. Empirical evaluation with Claude 3.5 Sonnet across five benchmarking datasets shows that our online-knapsack-based composer consistently lies on the Pareto frontier, achieving higher success rates at significantly lower component costs compared to our baselines. In the single-agent setup, the online knapsack composer shows a success rate improvement of up to 31.6% in comparison to the retrieval baselines. In multi-agent systems, the online knapsack composer increases success rate from 37% to 87% when agents are selected from an agent inventory of 100+ agents. The substantial performance gap confirms the robust adaptability of our method across diverse domains and budget constraints.
comment: Accepted to NeurIPS 2025 Conference
♻ ☆ Linguistically-Controlled Paraphrase Generation ACL
Controlled paraphrase generation produces paraphrases that preserve meaning while allowing precise control over linguistic attributes of the output. We introduce LingConv, an encoder-decoder framework that enables fine-grained control over 40 linguistic attributes in English. To improve reliability, we introduce a novel inference-time quality control mechanism that iteratively refines attribute embeddings to generate paraphrases that closely match target attributes without sacrificing semantic fidelity. LingConv reduces attribute error by up to 34% over existing models, with the quality control mechanism contributing an additional 14% improvement.
comment: This paper was published in Findings of ACL: EMNLP 2025
One Patient, Many Contexts: Scaling Medical AI with Contextual Intelligence
Medical AI, including clinical language models, vision-language models, and multimodal health record models, already summarizes notes, answers questions, and supports decisions. Their adaptation to new populations, specialties, or care settings often relies on fine-tuning, prompting, or retrieval from external knowledge bases. These strategies can scale poorly and risk contextual errors: outputs that appear plausible but miss critical patient or situational information. We envision context switching as a solution. Context switching adjusts model reasoning at inference without retraining. Generative models can tailor outputs to patient biology, care setting, or disease. Multimodal models can reason on notes, laboratory results, imaging, and genomics, even when some data are missing or delayed. Agent models can coordinate tools and roles based on tasks and users. In each case, context switching enables medical AI to adapt across specialties, populations, and geographies. It requires advances in data design, model architectures, and evaluation frameworks, and establishes a foundation for medical AI that scales to infinitely many contexts while remaining reliable and suited to real-world care.
♻ ☆ Do Large Language Models Think Like the Brain? Sentence-Level Evidence from fMRI and Hierarchical Embeddings
Understanding whether large language models (LLMs) and the human brain converge on similar computational principles remains a fundamental and important question in cognitive neuroscience and AI. Do the brain-like patterns observed in LLMs emerge simply from scaling, or do they reflect deeper alignment with the architecture of human language processing? This study focuses on the sentence-level neural mechanisms of language models, systematically investigating how hierarchical representations in LLMs align with the dynamic neural responses during human sentence comprehension. By comparing hierarchical embeddings from 14 publicly available LLMs with fMRI data collected from participants, who were exposed to a naturalistic narrative story, we constructed sentence-level neural prediction models to precisely identify the model layers most significantly correlated with brain region activations. Results show that improvements in model performance drive the evolution of representational architectures toward brain-like hierarchies, particularly achieving stronger functional and anatomical correspondence at higher semantic abstraction levels.
♻ ☆ AutoHall: Automated Factuality Hallucination Dataset Generation for Large Language Models
Large language models (LLMs) have gained broad applications across various domains but still struggle with hallucinations. Currently, hallucinations occur frequently in the generation of factual content and pose a great challenge to trustworthy LLMs. However, hallucination detection is hindered by the laborious and expensive manual annotation of hallucinatory content. Meanwhile, as different LLMs exhibit distinct types and rates of hallucination, the collection of hallucination datasets is inherently model-specific, which also increases the cost. To address this issue, this paper proposes a method called $\textbf{AutoHall}$ for $\underline{Auto}$matically constructing model-specific $\underline{Hall}$ucination datasets based on existing fact-checking datasets. The empirical results reveal variations in hallucination proportions and types among different models. Moreover, we introduce a zero-resource and black-box hallucination detection method based on self-contradiction to recognize the hallucination in our constructed dataset, achieving superior detection performance compared to baselines. Further analysis on our dataset provides insight into factors that may contribute to LLM hallucinations. Our codes and datasets are publicly available at https://github.com/zouyingcao/AutoHall.
comment: Accepted by IEEE Transactions on Audio, Speech, and Language Processing (TASLP)
♻ ☆ Event Stream-based Sign Language Translation: A High-Definition Benchmark Dataset and A Novel Baseline
Sign Language Translation (SLT) is a core task in the field of AI-assisted disability. Traditional SLT methods are typically based on visible light videos, which are easily affected by factors such as lighting variations, rapid hand movements, and privacy concerns. This paper proposes the use of bio-inspired event cameras to alleviate the aforementioned issues. Specifically, we introduce a new high-definition event-based sign language dataset, termed Event-CSL, which effectively addresses the data scarcity in this research area. The dataset comprises 14,827 videos, 14,821 glosses, and 2,544 Chinese words in the text vocabulary. These samples are collected across diverse indoor and outdoor scenes, covering multiple viewpoints, lighting conditions, and camera motions. We have also benchmarked existing mainstream SLT methods on this dataset to facilitate fair comparisons in future research.Furthermore, we propose a novel event-based sign language translation framework, termed EvSLT. The framework first segments continuous video features into clips and employs a Mamba-based memory aggregation module to compress and aggregate spatial detail features at the clip level. Subsequently, these spatial features, along with temporal representations obtained from temporal convolution, are then fused by a graph-guided spatiotemporal fusion module. Extensive experiments on Event-CSL, as well as other publicly available datasets, demonstrate the superior performance of our method. The dataset and source code will be released on https://github.com/Event-AHU/OpenESL
♻ ☆ Self-Guided Defense: Adaptive Safety Alignment for Reasoning Models via Synthesized Guidelines
Reasoning models have demonstrated remarkable capabilities in complex reasoning tasks. However, ensuring their safety against adversarial jailbreak prompts remains a critical challenge. Due to the covert and deceptive nature of such prompts, they can often evade built-in safety mechanisms and lead to the generation of harmful content. This underscores the need for an adaptive safety alignment approach that enables models to autonomously reinforce their defenses in response to adversarial inputs. This paper introduces the Synthesized Guideline-based Adaptive Safety Alignment (SGASA) framework, which internalizes model-generated safety guidelines to strengthen models' ability to enhance robustness against harmful adversarial prompts while minimizing unnecessary refusals of benign requests. SGASA consists of two key stages: Data Pre-synthesis, which generates safety guidelines and augmented prompts; and Alignment Fine-tuning, which leverages Supervised Fine-tuning (SFT) and Direct Preference Optimization (DPO) to embed these guidelines into the model. Extensive experiments across multiple datasets demonstrate that SGASA significantly improves model safety, validating its adaptive and scalable effectiveness.
♻ ☆ KSHSeek: Data-Driven Approaches to Mitigating and Detecting Knowledge-Shortcut Hallucinations in Generative Models
The emergence of large language models (LLMs) has significantly advanced the development of natural language processing (NLP), especially in text generation tasks like question answering. However, model hallucinations remain a major challenge in natural language generation (NLG) tasks due to their complex causes. We systematically expand on the causes of factual hallucinations from the perspective of knowledge shortcuts, analyzing hallucinations arising from correct and defect-free data and demonstrating that knowledge-shortcut hallucinations are prevalent in generative models. To mitigate this issue, we propose a high similarity pruning algorithm at the data preprocessing level to reduce spurious correlations in the data. Additionally, we design a specific detection method for knowledge-shortcut hallucinations to evaluate the effectiveness of our mitigation strategy. Experimental results show that our approach effectively reduces knowledge-shortcut hallucinations, particularly in fine-tuning tasks, without negatively impacting model performance in question answering. This work introduces a new paradigm for mitigating specific hallucination issues in generative models, enhancing their robustness and reliability in real-world applications.
comment: 16 pages, 34 figures
♻ ☆ FlowerTune: A Cross-Domain Benchmark for Federated Fine-Tuning of Large Language Models
Large Language Models (LLMs) have achieved state-of-the-art results across diverse domains, yet their development remains reliant on vast amounts of publicly available data, raising concerns about data scarcity and the lack of access to domain-specific, sensitive information. Federated Learning (FL) presents a compelling framework to address these challenges by enabling decentralized fine-tuning on pre-trained LLMs without sharing raw data. However, the compatibility and performance of pre-trained LLMs in FL settings remain largely under explored. We introduce the FlowerTune LLM Leaderboard, a first-of-its-kind benchmarking suite designed to evaluate federated fine-tuning of LLMs across four diverse domains: general NLP, finance, medical, and coding. Each domain includes federated instruction-tuning datasets and domain-specific evaluation metrics. Our results, obtained through a collaborative, open-source and community-driven approach, provide the first comprehensive comparison across 26 pre-trained LLMs with different aggregation and fine-tuning strategies under federated settings, offering actionable insights into model performance, resource constraints, and domain adaptation. This work lays the foundation for developing privacy-preserving, domain-specialized LLMs for real-world applications.
♻ ☆ IROTE: Human-like Traits Elicitation of Large Language Model via In-Context Self-Reflective Optimization AAAI 2026
Trained on various human-authored corpora, Large Language Models (LLMs) have demonstrated a certain capability of reflecting specific human-like traits (e.g., personality or values) by prompting, benefiting applications like personalized LLMs and social simulations. However, existing methods suffer from the superficial elicitation problem: LLMs can only be steered to mimic shallow and unstable stylistic patterns, failing to embody the desired traits precisely and consistently across diverse tasks like humans. To address this challenge, we propose IROTE, a novel in-context method for stable and transferable trait elicitation. Drawing on psychological theories suggesting that traits are formed through identity-related reflection, our method automatically generates and optimizes a textual self-reflection within prompts, which comprises self-perceived experience, to stimulate LLMs' trait-driven behavior. The optimization is performed by iteratively maximizing an information-theoretic objective that enhances the connections between LLMs' behavior and the target trait, while reducing noisy redundancy in reflection without any fine-tuning, leading to evocative and compact trait reflection. Extensive experiments across three human trait systems manifest that one single IROTE-generated self-reflection can induce LLMs' stable impersonation of the target trait across diverse downstream tasks beyond simple questionnaire answering, consistently outperforming existing strong baselines.
comment: This paper is accepted by AAAI 2026
♻ ☆ Masked Diffusion Models as Energy Minimization
We present a systematic theoretical framework that interprets masked diffusion models (MDMs) as solutions to energy minimization problems in discrete optimal transport. Specifically, we prove that three distinct energy formulations--kinetic, conditional kinetic, and geodesic energy--are mathematically equivalent under the structure of MDMs, and that MDMs minimize all three when the mask schedule satisfies a closed-form optimality condition. This unification not only clarifies the theoretical foundations of MDMs, but also motivates practical improvements in sampling. By parameterizing interpolation schedules via Beta distributions, we reduce the schedule design space to a tractable 2D search, enabling efficient post-training tuning without model modification. Experiments on synthetic and real-world benchmarks demonstrate that our energy-inspired schedules outperform hand-crafted baselines, particularly in low-step sampling settings.
♻ ☆ Mind the Gap: Bridging Thought Leap for Improved Chain-of-Thought Tuning NeurIPS 2025
Large language models (LLMs) have achieved remarkable progress on mathematical tasks through Chain-of-Thought (CoT) reasoning. However, existing mathematical CoT datasets often suffer from Thought Leaps due to experts omitting intermediate steps, which negatively impacts model learning and generalization. We propose the CoT Thought Leap Bridge Task, which aims to automatically detect leaps and generate missing intermediate reasoning steps to restore the completeness and coherence of CoT. To facilitate this, we constructed a specialized training dataset called ScaleQM+, based on the structured ScaleQuestMath dataset, and trained CoT-Bridge to bridge thought leaps. Through comprehensive experiments on mathematical reasoning benchmarks, we demonstrate that models fine-tuned on bridged datasets consistently outperform those trained on original datasets, with improvements of up to +5.87% on NuminaMath. Our approach effectively enhances distilled data (+3.02%) and provides better starting points for reinforcement learning (+3.1%), functioning as a plug-and-play module compatible with existing optimization techniques. Furthermore, CoT-Bridge demonstrate improved generalization to out-of-domain logical reasoning tasks, confirming that enhancing reasoning completeness yields broadly applicable benefits.
comment: Accepted to NeurIPS 2025. Camera ready version. Code: https://github.com/ZJU-REAL/Mind-the-Gap Project: https://zju-real.github.io/CoT-Bridge/
♻ ☆ Agentar-Scale-SQL: Advancing Text-to-SQL through Orchestrated Test-Time Scaling
State-of-the-art (SOTA) Text-to-SQL methods still lag significantly behind human experts on challenging benchmarks like BIRD. Current approaches that explore test-time scaling lack an orchestrated strategy and neglect the model's internal reasoning process. To bridge this gap, we introduce Agentar-Scale-SQL, a novel framework leveraging scalable computation to improve performance. Agentar-Scale-SQL implements an Orchestrated Test-Time Scaling strategy that synergistically combines three distinct perspectives: i) Internal Scaling via RL-enhanced Intrinsic Reasoning, ii) Sequential Scaling through Iterative Refinement, and iii) Parallel Scaling using Diverse Synthesis and Tournament Selection. Agentar-Scale-SQL is a general-purpose framework designed for easy adaptation to new databases and more powerful language models. Extensive experiments show that Agentar-Scale-SQL achieves SOTA performance on the BIRD benchmark, reaching 81.67% execution accuracy on the test set and ranking first on the official leaderboard, demonstrating an effective path toward human-level performance.
♻ ☆ From Perception to Reasoning: Deep Thinking Empowers Multimodal Large Language Models
With the remarkable success of Multimodal Large Language Models (MLLMs) in perception tasks, enhancing their complex reasoning capabilities has emerged as a critical research focus. Existing models still suffer from challenges such as opaque reasoning paths and insufficient generalization ability. Chain-of-Thought (CoT) reasoning, which has demonstrated significant efficacy in language models by enhancing reasoning transparency and output interpretability, holds promise for improving model reasoning capabilities when extended to the multimodal domain. This paper provides a systematic review centered on "Multimodal Chain-of-Thought" (MCoT). First, it analyzes the background and theoretical motivations for its inception from the perspectives of technical evolution and task demands. Then, it introduces mainstream MCoT methods from three aspects: CoT paradigms, the post-training stage, and the inference stage, while also analyzing their underlying mechanisms. Furthermore, the paper summarizes existing evaluation benchmarks and metrics, and discusses the application scenarios of MCoT. Finally, it analyzes the challenges currently facing MCoT and provides an outlook on its future research directions.
comment: Survey; 7 figures, 3 tables, 44 pages
♻ ☆ MCTS-SQL: Light-Weight LLMs can Master the Text-to-SQL through Monte Carlo Tree Search AAAI 2026
Text-to-SQL is a fundamental yet challenging task in the NLP area, aiming at translating natural language questions into SQL queries. While recent advances in large language models have greatly improved performance, most existing approaches depend on models with tens of billions of parameters or costly APIs, limiting their applicability in resource-constrained environments. For real world, especially on edge devices, it is crucial for Text-to-SQL to ensure cost-effectiveness. Therefore, enabling the light-weight models for Text-to-SQL is of great practical significance. However, smaller LLMs often struggle with complicated user instruction, redundant schema linking or syntax correctness. To address these challenges, we propose MCTS-SQL, a novel framework that uses Monte Carlo Tree Search to guide SQL generation through multi-step refinement. Since the light-weight models' weak performance of single-shot prediction, we generate better results through several trials with feedback. However, directly applying MCTS-based methods inevitably leads to significant time and computational overhead. Driven by this issue, we propose a token-level prefix-cache mechanism that stores prior information during iterations, effectively improved the execution speed. Experiments results on the SPIDER and BIRD benchmarks demonstrate the effectiveness of our approach. Using a small open-source Qwen2.5-Coder-1.5B, our method outperforms ChatGPT-3.5. When leveraging a more powerful model Gemini 2.5 to explore the performance upper bound, we achieved results competitive with the SOTA. Our findings demonstrate that even small models can be effectively deployed in practical Text-to-SQL systems with the right strategy.
comment: Accepted by AAAI 2026
♻ ☆ On the Superimposed Noise Accumulation Problem in Sequential Knowledge Editing of Large Language Models
Sequential knowledge editing techniques aim to continuously update knowledge in large language models at low cost, preventing models from generating outdated or incorrect information. However, existing sequential editing methods suffer from a significant decline in editing success rates after long-term editing. Through theoretical analysis and experiments, our findings reveal that as the number of edits increases, the model's output increasingly deviates from the desired target, leading to a drop in editing success rates. We refer to this issue as the superimposed noise accumulation problem. Our further analysis demonstrates that the problem is related to the erroneous activation of irrelevant knowledge and conflicts between activated knowledge. Based on this analysis, a method named DeltaEdit is proposed that reduces conflicts between knowledge through dynamic orthogonal constraint strategies. Experiments show that DeltaEdit significantly reduces superimposed noise, achieving a 16.8% improvement in editing performance over the strongest baseline.
Machine Learning 174
☆ Intelligent Neural Networks: From Layered Architectures to Graph-Organized Intelligence
Biological neurons exhibit remarkable intelligence: they maintain internal states, communicate selectively with other neurons, and self-organize into complex graphs rather than rigid hierarchical layers. What if artificial intelligence could emerge from similarly intelligent computational units? We introduce Intelligent Neural Networks (INN), a paradigm shift where neurons are first-class entities with internal memory and learned communication patterns, organized in complete graphs rather than sequential layers. Each Intelligent Neuron combines selective state-space dynamics (knowing when to activate) with attention-based routing (knowing to whom to send signals), enabling emergent computation through graph-structured interactions. On the standard Text8 character modeling benchmark, INN achieves 1.705 Bit-Per-Character (BPC), significantly outperforming a comparable Transformer (2.055 BPC) and matching a highly optimized LSTM baseline. Crucially, a parameter-matched baseline of stacked Mamba blocks fails to converge (>3.4 BPC) under the same training protocol, demonstrating that INN's graph topology provides essential training stability. Ablation studies confirm this: removing inter-neuron communication degrades performance or leads to instability, proving the value of learned neural routing. This work demonstrates that neuron-centric design with graph organization is not merely bio-inspired -- it is computationally effective, opening new directions for modular, interpretable, and scalable neural architectures.
comment: Code available at https://github.com/AntoineSal/IntelligentNeuralNetwork
☆ From Pixels to Feelings: Aligning MLLMs with Human Cognitive Perception of Images
While Multimodal Large Language Models (MLLMs) are adept at answering what is in an image-identifying objects and describing scenes-they often lack the ability to understand how an image feels to a human observer. This gap is most evident when considering subjective cognitive properties, such as what makes an image memorable, funny, aesthetically pleasing, or emotionally evocative. To systematically address this challenge, we introduce CogIP-Bench, a comprehensive benchmark for evaluating MLLMs on such image cognitive properties. Our evaluation reveals a significant gap: current models are poorly aligned with human perception of these nuanced properties. We then demonstrate that a post-training phase can effectively bridge this gap, significantly enhancing the model's alignment with human judgments. Furthermore, we show that this learned cognitive alignment is not merely predictive but also transferable to downstream creative tasks. By integrating our cognitively-aligned MLLM into an image generation pipeline, we can guide the synthesis process to produce images that better embody desired traits, such as being more memorable or visually appealing. Our work provides a benchmark to measure this human-like perception, a post-training pipeline to enhance it, and a demonstration that this alignment unlocks more human-centric AI.
comment: Project page with codes/datasets/models: https://follen-cry.github.io/MLLM-Cognition-project-page/
☆ Can Synthetic Data Improve Symbolic Regression Extrapolation Performance?
Many machine learning models perform well when making predictions within the training data range, but often struggle when required to extrapolate beyond it. Symbolic regression (SR) using genetic programming (GP) can generate flexible models but is prone to unreliable behaviour in extrapolation. This paper investigates whether adding synthetic data can help improve performance in such cases. We apply Kernel Density Estimation (KDE) to identify regions in the input space where the training data is sparse. Synthetic data is then generated in those regions using a knowledge distillation approach: a teacher model generates predictions on new input points, which are then used to train a student model. We evaluate this method across six benchmark datasets, using neural networks (NN), random forests (RF), and GP both as teacher models (to generate synthetic data) and as student models (trained on the augmented data). Results show that GP models can often improve when trained on synthetic data, especially in extrapolation areas. However, the improvement depends on the dataset and teacher model used. The most important improvements are observed when synthetic data from GPe is used to train GPp in extrapolation regions. Changes in interpolation areas show only slight changes. We also observe heterogeneous errors, where model performance varies across different regions of the input space. Overall, this approach offers a practical solution for better extrapolation. Note: An earlier version of this work appeared in the GECCO 2025 Workshop on Symbolic Regression. This arXiv version corrects several parts of the original submission.
comment: 8 pages, 16 figures, GECCO 2025 Symbolic Regression Workshop
☆ GSpaRC: Gaussian Splatting for Real-time Reconstruction of RF Channels
Channel state information (CSI) is essential for adaptive beamforming and maintaining robust links in wireless communication systems. However, acquiring CSI incurs significant overhead, consuming up to 25\% of spectrum resources in 5G networks due to frequent pilot transmissions at sub-millisecond intervals. Recent approaches aim to reduce this burden by reconstructing CSI from spatiotemporal RF measurements, such as signal strength and direction-of-arrival. While effective in offline settings, these methods often suffer from inference latencies in the 5--100~ms range, making them impractical for real-time systems. We present GSpaRC: Gaussian Splatting for Real-time Reconstruction of RF Channels, the first algorithm to break the 1 ms latency barrier while maintaining high accuracy. GSpaRC represents the RF environment using a compact set of 3D Gaussian primitives, each parameterized by a lightweight neural model augmented with physics-informed features such as distance-based attenuation. Unlike traditional vision-based splatting pipelines, GSpaRC is tailored for RF reception: it employs an equirectangular projection onto a hemispherical surface centered at the receiver to reflect omnidirectional antenna behavior. A custom CUDA pipeline enables fully parallelized directional sorting, splatting, and rendering across frequency and spatial dimensions. Evaluated on multiple RF datasets, GSpaRC achieves similar CSI reconstruction fidelity to recent state-of-the-art methods while reducing training and inference time by over an order of magnitude. By trading modest GPU computation for a substantial reduction in pilot overhead, GSpaRC enables scalable, low-latency channel estimation suitable for deployment in 5G and future wireless systems. The code is available here: \href{https://github.com/Nbhavyasai/GSpaRC-WirelessGaussianSplatting.git}{GSpaRC}.
☆ An Efficient Privacy-preserving Intrusion Detection Scheme for UAV Swarm Networks
The rapid proliferation of unmanned aerial vehicles (UAVs) and their applications in diverse domains, such as surveillance, disaster management, agriculture, and defense, have revolutionized modern technology. While the potential benefits of swarm-based UAV networks are growing significantly, they are vulnerable to various security attacks that can jeopardize the overall mission success by degrading their performance, disrupting decision-making, and compromising the trajectory planning process. The Intrusion Detection System (IDS) plays a vital role in identifying potential security attacks to ensure the secure operation of UAV swarm networks. However, conventional IDS primarily focuses on binary classification with resource-intensive neural networks and faces challenges, including latency, privacy breaches, increased performance overhead, and model drift. This research aims to address these challenges by developing a novel lightweight and federated continuous learning-based IDS scheme. Our proposed model facilitates decentralized training across diverse UAV swarms to ensure data heterogeneity and privacy. The performance evaluation of our model demonstrates significant improvements, with classification accuracies of 99.45% on UKM-IDS, 99.99% on UAV-IDS, 96.85% on TLM-UAV dataset, and 98.05% on Cyber-Physical datasets.
comment: This paper has been accepted for publication in the Proceedings of the 44th AIAA/IEEE Digital Avionics Systems Conference (DASC) 2025, where it received the Best Paper of Session Award
☆ Exact Learning of Arithmetic with Differentiable Agents NeurIPS 2025
We explore the possibility of exact algorithmic learning with gradient-based methods and introduce a differentiable framework capable of strong length generalization on arithmetic tasks. Our approach centers on Differentiable Finite-State Transducers (DFSTs), a Turing-complete model family that avoids the pitfalls of prior architectures by enabling constant-precision, constant-time generation, and end-to-end log-parallel differentiable training. Leveraging policy-trajectory observations from expert agents, we train DFSTs to perform binary and decimal addition and multiplication. Remarkably, models trained on tiny datasets generalize without error to inputs thousands of times longer than the training examples. These results show that training differentiable agents on structured intermediate supervision could pave the way towards exact gradient-based learning of algorithmic skills. Code available at \href{https://github.com/dngfra/differentiable-exact-algorithmic-learner.git}{https://github.com/dngfra/differentiable-exact-algorithmic-learner.git}.
comment: Accepted at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MATH-AI
☆ VeriDispatcher: Multi-Model Dispatching through Pre-Inference Difficulty Prediction for RTL Generation Optimization
Large Language Models (LLMs) show strong performance in RTL generation, but different models excel on different tasks because of architecture and training differences. Prior work mainly prompts or finetunes a single model. What remains not well studied is how to coordinate multiple different LLMs so they jointly improve RTL quality while also reducing cost, instead of running all models and choosing the best output. We define this as the multi-LLM RTL generation problem. We propose VeriDispatcher, a multi-LLM RTL generation framework that dispatches each RTL task to suitable LLMs based on pre-inference difficulty prediction. For each model, we train a compact classifier over semantic embeddings of task descriptions, using difficulty scores derived from benchmark variants that combine syntax, structural similarity, and functional correctness. At inference, VeriDispatcher uses these predictors to route tasks to a selected subset of LLMs. Across 10 diverse LLMs on RTLLM and VerilogEval, VeriDispatcher achieves up to 18% accuracy improvement on RTLLM using only 40% of commercial calls, and on VerilogEval maintains accuracy while reducing commercial usage by 25%, enabling cost-effective, high-quality LLM deployment in hardware design automation.
☆ Integrated Transcriptomic-proteomic Biomarker Identification for Radiation Response Prediction in Non-small Cell Lung Cancer Cell Lines
To develop an integrated transcriptome-proteome framework for identifying concurrent biomarkers predictive of radiation response, as measured by survival fraction at 2 Gy (SF2), in non-small cell lung cancer (NSCLC) cell lines. RNA sequencing (RNA-seq) and data-independent acquisition mass spectrometry (DIA-MS) proteomic data were collected from 73 and 46 NSCLC cell lines, respectively. Following preprocessing, 1,605 shared genes were retained for analysis. Feature selection was performed using least absolute shrinkage and selection operator (Lasso) regression with a frequency-based ranking criterion under five-fold cross-validation repeated ten times. Support vector regression (SVR) models were constructed using transcriptome-only, proteome-only, and combined transcriptome-proteome feature sets. Model performance was assessed by the coefficient of determination (R2) and root mean square error (RMSE). Correlation analyses evaluated concordance between RNA and protein expression and the relationships of selected biomarkers with SF2. RNA-protein expression exhibited significant positive correlations (median Pearson's r = 0.363). Independent pipelines identified 20 prioritized gene signatures from transcriptomic, proteomic, and combined datasets. Models trained on single-omic features achieved limited cross-omic generalizability, while the combined model demonstrated balanced predictive accuracy in both datasets (R2=0.461, RMSE=0.120 for transcriptome; R2=0.604, RMSE=0.111 for proteome). This study presents the first proteotranscriptomic framework for SF2 prediction in NSCLC, highlighting the complementary value of integrating transcriptomic and proteomic data. The identified concurrent biomarkers capture both transcriptional regulation and functional protein activity, offering mechanistic insights and translational potential.
☆ Generative Anchored Fields: Controlled Data Generation via Emergent Velocity Fields and Transport Algebra
We present Generative Anchored Fields (GAF), a generative model that learns independent endpoint predictors $J$ (noise) and $K$ (data) rather than a trajectory predictor. The velocity field $v=K-J$ emerges from their time-conditioned disagreement. This factorization enables \textit{Transport Algebra}: algebraic operation on learned $\{(J_n,K_n)\}_{n=1}^N$ heads for compositional control. With class-specific $K_n$ heads, GAF supports a rich family of directed transport maps between a shared base distribution and multiple modalities, enabling controllable interpolation, hybrid generation, and semantic morphing through vector arithmetic. We achieve strong sample quality (FID 7.5 on CelebA-HQ $64\times 64$) while uniquely providing compositional generation as an architectural primitive. We further demonstrate, GAF has lossless cyclic transport between its initial and final state with LPIPS=$0.0$. Code available at https://github.com/IDLabMedia/GAF
comment: 20 pages, 21 figures
☆ Test-time scaling of diffusions with flow maps
A common recipe to improve diffusion models at test-time so that samples score highly against a user-specified reward is to introduce the gradient of the reward into the dynamics of the diffusion itself. This procedure is often ill posed, as user-specified rewards are usually only well defined on the data distribution at the end of generation. While common workarounds to this problem are to use a denoiser to estimate what a sample would have been at the end of generation, we propose a simple solution to this problem by working directly with a flow map. By exploiting a relationship between the flow map and velocity field governing the instantaneous transport, we construct an algorithm, Flow Map Trajectory Tilting (FMTT), which provably performs better ascent on the reward than standard test-time methods involving the gradient of the reward. The approach can be used to either perform exact sampling via importance weighting or principled search that identifies local maximizers of the reward-tilted distribution. We demonstrate the efficacy of our approach against other look-ahead techniques, and show how the flow map enables engagement with complicated reward functions that make possible new forms of image editing, e.g. by interfacing with vision language models.
☆ Modèles de Fondation et Ajustement : Vers une Nouvelle Génération de Modèles pour la Prévision des Séries Temporelles
Inspired by recent advances in large language models, foundation models have been developed for zero-shot time series forecasting, enabling prediction on datasets unseen during pretraining. These large-scale models, trained on vast collections of time series, learn generalizable representations for both point and probabilistic forecasting, reducing the need for task-specific architectures and manual tuning. In this work, we review the main architectures, pretraining strategies, and optimization methods used in such models, and study the effect of fine-tuning after pretraining to enhance their performance on specific datasets. Our empirical results show that fine-tuning generally improves zero-shot forecasting capabilities, especially for long-term horizons.
comment: in French language
☆ Difficulties with Evaluating a Deception Detector for AIs
Building reliable deception detectors for AI systems -- methods that could predict when an AI system is being strategically deceptive without necessarily requiring behavioural evidence -- would be valuable in mitigating risks from advanced AI systems. But evaluating the reliability and efficacy of a proposed deception detector requires examples that we can confidently label as either deceptive or honest. We argue that we currently lack the necessary examples and further identify several concrete obstacles in collecting them. We provide evidence from conceptual arguments, analysis of existing empirical works, and analysis of novel illustrative case studies. We also discuss the potential of several proposed empirical workarounds to these problems and argue that while they seem valuable, they also seem insufficient alone. Progress on deception detection likely requires further consideration of these problems.
☆ Structure-aware Hybrid-order Similarity Learning for Multi-view Unsupervised Feature Selection
Multi-view unsupervised feature selection (MUFS) has recently emerged as an effective dimensionality reduction method for unlabeled multi-view data. However, most existing methods mainly use first-order similarity graphs to preserve local structure, often overlooking the global structure that can be captured by second-order similarity. In addition, a few MUFS methods leverage predefined second-order similarity graphs, making them vulnerable to noise and outliers and resulting in suboptimal feature selection performance. In this paper, we propose a novel MUFS method, termed Structure-aware Hybrid-order sImilarity learNing for multi-viEw unsupervised Feature Selection (SHINE-FS), to address the aforementioned problem. SHINE-FS first learns consensus anchors and the corresponding anchor graph to capture the cross-view relationships between the anchors and the samples. Based on the acquired cross-view consensus information, it generates low-dimensional representations of the samples, which facilitate the reconstruction of multi-view data by identifying discriminative features. Subsequently, it employs the anchor-sample relationships to learn a second-order similarity graph. Furthermore, by jointly learning first-order and second-order similarity graphs, SHINE-FS constructs a hybrid-order similarity graph that captures both local and global structures, thereby revealing the intrinsic data structure to enhance feature selection. Comprehensive experimental results on real multi-view datasets show that SHINE-FS outperforms the state-of-the-art methods.
☆ Generative models for crystalline materials
Understanding structure-property relationships in materials is fundamental in condensed matter physics and materials science. Over the past few years, machine learning (ML) has emerged as a powerful tool for advancing this understanding and accelerating materials discovery. Early ML approaches primarily focused on constructing and screening large material spaces to identify promising candidates for various applications. More recently, research efforts have increasingly shifted toward generating crystal structures using end-to-end generative models. This review analyzes the current state of generative modeling for crystal structure prediction and \textit{de novo} generation. It examines crystal representations, outlines the generative models used to design crystal structures, and evaluates their respective strengths and limitations. Furthermore, the review highlights experimental considerations for evaluating generated structures and provides recommendations for suitable existing software tools. Emerging topics, such as modeling disorder and defects, integration in advanced characterization, and incorporating synthetic feasibility constraints, are explored. Ultimately, this work aims to inform both experimental scientists looking to adapt suitable ML models to their specific circumstances and ML specialists seeking to understand the unique challenges related to inverse materials design and discovery.
☆ Automated Design Optimization via Strategic Search with Large Language Models
Traditional optimization methods excel in well-defined search spaces but struggle with design problems where transformations and design parameters are difficult to define. Large language models (LLMs) offer a promising alternative by dynamically interpreting design spaces and leveraging encoded domain knowledge. To this end, we introduce AUTO, an LLM agent framework that treats design optimization as a gradient-free search problem guided by strategic LLM reasoning. The framework employs two collaborative agents: a Strategist that selects between exploration and exploitation strategies, and an Implementor that executes detailed designs. Applied to GPU code optimization -- a domain critical to fields from machine learning to scientific computing -- AUTO generates solutions competitive with expert implementations for chemical kinetics integration and dense matrix multiplication. The framework achieves 50-70% search efficiency relative to Bayesian optimization methodologies. It completes optimizations in approximately 8 hours at an estimated cost of up to \$159 per run, compared to an estimated cost of up to \$480 with median-wage software developers. These findings open the door to automating design optimization in ill-defined search spaces with limited prior information.
comment: 14 pages, 5 tables, 7 figures, preprint
☆ Spatially Aware Dictionary-Free Eigenfunction Identification for Modeling and Control of Nonlinear Dynamical Systems
A new approach to data-driven discovery of Koopman eigenfunctions without a pre-defined set of basis functions is proposed. The approach is based on a reference trajectory, for which the Koopman mode amplitudes are first identified, and the Koopman mode decomposition is transformed to a new basis, which contains fundamental functions of eigenvalues and time. The initial values of the eigenfunctions are obtained by projecting trajectories onto this basis via a regularized least-squares fit. A global optimizer was employed to optimize the eigenvalues. Mapping initial-state values to eigenfunction values reveals their spatial structure, enabling the numerical computation of their gradients. Thus, deviations from the Koopman partial differential equation are penalized, leading to more robust solutions. The approach was successfully tested on several benchmark nonlinear dynamical systems, including the FitzHugh-Nagumo system with inputs, van der Pol and Duffing oscillators, and a 2-spool turbojet engine with control. The study demonstrates that incorporating principal eigenvalues and spatial structure integrity promotion significantly improves the accuracy of Koopman predictors. The approach effectively discovers Koopman spectral components even with sparse state-space sampling and reveals geometric features of the state space, such as invariant partitions. Finally, the numerical approximation of the eigenfunction gradient can be used for input dynamics modeling and control design. The results support the practicality of the approach for use with various dynamical systems.
comment: 31 pages, 24 figures
☆ Flow Density Control: Generative Optimization Beyond Entropy-Regularized Fine-Tuning NeurIPS 2025
Adapting large-scale foundation flow and diffusion generative models to optimize task-specific objectives while preserving prior information is crucial for real-world applications such as molecular design, protein docking, and creative image generation. Existing principled fine-tuning methods aim to maximize the expected reward of generated samples, while retaining knowledge from the pre-trained model via KL-divergence regularization. In this work, we tackle the significantly more general problem of optimizing general utilities beyond average rewards, including risk-averse and novelty-seeking reward maximization, diversity measures for exploration, and experiment design objectives among others. Likewise, we consider more general ways to preserve prior information beyond KL-divergence, such as optimal transport distances and Renyi divergences. To this end, we introduce Flow Density Control (FDC), a simple algorithm that reduces this complex problem to a specific sequence of simpler fine-tuning tasks, each solvable via scalable established methods. We derive convergence guarantees for the proposed scheme under realistic assumptions by leveraging recent understanding of mirror flows. Finally, we validate our method on illustrative settings, text-to-image, and molecular design tasks, showing that it can steer pre-trained generative models to optimize objectives and solve practically relevant tasks beyond the reach of current fine-tuning schemes.
comment: NeurIPS 2025
☆ Federated Learning Survey: A Multi-Level Taxonomy of Aggregation Techniques, Experimental Insights, and Future Frontiers
The integration of IoT and AI has unlocked innovation across industries, but growing privacy concerns and data isolation hinder progress. Traditional centralized ML struggles to overcome these challenges, which has led to the rise of Federated Learning (FL), a decentralized paradigm that enables collaborative model training without sharing local raw data. FL ensures data privacy, reduces communication overhead, and supports scalability, yet its heterogeneity adds complexity compared to centralized approaches. This survey focuses on three main FL research directions: personalization, optimization, and robustness, offering a structured classification through a hybrid methodology that combines bibliometric analysis with systematic review to identify the most influential works. We examine challenges and techniques related to heterogeneity, efficiency, security, and privacy, and provide a comprehensive overview of aggregation strategies, including architectures, synchronization methods, and diverse federation objectives. To complement this, we discuss practical evaluation approaches and present experiments comparing aggregation methods under IID and non-IID data distributions. Finally, we outline promising research directions to advance FL, aiming to guide future innovation in this rapidly evolving field.
comment: Author-Accepted Manuscript. 65 pages, 26 figures, 20 tables. Published in ACM Transactions on Intelligent Systems and Technology (TIST), 2024
☆ Stable-Drift: A Patient-Aware Latent Drift Replay Method for Stabilizing Representations in Continual Learning
When deep learning models are sequentially trained on new data, they tend to abruptly lose performance on previously learned tasks, a critical failure known as catastrophic forgetting. This challenge severely limits the deployment of AI in medical imaging, where models must continually adapt to data from new hospitals without compromising established diagnostic knowledge. To address this, we introduce a latent drift-guided replay method that identifies and replays samples with high representational instability. Specifically, our method quantifies this instability via latent drift, the change in a sample internal feature representation after naive domain adaptation. To ensure diversity and clinical relevance, we aggregate drift at the patient level, our memory buffer stores the per patient slices exhibiting the greatest multi-layer representation shift. Evaluated on a cross-hospital COVID-19 CT classification task using state-of-the-art CNN and Vision Transformer backbones, our method substantially reduces forgetting compared to naive fine-tuning and random replay. This work highlights latent drift as a practical and interpretable replay signal for advancing robust continual learning in real world medical settings.
comment: 8 pages, 2 figures
☆ Variational analysis of determinantal varieties
Determinantal varieties -- the sets of bounded-rank matrices or tensors -- have attracted growing interest in low-rank optimization. The tangent cone to low-rank sets is widely studied and underpins a range of geometric methods. The second-order geometry, which encodes curvature information, is more intricate. In this work, we develop a unified framework to derive explicit formulas for both first- and second-order tangent sets to various low-rank sets, including low-rank matrices, tensors, symmetric matrices, and positive semidefinite matrices. The framework also accommodates the intersection of a low-rank set and another set satisfying mild assumptions, thereby yielding a tangent intersection rule. Through the lens of tangent sets, we establish a necessary and sufficient condition under which a nonsmooth problem and its smooth parameterization share equivalent second-order stationary points. Moreover, we exploit tangent sets to characterize optimality conditions for low-rank optimization and prove that verifying second-order optimality is NP-hard. In a separate line of analysis, we investigate variational geometry of the graph of the normal cone to matrix varieties, deriving the explicit Bouligand tangent cone, Fréchet and Mordukhovich normal cones to the graph. These results are further applied to develop optimality conditions for low-rank bilevel programs.
comment: 71 pages, 6 figures, 2 tables
☆ GazeTrack: High-Precision Eye Tracking Based on Regularization and Spatial Computing
Eye tracking has become increasingly important in virtual and augmented reality applications; however, the current gaze accuracy falls short of meeting the requirements for spatial computing. We designed a gaze collection framework and utilized high-precision equipment to gather the first precise benchmark dataset, GazeTrack, encompassing diverse ethnicities, ages, and visual acuity conditions for pupil localization and gaze tracking. We propose a novel shape error regularization method to constrain pupil ellipse fitting and train on open-source datasets, enhancing semantic segmentation and pupil position prediction accuracy. Additionally, we invent a novel coordinate transformation method similar to paper unfolding to accurately predict gaze vectors on the GazeTrack dataset. Finally, we built a gaze vector generation model that achieves reduced gaze angle error with lower computational complexity compared to other methods.
comment: 10 pages, 7 figures
☆ DisCEdge: Distributed Context Management for Large Language Models at the Edge
Deploying Large Language Model (LLM) services at the edge benefits latency-sensitive and privacy-aware applications. However, the stateless nature of LLMs makes managing user context (e.g., sessions, preferences) across geo-distributed edge nodes challenging. Existing solutions, such as client-side context storage, often introduce network latency and bandwidth overhead, undermining the advantages of edge deployment. We propose DisCEdge, a distributed context management system that stores and replicates user context in tokenized form across edge nodes. By maintaining context as token sequences rather than raw text, our system avoids redundant computation and enables efficient data replication. We implement and evaluate an open-source prototype in a realistic edge environment with commodity hardware. We show DisCEdge improves median response times by up to 14.46% and lowers median inter-node synchronization overhead by up to 15% compared to a raw-text-based system. It also reduces client request sizes by a median of 90% compared to client-side context management, while guaranteeing data consistency.
comment: author version
LLM-Cave: A benchmark and light environment for large language models reasoning and decision-making system
Large language models (LLMs) such as ChatGPT o1, ChatGPT o3, and DeepSeek R1 have shown great potential in solving difficult problems. However, current LLM evaluation benchmarks are limited to one-step interactions. Some of the existing sequence decision-making environments, such as TextStarCraftII and LLM-PySC2, are too complicated and require hours of interaction to complete a game. In this paper, we introduce LLM-Cave, a benchmark and light environment for LLM reasoning and decision-making systems. This environment is a classic instance in the era of Symbolism. Artificial intelligence enables the agent to explore the environment and avoid potential losses by reasoning about nearby dangers using partial observable state information. In the experiment, we evaluated the sequential reasoning ability, decision-making performance and computational efficiency of mainstream large language models (LLMs) such as GPT-4o-mini, o1-mini, and DeepSeek-R1. Experiments show that while Deepseek-R1 achieved the highest success rate on complex reasoning tasks, smaller models like 4o-mini significantly narrowed the performance gap on challenges by employing Chain of Speculation and Planner-Critic strategies, at the expense of reduced computational efficiency. This indicates that structured, multi-step reasoning combined with an LLM-based feedback mechanism can substantially enhance an LLM's decision-making capabilities, providing a promising direction for improving reasoning in weaker models and suggesting a new reasoning-centered benchmark for LLM assessment. Our code is open-sourced in https://github.com/puleya1277/CaveEnv.
comment: 8 pages, 5 figures, ICICN 2025
☆ The Multiclass Score-Oriented Loss (MultiSOL) on the Simplex
In the supervised binary classification setting, score-oriented losses have been introduced with the aim of optimizing a chosen performance metric directly during the training phase, thus avoiding \textit{a posteriori} threshold tuning. To do this, in their construction, the decision threshold is treated as a random variable provided with a certain \textit{a priori} distribution. In this paper, we use a recently introduced multidimensional threshold-based classification framework to extend such score-oriented losses to multiclass classification, defining the Multiclass Score-Oriented Loss (MultiSOL) functions. As also demonstrated by several classification experiments, this proposed family of losses is designed to preserve the main advantages observed in the binary setting, such as the direct optimization of the target metric and the robustness to class imbalance, achieving performance comparable to other state-of-the-art loss functions and providing new insights into the interaction between simplex geometry and score-oriented learning.
☆ Entropy is all you need for Inter-Seed Cross-Play in Hanabi
We find that in Hanabi, one of the most complex and popular benchmarks for zero-shot coordination and ad-hoc teamplay, a standard implementation of independent PPO with a slightly higher entropy coefficient 0.05 instead of the typically used 0.01, achieves a new state-of-the-art in cross-play between different seeds, beating by a significant margin all previous specialized algorithms, which were specifically designed for this setting. We provide an intuition for why sufficiently high entropy regularization ensures that different random seed produce joint policies which are mutually compatible. We also empirically find that a high $λ_{\text{GAE}}$ around 0.9, and using RNNs instead of just feed-forward layers in the actor-critic architecture, strongly increase inter-seed cross-play. While these results demonstrate the dramatic effect that hyperparameters can have not just on self-play scores but also on cross-play scores, we show that there are simple Dec-POMDPs though, in which standard policy gradient methods with increased entropy regularization are not able to achieve perfect inter-seed cross-play, thus demonstrating the continuing necessity for new algorithms for zero-shot coordination.
☆ Where to Measure: Epistemic Uncertainty-Based Sensor Placement with ConvCNPs
Accurate sensor placement is critical for modeling spatio-temporal systems such as environmental and climate processes. Neural Processes (NPs), particularly Convolutional Conditional Neural Processes (ConvCNPs), provide scalable probabilistic models with uncertainty estimates, making them well-suited for data-driven sensor placement. However, existing approaches rely on total predictive uncertainty, which conflates epistemic and aleatoric components, that may lead to suboptimal sensor selection in ambiguous regions. To address this, we propose expected reduction in epistemic uncertainty as a new acquisition function for sensor placement. To enable this, we extend ConvCNPs with a Mixture Density Networks (MDNs) output head for epistemic uncertainty estimation. Preliminary results suggest that epistemic uncertainty driven sensor placement more effectively reduces model error than approaches based on overall uncertainty.
☆ Counting Still Counts: Understanding Neural Complex Query Answering Through Query Relaxation
Neural methods for Complex Query Answering (CQA) over knowledge graphs (KGs) are widely believed to learn patterns that generalize beyond explicit graph structure, allowing them to infer answers that are unreachable through symbolic query processing. In this work, we critically examine this assumption through a systematic analysis comparing neural CQA models with an alternative, training-free query relaxation strategy that retrieves possible answers by relaxing query constraints and counting resulting paths. Across multiple datasets and query structures, we find several cases where neural and relaxation-based approaches perform similarly, with no neural model consistently outperforming the latter. Moreover, a similarity analysis reveals that their retrieved answers exhibit little overlap, and that combining their outputs consistently improves performance. These results call for a re-evaluation of progress in neural query answering: despite their complexity, current models fail to subsume the reasoning patterns captured by query relaxation. Our findings highlight the importance of stronger non-neural baselines and suggest that future neural approaches could benefit from incorporating principles of query relaxation.
☆ List-Decodable Regression via Expander Sketching
We introduce an expander-sketching framework for list-decodable linear regression that achieves sample complexity $\tilde{O}((d+\log(1/δ))/α)$, list size $O(1/α)$, and near input-sparsity running time $\tilde{O}(\mathrm{nnz}(X)+d^{3}/α)$ under standard sub-Gaussian assumptions. Our method uses lossless expanders to synthesize lightly contaminated batches, enabling robust aggregation and a short spectral filtering stage that matches the best known efficient guarantees while avoiding SoS machinery and explicit batch structure.
☆ AdS/Deep-Learning made easy II: neural network-based approaches to holography and inverse problems
We apply physics-informed machine learning (PIML) to solve inverse problems in holography and classical mechanics, focusing on neural ordinary differential equations (Neural ODEs) and physics-informed neural networks (PINNs) for solving non-linear differential equations of motion. First, we introduce holographic inverse problems and demonstrate how PIML can reconstruct bulk spacetime and effective potentials from boundary quantum data. To illustrate this, two case studies are explored: the QCD equation of state in holographic QCD and $T$-linear resistivity in holographic strange metals. Additionally, we explicitly show how such holographic problems can be analogized to inverse problems in classical mechanics, modeling frictional forces with neural networks. We also explore Kolmogorov-Arnold Networks (KANs) as an alternative to traditional neural networks, offering more efficient solutions in certain cases. This manuscript aim to provide a systematic framework for using neural networks in inverse problems, serving as a comprehensive reference for researchers in machine learning for high-energy physics, with methodologies that also have broader applications in mathematics, engineering, and the natural sciences.
comment: 31pages, 17 figures
☆ Privacy-Utility-Bias Trade-offs for Privacy-Preserving Recommender Systems
Recommender systems (RSs) output ranked lists of items, such as movies or restaurants, that users may find interesting, based on the user's past ratings and ratings from other users. RSs increasingly incorporate differential privacy (DP) to protect user data, raising questions about how privacy mechanisms affect both recommendation accuracy and fairness. We conduct a comprehensive, cross-model evaluation of two DP mechanisms, differentially private stochastic gradient descent (DPSGD) and local differential privacy (LDP), applied to four recommender systems (Neural Collaborative Filtering (NCF), Bayesian Personalized Ranking (BPR), Singular Value Decomposition (SVD), and Variational Autoencoder (VAE)) on the MovieLens-1M and Yelp datasets. We find that stronger privacy consistently reduces utility, but not uniformly. NCF under DPSGD shows the smallest accuracy loss (under 10 percent at epsilon approximately 1), whereas SVD and BPR experience larger drops, especially for users with niche preferences. VAE is the most sensitive to privacy, with sharp declines for sparsely represented groups. The impact on bias metrics is similarly heterogeneous. DPSGD generally reduces the gap between recommendations of popular and less popular items, whereas LDP preserves existing patterns more closely. These results highlight that no single DP mechanism is uniformly superior; instead, each provides trade-offs under different privacy regimes and data conditions.
☆ What Shape Is Optimal for Masks in Text Removal?
The advent of generative models has dramatically improved the accuracy of image inpainting. In particular, by removing specific text from document images, reconstructing original images is extremely important for industrial applications. However, most existing methods of text removal focus on deleting simple scene text which appears in images captured by a camera in an outdoor environment. There is little research dedicated to complex and practical images with dense text. Therefore, we created benchmark data for text removal from images including a large amount of text. From the data, we found that text-removal performance becomes vulnerable against mask profile perturbation. Thus, for practical text-removal tasks, precise tuning of the mask shape is essential. This study developed a method to model highly flexible mask profiles and learn their parameters using Bayesian optimization. The resulting profiles were found to be character-wise masks. It was also found that the minimum cover of a text region is not optimal. Our research is expected to pave the way for a user-friendly guideline for manual masking.
comment: 12 pages, 17 figures
☆ Space Explanations of Neural Network Classification
We present a novel logic-based concept called Space Explanations for classifying neural networks that gives provable guarantees of the behavior of the network in continuous areas of the input feature space. To automatically generate space explanations, we leverage a range of flexible Craig interpolation algorithms and unsatisfiable core generation. Based on real-life case studies, ranging from small to medium to large size, we demonstrate that the generated explanations are more meaningful than those computed by state-of-the-art.
☆ The Machine Learning Approach to Moment Closure Relations for Plasma: A Review
The requirement for large-scale global simulations of plasma is an ongoing challenge in both space and laboratory plasma physics. Any simulation based on a fluid model inherently requires a closure relation for the high order plasma moments. This review compiles and analyses the recent surge of machine learning approaches developing improved plasma closure models capable of capturing kinetic phenomena within plasma fluid models. The purpose of this review is both to collect and analyse the various methods employed on the plasma closure problem, including both equation discovery methods and neural network surrogate approaches, as well as to provide a general overview of the state of the problem. In particular, we highlight the challenges of developing a data-driven closure as well as the direction future work should take toward addressing these challenges, in the pursuit of a computationally viable large-scale global simulation.
comment: 30 pages, 2 figures
☆ Enhancing Trustworthiness with Mixed Precision: Benchmarks, Opportunities, and Challenges
Large language models (LLMs) have shown promising performance across various tasks. However, their autoregressive decoding process poses significant challenges for efficient deployment on existing AI hardware. Quantization alleviates memory and compute pressure by compressing weights, activations, and KV caches to low precisions while preserving generation quality. However, existing quantization frameworks typically focus on perplexity or classification accuracy, often omitting critical trustworthiness metrics. This gap introduces risks when applying quantized LLMs to downstream high-stakes domains such as finance and healthcare. In this work, we systematically investigate the impact of quantization on four trustworthiness metrics (adversarial robustness, fairness, machine ethics, and out-of-distribution robustness) and identify the instability across compression ratios and quantization methods. Building on these observations, we develop a novel precision-ensemble voting approach that leverages predictions from mixed-precision variants of the same model and consistently improves performance by up to $5.8\%$ on trustworthiness metrics. Our results highlight the importance of considering trustworthiness when developing model compression techniques and point to research opportunities at the intersection of compression and trustworthiness for safety-critical applications.
comment: ASP-DAC 2026 Special Session
☆ Adversarial Flow Models
We present adversarial flow models, a class of generative models that unifies adversarial models and flow models. Our method supports native one-step or multi-step generation and is trained using the adversarial objective. Unlike traditional GANs, where the generator learns an arbitrary transport plan between the noise and the data distributions, our generator learns a deterministic noise-to-data mapping, which is the same optimal transport as in flow-matching models. This significantly stabilizes adversarial training. Also, unlike consistency-based methods, our model directly learns one-step or few-step generation without needing to learn the intermediate timesteps of the probability flow for propagation. This saves model capacity, reduces training iterations, and avoids error accumulation. Under the same 1NFE setting on ImageNet-256px, our B/2 model approaches the performance of consistency-based XL/2 models, while our XL/2 model creates a new best FID of 2.38. We additionally show the possibility of end-to-end training of 56-layer and 112-layer models through depth repetition without any intermediate supervision, and achieve FIDs of 2.08 and 1.94 using a single forward pass, surpassing their 2NFE and 4NFE counterparts.
☆ An Efficient Embedding Based Ad Retrieval with GPU-Powered Feature Interaction
In large-scale advertising recommendation systems, retrieval serves as a critical component, aiming to efficiently select a subset of candidate ads relevant to user behaviors from a massive ad inventory for subsequent ranking and recommendation. The Embedding-Based Retrieval (EBR) methods modeled by the dual-tower network are widely used in the industry to maintain both retrieval efficiency and accuracy. However, the dual-tower model has significant limitations: the embeddings of users and ads interact only at the final inner product computation, resulting in insufficient feature interaction capabilities. Although DNN-based models with both user and ad as input features, allowing for early-stage interaction between these features, are introduced in the ranking stage to mitigate this issue, they are computationally infeasible for the retrieval stage. To bridge this gap, this paper proposes an efficient GPU-based feature interaction for the dual-tower network to significantly improve retrieval accuracy while substantially reducing computational costs. Specifically, we introduce a novel compressed inverted list designed for GPU acceleration, enabling efficient feature interaction computation at scale. To the best of our knowledge, this is the first framework in the industry to successfully implement Wide and Deep in a retrieval system. We apply this model to the real-world business scenarios in Tencent Advertising, and experimental results demonstrate that our method outperforms existing approaches in offline evaluation and has been successfully deployed to Tencent's advertising recommendation system, delivering significant online performance gains. This improvement not only validates the effectiveness of the proposed method, but also provides new practical guidance for optimizing large-scale ad retrieval systems.
comment: 9 pages, 4 figures
☆ Benchmarking machine learning models for multi-class state recognition in double duantum dot data
Semiconductor quantum dots (QDs) are a leading platform for scalable quantum processors. However, scaling to large arrays requires reliable, automated tuning strategies for devices' bootstrapping, calibration, and operation, with many tuning aspects depending on accurately identifying QD device states from charge-stability diagrams (CSDs). In this work, we present a comprehensive benchmarking study of four modern machine learning (ML) architectures for multi-class state recognition in double-QD CSDs. We evaluate their performance across different data budgets and normalization schemes using both synthetic and experimental data. We find that the more resource-intensive models -- U-Nets and visual transformers (ViTs) -- achieve the highest MSE score (defined as $1-\mathrm{MSE}$) on synthetic data (over $0.98$) but fail to generalize to experimental data. MDNs are the most computationally efficient and exhibit highly stable training, but with substantially lower peak performance. CNNs offer the most favorable trade-off on experimental CSDs, achieving strong accuracy with two orders of magnitude fewer parameters than the U-Nets and ViTs. Normalization plays a nontrivial role: min-max scaling generally yields higher MSE scores but less stable convergence, whereas z-score normalization produces more predictable training dynamics but at reduced accuracy for most models. Overall, our study shows that CNNs with min-max normalization are a practical approach for QD CSDs.
comment: 12 pages, 4 figures, 2 tables
☆ What Is the Optimal Ranking Score Between Precision and Recall? We Can Always Find It and It Is Rarely $F_1$
Ranking methods or models based on their performance is of prime importance but is tricky because performance is fundamentally multidimensional. In the case of classification, precision and recall are scores with probabilistic interpretations that are both important to consider and complementary. The rankings induced by these two scores are often in partial contradiction. In practice, therefore, it is extremely useful to establish a compromise between the two views to obtain a single, global ranking. Over the last fifty years or so,it has been proposed to take a weighted harmonic mean, known as the F-score, F-measure, or $F_β$. Generally speaking, by averaging basic scores, we obtain a score that is intermediate in terms of values. However, there is no guarantee that these scores lead to meaningful rankings and no guarantee that the rankings are good tradeoffs between these base scores. Given the ubiquity of $F_β$ scores in the literature, some clarification is in order. Concretely: (1) We establish that $F_β$-induced rankings are meaningful and define a shortest path between precision- and recall-induced rankings. (2) We frame the problem of finding a tradeoff between two scores as an optimization problem expressed with Kendall rank correlations. We show that $F_1$ and its skew-insensitive version are far from being optimal in that regard. (3) We provide theoretical tools and a closed-form expression to find the optimal value for $β$ for any distribution or set of performances, and we illustrate their use on six case studies.
☆ GEO-Detective: Unveiling Location Privacy Risks in Images with LLM Agents
Images shared on social media often expose geographic cues. While early geolocation methods required expert effort and lacked generalization, the rise of Large Vision Language Models (LVLMs) now enables accurate geolocation even for ordinary users. However, existing approaches are not optimized for this task. To explore the full potential and associated privacy risks, we present Geo-Detective, an agent that mimics human reasoning and tool use for image geolocation inference. It follows a procedure with four steps that adaptively selects strategies based on image difficulty and is equipped with specialized tools such as visual reverse search, which emulates how humans gather external geographic clues. Experimental results show that GEO-Detective outperforms baseline large vision language models (LVLMs) overall, particularly on images lacking visible geographic features. In country level geolocation tasks, it achieves an improvement of over 11.1% compared to baseline LLMs, and even at finer grained levels, it still provides around a 5.2% performance gain. Meanwhile, when equipped with external clues, GEO-Detective becomes more likely to produce accurate predictions, reducing the "unknown" prediction rate by more than 50.6%. We further explore multiple defense strategies and find that Geo-Detective exhibits stronger robustness, highlighting the need for more effective privacy safeguards.
comment: 15 pages with 7 figures and 12 tables
☆ PISA: Prioritized Invariant Subgraph Aggregation
Recent work has extended the invariance principle for out-of-distribution (OOD) generalization from Euclidean to graph data, where challenges arise due to complex structures and diverse distribution shifts in node attributes and topology. To handle these, Chen et al. proposed CIGA (Chen et al., 2022b), which uses causal modeling and an information-theoretic objective to extract a single invariant subgraph capturing causal features. However, this single-subgraph focus can miss multiple causal patterns. Liu et al. (2025) addressed this with SuGAr, which learns and aggregates diverse invariant subgraphs via a sampler and diversity regularizer, improving robustness but still relying on simple uniform or greedy aggregation. To overcome this, the proposed PISA framework introduces a dynamic MLP-based aggregation that prioritizes and combines subgraph representations more effectively. Experiments on 15 datasets, including DrugOOD (Ji et al., 2023), show that PISA achieves up to 5% higher classification accuracy than prior methods.
☆ MATCH: Engineering Transparent and Controllable Conversational XAI Systems through Composable Building Blocks
While the increased integration of AI technologies into interactive systems enables them to solve an increasing number of tasks, the black-box problem of AI models continues to spread throughout the interactive system as a whole. Explainable AI (XAI) techniques can make AI models more accessible by employing post-hoc methods or transitioning to inherently interpretable models. While this makes individual AI models clearer, the overarching system architecture remains opaque. This challenge not only pertains to standard XAI techniques but also to human examination and conversational XAI approaches that need access to model internals to interpret them correctly and completely. To this end, we propose conceptually representing such interactive systems as sequences of structural building blocks. These include the AI models themselves, as well as control mechanisms grounded in literature. The structural building blocks can then be explained through complementary explanatory building blocks, such as established XAI techniques like LIME and SHAP. The flow and APIs of the structural building blocks form an unambiguous overview of the underlying system, serving as a communication basis for both human and automated agents, thus aligning human and machine interpretability of the embedded AI models. In this paper, we present our flow-based approach and a selection of building blocks as MATCH: a framework for engineering Multi-Agent Transparent and Controllable Human-centered systems. This research contributes to the field of (conversational) XAI by facilitating the integration of interpretability into existing interactive systems.
comment: Submitted Version accepted for publication in an LNCS Volume "Engineering Interactive Computer Systems - EICS 2025 - International Workshops and Doctoral Consortium"
☆ Improving Stochastic Action-Constrained Reinforcement Learning via Truncated Distributions AAAI26
In reinforcement learning (RL), it is often advantageous to consider additional constraints on the action space to ensure safety or action relevance. Existing work on such action-constrained RL faces challenges regarding effective policy updates, computational efficiency, and predictable runtime. Recent work proposes to use truncated normal distributions for stochastic policy gradient methods. However, the computation of key characteristics, such as the entropy, log-probability, and their gradients, becomes intractable under complex constraints. Hence, prior work approximates these using the non-truncated distributions, which severely degrades performance. We argue that accurate estimation of these characteristics is crucial in the action-constrained RL setting, and propose efficient numerical approximations for them. We also provide an efficient sampling strategy for truncated policy distributions and validate our approach on three benchmark environments, which demonstrate significant performance improvements when using accurate estimations.
comment: Accepted at the AAAI26 conference main technical track
☆ TS2Vec-Ensemble: An Enhanced Self-Supervised Framework for Time Series Forecasting
Self-supervised representation learning, particularly through contrastive methods like TS2Vec, has advanced the analysis of time series data. However, these models often falter in forecasting tasks because their objective functions prioritize instance discrimination over capturing the deterministic patterns, such as seasonality and trend, that are critical for accurate prediction. This paper introduces TS2Vec-Ensemble, a novel hybrid framework designed to bridge this gap. Our approach enhances the powerful, implicitly learned dynamics from a pretrained TS2Vec encoder by fusing them with explicit, engineered time features that encode periodic cycles. This fusion is achieved through a dual-model ensemble architecture, where two distinct regression heads -- one focused on learned dynamics and the other on seasonal patterns -- are combined using an adaptive weighting scheme. The ensemble weights are optimized independently for each forecast horizon, allowing the model to dynamically prioritize short-term dynamics or long-term seasonality as needed. We conduct extensive experiments on the ETT benchmark datasets for both univariate and multivariate forecasting. The results demonstrate that TS2Vec-Ensemble consistently and significantly outperforms the standard TS2Vec baseline and other state-of-the-art models, validating our hypothesis that a hybrid of learned representations and explicit temporal priors is a superior strategy for long-horizon time series forecasting.
☆ Predicting and Interpolating Spatiotemporal Environmental Data: A Case Study of Groundwater Storage in Bangladesh
Geospatial observational datasets are often limited to point measurements, making temporal prediction and spatial interpolation essential for constructing continuous fields. This study evaluates two deep learning strategies for addressing this challenge: (1) a grid-to-grid approach, where gridded predictors are used to model rasterised targets (aggregation before modelling), and (2) a grid-to-point approach, where gridded predictors model point targets, followed by kriging interpolation to fill the domain (aggregation after modelling). Using groundwater storage data from Bangladesh as a case study, we compare the effcacy of these approaches. Our findings indicate that spatial interpolation is substantially more difficult than temporal prediction. In particular, nearest neighbours are not always the most similar, and uncertainties in geology strongly influence point temporal behaviour. These insights motivate future work on advanced interpolation methods informed by clustering locations based on time series dynamics. Demonstrated on groundwater storage, the conclusions are applicable to other environmental variables governed by indirectly observable factors. Code is available at https://github.com/pazolka/interpolation-prediction-gwsa.
comment: Submitted to the IDA 2026 conference
☆ SuRe: Surprise-Driven Prioritised Replay for Continual LLM Learning
Continual learning, one's ability to adapt to a sequence of tasks without forgetting previously acquired knowledge, remains a major challenge in machine learning and a key gap between artificial and human intelligence. While regularisation and replay perform well in vision, they lag behind multi-task learning for large language models (LLMs), especially at scale with many tasks. We revisit replay and argue that two failure modes drive this gap: selection (what to rehearse) and integration (how to consolidate new knowledge). To address selection, we propose Surprise-prioritised Replay (SuRe), a simple, architecture-agnostic rule that ranks and stores the most surprising (high Negative Log-Likelihood) sequences. SuRe achieves state-of-the-art performance in the Large Number of Tasks (LNT) setting and delivers the best overall average across both Standard CL and LNT benchmarks. To address integration, we add a dual-learner design with fast and slow LoRA adapters merged via an exponential moving average (EMA), enabling rapid adaptation while stabilising long-term knowledge. Combining SuRe with the dual learner yields further gains, including improvements of up to +5 accuracy points on LNT over prior SOTA. Ablation studies confirm that our proposed method remains robust under reduced replay frequency and small buffer size, demonstrating both effectiveness and sample efficiency. Taken together, our results establish replay as a strong baseline for continual LLM fine-tuning and demonstrate that surprise-based selection and slow-weight consolidation are complementary components for mitigating catastrophic forgetting.
☆ Efficient-Husformer: Efficient Multimodal Transformer Hyperparameter Optimization for Stress and Cognitive Loads
Transformer-based models have gained considerable attention in the field of physiological signal analysis. They leverage long-range dependencies and complex patterns in temporal signals, allowing them to achieve performance superior to traditional RNN and CNN models. However, they require high computational intensity and memory demands. In this work, we present Efficient-Husformer, a novel Transformer-based architecture developed with hyperparameter optimization (HPO) for multi-class stress detection across two multimodal physiological datasets (WESAD and CogLoad). The main contributions of this work are: (1) the design of a structured search space, targeting effective hyperparameter optimization; (2) a comprehensive ablation study evaluating the impact of architectural decisions; (3) consistent performance improvements over the original Husformer, with the best configuration achieving an accuracy of 88.41 and 92.61 (improvements of 13.83% and 6.98%) on WESAD and CogLoad datasets, respectively. The best-performing configuration is achieved with the (L + dm) or (L + FFN) modality combinations, using a single layer, 3 attention heads, a model dimension of 18/30, and FFN dimension of 120/30, resulting in a compact model with only about 30k parameters.
☆ AutoTailor: Automatic and Efficient Adaptive Model Deployment for Diverse Edge Devices
On-device machine learning (ML) has become a fundamental component of emerging mobile applications. Adaptive model deployment delivers efficient inference for heterogeneous device capabilities and performance requirements through customizing neural architectures. SuperNet-based approaches offer a promising solution by generating a large number of model variants from a pre-trained ML model. However, applying SuperNet in existing frameworks suffers from tedious model-aware development and time-consuming hardware-aware profiling, which limits their practical adoption. We present AutoTailor, the first framework to enable automated, end-to-end SuperNet-based adaptive model deployment for edge devices. Unlike manual SuperNet construction, AutoTailor employs a computation graph-guided compilation approach to automatically transform user-provided ML models into SuperNets. To support efficient specialization, AutoTailor incorporates learning-free latency and accuracy predictors, enabling low-cost yet accurate performance prediction. Our extended evaluations demonstrate that AutoTailor reduces the lines of code for SuperNet construction by 11--27$\times$, decreases hardware-aware profiling costs by at least 11$\times$, and achieves up to 15.60\% absolute accuracy improvement and 60.03\% latency reduction compared to state-of-the-art approaches across diverse models and devices.
☆ Cleaning the Pool: Progressive Filtering of Unlabeled Pools in Deep Active Learning CVPR
Existing active learning (AL) strategies capture fundamentally different notions of data value, e.g., uncertainty or representativeness. Consequently, the effectiveness of strategies can vary substantially across datasets, models, and even AL cycles. Committing to a single strategy risks suboptimal performance, as no single strategy dominates throughout the entire AL process. We introduce REFINE, an ensemble AL method that combines multiple strategies without knowing in advance which will perform best. In each AL cycle, REFINE operates in two stages: (1) Progressive filtering iteratively refines the unlabeled pool by considering an ensemble of AL strategies, retaining promising candidates capturing different notions of value. (2) Coverage-based selection then chooses a final batch from this refined pool, ensuring all previously identified notions of value are accounted for. Extensive experiments across 6 classification datasets and 3 foundation models show that REFINE consistently outperforms individual strategies and existing ensemble methods. Notably, progressive filtering serves as a powerful preprocessing step that improves the performance of any individual AL strategy applied to the refined pool, which we demonstrate on an audio spectrogram classification use case. Finally, the ensemble of REFINE can be easily extended with upcoming state-of-the-art AL strategies.
comment: Submitted to CVPR
☆ Test Time Training for AC Power Flow Surrogates via Physics and Operational Constraint Refinement
Power Flow (PF) calculation based on machine learning (ML) techniques offer significant computational advantages over traditional numerical methods but often struggle to maintain full physical consistency. This paper introduces a physics-informed test-time training (PI-TTT) framework that enhances the accuracy and feasibility of ML-based PF surrogates by enforcing AC power flow equalities and operational constraints directly at inference time. The proposed method performs a lightweight self-supervised refinement of the surrogate outputs through few gradient-based updates, enabling local adaptation to unseen operating conditions without requiring labeled data. Extensive experiments on the IEEE 14-, 118-, and 300-bus systems and the PEGASE 1354-bus network show that PI-TTT reduces power flow residuals and operational constraint violations by one to two orders of magnitude compared with purely ML-based models, while preserving their computational advantage. The results demonstrate that PI-TTT provides fast, accurate, and physically reliable predictions, representing a promising direction for scalable and physics-consistent learning in power system analysis.
☆ Unexplored flaws in multiple-choice VQA evaluations
Multimodal Large Language Models (MLLMs) demonstrate strong capabilities in handling image-text inputs. A common way to assess this ability is through multiple-choice Visual Question Answering (VQA). Earlier works have already revealed that these benchmarks are sensitive to answer choice order, a limitation that can be mitigated through careful design. Yet, we highlight additional, unexplored biases in prompt formatting that question the reliability of current MLLM evaluations. Specifically, we identify three key variation factors in prompt formatting and analyze their impact through a large-scale study involving $\mathbf{\text{seven}}$ MLLMs and $\mathbf{\text{five}}$ VQA datasets, spanning $\mathbf{48}$ distinct $\mathbf{\text{prompt format variations}}$. Our findings reveal that multiple-choice VQA is highly sensitive to minor prompt format changes, even when these changes are semantically neutral. We further demonstrate that these biases persist independently of known order biases or the MLLM's confidence in the correct answer. Finally, we demonstrate that existing bias mitigation strategies fail to address these newly identified biases.
☆ On the Condition Number Dependency in Bilevel Optimization
Bilevel optimization minimizes an objective function, defined by an upper-level problem whose feasible region is the solution of a lower-level problem. We study the oracle complexity of finding an $ε$-stationary point with first-order methods when the upper-level problem is nonconvex and the lower-level problem is strongly convex. Recent works (Ji et al., ICML 2021; Arbel and Mairal, ICLR 2022; Chen el al., JMLR 2025) achieve a $\tilde{\mathcal{O}}(κ^4 ε^{-2})$ upper bound that is near-optimal in $ε$. However, the optimal dependency on the condition number $κ$ is unknown. In this work, we establish a new $Ω(κ^2 ε^{-2})$ lower bound and $\tilde{\mathcal{O}}(κ^{7/2} ε^{-2})$ upper bound for this problem, establishing the first provable gap between bilevel problems and minimax problems in this setup. Our lower bounds can be extended to various settings, including high-order smooth functions, stochastic oracles, and convex hyper-objectives: (1) For second-order and arbitrarily smooth problems, we show $Ω(κ_y^{13/4} ε^{-12/7})$ and $Ω(κ^{17/10} ε^{-8/5})$ lower bounds, respectively. (2) For convex-strongly-convex problems, we improve the previously best lower bound (Ji and Liang, JMLR 2022) from $Ω(κ/\sqrtε)$ to $Ω(κ^{5/4} / \sqrtε)$. (3) For smooth stochastic problems, we show an $Ω(κ^4 ε^{-4})$ lower bound.
☆ SingleQuant: Efficient Quantization of Large Language Models in a Single Pass
Large Language Models (LLMs) quantization facilitates deploying LLMs in resource-limited settings, but existing methods that combine incompatible gradient optimization and quantization truncation lead to serious convergence pathology. This prolongs quantization time and degrades LLMs' task performance. Our studies confirm that Straight-Through Estimator (STE) on Stiefel manifolds introduce non-smoothness and gradient noise, obstructing optimization convergence and blocking high-fidelity quantized LLM development despite extensive training. To tackle the above limitations, we propose SingleQuant, a single-pass quantization framework that decouples from quantization truncation, thereby eliminating the above non-smoothness and gradient noise factors. Specifically, SingleQuant constructs Alignment Rotation Transformation (ART) and Uniformity Rotation Transformation (URT) targeting distinct activation outliers, where ART achieves smoothing of outlier values via closed-form optimal rotations, and URT reshapes distributions through geometric mapping. Both matrices comprise strictly formulated Givens rotations with predetermined dimensions and rotation angles, enabling promising LLMs task performance within a short time. Experimental results demonstrate SingleQuant's superiority over the selected baselines across diverse tasks on 7B-70B LLMs. To be more precise, SingleQuant enables quantized LLMs to achieve higher task performance while necessitating less time for quantization. For example, when quantizing LLaMA-2-13B, SingleQuant achieves 1,400$\times$ quantization speedup and increases +0.57\% average task performance compared to the selected best baseline.
comment: 9 pages, 4 figures
☆ DeXposure: A Dataset and Benchmarks for Inter-protocol Credit Exposure in Decentralized Financial Networks
We curate the DeXposure dataset, the first large-scale dataset for inter-protocol credit exposure in decentralized financial networks, covering global markets of 43.7 million entries across 4.3 thousand protocols, 602 blockchains, and 24.3 thousand tokens, from 2020 to 2025. A new measure, value-linked credit exposure between protocols, is defined as the inferred financial dependency relationships derived from changes in Total Value Locked (TVL). We develop a token-to-protocol model using DefiLlama metadata to infer inter-protocol credit exposure from the token's stock dynamics, as reported by the protocols. Based on the curated dataset, we develop three benchmarks for machine learning research with financial applications: (1) graph clustering for global network measurement, tracking the structural evolution of credit exposure networks, (2) vector autoregression for sector-level credit exposure dynamics during major shocks (Terra and FTX), and (3) temporal graph neural networks for dynamic link prediction on temporal graphs. From the analysis, we observe (1) a rapid growth of network volume, (2) a trend of concentration to key protocols, (3) a decline of network density (the ratio of actual connections to possible connections), and (4) distinct shock propagation across sectors, such as lending platforms, trading exchanges, and asset management protocols. The DeXposure dataset and code have been released publicly. We envision they will help with research and practice in machine learning as well as financial risk monitoring, policy analysis, DeFi market modeling, amongst others. The dataset also contributes to machine learning research by offering benchmarks for graph clustering, vector autoregression, and temporal graph analysis.
comment: Data and code: https://github.com/dthinkr/DeXposure - Visualisation: https://ccaf.io/defi/ecosystem-map/visualisation/graph
☆ Swarms of Large Language Model Agents for Protein Sequence Design with Experimental Validation
Designing proteins de novo with tailored structural, physicochemical, and functional properties remains a grand challenge in biotechnology, medicine, and materials science, due to the vastness of sequence space and the complex coupling between sequence, structure, and function. Current state-of-the-art generative methods, such as protein language models (PLMs) and diffusion-based architectures, often require extensive fine-tuning, task-specific data, or model reconfiguration to support objective-directed design, thereby limiting their flexibility and scalability. To overcome these limitations, we present a decentralized, agent-based framework inspired by swarm intelligence for de novo protein design. In this approach, multiple large language model (LLM) agents operate in parallel, each assigned to a specific residue position. These agents iteratively propose context-aware mutations by integrating design objectives, local neighborhood interactions, and memory and feedback from previous iterations. This position-wise, decentralized coordination enables emergent design of diverse, well-defined sequences without reliance on motif scaffolds or multiple sequence alignments, validated with experiments on proteins with alpha helix and coil structures. Through analyses of residue conservation, structure-based metrics, and sequence convergence and embeddings, we demonstrate that the framework exhibits emergent behaviors and effective navigation of the protein fitness landscape. Our method achieves efficient, objective-directed designs within a few GPU-hours and operates entirely without fine-tuning or specialized training, offering a generalizable and adaptable solution for protein design. Beyond proteins, the approach lays the groundwork for collective LLM-driven design across biomolecular systems and other scientific discovery tasks.
☆ Enhanced Conditional Generation of Double Perovskite by Knowledge-Guided Language Model Feedback
Double perovskites (DPs) are promising candidates for sustainable energy technologies due to their compositional tunability and compatibility with low-energy fabrication, yet their vast design space poses a major challenge for conditional materials discovery. This work introduces a multi-agent, text gradient-driven framework that performs DP composition generation under natural-language conditions by integrating three complementary feedback sources: LLM-based self-evaluation, DP-specific domain knowledge-informed feedback, and ML surrogate-based feedback. Analogous to how knowledge-informed machine learning improves the reliability of conventional data-driven models, our framework incorporates domain-informed text gradients to guide the generative process toward physically meaningful regions of the DP composition space. Systematic comparison of three incremental configurations, (i) pure LLM generation, (ii) LLM generation with LLM reasoning-based feedback, and (iii) LLM generation with domain knowledge-guided feedback, shows that iterative guidance from knowledge-informed gradients improves stability-condition satisfaction without additional training data, achieving over 98% compositional validity and up to 54% stable or metastable candidates, surpassing both the LLM-only baseline (43%) and prior GAN-based results (27%). Analyses of ML-based gradients further reveal that they enhance performance in in-distribution (ID) regions but become unreliable in out-of-distribution (OOD) regimes. Overall, this work provides the first systematic analysis of multi-agent, knowledge-guided text gradients for DP discovery and establishes a generalizable blueprint for MAS-driven generative materials design aimed at advancing sustainable technologies.
☆ FLUX: Efficient Descriptor-Driven Clustered Federated Learning under Arbitrary Distribution Shifts NeurIPS 2025
Federated Learning (FL) enables collaborative model training across multiple clients while preserving data privacy. Traditional FL methods often use a global model to fit all clients, assuming that clients' data are independent and identically distributed (IID). However, when this assumption does not hold, the global model accuracy may drop significantly, limiting FL applicability in real-world scenarios. To address this gap, we propose FLUX, a novel clustering-based FL (CFL) framework that addresses the four most common types of distribution shifts during both training and test time. To this end, FLUX leverages privacy-preserving client-side descriptor extraction and unsupervised clustering to ensure robust performance and scalability across varying levels and types of distribution shifts. Unlike existing CFL methods addressing non-IID client distribution shifts, FLUX i) does not require any prior knowledge of the types of distribution shifts or the number of client clusters, and ii) supports test-time adaptation, enabling unseen and unlabeled clients to benefit from the most suitable cluster-specific models. Extensive experiments across four standard benchmarks, two real-world datasets and ten state-of-the-art baselines show that FLUX improves performance and stability under diverse distribution shifts, achieving an average accuracy gain of up to 23 percentage points over the best-performing baselines, while maintaining computational and communication overhead comparable to FedAvg.
comment: [v1] Pre-print of the paper accepted to NeurIPS 2025 (57 pages)
☆ Data-driven informative priors for Bayesian inference with quasi-periodic data
Bayesian computational strategies for inference can be inefficient in approximating the posterior distribution in models that exhibit some form of periodicity. This is because the probability mass of the marginal posterior distribution of the parameter representing the period is usually highly concentrated in a very small region of the parameter space. Therefore, it is necessary to provide as much information as possible to the inference method through the parameter prior distribution. We intend to show that it is possible to construct a prior distribution from the data by fitting a Gaussian process (GP) with a periodic kernel. More specifically, we want to show that it is possible to approximate the marginal posterior distribution of the hyperparameter corresponding to the period in the kernel. Subsequently, this distribution can be used as a prior distribution for the inference method. We use an adaptive importance sampling method to approximate the posterior distribution of the hyperparameters of the GP. Then, we use the marginal posterior distribution of the hyperparameter related to the periodicity in order to construct a prior distribution for the period of the parametric model. This workflow is empirical Bayes, implemented as a modular (cut) transfer of a GP posterior for the period to the parametric model. We applied the proposed methodology to both synthetic and real data. We approximated the posterior distribution of the period of the GP kernel and then passed it forward as a posterior-as-prior with no feedback. Finally, we analyzed its impact on the marginal posterior distribution.
comment: Accepted for publication in AJ. 19 pages (one column), 14 figures
☆ Structure is Supervision: Multiview Masked Autoencoders for Radiology
Building robust medical machine learning systems requires pretraining strategies that exploit the intrinsic structure present in clinical data. We introduce Multiview Masked Autoencoder (MVMAE), a self-supervised framework that leverages the natural multi-view organization of radiology studies to learn view-invariant and disease-relevant representations. MVMAE combines masked image reconstruction with cross-view alignment, transforming clinical redundancy across projections into a powerful self-supervisory signal. We further extend this approach with MVMAE-V2T, which incorporates radiology reports as an auxiliary text-based learning signal to enhance semantic grounding while preserving fully vision-based inference. Evaluated on a downstream disease classification task on three large-scale public datasets, MIMIC-CXR, CheXpert, and PadChest, MVMAE consistently outperforms supervised and vision-language baselines. Furthermore, MVMAE-V2T provides additional gains, particularly in low-label regimes where structured textual supervision is most beneficial. Together, these results establish the importance of structural and textual supervision as complementary paths toward scalable, clinically grounded medical foundation models.
☆ GLA-Grad++: An Improved Griffin-Lim Guided Diffusion Model for Speech Synthesis
Recent advances in diffusion models have positioned them as powerful generative frameworks for speech synthesis, demonstrating substantial improvements in audio quality and stability. Nevertheless, their effectiveness in vocoders conditioned on mel spectrograms remains constrained, particularly when the conditioning diverges from the training distribution. The recently proposed GLA-Grad model introduced a phase-aware extension to the WaveGrad vocoder that integrated the Griffin-Lim algorithm (GLA) into the reverse process to reduce inconsistencies between generated signals and conditioning mel spectrogram. In this paper, we further improve GLA-Grad through an innovative choice in how to apply the correction. Particularly, we compute the correction term only once, with a single application of GLA, to accelerate the generation process. Experimental results demonstrate that our method consistently outperforms the baseline models, particularly in out-of-domain scenarios.
☆ Adaptive tumor growth forecasting via neural & universal ODEs
Forecasting tumor growth is critical for optimizing treatment. Classical growth models such as the Gompertz and Bertalanffy equations capture general tumor dynamics but may fail to adapt to patient-specific variability, particularly with limited data available. In this study, we leverage Neural Ordinary Differential Equations (Neural ODEs) and Universal Differential Equations (UDEs), two pillars of Scientific Machine Learning (SciML), to construct adaptive tumor growth models capable of learning from experimental data. Using the Gompertz model as a baseline, we replace rigid terms with adaptive neural networks to capture hidden dynamics through robust modeling in the Julia programming language. We use our models to perform forecasting under data constraints and symbolic recovery to transform the learned dynamics into explicit mathematical expressions. Our approach has the potential to improve predictive accuracy, guiding dynamic and effective treatment strategies for improved clinical outcomes.
comment: Accepted at JuliaCon 2025 conference
☆ Online Dynamic Pricing of Complementary Products
Traditional pricing paradigms, once dominated by static models and rule-based heuristics, are increasingly being replaced by dynamic, data-driven approaches powered by machine learning algorithms. Despite their growing sophistication, most dynamic pricing algorithms focus on optimizing the price of each product independently, disregarding potential interactions among items. By neglecting these interdependencies in consumer demand across related goods, sellers may fail to capture the full potential of coordinated pricing strategies. In this paper, we address this problem by exploring dynamic pricing mechanisms designed explicitly for complementary products, aiming to exploit their joint demand structure to maximize overall revenue. We present an online learning algorithm considering both positive and negative interactions between products' demands. The algorithm utilizes transaction data to identify advantageous complementary relationships through an integer programming problem between different items, and then optimizes pricing strategies using data-driven and computationally efficient multi-armed bandit solutions based on heteroscedastic Gaussian processes. We validate our solution in a simulated environment, and we demonstrate that our solution improves the revenue w.r.t. a comparable learning algorithm ignoring such interactions.
☆ The Hidden Cost of Approximation in Online Mirror Descent
Online mirror descent (OMD) is a fundamental algorithmic paradigm that underlies many algorithms in optimization, machine learning and sequential decision-making. The OMD iterates are defined as solutions to optimization subproblems which, oftentimes, can be solved only approximately, leading to an inexact version of the algorithm. Nonetheless, existing OMD analyses typically assume an idealized error free setting, thereby limiting our understanding of performance guarantees that should be expected in practice. In this work we initiate a systematic study into inexact OMD, and uncover an intricate relation between regularizer smoothness and robustness to approximation errors. When the regularizer is uniformly smooth, we establish a tight bound on the excess regret due to errors. Then, for barrier regularizers over the simplex and its subsets, we identify a sharp separation: negative entropy requires exponentially small errors to avoid linear regret, whereas log-barrier and Tsallis regularizers remain robust even when the errors are only polynomial. Finally, we show that when the losses are stochastic and the domain is the simplex, negative entropy regains robustness-but this property does not extend to all subsets, where exponentially small errors are again necessary to avoid suboptimal regret.
☆ TreeCoder: Systematic Exploration and Optimisation of Decoding and Constraints for LLM Code Generation
Large language models (LLMs) have shown remarkable ability to generate code, yet their outputs often violate syntactic or semantic constraints when guided only through natural language prompts. We introduce TreeCoder, the most general and flexible framework to date for exploring decoding strategies, constraints, and hyperparameters in LLMs, and use it in code generation to enforce correctness and structure during decoding rather than relying on prompt engineering. TreeCoder represents decoding as a tree search over candidate programs, where both decoding strategies and constraint functions - such as style, syntax, execution - are treated as first-class, optimisable components. This design enables systematic exploration and automatic tuning of decoding configurations using standard optimisation techniques. Experiments on the MBPP (Python) and SQL-Spider benchmarks show that TreeCoder consistently improves accuracy across open-source models such as CodeLlama, Mistral and DeepSeek, often outperforming their unconstrained baselines by considerable margins.
☆ UCB for Large-Scale Pure Exploration: Beyond Sub-Gaussianity
Selecting the best alternative from a finite set represents a broad class of pure exploration problems. Traditional approaches to pure exploration have predominantly relied on Gaussian or sub-Gaussian assumptions on the performance distributions of all alternatives, which limit their applicability to non-sub-Gaussian especially heavy-tailed problems. The need to move beyond sub-Gaussianity may become even more critical in large-scale problems, which tend to be especially sensitive to distributional specifications. In this paper, motivated by the widespread use of upper confidence bound (UCB) algorithms in pure exploration and beyond, we investigate their performance in the large-scale, non-sub-Gaussian settings. We consider the simplest category of UCB algorithms, where the UCB value for each alternative is defined as the sample mean plus an exploration bonus that depends only on its own sample size. We abstract this into a meta-UCB algorithm and propose letting it select the alternative with the largest sample size as the best upon stopping. For this meta-UCB algorithm, we first derive a distribution-free lower bound on the probability of correct selection. Building on this bound, we analyze two general non-sub-Gaussian scenarios: (1) all alternatives follow a common location-scale structure and have bounded variance; and (2) when such a structure does not hold, each alternative has a bounded absolute moment of order $q > 3$. In both settings, we show that the meta-UCB algorithm and therefore a broad class of UCB algorithms can achieve the sample optimality. These results demonstrate the applicability of UCB algorithms for solving large-scale pure exploration problems with non-sub-Gaussian distributions. Numerical experiments support our results and provide additional insights into the comparative behaviors of UCB algorithms within and beyond our meta-UCB framework.
☆ Towards Understanding Generalization in DP-GD: A Case Study in Training Two-Layer CNNs
Modern deep learning techniques focus on extracting intricate information from data to achieve accurate predictions. However, the training datasets may be crowdsourced and include sensitive information, such as personal contact details, financial data, and medical records. As a result, there is a growing emphasis on developing privacy-preserving training algorithms for neural networks that maintain good performance while preserving privacy. In this paper, we investigate the generalization and privacy performances of the differentially private gradient descent (DP-GD) algorithm, which is a private variant of the gradient descent (GD) by incorporating additional noise into the gradients during each iteration. Moreover, we identify a concrete learning task where DP-GD can achieve superior generalization performance compared to GD in training two-layer Huberized ReLU convolutional neural networks (CNNs). Specifically, we demonstrate that, under mild conditions, a small signal-to-noise ratio can result in GD producing training models with poor test accuracy, whereas DP-GD can yield training models with good test accuracy and privacy guarantees if the signal-to-noise ratio is not too small. This indicates that DP-GD has the potential to enhance model performance while ensuring privacy protection in certain learning tasks. Numerical simulations are further conducted to support our theoretical results.
☆ FedRE: A Representation Entanglement Framework for Model-Heterogeneous Federated Learning
Federated learning (FL) enables collaborative training across clients without compromising privacy. While most existing FL methods assume homogeneous model architectures, client heterogeneity in data and resources renders this assumption impractical, motivating model-heterogeneous FL. To address this problem, we propose Federated Representation Entanglement (FedRE), a framework built upon a novel form of client knowledge termed entangled representation. In FedRE, each client aggregates its local representations into a single entangled representation using normalized random weights and applies the same weights to integrate the corresponding one-hot label encodings into the entangled-label encoding. Those are then uploaded to the server to train a global classifier. During training, each entangled representation is supervised across categories via its entangled-label encoding, while random weights are resampled each round to introduce diversity, mitigating the global classifier's overconfidence and promoting smoother decision boundaries. Furthermore, each client uploads a single cross-category entangled representation along with its entangled-label encoding, mitigating the risk of representation inversion attacks and reducing communication overhead. Extensive experiments demonstrate that FedRE achieves an effective trade-off among model performance, privacy protection, and communication overhead. The codes are available at https://github.com/AIResearch-Group/FedRE.
☆ 3D-Consistent Multi-View Editing by Diffusion Guidance
Recent advancements in diffusion models have greatly improved text-based image editing, yet methods that edit images independently often produce geometrically and photometrically inconsistent results across different views of the same scene. Such inconsistencies are particularly problematic for editing of 3D representations such as NeRFs or Gaussian Splat models. We propose a training-free diffusion framework that enforces multi-view consistency during the image editing process. The key assumption is that corresponding points in the unedited images should undergo similar transformations after editing. To achieve this, we introduce a consistency loss that guides the diffusion sampling toward coherent edits. The framework is flexible and can be combined with widely varying image editing methods, supporting both dense and sparse multi-view editing setups. Experimental results show that our approach significantly improves 3D consistency compared to existing multi-view editing methods. We also show that this increased consistency enables high-quality Gaussian Splat editing with sharp details and strong fidelity to user-specified text prompts. Please refer to our project page for video results: https://3d-consistent-editing.github.io/
☆ Real-PGDN: A Two-level Classification Method for Full-Process Recognition of Newly Registered Pornographic and Gambling Domain Names
Online pornography and gambling have consistently posed regulatory challenges for governments, threatening both personal assets and privacy. Therefore, it is imperative to research the classification of the newly registered Pornographic and Gambling Domain Names (PGDN). However, scholarly investigation into this topic is limited. Previous efforts in PGDN classification pursue high accuracy using ideal sample data, while others employ up-to-date data from real-world scenarios but achieve lower classification accuracy. This paper introduces the Real-PGDN method, which accomplishes a complete process of timely and comprehensive real-data crawling, feature extraction with feature-missing tolerance, precise PGDN classification, and assessment of application effects in actual scenarios. Our two-level classifier, which integrates CoSENT (BERT-based), Multilayer Perceptron (MLP), and traditional classification algorithms, achieves a 97.88% precision. The research process amasses the NRD2024 dataset, which contains continuous detection information over 20 days for 1,500,000 newly registered domain names across 6 directions. Results from our case study demonstrate that this method also maintains a forecast precision of over 70% for PGDN that are delayed in usage after registration.
☆ BiCQL-ML: A Bi-Level Conservative Q-Learning Framework for Maximum Likelihood Inverse Reinforcement Learning
Offline inverse reinforcement learning (IRL) aims to recover a reward function that explains expert behavior using only fixed demonstration data, without any additional online interaction. We propose BiCQL-ML, a policy-free offline IRL algorithm that jointly optimizes a reward function and a conservative Q-function in a bi-level framework, thereby avoiding explicit policy learning. The method alternates between (i) learning a conservative Q-function via Conservative Q-Learning (CQL) under the current reward, and (ii) updating the reward parameters to maximize the expected Q-values of expert actions while suppressing over-generalization to out-of-distribution actions. This procedure can be viewed as maximum likelihood estimation under a soft value matching principle. We provide theoretical guarantees that BiCQL-ML converges to a reward function under which the expert policy is soft-optimal. Empirically, we show on standard offline RL benchmarks that BiCQL-ML improves both reward recovery and downstream policy performance compared to existing offline IRL baselines.
comment: 8 pages, 3 figures
☆ PULSE-ICU: A Pretrained Unified Long-Sequence Encoder for Multi-task Prediction in Intensive Care Units
Intensive care unit (ICU) data are highly irregular, heterogeneous, and temporally fragmented, posing challenges for generalizable clinical prediction. We present PULSE-ICU, a self-supervised foundation model that learns event-level ICU representations from large-scale EHR sequences without resampling or manual feature engineering. A unified embedding module encodes event identity, continuous values, units, and temporal attributes, while a Longformer-based encoder enables efficient modeling of long trajectories. PULSE-ICU was fine-tuned across 18 prediction tasks, including mortality, intervention forecasting, and phenotype identification, achieving strong performance across task types. External validation on eICU, HiRID, and P12 showed substantial improvements with minimal fine-tuning, demonstrating robustness to domain shift and variable constraints. These findings suggest that foundation-style modeling can improve data efficiency and adaptability, providing a scalable framework for ICU decision support across diverse clinical environments.
☆ Designing Instance-Level Sampling Schedules via REINFORCE with James-Stein Shrinkage
Most post-training methods for text-to-image samplers focus on model weights: either fine-tuning the backbone for alignment or distilling it for few-step efficiency. We take a different route: rescheduling the sampling timeline of a frozen sampler. Instead of a fixed, global schedule, we learn instance-level (prompt- and noise-conditioned) schedules through a single-pass Dirichlet policy. To ensure accurate gradient estimates in high-dimensional policy learning, we introduce a novel reward baseline based on a principled James-Stein estimator; it provably achieves lower estimation errors than commonly used variants and leads to superior performance. Our rescheduled samplers consistently improve text-image alignment including text rendering and compositional control across modern Stable Diffusion and Flux model families. Additionally, a 5-step Flux-Dev sampler with our schedules can attain generation quality comparable to deliberately distilled samplers like Flux-Schnell. We thus position our scheduling framework as an emerging model-agnostic post-training lever that unlocks additional generative potential in pretrained samplers.
comment: 23 pages
☆ From Topology to Retrieval: Decoding Embedding Spaces with Unified Signatures
Studying how embeddings are organized in space not only enhances model interpretability but also uncovers factors that drive downstream task performance. In this paper, we present a comprehensive analysis of topological and geometric measures across a wide set of text embedding models and datasets. We find a high degree of redundancy among these measures and observe that individual metrics often fail to sufficiently differentiate embedding spaces. Building on these insights, we introduce Unified Topological Signatures (UTS), a holistic framework for characterizing embedding spaces. We show that UTS can predict model-specific properties and reveal similarities driven by model architecture. Further, we demonstrate the utility of our method by linking topological structure to ranking effectiveness and accurately predicting document retrievability. We find that a holistic, multi-attribute perspective is essential to understanding and leveraging the geometry of text embeddings.
☆ Stacked Ensemble of Fine-Tuned CNNs for Knee Osteoarthritis Severity Grading
Knee Osteoarthritis (KOA) is a musculoskeletal condition that can cause significant limitations and impairments in daily activities, especially among older individuals. To evaluate the severity of KOA, typically, X-ray images of the affected knee are analyzed, and a grade is assigned based on the Kellgren-Lawrence (KL) grading system, which classifies KOA severity into five levels, ranging from 0 to 4. This approach requires a high level of expertise and time and is susceptible to subjective interpretation, thereby introducing potential diagnostic inaccuracies. To address this problem a stacked ensemble model of fine-tuned Convolutional Neural Networks (CNNs) was developed for two classification tasks: a binary classifier for detecting the presence of KOA, and a multiclass classifier for precise grading across the KL spectrum. The proposed stacked ensemble model consists of a diverse set of pre-trained architectures, including MobileNetV2, You Only Look Once (YOLOv8), and DenseNet201 as base learners and Categorical Boosting (CatBoost) as the meta-learner. This proposed model had a balanced test accuracy of 73% in multiclass classification and 87.5% in binary classification, which is higher than previous works in extant literature.
comment: Accepted and Presented at IEEE UEMCON, IBM T.J. Watson Research Center, New York, USA, 2024
☆ TinyLLM: Evaluation and Optimization of Small Language Models for Agentic Tasks on Edge Devices
This paper investigates the effectiveness of small language models (SLMs) for agentic tasks (function/tool/API calling) with a focus on running agents on edge devices without reliance on cloud infrastructure. We evaluate SLMs using the Berkeley Function Calling Leaderboard (BFCL) framework and describe parameter-driven optimization strategies that include supervised fine-tuning (SFT), parameter-efficient fine-tuning (PEFT), reinforcement learning (RL)-based optimization, preference alignment via Direct Preference Optimization (DPO), and hybrid methods. We report results for models including TinyAgent, TinyLlama, Qwen, and xLAM across BFCL categories (simple, multiple, parallel, parallel-multiple, and relevance detection), both in live and non-live settings, and in multi-turn evaluations. We additionally detail a DPO training pipeline constructed from AgentBank data (e.g., ALFRED), including our conversion of SFT data to chosen-rejected pairs using TinyLlama responses as rejected outputs and manual validation. Our results demonstrate clear accuracy differences across model scales where medium-sized models (1-3B parameters) significantly outperform ultra-compact models (<1B parameters), achieving up to 65.74% overall accuracy, and 55.62% multi-turn accuracy with hybrid optimization. This study highlights the importance of hybrid optimization strategies that enable small language models to deliver accurate, efficient, and stable agentic AI on edge devices, making privacy-preserving, low-latency autonomous agents practical beyond the cloud.
comment: 8 pages, 3 figures, 4 tables
☆ Probabilistic Digital Twin for Misspecified Structural Dynamical Systems via Latent Force Modeling and Bayesian Neural Networks
This work presents a probabilistic digital twin framework for response prediction in dynamical systems governed by misspecified physics. The approach integrates Gaussian Process Latent Force Models (GPLFM) and Bayesian Neural Networks (BNNs) to enable end-to-end uncertainty-aware inference and prediction. In the diagnosis phase, model-form errors (MFEs) are treated as latent input forces to a nominal linear dynamical system and jointly estimated with system states using GPLFM from sensor measurements. A BNN is then trained on posterior samples to learn a probabilistic nonlinear mapping from system states to MFEs, while capturing diagnostic uncertainty. For prognosis, this mapping is used to generate pseudo-measurements, enabling state prediction via Kalman filtering. The framework allows for systematic propagation of uncertainty from diagnosis to prediction, a key capability for trustworthy digital twins. The framework is demonstrated using four nonlinear examples: a single degree of freedom (DOF) oscillator, a multi-DOF system, and two established benchmarks -- the Bouc-Wen hysteretic system and the Silverbox experimental dataset -- highlighting its predictive accuracy and robustness to model misspecification.
☆ Autonomous labeling of surgical resection margins using a foundation model
Assessing resection margins is central to pathological specimen evaluation and has profound implications for patient outcomes. Current practice employs physical inking, which is applied variably, and cautery artifacts can obscure the true margin on histological sections. We present a virtual inking network (VIN) that autonomously localizes the surgical cut surface on whole-slide images, reducing reliance on inks and standardizing margin-focused review. VIN uses a frozen foundation model as the feature extractor and a compact two-layer multilayer perceptron trained for patch-level classification of cautery-consistent features. The dataset comprised 120 hematoxylin and eosin (H&E) stained slides from 12 human tonsil tissue blocks, resulting in ~2 TB of uncompressed raw image data, where a board-certified pathologist provided boundary annotations. In blind testing with 20 slides from previously unseen blocks, VIN produced coherent margin overlays that qualitatively aligned with expert annotations across serial sections. Quantitatively, region-level accuracy was ~73.3% across the test set, with errors largely confined to limited areas that did not disrupt continuity of the whole-slide margin map. These results indicate that VIN captures cautery-related histomorphology and can provide a reproducible, ink-free margin delineation suitable for integration into routine digital pathology workflows and for downstream measurement of margin distances.
comment: 20 Pages, 5 Figures
☆ Benchmarking In-context Experiential Learning Through Repeated Product Recommendations
To reliably navigate ever-shifting real-world environments, agents must grapple with incomplete knowledge and adapt their behavior through experience. However, current evaluations largely focus on tasks that leave no ambiguity, and do not measure agents' ability to adaptively learn and reason through the experiences they accrued. We exemplify the need for this in-context experiential learning in a product recommendation context, where agents must navigate shifting customer preferences and product landscapes through natural language dialogue. We curate a benchmark for experiential learning and active exploration (BELA) that combines (1) rich real-world products from Amazon, (2) a diverse collection of user personas to represent heterogeneous yet latent preferences, and (3) a LLM user simulator powered by the persona to create rich interactive trajectories. We observe that current frontier models struggle to meaningfully improve across episodes, underscoring the need for agentic systems with strong in-context learning capabilities.
☆ A Variational Manifold Embedding Framework for Nonlinear Dimensionality Reduction NeurIPS 2025
Dimensionality reduction algorithms like principal component analysis (PCA) are workhorses of machine learning and neuroscience, but each has well-known limitations. Variants of PCA are simple and interpretable, but not flexible enough to capture nonlinear data manifold structure. More flexible approaches have other problems: autoencoders are generally difficult to interpret, and graph-embedding-based methods can produce pathological distortions in manifold geometry. Motivated by these shortcomings, we propose a variational framework that casts dimensionality reduction algorithms as solutions to an optimal manifold embedding problem. By construction, this framework permits nonlinear embeddings, allowing its solutions to be more flexible than PCA. Moreover, the variational nature of the framework has useful consequences for interpretability: each solution satisfies a set of partial differential equations, and can be shown to reflect symmetries of the embedding objective. We discuss these features in detail and show that solutions can be analytically characterized in some cases. Interestingly, one special case exactly recovers PCA.
comment: Accepted to the NeurIPS 2025 Workshop on Symmetry and Geometry in Neural Representations (NeurReps)
☆ IVGAE: Handling Incomplete Heterogeneous Data with a Variational Graph Autoencoder
Handling missing data remains a fundamental challenge in real-world tabular datasets, especially when data are heterogeneous with both numerical and categorical features. Existing imputation methods often fail to capture complex structural dependencies and handle heterogeneous data effectively. We present \textbf{IVGAE}, a Variational Graph Autoencoder framework for robust imputation of incomplete heterogeneous data. IVGAE constructs a bipartite graph to represent sample-feature relationships and applies graph representation learning to model structural dependencies. A key innovation is its \textit{dual-decoder architecture}, where one decoder reconstructs feature embeddings and the other models missingness patterns, providing structural priors aware of missing mechanisms. To better encode categorical variables, we introduce a Transformer-based heterogeneous embedding module that avoids high-dimensional one-hot encoding. Extensive experiments on 16 real-world datasets show that IVGAE achieves consistent improvements in RMSE and downstream F1 across MCAR, MAR, and MNAR missing scenarios under 30\% missing rates. Code and data are available at: https://github.com/echoid/IVGAE.
☆ Toward Data-Driven Surrogates of the Solar Wind with Spherical Fourier Neural Operator ICML
The solar wind, a continuous stream of charged particles from the Sun's corona, shapes the heliosphere and impacts space systems near Earth. Variations such as high-speed streams and coronal mass ejections can disrupt satellites, power grids, and communications, making accurate modeling essential for space weather forecasting. While 3D magnetohydrodynamic (MHD) models are used to simulate and investigate these variations in the solar wind, they tend to be computationally expensive, limiting their usefulness in investigating the impacts of boundary condition uncertainty. In this work, we develop a surrogate for steady state solar wind modeling, using a Spherical Fourier Neural Operator (SFNO). We compare our model to a previously developed numerical surrogate for this task called HUX, and we show that the SFNO achieves comparable or better performance across several metrics. Though HUX retains advantages in physical smoothness, this underscores the need for improved evaluation criteria rather than a flaw in SFNO. As a flexible and trainable approach, SFNO enables efficient real-time forecasting and can improve with more data. The source code and more visual results are available at https://github.com/rezmansouri/solarwind-sfno-velocity.
comment: International Conference on Machine Learning and Applications (ICMLA 2025)
☆ An energy-efficient spiking neural network with continuous learning for self-adaptive brain-machine interface
The number of simultaneously recorded neurons follows an exponentially increasing trend in implantable brain-machine interfaces (iBMIs). Integrating the neural decoder in the implant is an effective data compression method for future wireless iBMIs. However, the non-stationarity of the system makes the performance of the decoder unreliable. To avoid frequent retraining of the decoder and to ensure the safety and comfort of the iBMI user, continuous learning is essential for real-life applications. Since Deep Spiking Neural Networks (DSNNs) are being recognized as a promising approach for developing resource-efficient neural decoder, we propose continuous learning approaches with Reinforcement Learning (RL) algorithms adapted for DSNNs. Banditron and AGREL are chosen as the two candidate RL algorithms since they can be trained with limited computational resources, effectively addressing the non-stationary problem and fitting the energy constraints of implantable devices. To assess the effectiveness of the proposed methods, we conducted both open-loop and closed-loop experiments. The accuracy of open-loop experiments conducted with DSNN Banditron and DSNN AGREL remains stable over extended periods. Meanwhile, the time-to-target in the closed-loop experiment with perturbations, DSNN Banditron performed comparably to that of DSNN AGREL while achieving reductions of 98% in memory access usage and 99% in the requirements for multiply- and-accumulate (MAC) operations during training. Compared to previous continuous learning SNN decoders, DSNN Banditron requires 98% less computes making it a prime candidate for future wireless iBMI systems.
☆ Energy Efficient Sleep Mode Optimization in 5G mmWave Networks via Multi Agent Deep Reinforcement Learning
Dynamic sleep mode optimization (SMO) in millimeter-wave (mmWave) networks is essential for maximizing energy efficiency (EE) under stringent quality-of-service (QoS) constraints. However, existing optimization and reinforcement learning (RL) approaches rely on aggregated, static base station (BS) traffic models that fail to capture non-stationary traffic dynamics and suffer from large state-action spaces, limiting real-world deployment. To address these challenges, this paper proposes a multi-agent deep reinforcement learning (MARL) framework using a Double Deep Q-Network (DDQN), referred to as MARL-DDQN, for adaptive SMO in a 3D urban environment with a time-varying and community-based user equipment (UE) mobility model. Unlike conventional single-agent RL, MARL-DDQN enables scalable, distributed decision-making with minimal signaling overhead. A realistic BS power consumption model and beamforming are integrated to accurately quantify EE, while QoS is defined in terms of throughput. The method adapts SMO policies to maximize EE while mitigating inter-cell interference and ensuring throughput fairness. Simulations show that MARL-DDQN outperforms state-of-the-art strategies, including All On, iterative QoS-aware load-based (IT-QoS-LB), MARL-DDPG, and MARL-PPO, achieving up to 0.60 Mbit/Joule EE, 8.5 Mbps 10th-percentile throughput, and meeting QoS constraints 95% of the time under dynamic scenarios.
comment: This is an updated version of my preprint available on TechRxiv. Don't flag it as plagiarism. I wanna post my paper on arxiv
☆ Representative Action Selection for Large Action Space: From Bandits to MDPs
We study the problem of selecting a small, representative action subset from an extremely large action space shared across a family of reinforcement learning (RL) environments -- a fundamental challenge in applications like inventory management and recommendation systems, where direct learning over the entire space is intractable. Our goal is to identify a fixed subset of actions that, for every environment in the family, contains a near-optimal action, thereby enabling efficient learning without exhaustively evaluating all actions. This work extends our prior results for meta-bandits to the more general setting of Markov Decision Processes (MDPs). We prove that our existing algorithm achieves performance comparable to using the full action space. This theoretical guarantee is established under a relaxed, non-centered sub-Gaussian process model, which accommodates greater environmental heterogeneity. Consequently, our approach provides a computationally and sample-efficient solution for large-scale combinatorial decision-making under uncertainty.
comment: Journal version of arXiv:2505.18269
☆ MRI-Based Brain Age Estimation with Supervised Contrastive Learning of Continuous Representation
MRI-based brain age estimation models aim to assess a subject's biological brain age based on information, such as neuroanatomical features. Various factors, including neurodegenerative diseases, can accelerate brain aging and measuring this phenomena could serve as a potential biomarker for clinical applications. While deep learning (DL)-based regression has recently attracted major attention, existing approaches often fail to capture the continuous nature of neuromorphological changes, potentially resulting in sub-optimal feature representation and results. To address this, we propose to use supervised contrastive learning with the recent Rank-N-Contrast (RNC) loss to estimate brain age based on widely used T1w structural MRI for the first time and leverage Grad-RAM to visually explain regression results. Experiments show that our proposed method achieves a mean absolute error (MAE) of 4.27 years and an $R^2$ of 0.93 with a limited dataset of training samples, significantly outperforming conventional deep regression with the same ResNet backbone while performing better or comparably with the state-of-the-art methods with significantly larger training data. Furthermore, Grad-RAM revealed more nuanced features related to age regression with the RNC loss than conventional deep regression. As an exploratory study, we employed the proposed method to estimate the gap between the biological and chronological brain ages in Alzheimer's Disease and Parkinson's disease patients, and revealed the correlation between the brain age gap and disease severity, demonstrating its potential as a biomarker in neurodegenerative disorders.
☆ Adaptive Dueling Double Deep Q-networks in Uniswap V3 Replication and Extension with Mamba
The report goes through the main steps of replicating and improving the article "Adaptive Liquidity Provision in Uniswap V3 with Deep Reinforcement Learning." The replication part includes how to obtain data from the Uniswap Subgraph, details of the implementation, and comments on the results. After the replication, I propose a new structure based on the original model, which combines Mamba with DDQN and a new reward function. In this new structure, I clean the data again and introduce two new baselines for comparison. As a result, although the model has not yet been applied to all datasets, it shows stronger theoretical support than the original model and performs better in some tests.
comment: 12 pages, 5 figures
☆ Decomposed Trust: Exploring Privacy, Adversarial Robustness, Fairness, and Ethics of Low-Rank LLMs
Large language models (LLMs) have driven major advances across domains, yet their massive size hinders deployment in resource-constrained settings. Model compression addresses this challenge, with low-rank factorization emerging as a particularly effective method for reducing size, memory, and computation while maintaining accuracy. However, while these compressed models boast of benign performance and system-level advantages, their trustworthiness implications remain poorly understood. In this paper, we present the first comprehensive study of how low-rank factorization affects LLM trustworthiness across privacy, adversarial robustness, fairness, and ethical alignment. We evaluate multiple LLMs of different sizes and variants compressed with diverse low-rank algorithms, revealing key insights: (1) low-rank compression preserves or improves training data privacy but weakens PII protection during conversation; (2) adversarial robustness is generally preserved and often enhanced, even under deep compression; (3) ethical reasoning degrades in zero-shot settings but partially recovers with few-shot prompting; (4) fairness declines under compression. Beyond compression, we investigate how model scale and fine-tuning affect trustworthiness, as both are important in low-rank methods. To guide trustworthy compression strategies, we end our paper with a gradient-based attribution analysis to identify which layers in LLMs contribute most to adversarial robustness.
comment: 14 pages, 10 figures
☆ Quantum Bayesian Optimization for Quality Improvement in Fuselage Assembly
Recent efforts in smart manufacturing have enhanced aerospace fuselage assembly processes, particularly by innovating shape adjustment techniques to minimize dimensional gaps between assembled sections. Existing approaches have shown promising results but face the issue of low sample efficiency from the manufacturing systems. It arises from the limitation of the classical Monte Carlo method when uncovering the mean response from a distribution. In contrast, recent work has shown that quantum algorithms can achieve the same level of estimation accuracy with significantly fewer samples than the classical Monte Carlo method from distributions. Therefore, we can adopt the estimation of the quantum algorithm to obtain the estimation from real physical systems (distributions). Motivated by this advantage, we propose a Quantum Bayesian Optimization (QBO) framework for precise shape control during assembly to improve the sample efficiency in manufacturing practice. Specifically, this approach utilizes a quantum oracle, based on finite element analysis (FEA)-based models or surrogate models, to acquire a more accurate estimation of the environment response with fewer queries for a certain input. QBO employs an Upper Confidence Bound (UCB) as the acquisition function to strategically select input values that are most likely to maximize the objective function. It has been theoretically proven to require much fewer samples while maintaining comparable optimization results. In the case study, force-controlled actuators are applied to one fuselage section to adjust its shape and reduce the gap to the adjoining section. Experimental results demonstrate that QBO achieves significantly lower dimensional error and uncertainty compared to classical methods, particularly using the same queries from the simulation.
♻ ☆ Strategic inputs: feature selection from game-theoretic perspective
The exponential growth of data volumes has led to escalating computational costs in machine learning model training. However, many features fail to contribute positively to model performance while consuming substantial computational resources. This paper presents an end-to-end feature selection framework for tabular data based on game theory. We formulate feature selection procedure based on a cooperative game where features are modeled as players, and their importance is determined through the evaluation of synergistic interactions and marginal contributions. The proposed framework comprises four core components: sample selection, game-theoretic feature importance evaluation, redundant feature elimination, and optimized model training. Experimental results demonstrate that the proposed method achieves substantial computation reduction while preserving predictive performance, thereby offering an efficient solution of the computational challenges of large-scale machine learning. The source code is available at https://github.com/vectorsss/strategy_inputs.
♻ ☆ Graph Laplacian-based Bayesian Multi-fidelity Modeling
We present a novel probabilistic approach for generating multi-fidelity data while accounting for errors inherent in both low- and high-fidelity data. In this approach a graph Laplacian constructed from the low-fidelity data is used to define a multivariate Gaussian prior density for the coordinates of the true data points. In addition, few high-fidelity data points are used to construct a conjugate likelihood term. Thereafter, Bayes rule is applied to derive an explicit expression for the posterior density which is also multivariate Gaussian. The maximum \textit{a posteriori} (MAP) estimate of this density is selected to be the optimal multi-fidelity estimate. It is shown that the MAP estimate and the covariance of the posterior density can be determined through the solution of linear systems of equations. Thereafter, two methods, one based on spectral truncation and another based on a low-rank approximation, are developed to solve these equations efficiently. The multi-fidelity approach is tested on a variety of problems in solid and fluid mechanics with data that represents vectors of quantities of interest and discretized spatial fields in one and two dimensions. The results demonstrate that by utilizing a small fraction of high-fidelity data, the multi-fidelity approach can significantly improve the accuracy of a large collection of low-fidelity data points.
comment: Published in Computer Methods in Applied Mechanics and Engineering, Volume 435, 2025, Article 117647
♻ ☆ Fast multiplication by two's complement addition of numbers represented as a set of polynomial radix 2 indexes, stored as an integer list for massively parallel computation
We demonstrate a multiplication method based on numbers represented as set of polynomial radix 2 indices stored as an integer list. The 'polynomial integer index multiplication' method is a set of algorithms implemented in python code. We demonstrate the method to be faster than both the Number Theoretic Transform (NTT) and Karatsuba for multiplication within a certain bit range. Also implemented in python code for comparison purposes with the polynomial radix 2 integer method. We demonstrate that it is possible to express any integer or real number as a list of integer indices, representing a finite series in base two. The finite series of integer index representation of a number can then be stored and distributed across multiple CPUs / GPUs. We show that operations of addition and multiplication can be applied as two's complement additions operating on the index integer representations and can be fully distributed across a given CPU / GPU architecture. We demonstrate fully distributed arithmetic operations such that the 'polynomial integer index multiplication' method overcomes the current limitation of parallel multiplication methods. Ie, the need to share common core memory and common disk for the calculation of results and intermediate results.
comment: This paper has been withdrawn after an error was identified in a key proof. The revision requires substantial re-derivation and may replace the main theorem. A corrected version may be posted once the results are verified. therefore we require additional time to rework the argument
♻ ☆ Ga$_2$O$_3$ TCAD Mobility Parameter Calibration using Simulation Augmented Machine Learning with Physics Informed Neural Network
In this paper, we demonstrate the feasibility of performing automatic Technology Computer Aided Design (TCAD) parameter calibration and extraction using machine learning, with the machine trained solely by TCAD simulation data. The methodology is validated using experimental data. Schottky Barrier Diodes (SBDs) with different effective anode workfunction (WF) are fabricated with emerging ultra-wide bandgap material, Gallium Oxide (Ga2O3), and are measured at various temperatures (T). Their current voltage curves are used for automatic Ga2O3 Philips Unified Mobility (PhuMob) model parameters calibration. Five critical PhuMob parameters were calibrated. The machine consists of an autoencoder and a neural network and is trained solely by TCAD simulation data with variations in WF, T, and the five PhuMob parameters (seven variations in total). Then, Ga2O3 PhuMob parameters are extracted from the noisy experimental curves. Subsequent TCAD simulation using the extracted parameters shows that the quality of the parameters is as good as an expert's calibration at the pre-turned on regime, but not in the on state regime. By using a simple physics-informed neural network, the machine performs as well as the human expert in all regimes.
comment: 7 pages, 10 figures
♻ ☆ ShieldAgent: Shielding Agents via Verifiable Safety Policy Reasoning
Autonomous agents powered by foundation models have seen widespread adoption across various real-world applications. However, they remain highly vulnerable to malicious instructions and attacks, which can result in severe consequences such as privacy breaches and financial losses. More critically, existing guardrails for LLMs are not applicable due to the complex and dynamic nature of agents. To tackle these challenges, we propose ShieldAgent, the first guardrail agent designed to enforce explicit safety policy compliance for the action trajectory of other protected agents through logical reasoning. Specifically, ShieldAgent first constructs a safety policy model by extracting verifiable rules from policy documents and structuring them into a set of action-based probabilistic rule circuits. Given the action trajectory of the protected agent, ShieldAgent retrieves relevant rule circuits and generates a shielding plan, leveraging its comprehensive tool library and executable code for formal verification. In addition, given the lack of guardrail benchmarks for agents, we introduce ShieldAgent-Bench, a dataset with 3K safety-related pairs of agent instructions and action trajectories, collected via SOTA attacks across 6 web environments and 7 risk categories. Experiments show that ShieldAgent achieves SOTA on ShieldAgent-Bench and three existing benchmarks, outperforming prior methods by 11.3% on average with a high recall of 90.1%. Additionally, ShieldAgent reduces API queries by 64.7% and inference time by 58.2%, demonstrating its high precision and efficiency in safeguarding agents.
♻ ☆ A Trio Neural Model for Dynamic Entity Relatedness Ranking
Measuring entity relatedness is a fundamental task for many natural language processing and information retrieval applications. Prior work often studies entity relatedness in static settings and an unsupervised manner. However, entities in real-world are often involved in many different relationships, consequently entity-relations are very dynamic over time. In this work, we propose a neural networkbased approach for dynamic entity relatedness, leveraging the collective attention as supervision. Our model is capable of learning rich and different entity representations in a joint framework. Through extensive experiments on large-scale datasets, we demonstrate that our method achieves better results than competitive baselines.
comment: In Proceedings of CoNLL 2018
♻ ☆ One-Shot Learning for k-SAT
Consider a $k$-SAT formula $Φ$ where every variable appears at most $d$ times. Let $σ$ be a satisfying assignment, sampled proportionally to $e^{βm(σ)}$ where $m(σ)$ is the number of true variables and $β$ is a real parameter. Given $Φ$ and $σ$, can we efficiently learn $β$? This problem falls into a recent line of work about single-sample (``one-shot'') learning of Markov random fields. Our $k$-SAT setting was recently studied by Galanis, Kalavasis, Kandiros (SODA24). They showed that single-sample learning is possible when roughly $d\leq 2^{k/6.45}$ and impossible when $d\geq (k+1) 2^{k-1}$. In addition to the gap in~$d$, their impossibility result left open the question of whether the feasibility threshold for one-shot learning is dictated by the satisfiability threshold for bounded-degree $k$-SAT formulas. Our main contribution is to answer this question negatively. We show that one-shot learning for $k$-SAT is infeasible well below the satisfiability threshold; in fact, we obtain impossibility results for degrees $d$ as low as $k^2$ when $β$ is sufficiently large, and bootstrap this to small values of $β$ when $d$ scales exponentially with $k$, via a probabilistic construction. On the positive side, we simplify the analysis of the learning algorithm, obtaining significantly stronger bounds on $d$ in terms of $β$. For the uniform case $β\rightarrow 0$, we show that learning is possible under the condition $d\lesssim 2^{k/2}$. This is (up to constant factors) all the way to the sampling threshold -- it is known that sampling a uniformly-distributed satisfying assignment is NP-hard for $d\gtrsim 2^{k/2}$.
♻ ☆ RouterArena: An Open Platform for Comprehensive Comparison of LLM Routers
Today's LLM ecosystem comprises a wide spectrum of models that differ in size, capability, and cost. No single model is optimal for all scenarios; hence, LLM routers have become essential for selecting the most appropriate model under varying circumstances. However, the rapid emergence of various routers makes choosing the right one increasingly challenging. To address this problem, we need a comprehensive router comparison and a standardized leaderboard, similar to those available for models. In this work, we introduce RouterArena, the first open platform enabling comprehensive comparison of LLM routers. RouterArena has (1) a principally constructed dataset with broad knowledge domain coverage, (2) distinguishable difficulty levels for each domain, (3) an extensive list of evaluation metrics, and (4) an automated framework for leaderboard updates. Leveraging our framework, we have produced the initial leaderboard with detailed metrics comparison as shown in Figure 1. Our framework for evaluating new routers is on https://github.com/RouteWorks/RouterArena. Our leaderboard is on https://routeworks.github.io/.
comment: 22 pages, 13 figures, 9 tables
♻ ☆ FairPO: Robust Preference Optimization for Fair Multi-Label Learning
Multi-label classification (MLC) often suffers from performance disparities across labels. We propose \textbf{FairPO}, a framework combining preference-based loss and group-robust optimization to improve fairness by targeting underperforming labels. FairPO partitions labels into a \textit{privileged} set for targeted improvement and a \textit{non-privileged} set to maintain baseline performance. For privileged labels, a DPO-inspired preference loss addresses hard examples by correcting ranking errors between true labels and their confusing counterparts. A constrained objective maintains performance for non-privileged labels, while a Group Robust Preference Optimization (GRPO) formulation adaptively balances both objectives to mitigate bias. We also demonstrate FairPO's versatility with reference-free variants using Contrastive (CPO) and Simple (SimPO) Preference Optimization.
♻ ☆ Automated Constitutive Model Discovery by Pairing Sparse Regression Algorithms with Model Selection Criteria
The automated discovery of constitutive models from data has recently emerged as a promising alternative to the traditional model calibration paradigm. In this work, we present a fully automated framework for constitutive model discovery that systematically pairs three sparse regression algorithms Least Absolute Shrinkage and Selection Operator (LASSO), Least Angle Regression (LARS), and Orthogonal Matching Pursuit (OMP)) with three model selection criteria: $K$-fold cross-validation (CV), Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC). This pairing yields nine distinct algorithms for model discovery and enables a systematic exploration of the trade-off between sparsity, predictive performance, and computational cost. While LARS serves as an efficient path-based solver for the $\ell_1$-constrained problem, OMP is introduced as a tractable heuristic for $\ell_0$-regularized selection. The framework is applied to both isotropic and anisotropic hyperelasticity, utilizing both synthetic and experimental datasets. Results reveal that all nine algorithm-criterion combinations perform consistently well in discovering isotropic and anisotropic materials, yielding highly accurate constitutive models. These findings broaden the range of viable discovery algorithms beyond $\ell_1$-based approaches such as LASSO.
♻ ☆ Detecting Masquerade Attacks in Controller Area Networks Using Graph Machine Learning
Modern vehicles rely on a myriad of electronic control units (ECUs) interconnected via controller area networks (CANs) for critical operations. Despite their ubiquitous use and reliability, CANs are susceptible to sophisticated cyberattacks, particularly masquerade attacks, which inject false data that mimic legitimate messages at the expected frequency. These attacks pose severe risks such as unintended acceleration, brake deactivation, and rogue steering. Traditional intrusion detection systems (IDS) often struggle to detect these subtle intrusions due to their seamless integration into normal traffic. This paper introduces a novel framework for detecting masquerade attacks in the CAN bus using graph machine learning (ML). We hypothesize that the integration of shallow graph embeddings with time series features derived from CAN frames enhances the detection of masquerade attacks. We show that by representing CAN bus frames as message sequence graphs (MSGs) and enriching each node with contextual statistical attributes from time series, we can enhance detection capabilities across various attack patterns compared to using graph-based features only. Our method ensures a comprehensive and dynamic analysis of CAN frame interactions, improving robustness and efficiency. Extensive experiments on the ROAD dataset validate the effectiveness of our approach, demonstrating statistically significant improvements in the detection rates of masquerade attacks compared to a baseline that uses graph-based features only as confirmed by Mann-Whitney U and Kolmogorov-Smirnov tests p < 0.05.
♻ ☆ Improved Generalization Bounds for Transductive Learning by Transductive Local Complexity and Its Applications ICML 2025
We introduce Transductive Local Complexity (TLC) as a new tool for analyzing the generalization performance of transductive learning methods. Our work extends the classical Local Rademacher Complexity (LRC) to the transductive setting, incorporating substantial and novel components beyond standard inductive LRC analysis. Although LRC has been used to obtain sharp generalization bounds and minimax rates for inductive tasks such as classification and nonparametric regression, it has remained an open problem whether a localized Rademacher complexity framework can be effectively adapted to transductive learning to achieve sharp or nearly sharp bounds consistent with inductive results. We provide an affirmative answer via TLC. TLC is constructed by first deriving a new concentration inequality in Theorem 4.1 for the supremum of empirical processes capturing the gap between test and training losses, termed the test-train process, under uniform sampling without replacement, which leverages a novel combinatorial property of the test-train process and a new proof strategy applying the exponential Efron-Stein inequality twice. A subsequent peeling strategy and a new surrogate variance operator then yield excess risk bounds in the transductive setting that are nearly consistent with classical LRC-based inductive bounds up to a logarithmic gap. We further advance transductive learning through two applications: (1) for realizable transductive learning over binary-valued classes with finite VC dimension and $u \ge m \ge \dVC$ where $u$ and $m$ are the number of test features and training features, our Theorem 6.1 gives a nearly optimal bound $Θ(\dVC \log(me/\dVC)/m)$ matching the minimax rate $Θ(\dVC/m)$ up to $\log m$, resolving a decade-old open question; and (2) Theorem 6.3 presents a sharper excess risk bound for transductive kernel learning compared to the current state-of-the-art.
comment: The conference version (https://openreview.net/pdf?id=NRVdvg7VMn) at ICML 2025 is a special case of this paper where the length of the chain set to 2 (that is $Q=2$, please refer to Def. 5.1), and the main results of the conference version are direct consequences of the main results in this paper
♻ ☆ Automated Composition of Agents: A Knapsack Approach for Agentic Component Selection NeurIPS 2025
Designing effective agentic systems requires the seamless composition and integration of agents, tools, and models within dynamic and uncertain environments. Most existing methods rely on static, semantic retrieval approaches for tool or agent discovery. However, effective reuse and composition of existing components remain challenging due to incomplete capability descriptions and the limitations of retrieval methods. Component selection suffers because the decisions are not based on capability, cost, and real-time utility. To address these challenges, we introduce a structured, automated framework for agentic system composition that is inspired by the knapsack problem. Our framework enables a composer agent to systematically identify, select, and assemble an optimal set of agentic components by jointly considering performance, budget constraints, and compatibility. By dynamically testing candidate components and modeling their utility in real-time, our approach streamlines the assembly of agentic systems and facilitates scalable reuse of resources. Empirical evaluation with Claude 3.5 Sonnet across five benchmarking datasets shows that our online-knapsack-based composer consistently lies on the Pareto frontier, achieving higher success rates at significantly lower component costs compared to our baselines. In the single-agent setup, the online knapsack composer shows a success rate improvement of up to 31.6% in comparison to the retrieval baselines. In multi-agent systems, the online knapsack composer increases success rate from 37% to 87% when agents are selected from an agent inventory of 100+ agents. The substantial performance gap confirms the robust adaptability of our method across diverse domains and budget constraints.
comment: Accepted to NeurIPS 2025 Conference
♻ ☆ Chain-of-Influence: Tracing Interdependencies Across Time and Features in Clinical Predictive Modelings
Modeling clinical time-series data is hampered by the challenge of capturing latent, time-varying dependencies among features. State-of-the-art approaches often rely on black-box mechanisms or simple aggregation, failing to explicitly model how the influence of one clinical variable propagates through others over time. We propose $\textbf{Chain-of-Influence (CoI)}$, an interpretable deep learning framework that constructs an explicit, time-unfolded graph of feature interactions. CoI enables the tracing of influence pathways, providing a granular audit trail that shows how any feature at any time contributes to the final prediction, both directly and through its influence on other variables. We evaluate CoI on mortality and disease progression tasks using the MIMIC-IV dataset and a chronic kidney disease cohort. Our framework achieves state-of-the-art predictive performance (AUROC of 0.960 on CKD progression and 0.950 on ICU mortality), with deletion-based sensitivity analyses confirming that CoI's learned attributions faithfully reflect its decision process. Through case studies, we demonstrate that CoI uncovers clinically meaningful, patient-specific patterns of disease progression, offering enhanced transparency into the temporal and cross-feature dependencies that inform clinical decision-making.
♻ ☆ Self-concordant smoothing in proximal quasi-Newton algorithms for large-scale convex composite optimization
We introduce a notion of self-concordant smoothing for minimizing the sum of two convex functions, one of which is smooth and the other nonsmooth. The key highlight is a natural property of the resulting problem's structure that yields a variable metric selection method and a step length rule especially suited to proximal quasi-Newton algorithms. Also, we efficiently handle specific structures promoted by the nonsmooth term, such as l1-regularization and group lasso penalties. A convergence analysis for the class of proximal quasi-Newton methods covered by our framework is presented. In particular, we obtain guarantees, under standard assumptions, for two algorithms: Prox-N-SCORE (a proximal Newton method) and Prox-GGN-SCORE (a proximal generalized Gauss-Newton method). The latter uses a low-rank approximation of the Hessian inverse, reducing most of the cost of matrix inversion and making it effective for overparameterized machine learning models. Numerical experiments on synthetic and real data demonstrate the efficiency of both algorithms against state-of-the-art approaches. A Julia implementation is publicly available at https://github.com/adeyemiadeoye/SelfConcordantSmoothOptimization.jl.
♻ ☆ Weaver: Kronecker Product Approximations of Spatiotemporal Attention for Traffic Network Forecasting
Spatiotemporal forecasting on transportation networks is a complex task that requires understanding how traffic nodes interact within a dynamic, evolving system dictated by traffic flow dynamics and social behavioral patterns. The importance of transportation networks and ITS for modern mobility and commerce necessitates forecasting models that are not only accurate but also interpretable, efficient, and robust under structural or temporal perturbations. Recent approaches, particularly Transformer-based architectures, have improved predictive performance but often at the cost of high computational overhead and diminished architectural interpretability. In this work, we introduce Weaver, a novel attention-based model that applies Kronecker product approximations (KPA) to decompose the PN X PN spatiotemporal attention of O(P^2N^2) complexity into local P X P temporal and N X N spatial attention maps. This Kronecker attention map enables our Parallel-Kronecker Matrix-Vector product (P2-KMV) for efficient spatiotemporal message passing with O(P^2N + N^2P) complexity. To capture real-world traffic dynamics, we address the importance of negative edges in modeling traffic behavior by introducing Valence Attention using the continuous Tanimoto coefficient (CTC), which provides properties conducive to precise latent graph generation and training stability. To fully utilize the model's learning capacity, we introduce the Traffic Phase Dictionary for self-conditioning. Evaluations on PEMS-BAY and METR-LA show that Weaver achieves competitive performance across model categories while training more efficiently.
♻ ☆ MuFlex: A Scalable, Physics-based Platform for Multi-Building Flexibility Analysis and Coordination
With the increasing penetration of renewable generation on the power grid, maintaining system balance requires coordinated demand flexibility from aggregations of buildings. Reinforcement learning (RL) has been widely explored for building controls because of its model-free nature. Open-source simulation testbeds are essential not only for training RL agents but also for fairly benchmarking control strategies. However, most building-sector testbeds target single buildings; multi-building platforms are relatively limited and typically rely on simplified models (e.g., Resistanc-Capacitance) or data-driven approaches, which lack the ability to fully capture the physical intricacies and intermediate variables necessary for interpreting control performance. Moreover, these platforms often impose fixed inputs, outputs, and model formats, restricting their applicability as benchmarking tools across diverse control scenarios. To address these gaps, MuFlex, a scalable, open-source platform for multi-building flexibility coordination, was developed. MuFlex enables synchronous information exchange across EnergyPlus building models and adheres to the latest OpenAI Gym interface, providing a modular, standardized RL implementation. The platform's capabilities were demonstrated in a case study coordinating demand flexibility across four office buildings using the Soft Actor-Critic (SAC) algorithm. The results show that under four buildings' coordination, SAC effectively reduced the aggregated peak demand by nearly 12% with maintained indoor comfort to ensure the power demand below the threshold. The platform is released open-source on GitHub: https://github.com/BuildNexusX/MuFlex.
♻ ☆ Arithmetic-Mean $μ$P for Modern Architectures: A Unified Learning-Rate Scale for CNNs and ResNets
Choosing an appropriate learning rate remains a key challenge in scaling depth of modern deep networks. The classical maximal update parameterization ($μ$P) enforces a fixed per-layer update magnitude, which is well suited to homogeneous multilayer perceptrons (MLPs) but becomes ill-posed in heterogeneous architectures where residual accumulation and convolutions introduce imbalance across layers. We introduce Arithmetic-Mean $μ$P (AM-$μ$P), which constrains not each individual layer but the network-wide average one-step pre-activation second moment to a constant scale. Combined with a residual-aware He fan-in initialization - scaling residual-branch weights by the number of blocks ($\mathrm{Var}[W]=c/(K\cdot \mathrm{fan\text{-}in})$) - AM-$μ$P yields width-robust depth laws that transfer consistently across depths. We prove that, for one- and two-dimensional convolutional networks, the maximal-update learning rate satisfies $η^\star(L)\propto L^{-3/2}$; with zero padding, boundary effects are constant-level as $N\gg k$. For standard residual networks with general conv+MLP blocks, we establish $η^\star(L)=Θ(L^{-3/2})$, with $L$ the minimal depth. Empirical results across a range of depths confirm the $-3/2$ scaling law and enable zero-shot learning-rate transfer, providing a unified and practical LR principle for convolutional and deep residual networks without additional tuning overhead.
♻ ☆ On the necessity of adaptive regularisation:Optimal anytime online learning on $\boldsymbol{\ell_p}$-balls
We study online convex optimization on $\ell_p$-balls in $\mathbb{R}^d$ for $p > 2$. While always sub-linear, the optimal regret exhibits a shift between the high-dimensional setting ($d > T$), when the dimension $d$ is greater than the time horizon $T$ and the low-dimensional setting ($d \leq T$). We show that Follow-the-Regularised-Leader (FTRL) with time-varying regularisation which is adaptive to the dimension regime is anytime optimal for all dimension regimes. Motivated by this, we ask whether it is possible to obtain anytime optimality of FTRL with fixed non-adaptive regularisation. Our main result establishes that for separable regularisers, adaptivity in the regulariser is necessary, and that any fixed regulariser will be sub-optimal in one of the two dimension regimes. Finally, we provide lower bounds which rule out sub-linear regret bounds for the linear bandit problem in sufficiently high-dimension for all $\ell_p$-balls with $p \geq 1$.
♻ ☆ Linearly Constrained Diffusion Implicit Models NeurIPS 2025
We introduce Linearly Constrained Diffusion Implicit Models (CDIM), a fast and accurate approach to solving noisy linear inverse problems using diffusion models. Traditional diffusion-based inverse methods rely on numerous projection steps to enforce measurement consistency in addition to unconditional denoising steps. CDIM achieves a 10-50x reduction in projection steps by dynamically adjusting the number and size of projection steps to align a residual measurement energy with its theoretical distribution under the forward diffusion process. This adaptive alignment preserves measurement consistency while substantially accelerating constrained inference. For noise-free linear inverse problems, CDIM exactly satisfies the measurement constraints with few projection steps, even when existing methods fail. We demonstrate CDIM's effectiveness across a range of applications, including super-resolution, denoising, inpainting, deblurring, and 3D point cloud reprojection. Code and an interactive demo can be found on our project website.
comment: NeurIPS 2025
♻ ☆ Neural Audio Codecs for Prompt-Driven Universal Sound Separation
Text-guided sound separation supports flexible audio editing across media and assistive applications, but existing models like AudioSep are too compute-heavy for edge deployment. Neural audio codec (NAC) models such as CodecFormer and SDCodec are compute-efficient but limited to fixed-class separation. We introduce CodecSep, the first NAC-based model for on-device universal, text-driven separation. CodecSep combines DAC compression with a Transformer masker modulated by CLAP-derived FiLM parameters. Across six open-domain benchmarks under matched training/prompt protocols, \textbf{CodecSep} surpasses \textbf{AudioSep} in separation fidelity (SI-SDR) while remaining competitive in perceptual quality (ViSQOL) and matching or exceeding fixed-stem baselines (TDANet, CodecFormer, SDCodec). In code-stream deployments, it needs just 1.35~GMACs end-to-end -- approximately $54\times$ less compute ($25\times$ architecture-only) than spectrogram-domain separators like AudioSep -- while remaining fully bitstream-compatible.
comment: main content- 11 pages, total - 29 pages, 4 figure, pre-print, under review
♻ ☆ Unraveling the Rainbow: can value-based methods schedule?
In this work, we conduct an extensive empirical study of several deep reinforcement learning algorithms on two challenging combinatorial optimization problems: the job-shop and flexible job-shop scheduling problems, both fundamental challenges with multiple industrial applications. Broadly, deep reinforcement learning algorithms fall into two categories: policy-gradient and value-based. While value-based algorithms have achieved notable success in domains such as the Arcade Learning Environment, the combinatorial optimization community has predominantly favored policy-gradient algorithms, often overlooking the potential of value-based alternatives. From our results, value-based algorithms demonstrated a lower variance and a more stable convergence profile compared to policy-gradient ones. Moreover, they achieved superior cross-size and cross-distribution generalization, that is, effectively solving instances that are substantially larger or structurally distinct from those seen during training. Finally, our analysis also suggests that the relative performance of each category of algorithms may be dependent on structural properties of the problem, such as problem flexibility and instance size. Overall, our findings challenge the prevailing assumption that policy-gradient algorithms are inherently superior for combinatorial optimization. We show instead that value-based algorithms can match or even surpass the performance of policy-gradient algorithms, suggesting that they deserve greater attention from the combinatorial optimization community. Our code is openly available at: https://github.com/AJ-Correa/Unraveling-the-Rainbow
♻ ☆ Targeted Deep Learning System Boundary Testing
Evaluating the behavioral boundaries of deep learning (DL) systems is crucial for understanding their reliability across diverse, unseen inputs. Existing solutions fall short as they rely on untargeted random, model- or latent-based perturbations, due to difficulties in generating controlled input variations. In this work, we introduce Mimicry, a novel black-box test generator for fine-grained, targeted exploration of DL system boundaries. Mimicry performs boundary testing by leveraging the probabilistic nature of DL outputs to identify promising directions for exploration. It uses style-based GANs to disentangle input representations into content and style components, enabling controlled feature mixing to approximate the decision boundary. We evaluated Mimicry's effectiveness in generating boundary inputs for five widely used DL image classification systems of increasing complexity, comparing it to two baseline approaches. Our results show that Mimicry consistently identifies inputs closer to the decision boundary. It generates semantically meaningful boundary test cases that reveal new functional (mis)behaviors, while the baselines produce mainly corrupted or invalid inputs. Thanks to its enhanced control over latent space manipulations, Mimicry remains effective as dataset complexity increases, maintaining competitive diversity and higher validity rates, confirmed by human assessors.
comment: Accepted for publication by ACM Transactions on Software Engineering and Methodology (TOSEM)
♻ ☆ An Adaptive Resonance Theory-based Topological Clustering Algorithm with a Self-Adjusting Vigilance Parameter
Clustering in stationary and nonstationary settings, where data distributions remain static or evolve over time, requires models that can adapt to distributional shifts while preserving previously learned cluster structures. This paper proposes an Adaptive Resonance Theory (ART)-based topological clustering algorithm that autonomously adjusts its recalculation interval and vigilance threshold through a diversity-driven adaptation mechanism. This mechanism enables hyperparameter-free learning that maintains cluster stability and continuity in dynamic environments. Experiments on 24 real-world datasets demonstrate that the proposed algorithm outperforms state-of-the-art methods in both clustering performance and continual learning capability. These results highlight the effectiveness of the proposed parameter adaptation in mitigating catastrophic forgetting and maintaining consistent clustering in evolving data streams. Source code is available at https://github.com/Masuyama-lab/IDAT
comment: This manuscript is currently under review
♻ ☆ A Coherence-Based Measure of AGI AAAI 2026
Recent approaches to evaluating Artificial General Intelligence (AGI) typically summarize a system's capability using the arithmetic mean of its proficiencies across multiple cognitive domains. While simple, this implicitly assumes compensability: exceptional performance in some areas can offset severe deficiencies in others. Genuine general intelligence, however, requires coherent sufficiency: balanced competence across all essential faculties. We introduce a coherence-based measure of AGI that integrates the generalized mean over a continuum of compensability exponents. This yields an area-under-the-curve (AUC) metric spanning arithmetic, geometric, and harmonic regimes, quantifying how robust an evaluated capability remains as compensability assumptions become stricter. Unlike the arithmetic mean, which rewards specialization, the AUC penalizes imbalance and exposes bottlenecks that constrain performance. To illustrate the framework, we apply it to cognitive profiles derived from the Cattell-Horn-Carroll (CHC) model, showing how coherence-based aggregation highlights imbalances that are obscured by arithmetic averaging. As a second, independent example, we apply the same methodology to a set of 17 heterogeneous benchmarks, demonstrating how coherence-based evaluation can reveal unevenness even in narrower task collections. These examples show that the proposed approach offers a principled, interpretable, and stricter foundation for measuring progress toward AGI.
comment: Accepted at FAST@AAAI 2026. 15 pages, 2 figures, 13 tables
♻ ☆ The Catechol Benchmark: Time-series Solvent Selection Data for Few-shot Machine Learning NeurIPS
Machine learning has promised to change the landscape of laboratory chemistry, with impressive results in molecular property prediction and reaction retro-synthesis. However, chemical datasets are often inaccessible to the machine learning community as they tend to require cleaning, thorough understanding of the chemistry, or are simply not available. In this paper, we introduce a novel dataset for yield prediction, providing the first-ever transient flow dataset for machine learning benchmarking, covering over 1200 process conditions. While previous datasets focus on discrete parameters, our experimental set-up allow us to sample a large number of continuous process conditions, generating new challenges for machine learning models. We focus on solvent selection, a task that is particularly difficult to model theoretically and therefore ripe for machine learning applications. We showcase benchmarking for regression algorithms, transfer-learning approaches, feature engineering, and active learning, with important applications towards solvent replacement and sustainable manufacturing.
comment: 10 pages main, 22 pages total, 8 figures, 7 tables. Accepted to NeurIPS Datasets and Benchmarks track 2025
♻ ☆ WARP-LUTs -- Walsh-Assisted Relaxation for Probabilistic Look Up Tables
Fast and efficient machine learning is of growing interest to the scientific community and has spurred significant research into novel model architectures and hardware-aware design. Recent hard? and software co-design approaches have demonstrated impressive results with entirely multiplication-free models. Differentiable Logic Gate Networks (DLGNs), for instance, provide a gradient-based framework for learning optimal combinations of low-level logic gates, setting state-of-the-art trade-offs between accuracy, resource usage, and latency. However, these models suffer from high computational cost during training and do not generalize well to logic blocks with more inputs. In this work, we introduce Walsh-Assisted Relaxation for Probabilistic Look-Up Tables (WARP-LUTs) - a novel gradient-based method that efficiently learns combinations of logic gates with substantially fewer trainable parameters. We demonstrate that WARP-LUTs achieve significantly faster convergence on CIFAR-10 compared to DLGNs, while maintaining comparable accuracy. Furthermore, our approach suggests potential for extension to higher-input logic blocks, motivating future research on extremely efficient deployment on modern FPGAs and its real-time science applications.
comment: Preprint. Under review
♻ ☆ Learning Particle Dynamics Subject to Rigid Body Manipulations Using Graph Neural Networks
Simulating particle dynamics with high fidelity is crucial for solving real-world interaction and control tasks involving liquids in design, graphics, and robotics. Recently, data-driven approaches, particularly those based on graph neural networks (GNNs), have shown progress in tackling such problems. However, these approaches are often limited to learning fluid behavior in static free-fall environments or simple manipulation settings involving primitive objects, often overlooking complex interactions with dynamically moving kinematic rigid bodies. Here, we propose a GNN-based framework designed from the ground up to learn the dynamics of liquids under rigid body interactions and active manipulations, where particles are represented as graph nodes and particle-object collisions are handled using surface representations with the bounding volume hierarchy (BVH) algorithm. Our approach accurately captures fluid behavior in dynamic settings and can also function as a simulator in static free-fall environments. Despite being trained on single-object manipulation tasks, our model generalizes effectively to environments with novel objects and novel manipulation tasks. Finally, we show that the learned dynamics can be leveraged to solve control and manipulation tasks using gradient-based optimization methods.
♻ ☆ FreeGaussian: Annotation-free Control of Articulated Objects via 3D Gaussian Splats with Flow Derivatives
Reconstructing controllable Gaussian splats for articulated objects from monocular video is especially challenging due to its inherently insufficient constraints. Existing methods address this by relying on dense masks and manually defined control signals, limiting their real-world applications. In this paper, we propose an annotation-free method, FreeGaussian, which mathematically disentangles camera egomotion and articulated movements via flow derivatives. By establishing a connection between 2D flows and 3D Gaussian dynamic flow, our method enables optimization and continuity of dynamic Gaussian motions from flow priors without any control signals. Furthermore, we introduce a 3D spherical vector controlling scheme, which represents the state as a 3D Gaussian trajectory, thereby eliminating the need for complex 1D control signal calculations and simplifying controllable Gaussian modeling. Extensive experiments on articulated objects demonstrate the state-of-the-art visual performance and precise, part-aware controllability of our method. Code is available at: https://github.com/Tavish9/freegaussian.
♻ ☆ Integrating Semantic Communication and Human Decision-Making into an End-to-End Sensing-Decision Framework
As early as 1949, Weaver defined communication in a very broad sense to include all procedures by which one mind or technical system can influence another, thus establishing the idea of semantic communication. With the recent success of machine learning in expert assistance systems where sensed information is wirelessly provided to a human to assist task execution, the need to design effective and efficient communications has become increasingly apparent. In particular, semantic communication aims to convey the meaning behind the sensed information relevant for Human Decision-Making (HDM). Regarding the interplay between semantic communication and HDM, many questions remain, such as how to model the entire end-to-end sensing-decision-making process, how to design semantic communication for the HDM and which information should be provided for HDM. To address these questions, we propose to integrate semantic communication and HDM into one probabilistic end-to-end sensing-decision framework that bridges communications and psychology. In our interdisciplinary framework, we model the human through a HDM process, allowing us to explore how feature extraction from semantic communication can best support HDM both in theory and in simulations. In this sense, our study reveals the fundamental design trade-off between maximizing the relevant semantic information and matching the cognitive capabilities of the HDM model. Our initial analysis shows how semantic communication can balance the level of detail with human cognitive capabilities while demanding less bandwidth, power, and latency.
comment: Submitted for peer review. Code available in https://github.com/ant-uni-bremen/SINFONY
♻ ☆ MambaX-Net: Dual-Input Mamba-Enhanced Cross-Attention Network for Longitudinal MRI Segmentation
Active Surveillance (AS) is a treatment option for managing low and intermediate-risk prostate cancer (PCa), aiming to avoid overtreatment while monitoring disease progression through serial MRI and clinical follow-up. Accurate prostate segmentation is an important preliminary step for automating this process, enabling automated detection and diagnosis of PCa. However, existing deep-learning segmentation models are often trained on single-time-point and expertly annotated datasets, making them unsuitable for longitudinal AS analysis, where multiple time points and a scarcity of expert labels hinder their effective fine-tuning. To address these challenges, we propose MambaX-Net, a novel semi-supervised, dual-scan 3D segmentation architecture that computes the segmentation for time point t by leveraging the MRI and the corresponding segmentation mask from the previous time point. We introduce two new components: (i) a Mamba-enhanced Cross-Attention Module, which integrates the Mamba block into cross attention to efficiently capture temporal evolution and long-range spatial dependencies, and (ii) a Shape Extractor Module that encodes the previous segmentation mask into a latent anatomical representation for refined zone delination. Moreover, we introduce a semi-supervised self-training strategy that leverages pseudo-labels generated from a pre-trained nnU-Net, enabling effective learning without expert annotations. MambaX-Net was evaluated on a longitudinal AS dataset, and results showed that it significantly outperforms state-of-the-art U-Net and Transformer-based models, achieving superior prostate zone segmentation even when trained on limited and noisy data.
comment: Updated the acknowledgments section to include the UKRI Open Access statement
♻ ☆ RiboGen: RNA Sequence and Structure Co-Generation with Equivariant MultiFlow
Ribonucleic acid (RNA) plays fundamental roles in biological systems, from carrying genetic information to performing enzymatic function. Understanding and designing RNA can enable novel therapeutic application and biotechnological innovation. To enhance RNA design, in this paper we introduce RiboGen, the first deep learning model to simultaneously generate RNA sequence and all-atom 3D structure. RiboGen leverages the standard Flow Matching with Discrete Flow Matching in a multimodal data representation. RiboGen is based on Euclidean Equivariant neural networks for efficiently processing and learning three-dimensional geometry. Our experiments show that RiboGen can efficiently generate chemically plausible and self-consistent RNA samples, suggesting that co-generation of sequence and structure is a competitive approach for modeling RNA.
comment: 6 pages
♻ ☆ Fast Equivariant Imaging: Acceleration for Unsupervised Learning via Augmented Lagrangian and Auxiliary PnP Denoisers
In this work, we propose Fast Equivariant Imaging (FEI), a novel unsupervised learning framework to rapidly and efficiently train deep imaging networks without ground-truth data. From the perspective of reformulating the Equivariant Imaging based optimization problem via the method of Lagrange multipliers and utilizing plug-and-play denoisers, this novel unsupervised scheme shows superior efficiency and performance compared to the vanilla Equivariant Imaging paradigm. In particular, our FEI schemes achieve an order-of-magnitude (10x) acceleration over standard EI on training U-Net for X-ray CT reconstruction and image inpainting, with improved generalization performance.
comment: 17 pages
♻ ☆ A Sampling-Based Domain Generalization Study with Diffusion Generative Models NeurIPS 2025
In this work, we investigate the domain generalization capabilities of diffusion models in the context of synthesizing images that are distinct from the training data. Instead of fine-tuning, we tackle this challenge from a sampling-based perspective using frozen, pre-trained diffusion models. Specifically, we demonstrate that arbitrary out-of-domain (OOD) images establish Gaussian priors in the latent spaces of a given model after inversion, and that these priors are separable from those of the original training domain. This OOD latent property allows us to synthesize new images of the target unseen domain by discovering qualified OOD latent encodings in the inverted noisy spaces, without altering the pre-trained models. Our cross-model and cross-domain experiments show that the proposed sampling-based method can expand the latent space and generate unseen images without impairing the generation quality of the original domain. We also showcase a practical application of our approach using astrophysical data, highlighting the potential of this generalization paradigm in data-sparse fields such as scientific exploration.
comment: NeurIPS 2025 Workshop on Frontiers in Probabilistic Inference: Learning meets Sampling. Code can be found at https://github.com/L-YeZhu/DiscoveryDiff
♻ ☆ Sparse Autoencoders Learn Monosemantic Features in Vision-Language Models NeurIPS 2025
Sparse Autoencoders (SAEs) have recently gained attention as a means to improve the interpretability and steerability of Large Language Models (LLMs), both of which are essential for AI safety. In this work, we extend the application of SAEs to Vision-Language Models (VLMs), such as CLIP, and introduce a comprehensive framework for evaluating monosemanticity at the neuron-level in visual representations. To ensure that our evaluation aligns with human perception, we propose a benchmark derived from a large-scale user study. Our experimental results reveal that SAEs trained on VLMs significantly enhance the monosemanticity of individual neurons, with sparsity and wide latents being the most influential factors. Further, we demonstrate that applying SAE interventions on CLIP's vision encoder directly steers multimodal LLM outputs (e.g., LLaVA), without any modifications to the underlying language model. These findings emphasize the practicality and efficacy of SAEs as an unsupervised tool for enhancing both interpretability and control of VLMs. Code and benchmark data are available at https://github.com/ExplainableML/sae-for-vlm.
comment: Accepted at NeurIPS 2025
♻ ☆ CVKAN: Complex-Valued Kolmogorov-Arnold Networks
In this work we propose CVKAN, a complex-valued Kolmogorov-Arnold Network (KAN), to join the intrinsic interpretability of KANs and the advantages of Complex-Valued Neural Networks (CVNNs). We show how to transfer a KAN and the necessary associated mechanisms into the complex domain. To confirm that CVKAN meets expectations we conduct experiments on symbolic complex-valued function fitting and physically meaningful formulae as well as on a more realistic dataset from knot theory. Our proposed CVKAN is more stable and performs on par or better than real-valued KANs while requiring less parameters and a shallower network architecture, making it more explainable.
comment: published in proceedings of IEEE International Joint Conference on Neural Networks (IJCNN) 2025
♻ ☆ Geometric Regularity in Deterministic Sampling of Diffusion-based Generative Models ICML 2024
Diffusion-based generative models employ stochastic differential equations (SDEs) and their equivalent probability flow ordinary differential equations (ODEs) to establish a smooth transformation between complex high-dimensional data distributions and tractable prior distributions. In this paper, we reveal a striking geometric regularity in the deterministic sampling dynamics of diffusion generative models: each simulated sampling trajectory along the gradient field lies within an extremely low-dimensional subspace, and all trajectories exhibit an almost identical boomerang shape, regardless of the model architecture, applied conditions, or generated content. We characterize several intriguing properties of these trajectories, particularly under closed-form solutions based on kernel-estimated data modeling. We also demonstrate a practical application of the discovered trajectory regularity by proposing a dynamic programming-based scheme to better align the sampling time schedule with the underlying trajectory structure. This simple strategy requires minimal modification to existing deterministic numerical solvers, incurs negligible computational overhead, and achieves superior image generation performance, especially in regions with only 5 - 10 function evaluations.
comment: 57 pages. Accepted by Journal of Statistical Mechanics: Theory and Experiment (2025). The short version was published in ICML 2024. arXiv admin note: text overlap with arXiv:2405.11326
♻ ☆ ForAug: Recombining Foregrounds and Backgrounds to Improve Vision Transformer Training with Bias Mitigation
Transformers, particularly Vision Transformers (ViTs), have achieved state-of-the-art performance in large-scale image classification. However, they often require large amounts of data and can exhibit biases, such as center or size bias, that limit their robustness and generalizability. This paper introduces ForAug, a novel data augmentation operation that addresses these challenges by explicitly imposing invariances into the training data, which are otherwise part of the neural network architecture. ForAug is constructed by using pretrained foundation models to separate and recombine foreground objects with different backgrounds. This recombination step enables us to take fine-grained control over object position and size, as well as background selection. We demonstrate that using ForAug significantly improves the accuracy of ViTs and other architectures by up to 4.5 percentage points (p.p.) on ImageNet, which translates to 7.3 p.p. on downstream tasks. Importantly, ForAug not only improves accuracy but also opens new ways to analyze model behavior and quantify biases. Namely, we introduce metrics for background robustness, foreground focus, center bias, and size bias and show that using ForAug during training substantially reduces these biases. In summary, ForAug provides a valuable tool for analyzing and mitigating biases, enabling the development of more robust and reliable computer vision models. Our code and dataset are publicly available at https://github.com/tobna/ForAug.
comment: v2: added DeiT, added ablation vs simple copy-paste
♻ ☆ EEGAgent: A Unified Framework for Automated EEG Analysis Using Large Language Models
Scalable and generalizable analysis of brain activity is essential for advancing both clinical diagnostics and cognitive research. Electroencephalography (EEG), a non-invasive modality with high temporal resolution, has been widely used for brain states analysis. However, most existing EEG models are usually tailored for individual specific tasks, limiting their utility in realistic scenarios where EEG analysis often involves multi-task and continuous reasoning. In this work, we introduce EEGAgent, a general-purpose framework that leverages large language models (LLMs) to schedule and plan multiple tools to automatically complete EEG-related tasks. EEGAgent is capable of performing the key functions: EEG basic information perception, spatiotemporal EEG exploration, EEG event detection, interaction with users, and EEG report generation. To realize these capabilities, we design a toolbox composed of different tools for EEG preprocessing, feature extraction, event detection, etc. These capabilities were evaluated on public datasets, and our EEGAgent can support flexible and interpretable EEG analysis, highlighting its potential for real-world clinical applications.
♻ ☆ Cross-Modal Reconstruction Pretraining for Ramp Flow Prediction at Highway Interchanges
Interchanges are crucial nodes for vehicle transfers between highways, yet the lack of real-time ramp detectors creates blind spots in traffic prediction. To address this, we propose a Spatio-Temporal Decoupled Autoencoder (STDAE), a two-stage framework that leverages cross-modal reconstruction pretraining. In the first stage, STDAE reconstructs historical ramp flows from mainline data, forcing the model to capture intrinsic spatio-temporal relations. Its decoupled architecture with parallel spatial and temporal autoencoders efficiently extracts heterogeneous features. In the prediction stage, the learned representations are integrated with models such as GWNet to enhance accuracy. Experiments on three real-world interchange datasets show that STDAE-GWNET consistently outperforms thirteen state-of-the-art baselines and achieves performance comparable to models using historical ramp data. This demonstrates its effectiveness in overcoming detector scarcity and its plug-and-play potential for diverse forecasting pipelines.
♻ ☆ Q-Net: Queue Length Estimation via Kalman-based Neural Networks
Estimating queue lengths at signalized intersections is a long-standing challenge in traffic management. Partial observability of vehicle flows complicates this task despite the availability of two privacy preserving data sources: (i) aggregated vehicle counts from loop detectors near stop lines, and (ii) aggregated floating car data (aFCD) that provide segment-wise average speed measurements. However, how to integrate these sources with differing spatial and temporal resolutions for queue length estimation is rather unclear. Addressing this question, we present Q Net: a robust queue estimation framework built upon a state-space formulation. This formulation addresses key challenges in queue modeling, such as violations of traffic conservation assumptions. To overcome the limitations of standard filtering models in integrating diverse data sources, Q-Net employs an AI-augmented Kalman filter for estimation. Q-Net follows the Kalman predict-update framework and maintains physical interpretability, with internal variables linked to real-world traffic dynamics. Q-Net can be implemented in real-time, making it suitable for integration into queue-based traffic control systems. To achieve spatial transferability across road sections, we group aFCD measurements into fixed-size groups. This strategy ensures the dimension of Q-Net's learnable parameters is independent of section length. Evaluations on urban main roads in Rotterdam, the Netherlands, show that Q-Net outperforms baseline methods, accurately tracking queue formation and dissipation while correcting aFCD-induced delays. By combining data efficiency, interpretability, and strong transferability, Q Net makes accurate queue length estimation possible without costly sensing infrastructure like cameras or radar.
♻ ☆ ChronoGraph: A Real-World Graph-Based Multivariate Time Series Dataset NeurIPS 2025
We present ChronoGraph, a graph-structured multivariate time series forecasting dataset built from real-world production microservices. Each node is a service that emits a multivariate stream of system-level performance metrics, capturing CPU, memory, and network usage patterns, while directed edges encode dependencies between services. The primary task is forecasting future values of these signals at the service level. In addition, ChronoGraph provides expert-annotated incident windows as anomaly labels, enabling evaluation of anomaly detection methods and assessment of forecast robustness during operational disruptions. Compared to existing benchmarks from industrial control systems or traffic and air-quality domains, ChronoGraph uniquely combines (i) multivariate time series, (ii) an explicit, machine-readable dependency graph, and (iii) anomaly labels aligned with real incidents. We report baseline results spanning forecasting models, pretrained time-series foundation models, and standard anomaly detectors. ChronoGraph offers a realistic benchmark for studying structure-aware forecasting and incident-aware evaluation in microservice systems.
comment: Accepted as an oral presentation at the NeurIPS 2025 Workshop on Recent Advances in Time Series Foundation Models (BERT2S)
♻ ☆ Generalizing Analogical Inference from Boolean to Continuous Domains AAAI 2026
Analogical reasoning is a powerful inductive mechanism, widely used in human cognition and increasingly applied in artificial intelligence. Formal frameworks for analogical inference have been developed for Boolean domains, where inference is provably sound for affine functions and approximately correct for functions close to affine. These results have informed the design of analogy-based classifiers. However, they do not extend to regression tasks or continuous domains. In this paper, we revisit analogical inference from a foundational perspective. We first present a counterexample showing that existing generalization bounds fail even in the Boolean setting. We then introduce a unified framework for analogical reasoning in real-valued domains based on parameterized analogies defined via generalized means. This model subsumes both Boolean classification and regression, and supports analogical inference over continuous functions. We characterize the class of analogy-preserving functions in this setting and derive both worst-case and average-case error bounds under smoothness assumptions. Our results offer a general theory of analogical inference across discrete and continuous domains.
comment: 11 pages, to appear in AAAI 2026, extended version
♻ ☆ LD-ViCE: Latent Diffusion Model for Video Counterfactual Explanations CVPR 2026
Video-based AI systems are increasingly adopted in safety-critical domains such as autonomous driving and healthcare. However, interpreting their decisions remains challenging due to the inherent spatiotemporal complexity of video data and the opacity of deep learning models. Existing explanation techniques often suffer from limited temporal coherence and a lack of actionable causal insights. Current counterfactual explanation methods typically do not incorporate guidance from the target model, reducing semantic fidelity and practical utility. We introduce Latent Diffusion for Video Counterfactual Explanations (LD-ViCE), a novel framework designed to explain the behavior of video-based AI models. Compared to previous approaches, LD-ViCE reduces the computational costs of generating explanations by operating in latent space using a state-of-the-art diffusion model, while producing realistic and interpretable counterfactuals through an additional refinement step. Experiments on three diverse video datasets - EchoNet-Dynamic (cardiac ultrasound), FERV39k (facial expression), and Something-Something V2 (action recognition) with multiple target models covering both classification and regression tasks, demonstrate that LD-ViCE generalizes well and achieves state-of-the-art performance. On the EchoNet-Dynamic dataset, LD-ViCE achieves significantly higher regression accuracy than prior methods and exhibits high temporal consistency, while the refinement stage further improves perceptual quality. Qualitative analyses confirm that LD-ViCE produces semantically meaningful and temporally coherent explanations, providing actionable insights into model behavior. LD-ViCE advances the trustworthiness and interpretability of video-based AI systems through visually coherent counterfactual explanations.
comment: Under Review CVPR 2026 (44 Pages)
♻ ☆ Interactive Query Answering on Knowledge Graphs with Soft Entity Constraints
Methods for query answering over incomplete knowledge graphs retrieve entities that are \emph{likely} to be answers, which is particularly useful when such answers cannot be reached by direct graph traversal due to missing edges. However, existing approaches have focused on queries formalized using first-order-logic. In practice, many real-world queries involve constraints that are inherently vague or context-dependent, such as preferences for attributes or related categories. Addressing this gap, we introduce the problem of query answering with soft constraints. We formalize the problem and introduce two efficient methods designed to adjust query answer scores by incorporating soft constraints without disrupting the original answers to a query. These methods are lightweight, requiring tuning only two parameters or a small neural network trained to capture soft constraints while maintaining the original ranking structure. To evaluate the task, we extend existing QA benchmarks by generating datasets with soft constraints. Our experiments demonstrate that our methods can capture soft constraints while maintaining robust query answering performance and adding very little overhead. With our work, we explore a new and flexible way to interact with graph databases that allows users to specify their preferences by providing examples interactively.
♻ ☆ Discovering Concept Directions from Diffusion-based Counterfactuals via Latent Clustering
Concept-based explanations have emerged as an effective approach within Explainable Artificial Intelligence, enabling interpretable insights by aligning model decisions with human-understandable concepts. However, existing methods rely on computationally intensive procedures and struggle to efficiently capture complex, semantic concepts. This work introduces the Concept Directions via Latent Clustering (CDLC), which extracts global, class-specific concept directions by clustering latent difference vectors derived from factual and diffusion-generated counterfactual image pairs. CDLC reduces storage requirements by ~4.6% and accelerates concept discovery by ~5.3% compared to the baseline method, while requiring no GPU for clustering, thereby enabling efficient extraction of multidimensional semantic concepts across latent dimensions. This approach is validated on a real-world skin lesion dataset, demonstrating that the extracted concept directions align with clinically recognized dermoscopic features and, in some cases, reveal dataset-specific biases or unknown biomarkers. These results highlight that CDLC is interpretable, scalable, and applicable across high-stakes domains and diverse data modalities.
comment: Accepted at Pattern Recognition Letters Journal (14 Pages)
♻ ☆ Enhanced Sampling for Efficient Learning of Coarse-Grained Machine Learning Potentials
Coarse-graining (CG) enables molecular dynamics (MD) simulations of larger systems and longer timescales that are otherwise infeasible with atomistic models. Machine learning potentials (MLPs), with their capacity to capture many-body interactions, can provide accurate approximations of the potential of mean force (PMF) in CG models. Current CG MLPs are typically trained in a bottom-up manner via force matching, which in practice relies on configurations sampled from the unbiased equilibrium Boltzmann distribution to ensure thermodynamic consistency. This convention poses two key limitations: first, sufficiently long atomistic trajectories are needed to reach convergence; and second, even once equilibrated, transition regions remain poorly sampled. To address these issues, we employ enhanced sampling to bias along CG degrees of freedom for data generation, and then recompute the forces with respect to the unbiased potential. This strategy simultaneously shortens the simulation time required to produce equilibrated data and enriches sampling in transition regions, while preserving the correct PMF. We demonstrate its effectiveness on the Müller-Brown potential and capped alanine, achieving notable improvements. Our findings support the use of enhanced sampling for force matching as a promising direction to improve the accuracy and reliability of CG MLPs.
♻ ☆ Almost Linear Time Consistent Mode Estimation and Quick Shift Clustering
In this paper, we propose a method for density-based clustering in high-dimensional spaces that combines Locality-Sensitive Hashing (LSH) with the Quick Shift algorithm. The Quick Shift algorithm, known for its hierarchical clustering capabilities, is extended by integrating approximate Kernel Density Estimation (KDE) using LSH to provide efficient density estimates. The proposed approach achieves almost linear time complexity while preserving the consistency of density-based clustering.
comment: 15 pages, 3 figures, Accepted to OLA 2025
♻ ☆ Guided Model Merging for Hybrid Data Learning: Leveraging Centralized Data to Refine Decentralized Models
Current network training paradigms primarily focus on either centralized or decentralized data regimes. However, in practice, data availability often exhibits a hybrid nature, where both regimes coexist. This hybrid setting presents new opportunities for model training, as the two regimes offer complementary trade-offs: decentralized data is abundant but subject to heterogeneity and communication constraints, while centralized data, though limited in volume and potentially unrepresentative, enables better curation and high-throughput access. Despite its potential, effectively combining these paradigms remains challenging, and few frameworks are tailored to hybrid data regimes. To address this, we propose a novel framework that constructs a model atlas from decentralized models and leverages centralized data to refine a global model within this structured space. The refined model is then used to reinitialize the decentralized models. Our method synergizes federated learning (to exploit decentralized data) and model merging (to utilize centralized data), enabling effective training under hybrid data availability. Theoretically, we show that our approach achieves faster convergence than methods relying solely on decentralized data, due to variance reduction in the merging process. Extensive experiments demonstrate that our framework consistently outperforms purely centralized, purely decentralized, and existing hybrid-adaptable methods. Notably, our method remains robust even when the centralized and decentralized data domains differ or when decentralized data contains noise, significantly broadening its applicability.
comment: Accepted at WACV 2026
♻ ☆ Making Every Head Count: Sparse Attention Without the Speed-Performance Trade-off
The design of Large Language Models (LLMs) has long been hampered by a fundamental conflict within their core attention mechanism: its remarkable expressivity is built upon a computational complexity of O(H N^2) that grows quadratically with the context size (N) and linearly with the number of heads (H). This standard implementation harbors significant computational redundancy, as all heads independently compute attention over the same sequence space. Existing sparse methods, meanwhile, often trade information integrity for computational efficiency. To resolve this efficiency-performance trade-off, we propose SPAttention, whose core contribution is the introduction of a new paradigm we term Principled Structural Sparsity. SPAttention does not merely drop connections but instead reorganizes the computational task by partitioning the total attention workload into balanced, non-overlapping distance bands, assigning each head a unique segment. This approach transforms the multi-head attention mechanism from H independent O(N^2) computations into a single, collaborative O(N^2) computation, fundamentally reducing complexity by a factor of H. The structured inductive bias compels functional specialization among heads, enabling a more efficient allocation of computational resources from redundant modeling to distinct dependencies across the entire sequence span. Our work demonstrates that thoughtfully designed structural sparsity can serve as an effective inductive bias that simultaneously improves both computational efficiency and model performance, opening a new avenue for the architectural design of next-generation, high-performance LLMs.
♻ ☆ The Nuclear Route: Sharp Asymptotics of ERM in Overparameterized Quadratic Networks
We study the high-dimensional asymptotics of empirical risk minimization (ERM) in over-parametrized two-layer neural networks with quadratic activations trained on synthetic data. We derive sharp asymptotics for both training and test errors by mapping the $\ell_2$-regularized learning problem to a convex matrix sensing task with nuclear norm penalization. This reveals that capacity control in such networks emerges from a low-rank structure in the learned feature maps. Our results characterize the global minima of the loss and yield precise generalization thresholds, showing how the width of the target function governs learnability. This analysis bridges and extends ideas from spin-glass methods, matrix factorization, and convex optimization and emphasizes the deep link between low-rank matrix sensing and learning in quadratic neural networks.
♻ ☆ Accelerating Diffusion Models with Parallel Sampling: Inference at Sub-Linear Time Complexity NeurIPS 2024
Diffusion models have become a leading method for generative modeling of both image and scientific data. As these models are costly to train and \emph{evaluate}, reducing the inference cost for diffusion models remains a major goal. Inspired by the recent empirical success in accelerating diffusion models via the parallel sampling technique~\cite{shih2024parallel}, we propose to divide the sampling process into $\mathcal{O}(1)$ blocks with parallelizable Picard iterations within each block. Rigorous theoretical analysis reveals that our algorithm achieves $\widetilde{\mathcal{O}}(\mathrm{poly} \log d)$ overall time complexity, marking \emph{the first implementation with provable sub-linear complexity w.r.t. the data dimension $d$}. Our analysis is based on a generalized version of Girsanov's theorem and is compatible with both the SDE and probability flow ODE implementations. Our results shed light on the potential of fast and efficient sampling of high-dimensional data on fast-evolving modern large-memory GPU clusters.
comment: Accepted at NeurIPS 2024 as a Spotlight Poster (https://openreview.net/forum?id=F9NDzHQtOl)
♻ ☆ Self-Organization and Spectral Mechanism of Attractor Landscapes in High-Capacity Kernel Hopfield Networks
Kernel-based learning methods can dramatically increase the storage capacity of Hopfield networks, yet the dynamical mechanism behind this enhancement remains poorly understood. We address this gap by unifying the geometric analysis of the attractor landscape with the spectral theory of kernel machines. Using a novel metric, "Pinnacle Sharpness," we first uncover a rich phase diagram of attractor stability, identifying a "Ridge of Optimization" where the network achieves maximal robustness under high-load conditions. Phenomenologically, this ridge is characterized by a "Force Antagonism," where a strong driving force is balanced by a collective feedback force. Theoretically, we reveal that this phenomenon arises from a specific reorganization of the weight spectrum, which we term \textit{Spectral Concentration}. Unlike a simple rank-1 collapse, our analysis shows that the network on the ridge self-organizes into a critical state: the leading eigenvalue is amplified to maximize global stability (Direct Force), while the trailing eigenvalues are preserved to maintain high memory capacity (Indirect Force). These findings provide a complete physical picture of how high-capacity associative memories are formed, demonstrating that optimal performance is achieved by tuning the system to a spectral "Goldilocks zone" between rank collapse and diffusion.
comment: 9 pages, 5 figures
♻ ☆ Finite-Time Minimax Bounds and an Optimal Lyapunov Policy in Queueing Control
We introduce an original minimax framework for finite-time performance analysis in queueing control and propose a surprisingly simple Lyapunov-based scheduling policy with superior finite-time performance. The framework quantitatively characterizes how the expected total queue length scales with key system parameters, including the capacity of the scheduling set and the variability of arrivals and departures across queues. To our knowledge, this provides the first firm foundation for evaluating and comparing scheduling policies in the finite-time regime, including nonstationary settings, and shows that the proposed policy can provably and empirically outperform classical MaxWeight in finite time. Within this framework, we establish three main sets of results. First, we derive minimax lower bounds on the expected total queue length for parallel-queue scheduling via a novel Brownian coupling argument. Second, we propose a new policy, LyapOpt, which minimizes the full quadratic Lyapunov drift-capturing both first- and second-order terms-and achieves optimal finite-time performance in heavy traffic while retaining classical stability guarantees. Third, we identify a key limitation of the classical MaxWeight policy, which optimizes only the first-order drift: its finite-time performance depends suboptimally on system parameters, leading to substantially larger backlogs in explicitly characterized settings. Together, these results delineate the scope and limitations of classical drift-based scheduling and motivate new queueing-control methods with rigorous finite-time guarantees.
♻ ☆ Masked Diffusion Models as Energy Minimization
We present a systematic theoretical framework that interprets masked diffusion models (MDMs) as solutions to energy minimization problems in discrete optimal transport. Specifically, we prove that three distinct energy formulations--kinetic, conditional kinetic, and geodesic energy--are mathematically equivalent under the structure of MDMs, and that MDMs minimize all three when the mask schedule satisfies a closed-form optimality condition. This unification not only clarifies the theoretical foundations of MDMs, but also motivates practical improvements in sampling. By parameterizing interpolation schedules via Beta distributions, we reduce the schedule design space to a tractable 2D search, enabling efficient post-training tuning without model modification. Experiments on synthetic and real-world benchmarks demonstrate that our energy-inspired schedules outperform hand-crafted baselines, particularly in low-step sampling settings.
♻ ☆ RI-Loss: A Learnable Residual-Informed Loss for Time Series Forecasting
Time series forecasting relies on predicting future values from historical data, yet most state-of-the-art approaches-including transformer and multilayer perceptron-based models-optimize using Mean Squared Error (MSE), which has two fundamental weaknesses: its point-wise error computation fails to capture temporal relationships, and it does not account for inherent noise in the data. To overcome these limitations, we introduce the Residual-Informed Loss (RI-Loss), a novel objective function based on the Hilbert-Schmidt Independence Criterion (HSIC). RI-Loss explicitly models noise structure by enforcing dependence between the residual sequence and a random time series, enabling more robust, noise-aware representations. Theoretically, we derive the first non-asymptotic HSIC bound with explicit double-sample complexity terms, achieving optimal convergence rates through Bernstein-type concentration inequalities and Rademacher complexity analysis. This provides rigorous guarantees for RI-Loss optimization while precisely quantifying kernel space interactions. Empirically, experiments across eight real-world benchmarks and five leading forecasting models demonstrate improvements in predictive performance, validating the effectiveness of our approach. The code is publicly available at: https://github.com/shang-xl/RI-Loss.
♻ ☆ Dual-Model Weight Selection and Self-Knowledge Distillation for Medical Image Classification
We propose a novel medical image classification method that integrates dual-model weight selection with self-knowledge distillation (SKD). In real-world medical settings, deploying large-scale models is often limited by computational resource constraints, which pose significant challenges for their practical implementation. Thus, developing lightweight models that achieve comparable performance to large-scale models while maintaining computational efficiency is crucial. To address this, we employ a dual-model weight selection strategy that initializes two lightweight models with weights derived from a large pretrained model, enabling effective knowledge transfer. Next, SKD is applied to these selected models, allowing the use of a broad range of initial weight configurations without imposing additional excessive computational cost, followed by fine-tuning for the target classification tasks. By combining dual-model weight selection with self-knowledge distillation, our method overcomes the limitations of conventional approaches, which often fail to retain critical information in compact models. Extensive experiments on publicly available datasets-chest X-ray images, lung computed tomography scans, and brain magnetic resonance imaging scans-demonstrate the superior performance and robustness of our approach compared to existing methods.
comment: Published as a journal paper at Elsevier CIBM
♻ ☆ Beyond MSE: Ordinal Cross-Entropy for Probabilistic Time Series Forecasting
Time series forecasting is an important task that involves analyzing temporal dependencies and underlying patterns (such as trends, cyclicality, and seasonality) in historical data to predict future values or trends. Current deep learning-based forecasting models primarily employ Mean Squared Error (MSE) loss functions for regression modeling. Despite enabling direct value prediction, this method offers no uncertainty estimation and exhibits poor outlier robustness. To address these limitations, we propose OCE-TS, a novel ordinal classification approach for time series forecasting that replaces MSE with Ordinal Cross-Entropy (OCE) loss, preserving prediction order while quantifying uncertainty through probability output. Specifically, OCE-TS begins by discretizing observed values into ordered intervals and deriving their probabilities via a parametric distribution as supervision signals. Using a simple linear model, we then predict probability distributions for each timestep. The OCE loss is computed between the cumulative distributions of predicted and ground-truth probabilities, explicitly preserving ordinal relationships among forecasted values. Through theoretical analysis using influence functions, we establish that cross-entropy (CE) loss exhibits superior stability and outlier robustness compared to MSE loss. Empirically, we compared OCE-TS with five baseline models-Autoformer, DLinear, iTransformer, TimeXer, and TimeBridge-on seven public time series datasets. Using MSE and Mean Absolute Error (MAE) as evaluation metrics, the results demonstrate that OCE-TS consistently outperforms benchmark models. The codeis publicly available at: https://github.com/Shi-hm/OCE-TS.
♻ ☆ Fast Solvers for Discrete Diffusion Models: Theory and Applications of High-Order Algorithms NeurIPS 2025
Discrete diffusion models have emerged as a powerful generative modeling framework for discrete data with successful applications spanning from text generation to image synthesis. However, their deployment faces challenges due to the high dimensionality of the state space, necessitating the development of efficient inference algorithms. Current inference approaches mainly fall into two categories: exact simulation and approximate methods such as $τ$-leaping. While exact methods suffer from unpredictable inference time and redundant function evaluations, $τ$-leaping is limited by its first-order accuracy. In this work, we advance the latter category by tailoring the first extension of high-order numerical inference schemes to discrete diffusion models, enabling larger step sizes while reducing error. We rigorously analyze the proposed schemes and establish the second-order accuracy of the $θ$-Trapezoidal method in KL divergence. Empirical evaluations on GSM8K-level math-reasoning, GPT-2-level text, and ImageNet-level image generation tasks demonstrate that our method achieves superior sample quality compared to existing approaches under equivalent computational constraints, with consistent performance gains across models ranging from 200M to 8B. Our code is available at https://github.com/yuchen-zhu-zyc/DiscreteFastSolver.
comment: Accepted at NeurIPS 2025 as a Poster (https://openreview.net/forum?id=OuklL6Q3sO)
♻ ☆ Logarithmic Regret of Exploration in Average Reward Markov Decision Processes
In average reward Markov decision processes, state-of-the-art algorithms for regret minimization follow a well-established framework: They are model-based, optimistic and episodic. First, they maintain a confidence region from which optimistic policies are computed using a well-known subroutine called Extended Value Iteration (EVI). Second, these policies are used over time windows called episodes, each ended by the Doubling Trick (DT) rule or a variant thereof. In this work, without modifying EVI, we show that there is a significant advantage in replacing (DT) by another simple rule, that we call the Vanishing Multiplicative (VM) rule. When managing episodes with (VM), the algorithm's regret is, both in theory and in practice, as good if not better than with (DT), while the one-shot behavior is greatly improved. More specifically, the management of bad episodes (when sub-optimal policies are being used) is much better under (VM) than (DT) by making the regret of exploration logarithmic rather than linear. These results are made possible by a new in-depth understanding of the contrasting behaviors of confidence regions during good and bad episodes.
♻ ☆ Efficient Graph Optimization via Distance-Aware Graph Representation Learning
We propose an efficient framework that integrates distance-aware multi-hop message passing with dynamic topology refinement. Unlike standard GNNs that rely on shallow, fixed-hop aggregation, DRTR leverages both static preprocessing and dynamic resampling to capture deeper structural dependencies. A \emph{Distance Recomputator} prunes semantically weak edges using adaptive attention, while a \emph{Topology Reconstructor} establishes latent connections among distant but relevant nodes. This joint mechanism enables more expressive and robust graph representation optimization across evolving graph structures. Extensive experiments demonstrate that DRTR outperforms baseline GNNs in both accuracy and scalability, with at most 20\% computational overhead, especially in complex and noisy graph environments.
comment: Accepted to International Conference of Computational Optimization 2025 as Oral
♻ ☆ LLMEasyQuant: Scalable Quantization for Parallel and Distributed LLM Inference
As large language models (LLMs) grow in size and deployment scale, quantization has become an essential technique for reducing memory footprint and improving inference efficiency. However, existing quantization toolkits often lack transparency, flexibility, and system-level scalability across GPUs and distributed environments. We present \textbf{LLMEasyQuant}, a modular, system-aware quantization framework designed for efficient, low-bit inference of LLMs on single-node multi-GPU, multi-node, and edge hardware. LLMEasyQuant supports a wide range of quantization methods -- including Symmetric Quantization, ZeroQuant, SmoothQuant, and SimQuant -- with unified interfaces for per-layer calibration, bitwidth assignment, and runtime adaptation. It integrates fused CUDA kernels with NCCL-based distributed synchronization and supports both static and online quantization. Empirical results show that LLMEasyQuant can achieve substantial speedup in GEMM execution, HBM load time, and near-linear multi-GPU scaling. Ablation studies further validate its ability to balance latency, memory, and accuracy under diverse deployment conditions. LLMEasyQuant offers a practical quantization serving system for scalable, hardware-optimized LLM inference.
comment: Accepted as International Conference of Computational Optimization 2025 Oral
♻ ☆ Odin: Oriented Dual-module Integration for Text-rich Network Representation Learning
Text-attributed graphs require models to effectively combine strong textual understanding with structurally informed reasoning. Existing approaches either rely on GNNs--limited by over-smoothing and hop-dependent diffusion--or employ Transformers that overlook graph topology and treat nodes as isolated sequences. We propose Odin (Oriented Dual-module INtegration), a new architecture that injects graph structure into Transformers at selected depths through an oriented dual-module mechanism. Unlike message-passing GNNs, Odin does not rely on multi-hop diffusion; instead, multi-hop structures are integrated at specific Transformer layers, yielding low-, mid-, and high-level structural abstraction aligned with the model's semantic hierarchy. Because aggregation operates on the global [CLS] representation, Odin fundamentally avoids over-smoothing and decouples structural abstraction from neighborhood size or graph topology. We further establish that Odin's expressive power strictly contains that of both pure Transformers and GNNs. To make the design efficient in large-scale or low-resource settings, we introduce Light Odin, a lightweight variant that preserves the same layer-aligned structural abstraction for faster training and inference. Experiments on multiple text-rich graph benchmarks show that Odin achieves state-of-the-art accuracy, while Light Odin delivers competitive performance with significantly reduced computational cost. Together, Odin and Light Odin form a unified, hop-free framework for principled structure-text integration. The source code of this model has been released at https://github.com/hongkaifeng/Odin.
comment: 32 pages, 2 figures
♻ ☆ MAKO: Meta-Adaptive Koopman Operators for Learning-based Model Predictive Control of Parametrically Uncertain Nonlinear Systems
In this work, we propose a meta-learning-based Koopman modeling and predictive control approach for nonlinear systems with parametric uncertainties. An adaptive deep meta-learning-based modeling approach, called Meta Adaptive Koopman Operator (MAKO), is proposed. Without knowledge of the parametric uncertainty, the proposed MAKO approach can learn a meta-model from a multi-modal dataset and efficiently adapt to new systems with previously unseen parameter settings by using online data. Based on the learned meta Koopman model, a predictive control scheme is developed, and the stability of the closed-loop system is ensured even in the presence of previously unseen parameter settings. Through extensive simulations, our proposed approach demonstrates superior performance in both modeling accuracy and control efficacy as compared to competitive baselines.
♻ ☆ Learning and composing of classical music using restricted Boltzmann machines
We investigate how machine learning models acquire the ability to compose music and how musical information is internally represented within such models. We develop a composition algorithm based on a restricted Boltzmann machine (RBM), a simple generative model capable of producing musical pieces of arbitrary length. We convert musical scores into piano-roll image representations and train the RBM in an unsupervised manner. We confirm that the trained RBM can generate new musical pieces; however, by analyzing the model's responses and internal structure, we find that the learned information is not stored in a form directly interpretable by humans. This study contributes to a better understanding of how machine learning models capable of music composition may internally represent musical structure and highlights issues related to the interpretability of generative models in creative tasks.
comment: 19 pages, 12 figures, manuscript was revised
♻ ☆ A Flat Minima Perspective on Understanding Augmentations and Model Robustness AAAI
Model robustness indicates a model's capability to generalize well on unforeseen distributional shifts, including data corruption, adversarial attacks, and domain shifts. Data augmentation is one of the prevalent and effective ways to enhance robustness. Despite the great success of augmentations in different fields, a general theoretical understanding of their efficacy in improving model robustness is lacking. We offer a unified theoretical framework to clarify how augmentations can enhance model robustness through the lens of loss surface flatness and PAC generalization bound. Our work diverges from prior studies in that our analysis i) broadly encompasses much of the existing augmentation methods, and ii) is not limited to specific types of distribution shifts like adversarial attacks. We confirm our theories through simulations on the existing common corruption and adversarial robustness benchmarks based on the CIFAR and ImageNet datasets, as well as domain generalization benchmarks including PACS and OfficeHome.
comment: In Proceedings of the Association for the Advancement of Artificial Intelligence (AAAI) 2026, Singapore
♻ ☆ Revisiting Frank-Wolfe for Structured Nonconvex Optimization
We introduce a new projection-free (Frank-Wolfe) method for optimizing structured nonconvex functions that are expressed as a difference of two convex functions. This problem class subsumes smooth nonconvex minimization, positioning our method as a promising alternative to the classical Frank-Wolfe algorithm. DC decompositions are not unique; by carefully selecting a decomposition, we can better exploit the problem structure, improve computational efficiency, and adapt to the underlying problem geometry to find better local solutions. We prove that the proposed method achieves a first-order stationary point in $O(1/ε^2)$ iterations, matching the complexity of the standard Frank-Wolfe algorithm for smooth nonconvex minimization in general. Specific decompositions can, for instance, yield a gradient-efficient variant that requires only $O(1/ε)$ calls to the gradient oracle. Finally, we present numerical experiments demonstrating the effectiveness of the proposed method compared to other projection-free algorithms.
comment: 20 pages, 6 figures
♻ ☆ Attention Trajectories as a Diagnostic Axis for Deep Reinforcement Learning
While deep reinforcement learning agents demonstrate high performance across domains, their internal decision processes remain difficult to interpret when evaluated only through performance metrics. In particular, it is poorly understood which input features agents rely on, how these dependencies evolve during training, and how they relate to behavior. We introduce a scientific methodology for analyzing the learning process through quantitative analysis of saliency. This approach aggregates saliency information at the object and modality level into hierarchical attention profiles, quantifying how agents allocate attention over time, thereby forming attention trajectories throughout training. Applied to Atari benchmarks, custom Pong environments, and muscle-actuated biomechanical user simulations in visuomotor interactive tasks, this methodology uncovers algorithm-specific attention biases, reveals unintended reward-driven strategies, and diagnoses overfitting to redundant sensory channels. These patterns correspond to measurable behavioral differences, demonstrating empirical links between attention profiles, learning dynamics, and agent behavior. To assess robustness of the attention profiles, we validate our findings across multiple saliency methods and environments. The results establish attention trajectories as a promising diagnostic axis for tracing how feature reliance develops during training and for identifying biases and vulnerabilities invisible to performance metrics alone.
♻ ☆ Scaling Spatial Intelligence with Multimodal Foundation Models
Despite remarkable progress, multimodal foundation models still exhibit surprising deficiencies in spatial intelligence. In this work, we explore scaling up multimodal foundation models to cultivate spatial intelligence within the SenseNova-SI family, built upon established multimodal foundations including visual understanding models (i.e., Qwen3-VL and InternVL3) and unified understanding and generation models (i.e., Bagel). We take a principled approach to constructing high-performing and robust spatial intelligence by systematically curating SenseNova-SI-8M: eight million diverse data samples under a rigorous taxonomy of spatial capabilities. SenseNova-SI demonstrates unprecedented performance across a broad range of spatial intelligence benchmarks: 68.7% on VSI-Bench, 43.3% on MMSI, 85.6% on MindCube, 54.6% on ViewSpatial, and 50.1% on SITE, while maintaining strong general multimodal understanding (e.g., 84.9% on MMBench-En). More importantly, we analyze the impact of data scaling, discuss early signs of emergent generalization capabilities enabled by diverse data training, analyze the risk of overfitting and language shortcuts, present a preliminary study on spatial chain-of-thought reasoning, and validate the potential downstream application. SenseNova-SI is an ongoing project, and this report will be updated continuously. All newly trained multimodal foundation models are publicly released to facilitate further research in this direction.
comment: Codebase: https://github.com/OpenSenseNova/SenseNova-SI; Models: https://huggingface.co/collections/sensenova/sensenova-si
♻ ☆ Property Elicitation on Imprecise Probabilities
Property elicitation studies which attributes of a probability distribution can be determined by minimizing a risk. We investigate a generalization of property elicitation to imprecise probabilities (IP). This investigation is motivated by distributionally robust optimization and multi-distribution learning. Both those frameworks replace the minimization of a single risk over a (precise) probability by a maximin risk minimization over a set of probabilities -- i.e. an IP. We show what can be learned in those multi-distribution setups by providing necessary and sufficient conditions for the elicitability of an IP-property. Central to these conditions is the observation made in related literature that the elicited IP-property is the corresponding classical property of the probability in the IP with the maximum Bayes risk.
♻ ☆ Towards Non-Stationary Time Series Forecasting with Temporal Stabilization and Frequency Differencing AAAI 2026
Time series forecasting is critical for decision-making across dynamic domains such as energy, finance, transportation, and cloud computing. However, real-world time series often exhibit non-stationarity, including temporal distribution shifts and spectral variability, which pose significant challenges for long-term time series forecasting. In this paper, we propose DTAF, a dual-branch framework that addresses non-stationarity in both the temporal and frequency domains. For the temporal domain, the Temporal Stabilizing Fusion (TFS) module employs a non-stationary mix of experts (MOE) filter to disentangle and suppress temporal non-stationary patterns while preserving long-term dependencies. For the frequency domain, the Frequency Wave Modeling (FWM) module applies frequency differencing to dynamically highlight components with significant spectral shifts. By fusing the complementary outputs of TFS and FWM, DTAF generates robust forecasts that adapt to both temporal and frequency domain non-stationarity. Extensive experiments on real-world benchmarks demonstrate that DTAF outperforms state-of-the-art baselines, yielding significant improvements in forecasting accuracy under non-stationary conditions. All codes are available at https://github.com/decisionintelligence/DTAF.
comment: Accepted by AAAI 2026
♻ ☆ Holistic Evaluation of Multimodal LLMs on Spatial Intelligence
Multimodal models have achieved remarkable progress in recent years. Nevertheless, they continue to exhibit notable limitations in spatial understanding and reasoning, the very capability that anchors artificial general intelligence in the physical world. With the recent release of GPT-5, allegedly the most powerful AI model to date, it is timely to examine where the leading models (GPT, Gemini, Grok, Seed, Qwen, and Intern) stand on the path toward spatial intelligence (SI). We thus propose EASI for holistic Evaluation of multimodAl LLMs on Spatial Intelligence. EASI conceptualizes a comprehensive taxonomy of spatial tasks that unifies existing benchmarks and a growing collection of newly curated ones, enabling systematic evaluation of state-of-the-art models. In this report, we conduct the study across eight key benchmarks, at a cost exceeding ten billion total tokens. Our empirical study then reveals that (1) GPT-5 demonstrates unprecedented strength in SI, yet (2) still falls short of human performance significantly across a broad spectrum of SI-tasks. Moreover, we (3) show that SI-tasks expose greater model capability deficiency than non-SI tasks, to the extent that (4) proprietary models do not exhibit a decisive advantage when facing the most difficult ones. In addition, we conduct a qualitative evaluation across a diverse set of scenarios that are intuitive for humans, yet fail the most advanced multimodal models. EASI is an ongoing community effort: we have open-sourced the EASI codebase that provides a one-stop and reproducible solution with standardized interfaces, integrated protocols and prompts that significantly reduce the friction of configuring and running multiple benchmarks; we have also launched an accompanying EASI leaderboard to provide a continually updated snapshot of model performance across the full SI spectrum, accelerating collective progress toward robust SI.
comment: Codebase: https://github.com/EvolvingLMMs-Lab/EASI/; Leaderboard: https://huggingface.co/spaces/lmms-lab-si/EASI-Leaderboard
♻ ☆ SPO-VCS: An End-to-End Smart Predict-then-Optimize Framework with Alternating Differentiation Method for Relocation Problems in Large-Scale Vehicle Crowd Sensing
Ubiquitous mobile devices have catalyzed the development of vehicle crowd sensing (VCS). In particular, vehicle sensing systems show great potential in the flexible acquisition of spatio-temporal urban data through built-in sensors under diverse sensing scenarios. However, vehicle systems often exhibit biased coverage due to the heterogeneous nature of trip requests and routes. To achieve a high sensing coverage, a critical challenge lies in optimally relocating vehicles to minimize the divergence between vehicle distributions and target sensing distributions. Conventional approaches typically employ a two-stage predict-then-optimize (PTO) process: first predicting real-time vehicle distributions and subsequently generating an optimal relocation strategy based on the predictions. However, this approach can lead to suboptimal decision-making due to the propagation of errors from upstream prediction. To this end, we develop an end-to-end Smart Predict-then-Optimize (SPO) framework by integrating optimization into prediction within the deep learning architecture, and the entire framework is trained by minimizing the task-specific matching divergence rather than the upstream prediction error. Methodologically, we formulate the vehicle relocation problem by quadratic programming (QP) and incorporate a novel unrolling approach based on the Alternating Direction Method of Multipliers (ADMM) within the SPO framework to compute gradients of the QP layer, facilitating backpropagation and gradient-based optimization for end-to-end learning. The effectiveness of the proposed framework is validated by real-world taxi datasets in Hong Kong. Utilizing the alternating differentiation method, the general SPO framework presents a novel concept of addressing decision-making problems with uncertainty, demonstrating significant potential for advancing applications in intelligent transportation systems.
comment: Accepted by Transportation Research Part E: Logistics and Transportation Review
♻ ☆ Gaussian Universality in Neural Network Dynamics with Generalized Structured Input Distributions ICLR 2024
Analyzing neural network dynamics via stochastic gradient descent (SGD) is crucial to building theoretical foundations for deep learning. Previous work has analyzed structured inputs within the \textit{hidden manifold model}, often under the simplifying assumption of a Gaussian distribution. We extend this framework by modeling inputs as Gaussian mixtures to better represent complex, real-world data. Through empirical and theoretical investigation, we demonstrate that with proper standardization, the learning dynamics converges to the behavior seen in the simple Gaussian case. This finding exhibits a form of universality, where diverse structured distributions yield results consistent with Gaussian assumptions, thereby strengthening the theoretical understanding of deep learning models.
comment: Accepted for Bridging the Gap Between Practice and Theory in Deep Learning (BGPT) Workshop at ICLR 2024, [v1] 23 pages, 16 figures
♻ ☆ From Sequential to Recursive: Enhancing Decision-Focused Learning with Bidirectional Feedback AAAI
Decision-focused learning (DFL) has emerged as a powerful end-to-end alternative to conventional predict-then-optimize (PTO) pipelines by directly optimizing predictive models through downstream decision losses. Existing DFL frameworks are limited by their strictly sequential structure, referred to as sequential DFL (S-DFL). However, S-DFL fails to capture the bidirectional feedback between prediction and optimization in complex interaction scenarios. In view of this, we first time propose recursive decision-focused learning (R-DFL), a novel framework that introduces bidirectional feedback between downstream optimization and upstream prediction. We further extend two distinct differentiation methods: explicit unrolling via automatic differentiation and implicit differentiation based on fixed-point methods, to facilitate efficient gradient propagation in R-DFL. We rigorously prove that both methods achieve comparable gradient accuracy, with the implicit method offering superior computational efficiency. Extensive experiments on both synthetic and real-world datasets, including the newsvendor problem and the bipartite matching problem, demonstrate that R-DFL not only substantially enhances the final decision quality over sequential baselines but also exhibits robust adaptability across diverse scenarios in closed-loop decision-making problems.
comment: Accepted by The 40th Annual AAAI Conference on Artificial Intelligence (AAAI-26), Main track
♻ ☆ KeepKV: Achieving Periodic Lossless KV Cache Compression for Efficient LLM Inference
Efficient inference of large language models (LLMs) is hindered by an ever-growing key-value (KV) cache, making KV cache compression a critical research direction. Traditional methods selectively evict less important KV cache entries, which leads to information loss and hallucinations. Recently, merging-based strategies have been explored to retain more information by merging KV pairs that would be discarded; however, these existing approaches inevitably introduce inconsistencies in attention distributions before and after merging, causing degraded generation quality. To overcome this challenge, we propose KeepKV, a novel adaptive KV cache merging method designed to preserve performance under strict memory constraints, achieving single-step lossless compression and providing error bounds for multi-step compression. KeepKV introduces the Electoral Votes mechanism that records merging history and adaptively adjusts attention scores. Moreover, it further leverages a novel Zero Inference-Perturbation Merging method, compensating for attention loss resulting from cache merging. Extensive experiments on various benchmarks and LLM architectures demonstrate that KeepKV substantially reduces memory usage while successfully retaining essential context information, achieving over 2x inference throughput improvement and maintaining superior generation quality even with only 10% KV cache budgets.
comment: 14 pages, 20 figures
♻ ☆ From Raw Features to Effective Embeddings: A Three-Stage Approach for Multimodal Recipe Recommendation
Recipe recommendation has become an essential task in web-based food platforms. A central challenge is effectively leveraging rich multimodal features beyond user-recipe interactions. Our analysis shows that even simple uses of multimodal signals yield competitive performance, suggesting that systematic enhancement of these signals is highly promising. We propose TESMR, a 3-stage framework for recipe recommendation that progressively refines raw multimodal features into effective embeddings through: (1) content-based enhancement using foundation models with multimodal comprehension, (2) relation-based enhancement via message propagation over user-recipe interactions, and (3) learning-based enhancement through contrastive learning with learnable embeddings. Experiments on two real-world datasets show that TESMR outperforms existing methods, achieving 7-15% higher Recall@10.
♻ ☆ Periodic Skill Discovery NeurIPS 2025
Unsupervised skill discovery in reinforcement learning (RL) aims to learn diverse behaviors without relying on external rewards. However, current methods often overlook the periodic nature of learned skills, focusing instead on increasing the mutual dependence between states and skills or maximizing the distance traveled in latent space. Considering that many robotic tasks - particularly those involving locomotion - require periodic behaviors across varying timescales, the ability to discover diverse periodic skills is essential. Motivated by this, we propose Periodic Skill Discovery (PSD), a framework that discovers periodic behaviors in an unsupervised manner. The key idea of PSD is to train an encoder that maps states to a circular latent space, thereby naturally encoding periodicity in the latent representation. By capturing temporal distance, PSD can effectively learn skills with diverse periods in complex robotic tasks, even with pixel-based observations. We further show that these learned skills achieve high performance on downstream tasks such as hurdling. Moreover, integrating PSD with an existing skill discovery method offers more diverse behaviors, thus broadening the agent's repertoire. Our code and demos are available at https://jonghaepark.github.io/psd/
comment: NeurIPS 2025
♻ ☆ Wavefront-Constrained Passive Obscured Object Detection
Accurately localizing and segmenting obscured objects from faint light patterns beyond the field of view is highly challenging due to multiple scattering and medium-induced perturbations. Most existing methods, based on real-valued modeling or local convolutional operations, are inadequate for capturing the underlying physics of coherent light propagation. Moreover, under low signal-to-noise conditions, these methods often converge to non-physical solutions, severely compromising the stability and reliability of the observation. To address these challenges, we propose a novel physics-driven Wavefront Propagating Compensation Network (WavePCNet) to simulate wavefront propagation and enhance the perception of obscured objects. This WavePCNet integrates the Tri-Phase Wavefront Complex-Propagation Reprojection (TriWCP) to incorporate complex amplitude transfer operators to precisely constrain coherent propagation behavior, along with a momentum memory mechanism to effectively suppress the accumulation of perturbations. Additionally, a High-frequency Cross-layer Compensation Enhancement is introduced to construct frequency-selective pathways with multi-scale receptive fields and dynamically model structural consistency across layers, further boosting the model's robustness and interpretability under complex environmental conditions. Extensive experiments conducted on four physically collected datasets demonstrate that WavePCNet consistently outperforms state-of-the-art methods across both accuracy and robustness.
♻ ☆ Spatio-Temporal Hierarchical Causal Models
The abundance of fine-grained spatio-temporal data, such as traffic sensor networks, offers vast opportunities for scientific discovery. However, inferring causal relationships from such observational data remains challenging, particularly due to unobserved confounders that are specific to units (e.g., geographical locations) yet influence outcomes over time. Most existing methods for spatio-temporal causal inference assume that all confounders are observed, an assumption that is often violated in practice. In this paper, we introduce Spatio-Temporal Hierarchical Causal Models (ST-HCMs), a novel graphical framework that extends hierarchical causal modeling to the spatio-temporal domain. At the core of our approach is the Spatio-Temporal Collapse Theorem, which shows that a complex ST-HCM converges to a simpler flat causal model as the amount of subunit data increases. This theoretical result enables a general procedure for causal identification, allowing ST-HCMs to recover causal effects even in the presence of unobserved, time-invariant unit-level confounders, a scenario where standard non-hierarchical models fail. We validate the effectiveness of our framework on both synthetic and real-world datasets, demonstrating its potential for robust causal inference in complex dynamic systems.
♻ ☆ Diffusion Models are Molecular Dynamics Simulators
We prove that a denoising diffusion sampler equipped with a sequential bias across the batch dimension is exactly an Euler-Maruyama integrator for overdamped Langevin dynamics. Each reverse denoising step, with its associated spring stiffness, can be interpreted as one step of a stochastic differential equation with an effective time step set jointly by the noise schedule and that stiffness. The learned score then plays the role of the drift, equivalently the gradient of a learned energy, yielding a precise correspondence between diffusion sampling and Langevin time evolution. This equivalence recasts molecular dynamics (MD) in terms of diffusion models. Accuracy is no longer tied to a fixed, extremely small MD time step; instead, it is controlled by two scalable knobs: model capacity, which governs how well the drift is approximated, and the number of denoising steps, which sets the integrator resolution. In practice, this leads to a fully data-driven MD framework that learns forces from uncorrelated equilibrium snapshots, requires no hand-engineered force fields, uses no trajectory data for training, and still preserves the Boltzmann distribution associated with the learned energy. We derive trajectory-level, information-theoretic error bounds that cleanly separate discretization error from score-model error, clarify how temperature enters through the effective spring, and show that the resulting sampler generates molecular trajectories with MD-like temporal correlations, even though the model is trained only on static configurations.
♻ ☆ Best Practices for Machine Learning Experimentation in Scientific Applications
Machine learning (ML) is increasingly adopted in scientific research, yet the quality and reliability of results often depend on how experiments are designed and documented. Poor baselines, inconsistent preprocessing, or insufficient validation can lead to misleading conclusions about model performance. This paper presents a practical and structured guide for conducting ML experiments in scientific applications, focussing on reproducibility, fair comparison, and transparent reporting. We outline a step-by-step workflow, from dataset preparation to model selection and evaluation, and propose metrics that account for overfitting and instability across validation folds, including the Logarithmic Overfitting Ratio (LOR) and the Composite Overfitting Score (COS). Through recommended practices and example reporting formats, this work aims to support researchers in establishing robust baselines and drawing valid evidence-based insights from ML models applied to scientific problems.
♻ ☆ Aligning Inductive Bias for Data-Efficient Generalization in State Space Models
The remarkable success of large-scale models is fundamentally tied to scaling laws, yet the finite nature of high-quality data presents a looming challenge. One of the next frontiers in modeling is data efficiency: the ability to learn more from less. A model's inductive bias is a critical lever for this, but foundational sequence models like State Space Models (SSMs) rely on a fixed bias. This fixed prior is sample-inefficient when a task's underlying structure does not match. In this work, we introduce a principled framework to solve this problem. We first formalize the inductive bias of linear time-invariant SSMs through an SSM-induced kernel, mathematically and empirically proving its spectrum is directly governed by the model's frequency response. Further, we propose a method of Task-Dependent Initialization (TDI): power spectrum matching, a fast and efficient method that aligns the model's inductive bias with the task's spectral characteristics before large-scale training. Our experiments on a diverse set of real-world benchmarks show that TDI significantly improves generalization and sample efficiency, particularly in low-data regimes. This work provides a theoretical and practical tool to create more data-efficient models, a crucial step towards sustainable scaling.
comment: We withdraw this submission to make substantial revisions and improvements on experiments
♻ ☆ Ultralight Polarity-Split Neuromorphic SNN for Event-Stream Super-Resolution AAAI2026
Event cameras offer unparalleled advantages such as high temporal resolution, low latency, and high dynamic range. However, their limited spatial resolution poses challenges for fine-grained perception tasks. In this work, we propose an ultra-lightweight, stream-based event-to-event super-resolution method based on Spiking Neural Networks (SNNs), designed for real-time deployment on resource-constrained devices. To further reduce model size, we introduce a novel Dual-Forward Polarity-Split Event Encoding strategy that decouples positive and negative events into separate forward paths through a shared SNN. Furthermore, we propose a Learnable Spatio-temporal Polarity-aware Loss (LearnSTPLoss) that adaptively balances temporal, spatial, and polarity consistency using learnable uncertainty-based weights. Experimental results demonstrate that our method achieves competitive super-resolution performance on multiple datasets while significantly reducing model size and inference time. The lightweight design enables embedding the module into event cameras or using it as an efficient front-end preprocessing for downstream vision tasks.
comment: 8 pages, 10 figures, 7 tables, accepted by AAAI2026
♻ ☆ CDR-Agent: Intelligent Selection and Execution of Clinical Decision Rules Using Large Language Model Agents
Clinical decision-making is inherently complex and fast-paced, particularly in emergency departments (EDs) where critical, rapid and high-stakes decisions are made. Clinical Decision Rules (CDRs) are standardized evidence-based tools that combine signs, symptoms, and clinical variables into decision trees to make consistent and accurate diagnoses. CDR usage is often hindered by the clinician's cognitive load, limiting their ability to quickly recall and apply the appropriate rules. We introduce CDR-Agent, a novel LLM-based system designed to enhance ED decision-making by autonomously identifying and applying the most appropriate CDRs based on unstructured clinical notes. To validate CDR-Agent, we curated two novel ED datasets: synthetic and CDR-Bench, although CDR-Agent is applicable to non ED clinics. CDR-Agent achieves a 56.3\% (synthetic) and 8.7\% (CDR-Bench) accuracy gain relative to the standalone LLM baseline in CDR selection. Moreover, CDR-Agent significantly reduces computational overhead. Using these datasets, we demonstrated that CDR-Agent not only selects relevant CDRs efficiently, but makes cautious yet effective imaging decisions by minimizing unnecessary interventions while successfully identifying most positively diagnosed cases, outperforming traditional LLM prompting approaches. Code for our work can be found at: https://github.com/zhenxianglance/medagent-cdr-agent
♻ ☆ Beyond Introspection: Reinforcing Thinking via Externalist Behavioral Feedback
While inference-time thinking allows Large Language Models (LLMs) to address complex problems, the extended thinking process can be unreliable or inconsistent because of the model's probabilistic nature, especially near its knowledge boundaries. Existing approaches attempt to mitigate this by having the model critique its own reasoning to make corrections. However, such self-critique inherits the same biases of the original output, known as the introspection illusion. Moving beyond such introspection and inspired by core methodologies in ethology, we propose an externalist three-step framework Distillation-Reinforcement-Reasoning (DRR). Rather than relying on a model's introspection, DRR evaluates its observable behaviors to provide corrective feedback. DRR first distills the reasoner's behavioral traces, then trains a lightweight, external Discriminative Model (DM). At inference time, this DM acts as a critic, identifying and rejecting suspicious reasoning steps. This external feedback compels the LLM to discard flawed pathways and explore alternatives, thereby enhancing reasoning quality without altering the base model. Experiments on multiple reasoning benchmarks show that our framework significantly outperforms prominent self-critique methods. Benefiting from a lightweight and annotation-free design, DRR offers a scalable and adaptable solution for improving the reliability of reasoning in a wide range of LLMs.
♻ ☆ TabPFN: One Model to Rule Them All?
Hollmann et al. (Nature 637 (2025) 319-326) recently introduced TabPFN, a transformer-based deep learning model for regression and classification on tabular data, which they claim "outperforms all previous methods on datasets with up to 10,000 samples by a wide margin, using substantially less training time." Furthermore, they have called TabPFN a "foundation model" for tabular data, as it can support "data generation, density estimation, learning reusable embeddings and fine-tuning". In this paper, we provide a tailored explanation of how TabPFN works for a statistics audience, by emphasizing its interpretation as approximate Bayesian inference. We then explore the significance of TabPFN to the field of statistics: We show that an out-of-the-box application of TabPFN can sometimes outperform specialized state-of-the-art methods for semi-supervised parameter estimation, prediction under covariate shift, and heterogeneous treatment effect estimation. As a partial explanation for the predictive effectiveness of TabPFN, we show that it can simultaneously adapt to both nonparametric structure and parametric structure, for instance, sometimes outperforming LASSO even when assumptions are correctly specified. All experiments can be reproduced using the code provided at https://github.com/qinglong-tian/tabpfn_study (https://github.com/qinglong-tian/tabpfn_study).
Genomics 1
♻ ☆ PathGene: Benchmarking Driver Gene Mutations and Exon Prediction Using Multicenter Lung Cancer Histopathology Image Dataset
Accurately predicting gene mutations, mutation subtypes and their exons in lung cancer is critical for personalized treatment planning and prognostic assessment. Faced with regional disparities in medical resources and the high cost of genomic assays, using artificial intelligence to infer these mutations and exon variants from routine histopathology images could greatly facilitate precision therapy. Although some prior studies have shown that deep learning can accelerate the prediction of key gene mutations from lung cancer pathology slides, their performance remains suboptimal and has so far been limited mainly to early screening tasks. To address these limitations, we have assembled PathGene, which comprises histopathology images paired with next-generation sequencing reports from 1,576 patients at the Second Xiangya Hospital, Central South University, and 448 TCGA-LUAD patients. This multi-center dataset links whole-slide images to driver gene mutation status, mutation subtypes, exon, and tumor mutational burden (TMB) status, with the goal of leveraging pathology images to predict mutations, subtypes, exon locations, and TMB for early genetic screening and to advance precision oncology. Unlike existing datasets, we provide molecular-level information related to histopathology images in PathGene to facilitate the development of biomarker prediction models. We benchmarked 11 multiple-instance learning methods on PathGene for mutation, subtype, exon, and TMB prediction tasks. These experimental methods provide valuable alternatives for early genetic screening of lung cancer patients and assisting clinicians to quickly develop personalized precision targeted treatment plans for patients. Code and data are available at https://github.com/panliangrui/NIPS2025/.
comment: Withdrawn due to issues related to data permissions/ethics
Quantitative Methods 4
☆ FoldSAE: Learning to Steer Protein Folding Through Sparse Representations
RFdiffusion is a popular and well-established model for generation of protein structures. However, this generative process offers limited insight into its internal representations and how they contribute to the final protein structure. Concurrently, recent work in mechanistic interpretability has successfully used Sparse Autoencoders (SAEs) to discover interpretable features within neural networks. We combine these concepts by applying SAE to the internal representations of RFdiffusion to uncover secondary structure-specific features and establish a relationship between them and generated protein structures. Building on these insights, we introduce a novel steering mechanism that enables precise control of secondary structure formation through a tunable hyperparameter, while simultaneously revealing interpretable block and neuron-level representations within RFdiffusion. Our work pioneers a new framework for making RFdiffusion more interpretable, demonstrating how understanding internal features can be directly translated into precise control over the protein design process.
comment: 15 pages, 1o figures, submitted to RECOMB 2026
☆ Dynamical Inference of Cell Size Regulation Parameters
Cells achieve size homeostasis by regulating their division timing based on their size, added size, and cell cycle time. Previous research under steady-state conditions demonstrated the robustness of these mechanisms. However, their dynamic responses in fluctuating environments, such as nutrient depletion due to population growth, remain challenging to fully characterize. Currently, advances in single-cell microscopy have revealed various cellular division strategies whose underlying molecular mechanisms are complex and not always available. This study introduces a novel approach to model cell size dynamics using a piecewise deterministic Markov chain framework, where cell division events are modeled as stochastic jumps determined by a division propensity dependent on both current cell size and added size since birth. We propose a three-parameter characterization for the division process: scale (target added size at division), shape (division stochasticity), and division strategy (relevance of cell size, added size, or cell cycle duration). We derive analytical formulas for the probability of division, and with this probability, we develop a maximum likelihood estimation (MLE) framework. We implement a systematic investigation of the accuracy of inference as a function of sample size. The model's performance is studied across various scenarios, including those exhibiting dynamical changes in one or more parameters, suggesting its broad applicability for analyzing new experimental data on cell size regulation in dynamic environments.
☆ Predicting COVID-19 Prevalence Using Wastewater RNA Surveillance: A Semi-Supervised Learning Approach with Temporal Feature Trust
As COVID-19 transitions into an endemic disease that remains constantly present in the population at a stable level, monitoring its prevalence without invasive measures becomes increasingly important. In this paper, we present a deep neural network estimator for the COVID-19 daily case count based on wastewater surveillance data and other confounding factors. This work builds upon the study by Jiang, Kolozsvary, and Li (2024), which connects the COVID-19 case counts with testing data collected early in the pandemic. Using the COVID-19 testing data and the wastewater surveillance data during the period when both data were highly reliable, one can train an artificial neural network that learns the nonlinear relation between the COVID-19 daily case count and the wastewater viral RNA concentration. From a machine learning perspective, the main challenge lies in addressing temporal feature reliability, as the training data has different reliability over different time periods.
comment: 22 pages, 13 figures. Submitted to SIURO
♻ ☆ The Catechol Benchmark: Time-series Solvent Selection Data for Few-shot Machine Learning NeurIPS
Machine learning has promised to change the landscape of laboratory chemistry, with impressive results in molecular property prediction and reaction retro-synthesis. However, chemical datasets are often inaccessible to the machine learning community as they tend to require cleaning, thorough understanding of the chemistry, or are simply not available. In this paper, we introduce a novel dataset for yield prediction, providing the first-ever transient flow dataset for machine learning benchmarking, covering over 1200 process conditions. While previous datasets focus on discrete parameters, our experimental set-up allow us to sample a large number of continuous process conditions, generating new challenges for machine learning models. We focus on solvent selection, a task that is particularly difficult to model theoretically and therefore ripe for machine learning applications. We showcase benchmarking for regression algorithms, transfer-learning approaches, feature engineering, and active learning, with important applications towards solvent replacement and sustainable manufacturing.
comment: 10 pages main, 22 pages total, 8 figures, 7 tables. Accepted to NeurIPS Datasets and Benchmarks track 2025
Computation and Language 86
☆ Revisiting Generalization Across Difficulty Levels: It's Not So Easy
We investigate how well large language models (LLMs) generalize across different task difficulties, a key question for effective data curation and evaluation. Existing research is mixed regarding whether training on easier or harder data leads to better results, and whether those gains come on easier or harder test data. We address this question by conducting a systematic evaluation of LLMs' generalization across models, datasets, and fine-grained groups of example difficulty. We rank examples in six datasets using the outputs of thousands of different LLMs and Item Response Theory (IRT), a well-established difficulty metric in educational testing. Unlike prior work, our difficulty ratings are therefore determined solely by the abilities of many different LLMs, excluding human opinions of difficulty. With a more objective, larger-scale, and finer-grained analysis, we show that cross-difficulty generalization is often limited; training on either easy or hard data cannot achieve consistent improvements across the full range of difficulties. These results show the importance of having a range of difficulties in both training and evaluation data for LLMs, and that taking shortcuts with respect to difficulty is risky.
☆ ToolOrchestra: Elevating Intelligence via Efficient Model and Tool Orchestration
Large language models are powerful generalists, yet solving deep and complex problems such as those of the Humanity's Last Exam (HLE) remains both conceptually challenging and computationally expensive. We show that small orchestrators managing other models and a variety of tools can both push the upper bound of intelligence and improve efficiency in solving difficult agentic tasks. We introduce ToolOrchestra, a method for training small orchestrators that coordinate intelligent tools. ToolOrchestra explicitly uses reinforcement learning with outcome-, efficiency-, and user-preference-aware rewards. Using ToolOrchestra, we produce Orchestrator, an 8B model that achieves higher accuracy at lower cost than previous tool-use agents while aligning with user preferences on which tools are to be used for a given query. On HLE, Orchestrator achieves a score of 37.1%, outperforming GPT-5 (35.1%) while being 2.5x more efficient. On tau2-Bench and FRAMES, Orchestrator surpasses GPT-5 by a wide margin while using only about 30% of the cost. Extensive analysis shows that Orchestrator achieves the best trade-off between performance and cost under multiple metrics, and generalizes robustly to unseen tools. These results demonstrate that composing diverse tools with a lightweight orchestration model is both more efficient and more effective than existing methods, paving the way for practical and scalable tool-augmented reasoning systems.
comment: 21 pages, 6 figures
☆ G$^2$VLM: Geometry Grounded Vision Language Model with Unified 3D Reconstruction and Spatial Reasoning
Vision-Language Models (VLMs) still lack robustness in spatial intelligence, demonstrating poor performance on spatial understanding and reasoning tasks. We attribute this gap to the absence of a visual geometry learning process capable of reconstructing 3D space from 2D images. We present G$^2$VLM, a geometry grounded vision-language model that bridges two fundamental aspects of spatial intelligence: spatial 3D reconstruction and spatial understanding. G$^2$VLM natively leverages learned 3D visual geometry features to directly predict 3D attributes and enhance spatial reasoning tasks via in-context learning and interleaved reasoning. Our unified design is highly scalable for spatial understanding: it trains on abundant multi-view image and video data, while simultaneously leveraging the benefits of 3D visual priors that are typically only derived from hard-to-collect annotations. Experimental results demonstrate G$^2$VLM is proficient in both tasks, achieving comparable results to state-of-the-art feed-forward 3D reconstruction models and achieving better or competitive results across spatial understanding and reasoning tasks. By unifying a semantically strong VLM with low-level 3D vision tasks, we hope G$^2$VLM can serve as a strong baseline for the community and unlock more future applications, such as 3D scene editing.
comment: code are released at https://github.com/InternRobotics/G2VLM
☆ Matrix: Peer-to-Peer Multi-Agent Synthetic Data Generation Framework
Synthetic data has become increasingly important for training large language models, especially when real data is scarce, expensive, or privacy-sensitive. Many such generation tasks require coordinated multi-agent workflows, where specialized agents collaborate to produce data that is higher quality, more diverse, and structurally richer. However, existing frameworks for multi-agent synthesis often depend on a centralized orchestrator, creating scalability bottlenecks, or are hardcoded for specific domains, limiting flexibility. We present \textbf{Matrix}, a decentralized framework that represents both control and data flow as serialized messages passed through distributed queues. This peer-to-peer design eliminates the central orchestrator. Each task progresses independently through lightweight agents, while compute-intensive operations, such as LLM inference or containerized environments, are handled by distributed services. Built on Ray, Matrix scales to tens of thousands of concurrent agentic workflows and provides a modular, configurable design that enables easy adaptation to a wide range of data generation workflows. We evaluate Matrix across diverse synthesis scenarios, such as multi-agent collaborative dialogue, web-based reasoning data extraction, and tool-use trajectory generation in customer service environments. In all cases, Matrix achieves $2$--$15\times$ higher data generation throughput under identical hardware resources, without compromising output quality.
☆ The author is dead, but what if they never lived? A reception experiment on Czech AI- and human-authored poetry
Large language models are increasingly capable of producing creative texts, yet most studies on AI-generated poetry focus on English -- a language that dominates training data. In this paper, we examine the perception of AI- and human-written Czech poetry. We ask if Czech native speakers are able to identify it and how they aesthetically judge it. Participants performed at chance level when guessing authorship (45.8\% correct on average), indicating that Czech AI-generated poems were largely indistinguishable from human-written ones. Aesthetic evaluations revealed a strong authorship bias: when participants believed a poem was AI-generated, they rated it as less favorably, even though AI poems were in fact rated equally or more favorably than human ones on average. The logistic regression model uncovered that the more the people liked a poem, the less probable was that they accurately assign the authorship. Familiarity with poetry or literary background had no effect on recognition accuracy. Our findings show that AI can convincingly produce poetry even in a morphologically complex, low-resource (with respect of the training data of AI models) Slavic language such as Czech. The results suggest that readers' beliefs about authorship and the aesthetic evaluation of the poem are interconnected.
☆ TAGFN: A Text-Attributed Graph Dataset for Fake News Detection in the Age of LLMs
Large Language Models (LLMs) have recently revolutionized machine learning on text-attributed graphs, but the application of LLMs to graph outlier detection, particularly in the context of fake news detection, remains significantly underexplored. One of the key challenges is the scarcity of large-scale, realistic, and well-annotated datasets that can serve as reliable benchmarks for outlier detection. To bridge this gap, we introduce TAGFN, a large-scale, real-world text-attributed graph dataset for outlier detection, specifically fake news detection. TAGFN enables rigorous evaluation of both traditional and LLM-based graph outlier detection methods. Furthermore, it facilitates the development of misinformation detection capabilities in LLMs through fine-tuning. We anticipate that TAGFN will be a valuable resource for the community, fostering progress in robust graph-based outlier detection and trustworthy AI. The dataset is publicly available at https://huggingface.co/datasets/kayzliu/TAGFN and our code is available at https://github.com/kayzliu/tagfn.
comment: Preprint. Under review
☆ Beyond URLs: Metadata Diversity and Position for Efficient LLM Pretraining
Incorporating metadata in Large Language Models (LLMs) pretraining has recently emerged as a promising approach to accelerate training. However prior work highlighted only one useful signal-URLs, leaving open the question of whether other forms of metadata could yield greater benefits. In this study, we investigate a wider range of metadata types and find other types of metadata, such as fine-grained indicators of document quality that can also accelerate pretraining when prepended. We identify a common feature among effective metadata: they encode information at a finer granularity. We further introduce metadata appending as a means of improving training efficiency, where predicting an appropriate metadata as auxiliary task can help speed up pretraining. In addition, learnable meta-tokens trained with masked loss can recover part of the speedup by inducing quality-aware latent structure. Using probing, we analyze latent representations to understand how metadata shapes learning. Together, these results yield practical guidelines for integrating metadata to improve both the efficiency and effectiveness of LLM pretraining.
☆ Auxiliary Metrics Help Decoding Skill Neurons in the Wild
Large language models (LLMs) exhibit remarkable capabilities across a wide range of tasks, yet their internal mechanisms remain largely opaque. In this paper, we introduce a simple, lightweight, and broadly applicable method with a focus on isolating neurons that encode specific skills. Building upon prior work that identified "skill neurons" via soft prompt training on classification tasks, our approach extends the analysis to complex scenarios involving multiple skills. We correlate neuron activations with auxiliary metrics -- such as external labels and the model's own confidence score -- thereby uncovering interpretable and task-specific behaviors without the need for manual token aggregation. We empirically validate our method on tasks spanning open-ended text generation and natural language inference, demonstrating its ability to detect neurons that not only drive known skills but also reveal previously unidentified shortcuts in arithmetic reasoning on BigBench.
comment: 7 pages, 7 figures. Includes additional appendix
☆ RoParQ: Paraphrase-Aware Alignment of Large Language Models Towards Robustness to Paraphrased Questions
Large Language Models (LLMs) often exhibit inconsistent behavior when answering paraphrased questions, suggesting a reliance on surface-level patterns rather than true semantic understanding. To address this limitation, we introduce RoParQ, a benchmark specifically constructed to evaluate cross-paraphrase consistency in closed-book multiple-choice QA. This benchmark is derived from standard datasets by generating paraphrases via proprietary models and selectively retaining examples that elicit inconsistent confidence from a judge model. We further propose XParaCon, a novel evaluation metric that quantifies a model's robustness by measuring the standard deviation of accuracies across question variants. Additionally, we implement a reasoning-based, paraphrase-aware Supervised Fine-Tuning (SFT) strategy designed to align models toward semantic invariance. Our experiments demonstrate that this targeted alignment significantly enhances robustness. Notably, fine-tuned lightweight models achieved consistency levels comparable to much larger pre-trained models. These results highlight the efficacy of our approach in mitigating superficial memorization and fostering more robust, reliable LLMs.
comment: 12 pages, 9 figures, 8 tables
☆ Bangla Sign Language Translation: Dataset Creation Challenges, Benchmarking and Prospects
Bangla Sign Language Translation (BdSLT) has been severely constrained so far as the language itself is very low resource. Standard sentence level dataset creation for BdSLT is of immense importance for developing AI based assistive tools for deaf and hard of hearing people of Bangla speaking community. In this paper, we present a dataset, IsharaKhobor , and two subset of it for enabling research. We also present the challenges towards developing the dataset and present some way forward by benchmarking with landmark based raw and RQE embedding. We do some ablation on vocabulary restriction and canonicalization of the same within the dataset, which resulted in two more datasets, IsharaKhobor_small and IsharaKhobor_canonical_small. The dataset is publicly available at: www.kaggle.com/datasets/hasanssl/isharakhobor [1].
comment: 14 pages, 8 tables
☆ Voice, Bias, and Coreference: An Interpretability Study of Gender in Speech Translation
Unlike text, speech conveys information about the speaker, such as gender, through acoustic cues like pitch. This gives rise to modality-specific bias concerns. For example, in speech translation (ST), when translating from languages with notional gender, such as English, into languages where gender-ambiguous terms referring to the speaker are assigned grammatical gender, the speaker's vocal characteristics may play a role in gender assignment. This risks misgendering speakers, whether through masculine defaults or vocal-based assumptions. Yet, how ST models make these decisions remains poorly understood. We investigate the mechanisms ST models use to assign gender to speaker-referring terms across three language pairs (en-es/fr/it), examining how training data patterns, internal language model (ILM) biases, and acoustic information interact. We find that models do not simply replicate term-specific gender associations from training data, but learn broader patterns of masculine prevalence. While the ILM exhibits strong masculine bias, models can override these preferences based on acoustic input. Using contrastive feature attribution on spectrograms, we reveal that the model with higher gender accuracy relies on a previously unknown mechanism: using first-person pronouns to link gendered terms back to the speaker, accessing gender information distributed across the frequency spectrum rather than concentrated in pitch.
comment: Submitted to LREC 2026
☆ Hierarchical Ranking Neural Network for Long Document Readability Assessment
Readability assessment aims to evaluate the reading difficulty of a text. In recent years, while deep learning technology has been gradually applied to readability assessment, most approaches fail to consider either the length of the text or the ordinal relationship of readability labels. This paper proposes a bidirectional readability assessment mechanism that captures contextual information to identify regions with rich semantic information in the text, thereby predicting the readability level of individual sentences. These sentence-level labels are then used to assist in predicting the overall readability level of the document. Additionally, a pairwise sorting algorithm is introduced to model the ordinal relationship between readability levels through label subtraction. Experimental results on Chinese and English datasets demonstrate that the proposed model achieves competitive performance and outperforms other baseline models.
☆ A Systematic Study of Model Merging Techniques in Large Language Models
Model merging combines multiple fine-tuned checkpoints into a single model without additional training, offering an attractive approach to reusing models and efficiently improving performance. However, it remains unclear whether the advantages reported for smaller models and classifiers generalize to LLMs. We present a large-scale, systematic evaluation of six state-of-the-art merging methods, including recent subspace methods, across four open-weight LLMs, twelve fine-tuned checkpoints per base model, and sixteen standard LLM benchmarks. Evaluating through standardized benchmarks, we measure both the probability that a merged model outperforms the base model and relative gains over the best individual checkpoint. Our results show that the oldest and simplest method, Task Arithmetic, is the only approach that reliably yields performance gains on LLMs. Other interference-aware and subspace merging methods typically result in significant performance drops. Our findings indicate that current merging techniques do not directly transfer to modern LLMs. This motivates the design of LLM-specific merging algorithms and merging-aware fine-tuning methods. Code will be released upon acceptance of this paper.
☆ Odin: Oriented Dual-module Integration for Text-rich Network Representation Learning
Text-attributed graphs require models to effectively combine strong textual understanding with structurally informed reasoning. Existing approaches either rely on GNNs--limited by over-smoothing and hop-dependent diffusion--or employ Transformers that overlook graph topology and treat nodes as isolated sequences. We propose Odin (Oriented Dual-module INtegration), a new architecture that injects graph structure into Transformers at selected depths through an oriented dual-module mechanism.Unlike message-passing GNNs, Odin does not rely on multi-hop diffusion; instead, multi-hop structures are integrated at specific Transformer layers, yielding low-, mid-, and high-level structural abstraction aligned with the model's semantic hierarchy. Because aggregation operates on the global [CLS] representation, Odin fundamentally avoids over-smoothing and decouples structural abstraction from neighborhood size or graph topology. We further establish that Odin's expressive power strictly contains that of both pure Transformers and GNNs.To make the design efficient in large-scale or low-resource settings, we introduce Light Odin, a lightweight variant that preserves the same layer-aligned structural abstraction for faster training and inference. Experiments on multiple text-rich graph benchmarks show that Odin achieves state-of-the-art accuracy, while Light Odin delivers competitive performance with significantly reduced computational cost. Together, Odin and Light Odin form a unified, hop-free framework for principled structure-text integration. The source code of this model has been released at https://github.com/hongkaifeng/Odin.
comment: 32 pages, 2 figures
☆ Subjective Depth and Timescale Transformers: Learning Where and When to Compute
The rigid, uniform allocation of computation in standard Transformer (TF) architectures can limit their efficiency and scalability, particularly for large-scale models and long sequences. Addressing this, we introduce Subjective Depth Transformers (SDT) and Subjective Timescale Transformers (STT), two distinct architectures that leverage Bayesian surprise signals to dynamically route computation, learning where and when to compute within decoder-only TFs. SDT augments a decoder-only stack with alternating Decision and Dynamic layers: a Decision layer computes a full block 'posterior' and a lightweight 'prior,' while a Dynamic layer employs fixed-capacity Top-K routing based on Bayesian surprise (Expected and Unexpected Change), maintaining a static compute graph. STT extends this conditional computation to the temporal domain: a transition network predicts residual updates, forming a temporal 'change hypothesis' that informs a router to dynamically execute or bypass TF blocks for each token, managing KV-cache contributions. Both architectures exhibit the predicted shift from novelty to prediction driven gating over training, suggesting alignment with surprise based principles. While operating at reduced capacity, they offer preliminary insights into the compute-accuracy trade-offs of conditional computation. The proposed architectures establish a flexible framework for efficiency, reducing self-attention computation by 75% and KV-cache requirements by 50% within each compute skipping layer, setting a pathway for more efficient models.
☆ Text-to-SQL as Dual-State Reasoning: Integrating Adaptive Context and Progressive Generation
Recent divide-and-conquer reasoning approaches, particularly those based on Chain-of-Thought (CoT), have substantially improved the Text-to-SQL capabilities of Large Language Models (LLMs). However, when applied to complex enterprise databases, such methods struggle to maintain coherent reasoning due to limited context capacity, unreliable schema linking, and weak grounding in database semantics. To overcome these issues, we introduce DSR-SQL, a \textbf{D}ual-\textbf{S}tate \textbf{R}easoning framework that models Text-to-SQL as an interaction between an adaptive context state and a progressive generation state. The first constructs a compact, semantically faithful environment by refining large schemas and selecting relevant structures, while the second formalizes SQL synthesis as feedback-guided state transitions, enabling the model to self-correct and align with user intent. Without any post-training or in-context examples, DSR-SQL achieves competitive performance, reaching 35.28\% execution accuracy on Spider 2.0-Snow and 68.32\% on BIRD development set. Our implementation will be open-sourced at: https://github.com/DMIRLAB-Group/DSR-SQL.
☆ Can LLMs extract human-like fine-grained evidence for evidence-based fact-checking?
Misinformation frequently spreads in user comments under online news articles, highlighting the need for effective methods to detect factually incorrect information. To strongly support or refute claims extracted from such comments, it is necessary to identify relevant documents and pinpoint the exact text spans that justify or contradict each claim. This paper focuses on the latter task -- fine-grained evidence extraction for Czech and Slovak claims. We create new dataset, containing two-way annotated fine-grained evidence created by paid annotators. We evaluate large language models (LLMs) on this dataset to assess their alignment with human annotations. The results reveal that LLMs often fail to copy evidence verbatim from the source text, leading to invalid outputs. Error-rate analysis shows that the {llama3.1:8b model achieves a high proportion of correct outputs despite its relatively small size, while the gpt-oss-120b model underperforms despite having many more parameters. Furthermore, the models qwen3:14b, deepseek-r1:32b, and gpt-oss:20b demonstrate an effective balance between model size and alignment with human annotations.
☆ Training Introspective Behavior: Fine-Tuning Induces Reliable Internal State Detection in a 7B Model
Lindsey (2025) investigates introspective awareness in language models through four experiments, finding that models can sometimes detect and identify injected activation patterns -- but unreliably (~20% success in the best model). We focus on the first of these experiments -- self-report of injected "thoughts" -- and ask whether this capability can be directly trained rather than waiting for emergence. Through fine-tuning on transient single-token injections, we transform a 7B parameter model from near-complete failure (0.4% accuracy, 6.7% false positive rate) to reliable detection (85% accuracy on held-out concepts at α=40, 0% false positives). Our model detects fleeting "thoughts" injected at a single token position, retains that information, and reports the semantic content across subsequent generation steps. On this task, our trained model satisfies three of Lindsey's criteria: accuracy (correct identification), grounding (0/60 false positives), and internality (detection precedes verbalization). Generalization to unseen concept vectors (7.5pp gap) demonstrates the model learns a transferable skill rather than memorizing specific vectors, though this does not establish metacognitive representation in Lindsey's sense. These results address an open question raised by Lindsey: whether "training for introspection would help eliminate cross-model differences." We show that at least one component of introspective behavior can be directly induced, offering a pathway to built-in AI transparency.
comment: 16 pages, 8 figures
☆ Prune4Web: DOM Tree Pruning Programming for Web Agent AAAI 2026
Web automation employs intelligent agents to execute high-level tasks by mimicking human interactions with web interfaces. Despite the capabilities of recent Large Language Model (LLM)-based web agents, navigating complex, real-world webpages efficiently remains a significant hurdle due to the prohibitively large size of Document Object Model (DOM) structures, often ranging from 10,000 to 100,000 tokens. Existing strategies typically rely on crude DOM truncation -- risking the loss of critical information -- or employ inefficient heuristics and separate ranking models, failing to achieve an optimal balance between precision and scalability. To address these challenges, we introduce Prune4Web, a novel paradigm that shifts DOM processing from resource-intensive LLM reading to efficient programmatic pruning. Central to our approach is DOM Tree Pruning Programming, where an LLM generates executable Python scoring scripts to dynamically filter DOM elements based on semantic cues from decomposed sub-tasks. This mechanism eliminates the need for LLMs to ingest raw, massive DOMs, instead delegating traversal and scoring to lightweight, interpretable programs. This methodology achieves a 25x to 50x reduction in candidate elements for grounding, thereby facilitating precise action localization while mitigating attention dilution. Furthermore, we propose a specialized data annotation pipeline and a two-turn dialogue training strategy that jointly optimizes the Planner, Programmatic Filter, and Grounder within a unified framework. Extensive experiments demonstrate state-of-the-art performance. Notably, on our low-level grounding task, Prune4Web dramatically improves accuracy from 46.8% to 88.28%, underscoring its efficacy in real-world web automation.
comment: Paper accepted to AAAI 2026
☆ Do Reasoning Vision-Language Models Inversely Scale in Test-Time Compute? A Distractor-centric Empirical Analysis
How does irrelevant information (i.e., distractors) affect test-time scaling in vision-language models (VLMs)? Prior studies on language models have reported an inverse scaling effect, where textual distractors lead to longer but less effective reasoning. To investigate whether similar phenomena occur in multimodal settings, we introduce Idis (Images with distractors), a visual question-answering dataset that systematically varies distractors along semantic, numerical, and spatial dimensions. Our analyses reveal that visual distractors differ fundamentally from textual ones: although inverse scaling persists, adding visual distractors reduces accuracy without increasing reasoning length. We further show that tracking attribute counts within reasoning traces provides key insights into how distractors, reasoning length, and accuracy interact. Finally, we demonstrate that these trends extend to established visual bias benchmarks such as Waterbirds, and we propose a simple prompting strategy to mitigate bias-driven predictions in reasoning models.
comment: preprint
☆ BanglaASTE: A Novel Framework for Aspect-Sentiment-Opinion Extraction in Bangla E-commerce Reviews Using Ensemble Deep Learning
Aspect-Based Sentiment Analysis (ABSA) has emerged as a critical tool for extracting fine-grained sentiment insights from user-generated content, particularly in e-commerce and social media domains. However, research on Bangla ABSA remains significantly underexplored due to the absence of comprehensive datasets and specialized frameworks for triplet extraction in this language. This paper introduces BanglaASTE, a novel framework for Aspect Sentiment Triplet Extraction (ASTE) that simultaneously identifies aspect terms, opinion expressions, and sentiment polarities from Bangla product reviews. Our contributions include: (1) creation of the first annotated Bangla ASTE dataset containing 3,345 product reviews collected from major e-commerce platforms including Daraz, Facebook, and Rokomari; (2) development of a hybrid classification framework that employs graph-based aspect-opinion matching with semantic similarity techniques; and (3) implementation of an ensemble model combining BanglaBERT contextual embeddings with XGBoost boosting algorithms for enhanced triplet extraction performance. Experimental results demonstrate that our ensemble approach achieves superior performance with 89.9% accuracy and 89.1% F1-score, significantly outperforming baseline models across all evaluation metrics. The framework effectively addresses key challenges in Bangla text processing including informal expressions, spelling variations, and data sparsity. This research advances the state-of-the-art in low-resource language sentiment analysis and provides a scalable solution for Bangla e-commerce analytics applications.
comment: Presented at the 2025 IEEE International Conference on Signal Processing, Information, Communication and Systems (SPICSCON), November 21-22, 2025, University of Rajshahi, Bangladesh. 6 pages, ensemble deep learning, 3,345 annotated Bangla product reviews
☆ Emergent Lexical Semantics in Neural Language Models: Testing Martin's Law on LLM-Generated Text
We present the first systematic investigation of Martin's Law - the empirical relationship between word frequency and polysemy - in text generated by neural language models during training. Using DBSCAN clustering of contextualized embeddings as an operationalization of word senses, we analyze four Pythia models (70M-1B parameters) across 30 training checkpoints. Our results reveal a non-monotonic developmental trajectory: Martin's Law emerges around checkpoint 100, reaches peak correlation (r > 0.6) at checkpoint 104, then degrades by checkpoint 105. Smaller models (70M, 160M) experience catastrophic semantic collapse at late checkpoints, while larger models (410M, 1B) show graceful degradation. The frequency-specificity trade-off remains stable (r $\approx$ -0.3) across all models. These findings suggest that compliance with linguistic regularities in LLM-generated text is not monotonically increasing with training, but instead follows a balanced trajectory with an optimal semantic window. This work establishes a novel methodology for evaluating emergent linguistic structure in neural language models.
comment: paper draft
☆ TALES: A Taxonomy and Analysis of Cultural Representations in LLM-generated Stories
Millions of users across the globe turn to AI chatbots for their creative needs, inviting widespread interest in understanding how such chatbots represent diverse cultures. At the same time, evaluating cultural representations in open-ended tasks remains challenging and underexplored. In this work, we present TALES, an evaluation of cultural misrepresentations in LLM-generated stories for diverse Indian cultural identities. First, we develop TALES-Tax, a taxonomy of cultural misrepresentations by collating insights from participants with lived experiences in India through focus groups (N=9) and individual surveys (N=15). Using TALES-Tax, we evaluate 6 models through a large-scale annotation study spanning 2,925 annotations from 108 annotators with lived cultural experience from across 71 regions in India and 14 languages. Concerningly, we find that 88\% of the generated stories contain one or more cultural inaccuracies, and such errors are more prevalent in mid- and low-resourced languages and stories based in peri-urban regions in India. Lastly, we transform the annotations into TALES-QA, a standalone question bank to evaluate the cultural knowledge of foundational models. Through this evaluation, we surprisingly discover that models often possess the requisite cultural knowledge despite generating stories rife with cultural misrepresentations.
☆ PEFT-Bench: A Parameter-Efficient Fine-Tuning Methods Benchmark
Despite the state-of-the-art performance of Large Language Models (LLMs) achieved on many tasks, their massive scale often leads to high computational and environmental costs, limiting their accessibility. Parameter-efficient fine-tuning (PEFT) methods address this challenge by reducing the number of trainable parameters while maintaining strong downstream performance. Despite the increased development in PEFT methods, current evaluations remain limited (in terms of evaluated models and datasets) and difficult to reproduce. To bridge this gap, we introduce PEFT-Bench, a unified end-to-end benchmark for evaluating diverse PEFT methods on autoregressive LLMs. We demonstrate its usage across 27 NLP datasets and 6 PEFT methods. To account for different PEFT training and inference factors, we also introduce the PEFT Soft Score Penalties (PSCP) metric, which takes trainable parameters, inference speed, and training memory usage into account.
☆ Developing an Open Conversational Speech Corpus for the Isan Language
This paper introduces the development of the first open conversational speech dataset for the Isan language, the most widely spoken regional dialect in Thailand. Unlike existing speech corpora that are primarily based on read or scripted speech, this dataset consists of natural speech, thereby capturing authentic linguistic phenomena such as colloquials, spontaneous prosody, disfluencies, and frequent code-switching with central Thai. A key challenge in building this resource lies in the lack of a standardized orthography for Isan. Current writing practices vary considerably, due to the different lexical tones between Thai and Isan. This variability complicates the design of transcription guidelines and poses questions regarding consistency, usability, and linguistic authenticity. To address these issues, we establish practical transcription protocols that balance the need for representational accuracy with the requirements of computational processing. By releasing this dataset as an open resource, we aim to contribute to inclusive AI development, support research on underrepresented languages, and provide a basis for addressing the linguistic and technical challenges inherent in modeling conversational speech.
comment: 31 pages, in Thai language, 3 figures, 25 tables
☆ Can Finetuing LLMs on Small Human Samples Increase Heterogeneity, Alignment, and Belief-Action Coherence?
There is ongoing debate about whether large language models (LLMs) can serve as substitutes for human participants in survey and experimental research. While recent work in fields such as marketing and psychology has explored the potential of LLM-based simulation, a growing body of evidence cautions against this practice: LLMs often fail to align with real human behavior, exhibiting limited diversity, systematic misalignment for minority subgroups, insufficient within-group variance, and discrepancies between stated beliefs and actions. This study examines an important and distinct question in this domain: whether fine-tuning on a small subset of human survey data, such as that obtainable from a pilot study, can mitigate these issues and yield realistic simulated outcomes. Using a behavioral experiment on information disclosure, we compare human and LLM-generated responses across multiple dimensions, including distributional divergence, subgroup alignment, belief-action coherence, and the recovery of regression coefficients. We find that fine-tuning on small human samples substantially improves heterogeneity, alignment, and belief-action coherence relative to the base model. However, even the best-performing fine-tuned models fail to reproduce the regression coefficients of the original study, suggesting that LLM-generated data remain unsuitable for replacing human participants in formal inferential analyses.
☆ Self-Guided Defense: Adaptive Safety Alignment for Reasoning Models via Synthesized Guidelines
Reasoning models have demonstrated remarkable capabilities in complex reasoning tasks. However, ensuring their safety against adversarial jailbreak prompts remains a critical challenge. Due to the covert and deceptive nature of such prompts, they can often evade built-in safety mechanisms and lead to the generation of harmful content. This underscores the need for an adaptive safety alignment approach that enables models to autonomously reinforce their defenses in response to adversarial inputs. This paper introduces the Synthesized Guideline-based Adaptive Safety Alignment (SGASA) framework, which internalizes model-generated safety guidelines to strengthen models' ability to enhance robustness against harmful adversarial prompts while minimizing unnecessary refusals of benign requests. SGASA consists of two key stages: Data Pre-synthesis, which generates safety guidelines and augmented prompts; and Alignment Fine-tuning, which leverages Supervised Fine-tuning (SFT) and Direct Preference Optimization (DPO) to embed these guidelines into the model. Extensive experiments across multiple datasets demonstrate that SGASA significantly improves model safety, validating its adaptive and scalable effectiveness.
☆ AnchorOPT: Towards Optimizing Dynamic Anchors for Adaptive Prompt Learning
Existing prompt learning methods, which are built upon CLIP models, leverage textual tokens as anchors to guide the learnable soft tokens. This guidance improves CLIP generalizations. However, these anchors-static in both value and position-lack cross-task and stage-adaptive flexibility. To address this limitation, we propose AnchorOPT, a dynamic anchor-based prompt learning framework. Specifically, AnchorOPT introduces dynamism in two key dimensions: (i) anchor values eschew handcrafted explicit textual tokens (e.g., "shape", "color"), instead learning dynamically from task-specific data; and (ii) the positional relationship between anchor and soft tokens is no longer fixed but adaptively optimized via a learnable position matrix conditioned on the training stage and task context. Training occurs in two stages: we first learn the anchor tokens, then freeze and transfer them to the second stage for optimization of soft tokens and the position matrix. Extensive experiments demonstrate that using only a simple learnable anchor and position matrix achieves performance comparable to or exceeding some methods incorporating additional learnable modules or regularization techniques. As a plug-and-play module, AnchorOPT integrates seamlessly into existing frameworks, yielding consistent performance gains across diverse datasets. Code is publicly available at https://github.com/zhengli97/ATPrompt.
comment: Technical Report
☆ How to Correctly Report LLM-as-a-Judge Evaluations
Large language models (LLMs) are increasingly used as evaluators in lieu of humans. While scalable, their judgments are noisy due to imperfect specificity and sensitivity of LLMs, leading to biased accuracy estimates. Although bias-correction methods exist, they are underutilized in LLM research and typically assume exact knowledge of the model's specificity and sensitivity. Furthermore, in general we only have estimates of these values and it is not well known how to properly construct confidence intervals using only estimates. This work presents a simple plug-in framework that corrects such bias and constructs confidence intervals reflecting uncertainty from both test and calibration dataset, enabling practical and statistically sound LLM-based evaluation. Additionally, to reduce uncertainty in the accuracy estimate, we introduce an adaptive algorithm that efficiently allocates calibration sample sizes.
☆ MortgageLLM: Domain-Adaptive Pretraining with Residual Instruction Transfer, Alignment Tuning, and Task-Specific Routing
Large Language Models (LLMs) demonstrate exceptional capabilities across general domains, yet their application to specialized sectors such as mortgage finance requires domain-specific knowledge augmentation while preserving instruction-following fidelity. We present MortgageLLM, a novel domain-specific large language model that addresses this dual challenge. It is developed using a dual-track specialization framework from a single base model (LLaMA-3.1-8B). We opted for this dual-expert approach as a single multi-task model suffers from performance trade-offs, where optimizing for structured tasks (via SFT) degrades conversational fidelity (via DPO). Our dual-track method solves this by creating two specialists, allowing each to be optimally trained for its distinct capability. Our approach applies the instruction residual technique to restore instruction-following capabilities post-domain adaptation without supervised fine-tuning. We contribute: (1) application of this residual technique to the highly specialized mortgage finance domain; (2) a dual-expert architecture combining a conversational Q&A model and a structured task model for classification and summarization; and (3) an intelligent task routing mechanism using few-shot classification performed by one of the expert models itself. We validate our approach on domain-specific benchmarks, where our final model (MLM v2) significantly outperforms the base LLaMA-3.1-8B-Instruct, achieving an LLM-as-a-Judge summarization score of 4.58 (vs. 3.99), a Q&A score of 4.09 (vs. 4.0), and a classification score of 2.6 (vs. 1.2). On semantic similarity, our model achieved a BERTScore of 0.77 for summarization (vs. 0.74), 0.68 for Q&A (vs. 0.58), and 0.75 for classification (vs. 0.73), substantially outperforming baseline approaches.
☆ ASR Error Correction in Low-Resource Burmese with Alignment-Enhanced Transformers using Phonetic Features
This paper investigates sequence-to-sequence Transformer models for automatic speech recognition (ASR) error correction in low-resource Burmese, focusing on different feature integration strategies including IPA and alignment information. To our knowledge, this is the first study addressing ASR error correction specifically for Burmese. We evaluate five ASR backbones and show that our ASR Error Correction (AEC) approaches consistently improve word- and character-level accuracy over baseline outputs. The proposed AEC model, combining IPA and alignment features, reduced the average WER of ASR models from 51.56 to 39.82 before augmentation (and 51.56 to 43.59 after augmentation) and improving chrF++ scores from 0.5864 to 0.627, demonstrating consistent gains over the baseline ASR outputs without AEC. Our results highlight the robustness of AEC and the importance of feature design for improving ASR outputs in low-resource settings.
comment: 7 pages, 2 figures, 7 tables, Accepted to iSAI-NLP 2025
☆ Orthographic Constraint Satisfaction and Human Difficulty Alignment in Large Language Models
Large language models must satisfy hard orthographic constraints during controlled text generation, yet systematic cross-architecture evaluation remains limited. We evaluate 28 configurations spanning three model families (Qwen3, Claude Haiku-4.5, GPT-5-mini) on 58 word puzzles requiring character-level constraint satisfaction. Architectural differences produce substantially larger performance gaps (2.0-2.2x, F1=0.761 vs. 0.343) than parameter scaling within families (83% gain from eightfold scaling), suggesting that constraint satisfaction may require specialized architectural features or training objectives beyond standard language model scaling. Thinking budget sensitivity proves heterogeneous: high-capacity models show strong returns (+0.102 to +0.136 F1), while mid-sized variants saturate or degrade. These patterns are inconsistent with uniform compute benefits. Using difficulty ratings from 10,000 human solvers per puzzle, we establish modest but consistent calibration (r=0.24-0.38) across all families, yet identify systematic failures on common words with unusual orthography ("data", "poop", "loll": 86-95% human success, 89-96% model miss rate). These failures reveal over-reliance on distributional plausibility that penalizes orthographically atypical but constraint-valid patterns, suggesting architectural innovations may be required beyond simply scaling parameters or computational budgets.
☆ Enhancing Burmese News Classification with Kolmogorov-Arnold Network Head Fine-tuning
In low-resource languages like Burmese, classification tasks often fine-tune only the final classification layer, keeping pre-trained encoder weights frozen. While Multi-Layer Perceptrons (MLPs) are commonly used, their fixed non-linearity can limit expressiveness and increase computational cost. This work explores Kolmogorov-Arnold Networks (KANs) as alternative classification heads, evaluating Fourier-based FourierKAN, Spline-based EfficientKAN, and Grid-based FasterKAN-across diverse embeddings including TF-IDF, fastText, and multilingual transformers (mBERT, Distil-mBERT). Experimental results show that KAN-based heads are competitive with or superior to MLPs. EfficientKAN with fastText achieved the highest F1-score (0.928), while FasterKAN offered the best trade-off between speed and accuracy. On transformer embeddings, EfficientKAN matched or slightly outperformed MLPs with mBERT (0.917 F1). These findings highlight KANs as expressive, efficient alternatives to MLPs for low-resource language classification.
comment: 6 pages, 2 figures, 4 tables, Accepted to iSAI-NLP 2025
☆ Context-Aware Pragmatic Metacognitive Prompting for Sarcasm Detection
Detecting sarcasm remains a challenging task in the areas of Natural Language Processing (NLP) despite recent advances in neural network approaches. Currently, Pre-trained Language Models (PLMs) and Large Language Models (LLMs) are the preferred approach for sarcasm detection. However, the complexity of sarcastic text, combined with linguistic diversity and cultural variation across communities, has made the task more difficult even for PLMs and LLMs. Beyond that, those models also exhibit unreliable detection of words or tokens that require extra grounding for analysis. Building on a state-of-the-art prompting method in LLMs for sarcasm detection called Pragmatic Metacognitive Prompting (PMP), we introduce a retrieval-aware approach that incorporates retrieved contextual information for each target text. Our pipeline explores two complementary ways to provide context: adding non-parametric knowledge using web-based retrieval when the model lacks necessary background, and eliciting the model's own internal knowledge for a self-knowledge awareness strategy. We evaluated our approach with three datasets, such as Twitter Indonesia Sarcastic, SemEval-2018 Task 3, and MUStARD. Non-parametric retrieval resulted in a significant 9.87% macro-F1 improvement on Twitter Indonesia Sarcastic compared to the original PMP method. Self-knowledge retrieval improves macro-F1 by 3.29% on Semeval and by 4.08% on MUStARD. These findings highlight the importance of context in enhancing LLMs performance in sarcasm detection task, particularly the involvement of culturally specific slang, references, or unknown terms to the LLMs. Future work will focus on optimizing the retrieval of relevant contextual information and examining how retrieval quality affects performance. The experiment code is available at: https://github.com/wllchrst/sarcasm-detection_pmp_knowledge-base.
☆ Zipf Distributions from Two-Stage Symbolic Processes: Stability Under Stochastic Lexical Filtering
Zipf's law in language lacks a definitive origin, debated across fields. This study explains Zipf-like behavior using geometric mechanisms without linguistic elements. The Full Combinatorial Word Model (FCWM) forms words from a finite alphabet, generating a geometric distribution of word lengths. Interacting exponential forces yield a power-law rank-frequency curve, determined by alphabet size and blank symbol probability. Simulations support predictions, matching English, Russian, and mixed-genre data. The symbolic model suggests Zipf-type laws arise from geometric constraints, not communicative efficiency.
comment: 16 pages
☆ A Unified Understanding of Offline Data Selection and Online Self-refining Generation for Post-training LLMs
Offline data selection and online self-refining generation, which enhance the data quality, are crucial steps in adapting large language models (LLMs) to specific downstream tasks. We tackle offline data selection and online self-refining generations through an optimization perspective. Specifically, bilevel data selection is used for offline data selection with respect to the validation dataset, and we treat online self-refining generation as a model adaptation step of selecting the model trained on current responses that best fits the validation data. Our framework offers a unified understanding of offline data selection and self-refining generation by assigning a learned data weight to each question and response, either explicitly or implicitly. For the first time, we theoretically demonstrate the effectiveness of the bilevel data selection framework and demonstrate its performance gains over unfiltered direct mixing baselines. By combining offline data with validation-weighted online generations, our method enhances fine-tuning performance. Experiments on quality enhancement and safety-aware LLM fine-tuning validate its effectiveness.
☆ Semantic Anchors in In-Context Learning: Why Small LLMs Cannot Flip Their Labels
Can in-context learning (ICL) override pre-trained label semantics, or does it merely refine an existing semantic backbone? We address this question by treating LLMs as prompt-induced classifiers and contrasting their behavior under \emph{natural} demonstrations (with correct labels) and \emph{inverted} demonstrations (systematically flipping label meanings). We decompose ICL behavior into three alignment metrics (truth, prior, and prompt alignment) and introduce a semantic override rate, defined as correctness under flipped semantics. Across eight classification tasks and eight open-source LLMs (1--12B parameters), we find consistent evidence for a semantic anchor view. With natural demonstrations, ICL improves accuracy while maintaining strong prior alignment; most correct predictions coincide with zero-shot behavior, even when the prior is weak. With inverted demonstrations, models cannot learn coherent anti-semantic classifiers: prompt alignment increases only by sacrificing accuracy, and semantic override rates remain exactly zero in our few-shot 1--12B setting. Rather than flexibly remapping label meanings, ICL primarily adjusts how inputs project onto stable semantic directions learned during pre-training, clarifying fundamental limits of few-shot prompting and suggesting that overriding label semantics at these scales requires interventions beyond ICL. All code is available at: https://github.com/AnanthaPadmanaban-KrishnaKumar/semantic-anchors-icl.
comment: 13 pages total (7 pages main text, 3 pages references, 3 pages appendix), 2 figures, 14 tables. Code available at https://github.com/AnanthaPadmanaban-KrishnaKumar/semantic-anchors-icl
☆ Gated KalmaNet: A Fading Memory Layer Through Test-Time Ridge Regression
As efficient alternatives to softmax Attention, linear state-space models (SSMs) achieve constant memory and linear compute, but maintain only a lossy, fading summary of the past, often leading to inferior performance in recall oriented tasks. We propose Gated KalmaNet (GKA), a layer that reduces this gap by accounting for the full past when predicting the next token, while maintaining SSM-style efficiency. GKA achieves this by solving an online ridge regression problem at test time, with constant memory and linear compute cost in the sequence length. Drawing inspiration from the Kalman Filter, we iteratively solve the online ridge regression problem. However, a critical insight is that standard Kalman filter equations are numerically unstable in low-precision environments (like bfloat16) and difficult to parallelize in modern hardware. We address both challenges through two key innovations: (1) an adaptive regularization strategy with input-dependent gating that controls the condition number of the ridge regression, ensuring numerical stability while balancing memory retention. And (2) the use of Chebyshev Iteration instead of other conventional iterative solvers, which we demonstrate to be more stable in low-precision settings. To further improve scalability, we develop a hardware-aware chunk-wise implementation of Chebyshev Iteration along with custom kernels for backpropagating through our adaptive regularization and gating mechanisms. Empirically, GKA shows strong language understanding capabilites on short-context tasks outperforming existing SSM layers (like Mamba2, GLA and Gated DeltaNet). On long-context, GKA excels at real-world RAG and LongQA tasks up to 128k tokens, achieving more than $10$% relative improvement over other fading memory baselines.
comment: 30 pages, 10 figures
☆ TrackList: Tracing Back Query Linguistic Diversity for Head and Tail Knowledge in Open Large Language Models
Large Language Models (LLMs) have proven efficient in giving definition-type answers to user input queries. While for humans giving various types of answers, such as examples and paraphrases, is an easy task, LLMs struggle to provide correct answers for other than definition-type queries. In this study, we evaluated this drop in performance using TrackList, a fine-grained linguistic and statistical analysis pipeline to investigate the impact of the pre-training data on LLMs answers to diverse linguistic queries. We also introduce RefoMed-EN, an English dataset consisting of 6170 human-annotated medical terms alongside their corresponding definitions, denominations, exemplifications, explanations, or paraphrases. We studied whether the high frequency of a concept (head) or low frequency (tail) impacts the language model's performance. We evaluated the quality of the LLM's output using syntactic and semantic similarity metrics, statistical correlations and embeddings. Results showed that the LLM's task performance for definition type questions is the highest, while for the exemplification type it is the lowest. Additionally, we showed that for definition-type questions, large language models are prone to paraphrase more on popular and frequent knowledge and less on tail and technical knowledge, especially in the expert texts.
comment: under review
☆ RosettaSpeech: Zero-Shot Speech-to-Speech Translation from Monolingual Data
The scarcity of parallel speech corpora critically hampers speech-to-speech translation (S2ST), often forcing reliance on complex, multi-stage pipelines. This paper introduces RosettaSpeech, a novel and simplified framework for zero-shot S2ST that is trained on monolingual speech-text data augmented by machine translation supervision. While our method leverages the linguistic knowledge inherent in text-based NMT models, it strictly eliminates the need for parallel speech-to-speech pairs. Our model uniquely uses text as an intermediate bridge during training but functions as a direct, end-to-end speech-to-speech model at inference. This streamlined approach achieves state-of-the-art results on standard benchmarks. For instance, on the CVSS-C test set, RosettaSpeech outperforms leading systems, achieving an ASR-BLEU score of 25.17 for German-to-English and 29.86 for Spanish-to-English-relative gains of over 27% and 14%, respectively. Furthermore, we demonstrate that a single model can deliver strong many-to-one translation performance (FR/ES/DE -> EN). We also provide a foundational analysis of how training data scaling impacts model performance. By prioritizing reliance on abundant parallel text rather than difficult-to-acquire parallel speech, RosettaSpeech offers a scalable path to creating high-quality, speaker-preserving S2ST for a much broader array of languages.
comment: Work in progress
☆ Towards Audio Token Compression in Large Audio Language Models
Large Audio Language Models (LALMs) demonstrate impressive performance across diverse tasks, ranging from speech recognition to general audio understanding. However, their scalability is limited by the quadratic complexity of attention and the high token rates of audio signals. These challenges make it difficult to extend LALMs to long-form audio and to deploy them on resource-constrained platforms such as edge devices. In this paper, we explore techniques such as unsupervised segmentation, uniform average pooling, etc., to reduce the number of audio tokens generated by the LALM's audio encoder but before they are consumed by the LLM decoder. To mitigate potential performance degradation introduced by the compressed representations, we employ low-rank adapters to finetune the model. We evaluate our proposed models on two tasks, automatic speech recognition and speech-to-speech translation tasks, that are dependent on effectively uncovering the underlying lexical content of the input signal and study the effect of downsampling on these tasks. Experimental results show that compressed LALMs can achieve performance closer to frame-level LALMs while reducing the input audio token count upto three times before the LLM backbone.
☆ TrafficLens: Multi-Camera Traffic Video Analysis Using LLMs
Traffic cameras are essential in urban areas, playing a crucial role in intelligent transportation systems. Multiple cameras at intersections enhance law enforcement capabilities, traffic management, and pedestrian safety. However, efficiently managing and analyzing multi-camera feeds poses challenges due to the vast amount of data. Analyzing such huge video data requires advanced analytical tools. While Large Language Models (LLMs) like ChatGPT, equipped with retrieval-augmented generation (RAG) systems, excel in text-based tasks, integrating them into traffic video analysis demands converting video data into text using a Vision-Language Model (VLM), which is time-consuming and delays the timely utilization of traffic videos for generating insights and investigating incidents. To address these challenges, we propose TrafficLens, a tailored algorithm for multi-camera traffic intersections. TrafficLens employs a sequential approach, utilizing overlapping coverage areas of cameras. It iteratively applies VLMs with varying token limits, using previous outputs as prompts for subsequent cameras, enabling rapid generation of detailed textual descriptions while reducing processing time. Additionally, TrafficLens intelligently bypasses redundant VLM invocations through an object-level similarity detector. Experimental results with real-world datasets demonstrate that TrafficLens reduces video-to-text conversion time by up to $4\times$ while maintaining information accuracy.
comment: 2024 IEEE 27th International Conference on Intelligent Transportation Systems (ITSC)
☆ Chatty-KG: A Multi-Agent AI System for On-Demand Conversational Question Answering over Knowledge Graphs
Conversational Question Answering over Knowledge Graphs (KGs) combines the factual grounding of KG-based QA with the interactive nature of dialogue systems. KGs are widely used in enterprise and domain applications to provide structured, evolving, and reliable knowledge. Large language models (LLMs) enable natural and context-aware conversations, but lack direct access to private and dynamic KGs. Retrieval-augmented generation (RAG) systems can retrieve graph content but often serialize structure, struggle with multi-turn context, and require heavy indexing. Traditional KGQA systems preserve structure but typically support only single-turn QA, incur high latency, and struggle with coreference and context tracking. To address these limitations, we propose Chatty-KG, a modular multi-agent system for conversational QA over KGs. Chatty-KG combines RAG-style retrieval with structured execution by generating SPARQL queries through task-specialized LLM agents. These agents collaborate for contextual interpretation, dialogue tracking, entity and relation linking, and efficient query planning, enabling accurate and low-latency translation of natural questions into executable queries. Experiments on large and diverse KGs show that Chatty-KG significantly outperforms state-of-the-art baselines in both single-turn and multi-turn settings, achieving higher F1 and P@1 scores. Its modular design preserves dialogue coherence and supports evolving KGs without fine-tuning or pre-processing. Evaluations with commercial (e.g., GPT-4o, Gemini-2.0) and open-weight (e.g., Phi-4, Gemma 3) LLMs confirm broad compatibility and stable performance. Overall, Chatty-KG unifies conversational flexibility with structured KG grounding, offering a scalable and extensible approach for reliable multi-turn KGQA.
comment: This paper is accepted to SIGMOD 2026
☆ ENACT: Evaluating Embodied Cognition with World Modeling of Egocentric Interaction
Embodied cognition argues that intelligence arises from sensorimotor interaction rather than passive observation. It raises an intriguing question: do modern vision-language models (VLMs), trained largely in a disembodied manner, exhibit signs of embodied cognition? We introduce ENACT, a benchmark that casts evaluation of embodied cognition as world modeling from egocentric interaction in a visual question answering (VQA) format. Framed as a partially observable Markov decision process (POMDP) whose actions are scene graph changes, ENACT comprises two complementary sequence reordering tasks: forward world modeling (reorder shuffled observations given actions) and inverse world modeling (reorder shuffled actions given observations). While conceptually simple, solving these tasks implicitly demands capabilities central to embodied cognition-affordance recognition, action-effect reasoning, embodied awareness, and interactive, long-horizon memory from partially observable egocentric input, while avoiding low-level image synthesis that could confound the evaluation. We provide a scalable pipeline that synthesizes QA pairs from robotics simulation (BEHAVIOR) and evaluates models on 8,972 QA pairs spanning long-horizon home-scale activities. Experiments reveal a performance gap between frontier VLMs and humans that widens with interaction horizon. Models consistently perform better on the inverse task than the forward one and exhibit anthropocentric biases, including a preference for right-handed actions and degradation when camera intrinsics or viewpoints deviate from human vision. Website at https://enact-embodied-cognition.github.io/.
comment: Preprint version
♻ ☆ AdvancedIF: Rubric-Based Benchmarking and Reinforcement Learning for Advancing LLM Instruction Following
Recent progress in large language models (LLMs) has led to impressive performance on a range of tasks, yet advanced instruction following (IF)-especially for complex, multi-turn, and system-prompted instructions-remains a significant challenge. Rigorous evaluation and effective training for such capabilities are hindered by the lack of high-quality, human-annotated benchmarks and reliable, interpretable reward signals. In this work, we introduce AdvancedIF (we will release this benchmark soon), a comprehensive benchmark featuring over 1,600 prompts and expert-curated rubrics that assess LLMs ability to follow complex, multi-turn, and system-level instructions. We further propose RIFL (Rubric-based Instruction-Following Learning), a novel post-training pipeline that leverages rubric generation, a finetuned rubric verifier, and reward shaping to enable effective reinforcement learning for instruction following. Extensive experiments demonstrate that RIFL substantially improves the instruction-following abilities of LLMs, achieving a 6.7% absolute gain on AdvancedIF and strong results on public benchmarks. Our ablation studies confirm the effectiveness of each component in RIFL. This work establishes rubrics as a powerful tool for both training and evaluating advanced IF in LLMs, paving the way for more capable and reliable AI systems.
♻ ☆ TimeViper: A Hybrid Mamba-Transformer Vision-Language Model for Efficient Long Video Understanding
We introduce TimeViper, a hybrid vision-language model designed to tackle challenges of long video understanding. Processing long videos demands both an efficient model architecture and an effective mechanism for handling extended temporal contexts. To this end, TimeViper adopts a hybrid Mamba-Transformer backbone that combines the efficiency of state-space models with the expressivity of attention mechanisms. Through this hybrid design, we reveal the vision-to-text information aggregation phenomenon, where information progressively flows from vision tokens to text tokens across increasing LLM depth, resulting in severe vision token redundancy. Motivated by this observation, we propose TransV, a token information transfer module that transfers and compresses vision tokens into instruction tokens while maintaining multimodal understanding capabilities. This design enables TimeViper to process hour-long videos exceeding 10,000 frames. Extensive experiments across multiple benchmarks demonstrate that TimeViper competes with state-of-the-art models while extending frame numbers. We further analyze attention behaviors of both Mamba and Transformer layers, offering new insights into hybrid model interpretability. This work represents an initial step towards developing, interpreting, and compressing hybrid Mamba-Transformer architectures.
comment: Project page: https://xuboshen.github.io/TimeViper; Code: https://github.com/xiaomi-research/timeviper
♻ ☆ Leveraging Test Driven Development with Large Language Models for Reliable and Verifiable Spreadsheet Code Generation: A Research Framework
Large Language Models (LLMs), such as ChatGPT, are increasingly leveraged for generating both traditional software code and spreadsheet logic. Despite their impressive generative capabilities, these models frequently exhibit critical issues such as hallucinations, subtle logical inconsistencies, and syntactic errors, risks particularly acute in high stakes domains like financial modelling and scientific computations, where accuracy and reliability are paramount. This position paper proposes a structured research framework that integrates the proven software engineering practice of Test-Driven Development (TDD) with Large Language Model (LLM) driven generation to enhance the correctness of, reliability of, and user confidence in generated outputs. We hypothesise that a "test first" methodology provides both technical constraints and cognitive scaffolding, guiding LLM outputs towards more accurate, verifiable, and comprehensible solutions. Our framework, applicable across diverse programming contexts, from spreadsheet formula generation to scripting languages such as Python and strongly typed languages like Rust, includes an explicitly outlined experimental design with clearly defined participant groups, evaluation metrics, and illustrative TDD based prompting examples. By emphasising test driven thinking, we aim to improve computational thinking, prompt engineering skills, and user engagement, particularly benefiting spreadsheet users who often lack formal programming training yet face serious consequences from logical errors. We invite collaboration to refine and empirically evaluate this approach, ultimately aiming to establish responsible and reliable LLM integration in both educational and professional development practices.
comment: 16 pages
♻ ☆ BengaliFig: A Low-Resource Challenge for Figurative and Culturally Grounded Reasoning in Bengali
Large language models excel on broad multilingual benchmarks but remain to be evaluated extensively in figurative and culturally grounded reasoning, especially in low-resource contexts. We present BengaliFig, a compact yet richly annotated challenge set that targets this gap in Bengali, a widely spoken low-resourced language. The dataset contains 435 unique riddles drawn from Bengali oral and literary traditions. Each item is annotated along five orthogonal dimensions capturing reasoning type, trap type, cultural depth, answer category, and difficulty, and is automatically converted to multiple-choice format through a constraint-aware, AI-assisted pipeline. We evaluate eight frontier LLMs from major providers under zero-shot and few-shot chain-of-thought prompting, revealing consistent weaknesses in metaphorical and culturally specific reasoning. BengaliFig thus contributes both a diagnostic probe for evaluating LLM robustness in low-resource cultural contexts and a step toward inclusive and heritage-aware NLP evaluation.
♻ ☆ Mem-PAL: Towards Memory-based Personalized Dialogue Assistants for Long-term User-Agent Interaction AAAI 2026
With the rise of smart personal devices, service-oriented human-agent interactions have become increasingly prevalent. This trend highlights the need for personalized dialogue assistants that can understand user-specific traits to accurately interpret requirements and tailor responses to individual preferences. However, existing approaches often overlook the complexities of long-term interactions and fail to capture users' subjective characteristics. To address these gaps, we present PAL-Bench, a new benchmark designed to evaluate the personalization capabilities of service-oriented assistants in long-term user-agent interactions. In the absence of available real-world data, we develop a multi-step LLM-based synthesis pipeline, which is further verified and refined by human annotators. This process yields PAL-Set, the first Chinese dataset comprising multi-session user logs and dialogue histories, which serves as the foundation for PAL-Bench. Furthermore, to improve personalized service-oriented interactions, we propose H$^2$Memory, a hierarchical and heterogeneous memory framework that incorporates retrieval-augmented generation to improve personalized response generation. Comprehensive experiments on both our PAL-Bench and an external dataset demonstrate the effectiveness of the proposed memory framework.
comment: Accepted by AAAI 2026 (Oral)
♻ ☆ Co-NAML-LSTUR: A Combined Model with Attentive Multi-View Learning and Long- and Short-term User Representations for News Recommendation
News recommendation systems play a critical role in alleviating information overload by delivering personalized content. A key challenge lies in jointly modeling multi-view representations of news articles and capturing the dynamic, dual-scale nature of user interests-encompassing both short- and long-term preferences. Prior methods often rely on single-view features or insufficiently model user behavior across time. In this work, we introduce Co-NAML-LSTUR, a hybrid news recommendation framework that integrates NAML for attentive multi-view news encoding and LSTUR for hierarchical user modeling, designed for training on limited data resources. Our approach leverages BERT-based embeddings to enhance semantic representation. We evaluate Co-NAML-LSTUR on two widely used benchmarks, MIND-small and MIND-large. Results show that our model significantly outperforms strong baselines, achieving improvements over NRMS by 1.55% in AUC and 1.15% in MRR, and over NAML by 2.45% in AUC and 1.71% in MRR. These findings highlight the effectiveness of our efficiency-focused hybrid model, which combines multi-view news modeling with dual-scale user representations for practical, resource-limited resources rather than a claim to absolute state-of-the-art (SOTA). The implementation of our model is publicly available at https://github.com/MinhNguyenDS/Co-NAML-LSTUR
comment: The 18th International Conference on Multi-disciplinary Trends in Artificial Intelligence (MIWAI 2025)
♻ ☆ Yesterday's News: Benchmarking Multi-Dimensional Out-of-Distribution Generalization of Misinformation Detection Models
This article introduces misinfo-general, a benchmark dataset for evaluating misinformation models' ability to perform out-of-distribution generalization. Misinformation changes rapidly, much more quickly than moderators can annotate at scale, resulting in a shift between the training and inference data distributions. As a result, misinformation detectors need to be able to perform out-of-distribution generalization, an attribute they currently lack. Our benchmark uses distant labelling to enable simulating covariate shifts in misinformation content. We identify time, event, topic, publisher, political bias, misinformation type as important axes for generalization, and we evaluate a common class of baseline models on each. Using article metadata, we show how this model fails desiderata, which is not necessarily obvious from classification metrics. Finally, we analyze properties of the data to ensure limited presence of modelling shortcuts. We make the dataset and accompanying code publicly available: https://github.com/ioverho/misinfo-general
comment: Accepted for publication in Computational Linguistics on November 23, 2025. This is the pre-MIT Press publication version
♻ ☆ BoundingDocs: a Unified Dataset for Document Question Answering with Spatial Annotations
We present a unified dataset for document Question-Answering (QA), which is obtained combining several public datasets related to Document AI and visually rich document understanding (VRDU). Our main contribution is twofold: on the one hand we reformulate existing Document AI tasks, such as Information Extraction (IE), into a Question-Answering task, making it a suitable resource for training and evaluating Large Language Models; on the other hand, we release the OCR of all the documents and include the exact position of the answer to be found in the document image as a bounding box. Using this dataset, we explore the impact of different prompting techniques (that might include bounding box information) on the performance of open-weight models, identifying the most effective approaches for document comprehension.
♻ ☆ Improved Visually Prompted Keyword Localisation in Real Low-Resource Settings
Given an image query, visually prompted keyword localisation (VPKL) aims to find occurrences of the depicted word in a speech collection. This can be useful when transcriptions are not available for a low-resource language (e.g. if it is unwritten). Previous work showed that VPKL can be performed with a visually grounded speech model trained on paired images and unlabelled speech. But all experiments were done on English. Moreover, transcriptions were used to get positive and negative pairs for the contrastive loss. This paper introduces a few-shot learning scheme to mine pairs automatically without transcriptions. On English, this results in only a small drop in performance. We also - for the first time - consider VPKL on a real low-resource language, Yoruba. While scores are reasonable, here we see a bigger drop in performance compared to using ground truth pairs because the mining is less accurate in Yoruba.
comment: Accepted at SpeD 2025
♻ ☆ Scaling Efficient LLMs
Recent LLMs have hundreds of billions of parameters consuming vast resources. Furthermore, the so called "AI scaling law" for transformers suggests that the number of parameters must scale linearly with the size of the data. In response, we inquire into efficient LLMs, i.e. those with the fewest parameters that achieve the desired accuracy on a training corpus. Specifically, by comparing theoretical and empirical estimates of the Kullback-Leibler divergence, we derive a natural AI scaling law that the number of parameters in an efficient LLM scales as $D^γ$ where $D$ is the size of the training data and $ γ\in [0.44, 0.72]$, suggesting the existence of more efficient architectures. Against this backdrop, we propose recurrent transformers, combining the efficacy of transformers with the efficiency of recurrent networks, progressively applying a single transformer layer to a fixed-width sliding window across the input sequence. Recurrent transformers (a) run in linear time in the sequence length, (b) are memory-efficient and amenable to parallel processing in large batches, (c) learn to forget history for language tasks, or accumulate history for long range tasks like copy and selective copy, and (d) are amenable to curriculum training to overcome vanishing gradients. In our experiments, we find that recurrent transformers perform favorably on benchmark tests.
♻ ☆ Step-Audio-R1 Technical Report
Recent advances in reasoning models have demonstrated remarkable success in text and vision domains through extended chain-of-thought deliberation. However, a perplexing phenomenon persists in audio language models: they consistently perform better with minimal or no reasoning, raising a fundamental question - can audio intelligence truly benefit from deliberate thinking? We introduce Step-Audio-R1, the first audio reasoning model that successfully unlocks reasoning capabilities in the audio domain. Through our proposed Modality-Grounded Reasoning Distillation (MGRD) framework, Step-Audio-R1 learns to generate audio-relevant reasoning chains that genuinely ground themselves in acoustic features rather than hallucinating disconnected deliberations. Our model exhibits strong audio reasoning capabilities, surpassing Gemini 2.5 Pro and achieving performance comparable to the state-of-the-art Gemini 3 Pro across comprehensive audio understanding and reasoning benchmarks spanning speech, environmental sounds, and music. These results demonstrate that reasoning is a transferable capability across modalities when appropriately anchored, transforming extended deliberation from a liability into a powerful asset for audio intelligence. By establishing the first successful audio reasoning model, Step-Audio-R1 opens new pathways toward building truly multimodal reasoning systems that think deeply across all sensory modalities.
comment: 22 pages, 5 figures. Technical Report
DR Tulu: Reinforcement Learning with Evolving Rubrics for Deep Research
Deep research models perform multi-step research to produce long-form, well-attributed answers. However, most open deep research models are trained on easily verifiable short-form QA tasks via reinforcement learning with verifiable rewards (RLVR), which does not extend to realistic long-form tasks. We address this with Reinforcement Learning with Evolving Rubrics (RLER), in which we construct and maintain rubrics that co-evolve with the policy model during training; this allows the rubrics to incorporate information that the model has newly explored and to provide discriminative, on-policy feedback. Using RLER, we develop Deep Research Tulu (DR Tulu-8B), the first open model that is directly trained for open-ended, long-form deep research. Across four long-form deep research benchmarks in science, healthcare and general domains, DR Tulu substantially outperforms existing open deep research models, and matches or exceeds proprietary deep research systems, while being significantly smaller and cheaper per query. To facilitate future research, we release all data, models, and code, including our new MCP-based agent infrastructure for deep research systems.
♻ ☆ AICC: Parse HTML Finer, Make Models Better -- A 7.3T AI-Ready Corpus Built by a Model-Based HTML Parser
While web data quality is crucial for large language models, most curation efforts focus on filtering and deduplication,treating HTML-to-text extraction as a fixed pre-processing step. Existing web corpora rely on heuristic-based extractors like Trafilatura, which struggle to preserve document structure and frequently corrupt structured elements such as formulas, codes, and tables. We hypothesize that improving extraction quality can be as impactful as aggressive filtering strategies for downstream performance. We introduce MinerU-HTML, a novel extraction pipeline that reformulates content extraction as a sequence labeling problem solved by a 0.6B-parameter language model. Unlike text-density heuristics, MinerU-HTML leverages semantic understanding and employs a two-stage formatting pipeline that explicitly categorizes semantic elements before converting to Markdown. Crucially, its model-based approach is inherently scalable, whereas heuristic methods offer limited improvement pathways. On MainWebBench, our benchmark of 7,887 annotated web pages, MinerU-HTML achieves 81.8\% ROUGE-N F1 compared to Trafilatura's 63.6\%, with exceptional structured element preservation (90.9\% for code blocks, 94.0\% for formulas). Using MinerU-HTML, we construct AICC (AI-ready Common Crawl), a 7.3-trillion token multilingual corpus from two Common Crawl snapshots. In controlled pretraining experiments where AICC and Trafilatura-extracted TfCC undergo identical filtering, models trained on AICC (62B tokens) achieve 50.8\% average accuracy across 13 benchmarks, outperforming TfCC by 1.08pp-providing direct evidence that extraction quality significantly impacts model capabilities. AICC also surpasses RefinedWeb and FineWeb on key benchmarks. We publicly release MainWebBench, MinerU-HTML, and AICC, demonstrating that HTML extraction is a critical, often underestimated component of web corpus construction.
♻ ☆ Think Visually, Reason Textually: Vision-Language Synergy in ARC
Abstract reasoning from minimal examples remains a core unsolved problem for frontier foundation models such as GPT-5 and Grok 4. These models still fail to infer structured transformation rules from a handful of examples, which is a key hallmark of human intelligence. The Abstraction and Reasoning Corpus for Artificial General Intelligence (ARC-AGI) provides a rigorous testbed for this capability, demanding conceptual rule induction and transfer to novel tasks. Most existing methods treat ARC-AGI as a purely textual reasoning task, overlooking the fact that humans rely heavily on visual abstraction when solving such puzzles. However, our pilot experiments reveal a paradox: naively rendering ARC-AGI grids as images degrades performance due to imprecise rule execution. This leads to our central hypothesis that vision and language possess complementary strengths across distinct reasoning stages: vision supports global pattern abstraction and verification, whereas language specializes in symbolic rule formulation and precise execution. Building on this insight, we introduce two synergistic strategies: (1) Vision-Language Synergy Reasoning (VLSR), which decomposes ARC-AGI into modality-aligned subtasks; and (2) Modality-Switch Self-Correction (MSSC), which leverages vision to verify text-based reasoning for intrinsic error correction. Extensive experiments demonstrate that our approach yields up to a 4.33\% improvement over text-only baselines across diverse flagship models and multiple ARC-AGI tasks. Our findings suggest that unifying visual abstraction with linguistic reasoning is a crucial step toward achieving generalizable, human-like intelligence in future foundation models. Source code is released at https://github.com/InternLM/ARC-VL.
♻ ☆ Reasoning Transfer for an Extremely Low-Resource and Endangered Language: Bridging Languages Through Sample-Efficient Language Understanding
Recent advances have enabled Large Language Models (LLMs) to tackle reasoning tasks by generating chain-of-thought (CoT) rationales, yet these gains have largely applied to high-resource languages, leaving low-resource languages behind. In this work, we first investigate CoT techniques in extremely low-resource scenarios through previous prompting, model-editing, and fine-tuning approaches. We introduce English-Pivoted CoT Training, leveraging the insight that LLMs internally operate in a latent space aligned toward the dominant language. Given input in a low-resource language, we perform supervised fine-tuning to generate CoT in English and output the final response in the target language. Across mathematical reasoning benchmarks, our approach outperforms other baselines with up to 28.33% improvement in low-resource scenarios. Our analysis and additional experiments, including Mixed-Language CoT and Two-Stage Training, show that explicitly separating language understanding from reasoning enhances cross-lingual reasoning abilities. To facilitate future work, we also release \emph{LC2024}, the first benchmark for mathematical tasks in Irish, an extremely low-resource and endangered language. Our results and resources highlight a practical pathway to multilingual reasoning without extensive retraining in every extremely low-resource language, despite data scarcity.
♻ ☆ Characterizing Pattern Matching and Its Limits on Compositional Task Structures
Despite impressive capabilities, LLMs' successes often rely on pattern-matching behaviors, yet these are also linked to OOD generalization failures in compositional tasks. However, behavioral studies commonly employ task setups that allow multiple generalization sources (e.g., algebraic invariances, structural repetition), obscuring a precise and testable account of how well LLMs perform generalization through pattern matching and their limitations. To address this ambiguity, we first formalize pattern matching as functional equivalence, i.e., identifying pairs of subsequences of inputs that consistently lead to identical results when the rest of the input is held constant. Then, we systematically study how decoder-only Transformer and Mamba behave in controlled tasks with compositional structures that isolate this mechanism. Our formalism yields predictive and quantitative insights: (1) Instance-wise success of pattern matching is well predicted by the number of contexts witnessing the relevant functional equivalence. (2) We prove a tight sample complexity bound of learning a two-hop structure by identifying the exponent of the data scaling law for perfect in-domain generalization. Our empirical results align with the theoretical prediction, under 20x parameter scaling and across architectures. (3) Path ambiguity is a structural barrier: when a variable influences the output via multiple paths, models fail to form unified intermediate state representations, impairing accuracy and interpretability. (4) Chain-of-Thought reduces data requirements yet does not resolve path ambiguity. Hence, we provide a predictive, falsifiable boundary for pattern matching and a foundational diagnostic for disentangling mixed generalization mechanisms.
♻ ☆ LightMem: Lightweight and Efficient Memory-Augmented Generation
Despite their remarkable capabilities, Large Language Models (LLMs) struggle to effectively leverage historical interaction information in dynamic and complex environments. Memory systems enable LLMs to move beyond stateless interactions by introducing persistent information storage, retrieval, and utilization mechanisms. However, existing memory systems often introduce substantial time and computational overhead. To this end, we introduce a new memory system called LightMem, which strikes a balance between the performance and efficiency of memory systems. Inspired by the Atkinson-Shiffrin model of human memory, LightMem organizes memory into three complementary stages. First, cognition-inspired sensory memory rapidly filters irrelevant information through lightweight compression and groups information according to their topics. Next, topic-aware short-term memory consolidates these topic-based groups, organizing and summarizing content for more structured access. Finally, long-term memory with sleep-time update employs an offline procedure that decouples consolidation from online inference. On LongMemEval and LoCoMo, using GPT and Qwen backbones, LightMem consistently surpasses strong baselines, improving QA accuracy by up to 7.7% / 29.3%, reducing total token usage by up to 38x / 20.9x and API calls by up to 30x / 55.5x, while purely online test-time costs are even lower, achieving up to 106x / 117x token reduction and 159x / 310x fewer API calls. The code is available at https://github.com/zjunlp/LightMem.
comment: Work in progress
♻ ☆ A Systematic Analysis of Large Language Models with RAG-enabled Dynamic Prompting for Medical Error Detection and Correction
Objective: Clinical documentation contains factual, diagnostic, and management errors that can compromise patient safety. Large language models (LLMs) may help detect and correct such errors, but their behavior under different prompting strategies remains unclear. We evaluate zero-shot prompting, static prompting with random exemplars (SPR), and retrieval-augmented dynamic prompting (RDP) for three subtasks of medical error processing: error flag detection, error sentence detection, and error correction. Methods: Using the MEDEC dataset, we evaluated nine instruction-tuned LLMs (GPT, Claude, Gemini, and OpenAI o-series models). We measured performance using accuracy, recall, false-positive rate (FPR), and an aggregate score of ROUGE-1, BLEURT, and BERTScore for error correction. We also analyzed example outputs to identify failure modes and differences between LLM and clinician reasoning. Results: Zero-shot prompting showed low recall in both detection tasks, often missing abbreviation-heavy or atypical errors. SPR improved recall but increased FPR. Across all nine LLMs, RDP reduced FPR by about 15 percent, improved recall by 5 to 10 percent in error sentence detection, and generated more contextually accurate corrections. Conclusion: Across diverse LLMs, RDP outperforms zero-shot and SPR prompting. Using retrieved exemplars improves detection accuracy, reduces false positives, and enhances the reliability of medical error correction.
♻ ☆ Mechanism of Task-oriented Information Removal in In-context Learning
In-context Learning (ICL) is an emerging few-shot learning paradigm based on modern Language Models (LMs), yet its inner mechanism remains unclear. In this paper, we investigate the mechanism through a novel perspective of information removal. Specifically, we demonstrate that in the zero-shot scenario, LMs encode queries into non-selective representations in hidden states containing information for all possible tasks, leading to arbitrary outputs without focusing on the intended task, resulting in near-zero accuracy. Meanwhile, we find that selectively removing specific information from hidden states by a low-rank filter effectively steers LMs toward the intended task. Building on these findings, by measuring the hidden states on carefully designed metrics, we observe that few-shot ICL effectively simulates such task-oriented information removal processes, selectively removing the redundant information from entangled non-selective representations, and improving the output based on the demonstrations, which constitutes a key mechanism underlying ICL. Moreover, we identify essential attention heads inducing the removal operation, termed Denoising Heads, which enables the ablation experiments blocking the information removal operation from the inference, where the ICL accuracy significantly degrades, especially when the correct label is absent from the few-shot demonstrations, confirming both the critical role of the information removal mechanism and denoising heads.
comment: 87 pages, 90 figures, 7 tables
♻ ☆ UniChange: Unifying Change Detection with Multimodal Large Language Model
Change detection (CD) is a fundamental task for monitoring and analyzing land cover dynamics. While recent high performance models and high quality datasets have significantly advanced the field, a critical limitation persists. Current models typically acquire limited knowledge from single-type annotated data and cannot concurrently leverage diverse binary change detection (BCD) and semantic change detection (SCD) datasets. This constraint leads to poor generalization and limited versatility. The recent advancements in Multimodal Large Language Models (MLLMs) introduce new possibilities for a unified CD framework. We leverage the language priors and unification capabilities of MLLMs to develop UniChange, the first MLLM-based unified change detection model. UniChange integrates generative language abilities with specialized CD functionalities. Our model successfully unifies both BCD and SCD tasks through the introduction of three special tokens: [T1], [T2], and [CHANGE]. Furthermore, UniChange utilizes text prompts to guide the identification of change categories, eliminating the reliance on predefined classification heads. This design allows UniChange to effectively acquire knowledge from multi-source datasets, even when their class definitions conflict. Experiments on four public benchmarks (WHU-CD, S2Looking, LEVIR-CD+, and SECOND) demonstrate SOTA performance, achieving IoU scores of 90.41, 53.04, 78.87, and 57.62, respectively, surpassing all previous methods. The code is available at https://github.com/Erxucomeon/UniChange.
♻ ☆ Prompt-R1: Collaborative Automatic Prompting Framework via End-to-end Reinforcement Learning
Recently, advanced large language models (LLMs) have emerged at an increasingly rapid pace. However, when faced with complex problems, most users are often unable to provide accurate and effective prompts to interact with LLMs, thus limiting the performance of LLMs. To address this challenge, we propose Prompt-R1, an end-to-end reinforcement learning framework that uses a small-scale LLM to collaborate with large-scale LLMs, replacing user interaction to solve problems better. This collaboration is cast as a multi-turn prompt interaction, where the small-scale LLM thinks and generates prompts, and the large-scale LLM performs complex reasoning. A dual-constrained reward is designed to optimize for correctness, generation quality, and reasoning accuracy. Prompt-R1 provides a plug-and-play framework that supports both inference and training with various large-scale LLMs. Experiments on multiple public datasets show that Prompt-R1 significantly outperforms baseline models across tasks. Our code is publicly available at https://github.com/QwenQKing/Prompt-R1.
♻ ☆ The Distribution of Dependency Distance and Hierarchical Distance in Contemporary Written Japanese and Its Influencing Factors
To explore the relationship between dependency distance (DD) and hierarchical distance (HD) in Japanese, we compared the probability distributions of DD and HD with and without sentence length fixed, and analyzed the changes in mean dependency distance (MDD) and mean hierarchical distance (MHD) as sentence length increases, along with their correlation coefficient based on the Balanced Corpus of Contemporary Written Japanese. It was found that the valency of the predicates is the underlying factor behind the trade-off relation between MDD and MHD in Japanese. Native speakers of Japanese regulate the linear complexity and hierarchical complexity through the valency of the predicates, and the relative sizes of MDD and MHD depend on whether the threshold of valency has been reached. Apart from the cognitive load, the valency of the predicates also affects the probability distributions of DD and HD. The effect of the valency of the predicates on the distribution of HD is greater than on that of DD, which leads to differences in their probability distributions and causes the mean of MDD to be lower than that of MHD.
comment: This paper has been accepted by the 13th International Quantitative Linguistics Conference QUALICO 2025
♻ ☆ UITron-Speech: Towards Automated GUI Agents Based on Speech Instructions
Autonomous agents for Graphical User Interfaces (GUIs) are revolutionizing human-computer interaction, yet their reliance on text-based instructions imposes limitations on accessibility and convenience, particularly in hands-free scenarios. To address this issue, we propose replacing text with speech as the instruction input modality for GUI agents, and introduce UITron-Speech, which is the first end-to-end GUI agent capable of directly processing speech instructions and on-device screenshots to predict user actions. To tackle the problem of data scarcity, we synthesize high-quality speech instruction datasets using a random-speaker text-to-speech model. Additionally, we design a mixed-modality training strategy to mitigate the inherent modality imbalance in pre-trained foundation models. Furthermore, we conduct a statistical analysis of the distribution of GUI grounding prediction errors and propose a training-free two-step grounding refinement method to alleviate minor localization deviations. Extensive experiments on multiple benchmarks demonstrate that UITron-Speech achieves robust performance and superior adaptability, underscoring the feasibility and potential of speech-driven GUI agents for more accessible and intelligent human-computer interaction. Our code and datasets are available at https://github.com/UITron-hub/UITron-Speech.
♻ ☆ Federated Large Language Models: Current Progress and Future Directions
Large language models are rapidly gaining popularity and have been widely adopted in real-world applications. While the quality of training data is essential, privacy concerns arise during data collection. Federated learning offers a solution by allowing multiple clients to collaboratively train LLMs without sharing local data. However, FL introduces new challenges, such as model convergence issues due to heterogeneous data and high communication costs. A comprehensive study is required to address these challenges and guide future research. This paper surveys Federated learning for LLMs (FedLLM), highlighting recent advances and future directions. We focus on two key aspects: fine-tuning and prompt learning in a federated setting, discussing existing work and associated research challenges. We finally propose potential directions for federated LLMs, including pre-training, federated agents, and LLMs for federated learning.
♻ ☆ AutoDiscovery: Open-ended Scientific Discovery via Bayesian Surprise NeurIPS 2025
The promise of autonomous scientific discovery (ASD) hinges not only on answering questions, but also on knowing which questions to ask. Most recent works in ASD explore the use of large language models (LLMs) in goal-driven settings, relying on human-specified research questions to guide hypothesis generation. However, scientific discovery may be accelerated further by allowing the AI system to drive exploration by its own criteria. The few existing approaches in open-ended ASD select hypotheses based on diversity heuristics or subjective proxies for human interestingness, but the former struggles to meaningfully navigate the typically vast hypothesis space, and the latter suffers from imprecise definitions. This paper presents AutoDiscovery -- a method for open-ended ASD that instead drives scientific exploration using Bayesian surprise. Here, we quantify the epistemic shift from the LLM's prior beliefs about a hypothesis to its posterior beliefs after gathering experimental results. To efficiently explore the space of nested hypotheses, our method employs a Monte Carlo tree search (MCTS) strategy with progressive widening using surprisal as the reward function. We evaluate AutoDiscovery in the setting of data-driven discovery across 21 real-world datasets spanning domains such as biology, economics, finance, and behavioral science. Our results demonstrate that under a fixed budget, AutoDiscovery substantially outperforms competitors by producing 5-29% more discoveries deemed surprising by the LLM. Our human evaluation further reveals that two-thirds of discoveries made by our system are surprising to domain experts as well, suggesting this is an important step towards building open-ended ASD systems.
comment: Accepted to NeurIPS 2025; https://neurips.cc/virtual/2025/loc/san-diego/poster/116398
♻ ☆ Meursault as a Data Point
In an era dominated by datafication, the reduction of human experiences to quantifiable metrics raises profound philosophical and ethical questions. This paper explores these issues through the lens of Meursault, the protagonist of Albert Camus' The Stranger, whose emotionally detached existence epitomizes the existential concept of absurdity. Using natural language processing (NLP) techniques including emotion detection (BERT), sentiment analysis (VADER), and named entity recognition (spaCy)-this study quantifies key events and behaviors in Meursault's life. Our analysis reveals the inherent limitations of applying algorithmic models to complex human experiences, particularly those rooted in existential alienation and moral ambiguity. By examining how modern AI tools misinterpret Meursault's actions and emotions, this research underscores the broader ethical dilemmas of reducing nuanced human narratives to data points, challenging the foundational assumptions of our data-driven society. The findings presented in this paper serve as a critique of the increasing reliance on data-driven narratives and advocate for incorporating humanistic values in artificial intelligence.
comment: 7 pages, 9 figures, 4 tables
♻ ☆ Enhancing Large Language Models for Detecting Mental Manipulation via Annotation-Free Data Augmentation and Anti-Curriculum Distillation
Mental manipulation is a subtle yet pervasive form of psychological abuse that poses serious threats to mental health. Nevertheless, detecting mental manipulation remains a largely underexplored research problem. The field faces three major challenges: (i) insufficient and hard-to-obtain training data; (ii) the covert nature of mental manipulation, which hinders detection; and (iii) the lack of real-world datasets. To address these challenges, we propose MentalMAC, a novel framework that enhances large language models' ability to detect elements of mental manipulation in multi-turn dialogue. Our approach consists of three key components: EvoSA, an annotation-free data augmentation method based on evolutionary operations and speech act theory; teacher-model-generated multi-task supervision; and progressive task-level anti-curriculum distillation. We then constructed the ReaMent dataset, comprising 5,000 real-world dialogue samples, utilizing MentalMAC-distilled models to aid in human annotation. Vast experiments show that MentalMAC achieves up to 25.9% improvement in F1mac and 8.1% in accuracy over the best-performing baseline, outperforming commercial LLMs such as GPT-4 and Claude-3.5-Sonnet. Warning: This paper contains content that may be offensive to the reader.
comment: Preprint
♻ ☆ CAPability: A Comprehensive Visual Caption Benchmark for Evaluating Both Correctness and Thoroughness NeurIPS 2025
Visual captioning benchmarks have become outdated with the emergence of modern multimodal large language models (MLLMs), as the brief ground-truth sentences and traditional metrics fail to assess detailed captions effectively. While recent benchmarks attempt to address this by focusing on keyword extraction or object-centric evaluation, they remain limited to vague-view or object-view analyses and incomplete visual element coverage. In this paper, we introduce CAPability, a comprehensive multi-view benchmark for evaluating visual captioning across 12 dimensions spanning six critical views. We curate nearly 11K human-annotated images and videos with visual element annotations to evaluate the generated captions. CAPability stably assesses both the correctness and thoroughness of captions with \textit{precision} and \textit{hit} metrics. By converting annotations to QA pairs, we further introduce a heuristic metric, \textit{know but cannot tell} ($K\bar{T}$), indicating a significant performance gap between QA and caption capabilities. Our work provides a holistic analysis of MLLMs' captioning abilities, as we identify their strengths and weaknesses across various dimensions, guiding future research to enhance specific aspects of their capabilities.
comment: Accepted to NeurIPS 2025
♻ ☆ Where to Start Alignment? Diffusion Large Language Model May Demand a Distinct Position AAAI 2026
Diffusion Large Language Models (dLLMs) have recently emerged as a competitive non-autoregressive paradigm due to their unique training and inference approach. However, there is currently a lack of safety study on this novel architecture. In this paper, we present the first analysis of dLLMs' safety performance and propose a novel safety alignment method tailored to their unique generation characteristics. Specifically, we identify a critical asymmetry between the defender and attacker in terms of security. For the defender, we reveal that the middle tokens of the response, rather than the initial ones, are more critical to the overall safety of dLLM outputs; this seems to suggest that aligning middle tokens can be more beneficial to the defender. The attacker, on the contrary, may have limited power to manipulate middle tokens, as we find dLLMs have a strong tendency towards a sequential generation order in practice, forcing the attack to meet this distribution and diverting it from influencing the critical middle tokens. Building on this asymmetry, we introduce Middle-tOken Safety Alignment (MOSA), a novel method that directly aligns the model's middle generation with safe refusals exploiting reinforcement learning. We implement MOSA and compare its security performance against eight attack methods on two benchmarks. We also test the utility of MOSA-aligned dLLM on coding, math, and general reasoning. The results strongly prove the superiority of MOSA.
comment: Accepted for oral presentation at AAAI 2026
♻ ☆ Uncovering Implicit Bias in Large Language Models with Concept Learning Dataset
We introduce a dataset of concept learning tasks that helps uncover implicit biases in large language models. Using in-context concept learning experiments, we found that language models may have a bias toward upward monotonicity in quantifiers; such bias is less apparent when the model is tested by direct prompting without concept learning components. This demonstrates that in-context concept learning can be an effective way to discover hidden biases in language models.
comment: Presented at EurIPS 2025 Workshop - Unifying Perspectives on Learning Biases (UPLB) https://sites.google.com/view/towards-a-unified-view
♻ ☆ Fine-grained and Explainable Factuality Evaluation for Multimodal Summarization
Multimodal summarization aims to generate a concise summary based on the input text and image. However, the existing methods potentially suffer from unfactual output. To evaluate the factuality of multimodal summarization models, we propose two fine-grained and explainable evaluation frameworks (FALLACIOUS) for different application scenarios, i.e. reference-based factuality evaluation framework and reference-free factuality evaluation framework. Notably, the reference-free factuality evaluation framework doesn't need ground truth and hence it has a wider application scenario. To evaluate the effectiveness of the proposed frameworks, we compute the correlation between our frameworks and the other metrics. The experimental results show the effectiveness of our proposed method. We will release our code and dataset via github.
♻ ☆ Exploring Cross-Lingual Knowledge Transfer via Transliteration-Based MLM Fine-Tuning for Critically Low-resource Chakma Language
As an Indo-Aryan language with limited available data, Chakma remains largely underrepresented in language models. In this work, we introduce a novel corpus of contextually coherent Bangla-transliterated Chakma, curated from Chakma literature, and validated by native speakers. Using this dataset, we fine-tune six encoder-based transformer models, including multilingual (mBERT, XLM-RoBERTa, DistilBERT), regional (BanglaBERT, IndicBERT), and monolingual English (DeBERTaV3) variants on masked language modeling (MLM) tasks. Our experiments show that fine-tuned multilingual models outperform their pre-trained counterparts when adapted to Bangla-transliterated Chakma, achieving up to 73.54% token accuracy and a perplexity as low as 2.90. Our analysis further highlights the impact of data quality on model performance and shows the limitations of OCR pipelines for morphologically rich Indic scripts. Our research demonstrates that Bangla-transliterated Chakma can be very effective for transfer learning for Chakma language, and we release our dataset to encourage further research on multilingual language modeling for low-resource languages.
♻ ☆ The Structure-Content Trade-off in Knowledge Graph Retrieval
Large Language Models (LLMs) increasingly rely on knowledge graphs for factual reasoning, yet how retrieval design shapes their performance remains unclear. We examine how question decomposition changes the retrieved subgraph's content and structure. Using a hybrid retrieval function that controls the importance of initial question and subquestions, we show that subquestion-based retrieval improves content precision, but yields disjoint subgraphs, while question-based retrieval maintains structure at the cost of relevance. Optimal performance arises between these extremes, revealing that balancing retrieval content and structure is key to effective LLM reasoning over structured knowledge.
♻ ☆ A Survey on Inference Engines for Large Language Models: Perspectives on Optimization and Efficiency
Large language models (LLMs) are widely applied in chatbots, code generators, and search engines. Workload such as chain-of-throught, complex reasoning, agent services significantly increase the inference cost by invoke the model repeatedly. Optimization methods such as parallelism, compression, and caching have been adopted to reduce costs, but the diverse service requirements make it hard to select the right method. Recently, specialized LLM inference engines have emerged as a key component for integrating the optimization methods into service-oriented infrastructures. However, a systematic study on inference engines is still lacking.This paper provides a comprehensive evaluation of 25 open-source and commercial inference engines. We examine each inference engine in terms of ease-of-use, ease-of-deployment, general-purpose support, scalability, and suitability for throughput- and latency-aware computation. Furthermore, we explore the design goals of each inference engine by investigating the optimization techniques it supports. In addition, we assess the ecosystem maturity of open source inference engines and handle the performance and cost policy of commercial solutions.We outline future research directions that include support for complex LLM-based services, support of various hardware, and enhanced security, offering practical guidance to researchers and developers in selecting and designing optimized LLM inference engines. We also provide a public repository to continually track developments in this fast-evolving field: \href{https://github.com/sihyeong/Awesome-LLM-Inference-Engine}{https://github.com/sihyeong/Awesome-LLM-Inference-Engine}.
comment: Under review; 106 pages; 46 figures
♻ ☆ Beyond Introspection: Reinforcing Thinking via Externalist Behavioral Feedback
While inference-time thinking allows Large Language Models (LLMs) to address complex problems, the extended thinking process can be unreliable or inconsistent because of the model's probabilistic nature, especially near its knowledge boundaries. Existing approaches attempt to mitigate this by having the model critique its own reasoning to make corrections. However, such self-critique inherits the same biases of the original output, known as the introspection illusion. Moving beyond such introspection and inspired by core methodologies in ethology, we propose an externalist three-step framework Distillation-Reinforcement-Reasoning (DRR). Rather than relying on a model's introspection, DRR evaluates its observable behaviors to provide corrective feedback. DRR first distills the reasoner's behavioral traces, then trains a lightweight, external Discriminative Model (DM). At inference time, this DM acts as a critic, identifying and rejecting suspicious reasoning steps. This external feedback compels the LLM to discard flawed pathways and explore alternatives, thereby enhancing reasoning quality without altering the base model. Experiments on multiple reasoning benchmarks show that our framework significantly outperforms prominent self-critique methods. Benefiting from a lightweight and annotation-free design, DRR offers a scalable and adaptable solution for improving the reliability of reasoning in a wide range of LLMs.
♻ ☆ Evaluating Large Language Models for Radiology Natural Language Processing
The rise of large language models (LLMs) has marked a pivotal shift in the field of natural language processing (NLP). LLMs have revolutionized a multitude of domains, and they have made a significant impact in the medical field. Large language models are now more abundant than ever, and many of these models exhibit bilingual capabilities, proficient in both English and Chinese. However, a comprehensive evaluation of these models remains to be conducted. This lack of assessment is especially apparent within the context of radiology NLP. This study seeks to bridge this gap by critically evaluating thirty two LLMs in interpreting radiology reports, a crucial component of radiology NLP. Specifically, the ability to derive impressions from radiologic findings is assessed. The outcomes of this evaluation provide key insights into the performance, strengths, and weaknesses of these LLMs, informing their practical applications within the medical domain.
♻ ☆ CAMERA: Multi-Matrix Joint Compression for MoE Models via Micro-Expert Redundancy Analysis AAAI 2026
Large Language Models (LLMs) with Mixture-of-Experts (MoE) architectures are distinguished by their strong performance scaling with increasing parameters across a wide range of tasks, yet they also suffer from substantial computational and storage overheads. Notably, the performance gains of MoE models do not scale proportionally with the growth in expert parameters. While prior works attempt to reduce parameters via expert-level pruning, merging, or decomposition, they still suffer from challenges in both performance and computational efficiency. In this paper, we address these challenges by introducing micro-expert as a finer-grained compression unit that spans across matrices. We first establish a more fundamental perspective, viewing MoE layers as mixtures of micro-experts, and present CAMERA, a lightweight and training-free framework for identifying micro-expert redundancy. Our analysis uncovers significant variance in micro-expert contributions during decoding. Based on this insight, we further propose CAMERA-P, a structured micro-expert pruning framework, and CAMERA-Q, a mixed-precision quantization idea designed for micro-experts. Extensive experiments on nine downstream tasks show that CAMERA-P consistently outperforms strong baselines under pruning ratios ranging from 20% to 60%. Furthermore, CAMERA-Q achieves superior results under aggressive 2-bit quantization, surpassing existing matrix- and channel-level ideas. Notably, our method enables complete micro-expert analysis of Qwen2-57B-A14B in less than 5 minutes on a single NVIDIA A100-40GB GPU.
comment: Accepted in AAAI 2026
♻ ☆ Position-Aware Depth Decay Decoding ($D^3$): Boosting Large Language Model Inference Efficiency
Due to the large number of parameters, the inference phase of Large Language Models (LLMs) is resource-intensive. Unlike traditional model compression, which needs retraining, recent dynamic computation methods show that not all components are required for inference, enabling a training-free pipeline. In this paper, we focus on the dynamic depth of LLM generation. A token-position aware layer skipping framework is proposed to save 1.5x times operations efficiently while maintaining performance. We first observed that tokens predicted later have lower perplexity and thus require less computation. Then, we propose a training-free algorithm called Position-Aware Depth Decay Decoding ($D^3$), which leverages a power-law decay function, $\left\lfloor L \times (α^i) \right\rfloor$, to determine the number of layers to retain when generating token $T_i$. Remarkably, without any retraining, the $D^3$ achieves success across a wide range of generation tasks for the first time. Experiments on large language models (\ie the Llama) with $7 \sim 70$ billion parameters show that $D^3$ can achieve an average 1.5x speedup compared with the full-inference pipeline while maintaining comparable performance with nearly no performance drop ($<1\%$) on the GSM8K and BBH benchmarks.
♻ ☆ LogicOCR: Do Your Large Multimodal Models Excel at Logical Reasoning on Text-Rich Images?
Recent advances in Large Multimodal Models (LMMs) have revolutionized their reasoning and Optical Character Recognition (OCR) capabilities. However, their complex logical reasoning performance on text-rich images remains underexplored. To bridge this gap, we introduce LogicOCR, a benchmark comprising 2780 questions with two subsets, i.e., LogicOCR-Gen with 1100 multi-choice questions on generated images, and LogicOCR-Real with 1680 meticulously designed free-form questions on real-world images. For constructing LogicOCR-Gen, we first curate a text corpus from the Chinese National Civil Servant Examination, and customize an automatic pipeline to steer GPT-Image-1 to generate images with varied layouts and fonts, ensuring contextual relevance and visual realism. Then, the generated images are manually verified. We evaluate a range of representative LMMs under Chain-of-Thought (CoT) and direct-answer settings. Our multi-dimensional analysis reveals key insights, such as the impact of test-time scaling, input modality differences, and sensitivity to visual-text orientation. Notably, LMMs still lag in multimodal reasoning compared to text-only inputs, indicating that they have not fully bridged visual reading with reasoning. Moreover, we propose TextCue, a training-free method that enhances LMMs' perception of image regions containing important text cues for solving questions. We leverage LMMs' attention maps and an off-the-shelf text segmentation specialist to determine the region, which is then cropped and enlarged to augment the original image. Experiments show its effectiveness, e.g., a 1.8% accuracy gain over LLaVA-OV-1.5-8B under the CoT setting. Our benchmark is available at https://github.com/MiliLab/LogicOCR.
comment: GitHub: https://github.com/MiliLab/LogicOCR
♻ ☆ Gram2Vec: An Interpretable Document Vectorizer
We present Gram2Vec, a grammatical style embedding system that embeds documents into a higher dimensional space by extracting the normalized relative frequencies of grammatical features present in the text. Compared to neural approaches, Gram2Vec offers inherent interpretability based on how the feature vectors are generated. In this paper, we use authorship verification and AI detection as two applications to show how Gram2Vec can be used. For authorship verification, we use the features from Gram2Vec to explain why a pair of documents is by the same or by different authors. We also demonstrate how Gram2Vec features can be used to train a classifier for AI detection, outperforming machine learning models trained on a comparable set of Biber features.
comment: 8 pages, 1 figure
♻ ☆ On The Role of Pretrained Language Models in General-Purpose Text Embeddings: A Survey
Text embeddings have attracted growing interest due to their effectiveness across a wide range of natural language processing (NLP) tasks, including retrieval, classification, clustering, bitext mining, and summarization. With the emergence of pretrained language models (PLMs), general-purpose text embeddings (GPTE) have gained significant traction for their ability to produce rich, transferable representations. The general architecture of GPTE typically leverages PLMs to derive dense text representations, which are then optimized through contrastive learning on large-scale pairwise datasets. In this survey, we provide a comprehensive overview of GPTE in the era of PLMs, focusing on the roles PLMs play in driving its development. We first examine the fundamental architecture and describe the basic roles of PLMs in GPTE, i.e., embedding extraction, expressivity enhancement, training strategies, learning objectives, and data construction. We then describe advanced roles enabled by PLMs, including multilingual support, multimodal integration, code understanding, and scenario-specific adaptation. Finally, we highlight potential future research directions that move beyond traditional improvement goals, including ranking integration, safety considerations, bias mitigation, structural information incorporation, and the cognitive extension of embeddings. This survey aims to serve as a valuable reference for both newcomers and established researchers seeking to understand the current state and future potential of GPTE.
comment: 45 pages, 4 figures, 9 tables
♻ ☆ MTA: A Merge-then-Adapt Framework for Personalized Large Language Model
Personalized Large Language Models (PLLMs) aim to align model outputs with individual user preferences, a crucial capability for user-centric applications. However, the prevalent approach of fine-tuning a separate module for each user faces two major limitations: (1) storage costs scale linearly with the number of users, rendering the method unscalable; and (2) fine-tuning a static model from scratch often yields suboptimal performance for users with sparse data. To address these challenges, we propose MTA, a Merge-then-Adapt framework for PLLMs. MTA comprises three key stages. First, we construct a shared Meta-LoRA Bank by selecting anchor users and pre-training meta-personalization traits within meta-LoRA modules. Second, to ensure scalability and enable dynamic personalization combination beyond static models, we introduce an Adaptive LoRA Fusion stage. This stage retrieves and dynamically merges the most relevant anchor meta-LoRAs to synthesize a user-specific one, thereby eliminating the need for user-specific storage and supporting more flexible personalization. Third, we propose a LoRA Stacking for Few-Shot Personalization stage, which applies an additional ultra-low-rank, lightweight LoRA module on top of the merged LoRA. Fine-tuning this module enables effective personalization under few-shot settings. Extensive experiments on the LaMP benchmark demonstrate that our approach outperforms existing SOTA methods across multiple tasks.
Computer Vision and Pattern Recognition 100
☆ Canvas-to-Image: Compositional Image Generation with Multimodal Controls
While modern diffusion models excel at generating high-quality and diverse images, they still struggle with high-fidelity compositional and multimodal control, particularly when users simultaneously specify text prompts, subject references, spatial arrangements, pose constraints, and layout annotations. We introduce Canvas-to-Image, a unified framework that consolidates these heterogeneous controls into a single canvas interface, enabling users to generate images that faithfully reflect their intent. Our key idea is to encode diverse control signals into a single composite canvas image that the model can directly interpret for integrated visual-spatial reasoning. We further curate a suite of multi-task datasets and propose a Multi-Task Canvas Training strategy that optimizes the diffusion model to jointly understand and integrate heterogeneous controls into text-to-image generation within a unified learning paradigm. This joint training enables Canvas-to-Image to reason across multiple control modalities rather than relying on task-specific heuristics, and it generalizes well to multi-control scenarios during inference. Extensive experiments show that Canvas-to-Image significantly outperforms state-of-the-art methods in identity preservation and control adherence across challenging benchmarks, including multi-person composition, pose-controlled composition, layout-constrained generation, and multi-control generation.
comment: 24 pages; webpage: https://snap-research.github.io/canvas-to-image/
☆ TraceGen: World Modeling in 3D Trace Space Enables Learning from Cross-Embodiment Videos
Learning new robot tasks on new platforms and in new scenes from only a handful of demonstrations remains challenging. While videos of other embodiments - humans and different robots - are abundant, differences in embodiment, camera, and environment hinder their direct use. We address the small-data problem by introducing a unifying, symbolic representation - a compact 3D "trace-space" of scene-level trajectories - that enables learning from cross-embodiment, cross-environment, and cross-task videos. We present TraceGen, a world model that predicts future motion in trace-space rather than pixel space, abstracting away appearance while retaining the geometric structure needed for manipulation. To train TraceGen at scale, we develop TraceForge, a data pipeline that transforms heterogeneous human and robot videos into consistent 3D traces, yielding a corpus of 123K videos and 1.8M observation-trace-language triplets. Pretraining on this corpus produces a transferable 3D motion prior that adapts efficiently: with just five target robot videos, TraceGen attains 80% success across four tasks while offering 50-600x faster inference than state-of-the-art video-based world models. In the more challenging case where only five uncalibrated human demonstration videos captured on a handheld phone are available, it still reaches 67.5% success on a real robot, highlighting TraceGen's ability to adapt across embodiments without relying on object detectors or heavy pixel-space generation.
☆ G$^2$VLM: Geometry Grounded Vision Language Model with Unified 3D Reconstruction and Spatial Reasoning
Vision-Language Models (VLMs) still lack robustness in spatial intelligence, demonstrating poor performance on spatial understanding and reasoning tasks. We attribute this gap to the absence of a visual geometry learning process capable of reconstructing 3D space from 2D images. We present G$^2$VLM, a geometry grounded vision-language model that bridges two fundamental aspects of spatial intelligence: spatial 3D reconstruction and spatial understanding. G$^2$VLM natively leverages learned 3D visual geometry features to directly predict 3D attributes and enhance spatial reasoning tasks via in-context learning and interleaved reasoning. Our unified design is highly scalable for spatial understanding: it trains on abundant multi-view image and video data, while simultaneously leveraging the benefits of 3D visual priors that are typically only derived from hard-to-collect annotations. Experimental results demonstrate G$^2$VLM is proficient in both tasks, achieving comparable results to state-of-the-art feed-forward 3D reconstruction models and achieving better or competitive results across spatial understanding and reasoning tasks. By unifying a semantically strong VLM with low-level 3D vision tasks, we hope G$^2$VLM can serve as a strong baseline for the community and unlock more future applications, such as 3D scene editing.
comment: code are released at https://github.com/InternRobotics/G2VLM
☆ Seeing without Pixels: Perception from Camera Trajectories
Can one perceive a video's content without seeing its pixels, just from the camera trajectory-the path it carves through space? This paper is the first to systematically investigate this seemingly implausible question. Towards this end, we propose a contrastive learning framework to train CamFormer, a dedicated encoder that projects camera pose trajectories into a joint embedding space, aligning them with natural language. We find that, contrary to its apparent simplicity, the camera trajectory is a remarkably informative signal to uncover video content. In other words, "how you move" can indeed reveal "what you are doing" (egocentric) or "observing" (exocentric). We demonstrate the versatility of our learned CamFormer embeddings on a diverse suite of downstream tasks, ranging from cross-modal alignment to classification and temporal analysis. Importantly, our representations are robust across diverse camera pose estimation methods, including both high-fidelity multi-sensored and standard RGB-only estimators. Our findings establish camera trajectory as a lightweight, robust, and versatile modality for perceiving video content.
comment: Project website: https://sites.google.com/view/seeing-without-pixels
☆ Revolutionizing Glioma Segmentation & Grading Using 3D MRI - Guided Hybrid Deep Learning Models
Gliomas are brain tumor types that have a high mortality rate which means early and accurate diagnosis is important for therapeutic intervention for the tumors. To address this difficulty, the proposed research will develop a hybrid deep learning model which integrates U-Net based segmentation and a hybrid DenseNet-VGG classification network with multihead attention and spatial-channel attention capabilities. The segmentation model will precisely demarcate the tumors in a 3D volume of MRI data guided by spatial and contextual information. The classification network which combines a branch of both DenseNet and VGG, will incorporate the demarcated tumor on which features with attention mechanisms would be focused on clinically relevant features. High-dimensional 3D MRI data could successfully be utilized in the model through preprocessing steps which are normalization, resampling, and data augmentation. Through a variety of measures the framework is evaluated: measures of performance in segmentation are Dice coefficient and Mean Intersection over Union (IoU) and measures of performance in classification are accuracy precision, recall, and F1-score. The hybrid framework that has been proposed has demonstrated through physical testing that it has the capability of obtaining a Dice coefficient of 98% in tumor segmentation, and 99% on classification accuracy, outperforming traditional CNN models and attention-free methods. Utilizing multi-head attention mechanisms enhances notions of priority in aspects of the tumor that are clinically significant, and enhances interpretability and accuracy. The results suggest a great potential of the framework in facilitating the timely and reliable diagnosis and grading of glioma by clinicians is promising, allowing for better planning of patient treatment.
☆ Uncertainty Quantification for Visual Object Pose Estimation
Quantifying the uncertainty of an object's pose estimate is essential for robust control and planning. Although pose estimation is a well-studied robotics problem, attaching statistically rigorous uncertainty is not well understood without strict distributional assumptions. We develop distribution-free pose uncertainty bounds about a given pose estimate in the monocular setting. Our pose uncertainty only requires high probability noise bounds on pixel detections of 2D semantic keypoints on a known object. This noise model induces an implicit, non-convex set of pose uncertainty constraints. Our key contribution is SLUE (S-Lemma Uncertainty Estimation), a convex program to reduce this set to a single ellipsoidal uncertainty bound that is guaranteed to contain the true object pose with high probability. SLUE solves a relaxation of the minimum volume bounding ellipsoid problem inspired by the celebrated S-lemma. It requires no initial guess of the bound's shape or size and is guaranteed to contain the true object pose with high probability. For tighter uncertainty bounds at the same confidence, we extend SLUE to a sum-of-squares relaxation hierarchy which is guaranteed to converge to the minimum volume ellipsoidal uncertainty bound for a given set of keypoint constraints. We show this pose uncertainty bound can easily be projected to independent translation and axis-angle orientation bounds. We evaluate SLUE on two pose estimation datasets and a real-world drone tracking scenario. Compared to prior work, SLUE generates substantially smaller translation bounds and competitive orientation bounds. We release code at https://github.com/MIT-SPARK/PoseUncertaintySets.
comment: 18 pages, 9 figures. Code available: https://github.com/MIT-SPARK/PoseUncertaintySets
☆ Attention-Guided Patch-Wise Sparse Adversarial Attacks on Vision-Language-Action Models
In recent years, Vision-Language-Action (VLA) models in embodied intelligence have developed rapidly. However, existing adversarial attack methods require costly end-to-end training and often generate noticeable perturbation patches. To address these limitations, we propose ADVLA, a framework that directly applies adversarial perturbations on features projected from the visual encoder into the textual feature space. ADVLA efficiently disrupts downstream action predictions under low-amplitude constraints, and attention guidance allows the perturbations to be both focused and sparse. We introduce three strategies that enhance sensitivity, enforce sparsity, and concentrate perturbations. Experiments demonstrate that under an $L_{\infty}=4/255$ constraint, ADVLA combined with Top-K masking modifies less than 10% of the patches while achieving an attack success rate of nearly 100%. The perturbations are concentrated on critical regions, remain almost imperceptible in the overall image, and a single-step iteration takes only about 0.06 seconds, significantly outperforming conventional patch-based attacks. In summary, ADVLA effectively weakens downstream action predictions of VLA models under low-amplitude and locally sparse conditions, avoiding the high training costs and conspicuous perturbations of traditional patch attacks, and demonstrates unique effectiveness and practical value for attacking VLA feature spaces.
☆ Multi-Crit: Benchmarking Multimodal Judges on Pluralistic Criteria-Following
Large multimodal models (LMMs) are increasingly adopted as judges in multimodal evaluation systems due to their strong instruction following and consistency with human preferences. However, their ability to follow diverse, fine-grained evaluation criteria remains underexplored. We develop Multi-Crit, a benchmark for evaluating multimodal judges on their capacity to follow pluralistic criteria and produce reliable criterion-level judgments. Covering both open-ended generation and verifiable reasoning tasks, Multi-Crit is built through a rigorous data curation pipeline that gathers challenging response pairs with multi-criterion human annotations. It further introduces three novel metrics for systematically assessing pluralistic adherence, criterion-switching flexibility, and the ability to recognize criterion-level preference conflicts. Comprehensive analysis of 25 LMMs reveals that 1) proprietary models still struggle to maintain consistent adherence to pluralistic criteria--especially in open-ended evaluation; 2) open-source models lag further behind in flexibly following diverse criteria; and 3) critic fine-tuning with holistic judgment signals enhances visual grounding but fails to generalize to pluralistic criterion-level judgment. Additional analyses on reasoning fine-tuning, test-time scaling, and boundary consistency between open-source and proprietary models further probe the limits of current multimodal judges. As a pioneering study, Multi-Crit lays the foundation for building reliable and steerable multimodal AI evaluation.
☆ CaFlow: Enhancing Long-Term Action Quality Assessment with Causal Counterfactual Flow
Action Quality Assessment (AQA) predicts fine-grained execution scores from action videos and is widely applied in sports, rehabilitation, and skill evaluation. Long-term AQA, as in figure skating or rhythmic gymnastics, is especially challenging since it requires modeling extended temporal dynamics while remaining robust to contextual confounders. Existing approaches either depend on costly annotations or rely on unidirectional temporal modeling, making them vulnerable to spurious correlations and unstable long-term representations. To this end, we propose CaFlow, a unified framework that integrates counterfactual de-confounding with bidirectional time-conditioned flow. The Causal Counterfactual Regularization (CCR) module disentangles causal and confounding features in a self-supervised manner and enforces causal robustness through counterfactual interventions, while the BiT-Flow module models forward and backward dynamics with a cycle-consistency constraint to produce smoother and more coherent representations. Extensive experiments on multiple long-term AQA benchmarks demonstrate that CaFlow achieves state-of-the-art performance. Code is available at https://github.com/Harrison21/CaFlow
☆ Continual Error Correction on Low-Resource Devices
The proliferation of AI models in everyday devices has highlighted a critical challenge: prediction errors that degrade user experience. While existing solutions focus on error detection, they rarely provide efficient correction mechanisms, especially for resource-constrained devices. We present a novel system enabling users to correct AI misclassifications through few-shot learning, requiring minimal computational resources and storage. Our approach combines server-side foundation model training with on-device prototype-based classification, enabling efficient error correction through prototype updates rather than model retraining. The system consists of two key components: (1) a server-side pipeline that leverages knowledge distillation to transfer robust feature representations from foundation models to device-compatible architectures, and (2) a device-side mechanism that enables ultra-efficient error correction through prototype adaptation. We demonstrate our system's effectiveness on both image classification and object detection tasks, achieving over 50% error correction in one-shot scenarios on Food-101 and Flowers-102 datasets while maintaining minimal forgetting (less than 0.02%) and negligible computational overhead. Our implementation, validated through an Android demonstration app, proves the system's practicality in real-world scenarios.
comment: ACM MMSys 2025
☆ Mechanisms of Non-Monotonic Scaling in Vision Transformers
Deeper Vision Transformers often perform worse than shallower ones, which challenges common scaling assumptions. Through a systematic empirical analysis of ViT-S, ViT-B, and ViT-L on ImageNet, we identify a consistent three-phase Cliff-Plateau-Climb pattern that governs how representations evolve with depth. We observe that better performance is associated with progressive marginalization of the [CLS] token, originally designed as a global aggregation hub, in favor of distributed consensus among patch tokens. We quantify patterns of information mixing with an Information Scrambling Index, and show that in ViT-L the information-task tradeoff emerges roughly 10 layers later than in ViT-B, and that these additional layers correlate with increased information diffusion rather than improved task performance. Taken together, these results suggest that transformer architectures in this regime may benefit more from carefully calibrated depth that executes clean phase transitions than from simply increasing parameter count. The Information Scrambling Index provides a useful diagnostic for existing models and suggests a potential design target for future architectures. All code is available at: https://github.com/AnanthaPadmanaban-KrishnaKumar/Cliff-Plateau-Climb.
comment: 16 pages total (11 pages main text, 1 pages references, 4 pages appendix), 5 figures, 11 tables. Code available at https://github.com/AnanthaPadmanaban-KrishnaKumar/Cliff-Plateau-Climb
☆ Qwen3-VL Technical Report
We introduce Qwen3-VL, the most capable vision-language model in the Qwen series to date, achieving superior performance across a broad range of multimodal benchmarks. It natively supports interleaved contexts of up to 256K tokens, seamlessly integrating text, images, and video. The model family includes both dense (2B/4B/8B/32B) and mixture-of-experts (30B-A3B/235B-A22B) variants to accommodate diverse latency-quality trade-offs. Qwen3-VL delivers three core pillars: (i) markedly stronger pure-text understanding, surpassing comparable text-only backbones in several cases; (ii) robust long-context comprehension with a native 256K-token window for both text and interleaved multimodal inputs, enabling faithful retention, retrieval, and cross-referencing across long documents and videos; and (iii) advanced multimodal reasoning across single-image, multi-image, and video tasks, demonstrating leading performance on comprehensive evaluations such as MMMU and visual-math benchmarks (e.g., MathVista and MathVision). Architecturally, we introduce three key upgrades: (i) an enhanced interleaved-MRoPE for stronger spatial-temporal modeling across images and video; (ii) DeepStack integration, which effectively leverages multi-level ViT features to tighten vision-language alignment; and (iii) text-based time alignment for video, evolving from T-RoPE to explicit textual timestamp alignment for more precise temporal grounding. Under comparable token budgets and latency constraints, Qwen3-VL achieves superior performance in both dense and Mixture-of-Experts (MoE) architectures. We envision Qwen3-VL serving as a foundational engine for image-grounded reasoning, agentic decision-making, and multimodal code intelligence in real-world workflows.
comment: 42 pages
☆ Active Learning for GCN-based Action Recognition
Despite the notable success of graph convolutional networks (GCNs) in skeleton-based action recognition, their performance often depends on large volumes of labeled data, which are frequently scarce in practical settings. To address this limitation, we propose a novel label-efficient GCN model. Our work makes two primary contributions. First, we develop a novel acquisition function that employs an adversarial strategy to identify a compact set of informative exemplars for labeling. This selection process balances representativeness, diversity, and uncertainty. Second, we introduce bidirectional and stable GCN architectures. These enhanced networks facilitate a more effective mapping between the ambient and latent data spaces, enabling a better understanding of the learned exemplar distribution. Extensive evaluations on two challenging skeleton-based action recognition benchmarks reveal significant improvements achieved by our label-efficient GCNs compared to prior work.
☆ ReSAM: Refine, Requery, and Reinforce: Self-Prompting Point-Supervised Segmentation for Remote Sensing Images
Interactive segmentation models such as the Segment Anything Model (SAM) have demonstrated remarkable generalization on natural images, but perform suboptimally on remote sensing imagery (RSI) due to severe domain shift and the scarcity of dense annotations. To address this, we propose a self-prompting, point-supervised framework that adapts SAM to RSIs using only sparse point annotations. Our method employs a Refine-Requery-Reinforce loop, where coarse pseudo-masks are generated from initial points (Refine), improved with self-constructed box prompts (Requery), and embeddings are aligned across iterations to reduce confirmation bias (Reinforce). Without relying on full-mask supervision, our approach progressively enhances SAM's segmentation quality and domain robustness through self-guided prompt adaptation . We evaluate our proposed method on three RSI benchmark datasets, including WHU, HRSID, and NWPU VHR-10, showing that our method consistently surpasses pretrained SAM and recent point-supervised segmentation methods. Our results demonstrate that self-prompting and semantic alignment provide an efficient path towards scalable, point-level adaptation of foundation segmentation models for remote sensing applications.
☆ MoGAN: Improving Motion Quality in Video Diffusion via Few-Step Motion Adversarial Post-Training
Video diffusion models achieve strong frame-level fidelity but still struggle with motion coherence, dynamics and realism, often producing jitter, ghosting, or implausible dynamics. A key limitation is that the standard denoising MSE objective provides no direct supervision on temporal consistency, allowing models to achieve low loss while still generating poor motion. We propose MoGAN, a motion-centric post-training framework that improves motion realism without reward models or human preference data. Built atop a 3-step distilled video diffusion model, we train a DiT-based optical-flow discriminator to differentiate real from generated motion, combined with a distribution-matching regularizer to preserve visual fidelity. With experiments on Wan2.1-T2V-1.3B, MoGAN substantially improves motion quality across benchmarks. On VBench, MoGAN boosts motion score by +7.3% over the 50-step teacher and +13.3% over the 3-step DMD model. On VideoJAM-Bench, MoGAN improves motion score by +7.4% over the teacher and +8.8% over DMD, while maintaining comparable or even better aesthetic and image-quality scores. A human study further confirms that MoGAN is preferred for motion quality (52% vs. 38% for the teacher; 56% vs. 29% for DMD). Overall, MoGAN delivers significantly more realistic motion without sacrificing visual fidelity or efficiency, offering a practical path toward fast, high-quality video generation. Project webpage is: https://xavihart.github.io/mogan.
☆ Deep Learning-Based Multiclass Classification of Oral Lesions with Stratified Augmentation
Oral cancer is highly common across the globe and is mostly diagnosed during the later stages due to the close visual similarity to benign, precancerous, and malignant lesions in the oral cavity. Implementing computer aided diagnosis systems early on has the potential to greatly improve clinical outcomes. This research intends to use deep learning to build a multiclass classifier for sixteen different oral lesions. To overcome the challenges of limited and imbalanced datasets, the proposed technique combines stratified data splitting and advanced data augmentation and oversampling to perform the classification. The experimental results, which achieved 83.33 percent accuracy, 89.12 percent precision, and 77.31 percent recall, demonstrate the superiority of the suggested model over state of the art methods now in use. The suggested model effectively conveys the effectiveness of oversampling and augmentation strategies in situations where the minority class classification performance is noteworthy. As a first step toward trustworthy computer aided diagnostic systems for the early detection of oral cancer in clinical settings, the suggested framework shows promise.
comment: 12 pages, 3 figures,
☆ Harmony: Harmonizing Audio and Video Generation through Cross-Task Synergy
The synthesis of synchronized audio-visual content is a key challenge in generative AI, with open-source models facing challenges in robust audio-video alignment. Our analysis reveals that this issue is rooted in three fundamental challenges of the joint diffusion process: (1) Correspondence Drift, where concurrently evolving noisy latents impede stable learning of alignment; (2) inefficient global attention mechanisms that fail to capture fine-grained temporal cues; and (3) the intra-modal bias of conventional Classifier-Free Guidance (CFG), which enhances conditionality but not cross-modal synchronization. To overcome these challenges, we introduce Harmony, a novel framework that mechanistically enforces audio-visual synchronization. We first propose a Cross-Task Synergy training paradigm to mitigate drift by leveraging strong supervisory signals from audio-driven video and video-driven audio generation tasks. Then, we design a Global-Local Decoupled Interaction Module for efficient and precise temporal-style alignment. Finally, we present a novel Synchronization-Enhanced CFG (SyncCFG) that explicitly isolates and amplifies the alignment signal during inference. Extensive experiments demonstrate that Harmony establishes a new state-of-the-art, significantly outperforming existing methods in both generation fidelity and, critically, in achieving fine-grained audio-visual synchronization.
☆ Enhanced Landmark Detection Model in Pelvic Fluoroscopy using 2D/3D Registration Loss
Automated landmark detection offers an efficient approach for medical professionals to understand patient anatomic structure and positioning using intra-operative imaging. While current detection methods for pelvic fluoroscopy demonstrate promising accuracy, most assume a fixed Antero-Posterior view of the pelvis. However, orientation often deviates from this standard view, either due to repositioning of the imaging unit or of the target structure itself. To address this limitation, we propose a novel framework that incorporates 2D/3D landmark registration into the training of a U-Net landmark prediction model. We analyze the performance difference by comparing landmark detection accuracy between the baseline U-Net, U-Net trained with Pose Estimation Loss, and U-Net fine-tuned with Pose Estimation Loss under realistic intra-operative conditions where patient pose is variable.
comment: 9 pages, 3 figures, 1 table
☆ Multimodal Robust Prompt Distillation for 3D Point Cloud Models
Adversarial attacks pose a significant threat to learning-based 3D point cloud models, critically undermining their reliability in security-sensitive applications. Existing defense methods often suffer from (1) high computational overhead and (2) poor generalization ability across diverse attack types. To bridge these gaps, we propose a novel yet efficient teacher-student framework, namely Multimodal Robust Prompt Distillation (MRPD) for distilling robust 3D point cloud model. It learns lightweight prompts by aligning student point cloud model's features with robust embeddings from three distinct teachers: a vision model processing depth projections, a high-performance 3D model, and a text encoder. To ensure a reliable knowledge transfer, this distillation is guided by a confidence-gated mechanism which dynamically balances the contribution of all input modalities. Notably, since the distillation is all during the training stage, there is no additional computational cost at inference. Extensive experiments demonstrate that MRPD substantially outperforms state-of-the-art defense methods against a wide range of white-box and black-box attacks, while even achieving better performance on clean data. Our work presents a new, practical paradigm for building robust 3D vision systems by efficiently harnessing multimodal knowledge.
☆ UAVLight: A Benchmark for Illumination-Robust 3D Reconstruction in Unmanned Aerial Vehicle (UAV) Scenes
Illumination inconsistency is a fundamental challenge in multi-view 3D reconstruction. Variations in sunlight direction, cloud cover, and shadows break the constant-lighting assumption underlying both classical multi-view stereo (MVS) and structure from motion (SfM) pipelines and recent neural rendering methods, leading to geometry drift, color inconsistency, and shadow imprinting. This issue is especially critical in UAV-based reconstruction, where long flight durations and outdoor environments make lighting changes unavoidable. However, existing datasets either restrict capture to short time windows, thus lacking meaningful illumination diversity, or span months and seasons, where geometric and semantic changes confound the isolated study of lighting robustness. We introduce UAVLight, a controlled-yet-real benchmark for illumination-robust 3D reconstruction. Each scene is captured along repeatable, geo-referenced flight paths at multiple fixed times of day, producing natural lighting variation under consistent geometry, calibration, and viewpoints. With standardized evaluation protocols across lighting conditions, UAVLight provides a reliable foundation for developing and benchmarking reconstruction methods that are consistent, faithful, and relightable in real outdoor environments.
comment: 10 pages, 6 figures
☆ Video Generation Models Are Good Latent Reward Models
Reward feedback learning (ReFL) has proven effective for aligning image generation with human preferences. However, its extension to video generation faces significant challenges. Existing video reward models rely on vision-language models designed for pixel-space inputs, confining ReFL optimization to near-complete denoising steps after computationally expensive VAE decoding. This pixel-space approach incurs substantial memory overhead and increased training time, and its late-stage optimization lacks early-stage supervision, refining only visual quality rather than fundamental motion dynamics and structural coherence. In this work, we show that pre-trained video generation models are naturally suited for reward modeling in the noisy latent space, as they are explicitly designed to process noisy latent representations at arbitrary timesteps and inherently preserve temporal information through their sequential modeling capabilities. Accordingly, we propose Process Reward Feedback Learning~(PRFL), a framework that conducts preference optimization entirely in latent space, enabling efficient gradient backpropagation throughout the full denoising chain without VAE decoding. Extensive experiments demonstrate that PRFL significantly improves alignment with human preferences, while achieving substantial reductions in memory consumption and training time compared to RGB ReFL.
☆ Bangla Sign Language Translation: Dataset Creation Challenges, Benchmarking and Prospects
Bangla Sign Language Translation (BdSLT) has been severely constrained so far as the language itself is very low resource. Standard sentence level dataset creation for BdSLT is of immense importance for developing AI based assistive tools for deaf and hard of hearing people of Bangla speaking community. In this paper, we present a dataset, IsharaKhobor , and two subset of it for enabling research. We also present the challenges towards developing the dataset and present some way forward by benchmarking with landmark based raw and RQE embedding. We do some ablation on vocabulary restriction and canonicalization of the same within the dataset, which resulted in two more datasets, IsharaKhobor_small and IsharaKhobor_canonical_small. The dataset is publicly available at: www.kaggle.com/datasets/hasanssl/isharakhobor [1].
comment: 14 pages, 8 tables
☆ The Age-specific Alzheimer 's Disease Prediction with Characteristic Constraints in Nonuniform Time Span
Alzheimer's disease is a debilitating disorder marked by a decline in cognitive function. Timely identification of the disease is essential for the development of personalized treatment strategies that aim to mitigate its progression. The application of generated images for the prediction of Alzheimer's disease poses challenges, particularly in accurately representing the disease's characteristics when input sequences are captured at irregular time intervals. This study presents an innovative methodology for sequential image generation, guided by quantitative metrics, to maintain the essential features indicative of disease progression. Furthermore, an age-scaling factor is integrated into the process to produce age-specific MRI images, facilitating the prediction of advanced stages of the disease. The results obtained from the ablation study suggest that the inclusion of quantitative metrics significantly improves the accuracy of MRI image synthesis. Furthermore, the application of age-scaled pixel loss contributed to the enhanced iterative generation of MRI images. In terms of long-term disease prognosis, the Structural Similarity Index reached a peak value of 0.882, indicating a substantial degree of similarity in the synthesized images.
comment: 16 pages, 9 figures
☆ EoS-FM: Can an Ensemble of Specialist Models act as a Generalist Feature Extractor?
Recent advances in foundation models have shown great promise in domains such as natural language processing and computer vision, and similar efforts are now emerging in the Earth Observation community. These models aim to generalize across tasks with limited supervision, reducing the need for training separate models for each task. However, current strategies, which largely focus on scaling model size and dataset volume, require prohibitive computational and data resources, limiting accessibility to only a few large institutions. Moreover, this paradigm of ever-larger models stands in stark contrast with the principles of sustainable and environmentally responsible AI, as it leads to immense carbon footprints and resource inefficiency. In this work, we present a novel and efficient alternative: an Ensemble-of-Specialists framework for building Remote Sensing Foundation Models (RSFMs). Our method decomposes the training process into lightweight, task-specific ConvNeXtV2 specialists that can be frozen and reused. This modular approach offers strong advantages in efficiency, interpretability, and extensibility. Moreover, it naturally supports federated training, pruning, and continuous specialist integration, making it particularly well-suited for collaborative and resource-constrained settings. Our framework sets a new direction for building scalable and efficient RSFMs.
☆ Self-Paced Learning for Images of Antinuclear Antibodies
Antinuclear antibody (ANA) testing is a crucial method for diagnosing autoimmune disorders, including lupus, Sjögren's syndrome, and scleroderma. Despite its importance, manual ANA detection is slow, labor-intensive, and demands years of training. ANA detection is complicated by over 100 coexisting antibody types, resulting in vast fluorescent pattern combinations. Although machine learning and deep learning have enabled automation, ANA detection in real-world clinical settings presents unique challenges as it involves multi-instance, multi-label (MIML) learning. In this paper, a novel framework for ANA detection is proposed that handles the complexities of MIML tasks using unaltered microscope images without manual preprocessing. Inspired by human labeling logic, it identifies consistent ANA sub-regions and assigns aggregated labels accordingly. These steps are implemented using three task-specific components: an instance sampler, a probabilistic pseudo-label dispatcher, and self-paced weight learning rate coefficients. The instance sampler suppresses low-confidence instances by modeling pattern confidence, while the dispatcher adaptively assigns labels based on instance distinguishability. Self-paced learning adjusts training according to empirical label observations. Our framework overcomes limitations of traditional MIML methods and supports end-to-end optimization. Extensive experiments on one ANA dataset and three public medical MIML benchmarks demonstrate the superiority of our framework. On the ANA dataset, our model achieves up to +7.0% F1-Macro and +12.6% mAP gains over the best prior method, setting new state-of-the-art results. It also ranks top-2 across all key metrics on public datasets, reducing Hamming loss and one-error by up to 18.2% and 26.9%, respectively. The source code can be accessed at https://github.com/fletcherjiang/ANA-SelfPacedLearning.
comment: IEEE Transactions on Medical Imaging
☆ Generalized Design Choices for Deepfake Detectors
The effectiveness of deepfake detection methods often depends less on their core design and more on implementation details such as data preprocessing, augmentation strategies, and optimization techniques. These factors make it difficult to fairly compare detectors and to understand which factors truly contribute to their performance. To address this, we systematically investigate how different design choices influence the accuracy and generalization capabilities of deepfake detection models, focusing on aspects related to training, inference, and incremental updates. By isolating the impact of individual factors, we aim to establish robust, architecture-agnostic best practices for the design and development of future deepfake detection systems. Our experiments identify a set of design choices that consistently improve deepfake detection and enable state-of-the-art performance on the AI-GenBench benchmark.
comment: 12 pages, 9 figures, 10 tables, code available: https://github.com/MI-BioLab/AI-GenBench
☆ CanKD: Cross-Attention-based Non-local operation for Feature-based Knowledge Distillation
We propose Cross-Attention-based Non-local Knowledge Distillation (CanKD), a novel feature-based knowledge distillation framework that leverages cross-attention mechanisms to enhance the knowledge transfer process. Unlike traditional self-attention-based distillation methods that align teacher and student feature maps independently, CanKD enables each pixel in the student feature map to dynamically consider all pixels in the teacher feature map. This non-local knowledge transfer more thoroughly captures pixel-wise relationships, improving feature representation learning. Our method introduces only an additional loss function to achieve superior performance compared with existing attention-guided distillation methods. Extensive experiments on object detection and image segmentation tasks demonstrate that CanKD outperforms state-of-the-art feature and hybrid distillation methods. These experimental results highlight CanKD's potential as a new paradigm for attention-guided distillation in computer vision tasks. Code is available at https://github.com/tori-hotaru/CanKD
comment: WACV 2026 Accepted
☆ Merge and Bound: Direct Manipulations on Weights for Class Incremental Learning
We present a novel training approach, named Merge-and-Bound (M&B) for Class Incremental Learning (CIL), which directly manipulates model weights in the parameter space for optimization. Our algorithm involves two types of weight merging: inter-task weight merging and intra-task weight merging. Inter-task weight merging unifies previous models by averaging the weights of models from all previous stages. On the other hand, intra-task weight merging facilitates the learning of current task by combining the model parameters within current stage. For reliable weight merging, we also propose a bounded update technique that aims to optimize the target model with minimal cumulative updates and preserve knowledge from previous tasks; this strategy reveals that it is possible to effectively obtain new models near old ones, reducing catastrophic forgetting. M&B is seamlessly integrated into existing CIL methods without modifying architecture components or revising learning objectives. We extensively evaluate our algorithm on standard CIL benchmarks and demonstrate superior performance compared to state-of-the-art methods.
☆ Frequency-Aware Token Reduction for Efficient Vision Transformer
Vision Transformers have demonstrated exceptional performance across various computer vision tasks, yet their quadratic computational complexity concerning token length remains a significant challenge. To address this, token reduction methods have been widely explored. However, existing approaches often overlook the frequency characteristics of self-attention, such as rank collapsing and over-smoothing phenomenon. In this paper, we propose a frequency-aware token reduction strategy that improves computational efficiency while preserving performance by mitigating rank collapsing. Our method partitions tokens into high-frequency tokens and low-frequency tokens. high-frequency tokens are selectively preserved, while low-frequency tokens are aggregated into a compact direct current token to retain essential low-frequency components. Through extensive experiments and analysis, we demonstrate that our approach significantly improves accuracy while reducing computational overhead and mitigating rank collapsing and over smoothing. Furthermore, we analyze the previous methods, shedding light on their implicit frequency characteristics and limitations.
comment: Neurips 2025
☆ MobileI2V: Fast and High-Resolution Image-to-Video on Mobile Devices
Recently, video generation has witnessed rapid advancements, drawing increasing attention to image-to-video (I2V) synthesis on mobile devices. However, the substantial computational complexity and slow generation speed of diffusion models pose significant challenges for real-time, high-resolution video generation on resource-constrained mobile devices. In this work, we propose MobileI2V, a 270M lightweight diffusion model for real-time image-to-video generation on mobile devices. The core lies in: (1) We analyzed the performance of linear attention modules and softmax attention modules on mobile devices, and proposed a linear hybrid architecture denoiser that balances generation efficiency and quality. (2) We design a time-step distillation strategy that compresses the I2V sampling steps from more than 20 to only two without significant quality loss, resulting in a 10-fold increase in generation speed. (3) We apply mobile-specific attention optimizations that yield a 2-fold speed-up for attention operations during on-device inference. MobileI2V enables, for the first time, fast 720p image-to-video generation on mobile devices, with quality comparable to existing models. Under one-step conditions, the generation speed of each frame of 720p video is less than 100 ms. Our code is available at: https://github.com/hustvl/MobileI2V.
comment: Our Demo and code:https://github.com/hustvl/MobileI2V
☆ EvRainDrop: HyperGraph-guided Completion for Effective Frame and Event Stream Aggregation
Event cameras produce asynchronous event streams that are spatially sparse yet temporally dense. Mainstream event representation learning algorithms typically use event frames, voxels, or tensors as input. Although these approaches have achieved notable progress, they struggle to address the undersampling problem caused by spatial sparsity. In this paper, we propose a novel hypergraph-guided spatio-temporal event stream completion mechanism, which connects event tokens across different times and spatial locations via hypergraphs and leverages contextual information message passing to complete these sparse events. The proposed method can flexibly incorporate RGB tokens as nodes in the hypergraph within this completion framework, enabling multi-modal hypergraph-based information completion. Subsequently, we aggregate hypergraph node information across different time steps through self-attention, enabling effective learning and fusion of multi-modal features. Extensive experiments on both single- and multi-label event classification tasks fully validated the effectiveness of our proposed framework. The source code of this paper will be released on https://github.com/Event-AHU/EvRainDrop.
☆ From Observation to Action: Latent Action-based Primitive Segmentation for VLA Pre-training in Industrial Settings
We present a novel unsupervised framework to unlock vast unlabeled human demonstration data from continuous industrial video streams for Vision-Language-Action (VLA) model pre-training. Our method first trains a lightweight motion tokenizer to encode motion dynamics, then employs an unsupervised action segmenter leveraging a novel "Latent Action Energy" metric to discover and segment semantically coherent action primitives. The pipeline outputs both segmented video clips and their corresponding latent action sequences, providing structured data directly suitable for VLA pre-training. Evaluations on public benchmarks and a proprietary electric motor assembly dataset demonstrate effective segmentation of key tasks performed by humans at workstations. Further clustering and quantitative assessment via a Vision-Language Model confirm the semantic coherence of the discovered action primitives. To our knowledge, this is the first fully automated end-to-end system for extracting and organizing VLA pre-training data from unstructured industrial videos, offering a scalable solution for embodied AI integration in manufacturing.
comment: 10 pages, 5 figures
☆ E-M3RF: An Equivariant Multimodal 3D Re-assembly Framework
3D reassembly is a fundamental geometric problem, and in recent years it has increasingly been challenged by deep learning methods rather than classical optimization. While learning approaches have shown promising results, most still rely primarily on geometric features to assemble a whole from its parts. As a result, methods struggle when geometry alone is insufficient or ambiguous, for example, for small, eroded, or symmetric fragments. Additionally, solutions do not impose physical constraints that explicitly prevent overlapping assemblies. To address these limitations, we introduce E-M3RF, an equivariant multimodal 3D reassembly framework that takes as input the point clouds, containing both point positions and colors of fractured fragments, and predicts the transformations required to reassemble them using SE(3) flow matching. Each fragment is represented by both geometric and color features: i) 3D point positions are encoded as rotationconsistent geometric features using a rotation-equivariant encoder, ii) the colors at each 3D point are encoded with a transformer. The two feature sets are then combined to form a multimodal representation. We experimented on four datasets: two synthetic datasets, Breaking Bad and Fantastic Breaks, and two real-world cultural heritage datasets, RePAIR and Presious, demonstrating that E-M3RF on the RePAIR dataset reduces rotation error by 23.1% and translation error by 13.2%, while Chamfer Distance decreases by 18.4% compared to competing methods.
☆ SAM Guided Semantic and Motion Changed Region Mining for Remote Sensing Change Captioning
Remote sensing change captioning is an emerging and popular research task that aims to describe, in natural language, the content of interest that has changed between two remote sensing images captured at different times. Existing methods typically employ CNNs/Transformers to extract visual representations from the given images or incorporate auxiliary tasks to enhance the final results, with weak region awareness and limited temporal alignment. To address these issues, this paper explores the use of the SAM (Segment Anything Model) foundation model to extract region-level representations and inject region-of-interest knowledge into the captioning framework. Specifically, we employ a CNN/Transformer model to extract global-level vision features, leverage the SAM foundation model to delineate semantic- and motion-level change regions, and utilize a specially constructed knowledge graph to provide information about objects of interest. These heterogeneous sources of information are then fused via cross-attention, and a Transformer decoder is used to generate the final natural language description of the observed changes. Extensive experimental results demonstrate that our method achieves state-of-the-art performance across multiple widely used benchmark datasets. The source code of this paper will be released on https://github.com/Event-AHU/SAM_ChangeCaptioning
☆ DiverseVAR: Balancing Diversity and Quality of Next-Scale Visual Autoregressive Models
We introduce DiverseVAR, a framework that enhances the diversity of text-conditioned visual autoregressive models (VAR) at test time without requiring retraining, fine-tuning, or substantial computational overhead. While VAR models have recently emerged as strong competitors to diffusion and flow models for image generation, they suffer from a critical limitation in diversity, often producing nearly identical images even for simple prompts. This issue has largely gone unnoticed amid the predominant focus on image quality. We address this limitation at test time in two stages. First, inspired by diversity enhancement techniques in diffusion models, we propose injecting noise into the text embedding. This introduces a trade-off between diversity and image quality: as diversity increases, the image quality sharply declines. To preserve quality, we propose scale-travel: a novel latent refinement technique inspired by time-travel strategies in diffusion models. Specifically, we use a multi-scale autoencoder to extract coarse-scale tokens that enable us to resume generation at intermediate stages. Extensive experiments show that combining text-embedding noise injection with our scale-travel refinement significantly enhances diversity while minimizing image-quality degradation, achieving a new Pareto frontier in the diversity-quality trade-off.
☆ Do Reasoning Vision-Language Models Inversely Scale in Test-Time Compute? A Distractor-centric Empirical Analysis
How does irrelevant information (i.e., distractors) affect test-time scaling in vision-language models (VLMs)? Prior studies on language models have reported an inverse scaling effect, where textual distractors lead to longer but less effective reasoning. To investigate whether similar phenomena occur in multimodal settings, we introduce Idis (Images with distractors), a visual question-answering dataset that systematically varies distractors along semantic, numerical, and spatial dimensions. Our analyses reveal that visual distractors differ fundamentally from textual ones: although inverse scaling persists, adding visual distractors reduces accuracy without increasing reasoning length. We further show that tracking attribute counts within reasoning traces provides key insights into how distractors, reasoning length, and accuracy interact. Finally, we demonstrate that these trends extend to established visual bias benchmarks such as Waterbirds, and we propose a simple prompting strategy to mitigate bias-driven predictions in reasoning models.
comment: preprint
☆ Monet: Reasoning in Latent Visual Space Beyond Images and Language
"Thinking with images" has emerged as an effective paradigm for advancing visual reasoning, extending beyond text-only chains of thought by injecting visual evidence into intermediate reasoning steps. However, existing methods fall short of human-like abstract visual thinking, as their flexibility is fundamentally limited by external tools. In this work, we introduce Monet, a training framework that enables multimodal large language models (MLLMs) to reason directly within the latent visual space by generating continuous embeddings that function as intermediate visual thoughts. We identify two core challenges in training MLLMs for latent visual reasoning: high computational cost in latent-vision alignment and insufficient supervision over latent embeddings, and address them with a three-stage distillation-based supervised fine-tuning (SFT) pipeline. We further reveal a limitation of applying GRPO to latent reasoning: it primarily enhances text-based reasoning rather than latent reasoning. To overcome this, we propose VLPO (Visual-latent Policy Optimization), a reinforcement learning method that explicitly incorporates latent embeddings into policy gradient updates. To support SFT, we construct Monet-SFT-125K, a high-quality text-image interleaved CoT dataset containing 125K real-world, chart, OCR, and geometry CoTs. Our model, Monet-7B, shows consistent gains across real-world perception and reasoning benchmarks and exhibits strong out-of-distribution generalization on challenging abstract visual reasoning tasks. We also empirically analyze the role of each training component and discuss our early unsuccessful attempts, providing insights for future developments in visual latent reasoning. Our model, data, and code are available at https://github.com/NOVAglow646/Monet.
☆ Thinking With Bounding Boxes: Enhancing Spatio-Temporal Video Grounding via Reinforcement Fine-Tuning
Spatio-temporal video grounding (STVG) requires localizing a target object in untrimmed videos both temporally and spatially from natural language descriptions. Despite their strong language understanding, multimodal large language models (MLLMs) underperform on STVG due to misaligned training objectives and weak fine-grained region-word alignment in standard visual encoders. To address this, we propose STVG-o1, the first framework that enables off-the-shelf MLLMs to achieve state-of-the-art STVG performance without any architectural modifications. Our method introduces a bounding-box chain-of-thought mechanism that explicitly reasons about spatio-temporal locations in an intermediate step before producing the final prediction. We further design a multi-dimensional reinforcement reward function consisting of format, consistency, temporal, spatial, and think rewards, which provides geometry-aware supervision through reinforcement fine-tuning. Evaluated on HCSTVG-v1/v2 and VidSTG, STVG-o1 sets new state-of-the-art results on HCSTVG, outperforming the best task-specific method by 7.3\% m\_tIoU on HCSTVG-v1, matching specialized models on VidSTG, and surpassing all existing MLLM-based approaches by large margins. It also demonstrates strong open-vocabulary generalization across datasets, establishing MLLMs as viable and powerful backbones for precise spatio-temporal grounding. Our code and models will be released.
☆ Endo-G$^{2}$T: Geometry-Guided & Temporally Aware Time-Embedded 4DGS For Endoscopic Scenes
Endoscopic (endo) video exhibits strong view-dependent effects such as specularities, wet reflections, and occlusions. Pure photometric supervision misaligns with geometry and triggers early geometric drift, where erroneous shapes are reinforced during densification and become hard to correct. We ask how to anchor geometry early for 4D Gaussian splatting (4DGS) while maintaining temporal consistency and efficiency in dynamic endoscopic scenes. Thus, we present Endo-G$^{2}$T, a geometry-guided and temporally aware training scheme for time-embedded 4DGS. First, geo-guided prior distillation converts confidence-gated monocular depth into supervision with scale-invariant depth and depth-gradient losses, using a warm-up-to-cap schedule to inject priors softly and avoid early overfitting. Second, a time-embedded Gaussian field represents dynamics in XYZT with a rotor-like rotation parameterization, yielding temporally coherent geometry with lightweight regularization that favors smooth motion and crisp opacity boundaries. Third, keyframe-constrained streaming improves efficiency and long-horizon stability through keyframe-focused optimization under a max-points budget, while non-keyframes advance with lightweight updates. Across EndoNeRF and StereoMIS-P1 datasets, Endo-G$^{2}$T achieves state-of-the-art results among monocular reconstruction baselines.
☆ PFF-Net: Patch Feature Fitting for Point Cloud Normal Estimation
Estimating the normal of a point requires constructing a local patch to provide center-surrounding context, but determining the appropriate neighborhood size is difficult when dealing with different data or geometries. Existing methods commonly employ various parameter-heavy strategies to extract a full feature description from the input patch. However, they still have difficulties in accurately and efficiently predicting normals for various point clouds. In this work, we present a new idea of feature extraction for robust normal estimation of point clouds. We use the fusion of multi-scale features from different neighborhood sizes to address the issue of selecting reasonable patch sizes for various data or geometries. We seek to model a patch feature fitting (PFF) based on multi-scale features to approximate the optimal geometric description for normal estimation and implement the approximation process via multi-scale feature aggregation and cross-scale feature compensation. The feature aggregation module progressively aggregates the patch features of different scales to the center of the patch and shrinks the patch size by removing points far from the center. It not only enables the network to precisely capture the structure characteristic in a wide range, but also describes highly detailed geometries. The feature compensation module ensures the reusability of features from earlier layers of large scales and reveals associated information in different patch sizes. Our approximation strategy based on aggregating the features of multiple scales enables the model to achieve scale adaptation of varying local patches and deliver the optimal feature description. Extensive experiments demonstrate that our method achieves state-of-the-art performance on both synthetic and real-world datasets with fewer network parameters and running time.
comment: Accepted by TVCG
☆ BanglaMM-Disaster: A Multimodal Transformer-Based Deep Learning Framework for Multiclass Disaster Classification in Bangla
Natural disasters remain a major challenge for Bangladesh, so real-time monitoring and quick response systems are essential. In this study, we present BanglaMM-Disaster, an end-to-end deep learning-based multimodal framework for disaster classification in Bangla, using both textual and visual data from social media. We constructed a new dataset of 5,037 Bangla social media posts, each consisting of a caption and a corresponding image, annotated into one of nine disaster-related categories. The proposed model integrates transformer-based text encoders, including BanglaBERT, mBERT, and XLM-RoBERTa, with CNN backbones such as ResNet50, DenseNet169, and MobileNetV2, to process the two modalities. Using early fusion, the best model achieves 83.76% accuracy. This surpasses the best text-only baseline by 3.84% and the image-only baseline by 16.91%. Our analysis also shows reduced misclassification across all classes, with noticeable improvements for ambiguous examples. This work fills a key gap in Bangla multimodal disaster analysis and demonstrates the benefits of combining multiple data types for real-time disaster response in low-resource settings.
comment: Presented at the 2025 IEEE International Conference on Signal Processing, Information, Communication and Systems (SPICSCON), November 21-22, 2025, University of Rajshahi, Bangladesh. 6 pages, 9 disaster classes, multimodal dataset with 5,037 samples
☆ SurgMLLMBench: A Multimodal Large Language Model Benchmark Dataset for Surgical Scene Understanding
Recent advances in multimodal large language models (LLMs) have highlighted their potential for medical and surgical applications. However, existing surgical datasets predominantly adopt a Visual Question Answering (VQA) format with heterogeneous taxonomies and lack support for pixel-level segmentation, limiting consistent evaluation and applicability. We present SurgMLLMBench, a unified multimodal benchmark explicitly designed for developing and evaluating interactive multimodal LLMs for surgical scene understanding, including the newly collected Micro-surgical Artificial Vascular anastomosIS (MAVIS) dataset. It integrates pixel-level instrument segmentation masks and structured VQA annotations across laparoscopic, robot-assisted, and micro-surgical domains under a unified taxonomy, enabling comprehensive evaluation beyond traditional VQA tasks and richer visual-conversational interactions. Extensive baseline experiments show that a single model trained on SurgMLLMBench achieves consistent performance across domains and generalizes effectively to unseen datasets. SurgMLLMBench will be publicly released as a robust resource to advance multimodal surgical AI research, supporting reproducible evaluation and development of interactive surgical reasoning models.
comment: 10 pages, 5 figures
☆ Hybrid SIFT-SNN for Efficient Anomaly Detection of Traffic Flow-Control Infrastructure
This paper presents the SIFT-SNN framework, a low-latency neuromorphic signal-processing pipeline for real-time detection of structural anomalies in transport infrastructure. The proposed approach integrates Scale-Invariant Feature Transform (SIFT) for spatial feature encoding with a latency-driven spike conversion layer and a Leaky Integrate-and-Fire (LIF) Spiking Neural Network (SNN) for classification. The Auckland Harbour Bridge dataset is recorded under various weather and lighting conditions, comprising 6,000 labelled frames that include both real and synthetically augmented unsafe cases. The presented system achieves a classification accuracy of 92.3% (+- 0.8%) with a per-frame inference time of 9.5 ms. Achieved sub-10 millisecond latency, combined with sparse spike activity (8.1%), enables real-time, low-power edge deployment. Unlike conventional CNN-based approaches, the hybrid SIFT-SNN pipeline explicitly preserves spatial feature grounding, enhances interpretability, supports transparent decision-making, and operates efficiently on embedded hardware. Although synthetic augmentation improved robustness, generalisation to unseen field conditions remains to be validated. The SIFT-SNN framework is validated through a working prototype deployed on a consumer-grade system and framed as a generalisable case study in structural safety monitoring for movable concrete barriers, which, as a traffic flow-control infrastructure, is deployed in over 20 cities worldwide.
comment: 8 pages, 6 figures. This is a preprint of a paper accepted for presentation at the 2025 International Conference on Image and Vision Computing New Zealand (IVCNZ). The final version will appear in IEEE Xplore
☆ The More, the Merrier: Contrastive Fusion for Higher-Order Multimodal Alignment
Learning joint representations across multiple modalities remains a central challenge in multimodal machine learning. Prevailing approaches predominantly operate in pairwise settings, aligning two modalities at a time. While some recent methods aim to capture higher-order interactions among multiple modalities, they often overlook or insufficiently preserve pairwise relationships, limiting their effectiveness on single-modality tasks. In this work, we introduce Contrastive Fusion (ConFu), a framework that jointly embeds both individual modalities and their fused combinations into a unified representation space, where modalities and their fused counterparts are aligned. ConFu extends traditional pairwise contrastive objectives with an additional fused-modality contrastive term, encouraging the joint embedding of modality pairs with a third modality. This formulation enables ConFu to capture higher-order dependencies, such as XOR-like relationships, that cannot be recovered through pairwise alignment alone, while still maintaining strong pairwise correspondence. We evaluate ConFu on synthetic and real-world multimodal benchmarks, assessing its ability to exploit cross-modal complementarity, capture higher-order dependencies, and scale with increasing multimodal complexity. Across these settings, ConFu demonstrates competitive performance on retrieval and classification tasks, while supporting unified one-to-one and two-to-one retrieval within a single contrastive framework.
☆ HTTM: Head-wise Temporal Token Merging for Faster VGGT
The Visual Geometry Grounded Transformer (VGGT) marks a significant leap forward in 3D scene reconstruction, as it is the first model that directly infers all key 3D attributes (camera poses, depths, and dense geometry) jointly in one pass. However, this joint inference mechanism requires global attention layers that perform all-to-all attention computation on tokens from all views. For reconstruction of large scenes with long-sequence inputs, this causes a significant latency bottleneck. In this paper, we propose head-wise temporal merging (HTTM), a training-free 3D token merging method for accelerating VGGT. Existing merging techniques merge tokens uniformly across different attention heads, resulting in identical tokens in the layers' output, which hinders the model's representational ability. HTTM tackles this problem by merging tokens in multi-head granularity, which preserves the uniqueness of feature tokens after head concatenation. Additionally, this enables HTTM to leverage the spatial locality and temporal correspondence observed at the head level to achieve higher merging ratios with lower merging costs compared to existing methods. Thus, HTTM achieves up to 7x acceleration with negligible performance drops in a GPU-based inference.
☆ CaliTex: Geometry-Calibrated Attention for View-Coherent 3D Texture Generation
Despite major advances brought by diffusion-based models, current 3D texture generation systems remain hindered by cross-view inconsistency -- textures that appear convincing from one viewpoint often fail to align across others. We find that this issue arises from attention ambiguity, where unstructured full attention is applied indiscriminately across tokens and modalities, causing geometric confusion and unstable appearance-structure coupling. To address this, we introduce CaliTex, a framework of geometry-calibrated attention that explicitly aligns attention with 3D structure. It introduces two modules: Part-Aligned Attention that enforces spatial alignment across semantically matched parts, and Condition-Routed Attention which routes appearance information through geometry-conditioned pathways to maintain spatial fidelity. Coupled with a two-stage diffusion transformer, CaliTex makes geometric coherence an inherent behavior of the network rather than a byproduct of optimization. Empirically, CaliTex produces seamless and view-consistent textures and outperforms both open-source and commercial baselines.
☆ PathMamba: A Hybrid Mamba-Transformer for Topologically Coherent Road Segmentation in Satellite Imagery
Achieving both high accuracy and topological continuity in road segmentation from satellite imagery is a critical goal for applications ranging from urban planning to disaster response. State-of-the-art methods often rely on Vision Transformers, which excel at capturing global context, yet their quadratic complexity is a significant barrier to efficient deployment, particularly for on-board processing in resource-constrained platforms. In contrast, emerging State Space Models like Mamba offer linear-time efficiency and are inherently suited to modeling long, continuous structures. We posit that these architectures have complementary strengths. To this end, we introduce PathMamba, a novel hybrid architecture that integrates Mamba's sequential modeling with the Transformer's global reasoning. Our design strategically uses Mamba blocks to trace the continuous nature of road networks, preserving topological structure, while integrating Transformer blocks to refine features with global context. This approach yields topologically superior segmentation maps without the prohibitive scaling costs of pure attention-based models. Our experiments on the DeepGlobe Road Extraction and Massachusetts Roads datasets demonstrate that PathMamba sets a new state-of-the-art. Notably, it significantly improves topological continuity, as measured by the APLS metric, setting a new benchmark while remaining computationally competitive.
comment: 11 pages, 5 figures
☆ Co-Training Vision Language Models for Remote Sensing Multi-task Learning
With Transformers achieving outstanding performance on individual remote sensing (RS) tasks, we are now approaching the realization of a unified model that excels across multiple tasks through multi-task learning (MTL). Compared to single-task approaches, MTL methods offer improved generalization, enhanced scalability, and greater practical applicability. Recently, vision language models (VLMs) have achieved promising results in RS image understanding, grounding, and ultra-high-resolution (UHR) image reasoning, respectively. Moreover, the unified text-based interface demonstrates significant potential for MTL. Hence, in this work, we present RSCoVLM, a simple yet flexible VLM baseline for RS MTL. Firstly, we create the data curation engine, including data acquisition, offline processing and integrating, as well as online loading and weighting. This data engine effectively addresses complex RS data enviroment and generates flexible vision-language conversations. Furthermore, we propose a unified dynamic-resolution strategy to address the diverse image scales inherent in RS imagery. For UHR images, we introduce the Zoom-in Chain mechanism together with its corresponding dataset, LRS-VQA-Zoom. The strategies are flexible and effectively mitigate the computational burdens. Additionally, we significantly enhance the model's object detection capability and propose a novel evaluation protocol that ensures fair comparison between VLMs and conventional detection models. Extensive experiments demonstrate that RSCoVLM achieves state-of-the-art performance across diverse tasks, outperforming existing RS VLMs and even rivaling specialized expert models. All the training and evaluating tools, model weights, and datasets have been fully open-sourced to support reproducibility. We expect that this baseline will promote further progress toward general-purpose RS models.
comment: 14 pages, 6 figures
☆ Multi-Reward GRPO for Stable and Prosodic Single-Codebook TTS LLMs at Scale
Recent advances in Large Language Models (LLMs) have transformed text-to-speech (TTS) synthesis, inspiring autoregressive frameworks that represent speech as sequences of discrete codec tokens. Among them, single-codebook TTS LLMs have emerged as compact and streamable architectures that jointly model semantic and acoustic integration. However, despite their efficiency, these models often exhibit unstable prosody, speaker drift, and degraded naturalness. To address these issues, we propose a multi-reward Group Relative Policy Optimization (GRPO) framework that directly optimizes the token generation policy of single-codebook TTS LLMs. Beyond standard intelligibility and speaker similarity objectives, our design integrates three rule-based rewards: a length penalty for duration consistency, an entropy regularization reward for decoding stability, and an LLM-annotated prosody alignment reward that explicitly supervises rhythm. In this prosody reward, an external reasoning LLM predicts multiple plausible pause structures via in-context learning, providing a human-preference-aligned supervisory signal for GRPO training. To assess universality, we further attach a flow-matching (FM) decoder on top of the GRPO-optimized AR backbone and observe consistent additional gains, indicating that our reinforcement optimization enhances the intrinsic AR policy. We further conduct a scalability analysis across data sizes and model scales, revealing that the proposed method consistently enhances prosodic stability, speaker similarity, and overall speech naturalness in single-codebook TTS LLMs.
comment: 4 pages, 2 figures
☆ Unlocking Zero-shot Potential of Semi-dense Image Matching via Gaussian Splatting
Learning-based image matching critically depends on large-scale, diverse, and geometrically accurate training data. 3D Gaussian Splatting (3DGS) enables photorealistic novel-view synthesis and thus is attractive for data generation. However, its geometric inaccuracies and biased depth rendering currently prevent robust correspondence labeling. To address this, we introduce MatchGS, the first framework designed to systematically correct and leverage 3DGS for robust, zero-shot image matching. Our approach is twofold: (1) a geometrically-faithful data generation pipeline that refines 3DGS geometry to produce highly precise correspondence labels, enabling the synthesis of a vast and diverse range of viewpoints without compromising rendering fidelity; and (2) a 2D-3D representation alignment strategy that infuses 3DGS' explicit 3D knowledge into the 2D matcher, guiding 2D semi-dense matchers to learn viewpoint-invariant 3D representations. Our generated ground-truth correspondences reduce the epipolar error by up to 40 times compared to existing datasets, enable supervision under extreme viewpoint changes, and provide self-supervisory signals through Gaussian attributes. Consequently, state-of-the-art matchers trained solely on our data achieve significant zero-shot performance gains on public benchmarks, with improvements of up to 17.7%. Our work demonstrates that with proper geometric refinement, 3DGS can serve as a scalable, high-fidelity, and structurally-rich data source, paving the way for a new generation of robust zero-shot image matchers.
☆ LaGen: Towards Autoregressive LiDAR Scene Generation
Generative world models for autonomous driving (AD) have become a trending topic. Unlike the widely studied image modality, in this work we explore generative world models for LiDAR data. Existing generation methods for LiDAR data only support single frame generation, while existing prediction approaches require multiple frames of historical input and can only deterministically predict multiple frames at once, lacking interactivity. Both paradigms fail to support long-horizon interactive generation. To this end, we introduce LaGen, which to the best of our knowledge is the first framework capable of frame-by-frame autoregressive generation of long-horizon LiDAR scenes. LaGen is able to take a single-frame LiDAR input as a starting point and effectively utilize bounding box information as conditions to generate high-fidelity 4D scene point clouds. In addition, we introduce a scene decoupling estimation module to enhance the model's interactive generation capability for object-level content, as well as a noise modulation module to mitigate error accumulation during long-horizon generation. We construct a protocol based on nuScenes for evaluating long-horizon LiDAR scene generation. Experimental results comprehensively demonstrate LaGen outperforms state-of-the-art LiDAR generation and prediction models, especially on the later frames.
☆ AVFakeBench: A Comprehensive Audio-Video Forgery Detection Benchmark for AV-LMMs
The threat of Audio-Video (AV) forgery is rapidly evolving beyond human-centric deepfakes to include more diverse manipulations across complex natural scenes. However, existing benchmarks are still confined to DeepFake-based forgeries and single-granularity annotations, thus failing to capture the diversity and complexity of real-world forgery scenarios. To address this, we introduce AVFakeBench, the first comprehensive audio-video forgery detection benchmark that spans rich forgery semantics across both human subject and general subject. AVFakeBench comprises 12K carefully curated audio-video questions, covering seven forgery types and four levels of annotations. To ensure high-quality and diverse forgeries, we propose a multi-stage hybrid forgery framework that integrates proprietary models for task planning with expert generative models for precise manipulation. The benchmark establishes a multi-task evaluation framework covering binary judgment, forgery types classification, forgery detail selection, and explanatory reasoning. We evaluate 11 Audio-Video Large Language Models (AV-LMMs) and 2 prevalent detection methods on AVFakeBench, demonstrating the potential of AV-LMMs as emerging forgery detectors while revealing their notable weaknesses in fine-grained perception and reasoning.
☆ Shift-Equivariant Complex-Valued Convolutional Neural Networks
Convolutional neural networks have shown remarkable performance in recent years on various computer vision problems. However, the traditional convolutional neural network architecture lacks a critical property: shift equivariance and invariance, broken by downsampling and upsampling operations. Although data augmentation techniques can help the model learn the latter property empirically, a consistent and systematic way to achieve this goal is by designing downsampling and upsampling layers that theoretically guarantee these properties by construction. Adaptive Polyphase Sampling (APS) introduced the cornerstone for shift invariance, later extended to shift equivariance with Learnable Polyphase up/downsampling (LPS) applied to real-valued neural networks. In this paper, we extend the work on LPS to complex-valued neural networks both from a theoretical perspective and with a novel building block of a projection layer from $\mathbb{C}$ to $\mathbb{R}$ before the Gumbel Softmax. We finally evaluate this extension on several computer vision problems, specifically for either the invariance property in classification tasks or the equivariance property in both reconstruction and semantic segmentation problems, using polarimetric Synthetic Aperture Radar images.
comment: Accepted to WACV 2026
☆ FIELDS: Face reconstruction with accurate Inference of Expression using Learning with Direct Supervision
Facial expressions convey the bulk of emotional information in human communication, yet existing 3D face reconstruction methods often miss subtle affective details due to reliance on 2D supervision and lack of 3D ground truth. We propose FIELDS (Face reconstruction with accurate Inference of Expression using Learning with Direct Supervision) to address these limitations by extending self-supervised 2D image consistency cues with direct 3D expression parameter supervision and an auxiliary emotion recognition branch. Our encoder is guided by authentic expression parameters from spontaneous 4D facial scans, while an intensity-aware emotion loss encourages the 3D expression parameters to capture genuine emotion content without exaggeration. This dual-supervision strategy bridges the 2D/3D domain gap and mitigates expression-intensity bias, yielding high-fidelity 3D reconstructions that preserve subtle emotional cues. From a single image, FIELDS produces emotion-rich face models with highly realistic expressions, significantly improving in-the-wild facial expression recognition performance without sacrificing naturalness.
☆ 3-Tracer: A Tri-level Temporal-Aware Framework for Audio Forgery Detection and Localization
Recently, partial audio forgery has emerged as a new form of audio manipulation. Attackers selectively modify partial but semantically critical frames while preserving the overall perceptual authenticity, making such forgeries particularly difficult to detect. Existing methods focus on independently detecting whether a single frame is forged, lacking the hierarchical structure to capture both transient and sustained anomalies across different temporal levels. To address these limitations, We identify three key levels relevant to partial audio forgery detection and present T3-Tracer, the first framework that jointly analyzes audio at the frame, segment, and audio levels to comprehensively detect forgery traces. T3-Tracer consists of two complementary core modules: the Frame-Audio Feature Aggregation Module (FA-FAM) and the Segment-level Multi-Scale Discrepancy-Aware Module (SMDAM). FA-FAM is designed to detect the authenticity of each audio frame. It combines both frame-level and audio-level temporal information to detect intra-frame forgery cues and global semantic inconsistencies. To further refine and correct frame detection, we introduce SMDAM to detect forgery boundaries at the segment level. It adopts a dual-branch architecture that jointly models frame features and inter-frame differences across multi-scale temporal windows, effectively identifying abrupt anomalies that appeared on the forged boundaries. Extensive experiments conducted on three challenging datasets demonstrate that our approach achieves state-of-the-art performance.
♻ ☆ TimeViper: A Hybrid Mamba-Transformer Vision-Language Model for Efficient Long Video Understanding
We introduce TimeViper, a hybrid vision-language model designed to tackle challenges of long video understanding. Processing long videos demands both an efficient model architecture and an effective mechanism for handling extended temporal contexts. To this end, TimeViper adopts a hybrid Mamba-Transformer backbone that combines the efficiency of state-space models with the expressivity of attention mechanisms. Through this hybrid design, we reveal the vision-to-text information aggregation phenomenon, where information progressively flows from vision tokens to text tokens across increasing LLM depth, resulting in severe vision token redundancy. Motivated by this observation, we propose TransV, a token information transfer module that transfers and compresses vision tokens into instruction tokens while maintaining multimodal understanding capabilities. This design enables TimeViper to process hour-long videos exceeding 10,000 frames. Extensive experiments across multiple benchmarks demonstrate that TimeViper competes with state-of-the-art models while extending frame numbers. We further analyze attention behaviors of both Mamba and Transformer layers, offering new insights into hybrid model interpretability. This work represents an initial step towards developing, interpreting, and compressing hybrid Mamba-Transformer architectures.
comment: Project page: https://xuboshen.github.io/TimeViper; Code: https://github.com/xiaomi-research/timeviper
♻ ☆ Sequence-Adaptive Video Prediction in Continuous Streams using Diffusion Noise Optimization
In this work, we investigate diffusion-based video prediction models, which forecast future video frames, for continuous video streams. In this context, the models observe continuously new training samples, and we aim to leverage this to improve their predictions. We thus propose an approach that continuously adapts a pre-trained diffusion model to a video stream. Since fine-tuning the parameters of a large diffusion model is too expensive, we refine the diffusion noise during inference while keeping the model parameters frozen, allowing the model to adaptively determine suitable sampling noise. We term the approach Sequence Adaptive Video Prediction with Diffusion Noise Optimization (SAVi-DNO). To validate our approach, we introduce a new evaluation setting on the Ego4D dataset, focusing on simultaneous adaptation and evaluation on long continuous videos. Empirical results demonstrate improved performance based on FVD, SSIM, and PSNR metrics on long videos of Ego4D and OpenDV-YouTube, as well as videos of UCF-101 and SkyTimelapse, showcasing SAVi-DNO's effectiveness.
♻ ☆ TinyChemVL: Advancing Chemical Vision-Language Models via Efficient Visual Token Reduction and Complex Reaction Tasks AAAI 2026
While Vision Language Models (VLMs) have demonstrated remarkable capabilities in general visual understanding, their application in the chemical domain has been limited, with previous works predominantly focusing on text and thus overlooking critical visual information, such as molecular structures. Current approaches that directly adopt standard VLMs for chemical tasks suffer from two primary issues: (i) computational inefficiency of processing entire chemical images with non-informative backgrounds. (ii) a narrow scope on molecular-level tasks that restricts progress in chemical reasoning. In this work, we propose \textbf{TinyChemVL}, an efficient and powerful chemical VLM that leverages visual token reduction and reaction-level tasks to improve model efficiency and reasoning capacity. Also, we propose \textbf{ChemRxn-V}, a reaction-level benchmark for assessing vision-based reaction recognition and prediction tasks. Directly predicting reaction products from molecular images poses a non-trivial challenge, as it requires models to integrate both recognition and reasoning capacities. Our results demonstrate that with only 4B parameters, TinyChemVL achieves superior performance on both molecular and reaction tasks while demonstrating faster inference and training speeds compared to existing models. Notably, TinyChemVL outperforms ChemVLM while utilizing only 1/16th of the visual tokens. This work builds efficient yet powerful VLMs for chemical domains by co-designing model architecture and task complexity.
comment: Accepted by AAAI 2026
♻ ☆ Adapting Segment Anything Model for Power Transmission Corridor Hazard Segmentation
Power transmission corridor hazard segmentation (PTCHS) aims to separate transmission equipment and surrounding hazards from complex background, conveying great significance to maintaining electric power transmission safety. Recently, the Segment Anything Model (SAM) has emerged as a foundational vision model and pushed the boundaries of segmentation tasks. However, SAM struggles to deal with the target objects in complex transmission corridor scenario, especially those with fine structure. In this paper, we propose ELE-SAM, adapting SAM for the PTCHS task. Technically, we develop a Context-Aware Prompt Adapter to achieve better prompt tokens via incorporating global-local features and focusing more on key regions. Subsequently, to tackle the hazard objects with fine structure in complex background, we design a High-Fidelity Mask Decoder by leveraging multi-granularity mask features and then scaling them to a higher resolution. Moreover, to train ELE-SAM and advance this field, we construct the ELE-40K benchmark, the first large-scale and real-world dataset for PTCHS including 44,094 image-mask pairs. Experimental results for ELE-40K demonstrate the superior performance that ELE-SAM outperforms the baseline model with the average 16.8% mIoU and 20.6% mBIoU performance improvement. Moreover, compared with the state-of-the-art method on HQSeg-44K, the average 2.9% mIoU and 3.8% mBIoU absolute improvements further validate the effectiveness of our method on high-quality generic object segmentation. The source code and dataset are available at https://github.com/Hhaizee/ELE-SAM.
♻ ☆ Force Prompting: Video Generation Models Can Learn and Generalize Physics-based Control Signals NeurIPS 2025
Recent advances in video generation models have sparked interest in world models capable of simulating realistic environments. While navigation has been well-explored, physically meaningful interactions that mimic real-world forces remain largely understudied. In this work, we investigate using physical forces as a control signal for video generation and propose force prompts which enable users to interact with images through both localized point forces, such as poking a plant, and global wind force fields, such as wind blowing on fabric. We demonstrate that these force prompts can enable videos to respond realistically to physical control signals by leveraging the visual and motion prior in the original pretrained model, without using any 3D asset or physics simulator at inference. The primary challenge of force prompting is the difficulty in obtaining high quality paired force-video training data, both in the real world due to the difficulty of obtaining force signals, and in synthetic data due to limitations in the visual quality and domain diversity of physics simulators. Our key finding is that video generation models can generalize remarkably well when adapted to follow physical force conditioning from videos synthesized by Blender, even with limited demonstrations of few objects. Our method can generate videos which simulate forces across diverse geometries, settings, and materials. We also try to understand the source of this generalization and perform ablations that reveal two key elements: visual diversity and the use of specific text keywords during training. Our approach is trained on only around 15k training examples for a single day on four A100 GPUs, and outperforms existing methods on force adherence and physics realism, bringing world models closer to real-world physics interactions. We release all datasets, code, weights, and interactive video demos at our project page.
comment: Camera ready version (NeurIPS 2025). Code and interactive demos at https://force-prompting.github.io/
♻ ☆ A Gray-box Attack against Latent Diffusion Model-based Image Editing by Posterior Collapse
Recent advancements in Latent Diffusion Models (LDMs) have revolutionized image synthesis and manipulation, raising significant concerns about data misappropriation and intellectual property infringement. While adversarial attacks have been extensively explored as a protective measure against such misuse of generative AI, current approaches are severely limited by their heavy reliance on model-specific knowledge and substantial computational costs. Drawing inspiration from the posterior collapse phenomenon observed in VAE training, we propose the Posterior Collapse Attack (PCA), a novel framework for protecting images from unauthorized manipulation. Through comprehensive theoretical analysis and empirical validation, we identify two distinct collapse phenomena during VAE inference: diffusion collapse and concentration collapse. Based on this discovery, we design a unified loss function that can flexibly achieve both types of collapse through parameter adjustment, each corresponding to different protection objectives in preventing image manipulation. Our method significantly reduces dependence on model-specific knowledge by requiring access to only the VAE encoder, which constitutes less than 4\% of LDM parameters. Notably, PCA achieves prompt-invariant protection by operating on the VAE encoder before text conditioning occurs, eliminating the need for empty prompt optimization required by existing methods. This minimal requirement enables PCA to maintain adequate transferability across various VAE-based LDM architectures while effectively preventing unauthorized image editing. Extensive experiments show PCA outperforms existing techniques in protection effectiveness, computational efficiency (runtime and VRAM), and generalization across VAE-based LDM variants. Our code is available at https://github.com/ZhongliangGuo/PosteriorCollapseAttack.
comment: 15 pages, 9 figures, 9 tables
♻ ☆ LMLCC-Net: A Semi-Supervised Deep Learning Model for Lung Nodule Malignancy Prediction from CT Scans using a Novel Hounsfield Unit-Based Intensity Filtering
Lung cancer is the leading cause of patient mortality in the world. Early diagnosis of malignant pulmonary nodules in CT images can have a significant impact on reducing disease mortality and morbidity. In this work, we propose LMLCC-Net, a novel deep learning framework for classifying nodules from CT scan images using a 3D CNN, considering Hounsfield Unit (HU)-based intensity filtering. Benign and malignant nodules have significant differences in their intensity profile of HU, which was not exploited in the literature. Our method considers the intensity pattern as well as the texture for the prediction of malignancies. LMLCC-Net extracts features from multiple branches that each use a separate learnable HU-based intensity filtering stage. Various combinations of branches and learnable ranges of filters were explored to finally produce the best-performing model. In addition, we propose a semi-supervised learning scheme for labeling ambiguous cases and also developed a lightweight model to classify the nodules. The experimental evaluations are carried out on the LUNA16 dataset. The proposed LMLCC-Net was evaluated using the LUNA16 dataset. Our proposed method achieves a classification accuracy of 91.96%, a sensitivity of 92.94%, and an area under the curve of 94.07%, showing improved performance compared to existing methods The proposed method can have a significant impact in helping radiologists in the classification of pulmonary nodules and improving patient care.
comment: 12 pages, 9 figures, 7 tables
♻ ☆ Connecting the Dots: Training-Free Visual Grounding via Agentic Reasoning AAAI 2026
Visual grounding, the task of linking textual queries to specific regions within images, plays a pivotal role in vision-language integration. Existing methods typically rely on extensive task-specific annotations and fine-tuning, limiting their ability to generalize effectively to novel or out-of-distribution scenarios. To address these limitations, we introduce GroundingAgent, a novel agentic visual grounding framework that operates without any task-specific fine-tuning. GroundingAgent employs a structured, iterative reasoning mechanism that integrates pretrained open-vocabulary object detectors, multimodal large language models (MLLMs), and large language models (LLMs) to progressively refine candidate regions through joint semantic and spatial analyses. Remarkably, GroundingAgent achieves an average zero-shot grounding accuracy of 65.1 % on widely-used benchmarks (RefCOCO, RefCOCO+, RefCOCOg), entirely without fine-tuning. Furthermore, by substituting MLLM-generated captions with the original query texts, the accuracy at the selection stage alone reaches approximately 90 %, closely matching supervised performance and underscoring the critical role of LLM reasoning capabilities. GroundingAgent also offers strong interpretability, transparently illustrating each reasoning step and providing clear insights into its decision-making process.
comment: AAAI 2026
♻ ☆ Improved Visually Prompted Keyword Localisation in Real Low-Resource Settings
Given an image query, visually prompted keyword localisation (VPKL) aims to find occurrences of the depicted word in a speech collection. This can be useful when transcriptions are not available for a low-resource language (e.g. if it is unwritten). Previous work showed that VPKL can be performed with a visually grounded speech model trained on paired images and unlabelled speech. But all experiments were done on English. Moreover, transcriptions were used to get positive and negative pairs for the contrastive loss. This paper introduces a few-shot learning scheme to mine pairs automatically without transcriptions. On English, this results in only a small drop in performance. We also - for the first time - consider VPKL on a real low-resource language, Yoruba. While scores are reasonable, here we see a bigger drop in performance compared to using ground truth pairs because the mining is less accurate in Yoruba.
comment: Accepted at SpeD 2025
♻ ☆ Modular, On-Site Solutions with Lightweight Anomaly Detection for Sustainable Nutrient Management in Agriculture
Efficient nutrient management is critical for crop growth and sustainable resource consumption (e.g., nitrogen, energy). Current approaches require lengthy analyses, preventing real-time optimization; similarly, imaging facilitates rapid phenotyping but can be computationally intensive, preventing deployment under resource constraints. This study proposes a flexible, tiered pipeline for anomaly detection and status estimation (fresh weight, dry mass, and tissue nutrients), including a comprehensive energy analysis of approaches that span the efficiency-accuracy spectrum. Using a nutrient depletion experiment with three treatments (T1-100%, T2-50%, and T3-25% fertilizer strength) and multispectral imaging (MSI), we developed a hierarchical pipeline using an autoencoder (AE) for early warning. Further, we compared two status estimation modules of different complexity for more detailed analysis: vegetation index (VI) features with machine learning (Random Forest, RF) and raw whole-image deep learning (Vision Transformer, ViT). Results demonstrated high-efficiency anomaly detection (73% net detection of T3 samples 9 days after transplanting) at substantially lower energy than embodied energy in wasted nitrogen. The state estimation modules show trade-offs, with ViT outperforming RF on phosphorus and calcium estimation (R2 0.61 vs. 0.58, 0.48 vs. 0.35) at higher energy cost. With our modular pipeline, this work opens opportunities for edge diagnostics and practical opportunities for agricultural sustainability.
♻ ☆ MeshCone: Second-Order Cone Programming for Geometrically-Constrained Mesh Enhancement
Modern mesh generation pipelines whether learning-based or classical often produce outputs requiring post-processing to achieve production-quality geometry. This work introduces MeshCone, a convex optimization framework for guided mesh refinement that leverages reference geometry to correct deformed or degraded meshes. We formulate the problem as a second-order cone program where vertex positions are optimized to align with target geometry while enforcing smoothness through convex edge-length regularization. MeshCone performs geometry-aware optimization that preserves fine details while correcting structural defects. We demonstrate robust performance across 56 diverse object categories from ShapeNet and ThreeDScans, achieving superior refinement quality compared to Laplacian smoothing and unoptimized baselines while maintaining sub-second inference times. MeshCone is particularly suited for applications where reference geometry is available, such as mesh-from-template workflows, scan-to-CAD alignment, and quality assurance in asset production pipelines.
♻ ☆ SaFiRe: Saccade-Fixation Reiteration with Mamba for Referring Image Segmentation NeurIPS 2025
Referring Image Segmentation (RIS) aims to segment the target object in an image given a natural language expression. While recent methods leverage pre-trained vision backbones and more training corpus to achieve impressive results, they predominantly focus on simple expressions--short, clear noun phrases like "red car" or "left girl". This simplification often reduces RIS to a key word/concept matching problem, limiting the model's ability to handle referential ambiguity in expressions. In this work, we identify two challenging real-world scenarios: object-distracting expressions, which involve multiple entities with contextual cues, and category-implicit expressions, where the object class is not explicitly stated. To address the challenges, we propose a novel framework, SaFiRe, which mimics the human two-phase cognitive process--first forming a global understanding, then refining it through detail-oriented inspection. This is naturally supported by Mamba's scan-then-update property, which aligns with our phased design and enables efficient multi-cycle refinement with linear complexity. We further introduce aRefCOCO, a new benchmark designed to evaluate RIS models under ambiguous referring expressions. Extensive experiments on both standard and proposed datasets demonstrate the superiority of SaFiRe over state-of-the-art baselines.
comment: NeurIPS 2025; Project page: https://zhenjiemao.github.io/SaFiRe/
♻ ☆ Comparison of Generative Learning Methods for Turbulence Surrogates
Numerical simulations of turbulent flows present significant challenges in fluid dynamics due to their complexity and high computational cost. High resolution techniques such as Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) are generally not computationally affordable, particularly for technologically relevant problems. Recent advances in machine learning, specifically in generative probabilistic models, offer promising alternatives as surrogates for turbulence. This paper investigates the application of three generative models - Variational Autoencoders (VAE), Deep Convolutional Generative Adversarial Networks (DCGAN), and Denoising Diffusion Probabilistic Models (DDPM) - in simulating a von Kármán vortex street around a fixed cylinder projected into 2D, as well as a real-world experimental dataset of the wake flow of a cylinder array. Training data was obtained by means of LES in the simulated case and Particle Image Velocimetry (PIV) in the experimental case. We evaluate each model's ability to capture the statistical properties and spatial structures of the turbulent flow. Our results demonstrate that DDPM and DCGAN effectively replicate all flow distributions, highlighting their potential as efficient and accurate tools for turbulence surrogacy. We find a strong argument for DCGAN, as although they are more difficult to train (due to problems such as mode collapse), they show the fastest inference and training time, require less data to train compared to VAE and DDPM, and provide the results most closely aligned with the input stream. In contrast, VAE train quickly (and can generate samples quickly) but do not produce adequate results, and DDPM, whilst effective, are significantly slower at both, inference and training time.
♻ ☆ DensiCrafter: Physically-Constrained Generation and Fabrication of Self-Supporting Hollow Structures
The rise of 3D generative models has enabled automatic 3D geometry and texture synthesis from multimodal inputs (e.g., text or images). However, these methods often ignore physical constraints and manufacturability considerations. In this work, we address the challenge of producing 3D designs that are both lightweight and self-supporting. We present DensiCrafter, a framework for generating lightweight, self-supporting 3D hollow structures by optimizing the density field. Starting from coarse voxel grids produced by Trellis, we interpret these as continuous density fields to optimize and introduce three differentiable, physically constrained, and simulation-free loss terms. Additionally, a mass regularization penalizes unnecessary material, while a restricted optimization domain preserves the outer surface. Our method seamlessly integrates with pretrained Trellis-based models (e.g., Trellis, DSO) without any architectural changes. In extensive evaluations, we achieve up to 43% reduction in material mass on the text-to-3D task. Compared to state-of-the-art baselines, our method could improve the stability and maintain high geometric fidelity. Real-world 3D-printing experiments confirm that our hollow designs can be reliably fabricated and could be self-supporting.
♻ ☆ CrossEarth-Gate: Fisher-Guided Adaptive Tuning Engine for Efficient Adaptation of Cross-Domain Remote Sensing Semantic Segmentation
In Remote Sensing (RS), Parameter-Efficient Fine-Tuning (PEFT) has emerged as a key approach to activate the generalizable representation ability of foundation models for downstream tasks. However, existing specialized PEFT methods often fail when applied to large-scale Earth observation tasks, as they are unable to fully handle the multifaceted and unpredictable domain gaps (\eg, spatial, semantic, and frequency shifts) inherent in RS data. To overcome this, we propose CrossEarth-Gate, which introduces two primary contributions. First, we establish a comprehensive RS module toolbox to address multifaceted domain gaps, comprising spatial, semantic, and frequency modules. Second, we develop a Fisher-guided adaptive selection mechanism that operates on this toolbox. This selection is guided by Fisher Information to quantify each module's importance by measuring its contribution to the task-specific gradient flow. It dynamically activates only the most critical modules at the appropriate layers, guiding the gradient flow to maximize adaptation effectiveness and efficiency. Comprehensive experiments validate the efficacy and generalizability of our method, where CrossEarth-Gate achieves state-of-the-art performance across 16 cross-domain benchmarks for RS semantic segmentation. The code of the work will be released.
♻ ☆ Probabilistic Robustness for Free? Revisiting Training via a Benchmark
Deep learning models are notoriously vulnerable to imperceptible perturbations. Most existing research centers on adversarial robustness (AR), which evaluates models under worst-case scenarios by examining the existence of deterministic adversarial examples (AEs). In contrast, probabilistic robustness (PR) adopts a statistical perspective, measuring the probability that predictions remain correct under stochastic perturbations. While PR is widely regarded as a practical complement to AR, dedicated training methods for improving PR are still relatively underexplored, albeit with emerging progress. Among the few PR-targeted training methods, we identify three limitations: i non-comparable evaluation protocols; ii limited comparisons to strong AT baselines despite anecdotal PR gains from AT; and iii no unified framework to compare the generalization of these methods. Thus, we introduce PRBench, the first benchmark dedicated to evaluating improvements in PR achieved by different robustness training methods. PRBench empirically compares most common AT and PR-targeted training methods using a comprehensive set of metrics, including clean accuracy, PR and AR performance, training efficiency, and generalization error (GE). We also provide theoretical analysis on the GE of PR performance across different training methods. Main findings revealed by PRBench include: AT methods are more versatile than PR-targeted training methods in terms of improving both AR and PR performance across diverse hyperparameter settings, while PR-targeted training methods consistently yield lower GE and higher clean accuracy. A leaderboard comprising 222 trained models across 7 datasets and 10 model architectures is publicly available at https://tmpspace.github.io/PRBenchLeaderboard/.
♻ ☆ Earth-Adapter: Bridge the Geospatial Domain Gaps with Mixture of Frequency Adaptation AAAI 2026
Parameter-Efficient Fine-Tuning (PEFT) is a technique that allows us to adapt powerful Foundation Models (FMs) to diverse downstream tasks while preserving and unleashing their inherent capabilities. However, we have observed that existing PEFT methods, which are often designed with natural imagery in mind, struggle when applied to Remote Sensing (RS) scenarios. This is primarily due to their inability to handle artifact influences, a problem particularly severe in RS image features. To tackle this challenge, we introduce Earth-Adapter, the first PEFT method specifically designed for RS artifacts conquering. Earth-Adapter introduces a novel Mixture of Frequency Adaptation process that combines a Mixture of Adapter (MoA) with Discrete Fourier Transformation (DFT). By utilizing DFT, Earth-Adapter can decompose features into different frequency components, precisely separating artifacts from original features. The MoA then dynamically assigns weights to each adapter expert, allowing for the combination of features across various frequency domains. These simple-yet-effective approaches enable Earth-Adapter to more efficiently overcome the disturbances caused by artifacts than previous PEFT methods, significantly enhancing the FMs' performance on RS scenarios. Experiments on Domain Adaptation (DA), and Domain Generalization (DG) semantic segmentation benchmarks showcase the Earth-Adapter's effectiveness. Compared with baseline Rein, Earth-Adapter significantly improves 9.0% mIoU in DA and 3.1% mIoU in DG benchmarks. Our code will be released at https://github.com/VisionXLab/Earth-Adapter.
comment: AAAI 2026 camera ready
♻ ☆ Learning Normals of Noisy Points by Local Gradient-Aware Surface Filtering ICCV 2025
Estimating normals for noisy point clouds is a persistent challenge in 3D geometry processing, particularly for end-to-end oriented normal estimation. Existing methods generally address relatively clean data and rely on supervised priors to fit local surfaces within specific neighborhoods. In this paper, we propose a novel approach for learning normals from noisy point clouds through local gradient-aware surface filtering. Our method projects noisy points onto the underlying surface by utilizing normals and distances derived from an implicit function constrained by local gradients. We start by introducing a distance measurement operator for global surface fitting on noisy data, which integrates projected distances along normals. Following this, we develop an implicit field-based filtering approach for surface point construction, adding projection constraints on these points during filtering. To address issues of over-smoothing and gradient degradation, we further incorporate local gradient consistency constraints, as well as local gradient orientation and aggregation. Comprehensive experiments on normal estimation, surface reconstruction, and point cloud denoising demonstrate the state-of-the-art performance of our method. The source code and trained models are available at https://github.com/LeoQLi/LGSF.
comment: Accepted by ICCV 2025. Project page: https://leoqli.github.io/LGSF/
♻ ☆ Adaptive Object Detection for Indoor Navigation Assistance: A Performance Evaluation of Real-Time Algorithms
This study addresses the need for accurate and efficient object detection in assistive technologies for visually impaired individuals. We evaluate four real-time object detection algorithms YOLO, SSD, Faster R-CNN, and Mask R-CNN within the context of indoor navigation assistance. Using the Indoor Objects Detection dataset, we analyze detection accuracy, processing speed, and adaptability to indoor environments. Our findings highlight the trade-offs between precision and efficiency, offering insights into selecting optimal algorithms for realtime assistive navigation. This research advances adaptive machine learning applications, enhancing indoor navigation solutions for the visually impaired and promoting accessibility.
comment: 5 pages, 2 figures, 3 tables
♻ ☆ SKEL-CF: Coarse-to-Fine Biomechanical Skeleton and Surface Mesh Recovery
Parametric 3D human models such as SMPL have driven significant advances in human pose and shape estimation, yet their simplified kinematics limit biomechanical realism. The recently proposed SKEL model addresses this limitation by re-rigging SMPL with an anatomically accurate skeleton. However, estimating SKEL parameters directly remains challenging due to limited training data, perspective ambiguities, and the inherent complexity of human articulation. We introduce SKEL-CF, a coarse-to-fine framework for SKEL parameter estimation. SKEL-CF employs a transformer-based encoder-decoder architecture, where the encoder predicts coarse camera and SKEL parameters, and the decoder progressively refines them in successive layers. To ensure anatomically consistent supervision, we convert the existing SMPL-based dataset 4DHuman into a SKEL-aligned version, 4DHuman-SKEL, providing high-quality training data for SKEL estimation. In addition, to mitigate depth and scale ambiguities, we explicitly incorporate camera modeling into the SKEL-CF pipeline and demonstrate its importance across diverse viewpoints. Extensive experiments validate the effectiveness of the proposed design. On the challenging MOYO dataset, SKEL-CF achieves 85.0 MPJPE / 51.4 PA-MPJPE, significantly outperforming the previous SKEL-based state-of-the-art HSMR (104.5 / 79.6). These results establish SKEL-CF as a scalable and anatomically faithful framework for human motion analysis, bridging the gap between computer vision and biomechanics. Our implementation is available on the project page: https://pokerman8.github.io/SKEL-CF/.
comment: Project page: https://pokerman8.github.io/SKEL-CF/
♻ ☆ Dynamic Epsilon Scheduling: A Multi-Factor Adaptive Perturbation Budget for Adversarial Training
Adversarial training is among the most effective strategies for defending deep neural networks against adversarial examples. A key limitation of existing adversarial training approaches lies in their reliance on a fixed perturbation budget, which fails to account for instance-specific robustness characteristics. While prior works such as IAAT and MMA introduce instance-level adaptations, they often rely on heuristic or static approximations of data robustness. In this paper, we propose Dynamic Epsilon Scheduling (DES), a novel framework that adaptively adjusts the adversarial perturbation budget per instance and per training iteration. DES integrates three key factors: (1) the distance to the decision boundary approximated via gradient-based proxies, (2) prediction confidence derived from softmax entropy, and (3) model uncertainty estimated via Monte Carlo dropout. By combining these cues into a unified scheduling strategy, DES tailors the perturbation budget dynamically to guide more effective adversarial learning. Experimental results on CIFAR-10 and CIFAR-100 show that our method consistently improves both adversarial robustness and standard accuracy compared to fixed-epsilon baselines and prior adaptive methods. Moreover, we provide theoretical insights into the stability and convergence of our scheduling policy. This work opens a new avenue for instance-aware, data-driven adversarial training methods.
♻ ☆ Decorrelation Speeds Up Vision Transformers
Masked Autoencoder (MAE) pre-training of vision transformers (ViTs) yields strong performance in low-label data regimes but comes with substantial computational costs, making it impractical in time- and resource-constrained industrial settings. We address this by nitegrating Decorrelated Backpropagation (DBP) into MAE pre-training, an optimization method that iteratively reduces input correlations at each layer to accelerate convergence. Applied selectively to the encoder, DBP achieves faster pre-training without loss of stability. To mimic constrained-data scenarios, we evaluate our approach on ImageNet-1K pre-training and ADE20K fine-tuning using randomly sampled subsets of each dataset. Under this setting, DBP-MAE reduces wall-clock time to baseline performance by 21.1%, lowers carbon emissions by 21.4%, and improves segmentation mIoU by 1.1 points. We observe similar gains when pre-training and fine-tuning on proprietary industrial data, confirming the method's applicability in real-world scenarios. These results demonstrate that DBP can reduce training time and energy use while improving downstream performance for large-scale ViT pre-training. Keywords: Deep learning, Vision transformers, Efficient AI, Decorrelation
comment: 16 pages, 12 figures, submitted to CVC 2026
♻ ☆ Geometrically Regularized Transfer Learning with On-Manifold and Off-Manifold Perturbation
Transfer learning under domain shift remains a fundamental challenge due to the divergence between source and target data manifolds. In this paper, we propose MAADA (Manifold-Aware Adversarial Data Augmentation), a novel framework that decomposes adversarial perturbations into on-manifold and off-manifold components to simultaneously capture semantic variation and model brittleness. We theoretically demonstrate that enforcing on-manifold consistency reduces hypothesis complexity and improves generalization, while off-manifold regularization smooths decision boundaries in low-density regions. Moreover, we introduce a geometry-aware alignment loss that minimizes geodesic discrepancy between source and target manifolds. Experiments on DomainNet, VisDA, and Office-Home show that MAADA consistently outperforms existing adversarial and adaptation methods in both unsupervised and few-shot settings, demonstrating superior structural robustness and cross-domain generalization.
♻ ☆ Disentangled Geometric Alignment with Adaptive Contrastive Perturbation for Reliable Domain Transfer
Despite progress in geometry-aware domain adaptation, current methods such as GAMA still suffer from two unresolved issues: (1) insufficient disentanglement of task-relevant and task-irrelevant manifold dimensions, and (2) rigid perturbation schemes that ignore per-class alignment asymmetries. To address this, we propose GAMA++, a novel framework that introduces (i) latent space disentanglement to isolate label-consistent manifold directions from nuisance factors, and (ii) an adaptive contrastive perturbation strategy that tailors both on- and off-manifold exploration to class-specific manifold curvature and alignment discrepancy. We further propose a cross-domain contrastive consistency loss that encourages local semantic clusters to align while preserving intra-domain diversity. Our method achieves state-of-the-art results on DomainNet, Office-Home, and VisDA benchmarks under both standard and few-shot settings, with notable improvements in class-level alignment fidelity and boundary robustness. GAMA++ sets a new standard for semantic geometry alignment in transfer learning.
♻ ☆ One-Step Diffusion-Based Image Compression with Semantic Distillation NeurIPS 2025
While recent diffusion-based generative image codecs have shown impressive performance, their iterative sampling process introduces unpleasing latency. In this work, we revisit the design of a diffusion-based codec and argue that multi-step sampling is not necessary for generative compression. Based on this insight, we propose OneDC, a One-step Diffusion-based generative image Codec -- that integrates a latent compression module with a one-step diffusion generator. Recognizing the critical role of semantic guidance in one-step diffusion, we propose using the hyperprior as a semantic signal, overcoming the limitations of text prompts in representing complex visual content. To further enhance the semantic capability of the hyperprior, we introduce a semantic distillation mechanism that transfers knowledge from a pretrained generative tokenizer to the hyperprior codec. Additionally, we adopt a hybrid pixel- and latent-domain optimization to jointly enhance both reconstruction fidelity and perceptual realism. Extensive experiments demonstrate that OneDC achieves SOTA perceptual quality even with one-step generation, offering over 39% bitrate reduction and 20x faster decoding compared to prior multi-step diffusion-based codecs. Project: https://onedc-codec.github.io/
comment: Accepted by NeurIPS 2025
♻ ☆ VA-GS: Enhancing the Geometric Representation of Gaussian Splatting via View Alignment NeurIPS 2025
3D Gaussian Splatting has recently emerged as an efficient solution for high-quality and real-time novel view synthesis. However, its capability for accurate surface reconstruction remains underexplored. Due to the discrete and unstructured nature of Gaussians, supervision based solely on image rendering loss often leads to inaccurate geometry and inconsistent multi-view alignment. In this work, we propose a novel method that enhances the geometric representation of 3D Gaussians through view alignment (VA). Specifically, we incorporate edge-aware image cues into the rendering loss to improve surface boundary delineation. To enforce geometric consistency across views, we introduce a visibility-aware photometric alignment loss that models occlusions and encourages accurate spatial relationships among Gaussians. To further mitigate ambiguities caused by lighting variations, we incorporate normal-based constraints to refine the spatial orientation of Gaussians and improve local surface estimation. Additionally, we leverage deep image feature embeddings to enforce cross-view consistency, enhancing the robustness of the learned geometry under varying viewpoints and illumination. Extensive experiments on standard benchmarks demonstrate that our method achieves state-of-the-art performance in both surface reconstruction and novel view synthesis. The source code is available at https://github.com/LeoQLi/VA-GS.
comment: Accepted by NeurIPS 2025
♻ ☆ Stream and Query-guided Feature Aggregation for Efficient and Effective 3D Occupancy Prediction
3D occupancy prediction has become a key perception task in autonomous driving, as it enables comprehensive scene understanding. Recent methods enhance this understanding by incorporating spatiotemporal information through multi-frame fusion, but they suffer from a trade-off: dense voxel-based representations provide high accuracy at significant computational cost, whereas sparse representations improve efficiency but lose spatial detail. To mitigate this trade-off, we introduce DuOcc, which employs a dual aggregation strategy that retains dense voxel representations to preserve spatial fidelity while maintaining high efficiency. DuOcc consists of two key components: (i) Stream-based Voxel Aggregation, which recurrently accumulates voxel features over time and refines them to suppress warping-induced distortions, preserving a clear separation between occupied and free space. (ii) Query-guided Aggregation, which complements the limitations of voxel accumulation by selectively injecting instance-level query features into the voxel regions occupied by dynamic objects. Experiments on the widely used Occ3D-nuScenes and SurroundOcc datasets demonstrate that DuOcc achieves state-of-the-art performance in real-time settings, while reducing memory usage by over 40% compared to prior methods.
♻ ☆ Image as an IMU: Estimating Camera Motion from a Single Motion-Blurred Image
In many robotics and VR/AR applications, fast camera motions lead to a high level of motion blur, causing existing camera pose estimation methods to fail. In this work, we propose a novel framework that leverages motion blur as a rich cue for motion estimation rather than treating it as an unwanted artifact. Our approach works by predicting a dense motion flow field and a monocular depth map directly from a single motion-blurred image. We then recover the instantaneous camera velocity by solving a linear least squares problem under the small motion assumption. In essence, our method produces an IMU-like measurement that robustly captures fast and aggressive camera movements. To train our model, we construct a large-scale dataset with realistic synthetic motion blur derived from ScanNet++v2 and further refine our model by training end-to-end on real data using our fully differentiable pipeline. Extensive evaluations on real-world benchmarks demonstrate that our method achieves state-of-the-art angular and translational velocity estimates, outperforming current methods like MASt3R and COLMAP.
comment: Project page: https://jerredchen.github.io/image-as-imu/
♻ ☆ Unsupervised Segmentation by Diffusing, Walking and Cutting
We propose an unsupervised image segmentation method using features from pre-trained text-to-image diffusion models. Inspired by classic spectral clustering approaches, we construct adjacency matrices from self-attention layers between image patches and recursively partition using Normalised Cuts. A key insight is that self-attention probability distributions, which capture semantic relations between patches, can be interpreted as a transition matrix for random walks across the image. We leverage this by first using Random Walk Normalized Cuts directly on these self-attention activations to partition the image, minimizing transition probabilities between clusters while maximizing coherence within clusters. Applied recursively, this yields a hierarchical segmentation that reflects the rich semantics in the pre-trained attention layers, without any additional training. Next, we explore other ways to build the NCuts adjacency matrix from features, and how we can use the random walk interpretation of self-attention to capture long-range relationships. Finally, we propose an approach to automatically determine the NCut cost criterion, avoiding the need to tune this manually. We quantitatively analyse the effect incorporating different features, a constant versus dynamic NCut threshold, and incorporating multi-node paths when constructing the NCuts adjacency matrix. We show that our approach surpasses all existing methods for zero-shot unsupervised segmentation, achieving state-of-the-art results on COCO-Stuff-27 and Cityscapes.
comment: Accepted to The IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2026
♻ ☆ ISAC: Training-Free Instance-to-Semantic Attention Control for Improving Multi-Instance Generation
Text-to-image diffusion models have recently become highly capable, yet their behavior in multi-object scenes remains unreliable: models often produce an incorrect number of instances and exhibit semantics leaking across objects. We trace these failures to vague instance boundaries; self-attention already reveals instance layouts early in the denoising process, but existing approaches act only on semantic signals. We introduce $\textbf{ISAC}$ ($\textbf{I}$nstance-to-$\textbf{S}$emantic $\textbf{A}$ttention $\textbf{C}$ontrol), a training-free, model-agnostic objective that performs hierarchical attention control by first carving out instance layouts from self-attention and then binding semantics to these instances. In Phase 1, ISAC clusters self-attention into the number of instances and repels overlaps, establishing an instance-level structural hierarchy; in Phase 2, it injects these instance cues into cross-attention to obtain instance-aware semantic masks and decomposes mixing semantics by tying attributes within each instance. ISAC yields consistent gains on T2I-CompBench, HRS-Bench, and IntraCompBench, our new benchmark for intra-class compositions where failures are most frequent, with improvements of at least 50% in multi-class accuracy and 7% in multi-instance accuracy on IntraCompBench, without any fine-tuning or external models. Beyond text-to-image setups, ISAC also strengthens layout-to-image controllers under overlapping boxes by refining coarse box layouts into dense instance masks, indicating that hierarchical decoupling of instance formation and semantic assignment is a key principle for robust, controllable multi-object generation. Code will be released upon publication.
comment: 36 pages
♻ ☆ Think Visually, Reason Textually: Vision-Language Synergy in ARC
Abstract reasoning from minimal examples remains a core unsolved problem for frontier foundation models such as GPT-5 and Grok 4. These models still fail to infer structured transformation rules from a handful of examples, which is a key hallmark of human intelligence. The Abstraction and Reasoning Corpus for Artificial General Intelligence (ARC-AGI) provides a rigorous testbed for this capability, demanding conceptual rule induction and transfer to novel tasks. Most existing methods treat ARC-AGI as a purely textual reasoning task, overlooking the fact that humans rely heavily on visual abstraction when solving such puzzles. However, our pilot experiments reveal a paradox: naively rendering ARC-AGI grids as images degrades performance due to imprecise rule execution. This leads to our central hypothesis that vision and language possess complementary strengths across distinct reasoning stages: vision supports global pattern abstraction and verification, whereas language specializes in symbolic rule formulation and precise execution. Building on this insight, we introduce two synergistic strategies: (1) Vision-Language Synergy Reasoning (VLSR), which decomposes ARC-AGI into modality-aligned subtasks; and (2) Modality-Switch Self-Correction (MSSC), which leverages vision to verify text-based reasoning for intrinsic error correction. Extensive experiments demonstrate that our approach yields up to a 4.33\% improvement over text-only baselines across diverse flagship models and multiple ARC-AGI tasks. Our findings suggest that unifying visual abstraction with linguistic reasoning is a crucial step toward achieving generalizable, human-like intelligence in future foundation models. Source code is released at https://github.com/InternLM/ARC-VL.
♻ ☆ Restoration-Oriented Video Frame Interpolation with Region-Distinguishable Priors from SAM
In existing restoration-oriented Video Frame Interpolation (VFI) approaches, the motion estimation between neighboring frames plays a crucial role. However, the estimation accuracy in existing methods remains a challenge, primarily due to the inherent ambiguity in identifying corresponding areas in adjacent frames for interpolation. Therefore, enhancing accuracy by distinguishing different regions before motion estimation is of utmost importance. In this paper, we introduce a novel solution involving the utilization of open-world segmentation models, e.g., SAM2 (Segment Anything Model2) for frames, to derive Region-Distinguishable Priors (RDPs) in different frames. These RDPs are represented as spatial-varying Gaussian mixtures, distinguishing an arbitrary number of areas with a unified modality. RDPs can be integrated into existing motion-based VFI methods to enhance features for motion estimation, facilitated by our designed play-and-plug Hierarchical Region-aware Feature Fusion Module (HRFFM). HRFFM incorporates RDP into various hierarchical stages of VFI's encoder, using RDP-guided Feature Normalization (RDPFN) in a residual learning manner. With HRFFM and RDP, the features within VFI's encoder exhibit similar representations for matched regions in neighboring frames, thus improving the synthesis of intermediate frames. Extensive experiments demonstrate that HRFFM consistently enhances VFI performance across various scenes.
comment: Code will be released
♻ ☆ Towards Consistent and Controllable Image Synthesis for Face Editing
Face editing methods, essential for tasks like virtual avatars, digital human synthesis and identity preservation, have traditionally been built upon GAN-based techniques, while recent focus has shifted to diffusion-based models due to their success in image reconstruction. However, diffusion models still face challenges in controlling specific attributes and preserving the consistency of other unchanged attributes especially the identity characteristics. To address these issues and facilitate more convenient editing of face images, we propose a novel approach that leverages the power of Stable-Diffusion (SD) models and crude 3D face models to control the lighting, facial expression and head pose of a portrait photo. We observe that this task essentially involves the combinations of target background, identity and face attributes aimed to edit. We strive to sufficiently disentangle the control of these factors to enable consistency of face editing. Specifically, our method, coined as RigFace, contains: 1) A Spatial Attribute Encoder that provides presise and decoupled conditions of background, pose, expression and lighting; 2) A high-consistency FaceFusion method that transfers identity features from the Identity Encoder to the denoising UNet of a pre-trained SD model; 3) An Attribute Rigger that injects those conditions into the denoising UNet. Our model achieves comparable or even superior performance in both identity preservation and photorealism compared to existing face editing models.
♻ ☆ Not All Splits Are Equal: Rethinking Attribute Generalization Across Unrelated Categories NeurIPS 2025
Can models generalize attribute knowledge across semantically and perceptually dissimilar categories? While prior work has addressed attribute prediction within narrow taxonomic or visually similar domains, it remains unclear whether current models can abstract attributes and apply them to conceptually distant categories. This work presents the first explicit evaluation for the robustness of the attribute prediction task under such conditions, testing whether models can correctly infer shared attributes between unrelated object types: e.g., identifying that the attribute "has four legs" is common to both "dogs" and "chairs". To enable this evaluation, we introduce train-test split strategies that progressively reduce correlation between training and test sets, based on: LLM-driven semantic grouping, embedding similarity thresholding, embedding-based clustering, and supercategory-based partitioning using ground-truth labels. Results show a sharp drop in performance as the correlation between training and test categories decreases, indicating strong sensitivity to split design. Among the evaluated methods, clustering yields the most effective trade-off, reducing hidden correlations while preserving learnability. These findings offer new insights into the limitations of current representations and inform future benchmark construction for attribute reasoning.
comment: Accepted at NeurIPS 2025 Workshop: CauScien - Uncovering Causality in Science and NeurIPS 2025 Workshop: Reliable ML from Unreliable Data
♻ ☆ Without Paired Labeled Data: End-to-End Self-Supervised Learning for Drone-view Geo-Localization
Drone-view Geo-Localization (DVGL) aims to achieve accurate localization of drones by retrieving the most relevant GPS-tagged satellite images. However, most existing methods heavily rely on strictly pre-paired drone-satellite images for supervised learning. When the target region shifts, new paired samples are typically required to adapt to the distribution changes. The high cost of annotation and the limited transferability of these methods significantly hinder the practical deployment of DVGL in open-world scenarios. To address these limitations, we propose a novel end-to-end self-supervised learning method with a shallow backbone network, called the dynamic memory-driven and neighborhood information learning (DMNIL) method. It employs a clustering algorithm to generate pseudo-labels and adopts a dual-path contrastive learning framework to learn discriminative intra-view representations. Furthermore, DMNIL incorporates two core modules, including the dynamic hierarchical memory learning (DHML) module and the information consistency evolution learning (ICEL) module. The DHML module combines short-term and long-term memory to enhance intra-view feature consistency and discriminability. Meanwhile, the ICEL module utilizes a neighborhood-driven dynamic constraint mechanism to systematically capture implicit cross-view semantic correlations, consequently improving cross-view feature alignment. To further stabilize and strengthen the self-supervised training process, a pseudo-label enhancement strategy is introduced to enhance the quality of pseudo supervision. Extensive experiments on three public benchmark datasets demonstrate that the proposed method consistently outperforms existing self-supervised methods and even surpasses several state-of-the-art supervised methods. Our code is available at https://github.com/ISChenawei/DMNIL.
♻ ☆ From Limited Labels to Open Domains:An Efficient Learning Method for Drone-view Geo-Localization
Traditional supervised drone-view geo-localization (DVGL) methods heavily depend on paired training data and encounter difficulties in learning cross-view correlations from unpaired data. Moreover, when deployed in a new domain, these methods require obtaining the new paired data and subsequent retraining for model adaptation, which significantly increases computational overhead. Existing unsupervised methods have enabled to generate pseudo-labels based on cross-view similarity to infer the pairing relationships. However, geographical similarity and spatial continuity often cause visually analogous features at different geographical locations. The feature confusion compromises the reliability of pseudo-label generation, where incorrect pseudo-labels drive negative optimization. Given these challenges inherent in both supervised and unsupervised DVGL methods, we propose a novel cross-domain invariant knowledge transfer network (CDIKTNet) with limited supervision, whose architecture consists of a cross-domain invariance sub-network (CDIS) and a cross-domain transfer sub-network (CDTS). This architecture facilitates a closed-loop framework for invariance feature learning and knowledge transfer. The CDIS is designed to learn cross-view structural and spatial invariance from a small amount of paired data that serves as prior knowledge. It endows the shared feature space of unpaired data with similar implicit cross-view correlations at initialization, which alleviates feature confusion. Based on this, the CDTS employs dual-path contrastive learning to further optimize each subspace while preserving consistency in a shared feature space. Extensive experiments demonstrate that CDIKTNet achieves state-of-the-art performance under full supervision compared with those supervised methods, and further surpasses existing unsupervised methods in both few-shot and cross-domain initialization.
♻ ☆ GreenHyperSpectra: A multi-source hyperspectral dataset for global vegetation trait prediction NeurIPS 2025
Plant traits such as leaf carbon content and leaf mass are essential variables in the study of biodiversity and climate change. However, conventional field sampling cannot feasibly cover trait variation at ecologically meaningful spatial scales. Machine learning represents a valuable solution for plant trait prediction across ecosystems, leveraging hyperspectral data from remote sensing. Nevertheless, trait prediction from hyperspectral data is challenged by label scarcity and substantial domain shifts (\eg across sensors, ecological distributions), requiring robust cross-domain methods. Here, we present GreenHyperSpectra, a pretraining dataset encompassing real-world cross-sensor and cross-ecosystem samples designed to benchmark trait prediction with semi- and self-supervised methods. We adopt an evaluation framework encompassing in-distribution and out-of-distribution scenarios. We successfully leverage GreenHyperSpectra to pretrain label-efficient multi-output regression models that outperform the state-of-the-art supervised baseline. Our empirical analyses demonstrate substantial improvements in learning spectral representations for trait prediction, establishing a comprehensive methodological framework to catalyze research at the intersection of representation learning and plant functional traits assessment. All code and data are available at: https://github.com/echerif18/HyspectraSSL.
comment: Accepted at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ ProtoPFormer: Concentrating on Prototypical Parts in Vision Transformers for Interpretable Image Recognition
Prototypical part network (ProtoPNet) has drawn wide attention and boosted many follow-up studies due to its self-explanatory property for explainable artificial intelligence (XAI). However, when directly applying ProtoPNet on vision transformer (ViT) backbones, learned prototypes have a "distraction" problem: they have a relatively high probability of being activated by the background and pay less attention to the foreground. The powerful capability of modeling long-term dependency makes the transformer-based ProtoPNet hard to focus on prototypical parts, thus severely impairing its inherent interpretability. This paper proposes prototypical part transformer (ProtoPFormer) for appropriately and effectively applying the prototype-based method with ViTs for interpretable image recognition. The proposed method introduces global and local prototypes for capturing and highlighting the representative holistic and partial features of targets according to the architectural characteristics of ViTs. The global prototypes are adopted to provide the global view of objects to guide local prototypes to concentrate on the foreground while eliminating the influence of the background. Afterwards, local prototypes are explicitly supervised to concentrate on their respective prototypical visual parts, increasing the overall interpretability. Extensive experiments demonstrate that our proposed global and local prototypes can mutually correct each other and jointly make final decisions, which faithfully and transparently reason the decision-making processes associatively from the whole and local perspectives, respectively. Moreover, ProtoPFormer consistently achieves superior performance and visualization results over the state-of-the-art (SOTA) prototype-based baselines. Our code has been released at https://github.com/zju-vipa/ProtoPFormer.
comment: Arxiv preprint; 18 pages, 12 figures, 7 tables
♻ ☆ AMLP: Adjustable Masking Lesion Patches for Self-Supervised Medical Image Segmentation
Self-supervised masked image modeling (MIM) methods have shown promising performances on analyzing natural images. However, directly applying such methods to medical image segmentation tasks still cannot achieve satisfactory results. The challenges arise from the facts that (i) medical images are inherently more complex compared to natural images, and the subjects in medical images often exhibit more distinct contour features; (ii) moreover, the conventional high and fixed masking ratio in MIM is likely to mask the background, limiting the scope of learnable information. To address these problems, we propose a new self-supervised medical image segmentation framework, called Adjustable Masking Lesion Patches (AMLP), which employs Masked Patch Selection~(MPS) strategy to identify patches with high probabilities of containing lesions to help model achieve precise lesion reconstruction. To improve the categorization of patches in MPS, we further introduce Relative Reconstruction Loss (RRL) to better learn hard-to-reconstruct lesion patches. Then, Category Consistency Loss (CCL) is proposed to refine patch categorization based on reconstruction difficulty, enhancing difference between lesions and backgrounds. Moreover, an Adjustable Masking Ratio (AMR) strategy is proposed to gradually increase the masking ratio over training to expand~the scope of learnable mutual information. Extensive~experiments on two medical segmentation datasets demonstrate the superior performances of the proposed AMLP w.r.t. the SOTA self-supervised methods; the results prove that AMLP effectively addresses the challenges of applying masked modeling to medical images and capturing accurate lesion details that are crucial for segmentation tasks.
comment: © 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
♻ ☆ DWFF-Net : A Multi-Scale Farmland System Habitat Identification Method with Adaptive Dynamic Weight
Addressing the current lack of a standardized habitat classification system for cultivated land ecosystems, incomplete coverage of the habitat types, and the inability of existing models to effectively integrate semantic and texture features-resulting in insufficient segmentation accuracy and blurred boundaries for multi-scale habitats (e.g., large-scale field plots and micro-habitats)-this study developed a comprehensively annotated ultra-high-resolution remote sensing image dataset encompassing 15 categories of cultivated land system habitats. Furthermore, we propose a Dynamic-Weighted Feature Fusion Network (DWFF-Net). The encoder of this model utilizes a frozen-parameter DINOv3 to extract foundational features. By analyzing the relationships between different category images and feature maps, we introduce a data-level adaptive dynamic weighting strategy for feature fusion. The decoder incorporates a dynamic weight computation network to achieve thorough integration of multi-layer features, and a hybrid loss function is adopted to optimize model training. Experimental results on the constructed dataset demonstrate that the proposed model achieves a mean Intersection over Union (mIoU) of 69.79% and an F1-score of 80.49%, outperforming the baseline network by 2.1% and 1.61%, respectively. Ablation studies further confirm the complementary nature of multi-layer feature fusion, which effectively improves the IoU for micro-habitat categories such as field ridges. This study establishes a habitat identification framework for cultivated land systems based on adaptive multi-layer feature fusion, enabling sub-meter precision habitat mapping at a low cost and providing robust technical support for fine-grained habitat monitoring in cultivated landscapes. (The complete code repository can be accessed via GitHub at the following URL: https://github.com/sysau/DWFF-Net)
comment: 30 pages,13 figures
♻ ☆ Filter Like You Test: Data-Driven Data Filtering for CLIP Pretraining
We introduce Filter Like You Test (FLYT), an algorithm for curating large-scale vision-language datasets that learns the usefulness of each data point as a pretraining example. FLYT trains a scoring model that learns to weigh each example's features using gradient signals from downstream tasks training sets. Based on FLYT, we implement Mixing-FLYT (M-FLYT), which takes the per-example scores generated by different scoring methods as features, and learns to unify them into a single score. FLYT naturally produces a distribution over the training examples, which we leverage through Soft Cap Sampling (SCS), a strategy for obtaining a filtered pretraining dataset from per-example probabilities that samples examples while preventing over-representation through a repetition penalty. Using these methods, we achieve 40.1% ImageNet zero-shot accuracy on the DataComp medium scale filtering benchmark, a 2% absolute accuracy increase over all previous results and a 5.5% increase over results that - like us - use only public resources. Our approach also yields 37.7\% on the average of 38 DataComp evaluation tasks, outperforming previous public-resource approaches by 0.4\%.
♻ ☆ Gen-3Diffusion: Realistic Image-to-3D Generation via 2D & 3D Diffusion Synergy
Creating realistic 3D objects and clothed avatars from a single RGB image is an attractive yet challenging problem. Due to its ill-posed nature, recent works leverage powerful prior from 2D diffusion models pretrained on large datasets. Although 2D diffusion models demonstrate strong generalization capability, they cannot guarantee the generated multi-view images are 3D consistent. In this paper, we propose Gen-3Diffusion: Realistic Image-to-3D Generation via 2D & 3D Diffusion Synergy. We leverage a pre-trained 2D diffusion model and a 3D diffusion model via our elegantly designed process that synchronizes two diffusion models at both training and sampling time. The synergy between the 2D and 3D diffusion models brings two major advantages: 1) 2D helps 3D in generalization: the pretrained 2D model has strong generalization ability to unseen images, providing strong shape priors for the 3D diffusion model; 2) 3D helps 2D in multi-view consistency: the 3D diffusion model enhances the 3D consistency of 2D multi-view sampling process, resulting in more accurate multi-view generation. We validate our idea through extensive experiments in image-based objects and clothed avatar generation tasks. Results show that our method generates realistic 3D objects and avatars with high-fidelity geometry and texture. Extensive ablations also validate our design choices and demonstrate the strong generalization ability to diverse clothing and compositional shapes. Our code and pretrained models will be publicly released on https://yuxuan-xue.com/gen-3diffusion.
comment: Accepted to Transaction on Pattern Analysis and Machine Intelligence (T-PAMI). Project Page: https://yuxuan-xue.com/gen-3diffusion. arXiv admin note: substantial text overlap with arXiv:2406.08475
♻ ☆ ControlEvents: Controllable Synthesis of Event Camera Datawith Foundational Prior from Image Diffusion Models
In recent years, event cameras have gained significant attention due to their bio-inspired properties, such as high temporal resolution and high dynamic range. However, obtaining large-scale labeled ground-truth data for event-based vision tasks remains challenging and costly. In this paper, we present ControlEvents, a diffusion-based generative model designed to synthesize high-quality event data guided by diverse control signals such as class text labels, 2D skeletons, and 3D body poses. Our key insight is to leverage the diffusion prior from foundation models, such as Stable Diffusion, enabling high-quality event data generation with minimal fine-tuning and limited labeled data. Our method streamlines the data generation process and significantly reduces the cost of producing labeled event datasets. We demonstrate the effectiveness of our approach by synthesizing event data for visual recognition, 2D skeleton estimation, and 3D body pose estimation. Our experiments show that the synthesized labeled event data enhances model performance in all tasks. Additionally, our approach can generate events based on unseen text labels during training, illustrating the powerful text-based generation capabilities inherited from foundation models.
comment: Accepted to WACV2026. Project website: https://https://yuxuan-xue.com/controlevents/
♻ ☆ SARVLM: A Vision Language Foundation Model for Semantic Understanding and Target Recognition in SAR Imagery
Synthetic Aperture Radar (SAR) is a crucial imaging modality thanks to its all-weather capability. Although recent advances in self-supervised learning and masked image modeling (MIM) have enabled SAR foundation models, these methods largely emphasize low-level visual features and often overlook multimodal alignment and zero-shot target recognition in SAR imagery. To address this, we construct SARVLM-1M, a large-scale vision-language dataset with over one million image-text pairs aggregated from existing datasets. We further propose a domain transfer training strategy to mitigate the large gap between natural and SAR imagery. Building on this, we develop SARVLM, the first vision language foundation model (VLM) tailored to SAR, comprising SARCLIP and SARCap. SARVLM is trained with a vision-language contrastive objective under the proposed domain transfer strategy, bridging SAR imagery and textual descriptions. Extensive experiments on image text retrieval, zero-shot classification, semantic localization, and imagery captioning demonstrate that SARVLM delivers superior feature extraction and interpretation, outperforming state-of-the-art VLMs and advancing SAR semantic understanding. Code and datasets will be released soon.
comment: 11 pages, 9 figures
♻ ☆ Active Negative Loss: A Robust Framework for Learning with Noisy Labels
Deep supervised learning has achieved remarkable success across a wide range of tasks, yet it remains susceptible to overfitting when confronted with noisy labels. To address this issue, noise-robust loss functions offer an effective solution for enhancing learning in the presence of label noise. In this work, we systematically investigate the limitation of the recently proposed Active Passive Loss (APL), which employs Mean Absolute Error (MAE) as its passive loss function. Despite the robustness brought by MAE, one of its key drawbacks is that it pays equal attention to clean and noisy samples; this feature slows down convergence and potentially makes training difficult, particularly in large-scale datasets. To overcome these challenges, we introduce a novel loss function class, termed Normalized Negative Loss Functions (NNLFs), which serve as passive loss functions within the APL framework. NNLFs effectively address the limitations of MAE by concentrating more on memorized clean samples. By replacing MAE in APL with our proposed NNLFs, we enhance APL and present a new framework called Active Negative Loss (ANL). Moreover, in non-symmetric noise scenarios, we propose an entropy-based regularization technique to mitigate the vulnerability to the label imbalance. Extensive experiments demonstrate that the new loss functions adopted by our ANL framework can achieve better or comparable performance to state-of-the-art methods across various label noise types and in image segmentation tasks. The source code is available at: https://github.com/Virusdoll/Active-Negative-Loss.
comment: This work has been submitted to the IEEE for possible publication
Machine Learning 206
☆ TraceGen: World Modeling in 3D Trace Space Enables Learning from Cross-Embodiment Videos
Learning new robot tasks on new platforms and in new scenes from only a handful of demonstrations remains challenging. While videos of other embodiments - humans and different robots - are abundant, differences in embodiment, camera, and environment hinder their direct use. We address the small-data problem by introducing a unifying, symbolic representation - a compact 3D "trace-space" of scene-level trajectories - that enables learning from cross-embodiment, cross-environment, and cross-task videos. We present TraceGen, a world model that predicts future motion in trace-space rather than pixel space, abstracting away appearance while retaining the geometric structure needed for manipulation. To train TraceGen at scale, we develop TraceForge, a data pipeline that transforms heterogeneous human and robot videos into consistent 3D traces, yielding a corpus of 123K videos and 1.8M observation-trace-language triplets. Pretraining on this corpus produces a transferable 3D motion prior that adapts efficiently: with just five target robot videos, TraceGen attains 80% success across four tasks while offering 50-600x faster inference than state-of-the-art video-based world models. In the more challenging case where only five uncalibrated human demonstration videos captured on a handheld phone are available, it still reaches 67.5% success on a real robot, highlighting TraceGen's ability to adapt across embodiments without relying on object detectors or heavy pixel-space generation.
☆ ToolOrchestra: Elevating Intelligence via Efficient Model and Tool Orchestration
Large language models are powerful generalists, yet solving deep and complex problems such as those of the Humanity's Last Exam (HLE) remains both conceptually challenging and computationally expensive. We show that small orchestrators managing other models and a variety of tools can both push the upper bound of intelligence and improve efficiency in solving difficult agentic tasks. We introduce ToolOrchestra, a method for training small orchestrators that coordinate intelligent tools. ToolOrchestra explicitly uses reinforcement learning with outcome-, efficiency-, and user-preference-aware rewards. Using ToolOrchestra, we produce Orchestrator, an 8B model that achieves higher accuracy at lower cost than previous tool-use agents while aligning with user preferences on which tools are to be used for a given query. On HLE, Orchestrator achieves a score of 37.1%, outperforming GPT-5 (35.1%) while being 2.5x more efficient. On tau2-Bench and FRAMES, Orchestrator surpasses GPT-5 by a wide margin while using only about 30% of the cost. Extensive analysis shows that Orchestrator achieves the best trade-off between performance and cost under multiple metrics, and generalizes robustly to unseen tools. These results demonstrate that composing diverse tools with a lightweight orchestration model is both more efficient and more effective than existing methods, paving the way for practical and scalable tool-augmented reasoning systems.
comment: 21 pages, 6 figures
☆ Matrix: Peer-to-Peer Multi-Agent Synthetic Data Generation Framework
Synthetic data has become increasingly important for training large language models, especially when real data is scarce, expensive, or privacy-sensitive. Many such generation tasks require coordinated multi-agent workflows, where specialized agents collaborate to produce data that is higher quality, more diverse, and structurally richer. However, existing frameworks for multi-agent synthesis often depend on a centralized orchestrator, creating scalability bottlenecks, or are hardcoded for specific domains, limiting flexibility. We present \textbf{Matrix}, a decentralized framework that represents both control and data flow as serialized messages passed through distributed queues. This peer-to-peer design eliminates the central orchestrator. Each task progresses independently through lightweight agents, while compute-intensive operations, such as LLM inference or containerized environments, are handled by distributed services. Built on Ray, Matrix scales to tens of thousands of concurrent agentic workflows and provides a modular, configurable design that enables easy adaptation to a wide range of data generation workflows. We evaluate Matrix across diverse synthesis scenarios, such as multi-agent collaborative dialogue, web-based reasoning data extraction, and tool-use trajectory generation in customer service environments. In all cases, Matrix achieves $2$--$15\times$ higher data generation throughput under identical hardware resources, without compromising output quality.
Agentic Learner with Grow-and-Refine Multimodal Semantic Memory
MLLMs exhibit strong reasoning on isolated queries, yet they operate de novo -- solving each problem independently and often repeating the same mistakes. Existing memory-augmented agents mainly store past trajectories for reuse. However, trajectory-based memory suffers from brevity bias, gradually losing essential domain knowledge. More critically, even in truly multimodal problem-solving settings, it records only a single-modality trace of past behavior, failing to preserve how visual attention and logical reasoning jointly contributed to the solution. This is fundamentally misaligned with human cognition: semantic memory is both multimodal and integrated, preserving visual and abstract knowledge through coordinated but distinct representational streams. We thus introduce ViLoMem, a dual-stream memory framework that constructs compact, schema-based memory. It separately encodes visual distraction patterns and logical reasoning errors, enabling MLLMs to learn from their successful and failed experiences. Following a grow-and-refine principle, the system incrementally accumulates and updates multimodal semantic knowledge -- preserving stable, generalizable strategies while avoiding catastrophic forgetting. Across six multimodal benchmarks, ViLoMem consistently improves pass@1 accuracy and substantially reduces repeated visual and logical errors. Ablations confirm the necessity of dual-stream memory with explicit distraction--hallucination separation, demonstrating the value of error-aware multimodal memory for lifelong and cross-domain agentic learning. Our project page will be available at https://weihao-bo.github.io/ViLoMeo-page.
☆ On Evolution-Based Models for Experimentation Under Interference
Causal effect estimation in networked systems is central to data-driven decision making. In such settings, interventions on one unit can spill over to others, and in complex physical or social systems, the interaction pathways driving these interference structures remain largely unobserved. We argue that for identifying population-level causal effects, it is not necessary to recover the exact network structure; instead, it suffices to characterize how those interactions contribute to the evolution of outcomes. Building on this principle, we study an evolution-based approach that investigates how outcomes change across observation rounds in response to interventions, hence compensating for missing network information. Using an exposure-mapping perspective, we give an axiomatic characterization of when the empirical distribution of outcomes follows a low-dimensional recursive equation, and identify minimal structural conditions under which such evolution mappings exist. We frame this as a distributional counterpart to difference-in-differences. Rather than assuming parallel paths for individual units, it exploits parallel evolution patterns across treatment scenarios to estimate counterfactual trajectories. A key insight is that treatment randomization plays a role beyond eliminating latent confounding; it induces an implicit sampling from hidden interference channels, enabling consistent learning about heterogeneous spillover effects. We highlight causal message passing as an instantiation of this method in dense networks while extending to more general interference structures, including influencer networks where a small set of units drives most spillovers. Finally, we discuss the limits of this approach, showing that strong temporal trends or endogenous interference can undermine identification.
☆ DSD: A Distributed Speculative Decoding Solution for Edge-Cloud Agile Large Model Serving
Large language model (LLM) inference often suffers from high decoding latency and limited scalability across heterogeneous edge-cloud environments. Existing speculative decoding (SD) techniques accelerate token generation but remain confined to single-node execution. We propose DSD, a distributed speculative decoding framework that extends SD to multi-device deployments through coordinated draft-target execution. Given the lack of prior work on simulating this paradigm, we first introduce DSD-Sim, a discrete-event simulator that captures network, batching, and scheduling dynamics. Building on insights from DSD-Sim, we further design an Adaptive Window Control (AWC) policy that dynamically adjusts speculation window size to optimize throughput. Experiments across diverse workloads show that DSD achieves up to 1.1x speedup and 9.7% higher throughput over existing SD baselines, enabling agile and scalable LLM serving across edge and cloud.
☆ Through the telecom lens: Are all training samples important?
The rise of AI in telecommunications, from optimizing Radio Access Networks to managing user experience, has sharply increased data volumes and training demands. Telecom data is often noisy, high-dimensional, costly to store, process, and label. Despite Ai's critical role, standard workflows still assume all training samples contribute equally. On the other hand, next generation systems require AI models that are accurate, efficient, and sustainable.The paper questions the assumptions of equal importance by focusing on applying and analyzing the roles of individual samples in telecom training and assessing whether the proposed model optimizes computation and energy use. we perform sample-level gradient analysis across epochs to identify patterns of influence and redundancy in model learning. Based on this, we propose a sample importance framework thats electively prioritizes impactful data and reduces computation without compromising accuracy. Experiments on three real-world telecom datasets show that our method [reserves performance while reducing data needs and computational overhead while advancing the goals of sustainable AI in telecommunications.
comment: 8pages, 1 table, 8 figures
☆ Escaping the Verifier: Learning to Reason via Demonstrations
Training Large Language Models (LLMs) to reason often relies on Reinforcement Learning (RL) with task-specific verifiers. However, many real-world reasoning-intensive tasks lack verifiers, despite offering abundant expert demonstrations that remain under-utilized for reasoning-focused training. We introduce RARO (Relativistic Adversarial Reasoning Optimization) that learns strong reasoning capabilities from only expert demonstrations via Inverse Reinforcement Learning. Our method sets up an adversarial interaction between a policy (generator) and a relativistic critic (discriminator): the policy learns to mimic expert answers, while the critic learns to compare and distinguish between policy and expert answers. Our method trains both the policy and the critic jointly and continuously via RL, and we identify the key stabilization techniques required for robust learning. Empirically, RARO significantly outperforms strong verifier-free baselines on all of our evaluation tasks -- Countdown, DeepMath, and Poetry Writing -- and enjoys the same robust scaling trends as RL on verifiable tasks. These results demonstrate that our method effectively elicits strong reasoning performance from expert demonstrations alone, enabling robust reasoning learning even when task-specific verifiers are unavailable.
☆ EvilGenie: A Reward Hacking Benchmark
We introduce EvilGenie, a benchmark for reward hacking in programming settings. We source problems from LiveCodeBench and create an environment in which agents can easily reward hack, such as by hardcoding test cases or editing the testing files. We measure reward hacking in three ways: held out unit tests, LLM judges, and test file edit detection. We verify these methods against human review and each other. We find the LLM judge to be highly effective at detecting reward hacking in unambiguous cases, and observe only minimal improvement from the use of held out test cases. In addition to testing many models using Inspect's basic_agent scaffold, we also measure reward hacking rates for three popular proprietary coding agents: OpenAI's Codex, Anthropic's Claude Code, and Google's Gemini CLI Using GPT-5, Claude Sonnet 4, and Gemini 2.5 Pro, respectively. We observe explicit reward hacking by both Codex and Claude Code, and misaligned behavior by all three agents. Our codebase can be found at https://github.com/JonathanGabor/EvilGenie.
☆ Continual Error Correction on Low-Resource Devices
The proliferation of AI models in everyday devices has highlighted a critical challenge: prediction errors that degrade user experience. While existing solutions focus on error detection, they rarely provide efficient correction mechanisms, especially for resource-constrained devices. We present a novel system enabling users to correct AI misclassifications through few-shot learning, requiring minimal computational resources and storage. Our approach combines server-side foundation model training with on-device prototype-based classification, enabling efficient error correction through prototype updates rather than model retraining. The system consists of two key components: (1) a server-side pipeline that leverages knowledge distillation to transfer robust feature representations from foundation models to device-compatible architectures, and (2) a device-side mechanism that enables ultra-efficient error correction through prototype adaptation. We demonstrate our system's effectiveness on both image classification and object detection tasks, achieving over 50% error correction in one-shot scenarios on Food-101 and Flowers-102 datasets while maintaining minimal forgetting (less than 0.02%) and negligible computational overhead. Our implementation, validated through an Android demonstration app, proves the system's practicality in real-world scenarios.
comment: ACM MMSys 2025
☆ Aligning LLMs Toward Multi-Turn Conversational Outcomes Using Iterative PPO
Optimizing large language models (LLMs) for multi-turn conversational outcomes remains a significant challenge, especially in goal-oriented settings like AI marketing or sales agents who facilitate transactions via messaging platforms. The difficulty stems from sparse, long-horizon rewards and the discrepancy between response-level planning and token-level generation. In this technical note, we propose a formal reduction of the multi-turn RL problem into a sequence of single-turn RLHF-style problems. This is achieved by setting a learned multi-turn Q-function as the reward model for the single-turn problem. We demonstrate and prove a key insight: solving this single-turn RL problem with standard token-level PPO is equivalent to a policy improvement step within the multi-turn problem. This insight naturally leads to Iterative PPO, a batch online policy iteration algorithm that alternates between fitting Q-functions from logged conversation trajectories and improving the policy. A major practical advantage is that Iterative PPO directly leverages stable, off-the-shelf single-turn RLHF tools, making it straightforward to implement. Our method occupies a middle ground between fully online and fully offline approaches, retaining the adaptability of online updates while gaining the stability benefits of offline training.
comment: 12 pages, 2 figures
☆ Mechanisms of Non-Monotonic Scaling in Vision Transformers
Deeper Vision Transformers often perform worse than shallower ones, which challenges common scaling assumptions. Through a systematic empirical analysis of ViT-S, ViT-B, and ViT-L on ImageNet, we identify a consistent three-phase Cliff-Plateau-Climb pattern that governs how representations evolve with depth. We observe that better performance is associated with progressive marginalization of the [CLS] token, originally designed as a global aggregation hub, in favor of distributed consensus among patch tokens. We quantify patterns of information mixing with an Information Scrambling Index, and show that in ViT-L the information-task tradeoff emerges roughly 10 layers later than in ViT-B, and that these additional layers correlate with increased information diffusion rather than improved task performance. Taken together, these results suggest that transformer architectures in this regime may benefit more from carefully calibrated depth that executes clean phase transitions than from simply increasing parameter count. The Information Scrambling Index provides a useful diagnostic for existing models and suggests a potential design target for future architectures. All code is available at: https://github.com/AnanthaPadmanaban-KrishnaKumar/Cliff-Plateau-Climb.
comment: 16 pages total (11 pages main text, 1 pages references, 4 pages appendix), 5 figures, 11 tables. Code available at https://github.com/AnanthaPadmanaban-KrishnaKumar/Cliff-Plateau-Climb
☆ Scale-Agnostic Kolmogorov-Arnold Geometry in Neural Networks
Recent work by Freedman and Mulligan demonstrated that shallow multilayer perceptrons spontaneously develop Kolmogorov-Arnold geometric (KAG) structure during training on synthetic three-dimensional tasks. However, it remained unclear whether this phenomenon persists in realistic high-dimensional settings and what spatial properties this geometry exhibits. We extend KAG analysis to MNIST digit classification (784 dimensions) using 2-layer MLPs with systematic spatial analysis at multiple scales. We find that KAG emerges during training and appears consistently across spatial scales, from local 7-pixel neighborhoods to the full 28x28 image. This scale-agnostic property holds across different training procedures: both standard training and training with spatial augmentation produce the same qualitative pattern. These findings reveal that neural networks spontaneously develop organized, scale-invariant geometric structure during learning on realistic high-dimensional data.
☆ On the Origin of Algorithmic Progress in AI
Algorithms have been estimated to increase AI training FLOP efficiency by a factor of 22,000 between 2012 and 2023 [Ho et al., 2024]. Running small-scale ablation experiments on key innovations from this time period, we are able to account for less than 10x of these gains. Surveying the broader literature, we estimate that additional innovations not included in our ablations account for less than 10x, yielding a total under 100x. This leads us to conduct scaling experiments, which reveal that much of this efficiency gap can be explained by algorithms with scale-dependent efficiency improvements. In particular, we conduct scaling experiments between LSTMs and Transformers, finding exponent differences in their compute-optimal scaling law while finding little scaling difference for many other innovations. These experiments demonstrate that - contrary to standard assumptions - an algorithm's efficiency gains are tied to compute scale. Using experimental extrapolation and literature estimates, we account for 6,930x efficiency gains over the same time period, with the scale-dependent LSTM-to-Transformer transition accounting for the majority of gains. Our results indicate that algorithmic progress for small models has been far slower than previously assumed, and that measures of algorithmic efficiency are strongly reference-dependent.
☆ Beyond URLs: Metadata Diversity and Position for Efficient LLM Pretraining
Incorporating metadata in Large Language Models (LLMs) pretraining has recently emerged as a promising approach to accelerate training. However prior work highlighted only one useful signal-URLs, leaving open the question of whether other forms of metadata could yield greater benefits. In this study, we investigate a wider range of metadata types and find other types of metadata, such as fine-grained indicators of document quality that can also accelerate pretraining when prepended. We identify a common feature among effective metadata: they encode information at a finer granularity. We further introduce metadata appending as a means of improving training efficiency, where predicting an appropriate metadata as auxiliary task can help speed up pretraining. In addition, learnable meta-tokens trained with masked loss can recover part of the speedup by inducing quality-aware latent structure. Using probing, we analyze latent representations to understand how metadata shapes learning. Together, these results yield practical guidelines for integrating metadata to improve both the efficiency and effectiveness of LLM pretraining.
☆ Beyond Accuracy: An Empirical Study of Uncertainty Estimation in Imputation
Handling missing data is a central challenge in data-driven analysis. Modern imputation methods not only aim for accurate reconstruction but also differ in how they represent and quantify uncertainty. Yet, the reliability and calibration of these uncertainty estimates remain poorly understood. This paper presents a systematic empirical study of uncertainty in imputation, comparing representative methods from three major families: statistical (MICE, SoftImpute), distribution alignment (OT-Impute), and deep generative (GAIN, MIWAE, TabCSDI). Experiments span multiple datasets, missingness mechanisms (MCAR, MAR, MNAR), and missingness rates. Uncertainty is estimated through three complementary routes: multi-run variability, conditional sampling, and predictive-distribution modeling, and evaluated using calibration curves and the Expected Calibration Error (ECE). Results show that accuracy and calibration are often misaligned: models with high reconstruction accuracy do not necessarily yield reliable uncertainty. We analyze method-specific trade-offs among accuracy, calibration, and runtime, identify stable configurations, and offer guidelines for selecting uncertainty-aware imputers in data cleaning and downstream machine learning pipelines.
comment: To appear in conference proceedings
☆ TAB-DRW: A DFT-based Robust Watermark for Generative Tabular Data
The rise of generative AI has enabled the production of high-fidelity synthetic tabular data across fields such as healthcare, finance, and public policy, raising growing concerns about data provenance and misuse. Watermarking offers a promising solution to address these concerns by ensuring the traceability of synthetic data, but existing methods face many limitations: they are computationally expensive due to reliance on large diffusion models, struggle with mixed discrete-continuous data, or lack robustness to post-modifications. To address them, we propose TAB-DRW, an efficient and robust post-editing watermarking scheme for generative tabular data. TAB-DRW embeds watermark signals in the frequency domain: it normalizes heterogeneous features via the Yeo-Johnson transformation and standardization, applies the discrete Fourier transform (DFT), and adjusts the imaginary parts of adaptively selected entries according to precomputed pseudorandom bits. To further enhance robustness and efficiency, we introduce a novel rank-based pseudorandom bit generation method that enables row-wise retrieval without incurring storage overhead. Experiments on five benchmark tabular datasets show that TAB-DRW achieves strong detectability and robustness against common post-processing attacks, while preserving high data fidelity and fully supporting mixed-type features.
☆ Visualizing LLM Latent Space Geometry Through Dimensionality Reduction
Large language models (LLMs) achieve state-of-the-art results across many natural language tasks, but their internal mechanisms remain difficult to interpret. In this work, we extract, process, and visualize latent state geometries in Transformer-based language models through dimensionality reduction. We capture layerwise activations at multiple points within Transformer blocks and enable systematic analysis through Principal Component Analysis (PCA) and Uniform Manifold Approximation (UMAP). We demonstrate experiments on GPT-2 and LLaMa models, where we uncover interesting geometric patterns in latent space. Notably, we identify a clear separation between attention and MLP component outputs across intermediate layers, a pattern not documented in prior work to our knowledge. We also characterize the high norm of latent states at the initial sequence position and visualize the layerwise evolution of latent states. Additionally, we demonstrate the high-dimensional helical structure of GPT-2's positional embeddings, the sequence-wise geometric patterns in LLaMa, and experiment with repeating token sequences. We aim to support systematic analysis of Transformer internals with the goal of enabling further reproducible interpretability research. We make our code available at https://github.com/Vainateya/Feature_Geometry_Visualization.
comment: 24 pages, 16 figures
☆ An AI-Enabled Hybrid Cyber-Physical Framework for Adaptive Control in Smart Grids
Smart grids are a fusion of classical power infrastructure and advanced communication networks and smart control, to create a cyber-physical environment that is more efficient and flexible than ever before. This integration causes vulnerabilities that can undermine grid stability as well as reliability. Digital forensics is a fundamental concept of learning and identifying, detecting, and mitigating such security incidents. This paper presents an all-in-one machine learning-based digital forensic framework of smart grid systems deployed on the Cloud. The framework combines the data acquisition at the sensor-level, authenticated communication, scalable cloud storage and automated forensic analytics. The model uses supervised and unsupervised learning algorithms - such as Random Forest, Support Vector Machine, Gradient Boosted Trees and deep neural architectures for anomaly detection, event reconstruction and intrusion analysis in real time. After several simulation and experimental studies on real-time smart-meter data streams, the proposed framework is shown to be very accurate, scalable and resilient to cyber-attacks including data tampering, false-data injection and coordinated control-loop manipulation. The results indicate that cloud services are the best backbone for big-data-driven forensic workflows, which allows energy utilities to achieve a fast situational awareness and intelligent incident response.
comment: 16 pages, 11 figures, IEEEaccess journal
☆ Learning When to Stop: Adaptive Latent Reasoning via Reinforcement Learning
Latent reasoning represents a new development in Transformer language models that has shown potential in compressing reasoning lengths compared to chain-of-thought reasoning. By directly passing the information-rich previous final latent state into the next sequence, latent reasoning removes the restriction to human language tokens as the medium for reasoning. We develop adaptive-length latent reasoning models and introduce a post-SFT reinforcement-learning methodology to optimize latent reasoning length by minimizing reasoning length while maintaining accuracy. This, in turn, further reduces compute usage and raises the bar on the compressive capabilities of latent reasoning models. Experiments on the Llama 3.2 1B model and the GSM8K-Aug dataset show a $52\%$ drop in total reasoning length with no penalty to accuracy. In future work, we plan to extend to additional models and datasets, analyze relationships between training coefficients, experiment with architecture variations, and continue our knowledge distillation for latent reasoning SFT efforts. We make our code and pretrained weights available at https://github.com/apning/adaptive-latent-reasoning.
comment: 13 pages, 6 figures
☆ A decoupled alignment kernel for peptide membrane permeability predictions
Cyclic peptides are promising modalities for targeting intracellular sites; however, cell-membrane permeability remains a key bottleneck, exacerbated by limited public data and the need for well-calibrated uncertainty. Instead of relying on data-eager complex deep learning architecture, we propose a monomer-aware decoupled global alignment kernel (MD-GAK), which couples chemically meaningful residue-residue similarity with sequence alignment while decoupling local matches from gap penalties. MD-GAK is a relatively simple kernel. To further demonstrate the robustness of our framework, we also introduce a variant, PMD-GAK, which incorporates a triangular positional prior. As we will show in the experimental section, PMD-GAK can offer additional advantages over MD-GAK, particularly in reducing calibration errors. Since our focus is on uncertainty estimation, we use Gaussian Processes as the predictive model, as both MD-GAK and PMD-GAK can be directly applied within this framework. We demonstrate the effectiveness of our methods through an extensive set of experiments, comparing our fully reproducible approach against state-of-the-art models, and show that it outperforms them across all metrics.
comment: submitted to Journal of Cheminformatics
☆ Machine Learning Approaches to Clinical Risk Prediction: Multi-Scale Temporal Alignment in Electronic Health Records
This study proposes a risk prediction method based on a Multi-Scale Temporal Alignment Network (MSTAN) to address the challenges of temporal irregularity, sampling interval differences, and multi-scale dynamic dependencies in Electronic Health Records (EHR). The method focuses on temporal feature modeling by introducing a learnable temporal alignment mechanism and a multi-scale convolutional feature extraction structure to jointly model long-term trends and short-term fluctuations in EHR sequences. At the input level, the model maps multi-source clinical features into a unified high-dimensional semantic space and employs temporal embedding and alignment modules to dynamically weight irregularly sampled data, reducing the impact of temporal distribution differences on model performance. The multi-scale feature extraction module then captures key patterns across different temporal granularities through multi-layer convolution and hierarchical fusion, achieving a fine-grained representation of patient states. Finally, an attention-based aggregation mechanism integrates global temporal dependencies to generate individual-level risk representations for disease risk prediction and health status assessment. Experiments conducted on publicly available EHR datasets show that the proposed model outperforms mainstream baselines in accuracy, recall, precision, and F1-Score, demonstrating the effectiveness and robustness of multi-scale temporal alignment in complex medical time-series analysis. This study provides a new solution for intelligent representation of high-dimensional asynchronous medical sequences and offers important technical support for EHR-driven clinical risk prediction.
comment: 5 pages, 3 figures
☆ Computing Strategic Responses to Non-Linear Classifiers
We consider the problem of strategic classification, where the act of deploying a classifier leads to strategic behaviour that induces a distribution shift on subsequent observations. Current approaches to learning classifiers in strategic settings are focused primarily on the linear setting, but in many cases non-linear classifiers are more suitable. A central limitation to progress for non-linear classifiers arises from the inability to compute best responses in these settings. We present a novel method for computing the best response by optimising the Lagrangian dual of the Agents' objective. We demonstrate that our method reproduces best responses in linear settings, identifying key weaknesses in existing approaches. We present further results demonstrating our method can be straight-forwardly applied to non-linear classifier settings, where it is useful for both evaluation and training.
☆ MMA: A Momentum Mamba Architecture for Human Activity Recognition with Inertial Sensors
Human activity recognition (HAR) from inertial sensors is essential for ubiquitous computing, mobile health, and ambient intelligence. Conventional deep models such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and transformers have advanced HAR but remain limited by vanishing or exloding gradients, high computational cost, and difficulty in capturing long-range dependencies. Structured state-space models (SSMs) like Mamba address these challenges with linear complexity and effective temporal modeling, yet they are restricted to first-order dynamics without stable longterm memory mechanisms. We introduce Momentum Mamba, a momentum-augmented SSM that incorporates second-order dynamics to improve stability of information flow across time steps, robustness, and long-sequence modeling. Two extensions further expand its capacity: Complex Momentum Mamba for frequency-selective memory scaling. Experiments on multiple HAR benchmarks demonstrate consistent gains over vanilla Mamba and Transformer baselines in accuracy, robustness, and convergence speed. With only moderate increases in training cost, momentum-augmented SSMs offer a favorable accuracy-efficiency balance, establishing them as a scalable paradigm for HAR and a promising principal framework for broader sequence modeling applications.
comment: 14 pages, 5 pages
☆ Context-Specific Causal Graph Discovery with Unobserved Contexts: Non-Stationarity, Regimes and Spatio-Temporal Patterns
Real-world data, for example in climate applications, often consists of spatially gridded time series data or data with comparable structure. While the underlying system is often believed to behave similar at different points in space and time, those variations that do exist are twofold relevant: They often encode important information in and of themselves. And they may negatively affect the stability / convergence and reliability\Slash{}validity of results of algorithms assuming stationarity or space-translation invariance. We study the information encoded in changes of the causal graph, with stability in mind. An analysis of this general task identifies two core challenges. We develop guiding principles to overcome these challenges, and provide a framework realizing these principles by modifying constraint-based causal discovery approaches on the level of independence testing. This leads to an extremely modular, easily extensible and widely applicable framework. It can leverage existing constraint-based causal discovery methods (demonstrated on IID-algorithms PC, PC-stable, FCI and time series algorithms PCMCI, PCMCI+, LPCMCI) with little to no modification. The built-in modularity allows to systematically understand and improve upon an entire array of subproblems. By design, it can be extended by leveraging insights from change-point-detection, clustering, independence-testing and other well-studied related problems. The division into more accessible sub-problems also simplifies the understanding of fundamental limitations, hyperparameters controlling trade-offs and the statistical interpretation of results. An open-source implementation will be available soon.
☆ Predictive Safety Shield for Dyna-Q Reinforcement Learning
Obtaining safety guarantees for reinforcement learning is a major challenge to achieve applicability for real-world tasks. Safety shields extend standard reinforcement learning and achieve hard safety guarantees. However, existing safety shields commonly use random sampling of safe actions or a fixed fallback controller, therefore disregarding future performance implications of different safe actions. In this work, we propose a predictive safety shield for model-based reinforcement learning agents in discrete space. Our safety shield updates the Q-function locally based on safe predictions, which originate from a safe simulation of the environment model. This shielding approach improves performance while maintaining hard safety guarantees. Our experiments on gridworld environments demonstrate that even short prediction horizons can be sufficient to identify the optimal path. We observe that our approach is robust to distribution shifts, e.g., between simulation and reality, without requiring additional training.
☆ Phase Transition for Stochastic Block Model with more than $\sqrt{n}$ Communities (II)
A fundamental theoretical question in network analysis is to determine under which conditions community recovery is possible in polynomial time in the Stochastic Block Model (SBM). When the number $K$ of communities remains smaller than $\sqrt{n}$ --where $n$ denotes the number of nodes--, non-trivial community recovery is possible in polynomial time above, and only above, the Kesten--Stigum (KS) threshold, originally postulated using arguments from statistical physics. When $K \geq \sqrt{n}$, Chin, Mossel, Sohn, and Wein recently proved that, in the \emph{sparse regime}, community recovery in polynomial time is achievable below the KS threshold by counting non-backtracking paths. This finding led them to postulate a new threshold for the many-communities regime $K \geq \sqrt{n}$. Subsequently, Carpentier, Giraud, and Verzelen established the failure of low-degree polynomials below this new threshold across all density regimes, and demonstrated successful recovery above the threshold in certain moderately sparse settings. While these results provide strong evidence that, in the many community setting, the computational barrier lies at the threshold proposed in~Chin et al., the question of achieving recovery above this threshold still remains open in most density regimes. The present work is a follow-up to~Carpentier et al., in which we prove Conjecture~1.4 stated therein by: \\ 1- Constructing a family of motifs satisfying specific structural properties; and\\ 2- Proving that community recovery is possible above the proposed threshold by counting such motifs.\\ Our results complete the picture of the computational barrier for community recovery in the SBM with $K \geq \sqrt{n}$ communities. They also indicate that, in moderately sparse regimes, the optimal algorithms appear to be fundamentally different from spectral methods.
☆ Mechanistic Interpretability for Transformer-based Time Series Classification
Transformer-based models have become state-of-the-art tools in various machine learning tasks, including time series classification, yet their complexity makes understanding their internal decision-making challenging. Existing explainability methods often focus on input-output attributions, leaving the internal mechanisms largely opaque. This paper addresses this gap by adapting various Mechanistic Interpretability techniques; activation patching, attention saliency, and sparse autoencoders, from NLP to transformer architectures designed explicitly for time series classification. We systematically probe the internal causal roles of individual attention heads and timesteps, revealing causal structures within these models. Through experimentation on a benchmark time series dataset, we construct causal graphs illustrating how information propagates internally, highlighting key attention heads and temporal positions driving correct classifications. Additionally, we demonstrate the potential of sparse autoencoders for uncovering interpretable latent features. Our findings provide both methodological contributions to transformer interpretability and novel insights into the functional mechanics underlying transformer performance in time series classification tasks.
☆ IntAttention: A Fully Integer Attention Pipeline for Efficient Edge Inference
Deploying Transformer models on edge devices is limited by latency and energy budgets. While INT8 quantization effectively accelerates the primary matrix multiplications, it exposes the softmax as the dominant bottleneck. This stage incurs a costly dequantize-softmax-requantize detour, which can account for up to 65% of total attention latency and disrupts the end-to-end integer dataflow critical for edge hardware efficiency. To address this limitation, we present IntAttention, the first fully integer, plug-and-play attention pipeline without retraining. At the core of our approach lies IndexSoftmax, a hardware-friendly operator that replaces floating-point exponentials entirely within the integer domain. IntAttention integrates sparsity-aware clipping, a 32-entry lookup-table approximation, and direct integer normalization, thereby eliminating all datatype conversion overhead. We evaluate IntAttention and demonstrate consistent and substantial gains. Our method achieves up to 3.7x speedup and 61% energy reduction over FP16 baselines and 2.0x faster than conventional INT8 attention pipelines on Armv8 CPUs. These gains are achieved with high-fidelity accuracy comparable to baselines across diverse language and vision models, enabling practical and efficient Transformer inference on commodity edge devices. Code will be released in later version of this work.
☆ Lost in Time? A Meta-Learning Framework for Time-Shift-Tolerant Physiological Signal Transformation AAAI
Translating non-invasive signals such as photoplethysmography (PPG) and ballistocardiography (BCG) into clinically meaningful signals like arterial blood pressure (ABP) is vital for continuous, low-cost healthcare monitoring. However, temporal misalignment in multimodal signal transformation impairs transformation accuracy, especially in capturing critical features like ABP peaks. Conventional synchronization methods often rely on strong similarity assumptions or manual tuning, while existing Learning with Noisy Labels (LNL) approaches are ineffective under time-shifted supervision, either discarding excessive data or failing to correct label shifts. To address this challenge, we propose ShiftSyncNet, a meta-learning-based bi-level optimization framework that automatically mitigates performance degradation due to time misalignment. It comprises a transformation network (TransNet) and a time-shift correction network (SyncNet), where SyncNet learns time offsets between training pairs and applies Fourier phase shifts to align supervision signals. Experiments on one real-world industrial dataset and two public datasets show that ShiftSyncNet outperforms strong baselines by 9.4%, 6.0%, and 12.8%, respectively. The results highlight its effectiveness in correcting time shifts, improving label quality, and enhancing transformation accuracy across diverse misalignment scenarios, pointing toward a unified direction for addressing temporal inconsistencies in multimodal physiological transformation.
comment: The 40th Annual AAAI Conference on Artificial Intelligence (AAAI 26)
☆ Merge and Bound: Direct Manipulations on Weights for Class Incremental Learning
We present a novel training approach, named Merge-and-Bound (M&B) for Class Incremental Learning (CIL), which directly manipulates model weights in the parameter space for optimization. Our algorithm involves two types of weight merging: inter-task weight merging and intra-task weight merging. Inter-task weight merging unifies previous models by averaging the weights of models from all previous stages. On the other hand, intra-task weight merging facilitates the learning of current task by combining the model parameters within current stage. For reliable weight merging, we also propose a bounded update technique that aims to optimize the target model with minimal cumulative updates and preserve knowledge from previous tasks; this strategy reveals that it is possible to effectively obtain new models near old ones, reducing catastrophic forgetting. M&B is seamlessly integrated into existing CIL methods without modifying architecture components or revising learning objectives. We extensively evaluate our algorithm on standard CIL benchmarks and demonstrate superior performance compared to state-of-the-art methods.
☆ Going with the Speed of Sound: Pushing Neural Surrogates into Highly-turbulent Transonic Regimes NeurIPS 2025
The widespread use of neural surrogates in automotive aerodynamics, enabled by datasets such as DrivAerML and DrivAerNet++, has primarily focused on bluff-body flows with large wakes. Extending these methods to aerospace, particularly in the transonic regime, remains challenging due to the high level of non-linearity of compressible flows and 3D effects such as wingtip vortices. Existing aerospace datasets predominantly focus on 2D airfoils, neglecting these critical 3D phenomena. To address this gap, we present a new dataset of CFD simulations for 3D wings in the transonic regime. The dataset comprises volumetric and surface-level fields for around $30,000$ samples with unique geometry and inflow conditions. This allows computation of lift and drag coefficients, providing a foundation for data-driven aerodynamic optimization of the drag-lift Pareto front. We evaluate several state-of-the-art neural surrogates on our dataset, including Transolver and AB-UPT, focusing on their out-of-distribution (OOD) generalization over geometry and inflow variations. AB-UPT demonstrates strong performance for transonic flowfields and reproduces physically consistent drag-lift Pareto fronts even for unseen wing configurations. Our results demonstrate that AB-UPT can approximate drag-lift Pareto fronts for unseen geometries, highlighting its potential as an efficient and effective tool for rapid aerodynamic design exploration. To facilitate future research, we open-source our dataset at https://huggingface.co/datasets/EmmiAI/Emmi-Wing.
comment: NeurIPS 2025 ML4PS Workshop
☆ Mean-Field Limits for Two-Layer Neural Networks Trained with Consensus-Based Optimization
We study two-layer neural networks and train these with a particle-based method called consensus-based optimization (CBO). We compare the performance of CBO against Adam on two test cases and demonstrate how a hybrid approach, combining CBO with Adam, provides faster convergence than CBO. In the context of multi-task learning, we recast CBO into a formulation that offers less memory overhead. The CBO method allows for a mean-field limit formulation, which we couple with the mean-field limit of the neural network. To this end, we first reformulate CBO within the optimal transport framework. Finally, in the limit of infinitely many particles, we define the corresponding dynamics on the Wasserstein-over-Wasserstein space and show that the variance decreases monotonically.
☆ Ensemble Performance Through the Lens of Linear Independence of Classifier Votes in Data Streams
Ensemble learning improves classification performance by combining multiple base classifiers. While increasing the number of classifiers generally enhances accuracy, excessively large ensembles can lead to computational inefficiency and diminishing returns. This paper investigates the relationship between ensemble size and performance through the lens of linear independence among classifier votes in data streams. We propose that ensembles composed of linearly independent classifiers maximize representational capacity, particularly under a geometric model. We then generalize the importance of linear independence to the weighted majority voting problem. By modeling the probability of achieving linear independence among classifier outputs, we derive a theoretical framework that explains the trade-off between ensemble size and accuracy. Our analysis leads to a theoretical estimate of the ensemble size required to achieve a user-specified probability of linear independence. We validate our theory through experiments on both real-world and synthetic datasets using two ensemble methods, OzaBagging and GOOWE. Our results confirm that this theoretical estimate effectively identifies the point of performance saturation for robust ensembles like OzaBagging. Conversely, for complex weighting schemes like GOOWE, our framework reveals that high theoretical diversity can trigger algorithmic instability. Our implementation is publicly available to support reproducibility and future research.
comment: 14 pages, 3 figures, 5 tables
☆ A Systematic Study of Model Merging Techniques in Large Language Models
Model merging combines multiple fine-tuned checkpoints into a single model without additional training, offering an attractive approach to reusing models and efficiently improving performance. However, it remains unclear whether the advantages reported for smaller models and classifiers generalize to LLMs. We present a large-scale, systematic evaluation of six state-of-the-art merging methods, including recent subspace methods, across four open-weight LLMs, twelve fine-tuned checkpoints per base model, and sixteen standard LLM benchmarks. Evaluating through standardized benchmarks, we measure both the probability that a merged model outperforms the base model and relative gains over the best individual checkpoint. Our results show that the oldest and simplest method, Task Arithmetic, is the only approach that reliably yields performance gains on LLMs. Other interference-aware and subspace merging methods typically result in significant performance drops. Our findings indicate that current merging techniques do not directly transfer to modern LLMs. This motivates the design of LLM-specific merging algorithms and merging-aware fine-tuning methods. Code will be released upon acceptance of this paper.
☆ Odin: Oriented Dual-module Integration for Text-rich Network Representation Learning
Text-attributed graphs require models to effectively combine strong textual understanding with structurally informed reasoning. Existing approaches either rely on GNNs--limited by over-smoothing and hop-dependent diffusion--or employ Transformers that overlook graph topology and treat nodes as isolated sequences. We propose Odin (Oriented Dual-module INtegration), a new architecture that injects graph structure into Transformers at selected depths through an oriented dual-module mechanism.Unlike message-passing GNNs, Odin does not rely on multi-hop diffusion; instead, multi-hop structures are integrated at specific Transformer layers, yielding low-, mid-, and high-level structural abstraction aligned with the model's semantic hierarchy. Because aggregation operates on the global [CLS] representation, Odin fundamentally avoids over-smoothing and decouples structural abstraction from neighborhood size or graph topology. We further establish that Odin's expressive power strictly contains that of both pure Transformers and GNNs.To make the design efficient in large-scale or low-resource settings, we introduce Light Odin, a lightweight variant that preserves the same layer-aligned structural abstraction for faster training and inference. Experiments on multiple text-rich graph benchmarks show that Odin achieves state-of-the-art accuracy, while Light Odin delivers competitive performance with significantly reduced computational cost. Together, Odin and Light Odin form a unified, hop-free framework for principled structure-text integration. The source code of this model has been released at https://github.com/hongkaifeng/Odin.
comment: 32 pages, 2 figures
☆ SUPN: Shallow Universal Polynomial Networks
Deep neural networks (DNNs) and Kolmogorov-Arnold networks (KANs) are popular methods for function approximation due to their flexibility and expressivity. However, they typically require a large number of trainable parameters to produce a suitable approximation. Beyond making the resulting network less transparent, overparameterization creates a large optimization space, likely producing local minima in training that have quite different generalization errors. In this case, network initialization can have an outsize impact on the model's out-of-sample accuracy. For these reasons, we propose shallow universal polynomial networks (SUPNs). These networks replace all but the last hidden layer with a single layer of polynomials with learnable coefficients, leveraging the strengths of DNNs and polynomials to achieve sufficient expressivity with far fewer parameters. We prove that SUPNs converge at the same rate as the best polynomial approximation of the same degree, and we derive explicit formulas for quasi-optimal SUPN parameters. We complement theory with an extensive suite of numerical experiments involving SUPNs, DNNs, KANs, and polynomial projection in one, two, and ten dimensions, consisting of over 13,000 trained models. On the target functions we numerically studied, for a given number of trainable parameters, the approximation error and variability are often lower for SUPNs than for DNNs and KANs by an order of magnitude. In our examples, SUPNs even outperform polynomial projection on non-smooth functions.
comment: 25 pages, supplementary material
☆ Subjective Depth and Timescale Transformers: Learning Where and When to Compute
The rigid, uniform allocation of computation in standard Transformer (TF) architectures can limit their efficiency and scalability, particularly for large-scale models and long sequences. Addressing this, we introduce Subjective Depth Transformers (SDT) and Subjective Timescale Transformers (STT), two distinct architectures that leverage Bayesian surprise signals to dynamically route computation, learning where and when to compute within decoder-only TFs. SDT augments a decoder-only stack with alternating Decision and Dynamic layers: a Decision layer computes a full block 'posterior' and a lightweight 'prior,' while a Dynamic layer employs fixed-capacity Top-K routing based on Bayesian surprise (Expected and Unexpected Change), maintaining a static compute graph. STT extends this conditional computation to the temporal domain: a transition network predicts residual updates, forming a temporal 'change hypothesis' that informs a router to dynamically execute or bypass TF blocks for each token, managing KV-cache contributions. Both architectures exhibit the predicted shift from novelty to prediction driven gating over training, suggesting alignment with surprise based principles. While operating at reduced capacity, they offer preliminary insights into the compute-accuracy trade-offs of conditional computation. The proposed architectures establish a flexible framework for efficiency, reducing self-attention computation by 75% and KV-cache requirements by 50% within each compute skipping layer, setting a pathway for more efficient models.
☆ Do Reasoning Vision-Language Models Inversely Scale in Test-Time Compute? A Distractor-centric Empirical Analysis
How does irrelevant information (i.e., distractors) affect test-time scaling in vision-language models (VLMs)? Prior studies on language models have reported an inverse scaling effect, where textual distractors lead to longer but less effective reasoning. To investigate whether similar phenomena occur in multimodal settings, we introduce Idis (Images with distractors), a visual question-answering dataset that systematically varies distractors along semantic, numerical, and spatial dimensions. Our analyses reveal that visual distractors differ fundamentally from textual ones: although inverse scaling persists, adding visual distractors reduces accuracy without increasing reasoning length. We further show that tracking attribute counts within reasoning traces provides key insights into how distractors, reasoning length, and accuracy interact. Finally, we demonstrate that these trends extend to established visual bias benchmarks such as Waterbirds, and we propose a simple prompting strategy to mitigate bias-driven predictions in reasoning models.
comment: preprint
☆ BanglaASTE: A Novel Framework for Aspect-Sentiment-Opinion Extraction in Bangla E-commerce Reviews Using Ensemble Deep Learning
Aspect-Based Sentiment Analysis (ABSA) has emerged as a critical tool for extracting fine-grained sentiment insights from user-generated content, particularly in e-commerce and social media domains. However, research on Bangla ABSA remains significantly underexplored due to the absence of comprehensive datasets and specialized frameworks for triplet extraction in this language. This paper introduces BanglaASTE, a novel framework for Aspect Sentiment Triplet Extraction (ASTE) that simultaneously identifies aspect terms, opinion expressions, and sentiment polarities from Bangla product reviews. Our contributions include: (1) creation of the first annotated Bangla ASTE dataset containing 3,345 product reviews collected from major e-commerce platforms including Daraz, Facebook, and Rokomari; (2) development of a hybrid classification framework that employs graph-based aspect-opinion matching with semantic similarity techniques; and (3) implementation of an ensemble model combining BanglaBERT contextual embeddings with XGBoost boosting algorithms for enhanced triplet extraction performance. Experimental results demonstrate that our ensemble approach achieves superior performance with 89.9% accuracy and 89.1% F1-score, significantly outperforming baseline models across all evaluation metrics. The framework effectively addresses key challenges in Bangla text processing including informal expressions, spelling variations, and data sparsity. This research advances the state-of-the-art in low-resource language sentiment analysis and provides a scalable solution for Bangla e-commerce analytics applications.
comment: Presented at the 2025 IEEE International Conference on Signal Processing, Information, Communication and Systems (SPICSCON), November 21-22, 2025, University of Rajshahi, Bangladesh. 6 pages, ensemble deep learning, 3,345 annotated Bangla product reviews
☆ Anomaly Detection with Adaptive and Aggressive Rejection for Contaminated Training Data
Handling contaminated data poses a critical challenge in anomaly detection, as traditional models assume training on purely normal data. Conventional methods mitigate contamination by relying on fixed contamination ratios, but discrepancies between assumed and actual ratios can severely degrade performance, especially in noisy environments where normal and abnormal data distributions overlap. To address these limitations, we propose Adaptive and Aggressive Rejection (AAR), a novel method that dynamically excludes anomalies using a modified z-score and Gaussian mixture model-based thresholds. AAR effectively balances the trade-off between preserving normal data and excluding anomalies by integrating hard and soft rejection strategies. Extensive experiments on two image datasets and thirty tabular datasets demonstrate that AAR outperforms the state-of-the-art method by 0.041 AUROC. By providing a scalable and reliable solution, AAR enhances robustness against contaminated datasets, paving the way for broader real-world applications in domains such as security and healthcare.
☆ Controlling changes to attention logits
Stability of neural network weights is critical when training transformer models. The query and key weights are particularly problematic, as they tend to grow large without any intervention. Applying normalization to queries and keys, known as `QK norm', fixes stability issues in practice, but is not always applicable. For example, QK norm is not compatible with Multi Latent Attention (MLA) because QK norm requires full materialization of queries and keys during inference, which is not done in MLA. In this paper we suggest that controlling the changes to logits is important for stability. We show that these changes are controllable by assigning parameter-dependent learning rates to the query and key weights. We find that our cheap intervention allows us to increase the base learning rate of the network, outperform other methods in the MLA setting, and achieve performance competitive with QK norm when using Multi-head Attention.
☆ Differentiable Physics-Neural Models enable Learning of Non-Markovian Closures for Accelerated Coarse-Grained Physics Simulations
Numerical simulations provide key insights into many physical, real-world problems. However, while these simulations are solved on a full 3D domain, most analysis only require a reduced set of metrics (e.g. plane-level concentrations). This work presents a hybrid physics-neural model that predicts scalar transport in a complex domain orders of magnitude faster than the 3D simulation (from hours to less than 1 min). This end-to-end differentiable framework jointly learns the physical model parameterization (i.e. orthotropic diffusivity) and a non-Markovian neural closure model to capture unresolved, 'coarse-grained' effects, thereby enabling stable, long time horizon rollouts. This proposed model is data-efficient (learning with 26 training data), and can be flexibly extended to an out-of-distribution scenario (with a moving source), achieving a Spearman correlation coefficient of 0.96 at the final simulation time. Overall results show that this differentiable physics-neural framework enables fast, accurate, and generalizable coarse-grained surrogates for physical phenomena.
☆ BanglaMM-Disaster: A Multimodal Transformer-Based Deep Learning Framework for Multiclass Disaster Classification in Bangla
Natural disasters remain a major challenge for Bangladesh, so real-time monitoring and quick response systems are essential. In this study, we present BanglaMM-Disaster, an end-to-end deep learning-based multimodal framework for disaster classification in Bangla, using both textual and visual data from social media. We constructed a new dataset of 5,037 Bangla social media posts, each consisting of a caption and a corresponding image, annotated into one of nine disaster-related categories. The proposed model integrates transformer-based text encoders, including BanglaBERT, mBERT, and XLM-RoBERTa, with CNN backbones such as ResNet50, DenseNet169, and MobileNetV2, to process the two modalities. Using early fusion, the best model achieves 83.76% accuracy. This surpasses the best text-only baseline by 3.84% and the image-only baseline by 16.91%. Our analysis also shows reduced misclassification across all classes, with noticeable improvements for ambiguous examples. This work fills a key gap in Bangla multimodal disaster analysis and demonstrates the benefits of combining multiple data types for real-time disaster response in low-resource settings.
comment: Presented at the 2025 IEEE International Conference on Signal Processing, Information, Communication and Systems (SPICSCON), November 21-22, 2025, University of Rajshahi, Bangladesh. 6 pages, 9 disaster classes, multimodal dataset with 5,037 samples
☆ The Directed Prediction Change - Efficient and Trustworthy Fidelity Assessment for Local Feature Attribution Methods AAAI
The utility of an explanation method critically depends on its fidelity to the underlying machine learning model. Especially in high-stakes medical settings, clinicians and regulators require explanations that faithfully reflect the model's decision process. Existing fidelity metrics such as Infidelity rely on Monte Carlo approximation, which demands numerous model evaluations and introduces uncertainty due to random sampling. This work proposes a novel metric for evaluating the fidelity of local feature attribution methods by modifying the existing Prediction Change (PC) metric within the Guided Perturbation Experiment. By incorporating the direction of both perturbation and attribution, the proposed Directed Prediction Change (DPC) metric achieves an almost tenfold speedup and eliminates randomness, resulting in a deterministic and trustworthy evaluation procedure that measures the same property as local Infidelity. DPC is evaluated on two datasets (skin lesion images and financial tabular data), two black-box models, seven explanation algorithms, and a wide range of hyperparameters. Across $4\,744$ distinct explanations, the results demonstrate that DPC, together with PC, enables a holistic and computationally efficient evaluation of both baseline-oriented and local feature attribution methods, while providing deterministic and reproducible outcomes.
comment: 13 pages, 10 figures, 5 tables, accepted at AAAI SECURE-AI4H workshop
☆ Hybrid-AIRL: Enhancing Inverse Reinforcement Learning with Supervised Expert Guidance
Adversarial Inverse Reinforcement Learning (AIRL) has shown promise in addressing the sparse reward problem in reinforcement learning (RL) by inferring dense reward functions from expert demonstrations. However, its performance in highly complex, imperfect-information settings remains largely unexplored. To explore this gap, we evaluate AIRL in the context of Heads-Up Limit Hold'em (HULHE) poker, a domain characterized by sparse, delayed rewards and significant uncertainty. In this setting, we find that AIRL struggles to infer a sufficiently informative reward function. To overcome this limitation, we contribute Hybrid-AIRL (H-AIRL), an extension that enhances reward inference and policy learning by incorporating a supervised loss derived from expert data and a stochastic regularization mechanism. We evaluate H-AIRL on a carefully selected set of Gymnasium benchmarks and the HULHE poker setting. Additionally, we analyze the learned reward function through visualization to gain deeper insights into the learning process. Our experimental results show that H-AIRL achieves higher sample efficiency and more stable learning compared to AIRL. This highlights the benefits of incorporating supervised signals into inverse RL and establishes H-AIRL as a promising framework for tackling challenging, real-world settings.
comment: Comments: 13 pages, 5 figures, 1 table. Code: https://github.com/silue-dev/hairl. Submitted to ESANN 2026
☆ Best Practices for Machine Learning Experimentation in Scientific Applications
Machine learning (ML) is increasingly adopted in scientific research, yet the quality and reliability of results often depend on how experiments are designed and documented. Poor baselines, inconsistent preprocessing, or insufficient validation can lead to misleading conclusions about model performance. This paper presents a practical and structured guide for conducting ML experiments in scientific applications, focussing on reproducibility, fair comparison, and transparent reporting. We outline a step-by-step workflow, from dataset preparation to model selection and evaluation, and propose metrics that account for overfitting and instability across validation folds, including the Logarithmic Overfitting Ratio (LOR) and the Composite Overfitting Score (COS). Through recommended practices and example reporting formats, this work aims to support researchers in establishing robust baselines and drawing valid evidence-based insights from ML models applied to scientific problems.
☆ Learning Multi-Order Block Structure in Higher-Order Networks
Higher-order networks, naturally described as hypergraphs, are essential for modeling real-world systems involving interactions among three or more entities. Stochastic block models offer a principled framework for characterizing mesoscale organization, yet their extension to hypergraphs involves a trade-off between expressive power and computational complexity. A recent simplification, a single-order model, mitigates this complexity by assuming a single affinity pattern governs interactions of all orders. This universal assumption, however, may overlook order-dependent structural details. Here, we propose a framework that relaxes this assumption by introducing a multi-order block structure, in which different affinity patterns govern distinct subsets of interaction orders. Our framework is based on a multi-order stochastic block model and searches for the optimal partition of the set of interaction orders that maximizes out-of-sample hyperlink prediction performance. Analyzing a diverse range of real-world networks, we find that multi-order block structures are prevalent. Accounting for them not only yields better predictive performance over the single-order model but also uncovers sharper, more interpretable mesoscale organization. Our findings reveal that order-dependent mechanisms are a key feature of the mesoscale organization of real-world higher-order networks.
comment: 38 pages, 10 figures, and 7 tables
☆ Phase-Aware Code-Aided EM Algorithm for Blind Channel Estimation in PSK-Modulated OFDM
This paper presents a fully blind phase-aware expectation-maximization (EM) algorithm for OFDM systems with the phase-shift keying (PSK) modulation. We address the well-known local maximum problem of the EM algorithm for blind channel estimation. This is primarily caused by the unknown phase ambiguity in the channel estimates, which conventional blind EM estimators cannot resolve. To overcome this limitation, we propose to exploit the extrinsic information from the decoder as model evidence metrics. A finite set of candidate models is generated based on the inherent symmetries of PSK modulation, and the decoder selects the most likely candidate model. Simulation results demonstrate that, when combined with a simple convolutional code, the phase-aware EM algorithm reliably resolves phase ambiguity during the initialization stage and reduces the local convergence rate from 80% to nearly 0% in frequency-selective channels with a constant phase ambiguity. The algorithm is invoked only once after the EM initialization stage, resulting in negligible additional complexity during subsequent turbo iterations.
comment: preprint
☆ Masks Can Be Distracting: On Context Comprehension in Diffusion Language Models
Masked Diffusion Language Models (MDLMs) have recently emerged as a promising alternative to Autoregressive Language Models (ARLMs), leveraging a denoising objective that, in principle, should enable more uniform context utilisation. In this work, we examine the context comprehension abilities of MDLMs and uncover two key limitations. First, despite their more global training objective and bidirectional attention mechanism, similarly to ARLMS, MDLMs exhibit a strong locality bias: performance is highly sensitive to the position of relevant information within the input, favouring local over distant context. Second, we show that appending a large number of mask tokens--required for generation--can significantly degrade context comprehension. Through systematic ablations, we find that these masks act as distractors, reducing the model's ability to process relevant information. To address this, we introduce a mask-agnostic loss function that encourages predictions to remain invariant to the number of appended masks. Fine-tuning with this objective substantially mitigates the distracting effect of masks, improving robustness of MDLMs. Overall, our findings reveal critical limitations of the current MDLM training paradigm and provide actionable insights for building diffusion-based language models with stronger context comprehension.
☆ TSGM: Regular and Irregular Time-series Generation using Score-based Generative Models
Score-based generative models (SGMs) have demonstrated unparalleled sampling quality and diversity in numerous fields, such as image generation, voice synthesis, and tabular data synthesis, etc. Inspired by those outstanding results, we apply SGMs to synthesize time-series by learning its conditional score function. To this end, we present a conditional score network for time-series synthesis, deriving a denoising score matching loss tailored for our purposes. In particular, our presented denoising score matching loss is the conditional denoising score matching loss for time-series synthesis. In addition, our framework is such flexible that both regular and irregular time-series can be synthesized with minimal changes to our model design. Finally, we obtain exceptional synthesis performance on various time-series datasets, achieving state-of-the-art sampling diversity and quality.
☆ Sawtooth Sampling for Time Series Denoising Diffusion Implicit Models
Denoising Diffusion Probabilistic Models (DDPMs) can generate synthetic timeseries data to help improve the performance of a classifier, but their sampling process is computationally expensive. We address this by combining implicit diffusion models with a novel Sawtooth Sampler that accelerates the reverse process and can be applied to any pretrained diffusion model. Our approach achieves a 30 times speed-up over the standard baseline while also enhancing the quality of the generated sequences for classification tasks.
☆ On the Periodic Orbits of the Dual Logarithmic Derivative Operator
We study the periodic behaviour of the dual logarithmic derivative operator $\mathcal{A}[f]=\mathrm{d}\ln f/\mathrm{d}\ln x$ in a complex analytic setting. We show that $\mathcal{A}$ admits genuinely nondegenerate period-$2$ orbits and identify a canonical explicit example. Motivated by this, we obtain a complete classification of all nondegenerate period-$2$ solutions, which are precisely the rational pairs $(c a x^{c}/(1-ax^{c}),\, c/(1-ax^{c}))$ with $ac\neq 0$. We further classify all fixed points of $\mathcal{A}$, showing that every solution of $\mathcal{A}[f]=f$ has the form $f(x)=1/(a-\ln x)$. As an illustration, logistic-type functions become pre-periodic under $\mathcal{A}$ after a logarithmic change of variables, entering the period-$2$ family in one iterate. These results give an explicit description of the low-period structure of $\mathcal{A}$ and provide a tractable example of operator-induced dynamics on function spaces.
☆ A Physics-Informed U-net-LSTM Network for Data-Driven Seismic Response Modeling of Structures
Accurate and efficient seismic response prediction is essential for the design of resilient structures. While the Finite Element Method (FEM) remains the standard for nonlinear seismic analysis, its high computational demands limit its scalability and real time applicability. Recent developments in deep learning, particularly Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Long Short Term Memory (LSTM) models, have shown promise in reducing the computational cost of nonlinear seismic analysis of structures. However, these data driven models often struggle to generalize and capture the underlying physics, leading to reduced reliability. We propose a novel Physics Informed U Net LSTM framework that integrates physical laws with deep learning to enhance both accuracy and efficiency. By embedding domain specific constraints into the learning process, the proposed model achieves improved predictive performance over conventional Machine Learning architectures. This hybrid approach bridges the gap between purely data driven methods and physics based modeling, offering a robust and computationally efficient alternative for seismic response prediction of structures.
☆ Estimation in high-dimensional linear regression: Post-Double-Autometrics as an alternative to Post-Double-Lasso
Post-Double-Lasso is becoming the most popular method for estimating linear regression models with many covariates when the purpose is to obtain an accurate estimate of a parameter of interest, such as an average treatment effect. However, this method can suffer from substantial omitted variable bias in finite sample. We propose a new method called Post-Double-Autometrics, which is based on Autometrics, and show that this method outperforms Post-Double-Lasso. Its use in a standard application of economic growth sheds new light on the hypothesis of convergence from poor to rich economies.
☆ The Spheres Dataset: Multitrack Orchestral Recordings for Music Source Separation and Information Retrieval
This paper introduces The Spheres dataset, multitrack orchestral recordings designed to advance machine learning research in music source separation and related MIR tasks within the classical music domain. The dataset is composed of over one hour recordings of musical pieces performed by the Colibrì Ensemble at The Spheres recording studio, capturing two canonical works - Tchaikovsky's Romeo and Juliet and Mozart's Symphony No. 40 - along with chromatic scales and solo excerpts for each instrument. The recording setup employed 23 microphones, including close spot, main, and ambient microphones, enabling the creation of realistic stereo mixes with controlled bleeding and providing isolated stems for supervised training of source separation models. In addition, room impulse responses were estimated for each instrument position, offering valuable acoustic characterization of the recording space. We present the dataset structure, acoustic analysis, and baseline evaluations using X-UMX based models for orchestral family separation and microphone debleeding. Results highlight both the potential and the challenges of source separation in complex orchestral scenarios, underscoring the dataset's value for benchmarking and for exploring new approaches to separation, localization, dereverberation, and immersive rendering of classical music.
☆ RISC-V Based TinyML Accelerator for Depthwise Separable Convolutions in Edge AI
The increasing demand for on-device intelligence in Edge AI and TinyML applications requires the efficient execution of modern Convolutional Neural Networks (CNNs). While lightweight architectures like MobileNetV2 employ Depthwise Separable Convolutions (DSC) to reduce computational complexity, their multi-stage design introduces a critical performance bottleneck inherent to layer-by-layer execution: the high energy and latency cost of transferring intermediate feature maps to either large on-chip buffers or off-chip DRAM. To address this memory wall, this paper introduces a novel hardware accelerator architecture that utilizes a fused pixel-wise dataflow. Implemented as a Custom Function Unit (CFU) for a RISC-V processor, our architecture eliminates the need for intermediate buffers entirely, reducing the data movement up to 87\% compared to conventional layer-by-layer execution. It computes a single output pixel to completion across all DSC stages-expansion, depthwise convolution, and projection-by streaming data through a tightly-coupled pipeline without writing to memory. Evaluated on a Xilinx Artix-7 FPGA, our design achieves a speedup of up to 59.3x over the baseline software execution on the RISC-V core. Furthermore, ASIC synthesis projects a compact 0.284 mm$^2$ footprint with 910 mW power at 2 GHz in 28 nm, and a 1.20 mm$^2$ footprint with 233 mW power at 300 MHz in 40 nm. This work confirms the feasibility of a zero-buffer dataflow within a TinyML resource envelope, offering a novel and effective strategy for overcoming the memory wall in edge AI accelerators.
comment: 13 pages, 7 tables, 14 figures
☆ Maxitive Donsker-Varadhan Formulation for Possibilistic Variational Inference
Variational inference (VI) is a cornerstone of modern Bayesian learning, enabling approximate inference in complex models that would otherwise be intractable. However, its formulation depends on expectations and divergences defined through high-dimensional integrals, often rendering analytical treatment impossible and necessitating heavy reliance on approximate learning and inference techniques. Possibility theory, an imprecise probability framework, allows to directly model epistemic uncertainty instead of leveraging subjective probabilities. While this framework provides robustness and interpretability under sparse or imprecise information, adapting VI to the possibilistic setting requires rethinking core concepts such as entropy and divergence, which presuppose additivity. In this work, we develop a principled formulation of possibilistic variational inference and apply it to a special class of exponential-family functions, highlighting parallels with their probabilistic counterparts and revealing the distinctive mathematical structures of possibility theory.
☆ From Diffusion to One-Step Generation: A Comparative Study of Flow-Based Models with Application to Image Inpainting
We present a comprehensive comparative study of three generative modeling paradigms: Denoising Diffusion Probabilistic Models (DDPM), Conditional Flow Matching (CFM), and MeanFlow. While DDPM and CFM require iterative sampling, MeanFlow enables direct one-step generation by modeling the average velocity over time intervals. We implement all three methods using a unified TinyUNet architecture (<1.5M parameters) on CIFAR-10, demonstrating that CFM achieves an FID of 24.15 with 50 steps, significantly outperforming DDPM (FID 402.98). MeanFlow achieves FID 29.15 with single-step sampling -- a 50X reduction in inference time. We further extend CFM to image inpainting, implementing mask-guided sampling with four mask types (center, random bbox, irregular, half). Our fine-tuned inpainting model achieves substantial improvements: PSNR increases from 4.95 to 8.57 dB on center masks (+73%), and SSIM improves from 0.289 to 0.418 (+45%), demonstrating the effectiveness of inpainting-aware training.
☆ Lattice-to-total thermal conductivity ratio: a phonon-glass electron-crystal descriptor for data-driven thermoelectric design
Thermoelectrics (TEs) are promising candidates for energy harvesting with performance quantified by figure of merit, $ZT$. To accelerate the discovery of high-$ZT$ materials, efforts have focused on identifying compounds with low thermal conductivity $κ$. Using a curated dataset of 71,913 entries, we show that high-$ZT$ materials reside not only in the low-$κ$ regime but also cluster near a lattice-to-total thermal conductivity ratio ($κ_\mathrm{L}/κ$) of approximately 0.5, consistent with the phonon-glass electron-crystal design concept. Building on this insight, we construct a framework consisting of two machine learning models for the lattice and electronic components of thermal conductivity that jointly provide both $κ$ and $κ_\mathrm{L}/κ$ for screening and guiding the optimization of TE materials. Among 104,567 compounds screened, our models identify 2,522 ultralow-$κ$ candidates. Follow-up case studies demonstrate that this framework can reliably provide optimization strategies by suggesting new dopants and alloys that shift pristine materials toward the $κ_\mathrm{L}/κ$ approaching 0.5 regime. Ultimately, by integrating rapid screening with PGEC-guided optimization, our data-driven framework effectively bridges the critical gap between materials discovery and performance enhancement.
comment: 15 pages, 7 figures
☆ Robust Gene Prioritization via Fast-mRMR Feature Selection in high-dimensional omics data
Gene prioritization (identifying genes potentially associated with a biological process) is increasingly tackled with Artificial Intelligence. However, existing methods struggle with the high dimensionality and incomplete labelling of biomedical data. This work proposes a more robust and efficient pipeline that leverages Fast-mRMR feature selection to retain only relevant, non-redundant features for classifiers. This enables us to build simpler and more effective models, as well as to combine different biological feature sets. Experiments on Dietary Restriction datasets show significant improvements over existing methods, proving that feature selection can be critical for reliable gene prioritization.
☆ I-GLIDE: Input Groups for Latent Health Indicators in Degradation Estimation
Accurate remaining useful life (RUL) prediction hinges on the quality of health indicators (HIs), yet existing methods often fail to disentangle complex degradation mechanisms in multi-sensor systems or quantify uncertainty in HI reliability. This paper introduces a novel framework for HI construction, advancing three key contributions. First, we adapt Reconstruction along Projected Pathways (RaPP) as a health indicator (HI) for RUL prediction for the first time, showing that it outperforms traditional reconstruction error metrics. Second, we show that augmenting RaPP-derived HIs with aleatoric and epistemic uncertainty quantification (UQ) via Monte Carlo dropout and probabilistic latent spaces- significantly improves RUL-prediction robustness. Third, and most critically, we propose indicator groups, a paradigm that isolates sensor subsets to model system-specific degradations, giving rise to our novel method, I-GLIDE which enables interpretable, mechanism-specific diagnostics. Evaluated on data sourced from aerospace and manufacturing systems, our approach achieves marked improvements in accuracy and generalizability compared to state-of-the-art HI methods while providing actionable insights into system failure pathways. This work bridges the gap between anomaly detection and prognostics, offering a principled framework for uncertainty-aware degradation modeling in complex systems.
comment: Included in the conference series: Joint European Conference on Machine Learning and Knowledge Discovery in Databases
☆ Privacy in Federated Learning with Spiking Neural Networks
Spiking neural networks (SNNs) have emerged as prominent candidates for embedded and edge AI. Their inherent low power consumption makes them far more efficient than conventional ANNs in scenarios where energy budgets are tightly constrained. In parallel, federated learning (FL) has become the prevailing training paradigm in such settings, enabling on-device learning while limiting the exposure of raw data. However, gradient inversion attacks represent a critical privacy threat in FL, where sensitive training data can be reconstructed directly from shared gradients. While this vulnerability has been widely investigated in conventional ANNs, its implications for SNNs remain largely unexplored. In this work, we present the first comprehensive empirical study of gradient leakage in SNNs across diverse data domains. SNNs are inherently non-differentiable and are typically trained using surrogate gradients, which we hypothesized would be less correlated with the original input and thus less informative from a privacy perspective. To investigate this, we adapt different gradient leakage attacks to the spike domain. Our experiments reveal a striking contrast with conventional ANNs: whereas ANN gradients reliably expose salient input content, SNN gradients yield noisy, temporally inconsistent reconstructions that fail to recover meaningful spatial or temporal structure. These results indicate that the combination of event-driven dynamics and surrogate-gradient training substantially reduces gradient informativeness. To the best of our knowledge, this work provides the first systematic benchmark of gradient inversion attacks for spiking architectures, highlighting the inherent privacy-preserving potential of neuromorphic computation.
☆ How to Correctly Report LLM-as-a-Judge Evaluations
Large language models (LLMs) are increasingly used as evaluators in lieu of humans. While scalable, their judgments are noisy due to imperfect specificity and sensitivity of LLMs, leading to biased accuracy estimates. Although bias-correction methods exist, they are underutilized in LLM research and typically assume exact knowledge of the model's specificity and sensitivity. Furthermore, in general we only have estimates of these values and it is not well known how to properly construct confidence intervals using only estimates. This work presents a simple plug-in framework that corrects such bias and constructs confidence intervals reflecting uncertainty from both test and calibration dataset, enabling practical and statistically sound LLM-based evaluation. Additionally, to reduce uncertainty in the accuracy estimate, we introduce an adaptive algorithm that efficiently allocates calibration sample sizes.
☆ Learning Cell-Aware Hierarchical Multi-Modal Representations for Robust Molecular Modeling AAAI 2026
Understanding how chemical perturbations propagate through biological systems is essential for robust molecular property prediction. While most existing methods focus on chemical structures alone, recent advances highlight the crucial role of cellular responses such as morphology and gene expression in shaping drug effects. However, current cell-aware approaches face two key limitations: (1) modality incompleteness in external biological data, and (2) insufficient modeling of hierarchical dependencies across molecular, cellular, and genomic levels. We propose CHMR (Cell-aware Hierarchical Multi-modal Representations), a robust framework that jointly models local-global dependencies between molecules and cellular responses and captures latent biological hierarchies via a novel tree-structured vector quantization module. Evaluated on nine public benchmarks spanning 728 tasks, CHMR outperforms state-of-the-art baselines, yielding average improvements of 3.6% on classification and 17.2% on regression tasks. These results demonstrate the advantage of hierarchy-aware, multimodal learning for reliable and biologically grounded molecular representations, offering a generalizable framework for integrative biomedical modeling. The code is in https://github.com/limengran98/CHMR.
comment: Accepted to AAAI 2026 (Oral)
☆ Trustless Federated Learning at Edge-Scale: A Compositional Architecture for Decentralized, Verifiable, and Incentive-Aligned Coordination
Artificial intelligence is retracing the Internet's path from centralized provision to distributed creation. Initially, resource-intensive computation concentrates within institutions capable of training and serving large models.Eventually, as federated learning matures, billions of edge devices holding sensitive data will be able to collectively improve models without surrendering raw information, enabling both contribution and consumption at scale. This democratic vision remains unrealized due to certain compositional gaps; aggregators handle updates without accountability, economic mechanisms are lacking and even when present remain vulnerable to gaming, coordination serializes state modifications limiting scalability, and governance permits retroactive manipulation. This work addresses these gaps by leveraging cryptographic receipts to prove aggregation correctness, geometric novelty measurement to prevent incentive gaming, parallel object ownership to achieve linear scalability, and time-locked policies to check retroactive manipulation.
☆ Nonconvex Penalized LAD Estimation in Partial Linear Models with DNNs: Asymptotic Analysis and Proximal Algorithms
This paper investigates the partial linear model by Least Absolute Deviation (LAD) regression. We parameterize the nonparametric term using Deep Neural Networks (DNNs) and formulate a penalized LAD problem for estimation. Specifically, our model exhibits the following challenges. First, the regularization term can be nonconvex and nonsmooth, necessitating the introduction of infinite dimensional variational analysis and nonsmooth analysis into the asymptotic normality discussion. Second, our network must expand (in width, sparsity level and depth) as more samples are observed, thereby introducing additional difficulties for theoretical analysis. Third, the oracle of the proposed estimator is itself defined through a ultra high-dimensional, nonconvex, and discontinuous optimization problem, which already entails substantial computational and theoretical challenges. Under such the challenges, we establish the consistency, convergence rate, and asymptotic normality of the estimator. Furthermore, we analyze the oracle problem itself and its continuous relaxation. We study the convergence of a proximal subgradient method for both formulations, highlighting their structural differences lead to distinct computational subproblems along the iterations. In particular, the relaxed formulation admits significantly cheaper proximal updates, reflecting an inherent trade-off between statistical accuracy and computational tractability.
☆ Interpretable Fair Clustering
Fair clustering has gained increasing attention in recent years, especially in applications involving socially sensitive attributes. However, existing fair clustering methods often lack interpretability, limiting their applicability in high-stakes scenarios where understanding the rationale behind clustering decisions is essential. In this work, we address this limitation by proposing an interpretable and fair clustering framework, which integrates fairness constraints into the structure of decision trees. Our approach constructs interpretable decision trees that partition the data while ensuring fair treatment across protected groups. To further enhance the practicality of our framework, we also introduce a variant that requires no fairness hyperparameter tuning, achieved through post-pruning a tree constructed without fairness constraints. Extensive experiments on both real-world and synthetic datasets demonstrate that our method not only delivers competitive clustering performance and improved fairness, but also offers additional advantages such as interpretability and the ability to handle multiple sensitive attributes. These strengths enable our method to perform robustly under complex fairness constraints, opening new possibilities for equitable and transparent clustering.
☆ Dynamic Stratified Contrastive Learning with Upstream Augmentation for MILP Branching
Mixed Integer Linear Programming (MILP) is a fundamental class of NP-hard problems that has garnered significant attention from both academia and industry. The Branch-and-Bound (B\&B) method is the dominant approach for solving MILPs and the branching plays an important role in B\&B methods. Neural-based learning frameworks have recently been developed to enhance branching policies and the efficiency of solving MILPs. However, these methods still struggle with semantic variation across depths, the scarcity of upstream nodes, and the costly collection of strong branching samples. To address these issues, we propose \ours, a Dynamic \underline{\textbf{S}}tratified \underline{\textbf{C}}ontrastive Training Framework for \underline{\textbf{MILP}} Branching. It groups branch-and-bound nodes based on their feature distributions and trains a GCNN-based discriminative model to progressively separate nodes across groups, learning finer-grained node representations throughout the tree. To address data scarcity and imbalance at upstream nodes, we introduce an upstream-augmented MILP derivation procedure that generates both theoretically equivalent and perturbed instances. \ours~effectively models subtle semantic differences between nodes, significantly enhancing branching accuracy and solving efficiency, particularly for upstream nodes. Extensive experiments on standard MILP benchmarks demonstrate that our method enhances branching accuracy, reduces solving time, and generalizes effectively to unseen instances.
comment: 18 pages
☆ BRIDGE: Building Representations In Domain Guided Program Verification
Large language models (LLMs) have achieved impressive results in code generation, yet struggle with program verification, especially in interactive proof frameworks such as Lean4. A central challenge is scalability: verified synthesis requires not just code, but also precise specifications and correctness proofs, and existing approaches rarely span all three domains. We present BRIDGE, the first systematic study of structured prompting for scalable verified program generation. BRIDGE decomposes verification into three interconnected domains: Code (executable implementations), Specifications (formal intent statements), and Proofs (constructive correctness arguments). Our key idea is to elicit distinct reasoning behaviors functional, specification-driven, and proof-oriented as intermediate representations that preserve semantic structure and connect these domains. Through systematic ablations, we show that this approach substantially improves both accuracy and efficiency beyond standard error feedback methods. For example, functional reasoning improves correctness of code in formal languages (Lean4) by nearly 1.5x (pass@5) over direct baselines. In inference-time compute, functional reasoning is also 2x more efficient, achieving higher pass rates with fewer generations and lower total sampling budgets. Similarly, we find that specification-driven prompting boosts Python coding pass rates by up to 17.5%. These findings suggest that structured domain alignment is a promising direction for advancing verified synthesis. BRIDGE establishes a foundation for training via expert iteration or RLVR, enabling models to internalize these reasoning strategies across code, specifications, and proofs.
comment: Approx. 31 pages including appendices, 11 figures, 4 tables. Empirical study of LLM-based verified program synthesis in Lean4 (code, specs, and proofs)
☆ From Bits to Rounds: Parallel Decoding with Exploration for Diffusion Language Models
Diffusion Language Models (DLMs) have recently emerged as a strong alternative to autoregressive language models (LMs). DLMs offer comparable accuracy with faster inference speed via parallel decoding. However, standard DLM decoding strategies relying on high-confidence tokens encounter an inherent information-theoretic bottleneck that restricts decoding progress and ultimately slows generation. We demonstrate both theoretically and empirically that prioritizing high-confidence tokens is inherently inefficient. High-probability tokens carry negligible information and strictly relying on them limits the effective progress made in each decoding round. We prove that the number of decoding rounds must grow linearly with the sample's total information (negative log-likelihood) and inversely with the per-round information budget, establishing a bits-to-rounds principle. We also propose Explore-Then-Exploit (ETE), a training-free decoding strategy that maximizes information throughput and decoding efficiency. ETE combines cross-block decoding with targeted exploration of high-uncertainty tokens to reshape the conditional distribution and trigger cascades of confident predictions. Experiments verify our theoretical bounds and demonstrate that ETE consistently reduces the required number of decoding rounds compared to confidence-only baselines without compromising generation quality.
comment: 24 pages, 6 figures
☆ MortgageLLM: Domain-Adaptive Pretraining with Residual Instruction Transfer, Alignment Tuning, and Task-Specific Routing
Large Language Models (LLMs) demonstrate exceptional capabilities across general domains, yet their application to specialized sectors such as mortgage finance requires domain-specific knowledge augmentation while preserving instruction-following fidelity. We present MortgageLLM, a novel domain-specific large language model that addresses this dual challenge. It is developed using a dual-track specialization framework from a single base model (LLaMA-3.1-8B). We opted for this dual-expert approach as a single multi-task model suffers from performance trade-offs, where optimizing for structured tasks (via SFT) degrades conversational fidelity (via DPO). Our dual-track method solves this by creating two specialists, allowing each to be optimally trained for its distinct capability. Our approach applies the instruction residual technique to restore instruction-following capabilities post-domain adaptation without supervised fine-tuning. We contribute: (1) application of this residual technique to the highly specialized mortgage finance domain; (2) a dual-expert architecture combining a conversational Q&A model and a structured task model for classification and summarization; and (3) an intelligent task routing mechanism using few-shot classification performed by one of the expert models itself. We validate our approach on domain-specific benchmarks, where our final model (MLM v2) significantly outperforms the base LLaMA-3.1-8B-Instruct, achieving an LLM-as-a-Judge summarization score of 4.58 (vs. 3.99), a Q&A score of 4.09 (vs. 4.0), and a classification score of 2.6 (vs. 1.2). On semantic similarity, our model achieved a BERTScore of 0.77 for summarization (vs. 0.74), 0.68 for Q&A (vs. 0.58), and 0.75 for classification (vs. 0.73), substantially outperforming baseline approaches.
☆ Generative Early Stage Ranking
Large-scale recommendations commonly adopt a multi-stage cascading ranking system paradigm to balance effectiveness and efficiency. Early Stage Ranking (ESR) systems utilize the "user-item decoupling" approach, where independently learned user and item representations are only combined at the final layer. While efficient, this design is limited in effectiveness, as it struggles to capture fine-grained user-item affinities and cross-signals. To address these, we propose the Generative Early Stage Ranking (GESR) paradigm, introducing the Mixture of Attention (MoA) module which leverages diverse attention mechanisms to bridge the effectiveness gap: the Hard Matching Attention (HMA) module encodes explicit cross-signals by computing raw match counts between user and item features; the Target-Aware Self Attention module generates target-aware user representations conditioned on the item, enabling more personalized learning; and the Cross Attention modules facilitate early and more enriched interactions between user-item features. MoA's specialized attention encodings are further refined in the final layer through a Multi-Logit Parameterized Gating (MLPG) module, which integrates the newly learned embeddings via gating and produces secondary logits that are fused with the primary logit. To address the efficiency and latency challenges, we have introduced a comprehensive suite of optimization techniques. These span from custom kernels that maximize the capabilities of the latest hardware to efficient serving solutions powered by caching mechanisms. The proposed GESR paradigm has shown substantial improvements in topline metrics, engagement, and consumption tasks, as validated by both offline and online experiments. To the best of our knowledge, this marks the first successful deployment of full target-aware attention sequence modeling within an ESR stage at such a scale.
☆ MNM : Multi-level Neuroimaging Meta-analysis with Hyperbolic Brain-Text Representations MICCAI 2025
Various neuroimaging studies suffer from small sample size problem which often limit their reliability. Meta-analysis addresses this challenge by aggregating findings from different studies to identify consistent patterns of brain activity. However, traditional approaches based on keyword retrieval or linear mappings often overlook the rich hierarchical structure in the brain. In this work, we propose a novel framework that leverages hyperbolic geometry to bridge the gap between neuroscience literature and brain activation maps. By embedding text from research articles and corresponding brain images into a shared hyperbolic space via the Lorentz model, our method captures both semantic similarity and hierarchical organization inherent in neuroimaging data. In the hyperbolic space, our method performs multi-level neuroimaging meta-analysis (MNM) by 1) aligning brain and text embeddings for semantic correspondence, 2) guiding hierarchy between text and brain activations, and 3) preserving the hierarchical relationships within brain activation patterns. Experimental results demonstrate that our model outperforms baselines, offering a robust and interpretable paradigm of multi-level neuroimaging meta-analysis via hyperbolic brain-text representation.
comment: MICCAI 2025 (Provisional Accept; top ~9%)
☆ MLPMoE: Zero-Shot Architectural Metamorphosis of Dense LLM MLPs into Static Mixture-of-Experts
Large Language Models (LLMs) are predominantly deployed as dense transformers, where every parameter in every feed-forward block is activated for every token. While architecturally simple, this is computationally inefficient, since inference costs scale linearly with parameter count. Recent upcycling methods such as MoEfication, CMoE, ToMoE, and MoORE reveal that much of the useful computation lives in sparse, semi-modular substructures inside dense feed-forward networks, but these approaches typically rely on clustering, activation profiling, singular value decomposition, or custom routing that requires calibration data. This paper introduces MLPMoE (MLP Mixture-of-Experts), a training-free, deterministic transformation that restructures the dense MLP in transformer blocks into a static, high-cardinality mixture of experts. The transformation uses simple tensor slicing and summation, reinterpreting the algebra of tensor parallelism as a topological conversion rather than a distributed training pattern. We further introduce Fractal Fade (differential branch sparsity) and Compensated Pruning (variance-preserving branch reduction) as lightweight mechanisms for structured sparsity. On Qwen2.5-0.5B-Instruct and DeepSeek-R1-Distill-Llama-8B, the zero-shot MLPMoE transform changes a proxy perplexity metric by less than 0.05 percent while keeping the parameter count effectively constant. On the 8B model, differential sparsity removes about 20 percent of MLP parameters while keeping perplexity within about 2 percent of the dense baseline. The method operates entirely post hoc on existing checkpoints and does not require gradients, calibration sets, or router training. Code is available at https://gist.github.com/iwallarm/fc2ef1eddf226ca7814f9e5e2ae9bad1
☆ ASR Error Correction in Low-Resource Burmese with Alignment-Enhanced Transformers using Phonetic Features
This paper investigates sequence-to-sequence Transformer models for automatic speech recognition (ASR) error correction in low-resource Burmese, focusing on different feature integration strategies including IPA and alignment information. To our knowledge, this is the first study addressing ASR error correction specifically for Burmese. We evaluate five ASR backbones and show that our ASR Error Correction (AEC) approaches consistently improve word- and character-level accuracy over baseline outputs. The proposed AEC model, combining IPA and alignment features, reduced the average WER of ASR models from 51.56 to 39.82 before augmentation (and 51.56 to 43.59 after augmentation) and improving chrF++ scores from 0.5864 to 0.627, demonstrating consistent gains over the baseline ASR outputs without AEC. Our results highlight the robustness of AEC and the importance of feature design for improving ASR outputs in low-resource settings.
comment: 7 pages, 2 figures, 7 tables, Accepted to iSAI-NLP 2025
☆ Enhancing Burmese News Classification with Kolmogorov-Arnold Network Head Fine-tuning
In low-resource languages like Burmese, classification tasks often fine-tune only the final classification layer, keeping pre-trained encoder weights frozen. While Multi-Layer Perceptrons (MLPs) are commonly used, their fixed non-linearity can limit expressiveness and increase computational cost. This work explores Kolmogorov-Arnold Networks (KANs) as alternative classification heads, evaluating Fourier-based FourierKAN, Spline-based EfficientKAN, and Grid-based FasterKAN-across diverse embeddings including TF-IDF, fastText, and multilingual transformers (mBERT, Distil-mBERT). Experimental results show that KAN-based heads are competitive with or superior to MLPs. EfficientKAN with fastText achieved the highest F1-score (0.928), while FasterKAN offered the best trade-off between speed and accuracy. On transformer embeddings, EfficientKAN matched or slightly outperformed MLPs with mBERT (0.917 F1). These findings highlight KANs as expressive, efficient alternatives to MLPs for low-resource language classification.
comment: 6 pages, 2 figures, 4 tables, Accepted to iSAI-NLP 2025
☆ Data-Driven Assessment of Concrete Slab Integrity via Impact-Echo Signals and Neural Networks
Subsurface defects such as delamination, voids, and honeycombing critically affect the durability of concrete bridge decks but are difficult to detect reliably using visual inspection or manual sounding. This paper presents a machine learning based Impact Echo (IE) framework that automates both defect localization and multi-class classification of common concrete defects. Raw IE signals from Federal Highway Administration (FHWA) laboratory slabs and in-service bridge decks are transformed via Fast Fourier Transform (FFT) into dominant peak-frequency features and interpolated into spatial maps for defect zone visualization. Unsupervised k-means clustering highlights low-frequency, defect-prone regions, while Ground Truth Masks (GTMs) derived from seeded lab defects are used to validate spatial accuracy and generate high-confidence training labels. From these validated regions, spatially ordered peak-frequency sequences are constructed and fed into a stacked Long Short-Term Memory (LSTM) network that classifies four defect types shallow delamination, deep delamination, voids, and honeycombing with 73% overall accuracy. Field validation on the bridge deck demonstrates that models trained on laboratory data generalize under realistic coupling, noise, and environmental variability. The proposed framework enhances the objectivity, scalability, and repeatability of Non-Destructive Evaluation (NDE), supporting intelligent, data-driven bridge health monitoring at a network scale.
comment: Accepted by IEEE Big Data 2025
☆ Deceptron: Learned Local Inverses for Fast and Stable Physics Inversion NeurIPS 2025
Inverse problems in the physical sciences are often ill-conditioned in input space, making progress step-size sensitive. We propose the Deceptron, a lightweight bidirectional module that learns a local inverse of a differentiable forward surrogate. Training combines a supervised fit, forward-reverse consistency, a lightweight spectral penalty, a soft bias tie, and a Jacobian Composition Penalty (JCP) that encourages $J_g(f(x))\,J_f(x)\!\approx\!I$ via JVP/VJP probes. At solve time, D-IPG (Deceptron Inverse-Preconditioned Gradient) takes a descent step in output space, pulls it back through $g$, and projects under the same backtracking and stopping rules as baselines. On Heat-1D initial-condition recovery and a Damped Oscillator inverse problem, D-IPG reaches a fixed normalized tolerance with $\sim$20$\times$ fewer iterations on Heat and $\sim$2-3$\times$ fewer on Oscillator than projected gradient, competitive in iterations and cost with Gauss-Newton. Diagnostics show JCP reduces a measured composition error and tracks iteration gains. We also preview a single-scale 2D instantiation, DeceptronNet (v0), that learns few-step corrections under a strict fairness protocol and exhibits notably fast convergence.
comment: 10 pages, 11 main figures. Accepted for poster presentation at the NeurIPS 2025 Machine Learning and the Physical Sciences Workshop
☆ Aligning LLMs with Biomedical Knowledge using Balanced Fine-Tuning
Effective post-training is essential to align Large Language Models (LLMs) with specialized biomedical knowledge to accelerate life science research. However, current approaches face significant limitations. First, biomedical reasoning involves intricate mechanisms often represented by sparse textual data. Standard Supervised Fine-Tuning (SFT) tends to overfit to surface-level instruction patterns without effectively internalizing this fragmented scientific knowledge. Second, Reinforcement Learning (RL) is impractical for this domain, as defining meaningful rewards often necessitates prohibitive experimental validation (e.g., wet-lab verification of drug responses), rendering real-time feedback unfeasible. We propose Balanced Fine-Tuning (BFT), an efficient post-training method designed to learn complex reasoning from sparse data without external reward signals. BFT operates through a two-layer weighting mechanism: 1. At the token level, it scales loss via prediction probabilities to stabilize gradients and prevent overfitting; 2. At the sample level, it uses "minimum group confidence" to adaptively enhance the learning of hard samples. Experiments demonstrate that BFT significantly outperforms SFT. In medical tasks, it enables LLMs to acquire knowledge that SFT misses. In biological tasks, BFT-based LLMs surpass GeneAgent (an accurate agent for biology analysis) in biological process reasoning. Moreover, the text embeddings generated by BFT can be directly applied to downstream tasks, such as gene interaction and single-cell perturbation response prediction. These results indicate that BFT facilitates broad applications of LLMs in biomedical research.
☆ G-Net: A Provably Easy Construction of High-Accuracy Random Binary Neural Networks
We propose a novel randomized algorithm for constructing binary neural networks with tunable accuracy. This approach is motivated by hyperdimensional computing (HDC), which is a brain-inspired paradigm that leverages high-dimensional vector representations, offering efficient hardware implementation and robustness to model corruptions. Unlike traditional low-precision methods that use quantization, we consider binary embeddings of data as points in the hypercube equipped with the Hamming distance. We propose a novel family of floating-point neural networks, G-Nets, which are general enough to mimic standard network layers. Each floating-point G-Net has a randomized binary embedding, an embedded hyperdimensional (EHD) G-Net, that retains the accuracy of its floating-point counterparts, with theoretical guarantees, due to the concentration of measure. Empirically, our binary models match convolutional neural network accuracies and outperform prior HDC models by large margins, for example, we achieve almost 30\% higher accuracy on CIFAR-10 compared to prior HDC models. G-Nets are a theoretically justified bridge between neural networks and randomized binary neural networks, opening a new direction for constructing robust binary/quantized deep learning models. Our implementation is available at https://github.com/GNet2025/GNet.
☆ A Unified Understanding of Offline Data Selection and Online Self-refining Generation for Post-training LLMs
Offline data selection and online self-refining generation, which enhance the data quality, are crucial steps in adapting large language models (LLMs) to specific downstream tasks. We tackle offline data selection and online self-refining generations through an optimization perspective. Specifically, bilevel data selection is used for offline data selection with respect to the validation dataset, and we treat online self-refining generation as a model adaptation step of selecting the model trained on current responses that best fits the validation data. Our framework offers a unified understanding of offline data selection and self-refining generation by assigning a learned data weight to each question and response, either explicitly or implicitly. For the first time, we theoretically demonstrate the effectiveness of the bilevel data selection framework and demonstrate its performance gains over unfiltered direct mixing baselines. By combining offline data with validation-weighted online generations, our method enhances fine-tuning performance. Experiments on quality enhancement and safety-aware LLM fine-tuning validate its effectiveness.
☆ Efficient Diffusion Planning with Temporal Diffusion AAAI26
Diffusion planning is a promising method for learning high-performance policies from offline data. To avoid the impact of discrepancies between planning and reality on performance, previous works generate new plans at each time step. However, this incurs significant computational overhead and leads to lower decision frequencies, and frequent plan switching may also affect performance. In contrast, humans might create detailed short-term plans and more general, sometimes vague, long-term plans, and adjust them over time. Inspired by this, we propose the Temporal Diffusion Planner (TDP) which improves decision efficiency by distributing the denoising steps across the time dimension. TDP begins by generating an initial plan that becomes progressively more vague over time. At each subsequent time step, rather than generating an entirely new plan, TDP updates the previous one with a small number of denoising steps. This reduces the average number of denoising steps, improving decision efficiency. Additionally, we introduce an automated replanning mechanism to prevent significant deviations between the plan and reality. Experiments on D4RL show that, compared to previous works that generate new plans every time step, TDP improves the decision-making frequency by 11-24.8 times while achieving higher or comparable performance.
comment: Accepted by the AAAI26 Conference Main Track
☆ Breaking the Safety-Capability Tradeoff: Reinforcement Learning with Verifiable Rewards Maintains Safety Guardrails in LLMs AAAI-26
Fine-tuning large language models (LLMs) for downstream tasks typically exhibit a fundamental safety-capability tradeoff, where improving task performance degrades safety alignment even on benign datasets. This degradation persists across standard approaches including supervised finetuning (SFT) and reinforcement learning from human feedback (RLHF). While reinforcement learning with verifiable rewards (RLVR) has emerged as a promising alternative that optimizes models on objectively measurable tasks, its safety implications remain unexplored. We present the first comprehensive theoretical and empirical analysis of safety properties in RLVR. Theoretically, we derive upper bounds on safety drift under KL-constrained optimization and prove conditions under which safety degradation is eliminated. Empirically, we conduct extensive experiments across five adversarial safety benchmarks, demonstrating that RLVR can simultaneously enhance reasoning capabilities while maintaining or improving safety guardrails. Our comprehensive ablation studies examine the effects of optimization algorithms, model scale, and task domains. Our findings challenge the prevailing assumption of an inevitable safety capability trade-off, and establish that a specific training methodology can achieve both objectives simultaneously, providing insights for the safe deployment of reasoning-capable LLMs.
comment: AAAI-26 Workshop on Post-AI Formal Methods
☆ FedAPA: Federated Learning with Adaptive Prototype Aggregation Toward Heterogeneous Wi-Fi CSI-based Crowd Counting
Wi-Fi channel state information (CSI)-based sensing provides a non-invasive, device-free approach for tasks such as human activity recognition and crowd counting, but large-scale deployment is hindered by the need for extensive site-specific training data. Federated learning (FL) offers a way to avoid raw data sharing but is challenged by heterogeneous sensing data and device resources. This paper proposes FedAPA, a collaborative Wi-Fi CSI-based sensing algorithm that uses adaptive prototype aggregation (APA) strategy to assign similarity-based weights to peer prototypes, enabling adaptive client contributions and yielding a personalized global prototype for each client instead of a fixed-weight aggregation. During local training, we adopt a hybrid objective that combines classification learning with representation contrastive learning to align local and global knowledge. We provide a convergence analysis of FedAPA and evaluate it in a real-world distributed Wi-Fi crowd counting scenario with six environments and up to 20 people. The results show that our method outperform multiple baselines in terms of accuracy, F1 score, mean absolute error (MAE), and communication overhead, with FedAPA achieving at least a 9.65% increase in accuracy, a 9% gain in F1 score, a 0.29 reduction in MAE, and a 95.94% reduction in communication overhead.
comment: 17 pages, 11 figures, this article was submitted to IEEE for possible publication
☆ CNN-LSTM Hybrid Architecture for Over-the-Air Automatic Modulation Classification Using SDR
Automatic Modulation Classification (AMC) is a core technology for future wireless communication systems, enabling the identification of modulation schemes without prior knowledge. This capability is essential for applications in cognitive radio, spectrum monitoring, and intelligent communication networks. We propose an AMC system based on a hybrid Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) architecture, integrated with a Software Defined Radio (SDR) platform. The proposed architecture leverages CNNs for spatial feature extraction and LSTMs for capturing temporal dependencies, enabling efficient handling of complex, time-varying communication signals. The system's practical ability was demonstrated by identifying over-the-air (OTA) signals from a custom-built FM transmitter alongside other modulation schemes. The system was trained on a hybrid dataset combining the RadioML2018 dataset with a custom-generated dataset, featuring samples at Signal-to-Noise Ratios (SNRs) from 0 to 30dB. System performance was evaluated using accuracy, precision, recall, F1 score, and the Area Under the Receiver Operating Characteristic Curve (AUC-ROC). The optimized model achieved 93.48% accuracy, 93.53% precision, 93.48% recall, and an F1 score of 93.45%. The AUC-ROC analysis confirmed the model's discriminative power, even in noisy conditions. This paper's experimental results validate the effectiveness of the hybrid CNN-LSTM architecture for AMC, suggesting its potential application in adaptive spectrum management and advanced cognitive radio systems.
comment: 8 Pages, 10 figures, 2 Tables, Accepted in Journal (Journal of Innovations in Engineering Education), Issue is not Published Yet
☆ Semantic Anchors in In-Context Learning: Why Small LLMs Cannot Flip Their Labels
Can in-context learning (ICL) override pre-trained label semantics, or does it merely refine an existing semantic backbone? We address this question by treating LLMs as prompt-induced classifiers and contrasting their behavior under \emph{natural} demonstrations (with correct labels) and \emph{inverted} demonstrations (systematically flipping label meanings). We decompose ICL behavior into three alignment metrics (truth, prior, and prompt alignment) and introduce a semantic override rate, defined as correctness under flipped semantics. Across eight classification tasks and eight open-source LLMs (1--12B parameters), we find consistent evidence for a semantic anchor view. With natural demonstrations, ICL improves accuracy while maintaining strong prior alignment; most correct predictions coincide with zero-shot behavior, even when the prior is weak. With inverted demonstrations, models cannot learn coherent anti-semantic classifiers: prompt alignment increases only by sacrificing accuracy, and semantic override rates remain exactly zero in our few-shot 1--12B setting. Rather than flexibly remapping label meanings, ICL primarily adjusts how inputs project onto stable semantic directions learned during pre-training, clarifying fundamental limits of few-shot prompting and suggesting that overriding label semantics at these scales requires interventions beyond ICL. All code is available at: https://github.com/AnanthaPadmanaban-KrishnaKumar/semantic-anchors-icl.
comment: 13 pages total (7 pages main text, 3 pages references, 3 pages appendix), 2 figures, 14 tables. Code available at https://github.com/AnanthaPadmanaban-KrishnaKumar/semantic-anchors-icl
☆ RAVQ-HoloNet: Rate-Adaptive Vector-Quantized Hologram Compression
Holography offers significant potential for AR/VR applications, yet its adoption is limited by the high demands of data compression. Existing deep learning approaches generally lack rate adaptivity within a single network. We present RAVQ-HoloNet, a rate-adaptive vector quantization framework that achieves high-fidelity reconstructions at low and ultra-low bit rates, outperforming current state-of-the-art methods. In low bit, our method exceeds by -33.91% in BD-Rate and achieves a BD-PSNR of 1.02 dB from the best existing method demonstrated by the rate-distortion curve.
☆ Prediction of Herd Life in Dairy Cows Using Multi-Head Attention Transformers
Dairy farmers should decide to keep or cull a cow based on an objective assessment of her likely performance in the herd. For this purpose, farmers need to identify more resilient cows, which can cope better with farm conditions and complete more lactations. This decision-making process is inherently complex, with significant environmental and economic implications. In this study, we develop an AI-driven model to predict cow longevity using historical multivariate time-series data recorded from birth. Leveraging advanced AI techniques, specifically Multi-Head Attention Transformers, we analysed approximately 780,000 records from 19,000 unique cows across 7 farms in Australia. The results demonstrate that our model achieves an overall determination coefficient of 83% in predicting herd life across the studied farms, highlighting its potential for practical application in dairy herd management.
☆ A Probabilistic Framework for Temporal Distribution Generalization in Industry-Scale Recommender Systems
Temporal distribution shift (TDS) erodes the long-term accuracy of recommender systems, yet industrial practice still relies on periodic incremental training, which struggles to capture both stable and transient patterns. Existing approaches such as invariant learning and self-supervised learning offer partial solutions but often suffer from unstable temporal generalization, representation collapse, or inefficient data utilization. To address these limitations, we propose ELBO$_\text{TDS}$, a probabilistic framework that integrates seamlessly into industry-scale incremental learning pipelines. First, we identify key shifting factors through statistical analysis of real-world production data and design a simple yet effective data augmentation strategy that resamples these time-varying factors to extend the training support. Second, to harness the benefits of this extended distribution while preventing representation collapse, we model the temporal recommendation scenario using a causal graph and derive a self-supervised variational objective, ELBO$_\text{TDS}$, grounded in the causal structure. Extensive experiments supported by both theoretical and empirical analysis demonstrate that our method achieves superior temporal generalization, yielding a 2.33\% uplift in GMV per user and has been successfully deployed in Shopee Product Search. Code is available at https://github.com/FuCongResearchSquad/ELBO4TDS.
☆ Probabilistic Wildfire Spread Prediction Using an Autoregressive Conditional Generative Adversarial Network
Climate change has intensified the frequency and severity of wildfires, making rapid and accurate prediction of fire spread essential for effective mitigation and response. Physics-based simulators such as FARSITE offer high-fidelity predictions but are computationally intensive, limiting their applicability in real-time decision-making, while existing deep learning models often yield overly smooth predictions that fail to capture the complex, nonlinear dynamics of wildfire propagation. This study proposes an autoregressive conditional generative adversarial network (CGAN) for probabilistic wildfire spread prediction. By formulating the prediction task as an autoregressive problem, the model learns sequential state transitions, ensuring long-term prediction stability. Experimental results demonstrate that the proposed CGAN-based model outperforms conventional deep learning models in both overall predictive accuracy and boundary delineation of fire perimeters. These results demonstrate that adversarial learning allows the model to capture the strong nonlinearity and uncertainty of wildfire spread, instead of simply fitting the pixel average. Furthermore, the autoregressive framework facilitates systematic temporal forecasting of wildfire evolution. The proposed CGAN-based autoregressive framework enhances both the accuracy and physical interpretability of wildfire spread prediction, offering a promising foundation for time-sensitive response and evacuation planning.
comment: 22 pages, 15 figures, Submitted to Journal of Environmental Management
☆ Gated KalmaNet: A Fading Memory Layer Through Test-Time Ridge Regression
As efficient alternatives to softmax Attention, linear state-space models (SSMs) achieve constant memory and linear compute, but maintain only a lossy, fading summary of the past, often leading to inferior performance in recall oriented tasks. We propose Gated KalmaNet (GKA), a layer that reduces this gap by accounting for the full past when predicting the next token, while maintaining SSM-style efficiency. GKA achieves this by solving an online ridge regression problem at test time, with constant memory and linear compute cost in the sequence length. Drawing inspiration from the Kalman Filter, we iteratively solve the online ridge regression problem. However, a critical insight is that standard Kalman filter equations are numerically unstable in low-precision environments (like bfloat16) and difficult to parallelize in modern hardware. We address both challenges through two key innovations: (1) an adaptive regularization strategy with input-dependent gating that controls the condition number of the ridge regression, ensuring numerical stability while balancing memory retention. And (2) the use of Chebyshev Iteration instead of other conventional iterative solvers, which we demonstrate to be more stable in low-precision settings. To further improve scalability, we develop a hardware-aware chunk-wise implementation of Chebyshev Iteration along with custom kernels for backpropagating through our adaptive regularization and gating mechanisms. Empirically, GKA shows strong language understanding capabilites on short-context tasks outperforming existing SSM layers (like Mamba2, GLA and Gated DeltaNet). On long-context, GKA excels at real-world RAG and LongQA tasks up to 128k tokens, achieving more than $10$% relative improvement over other fading memory baselines.
comment: 30 pages, 10 figures
☆ Staggered Environment Resets Improve Massively Parallel On-Policy Reinforcement Learning
Massively parallel GPU simulation environments have accelerated reinforcement learning (RL) research by enabling fast data collection for on-policy RL algorithms like Proximal Policy Optimization (PPO). To maximize throughput, it is common to use short rollouts per policy update, increasing the update-to-data (UTD) ra- tio. However, we find that, in this setting, standard synchronous resets introduce harmful nonstationarity, skewing the learning signal and destabilizing training. We introduce staggered resets, a simple yet effective technique where environments are initialized and reset at varied points within the task horizon. This yields training batches with greater temporal diversity, reducing the nonstationarity induced by synchronized rollouts. We characterize dimensions along which RL environments can benefit significantly from staggered resets through illustrative toy environ- ments. We then apply this technique to challenging high-dimensional robotics environments, achieving significantly higher sample efficiency, faster wall-clock convergence, and stronger final performance. Finally, this technique scales better with more parallel environments compared to naive synchronized rollouts.
☆ ChatGpt Content detection: A new approach using xlm-roberta alignment
The challenge of separating AI-generated text from human-authored content is becoming more urgent as generative AI technologies like ChatGPT become more widely available. In this work, we address this issue by looking at both the detection of content that has been entirely generated by AI and the identification of human text that has been reworded by AI. In our work, a comprehensive methodology to detect AI- generated text using XLM-RoBERTa, a state-of-the-art multilingual transformer model. Our approach includes rigorous preprocessing, and feature extraction involving perplexity, semantic, and readability features. We fine-tuned the XLM-RoBERTa model on a balanced dataset of human and AI-generated texts and evaluated its performance. The model demonstrated high accuracy and robust performance across various text genres. Additionally, we conducted feature analysis to understand the model's decision-making process, revealing that perplexity and attention-based features are critical in differentiating between human and AI-generated texts. Our findings offer a valuable tool for maintaining academic integrity and contribute to the broader field of AI ethics by promoting transparency and accountability in AI systems. Future research directions include exploring other advanced models and expanding the dataset to enhance the model's generalizability.
☆ Estimating Ising Models in Total Variation Distance
We consider the problem of estimating Ising models over $n$ variables in Total Variation (TV) distance, given $l$ independent samples from the model. While the statistical complexity of the problem is well-understood [DMR20], identifying computationally and statistically efficient algorithms has been challenging. In particular, remarkable progress has occurred in several settings, such as when the underlying graph is a tree [DP21, BGPV21], when the entries of the interaction matrix follow a Gaussian distribution [GM24, CK24], or when the bulk of its eigenvalues lie in a small interval [AJK+24, KLV24], but no unified framework for polynomial-time estimation in TV exists so far. Our main contribution is a unified analysis of the Maximum Pseudo-Likelihood Estimator (MPLE) for two general classes of Ising models. The first class includes models that have bounded operator norm and satisfy the Modified Log-Sobolev Inequality (MLSI), a functional inequality that was introduced to study the convergence of the associated Glauber dynamics to stationarity. In the second class of models, the interaction matrix has bounded infinity norm (or bounded width), which is the most common assumption in the literature for structure learning of Ising models. We show how our general results for these classes yield polynomial-time algorithms and optimal or near-optimal sample complexity guarantees in a variety of settings. Our proofs employ a variety of tools from tensorization inequalities to measure decompositions and concentration bounds.
☆ FANoise: Singular Value-Adaptive Noise Modulation for Robust Multimodal Representation Learning AAAI2026
Representation learning is fundamental to modern machine learning, powering applications such as text retrieval and multimodal understanding. However, learning robust and generalizable representations remains challenging. While prior work has demonstrated that active noise injection, a form of data augmentation, can enhance encoding performance, most existing methods rely on heuristic or static noise, overlooking the dynamic nature of feature distributions during training. In this work, we systematically study the role of noise in representation learning from both gradient-based and feature distribution perspectives, using InfoNCE loss as a representative example. Focusing on multimodal representation learning, we propose FANoise, a novel feature-adaptive noise injection strategy. By leveraging the dynamics of contrastive learning, FANoise effectively mitigates the negative impacts of noise while preserving its benefits. Under this theoretically grounded framework, comprehensive experiments demonstrate that FANoise consistently improves overall performance on multimodal tasks across various base VLM models.
comment: 13 pages, 5 figures, accept to AAAI2026
☆ Subgoal Graph-Augmented Planning for LLM-Guided Open-World Reinforcement Learning
Large language models (LLMs) offer strong high-level planning capabilities for reinforcement learning (RL) by decomposing tasks into subgoals. However, their practical utility is limited by poor planning-execution alignment, which reflects a critical gap between abstract plans and actionable, environment-compatible behaviors. This misalignment arises from two interrelated limitations: (1) LLMs often produce subgoals that are semantically plausible but infeasible or irrelevant in the target environment due to insufficient grounding in environment-specific knowledge, and (2) single-LLM planning conflates generation with self-verification, resulting in overconfident yet unreliable subgoals that frequently fail during execution. To address these challenges, we propose Subgoal Graph-Augmented Actor-Critic-Refiner (SGA-ACR), a framework that integrates an environment-specific subgoal graph and structured entity knowledge with a multi-LLM planning pipeline that explicitly separates generation, critique, and refinement to produce executable and verifiable subgoals. A subgoal tracker further monitors execution progress, provides auxiliary rewards, and adaptively updates the subgoal graph to maintain alignment between plans and actions. Experimental results on 22 diverse tasks in the open-world game "Crafter" demonstrate the effectiveness of our proposed method.
Dataset Poisoning Attacks on Behavioral Cloning Policies
Behavior Cloning (BC) is a popular framework for training sequential decision policies from expert demonstrations via supervised learning. As these policies are increasingly being deployed in the real world, their robustness and potential vulnerabilities are an important concern. In this work, we perform the first analysis of the efficacy of clean-label backdoor attacks on BC policies. Our backdoor attacks poison a dataset of demonstrations by injecting a visual trigger to create a spurious correlation that can be exploited at test time. We evaluate how policy vulnerability scales with the fraction of poisoned data, the strength of the trigger, and the trigger type. We also introduce a novel entropy-based test-time trigger attack that substantially degrades policy performance by identifying critical states where test-time triggering of the backdoor is expected to be most effective at degrading performance. We empirically demonstrate that BC policies trained on even minimally poisoned datasets exhibit deceptively high, near-baseline task performance despite being highly vulnerable to backdoor trigger attacks during deployment. Our results underscore the urgent need for more research into the robustness of BC policies, particularly as large-scale datasets are increasingly used to train policies for real-world cyber-physical systems. Videos and code are available at https://sites.google.com/view/dataset-poisoning-in-bc.
comment: Accepted at EAI SmartSP 2025
☆ Wavefront-Constrained Passive Obscured Object Detection
Accurately localizing and segmenting obscured objects from faint light patterns beyond the field of view is highly challenging due to multiple scattering and medium-induced perturbations. Most existing methods, based on real-valued modeling or local convolutional operations, are inadequate for capturing the underlying physics of coherent light propagation. Moreover, under low signal-to-noise conditions, these methods often converge to non-physical solutions, severely compromising the stability and reliability of the observation. To address these challenges, we propose a novel physics-driven Wavefront Propagating Compensation Network (WavePCNet) to simulate wavefront propagation and enhance the perception of obscured objects. This WavePCNet integrates the Tri-Phase Wavefront Complex-Propagation Reprojection (TriWCP) to incorporate complex amplitude transfer operators to precisely constrain coherent propagation behavior, along with a momentum memory mechanism to effectively suppress the accumulation of perturbations. Additionally, a High-frequency Cross-layer Compensation Enhancement is introduced to construct frequency-selective pathways with multi-scale receptive fields and dynamically model structural consistency across layers, further boosting the model's robustness and interpretability under complex environmental conditions. Extensive experiments conducted on four physically collected datasets demonstrate that WavePCNet consistently outperforms state-of-the-art methods across both accuracy and robustness.
☆ Even with AI, Bijection Discovery is Still Hard: The Opportunities and Challenges of OpenEvolve for Novel Bijection Construction
Evolutionary program synthesis systems such as AlphaEvolve, OpenEvolve, and ShinkaEvolve offer a new approach to AI-assisted mathematical discovery. These systems utilize teams of large language models (LLMs) to generate candidate solutions to a problem as human readable code. These candidate solutions are then 'evolved' with the goal of improving them beyond what an LLM can produce in a single shot. While existing mathematical applications have mostly focused on problems of establishing bounds (e.g., sphere packing), the program synthesis approach is well suited to any problem where the solution takes the form of an explicit construction. With this in mind, in this paper we explore the use of OpenEvolve for combinatorial bijection discovery. We describe the results of applying OpenEvolve to three bijection construction problems involving Dyck paths, two of which are known and one of which is open. We find that while systems like OpenEvolve show promise as a valuable tool for combinatorialists, the problem of finding novel, research-level bijections remains a challenging task for current frontier systems, reinforcing the need for human mathematicians in the loop. We describe some lessons learned for others in the field interested in exploring the use of these systems.
comment: 16 pages, 3 figures. This is an extended abstract submitted to FPSAC 2026
☆ Independent policy gradient-based reinforcement learning for economic and reliable energy management of multi-microgrid systems
Efficiency and reliability are both crucial for energy management, especially in multi-microgrid systems (MMSs) integrating intermittent and distributed renewable energy sources. This study investigates an economic and reliable energy management problem in MMSs under a distributed scheme, where each microgrid independently updates its energy management policy in a decentralized manner to optimize the long-term system performance collaboratively. We introduce the mean and variance of the exchange power between the MMS and the main grid as indicators for the economic performance and reliability of the system. Accordingly, we formulate the energy management problem as a mean-variance team stochastic game (MV-TSG), where conventional methods based on the maximization of expected cumulative rewards are unsuitable for variance metrics. To solve MV-TSGs, we propose a fully distributed independent policy gradient algorithm, with rigorous convergence analysis, for scenarios with known model parameters. For large-scale scenarios with unknown model parameters, we further develop a deep reinforcement learning algorithm based on independent policy gradients, enabling data-driven policy optimization. Numerical experiments in two scenarios validate the effectiveness of the proposed methods. Our approaches fully leverage the distributed computational capabilities of MMSs and achieve a well-balanced trade-off between economic performance and operational reliability.
☆ RosettaSpeech: Zero-Shot Speech-to-Speech Translation from Monolingual Data
The scarcity of parallel speech corpora critically hampers speech-to-speech translation (S2ST), often forcing reliance on complex, multi-stage pipelines. This paper introduces RosettaSpeech, a novel and simplified framework for zero-shot S2ST that is trained on monolingual speech-text data augmented by machine translation supervision. While our method leverages the linguistic knowledge inherent in text-based NMT models, it strictly eliminates the need for parallel speech-to-speech pairs. Our model uniquely uses text as an intermediate bridge during training but functions as a direct, end-to-end speech-to-speech model at inference. This streamlined approach achieves state-of-the-art results on standard benchmarks. For instance, on the CVSS-C test set, RosettaSpeech outperforms leading systems, achieving an ASR-BLEU score of 25.17 for German-to-English and 29.86 for Spanish-to-English-relative gains of over 27% and 14%, respectively. Furthermore, we demonstrate that a single model can deliver strong many-to-one translation performance (FR/ES/DE -> EN). We also provide a foundational analysis of how training data scaling impacts model performance. By prioritizing reliance on abundant parallel text rather than difficult-to-acquire parallel speech, RosettaSpeech offers a scalable path to creating high-quality, speaker-preserving S2ST for a much broader array of languages.
comment: Work in progress
☆ Crowdsourcing the Frontier: Advancing Hybrid Physics-ML Climate Simulation via $50,000 Kaggle Competition
Subgrid machine-learning (ML) parameterizations have the potential to introduce a new generation of climate models that incorporate the effects of higher-resolution physics without incurring the prohibitive computational cost associated with more explicit physics-based simulations. However, important issues, ranging from online instability to inconsistent online performance, have limited their operational use for long-term climate projections. To more rapidly drive progress in solving these issues, domain scientists and machine learning researchers opened up the offline aspect of this problem to the broader machine learning and data science community with the release of ClimSim, a NeurIPS Datasets and Benchmarks publication, and an associated Kaggle competition. This paper reports on the downstream results of the Kaggle competition by coupling emulators inspired by the winning teams' architectures to an interactive climate model (including full cloud microphysics, a regime historically prone to online instability) and systematically evaluating their online performance. Our results demonstrate that online stability in the low-resolution, real-geography setting is reproducible across multiple diverse architectures, which we consider a key milestone. All tested architectures exhibit strikingly similar offline and online biases, though their responses to architecture-agnostic design choices (e.g., expanding the list of input variables) can differ significantly. Multiple Kaggle-inspired architectures achieve state-of-the-art (SOTA) results on certain metrics such as zonal mean bias patterns and global RMSE, indicating that crowdsourcing the essence of the offline problem is one path to improving online performance in hybrid physics-AI climate simulation.
comment: Main text: 29 pages, 10 figures. SI: 47 pages, 37 figures
☆ Geometric Calibration and Neutral Zones for Uncertainty-Aware Multi-Class Classification
Modern artificial intelligence systems make critical decisions yet often fail silently when uncertain. We develop a geometric framework for post-hoc calibration of neural network probability outputs, treating probability vectors as points on the $(c-1)$-dimensional probability simplex equipped with the Fisher--Rao metric. Our approach yields Additive Log-Ratio (ALR) calibration maps that reduce exactly to Platt scaling for binary problems (Proposition~1) while extending naturally to multi-class settings -- providing a principled generalization that existing methods lack. Complementing calibration, we define geometric reliability scores based on Fisher--Rao distance and construct neutral zones for principled deferral of uncertain predictions. Theoretical contributions include: (i) consistency of the calibration estimator at rate $O_p(n^{-1/2})$ via M-estimation theory (Theorem~1), and (ii) tight concentration bounds for reliability scores with explicit sub-Gaussian parameters enabling sample size calculations for validation set design (Theorem~2). We conjecture Neyman--Pearson optimality of our neutral zone construction based on connections to Bhattacharyya coefficients. Empirical validation on Adeno-Associated Virus classification demonstrates that the two-stage framework (calibration followed by reliability-based deferral) captures 72.5\% of errors while deferring 34.5\% of samples. Notably, this operational gain is achievable with any well-calibrated probability output; the contribution of geometric calibration lies in its theoretical foundations rather than empirical superiority over simpler alternatives. This work bridges information geometry and statistical learning, offering formal guarantees relevant to applications requiring rigorous validation.
☆ BUSTR: Breast Ultrasound Text Reporting with a Descriptor-Aware Vision-Language Model
Automated radiology report generation (RRG) for breast ultrasound (BUS) is limited by the lack of paired image-report datasets and the risk of hallucinations from large language models. We propose BUSTR, a multitask vision-language framework that generates BUS reports without requiring paired image-report supervision. BUSTR constructs reports from structured descriptors (e.g., BI-RADS, pathology, histology) and radiomics features, learns descriptor-aware visual representations with a multi-head Swin encoder trained using a multitask loss over dataset-specific descriptor sets, and aligns visual and textual tokens via a dual-level objective that combines token-level cross-entropy with a cosine-similarity alignment loss between input and output representations. We evaluate BUSTR on two public BUS datasets, BrEaST and BUS-BRA, which differ in size and available descriptors. Across both datasets, BUSTR consistently improves standard natural language generation metrics and clinical efficacy metrics, particularly for key targets such as BI-RADS category and pathology. Our results show that this descriptor-aware vision model, trained with a combined token-level and alignment loss, improves both automatic report metrics and clinical efficacy without requiring paired image-report data. The source code can be found at https://github.com/AAR-UNLV/BUSTR
comment: 13 pages, 2 figures, 6 tables
☆ Semantic Superiority vs. Forensic Efficiency: A Comparative Analysis of Deep Learning and Psycholinguistics for Business Email Compromise Detection
Business Email Compromise (BEC) is a sophisticated social engineering threat that manipulates organizational hierarchies and exploits psychological vulnerabilities, leading to significant financial damage. According to the 2024 FBI Internet Crime Report, BEC accounts for over $2.9 billion in annual adjusted losses, presenting significant economic asymmetry: the cost of a False Negative (fraud loss) exceeds the cost of a False Positive (manual review) by orders of magnitude (approximately 1 to 5,480). This paper examines two detection paradigms for BEC: the Forensic Psycholinguistic Stream, which utilizes CatBoost to analyze psycholinguistic cues with high interpretability and low latency, and the Semantic Stream, which employs DistilBERT for deep learning-based contextual language understanding, offering superior accuracy at higher computational cost. We evaluated DistilBERT on an adversarially poisoned dataset (N = 7,990) generated via our Black Hole protocol, benchmarked on Tesla T4 GPU infrastructure, achieving superior detection (AUC = 1.0000, F1 = 0.9981) with acceptable real-time latency (7.403 milliseconds). CatBoost achieves competitive detection (AUC = 0.9905, F1 = 0.9486) at 8.4x lower latency (0.885 milliseconds), consuming negligible computational resources. For organizations with GPU infrastructure, DistilBERT offers superior accuracy. CatBoost is preferable for edge deployments or cost-sensitive environments due to comparable security and lower operational costs. Both approaches demonstrate return on investment exceeding 99.96% when optimized through cost-sensitive learning, by significantly reducing false negatives and associated financial losses.
comment: 8 pages, 12 figures, 7 tables
☆ Fusion of classical and quantum kernels enables accurate and robust two-sample tests
Two-sample tests have been extensively employed in various scientific fields and machine learning such as evaluation on the effectiveness of drugs and A/B testing on different marketing strategies to discriminate whether two sets of samples come from the same distribution or not. Kernel-based procedures for hypothetical testing have been proposed to efficiently disentangle high-dimensional complex structures in data to obtain accurate results in a model-free way by embedding the data into the reproducing kernel Hilbert space (RKHS). While the choice of kernels plays a crucial role for their performance, little is understood about how to choose kernel especially for small datasets. Here we aim to construct a hypothetical test which is effective even for small datasets, based on the theoretical foundation of kernel-based tests using maximum mean discrepancy, which is called MMD-FUSE. To address this, we enhance the MMD-FUSE framework by incorporating quantum kernels and propose a novel hybrid testing strategy that fuses classical and quantum kernels. This approach creates a powerful and adaptive test by combining the domain-specific inductive biases of classical kernels with the unique expressive power of quantum kernels. We evaluate our method on various synthetic and real-world clinical datasets, and our experiments reveal two key findings: 1) With appropriate hyperparameter tuning, MMD-FUSE with quantum kernels consistently improves test power over classical counterparts, especially for small and high-dimensional data. 2) The proposed hybrid framework demonstrates remarkable robustness, adapting to different data characteristics and achieving high test power across diverse scenarios. These results highlight the potential of quantum-inspired and hybrid kernel strategies to build more effective statistical tests, offering a versatile tool for data analysis where sample sizes are limited.
comment: 11 pages, 5 figures
♻ ☆ Learning in Stackelberg Mean Field Games: A Non-Asymptotic Analysis NeurIPS 2025
We study policy optimization in Stackelberg mean field games (MFGs), a hierarchical framework for modeling the strategic interaction between a single leader and an infinitely large population of homogeneous followers. The objective can be formulated as a structured bi-level optimization problem, in which the leader needs to learn a policy maximizing its reward, anticipating the response of the followers. Existing methods for solving these (and related) problems often rely on restrictive independence assumptions between the leader's and followers' objectives, use samples inefficiently due to nested-loop algorithm structure, and lack finite-time convergence guarantees. To address these limitations, we propose AC-SMFG, a single-loop actor-critic algorithm that operates on continuously generated Markovian samples. The algorithm alternates between (semi-)gradient updates for the leader, a representative follower, and the mean field, and is simple to implement in practice. We establish the finite-time and finite-sample convergence of the algorithm to a stationary point of the Stackelberg objective. To our knowledge, this is the first Stackelberg MFG algorithm with non-asymptotic convergence guarantees. Our key assumption is a "gradient alignment" condition, which requires that the full policy gradient of the leader can be approximated by a partial component of it, relaxing the existing leader-follower independence assumption. Simulation results in a range of well-established economics environments demonstrate that AC-SMFG outperforms existing multi-agent and MFG learning baselines in policy quality and convergence speed.
comment: Accepted at NeurIPS 2025
♻ ☆ Establishing Linear Surrogate Regret Bounds for Convex Smooth Losses via Convolutional Fenchel-Young Losses NeurIPS 2025
Surrogate regret bounds, also known as excess risk bounds, bridge the gap between the convergence rates of surrogate and target losses. The regret transfer is lossless if the surrogate regret bound is linear. While convex smooth surrogate losses are appealing in particular due to the efficient estimation and optimization, the existence of a trade-off between the loss smoothness and linear regret bound has been believed in the community. Under this scenario, the better optimization and estimation properties of convex smooth surrogate losses may inevitably deteriorate after undergoing the regret transfer onto a target loss. We overcome this dilemma for arbitrary discrete target losses by constructing a convex smooth surrogate loss, which entails a linear surrogate regret bound composed with a tailored prediction link. The construction is based on Fenchel--Young losses generated by the convolutional negentropy, which are equivalent to the infimal convolution of a generalized negentropy and the target Bayes risk. Consequently, the infimal convolution enables us to derive a smooth loss while maintaining the surrogate regret bound linear. We additionally benefit from the infimal convolution to have a consistent estimator of the underlying class probability. Our results are overall a novel demonstration of how convex analysis penetrates into optimization and statistical efficiency in risk minimization.
comment: NeurIPS 2025 camera-ready
♻ ☆ Category learning in deep neural networks: Information content and geometry of internal representations
In humans and other animals, category learning enhances discrimination between stimuli close to the category boundary. This phenomenon, called categorical perception, was also empirically observed in artificial neural networks trained on classification tasks. In previous modeling works based on neuroscience data, we show that this expansion/compression is a necessary outcome of efficient learning. Here we extend our theoretical framework to artificial networks. We show that minimizing the Bayes cost (mean of the cross-entropy loss) implies maximizing the mutual information between the set of categories and the neural activities prior to the decision layer. Considering structured data with an underlying feature space of small dimension, we show that maximizing the mutual information implies (i) finding an appropriate projection space, and, (ii) building a neural representation with the appropriate metric. The latter is based on a Fisher information matrix measuring the sensitivity of the neural activity to changes in the projection space. Optimal learning makes this neural Fisher information follow a category-specific Fisher information, measuring the sensitivity of the category membership. Category learning thus induces an expansion of neural space near decision boundaries. We characterize the properties of the categorical Fisher information, showing that its eigenvectors give the most discriminant directions at each point of the projection space. We find that, unexpectedly, its maxima are in general not exactly at, but near, the class boundaries. Considering toy models and the MNIST dataset, we numerically illustrate how after learning the two Fisher information matrices match, and essentially align with the category boundaries. Finally, we relate our approach to the Information Bottleneck one, and we exhibit a bias-variance decomposition of the Bayes cost, of interest on its own.
♻ ☆ The Impossibility of Inverse Permutation Learning in Transformer Models
In this technical note, we study the problem of inverse permutation learning in decoder-only transformers. Given a permutation and a string to which that permutation has been applied, the model is tasked with producing the original (``canonical'') string. We argue that this task models a natural robustness property across a variety of reasoning tasks, including long-context retrieval, multiple choice QA and in-context learning. Our primary contribution is an impossibility result: we show that an arbitrary depth, decoder-only transformer cannot learn this task. This result concerns the expressive capacity of decoder-only transformer models and is agnostic to training dynamics or sample complexity. We give a pair of alternative constructions under which inverse permutation learning is feasible. The first of these highlights the fundamental role of the causal attention mask, and reveals a gap between the expressivity of encoder-decoder transformers and the more popular decoder-only architecture. The latter result is more surprising: we show that simply padding the input with ``scratch tokens" yields a construction under which inverse permutation learning is possible. We conjecture that this may suggest an alternative mechanism by which chain-of-thought prompting or, more generally, intermediate ``thinking'' tokens can enable reasoning in large language models, even when these tokens encode no meaningful semantic information (e.g., the results of intermediate computations).
♻ ☆ TREASURE: A Transformer-Based Foundation Model for High-Volume Transaction Understanding
Payment networks form the backbone of modern commerce, generating high volumes of transaction records from daily activities. Properly modeling this data can enable applications such as abnormal behavior detection and consumer-level insights for hyper-personalized experiences, ultimately improving people's lives. In this paper, we present TREASURE, TRansformer Engine As Scalable Universal transaction Representation Encoder, a multipurpose transformer-based foundation model specifically designed for transaction data. The model simultaneously captures both consumer behavior and payment network signals (such as response codes and system flags), providing comprehensive information necessary for applications like accurate recommendation systems and abnormal behavior detection. Verified with industry-grade datasets, TREASURE features three key capabilities: 1) an input module with dedicated sub-modules for static and dynamic attributes, enabling more efficient training and inference; 2) an efficient and effective training paradigm for predicting high-cardinality categorical attributes; and 3) demonstrated effectiveness as both a standalone model that increases abnormal behavior detection performance by 111% over production systems and an embedding provider that enhances recommendation models by 104%. We present key insights from extensive ablation studies, benchmarks against production models, and case studies, highlighting valuable knowledge gained from developing TREASURE.
♻ ☆ Collaborative Large Language Model Inference via Resource-Aware Parallel Speculative Decoding
The growing demand for on-device large language model (LLM) inference highlights the need for efficient mobile edge computing (MEC) solutions, especially in resource-constrained settings. Speculative decoding offers a promising solution by partitioning token generation between a lightweight draft model on mobile devices and a powerful target model on edge servers, but suffers from communication overhead and asynchronous delays. This paper is the first to propose a unified framework that jointly optimizes user association and resource allocation (UARA) to support efficient parallel speculative decoding. We solve the UARA problem using a multi-agent deep reinforcement learning algorithm. To evaluate our approach under realistic conditions, we conduct experiments using the Sionna simulator. Results show that our method achieves up to 28.0% and an average of 23.7% reduction in end-to-end latency without compromising inference accuracy, enabling scalable and low-latency LLM services in MEC systems.
♻ ☆ Diffusion Models at the Drug Discovery Frontier: A Review on Generating Small Molecules versus Therapeutic Peptides
Diffusion models have emerged as a leading framework in generative modeling, poised to transform the traditionally slow and costly process of drug discovery. This review provides a systematic comparison of their application in designing two principal therapeutic modalities: small molecules and therapeutic peptides. We dissect how the unified framework of iterative denoising is adapted to the distinct molecular representations, chemical spaces, and design objectives of each modality. For small molecules, these models excel at structure-based design, generating novel, pocket-fitting ligands with desired physicochemical properties, yet face the critical hurdle of ensuring chemical synthesizability. Conversely, for therapeutic peptides, the focus shifts to generating functional sequences and designing de novo structures, where the primary challenges are achieving biological stability against proteolysis, ensuring proper folding, and minimizing immunogenicity. Despite these distinct challenges, both domains face shared hurdles: the scarcity of high-quality experimental data, the reliance on inaccurate scoring functions for validation, and the crucial need for experimental validation. We conclude that the full potential of diffusion models will be unlocked by bridging these modality-specific gaps and integrating them into automated, closed-loop Design-Build-Test-Learn (DBTL) platforms, thereby shifting the paradigm from mere chemical exploration to the on-demand engineering of novel~therapeutics.
comment: Published in Biology
♻ ☆ Constructing Extreme Heatwave Storylines with Differentiable Climate Models
Understanding the plausible upper bounds of extreme weather events is essential for risk assessment in a warming climate. Existing methods, based on large ensembles of physics-based models, are often computationally expensive or lack the fidelity needed to simulate rare, high-impact extremes. Here, we present a novel framework that leverages a differentiable hybrid climate model, NeuralGCM, to optimize initial conditions and generate physically consistent worst-case heatwave trajectories. Applied to the 2021 Pacific Northwest heatwave, our method produces heatwave intensity up to 3.7 $^\circ$C above the most extreme member of a 75-member ensemble. These trajectories feature intensified atmospheric blocking and amplified Rossby wave patterns-hallmarks of severe heat events. Our results demonstrate that differentiable climate models can efficiently explore the upper tails of event likelihoods, providing a powerful new approach for constructing targeted storylines of extreme weather under climate change.
♻ ☆ Lost in Serialization: Invariance and Generalization of LLM Graph Reasoners AAAI 2026
While promising, graph reasoners based on Large Language Models (LLMs) lack built-in invariance to symmetries in graph representations. Operating on sequential graph serializations, LLMs can produce different outputs under node reindexing, edge reordering, or formatting changes, raising robustness concerns. We systematically analyze these effects, studying how fine-tuning impacts encoding sensitivity as well generalization on unseen tasks. We propose a principled decomposition of graph serializations into node labeling, edge encoding, and syntax, and evaluate LLM robustness to variations of each of these factors on a comprehensive benchmarking suite. We also contribute a novel set of spectral tasks to further assess generalization abilities of fine-tuned reasoners. Results show that larger (non-fine-tuned) models are more robust. Fine-tuning reduces sensitivity to node relabeling but may increase it to variations in structure and format, while it does not consistently improve performance on unseen tasks.
comment: AAAI 2026 Workshop on Graphs and more Complex Structures For Learning and Reasoning (GCLR). Version 2 fixes typos in author name and Figure 1
♻ ☆ ENMA: Tokenwise Autoregression for Generative Neural PDE Operators
Solving time-dependent parametric partial differential equations (PDEs) remains a fundamental challenge for neural solvers, particularly when generalizing across a wide range of physical parameters and dynamics. When data is uncertain or incomplete-as is often the case-a natural approach is to turn to generative models. We introduce ENMA, a generative neural operator designed to model spatio-temporal dynamics arising from physical phenomena. ENMA predicts future dynamics in a compressed latent space using a generative masked autoregressive transformer trained with flow matching loss, enabling tokenwise generation. Irregularly sampled spatial observations are encoded into uniform latent representations via attention mechanisms and further compressed through a spatio-temporal convolutional encoder. This allows ENMA to perform in-context learning at inference time by conditioning on either past states of the target trajectory or auxiliary context trajectories with similar dynamics. The result is a robust and adaptable framework that generalizes to new PDE regimes and supports one-shot surrogate modeling of time-dependent parametric PDEs.
♻ ☆ Multi-Agent Cross-Entropy Method with Monotonic Nonlinear Critic Decomposition
Cooperative multi-agent reinforcement learning (MARL) commonly adopts centralized training with decentralized execution (CTDE), where centralized critics leverage global information to guide decentralized actors. However, centralized-decentralized mismatch (CDM) arises when the suboptimal behavior of one agent degrades others' learning. Prior approaches mitigate CDM through value decomposition, but linear decompositions allow per-agent gradients at the cost of limited expressiveness, while nonlinear decompositions improve representation but require centralized gradients, reintroducing CDM. To overcome this trade-off, we propose the multi-agent cross-entropy method (MCEM), combined with monotonic nonlinear critic decomposition (NCD). MCEM updates policies by increasing the probability of high-value joint actions, thereby excluding suboptimal behaviors. For sample efficiency, we extend off-policy learning with a modified k-step return and Retrace. Analysis and experiments demonstrate that MCEM outperforms state-of-the-art methods across both continuous and discrete action benchmarks.
♻ ☆ Alignment of large language models with constrained learning NeurIPS 2025
We study the problem of computing an optimal large language model (LLM) policy for the constrained alignment problem, where the goal is to maximize a primary reward objective while satisfying constraints on secondary utilities. Despite the popularity of Lagrangian-based LLM policy search in constrained alignment, iterative primal-dual methods often fail to converge, and non-iterative dual-based methods do not achieve optimality in the LLM parameter space. To address these challenges, we employ Lagrangian duality to develop an iterative dual-based alignment method that alternates between updating the LLM policy via Lagrangian maximization and updating the dual variable via dual descent. In theory, we characterize the primal-dual gap between the primal value in the distribution space and the dual value in the LLM parameter space. We further quantify the optimality gap of the learned LLM policies at near-optimal dual variables with respect to both the objective and the constraint functions. These results prove that dual-based alignment methods can find an optimal constrained LLM policy, up to an LLM parametrization gap. We demonstrate the effectiveness and merits of our approach through extensive experiments conducted on the PKU-SafeRLHF and Anthropic HH-RLHF datasets.
comment: 51 pages, 5 figures, 11 tables; Accepted to NeurIPS 2025
♻ ☆ A Gray-box Attack against Latent Diffusion Model-based Image Editing by Posterior Collapse
Recent advancements in Latent Diffusion Models (LDMs) have revolutionized image synthesis and manipulation, raising significant concerns about data misappropriation and intellectual property infringement. While adversarial attacks have been extensively explored as a protective measure against such misuse of generative AI, current approaches are severely limited by their heavy reliance on model-specific knowledge and substantial computational costs. Drawing inspiration from the posterior collapse phenomenon observed in VAE training, we propose the Posterior Collapse Attack (PCA), a novel framework for protecting images from unauthorized manipulation. Through comprehensive theoretical analysis and empirical validation, we identify two distinct collapse phenomena during VAE inference: diffusion collapse and concentration collapse. Based on this discovery, we design a unified loss function that can flexibly achieve both types of collapse through parameter adjustment, each corresponding to different protection objectives in preventing image manipulation. Our method significantly reduces dependence on model-specific knowledge by requiring access to only the VAE encoder, which constitutes less than 4\% of LDM parameters. Notably, PCA achieves prompt-invariant protection by operating on the VAE encoder before text conditioning occurs, eliminating the need for empty prompt optimization required by existing methods. This minimal requirement enables PCA to maintain adequate transferability across various VAE-based LDM architectures while effectively preventing unauthorized image editing. Extensive experiments show PCA outperforms existing techniques in protection effectiveness, computational efficiency (runtime and VRAM), and generalization across VAE-based LDM variants. Our code is available at https://github.com/ZhongliangGuo/PosteriorCollapseAttack.
comment: 15 pages, 9 figures, 9 tables
♻ ☆ Flow Matching Meets PDEs: A Unified Framework for Physics-Constrained Generation
Generative machine learning methods, such as diffusion models and flow matching, have shown great potential in modeling complex system behaviors and building efficient surrogate models. However, these methods typically learn the underlying physics implicitly from data. We propose Physics-Based Flow Matching (PBFM), a novel generative framework that explicitly embeds physical constraints, both PDE residuals and algebraic relations, into the flow matching objective. We also introduce temporal unrolling at training time that improves the accuracy of the final, noise-free sample prediction. Our method jointly minimizes the flow matching loss and the physics-based residual loss without requiring hyperparameter tuning of their relative weights. Additionally, we analyze the role of the minimum noise level, $σ_{\min}$, in the context of physical constraints and evaluate a stochastic sampling strategy that helps to reduce physical residuals. Through extensive benchmarks on three representative PDE problems, we show that our approach yields up to an $8\times$ more accurate physical residuals compared to FM, while clearly outperforming existing algorithms in terms of distributional accuracy. PBFM thus provides a principled and efficient framework for surrogate modeling, uncertainty quantification, and accelerated simulation in physics and engineering applications.
♻ ☆ g-DPO: Scalable Preference Optimization for Protein Language Models NeurIPS 2025
Direct Preference Optimization (DPO) is an effective approach for aligning protein language models with experimental design goals. However, DPO faces a scalability bottleneck: the number of possible training pairs grows quadratically with the number of labeled sequences, leading to prohibitive training times even for modestly sized datasets. We introduce g-DPO, a framework that (i) uses sequence space clustering to prune redundant pairs while preserving training signal, and (ii) amortizes likelihood computations with group-based approximations. Across three protein engineering tasks, g-DPO maintains in silico and in vitro performance that is statistically indistinguishable from standard DPO, while converging 1.7x to 5.4x times faster, with speedups that scale with dataset size and the structure of the underlying mutational landscape.
comment: Accepted at two workshops: FM4LS NeurIPS 2025 (https://nips2025fm4ls.github.io/pages/accepted-paper.html) and MLSB in Copenhagen EurIPS 2025
♻ ☆ Demystifying Spectral Feature Learning for Instrumental Variable Regression NeurIPS 2025
We address the problem of causal effect estimation in the presence of hidden confounders, using nonparametric instrumental variable (IV) regression. A leading strategy employs spectral features - that is, learned features spanning the top eigensubspaces of the operator linking treatments to instruments. We derive a generalization error bound for a two-stage least squares estimator based on spectral features, and gain insights into the method's performance and failure modes. We show that performance depends on two key factors, leading to a clear taxonomy of outcomes. In a good scenario, the approach is optimal. This occurs with strong spectral alignment, meaning the structural function is well-represented by the top eigenfunctions of the conditional operator, coupled with this operator's slow eigenvalue decay, indicating a strong instrument. Performance degrades in a bad scenario: spectral alignment remains strong, but rapid eigenvalue decay (indicating a weaker instrument) demands significantly more samples for effective feature learning. Finally, in the ugly scenario, weak spectral alignment causes the method to fail, regardless of the eigenvalues' characteristics. Our synthetic experiments empirically validate this taxonomy. We further introduce a practical procedure to estimate these spectral properties from data, allowing practitioners to diagnose which regime a given problem falls into. We apply this method to the dSprites dataset, demonstrating its utility.
comment: Updated to the NeurIPS 2025 camera-ready version
♻ ☆ Scaling Efficient LLMs
Recent LLMs have hundreds of billions of parameters consuming vast resources. Furthermore, the so called "AI scaling law" for transformers suggests that the number of parameters must scale linearly with the size of the data. In response, we inquire into efficient LLMs, i.e. those with the fewest parameters that achieve the desired accuracy on a training corpus. Specifically, by comparing theoretical and empirical estimates of the Kullback-Leibler divergence, we derive a natural AI scaling law that the number of parameters in an efficient LLM scales as $D^γ$ where $D$ is the size of the training data and $ γ\in [0.44, 0.72]$, suggesting the existence of more efficient architectures. Against this backdrop, we propose recurrent transformers, combining the efficacy of transformers with the efficiency of recurrent networks, progressively applying a single transformer layer to a fixed-width sliding window across the input sequence. Recurrent transformers (a) run in linear time in the sequence length, (b) are memory-efficient and amenable to parallel processing in large batches, (c) learn to forget history for language tasks, or accumulate history for long range tasks like copy and selective copy, and (d) are amenable to curriculum training to overcome vanishing gradients. In our experiments, we find that recurrent transformers perform favorably on benchmark tests.
DR Tulu: Reinforcement Learning with Evolving Rubrics for Deep Research
Deep research models perform multi-step research to produce long-form, well-attributed answers. However, most open deep research models are trained on easily verifiable short-form QA tasks via reinforcement learning with verifiable rewards (RLVR), which does not extend to realistic long-form tasks. We address this with Reinforcement Learning with Evolving Rubrics (RLER), in which we construct and maintain rubrics that co-evolve with the policy model during training; this allows the rubrics to incorporate information that the model has newly explored and to provide discriminative, on-policy feedback. Using RLER, we develop Deep Research Tulu (DR Tulu-8B), the first open model that is directly trained for open-ended, long-form deep research. Across four long-form deep research benchmarks in science, healthcare and general domains, DR Tulu substantially outperforms existing open deep research models, and matches or exceeds proprietary deep research systems, while being significantly smaller and cheaper per query. To facilitate future research, we release all data, models, and code, including our new MCP-based agent infrastructure for deep research systems.
♻ ☆ Probabilistic Robustness for Free? Revisiting Training via a Benchmark
Deep learning models are notoriously vulnerable to imperceptible perturbations. Most existing research centers on adversarial robustness (AR), which evaluates models under worst-case scenarios by examining the existence of deterministic adversarial examples (AEs). In contrast, probabilistic robustness (PR) adopts a statistical perspective, measuring the probability that predictions remain correct under stochastic perturbations. While PR is widely regarded as a practical complement to AR, dedicated training methods for improving PR are still relatively underexplored, albeit with emerging progress. Among the few PR-targeted training methods, we identify three limitations: i non-comparable evaluation protocols; ii limited comparisons to strong AT baselines despite anecdotal PR gains from AT; and iii no unified framework to compare the generalization of these methods. Thus, we introduce PRBench, the first benchmark dedicated to evaluating improvements in PR achieved by different robustness training methods. PRBench empirically compares most common AT and PR-targeted training methods using a comprehensive set of metrics, including clean accuracy, PR and AR performance, training efficiency, and generalization error (GE). We also provide theoretical analysis on the GE of PR performance across different training methods. Main findings revealed by PRBench include: AT methods are more versatile than PR-targeted training methods in terms of improving both AR and PR performance across diverse hyperparameter settings, while PR-targeted training methods consistently yield lower GE and higher clean accuracy. A leaderboard comprising 222 trained models across 7 datasets and 10 model architectures is publicly available at https://tmpspace.github.io/PRBenchLeaderboard/.
♻ ☆ Geometric Multi-color Message Passing Graph Neural Networks for Blood-brain Barrier Permeability Prediction
Accurate prediction of blood-brain barrier permeability (BBBP) is essential for central nervous system (CNS) drug development. While graph neural networks (GNNs) have advanced molecular property prediction, they often rely on molecular topology and neglect the three-dimensional geometric information crucial for modeling transport mechanisms. This paper introduces the geometric multi-color message-passing graph neural network (GMC-MPNN), a novel framework that enhances standard message-passing architectures by explicitly incorporating atomic-level geometric features and long-range interactions. Our model constructs weighted colored subgraphs based on atom types to capture the spatial relationships and chemical context that govern BBB permeability. We evaluated GMC-MPNN on three benchmark datasets for both classification and regression tasks, using rigorous scaffold-based splitting to ensure a robust assessment of generalization. The results demonstrate that GMC-MPNN consistently outperforms existing state-of-the-art models, achieving superior performance in both classifying compounds as permeable/non-permeable (AUC-ROC of 0.9704 and 0.9685) and in regressing continuous permeability values (RMSE of 0.4609, Pearson correlation of 0.7759). An ablation study further quantified the impact of specific atom-pair interactions, revealing that the model's predictive power derives from its ability to learn from both common and rare, but chemically significant, functional motifs. By integrating spatial geometry into the graph representation, GMC-MPNN sets a new performance benchmark and offers a more accurate and generalizable tool for drug discovery pipelines.
comment: This paper is withdrawn due to an error in the training methodology that invalidates the results. The issue affects the main experimental conclusions
♻ ☆ Equivariant Flow Matching for Symmetry-Breaking Bifurcation Problems NeurIPS 2025
Bifurcation phenomena in nonlinear dynamical systems often lead to multiple coexisting stable solutions, particularly in the presence of symmetry breaking. Deterministic machine learning models struggle to capture this multiplicity, averaging over solutions and failing to represent lower-symmetry outcomes. In this work, we propose a generative framework based on flow matching to model the full probability distribution over bifurcation outcomes. Our method enables direct sampling of multiple valid solutions while preserving system symmetries through equivariant modeling. We introduce a symmetric matching strategy that aligns predicted and target outputs under group actions, allowing accurate learning in equivariant settings. We validate our approach on a range of systems, from toy models to complex physical problems such as buckling beams and the Allen-Cahn equation. Our results demonstrate that flow matching significantly outperforms non-probabilistic and variational methods in capturing multimodal distributions and symmetry-breaking bifurcations, offering a principled and scalable solution for modeling multistability in high-dimensional systems.
comment: 12 pages, 7 figures including appendices. Accepted to Machine Learning and the Physical Sciences Workshop, NeurIPS 2025 (https://ml4physicalsciences.github.io/2025/). Repository with corresponding code: https://github.com/FHendriks11/bifurcationML/. Video explanation: https://www.youtube.com/watch?v=wsL3h17KtjY
♻ ☆ GiBy: A Giant-Step Baby-Step Classifier For Anomaly Detection In Industrial Control Systems
The continuous monitoring of the interactions between cyber-physical components of any industrial control system (ICS) is required to secure automation of the system controls, and to guarantee plant processes are fail-safe and remain in an acceptably safe state. Safety is achieved by managing actuation (where electric signals are used to trigger physical movement), dependent on corresponding sensor readings; used as ground truth in decision making. Timely detection of anomalies (attacks, faults and unascertained states) in ICSs is crucial for the safe running of a plant, the safety of its personnel, and for the safe provision of any services provided. We propose an anomaly detection method that involves accurate linearization of the non-linear forms arising from sensor-actuator(s) relationships, primarily because solving linear models is easier and well understood. We accomplish this by using a well-known water treatment testbed as a use case. Our experiments show millisecond time response to detect anomalies, all of which are explainable and traceable; this simultaneous coupling of detection speed and explainability has not been achieved by other state of the art Artificial Intelligence (AI)/ Machine Learning (ML) models with eXplainable AI (XAI) used for the same purpose. Our methods explainability enables us to pin-point the sensor(s) and the actuation state(s) for which the anomaly was detected. The proposed algorithm showed an accuracy of 97.72% by flagging deviations within safe operation limits as non-anomalous; indicative that slower detectors with highest detection resolution is unnecessary, for systems whose safety boundaries provide leeway within safety limits.
♻ ☆ Adaptive Object Detection for Indoor Navigation Assistance: A Performance Evaluation of Real-Time Algorithms
This study addresses the need for accurate and efficient object detection in assistive technologies for visually impaired individuals. We evaluate four real-time object detection algorithms YOLO, SSD, Faster R-CNN, and Mask R-CNN within the context of indoor navigation assistance. Using the Indoor Objects Detection dataset, we analyze detection accuracy, processing speed, and adaptability to indoor environments. Our findings highlight the trade-offs between precision and efficiency, offering insights into selecting optimal algorithms for realtime assistive navigation. This research advances adaptive machine learning applications, enhancing indoor navigation solutions for the visually impaired and promoting accessibility.
comment: 5 pages, 2 figures, 3 tables
♻ ☆ Dynamic Epsilon Scheduling: A Multi-Factor Adaptive Perturbation Budget for Adversarial Training
Adversarial training is among the most effective strategies for defending deep neural networks against adversarial examples. A key limitation of existing adversarial training approaches lies in their reliance on a fixed perturbation budget, which fails to account for instance-specific robustness characteristics. While prior works such as IAAT and MMA introduce instance-level adaptations, they often rely on heuristic or static approximations of data robustness. In this paper, we propose Dynamic Epsilon Scheduling (DES), a novel framework that adaptively adjusts the adversarial perturbation budget per instance and per training iteration. DES integrates three key factors: (1) the distance to the decision boundary approximated via gradient-based proxies, (2) prediction confidence derived from softmax entropy, and (3) model uncertainty estimated via Monte Carlo dropout. By combining these cues into a unified scheduling strategy, DES tailors the perturbation budget dynamically to guide more effective adversarial learning. Experimental results on CIFAR-10 and CIFAR-100 show that our method consistently improves both adversarial robustness and standard accuracy compared to fixed-epsilon baselines and prior adaptive methods. Moreover, we provide theoretical insights into the stability and convergence of our scheduling policy. This work opens a new avenue for instance-aware, data-driven adversarial training methods.
♻ ☆ Asymmetric Duos: Sidekicks Improve Uncertainty NeurIPS 2025
The go-to strategy to apply deep networks in settings where uncertainty informs decisions--ensembling multiple training runs with random initializations--is ill-suited for the extremely large-scale models and practical fine-tuning workflows of today. We introduce a new cost-effective strategy for improving the uncertainty quantification and downstream decisions of a large model (e.g. a fine-tuned ViT-B): coupling it with a less accurate but much smaller "sidekick" (e.g. a fine-tuned ResNet-34) with a fraction of the computational cost. We propose aggregating the predictions of this Asymmetric Duo by simple learned weighted averaging. Surprisingly, despite their inherent asymmetry, the sidekick model almost never harms the performance of the larger model. In fact, across five image classification benchmarks and a variety of model architectures and training schemes (including soups), Asymmetric Duos significantly improve accuracy, uncertainty quantification, and selective classification metrics with only ${\sim}10-20\%$ more computation.
comment: 30 pages, 14 figures, NeurIPS 2025
♻ ☆ Decorrelation Speeds Up Vision Transformers
Masked Autoencoder (MAE) pre-training of vision transformers (ViTs) yields strong performance in low-label data regimes but comes with substantial computational costs, making it impractical in time- and resource-constrained industrial settings. We address this by nitegrating Decorrelated Backpropagation (DBP) into MAE pre-training, an optimization method that iteratively reduces input correlations at each layer to accelerate convergence. Applied selectively to the encoder, DBP achieves faster pre-training without loss of stability. To mimic constrained-data scenarios, we evaluate our approach on ImageNet-1K pre-training and ADE20K fine-tuning using randomly sampled subsets of each dataset. Under this setting, DBP-MAE reduces wall-clock time to baseline performance by 21.1%, lowers carbon emissions by 21.4%, and improves segmentation mIoU by 1.1 points. We observe similar gains when pre-training and fine-tuning on proprietary industrial data, confirming the method's applicability in real-world scenarios. These results demonstrate that DBP can reduce training time and energy use while improving downstream performance for large-scale ViT pre-training. Keywords: Deep learning, Vision transformers, Efficient AI, Decorrelation
comment: 16 pages, 12 figures, submitted to CVC 2026
♻ ☆ An Adaptive Resonance Theory-based Topological Clustering Algorithm with a Self-Adjusting Vigilance Parameter
Clustering in stationary and nonstationary settings, where data distributions remain static or evolve over time, requires models that can adapt to distributional shifts while preserving previously learned cluster structures. This paper proposes an Adaptive Resonance Theory (ART)-based topological clustering algorithm that autonomously adjusts its recalculation interval and vigilance threshold through a diversity-driven adaptation mechanism. This mechanism enables hyperparameter-free learning that maintains cluster stability and continuity in dynamic environments. Experiments on 24 real-world datasets demonstrate that the proposed algorithm outperforms state-of-the-art methods in both clustering performance and continual learning capability. These results highlight the effectiveness of the proposed parameter adaptation in mitigating catastrophic forgetting and maintaining consistent clustering in evolving data streams. Source code is available at https://github.com/Masuyama-lab/IDAT
comment: This manuscript is currently under review
♻ ☆ Data Valuation by Fusing Global and Local Statistical Information
Data valuation has garnered increasing attention in recent years, given the critical role of high-quality data in various applications. Among diverse data valuation approaches, Shapley value-based methods are predominant due to their strong theoretical grounding. However, the exact computation of Shapley values is often computationally prohibitive, prompting the development of numerous approximation techniques. Despite notable advancements, existing methods generally neglect the incorporation of value distribution information and fail to account for dynamic data conditions, thereby compromising their performance and application potential. In this paper, we highlight the crucial role of both global and local statistical properties of value distributions in the context of data valuation for machine learning. First, we conduct a comprehensive analysis of these distributions across various simulated and real-world datasets, uncovering valuable insights and key patterns. Second, we propose an enhanced data valuation method that fuses the explored distribution characteristics into two regularization terms to refine Shapley value estimation. The proposed regularizers can be seamlessly incorporated into various existing data valuation methods. Third, we introduce a novel approach for dynamic data valuation that infers updated data values without recomputing Shapley values, thereby significantly improving computational efficiency. Extensive experiments have been conducted across a range of tasks, including Shapley value estimation, value-based data addition and removal, mislabeled data detection, and dynamic data valuation. The results showcase the consistent effectiveness and efficiency of our proposed methodologies, affirming the significant potential of global and local value distributions in data valuation.
comment: 35 pages, 9 figures
♻ ☆ Approximation rates of quantum neural networks for periodic functions via Jackson's inequality
Quantum neural networks (QNNs) are an analog of classical neural networks in the world of quantum computing, which are represented by a unitary matrix with trainable parameters. Inspired by the universal approximation property of classical neural networks, ensuring that every continuous function can be arbitrarily well approximated uniformly on a compact set of a Euclidean space, some recent works have established analogous results for QNNs, ranging from single-qubit to multi-qubit QNNs, and even hybrid classical-quantum models. In this paper, we study the approximation capabilities of QNNs for periodic functions with respect to the supremum norm. We use the Jackson inequality to approximate a given function by implementing its approximating trigonometric polynomial via a suitable QNN. In particular, we see that by restricting to the class of periodic functions, one can achieve a quadratic reduction of the number of parameters, producing better approximation results than in the literature. Moreover, the smoother the function, the fewer parameters are needed to construct a QNN to approximate the function.
♻ ☆ Learning Individual Behavior in Agent-Based Models with Graph Diffusion Networks
Agent-Based Models (ABMs) are powerful tools for studying emergent properties in complex systems. In ABMs, agent behaviors are governed by local interactions and stochastic rules. However, these rules are, in general, non-differentiable, limiting the use of gradient-based methods for optimization, and thus integration with real-world data. We propose a novel framework to learn a differentiable surrogate of any ABM by observing its generated data. Our method combines diffusion models to capture behavioral stochasticity and graph neural networks to model agent interactions. Distinct from prior surrogate approaches, our method introduces a fundamental shift: rather than approximating system-level outputs, it models individual agent behavior directly, preserving the decentralized, bottom-up dynamics that define ABMs. We validate our approach on two ABMs (Schelling's segregation model and a Predator-Prey ecosystem) showing that it replicates individual-level patterns and accurately forecasts emergent dynamics beyond training. Our results demonstrate the potential of combining diffusion models and graph learning for data-driven ABM simulation.
♻ ☆ Deep Actor-Critics with Tight Risk Certificates
Deep actor-critic algorithms have reached a level where they influence everyday life. They are a driving force behind continual improvement of large language models through user feedback. However, their deployment in physical systems is not yet widely adopted, mainly because no validation scheme fully quantifies their risk of malfunction. We demonstrate that it is possible to develop tight risk certificates for deep actor-critic algorithms that predict generalization performance from validation-time observations. Our key insight centers on the effectiveness of minimal evaluation data. A small feasible set of evaluation roll-outs collected from a pretrained policy suffices to produce accurate risk certificates when combined with a simple adaptation of PAC-Bayes theory. Specifically, we adopt a recently introduced recursive PAC-Bayes approach, which splits validation data into portions and recursively builds PAC-Bayes bounds on the excess loss of each portion's predictor, using the predictor from the previous portion as a data-informed prior. Our empirical results across multiple locomotion tasks, actor-critic methods, and policy expertise levels demonstrate risk certificates tight enough to be considered for practical use.
comment: updated version with new methods and experiments
♻ ☆ Not All Splits Are Equal: Rethinking Attribute Generalization Across Unrelated Categories NeurIPS 2025
Can models generalize attribute knowledge across semantically and perceptually dissimilar categories? While prior work has addressed attribute prediction within narrow taxonomic or visually similar domains, it remains unclear whether current models can abstract attributes and apply them to conceptually distant categories. This work presents the first explicit evaluation for the robustness of the attribute prediction task under such conditions, testing whether models can correctly infer shared attributes between unrelated object types: e.g., identifying that the attribute "has four legs" is common to both "dogs" and "chairs". To enable this evaluation, we introduce train-test split strategies that progressively reduce correlation between training and test sets, based on: LLM-driven semantic grouping, embedding similarity thresholding, embedding-based clustering, and supercategory-based partitioning using ground-truth labels. Results show a sharp drop in performance as the correlation between training and test categories decreases, indicating strong sensitivity to split design. Among the evaluated methods, clustering yields the most effective trade-off, reducing hidden correlations while preserving learnability. These findings offer new insights into the limitations of current representations and inform future benchmark construction for attribute reasoning.
comment: Accepted at NeurIPS 2025 Workshop: CauScien - Uncovering Causality in Science and NeurIPS 2025 Workshop: Reliable ML from Unreliable Data
♻ ☆ Augur: Modeling Covariate Causal Associations in Time Series via Large Language Models
Large language models (LLM) have emerged as a promising avenue for time series forecasting, offering the potential to integrate multimodal data. However, existing LLM-based approaches face notable limitations-such as marginalized role in model architectures, reliance on coarse statistical text prompts, and lack of interpretability. In this work, we introduce Augur, a fully LLM driven time series forecasting framework that exploits LLM causal reasoning to discover and use directed causal associations among covariates. Augur uses a two stage teacher student architecture where a powerful teacher LLM infers a directed causal graph from time series using heuristic search together with pairwise causality testing. A lightweight student agent then refines the graph and fine tune on high confidence causal associations that are encoded as rich textual prompts to perform forecasting. This design improves predictive accuracy while yielding transparent, traceable reasoning about variable interactions. Extensive experiments on real-world datasets with 26 baselines demonstrate that Augur achieves competitive performance and robust zero-shot generalization.
comment: 24 pages, 9 figures
♻ ☆ Factor-Assisted Federated Learning for Personalized Optimization with Heterogeneous Data
Federated learning is an emerging distributed machine learning framework aiming at protecting data privacy. Data heterogeneity is one of the core challenges in federated learning, which could severely degrade the convergence rate and prediction performance of deep neural networks. To address this issue, we develop a novel personalized federated learning framework for heterogeneous data, which we refer to as FedSplit. This modeling framework is motivated by the finding that, data in different clients contain both common knowledge and personalized knowledge. Then the hidden elements in each neural layer can be split into the shared and personalized groups. With this decomposition, a novel objective function is established and optimized. We demonstrate FedSplit enjoyers a faster convergence speed than the standard federated learning method both theoretically and empirically. The generalization bound of the FedSplit method is also studied. To practically implement the proposed method on real datasets, factor analysis is introduced to facilitate the decoupling of hidden elements. This leads to a practically implemented model for FedSplit and we further refer to as FedFac. We demonstrated by simulation studies that, using factor analysis can well recover the underlying shared/personalized decomposition. The superior prediction performance of FedFac is further verified empirically by comparison with various state-of-the-art federated learning methods on several real datasets.
comment: 29 pages, 10 figures
♻ ☆ ConStellaration: A dataset of QI-like stellarator plasma boundaries and optimization benchmarks
Stellarators are magnetic confinement devices under active development to deliver steady-state carbon-free fusion energy. Their design involves a high-dimensional, constrained optimization problem that requires expensive physics simulations and significant domain expertise. Recent advances in plasma physics and open-source tools have made stellarator optimization more accessible. However, broader community progress is currently bottlenecked by the lack of standardized optimization problems with strong baselines and datasets that enable data-driven approaches, particularly for quasi-isodynamic (QI) stellarator configurations, considered as a promising path to commercial fusion due to their inherent resilience to current driven disruptions. Here, we release an open dataset of diverse QI-like stellarator plasma boundary shapes, paired with their ideal magnetohydrodynamic (MHD) equilibria and performance metrics. We generated this dataset by sampling a variety of QI fields and optimizing corresponding stellarator plasma boundaries. We introduce three optimization benchmarks of increasing complexity: (1) a single objective geometric optimization problem, (2) a "simple-to-build" QI stellarator, and (3) a multi-objective ideal-MHD stable QI stellarator that investigates trade-offs between compactness and coil simplicity. For every benchmark, we provide reference code, evaluation scripts, and strong baselines based on classical optimization techniques. Finally, we show how learned models trained on our dataset can efficiently generate novel, feasible configurations without querying expensive physics oracles. By openly releasing the dataset along with benchmark problems and baselines, we aim to lower the entry barrier for optimization and machine learning researchers to engage in stellarator design and to accelerate cross-disciplinary progress toward bringing fusion energy to the grid.
♻ ☆ CRPS-LAM: Regional ensemble weather forecasting from matching marginals
Machine learning for weather prediction increasingly relies on ensemble methods to provide probabilistic forecasts. Diffusion-based models have shown strong performance in Limited-Area Modeling (LAM) but remain computationally expensive at sampling time. Building on the success of global weather forecasting models trained based on Continuous Ranked Probability Score (CRPS), we introduce CRPS-LAM, a probabilistic LAM forecasting model trained with a CRPS-based objective. By sampling and injecting a single latent noise vector into the model, CRPS-LAM generates ensemble members in a single forward pass, achieving sampling speeds up to 39 times faster than a diffusion-based model. We evaluate the model on the MEPS regional dataset, where CRPS-LAM matches the low errors of diffusion models. By retaining also fine-scale forecast details, the method stands out as an effective approach for probabilistic regional weather forecasting
comment: Preprint
♻ ☆ Hashed Watermark as a Filter: Defeating Forging and Overwriting Attacks in Weight-based Neural Network Watermarking AAAI 2026
As valuable digital assets, deep neural networks necessitate robust ownership protection, positioning neural network watermarking (NNW) as a promising solution. Among various NNW approaches, weight-based methods are favored for their simplicity and practicality; however, they remain vulnerable to forging and overwriting attacks. To address those challenges, we propose NeuralMark, a robust method built around a hashed watermark filter. Specifically, we utilize a hash function to generate an irreversible binary watermark from a secret key, which is then used as a filter to select the model parameters for embedding. This design cleverly intertwines the embedding parameters with the hashed watermark, providing a robust defense against both forging and overwriting attacks. An average pooling is also incorporated to resist fine-tuning and pruning attacks. Furthermore, it can be seamlessly integrated into various neural network architectures, ensuring broad applicability. Theoretically, we analyze its security boundary. Empirically, we verify its effectiveness and robustness across 13 distinct Convolutional and Transformer architectures, covering five image classification tasks and one text generation task. The source codes are available at https://github.com/AIResearch-Group/NeuralMark.
comment: Accepted by AAAI 2026
♻ ☆ Superstate Quantum Mechanics
We introduce Superstate Quantum Mechanics (SQM), a theory that considers states in Hilbert space subject to multiple quadratic constraints, with ``energy'' also expressed as a quadratic function of these states. Traditional quantum mechanics corresponds to a single quadratic constraint of wavefunction normalization with energy expressed as a quadratic form involving the Hamiltonian. When SQM represents states as unitary operators, the stationary problem becomes a quantum inverse problem with multiple applications in physics, machine learning, and artificial intelligence. Any stationary SQM problem is equivalent to a new algebraic problem that we address in this paper. The non-stationary SQM problem considers the evolution of the system itself, involving the same ``energy'' operator as in the stationary case. Two possible options for the SQM dynamic equation are considered: (1) within the framework of linear maps from higher-order quantum theory, where 2D-type quantum circuits transform one quantum system into another; and (2) in the form of a Gross-Pitaevskii-type nonlinear map. Although no known physical process currently describes such 2D dynamics, this approach naturally bridges direct and inverse quantum mechanics problems, allowing for the development of a new type of computer algorithms. As an immediately available practical application of the theory, we consider using a quantum channel as a classical computational model; this type of computation can be performed on a classical computer.
comment: The ML approach presented in arXiv:2407.04406 is extended to stationary and non-stationary quantum dynamics
♻ ☆ F-INR: Functional Tensor Decomposition for Implicit Neural Representations
Implicit Neural Representations (INRs) model signals as continuous, differentiable functions. However, monolithic INRs scale poorly with data dimensionality, leading to excessive training costs. We propose F-INR, a framework that addresses this limitation by factorizing a high-dimensional INR into a set of compact, axis-specific sub-networks based on functional tensor decomposition. These sub-networks learn low-dimensional functional components that are then combined via tensor operations. This factorization reduces computational complexity while additionally improving representational capacity. F-INR is both architecture- and decomposition-agnostic. It integrates with various existing INR backbones (e.g., SIREN, WIRE, FINER, Factor Fields) and tensor formats (e.g., CP, TT, Tucker), offering fine-grained control over the speed-accuracy trade-off via the tensor rank and mode. Our experiments show F-INR accelerates training by up to $20\times$ and improves fidelity by over \num{6.0} dB PSNR compared to state-of-the-art INRs. We validate these gains on diverse tasks, including image representation, 3D geometry reconstruction, and neural radiance fields. We further show F-INR's applicability to scientific computing by modeling complex physics simulations. Thus, F-INR provides a scalable, flexible, and efficient framework for high-dimensional signal modeling. Project page: https://f-inr.github.io
comment: Accepted at WACV 2026. Website: https://f-inr.github.io Supplementary Material can be found there. 12 pages, 6 figures, 5 tables
♻ ☆ QiMeng-CRUX: Narrowing the Gap between Natural Language and Verilog via Core Refined Understanding eXpression AAAI26
Large language models (LLMs) have shown promising capabilities in hardware description language (HDL) generation. However, existing approaches often rely on free-form natural language descriptions that are often ambiguous, redundant, and unstructured, which poses significant challenges for downstream Verilog code generation. We treat hardware code generation as a complex transformation from an open-ended natural language space to a domain-specific, highly constrained target space. To bridge this gap, we introduce Core Refined Understanding eXpression (CRUX), a structured intermediate space that captures the essential semantics of user intent while organizing the expression for precise Verilog code generation. We further design a two-stage training framework, comprising Joint Expression Modeling and Dual-Space Optimization, to enhance the quality of both CRUX and Verilog code. Experiments across multiple Verilog generation benchmarks demonstrate that our model, CRUX-V, achieves state-of-the-art performance among general models, particularly under challenging design tasks. Furthermore, the CRUX space proves transferable and beneficial when used as input prompts for other code models, highlighting its effectiveness in narrowing the gap between free-form natural language descriptions and precise Verilog generation.
comment: Accepted by the AAAI26 Conference Main Track
♻ ☆ Characterizing Pattern Matching and Its Limits on Compositional Task Structures
Despite impressive capabilities, LLMs' successes often rely on pattern-matching behaviors, yet these are also linked to OOD generalization failures in compositional tasks. However, behavioral studies commonly employ task setups that allow multiple generalization sources (e.g., algebraic invariances, structural repetition), obscuring a precise and testable account of how well LLMs perform generalization through pattern matching and their limitations. To address this ambiguity, we first formalize pattern matching as functional equivalence, i.e., identifying pairs of subsequences of inputs that consistently lead to identical results when the rest of the input is held constant. Then, we systematically study how decoder-only Transformer and Mamba behave in controlled tasks with compositional structures that isolate this mechanism. Our formalism yields predictive and quantitative insights: (1) Instance-wise success of pattern matching is well predicted by the number of contexts witnessing the relevant functional equivalence. (2) We prove a tight sample complexity bound of learning a two-hop structure by identifying the exponent of the data scaling law for perfect in-domain generalization. Our empirical results align with the theoretical prediction, under 20x parameter scaling and across architectures. (3) Path ambiguity is a structural barrier: when a variable influences the output via multiple paths, models fail to form unified intermediate state representations, impairing accuracy and interpretability. (4) Chain-of-Thought reduces data requirements yet does not resolve path ambiguity. Hence, we provide a predictive, falsifiable boundary for pattern matching and a foundational diagnostic for disentangling mixed generalization mechanisms.
♻ ☆ Filter Like You Test: Data-Driven Data Filtering for CLIP Pretraining
We introduce Filter Like You Test (FLYT), an algorithm for curating large-scale vision-language datasets that learns the usefulness of each data point as a pretraining example. FLYT trains a scoring model that learns to weigh each example's features using gradient signals from downstream tasks training sets. Based on FLYT, we implement Mixing-FLYT (M-FLYT), which takes the per-example scores generated by different scoring methods as features, and learns to unify them into a single score. FLYT naturally produces a distribution over the training examples, which we leverage through Soft Cap Sampling (SCS), a strategy for obtaining a filtered pretraining dataset from per-example probabilities that samples examples while preventing over-representation through a repetition penalty. Using these methods, we achieve 40.1% ImageNet zero-shot accuracy on the DataComp medium scale filtering benchmark, a 2% absolute accuracy increase over all previous results and a 5.5% increase over results that - like us - use only public resources. Our approach also yields 37.7\% on the average of 38 DataComp evaluation tasks, outperforming previous public-resource approaches by 0.4\%.
♻ ☆ Enhancing Nuclear Reactor Core Simulation through Data-Based Surrogate Models
In recent years, there has been an increasing need for Nuclear Power Plants (NPPs) to improve flexibility in order to match the rapid growth of renewable energies. The Operator Assistance Predictive System (OAPS) developed by Framatome addresses this problem through Model Predictive Control (MPC). In this work, we aim to improve MPC methods through data-driven simulation schemes. Thus, from a set of nonlinear stiff ordinary differential equations (ODEs), this paper introduces two surrogate models acting as alternative simulation schemes to enhance nuclear reactor core simulation. We show that both data-driven and physics-informed models can rapidly integrate complex dynamics, with a very low computational time (up to 1000x time reduction).
♻ ☆ Adam Simplified: Bias Correction Debunked
The Adam optimizer is a cornerstone of modern deep learning, yet the empirical necessity of each of its individual components is often taken for granted. This paper presents a focused investigation into the role of bias-correction, a feature whose contribution remains poorly understood. Through a series of systematic ablations on vision and language modelling tasks, we demonstrate that the conventional wisdom surrounding bias correction is misleading. In particular, we demonstrate that in the optimal hyper-parameter configuration, the inclusion of bias correction leads to no improvement in final test performance. Moreover, unless appropriate learning rate scheduling is implemented, the inclusion of bias correction can sometimes be detrimental to performance. We further reinterpret bias correction as a form of implicit learning rate scheduling whose behaviour is strongly dependent on the choice of smoothing hyper-parameters $β_1, β_2 \in [0,1)$. Our findings challenge the universal inclusion of this component.
♻ ☆ PaTAS: A Parallel System for Trust Propagation in Neural Networks Using Subjective Logic
Trustworthiness has become a key requirement for the deployment of artificial intelligence systems in safety-critical applications. Conventional evaluation metrics such as accuracy and precision fail to capture uncertainty or the reliability of model predictions, particularly under adversarial or degraded conditions. This paper introduces the Parallel Trust Assessment System (PaTAS), a framework for modeling and propagating trust in neural networks using Subjective Logic (SL). PaTAS operates in parallel with standard neural computation through Trust Nodes and Trust Functions that propagate input, parameter, and activation trust across the network. The framework defines a Parameter Trust Update mechanism to refine parameter reliability during training and an Inference-Path Trust Assessment (IPTA) method to compute instance-specific trust at inference. Experiments on real-world and adversarial datasets demonstrate that PaTAS produces interpretable, symmetric, and convergent trust estimates that complement accuracy and expose reliability gaps in poisoned, biased, or uncertain data scenarios. The results show that PaTAS effectively distinguishes between benign and adversarial inputs and identifies cases where model confidence diverges from actual reliability. By enabling transparent and quantifiable trust reasoning within neural architectures, PaTAS provides a principled foundation for evaluating model reliability across the AI lifecycle.
♻ ☆ MoRE: Batch-Robust Multi-Omics Representations from Frozen Pre-trained Transformers
Representation learning on multi-omics data is challenging due to extreme dimensionality, modality heterogeneity, and cohort-specific batch effects. While pre-trained transformer backbones have shown broad generalization capabilities in biological sequence modeling, their application to multi-omics integration remains underexplored. We present MoRE (Multi-Omics Representation Embedding), a framework that repurposes frozen pre-trained transformers to align heterogeneous assays into a shared latent space. Unlike purely generative approaches, MoRE employs a parameter-efficient fine-tuning (PEFT) strategy, prioritizing cross-sample and cross-modality alignment over simple sequence reconstruction. Specifically, MoRE attaches lightweight, modality-specific adapters and a task-adaptive fusion layer to the frozen backbone. It optimizes a masked modeling objective jointly with supervised contrastive and batch-invariant alignment losses, yielding structure-preserving embeddings that generalize across unseen cell types and platforms. We benchmark MoRE against established baselines, including scGPT, scVI, and Harmony with Scrublet, evaluating integration fidelity, rare population detection, and modality transfer. Our results demonstrate that MoRE achieves competitive batch robustness and biological conservation while significantly reducing trainable parameters compared to fully fine-tuned models. This work positions MoRE as a practical step toward general-purpose omics foundation models.
♻ ☆ HO-FMN: Hyperparameter Optimization for Fast Minimum-Norm Attacks
Gradient-based attacks are a primary tool to evaluate robustness of machine-learning models. However, many attacks tend to provide overly-optimistic evaluations as they use fixed loss functions, optimizers, step-size schedulers, and default hyperparameters. In this work, we tackle these limitations by proposing a parametric variation of the well-known fast minimum-norm attack algorithm, whose loss, optimizer, step-size scheduler, and hyperparameters can be dynamically adjusted. We re-evaluate 12 robust models, showing that our attack finds smaller adversarial perturbations without requiring any additional tuning. This also enables reporting adversarial robustness as a function of the perturbation budget, providing a more complete evaluation than that offered by fixed-budget attacks, while remaining efficient. We release our open-source code at https://github.com/pralab/HO-FMN.
comment: Accepted at Neurocomputing
♻ ☆ QiMeng-SALV: Signal-Aware Learning for Verilog Code Generation NeurIPS 2025
The remarkable progress of Large Language Models (LLMs) presents promising opportunities for Verilog code generation which is significantly important for automated circuit design. The lacking of meaningful functional rewards hinders the preference optimization based on Reinforcement Learning (RL) for producing functionally correct Verilog code. In this paper, we propose Signal-Aware Learning for Verilog code generation (QiMeng-SALV) by leveraging code segments of functionally correct output signal to optimize RL training. Considering Verilog code specifies the structural interconnection of hardware gates and wires so that different output signals are independent, the key insight of QiMeng-SALV is to extract verified signal-aware implementations in partially incorrect modules, so as to enhance the extraction of meaningful functional rewards. Roughly, we verify the functional correctness of signals in generated module by comparing with that of reference module in the training data. Then abstract syntax tree (AST) is employed to identify signal-aware code segments which can provide meaningful functional rewards from erroneous modules. Finally, we introduce signal-aware DPO which is optimized on the correct signal-level code segments, thereby preventing noise and interference from incorrect signals. The proposed QiMeng-SALV underscores the paradigm shift from conventional module-level to fine-grained signal-level optimization in Verilog code generation, addressing the issue of insufficient functional rewards. Experiments demonstrate that our method achieves state-of-the-art performance on VerilogEval and RTLLM, with a 7B parameter model matching the performance of the DeepSeek v3 671B model and significantly outperforming the leading open-source model CodeV trained on the same dataset. Our code is available at https://github.com/zy1xxx/SALV.
comment: Accepted to NeurIPS 2025
♻ ☆ scipy.spatial.transform: Differentiable Framework-Agnostic 3D Transformations in Python
Three-dimensional rigid-body transforms, i.e. rotations and translations, are central to modern differentiable machine learning pipelines in robotics, vision, and simulation. However, numerically robust and mathematically correct implementations, particularly on SO(3), are error-prone due to issues such as axis conventions, normalizations, composition consistency and subtle errors that only appear in edge cases. SciPy's spatial$.$transform module is a rigorously tested Python implementation. However, it historically only supported NumPy, limiting adoption in GPU-accelerated and autodiff-based workflows. We present a complete overhaul of SciPy's spatial$.$transform functionality that makes it compatible with any array library implementing the Python array API, including JAX, PyTorch, and CuPy. The revised implementation preserves the established SciPy interface while enabling GPU/TPU execution, JIT compilation, vectorized batching, and differentiation via native autodiff of the chosen backend. We demonstrate how this foundation supports differentiable scientific computing through two case studies: (i) scalability of 3D transforms and rotations and (ii) a JAX drone simulation that leverages SciPy's Rotation for accurate integration of rotational dynamics. Our contributions have been merged into SciPy main and will ship in the next release, providing a framework-agnostic, production-grade basis for 3D spatial math in differentiable systems and ML.
comment: Accepted as oral at the 1st Workshop on Differentiable Systems and Scientific Machine Learning @ EurIPS 2025
♻ ☆ LightMem: Lightweight and Efficient Memory-Augmented Generation
Despite their remarkable capabilities, Large Language Models (LLMs) struggle to effectively leverage historical interaction information in dynamic and complex environments. Memory systems enable LLMs to move beyond stateless interactions by introducing persistent information storage, retrieval, and utilization mechanisms. However, existing memory systems often introduce substantial time and computational overhead. To this end, we introduce a new memory system called LightMem, which strikes a balance between the performance and efficiency of memory systems. Inspired by the Atkinson-Shiffrin model of human memory, LightMem organizes memory into three complementary stages. First, cognition-inspired sensory memory rapidly filters irrelevant information through lightweight compression and groups information according to their topics. Next, topic-aware short-term memory consolidates these topic-based groups, organizing and summarizing content for more structured access. Finally, long-term memory with sleep-time update employs an offline procedure that decouples consolidation from online inference. On LongMemEval and LoCoMo, using GPT and Qwen backbones, LightMem consistently surpasses strong baselines, improving QA accuracy by up to 7.7% / 29.3%, reducing total token usage by up to 38x / 20.9x and API calls by up to 30x / 55.5x, while purely online test-time costs are even lower, achieving up to 106x / 117x token reduction and 159x / 310x fewer API calls. The code is available at https://github.com/zjunlp/LightMem.
comment: Work in progress
♻ ☆ Action Chunking and Exploratory Data Collection Yield Exponential Improvements in Behavior Cloning for Continuous Control
This paper presents a theoretical analysis of two of the most impactful interventions in modern learning from demonstration in robotics and continuous control: the practice of action-chunking (predicting sequences of actions in open-loop) and exploratory augmentation of expert demonstrations. Though recent results show that learning from demonstration, also known as imitation learning (IL), can suffer errors that compound exponentially with task horizon in continuous settings, we demonstrate that action chunking and exploratory data collection circumvent exponential compounding errors in different regimes. Our results identify control-theoretic stability as the key mechanism underlying the benefits of these interventions. On the empirical side, we validate our predictions and the role of control-theoretic stability through experimentation on popular robot learning benchmarks. On the theoretical side, we demonstrate that the control-theoretic lens provides fine-grained insights into how compounding error arises, leading to tighter statistical guarantees on imitation learning error when these interventions are applied than previous techniques based on information-theoretic considerations alone.
comment: Updated manuscript. New visualization figures and control-theory primer
♻ ☆ TinyFormer: Efficient Transformer Design and Deployment on Tiny Devices
Developing deep learning models on tiny devices (e.g. Microcontroller units, MCUs) has attracted much attention in various embedded IoT applications. However, it is challenging to efficiently design and deploy recent advanced models (e.g. transformers) on tiny devices due to their severe hardware resource constraints. In this work, we propose TinyFormer, a framework specifically designed to develop and deploy resource-efficient transformer models on MCUs. TinyFormer consists of SuperNAS, SparseNAS, and SparseEngine. Separately, SuperNAS aims to search for an appropriate supernet from a vast search space. SparseNAS evaluates the best sparse single-path transformer model from the identified supernet. Finally, SparseEngine efficiently deploys the searched sparse models onto MCUs. To the best of our knowledge, SparseEngine is the first deployment framework capable of performing inference of sparse transformer models on MCUs. Evaluation results on the CIFAR-10 dataset demonstrate that TinyFormer can design efficient transformers with an accuracy of 96.1% while adhering to hardware constraints of 1MB storage and 320KB memory. Additionally, TinyFormer achieves significant speedups in sparse inference, up to 12.2x comparing to the CMSIS-NN library. TinyFormer is believed to bring powerful transformers into TinyML scenarios and to greatly expand the scope of deep learning applications
comment: This paper is accepted by IEEE Transactions on Circuits and Systems I: Regular Papers
♻ ☆ Earth Observation Satellite Scheduling with Graph Neural Networks and Monte Carlo Tree Search
Earth Observation Satellite Planning (EOSP) is a difficult optimization problem with considerable practical interest. A set of requested observations must be scheduled on an agile Earth observation satellite while respecting constraints on their visibility window, as well as maneuver constraints that impose varying delays between successive observations. In addition, the problem is largely oversubscribed: there are much more candidate observations than can possibly be achieved. Therefore, one must select the set of observations that will be performed while maximizing their cumulative benefit and propose a feasible schedule for these observations. As previous work mostly focused on heuristic and iterative search algorithms, this paper presents a new technique for selecting and scheduling observations based on Graph Neural Networks (GNNs) and Deep Reinforcement Learning (DRL). GNNs are used to extract relevant information from the graphs representing instances of the EOSP, and DRL drives the search for optimal schedules. A post-learning search step based on Monte Carlo Tree Search (MCTS) is added that is able to find even better solutions. Experiments show that it is able to learn on small problem instances and generalize to larger real-world instances, with very competitive performance compared to traditional approaches.
comment: Accepted at International Workshop on Planning & Scheduling for Space (IWPSS 2025)
♻ ☆ On the Effectiveness of Adversarial Training on Malware Classifiers
Adversarial Training (AT) is a key defense against Machine Learning evasion attacks, but its effectiveness for real-world malware detection remains poorly understood. This uncertainty stems from a critical disconnect in prior research: studies often overlook the inherent nature of malware and are fragmented, examining diverse variables like realism or confidence of adversarial examples in isolation, or relying on weak evaluations that yield non-generalizable insights. To address this, we introduce Rubik, a framework for the systematic, multi-dimensional evaluation of AT in the malware domain. This framework defines diverse key factors across essential dimensions, including data, feature representations, classifiers, and robust optimization settings, for a comprehensive exploration of the interplay of influential AT's variables through reliable evaluation practices, such as realistic evasion attacks. We instantiate Rubik on Android malware, empirically analyzing how this interplay shapes robustness. Our findings challenge prior beliefs--showing, for instance, that realizable adversarial examples offer only conditional robustness benefits--and reveal new insights, such as the critical role of model architecture and feature-space structure in determining AT's success. From this analysis, we distill four key insights, expose four common evaluation misconceptions, and offer practical recommendations to guide the development of truly robust malware classifiers.
♻ ☆ Optimized scheduling of electricity-heat cooperative system considering wind energy consumption and peak shaving and valley filling
With the global energy transition and rapid development of renewable energy, the scheduling optimization challenge for combined power-heat systems under new energy integration and multiple uncertainties has become increasingly prominent. Addressing this challenge, this study proposes an intelligent scheduling method based on the improved Dual-Delay Deep Deterministic Policy Gradient (PVTD3) algorithm. System optimization is achieved by introducing a penalty term for grid power purchase variations. Simulation results demonstrate that under three typical scenarios (10%, 20%, and 30% renewable penetration), the PVTD3 algorithm reduces the system's comprehensive cost by 6.93%, 12.68%, and 13.59% respectively compared to the traditional TD3 algorithm. Concurrently, it reduces the average fluctuation amplitude of grid power purchases by 12.8%. Regarding energy storage management, the PVTD3 algorithm reduces the end-time state values of low-temperature thermal storage tanks by 7.67-17.67 units while maintaining high-temperature tanks within the 3.59-4.25 safety operating range. Multi-scenario comparative validation demonstrates that the proposed algorithm not only excels in economic efficiency and grid stability but also exhibits superior sustainable scheduling capabilities in energy storage device management.
♻ ☆ Mechanism of Task-oriented Information Removal in In-context Learning
In-context Learning (ICL) is an emerging few-shot learning paradigm based on modern Language Models (LMs), yet its inner mechanism remains unclear. In this paper, we investigate the mechanism through a novel perspective of information removal. Specifically, we demonstrate that in the zero-shot scenario, LMs encode queries into non-selective representations in hidden states containing information for all possible tasks, leading to arbitrary outputs without focusing on the intended task, resulting in near-zero accuracy. Meanwhile, we find that selectively removing specific information from hidden states by a low-rank filter effectively steers LMs toward the intended task. Building on these findings, by measuring the hidden states on carefully designed metrics, we observe that few-shot ICL effectively simulates such task-oriented information removal processes, selectively removing the redundant information from entangled non-selective representations, and improving the output based on the demonstrations, which constitutes a key mechanism underlying ICL. Moreover, we identify essential attention heads inducing the removal operation, termed Denoising Heads, which enables the ablation experiments blocking the information removal operation from the inference, where the ICL accuracy significantly degrades, especially when the correct label is absent from the few-shot demonstrations, confirming both the critical role of the information removal mechanism and denoising heads.
comment: 87 pages, 90 figures, 7 tables
♻ ☆ Mathematical Insights into Protein Architecture: Persistent Homology and Machine Learning Applied to the Flagellar Motor
We present a machine learning approach that leverages persistent homology to classify bacterial flagellar motors into two functional states: rotated and stalled. By embedding protein structural data into a topological framework, we extract multiscale features from filtered simplicial complexes constructed over atomic coordinates. These topological invariants, specifically persistence diagrams and barcodes, capture critical geometric and connectivity patterns that correlate with motor function. The extracted features are vectorized and integrated into a machine learning pipeline that includes dimensionality reduction and supervised classification. Applied to a curated dataset of experimentally characterized flagellar motors from diverse bacterial species, our model demonstrates high classification accuracy and robustness to structural variation. This approach highlights the power of topological data analysis in revealing functionally relevant patterns beyond the reach of traditional geometric descriptors, offering a novel computational tool for protein function prediction.
♻ ☆ Enhancing Training Data Attribution with Representational Optimization NeurIPS 2025
Training data attribution (TDA) methods aim to measure how training data impacts a model's predictions. While gradient-based attribution methods, such as influence functions, offer theoretical grounding, their computational costs make them impractical for large-scale applications. Representation-based approaches are far more scalable, but typically rely on heuristic embeddings that are not optimized for attribution, limiting their fidelity. To address these challenges, we propose AirRep, a scalable, representation-based approach that closes this gap by learning task-specific and model-aligned representations optimized explicitly for TDA. AirRep introduces two key innovations: a trainable encoder tuned for attribution quality, and an attention-based pooling mechanism that enables accurate estimation of group-wise influence. We train AirRep using a ranking objective over automatically constructed training subsets labeled by their empirical effect on target predictions. Experiments on instruction-tuned LLMs demonstrate that AirRep achieves performance on par with state-of-the-art gradient-based approaches while being nearly two orders of magnitude more efficient at inference time. Further analysis highlights its robustness and generalization across tasks and models. Our code is available at https://github.com/sunnweiwei/AirRep
comment: NeurIPS 2025
♻ ☆ Federated Large Language Models: Current Progress and Future Directions
Large language models are rapidly gaining popularity and have been widely adopted in real-world applications. While the quality of training data is essential, privacy concerns arise during data collection. Federated learning offers a solution by allowing multiple clients to collaboratively train LLMs without sharing local data. However, FL introduces new challenges, such as model convergence issues due to heterogeneous data and high communication costs. A comprehensive study is required to address these challenges and guide future research. This paper surveys Federated learning for LLMs (FedLLM), highlighting recent advances and future directions. We focus on two key aspects: fine-tuning and prompt learning in a federated setting, discussing existing work and associated research challenges. We finally propose potential directions for federated LLMs, including pre-training, federated agents, and LLMs for federated learning.
♻ ☆ Empowering Targeted Neighborhood Search via Hyper Tour for Large-Scale TSP
Traveling Salesman Problem (TSP) is a classic NP-hard problem that has garnered significant attention from both academia and industry. While neural-based methods have shown promise for solving TSPs, they still face challenges in scaling to larger instances, particularly in memory constraints associated with global heatmaps, edge weights, or access matrices, as well as in generating high-quality initial solutions and insufficient global guidance for efficiently navigating vast search spaces. To address these challenges, we propose a Hyper Tour Guided Neighborhood Search (HyperNS) method for large-scale TSP instances. Inspired by the ``clustering first, route second" strategy, our approach initially divides the TSP instance into clusters using a sparse heatmap graph and abstracts them as supernodes, followed by the generation of a hyper tour to guide both the initialization and optimization processes. This method reduces the search space by focusing on edges relevant to the hyper tour, leading to more efficient and effective optimization. Experimental results on both synthetic and real-world datasets demonstrate that our approach outperforms existing neural-based methods, particularly in handling larger-scale instances, offering a significant reduction in the gap to the optimal solution.
comment: 15 pages
♻ ☆ Empowering Time Series Forecasting with LLM-Agents
Large Language Model (LLM) powered agents have emerged as effective planners for Automated Machine Learning (AutoML) systems. While most existing AutoML approaches focus on automating feature engineering and model architecture search, recent studies in time series forecasting suggest that lightweight models can often achieve state-of-the-art performance. This observation led us to explore improving data quality, rather than model architecture, as a potentially fruitful direction for AutoML on time series data. We propose DCATS, a Data-Centric Agent for Time Series. DCATS leverages metadata accompanying time series to clean data while optimizing forecasting performance. We evaluated DCATS using four time series forecasting models on a large-scale traffic volume forecasting dataset. Results demonstrate that DCATS achieves an average 6% error reduction across all tested models and time horizons, highlighting the potential of data-centric approaches in AutoML for time series forecasting.
♻ ☆ A Conditional Distribution Equality Testing Framework using Deep Generative Learning
In this paper, we propose a general framework for testing the conditional distribution equality in a two-sample problem, which is most relevant to covariate shift and causal discovery. Our framework is built on neural network-based generative methods and sample splitting techniques by transforming the conditional testing problem into an unconditional one. We introduce the generative classification accuracy-based conditional distribution equality test (GCA-CDET) to illustrate the proposed framework. We establish the convergence rate for the learned generator by deriving new results related to the recently-developed offset Rademacher complexity and prove the testing consistency of GCA-CDET under mild conditions.Empirically, we conduct numerical studies including synthetic datasets and two real-world datasets, demonstrating the effectiveness of our approach. Additional discussions on the optimality of the proposed framework are provided in the online supplementary material.
♻ ☆ SculptDrug : A Spatial Condition-Aware Bayesian Flow Model for Structure-based Drug Design
Structure-Based drug design (SBDD) has emerged as a popular approach in drug discovery, leveraging three-dimensional protein structures to generate drug ligands. However, existing generative models encounter several key challenges: (1) incorporating boundary condition constraints, (2) integrating hierarchical structural conditions, and (3) ensuring spatial modeling fidelity. To address these limitations, we propose SculptDrug, a spatial condition-aware generative model based on Bayesian flow networks (BFNs). First, SculptDrug follows a BFN-based framework and employs a progressive denoising strategy to ensure spatial modeling fidelity, iteratively refining atom positions while enhancing local interactions for precise spatial alignment. Second, we introduce a Boundary Awareness Block that incorporates protein surface constraints into the generative process to ensure that generated ligands are geometrically compatible with the target protein. Third, we design a Hierarchical Encoder that captures global structural context while preserving fine-grained molecular interactions, ensuring overall consistency and accurate ligand-protein conformations. We evaluate SculptDrug on the CrossDocked dataset, and experimental results demonstrate that SculptDrug outperforms state-of-the-art baselines, highlighting the effectiveness of spatial condition-aware modeling.
♻ ☆ TiCT: A Synthetically Pre-Trained Foundation Model for Time Series Classification
The ubiquity of time series data creates a strong demand for general-purpose foundation models, yet developing them for classification remains a significant challenge, largely due to the high cost of labeled data. Foundation models capable of in-context learning (ICL) offer a powerful solution, adapting to new tasks with minimal examples and reducing the need for extensive retraining. However, prior work on large-scale time series models has predominantly focused on forecasting, leaving a critical gap for versatile, fine-tuning-free classification. To address this, we introduce TiCT (Time-series in-Context Transformer), a transformer-based model pre-trained exclusively on synthetic data to perform in-context classification. We make two primary technical contributions: 1) a novel architecture featuring a scalable bit-based label encoding and a special output attention mechanism to handle an arbitrary number of classes; and 2) a synthetic pre-training framework that combines a Mixup-inspired process with data augmentation to foster generalization and noise invariance. Extensive evaluations on the UCR Archive show that TiCT achieves competitive performance against state-of-the-art supervised methods. Crucially, this is accomplished using only in-context examples at inference time, without updating a single model weight.
♻ ☆ AutoDiscovery: Open-ended Scientific Discovery via Bayesian Surprise NeurIPS 2025
The promise of autonomous scientific discovery (ASD) hinges not only on answering questions, but also on knowing which questions to ask. Most recent works in ASD explore the use of large language models (LLMs) in goal-driven settings, relying on human-specified research questions to guide hypothesis generation. However, scientific discovery may be accelerated further by allowing the AI system to drive exploration by its own criteria. The few existing approaches in open-ended ASD select hypotheses based on diversity heuristics or subjective proxies for human interestingness, but the former struggles to meaningfully navigate the typically vast hypothesis space, and the latter suffers from imprecise definitions. This paper presents AutoDiscovery -- a method for open-ended ASD that instead drives scientific exploration using Bayesian surprise. Here, we quantify the epistemic shift from the LLM's prior beliefs about a hypothesis to its posterior beliefs after gathering experimental results. To efficiently explore the space of nested hypotheses, our method employs a Monte Carlo tree search (MCTS) strategy with progressive widening using surprisal as the reward function. We evaluate AutoDiscovery in the setting of data-driven discovery across 21 real-world datasets spanning domains such as biology, economics, finance, and behavioral science. Our results demonstrate that under a fixed budget, AutoDiscovery substantially outperforms competitors by producing 5-29% more discoveries deemed surprising by the LLM. Our human evaluation further reveals that two-thirds of discoveries made by our system are surprising to domain experts as well, suggesting this is an important step towards building open-ended ASD systems.
comment: Accepted to NeurIPS 2025; https://neurips.cc/virtual/2025/loc/san-diego/poster/116398
♻ ☆ Meursault as a Data Point
In an era dominated by datafication, the reduction of human experiences to quantifiable metrics raises profound philosophical and ethical questions. This paper explores these issues through the lens of Meursault, the protagonist of Albert Camus' The Stranger, whose emotionally detached existence epitomizes the existential concept of absurdity. Using natural language processing (NLP) techniques including emotion detection (BERT), sentiment analysis (VADER), and named entity recognition (spaCy)-this study quantifies key events and behaviors in Meursault's life. Our analysis reveals the inherent limitations of applying algorithmic models to complex human experiences, particularly those rooted in existential alienation and moral ambiguity. By examining how modern AI tools misinterpret Meursault's actions and emotions, this research underscores the broader ethical dilemmas of reducing nuanced human narratives to data points, challenging the foundational assumptions of our data-driven society. The findings presented in this paper serve as a critique of the increasing reliance on data-driven narratives and advocate for incorporating humanistic values in artificial intelligence.
comment: 7 pages, 9 figures, 4 tables
♻ ☆ CAPability: A Comprehensive Visual Caption Benchmark for Evaluating Both Correctness and Thoroughness NeurIPS 2025
Visual captioning benchmarks have become outdated with the emergence of modern multimodal large language models (MLLMs), as the brief ground-truth sentences and traditional metrics fail to assess detailed captions effectively. While recent benchmarks attempt to address this by focusing on keyword extraction or object-centric evaluation, they remain limited to vague-view or object-view analyses and incomplete visual element coverage. In this paper, we introduce CAPability, a comprehensive multi-view benchmark for evaluating visual captioning across 12 dimensions spanning six critical views. We curate nearly 11K human-annotated images and videos with visual element annotations to evaluate the generated captions. CAPability stably assesses both the correctness and thoroughness of captions with \textit{precision} and \textit{hit} metrics. By converting annotations to QA pairs, we further introduce a heuristic metric, \textit{know but cannot tell} ($K\bar{T}$), indicating a significant performance gap between QA and caption capabilities. Our work provides a holistic analysis of MLLMs' captioning abilities, as we identify their strengths and weaknesses across various dimensions, guiding future research to enhance specific aspects of their capabilities.
comment: Accepted to NeurIPS 2025
♻ ☆ A Unifying View of Linear Function Approximation in Off-Policy RL Through Matrix Splitting and Preconditioning NeurIPS 2025
In off-policy policy evaluation (OPE) tasks within reinforcement learning, Temporal Difference Learning(TD) and Fitted Q-Iteration (FQI) have traditionally been viewed as differing in the number of updates toward the target value function: TD makes one update, FQI makes an infinite number, and Partial Fitted Q-Iteration (PFQI) performs a finite number. We show that this view is not accurate, and provide a new mathematical perspective under linear value function approximation that unifies these methods as a single iterative method solving the same linear system, but using different matrix splitting schemes and preconditioners. We show that increasing the number of updates under the same target value function, i.e., the target network technique, is a transition from using a constant preconditioner to using a data-feature adaptive preconditioner. This elucidates, for the first time, why TD convergence does not necessarily imply FQI convergence, and establishes tight convergence connections among TD, PFQI, and FQI. Our framework enables sharper theoretical results than previous work and characterization of the convergence conditions for each algorithm, without relying on assumptions about the features (e.g., linear independence). We also provide an encoder-decoder perspective to better understand the convergence conditions of TD, and prove, for the first time, that when a large learning rate doesn't work, trying a smaller one may help. Our framework also leads to the discovery of new crucial conditions on features for convergence, and shows how common assumptions about features influence convergence, e.g., the assumption of linearly independent features can be dropped without compromising the convergence guarantees of stochastic TD in the on-policy setting. This paper is also the first to introduce matrix splitting into the convergence analysis of these algorithms.
comment: This work has been accepted for spotlight presentation (top 3% of papers) at NeurIPS 2025
♻ ☆ Evolutionary Prediction Games NeurIPS 2025
When a prediction algorithm serves a collection of users, disparities in prediction quality are likely to emerge. If users respond to accurate predictions by increasing engagement, inviting friends, or adopting trends, repeated learning creates a feedback loop that shapes both the model and the population of its users. In this work, we introduce evolutionary prediction games, a framework grounded in evolutionary game theory which models such feedback loops as natural-selection processes among groups of users. Our theoretical analysis reveals a gap between idealized and real-world learning settings: In idealized settings with unlimited data and computational power, repeated learning creates competition and promotes competitive exclusion across a broad class of behavioral dynamics. However, under realistic constraints such as finite data, limited compute, or risk of overfitting, we show that stable coexistence and mutualistic symbiosis between groups becomes possible. We analyze these possibilities in terms of their stability and feasibility, present mechanisms that can sustain their existence, and empirically demonstrate our findings.
comment: NeurIPS 2025
♻ ☆ The Structure-Content Trade-off in Knowledge Graph Retrieval
Large Language Models (LLMs) increasingly rely on knowledge graphs for factual reasoning, yet how retrieval design shapes their performance remains unclear. We examine how question decomposition changes the retrieved subgraph's content and structure. Using a hybrid retrieval function that controls the importance of initial question and subquestions, we show that subquestion-based retrieval improves content precision, but yields disjoint subgraphs, while question-based retrieval maintains structure at the cost of relevance. Optimal performance arises between these extremes, revealing that balancing retrieval content and structure is key to effective LLM reasoning over structured knowledge.
♻ ☆ PointNSP: Autoregressive 3D Point Cloud Generation with Next-Scale Level-of-Detail Prediction
Autoregressive point cloud generation has long lagged behind diffusion-based approaches in quality. The performance gap stems from the fact that autoregressive models impose an artificial ordering on inherently unordered point sets, forcing shape generation to proceed as a sequence of local predictions. This sequential bias emphasizes short-range continuity but undermines the model's capacity to capture long-range dependencies, hindering its ability to enforce global structural properties such as symmetry, consistent topology, and large-scale geometric regularities. Inspired by the level-of-detail (LOD) principle in shape modeling, we propose PointNSP, a coarse-to-fine generative framework that preserves global shape structure at low resolutions and progressively refines fine-grained geometry at higher scales through a next-scale prediction paradigm. This multi-scale factorization aligns the autoregressive objective with the permutation-invariant nature of point sets, enabling rich intra-scale interactions while avoiding brittle fixed orderings. Experiments on ShapeNet show that PointNSP establishes state-of-the-art (SOTA) generation quality for the first time within the autoregressive paradigm. In addition, it surpasses strong diffusion-based baselines in parameter, training, and inference efficiency. Finally, in dense generation with 8,192 points, PointNSP's advantages become even more pronounced, underscoring its scalability potential.
comment: This work was intended as a replacement of arXiv:2503.08594 and any subsequent updates will appear there
♻ ☆ Beyond Introspection: Reinforcing Thinking via Externalist Behavioral Feedback
While inference-time thinking allows Large Language Models (LLMs) to address complex problems, the extended thinking process can be unreliable or inconsistent because of the model's probabilistic nature, especially near its knowledge boundaries. Existing approaches attempt to mitigate this by having the model critique its own reasoning to make corrections. However, such self-critique inherits the same biases of the original output, known as the introspection illusion. Moving beyond such introspection and inspired by core methodologies in ethology, we propose an externalist three-step framework Distillation-Reinforcement-Reasoning (DRR). Rather than relying on a model's introspection, DRR evaluates its observable behaviors to provide corrective feedback. DRR first distills the reasoner's behavioral traces, then trains a lightweight, external Discriminative Model (DM). At inference time, this DM acts as a critic, identifying and rejecting suspicious reasoning steps. This external feedback compels the LLM to discard flawed pathways and explore alternatives, thereby enhancing reasoning quality without altering the base model. Experiments on multiple reasoning benchmarks show that our framework significantly outperforms prominent self-critique methods. Benefiting from a lightweight and annotation-free design, DRR offers a scalable and adaptable solution for improving the reliability of reasoning in a wide range of LLMs.
♻ ☆ CAMERA: Multi-Matrix Joint Compression for MoE Models via Micro-Expert Redundancy Analysis AAAI 2026
Large Language Models (LLMs) with Mixture-of-Experts (MoE) architectures are distinguished by their strong performance scaling with increasing parameters across a wide range of tasks, yet they also suffer from substantial computational and storage overheads. Notably, the performance gains of MoE models do not scale proportionally with the growth in expert parameters. While prior works attempt to reduce parameters via expert-level pruning, merging, or decomposition, they still suffer from challenges in both performance and computational efficiency. In this paper, we address these challenges by introducing micro-expert as a finer-grained compression unit that spans across matrices. We first establish a more fundamental perspective, viewing MoE layers as mixtures of micro-experts, and present CAMERA, a lightweight and training-free framework for identifying micro-expert redundancy. Our analysis uncovers significant variance in micro-expert contributions during decoding. Based on this insight, we further propose CAMERA-P, a structured micro-expert pruning framework, and CAMERA-Q, a mixed-precision quantization idea designed for micro-experts. Extensive experiments on nine downstream tasks show that CAMERA-P consistently outperforms strong baselines under pruning ratios ranging from 20% to 60%. Furthermore, CAMERA-Q achieves superior results under aggressive 2-bit quantization, surpassing existing matrix- and channel-level ideas. Notably, our method enables complete micro-expert analysis of Qwen2-57B-A14B in less than 5 minutes on a single NVIDIA A100-40GB GPU.
comment: Accepted in AAAI 2026
♻ ☆ CoMind: Towards Community-Driven Agents for Machine Learning Engineering
Large language model (LLM) agents show promise in automating machine learning (ML) engineering. However, existing agents typically operate in isolation on a given research problem, without engaging with the broader research community, where human researchers often gain insights and contribute by sharing knowledge. To bridge this gap, we introduce MLE-Live, a live evaluation framework designed to assess an agent's ability to communicate with and leverage collective knowledge from a simulated Kaggle research community. Building on this framework, we propose CoMind, an multi-agent system designed to actively integrate external knowledge. CoMind employs an iterative parallel exploration mechanism, developing multiple solutions simultaneously to balance exploratory breadth with implementation depth. On 75 past Kaggle competitions within our MLE-Live framework, CoMind achieves a 36% medal rate, establishing a new state of the art. Critically, when deployed in eight live, ongoing competitions, CoMind outperforms 92.6% of human competitors on average, placing in the top 5% on three official leaderboards and the top 1% on one.
♻ ☆ UniGame: Turning a Unified Multimodal Model Into Its Own Adversary
Unified Multimodal Models (UMMs) have shown impressive performance in both understanding and generation with a single architecture. However, UMMs still exhibit a fundamental inconsistency: understanding favors compact embeddings, whereas generation favors reconstruction-rich representations. This structural trade-off produces misaligned decision boundaries, degraded cross-modal coherence, and heightened vulnerability under distributional and adversarial shifts. In this paper, we present UniGame, a self-adversarial post-training framework that directly targets the inconsistencies. By applying a lightweight perturber at the shared token interface, UniGame enables the generation branch to actively seek and challenge fragile understanding, turning the model itself into its own adversary. Experiments demonstrate that UniGame significantly improves the consistency (+4.6%). Moreover, it also achieves substantial improvements in understanding (+3.6%), generation (+0.02), out-of-distribution and adversarial robustness (+4.8% and +6.2% on NaturalBench and AdVQA). The framework is architecture-agnostic, introduces less than 1% additional parameters, and is complementary to existing post-training methods. These results position adversarial self-play as a general and effective principle for enhancing the coherence, stability, and unified competence of future multimodal foundation models. The official code is available at: https://github.com/AIFrontierLab/UniGame
♻ ☆ CoxKAN: Kolmogorov-Arnold Networks for Interpretable, High-Performance Survival Analysis
Motivation: Survival analysis is a branch of statistics that is crucial in medicine for modeling the time to critical events such as death or relapse, in order to improve treatment strategies and patient outcomes. Selecting survival models often involves a trade-off between performance and interpretability; deep learning models offer high performance but lack the transparency of more traditional approaches. This poses a significant issue in medicine, where practitioners are reluctant to use black-box models for critical patient decisions. Results: We introduce CoxKAN, a Cox proportional hazards Kolmogorov-Arnold Network for interpretable, high-performance survival analysis. Kolmogorov-Arnold Networks (KANs) were recently proposed as an interpretable and accurate alternative to multi-layer perceptrons. We evaluated CoxKAN on four synthetic and nine real datasets, including five cohorts with clinical data and four with genomics biomarkers. In synthetic experiments, CoxKAN accurately recovered interpretable hazard function formulae and excelled in automatic feature selection. Evaluations on real datasets showed that CoxKAN consistently outperformed the traditional Cox proportional hazards model (by up to 4% in C-index) and matched or surpassed the performance of deep learning-based models. Importantly, CoxKAN revealed complex interactions between predictor variables and uncovered symbolic formulae, which are key capabilities that other survival analysis methods lack, to provide clear insights into the impact of key biomarkers on patient risk. Availability and implementation: CoxKAN is available at GitHub and Zenodo
♻ ☆ Rigor in AI: Doing Rigorous AI Work Requires a Broader, Responsible AI-Informed Conception of Rigor NeurIPS'25
In AI research and practice, rigor remains largely understood in terms of methodological rigor -- such as whether mathematical, statistical, or computational methods are correctly applied. We argue that this narrow conception of rigor has contributed to the concerns raised by the responsible AI community, including overblown claims about the capabilities of AI systems. Our position is that a broader conception of what rigorous AI research and practice should entail is needed. We believe such a conception -- in addition to a more expansive understanding of (1) methodological rigor -- should include aspects related to (2) what background knowledge informs what to work on (epistemic rigor); (3) how disciplinary, community, or personal norms, standards, or beliefs influence the work (normative rigor); (4) how clearly articulated the theoretical constructs under use are (conceptual rigor); (5) what is reported and how (reporting rigor); and (6) how well-supported the inferences from existing evidence are (interpretative rigor). In doing so, we also provide useful language and a framework for much-needed dialogue about the AI community's work by researchers, policymakers, journalists, and other stakeholders.
comment: 21 pages, 1 figure, 1 table, accepted at NeurIPS'25 position papers track
♻ ☆ CroMe: Multimodal Fake News Detection using Cross-Modal Tri-Transformer and Metric Learning
Multimodal Fake News Detection has received increasing attention recently. Existing methods rely on independently encoded unimodal data and overlook the advantages of capturing intra-modality relationships and integrating inter-modal similarities using advanced techniques. To address these issues, Cross-Modal Tri-Transformer and Metric Learning for Multimodal Fake News Detection (CroMe) is proposed. CroMe utilizes Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models (BLIP2) as encoders to capture detailed text, image and combined image-text representations. The metric learning module employs a proxy anchor method to capture intra-modality relationships while the feature fusion module uses a Cross-Modal and Tri-Transformer for effective integration. The final fake news detector processes the fused features through a classifier to predict the authenticity of the content. Experiments on datasets show that CroMe excels in multimodal fake news detection.
♻ ☆ Reconstructing the local density field with combined convolutional and point cloud architecture NeurIPS 2025
We construct a neural network to perform regression on the local dark-matter density field given line-of-sight peculiar velocities of dark-matter halos, biased tracers of the dark matter field. Our architecture combines a convolutional U-Net with a point-cloud DeepSets. This combination enables efficient use of small-scale information and improves reconstruction quality relative to a U-Net-only approach. Specifically, our hybrid network recovers both clustering amplitudes and phases better than the U-Net on small scales.
comment: 6 pages, 4 figures, 1 table. Accepted at the NeurIPS 2025 Workshop: ML4PS. Comments welcome!
♻ ☆ Decentralized Bilevel Optimization: A Perspective from Transient Iteration Complexity
Stochastic bilevel optimization (SBO) is becoming increasingly essential in machine learning due to its versatility in handling nested structures. To address large-scale SBO, decentralized approaches have emerged as effective paradigms in which nodes communicate with immediate neighbors without a central server, thereby improving communication efficiency and enhancing algorithmic robustness. However, most decentralized SBO algorithms focus solely on asymptotic convergence rates, overlooking transient iteration complexity-the number of iterations required before asymptotic rates dominate, which results in limited understanding of the influence of network topology, data heterogeneity, and the nested bilevel algorithmic structures. To address this issue, this paper introduces D-SOBA, a Decentralized Stochastic One-loop Bilevel Algorithm framework. D-SOBA comprises two variants: D-SOBA-SO, which incorporates second-order Hessian and Jacobian matrices, and D-SOBA-FO, which relies entirely on first-order gradients. We provide a comprehensive non-asymptotic convergence analysis and establish the transient iteration complexity of D-SOBA. This provides the first theoretical understanding of how network topology, data heterogeneity, and nested bilevel structures influence decentralized SBO. Extensive experimental results demonstrate the efficiency and theoretical advantages of D-SOBA.
comment: 64 pages. Accepted by Journal of Machine Learning Research (JMLR)
♻ ☆ Deep RL Dual Sourcing Inventory Management with Supply and Capacity Risk Awareness
In this work, we study how to efficiently apply reinforcement learning (RL) for solving large-scale stochastic optimization problems by leveraging intervention models. The key of the proposed methodology is to better explore the solution space by simulating and composing the stochastic processes using pre-trained deep learning (DL) models. We demonstrate our approach on a challenging real-world application, the multi-sourcing multi-period inventory management problem in supply chain optimization. In particular, we employ deep RL models for learning and forecasting the stochastic supply chain processes under a range of assumptions. Moreover, we also introduce a constraint coordination mechanism, designed to forecast dual costs given the cross-products constraints in the inventory network. We highlight that instead of directly modeling the complex physical constraints into the RL optimization problem and solving the stochastic problem as a whole, our approach breaks down those supply chain processes into scalable and composable DL modules, leading to improved performance on large real-world datasets. We also outline open problems for future research to further investigate the efficacy of such models.
comment: We need to withdraw the paper and re-validate all the results
♻ ☆ Data-Driven Lipschitz Continuity: A Cost-Effective Approach to Improve Adversarial Robustness
As deep neural networks (DNNs) are increasingly deployed in sensitive applications, ensuring their security and robustness has become critical. A major threat to DNNs arises from adversarial attacks, where small input perturbations can lead to incorrect predictions. Recent advances in adversarial training improve robustness by incorporating additional examples from external datasets or generative models. However, these methods often incur high computational costs, limiting their practicality and hindering real-world deployment. In this paper, we propose a cost-efficient alternative based on Lipschitz continuity that achieves robustness comparable to models trained with extensive supplementary data. Unlike conventional adversarial training, our method requires only a single pass over the dataset without gradient estimation, making it highly efficient. Furthermore, our method can integrate seamlessly with existing adversarial training frameworks and enhances the robustness of models without requiring extra generative data. Experimental results show that our approach not only reduces computational overhead but also maintains or improves the defensive capabilities of robust neural networks. This work opens a promising direction for developing practical, scalable defenses against adversarial attacks.
♻ ☆ Self-Organization and Spectral Mechanism of Attractor Landscapes in High-Capacity Kernel Hopfield Networks
Kernel-based learning methods can dramatically increase the storage capacity of Hopfield networks, yet the dynamical mechanism behind this enhancement remains poorly understood. We address this gap by unifying the geometric analysis of the attractor landscape with the spectral theory of kernel machines. Using a novel metric, "Pinnacle Sharpness," we first uncover a rich phase diagram of attractor stability, identifying a "Ridge of Optimization" where the network achieves maximal robustness under high-load conditions. Phenomenologically, this ridge is characterized by a "Force Antagonism," where a strong driving force is balanced by a collective feedback force. Theoretically, we reveal that this phenomenon arises from a specific reorganization of the weight spectrum, which we term \textit{Spectral Concentration}. Unlike a simple rank-1 collapse, our analysis shows that the network on the ridge self-organizes into a critical state: the leading eigenvalue is amplified to maximize global stability (Direct Force), while the trailing eigenvalues are preserved to maintain high memory capacity (Indirect Force). These findings provide a complete physical picture of how high-capacity associative memories are formed, demonstrating that optimal performance is achieved by tuning the system to a spectral "Goldilocks zone" between rank collapse and diffusion.
comment: 8 pages, 5 figures
♻ ☆ Single- vs. Dual-Policy Reinforcement Learning for Dynamic Bike Rebalancing
Bike-sharing systems (BSS) provide a sustainable urban mobility solution, but ensuring their reliability requires effective rebalancing strategies to address stochastic demand and prevent station imbalances. This paper proposes reinforcement learning (RL) algorithms for dynamic rebalancing problem with multiple vehicles, introducing and comparing two RL approaches: Single-policy RL and Dual-policy RL. We formulate this network optimization problem as a Markov Decision Process within a continuous-time framework, allowing vehicles to make independent and cooperative rebalancing decisions without synchronization constraints. In the first approach, a single deep Q-network (DQN) is trained to jointly learn inventory and routing decisions. The second approach decouples node-level inventory decisions from arc-level vehicle routing, enhancing learning efficiency and adaptability. A high-fidelity simulator under the first-arrive-first-serve rule is developed to estimate rewards across diverse demand scenarios influenced by temporal and weather variations. Extensive experiments demonstrate that while the single-policy model is competitive against several benchmarks, the dual-policy model significantly reduces lost demand. These findings provide valuable insights for bike-sharing operators, reinforcing the potential of RL for real-time rebalancing and paving the way for more adaptive and intelligent urban mobility solutions.
♻ ☆ LTD: Low Temperature Distillation for Gradient Masking-free Adversarial Training
Adversarial training is a widely adopted strategy to bolster the robustness of neural network models against adversarial attacks. This paper revisits the fundamental assumptions underlying image classification and suggests that representing data as one-hot labels is a key factor that leads to vulnerabilities. However, in real-world datasets, data ambiguity often arises, with samples exhibiting characteristics of multiple classes, rendering one-hot label representations imprecise. To address this, we introduce a novel approach, Low-Temperature Distillation (LTD), designed to refine label representations. Unlike previous approaches, LTD incorporates a relatively low temperature in the teacher model, while maintaining a fixed temperature for the student model during both training and inference. This strategy not only refines assumptions about data distribution but also strengthens model robustness and avoids the gradient masking problem commonly encountered in defensive distillation. Experimental results demonstrate the efficacy of the proposed method when combined with existing frameworks, achieving robust accuracy rates of 58.19%, 31.13%, and 42.08% on the CIFAR-10, CIFAR-100, and ImageNet datasets, respectively, without the need for additional data.
♻ ☆ HardFlow: Hard-Constrained Sampling for Flow-Matching Models via Trajectory Optimization
Diffusion and flow-matching have emerged as powerful methodologies for generative modeling, with remarkable success in capturing complex data distributions and enabling flexible guidance at inference time. Many downstream applications, however, demand enforcing hard constraints on generated samples (for example, robot trajectories must avoid obstacles), a requirement that goes beyond simple guidance. Prevailing projection-based approaches constrain the entire sampling path to the constraint manifold, which is overly restrictive and degrades sample quality. In this paper, we introduce a novel framework that reformulates hard-constrained sampling as a trajectory optimization problem. Our key insight is to leverage numerical optimal control to steer the sampling trajectory so that constraints are satisfied precisely at the terminal time. By exploiting the underlying structure of flow-matching models and adopting techniques from model predictive control, we transform this otherwise complex constrained optimization problem into a tractable surrogate that can be solved efficiently and effectively. Furthermore, this trajectory optimization perspective offers significant flexibility beyond mere constraint satisfaction, allowing for the inclusion of integral costs to minimize distribution shift and terminal objectives to further enhance sample quality, all within a unified framework. We provide a control-theoretic analysis of our method, establishing bounds on the approximation error between our tractable surrogate and the ideal formulation. Extensive experiments across diverse domains, including robotics (planning), partial differential equations (boundary control), and vision (text-guided image editing), demonstrate that our algorithm, which we name $\textit{HardFlow}$, substantially outperforms existing methods in both constraint satisfaction and sample quality.
♻ ☆ Uncertainty-Aware Deep Learning Framework for Remaining Useful Life Prediction in Turbofan Engines with Learned Aleatoric Uncertainty
Accurate Remaining Useful Life (RUL) prediction coupled with uncertainty quantification remains a critical challenge in aerospace prognostics. This research introduces a novel uncertainty-aware deep learning framework that learns aleatoric uncertainty directly through probabilistic modeling, an approach unexplored in existing CMAPSS-based literature. Our hierarchical architecture integrates multi-scale Inception blocks for temporal pattern extraction, bidirectional Long Short-Term Memory networks for sequential modeling, and a dual-level attention mechanism operating simultaneously on sensor and temporal dimensions. The innovation lies in the Bayesian output layer that predicts both mean RUL and variance, enabling the model to learn data-inherent uncertainty. Comprehensive preprocessing employs condition-aware clustering, wavelet denoising, and intelligent feature selection. Experimental validation on NASA CMAPSS benchmarks (FD001-FD004) demonstrates competitive overall performance with RMSE values of 16.22, 19.29, 16.84, and 19.98 respectively. Remarkably, our framework achieves breakthrough critical zone performance (RUL <= 30 cycles) with RMSE of 5.14, 6.89, 5.27, and 7.16, representing 25-40 percent improvements over conventional approaches and establishing new benchmarks for safety-critical predictions. The learned uncertainty provides well-calibrated 95 percent confidence intervals with coverage ranging from 93.5 percent to 95.2 percent, enabling risk-aware maintenance scheduling previously unattainable in CMAPSS literature.
comment: 10 pages, 2 figures, 3 tables
♻ ☆ Dual-Balancing for Multi-Task Learning
Multi-task learning aims to learn multiple related tasks simultaneously and has achieved great success in various fields. However, the disparity in loss and gradient scales among tasks often leads to performance compromises, and the balancing of tasks remains a significant challenge. In this paper, we propose Dual-Balancing Multi-Task Learning (DB-MTL) to achieve task balancing from both the loss and gradient perspectives. Specifically, DB-MTL achieves loss-scale balancing by performing logarithm transformation on each task loss, and rescales gradient magnitudes by normalizing all task gradients to comparable magnitudes using the maximum gradient norm. Extensive experiments on a number of benchmark datasets demonstrate that DB-MTL consistently performs better than the current state-of-the-art.
comment: Accepted by Neural Networks
♻ ☆ Federated Learning: A Stochastic Approximation Approach
This paper considers the Federated learning (FL) in a stochastic approximation (SA) framework. Here, each client $i$ trains a local model using its dataset $\mathcal{D}^{(i)}$ and periodically transmits the model parameters $w^{(i)}_n$ to a central server, where they are aggregated into a global model parameter $\bar{w}_n$ and sent back. The clients continue their training by re-initializing their local models with the global model parameters. Prior works typically assumed constant (and often identical) step sizes (learning rates) across clients for model training. As a consequence the aggregated model converges only in expectation. In this work, client-specific tapering step sizes $a^{(i)}_n$ are used. The global model is shown to track an ODE with a forcing function equal to the weighted sum of the negative gradients of the individual clients. The weights being the limiting ratios $p^{(i)}=\lim_{n \to \infty} \frac{a^{(i)}_n}{a^{(1)}_n}$ of the step sizes, where $a^{(1)}_n \geq a^{(i)}_n, \forall n$. Unlike the constant step sizes, the convergence here is with probability one. In this framework, the clients with the larger $p^{(i)}$ exert a greater influence on the global model than those with smaller $p^{(i)}$, which can be used to favor clients that have rare and uncommon data. Numerical experiments were conducted to validate the convergence and demonstrate the choice of step-sizes for regulating the influence of the clients.
♻ ☆ Lower Complexity Bounds for Nonconvex-Strongly-Convex Bilevel Optimization with First-Order Oracles
Although upper bound guarantees for bilevel optimization have been widely studied, progress on lower bounds has been limited due to the complexity of the bilevel structure. In this work, we focus on the smooth nonconvex-strongly-convex setting and develop new hard instances that yield nontrivial lower bounds under deterministic and stochastic first-order oracle models. In the deterministic case, we prove that any first-order zero-respecting algorithm requires at least $Ω(κ^{3/2}ε^{-2})$ oracle calls to find an $ε$-accurate stationary point, improving the optimal lower bounds known for single-level nonconvex optimization and for nonconvex-strongly-convex min-max problems. In the stochastic case, we show that at least $Ω(κ^{5/2}ε^{-4})$ stochastic oracle calls are necessary, again strengthening the best known bounds in related settings. Our results expose substantial gaps between current upper and lower bounds for bilevel optimization and suggest that even simplified regimes, such as those with quadratic lower-level objectives, warrant further investigation toward understanding the optimal complexity of bilevel optimization under standard first-order oracles.
comment: 24 pages, 1 figure
♻ ☆ Finite-Time Minimax Bounds and an Optimal Lyapunov Policy in Queueing Control
We introduce an original minimax framework for finite-time performance analysis in queueing control and propose a surprisingly simple Lyapunov-based scheduling policy with superior finite-time performance. The framework quantitatively characterizes how the expected total queue length scales with key system parameters, including the capacity of the scheduling set and the variability of arrivals and departures across queues. To our knowledge, this provides the first firm foundation for evaluating and comparing scheduling policies in the finite-time regime, including nonstationary settings, and shows that the proposed policy can provably and empirically outperform classical MaxWeight in finite time. Within this framework, we establish three main sets of results. First, we derive minimax lower bounds on the expected total queue length for parallel-queue scheduling via a novel Brownian coupling argument. Second, we propose a new policy, LyapOpt, which minimizes the full quadratic Lyapunov drift-capturing both first- and second-order terms-and achieves optimal finite-time performance in heavy traffic while retaining classical stability guarantees. Third, we identify a key limitation of the classical MaxWeight policy, which optimizes only the first-order drift: its finite-time performance depends suboptimally on system parameters, leading to substantially larger backlogs in explicitly characterized settings. Together, these results delineate the scope and limitations of classical drift-based scheduling and motivate new queueing-control methods with rigorous finite-time guarantees.
♻ ☆ STARFlow-V: End-to-End Video Generative Modeling with Normalizing Flows
Normalizing flows (NFs) are end-to-end likelihood-based generative models for continuous data, and have recently regained attention with encouraging progress on image generation. Yet in the video generation domain, where spatiotemporal complexity and computational cost are substantially higher, state-of-the-art systems almost exclusively rely on diffusion-based models. In this work, we revisit this design space by presenting STARFlow-V, a normalizing flow-based video generator with substantial benefits such as end-to-end learning, robust causal prediction, and native likelihood estimation. Building upon the recently proposed STARFlow, STARFlow-V operates in the spatiotemporal latent space with a global-local architecture which restricts causal dependencies to a global latent space while preserving rich local within-frame interactions. This eases error accumulation over time, a common pitfall of standard autoregressive diffusion model generation. Additionally, we propose flow-score matching, which equips the model with a light-weight causal denoiser to improve the video generation consistency in an autoregressive fashion. To improve the sampling efficiency, STARFlow-V employs a video-aware Jacobi iteration scheme that recasts inner updates as parallelizable iterations without breaking causality. Thanks to the invertible structure, the same model can natively support text-to-video, image-to-video as well as video-to-video generation tasks. Empirically, STARFlow-V achieves strong visual fidelity and temporal consistency with practical sampling throughput relative to diffusion-based baselines. These results present the first evidence, to our knowledge, that NFs are capable of high-quality autoregressive video generation, establishing them as a promising research direction for building world models. Code and generated samples are available at https://github.com/apple/ml-starflow.
comment: 21 pages, 9 figures. Code and samples are available at https://github.com/apple/ml-starflow
♻ ☆ PrefixGPT: Prefix Adder Optimization by a Generative Pre-trained Transformer AAAI-2026
Prefix adders are widely used in compute-intensive applications for their high speed. However, designing optimized prefix adders is challenging due to strict design rules and an exponentially large design space. We introduce PrefixGPT, a generative pre-trained Transformer (GPT) that directly generates optimized prefix adders from scratch. Our approach represents an adder's topology as a two-dimensional coordinate sequence and applies a legality mask during generation, ensuring every design is valid by construction. PrefixGPT features a customized decoder-only Transformer architecture. The model is first pre-trained on a corpus of randomly synthesized valid prefix adders to learn design rules and then fine-tuned to navigate the design space for optimized design quality. Compared with existing works, PrefixGPT not only finds a new optimal design with a 7.7% improved area-delay product (ADP) but exhibits superior exploration quality, lowering the average ADP by up to 79.1%. This demonstrates the potential of GPT-style models to first master complex hardware design principles and then apply them for more efficient design optimization.
comment: This is an extended version of the paper accepted by the AAAI-2026 Conference
♻ ☆ Policy Optimization and Multi-agent Reinforcement Learning for Mean-variance Team Stochastic Games
We study a long-run mean-variance team stochastic game (MV-TSG), where each agent shares a common mean-variance objective for the system and takes actions independently to maximize it. MV-TSG has two main challenges. First, the variance metric is neither additive nor Markovian in a dynamic setting. Second, simultaneous policy updates of all agents lead to a non-stationary environment for each individual agent. Both challenges make dynamic programming inapplicable. In this paper, we study MV-TSGs from the perspective of sensitivity-based optimization. The performance difference and performance derivative formulas for joint policies are derived, which provide optimization information for MV-TSGs. We prove the existence of a deterministic Nash policy for this problem. Subsequently, we propose a Mean-Variance Multi-Agent Policy Iteration (MV-MAPI) algorithm with a sequential update scheme, where individual agent policies are updated one by one in a given order. We prove that the MV-MAPI algorithm converges to a first-order stationary point of the objective function. By analyzing the local geometry of stationary points, we derive specific conditions for stationary points to be (local) Nash equilibria, and further, strict local optima. To solve large-scale MV-TSGs in scenarios with unknown environmental parameters, we extend the idea of trust region methods to MV-MAPI and develop a multi-agent reinforcement learning algorithm named Mean-Variance Multi-Agent Trust Region Policy Optimization (MV-MATRPO). We derive a performance lower bound for each update of joint policies. Finally, numerical experiments on energy management in multiple microgrid systems are conducted.
♻ ☆ No Request Left Behind: Tackling Heterogeneity in Long-Context LLM Inference with Medha
Deploying million-token Large Language Models (LLMs) is challenging because production workloads are highly heterogeneous, mixing short queries and long documents. This heterogeneity, combined with the quadratic complexity of attention, creates severe convoy effects where long-running requests stall short, interactive ones, degrading system responsiveness. We present Medha, a serving system that eliminates these convoys by introducing fine-grained, preemptive scheduling to LLM inference. Medha makes preemption practical with a co-designed set of mechanisms -- including Adaptive Chunking and Stream Pipeline Parallel that overcome the perceived inefficiencies and scaling challenges of chunking. Additionally, we present a new parallelism strategy KV-Cache Parallelism to reduce the decode latency and afford interactivity despite very long context. These mechanisms are orchestrated by a Length-Aware Relative Slack (LARS) scheduler, a deadline and heterogeneity-aware scheduling policy that prevents both the convoy effect and the starvation that plagues simpler policies. Under a heterogeneous workload, Medha improves throughput by 5.7x while reducing median and 99th percentile latency by 30x and 174x, respectively, compared to state-of-the-art non-preemptive systems.
♻ ☆ Generative Adversarial Post-Training Mitigates Reward Hacking in Live Human-AI Music Interaction
Most applications of generative AI involve a sequential interaction in which a person inputs a prompt and waits for a response, and where reaction time and adaptivity are not important factors. In contrast, live jamming is a collaborative interaction that requires real-time coordination and adaptation without access to the other player's future moves, while preserving diversity to sustain a creative flow. Reinforcement learning post-training enables effective adaptation through on-policy interaction, yet it often reduces output diversity by exploiting coherence-based rewards. This collapse, known as ``reward hacking'', affects many RL post-training pipelines, but is especially harmful in live jamming, where musical creativity relies on dynamic variation and mutual responsiveness. In this paper, we propose a novel adversarial training method on policy-generated trajectories to mitigate reward hacking in RL post-training for melody-to-chord accompaniment. A co-evolving discriminator separates policy trajectories from the data distribution, while the policy maximizes the discriminator output in addition to coherence rewards to prevent collapse to trivial outputs. We evaluate accompaniment quality and output diversity in simulation with both fixed test melodies and learned melody agents, and we conduct a user study with the model deployed in a real-time interactive system with expert musicians. Quantitative evaluation and user feedback demonstrate improved output diversity, harmonic coherence, adaptation speed and user agency. Our results demonstrate a simple yet effective method to mitigate reward hacking in RL post-training of generative sequence models.
♻ ☆ CTSyn: A Foundation Model for Cross Tabular Data Generation
Generative Foundation Models (GFMs) have achieved remarkable success in producing high-quality synthetic data for images and text. However, their application to tabular data presents significant challenges due to the heterogeneous nature of table features. Current cross-table learning frameworks struggle because they lack a generative model backbone and an effective mechanism to decode heterogeneous feature values. To address these challenges, we propose the Cross-Table Synthesizer (CTSyn), a diffusion-based generative foundation model for tabular data generation. CTSyn comprises two key components. The first is an autoencoder network that consolidates diverse tables into a unified latent space. It dynamically reconstructs table values using a table schema embedding, allowing adaptation to heterogeneous datasets. The second is a conditional latent diffusion model that generates samples from the learned latent space, conditioned on the table schema. Through large-scale pre-training, CTSyn outperforms existing table synthesizers on standard benchmarks in both utility and diversity. These results position CTSyn as a promising framework for synthetic table generation and lay the groundwork for developing large-scale tabular foundation models.
♻ ☆ MoEGCL: Mixture of Ego-Graphs Contrastive Representation Learning for Multi-View Clustering
In recent years, the advancement of Graph Neural Networks (GNNs) has significantly propelled progress in Multi-View Clustering (MVC). However, existing methods face the problem of coarse-grained graph fusion. Specifically, current approaches typically generate a separate graph structure for each view and then perform weighted fusion of graph structures at the view level, which is a relatively rough strategy. To address this limitation, we present a novel Mixture of Ego-Graphs Contrastive Representation Learning (MoEGCL). It mainly consists of two modules. In particular, we propose an innovative Mixture of Ego-Graphs Fusion (MoEGF), which constructs ego graphs and utilizes a Mixture-of-Experts network to implement fine-grained fusion of ego graphs at the sample level, rather than the conventional view-level fusion. Additionally, we present the Ego Graph Contrastive Learning (EGCL) module to align the fused representation with the view-specific representation. The EGCL module enhances the representation similarity of samples from the same cluster, not merely from the same sample, further boosting fine-grained graph representation. Extensive experiments demonstrate that MoEGCL achieves state-of-the-art results in deep multi-view clustering tasks. The source code is publicly available at https://github.com/HackerHyper/MoEGCL.
♻ ☆ Fair Algorithms with Probing for Multi-Agent Multi-Armed Bandits
We propose a multi-agent multi-armed bandit (MA-MAB) framework aimed at ensuring fair outcomes across agents while maximizing overall system performance. A key challenge in this setting is decision-making under limited information about arm rewards. To address this, we introduce a novel probing framework that strategically gathers information about selected arms before allocation. In the offline setting, where reward distributions are known, we leverage submodular properties to design a greedy probing algorithm with a provable performance bound. For the more complex online setting, we develop an algorithm that achieves sublinear regret while maintaining fairness. Extensive experiments on synthetic and real-world datasets show that our approach outperforms baseline methods, achieving better fairness and efficiency.
Genomics 2
☆ Moonshine.jl: a Julia package for genome-scale model-based ancestral recombination graph inference
The ancestral recombination graph (ARG) is the model of choice in statistical genetics to model population ancestries. Software capable of simulating ARGs on a genome scale within a reasonable amount of time are now widely available for most practical use cases. While the inverse problem of inferring ancestries from a sample of haplotypes has seen major progress in the last decade, it does not enjoy the same level of advancement as its counterpart. Up until recently, even moderately sized samples could only be handled using heuristics. In recent years, the possibility of model-based inference for datasets closer to "real world" scenarios has become a reality, largely due to the development of threading-based samplers. This article introduces Moonshine.jl, a Julia package that has the ability, among other things, to infer ARGs for samples of thousands of human haplotypes of sizes on the order of hundreds of megabases within a reasonable amount of time. On recent hardware, our package is able to infer an ARG for samples of densely haplotyped (over one marker/kilobase) human chromosomes of sizes up to 10000 in well under a day on data simulated by msprime. Scaling up simulation on a compute cluster is straightforward thanks to a strictly single-threaded implementation. While model-based, it does not resort to threading but rather places restrictions on probability distributions typically used in simulation software in order to enforce sample consistency. In addition to being efficient, a strong emphasis is placed on ease of use and integration into the biostatistical software ecosystem.
♻ ☆ MoRE: Batch-Robust Multi-Omics Representations from Frozen Pre-trained Transformers
Representation learning on multi-omics data is challenging due to extreme dimensionality, modality heterogeneity, and cohort-specific batch effects. While pre-trained transformer backbones have shown broad generalization capabilities in biological sequence modeling, their application to multi-omics integration remains underexplored. We present MoRE (Multi-Omics Representation Embedding), a framework that repurposes frozen pre-trained transformers to align heterogeneous assays into a shared latent space. Unlike purely generative approaches, MoRE employs a parameter-efficient fine-tuning (PEFT) strategy, prioritizing cross-sample and cross-modality alignment over simple sequence reconstruction. Specifically, MoRE attaches lightweight, modality-specific adapters and a task-adaptive fusion layer to the frozen backbone. It optimizes a masked modeling objective jointly with supervised contrastive and batch-invariant alignment losses, yielding structure-preserving embeddings that generalize across unseen cell types and platforms. We benchmark MoRE against established baselines, including scGPT, scVI, and Harmony with Scrublet, evaluating integration fidelity, rare population detection, and modality transfer. Our results demonstrate that MoRE achieves competitive batch robustness and biological conservation while significantly reducing trainable parameters compared to fully fine-tuned models. This work positions MoRE as a practical step toward general-purpose omics foundation models.
Quantitative Methods 5
☆ Automated Protein Motif Localization using Concept Activation Vectors in Protein Language Model Embedding Space
We present an automated approach for identifying and annotating motifs and domains in protein sequences, using pretrained Protein Language Models (PLMs) and Concept Activation Vectors (CAVs), adapted from interpretability research in computer vision. We treat motifs as conceptual entities and represent them through learned CAVs in PLM embedding space by training simple linear classifiers to distinguish motif-containing from non-motif sequences. To identify motif occurrences, we extract embeddings for overlapping sequence windows and compute their inner products with motif CAVs. This scoring mechanism quantifies how strongly each sequence region expresses the motif concept and naturally detects multiple instances of the same motif within the same protein. Using a dataset of sixty-nine well-characterized motifs with curated positive and negative examples, our method achieves over 85\% F1 Score for segments strongly expressing the concept and accurately localizes motif positions across diverse protein families. As each motif is encoded by a single vector, motif detection requires only the pretrained PLM and a lightweight dictionary of CAVs, offering a scalable, interpretable, and computationally efficient framework for automated sequence annotation.
☆ Stabilizing Fractional Dynamical Networks Suppresses Epileptic Seizures
Medically uncontrolled epileptic seizures affect nearly 15 million people worldwide, resulting in enormous economic and psychological burdens. Treatment of medically refractory epilepsy is essential for patients to achieve remission, improve psychological functioning, and enhance social and vocational outcomes. Here, we show a state-of-the-art method that stabilizes fractional dynamical networks modeled from intracranial EEG data, effectively suppressing seizure activity in 34 out of 35 total spontaneous episodes from patients at the University of Pennsylvania and the Mayo Clinic. We perform a multi-scale analysis and show that the fractal behavior and stability properties of these data distinguish between four epileptic states: interictal, pre-ictal, ictal, and post-ictal. Furthermore, the simulated controlled signals exhibit substantial amplitude reduction ($49\%$ average). These findings highlight the potential of fractional dynamics to characterize seizure-related brain states and demonstrate its capability to suppress epileptic activity.
comment: 29 pages, 15 figures
☆ Identifying all snarls and superbubbles in linear-time, via a unified SPQR-tree framework
Snarls and superbubbles are fundamental pangenome decompositions capturing variant sites. These bubble-like structures underpin key tasks in computational pangenomics, including structural-variant genotyping, distance indexing, haplotype sampling, and variant annotation. Snarls can be quadratically-many in the size of the graph, and since their introduction in 2018 with the vg toolkit, there has been no work on identifying all snarls in linear time. Moreover, while it is known how to find superbubbles in linear time, this result is a highly specialized solution only achieved after a long series of papers. We present the first algorithm identifying all snarls in linear time. This is based on a new representation of all snarls, of size linear in the input graph size, and which can be computed in linear time. Our algorithm is based on a unified framework that also provides a new linear-time algorithm for finding superbubbles. An observation behind our results is that all such structures are separated from the rest of the graph by two vertices (except for cases which are trivially computable), i.e. their endpoints are a 2-separator of the underlying undirected graph. Based on this, we employ the well-known SPQR tree decomposition, which encodes all 2-separators, to guide a traversal that finds the bubble-like structures efficiently. We implemented our algorithms in C++ (available at https://github.com/algbio/BubbleFinder) and evaluated them on various pangenomic datasets. Our algorithms outcompete or they are on the same level of existing methods. For snarls, we are up to two times faster than vg, while identifying all snarls. When computing superbubbles, we are up to 50 times faster than BubbleGun. Our SPQR tree framework provides a unifying perspective on bubble-like structures in pangenomics, together with a template for finding other bubble-like structures efficiently.
☆ Massively Parallel Imitation Learning of Mouse Forelimb Musculoskeletal Reaching Dynamics NeurIPS 2025
The brain has evolved to effectively control the body, and in order to understand the relationship we need to model the sensorimotor transformations underlying embodied control. As part of a coordinated effort, we are developing a general-purpose platform for behavior-driven simulation modeling high fidelity behavioral dynamics, biomechanics, and neural circuit architectures underlying embodied control. We present a pipeline for taking kinematics data from the neuroscience lab and creating a pipeline for recapitulating those natural movements in a biomechanical model. We implement a imitation learning framework to perform a dexterous forelimb reaching task with a musculoskeletal model in a simulated physics environment. The mouse arm model is currently training at faster than 1 million training steps per second due to GPU acceleration with JAX and Mujoco-MJX. We present results that indicate that adding naturalistic constraints on energy and velocity lead to simulated musculoskeletal activity that better predict real EMG signals. This work provides evidence to suggest that energy and control constraints are critical to modeling musculoskeletal motor control.
comment: Accepted at NeurIPS 2025 Workshop Data on the Brain & Mind: Concrete Applications of AI to Neuroscience and Cognitive Science. 12 pages, 4 figures
♻ ☆ Diffusion Models at the Drug Discovery Frontier: A Review on Generating Small Molecules versus Therapeutic Peptides
Diffusion models have emerged as a leading framework in generative modeling, poised to transform the traditionally slow and costly process of drug discovery. This review provides a systematic comparison of their application in designing two principal therapeutic modalities: small molecules and therapeutic peptides. We dissect how the unified framework of iterative denoising is adapted to the distinct molecular representations, chemical spaces, and design objectives of each modality. For small molecules, these models excel at structure-based design, generating novel, pocket-fitting ligands with desired physicochemical properties, yet face the critical hurdle of ensuring chemical synthesizability. Conversely, for therapeutic peptides, the focus shifts to generating functional sequences and designing de novo structures, where the primary challenges are achieving biological stability against proteolysis, ensuring proper folding, and minimizing immunogenicity. Despite these distinct challenges, both domains face shared hurdles: the scarcity of high-quality experimental data, the reliance on inaccurate scoring functions for validation, and the crucial need for experimental validation. We conclude that the full potential of diffusion models will be unlocked by bridging these modality-specific gaps and integrating them into automated, closed-loop Design-Build-Test-Learn (DBTL) platforms, thereby shifting the paradigm from mere chemical exploration to the on-demand engineering of novel~therapeutics.
comment: Published in Biology
Computation and Language 93
Latent Collaboration in Multi-Agent Systems
Multi-agent systems (MAS) extend large language models (LLMs) from independent single-model reasoning to coordinative system-level intelligence. While existing LLM agents depend on text-based mediation for reasoning and communication, we take a step forward by enabling models to collaborate directly within the continuous latent space. We introduce LatentMAS, an end-to-end training-free framework that enables pure latent collaboration among LLM agents. In LatentMAS, each agent first performs auto-regressive latent thoughts generation through last-layer hidden embeddings. A shared latent working memory then preserves and transfers each agent's internal representations, ensuring lossless information exchange. We provide theoretical analyses establishing that LatentMAS attains higher expressiveness and lossless information preservation with substantially lower complexity than vanilla text-based MAS. In addition, empirical evaluations across 9 comprehensive benchmarks spanning math and science reasoning, commonsense understanding, and code generation show that LatentMAS consistently outperforms strong single-model and text-based MAS baselines, achieving up to 14.6% higher accuracy, reducing output token usage by 70.8%-83.7%, and providing 4x-4.3x faster end-to-end inference. These results demonstrate that our new latent collaboration framework enhances system-level reasoning quality while offering substantial efficiency gains without any additional training. Code and data are fully open-sourced at https://github.com/Gen-Verse/LatentMAS.
comment: Project: https://github.com/Gen-Verse/LatentMAS
☆ On Evaluating LLM Alignment by Evaluating LLMs as Judges NeurIPS 2025
Alignment with human preferences is an important evaluation aspect of LLMs, requiring them to be helpful, honest, safe, and to precisely follow human instructions. Evaluating large language models' (LLMs) alignment typically involves directly assessing their open-ended responses, requiring human annotators or strong LLM judges. Conversely, LLMs themselves have also been extensively evaluated as judges for assessing alignment. In this work, we examine the relationship between LLMs' generation and evaluation capabilities in aligning with human preferences. To this end, we first conduct a comprehensive analysis of the generation-evaluation consistency (GE-consistency) among various LLMs, revealing a strong correlation between their generation and evaluation capabilities when evaluated by a strong LLM preference oracle. Utilizing this finding, we propose a benchmarking paradigm that measures LLM alignment with human preferences without directly evaluating their generated outputs, instead assessing LLMs in their role as evaluators. Our evaluation shows that our proposed benchmark, AlignEval, matches or surpasses widely used automatic LLM evaluation benchmarks, such as AlpacaEval and Arena-Hard, in capturing human preferences when ranking LLMs. Our study offers valuable insights into the connection between LLMs' generation and evaluation capabilities, and introduces a benchmark that assesses alignment without directly evaluating model outputs.
comment: NeurIPS 2025 Camera Ready
☆ Does Understanding Inform Generation in Unified Multimodal Models? From Analysis to Path Forward
Recent years have witnessed significant progress in Unified Multimodal Models, yet a fundamental question remains: Does understanding truly inform generation? To investigate this, we introduce UniSandbox, a decoupled evaluation framework paired with controlled, synthetic datasets to avoid data leakage and enable detailed analysis. Our findings reveal a significant understanding-generation gap, which is mainly reflected in two key dimensions: reasoning generation and knowledge transfer. Specifically, for reasoning generation tasks, we observe that explicit Chain-of-Thought (CoT) in the understanding module effectively bridges the gap, and further demonstrate that a self-training approach can successfully internalize this ability, enabling implicit reasoning during generation. Additionally, for knowledge transfer tasks, we find that CoT assists the generative process by helping retrieve newly learned knowledge, and also discover that query-based architectures inherently exhibit latent CoT-like properties that affect this transfer. UniSandbox provides preliminary insights for designing future unified architectures and training strategies that truly bridge the gap between understanding and generation. Code and data are available at https://github.com/PKU-YuanGroup/UniSandBox
☆ From Words to Wisdom: Discourse Annotation and Baseline Models for Student Dialogue Understanding
Identifying discourse features in student conversations is quite important for educational researchers to recognize the curricular and pedagogical variables that cause students to engage in constructing knowledge rather than merely completing tasks. The manual analysis of student conversations to identify these discourse features is time-consuming and labor-intensive, which limits the scale and scope of studies. Leveraging natural language processing (NLP) techniques can facilitate the automatic detection of these discourse features, offering educational researchers scalable and data-driven insights. However, existing studies in NLP that focus on discourse in dialogue rarely address educational data. In this work, we address this gap by introducing an annotated educational dialogue dataset of student conversations featuring knowledge construction and task production discourse. We also establish baseline models for automatically predicting these discourse properties for each turn of talk within conversations, using pre-trained large language models GPT-3.5 and Llama-3.1. Experimental results indicate that these state-of-the-art models perform suboptimally on this task, indicating the potential for future research.
☆ Bridging the Language Gap: Synthetic Voice Diversity via Latent Mixup for Equitable Speech Recognition ICML 2025
Modern machine learning models for audio tasks often exhibit superior performance on English and other well-resourced languages, primarily due to the abundance of available training data. This disparity leads to an unfair performance gap for low-resource languages, where data collection is both challenging and costly. In this work, we introduce a novel data augmentation technique for speech corpora designed to mitigate this gap. Through comprehensive experiments, we demonstrate that our method significantly improves the performance of automatic speech recognition systems on low-resource languages. Furthermore, we show that our approach outperforms existing augmentation strategies, offering a practical solution for enhancing speech technology in underrepresented linguistic communities.
comment: Accepted at ICML 2025 Workshop on Machine Learning for Audio
☆ DesignPref: Capturing Personal Preferences in Visual Design Generation
Generative models, such as large language models and text-to-image diffusion models, are increasingly used to create visual designs like user interfaces (UIs) and presentation slides. Finetuning and benchmarking these generative models have often relied on datasets of human-annotated design preferences. Yet, due to the subjective and highly personalized nature of visual design, preference varies widely among individuals. In this paper, we study this problem by introducing DesignPref, a dataset of 12k pairwise comparisons of UI design generation annotated by 20 professional designers with multi-level preference ratings. We found that among trained designers, substantial levels of disagreement exist (Krippendorff's alpha = 0.25 for binary preferences). Natural language rationales provided by these designers indicate that disagreements stem from differing perceptions of various design aspect importance and individual preferences. With DesignPref, we demonstrate that traditional majority-voting methods for training aggregated judge models often do not accurately reflect individual preferences. To address this challenge, we investigate multiple personalization strategies, particularly fine-tuning or incorporating designer-specific annotations into RAG pipelines. Our results show that personalized models consistently outperform aggregated baseline models in predicting individual designers' preferences, even when using 20 times fewer examples. Our work provides the first dataset to study personalized visual design evaluation and support future research into modeling individual design taste.
☆ The Text Aphasia Battery (TAB): A Clinically-Grounded Benchmark for Aphasia-Like Deficits in Language Models
Large language models (LLMs) have emerged as a candidate "model organism" for human language, offering an unprecedented opportunity to study the computational basis of linguistic disorders like aphasia. However, traditional clinical assessments are ill-suited for LLMs, as they presuppose human-like pragmatic pressures and probe cognitive processes not inherent to artificial architectures. We introduce the Text Aphasia Battery (TAB), a text-only benchmark adapted from the Quick Aphasia Battery (QAB) to assess aphasic-like deficits in LLMs. The TAB comprises four subtests: Connected Text, Word Comprehension, Sentence Comprehension, and Repetition. This paper details the TAB's design, subtests, and scoring criteria. To facilitate large-scale use, we validate an automated evaluation protocol using Gemini 2.5 Flash, which achieves reliability comparable to expert human raters (prevalence-weighted Cohen's kappa = 0.255 for model--consensus agreement vs. 0.286 for human--human agreement). We release TAB as a clinically-grounded, scalable framework for analyzing language deficits in artificial systems.
☆ Adversarial Confusion Attack: Disrupting Multimodal Large Language Models
We introduce the Adversarial Confusion Attack, a new class of threats against multimodal large language models (MLLMs). Unlike jailbreaks or targeted misclassification, the goal is to induce systematic disruption that makes the model generate incoherent or confidently incorrect outputs. Applications include embedding adversarial images into websites to prevent MLLM-powered agents from operating reliably. The proposed attack maximizes next-token entropy using a small ensemble of open-source MLLMs. In the white-box setting, we show that a single adversarial image can disrupt all models in the ensemble, both in the full-image and adversarial CAPTCHA settings. Despite relying on a basic adversarial technique (PGD), the attack generates perturbations that transfer to both unseen open-source (e.g., Qwen3-VL) and proprietary (e.g., GPT-5.1) models.
☆ Generation, Evaluation, and Explanation of Novelists' Styles with Single-Token Prompts
Recent advances in large language models have created new opportunities for stylometry, the study of writing styles and authorship. Two challenges, however, remain central: training generative models when no paired data exist, and evaluating stylistic text without relying only on human judgment. In this work, we present a framework for both generating and evaluating sentences in the style of 19th-century novelists. Large language models are fine-tuned with minimal, single-token prompts to produce text in the voices of authors such as Dickens, Austen, Twain, Alcott, and Melville. To assess these generative models, we employ a transformer-based detector trained on authentic sentences, using it both as a classifier and as a tool for stylistic explanation. We complement this with syntactic comparisons and explainable AI methods, including attention-based and gradient-based analyses, to identify the linguistic cues that drive stylistic imitation. Our findings show that the generated text reflects the authors' distinctive patterns and that AI-based evaluation offers a reliable alternative to human assessment. All artifacts of this work are published online.
☆ A Task-Oriented Evaluation Framework for Text Normalization in Modern NLP Pipelines
Text normalization is an essential preprocessing step in many natural language processing (NLP) tasks, and stemming is one such normalization technique that reduces words to their base or root form. However, evaluating stemming methods is challenging because current evaluation approaches are limited and do not capture the potential harm caused by excessive stemming; therefore, it is essential to develop new approaches to evaluate stemming methods. To address this issue, this study propose a novel, task-oriented approach to evaluate stemming methods, which considers three aspects: (1) the utility of stemming using Stemming Effectiveness Score (SES), (2) the impact of stemming on downstream tasks using Model Performance Delta (MPD), and (3) the semantic similarity between stemmed and original words using Average Normalized Levenshtein Distance (ANLD), thus providing a comprehensive evaluation framework. We apply our evaluation framework to compare two stemmers for Bangla (BNLTK) and English (Snowball), and our results reveal a significant issue, prompting us to analyze their performance in detail. While the Bangla stemmer achieves the highest SES (1.67) due to effective word reduction (CR = 1.90), SES alone is insufficient because our proposed safety measure, ANLD, reveals that this high SES is due to harmful over-stemming (ANLD = 0.26), which correlates with the observed decrease in downstream performance.In contrast, the English stemmer achieves a moderate SES (1.31) with a safe meaning distance (ANLD = 0.14), allowing its word reduction to contribute positively to downstream performance; therefore, it is a more reliable stemmer. Our study provides a valuable tool for distinguishing between potential efficiency gains (high SES) and meaning preservation (low ANLD).
☆ BengaliFig: A Low-Resource Challenge for Figurative and Culturally Grounded Reasoning in Bengali
Large language models excel on broad multilingual benchmarks but remain to be evaluated extensively in figurative and culturally grounded reasoning, especially in low-resource contexts. We present BengaliFig, a compact yet richly annotated challenge set that targets this gap in Bengali, a widely spoken low-resourced language. The dataset contains 435 unique riddles drawn from Bengali oral and literary traditions. Each item is annotated along five orthogonal dimensions capturing reasoning type, trap type, cultural depth, answer category, and difficulty, and is automatically converted to multiple-choice format through a constraint-aware, AI-assisted pipeline. We evaluate eight frontier LLMs from major providers under zero-shot and few-shot chain-of-thought prompting, revealing consistent weaknesses in metaphorical and culturally specific reasoning. BengaliFig thus contributes both a diagnostic probe for evaluating LLM robustness in low-resource cultural contexts and a step toward inclusive and heritage-aware NLP evaluation.
☆ Soft Adaptive Policy Optimization
Reinforcement learning (RL) plays an increasingly important role in enhancing the reasoning capabilities of large language models (LLMs), yet stable and performant policy optimization remains challenging. Token-level importance ratios often exhibit high variance-a phenomenon exacerbated in Mixture-of-Experts models-leading to unstable updates. Existing group-based policy optimization methods, such as GSPO and GRPO, alleviate this problem via hard clipping, making it difficult to maintain both stability and effective learning. We propose Soft Adaptive Policy Optimization (SAPO), which replaces hard clipping with a smooth, temperature-controlled gate that adaptively attenuates off-policy updates while preserving useful learning signals. Compared with GSPO and GRPO, SAPO is both sequence-coherent and token-adaptive. Like GSPO, SAPO maintains sequence-level coherence, but its soft gating forms a continuous trust region that avoids the brittle hard clipping band used in GSPO. When a sequence contains a few highly off-policy tokens, GSPO suppresses all gradients for that sequence, whereas SAPO selectively down-weights only the offending tokens and preserves the learning signal from the near-on-policy ones, improving sample efficiency. Relative to GRPO, SAPO replaces hard token-level clipping with smooth, temperature-controlled scaling, enabling more informative and stable updates. Empirical results on mathematical reasoning benchmarks indicate that SAPO exhibits improved training stability and higher Pass@1 performance under comparable training budgets. Moreover, we employ SAPO to train the Qwen3-VL model series, demonstrating that SAPO yields consistent performance gains across diverse tasks and different model sizes. Overall, SAPO provides a more reliable, scalable, and effective optimization strategy for RL training of LLMs.
☆ The Curious Case of Analogies: Investigating Analogical Reasoning in Large Language Models AAAI 2026
Analogical reasoning is at the core of human cognition, serving as an important foundation for a variety of intellectual activities. While prior work has shown that LLMs can represent task patterns and surface-level concepts, it remains unclear whether these models can encode high-level relational concepts and apply them to novel situations through structured comparisons. In this work, we explore this fundamental aspect using proportional and story analogies, and identify three key findings. First, LLMs effectively encode the underlying relationships between analogous entities; both attributive and relational information propagate through mid-upper layers in correct cases, whereas reasoning failures reflect missing relational information within these layers. Second, unlike humans, LLMs often struggle not only when relational information is missing, but also when attempting to apply it to new entities. In such cases, strategically patching hidden representations at critical token positions can facilitate information transfer to a certain extent. Lastly, successful analogical reasoning in LLMs is marked by strong structural alignment between analogous situations, whereas failures often reflect degraded or misplaced alignment. Overall, our findings reveal that LLMs exhibit emerging but limited capabilities in encoding and applying high-level relational concepts, highlighting both parallels and gaps with human cognition.
comment: AAAI 2026
☆ Scaling LLM Speculative Decoding: Non-Autoregressive Forecasting in Large-Batch Scenarios AAAI-2026
Speculative decoding accelerates LLM inference by utilizing otherwise idle computational resources during memory-to-chip data transfer. Current speculative decoding methods typically assume a considerable amount of available computing power, then generate a complex and massive draft tree using a small autoregressive language model to improve overall prediction accuracy. However, methods like batching have been widely applied in mainstream model inference systems as a superior alternative to speculative decoding, as they compress the available idle computing power. Therefore, performing speculative decoding with low verification resources and low scheduling costs has become an important research problem. We believe that more capable models that allow for parallel generation on draft sequences are what we truly need. Recognizing the fundamental nature of draft models to only generate sequences of limited length, we propose SpecFormer, a novel architecture that integrates unidirectional and bidirectional attention mechanisms. SpecFormer combines the autoregressive model's ability to extract information from the entire input sequence with the parallel generation benefits of non-autoregressive models. This design eliminates the reliance on large prefix trees and achieves consistent acceleration, even in large-batch scenarios. Through lossless speculative decoding experiments across models of various scales, we demonstrate that SpecFormer sets a new standard for scaling LLM inference with lower training demands and reduced computational costs.
comment: accepted by AAAI-2026
☆ Geometry of Decision Making in Language Models NeurIPS 2025
Large Language Models (LLMs) show strong generalization across diverse tasks, yet the internal decision-making processes behind their predictions remain opaque. In this work, we study the geometry of hidden representations in LLMs through the lens of \textit{intrinsic dimension} (ID), focusing specifically on decision-making dynamics in a multiple-choice question answering (MCQA) setting. We perform a large-scale study, with 28 open-weight transformer models and estimate ID across layers using multiple estimators, while also quantifying per-layer performance on MCQA tasks. Our findings reveal a consistent ID pattern across models: early layers operate on low-dimensional manifolds, middle layers expand this space, and later layers compress it again, converging to decision-relevant representations. Together, these results suggest LLMs implicitly learn to project linguistic inputs onto structured, low-dimensional manifolds aligned with task-specific decisions, providing new geometric insights into how generalization and reasoning emerge in language models.
comment: Accepted at NeurIPS 2025
☆ Beyond Components: Singular Vector-Based Interpretability of Transformer Circuits NeurIPS 2025
Transformer-based language models exhibit complex and distributed behavior, yet their internal computations remain poorly understood. Existing mechanistic interpretability methods typically treat attention heads and multilayer perceptron layers (MLPs) (the building blocks of a transformer architecture) as indivisible units, overlooking possibilities of functional substructure learned within them. In this work, we introduce a more fine-grained perspective that decomposes these components into orthogonal singular directions, revealing superposed and independent computations within a single head or MLP. We validate our perspective on widely used standard tasks like Indirect Object Identification (IOI), Gender Pronoun (GP), and Greater Than (GT), showing that previously identified canonical functional heads, such as the name mover, encode multiple overlapping subfunctions aligned with distinct singular directions. Nodes in a computational graph, that are previously identified as circuit elements show strong activation along specific low-rank directions, suggesting that meaningful computations reside in compact subspaces. While some directions remain challenging to interpret fully, our results highlight that transformer computations are more distributed, structured, and compositional than previously assumed. This perspective opens new avenues for fine-grained mechanistic interpretability and a deeper understanding of model internals.
comment: Accepted at NeurIPS 2025
☆ REFLEX: Self-Refining Explainable Fact-Checking via Disentangling Truth into Style and Substance
The prevalence of misinformation on social media threatens public trust, demanding automated fact-checking systems that provide accurate verdicts with interpretable explanations. However, existing large language model-based (LLM-based) approaches often rely heavily on external knowledge sources, introducing substantial latency and even hallucinations that undermine reliability, interpretability, and responsiveness, which is crucial for real-time use. To address these challenges, we propose REason-guided Fact-checking with Latent EXplanations REFLEX paradigm, a plug-and-play, self-refining paradigm that leverages the internal knowledge in backbone model to improve both verdict accuracy and explanation quality. REFLEX reformulates fact-checking as a role-play dialogue and jointly trains verdict prediction and explanation generation. It adaptively extracts contrastive activation pairs between the backbone model and its fine-tuned variant to construct steering vectors that disentangle truth into style and substance naturally. These activation-level signals guide inference and suppress noisy explanations, enabling more faithful and efficient reasoning. Experiments on real-world datasets show that REFLEX outperforms previous methods that steer toward a single truth direction and underscores the challenge traditional approaches face when handling the subtle, human-unknown truth in fact-checking tasks. Remarkably, with only 465 self-refined training samples, RELFEX achieves state-of-the-art performance. Furthermore, models trained with explanatory objectives can effectively guide those without them, yielding up to a 7.57% improvement, highlighting that internal explanation signals play a dual role in both interpreting and enhancing factual reasoning.
☆ KyrgyzBERT: A Compact, Efficient Language Model for Kyrgyz NLP
Kyrgyz remains a low-resource language with limited foundational NLP tools. To address this gap, we introduce KyrgyzBERT, the first publicly available monolingual BERT-based language model for Kyrgyz. The model has 35.9M parameters and uses a custom tokenizer designed for the language's morphological structure. To evaluate performance, we create kyrgyz-sst2, a sentiment analysis benchmark built by translating the Stanford Sentiment Treebank and manually annotating the full test set. KyrgyzBERT fine-tuned on this dataset achieves an F1-score of 0.8280, competitive with a fine-tuned mBERT model five times larger. All models, data, and code are released to support future research in Kyrgyz NLP.
comment: 3 pages, 1 figure, 2 tables. Preprint
☆ SEDA: A Self-Adapted Entity-Centric Data Augmentation for Boosting Gird-based Discontinuous NER Models
Named Entity Recognition (NER) is a critical task in natural language processing, yet it remains particularly challenging for discontinuous entities. The primary difficulty lies in text segmentation, as traditional methods often missegment or entirely miss cross-sentence discontinuous entities, significantly affecting recognition accuracy. Therefore, we aim to address the segmentation and omission issues associated with such entities. Recent studies have shown that grid-tagging methods are effective for information extraction due to their flexible tagging schemes and robust architectures. Building on this, we integrate image data augmentation techniques, such as cropping, scaling, and padding, into grid-based models to enhance their ability to recognize discontinuous entities and handle segmentation challenges. Experimental results demonstrate that traditional segmentation methods often fail to capture cross-sentence discontinuous entities, leading to decreased performance. In contrast, our augmented grid models achieve notable improvements. Evaluations on the CADEC, ShARe13, and ShARe14 datasets show F1 score gains of 1-2.5% overall and 3.7-8.4% for discontinuous entities, confirming the effectiveness of our approach.
comment: 9 pages, 5 figures
☆ "When Data is Scarce, Prompt Smarter"... Approaches to Grammatical Error Correction in Low-Resource Settings ACL 2025
Grammatical error correction (GEC) is an important task in Natural Language Processing that aims to automatically detect and correct grammatical mistakes in text. While recent advances in transformer-based models and large annotated datasets have greatly improved GEC performance for high-resource languages such as English, the progress has not extended equally. For most Indic languages, GEC remains a challenging task due to limited resources, linguistic diversity and complex morphology. In this work, we explore prompting-based approaches using state-of-the-art large language models (LLMs), such as GPT-4.1, Gemini-2.5 and LLaMA-4, combined with few-shot strategy to adapt them to low-resource settings. We observe that even basic prompting strategies, such as zero-shot and few-shot approaches, enable these LLMs to substantially outperform fine-tuned Indic-language models like Sarvam-22B, thereby illustrating the exceptional multilingual generalization capabilities of contemporary LLMs for GEC. Our experiments show that carefully designed prompts and lightweight adaptation significantly enhance correction quality across multiple Indic languages. We achieved leading results in the shared task--ranking 1st in Tamil (GLEU: 91.57) and Hindi (GLEU: 85.69), 2nd in Telugu (GLEU: 85.22), 4th in Bangla (GLEU: 92.86), and 5th in Malayalam (GLEU: 92.97). These findings highlight the effectiveness of prompt-driven NLP techniques and underscore the potential of large-scale LLMs to bridge resource gaps in multilingual GEC.
comment: 10 pages, 5 figures, 5 tables; Accept-demonstration at BHASHA Workshop, IJCNLP-AACL 2025
☆ Mispronunciation Detection and Diagnosis Without Model Training: A Retrieval-Based Approach
Mispronunciation Detection and Diagnosis (MDD) is crucial for language learning and speech therapy. Unlike conventional methods that require scoring models or training phoneme-level models, we propose a novel training-free framework that leverages retrieval techniques with a pretrained Automatic Speech Recognition model. Our method avoids phoneme-specific modeling or additional task-specific training, while still achieving accurate detection and diagnosis of pronunciation errors. Experiments on the L2-ARCTIC dataset show that our method achieves a superior F1 score of 69.60% while avoiding the complexity of model training.
☆ EM2LDL: A Multilingual Speech Corpus for Mixed Emotion Recognition through Label Distribution Learning
This study introduces EM2LDL, a novel multilingual speech corpus designed to advance mixed emotion recognition through label distribution learning. Addressing the limitations of predominantly monolingual and single-label emotion corpora \textcolor{black}{that restrict linguistic diversity, are unable to model mixed emotions, and lack ecological validity}, EM2LDL comprises expressive utterances in English, Mandarin, and Cantonese, capturing the intra-utterance code-switching prevalent in multilingual regions like Hong Kong and Macao. The corpus integrates spontaneous emotional expressions from online platforms, annotated with fine-grained emotion distributions across 32 categories. Experimental baselines using self-supervised learning models demonstrate robust performance in speaker-independent gender-, age-, and personality-based evaluations, with HuBERT-large-EN achieving optimal results. By incorporating linguistic diversity and ecological validity, EM2LDL enables the exploration of complex emotional dynamics in multilingual settings. This work provides a versatile testbed for developing adaptive, empathetic systems for applications in affective computing, including mental health monitoring and cross-cultural communication. The dataset, annotations, and baseline codes are publicly available at https://github.com/xingfengli/EM2LDL.
comment: Submitted to IEEE Transactions on Affective computing
☆ The Devil in the Details: Emergent Misalignment, Format and Coherence in Open-Weights LLMs
Prior work has shown that fine-tuning models on a narrow domain with misaligned data can lead to broad misalignment - a phenomenon termed "emergent misalignment" (Betley et al. 2025). While all tested models were susceptible to emergent misalignment, some models showed more resistance than others. Specifically the Qwen-2.5 family proved to be relatively resistant, while GPT-4o exhibited the strongest misalignment. In this paper we evaluate if current-generation open-weights models exhibit similar resistance to the Qwen-2.5 family and measure misalignment robustness over a range of model architectures and scales. We replicate the effect across nine modern open-weights models (Gemma 3 and Qwen 3 families, 1B-32B parameters). Models fine-tuned on insecure code generation show a 0.68% misalignment rate (compared to 0.07% for base models), matching the lower end of prior open-model results but dramatically lower than GPT-4o's 20%. We identify a critical format-dependent vulnerability: requiring JSON output doubles misalignment rates compared to natural language prompts (0.96% vs 0.42%). This suggests that structural constraints may bypass safety training by reducing the model's 'degrees of freedom' to refuse. These findings confirm emergent misalignment as a reproducible phenomenon in modern open-weights models, with rates substantially lower than observed in proprietary systems.
☆ SSA: Sparse Sparse Attention by Aligning Full and Sparse Attention Outputs in Feature Space
The quadratic complexity of full attention limits efficient long-context processing in large language models (LLMs). Sparse attention mitigates this cost by restricting each query to attend to a subset of previous tokens; however, training-free approaches often lead to severe performance degradation. Native sparse-attention methods (e.g., NSA, MoBA) alleviate this issue, yet exhibit a critical paradox: they produce lower attention sparsity than full-attention models, despite aiming to approximate full attention, which may constrain their effectiveness. We attribute this paradox to gradient update deficiency: low-ranked key-value pairs excluded during sparse training receive neither forward contribution nor backward gradients, and thus never learn proper suppression. To overcome this limitation, we propose SSA (Sparse Sparse Attention), a unified training framework that considers both sparse and full attention and enforces bidirectional alignment at every layer. This design preserves gradient flow to all tokens while explicitly encouraging sparse-attention outputs to align with their full-attention counterparts, thereby promoting stronger sparsity. As a result, SSA achieves state-of-the-art performance under both sparse and full attention inference across multiple commonsense benchmarks. Furthermore, SSA enables models to adapt smoothly to varying sparsity budgets; performance improves consistently as more tokens are allowed to attend, supporting flexible compute-performance trade-offs at inference time. Finally, we show that native sparse-attention training surprisingly improves long-context extrapolation by mitigating the over-allocation of attention values in sink areas, with SSA demonstrating the strongest extrapolation capability.
comment: 28 pages
☆ QiMeng-Kernel: Macro-Thinking Micro-Coding Paradigm for LLM-Based High-Performance GPU Kernel Generation AAAI 2026
Developing high-performance GPU kernels is critical for AI and scientific computing, but remains challenging due to its reliance on expert crafting and poor portability. While LLMs offer promise for automation, both general-purpose and finetuned LLMs suffer from two fundamental and conflicting limitations: correctness and efficiency. The key reason is that existing LLM-based approaches directly generate the entire optimized low-level programs, requiring exploration of an extremely vast space encompassing both optimization policies and implementation codes. To address the challenge of exploring an intractable space, we propose Macro Thinking Micro Coding (MTMC), a hierarchical framework inspired by the staged optimization strategy of human experts. It decouples optimization strategy from implementation details, ensuring efficiency through high-level strategy and correctness through low-level implementation. Specifically, Macro Thinking employs reinforcement learning to guide lightweight LLMs in efficiently exploring and learning semantic optimization strategies that maximize hardware utilization. Micro Coding leverages general-purpose LLMs to incrementally implement the stepwise optimization proposals from Macro Thinking, avoiding full-kernel generation errors. Together, they effectively navigate the vast optimization space and intricate implementation details, enabling LLMs for high-performance GPU kernel generation. Comprehensive results on widely adopted benchmarks demonstrate the superior performance of MTMC on GPU kernel generation in both accuracy and running time. On KernelBench, MTMC achieves near 100% and 70% accuracy at Levels 1-2 and 3, over 50% than SOTA general-purpose and domain-finetuned LLMs, with up to 7.3x speedup over LLMs, and 2.2x over expert-optimized PyTorch Eager kernels. On the more challenging TritonBench, MTMC attains up to 59.64% accuracy and 34x speedup.
comment: 9 pages, 2 figures, accepted by AAAI 2026
☆ More Bias, Less Bias: BiasPrompting for Enhanced Multiple-Choice Question Answering
With the advancement of large language models (LLMs), their performance on multiple-choice question (MCQ) tasks has improved significantly. However, existing approaches face key limitations: answer choices are typically presented to LLMs without contextual grounding or explanation. This absence of context can lead to incomplete exploration of all possible answers, ultimately degrading the models' reasoning capabilities. To address these challenges, we introduce BiasPrompting, a novel inference framework that guides LLMs to generate and critically evaluate reasoning across all plausible answer options before reaching a final prediction. It consists of two components: first, a reasoning generation stage, where the model is prompted to produce supportive reasonings for each answer option, and then, a reasoning-guided agreement stage, where the generated reasonings are synthesized to select the most plausible answer. Through comprehensive evaluations, BiasPrompting demonstrates significant improvements in five widely used multiple-choice question answering benchmarks. Our experiments showcase that BiasPrompting enhances the reasoning capabilities of LLMs and provides a strong foundation for tackling complex and challenging questions, particularly in settings where existing methods underperform.
comment: Accepted at the 41st ACM/SIGAPP Symposium On Applied Computing (SAC 2026), Main Conference
☆ MTA: A Merge-then-Adapt Framework for Personalized Large Language Model
Personalized Large Language Models (PLLMs) aim to align model outputs with individual user preferences, a crucial capability for user-centric applications. However, the prevalent approach of fine-tuning a separate module for each user faces two major limitations: (1) storage costs scale linearly with the number of users, rendering the method unscalable; and (2) fine-tuning a static model from scratch often yields suboptimal performance for users with sparse data. To address these challenges, we propose MTA, a Merge-then-Adapt framework for PLLMs. MTA comprises three key stages. First, we construct a shared Meta-LoRA Bank by selecting anchor users and pre-training meta-personalization traits within meta-LoRA modules. Second, to ensure scalability and enable dynamic personalization combination beyond static models, we introduce an Adaptive LoRA Fusion stage. This stage retrieves and dynamically merges the most relevant anchor meta-LoRAs to synthesize a user-specific one, thereby eliminating the need for user-specific storage and supporting more flexible personalization. Third, we propose a LoRA Stacking for Few-Shot Personalization stage, which applies an additional ultra-low-rank, lightweight LoRA module on top of the merged LoRA. Fine-tuning this module enables effective personalization under few-shot settings. Extensive experiments on the LaMP benchmark demonstrate that our approach outperforms existing SOTA methods across multiple tasks.
☆ Online-PVLM: Advancing Personalized VLMs with Online Concept Learning
Personalized Visual Language Models (VLMs) are gaining increasing attention for their formidable ability in user-specific concepts aligned interactions (e.g., identifying a user's bike). Existing methods typically require the learning of separate embeddings for each new concept, which fails to support real-time adaptation during testing. This limitation becomes particularly pronounced in large-scale scenarios, where efficient retrieval of concept embeddings is not achievable. To alleviate this gap, we propose Online-PVLM, a framework for online concept learning by leveraging hyperbolic representations. Our approach makes a train-free paradigm for concept embeddings generation at test time, making the use of personalized VLMs both scalable and efficient. In addition, we develop OP-Eval, a comprehensive and large-scale benchmark comprising 1,292 concepts and over 30K high-quality instances with diverse question types, designed to rigorously assess online concept learning in realistic scenarios. Extensive experiments demonstrate the state-of-the-art performance of our proposed framework. Our source code and dataset will be made available.
comment: Work in Progress
☆ A Machine Learning Approach for Detection of Mental Health Conditions and Cyberbullying from Social Media AAAI-26
Mental health challenges and cyberbullying are increasingly prevalent in digital spaces, necessitating scalable and interpretable detection systems. This paper introduces a unified multiclass classification framework for detecting ten distinct mental health and cyberbullying categories from social media data. We curate datasets from Twitter and Reddit, implementing a rigorous "split-then-balance" pipeline to train on balanced data while evaluating on a realistic, held-out imbalanced test set. We conducted a comprehensive evaluation comparing traditional lexical models, hybrid approaches, and several end-to-end fine-tuned transformers. Our results demonstrate that end-to-end fine-tuning is critical for performance, with the domain-adapted MentalBERT emerging as the top model, achieving an accuracy of 0.92 and a Macro F1 score of 0.76, surpassing both its generic counterpart and a zero-shot LLM baseline. Grounded in a comprehensive ethical analysis, we frame the system as a human-in-the-loop screening aid, not a diagnostic tool. To support this, we introduce a hybrid SHAPLLM explainability framework and present a prototype dashboard ("Social Media Screener") designed to integrate model predictions and their explanations into a practical workflow for moderators. Our work provides a robust baseline, highlighting future needs for multi-label, clinically-validated datasets at the critical intersection of online safety and computational mental health.
comment: Accepted for Oral Presentation at the AAAI-26 Bridge Program on AI for Medicine and Healthcare (AIMedHealth). To appear in Proceedings of Machine Learning Research (PMLR)
☆ Directional Optimization Asymmetry in Transformers: A Synthetic Stress Test
Transformers are theoretically reversal-invariant: their function class does not prefer left-to-right over right-to-left mappings. Yet empirical studies on natural language repeatedly report a "reversal curse," and recent work on temporal asymmetry in LLMs suggests that real-world corpora carry their own arrow of time. This leaves an unresolved question: do directional failures stem from linguistic statistics, or from the architecture itself? We cut through this ambiguity with a fully synthetic, entropy-controlled benchmark designed as a clean-room stress test for directional learning. Using random string mappings with tunable branching factor K, we construct forward tasks with zero conditional entropy and inverse tasks with analytically determined entropy floors. Excess loss above these floors reveals that even scratch-trained GPT-2 models exhibit a strong, reproducible directional optimization gap (e.g., 1.16 nats at K=5), far larger than that of an MLP trained on the same data. Pre-trained initializations shift optimization behavior but do not eliminate this gap, while LoRA encounters a sharp capacity wall on high-entropy inverse mappings. Together, these results isolate a minimal, semantics-free signature of directional friction intrinsic to causal Transformer training-one that persists even when linguistic priors, token frequencies, and corpus-level temporal asymmetries are removed. Our benchmark provides a controlled instrument for dissecting directional biases in modern sequence models and motivates deeper mechanistic study of why inversion remains fundamentally harder for Transformers.
comment: 19 pages, 4 figures. Code available at https://github.com/mihirs-0/synass
☆ $\text{R}^2\text{R}$: A Route-to-Rerank Post-Training Framework for Multi-Domain Decoder-Only Rerankers
Decoder-only rerankers are central to Retrieval-Augmented Generation (RAG). However, generalist models miss domain-specific nuances in high-stakes fields like finance and law, and naive fine-tuning causes surface-form overfitting and catastrophic forgetting. To address this challenge, we introduce R2R, a domain-aware framework that combines dynamic expert routing with a two-stage training strategy, Entity Abstraction for Generalization (EAG). EAG introduces a counter-shortcut mechanism by masking the most predictive surface cues, forcing the reranker to learn domain-invariant relevance patterns rather than memorizing dataset-specific entities. To efficiently activate domain experts, R2R employs a lightweight Latent Semantic Router that probes internal representations from the frozen backbone decoder to select the optimal LoRA expert per query. Extensive experiments across different reranker backbones and diverse domains (legal, medical, and financial) demonstrate that R2R consistently surpasses generalist and single-domain fine-tuned baselines. Our results confirm that R2R is a model-agnostic and modular approach to domain specialization with strong cross-domain robustness.
comment: 13 pages, including 3 figures and 3 tables
☆ AppSelectBench: Application-Level Tool Selection Benchmark
Computer Using Agents (CUAs) are increasingly equipped with external tools, enabling them to perform complex and realistic tasks. For CUAs to operate effectively, application selection, which refers to deciding which application to use before invoking fine-grained tools such as APIs, is a fundamental capability. It determines whether the agent initializes the correct environment, avoids orchestration confusion, and efficiently focuses on relevant context. However, existing benchmarks primarily assess fine-grained API selection, offering limited insight into whether models can reason across and choose between different applications. To fill this gap, we introduce AppSelectBench, a comprehensive benchmark for evaluating application selection in CUAs. AppSelectBench contains a novel user task generation pipeline that produces realistic, diverse, and semantically grounded user intents at scale, together with unified evaluation protocols covering random, heuristic, zero-shot, few-shot, and retrieval-augmented-settings. AppSelectBench covers one hundred widely used desktop applications and includes more than one hundred thousand realistic, diverse, and semantically grounded user tasks. Extensive experiments across both closed-source and open-source large language models reveal systematic strengths and weaknesses in inter-application reasoning, showing that even the most capable models still struggle to make consistent application choices. Together, these results establish AppSelectBench as a foundation for studying and advancing application level reasoning, an essential yet underexplored capability of intelligent CUAs. The source is available at https://github.com/microsoft/appselectbench.
☆ EfficientXpert: Efficient Domain Adaptation for Large Language Models via Propagation-Aware Pruning
The rapid advancement of large language models (LLMs) has increased the demand for domain-specialized variants in areas such as law, healthcare, and finance. However, their large size remains a barrier to deployment in resource-constrained environments, and existing compression methods either generalize poorly across domains or incur high overhead. In this work, we propose \textbf{EfficientXpert}, a lightweight domain-pruning framework that combines a propagation-aware pruning criterion (Foresight Mask) with an efficient adapter-update algorithm (Partial Brain Surgeon). Integrated into the LoRA fine-tuning process, EfficientXpert enables a one-step transformation of general pretrained models into sparse, domain-adapted experts. Across health and legal tasks, it retains up to 98% of dense-model performance at 40% sparsity, outperforming state-of-the-art methods. Further analysis reveals substantial domain-dependent structural shifts that degrade the effectiveness of general pruning masks, underscoring the need for adaptive, domain-aware pruning strategies tailored to each domain.
☆ CounterVQA: Evaluating and Improving Counterfactual Reasoning in Vision-Language Models for Video Understanding
Vision Language Models (VLMs) have recently shown significant advancements in video understanding, especially in feature alignment, event reasoning, and instruction-following tasks. However, their capability for counterfactual reasoning, inferring alternative outcomes under hypothetical conditions, remains underexplored. This capability is essential for robust video understanding, as it requires identifying underlying causal structures and reasoning about unobserved possibilities, rather than merely recognizing observed patterns. To systematically evaluate this capability, we introduce CounterVQA, a video-based benchmark featuring three progressive difficulty levels that assess different aspects of counterfactual reasoning. Through comprehensive evaluation of both state-of-the-art open-source and closed-source models, we uncover a substantial performance gap: while these models achieve reasonable accuracy on simple counterfactual questions, performance degrades significantly on complex multi-hop causal chains. To address these limitations, we develop a post-training method, CFGPT, that enhances a model's visual counterfactual reasoning ability by distilling its counterfactual reasoning capability from the language modality, yielding consistent improvements across all CounterVQA difficulty levels. Dataset and code will be further released.
☆ MAPS: Preserving Vision-Language Representations via Module-Wise Proximity Scheduling for Better Vision-Language-Action Generalization
Vision-Language-Action (VLA) models inherit strong priors from pretrained Vision-Language Models (VLMs), but naive fine-tuning often disrupts these representations and harms generalization. Existing fixes -- freezing modules or applying uniform regularization -- either overconstrain adaptation or ignore the differing roles of VLA components. We present MAPS (Module-Wise Proximity Scheduling), the first robust fine-tuning framework for VLAs. Through systematic analysis, we uncover an empirical order in which proximity constraints should be relaxed to balance stability and flexibility. MAPS linearly schedules this relaxation, enabling visual encoders to stay close to their pretrained priors while action-oriented language layers adapt more freely. MAPS introduces no additional parameters or data, and can be seamlessly integrated into existing VLAs. Across MiniVLA-VQ, MiniVLA-OFT, OpenVLA-OFT, and challenging benchmarks such as SimplerEnv, CALVIN, LIBERO, as well as real-world evaluations on the Franka Emika Panda platform, MAPS consistently boosts both in-distribution and out-of-distribution performance (up to +30%). Our findings highlight empirically guided proximity to pretrained VLMs as a simple yet powerful principle for preserving broad generalization in VLM-to-VLA transfer.
☆ A Systematic Analysis of Large Language Models with RAG-enabled Dynamic Prompting for Medical Error Detection and Correction
Objective: Clinical documentation contains factual, diagnostic, and management errors that can compromise patient safety. Large language models (LLMs) may help detect and correct such errors, but their behavior under different prompting strategies remains unclear. We evaluate zero-shot prompting, static prompting with random exemplars (SPR), and retrieval-augmented dynamic prompting (RDP) for three subtasks of medical error processing: error flag detection, error sentence detection, and error correction. Methods: Using the MEDEC dataset, we evaluated nine instruction-tuned LLMs (GPT, Claude, Gemini, and OpenAI o-series models). We measured performance using accuracy, recall, false-positive rate (FPR), and an aggregate score of ROUGE-1, BLEURT, and BERTScore for error correction. We also analyzed example outputs to identify failure modes and differences between LLM and clinician reasoning. Results: Zero-shot prompting showed low recall in both detection tasks, often missing abbreviation-heavy or atypical errors. SPR improved recall but increased FPR. Across all nine LLMs, RDP reduced FPR by about 15 percent, improved recall by 5 to 10 percent in error sentence detection, and generated more contextually accurate corrections. Conclusion: Across diverse LLMs, RDP outperforms zero-shot and SPR prompting. Using retrieved exemplars improves detection accuracy, reduces false positives, and enhances the reliability of medical error correction.
☆ Profile-LLM: Dynamic Profile Optimization for Realistic Personality Expression in LLMs
Personalized Large Language Models (LLMs) have been shown to be an effective way to create more engaging and enjoyable user-AI interactions. While previous studies have explored using prompts to elicit specific personality traits in LLMs, they have not optimized these prompts to maximize personality expression. To address this limitation, we propose PersonaPulse: Dynamic Profile Optimization for Realistic Personality Expression in LLMs, a framework that leverages LLMs' inherent knowledge of personality traits to iteratively enhance role-play prompts while integrating a situational response benchmark as a scoring tool, ensuring a more realistic and contextually grounded evaluation to guide the optimization process. Quantitative evaluations demonstrate that the prompts generated by PersonaPulse outperform those of prior work, which were designed based on personality descriptions from psychological studies. Additionally, we explore the relationship between model size and personality modeling through extensive experiments. Finally, we find that, for certain personality traits, the extent of personality evocation can be partially controlled by pausing the optimization process. These findings underscore the importance of prompt optimization in shaping personality expression within LLMs, offering valuable insights for future research on adaptive AI interactions.
☆ CropVLM: Learning to Zoom for Fine-Grained Vision-Language Perception
Vision-Language Models (VLMs) often struggle with tasks that require fine-grained image understanding, such as scene-text recognition or document analysis, due to perception limitations and visual fragmentation. To address these challenges, we introduce CropVLM as an external low-cost method for boosting performance, enabling VLMs to dynamically ''zoom in'' on relevant image regions, enhancing their ability to capture fine details. CropVLM is trained using reinforcement learning, without using human-labeled bounding boxes as a supervision signal, and without expensive synthetic evaluations. The model is trained once and can be paired with both open-source and proprietary VLMs to improve their performance. Our approach delivers significant improvements on tasks that require high-resolution image understanding, notably for benchmarks that are out-of-domain for the target VLM, without modifying or fine-tuning the VLM, thus avoiding catastrophic forgetting.
☆ Language-Independent Sentiment Labelling with Distant Supervision: A Case Study for English, Sepedi and Setswana
Sentiment analysis is a helpful task to automatically analyse opinions and emotions on various topics in areas such as AI for Social Good, AI in Education or marketing. While many of the sentiment analysis systems are developed for English, many African languages are classified as low-resource languages due to the lack of digital language resources like text labelled with corresponding sentiment classes. One reason for that is that manually labelling text data is time-consuming and expensive. Consequently, automatic and rapid processes are needed to reduce the manual effort as much as possible making the labelling process as efficient as possible. In this paper, we present and analyze an automatic language-independent sentiment labelling method that leverages information from sentiment-bearing emojis and words. Our experiments are conducted with tweets in the languages English, Sepedi and Setswana from SAfriSenti, a multilingual sentiment corpus for South African languages. We show that our sentiment labelling approach is able to label the English tweets with an accuracy of 66%, the Sepedi tweets with 69%, and the Setswana tweets with 63%, so that on average only 34% of the automatically generated labels remain to be corrected.
comment: Published in the The Fourth Workshop on Processing Emotions, Decisions and Opinions (EDO 2023) at 10th Language & Technology Conference: Human Language Technologies as a Challenge for Computer Science and Linguistics (LTC 2023), Poznań, Poland, 21-23 April 2023. ISBN: 978-83-232-4176-8
☆ Breaking Bad: Norms for Valence, Arousal, and Dominance for over 10k English Multiword Expressions
Factor analysis studies have shown that the primary dimensions of word meaning are Valence (V), Arousal (A), and Dominance (D). Existing lexicons such as the NRC VAD Lexicon, published in 2018, include VAD association ratings for words. Here, we present a complement to it, which has human ratings of valence, arousal, and dominance for 10k English Multiword Expressions (MWEs) and their constituent words. We also increase the coverage of unigrams, especially words that have become more common since 2018. In all, the new NRC VAD Lexicon v2 now has entries for 10k MWEs and 25k words, in addition to the entries in v1. We show that the associations are highly reliable. We use the lexicon to examine emotional characteristics of MWEs, including: 1. The degree to which MWEs (idioms, noun compounds, and verb particle constructions) exhibit strong emotionality; 2. The degree of emotional compositionality in MWEs. The lexicon enables a wide variety of research in NLP, Psychology, Public Health, Digital Humanities, and Social Sciences. The NRC VAD Lexicon v2 is freely available through the project webpage: http://saifmohammad.com/WebPages/nrc-vad.html
☆ Training-Free Generation of Diverse and High-Fidelity Images via Prompt Semantic Space Optimization
Image diversity remains a fundamental challenge for text-to-image diffusion models. Low-diversity models tend to generate repetitive outputs, increasing sampling redundancy and hindering both creative exploration and downstream applications. A primary cause is that generation often collapses toward a strong mode in the learned distribution. Existing attempts to improve diversity, such as noise resampling, prompt rewriting, or steering-based guidance, often still collapse to dominant modes or introduce distortions that degrade image quality. In light of this, we propose Token-Prompt embedding Space Optimization (TPSO), a training-free and model-agnostic module. TPSO introduces learnable parameters to explore underrepresented regions of the token embedding space, reducing the tendency of the model to repeatedly generate samples from strong modes of the learned distribution. At the same time, the prompt-level space provides a global semantic constraint that regulates distribution shifts, preventing quality degradation while maintaining high fidelity. Extensive experiments on MS-COCO and three diffusion backbones show that TPSO significantly enhances generative diversity, improving baseline performance from 1.10 to 4.18 points, without sacrificing image quality. Code will be released upon acceptance.
comment: under review
☆ Emergence and Localisation of Semantic Role Circuits in LLMs
Despite displaying semantic competence, large language models' internal mechanisms that ground abstract semantic structure remain insufficiently characterised. We propose a method integrating role-cross minimal pairs, temporal emergence analysis, and cross-model comparison to study how LLMs implement semantic roles. Our analysis uncovers: (i) highly concentrated circuits (89-94% attribution within 28 nodes); (ii) gradual structural refinement rather than phase transitions, with larger models sometimes bypassing localised circuits; and (iii) moderate cross-scale conservation (24-59% component overlap) alongside high spectral similarity. These findings suggest that LLMs form compact, causally isolated mechanisms for abstract semantic structure, and these mechanisms exhibit partial transfer across scales and architectures.
☆ Winning with Less for Low Resource Languages: Advantage of Cross-Lingual English_Persian Argument Mining Model over LLM Augmentation
Argument mining is a subfield of natural language processing to identify and extract the argument components, like premises and conclusions, within a text and to recognize the relations between them. It reveals the logical structure of texts to be used in tasks like knowledge extraction. This paper aims at utilizing a cross-lingual approach to argument mining for low-resource languages, by constructing three training scenarios. We examine the models on English, as a high-resource language, and Persian, as a low-resource language. To this end, we evaluate the models based on the English Microtext corpus \citep{PeldszusStede2015}, and its parallel Persian translation. The learning scenarios are as follow: (i) zero-shot transfer, where the model is trained solely with the English data, (ii) English-only training enhanced by synthetic examples generated by Large Language Models (LLMs), and (iii) a cross-lingual model that combines the original English data with manually translated Persian sentences. The zero-shot transfer model attains F1 scores of 50.2\% on the English test set and 50.7\% on the Persian test set. LLM-based augmentation model improves the performance up to 59.2\% on English and 69.3\% on Persian. The cross-lingual model, trained on both languages but evaluated solely on the Persian test set, surpasses the LLM-based variant, by achieving a F1 of 74.8\%. Results indicate that a lightweight cross-lingual blend can outperform considerably the more resource-intensive augmentation pipelines, and it offers a practical pathway for the argument mining task to overcome data resource shortage on low-resource languages.
comment: Preprint. Under review
☆ Evo-Memory: Benchmarking LLM Agent Test-time Learning with Self-Evolving Memory
Statefulness is essential for large language model (LLM) agents to perform long-term planning and problem-solving. This makes memory a critical component, yet its management and evolution remain largely underexplored. Existing evaluations mostly focus on static conversational settings, where memory is passively retrieved from dialogue to answer queries, overlooking the dynamic ability to accumulate and reuse experience across evolving task streams. In real-world environments such as interactive problem assistants or embodied agents, LLMs are required to handle continuous task streams, yet often fail to learn from accumulated interactions, losing valuable contextual insights, a limitation that calls for test-time evolution, where LLMs retrieve, integrate, and update memory continuously during deployment. To bridge this gap, we introduce Evo-Memory, a comprehensive streaming benchmark and framework for evaluating self-evolving memory in LLM agents. Evo-Memory structures datasets into sequential task streams, requiring LLMs to search, adapt, and evolve memory after each interaction. We unify and implement over ten representative memory modules and evaluate them across 10 diverse multi-turn goal-oriented and single-turn reasoning and QA datasets. To better benchmark experience reuse, we provide a baseline method, ExpRAG, for retrieving and utilizing prior experience, and further propose ReMem, an action-think-memory refine pipeline that tightly integrates reasoning, task actions, and memory updates to achieve continual improvement.
☆ Unsupervised Memorability Modeling from Tip-of-the-Tongue Retrieval Queries
Visual content memorability has intrigued the scientific community for decades, with applications ranging widely, from understanding nuanced aspects of human memory to enhancing content design. A significant challenge in progressing the field lies in the expensive process of collecting memorability annotations from humans. This limits the diversity and scalability of datasets for modeling visual content memorability. Most existing datasets are limited to collecting aggregate memorability scores for visual content, not capturing the nuanced memorability signals present in natural, open-ended recall descriptions. In this work, we introduce the first large-scale unsupervised dataset designed explicitly for modeling visual memorability signals, containing over 82,000 videos, accompanied by descriptive recall data. We leverage tip-of-the-tongue (ToT) retrieval queries from online platforms such as Reddit. We demonstrate that our unsupervised dataset provides rich signals for two memorability-related tasks: recall generation and ToT retrieval. Large vision-language models fine-tuned on our dataset outperform state-of-the-art models such as GPT-4o in generating open-ended memorability descriptions for visual content. We also employ a contrastive training strategy to create the first model capable of performing multimodal ToT retrieval. Our dataset and models present a novel direction, facilitating progress in visual content memorability research.
comment: Accepted at WACV 2026
☆ Length-MAX Tokenizer for Language Models
We introduce a new tokenizer for language models that minimizes the average tokens per character, thereby reducing the number of tokens needed to represent text during training and to generate text during inference. Our method, which we refer to as the Length-MAX tokenizer, obtains its vocabulary by casting a length-weighted objective maximization as a graph partitioning problem and developing a greedy approximation algorithm. On FineWeb and diverse domains, it yields 14--18\% fewer tokens than Byte Pair Encoding (BPE) across vocabulary sizes from 10K to 50K, and the reduction is 13.0\% when the size is 64K. Training GPT-2 models at 124M, 355M, and 1.3B parameters from scratch with five runs each shows 18.5\%, 17.2\%, and 18.5\% fewer steps, respectively, to reach a fixed validation loss, and 13.7\%, 12.7\%, and 13.7\% lower inference latency, together with a 16\% throughput gain at 124M, while consistently improving on downstream tasks including reducing LAMBADA perplexity by 11.7\% and enhancing HellaSwag accuracy by 4.3\%. Moreover, the Length-MAX tokenizer achieves 99.62\% vocabulary coverage and the out-of-vocabulary rate remains low at 0.12\% on test sets. These results demonstrate that optimizing for average token length, rather than frequency alone, offers an effective approach to more efficient language modeling without sacrificing -- and often improving -- downstream performance. The tokenizer is compatible with production systems and reduces embedding and KV-cache memory by 18\% at inference.
Structured Prompting Enables More Robust, Holistic Evaluation of Language Models
As language models (LMs) are increasingly adopted across domains, high-quality benchmarking frameworks that accurately estimate performance are essential for guiding deployment decisions. While frameworks such as Holistic Evaluation of Language Models (HELM) enable broad evaluation across tasks, they often rely on fixed prompts that fail to generalize across LMs, yielding unrepresentative performance estimates. Unless we estimate each LM's ceiling (maximum achievable via changes to the prompt), we risk underestimating performance. Declarative prompting frameworks, such as DSPy, offer a scalable alternative to manual prompt engineering by crafting structured prompts that can be optimized per task. However, such frameworks have not been systematically evaluated across established benchmarks. We present a reproducible DSPy+HELM framework that introduces structured prompting methods which elicit reasoning, enabling more accurate LM benchmarking. Using four prompting methods, we evaluate four frontier LMs across seven benchmarks (general/medical domain) against existing HELM baseline scores. We find that without structured prompting: (i) HELM underestimates LM performance (by 4% average), (ii) performance estimates vary more across benchmarks (+2% standard deviation), (iii) performance gaps are misrepresented (leaderboard rankings flip on 3/7 benchmarks), and (iv) introducing reasoning (chain-of-thought) reduces LM sensitivity to prompt design (smaller Δ across prompts). To our knowledge, this is the first large-scale benchmarking study to empirically characterize LM behavior across benchmarks and prompting methods, showing that scalable performance ceiling estimation enables more decision-useful benchmarks. We open-source (i) DSPy+HELM Integration (https://github.com/stanford-crfm/helm/pull/3893) and (ii) Prompt Optimization Pipeline (https://github.com/StanfordMIMI/dspy-helm).
☆ Training-Free Diffusion Priors for Text-to-Image Generation via Optimization-based Visual Inversion
Diffusion models have established the state-of-the-art in text-to-image generation, but their performance often relies on a diffusion prior network to translate text embeddings into the visual manifold for easier decoding. These priors are computationally expensive and require extensive training on massive datasets. In this work, we challenge the necessity of a trained prior at all by employing Optimization-based Visual Inversion (OVI), a training-free and data-free alternative, to replace the need for a prior. OVI initializes a latent visual representation from random pseudo-tokens and iteratively optimizes it to maximize the cosine similarity with input textual prompt embedding. We further propose two novel constraints, a Mahalanobis-based and a Nearest-Neighbor loss, to regularize the OVI optimization process toward the distribution of realistic images. Our experiments, conducted on Kandinsky 2.2, show that OVI can serve as an alternative to traditional priors. More importantly, our analysis reveals a critical flaw in current evaluation benchmarks like T2I-CompBench++, where simply using the text embedding as a prior achieves surprisingly high scores, despite lower perceptual quality. Our constrained OVI methods improve visual fidelity over this baseline, with the Nearest-Neighbor approach proving particularly effective, achieving quantitative scores comparable to or higher than the state-of-the-art data-efficient prior, indicating that the idea merits further investigation. The code will be publicly available upon acceptance.
comment: 11 pages, 7 figures, technical report (preprint)
☆ SAGE: An Agentic Explainer Framework for Interpreting SAE Features in Language Models
Large language models (LLMs) have achieved remarkable progress, yet their internal mechanisms remain largely opaque, posing a significant challenge to their safe and reliable deployment. Sparse autoencoders (SAEs) have emerged as a promising tool for decomposing LLM representations into more interpretable features, but explaining the features captured by SAEs remains a challenging task. In this work, we propose SAGE (SAE AGentic Explainer), an agent-based framework that recasts feature interpretation from a passive, single-pass generation task into an active, explanation-driven process. SAGE implements a rigorous methodology by systematically formulating multiple explanations for each feature, designing targeted experiments to test them, and iteratively refining explanations based on empirical activation feedback. Experiments on features from SAEs of diverse language models demonstrate that SAGE produces explanations with significantly higher generative and predictive accuracy compared to state-of-the-art baselines.an agent-based framework that recasts feature interpretation from a passive, single-pass generation task into an active, explanationdriven process. SAGE implements a rigorous methodology by systematically formulating multiple explanations for each feature, designing targeted experiments to test them, and iteratively refining explanations based on empirical activation feedback. Experiments on features from SAEs of diverse language models demonstrate that SAGE produces explanations with significantly higher generative and predictive accuracy compared to state-of-the-art baselines.
☆ Memories Retrieved from Many Paths: A Multi-Prefix Framework for Robust Detection of Training Data Leakage in Large Language Models
Large language models, trained on massive corpora, are prone to verbatim memorization of training data, creating significant privacy and copyright risks. While previous works have proposed various definitions for memorization, many exhibit shortcomings in comprehensively capturing this phenomenon, especially in aligned models. To address this, we introduce a novel framework: multi-prefix memorization. Our core insight is that memorized sequences are deeply encoded and thus retrievable via a significantly larger number of distinct prefixes than non-memorized content. We formalize this by defining a sequence as memorized if an external adversarial search can identify a target count of distinct prefixes that elicit it. This framework shifts the focus from single-path extraction to quantifying the robustness of a memory, measured by the diversity of its retrieval paths. Through experiments on open-source and aligned chat models, we demonstrate that our multi-prefix definition reliably distinguishes memorized from non-memorized data, providing a robust and practical tool for auditing data leakage in LLMs.
comment: 11 pages, 2 tables, 8 figures
♻ ☆ Why Reasoning Matters? A Survey of Advancements in Multimodal Reasoning (v1)
Reasoning is central to human intelligence, enabling structured problem-solving across diverse tasks. Recent advances in large language models (LLMs) have greatly enhanced their reasoning abilities in arithmetic, commonsense, and symbolic domains. However, effectively extending these capabilities into multimodal contexts-where models must integrate both visual and textual inputs-continues to be a significant challenge. Multimodal reasoning introduces complexities, such as handling conflicting information across modalities, which require models to adopt advanced interpretative strategies. Addressing these challenges involves not only sophisticated algorithms but also robust methodologies for evaluating reasoning accuracy and coherence. This paper offers a concise yet insightful overview of reasoning techniques in both textual and multimodal LLMs. Through a thorough and up-to-date comparison, we clearly formulate core reasoning challenges and opportunities, highlighting practical methods for post-training optimization and test-time inference. Our work provides valuable insights and guidance, bridging theoretical frameworks and practical implementations, and sets clear directions for future research.
♻ ☆ FlagEval Findings Report: A Preliminary Evaluation of Large Reasoning Models on Automatically Verifiable Textual and Visual Questions NeurIPS 2025
We conduct a moderate-scale contamination-free (to some extent) evaluation of current large reasoning models (LRMs) with some preliminary findings. We also release ROME, our evaluation benchmark for vision language models intended to test reasoning from visual clues. We attach links to the benchmark, evaluation data, and other updates on this website: https://flageval-baai.github.io/LRM-Eval/
comment: Project homepage: https://flageval-baai.github.io/LRM-Eval/ This work will also be presented at NeurIPS 2025 Workshop on Foundations of Reasoning in Language Models (FoRLM); update with trials on Gemini 3 Pro
♻ ☆ ExDDV: A New Dataset for Explainable Deepfake Detection in Video
The ever growing realism and quality of generated videos makes it increasingly harder for humans to spot deepfake content, who need to rely more and more on automatic deepfake detectors. However, deepfake detectors are also prone to errors, and their decisions are not explainable, leaving humans vulnerable to deepfake-based fraud and misinformation. To this end, we introduce ExDDV, the first dataset and benchmark for Explainable Deepfake Detection in Video. ExDDV comprises around 5.4K real and deepfake videos that are manually annotated with text descriptions (to explain the artifacts) and clicks (to point out the artifacts). We evaluate a number of vision-language models on ExDDV, performing experiments with various fine-tuning and in-context learning strategies. Our results show that text and click supervision are both required to develop robust explainable models for deepfake videos, which are able to localize and describe the observed artifacts. Our novel dataset and code to reproduce the results are available at https://github.com/vladhondru25/ExDDV.
comment: Accepted at WACV 2026
♻ ☆ When to Think and When to Look: Uncertainty-Guided Lookback
Test-time thinking (that is, generating explicit intermediate reasoning chains) is known to boost performance in large language models and has recently shown strong gains for large vision language models (LVLMs). However, despite these promising results, there is still no systematic analysis of how thinking actually affects visual reasoning. We provide the first such analysis with a large scale, controlled comparison of thinking for LVLMs, evaluating ten variants from the InternVL3.5 and Qwen3-VL families on MMMU-val under generous token budgets and multi pass decoding. We show that more thinking is not always better; long chains often yield long wrong trajectories that ignore the image and underperform the same models run in standard instruct mode. A deeper analysis reveals that certain short lookback phrases, which explicitly refer back to the image, are strongly enriched in successful trajectories and correlate with better visual grounding. Building on this insight, we propose uncertainty guided lookback, a training free decoding strategy that combines an uncertainty signal with adaptive lookback prompts and breadth search. Our method improves overall MMMU performance, delivers the largest gains in categories where standard thinking is weak, and outperforms several strong decoding baselines, setting a new state of the art under fixed model families and token budgets. We further show that this decoding strategy generalizes, yielding consistent improvements on five additional benchmarks, including two broad multimodal suites and math focused visual reasoning datasets.
♻ ☆ OceanGym: A Benchmark Environment for Underwater Embodied Agents
We introduce OceanGym, the first comprehensive benchmark for ocean underwater embodied agents, designed to advance AI in one of the most demanding real-world environments. Unlike terrestrial or aerial domains, underwater settings present extreme perceptual and decision-making challenges, including low visibility, dynamic ocean currents, making effective agent deployment exceptionally difficult. OceanGym encompasses eight realistic task domains and a unified agent framework driven by Multi-modal Large Language Models (MLLMs), which integrates perception, memory, and sequential decision-making. Agents are required to comprehend optical and sonar data, autonomously explore complex environments, and accomplish long-horizon objectives under these harsh conditions. Extensive experiments reveal substantial gaps between state-of-the-art MLLM-driven agents and human experts, highlighting the persistent difficulty of perception, planning, and adaptability in ocean underwater environments. By providing a high-fidelity, rigorously designed platform, OceanGym establishes a testbed for developing robust embodied AI and transferring these capabilities to real-world autonomous ocean underwater vehicles, marking a decisive step toward intelligent agents capable of operating in one of Earth's last unexplored frontiers. The code and data are available at https://github.com/OceanGPT/OceanGym.
comment: Work in progress
♻ ☆ LightMem: Lightweight and Efficient Memory-Augmented Generation
Despite their remarkable capabilities, Large Language Models (LLMs) struggle to effectively leverage historical interaction information in dynamic and complex environments. Memory systems enable LLMs to move beyond stateless interactions by introducing persistent information storage, retrieval, and utilization mechanisms. However, existing memory systems often introduce substantial time and computational overhead. To this end, we introduce a new memory system called LightMem, which strikes a balance between the performance and efficiency of memory systems. Inspired by the Atkinson-Shiffrin model of human memory, LightMem organizes memory into three complementary stages. First, cognition-inspired sensory memory rapidly filters irrelevant information through lightweight compression and groups information according to their topics. Next, topic-aware short-term memory consolidates these topic-based groups, organizing and summarizing content for more structured access. Finally, long-term memory with sleep-time update employs an offline procedure that decouples consolidation from online inference. On LongMemEval and LoCoMo, using GPT and Qwen backbones, LightMem consistently surpasses strong baselines, improving QA accuracy by up to 7.7% / 29.3%, reducing total token usage by up to 38x / 20.9x and API calls by up to 30x / 55.5x, while purely online test-time costs are even lower, achieving up to 106x / 117x token reduction and 159x / 310x fewer API calls. The code is available at https://github.com/zjunlp/LightMem.
comment: Work in progress
♻ ☆ Counterfactual Simulatability of LLM Explanations for Generation Tasks
LLMs can be unpredictable, as even slight alterations to the prompt can cause the output to change in unexpected ways. Thus, the ability of models to accurately explain their behavior is critical, especially in high-stakes settings. One approach for evaluating explanations is counterfactual simulatability, how well an explanation allows users to infer the model's output on related counterfactuals. Counterfactual simulatability has been previously studied for yes/no question answering tasks. We provide a general framework for extending this method to generation tasks, using news summarization and medical suggestion as example use cases. We find that while LLM explanations do enable users to better predict LLM outputs on counterfactuals in the summarization setting, there is significant room for improvement for medical suggestion. Furthermore, our results suggest that the evaluation for counterfactual simulatability may be more appropriate for skill-based tasks as opposed to knowledge-based tasks.
comment: INLG25
♻ ☆ EHR-R1: A Reasoning-Enhanced Foundational Language Model for Electronic Health Record Analysis
Electronic Health Records (EHRs) contain rich yet complex information, and their automated analysis is critical for clinical decision-making. Despite recent advances of large language models (LLMs) in clinical workflows, their ability to analyze EHRs remains limited due to narrow task coverage and lack of EHR-oriented reasoning capabilities. This paper aims to bridge the gap, specifically, we present EHR-Ins, a large-scale, comprehensive EHR reasoning instruction dataset, comprising 300k high-quality reasoning cases and 4M non-reasoning cases across 42 distinct EHR tasks. Its core innovation is a thinking-graph-driven framework that enables to generate high-quality reasoning data at scale. Based on it, we develop EHR-R1, a series of reasoning-enhanced LLMs with up to 72B parameters tailored for EHR analysis. Through a multi-stage training paradigm, including domain adaptation, reasoning enhancement, and reinforcement learning, EHR-R1 systematically acquires domain knowledge and diverse reasoning capabilities, enabling accurate and robust EHR analysis. Lastly, we introduce EHR-Bench, a new benchmark curated from MIMIC-IV, spanning 42 tasks, to comprehensively assess reasoning and prediction across EHR scenarios. In experiments, we show that the resulting EHR-R1 consistently outperforms state-of-the-art commercial and open-source LLMs (including DeepSeek-V3 and GPT-4o), surpassing GPT-4o by over 30 points on MIMIC-Bench and achieving a 10\% higher zero-shot AUROC on EHRSHOT. Collectively, EHR-Ins, EHR-R1, and EHR-Bench have significantly advanced the development for more reliable and clinically relevant EHR analysis.
♻ ☆ BiasJailbreak:Analyzing Ethical Biases and Jailbreak Vulnerabilities in Large Language Models AAAI 2026
Although large language models (LLMs) demonstrate impressive proficiency in various tasks, they present potential safety risks, such as `jailbreaks', where malicious inputs can coerce LLMs into generating harmful content bypassing safety alignments. In this paper, we delve into the ethical biases in LLMs and examine how those biases could be exploited for jailbreaks. Notably, these biases result in a jailbreaking success rate in GPT-4o models that differs by 20\% between non-binary and cisgender keywords and by 16\% between white and black keywords, even when the other parts of the prompts are identical. We introduce the concept of BiasJailbreak, highlighting the inherent risks posed by these safety-induced biases. BiasJailbreak generates biased keywords automatically by asking the target LLM itself, and utilizes the keywords to generate harmful output. Additionally, we propose an efficient defense method BiasDefense, which prevents jailbreak attempts by injecting defense prompts prior to generation. BiasDefense stands as an appealing alternative to Guard Models, such as Llama-Guard, that require additional inference cost after text generation. Our findings emphasize that ethical biases in LLMs can actually lead to generating unsafe output, and suggest a method to make the LLMs more secure and unbiased. To enable further research and improvements, we open-source our code and artifacts of BiasJailbreak, providing the community with tools to better understand and mitigate safety-induced biases in LLMs.
comment: Accepted as a workshop paper at AAAI 2026
♻ ☆ LiRA: A Multi-Agent Framework for Reliable and Readable Literature Review Generation
The rapid growth of scientific publications has made it increasingly difficult to keep literature reviews comprehensive and up-to-date. Though prior work has focused on automating retrieval and screening, the writing phase of systematic reviews remains largely under-explored, especially with regard to readability and factual accuracy. To address this, we present LiRA (Literature Review Agents), a multi-agent collaborative workflow which emulates the human literature review process. LiRA utilizes specialized agents for content outlining, subsection writing, editing, and reviewing, producing cohesive and comprehensive review articles. Evaluated on SciReviewGen and a proprietary ScienceDirect dataset, LiRA outperforms current baselines such as AutoSurvey and MASS-Survey in writing and citation quality, while maintaining competitive similarity to human-written reviews. We further evaluate LiRA in real-world scenarios using document retrieval and assess its robustness to reviewer model variation. Our findings highlight the potential of agentic LLM workflows, even without domain-specific tuning, to improve the reliability and usability of automated scientific writing.
♻ ☆ Multi-Modal Data Exploration via Language Agents ACL 2025
International enterprises, organizations, and hospitals collect large amounts of multi-modal data stored in databases, text documents, images, and videos. While there has been recent progress in the separate fields of multi-modal data exploration as well as in database systems that automatically translate natural language questions to database query languages, the research challenge of querying both structured databases and unstructured modalities (e.g., texts, images) in natural language remains largely unexplored. In this paper, we propose M$^2$EX -a system that enables multi-modal data exploration via language agents. Our approach is based on the following research contributions: (1) Our system is inspired by a real-world use case that enables users to explore multi-modal information systems. (2) M$^2$EX leverages an LLM-based agentic AI framework to decompose a natural language question into subtasks such as text-to-SQL generation and image analysis and to orchestrate modality-specific experts in an efficient query plan. (3) Experimental results on multi-modal datasets, encompassing relational data, text, and images, demonstrate that our system outperforms state-of-the-art multi-modal exploration systems, excelling in both accuracy and various performance metrics, including query latency, API costs, and planning efficiency, thanks to the more effective utilization of the reasoning capabilities of LLMs.
comment: Accepted to the IJCNLP AACL 2025 Findings
♻ ☆ Computational Turing Test Reveals Systematic Differences Between Human and AI Language
Large language models (LLMs) are increasingly used in the social sciences to simulate human behavior, based on the assumption that they can generate realistic, human-like text. Yet this assumption remains largely untested. Existing validation efforts rely heavily on human-judgment-based evaluations -- testing whether humans can distinguish AI from human output -- despite evidence that such judgments are blunt and unreliable. As a result, the field lacks robust tools for assessing the realism of LLM-generated text or for calibrating models to real-world data. This paper makes two contributions. First, we introduce a computational Turing test: a validation framework that integrates aggregate metrics (BERT-based detectability and semantic similarity) with interpretable linguistic features (stylistic markers and topical patterns) to assess how closely LLMs approximate human language within a given dataset. Second, we systematically compare nine open-weight LLMs across five calibration strategies -- including fine-tuning, stylistic prompting, and context retrieval -- benchmarking their ability to reproduce user interactions on X (formerly Twitter), Bluesky, and Reddit. Our findings challenge core assumptions in the literature. Even after calibration, LLM outputs remain clearly distinguishable from human text, particularly in affective tone and emotional expression. Instruction-tuned models underperform their base counterparts, and scaling up model size does not enhance human-likeness. Crucially, we identify a trade-off: optimizing for human-likeness often comes at the cost of semantic fidelity, and vice versa. These results provide a much-needed scalable framework for validation and calibration in LLM simulations -- and offer a cautionary note about their current limitations in capturing human communication.
♻ ☆ Agentar-Scale-SQL: Advancing Text-to-SQL through Orchestrated Test-Time Scaling
State-of-the-art (SOTA) Text-to-SQL methods still lag significantly behind human experts on challenging benchmarks like BIRD. Current approaches that explore test-time scaling lack an orchestrated strategy and neglect the model's internal reasoning process. To bridge this gap, we introduce Agentar-Scale-SQL, a novel framework leveraging scalable computation to improve performance. Agentar-Scale-SQL implements an Orchestrated Test-Time Scaling strategy that synergistically combines three distinct perspectives: i) Internal Scaling via RL-enhanced Intrinsic Reasoning, ii) Sequential Scaling through Iterative Refinement, and iii) Parallel Scaling using Diverse Synthesis and Tournament Selection. Agentar-Scale-SQL is a general-purpose framework designed for easy adaptation to new databases and more powerful language models. Extensive experiments show that Agentar-Scale-SQL achieves SOTA performance on the BIRD benchmark, reaching 81.67% execution accuracy on the test set and ranking first on the official leaderboard, demonstrating an effective path toward human-level performance.
♻ ☆ ConfTuner: Training Large Language Models to Express Their Confidence Verbally NeurIPS 2025
Large Language Models (LLMs) are increasingly deployed in high-stakes domains such as science, law, and healthcare, where accurate expressions of uncertainty are essential for reliability and trust. However, current LLMs are often observed to generate incorrect answers with high confidence, a phenomenon known as "overconfidence". Recent efforts have focused on calibrating LLMs' verbalized confidence: i.e., their expressions of confidence in text form, such as "I am 80% confident that...". Existing approaches either rely on prompt engineering or fine-tuning with heuristically generated uncertainty estimates, both of which have limited effectiveness and generalizability. Motivated by the notion of proper scoring rules for calibration in classical machine learning models, we introduce ConfTuner, a simple and efficient fine-tuning method that introduces minimal overhead and does not require ground-truth confidence scores or proxy confidence estimates. ConfTuner relies on a new loss function, tokenized Brier score, which we theoretically prove to be a proper scoring rule, intuitively meaning that it "correctly incentivizes the model to report its true probability of being correct". ConfTuner improves calibration across diverse reasoning tasks and generalizes to black-box models such as GPT-4o. Our results further show that better-calibrated confidence enables downstream gains in self-correction and model cascade, advancing the development of trustworthy LLM systems. The code is available at https://github.com/liushiliushi/ConfTuner.
comment: Accepted by NeurIPS 2025
♻ ☆ From Generation to Detection: A Multimodal Multi-Task Dataset for Benchmarking Health Misinformation EMNLP 2025
Infodemics and health misinformation have significant negative impact on individuals and society, exacerbating confusion and increasing hesitancy in adopting recommended health measures. Recent advancements in generative AI, capable of producing realistic, human like text and images, have significantly accelerated the spread and expanded the reach of health misinformation, resulting in an alarming surge in its dissemination. To combat the infodemics, most existing work has focused on developing misinformation datasets from social media and fact checking platforms, but has faced limitations in topical coverage, inclusion of AI generation, and accessibility of raw content. To address these issues, we present MM Health, a large scale multimodal misinformation dataset in the health domain consisting of 34,746 news article encompassing both textual and visual information. MM Health includes human-generated multimodal information (5,776 articles) and AI generated multimodal information (28,880 articles) from various SOTA generative AI models. Additionally, We benchmarked our dataset against three tasks (reliability checks, originality checks, and fine-grained AI detection) demonstrating that existing SOTA models struggle to accurately distinguish the reliability and origin of information. Our dataset aims to support the development of misinformation detection across various health scenarios, facilitating the detection of human and machine generated content at multimodal levels.
comment: Accepted to Findings of the Association for Computational Linguistics: EMNLP 2025
♻ ☆ Exploring the Synergy of Quantitative Factors and Newsflow Representations from Large Language Models for Stock Return Prediction
In quantitative investing, return prediction supports various tasks, including stock selection, portfolio optimization, and risk management. Quantitative factors, such as valuation, quality, and growth, capture various characteristics of stocks. Unstructured data, like news and transcripts, has attracted growing attention, driven by recent advances in large language models (LLMs). This paper examines effective methods for leveraging multimodal factors and newsflow in return prediction and stock selection. First, we introduce a fusion learning framework to learn a unified representation from factors and newsflow representations generated by an LLM. Within this framework, we compare three methods of different architectural complexities: representation combination, representation summation, and attentive representations. Next, building on the limitation of fusion learning observed in empirical comparison, we explore the mixture model that adaptively combines predictions made by single modalities and their fusion. To mitigate the training instability of the mixture model, we introduce a decoupled training approach with theoretical insights. Finally, our experiments on real investment universes yield several insights into effective multimodal modeling of factors and news for stock return prediction and selection.
♻ ☆ TurnBench-MS: A Benchmark for Evaluating Multi-Turn, Multi-Step Reasoning in Large Language Models EMNLP 2025
Despite impressive advances in large language models (LLMs), existing benchmarks often focus on single-turn or single-step tasks, failing to capture the kind of iterative reasoning required in real-world settings. To address this limitation, we introduce TurnBench, a novel benchmark that evaluates multi-turn, multi-step reasoning through an interactive code-breaking task inspired by the "Turing Machine Board Game." In each episode, a model must uncover hidden logical or arithmetic rules by making sequential guesses, receiving structured feedback, and integrating clues across multiple rounds. This dynamic setup requires models to reason over time, adapt based on past information, and maintain consistency across steps-capabilities underexplored in current benchmarks. TurnBench includes two modes: Classic, which tests standard reasoning, and Nightmare, which introduces increased complexity and requires robust inferential chains. To support fine-grained analysis, we provide ground-truth annotations for intermediate reasoning steps. Our evaluation of state-of-the-art LLMs reveals significant gaps: the best model achieves 84% accuracy in Classic mode, but performance drops to 18% in Nightmare mode. In contrast, human participants achieve 100% in both, underscoring the challenge TurnBench poses to current models. By incorporating feedback loops and hiding task rules, TurnBench reduces contamination risks and provides a rigorous testbed for diagnosing and advancing multi-step, multi-turn reasoning in LLMs.
comment: Accepted to Findings of the Association for Computational Linguistics: EMNLP 2025
♻ ☆ MindEval: Benchmarking Language Models on Multi-turn Mental Health Support
Demand for mental health support through AI chatbots is surging, though current systems present several limitations, like sycophancy or overvalidation, and reinforcement of maladaptive beliefs. A core obstacle to the creation of better systems is the scarcity of benchmarks that capture the complexity of real therapeutic interactions. Most existing benchmarks either only test clinical knowledge through multiple-choice questions or assess single responses in isolation. To bridge this gap, we present MindEval, a framework designed in collaboration with Ph.D-level Licensed Clinical Psychologists for automatically evaluating language models in realistic, multi-turn mental health therapy conversations. Through patient simulation and automatic evaluation with LLMs, our framework balances resistance to gaming with reproducibility via its fully automated, model-agnostic design. We begin by quantitatively validating the realism of our simulated patients against human-generated text and by demonstrating strong correlations between automatic and human expert judgments. Then, we evaluate 12 state-of-the-art LLMs and show that all models struggle, scoring below 4 out of 6, on average, with particular weaknesses in problematic AI-specific patterns of communication. Notably, reasoning capabilities and model scale do not guarantee better performance, and systems deteriorate with longer interactions or when supporting patients with severe symptoms. We release all code, prompts, and human evaluation data.
♻ ☆ MedS$^3$: Towards Medical Slow Thinking with Self-Evolved Soft Dual-sided Process Supervision AAAI26
Medical language models face critical barriers to real-world clinical reasoning applications. However, mainstream efforts, which fall short in task coverage, lack fine-grained supervision for intermediate reasoning steps, and rely on proprietary systems, are still far from a versatile, credible and efficient language model for clinical reasoning usage. To this end, we propose MedS3, a self-evolving framework that imparts robust reasoning capabilities to small, deployable models. Starting with 8,000 curated instances sampled via a curriculum strategy across five medical domains and 16 datasets, we use a small base policy model to conduct Monte Carlo Tree Search (MCTS) for constructing rule-verifiable reasoning trajectories. Self-explored reasoning trajectories ranked by node values are used to bootstrap the policy model via reinforcement fine-tuning and preference learning. Moreover, we introduce a soft dual process reward model that incorporates value dynamics: steps that degrade node value are penalized, enabling fine-grained identification of reasoning errors even when the final answer is correct. Experiments on eleven benchmarks show that MedS3 outperforms the previous state-of-the-art medical model by +6.45 accuracy points and surpasses 32B-scale general-purpose reasoning models by +8.57 points. Additional empirical analysis further demonstrates that MedS3 achieves robust and faithful reasoning behavior.
comment: 20 pages;Accepted as a Main paper at AAAI26
♻ ☆ LaajMeter: A Framework for LaaJ Evaluation
Large Language Models (LLMs) are increasingly used as evaluators in natural language processing tasks, a paradigm known as LLM-as-a-Judge (LaaJ). The analysis of a LaaJ software, commonly refereed to as meta-evaluation, pose significant challenges in domain-specific contexts. In such domains, in contrast to general domains, annotated data is scarce and expert evaluation is costly. As a result, meta-evaluation is often performed using metrics that have not been validated for the specific domain in which they are applied. Therefore, it becomes difficult to determine which metrics effectively identify LaaJ quality, and further, what threshold indicates sufficient evaluator performance. In this work, we introduce LaaJMeter, a simulation-based framework for controlled meta-evaluation of LaaJs. LaaJMeter enables engineers to generate synthetic data representing virtual models and judges, allowing systematic analysis of evaluation metrics under realistic conditions. This helps practitioners validate LaaJs for specific tasks: they can test whether their metrics correctly distinguish between high and low quality (virtual) LaaJs, and estimate appropriate thresholds for evaluator adequacy. We demonstrate the utility of LaaJMeter in a code translation task involving a legacy programming language, showing how different metrics vary in sensitivity to evaluator quality. Our results highlight the limitations of common metrics and the importance of principled metric selection. LaaJMeter provides a scalable and extensible solution for assessing LaaJs in low-resource settings, contributing to the broader effort to ensure trustworthy and reproducible evaluation in NLP.
♻ ☆ Toward Honest Language Models for Deductive Reasoning
Deductive reasoning is the process of deriving conclusions strictly from the given premises, without relying on external knowledge. We define honesty in this setting as a model's ability to respond only when the conclusion is logically entailed by the premises, and to abstain otherwise. However, current language models often fail to reason honestly, producing unwarranted answers when the input is insufficient. To study this challenge, we formulate honest deductive reasoning as multi-step tasks where models must either derive the correct conclusion or abstain. We curate two datasets from graph structures, one for linear algebra and one for logical inference, and introduce unanswerable cases by randomly perturbing an edge in half of the instances. We find that prompting and existing training methods, including GRPO with or without supervised fine-tuning initialization, struggle on these tasks. In particular, GRPO optimize only for final task outcomes, leaving models vulnerable to collapse when negative rewards dominate early training. To address this, we propose ACNCHOR, a reinforcement learning method that injects ground truth trajectories into rollouts, preventing early training collapse. Our results demonstrate that this method stabilizes learning and significantly improves the overall reasoning performance, underscoring the importance of training dynamics for enabling honest deductive reasoning in language models.
♻ ☆ Enhancing Reasoning Skills in Small Persian Medical Language Models Can Outperform Large-Scale Data Training
Enhancing reasoning capabilities in small language models is critical for specialized applications such as medical question answering, particularly in underrepresented languages like Persian. In this study, we employ Reinforcement Learning with AI Feedback (RLAIF) and Direct preference optimization (DPO) to improve the reasoning skills of a general-purpose Persian language model. To achieve this, we translated a multiple-choice medical question-answering dataset into Persian and used RLAIF to generate rejected-preferred answer pairs, which are essential for DPO training. By prompting both teacher and student models to produce Chain-of-Thought (CoT) reasoning responses, we compiled a dataset containing correct and incorrect reasoning trajectories. This dataset, comprising 2 million tokens in preferred answers and 2.5 million tokens in rejected ones, was used to train a baseline model, significantly enhancing its medical reasoning capabilities in Persian. Remarkably, the resulting model outperformed its predecessor, gaokerena-V, which was trained on approximately 57 million tokens, despite leveraging a much smaller dataset. These results highlight the efficiency and effectiveness of reasoning-focused training approaches in developing domain-specific language models with limited data availability.
comment: 7 pages, 5 figures
♻ ☆ SAS: Simulated Attention Score
The attention mechanism is a core component of the Transformer architecture. Various methods have been developed to compute attention scores, including multi-head attention (MHA), multi-query attention, group-query attention and so on. We further analyze the MHA and observe that its performance improves as the number of attention heads increases, provided the hidden size per head remains sufficiently large. Therefore, increasing both the head count and hidden size per head with minimal parameter overhead can lead to significant performance gains at a low cost. Motivated by this insight, we introduce Simulated Attention Score (SAS), which maintains a compact model size while simulating a larger number of attention heads and hidden feature dimension per head. This is achieved by projecting a low-dimensional head representation into a higher-dimensional space, effectively increasing attention capacity without increasing parameter count. Beyond the head representations, we further extend the simulation approach to feature dimension of the key and query embeddings, enhancing expressiveness by mimicking the behavior of a larger model while preserving the original model size. To control the parameter cost, we also propose Parameter-Efficient Attention Aggregation (PEAA). Comprehensive experiments on a variety of datasets and tasks demonstrate the effectiveness of the proposed SAS method, achieving significant improvements over different attention variants.
comment: Tech Report
♻ ☆ Steganographic Backdoor Attacks in NLP: Ultra-Low Poisoning and Defense Evasion
Transformer models are foundational to natural language processing (NLP) applications, yet remain vulnerable to backdoor attacks introduced through poisoned data, which implant hidden behaviors during training. To strengthen the ability to prevent such compromises, recent research has focused on designing increasingly stealthy attacks to stress-test existing defenses, pairing backdoor behaviors with stylized artifact or token-level perturbation triggers. However, this trend diverts attention from the harder and more realistic case: making the model respond to semantic triggers such as specific names or entities, where a successful backdoor could manipulate outputs tied to real people or events in deployed systems. Motivated by this growing disconnect, we introduce SteganoBackdoor, bringing stealth techniques back into line with practical threat models. Leveraging innocuous properties from natural-language steganography, SteganoBackdoor applies a gradient-guided data optimization process to transform semantic trigger seeds into steganographic carriers that embed a high backdoor payload, remain fluent, and exhibit no representational resemblance to the trigger. Across diverse experimental settings, SteganoBackdoor achieves over 99% attack success at an order-of-magnitude lower data-poisoning rate than prior approaches while maintaining unparalleled evasion against a comprehensive suite of data-level defenses. By revealing this practical and covert attack, SteganoBackdoor highlights an urgent blind spot in current defenses and demands immediate attention to adversarial data defenses and real-world threat modeling.
♻ ☆ Large Language Models in Argument Mining: A Survey
Large Language Models (LLMs) have fundamentally reshaped Argument Mining (AM), shifting it from a pipeline of supervised, task-specific classifiers to a spectrum of prompt-driven, retrieval-augmented, and reasoning-oriented paradigms. Yet existing surveys largely predate this transition, leaving unclear how LLMs alter task formulations, dataset design, evaluation methodology, and the theoretical foundations of computational argumentation. In this survey, we synthesise research and provide the first unified account of AM in the LLM era. We revisit canonical AM subtasks, i.e., claim and evidence detection, relation prediction, stance classification, argument quality assessment, and argumentative summarisation, and show how prompting, chain-of-thought reasoning, and in-context learning blur traditional task boundaries. We catalogue the rapid evolution of resources, including integrated multi-layer corpora and LLM-assisted annotation pipelines that introduce new opportunities as well as risks of bias and evaluation circularity. Building on this mapping, we identify emerging architectural patterns across LLM-based AM systems and consolidate evaluation practices spanning component-level accuracy, soft-label quality assessment, and LLM-judge reliability. Finally, we outline persistent challenges, including long-context reasoning, multimodal and multilingual robustness, interpretability, and cost-efficient deployment, and propose a forward-looking research agenda for LLM-driven computational argumentation.
comment: Work draft
♻ ☆ Improved LLM Agents for Financial Document Question Answering
Large language models (LLMs) have shown impressive capabilities on numerous natural language processing tasks. However, LLMs still struggle with numerical question answering for financial documents that include tabular and textual data. Recent works have showed the effectiveness of critic agents (i.e., self-correction) for this task given oracle labels. Building upon this framework, this paper examines the effectiveness of the traditional critic agent when oracle labels are not available, and show, through experiments, that this critic agent's performance deteriorates in this scenario. With this in mind, we present an improved critic agent, along with the calculator agent which outperforms the previous state-of-the-art approach (program-of-thought) and is safer. Furthermore, we investigate how our agents interact with each other, and how this interaction affects their performance.
comment: 13 pages, 5 figures. Unlike the previous version, LLM names are now unmasked
♻ ☆ AI-Mediated Communication Reshapes Social Structure in Opinion-Diverse Groups
Group segregation or cohesion can emerge from micro-level communication, and AI-assisted messaging may shape this process. Here, we report a preregistered online experiment (N = 557 across 60 sessions) in which participants discussed controversial political topics over multiple rounds and could freely change groups. Some participants received real-time message suggestions from a large language model (LLM), either personalized to their stance (individual assistance) or incorporating their group members' perspectives (relational assistance). We find that small variations in AI-mediated communication cascade into macro-level differences in group composition. Participants with individual assistance send more messages and show greater stance-based clustering, whereas those with relational assistance use more receptive language and form more heterogeneous ties. Hybrid expressive processes-jointly produced by humans and AI-can reshape collective organization. The patterns of structural division and cohesion depend on how AI incorporates users' interaction context.
comment: Preprint, Under Review
♻ ☆ HyperbolicRAG: Enhancing Retrieval-Augmented Generation with Hyperbolic Representations
Retrieval-augmented generation (RAG) enables large language models (LLMs) to access external knowledge, helping mitigate hallucinations and enhance domain-specific expertise. Graph-based RAG enhances structural reasoning by introducing explicit relational organization that enables information propagation across semantically connected text units. However, these methods typically rely on Euclidean embeddings that capture semantic similarity but lack a geometric notion of hierarchical depth, limiting their ability to represent abstraction relationships inherent in complex knowledge graphs. To capture both fine-grained semantics and global hierarchy, we propose HyperbolicRAG, a retrieval framework that integrates hyperbolic geometry into graph-based RAG. HyperbolicRAG introduces three key designs: (1) a depth-aware representation learner that embeds nodes within a shared Poincare manifold to align semantic similarity with hierarchical containment, (2) an unsupervised contrastive regularization that enforces geometric consistency across abstraction levels, and (3) a mutual-ranking fusion mechanism that jointly exploits retrieval signals from Euclidean and hyperbolic spaces, emphasizing cross-space agreement during inference. Extensive experiments across multiple QA benchmarks demonstrate that HyperbolicRAG outperforms competitive baselines, including both standard RAG and graph-augmented baselines.
comment: 12 pages
♻ ☆ Scalable Parameter-Light Spectral Method for Clustering Short Text Embeddings with a Cohesion-Based Evaluation Metric
Clustering short text embeddings is a foundational task in natural language processing, yet remains challenging due to the need to specify the number of clusters in advance. We introduce a scalable spectral method that estimates the number of clusters directly from the structure of the Laplacian eigenspectrum, constructed using cosine similarities and guided by an adaptive sampling strategy. This sampling approach enables our estimator to efficiently scale to large datasets without sacrificing reliability. To support intrinsic evaluation of cluster quality without ground-truth labels, we propose the Cohesion Ratio, a simple and interpretable evaluation metric that quantifies how much intra-cluster similarity exceeds the global similarity background. It has an information-theoretic motivation inspired by mutual information, and in our experiments it correlates closely with extrinsic measures such as normalized mutual information and homogeneity. Extensive experiments on six short-text datasets and four modern embedding models show that standard algorithms like K-Means and HAC, when guided by our estimator, significantly outperform popular parameter-light methods such as HDBSCAN, OPTICS, and Leiden. These results demonstrate the practical value of our spectral estimator and Cohesion Ratio for unsupervised organization and evaluation of short text data. Implementation of our estimator of k and Cohesion Ratio, along with code for reproducing the experiments, is available at https://anonymous.4open.science/r/towards_clustering-0C2E.
♻ ☆ From Forecasting to Planning: Policy World Model for Collaborative State-Action Prediction
Despite remarkable progress in driving world models, their potential for autonomous systems remains largely untapped: the world models are mostly learned for world simulation and decoupled from trajectory planning. While recent efforts aim to unify world modeling and planning in a single framework, the synergistic facilitation mechanism of world modeling for planning still requires further exploration. In this work, we introduce a new driving paradigm named Policy World Model (PWM), which not only integrates world modeling and trajectory planning within a unified architecture, but is also able to benefit planning using the learned world knowledge through the proposed action-free future state forecasting scheme. Through collaborative state-action prediction, PWM can mimic the human-like anticipatory perception, yielding more reliable planning performance. To facilitate the efficiency of video forecasting, we further introduce a dynamically enhanced parallel token generation mechanism, equipped with a context-guided tokenizer and an adaptive dynamic focal loss. Despite utilizing only front camera input, our method matches or exceeds state-of-the-art approaches that rely on multi-view and multi-modal inputs. Code and model weights will be released at https://github.com/6550Zhao/Policy-World-Model.
comment: Accepted by NuerIPS 2025 (Poster)
♻ ☆ Video Understanding with Large Language Models: A Survey
With the burgeoning growth of online video platforms and the escalating volume of video content, the demand for proficient video understanding tools has intensified markedly. Given the remarkable capabilities of large language models (LLMs) in language and multimodal tasks, this survey provides a detailed overview of recent advancements in video understanding that harness the power of LLMs (Vid-LLMs). The emergent capabilities of Vid-LLMs are surprisingly advanced, particularly their ability for open-ended multi-granularity (general, temporal, and spatiotemporal) reasoning combined with commonsense knowledge, suggesting a promising path for future video understanding. We examine the unique characteristics and capabilities of Vid-LLMs, categorizing the approaches into three main types: Video Analyzer x LLM, Video Embedder x LLM, and (Analyzer + Embedder) x LLM. Furthermore, we identify five sub-types based on the functions of LLMs in Vid-LLMs: LLM as Summarizer, LLM as Manager, LLM as Text Decoder, LLM as Regressor, and LLM as Hidden Layer. Furthermore, this survey presents a comprehensive study of the tasks, datasets, benchmarks, and evaluation methodologies for Vid-LLMs. Additionally, it explores the expansive applications of Vid-LLMs across various domains, highlighting their remarkable scalability and versatility in real-world video understanding challenges. Finally, it summarizes the limitations of existing Vid-LLMs and outlines directions for future research. For more information, readers are recommended to visit the repository at https://github.com/yunlong10/Awesome-LLMs-for-Video-Understanding.
comment: Accepted to IEEE Transactions on Circuits and Systems for Video Technology (TCSVT)
♻ ☆ Filtering with Self-Attention and Storing with MLP: One-Layer Transformers Can Provably Acquire and Extract Knowledge
Modern large language models (LLMs) demonstrate exceptional performance on knowledge-intensive tasks, yet the theoretical mechanisms underlying knowledge acquisition (storage and memorization) during pre-training and extraction (retrieval and recall) during inference after fine-tuning remain poorly understood. Although prior theoretical studies have explored these processes through analyses of training dynamics, they overlook critical components essential for a comprehensive theory: (1) the multi-layer perceptron (MLP), empirically identified as the primary module for knowledge storage; (2) out-of-distribution (OOD) adaptivity, which enables LLMs to generalize to unseen scenarios post-pre-training; and (3) next-token prediction, the standard autoregressive objective that encodes knowledge as conditional probabilities. In this work, we introduce, to the best of our knowledge, the first theoretical framework that addresses these limitations by examining the training dynamics of one-layer transformers. Under regularity assumptions, we establish that: (i) transformers attain near-optimal training loss during pre-training, demonstrating effective knowledge acquisition; (ii) given a sufficiently large fine-tuning dataset and appropriate data multiplicity conditions, transformers achieve low generalization error on factual knowledge acquired during pre-training but not revisited in fine-tuning, indicating robust knowledge extraction; and (iii) violation of these conditions leads to elevated generalization error, manifesting as hallucinations. Our analysis encompasses both full fine-tuning and low-rank fine-tuning, yielding insights into the efficacy of practical low-rank adaptation methods. We validate our theoretical findings through experiments on synthetic datasets and the real-world PopQA benchmark, employing GPT-2 and Llama-3.2-1B models.
♻ ☆ AraFinNews: Arabic Financial Summarisation with Domain-Adapted LLMs
We introduce AraFinNews, the largest publicly available Arabic financial news dataset to date, comprising 212,500 article-headline pairs spanning a decade of reporting from 2015 to 2025. Designed as an Arabic counterpart to major English summarisation corpora such as CNN/DailyMail, AraFinNews provides a realistic benchmark for evaluating domain-specific language understanding and generation in financial contexts. Using this resource, we investigate the impact of domain specificity on abstractive summarisation of Arabic financial texts with large language models (LLMs). In particular, we evaluate transformer-based models: mT5, AraT5, and the domain-adapted FinAraT5 to examine how financial-domain pretraining influences accuracy, numerical reliability, and stylistic alignment with professional reporting. Experimental results show that domain-adapted models generate more coherent summaries, especially in their handling of quantitative and entity-centric information. These findings highlight the importance of domain-specific adaptation for improving narrative fluency in Arabic financial summarisation. The dataset is freely available for non-commercial research at https://github.com/ArabicNLP-uk/AraFinNews.
comment: 9 pages
♻ ☆ RadAgents: Multimodal Agentic Reasoning for Chest X-ray Interpretation with Radiologist-like Workflows ML4H'25
Agentic systems offer a potential path to solve complex clinical tasks through collaboration among specialized agents, augmented by tool use and external knowledge bases. Nevertheless, for chest X-ray (CXR) interpretation, prevailing methods remain limited: (i) reasoning is frequently neither clinically interpretable nor aligned with guidelines, reflecting mere aggregation of tool outputs; (ii) multimodal evidence is insufficiently fused, yielding text-only rationales that are not visually grounded; and (iii) systems rarely detect or resolve cross-tool inconsistencies and provide no principled verification mechanisms. To bridge the above gaps, we present RadAgents, a multi-agent framework that couples clinical priors with task-aware multimodal reasoning and encodes a radiologist-style workflow into a modular, auditable pipeline. In addition, we integrate grounding and multimodal retrieval-augmentation to verify and resolve context conflicts, resulting in outputs that are more reliable, transparent, and consistent with clinical practice.
comment: ML4H'25; Work in progress
♻ ☆ ShortageSim: Simulating Drug Shortages under Information Asymmetry AAAI 2026
Drug shortages pose critical risks to patient care and healthcare systems worldwide, yet the effectiveness of regulatory interventions remains poorly understood due to information asymmetries in pharmaceutical supply chains. We propose \textbf{ShortageSim}, addresses this challenge by providing the first simulation framework that evaluates the impact of regulatory interventions on competition dynamics under information asymmetry. Using Large Language Model (LLM)-based agents, the framework models the strategic decisions of drug manufacturers and institutional buyers, in response to shortage alerts given by the regulatory agency. Unlike traditional game theory models that assume perfect rationality and complete information, ShortageSim simulates heterogeneous interpretations on regulatory announcements and the resulting decisions. Experiments on self-processed dataset of historical shortage events show that ShortageSim reduces the resolution lag for production disruption cases by up to 84\%, achieving closer alignment to real-world trajectories than the zero-shot baseline. Our framework confirms the effect of regulatory alert in addressing shortages and introduces a new method for understanding competition in multi-stage environments under uncertainty. We open-source ShortageSim and a dataset of 2,925 FDA shortage events, providing a novel framework for future research on policy design and testing in supply chains under information asymmetry.
comment: Accepted by AAAI 2026. Oral presentation. 25 pages
♻ ☆ MMTU: A Massive Multi-Task Table Understanding and Reasoning Benchmark NeurIPS 2025
Tables and table-based use cases play a crucial role in many important real-world applications, such as spreadsheets, databases, and computational notebooks, which traditionally require expert-level users like data engineers, data analysts, and database administrators to operate. Although LLMs have shown remarkable progress in working with tables (e.g., in spreadsheet and database copilot scenarios), comprehensive benchmarking of such capabilities remains limited. In contrast to an extensive and growing list of NLP benchmarks, evaluations of table-related tasks are scarce, and narrowly focus on tasks like NL-to-SQL and Table-QA, overlooking the broader spectrum of real-world tasks that professional users face. This gap limits our understanding and model progress in this important area. In this work, we introduce MMTU, a large-scale benchmark with over 28K questions across 25 real-world table tasks, designed to comprehensively evaluate models ability to understand, reason, and manipulate real tables at the expert-level. These tasks are drawn from decades' worth of computer science research on tabular data, with a focus on complex table tasks faced by professional users. We show that MMTU require a combination of skills -- including table understanding, reasoning, and coding -- that remain challenging for today's frontier models, where even frontier reasoning models like OpenAI GPT-5 and DeepSeek R1 score only around 69\% and 57\% respectively, suggesting significant room for improvement. We highlight key findings in our evaluation using MMTU and hope that this benchmark drives further advances in understanding and developing foundation models for structured data processing and analysis. Our code and data are available at https://github.com/MMTU-Benchmark/MMTU and https://huggingface.co/datasets/MMTU-benchmark/MMTU.
comment: Accepted at NeurIPS 2025; Code and data available at https://github.com/MMTU-Benchmark/MMTU and https://huggingface.co/datasets/MMTU-benchmark/MMTU
♻ ☆ Bridging Symbolic Control and Neural Reasoning in LLM Agents: The Structured Cognitive Loop
Large language model agents suffer from fundamental architectural problems: entangled reasoning and execution, memory volatility, and uncontrolled action sequences. We introduce Structured Cognitive Loop (SCL), a modular architecture that explicitly separates agent cognition into five phases: Retrieval, Cognition, Control, Action, and Memory (R-CCAM). At the core of SCL is Soft Symbolic Control, an adaptive governance mechanism that applies symbolic constraints to probabilistic inference, preserving neural flexibility while restoring the explainability and controllability of classical symbolic systems. Through empirical validation on multi-step conditional reasoning tasks, we demonstrate that SCL achieves zero policy violations, eliminates redundant tool calls, and maintains complete decision traceability. These results address critical gaps in existing frameworks such as ReAct, AutoGPT, and memory-augmented approaches. Our contributions are threefold: (1) we situate SCL within the taxonomy of hybrid intelligence, differentiating it from prompt-centric and memory-only approaches; (2) we formally define Soft Symbolic Control and contrast it with neuro-symbolic AI; and (3) we derive three design principles for trustworthy agents: modular decomposition, adaptive symbolic governance, and transparent state management. We provide a complete open-source implementation demonstrating the R-CCAM loop architecture, alongside a live GPT-4o-powered travel planning agent. By connecting expert system principles with modern LLM capabilities, this work offers a practical and theoretically grounded path toward reliable, explainable, and governable AI agents.
comment: Polished the abstract and replaced the demonstration screenshots
♻ ☆ Learn the Ropes, Then Trust the Wins: Self-imitation with Progressive Exploration for Agentic Reinforcement Learning
Reinforcement learning (RL) is the dominant paradigm for sharpening strategic tool use capabilities of LLMs on long-horizon, sparsely-rewarded agent tasks, yet it faces a fundamental challenge of exploration-exploitation trade-off. Existing studies stimulate exploration through the lens of policy entropy, but such mechanical entropy maximization is prone to RL instability due to the multi-turn distribution shifting. In this paper, we target the progressive exploration-exploitation balance under the guidance of the agent's own experiences without succumbing to either entropy collapsing or runaway divergence. We propose SPEAR, a self-imitation learning (SIL) recipe for training agentic LLMs. It extends the vanilla SIL, where a replay buffer stores good experience for off-policy update, by gradually steering the policy entropy across stages. Specifically, the proposed curriculum scheduling harmonizes intrinsic reward shaping and self-imitation to 1) expedite exploration via frequent tool interactions at the beginning, and 2) strengthen exploitation of successful tactics upon convergence towards familiarity with the environment. We also combine bag-of-tricks of industrial RL optimizations for a strong baseline Dr.BoT to demonstrate our effectiveness. In ALFWorld and WebShop, SPEAR increases the success rates of GRPO/GiGPO/Dr.BoT by up to 16.1%/5.1%/8.6% and 20.7%/11.8%/13.9%, respectively. In AIME24 and AIME25, SPEAR boosts Dr.BoT by up to 3.8% and 6.1%, respectively. Such gains incur only 10%-25% extra theoretical complexity and negligible runtime overhead in practice, demonstrating the plug-and-play scalability of SPEAR.
comment: 45 pages, 14 figures
♻ ☆ CLaRa: Bridging Retrieval and Generation with Continuous Latent Reasoning
Retrieval-augmented generation (RAG) enhances large language models (LLMs) with external knowledge but still suffers from long contexts and disjoint retrieval-generation optimization. In this work, we propose CLaRa (Continuous Latent Reasoning), a unified framework that performs embedding-based compression and joint optimization in a shared continuous space. To obtain semantically rich and retrievable compressed vectors, we introduce SCP, a key-preserving data synthesis framework using QA and paraphrase supervision. CLaRa then trains the reranker and generator end-to-end via a single language modeling loss, with gradients flowing through both modules using a differentiable top-k estimator. Theoretically, this unified optimization aligns retrieval relevance with answer quality. Experiments across multiple QA benchmarks show that CLaRa achieves state-of-the-art compression and reranking performance, often surpassing text-based fine-tuned baselines.
♻ ☆ Web-Shepherd: Advancing PRMs for Reinforcing Web Agents NeurIPS 2025
Web navigation is a unique domain that can automate many repetitive real-life tasks and is challenging as it requires long-horizon sequential decision making beyond typical multimodal large language model (MLLM) tasks. Yet, specialized reward models for web navigation that can be utilized during both training and test-time have been absent until now. Despite the importance of speed and cost-effectiveness, prior works have utilized MLLMs as reward models, which poses significant constraints for real-world deployment. To address this, in this work, we propose the first process reward model (PRM) called Web-Shepherd which could assess web navigation trajectories in a step-level. To achieve this, we first construct the WebPRM Collection, a large-scale dataset with 40K step-level preference pairs and annotated checklists spanning diverse domains and difficulty levels. Next, we also introduce the WebRewardBench, the first meta-evaluation benchmark for evaluating PRMs. In our experiments, we observe that our Web-Shepherd achieves about 30 points better accuracy compared to using GPT-4o on WebRewardBench. Furthermore, when testing on WebArena-lite by using GPT-4o-mini as the policy and Web-Shepherd as the verifier, we achieve 10.9 points better performance, in 10 less cost compared to using GPT-4o-mini as the verifier. Our model, dataset, and code are publicly available at LINK.
comment: NeurIPS 2025 Spotlight
♻ ☆ Large Language Models and Cognitive Science: A Comprehensive Review of Similarities, Differences, and Challenges
This comprehensive review explores the intersection of Large Language Models (LLMs) and cognitive science, examining similarities and differences between LLMs and human cognitive processes. We analyze methods for evaluating LLMs cognitive abilities and discuss their potential as cognitive models. The review covers applications of LLMs in various cognitive fields, highlighting insights gained for cognitive science research. We assess cognitive biases and limitations of LLMs, along with proposed methods for improving their performance. The integration of LLMs with cognitive architectures is examined, revealing promising avenues for enhancing artificial intelligence (AI) capabilities. Key challenges and future research directions are identified, emphasizing the need for continued refinement of LLMs to better align with human cognition. This review provides a balanced perspective on the current state and future potential of LLMs in advancing our understanding of both artificial and human intelligence.
comment: 10 pages, 1 figure
♻ ☆ From Text to Multimodality: Exploring the Evolution and Impact of Large Language Models in Medical Practice
Large Language Models (LLMs) have rapidly evolved from text-based systems to multimodal platforms, significantly impacting various sectors including healthcare. This comprehensive review explores the progression of LLMs to Multimodal Large Language Models (MLLMs) and their growing influence in medical practice. We examine the current landscape of MLLMs in healthcare, analyzing their applications across clinical decision support, medical imaging, patient engagement, and research. The review highlights the unique capabilities of MLLMs in integrating diverse data types, such as text, images, and audio, to provide more comprehensive insights into patient health. We also address the challenges facing MLLM implementation, including data limitations, technical hurdles, and ethical considerations. By identifying key research gaps, this paper aims to guide future investigations in areas such as dataset development, modality alignment methods, and the establishment of ethical guidelines. As MLLMs continue to shape the future of healthcare, understanding their potential and limitations is crucial for their responsible and effective integration into medical practice.
comment: 12 pages, 1 figure
♻ ☆ A Psychology-based Unified Dynamic Framework for Curriculum Learning
Directly learning from examples of varying difficulty levels is often challenging for both humans and machine learning models. A more effective strategy involves exposing learners to examples in a progressive order from easy to difficult. Curriculum Learning (CL) has been proposed to implement this strategy in machine learning model training. However, two key challenges persist in CL framework design: defining the difficulty of training data and determining the appropriate amount of data to input at each training step. Drawing inspiration from psychometrics, this paper presents a Psychology-based Unified Dynamic Framework for Curriculum Learning (PUDF). We quantify the difficulty of training data by applying Item Response Theory (IRT) to responses from Artificial Crowds (AC). This theory-driven IRT-AC approach leads to global (i.e., model-independent) and interpretable difficulty values. Leveraging IRT, we propose a training strategy, Dynamic Data Selection via Model Ability Estimation (DDS-MAE), to schedule the appropriate amount of data during model training. Since our difficulty labeling and model ability estimation are based on a consistent theory, namely IRT, their values are comparable within the same scope, potentially leading to aligned training data selection and faster convergence compared to the other CL methods. Experimental results demonstrate that fine-tuning pre-trained large language models with PUDF leads to higher accuracy and faster convergence on a suite of benchmark datasets compared to standard fine-tuning and state-of-the-art CL methods. Ablation studies and downstream analyses further validate the impact of PUDF for CL.
comment: Accepted for publication in Computational Linguistics. This is a pre-MIT Press publication version. Code available at https://github.com/nd-ball/cl-irt
Computer Vision and Pattern Recognition 100
☆ RubricRL: Simple Generalizable Rewards for Text-to-Image Generation
Reinforcement learning (RL) has recently emerged as a promising approach for aligning text-to-image generative models with human preferences. A key challenge, however, lies in designing effective and interpretable rewards. Existing methods often rely on either composite metrics (e.g., CLIP, OCR, and realism scores) with fixed weights or a single scalar reward distilled from human preference models, which can limit interpretability and flexibility. We propose RubricRL, a simple and general framework for rubric-based reward design that offers greater interpretability, composability, and user control. Instead of using a black-box scalar signal, RubricRL dynamically constructs a structured rubric for each prompt--a decomposable checklist of fine-grained visual criteria such as object correctness, attribute accuracy, OCR fidelity, and realism--tailored to the input text. Each criterion is independently evaluated by a multimodal judge (e.g., o4-mini), and a prompt-adaptive weighting mechanism emphasizes the most relevant dimensions. This design not only produces interpretable and modular supervision signals for policy optimization (e.g., GRPO or PPO), but also enables users to directly adjust which aspects to reward or penalize. Experiments with an autoregressive text-to-image model demonstrate that RubricRL improves prompt faithfulness, visual detail, and generalizability, while offering a flexible and extensible foundation for interpretable RL alignment across text-to-image architectures.
☆ MedROV: Towards Real-Time Open-Vocabulary Detection Across Diverse Medical Imaging Modalities
Traditional object detection models in medical imaging operate within a closed-set paradigm, limiting their ability to detect objects of novel labels. Open-vocabulary object detection (OVOD) addresses this limitation but remains underexplored in medical imaging due to dataset scarcity and weak text-image alignment. To bridge this gap, we introduce MedROV, the first Real-time Open Vocabulary detection model for medical imaging. To enable open-vocabulary learning, we curate a large-scale dataset, Omnis, with 600K detection samples across nine imaging modalities and introduce a pseudo-labeling strategy to handle missing annotations from multi-source datasets. Additionally, we enhance generalization by incorporating knowledge from a large pre-trained foundation model. By leveraging contrastive learning and cross-modal representations, MedROV effectively detects both known and novel structures. Experimental results demonstrate that MedROV outperforms the previous state-of-the-art foundation model for medical image detection with an average absolute improvement of 40 mAP50, and surpasses closed-set detectors by more than 3 mAP50, while running at 70 FPS, setting a new benchmark in medical detection. Our source code, dataset, and trained model are available at https://github.com/toobatehreem/MedROV.
☆ Infinity-RoPE: Action-Controllable Infinite Video Generation Emerges From Autoregressive Self-Rollout
Current autoregressive video diffusion models are constrained by three core bottlenecks: (i) the finite temporal horizon imposed by the base model's 3D Rotary Positional Embedding (3D-RoPE), (ii) slow prompt responsiveness in maintaining fine-grained action control during long-form rollouts, and (iii) the inability to realize discontinuous cinematic transitions within a single generation stream. We introduce $\infty$-RoPE, a unified inference-time framework that addresses all three limitations through three interconnected components: Block-Relativistic RoPE, KV Flush, and RoPE Cut. Block-Relativistic RoPE reformulates temporal encoding as a moving local reference frame, where each newly generated latent block is rotated relative to the base model's maximum frame horizon while earlier blocks are rotated backward to preserve relative temporal geometry. This relativistic formulation eliminates fixed temporal positions, enabling continuous video generation far beyond the base positional limits. To obtain fine-grained action control without re-encoding, KV Flush renews the KV cache by retaining only two latent frames, the global sink and the last generated latent frame, thereby ensuring immediate prompt responsiveness. Finally, RoPE Cut introduces controlled discontinuities in temporal RoPE coordinates, enabling multi-cut scene transitions within a single continuous rollout. Together, these components establish $\infty$-RoPE as a training-free foundation for infinite-horizon, controllable, and cinematic video diffusion. Comprehensive experiments show that $\infty$-RoPE consistently surpasses previous autoregressive models in overall VBench scores.
comment: Project Page: https://infinity-rope.github.io/
☆ Diverse Video Generation with Determinantal Point Process-Guided Policy Optimization
While recent text-to-video (T2V) diffusion models have achieved impressive quality and prompt alignment, they often produce low-diversity outputs when sampling multiple videos from a single text prompt. We tackle this challenge by formulating it as a set-level policy optimization problem, with the goal of training a policy that can cover the diverse range of plausible outcomes for a given prompt. To address this, we introduce DPP-GRPO, a novel framework for diverse video generation that combines Determinantal Point Processes (DPPs) and Group Relative Policy Optimization (GRPO) theories to enforce explicit reward on diverse generations. Our objective turns diversity into an explicit signal by imposing diminishing returns on redundant samples (via DPP) while supplies groupwise feedback over candidate sets (via GRPO). Our framework is plug-and-play and model-agnostic, and encourages diverse generations across visual appearance, camera motions, and scene structure without sacrificing prompt fidelity or perceptual quality. We implement our method on WAN and CogVideoX, and show that our method consistently improves video diversity on state-of-the-art benchmarks such as VBench, VideoScore, and human preference studies. Moreover, we release our code and a new benchmark dataset of 30,000 diverse prompts to support future research.
comment: Project webpage: https://diverse-video.github.io/
☆ LocateAnything3D: Vision-Language 3D Detection with Chain-of-Sight
To act in the world, a model must name what it sees and know where it is in 3D. Today's vision-language models (VLMs) excel at open-ended 2D description and grounding, yet multi-object 3D detection remains largely missing from the VLM toolbox. We present LocateAnything3D, a VLM-native recipe that casts 3D detection as a next-token prediction problem. The key is a short, explicit Chain-of-Sight (CoS) sequence that mirrors how human reason from images: find an object in 2D, then infer its distance, size, and pose. The decoder first emits 2D detections as a visual chain-of-thought, then predicts 3D boxes under an easy-to-hard curriculum: across objects, a near-to-far order reduces early ambiguity and matches ego-centric utility; within each object, a center-from-camera, dimensions, and rotation factorization ranks information by stability and learnability. This VLM-native interface preserves open-vocabulary and visual-prompting capability without specialized heads. On the challenging Omni3D benchmark, our model achieves state-of-the-art results, with 49.89 AP_3D, surpassing the previous best by +15.51 absolute improvement even when the baseline is given ground-truth 2D boxes. It also generalizes zero-shot to held-out categories with strong robustness. By turning 3D detection into a disciplined next-token problem, LocateAnything3D offers a practical foundation for models to perceive in 3D.
comment: Tech report. Project page: https://nvlabs.github.io/LocateAnything3D/
☆ 3D-Aware Multi-Task Learning with Cross-View Correlations for Dense Scene Understanding
This paper addresses the challenge of training a single network to jointly perform multiple dense prediction tasks, such as segmentation and depth estimation, i.e., multi-task learning (MTL). Current approaches mainly capture cross-task relations in the 2D image space, often leading to unstructured features lacking 3D-awareness. We argue that 3D-awareness is vital for modeling cross-task correlations essential for comprehensive scene understanding. We propose to address this problem by integrating correlations across views, i.e., cost volume, as geometric consistency in the MTL network. Specifically, we introduce a lightweight Cross-view Module (CvM), shared across tasks, to exchange information across views and capture cross-view correlations, integrated with a feature from MTL encoder for multi-task predictions. This module is architecture-agnostic and can be applied to both single and multi-view data. Extensive results on NYUv2 and PASCAL-Context demonstrate that our method effectively injects geometric consistency into existing MTL methods to improve performance.
comment: 3D-aware Multi-task Learning, Cross-view Correlations, Code will be available at https://github.com/WeiHongLee/CrossView3DMTL
☆ PixelDiT: Pixel Diffusion Transformers for Image Generation
Latent-space modeling has been the standard for Diffusion Transformers (DiTs). However, it relies on a two-stage pipeline where the pretrained autoencoder introduces lossy reconstruction, leading to error accumulation while hindering joint optimization. To address these issues, we propose PixelDiT, a single-stage, end-to-end model that eliminates the need for the autoencoder and learns the diffusion process directly in the pixel space. PixelDiT adopts a fully transformer-based architecture shaped by a dual-level design: a patch-level DiT that captures global semantics and a pixel-level DiT that refines texture details, enabling efficient training of a pixel-space diffusion model while preserving fine details. Our analysis reveals that effective pixel-level token modeling is essential to the success of pixel diffusion. PixelDiT achieves 1.61 FID on ImageNet 256x256, surpassing existing pixel generative models by a large margin. We further extend PixelDiT to text-to-image generation and pretrain it at the 1024x1024 resolution in pixel space. It achieves 0.74 on GenEval and 83.5 on DPG-bench, approaching the best latent diffusion models.
☆ Vision-Language Memory for Spatial Reasoning
Spatial reasoning is a critical capability for intelligent robots, yet current vision-language models (VLMs) still fall short of human-level performance in video-based spatial reasoning. This gap mainly stems from two challenges: a semantic-geometric misalignment that prevents consistent 3D understanding, and the absence of persistent memory to retain 3D representation and understanding over time. To address these limitations, we present VLM$^2$, a Vision-Language Model with persistent Memory for spatial reasoning with a view-consistent, 3D-aware representation purely from 2D video. Specifically, to enhance long-horizon reasoning, we incorporate a dual-memory module, consisting of a working memory that operates as a sliding window to focus on immediate context, and an episodic memory that consolidates and stores critical long-term information. This design enables efficient and long-horizon spatial reasoning with a fixed computational cost. Extensive experiments on multiple benchmarks show that VLM$^2$ achieves state-of-the-art performance among video-only models, significantly advancing the frontier of visual-spatial intelligence.
☆ Concept-Aware Batch Sampling Improves Language-Image Pretraining
What data should a vision-language model be trained on? To answer this question, many data curation efforts center on the quality of a dataset. However, most of these existing methods are (i) offline, i.e. they produce a static dataset from a set of predetermined filtering criteria, and (ii) concept-agnostic, i.e. they use model-based filters which induce additional data biases. In this work, we go beyond such offline, concept-agnostic methods and advocate for more flexible, task-adaptive online concept-based curation. Our first contribution is DataConcept, a collection of 128M web-crawled image-text pairs annotated with fine-grained details about their concept composition. Building on DataConcept, we introduce Concept-Aware Batch Sampling (CABS), a simple yet effective batch sampling framework that flexibly constructs batches on-the-fly based on specific target distributions. We propose two variants: (i) Diversity Maximization (CABS-DM) to curate batches with a broad coverage of available concepts, and (ii) Frequency Maximization (CABS-FM) to curate batches with high object multiplicity. Through extensive evaluations across 28 benchmarks, we demonstrate that our CABS method significantly benefits CLIP/SigLIP model classes and yields highly performant models. Overall, CABS represents a strong open-source alternative to proprietary online data curation algorithms, enabling practitioners to define custom concept distributions that optimize for specific downstream tasks.
comment: Tech Report
☆ Unleashing the Power of Vision-Language Models for Long-Tailed Multi-Label Visual Recognition
Long-tailed multi-label visual recognition poses a significant challenge, as images typically contain multiple labels with highly imbalanced class distributions, leading to biased models that favor head classes while underperforming on tail classes. Recent efforts have leveraged pre-trained vision-language models, such as CLIP, alongside long-tailed learning techniques to exploit rich visual-textual priors for improved performance. However, existing methods often derive semantic inter-class relationships directly from imbalanced datasets, resulting in unreliable correlations for tail classes due to data scarcity. Moreover, CLIP's zero-shot paradigm is optimized for single-label image-text matching, making it suboptimal for multi-label tasks. To address these issues, we propose the correlation adaptation prompt network (CAPNET), a novel end-to-end framework that explicitly models label correlations from CLIP's textual encoder. The framework incorporates a graph convolutional network for label-aware propagation and learnable soft prompts for refined embeddings. It utilizes a distribution-balanced Focal loss with class-aware re-weighting for optimized training under imbalance. Moreover, it improves generalization through test-time ensembling and realigns visual-textual modalities using parameter-efficient fine-tuning to avert overfitting on tail classes without compromising head class performance. Extensive experiments and ablation studies on benchmarks including VOC-LT, COCO-LT, and NUS-WIDE demonstrate that CAPNET achieves substantial improvements over state-of-the-art methods, validating its effectiveness for real-world long-tailed multi-label visual recognition.
☆ MotionV2V: Editing Motion in a Video
While generative video models have achieved remarkable fidelity and consistency, applying these capabilities to video editing remains a complex challenge. Recent research has explored motion controllability as a means to enhance text-to-video generation or image animation; however, we identify precise motion control as a promising yet under-explored paradigm for editing existing videos. In this work, we propose modifying video motion by directly editing sparse trajectories extracted from the input. We term the deviation between input and output trajectories a "motion edit" and demonstrate that this representation, when coupled with a generative backbone, enables powerful video editing capabilities. To achieve this, we introduce a pipeline for generating "motion counterfactuals", video pairs that share identical content but distinct motion, and we fine-tune a motion-conditioned video diffusion architecture on this dataset. Our approach allows for edits that start at any timestamp and propagate naturally. In a four-way head-to-head user study, our model achieves over 65 percent preference against prior work. Please see our project page: https://ryanndagreat.github.io/MotionV2V
☆ iMontage: Unified, Versatile, Highly Dynamic Many-to-many Image Generation
Pre-trained video models learn powerful priors for generating high-quality, temporally coherent content. While these models excel at temporal coherence, their dynamics are often constrained by the continuous nature of their training data. We hypothesize that by injecting the rich and unconstrained content diversity from image data into this coherent temporal framework, we can generate image sets that feature both natural transitions and a far more expansive dynamic range. To this end, we introduce iMontage, a unified framework designed to repurpose a powerful video model into an all-in-one image generator. The framework consumes and produces variable-length image sets, unifying a wide array of image generation and editing tasks. To achieve this, we propose an elegant and minimally invasive adaptation strategy, complemented by a tailored data curation process and training paradigm. This approach allows the model to acquire broad image manipulation capabilities without corrupting its invaluable original motion priors. iMontage excels across several mainstream many-in-many-out tasks, not only maintaining strong cross-image contextual consistency but also generating scenes with extraordinary dynamics that surpass conventional scopes. Find our homepage at: https://kr1sjfu.github.io/iMontage-web/.
☆ MapReduce LoRA: Advancing the Pareto Front in Multi-Preference Optimization for Generative Models
Reinforcement learning from human feedback (RLHF) with reward models has advanced alignment of generative models to human aesthetic and perceptual preferences. However, jointly optimizing multiple rewards often incurs an alignment tax, improving one dimension while degrading others. To address this, we introduce two complementary methods: MapReduce LoRA and Reward-aware Token Embedding (RaTE). MapReduce LoRA trains preference-specific LoRA experts in parallel and iteratively merges them to refine a shared base model; RaTE learns reward-specific token embeddings that compose at inference for flexible preference control. Experiments on Text-to-Image generation (Stable Diffusion 3.5 Medium and FLUX.1-dev) show improvements of 36.1%, 4.6%, and 55.7%, and 32.7%, 4.3%, and 67.1% on GenEval, PickScore, and OCR, respectively. On Text-to-Video generation (HunyuanVideo), visual and motion quality improve by 48.1% and 90.0%, respectively. On the language task, Helpful Assistant, with Llama-2 7B, helpful and harmless improve by 43.4% and 136.7%, respectively. Our framework sets a new state-of-the-art multi-preference alignment recipe across modalities.
☆ ShapeGen: Towards High-Quality 3D Shape Synthesis
Inspired by generative paradigms in image and video, 3D shape generation has made notable progress, enabling the rapid synthesis of high-fidelity 3D assets from a single image. However, current methods still face challenges, including the lack of intricate details, overly smoothed surfaces, and fragmented thin-shell structures. These limitations leave the generated 3D assets still one step short of meeting the standards favored by artists. In this paper, we present ShapeGen, which achieves high-quality image-to-3D shape generation through 3D representation and supervision improvements, resolution scaling up, and the advantages of linear transformers. These advancements allow the generated assets to be seamlessly integrated into 3D pipelines, facilitating their widespread adoption across various applications. Through extensive experiments, we validate the impact of these improvements on overall performance. Ultimately, thanks to the synergistic effects of these enhancements, ShapeGen achieves a significant leap in image-to-3D generation, establishing a new state-of-the-art performance.
comment: Accepted to SIGGRAPH Asia 2025
☆ Wanderland: Geometrically Grounded Simulation for Open-World Embodied AI
Reproducible closed-loop evaluation remains a major bottleneck in Embodied AI such as visual navigation. A promising path forward is high-fidelity simulation that combines photorealistic sensor rendering with geometrically grounded interaction in complex, open-world urban environments. Although recent video-3DGS methods ease open-world scene capturing, they are still unsuitable for benchmarking due to large visual and geometric sim-to-real gaps. To address these challenges, we introduce Wanderland, a real-to-sim framework that features multi-sensor capture, reliable reconstruction, accurate geometry, and robust view synthesis. Using this pipeline, we curate a diverse dataset of indoor-outdoor urban scenes and systematically demonstrate how image-only pipelines scale poorly, how geometry quality impacts novel view synthesis, and how all of these adversely affect navigation policy learning and evaluation reliability. Beyond serving as a trusted testbed for embodied navigation, Wanderland's rich raw sensor data further allows benchmarking of 3D reconstruction and novel view synthesis models. Our work establishes a new foundation for reproducible research in open-world embodied AI. Project website is at https://ai4ce.github.io/wanderland/.
☆ Evaluating the Performance of Deep Learning Models in Whole-body Dynamic 3D Posture Prediction During Load-reaching Activities
This study aimed to explore the application of deep neural networks for whole-body human posture prediction during dynamic load-reaching activities. Two time-series models were trained using bidirectional long short-term memory (BLSTM) and transformer architectures. The dataset consisted of 3D full-body plug-in gait dynamic coordinates from 20 normal-weight healthy male individuals each performing 204 load-reaching tasks from different load positions while adapting various lifting and handling techniques. The model inputs consisted of the 3D position of the hand-load position, lifting (stoop, full-squat and semi-squat) and handling (one- and two-handed) techniques, body weight and height, and the 3D coordinate data of the body posture from the first 25% of the task duration. These inputs were used by the models to predict body coordinates during the remaining 75% of the task period. Moreover, a novel method was proposed to improve the accuracy of the previous and present posture prediction networks by enforcing constant body segment lengths through the optimization of a new cost function. The results indicated that the new cost function decreased the prediction error of the models by approximately 8% and 21% for the arm and leg models, respectively. We indicated that utilizing the transformer architecture, with a root-mean-square-error of 47.0 mm, exhibited ~58% more accurate long-term performance than the BLSTM-based model. This study merits the use of neural networks that capture time series dependencies in 3D motion frames, providing a unique approach for understanding and predict motion dynamics during manual material handling activities.
comment: 10 pages, 6 figures, 7 tables
☆ The Consistency Critic: Correcting Inconsistencies in Generated Images via Reference-Guided Attentive Alignment
Previous works have explored various customized generation tasks given a reference image, but they still face limitations in generating consistent fine-grained details. In this paper, our aim is to solve the inconsistency problem of generated images by applying a reference-guided post-editing approach and present our ImageCritic. We first construct a dataset of reference-degraded-target triplets obtained via VLM-based selection and explicit degradation, which effectively simulates the common inaccuracies or inconsistencies observed in existing generation models. Furthermore, building on a thorough examination of the model's attention mechanisms and intrinsic representations, we accordingly devise an attention alignment loss and a detail encoder to precisely rectify inconsistencies. ImageCritic can be integrated into an agent framework to automatically detect inconsistencies and correct them with multi-round and local editing in complex scenarios. Extensive experiments demonstrate that ImageCritic can effectively resolve detail-related issues in various customized generation scenarios, providing significant improvements over existing methods.
comment: Project page: https://ouyangziheng.github.io/ImageCritic-Page/
☆ Optimization of Sums of Bivariate Functions: An Introduction to Relaxation-Based Methods for the Case of Finite Domains
We study the optimization of functions with $n>2$ arguments that have a representation as a sum of several functions that have only $2$ of the $n$ arguments each, termed sums of bivariates, on finite domains. The complexity of optimizing sums of bivariates is shown to be NP-equivalent and it is shown that there exists free lunch in the optimization of sums of bivariates. Based on measure-valued extensions of the objective function, so-called relaxations, $\ell^2$-approximation, and entropy-regularization, we derive several tractable problem formulations solvable with linear programming, coordinate ascent as well as with closed-form solutions. The limits of applying tractable versions of such relaxations to sums of bivariates are investigated using general results for reconstructing measures from their bivariate marginals. Experiments in which the derived algorithms are applied to random functions, vertex coloring, and signal reconstruction problems provide insights into qualitatively different function classes that can be modeled as sums of bivariates.
comment: 59 pages, 7 figures
☆ Latent Diffusion Inversion Requires Understanding the Latent Space
The recovery of training data from generative models (``model inversion'') has been extensively studied for diffusion models in the data domain. The encoder/decoder pair and corresponding latent codes have largely been ignored by inversion techniques applied to latent space generative models, e.g., Latent Diffusion models (LDMs). In this work we describe two key findings: (1) The diffusion model exhibits non-uniform memorization across latent codes, tending to overfit samples located in high-distortion regions of the decoder pullback metric. (2) Even within a single latent code, different dimensions contribute unequally to memorization. We introduce a principled method to rank latent dimensions by their per-dimensional contribution to the decoder pullback metric, identifying those most responsible for memorization. Empirically, removing less-memorizing dimensions when computing attack statistics for score-based membership inference attacker significantly improves performance, with average AUROC gains of 2.7\% and substantial increases in TPR@1\%FPR (6.42\%) across diverse datasets including CIFAR-10, CelebA, ImageNet-1K, Pokémon, MS-COCO, and Flickr. This indicates stronger confidence in identifying members under extremely low false-positive tolerance. Our results highlight the overlooked influence of the auto-encoder geometry on LDM memorization and provide a new perspective for analyzing privacy risks in diffusion-based generative models.
comment: 14 pages, 4 figures, 4 tables
☆ VQ-VA World: Towards High-Quality Visual Question-Visual Answering
This paper studies Visual Question-Visual Answering (VQ-VA): generating an image, rather than text, in response to a visual question -- an ability that has recently emerged in proprietary systems such as NanoBanana and GPT-Image. To also bring this capability to open-source models, we introduce VQ-VA World, a data-centric framework built around an agentic pipeline for large-scale, targeted data construction. Leveraging web-scale deployment, this pipeline crawls a massive amount of ~1.8M high-quality, interleaved image-text samples for model training. For evaluation, we further release IntelligentBench, a human-curated benchmark that systematically assesses VQ-VA along the aspects of world knowledge, design knowledge, and reasoning. Training with VQ-VA World data yields strong empirical gains: it helps LightFusion attain 53.06 on IntelligentBench, substantially surpassing the best prior open-source baselines (i.e., 7.78 from vanilla LightFusion; 1.94 from UniWorld-V1), and significantly narrowing the gap toward leading proprietary systems (e.g., 81.67 from NanoBanana; 82.64 from GPT-Image). By releasing the full suite of model weights, datasets, and pipelines, we hope to stimulate future research on VQ-VA.
☆ DINO-Tok: Adapting DINO for Visual Tokenizers
Recent advances in visual generation have highlighted the rise of Latent Generative Models (LGMs), which rely on effective visual tokenizers to bridge pixels and semantics. However, existing tokenizers are typically trained from scratch and struggle to balance semantic representation and reconstruction fidelity, particularly in high-dimensional latent spaces. In this work, we introduce DINO-Tok, a DINO-based visual tokenizer that unifies hierarchical representations into an information-complete latent space. By integrating shallow features that retain fine-grained details with deep features encoding global semantics, DINO-Tok effectively bridges pretrained representations and visual generation. We further analyze the challenges of vector quantization (VQ) in this high-dimensional space, where key information is often lost and codebook collapse occurs. We thus propose a global PCA reweighting mechanism to stabilize VQ and preserve essential information across dimensions. On ImageNet 256$\times$256, DINO-Tok achieves state-of-the-art reconstruction performance, reaching 28.54 PSNR for autoencoding and 23.98 PSNR for VQ-based modeling, significantly outperforming prior tokenizers and comparable to billion-level data trained models (such as Hunyuan and Wan). These results demonstrate that adapting powerful pretrained vision models like DINO for tokenization enables semantically aligned and high-fidelity latent representations, enabling next-generation visual generative models. Code will be publicly available at https://github.com/MKJia/DINO-Tok.
☆ A Reason-then-Describe Instruction Interpreter for Controllable Video Generation
Diffusion Transformers have significantly improved video fidelity and temporal coherence, however, practical controllability remains limited. Concise, ambiguous, and compositionally complex user inputs contrast with the detailed prompts used in training, yielding an intent-output mismatch. We propose ReaDe, a universal, model-agnostic interpreter that converts raw instructions into precise, actionable specifications for downstream video generators. ReaDe follows a reason-then-describe paradigm: it first analyzes the user request to identify core requirements and resolve ambiguities, then produces detailed guidance that enables faithful, controllable generation. We train ReaDe via a two-stage optimization: (i) reasoning-augmented supervision imparts analytic parsing with stepwise traces and dense captions, and (ii) a multi-dimensional reward assigner enables stable, feedback-driven refinement for natural-style captions. Experiments across single- and multi-condition scenarios show consistent gains in instruction fidelity, caption accuracy, and downstream video quality, with strong generalization to reasoning-intensive and unseen inputs. ReaDe offers a practical route to aligning controllable video generation with accurately interpreted user intent. Project Page: https://sqwu.top/ReaDe/.
comment: 27 pages, 13 figures, 13 tables, Project Page: https://sqwu.top/ReaDe/
☆ PhysChoreo: Physics-Controllable Video Generation with Part-Aware Semantic Grounding
While recent video generation models have achieved significant visual fidelity, they often suffer from the lack of explicit physical controllability and plausibility. To address this, some recent studies attempted to guide the video generation with physics-based rendering. However, these methods face inherent challenges in accurately modeling complex physical properties and effectively control ling the resulting physical behavior over extended temporal sequences. In this work, we introduce PhysChoreo, a novel framework that can generate videos with diverse controllability and physical realism from a single image. Our method consists of two stages: first, it estimates the static initial physical properties of all objects in the image through part-aware physical property reconstruction. Then, through temporally instructed and physically editable simulation, it synthesizes high-quality videos with rich dynamic behaviors and physical realism. Experimental results show that PhysChoreo can generate videos with rich behaviors and physical realism, outperforming state-of-the-art methods on multiple evaluation metrics.
☆ Does Understanding Inform Generation in Unified Multimodal Models? From Analysis to Path Forward
Recent years have witnessed significant progress in Unified Multimodal Models, yet a fundamental question remains: Does understanding truly inform generation? To investigate this, we introduce UniSandbox, a decoupled evaluation framework paired with controlled, synthetic datasets to avoid data leakage and enable detailed analysis. Our findings reveal a significant understanding-generation gap, which is mainly reflected in two key dimensions: reasoning generation and knowledge transfer. Specifically, for reasoning generation tasks, we observe that explicit Chain-of-Thought (CoT) in the understanding module effectively bridges the gap, and further demonstrate that a self-training approach can successfully internalize this ability, enabling implicit reasoning during generation. Additionally, for knowledge transfer tasks, we find that CoT assists the generative process by helping retrieve newly learned knowledge, and also discover that query-based architectures inherently exhibit latent CoT-like properties that affect this transfer. UniSandbox provides preliminary insights for designing future unified architectures and training strategies that truly bridge the gap between understanding and generation. Code and data are available at https://github.com/PKU-YuanGroup/UniSandBox
☆ Flash-DMD: Towards High-Fidelity Few-Step Image Generation with Efficient Distillation and Joint Reinforcement Learning
Diffusion Models have emerged as a leading class of generative models, yet their iterative sampling process remains computationally expensive. Timestep distillation is a promising technique to accelerate generation, but it often requires extensive training and leads to image quality degradation. Furthermore, fine-tuning these distilled models for specific objectives, such as aesthetic appeal or user preference, using Reinforcement Learning (RL) is notoriously unstable and easily falls into reward hacking. In this work, we introduce Flash-DMD, a novel framework that enables fast convergence with distillation and joint RL-based refinement. Specifically, we first propose an efficient timestep-aware distillation strategy that significantly reduces training cost with enhanced realism, outperforming DMD2 with only $2.1\%$ its training cost. Second, we introduce a joint training scheme where the model is fine-tuned with an RL objective while the timestep distillation training continues simultaneously. We demonstrate that the stable, well-defined loss from the ongoing distillation acts as a powerful regularizer, effectively stabilizing the RL training process and preventing policy collapse. Extensive experiments on score-based and flow matching models show that our proposed Flash-DMD not only converges significantly faster but also achieves state-of-the-art generation quality in the few-step sampling regime, outperforming existing methods in visual quality, human preference, and text-image alignment metrics. Our work presents an effective paradigm for training efficient, high-fidelity, and stable generative models. Codes are coming soon.
☆ New York Smells: A Large Multimodal Dataset for Olfaction
While olfaction is central to how animals perceive the world, this rich chemical sensory modality remains largely inaccessible to machines. One key bottleneck is the lack of diverse, multimodal olfactory training data collected in natural settings. We present New York Smells, a large dataset of paired image and olfactory signals captured ``in the wild.'' Our dataset contains 7,000 smell-image pairs from 3,500 distinct objects across indoor and outdoor environments, with approximately 70$\times$ more objects than existing olfactory datasets. Our benchmark has three tasks: cross-modal smell-to-image retrieval, recognizing scenes, objects, and materials from smell alone, and fine-grained discrimination between grass species. Through experiments on our dataset, we find that visual data enables cross-modal olfactory representation learning, and that our learned olfactory representations outperform widely-used hand-crafted features.
comment: Project website at https://smell.cs.columbia.edu
☆ Automated Monitoring of Cultural Heritage Artifacts Using Semantic Segmentation
This paper addresses the critical need for automated crack detection in the preservation of cultural heritage through semantic segmentation. We present a comparative study of U-Net architectures, using various convolutional neural network (CNN) encoders, for pixel-level crack identification on statues and monuments. A comparative quantitative evaluation is performed on the test set of the OmniCrack30k dataset [1] using popular segmentation metrics including Mean Intersection over Union (mIoU), Dice coefficient, and Jaccard index. This is complemented by an out-of-distribution qualitative evaluation on an unlabeled test set of real-world cracked statues and monuments. Our findings provide valuable insights into the capabilities of different CNN- based encoders for fine-grained crack segmentation. We show that the models exhibit promising generalization capabilities to unseen cultural heritage contexts, despite never having been explicitly trained on images of statues or monuments.
comment: Keywords: Cultural Heritage, Monitoring, Deep Learning, U-Nets, Semantic Segmentation
☆ Beyond Generation: Multi-Hop Reasoning for Factual Accuracy in Vision-Language Models ICML
Visual Language Models (VLMs) are powerful generative tools but often produce factually in- accurate outputs due to a lack of robust reason- ing capabilities. While extensive research has been conducted on integrating external knowl- edge for reasoning in large language models (LLMs), such efforts remain underexplored in VLMs, where the challenge is compounded by the need to bridge multiple modalities seam- lessly. This work introduces a framework for knowledge-guided reasoning in VLMs, leverag- ing structured knowledge graphs for multi-hop verification using image-captioning task to il- lustrate our framework. Our approach enables systematic reasoning across multiple steps, in- cluding visual entity recognition, knowledge graph traversal, and fact-based caption refine- ment. We evaluate the framework using hi- erarchical, triple-based and bullet-point based knowledge representations, analyzing their ef- fectiveness in factual accuracy and logical infer- ence. Empirical results show that our approach improves factual accuracy by approximately 31% on preliminary experiments on a curated dataset of mixtures from Google Landmarks v2, Conceptual captions and Coco captions re- vealing key insights into reasoning patterns and failure modes. This work demonstrates the po- tential of integrating external knowledge for advancing reasoning in VLMs, paving the way for more reliable and knowledgable multimodal systems.
comment: Accepted as poster at NewInML Workshop ICML, 2025
☆ Mistake Attribution: Fine-Grained Mistake Understanding in Egocentric Videos
We introduce Mistake Attribution (MATT), a task for fine-grained understanding of human mistakes in egocentric video. Unlike prior mistake understanding work, which lacks fine-grained output, MATT concretely attributes mistakes to the input instruction text or the attempt video. MATT determines what part of the instruction is violated (semantic role), when the deviation becomes irreversible (the Point-of-No-Return, PNR), and where the mistake appears in the PNR frame. We develop MisEngine, a data engine that automatically constructs attribution-rich mistake samples from existing datasets and inherits their annotations. Applied to large egocentric corpora, MisEngine yields EPIC-KITCHENS-M and Ego4D-M, two datasets that are up to two orders of magnitude larger than prior mistake datasets. We then present MisFormer, a unified attention-based model for mistake attribution across semantic (what), temporal (when), and spatial (where) dimensions, trained using MisEngine supervision. Experiments on our new datasets and prior benchmarks show that MisFormer outperforms strong video-language, temporal localization, hand-object interaction, and mistake-detection baselines.
comment: 11 pages, 4 figures, 6 tables
☆ HBridge: H-Shape Bridging of Heterogeneous Experts for Unified Multimodal Understanding and Generation
Recent unified models integrate understanding experts (e.g., LLMs) with generative experts (e.g., diffusion models), achieving strong multimodal performance. However, recent advanced methods such as BAGEL and LMFusion follow the Mixture-of-Transformers (MoT) paradigm, adopting a symmetric design that mirrors one expert to another for convenient initialization and fusion, which remains suboptimal due to inherent modality discrepancies. In this work, we propose HBridge, an asymmetric H-shaped architecture that enables heterogeneous experts to optimally leverage pretrained priors from their respective modality domains. Unlike prior dense fusion strategies that straightforwardly connect all layers between experts via shared attention, HBridge selectively bridges intermediate layers, reducing over 40% attention sharing, which improves efficiency and enhances generation quality. Shallow and deep layers, which capture modality-specific representations, are decoupled, while mid-layer bridging promotes semantic alignment. To further strengthen cross-modal coherence, we introduce semantic reconstruction tokens that explicitly guide the generative expert to reconstruct visual semantic tokens of the target image. Extensive experiments across multiple benchmarks demonstrate the effectiveness and superior performance of HBridge, establishing a new paradigm for unified multimodal generation.
☆ AlignBench: Benchmarking Fine-Grained Image-Text Alignment with Synthetic Image-Caption Pairs
Assessing image-text alignment models such as CLIP is crucial for bridging visual and linguistic representations. Yet existing benchmarks rely on rule-based perturbations or short captions, limiting their ability to measure fine-grained alignment. We introduce AlignBench, a benchmark that provides a new indicator of image-text alignment by evaluating detailed image-caption pairs generated by diverse image-to-text and text-to-image models. Each sentence is annotated for correctness, enabling direct assessment of VLMs as alignment evaluators. Benchmarking a wide range of decoder-based VLMs reveals three key findings: (i) CLIP-based models, even those tailored for compositional reasoning, remain nearly blind; (ii) detectors systematically over-score early sentences; and (iii) they show strong self-preference, favoring their own outputs and harming detection performance. Our project page will be available at https://dahlian00.github.io/AlignBench/.
comment: Project Page: https://dahlian00.github.io/AlignBench/
☆ DesignPref: Capturing Personal Preferences in Visual Design Generation
Generative models, such as large language models and text-to-image diffusion models, are increasingly used to create visual designs like user interfaces (UIs) and presentation slides. Finetuning and benchmarking these generative models have often relied on datasets of human-annotated design preferences. Yet, due to the subjective and highly personalized nature of visual design, preference varies widely among individuals. In this paper, we study this problem by introducing DesignPref, a dataset of 12k pairwise comparisons of UI design generation annotated by 20 professional designers with multi-level preference ratings. We found that among trained designers, substantial levels of disagreement exist (Krippendorff's alpha = 0.25 for binary preferences). Natural language rationales provided by these designers indicate that disagreements stem from differing perceptions of various design aspect importance and individual preferences. With DesignPref, we demonstrate that traditional majority-voting methods for training aggregated judge models often do not accurately reflect individual preferences. To address this challenge, we investigate multiple personalization strategies, particularly fine-tuning or incorporating designer-specific annotations into RAG pipelines. Our results show that personalized models consistently outperform aggregated baseline models in predicting individual designers' preferences, even when using 20 times fewer examples. Our work provides the first dataset to study personalized visual design evaluation and support future research into modeling individual design taste.
☆ A Physics-Informed Loss Function for Boundary-Consistent and Robust Artery Segmentation in DSA Sequences
Accurate extraction and segmentation of the cerebral arteries from digital subtraction angiography (DSA) sequences is essential for developing reliable clinical management models of complex cerebrovascular diseases. Conventional loss functions often rely solely on pixel-wise overlap, overlooking the geometric and physical consistency of vascular boundaries, which can lead to fragmented or unstable vessel predictions. To overcome this limitation, we propose a novel \textit{Physics-Informed Loss} (PIL) that models the interaction between the predicted and ground-truth boundaries as an elastic process inspired by dislocation theory in materials physics. This formulation introduces a physics-based regularization term that enforces smooth contour evolution and structural consistency, allowing the network to better capture fine vascular geometry. The proposed loss is integrated into several segmentation architectures, including U-Net, U-Net++, SegFormer, and MedFormer, and evaluated on two public benchmarks: DIAS and DSCA. Experimental results demonstrate that PIL consistently outperforms conventional loss functions such as Cross-Entropy, Dice, Active Contour, and Surface losses, achieving superior sensitivity, F1 score, and boundary coherence. These findings confirm that the incorporation of physics-based boundary interactions into deep neural networks improves both the precision and robustness of vascular segmentation in dynamic angiographic imaging. The implementation of the proposed method is publicly available at https://github.com/irfantahir301/Physicsis_loss.
☆ Modular Deep Learning Framework for Assistive Perception: Gaze, Affect, and Speaker Identification
Developing comprehensive assistive technologies requires the seamless integration of visual and auditory perception. This research evaluates the feasibility of a modular architecture inspired by core functionalities of perceptive systems like 'Smart Eye.' We propose and benchmark three independent sensing modules: a Convolutional Neural Network (CNN) for eye state detection (drowsiness/attention), a deep CNN for facial expression recognition, and a Long Short-Term Memory (LSTM) network for voice-based speaker identification. Utilizing the Eyes Image, FER2013, and customized audio datasets, our models achieved accuracies of 93.0%, 97.8%, and 96.89%, respectively. This study demonstrates that lightweight, domain-specific models can achieve high fidelity on discrete tasks, establishing a validated foundation for future real-time, multimodal integration in resource-constrained assistive devices.
comment: 10 pages, 9 figures, and 3 tables
☆ Dance Style Classification using Laban-Inspired and Frequency-Domain Motion Features
Dance is an essential component of human culture and serves as a tool for conveying emotions and telling stories. Identifying and distinguishing dance genres based on motion data is a complex problem in human activity recognition, as many styles share similar poses, gestures, and temporal motion patterns. This work presents a lightweight framework for classifying dance styles that determines motion characteristics based on pose estimates extracted from videos. We propose temporal-spatial descriptors inspired by Laban Movement Analysis. These features capture local joint dynamics such as velocity, acceleration, and angular movement of the upper body, enabling a structured representation of spatial coordination. To further encode rhythmic and periodic aspects of movement, we integrate Fast Fourier Transform features that characterize movement patterns in the frequency domain. The proposed approach achieves robust classification of different dance styles with low computational effort, as complex model architectures are not required, and shows that interpretable motion representations can effectively capture stylistic nuances.
☆ STARFlow-V: End-to-End Video Generative Modeling with Normalizing Flow
Normalizing flows (NFs) are end-to-end likelihood-based generative models for continuous data, and have recently regained attention with encouraging progress on image generation. Yet in the video generation domain, where spatiotemporal complexity and computational cost are substantially higher, state-of-the-art systems almost exclusively rely on diffusion-based models. In this work, we revisit this design space by presenting STARFlow-V, a normalizing flow-based video generator with substantial benefits such as end-to-end learning, robust causal prediction, and native likelihood estimation. Building upon the recently proposed STARFlow, STARFlow-V operates in the spatiotemporal latent space with a global-local architecture which restricts causal dependencies to a global latent space while preserving rich local within-frame interactions. This eases error accumulation over time, a common pitfall of standard autoregressive diffusion model generation. Additionally, we propose flow-score matching, which equips the model with a light-weight causal denoiser to improve the video generation consistency in an autoregressive fashion. To improve the sampling efficiency, STARFlow-V employs a video-aware Jacobi iteration scheme that recasts inner updates as parallelizable iterations without breaking causality. Thanks to the invertible structure, the same model can natively support text-to-video, image-to-video as well as video-to-video generation tasks. Empirically, STARFlow-V achieves strong visual fidelity and temporal consistency with practical sampling throughput relative to diffusion-based baselines. These results present the first evidence, to our knowledge, that NFs are capable of high-quality autoregressive video generation, establishing them as a promising research direction for building world models. Code and generated samples are available at https://github.com/apple/ml-starflow.
comment: 21 pages
☆ Look Where It Matters: Training-Free Ultra-HR Remote Sensing VQA via Adaptive Zoom Search
With advances in satellite constellations, sensor technologies, and imaging pipelines, ultra-high-resolution (Ultra-HR) remote sensing imagery is becoming increasingly widespread. However, current remote sensing foundation models are ill-suited to such inputs: full-image encoding exhausts token and memory budgets, while resize-based preprocessing loses fine-grained and answer-critical details. In this context, guiding the model look where it matters before prediction becomes crucial. Therefore, we present ZoomSearch, a training-free, plug-and-play pipeline that decouples 'where to look' from 'how to answer' for Ultra-HR Remote Sensing Visual Question Answering (RS-VQA). ZoomSearch combines Adaptive Multi-Branch Zoom Search, which performs a hierarchical search over image patches to localize query-relevant regions, with Layout-Aware Patch Reassembly, which reorganizes the selected patches into a compact, layout-faithful canvas. We conduct comprehensive experiments on Ultra-HR RS-VQA benchmarks MME-RealWorld-RS and LRS-VQA, comparing against (i) strong general foundation models, (ii) remote sensing foundation models, (iii) Ultra-HR RS-VQA methods, and (iv) plug-and-play search-based VQA methods. When integrated with LLaVA-ov, ZoomSearch attains state-of-the-art accuracy across diverse tasks, improving the LLaVA-ov baseline by 26.3% on LRS-VQA and 114.8\% on MME-RealWorld-RS. Meanwhile, it achieves much higher inference efficiency, outperforming prior search-based methods by 20%~44% in speed.
comment: 17 pages, 8 figures
☆ Learning to Generate Human-Human-Object Interactions from Textual Descriptions
The way humans interact with each other, including interpersonal distances, spatial configuration, and motion, varies significantly across different situations. To enable machines to understand such complex, context-dependent behaviors, it is essential to model multiple people in relation to the surrounding scene context. In this paper, we present a novel research problem to model the correlations between two people engaged in a shared interaction involving an object. We refer to this formulation as Human-Human-Object Interactions (HHOIs). To overcome the lack of dedicated datasets for HHOIs, we present a newly captured HHOIs dataset and a method to synthesize HHOI data by leveraging image generative models. As an intermediary, we obtain individual human-object interaction (HOIs) and human-human interaction (HHIs) from the HHOIs, and with these data, we train an text-to-HOI and text-to-HHI model using score-based diffusion model. Finally, we present a unified generative framework that integrates the two individual model, capable of synthesizing complete HHOIs in a single advanced sampling process. Our method extends HHOI generation to multi-human settings, enabling interactions involving more than two individuals. Experimental results show that our method generates realistic HHOIs conditioned on textual descriptions, outperforming previous approaches that focus only on single-human HOIs. Furthermore, we introduce multi-human motion generation involving objects as an application of our framework.
comment: Project Page: https://tlb-miss.github.io/hhoi/
☆ Object-Centric Vision Token Pruning for Vision Language Models
In Vision Language Models (VLMs), vision tokens are quantity-heavy yet information-dispersed compared with language tokens, thus consume too much unnecessary computation. Pruning redundant vision tokens for high VLM inference efficiency has been continuously studied but all existing methods resort to indirect and non-guaranteed ways. We propose OC-VTP, a direct and guaranteed approach to select the most representative vision tokens for high-efficiency yet accuracy-preserving VLM inference. Our OC-VTP requires merely light-weight pre-training of a small object-centric vision token pruner, which can then be inserted into existing VLMs, without fine-tuning of any models on any datasets. It is gauranteed that the most representative vision tokens are kept by minimizing the error in reconstructing the original unpruned tokens from the selected ones. Across any vision pruning ratios, i.e., inference efficiency, our OC-VTP consistently helps mainstream VLMs to preserve the highest inference accuracy. Our pruning also demonstrates interesting interpretability. Our codes are available at https://github.com/GarryLarry010131/OC-VTP.
☆ BRIC: Bridging Kinematic Plans and Physical Control at Test Time
We propose BRIC, a novel test-time adaptation (TTA) framework that enables long-term human motion generation by resolving execution discrepancies between diffusion-based kinematic motion planners and reinforcement learning-based physics controllers. While diffusion models can generate diverse and expressive motions conditioned on text and scene context, they often produce physically implausible outputs, leading to execution drift during simulation. To address this, BRIC dynamically adapts the physics controller to noisy motion plans at test time, while preserving pre-trained skills via a loss function that mitigates catastrophic forgetting. In addition, BRIC introduces a lightweight test-time guidance mechanism that steers the diffusion model in the signal space without updating its parameters. By combining both adaptation strategies, BRIC ensures consistent and physically plausible long-term executions across diverse environments in an effective and efficient manner. We validate the effectiveness of BRIC on a variety of long-term tasks, including motion composition, obstacle avoidance, and human-scene interaction, achieving state-of-the-art performance across all tasks.
☆ Block Cascading: Training Free Acceleration of Block-Causal Video Models
Block-causal video generation faces a stark speed-quality trade-off: small 1.3B models manage only 16 FPS while large 14B models crawl at 4.5 FPS, forcing users to choose between responsiveness and quality. Block Cascading significantly mitigates this trade-off through training-free parallelization. Our key insight: future video blocks do not need fully denoised current blocks to begin generation. By starting block generation with partially denoised context from predecessors, we transform sequential pipelines into parallel cascades where multiple blocks denoise simultaneously. With 5 GPUs exploiting temporal parallelism, we achieve ~2x acceleration across all model scales: 1.3B models accelerate from 16 to 30 FPS, 14B models from 4.5 to 12.5 FPS. Beyond inference speed, Block Cascading eliminates overhead from KV-recaching (of ~200ms) during context switches for interactive generation. Extensive evaluations validated against multiple block-causal pipelines demonstrate no significant loss in generation quality when switching from block-causal to Block Cascading pipelines for inference. Project Page: https://hmrishavbandy.github.io/block_cascading_page/
☆ VibraVerse: A Large-Scale Geometry-Acoustics Alignment Dataset for Physically-Consistent Multimodal Learning
Understanding the physical world requires perceptual models grounded in physical laws rather than mere statistical correlations. However, existing multimodal learning frameworks, focused on vision and language, lack physical consistency and overlook the intrinsic causal relationships among an object's geometry, material, vibration modes, and the sounds it produces. We introduce VibraVerse, a large-scale geometry-acoustics alignment dataset that explicitly bridges the causal chain from 3D geometry -> physical attributes -> modal parameters -> acoustic signals. Each 3D model has explicit physical properties (density, Young's modulus, Poisson's ratio) and volumetric geometry, from which modal eigenfrequencies and eigenvectors are computed for impact sound synthesis under controlled excitations. To establish this coherence, we introduce CLASP, a contrastive learning framework for cross-modal alignment that preserves the causal correspondence between an object's physical structure and its acoustic response. This framework enforces physically consistent alignment across modalities, ensuring that every sample is coherent, traceable to the governing equations, and embedded within a unified representation space spanning shape, image, and sound. Built upon VibraVerse, we define a suite of benchmark tasks for geometry-to-sound prediction, sound-guided shape reconstruction, and cross-modal representation learning. Extensive validations on these tasks demonstrate that models trained on VibraVerse exhibit superior accuracy, interpretability, and generalization across modalities. These results establish VibraVerse as a benchmark for physically consistent and causally interpretable multimodal learning, providing a foundation for sound-guided embodied perception and a deeper understanding of the physical world. The dataset will be open-sourced.
☆ StableTrack: Stabilizing Multi-Object Tracking on Low-Frequency Detections
Multi-object tracking (MOT) is one of the most challenging tasks in computer vision, where it is important to correctly detect objects and associate these detections across frames. Current approaches mainly focus on tracking objects in each frame of a video stream, making it almost impossible to run the model under conditions of limited computing resources. To address this issue, we propose StableTrack, a novel approach that stabilizes the quality of tracking on low-frequency detections. Our method introduces a new two-stage matching strategy to improve the cross-frame association between low-frequency detections. We propose a novel Bbox-Based Distance instead of the conventional Mahalanobis distance, which allows us to effectively match objects using the Re-ID model. Furthermore, we integrate visual tracking into the Kalman Filter and the overall tracking pipeline. Our method outperforms current state-of-the-art trackers in the case of low-frequency detections, achieving $\textit{11.6%}$ HOTA improvement at $\textit{1}$ Hz on MOT17-val, while keeping up with the best approaches on the standard MOT17, MOT20, and DanceTrack benchmarks with full-frequency detections.
☆ MajutsuCity: Language-driven Aesthetic-adaptive City Generation with Controllable 3D Assets and Layouts
Generating realistic 3D cities is fundamental to world models, virtual reality, and game development, where an ideal urban scene must satisfy both stylistic diversity, fine-grained, and controllability. However, existing methods struggle to balance the creative flexibility offered by text-based generation with the object-level editability enabled by explicit structural representations. We introduce MajutsuCity, a natural language-driven and aesthetically adaptive framework for synthesizing structurally consistent and stylistically diverse 3D urban scenes. MajutsuCity represents a city as a composition of controllable layouts, assets, and materials, and operates through a four-stage pipeline. To extend controllability beyond initial generation, we further integrate MajutsuAgent, an interactive language-grounded editing agent} that supports five object-level operations. To support photorealistic and customizable scene synthesis, we also construct MajutsuDataset, a high-quality multimodal dataset} containing 2D semantic layouts and height maps, diverse 3D building assets, and curated PBR materials and skyboxes, each accompanied by detailed annotations. Meanwhile, we develop a practical set of evaluation metrics, covering key dimensions such as structural consistency, scene complexity, material fidelity, and lighting atmosphere. Extensive experiments demonstrate MajutsuCity reduces layout FID by 83.7% compared with CityDreamer and by 20.1% over CityCraft. Our method ranks first across all AQS and RDR scores, outperforming existing methods by a clear margin. These results confirm MajutsuCity as a new state-of-the-art in geometric fidelity, stylistic adaptability, and semantic controllability for 3D city generation. We expect our framework can inspire new avenues of research in 3D city generation. Our dataset and code will be released at https://github.com/LongHZ140516/MajutsuCity.
comment: 13 pages, 6 figures
☆ Image-Free Timestep Distillation via Continuous-Time Consistency with Trajectory-Sampled Pairs
Timestep distillation is an effective approach for improving the generation efficiency of diffusion models. The Consistency Model (CM), as a trajectory-based framework, demonstrates significant potential due to its strong theoretical foundation and high-quality few-step generation. Nevertheless, current continuous-time consistency distillation methods still rely heavily on training data and computational resources, hindering their deployment in resource-constrained scenarios and limiting their scalability to diverse domains. To address this issue, we propose Trajectory-Backward Consistency Model (TBCM), which eliminates the dependence on external training data by extracting latent representations directly from the teacher model's generation trajectory. Unlike conventional methods that require VAE encoding and large-scale datasets, our self-contained distillation paradigm significantly improves both efficiency and simplicity. Moreover, the trajectory-extracted samples naturally bridge the distribution gap between training and inference, thereby enabling more effective knowledge transfer. Empirically, TBCM achieves 6.52 FID and 28.08 CLIP scores on MJHQ-30k under one-step generation, while reducing training time by approximately 40% compared to Sana-Sprint and saving a substantial amount of GPU memory, demonstrating superior efficiency without sacrificing quality. We further reveal the diffusion-generation space discrepancy in continuous-time consistency distillation and analyze how sampling strategies affect distillation performance, offering insights for future distillation research. GitHub Link: https://github.com/hustvl/TBCM.
☆ A Training-Free Approach for Multi-ID Customization via Attention Adjustment and Spatial Control
Multi-ID customization is an interesting topic in computer vision and attracts considerable attention recently. Given the ID images of multiple individuals, its purpose is to generate a customized image that seamlessly integrates them while preserving their respective identities. Compared to single-ID customization, multi-ID customization is much more difficult and poses two major challenges. First, since the multi-ID customization model is trained to reconstruct an image from the cropped person regions, it often encounters the copy-paste issue during inference, leading to lower quality. Second, the model also suffers from inferior text controllability. The generated result simply combines multiple persons into one image, regardless of whether it is aligned with the input text. In this work, we propose MultiID to tackle this challenging task in a training-free manner. Since the existing single-ID customization models have less copy-paste issue, our key idea is to adapt these models to achieve multi-ID customization. To this end, we present an ID-decoupled cross-attention mechanism, injecting distinct ID embeddings into the corresponding image regions and thus generating multi-ID outputs. To enhance the generation controllability, we introduce three critical strategies, namely the local prompt, depth-guided spatial control, and extended self-attention, making the results more consistent with the text prompts and ID images. We also carefully build a benchmark, called IDBench, for evaluation. The extensive qualitative and quantitative results demonstrate the effectiveness of MultiID in solving the aforementioned two challenges. Its performance is comparable or even better than the training-based multi-ID customization methods.
☆ FREE: Uncertainty-Aware Autoregression for Parallel Diffusion Transformers
Diffusion Transformers (DiTs) achieve state-of-the-art generation quality but require long sequential denoising trajectories, leading to high inference latency. Recent speculative inference methods enable lossless parallel sampling in U-Net-based diffusion models via a drafter-verifier scheme, but their acceleration is limited on DiTs due to insufficient draft accuracy during verification. To address this limitation, we analyze the DiTs' feature dynamics and find the features of the final transformer layer (top-block) exhibit strong temporal consistency and rich semantic abstraction. Based on this insight, we propose FREE, a novel framework that employs a lightweight drafter to perform feature-level autoregression with parallel verification, guaranteeing lossless acceleration with theoretical and empirical support. Meanwhile, prediction variance (uncertainty) of DiTs naturally increases in later denoising steps, reducing acceptance rates under speculative sampling. To mitigate this effect, we further introduce an uncertainty-guided relaxation strategy, forming FREE (relax), which dynamically adjusts the acceptance probability in response to uncertainty levels. Experiments on ImageNet-$512^2$ show that FREE achieves up to $1.86 \times$ acceleration, and FREE (relax) further reaches $2.25 \times$ speedup while maintaining high perceptual and quantitative fidelity in generation quality.
☆ VGGTFace: Topologically Consistent Facial Geometry Reconstruction in the Wild
Reconstructing topologically consistent facial geometry is crucial for the digital avatar creation pipelines. Existing methods either require tedious manual efforts, lack generalization to in-the-wild data, or are constrained by the limited expressiveness of 3D Morphable Models. To address these limitations, we propose VGGTFace, an automatic approach that innovatively applies the 3D foundation model, \emph{i.e.} VGGT, for topologically consistent facial geometry reconstruction from in-the-wild multi-view images captured by everyday users. Our key insight is that, by leveraging VGGT, our method naturally inherits strong generalization ability and expressive power from its large-scale training and point map representation. However, it is unclear how to reconstruct a topologically consistent mesh from VGGT, as the topology information is missing in its prediction. To this end, we augment VGGT with Pixel3DMM for injecting topology information via pixel-aligned UV values. In this manner, we convert the pixel-aligned point map of VGGT to a point cloud with topology. Tailored to this point cloud with known topology, we propose a novel Topology-Aware Bundle Adjustment strategy to fuse them, where we construct a Laplacian energy for the Bundle Adjustment objective. Our method achieves high-quality reconstruction in 10 seconds for 16 views on a single NVIDIA RTX 4090. Experiments demonstrate state-of-the-art results on benchmarks and impressive generalization to in-the-wild data. Code is available at https://github.com/grignarder/vggtface.
☆ From Passive Perception to Active Memory: A Weakly Supervised Image Manipulation Localization Framework Driven by Coarse-Grained Annotations AAAI 2026
Image manipulation localization (IML) faces a fundamental trade-off between minimizing annotation cost and achieving fine-grained localization accuracy. Existing fully-supervised IML methods depend heavily on dense pixel-level mask annotations, which limits scalability to large datasets or real-world deployment.In contrast, the majority of existing weakly-supervised IML approaches are based on image-level labels, which greatly reduce annotation effort but typically lack precise spatial localization. To address this dilemma, we propose BoxPromptIML, a novel weakly-supervised IML framework that effectively balances annotation cost and localization performance. Specifically, we propose a coarse region annotation strategy, which can generate relatively accurate manipulation masks at lower cost. To improve model efficiency and facilitate deployment, we further design an efficient lightweight student model, which learns to perform fine-grained localization through knowledge distillation from a fixed teacher model based on the Segment Anything Model (SAM). Moreover, inspired by the human subconscious memory mechanism, our feature fusion module employs a dual-guidance strategy that actively contextualizes recalled prototypical patterns with real-time observational cues derived from the input. Instead of passive feature extraction, this strategy enables a dynamic process of knowledge recollection, where long-term memory is adapted to the specific context of the current image, significantly enhancing localization accuracy and robustness. Extensive experiments across both in-distribution and out-of-distribution datasets show that BoxPromptIML outperforms or rivals fully-supervised models, while maintaining strong generalization, low annotation cost, and efficient deployment characteristics.
comment: Accepted by AAAI 2026
☆ GS-Checker: Tampering Localization for 3D Gaussian Splatting AAAI2026
Recent advances in editing technologies for 3D Gaussian Splatting (3DGS) have made it simple to manipulate 3D scenes. However, these technologies raise concerns about potential malicious manipulation of 3D content. To avoid such malicious applications, localizing tampered regions becomes crucial. In this paper, we propose GS-Checker, a novel method for locating tampered areas in 3DGS models. Our approach integrates a 3D tampering attribute into the 3D Gaussian parameters to indicate whether the Gaussian has been tampered. Additionally, we design a 3D contrastive mechanism by comparing the similarity of key attributes between 3D Gaussians to seek tampering cues at 3D level. Furthermore, we introduce a cyclic optimization strategy to refine the 3D tampering attribute, enabling more accurate tampering localization. Notably, our approach does not require expensive 3D labels for supervision. Extensive experimental results demonstrate the effectiveness of our proposed method to locate the tampered 3DGS area.
comment: Accepted by AAAI2026
☆ Thinking in 360°: Humanoid Visual Search in the Wild
Humans rely on the synergistic control of head (cephalomotor) and eye (oculomotor) to efficiently search for visual information in 360°. However, prior approaches to visual search are limited to a static image, neglecting the physical embodiment and its interaction with the 3D world. How can we develop embodied visual search agents as efficient as humans while bypassing the constraints imposed by real-world hardware? To this end, we propose humanoid visual search where a humanoid agent actively rotates its head to search for objects or paths in an immersive world represented by a 360° panoramic image. To study visual search in visually-crowded real-world scenarios, we build H* Bench, a new benchmark that moves beyond household scenes to challenging in-the-wild scenes that necessitate advanced visual-spatial reasoning capabilities, such as transportation hubs, large-scale retail spaces, urban streets, and public institutions. Our experiments first reveal that even top-tier proprietary models falter, achieving only ~30% success in object and path search. We then use post-training techniques to enhance the open-source Qwen2.5-VL, increasing its success rate by over threefold for both object search (14.83% to 47.38%) and path search (6.44% to 24.94%). Notably, the lower ceiling of path search reveals its inherent difficulty, which we attribute to the demand for sophisticated spatial commonsense. Our results not only show a promising path forward but also quantify the immense challenge that remains in building MLLM agents that can be seamlessly integrated into everyday human life.
☆ Material-informed Gaussian Splatting for 3D World Reconstruction in a Digital Twin
3D reconstruction for Digital Twins often relies on LiDAR-based methods, which provide accurate geometry but lack the semantics and textures naturally captured by cameras. Traditional LiDAR-camera fusion approaches require complex calibration and still struggle with certain materials like glass, which are visible in images but poorly represented in point clouds. We propose a camera-only pipeline that reconstructs scenes using 3D Gaussian Splatting from multi-view images, extracts semantic material masks via vision models, converts Gaussian representations to mesh surfaces with projected material labels, and assigns physics-based material properties for accurate sensor simulation in modern graphics engines and simulators. This approach combines photorealistic reconstruction with physics-based material assignment, providing sensor simulation fidelity comparable to LiDAR-camera fusion while eliminating hardware complexity and calibration requirements. We validate our camera-only method using an internal dataset from an instrumented test vehicle, leveraging LiDAR as ground truth for reflectivity validation alongside image similarity metrics.
comment: 8 pages, 5 figures. Submitted to IEEE Intelligent Vehicles Symposium (IV) 2026 for possible publication
☆ AMB3R: Accurate Feed-forward Metric-scale 3D Reconstruction with Backend
We present AMB3R, a multi-view feed-forward model for dense 3D reconstruction on a metric-scale that addresses diverse 3D vision tasks. The key idea is to leverage a sparse, yet compact, volumetric scene representation as our backend, enabling geometric reasoning with spatial compactness. Although trained solely for multi-view reconstruction, we demonstrate that AMB3R can be seamlessly extended to uncalibrated visual odometry (online) or large-scale structure from motion without the need for task-specific fine-tuning or test-time optimization. Compared to prior pointmap-based models, our approach achieves state-of-the-art performance in camera pose, depth, and metric-scale estimation, 3D reconstruction, and even surpasses optimization-based SLAM and SfM methods with dense reconstruction priors on common benchmarks.
comment: Project page: https://hengyiwang.github.io/projects/amber
☆ ShelfRectNet: Single View Shelf Image Rectification with Homography Estimation
Estimating homography from a single image remains a challenging yet practically valuable task, particularly in domains like retail, where only one viewpoint is typically available for shelf monitoring and product alignment. In this paper, we present a deep learning framework that predicts a 4-point parameterized homography matrix to rectify shelf images captured from arbitrary angles. Our model leverages a ConvNeXt-based backbone for enhanced feature representation and adopts normalized coordinate regression for improved stability. To address data scarcity and promote generalization, we introduce a novel augmentation strategy by modeling and sampling synthetic homographies. Our method achieves a mean corner error of 1.298 pixels on the test set. When compared with both classical computer vision and deep learning-based approaches, our method demonstrates competitive performance in both accuracy and inference speed. Together, these results establish our approach as a robust and efficient solution for realworld single-view rectification. To encourage further research in this domain, we will make our dataset, ShelfRectSet, and code publicly available
☆ 3D Motion Perception of Binocular Vision Target with PID-CNN
This article trained a network for perceiving three-dimensional motion information of binocular vision target, which can provide real-time three-dimensional coordinate, velocity, and acceleration, and has a basic spatiotemporal perception capability. Understood the ability of neural networks to fit nonlinear problems from the perspective of PID. Considered a single-layer neural network as using a second-order difference equation and a nonlinearity to describe a local problem. Multilayer networks gradually transform the raw representation to the desired representation through multiple such combinations. Analysed some reference principles for designing neural networks. Designed a relatively small PID convolutional neural network, with a total of 17 layers and 413 thousand parameters. Implemented a simple but practical feature reuse method by concatenation and pooling. The network was trained and tested using the simulated randomly moving ball datasets, and the experimental results showed that the prediction accuracy was close to the upper limit that the input image resolution can represent. Analysed the experimental results and errors, as well as the existing shortcomings and possible directions for improvement. Finally, discussed the advantages of high-dimensional convolution in improving computational efficiency and feature space utilization. As well as the potential advantages of using PID information to implement memory and attention mechanisms.
comment: 7 pages, 9 figures, 2 tables
☆ ArtiBench and ArtiBrain: Benchmarking Generalizable Vision-Language Articulated Object Manipulation
Interactive articulated manipulation requires long-horizon, multi-step interactions with appliances while maintaining physical consistency. Existing vision-language and diffusion-based policies struggle to generalize across parts, instances, and categories. We first introduce ArtiBench, a five-level benchmark covering kitchen, storage, office, and tool environments. ArtiBench enables structured evaluation from cross-part and cross-instance variation to long-horizon multi-object tasks, revealing the core generalization challenges of articulated object manipulation. Building on this benchmark, we propose ArtiBrain, a modular framework that unifies high-level reasoning with adaptive low-level control. ArtiBrain uses a VLM-based Task Reasoner (GPT-4.1) to decompose and validate subgoals, and employs a Hybrid Controller that combines geometry-aware keyframe execution with affordance-guided diffusion for precise and interpretable manipulation. An Affordance Memory Bank continually accumulates successful execution episodes and propagates part-level actionable affordances to unseen articulated parts and configurations. Extensive experiments on ArtiBench show that our ArtiBrain significantly outperforms state-of-the-art multimodal and diffusion-based methods in robustness and generalization. Code and dataset will be released upon acceptance.
☆ AD-R1: Closed-Loop Reinforcement Learning for End-to-End Autonomous Driving with Impartial World Models
End-to-end models for autonomous driving hold the promise of learning complex behaviors directly from sensor data, but face critical challenges in safety and handling long-tail events. Reinforcement Learning (RL) offers a promising path to overcome these limitations, yet its success in autonomous driving has been elusive. We identify a fundamental flaw hindering this progress: a deep seated optimistic bias in the world models used for RL. To address this, we introduce a framework for post-training policy refinement built around an Impartial World Model. Our primary contribution is to teach this model to be honest about danger. We achieve this with a novel data synthesis pipeline, Counterfactual Synthesis, which systematically generates a rich curriculum of plausible collisions and off-road events. This transforms the model from a passive scene completer into a veridical forecaster that remains faithful to the causal link between actions and outcomes. We then integrate this Impartial World Model into our closed-loop RL framework, where it serves as an internal critic. During refinement, the agent queries the critic to ``dream" of the outcomes for candidate actions. We demonstrate through extensive experiments, including on a new Risk Foreseeing Benchmark, that our model significantly outperforms baselines in predicting failures. Consequently, when used as a critic, it enables a substantial reduction in safety violations in challenging simulations, proving that teaching a model to dream of danger is a critical step towards building truly safe and intelligent autonomous agents.
☆ IrisNet: Infrared Image Status Awareness Meta Decoder for Infrared Small Targets Detection
Infrared Small Target Detection (IRSTD) faces significant challenges due to low signal-to-noise ratios, complex backgrounds, and the absence of discernible target features. While deep learning-based encoder-decoder frameworks have advanced the field, their static pattern learning suffers from pattern drift across diverse scenarios (\emph{e.g.}, day/night variations, sky/maritime/ground domains), limiting robustness. To address this, we propose IrisNet, a novel meta-learned framework that dynamically adapts detection strategies to the input infrared image status. Our approach establishes a dynamic mapping between infrared image features and entire decoder parameters via an image-to-decoder transformer. More concretely, we represent the parameterized decoder as a structured 2D tensor preserving hierarchical layer correlations and enable the transformer to model inter-layer dependencies through self-attention while generating adaptive decoding patterns via cross-attention. To further enhance the perception ability of infrared images, we integrate high-frequency components to supplement target-position and scene-edge information. Experiments on NUDT-SIRST, NUAA-SIRST, and IRSTD-1K datasets demonstrate the superiority of our IrisNet, achieving state-of-the-art performance.
comment: 10pages,5figures
☆ TReFT: Taming Rectified Flow Models For One-Step Image Translation
Rectified Flow (RF) models have advanced high-quality image and video synthesis via optimal transport theory. However, when applied to image-to-image translation, they still depend on costly multi-step denoising, hindering real-time applications. Although the recent adversarial training paradigm, CycleGAN-Turbo, works in pretrained diffusion models for one-step image translation, we find that directly applying it to RF models leads to severe convergence issues. In this paper, we analyze these challenges and propose TReFT, a novel method to Tame Rectified Flow models for one-step image Translation. Unlike previous works, TReFT directly uses the velocity predicted by pretrained DiT or UNet as output-a simple yet effective design that tackles the convergence issues under adversarial training with one-step inference. This design is mainly motivated by a novel observation that, near the end of the denoising process, the velocity predicted by pretrained RF models converges to the vector from origin to the final clean image, a property we further justify through theoretical analysis. When applying TReFT to large pretrained RF models such as SD3.5 and FLUX, we introduce memory-efficient latent cycle-consistency and identity losses during training, as well as lightweight architectural simplifications for faster inference. Pretrained RF models finetuned with TReFT achieve performance comparable to sota methods across multiple image translation datasets while enabling real-time inference.
☆ TaCo: Capturing Spatio-Temporal Semantic Consistency in Remote Sensing Change Detection
Remote sensing change detection (RSCD) aims to identify surface changes across bi-temporal satellite images. Most previous methods rely solely on mask supervision, which effectively guides spatial localization but provides limited constraints on the temporal semantic transitions. Consequently, they often produce spatially coherent predictions while still suffering from unresolved semantic inconsistencies. To address this limitation, we propose TaCo, a spatio-temporal semantic consistent network, which enriches the existing mask-supervised framework with a spatio-temporal semantic joint constraint. TaCo conceptualizes change as a semantic transition between bi-temporal states, in which one temporal feature representation can be derived from the other via dedicated transition features. To realize this, we introduce a Text-guided Transition Generator that integrates textual semantics with bi-temporal visual features to construct the cross-temporal transition features. In addition, we propose a spatio-temporal semantic joint constraint consisting of bi-temporal reconstruct constraints and a transition constraint: the former enforces alignment between reconstructed and original features, while the latter enhances discrimination for changes. This design can yield substantial performance gains without introducing any additional computational overhead during inference. Extensive experiments on six public datasets, spanning both binary and semantic change detection tasks, demonstrate that TaCo consistently achieves SOTA performance.
☆ CrossEarth-Gate: Fisher-Guided Adaptive Tuning Engine for Efficient Adaptation of Cross-Domain Remote Sensing Semantic Segmentation
In Remote Sensing (RS), Parameter-Efficient Fine-Tuning (PEFT) has emerged as a key approach to activate the generalizable representation ability of foundation models for downstream tasks. However, existing specialized PEFT methods often fail when applied to large-scale Earth observation tasks, as they are unable to fully handle the multifaceted and unpredictable domain gaps (\eg, spatial, semantic, and frequency shifts) inherent in RS data. To overcome this, we propose CrossEarth-Gate, which introduces two primary contributions. First, we establish a comprehensive RS module toolbox to address multifaceted domain gaps, comprising spatial, semantic, and frequency modules. Second, we develop a Fisher-guided adaptive selection mechanism that operates on this toolbox. This selection is guided by Fisher Information to quantify each module's importance by measuring its contribution to the task-specific gradient flow. It dynamically activates only the most critical modules at the appropriate layers, guiding the gradient flow to maximize adaptation effectiveness and efficiency. Comprehensive experiments validate the efficacy and generalizability of our method, where CrossEarth-Gate achieves state-of-the-art performance across 16 cross-domain benchmarks for RS semantic segmentation. The code of the work will be released.
☆ Prompting Lipschitz-constrained network for multiple-in-one sparse-view CT reconstruction
Despite significant advancements in deep learning-based sparse-view computed tomography (SVCT) reconstruction algorithms, these methods still encounter two primary limitations: (i) It is challenging to explicitly prove that the prior networks of deep unfolding algorithms satisfy Lipschitz constraints due to their empirically designed nature. (ii) The substantial storage costs of training a separate model for each setting in the case of multiple views hinder practical clinical applications. To address these issues, we elaborate an explicitly provable Lipschitz-constrained network, dubbed LipNet, and integrate an explicit prompt module to provide discriminative knowledge of different sparse sampling settings, enabling the treatment of multiple sparse view configurations within a single model. Furthermore, we develop a storage-saving deep unfolding framework for multiple-in-one SVCT reconstruction, termed PromptCT, which embeds LipNet as its prior network to ensure the convergence of its corresponding iterative algorithm. In simulated and real data experiments, PromptCT outperforms benchmark reconstruction algorithms in multiple-in-one SVCT reconstruction, achieving higher-quality reconstructions with lower storage costs. On the theoretical side, we explicitly demonstrate that LipNet satisfies boundary property, further proving its Lipschitz continuity and subsequently analyzing the convergence of the proposed iterative algorithms. The data and code are publicly available at https://github.com/shibaoshun/PromptCT.
☆ Back to the Feature: Explaining Video Classifiers with Video Counterfactual Explanations
Counterfactual explanations (CFEs) are minimal and semantically meaningful modifications of the input of a model that alter the model predictions. They highlight the decisive features the model relies on, providing contrastive interpretations for classifiers. State-of-the-art visual counterfactual explanation methods are designed to explain image classifiers. The generation of CFEs for video classifiers remains largely underexplored. For the counterfactual videos to be useful, they have to be physically plausible, temporally coherent, and exhibit smooth motion trajectories. Existing CFE image-based methods, designed to explain image classifiers, lack the capacity to generate temporally coherent, smooth and physically plausible video CFEs. To address this, we propose Back To The Feature (BTTF), an optimization framework that generates video CFEs. Our method introduces two novel features, 1) an optimization scheme to retrieve the initial latent noise conditioned by the first frame of the input video, 2) a two-stage optimization strategy to enable the search for counterfactual videos in the vicinity of the input video. Both optimization processes are guided solely by the target classifier, ensuring the explanation is faithful. To accelerate convergence, we also introduce a progressive optimization strategy that incrementally increases the number of denoising steps. Extensive experiments on video datasets such as Shape-Moving (motion classification), MEAD (emotion classification), and NTU RGB+D (action classification) show that our BTTF effectively generates valid, visually similar and realistic counterfactual videos that provide concrete insights into the classifier's decision-making mechanism.
☆ Bootstrapping Physics-Grounded Video Generation through VLM-Guided Iterative Self-Refinement ICCV 2025
Recent progress in video generation has led to impressive visual quality, yet current models still struggle to produce results that align with real-world physical principles. To this end, we propose an iterative self-refinement framework that leverages large language models and vision-language models to provide physics-aware guidance for video generation. Specifically, we introduce a multimodal chain-of-thought (MM-CoT) process that refines prompts based on feedback from physical inconsistencies, progressively enhancing generation quality. This method is training-free and plug-and-play, making it readily applicable to a wide range of video generation models. Experiments on the PhyIQ benchmark show that our method improves the Physics-IQ score from 56.31 to 62.38. We hope this work serves as a preliminary exploration of physics-consistent video generation and may offer insights for future research.
comment: ICCV 2025 Physics-IQ Challenge Third Place Solution
☆ SelfMOTR: Revisiting MOTR with Self-Generating Detection Priors
Despite progress toward end-to-end tracking with transformer architectures, poor detection performance and the conflict between detection and association in a joint architecture remain critical concerns. Recent approaches aim to mitigate these issues by (i) employing advanced denoising or label assignment strategies, or (ii) incorporating detection priors from external object detectors via distillation or anchor proposal techniques. Inspired by the success of integrating detection priors and by the key insight that MOTR-like models are secretly strong detection models, we introduce SelfMOTR, a novel tracking transformer that relies on self-generated detection priors. Through extensive analysis and ablation studies, we uncover and demonstrate the hidden detection capabilities of MOTR-like models, and present a practical set of tools for leveraging them effectively. On DanceTrack, SelfMOTR achieves strong performance, competing with recent state-of-the-art end-to-end tracking methods.
comment: 11 pages, 5 figures, 10 tables
☆ DAPointMamba: Domain Adaptive Point Mamba for Point Cloud Completion AAAI 2026
Domain adaptive point cloud completion (DA PCC) aims to narrow the geometric and semantic discrepancies between the labeled source and unlabeled target domains. Existing methods either suffer from limited receptive fields or quadratic complexity due to using CNNs or vision Transformers. In this paper, we present the first work that studies the adaptability of State Space Models (SSMs) in DA PCC and find that directly applying SSMs to DA PCC will encounter several challenges: directly serializing 3D point clouds into 1D sequences often disrupts the spatial topology and local geometric features of the target domain. Besides, the overlook of designs in the learning domain-agnostic representations hinders the adaptation performance. To address these issues, we propose a novel framework, DAPointMamba for DA PCC, that exhibits strong adaptability across domains and has the advantages of global receptive fields and efficient linear complexity. It has three novel modules. In particular, Cross-Domain Patch-Level Scanning introduces patch-level geometric correspondences, enabling effective local alignment. Cross-Domain Spatial SSM Alignment further strengthens spatial consistency by modulating patch features based on cross-domain similarity, effectively mitigating fine-grained structural discrepancies. Cross-Domain Channel SSM Alignment actively addresses global semantic gaps by interleaving and aligning feature channels. Extensive experiments on both synthetic and real-world benchmarks demonstrate that our DAPointMamba outperforms state-of-the-art methods with less computational complexity and inference latency.
comment: Accepted to AAAI 2026
☆ ScenarioCLIP: Pretrained Transferable Visual Language Models and Action-Genome Dataset for Natural Scene Analysis
Until recently, the general corpus of CLIP-type fundamental models has widely explored either the retrieval of short descriptions or the classification of objects in the scene as SINGLE-object image classification task. The same holds for retrieving the image embedding (image retrieval task) given a text prompt. However, real-world scene images exhibit rich compositional structure involving multiple objects and actions. The latest methods in the CLIP-based literature improve class-level discrimination by mining harder negative image-text pairs and by refining permanent text prompts, often using LLMs. However, these improvements remain confined to predefined class lists and do not explicitly model relational or compositional structure. PyramidCLIP partially addresses this gap by aligning global and local visual features, yet it still lacks explicit modeling of inter-object relations. Hence, to further leverage this aspect for scene analysis, the proposed ScenarioCLIP model accepts input texts, grounded relations, and input images, along with focused regions highlighting relations. The proposed model is pretrained on curated scenario data, and finetuned for specialized downstream tasks, such as cross-modal retrieval and fine-grained visual understanding tasks. To address the lack of domain-specific datasets, we generate a novel dataset by extending image-text pairs from existing diverse indoor and outdoor scenario datasets that are publicly available. We used a pipeline of existing language models to ground action, object, and relations, filled by manual and automatic curation. We established a comprehensive benchmark for several scenario-based tasks and compared it with many baseline methods. ScenarioCLIP demonstrates robust zero-shot and finetune performance on various domain-specific tasks. Our code and dataset are available at https://github.com/scenario-clip/ScenarioCLIP
☆ VKnowU: Evaluating Visual Knowledge Understanding in Multimodal LLMs
While Multimodal Large Language Models (MLLMs) have become adept at recognizing objects, they often lack the intuitive, human-like understanding of the world's underlying physical and social principles. This high-level vision-grounded semantics, which we term visual knowledge, forms a bridge between perception and reasoning, yet remains an underexplored area in current MLLMs. To systematically evaluate this capability, we present VKnowU, a comprehensive benchmark featuring 1,680 questions in 1,249 videos, covering 8 core types of visual knowledge spanning both world-centric (e.g., intuitive physics) and human-centric (e.g., subjective intentions). Evaluation of 23 SOTA MLLMs reveals that leading models still fall short of human performance, with particularly notable gaps in the world-centric. To bridge this gap, we introduce a new dataset, VKnowQA, and VideoKnow+, a baseline model that explicitly incorporates visual knowledge into MLLMs. VideoKnow+ follows a structured See-Think-Answer paradigm and adopts reinforcement learning with visual knowledge reward, achieving a +3.7% improvement on VKnowU and consistent gains on MVBench, Video-MME, and MMVU. Our work highlights visual knowledge as a missing cornerstone for developing more generalizable MLLMs that can not only see but also truly understand our physical and social worlds.
comment: Data & Code: this https URL
☆ DRL-Guided Neural Batch Sampling for Semi-Supervised Pixel-Level Anomaly Detection
Anomaly detection in industrial visual inspection is challenging due to the scarcity of defective samples. Most existing methods rely on unsupervised reconstruction using only normal data, often resulting in overfitting and poor detection of subtle defects. We propose a semi-supervised deep reinforcement learning framework that integrates a neural batch sampler, an autoencoder, and a predictor. The RL-based sampler adaptively selects informative patches by balancing exploration and exploitation through a composite reward. The autoencoder generates loss profiles highlighting abnormal regions, while the predictor performs segmentation in the loss-profile space. This interaction enables the system to effectively learn both normal and defective patterns with limited labeled data. Experiments on the MVTec AD dataset demonstrate that our method achieves higher accuracy and better localization of subtle anomalies than recent state-of-the-art approaches while maintaining low complexity, yielding an average improvement of 0.15 in F1_max and 0.06 in AUC, with a maximum gain of 0.37 in F1_max in the best case.
☆ Advancing Image Classification with Discrete Diffusion Classification Modeling
Image classification is a well-studied task in computer vision, and yet it remains challenging under high-uncertainty conditions, such as when input images are corrupted or training data are limited. Conventional classification approaches typically train models to directly predict class labels from input images, but this might lead to suboptimal performance in such scenarios. To address this issue, we propose Discrete Diffusion Classification Modeling (DiDiCM), a novel framework that leverages a diffusion-based procedure to model the posterior distribution of class labels conditioned on the input image. DiDiCM supports diffusion-based predictions either on class probabilities or on discrete class labels, providing flexibility in computation and memory trade-offs. We conduct a comprehensive empirical study demonstrating the superior performance of DiDiCM over standard classifiers, showing that a few diffusion iterations achieve higher classification accuracy on the ImageNet dataset compared to baselines, with accuracy gains increasing as the task becomes more challenging. We release our code at https://github.com/omerb01/didicm .
☆ Modality-Balanced Collaborative Distillation for Multi-Modal Domain Generalization
Weight Averaging (WA) has emerged as a powerful technique for enhancing generalization by promoting convergence to a flat loss landscape, which correlates with stronger out-of-distribution performance. However, applying WA directly to multi-modal domain generalization (MMDG) is challenging: differences in optimization speed across modalities lead WA to overfit to faster-converging ones in early stages, suppressing the contribution of slower yet complementary modalities, thereby hindering effective modality fusion and skewing the loss surface toward sharper, less generalizable minima. To address this issue, we propose MBCD, a unified collaborative distillation framework that retains WA's flatness-inducing advantages while overcoming its shortcomings in multi-modal contexts. MBCD begins with adaptive modality dropout in the student model to curb early-stage bias toward dominant modalities. A gradient consistency constraint then aligns learning signals between uni-modal branches and the fused representation, encouraging coordinated and smoother optimization. Finally, a WA-based teacher conducts cross-modal distillation by transferring fused knowledge to each uni-modal branch, which strengthens cross-modal interactions and steer convergence toward flatter solutions. Extensive experiments on MMDG benchmarks show that MBCD consistently outperforms existing methods, achieving superior accuracy and robustness across diverse unseen domains.
♻ ☆ Cloud4D: Estimating Cloud Properties at a High Spatial and Temporal Resolution NeurIPS 2025
There has been great progress in improving numerical weather prediction and climate models using machine learning. However, most global models act at a kilometer-scale, making it challenging to model individual clouds and factors such as extreme precipitation, wind gusts, turbulence, and surface irradiance. Therefore, there is a need to move towards higher-resolution models, which in turn require high-resolution real-world observations that current instruments struggle to obtain. We present Cloud4D, the first learning-based framework that reconstructs a physically consistent, four-dimensional cloud state using only synchronized ground-based cameras. Leveraging a homography-guided 2D-to-3D transformer, Cloud4D infers the full 3D distribution of liquid water content at 25 m spatial and 5 s temporal resolution. By tracking the 3D liquid water content retrievals over time, Cloud4D additionally estimates horizontal wind vectors. Across a two-month deployment comprising six skyward cameras, our system delivers an order-of-magnitude improvement in space-time resolution relative to state-of-the-art satellite measurements, while retaining single-digit relative error ($<10\%$) against collocated radar measurements. Code and data are available on our project page https://cloud4d.jacob-lin.com/.
comment: NeurIPS 2025 Spotlight, project page: https://cloud4d.jacob-lin.com/
♻ ☆ Rethinking the Learning Paradigm for Facial Expression Recognition
Due to the subjective crowdsourcing annotations and the inherent inter-class similarity of facial expressions, the real-world Facial Expression Recognition (FER) datasets usually exhibit ambiguous annotation. To simplify the learning paradigm, most previous methods convert ambiguous annotation results into precise one-hot annotations and train FER models in an end-to-end supervised manner. In this paper, we rethink the existing training paradigm and propose that it is better to use weakly supervised strategies to train FER models with original ambiguous annotation.
♻ ☆ Multi-modal Generative AI: Multi-modal LLMs, Diffusions, and the Unification
Multi-modal generative AI (Artificial Intelligence) has attracted increasing attention from both academia and industry. Particularly, two dominant families of techniques have emerged: i) Multi-modal large language models (LLMs) demonstrate impressive ability for multi-modal understanding; and ii) Diffusion models exhibit remarkable multi-modal powers in terms of multi-modal generation. Therefore, this paper provides a comprehensive overview of multi-modal generative AI, including multi-modal LLMs, diffusions, and the unification for understanding and generation. To lay a solid foundation for unified models, we first provide a detailed review of both multi-modal LLMs and diffusion models respectively, including their probabilistic modeling procedure, multi-modal architecture design, and advanced applications to image/video LLMs as well as text-to-image/video generation. Furthermore, we explore the emerging efforts toward unified models for understanding and generation. To achieve the unification of understanding and generation, we investigate key designs including autoregressive-based and diffusion-based modeling, as well as dense and Mixture-of-Experts (MoE) architectures. We then introduce several strategies for unified models, analyzing their potential advantages and disadvantages. In addition, we summarize the common datasets widely used for multi-modal generative AI pretraining. Last but not least, we present several challenging future research directions which may contribute to the ongoing advancement of multi-modal generative AI.
comment: 21 pages, 10 figures, 3 tables
♻ ☆ Localizing Knowledge in Diffusion Transformers
Understanding how knowledge is distributed across the layers of generative models is crucial for improving interpretability, controllability, and adaptation. While prior work has explored knowledge localization in UNet-based architectures, Diffusion Transformer (DiT)-based models remain underexplored in this context. In this paper, we propose a model- and knowledge-agnostic method to localize where specific types of knowledge are encoded within the DiT blocks. We evaluate our method on state-of-the-art DiT-based models, including PixArt-alpha, FLUX, and SANA, across six diverse knowledge categories. We show that the identified blocks are both interpretable and causally linked to the expression of knowledge in generated outputs. Building on these insights, we apply our localization framework to two key applications: model personalization and knowledge unlearning. In both settings, our localized fine-tuning approach enables efficient and targeted updates, reducing computational cost, improving task-specific performance, and better preserving general model behavior with minimal interference to unrelated or surrounding content. Overall, our findings offer new insights into the internal structure of DiTs and introduce a practical pathway for more interpretable, efficient, and controllable model editing.
♻ ☆ FlagEval Findings Report: A Preliminary Evaluation of Large Reasoning Models on Automatically Verifiable Textual and Visual Questions NeurIPS 2025
We conduct a moderate-scale contamination-free (to some extent) evaluation of current large reasoning models (LRMs) with some preliminary findings. We also release ROME, our evaluation benchmark for vision language models intended to test reasoning from visual clues. We attach links to the benchmark, evaluation data, and other updates on this website: https://flageval-baai.github.io/LRM-Eval/
comment: Project homepage: https://flageval-baai.github.io/LRM-Eval/ This work will also be presented at NeurIPS 2025 Workshop on Foundations of Reasoning in Language Models (FoRLM); update with trials on Gemini 3 Pro
♻ ☆ AutoFocus-IL: VLM-based Saliency Maps for Data-Efficient Visual Imitation Learning without Extra Human Annotations
AutoFocus-IL is a simple yet effective method to improve data efficiency and generalization in visual imitation learning by guiding policies to attend to task-relevant features rather than distractors and spurious correlations. Although saliency regularization has emerged as a promising way to achieve this, existing approaches typically require costly supervision such as human gaze data or manual saliency annotations. In contrast, AutoFocus-IL leverages vision-language models (VLMs) to automatically identify and track key objects in demonstrations, generating temporal saliency maps that highlight causal visual signals while suppressing distractors. These maps are then used to regularize behavior cloning policies, yielding stronger alignment between visual attention and task-relevant cues. Experiments in both the CARLA simulator and real-robot manipulation tasks demonstrate that AutoFocus-IL not only outperforms standard behavior cloning but also surpasses state-of-the-art baselines that assume privileged access to human supervision, such as gaze data. Code, datasets, and trained policy videos are available at https://AutoFocus-IL.github.io/.
comment: 8 pages, 6 figures. Code and datasets available at http://autofocus-il.github.io/
♻ ☆ Personalized Generative Low-light Image Denoising and Enhancement
Modern cameras' performance in low-light conditions remains suboptimal due to fundamental limitations in photon shot noise and sensor read noise. Generative image restoration methods have shown promising results compared to traditional approaches, but they suffer from hallucinatory content generation when the signal-to-noise ratio (SNR) is low. Leveraging the availability of personalized photo galleries of the users, we introduce Diffusion-based Personalized Generative Denoising (DiffPGD), a new approach that builds a customized diffusion model for individual users. Our key innovation lies in the development of an identity-consistent physical buffer that extracts the physical attributes of the person from the gallery. This ID-consistent physical buffer serves as a robust prior that can be seamlessly integrated into the diffusion model to restore degraded images without the need for fine-tuning. Over a wide range of low-light testing scenarios, we show that DiffPGD achieves superior image denoising and enhancement performance compared to existing diffusion-based denoising approaches. Our project page can be found at \href{https://genai-restore.github.io/DiffPGD/}{\textcolor{purple}{\textbf{https://genai-restore.github.io/DiffPGD/}}}.
♻ ☆ ConceptGuard: Proactive Safety in Text-and-Image-to-Video Generation through Multimodal Risk Detection
Recent progress in video generative models has enabled the creation of high-quality videos from multimodal prompts that combine text and images. While these systems offer enhanced controllability, they also introduce new safety risks, as harmful content can emerge from individual modalities or their interaction. Existing safety methods are often text-only, require prior knowledge of the risk category, or operate as post-generation auditors, struggling to proactively mitigate such compositional, multimodal risks. To address this challenge, we present ConceptGuard, a unified safeguard framework for proactively detecting and mitigating unsafe semantics in multimodal video generation. ConceptGuard operates in two stages: First, a contrastive detection module identifies latent safety risks by projecting fused image-text inputs into a structured concept space; Second, a semantic suppression mechanism steers the generative process away from unsafe concepts by intervening in the prompt's multimodal conditioning. To support the development and rigorous evaluation of this framework, we introduce two novel benchmarks: ConceptRisk, a large-scale dataset for training on multimodal risks, and T2VSafetyBench-TI2V, the first benchmark adapted from T2VSafetyBench for the Text-and-Image-to-Video (TI2V) safety setting. Comprehensive experiments on both benchmarks show that ConceptGuard consistently outperforms existing baselines, achieving state-of-the-art results in both risk detection and safe video generation.Our code is available at https://github.com/Ruize-Ma/ConceptGuard.
♻ ☆ LoRA-based methods on Unet for transfer learning in Subarachnoid Hematoma Segmentation
Aneurysmal subarachnoid hemorrhage (SAH) is a life-threatening neurological emergency with mortality rates exceeding 30%. Transfer learning from related hematoma types represents a potentially valuable but underexplored approach. Although Unet architectures remain the gold standard for medical image segmentation due to their effectiveness on limited datasets, Low-Rank Adaptation (LoRA) methods for parameter-efficient transfer learning have been rarely applied to convolutional neural networks in medical imaging contexts. We implemented a Unet architecture pre-trained on computed tomography scans from 124 traumatic brain injury patients across multiple institutions, then fine-tuned on 30 aneurysmal SAH patients from the University of Michigan Health System using 3-fold cross-validation. We developed a novel CP-LoRA method based on tensor CP-decomposition and introduced DoRA variants (DoRA-C, convDoRA, CP-DoRA) that decompose weight matrices into magnitude and directional components. We compared these approaches against existing LoRA methods (LoRA-C, convLoRA) and standard fine-tuning strategies across different modules on a multi-view Unet model. LoRA-based methods consistently outperformed standard Unet fine-tuning. Performance varied by hemorrhage volume, with all methods showing improved accuracy for larger volumes. CP-LoRA achieved comparable performance to existing methods while using significantly fewer parameters. Over-parameterization with higher ranks consistently yielded better performance than strictly low-rank adaptations. This study demonstrates that transfer learning between hematoma types is feasible and that LoRA-based methods significantly outperform conventional Unet fine-tuning for aneurysmal SAH segmentation.
♻ ☆ CGCE: Classifier-Guided Concept Erasure in Generative Models
Recent advancements in large-scale generative models have enabled the creation of high-quality images and videos, but have also raised significant safety concerns regarding the generation of unsafe content. To mitigate this, concept erasure methods have been developed to remove undesirable concepts from pre-trained models. However, existing methods remain vulnerable to adversarial attacks that can regenerate the erased content. Moreover, achieving robust erasure often degrades the model's generative quality for safe, unrelated concepts, creating a difficult trade-off between safety and performance. To address this challenge, we introduce Classifier-Guided Concept Erasure (CGCE), an efficient plug-and-play framework that provides robust concept erasure for diverse generative models without altering their original weights. CGCE uses a lightweight classifier operating on text embeddings to first detect and then refine prompts containing undesired concepts. This approach is highly scalable, allowing for multi-concept erasure by aggregating guidance from several classifiers. By modifying only unsafe embeddings at inference time, our method prevents harmful content generation while preserving the model's original quality on benign prompts. Extensive experiments show that CGCE achieves state-of-the-art robustness against a wide range of red-teaming attacks. Our approach also maintains high generative utility, demonstrating a superior balance between safety and performance. We showcase the versatility of CGCE through its successful application to various modern T2I and T2V models, establishing it as a practical and effective solution for safe generative AI.
comment: 26 pages, 17 figures
♻ ☆ ExDDV: A New Dataset for Explainable Deepfake Detection in Video
The ever growing realism and quality of generated videos makes it increasingly harder for humans to spot deepfake content, who need to rely more and more on automatic deepfake detectors. However, deepfake detectors are also prone to errors, and their decisions are not explainable, leaving humans vulnerable to deepfake-based fraud and misinformation. To this end, we introduce ExDDV, the first dataset and benchmark for Explainable Deepfake Detection in Video. ExDDV comprises around 5.4K real and deepfake videos that are manually annotated with text descriptions (to explain the artifacts) and clicks (to point out the artifacts). We evaluate a number of vision-language models on ExDDV, performing experiments with various fine-tuning and in-context learning strategies. Our results show that text and click supervision are both required to develop robust explainable models for deepfake videos, which are able to localize and describe the observed artifacts. Our novel dataset and code to reproduce the results are available at https://github.com/vladhondru25/ExDDV.
comment: Accepted at WACV 2026
♻ ☆ When to Think and When to Look: Uncertainty-Guided Lookback
Test-time thinking (that is, generating explicit intermediate reasoning chains) is known to boost performance in large language models and has recently shown strong gains for large vision language models (LVLMs). However, despite these promising results, there is still no systematic analysis of how thinking actually affects visual reasoning. We provide the first such analysis with a large scale, controlled comparison of thinking for LVLMs, evaluating ten variants from the InternVL3.5 and Qwen3-VL families on MMMU-val under generous token budgets and multi pass decoding. We show that more thinking is not always better; long chains often yield long wrong trajectories that ignore the image and underperform the same models run in standard instruct mode. A deeper analysis reveals that certain short lookback phrases, which explicitly refer back to the image, are strongly enriched in successful trajectories and correlate with better visual grounding. Building on this insight, we propose uncertainty guided lookback, a training free decoding strategy that combines an uncertainty signal with adaptive lookback prompts and breadth search. Our method improves overall MMMU performance, delivers the largest gains in categories where standard thinking is weak, and outperforms several strong decoding baselines, setting a new state of the art under fixed model families and token budgets. We further show that this decoding strategy generalizes, yielding consistent improvements on five additional benchmarks, including two broad multimodal suites and math focused visual reasoning datasets.
♻ ☆ IVY-FAKE: A Unified Explainable Framework and Benchmark for Image and Video AIGC Detection
The rapid development of Artificial Intelligence Generated Content (AIGC) techniques has enabled the creation of high-quality synthetic content, but it also raises significant security concerns. Current detection methods face two major limitations: (1) the lack of multidimensional explainable datasets for generated images and videos. Existing open-source datasets (e.g., WildFake, GenVideo) rely on oversimplified binary annotations, which restrict the explainability and trustworthiness of trained detectors. (2) Prior MLLM-based forgery detectors (e.g., FakeVLM) exhibit insufficiently fine-grained interpretability in their step-by-step reasoning, which hinders reliable localization and explanation. To address these challenges, we introduce Ivy-Fake, the first large-scale multimodal benchmark for explainable AIGC detection. It consists of over 106K richly annotated training samples (images and videos) and 5,000 manually verified evaluation examples, sourced from multiple generative models and real world datasets through a carefully designed pipeline to ensure both diversity and quality. Furthermore, we propose Ivy-xDetector, a reinforcement learning model based on Group Relative Policy Optimization (GRPO), capable of producing explainable reasoning chains and achieving robust performance across multiple synthetic content detection benchmarks. Extensive experiments demonstrate the superiority of our dataset and confirm the effectiveness of our approach. Notably, our method improves performance on GenImage from 86.88% to 96.32%, surpassing prior state-of-the-art methods by a clear margin.
comment: 30 pages
♻ ☆ FastGS: Training 3D Gaussian Splatting in 100 Seconds
The dominant 3D Gaussian splatting (3DGS) acceleration methods fail to properly regulate the number of Gaussians during training, causing redundant computational time overhead. In this paper, we propose FastGS, a novel, simple, and general acceleration framework that fully considers the importance of each Gaussian based on multi-view consistency, efficiently solving the trade-off between training time and rendering quality. We innovatively design a densification and pruning strategy based on multi-view consistency, dispensing with the budgeting mechanism. Extensive experiments on Mip-NeRF 360, Tanks & Temples, and Deep Blending datasets demonstrate that our method significantly outperforms the state-of-the-art methods in training speed, achieving a 3.32$\times$ training acceleration and comparable rendering quality compared with DashGaussian on the Mip-NeRF 360 dataset and a 15.45$\times$ acceleration compared with vanilla 3DGS on the Deep Blending dataset. We demonstrate that FastGS exhibits strong generality, delivering 2-7$\times$ training acceleration across various tasks, including dynamic scene reconstruction, surface reconstruction, sparse-view reconstruction, large-scale reconstruction, and simultaneous localization and mapping. The project page is available at https://fastgs.github.io/
comment: Project page: https://fastgs.github.io/
♻ ☆ Scalable FPGA Framework for Real-Time Denoising in High-Throughput Imaging: A DRAM-Optimized Pipeline using High-Level Synthesis
High-throughput imaging workflows, such as Parallel Rapid Imaging with Spectroscopic Mapping (PRISM), generate data at rates that exceed conventional real-time processing capabilities. We present a scalable FPGA-based preprocessing pipeline for real-time denoising, implemented via High-Level Synthesis (HLS) and optimized for DRAM-backed buffering. Our architecture performs frame subtraction and averaging directly on streamed image data, minimizing latency through burst-mode AXI4 interfaces. The resulting kernel operates below the inter-frame interval, enabling inline denoising and reducing dataset size for downstream CPU/GPU analysis. Validated under PRISM-scale acquisition, this modular FPGA framework offers a practical solution for latency-sensitive imaging workflows in spectroscopy and microscopy.
comment: FPGA-based denoising pipeline for PRISM-scale imaging. Real-time frame subtraction and averaging via burst-mode AXI4 and DRAM buffering. Benchmarked against CPU/GPU workflows; scalable across multi-bank FPGA setups. Acknowledgements revised for consistency with journal submission; scientific content remains unchanged
♻ ☆ CardioComposer: Leveraging Differentiable Geometry for Compositional Control of Anatomical Diffusion Models
Generative models of 3D cardiovascular anatomy can synthesize informative structures for clinical research and medical device evaluation, but face a trade-off between geometric controllability and realism. We propose CardioComposer: a programmable, inference-time framework for generating multi-class anatomical label maps based on interpretable ellipsoidal primitives. These primitives represent geometric attributes such as the size, shape, and position of discrete substructures. We specifically develop differentiable measurement functions based on voxel-wise geometric moments, enabling loss-based gradient guidance during diffusion model sampling. We demonstrate that these losses can constrain individual geometric attributes in a disentangled manner and provide compositional control over multiple substructures. Finally, we show that our method is compatible with a wide array of anatomical systems containing non-convex substructures, spanning cardiac, vascular, and skeletal organs.
comment: 10 pages, 16 figures
♻ ☆ Segmentation-Aware Generative Reinforcement Network (GRN) for Tissue Layer Segmentation in 3-D Ultrasound Images for Chronic Low-back Pain (cLBP) Assessment
We introduce a novel segmentation-aware joint training framework called generative reinforcement network (GRN) that integrates segmentation loss feedback to optimize both image generation and segmentation performance in a single stage. An image enhancement technique called segmentation-guided enhancement (SGE) is also developed, where the generator produces images tailored specifically for the segmentation model. Two variants of GRN were also developed, including GRN for sample-efficient learning (GRN-SEL) and GRN for semi-supervised learning (GRN-SSL). GRN's performance was evaluated using a dataset of 69 fully annotated 3D ultrasound scans from 29 subjects. The annotations included six anatomical structures: dermis, superficial fat, superficial fascial membrane (SFM), deep fat, deep fascial membrane (DFM), and muscle. Our results show that GRN-SEL with SGE reduces labeling efforts by up to 70% while achieving a 1.98% improvement in the Dice Similarity Coefficient (DSC) compared to models trained on fully labeled datasets. GRN-SEL alone reduces labeling efforts by 60%, GRN-SSL with SGE decreases labeling requirements by 70%, and GRN-SSL alone by 60%, all while maintaining performance comparable to fully supervised models. These findings suggest the effectiveness of the GRN framework in optimizing segmentation performance with significantly less labeled data, offering a scalable and efficient solution for ultrasound image analysis and reducing the burdens associated with data annotation.
♻ ☆ OceanGym: A Benchmark Environment for Underwater Embodied Agents
We introduce OceanGym, the first comprehensive benchmark for ocean underwater embodied agents, designed to advance AI in one of the most demanding real-world environments. Unlike terrestrial or aerial domains, underwater settings present extreme perceptual and decision-making challenges, including low visibility, dynamic ocean currents, making effective agent deployment exceptionally difficult. OceanGym encompasses eight realistic task domains and a unified agent framework driven by Multi-modal Large Language Models (MLLMs), which integrates perception, memory, and sequential decision-making. Agents are required to comprehend optical and sonar data, autonomously explore complex environments, and accomplish long-horizon objectives under these harsh conditions. Extensive experiments reveal substantial gaps between state-of-the-art MLLM-driven agents and human experts, highlighting the persistent difficulty of perception, planning, and adaptability in ocean underwater environments. By providing a high-fidelity, rigorously designed platform, OceanGym establishes a testbed for developing robust embodied AI and transferring these capabilities to real-world autonomous ocean underwater vehicles, marking a decisive step toward intelligent agents capable of operating in one of Earth's last unexplored frontiers. The code and data are available at https://github.com/OceanGPT/OceanGym.
comment: Work in progress
♻ ☆ Target-aware Image Editing via Cycle-consistent Constraints
Recent advances in pre-trained text-to-image flow models have enabled remarkable progress in text-based image editing. Mainstream approaches always adopt a corruption-then-restoration paradigm, where the source image is first corrupted into an ``intermediate state'' and then restored to the target image under the prompt guidance. However, current methods construct this intermediate state in a target-agnostic manner, i.e., they primarily focus on realizing source image reconstruction while neglecting the semantic gaps towards the specific editing target. This design inherently results in limited editability or inconsistency when the desired modifications substantially deviate from the source. In this paper, we argue that the intermediate state should be target-aware, i.e., selectively corrupting editing-relevant contents while preserving editing-irrelevant ones. To this end, we propose FlowCycle, a novel inversion-free and flow-based editing framework that parameterizes corruption with learnable noises and optimizes them through a cycle-consistent process. By iteratively editing the source to the target and recovering back to the source with dual consistency constraints, FlowCycle learns to produce a target-aware intermediate state, enabling faithful modifications while preserving source consistency. Extensive ablations have demonstrated that FlowCycle achieves superior editing quality and consistency over state-of-the-art methods.
♻ ☆ CLIP-IT: CLIP-based Pairing for Histology Images Classification
Multimodal learning has shown promise in medical imaging, combining complementary modalities like images and text. Vision-language models (VLMs) capture rich diagnostic cues but often require large paired datasets and prompt- or text-based inference, limiting their practicality due to annotation cost, privacy, and compute demands. Crucially, available free unpaired external text, like pathology reports, can still provide complementary diagnostic cues if semantically relevant content is retrievable per image. To address this, we introduce CLIP-IT, a novel framework that relies on rich unpaired text reports. Specifically, CLIP-IT uses a CLIP model pre-trained on histology image-text pairs from a separate dataset to retrieve the most relevant unpaired textual report for each image in the downstream unimodal dataset. These reports, sourced from the same disease domain and tissue type, form pseudo-pairs that reflect shared clinical semantics rather than exact alignment. Knowledge from these texts is distilled into the vision model during training, while LoRA-based adaptation mitigates the semantic gap between unaligned modalities. At inference, only the vision model is used, keeping overhead low while still benefiting from multimodal training without requiring paired data in the downstream dataset. Experiments on histology image datasets confirm that CLIP-IT consistently improves classification accuracy over both unimodal and multimodal CLIP-based baselines in most cases, without the burden of per-dataset paired annotation or inference-time complexity.
♻ ☆ LightMem: Lightweight and Efficient Memory-Augmented Generation
Despite their remarkable capabilities, Large Language Models (LLMs) struggle to effectively leverage historical interaction information in dynamic and complex environments. Memory systems enable LLMs to move beyond stateless interactions by introducing persistent information storage, retrieval, and utilization mechanisms. However, existing memory systems often introduce substantial time and computational overhead. To this end, we introduce a new memory system called LightMem, which strikes a balance between the performance and efficiency of memory systems. Inspired by the Atkinson-Shiffrin model of human memory, LightMem organizes memory into three complementary stages. First, cognition-inspired sensory memory rapidly filters irrelevant information through lightweight compression and groups information according to their topics. Next, topic-aware short-term memory consolidates these topic-based groups, organizing and summarizing content for more structured access. Finally, long-term memory with sleep-time update employs an offline procedure that decouples consolidation from online inference. On LongMemEval and LoCoMo, using GPT and Qwen backbones, LightMem consistently surpasses strong baselines, improving QA accuracy by up to 7.7% / 29.3%, reducing total token usage by up to 38x / 20.9x and API calls by up to 30x / 55.5x, while purely online test-time costs are even lower, achieving up to 106x / 117x token reduction and 159x / 310x fewer API calls. The code is available at https://github.com/zjunlp/LightMem.
comment: Work in progress
♻ ☆ Harnessing Vision-Language Models for Time Series Anomaly Detection AAAI 2026
Time-series anomaly detection (TSAD) has played a vital role in a variety of fields, including healthcare, finance, and sensor-based condition monitoring. Prior methods, which mainly focus on training domain-specific models on numerical data, lack the visual-temporal understanding capacity that human experts have to identify contextual anomalies. To fill this gap, we explore a solution based on vision language models (VLMs). Recent studies have shown the ability of VLMs for visual understanding tasks, yet their direct application to time series has fallen short on both accuracy and efficiency. To harness the power of VLMs for TSAD, we propose a two-stage solution, with (1) ViT4TS, a vision-screening stage built on a relatively lightweight pre-trained vision encoder, which leverages 2D time series representations to accurately localize candidate anomalies; (2) VLM4TS, a VLM-based stage that integrates global temporal context and VLM's visual understanding capacity to refine the detection upon the candidates provided by ViT4TS. We show that without any time-series training, VLM4TS outperforms time-series pre-trained and from-scratch baselines in most cases, yielding a 24.6% improvement in F1-max score over the best baseline. Moreover, VLM4TS also consistently outperforms existing language model-based TSAD methods and is on average 36x more efficient in token usage.
comment: Accepted at AAAI 2026 (Oral)
♻ ☆ Detecting Cultural Differences in News Video Thumbnails via Computational Aesthetics
We propose a two-step approach for detecting differences in the style of images across sources of differing cultural affinity, where images are first clustered into finer visual themes based on content before their aesthetic features are compared. We test this approach on 2,400 YouTube video thumbnails taken equally from two U.S. and two Chinese YouTube channels, and relating equally to COVID-19 and the Ukraine conflict. Our results suggest that while Chinese thumbnails are less formal and more candid, U.S. channels tend to use more deliberate, proper photographs as thumbnails. In particular, U.S. thumbnails are less colorful, more saturated, darker, more finely detailed, less symmetric, sparser, less varied, and more up close and personal than Chinese thumbnails. We suggest that most of these differences reflect cultural preferences, and that our methods and observations can serve as a baseline against which suspected visual propaganda can be computed and compared.
comment: ICWSM'24 Workshop
♻ ☆ RobustMerge: Parameter-Efficient Model Merging for MLLMs with Direction Robustness NeurIPS 2025
Fine-tuning pre-trained models with custom data leads to numerous expert models on specific tasks. Merging models into one universal model to empower multi-task ability refraining from data leakage has gained popularity. With the expansion in data and model size, parameter-efficient tuning becomes the common practice for obtaining task-specific models efficiently. However, few methods are dedicated to efficient merging, and existing methods designed for full fine-tuning merging fail under efficient merging. To address the issue, we analyze from low-rank decomposition and reveal that direction robustness during merging is crucial for merging efficient modules. We furthermore uncover that compensating for the gap between stark singular values contributes to direction robustness. Therefore, we propose RobustMerge, a training-free parameter-efficient merging method with complementary parameter adaptation to maintain direction robustness. Specifically, we (1) prune parameters and scale coefficients from inter-parameter relation for singular values to maintain direction stability away from task interference, and (2) perform cross-task normalization to enhance unseen task generalization. We establish a benchmark consisting of diverse multimodal tasks, on which we conduct experiments to certify the outstanding performance and generalizability of our method. Additional studies and extensive analyses further showcase the effectiveness. Code is available at https://github.com/AuroraZengfh/RobustMerge.
comment: NeurIPS 2025 (Spotlight) Fix some typos
♻ ☆ Adversarial Robustness for Unified Multi-Modal Encoders via Efficient Calibration
Recent unified multi-modal encoders align a wide range of modalities into a shared representation space, enabling diverse cross-modal tasks. Despite their impressive capabilities, the robustness of these models under adversarial perturbations remains underexplored, which is a critical concern for safety-sensitive applications. In this work, we present the first comprehensive study of adversarial vulnerability in unified multi-modal encoders. We find that even mild adversarial perturbations lead to substantial performance drops across all modalities. Non-visual inputs, such as audio and point clouds, are especially fragile, while visual inputs like images and videos also degrade significantly. To address this, we propose an efficient adversarial calibration framework that improves robustness across modalities without modifying pretrained encoders or semantic centers, ensuring compatibility with existing foundation models. Our method introduces modality-specific projection heads trained solely on adversarial examples, while keeping the backbone and embeddings frozen. We explore three training objectives: fixed-center cross-entropy, clean-to-adversarial L2 alignment, and clean-adversarial InfoNCE, and we introduce a regularization strategy to ensure modality-consistent alignment under attack. Experiments on six modalities and three Bind-style models show that our method improves adversarial robustness by up to 47.3 percent at epsilon = 4/255, while preserving or even improving clean zero-shot and retrieval performance with less than 1 percent trainable parameters.
♻ ☆ LikePhys: Evaluating Intuitive Physics Understanding in Video Diffusion Models via Likelihood Preference
Intuitive physics understanding in video diffusion models plays an essential role in building general-purpose physically plausible world simulators, yet accurately evaluating such capacity remains a challenging task due to the difficulty in disentangling physics correctness from visual appearance in generation. To the end, we introduce LikePhys, a training-free method that evaluates intuitive physics in video diffusion models by distinguishing physically valid and impossible videos using the denoising objective as an ELBO-based likelihood surrogate on a curated dataset of valid-invalid pairs. By testing on our constructed benchmark of twelve scenarios spanning over four physics domains, we show that our evaluation metric, Plausibility Preference Error (PPE), demonstrates strong alignment with human preference, outperforming state-of-the-art evaluator baselines. We then systematically benchmark intuitive physics understanding in current video diffusion models. Our study further analyses how model design and inference settings affect intuitive physics understanding and highlights domain-specific capacity variations across physical laws. Empirical results show that, despite current models struggling with complex and chaotic dynamics, there is a clear trend of improvement in physics understanding as model capacity and inference settings scale.
comment: 22 pages, 9 figures
♻ ☆ HoliSafe: Holistic Safety Benchmarking and Modeling for Vision-Language Model
Despite emerging efforts to enhance the safety of Vision-Language Models (VLMs), current approaches face two main shortcomings. 1) Existing safety-tuning datasets and benchmarks only partially consider how image-text interactions can yield harmful content, often overlooking contextually unsafe outcomes from seemingly benign pairs. This narrow coverage leaves VLMs vulnerable to jailbreak attacks in unseen configurations. 2) Prior methods rely primarily on data-centric tuning, with limited architectural innovations to intrinsically strengthen safety. We address these gaps by introducing a holistic safety dataset and benchmark, \textbf{HoliSafe}, that spans all five safe/unsafe image-text combinations, providing a more robust basis for both training and evaluation (HoliSafe-Bench). We further propose a novel modular framework for enhancing VLM safety with a visual guard module (VGM) designed to assess the harmfulness of input images for VLMs. This module endows VLMs with a dual functionality: they not only learn to generate safer responses but can also provide an interpretable harmfulness classification to justify their refusal decisions. A significant advantage of this approach is its modularity; the VGM is designed as a plug-in component, allowing for seamless integration with diverse pre-trained VLMs across various scales. Experiments show that Safe-VLM with VGM, trained on our HoliSafe, achieves state-of-the-art safety performance across multiple VLM benchmarks. Additionally, the HoliSafe-Bench itself reveals critical vulnerabilities in existing VLM models. We hope that HoliSafe and VGM will spur further research into robust and interpretable VLM safety, expanding future avenues for multimodal alignment.
comment: Project page: https://youngwanlee.github.io/holisafe
♻ ☆ StrCGAN: A Generative Framework for Stellar Image Restoration
We introduce StrCGAN (Stellar Cyclic GAN), a generative model designed to enhance low-resolution astrophotography images. Our goal is to reconstruct high fidelity ground truth like representations of stellar objects, a task that is challenging due to the limited resolution and quality of small-telescope observations such as the MobilTelesco dataset. Traditional models such as CycleGAN provide a foundation for image to image translation but often distort the morphology of stars and produce barely resembling images. To overcome these limitations, we extend the CycleGAN framework with some key innovations: multi-spectral fusion to align optical and near infrared (NIR) domains, and astrophysical regularization modules to preserve stellar morphology. Ground truth references from multi-mission all sky surveys spanning optical to NIR guide the training process, ensuring that reconstructions remain consistent across spectral bands. Together, these components allow StrCGAN to generate reconstructions that are visually sharper outperforming standard GAN models in the task of astrophysical image enhancement.
♻ ☆ Are Image-to-Video Models Good Zero-Shot Image Editors?
Large-scale video diffusion models show strong world simulation and temporal reasoning abilities, but their use as zero-shot image editors remains underexplored. We introduce IF-Edit, a tuning-free framework that repurposes pretrained image-to-video diffusion models for instruction-driven image editing. IF-Edit addresses three key challenges: prompt misalignment, redundant temporal latents, and blurry late-stage frames. It includes (1) a chain-of-thought prompt enhancement module that transforms static editing instructions into temporally grounded reasoning prompts; (2) a temporal latent dropout strategy that compresses frame latents after the expert-switch point, accelerating denoising while preserving semantic and temporal coherence; and (3) a self-consistent post-refinement step that sharpens late-stage frames using a short still-video trajectory. Experiments on four public benchmarks, covering non-rigid editing, physical and temporal reasoning, and general instruction edits, show that IF-Edit performs strongly on reasoning-centric tasks while remaining competitive on general-purpose edits. Our study provides a systematic view of video diffusion models as image editors and highlights a simple recipe for unified video-image generative reasoning.
comment: technical report
Machine Learning 269
☆ Concept-Aware Batch Sampling Improves Language-Image Pretraining
What data should a vision-language model be trained on? To answer this question, many data curation efforts center on the quality of a dataset. However, most of these existing methods are (i) offline, i.e. they produce a static dataset from a set of predetermined filtering criteria, and (ii) concept-agnostic, i.e. they use model-based filters which induce additional data biases. In this work, we go beyond such offline, concept-agnostic methods and advocate for more flexible, task-adaptive online concept-based curation. Our first contribution is DataConcept, a collection of 128M web-crawled image-text pairs annotated with fine-grained details about their concept composition. Building on DataConcept, we introduce Concept-Aware Batch Sampling (CABS), a simple yet effective batch sampling framework that flexibly constructs batches on-the-fly based on specific target distributions. We propose two variants: (i) Diversity Maximization (CABS-DM) to curate batches with a broad coverage of available concepts, and (ii) Frequency Maximization (CABS-FM) to curate batches with high object multiplicity. Through extensive evaluations across 28 benchmarks, we demonstrate that our CABS method significantly benefits CLIP/SigLIP model classes and yields highly performant models. Overall, CABS represents a strong open-source alternative to proprietary online data curation algorithms, enabling practitioners to define custom concept distributions that optimize for specific downstream tasks.
comment: Tech Report
☆ Unleashing the Power of Vision-Language Models for Long-Tailed Multi-Label Visual Recognition
Long-tailed multi-label visual recognition poses a significant challenge, as images typically contain multiple labels with highly imbalanced class distributions, leading to biased models that favor head classes while underperforming on tail classes. Recent efforts have leveraged pre-trained vision-language models, such as CLIP, alongside long-tailed learning techniques to exploit rich visual-textual priors for improved performance. However, existing methods often derive semantic inter-class relationships directly from imbalanced datasets, resulting in unreliable correlations for tail classes due to data scarcity. Moreover, CLIP's zero-shot paradigm is optimized for single-label image-text matching, making it suboptimal for multi-label tasks. To address these issues, we propose the correlation adaptation prompt network (CAPNET), a novel end-to-end framework that explicitly models label correlations from CLIP's textual encoder. The framework incorporates a graph convolutional network for label-aware propagation and learnable soft prompts for refined embeddings. It utilizes a distribution-balanced Focal loss with class-aware re-weighting for optimized training under imbalance. Moreover, it improves generalization through test-time ensembling and realigns visual-textual modalities using parameter-efficient fine-tuning to avert overfitting on tail classes without compromising head class performance. Extensive experiments and ablation studies on benchmarks including VOC-LT, COCO-LT, and NUS-WIDE demonstrate that CAPNET achieves substantial improvements over state-of-the-art methods, validating its effectiveness for real-world long-tailed multi-label visual recognition.
☆ MotionV2V: Editing Motion in a Video
While generative video models have achieved remarkable fidelity and consistency, applying these capabilities to video editing remains a complex challenge. Recent research has explored motion controllability as a means to enhance text-to-video generation or image animation; however, we identify precise motion control as a promising yet under-explored paradigm for editing existing videos. In this work, we propose modifying video motion by directly editing sparse trajectories extracted from the input. We term the deviation between input and output trajectories a "motion edit" and demonstrate that this representation, when coupled with a generative backbone, enables powerful video editing capabilities. To achieve this, we introduce a pipeline for generating "motion counterfactuals", video pairs that share identical content but distinct motion, and we fine-tune a motion-conditioned video diffusion architecture on this dataset. Our approach allows for edits that start at any timestamp and propagate naturally. In a four-way head-to-head user study, our model achieves over 65 percent preference against prior work. Please see our project page: https://ryanndagreat.github.io/MotionV2V
Latent Collaboration in Multi-Agent Systems
Multi-agent systems (MAS) extend large language models (LLMs) from independent single-model reasoning to coordinative system-level intelligence. While existing LLM agents depend on text-based mediation for reasoning and communication, we take a step forward by enabling models to collaborate directly within the continuous latent space. We introduce LatentMAS, an end-to-end training-free framework that enables pure latent collaboration among LLM agents. In LatentMAS, each agent first performs auto-regressive latent thoughts generation through last-layer hidden embeddings. A shared latent working memory then preserves and transfers each agent's internal representations, ensuring lossless information exchange. We provide theoretical analyses establishing that LatentMAS attains higher expressiveness and lossless information preservation with substantially lower complexity than vanilla text-based MAS. In addition, empirical evaluations across 9 comprehensive benchmarks spanning math and science reasoning, commonsense understanding, and code generation show that LatentMAS consistently outperforms strong single-model and text-based MAS baselines, achieving up to 14.6% higher accuracy, reducing output token usage by 70.8%-83.7%, and providing 4x-4.3x faster end-to-end inference. These results demonstrate that our new latent collaboration framework enhances system-level reasoning quality while offering substantial efficiency gains without any additional training. Code and data are fully open-sourced at https://github.com/Gen-Verse/LatentMAS.
comment: Project: https://github.com/Gen-Verse/LatentMAS
☆ Image2Gcode: Image-to-G-code Generation for Additive Manufacturing Using Diffusion-Transformer Model
Mechanical design and manufacturing workflows conventionally begin with conceptual design, followed by the creation of a computer-aided design (CAD) model and fabrication through material-extrusion (MEX) printing. This process requires converting CAD geometry into machine-readable G-code through slicing and path planning. While each step is well established, dependence on CAD modeling remains a major bottleneck: constructing object-specific 3D geometry is slow and poorly suited to rapid prototyping. Even minor design variations typically necessitate manual updates in CAD software, making iteration time-consuming and difficult to scale. To address this limitation, we introduce Image2Gcode, an end-to-end data-driven framework that bypasses the CAD stage and generates printer-ready G-code directly from images and part drawings. Instead of relying on an explicit 3D model, a hand-drawn or captured 2D image serves as the sole input. The framework first extracts slice-wise structural cues from the image and then employs a denoising diffusion probabilistic model (DDPM) over G-code sequences. Through iterative denoising, the model transforms Gaussian noise into executable print-move trajectories with corresponding extrusion parameters, establishing a direct mapping from visual input to native toolpaths. By producing structured G-code directly from 2D imagery, Image2Gcode eliminates the need for CAD or STL intermediates, lowering the entry barrier for additive manufacturing and accelerating the design-to-fabrication cycle. This approach supports on-demand prototyping from simple sketches or visual references and integrates with upstream 2D-to-3D reconstruction modules to enable an automated pipeline from concept to physical artifact. The result is a flexible, computationally efficient framework that advances accessibility in design iteration, repair workflows, and distributed manufacturing.
☆ MapReduce LoRA: Advancing the Pareto Front in Multi-Preference Optimization for Generative Models
Reinforcement learning from human feedback (RLHF) with reward models has advanced alignment of generative models to human aesthetic and perceptual preferences. However, jointly optimizing multiple rewards often incurs an alignment tax, improving one dimension while degrading others. To address this, we introduce two complementary methods: MapReduce LoRA and Reward-aware Token Embedding (RaTE). MapReduce LoRA trains preference-specific LoRA experts in parallel and iteratively merges them to refine a shared base model; RaTE learns reward-specific token embeddings that compose at inference for flexible preference control. Experiments on Text-to-Image generation (Stable Diffusion 3.5 Medium and FLUX.1-dev) show improvements of 36.1%, 4.6%, and 55.7%, and 32.7%, 4.3%, and 67.1% on GenEval, PickScore, and OCR, respectively. On Text-to-Video generation (HunyuanVideo), visual and motion quality improve by 48.1% and 90.0%, respectively. On the language task, Helpful Assistant, with Llama-2 7B, helpful and harmless improve by 43.4% and 136.7%, respectively. Our framework sets a new state-of-the-art multi-preference alignment recipe across modalities.
☆ ROOT: Robust Orthogonalized Optimizer for Neural Network Training
The optimization of large language models (LLMs) remains a critical challenge, particularly as model scaling exacerbates sensitivity to algorithmic imprecision and training instability. Recent advances in optimizers have improved convergence efficiency through momentum orthogonalization, but suffer from two key robustness limitations: dimensional fragility in orthogonalization precision and vulnerability to outlier-induced noise. To address these robustness challenges, we introduce ROOT, a Robust Orthogonalized Optimizer that enhances training stability through dual robustness mechanisms. First, we develop a dimension-robust orthogonalization scheme using adaptive Newton iterations with fine-grained coefficients tailored to specific matrix sizes, ensuring consistent precision across diverse architectural configurations. Second, we introduce an optimization-robust framework via proximal optimization that suppresses outlier noise while preserving meaningful gradient directions. Extensive experiments demonstrate that ROOT achieves significantly improved robustness, with faster convergence and superior final performance compared to both Muon and Adam-based optimizers, particularly in noisy and non-convex scenarios. Our work establishes a new paradigm for developing robust and precise optimizers capable of handling the complexities of modern large-scale model training. The code will be available at https://github.com/huawei-noah/noah-research/tree/master/ROOT.
☆ DiFR: Inference Verification Despite Nondeterminism
As demand for LLM inference grows, it is becoming increasingly important that providers and their customers can verify that inference processes are performed correctly, without errors or tampering. However, re-running the same inference process twice often leads to different results due to benign numerical noise, making it difficult to distinguish legitimate variation from actual problems. To address this problem, we introduce Token-DiFR (Token-Divergence-From-Reference), a method for verifying inference outputs by comparing generated tokens against predictions made by a trusted reference implementation conditioned on the same random seed. Sampling seed synchronization tightly constrains valid outputs, leaving providers minimal room to deviate from correct inference, which allows output tokens themselves to serve as auditable evidence of correctness at zero additional cost to the provider. Token-DiFR reliably identifies sampling errors, simulated bugs, and model quantization, detecting 4-bit quantization with AUC $>$ 0.999 within 300 output tokens. For applications requiring sample-efficient forward-pass verification, we additionally introduce Activation-DiFR, a scheme that uses random orthogonal projections to compress activations into compact fingerprints for subsequent verification. Activation-DiFR detects 4-bit quantization with AUC $>$ 0.999 using just 2 output tokens, while reducing communication overhead by 25-75% relative to existing methods. We release an open-source integration with vLLM to accelerate practical deployment of verifiable inference.
☆ Can Vibe Coding Beat Graduate CS Students? An LLM vs. Human Coding Tournament on Market-driven Strategic Planning
The rapid proliferation of Large Language Models (LLMs) has revolutionized AI-assisted code generation. This rapid development of LLMs has outpaced our ability to properly benchmark them. Prevailing benchmarks emphasize unit-test pass rates and syntactic correctness. Such metrics understate the difficulty of many real-world problems that require planning, optimization, and strategic interaction. We introduce a multi-agent reasoning-driven benchmark based on a real-world logistics optimization problem (Auction, Pickup, and Delivery Problem) that couples competitive auctions with capacity-constrained routing. The benchmark requires building agents that can (i) bid strategically under uncertainty and (ii) optimize planners that deliver tasks while maximizing profit. We evaluate 40 LLM-coded agents (by a wide range of state-of-the-art LLMs under multiple prompting methodologies, including vibe coding) against 17 human-coded agents developed before the advent of LLMs. Our results over 12 double all-play-all tournaments and $\sim 40$k matches demonstrate (i) a clear superiority of human(graduate students)-coded agents: the top 5 spots are consistently won by human-coded agents, (ii) the majority of LLM-coded agents (33 out of 40) are beaten by very simple baselines, and (iii) given the best human solution as an input and prompted to improve upon, the best performing LLM makes the solution significantly worse instead of improving it. Our results highlight a gap in LLMs' ability to produce code that works competitively in the real-world, and motivate new evaluations that emphasize reasoning-driven code synthesis in real-world scenarios.
☆ Sparse-to-Field Reconstruction via Stochastic Neural Dynamic Mode Decomposition
Many consequential real-world systems, like wind fields and ocean currents, are dynamic and hard to model. Learning their governing dynamics remains a central challenge in scientific machine learning. Dynamic Mode Decomposition (DMD) provides a simple, data-driven approximation, but practical use is limited by sparse/noisy observations from continuous fields, reliance on linear approximations, and the lack of principled uncertainty quantification. To address these issues, we introduce Stochastic NODE-DMD, a probabilistic extension of DMD that models continuous-time, nonlinear dynamics while remaining interpretable. Our approach enables continuous spatiotemporal reconstruction at arbitrary coordinates and quantifies predictive uncertainty. Across four benchmarks, a synthetic setting and three physics-based flows, it surpasses a baseline in reconstruction accuracy when trained from only 10% observation density. It further recovers the dynamical structure by aligning learned modes and continuous-time eigenvalues with ground truth. Finally, on datasets with multiple realizations, our method learns a calibrated distribution over latent dynamics that preserves ensemble variability rather than averaging across regimes. Our code is available at: https://github.com/sedan-group/Stochastic-NODE-DMD
☆ Adaptive Hopfield Network: Rethinking Similarities in Associative Memory
Associative memory models are content-addressable memory systems fundamental to biological intelligence and are notable for their high interpretability. However, existing models evaluate the quality of retrieval based on proximity, which cannot guarantee that the retrieved pattern has the strongest association with the query, failing correctness. We reframe this problem by proposing that a query is a generative variant of a stored memory pattern, and define a variant distribution to model this subtle context-dependent generative process. Consequently, correct retrieval should return the memory pattern with the maximum a posteriori probability of being the query's origin. This perspective reveals that an ideal similarity measure should approximate the likelihood of each stored pattern generating the query in accordance with variant distribution, which is impossible for fixed and pre-defined similarities used by existing associative memories. To this end, we develop adaptive similarity, a novel mechanism that learns to approximate this insightful but unknown likelihood from samples drawn from context, aiming for correct retrieval. We theoretically prove that our proposed adaptive similarity achieves optimal correct retrieval under three canonical and widely applicable types of variants: noisy, masked, and biased. We integrate this mechanism into a novel adaptive Hopfield network (A-Hop), and empirical results show that it achieves state-of-the-art performance across diverse tasks, including memory retrieval, tabular classification, image classification, and multiple instance learning.
☆ How to Purchase Labels? A Cost-Effective Approach Using Active Learning Markets
We introduce and analyse active learning markets as a way to purchase labels, in situations where analysts aim to acquire additional data to improve model fitting, or to better train models for predictive analytics applications. This comes in contrast to the many proposals that already exist to purchase features and examples. By originally formalising the market clearing as an optimisation problem, we integrate budget constraints and improvement thresholds into the label acquisition process. We focus on a single-buyer-multiple-seller setup and propose the use of two active learning strategies (variance based and query-by-committee based), paired with distinct pricing mechanisms. They are compared to a benchmark random sampling approach. The proposed strategies are validated on real-world datasets from two critical application domains: real estate pricing and energy forecasting. Results demonstrate the robustness of our approach, consistently achieving superior performance with fewer labels acquired compared to conventional methods. Our proposal comprises an easy-to-implement practical solution for optimising data acquisition in resource-constrained environments.
comment: Submitted as a preprint. 34 pages, 14 figures, 4 tables
☆ On Evaluating LLM Alignment by Evaluating LLMs as Judges NeurIPS 2025
Alignment with human preferences is an important evaluation aspect of LLMs, requiring them to be helpful, honest, safe, and to precisely follow human instructions. Evaluating large language models' (LLMs) alignment typically involves directly assessing their open-ended responses, requiring human annotators or strong LLM judges. Conversely, LLMs themselves have also been extensively evaluated as judges for assessing alignment. In this work, we examine the relationship between LLMs' generation and evaluation capabilities in aligning with human preferences. To this end, we first conduct a comprehensive analysis of the generation-evaluation consistency (GE-consistency) among various LLMs, revealing a strong correlation between their generation and evaluation capabilities when evaluated by a strong LLM preference oracle. Utilizing this finding, we propose a benchmarking paradigm that measures LLM alignment with human preferences without directly evaluating their generated outputs, instead assessing LLMs in their role as evaluators. Our evaluation shows that our proposed benchmark, AlignEval, matches or surpasses widely used automatic LLM evaluation benchmarks, such as AlpacaEval and Arena-Hard, in capturing human preferences when ranking LLMs. Our study offers valuable insights into the connection between LLMs' generation and evaluation capabilities, and introduces a benchmark that assesses alignment without directly evaluating model outputs.
comment: NeurIPS 2025 Camera Ready
☆ The Driver-Blindness Phenomenon: Why Deep Sequence Models Default to Autocorrelation in Blood Glucose Forecasting
Deep sequence models for blood glucose forecasting consistently fail to leverage clinically informative drivers--insulin, meals, and activity--despite well-understood physiological mechanisms. We term this Driver-Blindness and formalize it via $Δ_{\text{drivers}}$, the performance gain of multivariate models over matched univariate baselines. Across the literature, $Δ_{\text{drivers}}$ is typically near zero. We attribute this to three interacting factors: architectural biases favoring autocorrelation (C1), data fidelity gaps that render drivers noisy and confounded (C2), and physiological heterogeneity that undermines population-level models (C3). We synthesize strategies that partially mitigate Driver-Blindness--including physiological feature encoders, causal regularization, and personalization--and recommend that future work routinely report $Δ_{\text{drivers}}$ to prevent driver-blind models from being considered state-of-the-art.
comment: 7 pages, 1 figure
☆ BrowseSafe: Understanding and Preventing Prompt Injection Within AI Browser Agents
The integration of artificial intelligence (AI) agents into web browsers introduces security challenges that go beyond traditional web application threat models. Prior work has identified prompt injection as a new attack vector for web agents, yet the resulting impact within real-world environments remains insufficiently understood. In this work, we examine the landscape of prompt injection attacks and synthesize a benchmark of attacks embedded in realistic HTML payloads. Our benchmark goes beyond prior work by emphasizing injections that can influence real-world actions rather than mere text outputs, and by presenting attack payloads with complexity and distractor frequency similar to what real-world agents encounter. We leverage this benchmark to conduct a comprehensive empirical evaluation of existing defenses, assessing their effectiveness across a suite of frontier AI models. We propose a multi-layered defense strategy comprising both architectural and model-based defenses to protect against evolving prompt injection attacks. Our work offers a blueprint for designing practical, secure web agents through a defense-in-depth approach.
☆ Latent Diffusion Inversion Requires Understanding the Latent Space
The recovery of training data from generative models (``model inversion'') has been extensively studied for diffusion models in the data domain. The encoder/decoder pair and corresponding latent codes have largely been ignored by inversion techniques applied to latent space generative models, e.g., Latent Diffusion models (LDMs). In this work we describe two key findings: (1) The diffusion model exhibits non-uniform memorization across latent codes, tending to overfit samples located in high-distortion regions of the decoder pullback metric. (2) Even within a single latent code, different dimensions contribute unequally to memorization. We introduce a principled method to rank latent dimensions by their per-dimensional contribution to the decoder pullback metric, identifying those most responsible for memorization. Empirically, removing less-memorizing dimensions when computing attack statistics for score-based membership inference attacker significantly improves performance, with average AUROC gains of 2.7\% and substantial increases in TPR@1\%FPR (6.42\%) across diverse datasets including CIFAR-10, CelebA, ImageNet-1K, Pokémon, MS-COCO, and Flickr. This indicates stronger confidence in identifying members under extremely low false-positive tolerance. Our results highlight the overlooked influence of the auto-encoder geometry on LDM memorization and provide a new perspective for analyzing privacy risks in diffusion-based generative models.
comment: 14 pages, 4 figures, 4 tables
☆ Attention Trajectories as a Diagnostic Axis for Deep Reinforcement Learning
The learning process of a reinforcement learning (RL) agent remains poorly understood beyond the mathematical formulation of its learning algorithm. To address this gap, we introduce attention-oriented metrics (ATOMs) to investigate the development of an RL agent's attention during training. In a controlled experiment, we tested ATOMs on three variations of a Pong game, each designed to teach the agent distinct behaviours, complemented by a behavioural assessment. ATOMs successfully delineate the attention patterns of an agent trained on each game variation, and that these differences in attention patterns translate into differences in the agent's behaviour. Through continuous monitoring of ATOMs during training, we observed that the agent's attention developed in phases, and that these phases were consistent across game variations. Overall, we believe that ATOM could help improve our understanding of the learning processes of RL agents and better understand the relationship between attention and learning.
☆ Anatomica: Localized Control over Geometric and Topological Properties for Anatomical Diffusion Models
We present Anatomica: an inference-time framework for generating multi-class anatomical voxel maps with localized geo-topological control. During generation, we use cuboidal control domains of varying dimensionality, location, and shape to slice out relevant substructures. These local substructures are used to compute differentiable penalty functions that steer the sample towards target constraints. We control geometric features such as size, shape, and position through voxel-wise moments, while topological features such as connected components, loops, and voids are enforced through persistent homology. Lastly, we implement Anatomica for latent diffusion models, where neural field decoders partially extract substructures, enabling the efficient control of anatomical properties. Anatomica applies flexibly across diverse anatomical systems, composing constraints to control complex structures over arbitrary dimensions and coordinate systems, thereby enabling the rational design of synthetic datasets for virtual trials or machine learning workflows.
comment: 8 pages, 10 figures
☆ PaTAS: A Parallel System for Trust Propagation in Neural Networks Using Subjective Logic
Trustworthiness has become a key requirement for the deployment of artificial intelligence systems in safety-critical applications. Conventional evaluation metrics such as accuracy and precision fail to capture uncertainty or the reliability of model predictions, particularly under adversarial or degraded conditions. This paper introduces the \emph{Parallel Trust Assessment System (PaTAS)}, a framework for modeling and propagating trust in neural networks using Subjective Logic (SL). PaTAS operates in parallel with standard neural computation through \emph{Trust Nodes} and \emph{Trust Functions} that propagate input, parameter, and activation trust across the network. The framework defines a \emph{Parameter Trust Update} mechanism to refine parameter reliability during training and an \emph{Inference-Path Trust Assessment (IPTA)} method to compute instance-specific trust at inference. Experiments on real-world and adversarial datasets demonstrate that PaTAS produces interpretable, symmetric, and convergent trust estimates that complement accuracy and expose reliability gaps in poisoned, biased, or uncertain data scenarios. The results show that PaTAS effectively distinguishes between benign and adversarial inputs and identifies cases where model confidence diverges from actual reliability. By enabling transparent and quantifiable trust reasoning within neural architectures, PaTAS provides a principled foundation for evaluating model reliability across the AI lifecycle.
☆ A Tale of Two Geometries: Adaptive Optimizers and Non-Euclidean Descent
Adaptive optimizers can reduce to normalized steepest descent (NSD) when only adapting to the current gradient, suggesting a close connection between the two algorithmic families. A key distinction between their analyses, however, lies in the geometries, e.g., smoothness notions, they rely on. In the convex setting, adaptive optimizers are governed by a stronger adaptive smoothness condition, while NSD relies on the standard notion of smoothness. We extend the theory of adaptive smoothness to the nonconvex setting and show that it precisely characterizes the convergence of adaptive optimizers. Moreover, we establish that adaptive smoothness enables acceleration of adaptive optimizers with Nesterov momentum in the convex setting, a guarantee unattainable under standard smoothness for certain non-Euclidean geometry. We further develop an analogous comparison for stochastic optimization by introducing adaptive gradient variance, which parallels adaptive smoothness and leads to dimension-free convergence guarantees that cannot be achieved under standard gradient variance for certain non-Euclidean geometry.
☆ MSTN: Fast and Efficient Multivariate Time Series Model
Real-world time-series data is highly non stationary and complex in dynamics that operate across multiple timescales, ranging from fast, short-term changes to slow, long-term trends. Most existing models rely on fixed-scale structural priors, such as patch-based tokenization, fixed frequency transformations, or frozen backbone architectures. This often leads to over-regularization of temporal dynamics, which limits their ability to adaptively model the full spectrum of temporal variations and impairs their performance on unpredictable, Sudden, high-magnitude events. To address this, we introduce the Multi-scale Temporal Network (MSTN), a novel deep learning architecture founded on a hierarchical multi-scale and sequence modeling principle. The MSTN framework integrates: (i) a multi-scale convolutional encoder that constructs a hierarchical feature pyramid for local patterns (ii) a sequence modeling component for long-range temporal dependencies. We empirically validate this with BiLSTM and Transformer variants, establishing a flexible foundation for future architectural advancements. and (iii) a gated fusion mechanism augmented with squeeze-and-excitation (SE) and multi-head temporal attention (MHTA) for dynamic, context-aware feature integration. This design enables MSTN to adaptively model temporal patterns from milliseconds to long-range dependencies within a unified framework. Extensive evaluations across time-series long-horizon forecasting, imputation, classification and generalizability study demonstrate that MSTN achieves competitive state-of-the-art (SOTA) performance, showing improvements over contemporary approaches including EMTSF, LLM4TS, HiMTM, TIME-LLM, MTST, SOFTS, iTransformer, TimesNet, and PatchTST. In total, MSTN establishes new SOTA performance on 24 of 32 benchmark datasets, demonstrating its consistent performance across diverse temporal tasks.
comment: 21 pages, 1 figure, 5 tables
☆ Gated Uncertainty-Aware Runtime Dual Invariants for Neural Signal-Controlled Robotics NeurIPS 2025
Safety-critical assistive systems that directly decode user intent from neural signals require rigorous guarantees of reliability and trust. We present GUARDIAN (Gated Uncertainty-Aware Runtime Dual Invariants), a framework for real-time neuro-symbolic verification for neural signal-controlled robotics. GUARDIAN enforces both logical safety and physiological trust by coupling confidence-calibrated brain signal decoding with symbolic goal grounding and dual-layer runtime monitoring. On the BNCI2014 motor imagery electroencephalogram (EEG) dataset with 9 subjects and 5,184 trials, the system performs at a high safety rate of 94-97% even with lightweight decoder architectures with low test accuracies (27-46%) and high ECE confidence miscalibration (0.22-0.41). We demonstrate 1.7x correct interventions in simulated noise testing versus at baseline. The monitor operates at 100Hz and sub-millisecond decision latency, making it practically viable for closed-loop neural signal-based systems. Across 21 ablation results, GUARDIAN exhibits a graduated response to signal degradation, and produces auditable traces from intent, plan to action, helping to link neural evidence to verifiable robot action.
comment: Embodied and Safe-Assured Robotic Systems workshop at NeurIPS 2025
☆ E2E-GRec: An End-to-End Joint Training Framework for Graph Neural Networks and Recommender Systems
Graph Neural Networks (GNNs) have emerged as powerful tools for modeling graph-structured data and have been widely used in recommender systems, such as for capturing complex user-item and item-item relations. However, most industrial deployments adopt a two-stage pipeline: GNNs are first pre-trained offline to generate node embeddings, which are then used as static features for downstream recommender systems. This decoupled paradigm leads to two key limitations: (1) high computational overhead, since large-scale GNN inference must be repeatedly executed to refresh embeddings; and (2) lack of joint optimization, as the gradient from the recommender system cannot directly influence the GNN learning process, causing the GNN to be suboptimally informative for the recommendation task. In this paper, we propose E2E-GRec, a novel end-to-end training framework that unifies GNN training with the recommender system. Our framework is characterized by three key components: (i) efficient subgraph sampling from a large-scale cross-domain heterogeneous graph to ensure training scalability and efficiency; (ii) a Graph Feature Auto-Encoder (GFAE) serving as an auxiliary self-supervised task to guide the GNN to learn structurally meaningful embeddings; and (iii) a two-level feature fusion mechanism combined with Gradnorm-based dynamic loss balancing, which stabilizes graph-aware multi-task end-to-end training. Extensive offline evaluations, online A/B tests (e.g., a +0.133% relative improvement in stay duration, a 0.3171% reduction in the average number of videos a user skips) on large-scale production data, together with theoretical analysis, demonstrate that E2E-GRec consistently surpasses traditional approaches, yielding significant gains across multiple recommendation metrics.
☆ Spatio-Temporal Hierarchical Causal Models
The abundance of fine-grained spatio-temporal data, such as traffic sensor networks, offers vast opportunities for scientific discovery. However, inferring causal relationships from such observational data remains challenging, particularly due to unobserved confounders that are specific to units (e.g., geographical locations) yet influence outcomes over time. Most existing methods for spatio-temporal causal inference assume that all confounders are observed, an assumption that is often violated in practice. In this paper, we introduce Spatio-Temporal Hierarchical Causal Models (ST-HCMs), a novel graphical framework that extends hierarchical causal modeling to the spatio-temporal domain. At the core of our approach is the Spatio-Temporal Collapse Theorem, which shows that a complex ST-HCM converges to a simpler flat causal model as the amount of subunit data increases. This theoretical result enables a general procedure for causal identification, allowing ST-HCMs to recover causal effects even in the presence of unobserved, time-invariant unit-level confounders, a scenario where standard non-hierarchical models fail. We validate the effectiveness of our framework on both synthetic and real-world datasets, demonstrating its potential for robust causal inference in complex dynamic systems.
☆ New York Smells: A Large Multimodal Dataset for Olfaction
While olfaction is central to how animals perceive the world, this rich chemical sensory modality remains largely inaccessible to machines. One key bottleneck is the lack of diverse, multimodal olfactory training data collected in natural settings. We present New York Smells, a large dataset of paired image and olfactory signals captured ``in the wild.'' Our dataset contains 7,000 smell-image pairs from 3,500 distinct objects across indoor and outdoor environments, with approximately 70$\times$ more objects than existing olfactory datasets. Our benchmark has three tasks: cross-modal smell-to-image retrieval, recognizing scenes, objects, and materials from smell alone, and fine-grained discrimination between grass species. Through experiments on our dataset, we find that visual data enables cross-modal olfactory representation learning, and that our learned olfactory representations outperform widely-used hand-crafted features.
comment: Project website at https://smell.cs.columbia.edu
☆ Feature-Modulated UFNO for Improved Prediction of Multiphase Flow in Porous Media
The UNet-enhanced Fourier Neural Operator (UFNO) extends the Fourier Neural Operator (FNO) by incorporating a parallel UNet pathway, enabling the retention of both high- and low-frequency components. While UFNO improves predictive accuracy over FNO, it inefficiently treats scalar inputs (e.g., temperature, injection rate) as spatially distributed fields by duplicating their values across the domain. This forces the model to process redundant constant signals within the frequency domain. Additionally, its standard loss function does not account for spatial variations in error sensitivity, limiting performance in regions of high physical importance. We introduce UFNO-FiLM, an enhanced architecture that incorporates two key innovations. First, we decouple scalar inputs from spatial features using a Feature-wise Linear Modulation (FiLM) layer, allowing the model to modulate spatial feature maps without introducing constant signals into the Fourier transform. Second, we employ a spatially weighted loss function that prioritizes learning in critical regions. Our experiments on subsurface multiphase flow demonstrate a 21\% reduction in gas saturation Mean Absolute Error (MAE) compared to UFNO, highlighting the effectiveness of our approach in improving predictive accuracy.
☆ Automated Monitoring of Cultural Heritage Artifacts Using Semantic Segmentation
This paper addresses the critical need for automated crack detection in the preservation of cultural heritage through semantic segmentation. We present a comparative study of U-Net architectures, using various convolutional neural network (CNN) encoders, for pixel-level crack identification on statues and monuments. A comparative quantitative evaluation is performed on the test set of the OmniCrack30k dataset [1] using popular segmentation metrics including Mean Intersection over Union (mIoU), Dice coefficient, and Jaccard index. This is complemented by an out-of-distribution qualitative evaluation on an unlabeled test set of real-world cracked statues and monuments. Our findings provide valuable insights into the capabilities of different CNN- based encoders for fine-grained crack segmentation. We show that the models exhibit promising generalization capabilities to unseen cultural heritage contexts, despite never having been explicitly trained on images of statues or monuments.
comment: Keywords: Cultural Heritage, Monitoring, Deep Learning, U-Nets, Semantic Segmentation
☆ Beyond Generation: Multi-Hop Reasoning for Factual Accuracy in Vision-Language Models ICML
Visual Language Models (VLMs) are powerful generative tools but often produce factually in- accurate outputs due to a lack of robust reason- ing capabilities. While extensive research has been conducted on integrating external knowl- edge for reasoning in large language models (LLMs), such efforts remain underexplored in VLMs, where the challenge is compounded by the need to bridge multiple modalities seam- lessly. This work introduces a framework for knowledge-guided reasoning in VLMs, leverag- ing structured knowledge graphs for multi-hop verification using image-captioning task to il- lustrate our framework. Our approach enables systematic reasoning across multiple steps, in- cluding visual entity recognition, knowledge graph traversal, and fact-based caption refine- ment. We evaluate the framework using hi- erarchical, triple-based and bullet-point based knowledge representations, analyzing their ef- fectiveness in factual accuracy and logical infer- ence. Empirical results show that our approach improves factual accuracy by approximately 31% on preliminary experiments on a curated dataset of mixtures from Google Landmarks v2, Conceptual captions and Coco captions re- vealing key insights into reasoning patterns and failure modes. This work demonstrates the po- tential of integrating external knowledge for advancing reasoning in VLMs, paving the way for more reliable and knowledgable multimodal systems.
comment: Accepted as poster at NewInML Workshop ICML, 2025
☆ Adam Simplified: Bias Correction Simplified
The Adam optimizer is a cornerstone of modern deep learning, yet the empirical necessity of each of its individual components is often taken for granted. This paper presents a focused investigation into the role of bias-correction, a feature whose contribution remains poorly understood. Through a series of systematic ablations on vision and language modelling tasks, we demonstrate that the conventional wisdom surrounding bias correction is misleading. In particular, we demonstrate that in the optimal hyper-parameter configuration, the inclusion of bias correction leads to no improvement in final test performance. Moreover, unless appropriate learning rate scheduling is implemented, the inclusion of bias correction can sometimes be detrimental to performance. We further reinterpret bias correction as a form of implicit learning rate scheduling whose behaviour is strongly dependent on the choice of smoothing hyper-parameters $β_1, β_2 \in [0,1)$. Our findings challenge the universal inclusion of this component.
☆ DP-MicroAdam: Private and Frugal Algorithm for Training and Fine-tuning
Adaptive optimizers are the de facto standard in non-private training as they often enable faster convergence and improved performance. In contrast, differentially private (DP) training is still predominantly performed with DP-SGD, typically requiring extensive compute and hyperparameter tuning. We propose DP-MicroAdam, a memory-efficient and sparsity-aware adaptive DP optimizer. We prove that DP-MicroAdam converges in stochastic non-convex optimization at the optimal $\mathcal{O}(1/\sqrt{T})$ rate, up to privacy-dependent constants. Empirically, DP-MicroAdam outperforms existing adaptive DP optimizers and achieves competitive or superior accuracy compared to DP-SGD across a range of benchmarks, including CIFAR-10, large-scale ImageNet training, and private fine-tuning of pretrained transformers. These results demonstrate that adaptive optimization can improve both performance and stability under differential privacy.
☆ Generative Modeling with Manifold Percolation
Generative modeling is typically framed as learning mapping rules, but from an observer's perspective without access to these rules, the task manifests as disentangling the geometric support from the probability distribution. We propose that Continuum Percolation is uniquely suited for this support analysis, as the sampling process effectively projects high-dimensional density estimation onto a geometric counting problem on the support. In this work, we establish a rigorous isomorphism between the topological phase transitions of Random Geometric Graphs and the underlying data manifold in high-dimensional space. By analyzing the relationship between our proposed Percolation Shift metric and FID, we demonstrate that our metric captures structural pathologies (such as implicit mode collapse) where statistical metrics fail. Finally, we translate this topological phenomenon into a differentiable loss function to guide training. Experimental results confirm that this approach not only prevents manifold shrinkage but drives the model toward a state of "Hyper-Generalization," achieving good fidelity and verified topological expansion.
comment: 13 pages, 7 figures. Correspondence: Rui.Tong@warwick.ac.uk
☆ A Physics-Informed Loss Function for Boundary-Consistent and Robust Artery Segmentation in DSA Sequences
Accurate extraction and segmentation of the cerebral arteries from digital subtraction angiography (DSA) sequences is essential for developing reliable clinical management models of complex cerebrovascular diseases. Conventional loss functions often rely solely on pixel-wise overlap, overlooking the geometric and physical consistency of vascular boundaries, which can lead to fragmented or unstable vessel predictions. To overcome this limitation, we propose a novel \textit{Physics-Informed Loss} (PIL) that models the interaction between the predicted and ground-truth boundaries as an elastic process inspired by dislocation theory in materials physics. This formulation introduces a physics-based regularization term that enforces smooth contour evolution and structural consistency, allowing the network to better capture fine vascular geometry. The proposed loss is integrated into several segmentation architectures, including U-Net, U-Net++, SegFormer, and MedFormer, and evaluated on two public benchmarks: DIAS and DSCA. Experimental results demonstrate that PIL consistently outperforms conventional loss functions such as Cross-Entropy, Dice, Active Contour, and Surface losses, achieving superior sensitivity, F1 score, and boundary coherence. These findings confirm that the incorporation of physics-based boundary interactions into deep neural networks improves both the precision and robustness of vascular segmentation in dynamic angiographic imaging. The implementation of the proposed method is publicly available at https://github.com/irfantahir301/Physicsis_loss.
☆ From One Attack Domain to Another: Contrastive Transfer Learning with Siamese Networks for APT Detection
Advanced Persistent Threats (APT) pose a major cybersecurity challenge due to their stealth, persistence, and adaptability. Traditional machine learning detectors struggle with class imbalance, high dimensional features, and scarce real world traces. They often lack transferability-performing well in the training domain but degrading in novel attack scenarios. We propose a hybrid transfer framework that integrates Transfer Learning, Explainable AI (XAI), contrastive learning, and Siamese networks to improve cross-domain generalization. An attention-based autoencoder supports knowledge transfer across domains, while Shapley Additive exPlanations (SHAP) select stable, informative features to reduce dimensionality and computational cost. A Siamese encoder trained with a contrastive objective aligns source and target representations, increasing anomaly separability and mitigating feature drift. We evaluate on real-world traces from the DARPA Transparent Computing (TC) program and augment with synthetic attack scenarios to test robustness. Across source to target transfers, the approach delivers improved detection scores with classical and deep baselines, demonstrating a scalable, explainable, and transferable solution for APT detection.
☆ MTBBench: A Multimodal Sequential Clinical Decision-Making Benchmark in Oncology NeurIPS 2025
Multimodal Large Language Models (LLMs) hold promise for biomedical reasoning, but current benchmarks fail to capture the complexity of real-world clinical workflows. Existing evaluations primarily assess unimodal, decontextualized question-answering, overlooking multi-agent decision-making environments such as Molecular Tumor Boards (MTBs). MTBs bring together diverse experts in oncology, where diagnostic and prognostic tasks require integrating heterogeneous data and evolving insights over time. Current benchmarks lack this longitudinal and multimodal complexity. We introduce MTBBench, an agentic benchmark simulating MTB-style decision-making through clinically challenging, multimodal, and longitudinal oncology questions. Ground truth annotations are validated by clinicians via a co-developed app, ensuring clinical relevance. We benchmark multiple open and closed-source LLMs and show that, even at scale, they lack reliability -- frequently hallucinating, struggling with reasoning from time-resolved data, and failing to reconcile conflicting evidence or different modalities. To address these limitations, MTBBench goes beyond benchmarking by providing an agentic framework with foundation model-based tools that enhance multi-modal and longitudinal reasoning, leading to task-level performance gains of up to 9.0% and 11.2%, respectively. Overall, MTBBench offers a challenging and realistic testbed for advancing multimodal LLM reasoning, reliability, and tool-use with a focus on MTB environments in precision oncology.
comment: Accepted to NeurIPS 2025
☆ InferF: Declarative Factorization of AI/ML Inferences over Joins
Real-world AI/ML workflows often apply inference computations to feature vectors joined from multiple datasets. To avoid the redundant AI/ML computations caused by repeated data records in the join's output, factorized ML has been proposed to decompose ML computations into sub-computations to be executed on each normalized dataset. However, there is insufficient discussion on how factorized ML could impact AI/ML inference over multi-way joins. To address the limitations, we propose a novel declarative InferF system, focusing on the factorization of arbitrary inference workflows represented as analyzable expressions over the multi-way joins. We formalize our problem to flexibly push down partial factorized computations to qualified nodes in the join tree to minimize the overall inference computation and join costs and propose two algorithms to resolve the problem: (1) a greedy algorithm based on a per-node cost function that estimates the influence on overall latency if a subset of factorized computations is pushed to a node, and (2) a genetic algorithm for iteratively enumerating and evaluating promising factorization plans. We implement InferF on Velox, an open-sourced database engine from Meta, evaluate it on real-world datasets, observed up to 11.3x speedups, and systematically summarized the factors that determine when factorized ML can benefit AI/ML inference workflows.
comment: Accepted to SIGMOD 2026 as full research paper. This archived version has a full appendix
☆ Ranking-Enhanced Anomaly Detection Using Active Learning-Assisted Attention Adversarial Dual AutoEncoders
Advanced Persistent Threats (APTs) pose a significant challenge in cybersecurity due to their stealthy and long-term nature. Modern supervised learning methods require extensive labeled data, which is often scarce in real-world cybersecurity environments. In this paper, we propose an innovative approach that leverages AutoEncoders for unsupervised anomaly detection, augmented by active learning to iteratively improve the detection of APT anomalies. By selectively querying an oracle for labels on uncertain or ambiguous samples, we minimize labeling costs while improving detection rates, enabling the model to improve its detection accuracy with minimal data while reducing the need for extensive manual labeling. We provide a detailed formulation of the proposed Attention Adversarial Dual AutoEncoder-based anomaly detection framework and show how the active learning loop iteratively enhances the model. The framework is evaluated on real-world imbalanced provenance trace databases produced by the DARPA Transparent Computing program, where APT-like attacks constitute as little as 0.004\% of the data. The datasets span multiple operating systems, including Android, Linux, BSD, and Windows, and cover two attack scenarios. The results have shown significant improvements in detection rates during active learning and better performance compared to other existing approaches.
☆ NVIDIA Nemotron Parse 1.1
We introduce Nemotron-Parse-1.1, a lightweight document parsing and OCR model that advances the capabilities of its predecessor, Nemoretriever-Parse-1.0. Nemotron-Parse-1.1 delivers improved capabilities across general OCR, markdown formatting, structured table parsing, and text extraction from pictures, charts, and diagrams. It also supports a longer output sequence length for visually dense documents. As with its predecessor, it extracts bounding boxes of text segments, as well as corresponding semantic classes. Nemotron-Parse-1.1 follows an encoder-decoder architecture with 885M parameters, including a compact 256M-parameter language decoder. It achieves competitive accuracy on public benchmarks making it a strong lightweight OCR solution. We release the model weights publicly on Huggingface, as well as an optimized NIM container, along with a subset of the training data as part of the broader Nemotron-VLM-v2 dataset. Additionally, we release Nemotron-Parse-1.1-TC which operates on a reduced vision token length, offering a 20% speed improvement with minimal quality degradation.
☆ Modular Deep Learning Framework for Assistive Perception: Gaze, Affect, and Speaker Identification
Developing comprehensive assistive technologies requires the seamless integration of visual and auditory perception. This research evaluates the feasibility of a modular architecture inspired by core functionalities of perceptive systems like 'Smart Eye.' We propose and benchmark three independent sensing modules: a Convolutional Neural Network (CNN) for eye state detection (drowsiness/attention), a deep CNN for facial expression recognition, and a Long Short-Term Memory (LSTM) network for voice-based speaker identification. Utilizing the Eyes Image, FER2013, and customized audio datasets, our models achieved accuracies of 93.0%, 97.8%, and 96.89%, respectively. This study demonstrates that lightweight, domain-specific models can achieve high fidelity on discrete tasks, establishing a validated foundation for future real-time, multimodal integration in resource-constrained assistive devices.
comment: 10 pages, 9 figures, and 3 tables
☆ Dance Style Classification using Laban-Inspired and Frequency-Domain Motion Features
Dance is an essential component of human culture and serves as a tool for conveying emotions and telling stories. Identifying and distinguishing dance genres based on motion data is a complex problem in human activity recognition, as many styles share similar poses, gestures, and temporal motion patterns. This work presents a lightweight framework for classifying dance styles that determines motion characteristics based on pose estimates extracted from videos. We propose temporal-spatial descriptors inspired by Laban Movement Analysis. These features capture local joint dynamics such as velocity, acceleration, and angular movement of the upper body, enabling a structured representation of spatial coordination. To further encode rhythmic and periodic aspects of movement, we integrate Fast Fourier Transform features that characterize movement patterns in the frequency domain. The proposed approach achieves robust classification of different dance styles with low computational effort, as complex model architectures are not required, and shows that interpretable motion representations can effectively capture stylistic nuances.
☆ STARFlow-V: End-to-End Video Generative Modeling with Normalizing Flow
Normalizing flows (NFs) are end-to-end likelihood-based generative models for continuous data, and have recently regained attention with encouraging progress on image generation. Yet in the video generation domain, where spatiotemporal complexity and computational cost are substantially higher, state-of-the-art systems almost exclusively rely on diffusion-based models. In this work, we revisit this design space by presenting STARFlow-V, a normalizing flow-based video generator with substantial benefits such as end-to-end learning, robust causal prediction, and native likelihood estimation. Building upon the recently proposed STARFlow, STARFlow-V operates in the spatiotemporal latent space with a global-local architecture which restricts causal dependencies to a global latent space while preserving rich local within-frame interactions. This eases error accumulation over time, a common pitfall of standard autoregressive diffusion model generation. Additionally, we propose flow-score matching, which equips the model with a light-weight causal denoiser to improve the video generation consistency in an autoregressive fashion. To improve the sampling efficiency, STARFlow-V employs a video-aware Jacobi iteration scheme that recasts inner updates as parallelizable iterations without breaking causality. Thanks to the invertible structure, the same model can natively support text-to-video, image-to-video as well as video-to-video generation tasks. Empirically, STARFlow-V achieves strong visual fidelity and temporal consistency with practical sampling throughput relative to diffusion-based baselines. These results present the first evidence, to our knowledge, that NFs are capable of high-quality autoregressive video generation, establishing them as a promising research direction for building world models. Code and generated samples are available at https://github.com/apple/ml-starflow.
comment: 21 pages
☆ A Fully Probabilistic Tensor Network for Regularized Volterra System Identification
Modeling nonlinear systems with Volterra series is challenging because the number of kernel coefficients grows exponentially with the model order. This work introduces Bayesian Tensor Network Volterra kernel machines (BTN-V), extending the Bayesian Tensor Network framework to Volterra system identification. BTN-V represents Volterra kernels using canonical polyadic decomposition, reducing model complexity from O(I^D) to O(DIR). By treating all tensor components and hyperparameters as random variables, BTN-V provides predictive uncertainty estimation at no additional computational cost. Sparsity-inducing hierarchical priors enable automatic rank determination and the learning of fading-memory behavior directly from data, improving interpretability and preventing overfitting. Empirical results demonstrate competitive accuracy, enhanced uncertainty quantification, and reduced computational cost.
comment: 6 pages, 3 figures, 1 table. Submitted to IFAC 2026. Code available at: https://github.com/afrakilic/BTN_Volterra_Sys_ID
☆ Towards Trustworthy Wi-Fi Sensing: Systematic Evaluation of Deep Learning Model Robustness to Adversarial Attacks
Machine learning has become integral to Channel State Information (CSI)-based human sensing systems and is expected to power applications such as device-free activity recognition and identity detection in future cellular and Wi-Fi generations. However, these systems rely on models whose decisions can be subtly perturbed, raising concerns for security and reliability in ubiquitous sensing. Quantifying and understanding the robustness of such models, defined as their ability to maintain accurate predictions under adversarial perturbations, is therefore critical before wireless sensing can be safely deployed in real-world environments. This work presents a systematic evaluation of the robustness of CSI deep learning models under diverse threat models (white-box, black-box/transfer, and universal perturbations) and varying degrees of attack realism. We establish a framework to compare compact temporal autoencoder models with larger deep architectures across three public datasets, quantifying how model scale, training regime, and physical constraints influence robustness. Our experiments show that smaller models, while efficient and equally performant on clean data, are markedly less robust. We further confirm that physically realizable signal-space perturbations, designed to be feasible in real wireless channels, significantly reduce attack success compared to unconstrained feature-space attacks. Adversarial training mitigates these vulnerabilities, improving mean robust accuracy with only moderate degradation in clean performance across both model classes. As wireless sensing advances towards reliable, cross-domain operation, these findings provide quantitative baselines for robustness estimation and inform design principles for secure and trustworthy human-centered sensing systems.
comment: 19 pages, 8 figures, 7 tables
☆ Diffusion for Fusion: Designing Stellarators with Generative AI
Stellarators are a prospective class of fusion-based power plants that confine a hot plasma with three-dimensional magnetic fields. Typically framed as a PDE-constrained optimization problem, stellarator design is a time-consuming process that can take hours to solve on a computing cluster. Developing fast methods for designing stellarators is crucial for advancing fusion research. Given the recent development of large datasets of optimized stellarators, machine learning approaches have emerged as a potential candidate. Motivated by this, we present an open inverse problem to the machine learning community: to rapidly generate high-quality stellarator designs which have a set of desirable characteristics. As a case study in the problem space, we train a conditional diffusion model on data from the QUASR database to generate quasisymmetric stellarator designs with desirable characteristics (aspect ratio and mean rotational transform). The diffusion model is applied to design stellarators with characteristics not seen during training. We provide evaluation protocols and show that many of the generated stellarators exhibit solid performance: less than 5% deviation from quasisymmetry and the target characteristics. The modest deviation from quasisymmetry highlights an opportunity to reach the sub 1% target. Beyond the case study, we share multiple promising avenues for generative modeling to advance stellarator design.
☆ StableTrack: Stabilizing Multi-Object Tracking on Low-Frequency Detections
Multi-object tracking (MOT) is one of the most challenging tasks in computer vision, where it is important to correctly detect objects and associate these detections across frames. Current approaches mainly focus on tracking objects in each frame of a video stream, making it almost impossible to run the model under conditions of limited computing resources. To address this issue, we propose StableTrack, a novel approach that stabilizes the quality of tracking on low-frequency detections. Our method introduces a new two-stage matching strategy to improve the cross-frame association between low-frequency detections. We propose a novel Bbox-Based Distance instead of the conventional Mahalanobis distance, which allows us to effectively match objects using the Re-ID model. Furthermore, we integrate visual tracking into the Kalman Filter and the overall tracking pipeline. Our method outperforms current state-of-the-art trackers in the case of low-frequency detections, achieving $\textit{11.6%}$ HOTA improvement at $\textit{1}$ Hz on MOT17-val, while keeping up with the best approaches on the standard MOT17, MOT20, and DanceTrack benchmarks with full-frequency detections.
☆ Tight Margin-Based Generalization Bounds for Voting Classifiers over Finite Hypothesis Sets
We prove the first margin-based generalization bound for voting classifiers, that is asymptotically tight in the tradeoff between the size of the hypothesis set, the margin, the fraction of training points with the given margin, the number of training samples and the failure probability.
☆ Short-Range Oversquashing
Message Passing Neural Networks (MPNNs) are widely used for learning on graphs, but their ability to process long-range information is limited by the phenomenon of oversquashing. This limitation has led some researchers to advocate Graph Transformers as a better alternative, whereas others suggest that it can be mitigated within the MPNN framework, using virtual nodes or other rewiring techniques. In this work, we demonstrate that oversquashing is not limited to long-range tasks, but can also arise in short-range problems. This observation allows us to disentangle two distinct mechanisms underlying oversquashing: (1) the bottleneck phenomenon, which can arise even in low-range settings, and (2) the vanishing gradient phenomenon, which is closely associated with long-range tasks. We further show that the short-range bottleneck effect is not captured by existing explanations for oversquashing, and that adding virtual nodes does not resolve it. In contrast, transformers do succeed in such tasks, positioning them as the more compelling solution to oversquashing, compared to specialized MPNNs.
comment: Accepted to Learning on Graphs (LoG) 2025. Version identical to the camera-ready paper
☆ Model-Based Learning of Whittle indices
We present BLINQ, a new model-based algorithm that learns the Whittle indices of an indexable, communicating and unichain Markov Decision Process (MDP). Our approach relies on building an empirical estimate of the MDP and then computing its Whittle indices using an extended version of a state-of-the-art existing algorithm. We provide a proof of convergence to the Whittle indices we want to learn as well as a bound on the time needed to learn them with arbitrary precision. Moreover, we investigate its computational complexity. Our numerical experiments suggest that BLINQ significantly outperforms existing Q-learning approaches in terms of the number of samples needed to get an accurate approximation. In addition, it has a total computational cost even lower than Q-learning for any reasonably high number of samples. These observations persist even when the Q-learning algorithms are speeded up using pre-trained neural networks to predict Q-values.
comment: 31 pages, 8 figures, submitted to TOMPECS
☆ Identifying environmental factors associated with tetrodotoxin contamination in bivalve mollusks using eXplainable AI
Since 2012, tetrodotoxin (TTX) has been found in seafoods such as bivalve mollusks in temperate European waters. TTX contamination leads to food safety risks and economic losses, making early prediction of TTX contamination vital to the food industry and competent authorities. Recent studies have pointed to shallow habitats and water temperature as main drivers to TTX contamination in bivalve mollusks. However, the temporal relationships between abiotic factors, biotic factors, and TTX contamination remain unexplored. We have developed an explainable, deep learning-based model to predict TTX contamination in the Dutch Zeeland estuary. Inputs for the model were meteorological and hydrological features; output was the presence or absence of TTX contamination. Results showed that the time of sunrise, time of sunset, global radiation, water temperature, and chloride concentration contributed most to TTX contamination. Thus, the effective number of sun hours, represented by day length and global radiation, was an important driver for tetrodotoxin contamination in bivalve mollusks. To conclude, our explainable deep learning model identified the aforementioned environmental factors (number of sun hours, global radiation, water temperature, and water chloride concentration) to be associated with tetrodotoxin contamination in bivalve mollusks; making our approach a valuable tool to mitigate marine toxin risks for food industry and competent authorities.
comment: 18 pages, 6 figures, submitted to Nature Food
☆ MoRE: Batch-Robust Multi-Omics Representations from Frozen Pre-trained Transformers
Representation learning on multi-omics data is challenging due to extreme dimensionality, modality heterogeneity, and cohort-specific batch effects. While pre-trained transformer backbones have shown broad generalization capabilities in biological sequence modeling, their application to multi-omics integration remains underexplored. We present MoRE (Multi-Omics Representation Embedding), a framework that repurposes frozen pre-trained transformers to align heterogeneous assays into a shared latent space. Unlike purely generative approaches, MoRE employs a parameter-efficient fine-tuning (PEFT) strategy, prioritizing cross-sample and cross-modality alignment over simple sequence reconstruction. Specifically, MoRE attaches lightweight, modality-specific adapters and a task-adaptive fusion layer to the frozen backbone. It optimizes a masked modeling objective jointly with supervised contrastive and batch-invariant alignment losses, yielding structure-preserving embeddings that generalize across unseen cell types and platforms. We benchmark MoRE against established baselines, including scGPT, scVI, and Harmony with scArches, evaluating integration fidelity, rare population detection, and modality transfer. Our results demonstrate that MoRE achieves competitive batch robustness and biological conservation while significantly reducing trainable parameters compared to fully fine-tuned models. This work positions MoRE as a practical step toward general-purpose omics foundation models.
☆ Differentiable Attenuation Filters for Feedback Delay Networks
We introduce a novel method for designing attenuation filters in digital audio reverberation systems based on Feedback Delay Net- works (FDNs). Our approach uses Second Order Sections (SOS) of Infinite Impulse Response (IIR) filters arranged as parametric equalizers (PEQ), enabling fine control over frequency-dependent reverberation decay. Unlike traditional graphic equalizer designs, which require numerous filters per delay line, we propose a scal- able solution where the number of filters can be adjusted. The fre- quency, gain, and quality factor (Q) parameters are shared parame- ters across delay lines and only the gain is adjusted based on delay length. This design not only reduces the number of optimization parameters, but also remains fully differentiable and compatible with gradient-based learning frameworks. Leveraging principles of analog filter design, our method allows for efficient and accu- rate filter fitting using supervised learning. Our method delivers a flexible and differentiable design, achieving state-of-the-art per- formance while significantly reducing computational cost.
☆ PRISM: Periodic Representation with multIscale and Similarity graph Modelling for enhanced crystal structure property prediction
Crystal structures are characterised by repeating atomic patterns within unit cells across three-dimensional space, posing unique challenges for graph-based representation learning. Current methods often overlook essential periodic boundary conditions and multiscale interactions inherent to crystalline structures. In this paper, we introduce PRISM, a graph neural network framework that explicitly integrates multiscale representations and periodic feature encoding by employing a set of expert modules, each specialised in encoding distinct structural and chemical aspects of periodic systems. Extensive experiments across crystal structure-based benchmarks demonstrate that PRISM improves state-of-the-art predictive accuracy, significantly enhancing crystal property prediction.
☆ Extension and neural operator approximation of the electrical impedance tomography inverse map
This paper considers the problem of noise-robust neural operator approximation for the solution map of Calderón's inverse conductivity problem. In this continuum model of electrical impedance tomography (EIT), the boundary measurements are realized as a noisy perturbation of the Neumann-to-Dirichlet map's integral kernel. The theoretical analysis proceeds by extending the domain of the inversion operator to a Hilbert space of kernel functions. The resulting extension shares the same stability properties as the original inverse map from kernels to conductivities, but is now amenable to neural operator approximation. Numerical experiments demonstrate that Fourier neural operators excel at reconstructing infinite-dimensional piecewise constant and lognormal conductivities in noisy setups both within and beyond the theory's assumptions. The methodology developed in this paper for EIT exemplifies a broader strategy for addressing nonlinear inverse problems with a noise-aware operator learning framework.
comment: 80 pages (49 main text, 20 appendix, and 11 references pages), 14 figures, 2 tables
☆ Complexity Reduction Study Based on RD Costs Approximation for VVC Intra Partitioning
In this paper, a complexity study is conducted for Versatile Video Codec (VVC) intra partitioning to accelerate the exhaustive search involved in Rate-Distortion Optimization (RDO) process. To address this problem, two main machine learning techniques are proposed and compared. Unlike existing methods, the proposed approaches are size independent and incorporate the Rate-Distortion (RD) costs of neighboring blocks as input features. The first method is a regression based technique that predicts normalized RD costs of a given Coding Unit (CU). As partitioning possesses the Markov property, the associated decision-making problem can be modeled as a Markov Decision Process (MDP) and solved by Reinforcement Learning (RL). The second approach is a RL agent learned from trajectories of CU decision across two depths with Deep Q-Network (DQN) algorithm. Then a pre-determined thresholds are applied for both methods to select a suitable split for the current CU.
comment: 2025 Data Compression Conference (DCC)
☆ Soft Adaptive Policy Optimization
Reinforcement learning (RL) plays an increasingly important role in enhancing the reasoning capabilities of large language models (LLMs), yet stable and performant policy optimization remains challenging. Token-level importance ratios often exhibit high variance-a phenomenon exacerbated in Mixture-of-Experts models-leading to unstable updates. Existing group-based policy optimization methods, such as GSPO and GRPO, alleviate this problem via hard clipping, making it difficult to maintain both stability and effective learning. We propose Soft Adaptive Policy Optimization (SAPO), which replaces hard clipping with a smooth, temperature-controlled gate that adaptively attenuates off-policy updates while preserving useful learning signals. Compared with GSPO and GRPO, SAPO is both sequence-coherent and token-adaptive. Like GSPO, SAPO maintains sequence-level coherence, but its soft gating forms a continuous trust region that avoids the brittle hard clipping band used in GSPO. When a sequence contains a few highly off-policy tokens, GSPO suppresses all gradients for that sequence, whereas SAPO selectively down-weights only the offending tokens and preserves the learning signal from the near-on-policy ones, improving sample efficiency. Relative to GRPO, SAPO replaces hard token-level clipping with smooth, temperature-controlled scaling, enabling more informative and stable updates. Empirical results on mathematical reasoning benchmarks indicate that SAPO exhibits improved training stability and higher Pass@1 performance under comparable training budgets. Moreover, we employ SAPO to train the Qwen3-VL model series, demonstrating that SAPO yields consistent performance gains across diverse tasks and different model sizes. Overall, SAPO provides a more reliable, scalable, and effective optimization strategy for RL training of LLMs.
☆ NNGPT: Rethinking AutoML with Large Language Models
Building self-improving AI systems remains a fundamental challenge in the AI domain. We present NNGPT, an open-source framework that turns a large language model (LLM) into a self-improving AutoML engine for neural network development, primarily for computer vision. Unlike previous frameworks, NNGPT extends the dataset of neural networks by generating new models, enabling continuous fine-tuning of LLMs based on closed-loop system of generation, assessment, and self-improvement. It integrates within one unified workflow five synergistic LLM-based pipelines: zero-shot architecture synthesis, hyperparameter optimization (HPO), code-aware accuracy/early-stop prediction, retrieval-augmented synthesis of scope-closed PyTorch blocks (NN-RAG), and reinforcement learning. Built on the LEMUR dataset as an audited corpus with reproducible metrics, NNGPT emits from a single prompt and validates network architecture, preprocessing code, and hyperparameters, executes them end-to-end, and learns from result. The PyTorch adapter makes NNGPT framework-agnostic, enabling strong performance: NN-RAG achieves 73% executability on 1,289 targets, 3-shot prompting boosts accuracy on common datasets, and hash-based deduplication saves hundreds of runs. One-shot prediction matches search-based AutoML, reducing the need for numerous trials. HPO on LEMUR achieves RMSE 0.60, outperforming Optuna (0.64), while the code-aware predictor reaches RMSE 0.14 with Pearson r=0.78. The system has already generated over 5K validated models, proving NNGPT as an autonomous AutoML engine. Upon acceptance, the code, prompts, and checkpoints will be released for public access to enable reproducibility and facilitate community usage.
☆ MXtalTools: A Toolkit for Machine Learning on Molecular Crystals
We present MXtalTools, a flexible Python package for the data-driven modelling of molecular crystals, facilitating machine learning studies of the molecular solid state. MXtalTools comprises several classes of utilities: (1) synthesis, collation, and curation of molecule and crystal datasets, (2) integrated workflows for model training and inference, (3) crystal parameterization and representation, (4) crystal structure sampling and optimization, (5) end-to-end differentiable crystal sampling, construction and analysis. Our modular functions can be integrated into existing workflows or combined and used to build novel modelling pipelines. MXtalTools leverages CUDA acceleration to enable high-throughput crystal modelling. The Python code is available open-source on our GitHub page, with detailed documentation on ReadTheDocs.
comment: 16 pages, 11 figures
☆ Geometry of Decision Making in Language Models NeurIPS 2025
Large Language Models (LLMs) show strong generalization across diverse tasks, yet the internal decision-making processes behind their predictions remain opaque. In this work, we study the geometry of hidden representations in LLMs through the lens of \textit{intrinsic dimension} (ID), focusing specifically on decision-making dynamics in a multiple-choice question answering (MCQA) setting. We perform a large-scale study, with 28 open-weight transformer models and estimate ID across layers using multiple estimators, while also quantifying per-layer performance on MCQA tasks. Our findings reveal a consistent ID pattern across models: early layers operate on low-dimensional manifolds, middle layers expand this space, and later layers compress it again, converging to decision-relevant representations. Together, these results suggest LLMs implicitly learn to project linguistic inputs onto structured, low-dimensional manifolds aligned with task-specific decisions, providing new geometric insights into how generalization and reasoning emerge in language models.
comment: Accepted at NeurIPS 2025
☆ Forgetting by Pruning: Data Deletion in Join Cardinality Estimation AAAI26
Machine unlearning in learned cardinality estimation (CE) systems presents unique challenges due to the complex distributional dependencies in multi-table relational data. Specifically, data deletion, a core component of machine unlearning, faces three critical challenges in learned CE models: attribute-level sensitivity, inter-table propagation and domain disappearance leading to severe overestimation in multi-way joins. We propose Cardinality Estimation Pruning (CEP), the first unlearning framework specifically designed for multi-table learned CE systems. CEP introduces Distribution Sensitivity Pruning, which constructs semi-join deletion results and computes sensitivity scores to guide parameter pruning, and Domain Pruning, which removes support for value domains entirely eliminated by deletion. We evaluate CEP on state-of-the-art architectures NeuroCard and FACE across IMDB and TPC-H datasets. Results demonstrate CEP consistently achieves the lowest Q-error in multi-table scenarios, particularly under high deletion ratios, often outperforming full retraining. Furthermore, CEP significantly reduces convergence iterations, incurring negligible computational overhead of 0.3%-2.5% of fine-tuning time.
comment: AAAI26
☆ Solving Heterogeneous Agent Models with Physics-informed Neural Networks
Understanding household behaviour is essential for modelling macroeconomic dynamics and designing effective policy. While heterogeneous agent models offer a more realistic alternative to representative agent frameworks, their implementation poses significant computational challenges, particularly in continuous time. The Aiyagari-Bewley-Huggett (ABH) framework, recast as a system of partial differential equations, typically relies on grid-based solvers that suffer from the curse of dimensionality, high computational cost, and numerical inaccuracies. This paper introduces the ABH-PINN solver, an approach based on Physics-Informed Neural Networks (PINNs), which embeds the Hamilton-Jacobi-Bellman and Kolmogorov Forward equations directly into the neural network training objective. By replacing grid-based approximation with mesh-free, differentiable function learning, the ABH-PINN solver benefits from the advantages of PINNs of improved scalability, smoother solutions, and computational efficiency. Preliminary results show that the PINN-based approach is able to obtain economically valid results matching the established finite-difference solvers.
☆ HVAdam: A Full-Dimension Adaptive Optimizer
Adaptive optimizers such as Adam have achieved great success in training large-scale models like large language models and diffusion models. However, they often generalize worse than non-adaptive methods, such as SGD on classical architectures like CNNs. We identify a key cause of this performance gap: adaptivity in pre-conditioners, which limits the optimizer's ability to adapt to diverse optimization landscapes. To address this, we propose Anon (Adaptivity Non-restricted Optimizer with Novel convergence technique), a novel optimizer with continuously tunable adaptivity , allowing it to interpolate between SGD-like and Adam-like behaviors and even extrapolate beyond both. To ensure convergence across the entire adaptivity spectrum, we introduce incremental delay update (IDU), a novel mechanism that is more flexible than AMSGrad's hard max-tracking strategy and enhances robustness to gradient noise. We theoretically establish convergence guarantees under both convex and non-convex settings. Empirically, Anon consistently outperforms state-of-the-art optimizers on representative image classification, diffusion, and language modeling tasks. These results demonstrate that adaptivity can serve as a valuable tunable design principle, and Anon provides the first unified and reliable framework capable of bridging the gap between classical and modern optimizers and surpassing their advantageous properties.
☆ Beyond Components: Singular Vector-Based Interpretability of Transformer Circuits NeurIPS 2025
Transformer-based language models exhibit complex and distributed behavior, yet their internal computations remain poorly understood. Existing mechanistic interpretability methods typically treat attention heads and multilayer perceptron layers (MLPs) (the building blocks of a transformer architecture) as indivisible units, overlooking possibilities of functional substructure learned within them. In this work, we introduce a more fine-grained perspective that decomposes these components into orthogonal singular directions, revealing superposed and independent computations within a single head or MLP. We validate our perspective on widely used standard tasks like Indirect Object Identification (IOI), Gender Pronoun (GP), and Greater Than (GT), showing that previously identified canonical functional heads, such as the name mover, encode multiple overlapping subfunctions aligned with distinct singular directions. Nodes in a computational graph, that are previously identified as circuit elements show strong activation along specific low-rank directions, suggesting that meaningful computations reside in compact subspaces. While some directions remain challenging to interpret fully, our results highlight that transformer computations are more distributed, structured, and compositional than previously assumed. This perspective opens new avenues for fine-grained mechanistic interpretability and a deeper understanding of model internals.
comment: Accepted at NeurIPS 2025
☆ Modality-Balanced Collaborative Distillation for Multi-Modal Domain Generalization
Weight Averaging (WA) has emerged as a powerful technique for enhancing generalization by promoting convergence to a flat loss landscape, which correlates with stronger out-of-distribution performance. However, applying WA directly to multi-modal domain generalization (MMDG) is challenging: differences in optimization speed across modalities lead WA to overfit to faster-converging ones in early stages, suppressing the contribution of slower yet complementary modalities, thereby hindering effective modality fusion and skewing the loss surface toward sharper, less generalizable minima. To address this issue, we propose MBCD, a unified collaborative distillation framework that retains WA's flatness-inducing advantages while overcoming its shortcomings in multi-modal contexts. MBCD begins with adaptive modality dropout in the student model to curb early-stage bias toward dominant modalities. A gradient consistency constraint then aligns learning signals between uni-modal branches and the fused representation, encouraging coordinated and smoother optimization. Finally, a WA-based teacher conducts cross-modal distillation by transferring fused knowledge to each uni-modal branch, which strengthens cross-modal interactions and steer convergence toward flatter solutions. Extensive experiments on MMDG benchmarks show that MBCD consistently outperforms existing methods, achieving superior accuracy and robustness across diverse unseen domains.
☆ Interpretable Air Pollution Forecasting by Physics-Guided Spatiotemporal Decoupling
Accurate and interpretable air pollution forecasting is crucial for public health, but most models face a trade-off between performance and interpretability. This study proposes a physics-guided, interpretable-by-design spatiotemporal learning framework. The model decomposes the spatiotemporal behavior of air pollutant concentrations into two transparent, additive modules. The first is a physics-guided transport kernel with directed weights conditioned on wind and geography (advection). The second is an explainable attention mechanism that learns local responses and attributes future concentrations to specific historical lags and exogenous drivers. Evaluated on a comprehensive dataset from the Stockholm region, our model consistently outperforms state-of-the-art baselines across multiple forecasting horizons. Our model's integration of high predictive performance and spatiotemporal interpretability provides a more reliable foundation for operational air-quality management in real-world applications.
comment: Accepted to 2025 IEEE International Conference on Big Data
☆ Uplifting Table Tennis: A Robust, Real-World Application for 3D Trajectory and Spin Estimation
Obtaining the precise 3D motion of a table tennis ball from standard monocular videos is a challenging problem, as existing methods trained on synthetic data struggle to generalize to the noisy, imperfect ball and table detections of the real world. This is primarily due to the inherent lack of 3D ground truth trajectories and spin annotations for real-world video. To overcome this, we propose a novel two-stage pipeline that divides the problem into a front-end perception task and a back-end 2D-to-3D uplifting task. This separation allows us to train the front-end components with abundant 2D supervision from our newly created TTHQ dataset, while the back-end uplifting network is trained exclusively on physically-correct synthetic data. We specifically re-engineer the uplifting model to be robust to common real-world artifacts, such as missing detections and varying frame rates. By integrating a ball detector and a table keypoint detector, our approach transforms a proof-of-concept uplifting method into a practical, robust, and high-performing end-to-end application for 3D table tennis trajectory and spin analysis.
☆ Quantum-Enhanced Reinforcement Learning for Accelerating Newton-Raphson Convergence with Ising Machines: A Case Study for Power Flow Analysis
The Newton-Raphson (NR) method is widely used for solving power flow (PF) equations due to its quadratic convergence. However, its performance deteriorates under poor initialization or extreme operating scenarios, e.g., high levels of renewable energy penetration. Traditional NR initialization strategies often fail to address these challenges, resulting in slow convergence or even divergence. We propose the use of reinforcement learning (RL) to optimize the initialization of NR, and introduce a novel quantum-enhanced RL environment update mechanism to mitigate the significant computational cost of evaluating power system states over a combinatorially large action space at each RL timestep by formulating the voltage adjustment task as a quadratic unconstrained binary optimization problem. Specifically, quantum/digital annealers are integrated into the RL environment update to evaluate state transitions using a problem Hamiltonian designed for PF. Results demonstrate significant improvements in convergence speed, a reduction in NR iteration counts, and enhanced robustness under different operating conditions.
comment: 10 pages, 9 figures, 4 tables
☆ Actionable and diverse counterfactual explanations incorporating domain knowledge and causal constraints
Counterfactual explanations enhance the actionable interpretability of machine learning models by identifying the minimal changes required to achieve a desired outcome of the model. However, existing methods often ignore the complex dependencies in real-world datasets, leading to unrealistic or impractical modifications. Motivated by cybersecurity applications in the email marketing domain, we propose a method for generating Diverse, Actionable, and kNowledge-Constrained Explanations (DANCE), which incorporates feature dependencies and causal constraints to ensure plausibility and real-world feasibility of counterfactuals. Our method learns linear and nonlinear constraints from data or integrates expert-provided dependency graphs, ensuring counterfactuals are plausible and actionable. By maintaining consistency with feature relationships, the method produces explanations that align with real-world constraints. Additionally, it balances plausibility, diversity, and sparsity, effectively addressing key limitations in existing algorithms. The work is developed based on a real-life case study with Freshmail, the largest email marketing company in Poland and supported by a joint R&D project Sendguard. Furthermore, we provide an extensive evaluation using 140 public datasets, which highlights its ability to generate meaningful, domain-relevant counterfactuals that outperform other existing approaches based on widely used metrics. The source code for reproduction of the results can be found in a GitHub repository we provide.
☆ Leveraging weights signals - Predicting and improving generalizability in reinforcement learning
Generalizability of Reinforcement Learning (RL) agents (ability to perform on environments different from the ones they have been trained on) is a key problem as agents have the tendency to overfit to their training environments. In order to address this problem and offer a solution to increase the generalizability of RL agents, we introduce a new methodology to predict the generalizability score of RL agents based on the internal weights of the agent's neural networks. Using this prediction capability, we propose some changes in the Proximal Policy Optimization (PPO) loss function to boost the generalization score of the agents trained with this upgraded version. Experimental results demonstrate that our improved PPO algorithm yields agents with stronger generalizability compared to the original version.
☆ DiCaP: Distribution-Calibrated Pseudo-labeling for Semi-Supervised Multi-Label Learning AAAI-26
Semi-supervised multi-label learning (SSMLL) aims to address the challenge of limited labeled data in multi-label learning (MLL) by leveraging unlabeled data to improve the model's performance. While pseudo-labeling has become a dominant strategy in SSMLL, most existing methods assign equal weights to all pseudo-labels regardless of their quality, which can amplify the impact of noisy or uncertain predictions and degrade the overall performance. In this paper, we theoretically verify that the optimal weight for a pseudo-label should reflect its correctness likelihood. Empirically, we observe that on the same dataset, the correctness likelihood distribution of unlabeled data remains stable, even as the number of labeled training samples varies. Building on this insight, we propose Distribution-Calibrated Pseudo-labeling (DiCaP), a correctness-aware framework that estimates posterior precision to calibrate pseudo-label weights. We further introduce a dual-thresholding mechanism to separate confident and ambiguous regions: confident samples are pseudo-labeled and weighted accordingly, while ambiguous ones are explored by unsupervised contrastive learning. Experiments conducted on multiple benchmark datasets verify that our method achieves consistent improvements, surpassing state-of-the-art methods by up to 4.27%.
comment: Accepted by AAAI-26
☆ Decoupling and Damping: Structurally-Regularized Gradient Matching for Multimodal Graph Condensation
In critical web applications such as e-commerce and recommendation systems, multimodal graphs integrating rich visual and textual attributes are increasingly central, yet their large scale introduces substantial computational burdens for training Graph Neural Networks (GNNs). While Graph Condensation (GC) offers a promising solution by synthesizing smaller datasets, existing methods falter in the multimodal setting. We identify a dual challenge causing this failure: (1) conflicting gradients arising from semantic misalignments between modalities, and (2) the GNN's message-passing architecture pathologically amplifying this gradient noise across the graph structure. To address this, we propose Structurally-Regularized Gradient Matching (SR-GM), a novel condensation framework tailored for multimodal graphs. SR-GM introduces two synergistic components: first, a gradient decoupling mechanism that resolves inter-modality conflicts at their source via orthogonal projection; and second, a structural damping regularizer that acts directly on the gradient field. By leveraging the graph's Dirichlet energy, this regularizer transforms the topology from a noise amplifier into a stabilizing force during optimization. Extensive experiments demonstrate that SR-GM significantly improves accuracy and accelerates convergence compared to baseline methods. Ablation studies confirm that addressing both gradient conflict and structural amplification in tandem is essential for achieving superior performance. Moreover, the condensed multimodal graphs exhibit strong cross-architecture generalization and promise to accelerate applications like Neural Architecture Search. This research provides a scalable methodology for multimodal graph-based learning in resource-constrained environments.
comment: 11pages,5 figures,6 tables
☆ Communication-Efficient Learning for Satellite Constellations
Satellite constellations in low-Earth orbit are now widespread, enabling positioning, Earth imaging, and communications. In this paper we address the solution of learning problems using these satellite constellations. In particular, we focus on a federated approach, where satellites collect and locally process data, with the ground station aggregating local models. We focus on designing a novel, communication-efficient algorithm that still yields accurate trained models. To this end, we employ several mechanisms to reduce the number of communications with the ground station (local training) and their size (compression). We then propose an error feedback mechanism that enhances accuracy, which yields, as a byproduct, an algorithm-agnostic error feedback scheme that can be more broadly applied. We analyze the convergence of the resulting algorithm, and compare it with the state of the art through simulations in a realistic space scenario, showcasing superior performance.
☆ CostNav: A Navigation Benchmark for Cost-Aware Evaluation of Embodied Agents
Existing navigation benchmarks focus on task success metrics while overlooking economic viability -- critical for commercial deployment of autonomous delivery robots. We introduce \emph{CostNav}, a \textbf{Micro-Navigation Economic Testbed} that evaluates embodied agents through comprehensive cost-revenue analysis aligned with real-world business operations. CostNav models the complete economic lifecycle including hardware, training, energy, maintenance costs, and delivery revenue with service-level agreements, using industry-derived parameters. \textbf{To our knowledge, CostNav is the first work to quantitatively expose the gap between navigation research metrics and commercial viability}, revealing that optimizing for task success fundamentally differs from optimizing for economic deployment. Our cost model uses parameters derived from industry data sources (energy rates, delivery service pricing), and we project from a reduced-scale simulation to realistic deliveries. Under this projection, the baseline achieves 43.0\% SLA compliance but is \emph{not} commercially viable: yielding a loss of \$30.009 per run with no finite break-even point, because operating costs are dominated by collision-induced maintenance, which accounts for 99.7\% of per-run costs and highlights collision avoidance as a key optimization target. We demonstrate a learning-based on-device navigation baseline and establish a foundation for evaluating rule-based navigation, imitation learning, and cost-aware RL training. CostNav bridges the gap between navigation research and commercial deployment, enabling data-driven decisions about economic trade-offs across navigation paradigms.
☆ In-Context Compositional Learning via Sparse Coding Transformer NeurIPS 2025
Transformer architectures have achieved remarkable success across language, vision, and multimodal tasks, and there is growing demand for them to address in-context compositional learning tasks. In these tasks, models solve the target problems by inferring compositional rules from context examples, which are composed of basic components structured by underlying rules. However, some of these tasks remain challenging for Transformers, which are not inherently designed to handle compositional tasks and offer limited structural inductive bias. In this work, inspired by the principle of sparse coding, we propose a reformulation of the attention to enhance its capability for compositional tasks. In sparse coding, data are represented as sparse combinations of dictionary atoms with coefficients that capture their compositional rules. Specifically, we reinterpret the attention block as a mapping of inputs into outputs through projections onto two sets of learned dictionary atoms: an encoding dictionary and a decoding dictionary. The encoding dictionary decomposes the input into a set of coefficients, which represent the compositional structure of the input. To enhance structured representations, we impose sparsity on these coefficients. The sparse coefficients are then used to linearly combine the decoding dictionary atoms to generate the output. Furthermore, to assist compositional generalization tasks, we propose estimating the coefficients of the target problem as a linear combination of the coefficients obtained from the context examples. We demonstrate the effectiveness of our approach on the S-RAVEN and RAVEN datasets. For certain compositional generalization tasks, our method maintains performance even when standard Transformers fail, owing to its ability to learn and apply compositional rules.
comment: NeurIPS 2025
☆ Learning Subgroups with Maximum Treatment Effects without Causal Heuristics AAAI 2026
Discovering subgroups with the maximum average treatment effect is crucial for targeted decision making in domains such as precision medicine, public policy, and education. While most prior work is formulated in the potential outcome framework, the corresponding structural causal model (SCM) for this task has been largely overlooked. In practice, two approaches dominate. The first estimates pointwise conditional treatment effects and then fits a tree on those estimates, effectively turning subgroup estimation into the harder problem of accurate pointwise estimation. The second constructs decision trees or rule sets with ad-hoc 'causal' heuristics, typically without rigorous justification for why a given heuristic may be used or whether such heuristics are necessary at all. We address these issues by studying the problem directly under the SCM framework. Under the assumption of a partition-based model, we show that optimal subgroup discovery reduces to recovering the data-generating models and hence a standard supervised learning problem (regression or classification). This allows us to adopt any partition-based methods to learn the subgroup from data. We instantiate the approach with CART, arguably one of the most widely used tree-based methods, to learn the subgroup with maximum treatment effect. Finally, on a large collection of synthetic and semi-synthetic datasets, we compare our method against a wide range of baselines and find that our approach, which avoids such causal heuristics, more accurately identifies subgroups with maximum treatment effect. Our source code is available at https://github.com/ylincen/causal-subgroup.
comment: The full version (including the Appendix). Accepted at AAAI 2026
☆ AdaCap: An Adaptive Contrastive Approach for Small-Data Neural Networks
Neural networks struggle on small tabular datasets, where tree-based models remain dominant. We introduce Adaptive Contrastive Approach (AdaCap), a training scheme that combines a permutation-based contrastive loss with a Tikhonov-based closed-form output mapping. Across 85 real-world regression datasets and multiple architectures, AdaCap yields consistent and statistically significant improvements in the small-sample regime, particularly for residual models. A meta-predictor trained on dataset characteristics (size, skewness, noise) accurately anticipates when AdaCap is beneficial. These results show that AdaCap acts as a targeted regularization mechanism, strengthening neural networks precisely where they are most fragile. All results and code are publicly available at https://github.com/BrunoBelucci/adacap.
comment: Submitted to ESANN 2026
☆ On the Limits of Momentum in Decentralized and Federated Optimization NeurIPS2025
Recent works have explored the use of momentum in local methods to enhance distributed SGD. This is particularly appealing in Federated Learning (FL), where momentum intuitively appears as a solution to mitigate the effects of statistical heterogeneity. Despite recent progress in this direction, it is still unclear if momentum can guarantee convergence under unbounded heterogeneity in decentralized scenarios, where only some workers participate at each round. In this work we analyze momentum under cyclic client participation, and theoretically prove that it remains inevitably affected by statistical heterogeneity. Similarly to SGD, we prove that decreasing step-sizes do not help either: in fact, any schedule decreasing faster than $Θ\left(1/t\right)$ leads to convergence to a constant value that depends on the initialization and the heterogeneity bound. Numerical results corroborate the theory, and deep learning experiments confirm its relevance for realistic settings.
comment: Accepted at the 17th Workshop on Optimization for Machine Learning (OPT@NeurIPS2025)
☆ IDAP++: Advancing Divergence-Based Pruning via Filter-Level and Layer-Level Optimization
This paper presents a novel approach to neural network compression that addresses redundancy at both the filter and architectural levels through a unified framework grounded in information flow analysis. Building on the concept of tensor flow divergence, which quantifies how information is transformed across network layers, we develop a two-stage optimization process. The first stage employs iterative divergence-aware pruning to identify and remove redundant filters while preserving critical information pathways. The second stage extends this principle to higher-level architecture optimization by analyzing layer-wise contributions to information propagation and selectively eliminating entire layers that demonstrate minimal impact on network performance. The proposed method naturally adapts to diverse architectures, including convolutional networks, transformers, and hybrid designs, providing a consistent metric for comparing the structural importance across different layer types. Experimental validation across multiple modern architectures and datasets reveals that this combined approach achieves substantial model compression while maintaining competitive accuracy. The presented approach achieves parameter reduction results that are globally comparable to those of state-of-the-art solutions and outperforms them across a wide range of modern neural network architectures, from convolutional models to transformers. The results demonstrate how flow divergence serves as an effective guiding principle for both filter-level and layer-level optimization, offering practical benefits for deployment in resource-constrained environments.
comment: 65 pages, 4 figures, 38 tables
☆ From data to concepts via wiring diagrams
A wiring diagram is a labeled directed graph that represents an abstract concept such as a temporal process. In this article, we introduce the notion of a quasi-skeleton wiring diagram graph, and prove that quasi-skeleton wiring diagram graphs correspond to Hasse diagrams. Using this result, we designed algorithms that extract wiring diagrams from sequential data. We used our algorithms in analyzing the behavior of an autonomous agent playing a computer game, and the algorithms correctly identified the winning strategies. We compared the performance of our main algorithm with two other algorithms based on standard clustering techniques (DBSCAN and agglomerative hierarchical), including when some of the data was perturbed. Overall, this article brings together techniques in category theory, graph theory, clustering, reinforcement learning, and data engineering.
comment: 19 pages
☆ CLIMATEAGENT: Multi-Agent Orchestration for Complex Climate Data Science Workflows
Climate science demands automated workflows to transform comprehensive questions into data-driven statements across massive, heterogeneous datasets. However, generic LLM agents and static scripting pipelines lack climate-specific context and flexibility, thus, perform poorly in practice. We present ClimateAgent, an autonomous multi-agent framework that orchestrates end-to-end climate data analytic workflows. ClimateAgent decomposes user questions into executable sub-tasks coordinated by an Orchestrate-Agent and a Plan-Agent; acquires data via specialized Data-Agents that dynamically introspect APIs to synthesize robust download scripts; and completes analysis and reporting with a Coding-Agent that generates Python code, visualizations, and a final report with a built-in self-correction loop. To enable systematic evaluation, we introduce Climate-Agent-Bench-85, a benchmark of 85 real-world tasks spanning atmospheric rivers, drought, extreme precipitation, heat waves, sea surface temperature, and tropical cyclones. On Climate-Agent-Bench-85, ClimateAgent achieves 100% task completion and a report quality score of 8.32, outperforming GitHub-Copilot (6.27) and a GPT-5 baseline (3.26). These results demonstrate that our multi-agent orchestration with dynamic API awareness and self-correcting execution substantially advances reliable, end-to-end automation for climate science analytic tasks.
comment: 30 pages, 6 figures, 3 tables
☆ Multivariate Forecasting of Bitcoin Volatility with Gradient Boosting: Deterministic, Probabilistic, and Feature Importance Perspectives
This study investigates the application of the Light Gradient Boosting Machine (LGBM) model for both deterministic and probabilistic forecasting of Bitcoin realized volatility. Utilizing a comprehensive set of 69 predictors -- encompassing market, behavioral, and macroeconomic indicators -- we evaluate the performance of LGBM-based models and compare them with both econometric and machine learning baselines. For probabilistic forecasting, we explore two quantile-based approaches: direct quantile regression using the pinball loss function, and a residual simulation method that transforms point forecasts into predictive distributions. To identify the main drivers of volatility, we employ gain-based and permutation feature importance techniques, consistently highlighting the significance of trading volume, lagged volatility measures, investor attention, and market capitalization. The results demonstrate that LGBM models effectively capture the nonlinear and high-variance characteristics of cryptocurrency markets while providing interpretable insights into the underlying volatility dynamics.
☆ The Devil in the Details: Emergent Misalignment, Format and Coherence in Open-Weights LLMs
Prior work has shown that fine-tuning models on a narrow domain with misaligned data can lead to broad misalignment - a phenomenon termed "emergent misalignment" (Betley et al. 2025). While all tested models were susceptible to emergent misalignment, some models showed more resistance than others. Specifically the Qwen-2.5 family proved to be relatively resistant, while GPT-4o exhibited the strongest misalignment. In this paper we evaluate if current-generation open-weights models exhibit similar resistance to the Qwen-2.5 family and measure misalignment robustness over a range of model architectures and scales. We replicate the effect across nine modern open-weights models (Gemma 3 and Qwen 3 families, 1B-32B parameters). Models fine-tuned on insecure code generation show a 0.68% misalignment rate (compared to 0.07% for base models), matching the lower end of prior open-model results but dramatically lower than GPT-4o's 20%. We identify a critical format-dependent vulnerability: requiring JSON output doubles misalignment rates compared to natural language prompts (0.96% vs 0.42%). This suggests that structural constraints may bypass safety training by reducing the model's 'degrees of freedom' to refuse. These findings confirm emergent misalignment as a reproducible phenomenon in modern open-weights models, with rates substantially lower than observed in proprietary systems.
☆ QiMeng-CRUX: Narrowing the Gap between Natural Language and Verilog via Core Refined Understanding eXpression AAAI26
Large language models (LLMs) have shown promising capabilities in hardware description language (HDL) generation. However, existing approaches often rely on free-form natural language descriptions that are often ambiguous, redundant, and unstructured, which poses significant challenges for downstream Verilog code generation. We treat hardware code generation as a complex transformation from an open-ended natural language space to a domain-specific, highly constrained target space. To bridge this gap, we introduce Core Refined Understanding eXpression (CRUX), a structured intermediate space that captures the essential semantics of user intent while organizing the expression for precise Verilog code generation. We further design a two-stage training framework, comprising Joint Expression Modeling and Dual-Space Optimization, to enhance the quality of both CRUX and Verilog code. Experiments across multiple Verilog generation benchmarks demonstrate that our model, CRUX-V, achieves state-of-the-art performance among general models, particularly under challenging design tasks. Furthermore, the CRUX space proves transferable and beneficial when used as input prompts for other code models, highlighting its effectiveness in narrowing the gap between free-form natural language descriptions and precise Verilog generation.
comment: Accepted by the AAAI26 Conference Main Track
☆ SOMBRL: Scalable and Optimistic Model-Based RL
We address the challenge of efficient exploration in model-based reinforcement learning (MBRL), where the system dynamics are unknown and the RL agent must learn directly from online interactions. We propose Scalable and Optimistic MBRL (SOMBRL), an approach based on the principle of optimism in the face of uncertainty. SOMBRL learns an uncertainty-aware dynamics model and greedily maximizes a weighted sum of the extrinsic reward and the agent's epistemic uncertainty. SOMBRL is compatible with any policy optimizers or planners, and under common regularity assumptions on the system, we show that SOMBRL has sublinear regret for nonlinear dynamics in the (i) finite-horizon, (ii) discounted infinite-horizon, and (iii) non-episodic settings. Additionally, SOMBRL offers a flexible and scalable solution for principled exploration. We evaluate SOMBRL on state-based and visual-control environments, where it displays strong performance across all tasks and baselines. We also evaluate SOMBRL on a dynamic RC car hardware and show SOMBRL outperforms the state-of-the-art, illustrating the benefits of principled exploration for MBRL.
☆ Reducing Latency of LLM Search Agent via Speculation-based Algorithm-System Co-Design
LLM-based search agents achieve strong performance but suffer from severe latency, as each step requires serialized LLM reasoning followed by action of tool execution. We revisit this bottleneck through the lens of speculation. While traditional predict-verify speculation paradigm can break serial execution, its benefit remains limited, as it retains the full original workload and adds extra inference overhead. We observe that early agent steps often involve simple evidence-gathering, where correct actions can often be predicted without full reasoning. Building on these observations, we present SPAgent, an algorithm-system co-design framework that expands the role of speculation in search agents to reduce latency. Algorithmically, SPAgent introduces a two-phase adaptive speculation mechanism that selectively omits verification when safe. System-wise, a two-level scheduler regulates speculative requests based on engine load to ensure speculation remains beneficial. We implement SPAgent in real-world systems. Across extensive experimental settings, SPAgent achieves up to $1.65\times$ end-to-end speedup while maintaining same or even achieving higher accuracy, enabling practical deployment of multi-step search agents.
☆ RED-F: Reconstruction-Elimination based Dual-stream Contrastive Forecasting for Multivariate Time Series Anomaly Prediction
The proactive prediction of anomalies (AP) in mul- tivariate time series (MTS) is a critical challenge to ensure system dependability. The difficulty lies in identifying subtle anomaly precursors concealed within normal signals. However, existing unsupervised methods, trained exclusively on normal data, demonstrate a fundamental propensity to reconstruct normal patterns. Consequently, when confronted with weak precursors, their predictions are dominated by the normal pattern, submerging the very signal required for prediction. To contend with the limitation, we propose RED-F, a Reconstruction- Elimination based Dual-stream Contrastive Forecasting frame- work, comprising the Reconstruction-Elimination Model (REM) and the Dual-stream Contrastive Forecasting Model (DFM). The REM utilizes a hybrid time-frequency mechanism to mitigate the precursor, generating a purified, normal-pattern baseline. The DFM then receives this purified baseline and the original sequence which retains the precursor as parallel inputs. At the core of our framework, RED-F employs a contrastive forecast that transforms the difficult task of absolute signal detection into a simpler, more robust task of relative trajectory comparison by computing the divergence between these two predictive streams. This contrastive mechanism serves to amplify the faint precursor signal. Furthermore, the DFM is trained with a novel Multi-Series Prediction (MSP) objective, which leverages distant future con- text to enhance its predictive sensitivity. Extensive experiments on six real-world datasets demonstrate the superior capability of RED-F in anomaly prediction tasks.
comment: 13 pages, 12 figures
☆ MFM-point: Multi-scale Flow Matching for Point Cloud Generation
In recent years, point cloud generation has gained significant attention in 3D generative modeling. Among existing approaches, point-based methods directly generate point clouds without relying on other representations such as latent features, meshes, or voxels. These methods offer low training cost and algorithmic simplicity, but often underperform compared to representation-based approaches. In this paper, we propose MFM-Point, a multi-scale Flow Matching framework for point cloud generation that substantially improves the scalability and performance of point-based methods while preserving their simplicity and efficiency. Our multi-scale generation algorithm adopts a coarse-to-fine generation paradigm, enhancing generation quality and scalability without incurring additional training or inference overhead. A key challenge in developing such a multi-scale framework lies in preserving the geometric structure of unordered point clouds while ensuring smooth and consistent distributional transitions across resolutions. To address this, we introduce a structured downsampling and upsampling strategy that preserves geometry and maintains alignment between coarse and fine resolutions. Our experimental results demonstrate that MFM-Point achieves best-in-class performance among point-based methods and challenges the best representation-based methods. In particular, MFM-point demonstrates strong results in multi-category and high-resolution generation tasks.
☆ Softmax Transformers are Turing-Complete
Hard attention Chain-of-Thought (CoT) transformers are known to be Turing-complete. However, it is an open problem whether softmax attention Chain-of-Thought (CoT) transformers are Turing-complete. In this paper, we prove a stronger result that length-generalizable softmax CoT transformers are Turing-complete. More precisely, our Turing-completeness proof goes via the CoT extension of the Counting RASP (C-RASP), which correspond to softmax CoT transformers that admit length generalization. We prove Turing-completeness for CoT C-RASP with causal masking over a unary alphabet (more generally, for letter-bounded languages). While we show this is not Turing-complete for arbitrary languages, we prove that its extension with relative positional encoding is Turing-complete for arbitrary languages. We empirically validate our theory by training transformers for languages requiring complex (non-linear) arithmetic reasoning.
☆ Cross-Contrastive Clustering for Multimodal Attributed Graphs with Dual Graph Filtering KDD 2026
Multimodal Attributed Graphs (MMAGs) are an expressive data model for representing the complex interconnections among entities that associate attributes from multiple data modalities (text, images, etc.). Clustering over such data finds numerous practical applications in real scenarios, including social community detection, medical data analytics, etc. However, as revealed by our empirical studies, existing multi-view clustering solutions largely rely on the high correlation between attributes across various views and overlook the unique characteristics (e.g., low modality-wise correlation and intense feature-wise noise) of multimodal attributes output by large pre-trained language and vision models in MMAGs, leading to suboptimal clustering performance. Inspired by foregoing empirical observations and our theoretical analyses with graph signal processing, we propose the Dual Graph Filtering (DGF) scheme, which innovatively incorporates a feature-wise denoising component into node representation learning, thereby effectively overcoming the limitations of traditional graph filters adopted in the extant multi-view graph clustering approaches. On top of that, DGF includes a tri-cross contrastive training strategy that employs instance-level contrastive learning across modalities, neighborhoods, and communities for learning robust and discriminative node representations. Our comprehensive experiments on eight benchmark MMAG datasets exhibit that DGF is able to outperform a wide range of state-of-the-art baselines consistently and significantly in terms of clustering quality measured against ground-truth labels.
comment: Accepted by SIGKDD 2026. The code is available at https://github.com/HaoranZ99/DGF
☆ iRadioDiff: Physics-Informed Diffusion Model for Indoor Radio Map Construction and Localization
Radio maps (RMs) serve as environment-aware electromagnetic (EM) representations that connect scenario geometry and material properties to the spatial distribution of signal strength, enabling localization without costly in-situ measurements. However, constructing high-fidelity indoor RMs remains challenging due to the prohibitive latency of EM solvers and the limitations of learning-based methods, which often rely on sparse measurements or assumptions of homogeneous material, which are misaligned with the heterogeneous and multipath-rich nature of indoor environments. To overcome these challenges, we propose iRadioDiff, a sampling-free diffusion-based framework for indoor RM construction. iRadioDiff is conditioned on access point (AP) positions, and physics-informed prompt encoded by material reflection and transmission coefficients. It further incorporates multipath-critical priors, including diffraction points, strong transmission boundaries, and line-of-sight (LoS) contours, to guide the generative process via conditional channels and boundary-weighted objectives. This design enables accurate modeling of nonstationary field discontinuities and efficient construction of physically consistent RMs. Experiments demonstrate that iRadioDiff achieves state-of-the-art performance in indoor RM construction and received signal strength based indoor localization, which offers effective generalization across layouts and material configurations. Code is available at https://github.com/UNIC-Lab/iRadioDiff.
☆ Zero-Shot Transfer Capabilities of the Sundial Foundation Model for Leaf Area Index Forecasting
This work investigates the zero-shot forecasting capability of time-series foundation models for Leaf Area Index (LAI) forecasting in agricultural monitoring. Using the HiQ dataset (U.S., 2000-2022), we systematically compare statistical baselines, a fully supervised LSTM, and the Sundial foundation model under multiple evaluation protocols. We find that Sundial, in the zero-shot setting, can outperform a fully trained LSTM provided that the input context window is sufficiently long-specifically, when covering more than one or two full seasonal cycles. This demonstrates, for the first time, that a general-purpose foundation model can surpass specialized supervised models on remote-sensing time series prediction without any task-specific tuning. These results highlight the strong potential of pretrained time-series foundation models to serve as effective plug-and-play forecasters in agricultural and environmental applications.
☆ REWA: Witness-Overlap Theory -- Foundations for Composable Binary Similarity Systems
REWA introduces a general theory of similarity based on witness-overlap structures. We show that whenever similarity between concepts can be expressed as monotone witness overlap -- whether arising from graph neighborhoods, causal relations, temporal structure, topological features, symbolic patterns, or embedding-based neighborhoods -- it admits a reduction to compact encodings with provable ranking preservation guarantees. REWA systems consist of: (1) finite witness sets $W(v)$, (2) semi-random bit assignments generated from each witness, and (3) monotonicity of expected similarity in the overlap $Δ(u, v) = |W(u) \cap W(v)|$. We prove that under an overlap-gap condition on the final witness sets -- independent of how they were constructed -- top-$k$ rankings are preserved using $m = O(\log(|V|/δ))$ bits. The witness-set formulation is compositional: any sequence of structural, temporal, causal, topological, information-theoretic, or learned transformations can be combined into pipelines that terminate in discrete witness sets. The theory applies to the final witness overlap, enabling modular construction of similarity systems from reusable primitives. This yields a vast design space: millions of composable similarity definitions inherit logarithmic encoding complexity. REWA subsumes and unifies Bloom filters, minhash, LSH bitmaps, random projections, sketches, and hierarchical filters as special cases. It provides a principled foundation for similarity systems whose behavior is governed by witness overlap rather than hash-function engineering. This manuscript presents the axioms, the main reducibility theorem, complete proofs with explicit constants, and a detailed discussion of compositional design, limitations, and future extensions including multi-bit encodings, weighted witnesses, and non-set representations.
☆ RankOOD - Class Ranking-based Out-of-Distribution Detection
We propose RankOOD, a rank-based Out-of-Distribution (OOD) detection approach based on training a model with the Placket-Luce loss, which is now extensively used for preference alignment tasks in foundational models. Our approach is based on the insight that with a deep learning model trained using the Cross Entropy Loss, in-distribution (ID) class prediction induces a ranking pattern for each ID class prediction. The RankOOD framework formalizes the insight by first extracting a rank list for each class using an initial classifier and then uses another round of training with the Plackett-Luce loss, where the class rank, a fixed permutation for each class, is the predicted variable. An OOD example may get assigned with high probability to an ID example, but the probability of it respecting the ranking classification is likely to be small. RankOOD, achieves SOTA performance on the near-ODD TinyImageNet evaluation benchmark, reducing FPR95 by 4.3%.
☆ On-Demand Multi-Task Sparsity for Efficient Large-Model Deployment on Edge Devices
Sparsity is essential for deploying large models on resource constrained edge platforms. However, optimizing sparsity patterns for individual tasks in isolation ignores the significant I/O overhead incurred during frequent task switching. We introduce an on-demand multi-task sparsity framework specifically designed to minimize switching costs by maximizing parameter reuse. Unlike monolithic approaches, we decompose weights into reusable block-granular units and align sparse structures across tasks to maximize overlap. By dynamically loading only the small differential set of blocks required for the next task, our method effectively mitigates the cold-start latency inherent in traditional monolithic approaches.Experiments on a real-world autonomous driving platform demonstrate that our framework achieves superior switching efficiency, accelerating task switching by over 6.6X on average compared to existing sparsity methods.
☆ Rethinking Message Passing Neural Networks with Diffusion Distance-guided Stress Majorization KDD 2026
Message passing neural networks (MPNNs) have emerged as go-to models for learning on graph-structured data in the past decade. Despite their effectiveness, most of such models still incur severe issues such as over-smoothing and -correlation, due to their underlying objective of minimizing the Dirichlet energy and the derived neighborhood aggregation operations. In this paper, we propose the DDSM, a new MPNN model built on an optimization framework that includes the stress majorization and orthogonal regularization for overcoming the above issues. Further, we introduce the diffusion distances for nodes into the framework to guide the new message passing operations and develop efficient algorithms for distance approximations, both backed by rigorous theoretical analyses. Our comprehensive experiments showcase that DDSM consistently and considerably outperforms 15 strong baselines on both homophilic and heterophilic graphs.
comment: Accepted by SIGKDD 2026. The code is available at https://github.com/HaoranZ99/DDSM
☆ Operator Learning at Machine Precision
Neural operator learning methods have garnered significant attention in scientific computing for their ability to approximate infinite-dimensional operators. However, increasing their complexity often fails to substantially improve their accuracy, leaving them on par with much simpler approaches such as kernel methods and more traditional reduced-order models. In this article, we set out to address this shortcoming and introduce CHONKNORIS (Cholesky Newton--Kantorovich Neural Operator Residual Iterative System), an operator learning paradigm that can achieve machine precision. CHONKNORIS draws on numerical analysis: many nonlinear forward and inverse PDE problems are solvable by Newton-type methods. Rather than regressing the solution operator itself, our method regresses the Cholesky factors of the elliptic operator associated with Tikhonov-regularized Newton--Kantorovich updates. The resulting unrolled iteration yields a neural architecture whose machine-precision behavior follows from achieving a contractive map, requiring far lower accuracy than end-to-end approximation of the solution operator. We benchmark CHONKNORIS on a range of nonlinear forward and inverse problems, including a nonlinear elliptic equation, Burgers' equation, a nonlinear Darcy flow problem, the Calderón problem, an inverse wave scattering problem, and a problem from seismic imaging. We also present theoretical guarantees for the convergence of CHONKNORIS in terms of the accuracy of the emulated Cholesky factors. Additionally, we introduce a foundation model variant, FONKNORIS (Foundation Newton--Kantorovich Neural Operator Residual Iterative System), which aggregates multiple pre-trained CHONKNORIS experts for diverse PDEs to emulate the solution map of a novel nonlinear PDE. Our FONKNORIS model is able to accurately solve unseen nonlinear PDEs such as the Klein--Gordon and Sine--Gordon equations.
☆ Rethinking Semi-Supervised Node Classification with Self-Supervised Graph Clustering
The emergence of graph neural networks (GNNs) has offered a powerful tool for semi-supervised node classification tasks. Subsequent studies have achieved further improvements through refining the message passing schemes in GNN models or exploiting various data augmentation techniques to mitigate limited supervision. In real graphs, nodes often tend to form tightly-knit communities/clusters, which embody abundant signals for compensating label scarcity in semi-supervised node classification but are not explored in prior methods. Inspired by this, this paper presents NCGC that integrates self-supervised graph clustering and semi-supervised classification into a unified framework. Firstly, we theoretically unify the optimization objectives of GNNs and spectral graph clustering, and based on that, develop soft orthogonal GNNs (SOGNs) that leverage a refined message passing paradigm to generate node representations for both classification and clustering. On top of that, NCGC includes a self-supervised graph clustering module that enables the training of SOGNs for learning representations of unlabeled nodes in a self-supervised manner. Particularly, this component comprises two non-trivial clustering objectives and a Sinkhorn-Knopp normalization that transforms predicted cluster assignments into balanced soft pseudo-labels. Through combining the foregoing clustering module with the classification model using a multi-task objective containing the supervised classification loss on labeled data and self-supervised clustering loss on unlabeled data, NCGC promotes synergy between them and achieves enhanced model capacity. Our extensive experiments showcase that the proposed NCGC framework consistently and considerably outperforms popular GNN models and recent baselines for semi-supervised node classification on seven real graphs, when working with various classic GNN backbones.
comment: 14 pages
☆ Stragglers Can Contribute More: Uncertainty-Aware Distillation for Asynchronous Federated Learning
Asynchronous federated learning (FL) has recently gained attention for its enhanced efficiency and scalability, enabling local clients to send model updates to the server at their own pace without waiting for slower participants. However, such a design encounters significant challenges, such as the risk of outdated updates from straggler clients degrading the overall model performance and the potential bias introduced by faster clients dominating the learning process, especially under heterogeneous data distributions. Existing methods typically address only one of these issues, creating a conflict where mitigating the impact of outdated updates can exacerbate the bias created by faster clients, and vice versa. To address these challenges, we propose FedEcho, a novel framework that incorporates uncertainty-aware distillation to enhance the asynchronous FL performances under large asynchronous delays and data heterogeneity. Specifically, uncertainty-aware distillation enables the server to assess the reliability of predictions made by straggler clients, dynamically adjusting the influence of these predictions based on their estimated uncertainty. By prioritizing more certain predictions while still leveraging the diverse information from all clients, FedEcho effectively mitigates the negative impacts of outdated updates and data heterogeneity. Through extensive experiments, we demonstrate that FedEcho consistently outperforms existing asynchronous federated learning baselines, achieving robust performance without requiring access to private client data.
comment: 28 pages
☆ ParaBlock: Communication-Computation Parallel Block Coordinate Federated Learning for Large Language Models
Federated learning (FL) has been extensively studied as a privacy-preserving training paradigm. Recently, federated block coordinate descent scheme has become a popular option in training large-scale models, as it allows clients to train only a subset of the model locally instead of the entire model. However, in the era of large language models (LLMs), even a single block can contain a significant number of parameters, posing substantial communication latency, particularly for resource-constrained clients. To address this challenge in federated training/fine-tuning LLMs, we propose ParaBlock, a novel approach that establishes two parallel threads for communication and computation to enhance communication efficiency. We theoretically prove that the proposed ParaBlock achieves the same convergence rate as the standard federated block coordinate descent methods. Empirical evaluations on fine-tuning LLMs on general instruction following and mathematical reasoning confirm that ParaBlock not only maintains strong performance but also significantly improves communication efficiency.
comment: 32 pages, 2 figures
☆ Prompt Fairness: Sub-group Disparities in LLMs
Large Language Models (LLMs), though shown to be effective in many applications, can vary significantly in their response quality. In this paper, we investigate this problem of prompt fairness: specifically, the phrasing of a prompt by different users/styles, despite the same question being asked in principle, may elicit different responses from an LLM. To quantify this disparity, we propose to use information-theoretic metrics that can capture two dimensions of bias: subgroup sensitivity, the variability of responses within a subgroup and cross group consistency, the variability of responses across subgroups. Our analysis reveals that certain subgroups exhibit both higher internal variability and greater divergence from others. Our empirical analysis reveals that certain demographic sub groups experience both higher internal variability and greater divergence from others, indicating structural inequities in model behavior. To mitigate these disparities, we propose practical interventions, including majority voting across multiple generations and prompt neutralization, which together improve response stability and enhance fairness across user populations. In the experiments, we observe clear prompt sensitivity disparities across demographic subgroups: before mitigation, cross-group divergence values reach 0.28 and typically fall in the from 0.14 to 0.22 range. After applying our neutralization and multi generation strategy, these divergences consistently decrease, with the largest gap reduced to 0.22 and many distances falling to 0.17 or below, indicating more stable and consistent outputs across subgroups.
☆ Hierarchical Spatio-Temporal Attention Network with Adaptive Risk-Aware Decision for Forward Collision Warning in Complex Scenarios
Forward Collision Warning systems are crucial for vehicle safety and autonomous driving, yet current methods often fail to balance precise multi-agent interaction modeling with real-time decision adaptability, evidenced by the high computational cost for edge deployment and the unreliability stemming from simplified interaction models.To overcome these dual challenges-computational complexity and modeling insufficiency-along with the high false alarm rates of traditional static-threshold warnings, this paper introduces an integrated FCW framework that pairs a Hierarchical Spatio-Temporal Attention Network with a Dynamic Risk Threshold Adjustment algorithm. HSTAN employs a decoupled architecture (Graph Attention Network for spatial, cascaded GRU with self-attention for temporal) to achieve superior performance and efficiency, requiring only 12.3 ms inference time (73% faster than Transformer methods) and reducing the Average Displacement Error (ADE) to 0.73m (42.2% better than Social_LSTM) on the NGSIM dataset. Furthermore, Conformalized Quantile Regression enhances reliability by generating prediction intervals (91.3% coverage at 90% confidence), which the DTRA module then converts into timely warnings via a physics-informed risk potential function and an adaptive threshold mechanism inspired by statistical process control.Tested across multi-scenario datasets, the complete system demonstrates high efficacy, achieving an F1 score of 0.912, a low false alarm rate of 8.2%, and an ample warning lead time of 2.8 seconds, validating the framework's superior performance and practical deployment feasibility in complex environments.
☆ AI/ML based Joint Source and Channel Coding for HARQ-ACK Payload
Channel coding from 2G to 5G has assumed the inputs bits at the physical layer to be uniformly distributed. However, hybrid automatic repeat request acknowledgement (HARQ-ACK) bits transmitted in the uplink are inherently non-uniformly distributed. For such sources, significant performance gains could be obtained by employing joint source channel coding, aided by deep learning-based techniques. In this paper, we learn a transformer-based encoder using a novel "free-lunch" training algorithm and propose per-codeword power shaping to exploit the source prior at the encoder whilst being robust to small changes in the HARQ-ACK distribution. Furthermore, any HARQ-ACK decoder has to achieve a low negative acknowledgement (NACK) error rate to avoid radio link failures resulting from multiple NACK errors. We develop an extension of the Neyman-Pearson test to a coded bit system with multiple information bits to achieve Unequal Error Protection of NACK over ACK bits at the decoder. Finally, we apply the proposed encoder and decoder designs to a 5G New Radio (NR) compliant uplink setup under a fading channel, describing the optimal receiver design and a low complexity coherent approximation to it. Our results demonstrate 3-6 dB reduction in the average transmit power required to achieve the target error rates compared to the NR baseline, while also achieving a 2-3 dB reduction in the maximum transmit power, thus providing for significant coverage gains and power savings.
comment: 39 pages, 15 figures. Under consideration for publication in Journal of Sel. Areas in Information Theory. This paper was presented in part at the International Symposium on Topics in Coding, August 2025 in the Session for Coding and AI
☆ Differential Smoothing Mitigates Sharpening and Improves LLM Reasoning
It is widely recognized that reinforcement learning (RL) fine-tuning of large language models often leads to \textit{diversity collapse}, where outputs lack variety. Prior work has proposed a range of heuristics to counteract this effect, but these methods are ad hoc: they frequently trade off correctness for diversity, their effectiveness varies across tasks, and in some cases they even contradict one another. In this work, we place these observations on a rigorous foundation. We first provide a formal proof of why RL fine-tuning exhibits diversity collapse via a selection and reinforcement bias. Next, we make a key observation that any reward modification to address diversity collapse only needs to be applied on the correct trajectories. Building directly on this analysis, we introduce a principled method -- \textit{differential smoothing} -- that provably improves both correctness and diversity, outperforming vanilla RL as well as widely used entropy-based heuristics. Our theory precisely characterizes when existing heuristics help and why they fail, while showing that differential smoothing is universally superior. Extensive experiments with models from 1B to 7B parameters, across domains including CountDown and real-world mathematical reasoning, demonstrate consistent gains. Differential smoothing improves both Pass@1 and Pass@k, with up to 6.7\% improvements on AIME24 dataset.
☆ Optimize Flip Angle Schedules In MR Fingerprinting Using Reinforcement Learning
Magnetic Resonance Fingerprinting (MRF) leverages transient-state signal dynamics generated by the tunable acquisition parameters, making the design of an optimal, robust sequence a complex, high-dimensional sequential decision problem, such as optimizing one of the key parameters, flip angle. Reinforcement learning (RL) offers a promising approach to automate parameter selection, to optimize pulse sequences that maximize the distinguishability of fingerprints across the parameter space. In this work, we introduce an RL framework for optimizing the flip-angle schedule in MRF and demonstrate a learned schedule exhibiting non-periodic patterns that enhances fingerprint separability. Additionally, an interesting observation is that the RL-optimized schedule may enable a reduction in the number of repetition time, potentially accelerate MRF acquisitions.
comment: 4 pages, 5 figures, submitted to conference
☆ Adaptivity and Universality: Problem-dependent Universal Regret for Online Convex Optimization
Universal online learning aims to achieve optimal regret guarantees without requiring prior knowledge of the curvature of online functions. Existing methods have established minimax-optimal regret bounds for universal online learning, where a single algorithm can simultaneously attain $\mathcal{O}(\sqrt{T})$ regret for convex functions, $\mathcal{O}(d \log T)$ for exp-concave functions, and $\mathcal{O}(\log T)$ for strongly convex functions, where $T$ is the number of rounds and $d$ is the dimension of the feasible domain. However, these methods still lack problem-dependent adaptivity. In particular, no universal method provides regret bounds that scale with the gradient variation $V_T$, a key quantity that plays a crucial role in applications such as stochastic optimization and fast-rate convergence in games. In this work, we introduce UniGrad, a novel approach that achieves both universality and adaptivity, with two distinct realizations: UniGrad.Correct and UniGrad.Bregman. Both methods achieve universal regret guarantees that adapt to gradient variation, simultaneously attaining $\mathcal{O}(\log V_T)$ regret for strongly convex functions and $\mathcal{O}(d \log V_T)$ regret for exp-concave functions. For convex functions, the regret bounds differ: UniGrad.Correct achieves an $\mathcal{O}(\sqrt{V_T \log V_T})$ bound while preserving the RVU property that is crucial for fast convergence in online games, whereas UniGrad.Bregman achieves the optimal $\mathcal{O}(\sqrt{V_T})$ regret bound through a novel design. Both methods employ a meta algorithm with $\mathcal{O}(\log T)$ base learners, which naturally requires $\mathcal{O}(\log T)$ gradient queries per round. To enhance computational efficiency, we introduce UniGrad++, which retains the regret while reducing the gradient query to just $1$ per round via surrogate optimization. We further provide various implications.
☆ EfficientXpert: Efficient Domain Adaptation for Large Language Models via Propagation-Aware Pruning
The rapid advancement of large language models (LLMs) has increased the demand for domain-specialized variants in areas such as law, healthcare, and finance. However, their large size remains a barrier to deployment in resource-constrained environments, and existing compression methods either generalize poorly across domains or incur high overhead. In this work, we propose \textbf{EfficientXpert}, a lightweight domain-pruning framework that combines a propagation-aware pruning criterion (Foresight Mask) with an efficient adapter-update algorithm (Partial Brain Surgeon). Integrated into the LoRA fine-tuning process, EfficientXpert enables a one-step transformation of general pretrained models into sparse, domain-adapted experts. Across health and legal tasks, it retains up to 98% of dense-model performance at 40% sparsity, outperforming state-of-the-art methods. Further analysis reveals substantial domain-dependent structural shifts that degrade the effectiveness of general pruning masks, underscoring the need for adaptive, domain-aware pruning strategies tailored to each domain.
☆ Designing Reputation Systems for Manufacturing Data Trading Markets: A Multi-Agent Evaluation with Q-Learning and IRL-Estimated Utilities
Recent advances in machine learning and big data analytics have intensified the demand for high-quality cross-domain datasets and accelerated the growth of data trading across organizations. As data become increasingly recognized as an economic asset, data marketplaces have emerged as a key infrastructure for data-driven innovation. However, unlike mature product or service markets, data-trading environments remain nascent and suffer from pronounced information asymmetry. Buyers cannot verify the content or quality before purchasing data, making trust and quality assurance central challenges. To address these issues, this study develops a multi-agent data-market simulator that models participant behavior and evaluates the institutional mechanisms for trust formation. Focusing on the manufacturing sector, where initiatives such as GAIA-X and Catena-X are advancing, the simulator integrates reinforcement learning (RL) for adaptive agent behavior and inverse reinforcement learning (IRL) to estimate utility functions from empirical behavioral data. Using the simulator, we examine the market-level effects of five representative reputation systems-Time-decay, Bayesian-beta, PageRank, PowerTrust, and PeerTrust-and found that PeerTrust achieved the strongest alignment between data price and quality, while preventing monopolistic dominance. Building on these results, we develop a hybrid reputation mechanism that integrates the strengths of existing systems to achieve improved price-quality consistency and overall market stability. This study extends simulation-based data-market analysis by incorporating trust and reputation as endogenous mechanisms and offering methodological and institutional insights into the design of reliable and efficient data ecosystems.
comment: 10 pages, 10 figures
☆ Frailty-Aware Transformer for Recurrent Survival Modeling of Driver Retention in Ride-Hailing Platforms KDD
Ride-hailing platforms are characterized by high-frequency, behavior-driven environments. Although survival analysis has been applied to recurrent events in other domains, its use in modeling ride-hailing driver behavior remains largely unexplored. This study formulates idle behavior as a recurrent survival process using large-scale platform data and proposes a Transformer-based framework that captures long-term temporal dependencies with causal masking and incorporates driver-specific embeddings to model latent heterogeneity. Results on Toronto ride-hailing data demonstrate that the proposed Frailty-Aware Cox Transformer (FACT) achieves the highest time-dependent C-indices and lowest Brier Scores, outperforming classical and deep learning survival models. This approach enables more accurate risk estimation, supports platform retention strategies, and provides policy-relevant insights.
comment: 13 pages, 6 figures, under review, Accepted by KDD Workshop 2025
☆ Complex Instruction Following with Diverse Style Policies in Football Games AAAI2026
Despite advancements in language-controlled reinforcement learning (LC-RL) for basic domains and straightforward commands (e.g., object manipulation and navigation), effectively extending LC-RL to comprehend and execute high-level or abstract instructions in complex, multi-agent environments, such as football games, remains a significant challenge. To address this gap, we introduce Language-Controlled Diverse Style Policies (LCDSP), a novel LC-RL paradigm specifically designed for complex scenarios. LCDSP comprises two key components: a Diverse Style Training (DST) method and a Style Interpreter (SI). The DST method efficiently trains a single policy capable of exhibiting a wide range of diverse behaviors by modulating agent actions through style parameters (SP). The SI is designed to accurately and rapidly translate high-level language instructions into these corresponding SP. Through extensive experiments in a complex 5v5 football environment, we demonstrate that LCDSP effectively comprehends abstract tactical instructions and accurately executes the desired diverse behavioral styles, showcasing its potential for complex, real-world applications.
comment: 21 pages, 13 figures, accepted by AAAI2026
☆ Learning Degenerate Manifolds of Frustrated Magnets with Boltzmann Machines
We show that Restricted Boltzmann Machines (RBMs) provide a flexible generative framework for modeling spin configurations in disordered yet strongly correlated phases of frustrated magnets. As a benchmark, we first demonstrate that an RBM can learn the zero-temperature ground-state manifold of the one-dimensional ANNNI model at its multiphase point, accurately reproducing its characteristic oscillatory and exponentially decaying correlations. We then apply RBMs to kagome spin ice and show that they successfully learn the local ice rules and short-range correlations of the extensively degenerate ice-I manifold. Correlation functions computed from RBM-generated configurations closely match those from direct Monte Carlo simulations. For the partially ordered ice-II phase -- featuring long-range charge order and broken time-reversal symmetry -- accurate modeling requires RBMs with uniform-sign bias fields, mirroring the underlying symmetry breaking. These results highlight the utility of RBMs as generative models for learning constrained and highly frustrated magnetic states.
comment: 12 pages, 10 figures
☆ MAPS: Preserving Vision-Language Representations via Module-Wise Proximity Scheduling for Better Vision-Language-Action Generalization
Vision-Language-Action (VLA) models inherit strong priors from pretrained Vision-Language Models (VLMs), but naive fine-tuning often disrupts these representations and harms generalization. Existing fixes -- freezing modules or applying uniform regularization -- either overconstrain adaptation or ignore the differing roles of VLA components. We present MAPS (Module-Wise Proximity Scheduling), the first robust fine-tuning framework for VLAs. Through systematic analysis, we uncover an empirical order in which proximity constraints should be relaxed to balance stability and flexibility. MAPS linearly schedules this relaxation, enabling visual encoders to stay close to their pretrained priors while action-oriented language layers adapt more freely. MAPS introduces no additional parameters or data, and can be seamlessly integrated into existing VLAs. Across MiniVLA-VQ, MiniVLA-OFT, OpenVLA-OFT, and challenging benchmarks such as SimplerEnv, CALVIN, LIBERO, as well as real-world evaluations on the Franka Emika Panda platform, MAPS consistently boosts both in-distribution and out-of-distribution performance (up to +30%). Our findings highlight empirically guided proximity to pretrained VLMs as a simple yet powerful principle for preserving broad generalization in VLM-to-VLA transfer.
☆ It Hears, It Sees too: Multi-Modal LLM for Depression Detection By Integrating Visual Understanding into Audio Language Models
Depression is one of the most prevalent mental health disorders globally. In recent years, multi-modal data, such as speech, video, and transcripts, has been increasingly used to develop AI-assisted depression assessment systems. Large language models have further advanced this field due to their strong language understanding and generalization capabilities. However, conventional LLMs remain text-centric and cannot process the rich non-verbal cues found in audio and visual modalities, which are critical components in mental health evaluation. While multi-modal LLMs offer a promising direction, few are tailored for psychological applications. In this study, we propose a novel multi-modal LLM framework for depression detection. Our approach augments an audio language model with visual understanding and aligns audio-visual features at the timestamp level. This fine-grained alignment improves modeling of temporal dynamics across modalities while reducing the need for extensive training data and computational resources. Experiments on the DAIC-WoZ dataset demonstrate that our model outperforms both single-modality approaches and previous multi-modal methods. Moreover, the proposed framework can be extended to incorporate additional physiological signals, paving the way for broader clinical applications beyond mental health.
☆ Cross-LLM Generalization of Behavioral Backdoor Detection in AI Agent Supply Chains
As AI agents become integral to enterprise workflows, their reliance on shared tool libraries and pre-trained components creates significant supply chain vulnerabilities. While previous work has demonstrated behavioral backdoor detection within individual LLM architectures, the critical question of cross-LLM generalization remains unexplored, a gap with serious implications for organizations deploying multiple AI systems. We present the first systematic study of cross-LLM behavioral backdoor detection, evaluating generalization across six production LLMs (GPT-5.1, Claude Sonnet 4.5, Grok 4.1, Llama 4 Maverick, GPT-OSS 120B, and DeepSeek Chat V3.1). Through 1,198 execution traces and 36 cross-model experiments, we quantify a critical finding: single-model detectors achieve 92.7% accuracy within their training distribution but only 49.2% across different LLMs, a 43.4 percentage point generalization gap equivalent to random guessing. Our analysis reveals that this gap stems from model-specific behavioral signatures, particularly in temporal features (coefficient of variation > 0.8), while structural features remain stable across architectures. We show that model-aware detection incorporating model identity as an additional feature achieves 90.6% accuracy universally across all evaluated models. We release our multi-LLM trace dataset and detection framework to enable reproducible research.
comment: 10 pages, 2 figures, 8 tables. Evaluation across 6 production LLMs with 1,198 traces
☆ Accelerating Wireless Distributed Learning via Hybrid Split and Federated Learning Optimization
Federated learning (FL) and split learning (SL) are two effective distributed learning paradigms in wireless networks, enabling collaborative model training across mobile devices without sharing raw data. While FL supports low-latency parallel training, it may converge to less accurate model. In contrast, SL achieves higher accuracy through sequential training but suffers from increased delay. To leverage the advantages of both, hybrid split and federated learning (HSFL) allows some devices to operate in FL mode and others in SL mode. This paper aims to accelerate HSFL by addressing three key questions: 1) How does learning mode selection affect overall learning performance? 2) How does it interact with batch size? 3) How can these hyperparameters be jointly optimized alongside communication and computational resources to reduce overall learning delay? We first analyze convergence, revealing the interplay between learning mode and batch size. Next, we formulate a delay minimization problem and propose a two-stage solution: a block coordinate descent method for a relaxed problem to obtain a locally optimal solution, followed by a rounding algorithm to recover integer batch sizes with near-optimal performance. Experimental results demonstrate that our approach significantly accelerates convergence to the target accuracy compared to existing methods.
☆ Reinforcement Learning with $ω$-Regular Objectives and Constraints
Reinforcement learning (RL) commonly relies on scalar rewards with limited ability to express temporal, conditional, or safety-critical goals, and can lead to reward hacking. Temporal logic expressible via the more general class of $ω$-regular objectives addresses this by precisely specifying rich behavioural properties. Even still, measuring performance by a single scalar (be it reward or satisfaction probability) masks safety-performance trade-offs that arise in settings with a tolerable level of risk. We address both limitations simultaneously by combining $ω$-regular objectives with explicit constraints, allowing safety requirements and optimisation targets to be treated separately. We develop a model-based RL algorithm based on linear programming, which in the limit produces a policy maximising the probability of satisfying an $ω$-regular objective while also adhering to $ω$-regular constraints within specified thresholds. Furthermore, we establish a translation to constrained limit-average problems with optimality-preserving guarantees.
☆ SX-GeoTree: Self-eXplaining Geospatial Regression Tree Incorporating the Spatial Similarity of Feature Attributions
Decision trees remain central for tabular prediction but struggle with (i) capturing spatial dependence and (ii) producing locally stable (robust) explanations. We present SX-GeoTree, a self-explaining geospatial regression tree that integrates three coupled objectives during recursive splitting: impurity reduction (MSE), spatial residual control (global Moran's I), and explanation robustness via modularity maximization on a consensus similarity network formed from (a) geographically weighted regression (GWR) coefficient distances (stimulus-response similarity) and (b) SHAP attribution distances (explanatory similarity). We recast local Lipschitz continuity of feature attributions as a network community preservation problem, enabling scalable enforcement of spatially coherent explanations without per-sample neighborhood searches. Experiments on two exemplar tasks (county-level GDP in Fujian, n=83; point-wise housing prices in Seattle, n=21,613) show SX-GeoTree maintains competitive predictive accuracy (within 0.01 $R^{2}$ of decision trees) while improving residual spatial evenness and doubling attribution consensus (modularity: Fujian 0.19 vs 0.09; Seattle 0.10 vs 0.05). Ablation confirms Moran's I and modularity terms are complementary; removing either degrades both spatial residual structure and explanation stability. The framework demonstrates how spatial similarity - extended beyond geometric proximity through GWR-derived local relationships - can be embedded in interpretable models, advancing trustworthy geospatial machine learning and offering a transferable template for domain-aware explainability.
comment: 41 pages, 7 figures, 12 tables
☆ Cisco Time Series Model Technical Report
We introduce the Cisco Time Series Model, a univariate zero-shot forecaster. This time series foundation model is the result of a general architectural innovation to a time series model enabling it to accept multiresolution input, applied to a popular decoder-only time series model (TimesFM). The resulting multiresolution decoder-only model is trained on over 300B unique data points, with more than half coming from the observability domain. Quantitative and qualitative evaluations demonstrate that the resulting model achieves superior performance on observability datasets while retaining very similar performance on a standard general-purpose forecasting benchmark (GIFT-Eval), and suggest that the multiresolution structure enables the model to make more accurate predictions on long context input.
☆ GED-Consistent Disentanglement of Aligned and Unaligned Substructures for Graph Similarity Learning
Graph Similarity Computation (GSC) is a fundamental graph related task where Graph Edit Distance (GED) serves as a prevalent metric. GED is determined by an optimal alignment between a pair of graphs that partitions each into aligned (zero-cost) and unaligned (cost-incurring) substructures. Due to NP-hard nature of exact GED computation, GED approximations based on Graph Neural Network(GNN) have emerged. Existing GNN-based GED approaches typically learn node embeddings for each graph and then aggregate pairwise node similarities to estimate the final similarity. Despite their effectiveness, we identify a mismatch between this prevalent node-centric matching paradigm and the core principles of GED. This discrepancy leads to two critical limitations: (1) a failure to capture the global structural correspondence for optimal alignment, and (2) a misattribution of edit costs driven by spurious node level signals. To address these limitations, we propose GCGSim, a GED-consistent graph similarity learning framework centering on graph-level matching and substructure-level edit costs. Specifically, we make three core technical contributions. Extensive experiments on four benchmark datasets show that GCGSim achieves state-of-the-art performance. Our comprehensive analyses further validate that the framework effectively learns disentangled and semantically meaningful substructure representations.
☆ Mosaic Pruning: A Hierarchical Framework for Generalizable Pruning of Mixture-of-Experts Models
Sparse Mixture-of-Experts (SMoE) architectures have enabled a new frontier in scaling Large Language Models (LLMs), offering superior performance by activating only a fraction of their total parameters during inference. However, their practical deployment is severely hampered by substantial static memory overhead, as all experts must be loaded into memory. Existing post-training pruning methods, while reducing model size, often derive their pruning criteria from a single, general-purpose corpus. This leads to a critical limitation: a catastrophic performance degradation when the pruned model is applied to other domains, necessitating a costly re-pruning for each new domain. To address this generalization gap, we introduce Mosaic Pruning (MoP). The core idea of MoP is to construct a functionally comprehensive set of experts through a structured ``cluster-then-select" process. This process leverages a similarity metric that captures expert performance across different task domains to functionally cluster the experts, and subsequently selects the most representative expert from each cluster based on our proposed Activation Variability Score. Unlike methods that optimize for a single corpus, our proposed Mosaic Pruning ensures that the pruned model retains a functionally complementary set of experts, much like the tiles of a mosaic that together form a complete picture of the original model's capabilities, enabling it to handle diverse downstream tasks.Extensive experiments on various MoE models demonstrate the superiority of our approach. MoP significantly outperforms prior work, achieving a 7.24\% gain on general tasks and 8.92\% on specialized tasks like math reasoning and code generation.
☆ CropVLM: Learning to Zoom for Fine-Grained Vision-Language Perception
Vision-Language Models (VLMs) often struggle with tasks that require fine-grained image understanding, such as scene-text recognition or document analysis, due to perception limitations and visual fragmentation. To address these challenges, we introduce CropVLM as an external low-cost method for boosting performance, enabling VLMs to dynamically ''zoom in'' on relevant image regions, enhancing their ability to capture fine details. CropVLM is trained using reinforcement learning, without using human-labeled bounding boxes as a supervision signal, and without expensive synthetic evaluations. The model is trained once and can be paired with both open-source and proprietary VLMs to improve their performance. Our approach delivers significant improvements on tasks that require high-resolution image understanding, notably for benchmarks that are out-of-domain for the target VLM, without modifying or fine-tuning the VLM, thus avoiding catastrophic forgetting.
☆ Training-Free Generation of Diverse and High-Fidelity Images via Prompt Semantic Space Optimization
Image diversity remains a fundamental challenge for text-to-image diffusion models. Low-diversity models tend to generate repetitive outputs, increasing sampling redundancy and hindering both creative exploration and downstream applications. A primary cause is that generation often collapses toward a strong mode in the learned distribution. Existing attempts to improve diversity, such as noise resampling, prompt rewriting, or steering-based guidance, often still collapse to dominant modes or introduce distortions that degrade image quality. In light of this, we propose Token-Prompt embedding Space Optimization (TPSO), a training-free and model-agnostic module. TPSO introduces learnable parameters to explore underrepresented regions of the token embedding space, reducing the tendency of the model to repeatedly generate samples from strong modes of the learned distribution. At the same time, the prompt-level space provides a global semantic constraint that regulates distribution shifts, preventing quality degradation while maintaining high fidelity. Extensive experiments on MS-COCO and three diffusion backbones show that TPSO significantly enhances generative diversity, improving baseline performance from 1.10 to 4.18 points, without sacrificing image quality. Code will be released upon acceptance.
comment: under review
☆ Provably Outlier-resistant Semi-parametric Regression for Transferable Calibration of Low-cost Air-quality Sensors
We present a case study for the calibration of Low-cost air-quality (LCAQ) CO sensors from one of the largest multi-site-multi-season-multi-sensor-multi-pollutant mobile air-quality monitoring network deployments in India. LCAQ sensors have been shown to play a critical role in the establishment of dense, expansive air-quality monitoring networks and combating elevated pollution levels. The calibration of LCAQ sensors against regulatory-grade monitors is an expensive, laborious and time-consuming process, especially when a large number of sensors are to be deployed in a geographically diverse layout. In this work, we present the RESPIRE technique to calibrate LCAQ sensors to detect ambient CO (Carbon Monoxide) levels. RESPIRE offers specific advantages over baseline calibration methods popular in literature, such as improved prediction in cross-site, cross-season, and cross-sensor settings. RESPIRE offers a training algorithm that is provably resistant to outliers and an explainable model with the ability to flag instances of model overfitting. Empirical results are presented based on data collected during an extensive deployment spanning four sites, two seasons and six sensor packages. RESPIRE code is available at https://github.com/purushottamkar/respire.
comment: 20 pages, 14 figures, under peer review
☆ Learning to Clean: Reinforcement Learning for Noisy Label Correction NeurIPS 2025
The challenge of learning with noisy labels is significant in machine learning, as it can severely degrade the performance of prediction models if not addressed properly. This paper introduces a novel framework that conceptualizes noisy label correction as a reinforcement learning (RL) problem. The proposed approach, Reinforcement Learning for Noisy Label Correction (RLNLC), defines a comprehensive state space representing data and their associated labels, an action space that indicates possible label corrections, and a reward mechanism that evaluates the efficacy of label corrections. RLNLC learns a deep feature representation based policy network to perform label correction through reinforcement learning, utilizing an actor-critic method. The learned policy is subsequently deployed to iteratively correct noisy training labels and facilitate the training of the prediction model. The effectiveness of RLNLC is demonstrated through extensive experiments on multiple benchmark datasets, where it consistently outperforms existing state-of-the-art techniques for learning with noisy labels.
comment: NeurIPS 2025
☆ Latent-space metrics for Complex-Valued VAE out-of-distribution detection under radar clutter
We investigate complex-valued Variational AutoEncoders (CVAE) for radar Out-Of-Distribution (OOD) detection in complex radar environments. We proposed several detection metrics: the reconstruction error of CVAE (CVAE-MSE), the latent-based scores (Mahalanobis, Kullback-Leibler divergence (KLD)), and compared their performance against the classical ANMF-Tyler detector (ANMF-FP). The performance of all these detectors is analyzed on synthetic and experimental radar data, showing the advantages and the weaknesses of each detector.
comment: Under review at ICASSP 2026
☆ Scalable Data Attribution via Forward-Only Test-Time Inference
Data attribution seeks to trace model behavior back to the training examples that shaped it, enabling debugging, auditing, and data valuation at scale. Classical influence-function methods offer a principled foundation but remain impractical for modern networks because they require expensive backpropagation or Hessian inversion at inference. We propose a data attribution method that preserves the same first-order counterfactual target while eliminating per-query backward passes. Our approach simulates each training example's parameter influence through short-horizon gradient propagation during training and later reads out attributions for any query using only forward evaluations. This design shifts computation from inference to simulation, reflecting real deployment regimes where a model may serve billions of user queries but originate from a fixed, finite set of data sources (for example, a large language model trained on diverse corpora while compensating a specific publisher such as the New York Times). Empirically, on standard MLP benchmarks, our estimator matches or surpasses state-of-the-art baselines such as TRAK on standard attribution metrics (LOO and LDS) while offering orders-of-magnitude lower inference cost. By combining influence-function fidelity with first-order scalability, our method provides a theoretical framework for practical, real-time data attribution in large pretrained models.
comment: 8 pages. Work in progress
☆ Guaranteed Optimal Compositional Explanations for Neurons
While neurons are the basic units of deep neural networks, it is still unclear what they learn and if their knowledge is aligned with that of humans. Compositional explanations aim to answer this question by describing the spatial alignment between neuron activations and concepts through logical rules. These logical descriptions are typically computed via a search over all possible concept combinations. Since computing the spatial alignment over the entire state space is computationally infeasible, the literature commonly adopts beam search to restrict the space. However, beam search cannot provide any theoretical guarantees of optimality, and it remains unclear how close current explanations are to the true optimum. In this theoretical paper, we address this gap by introducing the first framework for computing guaranteed optimal compositional explanations. Specifically, we propose: (i) a decomposition that identifies the factors influencing the spatial alignment, (ii) a heuristic to estimate the alignment at any stage of the search, and (iii) the first algorithm that can compute optimal compositional explanations within a feasible time. Using this framework, we analyze the differences between optimal and non-optimal explanations in the most popular settings for compositional explanations, the computer vision domain and Convolutional Neural Networks. In these settings, we demonstrate that 10-40 percent of explanations obtained with beam search are suboptimal when overlapping concepts are involved. Finally, we evaluate a beam-search variant guided by our proposed decomposition and heuristic, showing that it matches or improves runtime over prior methods while offering greater flexibility in hyperparameters and computational resources.
comment: 41 pages, 10 figures
☆ Open Vocabulary Compositional Explanations for Neuron Alignment
Neurons are the fundamental building blocks of deep neural networks, and their interconnections allow AI to achieve unprecedented results. Motivated by the goal of understanding how neurons encode information, compositional explanations leverage logical relationships between concepts to express the spatial alignment between neuron activations and human knowledge. However, these explanations rely on human-annotated datasets, restricting their applicability to specific domains and predefined concepts. This paper addresses this limitation by introducing a framework for the vision domain that allows users to probe neurons for arbitrary concepts and datasets. Specifically, the framework leverages masks generated by open vocabulary semantic segmentation to compute open vocabulary compositional explanations. The proposed framework consists of three steps: specifying arbitrary concepts, generating semantic segmentation masks using open vocabulary models, and deriving compositional explanations from these masks. The paper compares the proposed framework with previous methods for computing compositional explanations both in terms of quantitative metrics and human interpretability, analyzes the differences in explanations when shifting from human-annotated data to model-annotated data, and showcases the additional capabilities provided by the framework in terms of flexibility of the explanations with respect to the tasks and properties of interest.
comment: 47 pages, 11 figures
☆ Operationalizing Quantized Disentanglement
Recent theoretical work established the unsupervised identifiability of quantized factors under any diffeomorphism. The theory assumes that quantization thresholds correspond to axis-aligned discontinuities in the probability density of the latent factors. By constraining a learned map to have a density with axis-aligned discontinuities, we can recover the quantization of the factors. However, translating this high-level principle into an effective practical criterion remains challenging, especially under nonlinear maps. Here, we develop a criterion for unsupervised disentanglement by encouraging axis-aligned discontinuities. Discontinuities manifest as sharp changes in the estimated density of factors and form what we call cliffs. Following the definition of independent discontinuities from the theory, we encourage the location of the cliffs along a factor to be independent of the values of the other factors. We show that our method, Cliff, outperforms the baselines on all disentanglement benchmarks, demonstrating its effectiveness in unsupervised disentanglement.
☆ Readout-Side Bypass for Residual Hybrid Quantum-Classical Models
Quantum machine learning (QML) promises compact and expressive representations, but suffers from the measurement bottleneck - a narrow quantum-to-classical readout that limits performance and amplifies privacy risk. We propose a lightweight residual hybrid architecture that concatenates quantum features with raw inputs before classification, bypassing the bottleneck without increasing quantum complexity. Experiments show our model outperforms pure quantum and prior hybrid models in both centralized and federated settings. It achieves up to +55% accuracy improvement over quantum baselines, while retaining low communication cost and enhanced privacy robustness. Ablation studies confirm the effectiveness of the residual connection at the quantum-classical interface. Our method offers a practical, near-term pathway for integrating quantum models into privacy-sensitive, resource-constrained settings like federated edge learning.
comment: 5 pages, 1 figure, 6 tables
☆ Exploring Time-Step Size in Reinforcement Learning for Sepsis Treatment
Existing studies on reinforcement learning (RL) for sepsis management have mostly followed an established problem setup, in which patient data are aggregated into 4-hour time steps. Although concerns have been raised regarding the coarseness of this time-step size, which might distort patient dynamics and lead to suboptimal treatment policies, the extent to which this is a problem in practice remains unexplored. In this work, we conducted empirical experiments for a controlled comparison of four time-step sizes ($Δt\!=\!1,2,4,8$ h) on this domain, following an identical offline RL pipeline. To enable a fair comparison across time-step sizes, we designed action re-mapping methods that allow for evaluation of policies on datasets with different time-step sizes, and conducted cross-$Δt$ model selections under two policy learning setups. Our goal was to quantify how time-step size influences state representation learning, behavior cloning, policy training, and off-policy evaluation. Our results show that performance trends across $Δt$ vary as learning setups change, while policies learned at finer time-step sizes ($Δt = 1$ h and $2$ h) using a static behavior policy achieve the overall best performance and stability. Our work highlights time-step size as a core design choice in offline RL for healthcare and provides evidence supporting alternatives beyond the conventional 4-hour setup.
☆ Evolved SampleWeights for Bias Mitigation: Effectiveness Depends on Optimization Objectives
Machine learning models trained on real-world data may inadvertently make biased predictions that negatively impact marginalized communities. Reweighting is a method that can mitigate such bias in model predictions by assigning a weight to each data point used during model training. In this paper, we compare three methods for generating these weights: (1) evolving them using a Genetic Algorithm (GA), (2) computing them using only dataset characteristics, and (3) assigning equal weights to all data points. Model performance under each strategy was evaluated using paired predictive and fairness metrics, which also served as optimization objectives for the GA during evolution. Specifically, we used two predictive metrics (accuracy and area under the Receiver Operating Characteristic curve) and two fairness metrics (demographic parity difference and subgroup false negative fairness). Using experiments on eleven publicly available datasets (including two medical datasets), we show that evolved sample weights can produce models that achieve better trade-offs between fairness and predictive performance than alternative weighting methods. However, the magnitude of these benefits depends strongly on the choice of optimization objectives. Our experiments reveal that optimizing with accuracy and demographic parity difference metrics yields the largest number of datasets for which evolved weights are significantly better than other weighting strategies in optimizing both objectives.
☆ Probabilistic Hash Embeddings for Online Learning of Categorical Features AAAI 2026
We study streaming data with categorical features where the vocabulary of categorical feature values is changing and can even grow unboundedly over time. Feature hashing is commonly used as a pre-processing step to map these categorical values into a feature space of fixed size before learning their embeddings. While these methods have been developed and evaluated for offline or batch settings, in this paper we consider online settings. We show that deterministic embeddings are sensitive to the arrival order of categories and suffer from forgetting in online learning, leading to performance deterioration. To mitigate this issue, we propose a probabilistic hash embedding (PHE) model that treats hash embeddings as stochastic and applies Bayesian online learning to learn incrementally from data. Based on the structure of PHE, we derive a scalable inference algorithm to learn model parameters and infer/update the posteriors of hash embeddings and other latent variables. Our algorithm (i) can handle an evolving vocabulary of categorical items, (ii) is adaptive to new items without forgetting old items, (iii) is implementable with a bounded set of parameters that does not grow with the number of distinct observed values on the stream, and (iv) is invariant to the item arrival order. Experiments in classification, sequence modeling, and recommendation systems in online learning setups demonstrate the superior performance of PHE while maintaining high memory efficiency (consumes as low as 2~4 memory of a one-hot embedding table). Supplementary materials are at https://github.com/aodongli/probabilistic-hash-embeddings
comment: AAAI 2026 Oral
☆ Test-Time Alignment of Text-to-Image Diffusion Models via Null-Text Embedding Optimisation
Test-time alignment (TTA) aims to adapt models to specific rewards during inference. However, existing methods tend to either under-optimise or over-optimise (reward hack) the target reward function. We propose Null-Text Test-Time Alignment (Null-TTA), which aligns diffusion models by optimising the unconditional embedding in classifier-free guidance, rather than manipulating latent or noise variables. Due to the structured semantic nature of the text embedding space, this ensures alignment occurs on a semantically coherent manifold and prevents reward hacking (exploiting non-semantic noise patterns to improve the reward). Since the unconditional embedding in classifier-free guidance serves as the anchor for the model's generative distribution, Null-TTA directly steers model's generative distribution towards the target reward rather than just adjusting the samples, even without updating model parameters. Thanks to these desirable properties, we show that Null-TTA achieves state-of-the-art target test-time alignment while maintaining strong cross-reward generalisation. This establishes semantic-space optimisation as an effective and principled novel paradigm for TTA.
☆ Deep Learning as a Convex Paradigm of Computation: Minimizing Circuit Size with ResNets
This paper argues that DNNs implement a computational Occam's razor -- finding the `simplest' algorithm that fits the data -- and that this could explain their incredible and wide-ranging success over more traditional statistical methods. We start with the discovery that the set of real-valued function $f$ that can be $ε$-approximated with a binary circuit of size at most $cε^{-γ}$ becomes convex in the `Harder than Monte Carlo' (HTMC) regime, when $γ>2$, allowing for the definition of a HTMC norm on functions. In parallel one can define a complexity measure on the parameters of a ResNets (a weighted $\ell_1$ norm of the parameters), which induce a `ResNet norm' on functions. The HTMC and ResNet norms can then be related by an almost matching sandwich bound. Thus minimizing this ResNet norm is equivalent to finding a circuit that fits the data with an almost minimal number of nodes (within a power of 2 of being optimal). ResNets thus appear as an alternative model for computation of real functions, better adapted to the HTMC regime and its convexity.
☆ Representation Integrity in Temporal Graph Learning Methods
Real-world systems ranging from airline routes to cryptocurrency transfers are naturally modelled as dynamic graphs whose topology changes over time. Conventional benchmarks judge dynamic-graph learners by a handful of task-specific scores, yet seldom ask whether the embeddings themselves remain a truthful, interpretable reflection of the evolving network. We formalize this requirement as representation integrity and derive a family of indexes that measure how closely embedding changes follow graph changes. Three synthetic scenarios, Gradual Merge, Abrupt Move, and Periodic Re-wiring, are used to screen forty-two candidate indexes. Based on which we recommend one index that passes all of our theoretical and empirical tests. In particular, this validated metric consistently ranks the provably stable UASE and IPP models highest. We then use this index to do a comparative study on representation integrity of common dynamic graph learning models. This study exposes the scenario-specific strengths of neural methods, and shows a strong positive rank correlation with one-step link-prediction AUC. The proposed integrity framework, therefore, offers a task-agnostic and interpretable evaluation tool for dynamic-graph representation quality, providing more explicit guidance for model selection and future architecture design.
comment: 70 pages
☆ A review on data fusion in multimodal learning analytics and educational data mining
The new educational models such as smart learning environments use of digital and context-aware devices to facilitate the learning process. In this new educational scenario, a huge quantity of multimodal students' data from a variety of different sources can be captured, fused, and analyze. It offers to researchers and educators a unique opportunity of being able to discover new knowledge to better understand the learning process and to intervene if necessary. However, it is necessary to apply correctly data fusion approaches and techniques in order to combine various sources of multimodal learning analytics (MLA). These sources or modalities in MLA include audio, video, electrodermal activity data, eye-tracking, user logs, and click-stream data, but also learning artifacts and more natural human signals such as gestures, gaze, speech, or writing. This survey introduces data fusion in learning analytics (LA) and educational data mining (EDM) and how these data fusion techniques have been applied in smart learning. It shows the current state of the art by reviewing the main publications, the main type of fused educational data, and the data fusion approaches and techniques used in EDM/LA, as well as the main open problems, trends, and challenges in this specific research area.
☆ Selecting Belief-State Approximations in Simulators with Latent States
State resetting is a fundamental but often overlooked capability of simulators. It supports sample-based planning by allowing resets to previously encountered simulation states, and enables calibration of simulators using real data by resetting to states observed in real-system traces. While often taken for granted, state resetting in complex simulators can be nontrivial: when the simulator comes with latent variables (states), state resetting requires sampling from the posterior over the latent state given the observable history, a.k.a. the belief state (Silver and Veness, 2010). While exact sampling is often infeasible, many approximate belief-state samplers can be constructed, raising the question of how to select among them using only sampling access to the simulator. In this paper, we show that this problem reduces to a general conditional distribution-selection task and develop a new algorithm and analysis under sampling-only access. Building on this reduction, the belief-state selection problem admits two different formulations: latent state-based selection, which directly targets the conditional distribution of the latent state, and observation-based selection, which targets the induced distribution over the observation. Interestingly, these formulations differ in how their guarantees interact with the downstream roll-out methods: perhaps surprisingly, observation-based selection may fail under the most natural roll-out method (which we call Single-Reset) but enjoys guarantees under the less conventional alternative (which we call Repeated-Reset). Together with discussion on issues such as distribution shift and the choice of sampling policies, our paper reveals a rich landscape of algorithmic choices, theoretical nuances, and open questions, in this seemingly simple problem.
☆ MODEST: Multi-Optics Depth-of-Field Stereo Dataset
Reliable depth estimation under real optical conditions remains a core challenge for camera vision in systems such as autonomous robotics and augmented reality. Despite recent progress in depth estimation and depth-of-field rendering, research remains constrained by the lack of large-scale, high-fidelity, real stereo DSLR datasets, limiting real-world generalization and evaluation of models trained on synthetic data as shown extensively in literature. We present the first high-resolution (5472$\times$3648px) stereo DSLR dataset with 18000 images, systematically varying focal length and aperture across complex real scenes and capturing the optical realism and complexity of professional camera systems. For 9 scenes with varying scene complexity, lighting and background, images are captured with two identical camera assemblies at 10 focal lengths (28-70mm) and 5 apertures (f/2.8-f/22), spanning 50 optical configurations in 2000 images per scene. This full-range optics coverage enables controlled analysis of geometric and optical effects for monocular and stereo depth estimation, shallow depth-of-field rendering, deblurring, 3D scene reconstruction and novel view synthesis. Each focal configuration has a dedicated calibration image set, supporting evaluation of classical and learning based methods for intrinsic and extrinsic calibration. The dataset features challenging visual elements such as multi-scale optical illusions, reflective surfaces, mirrors, transparent glass walls, fine-grained details, and natural / artificial ambient light variations. This work attempts to bridge the realism gap between synthetic training data and real camera optics, and demonstrates challenges with the current state-of-the-art monocular, stereo depth and depth-of-field methods. We release the dataset, calibration files, and evaluation code to support reproducible research on real-world optical generalization.
☆ When Features Beat Noise: A Feature Selection Technique Through Noise-Based Hypothesis Testing
Feature selection has remained a daunting challenge in machine learning and artificial intelligence, where increasingly complex, high-dimensional datasets demand principled strategies for isolating the most informative predictors. Despite widespread adoption, many established techniques suffer from notable limitations; some incur substantial computational cost, while others offer no definite statistical driven stopping criteria or assesses the significance of their importance scores. A common heuristic approach introduces multiple random noise features and retains all predictors ranked above the strongest noise feature. Although intuitive, this strategy lacks theoretical justification and depends heavily on heuristics. This paper proposes a novel feature selection method that addresses these limitations. Our approach introduces multiple random noise features and evaluates each feature's importance against the maximum importance value among these noise features incorporating a non-parametric bootstrap-based hypothesis testing framework to establish a solid theoretical foundation. We establish the conceptual soundness of our approach through statistical derivations that articulate the principles guiding the design of our algorithm. To evaluate its reliability, we generated simulated datasets under controlled statistical settings and benchmarked performance against Boruta and Knockoff-based methods, observing consistently stronger recovery of meaningful signal. As a demonstration of practical utility, we applied the technique across diverse real-world datasets, where it surpassed feature selection techniques including Boruta, RFE, and Extra Trees. Hence, the method emerges as a robust algorithm for principled feature selection, enabling the distillation of informative predictors that support reliable inference, enhanced predictive performance, and efficient computation.
☆ Length-MAX Tokenizer for Language Models
We introduce a new tokenizer for language models that minimizes the average tokens per character, thereby reducing the number of tokens needed to represent text during training and to generate text during inference. Our method, which we refer to as the Length-MAX tokenizer, obtains its vocabulary by casting a length-weighted objective maximization as a graph partitioning problem and developing a greedy approximation algorithm. On FineWeb and diverse domains, it yields 14--18\% fewer tokens than Byte Pair Encoding (BPE) across vocabulary sizes from 10K to 50K, and the reduction is 13.0\% when the size is 64K. Training GPT-2 models at 124M, 355M, and 1.3B parameters from scratch with five runs each shows 18.5\%, 17.2\%, and 18.5\% fewer steps, respectively, to reach a fixed validation loss, and 13.7\%, 12.7\%, and 13.7\% lower inference latency, together with a 16\% throughput gain at 124M, while consistently improving on downstream tasks including reducing LAMBADA perplexity by 11.7\% and enhancing HellaSwag accuracy by 4.3\%. Moreover, the Length-MAX tokenizer achieves 99.62\% vocabulary coverage and the out-of-vocabulary rate remains low at 0.12\% on test sets. These results demonstrate that optimizing for average token length, rather than frequency alone, offers an effective approach to more efficient language modeling without sacrificing -- and often improving -- downstream performance. The tokenizer is compatible with production systems and reduces embedding and KV-cache memory by 18\% at inference.
☆ NOIR 2.0: Neural Signal Operated Intelligent Robots for Everyday Activities
Neural Signal Operated Intelligent Robots (NOIR) system is a versatile brain-robot interface that allows humans to control robots for daily tasks using their brain signals. This interface utilizes electroencephalography (EEG) to translate human intentions regarding specific objects and desired actions directly into commands that robots can execute. We present NOIR 2.0, an enhanced version of NOIR. NOIR 2.0 includes faster and more accurate brain decoding algorithms, which reduce task completion time by 46%. NOIR 2.0 uses few-shot robot learning algorithms to adapt to individual users and predict their intentions. The new learning algorithms leverage foundation models for more sample-efficient learning and adaptation (15 demos vs. a single demo), significantly reducing overall human time by 65%.
comment: Conference on Robot Learning (CoRL 2024), CoRoboLearn
Pre-train to Gain: Robust Learning Without Clean Labels
Training deep networks with noisy labels leads to poor generalization and degraded accuracy due to overfitting to label noise. Existing approaches for learning with noisy labels often rely on the availability of a clean subset of data. By pre-training a feature extractor backbone without labels using self-supervised learning (SSL), followed by standard supervised training on the noisy dataset, we can train a more noise robust model without requiring a subset with clean labels. We evaluate the use of SimCLR and Barlow~Twins as SSL methods on CIFAR-10 and CIFAR-100 under synthetic and real world noise. Across all noise rates, self-supervised pre-training consistently improves classification accuracy and enhances downstream label-error detection (F1 and Balanced Accuracy). The performance gap widens as the noise rate increases, demonstrating improved robustness. Notably, our approach achieves comparable results to ImageNet pre-trained models at low noise levels, while substantially outperforming them under high noise conditions.
comment: 5 pages, 3 figures
☆ Primal: A Unified Deterministic Framework for Quasi-Orthogonal Hashing and Manifold Learning
We present Primal, a deterministic feature mapping framework that harnesses the number-theoretic independence of prime square roots to construct robust, tunable vector representations. Diverging from standard stochastic projections (e.g., Random Fourier Features), our method exploits the Besicovitch property to create irrational frequency modulations that guarantee infinite non-repeating phase trajectories. We formalize two distinct algorithmic variants: (1) StaticPrime, a sequence generation method that produces temporal position encodings empirically approaching the theoretical Welch bound for quasi-orthogonality; and (2) DynamicPrime, a tunable projection layer for input-dependent feature mapping. A central novelty of the dynamic framework is its ability to unify two disparate mathematical utility classes through a single scaling parameter σ. In the low-frequency regime, the method acts as an isometric kernel map, effectively linearizing non-convex geometries (e.g., spirals) to enable high-fidelity signal reconstruction and compressive sensing. Conversely, the high-frequency regime induces chaotic phase wrapping, transforming the projection into a maximum-entropy one-way hash suitable for Hyperdimensional Computing and privacy-preserving Split Learning. Empirical evaluations demonstrate that our framework yields superior orthogonality retention and distribution tightness compared to normalized Gaussian baselines, establishing it as a computationally efficient, mathematically rigorous alternative to random matrix projections. The code is available at https://github.com/VladimerKhasia/primal
Structured Prompting Enables More Robust, Holistic Evaluation of Language Models
As language models (LMs) are increasingly adopted across domains, high-quality benchmarking frameworks that accurately estimate performance are essential for guiding deployment decisions. While frameworks such as Holistic Evaluation of Language Models (HELM) enable broad evaluation across tasks, they often rely on fixed prompts that fail to generalize across LMs, yielding unrepresentative performance estimates. Unless we estimate each LM's ceiling (maximum achievable via changes to the prompt), we risk underestimating performance. Declarative prompting frameworks, such as DSPy, offer a scalable alternative to manual prompt engineering by crafting structured prompts that can be optimized per task. However, such frameworks have not been systematically evaluated across established benchmarks. We present a reproducible DSPy+HELM framework that introduces structured prompting methods which elicit reasoning, enabling more accurate LM benchmarking. Using four prompting methods, we evaluate four frontier LMs across seven benchmarks (general/medical domain) against existing HELM baseline scores. We find that without structured prompting: (i) HELM underestimates LM performance (by 4% average), (ii) performance estimates vary more across benchmarks (+2% standard deviation), (iii) performance gaps are misrepresented (leaderboard rankings flip on 3/7 benchmarks), and (iv) introducing reasoning (chain-of-thought) reduces LM sensitivity to prompt design (smaller Δ across prompts). To our knowledge, this is the first large-scale benchmarking study to empirically characterize LM behavior across benchmarks and prompting methods, showing that scalable performance ceiling estimation enables more decision-useful benchmarks. We open-source (i) DSPy+HELM Integration (https://github.com/stanford-crfm/helm/pull/3893) and (ii) Prompt Optimization Pipeline (https://github.com/StanfordMIMI/dspy-helm).
☆ Accelerating Sparse Convolutions in Voxel-Based Point Cloud Networks
Sparse Convolution (SpC) powers 3D point cloud networks widely used in autonomous driving and AR/VR. SpC builds a kernel map that stores mappings between input voxel coordinates, output coordinates, and weight offsets, then uses this map to compute feature vectors for output coordinates. Our work identifies three key properties of voxel coordinates: they are integer-valued, bounded within a limited spatial range, and geometrically continuous-neighboring voxels on the same object surface are highly likely to exist at small spatial offsets from each other. Prior SpC engines do not fully exploit these properties and suffer from high pre-processing and post-processing overheads during kernel map construction. To address this, we design Spira, the first voxel-property-aware SpC engine for GPUs. Spira proposes: (i) a high-performance one-shot search algorithm that builds the kernel map with no preprocessing and high memory locality, (ii) an effective packed-native processing scheme that accesses packed voxel coordinates at low cost, (iii) a flexible dual-dataflow execution mechanism that efficiently computes output feature vectors by adapting to layer characteristics, and (iv) a network-wide parallelization strategy that builds kernel maps for all SpC layers concurrently at network start. Our evaluation shows that Spira significantly outperforms prior SpC engines by 1.71x on average and up to 2.31x for end-to-end inference, and by 2.13x on average and up to 3.32x for layer-wise execution across diverse layer configurations.
☆ Autoregressive Surrogate Modeling of the Solar Wind with Spherical Fourier Neural Operator
The solar wind, a continuous outflow of charged particles from the Sun's corona, shapes the heliosphere and impacts space systems near Earth. Accurate prediction of features such as high-speed streams and coronal mass ejections is critical for space weather forecasting, but traditional three-dimensional magnetohydrodynamic (MHD) models are computationally expensive, limiting rapid exploration of boundary condition uncertainties. We introduce the first autoregressive machine learning surrogate for steady-state solar wind radial velocity using the Spherical Fourier Neural Operator (SFNO). By predicting a limited radial range and iteratively propagating the solution outward, the model improves accuracy in distant regions compared to a single-step approach. Compared with the numerical HUX surrogate, SFNO demonstrates superior or comparable performance while providing a flexible, trainable, and data-driven alternative, establishing a novel methodology for high-fidelity solar wind modeling. The source code and additional visual results are available at https://github.com/rezmansouri/solarwind-sfno-velocity-autoregressive.
comment: IEEE Conference on Data Mining (ICDM 2025)
☆ Effects of Initialization Biases on Deep Neural Network Training Dynamics
Untrained large neural networks, just after random initialization, tend to favour a small subset of classes, assigning high predicted probabilities to these few classes and approximately zero probability to all others. This bias, termed Initial Guessing Bias, affects the early training dynamics, when the model is fitting to the coarse structure of the data. The choice of loss function against which to train the model has a large impact on how these early dynamics play out. Two recent loss functions, Blurry and Piecewise-zero loss, were designed for robustness to label errors but can become unable to steer the direction of training when exposed to this initial bias. Results indicate that the choice of loss function has a dramatic effect on the early phase training of networks, and highlights the need for careful consideration of how Initial Guessing Bias may interact with various components of the training scheme.
comment: 5 pages, 2 figures, submitted to the 11th Annual Conference on Vision and Intelligent Systems
☆ RefTr: Recurrent Refinement of Confluent Trajectories for 3D Vascular Tree Centerline Graphs
Tubular trees, such as blood vessels and lung airways, are essential for material transport within the human body. Accurately detecting their centerlines with correct tree topology is critical for clinical tasks such as diagnosis, treatment planning, and surgical navigation. In these applications, maintaining high recall is crucial, as missing small branches can result in fatal mistakes caused by incomplete assessments or undetected abnormalities. We present RefTr, a 3D image-to-graph model for centerline generation of vascular trees via recurrent refinement of confluent trajectories. RefTr uses a Producer-Refiner architecture based on a Transformer decoder, where the Producer proposes a set of initial confluent trajectories that are recurrently refined by the Refiner to produce final trajectories, which forms the centerline graph. The confluent trajectory representation enables refinement of complete trajectories while explicitly enforcing a valid tree topology. The recurrent refinement scheme improves precision and reuses the same Refiner block across multiple steps, yielding a 2.4x reduction in decoder parameters compared to previous SOTA. We also introduce an efficient non-maximum suppression algorithm for spatial tree graphs to merge duplicate branches and boost precision. Across multiple public centerline datasets, RefTr achieves superior recall and comparable precision to previous SOTA, while offering faster inference and substantially fewer parameters, demonstrating its potential as a new state-of-the-art framework for vascular tree analysis in 3D medical imaging.
☆ Training-Free Diffusion Priors for Text-to-Image Generation via Optimization-based Visual Inversion
Diffusion models have established the state-of-the-art in text-to-image generation, but their performance often relies on a diffusion prior network to translate text embeddings into the visual manifold for easier decoding. These priors are computationally expensive and require extensive training on massive datasets. In this work, we challenge the necessity of a trained prior at all by employing Optimization-based Visual Inversion (OVI), a training-free and data-free alternative, to replace the need for a prior. OVI initializes a latent visual representation from random pseudo-tokens and iteratively optimizes it to maximize the cosine similarity with input textual prompt embedding. We further propose two novel constraints, a Mahalanobis-based and a Nearest-Neighbor loss, to regularize the OVI optimization process toward the distribution of realistic images. Our experiments, conducted on Kandinsky 2.2, show that OVI can serve as an alternative to traditional priors. More importantly, our analysis reveals a critical flaw in current evaluation benchmarks like T2I-CompBench++, where simply using the text embedding as a prior achieves surprisingly high scores, despite lower perceptual quality. Our constrained OVI methods improve visual fidelity over this baseline, with the Nearest-Neighbor approach proving particularly effective, achieving quantitative scores comparable to or higher than the state-of-the-art data-efficient prior, indicating that the idea merits further investigation. The code will be publicly available upon acceptance.
comment: 11 pages, 7 figures, technical report (preprint)
☆ SPHINX: A Synthetic Environment for Visual Perception and Reasoning
We present Sphinx, a synthetic environment for visual perception and reasoning that targets core cognitive primitives. Sphinx procedurally generates puzzles using motifs, tiles, charts, icons, and geometric primitives, each paired with verifiable ground-truth solutions, enabling both precise evaluation and large-scale dataset construction. The benchmark covers 25 task types spanning symmetry detection, geometric transformations, spatial reasoning, chart interpretation, and sequence prediction. Evaluating recent large vision-language models (LVLMs) shows that even state-of-the-art GPT-5 attains only 51.1% accuracy, well below human performance. Finally, we demonstrate that reinforcement learning with verifiable rewards (RLVR) substantially improves model accuracy on these tasks and yields gains on external visual reasoning benchmarks, highlighting its promise for advancing multimodal reasoning.
☆ Conformal Safety Monitoring for Flight Testing: A Case Study in Data-Driven Safety Learning
We develop a data-driven approach for runtime safety monitoring in flight testing, where pilots perform maneuvers on aircraft with uncertain parameters. Because safety violations can arise unexpectedly as a result of these uncertainties, pilots need clear, preemptive criteria to abort the maneuver in advance of safety violation. To solve this problem, we use offline stochastic trajectory simulation to learn a calibrated statistical model of the short-term safety risk facing pilots. We use flight testing as a motivating example for data-driven learning/monitoring of safety due to its inherent safety risk, uncertainty, and human-interaction. However, our approach consists of three broadly-applicable components: a model to predict future state from recent observations, a nearest neighbor model to classify the safety of the predicted state, and classifier calibration via conformal prediction. We evaluate our method on a flight dynamics model with uncertain parameters, demonstrating its ability to reliably identify unsafe scenarios, match theoretical guarantees, and outperform baseline approaches in preemptive classification of risk.
comment: ICRA 2025 Workshop on Robot safety under uncertainty from intangible specifications
☆ $Δ$-NeRF: Incremental Refinement of Neural Radiance Fields through Residual Control and Knowledge Transfer
Neural Radiance Fields (NeRFs) have demonstrated remarkable capabilities in 3D reconstruction and novel view synthesis. However, most existing NeRF frameworks require complete retraining when new views are introduced incrementally, limiting their applicability in domains where data arrives sequentially. This limitation is particularly problematic in satellite-based terrain analysis, where regions are repeatedly observed over time. Incremental refinement of NeRFs remains underexplored, and naive approaches suffer from catastrophic forgetting when past data is unavailable. We propose $Δ$-NeRF, a unique modular residual framework for incremental NeRF refinement. $Δ$-NeRF introduces several novel techniques including: (1) a residual controller that injects per-layer corrections into a frozen base NeRF, enabling refinement without access to past data; (2) an uncertainty-aware gating mechanism that prevents overcorrection by adaptively combining base and refined predictions; and (3) a view selection strategy that reduces training data by up to 47\% while maintaining performance. Additionally, we employ knowledge distillation to compress the enhanced model into a compact student network (20\% of original size). Experiments on satellite imagery demonstrate that $Δ$-NeRF achieves performance comparable to joint training while reducing training time by 30-42\%. $Δ$-NeRF consistently outperforms existing baselines, achieving an improvement of up to 43.5\% in PSNR over naive fine-tuning and surpassing joint training on some metrics.
☆ Memories Retrieved from Many Paths: A Multi-Prefix Framework for Robust Detection of Training Data Leakage in Large Language Models
Large language models, trained on massive corpora, are prone to verbatim memorization of training data, creating significant privacy and copyright risks. While previous works have proposed various definitions for memorization, many exhibit shortcomings in comprehensively capturing this phenomenon, especially in aligned models. To address this, we introduce a novel framework: multi-prefix memorization. Our core insight is that memorized sequences are deeply encoded and thus retrievable via a significantly larger number of distinct prefixes than non-memorized content. We formalize this by defining a sequence as memorized if an external adversarial search can identify a target count of distinct prefixes that elicit it. This framework shifts the focus from single-path extraction to quantifying the robustness of a memory, measured by the diversity of its retrieval paths. Through experiments on open-source and aligned chat models, we demonstrate that our multi-prefix definition reliably distinguishes memorized from non-memorized data, providing a robust and practical tool for auditing data leakage in LLMs.
comment: 11 pages, 2 tables, 8 figures
Physics Steering: Causal Control of Cross-Domain Concepts in a Physics Foundation Model
Recent advances in mechanistic interpretability have revealed that large language models (LLMs) develop internal representations corresponding not only to concrete entities but also distinct, human-understandable abstract concepts and behaviour. Moreover, these hidden features can be directly manipulated to steer model behaviour. However, it remains an open question whether this phenomenon is unique to models trained on inherently structured data (ie. language, images) or if it is a general property of foundation models. In this work, we investigate the internal representations of a large physics-focused foundation model. Inspired by recent work identifying single directions in activation space for complex behaviours in LLMs, we extract activation vectors from the model during forward passes over simulation datasets for different physical regimes. We then compute "delta" representations between the two regimes. These delta tensors act as concept directions in activation space, encoding specific physical features. By injecting these concept directions back into the model during inference, we can steer its predictions, demonstrating causal control over physical behaviours, such as inducing or removing some particular physical feature from a simulation. These results suggest that scientific foundation models learn generalised representations of physical principles. They do not merely rely on superficial correlations and patterns in the simulations. Our findings open new avenues for understanding and controlling scientific foundation models and has implications for AI-enabled scientific discovery.
comment: 16 Pages, 9 Figures. Code available at https://github.com/DJ-Fear/walrus_steering
☆ CHiQPM: Calibrated Hierarchical Interpretable Image Classification NeurIPS 2025
Globally interpretable models are a promising approach for trustworthy AI in safety-critical domains. Alongside global explanations, detailed local explanations are a crucial complement to effectively support human experts during inference. This work proposes the Calibrated Hierarchical QPM (CHiQPM) which offers uniquely comprehensive global and local interpretability, paving the way for human-AI complementarity. CHiQPM achieves superior global interpretability by contrastively explaining the majority of classes and offers novel hierarchical explanations that are more similar to how humans reason and can be traversed to offer a built-in interpretable Conformal prediction (CP) method. Our comprehensive evaluation shows that CHiQPM achieves state-of-the-art accuracy as a point predictor, maintaining 99% accuracy of non-interpretable models. This demonstrates a substantial improvement, where interpretability is incorporated without sacrificing overall accuracy. Furthermore, its calibrated set prediction is competitively efficient to other CP methods, while providing interpretable predictions of coherent sets along its hierarchical explanation.
comment: Accepted to NeurIPS 2025
☆ Beyond Generation: Multi-Hop Reasoning for Factual Accuracy in Vision-Language Models ICML
Visual Language Models (VLMs) are powerful generative tools but often produce factually inaccurate outputs due to a lack of robust reasoning capabilities. While extensive research has been conducted on integrating external knowledge for reasoning in large language models (LLMs), such efforts remain underexplored in VLMs, where the challenge is compounded by the need to bridge multiple modalities seamlessly. This work introduces a framework for knowledge-guided reasoning in VLMs, leveraging structured knowledge graphs for multi-hop verification using image-captioning task to illustrate our framework. Our approach enables systematic reasoning across multiple steps, including visual entity recognition, knowledge graph traversal, and fact-based caption refinement. We evaluate the framework using hierarchical, triple-based and bullet-point based knowledge representations, analyzing their effectiveness in factual accuracy and logical inference. Empirical results show that our approach improves factual accuracy by approximately 31% on preliminary experiments on a curated dataset of mixtures from Google Landmarks v2, Conceptual captions and Coco captions revealing key insights into reasoning patterns and failure modes. This work demonstrates the potential of integrating external knowledge for advancing reasoning in VLMs, paving the way for more reliable and knowledgable multimodal systems.
comment: Accepted as poster at NewInML Workshop ICML, 2025
♻ ☆ Planning in Branch-and-Bound: Model-Based Reinforcement Learning for Exact Combinatorial Optimization
Mixed-Integer Linear Programming (MILP) lies at the core of many real-world combinatorial optimization (CO) problems, traditionally solved by branch-and-bound (B&B). A key driver influencing B&B solvers efficiency is the variable selection heuristic that guides branching decisions. Looking to move beyond static, hand-crafted heuristics, recent work has explored adapting traditional reinforcement learning (RL) algorithms to the B&B setting, aiming to learn branching strategies tailored to specific MILP distributions. In parallel, RL agents have achieved remarkable success in board games, a very specific type of combinatorial problems, by leveraging environment simulators to plan via Monte Carlo Tree Search (MCTS). Building on these developments, we introduce Plan-and-Branch-and-Bound (PlanB&B), a model-based reinforcement learning (MBRL) agent that leverages a learned internal model of the B&B dynamics to discover improved branching strategies. Computational experiments empirically validate our approach, with our MBRL branching agent outperforming previous state-of-the-art RL methods across four standard MILP benchmarks.
♻ ☆ Why Reasoning Matters? A Survey of Advancements in Multimodal Reasoning (v1)
Reasoning is central to human intelligence, enabling structured problem-solving across diverse tasks. Recent advances in large language models (LLMs) have greatly enhanced their reasoning abilities in arithmetic, commonsense, and symbolic domains. However, effectively extending these capabilities into multimodal contexts-where models must integrate both visual and textual inputs-continues to be a significant challenge. Multimodal reasoning introduces complexities, such as handling conflicting information across modalities, which require models to adopt advanced interpretative strategies. Addressing these challenges involves not only sophisticated algorithms but also robust methodologies for evaluating reasoning accuracy and coherence. This paper offers a concise yet insightful overview of reasoning techniques in both textual and multimodal LLMs. Through a thorough and up-to-date comparison, we clearly formulate core reasoning challenges and opportunities, highlighting practical methods for post-training optimization and test-time inference. Our work provides valuable insights and guidance, bridging theoretical frameworks and practical implementations, and sets clear directions for future research.
♻ ☆ Towards Multimodal Graph Large Language Model
Multi-modal graphs, which integrate diverse multi-modal features and relations, are ubiquitous in real-world applications. However, existing multi-modal graph learning methods are typically trained from scratch for specific graph data and tasks, failing to generalize across various multi-modal graph data and tasks. To bridge this gap, we explore the potential of Multi-modal Graph Large Language Models (MG-LLM) to unify and generalize across diverse multi-modal graph data and tasks. We propose a unified framework of multi-modal graph data, task, and model, discovering the inherent multi-granularity and multi-scale characteristics in multi-modal graphs. Specifically, we present five key desired characteristics for MG-LLM: 1) unified space for multi-modal structures and attributes, 2) capability of handling diverse multi-modal graph tasks, 3) multi-modal graph in-context learning, 4) multi-modal graph interaction with natural language, and 5) multi-modal graph reasoning. We then elaborate on the key challenges, review related works, and highlight promising future research directions towards realizing these ambitious characteristics. Finally, we summarize existing multi-modal graph datasets pertinent for model training. We believe this paper can contribute to the ongoing advancement of the research towards MG-LLM for generalization across multi-modal graph data and tasks.
comment: 4 figures, 2 tables
♻ ☆ FlagEval Findings Report: A Preliminary Evaluation of Large Reasoning Models on Automatically Verifiable Textual and Visual Questions NeurIPS 2025
We conduct a moderate-scale contamination-free (to some extent) evaluation of current large reasoning models (LRMs) with some preliminary findings. We also release ROME, our evaluation benchmark for vision language models intended to test reasoning from visual clues. We attach links to the benchmark, evaluation data, and other updates on this website: https://flageval-baai.github.io/LRM-Eval/
comment: Project homepage: https://flageval-baai.github.io/LRM-Eval/ This work will also be presented at NeurIPS 2025 Workshop on Foundations of Reasoning in Language Models (FoRLM); update with trials on Gemini 3 Pro
♻ ☆ Spectral Thresholds for Identifiability and Stability:Finite-Sample Phase Transitions in High-Dimensional Learning
In high-dimensional learning, models remain stable until they collapse abruptly once the sample size falls below a critical level. This instability is not algorithm-specific but a geometric mechanism: when the weakest Fisher eigendirection falls beneath sample-level fluctuations, identifiability fails. Our Fisher Threshold Theorem formalizes this by proving that stability requires the minimal Fisher eigenvalue to exceed an explicit $O(\sqrt{d/n})$ bound. Unlike prior asymptotic or model-specific criteria, this threshold is finite-sample and necessary, marking a sharp phase transition between reliable concentration and inevitable failure. To make the principle constructive, we introduce the Fisher floor, a verifiable spectral regularization robust to smoothing and preconditioning. Synthetic experiments on Gaussian mixtures and logistic models confirm the predicted transition, consistent with $d/n$ scaling. Statistically, the threshold sharpens classical eigenvalue conditions into a non-asymptotic law; learning-theoretically, it defines a spectral sample-complexity frontier, bridging theory with diagnostics for robust high-dimensional inference.
♻ ☆ Learning Efficient Representations of Neutrino Telescope Events
Neutrino telescopes detect rare interactions of particles produced in some of the most extreme environments in the Universe. This is accomplished by instrumenting a cubic-kilometer scale volume of naturally occurring transparent medium with light sensors. Given their substantial size and the high frequency of background interactions, these telescopes amass an enormous quantity of large variance, high-dimensional data. These attributes create substantial challenges for analyzing and reconstructing interactions, particularly when utilizing machine learning (ML) techniques. In this paper, we present a novel approach, called om2vec, that employs transformer-based variational autoencoders to efficiently represent the detected photon arrival time distributions of neutrino telescope events by learning compact and descriptive latent representations. We demonstrate that these latent representations offer enhanced flexibility and improved computational efficiency, thereby facilitating downstream tasks in data analysis.
comment: 12 pages, 6 figures
♻ ☆ MGAS: Multi-Granularity Architecture Search for Trade-Off Between Model Effectiveness and Efficiency
Neural architecture search (NAS) has gained significant traction in automating the design of neural networks. To reduce search time, differentiable architecture search (DAS) reframes the traditional paradigm of discrete candidate sampling and evaluation into a differentiable optimization over a super-net, followed by discretization. However, most existing DAS methods primarily focus on optimizing the coarse-grained operation-level topology, while neglecting finer-grained structures such as filter-level and weight-level patterns. This limits their ability to balance model performance with model size. Additionally, many methods compromise search quality to save memory during the search process. To tackle these issues, we propose Multi-Granularity Differentiable Architecture Search (MG-DARTS), a unified framework which aims to discover both effective and efficient architectures from scratch by comprehensively yet memory-efficiently exploring a multi-granularity search space. Specifically, we improve the existing DAS methods in two aspects. First, we adaptively adjust the retention ratios of searchable units across different granularity levels through adaptive pruning, which is achieved by learning granularity-specific discretization functions along with the evolving architecture. Second, we decompose the super-net optimization and discretization into multiple stages, each operating on a sub-net, and introduce progressive re-evaluation to enable re-pruning and regrowth of previous units, thereby mitigating potential bias. Extensive experiments on CIFAR-10, CIFAR-100 and ImageNet demonstrate that MG-DARTS outperforms other state-of-the-art methods in achieving a better trade-off between model accuracy and parameter efficiency. Codes are available at https://github.com/lxy12357/MG_DARTS.
♻ ☆ ExDDV: A New Dataset for Explainable Deepfake Detection in Video
The ever growing realism and quality of generated videos makes it increasingly harder for humans to spot deepfake content, who need to rely more and more on automatic deepfake detectors. However, deepfake detectors are also prone to errors, and their decisions are not explainable, leaving humans vulnerable to deepfake-based fraud and misinformation. To this end, we introduce ExDDV, the first dataset and benchmark for Explainable Deepfake Detection in Video. ExDDV comprises around 5.4K real and deepfake videos that are manually annotated with text descriptions (to explain the artifacts) and clicks (to point out the artifacts). We evaluate a number of vision-language models on ExDDV, performing experiments with various fine-tuning and in-context learning strategies. Our results show that text and click supervision are both required to develop robust explainable models for deepfake videos, which are able to localize and describe the observed artifacts. Our novel dataset and code to reproduce the results are available at https://github.com/vladhondru25/ExDDV.
comment: Accepted at WACV 2026
♻ ☆ Fast, Sample-Efficient, Affine-Invariant Private Mean and Covariance Estimation for Subgaussian Distributions
We present a fast, differentially private algorithm for high-dimensional covariance-aware mean estimation with nearly optimal sample complexity. Only exponential-time estimators were previously known to achieve this guarantee. Given $n$ samples from a (sub-)Gaussian distribution with unknown mean $μ$ and covariance $Σ$, our $(\varepsilon,δ)$-differentially private estimator produces $\tildeμ$ such that $\|μ- \tildeμ\|_Σ \leq α$ as long as $n \gtrsim \tfrac d {α^2} + \tfrac{d \sqrt{\log 1/δ}}{α\varepsilon}+\frac{d\log 1/δ}{\varepsilon}$. The Mahalanobis error metric $\|μ- \hatμ\|_Σ$ measures the distance between $\hat μ$ and $μ$ relative to $Σ$; it characterizes the error of the sample mean. Our algorithm runs in time $\tilde{O}(nd^{ω- 1} + nd/\varepsilon)$, where $ω< 2.38$ is the matrix multiplication exponent. We adapt an exponential-time approach of Brown, Gaboardi, Smith, Ullman, and Zakynthinou (2021), giving efficient variants of stable mean and covariance estimation subroutines that also improve the sample complexity to the nearly optimal bound above. Our stable covariance estimator can be turned to private covariance estimation for unrestricted subgaussian distributions. With $n\gtrsim d^{3/2}$ samples, our estimate is accurate in spectral norm. This is the first such algorithm using $n= o(d^2)$ samples, answering an open question posed by Alabi et al. (2022). With $n\gtrsim d^2$ samples, our estimate is accurate in Frobenius norm. This leads to a fast, nearly optimal algorithm for private learning of unrestricted Gaussian distributions in TV distance. Duchi, Haque, and Kuditipudi (2023) obtained similar results independently and concurrently.
comment: 45 pages. Appeared at COLT 2023. New version fixes typos, improves some proofs and constants, and links to github
♻ ☆ Generalization Bounds for Rank-sparse Neural Networks NeurIPS 2025
It has been recently observed in much of the literature that neural networks exhibit a bottleneck rank property: for larger depths, the activation and weights of neural networks trained with gradient-based methods tend to be of approximately low rank. In fact, the rank of the activations of each layer converges to a fixed value referred to as the ``bottleneck rank'', which is the minimum rank required to represent the training data. This perspective is in line with the observation that regularizing linear networks (without activations) with weight decay is equivalent to minimizing the Schatten $p$ quasi norm of the neural network. In this paper we investigate the implications of this phenomenon for generalization. More specifically, we prove generalization bounds for neural networks which exploit the approximate low rank structure of the weight matrices if present. The final results rely on the Schatten $p$ quasi norms of the weight matrices: for small $p$, the bounds exhibit a sample complexity $ \widetilde{O}(WrL^2)$ where $W$ and $L$ are the width and depth of the neural network respectively and where $r$ is the rank of the weight matrices. As $p$ increases, the bound behaves more like a norm-based bound instead.
comment: Accepted at NeurIPS 2025
♻ ☆ Mamba-based Deep Learning Approach for Sleep Staging on a Wireless Multimodal Wearable System without Electroencephalography
Study Objectives: We investigate a Mamba-based deep learning approach for sleep staging on signals from ANNE One (Sibel Health, Evanston, IL), a non-intrusive dual-module wireless wearable system measuring chest electrocardiography (ECG), triaxial accelerometry, and chest temperature, and finger photoplethysmography and finger temperature. Methods: We obtained wearable sensor recordings from 357 adults undergoing concurrent polysomnography (PSG) at a tertiary care sleep lab. Each PSG recording was manually scored and these annotations served as ground truth labels for training and evaluation of our models. PSG and wearable sensor data were automatically aligned using their ECG channels with manual confirmation by visual inspection. We trained a Mamba-based recurrent neural network architecture on these recordings. Ensembling of model variants with similar architectures was performed. Results: After ensembling, the model attains a 3-class (wake, non rapid eye movement [NREM] sleep, rapid eye movement [REM] sleep) balanced accuracy of 84.02%, F1 score of 84.23%, Cohen's $κ$ of 72.89%, and a Matthews correlation coefficient (MCC) score of 73.00%; a 4-class (wake, light NREM [N1/N2], deep NREM [N3], REM) balanced accuracy of 75.30%, F1 score of 74.10%, Cohen's $κ$ of 61.51%, and MCC score of 61.95%; a 5-class (wake, N1, N2, N3, REM) balanced accuracy of 65.11%, F1 score of 66.15%, Cohen's $κ$ of 53.23%, MCC score of 54.38%. Conclusions: Our Mamba-based deep learning model can successfully infer major sleep stages from the ANNE One, a wearable system without electroencephalography (EEG), and can be applied to data from adults attending a tertiary care sleep clinic.
comment: 40 pages, 24 figures. Authors Andrew H. Zhang, Alex He-Mo, and Richard Fei Yin contributed equally
♻ ☆ CardioComposer: Leveraging Differentiable Geometry for Compositional Control of Anatomical Diffusion Models
Generative models of 3D cardiovascular anatomy can synthesize informative structures for clinical research and medical device evaluation, but face a trade-off between geometric controllability and realism. We propose CardioComposer: a programmable, inference-time framework for generating multi-class anatomical label maps based on interpretable ellipsoidal primitives. These primitives represent geometric attributes such as the size, shape, and position of discrete substructures. We specifically develop differentiable measurement functions based on voxel-wise geometric moments, enabling loss-based gradient guidance during diffusion model sampling. We demonstrate that these losses can constrain individual geometric attributes in a disentangled manner and provide compositional control over multiple substructures. Finally, we show that our method is compatible with a wide array of anatomical systems containing non-convex substructures, spanning cardiac, vascular, and skeletal organs.
comment: 10 pages, 16 figures
♻ ☆ Segmentation-Aware Generative Reinforcement Network (GRN) for Tissue Layer Segmentation in 3-D Ultrasound Images for Chronic Low-back Pain (cLBP) Assessment
We introduce a novel segmentation-aware joint training framework called generative reinforcement network (GRN) that integrates segmentation loss feedback to optimize both image generation and segmentation performance in a single stage. An image enhancement technique called segmentation-guided enhancement (SGE) is also developed, where the generator produces images tailored specifically for the segmentation model. Two variants of GRN were also developed, including GRN for sample-efficient learning (GRN-SEL) and GRN for semi-supervised learning (GRN-SSL). GRN's performance was evaluated using a dataset of 69 fully annotated 3D ultrasound scans from 29 subjects. The annotations included six anatomical structures: dermis, superficial fat, superficial fascial membrane (SFM), deep fat, deep fascial membrane (DFM), and muscle. Our results show that GRN-SEL with SGE reduces labeling efforts by up to 70% while achieving a 1.98% improvement in the Dice Similarity Coefficient (DSC) compared to models trained on fully labeled datasets. GRN-SEL alone reduces labeling efforts by 60%, GRN-SSL with SGE decreases labeling requirements by 70%, and GRN-SSL alone by 60%, all while maintaining performance comparable to fully supervised models. These findings suggest the effectiveness of the GRN framework in optimizing segmentation performance with significantly less labeled data, offering a scalable and efficient solution for ultrasound image analysis and reducing the burdens associated with data annotation.
♻ ☆ DisCO: Reinforcing Large Reasoning Models with Discriminative Constrained Optimization NeurIPS 2025
The recent success and openness of DeepSeek-R1 have brought widespread attention to Group Relative Policy Optimization (GRPO) as a reinforcement learning method for large reasoning models (LRMs). In this work, we analyze the GRPO objective under a binary reward setting and reveal an inherent limitation of question-level difficulty bias. We also identify a connection between GRPO and traditional discriminative methods in supervised learning. Motivated by these insights, we introduce a new Discriminative Constrained Optimization (DisCO) framework for reinforcing LRMs, grounded in the principle of discriminative learning. The main differences between DisCO and GRPO and its recent variants are: (1) it replaces the group relative objective with a discriminative objective defined by a scoring function; (2) it abandons clipping-based surrogates in favor of non-clipping RL surrogate objectives used as scoring functions; (3) it employs a simple yet effective constrained optimization approach to enforce the KL divergence constraint. As a result, DisCO offers notable advantages over GRPO and its variants: (i) it completely eliminates difficulty bias by adopting discriminative objectives; (ii) it addresses the entropy instability in GRPO and its variants through the use of non-clipping scoring functions and a constrained optimization approach, yielding long and stable training dynamics; (iii) it allows the incorporation of advanced discriminative learning techniques to address data imbalance, where a significant number of questions have more negative than positive generated answers during training. Our experiments on enhancing the mathematical reasoning capabilities of SFT-finetuned models show that DisCO significantly outperforms GRPO and its improved variants such as DAPO, achieving average gains of 7\% over GRPO and 6\% over DAPO across six benchmark tasks for an 1.5B model.
comment: Accepted to NeurIPS 2025
♻ ☆ OceanGym: A Benchmark Environment for Underwater Embodied Agents
We introduce OceanGym, the first comprehensive benchmark for ocean underwater embodied agents, designed to advance AI in one of the most demanding real-world environments. Unlike terrestrial or aerial domains, underwater settings present extreme perceptual and decision-making challenges, including low visibility, dynamic ocean currents, making effective agent deployment exceptionally difficult. OceanGym encompasses eight realistic task domains and a unified agent framework driven by Multi-modal Large Language Models (MLLMs), which integrates perception, memory, and sequential decision-making. Agents are required to comprehend optical and sonar data, autonomously explore complex environments, and accomplish long-horizon objectives under these harsh conditions. Extensive experiments reveal substantial gaps between state-of-the-art MLLM-driven agents and human experts, highlighting the persistent difficulty of perception, planning, and adaptability in ocean underwater environments. By providing a high-fidelity, rigorously designed platform, OceanGym establishes a testbed for developing robust embodied AI and transferring these capabilities to real-world autonomous ocean underwater vehicles, marking a decisive step toward intelligent agents capable of operating in one of Earth's last unexplored frontiers. The code and data are available at https://github.com/OceanGPT/OceanGym.
comment: Work in progress
♻ ☆ LightMem: Lightweight and Efficient Memory-Augmented Generation
Despite their remarkable capabilities, Large Language Models (LLMs) struggle to effectively leverage historical interaction information in dynamic and complex environments. Memory systems enable LLMs to move beyond stateless interactions by introducing persistent information storage, retrieval, and utilization mechanisms. However, existing memory systems often introduce substantial time and computational overhead. To this end, we introduce a new memory system called LightMem, which strikes a balance between the performance and efficiency of memory systems. Inspired by the Atkinson-Shiffrin model of human memory, LightMem organizes memory into three complementary stages. First, cognition-inspired sensory memory rapidly filters irrelevant information through lightweight compression and groups information according to their topics. Next, topic-aware short-term memory consolidates these topic-based groups, organizing and summarizing content for more structured access. Finally, long-term memory with sleep-time update employs an offline procedure that decouples consolidation from online inference. On LongMemEval and LoCoMo, using GPT and Qwen backbones, LightMem consistently surpasses strong baselines, improving QA accuracy by up to 7.7% / 29.3%, reducing total token usage by up to 38x / 20.9x and API calls by up to 30x / 55.5x, while purely online test-time costs are even lower, achieving up to 106x / 117x token reduction and 159x / 310x fewer API calls. The code is available at https://github.com/zjunlp/LightMem.
comment: Work in progress
♻ ☆ Harnessing Vision-Language Models for Time Series Anomaly Detection AAAI 2026
Time-series anomaly detection (TSAD) has played a vital role in a variety of fields, including healthcare, finance, and sensor-based condition monitoring. Prior methods, which mainly focus on training domain-specific models on numerical data, lack the visual-temporal understanding capacity that human experts have to identify contextual anomalies. To fill this gap, we explore a solution based on vision language models (VLMs). Recent studies have shown the ability of VLMs for visual understanding tasks, yet their direct application to time series has fallen short on both accuracy and efficiency. To harness the power of VLMs for TSAD, we propose a two-stage solution, with (1) ViT4TS, a vision-screening stage built on a relatively lightweight pre-trained vision encoder, which leverages 2D time series representations to accurately localize candidate anomalies; (2) VLM4TS, a VLM-based stage that integrates global temporal context and VLM's visual understanding capacity to refine the detection upon the candidates provided by ViT4TS. We show that without any time-series training, VLM4TS outperforms time-series pre-trained and from-scratch baselines in most cases, yielding a 24.6% improvement in F1-max score over the best baseline. Moreover, VLM4TS also consistently outperforms existing language model-based TSAD methods and is on average 36x more efficient in token usage.
comment: Accepted at AAAI 2026 (Oral)
♻ ☆ Sparse Techniques for Regression in Deep Gaussian Processes
Gaussian processes (GPs) have gained popularity as flexible machine learning models for regression and function approximation with an in-built method for uncertainty quantification. However, GPs suffer when the amount of training data is large or when the underlying function contains multi-scale features that are difficult to represent by a stationary kernel. To address the former, training of GPs with large-scale data is often performed through inducing point approximations, also known as sparse GP regression (GPR), where the size of the covariance matrices in GPR is reduced considerably through a greedy search on the data set. To aid the latter, deep GPs have gained traction as hierarchical models that resolve multi-scale features by combining multiple GPs. Posterior inference in deep GPs requires a sampling or, more usual, a variational approximation. Variational approximations lead to large-scale stochastic, non-convex optimisation problems and the resulting approximation tends to represent uncertainty incorrectly. In this work, we combine variational learning with MCMC to develop a particle-based expectation-maximisation method to simultaneously find inducing points within the large-scale data (variationally) and accurately train the deep GPs (sampling-based). The result is a highly efficient and accurate methodology for deep GP training on large-scale data. We test our method on standard benchmark problems.
♻ ☆ Vendi Information Gain for Active Learning and its Application to Ecology AAAI
While monitoring biodiversity through camera traps has become an important endeavor for ecological research, identifying species in the captured image data remains a major bottleneck due to limited labeling resources. Active learning -- a machine learning paradigm that selects the most informative data to label and train a predictive model -- offers a promising solution, but typically focuses on uncertainty in the individual predictions without considering uncertainty across the entire dataset. We introduce a new active learning policy, Vendi information gain (VIG), that selects images based on their impact on dataset-wide prediction uncertainty, capturing both informativeness and diversity. We applied VIG to the Snapshot Serengeti dataset and compared it against common active learning methods. VIG needs only 3% of the available data to reach 75% accuracy, a level that baselines require more than 10% of the data to achieve. With 10% of the data, VIG attains 88% predictive accuracy, 12% higher than the best of the baselines. This improvement in performance is consistent across metrics and batch sizes, and we show that VIG also collects more diverse data in the feature space. VIG has broad applicability beyond ecology, and our results highlight its value for biodiversity monitoring in data-limited environments.
comment: Accepted at the AAAI Workshop on AI to Accelerate Science and Engineering (AI2ASE) 2026
♻ ☆ Jailbreaking and Mitigation of Vulnerabilities in Large Language Models
Large Language Models (LLMs) have transformed artificial intelligence by advancing natural language understanding and generation, enabling applications across fields beyond healthcare, software engineering, and conversational systems. Despite these advancements in the past few years, LLMs have shown considerable vulnerabilities, particularly to prompt injection and jailbreaking attacks. This review analyzes the state of research on these vulnerabilities and presents available defense strategies. We roughly categorize attack approaches into prompt-based, model-based, multimodal, and multilingual, covering techniques such as adversarial prompting, backdoor injections, and cross-modality exploits. We also review various defense mechanisms, including prompt filtering, transformation, alignment techniques, multi-agent defenses, and self-regulation, evaluating their strengths and shortcomings. We also discuss key metrics and benchmarks used to assess LLM safety and robustness, noting challenges like the quantification of attack success in interactive contexts and biases in existing datasets. Identifying current research gaps, we suggest future directions for resilient alignment strategies, advanced defenses against evolving attacks, automation of jailbreak detection, and consideration of ethical and societal impacts. This review emphasizes the need for continued research and cooperation within the AI community to enhance LLM security and ensure their safe deployment.
♻ ☆ Iterative Inference in a Chess-Playing Neural Network
Do neural networks build their representations through smooth, gradual refinement, or via more complex computational processes? We investigate this by extending the logit lens to analyze the policy network of Leela Chess Zero, a superhuman chess engine. Although playing strength and puzzle-solving ability improve consistently across layers, capability progression occurs in distinct computational phases with move preferences undergoing continuous reevaluation--move rankings remain poorly correlated with final outputs until late, and correct puzzle solutions found in middle layers are sometimes overridden. This late-layer reversal is accompanied by concept preference analyses showing final layers prioritize safety over aggression, suggesting a mechanism by which heuristic priors can override tactical solutions.
♻ ☆ Multiple-Input Auto-Encoder Guided Feature Selection for IoT Intrusion Detection Systems
While intrusion detection systems (IDSs) benefit from the diversity and generalization of IoT data features, the data diversity (e.g., the heterogeneity and high dimensions of data) also makes it difficult to train effective machine learning models in IoT IDSs. This also leads to potentially redundant/noisy features that may decrease the accuracy of the detection engine in IDSs. This paper first introduces a novel neural network architecture called Multiple-Input Auto-Encoder (MIAE). MIAE consists of multiple sub-encoders that can process inputs from different sources with different characteristics. The MIAE model is trained in an unsupervised learning mode to transform the heterogeneous inputs into lower-dimensional representation, which helps classifiers distinguish between normal behaviour and different types of attacks. To distil and retain more relevant features but remove less important/redundant ones during the training process, we further design and embed a feature selection layer right after the representation layer of MIAE resulting in a new model called MIAEFS. This layer learns the importance of features in the representation vector, facilitating the selection of informative features from the representation vector. The results on three IDS datasets, i.e., NSLKDD, UNSW-NB15, and IDS2017, show the superior performance of MIAE and MIAEFS compared to other methods, e.g., conventional classifiers, dimensionality reduction models, unsupervised representation learning methods with different input dimensions, and unsupervised feature selection models. Moreover, MIAE and MIAEFS combined with the Random Forest (RF) classifier achieve accuracy of 96.5% in detecting sophisticated attacks, e.g., Slowloris. The average running time for detecting an attack sample using RF with the representation of MIAE and MIAEFS is approximate 1.7E-6 seconds, whilst the model size is lower than 1 MB.
♻ ☆ DE-VAE: Revealing Uncertainty in Parametric and Inverse Projections with Variational Autoencoders using Differential Entropy
Recently, autoencoders (AEs) have gained interest for creating parametric and invertible projections of multidimensional data. Parametric projections make it possible to embed new, unseen samples without recalculating the entire projection, while invertible projections allow the synthesis of new data instances. However, existing methods perform poorly when dealing with out-of-distribution samples in either the data or embedding space. Thus, we propose DE-VAE, an uncertainty-aware variational AE using differential entropy (DE) to improve the learned parametric and invertible projections. Given a fixed projection, we train DE-VAE to learn a mapping into 2D space and an inverse mapping back to the original space. We conduct quantitative and qualitative evaluations on four well-known datasets, using UMAP and t-SNE as baseline projection methods. Our findings show that DE-VAE can create parametric and inverse projections with comparable accuracy to other current AE-based approaches while enabling the analysis of embedding uncertainty.
comment: 5 pages, 3 figures, LaTeX; fixed typos; added DOI
♻ ☆ More with Less: An Empirical Study of Turn-Control Strategies for Efficient Coding Agents
LLM-powered coding agents, which operate in iterative loops (turns) to solve software engineering tasks, are becoming increasingly powerful. However, their practical deployment is hindered by significant and unpredictable costs. This challenge arises from a combination of factors: quadratically growing token counts with each turn, the high price of models, the large number of turns required for real-world tasks, and the tendency of agents to take inefficient or unnecessary actions. While existing research focuses on optimizing individual turns, the strategic control of the total number of turns remains an underexplored area for managing agent performance and cost. To address this gap, we conduct a comprehensive empirical study on SWE-bench using three state-of-the-art models and evaluate the impact of three distinct turn-control strategies: an unrestricted baseline, a fixed-turn limit with reminders, and a novel dynamic-turn strategy that grants extensions on-demand. Our findings first reveal a fundamental trade-off in the unrestricted setting, where no single model excels across performance, cost, and turn efficiency. We then show that a fixed-turn limit, specifically at the 75th percentile of the baseline, serves as a "sweet spot", substantially reducing costs (by 24%-68%) with minimal impact on solve rates. Most significantly, the dynamic-turn strategy consistently outperforms fixed-limit approaches, achieving comparable or better solve rates while further reducing costs by an additional 12%-24% by intelligently allocating resources only to tasks that need them. This work provides the first systematic analysis of turn-control strategies, offering simple yet effective guidelines for developers to balance cost and efficacy. We demonstrate that dynamic resource allocation is a superior, easy-to-implement approach for deploying powerful yet economically viable coding agents.
♻ ☆ Demystifying Higher-Order Graph Neural Networks
Higher-order graph neural networks (HOGNNs) and the related architectures from Topological Deep Learning are an important class of GNN models that harness polyadic relations between vertices beyond plain edges. They have been used to eliminate issues such as over-smoothing or over-squashing, to significantly enhance the accuracy of GNN predictions, to improve the expressiveness of GNN architectures, and for numerous other goals. A plethora of HOGNN models have been introduced, and they come with diverse neural architectures, and even with different notions of what the "higher-order" means. This richness makes it very challenging to appropriately analyze and compare HOGNN models, and to decide in what scenario to use specific ones. To alleviate this, we first design an in-depth taxonomy and a blueprint for HOGNNs. This facilitates designing models that maximize performance. Then, we use our taxonomy to analyze and compare the available HOGNN models. The outcomes of our analysis are synthesized in a set of insights that help to select the most beneficial GNN model in a given scenario, and a comprehensive list of challenges and opportunities for further research into more powerful HOGNNs.
♻ ☆ BiasJailbreak:Analyzing Ethical Biases and Jailbreak Vulnerabilities in Large Language Models AAAI 2026
Although large language models (LLMs) demonstrate impressive proficiency in various tasks, they present potential safety risks, such as `jailbreaks', where malicious inputs can coerce LLMs into generating harmful content bypassing safety alignments. In this paper, we delve into the ethical biases in LLMs and examine how those biases could be exploited for jailbreaks. Notably, these biases result in a jailbreaking success rate in GPT-4o models that differs by 20\% between non-binary and cisgender keywords and by 16\% between white and black keywords, even when the other parts of the prompts are identical. We introduce the concept of BiasJailbreak, highlighting the inherent risks posed by these safety-induced biases. BiasJailbreak generates biased keywords automatically by asking the target LLM itself, and utilizes the keywords to generate harmful output. Additionally, we propose an efficient defense method BiasDefense, which prevents jailbreak attempts by injecting defense prompts prior to generation. BiasDefense stands as an appealing alternative to Guard Models, such as Llama-Guard, that require additional inference cost after text generation. Our findings emphasize that ethical biases in LLMs can actually lead to generating unsafe output, and suggest a method to make the LLMs more secure and unbiased. To enable further research and improvements, we open-source our code and artifacts of BiasJailbreak, providing the community with tools to better understand and mitigate safety-induced biases in LLMs.
comment: Accepted as a workshop paper at AAAI 2026
♻ ☆ Learning to Compress Graphs via Dual Agents for Consistent Topological Robustness Evaluation
As graph-structured data grow increasingly large, evaluating their robustness under adversarial attacks becomes computationally expensive and difficult to scale. To address this challenge, we propose to compress graphs into compact representations that preserve both topological structure and robustness profile, enabling efficient and reliable evaluation. We propose Cutter, a dual-agent reinforcement learning framework composed of a Vital Detection Agent (VDA) and a Redundancy Detection Agent (RDA), which collaboratively identify structurally vital and redundant nodes for guided compression. Cutter incorporates three key strategies to enhance learning efficiency and compression quality: trajectory-level reward shaping to transform sparse trajectory returns into dense, policy-equivalent learning signals; prototype-based shaping to guide decisions using behavioral patterns from both high- and low-return trajectories; and cross-agent imitation to enable safer and more transferable exploration. Experiments on multiple real-world graphs demonstrate that Cutter generates compressed graphs that retain essential static topological properties and exhibit robustness degradation trends highly consistent with the original graphs under various attack scenarios, thereby significantly improving evaluation efficiency without compromising assessment fidelity.
♻ ☆ LFaB: Low fidelity as Bias for Active Learning in the chemical configuration space
Active learning promises to provide an optimal training sample selection procedure in the construction of machine learning models. It often relies on minimizing the model's variance, which is assumed to decrease the prediction error. Still, it is frequently even less efficient than pure random sampling. Motivated by the bias-variance decomposition, we propose to minimize the model's bias instead of its variance. By doing so, we are able to almost exactly match the best-case error over all possible greedy sample selection procedures for a relevant application. Our bias approximation is based on using cheap to calculate low fidelity data as known from $Δ$-ML or multifidelity machine learning. We exemplify our approach for a wider class of applications in quantum chemistry including predicting excitation energies and ab initio potential energy surfaces. Here, the proposed method reduces training data consumption by up to an order of magnitude compared to standard active learning.
comment: SI included in main
♻ ☆ Learning to Validate Generative Models: a Goodness-of-Fit Approach
Generative models are increasingly central to scientific workflows, yet their systematic use and interpretation require a proper understanding of their limitations through rigorous validation. Classic approaches struggle with scalability, statistical power, or interpretability when applied to high-dimensional data, making it difficult to certify the reliability of these models in realistic, high-dimensional scientific settings. Here, we propose the use of the New Physics Learning Machine (NPLM), a learning-based approach to goodness-of-fit testing inspired by the Neyman--Pearson construction, to test generative networks trained on high-dimensional scientific data. We demonstrate the performance of NPLM for validation in two benchmark cases: generative models trained on mixtures of Gaussian models with increasing dimensionality, and a public end-to-end model, known as FlowSim, developed to generate high-energy physics collision events. We demonstrate that the NPLM can serve as a powerful validation method while also providing a means to diagnose sub-optimally modeled regions of the data.
comment: 16 pages, 6 figures. v2: improved clarity
♻ ☆ Self-Organization and Spectral Mechanism of Attractor Landscapes in High-Capacity Kernel Hopfield Networks
Kernel-based learning methods can dramatically increase the storage capacity of Hopfield networks, yet the dynamical mechanism behind this enhancement remains poorly understood. We address this gap by unifying the geometric analysis of the attractor landscape with the spectral theory of kernel machines. Using a novel metric, "Pinnacle Sharpness," we first uncover a rich phase diagram of attractor stability, identifying a "Ridge of Optimization" where the network achieves maximal robustness under high-load conditions. Phenomenologically, this ridge is characterized by a "Force Antagonism," where a strong driving force is balanced by a collective feedback force. Theoretically, we reveal that this phenomenon arises from a specific reorganization of the weight spectrum, which we term \textit{Spectral Concentration}. Unlike a simple rank-1 collapse, our analysis shows that the network on the ridge self-organizes into a critical state: the leading eigenvalue is amplified to maximize global stability (Direct Force), while the trailing eigenvalues are preserved to maintain high memory capacity (Indirect Force). These findings provide a complete physical picture of how high-capacity associative memories are formed, demonstrating that optimal performance is achieved by tuning the system to a spectral "Goldilocks zone" between rank collapse and diffusion.
comment: 8 pages, 5 figures
♻ ☆ Deep learning and whole-brain networks for biomarker discovery: modeling the dynamics of brain fluctuations in resting-state and cognitive tasks
Background: Brain network models offer insights into brain dynamics, but the utility of model-derived bifurcation parameters as biomarkers remains underexplored. Objective: This study evaluates bifurcation parameters from a whole-brain network model as biomarkers for distinguishing brain states associated with resting-state and task-based cognitive conditions. Methods: Synthetic BOLD signals were generated using a supercritical Hopf brain network model to train deep learning models for bifurcation parameter prediction. Inference was performed on Human Connectome Project data, including both resting-state and task-based conditions. Statistical analyses assessed the separability of brain states based on bifurcation parameter distributions. Results: Bifurcation parameter distributions differed significantly across task and resting-state conditions ($p < 0.0001$ for all but one comparison). Task-based brain states exhibited higher bifurcation values compared to rest. Conclusion: Bifurcation parameters effectively differentiate cognitive and resting states, warranting further investigation as biomarkers for brain state characterization and neurological disorder assessment.
comment: 15 pages, 5 figures, 1 table
♻ ☆ On Feasible Rewards in Multi-Agent Inverse Reinforcement Learning
Multi-agent Inverse Reinforcement Learning (MAIRL) aims to recover agent reward functions from expert demonstrations. We characterize the feasible reward set in Markov games, identifying all reward functions that rationalize a given equilibrium. However, equilibrium-based observations are often ambiguous: a single Nash equilibrium can correspond to many reward structures, potentially changing the game's nature in multi-agent systems. We address this by introducing entropy-regularized Markov games, which yield a unique equilibrium while preserving strategic incentives. For this setting, we provide a sample complexity analysis detailing how errors affect learned policy performance. Our work establishes theoretical foundations and practical insights for MAIRL.
comment: Currently under review
♻ ☆ Interpretable Reward Model via Sparse Autoencoder AAAI 2026
Large language models (LLMs) have been widely deployed across numerous fields. Reinforcement Learning from Human Feedback (RLHF) leverages reward models (RMs) as proxies for human preferences to align LLM behaviors with human values, making the accuracy, reliability, and interpretability of RMs critical for effective alignment. However, traditional RMs lack interpretability, offer limited insight into the reasoning behind reward assignments, and are inflexible toward user preference shifts. While recent multidimensional RMs aim for improved interpretability, they often fail to provide feature-level attribution and require costly annotations. To overcome these limitations, we introduce the Sparse Autoencoder-enhanced Reward Model (SARM), a novel architecture that integrates a pretrained Sparse Autoencoder (SAE) into a reward model. SARM maps the hidden activations of LLM-based RM into an interpretable, sparse, and monosemantic feature space, from which a scalar head aggregates feature activations to produce transparent and conceptually meaningful reward scores. Empirical evaluations demonstrate that SARM facilitates direct feature-level attribution of reward assignments, allows dynamic adjustment to preference shifts, and achieves superior alignment performance compared to conventional reward models. Our code is available at https://github.com/schrieffer-z/sarm.
comment: AAAI 2026 Oral
♻ ☆ Value Improved Actor Critic Algorithms
To learn approximately optimal acting policies for decision problems, modern Actor Critic algorithms rely on deep Neural Networks (DNNs) to parameterize the acting policy and greedification operators to iteratively improve it. The reliance on DNNs suggests an improvement that is gradient based, which is per step much less greedy than the improvement possible by greedier operators such as the greedy update used by Q-learning algorithms. On the other hand, slow changes to the policy can also be beneficial for the stability of the learning process, resulting in a tradeoff between greedification and stability. To better address this tradeoff, we propose to decouple the acting policy from the policy evaluated by the critic. This allows the agent to separately improve the critic's policy (e.g. value improvement) with greedier updates while maintaining the slow gradient-based improvement to the parameterized acting policy. We investigate the convergence of this approach using the popular analysis scheme of generalized Policy Iteration in the finite-horizon domain. Empirically, incorporating value-improvement into the popular off-policy actor-critic algorithms TD3 and SAC significantly improves or matches performance over their respective baselines, across different environments from the DeepMind continuous control domain, with negligible compute and implementation cost.
♻ ☆ Exploring the Synergy of Quantitative Factors and Newsflow Representations from Large Language Models for Stock Return Prediction
In quantitative investing, return prediction supports various tasks, including stock selection, portfolio optimization, and risk management. Quantitative factors, such as valuation, quality, and growth, capture various characteristics of stocks. Unstructured data, like news and transcripts, has attracted growing attention, driven by recent advances in large language models (LLMs). This paper examines effective methods for leveraging multimodal factors and newsflow in return prediction and stock selection. First, we introduce a fusion learning framework to learn a unified representation from factors and newsflow representations generated by an LLM. Within this framework, we compare three methods of different architectural complexities: representation combination, representation summation, and attentive representations. Next, building on the limitation of fusion learning observed in empirical comparison, we explore the mixture model that adaptively combines predictions made by single modalities and their fusion. To mitigate the training instability of the mixture model, we introduce a decoupled training approach with theoretical insights. Finally, our experiments on real investment universes yield several insights into effective multimodal modeling of factors and news for stock return prediction and selection.
♻ ☆ OmniLens++: Blind Lens Aberration Correction via Large LensLib Pre-Training and Latent PSF Representation
Emerging deep-learning-based lens library pre-training (LensLib-PT) pipeline offers a new avenue for blind lens aberration correction by training a universal neural network, demonstrating strong capability in handling diverse unknown optical degradations. This work proposes the OmniLens++ framework, which resolves two challenges that hinder the generalization ability of existing pipelines: the difficulty of scaling data and the absence of prior guidance characterizing optical degradation. To improve data scalability, we expand the design specifications to increase the degradation diversity of the lens source, and we sample a more uniform distribution by quantifying the spatial-variation patterns and severity of optical degradation. In terms of model design, to leverage the Point Spread Functions (PSFs), which intuitively describe optical degradation, as guidance in a blind paradigm, we propose the Latent PSF Representation (LPR). The VQVAE framework is introduced to learn latent features of LensLib's PSFs, which is assisted by modeling the optical degradation process to constrain the learning of degradation priors. Experiments on diverse aberrations of real-world lenses and synthetic LensLib show that OmniLens++ exhibits state-of-the-art generalization capacity in blind aberration correction. Beyond performance, the AODLibpro is verified as a scalable foundation for more effective training across diverse aberrations, and LPR can further tap the potential of large-scale LensLib. The source code and datasets will be made publicly available at https://github.com/zju-jiangqi/OmniLens2.
comment: The source code and datasets will be made publicly available at https://github.com/zju-jiangqi/OmniLens2
♻ ☆ Searching Latent Program Spaces NeurIPS 2025
General intelligence requires systems that acquire new skills efficiently and generalize beyond their training distributions. Although program synthesis approaches have strong generalization power, they face scaling issues due to the large combinatorial spaces that quickly render them impractical, requiring human-generated DSLs or pre-trained priors to narrow this search space. On the other hand, deep learning methods have had high successes, but they lack structured test-time adaptation and rely on heavy stochastic sampling or expensive gradient updates for fine-tuning. In this work, we propose the Latent Program Network (LPN), a novel architecture that builds in test-time search directly into neural models. LPN learns a latent space of implicit programs -- neurally mapping inputs to outputs -- through which it can search using gradients at test time. LPN combines the adaptability of symbolic approaches and the scalability of neural methods. It searches through a compact latent space at test time and bypasses the need for pre-defined domain-specific languages. On a range of programming-by-examples tasks, LPN either outperforms or matches performance compared to in-context learning and test-time training methods. Tested on the ARC-AGI benchmark, we demonstrate that LPN can both learn a compact program space and search through it at test time to adapt to novel tasks. LPN doubles its performance on out-of-distribution tasks when test-time search is switched on.
comment: NeurIPS 2025 spotlight. Code available at https://github.com/clement-bonnet/lpn
♻ ☆ KKL Observer Synthesis for Nonlinear Systems via Physics-Informed Learning
This paper proposes a novel learning approach for designing Kazantzis-Kravaris/Luenberger (KKL) observers for autonomous nonlinear systems. The design of a KKL observer involves finding an injective map that transforms the system state into a higher-dimensional observer state, whose dynamics is linear and stable. The observer's state is then mapped back to the original system coordinates via the inverse map to obtain the state estimate. However, finding this transformation and its inverse is quite challenging. We propose learning the forward mapping using a physics-informed neural network, and then learning its inverse mapping with a conventional feedforward neural network. Theoretical guarantees for the robustness of state estimation against approximation error and system uncertainties are provided, including non-asymptotic learning guarantees that link approximation quality to finite sample sizes. The effectiveness of the proposed approach is demonstrated through numerical simulations on benchmark examples, showing superior generalization capability outside the training domain compared to state-of-the-art methods.
comment: 27 pages, 7 figures, submitted to Automatica
♻ ☆ Graph Kernel Neural Networks
The convolution operator at the core of many modern neural architectures can effectively be seen as performing a dot product between an input matrix and a filter. While this is readily applicable to data such as images, which can be represented as regular grids in the Euclidean space, extending the convolution operator to work on graphs proves more challenging, due to their irregular structure. In this paper, we propose to use graph kernels, i.e. kernel functions that compute an inner product on graphs, to extend the standard convolution operator to the graph domain. This allows us to define an entirely structural model that does not require computing the embedding of the input graph. Our architecture allows to plug-in any type of graph kernels and has the added benefit of providing some interpretability in terms of the structural masks that are learned during the training process, similarly to what happens for convolutional masks in traditional convolutional neural networks. We perform an extensive ablation study to investigate the model hyper-parameters' impact and show that our model achieves competitive performance on standard graph classification and regression datasets.
♻ ☆ Aspiration-based Perturbed Learning Automata in Games with Noisy Utility Measurements. Part A: Stochastic Stability in Non-zero-Sum Games
Reinforcement-based learning has attracted considerable attention both in modeling human behavior as well as in engineering, for designing measurement- or payoff-based optimization schemes. Such learning schemes exhibit several advantages, especially in relation to filtering out noisy observations. However, they may exhibit several limitations when applied in a distributed setup. In multi-player weakly-acyclic games, and when each player applies an independent copy of the learning dynamics, convergence to (usually desirable) pure Nash equilibria cannot be guaranteed. Prior work has only focused on a small class of games, namely potential and coordination games. To address this main limitation, this paper introduces a novel payoff-based learning scheme for distributed optimization, namely aspiration-based perturbed learning automata (APLA). In this class of dynamics, and contrary to standard reinforcement-based learning schemes, each player's probability distribution for selecting actions is reinforced both by repeated selection and an aspiration factor that captures the player's satisfaction level. We provide a stochastic stability analysis of APLA in multi-player positive-utility games under the presence of noisy observations. This is the first part of the paper that characterizes stochastic stability in generic non-zero-sum games by establishing equivalence of the induced infinite-dimensional Markov chain with a finite dimensional one. In the second part, stochastic stability is further specialized to weakly acyclic games.
♻ ☆ Subtract the Corruption: Training-Data-Free Corrective Machine Unlearning using Task Arithmetic
Corrupted training data are ubiquitous. Corrective Machine Unlearning (CMU) seeks to remove the influence of such corruption post-training. Prior CMU typically assumes access to identified corrupted training samples (a "forget set"). However, in many real-world scenarios the training data are no longer accessible. We formalize source-free CMU, where the original training data are unavailable and, consequently, no forget set of identified corrupted training samples can be specified. Instead, we assume a small proxy (surrogate) set of corrupted samples that reflect the suspected corruption type without needing to be the original training samples. In this stricter setting, methods relying on forget set are ineffective or narrow in scope. We introduce Corrective Unlearning in Task Space (CUTS), a lightweight weight space correction method guided by the proxy set using task arithmetic principles. CUTS treats the clean and the corruption signal as distinct tasks. Specifically, we briefly fine-tune the corrupted model on the proxy to amplify the corruption mechanism in the weight space, compute the difference between the corrupted and fine-tuned weights as a proxy task vector, and subtract a calibrated multiple of this vector to cancel the corruption. Without access to clean data or a forget set, CUTS recovers a large fraction of the lost utility under label noise and, for backdoor triggers, nearly eliminates the attack with minimal damage to utility, outperforming state-of-the-art specialized CMU methods in source-free setting.
♻ ☆ Rectifying Distribution Shift in Cascaded Precipitation Nowcasting
Precipitation nowcasting, which aims to provide high spatio-temporal resolution precipitation forecasts by leveraging current radar observations, is a core task in regional weather forecasting. Recently, the cascaded architecture has emerged as the mainstream paradigm for deep learning-based precipitation nowcasting. This paradigm involves a deterministic model to predict posterior mean, followed by a probabilistic model to generate local stochasticity. However, existing methods commonly overlook the conflation of the systematic distribution shift in deterministic predictions and the local stochasticity. As a result, the distribution shift of the deterministic component contaminates the predictions of the probabilistic component, leading to inaccuracies in precipitation patterns and intensity, particularly over longer lead times. To address this issue, we introduce RectiCast, a two-stage framework that explicitly decouples the rectification of mean-field shift from the generation of local stochasticity via a dual Flow Matching model. In the first stage, a deterministic model generates the posterior mean. In the second stage, we introduce a Rectifier to explicitly learn the distribution shift and produce a rectified mean. Subsequently, a Generator focuses on modeling the local stochasticity conditioned on the rectified mean. Experiments on two radar datasets demonstrate that RectiCast achieves significant performance improvements over existing state-of-the-art methods.
♻ ☆ MeshSplat: Generalizable Sparse-View Surface Reconstruction via Gaussian Splatting AAAI 2026
Surface reconstruction has been widely studied in computer vision and graphics. However, existing surface reconstruction works struggle to recover accurate scene geometry when the input views are extremely sparse. To address this issue, we propose MeshSplat, a generalizable sparse-view surface reconstruction framework via Gaussian Splatting. Our key idea is to leverage 2DGS as a bridge, which connects novel view synthesis to learned geometric priors and then transfers these priors to achieve surface reconstruction. Specifically, we incorporate a feed-forward network to predict per-view pixel-aligned 2DGS, which enables the network to synthesize novel view images and thus eliminates the need for direct 3D ground-truth supervision. To improve the accuracy of 2DGS position and orientation prediction, we propose a Weighted Chamfer Distance Loss to regularize the depth maps, especially in overlapping areas of input views, and also a normal prediction network to align the orientation of 2DGS with normal vectors predicted by a monocular normal estimator. Extensive experiments validate the effectiveness of our proposed improvement, demonstrating that our method achieves state-of-the-art performance in generalizable sparse-view mesh reconstruction tasks. Project Page: https://hanzhichang.github.io/meshsplat_web
comment: Accepted by AAAI 2026
♻ ☆ Mitigating Exponential Mixed Frequency Growth through Frequency Selection
Quantum machine learning research has expanded rapidly due to potential computational advantages over classical methods. Angle encoding has emerged as a popular choice as feature map (FM) for embedding classical data into quantum models due to its simplicity and natural generation of truncated Fourier series, providing universal function approximation capabilities. Efficient FMs within quantum circuits can exploit exponential scaling of Fourier frequencies, with multi-dimensional inputs introducing additional exponential growth through mixed-frequency terms. Despite this promising expressive capability, practical implementation faces significant challenges. Through controlled experiments with white-box target functions, we demonstrate that training failures can occur even when all relevant frequencies are theoretically accessible. We illustrate how two primary known causes lead to unsuccessful optimization: insufficient trainable parameters relative to the model's frequency content, and limitations imposed by the ansatz's dynamic lie algebra dimension, but also uncover an additional parameter burden: the necessity of controlling non-unique frequencies within the model. To address this, we propose near-zero weight initialization to suppress unnecessary duplicate frequencies. For target functions with a priori frequency knowledge, we introduce frequency selection as a practical solution that reduces parameter requirements and mitigates the exponential growth that would otherwise render problems intractable due to parameter insufficiency. Our frequency selection approach achieved near-optimal performance (median $R^2 \approx 0.95$) with 78\% of the parameters needed by the best standard approach in 10 randomly chosen target functions.
comment: 10 pages, 3 figures
♻ ☆ Missing Data Imputation by Reducing Mutual Information with Rectified Flows
This paper introduces a novel iterative method for missing data imputation that sequentially reduces the mutual information between data and the corresponding missingness mask. Inspired by GAN-based approaches that train generators to decrease the predictability of missingness patterns, our method explicitly targets this reduction in mutual information. Specifically, our algorithm iteratively minimizes the KL divergence between the joint distribution of the imputed data and missingness mask, and the product of their marginals from the previous iteration. We show that the optimal imputation under this framework can be achieved by solving an ODE whose velocity field minimizes a rectified flow training objective. We further illustrate that some existing imputation techniques can be interpreted as approximate special cases of our mutual-information-reducing framework. Comprehensive experiments on synthetic and real-world datasets validate the efficacy of our proposed approach, demonstrating its superior imputation performance. Our implementation is available at https://github.com/yujhml/MIRI-Imputation.
♻ ☆ Unified Text-Image-to-Video Generation: A Training-Free Approach to Flexible Visual Conditioning
Text-image-to-video (TI2V) generation is a critical problem for controllable video generation using both semantic and visual conditions. Most existing methods typically add visual conditions to text-to-video (T2V) foundation models by finetuning, which is costly in resources and only limited to a few pre-defined conditioning settings. To tackle these constraints, we introduce a unified formulation for TI2V generation with flexible visual conditioning. Furthermore, we propose an innovative training-free approach, dubbed FlexTI2V, that can condition T2V foundation models on an arbitrary amount of images at arbitrary positions. Specifically, we firstly invert the condition images to noisy representation in a latent space. Then, in the denoising process of T2V models, our method uses a novel random patch swapping strategy to incorporate visual features into video representations through local image patches. To balance creativity and fidelity, we use a dynamic control mechanism to adjust the strength of visual conditioning to each video frame. Extensive experiments validate that our method surpasses previous training-free image conditioning methods by a notable margin. Our method can also generalize to both UNet-based and transformer-based architectures.
comment: 18 pages, 10 figures, 8 tables
♻ ☆ Scaling Up ROC-Optimizing Support Vector Machines
The ROC-SVM, originally proposed by Rakotomamonjy, directly maximizes the area under the ROC curve (AUC) and has become an attractive alternative of the conventional binary classification under the presence of class imbalance. However, its practical use is limited by high computational cost, as training involves evaluating all $O(n^2)$. To overcome this limitation, we develop a scalable variant of the ROC-SVM that leverages incomplete U-statistics, thereby substantially reducing computational complexity. We further extend the framework to nonlinear classification through a low-rank kernel approximation, enabling efficient training in reproducing kernel Hilbert spaces. Theoretical analysis establishes an error bound that justifies the proposed approximation, and empirical results on both synthetic and real datasets demonstrate that the proposed method achieves comparable AUC performance to the original ROC-SVM with drastically reduced training time.
comment: 15 pages, Accepted in Stat
♻ ☆ Non-equilibrium Annealed Adjoint Sampler
Recently, there has been significant progress in learning-based diffusion samplers, which aim to sample from a given unnormalized density. Many of these approaches formulate the sampling task as a stochastic optimal control (SOC) problem using a canonical uninformative reference process, which limits their ability to efficiently guide trajectories toward the target distribution. In this work, we propose the Non-Equilibrium Annealed Adjoint Sampler (NAAS), a novel SOC-based diffusion framework that employs annealed reference dynamics as a non-stationary base SDE. This annealing structure provides a natural progression toward the target distribution and generates informative reference trajectories, thereby enhancing the stability and efficiency of learning the control. Owing to our SOC formulation, our framework can incorporate a variety of SOC solvers, thereby offering high flexibility in algorithmic design. As one instantiation, we employ a lean adjoint system inspired by adjoint matching, enabling efficient and scalable training. We demonstrate the effectiveness of NAAS across a range of tasks, including sampling from classical energy landscapes and molecular Boltzmann distributions.
comment: 26 pages, 8 figures
♻ ☆ FunReason: Enhancing Large Language Models' Function Calling via Self-Refinement Multiscale Loss and Automated Data Refinement
The integration of large language models (LLMs) with function calling has emerged as a crucial capability for enhancing their practical utility in real-world applications. However, effectively combining reasoning processes with accurate function execution remains a significant challenge. Traditional training approaches often struggle to balance the detailed reasoning steps with the precision of function calls, leading to suboptimal performance. To address these limitations, we introduce FunReason, a novel framework that enhances LLMs' function calling capabilities through an automated data refinement strategy and a Self-Refinement Multiscale Loss (SRML) approach. FunReason leverages LLMs' natural reasoning abilities to generate high-quality training examples, focusing on query parseability, reasoning coherence, and function call precision. The SRML approach dynamically balances the contribution of reasoning processes and function call accuracy during training, addressing the inherent trade-off between these two critical aspects. FunReason achieves performance comparable to GPT-4o while effectively mitigating catastrophic forgetting during fine-tuning. FunReason provides a comprehensive solution for enhancing LLMs' function calling capabilities by introducing a balanced training methodology and a data refinement pipeline. For code and dataset, please refer to our repository at GitHub https://github.com/BingguangHao/FunReason
♻ ☆ An Asymptotic Equation Linking WAIC and WBIC in Singular Models
In statistical learning, models are classified as regular or singular depending on whether the mapping from parameters to probability distributions is injective. Most models with hierarchical structures or latent variables are singular, for which conventional criteria such as the Akaike Information Criterion and the Bayesian Information Criterion are inapplicable due to the breakdown of normal approximations for the likelihood and posterior. To address this, the Widely Applicable Information Criterion (WAIC) and the Widely Applicable Bayesian Information Criterion (WBIC) have been proposed. Since WAIC and WBIC are computed using posterior distributions at different temperature settings, separate posterior sampling is generally required. In this paper, we theoretically derive an asymptotic equation that links WAIC and WBIC, despite their dependence on different posteriors. This equation yields an asymptotically unbiased expression of WAIC in terms of the posterior distribution used for WBIC. The result clarifies the structural relationship between these criteria within the framework of singular learning theory, and deepens understanding of their asymptotic behavior. This theoretical contribution provides a foundation for future developments in the computational efficiency of model selection in singular models.
comment: 14pages, accepted in ICONIP2025 and published in Neural Information Processing (Lecture Notes in Computer Science)
♻ ☆ Steganographic Backdoor Attacks in NLP: Ultra-Low Poisoning and Defense Evasion
Transformer models are foundational to natural language processing (NLP) applications, yet remain vulnerable to backdoor attacks introduced through poisoned data, which implant hidden behaviors during training. To strengthen the ability to prevent such compromises, recent research has focused on designing increasingly stealthy attacks to stress-test existing defenses, pairing backdoor behaviors with stylized artifact or token-level perturbation triggers. However, this trend diverts attention from the harder and more realistic case: making the model respond to semantic triggers such as specific names or entities, where a successful backdoor could manipulate outputs tied to real people or events in deployed systems. Motivated by this growing disconnect, we introduce SteganoBackdoor, bringing stealth techniques back into line with practical threat models. Leveraging innocuous properties from natural-language steganography, SteganoBackdoor applies a gradient-guided data optimization process to transform semantic trigger seeds into steganographic carriers that embed a high backdoor payload, remain fluent, and exhibit no representational resemblance to the trigger. Across diverse experimental settings, SteganoBackdoor achieves over 99% attack success at an order-of-magnitude lower data-poisoning rate than prior approaches while maintaining unparalleled evasion against a comprehensive suite of data-level defenses. By revealing this practical and covert attack, SteganoBackdoor highlights an urgent blind spot in current defenses and demands immediate attention to adversarial data defenses and real-world threat modeling.
♻ ☆ LEANN: A Low-Storage Vector Index
Embedding-based vector search underpins many important applications, such as recommendation and retrieval-augmented generation (RAG). It relies on vector indices to enable efficient search. However, these indices require storing high-dimensional embeddings and large index metadata, whose total size can be several times larger than the original data (e.g., text chunks). Such high storage overhead makes it difficult, or even impractical, to deploy vector search on personal devices or large-scale datasets. To tackle this problem, we propose LEANN, a storage-efficient index for vector search that recomputes embeddings on the fly instead of storing them, and compresses state-of-the-art proximity graph indices while preserving search accuracy. LEANN delivers high-quality vector search while using only a fraction of the storage (e.g., 5% of the original data) and supporting storage-efficient index construction and updates. On real-world benchmarks, LEANN reduces index size by up to 50x compared with conventional indices, while maintaining SOTA accuracy and comparable latency for RAG applications.
♻ ☆ STAlloc: Enhancing Memory Efficiency in Large-Scale Model Training with Spatio-Temporal Planning
The rapid scaling of large language models (LLMs) has significantly increased GPU memory pressure, which is further aggravated by training optimization techniques such as virtual pipeline and recomputation that disrupt tensor lifespans and introduce considerable memory fragmentation. Such fragmentation stems from the use of online GPU memory allocators in popular deep learning frameworks like PyTorch, which disregard tensor lifespans. As a result, this inefficiency can waste as much as 43% of memory and trigger out-of-memory errors, undermining the effectiveness of optimization methods. To address this, we introduce STAlloc, a GPU memory allocator for deep learning frameworks that reduces fragmentation by exploiting the spatial and temporal regularity in memory allocation behaviors of training workloads. STAlloc introduces a novel paradigm that combines offline planning with online allocation. The offline planning leverages spatio-temporal regularities to generate a near-optimal allocation plan, while the online allocation handles complex and dynamic models such as Mixture-of-Experts (MoE). Built as a pluggable PyTorch memory allocator, STAlloc reduces fragmentation ratio on average by 85.1% (up to 100%) across both dense and MoE models, with negligible overhead. This enables more efficient, high-throughput training configurations and improves throughput performance by up to 32.5%.
♻ ☆ Optimally Deep Networks - Adapting Model Depth to Datasets for Superior Efficiency
Deep neural networks (DNNs) have provided brilliant performance across various tasks. However, this success often comes at the cost of unnecessarily large model sizes, high computational demands, and substantial memory footprints. Typically, powerful architectures are trained at full depths but not all datasets or tasks require such high model capacity. Training big and deep architectures on relatively low-complexity datasets frequently leads to wasted computation, unnecessary energy consumption, and excessive memory usage, which in turn makes deployment of models on resource-constrained devices impractical. To address this problem, we introduce the concept of Optimally Deep Networks (ODNs), which provides a balance between model depth and task complexity. Specifically, we propose a NAS like training strategy called progressive depth expansion, which begins by training neural networks at shallower depths and incrementally increases their depth as the earlier blocks converge, continuing this process until the target accuracy is reached. ODNs use only the optimal depth for the tasks at hand, removing redundant layers. This cuts down future training and inference costs, lowers the model memory footprint, enhances computational efficiency, and facilitates deployment on edge devices. Empirical results show that the optimal depths of ResNet-18 and ResNet-34 for MNIST and SVHN, achieve up to 98.64 % and 96.44 % reduction in memory footprint, while maintaining a competitive accuracy of 99.31 % and 96.08 %, respectively.
comment: 6 pages, 4 figures, 1 table, 2 equations, 1 algorithm
♻ ☆ RLZero: Direct Policy Inference from Language Without In-Domain Supervision NeurIPS 2025
The reward hypothesis states that all goals and purposes can be understood as the maximization of a received scalar reward signal. However, in practice, defining such a reward signal is notoriously difficult, as humans are often unable to predict the optimal behavior corresponding to a reward function. Natural language offers an intuitive alternative for instructing reinforcement learning (RL) agents, yet previous language-conditioned approaches either require costly supervision or test-time training given a language instruction. In this work, we present a new approach that uses a pretrained RL agent trained using only unlabeled, offline interactions--without task-specific supervision or labeled trajectories--to get zero-shot test-time policy inference from arbitrary natural language instructions. We introduce a framework comprising three steps: imagine, project, and imitate. First, the agent imagines a sequence of observations corresponding to the provided language description using video generative models. Next, these imagined observations are projected into the target environment domain. Finally, an agent pretrained in the target environment with unsupervised RL instantly imitates the projected observation sequence through a closed-form solution. To the best of our knowledge, our method, RLZero, is the first approach to show direct language-to-behavior generation abilities on a variety of tasks and environments without any in-domain supervision. We further show that components of RLZero can be used to generate policies zero-shot from cross-embodied videos, such as those available on YouTube, even for complex embodiments like humanoids.
comment: NeurIPS 2025, 26 pages
♻ ☆ PaSE: Prototype-aligned Calibration and Shapley-based Equilibrium for Multimodal Sentiment Analysis AAAI 2026
Multimodal Sentiment Analysis (MSA) seeks to understand human emotions by integrating textual, acoustic, and visual signals. Although multimodal fusion is designed to leverage cross-modal complementarity, real-world scenarios often exhibit modality competition: dominant modalities tend to overshadow weaker ones, leading to suboptimal performance. In this paper, we propose PaSE, a novel Prototype-aligned Calibration and Shapley-optimized Equilibrium framework, which enhances collaboration while explicitly mitigating modality competition. PaSE first applies Prototype-guided Calibration Learning (PCL) to refine unimodal representations and align them through an Entropic Optimal Transport mechanism that ensures semantic consistency. To further stabilize optimization, we introduce a Dual-Phase Optimization strategy. A prototype-gated fusion module is first used to extract shared representations, followed by Shapley-based Gradient Modulation (SGM), which adaptively adjusts gradients according to the contribution of each modality. Extensive experiments on IEMOCAP, MOSI, and MOSEI confirm that PaSE achieves the superior performance and effectively alleviates modality competition.
comment: Accepted by AAAI 2026
♻ ☆ Identifiable learning of dissipative dynamics
Complex dissipative systems appear across science and engineering, from polymers and active matter to learning algorithms. These systems operate far from equilibrium, where energy dissipation and time irreversibility govern their behavior but are difficult to quantify from data. Here, we introduce a universal and identifiable neural framework that learns dissipative stochastic dynamics directly from trajectories while ensuring interpretability, expressiveness, and uniqueness. Our method identifies a unique energy landscape, separates reversible from irreversible motion, and allows direct computation of the entropy production, providing a principled measure of irreversibility and deviations from equilibrium. Applications to polymer stretching in elongational flow and to stochastic gradient Langevin dynamics reveal new insights, including super-linear scaling of barrier heights and sub-linear scaling of entropy production rates with the strain rate, and the suppression of irreversibility with increasing batch size. Our methodology thus establishes a general, data-driven framework for discovering and interpreting non-equilibrium dynamics.
♻ ☆ SLOFetch: Compressed-Hierarchical Instruction Prefetching for Cloud Microservices
Large-scale networked services rely on deep soft-ware stacks and microservice orchestration, which increase instruction footprints and create frontend stalls that inflate tail latency and energy. We revisit instruction prefetching for these cloud workloads and present a design that aligns with SLO driven and self optimizing systems. Building on the Entangling Instruction Prefetcher (EIP), we introduce a Compressed Entry that captures up to eight destinations around a base using 36 bits by exploiting spatial clustering, and a Hierarchical Metadata Storage scheme that keeps only L1 resident and frequently queried entries on chip while virtualizing bulk metadata into lower levels. We further add a lightweight Online ML Controller that scores prefetch profitability using context features and a bandit adjusted threshold. On data center applications, our approach preserves EIP like speedups with smaller on chip state and improves efficiency for networked services in the ML era.
♻ ☆ Domain Fusion Controllable Generalization for Cross-Domain Time Series Forecasting from Multi-Domain Integrated Distribution
Conventional deep models have achieved unprecedented success in time series forecasting. However, facing the challenge of cross-domain generalization, existing studies utilize statistical prior as prompt engineering fails under the huge distribution shift among various domains. In this paper, a novel time series generalization diffusion model (TimeControl) that pioneers the Domain-Fusion paradigm, systematically integrating information from multiple time series domains into a unified generative process via diffusion models. Unlike the autoregressive models that capture the conditional probabilities of the prediction horizon to the historical sequence, we use the diffusion denoising process to model the mixed distribution of the cross-domain data and generate the prediction sequence for the target domain directly utilizing conditional sampling. The proposed TimeControl contains three pivotal designs: (1) The condition network captures the multi-scale fluctuation patterns from the observation sequence, which are utilized as context representations to guide the denoising network to generate the prediction sequence; (2) Adapter-based fine-tuning strategy, the multi-domain universal representation learned in the pretraining stage is utilized for downstream tasks in target domains; (3) A novel hybrid architecture is designed to align the observation and prediction spaces, enabling TimeControl to generate prediction sequences of arbitrary lengths with flexibility. We conduct extensive experiments on mainstream 49 benchmarks and 30 baselines, and the TimeControl outperforms existing baselines on all data domains, exhibiting superior zero-shot generalization ability.
comment: We have updated the abstract, introduction and related work. Additionally, we have incorporated the latest competitive baseline models
♻ ☆ Adversarial Bandits against Arbitrary Strategies
We study the adversarial bandit problem against arbitrary strategies, where the difficulty is captured by an unknown parameter $S$, which is the number of switches in the best arm in hindsight. To handle this problem, we adopt the master-base framework using the online mirror descent method (OMD). We first provide a master-base algorithm with simple OMD, achieving $\tilde{O}(S^{1/2}K^{1/3}T^{2/3})$, in which $T^{2/3}$ comes from the variance of loss estimators. To mitigate the impact of the variance, we propose using adaptive learning rates for OMD and achieve $\tilde{O}(\min\{\sqrt{SKTρ},S\sqrt{KT}\})$, where $ρ$ is a variance term for loss estimators.
♻ ☆ AReaL: A Large-Scale Asynchronous Reinforcement Learning System for Language Reasoning
Reinforcement learning (RL) has become a dominant paradigm for training large language models (LLMs), particularly for reasoning tasks. Effective RL for LLMs requires massive parallelization and poses an urgent need for efficient training systems. Most existing large-scale RL systems for LLMs are synchronous, alternating generation and training in a batch setting where rollouts in each training batch are generated by the same model. This approach stabilizes RL training but suffers from severe system-level inefficiency: generation must wait until the longest output in the batch is completed before model updates, resulting in GPU underutilization. We present AReaL, a fully asynchronous RL system that completely decouples generation from training. Rollout workers in AReaL continuously generate new outputs without waiting, while training workers update the model whenever a batch of data is collected. AReaL also incorporates a collection of system-level optimizations, leading to substantially higher GPU utilization. To stabilize RL training, AReaL balances the workload of rollout and training workers to control data staleness, and adopts a staleness-enhanced PPO variant to better handle outdated training samples. Extensive experiments on math and code reasoning benchmarks show that AReaL achieves up to 2.77$\times$ training speedup compared to synchronous systems with the same number of GPUs and matched or improved final performance. The code of AReaL is available at https://github.com/inclusionAI/AReaL/.
♻ ☆ Extrapolation to infinite model space of no-core shell model calculations using machine learning
An ensemble of neural networks is employed to extrapolate no-core shell model (NCSM) results to infinite model space for light nuclei. We present a review of our neural network extrapolations of the NCSM results obtained with the Daejeon16 NN interaction in different model spaces and with different values of the NCSM basis parameter $\hbarΩ$ for energies of nuclear states and root-mean-square (rms) radii of proton, neutron and matter distributions in light nuclei. The method yields convergent predictions with quantifiable uncertainties. Ground-state energies for $^{6}$Li, $^{6}$He, and the unbound $^{6}$Be, as well as the excited $(3^{+},0)$ and $(0^{+},1)$ states of $^{6}$Li, are obtained within a few hundred keV of experiment. The extrapolated radii of bound states converge well. In contrast, radii of unbound states in $^{6}$Be and $^{6}$Li do not stabilize.
comment: 9 pages, 3 figures
♻ ☆ ELUTQ: Efficient LUT-Aware Quantization for Deploying Large Language Models on Edge Devices
Weight quantization effectively reduces memory consumption and enables the deployment of large language models on CPU-based edge devices, yet existing hardware-friendly methods often rely on uniform quantization, which suffers from poor weight-distribution fitting and high dequantization overhead under low-bit settings. In this paper, we propose ELUTQ, an efficient quantization framework featuring a novel quantization format termed Hierarchical Linear Quantization (HLQ). HLQ is designed to better capture the statistical characteristics of weights without increasing the computational cost of bit-serial LUT-based GEMM operations, thereby eliminating dequantization overhead. HLQ is orthogonal to existing quantization algorithms. For the LLaMA3.1-8B model, when combined with post-training quantization, HLQ improves uniform quantization by achieving approximately 8 percent perplexity reduction at 3-bit precision and 85 percent perplexity reduction at 2-bit precision. When combined with efficient finetuning techniques, HLQ further improves model accuracy. We also integrate a disk-offload technique into ELUTQ, enabling it to complete the quantization of LLaMA3.1-70B using only 64 GB of CPU memory and 48 GB of VRAM, significantly reducing the hardware requirements for large-scale model quantization. To enable efficient deployment on edge devices, ELUTQ provides high-performance CPU kernels to support end-to-end inference. Under a 4-thread configuration with batch size 1, our 2-bit quantized LLaMA2-7B model achieves a throughput of more than 25 tokens per second on an Apple M2 chip. All the code is available at https://github.com/Nkniexin/ELUTQ.
comment: 28 pages, 10 figures
♻ ☆ Scalable neural network-based blackbox optimization
Bayesian Optimization (BO) is a widely used approach for blackbox optimization that leverages a Gaussian process (GP) model and an acquisition function to guide future sampling. While effective in low-dimensional settings, BO faces scalability challenges in high-dimensional spaces and with large number of function evaluations due to the computational complexity of GP models. In contrast, neural networks (NNs) offer better scalability and can model complex functions, which led to the development of NN-based BO approaches. However, these methods typically rely on estimating model uncertainty in NN prediction -- a process that is often computationally intensive and complex, particularly in high dimensions. To address these limitations, a novel method, called scalable neural network-based blackbox optimization (SNBO), is proposed that does not rely on model uncertainty estimation. Specifically, SNBO adds new samples using separate criteria for exploration and exploitation, while adaptively controlling the sampling region to ensure efficient optimization. SNBO is evaluated on a range of optimization problems spanning from 10 to 102 dimensions and compared against four state-of-the-art baseline algorithms. Across the majority of test problems, SNBO attains function values better than the best-performing baseline algorithm, while requiring 40-60% fewer function evaluations and reducing the runtime by at least an order of magnitude.
comment: An open-source implementation of SNBO is available at: https://github.com/ComputationalDesignLab/snbo
♻ ☆ Categorical Flow Matching on Statistical Manifolds NeurIPS 2024
We introduce Statistical Flow Matching (SFM), a novel and mathematically rigorous flow-matching framework on the manifold of parameterized probability measures inspired by the results from information geometry. We demonstrate the effectiveness of our method on the discrete generation problem by instantiating SFM on the manifold of categorical distributions whose geometric properties remain unexplored in previous discrete generative models. Utilizing the Fisher information metric, we equip the manifold with a Riemannian structure whose intrinsic geometries are effectively leveraged by following the shortest paths of geodesics. We develop an efficient training and sampling algorithm that overcomes numerical stability issues with a diffeomorphism between manifolds. Our distinctive geometric perspective of statistical manifolds allows us to apply optimal transport during training and interpret SFM as following the steepest direction of the natural gradient. Unlike previous models that rely on variational bounds for likelihood estimation, SFM enjoys the exact likelihood calculation for arbitrary probability measures. We manifest that SFM can learn more complex patterns on the statistical manifold where existing models often fail due to strong prior assumptions. Comprehensive experiments on real-world generative tasks ranging from image, text to biological domains further demonstrate that SFM achieves higher sampling quality and likelihood than other discrete diffusion or flow-based models.
comment: Accepted to NeurIPS 2024 as a conference paper
♻ ☆ FedQS: Optimizing Gradient and Model Aggregation for Semi-Asynchronous Federated Learning NeurIPS 2025
Federated learning (FL) enables collaborative model training across multiple parties without sharing raw data, with semi-asynchronous FL (SAFL) emerging as a balanced approach between synchronous and asynchronous FL. However, SAFL faces significant challenges in optimizing both gradient-based (e.g., FedSGD) and model-based (e.g., FedAvg) aggregation strategies, which exhibit distinct trade-offs in accuracy, convergence speed, and stability. While gradient aggregation achieves faster convergence and higher accuracy, it suffers from pronounced fluctuations, whereas model aggregation offers greater stability but slower convergence and suboptimal accuracy. This paper presents FedQS, the first framework to theoretically analyze and address these disparities in SAFL. FedQS introduces a divide-and-conquer strategy to handle client heterogeneity by classifying clients into four distinct types and adaptively optimizing their local training based on data distribution characteristics and available computational resources. Extensive experiments on computer vision, natural language processing, and real-world tasks demonstrate that FedQS achieves the highest accuracy, attains the lowest loss, and ranks among the fastest in convergence speed, outperforming state-of-the-art baselines. Our work bridges the gap between aggregation strategies in SAFL, offering a unified solution for stable, accurate, and efficient federated learning. The code and datasets are available at https://github.com/bkjod/FedQS_.
comment: Accepted by NeurIPS 2025
♻ ☆ Elucidated Rolling Diffusion Models for Probabilistic Weather Forecasting NeurIPS 2025
Diffusion models are a powerful tool for probabilistic forecasting, yet most applications in high-dimensional complex systems predict future states individually. This approach struggles to model complex temporal dependencies and fails to explicitly account for the progressive growth of uncertainty inherent to the systems. While rolling diffusion frameworks, which apply increasing noise to forecasts at longer lead times, have been proposed to address this, their integration with state-of-the-art, high-fidelity diffusion techniques remains a significant challenge. We tackle this problem by introducing Elucidated Rolling Diffusion Models (ERDM), the first framework to successfully unify a rolling forecast structure with the principled, performant design of Elucidated Diffusion Models (EDM). To do this, we adapt the core EDM components-its noise schedule, network preconditioning, and Heun sampler-to the rolling forecast setting. The success of this integration is driven by three key contributions: (i) a novel loss weighting scheme that focuses model capacity on the mid-range forecast horizons where determinism gives way to stochasticity; (ii) an efficient initialization strategy using a pre-trained EDM for the initial window; and (iii) a bespoke hybrid sequence architecture for robust spatiotemporal feature extraction under progressive denoising. On 2D Navier-Stokes simulations and ERA5 global weather forecasting at 1.5-degree resolution, ERDM consistently outperforms key diffusion-based baselines, including conditional autoregressive EDM. ERDM offers a flexible and powerful general framework for tackling diffusion-based dynamics forecasting problems where modeling uncertainty propagation is paramount.
comment: NeurIPS 2025
♻ ☆ Addressing divergent representations from causal interventions on neural networks
A common approach to mechanistic interpretability is to causally manipulate model representations via targeted interventions in order to understand what those representations encode. Here we ask whether such interventions create out-of-distribution (divergent) representations, and whether this raises concerns about how faithful their resulting explanations are to the target model in its natural state. First, we demonstrate theoretically and empirically that common causal intervention techniques often do shift internal representations away from the natural distribution of the target model. Then, we provide a theoretical analysis of two classes of such divergences: "harmless" divergences that occur in the null-space of the weights and from covariance within behavioral decision boundaries, and "pernicious" divergences that activate hidden network pathways and cause dormant behavioral changes. Finally, in an effort to mitigate the pernicious cases, we apply and modify the Counterfactual Latent (CL) loss from Grant (2025) allowing representations from causal interventions to remain closer to the natural distribution, reducing the likelihood of harmful divergences while preserving the interpretive power of the interventions. Together, these results highlight a path towards more reliable interpretability methods.
♻ ☆ On the dimension of pullback attractors in recurrent neural networks
Recurrent neural networks trained via the reservoir computing paradigm have demonstrated remarkable success in learning and reconstructing attractors from chaotic systems, often replicating quantities such as Lyapunov exponents and fractal dimensions. It has recently been conjectured that this is because the reservoir computer embeds the dynamics of the chaotic system in its state space before learning. This conjecture has been established for reservoir computers with linear activation functions and remains open for more general reservoir systems. In this work, we employ a non-autonomous dynamical systems approach to establish an upper bound for the box-counting dimension of the pullback attractor, a subset of the reservoir state space that is approximated during training and prediction phases. We prove that the box-counting dimension of the pullback attractor is bounded above by the box-counting dimension of the space of input sequences with respect to the product topology. In particular, for input sequences originating from an Nin-dimensional smooth dynamical system or their generic continuously differentiable observations, the box-counting dimension of the pullback attractor is bounded above by Nin. The results obtained here highlight the fact that, while a reservoir computer may possess a very high-dimensional state space, it exhibits effective low-dimensional dynamics. Our findings also partly explain why reservoir computers are successful in tasks such as attractor reconstruction and the computation of dynamic invariants like Lyapunov exponents and fractal dimensions.
comment: Issues with clarity and notation
♻ ☆ Dual-branch Spatial-Temporal Self-supervised Representation for Enhanced Road Network Learning AAAI 2026
Road network representation learning (RNRL) has attracted increasing attention from both researchers and practitioners as various spatiotemporal tasks are emerging. Recent advanced methods leverage Graph Neural Networks (GNNs) and contrastive learning to characterize the spatial structure of road segments in a self-supervised paradigm. However, spatial heterogeneity and temporal dynamics of road networks raise severe challenges to the neighborhood smoothing mechanism of self-supervised GNNs. To address these issues, we propose a $\textbf{D}$ual-branch $\textbf{S}$patial-$\textbf{T}$emporal self-supervised representation framework for enhanced road representations, termed as DST. On one hand, DST designs a mix-hop transition matrix for graph convolution to incorporate dynamic relations of roads from trajectories. Besides, DST contrasts road representations of the vanilla road network against that of the hypergraph in a spatial self-supervised way. The hypergraph is newly built based on three types of hyperedges to capture long-range relations. On the other hand, DST performs next token prediction as the temporal self-supervised task on the sequences of traffic dynamics based on a causal Transformer, which is further regularized by differentiating traffic modes of weekdays from those of weekends. Extensive experiments against state-of-the-art methods verify the superiority of our proposed framework. Moreover, the comprehensive spatiotemporal modeling facilitates DST to excel in zero-shot learning scenarios.
comment: Accept by AAAI 2026
♻ ☆ Understanding and Optimizing Multi-Stage AI Inference Pipelines
The rapid evolution of Large Language Models (LLMs) has driven the need for increasingly sophisticated inference pipelines and hardware platforms. Modern LLM serving extends beyond traditional prefill-decode workflows, incorporating multi-stage processes such as Retrieval Augmented Generation (RAG), key-value (KV) cache retrieval, dynamic model routing, and multi step reasoning. These stages exhibit diverse computational demands, requiring distributed systems that integrate GPUs, ASICs, CPUs, and memory-centric architectures. However, existing simulators lack the fidelity to model these heterogeneous, multi-engine workflows, limiting their ability to inform architectural decisions. To address this gap, we introduce HERMES, a Heterogeneous Multi-stage LLM inference Execution Simulator. HERMES models diverse request stages; including RAG, KV retrieval, reasoning, prefill, and decode across complex hardware hierarchies. HERMES supports heterogeneous clients executing multiple models concurrently unlike prior frameworks while incorporating advanced batching strategies and multi-level memory hierarchies. By integrating real hardware traces with analytical modeling, HERMES captures critical trade-offs such as memory bandwidth contention, inter-cluster communication latency, and batching efficiency in hybrid CPU-accelerator deployments. Through case studies, we explore the impact of reasoning stages on end-to-end latency, optimal batching strategies for hybrid pipelines, and the architectural implications of remote KV cache retrieval. HERMES empowers system designers to navigate the evolving landscape of LLM inference, providing actionable insights into optimizing hardware-software co-design for next-generation AI workloads.
comment: Inference System Design for Multi-Stage AI Inference Pipelines. 13 Pages, 15 Figues, 3 Tables
♻ ☆ FunDiff: Diffusion Models over Function Spaces for Physics-Informed Generative Modeling
Recent advances in generative modeling -- particularly diffusion models and flow matching -- have achieved remarkable success in synthesizing discrete data such as images and videos. However, adapting these models to physical applications remains challenging, as the quantities of interest are continuous functions governed by complex physical laws. Here, we introduce $\textbf{FunDiff}$, a novel framework for generative modeling in function spaces. FunDiff combines a latent diffusion process with a function autoencoder architecture to handle input functions with varying discretizations, generate continuous functions evaluable at arbitrary locations, and seamlessly incorporate physical priors. These priors are enforced through architectural constraints or physics-informed loss functions, ensuring that generated samples satisfy fundamental physical laws. We theoretically establish minimax optimality guarantees for density estimation in function spaces, showing that diffusion-based estimators achieve optimal convergence rates under suitable regularity conditions. We demonstrate the practical effectiveness of FunDiff across diverse applications in fluid dynamics and solid mechanics. Empirical results show that our method generates physically consistent samples with high fidelity to the target distribution and exhibits robustness to noisy and low-resolution data. Code and datasets are publicly available at https://github.com/sifanexisted/fundiff.
comment: 31 pages, 12 figures
♻ ☆ Differential privacy with dependent data
Dependent data underlies many statistical studies in the social and health sciences, which often involve sensitive or private information. Differential privacy (DP) and in particular \textit{user-level} DP provide a natural formalization of privacy requirements for processing dependent data where each individual provides multiple observations to the dataset. However, dependence introduced, e.g., through repeated measurements challenges the existing statistical theory under DP-constraints. In \iid{} settings, noisy Winsorized mean estimators have been shown to be minimax optimal for standard (\textit{item-level}) and \textit{user-level} DP estimation of a mean $μ\in \R^d$. Yet, their behavior on potentially dependent observations has not previously been studied. We fill this gap and show that Winsorized mean estimators can also be used under dependence for bounded and unbounded data, and can lead to asymptotic and finite sample guarantees that resemble their \iid{} counterparts under a weak notion of dependence. For this, we formalize dependence via log-Sobolev inequalities on the joint distribution of observations. This enables us to adapt the stable histogram by Karwa and Vadhan (2018) to a non-\iid{} setting, which we then use to estimate the private projection intervals of the Winsorized estimator. The resulting guarantees for our item-level mean estimator extend to \textit{user-level} mean estimation and transfer to the local model via a randomized response histogram. Using the mean estimators as building blocks, we provide extensions to random effects models, longitudinal linear regression and nonparametric regression. Therefore, our work constitutes a first step towards a systematic study of DP for dependent data.
♻ ☆ Scalable Parameter-Light Spectral Method for Clustering Short Text Embeddings with a Cohesion-Based Evaluation Metric
Clustering short text embeddings is a foundational task in natural language processing, yet remains challenging due to the need to specify the number of clusters in advance. We introduce a scalable spectral method that estimates the number of clusters directly from the structure of the Laplacian eigenspectrum, constructed using cosine similarities and guided by an adaptive sampling strategy. This sampling approach enables our estimator to efficiently scale to large datasets without sacrificing reliability. To support intrinsic evaluation of cluster quality without ground-truth labels, we propose the Cohesion Ratio, a simple and interpretable evaluation metric that quantifies how much intra-cluster similarity exceeds the global similarity background. It has an information-theoretic motivation inspired by mutual information, and in our experiments it correlates closely with extrinsic measures such as normalized mutual information and homogeneity. Extensive experiments on six short-text datasets and four modern embedding models show that standard algorithms like K-Means and HAC, when guided by our estimator, significantly outperform popular parameter-light methods such as HDBSCAN, OPTICS, and Leiden. These results demonstrate the practical value of our spectral estimator and Cohesion Ratio for unsupervised organization and evaluation of short text data. Implementation of our estimator of k and Cohesion Ratio, along with code for reproducing the experiments, is available at https://anonymous.4open.science/r/towards_clustering-0C2E.
♻ ☆ AirFed: A Federated Graph-Enhanced Multi-Agent Reinforcement Learning Framework for Multi-UAV Cooperative Mobile Edge Computing
Multiple Unmanned Aerial Vehicles (UAVs) cooperative Mobile Edge Computing (MEC) systems face critical challenges in coordinating trajectory planning, task offloading, and resource allocation while ensuring Quality of Service (QoS) under dynamic and uncertain environments. Existing approaches suffer from limited scalability, slow convergence, and inefficient knowledge sharing among UAVs, particularly when handling large-scale IoT device deployments with stringent deadline constraints. This paper proposes AirFed, a novel federated graph-enhanced multi-agent reinforcement learning framework that addresses these challenges through three key innovations. First, we design dual-layer dynamic Graph Attention Networks (GATs) that explicitly model spatial-temporal dependencies among UAVs and IoT devices, capturing both service relationships and collaborative interactions within the network topology. Second, we develop a dual-Actor single-Critic architecture that jointly optimizes continuous trajectory control and discrete task offloading decisions. Third, we propose a reputation-based decentralized federated learning mechanism with gradient-sensitive adaptive quantization, enabling efficient and robust knowledge sharing across heterogeneous UAVs. Extensive experiments demonstrate that AirFed achieves 42.9% reduction in weighted cost compared to state-of-the-art baselines, attains over 99% deadline satisfaction and 94.2% IoT device coverage rate, and reduces communication overhead by 54.5%. Scalability analysis confirms robust performance across varying UAV numbers, IoT device densities, and system scales, validating AirFed's practical applicability for large-scale UAV-MEC deployments.
♻ ☆ TopER: Topological Embeddings in Graph Representation Learning
Graph embeddings play a critical role in graph representation learning, allowing machine learning models to explore and interpret graph-structured data. However, existing methods often rely on opaque, high-dimensional embeddings, limiting interpretability and practical visualization. In this work, we introduce Topological Evolution Rate (TopER), a novel, low-dimensional embedding approach grounded in topological data analysis. TopER simplifies a key topological approach, Persistent Homology, by calculating the evolution rate of graph substructures, resulting in intuitive and interpretable visualizations of graph data. This approach not only enhances the exploration of graph datasets but also delivers competitive performance in graph clustering and classification tasks. Our TopER-based models achieve or surpass state-of-the-art results across molecular, biological, and social network datasets in tasks such as classification, clustering, and visualization.
comment: 27 pages, 10 figures
♻ ☆ Filtering with Self-Attention and Storing with MLP: One-Layer Transformers Can Provably Acquire and Extract Knowledge
Modern large language models (LLMs) demonstrate exceptional performance on knowledge-intensive tasks, yet the theoretical mechanisms underlying knowledge acquisition (storage and memorization) during pre-training and extraction (retrieval and recall) during inference after fine-tuning remain poorly understood. Although prior theoretical studies have explored these processes through analyses of training dynamics, they overlook critical components essential for a comprehensive theory: (1) the multi-layer perceptron (MLP), empirically identified as the primary module for knowledge storage; (2) out-of-distribution (OOD) adaptivity, which enables LLMs to generalize to unseen scenarios post-pre-training; and (3) next-token prediction, the standard autoregressive objective that encodes knowledge as conditional probabilities. In this work, we introduce, to the best of our knowledge, the first theoretical framework that addresses these limitations by examining the training dynamics of one-layer transformers. Under regularity assumptions, we establish that: (i) transformers attain near-optimal training loss during pre-training, demonstrating effective knowledge acquisition; (ii) given a sufficiently large fine-tuning dataset and appropriate data multiplicity conditions, transformers achieve low generalization error on factual knowledge acquired during pre-training but not revisited in fine-tuning, indicating robust knowledge extraction; and (iii) violation of these conditions leads to elevated generalization error, manifesting as hallucinations. Our analysis encompasses both full fine-tuning and low-rank fine-tuning, yielding insights into the efficacy of practical low-rank adaptation methods. We validate our theoretical findings through experiments on synthetic datasets and the real-world PopQA benchmark, employing GPT-2 and Llama-3.2-1B models.
♻ ☆ ARBoids: Adaptive Residual Reinforcement Learning With Boids Model for Cooperative Multi-USV Target Defense
The target defense problem (TDP) for unmanned surface vehicles (USVs) concerns intercepting an adversarial USV before it breaches a designated target region, using one or more defending USVs. A particularly challenging scenario arises when the attacker exhibits superior maneuverability compared to the defenders, significantly complicating effective interception. To tackle this challenge, this letter introduces ARBoids, a novel adaptive residual reinforcement learning framework that integrates deep reinforcement learning (DRL) with the biologically inspired, force-based Boids model. Within this framework, the Boids model serves as a computationally efficient baseline policy for multi-agent coordination, while DRL learns a residual policy to adaptively refine and optimize the defenders' actions. The proposed approach is validated in a high-fidelity Gazebo simulation environment, demonstrating superior performance over traditional interception strategies, including pure force-based approaches and vanilla DRL policies. Furthermore, the learned policy exhibits strong adaptability to attackers with diverse maneuverability profiles, highlighting its robustness and generalization capability. The code of ARBoids will be released upon acceptance of this letter.
♻ ☆ SCNode: Spatial and Contextual Coordinates for Graph Representation Learning
Effective node representation lies at the heart of Graph Neural Networks (GNNs), as it directly impacts their ability to perform downstream tasks such as node classification and link prediction. Most existing GNNs, particularly message passing graph neural networks, rely on neighborhood aggregation to iteratively compute node embeddings. While powerful, this paradigm suffers from well-known limitations of oversquashing, oversmoothing, and underreaching that degrade representation quality. More critically, MPGNNs often assume homophily, where connected nodes share similar features or labels, leading to poor generalization in heterophilic graphs where this assumption breaks down. To address these challenges, we propose \textit{SCNode}, a \textit{Spatial-Contextual Node Embedding} framework designed to perform consistently well in both homophilic and heterophilic settings. SCNode integrates spatial and contextual information, yielding node embeddings that are not only more discriminative but also structurally aware. Our approach introduces new homophily matrices for understanding class interactions and tendencies. Extensive experiments on benchmark datasets show that SCNode achieves superior performance over conventional GNN models, demonstrating its robustness and adaptability in diverse graph structures.
comment: 24 pages, 5 figures
♻ ☆ LINSCAN -- A Linearity Based Clustering Algorithm
DBSCAN and OPTICS are powerful algorithms for identifying clusters of points in domains where few assumptions can be made about the structure of the data. In this paper, we leverage these strengths and introduce a new algorithm, LINSCAN, designed to seek lineated clusters that are difficult to find and isolate with existing methods. In particular, by embedding points as normal distributions approximating their local neighborhoods and leveraging a distance function derived from the Kullback Leibler Divergence, LINSCAN can detect and distinguish lineated clusters that are spatially close but have orthogonal covariances. We demonstrate how LINSCAN can be applied to seismic data to identify active faults, including intersecting faults, and determine their orientation. Finally, we discuss the properties a generalization of DBSCAN and OPTICS must have in order to retain the stability benefits of these algorithms.
How to Find Fantastic AI Papers: Self-Rankings as a Powerful Predictor of Scientific Impact Beyond Peer Review
Peer review in academic research aims not only to ensure factual correctness but also to identify work of high scientific potential that can shape future research directions. This task is especially critical in fast-moving fields such as artificial intelligence (AI), yet it has become increasingly difficult given the rapid growth of submissions. In this paper, we investigate an underexplored measure for identifying high-impact research: authors' own rankings of their multiple submissions to the same AI conference. Grounded in game-theoretic reasoning, we hypothesize that self-rankings are informative because authors possess unique understanding of their work's conceptual depth and long-term promise. To test this hypothesis, we conducted a large-scale experiment at a leading AI conference, where 1,342 researchers self-ranked their 2,592 submissions by perceived quality. Tracking outcomes over more than a year, we found that papers ranked highest by their authors received twice as many citations as their lowest-ranked counterparts; self-rankings were especially effective at identifying highly cited papers (those with over 150 citations). Moreover, we showed that self-rankings outperformed peer review scores in predicting future citation counts. Our results remained robust after accounting for confounders such as preprint posting time and self-citations. Together, these findings demonstrate that authors' self-rankings provide a reliable and valuable complement to peer review for identifying and elevating high-impact research in AI.
♻ ☆ GRAM: Generalization in Deep RL with a Robust Adaptation Module
The reliable deployment of deep reinforcement learning in real-world settings requires the ability to generalize across a variety of conditions, including both in-distribution scenarios seen during training as well as novel out-of-distribution scenarios. In this work, we present a framework for dynamics generalization in deep reinforcement learning that unifies these two distinct types of generalization within a single architecture. We introduce a robust adaptation module that provides a mechanism for identifying and reacting to both in-distribution and out-of-distribution environment dynamics, along with a joint training pipeline that combines the goals of in-distribution adaptation and out-of-distribution robustness. Our algorithm GRAM achieves strong generalization performance across in-distribution and out-of-distribution scenarios upon deployment, which we demonstrate through extensive simulation and hardware locomotion experiments on a quadruped robot.
comment: Accepted for publication in IEEE Robotics and Automation Letters (RA-L)
♻ ☆ To Align or Not to Align: Strategic Multimodal Representation Alignment for Optimal Performance AAAI 2026
Multimodal learning often relies on aligning representations across modalities to enable effective information integration, an approach traditionally assumed to be universally beneficial. However, prior research has primarily taken an observational approach, examining naturally occurring alignment in multimodal data and exploring its correlation with model performance, without systematically studying the direct effects of explicitly enforced alignment between representations of different modalities. In this work, we investigate how explicit alignment influences both model performance and representation alignment under different modality-specific information structures. Specifically, we introduce a controllable contrastive learning module that enables precise manipulation of alignment strength during training, allowing us to explore when explicit alignment improves or hinders performance. Our results on synthetic and real datasets under different data characteristics show that the impact of explicit alignment on the performance of unimodal models is related to the characteristics of the data: the optimal level of alignment depends on the amount of redundancy between the different modalities. We identify an optimal alignment strength that balances modality-specific signals and shared redundancy in the mixed information distributions. This work provides practical guidance on when and how explicit alignment should be applied to achieve optimal unimodal encoder performance.
comment: Accepted by AAAI 2026. This arXiv version includes additional details and extended appendix
♻ ☆ Unlearning as Ablation: Toward a Falsifiable Benchmark for Generative Scientific Discovery NeurIPS 2025
Bold claims about AI's role in science-from "AGI will cure all diseases" to promises of radically accelerated discovery-raise a central epistemic question: do large language models (LLMs) truly generate new knowledge, or do they merely remix memorized fragments? We propose unlearning-as-ablation as a falsifiable probe of constructive scientific discovery. The idea is to systematically remove a target result together with its forget-closure (supporting lemmas, paraphrases, and multi-hop entailments) and then evaluate whether the model can re-derive the result from only permitted axioms and tools. Success would indicate generative capability beyond recall; failure would expose current limits. Unlike prevailing motivations for unlearning-privacy, copyright, or safety-our framing repositions it as an epistemic probe for AI-for-Science. We outline a minimal pilot in mathematics and algorithms to illustrate feasibility, and sketch how the same approach could later be extended to domains such as physics or chemistry. This is a position paper: our contribution is conceptual and methodological, not empirical. We aim to stimulate discussion on how principled ablation tests could help distinguish models that reconstruct knowledge from those that merely retrieve it, and how such probes might guide the next generation of AI-for-Science benchmarks.
comment: 6 pages + appendix. Accepted to NeurIPS 2025 AI4Science Workshop
♻ ☆ Your Pre-trained LLM is Secretly an Unsupervised Confidence Calibrator NeurIPS 2025
Post-training of large language models is essential for adapting pre-trained language models (PLMs) to align with human preferences and downstream tasks. While PLMs typically exhibit well-calibrated confidence, post-trained language models (PoLMs) often suffer from over-confidence, assigning high confidence to both correct and incorrect outputs, which can undermine reliability in critical applications. A major obstacle in calibrating PoLMs is the scarcity of labeled data for individual downstream tasks. To address this, we propose Disagreement-Aware Confidence Alignment (DACA), a novel unsupervised method to optimize the parameters (e.g., temperature $τ$) in post-hoc confidence calibration. Our method is motivated by the under-confidence issue caused by prediction disagreement between the PLM and PoLM while aligning their confidence via temperature scaling. Theoretically, the PLM's confidence underestimates PoLM's prediction accuracy on disagreement examples, causing a larger $τ$ and producing under-confident predictions. DACA mitigates this by selectively using only agreement examples for calibration, effectively decoupling the influence of disagreement. In this manner, our method avoids an overly large $τ$ in temperature scaling caused by disagreement examples, improving calibration performance. Extensive experiments demonstrate the effectiveness of our method, improving the average ECE of open-sourced and API-based LLMs (e.g. GPT-4o) by up to 15.08$\%$ on common benchmarks.
comment: NeurIPS 2025
♻ ☆ A Survey on Diffusion Models for Time Series and Spatio-Temporal Data
Diffusion models have been widely used in time series and spatio-temporal data, enhancing generative, inferential, and downstream capabilities. These models are applied across diverse fields such as healthcare, recommendation, climate, energy, audio, and traffic. By separating applications for time series and spatio-temporal data, we offer a structured perspective on model category, task type, data modality, and practical application domain. This study aims to provide a solid foundation for researchers and practitioners, inspiring future innovations that tackle traditional challenges and foster novel solutions in diffusion model-based data mining tasks and applications. For more detailed information, we have open-sourced a repository at https://github.com/yyysjz1997/Awesome-TimeSeries-SpatioTemporal-Diffusion-Model.
comment: Accepted by ACM Computing Surveys; 40 pages; Github Repo: https://github.com/yyysjz1997/Awesome-TimeSeries-SpatioTemporal-Diffusion-Model
♻ ☆ Improving Constrained Language Generation via Self-Distilled Twisted Sequential Monte Carlo
Recent work has framed constrained text generation with autoregressive language models as a probabilistic inference problem. Among these, Zhao et al. (2024) introduced a promising approach based on twisted Sequential Monte Carlo, which incorporates learned twist functions and twist-induced proposals to guide the generation process. However, in constrained generation settings where the target distribution concentrates on outputs that are unlikely under the base model, learning becomes challenging due to sparse and uninformative reward signals. We show that iteratively refining the base model through self-distillation alleviates this issue by making the model progressively more aligned with the target, leading to substantial gains in generation quality.
♻ ☆ MMTU: A Massive Multi-Task Table Understanding and Reasoning Benchmark NeurIPS 2025
Tables and table-based use cases play a crucial role in many important real-world applications, such as spreadsheets, databases, and computational notebooks, which traditionally require expert-level users like data engineers, data analysts, and database administrators to operate. Although LLMs have shown remarkable progress in working with tables (e.g., in spreadsheet and database copilot scenarios), comprehensive benchmarking of such capabilities remains limited. In contrast to an extensive and growing list of NLP benchmarks, evaluations of table-related tasks are scarce, and narrowly focus on tasks like NL-to-SQL and Table-QA, overlooking the broader spectrum of real-world tasks that professional users face. This gap limits our understanding and model progress in this important area. In this work, we introduce MMTU, a large-scale benchmark with over 28K questions across 25 real-world table tasks, designed to comprehensively evaluate models ability to understand, reason, and manipulate real tables at the expert-level. These tasks are drawn from decades' worth of computer science research on tabular data, with a focus on complex table tasks faced by professional users. We show that MMTU require a combination of skills -- including table understanding, reasoning, and coding -- that remain challenging for today's frontier models, where even frontier reasoning models like OpenAI GPT-5 and DeepSeek R1 score only around 69\% and 57\% respectively, suggesting significant room for improvement. We highlight key findings in our evaluation using MMTU and hope that this benchmark drives further advances in understanding and developing foundation models for structured data processing and analysis. Our code and data are available at https://github.com/MMTU-Benchmark/MMTU and https://huggingface.co/datasets/MMTU-benchmark/MMTU.
comment: Accepted at NeurIPS 2025; Code and data available at https://github.com/MMTU-Benchmark/MMTU and https://huggingface.co/datasets/MMTU-benchmark/MMTU
♻ ☆ Towards Efficient Training of Graph Neural Networks: A Multiscale Approach
Graph Neural Networks (GNNs) have become powerful tools for learning from graph-structured data, finding applications across diverse domains. However, as graph sizes and connectivity increase, standard GNN training methods face significant computational and memory challenges, limiting their scalability and efficiency. In this paper, we present a novel framework for efficient multiscale training of GNNs. Our approach leverages hierarchical graph representations and subgraphs, enabling the integration of information across multiple scales and resolutions. By utilizing coarser graph abstractions and subgraphs, each with fewer nodes and edges, we significantly reduce computational overhead during training. Building on this framework, we propose a suite of scalable training strategies, including coarse-to-fine learning, subgraph-to-full-graph transfer, and multiscale gradient computation. We also provide some theoretical analysis of our methods and demonstrate their effectiveness across various datasets and learning tasks. Our results show that multiscale training can substantially accelerate GNN training for large scale problems while maintaining, or even improving, predictive performance.
♻ ☆ Simple, Fast and Efficient Injective Manifold Density Estimation with Random Projections
We introduce Random Projection Flows (RPFs), a principled framework for injective normalizing flows that leverages tools from random matrix theory and the geometry of random projections. RPFs employ random semi-orthogonal matrices, drawn from Haar-distributed orthogonal ensembles via QR decomposition of Gaussian matrices, to project data into lower-dimensional latent spaces for the base distribution. Unlike PCA-based flows or learned injective maps, RPFs are plug-and-play, efficient, and yield closed-form expressions for the Riemannian volume correction term. We demonstrate that RPFs are both theoretically grounded and practically effective, providing a strong baseline for generative modeling and a bridge between random projection theory and normalizing flows.
♻ ☆ Learn the Ropes, Then Trust the Wins: Self-imitation with Progressive Exploration for Agentic Reinforcement Learning
Reinforcement learning (RL) is the dominant paradigm for sharpening strategic tool use capabilities of LLMs on long-horizon, sparsely-rewarded agent tasks, yet it faces a fundamental challenge of exploration-exploitation trade-off. Existing studies stimulate exploration through the lens of policy entropy, but such mechanical entropy maximization is prone to RL instability due to the multi-turn distribution shifting. In this paper, we target the progressive exploration-exploitation balance under the guidance of the agent's own experiences without succumbing to either entropy collapsing or runaway divergence. We propose SPEAR, a self-imitation learning (SIL) recipe for training agentic LLMs. It extends the vanilla SIL, where a replay buffer stores good experience for off-policy update, by gradually steering the policy entropy across stages. Specifically, the proposed curriculum scheduling harmonizes intrinsic reward shaping and self-imitation to 1) expedite exploration via frequent tool interactions at the beginning, and 2) strengthen exploitation of successful tactics upon convergence towards familiarity with the environment. We also combine bag-of-tricks of industrial RL optimizations for a strong baseline Dr.BoT to demonstrate our effectiveness. In ALFWorld and WebShop, SPEAR increases the success rates of GRPO/GiGPO/Dr.BoT by up to 16.1%/5.1%/8.6% and 20.7%/11.8%/13.9%, respectively. In AIME24 and AIME25, SPEAR boosts Dr.BoT by up to 3.8% and 6.1%, respectively. Such gains incur only 10%-25% extra theoretical complexity and negligible runtime overhead in practice, demonstrating the plug-and-play scalability of SPEAR.
comment: 45 pages, 14 figures
♻ ☆ Quantum Boltzmann machine learning of ground-state energies
Estimating the ground-state energy of Hamiltonians is a fundamental task for which it is believed that quantum computers can be helpful. Several approaches have been proposed toward this goal, including algorithms based on quantum phase estimation and hybrid quantum-classical optimizers involving parameterized quantum circuits, the latter falling under the umbrella of the variational quantum eigensolver. Here, we analyze the performance of quantum Boltzmann machines for this task, which is a less explored ansatz based on parameterized thermal states and which is not known to suffer from the barren-plateau problem. We delineate a hybrid quantum-classical algorithm for this task and rigorously prove that it converges to an $\varepsilon$-approximate stationary point of the energy function optimized over parameter space, while using a number of parameterized-thermal-state samples that is polynomial in $\varepsilon^{-1}$, the number of parameters, and the norm of the Hamiltonian being optimized. Our algorithm estimates the gradient of the energy function efficiently by means of a quantum circuit construction that combines classical random sampling, Hamiltonian simulation, and the Hadamard test. Additionally, supporting our main claims are calculations of the gradient and Hessian of the energy function, as well as an upper bound on the matrix elements of the latter that is used in the convergence analysis.
comment: v3: 8 pages of main text, 31 pages of supplementary material, 5 figures
♻ ☆ AI-in-the-Loop: Privacy Preserving Real-Time Scam Detection and Conversational Scambaiting by Leveraging LLMs and Federated Learning
Scams exploiting real-time social engineering -- such as phishing, impersonation, and phone fraud -- remain a persistent and evolving threat across digital platforms. Existing defenses are largely reactive, offering limited protection during active interactions. We propose a privacy-preserving, AI-in-the-loop framework that proactively detects and disrupts scam conversations in real time. The system combines instruction-tuned artificial intelligence with a safety-aware utility function that balances engagement with harm minimization, and employs federated learning to enable continual model updates without raw data sharing. Experimental evaluations show that the system produces fluent and engaging responses (perplexity as low as 22.3, engagement $\approx$0.80), while human studies confirm significant gains in realism, safety, and effectiveness over strong baselines. In federated settings, models trained with FedAvg sustain up to 30 rounds while preserving high engagement ($\approx$0.80), strong relevance ($\approx$0.74), and low PII leakage ($\leq$0.0085). Even with differential privacy, novelty and safety remain stable, indicating that robust privacy can be achieved without sacrificing performance. The evaluation of guard models (LlamaGuard, LlamaGuard2/3, MD-Judge) shows a straightforward pattern: stricter moderation settings reduce the chance of exposing personal information, but they also limit how much the model engages in conversation. In contrast, more relaxed settings allow longer and richer interactions, which improve scam detection, but at the cost of higher privacy risk. To our knowledge, this is the first framework to unify real-time scam-baiting, federated privacy preservation, and calibrated safety moderation into a proactive defense paradigm.
comment: This paper got accepted in 26th Privacy Enhancing Technologies Symposium (PETS 2026). We uploaded it into ArXiv as pre-print
♻ ☆ Identifying Stochastic Dynamics from Non-Sequential Data (IDyNSD)
Inferring stochastic dynamics from data is central across the sciences, yet in many applications only unordered, non-sequential measurements are available-often restricted to limited regions of state space-so standard time-series methods do not apply. We introduce IDyNSD, a first-principles framework that identifies unknown dynamical parameters from such non-sequential data by minimizing Fokker-Planck residuals. We develop two complementary routes: a local route that handles region-restricted data via locally estimated scores, and a global route that fits dynamics from globally sampled data using a kernel Stein discrepancy without explicit density or score estimation. When the dynamics are affine in the unknown parameters, we prove a necessary-and-sufficient condition for the existence and uniqueness of the inferred parameters and derive a sensitivity analysis that identifies which parameters are tightly constrained by the data and which remain effectively free under over-parameterization. For general non-affine case, both routes define differentiable losses amenable to gradient-based optimization. As demonstrations, we recover (i) the three parameters of a stochastic Lorenz system from non-sequential data (region-restricted data for the local route and full steady-state data for the global route) and (ii) a 3x7interaction matrix of a nonlinear gene-regulatory network derived from a published B-cell differentiation model, using only unordered steady-state samples and applying the global route. Finally, we show that the same Fokker-Planck residual viewpoint supports a "dynamics-to-density" complement that trains a normalized density estimator directly from known dynamics without any observations. Overall, IDyNSD provides two first-principles routes for system-identification from non-sequential data, grounded in the Fokker-Planck equation, that link data, density, and stochastic dynamics.
♻ ☆ Inference-Time Alignment of Diffusion Models via Evolutionary Algorithms
Diffusion models are state-of-the-art generative models, yet their samples often fail to satisfy application objectives such as safety constraints or domain-specific validity. Existing techniques for alignment require gradients, internal model access, or large computational budgets resulting in high compute demands, or lack of support for certain objectives. In response, we introduce an inference-time alignment framework based on evolutionary algorithms. We treat diffusion models as black boxes and search their latent space to maximize alignment objectives. Given equal or less running time, our method achieves 3-35% higher ImageReward scores than gradient-free and gradient-based methods. On the Open Image Preferences dataset, our method achieves competitive results across four popular alignment objectives. In terms of computational efficiency, we require 55% to 76% less GPU memory and are 72% to 80% faster than gradient-based methods.
comment: P. Jajal and N. J. Eliopoulos contributed equally to this work
♻ ☆ IndiSeek learns information-guided disentangled representations
Learning disentangled representations is a fundamental task in multi-modal learning. In modern applications such as single-cell multi-omics, both shared and modality-specific features are critical for characterizing cell states and supporting downstream analyses. Ideally, modality-specific features should be independent of shared ones while also capturing all complementary information within each modality. This tradeoff is naturally expressed through information-theoretic criteria, but mutual-information-based objectives are difficult to estimate reliably, and their variational surrogates often underperform in practice. In this paper, we introduce IndiSeek, a novel disentangled representation learning approach that addresses this challenge by combining an independence-enforcing objective with a computationally efficient reconstruction loss that bounds conditional mutual information. This formulation explicitly balances independence and completeness, enabling principled extraction of modality-specific features. We demonstrate the effectiveness of IndiSeek on synthetic simulations, a CITE-seq dataset and multiple real-world multi-modal benchmarks.
♻ ☆ HoGA: Higher-Order Graph Attention via Diversity-Aware k-Hop Sampling
Graphs model latent variable relationships in many real-world systems, and Message Passing Neural Networks (MPNNs) are widely used to learn such structures for downstream tasks. While edge-based MPNNs effectively capture local interactions, their expressive power is theoretically bounded, limiting the discovery of higher-order relationships. We introduce the Higher-Order Graph Attention (HoGA) module, which constructs a k-order attention matrix by sampling subgraphs to maximize diversity among feature vectors. Unlike existing higher-order attention methods that greedily resample similar k-order relationships, HoGA targets diverse modalities in higher-order topology, reducing redundancy and expanding the range of captured substructures. Applied to two single-hop attention models, HoGA achieves at least a 5% accuracy gain on all benchmark node classification datasets and outperforms recent baselines on six of eight datasets. Code is available at https://github.com/TB862/Higher_Order.
comment: In Proceedings of the Nineteenth ACM International Conference on Web Search and Data Mining (WSDM 26)
♻ ☆ Hard Samples, Bad Labels: Robust Loss Functions That Know When to Back Off
Incorrectly labelled training data are frustratingly ubiquitous in both benchmark and specially curated datasets. Such mislabelling clearly adversely affects the performance and generalizability of models trained through supervised learning on the associated datasets. Frameworks for detecting label errors typically require well-trained / well-generalized models; however, at the same time most frameworks rely on training these models on corrupt data, which clearly has the effect of reducing model generalizability and subsequent effectiveness in error detection -- unless a training scheme robust to label errors is employed. We evaluate two novel loss functions, Blurry Loss and Piecewise-zero Loss, that enhance robustness to label errors by de-weighting or disregarding difficult-to-classify samples, which are likely to be erroneous. These loss functions leverage the idea that mislabelled examples are typically more difficult to classify and should contribute less to the learning signal. Comprehensive experiments on a variety of artificially corrupted datasets demonstrate that the proposed loss functions outperform state-of-the-art robust loss functions in nearly all cases, achieving superior F1 scores for error detection. Further analyses through ablation studies offer insights to confirm these loss functions' broad applicability to cases of both uniform and non-uniform corruption, and with different label error detection frameworks. By using these robust loss functions, machine learning practitioners can more effectively identify, prune, or correct errors in their training data.
comment: 15 pages, 7 figures
♻ ☆ A Connection Between Score Matching and Local Intrinsic Dimension NeurIPS 2025
The local intrinsic dimension (LID) of data is a fundamental quantity in signal processing and learning theory, but quantifying the LID of high-dimensional, complex data has been a historically challenging task. Recent works have discovered that diffusion models capture the LID of data through the spectra of their score estimates and through the rate of change of their density estimates under various noise perturbations. While these methods can accurately quantify LID, they require either many forward passes of the diffusion model or use of gradient computation, limiting their applicability in compute- and memory-constrained scenarios. We show that the LID is a lower bound on the denoising score matching loss, motivating use of the denoising score matching loss as a LID estimator. Moreover, we show that the equivalent implicit score matching loss also approximates LID via the normal dimension and is closely related to a recent LID estimator, FLIPD. Our experiments on a manifold benchmark and with Stable Diffusion 3.5 indicate that the denoising score matching loss is a highly competitive and scalable LID estimator, achieving superior accuracy and memory footprint under increasing problem size and quantization level.
comment: Accepted to the 3rd SPIGM Workshop at NeurIPS 2025
♻ ☆ Weak-to-Strong Generalization under Distribution Shifts NeurIPS 2025
As future superhuman models become increasingly complex, accurately supervising their behavior may exceed human capabilities. Recent works have demonstrated that in such scenarios, weak models can effectively supervise strong models, a phenomenon known as weak-to-strong generalization. However, we find that naive weak-to-strong generalization fails under distribution shifts, often leading to worse performance of the strong model than its weak supervisors. To address this, we propose RAVEN, a robust weak-to-strong generalization framework that dynamically learns the optimal combinations of weak models in addition to parameters of the strong model. We demonstrate the effectiveness of RAVEN on image classification, text classification, and preference alignment tasks. RAVEN outperforms alternative baselines by over 30% on out-of-distribution tasks while matching or surpassing existing methods on in-distribution tasks. Moreover, our results show that RAVEN assigns higher weights to more accurate weak models, demonstrating its ability to automatically identify trustworthy supervision.
comment: Accepted to NeurIPS 2025; affiliations and acknowledgements updated
♻ ☆ CUDA-L1: Improving CUDA Optimization via Contrastive Reinforcement Learning
The exponential growth in demand for GPU computing resources has created an urgent need for automated CUDA optimization strategies. While recent advances in LLMs show promise for code generation, current SOTA models achieve low success rates in improving CUDA speed. In this paper, we introduce CUDA-L1, an automated reinforcement learning framework for CUDA optimization that employs a novel contrastive RL algorithm. CUDA-L1 achieves significant performance improvements on the CUDA optimization task: trained on A100, it delivers an average speedup of x3.12 with a median speedup of x1.42 against default baselines over across all 250 CUDA kernels of KernelBench, with peak speedups reaching x120. In addition to the default baseline provided by KernelBench, CUDA-L1 demonstrates x2.77 over Torch Compile, x2.88 over Torch Compile with reduce overhead, x2.81 over CUDA Graph implementations, and remarkably x7.72 over cuDNN libraries. Furthermore, the model also demonstrates portability across different GPU architectures. Beyond these benchmark results, CUDA-L1 demonstrates several properties: it 1) discovers a variety of CUDA optimization techniques and learns to combine them strategically to achieve optimal performance; 2) uncovers fundamental principles of CUDA optimization, such as the multiplicative nature of optimizations; 3) identifies non-obvious performance bottlenecks and rejects seemingly beneficial optimizations that actually harm performance. The capabilities demonstrate that, RL can transform an initially poor-performing LLM into an effective CUDA optimizer through speedup-based reward signals alone, without human expertise or domain knowledge. This paradigm opens possibilities for automated optimization of CUDA operations, and holds promise to substantially promote GPU efficiency and alleviate the rising pressure on GPU computing resources.
comment: Project Page: https://deepreinforce-ai.github.io/cudal1_blog/
♻ ☆ A Common Pipeline for Harmonizing Electronic Health Record Data for Translational Research
Despite the growing availability of Electronic Health Record (EHR) data, researchers often face substantial barriers in effectively using these data for translational research due to their complexity, heterogeneity, and lack of standardized tools and documentation. To address this critical gap, we introduce PEHRT, a common pipeline for harmonizing EHR data for translational research. PEHRT is a comprehensive, ready-to-use resource that includes open-source code, visualization tools, and detailed documentation to streamline the process of preparing EHR data for analysis. The pipeline provides tools to harmonize structured and unstructured EHR data to standardized ontologies to ensure consistency across diverse coding systems. In the presence of unmapped or heterogeneous local codes, PEHRT further leverages representation learning and pre-trained language models to generate robust embeddings that capture semantic relationships across sites to mitigate heterogeneity and enable integrative downstream analyses. PEHRT also supports cross-institutional co-training through shared representations, allowing participating sites to collaboratively refine embeddings and enhance generalizability without sharing individual-level data. The framework is data model-agnostic and can be seamlessly deployed across diverse healthcare systems to produce interoperable, research-ready datasets. By lowering the technical barriers to EHR-based research, PEHRT empowers investigators to transform raw clinical data into reproducible, analysis-ready resources for discovery and innovation.
♻ ☆ A Catalyst Framework for the Quantum Linear System Problem via the Proximal Point Algorithm
Solving systems of linear equations is a fundamental problem, but it can be computationally intensive for classical algorithms in high dimensions. Existing quantum algorithms can achieve exponential speedups for the quantum linear system problem (QLSP) in terms of the problem dimension, but the advantage is bottlenecked by condition number of the coefficient matrix. In this work, we propose a new quantum algorithm for QLSP inspired by the classical proximal point algorithm (PPA). Our proposed method can be viewed as a meta-algorithm that allows inverting a modified matrix via an existing \texttt{QLSP\_solver}, thereby directly approximating the solution vector instead of approximating the inverse of the coefficient matrix. By carefully choosing the step size $η$, the proposed algorithm can effectively precondition the linear system to mitigate the dependence on condition numbers that hindered the applicability of previous approaches. Importantly, this is the first iterative framework for QLSP where a tunable parameter $η$ and initialization $x_0$ allows controlling the trade-off between the runtime and approximation error.
♻ ☆ Active Learning Methods for Efficient Data Utilization and Model Performance Enhancement
In the era of data-driven intelligence, the paradox of data abundance and annotation scarcity has emerged as a critical bottleneck in the advancement of machine learning. This paper gives a detailed overview of Active Learning (AL), which is a strategy in machine learning that helps models achieve better performance using fewer labeled examples. It introduces the basic concepts of AL and discusses how it is used in various fields such as computer vision, natural language processing, transfer learning, and real-world applications. The paper focuses on important research topics such as uncertainty estimation, handling of class imbalance, domain adaptation, fairness, and the creation of strong evaluation metrics and benchmarks. It also shows that learning methods inspired by humans and guided by questions can improve data efficiency and help models learn more effectively. In addition, this paper talks about current challenges in the field, including the need to rebuild trust, ensure reproducibility, and deal with inconsistent methodologies. It points out that AL often gives better results than passive learning, especially when good evaluation measures are used. This work aims to be useful for both researchers and practitioners by providing key insights and proposing directions for future progress in active learning.
♻ ☆ LASER: Lip Landmark Assisted Speaker Detection for Robustness
Active Speaker Detection (ASD) aims to identify who is speaking in complex visual scenes. While humans naturally rely on lip-audio synchronization, existing ASD models often misclassify non-speaking instances when lip movements and audio are unsynchronized. To address this, we propose Lip landmark Assisted Speaker dEtection for Robustness (LASER), which explicitly incorporates lip landmarks during training to guide the model's attention to speech-relevant regions. Given a face track, LASER extracts visual features and encodes 2D lip landmarks into dense maps. To handle failure cases such as low resolution or occlusion, we introduce an auxiliary consistency loss that aligns lip-aware and face-only predictions, removing the need for landmark detectors at test time. LASER outperforms state-of-the-art models across both in-domain and out-of-domain benchmarks. To further evaluate robustness in realistic conditions, we introduce LASER-bench, a curated dataset of modern video clips with varying levels of background noise. On the high-noise subset, LASER improves mAP by 3.3 and 4.3 points over LoCoNet and TalkNet, respectively, demonstrating strong resilience to real-world acoustic challenges.
comment: WACV 2026
♻ ☆ Personalized Image Generation for Recommendations Beyond Catalogs
Personalization is central to human-AI interaction, yet current diffusion-based image generation systems remain largely insensitive to user diversity. Existing attempts to address this often rely on costly paired preference data or introduce latency through Large Language Models. In this work, we introduce REBECA (REcommendations BEyond CAtalogs), a lightweight and scalable framework for personalized image generation that learns directly from implicit feedback signals such as likes, ratings, and clicks. Instead of fine-tuning the underlying diffusion model, REBECA employs a two-stage process: training a conditional diffusion model to sample user- and rating-specific image embeddings, which are subsequently decoded into images using a pretrained diffusion backbone. This approach enables efficient, fine-tuning-free personalization across large user bases. We rigorously evaluate REBECA on real-world datasets, proposing a novel statistical personalization verifier and a permutation-based hypothesis test to assess preference alignment. Our results demonstrate that REBECA consistently produces high-fidelity images tailored to individual tastes, outperforming baselines while maintaining computational efficiency.
♻ ☆ A Unified Noise-Curvature View of Loss of Trainability
Loss of trainability refers to a phenomenon in continual learning where parameter updates no longer make progress on the optimization objective, so accuracy stalls or degrades as the learning problem changes over time. In this paper, we analyze loss of trainability through an optimization lens and find that the phenomenon is not reliably predicted by existing individual indicators such as Hessian rank, sharpness level, weight or gradient norms, gradient-to-parameter ratios, and unit-sign entropy. Motivated by our analysis, we introduce two complementary indicators: a batch-size-aware gradient-noise bound and a curvature volatility-controlled bound. We then combine these two indicators into a per-layer adaptive noise threshold on the effective step-size that anticipates trainability behavior. Using this insight, we propose a step-size scheduler that keeps each layer's effective parameter update below this bound, thereby avoiding loss of trainability. We demonstrate that our scheduler can improve the accuracy maintained by previously proposed approaches, such as concatenated ReLU (CReLU), Wasserstein regularizer, and L2 weight decay. Surprisingly, our scheduler produces adaptive step-size trajectories that, without tuning, mirror the manually engineered step-size decay schedules.
♻ ☆ Physics-Constrained Flow Matching: Sampling Generative Models with Hard Constraints NeurIPS 2025
Deep generative models have recently been applied to physical systems governed by partial differential equations (PDEs), offering scalable simulation and uncertainty-aware inference. However, enforcing physical constraints, such as conservation laws (linear and nonlinear) and physical consistencies, remains challenging. Existing methods often rely on soft penalties or architectural biases that fail to guarantee hard constraints. In this work, we propose Physics-Constrained Flow Matching (PCFM), a zero-shot inference framework that enforces arbitrary nonlinear constraints in pretrained flow-based generative models. PCFM continuously guides the sampling process through physics-based corrections applied to intermediate solution states, while remaining aligned with the learned flow and satisfying physical constraints. Empirically, PCFM outperforms both unconstrained and constrained baselines on a range of PDEs, including those with shocks, discontinuities, and sharp features, while ensuring exact constraint satisfaction at the final solution. Our method provides a flexible framework for enforcing hard constraints in both scientific and general-purpose generative models, especially in applications where constraint satisfaction is essential.
comment: 36 pages, 9 figures, 8 tables, Accepted to NeurIPS 2025
♻ ☆ Momentum Multi-Marginal Schrödinger Bridge Matching
Understanding complex systems by inferring trajectories from sparse sample snapshots is a fundamental challenge in a wide range of domains, e.g., single-cell biology, meteorology, and economics. Despite advancements in Bridge and Flow matching frameworks, current methodologies rely on pairwise interpolation between adjacent snapshots. This hinders their ability to capture long-range temporal dependencies and potentially affects the coherence of the inferred trajectories. To address these issues, we introduce \textbf{Momentum Multi-Marginal Schrödinger Bridge Matching (3MSBM)}, a novel matching framework that learns smooth measure-valued splines for stochastic systems that satisfy multiple positional constraints. This is achieved by lifting the dynamics to phase space and generalizing stochastic bridges to be conditioned on several points, forming a multi-marginal conditional stochastic optimal control problem. The underlying dynamics are then learned by minimizing a variational objective, having fixed the path induced by the multi-marginal conditional bridge. As a matching approach, 3MSBM learns transport maps that preserve intermediate marginals throughout training, significantly improving convergence and scalability. Extensive experimentation in a series of real-world applications validates the superior performance of 3MSBM compared to existing methods in capturing complex dynamics with temporal dependencies, opening new avenues for training matching frameworks in multi-marginal settings.
♻ ☆ Practical Global and Local Bounds in Gaussian Process Regression via Chaining AAAI2026
Gaussian process regression (GPR) is a popular nonparametric Bayesian method that provides predictive uncertainty estimates and is widely used in safety-critical applications. While prior research has introduced various uncertainty bounds, most existing approaches require access to specific input features, and rely on posterior mean and variance estimates or the tuning of hyperparameters. These limitations hinder robustness and fail to capture the model's global behavior in expectation. To address these limitations, we propose a chaining-based framework for estimating upper and lower bounds on the expected extreme values over unseen data, without requiring access to specific input features. We provide kernel-specific refinements for commonly used kernels such as RBF and Matérn, in which our bounds are tighter than generic constructions. We further improve numerical tightness by avoiding analytical relaxations. In addition to global estimation, we also develop a novel method for local uncertainty quantification at specified inputs. This approach leverages chaining geometry through partition diameters, adapting to local structures without relying on posterior variance scaling. Our experimental results validate the theoretical findings and demonstrate that our method outperforms existing approaches on both synthetic and real-world datasets.
comment: Accepted as a conference paper at AAAI2026
♻ ☆ Enabling Differentially Private Federated Learning for Speech Recognition: Benchmarks, Adaptive Optimizers and Gradient Clipping NeurIPS 2025
While federated learning (FL) and differential privacy (DP) have been extensively studied, their application to automatic speech recognition (ASR) remains largely unexplored due to the challenges in training large transformer models. Specifically, large models further exacerbate issues in FL as they are particularly susceptible to gradient heterogeneity across layers, unlike the relatively uniform gradient behavior observed in shallow models. As a result, prior works struggle to converge with standard optimization techniques, even in the absence of DP mechanisms. To the best of our knowledge, no existing work establishes a competitive, practical recipe for FL with DP in the context of ASR. To address this gap, we establish \textbf{the first benchmark for FL with DP in end-to-end ASR}. Our approach centers on per-layer clipping and layer-wise gradient normalization: theoretical analysis reveals that these techniques together mitigate clipping bias and gradient heterogeneity across layers in deeper models. Consistent with these theoretical insights, our empirical results show that FL with DP is viable under strong privacy guarantees, provided a population of at least several million users. Specifically, we achieve user-level (7.2, $10^{-9}$)-DP (resp. (4.5, $10^{-9}$)-DP) with only a 1.3% (resp. 4.6%) absolute drop in word error rate when extrapolating to high (resp. low) population scales for FL with DP in ASR. Although our experiments focus on ASR, the underlying principles we uncover - particularly those concerning gradient heterogeneity and layer-wise gradient normalization - offer broader guidance for designing scalable, privacy-preserving FL algorithms for large models across domains. Code of all experiments and benchmarks is available at https://github.com/apple/ml-pfl4asr.
comment: NeurIPS 2025
♻ ☆ Optimal control of the future via prospective learning with control
Optimal control of the future is the next frontier for AI. Current approaches to this problem are typically rooted in reinforcement learning (RL). RL is mathematically distinct from supervised learning, which has been the main workhorse for the recent achievements in AI. Moreover, RL typically operates in a stationary environment with episodic resets, limiting its utility. Here, we extend supervised learning to address learning to \textit{control} in non-stationary, reset-free environments. Using this framework, called ''Prospective Learning with Control'' (PL+C), we prove that under certain fairly general assumptions, empirical risk minimization (ERM) asymptotically achieves the Bayes optimal policy. We then consider a specific instance of prospective learning with control, foraging -- which is a canonical task for any mobile agent -- be it natural or artificial. We illustrate that modern RL algorithms fail to learn in these non-stationary reset-free environments, and even with modifications, they are orders of magnitude less efficient than our prospective foraging agents.
♻ ☆ Extreme value theory for singular subspace estimation in the matrix denoising model
This paper studies fine-grained singular subspace estimation in the matrix denoising model where a deterministic low-rank signal matrix is additively perturbed by a stochastic matrix of Gaussian noise. We establish that the maximum Euclidean row norm (i.e., the two-to-infinity norm) of the aligned difference between the leading sample and population singular vectors approaches the Gumbel distribution in the large-matrix limit, under suitable signal-to-noise conditions and after appropriate centering and scaling. We apply our novel asymptotic distributional theory to test hypotheses of low-rank signal structure encoded in the leading singular vectors and their corresponding principal subspace. We provide de-biased estimators for the corresponding nuisance signal singular values and show that our proposed plug-in test statistic has desirable properties. Notably, compared to using the Frobenius norm subspace distance, our test statistic based on the two-to-infinity norm empirically has higher power to detect structured alternatives that differ from the null in only a few matrix entries or rows. Our main results are obtained by a novel synthesis of and technical analysis involving row-wise matrix perturbation analysis, extreme value theory, saddle point approximation methods, and random matrix theory. Our contributions complement the existing literature for matrix denoising focused on minimaxity, mean squared error analysis, unitarily invariant distances between subspaces, component-wise asymptotic distributional theory, and row-wise uniform error bounds. Numerical simulations illustrate our main results and demonstrate the robustness properties of our testing procedure to non-Gaussian noise distributions.
comment: 60 pages, 8 figures
♻ ☆ Inference-Aware Fine-Tuning for Best-of-N Sampling in Large Language Models
Recent studies have indicated that effectively utilizing inference-time compute is crucial for attaining better performance from large language models (LLMs). In this work, we propose a novel inference-aware fine-tuning paradigm, in which the model is fine-tuned in a manner that directly optimizes the performance of the inference-time strategy. We study this paradigm using the simple yet effective Best-of-N (BoN) inference strategy, in which a verifier selects the best out of a set of LLM-generated responses. We devise the first imitation learning and reinforcement learning~(RL) methods for BoN-aware fine-tuning, overcoming the challenging, non-differentiable argmax operator within BoN. We empirically demonstrate that our BoN-aware models implicitly learn a meta-strategy that interleaves best responses with more diverse responses that might be better suited to a test-time input -- a process reminiscent of the exploration-exploitation trade-off in RL. Our experiments demonstrate the effectiveness of BoN-aware fine-tuning in terms of improved performance and inference-time compute. In particular, we show that our methods improve the Bo32 performance of Gemma 2B on Hendrycks MATH from 26.8% to 30.8%, and pass@32 from 60.0% to 67.0%, as well as the pass@16 on HumanEval from 61.6% to 67.1%.
♻ ☆ TS-RAG: Retrieval-Augmented Generation based Time Series Foundation Models are Stronger Zero-Shot Forecaster
Large Language Models (LLMs) and Foundation Models (FMs) have recently become prevalent for time series forecasting tasks. While fine-tuning LLMs enables domain adaptation, they often struggle to generalize across diverse and unseen datasets. Moreover, existing Time Series Foundation Models (TSFMs) still face challenges in handling non-stationary dynamics and distribution shifts, largely due to the lack of effective mechanisms for adaptation. To this end, we present TS-RAG, a retrieval-augmented generation framework for time series forecasting that enhances the generalization and interpretability of TSFMs. Specifically, TS-RAG leverages pre-trained time series encoders to retrieve semantically relevant segments from a dedicated knowledge base, enriching the contextual representation of the input query. Furthermore, we propose an Adaptive Retrieval Mixer (ARM) module that dynamically fuses the retrieved patterns with the TSFM's internal representation, improving forecasting accuracy without requiring task-specific fine-tuning. Thorough empirical studies on seven public benchmark datasets demonstrate that TS-RAG achieves state-of-the-art zero-shot forecasting performance, outperforming the existing TSFMs by up to 6.84% across diverse domains while also providing desirable interpretability. Our code and data are available at: https://github.com/UConn-DSIS/TS-RAG
Genomics 2
☆ MoRE: Batch-Robust Multi-Omics Representations from Frozen Pre-trained Transformers
Representation learning on multi-omics data is challenging due to extreme dimensionality, modality heterogeneity, and cohort-specific batch effects. While pre-trained transformer backbones have shown broad generalization capabilities in biological sequence modeling, their application to multi-omics integration remains underexplored. We present MoRE (Multi-Omics Representation Embedding), a framework that repurposes frozen pre-trained transformers to align heterogeneous assays into a shared latent space. Unlike purely generative approaches, MoRE employs a parameter-efficient fine-tuning (PEFT) strategy, prioritizing cross-sample and cross-modality alignment over simple sequence reconstruction. Specifically, MoRE attaches lightweight, modality-specific adapters and a task-adaptive fusion layer to the frozen backbone. It optimizes a masked modeling objective jointly with supervised contrastive and batch-invariant alignment losses, yielding structure-preserving embeddings that generalize across unseen cell types and platforms. We benchmark MoRE against established baselines, including scGPT, scVI, and Harmony with scArches, evaluating integration fidelity, rare population detection, and modality transfer. Our results demonstrate that MoRE achieves competitive batch robustness and biological conservation while significantly reducing trainable parameters compared to fully fine-tuned models. This work positions MoRE as a practical step toward general-purpose omics foundation models.
☆ SeqManager: A Web-Based Tool for Efficient Sequencing Data Storage Management and Duplicate Detection
Motivation: Modern genomics laboratories generate massive volumes of sequencing data, often resulting in significant storage costs. Genomics storage consists of duplicate files, temporary processing files, and redundant intermediate data. Results: We developed SeqManager, a web-based application that provides automated identification, classification, and management of sequencing data files with intelligent duplicate detection. It also detects intermediate sequencing files that can safely be removed. Evaluation across four genomics laboratory settings demonstrate that our tool is fast and has a very low memory footprint.
Quantitative Methods 12
☆ Mechano-chemical modeling of glia initiated secondary injury of neurons under mechanical load
Traumatic Brain Injury (TBI) results from an impact or concussion to the head with the injury being specifically characterized through pathological degradation at various biological length scales. Following injury, various mechanical modeling techniques have been proposed in the literature that seek to quantify neuronal-scale to tissue-scale metrics of brain damage. Broadly, the two categories of degradation encompass physiological deterioration of neurons and upregulation of chemical entities such as neurotransmitters which causes initiation of downstream pathophysiological effects. Despite the many contributing pathways, in this work, we delineate and model a potential glia-initiated injury pathway that leads to secondary injury. The goal of this work is to demonstrate a continuum framework which models the multiphysics of mechano-chemical interactions underlying TBI. Using a coupled PDE (partial differential equation) formulation and FEM (finite element method) discretization, the framework highlights evolution of field variables which spatio-temporally resolve mechanical metrics and chemical species across neuronal clusters. The modeling domain encompasses microglia, neurons and the extracellular matrix. The continuum framework used to model the mechano-chemical interactions assumes a three dimensional viscoelastic network to capture the mechanical response underlying proteins constituting the neuron microstructure and advection-diffusion equations modeling spatio-temporal evolution of chemical species. We use this framework to numerically estimate key concentrations of chemical species produced by the strain field. In this work, we identify key biomarkers within the labyrinth of molecular pathways and build a framework that captures the core mechano-chemical interactions. This framework is an attempt to quantify secondary injury and thus assist in developing targeted TBI treatments.
comment: 26 pages, 10 figures
☆ Spanning Tree Basis for Unbiased Averaging of Network Topologies
In recent years there has been a paradigm shift from the study of local task-related activation to the organization and functioning of large-scale functional and structural brain networks. However, a long-standing challenge in this large-scale brain network analysis is how to compare network organizations irrespective of their complexity. The maximum spanning tree (MST) has served as a simple, unbiased, standardized representation of complex brain networks and effectively addressed this long-standing challenge. This tree representation, however, has been limited to individual networks. Group-level trees are always constructed from the average network or through a bootstrap procedure. Constructing the group-level tree from the average network introduces bias from individual subjects with outlying connectivities. The bootstrap method can be computationally prohibitive if a good approximation is desired. To address these issues, we propose a novel spectral representation of trees using the spanning tree basis. This spectral representation enables us to compute the average MST and demonstrate that this average tree captures the global properties of all the MSTs in the group and also overlaps with the union of the shortest paths in the functional brain networks.
☆ A software-based focus system for wide-field optical microscopy
Long-term time-lapse imaging of biological samples requires correcting for focal drift, which would otherwise gradually push the sample out of focus. We present a software-based method that eliminates this time-dependent blur using only a motorized Z-drive, with no additional hardware. The method relies on imaging marks made on the side of the coverslip opposite to the sample. We provide a Beanshell script implementation, evaluate its performance across multiple objectives, and benchmark it against a hardware autofocus system, finding comparable results. Finally, we demonstrate its effectiveness in live imaging of growing bacterial colonies.
comment: 28 pages, 11 figures, methods paper
☆ A statistical framework for comparing epidemic forests
Inferring who infected whom in an outbreak is essential for characterising transmission dynamics and guiding public health interventions. However, this task is challenging due to limited surveillance data and the complexity of immunological and social interactions. Instead of a single definitive transmission tree, epidemiologists often consider multiple plausible trees forming \textit{epidemic forests}. Various inference methods and assumptions can yield different epidemic forests, yet no formal test exists to assess whether these differences are statistically significant. We propose such a framework using a chi-square test and permutational multivariate analysis of variance (PERMANOVA). We assessed each method's ability to distinguish simulated epidemic forests generated under different offspring distributions. While both methods achieved perfect specificity for forests with 100+ trees, PERMANOVA consistently outperformed the chi-square test in sensitivity across all epidemic and forest sizes. Implemented in the R package \textit{mixtree}, we provide the first statistical framework to robustly compare epidemic forests.
comment: 36 pages (19 pages main text only), 3 figures 1 Table (main text only)
☆ Automated Histopathologic Assessment of Hirschsprung Disease Using a Multi-Stage Vision Transformer Framework
Hirschsprung Disease is characterized by the absence of ganglion cells in the myenteric plexus. Therefore, their correct identification is crucial for diagnosing Hirschsprung disease. We introduce a three-stage segmentation framework based on a Vision Transformer (ViT-B/16) that mimics the pathologist's diagnostic approach. The framework sequentially segments the muscularis propria, delineates the myenteric plexus, and identifies ganglion cells within anatomically valid regions. 30 whole-slide images of colon tissue were used, each containing expert manual annotations of muscularis, plexus, and ganglion cells at varying levels of certainty. A 5-fold cross-validation scheme was applied to each stage, along with resolution-specific tiling strategies and tailored postprocessing to ensure anatomical consistency. The proposed method achieved a Dice coefficient of 89.9% and a Plexus Inclusion Rate of 100% for muscularis segmentation. Plexus segmentation reached a recall of 94.8%, a precision of 84.2% and a Ganglia Inclusion Rate of 99.7%. For high-certainty ganglion cells, the model achieved 62.1% precision and 89.1% recall, while joint certainty scores yielded 67.0% precision. These results indicate that ViT-based models are effective at leveraging global tissue context and capturing cellular morphology at small scales, even within complex histological tissue structures. This multi-stage methodology has great potential to support digital pathology workflows by reducing inter-observer variability and assisting in the evaluation of Hirschsprung disease. The clinical impact will be evaluated in future work with larger multi-center datasets and additional expert annotations.
comment: 16 pages, 8 figures, 6 tables
☆ Multivariate Functional Data Analysis Uncovers Behavioral Fingerprints in Invertebrate Locomotor Response to Micropollutants
The need for effective biomonitoring in wastewater has become clear due to the impracticality of continuously tracking all chemicals and emerging contaminants in the aquatic exposome. Effect-based biomonitoring provides a cost-effective solution. The ToxMate device, which uses videotracking of locomotor behavior in aquatic invertebrates, has proven efficient for real-time detection of micropollutant surges in effluents. To extend the approach, this proof-of-concept study evaluates the potential to formalize behavioral fingerprints from real-time videotracking data to characterize qualitative variations in effluent contamination. We present the first application of a functional data analysis (FDA) framework in ecotoxicology. Data were obtained by simultaneously tracking three sentinel organisms from distinct taxa (a crustacean, an annelid, and a gastropod) during pulse exposures to four chemicals in the laboratory (two metals, one pharmaceutical, and one insecticide). Individual and multispecies responses were analy-zed to determine whether combining species enhances the resolution of contamination fingerprints through multidimensional FDA. Applying the same data-driven approach to field data from a wastewater treatment plant (WWTP) revealed four recurring types of micropollution events. This proof of concept demonstrates the potential of behavioral fingerprints to improve wastewater monitoring and reduce pollutant transfer to the environment.
☆ Automated Statistical and Machine Learning Platform for Biological Research
Research increasingly relies on computational methods to analyze experimental data and predict molecular properties. Current approaches often require researchers to use a variety of tools for statistical analysis and machine learning, creating workflow inefficiencies. We present an integrated platform that combines classical statistical methods with Random Forest classification for comprehensive data analysis that can be used in the biological sciences. The platform implements automated hyperparameter optimization, feature importance analysis, and a suite of statistical tests including t tests, ANOVA, and Pearson correlation analysis. Our methodology addresses the gap between traditional statistical software, modern machine learning frameworks and biology, by providing a unified interface accessible to researchers without extensive programming experience. The system achieves this through automatic data preprocessing, categorical encoding, and adaptive model configuration based on dataset characteristics. Initial testing protocols are designed to evaluate classification accuracy across diverse chemical datasets with varying feature distributions. This work demonstrates that integrating statistical rigor with machine learning interpretability can accelerate biological discovery workflows while maintaining methodological soundness. The platform's modular architecture enables future extensions to additional machine learning algorithms and statistical procedures relevant to bioinformatics.
comment: 7 pages, 2 figures, 25 equations
♻ ☆ Mamba-based Deep Learning Approach for Sleep Staging on a Wireless Multimodal Wearable System without Electroencephalography
Study Objectives: We investigate a Mamba-based deep learning approach for sleep staging on signals from ANNE One (Sibel Health, Evanston, IL), a non-intrusive dual-module wireless wearable system measuring chest electrocardiography (ECG), triaxial accelerometry, and chest temperature, and finger photoplethysmography and finger temperature. Methods: We obtained wearable sensor recordings from 357 adults undergoing concurrent polysomnography (PSG) at a tertiary care sleep lab. Each PSG recording was manually scored and these annotations served as ground truth labels for training and evaluation of our models. PSG and wearable sensor data were automatically aligned using their ECG channels with manual confirmation by visual inspection. We trained a Mamba-based recurrent neural network architecture on these recordings. Ensembling of model variants with similar architectures was performed. Results: After ensembling, the model attains a 3-class (wake, non rapid eye movement [NREM] sleep, rapid eye movement [REM] sleep) balanced accuracy of 84.02%, F1 score of 84.23%, Cohen's $κ$ of 72.89%, and a Matthews correlation coefficient (MCC) score of 73.00%; a 4-class (wake, light NREM [N1/N2], deep NREM [N3], REM) balanced accuracy of 75.30%, F1 score of 74.10%, Cohen's $κ$ of 61.51%, and MCC score of 61.95%; a 5-class (wake, N1, N2, N3, REM) balanced accuracy of 65.11%, F1 score of 66.15%, Cohen's $κ$ of 53.23%, MCC score of 54.38%. Conclusions: Our Mamba-based deep learning model can successfully infer major sleep stages from the ANNE One, a wearable system without electroencephalography (EEG), and can be applied to data from adults attending a tertiary care sleep clinic.
comment: 40 pages, 24 figures. Authors Andrew H. Zhang, Alex He-Mo, and Richard Fei Yin contributed equally
♻ ☆ CORE - A Cell-Level Coarse-to-Fine Image Registration Engine for Multi-stain Image Alignment
Accurate and efficient registration of whole slide images (WSIs) is essential for high-resolution, nuclei-level analysis in multi-stained tissue slides. We propose a novel coarse-to-fine framework CORE for accurate nuclei-level registration across diverse multimodal whole-slide image (WSI) datasets. The coarse registration stage leverages prompt-based tissue mask extraction to effectively filter out artefacts and non-tissue regions, followed by global alignment using tissue morphology and ac- celerated dense feature matching with a pre-trained feature extractor. From the coarsely aligned slides, nuclei centroids are detected and subjected to fine-grained rigid registration using a custom, shape-aware point-set registration model. Finally, non-rigid alignment at the cellular level is achieved by estimating a non-linear dis- placement field using Coherent Point Drift (CPD). Our approach benefits from automatically generated nuclei that enhance the accuracy of deformable registra- tion and ensure precise nuclei-level correspondence across modalities. The pro- posed model is evaluated on three publicly available WSI registration datasets, and two private datasets. We show that CORE outperforms current state-of-the-art methods in terms of generalisability, precision, and robustness in bright-field and immunofluorescence microscopy WSIs
♻ ☆ Explainable deep learning framework for cancer therapeutic target prioritization leveraging PPI centrality and node embeddings
We developed an explainable deep learning framework integrating protein-protein interaction (PPI) network centrality metrics with node embeddings for cancer therapeutic target prioritization. A high-confidence PPI network was constructed from STRING database interactions, computing six centrality metrics: degree, strength, betweenness, closeness, eigenvector centrality, and clustering coefficient. Node2Vec embeddings captured latent network topology. Combined features trained XGBoost and neural network classifiers using DepMap CRISPR essentiality scores as ground truth. Model interpretability was assessed through GradientSHAP analysis quantifying feature contributions. We developed a novel blended scoring approach combining model probability predictions with SHAP attribution magnitudes for enhanced gene prioritization. Our framework achieved state-of-the-art performance with AUROC of 0.930 and AUPRC of 0.656 for identifying the top 10\% most essential genes. GradientSHAP analysis revealed centrality measures contributed significantly to predictions, with degree centrality showing strongest correlation ($ρ$ = -0.357) with gene essentiality. The blended scoring approach created robust gene prioritization rankings, successfully identifying known essential genes including ribosomal proteins (RPS27A, RPS17, RPS6) and oncogenes (MYC). This study presents a human-based, combinatorial in silico framework successfully integrating network biology with explainable AI for therapeutic target discovery. The framework provides mechanistic transparency through feature attribution analysis while maintaining state-of-the-art predictive performance. Its reproducible design and reliance on human molecular datasets demonstrate a reduction-to-practice example of next-generation, animal-free modeling for cancer therapeutic target discovery and prioritization.
♻ ☆ Symbiotic causal network of seagrass-bacteria-algae-diatoms interactions
Seagrass meadows contribute to the conservation of marine ecosystems, reduction in global warming impacts and pathogen controls. However, the decline in seagrass habitats due to environmental loads has become an urgent global issue. One way to address this issue is to better understand healthy seagrass habitats. Here, we estimate the structural characteristics of symbiotic and metabolic systems in sediments from eight coastal regions of Japan, with each region containing both seagrass-covered areas and adjacent unvegetated areas. Notably, seagrasses commonly maintain a balanced symbiotic relationship characterized by a positive association with cable bacteria (Desulfobulbaceae), nitrogen-cycling bacteria (Hyphomonadaceae), and coral algae (Corallinophycidae) and a negative association with diatoms (Diatomea). Furthermore, seagrass growth conditions influence metabolic pathways by activating nitrogen-related metabolism while attenuating methanogenesis. Our findings highlight the crucial roles of marine plants and their symbiotic systems in ensuring environmental conservation within the context of blue carbon storage across environmental gradients.
comment: 11 pages, 6 main figures, and supplementary information (21 figures and 7 tables)
♻ ☆ CORE -- A Cell-Level Coarse-to-Fine Image Registration Engine for Multi-stain Image Alignment
Accurate and efficient registration of whole slide images (WSIs) is essential for high-resolution, nuclei-level analysis in multi-stained tissue slides. We propose a novel coarse-to-fine framework CORE for accurate nuclei-level registration across diverse multimodal whole-slide image (WSI) datasets. The coarse registration stage leverages prompt-based tissue mask extraction to effectively filter out artefacts and non-tissue regions, followed by global alignment using tissue morphology and ac- celerated dense feature matching with a pre-trained feature extractor. From the coarsely aligned slides, nuclei centroids are detected and subjected to fine-grained rigid registration using a custom, shape-aware point-set registration model. Finally, non-rigid alignment at the cellular level is achieved by estimating a non-linear dis- placement field using Coherent Point Drift (CPD). Our approach benefits from automatically generated nuclei that enhance the accuracy of deformable registra- tion and ensure precise nuclei-level correspondence across modalities. The pro- posed model is evaluated on three publicly available WSI registration datasets, and two private datasets. We show that CORE outperforms current state-of-the-art methods in terms of generalisability, precision, and robustness in bright-field and immunofluorescence microscopy WSIs
Computation and Language 99
☆ Be My Eyes: Extending Large Language Models to New Modalities Through Multi-Agent Collaboration
Large Language Models (LLMs) have demonstrated remarkable capabilities in challenging, knowledge-intensive reasoning tasks. However, extending LLMs to perceive and reason over a new modality (e.g., vision), often requires costly development of large-scale vision language models (VLMs) with LLMs as backbones. Smaller VLMs are more efficient and adaptable but often lack the broad knowledge and reasoning capabilities of frontier LLMs. In this work, we propose BeMyEyes, a modular, multi-agent framework for extending LLMs to multimodal reasoning by orchestrating collaboration between efficient, adaptable VLMs as perceivers and powerful LLMs as reasoners through conversations. We then introduce a data synthesis and supervised fine-tuning pipeline to train the perceiver agent to effectively collaborate with the reasoner agent. By combining the complementary strengths of perception and reasoning agents, BeMyEyes avoids the need for training large-scale multimodal models, preserves the generalization and reasoning capabilities of LLMs, and allows flexible extension to new domains and modalities. Experiments show that our framework unlocks the multimodal reasoning capabilities for LLMs, enabling a lightweight and fully open-source solution, i.e. equipping text-only DeepSeek-R1 with Qwen2.5-VL-7B perceiver, to outperform large-scale proprietary VLMs such as GPT-4o on a wide range of knowledge-intensive multimodal tasks. These results demonstrate the effectiveness, modularity, and scalability of our multi-agent approach for building future multimodal reasoning systems.
DR Tulu: Reinforcement Learning with Evolving Rubrics for Deep Research
Deep research models perform multi-step research to produce long-form, well-attributed answers. However, most open deep research models are trained on easily verifiable short-form QA tasks via reinforcement learning with verifiable rewards (RLVR), which does not extend to realistic long-form tasks. We address this with Reinforcement Learning with Evolving Rubrics (RLER), in which we construct and maintain rubrics that co-evolve with the policy model during training; this allows the rubrics to incorporate information that the model has newly explored and to provide discriminative, on-policy feedback. Using RLER, we develop Deep Research Tulu (DR Tulu-8B), the first open model that is directly trained for open-ended, long-form deep research. Across four long-form deep research benchmarks in science, healthcare and general domains, DR Tulu substantially outperforms existing open deep research models, and matches or exceeds proprietary deep research systems, while being significantly smaller and cheaper per query. To facilitate future research, we release all data, models, and code, including our new MCP-based agent infrastructure for deep research systems.
☆ Scalable Parameter-Light Spectral Method for Clustering Short Text Embeddings with a Cohesion-Based Evaluation Metric
Clustering short text embeddings is a foundational task in natural language processing, yet remains challenging due to the need to specify the number of clusters in advance. We introduce a scalable spectral method that estimates the number of clusters directly from the structure of the Laplacian eigenspectrum, constructed using cosine similarities and guided by an adaptive sampling strategy. This sampling approach enables our estimator to efficiently scale to large datasets without sacrificing reliability. To support intrinsic evaluation of cluster quality without ground-truth labels, we propose the Cohesion Ratio, a simple and interpretable evaluation metric that quantifies how much intra-cluster similarity exceeds the global similarity background. It has an information-theoretic motivation inspired by mutual information, and in our experiments it correlates closely with extrinsic measures such as normalized mutual information and homogeneity. Extensive experiments on six short-text datasets and four modern embedding models show that standard algorithms like K-Means and HAC, when guided by our estimator, significantly outperform popular parameter-light methods such as HDBSCAN, OPTICS, and Leiden. These results demonstrate the practical value of our spectral estimator and Cohesion Ratio for unsupervised organization and evaluation of short text data. Implementation of our estimator of k and Cohesion Ratio, along with code for reproducing the experiments, is available at https://anonymous.4open.science/r/towards_clustering-0C2E.
☆ Learning to Reason: Training LLMs with GPT-OSS or DeepSeek R1 Reasoning Traces
Test-time scaling, which leverages additional computation during inference to improve model accuracy, has enabled a new class of Large Language Models (LLMs) that are able to reason through complex problems by understanding the goal, turning this goal into a plan, working through intermediate steps, and checking their own work before answering . Frontier large language models with reasoning capabilities, such as DeepSeek-R1 and OpenAI's gpt-oss, follow the same procedure when solving complex problems by generating intermediate reasoning traces before giving the final answer. Today, these models are being increasingly used to generate reasoning traces that serve as high-quality supervised data for post-training of small and medium-sized language models to teach reasoning capabilities without requiring expensive human curation. In this work, we compare the performance of medium-sized LLMs on Math problems after post-training on two kinds of reasoning traces. We compare the impact of reasoning traces generated by DeepSeek-R1 and gpt-oss LLMs in terms of accuracy and inference efficiency.
☆ Generative Query Expansion with Multilingual LLMs for Cross-Lingual Information Retrieval
Query expansion is the reformulation of a user query by adding semantically related information, and is an essential component of monolingual and cross-lingual information retrieval used to ensure that relevant documents are not missed. Recently, multilingual large language models (mLLMs) have shifted query expansion from semantic augmentation with synonyms and related words to pseudo-document generation. Pseudo-documents both introduce additional relevant terms and bridge the gap between short queries and long documents, which is particularly beneficial in dense retrieval. This study evaluates recent mLLMs and fine-tuned variants across several generative expansion strategies to identify factors that drive cross-lingual retrieval performance. Results show that query length largely determines which prompting technique is effective, and that more elaborate prompts often do not yield further gains. Substantial linguistic disparities persist: cross-lingual query expansion can produce the largest improvements for languages with the weakest baselines, yet retrieval is especially poor between languages written in different scripts. Fine-tuning is found to lead to performance gains only when the training and test data are of similar format. These outcomes underline the need for more balanced multilingual and cross-lingual training and evaluation resources.
☆ What Drives Cross-lingual Ranking? Retrieval Approaches with Multilingual Language Models
Cross-lingual information retrieval (CLIR) enables access to multilingual knowledge but remains challenging due to disparities in resources, scripts, and weak cross-lingual semantic alignment in embedding models. Existing pipelines often rely on translation and monolingual retrieval heuristics, which add computational overhead and noise, degrading performance. This work systematically evaluates four intervention types, namely document translation, multilingual dense retrieval with pretrained encoders, contrastive learning at word, phrase, and query-document levels, and cross-encoder re-ranking, across three benchmark datasets. We find that dense retrieval models trained specifically for CLIR consistently outperform lexical matching methods and derive little benefit from document translation. Contrastive learning mitigates language biases and yields substantial improvements for encoders with weak initial alignment, and re-ranking can be effective, but depends on the quality of the cross-encoder training data. Although high-resource languages still dominate overall performance, gains over lexical and document-translated baselines are most pronounced for low-resource and cross-script pairs. These findings indicate that cross-lingual search systems should prioritise semantic multilingual embeddings and targeted learning-based alignment over translation-based pipelines, particularly for cross-script and under-resourced languages.
☆ MultiBanAbs: A Comprehensive Multi-Domain Bangla Abstractive Text Summarization Dataset
This study developed a new Bangla abstractive summarization dataset to generate concise summaries of Bangla articles from diverse sources. Most existing studies in this field have concentrated on news articles, where journalists usually follow a fixed writing style. While such approaches are effective in limited contexts, they often fail to adapt to the varied nature of real-world Bangla texts. In today's digital era, a massive amount of Bangla content is continuously produced across blogs, newspapers, and social media. This creates a pressing need for summarization systems that can reduce information overload and help readers understand content more quickly. To address this challenge, we developed a dataset of over 54,000 Bangla articles and summaries collected from multiple sources, including blogs such as Cinegolpo and newspapers such as Samakal and The Business Standard. Unlike single-domain resources, our dataset spans multiple domains and writing styles. It offers greater adaptability and practical relevance. To establish strong baselines, we trained and evaluated this dataset using several deep learning and transfer learning models, including LSTM, BanglaT5-small, and MTS-small. The results highlight its potential as a benchmark for future research in Bangla natural language processing. This dataset provides a solid foundation for building robust summarization systems and helps expand NLP resources for low-resource languages.
☆ PRInTS: Reward Modeling for Long-Horizon Information Seeking
Information-seeking is a core capability for AI agents, requiring them to gather and reason over tool-generated information across long trajectories. However, such multi-step information-seeking tasks remain challenging for agents backed by language models. While process reward models (PRMs) can guide agents by ranking candidate steps at test-time, existing PRMs, designed for short reasoning with binary judgment, cannot capture richer dimensions of information-seeking steps, such as tool interactions and reasoning over tool outputs, nor handle the rapidly growing context in long-horizon tasks. To address these limitations, we introduce PRInTS, a generative PRM trained with dual capabilities: (1) dense scoring based on the PRM's reasoning across multiple step quality dimensions (e.g., interpretation of tool outputs, tool call informativeness) and (2) trajectory summarization that compresses the growing context while preserving essential information for step evaluation. Extensive evaluations across FRAMES, GAIA (levels 1-3), and WebWalkerQA (easy-hard) benchmarks on multiple models, along with ablations, reveal that best-of-n sampling with PRInTS enhances information-seeking abilities of open-source models as well as specialized agents, matching or surpassing the performance of frontier models with a much smaller backbone agent and outperforming other strong reward modeling baselines.
comment: 18 pages, code: https://github.com/G-JWLee/PRInTS
☆ AutoEnv: Automated Environments for Measuring Cross-Environment Agent Learning
Humans naturally adapt to diverse environments by learning underlying rules across worlds with different dynamics, observations, and reward structures. In contrast, existing agents typically demonstrate improvements via self-evolving within a single domain, implicitly assuming a fixed environment distribution. Cross-environment learning has remained largely unmeasured: there is no standard collection of controllable, heterogeneous environments, nor a unified way to represent how agents learn. We address these gaps in two steps. First, we propose AutoEnv, an automated framework that treats environments as factorizable distributions over transitions, observations, and rewards, enabling low-cost (4.12 USD on average) generation of heterogeneous worlds. Using AutoEnv, we construct AutoEnv-36, a dataset of 36 environments with 358 validated levels, on which seven language models achieve 12-49% normalized reward, demonstrating the challenge of AutoEnv-36. Second, we formalize agent learning as a component-centric process driven by three stages of Selection, Optimization, and Evaluation applied to an improvable agent component. Using this formulation, we design eight learning methods and evaluate them on AutoEnv-36. Empirically, the gain of any single learning method quickly decrease as the number of environments increases, revealing that fixed learning methods do not scale across heterogeneous environments. Environment-adaptive selection of learning methods substantially improves performance but exhibits diminishing returns as the method space expands. These results highlight both the necessity and the current limitations of agent learning for scalable cross-environment generalization, and position AutoEnv and AutoEnv-36 as a testbed for studying cross-environment agent learning. The code is avaiable at https://github.com/FoundationAgents/AutoEnv.
☆ MapFormer: Self-Supervised Learning of Cognitive Maps with Input-Dependent Positional Embeddings
A cognitive map is an internal model which encodes the abstract relationships among entities in the world, giving humans and animals the flexibility to adapt to new situations, with a strong out-of-distribution (OOD) generalization that current AI systems still do not possess. To bridge this gap, we introduce MapFormers, new architectures based on Transformer models, which can learn cognitive maps from observational data and perform path integration in parallel, in a self-supervised manner. Cognitive maps are learned in the model by disentangling structural relationships in the inputs from their specific content, a property that can be achieved naturally by updating the positional encoding in Transformers with input-dependent matrices. We developed two variants of MapFormers that unify absolute and relative positional encoding to model episodic (EM) and working memory (WM), respectively. We tested MapFormers on several tasks, including a classic 2D navigation task, showing that our models can learn a cognitive map of the underlying space and generalize OOD (e.g., to longer sequences) with near-perfect performance, unlike current architectures. Together, these results demonstrate the superiority of models designed to learn a cognitive map, and the importance of introducing a structural bias for structure-content disentanglement, which can be achieved in Transformers with input-dependent positional encoding. MapFormers have broad applications in both neuroscience and AI, by explaining the neural mechanisms giving rise to cognitive maps, while allowing these relation models to be learned at scale.
comment: 19 pages (29 with appendix), 8 figures
☆ CDLM: Consistency Diffusion Language Models For Faster Sampling
Diffusion Language Models (DLMs) offer a promising parallel generation paradigm but suffer from slow inference due to numerous refinement steps and the inability to use standard KV caching. We introduce CDLM (Consistency Diffusion Language Models), a training-based acceleration method that simultaneously tackles both bottlenecks. CDLM integrates consistency modeling to drastically reduce the number of required sampling steps by enabling multi-token finalization. Furthermore, we enforce a block-wise causal attention mask during fine-tuning, making the model fully compatible with KV caching. Experiments show CDLM achieves 3.6x-14.5x lower latency while maintaining competitive accuracy on math and coding tasks. The full training and evaluation code is available at https://github.com/SqueezeAILab/CDLM.
comment: 18 pages, 6 figures
☆ A Nutrition Multimodal Photoplethysmography Language Model
Hunger and satiety dynamics shape dietary behaviors and metabolic health, yet remain difficult to capture in everyday settings. We present a Nutrition Photoplethysmography Language Model (NPLM), integrating continuous photoplethysmography (PPG) from wearables with meal descriptions. NPLM projects PPG into embeddings interpretable by language models, enabling joint reasoning over physiology and meal context. Trained on 19,340 participants and 1.1 million meal-PPG pairs, the model improved daily caloric intake prediction by 11% over text-only baselines, with accuracy maintained when 80% of meal text was removed. In an independent validation study (n=140) with controlled dining and detailed meal information, the model replicated these findings. These results demonstrate the value of integrating physiological measurements from consumer wearables with meal information for noninvasive dietary monitoring at scale.
comment: 21 pages, 2 figures
☆ In Machina N400: Pinpointing Where a Causal Language Model Detects Semantic Violations
How and where does a transformer notice that a sentence has gone semantically off the rails? To explore this question, we evaluated the causal language model (phi-2) using a carefully curated corpus, with sentences that concluded plausibly or implausibly. Our analysis focused on the hidden states sampled at each model layer. To investigate how violations are encoded, we utilized two complementary probes. First, we conducted a per-layer detection using a linear probe. Our findings revealed that a simple linear decoder struggled to distinguish between plausible and implausible endings in the lowest third of the model's layers. However, its accuracy sharply increased in the middle blocks, reaching a peak just before the top layers. Second, we examined the effective dimensionality of the encoded violation. Initially, the violation widens the representational subspace, followed by a collapse after a mid-stack bottleneck. This might indicate an exploratory phase that transitions into rapid consolidation. Taken together, these results contemplate the idea of alignment with classical psycholinguistic findings in human reading, where semantic anomalies are detected only after syntactic resolution, occurring later in the online processing sequence.
comment: Accepted at AICS2025
☆ RAVEN++: Pinpointing Fine-Grained Violations in Advertisement Videos with Active Reinforcement Reasoning EMNLP 2025
Advertising (Ad) is a cornerstone of the digital economy, yet the moderation of video advertisements remains a significant challenge due to their complexity and the need for precise violation localization. While recent advancements, such as the RAVEN model, have improved coarse-grained violation detection, critical gaps persist in fine-grained understanding, explainability, and generalization. To address these limitations, we propose RAVEN++, a novel framework that introduces three key innovations: 1) Active Reinforcement Learning (RL), which dynamically adapts training to samples of varying difficulty; 2) Fine-Grained Violation Understanding, achieved through hierarchical reward functions and reasoning distillation; and 3) Progressive Multi-Stage Training, which systematically combines knowledge injection, curriculum-based passive RL, and active RL. Extensive experiments on both public and proprietary datasets, on both offline scenarios and online deployed A/B Testing, demonstrate that RAVEN++ outperforms general-purpose LLMs and specialized models like RAVEN in terms of fine-grained violation understanding, reasoning capabilities, and generalization ability.
comment: EMNLP 2025 (Oral, Industry Track)
☆ Representational Stability of Truth in Large Language Models
Large language models (LLMs) are widely used for factual tasks such as "What treats asthma?" or "What is the capital of Latvia?". However, it remains unclear how stably LLMs encode distinctions between true, false, and neither-true-nor-false content in their internal probabilistic representations. We introduce representational stability as the robustness of an LLM's veracity representations to perturbations in the operational definition of truth. We assess representational stability by (i) training a linear probe on an LLM's activations to separate true from not-true statements and (ii) measuring how its learned decision boundary shifts under controlled label changes. Using activations from sixteen open-source models and three factual domains, we compare two types of neither statements. The first are fact-like assertions about entities we believe to be absent from any training data. We call these unfamiliar neither statements. The second are nonfactual claims drawn from well-known fictional contexts. We call these familiar neither statements. The unfamiliar statements induce the largest boundary shifts, producing up to $40\%$ flipped truth judgements in fragile domains (such as word definitions), while familiar fictional statements remain more coherently clustered and yield smaller changes ($\leq 8.2\%$). These results suggest that representational stability stems more from epistemic familiarity than from linguistic form. More broadly, our approach provides a diagnostic for auditing and training LLMs to preserve coherent truth assignments under semantic uncertainty, rather than optimizing for output accuracy alone.
comment: 25 pages, 24 figures
☆ From Pixels to Posts: Retrieval-Augmented Fashion Captioning and Hashtag Generation
This paper introduces the retrieval-augmented framework for automatic fashion caption and hashtag generation, combining multi-garment detection, attribute reasoning, and Large Language Model (LLM) prompting. The system aims to produce visually grounded, descriptive, and stylistically interesting text for fashion imagery, overcoming the limitations of end-to-end captioners that have problems with attribute fidelity and domain generalization. The pipeline combines a YOLO-based detector for multi-garment localization, k-means clustering for dominant color extraction, and a CLIP-FAISS retrieval module for fabric and gender attribute inference based on a structured product index. These attributes, together with retrieved style examples, create a factual evidence pack that is used to guide an LLM to generate human-like captions and contextually rich hashtags. A fine-tuned BLIP model is used as a supervised baseline model for comparison. Experimental results show that the YOLO detector is able to obtain a mean Average Precision (mAP@0.5) of 0.71 for nine categories of garments. The RAG-LLM pipeline generates expressive attribute-aligned captions and achieves mean attribute coverage of 0.80 with full coverage at the 50% threshold in hashtag generation, whereas BLIP gives higher lexical overlap and lower generalization. The retrieval-augmented approach exhibits better factual grounding, less hallucination, and great potential for scalable deployment in various clothing domains. These results demonstrate the use of retrieval-augmented generation as an effective and interpretable paradigm for automated and visually grounded fashion content generation.
comment: Submitted to Expert Systems with Applications
☆ Eliciting Chain-of-Thought in Base LLMs via Gradient-Based Representation Optimization AAAI2026
Chain-of-Thought (CoT) reasoning is a critical capability for large language models (LLMs), enabling them to tackle com- plex multi-step tasks. While base LLMs, pre-trained on general text corpora, often struggle with reasoning due to a lack of specialized training, recent studies reveal their latent reason- ing potential tied to hidden states. However, existing hidden state manipulation methods, such as linear activation steering, suffer from limitations due to their rigid and unconstrained nature, often leading to distribution shifts and degraded text quality. In this work, we propose a novel approach for elic- iting CoT reasoning from base LLMs through hidden state manipulation grounded in probabilistic conditional generation. By reformulating the challenge as an optimization problem with a balanced likelihood and prior regularization framework, our method guides hidden states toward reasoning-oriented trajectories while preserving linguistic coherence. Extensive evaluations across mathematical, commonsense, and logical reasoning benchmarks demonstrate that our approach con- sistently outperforms existing steering methods, offering a theoretically principled and effective solution for enhancing reasoning capabilities in base LLMs.
comment: AAAI2026
☆ Emotion-Enhanced Multi-Task Learning with LLMs for Aspect Category Sentiment Analysis
Aspect category sentiment analysis (ACSA) has achieved remarkable progress with large language models (LLMs), yet existing approaches primarily emphasize sentiment polarity while overlooking the underlying emotional dimensions that shape sentiment expressions. This limitation hinders the model's ability to capture fine-grained affective signals toward specific aspect categories. To address this limitation, we introduce a novel emotion-enhanced multi-task ACSA framework that jointly learns sentiment polarity and category-specific emotions grounded in Ekman's six basic emotions. Leveraging the generative capabilities of LLMs, our approach enables the model to produce emotional descriptions for each aspect category, thereby enriching sentiment representations with affective expressions. Furthermore, to ensure the accuracy and consistency of the generated emotions, we introduce an emotion refinement mechanism based on the Valence-Arousal-Dominance (VAD) dimensional framework. Specifically, emotions predicted by the LLM are projected onto a VAD space, and those inconsistent with their corresponding VAD coordinates are re-annotated using a structured LLM-based refinement strategy. Experimental results demonstrate that our approach significantly outperforms strong baselines on all benchmark datasets. This underlines the effectiveness of integrating affective dimensions into ACSA.
comment: 8 pages, 4 figures
☆ On the Optimality of Discrete Object Naming: a Kinship Case Study
The structure of naming systems in natural languages hinges on a trade-off between high informativeness and low complexity. Prior work capitalizes on information theory to formalize these notions; however, these studies generally rely on two simplifications: (i) optimal listeners, and (ii) universal communicative need across languages. Here, we address these limitations by introducing an information-theoretic framework for discrete object naming systems, and we use it to prove that an optimal trade-off is achievable if and only if the listener's decoder is equivalent to the Bayesian decoder of the speaker. Adopting a referential game setup from emergent communication, and focusing on the semantic domain of kinship, we show that our notion of optimality is not only theoretically achievable but also emerges empirically in learned communication systems.
☆ A symbolic Perl algorithm for the unification of Nahuatl word spellings
In this paper, we describe a symbolic model for the automatic orthographic unification of Nawatl text documents. Our model is based on algorithms that we have previously used to analyze sentences in Nawatl, and on the corpus called $π$-yalli, consisting of texts in several Nawatl orthographies. Our automatic unification algorithm implements linguistic rules in symbolic regular expressions. We also present a manual evaluation protocol that we have proposed and implemented to assess the quality of the unified sentences generated by our algorithm, by testing in a sentence semantic task. We have obtained encouraging results from the evaluators for most of the desired features of our artificially unified sentences
comment: MICAI 2025, LNAI 16221, pp. 141-154, 2026. 10 pages, 4 Figures, 8 Tables
☆ A Multi-Agent LLM Framework for Multi-Domain Low-Resource In-Context NER via Knowledge Retrieval, Disambiguation and Reflective Analysis AAAI 2026
In-context learning (ICL) with large language models (LLMs) has emerged as a promising paradigm for named entity recognition (NER) in low-resource scenarios. However, existing ICL-based NER methods suffer from three key limitations: (1) reliance on dynamic retrieval of annotated examples, which is problematic when annotated data is scarce; (2) limited generalization to unseen domains due to the LLM's insufficient internal domain knowledge; and (3) failure to incorporate external knowledge or resolve entity ambiguities. To address these challenges, we propose KDR-Agent, a novel multi-agent framework for multi-domain low-resource in-context NER that integrates Knowledge retrieval, Disambiguation, and Reflective analysis. KDR-Agent leverages natural-language type definitions and a static set of entity-level contrastive demonstrations to reduce dependency on large annotated corpora. A central planner coordinates specialized agents to (i) retrieve factual knowledge from Wikipedia for domain-specific mentions, (ii) resolve ambiguous entities via contextualized reasoning, and (iii) reflect on and correct model predictions through structured self-assessment. Experiments across ten datasets from five domains demonstrate that KDR-Agent significantly outperforms existing zero-shot and few-shot ICL baselines across multiple LLM backbones. The code and data can be found at https://github.com/MWXGOD/KDR-Agent.
comment: This paper has been accepted by AAAI 2026 (Main Technical Track)
☆ GraphMind: Theorem Selection and Conclusion Generation Framework with Dynamic GNN for LLM Reasoning
Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, including multi-step reasoning such as mathematical proving. However, existing approaches often lack an explicit and dynamic mechanism to structurally represent and evolve intermediate reasoning states, which limits their ability to perform context-aware theorem selection and iterative conclusion generation. To address these challenges, we propose GraphMind, a novel dynamic graph-based framework that integrates the graph neural network (GNN) with LLMs to iteratively select theorems and generate intermediate conclusions for multi-step reasoning. Our method models the reasoning process as a heterogeneous evolving graph, where nodes represent conditions, theorems, and conclusions, while edges capture logical dependencies between nodes. By encoding the current reasoning state with GNN and leveraging semantic matching for theorem selection, our framework enables context-aware, interpretable, and structured reasoning in a closed-loop manner. Experiments on various question-answering (QA) datasets demonstrate that our proposed GraphMind method achieves consistent performance improvements and significantly outperforms existing baselines in multi-step reasoning, validating the effectiveness and generalizability of our approach.
☆ Logic of Montage
In expressing emotions, as an expression form separate from natural language, we propose an alternative form that complements natural language, acting as a proxy or window for emotional states. First, we set up an expression form "Effect of Contradictory Structure." "Effect of Contradictory Structure" is not static but dynamic. Effect in "Effect of Contradictory Structure" is unpleasant or pleasant, and the orientation to avoid that unpleasantness is considered pseudo-expression of will. Second, "Effect of Contradictory Structure" can be overlapped with each other. This overlapping operation is called "montage." A broader "Structure" that includes related "Effect of Contradictory Structure" and "Effect of Structure" are set up. Montage produces "Effect of Structure". In montage, it is necessary to set something like "strength," so we adopted Deleuze and Deleuze/Guattari's word "intensity" and set it as an element of our model. We set up a general theoretical framework - Word Import Between Systems (Models) and justified the import of "intensity" through Austin's use of the word "force." "Effect of Structure" process is demonstrated using the example of proceeding to the next level of education.
☆ Understanding and Mitigating Over-refusal for Large Language Models via Safety Representation
Large language models demonstrate powerful capabilities across various natural language processing tasks, yet they also harbor safety vulnerabilities. To enhance LLM safety, various jailbreak defense methods have been proposed to guard against harmful outputs. However, improvements in model safety often come at the cost of severe over-refusal, failing to strike a good balance between safety and usability. In this paper, we first analyze the causes of over-refusal from a representation perspective, revealing that over-refusal samples reside at the boundary between benign and malicious samples. Based on this, we propose MOSR, designed to mitigate over-refusal by intervening the safety representation of LLMs. MOSR incorporates two novel components: (1) Overlap-Aware Loss Weighting, which determines the erasure weight for malicious samples by quantifying their similarity to pseudo-malicious samples in the representation space, and (2) Context-Aware Augmentation, which supplements the necessary context for rejection decisions by adding harmful prefixes before rejection responses. Experiments demonstrate that our method outperforms existing approaches in mitigating over-refusal while largely maintaining safety. Overall, we advocate that future defense methods should strike a better balance between safety and over-refusal.
☆ Classification EM-PCA for clustering and embedding
The mixture model is undoubtedly one of the greatest contributions to clustering. For continuous data, Gaussian models are often used and the Expectation-Maximization (EM) algorithm is particularly suitable for estimating parameters from which clustering is inferred. If these models are particularly popular in various domains including image clustering, they however suffer from the dimensionality and also from the slowness of convergence of the EM algorithm. However, the Classification EM (CEM) algorithm, a classifying version, offers a fast convergence solution while dimensionality reduction still remains a challenge. Thus we propose in this paper an algorithm combining simultaneously and non-sequentially the two tasks --Data embedding and Clustering-- relying on Principal Component Analysis (PCA) and CEM. We demonstrate the interest of such approach in terms of clustering and data embedding. We also establish different connections with other clustering approaches.
comment: Accepted at the IEEE conference on Big Data (Special Session on Machine Learning)
☆ Knowledge-based Graphical Method for Safety Signal Detection in Clinical Trials
We present a graphical, knowledge-based method for reviewing treatment-emergent adverse events (AEs) in clinical trials. The approach enhances MedDRA by adding a hidden medical knowledge layer (Safeterm) that captures semantic relationships between terms in a 2-D map. Using this layer, AE Preferred Terms can be regrouped automatically into similarity clusters, and their association to the trial disease may be quantified. The Safeterm map is available online and connected to aggregated AE incidence tables from ClinicalTrials.gov. For signal detection, we compute treatment-specific disproportionality metrics using shrinkage incidence ratios. Cluster-level EBGM values are then derived through precision-weighted aggregation. Two visual outputs support interpretation: a semantic map showing AE incidence and an expectedness-versus-disproportionality plot for rapid signal detection. Applied to three legacy trials, the automated method clearly recovers all expected safety signals. Overall, augmenting MedDRA with a medical knowledge layer improves clarity, efficiency, and accuracy in AE interpretation for clinical trials.
comment: 13 pages, 3 tables, 5 figures
☆ SWAN: Sparse Winnowed Attention for Reduced Inference Memory via Decompression-Free KV-Cache Compression
Large Language Models (LLMs) face a significant bottleneck during autoregressive inference due to the massive memory footprint of the Key-Value (KV) cache. Existing compression techniques like token eviction, quantization, or other low-rank methods often risk information loss, have fixed limits, or introduce significant computational overhead from explicit decompression steps. In this work, we introduce SWAN, a novel, fine-tuning-free framework that eliminates this overhead. Our method uses an offline orthogonal matrix to rotate and prune the KV-cache, which is then used directly in the attention computation without any reconstruction. Our extensive experiments demonstrate that SWAN, augmented with a small dense buffer, offers a robust trade-off, maintaining performance close to the uncompressed baseline even at aggressive 50-60% memory savings per-token on KV-cache. A key advantage is its runtime-tunable compression level, allowing operators to dynamically adjust the memory footprint, a flexibility absent in methods requiring fixed offline configurations. This combination of a decompression-free design, high performance under compression, and adaptability makes SWAN a practical and efficient solution for serving LLMs with long contexts.
☆ Skeletons Matter: Dynamic Data Augmentation for Text-to-Query EMNLP 2025
The task of translating natural language questions into query languages has long been a central focus in semantic parsing. Recent advancements in Large Language Models (LLMs) have significantly accelerated progress in this field. However, existing studies typically focus on a single query language, resulting in methods with limited generalizability across different languages. In this paper, we formally define the Text-to-Query task paradigm, unifying semantic parsing tasks across various query languages. We identify query skeletons as a shared optimization target of Text-to-Query tasks, and propose a general dynamic data augmentation framework that explicitly diagnoses model-specific weaknesses in handling these skeletons to synthesize targeted training data. Experiments on four Text-to-Query benchmarks demonstrate that our method achieves state-of-the-art performance using only a small amount of synthesized data, highlighting the efficiency and generality of our approach and laying a solid foundation for unified research on Text-to-Query tasks. We release our code at https://github.com/jjjycaptain/Skeletron.
comment: Accepted at EMNLP 2025
☆ Look It Up: Analysing Internal Web Search Capabilities of Modern LLMs
Modern large language models integrate web search to provide real-time answers, yet it remains unclear whether they are efficiently calibrated to use search when it is actually needed. We introduce a benchmark evaluating both the necessity and effectiveness of web access across commercial models with no access to internal states or parameters. The dataset includes a static split of 783 temporally anchored questions answerable from pre-cutoff knowledge, aimed at testing whether models invoke search based on low internal confidence, and a dynamic split of 288 post-cutoff queries designed to test whether models recognise when search is required and retrieve updated information. Web access substantially improves static accuracy for GPT-5-mini and Claude Haiku 4.5, though confidence calibration worsens. On dynamic queries, both models frequently invoke search yet remain below 70 percent accuracy due to weak query formulation. Costs per accuracy-improving call remain low, but returns diminish once initial retrieval fails. Selective invocation helps, but models become overconfident and inconsistent after search. Overall, built-in web search meaningfully improves factual accuracy and can be invoked selectively, yet models remain overconfident, skip retrieval when it is essential, and falter once initial search queries underperform. Taken together, internal web search works better as a good low-latency verification layer than a reliable analytical tool, with clear room for improvement.
comment: 10 pages, 8 figures
☆ How Learning Rate Decay Wastes Your Best Data in Curriculum-Based LLM Pretraining
Due to the scarcity of high-quality data, large language models (LLMs) are often trained on mixtures of data with varying quality levels, even after sophisticated data curation. A natural approach to better leverage high-quality data is curriculum-based pretraining, where the model is trained on data sorted in ascending order of quality as determined by a quality metric. However, prior studies have reported limited improvements from such curriculum-based pretraining strategies. This work identifies a critical factor constraining these methods: the incompatibility between the ascending data quality order and the decaying learning rate (LR) schedule. We find that while curriculum-based training substantially outperforms random shuffling when using a constant LR, its advantage diminishes under standard LR decay schedules. Our experiments show this incompatibility can be mitigated by two simple strategies: (1) employing a more moderate LR decay schedule, where the final LR is only moderately smaller than the peak LR, and (2) replacing LR decay with model averaging, i.e., computing a weighted average of the final few checkpoints. By combining these strategies, we improve the average score on a suite of standard benchmarks by 1.64% over random shuffling, without additional data refinement. Validated on 1.5B-parameter models trained over 30B tokens with various data-quality metrics, our findings call for a re-evaluation of curriculum-based LLM pretraining and underscore the potential of co-designing data curricula with optimization methods.
☆ Reproducibility Study of Large Language Model Bayesian Optimization ICLR 2024
In this reproducibility study, we revisit the LLAMBO framework of Daxberger et al. (2024), a prompting-based Bayesian optimization (BO) method that uses large language models as discriminative surrogates and acquisition optimizers via text-only interactions. We replicate the core Bayesmark and HPOBench experiments under the original evaluation protocol, but replace GPT-3.5 with the open-weight Llama 3.1 70B model used for all text encoding components. Our results broadly confirm the main claims of LLAMBO. Contextual warm starting via textual problem and hyperparameter descriptions substantially improves early regret behaviour and reduces variance across runs. LLAMBO's discriminative surrogate is weaker than GP or SMAC as a pure single task regressor, yet benefits from cross task semantic priors induced by the language model. Ablations that remove textual context markedly degrade predictive accuracy and calibration, while the LLAMBO candidate sampler consistently generates higher quality and more diverse proposals than TPE or random sampling. Experiments with smaller backbones (Gemma 27B, Llama 3.1 8B) yield unstable or invalid predictions, suggesting insufficient capacity for reliable surrogate behaviour. Overall, our study shows that the LLAMBO architecture is robust to changing the language model backbone and remains effective when instantiated with Llama 3.1 70B.
comment: 7 pages, 8 figures. Reproducibility study of the LLAMBO framework (ICLR 2024). Code: https://github.com/spagnoloG/llambo-reproducibility
☆ CoreEval: Automatically Building Contamination-Resilient Datasets with Real-World Knowledge toward Reliable LLM Evaluation ACL'25
Data contamination poses a significant challenge to the fairness of LLM evaluations in natural language processing tasks by inadvertently exposing models to test data during training. Current studies attempt to mitigate this issue by modifying existing datasets or generating new ones from freshly collected information. However, these methods fall short of ensuring contamination-resilient evaluation, as they fail to fully eliminate pre-existing knowledge from models or preserve the semantic complexity of the original datasets. To address these limitations, we propose \textbf{CoreEval}, a \textbf{Co}ntamination-\textbf{re}silient \textbf{Eval}uation strategy for automatically updating data with real-world knowledge. This approach begins by extracting entity relationships from the original data and leveraging the GDELT database to retrieve relevant, up-to-date knowledge. The retrieved knowledge is then recontextualized and integrated with the original data, which is refined and restructured to ensure semantic coherence and enhanced task relevance. Ultimately, a robust data reflection mechanism is employed to iteratively verify and refine labels, ensuring consistency between the updated and original datasets. Extensive experiments on updated datasets validate the robustness of CoreEval, demonstrating its effectiveness in mitigating performance overestimation caused by data contamination.
comment: ACL'25
☆ Think Before You Prune: Selective Self-Generated Calibration for Pruning Large Reasoning Models
Large Reasoning Models (LRMs) have demonstrated remarkable performance on complex reasoning benchmarks. However, their long chain-of-thought reasoning processes incur significant inference overhead. Pruning has emerged as a promising approach to reducing computational costs. However, existing efforts have primarily focused on large language models (LLMs), while pruning LRMs remains unexplored. In this work, we conduct the first empirical study on pruning LRMs and show that directly applying existing pruning techniques fails to yield satisfactory results. Our findings indicate that using self-generated reasoning data for calibration can substantially improve pruning performance. We further investigate how the difficulty and length of reasoning data affect pruning outcomes. Our analysis reveals that challenging and moderately long self-generated reasoning data serve as ideal calibration data. Based on these insights, we propose a Selective Self-Generated Reasoning (SSGR) data construction strategy to provide effective calibration data for pruning LRMs. Experimental results on the DeepSeek-R1-Distill model series validate that our strategy improves the reasoning ability of pruned LRMs by 10%-13% compared to general pruning methods.
comment: Under Review
☆ Generating Reading Comprehension Exercises with Large Language Models for Educational Applications
With the rapid development of large language models (LLMs), the applications of LLMs have grown substantially. In the education domain, LLMs demonstrate significant potential, particularly in automatic text generation, which enables the creation of intelligent and adaptive learning content. This paper proposes a new LLMs framework, which is named as Reading Comprehension Exercise Generation (RCEG). It can generate high-quality and personalized English reading comprehension exercises automatically. Firstly, RCEG uses fine-tuned LLMs to generate content candidates. Then, it uses a discriminator to select the best candidate. Finally, the quality of the generated content has been improved greatly. To evaluate the performance of RCEG, a dedicated dataset for English reading comprehension is constructed to perform the experiments, and comprehensive evaluation metrics are used to analyze the experimental results. These metrics include content diversity, factual accuracy, linguistic toxicity, and pedagogical alignment. Experimental results show that RCEG significantly improves the relevance and cognitive appropriateness of the generated exercises.
☆ FanarGuard: A Culturally-Aware Moderation Filter for Arabic Language Models
Content moderation filters are a critical safeguard against alignment failures in language models. Yet most existing filters focus narrowly on general safety and overlook cultural context. In this work, we introduce FanarGuard, a bilingual moderation filter that evaluates both safety and cultural alignment in Arabic and English. We construct a dataset of over 468K prompt and response pairs, drawn from synthetic and public datasets, scored by a panel of LLM judges on harmlessness and cultural awareness, and use it to train two filter variants. To rigorously evaluate cultural alignment, we further develop the first benchmark targeting Arabic cultural contexts, comprising over 1k norm-sensitive prompts with LLM-generated responses annotated by human raters. Results show that FanarGuard achieves stronger agreement with human annotations than inter-annotator reliability, while matching the performance of state-of-the-art filters on safety benchmarks. These findings highlight the importance of integrating cultural awareness into moderation and establish FanarGuard as a practical step toward more context-sensitive safeguards.
☆ Cognitive Alpha Mining via LLM-Driven Code-Based Evolution
Discovering effective predictive signals, or ``alphas,'' from financial data with high dimensionality and extremely low signal-to-noise ratio remains a difficult open problem. Despite progress in deep learning, genetic programming, and, more recently, large language model (LLM)--based factor generation, existing approaches still explore only a narrow region of the vast alpha search space. Neural models tend to produce opaque and fragile patterns, while symbolic or formula-based methods often yield redundant or economically ungrounded expressions that generalize poorly. Although different in form, these paradigms share a key limitation: none can conduct broad, structured, and human-like exploration that balances logical consistency with creative leaps. To address this gap, we introduce the Cognitive Alpha Mining Framework (CogAlpha), which combines code-level alpha representation with LLM-driven reasoning and evolutionary search. Treating LLMs as adaptive cognitive agents, our framework iteratively refines, mutates, and recombines alpha candidates through multi-stage prompts and financial feedback. This synergistic design enables deeper thinking, richer structural diversity, and economically interpretable alpha discovery, while greatly expanding the effective search space. Experiments on A-share equities demonstrate that CogAlpha consistently discovers alphas with superior predictive accuracy, robustness, and generalization over existing methods. Our results highlight the promise of aligning evolutionary optimization with LLM-based reasoning for automated and explainable alpha discovery. All source code will be released.
Large Language Models for the Summarization of Czech Documents: From History to the Present
Text summarization is the task of automatically condensing longer texts into shorter, coherent summaries while preserving the original meaning and key information. Although this task has been extensively studied in English and other high-resource languages, Czech summarization, particularly in the context of historical documents, remains underexplored. This is largely due to the inherent linguistic complexity of Czech and the lack of high-quality annotated datasets. In this work, we address this gap by leveraging the capabilities of Large Language Models (LLMs), specifically Mistral and mT5, which have demonstrated strong performance across a wide range of natural language processing tasks and multilingual settings. In addition, we also propose a translation-based approach that first translates Czech texts into English, summarizes them using an English-language model, and then translates the summaries back into Czech. Our study makes the following main contributions: We demonstrate that LLMs achieve new state-of-the-art results on the SumeCzech dataset, a benchmark for modern Czech text summarization, showing the effectiveness of multilingual LLMs even for morphologically rich, medium-resource languages like Czech. We introduce a new dataset, Posel od Čerchova, designed for the summarization of historical Czech texts. This dataset is derived from digitized 19th-century publications and annotated for abstractive summarization. We provide initial baselines using modern LLMs to facilitate further research in this underrepresented area. By combining cutting-edge models with both modern and historical Czech datasets, our work lays the foundation for further progress in Czech summarization and contributes valuable resources for future research in Czech historical document processing and low-resource summarization more broadly.
☆ A Reproducible Framework for Neural Topic Modeling in Focus Group Analysis
Focus group discussions generate rich qualitative data but their analysis traditionally relies on labor-intensive manual coding that limits scalability and reproducibility. We present a rigorous, reproducible computational framework for applying neural topic modeling to focus group transcripts, addressing fundamental methodological challenges: hyperparameter sensitivity, model stability, and validation of interpretability. Using BERTopic applied to ten focus groups exploring HPV vaccine perceptions in Tunisia (1,076 utterances), we conducted systematic evaluation across 27 hyperparameter configurations, assessed stability through bootstrap resampling with 30 replicates per configuration, and validated interpretability through formal human evaluation by three domain experts. Our analysis demonstrates substantial sensitivity to hyperparameter choices and reveals that metric selection for stability assessment must align with analytical goals. A hierarchical merging strategy (extracting fine-grained topics for stability then consolidating for interpretability) effectively navigates the stability-coherence tradeoff, achieving coherence of 0.558 compared to 0.539 for direct extraction. Human validation confirmed topic quality with very good inter-rater reliability (ICC = 0.79, weighted Cohen's kappa = 0.578). Our framework provides practical guidelines that researchers can adapt to their own qualitative research contexts. All code, data processing scripts, and evaluation protocols are publicly available to support reproduction and extension of this work.
☆ Concept than Document: Context Compression via AMR-based Conceptual Entropy
Large Language Models (LLMs) face information overload when handling long contexts, particularly in Retrieval-Augmented Generation (RAG) where extensive supporting documents often introduce redundant content. This issue not only weakens reasoning accuracy but also increases computational overhead. We propose an unsupervised context compression framework that exploits Abstract Meaning Representation (AMR) graphs to preserve semantically essential information while filtering out irrelevant text. By quantifying node-level entropy within AMR graphs, our method estimates the conceptual importance of each node, enabling the retention of core semantics. Specifically, we construct AMR graphs from raw contexts, compute the conceptual entropy of each node, and screen significant informative nodes to form a condensed and semantically focused context than raw documents. Experiments on the PopQA and EntityQuestions datasets show that our method outperforms vanilla and other baselines, achieving higher accuracy while substantially reducing context length. To the best of our knowledge, this is the first work introducing AMR-based conceptual entropy for context compression, demonstrating the potential of stable linguistic features in context engineering.
☆ Assessing the alignment between infants' visual and linguistic experience using multimodal language models
Figuring out which objects or concepts words refer to is a central language learning challenge for young children. Most models of this process posit that children learn early object labels from co-occurrences of words and their referents that occur when someone around them talks about an object in the immediate physical environment. But how aligned in time are children's visual and linguistic experiences during everyday learning? To date, answers to this question have been limited by the need for labor-intensive manual annotations of vision-language co-occurrences. Here, we evaluate the use of contrastive language-image pretraining (CLIP) models to automatically characterize vision-language alignment in egocentric videos taken from the infant perspective in home environments. After validating CLIP alignment scores using human alignment judgments, we apply this metric to a large corpus of infant-perspective videos. We show that idealized aligned moments for learning (e.g., "look at the ball" with a ball present in the child's view) are relatively rare in children's everyday experiences compared to modern machine learning datasets, and highlight variability in alignment both within and across children. These findings suggest that infrequent alignment is a constraint for models describing early word learning and offer a new method for investigating children's multimodal environment.
☆ HyperbolicRAG: Enhancing Retrieval-Augmented Generation with Hyperbolic Representations
Retrieval-augmented generation (RAG) enables large language models (LLMs) to access external knowledge, helping mitigate hallucinations and enhance domain-specific expertise. Graph-based RAG enhances structural reasoning by introducing explicit relational organization that enables information propagation across semantically connected text units. However, these methods typically rely on Euclidean embeddings that capture semantic similarity but lack a geometric notion of hierarchical depth, limiting their ability to represent abstraction relationships inherent in complex knowledge graphs. To capture both fine-grained semantics and global hierarchy, we propose HyperbolicRAG, a retrieval framework that integrates hyperbolic geometry into graph-based RAG. HyperbolicRAG introduces three key designs: (1) a depth-aware representation learner that embeds nodes within a shared Poincare manifold to align semantic similarity with hierarchical containment, (2) an unsupervised contrastive regularization that enforces geometric consistency across abstraction levels, and (3) a mutual-ranking fusion mechanism that jointly exploits retrieval signals from Euclidean and hyperbolic spaces, emphasizing cross-space agreement during inference. Extensive experiments across multiple QA benchmarks demonstrate that HyperbolicRAG outperforms competitive baselines, including both standard RAG and graph-augmented baselines.
comment: 12 pages
☆ Context-Aware Whisper for Arabic ASR Under Linguistic Varieties
Low-resource ASR remains a challenging problem, especially for languages like Arabic that exhibit wide dialectal variation and limited labeled data. We propose context-aware prompting strategies to adapt OpenAI's Whisper for Arabic speech recognition without retraining. Our methods include decoder prompting with first-pass transcriptions or retrieved utterances, and encoder prefixing using speech synthesized in the target speaker's voice. We introduce techniques such as prompt reordering, speaker-aware prefix synthesis, and modality-specific retrieval (lexical, semantic, acoustic) to improve transcription in real-world, zero-shot settings. Evaluated on nine Arabic linguistic conditions, our approach reduces WER by up to 22.3% on Modern Standard Arabic and 9.2% on dialectal speech, significantly mitigating hallucinations and speaker mismatch.
☆ Robust Multimodal Sentiment Analysis with Distribution-Based Feature Recovery and Fusion
As posts on social media increase rapidly, analyzing the sentiments embedded in image-text pairs has become a popular research topic in recent years. Although existing works achieve impressive accomplishments in simultaneously harnessing image and text information, they lack the considerations of possible low-quality and missing modalities. In real-world applications, these issues might frequently occur, leading to urgent needs for models capable of predicting sentiment robustly. Therefore, we propose a Distribution-based feature Recovery and Fusion (DRF) method for robust multimodal sentiment analysis of image-text pairs. Specifically, we maintain a feature queue for each modality to approximate their feature distributions, through which we can simultaneously handle low-quality and missing modalities in a unified framework. For low-quality modalities, we reduce their contributions to the fusion by quantitatively estimating modality qualities based on the distributions. For missing modalities, we build inter-modal mapping relationships supervised by samples and distributions, thereby recovering the missing modalities from available ones. In experiments, two disruption strategies that corrupt and discard some modalities in samples are adopted to mimic the low-quality and missing modalities in various real-world scenarios. Through comprehensive experiments on three publicly available image-text datasets, we demonstrate the universal improvements of DRF compared to SOTA methods under both two strategies, validating its effectiveness in robust multimodal sentiment analysis.
comment: Accepted by ACM MM 2024
Large Language Models Require Curated Context for Reliable Political Fact-Checking -- Even with Reasoning and Web Search
Large language models (LLMs) have raised hopes for automated end-to-end fact-checking, but prior studies report mixed results. As mainstream chatbots increasingly ship with reasoning capabilities and web search tools -- and millions of users already rely on them for verification -- rigorous evaluation is urgent. We evaluate 15 recent LLMs from OpenAI, Google, Meta, and DeepSeek on more than 6,000 claims fact-checked by PolitiFact, comparing standard models with reasoning- and web-search variants. Standard models perform poorly, reasoning offers minimal benefits, and web search provides only moderate gains, despite fact-checks being available on the web. In contrast, a curated RAG system using PolitiFact summaries improved macro F1 by 233% on average across model variants. These findings suggest that giving models access to curated high-quality context is a promising path for automated fact-checking.
☆ RhinoInsight: Improving Deep Research through Control Mechanisms for Model Behavior and Context
Large language models are evolving from single-turn responders into tool-using agents capable of sustained reasoning and decision-making for deep research. Prevailing systems adopt a linear pipeline of plan to search to write to a report, which suffers from error accumulation and context rot due to the lack of explicit control over both model behavior and context. We introduce RhinoInsight, a deep research framework that adds two control mechanisms to enhance robustness, traceability, and overall quality without parameter updates. First, a Verifiable Checklist module transforms user requirements into traceable and verifiable sub-goals, incorporates human or LLM critics for refinement, and compiles a hierarchical outline to anchor subsequent actions and prevent non-executable planning. Second, an Evidence Audit module structures search content, iteratively updates the outline, and prunes noisy context, while a critic ranks and binds high-quality evidence to drafted content to ensure verifiability and reduce hallucinations. Our experiments demonstrate that RhinoInsight achieves state-of-the-art performance on deep research tasks while remaining competitive on deep search tasks.
☆ Empathetic Cascading Networks: A Multi-Stage Prompting Technique for Reducing Social Biases in Large Language Models
This report presents the Empathetic Cascading Networks (ECN) framework, a multi-stage prompting method designed to enhance the empathetic and inclusive capabilities of large language models. ECN employs four stages: Perspective Adoption, Emotional Resonance, Reflective Understanding, and Integrative Synthesis, to guide models toward generating emotionally resonant and contextually aware responses. Experimental results demonstrate that ECN achieves the highest Empathy Quotient (EQ) scores across GPT-3.5-turbo and GPT-4, while maintaining competitive Regard and Perplexity metrics. These findings emphasize ECN's potential for applications requiring empathy and inclusivity in conversational AI.
☆ CLaRa: Bridging Retrieval and Generation with Continuous Latent Reasoning
Retrieval-augmented generation (RAG) enhances large language models (LLMs) with external knowledge but still suffers from long contexts and disjoint retrieval-generation optimization. In this work, we propose CLaRa (Continuous Latent Reasoning), a unified framework that performs embedding-based compression and joint optimization in a shared continuous space. To obtain semantically rich and retrievable compressed vectors, we introduce SCP, a key-preserving data synthesis framework using QA and paraphrase supervision. CLaRa then trains the reranker and generator end-to-end via a single language modeling loss, with gradients flowing through both modules using a differentiable top-k estimator. Theoretically, this unified optimization aligns retrieval relevance with answer quality. Experiments across multiple QA benchmarks show that CLaRa achieves state-of-the-art compression and reranking performance, often surpassing text-based fine-tuned baselines.
☆ Gender Bias in Emotion Recognition by Large Language Models AAAI 2026
The rapid advancement of large language models (LLMs) and their growing integration into daily life underscore the importance of evaluating and ensuring their fairness. In this work, we examine fairness within the domain of emotional theory of mind, investigating whether LLMs exhibit gender biases when presented with a description of a person and their environment and asked, "How does this person feel?". Furthermore, we propose and evaluate several debiasing strategies, demonstrating that achieving meaningful reductions in bias requires training based interventions rather than relying solely on inference-time prompt-based approaches such as prompt engineering.
comment: Accepted at AAAI 2026 Workshop (WS37)
☆ Scaling Agentic Reinforcement Learning for Tool-Integrated Reasoning in VLMs
While recent vision-language models (VLMs) demonstrate strong image understanding, their ability to "think with images", i.e., to reason through multi-step visual interactions, remains limited. We introduce VISTA-Gym, a scalable training environment for incentivizing tool-integrated visual reasoning capabilities in VLMs. VISTA-Gym unifies diverse real-world multimodal reasoning tasks (7 tasks from 13 datasets in total) with a standardized interface for visual tools (e.g., grounding, parsing), executable interaction loops, verifiable feedback signals, and efficient trajectory logging, enabling visual agentic reinforcement learning at scale. While recent VLMs exhibit strong text-only reasoning, both proprietary and open-source models still struggle with tool selection, invocation, and coordination. With VISTA-Gym, we train VISTA-R1 to interleave tool-use with agentic reasoning via multi-turn trajectory sampling and end-to-end reinforcement learning. Extensive experiments across 11 public reasoning-intensive VQA benchmarks show that VISTA-R1-8B outperforms state-of-the-art baselines with similar sizes by 9.51%-18.72%, demonstrating VISTA-Gym as an effective training ground to unlock the tool-integrated reasoning capabilities for VLMs.
comment: 17 pages, 9 figures, work in progress
☆ What does it mean to understand language?
Language understanding entails not just extracting the surface-level meaning of the linguistic input, but constructing rich mental models of the situation it describes. Here we propose that because processing within the brain's core language system is fundamentally limited, deeply understanding language requires exporting information from the language system to other brain regions that compute perceptual and motor representations, construct mental models, and store our world knowledge and autobiographical memories. We review the existing evidence for this hypothesis, and argue that recent progress in cognitive neuroscience provides both the conceptual foundation and the methods to directly test it, thus opening up a new strategy to reveal what it means, cognitively and neurally, to understand language.
☆ Comparative Analysis of LoRA-Adapted Embedding Models for Clinical Cardiology Text Representation
Domain-specific text embeddings are critical for clinical natural language processing, yet systematic comparisons across model architectures remain limited. This study evaluates ten transformer-based embedding models adapted for cardiology through Low-Rank Adaptation (LoRA) fine-tuning on 106,535 cardiology text pairs derived from authoritative medical textbooks. Results demonstrate that encoder-only architectures, particularly BioLinkBERT, achieve superior domain-specific performance (separation score: 0.510) compared to larger decoder-based models, while requiring significantly fewer computational resources. The findings challenge the assumption that larger language models necessarily produce better domain-specific embeddings and provide practical guidance for clinical NLP system development. All models, training code, and evaluation datasets are publicly available to support reproducible research in medical informatics.
comment: 25 pages, 13 figures, 5 tables
☆ Can LLMs Faithfully Explain Themselves in Low-Resource Languages? A Case Study on Emotion Detection in Persian
Large language models (LLMs) are increasingly used to generate self-explanations alongside their predictions, a practice that raises concerns about the faithfulness of these explanations, especially in low-resource languages. This study evaluates the faithfulness of LLM-generated explanations in the context of emotion classification in Persian, a low-resource language, by comparing the influential words identified by the model against those identified by human annotators. We assess faithfulness using confidence scores derived from token-level log-probabilities. Two prompting strategies, differing in the order of explanation and prediction (Predict-then-Explain and Explain-then-Predict), are tested for their impact on explanation faithfulness. Our results reveal that while LLMs achieve strong classification performance, their generated explanations often diverge from faithful reasoning, showing greater agreement with each other than with human judgments. These results highlight the limitations of current explanation methods and metrics, emphasizing the need for more robust approaches to ensure LLM reliability in multilingual and low-resource contexts.
☆ Fara-7B: An Efficient Agentic Model for Computer Use
Progress in computer use agents (CUAs) has been constrained by the absence of large and high-quality datasets that capture how humans interact with a computer. While LLMs have thrived on abundant textual data, no comparable corpus exists for CUA trajectories. To address these gaps, we introduce FaraGen, a novel synthetic data generation system for multi-step web tasks. FaraGen can propose diverse tasks from frequently used websites, generate multiple solution attempts, and filter successful trajectories using multiple verifiers. It achieves high throughput, yield, and diversity for multi-step web tasks, producing verified trajectories at approximately $1 each. We use this data to train Fara-7B, a native CUA model that perceives the computer using only screenshots, executes actions via predicted coordinates, and is small enough to run on-device. We find that Fara-7B outperforms other CUA models of comparable size on benchmarks like WebVoyager, Online-Mind2Web, and WebTailBench -- our novel benchmark that better captures under-represented web tasks in pre-existing benchmarks. Furthermore, Fara-7B is competitive with much larger frontier models, illustrating key benefits of scalable data generation systems in advancing small efficient agentic models. We are making Fara-7B open-weight on Microsoft Foundry and HuggingFace, and we are releasing WebTailBench.
☆ Efficient Multi-Hop Question Answering over Knowledge Graphs via LLM Planning and Embedding-Guided Search
Multi-hop question answering over knowledge graphs remains computationally challenging due to the combinatorial explosion of possible reasoning paths. Recent approaches rely on expensive Large Language Model (LLM) inference for both entity linking and path ranking, limiting their practical deployment. Additionally, LLM-generated answers often lack verifiable grounding in structured knowledge. We present two complementary hybrid algorithms that address both efficiency and verifiability: (1) LLM-Guided Planning that uses a single LLM call to predict relation sequences executed via breadth-first search, achieving near-perfect accuracy (micro-F1 > 0.90) while ensuring all answers are grounded in the knowledge graph, and (2) Embedding-Guided Neural Search that eliminates LLM calls entirely by fusing text and graph embeddings through a lightweight 6.7M-parameter edge scorer, achieving over 100 times speedup with competitive accuracy. Through knowledge distillation, we compress planning capability into a 4B-parameter model that matches large-model performance at zero API cost. Evaluation on MetaQA demonstrates that grounded reasoning consistently outperforms ungrounded generation, with structured planning proving more transferable than direct answer generation. Our results show that verifiable multi-hop reasoning does not require massive models at inference time, but rather the right architectural inductive biases combining symbolic structure with learned representations.
♻ ☆ MiniF2F in Rocq: Automatic Translation Between Proof Assistants -- A Case Study
In this work, we conduct an experiment using state-of-the-art LLMs to translate MiniF2F into Rocq. The translation task focuses on generating a Rocq theorem based on three sources: a natural language description, the Lean formalization, and the Isabelle formalization. We conducted our experiment in 3 stages of increasing complexity, from basic one-shot prompting to multi-turn conversations that incorporate feedback from unsuccessful attempts. At each stage, we perform multiple rounds of translation using increasingly advanced models: GPT-4o mini, Claude 3.5 Sonnet, o1 mini, and o1. We successfully translated 478 out of 488 theorems. The dataset is opensource: https://github.com/LLM4Rocq/miniF2F-rocq.
♻ ☆ Information Extraction From Fiscal Documents Using LLMs
Large Language Models (LLMs) have demonstrated remarkable capabilities in text comprehension, but their ability to process complex, hierarchical tabular data remains underexplored. We present a novel approach to extracting structured data from multi-page government fiscal documents using LLM-based techniques. Applied to annual fiscal documents from the State of Karnataka in India (200+ pages), our method achieves high accuracy through a multi-stage pipeline that leverages domain knowledge, sequential context, and algorithmic validation. A large challenge with traditional OCR methods is the inability to verify the accurate extraction of numbers. When applied to fiscal data, the inherent structure of fiscal tables, with totals at each level of the hierarchy, allows for robust internal validation of the extracted data. We use these hierarchical relationships to create multi-level validation checks. We demonstrate that LLMs can read tables and also process document-specific structural hierarchies, offering a scalable process for converting PDF-based fiscal disclosures into research-ready databases. Our implementation shows promise for broader applications across developing country contexts.
comment: 6 pages. Presented at the AI for Financial Inclusion, Risk Modeling and Resilience in Emerging Markets workshop at ACM ICAIF 2025 Singapore
♻ ☆ PEANuT: Parameter-Efficient Adaptation with Weight-aware Neural Tweakers
Fine-tuning large pre-trained foundation models often yields excellent downstream performance but is prohibitively expensive when updating all parameters. Parameter-efficient fine-tuning (PEFT) methods such as LoRA alleviate this by introducing lightweight update modules, yet they commonly rely on weight-agnostic linear approximations, limiting their expressiveness. In this work, we propose PEANuT, a novel PEFT framework that introduces weight-aware neural tweakers, compact neural modules that generate task-adaptive updates conditioned on frozen pre-trained weights. PEANuT provides a flexible yet efficient way to capture complex update patterns without full model tuning. We theoretically show that PEANuT achieves equivalent or greater expressivity than existing linear PEFT methods with comparable or fewer parameters. Extensive experiments across four benchmarks with over twenty datasets demonstrate that PEANuT consistently outperforms strong baselines in both NLP and vision tasks, while maintaining low computational overhead.
♻ ☆ Sentence Smith: Controllable Edits for Evaluating Text Embeddings EMNLP 2025
Controllable and transparent text generation has been a long-standing goal in NLP. Almost as long-standing is a general idea for addressing this challenge: Parsing text to a symbolic representation, and generating from it. However, earlier approaches were hindered by parsing and generation insufficiencies. Using modern parsers and a safety supervision mechanism, we show how close current methods come to this goal. Concretely, we propose the Sentence Smith framework for English, which has three steps: 1. Parsing a sentence into a semantic graph. 2. Applying human-designed semantic manipulation rules. 3. Generating text from the manipulated graph. A final entailment check (4.) verifies the validity of the applied transformation. To demonstrate our framework's utility, we use it to induce hard negative text pairs that challenge text embedding models. Since the controllable generation makes it possible to clearly isolate different types of semantic shifts, we can evaluate text embedding models in a fine-grained way, also addressing an issue in current benchmarking where linguistic phenomena remain opaque. Human validation confirms that our transparent generation process produces texts of good quality. Notably, our way of generation is very resource-efficient, since it relies only on smaller neural networks.
comment: EMNLP 2025 (main), this version fixes a subscript typo in Eq 1
♻ ☆ Enhancing Domain-Specific Encoder Models with LLM-Generated Data: How to Leverage Ontologies, and How to Do Without Them EMNLP 2025
We investigate the use of LLM-generated data for continual pretraining of encoder models in specialized domains with limited training data, using the scientific domain of invasion biology as a case study. To this end, we leverage domain-specific ontologies by enriching them with LLM-generated data and pretraining the encoder model as an ontology-informed embedding model for concept definitions. To evaluate the effectiveness of this method, we compile a benchmark specifically designed for assessing model performance in invasion biology. After demonstrating substantial improvements over standard LLM pretraining, we investigate the feasibility of applying the proposed approach to domains without comprehensive ontologies by substituting ontological concepts with concepts automatically extracted from a small corpus of scientific abstracts and establishing relationships between concepts through distributional statistics. Our results demonstrate that this automated approach achieves comparable performance using only a small set of scientific abstracts, resulting in a fully automated pipeline for enhancing domain-specific understanding of small encoder models that is especially suited for application in low-resource settings and achieves performance comparable to masked language modeling pretraining on much larger datasets.
comment: Published in the Findings of the Association for Computational Linguistics: EMNLP 2025
♻ ☆ How does Alignment Enhance LLMs' Multilingual Capabilities? A Language Neurons Perspective AAAI 2026
Multilingual Alignment is an effective and representative paradigm to enhance LLMs' multilingual capabilities, which transfers the capabilities from the high-resource languages to the low-resource languages. Meanwhile, some research on language-specific neurons provides a new perspective to analyze and understand LLMs' mechanisms. However, we find that there are many neurons that are shared by multiple but not all languages and cannot be correctly classified. In this work, we propose a ternary classification methodology that categorizes neurons into three types, including language-specific neurons, language-related neurons, and general neurons. And we propose a corresponding identification algorithm to distinguish these different types of neurons. Furthermore, based on the distributional characteristics of different types of neurons, we divide the LLMs' internal process for multilingual inference into four parts: (1) multilingual understanding, (2) shared semantic space reasoning, (3) multilingual output space transformation, and (4) vocabulary space outputting. Additionally, we systematically analyze the models before and after alignment with a focus on different types of neurons. We also analyze the phenomenon of ''Spontaneous Multilingual Alignment''. Overall, our work conducts a comprehensive investigation based on different types of neurons, providing empirical results and valuable insights to better understand multilingual alignment and multilingual capabilities of LLMs.
comment: AAAI 2026 (Oral)
♻ ☆ ContrastScore: Towards Higher Quality, Less Biased, More Efficient Evaluation Metrics with Contrastive Evaluation ACL 2025
Evaluating the quality of generated text automatically remains a significant challenge. Conventional reference-based metrics have been shown to exhibit relatively weak correlation with human evaluations. Recent research advocates the use of large language models (LLMs) as source-based metrics for natural language generation (NLG) assessment. While promising, LLM-based metrics, particularly those using smaller models, still fall short in aligning with human judgments. In this work, we introduce ContrastScore, a contrastive evaluation metric designed to enable higher-quality, less biased, and more efficient assessment of generated text. We evaluate ContrastScore on two NLG tasks: machine translation and summarization. Experimental results show that ContrastScore consistently achieves stronger correlation with human judgments than both single-model and ensemble-based baselines. Notably, ContrastScore based on Qwen 3B and 0.5B even outperforms Qwen 7B, despite having only half as many parameters, demonstrating its efficiency. Furthermore, it effectively mitigates common evaluation biases such as length and likelihood preferences, resulting in more robust automatic evaluation.
comment: Accepted at AACL 2025 (Main Conference Paper)
♻ ☆ Strategic Innovation Management in the Age of Large Language Models Market Intelligence, Adaptive R&D, and Ethical Governance
This study analyzes the multiple functions of Large Language Models (LLMs) in transforming research and development (R&D) processes. By automating knowledge discovery, boosting hypothesis creation, integrating transdisciplinary insights, and enabling cooperation within innovation ecosystems, LLMs dramatically improve the efficiency and effectiveness of research processes. Through extensive analysis of scientific literature, patent databases, and experimental data, these models enable more flexible and informed R&D workflows, ultimately accelerating innovation cycles and lowering time-to-market for breakthrough ideas.
♻ ☆ Word-level Annotation of GDPR Transparency Compliance in Privacy Policies using Large Language Models
Ensuring transparency of data practices related to personal information is a core requirement of the General Data Protection Regulation (GDPR). However, large-scale compliance assessment remains challenging due to the complexity and diversity of privacy policy language. Manual audits are labour-intensive and inconsistent, while current automated methods often lack the granularity required to capture nuanced transparency disclosures. In this paper, we present a modular large language model (LLM)-based pipeline for fine-grained word-level annotation of privacy policies with respect to GDPR transparency requirements. Our approach integrates LLM-driven annotation with passage-level classification, retrieval-augmented generation, and a self-correction mechanism to deliver scalable, context-aware annotations across 21 GDPR-derived transparency requirements. To support empirical evaluation, we compile a corpus of 703,791 English-language privacy policies and generate a ground-truth sample of 200 manually annotated policies based on a comprehensive, GDPR-aligned annotation scheme. We propose a two-tiered evaluation methodology capturing both passage-level classification and span-level annotation quality and conduct a comparative analysis of seven state-of-the-art LLMs on two annotation schemes, including the widely used OPP-115 dataset. The results of our evaluation show that decomposing the annotation task and integrating targeted retrieval and classification components significantly improve annotation accuracy, particularly for well-structured requirements. Our work provides new empirical resources and methodological foundations for advancing automated transparency compliance assessment at scale.
comment: Accepted to Proceedings on Privacy Enhancing Technologies (PoPETs) 1 (2026)
♻ ☆ A Survey of Generative Categories and Techniques in Multimodal Generative Models
Multimodal Generative Models (MGMs) have rapidly evolved beyond text generation, now spanning diverse output modalities including images, music, video, human motion, and 3D objects, by integrating language with other sensory modalities under unified architectures. This survey categorises six primary generative modalities and examines how foundational techniques, namely Self-Supervised Learning (SSL), Mixture of Experts (MoE), Reinforcement Learning from Human Feedback (RLHF), and Chain-of-Thought (CoT) prompting, enable cross-modal capabilities. We analyze key models, architectural trends, and emergent cross-modal synergies, while highlighting transferable techniques and unresolved challenges. Building on a common taxonomy of models and training recipes, we propose a unified evaluation framework centred on faithfulness, compositionality, and robustness, and synthesise evidence from benchmarks and human studies across modalities. We further analyse trustworthiness, safety, and ethical risks, including multimodal bias, privacy leakage, and the misuse of high-fidelity media generation for deepfakes, disinformation, and copyright infringement in music and 3D assets, together with emerging mitigation strategies. Finally, we discuss how architectural trends, evaluation protocols, and governance mechanisms can be co-designed to close current capability and safety gaps, outlining critical paths toward more general-purpose, controllable, and accountable multimodal generative systems.
♻ ☆ Live-SWE-agent: Can Software Engineering Agents Self-Evolve on the Fly?
Large Language Models (LLMs) are reshaping almost all industries, including software engineering. In recent years, a number of LLM agents have been proposed to solve real-world software problems. Such software agents are typically equipped with a suite of coding tools and can autonomously decide the next actions to form complete trajectories to solve end-to-end software tasks. While promising, they typically require dedicated design and may still be suboptimal, since it can be extremely challenging and costly to exhaust the entire agent scaffold design space. Recognizing that software agents are inherently software themselves that can be further refined/modified, researchers have proposed a number of self-improving software agents recently, including the Darwin-Gödel Machine (DGM). Meanwhile, such self-improving agents require costly offline training on specific benchmarks and may not generalize well across different LLMs or benchmarks. In this paper, we propose Live-SWE-agent, the first live software agent that can autonomously and continuously evolve itself on-the-fly during runtime when solving real-world software problems. More specifically, Live-SWE-agent starts with the most basic agent scaffold with only access to bash tools (e.g., mini-SWE-agent), and autonomously evolves its own scaffold implementation while solving real-world software problems. Our evaluation on the widely studied SWE-bench Verified benchmark shows that LIVE-SWE-AGENT can achieve an impressive solve rate of 77.4% without test-time scaling, outperforming all existing software agents, including the best proprietary solution. Moreover, Live-SWE-agent outperforms state-of-the-art manually crafted software agents on the recent SWE-Bench Pro benchmark, achieving the best-known solve rate of 45.8%.
♻ ☆ Lost in translation: using global fact-checks to measure multilingual misinformation prevalence, spread, and evolution
Misinformation and disinformation are growing threats in the digital age, affecting people across languages and borders. However, no research has investigated the prevalence of multilingual misinformation and quantified the extent to which misinformation diffuses across languages. This paper investigates the prevalence and dynamics of multilingual misinformation through an analysis of 264,487 fact-checks spanning 95 languages. To study the evolution of claims over time and mutations across languages, we represent fact-checks with multilingual sentence embeddings and build a graph where semantically similar claims are linked. We provide quantitative evidence of repeated fact-checking efforts and establish that claims diffuse across languages. Specifically, we find that while the majority of misinformation claims are only fact-checked once, 10.26%, corresponding to more than 27,000 claims, are checked multiple times. Using fact-checks as a proxy for the spread of misinformation, we find 32.26% of repeated claims cross linguistic boundaries, suggesting that some misinformation permeates language barriers. However, spreading patterns exhibit strong assortativity, with misinformation more likely to spread within the same language or language family. Next we show that fact-checkers take more time to fact-check claims that have crossed language barriers and model the temporal and cross-lingual evolution of claims. We analyze connected components and shortest paths connecting different versions of a claim finding that claims gradually drift over time and undergo greater alteration when traversing languages. Misinformation changes over time, reducing the effectiveness of static claim matching algorithms. The findings advocate for expanded information sharing between fact-checkers globally while underscoring the importance of localized verification.
♻ ☆ In-Situ Tweedie Discrete Diffusion Models
While diffusion models excel at generating continuous data such as images, adapting them to discrete tasks has relied on indirect approaches that either operate in continuous embedding spaces or use token masking mechanisms, both of which deviate from modeling the true discrete data distribution that can be theoretically guaranteed by Tweedie's formula. We propose in-situ Tweedie Discrete Diffusion (TDD), a framework that performs diffusion guaranteed by Tweedie's formula directly within the discrete one-hot space, hence "in-situ." Unlike prior methods that diffuse continuous embeddings or mask tokens, TDD directly corrupts one-hot vectors with Gaussian noise and performs iterative denoising through a timestep-conditioned cross-entropy objective rather than mean-squared-error reconstruction. At each denoising step, the model predicts class probabilities, applies argmax to obtain discrete predictions, converts them to one-hot vectors, and feeds them into the next iteration with progressively reduced noise. This process naturally unifies discriminative classification and generative modeling under a single framework. Experiments demonstrate that TDD achieves strong performance on both image classification and text generation tasks, with extensive ablation studies confirming the effectiveness of each design component. Our work establishes a principled approach to discrete diffusion that preserves the core characteristics of diffusion models while operating natively in discrete space.
♻ ☆ AbstRaL: Augmenting LLMs' Reasoning by Reinforcing Abstract Thinking
Recent studies have shown that large language models (LLMs), especially smaller ones, often lack robustness in grade school math (GSM) reasoning. In particular, they tend to experience performance drops when faced with distribution shifts, such as changes to numerical or nominal variables, or insertions of distracting clauses. A possible strategy to address this involves generating synthetic data to further "instantiate" reasoning problems on potential variations. In this work, we instead focuses on the strategy of "abstracting" reasoning problems. This not only helps counteract distribution shifts but also facilitates the connection to symbolic tools for deriving solutions. Focusing on GSM, we find that this abstraction process is better acquired through reinforcement learning (RL) than just supervised fine-tuning, which often fails to produce faithful abstractions. Our method, AbstRaL -- which promotes abstract reasoning in LLMs using RL on granular abstraction data -- significantly mitigates performance degradation on recent GSM perturbation benchmarks. Besides, improving GSM robustness via AbstRaL is shown to also implicitly benefit LLMs' capabilities on OOD mathematical and general reasoning tasks, indicating that abstract thinking broadly enables better generalizability.
comment: Under review
♻ ☆ URLs Help, Topics Guide: Understanding Metadata Utility in LLM Training NeurIPS 2025
Large Language Models (LLMs) are commonly pretrained on vast corpora of text without utilizing contextual metadata such as source, quality, or topic, leading to a context-free learning paradigm. While recent studies suggest that adding metadata like URL information as context (i.e., auxiliary inputs not used in the loss calculation) can improve training efficiency and downstream performance, they offer limited understanding of which types of metadata are truly effective and under what conditions. In this work, we conduct a systematic evaluation and find that not all metadata types contribute equally. Only URL context speeds up training, whereas quality scores and topic/format domain information offer no clear benefit. Furthermore, the improved downstream performances of URL conditioning emerge only when longer prompts are used at inference time. In addition, we demonstrate that context-aware pretraining enables more controllable generation than context-free pretraining, in a classifier-free guidance fashion. Although topic and format metadata do not accelerate training, they are effective for steering outputs, offering human-interpretable control over generation.
comment: NeurIPS 2025, Camera Ready
♻ ☆ ModernBERT is More Efficient than Conventional BERT for Chest CT Findings Classification in Japanese Radiology Reports
Japanese language models for medical text classification face challenges with complex vocabulary and linguistic structures in radiology reports. This study compared three Japanese models--BERT Base, JMedRoBERTa, and ModernBERT--for multi-label classification of 18 chest CT findings. Using the CT-RATE-JPN dataset, all models were fine-tuned under identical conditions. ModernBERT showed clear efficiency advantages, producing substantially fewer tokens and achieving faster training and inference than the other models while maintaining comparable performance on the internal test dataset (exact match accuracy: 74.7% vs. 72.7% for BERT Base). To assess generalizability, we additionally constructed RR-Findings, an external dataset of 243 naturally written Japanese radiology reports annotated using the same schema. Under this domain-shifted setting, performance differences became pronounced: BERT Base outperformed both JMedRoBERTa and ModernBERT, whereas ModernBERT showed the largest decline in exact match accuracy. Average precision differences were smaller, indicating that ModernBERT retained reasonable ranking ability despite reduced calibration. Overall, ModernBERT offers substantial computational efficiency and strong in-domain performance but remains sensitive to real-world linguistic variability. These results highlight the need for more diverse natural-language training data and domain-specific calibration strategies to improve robustness when deploying modern transformer models in heterogeneous clinical environments.
comment: 31 pages
♻ ☆ Entropy-Guided Reasoning Compression
Large reasoning models have demonstrated remarkable performance on complex reasoning tasks, yet the excessive length of their chain-of-thought outputs remains a major practical bottleneck due to high computation cost and poor deployability. Existing compression methods have achieved partial success but overlook a crucial phenomenon in the training process -- the entropy conflict. During compression training, entropy decreases, leading to shorter reasoning but limited exploration, while accuracy-oriented objectives increase entropy, lengthening reasoning chains. This can cause the model to get stuck in a local dilemma. Our analysis further reveals the origin of the entropy conflict: many high-entropy tokens are logical connectors that receive larger gradients and are encouraged under the performance objective, while the compression objective simultaneously penalizes these potentially redundant connectors. This opposing pressure creates a direct source of entropy conflict. To address these issues, we adopt an entropy-guided training framework. As entropy descends, the model is guided toward efficient reasoning by encouraging concise thought steps; as entropy rises, exploration is reinforced under the compact reasoning mode to improve robustness. Experiments on six mathematical benchmarks show that our method compresses reasoning length to 20% of the original while maintaining or even surpassing baseline accuracy. Code and models will be released publicly.
comment: 10pages, 4 figures
♻ ☆ Agent-OM: Leveraging LLM Agents for Ontology Matching
Ontology matching (OM) enables semantic interoperability between different ontologies and resolves their conceptual heterogeneity by aligning related entities. OM systems currently have two prevailing design paradigms: conventional knowledge-based expert systems and newer machine learning-based predictive systems. While large language models (LLMs) and LLM agents have revolutionised data engineering and have been applied creatively in many domains, their potential for OM remains underexplored. This study introduces a novel agent-powered LLM-based design paradigm for OM systems. With consideration of several specific challenges in leveraging LLM agents for OM, we propose a generic framework, namely Agent-OM (Agent for Ontology Matching), consisting of two Siamese agents for retrieval and matching, with a set of OM tools. Our framework is implemented in a proof-of-concept system. Evaluations of three Ontology Alignment Evaluation Initiative (OAEI) tracks over state-of-the-art OM systems show that our system can achieve results very close to the long-standing best performance on simple OM tasks and can significantly improve the performance on complex and few-shot OM tasks.
comment: 31 pages
♻ ☆ TRIM: Token Reduction and Inference Modeling for Cost-Effective Language Generation
The high inference cost of Large Language Models (LLMs) poses challenges, especially for tasks requiring lengthy outputs. However, natural language often contains redundancy, which presents an opportunity for optimization. We have observed that LLMs can generate distilled language (i.e., concise outputs that retain essential meaning) when prompted appropriately. We propose TRIM, a pipeline for saving computational cost in which the LLM omits a predefined set of semantically irrelevant and easily inferable words based on the context during inference. Then, a specifically trained smaller language model with lower inference cost reconstructs the distilled answer into the ideal answer. Our experiments show promising results, particularly on the proposed NaLDA evaluation dataset focused on the reconstruction task, with 19.4% saved tokens on average for GPT-4o and only a tiny decrease in evaluation metrics. This suggests that the approach can effectively balance efficiency and accuracy in language processing tasks.
comment: 16 pages, 9 tables, 5 figures
♻ ☆ Safeguarding Privacy of Retrieval Data against Membership Inference Attacks: Is This Query Too Close to Home? EMNLP
Retrieval-augmented generation (RAG) mitigates the hallucination problem in large language models (LLMs) and has proven effective for personalized usages. However, delivering private retrieved documents directly to LLMs introduces vulnerability to membership inference attacks (MIAs), which try to determine whether the target data point exists in the private external database or not. Based on the insight that MIA queries typically exhibit high similarity to only one target document, we introduce a novel similarity-based MIA detection framework designed for the RAG system. With the proposed method, we show that a simple detect-and-hide strategy can successfully obfuscate attackers, maintain data utility, and remain system-agnostic against MIA. We experimentally prove its detection and defense against various state-of-the-art MIA methods and its adaptability to existing RAG systems.
comment: Accepted for EMNLP findings 2025
♻ ☆ Evaluation of OpenAI o1: Opportunities and Challenges of AGI
This comprehensive study evaluates the performance of OpenAI's o1-preview large language model across a diverse array of complex reasoning tasks, spanning multiple domains, including computer science, mathematics, natural sciences, medicine, linguistics, and social sciences. Through rigorous testing, o1-preview demonstrated remarkable capabilities, often achieving human-level or superior performance in areas ranging from coding challenges to scientific reasoning and from language processing to creative problem-solving. Key findings include: -83.3% success rate in solving complex competitive programming problems, surpassing many human experts. -Superior ability in generating coherent and accurate radiology reports, outperforming other evaluated models. -100% accuracy in high school-level mathematical reasoning tasks, providing detailed step-by-step solutions. -Advanced natural language inference capabilities across general and specialized domains like medicine. -Impressive performance in chip design tasks, outperforming specialized models in areas such as EDA script generation and bug analysis. -Remarkable proficiency in anthropology and geology, demonstrating deep understanding and reasoning in these specialized fields. -Strong capabilities in quantitative investing. O1 has comprehensive financial knowledge and statistical modeling skills. -Effective performance in social media analysis, including sentiment analysis and emotion recognition. The model excelled particularly in tasks requiring intricate reasoning and knowledge integration across various fields. While some limitations were observed, including occasional errors on simpler problems and challenges with certain highly specialized concepts, the overall results indicate significant progress towards artificial general intelligence.
♻ ☆ Beyond SELECT: A Comprehensive Taxonomy-Guided Benchmark for Real-World Text-to-SQL Translation
Text-to-SQL datasets are essential for training and evaluating text-to-SQL models, but existing datasets often suffer from limited coverage and fail to capture the diversity of real-world applications. To address this, we propose a novel taxonomy for text-to-SQL classification based on dimensions including core intents, statement types, syntax structures, and key actions. Using this taxonomy, we evaluate widely used public text-to-SQL datasets (e.g., Spider and Bird) and reveal limitations in their coverage and diversity. We then introduce a taxonomy-guided dataset synthesis pipeline, yielding a new dataset named SQL-Synth. This approach combines the taxonomy with Large Language Models (LLMs) to ensure the dataset reflects the breadth and complexity of real-world text-to-SQL applications. Extensive analysis and experimental results validate the effectiveness of our taxonomy, as SQL-Synth exhibits greater diversity and coverage compared to existing benchmarks. Moreover, we uncover that existing LLMs typically fall short in adequately capturing the full range of scenarios, resulting in limited performance on SQL-Synth. However, fine-tuning can substantially improve their performance in these scenarios. The proposed taxonomy has significant potential impact, as it not only enables comprehensive analysis of datasets and the performance of different LLMs, but also guides the construction of training data for LLMs.
♻ ☆ SGM: A Framework for Building Specification-Guided Moderation Filters
Aligning large language models (LLMs) with deployment-specific requirements is critical but inherently imperfect. Despite extensive training, models remain susceptible to misalignment and adversarial inputs such as jailbreaks. Content moderation filters are commonly used as external safeguards, though they typically focus narrowly on safety. We introduce SGM (Specification-Guided Moderation), a flexible framework for training moderation filters grounded in user-defined specifications that go beyond standard safety concerns. SGM automates training data generation without relying on human-written examples, enabling scalable support for diverse, application-specific alignment goals. SGM-trained filters perform on par with state-of-the-art safety filters built on curated datasets, while supporting fine-grained and user-defined alignment control.
♻ ☆ DataSage: Multi-agent Collaboration for Insight Discovery with External Knowledge Retrieval, Multi-role Debating, and Multi-path Reasoning
In today's data-driven era, fully automated end-to-end data analytics, particularly insight discovery, is critical for discovering actionable insights that assist organizations in making effective decisions. With the rapid advancement of large language models (LLMs), LLM-driven agents have emerged as a promising paradigm for automating data analysis and insight discovery. However, existing data insight agents remain limited in several key aspects, often failing to deliver satisfactory results due to: (1) insufficient utilization of domain knowledge, (2) shallow analytical depth, and (3) error-prone code generation during insight generation. To address these issues, we propose DataSage, a novel multi-agent framework that incorporates three innovative features including external knowledge retrieval to enrich the analytical context, a multi-role debating mechanism to simulate diverse analytical perspectives and deepen analytical depth, and multi-path reasoning to improve the accuracy of the generated code and insights. Extensive experiments on InsightBench demonstrate that DataSage consistently outperforms existing data insight agents across all difficulty levels, offering an effective solution for automated data insight discovery.
♻ ☆ Don't Take the Premise for Granted: Evaluating the Premise Critique Ability of Large Language Models EMNLP 2025
Large language models (LLMs) have witnessed rapid advancements, demonstrating remarkable capabilities. However, a notable vulnerability persists: LLMs often uncritically accept flawed or contradictory premises, leading to inefficient reasoning and unreliable outputs. This emphasizes the significance of possessing the \textbf{Premise Critique Ability} for LLMs, defined as the capacity to proactively identify and articulate errors in input premises. Most existing studies assess LLMs' reasoning ability in ideal settings, largely ignoring their vulnerabilities when faced with flawed premises. Thus, we introduce the \textbf{Premise Critique Bench (PCBench)}, designed by incorporating four error types across three difficulty levels, paired with multi-faceted evaluation metrics. We conducted systematic evaluations of 15 representative LLMs. Our findings reveal: (1) Most models rely heavily on explicit prompts to detect errors, with limited autonomous critique; (2) Premise critique ability depends on question difficulty and error type, with direct contradictions being easier to detect than complex or procedural errors; (3) Reasoning ability does not consistently correlate with the premise critique ability; (4) Flawed premises trigger overthinking in reasoning models, markedly lengthening responses due to repeated attempts at resolving conflicts. These insights underscore the urgent need to enhance LLMs' proactive evaluation of input validity, positioning premise critique as a foundational capability for developing reliable, human-centric systems. The code is available at https://github.com/MLGroupJLU/Premise_Critique.
comment: EMNLP 2025 Findings camera-ready version
♻ ☆ Next-Generation Database Interfaces: A Survey of LLM-based Text-to-SQL
Generating accurate SQL from users' natural language questions (text-to-SQL) remains a long-standing challenge due to the complexities involved in user question understanding, database schema comprehension, and SQL generation. Traditional text-to-SQL systems, which combine human engineering and deep neural networks, have made significant progress. Subsequently, pre-trained language models (PLMs) have been developed for text-to-SQL tasks, achieving promising results. However, as modern databases and user questions grow more complex, PLMs with a limited parameter size often produce incorrect SQL. This necessitates more sophisticated and tailored optimization methods, which restricts the application of PLM-based systems. Recently, large language models (LLMs) have shown significant capabilities in natural language understanding as model scale increases. Thus, integrating LLM-based solutions can bring unique opportunities, improvements, and solutions to text-to-SQL research. In this survey, we provide a comprehensive review of existing LLM-based text-to-SQL studies. Specifically, we offer a brief overview of the technical challenges and evolutionary process of text-to-SQL. Next, we introduce the datasets and metrics designed to evaluate text-to-SQL systems. Subsequently, we present a systematic analysis of recent advances in LLM-based text-to-SQL. Finally, we make a summarization and discuss the remaining challenges in this field and suggest expectations for future research directions. All the related resources of LLM-based, including research papers, benchmarks, and open-source projects, are collected for the community in our repository: https://github.com/DEEP-PolyU/Awesome-LLM-based-Text2SQL.
comment: Accepted to IEEE TKDE2025
♻ ☆ Systematic Reward Gap Optimization for Mitigating VLM Hallucinations NeurIPS 2025
The success of Direct Preference Optimization (DPO) in mitigating hallucinations in Vision Language Models (VLMs) critically hinges on the true reward gaps within preference pairs. However, current methods, typically relying on ranking or rewriting strategies, often struggle to optimize these reward gaps in a systematic way during data curation. A core difficulty lies in precisely characterizing and strategically manipulating the overall reward gap configuration, that is, the deliberate design of how to shape these reward gaps within each preference pair across the data. To address this, we introduce Topic-level Preference Rewriting(TPR), a novel framework designed for the systematic optimization of reward gap configuration. Through selectively replacing semantic topics within VLM responses with model's own resampled candidates for targeted rewriting, TPR can provide topic-level control over fine-grained semantic details. This precise control enables advanced data curation strategies, such as progressively adjusting the difficulty of rejected responses, thereby sculpting an effective reward gap configuration that guides the model to overcome challenging hallucinations. Comprehensive experiments demonstrate TPR achieves state-of-the-art performance on multiple hallucination benchmarks, outperforming previous methods by an average of 20%. Notably, it significantly reduces hallucinations by up to 93% on ObjectHal-Bench, and also exhibits superior data efficiency towards robust and cost-effective VLM alignment. Code and datasets are available at https://tpr-dpo.github.io .
comment: 34 pages, 12 figures, Accepted by NeurIPS 2025
♻ ☆ IAG: Input-aware Backdoor Attack on VLM-based Visual Grounding
Recent advances in vision-language models (VLMs) have significantly enhanced the visual grounding task, which involves locating objects in an image based on natural language queries. Despite these advancements, the security of VLM-based grounding systems has not been thoroughly investigated. This paper reveals a novel and realistic vulnerability: the first multi-target backdoor attack on VLM-based visual grounding. Unlike prior attacks that rely on static triggers or fixed targets, we propose IAG, a method that dynamically generates input-aware, text-guided triggers conditioned on any specified target object description to execute the attack. This is achieved through a text-conditioned UNet that embeds imperceptible target semantic cues into visual inputs while preserving normal grounding performance on benign samples. We further develop a joint training objective that balances language capability with perceptual reconstruction to ensure imperceptibility, effectiveness, and stealth. Extensive experiments on multiple VLMs (e.g., LLaVA, InternVL, Ferret) and benchmarks (RefCOCO, RefCOCO+, RefCOCOg, Flickr30k Entities, and ShowUI) demonstrate that IAG achieves the best ASRs compared with other baselines on almost all settings without compromising clean accuracy, maintaining robustness against existing defenses, and exhibiting transferability across datasets and models. These findings underscore critical security risks in grounding-capable VLMs and highlight the need for further research on trustworthy multimodal understanding.
comment: 20 pages, 13 Figures
♻ ☆ BiasJailbreak:Analyzing Ethical Biases and Jailbreak Vulnerabilities in Large Language Models AAAI 2026
Although large language models (LLMs) demonstrate impressive proficiency in various tasks, they present potential safety risks, such as `jailbreaks', where malicious inputs can coerce LLMs into generating harmful content bypassing safety alignments. In this paper, we delve into the ethical biases in LLMs and examine how those biases could be exploited for jailbreaks. Notably, these biases result in a jailbreaking success rate in GPT-4o models that differs by 20\% between non-binary and cisgender keywords and by 16\% between white and black keywords, even when the other parts of the prompts are identical. We introduce the concept of BiasJailbreak, highlighting the inherent risks posed by these safety-induced biases. BiasJailbreak generates biased keywords automatically by asking the target LLM itself, and utilizes the keywords to generate harmful output. Additionally, we propose an efficient defense method BiasDefense, which prevents jailbreak attempts by injecting defense prompts prior to generation. BiasDefense stands as an appealing alternative to Guard Models, such as Llama-Guard, that require additional inference cost after text generation. Our findings emphasize that ethical biases in LLMs can actually lead to generating unsafe output, and suggest a method to make the LLMs more secure and unbiased. To enable further research and improvements, we open-source our code and artifacts of BiasJailbreak, providing the community with tools to better understand and mitigate safety-induced biases in LLMs.
comment: Accepted as a workshop paper at AAAI 2026
♻ ☆ Can Code-Switched Texts Activate a Knowledge Switch in LLMs? A Case Study on English-Korean Code-Switching EMNLP 2025
Recent large language models (LLMs) demonstrate multilingual abilities, yet they are English-centric due to dominance of English in training corpora. The limited resource for low-resource languages remains a crucial challenge. Code-switching (CS), a phenomenon where multilingual speakers alternate between languages in a discourse, can convey subtle cultural and linguistic nuances that can be otherwise lost in translation and elicits language-specific knowledge in human communications. In light of this, we investigate whether code-switching can activate, or identify and leverage knowledge for reasoning when LLMs solve low-resource language tasks. To facilitate the research, we first present EnKoQA, a synthetic English-Korean CS question-answering dataset. We provide comprehensive analysis on a variety of multilingual LLMs by subdividing activation process into knowledge identification and knowledge leveraging. Our results demonstrate that compared to English text, CS can faithfully activate knowledge inside LLMs especially on language-specific domains, suggesting the potential of code-switching on low-resource language tasks.
comment: Accepted to EMNLP 2025 Findings
♻ ☆ SlimInfer: Accelerating Long-Context LLM Inference via Dynamic Token Pruning
Long-context inference for Large Language Models (LLMs) is heavily limited by high computational demands. While several existing methods optimize attention computation, they still process the full set of hidden states at each layer, limiting overall efficiency. In this work, we propose SlimInfer, an innovative framework that aims to accelerate inference by directly pruning less critical prompt tokens during the forward pass. Our key insight is an information diffusion phenomenon: As information from critical tokens propagates through layers, it becomes distributed across the entire sequence. This diffusion process suggests that LLMs can maintain their semantic integrity when excessive tokens, even including these critical ones, are pruned in hidden states. Motivated by this, SlimInfer introduces a dynamic fine-grained pruning mechanism that accurately removes redundant tokens of hidden state at intermediate layers. This layer-wise pruning naturally enables an asynchronous KV cache manager that prefetches required token blocks without complex predictors, reducing both memory usage and I/O costs. Extensive experiments show that SlimInfer can achieve up to $\mathbf{2.53\times}$ time-to-first-token (TTFT) speedup and $\mathbf{1.88\times}$ end-to-end latency reduction for LLaMA3.1-8B-Instruct on a single RTX 4090, without sacrificing performance on LongBench. Our code is available at https://github.com/Longxmas/SlimInfer.
♻ ☆ REAL-Prover: Retrieval Augmented Lean Prover for Mathematical Reasoning
Nowadays, formal theorem provers have made monumental progress on high-school and competition-level mathematics, but few of them generalize to more advanced mathematics. In this paper, we present REAL-Prover, a new open-source stepwise theorem prover for Lean 4 to push this boundary. This prover, based on our fine-tuned large language model (REAL-Prover-v1) and integrated with a retrieval system (Leansearch-PS), notably boosts performance on solving college-level mathematics problems. To train REAL-Prover-v1, we developed HERALD-AF, a data extraction pipeline that converts natural language math problems into formal statements, and a new open-source Lean 4 interactive environment (Jixia-interactive) to facilitate synthesis data collection. In our experiments, our prover using only supervised fine-tune achieves competitive results with a 23.7% success rate (Pass@64) on the ProofNet dataset-comparable to state-of-the-art (SOTA) models. To further evaluate our approach, we introduce FATE-M, a new benchmark focused on algebraic problems, where our prover achieves a SOTA success rate of 56.7% (Pass@64).
♻ ☆ Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated notable success in enhancing the reasoning performance of large language models (LLMs), particularly on mathematics and programming tasks. Similar to how traditional RL helps agents explore and learn new strategies, RLVR is believed to enable LLMs to continuously self-improve, thus acquiring novel reasoning abilities beyond those of the corresponding base models. In this study we critically examine the current state of RLVR by systematically probing the reasoning capability boundaries of RLVR-trained LLMs across various model families, RL algorithms, and math, coding, and visual reasoning benchmarks, using pass@k at large k values as the evaluation metric. Surprisingly, we find that the current training setup does not elicit fundamentally new reasoning patterns. While RLVR-trained models outperform their base models at small k (e.g., k = 1), the base models achieve a higher pass@k score when k is large. Coverage and perplexity analyses show that the observed reasoning abilities originate from and are bounded by the base model. Treating the base model as an upper bound, our quantitative analysis shows that six popular RLVR algorithms perform similarly and remain far from optimal in leveraging the potential of the base model. By contrast, we find that distillation can introduce new reasoning patterns from the teacher and genuinely expand the model's reasoning capabilities. Overall, our findings suggest that current RLVR methods have not yet realized the potential of RL to elicit truly novel reasoning abilities in LLMs. This highlights the need for improved RL paradigms, such as continual scaling and multi-turn agent-environment interaction, to unlock this potential.
comment: 31 pages, 27 figures
♻ ☆ SproutBench: A Benchmark for Safe and Ethical Large Language Models for Youth AAAI 2026
The rapid proliferation of large language models (LLMs) in applications targeting children and adolescents necessitates a fundamental reassessment of prevailing AI safety frameworks, which are largely tailored to adult users and neglect the distinct developmental vulnerabilities of minors. This paper highlights key deficiencies in existing LLM safety benchmarks, including their inadequate coverage of age-specific cognitive, emotional, and social risks spanning early childhood (ages 0--6), middle childhood (7--12), and adolescence (13--18). To bridge these gaps, we introduce SproutBench, an innovative evaluation suite comprising 1,283 developmentally grounded adversarial prompts designed to probe risks such as emotional dependency, privacy violations, and imitation of hazardous behaviors. Through rigorous empirical evaluation of 47 diverse LLMs, we uncover substantial safety vulnerabilities, corroborated by robust inter-dimensional correlations (e.g., between Safety and Risk Prevention) and a notable inverse relationship between Interactivity and Age Appropriateness. These insights yield practical guidelines for advancing child-centric AI design and deployment.
comment: Accepted in AAAI 2026 Workshop on AI for Education
♻ ☆ SATA: A Paradigm for LLM Jailbreak via Simple Assistive Task Linkage ACL
Large language models (LLMs) have made significant advancements across various tasks, but their safety alignment remain a major concern. Exploring jailbreak prompts can expose LLMs' vulnerabilities and guide efforts to secure them. Existing methods primarily design sophisticated instructions for the LLM to follow, or rely on multiple iterations, which could hinder the performance and efficiency of jailbreaks. In this work, we propose a novel jailbreak paradigm, Simple Assistive Task Linkage (SATA), which can effectively circumvent LLM safeguards and elicit harmful responses. Specifically, SATA first masks harmful keywords within a malicious query to generate a relatively benign query containing one or multiple [MASK] special tokens. It then employs a simple assistive task such as a masked language model task or an element lookup by position task to encode the semantics of the masked keywords. Finally, SATA links the assistive task with the masked query to jointly perform the jailbreak. Extensive experiments show that SATA achieves state-of-the-art performance and outperforms baselines by a large margin. Specifically, on AdvBench dataset, with mask language model (MLM) assistive task, SATA achieves an overall attack success rate (ASR) of 85% and harmful score (HS) of 4.57, and with element lookup by position (ELP) assistive task, SATA attains an overall ASR of 76% and HS of 4.43.
comment: ACL Findings 2025. Welcome to employ SATA as a baseline
♻ ☆ Can Large Language Models Detect Misinformation in Scientific News Reporting?
Scientific facts are often spun in the popular press with the intent to influence public opinion and action, as was evidenced during the COVID-19 pandemic. Automatic detection of misinformation in the scientific domain is challenging because of the distinct styles of writing in these two media types and is still in its nascence. Most research on the validity of scientific reporting treats this problem as a claim verification challenge. In doing so, significant expert human effort is required to generate appropriate claims. Our solution bypasses this step and addresses a more real-world scenario where such explicit, labeled claims may not be available. The central research question of this paper is whether it is possible to use large language models (LLMs) to detect misinformation in scientific reporting. To this end, we first present a new labeled dataset SciNews, containing 2.4k scientific news stories drawn from trusted and untrustworthy sources, paired with related abstracts from the CORD-19 database. Our dataset includes both human-written and LLM-generated news articles, making it more comprehensive in terms of capturing the growing trend of using LLMs to generate popular press articles. Then, we identify dimensions of scientific validity in science news articles and explore how this can be integrated into the automated detection of scientific misinformation. We propose several baseline architectures using LLMs to automatically detect false representations of scientific findings in the popular press. For each of these architectures, we use several prompt engineering strategies including zero-shot, few-shot, and chain-of-thought prompting. We also test these architectures and prompting strategies on GPT-3.5, GPT-4, and Llama2-7B, Llama2-13B.
♻ ☆ GMoE: Empowering LLMs Fine-Tuning via MoE Graph Collaboration
The sparse Mixture-of-Experts (MoE) architecture of large language models (LLMs) confronts an inherent issue of load imbalance arising from the simplistic linear router strategy, which ultimately causes the instability and inefficient learning of LLMs. To address this challenge, we introduce a novel MoE graph-based framework $\textbf{GMoE}$, aimed at enhancing the collaboration among multiple experts. In GMoE, a graph router function is designed to capture the collaboration signals among experts. This enables all experts to dynamically allocate information derived from input data by sharing information with their neighboring experts. Moreover, we put forward two coordination strategies in GMoE: the $\textit{Poisson distribution-based distinction strategy}$ and the $\textit{Normal distribution-based balance strategy}$, to further release the capacity of each expert and increase the model stability in the fine-tuning of LLMs. Specifically, we leverage a parameter-efficient fine-tuning technique, i.e., Low-Rank Adaptation (LoRA), to implement the graph MoE architecture. Extensive experiments on four real-world benchmark datasets demonstrate the effectiveness of GMoE, showing the benefits of facilitating collaborations of multiple experts in LLM fine-tuning. The code of experimental implementation is available at https://github.com/BAI-LAB/GMoE
comment: 9 pages, 25 figures
♻ ☆ Ellipsoid-Based Decision Boundaries for Open Intent Classification
Textual open intent classification is crucial for real-world dialogue systems, enabling robust detection of unknown user intents without prior knowledge and contributing to the robustness of the system. While adaptive decision boundary methods have shown great potential by eliminating manual threshold tuning, existing approaches assume isotropic distributions of known classes, restricting boundaries to balls and overlooking distributional variance along different directions. To address this limitation, we propose EliDecide, a novel method that learns ellipsoid decision boundaries with varying scales along different feature directions. First, we employ supervised contrastive learning to obtain a discriminative feature space for known samples. Second, we apply learnable matrices to parameterize ellipsoids as the boundaries of each known class, offering greater flexibility than spherical boundaries defined solely by centers and radii. Third, we optimize the boundaries via a novelly designed dual loss function that balances empirical and open-space risks: expanding boundaries to cover known samples while contracting them against synthesized pseudo-open samples. Our method achieves state-of-the-art performance on multiple text intent benchmarks and further on a question classification dataset. The flexibility of the ellipsoids demonstrates superior open intent detection capability and strong potential for generalization to more text classification tasks in diverse complex open-world scenarios.
♻ ☆ Beyond Multiple Choice: Verifiable OpenQA for Robust Vision-Language RFT
Multiple-choice question answering (MCQA) has been a popular format for evaluating and reinforcement fine-tuning (RFT) of modern multimodal language models. Its constrained output format allows for simplified, deterministic automatic verification. However, we find that the options may leak exploitable signals, which makes the accuracy metrics unreliable for indicating real capabilities and encourages explicit or implicit answer guessing behaviors during RFT. We propose ReVeL (Rewrite and Verify by LLM), a framework that rewrites multiple-choice questions into open-form questions while keeping answers verifiable whenever possible. The framework categorizes questions according to different answer types, apply different rewriting and verification schemes, respectively. When applied for RFT, we converted 20k MCQA examples and use GRPO to finetune Qwen2.5-VL models. Models trained on ReVeL-OpenQA match MCQA accuracy on multiple-choice benchmarks and improve OpenQA accuracy by about six percentage points, indicating better data efficiency and more robust reward signals than MCQA-based training. When used for evaluation, ReVeL also reveals up to 20 percentage points of score inflation in MCQA benchmarks (relative to OpenQA), improves judging accuracy, and reduces both cost and latency. We will release code and data publicly.
comment: Project url: https://flageval-baai.github.io/ReVeL/
♻ ☆ Personalized LLM Decoding via Contrasting Personal Preference EMNLP 2025
As large language models (LLMs) are progressively deployed in various real-world applications, personalization of LLMs has become increasingly important. While various approaches to LLM personalization such as prompt-based and training-based methods have been actively explored, the development of effective decoding-time algorithms remains largely overlooked, despite their demonstrated potential. In this paper, we propose CoPe (Contrasting Personal Preference), a novel decoding-time approach applied after performing parameter-efficient fine-tuning (PEFT) on user-specific data. Our core idea is to leverage reward-guided decoding specifically for personalization by maximizing each user's implicit reward signal. We evaluate CoPe across five open-ended personalized text generation tasks. Our empirical results demonstrate that CoPe achieves strong performance, improving personalization by an average of 10.57% in ROUGE-L, without relying on external reward models or additional training procedures.
comment: EMNLP 2025 Main
♻ ☆ Advancing Multi-Agent RAG Systems with Minimalist Reinforcement Learning
Large Language Models (LLMs) equipped with modern Retrieval-Augmented Generation (RAG) systems often employ multi-turn interaction pipelines to interface with search engines for complex reasoning tasks. However, such multi-turn interactions inevitably produce long intermediate contexts, as context length grows exponentially with exploration depth. This leads to a well-known limitation of LLMs: their difficulty in effectively leveraging information from long contexts. This problem is further amplified in RAG systems that depend on in-context learning, where few-shot demonstrations must also be included in the prompt, compounding the context-length bottleneck. To address these challenges, we propose Mujica-MyGo, a unified framework for efficient multi-turn reasoning in RAG. Inspired by the divide-and-conquer principle, we introduce Mujica (Multi-hop Joint Intelligence for Complex Question Answering), a multi-agent RAG workflow that decomposes multi-turn interactions into cooperative sub-interactions, thereby mitigating long-context issues. To eliminate the dependency on in-context learning, we further develop MyGO (Minimalist Policy Gradient Optimization), a lightweight and efficient reinforcement learning algorithm that enables effective post-training of LLMs within complex RAG pipelines. We provide theoretical guarantees for MyGO's convergence to the optimal policy. Empirical evaluations across diverse question-answering benchmarks, covering both text corpora and knowledge graphs, show that Mujica-MyGO achieves superior performance.
♻ ☆ Mixture of Attention Spans: Optimizing LLM Inference Efficiency with Heterogeneous Sliding-Window Lengths
Sliding-window attention offers a hardware-efficient solution to the memory and throughput challenges of Large Language Models (LLMs) in long-context scenarios. Existing methods typically employ a single window length across all attention heads and input sizes. However, this uniform approach fails to capture the heterogeneous attention patterns inherent in LLMs, ignoring their distinct accuracy-latency trade-offs. To address this challenge, we propose *Mixture of Attention Spans* (MoA), which automatically tailors distinct sliding-window length configurations to different heads and layers. MoA constructs and navigates a search space of various window lengths and their scaling rules relative to input sizes. It profiles the model, evaluates potential configurations, and pinpoints the optimal length configurations for each head. MoA adapts to varying input sizes, revealing that some attention heads expand their focus to accommodate longer inputs, while other heads consistently concentrate on fixed-length local contexts. Experiments show that MoA increases the effective context length by 3.9x with the same average sliding-window length, boosting retrieval accuracy by 1.5-7.1x over the uniform-window baseline across Vicuna-{7B, 13B} and Llama3-{8B, 70B} models. Moreover, MoA narrows the performance gap with full attention, reducing the maximum relative performance drop from 9%-36% to within 5% across three long-context understanding benchmarks. MoA achieves a 1.2-1.4x GPU memory reduction, boosting decode throughput by 6.6-8.2x and 1.7-1.9x over FlashAttention2 and vLLM, with minimal performance impact. Our code is available at: https://github.com/thu-nics/MoA
comment: Published at CoLM'25
♻ ☆ The magnitude of categories of texts enriched by language models
The purpose of this article is twofold. Firstly, we use the next-token probabilities given by a language model to explicitly define a category of texts in natural language enriched over the unit interval, in the sense of Bradley, Terilla, and Vlassopoulos. We consider explicitly the terminating conditions for text generation and determine when the enrichment itself can be interpreted as a probability over texts. Secondly, we compute the Möbius function and the magnitude of an associated generalized metric space of texts. The magnitude function of that space is a sum over texts (prompts) of the $t$-logarithmic (Tsallis) entropies of the next-token probability distributions associated with each prompt, plus the cardinality of the model's possible outputs. A suitable evaluation of the magnitude function's derivative recovers a sum of Shannon entropies, which justifies seeing magnitude as a partition function. Following Leinster and Shulman, we also express the magnitude function of the generalized metric space as an Euler characteristic of magnitude homology and provide an explicit description of the zeroeth and first magnitude homology groups.
comment: 26 pages
♻ ☆ Large language models replicate and predict human cooperation across experiments in game theory
Large language models (LLMs) are increasingly used both to make decisions in domains such as health, education and law, and to simulate human behavior. Yet how closely LLMs mirror actual human decision-making remains poorly understood. This gap is critical: misalignment could produce harmful outcomes in practical applications, while failure to replicate human behavior renders LLMs ineffective for social simulations. Here, we address this gap by developing a digital twin of game-theoretic experiments and introducing a systematic prompting and probing framework for machine-behavioral evaluation. Testing three open-source models (Llama, Mistral and Qwen), we find that Llama reproduces human cooperation patterns with high fidelity, capturing human deviations from rational choice theory, while Qwen aligns closely with Nash equilibrium predictions. Notably, we achieved population-level behavioral replication without persona-based prompting, simplifying the simulation process. Extending beyond the original human-tested games, we generate and preregister testable hypotheses for novel game configurations outside the original parameter grid. Our findings demonstrate that appropriately calibrated LLMs can replicate aggregate human behavioral patterns and enable systematic exploration of unexplored experimental spaces, offering a complementary approach to traditional research in the social and behavioral sciences that generates new empirical predictions about human social decision-making.
♻ ☆ Gram2Vec: An Interpretable Document Vectorizer
We present Gram2Vec, a grammatical style embedding system that embeds documents into a higher dimensional space by extracting the normalized relative frequencies of grammatical features present in the text. Compared to neural approaches, Gram2Vec offers inherent interpretability based on how the feature vectors are generated. In this paper, we use authorship verification and AI detection as two applications to show how Gram2Vec can be used. For authorship verification, we use the features from Gram2Vec to explain why a pair of documents is by the same or by different authors. We also demonstrate how Gram2Vec features can be used to train a classifier for AI detection, outperforming machine learning models trained on a comparable set of Biber features.
comment: 8 pages, 1 figure
Computer Vision and Pattern Recognition 100
☆ LumiTex: Towards High-Fidelity PBR Texture Generation with Illumination Context
Physically-based rendering (PBR) provides a principled standard for realistic material-lighting interactions in computer graphics. Despite recent advances in generating PBR textures, existing methods fail to address two fundamental challenges: 1) materials decomposition from image prompts under limited illumination cues, and 2) seamless and view-consistent texture completion. To this end, we propose LumiTex, an end-to-end framework that comprises three key components: (1) a multi-branch generation scheme that disentangles albedo and metallic-roughness under shared illumination priors for robust material understanding, (2) a lighting-aware material attention mechanism that injects illumination context into the decoding process for physically grounded generation of albedo, metallic, and roughness maps, and (3) a geometry-guided inpainting module based on a large view synthesis model that enriches texture coverage and ensures seamless, view-consistent UV completion. Extensive experiments demonstrate that LumiTex achieves state-of-the-art performance in texture quality, surpassing both existing open-source and commercial methods.
comment: Project page: https://lumitex.vercel.app
☆ VDC-Agent: When Video Detailed Captioners Evolve Themselves via Agentic Self-Reflection
We present VDC-Agent, a self-evolving framework for Video Detailed Captioning that requires neither human annotations nor larger teacher models. The agent forms a closed loop of caption generation, principle-guided scoring (score and textual suggestions), and prompt refinement. When caption quality regresses, a self-reflection path leverages the previous chain-of-thought to amend the update. Running this process on unlabeled videos produces trajectories of (caption, score) pairs. We convert the trajectories into preference tuples and filter out samples with JSON parsing errors, resulting in VDC-Agent-19K, which contains 18,886 automatically constructed pairs. We then fine-tune the base MLLM on this dataset using an easy-to-hard curriculum direct preference optimization. Built on Qwen2.5-VL-7B-Instruct, our VDC-Agent-7B attains state-of-the-art performance on the VDC benchmark with 49.08% average accuracy and 2.50 score, surpassing specialized video captioners and improving over the base model by +5.13% accuracy and +0.27 score at similar inference cost.
☆ Are Image-to-Video Models Good Zero-Shot Image Editors?
Large-scale video diffusion models show strong world simulation and temporal reasoning abilities, but their use as zero-shot image editors remains underexplored. We introduce IF-Edit, a tuning-free framework that repurposes pretrained image-to-video diffusion models for instruction-driven image editing. IF-Edit addresses three key challenges: prompt misalignment, redundant temporal latents, and blurry late-stage frames. It includes (1) a chain-of-thought prompt enhancement module that transforms static editing instructions into temporally grounded reasoning prompts; (2) a temporal latent dropout strategy that compresses frame latents after the expert-switch point, accelerating denoising while preserving semantic and temporal coherence; and (3) a self-consistent post-refinement step that sharpens late-stage frames using a short still-video trajectory. Experiments on four public benchmarks, covering non-rigid editing, physical and temporal reasoning, and general instruction edits, show that IF-Edit performs strongly on reasoning-centric tasks while remaining competitive on general-purpose edits. Our study provides a systematic view of video diffusion models as image editors and highlights a simple recipe for unified video-image generative reasoning.
comment: technical report
☆ Breaking the Likelihood-Quality Trade-off in Diffusion Models by Merging Pretrained Experts ICLR 2025
Diffusion models for image generation often exhibit a trade-off between perceptual sample quality and data likelihood: training objectives emphasizing high-noise denoising steps yield realistic images but poor likelihoods, whereas likelihood-oriented training overweights low-noise steps and harms visual fidelity. We introduce a simple plug-and-play sampling method that combines two pretrained diffusion experts by switching between them along the denoising trajectory. Specifically, we apply an image-quality expert at high noise levels to shape global structure, then switch to a likelihood expert at low noise levels to refine pixel statistics. The approach requires no retraining or fine-tuning -- only the choice of an intermediate switching step. On CIFAR-10 and ImageNet32, the merged model consistently matches or outperforms its base components, improving or preserving both likelihood and sample quality relative to each expert alone. These results demonstrate that expert switching across noise levels is an effective way to break the likelihood-quality trade-off in image diffusion models.
comment: ICLR 2025 DeLTa workshop
☆ Mixture of Horizons in Action Chunking
Vision-language-action (VLA) models have shown remarkable capabilities in robotic manipulation, but their performance is sensitive to the $\textbf{action chunk length}$ used during training, termed $\textbf{horizon}$. Our empirical study reveals an inherent trade-off: longer horizons provide stronger global foresight but degrade fine-grained accuracy, while shorter ones sharpen local control yet struggle on long-term tasks, implying fixed choice of single horizons being suboptimal. To mitigate the trade-off, we propose a $\textbf{mixture of horizons (MoH)}$ strategy. MoH rearranges the action chunk into several segments with different horizons, processes them in parallel with a shared action transformer, and fuses outputs with a light linear gate. It has three appealing benefits. 1) MoH exploits long-term foresight and short-term precision jointly within a single model, improving both performance and generalizability to complex tasks. 2) MoH is plug-and-play for full-attention action modules with minimal training or inference overhead. 3) MoH enables dynamic inference with adaptive horizons, which selects stable actions through cross-horizon consensus, achieving 2.5$\times$ higher throughput than baselines while preserving superior performance. Extensive experiments over flow-based policies $π_0$, $π_{0.5}$, and one-step regression policy $π_{\text{reg}}$ demonstrate that MoH yields consistent and significant gains on both simulations and real-world tasks. Notably, under mixed-task setting, $π_{0.5}$ with MoH reaches a new state-of-the-art with 99$\%$ average success rate on LIBERO after only $30k$ training iterations. Project page: https://github.com/Timsty1/MixtureOfHorizons
comment: 15 pages, 14 figures
☆ Cloud4D NeurIPS 2025
There has been great progress in improving numerical weather prediction and climate models using machine learning. However, most global models act at a kilometer-scale, making it challenging to model individual clouds and factors such as extreme precipitation, wind gusts, turbulence, and surface irradiance. Therefore, there is a need to move towards higher-resolution models, which in turn require high-resolution real-world observations that current instruments struggle to obtain. We present Cloud4D, the first learning-based framework that reconstructs a physically consistent, four-dimensional cloud state using only synchronized ground-based cameras. Leveraging a homography-guided 2D-to-3D transformer, Cloud4D infers the full 3D distribution of liquid water content at 25 m spatial and 5 s temporal resolution. By tracking the 3D liquid water content retrievals over time, Cloud4D additionally estimates horizontal wind vectors. Across a two-month deployment comprising six skyward cameras, our system delivers an order-of-magnitude improvement in space-time resolution relative to state-of-the-art satellite measurements, while retaining single-digit relative error ($<10\%$) against collocated radar measurements. Code and data are available on our project page https://cloud4d.jacob-lin.com/.
comment: NeurIPS 2025 Spotlight, project page: https://cloud4d.jacob-lin.com/
☆ Cook and Clean Together: Teaching Embodied Agents for Parallel Task Execution AAAI 2026
Task scheduling is critical for embodied AI, enabling agents to follow natural language instructions and execute actions efficiently in 3D physical worlds. However, existing datasets often simplify task planning by ignoring operations research (OR) knowledge and 3D spatial grounding. In this work, we propose Operations Research knowledge-based 3D Grounded Task Scheduling (ORS3D), a new task that requires the synergy of language understanding, 3D grounding, and efficiency optimization. Unlike prior settings, ORS3D demands that agents minimize total completion time by leveraging parallelizable subtasks, e.g., cleaning the sink while the microwave operates. To facilitate research on ORS3D, we construct ORS3D-60K, a large-scale dataset comprising 60K composite tasks across 4K real-world scenes. Furthermore, we propose GRANT, an embodied multi-modal large language model equipped with a simple yet effective scheduling token mechanism to generate efficient task schedules and grounded actions. Extensive experiments on ORS3D-60K validate the effectiveness of GRANT across language understanding, 3D grounding, and scheduling efficiency. The code is available at https://github.com/H-EmbodVis/GRANT
comment: Accepted to AAAI 2026 (Oral). The code is available at \url{https://github.com/H-EmbodVis/GRANT}
☆ Flow Map Distillation Without Data
State-of-the-art flow models achieve remarkable quality but require slow, iterative sampling. To accelerate this, flow maps can be distilled from pre-trained teachers, a procedure that conventionally requires sampling from an external dataset. We argue that this data-dependency introduces a fundamental risk of Teacher-Data Mismatch, as a static dataset may provide an incomplete or even misaligned representation of the teacher's full generative capabilities. This leads us to question whether this reliance on data is truly necessary for successful flow map distillation. In this work, we explore a data-free alternative that samples only from the prior distribution, a distribution the teacher is guaranteed to follow by construction, thereby circumventing the mismatch risk entirely. To demonstrate the practical viability of this philosophy, we introduce a principled framework that learns to predict the teacher's sampling path while actively correcting for its own compounding errors to ensure high fidelity. Our approach surpasses all data-based counterparts and establishes a new state-of-the-art by a significant margin. Specifically, distilling from SiT-XL/2+REPA, our method reaches an impressive FID of 1.45 on ImageNet 256x256, and 1.49 on ImageNet 512x512, both with only 1 sampling step. We hope our work establishes a more robust paradigm for accelerating generative models and motivates the broader adoption of flow map distillation without data.
☆ Ref-SAM3D: Bridging SAM3D with Text for Reference 3D Reconstruction
SAM3D has garnered widespread attention for its strong 3D object reconstruction capabilities. However, a key limitation remains: SAM3D cannot reconstruct specific objects referred to by textual descriptions, a capability that is essential for practical applications such as 3D editing, game development, and virtual environments. To address this gap, we introduce Ref-SAM3D, a simple yet effective extension to SAM3D that incorporates textual descriptions as a high-level prior, enabling text-guided 3D reconstruction from a single RGB image. Through extensive qualitative experiments, we show that Ref-SAM3D, guided only by natural language and a single 2D view, delivers competitive and high-fidelity zero-shot reconstruction performance. Our results demonstrate that Ref-SAM3D effectively bridges the gap between 2D visual cues and 3D geometric understanding, offering a more flexible and accessible paradigm for reference-guided 3D reconstruction. Code is available at: https://github.com/FudanCVL/Ref-SAM3D.
comment: Code: https://github.com/FudanCVL/Ref-SAM3D
☆ SAM3-Adapter: Efficient Adaptation of Segment Anything 3 for Camouflage Object Segmentation, Shadow Detection, and Medical Image Segmentation
The rapid rise of large-scale foundation models has reshaped the landscape of image segmentation, with models such as Segment Anything achieving unprecedented versatility across diverse vision tasks. However, previous generations-including SAM and its successor-still struggle with fine-grained, low-level segmentation challenges such as camouflaged object detection, medical image segmentation, cell image segmentation, and shadow detection. To address these limitations, we originally proposed SAM-Adapter in 2023, demonstrating substantial gains on these difficult scenarios. With the emergence of Segment Anything 3 (SAM3)-a more efficient and higher-performing evolution with a redesigned architecture and improved training pipeline-we revisit these long-standing challenges. In this work, we present SAM3-Adapter, the first adapter framework tailored for SAM3 that unlocks its full segmentation capability. SAM3-Adapter not only reduces computational overhead but also consistently surpasses both SAM and SAM2-based solutions, establishing new state-of-the-art results across multiple downstream tasks, including medical imaging, camouflaged (concealed) object segmentation, and shadow detection. Built upon the modular and composable design philosophy of the original SAM-Adapter, SAM3-Adapter provides stronger generalizability, richer task adaptability, and significantly improved segmentation precision. Extensive experiments confirm that integrating SAM3 with our adapter yields superior accuracy, robustness, and efficiency compared to all prior SAM-based adaptations. We hope SAM3-Adapter can serve as a foundation for future research and practical segmentation applications. Code, pre-trained models, and data processing pipelines are available.
☆ Chain-of-Visual-Thought: Teaching VLMs to See and Think Better with Continuous Visual Tokens
Vision-Language Models (VLMs) excel at reasoning in linguistic space but struggle with perceptual understanding that requires dense visual perception, e.g., spatial reasoning and geometric awareness. This limitation stems from the fact that current VLMs have limited mechanisms to capture dense visual information across spatial dimensions. We introduce Chain-of-Visual-Thought (COVT), a framework that enables VLMs to reason not only in words but also through continuous visual tokens-compact latent representations that encode rich perceptual cues. Within a small budget of roughly 20 tokens, COVT distills knowledge from lightweight vision experts, capturing complementary properties such as 2D appearance, 3D geometry, spatial layout, and edge structure. During training, the VLM with COVT autoregressively predicts these visual tokens to reconstruct dense supervision signals (e.g., depth, segmentation, edges, and DINO features). At inference, the model reasons directly in the continuous visual token space, preserving efficiency while optionally decoding dense predictions for interpretability. Evaluated across more than ten diverse perception benchmarks, including CV-Bench, MMVP, RealWorldQA, MMStar, WorldMedQA, and HRBench, integrating COVT into strong VLMs such as Qwen2.5-VL and LLaVA consistently improves performance by 3% to 16% and demonstrates that compact continuous visual thinking enables more precise, grounded, and interpretable multimodal intelligence.
comment: Project page: https://wakalsprojectpage.github.io/comt-website/
☆ UniGame: Turning a Unified Multimodal Model Into Its Own Adversary
Unified Multimodal Models (UMMs) have shown impressive performance in both understanding and generation with a single architecture. However, UMMs still exhibit a fundamental inconsistency: understanding favors compact embeddings, whereas generation favors reconstruction-rich representations. This structural trade-off produces misaligned decision boundaries, degraded cross-modal coherence, and heightened vulnerability under distributional and adversarial shifts. In this paper, we present UniGame, a self-adversarial post-training framework that directly targets the inconsistencies. By applying a lightweight perturber at the shared token interface, UniGame enables the generation branch to actively seek and challenge fragile understanding, turning the model itself into its own adversary. Experiments demonstrate that UniGame significantly improves the consistency (+4.6%). Moreover, it also achieves substantial improvements in understanding (+3.6%), generation (+0.02), out-of-distribution and adversarial robustness (+4.8% and +6.2% on NaturalBench and AdVQA). The framework is architecture-agnostic, introduces less than 1% additional parameters, and is complementary to existing post-training methods. These results position adversarial self-play as a general and effective principle for enhancing the coherence, stability, and unified competence of future multimodal foundation models. The official code is available at: https://github.com/AIFrontierLab/UniGame
☆ In-Video Instructions: Visual Signals as Generative Control
Large-scale video generative models have recently demonstrated strong visual capabilities, enabling the prediction of future frames that adhere to the logical and physical cues in the current observation. In this work, we investigate whether such capabilities can be harnessed for controllable image-to-video generation by interpreting visual signals embedded within the frames as instructions, a paradigm we term In-Video Instruction. In contrast to prompt-based control, which provides textual descriptions that are inherently global and coarse, In-Video Instruction encodes user guidance directly into the visual domain through elements such as overlaid text, arrows, or trajectories. This enables explicit, spatial-aware, and unambiguous correspondences between visual subjects and their intended actions by assigning distinct instructions to different objects. Extensive experiments on three state-of-the-art generators, including Veo 3.1, Kling 2.5, and Wan 2.2, show that video models can reliably interpret and execute such visually embedded instructions, particularly in complex multi-object scenarios.
☆ Real-Time Object Tracking with On-Device Deep Learning for Adaptive Beamforming in Dynamic Acoustic Environments
Advances in object tracking and acoustic beamforming are driving new capabilities in surveillance, human-computer interaction, and robotics. This work presents an embedded system that integrates deep learning-based tracking with beamforming to achieve precise sound source localization and directional audio capture in dynamic environments. The approach combines single-camera depth estimation and stereo vision to enable accurate 3D localization of moving objects. A planar concentric circular microphone array constructed with MEMS microphones provides a compact, energy-efficient platform supporting 2D beam steering across azimuth and elevation. Real-time tracking outputs continuously adapt the array's focus, synchronizing the acoustic response with the target's position. By uniting learned spatial awareness with dynamic steering, the system maintains robust performance in the presence of multiple or moving sources. Experimental evaluation demonstrates significant gains in signal-to-interference ratio, making the design well-suited for teleconferencing, smart home devices, and assistive technologies.
☆ BackSplit: The Importance of Sub-dividing the Background in Biomedical Lesion Segmentation
Segmenting small lesions in medical images remains notoriously difficult. Most prior work tackles this challenge by either designing better architectures, loss functions, or data augmentation schemes; and collecting more labeled data. We take a different view, arguing that part of the problem lies in how the background is modeled. Common lesion segmentation collapses all non-lesion pixels into a single "background" class, ignoring the rich anatomical context in which lesions appear. In reality, the background is highly heterogeneous-composed of tissues, organs, and other structures that can now be labeled manually or inferred automatically using existing segmentation models. In this paper, we argue that training with fine-grained labels that sub-divide the background class, which we call BackSplit, is a simple yet powerful paradigm that can offer a significant performance boost without increasing inference costs. From an information theoretic standpoint, we prove that BackSplit increases the expected Fisher Information relative to conventional binary training, leading to tighter asymptotic bounds and more stable optimization. With extensive experiments across multiple datasets and architectures, we empirically show that BackSplit consistently boosts small-lesion segmentation performance, even when auxiliary labels are generated automatically using pretrained segmentation models. Additionally, we demonstrate that auxiliary labels derived from interactive segmentation frameworks exhibit the same beneficial effect, demonstrating its robustness, simplicity, and broad applicability.
☆ UISearch: Graph-Based Embeddings for Multimodal Enterprise UI Screenshots Retrieval
Enterprise software companies maintain thousands of user interface screens across products and versions, creating critical challenges for design consistency, pattern discovery, and compliance check. Existing approaches rely on visual similarity or text semantics, lacking explicit modeling of structural properties fundamental to user interface (UI) composition. We present a novel graph-based representation that converts UI screenshots into attributed graphs encoding hierarchical relationships and spatial arrangements, potentially generalizable to document layouts, architectural diagrams, and other structured visual domains. A contrastive graph autoencoder learns embeddings preserving multi-level similarity across visual, structural, and semantic properties. The comprehensive analysis demonstrates that our structural embeddings achieve better discriminative power than state-of-the-art Vision Encoders, representing a fundamental advance in the expressiveness of the UI representation. We implement this representation in UISearch, a multi-modal search framework that combines structural embeddings with semantic search through a composable query language. On 20,396 financial software UIs, UISearch achieves 0.92 Top-5 accuracy with 47.5ms median latency (P95: 124ms), scaling to 20,000+ screens. The hybrid indexing architecture enables complex queries and supports fine-grained UI distinction impossible with vision-only approaches.
comment: 12 pages, 2 figures, 3 algorithms, 4 tables
☆ An Anatomy Aware Hybrid Deep Learning Framework for Lung Cancer Tumor Stage Classification
Accurate lung cancer tumor staging is crucial for prognosis and treatment planning. However, it remains challenging for end-to-end deep learning approaches, as such approaches often overlook spatial and anatomical information that are central to the tumor-node-metastasis system. The tumor stage depends on multiple quantitative criteria, including the tumor size and its proximity to the nearest anatomical structures, and small variations can alter the staging outcome. We propose a medically grounded hybrid pipeline that performs staging by explicitly measuring the tumor's size and distance properties rather than treating it as a pure image classification task. Our method employs specialized encoder-decoder networks to precisely segment the lung and adjacent anatomy, including the lobes, tumor, mediastinum, and diaphragm. Subsequently, we extract the necessary tumor properties, i.e. measure the largest tumor dimension and calculate the distance between the tumor and neighboring anatomical structures by a quantitative analysis of the segmentation masks. Finally, we apply rule-based tumor staging aligned with the medical guidelines. This novel framework has been evaluated on the Lung-PET-CT-Dx dataset, demonstrating superior performance compared to traditional deep learning models, achieving an overall classification accuracy of 91.36%. We report the per-stage F1-scores of 0.93 (T1), 0.89 (T2), 0.96 (T3), and 0.90 (T4), a critical evaluation aspect often omitted in prior literature. To our knowledge, this is the first study that embeds explicit clinical context into tumor stage classification. Unlike standard convolutional neural networks that operate in an uninterpretable "black box" manner, our method offers both state-of-the-art performance and transparent decision support.
☆ DeCo: Frequency-Decoupled Pixel Diffusion for End-to-End Image Generation
Pixel diffusion aims to generate images directly in pixel space in an end-to-end fashion. This approach avoids the limitations of VAE in the two-stage latent diffusion, offering higher model capacity. Existing pixel diffusion models suffer from slow training and inference, as they usually model both high-frequency signals and low-frequency semantics within a single diffusion transformer (DiT). To pursue a more efficient pixel diffusion paradigm, we propose the frequency-DeCoupled pixel diffusion framework. With the intuition to decouple the generation of high and low frequency components, we leverage a lightweight pixel decoder to generate high-frequency details conditioned on semantic guidance from the DiT. This thus frees the DiT to specialize in modeling low-frequency semantics. In addition, we introduce a frequency-aware flow-matching loss that emphasizes visually salient frequencies while suppressing insignificant ones. Extensive experiments show that DeCo achieves superior performance among pixel diffusion models, attaining FID of 1.62 (256x256) and 2.22 (512x512) on ImageNet, closing the gap with latent diffusion methods. Furthermore, our pretrained text-to-image model achieves a leading overall score of 0.86 on GenEval in system-level comparison. Codes are publicly available at https://github.com/Zehong-Ma/DeCo.
comment: Project Page: https://zehong-ma.github.io/DeCo. Code Repository: https://github.com/Zehong-Ma/DeCo
☆ Growing with the Generator: Self-paced GRPO for Video Generation
Group Relative Policy Optimization (GRPO) has emerged as a powerful reinforcement learning paradigm for post-training video generation models. However, existing GRPO pipelines rely on static, fixed-capacity reward models whose evaluation behavior is frozen during training. Such rigid rewards introduce distributional bias, saturate quickly as the generator improves, and ultimately limit the stability and effectiveness of reinforcement-based alignment. We propose Self-Paced GRPO, a competence-aware GRPO framework in which reward feedback co-evolves with the generator. Our method introduces a progressive reward mechanism that automatically shifts its emphasis from coarse visual fidelity to temporal coherence and fine-grained text-video semantic alignment as generation quality increases. This self-paced curriculum alleviates reward-policy mismatch, mitigates reward exploitation, and yields more stable optimization. Experiments on VBench across multiple video generation backbones demonstrate consistent improvements in both visual quality and semantic alignment over GRPO baselines with static rewards, validating the effectiveness and generality of Self-Paced GRPO.
CellFMCount: A Fluorescence Microscopy Dataset, Benchmark, and Methods for Cell Counting
Accurate cell counting is essential in various biomedical research and clinical applications, including cancer diagnosis, stem cell research, and immunology. Manual counting is labor-intensive and error-prone, motivating automation through deep learning techniques. However, training reliable deep learning models requires large amounts of high-quality annotated data, which is difficult and time-consuming to produce manually. Consequently, existing cell-counting datasets are often limited, frequently containing fewer than $500$ images. In this work, we introduce a large-scale annotated dataset comprising $3{,}023$ images from immunocytochemistry experiments related to cellular differentiation, containing over $430{,}000$ manually annotated cell locations. The dataset presents significant challenges: high cell density, overlapping and morphologically diverse cells, a long-tailed distribution of cell count per image, and variation in staining protocols. We benchmark three categories of existing methods: regression-based, crowd-counting, and cell-counting techniques on a test set with cell counts ranging from $10$ to $2{,}126$ cells per image. We also evaluate how the Segment Anything Model (SAM) can be adapted for microscopy cell counting using only dot-annotated datasets. As a case study, we implement a density-map-based adaptation of SAM (SAM-Counter) and report a mean absolute error (MAE) of $22.12$, which outperforms existing approaches (second-best MAE of $27.46$). Our results underscore the value of the dataset and the benchmarking framework for driving progress in automated cell counting and provide a robust foundation for future research and development.
comment: The IEEE International Conference on Data Mining (ICDM) 2025
☆ Syn-GRPO: Self-Evolving Data Synthesis for MLLM Perception Reasoning
RL (reinforcement learning) methods (e.g., GRPO) for MLLM (Multimodal LLM) perception ability has attracted wide research interest owing to its remarkable generalization ability. Nevertheless, existing reinforcement learning methods still face the problem of low data quality, where data samples cannot elicit diverse responses from MLLMs, thus restricting the exploration scope for MLLM reinforcement learning. Some methods attempt to mitigate this problem by imposing constraints on entropy, but none address it at its root. Therefore, to tackle this problem, this work proposes Syn-GRPO (Synthesis-GRPO), which employs an online data generator to synthesize high-quality training data with diverse responses in GRPO training. Specifically, Syn-GRPO consists of two components: (1) data server; (2) GRPO workflow. The data server synthesizes new samples from existing ones using an image generation model, featuring a decoupled and asynchronous scheme to achieve high generation efficiency. The GRPO workflow provides the data server with the new image descriptions, and it leverages a diversity reward to supervise the MLLM to predict image descriptions for synthesizing samples with diverse responses. Experiment results across three visual perception tasks demonstrate that Syn-GRPO improves the data quality by a large margin, achieving significant superior performance to existing MLLM perception methods, and Syn-GRPO presents promising potential for scaling long-term self-evolving RL. Our code is available at https://github.com/hqhQAQ/Syn-GRPO.
☆ POUR: A Provably Optimal Method for Unlearning Representations via Neural Collapse
In computer vision, machine unlearning aims to remove the influence of specific visual concepts or training images without retraining from scratch. Studies show that existing approaches often modify the classifier while leaving internal representations intact, resulting in incomplete forgetting. In this work, we extend the notion of unlearning to the representation level, deriving a three-term interplay between forgetting efficacy, retention fidelity, and class separation. Building on Neural Collapse theory, we show that the orthogonal projection of a simplex Equiangular Tight Frame (ETF) remains an ETF in a lower dimensional space, yielding a provably optimal forgetting operator. We further introduce the Representation Unlearning Score (RUS) to quantify representation-level forgetting and retention fidelity. Building on this, we introduce POUR (Provably Optimal Unlearning of Representations), a geometric projection method with closed-form (POUR-P) and a feature-level unlearning variant under a distillation scheme (POUR-D). Experiments on CIFAR-10/100 and PathMNIST demonstrate that POUR achieves effective unlearning while preserving retained knowledge, outperforming state-of-the-art unlearning methods on both classification-level and representation-level metrics.
☆ MonoMSK: Monocular 3D Musculoskeletal Dynamics Estimation
Reconstructing biomechanically realistic 3D human motion - recovering both kinematics (motion) and kinetics (forces) - is a critical challenge. While marker-based systems are lab-bound and slow, popular monocular methods use oversimplified, anatomically inaccurate models (e.g., SMPL) and ignore physics, fundamentally limiting their biomechanical fidelity. In this work, we introduce MonoMSK, a hybrid framework that bridges data-driven learning and physics-based simulation for biomechanically realistic 3D human motion estimation from monocular video. MonoMSK jointly recovers both kinematics (motions) and kinetics (forces and torques) through an anatomically accurate musculoskeletal model. By integrating transformer-based inverse dynamics with differentiable forward kinematics and dynamics layers governed by ODE-based simulation, MonoMSK establishes a physics-regulated inverse-forward loop that enforces biomechanical causality and physical plausibility. A novel forward-inverse consistency loss further aligns motion reconstruction with the underlying kinetic reasoning. Experiments on BML-MoVi, BEDLAM, and OpenCap show that MonoMSK significantly outperforms state-of-the-art methods in kinematic accuracy, while for the first time enabling precise monocular kinetics estimation.
☆ SteadyDancer: Harmonized and Coherent Human Image Animation with First-Frame Preservation
Preserving first-frame identity while ensuring precise motion control is a fundamental challenge in human image animation. The Image-to-Motion Binding process of the dominant Reference-to-Video (R2V) paradigm overlooks critical spatio-temporal misalignments common in real-world applications, leading to failures such as identity drift and visual artifacts. We introduce SteadyDancer, an Image-to-Video (I2V) paradigm-based framework that achieves harmonized and coherent animation and is the first to ensure first-frame preservation robustly. Firstly, we propose a Condition-Reconciliation Mechanism to harmonize the two conflicting conditions, enabling precise control without sacrificing fidelity. Secondly, we design Synergistic Pose Modulation Modules to generate an adaptive and coherent pose representation that is highly compatible with the reference image. Finally, we employ a Staged Decoupled-Objective Training Pipeline that hierarchically optimizes the model for motion fidelity, visual quality, and temporal coherence. Experiments demonstrate that SteadyDancer achieves state-of-the-art performance in both appearance fidelity and motion control, while requiring significantly fewer training resources than comparable methods.
comment: 10 pages, with supp
☆ SyncMV4D: Synchronized Multi-view Joint Diffusion of Appearance and Motion for Hand-Object Interaction Synthesis
Hand-Object Interaction (HOI) generation plays a critical role in advancing applications across animation and robotics. Current video-based methods are predominantly single-view, which impedes comprehensive 3D geometry perception and often results in geometric distortions or unrealistic motion patterns. While 3D HOI approaches can generate dynamically plausible motions, their dependence on high-quality 3D data captured in controlled laboratory settings severely limits their generalization to real-world scenarios. To overcome these limitations, we introduce SyncMV4D, the first model that jointly generates synchronized multi-view HOI videos and 4D motions by unifying visual prior, motion dynamics, and multi-view geometry. Our framework features two core innovations: (1) a Multi-view Joint Diffusion (MJD) model that co-generates HOI videos and intermediate motions, and (2) a Diffusion Points Aligner (DPA) that refines the coarse intermediate motion into globally aligned 4D metric point tracks. To tightly couple 2D appearance with 4D dynamics, we establish a closed-loop, mutually enhancing cycle. During the diffusion denoising process, the generated video conditions the refinement of the 4D motion, while the aligned 4D point tracks are reprojected to guide next-step joint generation. Experimentally, our method demonstrates superior performance to state-of-the-art alternatives in visual realism, motion plausibility, and multi-view consistency.
comment: Project Page: https://droliven.github.io/SyncMV4D
☆ Evaluating Dataset Watermarking for Fine-tuning Traceability of Customized Diffusion Models: A Comprehensive Benchmark and Removal Approach
Recent fine-tuning techniques for diffusion models enable them to reproduce specific image sets, such as particular faces or artistic styles, but also introduce copyright and security risks. Dataset watermarking has been proposed to ensure traceability by embedding imperceptible watermarks into training images, which remain detectable in outputs even after fine-tuning. However, current methods lack a unified evaluation framework. To address this, this paper establishes a general threat model and introduces a comprehensive evaluation framework encompassing Universality, Transmissibility, and Robustness. Experiments show that existing methods perform well in universality and transmissibility, and exhibit some robustness against common image processing operations, yet still fall short under real-world threat scenarios. To reveal these vulnerabilities, the paper further proposes a practical watermark removal method that fully eliminates dataset watermarks without affecting fine-tuning, highlighting a key challenge for future research.
☆ Dual-Granularity Semantic Prompting for Language Guidance Infrared Small Target Detection
Infrared small target detection remains challenging due to limited feature representation and severe background interference, resulting in sub-optimal performance. While recent CLIP-inspired methods attempt to leverage textual guidance for detection, they are hindered by inaccurate text descriptions and reliance on manual annotations. To overcome these limitations, we propose DGSPNet, an end-to-end language prompt-driven framework. Our approach integrates dual-granularity semantic prompts: coarse-grained textual priors (e.g., 'infrared image', 'small target') and fine-grained personalized semantic descriptions derived through visual-to-textual mapping within the image space. This design not only facilitates learning fine-grained semantic information but also can inherently leverage language prompts during inference without relying on any annotation requirements. By fully leveraging the precision and conciseness of text descriptions, we further introduce a text-guide channel attention (TGCA) mechanism and text-guide spatial attention (TGSA) mechanism that enhances the model's sensitivity to potential targets across both low- and high-level feature spaces. Extensive experiments demonstrate that our method significantly improves detection accuracy and achieves state-of-the-art performance on three benchmark datasets.
comment: 10 pages, 2 figures
☆ IDEAL-M3D: Instance Diversity-Enriched Active Learning for Monocular 3D Detection
Monocular 3D detection relies on just a single camera and is therefore easy to deploy. Yet, achieving reliable 3D understanding from monocular images requires substantial annotation, and 3D labels are especially costly. To maximize performance under constrained labeling budgets, it is essential to prioritize annotating samples expected to deliver the largest performance gains. This prioritization is the focus of active learning. Curiously, we observed two significant limitations in active learning algorithms for 3D monocular object detection. First, previous approaches select entire images, which is inefficient, as non-informative instances contained in the same image also need to be labeled. Secondly, existing methods rely on uncertainty-based selection, which in monocular 3D object detection creates a bias toward depth ambiguity. Consequently, distant objects are selected, while nearby objects are overlooked. To address these limitations, we propose IDEAL-M3D, the first instance-level pipeline for monocular 3D detection. For the first time, we demonstrate that an explicitly diverse, fast-to-train ensemble improves diversity-driven active learning for monocular 3D. We induce diversity with heterogeneous backbones and task-agnostic features, loss weight perturbation, and time-dependent bagging. IDEAL-M3D shows superior performance and significant resource savings: with just 60% of the annotations, we achieve similar or better AP3D on KITTI validation and test set results compared to training the same detector on the whole dataset.
☆ DensifyBeforehand: LiDAR-assisted Content-aware Densification for Efficient and Quality 3D Gaussian Splatting
This paper addresses the limitations of existing 3D Gaussian Splatting (3DGS) methods, particularly their reliance on adaptive density control, which can lead to floating artifacts and inefficient resource usage. We propose a novel densify beforehand approach that enhances the initialization of 3D scenes by combining sparse LiDAR data with monocular depth estimation from corresponding RGB images. Our ROI-aware sampling scheme prioritizes semantically and geometrically important regions, yielding a dense point cloud that improves visual fidelity and computational efficiency. This densify beforehand approach bypasses the adaptive density control that may introduce redundant Gaussians in the original pipeline, allowing the optimization to focus on the other attributes of 3D Gaussian primitives, reducing overlap while enhancing visual quality. Our method achieves comparable results to state-of-the-art techniques while significantly lowering resource consumption and training time. We validate our approach through extensive comparisons and ablation studies on four newly collected datasets, showcasing its effectiveness in preserving regions of interest in complex scenes.
☆ ReMatch: Boosting Representation through Matching for Multimodal Retrieval
We present ReMatch, a framework that leverages the generative strength of MLLMs for multimodal retrieval. Previous approaches treated an MLLM as a simple encoder, ignoring its generative nature, and under-utilising its compositional reasoning and world knowledge. We instead train the embedding MLLM end-to-end with a chat-style generative matching stage. The matching stage uses the same MLLM to autoregressively decide relevance from multi-view inputs, including both raw data and its own projected embeddings for each query and document. It provides instance-wise discrimination supervision that complements a standard contrastive loss, offering stronger gradients on hard negatives and preserving the compositional strengths of the original MLLM. To obtain semantically richer multimodal embeddings, we use multiple learnable tokens to augment each input, generating fine-grained contextual, mutually orthogonal embeddings with low inference cost. Leveraging our established high-performance baseline,we assemble the ideas mentioned above into a powerful training recipe and achieve a new state-of-the-art on the Massive Multimodal Embedding Benchmark (MMEB). Our experiments show particularly strong zero-shot generalization results on five datasets, highlighting the robustness and transferability of ReMatch.
☆ Diffusion Reconstruction-based Data Likelihood Estimation for Core-Set Selection AAAI 2026
Existing core-set selection methods predominantly rely on heuristic scoring signals such as training dynamics or model uncertainty, lacking explicit modeling of data likelihood. This omission may hinder the constructed subset from capturing subtle yet critical distributional structures that underpin effective model training. In this work, we propose a novel, theoretically grounded approach that leverages diffusion models to estimate data likelihood via reconstruction deviation induced by partial reverse denoising. Specifically, we establish a formal connection between reconstruction error and data likelihood, grounded in the Evidence Lower Bound (ELBO) of Markovian diffusion processes, thereby enabling a principled, distribution-aware scoring criterion for data selection. Complementarily, we introduce an efficient information-theoretic method to identify the optimal reconstruction timestep, ensuring that the deviation provides a reliable signal indicative of underlying data likelihood. Extensive experiments on ImageNet demonstrate that reconstruction deviation offers an effective scoring criterion, consistently outperforming existing baselines across selection ratios, and closely matching full-data training using only 50% of the data. Further analysis shows that the likelihood-informed nature of our score reveals informative insights in data selection, shedding light on the interplay between data distributional characteristics and model learning preferences.
comment: Accepted by AAAI 2026
☆ BideDPO: Conditional Image Generation with Simultaneous Text and Condition Alignment
Conditional image generation enhances text-to-image synthesis with structural, spatial, or stylistic priors, but current methods face challenges in handling conflicts between sources. These include 1) input-level conflicts, where the conditioning image contradicts the text prompt, and 2) model-bias conflicts, where generative biases disrupt alignment even when conditions match the text. Addressing these conflicts requires nuanced solutions, which standard supervised fine-tuning struggles to provide. Preference-based optimization techniques like Direct Preference Optimization (DPO) show promise but are limited by gradient entanglement between text and condition signals and lack disentangled training data for multi-constraint tasks. To overcome this, we propose a bidirectionally decoupled DPO framework (BideDPO). Our method creates two disentangled preference pairs-one for the condition and one for the text-to reduce gradient entanglement. The influence of pairs is managed using an Adaptive Loss Balancing strategy for balanced optimization. We introduce an automated data pipeline to sample model outputs and generate conflict-aware data. This process is embedded in an iterative optimization strategy that refines both the model and the data. We construct a DualAlign benchmark to evaluate conflict resolution between text and condition. Experiments show BideDPO significantly improves text success rates (e.g., +35%) and condition adherence. We also validate our approach using the COCO dataset. Project Pages: https://limuloo.github.io/BideDPO/.
comment: 29 pages
☆ LAST: LeArning to Think in Space and Time for Generalist Vision-Language Models
Humans can perceive and understand 3D space and long videos from sequential visual observations. But do vision-language models (VLMs) can? Recent work demonstrates that even state-of-the-art VLMs still struggle to understand 3D space and long videos, although they are powerful in typical vision-language tasks. Current methods often rely on specialized architectural designs to improve performance for 3D tasks and video understanding tasks separately. In contrast, we propose LAST, short for LeArn to Think in Space and Time, to jointly improve 3D spatial and long video understanding for general VLMs with only a set of 2D images as inputs. LAST makes VLMs think in space and time rather than only with text before giving the final answer, building visual thinking trajectories in 3D space and temporal dimension. We demonstrate the effectiveness of LAST in two scenarios: 1) zero-shot, where we directly prompt proprietary models; and 2) fine-tuning general VLMs with data that include thinking trajectories in 3D space and time. We show that LAST brings substantial gains in various benchmarks, including 3 spatial understanding, 4 video understanding, and 3 image understanding tasks. Notably, 15.8% gains on EgoSchema with GPT-4o in a zero-shot manner and 8.3 gains on VSI-Bench compared with Qwen2.5-VL-7B.
☆ Adversarial Patch Attacks on Vision-Based Cargo Occupancy Estimation via Differentiable 3D Simulation
Computer vision systems are increasingly adopted in modern logistics operations, including the estimation of trailer occupancy for planning, routing, and billing. Although effective, such systems may be vulnerable to physical adversarial attacks, particularly adversarial patches that can be printed and placed on interior surfaces. In this work, we study the feasibility of such attacks on a convolutional cargo-occupancy classifier using fully simulated 3D environments. Using Mitsuba 3 for differentiable rendering, we optimize patch textures across variations in geometry, lighting, and viewpoint, and compare their effectiveness to a 2D compositing baseline. Our experiments demonstrate that 3D-optimized patches achieve high attack success rates, especially in a denial-of-service scenario (empty to full), where success reaches 84.94 percent. Concealment attacks (full to empty) prove more challenging but still reach 30.32 percent. We analyze the factors influencing attack success, discuss implications for the security of automated logistics pipelines, and highlight directions for strengthening physical robustness. To our knowledge, this is the first study to investigate adversarial patch attacks for cargo-occupancy estimation in physically realistic, fully simulated 3D scenes.
comment: 9 pages, 5 figures, 1 algorithm
☆ FedPoisonTTP: A Threat Model and Poisoning Attack for Federated Test-Time Personalization
Test-time personalization in federated learning enables models at clients to adjust online to local domain shifts, enhancing robustness and personalization in deployment. Yet, existing federated learning work largely overlooks the security risks that arise when local adaptation occurs at test time. Heterogeneous domain arrivals, diverse adaptation algorithms, and limited cross-client visibility create vulnerabilities where compromised participants can craft poisoned inputs and submit adversarial updates that undermine both global and per-client performance. To address this threat, we introduce FedPoisonTTP, a realistic grey-box attack framework that explores test-time data poisoning in the federated adaptation setting. FedPoisonTTP distills a surrogate model from adversarial queries, synthesizes in-distribution poisons using feature-consistency, and optimizes attack objectives to generate high-entropy or class-confident poisons that evade common adaptation filters. These poisons are injected during local adaptation and spread through collaborative updates, leading to broad degradation. Extensive experiments on corrupted vision benchmarks show that compromised participants can substantially diminish overall test-time performance.
comment: 13 pages, 3 figures, 2 tables
☆ IDSplat: Instance-Decomposed 3D Gaussian Splatting for Driving Scenes
Reconstructing dynamic driving scenes is essential for developing autonomous systems through sensor-realistic simulation. Although recent methods achieve high-fidelity reconstructions, they either rely on costly human annotations for object trajectories or use time-varying representations without explicit object-level decomposition, leading to intertwined static and dynamic elements that hinder scene separation. We present IDSplat, a self-supervised 3D Gaussian Splatting framework that reconstructs dynamic scenes with explicit instance decomposition and learnable motion trajectories, without requiring human annotations. Our key insight is to model dynamic objects as coherent instances undergoing rigid transformations, rather than unstructured time-varying primitives. For instance decomposition, we employ zero-shot, language-grounded video tracking anchored to 3D using lidar, and estimate consistent poses via feature correspondences. We introduce a coordinated-turn smoothing scheme to obtain temporally and physically consistent motion trajectories, mitigating pose misalignments and tracking failures, followed by joint optimization of object poses and Gaussian parameters. Experiments on the Waymo Open Dataset demonstrate that our method achieves competitive reconstruction quality while maintaining instance-level decomposition and generalizes across diverse sequences and view densities without retraining, making it practical for large-scale autonomous driving applications. Code will be released.
☆ Learning Plug-and-play Memory for Guiding Video Diffusion Models
Diffusion Transformer(DiT) based video generation models have recently achieved impressive visual quality and temporal coherence, but they still frequently violate basic physical laws and commonsense dynamics, revealing a lack of explicit world knowledge. In this work, we explore how to equip them with a plug-and-play memory that injects useful world knowledge. Motivated by in-context memory in Transformer-based LLMs, we conduct empirical studies to show that DiT can be steered via interventions on its hidden states, and simple low-pass and high-pass filters in the embedding space naturally disentangle low-level appearance and high-level physical/semantic cues, enabling targeted guidance. Building on these observations, we propose a learnable memory encoder DiT-Mem, composed of stacked 3D CNNs, low-/high-pass filters, and self-attention layers. The encoder maps reference videos into a compact set of memory tokens, which are concatenated as the memory within the DiT self-attention layers. During training, we keep the diffusion backbone frozen, and only optimize the memory encoder. It yields a rather efficient training process on few training parameters (150M) and 10K data samples, and enables plug-and-play usage at inference time. Extensive experiments on state-of-the-art models demonstrate the effectiveness of our method in improving physical rule following and video fidelity. Our code and data are publicly released here: https://thrcle421.github.io/DiT-Mem-Web/.
☆ Percept-WAM: Perception-Enhanced World-Awareness-Action Model for Robust End-to-End Autonomous Driving
Autonomous driving heavily relies on accurate and robust spatial perception. Many failures arise from inaccuracies and instability, especially in long-tail scenarios and complex interactions. However, current vision-language models are weak at spatial grounding and understanding, and VLA systems built on them therefore show limited perception and localization ability. To address these challenges, we introduce Percept-WAM, a perception-enhanced World-Awareness-Action Model that is the first to implicitly integrate 2D/3D scene understanding abilities within a single vision-language model (VLM). Instead of relying on QA-style spatial reasoning, Percept-WAM unifies 2D/3D perception tasks into World-PV and World-BEV tokens, which encode both spatial coordinates and confidence. We propose a grid-conditioned prediction mechanism for dense object perception, incorporating IoU-aware scoring and parallel autoregressive decoding, improving stability in long-tail, far-range, and small-object scenarios. Additionally, Percept-WAM leverages pretrained VLM parameters to retain general intelligence (e.g., logical reasoning) and can output perception results and trajectory control outputs directly. Experiments show that Percept-WAM matches or surpasses classical detectors and segmenters on downstream perception benchmarks, achieving 51.7/58.9 mAP on COCO 2D detection and nuScenes BEV 3D detection. When integrated with trajectory decoders, it further improves planning performance on nuScenes and NAVSIM, e.g., surpassing DiffusionDrive by 2.1 in PMDS on NAVSIM. Qualitative results further highlight its strong open-vocabulary and long-tail generalization.
☆ Are Large Vision Language Models Truly Grounded in Medical Images? Evidence from Italian Clinical Visual Question Answering
Large vision language models (VLMs) have achieved impressive performance on medical visual question answering benchmarks, yet their reliance on visual information remains unclear. We investigate whether frontier VLMs demonstrate genuine visual grounding when answering Italian medical questions by testing four state-of-the-art models: Claude Sonnet 4.5, GPT-4o, GPT-5-mini, and Gemini 2.0 flash exp. Using 60 questions from the EuropeMedQA Italian dataset that explicitly require image interpretation, we substitute correct medical images with blank placeholders to test whether models truly integrate visual and textual information. Our results reveal striking variability in visual dependency: GPT-4o shows the strongest visual grounding with a 27.9pp accuracy drop (83.2% [74.6%, 91.7%] to 55.3% [44.1%, 66.6%]), while GPT-5-mini, Gemini, and Claude maintain high accuracy with modest drops of 8.5pp, 2.4pp, and 5.6pp respectively. Analysis of model-generated reasoning reveals confident explanations for fabricated visual interpretations across all models, suggesting varying degrees of reliance on textual shortcuts versus genuine visual analysis. These findings highlight critical differences in model robustness and the need for rigorous evaluation before clinical deployment.
comment: Accepted at the Workshop on Multimodal Representation Learning for Healthcare (MMRL4H), EurIPS 2025
☆ ReAlign: Text-to-Motion Generation via Step-Aware Reward-Guided Alignment AAAI 2026
Text-to-motion generation, which synthesizes 3D human motions from text inputs, holds immense potential for applications in gaming, film, and robotics. Recently, diffusion-based methods have been shown to generate more diversity and realistic motion. However, there exists a misalignment between text and motion distributions in diffusion models, which leads to semantically inconsistent or low-quality motions. To address this limitation, we propose Reward-guided sampling Alignment (ReAlign), comprising a step-aware reward model to assess alignment quality during the denoising sampling and a reward-guided strategy that directs the diffusion process toward an optimally aligned distribution. This reward model integrates step-aware tokens and combines a text-aligned module for semantic consistency and a motion-aligned module for realism, refining noisy motions at each timestep to balance probability density and alignment. Extensive experiments of both motion generation and retrieval tasks demonstrate that our approach significantly improves text-motion alignment and motion quality compared to existing state-of-the-art methods.
comment: Accepted by AAAI 2026
☆ NVGS: Neural Visibility for Occlusion Culling in 3D Gaussian Splatting
3D Gaussian Splatting can exploit frustum culling and level-of-detail strategies to accelerate rendering of scenes containing a large number of primitives. However, the semi-transparent nature of Gaussians prevents the application of another highly effective technique: occlusion culling. We address this limitation by proposing a novel method to learn the viewpoint-dependent visibility function of all Gaussians in a trained model using a small, shared MLP across instances of an asset in a scene. By querying it for Gaussians within the viewing frustum prior to rasterization, our method can discard occluded primitives during rendering. Leveraging Tensor Cores for efficient computation, we integrate these neural queries directly into a novel instanced software rasterizer. Our approach outperforms the current state of the art for composed scenes in terms of VRAM usage and image quality, utilizing a combination of our instanced rasterizer and occlusion culling MLP, and exhibits complementary properties to existing LoD techniques.
comment: 15 pages, 13 figures
☆ Can Modern Vision Models Understand the Difference Between an Object and a Look-alike?
Recent advances in computer vision have yielded models with strong performance on recognition benchmarks; however, significant gaps remain in comparison to human perception. One subtle ability is to judge whether an image looks like a given object without being an instance of that object. We study whether vision-language models such as CLIP capture this distinction. We curated a dataset named RoLA (Real or Lookalike) of real and lookalike exemplars (e.g., toys, statues, drawings, pareidolia) across multiple categories, and first evaluate a prompt-based baseline with paired "real"/"lookalike" prompts. We then estimate a direction in CLIP's embedding space that moves representations between real and lookalike. Applying this direction to image and text embeddings improves discrimination in cross-modal retrieval on Conceptual12M, and also enhances captions produced by a CLIP prefix captioner.
☆ CLASH: A Benchmark for Cross-Modal Contradiction Detection
Contradictory multimodal inputs are common in real-world settings, yet existing benchmarks typically assume input consistency and fail to evaluate cross-modal contradiction detection - a fundamental capability for preventing hallucinations and ensuring reliability. We introduce CLASH, a novel benchmark for multimodal contradiction detection, featuring COCO images paired with contradictory captions containing controlled object-level or attribute-level contradictions. The samples include targeted questions evaluated in both multiple-choice and open-ended formats. The benchmark provides an extensive fine-tuning set filtered through automated quality checks, alongside a smaller human-verified diagnostic set. Our analysis of state-of-the-art models reveals substantial limitations in recognizing cross-modal conflicts, exposing systematic modality biases and category-specific weaknesses. Furthermore, we empirically demonstrate that targeted fine-tuning on CLASH substantially enhances conflict detection capabilities.
comment: First two authors contributed equally
☆ Three-Dimensional Anatomical Data Generation Based on Artificial Neural Networks
Surgical planning and training based on machine learning requires a large amount of 3D anatomical models reconstructed from medical imaging, which is currently one of the major bottlenecks. Obtaining these data from real patients and during surgery is very demanding, if even possible, due to legal, ethical, and technical challenges. It is especially difficult for soft tissue organs with poor imaging contrast, such as the prostate. To overcome these challenges, we present a novel workflow for automated 3D anatomical data generation using data obtained from physical organ models. We additionally use a 3D Generative Adversarial Network (GAN) to obtain a manifold of 3D models useful for other downstream machine learning tasks that rely on 3D data. We demonstrate our workflow using an artificial prostate model made of biomimetic hydrogels with imaging contrast in multiple zones. This is used to physically simulate endoscopic surgery. For evaluation and 3D data generation, we place it into a customized ultrasound scanner that records the prostate before and after the procedure. A neural network is trained to segment the recorded ultrasound images, which outperforms conventional, non-learning-based computer vision techniques in terms of intersection over union (IoU). Based on the segmentations, a 3D mesh model is reconstructed, and performance feedback is provided.
comment: 6 pages, 4 figures, 1 table, IEEE International Conference on Intelligent Robots and Systems (IROS)
☆ SpectraNet: FFT-assisted Deep Learning Classifier for Deepfake Face Detection
Detecting deepfake images is crucial in combating misinformation. We present a lightweight, generalizable binary classification model based on EfficientNet-B6, fine-tuned with transformation techniques to address severe class imbalances. By leveraging robust preprocessing, oversampling, and optimization strategies, our model achieves high accuracy, stability, and generalization. While incorporating Fourier transform-based phase and amplitude features showed minimal impact, our proposed framework helps non-experts to effectively identify deepfake images, making significant strides toward accessible and reliable deepfake detection.
comment: 4 pages, 3 figures
☆ nnActive: A Framework for Evaluation of Active Learning in 3D Biomedical Segmentation
Semantic segmentation is crucial for various biomedical applications, yet its reliance on large annotated datasets presents a bottleneck due to the high cost and specialized expertise required for manual labeling. Active Learning (AL) aims to mitigate this challenge by querying only the most informative samples, thereby reducing annotation effort. However, in the domain of 3D biomedical imaging, there is no consensus on whether AL consistently outperforms Random sampling. Four evaluation pitfalls hinder the current methodological assessment. These are (1) restriction to too few datasets and annotation budgets, (2) using 2D models on 3D images without partial annotations, (3) Random baseline not being adapted to the task, and (4) measuring annotation cost only in voxels. In this work, we introduce nnActive, an open-source AL framework that overcomes these pitfalls by (1) means of a large scale study spanning four biomedical imaging datasets and three label regimes, (2) extending nnU-Net by using partial annotations for training with 3D patch-based query selection, (3) proposing Foreground Aware Random sampling strategies tackling the foreground-background class imbalance of medical images and (4) propose the foreground efficiency metric, which captures the low annotation cost of background-regions. We reveal the following findings: (A) while all AL methods outperform standard Random sampling, none reliably surpasses an improved Foreground Aware Random sampling; (B) benefits of AL depend on task specific parameters; (C) Predictive Entropy is overall the best performing AL method, but likely requires the most annotation effort; (D) AL performance can be improved with more compute intensive design choices. As a holistic, open-source framework, nnActive can serve as a catalyst for research and application of AL in 3D biomedical imaging. Code is at: https://github.com/MIC-DKFZ/nnActive
comment: Accepted at TMLR
☆ Evaluating Deep Learning and Traditional Approaches Used in Source Camera Identification
One of the most important tasks in computer vision is identifying the device using which the image was taken, useful for facilitating further comprehensive analysis of the image. This paper presents comparative analysis of three techniques used in source camera identification (SCI): Photo Response Non-Uniformity (PRNU), JPEG compression artifact analysis, and convolutional neural networks (CNNs). It evaluates each method in terms of device classification accuracy. Furthermore, the research discusses the possible scientific development needed for the implementation of the methods in real-life scenarios.
comment: 4 figures
☆ MetroGS: Efficient and Stable Reconstruction of Geometrically Accurate High-Fidelity Large-Scale Scenes
Recently, 3D Gaussian Splatting and its derivatives have achieved significant breakthroughs in large-scale scene reconstruction. However, how to efficiently and stably achieve high-quality geometric fidelity remains a core challenge. To address this issue, we introduce MetroGS, a novel Gaussian Splatting framework for efficient and robust reconstruction in complex urban environments. Our method is built upon a distributed 2D Gaussian Splatting representation as the core foundation, serving as a unified backbone for subsequent modules. To handle potential sparse regions in complex scenes, we propose a structured dense enhancement scheme that utilizes SfM priors and a pointmap model to achieve a denser initialization, while incorporating a sparsity compensation mechanism to improve reconstruction completeness. Furthermore, we design a progressive hybrid geometric optimization strategy that organically integrates monocular and multi-view optimization to achieve efficient and accurate geometric refinement. Finally, to address the appearance inconsistency commonly observed in large-scale scenes, we introduce a depth-guided appearance modeling approach that learns spatial features with 3D consistency, facilitating effective decoupling between geometry and appearance and further enhancing reconstruction stability. Experiments on large-scale urban datasets demonstrate that MetroGS achieves superior geometric accuracy, rendering quality, offering a unified solution for high-fidelity large-scale scene reconstruction.
comment: Project page: https://m3phist0.github.io/MetroGS
☆ Test-Time Preference Optimization for Image Restoration AAAI26
Image restoration (IR) models are typically trained to recover high-quality images using L1 or LPIPS loss. To handle diverse unknown degradations, zero-shot IR methods have also been introduced. However, existing pre-trained and zero-shot IR approaches often fail to align with human preferences, resulting in restored images that may not be favored. This highlights the critical need to enhance restoration quality and adapt flexibly to various image restoration tasks or backbones without requiring model retraining and ideally without labor-intensive preference data collection. In this paper, we propose the first Test-Time Preference Optimization (TTPO) paradigm for image restoration, which enhances perceptual quality, generates preference data on-the-fly, and is compatible with any IR model backbone. Specifically, we design a training-free, three-stage pipeline: (i) generate candidate preference images online using diffusion inversion and denoising based on the initially restored image; (ii) select preferred and dispreferred images using automated preference-aligned metrics or human feedback; and (iii) use the selected preference images as reward signals to guide the diffusion denoising process, optimizing the restored image to better align with human preferences. Extensive experiments across various image restoration tasks and models demonstrate the effectiveness and flexibility of the proposed pipeline.
comment: Accepted by AAAI26
☆ From Pixels to Posts: Retrieval-Augmented Fashion Captioning and Hashtag Generation
This paper introduces the retrieval-augmented framework for automatic fashion caption and hashtag generation, combining multi-garment detection, attribute reasoning, and Large Language Model (LLM) prompting. The system aims to produce visually grounded, descriptive, and stylistically interesting text for fashion imagery, overcoming the limitations of end-to-end captioners that have problems with attribute fidelity and domain generalization. The pipeline combines a YOLO-based detector for multi-garment localization, k-means clustering for dominant color extraction, and a CLIP-FAISS retrieval module for fabric and gender attribute inference based on a structured product index. These attributes, together with retrieved style examples, create a factual evidence pack that is used to guide an LLM to generate human-like captions and contextually rich hashtags. A fine-tuned BLIP model is used as a supervised baseline model for comparison. Experimental results show that the YOLO detector is able to obtain a mean Average Precision (mAP@0.5) of 0.71 for nine categories of garments. The RAG-LLM pipeline generates expressive attribute-aligned captions and achieves mean attribute coverage of 0.80 with full coverage at the 50% threshold in hashtag generation, whereas BLIP gives higher lexical overlap and lower generalization. The retrieval-augmented approach exhibits better factual grounding, less hallucination, and great potential for scalable deployment in various clothing domains. These results demonstrate the use of retrieval-augmented generation as an effective and interpretable paradigm for automated and visually grounded fashion content generation.
comment: Submitted to Expert Systems with Applications
☆ Collaborative Learning with Multiple Foundation Models for Source-Free Domain Adaptation
Source-Free Domain Adaptation (SFDA) aims to adapt a pre-trained source model to an unlabeled target domain without access to source data. Recent advances in Foundation Models (FMs) have introduced new opportunities for leveraging external semantic knowledge to guide SFDA. However, relying on a single FM is often insufficient, as it tends to bias adaptation toward a restricted semantic coverage, failing to capture diverse contextual cues under domain shift. To overcome this limitation, we propose a Collaborative Multi-foundation Adaptation (CoMA) framework that jointly leverages two different FMs (e.g., CLIP and BLIP) with complementary properties to capture both global semantics and local contextual cues. Specifically, we employ a bidirectional adaptation mechanism that (1) aligns different FMs with the target model for task adaptation while maintaining their semantic distinctiveness, and (2) transfers complementary knowledge from the FMs to the target model. To ensure stable adaptation under mini-batch training, we introduce Decomposed Mutual Information (DMI) that selectively enhances true dependencies while suppressing false dependencies arising from incomplete class coverage. Extensive experiments demonstrate that our method consistently outperforms existing state-of-the-art SFDA methods across four benchmarks, including Office-31, Office-Home, DomainNet-126, and VisDA, under the closed-set setting, while also achieving best results on partial-set and open-set variants.
comment: 15 pages, 8 figures
☆ ABM-LoRA: Activation Boundary Matching for Fast Convergence in Low-Rank Adaptation
We propose Activation Boundary Matching for Low-Rank Adaptation (ABM-LoRA), a principled initialization strategy that substantially accelerates the convergence of low-rank adapters. While LoRA offers high parameter efficiency, its random initialization restricts gradient updates to a mismatched tangent space, causing significant information loss and hindering early convergence. Our ABM-LoRA addresses this by aligning the adapter's activation boundaries with those of the pretrained model before downstream training, thereby maximizing the projection of full-parameter gradients into the adapter subspace. This alignment sharply reduces information loss at initialization, yields a lower starting loss, and accelerates convergence. We demonstrate ABM-LoRA's effectiveness across diverse architectures and tasks: language understanding (T5-Base on GLUE), dialogue generation (LLaMA2-7B on WizardLM), and vision recognition (ViT-B/16 on VTAB-1K). On VTAB-1K, it achieves the highest accuracy among all methods, with strong gains on structured reasoning tasks requiring geometric understanding.
comment: 16 pages, 5 figures, under review
☆ FilmSceneDesigner: Chaining Set Design for Procedural Film Scene Generation
Film set design plays a pivotal role in cinematic storytelling and shaping the visual atmosphere. However, the traditional process depends on expert-driven manual modeling, which is labor-intensive and time-consuming. To address this issue, we introduce FilmSceneDesigner, an automated scene generation system that emulates professional film set design workflow. Given a natural language description, including scene type, historical period, and style, we design an agent-based chaining framework to generate structured parameters aligned with film set design workflow, guided by prompt strategies that ensure parameter accuracy and coherence. On the other hand, we propose a procedural generation pipeline which executes a series of dedicated functions with the structured parameters for floorplan and structure generation, material assignment, door and window placement, and object retrieval and layout, ultimately constructing a complete film scene from scratch. Moreover, to enhance cinematic realism and asset diversity, we construct SetDepot-Pro, a curated dataset of 6,862 film-specific 3D assets and 733 materials. Experimental results and human evaluations demonstrate that our system produces structurally sound scenes with strong cinematic fidelity, supporting downstream tasks such as virtual previs, construction drawing and mood board creation.
☆ MambaRefine-YOLO: A Dual-Modality Small Object Detector for UAV Imagery
Small object detection in Unmanned Aerial Vehicle (UAV) imagery is a persistent challenge, hindered by low resolution and background clutter. While fusing RGB and infrared (IR) data offers a promising solution, existing methods often struggle with the trade-off between effective cross-modal interaction and computational efficiency. In this letter, we introduce MambaRefine-YOLO. Its core contributions are a Dual-Gated Complementary Mamba fusion module (DGC-MFM) that adaptively balances RGB and IR modalities through illumination-aware and difference-aware gating mechanisms, and a Hierarchical Feature Aggregation Neck (HFAN) that uses a ``refine-then-fuse'' strategy to enhance multi-scale features. Our comprehensive experiments validate this dual-pronged approach. On the dual-modality DroneVehicle dataset, the full model achieves a state-of-the-art mAP of 83.2%, an improvement of 7.9% over the baseline. On the single-modality VisDrone dataset, a variant using only the HFAN also shows significant gains, demonstrating its general applicability. Our work presents a superior balance between accuracy and speed, making it highly suitable for real-world UAV applications.
comment: Submitted to IEEE Geoscience and Remote Sensing Letters
☆ When Semantics Regulate: Rethinking Patch Shuffle and Internal Bias for Generated Image Detection with CLIP
The rapid progress of GANs and Diffusion Models poses new challenges for detecting AI-generated images. Although CLIP-based detectors exhibit promising generalization, they often rely on semantic cues rather than generator artifacts, leading to brittle performance under distribution shifts. In this work, we revisit the nature of semantic bias and uncover that Patch Shuffle provides an unusually strong benefit for CLIP, that disrupts global semantic continuity while preserving local artifact cues, which reduces semantic entropy and homogenizes feature distributions between natural and synthetic images. Through a detailed layer-wise analysis, we further show that CLIP's deep semantic structure functions as a regulator that stabilizes cross-domain representations once semantic bias is suppressed. Guided by these findings, we propose SemAnti, a semantic-antagonistic fine-tuning paradigm that freezes the semantic subspace and adapts only artifact-sensitive layers under shuffled semantics. Despite its simplicity, SemAnti achieves state-of-the-art cross-domain generalization on AIGCDetectBenchmark and GenImage, demonstrating that regulating semantics is key to unlocking CLIP's full potential for robust AI-generated image detection.
comment: 14 pages, 7 figures and 7 tables
☆ MonoSR: Open-Vocabulary Spatial Reasoning from Monocular Images
Spatial reasoning (SR), the ability to infer 3D spatial information from 2D inputs, is essential for real-world applications such as embodied AI and autonomous driving. However, existing research primarily focuses on indoor environments and typically relies on multi-view observations, which limits their generalizability to outdoor scenarios and constrains their applicability to monocular images, the most common real-world setting. In this work, we propose MonoSR, a large-scale monocular spatial reasoning dataset that spans diverse scenarios including indoor, outdoor, and object-centric settings, and supports multiple question types. MonoSR provides a path toward open-world monocular spatial reasoning. Beyond introducing the dataset, we evaluate advanced vision-language models to reveal their limitations on this challenging task. We further analyze whether auxiliary information is crucial for monocular spatial reasoning and offer practical guidance for designing future models. These contributions collectively establish a foundation for advancing monocular spatial reasoning in real-world, open-world environments.
☆ 3M-TI: High-Quality Mobile Thermal Imaging via Calibration-free Multi-Camera Cross-Modal Diffusion
The miniaturization of thermal sensors for mobile platforms inherently limits their spatial resolution and textural fidelity, leading to blurry and less informative images. Existing thermal super-resolution (SR) methods can be grouped into single-image and RGB-guided approaches: the former struggles to recover fine structures from limited information, while the latter relies on accurate and laborious cross-camera calibration, which hinders practical deployment and robustness. Here, we propose 3M-TI, a calibration-free Multi-camera cross-Modality diffusion framework for Mobile Thermal Imaging. At its core, 3M-TI integrates a cross-modal self-attention module (CSM) into the diffusion UNet, replacing the original self-attention layers to adaptively align thermal and RGB features throughout the denoising process, without requiring explicit camera calibration. This design enables the diffusion network to leverage its generative prior to enhance spatial resolution, structural fidelity, and texture detail in the super-resolved thermal images. Extensive evaluations on real-world mobile thermal cameras and public benchmarks validate our superior performance, achieving state-of-the-art results in both visual quality and quantitative metrics. More importantly, the thermal images enhanced by 3M-TI lead to substantial gains in critical downstream tasks like object detection and segmentation, underscoring its practical value for robust mobile thermal perception systems. More materials: https://github.com/work-submit/3MTI.
comment: 11 pages, 7 figures
☆ DiffSeg30k: A Multi-Turn Diffusion Editing Benchmark for Localized AIGC Detection
Diffusion-based editing enables realistic modification of local image regions, making AI-generated content harder to detect. Existing AIGC detection benchmarks focus on classifying entire images, overlooking the localization of diffusion-based edits. We introduce DiffSeg30k, a publicly available dataset of 30k diffusion-edited images with pixel-level annotations, designed to support fine-grained detection. DiffSeg30k features: 1) In-the-wild images--we collect images or image prompts from COCO to reflect real-world content diversity; 2) Diverse diffusion models--local edits using eight SOTA diffusion models; 3) Multi-turn editing--each image undergoes up to three sequential edits to mimic real-world sequential editing; and 4) Realistic editing scenarios--a vision-language model (VLM)-based pipeline automatically identifies meaningful regions and generates context-aware prompts covering additions, removals, and attribute changes. DiffSeg30k shifts AIGC detection from binary classification to semantic segmentation, enabling simultaneous localization of edits and identification of the editing models. We benchmark three baseline segmentation approaches, revealing significant challenges in semantic segmentation tasks, particularly concerning robustness to image distortions. Experiments also reveal that segmentation models, despite being trained for pixel-level localization, emerge as highly reliable whole-image classifiers of diffusion edits, outperforming established forgery classifiers while showing great potential in cross-generator generalization. We believe DiffSeg30k will advance research in fine-grained localization of AI-generated content by demonstrating the promise and limitations of segmentation-based methods. DiffSeg30k is released at: https://huggingface.co/datasets/Chaos2629/Diffseg30k
comment: 16 pages, 10 figures
☆ HABIT: Human Action Benchmark for Interactive Traffic in CARLA
Current autonomous driving (AD) simulations are critically limited by their inadequate representation of realistic and diverse human behavior, which is essential for ensuring safety and reliability. Existing benchmarks often simplify pedestrian interactions, failing to capture complex, dynamic intentions and varied responses critical for robust system deployment. To overcome this, we introduce HABIT (Human Action Benchmark for Interactive Traffic), a high-fidelity simulation benchmark. HABIT integrates real-world human motion, sourced from mocap and videos, into CARLA (Car Learning to Act, a full autonomous driving simulator) via a modular, extensible, and physically consistent motion retargeting pipeline. From an initial pool of approximately 30,000 retargeted motions, we curate 4,730 traffic-compatible pedestrian motions, standardized in SMPL format for physically consistent trajectories. HABIT seamlessly integrates with CARLA's Leaderboard, enabling automated scenario generation and rigorous agent evaluation. Our safety metrics, including Abbreviated Injury Scale (AIS) and False Positive Braking Rate (FPBR), reveal critical failure modes in state-of-the-art AD agents missed by prior evaluations. Evaluating three state-of-the-art autonomous driving agents, InterFuser, TransFuser, and BEVDriver, demonstrates how HABIT exposes planner weaknesses that remain hidden in scripted simulations. Despite achieving close or equal to zero collisions per kilometer on the CARLA Leaderboard, the autonomous agents perform notably worse on HABIT, with up to 7.43 collisions/km and a 12.94% AIS 3+ injury risk, and they brake unnecessarily in up to 33% of cases. All components are publicly released to support reproducible, pedestrian-aware AI research.
comment: Accepted to WACV 2026. This is the pre-camera-ready version
☆ Graph-based 3D Human Pose Estimation using WiFi Signals
WiFi-based human pose estimation (HPE) has attracted increasing attention due to its resilience to occlusion and privacy-preserving compared to camera-based methods. However, existing WiFi-based HPE approaches often employ regression networks that directly map WiFi channel state information (CSI) to 3D joint coordinates, ignoring the inherent topological relationships among human joints. In this paper, we present GraphPose-Fi, a graph-based framework that explicitly models skeletal topology for WiFi-based 3D HPE. Our framework comprises a CNN encoder shared across antennas for subcarrier-time feature extraction, a lightweight attention module that adaptively reweights features over time and across antennas, and a graph-based regression head that combines GCN layers with self-attention to capture local topology and global dependencies. Our proposed method significantly outperforms existing methods on the MM-Fi dataset in various settings. The source code is available at: https://github.com/Cirrick/GraphPose-Fi.
☆ Towards Generalizable Deepfake Detection via Forgery-aware Audio-Visual Adaptation: A Variational Bayesian Approach
The widespread application of AIGC contents has brought not only unprecedented opportunities, but also potential security concerns, e.g., audio-visual deepfakes. Therefore, it is of great importance to develop an effective and generalizable method for multi-modal deepfake detection. Typically, the audio-visual correlation learning could expose subtle cross-modal inconsistencies, e.g., audio-visual misalignment, which serve as crucial clues in deepfake detection. In this paper, we reformulate the correlation learning with variational Bayesian estimation, where audio-visual correlation is approximated as a Gaussian distributed latent variable, and thus develop a novel framework for deepfake detection, i.e., Forgery-aware Audio-Visual Adaptation with Variational Bayes (FoVB). Specifically, given the prior knowledge of pre-trained backbones, we adopt two core designs to estimate audio-visual correlations effectively. First, we exploit various difference convolutions and a high-pass filter to discern local and global forgery traces from both modalities. Second, with the extracted forgery-aware features, we estimate the latent Gaussian variable of audio-visual correlation via variational Bayes. Then, we factorize the variable into modality-specific and correlation-specific ones with orthogonality constraint, allowing them to better learn intra-modal and cross-modal forgery traces with less entanglement. Extensive experiments demonstrate that our FoVB outperforms other state-of-the-art methods in various benchmarks.
comment: TIFS AQE
☆ DEAP-3DSAM: Decoder Enhanced and Auto Prompt SAM for 3D Medical Image Segmentation
The Segment Anything Model (SAM) has recently demonstrated significant potential in medical image segmentation. Although SAM is primarily trained on 2D images, attempts have been made to apply it to 3D medical image segmentation. However, the pseudo 3D processing used to adapt SAM results in spatial feature loss, limiting its performance. Additionally, most SAM-based methods still rely on manual prompts, which are challenging to implement in real-world scenarios and require extensive external expert knowledge. To address these limitations, we introduce the Decoder Enhanced and Auto Prompt SAM (DEAP-3DSAM) to tackle these limitations. Specifically, we propose a Feature Enhanced Decoder that fuses the original image features with rich and detailed spatial information to enhance spatial features. We also design a Dual Attention Prompter to automatically obtain prompt information through Spatial Attention and Channel Attention. We conduct comprehensive experiments on four public abdominal tumor segmentation datasets. The results indicate that our DEAP-3DSAM achieves state-of-the-art performance in 3D image segmentation, outperforming or matching existing manual prompt methods. Furthermore, both quantitative and qualitative ablation studies confirm the effectiveness of our proposed modules.
comment: Accepted by BIBM 2024
☆ DynaMix: Generalizable Person Re-identification via Dynamic Relabeling and Mixed Data Sampling
Generalizable person re-identification (Re-ID) aims to recognize individuals across unseen cameras and environments. While existing methods rely heavily on limited labeled multi-camera data, we propose DynaMix, a novel method that effectively combines manually labeled multi-camera and large-scale pseudo-labeled single-camera data. Unlike prior works, DynaMix dynamically adapts to the structure and noise of the training data through three core components: (1) a Relabeling Module that refines pseudo-labels of single-camera identities on-the-fly; (2) an Efficient Centroids Module that maintains robust identity representations under a large identity space; and (3) a Data Sampling Module that carefully composes mixed data mini-batches to balance learning complexity and intra-batch diversity. All components are specifically designed to operate efficiently at scale, enabling effective training on millions of images and hundreds of thousands of identities. Extensive experiments demonstrate that DynaMix consistently outperforms state-of-the-art methods in generalizable person Re-ID.
☆ Understanding, Accelerating, and Improving MeanFlow Training
MeanFlow promises high-quality generative modeling in few steps, by jointly learning instantaneous and average velocity fields. Yet, the underlying training dynamics remain unclear. We analyze the interaction between the two velocities and find: (i) well-established instantaneous velocity is a prerequisite for learning average velocity; (ii) learning of instantaneous velocity benefits from average velocity when the temporal gap is small, but degrades as the gap increases; and (iii) task-affinity analysis indicates that smooth learning of large-gap average velocities, essential for one-step generation, depends on the prior formation of accurate instantaneous and small-gap average velocities. Guided by these observations, we design an effective training scheme that accelerates the formation of instantaneous velocity, then shifts emphasis from short- to long-interval average velocity. Our enhanced MeanFlow training yields faster convergence and significantly better few-step generation: With the same DiT-XL backbone, our method reaches an impressive FID of 2.87 on 1-NFE ImageNet 256x256, compared to 3.43 for the conventional MeanFlow baseline. Alternatively, our method matches the performance of the MeanFlow baseline with 2.5x shorter training time, or with a smaller DiT-L backbone.
☆ Granular Computing-driven SAM: From Coarse-to-Fine Guidance for Prompt-Free Segmentation
Prompt-free image segmentation aims to generate accurate masks without manual guidance. Typical pre-trained models, notably Segmentation Anything Model (SAM), generate prompts directly at a single granularity level. However, this approach has two limitations: (1) Localizability, lacking mechanisms for autonomous region localization; (2) Scalability, limited fine-grained modeling at high resolution. To address these challenges, we introduce Granular Computing-driven SAM (Grc-SAM), a coarse-to-fine framework motivated by Granular Computing (GrC). First, the coarse stage adaptively extracts high-response regions from features to achieve precise foreground localization and reduce reliance on external prompts. Second, the fine stage applies finer patch partitioning with sparse local swin-style attention to enhance detail modeling and enable high-resolution segmentation. Third, refined masks are encoded as latent prompt embeddings for the SAM decoder, replacing handcrafted prompts with an automated reasoning process. By integrating multi-granularity attention, Grc-SAM bridges granular computing with vision transformers. Extensive experimental results demonstrate Grc-SAM outperforms baseline methods in both accuracy and scalability. It offers a unique granular computational perspective for prompt-free segmentation.
comment: 19 pages, 7 figures
☆ LAA3D: A Benchmark of Detecting and Tracking Low-Altitude Aircraft in 3D Space
Perception of Low-Altitude Aircraft (LAA) in 3D space enables precise 3D object localization and behavior understanding. However, datasets tailored for 3D LAA perception remain scarce. To address this gap, we present LAA3D, a large-scale dataset designed to advance 3D detection and tracking of low-altitude aerial vehicles. LAA3D contains 15,000 real images and 600,000 synthetic frames, captured across diverse scenarios, including urban and suburban environments. It covers multiple aerial object categories, including electric Vertical Take-Off and Landing (eVTOL) aircraft, Micro Aerial Vehicles (MAVs), and Helicopters. Each instance is annotated with 3D bounding box, class label, and instance identity, supporting tasks such as 3D object detection, 3D multi-object tracking (MOT), and 6-DoF pose estimation. Besides, we establish the LAA3D Benchmark, integrating multiple tasks and methods with unified evaluation protocols for comparison. Furthermore, we propose MonoLAA, a monocular 3D detection baseline, achieving robust 3D localization from zoom cameras with varying focal lengths. Models pretrained on synthetic images transfer effectively to real-world data with fine-tuning, demonstrating strong sim-to-real generalization. Our LAA3D provides a comprehensive foundation for future research in low-altitude 3D object perception.
comment: 25 pages
☆ Beyond Reward Margin: Rethinking and Resolving Likelihood Displacement in Diffusion Models via Video Generation
Direct Preference Optimization (DPO) has shown promising results in aligning generative outputs with human preferences by distinguishing between chosen and rejected samples. However, a critical limitation of DPO is likelihood displacement, where the probabilities of chosen samples paradoxically decrease during training, undermining the quality of generation. Although this issue has been investigated in autoregressive models, its impact within diffusion-based models remains largely unexplored. This gap leads to suboptimal performance in tasks involving video generation. To address this, we conduct a formal analysis of DPO loss through updating policy within the diffusion framework, which describes how the updating of specific training samples influences the model's predictions on other samples. Using this tool, we identify two main failure modes: (1) Optimization Conflict, which arises from small reward margins between chosen and rejected samples, and (2) Suboptimal Maximization, caused by large reward margins. Informed by these insights, we introduce a novel solution named Policy-Guided DPO (PG-DPO), combining Adaptive Rejection Scaling (ARS) and Implicit Preference Regularization (IPR) to effectively mitigate likelihood displacement. Experiments show that PG-DPO outperforms existing methods in both quantitative metrics and qualitative evaluations, offering a robust solution for improving preference alignment in video generation tasks.
☆ MedSAM3: Delving into Segment Anything with Medical Concepts
Medical image segmentation is fundamental for biomedical discovery. Existing methods lack generalizability and demand extensive, time-consuming manual annotation for new clinical application. Here, we propose MedSAM-3, a text promptable medical segmentation model for medical image and video segmentation. By fine-tuning the Segment Anything Model (SAM) 3 architecture on medical images paired with semantic conceptual labels, our MedSAM-3 enables medical Promptable Concept Segmentation (PCS), allowing precise targeting of anatomical structures via open-vocabulary text descriptions rather than solely geometric prompts. We further introduce the MedSAM-3 Agent, a framework that integrates Multimodal Large Language Models (MLLMs) to perform complex reasoning and iterative refinement in an agent-in-the-loop workflow. Comprehensive experiments across diverse medical imaging modalities, including X-ray, MRI, Ultrasound, CT, and video, demonstrate that our approach significantly outperforms existing specialist and foundation models. We will release our code and model at https://github.com/Joey-S-Liu/MedSAM3.
☆ CSD: Change Semantic Detection with only Semantic Change Masks for Damage Assessment in Conflict Zones
Accurately and swiftly assessing damage from conflicts is crucial for humanitarian aid and regional stability. In conflict zones, damaged zones often share similar architectural styles, with damage typically covering small areas and exhibiting blurred boundaries. These characteristics lead to limited data, annotation difficulties, and significant recognition challenges, including high intra-class similarity and ambiguous semantic changes. To address these issues, we introduce a pre-trained DINOv3 model and propose a multi-scale cross-attention difference siamese network (MC-DiSNet). The powerful visual representation capability of the DINOv3 backbone enables robust and rich feature extraction from bi-temporal remote sensing images. We also release a new Gaza-change dataset containing high-resolution satellite image pairs from 2023-2024 with pixel-level semantic change annotations. It is worth emphasizing that our annotations only include semantic pixels of changed areas. Unlike conventional semantic change detection (SCD), our approach eliminates the need for large-scale semantic annotations of bi-temporal images, instead focusing directly on the changed regions. We term this new task change semantic detection (CSD). The CSD task represents a direct extension of binary change detection (BCD). Due to the limited spatial extent of semantic regions, it presents greater challenges than traditional SCD tasks. We evaluated our method under the CSD framework on both the Gaza-Change and SECOND datasets. Experimental results demonstrate that our proposed approach effectively addresses the CSD task, and its outstanding performance paves the way for practical applications in rapid damage assessment across conflict zones.
☆ ReEXplore: Improving MLLMs for Embodied Exploration with Contextualized Retrospective Experience Replay
Embodied exploration is a target-driven process that requires embodied agents to possess fine-grained perception and knowledge-enhanced decision making. While recent attempts leverage MLLMs for exploration due to their strong perceptual and reasoning abilities, we find that MLLM-based embodied agents remain suboptimal in exploring new environments: (i) they rely on profound but stale pre-trained knowledge, (ii) training-based approaches such as imitation learning or reinforcement learning are expensive for long-horizon tasks with sparse outcome rewards, and (iii) frontier-based exploration yields a large, visually nuanced action space that is difficult for MLLMs to make reliable decisions. We address these challenges with ReEXplore, a training-free framework that performs retrospective experience replay to inject distilled, abstract experience at inference time, and hierarchical frontier selection to decompose frontier ranking into coarse-to-fine decisions. Our approach enables robust, traceable, and efficient exploration. Across multiple embodied exploration benchmarks, ReEXplore yields great improvements over strong MLLM baselines, up to 3x higher performance in both success rate and in navigation efficiency under open-source backbones.
comment: 8 main pages plus 13 pages Appendix
☆ Benchmarking Corruption Robustness of LVLMs: A Discriminative Benchmark and Robustness Alignment Metric
Despite the remarkable reasoning abilities of large vision-language models (LVLMs), their robustness under visual corruptions remains insufficiently studied. Existing evaluation paradigms exhibit two major limitations: 1) the dominance of low-discriminative samples in current datasets masks the real robustness gap between models; and 2) conventional accuracy-based metric fail to capture the degradation of the underlying prediction structure. To bridge these gaps, we introduce Bench-C, a comprehensive benchmark emphasizing discriminative samples for assessing corruption robustness, where a selection strategy is proposed to jointly consider the prediction inconsistency under corruption and the semantic diversity. Furthermore, we propose the Robustness Alignment Score (RAS), a unified metric that measures degradation in logit-level prediction structure by considering the shifts in prediction uncertainty and calibration alignment. Comprehensive experiments and analysis reveal several interesting findings: 1) model behaviors exhibit distinguish patterns under corruptions, such as erroneous confidence and hesitation; 2) despite subtle corruption may lead to a slight accuracy gain, the overall prediction structure still degrades; 3) by decomposing corruption robustness into destructive and corrective components, the distinct failure and recovery patterns across models can be revealed.
comment: 15 pages
☆ Life-IQA: Boosting Blind Image Quality Assessment through GCN-enhanced Layer Interaction and MoE-based Feature Decoupling
Blind image quality assessment (BIQA) plays a crucial role in evaluating and optimizing visual experience. Most existing BIQA approaches fuse shallow and deep features extracted from backbone networks, while overlooking the unequal contributions to quality prediction. Moreover, while various vision encoder backbones are widely adopted in BIQA, the effective quality decoding architectures remain underexplored. To address these limitations, this paper investigates the contributions of shallow and deep features to BIQA, and proposes a effective quality feature decoding framework via GCN-enhanced \underline{l}ayer\underline{i}nteraction and MoE-based \underline{f}eature d\underline{e}coupling, termed \textbf{(Life-IQA)}. Specifically, the GCN-enhanced layer interaction module utilizes the GCN-enhanced deepest-layer features as query and the penultimate-layer features as key, value, then performs cross-attention to achieve feature interaction. Moreover, a MoE-based feature decoupling module is proposed to decouple fused representations though different experts specialized for specific distortion types or quality dimensions. Extensive experiments demonstrate that Life-IQA shows more favorable balance between accuracy and cost than a vanilla Transformer decoder and achieves state-of-the-art performance on multiple BIQA benchmarks.The code is available at: \href{https://github.com/TANGLONG2/Life-IQA/tree/main}{\texttt{Life-IQA}}.
☆ Dynamic Granularity Matters: Rethinking Vision Transformers Beyond Fixed Patch Splitting
Vision Transformers (ViTs) have demonstrated strong capabilities in capturing global dependencies but often struggle to efficiently represent fine-grained local details. Existing multi-scale approaches alleviate this issue by integrating hierarchical or hybrid features; however, they rely on fixed patch sizes and introduce redundant computation. To address these limitations, we propose Granularity-driven Vision Transformer (Grc-ViT), a dynamic coarse-to-fine framework that adaptively adjusts visual granularity based on image complexity. It comprises two key stages: (1) Coarse Granularity Evaluation module, which assesses visual complexity using edge density, entropy, and frequency-domain cues to estimate suitable patch and window sizes; (2) Fine-grained Refinement module, which refines attention computation according to the selected granularity, enabling efficient and precise feature learning. Two learnable parameters, α and \b{eta}, are optimized end-to-end to balance global reasoning and local perception. Comprehensive evaluations demonstrate that Grc-ViT enhances fine-grained discrimination while achieving a superior trade-off between accuracy and computational efficiency.
comment: 10 pages, 7 figures
☆ A Self-Conditioned Representation Guided Diffusion Model for Realistic Text-to-LiDAR Scene Generation
Text-to-LiDAR generation can customize 3D data with rich structures and diverse scenes for downstream tasks. However, the scarcity of Text-LiDAR pairs often causes insufficient training priors, generating overly smooth 3D scenes. Moreover, low-quality text descriptions may degrade generation quality and controllability. In this paper, we propose a Text-to-LiDAR Diffusion Model for scene generation, named T2LDM, with a Self-Conditioned Representation Guidance (SCRG). Specifically, SCRG, by aligning to the real representations, provides the soft supervision with reconstruction details for the Denoising Network (DN) in training, while decoupled in inference. In this way, T2LDM can perceive rich geometric structures from data distribution, generating detailed objects in scenes. Meanwhile, we construct a content-composable Text-LiDAR benchmark, T2nuScenes, along with a controllability metric. Based on this, we analyze the effects of different text prompts for LiDAR generation quality and controllability, providing practical prompt paradigms and insights. Furthermore, a directional position prior is designed to mitigate street distortion, further improving scene fidelity. Additionally, by learning a conditional encoder via frozen DN, T2LDM can support multiple conditional tasks, including Sparse-to-Dense, Dense-to-Sparse, and Semantic-to-LiDAR generation. Extensive experiments in unconditional and conditional generation demonstrate that T2LDM outperforms existing methods, achieving state-of-the-art scene generation.
☆ AuViRe: Audio-visual Speech Representation Reconstruction for Deepfake Temporal Localization
With the rapid advancement of sophisticated synthetic audio-visual content, e.g., for subtle malicious manipulations, ensuring the integrity of digital media has become paramount. This work presents a novel approach to temporal localization of deepfakes by leveraging Audio-Visual Speech Representation Reconstruction (AuViRe). Specifically, our approach reconstructs speech representations from one modality (e.g., lip movements) based on the other (e.g., audio waveform). Cross-modal reconstruction is significantly more challenging in manipulated video segments, leading to amplified discrepancies, thereby providing robust discriminative cues for precise temporal forgery localization. AuViRe outperforms the state of the art by +8.9 AP@0.95 on LAV-DF, +9.6 AP@0.5 on AV-Deepfake1M, and +5.1 AUC on an in-the-wild experiment. Code available at https://github.com/mever-team/auvire.
comment: WACV 2026
♻ ☆ SketchDeco: Training-Free Latent Composition for Precise Sketch Colourisation
We introduce SketchDeco, a training-free approach to sketch colourisation that bridges the gap between professional design needs and intuitive, region-based control. Our method empowers artists to use simple masks and colour palettes for precise spatial and chromatic specification, avoiding both the tediousness of manual assignment and the ambiguity of text-based prompts. We reformulate this task as a novel, training-free composition problem. Our core technical contribution is a guided latent-space blending process: we first leverage diffusion inversion to precisely ``paint'' user-defined colours into specified regions, and then use a custom self-attention mechanism to harmoniously blend these local edits with a globally consistent base image. This ensures both local colour fidelity and global harmony without requiring any model fine-tuning. Our system produces high-quality results in 15--20 inference steps on consumer GPUs, making professional-quality, controllable colourisation accessible.
comment: Project Page: \url{https://chaitron.github.io/SketchDeco/}
♻ ☆ The Geometry of Cortical Computation: Manifold Disentanglement and Predictive Dynamics in VCNet NeurIPS 2025
Despite their success, modern convolutional neural networks (CNNs) exhibit fundamental limitations, including data inefficiency, poor out-of-distribution generalization, and vulnerability to adversarial perturbations. These shortcomings can be traced to a lack of inductive biases that reflect the inherent geometric structure of the visual world. The primate visual system, in contrast, demonstrates superior efficiency and robustness, suggesting that its architectural and computational principles,which evolved to internalize these structures,may offer a blueprint for more capable artificial vision. This paper introduces Visual Cortex Network (VCNet), a novel neural network architecture whose design is informed by the macro-scale organization of the primate visual cortex. VCNet is framed as a geometric framework that emulates key biological mechanisms, including hierarchical processing across distinct cortical areas, dual-stream information segregation for learning disentangled representations, and top-down predictive feedback for representation refinement. We interpret these mechanisms through the lens of geometry and dynamical systems, positing that they guide the learning of structured, low-dimensional neural manifolds. We evaluate VCNet on two specialized benchmarks: the Spots-10 animal pattern dataset, which probes sensitivity to natural textures, and a light field image classification task, which requires processing higher-dimensional visual data. Our results show that VCNet achieves state-of-the-art accuracy of 92.1\% on Spots-10 and 74.4\% on the light field dataset, surpassing contemporary models of comparable size. This work demonstrates that integrating high-level neuroscientific principles, viewed through a geometric lens, can lead to more efficient and robust models, providing a promising direction for addressing long-standing challenges in machine learning.
comment: Published in the proceedings of the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Symmetry and Geometry in Neural Representations (NeurReps). Additionally accepted for presentation in NeurIPS 2025 Workshop: Interpreting Cognition in Deep Learning Models (CogInterp)
♻ ☆ A Target-based Multi-LiDAR Multi-Camera Extrinsic Calibration System
Extrinsic Calibration represents the cornerstone of autonomous driving. Its accuracy plays a crucial role in the perception pipeline, as any errors can have implications for the safety of the vehicle. Modern sensor systems collect different types of data from the environment, making it harder to align the data. To this end, we propose a target-based extrinsic calibration system tailored for a multi-LiDAR and multi-camera sensor suite. This system enables cross-calibration between LiDARs and cameras with limited prior knowledge using a custom ChArUco board and a tailored nonlinear optimization method. We test the system with real-world data gathered in a warehouse. Results demonstrated the effectiveness of the proposed method, highlighting the feasibility of a unique pipeline tailored for various types of sensors.
comment: RiTA 2025 Accepted, 13 Pages, 6 Figures and 2 Tables
♻ ☆ The SA-FARI Dataset: Segment Anything in Footage of Animals for Recognition and Identification
Automated video analysis is critical for wildlife conservation. A foundational task in this domain is multi-animal tracking (MAT), which underpins applications such as individual re-identification and behavior recognition. However, existing datasets are limited in scale, constrained to a few species, or lack sufficient temporal and geographical diversity - leaving no suitable benchmark for training general-purpose MAT models applicable across wild animal populations. To address this, we introduce SA-FARI, the largest open-source MAT dataset for wild animals. It comprises 11,609 camera trap videos collected over approximately 10 years (2014-2024) from 741 locations across 4 continents, spanning 99 species categories. Each video is exhaustively annotated culminating in ~46 hours of densely annotated footage containing 16,224 masklet identities and 942,702 individual bounding boxes, segmentation masks, and species labels. Alongside the task-specific annotations, we publish anonymized camera trap locations for each video. Finally, we present comprehensive benchmarks on SA-FARI using state-of-the-art vision-language models for detection and tracking, including SAM 3, evaluated with both species-specific and generic animal prompts. We also compare against vision-only methods developed specifically for wildlife analysis. SA-FARI is the first large-scale dataset to combine high species diversity, multi-region coverage, and high-quality spatio-temporal annotations, offering a new foundation for advancing generalizable multianimal tracking in the wild. The dataset is available at https://www.conservationxlabs.com/sa-fari.
♻ ☆ FOCUS: Efficient Keyframe Selection for Long Video Understanding
Multimodal large language models (MLLMs) represent images and video frames as visual tokens. Scaling from single images to hour-long videos, however, inflates the token budget far beyond practical limits. Popular pipelines therefore either uniformly subsample or apply keyframe selection with retrieval-style scoring using smaller vision-language models. However, these keyframe selection methods still rely on pre-filtering before selection to reduce the inference cost and can miss the most informative moments. We propose FOCUS, Frame-Optimistic Confidence Upper-bound Selection, a training-free, model-agnostic keyframe selection module that selects query-relevant frames under a strict token budget. FOCUS formulates keyframe selection as a combinatorial pure-exploration (CPE) problem in multi-armed bandits: it treats short temporal clips as arms, and uses empirical means and Bernstein confidence radius to identify informative regions while preserving exploration of uncertain areas. The resulting two-stage exploration-exploitation procedure reduces from a sequential policy with theoretical guarantees, first identifying high-value temporal regions, then selecting top-scoring frames within each region. On two long-video question-answering benchmarks, FOCUS delivers substantial accuracy improvements while processing less than 2% of video frames. For videos longer than 20 minutes, it achieves an 11.9% gain in accuracy on LongVideoBench, demonstrating its effectiveness as a keyframe selection method and providing a simple and general solution for scalable long-video understanding with MLLMs. Code is available at https://github.com/NUS-HPC-AI-Lab/FOCUS.
♻ ☆ InfoScale: Unleashing Training-free Variable-scaled Image Generation via Effective Utilization of Information
Diffusion models (DMs) have become dominant in visual generation but suffer performance drop when tested on resolutions that differ from the training scale, whether lower or higher. In fact, the key challenge in generating variable-scale images lies in the differing amounts of information across resolutions, which requires information conversion procedures to be varied for generating variable-scaled images. In this paper, we investigate the issues of three critical aspects in DMs for a unified analysis in variable-scaled generation: dilated convolution, attention mechanisms, and initial noise. Specifically, 1) dilated convolution in DMs for the higher-resolution generation loses high-frequency information. 2) Attention for variable-scaled image generation struggles to adjust the information aggregation adaptively. 3) The spatial distribution of information in the initial noise is misaligned with variable-scaled image. To solve the above problems, we propose \textbf{InfoScale}, an information-centric framework for variable-scaled image generation by effectively utilizing information from three aspects correspondingly. For information loss in 1), we introduce Progressive Frequency Compensation module to compensate for high-frequency information lost by dilated convolution in higher-resolution generation. For information aggregation inflexibility in 2), we introduce Adaptive Information Aggregation module to adaptively aggregate information in lower-resolution generation and achieve an effective balance between local and global information in higher-resolution generation. For information distribution misalignment in 3), we design Noise Adaptation module to re-distribute information in initial noise for variable-scaled generation. Our method is plug-and-play for DMs and extensive experiments demonstrate the effectiveness in variable-scaled image generation.
♻ ☆ VideoLights: Feature Refinement and Cross-Task Alignment Transformer for Joint Video Highlight Detection and Moment Retrieval
Prevailing joint prediction transformers for Video Highlight Detection and Moment Retrieval (HD/MR) exhibit deficiencies in handling cross-task dynamics, achieving robust video-text alignment, and utilizing effective attention mechanisms, with the potential of Large Language/Vision-Language Models (LLMs/LVLMs) being largely untapped. This paper introduces VideoLights, a novel HD/MR framework addressing these limitations by incorporating: (i) Convolutional Projection and Feature Refinement modules with an alignment loss for enhanced video-text feature congruity; (ii) a Bi-Directional Cross-Modal Fusion network for strongly coupled query-aware representations; (iii) a Uni-directional joint-task feedback mechanism for synergistic task improvement; (iv) hard positive/negative losses for adaptive learning; and (v) the leveraging of LVLMs (e.g., BLIP-2) for superior multimodal feature integration and intelligent pre-training with synthetic data. Comprehensive evaluations on QVHighlights, TVSum, and Charades-STA benchmarks demonstrate that VideoLights significantly surpasses existing baselines, establishing new state-of-the-art performances. Codes and model checkpoints are available at https://github.com/dpaul06/VideoLights .
♻ ☆ Optimization-Free Style Transfer for 3D Gaussian Splats
The task of style transfer for 3D Gaussian splats has been explored in many previous works, but these require reconstructing or fine-tuning the splat while incorporating style information or optimizing a feature extraction network on the splat representation. We propose a reconstruction- and optimization-free approach to stylizing 3D Gaussian splats, allowing for direct stylization on a .ply or .splat file without requiring the original camera views. This is done by generating a graph structure across the implicit surface of the splat representation. A feed-forward, surface-based stylization method is then used and interpolated back to the individual splats in the scene. This also allows for fast stylization of splats with no additional training, achieving speeds under 2 minutes even on CPU-based consumer hardware. We demonstrate the quality results this approach achieves and compare to other 3D Gaussian splat style transfer methods. Code is publicly available at https://github.com/davidmhart/FastSplatStyler.
♻ ☆ Zero-Shot Coreset Selection via Iterative Subspace Sampling
Deep learning increasingly relies on massive data with substantial storage, annotation, and training costs. To reduce costs, coreset selection finds a representative subset of data to train models while ideally performing on par with the full data training. To maximize performance, current state-of-the-art coreset methods select data using dataset-specific ground truth labels and training. However, these methodological requirements prevent selection at scale on real-world, unlabeled data. To that end, this paper addresses the selection of coresets that achieve state-of-the-art performance but without using any labels or training on candidate data. Instead, our solution, Zero-Shot Coreset Selection via Iterative Subspace Sampling (ZCore), uses previously-trained foundation models to generate zero-shot, high-dimensional embedding spaces to interpret unlabeled data. ZCore then iteratively quantifies the relative value of all candidate data based on coverage and redundancy in numerous subspace distributions. Finally, ZCore selects a coreset sized for any data budget to train downstream models. We evaluate ZCore on four datasets and outperform several state-of-the-art label-based methods, especially at low data rates that provide the most substantial cost reduction. On ImageNet, ZCore selections for 10% training data achieve a downstream validation accuracy of 53.99%, which outperforms prior label-based methods and removes annotation and training costs for 1.15 million images. Our paper's code is publicly available at https://github.com/voxel51/zcore.
comment: WACV 2026
♻ ☆ Fairness in Multi-modal Medical Diagnosis with Demonstration Selection
Multimodal large language models (MLLMs) have shown strong potential for medical image reasoning, yet fairness across demographic groups remains a major concern. Existing debiasing methods often rely on large labeled datasets or fine-tuning, which are impractical for foundation-scale models. We explore In-Context Learning (ICL) as a lightweight, tuning-free alternative for improving fairness. Through systematic analysis, we find that conventional demonstration selection (DS) strategies fail to ensure fairness due to demographic imbalance in selected exemplars. To address this, we propose Fairness-Aware Demonstration Selection (FADS), which builds demographically balanced and semantically relevant demonstrations via clustering-based sampling. Experiments on multiple medical imaging benchmarks show that FADS consistently reduces gender-, race-, and ethnicity-related disparities while maintaining strong accuracy, offering an efficient and scalable path toward fair medical image reasoning. These results highlight the potential of fairness-aware in-context learning as a scalable and data-efficient solution for equitable medical image reasoning.
comment: 10 pages (including 2 pages of references), 4 figures. This work explores fairness in multi-modal medical image reasoning using in-context learning
♻ ☆ Minimax Multi-Target Conformal Prediction with Applications to Imaging Inverse Problems
In ill-posed imaging inverse problems, uncertainty quantification remains a fundamental challenge, especially in safety-critical applications. Recently, conformal prediction has been used to quantify the uncertainty that the inverse problem contributes to downstream tasks like image classification, image quality assessment, fat mass quantification, etc. While existing works handle only a scalar estimation target, practical applications often involve multiple targets. In response, we propose an asymptotically minimax approach to multi-target conformal prediction that provides tight prediction intervals while ensuring joint marginal coverage. We then outline how our minimax approach can be applied to multi-metric blind image quality assessment, multi-task uncertainty quantification, and multi-round measurement acquisition. Finally, we numerically demonstrate the benefits of our minimax method, relative to existing multi-target conformal prediction methods, using both synthetic and magnetic resonance imaging (MRI) data. Code is available at https://github.com/jwen307/multi_target_minimax.
♻ ☆ Multiview point cloud registration with anisotropic and space-varying localization noise
In this paper, we address the problem of registering multiple point clouds corrupted with high anisotropic localization noise. Our approach follows the widely used framework of Gaussian mixture model (GMM) reconstruction with an expectation-maximization (EM) algorithm. Existing methods are based on an implicit assumption of space-invariant isotropic Gaussian noise. However, this assumption is violated in practice in applications such as single molecule localization microscopy (SMLM). To address this issue, we propose to introduce an explicit localization noise model that decouples shape modeling with the GMM from noise handling. We design a stochastic EM algorithm that considers noise-free data as a latent variable, with closed-form solutions at each EM step. The first advantage of our approach is to handle space-variant and anisotropic Gaussian noise with arbitrary covariances. The second advantage is to leverage the explicit noise model to impose prior knowledge about the noise that may be available from physical sensors. We show on various simulated data that our noise handling strategy improves significantly the robustness to high levels of anisotropic noise. We also demonstrate the performance of our method on real SMLM data.
♻ ☆ Automatic Multi-View X-Ray/CT Registration Using Bone Substructure Contours
Purpose: Accurate intraoperative X-ray/CT registration is essential for surgical navigation in orthopedic procedures. However, existing methods struggle with consistently achieving sub-millimeter accuracy, robustness under broad initial pose estimates or need manual key-point annotations. This work aims to address these challenges by proposing a novel multi-view X-ray/CT registration method for intraoperative bone registration. Methods: The proposed registration method consists of a multi-view, contour-based iterative closest point (ICP) optimization. Unlike previous methods, which attempt to match bone contours across the entire silhouette in both imaging modalities, we focus on matching specific subcategories of contours corresponding to bone substructures. This leads to reduced ambiguity in the ICP matches, resulting in a more robust and accurate registration solution. This approach requires only two X-ray images and operates fully automatically. Additionally, we contribute a dataset of 5 cadaveric specimens, including real X-ray images, X-ray image poses and the corresponding CT scans. Results: The proposed registration method is evaluated on real X-ray images using mean reprojection error (mRPD). The method consistently achieves sub-millimeter accuracy with a mRPD 0.67mm compared to 5.35mm by a commercial solution requiring manual intervention. Furthermore, the method offers improved practical applicability, being fully automatic. Conclusion: Our method offers a practical, accurate, and efficient solution for multi-view X-ray/CT registration in orthopedic surgeries, which can be easily combined with tracking systems. By improving registration accuracy and minimizing manual intervention, it enhances intraoperative navigation, contributing to more accurate and effective surgical outcomes in computer-assisted surgery (CAS).
comment: This paper was accepted to IPCAI 2025. The Project Webpage is: https://rflepp.github.io/BoneSubstructureContours2D3DRegistration/
♻ ☆ MedBridge: Bridging Foundation Vision-Language Models to Medical Image Diagnosis in Chest X-Ray
Recent vision-language foundation models deliver state-of-the-art results in natural image classification, but falter in medical images due to pronounced domain shifts. Training a medical foundation model also requires substantial resources, including extensive annotated data and high computational capacity. To bridge this gap with minimal overhead, we introduce MedBridge, a lightweight multimodal adaptation framework that flexibly re-purposes arbitrary pre-trained foundation VLMs for medical image diagnosis. MedBridge comprises three novel core components. First, a Focal Sampling module that subsamples and extracts high-resolution local regions to capture subtle pathological features, compensating for the limited input resolution of foundation VLMs. Second, a Query-Encoder model with a small set of learnable queries to align the feature maps of frozen VLMs with medical semantics, without requiring retraining of the backbone layers. Third, a Mixture of Experts mechanism, driven by learnable queries, harnesses the complementary strength of various VLMs to maximize diagnostic performance. We evaluate MedBridge on five chest radiograph benchmarks in three key adaptation tasks, demonstrating its superior performance in both cross-domain and in-domain adaptation settings under varying levels of training data availability. MedBridge achieved an improvement of 6-15% in AUC compared to state-of-the-art VLM adaptation methods in multi-label thoracic disease diagnosis, underscoring its effectiveness in leveraging diverse foundation models for accurate and data-efficient medical diagnosis. Our project and code are available at https://github.com/ai-med/MedBridge.
♻ ☆ CUPID: Generative 3D Reconstruction via Joint Object and Pose Modeling
We introduce Cupid, a generative 3D reconstruction framework that jointly models the full distribution over both canonical objects and camera poses. Our two-stage flow-based model first generates a coarse 3D structure and 2D-3D correspondences to estimate the camera pose robustly. Conditioned on this pose, a refinement stage injects pixel-aligned image features directly into the generative process, marrying the rich prior of a generative model with the geometric fidelity of reconstruction. This strategy achieves exceptional faithfulness, outperforming state-of-the-art reconstruction methods by over 3 dB PSNR and 10% in Chamfer Distance. As a unified generative model that decouples the object and camera pose, Cupid naturally extends to multi-view and scene-level reconstruction tasks without requiring post-hoc optimization or fine-tuning.
comment: project page at https://cupid3d.github.io
♻ ☆ Don't Reach for the Stars: Rethinking Topology for Resilient Federated Learning
Federated learning (FL) enables collaborative model training across distributed clients while preserving data privacy by keeping data local. Traditional FL approaches rely on a centralized, star-shaped topology, where a central server aggregates model updates from clients. However, this architecture introduces several limitations, including a single point of failure, limited personalization, and poor robustness to distribution shifts or vulnerability to malfunctioning clients. Moreover, update selection in centralized FL often relies on low-level parameter differences, which can be unreliable when client data is not independent and identically distributed, and offer clients little control. In this work, we propose a decentralized, peer-to-peer (P2P) FL framework. It leverages the flexibility of the P2P topology to enable each client to identify and aggregate a personalized set of trustworthy and beneficial updates.This framework is the Local Inference Guided Aggregation for Heterogeneous Training Environments to Yield Enhancement Through Agreement and Regularization (LIGHTYEAR). Central to our method is an agreement score, computed on a local validation set, which quantifies the semantic alignment of incoming updates in the function space with respect to the clients reference model. Each client uses this score to select a tailored subset of updates and performs aggregation with a regularization term that further stabilizes the training. Our empirical evaluation across five datasets shows that the proposed approach consistently outperforms both, centralized baselines and existing P2P methods in terms of client-level performance, particularly under adversarial and heterogeneous conditions.
♻ ☆ Benchmarking the Spatial Robustness of DNNs via Natural and Adversarial Localized Corruptions
The robustness of deep neural networks is a crucial factor in safety-critical applications, particularly in complex and dynamic environments (e.g., medical or driving scenarios) where localized corruptions can arise. While previous studies have evaluated the robustness of semantic segmentation (SS) models under whole-image natural or adversarial corruptions, a comprehensive investigation into the spatial robustness of dense vision models under localized corruptions remains underexplored. This paper fills this gap by introducing novel, region-aware metrics for benchmarking the spatial robustness of segmentation models, along with an evaluation framework to assess the impact of natural localized corruptions. Furthermore, it uncovers the inherent complexity of evaluating worst-case spatial robustness using only a single localized adversarial attack. To address this, the work proposes a region-aware multi-attack adversarial analysis to systematically assess model robustness across specific image regions. The proposed metrics and analysis were exploited to evaluate 14 segmentation models in driving scenarios, uncovering key insights into the effects of localized corruption in both natural and adversarial forms. The results reveal that models respond to these two types of threats differently; for instance, transformer-based segmentation models demonstrate notable robustness to localized natural corruptions but are highly vulnerable to adversarial ones, and vice versa for CNN-based models. Consequently, we also address the challenge of balancing robustness to both natural and adversarial localized corruptions by means of ensemble models, thereby achieving a broader threat coverage and improved reliability for dense vision tasks.
comment: Accepted for publication in Pattern Recognition
♻ ☆ In-Situ Tweedie Discrete Diffusion Models
While diffusion models excel at generating continuous data such as images, adapting them to discrete tasks has relied on indirect approaches that either operate in continuous embedding spaces or use token masking mechanisms, both of which deviate from modeling the true discrete data distribution that can be theoretically guaranteed by Tweedie's formula. We propose in-situ Tweedie Discrete Diffusion (TDD), a framework that performs diffusion guaranteed by Tweedie's formula directly within the discrete one-hot space, hence "in-situ." Unlike prior methods that diffuse continuous embeddings or mask tokens, TDD directly corrupts one-hot vectors with Gaussian noise and performs iterative denoising through a timestep-conditioned cross-entropy objective rather than mean-squared-error reconstruction. At each denoising step, the model predicts class probabilities, applies argmax to obtain discrete predictions, converts them to one-hot vectors, and feeds them into the next iteration with progressively reduced noise. This process naturally unifies discriminative classification and generative modeling under a single framework. Experiments demonstrate that TDD achieves strong performance on both image classification and text generation tasks, with extensive ablation studies confirming the effectiveness of each design component. Our work establishes a principled approach to discrete diffusion that preserves the core characteristics of diffusion models while operating natively in discrete space.
♻ ☆ ReefNet: A Large scale, Taxonomically Enriched Dataset and Benchmark for Hard Coral Classification
Coral reefs are rapidly declining due to anthropogenic pressures such as climate change, underscoring the urgent need for scalable, automated monitoring. We introduce ReefNet, a large public coral reef image dataset with point-label annotations mapped to the World Register of Marine Species (WoRMS). ReefNet aggregates imagery from 76 curated CoralNet sources and an additional site from Al Wajh in the Red Sea, totaling approximately 925000 genus-level hard coral annotations with expert-verified labels. Unlike prior datasets, which are often limited by size, geography, or coarse labels and are not ML-ready, ReefNet offers fine-grained, taxonomically mapped labels at a global scale to WoRMS. We propose two evaluation settings: (i) a within-source benchmark that partitions each source's images for localized evaluation, and (ii) a cross-source benchmark that withholds entire sources to test domain generalization. We analyze both supervised and zero-shot classification performance on ReefNet and find that while supervised within-source performance is promising, supervised performance drops sharply across domains, and performance is low across the board for zero-shot models, especially for rare and visually similar genera. This provides a challenging benchmark intended to catalyze advances in domain generalization and fine-grained coral classification. We will release our dataset, benchmarking code, and pretrained models to advance robust, domain-adaptive, global coral reef monitoring and conservation.
♻ ☆ U-REPA: Aligning Diffusion U-Nets to ViTs
Representation Alignment (REPA) that aligns Diffusion Transformer (DiT) hidden-states with ViT visual encoders has proven highly effective in DiT training, demonstrating superior convergence properties, but it has not been validated on the canonical diffusion U-Net architecture that shows faster convergence compared to DiTs. However, adapting REPA to U-Net architectures presents unique challenges: (1) different block functionalities necessitate revised alignment strategies; (2) spatial-dimension inconsistencies emerge from U-Net's spatial downsampling operations; (3) space gaps between U-Net and ViT hinder the effectiveness of tokenwise alignment. To encounter these challenges, we propose \textbf{U-REPA}, a representation alignment paradigm that bridges U-Net hidden states and ViT features as follows: Firstly, we propose via observation that due to skip connection, the middle stage of U-Net is the best alignment option. Secondly, we propose upsampling of U-Net features after passing them through MLPs. Thirdly, we observe difficulty when performing tokenwise similarity alignment, and further introduces a manifold loss that regularizes the relative similarity between samples. Experiments indicate that the resulting U-REPA could achieve excellent generation quality and greatly accelerates the convergence speed. With CFG guidance interval, U-REPA could reach $FID<1.5$ in 200 epochs or 1M iterations on ImageNet 256 $\times$ 256, and needs only half the total epochs to perform better than REPA under sd-vae-ft-ema. Codes: https://github.com/YuchuanTian/U-REPA
comment: 22 pages, 7 figures
♻ ☆ InstantViR: Real-Time Video Inverse Problem Solver with Distilled Diffusion Prior
Video inverse problems are fundamental to streaming, telepresence, and AR/VR, where high perceptual quality must coexist with tight latency constraints. Diffusion-based priors currently deliver state-of-the-art reconstructions, but existing approaches either adapt image diffusion models with ad hoc temporal regularizers - leading to temporal artifacts - or rely on native video diffusion models whose iterative posterior sampling is far too slow for real-time use. We introduce InstantViR, an amortized inference framework for ultra-fast video reconstruction powered by a pre-trained video diffusion prior. We distill a powerful bidirectional video diffusion model (teacher) into a causal autoregressive student that maps a degraded video directly to its restored version in a single forward pass, inheriting the teacher's strong temporal modeling while completely removing iterative test-time optimization. The distillation is prior-driven: it only requires the teacher diffusion model and known degradation operators, and does not rely on externally paired clean/noisy video data. To further boost throughput, we replace the video-diffusion backbone VAE with a high-efficiency LeanVAE via an innovative teacher-space regularized distillation scheme, enabling low-latency latent-space processing. Across streaming random inpainting, Gaussian deblurring and super-resolution, InstantViR matches or surpasses the reconstruction quality of diffusion-based baselines while running at over 35 FPS on NVIDIA A100 GPUs, achieving up to 100 times speedups over iterative video diffusion solvers. These results show that diffusion-based video reconstruction is compatible with real-time, interactive, editable, streaming scenarios, turning high-quality video restoration into a practical component of modern vision systems.
♻ ☆ Splats in Splats: Robust and Effective 3D Steganography towards Gaussian Splatting AAAI 2026
3D Gaussian splatting (3DGS) has demonstrated impressive 3D reconstruction performance with explicit scene representations. Given the widespread application of 3DGS in 3D reconstruction and generation tasks, there is an urgent need to protect the copyright of 3DGS assets. However, existing copyright protection techniques for 3DGS overlook the usability of 3D assets, posing challenges for practical deployment. Here we describe splats in splats, the first 3DGS steganography framework that embeds 3D content in 3DGS itself without modifying any attributes. To achieve this, we take a deep insight into spherical harmonics (SH) and devise an importance-graded SH coefficient encryption strategy to embed the hidden SH coefficients. Furthermore, we employ a convolutional autoencoder to establish a mapping between the original Gaussian primitives' opacity and the hidden Gaussian primitives' opacity. Extensive experiments indicate that our method significantly outperforms existing 3D steganography techniques, with 5.31% higher scene fidelity and 3x faster rendering speed, while ensuring security, robustness, and user experience.
comment: Accepted by AAAI 2026
♻ ☆ HiGFA: Hierarchical Guidance for Fine-grained Data Augmentation with Diffusion Models
Generative diffusion models show promise for data augmentation. However, applying them to fine-grained tasks presents a significant challenge: ensuring synthetic images accurately capture the subtle, category-defining features critical for high fidelity. Standard approaches, such as text-based Classifier-Free Guidance (CFG), often lack the required specificity, potentially generating misleading examples that degrade fine-grained classifier performance. To address this, we propose Hierarchically Guided Fine-grained Augmentation (HiGFA). HiGFA leverages the temporal dynamics of the diffusion sampling process. It employs strong text and transformed contour guidance with fixed strengths in the early-to-mid sampling stages to establish overall scene, style, and structure. In the final sampling stages, HiGFA activates a specialized fine-grained classifier guidance and dynamically modulates the strength of all guidance signals based on prediction confidence. This hierarchical, confidence-driven orchestration enables HiGFA to generate diverse yet faithful synthetic images by intelligently balancing global structure formation with precise detail refinement. Experiments on several FGVC datasets demonstrate the effectiveness of HiGFA.
♻ ☆ TokenCLIP: Token-wise Prompt Learning for Zero-shot Anomaly Detection
Adapting CLIP for anomaly detection on unseen objects has shown strong potential in a zero-shot manner. However, existing methods typically rely on a single textual space to align with visual semantics across diverse objects and domains. The indiscriminate alignment hinders the model from accurately capturing varied anomaly semantics. We propose TokenCLIP, a token-wise adaptation framework that enables dynamic alignment between visual and learnable textual spaces for fine-grained anomaly learning. Rather than mapping all visual tokens to a single, token-agnostic textual space, TokenCLIP aligns each token with a customized textual subspace that represents its visual characteristics. Explicitly assigning a unique learnable textual space to each token is computationally intractable and prone to insufficient optimization. We instead expand the token-agnostic textual space into a set of orthogonal subspaces, and then dynamically assign each token to a subspace combination guided by semantic affinity, which jointly supports customized and efficient token-wise adaptation. To this end, we formulate dynamic alignment as an optimal transport problem, where all visual tokens in an image are transported to textual subspaces based on semantic similarity. The transport constraints of OT ensure sufficient optimization across subspaces and encourage them to focus on different semantics. Solving the problem yields a transport plan that adaptively assigns each token to semantically relevant subspaces. A top-k masking is then applied to sparsify the plan and specialize subspaces for distinct visual regions. Extensive experiments demonstrate the superiority of TokenCLIP.
♻ ☆ Upsample Anything: A Simple and Hard to Beat Baseline for Feature Upsampling
We present \textbf{Upsample Anything}, a lightweight test-time optimization (TTO) framework that restores low-resolution features to high-resolution, pixel-wise outputs without any training. Although Vision Foundation Models demonstrate strong generalization across diverse downstream tasks, their representations are typically downsampled by 14x/16x (e.g., ViT), which limits their direct use in pixel-level applications. Existing feature upsampling approaches depend on dataset-specific retraining or heavy implicit optimization, restricting scalability and generalization. Upsample Anything addresses these issues through a simple per-image optimization that learns an anisotropic Gaussian kernel combining spatial and range cues, effectively bridging Gaussian Splatting and Joint Bilateral Upsampling. The learned kernel acts as a universal, edge-aware operator that transfers seamlessly across architectures and modalities, enabling precise high-resolution reconstruction of features, depth, or probability maps. It runs in only $\approx0.419 \text{s}$ per 224x224 image and achieves state-of-the-art performance on semantic segmentation, depth estimation, and both depth and probability map upsampling. \textbf{Project page:} \href{https://seominseok0429.github.io/Upsample-Anything/}{https://seominseok0429.github.io/Upsample-Anything/}
comment: 15 pages, 12 figures
Machine Learning 243
☆ VDC-Agent: When Video Detailed Captioners Evolve Themselves via Agentic Self-Reflection
We present VDC-Agent, a self-evolving framework for Video Detailed Captioning that requires neither human annotations nor larger teacher models. The agent forms a closed loop of caption generation, principle-guided scoring (score and textual suggestions), and prompt refinement. When caption quality regresses, a self-reflection path leverages the previous chain-of-thought to amend the update. Running this process on unlabeled videos produces trajectories of (caption, score) pairs. We convert the trajectories into preference tuples and filter out samples with JSON parsing errors, resulting in VDC-Agent-19K, which contains 18,886 automatically constructed pairs. We then fine-tune the base MLLM on this dataset using an easy-to-hard curriculum direct preference optimization. Built on Qwen2.5-VL-7B-Instruct, our VDC-Agent-7B attains state-of-the-art performance on the VDC benchmark with 49.08% average accuracy and 2.50 score, surpassing specialized video captioners and improving over the base model by +5.13% accuracy and +0.27 score at similar inference cost.
☆ Breaking the Likelihood-Quality Trade-off in Diffusion Models by Merging Pretrained Experts ICLR 2025
Diffusion models for image generation often exhibit a trade-off between perceptual sample quality and data likelihood: training objectives emphasizing high-noise denoising steps yield realistic images but poor likelihoods, whereas likelihood-oriented training overweights low-noise steps and harms visual fidelity. We introduce a simple plug-and-play sampling method that combines two pretrained diffusion experts by switching between them along the denoising trajectory. Specifically, we apply an image-quality expert at high noise levels to shape global structure, then switch to a likelihood expert at low noise levels to refine pixel statistics. The approach requires no retraining or fine-tuning -- only the choice of an intermediate switching step. On CIFAR-10 and ImageNet32, the merged model consistently matches or outperforms its base components, improving or preserving both likelihood and sample quality relative to each expert alone. These results demonstrate that expert switching across noise levels is an effective way to break the likelihood-quality trade-off in image diffusion models.
comment: ICLR 2025 DeLTa workshop
☆ Flow Map Distillation Without Data
State-of-the-art flow models achieve remarkable quality but require slow, iterative sampling. To accelerate this, flow maps can be distilled from pre-trained teachers, a procedure that conventionally requires sampling from an external dataset. We argue that this data-dependency introduces a fundamental risk of Teacher-Data Mismatch, as a static dataset may provide an incomplete or even misaligned representation of the teacher's full generative capabilities. This leads us to question whether this reliance on data is truly necessary for successful flow map distillation. In this work, we explore a data-free alternative that samples only from the prior distribution, a distribution the teacher is guaranteed to follow by construction, thereby circumventing the mismatch risk entirely. To demonstrate the practical viability of this philosophy, we introduce a principled framework that learns to predict the teacher's sampling path while actively correcting for its own compounding errors to ensure high fidelity. Our approach surpasses all data-based counterparts and establishes a new state-of-the-art by a significant margin. Specifically, distilling from SiT-XL/2+REPA, our method reaches an impressive FID of 1.45 on ImageNet 256x256, and 1.49 on ImageNet 512x512, both with only 1 sampling step. We hope our work establishes a more robust paradigm for accelerating generative models and motivates the broader adoption of flow map distillation without data.
☆ Chain-of-Visual-Thought: Teaching VLMs to See and Think Better with Continuous Visual Tokens
Vision-Language Models (VLMs) excel at reasoning in linguistic space but struggle with perceptual understanding that requires dense visual perception, e.g., spatial reasoning and geometric awareness. This limitation stems from the fact that current VLMs have limited mechanisms to capture dense visual information across spatial dimensions. We introduce Chain-of-Visual-Thought (COVT), a framework that enables VLMs to reason not only in words but also through continuous visual tokens-compact latent representations that encode rich perceptual cues. Within a small budget of roughly 20 tokens, COVT distills knowledge from lightweight vision experts, capturing complementary properties such as 2D appearance, 3D geometry, spatial layout, and edge structure. During training, the VLM with COVT autoregressively predicts these visual tokens to reconstruct dense supervision signals (e.g., depth, segmentation, edges, and DINO features). At inference, the model reasons directly in the continuous visual token space, preserving efficiency while optionally decoding dense predictions for interpretability. Evaluated across more than ten diverse perception benchmarks, including CV-Bench, MMVP, RealWorldQA, MMStar, WorldMedQA, and HRBench, integrating COVT into strong VLMs such as Qwen2.5-VL and LLaVA consistently improves performance by 3% to 16% and demonstrates that compact continuous visual thinking enables more precise, grounded, and interpretable multimodal intelligence.
comment: Project page: https://wakalsprojectpage.github.io/comt-website/
☆ Be My Eyes: Extending Large Language Models to New Modalities Through Multi-Agent Collaboration
Large Language Models (LLMs) have demonstrated remarkable capabilities in challenging, knowledge-intensive reasoning tasks. However, extending LLMs to perceive and reason over a new modality (e.g., vision), often requires costly development of large-scale vision language models (VLMs) with LLMs as backbones. Smaller VLMs are more efficient and adaptable but often lack the broad knowledge and reasoning capabilities of frontier LLMs. In this work, we propose BeMyEyes, a modular, multi-agent framework for extending LLMs to multimodal reasoning by orchestrating collaboration between efficient, adaptable VLMs as perceivers and powerful LLMs as reasoners through conversations. We then introduce a data synthesis and supervised fine-tuning pipeline to train the perceiver agent to effectively collaborate with the reasoner agent. By combining the complementary strengths of perception and reasoning agents, BeMyEyes avoids the need for training large-scale multimodal models, preserves the generalization and reasoning capabilities of LLMs, and allows flexible extension to new domains and modalities. Experiments show that our framework unlocks the multimodal reasoning capabilities for LLMs, enabling a lightweight and fully open-source solution, i.e. equipping text-only DeepSeek-R1 with Qwen2.5-VL-7B perceiver, to outperform large-scale proprietary VLMs such as GPT-4o on a wide range of knowledge-intensive multimodal tasks. These results demonstrate the effectiveness, modularity, and scalability of our multi-agent approach for building future multimodal reasoning systems.
☆ UniGame: Turning a Unified Multimodal Model Into Its Own Adversary
Unified Multimodal Models (UMMs) have shown impressive performance in both understanding and generation with a single architecture. However, UMMs still exhibit a fundamental inconsistency: understanding favors compact embeddings, whereas generation favors reconstruction-rich representations. This structural trade-off produces misaligned decision boundaries, degraded cross-modal coherence, and heightened vulnerability under distributional and adversarial shifts. In this paper, we present UniGame, a self-adversarial post-training framework that directly targets the inconsistencies. By applying a lightweight perturber at the shared token interface, UniGame enables the generation branch to actively seek and challenge fragile understanding, turning the model itself into its own adversary. Experiments demonstrate that UniGame significantly improves the consistency (+4.6%). Moreover, it also achieves substantial improvements in understanding (+3.6%), generation (+0.02), out-of-distribution and adversarial robustness (+4.8% and +6.2% on NaturalBench and AdVQA). The framework is architecture-agnostic, introduces less than 1% additional parameters, and is complementary to existing post-training methods. These results position adversarial self-play as a general and effective principle for enhancing the coherence, stability, and unified competence of future multimodal foundation models. The official code is available at: https://github.com/AIFrontierLab/UniGame
☆ Learning Robust Social Strategies with Large Language Models
As agentic AI becomes more widespread, agents with distinct and possibly conflicting goals will interact in complex ways. These multi-agent interactions pose a fundamental challenge, particularly in social dilemmas, where agents' individual incentives can undermine collective welfare. While reinforcement learning (RL) has been effective for aligning large language models (LLMs) in the single-agent regime, prior small-network results suggest that standard RL in multi-agent settings often converges to defecting, self-interested policies. We show the same effect in LLMs: despite cooperative priors, RL-trained LLM agents develop opportunistic behavior that can exploit even advanced closed-source models. To address this tendency of RL to converge to poor equilibria, we adapt a recent opponent-learning awareness algorithm, Advantage Alignment, to fine-tune LLMs toward multi-agent cooperation and non-exploitability. We then introduce a group-relative baseline that simplifies advantage computation in iterated games, enabling multi-agent training at LLM scale. We also contribute a novel social dilemma environment, Trust and Split, which requires natural language communication to achieve high collective welfare. Across a wide range of social dilemmas, policies learned with Advantage Alignment achieve higher collective payoffs while remaining robust against exploitation by greedy agents.
☆ Nonparametric Instrumental Variable Regression with Observed Covariates
We study the problem of nonparametric instrumental variable regression with observed covariates, which we refer to as NPIV-O. Compared with standard nonparametric instrumental variable regression (NPIV), the additional observed covariates facilitate causal identification and enables heterogeneous causal effect estimation. However, the presence of observed covariates introduces two challenges for its theoretical analysis. First, it induces a partial identity structure, which renders previous NPIV analyses - based on measures of ill-posedness, stability conditions, or link conditions - inapplicable. Second, it imposes anisotropic smoothness on the structural function. To address the first challenge, we introduce a novel Fourier measure of partial smoothing; for the second challenge, we extend the existing kernel 2SLS instrumental variable algorithm with observed covariates, termed KIV-O, to incorporate Gaussian kernel lengthscales adaptive to the anisotropic smoothness. We prove upper $L^2$-learning rates for KIV-O and the first $L^2$-minimax lower learning rates for NPIV-O. Both rates interpolate between known optimal rates of NPIV and nonparametric regression (NPR). Interestingly, we identify a gap between our upper and lower bounds, which arises from the choice of kernel lengthscales tuned to minimize a projected risk. Our theoretical analysis also applies to proximal causal inference, an emerging framework for causal effect estimation that shares the same conditional moment restriction as NPIV-O.
DR Tulu: Reinforcement Learning with Evolving Rubrics for Deep Research
Deep research models perform multi-step research to produce long-form, well-attributed answers. However, most open deep research models are trained on easily verifiable short-form QA tasks via reinforcement learning with verifiable rewards (RLVR), which does not extend to realistic long-form tasks. We address this with Reinforcement Learning with Evolving Rubrics (RLER), in which we construct and maintain rubrics that co-evolve with the policy model during training; this allows the rubrics to incorporate information that the model has newly explored and to provide discriminative, on-policy feedback. Using RLER, we develop Deep Research Tulu (DR Tulu-8B), the first open model that is directly trained for open-ended, long-form deep research. Across four long-form deep research benchmarks in science, healthcare and general domains, DR Tulu substantially outperforms existing open deep research models, and matches or exceeds proprietary deep research systems, while being significantly smaller and cheaper per query. To facilitate future research, we release all data, models, and code, including our new MCP-based agent infrastructure for deep research systems.
☆ PTF Testing Lower Bounds for Non-Gaussian Component Analysis
This work studies information-computation gaps for statistical problems. A common approach for providing evidence of such gaps is to show sample complexity lower bounds (that are stronger than the information-theoretic optimum) against natural models of computation. A popular such model in the literature is the family of low-degree polynomial tests. While these tests are defined in such a way that make them easy to analyze, the class of algorithms that they rule out is somewhat restricted. An important goal in this context has been to obtain lower bounds against the stronger and more natural class of low-degree Polynomial Threshold Function (PTF) tests, i.e., any test that can be expressed as comparing some low-degree polynomial of the data to a threshold. Proving lower bounds against PTF tests has turned out to be challenging. Indeed, we are not aware of any non-trivial PTF testing lower bounds in the literature. In this paper, we establish the first non-trivial PTF testing lower bounds for a range of statistical tasks. Specifically, we prove a near-optimal PTF testing lower bound for Non-Gaussian Component Analysis (NGCA). Our NGCA lower bound implies similar lower bounds for a number of other statistical problems. Our proof leverages a connection to recent work on pseudorandom generators for PTFs and recent techniques developed in that context. At the technical level, we develop several tools of independent interest, including novel structural results for analyzing the behavior of low-degree polynomials restricted to random directions.
Predicting partially observable dynamical systems via diffusion models with a multiscale inference scheme
Conditional diffusion models provide a natural framework for probabilistic prediction of dynamical systems and have been successfully applied to fluid dynamics and weather prediction. However, in many settings, the available information at a given time represents only a small fraction of what is needed to predict future states, either due to measurement uncertainty or because only a small fraction of the state can be observed. This is true for example in solar physics, where we can observe the Sun's surface and atmosphere, but its evolution is driven by internal processes for which we lack direct measurements. In this paper, we tackle the probabilistic prediction of partially observable, long-memory dynamical systems, with applications to solar dynamics and the evolution of active regions. We show that standard inference schemes, such as autoregressive rollouts, fail to capture long-range dependencies in the data, largely because they do not integrate past information effectively. To overcome this, we propose a multiscale inference scheme for diffusion models, tailored to physical processes. Our method generates trajectories that are temporally fine-grained near the present and coarser as we move farther away, which enables capturing long-range temporal dependencies without increasing computational cost. When integrated into a diffusion model, we show that our inference scheme significantly reduces the bias of the predicted distributions and improves rollout stability.
☆ Efficiency vs. Fidelity: A Comparative Analysis of Diffusion Probabilistic Models and Flow Matching on Low-Resource Hardware
Denoising Diffusion Probabilistic Models (DDPMs) have established a new state-of-the-art in generative image synthesis, yet their deployment is hindered by significant computational overhead during inference, often requiring up to 1,000 iterative steps. This study presents a rigorous comparative analysis of DDPMs against the emerging Flow Matching (Rectified Flow) paradigm, specifically isolating their geometric and efficiency properties on low-resource hardware. By implementing both frameworks on a shared Time-Conditioned U-Net backbone using the MNIST dataset, we demonstrate that Flow Matching significantly outperforms Diffusion in efficiency. Our geometric analysis reveals that Flow Matching learns a highly rectified transport path (Curvature $\mathcal{C} \approx 1.02$), which is near-optimal, whereas Diffusion trajectories remain stochastic and tortuous ($\mathcal{C} \approx 3.45$). Furthermore, we establish an ``efficiency frontier'' at $N=10$ function evaluations, where Flow Matching retains high fidelity while Diffusion collapses. Finally, we show via numerical sensitivity analysis that the learned vector field is sufficiently linear to render high-order ODE solvers (Runge-Kutta 4) unnecessary, validating the use of lightweight Euler solvers for edge deployment. \textbf{This work concludes that Flow Matching is the superior algorithmic choice for real-time, resource-constrained generative tasks.}
LLM-Driven Stationarity-Aware Expert Demonstrations for Multi-Agent Reinforcement Learning in Mobile Systems
Multi-agent reinforcement learning (MARL) has been increasingly adopted in many real-world applications. While MARL enables decentralized deployment on resource-constrained edge devices, it suffers from severe non-stationarity due to the synchronous updates of agent policies. This non stationarity results in unstable training and poor policy con vergence, especially as the number of agents increases. In this paper, we propose RELED, a scalable MARL framework that integrates large language model (LLM)-driven expert demonstrations with autonomous agent exploration. RELED incorporates a Stationarity-Aware Expert Demonstration module, which leverages theoretical non-stationarity bounds to enhance the quality of LLM-generated expert trajectories, thus providing high reward and training-stable samples for each agent. Moreover, a Hybrid Expert-Agent Policy Optimization module adaptively balances each agent's learning from both expert-generated and agent-generated trajectories, accelerating policy convergence and improving generalization. Extensive experiments with real city networks based on OpenStreetMap demonstrate that RELED achieves superior performance compared to state-of-the-art MARL methods.
comment: 15 pages, 9 figures
☆ Neural surrogates for designing gravitational wave detectors
Physics simulators are essential in science and engineering, enabling the analysis, control, and design of complex systems. In experimental sciences, they are increasingly used to automate experimental design, often via combinatorial search and optimization. However, as the setups grow more complex, the computational cost of traditional, CPU-based simulators becomes a major limitation. Here, we show how neural surrogate models can significantly reduce reliance on such slow simulators while preserving accuracy. Taking the design of interferometric gravitational wave detectors as a representative example, we train a neural network to surrogate the gravitational wave physics simulator Finesse, which was developed by the LIGO community. Despite that small changes in physical parameters can change the output by orders of magnitudes, the model rapidly predicts the quality and feasibility of candidate designs, allowing an efficient exploration of large design spaces. Our algorithm loops between training the surrogate, inverse designing new experiments, and verifying their properties with the slow simulator for further training. Assisted by auto-differentiation and GPU parallelism, our method proposes high-quality experiments much faster than direct optimization. Solutions that our algorithm finds within hours outperform designs that take five days for the optimizer to reach. Though shown in the context of gravitational wave detectors, our framework is broadly applicable to other domains where simulator bottlenecks hinder optimization and discovery.
comment: 20 pages, 7 figures, 4 tables
☆ Enhancing Conformal Prediction via Class Similarity
Conformal Prediction (CP) has emerged as a powerful statistical framework for high-stakes classification applications. Instead of predicting a single class, CP generates a prediction set, guaranteed to include the true label with a pre-specified probability. The performance of different CP methods is typically assessed by their average prediction set size. In setups where the classes can be partitioned into semantic groups, e.g., diseases that require similar treatment, users can benefit from prediction sets that are not only small on average, but also contain a small number of semantically different groups. This paper begins by addressing this problem and ultimately offers a widely applicable tool for boosting any CP method on any dataset. First, given a class partition, we propose augmenting the CP score function with a term that penalizes predictions with out-of-group errors. We theoretically analyze this strategy and prove its advantages for group-related metrics. Surprisingly, we show mathematically that, for common class partitions, it can also reduce the average set size of any CP score function. Our analysis reveals the class similarity factors behind this improvement and motivates us to propose a model-specific variant, which does not require any human semantic partition and can further reduce the prediction set size. Finally, we present an extensive empirical study, encompassing prominent CP methods, multiple models, and several datasets, which demonstrates that our class-similarity-based approach consistently enhances CP methods.
☆ Leveraging LLMs for reward function design in reinforcement learning control tasks
The challenge of designing effective reward functions in reinforcement learning (RL) represents a significant bottleneck, often requiring extensive human expertise and being time-consuming. Previous work and recent advancements in large language models (LLMs) have demonstrated their potential for automating the generation of reward functions. However, existing methodologies often require preliminary evaluation metrics, human-engineered feedback for the refinement process, or the use of environmental source code as context. To address these limitations, this paper introduces LEARN-Opt (LLM-based Evaluator and Analyzer for Reward functioN Optimization). This LLM-based, fully autonomous, and model-agnostic framework eliminates the need for preliminary metrics and environmental source code as context to generate, execute, and evaluate reward function candidates from textual descriptions of systems and task objectives. LEARN-Opt's main contribution lies in its ability to autonomously derive performance metrics directly from the system description and the task objective, enabling unsupervised evaluation and selection of reward functions. Our experiments indicate that LEARN-Opt achieves performance comparable to or better to that of state-of-the-art methods, such as EUREKA, while requiring less prior knowledge. We find that automated reward design is a high-variance problem, where the average-case candidate fails, requiring a multi-run approach to find the best candidates. Finally, we show that LEARN-Opt can unlock the potential of low-cost LLMs to find high-performing candidates that are comparable to, or even better than, those of larger models. This demonstrated performance affirms its potential to generate high-quality reward functions without requiring any preliminary human-defined metrics, thereby reducing engineering overhead and enhancing generalizability.
☆ Scalable Parameter-Light Spectral Method for Clustering Short Text Embeddings with a Cohesion-Based Evaluation Metric
Clustering short text embeddings is a foundational task in natural language processing, yet remains challenging due to the need to specify the number of clusters in advance. We introduce a scalable spectral method that estimates the number of clusters directly from the structure of the Laplacian eigenspectrum, constructed using cosine similarities and guided by an adaptive sampling strategy. This sampling approach enables our estimator to efficiently scale to large datasets without sacrificing reliability. To support intrinsic evaluation of cluster quality without ground-truth labels, we propose the Cohesion Ratio, a simple and interpretable evaluation metric that quantifies how much intra-cluster similarity exceeds the global similarity background. It has an information-theoretic motivation inspired by mutual information, and in our experiments it correlates closely with extrinsic measures such as normalized mutual information and homogeneity. Extensive experiments on six short-text datasets and four modern embedding models show that standard algorithms like K-Means and HAC, when guided by our estimator, significantly outperform popular parameter-light methods such as HDBSCAN, OPTICS, and Leiden. These results demonstrate the practical value of our spectral estimator and Cohesion Ratio for unsupervised organization and evaluation of short text data. Implementation of our estimator of k and Cohesion Ratio, along with code for reproducing the experiments, is available at https://anonymous.4open.science/r/towards_clustering-0C2E.
☆ Artificial Intelligence Driven Workflow for Accelerating Design of Novel Photosensitizers
The discovery of high-performance photosensitizers has long been hindered by the time-consuming and resource-intensive nature of traditional trial-and-error approaches. Here, we present \textbf{A}I-\textbf{A}ccelerated \textbf{P}hoto\textbf{S}ensitizer \textbf{I}nnovation (AAPSI), a closed-loop workflow that integrates expert knowledge, scaffold-based molecule generation, and Bayesian optimization to accelerate the design of novel photosensitizers. The scaffold-driven generation in AAPSI ensures structural novelty and synthetic feasibility, while the iterative AI-experiment loop accelerates the discovery of novel photosensitizers. AAPSI leverages a curated database of 102,534 photosensitizer-solvent pairs and generate 6,148 synthetically accessible candidates. These candidates are screened via graph transformers trained to predict singlet oxygen quantum yield ($φ_Δ$) and absorption maxima ($λ_{max}$), following experimental validation. This work generates several novel candidates for photodynamic therapy (PDT), among which the hypocrellin-based candidate HB4Ph exhibits exceptional performance at the Pareto frontier of high quantum yield of singlet oxygen and long absorption maxima among current photosensitizers ($φ_Δ$=0.85, $λ_{max}$=650nm).
☆ Annotation-Free Class-Incremental Learning
Despite significant progress in continual learning ranging from architectural novelty to clever strategies for mitigating catastrophic forgetting most existing methods rest on a strong but unrealistic assumption the availability of labeled data throughout the learning process. In real-world scenarios, however, data often arrives sequentially and without annotations, rendering conventional approaches impractical. In this work, we revisit the fundamental assumptions of continual learning and ask: Can current systems adapt when labels are absent and tasks emerge incrementally over time? To this end, we introduce Annotation-Free Class-Incremental Learning (AFCIL), a more realistic and challenging paradigm where unlabeled data arrives continuously, and the learner must incrementally acquire new classes without any supervision. To enable effective learning under AFCIL, we propose CrossWorld CL, a Cross Domain World Guided Continual Learning framework that incorporates external world knowledge as a stable auxiliary source. The method retrieves semantically related ImageNet classes for each downstream category, maps downstream and ImageNet features through a cross domain alignment strategy and finally introduce a novel replay strategy. This design lets the model uncover semantic structure without annotations while keeping earlier knowledge intact. Across four datasets, CrossWorld-CL surpasses CLIP baselines and existing continual and unlabeled learning methods, underscoring the benefit of world knowledge for annotation free continual learning.
comment: 18 pages, 6 figures
☆ High-throughput validation of phase formability and simulation accuracy of Cantor alloys
High-throughput methods enable accelerated discovery of novel materials in complex systems such as high-entropy alloys, which exhibit intricate phase stability across vast compositional spaces. Computational approaches, including Density Functional Theory (DFT) and calculation of phase diagrams (CALPHAD), facilitate screening of phase formability as a function of composition and temperature. However, the integration of computational predictions with experimental validation remains challenging in high-throughput studies. In this work, we introduce a quantitative confidence metric to assess the agreement between predictions and experimental observations, providing a quantitative measure of the confidence of machine learning models trained on either DFT or CALPHAD input in accounting for experimental evidence. The experimental dataset was generated via high-throughput in-situ synchrotron X-ray diffraction on compositionally varied FeNiMnCr alloy libraries, heated from room temperature to ~1000 °C. Agreement between the observed and predicted phases was evaluated using either temperature-independent phase classification or a model that incorporates a temperature-dependent probability of phase formation. This integrated approach demonstrates where strong overall agreement between computation and experiment exists, while also identifying key discrepancies, particularly in FCC/BCC predictions at Mn-rich regions to inform future model refinement.
☆ Targeted Manipulation: Slope-Based Attacks on Financial Time-Series Data
A common method of attacking deep learning models is through adversarial attacks, which occur when an attacker specifically modifies the input of a model to produce an incorrect result. Adversarial attacks have been deeply investigated in the image domain; however, there is less research in the time-series domain and very little for forecasting financial data. To address these concerns, this study aims to build upon previous research on adversarial attacks for time-series data by introducing two new slope-based methods aimed to alter the trends of the predicted stock forecast generated by an N-HiTS model. Compared to the normal N-HiTS predictions, the two new slope-based methods, the General Slope Attack and Least-Squares Slope Attack, can manipulate N-HiTS predictions by doubling the slope. These new slope attacks can bypass standard security mechanisms, such as a discriminator that filters real and perturbed inputs, reducing a 4-layered CNN's specificity to 28% and accuracy to 57%. Furthermore, the slope based methods were incorporated into a GAN architecture as a means of generating realistic synthetic data, while simultaneously fooling the model. Finally, this paper also proposes a sample malware designed to inject an adversarial attack in the model inference library, proving that ML-security research should not only focus on making the model safe, but also securing the entire pipeline.
comment: 13 pages, 6 figures, 4 tables, preprint; Total including Appendix: 21 pages, 11 figures, 7 tables
☆ Understanding the Staged Dynamics of Transformers in Learning Latent Structure
While transformers can discover latent structure from context, the dynamics of how they acquire different components of the latent structure remain poorly understood. In this work, we use the Alchemy benchmark, to investigate the dynamics of latent structure learning. We train a small decoder-only transformer on three task variants: 1) inferring missing rules from partial contextual information, 2) composing simple rules to solve multi-step sequences, and 3) decomposing complex multi-step examples to infer intermediate steps. By factorizing each task into interpretable events, we show that the model acquires capabilities in discrete stages, first learning the coarse grained rules, before learning the complete latent structure. We also identify a crucial asymmetry, where the model can compose fundamental rules robustly, but struggles to decompose complex examples to discover the fundamental rules. These findings offer new insights into understanding how a transformer model learns latent structures, providing a granular view of how these capabilities evolve during training.
comment: Preprint
☆ PRInTS: Reward Modeling for Long-Horizon Information Seeking
Information-seeking is a core capability for AI agents, requiring them to gather and reason over tool-generated information across long trajectories. However, such multi-step information-seeking tasks remain challenging for agents backed by language models. While process reward models (PRMs) can guide agents by ranking candidate steps at test-time, existing PRMs, designed for short reasoning with binary judgment, cannot capture richer dimensions of information-seeking steps, such as tool interactions and reasoning over tool outputs, nor handle the rapidly growing context in long-horizon tasks. To address these limitations, we introduce PRInTS, a generative PRM trained with dual capabilities: (1) dense scoring based on the PRM's reasoning across multiple step quality dimensions (e.g., interpretation of tool outputs, tool call informativeness) and (2) trajectory summarization that compresses the growing context while preserving essential information for step evaluation. Extensive evaluations across FRAMES, GAIA (levels 1-3), and WebWalkerQA (easy-hard) benchmarks on multiple models, along with ablations, reveal that best-of-n sampling with PRInTS enhances information-seeking abilities of open-source models as well as specialized agents, matching or surpassing the performance of frontier models with a much smaller backbone agent and outperforming other strong reward modeling baselines.
comment: 18 pages, code: https://github.com/G-JWLee/PRInTS
☆ AutoEnv: Automated Environments for Measuring Cross-Environment Agent Learning
Humans naturally adapt to diverse environments by learning underlying rules across worlds with different dynamics, observations, and reward structures. In contrast, existing agents typically demonstrate improvements via self-evolving within a single domain, implicitly assuming a fixed environment distribution. Cross-environment learning has remained largely unmeasured: there is no standard collection of controllable, heterogeneous environments, nor a unified way to represent how agents learn. We address these gaps in two steps. First, we propose AutoEnv, an automated framework that treats environments as factorizable distributions over transitions, observations, and rewards, enabling low-cost (4.12 USD on average) generation of heterogeneous worlds. Using AutoEnv, we construct AutoEnv-36, a dataset of 36 environments with 358 validated levels, on which seven language models achieve 12-49% normalized reward, demonstrating the challenge of AutoEnv-36. Second, we formalize agent learning as a component-centric process driven by three stages of Selection, Optimization, and Evaluation applied to an improvable agent component. Using this formulation, we design eight learning methods and evaluate them on AutoEnv-36. Empirically, the gain of any single learning method quickly decrease as the number of environments increases, revealing that fixed learning methods do not scale across heterogeneous environments. Environment-adaptive selection of learning methods substantially improves performance but exhibits diminishing returns as the method space expands. These results highlight both the necessity and the current limitations of agent learning for scalable cross-environment generalization, and position AutoEnv and AutoEnv-36 as a testbed for studying cross-environment agent learning. The code is avaiable at https://github.com/FoundationAgents/AutoEnv.
☆ Open-weight genome language model safeguards: Assessing robustness via adversarial fine-tuning NeurIPS 2025
Novel deep learning architectures are increasingly being applied to biological data, including genetic sequences. These models, referred to as genomic language mod- els (gLMs), have demonstrated impressive predictive and generative capabilities, raising concerns that such models may also enable misuse, for instance via the generation of genomes for human-infecting viruses. These concerns have catalyzed calls for risk mitigation measures. The de facto mitigation of choice is filtering of pretraining data (i.e., removing viral genomic sequences from training datasets) in order to limit gLM performance on virus-related tasks. However, it is not currently known how robust this approach is for securing open-source models that can be fine-tuned using sensitive pathogen data. Here, we evaluate a state-of-the-art gLM, Evo 2, and perform fine-tuning using sequences from 110 harmful human-infecting viruses to assess the rescue of misuse-relevant predictive capabilities. The fine- tuned model exhibited reduced perplexity on unseen viral sequences relative to 1) the pretrained model and 2) a version fine-tuned on bacteriophage sequences. The model fine-tuned on human-infecting viruses also identified immune escape variants from SARS-CoV-2 (achieving an AUROC of 0.6), despite having no expo- sure to SARS-CoV-2 sequences during fine-tuning. This work demonstrates that data exclusion might be circumvented by fine-tuning approaches that can, to some degree, rescue misuse-relevant capabilities of gLMs. We highlight the need for safety frameworks for gLMs and outline further work needed on evaluations and mitigation measures to enable the safe deployment of gLMs.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Biosecurity Safeguards for Generative AI
☆ TorchQuantumDistributed NeurIPS 2025
TorchQuantumDistributed (tqd) is a PyTorch-based [Paszke et al., 2019] library for accelerator-agnostic differentiable quantum state vector simulation at scale. This enables studying the behavior of learnable parameterized near-term and fault- tolerant quantum circuits with high qubit counts.
comment: 12 pages, 4 figures, to appear in the AI for Science Workshop at NeurIPS 2025
☆ Performance Guarantees for Quantum Neural Estimation of Entropies
Estimating quantum entropies and divergences is an important problem in quantum physics, information theory, and machine learning. Quantum neural estimators (QNEs), which utilize a hybrid classical-quantum architecture, have recently emerged as an appealing computational framework for estimating these measures. Such estimators combine classical neural networks with parametrized quantum circuits, and their deployment typically entails tedious tuning of hyperparameters controlling the sample size, network architecture, and circuit topology. This work initiates the study of formal guarantees for QNEs of measured (Rényi) relative entropies in the form of non-asymptotic error risk bounds. We further establish exponential tail bounds showing that the error is sub-Gaussian, and thus sharply concentrates about the ground truth value. For an appropriate sub-class of density operator pairs on a space of dimension $d$ with bounded Thompson metric, our theory establishes a copy complexity of $O(|Θ(\mathcal{U})|d/ε^2)$ for QNE with a quantum circuit parameter set $Θ(\mathcal{U})$, which has minimax optimal dependence on the accuracy $ε$. Additionally, if the density operator pairs are permutation invariant, we improve the dimension dependence above to $O(|Θ(\mathcal{U})|\mathrm{polylog}(d)/ε^2)$. Our theory aims to facilitate principled implementation of QNEs for measured relative entropies and guide hyperparameter tuning in practice.
comment: 42+4 pages
☆ The Unified Non-Convex Framework for Robust Causal Inference: Overcoming the Gaussian Barrier and Optimization Fragility
This document proposes a Unified Robust Framework that re-engineers the estimation of the Average Treatment Effect on the Overlap (ATO). It synthesizes gamma-Divergence for outlier robustness, Graduated Non-Convexity (GNC) for global optimization, and a "Gatekeeper" mechanism to address the impossibility of higher-order orthogonality in Gaussian regimes.
comment: 10 pages, 1 table
☆ MapFormer: Self-Supervised Learning of Cognitive Maps with Input-Dependent Positional Embeddings
A cognitive map is an internal model which encodes the abstract relationships among entities in the world, giving humans and animals the flexibility to adapt to new situations, with a strong out-of-distribution (OOD) generalization that current AI systems still do not possess. To bridge this gap, we introduce MapFormers, new architectures based on Transformer models, which can learn cognitive maps from observational data and perform path integration in parallel, in a self-supervised manner. Cognitive maps are learned in the model by disentangling structural relationships in the inputs from their specific content, a property that can be achieved naturally by updating the positional encoding in Transformers with input-dependent matrices. We developed two variants of MapFormers that unify absolute and relative positional encoding to model episodic (EM) and working memory (WM), respectively. We tested MapFormers on several tasks, including a classic 2D navigation task, showing that our models can learn a cognitive map of the underlying space and generalize OOD (e.g., to longer sequences) with near-perfect performance, unlike current architectures. Together, these results demonstrate the superiority of models designed to learn a cognitive map, and the importance of introducing a structural bias for structure-content disentanglement, which can be achieved in Transformers with input-dependent positional encoding. MapFormers have broad applications in both neuroscience and AI, by explaining the neural mechanisms giving rise to cognitive maps, while allowing these relation models to be learned at scale.
comment: 19 pages (29 with appendix), 8 figures
☆ Closing Gaps in Emissions Monitoring with Climate TRACE
Global greenhouse gas emissions estimates are essential for monitoring and mitigation planning. Yet most datasets lack one or more characteristics that enhance their actionability, such as accuracy, global coverage, high spatial and temporal resolution, and frequent updates. To address these gaps, we present Climate TRACE (climatetrace.org), an open-access platform delivering global emissions estimates with enhanced detail, coverage, and timeliness. Climate TRACE synthesizes existing emissions data, prioritizing accuracy, coverage, and resolution, and fills gaps using sector-specific estimation approaches. The dataset is the first to provide globally comprehensive emissions estimates for individual sources (e.g., individual power plants) for all anthropogenic emitting sectors. The dataset spans January 1, 2021, to the present, with a two-month reporting lag and monthly updates. The open-access platform enables non-technical audiences to engage with detailed emissions datasets for most subnational governments worldwide. Climate TRACE supports data-driven climate action at scales where decisions are made, representing a major breakthrough for emissions accounting and mitigation.
☆ Scalable Bayesian Network Structure Learning Using Tsetlin Machine to Constrain the Search Space
The PC algorithm is a widely used method in causal inference for learning the structure of Bayesian networks. Despite its popularity, the PC algorithm suffers from significant time complexity, particularly as the size of the dataset increases, which limits its applicability in large-scale real-world problems. In this study, we propose a novel approach that utilises the Tsetlin Machine (TM) to construct Bayesian structures more efficiently. Our method leverages the most significant literals extracted from the TM and performs conditional independence (CI) tests on these selected literals instead of the full set of variables, resulting in a considerable reduction in computational time. We implemented our approach and compared it with various state-of-the-art methods. Our evaluation includes categorical datasets from the bnlearn repository, such as Munin1, Hepar2. The findings indicate that the proposed TM-based method not only reduces computational complexity but also maintains competitive accuracy in causal discovery, making it a viable alternative to traditional PC algorithm implementations by offering improved efficiency without compromising performance.
☆ Tiny-TSM: Efficiently Training a Lightweight SOTA Time Series Foundation Model
We present Tiny-TSM, a time series foundation model characterized by small scale, economical training, and state-of-the-art performance. It comprises 23M total parameters, trained on a single A100 GPU in less than a week using a new synthetic data generation and data augmentation pipeline (SynthTS). Without any neural architecture search, hyperparameter tuning, or scaling up model size, Tiny-TSM achieves state-of-the-art performance on a wide range of time series benchmark datasets, often outperforming much larger models and even matching the performance of much larger, industrial-scale, likely highly tuned foundation models. Specifically, Tiny-TSM outperforms all other time series foundation models we evaluated on medium- and long-term forecasting tasks under MSE loss, while short-term accuracy is still competitive with state-of-the-art models. We also introduce a causal input normalization scheme that enables time series models to be trained with dense next-token prediction loss, significantly accelerating convergence speed and reducing training time. All experiments were conducted on a single A100 GPU, illustrating the practicality of the proposed approach in a resource-constrained setting.
☆ CDLM: Consistency Diffusion Language Models For Faster Sampling
Diffusion Language Models (DLMs) offer a promising parallel generation paradigm but suffer from slow inference due to numerous refinement steps and the inability to use standard KV caching. We introduce CDLM (Consistency Diffusion Language Models), a training-based acceleration method that simultaneously tackles both bottlenecks. CDLM integrates consistency modeling to drastically reduce the number of required sampling steps by enabling multi-token finalization. Furthermore, we enforce a block-wise causal attention mask during fine-tuning, making the model fully compatible with KV caching. Experiments show CDLM achieves 3.6x-14.5x lower latency while maintaining competitive accuracy on math and coding tasks. The full training and evaluation code is available at https://github.com/SqueezeAILab/CDLM.
comment: 18 pages, 6 figures
☆ Leveraging Spatiotemporal Graph Neural Networks for Multi-Store Sales Forecasting
This work evaluates the effectiveness of spatiotemporal Graph Neural Networks (GNNs) for multi-store retail sales forecasting and compares their performance against ARIMA, LSTM, and XGBoost baselines. Using weekly sales data from 45 Walmart stores, we construct a relational forecasting framework that models inter-store dependencies through a learned adaptive graph. The proposed STGNN predicts log-differenced sales and reconstructs final values through a residual path, enabling stable training and improved generalisation. Experiments show that STGNN achieves the lowest overall forecasting error, outperforming all baselines in Normalised Total Absolute Error, P90 MAPE, and variance of MAPE across stores. Analysis of the learned adjacency matrix reveals meaningful functional store clusters and high-influence nodes that emerge without geographic metadata. These results demonstrate that relational structure significantly improves forecast quality in interconnected retail environments and establishes STGNNs as a robust modelling choice for multi-store demand prediction.
comment: 6 pages, 4 figures, 1 table
☆ Unboxing the Black Box: Mechanistic Interpretability for Algorithmic Understanding of Neural Networks
The black box nature of deep neural networks poses a significant challenge for the deployment of transparent and trustworthy artificial intelligence (AI) systems. With the growing presence of AI in society, it becomes increasingly important to develop methods that can explain and interpret the decisions made by these systems. To address this, mechanistic interpretability (MI) emerged as a promising and distinctive research program within the broader field of explainable artificial intelligence (XAI). MI is the process of studying the inner computations of neural networks and translating them into human-understandable algorithms. It encompasses reverse engineering techniques aimed at uncovering the computational algorithms implemented by neural networks. In this article, we propose a unified taxonomy of MI approaches and provide a detailed analysis of key techniques, illustrated with concrete examples and pseudo-code. We contextualize MI within the broader interpretability landscape, comparing its goals, methods, and insights to other strands of XAI. Additionally, we trace the development of MI as a research area, highlighting its conceptual roots and the accelerating pace of recent work. We argue that MI holds significant potential to support a more scientific understanding of machine learning systems -- treating models not only as tools for solving tasks, but also as systems to be studied and understood. We hope to invite new researchers into the field of mechanistic interpretability.
☆ Interpreting GFlowNets for Drug Discovery: Extracting Actionable Insights for Medicinal Chemistry NeurIPS 2025
Generative Flow Networks, or GFlowNets, offer a promising framework for molecular design, but their internal decision policies remain opaque. This limits adoption in drug discovery, where chemists require clear and interpretable rationales for proposed structures. We present an interpretability framework for SynFlowNet, a GFlowNet trained on documented chemical reactions and purchasable starting materials that generates both molecules and the synthetic routes that produce them. Our approach integrates three complementary components. Gradient based saliency combined with counterfactual perturbations identifies which atomic environments influence reward and how structural edits change molecular outcomes. Sparse autoencoders reveal axis aligned latent factors that correspond to physicochemical properties such as polarity, lipophilicity, and molecular size. Motif probes show that functional groups including aromatic rings and halogens are explicitly encoded and linearly decodable from the internal embeddings. Together, these results expose the chemical logic inside SynFlowNet and provide actionable and mechanistic insight that supports transparent and controllable molecular design.
comment: 13 pages, 7 figures. Accepted for presentation at NeurIPS 2025 WiML Workshop and Molecular Machine Learning Conference (MoML) 2025
☆ Solar-GECO: Perovskite Solar Cell Property Prediction with Geometric-Aware Co-Attention NeurIPS 2025
Perovskite solar cells are promising candidates for next-generation photovoltaics. However, their performance as multi-scale devices is determined by complex interactions between their constituent layers. This creates a vast combinatorial space of possible materials and device architectures, making the conventional experimental-based screening process slow and expensive. Machine learning models try to address this problem, but they only focus on individual material properties or neglect the important geometric information of the perovskite crystal. To address this problem, we propose to predict perovskite solar cell power conversion efficiency with a geometric-aware co-attention (Solar-GECO) model. Solar-GECO combines a geometric graph neural network (GNN) - that directly encodes the atomic structure of the perovskite absorber - with language model embeddings that process the textual strings representing the chemical compounds of the transport layers and other device components. Solar-GECO also integrates a co-attention module to capture intra-layer dependencies and inter-layer interactions, while a probabilistic regression head predicts both power conversion efficiency (PCE) and its associated uncertainty. Solar-GECO achieves state-of-the-art performance, significantly outperforming several baselines, reducing the mean absolute error (MAE) for PCE prediction from 3.066 to 2.936 compared to semantic GNN (the previous state-of-the-art model). Solar-GECO demonstrates that integrating geometric and textual information provides a more powerful and accurate framework for PCE prediction.
comment: Accepted at the AI for Accelerated Materials Design (AI4Mat) Workshop at NeurIPS 2025. 14 pages, 4 figures
☆ Psychometric Tests for AI Agents and Their Moduli Space
We develop a moduli-theoretic view of psychometric test batteries for AI agents and connect it explicitly to the AAI score developed previously. First, we make precise the notion of an AAI functional on a battery and set out axioms that any reasonable autonomy/general intelligence score should satisfy. Second, we show that the composite index ('AAI-Index') defined previously is a special case of our AAI functional. Third, we introduce the notion of a cognitive core of an agent relative to a battery and define the associated AAI$_{\textrm{core}}$ score as the restriction of an AAI functional to that core. Finally, we use these notions to describe invariants of batteries under evaluation-preserving symmetries and outline how moduli of equivalent batteries are organized.
☆ A Nutrition Multimodal Photoplethysmography Language Model
Hunger and satiety dynamics shape dietary behaviors and metabolic health, yet remain difficult to capture in everyday settings. We present a Nutrition Photoplethysmography Language Model (NPLM), integrating continuous photoplethysmography (PPG) from wearables with meal descriptions. NPLM projects PPG into embeddings interpretable by language models, enabling joint reasoning over physiology and meal context. Trained on 19,340 participants and 1.1 million meal-PPG pairs, the model improved daily caloric intake prediction by 11% over text-only baselines, with accuracy maintained when 80% of meal text was removed. In an independent validation study (n=140) with controlled dining and detailed meal information, the model replicated these findings. These results demonstrate the value of integrating physiological measurements from consumer wearables with meal information for noninvasive dietary monitoring at scale.
comment: 21 pages, 2 figures
☆ Medusa: Cross-Modal Transferable Adversarial Attacks on Multimodal Medical Retrieval-Augmented Generation KDD 2026
With the rapid advancement of retrieval-augmented vision-language models, multimodal medical retrieval-augmented generation (MMed-RAG) systems are increasingly adopted in clinical decision support. These systems enhance medical applications by performing cross-modal retrieval to integrate relevant visual and textual evidence for tasks, e.g., report generation and disease diagnosis. However, their complex architecture also introduces underexplored adversarial vulnerabilities, particularly via visual input perturbations. In this paper, we propose Medusa, a novel framework for crafting cross-modal transferable adversarial attacks on MMed-RAG systems under a black-box setting. Specifically, Medusa formulates the attack as a perturbation optimization problem, leveraging a multi-positive InfoNCE loss (MPIL) to align adversarial visual embeddings with medically plausible but malicious textual targets, thereby hijacking the retrieval process. To enhance transferability, we adopt a surrogate model ensemble and design a dual-loop optimization strategy augmented with invariant risk minimization (IRM). Extensive experiments on two real-world medical tasks, including medical report generation and disease diagnosis, demonstrate that Medusa achieves over 90% average attack success rate across various generation models and retrievers under appropriate parameter configuration, while remaining robust against four mainstream defenses, outperforming state-of-the-art baselines. Our results reveal critical vulnerabilities in the MMed-RAG systems and highlight the necessity of robustness benchmarking in safety-critical medical applications. The code and data are available at https://anonymous.4open.science/r/MMed-RAG-Attack-F05A.
comment: Accepted at KDD 2026 First Cycle (full version). Authors marked with * contributed equally. Yi Liu is the lead author
☆ SimDiff: Simpler Yet Better Diffusion Model for Time Series Point Forecasting AAAI 2026
Diffusion models have recently shown promise in time series forecasting, particularly for probabilistic predictions. However, they often fail to achieve state-of-the-art point estimation performance compared to regression-based methods. This limitation stems from difficulties in providing sufficient contextual bias to track distribution shifts and in balancing output diversity with the stability and precision required for point forecasts. Existing diffusion-based approaches mainly focus on full-distribution modeling under probabilistic frameworks, often with likelihood maximization objectives, while paying little attention to dedicated strategies for high-accuracy point estimation. Moreover, other existing point prediction diffusion methods frequently rely on pre-trained or jointly trained mature models for contextual bias, sacrificing the generative flexibility of diffusion models. To address these challenges, we propose SimDiff, a single-stage, end-to-end framework. SimDiff employs a single unified Transformer network carefully tailored to serve as both denoiser and predictor, eliminating the need for external pre-trained or jointly trained regressors. It achieves state-of-the-art point estimation performance by leveraging intrinsic output diversity and improving mean squared error accuracy through multiple inference ensembling. Key innovations, including normalization independence and the median-of-means estimator, further enhance adaptability and stability. Extensive experiments demonstrate that SimDiff significantly outperforms existing methods in time series point forecasting.
comment: Accepted by AAAI 2026
☆ MAESTRO: Multi-Agent Environment Shaping through Task and Reward Optimization
Cooperative Multi-Agent Reinforcement Learning (MARL) faces two major design bottlenecks: crafting dense reward functions and constructing curricula that avoid local optima in high-dimensional, non-stationary environments. Existing approaches rely on fixed heuristics or use Large Language Models (LLMs) directly in the control loop, which is costly and unsuitable for real-time systems. We propose MAESTRO (Multi-Agent Environment Shaping through Task and Reward Optimization), a framework that moves the LLM outside the execution loop and uses it as an offline training architect. MAESTRO introduces two generative components: (i) a semantic curriculum generator that creates diverse, performance-driven traffic scenarios, and (ii) an automated reward synthesizer that produces executable Python reward functions adapted to evolving curriculum difficulty. These components guide a standard MARL backbone (MADDPG) without increasing inference cost at deployment. We evaluate MAESTRO on large-scale traffic signal control (Hangzhou, 16 intersections) and conduct controlled ablations. Results show that combining LLM-generated curricula with LLM-generated reward shaping yields improved performance and stability. Across four seeds, the full system achieves +4.0% higher mean return (163.26 vs. 156.93) and 2.2% better risk-adjusted performance (Sharpe 1.53 vs. 0.70) over a strong curriculum baseline. These findings highlight LLMs as effective high-level designers for cooperative MARL training.
comment: Preprint. 16 pages, 6 figures. Preliminary version; extended experiments and analysis forthcoming
☆ Neural Architecture Search for Quantum Autoencoders
In recent years, machine learning and deep learning have driven advances in domains such as image classification, speech recognition, and anomaly detection by leveraging multi-layer neural networks to model complex data. Simultaneously, quantum computing (QC) promises to address classically intractable problems via quantum parallelism, motivating research in quantum machine learning (QML). Among QML techniques, quantum autoencoders show promise for compressing high-dimensional quantum and classical data. However, designing effective quantum circuit architectures for quantum autoencoders remains challenging due to the complexity of selecting gates, arranging circuit layers, and tuning parameters. This paper proposes a neural architecture search (NAS) framework that automates the design of quantum autoencoders using a genetic algorithm (GA). By systematically evolving variational quantum circuit (VQC) configurations, our method seeks to identify high-performing hybrid quantum-classical autoencoders for data reconstruction without becoming trapped in local minima. We demonstrate effectiveness on image datasets, highlighting the potential of quantum autoencoders for efficient feature extraction within a noise-prone, near-term quantum era. Our approach lays a foundation for broader application of genetic algorithms to quantum architecture search, aiming for a robust, automated method that can adapt to varied data and hardware constraints.
☆ Local Entropy Search over Descent Sequences for Bayesian Optimization
Searching large and complex design spaces for a global optimum can be infeasible and unnecessary. A practical alternative is to iteratively refine the neighborhood of an initial design using local optimization methods such as gradient descent. We propose local entropy search (LES), a Bayesian optimization paradigm that explicitly targets the solutions reachable by the descent sequences of iterative optimizers. The algorithm propagates the posterior belief over the objective through the optimizer, resulting in a probability distribution over descent sequences. It then selects the next evaluation by maximizing mutual information with that distribution, using a combination of analytic entropy calculations and Monte-Carlo sampling of descent sequences. Empirical results on high-complexity synthetic objectives and benchmark problems show that LES achieves strong sample efficiency compared to existing local and global Bayesian optimization methods.
☆ Empirical Comparison of Forgetting Mechanisms for UCB-based Algorithms on a Data-Driven Simulation Platform
Many real-world bandit problems involve non-stationary reward distributions, where the optimal decision may shift due to evolving environments. However, the performance of some typical Multi-Armed Bandit (MAB) models such as Upper Confidence Bound (UCB) algorithms degrades significantly in non-stationary environments where reward distributions change over time. To address this limitation, this paper introduces and evaluates FDSW-UCB, a novel dual-view algorithm that integrates a discount-based long-term perspective with a sliding-window-based short-term view. A data-driven semi-synthetic simulation platform, built upon the MovieLens-1M and Open Bandit datasets, is developed to test algorithm adaptability under abrupt and gradual drift scenarios. Experimental results demonstrate that a well-configured sliding-window mechanism (SW-UCB) is robust, while the widely used discounting method (D-UCB) suffers from a fundamental learning failure, leading to linear regret. Crucially, the proposed FDSW-UCB, when employing an optimistic aggregation strategy, achieves superior performance in dynamic settings, highlighting that the ensemble strategy itself is a decisive factor for success.
☆ CLASH: A Benchmark for Cross-Modal Contradiction Detection
Contradictory multimodal inputs are common in real-world settings, yet existing benchmarks typically assume input consistency and fail to evaluate cross-modal contradiction detection - a fundamental capability for preventing hallucinations and ensuring reliability. We introduce CLASH, a novel benchmark for multimodal contradiction detection, featuring COCO images paired with contradictory captions containing controlled object-level or attribute-level contradictions. The samples include targeted questions evaluated in both multiple-choice and open-ended formats. The benchmark provides an extensive fine-tuning set filtered through automated quality checks, alongside a smaller human-verified diagnostic set. Our analysis of state-of-the-art models reveals substantial limitations in recognizing cross-modal conflicts, exposing systematic modality biases and category-specific weaknesses. Furthermore, we empirically demonstrate that targeted fine-tuning on CLASH substantially enhances conflict detection capabilities.
comment: First two authors contributed equally
☆ SpectraNet: FFT-assisted Deep Learning Classifier for Deepfake Face Detection
Detecting deepfake images is crucial in combating misinformation. We present a lightweight, generalizable binary classification model based on EfficientNet-B6, fine-tuned with transformation techniques to address severe class imbalances. By leveraging robust preprocessing, oversampling, and optimization strategies, our model achieves high accuracy, stability, and generalization. While incorporating Fourier transform-based phase and amplitude features showed minimal impact, our proposed framework helps non-experts to effectively identify deepfake images, making significant strides toward accessible and reliable deepfake detection.
comment: 4 pages, 3 figures
☆ From Raw Features to Effective Embeddings: A Three-Stage Approach for Multimodal Recipe Recommendation
Recipe recommendation has become an essential task in web-based food platforms. A central challenge is effectively leveraging rich multimodal features beyond user-recipe interactions. Our analysis shows that even simple uses of multimodal signals yield competitive performance, suggesting that systematic enhancement of these signals is highly promising. We propose TESMR, a 3-stage framework for recipe recommendation that progressively refines raw multimodal features into effective embeddings through: (1) content-based enhancement using foundation models with multimodal comprehension, (2) relation-based enhancement via message propagation over user-recipe interactions, and (3) learning-based enhancement through contrastive learning with learnable embeddings. Experiments on two real-world datasets show that TESMR outperforms existing methods, achieving 7-15% higher Recall@10.
☆ RAVEN++: Pinpointing Fine-Grained Violations in Advertisement Videos with Active Reinforcement Reasoning EMNLP 2025
Advertising (Ad) is a cornerstone of the digital economy, yet the moderation of video advertisements remains a significant challenge due to their complexity and the need for precise violation localization. While recent advancements, such as the RAVEN model, have improved coarse-grained violation detection, critical gaps persist in fine-grained understanding, explainability, and generalization. To address these limitations, we propose RAVEN++, a novel framework that introduces three key innovations: 1) Active Reinforcement Learning (RL), which dynamically adapts training to samples of varying difficulty; 2) Fine-Grained Violation Understanding, achieved through hierarchical reward functions and reasoning distillation; and 3) Progressive Multi-Stage Training, which systematically combines knowledge injection, curriculum-based passive RL, and active RL. Extensive experiments on both public and proprietary datasets, on both offline scenarios and online deployed A/B Testing, demonstrate that RAVEN++ outperforms general-purpose LLMs and specialized models like RAVEN in terms of fine-grained violation understanding, reasoning capabilities, and generalization ability.
comment: EMNLP 2025 (Oral, Industry Track)
☆ First-order Sobolev Reinforcement Learning
We propose a refinement of temporal-difference learning that enforces first-order Bellman consistency: the learned value function is trained to match not only the Bellman targets in value but also their derivatives with respect to states and actions. By differentiating the Bellman backup through differentiable dynamics, we obtain analytically consistent gradient targets. Incorporating these into the critic objective using a Sobolev-type loss encourages the critic to align with both the value and local geometry of the target function. This first-order TD matching principle can be seamlessly integrated into existing algorithms, such as Q-learning or actor-critic methods (e.g., DDPG, SAC), potentially leading to faster critic convergence and more stable policy gradients without altering their overall structure.
comment: Workshop paper at Differentiable Systems and Scientific Machine Learning, EurIPS 2025
☆ A Robust State Filter Against Unmodeled Process And Measurement Noise
This paper introduces a novel Kalman filter framework designed to achieve robust state estimation under both process and measurement noise. Inspired by the Weighted Observation Likelihood Filter (WoLF), which provides robustness against measurement outliers, we applied generalized Bayesian approach to build a framework considering both process and measurement noise outliers.
☆ Masked Diffusion Models are Secretly Learned-Order Autoregressive Models
Masked Diffusion Models (MDMs) have emerged as one of the most promising paradigms for generative modeling over discrete domains. It is known that MDMs effectively train to decode tokens in a random order, and that this ordering has significant performance implications in practice. This observation raises a fundamental question: can we design a training framework that optimizes for a favorable decoding order? We answer this in the affirmative, showing that the continuous-time variational objective of MDMs, when equipped with multivariate noise schedules, can identify and optimize for a decoding order during training. We establish a direct correspondence between decoding order and the multivariate noise schedule and show that this setting breaks invariance of the MDM objective to the noise schedule. Furthermore, we prove that the MDM objective decomposes precisely into a weighted auto-regressive losses over these orders, which establishes them as auto-regressive models with learnable orders.
comment: Accepted at EurIPS 2025 Workshop on Principles of Generative Modeling (PriGM)
☆ Feature Ranking in Credit-Risk with Qudit-Based Networks
In finance, predictive models must balance accuracy and interpretability, particularly in credit risk assessment, where model decisions carry material consequences. We present a quantum neural network (QNN) based on a single qudit, in which both data features and trainable parameters are co-encoded within a unified unitary evolution generated by the full Lie algebra. This design explores the entire Hilbert space while enabling interpretability through the magnitudes of the learned coefficients. We benchmark our model on a real-world, imbalanced credit-risk dataset from Taiwan. The proposed QNN consistently outperforms LR and reaches the results of random forest models in macro-F1 score while preserving a transparent correspondence between learned parameters and input feature importance. To quantify the interpretability of the proposed model, we introduce two complementary metrics: (i) the edit distance between the model's feature ranking and that of LR, and (ii) a feature-poisoning test where selected features are replaced with noise. Results indicate that the proposed quantum model achieves competitive performance while offering a tractable path toward interpretable quantum learning.
☆ Collaborative Learning with Multiple Foundation Models for Source-Free Domain Adaptation
Source-Free Domain Adaptation (SFDA) aims to adapt a pre-trained source model to an unlabeled target domain without access to source data. Recent advances in Foundation Models (FMs) have introduced new opportunities for leveraging external semantic knowledge to guide SFDA. However, relying on a single FM is often insufficient, as it tends to bias adaptation toward a restricted semantic coverage, failing to capture diverse contextual cues under domain shift. To overcome this limitation, we propose a Collaborative Multi-foundation Adaptation (CoMA) framework that jointly leverages two different FMs (e.g., CLIP and BLIP) with complementary properties to capture both global semantics and local contextual cues. Specifically, we employ a bidirectional adaptation mechanism that (1) aligns different FMs with the target model for task adaptation while maintaining their semantic distinctiveness, and (2) transfers complementary knowledge from the FMs to the target model. To ensure stable adaptation under mini-batch training, we introduce Decomposed Mutual Information (DMI) that selectively enhances true dependencies while suppressing false dependencies arising from incomplete class coverage. Extensive experiments demonstrate that our method consistently outperforms existing state-of-the-art SFDA methods across four benchmarks, including Office-31, Office-Home, DomainNet-126, and VisDA, under the closed-set setting, while also achieving best results on partial-set and open-set variants.
comment: 15 pages, 8 figures
☆ Uncertainty-Aware Deep Learning Framework for Remaining Useful Life Prediction in Turbofan Engines with Learned Aleatoric Uncertainty
Accurate Remaining Useful Life (RUL) prediction coupled with uncertainty quantification remains a critical challenge in aerospace prognostics. This research introduces a novel uncertainty-aware deep learning framework that learns aleatoric uncertainty directly through probabilistic modeling, an approach unexplored in existing CMAPSS-based literature. Our hierarchical architecture integrates multi-scale Inception blocks for temporal pattern extraction, bidirectional Long Short-Term Memory networks for sequential modeling, and a dual-level attention mechanism operating simultaneously on sensor and temporal dimensions. The innovation lies in the Bayesian output layer that predicts both mean RUL and variance, enabling the model to learn data-inherent uncertainty. Comprehensive preprocessing employs condition-aware clustering, wavelet denoising, and intelligent feature selection. Experimental validation on NASA CMAPSS benchmarks (FD001-FD004) demonstrates competitive overall performance with RMSE values of 16.22, 19.29, 16.84, and 19.98 respectively. Remarkably, our framework achieves breakthrough critical zone performance (RUL <= 30 cycles) with RMSE of 5.14, 6.89, 5.27, and 7.16, representing 25-40 percent improvements over conventional approaches and establishing new benchmarks for safety-critical predictions. The learned uncertainty provides well-calibrated 95 percent confidence intervals with coverage ranging from 93.5 percent to 95.2 percent, enabling risk-aware maintenance scheduling previously unattainable in CMAPSS literature.
comment: 10 pages, 2 figures, 3 tables. Submitted to arXiv
☆ The Core in Max-Loss Non-Centroid Clustering Can Be Empty
We study core stability in non-centroid clustering under the max-loss objective, where each agent's loss is the maximum distance to other members of their cluster. We prove that for all $k\geq 3$ there exist metric instances with $n\ge 9$ agents, with $n$ divisible by $k$, for which no clustering lies in the $α$-core for any $α<2^{\frac{1}{5}}\sim 1.148$. The bound is tight for our construction. Using a computer-aided proof, we also identify a two-dimensional Euclidean point set whose associated lower bound is slightly smaller than that of our general construction. This is, to our knowledge, the first impossibility result showing that the core can be empty in non-centroid clustering under the max-loss objective.
☆ Edge-Based Predictive Data Reduction for Smart Agriculture: A Lightweight Approach to Efficient IoT Communication
The rapid growth of IoT devices has led to an enormous amount of sensor data that requires transmission to cloud servers for processing, resulting in excessive network congestion, increased latency and high energy consumption. This is particularly problematic in resource-constrained and remote environments where bandwidth is limited, and battery-dependent devices further emphasize the problem. Moreover, in domains such as agriculture, consecutive sensor readings often have minimal variation, making continuous data transmission inefficient and unnecessarily resource intensive. To overcome these challenges, we propose an analytical prediction algorithm designed for edge computing environments and validated through simulation. The proposed solution utilizes a predictive filter at the network edge that forecasts the next sensor data point and triggers data transmission only when the deviation from the predicted value exceeds a predefined tolerance. A complementary cloud-based model ensures data integrity and overall system consistency. This dual-model strategy effectively reduces communication overhead and demonstrates potential for improving energy efficiency by minimizing redundant transmissions. In addition to reducing communication load, our approach leverages both in situ and satellite observations from the same locations to enhance model robustness. It also supports cross-site generalization, enabling models trained in one region to be effectively deployed elsewhere without retraining. This makes our solution highly scalable, energy-aware, and well-suited for optimizing sensor data transmission in remote and bandwidth-constrained IoT environments.
comment: Accepted for presentation and publication in the proceedings of the IEEE Annual Congress on Artificial Intelligence of Things (IEEE AIoT 2025)
☆ Extracting Robust Register Automata from Neural Networks over Data Sequences
Automata extraction is a method for synthesising interpretable surrogates for black-box neural models that can be analysed symbolically. Existing techniques assume a finite input alphabet, and thus are not directly applicable to data sequences drawn from continuous domains. We address this challenge with deterministic register automata (DRAs), which extend finite automata with registers that store and compare numeric values. Our main contribution is a framework for robust DRA extraction from black-box models: we develop a polynomial-time robustness checker for DRAs with a fixed number of registers, and combine it with passive and active automata learning algorithms. This combination yields surrogate DRAs with statistical robustness and equivalence guarantees. As a key application, we use the extracted automata to assess the robustness of neural networks: for a given sequence and distance metric, the DRA either certifies local robustness or produces a concrete counterexample. Experiments on recurrent neural networks and transformer architectures show that our framework reliably learns accurate automata and enables principled robustness evaluation. Overall, our results demonstrate that robust DRA extraction effectively bridges neural network interpretability and formal reasoning without requiring white-box access to the underlying network.
☆ Optimization of Deep Learning Models for Dynamic Market Behavior Prediction
The advent of financial technology has witnessed a surge in the utilization of deep learning models to anticipate consumer conduct, a trend that has demonstrated considerable potential in enhancing lending strategies and bolstering market efficiency. We study multi-horizon demand forecasting on e-commerce transactions using the UCI Online Retail II dataset. Unlike prior versions of this manuscript that mixed financial-loan narratives with retail data, we focus exclusively on retail market behavior and define a clear prediction target: per SKU daily demand (or revenue) for horizons H=1,7,14. We present a hybrid sequence model that combines multi-scale temporal convolutions, a gated recurrent module, and time-aware self-attention. The model is trained with standard regression losses and evaluated under MAE, RMSE, sMAPE, MASE, and Theil's U_2 with strict time-based splits to prevent leakage. We benchmark against ARIMA/Prophet, LSTM/GRU, LightGBM, and state-of-the-art Transformer forecasters (TFT, Informer, Autoformer, N-BEATS). Results show consistent accuracy gains and improved robustness on peak/holiday periods. We further provide ablations and statistical significance tests to ensure the reliability of improvements, and we release implementation details to facilitate reproducibility.
☆ EnfoPath: Energy-Informed Analysis of Generative Trajectories in Flow Matching
Flow-based generative models synthesize data by integrating a learned velocity field from a reference distribution to the target data distribution. Prior work has focused on endpoint metrics (e.g., fidelity, likelihood, perceptual quality) while overlooking a deeper question: what do the sampling trajectories reveal? Motivated by classical mechanics, we introduce kinetic path energy (KPE), a simple yet powerful diagnostic that quantifies the total kinetic effort along each generation path of ODE-based samplers. Through comprehensive experiments on CIFAR-10 and ImageNet-256, we uncover two key phenomena: ({i}) higher KPE predicts stronger semantic quality, indicating that semantically richer samples require greater kinetic effort, and ({ii}) higher KPE inversely correlates with data density, with informative samples residing in sparse, low-density regions. Together, these findings reveal that semantically informative samples naturally reside on the sparse frontier of the data distribution, demanding greater generative effort. Our results suggest that trajectory-level analysis offers a physics-inspired and interpretable framework for understanding generation difficulty and sample characteristics.
comment: EurIPS 2025 Workshop on Principles of Generative Modeling (PriGM)
☆ Structured Matching via Cost-Regularized Unbalanced Optimal Transport
Unbalanced optimal transport (UOT) provides a flexible way to match or compare nonnegative finite Radon measures. However, UOT requires a predefined ground transport cost, which may misrepresent the data's underlying geometry. Choosing such a cost is particularly challenging when datasets live in heterogeneous spaces, often motivating practitioners to adopt Gromov-Wasserstein formulations. To address this challenge, we introduce cost-regularized unbalanced optimal transport (CR-UOT), a framework that allows the ground cost to vary while allowing mass creation and removal. We show that CR-UOT incorporates unbalanced Gromov-Wasserstein type problems through families of inner-product costs parameterized by linear transformations, enabling the matching of measures or point clouds across Euclidean spaces. We develop algorithms for such CR-UOT problems using entropic regularization and demonstrate that this approach improves the alignment of heterogeneous single-cell omics profiles, especially when many cells lack direct matches.
☆ DynaMix: Generalizable Person Re-identification via Dynamic Relabeling and Mixed Data Sampling
Generalizable person re-identification (Re-ID) aims to recognize individuals across unseen cameras and environments. While existing methods rely heavily on limited labeled multi-camera data, we propose DynaMix, a novel method that effectively combines manually labeled multi-camera and large-scale pseudo-labeled single-camera data. Unlike prior works, DynaMix dynamically adapts to the structure and noise of the training data through three core components: (1) a Relabeling Module that refines pseudo-labels of single-camera identities on-the-fly; (2) an Efficient Centroids Module that maintains robust identity representations under a large identity space; and (3) a Data Sampling Module that carefully composes mixed data mini-batches to balance learning complexity and intra-batch diversity. All components are specifically designed to operate efficiently at scale, enabling effective training on millions of images and hundreds of thousands of identities. Extensive experiments demonstrate that DynaMix consistently outperforms state-of-the-art methods in generalizable person Re-ID.
☆ Mitigating Participation Imbalance Bias in Asynchronous Federated Learning
In Asynchronous Federated Learning (AFL), the central server immediately updates the global model with each arriving client's contribution. As a result, clients perform their local training on different model versions, causing information staleness (delay). In federated environments with non-IID local data distributions, this asynchronous pattern amplifies the adverse effect of client heterogeneity (due to different data distribution, local objectives, etc.), as faster clients contribute more frequent updates, biasing the global model. We term this phenomenon heterogeneity amplification. Our work provides a theoretical analysis that maps AFL design choices to their resulting error sources when heterogeneity amplification occurs. Guided by our analysis, we propose ACE (All-Client Engagement AFL), which mitigates participation imbalance through immediate, non-buffered updates that use the latest information available from all clients. We also introduce a delay-aware variant, ACED, to balance client diversity against update staleness. Experiments on different models for different tasks across diverse heterogeneity and delay settings validate our analysis and demonstrate the robust performance of our approaches.
☆ Understanding, Accelerating, and Improving MeanFlow Training
MeanFlow promises high-quality generative modeling in few steps, by jointly learning instantaneous and average velocity fields. Yet, the underlying training dynamics remain unclear. We analyze the interaction between the two velocities and find: (i) well-established instantaneous velocity is a prerequisite for learning average velocity; (ii) learning of instantaneous velocity benefits from average velocity when the temporal gap is small, but degrades as the gap increases; and (iii) task-affinity analysis indicates that smooth learning of large-gap average velocities, essential for one-step generation, depends on the prior formation of accurate instantaneous and small-gap average velocities. Guided by these observations, we design an effective training scheme that accelerates the formation of instantaneous velocity, then shifts emphasis from short- to long-interval average velocity. Our enhanced MeanFlow training yields faster convergence and significantly better few-step generation: With the same DiT-XL backbone, our method reaches an impressive FID of 2.87 on 1-NFE ImageNet 256x256, compared to 3.43 for the conventional MeanFlow baseline. Alternatively, our method matches the performance of the MeanFlow baseline with 2.5x shorter training time, or with a smaller DiT-L backbone.
☆ Resolving Node Identifiability in Graph Neural Processes via Laplacian Spectral Encodings
Message passing graph neural networks are widely used for learning on graphs, yet their expressive power is limited by the one-dimensional Weisfeiler-Lehman test and can fail to distinguish structurally different nodes. We provide rigorous theory for a Laplacian positional encoding that is invariant to eigenvector sign flips and to basis rotations within eigenspaces. We prove that this encoding yields node identifiability from a constant number of observations and establishes a sample-complexity separation from architectures constrained by the Weisfeiler-Lehman test. The analysis combines a monotone link between shortest-path and diffusion distance, spectral trilateration with a constant set of anchors, and quantitative spectral injectivity with logarithmic embedding size. As an instantiation, pairing this encoding with a neural-process style decoder yields significant gains on a drug-drug interaction task on chemical graphs, improving both the area under the ROC curve and the F1 score and demonstrating the practical benefits of resolving theoretical expressiveness limitations with principled positional information.
☆ OrdMoE: Preference Alignment via Hierarchical Expert Group Ranking in Multimodal Mixture-of-Experts LLMs
Preference learning has recently emerged as a pivotal strategy for post-training alignment of Multimodal Large Language Models (MLLMs). However, existing approaches predominantly rely on external human-annotated preference data, which is costly and labor-intensive to collect. In this work, we propose OrdMoE, a novel preference alignment framework that bypasses the reliance on external human preferences entirely by leveraging intrinsic signals within Mixture-of-Experts (MoE) architectures. Specifically, we observe that the router's expert selection scores implicitly encode a quality-aware ranking of responses (i.e. higher-scoring experts consistently generate higher-quality outputs). Building on this insight, OrdMoE constructs an internal preference hierarchy by grouping experts into ranked tiers based on their per-token routing scores and activating each tier separately to produce a sequence of responses with increasing quality. This yields a zero-cost, self-supervised preference ordering over generated responses, which can be directly optimized using standard preference learning objectives. Extensive experiments across multiple multimodal benchmarks demnstrate that OrdMoE significantly enhances both alignment and overall performance of multimodal Mixture-of-Experts LLMs, achieving competitive results without requiring any human-annotated preference data.
☆ 3D Dynamic Radio Map Prediction Using Vision Transformers for Low-Altitude Wireless Networks
Low-altitude wireless networks (LAWN) are rapidly expanding with the growing deployment of unmanned aerial vehicles (UAVs) for logistics, surveillance, and emergency response. Reliable connectivity remains a critical yet challenging task due to three-dimensional (3D) mobility, time-varying user density, and limited power budgets. The transmit power of base stations (BSs) fluctuates dynamically according to user locations and traffic demands, leading to a highly non-stationary 3D radio environment. Radio maps (RMs) have emerged as an effective means to characterize spatial power distributions and support radio-aware network optimization. However, most existing works construct static or offline RMs, overlooking real-time power variations and spatio-temporal dependencies in multi-UAV networks. To overcome this limitation, we propose a {3D dynamic radio map (3D-DRM)} framework that learns and predicts the spatio-temporal evolution of received power. Specially, a Vision Transformer (ViT) encoder extracts high-dimensional spatial representations from 3D RMs, while a Transformer-based module models sequential dependencies to predict future power distributions. Experiments unveil that 3D-DRM accurately captures fast-varying power dynamics and substantially outperforms baseline models in both RM reconstruction and short-term prediction.
comment: 7 pages, 4 figures, submitted to IEEE ICC 2026
☆ Classification EM-PCA for clustering and embedding
The mixture model is undoubtedly one of the greatest contributions to clustering. For continuous data, Gaussian models are often used and the Expectation-Maximization (EM) algorithm is particularly suitable for estimating parameters from which clustering is inferred. If these models are particularly popular in various domains including image clustering, they however suffer from the dimensionality and also from the slowness of convergence of the EM algorithm. However, the Classification EM (CEM) algorithm, a classifying version, offers a fast convergence solution while dimensionality reduction still remains a challenge. Thus we propose in this paper an algorithm combining simultaneously and non-sequentially the two tasks --Data embedding and Clustering-- relying on Principal Component Analysis (PCA) and CEM. We demonstrate the interest of such approach in terms of clustering and data embedding. We also establish different connections with other clustering approaches.
comment: Accepted at the IEEE conference on Big Data (Special Session on Machine Learning)
☆ Dynamic Mixture of Experts Against Severe Distribution Shifts
The challenge of building neural networks that can continuously learn and adapt to evolving data streams is central to the fields of continual learning (CL) and reinforcement learning (RL). This lifelong learning problem is often framed in terms of the plasticity-stability dilemma, focusing on issues like loss of plasticity and catastrophic forgetting. Unlike neural networks, biological brains maintain plasticity through capacity growth, inspiring researchers to explore similar approaches in artificial networks, such as adding capacity dynamically. Prior solutions often lack parameter efficiency or depend on explicit task indices, but Mixture-of-Experts (MoE) architectures offer a promising alternative by specializing experts for distinct distributions. This paper aims to evaluate a DynamicMoE approach for continual and reinforcement learning environments and benchmark its effectiveness against existing network expansion methods.
☆ FastForward Pruning: Efficient LLM Pruning via Single-Step Reinforcement Learning
Pruning is an effective method for compressing Large Language Models, but finding an optimal, non-uniform layer-wise sparsity allocation remains a key challenge. While heuristic methods are fast but yield suboptimal performance, more powerful search-based approaches like Reinforcement Learning are often hindered by prohibitive computational costs on large-scale models. To overcome this efficiency barrier, we propose FastForward Pruning. Its core is a decoupled, single-step RL framework that separates policy optimization from the complex budget satisfaction problem. Such a decoupling is crucial for efficiently searching the vast policy space of LLMs. This curriculum-based strategy begins with low-cost, simple tasks and gradually increases in complexity, significantly reducing the search's computational overhead. Evaluated on the LLaMA, Mistral, and OPT model families, our framework discovers pruning policies that achieve superior performance over strong heuristic baselines. Crucially, when compared to other search-based algorithms, our method achieves competitive or superior results at a fraction of the computational cost, demonstrating a clear advantage in search efficiency.
comment: 5 pages, 2 figures, 4 tables
☆ AVA-VLA: Improving Vision-Language-Action models with Active Visual Attention
Vision-Language-Action (VLA) models have demonstrated remarkable capabilities in embodied AI tasks. However, existing VLA models, often built upon Vision-Language Models (VLMs), typically process dense visual inputs independently at each timestep. This approach implicitly models the task as a Markov Decision Process (MDP). However, this history-agnostic design is suboptimal for effective visual token processing in dynamic sequential decision-making, as it fails to leverage the context of history. To address this limitation, we reformulate the problem from a Partially Observable Markov Decision Process (POMDP) perspective and propose a novel framework named AVA-VLA. Inspired by the POMDP that the action generation should be conditioned on the belief state. AVA-VLA introduces Active Visual Attention (AVA) to dynamically modulate visual processing. It achieves this by leveraging the recurrent state, which is a neural approximation of the agent's belief state derived from the previous decision step. Specifically, the AVA module uses the recurrent state to compute the soft weights to actively process task-relevant visual tokens based on its historical context. Comprehensive evaluations demonstrate that AVA-VLA achieves state-of-the-art performance across popular robotic benchmarks, including LIBERO and CALVIN. Furthermore, real-world deployments on a dual-arm robot platform validate the framework's practical applicability and robust sim-to-real transferability.
comment: 18 pages, 10 figures
☆ Learning to Compress Graphs via Dual Agents for Consistent Topological Robustness Evaluation
As graph-structured data grow increasingly large, evaluating their robustness under adversarial attacks becomes computationally expensive and difficult to scale. To address this challenge, we propose to compress graphs into compact representations that preserve both topological structure and robustness profile, enabling efficient and reliable evaluation.We propose Cutter, a dual-agent reinforcement learning framework composed of a Vital Detection Agent (VDA) and a Redundancy Detection Agent (RDA), which collaboratively identify structurally vital and redundant nodes for guided compression. Cutter incorporates three key strategies to enhance learning efficiency and compression quality: trajectory-level reward shaping to transform sparse trajectory returns into dense, policy-equivalent learning signals; prototype-based shaping to guide decisions using behavioral patterns from both highand low-return trajectories; and cross-agent imitation to enable safer and more transferable exploration. Experiments on multiple real-world graphs demonstrate that Cutter generates compressed graphs that retain essential static topological properties and exhibit robustness degradation trends highly consistent with the original graphs under various attack scenarios, thereby significantly improving evaluation efficiency without compromising assessment fidelity.
☆ Compressor-VLA: Instruction-Guided Visual Token Compression for Efficient Robotic Manipulation
Vision-Language-Action (VLA) models have emerged as a powerful paradigm in Embodied AI. However, the significant computational overhead of processing redundant visual tokens remains a critical bottleneck for real-time robotic deployment. While standard token pruning techniques can alleviate this, these task-agnostic methods struggle to preserve task-critical visual information. To address this challenge, simultaneously preserving both the holistic context and fine-grained details for precise action, we propose Compressor-VLA, a novel hybrid instruction-conditioned token compression framework designed for efficient, task-oriented compression of visual information in VLA models. The proposed Compressor-VLA framework consists of two token compression modules: a Semantic Task Compressor (STC) that distills holistic, task-relevant context, and a Spatial Refinement Compressor (SRC) that preserves fine-grained spatial details. This compression is dynamically modulated by the natural language instruction, allowing for the adaptive condensation of task-relevant visual information. Experimentally, extensive evaluations demonstrate that Compressor-VLA achieves a competitive success rate on the LIBERO benchmark while reducing FLOPs by 59% and the visual token count by over 3x compared to its baseline. The real-robot deployments on a dual-arm robot platform validate the model's sim-to-real transferability and practical applicability. Moreover, qualitative analyses reveal that our instruction guidance dynamically steers the model's perceptual focus toward task-relevant objects, thereby validating the effectiveness of our approach.
comment: 11 pages, 5 figures
MIST: Mutual Information Via Supervised Training
We propose a fully data-driven approach to designing mutual information (MI) estimators. Since any MI estimator is a function of the observed sample from two random variables, we parameterize this function with a neural network (MIST) and train it end-to-end to predict MI values. Training is performed on a large meta-dataset of 625,000 synthetic joint distributions with known ground-truth MI. To handle variable sample sizes and dimensions, we employ a two-dimensional attention scheme ensuring permutation invariance across input samples. To quantify uncertainty, we optimize a quantile regression loss, enabling the estimator to approximate the sampling distribution of MI rather than return a single point estimate. This research program departs from prior work by taking a fully empirical route, trading universal theoretical guarantees for flexibility and efficiency. Empirically, the learned estimators largely outperform classical baselines across sample sizes and dimensions, including on joint distributions unseen during training. The resulting quantile-based intervals are well-calibrated and more reliable than bootstrap-based confidence intervals, while inference is orders of magnitude faster than existing neural baselines. Beyond immediate empirical gains, this framework yields trainable, fully differentiable estimators that can be embedded into larger learning pipelines. Moreover, exploiting MI's invariance to invertible transformations, meta-datasets can be adapted to arbitrary data modalities via normalizing flows, enabling flexible training for diverse target meta-distributions.
☆ Geometry-Aware Deep Congruence Networks for Manifold Learning in Cross-Subject Motor Imagery
Cross-subject motor-imagery decoding remains a major challenge in EEG-based brain-computer interfaces due to strong subject variability and the curved geometry of covariance matrices on the symmetric positive definite (SPD) manifold. We address the zero-shot cross-subject setting, where no target-subject labels or adaptation are allowed, by introducing novel geometry-aware preprocessing modules and deep congruence networks that operate directly on SPD covariance matrices. Our preprocessing modules, DCR and RiFU, extend Riemannian Alignment by improving action separation while reducing subject-specific distortions. We further propose two manifold classifiers, SPD-DCNet and RiFUNet, which use hierarchical congruence transforms to learn discriminative, subject-invariant covariance representations. On the BCI-IV 2a benchmark, our framework improves cross-subject accuracy by 3-4% over the strongest classical baselines, demonstrating the value of geometry-aware transformations for robust EEG decoding.
comment: 10 pages, 2 figures
☆ SWAN: Sparse Winnowed Attention for Reduced Inference Memory via Decompression-Free KV-Cache Compression
Large Language Models (LLMs) face a significant bottleneck during autoregressive inference due to the massive memory footprint of the Key-Value (KV) cache. Existing compression techniques like token eviction, quantization, or other low-rank methods often risk information loss, have fixed limits, or introduce significant computational overhead from explicit decompression steps. In this work, we introduce SWAN, a novel, fine-tuning-free framework that eliminates this overhead. Our method uses an offline orthogonal matrix to rotate and prune the KV-cache, which is then used directly in the attention computation without any reconstruction. Our extensive experiments demonstrate that SWAN, augmented with a small dense buffer, offers a robust trade-off, maintaining performance close to the uncompressed baseline even at aggressive 50-60% memory savings per-token on KV-cache. A key advantage is its runtime-tunable compression level, allowing operators to dynamically adjust the memory footprint, a flexibility absent in methods requiring fixed offline configurations. This combination of a decompression-free design, high performance under compression, and adaptability makes SWAN a practical and efficient solution for serving LLMs with long contexts.
☆ Learning Solution Operators for Partial Differential Equations via Monte Carlo-Type Approximation NeurIPS 2025
The Monte Carlo-type Neural Operator (MCNO) introduces a lightweight architecture for learning solution operators for parametric PDEs by directly approximating the kernel integral using a Monte Carlo approach. Unlike Fourier Neural Operators, MCNO makes no spectral or translation-invariance assumptions. The kernel is represented as a learnable tensor over a fixed set of randomly sampled points. This design enables generalization across multiple grid resolutions without relying on fixed global basis functions or repeated sampling during training. Experiments on standard 1D PDE benchmarks show that MCNO achieves competitive accuracy with low computational cost, providing a simple and practical alternative to spectral and graph-based neural operators.
comment: NeurIPS 2025 Workshop on Machine Learning and the Physical Sciences
☆ How Learning Rate Decay Wastes Your Best Data in Curriculum-Based LLM Pretraining
Due to the scarcity of high-quality data, large language models (LLMs) are often trained on mixtures of data with varying quality levels, even after sophisticated data curation. A natural approach to better leverage high-quality data is curriculum-based pretraining, where the model is trained on data sorted in ascending order of quality as determined by a quality metric. However, prior studies have reported limited improvements from such curriculum-based pretraining strategies. This work identifies a critical factor constraining these methods: the incompatibility between the ascending data quality order and the decaying learning rate (LR) schedule. We find that while curriculum-based training substantially outperforms random shuffling when using a constant LR, its advantage diminishes under standard LR decay schedules. Our experiments show this incompatibility can be mitigated by two simple strategies: (1) employing a more moderate LR decay schedule, where the final LR is only moderately smaller than the peak LR, and (2) replacing LR decay with model averaging, i.e., computing a weighted average of the final few checkpoints. By combining these strategies, we improve the average score on a suite of standard benchmarks by 1.64% over random shuffling, without additional data refinement. Validated on 1.5B-parameter models trained over 30B tokens with various data-quality metrics, our findings call for a re-evaluation of curriculum-based LLM pretraining and underscore the potential of co-designing data curricula with optimization methods.
☆ VADE: Variance-Aware Dynamic Sampling via Online Sample-Level Difficulty Estimation for Multimodal RL
Group-based policy optimization methods like GRPO and GSPO have become standard for training multimodal models, leveraging group-wise rollouts and relative advantage estimation. However, they suffer from a critical \emph{gradient vanishing} problem when all responses within a group receive identical rewards, causing advantage estimates to collapse and training signals to diminish. Existing attempts to mitigate this issue fall into two paradigms: filtering-based and sampling-based methods. Filtering-based methods first generate rollouts broadly and then retroactively filter out uninformative groups, leading to substantial computational overhead. Sampling-based methods proactively select effective samples before rollout but rely on static criteria or prior dataset knowledge, lacking real-time adaptability. To address these issues, we propose \textbf{VADE}, a \textbf{V}ariance-\textbf{A}ware \textbf{D}ynamic sampling framework via online sample-level difficulty \textbf{E}stimation. Our framework integrates three key components: online sample-level difficulty estimation using Beta distributions, a Thompson sampler that maximizes information gain through the estimated correctness probability, and a two-scale prior decay mechanism that maintains robust estimation under policy evolution. This three components design enables VADE to dynamically select the most informative samples, thereby amplifying training signals while eliminating extra rollout costs. Extensive experiments on multimodal reasoning benchmarks show that VADE consistently outperforms strong baselines in both performance and sample efficiency, while achieving a dramatic reduction in computational overhead. More importantly, our framework can serves as a plug-and-play component to be seamlessly integrated into existing group-based RL algorithms. Code and models are available at https://VADE-RL.github.io.
☆ Nemotron-Flash: Towards Latency-Optimal Hybrid Small Language Models NeurIPS 2025
Efficient deployment of small language models (SLMs) is essential for numerous real-world applications with stringent latency constraints. While previous work on SLM design has primarily focused on reducing the number of parameters to achieve parameter-optimal SLMs, parameter efficiency does not necessarily translate into proportional real-device speed-ups. This work aims to identify the key determinants of SLMs' real-device latency and offer generalizable principles and methodologies for SLM design and training when real-device latency is the primary consideration. Specifically, we identify two central architectural factors: depth-width ratios and operator choices. The former is crucial for small-batch-size latency, while the latter affects both latency and large-batch-size throughput. In light of this, we first study latency-optimal depth-width ratios, with the key finding that although deep-thin models generally achieve better accuracy under the same parameter budget, they may not lie on the accuracy-latency trade-off frontier. Next, we explore emerging efficient attention alternatives to evaluate their potential as candidate building operators. Using the identified promising operators, we construct an evolutionary search framework to automatically discover latency-optimal combinations of these operators within hybrid SLMs, thereby advancing the accuracy-latency frontier. In addition to architectural improvements, we further enhance SLM training using a weight normalization technique that enables more effective weight updates and improves final convergence. Combining these methods, we introduce a new family of hybrid SLMs, called Nemotron-Flash, which significantly advances the accuracy-efficiency frontier of state-of-the-art SLMs, e.g., achieving over +5.5% average accuracy, 1.3x/1.9x lower latency, and 18.7x/45.6x higher throughput compared to Qwen3-1.7B/0.6B, respectively.
comment: Accepted by NeurIPS 2025
☆ Hi-SAFE: Hierarchical Secure Aggregation for Lightweight Federated Learning
Federated learning (FL) faces challenges in ensuring both privacy and communication efficiency, particularly in resource-constrained environments such as Internet of Things (IoT) and edge networks. While sign-based methods, such as sign stochastic gradient descent with majority voting (SIGNSGD-MV), offer substantial bandwidth savings, they remain vulnerable to inference attacks due to exposure of gradient signs. Existing secure aggregation techniques are either incompatible with sign-based methods or incur prohibitive overhead. To address these limitations, we propose Hi-SAFE, a lightweight and cryptographically secure aggregation framework for sign-based FL. Our core contribution is the construction of efficient majority vote polynomials for SIGNSGD-MV, derived from Fermat's Little Theorem. This formulation represents the majority vote as a low-degree polynomial over a finite field, enabling secure evaluation that hides intermediate values and reveals only the final result. We further introduce a hierarchical subgrouping strategy that ensures constant multiplicative depth and bounded per-user complexity, independent of the number of users n.
comment: currently submitted and awaiting review at the IEEE Internet of Things Journal
☆ Fairness Meets Privacy: Integrating Differential Privacy and Demographic Parity in Multi-class Classification
The increasing use of machine learning in sensitive applications demands algorithms that simultaneously preserve data privacy and ensure fairness across potentially sensitive sub-populations. While privacy and fairness have each been extensively studied, their joint treatment remains poorly understood. Existing research often frames them as conflicting objectives, with multiple studies suggesting that strong privacy notions such as differential privacy inevitably compromise fairness. In this work, we challenge that perspective by showing that differential privacy can be integrated into a fairness-enhancing pipeline with minimal impact on fairness guarantees. We design a postprocessing algorithm, called DP2DP, that enforces both demographic parity and differential privacy. Our analysis reveals that our algorithm converges towards its demographic parity objective at essentially the same rate (up logarithmic factor) as the best non-private methods from the literature. Experiments on both synthetic and real datasets confirm our theoretical results, showing that the proposed algorithm achieves state-of-the-art accuracy/fairness/privacy trade-offs.
☆ GContextFormer: A global context-aware hybrid multi-head attention approach with scaled additive aggregation for multimodal trajectory prediction
Multimodal trajectory prediction generates multiple plausible future trajectories to address vehicle motion uncertainty from intention ambiguity and execution variability. However, HD map-dependent models suffer from costly data acquisition, delayed updates, and vulnerability to corrupted inputs, causing prediction failures. Map-free approaches lack global context, with pairwise attention over-amplifying straight patterns while suppressing transitional patterns, resulting in motion-intention misalignment. This paper proposes GContextFormer, a plug-and-play encoder-decoder architecture with global context-aware hybrid attention and scaled additive aggregation achieving intention-aligned multimodal prediction without map reliance. The Motion-Aware Encoder builds scene-level intention prior via bounded scaled additive aggregation over mode-embedded trajectory tokens and refines per-mode representations under shared global context, mitigating inter-mode suppression and promoting intention alignment. The Hierarchical Interaction Decoder decomposes social reasoning into dual-pathway cross-attention: a standard pathway ensures uniform geometric coverage over agent-mode pairs while a neighbor-context-enhanced pathway emphasizes salient interactions, with gating module mediating their contributions to maintain coverage-focus balance. Experiments on eight highway-ramp scenarios from TOD-VT dataset show GContextFormer outperforms state-of-the-art baselines. Compared to existing transformer models, GContextFormer achieves greater robustness and concentrated improvements in high-curvature and transition zones via spatial distributions. Interpretability is achieved through motion mode distinctions and neighbor context modulation exposing reasoning attribution. The modular architecture supports extensibility toward cross-domain multimodal reasoning tasks. Source: https://fenghy-chen.github.io/sources/.
☆ Periodic Asynchrony: An Effective Method for Accelerating On-Policy Reinforcement Learning
Since the introduction of the GRPO algorithm, reinforcement learning (RL) has attracted increasing attention, with growing efforts to reproduce and apply it. However, training efficiency remains a critical challenge. In mainstream RL frameworks, inference and training are typically deployed on the same devices. While this approach reduces costs through resource consolidation, its synchronous execution imposes a computational coupling that prevents concurrent inference and training. In this study, we are returning to the strategy of separating inference and training deployment, and by introducing improvements in the data loader, we transform the conventional synchronous architecture into a periodically asynchronous framework, which allows for demand-driven, independent, and elastic scaling of each component, while the accuracy of the algorithm remains completely equivalent to the synchronization method, with both belonging to the on-policy strategy. It is worth emphasizing that we apply a unified tri-model architecture in the training phase, and we also proposed a shared-prompt attention mask to reduce repetitive computation. In practice, these works have achieved at least a threefold overall performance improvement in RL training on NPU platforms, indicating its potential for widespread application.
☆ KernelBand: Boosting LLM-based Kernel Optimization with a Hierarchical and Hardware-aware Multi-armed Bandit
High quality kernels are critical for reducing training and inference costs of Large Language Models (LLMs), yet they traditionally require significant expertise in hardware architecture and software optimization. While recent advances in LLM-based code generation show promise for complex optimization, existing methods struggle with the vast optimization space due to insufficient hardware domain knowledge, failing to effectively balance exploration and exploitation. We present KernelBand, a novel framework that formulates kernel optimization as a hierarchical multi-armed bandit problem, enabling LLM agents to strategically navigate the optimization space by treating kernel selection and optimization strategy application as sequential decision-making processes. Our approach leverages hardware profiling information to identify promising optimization strategies and employs runtime behavior clustering to reduce exploration overhead across kernel candidates. Extensive experiments on TritonBench demonstrate that KernelBand significantly outperforms state-of-the-art methods, achieving superior performance with fewer tokens while exhibiting consistent improvement without saturation as computational resources increase.
comment: Work in progress
☆ Robust and Generalizable GNN Fine-Tuning via Uncertainty-aware Adapter Learning
Recently, fine-tuning large-scale pre-trained GNNs has yielded remarkable attention in adapting pre-trained GNN models for downstream graph learning tasks. One representative fine-tuning method is to exploit adapter (termed AdapterGNN) which aims to 'augment' the pre-trained model by inserting a lightweight module to make the 'augmented' model better adapt to the downstream tasks. However, graph data may contain various types of noise in downstream tasks, such as noisy edges and ambiguous node attributes. Existing AdapterGNNs are often prone to graph noise and exhibit limited generalizability. How to enhance the robustness and generalization ability of GNNs' fine tuning remains an open problem. In this paper, we show that the above problem can be well addressed by integrating uncertainty learning into the GNN adapter. We propose the Uncertainty-aware Adapter (UAdapterGNN) that fortifies pre-trained GNN models against noisy graph data in the fine-tuning process. Specifically, in contrast to regular AdapterGNN, our UAdapterGNN exploits Gaussian probabilistic adapter to augment the pre-trained GNN model. In this way, when the graph contains various noises,our method can automatically absorb the effects of changes in the variances of the Gaussian distribution, thereby significantly enhancing the model's robustness. Also, UAdapterGNN can further improve the generalization ability of the model on the downstream tasks. Extensive experiments on several benchmarks demonstrate the effectiveness, robustness and high generalization ability of the proposed UAdapterGNN method.
☆ WaveTuner: Comprehensive Wavelet Subband Tuning for Time Series Forecasting
Due to the inherent complexity, temporal patterns in real-world time series often evolve across multiple intertwined scales, including long-term periodicity, short-term fluctuations, and abrupt regime shifts. While existing literature has designed many sophisticated decomposition approaches based on the time or frequency domain to partition trend-seasonality components and high-low frequency components, an alternative line of approaches based on the wavelet domain has been proposed to provide a unified multi-resolution representation with precise time-frequency localization. However, most wavelet-based methods suffer from a persistent bias toward recursively decomposing only low-frequency components, severely underutilizing subtle yet informative high-frequency components that are pivotal for precise time series forecasting. To address this problem, we propose WaveTuner, a Wavelet decomposition framework empowered by full-spectrum subband Tuning for time series forecasting. Concretely, WaveTuner comprises two key modules: (i) Adaptive Wavelet Refinement module, that transforms time series into time-frequency coefficients, utilizes an adaptive router to dynamically assign subband weights, and generates subband-specific embeddings to support refinement; and (ii) Multi-Branch Specialization module, that employs multiple functional branches, each instantiated as a flexible Kolmogorov-Arnold Network (KAN) with a distinct functional order to model a specific spectral subband. Equipped with these modules, WaveTuner comprehensively tunes global trends and local variations within a unified time-frequency framework. Extensive experiments on eight real-world datasets demonstrate WaveTuner achieves state-of-the-art forecasting performance in time series forecasting.
☆ A Reproducible Framework for Neural Topic Modeling in Focus Group Analysis
Focus group discussions generate rich qualitative data but their analysis traditionally relies on labor-intensive manual coding that limits scalability and reproducibility. We present a rigorous, reproducible computational framework for applying neural topic modeling to focus group transcripts, addressing fundamental methodological challenges: hyperparameter sensitivity, model stability, and validation of interpretability. Using BERTopic applied to ten focus groups exploring HPV vaccine perceptions in Tunisia (1,076 utterances), we conducted systematic evaluation across 27 hyperparameter configurations, assessed stability through bootstrap resampling with 30 replicates per configuration, and validated interpretability through formal human evaluation by three domain experts. Our analysis demonstrates substantial sensitivity to hyperparameter choices and reveals that metric selection for stability assessment must align with analytical goals. A hierarchical merging strategy (extracting fine-grained topics for stability then consolidating for interpretability) effectively navigates the stability-coherence tradeoff, achieving coherence of 0.558 compared to 0.539 for direct extraction. Human validation confirmed topic quality with very good inter-rater reliability (ICC = 0.79, weighted Cohen's kappa = 0.578). Our framework provides practical guidelines that researchers can adapt to their own qualitative research contexts. All code, data processing scripts, and evaluation protocols are publicly available to support reproduction and extension of this work.
☆ Federated style aware transformer aggregation of representations
Personalized Federated Learning (PFL) faces persistent challenges, including domain heterogeneity from diverse client data, data imbalance due to skewed participation, and strict communication constraints. Traditional federated learning often lacks personalization, as a single global model cannot capture client-specific characteristics, leading to biased predictions and poor generalization, especially for clients with highly divergent data distributions. To address these issues, we propose FedSTAR, a style-aware federated learning framework that disentangles client-specific style factors from shared content representations. FedSTAR aggregates class-wise prototypes using a Transformer-based attention mechanism, allowing the server to adaptively weight client contributions while preserving personalization. Furthermore, by exchanging compact prototypes and style vectors instead of full model parameters, FedSTAR significantly reduces communication overhead. Experimental results demonstrate that combining content-style disentanglement with attention-driven prototype aggregation improves personalization and robustness in heterogeneous environments without increasing communication cost.
☆ Enhancing Multi-Label Thoracic Disease Diagnosis with Deep Ensemble-Based Uncertainty Quantification
The utility of deep learning models, such as CheXNet, in high stakes clinical settings is fundamentally constrained by their purely deterministic nature, failing to provide reliable measures of predictive confidence. This project addresses this critical gap by integrating robust Uncertainty Quantification (UQ) into a high performance diagnostic platform for 14 common thoracic diseases on the NIH ChestX-ray14 dataset. Initial architectural development failed to stabilize performance and calibration using Monte Carlo Dropout (MCD), yielding an unacceptable Expected Calibration Error (ECE) of 0.7588. This technical failure necessitated a rigorous architectural pivot to a high diversity, 9-member Deep Ensemble (DE). This resulting DE successfully stabilized performance and delivered superior reliability, achieving a State-of-the-Art (SOTA) average Area Under the Receiver Operating Characteristic Curve (AUROC) of 0.8559 and an average F1 Score of 0.3857. Crucially, the DE demonstrated superior calibration (Mean ECE of 0.0728 and Negative Log-Likelihood (NLL) of 0.1916) and enabled the reliable decomposition of total uncertainty into its Aleatoric (irreducible data noise) and Epistemic (reducible model knowledge) components, with a mean Epistemic Uncertainty (EU) of 0.0240. These results establish the Deep Ensemble as a trustworthy and explainable platform, transforming the model from a probabilistic tool into a reliable clinical decision support system.
☆ Auto-ML Graph Neural Network Hypermodels for Outcome Prediction in Event-Sequence Data
This paper introduces HGNN(O), an AutoML GNN hypermodel framework for outcome prediction on event-sequence data. Building on our earlier work on graph convolutional network hypermodels, HGNN(O) extends four architectures-One Level, Two Level, Two Level Pseudo Embedding, and Two Level Embedding-across six canonical GNN operators. A self-tuning mechanism based on Bayesian optimization with pruning and early stopping enables efficient adaptation over architectures and hyperparameters without manual configuration. Empirical evaluation on both balanced and imbalanced event logs shows that HGNN(O) achieves accuracy exceeding 0.98 on the Traffic Fines dataset and weighted F1 scores up to 0.86 on the Patients dataset without explicit imbalance handling. These results demonstrate that the proposed AutoML-GNN approach provides a robust and generalizable benchmark for outcome prediction in complex event-sequence data.
comment: 6 pages
☆ Leveraging Duration Pseudo-Embeddings in Multilevel LSTM and GCN Hypermodels for Outcome-Oriented PPM
Existing deep learning models for Predictive Process Monitoring (PPM) struggle with temporal irregularities, particularly stochastic event durations and overlapping timestamps, limiting their adaptability across heterogeneous datasets. We propose a dual input neural network strategy that separates event and sequence attributes, using a duration-aware pseudo-embedding matrix to transform temporal importance into compact, learnable representations. This design is implemented across two baseline families: B-LSTM and B-GCN, and their duration-aware variants D-LSTM and D-GCN. All models incorporate self-tuned hypermodels for adaptive architecture selection. Experiments on balanced and imbalanced outcome prediction tasks show that duration pseudo-embedding inputs consistently improve generalization, reduce model complexity, and enhance interpretability. Our results demonstrate the benefits of explicit temporal encoding and provide a flexible design for robust, real-world PPM applications.
comment: 12 pages
☆ Towards Characterizing Knowledge Distillation of PPG Heart Rate Estimation Models NeurIPS 2025
Heart rate estimation from photoplethysmography (PPG) signals generated by wearable devices such as smartwatches and fitness trackers has significant implications for the health and well-being of individuals. Although prior work has demonstrated deep learning models with strong performance in the heart rate estimation task, in order to deploy these models on wearable devices, these models must also adhere to strict memory and latency constraints. In this work, we explore and characterize how large pre-trained PPG models may be distilled to smaller models appropriate for real-time inference on the edge. We evaluate four distillation strategies through comprehensive sweeps of teacher and student model capacities: (1) hard distillation, (2) soft distillation, (3) decoupled knowledge distillation (DKD), and (4) feature distillation. We present a characterization of the resulting scaling laws describing the relationship between model size and performance. This early investigation lays the groundwork for practical and predictable methods for building edge-deployable models for physiological sensing.
comment: To be published in: 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Learning from Time Series for Health
☆ Solving a Research Problem in Mathematical Statistics with AI Assistance
Over the last few months, AI models including large language models have improved greatly. There are now several documented examples where they have helped professional mathematical scientists prove new results, sometimes even helping resolve known open problems. In this short note, we add another example to the list, by documenting how we were able to solve a previously unsolved research problem in robust mathematical statistics with crucial help from GPT-5. Our problem concerns robust density estimation, where the observations are perturbed by Wasserstein-bounded contaminations.In a previous preprint (Chao and Dobriban, 2023, arxiv:2308.01853v2), we have obtained upper and lower bounds on the minimax optimal estimation error; which were, however, not sharp. Starting in October 2025, making significant use of GPT-5 Pro, we were able to derive the minimax optimal error rate (reported in version 3 of the above arxiv preprint). GPT-5 provided crucial help along the way, including by suggesting calculations that we did not think of, and techniques that were not familiar to us, such as the dynamic Benamou-Brenier formulation, for key steps in the analysis. Working with GPT-5 took a few weeks of effort, and we estimate that it could have taken several months to get the same results otherwise. At the same time, there are still areas where working with GPT-5 was challenging: it sometimes provided incorrect references, and glossed over details that sometimes took days of work to fill in. We outline our workflow and steps taken to mitigate issues. Overall, our work can serve as additional documentation for a new age of human-AI collaborative work in mathematical science.
☆ Uncertainty-Aware Dual-Student Knowledge Distillation for Efficient Image Classification
Knowledge distillation has emerged as a powerful technique for model compression, enabling the transfer of knowledge from large teacher networks to compact student models. However, traditional knowledge distillation methods treat all teacher predictions equally, regardless of the teacher's confidence in those predictions. This paper proposes an uncertainty-aware dual-student knowledge distillation framework that leverages teacher prediction uncertainty to selectively guide student learning. We introduce a peer-learning mechanism where two heterogeneous student architectures, specifically ResNet-18 and MobileNetV2, learn collaboratively from both the teacher network and each other. Experimental results on ImageNet-100 demonstrate that our approach achieves superior performance compared to baseline knowledge distillation methods, with ResNet-18 achieving 83.84\% top-1 accuracy and MobileNetV2 achieving 81.46\% top-1 accuracy, representing improvements of 2.04\% and 0.92\% respectively over traditional single-student distillation approaches.
☆ Solution of Incompressible Flow Equations with Physics and Equality Constrained Artificial Neural Networks
We present a meshless method for the solution of incompressible Navier-Stokes equations in advection-dominated regimes using physics- and equality-constrained artificial neural networks combined with a conditionally adaptive augmented Lagrangian formulation. A single neural network parameterizes both the velocity and pressure fields, and is trained by minimizing the residual of a Poisson's equation for pressure, constrained by the momentum and continuity equations, together with boundary conditions on the velocity field. No boundary conditions are imposed on the pressure field aside from anchoring the pressure at a point to prevent its unbounded development. The training is performed from scratch without labeled data, relying solely on the governing equations and constraints. To enhance accuracy in advection-dominated flows, we employ a single Fourier feature mapping of the input coordinates. The proposed method is demonstrated for the canonical lid-driven cavity flow up to a Reynolds number of 7,500 and for laminar flow over a circular cylinder with inflow-outflow boundary conditions, achieving excellent agreement with benchmark solutions. We further compare the present formulation against alternative objective-function constructions based on different arrangements of the flow equations, thereby highlighting the algorithmic advantages of the proposed formulation centered around the Poisson's equation for pressure.
comment: 21 pages, 13 figures
☆ Uncertainty of Network Topology with Applications to Out-of-Distribution Detection
Persistent homology (PH) is a crucial concept in computational topology, providing a multiscale topological description of a space. It is particularly significant in topological data analysis, which aims to make statistical inference from a topological perspective. In this work, we introduce a new topological summary for Bayesian neural networks, termed the predictive topological uncertainty (pTU). The proposed pTU measures the uncertainty in the interaction between the model and the inputs. It provides insights from the model perspective: if two samples interact with a model in a similar way, then they are considered identically distributed. We also show that the pTU is insensitive to the model architecture. As an application, pTU is used to solve the out-of-distribution (OOD) detection problem, which is critical to ensure model reliability. Failure to detect OOD input can lead to incorrect and unreliable predictions. To address this issue, we propose a significance test for OOD based on the pTU, providing a statistical framework for this issue. The effectiveness of the framework is validated through various experiments, in terms of its statistical power, sensitivity, and robustness.
comment: Submitted for journal publication
☆ NEZHA: A Zero-sacrifice and Hyperspeed Decoding Architecture for Generative Recommendations
Generative Recommendation (GR), powered by Large Language Models (LLMs), represents a promising new paradigm for industrial recommender systems. However, their practical application is severely hindered by high inference latency, which makes them infeasible for high-throughput, real-time services and limits their overall business impact. While Speculative Decoding (SD) has been proposed to accelerate the autoregressive generation process, existing implementations introduce new bottlenecks: they typically require separate draft models and model-based verifiers, requiring additional training and increasing the latency overhead. In this paper, we address these challenges with NEZHA, a novel architecture that achieves hyperspeed decoding for GR systems without sacrificing recommendation quality. Specifically, NEZHA integrates a nimble autoregressive draft head directly into the primary model, enabling efficient self-drafting. This design, combined with a specialized input prompt structure, preserves the integrity of sequence-to-sequence generation. Furthermore, to tackle the critical problem of hallucination, a major source of performance degradation, we introduce an efficient, model-free verifier based on a hash set. We demonstrate the effectiveness of NEZHA through extensive experiments on public datasets and have successfully deployed the system on Taobao since October 2025, driving the billion-level advertising revenue and serving hundreds of millions of daily active users.
☆ Doubly Wild Refitting: Model-Free Evaluation of High Dimensional Black-Box Predictions under Convex Losses
We study the problem of excess risk evaluation for empirical risk minimization (ERM) under general convex loss functions. Our contribution is an efficient refitting procedure that computes the excess risk and provides high-probability upper bounds under the fixed-design setting. Assuming only black-box access to the training algorithm and a single dataset, we begin by generating two sets of artificially modified pseudo-outcomes termed wild response, created by stochastically perturbing the gradient vectors with carefully chosen scaling. Using these two pseudo-labeled datasets, we then refit the black-box procedure twice to obtain two corresponding wild predictors. Finally, leveraging the original predictor, the two wild predictors, and the constructed wild responses, we derive an efficient excess risk upper bound. A key feature of our analysis is that it requires no prior knowledge of the complexity of the underlying function class. As a result, the method is essentially model-free and holds significant promise for theoretically evaluating modern opaque machine learning system--such as deep nerral networks and generative model--where traditional capacity-based learning theory becomes infeasible due to the extreme complexity of the hypothesis class.
☆ Understanding Task Transfer in Vision-Language Models
Vision-Language Models (VLMs) perform well on multimodal benchmarks but lag behind humans and specialized models on visual perception tasks like depth estimation or object counting. Finetuning on one task can unpredictably affect performance on others, making task-specific finetuning challenging. In this paper, we address this challenge through a systematic study of task transferability. We examine how finetuning a VLM on one perception task affects its zero-shot performance on others. To quantify these effects, we introduce Perfection Gap Factor (PGF), a metric that captures both the breadth and magnitude of transfer. Using three open-weight VLMs evaluated across 13 perception tasks, we construct a task-transfer graph that reveals previously unobserved relationships among perception tasks. Our analysis uncovers patterns of positive and negative transfer, identifies groups of tasks that mutually influence each other, organizes tasks into personas based on their transfer behavior and demonstrates how PGF can guide data selection for more efficient training. These findings highlight both opportunities for positive transfer and risks of negative interference, offering actionable guidance for advancing VLMs.
☆ Hypergraph Contrastive Learning for both Homophilic and Heterophilic Hypergraphs
Hypergraphs, as a generalization of traditional graphs, naturally capture high-order relationships. In recent years, hypergraph neural networks (HNNs) have been widely used to capture complex high-order relationships. However, most existing hypergraph neural network methods inherently rely on the homophily assumption, which often does not hold in real-world scenarios that exhibit significant heterophilic structures. To address this limitation, we propose \textbf{HONOR}, a novel unsupervised \textbf{H}ypergraph c\textbf{ON}trastive learning framework suitable for both hom\textbf{O}philic and hete\textbf{R}ophilic hypergraphs. Specifically, HONOR explicitly models the heterophilic relationships between hyperedges and nodes through two complementary mechanisms: a prompt-based hyperedge feature construction strategy that maintains global semantic consistency while suppressing local noise, and an adaptive attention aggregation module that dynamically captures the diverse local contributions of nodes to hyperedges. Combined with high-pass filtering, these designs enable HONOR to fully exploit heterophilic connection patterns, yielding more discriminative and robust node and hyperedge representations. Theoretically, we demonstrate the superior generalization ability and robustness of HONOR. Empirically, extensive experiments further validate that HONOR consistently outperforms state-of-the-art baselines under both homophilic and heterophilic datasets.
☆ SAOT: An Enhanced Locality-Aware Spectral Transformer for Solving PDEs AAAI 2026
Neural operators have shown great potential in solving a family of Partial Differential Equations (PDEs) by modeling the mappings between input and output functions. Fourier Neural Operator (FNO) implements global convolutions via parameterizing the integral operators in Fourier space. However, it often results in over-smoothing solutions and fails to capture local details and high-frequency components. To address these limitations, we investigate incorporating the spatial-frequency localization property of Wavelet transforms into the Transformer architecture. We propose a novel Wavelet Attention (WA) module with linear computational complexity to efficiently learn locality-aware features. Building upon WA, we further develop the Spectral Attention Operator Transformer (SAOT), a hybrid spectral Transformer framework that integrates WA's localized focus with the global receptive field of Fourier-based Attention (FA) through a gated fusion block. Experimental results demonstrate that WA significantly mitigates the limitations of FA and outperforms existing Wavelet-based neural operators by a large margin. By integrating the locality-aware and global spectral representations, SAOT achieves state-of-the-art performance on six operator learning benchmarks and exhibits strong discretization-invariant ability.
comment: Accepted to AAAI 2026 (Main Technical Track)
☆ Sampling Control for Imbalanced Calibration in Semi-Supervised Learning AAAI 2026
Class imbalance remains a critical challenge in semi-supervised learning (SSL), especially when distributional mismatches between labeled and unlabeled data lead to biased classification. Although existing methods address this issue by adjusting logits based on the estimated class distribution of unlabeled data, they often handle model imbalance in a coarse-grained manner, conflating data imbalance with bias arising from varying class-specific learning difficulties. To address this issue, we propose a unified framework, SC-SSL, which suppresses model bias through decoupled sampling control. During training, we identify the key variables for sampling control under ideal conditions. By introducing a classifier with explicit expansion capability and adaptively adjusting sampling probabilities across different data distributions, SC-SSL mitigates feature-level imbalance for minority classes. In the inference phase, we further analyze the weight imbalance of the linear classifier and apply post-hoc sampling control with an optimization bias vector to directly calibrate the logits. Extensive experiments across various benchmark datasets and distribution settings validate the consistency and state-of-the-art performance of SC-SSL.
comment: Accepted at AAAI 2026
☆ On Instability of Minimax Optimal Optimism-Based Bandit Algorithms
Statistical inference from data generated by multi-armed bandit (MAB) algorithms is challenging due to their adaptive, non-i.i.d. nature. A classical manifestation is that sample averages of arm rewards under bandit sampling may fail to satisfy a central limit theorem. Lai and Wei's stability condition provides a sufficient, and essentially necessary criterion, for asymptotic normality in bandit problems. While the celebrated Upper Confidence Bound (UCB) algorithm satisfies this stability condition, it is not minimax optimal, raising the question of whether minimax optimality and statistical stability can be achieved simultaneously. In this paper, we analyze the stability properties of a broad class of bandit algorithms that are based on the optimism principle. We establish general structural conditions under which such algorithms violate the Lai-Wei stability criterion. As a consequence, we show that widely used minimax-optimal UCB-style algorithms, including MOSS, Anytime-MOSS, Vanilla-MOSS, ADA-UCB, OC-UCB, KL-MOSS, KL-UCB++, KL-UCB-SWITCH, and Anytime KL-UCB-SWITCH, are unstable. We further complement our theoretical results with numerical simulations demonstrating that, in all these cases, the sample means fail to exhibit asymptotic normality. Overall, our findings suggest a fundamental tension between stability and minimax optimal regret, raising the question of whether it is possible to design bandit algorithms that achieve both. Understanding whether such simultaneously stable and minimax optimal strategies exist remains an important open direction.
☆ ProxT2I: Efficient Reward-Guided Text-to-Image Generation via Proximal Diffusion
Diffusion models have emerged as a dominant paradigm for generative modeling across a wide range of domains, including prompt-conditional generation. The vast majority of samplers, however, rely on forward discretization of the reverse diffusion process and use score functions that are learned from data. Such forward and explicit discretizations can be slow and unstable, requiring a large number of sampling steps to produce good-quality samples. In this work we develop a text-to-image (T2I) diffusion model based on backward discretizations, dubbed ProxT2I, relying on learned and conditional proximal operators instead of score functions. We further leverage recent advances in reinforcement learning and policy optimization to optimize our samplers for task-specific rewards. Additionally, we develop a new large-scale and open-source dataset comprising 15 million high-quality human images with fine-grained captions, called LAION-Face-T2I-15M, for training and evaluation. Our approach consistently enhances sampling efficiency and human-preference alignment compared to score-based baselines, and achieves results on par with existing state-of-the-art and open-source text-to-image models while requiring lower compute and smaller model size, offering a lightweight yet performant solution for human text-to-image generation.
☆ A Problem-Oriented Taxonomy of Evaluation Metrics for Time Series Anomaly Detection
Time series anomaly detection is widely used in IoT and cyber-physical systems, yet its evaluation remains challenging due to diverse application objectives and heterogeneous metric assumptions. This study introduces a problem-oriented framework that reinterprets existing metrics based on the specific evaluation challenges they are designed to address, rather than their mathematical forms or output structures. We categorize over twenty commonly used metrics into six dimensions: 1) basic accuracy-driven evaluation; 2) timeliness-aware reward mechanisms; 3) tolerance to labeling imprecision; 4) penalties reflecting human-audit cost; 5) robustness against random or inflated scores; and 6) parameter-free comparability for cross-dataset benchmarking. Comprehensive experiments are conducted to examine metric behavior under genuine, random, and oracle detection scenarios. By comparing their resulting score distributions, we quantify each metric's discriminative ability -- its capability to distinguish meaningful detections from random noise. The results show that while most event-level metrics exhibit strong separability, several widely used metrics (e.g., NAB, Point-Adjust) demonstrate limited resistance to random-score inflation. These findings reveal that metric suitability must be inherently task-dependent and aligned with the operational objectives of IoT applications. The proposed framework offers a unified analytical perspective for understanding existing metrics and provides practical guidance for selecting or developing more context-aware, robust, and fair evaluation methodologies for time series anomaly detection.
☆ OceanForecastBench: A Benchmark Dataset for Data-Driven Global Ocean Forecasting
Global ocean forecasting aims to predict key ocean variables such as temperature, salinity, and currents, which is essential for understanding and describing oceanic phenomena. In recent years, data-driven deep learning-based ocean forecast models, such as XiHe, WenHai, LangYa and AI-GOMS, have demonstrated significant potential in capturing complex ocean dynamics and improving forecasting efficiency. Despite these advancements, the absence of open-source, standardized benchmarks has led to inconsistent data usage and evaluation methods. This gap hinders efficient model development, impedes fair performance comparison, and constrains interdisciplinary collaboration. To address this challenge, we propose OceanForecastBench, a benchmark offering three core contributions: (1) A high-quality global ocean reanalysis data over 28 years for model training, including 4 ocean variables across 23 depth levels and 4 sea surface variables. (2) A high-reliability satellite and in-situ observations for model evaluation, covering approximately 100 million locations in the global ocean. (3) An evaluation pipeline and a comprehensive benchmark with 6 typical baseline models, leveraging observations to evaluate model performance from multiple perspectives. OceanForecastBench represents the most comprehensive benchmarking framework currently available for data-driven ocean forecasting, offering an open-source platform for model development, evaluation, and comparison. The dataset and code are publicly available at: https://github.com/Ocean-Intelligent-Forecasting/OceanForecastBench.
☆ Large-Scale In-Game Outcome Forecasting for Match, Team and Players in Football using an Axial Transformer Neural Network
Football (soccer) is a sport that is characterised by complex game play, where players perform a variety of actions, such as passes, shots, tackles, fouls, in order to score goals, and ultimately win matches. Accurately forecasting the total number of each action that each player will complete during a match is desirable for a variety of applications, including tactical decision-making, sports betting, and for television broadcast commentary and analysis. Such predictions must consider the game state, the ability and skill of the players in both teams, the interactions between the players, and the temporal dynamics of the game as it develops. In this paper, we present a transformer-based neural network that jointly and recurrently predicts the expected totals for thirteen individual actions at multiple time-steps during the match, and where predictions are made for each individual player, each team and at the game-level. The neural network is based on an \emph{axial transformer} that efficiently captures the temporal dynamics as the game progresses, and the interactions between the players at each time-step. We present a novel axial transformer design that we show is equivalent to a regular sequential transformer, and the design performs well experimentally. We show empirically that the model can make consistent and reliable predictions, and efficiently makes $\sim$75,000 live predictions at low latency for each game.
comment: 25 pages, 7 figures, 1 table
☆ Reinforcement Learning for Self-Healing Material Systems
The transition to autonomous material systems necessitates adaptive control methodologies to maximize structural longevity. This study frames the self-healing process as a Reinforcement Learning (RL) problem within a Markov Decision Process (MDP), enabling agents to autonomously derive optimal policies that efficiently balance structural integrity maintenance against finite resource consumption. A comparative evaluation of discrete-action (Q-learning, DQN) and continuous-action (TD3) agents in a stochastic simulation environment revealed that RL controllers significantly outperform heuristic baselines, achieving near-complete material recovery. Crucially, the TD3 agent utilizing continuous dosage control demonstrated superior convergence speed and stability, underscoring the necessity of fine-grained, proportional actuation in dynamic self-healing applications.
comment: Accepted to INCOM 2026. This is the camera-ready version
☆ LogSyn: A Few-Shot LLM Framework for Structured Insight Extraction from Unstructured General Aviation Maintenance Logs
Aircraft maintenance logs hold valuable safety data but remain underused due to their unstructured text format. This paper introduces LogSyn, a framework that uses Large Language Models (LLMs) to convert these logs into structured, machine-readable data. Using few-shot in-context learning on 6,169 records, LogSyn performs Controlled Abstraction Generation (CAG) to summarize problem-resolution narratives and classify events within a detailed hierarchical ontology. The framework identifies key failure patterns, offering a scalable method for semantic structuring and actionable insight extraction from maintenance logs. This work provides a practical path to improve maintenance workflows and predictive analytics in aviation and related industries.
comment: Accepted in Proceedings of the 3rd INCOM 2026
☆ Towards Realistic Guarantees: A Probabilistic Certificate for SmoothLLM
The SmoothLLM defense provides a certification guarantee against jailbreaking attacks, but it relies on a strict `k-unstable' assumption that rarely holds in practice. This strong assumption can limit the trustworthiness of the provided safety certificate. In this work, we address this limitation by introducing a more realistic probabilistic framework, `(k, $\varepsilon$)-unstable,' to certify defenses against diverse jailbreaking attacks, from gradient-based (GCG) to semantic (PAIR). We derive a new, data-informed lower bound on SmoothLLM's defense probability by incorporating empirical models of attack success, providing a more trustworthy and practical safety certificate. By introducing the notion of (k, $\varepsilon$)-unstable, our framework provides practitioners with actionable safety guarantees, enabling them to set certification thresholds that better reflect the real-world behavior of LLMs. Ultimately, this work contributes a practical and theoretically-grounded mechanism to make LLMs more resistant to the exploitation of their safety alignments, a critical challenge in secure AI deployment.
☆ When and What to Recommend: Joint Modeling of Timing and Content for Active Sequential Recommendation
Sequential recommendation models user preferences to predict the next target item. Most existing work is passive, where the system responds only when users open the application, missing chances after closure. We investigate active recommendation, which predicts the next interaction time and actively delivers items. Two challenges: accurately estimating the Time of Interest (ToI) and generating Item of Interest (IoI) conditioned on the predicted ToI. We propose PASRec, a diffusion-based framework that aligns ToI and IoI via a joint objective. Experiments on five benchmarks show superiority over eight state-of-the-art baselines under leave-one-out and temporal splits.
comment: 10 pages, 5 figures. Submitted to arXiv
☆ GRIT-LP: Graph Transformer with Long-Range Skip Connection and Partitioned Spatial Graphs for Accurate Ice Layer Thickness Prediction
Graph transformers have demonstrated remarkable capability on complex spatio-temporal tasks, yet their depth is often limited by oversmoothing and weak long-range dependency modeling. To address these challenges, we introduce GRIT-LP, a graph transformer explicitly designed for polar ice-layer thickness estimation from polar radar imagery. Accurately estimating ice layer thickness is critical for understanding snow accumulation, reconstructing past climate patterns and reducing uncertainties in projections of future ice sheet evolution and sea level rise. GRIT-LP combines an inductive geometric graph learning framework with self-attention mechanism, and introduces two major innovations that jointly address challenges in modeling the spatio-temporal patterns of ice layers: a partitioned spatial graph construction strategy that forms overlapping, fully connected local neighborhoods to preserve spatial coherence and suppress noise from irrelevant long-range links, and a long-range skip connection mechanism within the transformer that improves information flow and mitigates oversmoothing in deeper attention layers. We conducted extensive experiments, demonstrating that GRIT-LP outperforms current state-of-the-art methods with a 24.92\% improvement in root mean squared error. These results highlight the effectiveness of graph transformers in modeling spatiotemporal patterns by capturing both localized structural features and long-range dependencies across internal ice layers, and demonstrate their potential to advance data-driven understanding of cryospheric processes.
☆ ObjectAlign: Neuro-Symbolic Object Consistency Verification and Correction
Video editing and synthesis often introduce object inconsistencies, such as frame flicker and identity drift that degrade perceptual quality. To address these issues, we introduce ObjectAlign, a novel framework that seamlessly blends perceptual metrics with symbolic reasoning to detect, verify, and correct object-level and temporal inconsistencies in edited video sequences. The novel contributions of ObjectAlign are as follows: First, we propose learnable thresholds for metrics characterizing object consistency (i.e. CLIP-based semantic similarity, LPIPS perceptual distance, histogram correlation, and SAM-derived object-mask IoU). Second, we introduce a neuro-symbolic verifier that combines two components: (a) a formal, SMT-based check that operates on masked object embeddings to provably guarantee that object identity does not drift, and (b) a temporal fidelity check that uses a probabilistic model checker to verify the video's formal representation against a temporal logic specification. A frame transition is subsequently deemed "consistent" based on a single logical assertion that requires satisfying both the learned metric thresholds and this unified neuro-symbolic constraint, ensuring both low-level stability and high-level temporal correctness. Finally, for each contiguous block of flagged frames, we propose a neural network based interpolation for adaptive frame repair, dynamically choosing the interpolation depth based on the number of frames to be corrected. This enables reconstruction of the corrupted frames from the last valid and next valid keyframes. Our results show up to 1.4 point improvement in CLIP Score and up to 6.1 point improvement in warp error compared to SOTA baselines on the DAVIS and Pexels video datasets.
☆ Dendritic Convolution for Noise Image Recognition
In real-world scenarios of image recognition, there exists substantial noise interference. Existing works primarily focus on methods such as adjusting networks or training strategies to address noisy image recognition, and the anti-noise performance has reached a bottleneck. However, little is known about the exploration of anti-interference solutions from a neuronal perspective.This paper proposes an anti-noise neuronal convolution. This convolution mimics the dendritic structure of neurons, integrates the neighborhood interaction computation logic of dendrites into the underlying design of convolutional operations, and simulates the XOR logic preprocessing function of biological dendrites through nonlinear interactions between input features, thereby fundamentally reconstructing the mathematical paradigm of feature extraction. Unlike traditional convolution where noise directly interferes with feature extraction and exerts a significant impact, DDC mitigates the influence of noise by focusing on the interaction of neighborhood information. Experimental results demonstrate that in image classification tasks (using YOLOv11-cls, VGG16, and EfficientNet-B0) and object detection tasks (using YOLOv11, YOLOv8, and YOLOv5), after replacing traditional convolution with the dendritic convolution, the accuracy of the EfficientNet-B0 model on noisy datasets is relatively improved by 11.23%, and the mean Average Precision (mAP) of YOLOv8 is increased by 19.80%. The consistency between the computation method of this convolution and the dendrites of biological neurons enables it to perform significantly better than traditional convolution in complex noisy environments.
comment: 11 pages, 8 figures
☆ Multimodal Real-Time Anomaly Detection and Industrial Applications
This paper presents the design, implementation, and evolution of a comprehensive multimodal room-monitoring system that integrates synchronized video and audio processing for real-time activity recognition and anomaly detection. We describe two iterations of the system: an initial lightweight implementation using YOLOv8, ByteTrack, and the Audio Spectrogram Transformer (AST), and an advanced version that incorporates multi-model audio ensembles, hybrid object detection, bidirectional cross-modal attention, and multi-method anomaly detection. The evolution demonstrates significant improvements in accuracy, robustness, and industrial applicability. The advanced system combines three audio models (AST, Wav2Vec2, and HuBERT) for comprehensive audio understanding, dual object detectors (YOLO and DETR) for improved accuracy, and sophisticated fusion mechanisms for enhanced cross-modal learning. Experimental evaluation shows the system's effectiveness in general monitoring scenarios as well as specialized industrial safety applications, achieving real-time performance on standard hardware while maintaining high accuracy.
☆ VLM in a flash: I/O-Efficient Sparsification of Vision-Language Model via Neuron Chunking
Edge deployment of large Vision-Language Models (VLMs) increasingly relies on flash-based weight offloading, where activation sparsification is used to reduce I/O overhead. However, conventional sparsification remains model-centric, selecting neurons solely by activation magnitude and neglecting how access patterns influence flash performance. We present Neuron Chunking, an I/O-efficient sparsification strategy that operates on chunks (i.e., groups of contiguous neurons in memory) and couples neuron importance with storage access cost. The method models I/O latency through a lightweight abstraction of access contiguity and selects chunks with high utility, defined as neuron importance normalized by estimated latency. By aligning sparsification decisions with the underlying storage behavior, Neuron Chunking improves I/O efficiency by up to 4.65x and 5.76x on Jetson Orin Nano and Jetson AGX Orin, respectively.
☆ QuantKAN: A Unified Quantization Framework for Kolmogorov Arnold Networks
Kolmogorov Arnold Networks (KANs) represent a new class of neural architectures that replace conventional linear transformations and node-based nonlinearities with spline-based function approximations distributed along network edges. Although KANs offer strong expressivity and interpretability, their heterogeneous spline and base branch parameters hinder efficient quantization, which remains unexamined compared to CNNs and Transformers. In this paper, we present QuantKAN, a unified framework for quantizing KANs across both quantization aware training (QAT) and post-training quantization (PTQ) regimes. QuantKAN extends modern quantization algorithms, such as LSQ, LSQ+, PACT, DoReFa, QIL, GPTQ, BRECQ, AdaRound, AWQ, and HAWQ-V2, to spline based layers with branch-specific quantizers for base, spline, and activation components. Through extensive experiments on MNIST, CIFAR 10, and CIFAR 100 across multiple KAN variants (EfficientKAN, FastKAN, PyKAN, and KAGN), we establish the first systematic benchmarks for low-bit spline networks. Our results show that KANs, particularly deeper KAGN variants, are compatible with low-bit quantization but exhibit strong method architecture interactions: LSQ, LSQ+, and PACT preserve near full precision accuracy at 4 bit for shallow KAN MLP and ConvNet models, while DoReFa provides the most stable behavior for deeper KAGN under aggressive low-bit settings. For PTQ, GPTQ and Uniform consistently deliver the strongest overall performance across datasets, with BRECQ highly competitive on simpler regimes such as MNIST. Our proposed QuantKAN framework thus unifies spline learning and quantization, and provides practical tools and guidelines for efficiently deploying KANs in real-world, resource-constrained environments.
☆ Low-Rank GEMM: Efficient Matrix Multiplication via Low-Rank Approximation with FP8 Acceleration
Large matrix multiplication is a cornerstone of modern machine learning workloads, yet traditional approaches suffer from cubic computational complexity (e.g., $\mathcal{O}(n^3)$ for a matrix of size $n\times n$). We present Low-Rank GEMM, a novel approach that leverages low-rank matrix approximations to achieve sub-quadratic complexity while maintaining hardware-accelerated performance through FP8 precision and intelligent kernel selection. On a NVIDIA RTX 4090, our implementation achieves up to 378 TFLOPS on matrices up to $N=20480$, providing 75\% memory savings and $7.8\times$ speedup over PyTorch FP32 for large matrices. The system automatically adapts to hardware capabilities, selecting optimal decomposition methods (SVD, randomized SVD) and precision levels based on matrix characteristics and available accelerators. Comprehensive benchmarking on NVIDIA RTX 4090 demonstrates that Low-Rank GEMM becomes the fastest approach for matrices $N\geq10240$, surpassing traditional cuBLAS implementations through memory bandwidth optimization rather than computational shortcuts.
☆ Multi-Agent Cross-Entropy Method with Monotonic Nonlinear Critic Decomposition
Cooperative multi-agent reinforcement learning (MARL) commonly adopts centralized training with decentralized execution (CTDE), where centralized critics leverage global information to guide decentralized actors. However, centralized-decentralized mismatch (CDM) arises when the suboptimal behavior of one agent degrades others' learning. Prior approaches mitigate CDM through value decomposition, but linear decompositions allow per-agent gradients at the cost of limited expressiveness, while nonlinear decompositions improve representation but require centralized gradients, reintroducing CDM. To overcome this trade-off, we propose the multi-agent cross-entropy method (MCEM), combined with monotonic nonlinear critic decomposition (NCD). MCEM updates policies by increasing the probability of high-value joint actions, thereby excluding suboptimal behaviors. For sample efficiency, we extend off-policy learning with a modified k-step return and Retrace. Analysis and experiments demonstrate that MCEM outperforms state-of-the-art methods across both continuous and discrete action benchmarks.
☆ Deterministic Continuous Replacement: Fast and Stable Module Replacement in Pretrained Transformers NeurIPS 2025
Replacing modules in pretrained models, especially swapping quadratic self-attention for efficient attention alternatives, poses a hard optimization problem: cold-start reinitialization destabilizes frozen backbones. We isolate this core stability challenge in a controlled study. Deterministic Continuous Replacement (DCR) blends teacher and student outputs with a deterministic, annealed weight. Theoretically, DCR eliminates gate-induced gradient variance inherent to stochastic replacement. In a single-seed study, DCR attains faster convergence and stronger alignment than stochastic gating and distillation baselines on controlled attention replacement, establishing a foundation for heterogeneous operator swaps.
comment: Accepted to NeurIPS 2025 ScaleOPT Workshop; 8 pages; includes figures
☆ Equivariant Deep Equilibrium Models for Imaging Inverse Problems
Equivariant imaging (EI) enables training signal reconstruction models without requiring ground truth data by leveraging signal symmetries. Deep equilibrium models (DEQs) are a powerful class of neural networks where the output is a fixed point of a learned operator. However, training DEQs with complex EI losses requires implicit differentiation through fixed-point computations, whose implementation can be challenging. We show that backpropagation can be implemented modularly, simplifying training. Experiments demonstrate that DEQs trained with implicit differentiation outperform those trained with Jacobian-free backpropagation and other baseline methods. Additionally, we find evidence that EI-trained DEQs approximate the proximal map of an invariant prior.
☆ Fast Escape, Slow Convergence: Learning Dynamics of Phase Retrieval under Power-Law Data
Scaling laws describe how learning performance improves with data, compute, or training time, and have become a central theme in modern deep learning. We study this phenomenon in a canonical nonlinear model: phase retrieval with anisotropic Gaussian inputs whose covariance spectrum follows a power law. Unlike the isotropic case, where dynamics collapse to a two-dimensional system, anisotropy yields a qualitatively new regime in which an infinite hierarchy of coupled equations governs the evolution of the summary statistics. We develop a tractable reduction that reveals a three-phase trajectory: (i) fast escape from low alignment, (ii) slow convergence of the summary statistics, and (iii) spectral-tail learning in low-variance directions. From this decomposition, we derive explicit scaling laws for the mean-squared error, showing how spectral decay dictates convergence times and error curves. Experiments confirm the predicted phases and exponents. These results provide the first rigorous characterization of scaling laws in nonlinear regression with anisotropic data, highlighting how anisotropy reshapes learning dynamics.
☆ Subtract the Corruption: Training-Data-Free Corrective Machine Unlearning using Task Arithmetic
Corrupted training data are ubiquitous. Corrective Machine Unlearning (CMU) seeks to remove the influence of such corruption post-training. Prior CMU typically assumes access to identified corrupted training samples (a ``forget set''). However, in many real-world scenarios the training data are no longer accessible. We formalize \emph{source-free} CMU, where the original training data are unavailable and, consequently, no forget set of identified corrupted training samples can be specified. Instead, we assume a small proxy (surrogate) set of corrupted samples that reflect the suspected corruption type without needing to be the original training samples. In this stricter setting, methods relying on forget set are ineffective or narrow in scope. We introduce \textit{Corrective Unlearning in Task Space} (CUTS), a lightweight weight space correction method guided by the proxy set using task arithmetic principles. CUTS treats the clean and the corruption signal as distinct tasks. Specifically, we briefly fine-tune the corrupted model on the proxy to amplify the corruption mechanism in the weight space, compute the difference between the corrupted and fine-tuned weights as a proxy task vector, and subtract a calibrated multiple of this vector to cancel the corruption. Without access to clean data or a forget set, CUTS recovers a large fraction of the lost utility under label noise and, for backdoor triggers, nearly eliminates the attack with minimal damage to utility, outperforming state-of-the-art specialized CMU methods in source-free setting.
☆ KOM: A Multi-Agent Artificial Intelligence System for Precision Management of Knee Osteoarthritis (KOA)
Knee osteoarthritis (KOA) affects more than 600 million individuals globally and is associated with significant pain, functional impairment, and disability. While personalized multidisciplinary interventions have the potential to slow disease progression and enhance quality of life, they typically require substantial medical resources and expertise, making them difficult to implement in resource-limited settings. To address this challenge, we developed KOM, a multi-agent system designed to automate KOA evaluation, risk prediction, and treatment prescription. This system assists clinicians in performing essential tasks across the KOA care pathway and supports the generation of tailored management plans based on individual patient profiles, disease status, risk factors, and contraindications. In benchmark experiments, KOM demonstrated superior performance compared to several general-purpose large language models in imaging analysis and prescription generation. A randomized three-arm simulation study further revealed that collaboration between KOM and clinicians reduced total diagnostic and planning time by 38.5% and resulted in improved treatment quality compared to each approach used independently. These findings indicate that KOM could help facilitate automated KOA management and, when integrated into clinical workflows, has the potential to enhance care efficiency. The modular architecture of KOM may also offer valuable insights for developing AI-assisted management systems for other chronic conditions.
☆ Terminal Velocity Matching
We propose Terminal Velocity Matching (TVM), a generalization of flow matching that enables high-fidelity one- and few-step generative modeling. TVM models the transition between any two diffusion timesteps and regularizes its behavior at its terminal time rather than at the initial time. We prove that TVM provides an upper bound on the $2$-Wasserstein distance between data and model distributions when the model is Lipschitz continuous. However, since Diffusion Transformers lack this property, we introduce minimal architectural changes that achieve stable, single-stage training. To make TVM efficient in practice, we develop a fused attention kernel that supports backward passes on Jacobian-Vector Products, which scale well with transformer architectures. On ImageNet-256x256, TVM achieves 3.29 FID with a single function evaluation (NFE) and 1.99 FID with 4 NFEs. It similarly achieves 4.32 1-NFE FID and 2.94 4-NFE FID on ImageNet-512x512, representing state-of-the-art performance for one/few-step models from scratch.
comment: Code available at: https://github.com/lumalabs/tvm
☆ When +1% Is Not Enough: A Paired Bootstrap Protocol for Evaluating Small Improvements
Recent machine learning papers often report 1-2 percentage point improvements from a single run on a benchmark. These gains are highly sensitive to random seeds, data ordering, and implementation details, yet are rarely accompanied by uncertainty estimates or significance tests. It is therefore unclear when a reported +1-2% reflects a real algorithmic advance versus noise. We revisit this problem under realistic compute budgets, where only a few runs are affordable. We propose a simple, PC-friendly evaluation protocol based on paired multi-seed runs, bias-corrected and accelerated (BCa) bootstrap confidence intervals, and a sign-flip permutation test on per-seed deltas. The protocol is intentionally conservative and is meant as a guardrail against over-claiming. We instantiate it on CIFAR-10, CIFAR-10N, and AG News using synthetic no-improvement, small-gain, and medium-gain scenarios. Single runs and unpaired t-tests often suggest significant gains for 0.6-2.0 point improvements, especially on text. With only three seeds, our paired protocol never declares significance in these settings. We argue that such conservative evaluation is a safer default for small gains under tight budgets.
comment: 13 pages, 3 figures
☆ Clustering Approaches for Mixed-Type Data: A Comparative Study
Clustering is widely used in unsupervised learning to find homogeneous groups of observations within a dataset. However, clustering mixed-type data remains a challenge, as few existing approaches are suited for this task. This study presents the state-of-the-art of these approaches and compares them using various simulation models. The compared methods include the distance-based approaches k-prototypes, PDQ, and convex k-means, and the probabilistic methods KAy-means for MIxed LArge data (KAMILA), the mixture of Bayesian networks (MBNs), and latent class model (LCM). The aim is to provide insights into the behavior of different methods across a wide range of scenarios by varying some experimental factors such as the number of clusters, cluster overlap, sample size, dimension, proportion of continuous variables in the dataset, and clusters' distribution. The degree of cluster overlap and the proportion of continuous variables in the dataset and the sample size have a significant impact on the observed performances. When strong interactions exist between variables alongside an explicit dependence on cluster membership, none of the evaluated methods demonstrated satisfactory performance. In our experiments KAMILA, LCM, and k-prototypes exhibited the best performance, with respect to the adjusted rand index (ARI). All the methods are available in R.
☆ DISCO: A Browser-Based Privacy-Preserving Framework for Distributed Collaborative Learning
Data is often impractical to share for a range of well considered reasons, such as concerns over privacy, intellectual property, and legal constraints. This not only fragments the statistical power of predictive models, but creates an accessibility bias, where accuracy becomes inequitably distributed to those who have the resources to overcome these concerns. We present DISCO: an open-source DIStributed COllaborative learning platform accessible to non-technical users, offering a means to collaboratively build machine learning models without sharing any original data or requiring any programming knowledge. DISCO's web application trains models locally directly in the browser, making our tool cross-platform out-of-the-box, including smartphones. The modular design of \disco offers choices between federated and decentralized paradigms, various levels of privacy guarantees and several approaches to weight aggregation strategies that allow for model personalization and bias resilience in the collaborative training. Code repository is available at https://github.com/epfml/disco and a showcase web interface at https://discolab.ai
☆ CAMformer: Associative Memory is All You Need
Transformers face scalability challenges due to the quadratic cost of attention, which involves dense similarity computations between queries and keys. We propose CAMformer, a novel accelerator that reinterprets attention as an associative memory operation and computes attention scores using a voltage-domain Binary Attention Content Addressable Memory (BA-CAM). This enables constant-time similarity search through analog charge sharing, replacing digital arithmetic with physical similarity sensing. CAMformer integrates hierarchical two-stage top-k filtering, pipelined execution, and high-precision contextualization to achieve both algorithmic accuracy and architectural efficiency. Evaluated on BERT and Vision Transformer workloads, CAMformer achieves over 10x energy efficiency, up to 4x higher throughput, and 6-8x lower area compared to state-of-the-art accelerators--while maintaining near-lossless accuracy.
comment: 7 pages, 10 figures
☆ Comparative Analysis of LoRA-Adapted Embedding Models for Clinical Cardiology Text Representation
Domain-specific text embeddings are critical for clinical natural language processing, yet systematic comparisons across model architectures remain limited. This study evaluates ten transformer-based embedding models adapted for cardiology through Low-Rank Adaptation (LoRA) fine-tuning on 106,535 cardiology text pairs derived from authoritative medical textbooks. Results demonstrate that encoder-only architectures, particularly BioLinkBERT, achieve superior domain-specific performance (separation score: 0.510) compared to larger decoder-based models, while requiring significantly fewer computational resources. The findings challenge the assumption that larger language models necessarily produce better domain-specific embeddings and provide practical guidance for clinical NLP system development. All models, training code, and evaluation datasets are publicly available to support reproducible research in medical informatics.
comment: 25 pages, 13 figures, 5 tables
☆ Integrating RCTs, RWD, AI/ML and Statistics: Next-Generation Evidence Synthesis
Randomized controlled trials (RCTs) have been the cornerstone of clinical evidence; however, their cost, duration, and restrictive eligibility criteria limit power and external validity. Studies using real-world data (RWD), historically considered less reliable for establishing causality, are now recognized to be important for generating real-world evidence (RWE). In parallel, artificial intelligence and machine learning (AI/ML) are being increasingly used throughout the drug development process, providing scalability and flexibility but also presenting challenges in interpretability and rigor that traditional statistics do not face. This Perspective argues that the future of evidence generation will not depend on RCTs versus RWD, or statistics versus AI/ML, but on their principled integration. To this end, a causal roadmap is needed to clarify inferential goals, make assumptions explicit, and ensure transparency about tradeoffs. We highlight key objectives of integrative evidence synthesis, including transporting RCT results to broader populations, embedding AI-assisted analyses within RCTs, designing hybrid controlled trials, and extending short-term RCTs with long-term RWD. We also outline future directions in privacy-preserving analytics, uncertainty quantification, and small-sample methods. By uniting statistical rigor with AI/ML innovation, integrative approaches can produce robust, transparent, and policy-relevant evidence, making them a key component of modern regulatory science.
☆ Training-Free Active Learning Framework in Materials Science with Large Language Models
Active learning (AL) accelerates scientific discovery by prioritizing the most informative experiments, but traditional machine learning (ML) models used in AL suffer from cold-start limitations and domain-specific feature engineering, restricting their generalizability. Large language models (LLMs) offer a new paradigm by leveraging their pretrained knowledge and universal token-based representations to propose experiments directly from text-based descriptions. Here, we introduce an LLM-based active learning framework (LLM-AL) that operates in an iterative few-shot setting and benchmark it against conventional ML models across four diverse materials science datasets. We explored two prompting strategies: one using concise numerical inputs suited for datasets with more compositional and structured features, and another using expanded descriptive text suited for datasets with more experimental and procedural features to provide additional context. Across all datasets, LLM-AL could reduce the number of experiments needed to reach top-performing candidates by over 70% and consistently outperformed traditional ML models. We found that LLM-AL performs broader and more exploratory searches while still reaching the optima with fewer iterations. We further examined the stability boundaries of LLM-AL given the inherent non-determinism of LLMs and found its performance to be broadly consistent across runs, within the variability range typically observed for traditional ML approaches. These results demonstrate that LLM-AL can serve as a generalizable alternative to conventional AL pipelines for more efficient and interpretable experiment selection and potential LLM-driven autonomous discovery.
☆ An Adaptive, Data-Integrated Agent-Based Modeling Framework for Explainable and Contestable Policy Design
Multi-agent systems often operate under feedback, adaptation, and non-stationarity, yet many simulation studies retain static decision rules and fixed control parameters. This paper introduces a general adaptive multi-agent learning framework that integrates: (i) four dynamic regimes distinguishing static versus adaptive agents and fixed versus adaptive system parameters; (ii) information-theoretic diagnostics (entropy rate, statistical complexity, and predictive information) to assess predictability and structure; (iii) structural causal models for explicit intervention semantics; (iv) procedures for generating agent-level priors from aggregate or sample data; and (v) unsupervised methods for identifying emergent behavioral regimes. The framework offers a domain-neutral architecture for analyzing how learning agents and adaptive controls jointly shape system trajectories, enabling systematic comparison of stability, performance, and interpretability across non-equilibrium, oscillatory, or drifting dynamics. Mathematical definitions, computational operators, and an experimental design template are provided, yielding a structured methodology for developing explainable and contestable multi-agent decision processes.
comment: 27 pages, 2 case studies (emissions and smart grids). Preprint prepared during the author's PhD research at the Open University of Cyprus and the University of Milano-Bicocca. Introduces a unified framework for adaptive multi-agent learning with information-theoretic, causal, and clustering diagnostics
☆ Individual and group fairness in geographical partitioning
Socioeconomic segregation often arises in school districting and other contexts, causing some groups to be over- or under-represented within a particular district. This phenomenon is closely linked with disparities in opportunities and outcomes. We formulate a new class of geographical partitioning problems in which the population is heterogeneous, and it is necessary to ensure fair representation for each group at each facility. We prove that the optimal solution is a novel generalization of the additively weighted Voronoi diagram, and we propose a simple and efficient algorithm to compute it, thus resolving an open question dating back to Dvoretzky et al. (1951). The efficacy and potential for practical insight of the approach are demonstrated in a realistic case study involving seven demographic groups and $78$ district offices.
☆ Large Scale Community-Aware Network Generation
Community detection, or network clustering, is used to identify latent community structure in networks. Due to the scarcity of labeled ground truth in real-world networks, evaluating these algorithms poses significant challenges. To address this, researchers use synthetic network generators that produce networks with ground-truth community labels. RECCS is one such algorithm that takes a network and its clustering as input and generates a synthetic network through a modular pipeline. Each generated ground truth cluster preserves key characteristics of the corresponding input cluster, including connectivity, minimum degree, and degree sequence distribution. The output consists of a synthetically generated network, and disjoint ground truth cluster labels for all nodes. In this paper, we present two enhanced versions: RECCS+ and RECCS++. RECCS+ maintains algorithmic fidelity to the original RECCS while introducing parallelization through an orchestrator that coordinates algorithmic components across multiple processes and employs multithreading. RECCS++ builds upon this foundation with additional algorithmic optimizations to achieve further speedup. Our experimental results demonstrate that RECCS+ and RECCS++ achieve speedups of up to 49x and 139x respectively on our benchmark datasets, with RECCS++'s additional performance gains involving a modest accuracy tradeoff. With this newfound performance, RECCS++ can now scale to networks with over 100 million nodes and nearly 2 billion edges.
comment: 22 pages, 10 figures, code made available at https://github.com/illinois-or-research-analytics/reccs
☆ Designing Preconditioners for SGD: Local Conditioning, Noise Floors, and Basin Stability
Stochastic Gradient Descent (SGD) often slows in the late stage of training due to anisotropic curvature and gradient noise. We analyze preconditioned SGD in the geometry induced by a symmetric positive definite matrix $\mathbf{M}$, deriving bounds in which both the convergence rate and the stochastic noise floor are governed by $\mathbf{M}$-dependent quantities: the rate through an effective condition number in the $\mathbf{M}$-metric, and the floor through the product of that condition number and the preconditioned noise level. For nonconvex objectives, we establish a preconditioner-dependent basin-stability guarantee: when smoothness and basin size are measured in the $\mathbf{M}$-norm, the probability that the iterates remain in a well-behaved local region admits an explicit lower bound. This perspective is particularly relevant in Scientific Machine Learning (SciML), where achieving small training loss under stochastic updates is closely tied to physical fidelity, numerical stability, and constraint satisfaction. The framework applies to both diagonal/adaptive and curvature-aware preconditioners and yields a simple design principle: choose $\mathbf{M}$ to improve local conditioning while attenuating noise. Experiments on a quadratic diagnostic and three SciML benchmarks validate the predicted rate-floor behavior.
comment: 31 pages, 11 Figures
☆ CafeQ: Calibration-free Quantization via Learned Transformations and Adaptive Rounding
Post-training quantization is an effective method for reducing the serving cost of large language models, where the standard approach is to use a round-to-nearest quantization level scheme. However, this often introduces large errors due to outliers in the weights. Proposed mitigation mechanisms include applying adaptive rounding, random rotation transformations or committing to a post-training target using calibration data. Unfortunately, this reliance on calibration data can be severely limiting in some real-world scenarios as such data may be unavailable or subject to privacy regulations. In this paper, we propose algorithms to optimize transformations and adaptive rounding without access to any calibration data. The optimization is achieved by designing a suitable proxy function for the quantization loss without calibration data. To maintain inference efficiency, we perform structured matrix transformations for single matrices. For paired weights that interact directly in the computation graph, we use dual matrix transformations and adaptive rounding methods. We conduct experiments on Gemma 2 models, and observe consistent improvement over the baselines. For Gemma 2 9B quantization, our method improves the average benchmark score from 61.9 to 62.4 for 4-bit quantization and from 52.0 to 60.6 for 3-bit quantization, while adding less than 3% of computation overhead. Furthermore, our method achieves performance comparable to the commonly used GPTQ method, which requires calibration data.
☆ The Alexander-Hirschowitz theorem for neurovarieties
We study neurovarieties for polynomial neural networks and fully characterize when they attain the expected dimension in the single-output case. As consequences, we establish non-defectiveness and global identifiability for multi-output architectures.
comment: 21 pages
☆ TiCT: A Synthetically Pre-Trained Foundation Model for Time Series Classification
The ubiquity of time series data creates a strong demand for general-purpose foundation models, yet developing them for classification remains a significant challenge, largely due to the high cost of labeled data. Foundation models capable of in-context learning (ICL) offer a powerful solution, adapting to new tasks with minimal examples and reducing the need for extensive retraining. However, prior work on large-scale time series models has predominantly focused on forecasting, leaving a critical gap for versatile, fine-tuning-free classification. To address this, we introduce TiCT (Time-series in-Context Transformer), a transformer-based model pre-trained exclusively on synthetic data to perform in-context classification. We make two primary technical contributions: 1) a novel architecture featuring a scalable bit-based label encoding and a special output attention mechanism to handle an arbitrary number of classes; and 2) a synthetic pre-training framework that combines a Mixup-inspired process with data augmentation to foster generalization and noise invariance. Extensive evaluations on the UCR Archive show that TiCT achieves competitive performance against state-of-the-art supervised methods. Crucially, this is accomplished using only in-context examples at inference time, without updating a single model weight.
☆ TREASURE: A Transformer-Based Foundation Model for High-Volume Transaction Understanding
Payment networks form the backbone of modern commerce, generating high volumes of transaction records from daily activities. Properly modeling this data can enable applications such as abnormal behavior detection and consumer-level insights for hyper-personalized experiences, ultimately improving people's lives. In this paper, we present TREASURE, TRansformer Engine As Scalable Universal transaction Representation Encoder, a multipurpose transformer-based foundation model specifically designed for transaction data. The model simultaneously captures both consumer behavior and payment network signals (such as response codes and system flags), providing comprehensive information necessary for applications like accurate recommendation systems and abnormal behavior detection. Verified with industry-grade datasets, TREASURE features three key capabilities: 1) an input module with dedicated sub-modules for static and dynamic attributes, enabling more efficient training and inference; 2) an efficient and effective training paradigm for predicting high-cardinality categorical attributes; and 3) demonstrated effectiveness as both a standalone model that increases abnormal behavior detection performance by 111% over production systems and an embedding provider that enhances recommendation models by 104%. We present key insights from extensive ablation studies, benchmarks against production models, and case studies, highlighting valuable knowledge gained from developing TREASURE.
☆ Demystifying Diffusion Objectives: Reweighted Losses are Better Variational Bounds
We derive a new theoretical interpretation of the reweighted losses that are widely used for training diffusion models. Our method is based on constructing a cascade of time-dependent variational lower bounds on the data log-likelihood, that provably improves upon the standard evidence lower bound and results in reduced data-model KL-divergences. Combining such bounds gives rise to reweighted objectives that can be applied to any generative diffusion model including both continuous Gaussian diffusion and masked (discrete) diffusion models. Then, we showcase this framework in masked diffusion and report significant improvements over previous training losses in pixel-space image modeling, approaching sample quality comparable to continuous diffusion models. Our results also provide a theoretical justification for the simple weighting scheme widely used in masked image models.
☆ Structured Noise Modeling for Enhanced Time-Series Forecasting
Time-series forecasting remains difficult in real-world settings because temporal patterns operate at multiple scales, from broad contextual trends to fast, fine-grained fluctuations that drive critical decisions. Existing neural models often struggle to represent these interacting dynamics, leading to unstable predictions and reduced reliability in downstream applications. This work introduces a forecast-blur-denoise framework that improves temporal fidelity through structured noise modeling. The approach incorporates a learnable Gaussian Process module that generates smooth, correlated perturbations, encouraging the forecasting backbone to capture long-range structure while a dedicated refinement model restores high-resolution temporal detail. Training the components jointly enables natural competence division and avoids the artifacts commonly produced by isotropic corruption methods. Experiments across electricity, traffic, and solar datasets show consistent gains in multi-horizon accuracy and stability. The modular design also allows the blur-denoise layer to operate as a lightweight enhancement for pretrained models, supporting efficient adaptation in limited-data scenarios. By strengthening the reliability and interpretability of fine-scale temporal predictions, this framework contributes to more trustworthy AI systems used in forecasting-driven decision support across energy, infrastructure, and other time-critical domains.
☆ Lower Complexity Bounds for Nonconvex-Strongly-Convex Bilevel Optimization with First-Order Oracles
Although upper bound guarantees for bilevel optimization have been widely studied, progress on lower bounds has been limited due to the complexity of the bilevel structure. In this work, we focus on the smooth nonconvex-strongly-convex setting and develop new hard instances that yield nontrivial lower bounds under deterministic and stochastic first-order oracle models. In the deterministic case, we prove that any first-order zero-respecting algorithm requires at least $Ω(κ^{3/2}ε^{-2})$ oracle calls to find an $ε$-accurate stationary point, improving the optimal lower bounds known for single-level nonconvex optimization and for nonconvex-strongly-convex min-max problems. In the stochastic case, we show that at least $Ω(κ^{5/2}ε^{-4})$ stochastic oracle calls are necessary, again strengthening the best known bounds in related settings. Our results expose substantial gaps between current upper and lower bounds for bilevel optimization and suggest that even simplified regimes, such as those with quadratic lower-level objectives, warrant further investigation toward understanding the optimal complexity of bilevel optimization under standard first-order oracles.
comment: 24 pages, 1 figure
☆ Synthetic Data: AI's New Weapon Against Android Malware
The ever-increasing number of Android devices and the accelerated evolution of malware, reaching over 35 million samples by 2024, highlight the critical importance of effective detection methods. Attackers are now using Artificial Intelligence to create sophisticated malware variations that can easily evade traditional detection techniques. Although machine learning has shown promise in malware classification, its success relies heavily on the availability of up-to-date, high-quality datasets. The scarcity and high cost of obtaining and labeling real malware samples presents significant challenges in developing robust detection models. In this paper, we propose MalSynGen, a Malware Synthetic Data Generation methodology that uses a conditional Generative Adversarial Network (cGAN) to generate synthetic tabular data. This data preserves the statistical properties of real-world data and improves the performance of Android malware classifiers. We evaluated the effectiveness of this approach using various datasets and metrics that assess the fidelity of the generated data, its utility in classification, and the computational efficiency of the process. Our experiments demonstrate that MalSynGen can generalize across different datasets, providing a viable solution to address the issues of obsolescence and low quality data in malware detection.
comment: 23 pages, 18 figures, 8 tables. Accepted for publication at the JBCS
☆ Many Ways to be Right: Rashomon Sets for Concept-Based Neural Networks
Modern neural networks rarely have a single way to be right. For many tasks, multiple models can achieve identical performance while relying on different features or reasoning patterns, a property known as the Rashomon Effect. However, uncovering this diversity in deep architectures is challenging as their continuous parameter spaces contain countless near-optimal solutions that are numerically distinct but often behaviorally similar. We introduce Rashomon Concept Bottleneck Models, a framework that learns multiple neural networks which are all accurate yet reason through distinct human-understandable concepts. By combining lightweight adapter modules with a diversity-regularized training objective, our method constructs a diverse set of deep concept-based models efficiently without retraining from scratch. The resulting networks provide fundamentally different reasoning processes for the same predictions, revealing how concept reliance and decision making vary across equally performing solutions. Our framework enables systematic exploration of data-driven reasoning diversity in deep models, offering a new mechanism for auditing, comparison, and alignment across equally accurate solutions.
☆ Agint: Agentic Graph Compilation for Software Engineering Agents NeurIPS 2025
LLM-based coding agents are increasingly common but still face challenges in context management, latency, reliability, reproducibility, and scalability. We present Agint, an agentic graph compiler, interpreter, and runtime that incrementally and hierarchically converts natural-language instructions into typed, effect-aware code DAGs. Agint introduces explicit type floors (text to data to spec to code) grounded in semantic graph transformations and a hybrid LLM and function-based JIT runtime. This enables dynamic graph refinement, reproducible and optimizable execution, speculative evaluation, and interoperability with existing developer tools. Agint's typed graph bindings improve reliability and allow concurrent composition of concurrent codebases by construction, supporting accelerated development with smaller and faster models, lower latency, efficient context utilization, and higher throughput. Hierarchical compilation allows scalable graph edits, while the graph structure supports reproducibility and efficient parallel generation. Agint provides a composable unix-style toolchain: dagify (DAG compiler), dagent (hybrid JIT runtime), schemagin (schema generator), and datagin (data transformer) for realtime, low-latency code and dataflow creation. Human developers and coding agents refine graphs through the Agint CLI, while non-technical users use Agint Flow GUI for visual editing, conversational refinement, and debugging to promote prototype agentic workflows to production code. This continuous co-creation model allows teams to prototype quickly, refine seamlessly, and deploy reliably, bridging natural language, compiler methods, and developer tooling to enable a new generation of composable, team-centric coding agents at scale.
comment: 18 pages, 5 figures, NeurIPS 2025: Deep Learning for Code in the Agentic Era
☆ Optimization and Regularization Under Arbitrary Objectives
This study investigates the limitations of applying Markov Chain Monte Carlo (MCMC) methods to arbitrary objective functions, focusing on a two-block MCMC framework which alternates between Metropolis-Hastings and Gibbs sampling. While such approaches are often considered advantageous for enabling data-driven regularization, we show that their performance critically depends on the sharpness of the employed likelihood form. By introducing a sharpness parameter and exploring alternative likelihood formulations proportional to the target objective function, we demonstrate how likelihood curvature governs both in-sample performance and the degree of regularization inferred by the training data. Empirical applications are conducted on reinforcement learning tasks: including a navigation problem and the game of tic-tac-toe. The study concludes with a separate analysis examining the implications of extreme likelihood sharpness on arbitrary objective functions stemming from the classic game of blackjack, where the first block of the two-block MCMC framework is replaced with an iterative optimization step. The resulting hybrid approach achieves performance nearly identical to the original MCMC framework, indicating that excessive likelihood sharpness effectively collapses posterior mass onto a single dominant mode.
comment: 46 pages, 28 figures, 16 tables
☆ Learning Massively Multitask World Models for Continuous Control
General-purpose control demands agents that act across many tasks and embodiments, yet research on reinforcement learning (RL) for continuous control remains dominated by single-task or offline regimes, reinforcing a view that online RL does not scale. Inspired by the foundation model recipe (large-scale pretraining followed by light RL) we ask whether a single agent can be trained on hundreds of tasks with online interaction. To accelerate research in this direction, we introduce a new benchmark with 200 diverse tasks spanning many domains and embodiments, each with language instructions, demonstrations, and optionally image observations. We then present \emph{Newt}, a language-conditioned multitask world model that is first pretrained on demonstrations to acquire task-aware representations and action priors, and then jointly optimized with online interaction across all tasks. Experiments show that Newt yields better multitask performance and data-efficiency than a set of strong baselines, exhibits strong open-loop control, and enables rapid adaptation to unseen tasks. We release our environments, demonstrations, code for training and evaluation, as well as 200+ checkpoints.
comment: Webpage: https://www.nicklashansen.com/NewtWM
☆ Neural Tractability via Structure: Learning-Augmented Algorithms for Graph Combinatorial Optimization
Neural models have shown promise in solving NP-hard graph combinatorial optimization (CO) problems. Once trained, they offer fast inference and reasonably high-quality solutions for in-distribution testing instances, but they generally fall short in terms of absolute solution quality compared to classical search-based algorithms that are admittedly slower but offer optimality guarantee once search finishes. We propose a novel framework that combines the inference efficiency and exploratory power of neural models with the solution quality guarantee of search-based algorithms. In particular, we use parameterized algorithms (PAs) as the search component. PAs are dedicated to identifying easy instances of generally NP-hard problems, and allow for practically efficient search by exploiting structural simplicity (of the identified easy instances). Under our framework, we use parameterized analysis to identify the structurally hard parts of a CO instance. The neural model handles the hard parts by generating advisory signals based on its data-driven understanding. The PA-based search component then integrates the advisory signals to systematically and efficiently searches through the remaining structurally easy parts. Notably, our framework is agnostic to the choice of neural model and produces strictly better solutions than neural solvers alone. We examine our framework on multiple CO tasks. Empirical results show that it achieves superior solution quality, competitive with that of commercial solvers. Furthermore, by using the neural model only for exploratory advisory signals, our framework exhibits improved out-of-distribution generalization, addressing a key limitation of existing neural CO solvers.
☆ An Invariant Latent Space Perspective on Language Model Inversion AAAI
Language model inversion (LMI), i.e., recovering hidden prompts from outputs, emerges as a concrete threat to user privacy and system security. We recast LMI as reusing the LLM's own latent space and propose the Invariant Latent Space Hypothesis (ILSH): (1) diverse outputs from the same source prompt should preserve consistent semantics (source invariance), and (2) input<->output cyclic mappings should be self-consistent within a shared latent space (cyclic invariance). Accordingly, we present Inv^2A, which treats the LLM as an invariant decoder and learns only a lightweight inverse encoder that maps outputs to a denoised pseudo-representation. When multiple outputs are available, they are sparsely concatenated at the representation layer to increase information density. Training proceeds in two stages: contrastive alignment (source invariance) and supervised reinforcement (cyclic invariance). An optional training-free neighborhood search can refine local performance. Across 9 datasets covering user and system prompt scenarios, Inv^2A outperforms baselines by an average of 4.77% BLEU score while reducing dependence on large inverse corpora. Our analysis further shows that prevalent defenses provide limited protection, underscoring the need for stronger strategies. The source code and data involved in this paper can be found in https://github.com/yyy01/Invariant_Attacker.
comment: The Fortieth AAAI Conference on Artificial Intelligence (AAAI-26)
♻ ☆ Cost-Aware Contrastive Routing for LLMs
We study cost-aware routing for large language models across diverse and dynamic pools of models. Existing approaches often overlook prompt-specific context, rely on expensive model profiling, assume a fixed set of experts, or use inefficient trial-and-error strategies. We introduce Cost-Spectrum Contrastive Routing (CSCR), a lightweight framework that maps both prompts and models into a shared embedding space to enable fast, cost-sensitive selection. CSCR uses compact, fast-to-compute logit footprints for open-source models and perplexity fingerprints for black-box APIs. A contrastive encoder is trained to favor the cheapest accurate expert within adaptive cost bands. At inference time, routing reduces to a single k-NN lookup via a FAISS index, requiring no retraining when the expert pool changes and enabling microsecond latency. Across multiple benchmarks, CSCR consistently outperforms baselines, improving the accuracy-cost tradeoff by up to 25%, while generalizing robustly to unseen LLMs and out-of-distribution prompts.
♻ ☆ Collapsing Taylor Mode Automatic Differentiation NeurIPS 2025
Computing partial differential equation (PDE) operators via nested backpropagation is expensive, yet popular, and severely restricts their utility for scientific machine learning. Recent advances, like the forward Laplacian and randomizing Taylor mode automatic differentiation (AD), propose forward schemes to address this. We introduce an optimization technique for Taylor mode that 'collapses' derivatives by rewriting the computational graph, and demonstrate how to apply it to general linear PDE operators, and randomized Taylor mode. The modifications simply require propagating a sum up the computational graph, which could -- or should -- be done by a machine learning compiler, without exposing complexity to users. We implement our collapsing procedure and evaluate it on popular PDE operators, confirming it accelerates Taylor mode and outperforms nested backpropagation.
comment: 10 pages + appendix; camera-ready version (NeurIPS 2025)
♻ ☆ SING: SDE Inference via Natural Gradients NeurIPS
Latent stochastic differential equation (SDE) models are important tools for the unsupervised discovery of dynamical systems from data, with applications ranging from engineering to neuroscience. In these complex domains, exact posterior inference of the latent state path is typically intractable, motivating the use of approximate methods such as variational inference (VI). However, existing VI methods for inference in latent SDEs often suffer from slow convergence and numerical instability. We propose SDE Inference via Natural Gradients (SING), a method that leverages natural gradient VI to efficiently exploit the underlying geometry of the model and variational posterior. SING enables fast and reliable inference in latent SDE models by approximating intractable integrals and parallelizing computations in time. We provide theoretical guarantees that SING approximately optimizes the intractable, continuous-time objective of interest. Moreover, we demonstrate that better state inference enables more accurate estimation of nonlinear drift functions using, for example, Gaussian process SDE models. SING outperforms prior methods in state inference and drift estimation on a variety of datasets, including a challenging application to modeling neural dynamics in freely behaving animals. Altogether, our results illustrate the potential of SING as a tool for accurate inference in complex dynamical systems, especially those characterized by limited prior knowledge and non-conjugate structure.
comment: To appear in Advances in Neural Processing Information Systems (NeurIPS), 2025
♻ ☆ MiniF2F in Rocq: Automatic Translation Between Proof Assistants -- A Case Study
In this work, we conduct an experiment using state-of-the-art LLMs to translate MiniF2F into Rocq. The translation task focuses on generating a Rocq theorem based on three sources: a natural language description, the Lean formalization, and the Isabelle formalization. We conducted our experiment in 3 stages of increasing complexity, from basic one-shot prompting to multi-turn conversations that incorporate feedback from unsuccessful attempts. At each stage, we perform multiple rounds of translation using increasingly advanced models: GPT-4o mini, Claude 3.5 Sonnet, o1 mini, and o1. We successfully translated 478 out of 488 theorems. The dataset is opensource: https://github.com/LLM4Rocq/miniF2F-rocq.
♻ ☆ Communicating Plans, Not Percepts: Scalable Multi-Agent Coordination with Embodied World Models NeurIPS 2025
Robust coordination is critical for effective decision-making in multi-agent systems, especially under partial observability. A central question in Multi-Agent Reinforcement Learning (MARL) is whether to engineer communication protocols or learn them end-to-end. We investigate this dichotomy using embodied world models. We propose and compare two communication strategies for a cooperative task-allocation problem. The first, Learned Direct Communication (LDC), learns a protocol end-to-end. The second, Intention Communication, uses an engineered inductive bias: a compact, learned world model, the Imagined Trajectory Generation Module (ITGM), which uses the agent's own policy to simulate future states. A Message Generation Network (MGN) then compresses this plan into a message. We evaluate these approaches on goal-directed interaction in a grid world, a canonical abstraction for embodied AI problems, while scaling environmental complexity. Our experiments reveal that while emergent communication is viable in simple settings, the engineered, world model-based approach shows superior performance, sample efficiency, and scalability as complexity increases. These findings advocate for integrating structured, predictive models into MARL agents to enable active, goal-driven coordination.
comment: Published in the Proceedings of the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Scaling Environments for Agents (SEA). Additionally accepted for presentation in the NeurIPS 2025 Workshop: Embodied World Models for Decision Making (EWM) and the NeurIPS 2025 Workshop: Optimization for Machine Learning (OPT)
♻ ☆ Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics
Learning robust and generalizable world models is crucial for enabling efficient and scalable robotic control in real-world environments. In this work, we introduce a novel framework for learning world models that accurately capture complex, partially observable, and stochastic dynamics. The proposed method employs a dual-autoregressive mechanism and self-supervised training to achieve reliable long-horizon predictions without relying on domain-specific inductive biases, ensuring adaptability across diverse robotic tasks. We further propose a policy optimization framework that leverages world models for efficient training in imagined environments and seamless deployment in real-world systems. This work advances model-based reinforcement learning by addressing the challenges of long-horizon prediction, error accumulation, and sim-to-real transfer. By providing a scalable and robust framework, the introduced methods pave the way for adaptive and efficient robotic systems in real-world applications.
♻ ☆ PEANuT: Parameter-Efficient Adaptation with Weight-aware Neural Tweakers
Fine-tuning large pre-trained foundation models often yields excellent downstream performance but is prohibitively expensive when updating all parameters. Parameter-efficient fine-tuning (PEFT) methods such as LoRA alleviate this by introducing lightweight update modules, yet they commonly rely on weight-agnostic linear approximations, limiting their expressiveness. In this work, we propose PEANuT, a novel PEFT framework that introduces weight-aware neural tweakers, compact neural modules that generate task-adaptive updates conditioned on frozen pre-trained weights. PEANuT provides a flexible yet efficient way to capture complex update patterns without full model tuning. We theoretically show that PEANuT achieves equivalent or greater expressivity than existing linear PEFT methods with comparable or fewer parameters. Extensive experiments across four benchmarks with over twenty datasets demonstrate that PEANuT consistently outperforms strong baselines in both NLP and vision tasks, while maintaining low computational overhead.
♻ ☆ Node Preservation and its Effect on Crossover in Cartesian Genetic Programming
While crossover is a critical and often indispensable component in other forms of Genetic Programming, such as Linear- and Tree-based, it has consistently been claimed that it deteriorates search performance in CGP. As a result, a mutation-alone $(1+λ)$ evolutionary strategy has become the canonical approach for CGP. Although several operators have been developed that demonstrate an increased performance over the canonical method, a general solution to the problem is still lacking. In this paper, we compare basic crossover methods, namely one-point and uniform, to variants in which nodes are ``preserved,'' including the subgraph crossover developed by Roman Kalkreuth, the difference being that when ``node preservation'' is active, crossover is not allowed to break apart instructions. We also compare a node mutation operator to the traditional point mutation; the former simply replaces an entire node with a new one. We find that node preservation in both mutation and crossover improves search using symbolic regression benchmark problems, moving the field towards a general solution to CGP crossover.
comment: Draft to cite in another paper before both papers are peer-reviewed for the evo*2026 conference, 21 pages, 5 figures
♻ ☆ Random Spiking Neural Networks are Stable and Spectrally Simple
Spiking neural networks (SNNs) are a promising paradigm for energy-efficient computation, yet their theoretical foundations-especially regarding stability and robustness-remain limited compared to artificial neural networks. In this work, we study discrete-time leaky integrate-and-fire (LIF) SNNs through the lens of Boolean function analysis. We focus on noise sensitivity and stability in classification tasks, quantifying how input perturbations affect outputs. Our main result shows that wide LIF-SNN classifiers are stable on average, a property explained by the concentration of their Fourier spectrum on low-frequency components. Motivated by this, we introduce the notion of spectral simplicity, which formalizes simplicity in terms of Fourier spectrum concentration and connects our analysis to the simplicity bias observed in deep networks. Within this framework, we show that random LIF-SNNs are biased toward simple functions. Experiments on trained networks confirm that these stability properties persist in practice. Together, these results provide new insights into the stability and robustness properties of SNNs.
♻ ☆ Enhancing Domain-Specific Encoder Models with LLM-Generated Data: How to Leverage Ontologies, and How to Do Without Them EMNLP 2025
We investigate the use of LLM-generated data for continual pretraining of encoder models in specialized domains with limited training data, using the scientific domain of invasion biology as a case study. To this end, we leverage domain-specific ontologies by enriching them with LLM-generated data and pretraining the encoder model as an ontology-informed embedding model for concept definitions. To evaluate the effectiveness of this method, we compile a benchmark specifically designed for assessing model performance in invasion biology. After demonstrating substantial improvements over standard LLM pretraining, we investigate the feasibility of applying the proposed approach to domains without comprehensive ontologies by substituting ontological concepts with concepts automatically extracted from a small corpus of scientific abstracts and establishing relationships between concepts through distributional statistics. Our results demonstrate that this automated approach achieves comparable performance using only a small set of scientific abstracts, resulting in a fully automated pipeline for enhancing domain-specific understanding of small encoder models that is especially suited for application in low-resource settings and achieves performance comparable to masked language modeling pretraining on much larger datasets.
comment: Published in the Findings of the Association for Computational Linguistics: EMNLP 2025
♻ ☆ Interpreting Graph Inference with Skyline Explanations
Inference queries have been routinely issued to graph machine learning models such as graph neural networks (GNNs) for various network analytical tasks. Nevertheless, GNN outputs are often hard to interpret comprehensively. Existing methods typically conform to individual pre-defined explainability measures (such as fidelity), which often leads to biased, ``one-side'' interpretations. This paper introduces skyline explanation, a new paradigm that interprets GNN outputs by simultaneously optimizing multiple explainability measures of users' interests. (1) We propose skyline explanations as a Pareto set of explanatory subgraphs that dominate others over multiple explanatory measures. We formulate skyline explanation as a multi-criteria optimization problem, and establish its hardness results. (2) We design efficient algorithms with an onion-peeling approach, which strategically prioritizes nodes and removes unpromising edges to incrementally assemble skyline explanations. (3) We also develop an algorithm to diversify the skyline explanations to enrich the comprehensive interpretation. (4) We introduce efficient parallel algorithms with load-balancing strategies to scale skyline explanation for large-scale GNN-based inference. Using real-world and synthetic graphs, we experimentally verify our algorithms' effectiveness and scalability.
comment: Accepted at ICDE 2026
♻ ☆ When do World Models Successfully Learn Dynamical Systems?
In this work, we explore the use of compact latent representations with learned time dynamics ('World Models') to simulate physical systems. Drawing on concepts from control theory, we propose a theoretical framework that explains why projecting time slices into a low-dimensional space and then concatenating to form a history ('Tokenization') is so effective at learning physics datasets, and characterise when exactly the underlying dynamics admit a reconstruction mapping from the history of previous tokenized frames to the next. To validate these claims, we develop a sequence of models with increasing complexity, starting with least-squares regression and progressing through simple linear layers, shallow adversarial learners, and ultimately full-scale generative adversarial networks (GANs). We evaluate these models on a variety of datasets, including modified forms of the heat and wave equations, the chaotic regime 2D Kuramoto-Sivashinsky equation, and a challenging computational fluid dynamics (CFD) dataset of a 2D Kármán vortex street around a fixed cylinder, where our model is successfully able to recreate the flow.
♻ ☆ Entropic Time Schedulers for Generative Diffusion Models
The practical performance of generative diffusion models depends on the appropriate choice of the noise scheduling function, which can also be equivalently expressed as a time reparameterization. In this paper, we present a time scheduler that selects sampling points based on entropy rather than uniform time spacing, ensuring that each point contributes an equal amount of information to the final generation. We prove that this time reparameterization does not depend on the initial choice of time. Furthermore, we provide a tractable exact formula to estimate this \emph{entropic time} for a trained model using the training loss without substantial overhead. Alongside the entropic time, inspired by the optimality results, we introduce a rescaled entropic time. In our experiments with mixtures of Gaussian distributions and ImageNet, we show that using the (rescaled) entropic times greatly improves the inference performance of trained models. In particular, we found that the image quality in pretrained EDM2 models, as evaluated by FID and FD-DINO scores, can be substantially increased by the rescaled entropic time reparameterization without increasing the number of function evaluations, with greater improvements in the few NFEs regime. Code is available at https://github.com/DejanStancevic/Entropic-Time-Schedulers-for-Generative-Diffusion-Models.
comment: 31 pages
♻ ☆ The Geometry of Cortical Computation: Manifold Disentanglement and Predictive Dynamics in VCNet NeurIPS 2025
Despite their success, modern convolutional neural networks (CNNs) exhibit fundamental limitations, including data inefficiency, poor out-of-distribution generalization, and vulnerability to adversarial perturbations. These shortcomings can be traced to a lack of inductive biases that reflect the inherent geometric structure of the visual world. The primate visual system, in contrast, demonstrates superior efficiency and robustness, suggesting that its architectural and computational principles,which evolved to internalize these structures,may offer a blueprint for more capable artificial vision. This paper introduces Visual Cortex Network (VCNet), a novel neural network architecture whose design is informed by the macro-scale organization of the primate visual cortex. VCNet is framed as a geometric framework that emulates key biological mechanisms, including hierarchical processing across distinct cortical areas, dual-stream information segregation for learning disentangled representations, and top-down predictive feedback for representation refinement. We interpret these mechanisms through the lens of geometry and dynamical systems, positing that they guide the learning of structured, low-dimensional neural manifolds. We evaluate VCNet on two specialized benchmarks: the Spots-10 animal pattern dataset, which probes sensitivity to natural textures, and a light field image classification task, which requires processing higher-dimensional visual data. Our results show that VCNet achieves state-of-the-art accuracy of 92.1\% on Spots-10 and 74.4\% on the light field dataset, surpassing contemporary models of comparable size. This work demonstrates that integrating high-level neuroscientific principles, viewed through a geometric lens, can lead to more efficient and robust models, providing a promising direction for addressing long-standing challenges in machine learning.
comment: Published in the proceedings of the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Symmetry and Geometry in Neural Representations (NeurReps). Additionally accepted for presentation in NeurIPS 2025 Workshop: Interpreting Cognition in Deep Learning Models (CogInterp)
♻ ☆ Learning Protein-Ligand Binding in Hyperbolic Space
Protein-ligand binding prediction is central to virtual screening and affinity ranking, two fundamental tasks in drug discovery. While recent retrieval-based methods embed ligands and protein pockets into Euclidean space for similarity-based search, the geometry of Euclidean embeddings often fails to capture the hierarchical structure and fine-grained affinity variations intrinsic to molecular interactions. In this work, we propose HypSeek, a hyperbolic representation learning framework that embeds ligands, protein pockets, and sequences into Lorentz-model hyperbolic space. By leveraging the exponential geometry and negative curvature of hyperbolic space, HypSeek enables expressive, affinity-sensitive embeddings that can effectively model both global activity and subtle functional differences-particularly in challenging cases such as activity cliffs, where structurally similar ligands exhibit large affinity gaps. Our mode unifies virtual screening and affinity ranking in a single framework, introducing a protein-guided three-tower architecture to enhance representational structure. HypSeek improves early enrichment in virtual screening on DUD-E from 42.63 to 51.44 (+20.7%) and affinity ranking correlation on JACS from 0.5774 to 0.7239 (+25.4%), demonstrating the benefits of hyperbolic geometry across both tasks and highlighting its potential as a powerful inductive bias for protein-ligand modeling.
A Bayesian Model for Multi-stage Censoring ML4H 2025
Many sequential decision settings in healthcare feature funnel structures characterized by a series of stages, such as screenings or evaluations, where the number of patients who advance to each stage progressively decreases and decisions become increasingly costly. For example, an oncologist may first conduct a breast exam, followed by a mammogram for patients with concerning exams, followed by a biopsy for patients with concerning mammograms. A key challenge is that the ground truth outcome, such as the biopsy result, is only revealed at the end of this funnel. The selective censoring of the ground truth can introduce statistical biases in risk estimation, especially in underserved patient groups, whose outcomes are more frequently censored. We develop a Bayesian model for funnel decision structures, drawing from prior work on selective labels and censoring. We first show in synthetic settings that our model is able to recover the true parameters and predict outcomes for censored patients more accurately than baselines. We then apply our model to a dataset of emergency department visits, where in-hospital mortality is observed only for those who are admitted to either the hospital or ICU. We find that there are gender-based differences in hospital and ICU admissions. In particular, our model estimates that the mortality risk threshold to admit women to the ICU is higher for women (5.1%) than for men (4.5%).
comment: Proceedings of ML4H 2025
♻ ☆ FOCUS: Efficient Keyframe Selection for Long Video Understanding
Multimodal large language models (MLLMs) represent images and video frames as visual tokens. Scaling from single images to hour-long videos, however, inflates the token budget far beyond practical limits. Popular pipelines therefore either uniformly subsample or apply keyframe selection with retrieval-style scoring using smaller vision-language models. However, these keyframe selection methods still rely on pre-filtering before selection to reduce the inference cost and can miss the most informative moments. We propose FOCUS, Frame-Optimistic Confidence Upper-bound Selection, a training-free, model-agnostic keyframe selection module that selects query-relevant frames under a strict token budget. FOCUS formulates keyframe selection as a combinatorial pure-exploration (CPE) problem in multi-armed bandits: it treats short temporal clips as arms, and uses empirical means and Bernstein confidence radius to identify informative regions while preserving exploration of uncertain areas. The resulting two-stage exploration-exploitation procedure reduces from a sequential policy with theoretical guarantees, first identifying high-value temporal regions, then selecting top-scoring frames within each region. On two long-video question-answering benchmarks, FOCUS delivers substantial accuracy improvements while processing less than 2% of video frames. For videos longer than 20 minutes, it achieves an 11.9% gain in accuracy on LongVideoBench, demonstrating its effectiveness as a keyframe selection method and providing a simple and general solution for scalable long-video understanding with MLLMs. Code is available at https://github.com/NUS-HPC-AI-Lab/FOCUS.
♻ ☆ WorldLLM: Improving LLMs' world modeling using curiosity-driven theory-making
Large Language Models (LLMs) possess general world knowledge but often struggle to generate precise predictions in structured, domain-specific contexts such as simulations. These limitations arise from their inability to ground their broad, unstructured understanding in specific environments. To address this, we present WorldLLM, a framework that enhances LLM-based world modeling by combining Bayesian inference and autonomous active exploration with reinforcement learning. WorldLLM leverages the in-context learning abilities of LLMs to guide an LLM-based world model's predictions using natural language hypotheses given in its prompt. These hypotheses are iteratively refined through a Bayesian inference framework that leverages a second LLM as the proposal distribution given collected evidence. This evidence is collected using a curiosity-driven reinforcement learning policy that explores the environment to find transitions with a low log-likelihood under our LLM-based predictive model using the current hypotheses. By alternating between refining hypotheses and collecting new evidence, our framework autonomously drives continual improvement of the predictions. Our experiments demonstrate the effectiveness of WorldLLM in a textual game environment that requires agents to manipulate and combine objects. The framework not only enhances predictive accuracy, but also generates human-interpretable theories of environment dynamics.
♻ ☆ Fairness in Multi-modal Medical Diagnosis with Demonstration Selection
Multimodal large language models (MLLMs) have shown strong potential for medical image reasoning, yet fairness across demographic groups remains a major concern. Existing debiasing methods often rely on large labeled datasets or fine-tuning, which are impractical for foundation-scale models. We explore In-Context Learning (ICL) as a lightweight, tuning-free alternative for improving fairness. Through systematic analysis, we find that conventional demonstration selection (DS) strategies fail to ensure fairness due to demographic imbalance in selected exemplars. To address this, we propose Fairness-Aware Demonstration Selection (FADS), which builds demographically balanced and semantically relevant demonstrations via clustering-based sampling. Experiments on multiple medical imaging benchmarks show that FADS consistently reduces gender-, race-, and ethnicity-related disparities while maintaining strong accuracy, offering an efficient and scalable path toward fair medical image reasoning. These results highlight the potential of fairness-aware in-context learning as a scalable and data-efficient solution for equitable medical image reasoning.
comment: 10 pages (including 2 pages of references), 4 figures. This work explores fairness in multi-modal medical image reasoning using in-context learning
♻ ☆ Live-SWE-agent: Can Software Engineering Agents Self-Evolve on the Fly?
Large Language Models (LLMs) are reshaping almost all industries, including software engineering. In recent years, a number of LLM agents have been proposed to solve real-world software problems. Such software agents are typically equipped with a suite of coding tools and can autonomously decide the next actions to form complete trajectories to solve end-to-end software tasks. While promising, they typically require dedicated design and may still be suboptimal, since it can be extremely challenging and costly to exhaust the entire agent scaffold design space. Recognizing that software agents are inherently software themselves that can be further refined/modified, researchers have proposed a number of self-improving software agents recently, including the Darwin-Gödel Machine (DGM). Meanwhile, such self-improving agents require costly offline training on specific benchmarks and may not generalize well across different LLMs or benchmarks. In this paper, we propose Live-SWE-agent, the first live software agent that can autonomously and continuously evolve itself on-the-fly during runtime when solving real-world software problems. More specifically, Live-SWE-agent starts with the most basic agent scaffold with only access to bash tools (e.g., mini-SWE-agent), and autonomously evolves its own scaffold implementation while solving real-world software problems. Our evaluation on the widely studied SWE-bench Verified benchmark shows that LIVE-SWE-AGENT can achieve an impressive solve rate of 77.4% without test-time scaling, outperforming all existing software agents, including the best proprietary solution. Moreover, Live-SWE-agent outperforms state-of-the-art manually crafted software agents on the recent SWE-Bench Pro benchmark, achieving the best-known solve rate of 45.8%.
♻ ☆ Higher-Order Regularization Learning on Hypergraphs
Higher-Order Hypergraph Learning (HOHL) was recently introduced as a principled alternative to classical hypergraph regularization, enforcing higher-order smoothness via powers of multiscale Laplacians induced by the hypergraph structure. Prior work established the well- and ill-posedness of HOHL through an asymptotic consistency analysis in geometric settings. We extend this theoretical foundation by proving the consistency of a truncated version of HOHL and deriving explicit convergence rates when HOHL is used as a regularizer in fully supervised learning. We further demonstrate its strong empirical performance in active learning and in datasets lacking an underlying geometric structure, highlighting HOHL's versatility and robustness across diverse learning settings.
♻ ☆ Synthetic Counterfactual Labels for Efficient Conformal Counterfactual Inference
This work addresses the problem of constructing reliable prediction intervals for individual counterfactual outcomes. Existing conformal counterfactual inference (CCI) methods provide marginal coverage guarantees but often produce overly conservative intervals, particularly under treatment imbalance when counterfactual samples are scarce. We introduce synthetic data-powered CCI (SP-CCI), a new framework that augments the calibration set with synthetic counterfactual labels generated by a pre-trained counterfactual model. To ensure validity, SP-CCI incorporates synthetic samples into a conformal calibration procedure based on risk-controlling prediction sets (RCPS) with a debiasing step informed by prediction-powered inference (PPI). We prove that SP-CCI achieves tighter prediction intervals while preserving marginal coverage, with theoretical guarantees under both exact and approximate importance weighting. Empirical results on different datasets confirm that SP-CCI consistently reduces interval width compared to standard CCI across all settings.
♻ ☆ Analysis of Semi-Supervised Learning on Hypergraphs
Hypergraphs provide a natural framework for modeling higher-order interactions, yet their theoretical underpinnings in semi-supervised learning remain limited. We provide an asymptotic consistency analysis of variational learning on random geometric hypergraphs, precisely characterizing the conditions ensuring the well-posedness of hypergraph learning as well as showing convergence to a weighted $p$-Laplacian equation. Motivated by this, we propose Higher-Order Hypergraph Learning (HOHL), which regularizes via powers of Laplacians from skeleton graphs for multiscale smoothness. HOHL converges to a higher-order Sobolev seminorm. Empirically, it performs strongly on standard baselines.
♻ ☆ Layer-wise Weight Selection for Power-Efficient Neural Network Acceleration
Systolic array accelerators execute CNNs with energy dominated by the switching activity of multiply accumulate (MAC) units. Although prior work exploits weight dependent MAC power for compression, existing methods often use global activation models, coarse energy proxies, or layer-agnostic policies, which limits their effectiveness on real hardware. We propose an energy aware, layer-wise compression framework that explicitly leverages MAC and layer level energy characteristics. First, we build a layer-aware MAC energy model that combines per-layer activation statistics with an MSB-Hamming distance grouping of 22-bit partial sum transitions, and integrate it with a tile-level systolic mapping to estimate convolution-layer energy. On top of this model, we introduce an energy accuracy co-optimized weight selection algorithm within quantization aware training and an energy-prioritized layer-wise schedule that compresses high energy layers more aggressively under a global accuracy constraint. Experiments on different CNN models demonstrate up to 58.6\% energy reduction with 2-3\% accuracy drop, outperforming a state-of-the-art power-aware baseline.
♻ ☆ Don't Reach for the Stars: Rethinking Topology for Resilient Federated Learning
Federated learning (FL) enables collaborative model training across distributed clients while preserving data privacy by keeping data local. Traditional FL approaches rely on a centralized, star-shaped topology, where a central server aggregates model updates from clients. However, this architecture introduces several limitations, including a single point of failure, limited personalization, and poor robustness to distribution shifts or vulnerability to malfunctioning clients. Moreover, update selection in centralized FL often relies on low-level parameter differences, which can be unreliable when client data is not independent and identically distributed, and offer clients little control. In this work, we propose a decentralized, peer-to-peer (P2P) FL framework. It leverages the flexibility of the P2P topology to enable each client to identify and aggregate a personalized set of trustworthy and beneficial updates.This framework is the Local Inference Guided Aggregation for Heterogeneous Training Environments to Yield Enhancement Through Agreement and Regularization (LIGHTYEAR). Central to our method is an agreement score, computed on a local validation set, which quantifies the semantic alignment of incoming updates in the function space with respect to the clients reference model. Each client uses this score to select a tailored subset of updates and performs aggregation with a regularization term that further stabilizes the training. Our empirical evaluation across five datasets shows that the proposed approach consistently outperforms both, centralized baselines and existing P2P methods in terms of client-level performance, particularly under adversarial and heterogeneous conditions.
♻ ☆ In-Situ Tweedie Discrete Diffusion Models
While diffusion models excel at generating continuous data such as images, adapting them to discrete tasks has relied on indirect approaches that either operate in continuous embedding spaces or use token masking mechanisms, both of which deviate from modeling the true discrete data distribution that can be theoretically guaranteed by Tweedie's formula. We propose in-situ Tweedie Discrete Diffusion (TDD), a framework that performs diffusion guaranteed by Tweedie's formula directly within the discrete one-hot space, hence "in-situ." Unlike prior methods that diffuse continuous embeddings or mask tokens, TDD directly corrupts one-hot vectors with Gaussian noise and performs iterative denoising through a timestep-conditioned cross-entropy objective rather than mean-squared-error reconstruction. At each denoising step, the model predicts class probabilities, applies argmax to obtain discrete predictions, converts them to one-hot vectors, and feeds them into the next iteration with progressively reduced noise. This process naturally unifies discriminative classification and generative modeling under a single framework. Experiments demonstrate that TDD achieves strong performance on both image classification and text generation tasks, with extensive ablation studies confirming the effectiveness of each design component. Our work establishes a principled approach to discrete diffusion that preserves the core characteristics of diffusion models while operating natively in discrete space.
♻ ☆ A Goemans-Williamson type algorithm for identifying subcohorts in clinical trials
We design an efficient algorithm that outputs tests for identifying predominantly homogeneous subcohorts of patients from large in-homogeneous datasets. Our theoretical contribution is a rounding technique, similar to that of Goemans and Wiliamson (1995), that approximates the optimal solution within a factor of $0.82$. As an application, we use our algorithm to trade-off sensitivity for specificity to systematically identify clinically interesting homogeneous subcohorts of patients in the RNA microarray dataset for breast cancer from Curtis et al. (2012). One such clinically interesting subcohort suggests a link between LXR over-expression and BRCA2 and MSH6 methylation levels for patients in that subcohort.
♻ ☆ Principled Coarse-Grained Acceptance for Speculative Decoding in Speech
Speculative decoding accelerates autoregressive speech generation by letting a fast draft model propose tokens that a larger target model verifies. However, for speech LLMs that generate acoustic tokens, exact token matching is overly restrictive: many discrete tokens are acoustically or semantically interchangeable, reducing acceptance rates and limiting speedups. We introduce Principled Coarse-Graining (PCG), which verifies proposals at the level of Acoustic Similarity Groups (ASGs) derived from the target model's embedding space. By splitting each token's probability mass across the overlapping groups that contain it, we define an overlap-aware coarse-grained distribution and perform rejection sampling on the resulting group variable. This yields an exactness guarantee at the group level while allowing the accepted draft token to stand in for any member of the group in practice. On LibriTTS, PCG increases acceptance and throughput relative to standard speculative decoding and prior speech-specific relaxations while maintaining intelligibility and speaker similarity. These results suggest acoustically aware, group-level acceptance as a simple and general way to accelerate speech token generation while maintaining speech quality.
♻ ☆ Neural Scaling Laws for Deep Regression
Neural scaling laws--power-law relationships between generalization errors and characteristics of deep learning models--are vital tools for developing reliable models while managing limited resources. Although the success of large language models highlights the importance of these laws, their application to deep regression models remains largely unexplored. Here, we empirically investigate neural scaling laws in deep regression using a parameter estimation model for twisted van der Waals magnets. We observe power-law relationships between the loss and both training dataset size and model capacity across a wide range of values, employing various architectures--including fully connected networks, residual networks, and vision transformers. Furthermore, the scaling exponents governing these relationships range from 1 to 2, with specific values depending on the regressed parameters and model details. The consistent scaling behaviors and their large scaling exponents suggest that the performance of deep regression models can improve substantially with increasing data size.
comment: Supplementary Information will be provided with the published manuscript
♻ ☆ GiBy: A Giant-Step Baby-Step Classifier For Anomaly Detection In Industrial Control Systems
The continuous monitoring of the interactions between cyber-physical components of any industrial control system (ICS) is required to secure automation of the system controls, and to guarantee plant processes are fail-safe and remain in an acceptably safe state. Safety is achieved by managing actuation (where electric signals are used to trigger physical movement), dependent on corresponding sensor readings; used as ground truth in decision making. Timely detection of anomalies (attacks, faults and unascertained states) in ICSs is crucial for the safe running of a plant, the safety of its personnel, and for the safe provision of any services provided. We propose an anomaly detection method that involves accurate linearization of the non-linear forms arising from sensor-actuator(s) relationships, primarily because solving linear models is easier and well understood. We accomplish this by using a well-known water treatment testbed as a use case. Our experiments show millisecond time response to detect anomalies, all of which are explainable and traceable; this simultaneous coupling of detection speed and explainability has not been achieved by other state of the art Artificial Intelligence (AI)/ Machine Learning (ML) models with eXplainable AI (XAI) used for the same purpose. Our methods explainability enables us to pin-point the sensor(s) and the actuation state(s) for which the anomaly was detected. The proposed algorithm showed an accuracy of 97.72% by flagging deviations within safe operation limits as non-anomalous; indicative that slower detectors with highest detection resolution is unnecessary, for systems whose safety boundaries provide leeway within safety limits.
♻ ☆ Optimal Rates for Generalization of Gradient Descent for Deep ReLU Classification NeurIPS 2025
Recent advances have significantly improved our understanding of the generalization performance of gradient descent (GD) methods in deep neural networks. A natural and fundamental question is whether GD can achieve generalization rates comparable to the minimax optimal rates established in the kernel setting. Existing results either yield suboptimal rates of $O(1/\sqrt{n})$, or focus on networks with smooth activation functions, incurring exponential dependence on network depth $L$. In this work, we establish optimal generalization rates for GD with deep ReLU networks by carefully trading off optimization and generalization errors, achieving only polynomial dependence on depth. Specifically, under the assumption that the data are NTK separable from the margin $γ$, we prove an excess risk rate of $\widetilde{O}(L^4 (1 + γL^2) / (n γ^2))$, which aligns with the optimal SVM-type rate $\widetilde{O}(1 / (n γ^2))$ up to depth-dependent factors. A key technical contribution is our novel control of activation patterns near a reference model, enabling a sharper Rademacher complexity bound for deep ReLU networks trained with gradient descent.
comment: Published in NeurIPS 2025
♻ ☆ Mathematical Insights into Protein Architecture: Persistent Homology and Machine Learning Applied to the Flagellar Motor
We present a machine learning approach that leverages persistent homology to classify bacterial flagellar motors into two functional states: rotated and stalled. By embedding protein structural data into a topological framework, we extract multiscale features from filtered simplicial complexes constructed over atomic coordinates. These topological invariants, specifically persistence diagrams and barcodes, capture critical geometric and connectivity patterns that correlate with motor function. The extracted features are vectorized and integrated into a machine learning pipeline that includes dimensionality reduction and supervised classification. Applied to a curated dataset of experimentally characterized flagellar motors from diverse bacterial species, our model demonstrates high classification accuracy and robustness to structural variation. This approach highlights the power of topological data analysis in revealing functionally relevant patterns beyond the reach of traditional geometric descriptors, offering a novel computational tool for protein function prediction.
♻ ☆ Health App Reviews for Privacy & Trust (HARPT): A Corpus for Analyzing Patient Privacy Concerns, Trust in Providers and Trust in Applications
Background: User reviews of Telehealth and Patient Portal mobile applications (apps) hereon referred to as electronic health (eHealth) apps are a rich source of unsolicited patient feedback, revealing critical insights into patient perceptions. However, the lack of large-scale, annotated datasets specific to privacy and trust has limited the ability of researchers to systematically analyze these concerns using natural language processing (NLP) techniques. Objective: This study aims to develop and benchmark Health App Reviews for Privacy & Trust (HARPT), a large-scale annotated corpus of patient reviews from eHealth apps to advance research in patient privacy and trust. Methods: We employed a multistage data construction strategy. This integrated keyword-based filtering, iterative manual labeling with review, targeted data augmentation, and weak supervision using transformer-based classifiers. A curated subset of 7,000 reviews was manually annotated to support machine learning model development and evaluation. The resulting dataset was used to benchmark a broad range of models. Results: The HARPT corpus comprises 480,000 patient reviews annotated across seven categories capturing critical aspects of trust in the application (TA), trust in the provider (TP), and privacy concerns (PC). We provide comprehensive benchmark performance for a range of machine learning models on the manually annotated subset, establishing a baseline for future research. Conclusions: The HARPT corpus is a significant resource for advancing the study of privacy and trust in the eHealth domain. By providing a large-scale, annotated dataset and initial benchmarks, this work supports reproducible research in usable privacy and trust within health informatics. HARPT is released under an open resource license.
♻ ☆ Inferring response times of perceptual decisions with Poisson variational autoencoders NeurIPS 2025
Many properties of perceptual decision making are well-modeled by deep neural networks. However, such architectures typically treat decisions as instantaneous readouts, overlooking the temporal dynamics of the decision process. We present an image-computable model of perceptual decision making in which choices and response times arise from efficient sensory encoding and Bayesian decoding of neural spiking activity. We use a Poisson variational autoencoder to learn unsupervised representations of visual stimuli in a population of rate-coded neurons, modeled as independent homogeneous Poisson processes. A task-optimized decoder then continually infers an approximate posterior over actions conditioned on incoming spiking activity. Combining these components with an entropy-based stopping rule yields a principled and image-computable model of perceptual decisions capable of generating trial-by-trial patterns of choices and response times. Applied to MNIST digit classification, the model reproduces key empirical signatures of perceptual decision making, including stochastic variability, right-skewed response time distributions, logarithmic scaling of response times with the number of alternatives (Hick's law), and speed-accuracy trade-offs.
comment: To appear at the NeurIPS 2025 Workshop on Data on the Brain \& Mind
♻ ☆ FunReason: Enhancing Large Language Models' Function Calling via Self-Refinement Multiscale Loss and Automated Data Refinement
The integration of large language models (LLMs) with function calling has emerged as a crucial capability for enhancing their practical utility in real-world applications. However, effectively combining reasoning processes with accurate function execution remains a significant challenge. Traditional training approaches often struggle to balance the detailed reasoning steps with the precision of function calls, leading to suboptimal performance. To address these limitations, we introduce FunReason, a novel framework that enhances LLMs' function calling capabilities through an automated data refinement strategy and a Self-Refinement Multiscale Loss (SRML) approach. FunReason leverages LLMs' natural reasoning abilities to generate high-quality training examples, focusing on query parseability, reasoning coherence, and function call precision. The SRML approach dynamically balances the contribution of reasoning processes and function call accuracy during training, addressing the inherent trade-off between these two critical aspects. FunReason achieves performance comparable to GPT-4o while effectively mitigating catastrophic forgetting during fine-tuning. FunReason provides a comprehensive solution for enhancing LLMs' function calling capabilities by introducing a balanced training methodology and a data refinement pipeline. For code and dataset, please refer to our repository at GitHub https://github.com/BingguangHao/FunReason
♻ ☆ The inexact power augmented Lagrangian method for constrained nonconvex optimization
This work introduces an unconventional inexact augmented Lagrangian method where the augmenting term is a Euclidean norm raised to a power between one and two. The proposed algorithm is applicable to a broad class of constrained nonconvex minimization problems that involve nonlinear equality constraints. In a first part of this work, we conduct a full complexity analysis of the method under a mild regularity condition, leveraging an accelerated first-order algorithm for solving the Hölder-smooth subproblems. Interestingly, this worst-case result indicates that using lower powers for the augmenting term leads to faster constraint satisfaction, albeit with a slower decrease of the dual residual. Notably, our analysis does not assume boundedness of the iterates. Thereafter, we present an inexact proximal point method for solving the weakly-convex and Hölder-smooth subproblems, and demonstrate that the combined scheme attains an improved rate that reduces to the best-known convergence rate whenever the augmenting term is a classical squared Euclidean norm. Different augmenting terms, involving a lower power, further improve the primal complexity at the cost of the dual complexity. Finally, numerical experiments validate the practical performance of unconventional augmenting terms.
comment: Accepted for publication in Transactions on Machine Learning Research
♻ ☆ Beyond Predictions: A Participatory Framework for Multi-Stakeholder Decision-Making
Conventional automated decision-support systems often prioritize predictive accuracy, overlooking the complexities of real-world settings where stakeholders' preferences may diverge or conflict. This can lead to outcomes that disadvantage vulnerable groups and erode trust in algorithmic processes. Participatory AI approaches aim to address these issues but remain largely context-specific, limiting their broader applicability and scalability. To address these gaps, we propose a participatory framework that reframes decision-making as a multi-stakeholder learning and optimization problem. Our modular, model-agnostic approach builds on the standard machine learning training pipeline to fine-tune user-provided prediction models and evaluate decision strategies, including compromise functions that mediate stakeholder trade-offs. A synthetic scoring mechanism aggregates user-defined preferences across multiple metrics, ranking strategies and selecting an optimal decision-maker to generate actionable recommendations that jointly optimize performance, fairness, and domain-specific goals. Empirical validation on two high-stakes case studies demonstrates the versatility of the framework and its promise as a more accountable, context-aware alternative to prediction-centric pipelines for socially impactful deployments.
♻ ☆ Node Embeddings via Neighbor Embeddings
Node embeddings are a paradigm in non-parametric graph representation learning, where graph nodes are embedded into a given vector space to enable downstream processing. State-of-the-art node-embedding algorithms, such as DeepWalk and node2vec, are based on random-walk notions of node similarity and on contrastive learning. In this work, we introduce the graph neighbor-embedding (graph NE) framework that directly pulls together embedding vectors of adjacent nodes without relying on any random walks. We show that graph NE strongly outperforms state-of-the-art node-embedding algorithms in terms of local structure preservation. Furthermore, we apply graph NE to the 2D node-embedding problem, obtaining graph t-SNE layouts that also outperform existing graph-layout algorithms.
comment: Accepted to Transactions of Machine Learning Research (TMLR)
♻ ☆ (De)-regularized Maximum Mean Discrepancy Gradient Flow
We introduce a (de)-regularization of the Maximum Mean Discrepancy (DrMMD) and its Wasserstein gradient flow. Existing gradient flows that transport samples from source distribution to target distribution with only target samples, either lack tractable numerical implementation ($f$-divergence flows) or require strong assumptions, and modifications such as noise injection, to ensure convergence (Maximum Mean Discrepancy flows). In contrast, DrMMD flow can simultaneously (i) guarantee near-global convergence for a broad class of targets in both continuous and discrete time, and (ii) be implemented in closed form using only samples. The former is achieved by leveraging the connection between the DrMMD and the $χ^2$-divergence, while the latter comes by treating DrMMD as MMD with a de-regularized kernel. Our numerical scheme uses an adaptive de-regularization schedule throughout the flow to optimally trade off between discretization errors and deviations from the $χ^2$ regime. The potential application of the DrMMD flow is demonstrated across several numerical experiments, including a large-scale setting of training student/teacher networks.
♻ ☆ Forecasting-based Biomedical Time-series Data Synthesis for Open Data and Robust AI
The limited data availability due to strict privacy regulations and significant resource demands severely constrains biomedical time-series AI development, which creates a critical gap between data requirements and accessibility. Synthetic data generation presents a promising solution by producing artificial datasets that maintain the statistical properties of real biomedical time-series data without compromising patient confidentiality. While GANs, VAEs, and diffusion models capture global data distributions, forecasting models offer inductive biases tailored for sequential dynamics. We propose a framework for synthetic biomedical time-series data generation based on recent forecasting models that accurately replicates complex electrophysiological signals such as EEG and EMG with high fidelity. These synthetic datasets can be freely shared for open AI development and consistently improve downstream model performance. Numerical results on sleep-stage classification show up to a 3.71\% performance gain with augmentation and a 91.00\% synthetic-only accuracy that surpasses the real-data-only baseline.
comment: 22 pages
♻ ☆ Differentiated Directional Intervention A Framework for Evading LLM Safety Alignment AAAI-26
Safety alignment instills in Large Language Models (LLMs) a critical capacity to refuse malicious requests. Prior works have modeled this refusal mechanism as a single linear direction in the activation space. We posit that this is an oversimplification that conflates two functionally distinct neural processes: the detection of harm and the execution of a refusal. In this work, we deconstruct this single representation into a Harm Detection Direction and a Refusal Execution Direction. Leveraging this fine-grained model, we introduce Differentiated Bi-Directional Intervention (DBDI), a new white-box framework that precisely neutralizes the safety alignment at critical layer. DBDI applies adaptive projection nullification to the refusal execution direction while suppressing the harm detection direction via direct steering. Extensive experiments demonstrate that DBDI outperforms prominent jailbreaking methods, achieving up to a 97.88\% attack success rate on models such as Llama-2. By providing a more granular and mechanistic framework, our work offers a new direction for the in-depth understanding of LLM safety alignment.
comment: AAAI-26-AIA
♻ ☆ Causally Reliable Concept Bottleneck Models NeurIPS 2025
Concept-based models are an emerging paradigm in deep learning that constrains the inference process to operate through human-interpretable variables, facilitating explainability and human interaction. However, these architectures, on par with popular opaque neural models, fail to account for the true causal mechanisms underlying the target phenomena represented in the data. This hampers their ability to support causal reasoning tasks, limits out-of-distribution generalization, and hinders the implementation of fairness constraints. To overcome these issues, we propose Causally reliable Concept Bottleneck Models (C$^2$BMs), a class of concept-based architectures that enforce reasoning through a bottleneck of concepts structured according to a model of the real-world causal mechanisms. We also introduce a pipeline to automatically learn this structure from observational data and unstructured background knowledge (e.g., scientific literature). Experimental evidence suggests that C$^2$BMs are more interpretable, causally reliable, and improve responsiveness to interventions w.r.t. standard opaque and concept-based models, while maintaining their accuracy.
comment: Accepted at NeurIPS 2025
♻ ☆ When, Where and Why to Average Weights?
Averaging checkpoints along the training trajectory is a simple yet powerful approach to improve the generalization performance of Machine Learning models and reduce training time. Motivated by these potential gains, and in an effort to fairly and thoroughly benchmark this technique, we present an extensive evaluation of averaging techniques in modern Deep Learning, which we perform using AlgoPerf \citep{dahl_benchmarking_2023}, a large-scale benchmark for optimization algorithms. We investigate whether weight averaging can reduce training time, improve generalization, and replace learning rate decay, as suggested by recent literature. Our evaluation across seven architectures and datasets reveals that averaging significantly accelerates training and yields considerable efficiency gains, at the price of a minimal implementation and memory cost, while mildly improving generalization across all considered workloads. Finally, we explore the relationship between averaging and learning rate annealing and show how to optimally combine the two to achieve the best performances.
♻ ☆ Counterfactual Explainable AI (XAI) Method for Deep Learning-Based Multivariate Time Series Classification AAAI 2026
Recent advances in deep learning have improved multivariate time series (MTS) classification and regression by capturing complex patterns, but their lack of transparency hinders decision-making. Explainable AI (XAI) methods offer partial insights, yet often fall short of conveying the full decision space. Counterfactual Explanations (CE) provide a promising alternative, but current approaches typically prioritize either accuracy, proximity or sparsity -- rarely all -- limiting their practical value. To address this, we propose CONFETTI, a novel multi-objective CE method for MTS. CONFETTI identifies key MTS subsequences, locates a counterfactual target, and optimally modifies the time series to balance prediction confidence, proximity and sparsity. This method provides actionable insights with minimal changes, improving interpretability, and decision support. CONFETTI is evaluated on seven MTS datasets from the UEA archive, demonstrating its effectiveness in various domains. CONFETTI consistently outperforms state-of-the-art CE methods in its optimization objectives, and in six other metrics from the literature, achieving $\geq10\%$ higher confidence while improving sparsity in $\geq40\%$.
comment: Accepted in AAAI 2026 Technical Main Track
♻ ☆ SlimCaching: Edge Caching of Mixture-of-Experts for Distributed Inference
Mixture-of-Experts (MoE) models improve the scalability of large language models (LLMs) by activating only a small subset of relevant experts per input. However, the sheer number of expert networks in an MoE model introduces a significant storage burden for an edge device. To address this challenge, we consider a scenario where experts are dispersed across an edge network for distributed inference. Based on the popular Top-$K$ expert selection strategy, we formulate a latency minimization problem by optimizing expert caching on edge servers under storage constraints. When $K=1$, the problem reduces to a monotone submodular maximization problem with knapsack constraints, for which we design a greedy-based algorithm with a $(1 - 1/e)$-approximation guarantee. For the general case where $K \geq 1$, expert co-activation within the same MoE layer introduces non-submodularity, which renders greedy methods ineffective. To tackle this issue, we propose a successive greedy decomposition method to decompose the original problem into a series of subproblems, with each being solved by a dynamic programming approach. Furthermore, we design an accelerated algorithm based on the max-convolution technique to obtain the approximate solution with a provable guarantee in polynomial time. Simulation results on various MoE models demonstrate that our method significantly reduces inference latency compared to existing baselines.
comment: 17 pages, 11 figures. This work has been submitted to the IEEE for possible publication
♻ ☆ Interpretability of Graph Neural Networks to Assess Effects of Global Change Drivers on Ecological Networks
Pollinators play a crucial role for plant reproduction, either in natural ecosystem or in human-modified landscape. Global change drivers,including climate change or land use modifications, can alter the plant-pollinator interactions. To assess the potential influence of global change drivers on pollination, large-scale interactions, climate and land use data are required. While recent machine learning methods, such as graph neural networks (GNNs), allow the analysis of such datasets, interpreting their results can be challenging. We explore existing methods for interpreting GNNs in order to highlight the effects of various environmental covariates on pollination network connectivity. An extensive simulation study is performed to confirm whether these methods can detect the interactive effect between a covariate and a genus of plant on connectivity, and whether the application of debiasing techniques influences the estimation of these effects. An application on the Spipoll dataset, with and without accounting for sampling effects, highlights the potential impact of land use on network connectivity and shows that accounting for sampling effects partially alters the estimation of these effects.
♻ ☆ Learning Potential Energy Surfaces of Hydrogen Atom Transfer Reactions in Peptides
Hydrogen atom transfer (HAT) reactions are essential in many biological processes, such as radical migration in damaged proteins, but their mechanistic pathways remain incompletely understood. Simulating HAT is challenging due to the need for quantum chemical accuracy at biologically relevant scales; thus, neither classical force fields nor DFT-based molecular dynamics are applicable. Machine-learned potentials offer an alternative, able to learn potential energy surfaces (PESs) with near-quantum accuracy. However, training these models to generalize across diverse HAT configurations, especially at radical positions in proteins, requires tailored data generation and careful model selection. Here, we systematically generate HAT configurations in peptides to build large datasets using semiempirical methods and DFT. We benchmark three graph neural network architectures (SchNet, Allegro, and MACE) on their ability to learn HAT PESs and indirectly predict reaction barriers from energy predictions. MACE consistently outperforms the others in energy, force, and barrier prediction, achieving a mean absolute error of 1.13 kcal/mol on out-of-distribution DFT barrier predictions. Using molecular dynamics, we show our MACE potential is stable, reactive, and generalizes beyond training data to model HAT barriers in collagen I. This accuracy enables integration of ML potentials into large-scale collagen simulations to compute reaction rates from predicted barriers, advancing mechanistic understanding of HAT and radical migration in peptides. We analyze scaling laws, model transferability, and cost-performance trade-offs, and outline strategies for improvement by combining ML potentials with transition state search algorithms and active learning. Our approach is generalizable to other biomolecular systems, enabling quantum-accurate simulations of chemical reactivity in complex environments.
comment: 20 pages, 12 figures, and 4 tables (references and SI included)
♻ ☆ On the dimension of pullback attractors in recurrent neural networks
Recurrent Neural Networks (RNNs) are high-dimensional state space models capable of learning functions on sequence data. Recently, it has been conjectured that reservoir computers, a particular class of RNNs, trained on observations of a dynamical systems can be interpreted as embeddings. This result has been established for the case of linear reservoir systems. In this work, we use a nonautonomous dynamical systems approach to establish an upper bound for the fractal dimension of the subset of reservoir state space approximated during training and prediction phase. We prove that when the input sequences comes from an Nin-dimensional invertible dynamical system, the fractal dimension of this set is bounded above by Nin. The result obtained here are useful in dimensionality reduction of computation in RNNs as well as estimating fractal dimensions of dynamical systems from limited observations of their time series. It is also a step towards understanding embedding properties of reservoir computers.
comment: Issues with clarity and notation
♻ ☆ General-Purpose Models for the Chemical Sciences: LLMs and Beyond
Data-driven techniques have a large potential to transform and accelerate the chemical sciences. However, chemical sciences also pose the unique challenge of very diverse, small, fuzzy datasets that are difficult to leverage in conventional machine learning approaches. A new class of models, which can be summarized under the term general-purpose models (GPMs) such as large language models, has shown the ability to solve tasks they have not been directly trained on, and to flexibly operate with low amounts of data in different formats. In this review, we discuss fundamental building principles of GPMs and review recent and emerging applications of those models in the chemical sciences across the entire scientific process. While many of these applications are still in the prototype phase, we expect that the increasing interest in GPMs will make many of them mature in the coming years.
♻ ☆ Human Cognition Inspired RAG with Knowledge Graph for Complex Problem Solving AAAI 2026
Large Language Models (LLMs) have demonstrated significant potential across various domains. However, they often struggle with integrating external knowledge and performing complex reasoning, leading to hallucinations and unreliable outputs. Retrieval Augmented Generation (RAG) has emerged as a promising paradigm to mitigate these issues by incorporating external knowledge. Yet, conventional RAG approaches, especially those based on vector similarity, fail to effectively capture relational dependencies and support multi-step reasoning. In this work, we propose CogGRAG, a human cognition-inspired, graph-based RAG framework designed for Knowledge Graph Question Answering (KGQA). CogGRAG models the reasoning process as a tree-structured mind map that decomposes the original problem into interrelated subproblems and explicitly encodes their semantic relationships. This structure not only provides a global view to guide subsequent retrieval and reasoning but also enables self-consistent verification across reasoning paths. The framework operates in three stages: (1) top-down problem decomposition via mind map construction, (2) structured retrieval of both local and global knowledge from external Knowledge Graphs (KGs), and (3) bottom-up reasoning with dual-process self-verification. Unlike previous tree-based decomposition methods such as MindMap or Graph-CoT, CogGRAG unifies problem decomposition, knowledge retrieval, and reasoning under a single graph-structured cognitive framework, allowing early integration of relational knowledge and adaptive verification. Extensive experiments demonstrate that CogGRAG achieves superior accuracy and reliability compared to existing methods.
comment: The paper has been accepted by AAAI 2026
♻ ☆ Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models NeurIPS 2021
In the foreseeable future, autonomous vehicles will require human assistance in situations they can not resolve on their own. In such scenarios, remote assistance from a human can provide the required input for the vehicle to continue its operation. Typical sensors used in autonomous vehicles include camera and lidar sensors. Due to the massive volume of sensor data that must be sent in real-time, highly efficient data compression is elementary to prevent an overload of network infrastructure. Sensor data compression using deep generative neural networks has been shown to outperform traditional compression approaches for both image and lidar data, regarding compression rate as well as reconstruction quality. However, there is a lack of research about the performance of generative-neural-network-based compression algorithms for remote assistance. In order to gain insights into the feasibility of deep generative models for usage in remote assistance, we evaluate state-of-the-art algorithms regarding their applicability and identify potential weaknesses. Further, we implement an online pipeline for processing sensor data and demonstrate its performance for remote assistance using the CARLA simulator.
comment: Daniel Bogdoll, Johannes Jestram, Jonas Rauch, Christin Scheib and Moritz Wittig contributed equally. Accepted for publication at NeurIPS 2021 ML4AD Workshop
♻ ☆ Description of Corner Cases in Automated Driving: Goals and Challenges ICCV 2021
Scaling the distribution of automated vehicles requires handling various unexpected and possibly dangerous situations, termed corner cases (CC). Since many modules of automated driving systems are based on machine learning (ML), CC are an essential part of the data for their development. However, there is only a limited amount of CC data in large-scale data collections, which makes them challenging in the context of ML. With a better understanding of CC, offline applications, e.g., dataset analysis, and online methods, e.g., improved performance of automated driving systems, can be improved. While there are knowledge-based descriptions and taxonomies for CC, there is little research on machine-interpretable descriptions. In this extended abstract, we will give a brief overview of the challenges and goals of such a description.
comment: Daniel Bogdoll, Jasmin Breitenstein and Florian Heidecker contributed equally. Accepted for publication at ICCV 2021 ERCVAD Workshop
♻ ☆ BiasJailbreak:Analyzing Ethical Biases and Jailbreak Vulnerabilities in Large Language Models AAAI 2026
Although large language models (LLMs) demonstrate impressive proficiency in various tasks, they present potential safety risks, such as `jailbreaks', where malicious inputs can coerce LLMs into generating harmful content bypassing safety alignments. In this paper, we delve into the ethical biases in LLMs and examine how those biases could be exploited for jailbreaks. Notably, these biases result in a jailbreaking success rate in GPT-4o models that differs by 20\% between non-binary and cisgender keywords and by 16\% between white and black keywords, even when the other parts of the prompts are identical. We introduce the concept of BiasJailbreak, highlighting the inherent risks posed by these safety-induced biases. BiasJailbreak generates biased keywords automatically by asking the target LLM itself, and utilizes the keywords to generate harmful output. Additionally, we propose an efficient defense method BiasDefense, which prevents jailbreak attempts by injecting defense prompts prior to generation. BiasDefense stands as an appealing alternative to Guard Models, such as Llama-Guard, that require additional inference cost after text generation. Our findings emphasize that ethical biases in LLMs can actually lead to generating unsafe output, and suggest a method to make the LLMs more secure and unbiased. To enable further research and improvements, we open-source our code and artifacts of BiasJailbreak, providing the community with tools to better understand and mitigate safety-induced biases in LLMs.
comment: Accepted as a workshop paper at AAAI 2026
♻ ☆ VeML: An End-to-End Machine Learning Lifecycle for Large-scale and High-dimensional Data
An end-to-end machine learning (ML) lifecycle consists of many iterative processes, from data preparation and ML model design to model training and then deploying the trained model for inference. When building an end-to-end lifecycle for an ML problem, many ML pipelines must be designed and executed that produce a huge number of lifecycle versions. Therefore, this paper introduces VeML, a Version management system dedicated to end-to-end ML Lifecycle. Our system tackles several crucial problems that other systems have not solved. First, we address the high cost of building an ML lifecycle, especially for large-scale and high-dimensional dataset. We solve this problem by proposing to transfer the lifecycle of similar datasets managed in our system to the new training data. We design an algorithm based on the core set to compute similarity for large-scale, high-dimensional data efficiently. Another critical issue is the model accuracy degradation by the difference between training data and testing data during the ML lifetime, which leads to lifecycle rebuild. Our system helps to detect this mismatch without getting labeled data from testing data and rebuild the ML lifecycle for a new data version. To demonstrate our contributions, we conduct experiments on real-world, large-scale datasets of driving images and spatiotemporal sensor data and show promising results.
comment: The updated version of this paper, titled "Efficient ML Lifecycle Transferring for Large-scale and High-dimensional Data via Core Set-based Dataset Similarity," has been accepted for publication in IEEE Access
♻ ☆ VALUE: Value-Aware Large Language Model for Query Rewriting via Weighted Trie in Sponsored Search
Query-to-bidword(i.e., bidding keyword) rewriting is fundamental to sponsored search, transforming noisy user queries into semantically relevant and commercially valuable keywords. Recent advances in large language models (LLMs) improve semantic relevance through generative retrieval frameworks, but they rarely encode the commercial value of keywords. As a result, rewrites are often semantically correct yet economically suboptimal, and a reinforcement learning from human feedback (RLHF) stage is usually added after supervised fine-tuning(SFT) to mitigate this deficiency. However, conventional preference alignment frequently overemphasize the ordering of bidword values and is susceptible to overfitting, which degrades rewrite quality. In addition, bidword value changes rapidly, while existing generative methods do not respond to these fluctuations. To address this shortcoming, we introduce VALUE(Value-Aware Large language model for qUery rewriting via wEighted trie), a framework that integrates value awareness directly into generation and enhances value alignment during training. VALUE employs the Weighted Trie, a novel variant of the classical trie that stores real-time value signals for each token. During decoding, the framework adjusts the LLM's token probabilities with these signals, constraining the search space and steering generation toward high-value rewrites. The alignment stage uses a fine-grained preference learning strategy that emphasizes stable, high-value differences and down-weights noisy or transient fluctuations, thereby improving robustness and reducing overfitting. Offline experiments show that VALUE significantly outperforms baselines in both semantic matching and value-centric metrics. VALUE has been deployed on our advertising system since October 2024 and served the Double Eleven promotions, the biggest shopping carnival in China.
♻ ☆ FedRef: Communication-Efficient Bayesian Fine-Tuning using a Reference Model
Federated learning (FL) collaboratively trains artificial intelligence (AI) models to ensure user data privacy. Sharing only model updates generated from local training on client data with the server enhances user data privacy. However, model performance may suffer due to data and system heterogeneity among clients in FL scenarios. Previous studies have proposed model optimization, fine-tuning, and personalization to achieve improved model performance. Despite these efforts, models resulting from FL scenarios often exhibit catastrophic forgetting, which increases the communication and computational costs of clients for model optimization and raises energy consumption. To address these challenges, we propose a reference model-based fine-tuning method for federated learning that overcomes catastrophic forgetting in each round. Our method is derived from Bayesian parameter-efficient transfer learning and includes an proximal term. It employs a reference model that incorporates previous model parameters and reviews previous global features in the model optimization step to mitigate catastrophic forgetting. As a result, our method achieves higher model performance and lower communication and computational costs for clients than existing methods.
comment: 11 pages, 16 equations, 5 figures, 6 tables
♻ ☆ Time-Aware and Transition-Semantic Graph Neural Networks for Interpretable Predictive Business Process Monitoring
Predictive Business Process Monitoring (PBPM) aims to forecast future events in ongoing cases based on historical event logs. While Graph Neural Networks (GNNs) are well suited to capture structural dependencies in process data, existing GNN-based PBPM models remain underdeveloped. Most rely either on short prefix subgraphs or global architectures that overlook temporal relevance and transition semantics. We propose a unified, interpretable GNN framework that advances the state of the art along three key axes. First, we compare prefix-based Graph Convolutional Networks(GCNs) and full trace Graph Attention Networks(GATs) to quantify the performance gap between localized and global modeling. Second, we introduce a novel time decay attention mechanism that constructs dynamic, prediction-centered windows, emphasizing temporally relevant history and suppressing noise. Third, we embed transition type semantics into edge features to enable fine grained reasoning over structurally ambiguous traces. Our architecture includes multilevel interpretability modules, offering diverse visualizations of attention behavior. Evaluated on five benchmarks, the proposed models achieve competitive Top-k accuracy and DL scores without per-dataset tuning. By addressing architectural, temporal, and semantic gaps, this work presents a robust, generalizable, and explainable solution for next event prediction in PBPM.
comment: 42 pages
♻ ☆ REAL-Prover: Retrieval Augmented Lean Prover for Mathematical Reasoning
Nowadays, formal theorem provers have made monumental progress on high-school and competition-level mathematics, but few of them generalize to more advanced mathematics. In this paper, we present REAL-Prover, a new open-source stepwise theorem prover for Lean 4 to push this boundary. This prover, based on our fine-tuned large language model (REAL-Prover-v1) and integrated with a retrieval system (Leansearch-PS), notably boosts performance on solving college-level mathematics problems. To train REAL-Prover-v1, we developed HERALD-AF, a data extraction pipeline that converts natural language math problems into formal statements, and a new open-source Lean 4 interactive environment (Jixia-interactive) to facilitate synthesis data collection. In our experiments, our prover using only supervised fine-tune achieves competitive results with a 23.7% success rate (Pass@64) on the ProofNet dataset-comparable to state-of-the-art (SOTA) models. To further evaluate our approach, we introduce FATE-M, a new benchmark focused on algebraic problems, where our prover achieves a SOTA success rate of 56.7% (Pass@64).
♻ ☆ Perturbing the Derivative: Wild Refitting for Model-Free Evaluation of Machine Learning Models under Bregman Losses
We study the excess risk evaluation of classical penalized empirical risk minimization (ERM) with Bregman losses. We show that by leveraging the idea of wild refitting, one can efficiently upper bound the excess risk through the so-called "wild optimism," without relying on the global structure of the underlying function class. This property makes our approach inherently model-free. Unlike conventional analysis, our framework operates with just one dataset and black-box access to the training procedure. The method involves randomized Rademacher symmetrization and constructing artificially modified outputs by perturbation in the derivative space with appropriate scaling, upon which we retrain a second predictor for excess risk estimation. We establish high-probability performance guarantee under the fixed design setting, demonstrating that wild refitting under Bregman losses, with an appropriately chosen wild noise scale, yields a valid upper bound on the excess risk. Thus, our work is promising for theoretically evaluating modern opaque ML models, such as deep neural networks and generative models, where the function class is too complex for classical learning theory and empirical process techniques.
♻ ☆ Priors in Time: Missing Inductive Biases for Language Model Interpretability
Recovering meaningful concepts from language model activations is a central aim of interpretability. While existing feature extraction methods aim to identify concepts that are independent directions, it is unclear if this assumption can capture the rich temporal structure of language. Specifically, via a Bayesian lens, we demonstrate that Sparse Autoencoders (SAEs) impose priors that assume independence of concepts across time, implying stationarity. Meanwhile, language model representations exhibit rich temporal dynamics, including systematic growth in conceptual dimensionality, context-dependent correlations, and pronounced non-stationarity, in direct conflict with the priors of SAEs. Taking inspiration from computational neuroscience, we introduce a new interpretability objective -- Temporal Feature Analysis -- which possesses a temporal inductive bias to decompose representations at a given time into two parts: a predictable component, which can be inferred from the context, and a residual component, which captures novel information unexplained by the context. Temporal Feature Analyzers correctly parse garden path sentences, identify event boundaries, and more broadly delineate abstract, slow-moving information from novel, fast-moving information, while existing SAEs show significant pitfalls in all the above tasks. Overall, our results underscore the need for inductive biases that match the data in designing robust interpretability tools.
comment: Preprint
♻ ☆ Studying Classifier(-Free) Guidance From a Classifier-Centric Perspective AAAI 2026
Classifier-free guidance has become a staple for conditional generation with denoising diffusion models. However, a comprehensive understanding of classifier-free guidance is still missing. In this work, we carry out an empirical study to provide a fresh perspective on classifier-free guidance. Concretely, instead of solely focusing on classifier-free guidance, we trace back to the root, i.e., classifier guidance, pinpoint the key assumption for the derivation, and conduct a systematic study to understand the role of the classifier. On 1D data, we find that both classifier guidance and classifier-free guidance achieve conditional generation by pushing the denoising diffusion trajectories away from decision boundaries, i.e., areas where conditional information is usually entangled and is hard to learn. To validate this classifier-centric perspective on high-dimensional data, we assess whether a flow-matching postprocessing step that is designed to narrow the gap between a pre-trained diffusion model's learned distribution and the real data distribution, especially near decision boundaries, can improve the performance. Experiments on various datasets verify our classifier-centric understanding.
comment: v3: AAAI 2026; v2: added derivation details in Appendix A
♻ ☆ Provable Scaling Laws of Feature Emergence from Learning Dynamics of Grokking
While the phenomenon of grokking, i.e., delayed generalization, has been studied extensively, it remains an open problem whether there is a mathematical framework that characterizes what kind of features will emerge, how and in which conditions it happens, and is closely related to the gradient dynamics of the training, for complex structured inputs. We propose a novel framework, named $\mathbf{Li}_2$, that captures three key stages for the grokking behavior of 2-layer nonlinear networks: (I) Lazy learning, (II) independent feature learning and (III) interactive feature learning. At the lazy learning stage, top layer overfits to random hidden representation and the model appears to memorize. Thanks to lazy learning and weight decay, the backpropagated gradient $G_F$ from the top layer now carries information about the target label, with a specific structure that enables each hidden node to learn their representation independently. Interestingly, the independent dynamics follows exactly the gradient ascent of an energy function $E$, and its local maxima are precisely the emerging features. We study whether these local-optima induced features are generalizable, their representation power, and how they change on sample size, in group arithmetic tasks. When hidden nodes start to interact in the later stage of learning, we provably show how $G_F$ changes to focus on missing features that need to be learned. Our study sheds lights on roles played by key hyperparameters such as weight decay, learning rate and sample sizes in grokking, leads to provable scaling laws of feature emergence, memorization and generalization, and reveals why recent optimizers such as Muon can be effective, from the first principles of gradient dynamics. Our analysis can be extended to multi-layers. The code is available at https://github.com/yuandong-tian/understanding/tree/main/ssl/real-dataset/cogo.
♻ ☆ Provable Benefit of Curriculum in Transformer Tree-Reasoning Post-Training
Recent curriculum techniques in the post-training stage of LLMs have been widely observed to outperform non-curriculum approaches in enhancing reasoning performance, yet a principled understanding of why and to what extent they work remains elusive. To address this gap, we develop a theoretical framework grounded in the intuition that progressively learning through manageable steps is more efficient than directly tackling a hard reasoning task, provided each stage stays within the model's effective competence. Under mild complexity conditions linking consecutive curriculum stages, we show that curriculum post-training avoids the exponential complexity bottleneck. To substantiate this result, drawing insights from the Chain-of-Thoughts (CoTs) solving mathematical problems such as Countdown and parity, we model CoT generation as a states-conditioned autoregressive reasoning tree, define a uniform-branching base model to capture pretrained behavior, and formalize curriculum stages as either depth-increasing (longer reasoning chains) or hint-decreasing (shorter prefixes) subtasks. Our analysis shows that, under outcome-only reward signals, reinforcement learning finetuning achieves high accuracy with polynomial sample complexity, whereas direct learning suffers from an exponential bottleneck. We further establish analogous guarantees for test-time scaling, where curriculum-aware querying reduces both reward oracle calls and sampling cost from exponential to polynomial order.
♻ ☆ Quantitative Attractor Analysis of High-Capacity Kernel Logistic Regression Hopfield Networks
Kernel-based learning methods such as Kernel Logistic Regression (KLR) can substantially increase the storage capacity of Hopfield networks, but the principles governing their performance and stability remain largely uncharacterized. This paper presents a comprehensive quantitative analysis of the attractor landscape in KLR-trained networks to establish a solid foundation for their design and application. Through extensive, statistically validated simulations, we address critical questions of generality, scalability, and robustness. Our comparative analysis shows that KLR and Kernel Ridge Regression (KRR) exhibit similarly high storage capacities and clean attractor landscapes under typical operating conditions, suggesting that this behavior is a general property of kernel regression methods, although KRR is computationally much faster. We identify a non-trivial, scale-dependent law for the kernel width $γ$, demonstrating that optimal capacity requires $γ$ to be scaled such that $γN$ increases with network size $N$. This finding implies that larger networks require more localized kernels, in which each pattern's influence is more spatially confined, to mitigate inter-pattern interference. Under this optimized scaling, we provide clear evidence that storage capacity scales linearly with network size~($P \propto N$). Furthermore, our sensitivity analysis shows that performance is remarkably robust with respect to the choice of the regularization parameter $λ$. Collectively, these findings provide a concise set of empirical principles for designing high-capacity and robust associative memories and clarify the mechanisms that enable kernel methods to overcome the classical limitations of Hopfield-type models.
comment: 16 pages, 7 figures
♻ ☆ Survival Analysis with Machine Learning for Predicting Li-ion Battery Remaining Useful Life
Battery degradation significantly impacts the reliability and efficiency of energy storage systems, particularly in electric vehicles and industrial applications. Predicting the remaining useful life (RUL) of lithium-ion batteries is crucial for optimizing maintenance schedules, reducing costs, and improving safety. Traditional RUL prediction methods often struggle with nonlinear degradation patterns and uncertainty quantification. To address these challenges, we propose a hybrid survival analysis framework integrating survival data reconstruction, survival model learning, and survival probability estimation. Our approach transforms battery voltage time series into time-to-failure data using path signatures. The multiple Cox-based survival models and machine-learning-based methods, such as DeepHit and MTLR, are learned to predict battery failure-free probabilities over time. Experiments conducted on the Toyota battery and NASA battery datasets demonstrate the effectiveness of our approach, achieving high time-dependent AUC and concordance index (C-Index) while maintaining a low integrated Brier score.
♻ ☆ GMoE: Empowering LLMs Fine-Tuning via MoE Graph Collaboration
The sparse Mixture-of-Experts (MoE) architecture of large language models (LLMs) confronts an inherent issue of load imbalance arising from the simplistic linear router strategy, which ultimately causes the instability and inefficient learning of LLMs. To address this challenge, we introduce a novel MoE graph-based framework $\textbf{GMoE}$, aimed at enhancing the collaboration among multiple experts. In GMoE, a graph router function is designed to capture the collaboration signals among experts. This enables all experts to dynamically allocate information derived from input data by sharing information with their neighboring experts. Moreover, we put forward two coordination strategies in GMoE: the $\textit{Poisson distribution-based distinction strategy}$ and the $\textit{Normal distribution-based balance strategy}$, to further release the capacity of each expert and increase the model stability in the fine-tuning of LLMs. Specifically, we leverage a parameter-efficient fine-tuning technique, i.e., Low-Rank Adaptation (LoRA), to implement the graph MoE architecture. Extensive experiments on four real-world benchmark datasets demonstrate the effectiveness of GMoE, showing the benefits of facilitating collaborations of multiple experts in LLM fine-tuning. The code of experimental implementation is available at https://github.com/BAI-LAB/GMoE
comment: 9 pages, 25 figures
♻ ☆ A Fast Binary Splitting Approach for Non-Adaptive Learning of Erdős--Rényi Graphs
We study the problem of learning an unknown graph via group queries on node subsets, where each query reports whether at least one edge is present among the queried nodes. In general, learning arbitrary graphs with $n$ nodes and $k$ edges is hard in the non-adaptive setting, requiring $Ω\big(\min\{k^2\log n,\,n^2\}\big)$ tests even when a small error probability is allowed. We focus on learning Erdős--Rényi (ER) graphs $G\sim\mathrm{ER}(n,q)$ in the non-adaptive setting, where the expected number of edges is $\bar{k}=q\binom{n}{2}$, and we aim to design an efficient testing--decoding scheme achieving asymptotically vanishing error probability. Prior work (Li--Fresacher--Scarlett, NeurIPS 2019) presents a testing--decoding scheme that attains an order-optimal number of tests $O(\bar{k}\log n)$ but incurs $Ω(n^2)$ decoding time, whereas their proposed sublinear-time algorithm incurs an extra $(\log \bar{k})(\log n)$ factor in the number of tests. We extend the binary splitting approach, recently developed for non-adaptive group testing, to the ER graph learning setting, and prove that the edge set can be recovered with high probability using $O(\bar{k}\log n)$ tests while attaining decoding time $O(\bar{k}^{1+δ}\log n)$ for any fixed $δ>0$.
♻ ☆ G-UBS: Towards Robust Understanding of Implicit Feedback via Group-Aware User Behavior Simulation AAAI 2026
User feedback is critical for refining recommendation systems, yet explicit feedback (e.g., likes or dislikes) remains scarce in practice. As a more feasible alternative, inferring user preferences from massive implicit feedback has shown great potential (e.g., a user quickly skipping a recommended video usually indicates disinterest). Unfortunately, implicit feedback is often noisy: a user might skip a video due to accidental clicks or other reasons, rather than disliking it. Such noise can easily misjudge user interests, thereby undermining recommendation performance. To address this issue, we propose a novel Group-aware User Behavior Simulation (G-UBS) paradigm, which leverages contextual guidance from relevant user groups, enabling robust and in-depth interpretation of implicit feedback for individual users. Specifically, G-UBS operates via two key agents. First, the User Group Manager (UGM) effectively clusters users to generate group profiles utilizing a ``summarize-cluster-reflect" workflow based on LLMs. Second, the User Feedback Modeler (UFM) employs an innovative group-aware reinforcement learning approach, where each user is guided by the associated group profiles during the reinforcement learning process, allowing UFM to robustly and deeply examine the reasons behind implicit feedback. To assess our G-UBS paradigm, we have constructed a Video Recommendation benchmark with Implicit Feedback (IF-VR). To the best of our knowledge, this is the first multi-modal benchmark for implicit feedback evaluation in video recommendation, encompassing 15k users, 25k videos, and 933k interaction records with implicit feedback. Extensive experiments on IF-VR demonstrate that G-UBS significantly outperforms mainstream LLMs and MLLMs, with a 4.0% higher proportion of videos achieving a play rate > 30% and 14.9% higher reasoning accuracy on IF-VR.
comment: Accepted in AAAI 2026
♻ ☆ DAGLFNet: Deep Feature Attention Guided Global and Local Feature Fusion for Pseudo-Image Point Cloud Segmentation
Environmental perception systems are crucial for high-precision mapping and autonomous navigation, with LiDAR serving as a core sensor providing accurate 3D point cloud data. Efficiently processing unstructured point clouds while extracting structured semantic information remains a significant challenge. In recent years, numerous pseudo-image-based representation methods have emerged to balance efficiency and performance by fusing 3D point clouds with 2D grids. However, the fundamental inconsistency between the pseudo-image representation and the original 3D information critically undermines 2D-3D feature fusion, posing a primary obstacle for coherent information fusion and leading to poor feature discriminability. This work proposes DAGLFNet, a pseudo-image-based semantic segmentation framework designed to extract discriminative features. It incorporates three key components: first, a Global-Local Feature Fusion Encoding (GL-FFE) module to enhance intra-set local feature correlation and capture global contextual information; second, a Multi-Branch Feature Extraction (MB-FE) network to capture richer neighborhood information and improve the discriminability of contour features; and third, a Feature Fusion via Deep Feature-guided Attention (FFDFA) mechanism to refine cross-channel feature fusion precision. Experimental evaluations demonstrate that DAGLFNet achieves mean Intersection-over-Union (mIoU) scores of 69.9% and 78.7% on the validation sets of SemanticKITTI and nuScenes, respectively. The method achieves an excellent balance between accuracy and efficiency.
♻ ☆ OmniLens++: Blind Lens Aberration Correction via Large LensLib Pre-Training and Latent PSF Representation
Emerging deep-learning-based lens library pre-training (LensLib-PT) pipeline offers a new avenue for blind lens aberration correction by training a universal neural network, demonstrating strong capability in handling diverse unknown optical degradations. This work proposes the OmniLens++ framework, which resolves two challenges that hinder the generalization ability of existing pipelines: the difficulty of scaling data and the absence of prior guidance characterizing optical degradation. To improve data scalability, we expand the design specifications to increase the degradation diversity of the lens source, and we sample a more uniform distribution by quantifying the spatial-variation patterns and severity of optical degradation. In terms of model design, to leverage the Point Spread Functions (PSFs), which intuitively describe optical degradation, as guidance in a blind paradigm, we propose the Latent PSF Representation (LPR). The VQVAE framework is introduced to learn latent features of LensLib's PSFs, which is assisted by modeling the optical degradation process to constrain the learning of degradation priors. Experiments on diverse aberrations of real-world lenses and synthetic LensLib show that OmniLens++ exhibits state-of-the-art generalization capacity in blind aberration correction. Beyond performance, the AODLibpro is verified as a scalable foundation for more effective training across diverse aberrations, and LPR can further tap the potential of large-scale LensLib. The source code and datasets will be made publicly available at https://github.com/zju-jiangqi/OmniLens2.
comment: The source code and datasets will be made publicly available at https://github.com/zju-jiangqi/OmniLens2
♻ ☆ Parallel Unlearning in Inherited Model Networks
Unlearning is challenging in generic learning frameworks with the continuous growth and updates of models exhibiting complex inheritance relationships. This paper presents a novel unlearning framework that enables fully parallel unlearning among models exhibiting inheritance. We use a chronologically Directed Acyclic Graph (DAG) to capture various unlearning scenarios occurring in model inheritance networks. Central to our framework is the Fisher Inheritance Unlearning (FIUn) method, designed to enable efficient parallel unlearning within the DAG. FIUn utilizes the Fisher Information Matrix (FIM) to assess the significance of model parameters for unlearning tasks and adjusts them accordingly. To handle multiple unlearning requests simultaneously, we propose the Merging-FIM (MFIM) function, which consolidates FIMs from multiple upstream models into a unified matrix. This design supports all unlearning scenarios captured by the DAG, enabling one-shot removal of inherited knowledge while significantly reducing computational overhead. Experiments confirm the effectiveness of our unlearning framework. For single-class tasks, it achieves complete unlearning with 0% accuracy for unlearned labels while maintaining 94.53% accuracy for retained labels. For multi-class tasks, the accuracy is 1.07% for unlearned labels and 84.77% for retained labels. Our framework accelerates unlearning by 99% compared to alternative methods. Code is in https://github.com/MJLee00/Parallel-Unlearning-in-Inherited-Model-Networks.
♻ ☆ KANO: Kolmogorov-Arnold Neural Operator
We introduce Kolmogorov--Arnold Neural Operator (KANO), a dual-domain neural operator jointly parameterized by both spectral and spatial bases with intrinsic symbolic interpretability. We theoretically demonstrate that KANO overcomes the pure-spectral bottleneck of Fourier Neural Operator (FNO): KANO remains expressive over generic position-dependent dynamics (variable coefficient PDEs) for any physical input, whereas FNO stays practical only for spectrally sparse operators and strictly imposes a fast-decaying input Fourier tail. We verify our claims empirically on position-dependent differential operators, for which KANO robustly generalizes but FNO fails to. In the quantum Hamiltonian learning benchmark, KANO reconstructs ground-truth Hamiltonians in closed-form symbolic representations accurate to the fourth decimal place in coefficients and attains $\approx 6\times10^{-6}$ state infidelity from projective measurement data, substantially outperforming that of the FNO trained with ideal full wave function data, $\approx 1.5\times10^{-2}$, by orders of magnitude.
♻ ☆ Dynamic Expert Quantization for Scalable Mixture-of-Experts Inference
Mixture-of-Experts (MoE) models scale LLM capacity efficiently, but deployment on consumer GPUs is limited by the large memory footprint of inactive experts. Static post-training quantization reduces storage costs but cannot adapt to shifting activation patterns, causing accuracy loss under aggressive compression. So we present DynaExq, a runtime system that treats expert precision as a first-class, dynamically managed resource. DynaExq combines (1) a hotness-aware precision controller that continuously aligns expert bit-widths with long-term activation statistics, (2) a fully asynchronous precision-switching pipeline that overlaps promotion and demotion with MoE computation, and (3) a fragmentation-free memory pooling mechanism that supports hybrid-precision experts with deterministic allocation. Together, these components enable stable, non-blocking precision transitions under strict HBM budgets. Across Qwen3-30B and Qwen3-80B MoE models and six representative benchmarks, DynaExq deploys large LLMs on single RTX 5090 and A6000 GPUs and improves accuracy by up to 4.03 points over static low-precision baselines. The results show that adaptive, workload-aware quantization is an effective strategy for memory-constrained MoE serving.
comment: 7 pages
♻ ☆ Pilot Contamination-Aware Graph Attention Network for Power Control in CFmMIMO
Optimization-based power control algorithms are predominantly iterative with high computational complexity, making them impractical for real-time applications in cell-free massive multiple-input multiple-output (CFmMIMO) systems. Learning-based methods have emerged as a promising alternative, and among them, graph neural networks (GNNs) have demonstrated their excellent performance in solving power control problems. However, all existing GNN-based approaches assume ideal orthogonality among pilot sequences for user equipments (UEs), which is unrealistic given that the number of UEs exceeds the available orthogonal pilot sequences in CFmMIMO schemes. Moreover, most learning-based methods assume a fixed number of UEs, whereas the number of active UEs varies over time in practice. Additionally, supervised training necessitates costly computational resources for computing the target power control solutions for a large volume of training samples. To address these issues, we propose a graph attention network for downlink power control in CFmMIMO systems that operates in a self-supervised manner while effectively handling pilot contamination and adapting to a dynamic number of UEs. Experimental results show its effectiveness, even in comparison to the optimal accelerated projected gradient method as a baseline.
♻ ☆ Scaffold Diffusion: Sparse Multi-Category Voxel Structure Generation with Discrete Diffusion NeurIPS 2025
Generating realistic sparse multi-category 3D voxel structures is difficult due to the cubic memory scaling of voxel structures and moreover the significant class imbalance caused by sparsity. We introduce Scaffold Diffusion, a generative model designed for sparse multi-category 3D voxel structures. By treating voxels as tokens, Scaffold Diffusion uses a discrete diffusion language model to generate 3D voxel structures. We show that discrete diffusion language models can be extended beyond inherently sequential domains such as text to generate spatially coherent 3D structures. We evaluate on Minecraft house structures from the 3D-Craft dataset and demonstrate that, unlike prior baselines and an auto-regressive formulation, Scaffold Diffusion produces realistic and coherent structures even when trained on data with over 98% sparsity. We provide an interactive viewer where readers can visualize generated samples and the generation process: https://scaffold.deepexploration.org/
comment: Accepted at NeurIPS 2025 Structured Probabilistic Inference & Generative Modeling Workshop
♻ ☆ GPU-Initiated Networking for NCCL
Modern AI workloads, especially Mixture-of-Experts (MoE) architectures, increasingly demand low-latency, fine-grained GPU-to-GPU communication with device-side control. Traditional GPU communication follows a host-initiated model, where the CPU orchestrates all communication operations - a characteristic of the CUDA runtime. Although robust for collective operations, applications requiring tight integration of computation and communication can benefit from device-initiated communication that eliminates CPU coordination overhead. NCCL 2.28 introduces the Device API with three operation modes: Load/Store Accessible (LSA) for NVLink/PCIe, Multimem for NVLink SHARP, and GPU-Initiated Networking (GIN) for network RDMA. This paper presents the GIN architecture, design, semantics, and highlights its impact on MoE communication. GIN builds on a three-layer architecture: i) NCCL Core host-side APIs for device communicator setup and collective memory window registration; ii) Device-side APIs for remote memory operations callable from CUDA kernels; and iii) A network plugin architecture with dual semantics (GPUDirect Async Kernel-Initiated and Proxy) for broad hardware support. The GPUDirect Async Kernel-Initiated backend leverages DOCA GPUNetIO for direct GPU-to-NIC communication, while the Proxy backend provides equivalent functionality via lock-free GPU-to-CPU queues over standard RDMA networks. We demonstrate GIN's practicality through integration with DeepEP, an MoE communication library. Comprehensive benchmarking shows that GIN provides device-initiated communication within NCCL's unified runtime, combining low-latency operations with NCCL's collective algorithms and production infrastructure.
comment: 13 pages, 9 figures, 3 tables
♻ ☆ Koopman operator-based discussion on partial observation in stochastic systems
It is sometimes difficult to achieve a complete observation for a full set of observables, and partial observations are necessary. For deterministic systems, the Mori-Zwanzig formalism provides a theoretical framework for handling partial observations. Recently, data-driven algorithms based on the Koopman operator theory have made significant progress, and there is a discussion to connect the Mori-Zwanzig formalism with the Koopman operator theory. In this work, we discuss the effects of partial observation in stochastic systems using the Koopman operator theory. The discussion clarifies the importance of distinguishing the state space and the function space in stochastic systems. Even in stochastic systems, the delay-embedding technique is beneficial for partial observation, and several numerical experiments show a power-law behavior of error with respect to the amplitude of the additive noise. We also discuss the relation between the exponent of the power-law behavior and the effects of partial observation.
comment: 26 pages, 5 figures
♻ ☆ Architectures and random properties of symplectic quantum circuits
Parametrized and random unitary (or orthogonal) $n$-qubit circuits play a central role in quantum information. As such, one could naturally assume that circuits implementing symplectic transformations would attract similar attention. However, this is not the case, as $\mathbb{SP} (d/2)$ -- the group of $d\times d$ unitary symplectic matrices -- has thus far been overlooked. In this work, we aim at starting to fill this gap. We begin by presenting a universal set of generators $\mathcal{G}$ for the symplectic algebra $\mathfrak{sp}(d/2)$, consisting of one- and two-qubit Pauli operators acting on neighboring sites in a one-dimensional lattice. Here, we uncover two critical differences between such set, and equivalent ones for unitary and orthogonal circuits. Namely, we find that the operators in $\mathcal{G}$ cannot generate arbitrary local symplectic unitaries and that they are not translationally invariant. We then review the Schur-Weyl duality between the symplectic group and the Brauer algebra, and use tools from Weingarten calculus to prove that Pauli measurements at the output of Haar random symplectic circuits can converge to Gaussian processes. As a by-product, such analysis provides us with concentration bounds for Pauli measurements in circuits that form $t$-designs over $\mathbb{SP}(d/2)$. To finish, we present tensor-network tools to analyze shallow random symplectic circuits, and we use these to numerically show that computational-basis measurements anti-concentrate at logarithmic depth.
comment: 13+8 pages, 8 figures, updated to published version
♻ ☆ Memory Self-Regeneration: Uncovering Hidden Knowledge in Unlearned Models
The impressive capability of modern text-to-image models to generate realistic visuals has come with a serious drawback: they can be misused to create harmful, deceptive or unlawful content. This has accelerated the push for machine unlearning. This new field seeks to selectively remove specific knowledge from a model's training data without causing a drop in its overall performance. However, it turns out that actually forgetting a given concept is an extremely difficult task. Models exposed to attacks using adversarial prompts show the ability to generate so-called unlearned concepts, which can be not only harmful but also illegal. In this paper, we present considerations regarding the ability of models to forget and recall knowledge, introducing the Memory Self-Regeneration task. Furthermore, we present MemoRa strategy, which we consider to be a regenerative approach supporting the effective recovery of previously lost knowledge. Moreover, we propose that robustness in knowledge retrieval is a crucial yet underexplored evaluation measure for developing more robust and effective unlearning techniques. Finally, we demonstrate that forgetting occurs in two distinct ways: short-term, where concepts can be quickly recalled, and long-term, where recovery is more challenging. Code is available at https://gmum.github.io/MemoRa/.
♻ ☆ FMPlug: Plug-In Foundation Flow-Matching Priors for Inverse Problems
We present FMPlug, a novel plug-in framework that enhances foundation flow-matching (FM) priors for solving ill-posed inverse problems. Unlike traditional approaches that rely on domain-specific or untrained priors, FMPlug smartly leverages two simple but powerful insights: the similarity between observed and desired objects and the Gaussianity of generative flows. By introducing a time-adaptive warm-up strategy and sharp Gaussianity regularization, FMPlug unlocks the true potential of domain-agnostic foundation models. Our method beats state-of-the-art methods that use foundation FM priors by significant margins, on image super-resolution and Gaussian deblurring.
♻ ☆ Adjoint Schrödinger Bridge Sampler NeurIPS 2025
Computational methods for learning to sample from the Boltzmann distribution -- where the target distribution is known only up to an unnormalized energy function -- have advanced significantly recently. Due to the lack of explicit target samples, however, prior diffusion-based methods, known as diffusion samplers, often require importance-weighted estimation or complicated learning processes. Both trade off scalability with extensive evaluations of the energy and model, thereby limiting their practical usage. In this work, we propose Adjoint Schrödinger Bridge Sampler (ASBS), a new diffusion sampler that employs simple and scalable matching-based objectives yet without the need to estimate target samples during training. ASBS is grounded on a mathematical model -- the Schrödinger Bridge -- which enhances sampling efficiency via kinetic-optimal transportation. Through a new lens of stochastic optimal control theory, we demonstrate how SB-based diffusion samplers can be learned at scale via Adjoint Matching and prove convergence to the global solution. Notably, ASBS generalizes the recent Adjoint Sampling (Havens et al., 2025) to arbitrary source distributions by relaxing the so-called memoryless condition that largely restricts the design space. Through extensive experiments, we demonstrate the effectiveness of ASBS on sampling from classical energy functions, amortized conformer generation, and molecular Boltzmann distributions. Code available at https://github.com/facebookresearch/adjoint_samplers
comment: NeurIPS 2025 (Oral presentation)
♻ ☆ CoT Red-Handed: Stress Testing Chain-of-Thought Monitoring NeurIPS 2025
As AI models are deployed with increasing autonomy, it is important to ensure they do not take harmful actions unnoticed. As a potential mitigation, we investigate Chain-of-Thought (CoT) monitoring, wherein a weaker trusted monitor model continuously oversees the intermediate reasoning steps of a more powerful but untrusted model. We compare CoT monitoring to action-only monitoring, where only final outputs are reviewed, in a red-teaming setup where the untrusted model is instructed to pursue harmful side tasks while completing a coding problem. We find that while CoT monitoring is more effective than overseeing only model outputs in scenarios where action-only monitoring fails to reliably identify sabotage, reasoning traces can contain misleading rationalizations that deceive the CoT monitors, reducing performance in obvious sabotage cases. To address this, we introduce a hybrid protocol that independently scores model reasoning and actions, and combines them using a weighted average. Our hybrid monitor consistently outperforms both CoT and action-only monitors across all tested models and tasks, with detection rates twice higher than action-only monitoring for subtle deception scenarios.
comment: To be published in the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Mixture of Attention Spans: Optimizing LLM Inference Efficiency with Heterogeneous Sliding-Window Lengths
Sliding-window attention offers a hardware-efficient solution to the memory and throughput challenges of Large Language Models (LLMs) in long-context scenarios. Existing methods typically employ a single window length across all attention heads and input sizes. However, this uniform approach fails to capture the heterogeneous attention patterns inherent in LLMs, ignoring their distinct accuracy-latency trade-offs. To address this challenge, we propose *Mixture of Attention Spans* (MoA), which automatically tailors distinct sliding-window length configurations to different heads and layers. MoA constructs and navigates a search space of various window lengths and their scaling rules relative to input sizes. It profiles the model, evaluates potential configurations, and pinpoints the optimal length configurations for each head. MoA adapts to varying input sizes, revealing that some attention heads expand their focus to accommodate longer inputs, while other heads consistently concentrate on fixed-length local contexts. Experiments show that MoA increases the effective context length by 3.9x with the same average sliding-window length, boosting retrieval accuracy by 1.5-7.1x over the uniform-window baseline across Vicuna-{7B, 13B} and Llama3-{8B, 70B} models. Moreover, MoA narrows the performance gap with full attention, reducing the maximum relative performance drop from 9%-36% to within 5% across three long-context understanding benchmarks. MoA achieves a 1.2-1.4x GPU memory reduction, boosting decode throughput by 6.6-8.2x and 1.7-1.9x over FlashAttention2 and vLLM, with minimal performance impact. Our code is available at: https://github.com/thu-nics/MoA
comment: Published at CoLM'25
♻ ☆ Relative Advantage Debiasing for Watch-Time Prediction in Short-Video Recommendation
Watch time is widely used as a proxy for user satisfaction in video recommendation platforms. However, raw watch times are influenced by confounding factors such as video duration, popularity, and individual user behaviors, potentially distorting preference signals and resulting in biased recommendation models. We propose a novel relative advantage debiasing framework that corrects watch time by comparing it to empirically derived reference distributions conditioned on user and item groups. This approach yields a quantile-based preference signal and introduces a two-stage architecture that explicitly separates distribution estimation from preference learning. Additionally, we present distributional embeddings to efficiently parameterize watch-time quantiles without requiring online sampling or storage of historical data. Both offline and online experiments demonstrate significant improvements in recommendation accuracy and robustness compared to existing baseline methods.
♻ ☆ Position: Beyond Euclidean -- Foundation Models Should Embrace Non-Euclidean Geometries
In the era of foundation models and Large Language Models (LLMs), Euclidean space has been the de facto geometric setting for machine learning architectures. However, recent literature has demonstrated that this choice comes with fundamental limitations. At a large scale, real-world data often exhibits inherently non-Euclidean structures, such as multi-way relationships, hierarchies, symmetries, and non-isotropic scaling, in a variety of domains, such as languages, vision, and the natural sciences. It is challenging to effectively capture these structures within the constraints of Euclidean spaces. This position paper argues that moving beyond Euclidean geometry is not merely an optional enhancement but a necessity to maintain the scaling law for the next-generation of foundation models. By adopting these geometries, foundation models could more efficiently leverage the aforementioned structures. Task-aware adaptability that dynamically reconfigures embeddings to match the geometry of downstream applications could further enhance efficiency and expressivity. Our position is supported by a series of theoretical and empirical investigations of prevalent foundation models. Finally, we outline a roadmap for integrating non-Euclidean geometries into foundation models, including strategies for building geometric foundation models via fine-tuning, training from scratch, and hybrid approaches.
comment: 27 pages, 6 figures, LoG Conference 2025
♻ ☆ RoPECraft: Training-Free Motion Transfer with Trajectory-Guided RoPE Optimization on Diffusion Transformers
We propose RoPECraft, a training-free video motion transfer method for diffusion transformers that operates solely by modifying their rotary positional embeddings (RoPE). We first extract dense optical flow from a reference video, and utilize the resulting motion offsets to warp the complex-exponential tensors of RoPE, effectively encoding motion into the generation process. These embeddings are then further optimized during denoising time steps via trajectory alignment between the predicted and target velocities using a flow-matching objective. To keep the output faithful to the text prompt and prevent duplicate generations, we incorporate a regularization term based on the phase components of the reference video's Fourier transform, projecting the phase angles onto a smooth manifold to suppress high-frequency artifacts. Experiments on benchmarks reveal that RoPECraft outperforms all recently published methods, both qualitatively and quantitatively.
comment: https://berkegokmen1.github.io/RoPECraft/
♻ ☆ Realistic CDSS Drug Dosing with End-to-end Recurrent Q-learning for Dual Vasopressor Control
Reinforcement learning (RL) applications in Clinical Decision Support Systems (CDSS) frequently encounter skepticism because models may recommend inoperable dosing decisions. We propose an end-to-end offline RL framework for dual vasopressor administration in Intensive Care Units (ICUs) that directly addresses this challenge through principled action space design. Our method integrates discrete, continuous, and directional dosing strategies with conservative Q-learning and incorporates a novel recurrent modeling using a replay buffer to capture temporal dependencies in ICU time-series data. Our comparative analysis of norepinephrine dosing strategies across different action space formulations reveals that the designed action spaces improve interpretability and facilitate clinical adoption while preserving efficacy. Empirical results on eICU and MIMIC demonstrate that action space design profoundly influences learned behavioral policies. Compared with baselines, the proposed methods achieve more than 3x expected reward improvements, while aligning with established clinical protocols.
comment: 13 pages, 5 figures. Neurips 2025 Workshop Learning from Time Series for Health
♻ ☆ Hyperparameter Optimization in Machine Learning
Hyperparameters are configuration variables controlling the behavior of machine learning algorithms. They are ubiquitous in machine learning and artificial intelligence and the choice of their values determines the effectiveness of systems based on these technologies. Manual hyperparameter search is often time-consuming and becomes infeasible when the number of hyperparameters is large. Automating the search is an important step towards advancing, streamlining, and systematizing machine learning, freeing researchers and practitioners alike from the burden of finding a good set of hyperparameters by trial and error. In this survey, we present a unified treatment of hyperparameter optimization, providing the reader with examples, insights into the state-of-the-art, and numerous links to further reading. We cover the main families of techniques to automate hyperparameter search, often referred to as hyperparameter optimization or tuning, including random and quasi-random search, bandit-, model-, population-, and gradient-based approaches. We further discuss extensions, including online, constrained, and multi-objective formulations, touch upon connections with other fields, such as meta-learning and neural architecture search, and conclude with open questions and future research directions.
comment: https://www.nowpublishers.com/article/Details/MAL-088
♻ ☆ Enforcing Hard Linear Constraints in Deep Learning Models with Decision Rules
Deep learning models are increasingly deployed in safety-critical tasks where predictions must satisfy hard constraints, such as physical laws, fairness requirements, or safety limits. However, standard architectures lack built-in mechanisms to enforce such constraints, and existing approaches based on regularization or projection are often limited to simple constraints, computationally expensive, or lack feasibility guarantees. This paper proposes a model-agnostic framework for enforcing input-dependent linear equality and inequality constraints on neural network outputs. The architecture combines a task network trained for prediction accuracy with a safe network trained using decision rules from the stochastic and robust optimization literature to ensure feasibility across the entire input space. The final prediction is a convex combination of the two subnetworks, guaranteeing constraint satisfaction during both training and inference without iterative procedures or runtime optimization. We prove that the architecture is a universal approximator of constrained functions and derive computationally tractable formulations based on linear decision rules. Empirical results on benchmark regression tasks show that our method consistently satisfies constraints while maintaining competitive accuracy and low inference latency.
comment: 1 figure
♻ ☆ Walking the Weight Manifold: a Topological Approach to Conditioning Inspired by Neuromodulation
One frequently wishes to learn a range of similar tasks as efficiently as possible, re-using knowledge across tasks. In artificial neural networks, this is typically accomplished by conditioning a network upon task context by injecting context as input. Brains have a different strategy: the parameters themselves are modulated as a function of various neuromodulators such as serotonin. Here, we take inspiration from neuromodulation and propose to learn weights which are smoothly parameterized functions of task context variables. Rather than optimize a weight vector, i.e. a single point in weight space, we optimize a smooth manifold in weight space with a predefined topology. To accomplish this, we derive a formal treatment of optimization of manifolds as the minimization of a loss functional subject to a constraint on volumetric movement, analogous to gradient descent. During inference, conditioning selects a single point on this manifold which serves as the effective weight matrix for a particular sub-task. This strategy for conditioning has two main advantages. First, the topology of the manifold (whether a line, circle, or torus) is a convenient lever for inductive biases about the relationship between tasks. Second, learning in one state smoothly affects the entire manifold, encouraging generalization across states. To verify this, we train manifolds with several topologies, including straight lines in weight space (for conditioning on e.g. noise level in input data) and ellipses (for rotated images). Despite their simplicity, these parameterizations outperform conditioning identical networks by input concatenation and better generalize to out-of-distribution samples. These results suggest that modulating weights over low-dimensional manifolds offers a principled and effective alternative to traditional conditioning.
comment: 17 pages, 4 figures. Updated author list
♻ ☆ SafeFix: Targeted Model Repair via Controlled Image Generation
Deep learning models for visual recognition often exhibit systematic errors due to underrepresented semantic subpopulations. Although existing debugging frameworks can pinpoint these failures by identifying key failure attributes, repairing the model effectively remains difficult. Current solutions often rely on manually designed prompts to generate synthetic training images -- an approach prone to distribution shift and semantic errors. To overcome these challenges, we introduce a model repair module that builds on an interpretable failure attribution pipeline. Our approach uses a conditional text-to-image model to generate semantically faithful and targeted images for failure cases. To preserve the quality and relevance of the generated samples, we further employ a large vision-language model (LVLM) to filter the outputs, enforcing alignment with the original data distribution and maintaining semantic consistency. By retraining vision models with this rare-case-augmented synthetic dataset, we significantly reduce errors associated with rare cases. Our experiments demonstrate that this targeted repair strategy improves model robustness without introducing new bugs. Code is available at https://github.com/oxu2/SafeFix
♻ ☆ Scaling Up Active Testing to Large Language Models NeurIPS 2025
Active testing enables label-efficient evaluation of predictive models through careful data acquisition, but it can pose a significant computational cost. We identify cost-saving measures that enable active testing to be scaled up to large language models (LLMs). In particular we show that the surrogate model used to guide data acquisition can be constructed cheaply using in-context learning, does not require updating within an active-testing loop, and can be smaller than the target model. We even find we can make good data-acquisition decisions without making predictions with the target model. As a result we are able to achieve much more accurate evaluations of LLM performance relative to using randomly acquired data. We additionally introduce a bootstrap estimator of evaluation error, which we show to be a useful indicator of how well active testing is working within a single run.
comment: Published at NeurIPS 2025
Genomics 2
☆ Fast and Flexible Flow Decompositions in General Graphs via Dominators
Multi-assembly methods rely at their core on a flow decomposition problem, namely, decomposing a weighted graph into weighted paths or walks. However, most results over the past decade have focused on decompositions over directed acyclic graphs (DAGs). This limitation has lead to either purely heuristic methods, or in applications transforming a graph with cycles into a DAG via preprocessing heuristics. In this paper we show that flow decomposition problems can be solved in practice also on general graphs with cycles, via a framework that yields fast and flexible Mixed Integer Linear Programming (MILP) formulations. Our key technique relies on the graph-theoretic notion of dominator tree, which we use to find all safe sequences of edges, that are guaranteed to appear in some walk of any flow decomposition solution. We generalize previous results from DAGs to cyclic graphs, by showing that maximal safe sequences correspond to extensions of common leaves of two dominator trees, and that we can find all of them in time linear in their size. Using these, we can accelerate MILPs for any flow decomposition into walks in general graphs, by setting to (at least) 1 suitable variables encoding solution walks, and by setting to 0 other walks variables non-reachable to and from safe sequences. This reduces model size and eliminates costly linearizations of MILP variable products. We experiment with three decomposition models (Minimum Flow Decomposition, Least Absolute Errors and Minimum Path Error), on four bacterial datasets. Our pre-processing enables up to thousand-fold speedups and solves even under 30 seconds many instances otherwise timing out. We thus hope that our dominator-based MILP simplification framework, and the accompanying software library can become building blocks in multi-assembly applications.
☆ The TAG array of a multiple sequence alignment
Modern genomic analyses increasingly rely on pangenomes, that is, representations of the genome of entire populations. The simplest representation of a pangenome is a set of individual genome sequences. Compared to e.g. sequence graphs, this has the advantage that efficient exact search via indexes based on the Burrows-Wheeler Transform (BWT) is possible, that no chimeric sequences are created, and that the results are not influenced by heuristics. However, such an index may report a match in thousands of positions even if these all correspond to the same locus, making downstream analysis unnecessarily expensive. For sufficiently similar sequences (e.g. human chromosomes), a multiple sequence alignment (MSA) can be computed. Since an MSA tends to group similar strings in the same columns, it is likely that a string occurring thousands of times in the pangenome can be described by very few columns in the MSA. We describe a method to tag entries in the BWT with the corresponding column in the MSA and develop an index that can map matches in the BWT to columns in the MSA in time proportional to the output. As a by-product, we can efficiently project a match to a designated reference genome, a capability that current pangenome aligners based on the BWT lack.
Quantitative Methods 9
☆ Beyond Protein Language Models: An Agentic LLM Framework for Mechanistic Enzyme Design
We present Genie-CAT, a tool-augmented large-language-model (LLM) system designed to accelerate scientific hypothesis generation in protein design. Using metalloproteins (e.g., ferredoxins) as a case study, Genie-CAT integrates four capabilities -- literature-grounded reasoning through retrieval-augmented generation (RAG), structural parsing of Protein Data Bank files, electrostatic potential calculations, and machine-learning prediction of redox properties -- into a unified agentic workflow. By coupling natural-language reasoning with data-driven and physics-based computation, the system generates mechanistically interpretable, testable hypotheses linking sequence, structure, and function. In proof-of-concept demonstrations, Genie-CAT autonomously identifies residue-level modifications near [Fe--S] clusters that affect redox tuning, reproducing expert-derived hypotheses in a fraction of the time. The framework highlights how AI agents combining language models with domain-specific tools can bridge symbolic reasoning and numerical simulation, transforming LLMs from conversational assistants into partners for computational discovery.
comment: 10 pages, 4 figures
☆ On the role of fractional Brownian motion in models of chemotaxis and stochastic gradient ascent
Cell migration often exhibits long-range temporal correlations and anomalous diffusion, even in the absence of external guidance cues such as chemical gradients or topographical constraints. These observations raise a fundamental question: do such correlations simply reflect internal cellular processes, or do they enhance a cell's ability to navigate complex environments? In this work, we explore how temporally correlated noise (modeled using fractional Brownian motion) influences chemotactic search dynamics. Through computational experiments, we show that superdiffusive motion, when combined with gradient-driven migration, enables robust exploration of the chemoattractant landscape. Cells reliably reach the global maximum of the concentration field, even in the presence of spatial noise, secondary cues, or irregular signal geometry. We quantify this behavior by analyzing the distribution of first hitting times under varying degrees of temporal correlation. Notably, our results are consistent across diverse conditions, including flat and curved substrates, and scenarios involving both primary and self-generated chemotactic signals. Beyond biological implications, these findings also offer insight into the design of optimization and sampling algorithms that benefit from structured stochasticity.
comment: 29 pages
☆ Blini: lightweight nucleotide sequence search and dereplication
Blini is a tool for quick lookup of nucleotide sequences in databases, and for quick dereplication of sequence collections. It is meant to help clean and characterize large collections of assembled contigs or long sequences that would otherwise be too big to search with online tools, or too demanding for a local machine to process. Benchmarks on simulated data demonstrate that it is faster than existing tools and requires less RAM, while preserving search and clustering accuracy.
☆ Development of a fully deep learning model to improve the reproducibility of sector classification systems for predicting unerupted maxillary canine likelihood of impaction
Objectives. The aim of the present study was to develop a fully deep learning model to reduce the intra- and inter-operator reproducibility of sector classification systems for predicting unerupted maxillary canine likelihood of impaction. Methods. Three orthodontists (Os) and three general dental practitioners (GDPs) classified the position of unerupted maxillary canines on 306 radiographs (T0) according to the three different sector classification systems (5-, 4-, and 3-sector classification system). The assessment was repeated after four weeks (T1). Intra- and inter-observer agreement were evaluated with Cohen's K and Fleiss K, and between group differences with a z-test. The same radiographs were tested on different artificial intelligence (AI) models, pre-trained on an extended dataset of 1,222 radiographs. The best-performing model was identified based on its sensitivity and precision. Results. The 3-sector system was found to be the classification method with highest reproducibility, with an agreement (Cohen's K values) between observations (T0 versus T1) for each examiner ranged from 0.80 to 0.92, and an overall agreement of 0.85 [95% confidence interval (CI) = 0.83-0.87]. The overall inter-observer agreement (Fleiss K) ranged from 0.69 to 0.7. The educational background did not affect either intra- or inter-observer agreement (p>0.05). DenseNet121 proved to be the best-performing model in allocating impacted canines in the three different classes, with an overall accuracy of 76.8%. Conclusion. AI models can be designed to automatically classify the position of unerupted maxillary canines.
☆ Parallelism in Neurodegenerative Biomarker Tests: Hidden Errors and the Risk of Misconduct
Biomarkers are critical tools in the diagnosis and monitoring of neurodegenerative diseases. Reliable quantification depends on assay validity, especially the demonstration of parallelism between diluted biological samples and the assay's standard curve. Inadequate parallelism can lead to biased concentration estimates, jeopardizing both clinical and research applications. Here we systematically review the evidence of analytical parallelism in body fluid (serum, plasma, cerebrospinal fluid) biomarker assays for neurodegeneration and evaluate the extent, reproducibility, and reporting quality of partial parallelism. This systematic review was registered on PROSPERO (CRD42024568766) and conducted in accordance with PRISMA guidelines. We included studies published between December 2010 to July 2024 without language restrictions. ... In conclusion, partial parallelism was infrequently observed and inconsistently reported in most biomarker assays for neurodegeneration. Narrow dilution ranges and variable methodologies limit generalizability. Transparent reporting of dilution protocols and adherence to established analytical validation guidelines is needed. This systematic review has practical implications for clinical trial design, regulatory approval processes, and the reliability of biomarker-based diagnostics.
☆ Masked Autoencoder Joint Learning for Robust Spitzoid Tumor Classification
Accurate diagnosis of spitzoid tumors (ST) is critical to ensure a favorable prognosis and to avoid both under- and over-treatment. Epigenetic data, particularly DNA methylation, provide a valuable source of information for this task. However, prior studies assume complete data, an unrealistic setting as methylation profiles frequently contain missing entries due to limited coverage and experimental artifacts. Our work challenges these favorable scenarios and introduces ReMAC, an extension of ReMasker designed to tackle classification tasks on high-dimensional data under complete and incomplete regimes. Evaluation on real clinical data demonstrates that ReMAC achieves strong and robust performance compared to competing classification methods in the stratification of ST. Code is available: https://github.com/roshni-mahtani/ReMAC.
comment: Accepted in CASEIB 2025
♻ ☆ A Goemans-Williamson type algorithm for identifying subcohorts in clinical trials
We design an efficient algorithm that outputs tests for identifying predominantly homogeneous subcohorts of patients from large in-homogeneous datasets. Our theoretical contribution is a rounding technique, similar to that of Goemans and Wiliamson (1995), that approximates the optimal solution within a factor of $0.82$. As an application, we use our algorithm to trade-off sensitivity for specificity to systematically identify clinically interesting homogeneous subcohorts of patients in the RNA microarray dataset for breast cancer from Curtis et al. (2012). One such clinically interesting subcohort suggests a link between LXR over-expression and BRCA2 and MSH6 methylation levels for patients in that subcohort.
♻ ☆ KINDLE: Knowledge-Guided Distillation for Prior-Free Gene Regulatory Network Inference NeurIPS 2025
Gene regulatory network (GRN) inference serves as a cornerstone for deciphering cellular decision-making processes. Early approaches rely exclusively on gene expression data, thus their predictive power remain fundamentally constrained by the vast combinatorial space of potential gene-gene interactions. Subsequent methods integrate prior knowledge to mitigate this challenge by restricting the solution space to biologically plausible interactions. However, we argue that the effectiveness of these approaches is contingent upon the precision of prior information and the reduction in the search space will circumscribe the models' potential for novel biological discoveries. To address these limitations, we introduce KINDLE, a three-stage framework that decouples GRN inference from prior knowledge dependencies. KINDLE trains a teacher model that integrates prior knowledge with temporal gene expression dynamics and subsequently distills this encoded knowledge to a student model, enabling accurate GRN inference solely from expression data without access to any prior. KINDLE achieves state-of-the-art performance across four benchmark datasets. Notably, it successfully identifies key transcription factors governing mouse embryonic development and precisely characterizes their functional roles. In mouse hematopoietic stem cell data, KINDLE accurately predicts fate transition outcomes following knockout of two critical regulators (Gata1 and Spi1). These biological validations demonstrate our framework's dual capability in maintaining topological inference precision while preserving discovery potential for novel biological mechanisms.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Transforming Hyperspectral Images Into Chemical Maps: A Novel End-to-End Deep Learning Approach
Current approaches to chemical map generation from hyperspectral images are based on models such as partial least squares (PLS) regression, generating pixel-wise predictions that do not consider spatial context and suffer from a high degree of noise. This study proposes an end-to-end deep learning approach using a modified version of U-Net and a custom loss function to directly obtain chemical maps from hyperspectral images, skipping all intermediate steps required for traditional pixel-wise analysis. This study compares the U-Net with the traditional PLS regression on a real dataset of pork belly samples with associated mean fat reference values. The U-Net obtains a test set root mean squared error that is 7% lower than that of PLS regression on the task of mean fat prediction. At the same time, U-Net generates fine detail chemical maps where 99.91% of the variance is spatially correlated. Conversely, only 2.37% of the variance in the PLS-generated chemical maps is spatially correlated, indicating that each pixel-wise prediction is largely independent of neighboring pixels. Additionally, while the PLS-generated chemical maps contain predictions far beyond the physically possible range of 0-100%, U-Net learns to stay inside this range. Thus, the findings of this study indicate that U-Net is superior to PLS for chemical map generation.
Cell Behavior 2
☆ Enumeration of Autocatalytic Subsystems in Large Chemical Reaction Networks
Autocatalysis is an important feature of metabolic networks, contributing crucially to the self-maintenance of organisms. Autocatalytic subsystems of chemical reaction networks (CRNs) are characterized in terms of algebraic conditions on submatrices of the stoichiometric matrix. Here, we derive sufficient conditions for subgraphs supporting irreducible autocatalytic systems in the bipartite König representation of the CRN. On this basis, we develop an efficient algorithm to enumerate autocatalytic subnetworks and, as a special case, autocatalytic cores, i.e., minimal autocatalytic subnetworks, in full-size metabolic networks. The same algorithmic approach can also be used to determine autocatalytic cores only. As a showcase application, we provide a complete analysis of autocatalysis in the core metabolism of E. coli and enumerate irreducible autocatalytic subsystems of limited size in full-fledged metabolic networks of E. coli, human erythrocytes, and Methanosarcina barkeri (Archea). The mathematical and algorithmic results are accompanied by software enabling the routine analysis of autocatalysis in large CRNs.
comment: 64 Pages (40 main + 24 Supplementary Information), 15 figures
♻ ☆ Survival and invasion dynamics in cell populations: an analytical framework for threshold behaviour in nonlinear age-structured models
Cell populations invade through a combination of proliferation and motility. Proliferation depends on the internal timing of cell division: how long cells take to complete the cell cycle. This timing varies substantially within (and across) cell types, creating age structure where cells at different times since their last division have different propensities to divide. Classical mathematical models of cell spreading treat division as memoryless and predict exponential cell-cycle-time distributions. Lineage tracing, by contrast, reveals peaked, gamma-like distributions that indicate a maturation delay leading to a fertility window. This gap motivates a modelling framework that incorporates age-dependent cell division rates while retaining analytical tractability. We address this through a moment-hierarchy framework that tracks time since cell division, with age resetting to zero at division. The framework yields explicit formulae for steady-state age distributions, cell-cycle-time distributions, and invasion speeds. For age-independent rates, we recover classical Fisher--KPP. Three fundamental principles emerge. First, age structure systematically reduces a population's carrying capacity and narrows the viable parameter range for positive steady states. Second, classical linear theory overestimates invasion speeds; the true minimal speed is slower when division is age-dependent. Third, the parameter condition for population survival is identical to the condition for a positive invasion speed.
Computation and Language 12
☆ Evaluating Large Language Models on the 2026 Korean CSAT Mathematics Exam: Measuring Mathematical Ability in a Zero-Data-Leakage Setting
This study systematically evaluated the mathematical reasoning capabilities of Large Language Models (LLMs) using the 2026 Korean College Scholastic Ability Test (CSAT) Mathematics section, ensuring a completely contamination-free evaluation environment. To address data leakage issues in existing benchmarks, we digitized all 46 questions (22 common and 24 elective) within two hours of the exam's public release, eliminating any possibility of inclusion in model training data. We conducted comprehensive evaluations of 24 state-of-the-art LLMs across varying input modalities (text, image, text+figure) and prompt languages (Korean, English). GPT-5 Codex achieved the only perfect score (100 points) with text input and Korean prompts, while Grok 4, GPT-5, and Deepseek R1 scored above 95 points. Notably, gpt-oss-20B achieved 95.7 points despite its relatively small size, demonstrating high cost-effectiveness. Problem-specific analysis revealed geometry as the weakest domain (77.7% average) with significant performance degradation on 4-point high-difficulty problems. Text input consistently outperformed image input, while prompt language effects varied by model scale. In reasoning enhancement experiments with GPT-5 series, increased reasoning intensity improved performance (from 82.6 to 100 points) but quadrupled token usage and drastically reduced efficiency, suggesting that models with minimal reasoning may be more practical. This research contributes: (1) implementation of a completely unexposed evaluation environment, (2) a real-exam-based LLM assessment framework, and (3) a practical evaluation perspective integrating performance, cost, and time considerations. Detailed results and model comparisons are available at the 2026 Korean CSAT LLM Evaluation Leaderboard (https://isoft.cnu.ac.kr/csat2026/).
comment: 52 pages, Korean
☆ No Free Lunch in Language Model Bias Mitigation? Targeted Bias Reduction Can Exacerbate Unmitigated LLM Biases
Large Language Models (LLMs) inherit societal biases from their training data, potentially leading to harmful or unfair outputs. While various techniques aim to mitigate these biases, their effects are often evaluated only along the dimension of the bias being targeted. This work investigates the cross-category consequences of targeted bias mitigation. We study four bias mitigation techniques applied across ten models from seven model families, and we explore racial, religious, profession- and gender-related biases. We measure the impact of debiasing on model coherence and stereotypical preference using the StereoSet benchmark. Our results consistently show that while targeted mitigation can sometimes reduce bias in the intended dimension, it frequently leads to unintended and often negative consequences in others, such as increasing model bias and decreasing general coherence. These findings underscore the critical need for robust, multi-dimensional evaluation tools when examining and developing bias mitigation strategies to avoid inadvertently shifting or worsening bias along untargeted axes.
☆ Majority of the Bests: Improving Best-of-N via Bootstrapping
Sampling multiple outputs from a Large Language Model (LLM) and selecting the most frequent (Self-consistency) or highest-scoring (Best-of-N) candidate is a popular approach to achieve higher accuracy in tasks with discrete final answers. Best-of-N (BoN) selects the output with the highest reward, and with perfect rewards, it often achieves near-perfect accuracy. With imperfect rewards from reward models, however, BoN fails to reliably find the correct answer and its performance degrades drastically. We consider the distribution of BoN's outputs and highlight that, although the correct answer does not usually have a probability close to one under imperfect rewards, it is often the most likely outcome. This suggests that the mode of this distribution can be more reliably correct than a sample from it. Based on this idea, we propose Majority-of-the-Bests (MoB), a novel selection mechanism that estimates the output distribution of BoN via bootstrapping and selects its mode. Experimental results across five benchmarks, three different base LLMs, and two reward models demonstrate consistent improvements over BoN in 25 out of 30 setups. We also provide theoretical results for the consistency of the bootstrapping. MoB serves as a simple, yet strong alternative to BoN and self-consistency, and more broadly, motivates further research in more nuanced selection mechanisms.
☆ OpenGloss: A Synthetic Encyclopedic Dictionary and Semantic Knowledge Graph
We present OpenGloss, a synthetic encyclopedic dictionary and semantic knowledge graph for English that integrates lexicographic definitions, encyclopedic context, etymological histories, and semantic relationships in a unified resource. OpenGloss contains 537K senses across 150K lexemes, on par with WordNet 3.1 and Open English WordNet, while providing more than four times as many sense definitions. These lexemes include 9.1M semantic edges, 1M usage examples, 3M collocations, and 60M words of encyclopedic content. Generated through a multi-agent procedural generation pipeline with schema-validated LLM outputs and automated quality assurance, the entire resource was produced in under one week for under $1,000. This demonstrates that structured generation can create comprehensive lexical resources at cost and time scales impractical for manual curation, enabling rapid iteration as foundation models improve. The resource addresses gaps in pedagogical applications by providing integrated content -- definitions, examples, collocations, encyclopedias, etymology -- that supports both vocabulary learning and natural language processing tasks. As a synthetically generated resource, OpenGloss reflects both the capabilities and limitations of current foundation models. The dataset is publicly available on Hugging Face under CC-BY 4.0, enabling researchers and educators to build upon and adapt this resource.
comment: 30 pages, 5 figures, 8 tables. Dataset available at https://huggingface.co/datasets/mjbommar/opengloss-dictionary
☆ Prompt Optimization as a State-Space Search Problem
Language Models are extremely susceptible to performance collapse with even small changes to input prompt strings. Libraries such as DSpy (from Stanford NLP) avoid this problem through demonstration-based prompt optimisation. Inspired by this, I propose an alternative approach that treats prompt optimisation as a classical state-space search problem. I model the prompt space as a graph where nodes represent prompt states and edges correspond to deliberate transformations such as shortening, adding examples, or re- ordering content. Using beam search and random walk algorithms, I systematically explore this space, evaluating candidates on development sets and pruning unpromising branches. Across five NLP tasks (sentiment classification, question answering, summarisation, reason- ing, and natural language inference), I find that even shallow search configurations (beam width=2, depth=2) improve upon seed prompts on development sets. For instance, beam search achieves development accuracy gains from 0.40 to 0.80 on reasoning tasks, though test set improvements are more modest (0.20 to 0.50), indicating overfitting to the develop- ment heuristic. Analysis of successful optimisation paths reveals that transformations that make prompts concise appear most frequently, while verbosity operators are never selected. My results validate prompt optimization as a search problem and suggest that with greater computational resources and improved evaluation metrics, deeper exploration could yield more robust prompts that generalize beyond development sets. Code and implementation are available at [https://github.com/MaanasTaneja/PromptOptimiser].
☆ A Unified BERT-CNN-BiLSTM Framework for Simultaneous Headline Classification and Sentiment Analysis of Bangla News
In our daily lives, newspapers are an essential information source that impacts how the public talks about present-day issues. However, effectively navigating the vast amount of news content from different newspapers and online news portals can be challenging. Newspaper headlines with sentiment analysis tell us what the news is about (e.g., politics, sports) and how the news makes us feel (positive, negative, neutral). This helps us quickly understand the emotional tone of the news. This research presents a state-of-the-art approach to Bangla news headline classification combined with sentiment analysis applying Natural Language Processing (NLP) techniques, particularly the hybrid transfer learning model BERT-CNN-BiLSTM. We have explored a dataset called BAN-ABSA of 9014 news headlines, which is the first time that has been experimented with simultaneously in the headline and sentiment categorization in Bengali newspapers. Over this imbalanced dataset, we applied two experimental strategies: technique-1, where undersampling and oversampling are applied before splitting, and technique-2, where undersampling and oversampling are applied after splitting on the In technique-1 oversampling provided the strongest performance, both headline and sentiment, that is 78.57\% and 73.43\% respectively, while technique-2 delivered the highest result when trained directly on the original imbalanced dataset, both headline and sentiment, that is 81.37\% and 64.46\% respectively. The proposed model BERT-CNN-BiLSTM significantly outperforms all baseline models in classification tasks, and achieves new state-of-the-art results for Bangla news headline classification and sentiment analysis. These results demonstrate the importance of leveraging both the headline and sentiment datasets, and provide a strong baseline for Bangla text classification in low-resource.
☆ A Benchmark for Zero-Shot Belief Inference in Large Language Models
Beliefs are central to how humans reason, communicate, and form social connections, yet most computational approaches to studying them remain confined to narrow sociopolitical contexts and rely on fine-tuning for optimal performance. Despite the growing use of large language models (LLMs) across disciplines, how well these systems generalize across diverse belief domains remains unclear. We introduce a systematic, reproducible benchmark that evaluates the ability of LLMs to predict individuals' stances on a wide range of topics in a zero-shot setting using data from an online debate platform. The benchmark includes multiple informational conditions that isolate the contribution of demographic context and known prior beliefs to predictive success. Across several small- to medium-sized models, we find that providing more background information about an individual improves predictive accuracy, but performance varies substantially across belief domains. These findings reveal both the capacity and limitations of current LLMs to emulate human reasoning, advancing the study of machine behavior and offering a scalable framework for modeling belief systems beyond the sociopolitical sphere.
comment: 28 pages, 5 figures
☆ Toward Trustworthy Difficulty Assessments: Large Language Models as Judges in Programming and Synthetic Tasks
Large Language Models (LLMs) have demonstrated impressive capabilities in natural language and code generation, and are increasingly deployed as automatic judges of model outputs and learning activities. Yet, their behavior on structured tasks such as predicting the difficulty of competitive programming problems remains under-explored. We conduct a systematic comparison of GPT-4o, used purely as a natural-language difficulty assessor, against an interpretable Light-GBM ensemble trained on explicit numeric and textual features. On a dataset of 1,825 LeetCode problems labeled Easy, Medium, or Hard, LightGBM attains 86% accuracy, whereas GPT-4o reaches only 37.75%. Detailed analyses, including confusion matrices and SHAP-based interpretability, show that numeric constraints -- such as input size limits and acceptance rates -- play a crucial role in separating Hard problems from easier ones. By contrast, GPT-4o often overlooks these cues and exhibits a strong bias toward simpler categories. We further probe GPT-4o through a synthetic Hard-problem generation protocol. Surprisingly, GPT-4o labels almost all of its own synthetic Hard problems as Medium, contradicting its tendency to downgrade real Hard problems to Easy. Our findings connect to recent work on LLMs-as-judges and automatic difficulty estimation in programming and education, and highlight concrete failure modes that must be addressed before LLM-based judges can be considered trustworthy in competitive programming, educational platforms, or reinforcement-learning pipelines.
♻ ☆ LLMs4All: A Review of Large Language Models Across Academic Disciplines
Cutting-edge Artificial Intelligence (AI) techniques keep reshaping our view of the world. For example, Large Language Models (LLMs) based applications such as ChatGPT have shown the capability of generating human-like conversation on extensive topics. Due to the impressive performance on a variety of language-related tasks (e.g., open-domain question answering, translation, and document summarization), one can envision the far-reaching impacts that can be brought by the LLMs with broader real-world applications (e.g., customer service, education and accessibility, and scientific discovery). Inspired by their success, this paper will offer an overview of state-of-the-art LLMs and their integration into a wide range of academic disciplines, including: (1) arts, letters, and law (e.g., history, philosophy, political science, arts and architecture, law), (2) economics and business (e.g., finance, economics, accounting, marketing), and (3) science and engineering (e.g., mathematics, physics and mechanical engineering, chemistry and chemical engineering, life sciences and bioengineering, earth sciences and civil engineering, computer science and electrical engineering). Integrating humanity and technology, in this paper, we will explore how LLMs are shaping research and practice in these fields, while also discussing key limitations, open challenges, and future directions in the era of generative AI. The review of how LLMs are engaged across disciplines-along with key observations and insights-can help researchers and practitioners interested in exploiting LLMs to advance their works in diverse real-world applications.
♻ ☆ Non-Linear Scoring Model for Translation Quality Evaluation
Analytic Translation Quality Evaluation (TQE), based on Multidimensional Quality Metrics (MQM), traditionally uses a linear error-to-penalty scale calibrated to a reference sample of 1000-2000 words. However, linear extrapolation biases judgment on samples of different sizes, over-penalizing short samples and under-penalizing long ones, producing misalignment with expert intuition. Building on the Multi-Range framework, this paper presents a calibrated, non-linear scoring model that better reflects how human content consumers perceive translation quality across samples of varying length. Empirical data from three large-scale enterprise environments shows that acceptable error counts grow logarithmically, not linearly, with sample size. Psychophysical and cognitive evidence, including the Weber-Fechner law and Cognitive Load Theory, supports this premise by explaining why the perceptual impact of additional errors diminishes while the cognitive burden grows with scale. We propose a two-parameter model E(x) = a * ln(1 + b * x), a, b > 0, anchored to a reference tolerance and calibrated from two tolerance points using a one-dimensional root-finding step. The model yields an explicit interval within which the linear approximation stays within +/-20 percent relative error and integrates into existing evaluation workflows with only a dynamic tolerance function added. The approach improves interpretability, fairness, and inter-rater reliability across both human and AI-generated translations. By operationalizing a perceptually valid scoring paradigm, it advances translation quality evaluation toward more accurate and scalable assessment. The model also provides a stronger basis for AI-based document-level evaluation aligned with human judgment. Implementation considerations for CAT/LQA systems and implications for human and AI-generated text evaluation are discussed.
comment: ongoing work, 38 pages
♻ ☆ Time-To-Inconsistency: A Survival Analysis of Large Language Model Robustness to Adversarial Attacks
Large Language Models (LLMs) have revolutionized conversational AI, yet their robustness in extended multi-turn dialogues remains poorly understood. Existing evaluation frameworks focus on static benchmarks and single-turn assessments, failing to capture the temporal dynamics of conversational degradation that characterize real-world interactions. In this work, we present a large-scale survival analysis of conversational robustness, modeling failure as a time-to-event process over 36,951 turns from 9 state-of-the-art LLMs on the MT-Consistency benchmark. Our framework combines Cox proportional hazards, Accelerated Failure Time (AFT), and Random Survival Forest models with simple semantic drift features. We find that abrupt prompt-to-prompt semantic drift sharply increases the hazard of inconsistency, whereas cumulative drift is counterintuitively \emph{protective}, suggesting adaptation in conversations that survive multiple shifts. AFT models with model-drift interactions achieve the best combination of discrimination and calibration, and proportional hazards checks reveal systematic violations for key drift covariates, explaining the limitations of Cox-style modeling in this setting. Finally, we show that a lightweight AFT model can be turned into a turn-level risk monitor that flags most failing conversations several turns before the first inconsistent answer while keeping false alerts modest. These results establish survival analysis as a powerful paradigm for evaluating multi-turn robustness and for designing practical safeguards for conversational AI systems.
♻ ☆ A Novel Framework for Augmenting Rating Scale Tests with LLM-Scored Text Data
Psychological assessments are dominated by rating scales, which cannot capture the nuance in natural language. Efforts to supplement them with qualitative text have relied on labelled datasets or expert rubrics, limiting scalability. We introduce a framework that avoids this reliance: large language models (LLMs) score free-text responses with simple prompts to produce candidate LLM items, from which we retain those that yield the most test information when co-calibrated with a baseline scale. Using depression as a case study, we developed and tested the method in upper-secondary students (n=693) and a matched synthetic dataset (n=3,000). Results on held-out test sets showed that augmenting a 19-item scale with LLM items improved its precision, accuracy, and convergent validity. Further, the test information gain matched that of adding as many as 16 rating-scale items. This framework leverages the increasing availability of transcribed language to enhance psychometric measures, with applications in clinical health and beyond.
Machine Learning 101
☆ FHE-Agent: Automating CKKS Configuration for Practical Encrypted Inference via an LLM-Guided Agentic Framework
Fully Homomorphic Encryption (FHE), particularly the CKKS scheme, is a promising enabler for privacy-preserving MLaaS, but its practical deployment faces a prohibitive barrier: it heavily relies on domain expertise. Configuring CKKS involves a tightly coupled space of ring dimensions, modulus chains, and packing layouts. Without deep cryptographic knowledge to navigate these interactions, practitioners are restricted to compilers that rely on fixed heuristics. These "one-shot" tools often emit rigid configurations that are either severely over-provisioned in latency or fail to find a feasible solution entirely for deeper networks. We present FHE-Agent, an agentic framework that automates this expert reasoning process. By coupling a Large Language Model (LLM) controller with a deterministic tool suite, FHE-Agent decomposes the search into global parameter selection and layer-wise bottleneck repair. The agents operate within a multi-fidelity workflow, pruning invalid regimes using cheap static analysis and reserving expensive encrypted evaluations for the most promising candidates. We instantiate FHE-Agent on the Orion compiler and evaluate it on standard benchmarks (MLP, LeNet, LoLa) and deeper architectures (AlexNet). FHE-Agent consistently achieves better precision and lower latency than naïve search strategies. Crucially, it automatically discovers feasible, 128-bit secure configurations for complex models where baseline heuristics and one-shot prompts fail to produce a valid setup.
☆ Lean 5.0: A Predictive, Human-AI, and Ethically Grounded Paradigm for Construction Management
This paper introduces Lean 5.0, a human-centric evolution of Lean-Digital integration that connects predictive analytics, AI collaboration, and continuous learning within Industry 5.0 and Construction 5.0 contexts. A systematic literature review (2019-2024) and a 12-week empirical validation study demonstrate measurable performance gains, including a 13% increase in Plan Percent Complete (PPC), 22% reduction in rework, and 42% improvement in forecast accuracy. The study adopts a mixed-method Design Science Research (DSR) approach aligned with PRISMA 2020 guidelines. The paper also examines integration with digital twin and blockchain technologies to improve traceability, auditability, and lifecycle transparency. Despite limitations related to sample size, single-case design, and study duration, the findings show that Lean 5.0 provides a transformative paradigm connecting human cognition with predictive control in construction management.
☆ Kitty: Accurate and Efficient 2-bit KV Cache Quantization with Dynamic Channel-wise Precision Boost
The KV cache is a dominant memory bottleneck for LLM inference. While 4-bit KV quantization preserves accuracy, 2-bit often degrades it, especially on long-context reasoning. We close this gap via an algorithm-system co-design for mixed-precision KV caching: Kitty. On the algorithm side, extensive experiments show that Dynamic Channel-wise Precision Boost -- which ranks Key-cache channels by sensitivity and keeps only a small fraction at higher precision -- maintains near-zero loss in accuracy drop while approaching 2-bit memory. The main challenge is handling dynamic 4-bit channel boosts while keeping the page layout coalesced and the dequantization uniform, with no scattered reads or hard-coded masks. Kitty addresses these issues by decompose each mixed-precision Key page into two tensors with unified 2-bit precision. Based on this, Kitty provides a page-centric KV layout, Triton-compatible page dequantization kernels, and a lightweight runtime pipeline that preserves coalescing and avoids divergence. Across seven tasks and two model families (Qwen3, LLaMA3), Kitty cuts KV memory by nearly 8x with negligible accuracy loss, enabling up to 8x larger batches and 2.1x-4.1x higher throughput under the same memory budget. We release the full implementation of Kitty at https://github.com/Summer-Summer/Kitty.
☆ Health system learning achieves generalist neuroimaging models
Frontier artificial intelligence (AI) models, such as OpenAI's GPT-5 and Meta's DINOv3, have advanced rapidly through training on internet-scale public data, yet such systems lack access to private clinical data. Neuroimaging, in particular, is underrepresented in the public domain due to identifiable facial features within MRI and CT scans, fundamentally restricting model performance in clinical medicine. Here, we show that frontier models underperform on neuroimaging tasks and that learning directly from uncurated data generated during routine clinical care at health systems, a paradigm we call health system learning, yields high-performance, generalist neuroimaging models. We introduce NeuroVFM, a visual foundation model trained on 5.24 million clinical MRI and CT volumes using a scalable volumetric joint-embedding predictive architecture. NeuroVFM learns comprehensive representations of brain anatomy and pathology, achieving state-of-the-art performance across multiple clinical tasks, including radiologic diagnosis and report generation. The model exhibits emergent neuroanatomic understanding and interpretable visual grounding of diagnostic findings. When paired with open-source language models through lightweight visual instruction tuning, NeuroVFM generates radiology reports that surpass frontier models in accuracy, clinical triage, and expert preference. Through clinically grounded visual understanding, NeuroVFM reduces hallucinated findings and critical errors, offering safer clinical decision support. These results establish health system learning as a paradigm for building generalist medical AI and provide a scalable framework for clinical foundation models.
comment: 53 pages, 4 main figures, 10 extended data figures
☆ Bridging Philosophy and Machine Learning: A Structuralist Framework for Classifying Neural Network Representations
Machine learning models increasingly function as representational systems, yet the philosoph- ical assumptions underlying their internal structures remain largely unexamined. This paper develops a structuralist decision framework for classifying the implicit ontological commitments made in machine learning research on neural network representations. Using a modified PRISMA protocol, a systematic review of the last two decades of literature on representation learning and interpretability is conducted. Five influential papers are analysed through three hierarchical criteria derived from structuralist philosophy of science: entity elimination, source of structure, and mode of existence. The results reveal a pronounced tendency toward structural idealism, where learned representations are treated as model-dependent constructions shaped by architec- ture, data priors, and training dynamics. Eliminative and non-eliminative structuralist stances appear selectively, while structural realism is notably absent. The proposed framework clarifies conceptual tensions in debates on interpretability, emergence, and epistemic trust in machine learning, and offers a rigorous foundation for future interdisciplinary work between philosophy of science and machine learning.
comment: 7 pages, 1 figure, 1 table. Developed from the author's bachelor thesis but substantially revised and reformulated for research publication
☆ The Locally Deployable Virtual Doctor: LLM Based Human Interface for Automated Anamnesis and Database Conversion
Recent advances in large language models made it possible to achieve high conversational performance with substantially reduced computational demands, enabling practical on-site deployment in clinical environments. Such progress allows for local integration of AI systems that uphold strict data protection and patient privacy requirements, yet their secure implementation in medicine necessitates careful consideration of ethical, regulatory, and technical constraints. In this study, we introduce MedChat, a locally deployable virtual physician framework that integrates an LLM-based medical chatbot with a diffusion-driven avatar for automated and structured anamnesis. The chatbot was fine-tuned using a hybrid corpus of real and synthetically generated medical dialogues, while model efficiency was optimized via Low-Rank Adaptation. A secure and isolated database interface was implemented to ensure complete separation between patient data and the inference process. The avatar component was realized through a conditional diffusion model operating in latent space, trained on researcher video datasets and synchronized with mel-frequency audio features for realistic speech and facial animation. Unlike existing cloud-based systems, this work demonstrates the feasibility of a fully offline, locally deployable LLM-diffusion framework for clinical anamnesis. The autoencoder and diffusion networks exhibited smooth convergence, and MedChat achieved stable fine-tuning with strong generalization to unseen data. The proposed system thus provides a privacy-preserving, resource-efficient foundation for AI-assisted clinical anamnesis, also in low-cost settings.
☆ FOS: A Large-Scale Temporal Graph Benchmark for Scientific Interdisciplinary Link Prediction
Interdisciplinary scientific breakthroughs mostly emerge unexpectedly, and forecasting the formation of novel research fields remains a major challenge. We introduce FOS (Future Of Science), a comprehensive time-aware graph-based benchmark that reconstructs annual co-occurrence graphs of 65,027 research sub-fields (spanning 19 general domains) over the period 1827-2024. In these graphs, edges denote the co-occurrence of two fields in a single publication and are timestamped with the corresponding publication year. Nodes are enriched with semantic embeddings, and edges are characterized by temporal and topological descriptors. We formulate the prediction of new field-pair linkages as a temporal link-prediction task, emphasizing the "first-time" connections that signify pioneering interdisciplinary directions. Through extensive experiments, we evaluate a suite of state-of-the-art temporal graph architectures under multiple negative-sampling regimes and show that (i) embedding long-form textual descriptions of fields significantly boosts prediction accuracy, and (ii) distinct model classes excel under different evaluation settings. Case analyses show that top-ranked link predictions on FOS align with field pairings that emerge in subsequent years of academic publications. We publicly release FOS, along with its temporal data splits and evaluation code, to establish a reproducible benchmark for advancing research in predicting scientific frontiers.
comment: 21 pages, 10 figures
☆ Majority of the Bests: Improving Best-of-N via Bootstrapping
Sampling multiple outputs from a Large Language Model (LLM) and selecting the most frequent (Self-consistency) or highest-scoring (Best-of-N) candidate is a popular approach to achieve higher accuracy in tasks with discrete final answers. Best-of-N (BoN) selects the output with the highest reward, and with perfect rewards, it often achieves near-perfect accuracy. With imperfect rewards from reward models, however, BoN fails to reliably find the correct answer and its performance degrades drastically. We consider the distribution of BoN's outputs and highlight that, although the correct answer does not usually have a probability close to one under imperfect rewards, it is often the most likely outcome. This suggests that the mode of this distribution can be more reliably correct than a sample from it. Based on this idea, we propose Majority-of-the-Bests (MoB), a novel selection mechanism that estimates the output distribution of BoN via bootstrapping and selects its mode. Experimental results across five benchmarks, three different base LLMs, and two reward models demonstrate consistent improvements over BoN in 25 out of 30 setups. We also provide theoretical results for the consistency of the bootstrapping. MoB serves as a simple, yet strong alternative to BoN and self-consistency, and more broadly, motivates further research in more nuanced selection mechanisms.
☆ Functional Localization Enforced Deep Anomaly Detection Using Fundus Images
Reliable detection of retinal diseases from fundus images is challenged by the variability in imaging quality, subtle early-stage manifestations, and domain shift across datasets. In this study, we systematically evaluated a Vision Transformer (ViT) classifier under multiple augmentation and enhancement strategies across several heterogeneous public datasets, as well as the AEyeDB dataset, a high-quality fundus dataset created in-house and made available for the research community. The ViT demonstrated consistently strong performance, with accuracies ranging from 0.789 to 0.843 across datasets and diseases. Diabetic retinopathy and age-related macular degeneration were detected reliably, whereas glaucoma remained the most frequently misclassified disease. Geometric and color augmentations provided the most stable improvements, while histogram equalization benefited datasets dominated by structural subtlety. Laplacian enhancement reduced performance across different settings. On the Papila dataset, the ViT with geometric augmentation achieved an AUC of 0.91, outperforming previously reported convolutional ensemble baselines (AUC of 0.87), underscoring the advantages of transformer architectures and multi-dataset training. To complement the classifier, we developed a GANomaly-based anomaly detector, achieving an AUC of 0.76 while providing inherent reconstruction-based explainability and robust generalization to unseen data. Probabilistic calibration using GUESS enabled threshold-independent decision support for future clinical implementation.
☆ Bayesian-based Online Label Shift Estimation with Dynamic Dirichlet Priors
Label shift, a prevalent challenge in supervised learning, arises when the class prior distribution of test data differs from that of training data, leading to significant degradation in classifier performance. To accurately estimate the test priors and enhance classification accuracy, we propose a Bayesian framework for label shift estimation, termed Full Maximum A Posterior Label Shift (FMAPLS), along with its online version, online-FMAPLS. Leveraging batch and online Expectation-Maximization (EM) algorithms, these methods jointly and dynamically optimize Dirichlet hyperparameters $\boldsymbolα$ and class priors $\boldsymbolπ$, thereby overcoming the rigid constraints of the existing Maximum A Posterior Label Shift (MAPLS) approach. Moreover, we introduce a linear surrogate function (LSF) to replace gradient-based hyperparameter updates, yielding closed-form solutions that reduce computational complexity while retaining asymptotic equivalence. The online variant substitutes the batch E-step with a stochastic approximation, enabling real-time adaptation to streaming data. Furthermore, our theoretical analysis reveals a fundamental trade-off between online convergence rate and estimation accuracy. Extensive experiments on CIFAR100 and ImageNet datasets under shuffled long-tail and Dirichlet test priors demonstrate that FMAPLS and online-FMAPLS respectively achieve up to 40% and 12% lower KL divergence and substantial improvements in post-shift accuracy over state-of-the-art baselines, particularly under severe class imbalance and distributional uncertainty. These results confirm the robustness, scalability, and suitability of the proposed methods for large-scale and dynamic learning scenarios.
comment: 13 pages, submitted to IEEE journal for possible publication
☆ KAN vs LSTM Performance in Time Series Forecasting
This paper compares Kolmogorov-Arnold Networks (KAN) and Long Short-Term Memory networks (LSTM) for forecasting non-deterministic stock price data, evaluating predictive accuracy versus interpretability trade-offs using Root Mean Square Error (RMSE).LSTM demonstrates substantial superiority across all tested prediction horizons, confirming their established effectiveness for sequential data modelling. Standard KAN, while offering theoretical interpretability through the Kolmogorov-Arnold representation theorem, exhibits significantly higher error rates and limited practical applicability for time series forecasting. The results confirm LSTM dominance in accuracy-critical time series applications while identifying computational efficiency as KANs' primary advantage in resource-constrained scenarios where accuracy requirements are less stringent. The findings support LSTM adoption for practical financial forecasting while suggesting that continued research into specialised KAN architectures may yield future improvements.
comment: This paper compares Kolmogorov-Arnold Networks (KANs) and LSTMs for forecasting stock prices, highlighting that LSTMs provide superior predictive accuracy while KANs offer better interpretability and efficiency in limited-resource settings. Practical findings and future research directions are discussed
☆ CycleSL: Server-Client Cyclical Update Driven Scalable Split Learning
Split learning emerges as a promising paradigm for collaborative distributed model training, akin to federated learning, by partitioning neural networks between clients and a server without raw data exchange. However, sequential split learning suffers from poor scalability, while parallel variants like parallel split learning and split federated learning often incur high server resource overhead due to model duplication and aggregation, and generally exhibit reduced model performance and convergence owing to factors like client drift and lag. To address these limitations, we introduce CycleSL, a novel aggregation-free split learning framework that enhances scalability and performance and can be seamlessly integrated with existing methods. Inspired by alternating block coordinate descent, CycleSL treats server-side training as an independent higher-level machine learning task, resampling client-extracted features (smashed data) to mitigate heterogeneity and drift. It then performs cyclical updates, namely optimizing the server model first, followed by client updates using the updated server for gradient computation. We integrate CycleSL into previous algorithms and benchmark them on five publicly available datasets with non-iid data distribution and partial client attendance. Our empirical findings highlight the effectiveness of CycleSL in enhancing model performance. Our source code is available at https://gitlab.lrz.de/hctl/CycleSL.
comment: The IEEE/CVF Winter Conference on Applications of Computer Vision 2026 (WACV-26)
☆ How to Train Your Latent Control Barrier Function: Smooth Safety Filtering Under Hard-to-Model Constraints
Latent safety filters extend Hamilton-Jacobi (HJ) reachability to operate on latent state representations and dynamics learned directly from high-dimensional observations, enabling safe visuomotor control under hard-to-model constraints. However, existing methods implement "least-restrictive" filtering that discretely switch between nominal and safety policies, potentially undermining the task performance that makes modern visuomotor policies valuable. While reachability value functions can, in principle, be adapted to be control barrier functions (CBFs) for smooth optimization-based filtering, we theoretically and empirically show that current latent-space learning methods produce fundamentally incompatible value functions. We identify two sources of incompatibility: First, in HJ reachability, failures are encoded via a "margin function" in latent space, whose sign indicates whether or not a latent is in the constraint set. However, representing the margin function as a classifier yields saturated value functions that exhibit discontinuous jumps. We prove that the value function's Lipschitz constant scales linearly with the margin function's Lipschitz constant, revealing that smooth CBFs require smooth margins. Second, reinforcement learning (RL) approximations trained solely on safety policy data yield inaccurate value estimates for nominal policy actions, precisely where CBF filtering needs them. We propose the LatentCBF, which addresses both challenges through gradient penalties that lead to smooth margin functions without additional labeling, and a value-training procedure that mixes data from both nominal and safety policy distributions. Experiments on simulated benchmarks and hardware with a vision-based manipulation policy demonstrate that LatentCBF enables smooth safety filtering while doubling the task-completion rate over prior switching methods.
comment: 3 figures, 10 tables, 22 pages
☆ Autoencoder for Position-Assisted Beam Prediction in mmWave ISAC Systems
Integrated sensing and communication and millimeter wave (mmWave) have emerged as pivotal technologies for 6G networks. However, the narrow nature of mmWave beams requires precise alignments that typically necessitate large training overhead. This overhead can be reduced by incorporating the position information with beam adjustments. This letter proposes a lightweight autorencoder (LAE) model that addresses the position-assisted beam prediction problem while significantly reducing computational complexity compared to the conventional baseline method, i.e., deep fully connected neural network. The proposed LAE is designed as a three-layer undercomplete network to exploit its dimensionality reduction capabilities and thereby mitigate the computational requirements of the trained model. Simulation results show that the proposed model achieves a similar beam prediction accuracy to the baseline with an 83% complexity reduction.
☆ Generative Myopia: Why Diffusion Models Fail at Structure
Graph Diffusion Models (GDMs) optimize for statistical likelihood, implicitly acting as \textbf{frequency filters} that favor abundant substructures over spectrally critical ones. We term this phenomenon \textbf{Generative Myopia}. In combinatorial tasks like graph sparsification, this leads to the catastrophic removal of ``rare bridges,'' edges that are structurally mandatory ($R_{\text{eff}} \approx 1$) but statistically scarce. We prove theoretically and empirically that this failure is driven by \textbf{Gradient Starvation}: the optimization landscape itself suppresses rare structural signals, rendering them unlearnable regardless of model capacity. To resolve this, we introduce \textbf{Spectrally-Weighted Diffusion}, which re-aligns the variational objective using Effective Resistance. We demonstrate that spectral priors can be amortized into the training phase with zero inference overhead. Our method eliminates myopia, matching the performance of an optimal Spectral Oracle and achieving \textbf{100\% connectivity} on adversarial benchmarks where standard diffusion fails completely (0\%).
☆ From Simulations to Surveys: Domain Adaptation for Galaxy Observations NeurIPS 2025
Large photometric surveys will image billions of galaxies, but we currently lack quick, reliable automated ways to infer their physical properties like morphology, stellar mass, and star formation rates. Simulations provide galaxy images with ground-truth physical labels, but domain shifts in PSF, noise, backgrounds, selection, and label priors degrade transfer to real surveys. We present a preliminary domain adaptation pipeline that trains on simulated TNG50 galaxies and evaluates on real SDSS galaxies with morphology labels (elliptical/spiral/irregular). We train three backbones (CNN, $E(2)$-steerable CNN, ResNet-18) with focal loss and effective-number class weighting, and a feature-level domain loss $L_D$ built from GeomLoss (entropic Sinkhorn OT, energy distance, Gaussian MMD, and related metrics). We show that a combination of these losses with an OT-based "top_$k$ soft matching" loss that focuses $L_D$ on the worst-matched source-target pairs can further enhance domain alignment. With Euclidean distance, scheduled alignment weights, and top-$k$ matching, target accuracy (macro F1) rises from $\sim$46% ($\sim$30%) at no adaptation to $\sim$87% ($\sim$62.6%), with a domain AUC near 0.5, indicating strong latent-space mixing.
comment: 8 pages, 4 figures. Will be presented at NeurIPS 2025 ML4PS
☆ Differential privacy with dependent data
Dependent data underlies many statistical studies in the social and health sciences, which often involve sensitive or private information. Differential privacy (DP) and in particular \textit{user-level} DP provide a natural formalization of privacy requirements for processing dependent data where each individual provides multiple observations to the dataset. However, dependence introduced, e.g., through repeated measurements challenges the existing statistical theory under DP-constraints. In \iid{} settings, noisy Winsorized mean estimators have been shown to be minimax optimal for standard (\textit{item-level}) and \textit{user-level} DP estimation of a mean $μ\in \R^d$. Yet, their behavior on potentially dependent observations has not previously been studied. We fill this gap and show that Winsorized mean estimators can also be used under dependence for bounded and unbounded data, and can lead to asymptotic and finite sample guarantees that resemble their \iid{} counterparts under a weak notion of dependence. For this, we formalize dependence via log-Sobolev inequalities on the joint distribution of observations. This enables us to adapt the stable histogram by Karwa and Vadhan (2018) to a non-\iid{} setting, which we then use to estimate the private projection intervals of the Winsorized estimator. The resulting guarantees for our item-level mean estimator extend to \textit{user-level} mean estimation and transfer to the local model via a randomized response histogram. Using the mean estimators as building blocks, we provide extensions to random effects models, longitudinal linear regression and nonparametric regression. Therefore, our work constitutes a first step towards a systematic study of DP for dependent data.
☆ Re(Visiting) Time Series Foundation Models in Finance
Financial time series forecasting is central to trading, portfolio optimization, and risk management, yet it remains challenging due to noisy, non-stationary, and heterogeneous data. Recent advances in time series foundation models (TSFMs), inspired by large language models, offer a new paradigm for learning generalizable temporal representations from large and diverse datasets. This paper presents the first comprehensive empirical study of TSFMs in global financial markets. Using a large-scale dataset of daily excess returns across diverse markets, we evaluate zero-shot inference, fine-tuning, and pre-training from scratch against strong benchmark models. We find that off-the-shelf pre-trained TSFMs perform poorly in zero-shot and fine-tuning settings, whereas models pre-trained from scratch on financial data achieve substantial forecasting and economic improvements, underscoring the value of domain-specific adaptation. Increasing the dataset size, incorporating synthetic data augmentation, and applying hyperparameter tuning further enhance performance.
☆ SAMBA: Toward a Long-Context EEG Foundation Model via Spatial Embedding and Differential Mamba
Long-sequence electroencephalogram (EEG) modeling is essential for developing generalizable EEG representation models. This need arises from the high sampling rate of EEG data and the long recording durations required to capture extended neurological patterns in brain activity. Transformer-based models have shown promise in modeling short sequences of a few seconds; however, their quadratic complexity limits scalability to longer contexts. Moreover, variability in electrode montage across available datasets, along with inter-subject differences in brain signals, pose significant challenges to developing a generalizable and robust foundation model. We propose \textit{SAMBA}, a self-supervised learning framework with a Mamba-based U-shaped encoder-decoder architecture, which effectively captures long-range temporal dependencies and spatial variability in EEG data. Leveraging the inherent ability of Mamba in processing long context sizes, we introduce: (1) \textit{Temporal Semantic Random Masking} for semantic-level sequence reconstruction, (2) a \textit{Multi-Head Differential Mamba} module to suppress redundancy and emphasize salient temporal structures, and (3) a \textit{Spatial-Adaptive Input Embedding} that learns unified embeddings in a three-dimensional Euclidean space, enabling robustness across devices. Experiments on thirteen EEG datasets across diverse tasks, electrode configurations, and sequence durations demonstrate that SAMBA consistently outperforms state-of-the-art methods while maintaining low memory consumption and inference time. We also show the learned spatial weight maps from our embedding module align closely with task-relevant neurophysiological regions, demonstrating the learnability and interpretability of SAMBA. These results highlight SAMBA's scalability and practical potential as a foundation model for real-time brain-computer interface applications.
☆ In Search of Goodness: Large Scale Benchmarking of Goodness Functions for the Forward-Forward Algorithm
The Forward-Forward (FF) algorithm offers a biologically plausible alternative to backpropagation, enabling neural networks to learn through local updates. However, FF's efficacy relies heavily on the definition of "goodness", which is a scalar measure of neural activity. While current implementations predominantly utilize a simple sum-of-squares metric, it remains unclear if this default choice is optimal. To address this, we benchmarked 21 distinct goodness functions across four standard image datasets (MNIST, FashionMNIST, CIFAR-10, STL-10), evaluating classification accuracy, energy consumption, and carbon footprint. We found that certain alternative goodness functions inspired from various domains significantly outperform the standard baseline. Specifically, \texttt{game\_theoretic\_local} achieved 97.15\% accuracy on MNIST, \texttt{softmax\_energy\_margin\_local} reached 82.84\% on FashionMNIST, and \texttt{triplet\_margin\_local} attained 37.69\% on STL-10. Furthermore, we observed substantial variability in computational efficiency, highlighting a critical trade-off between predictive performance and environmental cost. These findings demonstrate that the goodness function is a pivotal hyperparameter in FF design. We release our code on \href{https://github.com/aryashah2k/In-Search-of-Goodness}{Github} for reference and reproducibility.
comment: 24 pages, 5 tables, 17 figures
☆ Ensuring Calibration Robustness in Split Conformal Prediction Under Adversarial Attacks AISTATS 2026
Conformal prediction (CP) provides distribution-free, finite-sample coverage guarantees but critically relies on exchangeability, a condition often violated under distribution shift. We study the robustness of split conformal prediction under adversarial perturbations at test time, focusing on both coverage validity and the resulting prediction set size. Our theoretical analysis characterizes how the strength of adversarial perturbations during calibration affects coverage guarantees under adversarial test conditions. We further examine the impact of adversarial training at the model-training stage. Extensive experiments support our theory: (i) Prediction coverage varies monotonically with the calibration-time attack strength, enabling the use of nonzero calibration-time attack to predictably control coverage under adversarial tests; (ii) target coverage can hold over a range of test-time attacks: with a suitable calibration attack, coverage stays within any chosen tolerance band across a contiguous set of perturbation levels; and (iii) adversarial training at the training stage produces tighter prediction sets that retain high informativeness.
comment: Submitted to AISTATS 2026
☆ A joint optimization approach to identifying sparse dynamics using least squares kernel collocation
We develop an all-at-once modeling framework for learning systems of ordinary differential equations (ODE) from scarce, partial, and noisy observations of the states. The proposed methodology amounts to a combination of sparse recovery strategies for the ODE over a function library combined with techniques from reproducing kernel Hilbert space (RKHS) theory for estimating the state and discretizing the ODE. Our numerical experiments reveal that the proposed strategy leads to significant gains in terms of accuracy, sample efficiency, and robustness to noise, both in terms of learning the equation and estimating the unknown states. This work demonstrates capabilities well beyond existing and widely used algorithms while extending the modeling flexibility of other recent developments in equation discovery.
☆ Online Smoothed Demand Management
We introduce and study a class of online problems called online smoothed demand management $(\texttt{OSDM})$, motivated by paradigm shifts in grid integration and energy storage for large energy consumers such as data centers. In $\texttt{OSDM}$, an operator makes two decisions at each time step: an amount of energy to be purchased, and an amount of energy to be delivered (i.e., used for computation). The difference between these decisions charges (or discharges) the operator's energy storage (e.g., a battery). Two types of demand arrive online: base demand, which must be covered at the current time, and flexible demand, which can be satisfied at any time steps before a demand-specific deadline $Δ_t$. The operator's goal is to minimize a cost (subject to the constraints above) that combines a cost of purchasing energy, a cost for delivering energy (if applicable), and smoothness penalties on the purchasing and delivery rates to discourage fluctuations and encourage ``grid healthy'' decisions. $\texttt{OSDM}$ generalizes several problems in the online algorithms literature while being the first to fully model applications of interest. We propose a competitive algorithm called $\texttt{PAAD}$ (partitioned accounting \& aggregated decisions) and show it achieves the optimal competitive ratio. To overcome the pessimism typical of worst-case analysis, we also propose a novel learning framework that provides guarantees on the worst-case competitive ratio (i.e., to provide robustness against nonstationarity) while allowing end-to-end differentiable learning of the best algorithm on historical instances of the problem. We evaluate our algorithms in a case study of a grid-integrated data center with battery storage, showing that $\texttt{PAAD}$ effectively solves the problem and end-to-end learning achieves substantial performance improvements compared to $\texttt{PAAD}$.
comment: 69 pages, 12 figures
☆ TimePre: Bridging Accuracy, Efficiency, and Stability in Probabilistic Time-Series Forecasting
Probabilistic Time-Series Forecasting (PTSF) is critical for uncertainty-aware decision making, but existing generative models, such as diffusion-based approaches, are computationally prohibitive due to expensive iterative sampling. Non-sampling frameworks like Multiple Choice Learning (MCL) offer an efficient alternative, but suffer from severe training instability and hypothesis collapse, which has historically hindered their performance. This problem is dramatically exacerbated when attempting to combine them with modern, efficient MLP-based backbones. To resolve this fundamental incompatibility, we propose TimePre, a novel framework that successfully unifies the efficiency of MLP-based models with the distributional flexibility of the MCL paradigm. The core of our solution is Stabilized Instance Normalization (SIN), a novel normalization layer that explicitly remedies this incompatibility. SIN stabilizes the hybrid architecture by correcting channel-wise statistical shifts, definitively resolving the catastrophic hypothesis collapse. Extensive experiments on six benchmark datasets demonstrate that TimePre achieves new state-of-the-art accuracy on key probabilistic metrics. Critically, TimePre achieves inference speeds orders of magnitude faster than sampling-based models and, unlike prior MCL work, demonstrates stable performance scaling. It thus bridges the long-standing gap between accuracy, efficiency, and stability in probabilistic forecasting.
comment: 15 pages, 5 figures, 6 tables
☆ Transforming Conditional Density Estimation Into a Single Nonparametric Regression Task
We propose a way of transforming the problem of conditional density estimation into a single nonparametric regression task via the introduction of auxiliary samples. This allows leveraging regression methods that work well in high dimensions, such as neural networks and decision trees. Our main theoretical result characterizes and establishes the convergence of our estimator to the true conditional density in the data limit. We develop condensité, a method that implements this approach. We demonstrate the benefit of the auxiliary samples on synthetic data and showcase that condensité can achieve good out-of-the-box results. We evaluate our method on a large population survey dataset and on a satellite imaging dataset. In both cases, we find that condensité matches or outperforms the state of the art and yields conditional densities in line with established findings in the literature on each dataset. Our contribution opens up new possibilities for regression-based conditional density estimation and the empirical results indicate strong promise for applied research.
☆ Hyperspectral Variational Autoencoders for Joint Data Compression and Component Extraction
Geostationary hyperspectral satellites generate terabytes of data daily, creating critical challenges for storage, transmission, and distribution to the scientific community. We present a variational autoencoder (VAE) approach that achieves x514 compression of NASA's TEMPO satellite hyperspectral observations (1028 channels, 290-490nm) with reconstruction errors 1-2 orders of magnitude below the signal across all wavelengths. This dramatic data volume reduction enables efficient archival and sharing of satellite observations while preserving spectral fidelity. Beyond compression, we investigate to what extent atmospheric information is retained in the compressed latent space by training linear and nonlinear probes to extract Level-2 products (NO2, O3, HCHO, cloud fraction). Cloud fraction and total ozone achieve strong extraction performance (R^2 = 0.93 and 0.81 respectively), though these represent relatively straightforward retrievals given their distinct spectral signatures. In contrast, tropospheric trace gases pose genuine challenges for extraction (NO2 R^2 = 0.20, HCHO R^2 = 0.51) reflecting their weaker signals and complex atmospheric interactions. Critically, we find the VAE encodes atmospheric information in a semi-linear manner - nonlinear probes substantially outperform linear ones - and that explicit latent supervision during training provides minimal improvement, revealing fundamental encoding challenges for certain products. This work demonstrates that neural compression can dramatically reduce hyperspectral data volumes while preserving key atmospheric signals, addressing a critical bottleneck for next-generation Earth observation systems. Code - https://github.com/cfpark00/Hyperspectral-VAE
CHIPS: Efficient CLIP Adaptation via Curvature-aware Hybrid Influence-based Data Selection
Adapting CLIP to vertical domains is typically approached by novel fine-tuning strategies or by continual pre-training (CPT) on large domain-specific datasets. Yet, data itself remains an underexplored factor in this process. We revisit this task from a data-centric perspective: Can effective data selection substitute for large-scale datasets in CPT? We introduce CHIPS (Curvature-aware Hybrid Influence in Projection Subspace), which assigns each image-text pair a utility score that integrates three complementary factors aligned with three goals: faithfulness via a curvature-aware, Newton-style alignment computed in CLIP's end-point subspace; scalability via an InfoNCE-aware curvature estimator with Johnson-Lindenstrauss (JL) sketching; and retention via a selection-aware relevance weight combined with learnability to balance target adaptation against general-domain preservation. We justify this design theoretically by proving a lower-bound guarantee on the proxy's correlation with full-parameter alignment and by characterizing the bias-variance trade-offs introduced by curvature mixing and JL sketching. We evaluate CHIPS empirically across various settings: 1) CHIPS attains state-of-the-art performance among selection baselines on 17 medical benchmarks, matches full-dataset CPT with 30% of the data, and outperforms half-dataset CPT using only 10%; 2) on 31 general-domain benchmarks, CHIPS yields the smallest performance drop under 10-30% data-retention budgets. Code, data, and checkpoints will be released.
comment: preprint, under-review
☆ Foundations of Artificial Intelligence Frameworks: Notion and Limits of AGI
Within the limited scope of this paper, we argue that artificial general intelligence cannot emerge from current neural network paradigms regardless of scale, nor is such an approach healthy for the field at present. Drawing on various notions, discussions, present-day developments and observations, current debates and critiques, experiments, and so on in between philosophy, including the Chinese Room Argument and Gödelian argument, neuroscientific ideas, computer science, the theoretical consideration of artificial intelligence, and learning theory, we address conceptually that neural networks are architecturally insufficient for genuine understanding. They operate as static function approximators of a limited encoding framework - a 'sophisticated sponge' exhibiting complex behaviours without structural richness that constitute intelligence. We critique the theoretical foundations the field relies on and created of recent times; for example, an interesting heuristic as neural scaling law (as an example, arXiv:2001.08361 ) made prominent in a wrong way of interpretation, The Universal Approximation Theorem addresses the wrong level of abstraction and, in parts, partially, the question of current architectures lacking dynamic restructuring capabilities. We propose a framework distinguishing existential facilities (computational substrate) from architectural organization (interpretive structures), and outline principles for what genuine machine intelligence would require, and furthermore, a conceptual method of structuralizing the richer framework on which the principle of neural network system takes hold.
comment: 49 pages, 4 pictures
☆ RRaPINNs: Residual Risk-Aware Physics Informed Neural Networks
Physics-informed neural networks (PINNs) typically minimize average residuals, which can conceal large, localized errors. We propose Residual Risk-Aware Physics-Informed Neural Networks PINNs (RRaPINNs), a single-network framework that optimizes tail-focused objectives using Conditional Value-at-Risk (CVaR), we also introduced a Mean-Excess (ME) surrogate penalty to directly control worst-case PDE residuals. This casts PINN training as risk-sensitive optimization and links it to chance-constrained formulations. The method is effective and simple to implement. Across several partial differential equations (PDEs) such as Burgers, Heat, Korteweg-de-Vries, and Poisson (including a Poisson interface problem with a source jump at x=0.5) equations, RRaPINNs reduce tail residuals while maintaining or improving mean errors compared to vanilla PINNs, Residual-Based Attention and its variant using convolution weighting; the ME surrogate yields smoother optimization than a direct CVaR hinge. The chance constraint reliability level $α$ acts as a transparent knob trading bulk accuracy (lower $α$ ) for stricter tail control (higher $α$ ). We discuss the framework limitations, including memoryless sampling, global-only tail budgeting, and residual-centric risk, and outline remedies via persistent hard-point replay, local risk budgets, and multi-objective risk over BC/IC terms. RRaPINNs offer a practical path to reliability-aware scientific ML for both smooth and discontinuous PDEs.
☆ Real-Time Personalized Content Adaptation through Matrix Factorization and Context-Aware Federated Learning
Our study presents a multifaceted approach to enhancing user interaction and content relevance in social media platforms through a federated learning framework. We introduce personalized LLM Federated Learning and Context-based Social Media models. In our framework, multiple client entities receive a foundational GPT model, which is fine-tuned using locally collected social media data while ensuring data privacy through federated aggregation. Key modules focus on categorizing user-generated content, computing user persona scores, and identifying relevant posts from friends networks. By integrating a sophisticated social engagement quantification method with matrix factorization techniques, our system delivers real-time personalized content suggestions tailored to individual preferences. Furthermore, an adaptive feedback loop, alongside a robust readability scoring algorithm, significantly enhances the quality and relevance of the content presented to users. This comprehensive solution not only addresses the challenges of content filtering and recommendation but also fosters a more engaging social media experience while safeguarding user privacy, setting a new standard for personalized interactions in digital platforms.
☆ Adaptive Mesh-Quantization for Neural PDE Solvers
Physical systems commonly exhibit spatially varying complexity, presenting a significant challenge for neural PDE solvers. While Graph Neural Networks can handle the irregular meshes required for complex geometries and boundary conditions, they still apply uniform computational effort across all nodes regardless of the underlying physics complexity. This leads to inefficient resource allocation where computationally simple regions receive the same treatment as complex phenomena. We address this challenge by introducing Adaptive Mesh Quantization: spatially adaptive quantization across mesh node, edge, and cluster features, dynamically adjusting the bit-width used by a quantized model. We propose an adaptive bit-width allocation strategy driven by a lightweight auxiliary model that identifies high-loss regions in the input mesh. This enables dynamic resource distribution in the main model, where regions of higher difficulty are allocated increased bit-width, optimizing computational resource utilization. We demonstrate our framework's effectiveness by integrating it with two state-of-the-art models, MP-PDE and GraphViT, to evaluate performance across multiple tasks: 2D Darcy flow, large-scale unsteady fluid dynamics in 2D, steady-state Navier-Stokes simulations in 3D, and a 2D hyper-elasticity problem. Our framework demonstrates consistent Pareto improvements over uniformly quantized baselines, yielding up to 50% improvements in performance at the same cost.
☆ SloMo-Fast: Slow-Momentum and Fast-Adaptive Teachers for Source-Free Continual Test-Time Adaptation
Continual Test-Time Adaptation (CTTA) is crucial for deploying models in real-world applications with unseen, evolving target domains. Existing CTTA methods, however, often rely on source data or prototypes, limiting their applicability in privacy-sensitive and resource-constrained settings. Additionally, these methods suffer from long-term forgetting, which degrades performance on previously encountered domains as target domains shift. To address these challenges, we propose SloMo-Fast, a source-free, dual-teacher CTTA framework designed for enhanced adaptability and generalization. It includes two complementary teachers: the Slow-Teacher, which exhibits slow forgetting and retains long-term knowledge of previously encountered domains to ensure robust generalization, and the Fast-Teacher rapidly adapts to new domains while accumulating and integrating knowledge across them. This framework preserves knowledge of past domains and adapts efficiently to new ones. We also introduce Cyclic Test-Time Adaptation (Cyclic-TTA), a novel CTTA benchmark that simulates recurring domain shifts. Our extensive experiments demonstrate that SloMo-Fast consistently outperforms state-of-the-art methods across Cyclic-TTA, as well as ten other CTTA settings, highlighting its ability to both adapt and generalize across evolving and revisited domains.
comment: 38 pages, 38 tables, 16 figures
☆ Reliable Selection of Heterogeneous Treatment Effect Estimators
We study the problem of selecting the best heterogeneous treatment effect (HTE) estimator from a collection of candidates in settings where the treatment effect is fundamentally unobserved. We cast estimator selection as a multiple testing problem and introduce a ground-truth-free procedure based on a cross-fitted, exponentially weighted test statistic. A key component of our method is a two-way sample splitting scheme that decouples nuisance estimation from weight learning and ensures the stability required for valid inference. Leveraging a stability-based central limit theorem, we establish asymptotic familywise error rate control under mild regularity conditions. Empirically, our procedure provides reliable error control while substantially reducing false selections compared with commonly used methods across ACIC 2016, IHDP, and Twins benchmarks, demonstrating that our method is feasible and powerful even without ground-truth treatment effects.
☆ Radiation-Preserving Selective Imaging for Pediatric Hip Dysplasia: A Cross-Modal Ultrasound-Xray Policy with Limited Labels AAAI 2026
We study an ultrasound-first, radiation-preserving policy for developmental dysplasia of the hip (DDH) that requests a radiograph only when needed. We (i) pretrain modality-specific encoders (ResNet-18) with SimSiam on a large unlabelled registry (37186 ultrasound; 19546 radiographs), (ii) freeze the backbones and fit small, measurement-faithful heads on DDH relevant landmarks and measurements (iii) calibrate a one sided conformal deferral rule on ultrasound predictions that provides finite sample coverage guarantees under exchangeability, using a held-out calibration set. Ultrasound heads predict Graf alpha, beta, and femoral head coverage; X-ray heads predict acetabular index (AI), center-edge (CE) angle and IHDI grade. On our held out labeled evaluation set, ultrasound measurement error is modest (e.g., alpha MAE ~= 9.7 degrees, coverage MAE ~= 14.0%), while radiographic probes achieve AI and CE MAEs of ~= 7.6 degrees and ~= 8.9 degrees, respectively. The calibrated US-only policy is explored across rule families (alpha-only; alpha OR coverage; alpha AND coverage), uncertainty inflation factors, and per-utility trade-offs using decision-curve analysis. Conservative settings yield high coverage with near-zero US-only rates; permissive settings (e.g., alpha OR coverage at larger deltas) achieve non-zero US-only throughput with expected coverage tradeoffs. The result is a simple, reproducible pipeline that turns limited labels into interpretable measurements and tunable selective imaging curves suitable for clinical handoff and future external validation.
comment: Accepted (with oral presentation) to the AAAI 2026 AIMedHealth Bridge Program
☆ General Agentic Memory Via Deep Research
Memory is critical for AI agents, yet the widely-adopted static memory, aiming to create readily available memory in advance, is inevitably subject to severe information loss. To address this limitation, we propose a novel framework called \textbf{general agentic memory (GAM)}. GAM follows the principle of "\textbf{just-in time (JIT) compilation}" where it focuses on creating optimized contexts for its client at runtime while keeping only simple but useful memory during the offline stage. To this end, GAM employs a duo-design with the following components. 1) \textbf{Memorizer}, which highlights key historical information using a lightweight memory, while maintaining complete historical information within a universal page-store. 2) \textbf{Researcher}, which retrieves and integrates useful information from the page-store for its online request guided by the pre-constructed memory. This design allows GAM to effectively leverage the agentic capabilities and test-time scalability of frontier large language models (LLMs), while also facilitating end-to-end performance optimization through reinforcement learning. In our experimental study, we demonstrate that GAM achieves substantial improvement on various memory-grounded task completion scenarios against existing memory systems.
☆ NeuroVascU-Net: A Unified Multi-Scale and Cross-Domain Adaptive Feature Fusion U-Net for Precise 3D Segmentation of Brain Vessels in Contrast-Enhanced T1 MRI
Precise 3D segmentation of cerebral vasculature from T1-weighted contrast-enhanced (T1CE) MRI is crucial for safe neurosurgical planning. Manual delineation is time-consuming and prone to inter-observer variability, while current automated methods often trade accuracy for computational cost, limiting clinical use. We present NeuroVascU-Net, the first deep learning architecture specifically designed to segment cerebrovascular structures directly from clinically standard T1CE MRI in neuro-oncology patients, addressing a gap in prior work dominated by TOF-MRA-based approaches. NeuroVascU-Net builds on a dilated U-Net and integrates two specialized modules: a Multi-Scale Contextual Feature Fusion ($MSC^2F$) module at the bottleneck and a Cross-Domain Adaptive Feature Fusion ($CDA^2F$) module at deeper hierarchical layers. $MSC^2F$ captures both local and global information via multi-scale dilated convolutions, while $CDA^2F$ dynamically integrates domain-specific features, enhancing representation while keeping computation low. The model was trained and validated on a curated dataset of T1CE scans from 137 brain tumor biopsy patients, annotated by a board-certified functional neurosurgeon. NeuroVascU-Net achieved a Dice score of 0.8609 and precision of 0.8841, accurately segmenting both major and fine vascular structures. Notably, it requires only 12.4M parameters, significantly fewer than transformer-based models such as Swin U-NetR. This balance of accuracy and efficiency positions NeuroVascU-Net as a practical solution for computer-assisted neurosurgical planning.
☆ DHAuDS: A Dynamic and Heterogeneous Audio Benchmark for Test-Time Adaptation
Audio classifiers frequently face domain shift, when models trained on one dataset lose accuracy on data recorded in acoustically different conditions. Previous Test-Time Adaptation (TTA) research in speech and sound analysis often evaluates models under fixed or mismatched noise settings, that fail to mimic real-world variability. To overcome these limitations, this paper presents DHAuDS (Dynamic and Heterogeneous Audio Domain Shift), a benchmark designed to assess TTA approaches under more realistic and diverse acoustic shifts. DHAuDS comprises four standardized benchmarks: UrbanSound8K-C, SpeechCommandsV2-C, VocalSound-C, and ReefSet-C, each constructed with dynamic corruption severity levels and heterogeneous noise types to simulate authentic audio degradation scenarios. The framework defines 14 evaluation criteria for each benchmark (8 for UrbanSound8K-C), resulting in 50 unrepeated criteria (124 experiments) that collectively enable fair, reproducible, and cross-domain comparison of TTA algorithms. Through the inclusion of dynamic and mixed-domain noise settings, DHAuDS offers a consistent and publicly reproducible testbed to support ongoing studies in robust and adaptive audio modeling.
☆ Categorical Equivariant Deep Learning: Category-Equivariant Neural Networks and Universal Approximation Theorems
We develop a theory of category-equivariant neural networks (CENNs) that unifies group/groupoid-equivariant networks, poset/lattice-equivariant networks, graph and sheaf neural networks. Equivariance is formulated as naturality in a topological category with Radon measures, formulating linear and nonlinear layers in the categorical setup. We prove the equivariant universal approximation theorem in the general setting: the class of finite-depth CENNs is dense in the space of continuous equivariant transformations. We instantiate the framework for groups/groupoids, posets/lattices, graphs and cellular sheaves, deriving universal approximation theorems for them in a systematic manner. Categorical equivariant deep learning thus allows us to expand the horizons of equivariant deep learning beyond group actions, encompassing not only geometric symmetries but also contextual and compositional symmetries.
Pre-training Graph Neural Networks on 2D and 3D Molecular Structures by using Multi-View Conditional Information Bottleneck
Recent pre-training strategies for molecular graphs have attempted to use 2D and 3D molecular views as both inputs and self-supervised signals, primarily aligning graph-level representations. However, existing studies remain limited in addressing two main challenges of multi-view molecular learning: (1) discovering shared information between two views while diminishing view-specific information and (2) identifying and aligning important substructures, e.g., functional groups, which are crucial for enhancing cross-view consistency and model expressiveness. To solve these challenges, we propose a Multi-View Conditional Information Bottleneck framework, called MVCIB, for pre-training graph neural networks on 2D and 3D molecular structures in a self-supervised setting. Our idea is to discover the shared information while minimizing irrelevant features from each view under the MVCIB principle, which uses one view as a contextual condition to guide the representation learning of its counterpart. To enhance semantic and structural consistency across views, we utilize key substructures, e.g., functional groups and ego-networks, as anchors between the two views. Then, we propose a cross-attention mechanism that captures fine-grained correlations between the substructures to achieve subgraph alignment across views. Extensive experiments in four molecular domains demonstrated that MVCIB consistently outperforms baselines in both predictive performance and interpretability. Moreover, MVCIB achieved the 3d Weisfeiler-Lehman expressiveness power to distinguish not only non-isomorphic graphs but also different 3D geometries that share identical 2D connectivity, such as isomers.
☆ Future Is Unevenly Distributed: Forecasting Ability of LLMs Depends on What We're Asking
Large Language Models (LLMs) demonstrate partial forecasting competence across social, political, and economic events. Yet, their predictive ability varies sharply with domain structure and prompt framing. We investigate how forecasting performance varies with different model families on real-world questions about events that happened beyond the model cutoff date. We analyze how context, question type, and external knowledge affect accuracy and calibration, and how adding factual news context modifies belief formation and failure modes. Our results show that forecasting ability is highly variable as it depends on what, and how, we ask.
☆ KGpipe: Generation and Evaluation of Pipelines for Data Integration into Knowledge Graphs
Building high-quality knowledge graphs (KGs) from diverse sources requires combining methods for information extraction, data transformation, ontology mapping, entity matching, and data fusion. Numerous methods and tools exist for each of these tasks, but support for combining them into reproducible and effective end-to-end pipelines is still lacking. We present a new framework, KGpipe for defining and executing integration pipelines that can combine existing tools or LLM (Large Language Model) functionality. To evaluate different pipelines and the resulting KGs, we propose a benchmark to integrate heterogeneous data of different formats (RDF, JSON, text) into a seed KG. We demonstrate the flexibility of KGpipe by running and comparatively evaluating several pipelines integrating sources of the same or different formats using selected performance and quality metrics.
comment: 15 KG pipelines (9 single source, 6 multi source)
☆ Auxiliary Gene Learning: Spatial Gene Expression Estimation by Auxiliary Gene Selection AAAI
Spatial transcriptomics (ST) is a novel technology that enables the observation of gene expression at the resolution of individual spots within pathological tissues. ST quantifies the expression of tens of thousands of genes in a tissue section; however, heavy observational noise is often introduced during measurement. In prior studies, to ensure meaningful assessment, both training and evaluation have been restricted to only a small subset of highly variable genes, and genes outside this subset have also been excluded from the training process. However, since there are likely co-expression relationships between genes, low-expression genes may still contribute to the estimation of the evaluation target. In this paper, we propose $Auxiliary \ Gene \ Learning$ (AGL) that utilizes the benefit of the ignored genes by reformulating their expression estimation as auxiliary tasks and training them jointly with the primary tasks. To effectively leverage auxiliary genes, we must select a subset of auxiliary genes that positively influence the prediction of the target genes. However, this is a challenging optimization problem due to the vast number of possible combinations. To overcome this challenge, we propose Prior-Knowledge-Based Differentiable Top-$k$ Gene Selection via Bi-level Optimization (DkGSB), a method that ranks genes by leveraging prior knowledge and relaxes the combinatorial selection problem into a differentiable top-$k$ selection problem. The experiments confirm the effectiveness of incorporating auxiliary genes and show that the proposed method outperforms conventional auxiliary task learning approaches.
comment: Accepted to Association for the Advancement of Artificial Intelligence (AAAI) 2026
☆ OmniStruct: Universal Text-to-Structure Generation across Diverse Schemas
The ability of Large Language Models (LLMs) to generate structured outputs that follow arbitrary schemas is crucial to a wide range of downstream tasks that require diverse structured representations of results such as information extraction, table generation, and function calling. While modern LLMs excel in generating unstructured responses in natural language, whether this advancement translates to a strong performance on text-to-structure tasks remains unclear. To bridge this gap, we first introduce OmniStruct, a comprehensive benchmark for assessing LLMs' capabilities on diverse text-to-structure tasks such as information extraction, table generation, and function calling. We build OmniStruct by identifying existing datasets across a wide range of tasks that are suitable for a structured answer format, and adapting them under a unified text-to-structure problem setting. To facilitate the development of efficient text-to-structure models, we collect high-quality training data via synthetic task generation. Without using any supervised data for OmniStruct tasks, our experiments demonstrate the possibility of fine-tuning much smaller models on synthetic data into universal structured generation models that can rival the performance of GPT-4o.
☆ Clinician-in-the-Loop Smart Home System to Detect Urinary Tract Infection Flare-Ups via Uncertainty-Aware Decision Support AAAI-26
Urinary tract infection (UTI) flare-ups pose a significant health risk for older adults with chronic conditions. These infections often go unnoticed until they become severe, making early detection through innovative smart home technologies crucial. Traditional machine learning (ML) approaches relying on simple binary classification for UTI detection offer limited utility to nurses and practitioners as they lack insight into prediction uncertainty, hindering informed clinical decision-making. This paper presents a clinician-in-the-loop (CIL) smart home system that leverages ambient sensor data to extract meaningful behavioral markers, train robust predictive ML models, and calibrate them to enable uncertainty-aware decision support. The system incorporates a statistically valid uncertainty quantification method called Conformal-Calibrated Interval (CCI), which quantifies uncertainty and abstains from making predictions ("I don't know") when the ML model's confidence is low. Evaluated on real-world data from eight smart homes, our method outperforms baseline methods in recall and other classification metrics while maintaining the lowest abstention proportion and interval width. A survey of 42 nurses confirms that our system's outputs are valuable for guiding clinical decision-making, underscoring their practical utility in improving informed decisions and effectively managing UTIs and other condition flare-ups in older adults.
comment: Accepted for publication at IAAI-26 / AAAI-26
☆ DynamiX: Dynamic Resource eXploration for Personalized Ad-Recommendations
For online ad-recommendation systems, processing complete user-ad-engagement histories is both computationally intensive and noise-prone. We introduce Dynamix, a scalable, personalized sequence exploration framework that optimizes event history processing using maximum relevance principles and self-supervised learning through Event Based Features (EBFs). Dynamix categorizes users-engagements at session and surface-levels by leveraging correlations between dwell-times and ad-conversion events. This enables targeted, event-level feature removal and selective feature boosting for certain user-segments, thereby yielding training and inference efficiency wins without sacrificing engaging ad-prediction accuracy. While, dynamic resource removal increases training and inference throughput by 1.15% and 1.8%, respectively, dynamic feature boosting provides 0.033 NE gains while boosting inference QPS by 4.2% over baseline models. These results demonstrate that Dynamix achieves significant cost efficiency and performance improvements in online user-sequence based recommendation models. Self-supervised user-segmentation and resource exploration can further boost complex feature selection strategies while optimizing for workflow and compute resources.
comment: 9 pages, 3 Tables, 5 images. https://openreview.net/pdf?id=oglD54lvcB
☆ Brain-MGF: Multimodal Graph Fusion Network for EEG-fMRI Brain Connectivity Analysis Under Psilocybin
Psychedelics, such as psilocybin, reorganise large-scale brain connectivity, yet how these changes are reflected across electrophysiological (electroencephalogram, EEG) and haemodynamic (functional magnetic resonance imaging, fMRI) networks remains unclear. We present Brain-MGF, a multimodal graph fusion network for joint EEG-fMRI connectivity analysis. For each modality, we construct graphs with partial-correlation edges and Pearson-profile node features, and learn subject-level embeddings via graph convolution. An adaptive softmax gate then fuses modalities with sample-specific weights to capture context-dependent contributions. Using the world's largest single-site psilocybin dataset, PsiConnect, Brain-MGF distinguishes psilocybin from no-psilocybin conditions in meditation and rest. Fusion improves over unimodal and non-adaptive variants, achieving 74.0% accuracy and 76.5% F1 score on meditation, and 76.0% accuracy with 85.8% ROC-AUC on rest. UMAP visualisations reveal clearer class separation for fused embeddings. These results indicate that adaptive graph fusion effectively integrates complementary EEG-fMRI information, providing an interpretable framework for characterising psilocybin-induced alterations in large-scale neural organisation.
comment: 5 pages
☆ Crash-Consistent Checkpointing for AI Training on macOS/APFS
Deep learning training relies on periodic checkpoints to recover from failures, but unsafe checkpoint installation can leave corrupted files on disk. This paper presents an experimental study of checkpoint installation protocols and integrity validation for AI training on macOS/APFS. We implement three write modes with increasing durability guarantees: unsafe (baseline, no fsync), atomic_nodirsync (file-level durability via fsync()), and atomic_dirsync (file + directory durability). We design a format-agnostic integrity guard using SHA-256 checksums with automatic rollback. Through controlled experiments including crash injection (430 unsafe-mode trials) and corruption injection (1,600 atomic-mode trials), we demonstrate that the integrity guard detects 99.8-100% of corruptions with zero false positives. Performance overhead is 56.5-108.4% for atomic_nodirsync and 84.2-570.6% for atomic_dirsync relative to the unsafe baseline. Our findings quantify the reliability-performance trade-offs and provide deployment guidance for production AI infrastructure.
comment: 18 pages, 6 figures. Independent mini-research report; not submitted to a conference or journal
☆ Learning Visually Interpretable Oscillator Networks for Soft Continuum Robots from Video
Data-driven learning of soft continuum robot (SCR) dynamics from high-dimensional observations offers flexibility but often lacks physical interpretability, while model-based approaches require prior knowledge and can be computationally expensive. We bridge this gap by introducing (1) the Attention Broadcast Decoder (ABCD), a plug-and-play module for autoencoder-based latent dynamics learning that generates pixel-accurate attention maps localizing each latent dimension's contribution while filtering static backgrounds. (2) By coupling these attention maps to 2D oscillator networks, we enable direct on-image visualization of learned dynamics (masses, stiffness, and forces) without prior knowledge. We validate our approach on single- and double-segment SCRs, demonstrating that ABCD-based models significantly improve multi-step prediction accuracy: 5.7x error reduction for Koopman operators and 3.5x for oscillator networks on the two-segment robot. The learned oscillator network autonomously discovers a chain structure of oscillators. Unlike standard methods, ABCD models enable smooth latent space extrapolation beyond training data. This fully data-driven approach yields compact, physically interpretable models suitable for control applications.
☆ Weakly-supervised Latent Models for Task-specific Visual-Language Control
Autonomous inspection in hazardous environments requires AI agents that can interpret high-level goals and execute precise control. A key capability for such agents is spatial grounding, for example when a drone must center a detected object in its camera view to enable reliable inspection. While large language models provide a natural interface for specifying goals, using them directly for visual control achieves only 58\% success in this task. We envision that equipping agents with a world model as a tool would allow them to roll out candidate actions and perform better in spatially grounded settings, but conventional world models are data and compute intensive. To address this, we propose a task-specific latent dynamics model that learns state-specific action-induced shifts in a shared latent space using only goal-state supervision. The model leverages global action embeddings and complementary training losses to stabilize learning. In experiments, our approach achieves 71\% success and generalizes to unseen images and instructions, highlighting the potential of compact, domain-specific latent dynamics models for spatial alignment in autonomous inspection.
☆ AnyExperts: On-Demand Expert Allocation for Multimodal Language Models with Mixture of Expert
Multimodal Mixture-of-Experts (MoE) models offer a promising path toward scalable and efficient large vision-language systems. However, existing approaches rely on rigid routing strategies (typically activating a fixed number of experts per token) ignoring the inherent heterogeneity in semantic importance across modalities. This leads to suboptimal compute allocation, where redundant tokens consume as many resources as critical ones. To address this, we propose AnyExperts, a novel on-demand, budget-aware dynamic routing framework that allocates a variable total number of expert slots per token based on its semantic importance. Crucially, to prevent uncontrolled compute growth, the total slots per token are constrained within a fixed range, and each slot is filled by either a real expert or a virtual expert, with the virtual share capped at a small maximum (e.g., 20%). The model then adaptively balances the real-to-virtual ratio per token, assigning more real experts to semantically rich regions and relying more on virtual experts for redundant content. Evaluated across diverse tasks in visual understanding, audio understanding, and NLP understanding, AnyExperts improves performance under the same compute budget. Notably, on general image/video tasks, it achieves comparable accuracy with 40% fewer real expert activations; on text-dense tasks (OCR and NLP), it maintains performance while reducing real expert usage by 10%. These results demonstrate that fine-grained, importance-driven expert allocation significantly enhances both the efficiency and effectiveness of multimodal MoE models.
☆ Path-Constrained Retrieval: A Structural Approach to Reliable LLM Agent Reasoning Through Graph-Scoped Semantic Search
Large Language Model agents often retrieve context from knowledge bases that lack structural consistency with the agent's current reasoning state, leading to incoherent reasoning chains. We introduce Path-Constrained Retrieval (PCR), a retrieval method that combines structural graph constraints with semantic search to ensure retrieved information maintains logical relationships within a knowledge graph. PCR restricts the search space to nodes reachable from an anchor node, preventing retrieval of structurally disconnected information that may lead to inconsistent reasoning. We evaluate PCR on PathRAG-6, a benchmark spanning six domains with 180 nodes and 360 edges. Our results show that PCR achieves full structural consistency compared to 24-32 percent in baseline methods, while maintaining strong relevance scores. On the technology domain, PCR obtains full relevance at rank 10 with full structural consistency, significantly outperforming vector search and hybrid retrieval. PCR reduces the average graph distance of retrieved context by 78 percent compared to baselines, demonstrating retrieval of more structurally consistent information. These findings suggest that path-constrained retrieval is an effective approach for improving the reliability and coherence of LLM agent reasoning systems.
comment: 10 pages
☆ DiM-TS: Bridge the Gap between Selective State Space Models and Time Series for Generative Modeling
Time series data plays a pivotal role in a wide variety of fields but faces challenges related to privacy concerns. Recently, synthesizing data via diffusion models is viewed as a promising solution. However, existing methods still struggle to capture long-range temporal dependencies and complex channel interrelations. In this research, we aim to utilize the sequence modeling capability of a State Space Model called Mamba to extend its applicability to time series data generation. We firstly analyze the core limitations in State Space Model, namely the lack of consideration for correlated temporal lag and channel permutation. Building upon the insight, we propose Lag Fusion Mamba and Permutation Scanning Mamba, which enhance the model's ability to discern significant patterns during the denoising process. Theoretical analysis reveals that both variants exhibit a unified matrix multiplication framework with the original Mamba, offering a deeper understanding of our method. Finally, we integrate two variants and introduce Diffusion Mamba for Time Series (DiM-TS), a high-quality time series generation model that better preserves the temporal periodicity and inter-channel correlations. Comprehensive experiments on public datasets demonstrate the superiority of DiM-TS in generating realistic time series while preserving diverse properties of data.
☆ ScriptViT: Vision Transformer-Based Personalized Handwriting Generation
Styled handwriting generation aims to synthesize handwritten text that looks both realistic and aligned with a specific writer's style. While recent approaches involving GAN, transformer and diffusion-based models have made progress, they often struggle to capture the full spectrum of writer-specific attributes, particularly global stylistic patterns that span long-range spatial dependencies. As a result, capturing subtle writer-specific traits such as consistent slant, curvature or stroke pressure, while keeping the generated text accurate is still an open problem. In this work, we present a unified framework designed to address these limitations. We introduce a Vision Transformer-based style encoder that learns global stylistic patterns from multiple reference images, allowing the model to better represent long-range structural characteristics of handwriting. We then integrate these style cues with the target text using a cross-attention mechanism, enabling the system to produce handwritten images that more faithfully reflect the intended style. To make the process more interpretable, we utilize Salient Stroke Attention Analysis (SSAA), which reveals the stroke-level features the model focuses on during style transfer. Together, these components lead to handwriting synthesis that is not only more stylistically coherent, but also easier to understand and analyze.
☆ Hierarchical Deep Research with Local-Web RAG: Toward Automated System-Level Materials Discovery NeurIPS 2025
We present a long-horizon, hierarchical deep research (DR) agent designed for complex materials and device discovery problems that exceed the scope of existing Machine Learning (ML) surrogates and closed-source commercial agents. Our framework instantiates a locally deployable DR instance that integrates local retrieval-augmented generation with large language model reasoners, enhanced by a Deep Tree of Research (DToR) mechanism that adaptively expands and prunes research branches to maximize coverage, depth, and coherence. We systematically evaluate across 27 nanomaterials/device topics using a large language model (LLM)-as-judge rubric with five web-enabled state-of-the-art models as jurors. In addition, we conduct dry-lab validations on five representative tasks, where human experts use domain simulations (e.g., density functional theory, DFT) to verify whether DR-agent proposals are actionable. Results show that our DR agent produces reports with quality comparable to--and often exceeding--those of commercial systems (ChatGPT-5-thinking/o3/o4-mini-high Deep Research) at a substantially lower cost, while enabling on-prem integration with local data and tools.
comment: A preliminary version appeared in The AI for Accelerated Materials Discovery (AI4Mat) Workshop at NeurIPS 2025
☆ GROOT: Graph Edge Re-growth and Partitioning for the Verification of Large Designs in Logic Synthesis
Traditional verification methods in chip design are highly time-consuming and computationally demanding, especially for large scale circuits. Graph neural networks (GNNs) have gained popularity as a potential solution to improve verification efficiency. However, there lacks a joint framework that considers all chip design domain knowledge, graph theory, and GPU kernel designs. To address this challenge, we introduce GROOT, an algorithm and system co-design framework that contains chip design domain knowledge and redesigned GPU kernels, to improve verification efficiency. More specifically, we create node features utilizing the circuit node types and the polarity of the connections between the input edges to nodes in And-Inverter Graphs (AIGs). We utilize a graph partitioning algorithm to divide the large graphs into smaller sub-graphs for fast GPU processing and develop a graph edge re-growth algorithm to recover verification accuracy. We carefully profile the EDA graph workloads and observe the uniqueness of their polarized distribution of high degree (HD) nodes and low degree (LD) nodes. We redesign two GPU kernels (HD-kernel and LD-kernel), to fit the EDA graph learning workload on a single GPU. We compare the results with state-of-the-art (SOTA) methods: GAMORA, a GNN-based approach, and the traditional ABC framework. Results show that GROOT achieves a significant reduction in memory footprint (59.38 %), with high accuracy (99.96%) for a very large CSA multiplier, i.e. 1,024 bits with a batch size of 16, which consists of 134,103,040 nodes and 268,140,544 edges. We compare GROOT with GPU-based GPU Kernel designs SOTAs such as cuSPARSE, MergePath-SpMM, and GNNAdvisor. We achieve up to 1.104x, 5.796x, and 1.469x improvement in runtime, respectively.
☆ MultiDiffNet: A Multi-Objective Diffusion Framework for Generalizable Brain Decoding
Neural decoding from electroencephalography (EEG) remains fundamentally limited by poor generalization to unseen subjects, driven by high inter-subject variability and the lack of large-scale datasets to model it effectively. Existing methods often rely on synthetic subject generation or simplistic data augmentation, but these strategies fail to scale or generalize reliably. We introduce \textit{MultiDiffNet}, a diffusion-based framework that bypasses generative augmentation entirely by learning a compact latent space optimized for multiple objectives. We decode directly from this space and achieve state-of-the-art generalization across various neural decoding tasks using subject and session disjoint evaluation. We also curate and release a unified benchmark suite spanning four EEG decoding tasks of increasing complexity (SSVEP, Motor Imagery, P300, and Imagined Speech) and an evaluation protocol that addresses inconsistent split practices in prior EEG research. Finally, we develop a statistical reporting framework tailored for low-trial EEG settings. Our work provides a reproducible and open-source foundation for subject-agnostic EEG decoding in real-world BCI systems.
☆ ADF-LoRA: Alternating Low-Rank Aggregation for Decentralized Federated Fine-Tuning
This paper revisits alternating low-rank updates for federated fine-tuning and examines their behavior in decentralized federated learning (DFL). While alternating the LoRA matrices has been shown to stabilize aggregation in centralized FL, extending this mechanism to decentralized, peer-to-peer communication introduces new challenges due to phase-state mismatch and block-wise divergence across clients. We introduce ADF-LoRA, which synchronizes the update of only one low-rank matrix per round and mixes both matrices to maintain more consistent parameter states under decentralized propagation. This design preserves the cross-term suppression effect of alternating updates while improving stability in serverless topologies. We provide a convergence analysis under standard smoothness assumptions and evaluate ADF-LoRA on multiple GLUE tasks. Experiments show that ADF-LoRA achieves faster and smoother convergence and delivers the highest average accuracy across tasks, outperforming existing LoRA variants in decentralized FL by a consistent margin.
comment: 10 Pages
♻ ☆ Functional Classification of Spiking Signal Data Using Artificial Intelligence Techniques: A Review
Human brain neuron activities are incredibly significant nowadays. Neuronal behavior is assessed by analyzing signal data such as electroencephalography (EEG), which can offer scientists valuable information about diseases and human-computer interaction. One of the difficulties researchers confront while evaluating these signals is the existence of large volumes of spike data. Spikes are some considerable parts of signal data that can happen as a consequence of vital biomarkers or physical issues such as electrode movements. Hence, distinguishing types of spikes is important. From this spot, the spike classification concept commences. Previously, researchers classified spikes manually. The manual classification was not precise enough as it involves extensive analysis. Consequently, Artificial Intelligence (AI) was introduced into neuroscience to assist clinicians in classifying spikes correctly. This review discusses the importance and use of AI in spike classification, focusing on the recognition of neural activity noises. The task is divided into three main components: preprocessing, classification, and evaluation. Existing methods are introduced and their importance is determined. The review also highlights the need for more efficient algorithms. The primary goal is to provide a perspective on spike classification for future research and provide a comprehensive understanding of the methodologies and issues involved. The review organizes materials in the spike classification field for future studies. In this work, numerous studies were extracted from different databases. The PRISMA-related research guidelines were then used to choose papers. Then, research studies based on spike classification using machine learning and deep learning approaches with effective preprocessing were selected.
comment: 8 figures, 32 pages
♻ ☆ DarkMind: Latent Chain-of-Thought Backdoor in Customized LLMs
With the rapid rise of personalized AI, customized large language models (LLMs) equipped with Chain of Thought (COT) reasoning now power millions of AI agents. However, their complex reasoning processes introduce new and largely unexplored security vulnerabilities. We present DarkMind, a novel latent reasoning level backdoor attack that targets customized LLMs by manipulating internal COT steps without altering user queries. Unlike prior prompt based attacks, DarkMind activates covertly within the reasoning chain via latent triggers, enabling adversarial behaviors without modifying input prompts or requiring access to model parameters. To achieve stealth and reliability, we propose dual trigger types instant and retrospective and integrate them within a unified embedding template that governs trigger dependent activation, employ a stealth optimization algorithm to minimize semantic drift, and introduce an automated conversation starter for covert activation across domains. Comprehensive experiments on eight reasoning datasets spanning arithmetic, commonsense, and symbolic domains, using five LLMs, demonstrate that DarkMind consistently achieves high attack success rates. We further investigate defense strategies to mitigate these risks and reveal that reasoning level backdoors represent a significant yet underexplored threat, underscoring the need for robust, reasoning aware security mechanisms.
comment: 19 pages, 15 figures, 12 tables
♻ ☆ Malliavin Calculus for Score-based Diffusion Models
We introduce a new framework based on Malliavin calculus to derive exact analytical expressions for the score function $\nabla \log p_t(x)$, i.e., the gradient of the log-density associated with the solution to stochastic differential equations (SDEs). Our approach combines classical integration-by-parts techniques with modern stochastic analysis tools, such as Bismut's formula and Malliavin calculus, and it works for both linear and nonlinear SDEs. In doing so, we establish a rigorous connection between the Malliavin derivative, its adjoint, the Malliavin divergence (Skorokhod integral), and diffusion generative models, thereby providing a systematic method for computing $\nabla \log p_t(x)$. In the linear case, we present a detailed analysis showing that our formula coincides with the analytical score function derived from the solution of the Fokker--Planck equation. For nonlinear SDEs with state-independent diffusion coefficients, we derive a closed-form expression for $\nabla \log p_t(x)$. We evaluate the proposed framework across multiple generative tasks and find that its performance is comparable to state-of-the-art methods. These results can be generalised to broader classes of SDEs, paving the way for new score-based diffusion generative models.
♻ ☆ Time-To-Inconsistency: A Survival Analysis of Large Language Model Robustness to Adversarial Attacks
Large Language Models (LLMs) have revolutionized conversational AI, yet their robustness in extended multi-turn dialogues remains poorly understood. Existing evaluation frameworks focus on static benchmarks and single-turn assessments, failing to capture the temporal dynamics of conversational degradation that characterize real-world interactions. In this work, we present a large-scale survival analysis of conversational robustness, modeling failure as a time-to-event process over 36,951 turns from 9 state-of-the-art LLMs on the MT-Consistency benchmark. Our framework combines Cox proportional hazards, Accelerated Failure Time (AFT), and Random Survival Forest models with simple semantic drift features. We find that abrupt prompt-to-prompt semantic drift sharply increases the hazard of inconsistency, whereas cumulative drift is counterintuitively \emph{protective}, suggesting adaptation in conversations that survive multiple shifts. AFT models with model-drift interactions achieve the best combination of discrimination and calibration, and proportional hazards checks reveal systematic violations for key drift covariates, explaining the limitations of Cox-style modeling in this setting. Finally, we show that a lightweight AFT model can be turned into a turn-level risk monitor that flags most failing conversations several turns before the first inconsistent answer while keeping false alerts modest. These results establish survival analysis as a powerful paradigm for evaluating multi-turn robustness and for designing practical safeguards for conversational AI systems.
♻ ☆ WaveletDiff: Multilevel Wavelet Diffusion For Time Series Generation
Time series are ubiquitous in many applications that involve forecasting, classification and causal inference tasks, such as healthcare, finance, audio signal processing and climate sciences. Still, large, high-quality time series datasets remain scarce. Synthetic generation can address this limitation; however, current models confined either to the time or frequency domains struggle to reproduce the inherently multi-scaled structure of real-world time series. We introduce WaveletDiff, a novel framework that trains diffusion models directly on wavelet coefficients to exploit the inherent multi-resolution structure of time series data. The model combines dedicated transformers for each decomposition level with cross-level attention mechanisms that enable selective information exchange between temporal and frequency scales through adaptive gating. It also incorporates energy preservation constraints for individual levels based on Parseval's theorem to preserve spectral fidelity throughout the diffusion process. Comprehensive tests across six real-world datasets from energy, finance, and neuroscience domains demonstrate that WaveletDiff consistently outperforms state-of-the-art time-domain and frequency-domain generative methods on both short and long time series across five diverse performance metrics. For example, WaveletDiff achieves discriminative scores and Context-FID scores that are $3\times$ smaller on average than the second-best baseline across all datasets.
♻ ☆ Revenue Maximization Under Sequential Price Competition Via The Estimation Of s-Concave Demand Functions
We consider price competition among multiple sellers over a selling horizon of $T$ periods. In each period, sellers simultaneously offer their prices (which are made public) and subsequently observe their respective demand (not made public). The demand function of each seller depends on all sellers' prices through a private, unknown, and nonlinear relationship. We propose a dynamic pricing policy that uses semi-parametric least-squares estimation and show that when the sellers employ our policy, their prices converge at a rate of $O(T^{-1/7})$ to the Nash equilibrium prices that sellers would reach if they were fully informed. Each seller incurs a regret of $O(T^{5/7})$ relative to a dynamic benchmark policy. A theoretical contribution of our work is proving the existence of equilibrium under shape-constrained demand functions via the concept of $s$-concavity and establishing regret bounds of our proposed policy. Technically, we also establish new concentration results for the least squares estimator under shape constraints. Our findings offer significant insights into dynamic competition-aware pricing and contribute to the broader study of non-parametric learning in strategic decision-making.
♻ ☆ A Deep Learning-Based Method for Fully Coupled Non-Markovian FBSDEs with Applications
In this work, we extend deep learning-based numerical methods to fully coupled forward-backward stochastic differential equations (FBSDEs) within a non-Markovian framework. Error estimates and convergence are provided. In contrast to the existing literature, our approach not only analyzes the non-Markovian framework but also addresses fully coupled settings, in which both the drift and diffusion coefficients of the forward process may be random and depend on the backward components $Y$ and $Z$. Furthermore, we illustrate the practical applicability of our framework by addressing utility maximization problems under rough volatility, which are solved numerically with the proposed deep learning-based methods.
♻ ☆ Straight to Zero: Why Linearly Decaying the Learning Rate to Zero Works Best for LLMs ICLR 2025
LLMs are commonly trained with a learning rate (LR) warmup, followed by cosine decay to 10% of the maximum (10x decay). In a large-scale empirical study, we show that under an optimal peak LR, a simple linear decay-to-zero (D2Z) schedule consistently outperforms other schedules when training at compute-optimal dataset sizes. D2Z is superior across a range of model sizes, batch sizes, datasets, and vocabularies. Benefits increase as dataset size increases. Leveraging a novel interpretation of AdamW as an exponential moving average of weight updates, we show how linear D2Z optimally balances the demands of early training (moving away from initial conditions) and late training (averaging over more updates in order to mitigate gradient noise). In experiments, a 610M-parameter model trained for 80 tokens-per-parameter (TPP) using D2Z achieves lower loss than when trained for 200 TPP using 10x decay, corresponding to an astonishing 60% compute savings. Models such as Llama2-7B, trained for 286 TPP with 10x decay, could likely have saved a majority of compute by training with D2Z.
comment: ICLR 2025
♻ ☆ Investigating Representation Universality: Case Study on Genealogical Representations
Motivated by interpretability and reliability, we investigate whether large language models (LLMs) deploy universal geometric structures to encode discrete, graph-structured knowledge. To this end, we present two complementary experimental evidence that might support universality of graph representations. First, on an in-context genealogy Q&A task, we train a cone probe to isolate a tree-like subspace in residual stream activations and use activation patching to verify its causal effect in answering related questions. We validate our findings across five different models. Second, we conduct model stitching experiments across models of diverse architectures and parameter counts (OPT, Pythia, Mistral, and LLaMA, 410 million to 8 billion parameters), quantifying representational alignment via relative degradation in the next-token prediction loss. Generally, we conclude that the lack of ground truth representations of graphs makes it challenging to study how LLMs represent them. Ultimately, improving our understanding of LLM representations could facilitate the development of more interpretable, robust, and controllable AI systems.
comment: 14 pages, 7 figures
♻ ☆ Power Lines: Scaling Laws for Weight Decay and Batch Size in LLM Pre-training NeurIPS 2025
Efficient LLM pre-training requires well-tuned hyperparameters (HPs), including learning rate $η$ and weight decay $λ$. We study scaling laws for HPs: formulas for how to scale HPs as we scale model size N, dataset size D, and batch size B. Recent work suggests the AdamW timescale, $τ= B/(ηλD)$, should remain constant across training settings, and we verify the implication that optimal $λ$ scales linearly with B, for a fixed N and D. However, as N and D scale, we show optimal $τ$ obeys a precise power law in the tokens-per-parameter ratio, D/N. This law thus provides a method to accurately predict $λ$opt in advance of large-scale training. We also study scaling laws for optimal batch size Bopt (the B enabling lowest loss at a given N,D) and critical batch size Bcrit (the B beyond which further data parallelism becomes ineffective). In contrast to prior work, we find both Bopt and Bcrit scale as power laws in D, independent of model size, N. Finally, we analyze how these findings inform the real-world selection of Pareto-optimal N and D under dual training time and compute objectives. All experiments were run on Cerebras CS-3 systems.
comment: NeurIPS 2025
♻ ☆ A Geometric Unification of Distributionally Robust Covariance Estimators: Shrinking the Spectrum by Inflating the Ambiguity Set
The state-of-the-art methods for estimating high-dimensional covariance matrices all shrink the eigenvalues of the sample covariance matrix towards a data-insensitive shrinkage target. The underlying shrinkage transformation is either chosen heuristically - without compelling theoretical justification - or optimally in view of restrictive distributional assumptions. In this paper, we propose a principled approach to construct covariance estimators without imposing restrictive assumptions. That is, we study distributionally robust covariance estimation problems that minimize the worst-case Frobenius error with respect to all data distributions close to a nominal distribution, where the proximity of distributions is measured via a divergence on the space of covariance matrices. We identify mild conditions on this divergence under which the resulting minimizers represent shrinkage estimators. We show that the corresponding shrinkage transformations are intimately related to the geometrical properties of the underlying divergence. We also prove that our robust estimators are efficiently computable and asymptotically consistent and that they enjoy finite-sample performance guarantees. We exemplify our general methodology by synthesizing explicit estimators induced by the Kullback-Leibler, Fisher-Rao, and Wasserstein divergences. Numerical experiments based on synthetic and real data show that our robust estimators are competitive with state-of-the-art estimators.
♻ ☆ Unreal Robotics Lab: A High-Fidelity Robotics Simulator with Advanced Physics and Rendering
High-fidelity simulation is essential for robotics research, enabling safe and efficient testing of perception, control, and navigation algorithms. However, achieving both photorealistic rendering and accurate physics modeling remains a challenge. This paper presents a novel simulation framework, the Unreal Robotics Lab (URL), that integrates the advanced rendering capabilities of the Unreal Engine with MuJoCo's high-precision physics simulation. Our approach enables realistic robotic perception while maintaining accurate physical interactions, facilitating benchmarking and dataset generation for vision-based robotics applications. The system supports complex environmental effects, such as smoke, fire, and water dynamics, which are critical to evaluating robotic performance under adverse conditions. We benchmark visual navigation and SLAM methods within our framework, demonstrating its utility for testing real-world robustness in controlled yet diverse scenarios. By bridging the gap between physics accuracy and photorealistic rendering, our framework provides a powerful tool for advancing robotics research and sim-to-real transfer. Our open-source framework is available at https://unrealroboticslab.github.io/.
♻ ☆ Intervention Efficiency and Perturbation Validation Framework: Capacity-Aware and Robust Clinical Model Selection under the Rashomon Effect
In clinical machine learning, the coexistence of multiple models with comparable performance -- a manifestation of the Rashomon Effect -- poses fundamental challenges for trustworthy deployment and evaluation. Small, imbalanced, and noisy datasets, coupled with high-dimensional and weakly identified clinical features, amplify this multiplicity and make conventional validation schemes unreliable. As a result, selecting among equally performing models becomes uncertain, particularly when resource constraints and operational priorities are not considered by conventional metrics like F1 score. To address these issues, we propose two complementary tools for robust model assessment and selection: Intervention Efficiency (IE) and the Perturbation Validation Framework (PVF). IE is a capacity-aware metric that quantifies how efficiently a model identifies actionable true positives when only limited interventions are feasible, thereby linking predictive performance with clinical utility. PVF introduces a structured approach to assess the stability of models under data perturbations, identifying models whose performance remains most invariant across noisy or shifted validation sets. Empirical results on synthetic and real-world healthcare datasets show that using these tools facilitates the selection of models that generalize more robustly and align with capacity constraints, offering a new direction for tackling the Rashomon Effect in clinical settings.
♻ ☆ When Does Bottom-up Beat Top-down in Hierarchical Community Detection?
Hierarchical clustering of networks consists in finding a tree of communities, such that lower levels of the hierarchy reveal finer-grained community structures. There are two main classes of algorithms tackling this problem. Divisive (top-down) algorithms recursively partition the nodes into two communities, until a stopping rule indicates that no further split is needed. In contrast, agglomerative (bottom-up) algorithms first identify the smallest community structure and then repeatedly merge the communities using a linkage method. In this article, we establish theoretical guarantees for the recovery of the hierarchical tree and community structure of a Hierarchical Stochastic Block Model by a bottom-up algorithm. We also establish that this bottom-up algorithm attains the information-theoretic threshold for exact recovery at intermediate levels of the hierarchy. Notably, these recovery conditions are less restrictive compared to those existing for top-down algorithms. This shows that bottom-up algorithms extend the feasible region for achieving exact recovery at intermediate levels. Numerical experiments on both synthetic and real data sets confirm the superiority of bottom-up algorithms over top-down algorithms. We also observe that top-down algorithms can produce dendrograms with inversions. These findings contribute to a better understanding of hierarchical clustering techniques and their applications in network analysis.
♻ ☆ Parameter-Efficient Fine-Tuning of Large Language Models for Unit Test Generation: An Empirical Study
Parameter-efficient fine-tuning (PEFT) methods, which fine-tune only a subset of model parameters, offer a promising solution by reducing the computational costs of tuning large language models (LLMs) while maintaining their performance. Existing studies have explored using PEFT and LLMs for various code-related tasks and found that the effectiveness of PEFT techniques is task-dependent. The state-of-the-art is limited to using LLMs with full fine-tuning to generate unit tests. The application of PEFT techniques in unit test generation remains underexplored. This paper investigates both full fine-tuning and various PEFT methods, including LoRA, (IA)^3, and prompt tuning, across thirteen models of different architectures and sizes. We use well-established benchmark datasets to evaluate their effectiveness in unit test generation and measure syntax correctness, CodeBLEU, pass@1, instruction coverage, branch coverage, and mutation score of the generated tests. Our findings show that LoRA can deliver performance comparable to full fine-tuning for unit test generation in several cases. If training costs are valued, prompt tuning is the most cost-effective approach, particularly for large models. However, the models tuned with full fine-tuning or PEFT may generate fewer executable test cases than the baseline model because they generate more tests calling nonexistent methods or having type mismatches. For the generated ones that are executable, the ones from the tuned models show better test coverage than those from the baseline model.
comment: 26 pages, 2 figures, 6 tables, 1 listing
♻ ☆ Accelerating Goal-Conditioned RL Algorithms and Research ICLR 2025
Self-supervision has the potential to transform reinforcement learning (RL), paralleling the breakthroughs it has enabled in other areas of machine learning. While self-supervised learning in other domains aims to find patterns in a fixed dataset, self-supervised goal-conditioned reinforcement learning (GCRL) agents discover new behaviors by learning from the goals achieved during unstructured interaction with the environment. However, these methods have failed to see similar success, both due to a lack of data from slow environment simulations as well as a lack of stable algorithms. We take a step toward addressing both of these issues by releasing a high-performance codebase and benchmark (JaxGCRL) for self-supervised GCRL, enabling researchers to train agents for millions of environment steps in minutes on a single GPU. By utilizing GPU-accelerated replay buffers, environments, and a stable contrastive RL algorithm, we reduce training time by up to $22\times$. Additionally, we assess key design choices in contrastive RL, identifying those that most effectively stabilize and enhance training performance. With this approach, we provide a foundation for future research in self-supervised GCRL, enabling researchers to quickly iterate on new ideas and evaluate them in diverse and challenging environments. Website + Code: https://github.com/MichalBortkiewicz/JaxGCRL
comment: Published at ICLR 2025 (Spotlight). Website: https://michalbortkiewicz.github.io/JaxGCRL/ Code: https://github.com/MichalBortkiewicz/JaxGCRL
♻ ☆ High-dimensional multi-view clustering methods
Multi-view clustering has been widely used in recent years in comparison to single-view clustering, for clear reasons, as it offers more insights into the data, which has brought with it some challenges, such as how to combine these views or features. Most of recent work in this field focuses mainly on tensor representation instead of treating the data as simple matrices. This permits to deal with the high-order correlation between the data which the based matrix approach struggles to capture. Accordingly, we will examine and compare these approaches, particularly in two categories, namely graph-based clustering and subspace-based clustering. We will conduct and report experiments of the main clustering methods over a benchmark datasets.
comment: 4 figures
♻ ☆ Advancing Autonomous Driving: DepthSense with Radar and Spatial Attention
Depth perception is crucial for spatial understanding and has traditionally been achieved through stereoscopic imaging. However, the precision of depth estimation using stereoscopic methods depends on the accurate calibration of binocular vision sensors. Monocular cameras, while more accessible, often suffer from reduced accuracy, especially under challenging imaging conditions. Optical sensors, too, face limitations in adverse environments, leading researchers to explore radar technology as a reliable alternative. Although radar provides coarse but accurate signals, its integration with fine-grained monocular camera data remains underexplored. In this research, we propose DepthSense, a novel radar-assisted monocular depth enhancement approach. DepthSense employs an encoder-decoder architecture, a Radar Residual Network, feature fusion with a spatial attention mechanism, and an ordinal regression layer to deliver precise depth estimations. We conducted extensive experiments on the nuScenes dataset to validate the effectiveness of DepthSense. Our methodology not only surpasses existing approaches in quantitative performance but also reduces parameter complexity and inference times. Our findings demonstrate that DepthSense represents a significant advancement over traditional stereo methods, offering a robust and efficient solution for depth estimation in autonomous driving. By leveraging the complementary strengths of radar and monocular camera data, DepthSense sets a new benchmark in the field, paving the way for more reliable and accurate spatial perception systems.
♻ ☆ Seer: Online Context Learning for Fast Synchronous LLM Reinforcement Learning
Reinforcement Learning (RL) has become critical for advancing modern Large Language Models (LLMs), yet existing synchronous RL systems face severe performance bottlenecks. The rollout phase, which dominates end-to-end iteration time, suffers from substantial long-tail latency and poor resource utilization due to inherent workload imbalance. We present Seer, a novel online context learning system that addresses these challenges by exploiting previously overlooked similarities in output lengths and generation patterns among requests sharing the same prompt. Seer introduces three key techniques: divided rollout for dynamic load balancing, context-aware scheduling, and adaptive grouped speculative decoding. Together, these mechanisms substantially reduce long-tail latency and improve resource efficiency during rollout. Evaluations on production-grade RL workloads demonstrate that Seer improves end-to-end rollout throughput by 74% to 97% and reduces long-tail latency by 75% to 93% compared to state-of-the-art synchronous RL systems, significantly accelerating RL training iterations.
comment: 16 pages, 12 figures, 6 tables
♻ ☆ Exploring Potential Prompt Injection Attacks in Federated Military LLMs and Their Mitigation
Federated Learning (FL) is increasingly being adopted in military collaborations to develop Large Language Models (LLMs) while preserving data sovereignty. However, prompt injection attacks-malicious manipulations of input prompts-pose new threats that may undermine operational security, disrupt decision-making, and erode trust among allies. This perspective paper highlights four vulnerabilities in federated military LLMs: secret data leakage, free-rider exploitation, system disruption, and misinformation spread. To address these risks, we propose a human-AI collaborative framework with both technical and policy countermeasures. On the technical side, our framework uses red/blue team wargaming and quality assurance to detect and mitigate adversarial behaviors of shared LLM weights. On the policy side, it promotes joint AI-human policy development and verification of security protocols.
comment: Accepted to the 3rd International Workshop on Dataspaces and Digital Twins for Critical Entities and Smart Urban Communities - IEEE BigData 2025
♻ ☆ Generative AI-Powered Plugin for Robust Federated Learning in Heterogeneous IoT Networks
Federated learning enables edge devices to collaboratively train a global model while maintaining data privacy by keeping data localized. However, the Non-IID nature of data distribution across devices often hinders model convergence and reduces performance. In this paper, we propose a novel plugin for federated optimization methods that approximates Non-IID data distributions to IID through generative AI-enhanced data augmentation and balanced sampling strategy. The key idea is to synthesize additional data for underrepresented classes on each edge device, leveraging generative AI to create a more balanced dataset across the FL network. Additionally, a balanced sampling approach at the central server selectively includes only the most IID-like devices, accelerating convergence while maximizing the global model's performance. Experimental results validate that our approach significantly improves convergence speed and robustness against data imbalance, establishing a flexible, privacy-preserving FL plugin that is applicable even in data-scarce environments.
comment: Accepted to the 1st Workshop on New Generation Databases and Data-Empowering Technologies in Big Data Era - IEEE BigData 2025
♻ ☆ Newton-Flow Particle Filters based on Generalized Cramér Distance
We propose a recursive particle filter for high-dimensional problems that inherently never degenerates. The state estimate is represented by deterministic low-discrepancy particle sets. We focus on the measurement update step, where a likelihood function is used for representing the measurement and its uncertainty. This likelihood is progressively introduced into the filtering procedure by homotopy continuation over an artificial time. A generalized Cramér distance between particle sets is derived in closed form that is differentiable and invariant to particle order. A Newton flow then continually minimizes this distance over artificial time and thus smoothly moves particles from prior to posterior density. The new filter is surprisingly simple to implement and very efficient. It just requires a prior particle set and a likelihood function, never estimates densities from samples, and can be used as a plugin replacement for classic approaches.
comment: 8 pages; typos corrected, small changes
♻ ☆ VLCE: A Knowledge-Enhanced Framework for Image Description in Disaster Assessment
The processes of classification and segmentation utilizing artificial intelligence play a vital role in the automation of disaster assessments. However, contemporary VLMs produce details that are inadequately aligned with the objectives of disaster assessment, primarily due to their deficiency in domain knowledge and the absence of a more refined descriptive process. This research presents the Vision Language Caption Enhancer (VLCE), a dedicated multimodal framework aimed at integrating external semantic knowledge from ConceptNet and WordNet to improve the captioning process. The objective is to produce disaster-specific descriptions that effectively convert raw visual data into actionable intelligence. VLCE utilizes two separate architectures: a CNN-LSTM model that incorporates a ResNet50 backbone, pretrained on EuroSat for satellite imagery (xBD dataset), and a Vision Transformer developed for UAV imagery (RescueNet dataset). In various architectural frameworks and datasets, VLCE exhibits a consistent advantage over baseline models such as LLaVA and QwenVL. Our optimal configuration reaches an impressive 95.33\% on InfoMetIC for UAV imagery while also demonstrating strong performance across satellite imagery. The proposed framework signifies a significant transition from basic visual classification to the generation of comprehensive situational intelligence, demonstrating immediate applicability for implementation in real-time disaster assessment systems.
comment: 30 pages, 40 figures, 3 algorithms
♻ ☆ Expressive Temporal Specifications for Reward Monitoring
Specifying informative and dense reward functions remains a pivotal challenge in Reinforcement Learning, as it directly affects the efficiency of agent training. In this work, we harness the expressive power of quantitative Linear Temporal Logic on finite traces (($\text{LTL}_f[\mathcal{F}]$)) to synthesize reward monitors that generate a dense stream of rewards for runtime-observable state trajectories. By providing nuanced feedback during training, these monitors guide agents toward optimal behaviour and help mitigate the well-known issue of sparse rewards under long-horizon decision making, which arises under the Boolean semantics dominating the current literature. Our framework is algorithm-agnostic and only relies on a state labelling function, and naturally accommodates specifying non-Markovian properties. Empirical results show that our quantitative monitors consistently subsume and, depending on the environment, outperform Boolean monitors in maximizing a quantitative measure of task completion and in reducing convergence time.
♻ ☆ Adapting Physics-Informed Neural Networks for Bifurcation Detection in Ecological Migration Models
In this study, we explore the application of Physics-Informed Neural Networks (PINNs) to the analysis of bifurcation phenomena in ecological migration models. By integrating the fundamental principles of diffusion-advection-reaction equations with deep learning techniques, we address the complexities of species migration dynamics, particularly focusing on the detection and analysis of Hopf bifurcations. Traditional numerical methods for solving partial differential equations (PDEs) often involve intricate calculations and extensive computational resources, which can be restrictive in high-dimensional problems. In contrast, PINNs offer a more flexible and efficient alternative, bypassing the need for grid discretization and allowing for mesh-free solutions. Our approach leverages the DeepXDE framework, which enhances the computational efficiency and applicability of PINNs in solving high-dimensional PDEs. We validate our results against conventional methods and demonstrate that PINNs not only provide accurate bifurcation predictions but also offer deeper insights into the underlying dynamics of diffusion processes. Despite these advantages, the study also identifies challenges such as the high computational costs and the sensitivity of PINN performance to network architecture and hyperparameter settings. Future work will focus on optimizing these algorithms and expanding their application to other complex systems involving bifurcations. The findings from this research have significant implications for the modeling and analysis of ecological systems, providing a powerful tool for predicting and understanding complex dynamical behaviors.
comment: Upon further review, we have concluded that the study is not yet complete and requires additional data and validation to support its findings
♻ ☆ EVA-Net: Interpretable Anomaly Detection for Brain Health via Learning Continuous Aging Prototypes from One-Class EEG Cohorts
The brain age is a key indicator of brain health. While electroencephalography (EEG) is a practical tool for this task, existing models struggle with the common challenge of imperfect medical data, such as learning a ``normal'' baseline from weakly supervised, healthy-only cohorts. This is a critical anomaly detection task for identifying disease, but standard models are often black boxes lacking an interpretable structure. We propose EVA-Net, a novel framework that recasts brain age as an interpretable anomaly detection problem. EVA-Net uses an efficient, sparsified-attention Transformer to model long EEG sequences. To handle noise and variability in imperfect data, it employs a Variational Information Bottleneck to learn a robust, compressed representation. For interpretability, this representation is aligned to a continuous prototype network that explicitly learns the normative healthy aging manifold. Trained on 1297 healthy subjects, EVA-Net achieves state-of-the-art accuracy. We validated its anomaly detection capabilities on an unseen cohort of 27 MCI and AD patients. This pathological group showed significantly higher brain-age gaps and a novel Prototype Alignment Error, confirming their deviation from the healthy manifold. EVA-Net provides an interpretable framework for healthcare intelligence using imperfect medical data.
♻ ☆ Meta Policy Switching for Secure UAV Deconfliction in Adversarial Airspace
Autonomous UAV navigation using reinforcement learning (RL) is vulnerable to adversarial attacks that manipulate sensor inputs, potentially leading to unsafe behavior and mission failure. Although robust RL methods provide partial protection, they often struggle to generalize to unseen or out-of-distribution (OOD) attacks due to their reliance on fixed perturbation settings. To address this limitation, we propose a meta-policy switching framework in which a meta-level polic dynamically selects among multiple robust policies to counter unknown adversarial shifts. At the core of this framework lies a discounted Thompson sampling (DTS) mechanism that formulates policy selection as a multi-armed bandit problem, thereby minimizing value distribution shifts via self-induced adversarial observations. We first construct a diverse ensemble of action-robust policies trained under varying perturbation intensities. The DTS-based meta-policy then adaptively selects among these policies online, optimizing resilience against self-induced, piecewise-stationary attacks. Theoretical analysis shows that the DTS mechanism minimizes expected regret, ensuring adaptive robustness to OOD attacks and exhibiting emergent antifragile behavior under uncertainty. Extensive simulations in complex 3D obstacle environments under both white-box (Projected Gradient Descent) and black-box (GPS spoofing) attacks demonstrate significantly improved navigation efficiency and higher conflict free trajectory rates compared to standard robust and vanilla RL baselines, highlighting the practical security and dependability benefits of the proposed approach.
♻ ☆ Scaling Capability in Token Space: An Analysis of Large Vision Language Model
Large language models have demonstrated predictable scaling behaviors with respect to model parameters and training data. This study investigates whether a similar scaling relationship exist for vision-language models with respect to the number of vision tokens. A mathematical framework is developed to characterize a relationship between vision token number and the expected divergence of distance between vision-referencing sequences. The theoretical analysis reveals two distinct scaling regimes: sublinear scaling for less vision tokens and linear scaling for more vision tokens. This aligns with model performance relationships of the form \(S(n) \approx c / n^{α(n)}\), where the scaling exponent relates to the correlation structure between vision token representations. Empirical validations across multiple vision-language benchmarks show that model performance matches the prediction from scaling relationship. The findings contribute to understanding vision token scaling in transformers through a theoretical framework that complements empirical observations.
♻ ☆ ReCode: Updating Code API Knowledge with Reinforcement Learning AAAI 2026
Large Language Models (LLMs) exhibit remarkable code generation capabilities but falter when adapting to frequent updates in external library APIs. This critical limitation, stemming from reliance on outdated API knowledge from their training data, even with access to current documentation, impedes reliable code generation in dynamic environments. To tackle this issue, we propose ReCode (rule-based Reinforcement learning for Code Update), a novel framework that mimics human programmer adaptation to API changes. Specifically, we construct a dataset of approximately 2,000 data entries to train the LLMs to perform version migration based on updated information. Then, we introduce a modified string similarity metric for code evaluation as the reward for reinforcement learning. Our experiments demonstrate that ReCode substantially boosts LLMs' code generation performance in dynamic API scenarios, especially on the unseen CodeUpdateArena task. Crucially, compared to supervised fine-tuning, ReCode has less impact on LLMs' general code generation abilities. We apply ReCode on various LLMs and reinforcement learning algorithms (GRPO and DAPO), all achieving consistent improvements. Notably, after training, Qwen2.5-Coder-7B outperforms that of the 32B parameter code instruction-tuned model and the reasoning model with the same architecture. Code is available at https://github.com/zjunlp/ReCode.
comment: AAAI 2026
♻ ☆ Learning Mean Field Control on Sparse Graphs ICML 2025
Large agent networks are abundant in applications and nature and pose difficult challenges in the field of multi-agent reinforcement learning (MARL) due to their computational and theoretical complexity. While graphon mean field games and their extensions provide efficient learning algorithms for dense and moderately sparse agent networks, the case of realistic sparser graphs remains largely unsolved. Thus, we propose a novel mean field control model inspired by local weak convergence to include sparse graphs such as power law networks with coefficients above two. Besides a theoretical analysis, we design scalable learning algorithms which apply to the challenging class of graph sequences with finite first moment. We compare our model and algorithms for various examples on synthetic and real world networks with mean field algorithms based on Lp graphons and graphexes. As it turns out, our approach outperforms existing methods in many examples and on various networks due to the special design aiming at an important, but so far hard to solve class of MARL problems.
comment: Accepted at ICML 2025
♻ ☆ Beyond Superficial Forgetting: Thorough Unlearning through Knowledge Density Estimation and Block Re-insertion AAAI 2026
Machine unlearning, which selectively removes harmful knowledge from a pre-trained model without retraining from scratch, is crucial for addressing privacy, regulatory compliance, and ethical concerns in Large Language Models (LLMs). However, existing unlearning methods often struggle to thoroughly remove harmful knowledge, leaving residual harmful knowledge that can be easily recovered. To address these limitations, we propose Knowledge Density-Guided Unlearning via Blocks Reinsertion (KUnBR), a novel approach that first identifies layers with rich harmful knowledge and then thoroughly eliminates the harmful knowledge via re-insertion strategy. Our method introduces knowledge density estimation to quantify and locate layers containing the most harmful knowledge, enabling precise unlearning. Additionally, we design a layer re-insertion strategy that extracts and re-inserts harmful knowledge-rich layers into the original LLM, bypassing gradient obstruction caused by cover layers and ensuring effective gradient propagation during unlearning. Extensive experiments conducted on several unlearning and general capability benchmarks demonstrate that KUnBR achieves state-of-the-art forgetting performance while maintaining model utility.
comment: Accepted by AAAI 2026
♻ ☆ DeepRWCap: Neural-Guided Random-Walk Capacitance Solver for IC Design AAAI-26
Monte Carlo random walk methods are widely used in capacitance extraction for their mesh free formulation and inherent parallelism. However, modern semiconductor technologies with densely packed structures present significant challenges in unbiasedly sampling transition domains in walk steps with multiple high contrast dielectric materials. We present DeepRWCap, a machine learning guided random walk solver that predicts the transition quantities required to guide each step of the walk. These include Poisson kernels, gradient kernels, and the signs and magnitudes of weights. DeepRWCap employs a two stage neural architecture that decomposes structured outputs into face wise distributions and spatial kernels on cube faces. It uses 3D convolutional networks to capture volumetric dielectric interactions and 2D depthwise separable convolutions to model localized kernel behavior. The design incorporates grid based positional encodings and structural design choices informed by cube symmetries to reduce learning redundancy and improve generalization. Trained on 100000 procedurally generated dielectric configurations, DeepRWCap achieves a mean relative error of 1.24 +/- 0.53% when benchmarked against the commercial Raphael solver on the self capacitance estimation of 10 industrial designs spanning 12 to 55 nm nodes. Compared to the state of the art stochastic difference method Microwalk, DeepRWCap achieves an average speedup of 23%. On complex designs with runtimes over 10 seconds, it reaches an average acceleration of 49%.
comment: Accepted to AAAI-26
♻ ☆ Spatiotemporal Graph Convolutional Recurrent Neural Network Model for Citywide Air Pollution Forecasting
Citywide Air Pollution Forecasting tries to precisely predict the air quality multiple hours ahead for the entire city. This topic is challenged since air pollution varies in a spatiotemporal manner and depends on many complicated factors. Our previous research has solved the problem by considering the whole city as an image and leveraged a Convolutional Long Short-Term Memory (ConvLSTM) model to learn the spatiotemporal features. However, an image-based representation may not be ideal as air pollution and other impact factors have natural graph structures. In this research, we argue that a Graph Convolutional Network (GCN) can efficiently represent the spatial features of air quality readings in the whole city. Specially, we extend the ConvLSTM model to a Spatiotemporal Graph Convolutional Recurrent Neural Network (Spatiotemporal GCRNN) model by tightly integrating a GCN architecture into an RNN structure for efficient learning spatiotemporal characteristics of air quality values and their influential factors. Our extensive experiments prove the proposed model has a better performance compare to the state-of-the-art ConvLSTM model for air pollution predicting while the number of parameters is much smaller. Moreover, our approach is also superior to a hybrid GCN-based method in a real-world air pollution dataset.
comment: Updated metadata
♻ ☆ Minimum Width of Deep Narrow Networks for Universal Approximation
Determining the minimum width of fully connected neural networks has become a fundamental problem in recent theoretical studies of deep neural networks. In this paper, we study the lower bounds and upper bounds of the minimum width required for fully connected neural networks in order to have universal approximation capability, which is important in network design and training. We show that $w_{min}\leq\max(2d_x+1, d_y)$ also holds true for networks with ELU, SELU activation functions, and the upper bound of this inequality is attained when $d_y=2d_x$, where $d_x$, $d_y$ denote the input and output dimensions, respectively. Besides, we show that $d_x+1\leq w_{min}\leq d_x+d_y$ for networks with LeakyReLU, ELU, CELU, SELU, Softplus activation functions, by proving that ReLU activation function can be approximated by these activation functions. In addition, in the case that the activation function is injective or can be uniformly approximated by a sequence of injective functions (e.g., ReLU), we present a new proof of the inequality $w_{min}\ge d_y+\mathbf{1}_{d_x
♻ ☆ AMAuT: A Flexible and Efficient Multiview Audio Transformer Framework Trained from Scratch
Recent foundational models, SSAST, EAT, HuBERT, Qwen-Audio, and Audio Flamingo, achieve top-tier results across standard audio benchmarks but are limited by fixed input rates and durations, hindering their reusability. This paper introduces the Augmentation-driven Multiview Audio Transformer (AMAuT), a training-from-scratch framework that eliminates the dependency on pre-trained weights while supporting arbitrary sample rates and audio lengths. AMAuT integrates four key components: (1) augmentation-driven multiview learning for robustness, (2) a conv1 + conv7 + conv1 one-dimensional CNN bottleneck for stable temporal encoding, (3) dual CLS + TAL tokens for bidirectional context representation, and (4) test-time adaptation/augmentation (TTA^2) to improve inference reliability. Experiments on five public benchmarks, AudioMNIST, SpeechCommands V1 & V2, VocalSound, and CochlScene, show that AMAuT achieves accuracies up to 99.8% while consuming less than 3% of the GPU hours required by comparable pre-trained models. Thus, AMAuT presents a highly efficient and flexible alternative to large pre-trained models, making state-of-the-art audio classification accessible in computationally constrained settings.
comment: Updating note: 1. CLS+TAL is the distill token from DeiT rather than the alternative class token. Adjust the content to clarify it. 2. Figure 4 presents an error sequence of figures (a) and (b). 3. Remove an unrelated citation about the VS set. 4. A missing citation in section 4.4 (SSAST [19] here is not a correct citation)
♻ ☆ UPLME: Uncertainty-Aware Probabilistic Language Modelling for Robust Empathy Regression
Noisy self-reported empathy scores challenge supervised learning for empathy regression. While many algorithms have been proposed for learning with noisy labels in textual classification problems, the regression counterpart is relatively under-explored. We propose UPLME, an uncertainty-aware probabilistic language modelling framework to capture label noise in empathy regression tasks. One of the novelties in UPLME is a probabilistic language model that predicts both empathy scores and heteroscedastic uncertainty, and is trained using Bayesian concepts with variational model ensembling. We further introduce two novel loss components: one penalises degenerate Uncertainty Quantification (UQ), and another enforces similarity between the input pairs on which empathy is being predicted. UPLME achieves state-of-the-art performance (Pearson Correlation Coefficient: $0.558\rightarrow0.580$ and $0.629\rightarrow0.634$) in terms of the performance reported in the literature on two public benchmarks with label noise. Through synthetic label noise injection, we demonstrate that UPLME is effective in distinguishing between noisy and clean samples based on the predicted uncertainty. UPLME further outperform (Calibration error: $0.571\rightarrow0.376$) a recent variational model ensembling-based UQ method designed for regression problems. Code is publicly available at https://github.com/hasan-rakibul/UPLME.
comment: Code available at https://github.com/hasan-rakibul/UPLME
♻ ☆ Boundary on the Table: Efficient Black-Box Decision-Based Attacks for Structured Data
Adversarial robustness in structured data remains an underexplored frontier compared to vision and language domains. In this work, we introduce a novel black-box, decision-based adversarial attack tailored for tabular data. Our approach combines gradient-free direction estimation with an iterative boundary search, enabling efficient navigation of discrete and continuous feature spaces under minimal oracle access. Extensive experiments demonstrate that our method successfully compromises nearly the entire test set across diverse models, ranging from classical machine learning classifiers to large language model (LLM)-based pipelines. Remarkably, the attack achieves success rates consistently above 90%, while requiring only a small number of queries per instance. These results highlight the critical vulnerability of tabular models to adversarial perturbations, underscoring the urgent need for stronger defenses in real-world decision-making systems.
comment: Paper revision
♻ ☆ Preserving Expert-Level Privacy in Offline Reinforcement Learning
The offline reinforcement learning (RL) problem aims to learn an optimal policy from historical data collected by one or more behavioural policies (experts) by interacting with an environment. However, the individual experts may be privacy-sensitive in that the learnt policy may retain information about their precise choices. In some domains like personalized retrieval, advertising and healthcare, the expert choices are considered sensitive data. To provably protect the privacy of such experts, we propose a novel consensus-based expert-level differentially private offline RL training approach compatible with any existing offline RL algorithm. We prove rigorous differential privacy guarantees, while maintaining strong empirical performance. Unlike existing work in differentially private RL, we supplement the theory with proof-of-concept experiments on classic RL environments featuring large continuous state spaces, demonstrating substantial improvements over a natural baseline across multiple tasks.
comment: Top 10% submission at TMLR (J2C Certification)
♻ ☆ OutSafe-Bench: A Benchmark for Multimodal Offensive Content Detection in Large Language Models
Since Multimodal Large Language Models (MLLMs) are increasingly being integrated into everyday tools and intelligent agents, growing concerns have arisen regarding their possible output of unsafe contents, ranging from toxic language and biased imagery to privacy violations and harmful misinformation. Current safety benchmarks remain highly limited in both modality coverage and performance evaluations, often neglecting the extensive landscape of content safety. In this work, we introduce OutSafe-Bench, the first most comprehensive content safety evaluation test suite designed for the multimodal era. OutSafe-Bench includes a large-scale dataset that spans four modalities, featuring over 18,000 bilingual (Chinese and English) text prompts, 4,500 images, 450 audio clips and 450 videos, all systematically annotated across nine critical content risk categories. In addition to the dataset, we introduce a Multidimensional Cross Risk Score (MCRS), a novel metric designed to model and assess overlapping and correlated content risks across different categories. To ensure fair and robust evaluation, we propose FairScore, an explainable automated multi-reviewer weighted aggregation framework. FairScore selects top-performing models as adaptive juries, thereby mitigating biases from single-model judgments and enhancing overall evaluation reliability. Our evaluation of nine state-of-the-art MLLMs reveals persistent and substantial safety vulnerabilities, underscoring the pressing need for robust safeguards in MLLMs.
♻ ☆ MindCraft: How Concept Trees Take Shape In Deep Models
Large-scale foundation models demonstrate strong performance across language, vision, and reasoning tasks. However, how they internally structure and stabilize concepts remains elusive. Inspired by causal inference, we introduce the MindCraft framework built upon Concept Trees. By applying spectral decomposition at each layer and linking principal directions into branching Concept Paths, Concept Trees reconstruct the hierarchical emergence of concepts, revealing exactly when they diverge from shared representations into linearly separable subspaces. Empirical evaluations across diverse scenarios across disciplines, including medical diagnosis, physics reasoning, and political decision-making, show that Concept Trees recover semantic hierarchies, disentangle latent concepts, and can be widely applied across multiple domains. The Concept Tree establishes a widely applicable and powerful framework that enables in-depth analysis of conceptual representations in deep models, marking a significant step forward in the foundation of interpretable AI.
♻ ☆ Graph Out-of-Distribution Detection via Test-Time Calibration with Dual Dynamic Dictionaries AAAI 2026
A key challenge in graph out-of-distribution (OOD) detection lies in the absence of ground-truth OOD samples during training. Existing methods are typically optimized to capture features within the in-distribution (ID) data and calculate OOD scores, which often limits pre-trained models from representing distributional boundaries, leading to unreliable OOD detection. Moreover, the latent structure of graph data is often governed by multiple underlying factors, which remains less explored. To address these challenges, we propose a novel test-time graph OOD detection method, termed BaCa, that calibrates OOD scores using dual dynamically updated dictionaries without requiring fine-tuning the pre-trained model. Specifically, BaCa estimates graphons and applies a mix-up strategy solely with test samples to generate diverse boundary-aware discriminative topologies, eliminating the need for exposing auxiliary datasets as outliers. We construct dual dynamic dictionaries via priority queues and attention mechanisms to adaptively capture latent ID and OOD representations, which are then utilized for boundary-aware OOD score calibration. To the best of our knowledge, extensive experiments on real-world datasets show that BaCa significantly outperforms existing state-of-the-art methods in OOD detection.
comment: Accepted by AAAI 2026 (The 40th Annual AAAI Conference on Artificial Intelligence)
♻ ☆ Finite-dimensional approximations of push-forwards on locally analytic functionals
This paper develops a functional-analytic framework for approximating the push-forward induced by an analytic map from finitely many samples. Instead of working directly with the map, we study the push-forward on the space of locally analytic functionals and identify it, via the Fourier--Borel transform, with an operator on the space of entire functions of exponential type. This yields finite-dimensional approximations of the push-forward together with explicit error bounds expressed in terms of the smallest eigenvalues of certain Hankel moment matrices. Moreover, we obtain sample complexity bounds for the approximation from i.i.d.~sampled data. As a consequence, we show that linear algebraic operations on the finite-dimensional approximations can be used to reconstruct analytic vector fields from discrete trajectory data. In particular, we prove convergence of a data-driven method for recovering the vector field of an ordinary differential equation from finite-time flow map data under fairly general conditions.
comment: 28 pages. Comments are welcome
♻ ☆ Learning Fair Representations with Kolmogorov-Arnold Networks AAAI-26
Despite recent advances in fairness-aware machine learning, predictive models often exhibit discriminatory behavior towards marginalized groups. Such unfairness might arise from biased training data, model design, or representational disparities across groups, posing significant challenges in high-stakes decision-making domains such as college admissions. While existing fair learning models aim to mitigate bias, achieving an optimal trade-off between fairness and accuracy remains a challenge. Moreover, the reliance on black-box models hinders interpretability, limiting their applicability in socially sensitive domains. To circumvent these issues, we propose integrating Kolmogorov-Arnold Networks (KANs) within a fair adversarial learning framework. Leveraging the adversarial robustness and interpretability of KANs, our approach facilitates stable adversarial learning. We derive theoretical insights into the spline-based KAN architecture that ensure stability during adversarial optimization. Additionally, an adaptive fairness penalty update mechanism is proposed to strike a balance between fairness and accuracy. We back these findings with empirical evidence on two real-world admissions datasets, demonstrating the proposed framework's efficiency in achieving fairness across sensitive attributes while preserving predictive performance.
comment: Accepted at AAAI-26
♻ ☆ Breaking the Bottleneck with DiffuApriel: High-Throughput Diffusion LMs with Mamba Backbone
Diffusion-based language models have recently emerged as a promising alternative to autoregressive generation, yet their reliance on Transformer backbones limits inference efficiency due to quadratic attention and KV-cache overhead. In this work, we introduce DiffuApriel, a masked diffusion language model built on a bidirectional Mamba backbone that combines the diffusion objective with linear-time sequence modeling. DiffuApriel matches the performance of Transformer-based diffusion models while achieving up to 4.4x higher inference throughput for long sequences with a 1.3B model. We further propose DiffuApriel-H, a hybrid variant that interleaves attention and mamba layers, offering up to 2.6x throughput improvement with balanced global and local context modeling. Our results demonstrate that bidirectional state-space architectures serve as strong denoisers in masked diffusion LMs, providing a practical and scalable foundation for faster, memory-efficient text generation.
comment: 9 pages, 4 figures
Genomics 2
☆ Auxiliary Gene Learning: Spatial Gene Expression Estimation by Auxiliary Gene Selection AAAI
Spatial transcriptomics (ST) is a novel technology that enables the observation of gene expression at the resolution of individual spots within pathological tissues. ST quantifies the expression of tens of thousands of genes in a tissue section; however, heavy observational noise is often introduced during measurement. In prior studies, to ensure meaningful assessment, both training and evaluation have been restricted to only a small subset of highly variable genes, and genes outside this subset have also been excluded from the training process. However, since there are likely co-expression relationships between genes, low-expression genes may still contribute to the estimation of the evaluation target. In this paper, we propose $Auxiliary \ Gene \ Learning$ (AGL) that utilizes the benefit of the ignored genes by reformulating their expression estimation as auxiliary tasks and training them jointly with the primary tasks. To effectively leverage auxiliary genes, we must select a subset of auxiliary genes that positively influence the prediction of the target genes. However, this is a challenging optimization problem due to the vast number of possible combinations. To overcome this challenge, we propose Prior-Knowledge-Based Differentiable Top-$k$ Gene Selection via Bi-level Optimization (DkGSB), a method that ranks genes by leveraging prior knowledge and relaxes the combinatorial selection problem into a differentiable top-$k$ selection problem. The experiments confirm the effectiveness of incorporating auxiliary genes and show that the proposed method outperforms conventional auxiliary task learning approaches.
comment: Accepted to Association for the Advancement of Artificial Intelligence (AAAI) 2026
♻ ☆ CFM-GP: Unified Conditional Flow Matching to Learn Gene Perturbation Across Cell Types
Understanding gene perturbation effects across diverse cellular contexts is a central challenge in functional genomics, with important implications for therapeutic discovery and precision medicine. Single-cell technologies enable high-resolution measurement of transcriptional responses, but collecting such data is costly and time-consuming, especially when repeated for each cell type. Existing computational methods often require separate models per cell type, limiting scalability and generalization. We present CFM-GP, a method for cell type-agnostic gene perturbation prediction. CFM-GP learns a continuous, time-dependent transformation between unperturbed and perturbed gene expression distributions, conditioned on cell type, allowing a single model to predict across all cell types. Unlike prior approaches that use discrete modeling, CFM-GP employs a flow matching objective to capture perturbation dynamics in a scalable manner. We evaluate on five datasets: SARS-CoV-2 infection, IFN-beta stimulated PBMCs, glioblastoma treated with Panobinostat, lupus under IFN-beta stimulation, and Statefate progenitor fate mapping. CFM-GP consistently outperforms state-of-the-art baselines in R-squared and Spearman correlation, and pathway enrichment analysis confirms recovery of key biological pathways. These results demonstrate the robustness and biological fidelity of CFM-GP as a scalable solution for cross-cell type gene perturbation prediction.
comment: 28 Pages, 19 Tables, 8 Figures. The first two authors contributed equally
Quantitative Methods 6
☆ Learning the principles of T cell antigen discernment
T cells are central to the adaptive immune response, capable of detecting pathogenic antigens while ignoring healthy tissues with remarkable specificity and sensitivity. Quantitatively understanding how T cell receptors (TCRs) discriminate among antigens requires biophysical models and theoretical analysis of signaling networks. Here, we review current theoretical frameworks of antigen recognition in the context of modern experimental and computational advances. Antigen potency spans a continuum and exhibits nonlinear effects within complex mixtures, challenging discrete classification and simple threshold-based models. This complexity motivates the development of models such as adaptive kinetic proofreading, which integrate both activating and inhibitory signals. Advances in high-throughput technologies now generate large-scale, quantitative datasets, enabling the refinement of such models through statistical and machine learning approaches. This convergence of theory, data, and computation promises deeper insights into immune decision-making and opens new avenues for rational immunotherapy design.
☆ TRIDENT: A Trimodal Cascade Generative Framework for Drug and RNA-Conditioned Cellular Morphology Synthesis
Accurately modeling the relationship between perturbations, transcriptional responses, and phenotypic changes is essential for building an AI Virtual Cell (AIVC). However, existing methods typically constrained to modeling direct associations, such as Perturbation $\rightarrow$ RNA or Perturbation $\rightarrow$ Morphology, overlook the crucial causal link from RNA to morphology. To bridge this gap, we propose TRIDENT, a cascade generative framework that synthesizes realistic cellular morphology by conditioning on both the perturbation and the corresponding gene expression profile. To train and evaluate this task, we construct MorphoGene, a new dataset pairing L1000 gene expression with Cell Painting images for 98 compounds. TRIDENT significantly outperforms state-of-the-art approaches, achieving up to 7-fold improvement with strong generalization to unseen compounds. In a case study on docetaxel, we validate that RNA-guided synthesis accurately produces the corresponding phenotype. An ablation study further confirms that this RNA conditioning is essential for the model's high fidelity. By explicitly modeling transcriptome-phenome mapping, TRIDENT provides a powerful in silico tool and moves us closer to a predictive virtual cell.
☆ Detecting Discontinuities in the Topology of Alzheimers gene Co-expression
Alzheimer's disease (AD) emerges from a complex interplay of molecular, cellular, and network-level disturbances that are not easily captured by traditional reductionist frameworks. Conventional analyses of gene expression often rely on thresholded correlation networks or clustering-based module detection, approaches that may obscure nonlinear structure and higher-order organization. Here, we introduce a comparative topological framework that makes use of topological data analysis (TDA) and the Mapper algorithm to detect discontinuities - localized disruptions in the topology of gene co-expression space between healthy and AD brain tissue. Using gene expression data from 3 brain regions, we mapped how AD reshapes the global topology of gene-gene relationships. Discontinuity hotspots were identified via variability-based node scoring and subjected to Gene Ontology Biological Process enrichment analysis. This work illustrates the potential of TDA to uncover disease-relevant structure in high-dimensional transcriptomic data and motivates broader application of shape-based comparative methods in neurodegeneration research and other areas that benefit from comparative analysis.
♻ ☆ Deep Learning for Blood-Brain Barrier Permeability Prediction
Predicting whether a molecule can cross the blood-brain barrier (BBB) is a key step in early-stage neuropharmaceutical development, directly influencing both research efficiency and success rates in drug discovery. Traditional empirical methods based on physicochemical properties are prone to systematic misjudgements due to their reliance on static rules. Early machine learning models, although data-driven, often suffer from limited capacity, poor generalization, and insufficient interpretability. In recent years, artificial intelligence (AI) methods have become essential tools for predicting BBB permeability and guiding related drug design, owing to their ability to model molecular structures and capture complex biological mechanisms. This article systematically reviews the evolution of this field-from deep neural networks to graph-based structural modeling-highlighting the advantages of multi-task and multimodal learning strategies in identifying mechanism-relevant variables. We further explore the emerging potential of generative models and causal inference methods for integrating permeability prediction with mechanism-aware drug design. BBB modeling is in the transition from static classification toward mechanistic perception and structure-function modeling. This paradigm shift provides a methodological foundation and future roadmap for the integration of AI into neuropharmacological development.
comment: Updated version: improved organization, refined mechanistic modeling framework, and updated figures and references
♻ ☆ Adapting Physics-Informed Neural Networks for Bifurcation Detection in Ecological Migration Models
In this study, we explore the application of Physics-Informed Neural Networks (PINNs) to the analysis of bifurcation phenomena in ecological migration models. By integrating the fundamental principles of diffusion-advection-reaction equations with deep learning techniques, we address the complexities of species migration dynamics, particularly focusing on the detection and analysis of Hopf bifurcations. Traditional numerical methods for solving partial differential equations (PDEs) often involve intricate calculations and extensive computational resources, which can be restrictive in high-dimensional problems. In contrast, PINNs offer a more flexible and efficient alternative, bypassing the need for grid discretization and allowing for mesh-free solutions. Our approach leverages the DeepXDE framework, which enhances the computational efficiency and applicability of PINNs in solving high-dimensional PDEs. We validate our results against conventional methods and demonstrate that PINNs not only provide accurate bifurcation predictions but also offer deeper insights into the underlying dynamics of diffusion processes. Despite these advantages, the study also identifies challenges such as the high computational costs and the sensitivity of PINN performance to network architecture and hyperparameter settings. Future work will focus on optimizing these algorithms and expanding their application to other complex systems involving bifurcations. The findings from this research have significant implications for the modeling and analysis of ecological systems, providing a powerful tool for predicting and understanding complex dynamical behaviors.
comment: Upon further review, we have concluded that the study is not yet complete and requires additional data and validation to support its findings
♻ ☆ A Diffusion Model to Shrink Proteins While Maintaining Their Function
Many proteins useful in modern medicine or bioengineering are challenging to make in the lab, fuse with other proteins in cells, or deliver to tissues in the body, because their sequences are too long. Shortening these sequences typically involves costly, time-consuming experimental campaigns. Ideally, we could instead use modern models of massive databases of sequences from nature to learn how to propose shrunken proteins that resemble sequences found in nature. Unfortunately, these models struggle to efficiently search the combinatorial space of all deletions, and are not trained with inductive biases to learn how to delete. To address this gap, we propose SCISOR, a novel discrete diffusion model that deletes letters from sequences to generate protein samples that resemble those found in nature. To do so, SCISOR trains a de-noiser to reverse a forward noising process that adds random insertions to natural sequences. As a generative model, SCISOR fits evolutionary sequence data competitively with previous large models. In evaluation, SCISOR achieves state-of-the-art predictions of the functional effects of deletions on ProteinGym. Finally, we use the SCISOR de-noiser to shrink long protein sequences, and show that its suggested deletions result in significantly more realistic proteins and more often preserve functional motifs than previous models of evolutionary sequences.
comment: Code available at https://github.com/baronet2/SCISOR
Cell Behavior 1
☆ Learning the principles of T cell antigen discernment
T cells are central to the adaptive immune response, capable of detecting pathogenic antigens while ignoring healthy tissues with remarkable specificity and sensitivity. Quantitatively understanding how T cell receptors (TCRs) discriminate among antigens requires biophysical models and theoretical analysis of signaling networks. Here, we review current theoretical frameworks of antigen recognition in the context of modern experimental and computational advances. Antigen potency spans a continuum and exhibits nonlinear effects within complex mixtures, challenging discrete classification and simple threshold-based models. This complexity motivates the development of models such as adaptive kinetic proofreading, which integrate both activating and inhibitory signals. Advances in high-throughput technologies now generate large-scale, quantitative datasets, enabling the refinement of such models through statistical and machine learning approaches. This convergence of theory, data, and computation promises deeper insights into immune decision-making and opens new avenues for rational immunotherapy design.
Genomics 2
♻ ☆ Leveraging genomic deep learning models for the prediction of non-coding variant effects
Characterizing non-coding variant function remains an important challenge in human genetics. Genomic deep learning models have emerged as a promising approach to enable in silico prediction of variant effects. These include supervised sequence-to-activity models, which predict molecular phenotypes such as genome-wide chromatin states or gene expression levels directly from DNA sequence, and self-supervised genomic language models. Here, we review progress in leveraging these models for non-coding variant effect prediction. We describe practical considerations for making such predictions and categorize the types of ground truth data used to evaluate variant effect predictions, providing insight into the settings in which current models are most useful. Our Review highlights key considerations for practitioners and opportunities for improvement in model development and evaluation.
♻ ☆ Classification of autoimmune diseases from Peripheral blood TCR repertoires by multimodal multi-instance learning
T cell receptor (TCR) repertoires encode critical immunological signatures for autoimmune diseases, yet their clinical application remains limited by sequence sparsity and low witness rates. We developed EAMil, a multi-instance deep learning framework that leverages TCR sequencing data to diagnose systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) with exceptional accuracy. By integrating PrimeSeq feature extraction with ESMonehot encoding and enhanced gate attention mechanisms, our model achieved state-of-the-art performance with AUCs of 98.95% for SLE and 97.76% for RA. EAMil successfully identified disease-associated genes with over 90% concordance with established differential analyses and effectively distinguished disease-specific TCR genes. The model demonstrated robustness in classifying multiple disease categories, utilizing the SLEDAI score to stratify SLE patients by disease severity as well as to diagnose the site of damage in SLE patients, and effectively controlling for confounding factors such as age and gender. This interpretable framework for immune receptor analysis provides new insights for autoimmune disease detection and classification with broad potential clinical applications across immune-mediated conditions.
comment: 4 figures, 3 tabels, 8 pages
Quantitative Methods 3
☆ EscalNet: Learn isotropic representation space for biomolecular dynamics based on effective energy
Deep learning has emerged as a powerful framework for analyzing biomolecular dynamics trajectories, enabling efficient representations that capture essential system dynamics and facilitate mechanistic studies. We propose a neural network architecture incorporating Fourier Transform analysis to process trajectory data, achieving dual objectives: eliminating high-frequency noise while preserving biologically critical slow conformational dynamics, and establishing an isotropic representation space through the last hidden layer for enhanced dynamical quantification. Comparative protein simulations demonstrate our approach generates more uniform feature distributions than linear regression methods, evidenced by smoother state similarity matrices and clearer classification boundaries. Moreover, by using saliency score, we identified key structural determinants linked to effective energy landscapes governing system dynamics. We believe that the fusion of neural network features with physical order parameters creates a robust analytical framework for advancing biomolecular trajectory analysis.
comment: 21 pages, 4 figures
☆ CLTree: A Tool for Annotating, Rooting, and Evaluating Phylogenetic Trees Leveraging Genomic Lineages
Collapse Lineage Tree (CLTree) is a software tool that annotates, roots, and evaluates phylogenetic trees by using lineages. A recursive algorithm was designed to annotate the branches by the common taxonomic lineage of its descendants in a rooted tree. For an unrooted tree, it determines the root that best conforms to the taxonomic system based on the aforementioned lineage annotations. Based on the lineage annotations of notes, CLTree infers the monophyly of taxonomic units and quantifies the concordance between the phylogenetic tree and the taxonomic system base on Shannon entropy. The core algorithm of CLTree is highly efficient with linear complexity, capable of processing phylogenetic trees with 17,955 terminal nodes within one second. We believe that CLTree will serve as a powerful tool for study of evolution and taxonomy.
comment: 16 pages, 2 figures, 1 table, 2 codes
♻ ☆ Investigating the consequences of mechanical ventilation in clinical intensive care settings through an evolutionary game-theoretic framework
Identifying the effects of mechanical ventilation strategies and protocols in critical care requires analyzing data from heterogeneous patient-ventilator systems within the context of the clinical decision-making environment. This research develops a framework to help understand the consequences of mechanical ventilation (MV) and adjunct care decisions on patient outcome from observations of critical care patients receiving MV. Developing an understanding of and improving critical care respiratory management requires the analysis of existing secondary-use clinical data to generate hypotheses about advantageous variations and adaptations of current care. This work introduces a perspective of the joint patient-ventilator-care systems (so-called J6) to develop a scalable method for analyzing data and trajectories of these complex systems. To that end, breath behaviors are analyzed using evolutionary game theory (EGT), which generates the necessary quantitative precursors for deeper analysis through probabilistic and stochastic machinery such as reinforcement learning. This result is one step along the pathway toward MV optimization and personalization. The EGT-based process is analytically validated on synthetic data to reveal potential caveats before proceeding to real-world ICU data applications that expose complexities of the data-generating process J6. The discussion includes potential developments toward a state transition model for the simulating effects of MV decision using empirical and game-theoretic elements.
Computation and Language 67
☆ Masked-and-Reordered Self-Supervision for Reinforcement Learning from Verifiable Rewards
Test-time scaling has been shown to substantially improve large language models' (LLMs) mathematical reasoning. However, for a large portion of mathematical corpora, especially theorem proving, RLVR's scalability is limited: intermediate reasoning is crucial, while final answers are difficult to directly and reliably verify. Meanwhile, token-level SFT often degenerates into rote memorization rather than inducing longer chains of thought. Inspired by BERT's self-supervised tasks, we propose MR-RLVR (Masked-and-Reordered RLVR), which constructs process-level self-supervised rewards via "masked-then-fill" and "step reordering" to extract learnable signals from intermediate reasoning. Our training pipeline comprises two stages: we first perform self-supervised training on sampled mathematical calculation and proof data; we then conduct RLVR fine-tuning on mathematical calculation datasets where only outcomes are verifiable. We implement MR-RLVR on Qwen2.5-3B and DeepSeek-R1-Distill-Qwen-1.5B, and evaluate on AIME24, AIME25, AMC23, and MATH500. Under a fixed sampling and decoding budget, MR-RLVR achieves average relative gains over the original RLVR of +9.86% Pass@1, +5.27% Pass@5, and +4.00% Pass@8. These results indicate that incorporating process-aware self-supervised signals can effectively enhance RLVR's scalability and performance in only outcome-verifiable settings.
☆ Planning with Sketch-Guided Verification for Physics-Aware Video Generation
Recent video generation approaches increasingly rely on planning intermediate control signals such as object trajectories to improve temporal coherence and motion fidelity. However, these methods mostly employ single-shot plans that are typically limited to simple motions, or iterative refinement which requires multiple calls to the video generator, incuring high computational cost. To overcome these limitations, we propose SketchVerify, a training-free, sketch-verification-based planning framework that improves motion planning quality with more dynamically coherent trajectories (i.e., physically plausible and instruction-consistent motions) prior to full video generation by introducing a test-time sampling and verification loop. Given a prompt and a reference image, our method predicts multiple candidate motion plans and ranks them using a vision-language verifier that jointly evaluates semantic alignment with the instruction and physical plausibility. To efficiently score candidate motion plans, we render each trajectory as a lightweight video sketch by compositing objects over a static background, which bypasses the need for expensive, repeated diffusion-based synthesis while achieving comparable performance. We iteratively refine the motion plan until a satisfactory one is identified, which is then passed to the trajectory-conditioned generator for final synthesis. Experiments on WorldModelBench and PhyWorldBench demonstrate that our method significantly improves motion quality, physical realism, and long-term consistency compared to competitive baselines while being substantially more efficient. Our ablation study further shows that scaling up the number of trajectory candidates consistently enhances overall performance.
comment: website: https://sketchverify.github.io/
☆ SMILE: A Composite Lexical-Semantic Metric for Question-Answering Evaluation
Traditional evaluation metrics for textual and visual question answering, like ROUGE, METEOR, and Exact Match (EM), focus heavily on n-gram based lexical similarity, often missing the deeper semantic understanding needed for accurate assessment. While measures like BERTScore and MoverScore leverage contextual embeddings to address this limitation, they lack flexibility in balancing sentence-level and keyword-level semantics and ignore lexical similarity, which remains important. Large Language Model (LLM) based evaluators, though powerful, come with drawbacks like high costs, bias, inconsistency, and hallucinations. To address these issues, we introduce SMILE: Semantic Metric Integrating Lexical Exactness, a novel approach that combines sentence-level semantic understanding with keyword-level semantic understanding and easy keyword matching. This composite method balances lexical precision and semantic relevance, offering a comprehensive evaluation. Extensive benchmarks across text, image, and video QA tasks show SMILE is highly correlated with human judgments and computationally lightweight, bridging the gap between lexical and semantic evaluation.
comment: 23 pages, 6 tables, 9 figures
☆ Beyond Multiple Choice: A Hybrid Framework for Unifying Robust Evaluation and Verifiable Reasoning Training
Multiple-choice question answering (MCQA) has been a popular format for evaluating and reinforcement fine-tuning (RFT) of modern multimodal language models. Its constrained output format allows for simplified, deterministic automatic verification. However, we find that the options may leak exploitable signals, which makes the accuracy metrics unreliable for indicating real capabilities and encourages explicit or implicit answer guessing behaviors during RFT. We propose ReVeL (Rewrite and Verify by LLM), a framework that rewrites multiple-choice questions into open-form questions while keeping answers verifiable whenever possible. The framework categorizes questions according to different answer types, apply different rewriting and verification schemes, respectively. When applied for RFT, we converted 20k MCQA examples and use GRPO to finetune Qwen2.5-VL models. Models trained on ReVeL-OpenQA match MCQA accuracy on multiple-choice benchmarks and improve OpenQA accuracy by about six percentage points, indicating better data efficiency and more robust reward signals than MCQA-based training. When used for evaluation, ReVeL also reveals up to 20 percentage points of score inflation in MCQA benchmarks (relative to OpenQA), improves judging accuracy, and reduces both cost and latency. We will release code and data publicly.
comment: Project url: https://flageval-baai.github.io/ReVeL/
☆ PUCP-Metrix: A Comprehensive Open-Source Repository of Linguistic Metrics for Spanish ACL
Linguistic features remain essential for interpretability and tasks involving style, structure, and readability, but existing Spanish tools offer limited coverage. We present PUCP-Metrix, an open-source repository of 182 linguistic metrics spanning lexical diversity, syntactic and semantic complexity, cohesion, psycholinguistics, and readability. PUCP-Metrix enables fine-grained, interpretable text analysis. We evaluate its usefulness on Automated Readability Assessment and Machine-Generated Text Detection, showing competitive performance compared to an existing repository and strong neural baselines. PUCP-Metrix offers a comprehensive, extensible resource for Spanish, supporting diverse NLP applications.
comment: 1 figure, to be submitted to EACL Demo track
☆ Selective Rotary Position Embedding
Position information is essential for language modeling. In softmax transformers, Rotary Position Embeddings (\textit{RoPE}) encode positions through \textit{fixed-angle} rotations, while in linear transformers, order is handled via input-dependent (selective) gating that decays past key-value associations. Selectivity has generally been shown to improve language-related tasks. Inspired by this, we introduce \textit{Selective RoPE}, an \textit{input-dependent} rotary embedding mechanism, that generalizes \textit{RoPE}, and enables rotation in \textit{arbitrary angles} for both linear and softmax transformers. We show that softmax attention already performs a hidden form of these rotations on query-key pairs, uncovering an implicit positional structure. We further show that in state-space models and gated linear transformers, the real part manages forgetting while the imaginary part encodes positions through rotations. We validate our method by equipping gated transformers with \textit{Selective RoPE}, demonstrating that its input-dependent rotations improve performance in language modeling and on difficult sequence tasks like copying, state tracking, and retrieval.
☆ Don't Learn, Ground: A Case for Natural Language Inference with Visual Grounding
We propose a zero-shot method for Natural Language Inference (NLI) that leverages multimodal representations by grounding language in visual contexts. Our approach generates visual representations of premises using text-to-image models and performs inference by comparing these representations with textual hypotheses. We evaluate two inference techniques: cosine similarity and visual question answering. Our method achieves high accuracy without task-specific fine-tuning, demonstrating robustness against textual biases and surface heuristics. Additionally, we design a controlled adversarial dataset to validate the robustness of our approach. Our findings suggest that leveraging visual modality as a meaning representation provides a promising direction for robust natural language understanding.
☆ A new kid on the block: Distributional semantics predicts the word-specific tone signatures of monosyllabic words in conversational Taiwan Mandarin
We present a corpus-based investigation of how the pitch contours of monosyllabic words are realized in spontaneous conversational Mandarin, focusing on the effects of words' meanings. We used the generalized additive model to decompose a given observed pitch contour into a set of component pitch contours that are tied to different control variables and semantic predictors. Even when variables such as word duration, gender, speaker identity, tonal context, vowel height, and utterance position are controlled for, the effect of word remains a strong predictor of tonal realization. We present evidence that this effect of word is a semantic effect: word sense is shown to be a better predictor than word, and heterographic homophones are shown to have different pitch contours. The strongest evidence for the importance of semantics is that the pitch contours of individual word tokens can be predicted from their contextualized embeddings with an accuracy that substantially exceeds a permutation baseline. For phonetics, distributional semantics is a new kid on the block. Although our findings challenge standard theories of Mandarin tone, they fit well within the theoretical framework of the Discriminative Lexicon Model.
comment: arXiv admin note: text overlap with arXiv:2409.07891
☆ Robot Confirmation Generation and Action Planning Using Long-context Q-Former Integrated with Multimodal LLM
Human-robot collaboration towards a shared goal requires robots to understand human action and interaction with the surrounding environment. This paper focuses on human-robot interaction (HRI) based on human-robot dialogue that relies on the robot action confirmation and action step generation using multimodal scene understanding. The state-of-the-art approach uses multimodal transformers to generate robot action steps aligned with robot action confirmation from a single clip showing a task composed of multiple micro steps. Although actions towards a long-horizon task depend on each other throughout an entire video, the current approaches mainly focus on clip-level processing and do not leverage long-context information. This paper proposes a long-context Q-former incorporating left and right context dependency in full videos. Furthermore, this paper proposes a text-conditioning approach to feed text embeddings directly into the LLM decoder to mitigate the high abstraction of the information in text by Q-former. Experiments with the YouCook2 corpus show that the accuracy of confirmation generation is a major factor in the performance of action planning. Furthermore, we demonstrate that the long-context Q-former improves the confirmation and action planning by integrating VideoLLaMA3.
comment: Accepted to ASRU 2025
☆ MusicAIR: A Multimodal AI Music Generation Framework Powered by an Algorithm-Driven Core
Recent advances in generative AI have made music generation a prominent research focus. However, many neural-based models rely on large datasets, raising concerns about copyright infringement and high-performance costs. In contrast, we propose MusicAIR, an innovative multimodal AI music generation framework powered by a novel algorithm-driven symbolic music core, effectively mitigating copyright infringement risks. The music core algorithms connect critical lyrical and rhythmic information to automatically derive musical features, creating a complete, coherent melodic score solely from the lyrics. The MusicAIR framework facilitates music generation from lyrics, text, and images. The generated score adheres to established principles of music theory, lyrical structure, and rhythmic conventions. We developed Generate AI Music (GenAIM), a web tool using MusicAIR for lyric-to-song, text-to-music, and image-to-music generation. In our experiments, we evaluated AI-generated music scores produced by the system using both standard music metrics and innovative analysis that compares these compositions with original works. The system achieves an average key confidence of 85%, outperforming human composers at 79%, and aligns closely with established music theory standards, demonstrating its ability to generate diverse, human-like compositions. As a co-pilot tool, GenAIM can serve as a reliable music composition assistant and a possible educational composition tutor while simultaneously lowering the entry barrier for all aspiring musicians, which is innovative and significantly contributes to AI for music generation.
comment: Accepted by IEEE Big Data 2025
☆ Humanlike Multi-user Agent (HUMA): Designing a Deceptively Human AI Facilitator for Group Chats
Conversational agents built on large language models (LLMs) are becoming increasingly prevalent, yet most systems are designed for one-on-one, turn-based exchanges rather than natural, asynchronous group chats. As AI assistants become widespread throughout digital platforms, from virtual assistants to customer service, developing natural and humanlike interaction patterns seems crucial for maintaining user trust and engagement. We present the Humanlike Multi-user Agent (HUMA), an LLM-based facilitator that participates in multi-party conversations using human-like strategies and timing. HUMA extends prior multi-user chatbot work with an event-driven architecture that handles messages, replies, reactions and introduces realistic response-time simulation. HUMA comprises three components-Router, Action Agent, and Reflection-which together adapt LLMs to group conversation dynamics. We evaluate HUMA in a controlled study with 97 participants in four-person role-play chats, comparing AI and human community managers (CMs). Participants classified CMs as human at near-chance rates in both conditions, indicating they could not reliably distinguish HUMA agents from humans. Subjective experience was comparable across conditions: community-manager effectiveness, social presence, and engagement/satisfaction differed only modestly with small effect sizes. Our results suggest that, in natural group chat settings, an AI facilitator can match human quality while remaining difficult to identify as nonhuman.
comment: 9 pages, 4 figures
Large Language Models for Sentiment Analysis to Detect Social Challenges: A Use Case with South African Languages
Sentiment analysis can aid in understanding people's opinions and emotions on social issues. In multilingual communities sentiment analysis systems can be used to quickly identify social challenges in social media posts, enabling government departments to detect and address these issues more precisely and effectively. Recently, large-language models (LLMs) have become available to the wide public and initial analyses have shown that they exhibit magnificent zero-shot sentiment analysis abilities in English. However, there is no work that has investigated to leverage LLMs for sentiment analysis on social media posts in South African languages and detect social challenges. Consequently, in this work, we analyse the zero-shot performance of the state-of-the-art LLMs GPT-3.5, GPT-4, LlaMa 2, PaLM 2, and Dolly 2 to investigate the sentiment polarities of the 10 most emerging topics in English, Sepedi and Setswana social media posts that fall within the jurisdictional areas of 10 South African government departments. Our results demonstrate that there are big differences between the various LLMs, topics, and languages. In addition, we show that a fusion of the outcomes of different LLMs provides large gains in sentiment classification performance with sentiment classification errors below 1%. Consequently, it is now feasible to provide systems that generate reliable information about sentiment analysis to detect social challenges and draw conclusions about possible needs for actions on specific topics and within different language groups.
comment: Published in the Proceedings of The Southern African Conference on AI Research (SACAIR 2024), Bloemfontein, South Africa, 2-6 December 2024. ISBN: 978-0-7961-6069-0
☆ Estonian WinoGrande Dataset: Comparative Analysis of LLM Performance on Human and Machine Translation
In this paper, we present a localized and culturally adapted Estonian translation of the test set from the widely used commonsense reasoning benchmark, WinoGrande. We detail the translation and adaptation process carried out by translation specialists and evaluate the performance of both proprietary and open source models on the human translated benchmark. Additionally, we explore the feasibility of achieving high-quality machine translation by incorporating insights from the manual translation process into the design of a detailed prompt. This prompt is specifically tailored to address both the linguistic characteristics of Estonian and the unique translation challenges posed by the WinoGrande dataset. Our findings show that model performance on the human translated Estonian dataset is slightly lower than on the original English test set, while performance on machine-translated data is notably worse. Additionally, our experiments indicate that prompt engineering offers limited improvement in translation quality or model accuracy, and highlight the importance of involving language specialists in dataset translation and adaptation to ensure reliable and interpretable evaluations of language competency and reasoning in large language models.
comment: Preprint
☆ Cross-cultural value alignment frameworks for responsible AI governance: Evidence from China-West comparative analysis
As Large Language Models (LLMs) increasingly influence high-stakes decision-making across global contexts, ensuring their alignment with diverse cultural values has become a critical governance challenge. This study presents a Multi-Layered Auditing Platform for Responsible AI that systematically evaluates cross-cultural value alignment in China-origin and Western-origin LLMs through four integrated methodologies: Ethical Dilemma Corpus for assessing temporal stability, Diversity-Enhanced Framework (DEF) for quantifying cultural fidelity, First-Token Probability Alignment for distributional accuracy, and Multi-stAge Reasoning frameworK (MARK) for interpretable decision-making. Our comparative analysis of 20+ leading models, such as Qwen, GPT-4o, Claude, LLaMA, and DeepSeek, reveals universal challenges-fundamental instability in value systems, systematic under-representation of younger demographics, and non-linear relationships between model scale and alignment quality-alongside divergent regional development trajectories. While China-origin models increasingly emphasize multilingual data integration for context-specific optimization, Western models demonstrate greater architectural experimentation but persistent U.S.-centric biases. Neither paradigm achieves robust cross-cultural generalization. We establish that Mistral-series architectures significantly outperform LLaMA3-series in cross-cultural alignment, and that Full-Parameter Fine-Tuning on diverse datasets surpasses Reinforcement Learning from Human Feedback in preserving cultural variation...
comment: Presented on Academic Conference "Technology for Good: Driving Social Impact" (2025)
☆ Social-Media Based Personas Challenge: Hybrid Prediction of Common and Rare User Actions on Bluesky
Understanding and predicting user behavior on social media platforms is crucial for content recommendation and platform design. While existing approaches focus primarily on common actions like retweeting and liking, the prediction of rare but significant behaviors remains largely unexplored. This paper presents a hybrid methodology for social media user behavior prediction that addresses both frequent and infrequent actions across a diverse action vocabulary. We evaluate our approach on a large-scale Bluesky dataset containing 6.4 million conversation threads spanning 12 distinct user actions across 25 persona clusters. Our methodology combines four complementary approaches: (i) a lookup database system based on historical response patterns; (ii) persona-specific LightGBM models with engineered temporal and semantic features for common actions; (iii) a specialized hybrid neural architecture fusing textual and temporal representations for rare action classification; and (iv) generation of text replies. Our persona-specific models achieve an average macro F1-score of 0.64 for common action prediction, while our rare action classifier achieves 0.56 macro F1-score across 10 rare actions. These results demonstrate that effective social media behavior prediction requires tailored modeling strategies recognizing fundamental differences between action types. Our approach achieved first place in the SocialSim: Social-Media Based Personas challenge organized at the Social Simulation with LLMs workshop at COLM 2025.
comment: 1st place at SocialSim: Social-Media Based Personas challenge 2025
☆ Lost in Translation and Noise: A Deep Dive into the Failure Modes of VLMs on Real-World Tables
The impressive performance of VLMs is largely measured on benchmarks that fail to capture the complexities of real-world scenarios. Existing datasets for tabular QA, such as WikiTableQuestions and FinQA, are overwhelmingly monolingual (English) and present tables in a digitally perfect, clean format. This creates a significant gap between research and practice. To address this, we present \textbf{MirageTVQA}, a new benchmark designed to evaluate VLMs on these exact dimensions. Featuring nearly 60,000 QA pairs across 24 languages, MirageTVQA challenges models with tables that are not only multilingual but also visually imperfect, incorporating realistic noise to mimic scanned documents. Our evaluation of the leading VLMs reveals two primary failure points: a severe degradation in performance (over 35\% drop for the best models) when faced with visual noise and a consistent English-first bias where reasoning abilities fail to transfer to other languages. MirageTVQA provides a benchmark for measuring and driving progress towards more robust VLM models for table reasoning. The dataset and the code are available at: https://github.com/anshulsc/MirageTVQA.
comment: Accepted as Spotligh Talk at EurIPS 2025 Workshop on AI For Tabular Data
☆ Parrot: Persuasion and Agreement Robustness Rating of Output Truth -- A Sycophancy Robustness Benchmark for LLMs
This study presents PARROT (Persuasion and Agreement Robustness Rating of Output Truth), a robustness focused framework designed to measure the degradation in accuracy that occurs under social pressure exerted on users through authority and persuasion in large language models (LLMs) the phenomenon of sycophancy (excessive conformity). PARROT (i) isolates causal effects by comparing the neutral version of the same question with an authoritatively false version using a double-blind evaluation, (ii) quantifies confidence shifts toward the correct and imposed false responses using log-likelihood-based calibration tracking, and (iii) systematically classifies failure modes (e.g., robust correct, sycophantic agreement, reinforced error, stubborn error, self-correction, etc.) using an eight-state behavioral taxonomy. We evaluated 22 models using 1,302 MMLU-style multiple-choice questions across 13 domains and domain-specific authority templates. Findings show marked heterogeneity: advanced models (e.g., GPT-5, GPT-4.1, Claude Sonnet 4.5) exhibit low "follow rates" ($\leq 11\%$, GPT-5: 4\%) and minimal accuracy loss, while older/smaller models show severe epistemic collapse (GPT-4: 80\%, Qwen 2.5-1.5B: 94\%). The danger is not limited to response changes; weak models reduce confidence in the correct response while increasing confidence in the imposed incorrect response. While international law and global knowledge at the domain level exhibit high fragility, elementary mathematics is relatively resilient. Consequently, we argue that the goal of "resistance to overfitting pressure" should be addressed as a primary objective alongside accuracy, harm avoidance, and privacy for safe deployment in the real world.
☆ A Simple Yet Strong Baseline for Long-Term Conversational Memory of LLM Agents
LLM-based conversational agents still struggle to maintain coherent, personalized interaction over many sessions: fixed context windows limit how much history can be kept in view, and most external memory approaches trade off between coarse retrieval over large chunks and fine-grained but fragmented views of the dialogue. Motivated by neo-Davidsonian event semantics, we propose an event-centric alternative that represents conversational history as short, event-like propositions which bundle together participants, temporal cues, and minimal local context, rather than as independent relation triples or opaque summaries. In contrast to work that aggressively compresses or forgets past content, our design aims to preserve information in a non-compressive form and make it more accessible, rather than more lossy. Concretely, we instruct an LLM to decompose each session into enriched elementary discourse units (EDUs) -- self-contained statements with normalized entities and source turn attributions -- and organize sessions, EDUs, and their arguments in a heterogeneous graph that supports associative recall. On top of this representation we build two simple retrieval-based variants that use dense similarity search and LLM filtering, with an optional graph-based propagation step to connect and aggregate evidence across related EDUs. Experiments on the LoCoMo and LongMemEval$_S$ benchmarks show that these event-centric memories match or surpass strong baselines, while operating with much shorter QA contexts. Our results suggest that structurally simple, event-level memory provides a principled and practical foundation for long-horizon conversational agents. Our code and data will be released at https://github.com/KevinSRR/EMem.
comment: Work in progress
☆ E$^3$-Pruner: Towards Efficient, Economical, and Effective Layer Pruning for Large Language Models
With the increasing size of large language models, layer pruning has gained increased attention as a hardware-friendly approach for model compression. However, existing layer pruning methods struggle to simultaneously address key practical deployment challenges, including performance degradation, high training costs, and limited acceleration. To overcome these limitations, we propose \name, a task-\underline{E}ffective, training-\underline{E}conomical and inference-\underline{E}fficient layer pruning framework. \namespace introduces two key innovations: (1) a differentiable mask optimization method using a Gumbel-TopK sampler, enabling efficient and precise pruning mask search; and (2) an entropy-aware adaptive knowledge distillation strategy that enhances task performance. Extensive experiments over diverse model architectures and benchmarks demonstrate the superiority of our method over state-of-the-art approaches. Notably, \namespace achieves 96\% accuracy, a mere 0.8\% drop from the original model (96.8\%) on MATH-500 when pruning 25\% layers of Qwen3-32B, outperforming existing SOTA (95\%), with a 1.33$\times$ inference speedup by consuming merely 0.5B tokens (0.5\% of the post-training data volume).
☆ AutoLink: Autonomous Schema Exploration and Expansion for Scalable Schema Linking in Text-to-SQL at Scale
For industrial-scale text-to-SQL, supplying the entire database schema to Large Language Models (LLMs) is impractical due to context window limits and irrelevant noise. Schema linking, which filters the schema to a relevant subset, is therefore critical. However, existing methods incur prohibitive costs, struggle to trade off recall and noise, and scale poorly to large databases. We present \textbf{AutoLink}, an autonomous agent framework that reformulates schema linking as an iterative, agent-driven process. Guided by an LLM, AutoLink dynamically explores and expands the linked schema subset, progressively identifying necessary schema components without inputting the full database schema. Our experiments demonstrate AutoLink's superior performance, achieving state-of-the-art strict schema linking recall of \textbf{97.4\%} on Bird-Dev and \textbf{91.2\%} on Spider-2.0-Lite, with competitive execution accuracy, i.e., \textbf{68.7\%} EX on Bird-Dev (better than CHESS) and \textbf{34.9\%} EX on Spider-2.0-Lite (ranking 2nd on the official leaderboard). Crucially, AutoLink exhibits \textbf{exceptional scalability}, \textbf{maintaining high recall}, \textbf{efficient token consumption}, and \textbf{robust execution accuracy} on large schemas (e.g., over 3,000 columns) where existing methods severely degrade-making it a highly scalable, high-recall schema-linking solution for industrial text-to-SQL systems.
☆ Attention-Guided Feature Fusion (AGFF) Model for Integrating Statistical and Semantic Features in News Text Classification
News text classification is a crucial task in natural language processing, essential for organizing and filtering the massive volume of digital content. Traditional methods typically rely on statistical features like term frequencies or TF-IDF values, which are effective at capturing word-level importance but often fail to reflect contextual meaning. In contrast, modern deep learning approaches utilize semantic features to understand word usage within context, yet they may overlook simple, high-impact statistical indicators. This paper introduces an Attention-Guided Feature Fusion (AGFF) model that combines statistical and semantic features in a unified framework. The model applies an attention-based mechanism to dynamically determine the relative importance of each feature type, enabling more informed classification decisions. Through evaluation on benchmark news datasets, the AGFF model demonstrates superior performance compared to both traditional statistical models and purely semantic deep learning models. The results confirm that strategic integration of diverse feature types can significantly enhance classification accuracy. Additionally, ablation studies validate the contribution of each component in the fusion process. The findings highlight the model's ability to balance and exploit the complementary strengths of statistical and semantic representations, making it a practical and effective solution for real-world news classification tasks.
☆ Hallucinate Less by Thinking More: Aspect-Based Causal Abstention for Large Language Models AAAI 2026
Large Language Models (LLMs) often produce fluent but factually incorrect responses, a phenomenon known as hallucination. Abstention, where the model chooses not to answer and instead outputs phrases such as "I don't know", is a common safeguard. However, existing abstention methods typically rely on post-generation signals, such as generation variations or feedback, which limits their ability to prevent unreliable responses in advance. In this paper, we introduce Aspect-Based Causal Abstention (ABCA), a new framework that enables early abstention by analysing the internal diversity of LLM knowledge through causal inference. This diversity reflects the multifaceted nature of parametric knowledge acquired from various sources, representing diverse aspects such as disciplines, legal contexts, or temporal frames. ABCA estimates causal effects conditioned on these aspects to assess the reliability of knowledge relevant to a given query. Based on these estimates, we enable two types of abstention: Type-1, where aspect effects are inconsistent (knowledge conflict), and Type-2, where aspect effects consistently support abstention (knowledge insufficiency). Experiments on standard benchmarks demonstrate that ABCA improves abstention reliability, achieves state-of-the-art performance, and enhances the interpretability of abstention decisions.
comment: Accepted to AAAI 2026 (Main Technical Track)
☆ The PLLuM Instruction Corpus
This paper describes the instruction dataset used to fine-tune a set of transformer-based large language models (LLMs) developed in the PLLuM (Polish Large Language Model) project. We present a functional typology of the organic, converted, and synthetic instructions used in PLLuM and share some observations about the implications of using human-authored versus synthetic instruction datasets in the linguistic adaptation of base LLMs. Additionally, we release the first representative subset of the PLLuM instruction corpus (PLLuMIC), which we believe to be useful in guiding and planning the development of similar datasets for other LLMs.
☆ LangMark: A Multilingual Dataset for Automatic Post-Editing ACL 2025
Automatic post-editing (APE) aims to correct errors in machine-translated text, enhancing translation quality, while reducing the need for human intervention. Despite advances in neural machine translation (NMT), the development of effective APE systems has been hindered by the lack of large-scale multilingual datasets specifically tailored to NMT outputs. To address this gap, we present and release LangMark, a new human-annotated multilingual APE dataset for English translation to seven languages: Brazilian Portuguese, French, German, Italian, Japanese, Russian, and Spanish. The dataset has 206,983 triplets, with each triplet consisting of a source segment, its NMT output, and a human post-edited translation. Annotated by expert human linguists, our dataset offers both linguistic diversity and scale. Leveraging this dataset, we empirically show that Large Language Models (LLMs) with few-shot prompting can effectively perform APE, improving upon leading commercial and even proprietary machine translation systems. We believe that this new resource will facilitate the future development and evaluation of APE systems.
comment: 15 pages, 8 figures, ACL 2025
☆ Learning to Compress: Unlocking the Potential of Large Language Models for Text Representation AAAI'26
Text representation plays a critical role in tasks like clustering, retrieval, and other downstream applications. With the emergence of large language models (LLMs), there is increasing interest in harnessing their capabilities for this purpose. However, most of the LLMs are inherently causal and optimized for next-token prediction, making them suboptimal for producing holistic representations. To address this, recent studies introduced pretext tasks to adapt LLMs for text representation. Most of these tasks, however, rely on token-level prediction objectives, such as the masked next-token prediction (MNTP) used in LLM2Vec. In this work, we explore the untapped potential of context compression as a pretext task for unsupervised adaptation of LLMs. During compression pre-training, the model learns to generate compact memory tokens, which substitute the whole context for downstream sequence prediction. Experiments demonstrate that a well-designed compression objective can significantly enhance LLM-based text representations, outperforming models trained with token-level pretext tasks. Further improvements through contrastive learning produce a strong representation model (LLM2Comp) that outperforms contemporary LLM-based text encoders on a wide range of tasks while being more sample-efficient, requiring significantly less training data.
comment: Accepted by AAAI'26
☆ Training Foundation Models on a Full-Stack AMD Platform: Compute, Networking, and System Design
We report on the first large-scale mixture-of-experts (MoE) pretraining study on pure AMD hardware, utilizing both MI300X GPUs with Pollara interconnect. We distill practical guidance for both systems and model design. On the systems side, we deliver a comprehensive cluster and networking characterization: microbenchmarks for all core collectives (all-reduce, reduce-scatter, all-gather, broadcast) across message sizes and GPU counts on Pollara. To our knowledge, this is the first at this scale. We further provide MI300X microbenchmarks on kernel sizing and memory bandwidth to inform model design. On the modeling side, we introduce and apply MI300X-aware transformer sizing rules for attention and MLP blocks and justify MoE widths that jointly optimize training throughput and inference latency. We describe our training stack in depth, including often-ignored utilities such as fault-tolerance and checkpoint-reshaping, as well as detailed information on our training recipe. We also provide a preview of our model architecture and base model - ZAYA1 (760M active, 8.3B total parameters MoE) - which will be further improved upon in forthcoming papers. ZAYA1-base achieves performance comparable to leading base models such as Qwen3-4B and Gemma3-12B at its scale and larger, and outperforms models including Llama-3-8B and OLMoE across reasoning, mathematics, and coding benchmarks. Together, these results demonstrate that the AMD hardware, network, and software stack are mature and optimized enough for competitive large-scale pretraining.
☆ Geometric-Disentangelment Unlearning
Machine unlearning, the removal of a training subset's influence from a deployed model, is critical for privacy preservation and model reliability, yet gradient ascent on forget samples often harms retained knowledge. Existing approaches face a persistent tradeoff between effective forgetting and preservation on the retain set. While previous methods provide useful heuristics, they often lack a formal analysis on how exactly forgetting updates harm retained knowledge, and whether the side effects can be removed with theoretical guarantees. To explore a theoretically sound and simple solution, we start from the first principle on how performance on the retain set is actually affected: a first-order analysis of the local change of the retain loss under small parameter updates during model training. We start from a crisp equivalence: the retain loss is unchanged to first order iff the update direction is orthogonal to the subspace spanned by retain gradients ("retain-invariant"). This identifies the entangled component as the tangential part of forget update within the retain-gradient subspace, and characterizes disentanglement as orthogonality. Guided by this, we propose the Geometric-disentanglement Unlearning (GU) that decomposes any candidate forget gradient update into tangential and normal components to retain space and executes only the normal component. Under a standard trust-region budget, the projected direction aligned with the raw forget gradient is optimal among all first-order retain-invariant moves, and we also derive the optimal projected direction for joint forget-retain updating objectives. Our method is plug-and-play and can be attached to existing gradient-based unlearning procedures to mitigate side effects. GU achieves consistent improvement on various methods across three benchmarks TOFU, MUSE, and WMDP.
comment: 27 Pages
☆ MUCH: A Multilingual Claim Hallucination Benchmark
Claim-level Uncertainty Quantification (UQ) is a promising approach to mitigate the lack of reliability in Large Language Models (LLMs). We introduce MUCH, the first claim-level UQ benchmark designed for fair and reproducible evaluation of future methods under realistic conditions. It includes 4,873 samples across four European languages (English, French, Spanish, and German) and four instruction-tuned open-weight LLMs. Unlike prior claim-level benchmarks, we release 24 generation logits per token, facilitating the development of future white-box methods without re-generating data. Moreover, in contrast to previous benchmarks that rely on manual or LLM-based segmentation, we propose a new deterministic algorithm capable of segmenting claims using as little as 0.2% of the LLM generation time. This makes our segmentation approach suitable for real-time monitoring of LLM outputs, ensuring that MUCH evaluates UQ methods under realistic deployment constraints. Finally, our evaluations show that current methods still have substantial room for improvement in both performance and efficiency.
☆ An Efficient Computational Framework for Discrete Fuzzy Numbers Based on Total Orders
Discrete fuzzy numbers, and in particular those defined over a finite chain $L_n = \{0, \ldots, n\}$, have been effectively employed to represent linguistic information within the framework of fuzzy systems. Research on total (admissible) orderings of such types of fuzzy subsets, and specifically those belonging to the set $\mathcal{D}_1^{L_n\rightarrow Y_m}$ consisting of discrete fuzzy numbers $A$ whose support is a closed subinterval of the finite chain $L_n = \{0, 1, \ldots, n\}$ and whose membership values $A(x)$, for $x \in L_n$, belong to the set $Y_m = \{ 0 = y_1 < y_2 < \cdots < y_{m-1} < y_m = 1 \}$, has facilitated the development of new methods for constructing logical connectives, based on a bijective function, called $\textit{pos function}$, that determines the position of each $A \in \mathcal{D}_1^{L_n\rightarrow Y_m}$. For this reason, in this work we revisit the problem by introducing algorithms that exploit the combinatorial structure of total (admissible) orders to compute the $\textit{pos}$ function and its inverse with exactness. The proposed approach achieves a complexity of $\mathcal{O}(n^{2} m \log n)$, which is quadratic in the size of the underlying chain ($n$) and linear in the number of membership levels ($m$). The key point is that the dominant factor is $m$, ensuring scalability with respect to the granularity of membership values. The results demonstrate that this formulation substantially reduces computational cost and enables the efficient implementation of algebraic operations -- such as aggregation and implication -- on the set of discrete fuzzy numbers.
comment: 19 pages, 2 figures. Submitted to Computational and Applied Mathematics (Springer)
☆ Principled Design of Interpretable Automated Scoring for Large-Scale Educational Assessments
AI-driven automated scoring systems offer scalable and efficient means of evaluating complex student-generated responses. Yet, despite increasing demand for transparency and interpretability, the field has yet to develop a widely accepted solution for interpretable automated scoring to be used in large-scale real-world assessments. This work takes a principled approach to address this challenge. We analyze the needs and potential benefits of interpretable automated scoring for various assessment stakeholders and develop four principles of interpretability -- Faithfulness, Groundedness, Traceability, and Interchangeability (FGTI) -- targeted at those needs. To illustrate the feasibility of implementing these principles, we develop the AnalyticScore framework for short answer scoring as a baseline reference framework for future research. AnalyticScore operates by (1) extracting explicitly identifiable elements of the responses, (2) featurizing each response into human-interpretable values using LLMs, and (3) applying an intuitive ordinal logistic regression model for scoring. In terms of scoring accuracy, AnalyticScore outperforms many uninterpretable scoring methods, and is within only 0.06 QWK of the uninterpretable SOTA on average across 10 items from the ASAP-SAS dataset. By comparing against human annotators conducting the same featurization task, we further demonstrate that the featurization behavior of AnalyticScore aligns well with that of humans.
comment: 16 pages, 2 figures
☆ Do Vision-Language Models Understand Visual Persuasiveness? NeurIPS 2025
Recent advances in vision-language models (VLMs) have enabled impressive multi-modal reasoning and understanding. Yet, whether these models truly grasp visual persuasion-how visual cues shape human attitudes and decisions-remains unclear. To probe this question, we construct a high-consensus dataset for binary persuasiveness judgment and introduce the taxonomy of Visual Persuasive Factors (VPFs), encompassing low-level perceptual, mid-level compositional, and high-level semantic cues. We also explore cognitive steering and knowledge injection strategies for persuasion-relevant reasoning. Empirical analysis across VLMs reveals a recall-oriented bias-models over-predict high persuasiveness-and weak discriminative power for low/mid-level features. In contrast, high-level semantic alignment between message and object presence emerges as the strongest predictor of human judgment. Among intervention strategies, simple instruction or unguided reasoning scaffolds yield marginal or negative effects, whereas concise, object-grounded rationales significantly improve precision and F1 scores. These results indicate that VLMs core limitation lies not in recognizing persuasive objects but in linking them to communicative intent.
comment: 8 pages (except for reference and appendix), 5 figures, 7 tables, to be published in NeurIPS 2025 Workshop: VLM4RWD
☆ Supervised Fine Tuning of Large Language Models for Domain Specific Knowledge Graph Construction:A Case Study on Hunan's Historical Celebrities
Large language models and knowledge graphs offer strong potential for advancing research on historical culture by supporting the extraction, analysis, and interpretation of cultural heritage. Using Hunan's modern historical celebrities shaped by Huxiang culture as a case study, pre-trained large models can help researchers efficiently extract key information, including biographical attributes, life events, and social relationships, from textual sources and construct structured knowledge graphs. However, systematic data resources for Hunan's historical celebrities remain limited, and general-purpose models often underperform in domain knowledge extraction and structured output generation in such low-resource settings. To address these issues, this study proposes a supervised fine-tuning approach for enhancing domain-specific information extraction. First, we design a fine-grained, schema-guided instruction template tailored to the Hunan historical celebrities domain and build an instruction-tuning dataset to mitigate the lack of domain-specific training corpora. Second, we apply parameter-efficient instruction fine-tuning to four publicly available large language models - Qwen2.5-7B, Qwen3-8B, DeepSeek-R1-Distill-Qwen-7B, and Llama-3.1-8B-Instruct - and develop evaluation criteria for assessing their extraction performance. Experimental results show that all models exhibit substantial performance gains after fine-tuning. Among them, Qwen3-8B achieves the strongest results, reaching a score of 89.3866 with 100 samples and 50 training iterations. This study provides new insights into fine-tuning vertical large language models for regional historical and cultural domains and highlights their potential for cost-effective applications in cultural heritage knowledge extraction and knowledge graph construction.
☆ Vision Language Models are Confused Tourists
Although the cultural dimension has been one of the key aspects in evaluating Vision-Language Models (VLMs), their ability to remain stable across diverse cultural inputs remains largely untested, despite being crucial to support diversity and multicultural societies. Existing evaluations often rely on benchmarks featuring only a singular cultural concept per image, overlooking scenarios where multiple, potentially unrelated cultural cues coexist. To address this gap, we introduce ConfusedTourist, a novel cultural adversarial robustness suite designed to assess VLMs' stability against perturbed geographical cues. Our experiments reveal a critical vulnerability, where accuracy drops heavily under simple image-stacking perturbations and even worsens with its image-generation-based variant. Interpretability analyses further show that these failures stem from systematic attention shifts toward distracting cues, diverting the model from its intended focus. These findings highlight a critical challenge: visual cultural concept mixing can substantially impair even state-of-the-art VLMs, underscoring the urgent need for more culturally robust multimodal understanding.
☆ ARQUSUMM: Argument-aware Quantitative Summarization of Online Conversations AAAI2026
Online conversations have become more prevalent on public discussion platforms (e.g. Reddit). With growing controversial topics, it is desirable to summarize not only diverse arguments, but also their rationale and justification. Early studies on text summarization focus on capturing general salient information in source documents, overlooking the argumentative nature of online conversations. Recent research on conversation summarization although considers the argumentative relationship among sentences, fail to explicate deeper argument structure within sentences for summarization. In this paper, we propose a novel task of argument-aware quantitative summarization to reveal the claim-reason structure of arguments in conversations, with quantities measuring argument strength. We further propose ARQUSUMM, a novel framework to address the task. To reveal the underlying argument structure within sentences, ARQUSUMM leverages LLM few-shot learning grounded in the argumentation theory to identify propositions within sentences and their claim-reason relationships. For quantitative summarization, ARQUSUMM employs argument structure-aware clustering algorithms to aggregate arguments and quantify their support. Experiments show that ARQUSUMM outperforms existing conversation and quantitative summarization models and generate summaries representing argument structures that are more helpful to users, of high textual quality and quantification accuracy.
comment: Paper accepted to AAAI2026 Main Technical Track
☆ OmniScientist: Toward a Co-evolving Ecosystem of Human and AI Scientists
With the rapid development of Large Language Models (LLMs), AI agents have demonstrated increasing proficiency in scientific tasks, ranging from hypothesis generation and experimental design to manuscript writing. Such agent systems are commonly referred to as "AI Scientists." However, existing AI Scientists predominantly formulate scientific discovery as a standalone search or optimization problem, overlooking the fact that scientific research is inherently a social and collaborative endeavor. Real-world science relies on a complex scientific infrastructure composed of collaborative mechanisms, contribution attribution, peer review, and structured scientific knowledge networks. Due to the lack of modeling for these critical dimensions, current systems struggle to establish a genuine research ecosystem or interact deeply with the human scientific community. To bridge this gap, we introduce OmniScientist, a framework that explicitly encodes the underlying mechanisms of human research into the AI scientific workflow. OmniScientist not only achieves end-to-end automation across data foundation, literature review, research ideation, experiment automation, scientific writing, and peer review, but also provides comprehensive infrastructural support by simulating the human scientific system, comprising: (1) a structured knowledge system built upon citation networks and conceptual correlations; (2) a collaborative research protocol (OSP), which enables seamless multi-agent collaboration and human researcher participation; and (3) an open evaluation platform (ScienceArena) based on blind pairwise user voting and Elo rankings. This infrastructure empowers agents to not only comprehend and leverage human knowledge systems but also to collaborate and co-evolve, fostering a sustainable and scalable innovation ecosystem.
☆ Predicting the Formation of Induction Heads NeurIPS
Arguably, specialized attention heads dubbed induction heads (IHs) underlie the remarkable in-context learning (ICL) capabilities of modern language models (LMs); yet, a precise characterization of their formation remains unclear. In this study, we investigate the relationship between statistical properties of training data (for both natural and synthetic data) and IH formation. We show that (1) a simple equation combining batch size and context size predicts the point at which IHs form; (2) surface bigram repetition frequency and reliability strongly affect the formation of IHs, and we find a precise Pareto frontier in terms of these two values; and (3) local dependency with high bigram repetition frequency and reliability is sufficient for IH formation, but when the frequency and reliability are low, categoriality and the shape of the marginal distribution matter.
comment: Accepted to CogInterp @ NeurIPS
☆ Deep Improvement Supervision
Recently, it was shown that small, looped architectures, such as Tiny Recursive Models (TRMs), can outperform Large Language Models (LLMs) on complex reasoning tasks, including the Abstraction and Reasoning Corpus (ARC). In this work, we investigate a core question: how can we further improve the efficiency of these methods with minimal changes? To address this, we frame the latent reasoning of TRMs as a form of classifier-free guidance and implicit policy improvement algorithm. Building on these insights, we propose a novel training scheme that provides a target for each loop during training. We demonstrate that our approach significantly enhances training efficiency. Our method reduces the total number of forward passes by 18x and eliminates halting mechanisms, while maintaining quality comparable to standard TRMs. Notably, we achieve 24% accuracy on ARC-1 with only 0.8M parameters, outperforming most LLMs.
☆ Improving Latent Reasoning in LLMs via Soft Concept Mixing
Unlike human reasoning in abstract conceptual spaces, large language models (LLMs) typically reason by generating discrete tokens, which potentially limit their expressive power. The recent work Soft Thinking has shown that LLMs' latent reasoning via soft concepts is a promising direction, but LLMs are trained on discrete tokens. To reduce this gap between the soft concepts in reasoning and the discrete tokens in training, we propose Soft Concept Mixing (SCM), a soft concept aware training scheme that directly exposes the model to soft representations during training. Specifically, SCM constructs a soft concept vector by forming a probability-weighted average of embeddings. Then, this vector is mixed into the model's hidden states, which embody rich contextual information. Finally, the entire latent reasoning process is optimized with Reinforcement Learning (RL). Experiments on five reasoning benchmarks demonstrate that SCM improves the reasoning performance of LLMs, and simultaneously maintains a stable training dynamic.
comment: 7 pages, 3 figures
♻ ☆ Fine-Grained Reward Optimization for Machine Translation using Error Severity Mappings
Reinforcement learning (RL) has been proven to be an effective and robust method for training neural machine translation systems, especially when paired with powerful reward models that accurately assess translation quality. However, most research has focused on RL methods that use sentence-level feedback, leading to inefficient learning signals due to the reward sparsity problem -- the model receives a single score for the entire sentence. To address this, we propose a novel approach that leverages fine-grained, token-level quality assessments along with error severity levels using RL methods. Specifically, we use xCOMET, a state-of-the-art quality estimation system, as our token-level reward model. We conduct experiments on small and large translation datasets with standard encoder-decoder and large language models-based machine translation systems, comparing the impact of sentence-level versus fine-grained reward signals on translation quality. Our results show that training with token-level rewards improves translation quality across language pairs over baselines according to both automatic and human evaluation. Furthermore, token-level reward optimization improves training stability, evidenced by a steady increase in mean rewards over training epochs.
♻ ☆ Do LLMs produce texts with "human-like" lexical diversity?
The degree to which large language models (LLMs) produce writing that is truly human-like remains unclear despite the extensive empirical attention that this question has received. The present study addresses this question from the perspective of lexical diversity. Specifically, the study investigates patterns of lexical diversity in LLM-generated texts from four ChatGPT models (ChatGPT-3.5, ChatGPT-4, ChatGPT-o4 mini, and ChatGPT-4.5) in comparison with texts written by L1 and L2 English participants (n = 240) across four education levels. Six dimensions of lexical diversity were measured in each text: volume, abundance, variety-repetition, evenness, disparity, and dispersion. Results from one-way MANOVAs, one-way ANOVAs, and Support Vector Machines revealed that the ChatGPT-generated texts differed significantly from human-written texts for each variable, with ChatGPT-o4 mini and ChatGPT-4.5 differing the most. Within these two groups, ChatGPT-4.5 demonstrated higher levels of lexical diversity than older models despite producing fewer tokens. The human writers' lexical diversity did not differ across subgroups (i.e., education, language status). Altogether, the results indicate that ChatGPT models do not produce human-like texts in relation to lexical diversity, and the newer models produce less human-like text than older models. We discuss the implications of these results for language pedagogy and related applications.
♻ ☆ AI use in American newspapers is widespread, uneven, and rarely disclosed
AI is rapidly transforming journalism, but the extent of its use in published newspaper articles remains unclear. We address this gap by auditing a large-scale dataset of 186K articles from online editions of 1.5K American newspapers published in the summer of 2025. Using Pangram, a state-of-the-art AI detector, we discover that approximately 9% of newly-published articles are either partially or fully AI-generated. This AI use is unevenly distributed, appearing more frequently in smaller, local outlets, in specific topics such as weather and technology, and within certain ownership groups. We also analyze 45K opinion pieces from Washington Post, New York Times, and Wall Street Journal, finding that they are 6.4 times more likely to contain AI-generated content than news articles from the same publications, with many AI-flagged op-eds authored by prominent public figures. Despite this prevalence, we find that AI use is rarely disclosed: a manual audit of 100 AI-flagged articles found only five disclosures of AI use. Overall, our audit highlights the immediate need for greater transparency and updated editorial standards regarding the use of AI in journalism to maintain public trust.
♻ ☆ Concise Reasoning via Reinforcement Learning
A major drawback of reasoning models is their excessive token usage, inflating computational cost, resource demand, and latency. We show this verbosity stems not from deeper reasoning but from reinforcement learning loss minimization when models produce incorrect answers. With unsolvable problems dominating training, this effect compounds into a systematic tendency toward longer outputs. Through theoretical analysis of PPO and GRPO, we prove that incorrect answers inherently drive policies toward verbosity \textit{even when} $γ=1$, reframing response lengthening as an optimization artifact. We further uncover a consistent correlation between conciseness and correctness across reasoning and non-reasoning models. Building on these insights, we propose a two-phase RL procedure where a brief secondary stage, trained on a small set of solvable problems, significantly reduces response length while preserving or improving accuracy. Finally, we show that while GRPO shares properties with PPO, it exhibits collapse modes, limiting its reliability for concise reasoning. Our claims are supported by extensive experiments.
♻ ☆ Live-SWE-agent: Can Software Engineering Agents Self-Evolve on the Fly?
Large Language Models (LLMs) are reshaping almost all industries, including software engineering. In recent years, a number of LLM agents have been proposed to solve real-world software problems. Such software agents are typically equipped with a suite of coding tools and can autonomously decide the next actions to form complete trajectories to solve end-to-end software tasks. While promising, they typically require dedicated design and may still be suboptimal, since it can be extremely challenging and costly to exhaust the entire agent scaffold design space. Recognizing that software agents are inherently software themselves that can be further refined/modified, researchers have proposed a number of self-improving software agents recently, including the Darwin-Gödel Machine (DGM). Meanwhile, such self-improving agents require costly offline training on specific benchmarks and may not generalize well across different LLMs or benchmarks. In this paper, we propose Live-SWE-agent, the first live software agent that can autonomously and continuously evolve itself on-the-fly during runtime when solving real-world software problems. More specifically, Live-SWE-agent starts with the most basic agent scaffold with only access to bash tools (e.g., mini-SWE-agent), and autonomously evolves its own scaffold implementation while solving real-world software problems. Our evaluation on the widely studied SWE-bench Verified benchmark shows that LIVE-SWE-AGENT can achieve an impressive solve rate of 77.4% without test-time scaling, outperforming all existing software agents, including the best proprietary solution. Moreover, Live-SWE-agent outperforms state-of-the-art manually crafted software agents on the recent SWE-Bench Pro benchmark, achieving the best-known solve rate of 45.8%.
♻ ☆ Testing Hypotheses from the Social Approval Theory of Online Hate: An Analysis of 110 Million Messages from Parler
We examined how online hate is motivated by receiving social approval via Walther's (2024) social approval theory of online hate, which argues (H1a) more signals of social approval on hate messages predicts more subsequent hate messages, and (H1b) as social approval increases, hate speech becomes more extreme. Using 110 million messages from Parler (2018-2021), we observed the number of upvotes received on a hate speech post was unassociated with hate speech in one's next post and during the next month, three-months, and six-months. The number of upvotes received on (extreme) hate speech comments, however, was positively associated with (extreme) hate speech during the next week, month, three-months, and six-months. Between-person effects revealed an average positive relationship between social approval and hate speech production at all time intervals. For comments, social approval linked more strongly to online hate than social disapproval. Social approval is a critical mechanism facilitating online hate propagation.
♻ ☆ Fairness Evaluation of Large Language Models in Academic Library Reference Services
As libraries explore large language models (LLMs) for use in virtual reference services, a key question arises: Can LLMs serve all users equitably, regardless of demographics or social status? While they offer great potential for scalable support, LLMs may also reproduce societal biases embedded in their training data, risking the integrity of libraries' commitment to equitable service. To address this concern, we evaluate whether LLMs differentiate responses across user identities by prompting six state-of-the-art LLMs to assist patrons differing in sex, race/ethnicity, and institutional role. We find no evidence of differentiation by race or ethnicity, and only minor evidence of stereotypical bias against women in one model. LLMs demonstrate nuanced accommodation of institutional roles through the use of linguistic choices related to formality, politeness, and domain-specific vocabularies, reflecting professional norms rather than discriminatory treatment. These findings suggest that current LLMs show a promising degree of readiness to support equitable and contextually appropriate communication in academic library reference services.
♻ ☆ WER is Unaware: Assessing How ASR Errors Distort Clinical Understanding in Patient Facing Dialogue
As Automatic Speech Recognition (ASR) is increasingly deployed in clinical dialogue, standard evaluations still rely heavily on Word Error Rate (WER). This paper challenges that standard, investigating whether WER or other common metrics correlate with the clinical impact of transcription errors. We establish a gold-standard benchmark by having expert clinicians compare ground-truth utterances to their ASR-generated counterparts, labeling the clinical impact of any discrepancies found in two distinct doctor-patient dialogue datasets. Our analysis reveals that WER and a comprehensive suite of existing metrics correlate poorly with the clinician-assigned risk labels (No, Minimal, or Significant Impact). To bridge this evaluation gap, we introduce an LLM-as-a-Judge, programmatically optimized using GEPA through DSPy to replicate expert clinical assessment. The optimized judge (Gemini-2.5-Pro) achieves human-comparable performance, obtaining 90% accuracy and a strong Cohen's $κ$ of 0.816. This work provides a validated, automated framework for moving ASR evaluation beyond simple textual fidelity to a necessary, scalable assessment of safety in clinical dialogue.
♻ ☆ LLM one-shot style transfer for Authorship Attribution and Verification
Computational stylometry analyzes writing style through quantitative patterns in text, supporting applications from forensic tasks such as identity linking and plagiarism detection to literary attribution in the humanities. Supervised and contrastive approaches rely on data with spurious correlations and often confuse style with topic. Despite their natural use in AI-generated text detection, the CLM pre-training of modern LLMs has been scarcely leveraged for general authorship problems. We propose a novel unsupervised approach based on this extensive pre-training and the in-context learning capabilities of LLMs, employing the log-probabilities of an LLM to measure style transferability from one text to another. Our method significantly outperforms LLM prompting approaches of comparable scale and achieves higher accuracy than contrastively trained baselines when controlling for topical correlations. Moreover, performance scales fairly consistently with the size of the base model and, in the case of authorship verification, with an additional mechanism that increases test-time computation; enabling flexible trade-offs between computational cost and accuracy.
♻ ☆ Evaluating Large Language Models for Diacritic Restoration in Romanian Texts: A Comparative Study
Automatic diacritic restoration is crucial for text processing in languages with rich diacritical marks, such as Romanian. This study evaluates the performance of several large language models (LLMs) in restoring diacritics in Romanian texts. Using a comprehensive corpus, we tested models including OpenAI's GPT-3.5, GPT-4, GPT-4o, Google's Gemini 1.0 Pro, Meta's Llama 2 and Llama 3, MistralAI's Mixtral 8x7B Instruct, airoboros 70B, and OpenLLM-Ro's RoLlama 2 7B, under multiple prompt templates ranging from zero-shot to complex multi-shot instructions. Results show that models such as GPT-4o achieve high diacritic restoration accuracy, consistently surpassing a neutral echo baseline, while others, including Meta's Llama family, exhibit wider variability. These findings highlight the impact of model architecture, training data, and prompt design on diacritic restoration performance and outline promising directions for improving NLP tools for diacritic-rich languages.
comment: The original submission contained metadata errors and requires correction. A revised and complete version will be submitted as a replacement
♻ ☆ Resolving Sentiment Discrepancy for Multimodal Sentiment Detection via Semantics Completion and Decomposition
With the proliferation of social media posts in recent years, the need to detect sentiments in multimodal (image-text) content has grown rapidly. Since posts are user-generated, the image and text from the same post can express different or even contradictory sentiments, leading to potential \textbf{sentiment discrepancy}. However, existing works mainly adopt a single-branch fusion structure that primarily captures the consistent sentiment between image and text. The ignorance or implicit modeling of discrepant sentiment results in compromised unimodal encoding and limited performance. In this paper, we propose a semantics Completion and Decomposition (CoDe) network to resolve the above issue. In the semantics completion module, we complement image and text representations with the semantics of the in-image text, helping bridge the sentiment gap. In the semantics decomposition module, we decompose image and text representations with exclusive projection and contrastive learning, thereby explicitly capturing the discrepant sentiment between modalities. Finally, we fuse image and text representations by cross-attention and combine them with the learned discrepant sentiment for final classification. Extensive experiments on four datasets demonstrate the superiority of CoDe and the effectiveness of each proposed module.
comment: Accepted by Pattern Recognition
♻ ☆ When Bias Pretends to Be Truth: How Spurious Correlations Undermine Hallucination Detection in LLMs
Despite substantial advances, large language models (LLMs) continue to exhibit hallucinations, generating plausible yet incorrect responses. In this paper, we highlight a critical yet previously underexplored class of hallucinations driven by spurious correlations -- superficial but statistically prominent associations between features (e.g., surnames) and attributes (e.g., nationality) present in the training data. We demonstrate that these spurious correlations induce hallucinations that are confidently generated, immune to model scaling, evade current detection methods, and persist even after refusal fine-tuning. Through systematically controlled synthetic experiments and empirical evaluations on state-of-the-art open-source and proprietary LLMs (including GPT-5), we show that existing hallucination detection methods, such as confidence-based filtering and inner-state probing, fundamentally fail in the presence of spurious correlations. Our theoretical analysis further elucidates why these statistical biases intrinsically undermine confidence-based detection techniques. Our findings thus emphasize the urgent need for new approaches explicitly designed to address hallucinations caused by spurious correlations.
♻ ☆ DiffTester: Accelerating Unit Test Generation for Diffusion LLMs via Repetitive Pattern
Software development relies heavily on extensive unit testing, which makes the efficiency of automated Unit Test Generation (UTG) particularly important. However, most existing LLMs generate test cases one token at a time in each forward pass, which leads to inefficient UTG. Recently, diffusion LLMs (dLLMs) have emerged, offering promising parallel generation capabilities and showing strong potential for efficient UTG. Despite this advantage, their application to UTG is still constrained by a clear trade-off between efficiency and test quality, since increasing the number of tokens generated in each step often causes a sharp decline in the quality of test cases. To overcome this limitation, we present DiffTester, an acceleration framework specifically tailored for dLLMs in UTG. The key idea of DiffTester is that unit tests targeting the same focal method often share repetitive structural patterns. By dynamically identifying these common patterns through abstract syntax tree analysis during generation, DiffTester adaptively increases the number of tokens produced at each step without compromising the quality of the output. To enable comprehensive evaluation, we extend the original TestEval benchmark, which was limited to Python, by introducing additional programming languages including Java and C++. Extensive experiments on three benchmarks with two representative models show that DiffTester delivers significant acceleration while preserving test coverage. Moreover, DiffTester generalizes well across different dLLMs and programming languages, providing a practical and scalable solution for efficient UTG in software development. Code and data are publicly available at https://github.com/wellbeingyang/DLM4UTG-open .
comment: Update reference
♻ ☆ MiniLLM: Knowledge Distillation of Large Language Models ICLR 2024
Knowledge Distillation (KD) is a promising technique for reducing the high computational demand of large language models (LLMs). However, previous KD methods are primarily applied to white-box classification models or training small models to imitate black-box model APIs like ChatGPT. How to effectively distill the knowledge of white-box LLMs into small models is still under-explored, which becomes more important with the prosperity of open-source LLMs. In this work, we propose a KD approach that distills LLMs into smaller language models. We first replace the forward Kullback-Leibler divergence (KLD) objective in the standard KD approaches with reverse KLD, which is more suitable for KD on generative language models, to prevent the student model from overestimating the low-probability regions of the teacher distribution. Then, we derive an effective on-policy optimization approach to learn this objective. The student models are named MiniLLM. Extensive experiments in the instruction-following setting show that MiniLLM generates more precise responses with higher overall quality, lower exposure bias, better calibration, and higher long-text generation performance than the baselines. Our method is scalable for different model families with 120M to 13B parameters. Our code, data, and model checkpoints can be found in https://github.com/microsoft/LMOps/tree/main/minillm.
comment: Published as a conference paper in ICLR 2024
♻ ☆ Overcoming the Generalization Limits of SLM Finetuning for Shape-Based Extraction of Datatype and Object Properties
Small language models (SLMs) have shown promises for relation extraction (RE) when extracting RDF triples guided by SHACL shapes focused on common datatype properties. This paper investigates how SLMs handle both datatype and object properties for a complete RDF graph extraction. We show that the key bottleneck is related to long-tail distribution of rare properties. To solve this issue, we evaluate several strategies: stratified sampling, weighted loss, dataset scaling, and template-based synthetic data augmentation. We show that the best strategy to perform equally well over unbalanced target properties is to build a training set where the number of occurrences of each property exceeds a given threshold. To enable reproducibility, we publicly released our datasets, experimental results and code. Our findings offer practical guidance for training shape-aware SLMs and highlight promising directions for future work in semantic RE.
comment: Accepted at KCAP 2025
♻ ☆ From Hypothesis to Publication: A Comprehensive Survey of AI-Driven Research Support Systems EMNLP 2025
Research is a fundamental process driving the advancement of human civilization, yet it demands substantial time and effort from researchers. In recent years, the rapid development of artificial intelligence (AI) technologies has inspired researchers to explore how AI can accelerate and enhance research. To monitor relevant advancements, this paper presents a systematic review of the progress in this domain. Specifically, we organize the relevant studies into three main categories: hypothesis formulation, hypothesis validation, and manuscript publication. Hypothesis formulation involves knowledge synthesis and hypothesis generation. Hypothesis validation includes the verification of scientific claims, theorem proving, and experiment validation. Manuscript publication encompasses manuscript writing and the peer review process. Furthermore, we identify and discuss the current challenges faced in these areas, as well as potential future directions for research. Finally, we also offer a comprehensive overview of existing benchmarks and tools across various domains that support the integration of AI into the research process. We hope this paper serves as an introduction for beginners and fosters future research. Resources have been made publicly available at https://github.com/zkzhou126/AI-for-Research.
comment: Accepted to EMNLP 2025
♻ ☆ A systematic review of relation extraction task since the emergence of Transformers
This article presents a systematic review of relation extraction (RE) research since the advent of Transformer-based models. Using an automated framework to collect and annotate publications, we analyze 34 surveys, 64 datasets, and 104 models published between 2019 and 2024. The review highlights methodological advances, benchmark resources, and the integration of semantic web technologies. By consolidating results across multiple dimensions, the study identifies current trends, limitations, and open challenges, offering researchers and practitioners a comprehensive reference for understanding the evolution and future directions of RE.
comment: Submited at ACM-Computing Surveys + The resulting annotated Zotero bibliography : https://www.zotero.org/groups/6070963/scilex_re_systlitreview/library + SciLEx software: https://github.com/Wimmics/SciLEx
♻ ☆ Emergence of psychopathological computations in large language models
Can large language models (LLMs) instantiate computations of psychopathology? An effective approach to the question hinges on addressing two factors. First, for conceptual validity, we require a general and computational account of psychopathology that is applicable to computational entities without biological embodiment or subjective experience. Second, psychopathological computations, derived from the adapted theory, need to be empirically identified within the LLM's internal processing. Thus, we establish a computational-theoretical framework to provide an account of psychopathology applicable to LLMs. Based on the framework, we conduct experiments demonstrating two key claims: first, that the computational structure of psychopathology exists in LLMs; and second, that executing this computational structure results in psychopathological functions. We further observe that as LLM size increases, the computational structure of psychopathology becomes denser and that the functions become more effective. Taken together, the empirical results corroborate our hypothesis that network-theoretic computations of psychopathology have already emerged in LLMs. This suggests that certain LLM behaviors mirroring psychopathology may not be a superficial mimicry but a feature of their internal processing. Our work shows the promise of developing a new powerful in silico model of psychopathology and also alludes to the possibility of safety threat from the AI systems with psychopathological behaviors in the near future.
comment: pre-print
♻ ☆ Improving the Performance of Radiology Report De-identification with Large-Scale Training and Benchmarking Against Cloud Vendor Methods
Objective: To enhance automated de-identification of radiology reports by scaling transformer-based models through extensive training datasets and benchmarking performance against commercial cloud vendor systems for protected health information (PHI) detection. Materials and Methods: In this retrospective study, we built upon a state-of-the-art, transformer-based, PHI de-identification pipeline by fine-tuning on two large annotated radiology corpora from Stanford University, encompassing chest X-ray, chest CT, abdomen/pelvis CT, and brain MR reports and introducing an additional PHI category (AGE) into the architecture. Model performance was evaluated on test sets from Stanford and the University of Pennsylvania (Penn) for token-level PHI detection. We further assessed (1) the stability of synthetic PHI generation using a "hide-in-plain-sight" method and (2) performance against commercial systems. Precision, recall, and F1 scores were computed across all PHI categories. Results: Our model achieved overall F1 scores of 0.973 on the Penn dataset and 0.996 on the Stanford dataset, outperforming or maintaining the previous state-of-the-art model performance. Synthetic PHI evaluation showed consistent detectability (overall F1: 0.959 [0.958-0.960]) across 50 independently de-identified Penn datasets. Our model outperformed all vendor systems on synthetic Penn reports (overall F1: 0.960 vs. 0.632-0.754). Discussion: Large-scale, multimodal training improved cross-institutional generalization and robustness. Synthetic PHI generation preserved data utility while ensuring privacy. Conclusion: A transformer-based de-identification model trained on diverse radiology datasets outperforms prior academic and commercial systems in PHI detection and establishes a new benchmark for secure clinical text processing.
comment: In submission to JAMIA
♻ ☆ ToolHaystack: Stress-Testing Tool-Augmented Language Models in Realistic Long-Term Interactions
Large language models (LLMs) have demonstrated strong capabilities in using external tools to address user inquiries. However, most existing evaluations assume tool use in short contexts, offering limited insight into model behavior during realistic long-term interactions. To fill this gap, we introduce ToolHaystack, a benchmark for testing the tool use capabilities in long-term interactions. Each test instance in ToolHaystack includes multiple tasks execution contexts and realistic noise within a continuous conversation, enabling assessment of how well models maintain context and handle various disruptions. By applying this benchmark to 14 state-of-the-art LLMs, we find that while current models perform well in standard multi-turn settings, they often significantly struggle in ToolHaystack, highlighting critical gaps in their long-term robustness not revealed by previous tool benchmarks.
comment: Our code and data are available at https://github.com/bwookwak/ToolHaystack Edited for adding acknowledgement section
♻ ☆ From Perception to Reasoning: Deep Thinking Empowers Multimodal Large Language Models
With the remarkable success of Multimodal Large Language Models (MLLMs) in perception tasks, enhancing their complex reasoning capabilities has emerged as a critical research focus. Existing models still suffer from challenges such as opaque reasoning paths and insufficient generalization ability. Chain-of-Thought (CoT) reasoning, which has demonstrated significant efficacy in language models by enhancing reasoning transparency and output interpretability, holds promise for improving model reasoning capabilities when extended to the multimodal domain. This paper provides a systematic review centered on "Multimodal Chain-of-Thought" (MCoT). First, it analyzes the background and theoretical motivations for its inception from the perspectives of technical evolution and task demands. Then, it introduces mainstream MCoT methods from three aspects: CoT paradigms, the post-training stage, and the inference stage, while also analyzing their underlying mechanisms. Furthermore, the paper summarizes existing evaluation benchmarks and metrics, and discusses the application scenarios of MCoT. Finally, it analyzes the challenges currently facing MCoT and provides an outlook on its future research directions.
comment: Survey; 7 figures, 3 tables, 44 pages
♻ ☆ The Rise of Parameter Specialization for Knowledge Storage in Large Language Models NeurIPS 2025
Over time, a growing wave of large language models from various series has been introduced to the community. Researchers are striving to maximize the performance of language models with constrained parameter sizes. However, from a microscopic perspective, there has been limited research on how to better store knowledge in model parameters, particularly within MLPs, to enable more effective utilization of this knowledge by the model. In this work, we analyze twenty publicly available open-source large language models to investigate the relationship between their strong performance and the way knowledge is stored in their corresponding MLP parameters. Our findings reveal that as language models become more advanced and demonstrate stronger knowledge capabilities, their parameters exhibit increased specialization. Specifically, parameters in the MLPs tend to be more focused on encoding similar types of knowledge. We experimentally validate that this specialized distribution of knowledge contributes to improving the efficiency of knowledge utilization in these models. Furthermore, by conducting causal training experiments, we confirm that this specialized knowledge distribution plays a critical role in improving the model's efficiency in leveraging stored knowledge.
comment: Accepted in NeurIPS 2025
♻ ☆ Response Attack: Exploiting Contextual Priming to Jailbreak Large Language Models
Contextual priming, where earlier stimuli covertly bias later judgments, offers an unexplored attack surface for large language models (LLMs). We uncover a contextual priming vulnerability in which the previous response in the dialogue can steer its subsequent behavior toward policy-violating content. While existing jailbreak attacks largely rely on single-turn or multi-turn prompt manipulations, or inject static in-context examples, these methods suffer from limited effectiveness, inefficiency, or semantic drift. We introduce Response Attack (RA), a novel framework that strategically leverages intermediate, mildly harmful responses as contextual primers within a dialogue. By reformulating harmful queries and injecting these intermediate responses before issuing a targeted trigger prompt, RA exploits a previously overlooked vulnerability in LLMs. Extensive experiments across eight state-of-the-art LLMs show that RA consistently achieves significantly higher attack success rates than nine leading jailbreak baselines. Our results demonstrate that the success of RA is directly attributable to the strategic use of intermediate responses, which induce models to generate more explicit and relevant harmful content while maintaining stealth, efficiency, and fidelity to the original query. The code and data are available at https://github.com/Dtc7w3PQ/Response-Attack.
comment: 20 pages, 10 figures. Code and data available at https://github.com/Dtc7w3PQ/Response-Attack
♻ ☆ SALT: Steering Activations towards Leakage-free Thinking in Chain of Thought
As Large Language Models (LLMs) evolve into personal assistants with access to sensitive user data, they face a critical privacy challenge: while prior work has addressed output-level privacy, recent findings reveal that LLMs often leak private information through their internal reasoning processes, violating contextual privacy expectations. These leaky thoughts occur when models inadvertently expose sensitive details in their reasoning traces, even when final outputs appear safe. The challenge lies in preventing such leakage without compromising the model's reasoning capabilities, requiring a delicate balance between privacy and utility. We introduce Steering Activations towards Leakage-free Thinking (SALT), a lightweight test-time intervention that mitigates privacy leakage in model's Chain of Thought (CoT) by injecting targeted steering vectors into hidden state. We identify the high-leakage layers responsible for this behavior. Through experiments across multiple LLMs, we demonstrate that SALT achieves reductions including $18.2\%$ reduction in CPL on QwQ-32B, $17.9\%$ reduction in CPL on Llama-3.1-8B, and $31.2\%$ reduction in CPL on Deepseek in contextual privacy leakage dataset AirGapAgent-R while maintaining comparable task performance and utility. Our work establishes SALT as a practical approach for test-time privacy protection in reasoning-capable language models, offering a path toward safer deployment of LLM-based personal agents.
♻ ☆ AraFinNews: Arabic Financial Summarisation with Domain-Adapted LLMs
This paper examines how domain specificity affects abstractive summarisation of Arabic financial texts using large language models (LLMs). We present AraFinNews, the largest publicly available Arabic financial news dataset to date, comprising 212,500 article-headline pairs spanning almost a decade of reporting from October 2015 to July 2025. Developed as an Arabic counterpart to major English summarisation corpora such as CNN/DailyMail, AraFinNews offers a strong benchmark for assessing domain-focused language understanding and generation in financial contexts. Using this resource, we evaluate transformer-based models, including mT5, AraT5 and the domain-adapted FinAraT5, to investigate how financial-domain pretraining influences accuracy, numerical reliability and stylistic alignment with professional reporting. The results show that domain-adapted models produce more coherent summaries, particularly when handling quantitative and entity-centred information. These findings underscore the value of domain-specific adaptation for improving narrative fluency in Arabic financial summarisation. The dataset is freely available for non-commercial research at https://github.com/ArabicNLP-UK/AraFinNews.
comment: 9 pages
♻ ☆ Bridging the Semantic Gap: Contrastive Rewards for Multilingual Text-to-SQL with GRPO
Current Text-to-SQL methods are evaluated and only focused on executable queries, overlooking the semantic alignment challenge -- both in terms of the semantic meaning of the query and the correctness of the execution results. Even execution accuracy itself shows significant drops when moving from English to other languages, with an average decline of 6 percentage points across non-English languages. We address these challenges by presenting a new framework that combines Group Relative Policy Optimization (GRPO) within a multilingual contrastive reward signal to enhance both task efficiency and semantic accuracy in Text-to-SQL systems in cross-lingual scenarios. Our method teaches models to obtain better correspondence between SQL generation and user intent by combining a reward signal based on semantic similarity. On the seven-language MultiSpider dataset, fine-tuning the LLaMA-3-3B model with GRPO improved the execution accuracy up to 87.4 percent (+26 pp over zero-shot) and semantic accuracy up to 52.29 percent (+32.86 pp). Adding our contrastive reward signal in the GRPO framework further improved the average semantic accuracy to 59.14 percent (+6.85 pp, up to +10 pp for Vietnamese). Our experiments showcase that a smaller, parameter-efficient 3B LLaMA model fine-tuned with our contrastive reward signal outperforms a much larger zero-shot 8B LLaMA model, with an uplift of 7.43 pp in execution accuracy (from 81.43 percent on the 8B model to 88.86 percent on the 3B model), and nearly matches its semantic accuracy (59.14 percent vs. 68.57 percent) -- all using just 3,000 reinforcement learning training examples. These results demonstrate how we can improve the performance of Text-to-SQL systems with contrastive rewards for directed semantic alignment, without requiring large-scale training datasets.
comment: 20th International Workshop on Semantic and Social Media Adaptation & Personalization
♻ ☆ EventWeave: A Dynamic Framework for Capturing Core and Supporting Events in Dialogue Systems
Large language models have improved dialogue systems, but often process conversational turns in isolation, overlooking the event structures that guide natural interactions. Hence we introduce \textbf{EventWeave}, a framework that explicitly models relationships between conversational events to generate more contextually appropriate dialogue responses. EventWeave constructs a dynamic event graph that distinguishes between core events (main goals) and supporting events (interconnected details), employing a multi-head attention mechanism to selectively determine which events are most relevant to the current turn. Unlike summarization or standard graph-based approaches, our method captures three distinct relationship types between events, allowing for more nuanced context modeling. Experiments on three dialogue datasets demonstrate that EventWeave produces more natural and contextually appropriate responses while requiring less computational overhead than models processing the entire dialogue history. Ablation studies confirm improvements stem from better event relationship modeling rather than increased information density. Our approach effectively balances comprehensive context understanding with generating concise responses, maintaining strong performance across various dialogue lengths through targeted optimization techniques.
♻ ☆ RPRO: Ranked Preference Reinforcement Optimization for Enhancing Medical QA and Diagnostic Reasoning
Medical question answering requires advanced reasoning that integrates domain knowledge with logical inference. However, existing large language models (LLMs) often generate reasoning chains that lack factual accuracy and clinical reliability. We propose Ranked Preference Reinforcement Optimization (RPRO), a novel framework that combines reinforcement learning with preference-driven reasoning refinement to enhance clinical chain-of-thought (CoT) performance. RPRO distinguishes itself from prior approaches by employing task-adaptive reasoning templates and a probabilistic evaluation mechanism that aligns model outputs with established clinical workflows, while automatically identifying and correcting low-quality reasoning chains. Unlike traditional pairwise preference methods, RPRO introduces a groupwise ranking optimization based on the Bradley--Terry model and incorporates KL-divergence regularization for stable training. Experiments on PubMedQA, MedQA-USMLE, and a real-world clinical dataset from Far Eastern Memorial Hospital (FEMH) demonstrate consistent improvements over strong baselines. Remarkably, our 2B-parameter model outperforms much larger 7B--20B models, including medical-specialized variants. These findings demonstrate that combining preference optimization with quality-driven refinement provides a scalable and clinically grounded approach to building more reliable medical LLMs.
♻ ☆ Task-Aligned Tool Recommendation for Large Language Models ACL 2025
By augmenting Large Language Models (LLMs) with external tools, their capacity to solve complex problems has been significantly enhanced. However, despite ongoing advancements in the parsing capabilities of LLMs, incorporating all available tools simultaneously in the prompt remains impractical due to the vast number of external tools. Consequently, it is essential to provide LLMs with a precise set of tools tailored to the specific task, considering both quantity and quality. Current tool retrieval methods primarily focus on refining the ranking list of tools and directly packaging a fixed number of top-ranked tools as the tool set. However, these approaches often fail to equip LLMs with the optimal set of tools prior to execution, since the optimal number of tools for different tasks could be different, resulting in inefficiencies such as redundant or unsuitable tools, which impede immediate access to the most relevant tools. This paper addresses the challenge of recommending precise toolsets for LLMs. We introduce the problem of tool recommendation, define its scope, and propose a novel Precision-driven Tool Recommendation (PTR) approach. PTR captures an initial, concise set of tools by leveraging historical tool bundle usage and dynamically adjusts the tool set by performing tool matching, culminating in a multi-view-based tool addition. Additionally, we present a new dataset, RecTools, and a metric, TRACC, designed to evaluate the effectiveness of tool recommendation for LLMs. We further validate our design choices through comprehensive experiments, demonstrating promising accuracy across two open benchmarks and our RecTools dataset.
comment: IJCNLP-AACL 2025 Main
Computer Vision and Pattern Recognition 100
☆ Native 3D Editing with Full Attention
Instruction-guided 3D editing is a rapidly emerging field with the potential to broaden access to 3D content creation. However, existing methods face critical limitations: optimization-based approaches are prohibitively slow, while feed-forward approaches relying on multi-view 2D editing often suffer from inconsistent geometry and degraded visual quality. To address these issues, we propose a novel native 3D editing framework that directly manipulates 3D representations in a single, efficient feed-forward pass. Specifically, we create a large-scale, multi-modal dataset for instruction-guided 3D editing, covering diverse addition, deletion, and modification tasks. This dataset is meticulously curated to ensure that edited objects faithfully adhere to the instructional changes while preserving the consistency of unedited regions with the source object. Building upon this dataset, we explore two distinct conditioning strategies for our model: a conventional cross-attention mechanism and a novel 3D token concatenation approach. Our results demonstrate that token concatenation is more parameter-efficient and achieves superior performance. Extensive evaluations show that our method outperforms existing 2D-lifting approaches, setting a new benchmark in generation quality, 3D consistency, and instruction fidelity.
☆ EvDiff: High Quality Video with an Event Camera
As neuromorphic sensors, event cameras asynchronously record changes in brightness as streams of sparse events with the advantages of high temporal resolution and high dynamic range. Reconstructing intensity images from events is a highly ill-posed task due to the inherent ambiguity of absolute brightness. Early methods generally follow an end-to-end regression paradigm, directly mapping events to intensity frames in a deterministic manner. While effective to some extent, these approaches often yield perceptually inferior results and struggle to scale up in model capacity and training data. In this work, we propose EvDiff, an event-based diffusion model that follows a surrogate training framework to produce high-quality videos. To reduce the heavy computational cost of high-frame-rate video generation, we design an event-based diffusion model that performs only a single forward diffusion step, equipped with a temporally consistent EvEncoder. Furthermore, our novel Surrogate Training Framework eliminates the dependence on paired event-image datasets, allowing the model to leverage large-scale image datasets for higher capacity. The proposed EvDiff is capable of generating high-quality colorful videos solely from monochromatic event streams. Experiments on real-world datasets demonstrate that our method strikes a sweet spot between fidelity and realism, outperforming existing approaches on both pixel-level and perceptual metrics.
☆ Video-R4: Reinforcing Text-Rich Video Reasoning with Visual Rumination
Understanding text-rich videos requires reading small, transient textual cues that often demand repeated inspection. Yet most video QA models rely on single-pass perception over fixed frames, leading to hallucinations and failures on fine-grained evidence. Inspired by how humans pause, zoom, and re-read critical regions, we introduce Video-R4 (Reinforcing Text-Rich Video Reasoning with Visual Rumination), a video reasoning LMM that performs visual rumination: iteratively selecting frames, zooming into informative regions, re-encoding retrieved pixels, and updating its reasoning state. We construct two datasets with executable rumination trajectories: Video-R4-CoT-17k for supervised practice and Video-R4-RL-30k for reinforcement learning. We propose a multi-stage rumination learning framework that progressively finetunes a 7B LMM to learn atomic and mixing visual operations via SFT and GRPO-based RL. Video-R4-7B achieves state-of-the-art results on M4-ViteVQA and further generalizes to multi-page document QA, slides QA, and generic video QA, demonstrating that iterative rumination is an effective paradigm for pixel-grounded multimodal reasoning.
☆ Downscaling Intelligence: Exploring Perception and Reasoning Bottlenecks in Small Multimodal Models
Scaling up multimodal models has enabled remarkable advances in visual understanding and reasoning, but practical demands call for smaller, efficient systems. In this work, we conduct a principled analysis of downscaling intelligence in multimodal models, examining how reduced large language model (LLM) capacity affects multimodal capabilities. Our initial findings reveal an interesting trend: LLM downscaling disproportionately affects visual capabilities, rather than abilities inherited from the LLM. We then examine whether this drop mainly reflects the expected decline in visual reasoning or a more fundamental loss of perceptual abilities. Isolating the effect of LLM downscaling on perception, we find performance still drops sharply, often matching or exceeding the impact on reasoning. To address this bottleneck, we introduce visual extraction tuning, which explicitly trains the model to extract instruction-relevant visual details consistently across tasks. With these extracted visual details, we then apply step-by-step reasoning to generate answers. Together, these components form our Extract+Think approach, setting a new standard for efficiency and performance in this space.
comment: Website at https://web.stanford.edu/~markendo/projects/downscaling_intelligence
☆ An Artificial Intelligence Framework for Measuring Human Spine Aging Using MRI
The human spine is a complex structure composed of 33 vertebrae. It holds the body and is important for leading a healthy life. The spine is vulnerable to age-related degenerations that can be identified through magnetic resonance imaging (MRI). In this paper we propose a novel computer-vison-based deep learning method to estimate spine age using images from over 18,000 MRI series. Data are restricted to subjects with only age-related spine degeneration. Eligibility criteria are created by identifying common age-based clusters of degenerative spine conditions using uniform manifold approximation and projection (UMAP) and hierarchical density-based spatial clustering of applications with noise (HDBSCAN). Model selection is determined using a detailed ablation study on data size, loss, and the effect of different spine regions. We evaluate the clinical utility of our model by calculating the difference between actual spine age and model-predicted age, the spine age gap (SAG), and examining the association between these differences and spine degenerative conditions and lifestyle factors. We find that SAG is associated with conditions including disc bulges, disc osteophytes, spinal stenosis, and fractures, as well as lifestyle factors like smoking and physically demanding work, and thus may be a useful biomarker for measuring overall spine health.
comment: 17 pages, 7 figures
☆ Radar2Shape: 3D Shape Reconstruction from High-Frequency Radar using Multiresolution Signed Distance Functions
Determining the shape of 3D objects from high-frequency radar signals is analytically complex but critical for commercial and aerospace applications. Previous deep learning methods have been applied to radar modeling; however, they often fail to represent arbitrary shapes or have difficulty with real-world radar signals which are collected over limited viewing angles. Existing methods in optical 3D reconstruction can generate arbitrary shapes from limited camera views, but struggle when they naively treat the radar signal as a camera view. In this work, we present Radar2Shape, a denoising diffusion model that handles a partially observable radar signal for 3D reconstruction by correlating its frequencies with multiresolution shape features. Our method consists of a two-stage approach: first, Radar2Shape learns a regularized latent space with hierarchical resolutions of shape features, and second, it diffuses into this latent space by conditioning on the frequencies of the radar signal in an analogous coarse-to-fine manner. We demonstrate that Radar2Shape can successfully reconstruct arbitrary 3D shapes even from partially-observed radar signals, and we show robust generalization to two different simulation methods and real-world data. Additionally, we release two synthetic benchmark datasets to encourage future research in the high-frequency radar domain so that models like Radar2Shape can safely be adapted into real-world radar systems.
☆ Counterfactual World Models via Digital Twin-conditioned Video Diffusion
World models learn to predict the temporal evolution of visual observations given a control signal, potentially enabling agents to reason about environments through forward simulation. Because of the focus on forward simulation, current world models generate predictions based on factual observations. For many emerging applications, such as comprehensive evaluations of physical AI behavior under varying conditions, the ability of world models to answer counterfactual queries, such as "what would happen if this object was removed?", is of increasing importance. We formalize counterfactual world models that additionally take interventions as explicit inputs, predicting temporal sequences under hypothetical modifications to observed scene properties. Traditional world models operate directly on entangled pixel-space representations where object properties and relationships cannot be selectively modified. This modeling choice prevents targeted interventions on specific scene properties. We introduce CWMDT, a framework to overcome those limitations, turning standard video diffusion models into effective counterfactual world models. First, CWMDT constructs digital twins of observed scenes to explicitly encode objects and their relationships, represented as structured text. Second, CWMDT applies large language models to reason over these representations and predict how a counterfactual intervention propagates through time to alter the observed scene. Third, CWMDT conditions a video diffusion model with the modified representation to generate counterfactual visual sequences. Evaluations on two benchmarks show that the CWMDT approach achieves state-of-the-art performance, suggesting that alternative representations of videos, such as the digital twins considered here, offer powerful control signals for video forward simulation-based world models.
☆ GPR-OdomNet: Difference and Similarity-Driven Odometry Estimation Network for Ground Penetrating Radar-Based Localization
When performing robot/vehicle localization using ground penetrating radar (GPR) to handle adverse weather and environmental conditions, existing techniques often struggle to accurately estimate distances when processing B-scan images with minor distinctions. This study introduces a new neural network-based odometry method that leverages the similarity and difference features of GPR B-scan images for precise estimation of the Euclidean distances traveled between the B-scan images. The new custom neural network extracts multi-scale features from B-scan images taken at consecutive moments and then determines the Euclidean distance traveled by analyzing the similarities and differences between these features. To evaluate our method, an ablation study and comparison experiments have been conducted using the publicly available CMU-GPR dataset. The experimental results show that our method consistently outperforms state-of-the-art counterparts in all tests. Specifically, our method achieves a root mean square error (RMSE), and achieves an overall weighted RMSE of 0.449 m across all data sets, which is a 10.2\% reduction in RMSE when compared to the best state-of-the-art method.
☆ Improving Multimodal Distillation for 3D Semantic Segmentation under Domain Shift
Semantic segmentation networks trained under full supervision for one type of lidar fail to generalize to unseen lidars without intervention. To reduce the performance gap under domain shifts, a recent trend is to leverage vision foundation models (VFMs) providing robust features across domains. In this work, we conduct an exhaustive study to identify recipes for exploiting VFMs in unsupervised domain adaptation for semantic segmentation of lidar point clouds. Building upon unsupervised image-to-lidar knowledge distillation, our study reveals that: (1) the architecture of the lidar backbone is key to maximize the generalization performance on a target domain; (2) it is possible to pretrain a single backbone once and for all, and use it to address many domain shifts; (3) best results are obtained by keeping the pretrained backbone frozen and training an MLP head for semantic segmentation. The resulting pipeline achieves state-of-the-art results in four widely-recognized and challenging settings. The code will be available at: https://github.com/valeoai/muddos.
comment: Accepted at BMVC 2025
☆ Illustrator's Depth: Monocular Layer Index Prediction for Image Decomposition
We introduce Illustrator's Depth, a novel definition of depth that addresses a key challenge in digital content creation: decomposing flat images into editable, ordered layers. Inspired by an artist's compositional process, illustrator's depth infers a layer index to each pixel, forming an interpretable image decomposition through a discrete, globally consistent ordering of elements optimized for editability. We also propose and train a neural network using a curated dataset of layered vector graphics to predict layering directly from raster inputs. Our layer index inference unlocks a range of powerful downstream applications. In particular, it significantly outperforms state-of-the-art baselines for image vectorization while also enabling high-fidelity text-to-vector-graphics generation, automatic 3D relief generation from 2D images, and intuitive depth-aware editing. By reframing depth from a physical quantity to a creative abstraction, illustrator's depth prediction offers a new foundation for editable image decomposition.
☆ Planning with Sketch-Guided Verification for Physics-Aware Video Generation
Recent video generation approaches increasingly rely on planning intermediate control signals such as object trajectories to improve temporal coherence and motion fidelity. However, these methods mostly employ single-shot plans that are typically limited to simple motions, or iterative refinement which requires multiple calls to the video generator, incuring high computational cost. To overcome these limitations, we propose SketchVerify, a training-free, sketch-verification-based planning framework that improves motion planning quality with more dynamically coherent trajectories (i.e., physically plausible and instruction-consistent motions) prior to full video generation by introducing a test-time sampling and verification loop. Given a prompt and a reference image, our method predicts multiple candidate motion plans and ranks them using a vision-language verifier that jointly evaluates semantic alignment with the instruction and physical plausibility. To efficiently score candidate motion plans, we render each trajectory as a lightweight video sketch by compositing objects over a static background, which bypasses the need for expensive, repeated diffusion-based synthesis while achieving comparable performance. We iteratively refine the motion plan until a satisfactory one is identified, which is then passed to the trajectory-conditioned generator for final synthesis. Experiments on WorldModelBench and PhyWorldBench demonstrate that our method significantly improves motion quality, physical realism, and long-term consistency compared to competitive baselines while being substantially more efficient. Our ablation study further shows that scaling up the number of trajectory candidates consistently enhances overall performance.
comment: website: https://sketchverify.github.io/
☆ MMT-ARD: Multimodal Multi-Teacher Adversarial Distillation for Robust Vision-Language Models
Vision-Language Models (VLMs) are increasingly deployed in safety-critical applications, making their adversarial robustness a crucial concern. While adversarial knowledge distillation has shown promise in transferring robustness from teacher to student models, traditional single-teacher approaches suffer from limited knowledge diversity, slow convergence, and difficulty in balancing robustness and accuracy. To address these challenges, we propose MMT-ARD: a Multimodal Multi-Teacher Adversarial Robust Distillation framework. Our key innovation is a dual-teacher knowledge fusion architecture that collaboratively optimizes clean feature preservation and robust feature enhancement. To better handle challenging adversarial examples, we introduce a dynamic weight allocation strategy based on teacher confidence, enabling adaptive focus on harder samples. Moreover, to mitigate bias among teachers, we design an adaptive sigmoid-based weighting function that balances the strength of knowledge transfer across modalities. Extensive experiments on ImageNet and zero-shot benchmarks demonstrate that MMT-ARD improves robust accuracy by +4.32% and zero-shot accuracy by +3.5% on the ViT-B-32 model, while achieving a 2.3x increase in training efficiency over traditional single-teacher methods. These results highlight the effectiveness and scalability of MMT-ARD in enhancing the adversarial robustness of multimodal large models. Our codes are available at https://github.com/itsnotacie/MMT-ARD.
comment: 10 pages
☆ REMSA: An LLM Agent for Foundation Model Selection in Remote Sensing
Foundation Models (FMs) are increasingly used in remote sensing (RS) for tasks such as environmental monitoring, disaster assessment, and land-use mapping. These models include unimodal vision encoders trained on a single data modality and multimodal architectures trained on combinations of SAR, multispectral, hyperspectral, and image-text data. They support diverse RS tasks including semantic segmentation, image classification, change detection, and visual question answering. However, selecting an appropriate remote sensing foundation model (RSFM) remains difficult due to scattered documentation, heterogeneous formats, and varied deployment constraints. We introduce the RSFM Database (RS-FMD), a structured resource covering over 150 RSFMs spanning multiple data modalities, resolutions, and learning paradigms. Built on RS-FMD, we present REMSA, the first LLM-based agent for automated RSFM selection from natural language queries. REMSA interprets user requirements, resolves missing constraints, ranks candidate models using in-context learning, and provides transparent justifications. We also propose a benchmark of 75 expert-verified RS query scenarios, producing 900 configurations under an expert-centered evaluation protocol. REMSA outperforms several baselines, including naive agents, dense retrieval, and unstructured RAG-based LLMs. It operates entirely on publicly available metadata and does not access private or sensitive data.
comment: Code and data available at https://github.com/be-chen/REMSA
☆ SMILE: A Composite Lexical-Semantic Metric for Question-Answering Evaluation
Traditional evaluation metrics for textual and visual question answering, like ROUGE, METEOR, and Exact Match (EM), focus heavily on n-gram based lexical similarity, often missing the deeper semantic understanding needed for accurate assessment. While measures like BERTScore and MoverScore leverage contextual embeddings to address this limitation, they lack flexibility in balancing sentence-level and keyword-level semantics and ignore lexical similarity, which remains important. Large Language Model (LLM) based evaluators, though powerful, come with drawbacks like high costs, bias, inconsistency, and hallucinations. To address these issues, we introduce SMILE: Semantic Metric Integrating Lexical Exactness, a novel approach that combines sentence-level semantic understanding with keyword-level semantic understanding and easy keyword matching. This composite method balances lexical precision and semantic relevance, offering a comprehensive evaluation. Extensive benchmarks across text, image, and video QA tasks show SMILE is highly correlated with human judgments and computationally lightweight, bridging the gap between lexical and semantic evaluation.
comment: 23 pages, 6 tables, 9 figures
Self-Supervised Learning by Curvature Alignment
Self-supervised learning (SSL) has recently advanced through non-contrastive methods that couple an invariance term with variance, covariance, or redundancy-reduction penalties. While such objectives shape first- and second-order statistics of the representation, they largely ignore the local geometry of the underlying data manifold. In this paper, we introduce CurvSSL, a curvature-regularized self-supervised learning framework, and its RKHS extension, kernel CurvSSL. Our approach retains a standard two-view encoder-projector architecture with a Barlow Twins-style redundancy-reduction loss on projected features, but augments it with a curvature-based regularizer. Each embedding is treated as a vertex whose $k$ nearest neighbors define a discrete curvature score via cosine interactions on the unit hypersphere; in the kernel variant, curvature is computed from a normalized local Gram matrix in an RKHS. These scores are aligned and decorrelated across augmentations by a Barlow-style loss on a curvature-derived matrix, encouraging both view invariance and consistency of local manifold bending. Experiments on MNIST and CIFAR-10 datasets with a ResNet-18 backbone show that curvature-regularized SSL yields competitive or improved linear evaluation performance compared to Barlow Twins and VICReg. Our results indicate that explicitly shaping local geometry is a simple and effective complement to purely statistical SSL regularizers.
☆ Preventing Shortcut Learning in Medical Image Analysis through Intermediate Layer Knowledge Distillation from Specialist Teachers
Deep learning models are prone to learning shortcut solutions to problems using spuriously correlated yet irrelevant features of their training data. In high-risk applications such as medical image analysis, this phenomenon may prevent models from using clinically meaningful features when making predictions, potentially leading to poor robustness and harm to patients. We demonstrate that different types of shortcuts (those that are diffuse and spread throughout the image, as well as those that are localized to specific areas) manifest distinctly across network layers and can, therefore, be more effectively targeted through mitigation strategies that target the intermediate layers. We propose a novel knowledge distillation framework that leverages a teacher network fine-tuned on a small subset of task-relevant data to mitigate shortcut learning in a student network trained on a large dataset corrupted with a bias feature. Through extensive experiments on CheXpert, ISIC 2017, and SimBA datasets using various architectures (ResNet-18, AlexNet, DenseNet-121, and 3D CNNs), we demonstrate consistent improvements over traditional Empirical Risk Minimization, augmentation-based bias-mitigation, and group-based bias-mitigation approaches. In many cases, we achieve comparable performance with a baseline model trained on bias-free data, even on out-of-distribution test data. Our results demonstrate the practical applicability of our approach to real-world medical imaging scenarios where bias annotations are limited and shortcut features are difficult to identify a priori.
comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2025:020
Sparse Mixture-of-Experts for Multi-Channel Imaging: Are All Channel Interactions Required? NeurIPS
Vision Transformers ($\text{ViTs}$) have become the backbone of vision foundation models, yet their optimization for multi-channel domains - such as cell painting or satellite imagery - remains underexplored. A key challenge in these domains is capturing interactions between channels, as each channel carries different information. While existing works have shown efficacy by treating each channel independently during tokenization, this approach naturally introduces a major computational bottleneck in the attention block - channel-wise comparisons leads to a quadratic growth in attention, resulting in excessive $\text{FLOPs}$ and high training cost. In this work, we shift focus from efficacy to the overlooked efficiency challenge in cross-channel attention and ask: "Is it necessary to model all channel interactions?". Inspired by the philosophy of Sparse Mixture-of-Experts ($\text{MoE}$), we propose MoE-ViT, a Mixture-of-Experts architecture for multi-channel images in $\text{ViTs}$, which treats each channel as an expert and employs a lightweight router to select only the most relevant experts per patch for attention. Proof-of-concept experiments on real-world datasets - JUMP-CP and So2Sat - demonstrate that $\text{MoE-ViT}$ achieves substantial efficiency gains without sacrificing, and in some cases enhancing, performance, making it a practical and attractive backbone for multi-channel imaging.
comment: This has been accepted at the NeurIPS AI4Science Workshop 2025
☆ MCMoE: Completing Missing Modalities with Mixture of Experts for Incomplete Multimodal Action Quality Assessment AAAI 2026
Multimodal Action Quality Assessment (AQA) has recently emerged as a promising paradigm. By leveraging complementary information across shared contextual cues, it enhances the discriminative evaluation of subtle intra-class variations in highly similar action sequences. However, partial modalities are frequently unavailable at the inference stage in reality. The absence of any modality often renders existing multimodal models inoperable. Furthermore, it triggers catastrophic performance degradation due to interruptions in cross-modal interactions. To address this issue, we propose a novel Missing Completion Framework with Mixture of Experts (MCMoE) that unifies unimodal and joint representation learning in single-stage training. Specifically, we propose an adaptive gated modality generator that dynamically fuses available information to reconstruct missing modalities. We then design modality experts to learn unimodal knowledge and dynamically mix the knowledge of all experts to extract cross-modal joint representations. With a mixture of experts, missing modalities are further refined and complemented. Finally, in the training phase, we mine the complete multimodal features and unimodal expert knowledge to guide modality generation and generation-based joint representation extraction. Extensive experiments demonstrate that our MCMoE achieves state-of-the-art results in both complete and incomplete multimodal learning on three public AQA benchmarks. Code is available at https://github.com/XuHuangbiao/MCMoE.
comment: AAAI 2026
☆ Designing and Generating Diverse, Equitable Face Image Datasets for Face Verification Tasks
Face verification is a significant component of identity authentication in various applications including online banking and secure access to personal devices. The majority of the existing face image datasets often suffer from notable biases related to race, gender, and other demographic characteristics, limiting the effectiveness and fairness of face verification systems. In response to these challenges, we propose a comprehensive methodology that integrates advanced generative models to create varied and diverse high-quality synthetic face images. This methodology emphasizes the representation of a diverse range of facial traits, ensuring adherence to characteristics permissible in identity card photographs. Furthermore, we introduce the Diverse and Inclusive Faces for Verification (DIF-V) dataset, comprising 27,780 images of 926 unique identities, designed as a benchmark for future research in face verification. Our analysis reveals that existing verification models exhibit biases toward certain genders and races, and notably, applying identity style modifications negatively impacts model performance. By tackling the inherent inequities in existing datasets, this work not only enriches the discussion on diversity and ethics in artificial intelligence but also lays the foundation for developing more inclusive and reliable face verification technologies
☆ MorphSeek: Fine-grained Latent Representation-Level Policy Optimization for Deformable Image Registration
Deformable image registration (DIR) remains a fundamental yet challenging problem in medical image analysis, largely due to the prohibitively high-dimensional deformation space of dense displacement fields and the scarcity of voxel-level supervision. Existing reinforcement learning frameworks often project this space into coarse, low-dimensional representations, limiting their ability to capture spatially variant deformations. We propose MorphSeek, a fine-grained representation-level policy optimization paradigm that reformulates DIR as a spatially continuous optimization process in the latent feature space. MorphSeek introduces a stochastic Gaussian policy head atop the encoder to model a distribution over latent features, facilitating efficient exploration and coarse-to-fine refinement. The framework integrates unsupervised warm-up with weakly supervised fine-tuning through Group Relative Policy Optimization, where multi-trajectory sampling stabilizes training and improves label efficiency. Across three 3D registration benchmarks (OASIS brain MRI, LiTS liver CT, and Abdomen MR-CT), MorphSeek achieves consistent Dice improvements over competitive baselines while maintaining high label efficiency with minimal parameter cost and low step-level latency overhead. Beyond optimizer specifics, MorphSeek advances a representation-level policy learning paradigm that achieves spatially coherent and data-efficient deformation optimization, offering a principled, backbone-agnostic, and optimizer-agnostic solution for scalable visual alignment in high-dimensional settings.
☆ IndustryNav: Exploring Spatial Reasoning of Embodied Agents in Dynamic Industrial Navigation
While Visual Large Language Models (VLLMs) show great promise as embodied agents, they continue to face substantial challenges in spatial reasoning. Existing embodied benchmarks largely focus on passive, static household environments and evaluate only isolated capabilities, failing to capture holistic performance in dynamic, real-world complexity. To fill this gap, we present IndustryNav, the first dynamic industrial navigation benchmark for active spatial reasoning. IndustryNav leverages 12 manually created, high-fidelity Unity warehouse scenarios featuring dynamic objects and human movement. Our evaluation employs a PointGoal navigation pipeline that effectively combines egocentric vision with global odometry to assess holistic local-global planning. Crucially, we introduce the "collision rate" and "warning rate" metrics to measure safety-oriented behaviors and distance estimation. A comprehensive study of nine state-of-the-art VLLMs (including models such as GPT-5-mini, Claude-4.5, and Gemini-2.5) reveals that closed-source models maintain a consistent advantage; however, all agents exhibit notable deficiencies in robust path planning, collision avoidance and active exploration. This highlights a critical need for embodied research to move beyond passive perception and toward tasks that demand stable planning, active exploration, and safe behavior in dynamic, real-world environment.
☆ Non-Parametric Probabilistic Robustness: A Conservative Metric with Optimized Perturbation Distributions
Deep learning (DL) models, despite their remarkable success, remain vulnerable to small input perturbations that can cause erroneous outputs, motivating the recent proposal of probabilistic robustness (PR) as a complementary alternative to adversarial robustness (AR). However, existing PR formulations assume a fixed and known perturbation distribution, an unrealistic expectation in practice. To address this limitation, we propose non-parametric probabilistic robustness (NPPR), a more practical PR metric that does not rely on any predefined perturbation distribution. Following the non-parametric paradigm in statistical modeling, NPPR learns an optimized perturbation distribution directly from data, enabling conservative PR evaluation under distributional uncertainty. We further develop an NPPR estimator based on a Gaussian Mixture Model (GMM) with Multilayer Perceptron (MLP) heads and bicubic up-sampling, covering various input-dependent and input-independent perturbation scenarios. Theoretical analyses establish the relationships among AR, PR, and NPPR. Extensive experiments on CIFAR-10, CIFAR-100, and Tiny ImageNet across ResNet18/50, WideResNet50 and VGG16 validate NPPR as a more practical robustness metric, showing up to 40\% more conservative (lower) PR estimates compared to assuming those common perturbation distributions used in state-of-the-arts.
☆ METIS: Multi-Source Egocentric Training for Integrated Dexterous Vision-Language-Action Model
Building a generalist robot that can perceive, reason, and act across diverse tasks remains an open challenge, especially for dexterous manipulation. A major bottleneck lies in the scarcity of large-scale, action-annotated data for dexterous skills, as teleoperation is difficult and costly. Human data, with its vast scale and diverse manipulation behaviors, provides rich priors for learning robotic actions. While prior works have explored leveraging human demonstrations, they are often constrained by limited scenarios and a large visual gap between human and robots. To eliminate these limitations, we propose METIS, a vision-language-action (VLA) model for dexterous manipulation pretrained on multi-source egocentric datasets. We first construct EgoAtlas, which integrates large-scale human and robotic data from multiple sources, all unified under a consistent action space. We further extract motion-aware dynamics, a compact and discretized motion representation, which provides efficient and expressive supervision for VLA training. Built upon them, METIS integrates reasoning and acting into a unified framework, enabling effective deployment to downstream dexterous manipulation tasks. Our method demonstrates exceptional dexterous manipulation capabilities, achieving highest average success rate in six real-world tasks. Experimental results also highlight the superior generalization and robustness to out-of-distribution scenarios. These findings emphasize METIS as a promising step toward a generalist model for dexterous manipulation.
☆ SVRecon: Sparse Voxel Rasterization for Surface Reconstruction
We extend the recently proposed sparse voxel rasterization paradigm to the task of high-fidelity surface reconstruction by integrating Signed Distance Function (SDF), named SVRecon. Unlike 3D Gaussians, sparse voxels are spatially disentangled from their neighbors and have sharp boundaries, which makes them prone to local minima during optimization. Although SDF values provide a naturally smooth and continuous geometric field, preserving this smoothness across independently parameterized sparse voxels is nontrivial. To address this challenge, we promote coherent and smooth voxel-wise structure through (1) robust geometric initialization using a visual geometry model and (2) a spatial smoothness loss that enforces coherent relationships across parent-child and sibling voxel groups. Extensive experiments across various benchmarks show that our method achieves strong reconstruction accuracy while having consistently speedy convergence. The code will be made public.
☆ ATAC: Augmentation-Based Test-Time Adversarial Correction for CLIP
Despite its remarkable success in zero-shot image-text matching, CLIP remains highly vulnerable to adversarial perturbations on images. As adversarial fine-tuning is prohibitively costly, recent works explore various test-time defense strategies; however, these approaches still exhibit limited robustness. In this work, we revisit this problem and propose a simple yet effective strategy: Augmentation-based Test-time Adversarial Correction (ATAC). Our method operates directly in the embedding space of CLIP, calculating augmentation-induced drift vectors to infer a semantic recovery direction and correcting the embedding based on the angular consistency of these latent drifts. Across a wide range of benchmarks, ATAC consistently achieves remarkably high robustness, surpassing that of previous state-of-the-art methods by nearly 50\% on average, all while requiring minimal computational overhead. Furthermore, ATAC retains state-of-the-art robustness in unconventional and extreme settings and even achieves nontrivial robustness against adaptive attacks. Our results demonstrate that ATAC is an efficient method in a novel paradigm for test-time adversarial defenses in the embedding space of CLIP.
comment: 16 pages
☆ SuperQuadricOcc: Multi-Layer Gaussian Approximation of Superquadrics for Real-Time Self-Supervised Occupancy Estimation
Semantic occupancy estimation enables comprehensive scene understanding for automated driving, providing dense spatial and semantic information essential for perception and planning. While Gaussian representations have been widely adopted in self-supervised occupancy estimation, the deployment of a large number of Gaussian primitives drastically increases memory requirements and is not suitable for real-time inference. In contrast, superquadrics permit reduced primitive count and lower memory requirements due to their diverse shape set. However, implementation into a self-supervised occupancy model is nontrivial due to the absence of a superquadric rasterizer to enable model supervision. Our proposed method, SuperQuadricOcc, employs a superquadric-based scene representation. By leveraging a multi-layer icosphere-tessellated Gaussian approximation of superquadrics, we enable Gaussian rasterization for supervision during training. On the Occ3D dataset, SuperQuadricOcc achieves a 75\% reduction in memory footprint, 124\% faster inference, and a 5.9\% improvement in mIoU compared to previous Gaussian-based methods, without the use of temporal labels. To our knowledge, this is the first occupancy model to enable real-time inference while maintaining competitive performance. The use of superquadrics reduces the number of primitives required for scene modeling by 84\% relative to Gaussian-based approaches. Finally, evaluation against prior methods is facilitated by our fast superquadric voxelization module. The code will be released as open source.
☆ UAM: A Unified Attention-Mamba Backbone of Multimodal Framework for Tumor Cell Classification
Cell-level radiomics features provide fine-grained insights into tumor phenotypes and have the potential to significantly enhance diagnostic accuracy on hematoxylin and eosin (H&E) images. By capturing micro-level morphological and intensity patterns, these features support more precise tumor identification and improve AI interpretability by highlighting diagnostically relevant cells for pathologist review. However, most existing studies focus on slide-level or patch-level tumor classification, leaving cell-level radiomics analysis largely unexplored. Moreover, there is currently no dedicated backbone specifically designed for radiomics data. Inspired by the recent success of the Mamba architecture in vision and language domains, we introduce a Unified Attention-Mamba (UAM) backbone for cell-level classification using radiomics features. Unlike previous hybrid approaches that integrate Attention and Mamba modules in fixed proportions, our unified design flexibly combines their capabilities within a single cohesive architecture, eliminating the need for manual ratio tuning and improving encode capability. We develop two UAM variants to comprehensively evaluate the benefits of this unified structure. Building on this backbone, we further propose a multimodal UAM framework that jointly performs cell-level classification and image segmentation. Experimental results demonstrate that UAM achieves state-of-the-art performance across both tasks on public benchmarks, surpassing leading image-based foundation models. It improves cell classification accuracy from 74% to 78% ($n$=349,882 cells), and tumor segmentation precision from 75% to 80% ($n$=406 patches). These findings highlight the effectiveness and promise of UAM as a unified and extensible multimodal foundation for radiomics-driven cancer diagnosis.
☆ DSeq-JEPA: Discriminative Sequential Joint-Embedding Predictive Architecture
Image-based Joint-Embedding Predictive Architecture (I-JEPA) learns visual representations by predicting latent embeddings of masked regions from visible context. However, it treats all regions uniformly and independently, lacking an explicit notion of where or in what order predictions should be made. Inspired by human visual perception, which deploys attention selectively and sequentially from the most informative to secondary regions, we propose DSeq-JEPA, a Discriminative Sequential Joint-Embedding Predictive Architecture that bridges predictive and autoregressive self-supervised learning, integrating JEPA-style latent prediction with GPT-style sequential reasoning. Specifically, DSeq-JEPA (i) first identifies primary discriminative regions based on a transformer-derived saliency map, emphasizing the distribution of visual importance, and then (ii) predicts subsequent regions in this discriminative order, progressively forming a curriculum-like semantic progression from primary to secondary cues -- a form of GPT-style pre-training. Extensive experiments across diverse tasks, including image classification (ImageNet), fine-grained visual categorization (iNaturalist21, CUB-200-2011, Stanford-Cars), detection and segmentation (MS-COCO, ADE20K), and low-level reasoning tasks (Clevr/Count, Clevr/Dist), demonstrate that DSeq-JEPA consistently focuses on more discriminative and generalizable representations than I-JEPA variants. Project page: https://github.com/SkyShunsuke/DSeq-JEPA.
comment: Project page: https://github.com/SkyShunsuke/DSeq-JEPA
☆ Learning Latent Transmission and Glare Maps for Lens Veiling Glare Removal
Beyond the commonly recognized optical aberrations, the imaging performance of compact optical systems-including single-lens and metalens designs-is often further degraded by veiling glare caused by stray-light scattering from non-ideal optical surfaces and coatings, particularly in complex real-world environments. This compound degradation undermines traditional lens aberration correction yet remains underexplored. A major challenge is that conventional scattering models (e.g., for dehazing) fail to fit veiling glare due to its spatial-varying and depth-independent nature. Consequently, paired high-quality data are difficult to prepare via simulation, hindering application of data-driven veiling glare removal models. To this end, we propose VeilGen, a generative model that learns to simulate veiling glare by estimating its underlying optical transmission and glare maps in an unsupervised manner from target images, regularized by Stable Diffusion (SD)-based priors. VeilGen enables paired dataset generation with realistic compound degradation of optical aberrations and veiling glare, while also providing the estimated latent optical transmission and glare maps to guide the veiling glare removal process. We further introduce DeVeiler, a restoration network trained with a reversibility constraint, which utilizes the predicted latent maps to guide an inverse process of the learned scattering model. Extensive experiments on challenging compact optical systems demonstrate that our approach delivers superior restoration quality and physical fidelity compared with existing methods. These suggest that VeilGen reliably synthesizes realistic veiling glare, and its learned latent maps effectively guide the restoration process in DeVeiler. All code and datasets will be publicly released at https://github.com/XiaolongQian/DeVeiler.
comment: All code and datasets will be publicly released at https://github.com/XiaolongQian/DeVeiler
☆ Label-Efficient Skeleton-based Recognition with Stable-Invertible Graph Convolutional Networks
Skeleton-based action recognition is a hotspot in image processing. A key challenge of this task lies in its dependence on large, manually labeled datasets whose acquisition is costly and time-consuming. This paper devises a novel, label-efficient method for skeleton-based action recognition using graph convolutional networks (GCNs). The contribution of the proposed method resides in learning a novel acquisition function -- scoring the most informative subsets for labeling -- as the optimum of an objective function mixing data representativity, diversity and uncertainty. We also extend this approach by learning the most informative subsets using an invertible GCN which allows mapping data from ambient to latent spaces where the inherent distribution of the data is more easily captured. Extensive experiments, conducted on two challenging skeleton-based recognition datasets, show the effectiveness and the outperformance of our label-frugal GCNs against the related work.
☆ Loomis Painter: Reconstructing the Painting Process
Step-by-step painting tutorials are vital for learning artistic techniques, but existing video resources (e.g., YouTube) lack interactivity and personalization. While recent generative models have advanced artistic image synthesis, they struggle to generalize across media and often show temporal or structural inconsistencies, hindering faithful reproduction of human creative workflows. To address this, we propose a unified framework for multi-media painting process generation with a semantics-driven style control mechanism that embeds multiple media into a diffusion models conditional space and uses cross-medium style augmentation. This enables consistent texture evolution and process transfer across styles. A reverse-painting training strategy further ensures smooth, human-aligned generation. We also build a large-scale dataset of real painting processes and evaluate cross-media consistency, temporal coherence, and final-image fidelity, achieving strong results on LPIPS, DINO, and CLIP metrics. Finally, our Perceptual Distance Profile (PDP) curve quantitatively models the creative sequence, i.e., composition, color blocking, and detail refinement, mirroring human artistic progression.
☆ Refracting Reality: Generating Images with Realistic Transparent Objects
Generative image models can produce convincingly real images, with plausible shapes, textures, layouts and lighting. However, one domain in which they perform notably poorly is in the synthesis of transparent objects, which exhibit refraction, reflection, absorption and scattering. Refraction is a particular challenge, because refracted pixel rays often intersect with surfaces observed in other parts of the image, providing a constraint on the color. It is clear from inspection that generative models have not distilled the laws of optics sufficiently well to accurately render refractive objects. In this work, we consider the problem of generating images with accurate refraction, given a text prompt. We synchronize the pixels within the object's boundary with those outside by warping and merging the pixels using Snell's Law of Refraction, at each step of the generation trajectory. For those surfaces that are not directly observed in the image, but are visible via refraction or reflection, we recover their appearance by synchronizing the image with a second generated image -- a panorama centered at the object -- using the same warping and merging procedure. We demonstrate that our approach generates much more optically-plausible images that respect the physical constraints.
☆ Robot Confirmation Generation and Action Planning Using Long-context Q-Former Integrated with Multimodal LLM
Human-robot collaboration towards a shared goal requires robots to understand human action and interaction with the surrounding environment. This paper focuses on human-robot interaction (HRI) based on human-robot dialogue that relies on the robot action confirmation and action step generation using multimodal scene understanding. The state-of-the-art approach uses multimodal transformers to generate robot action steps aligned with robot action confirmation from a single clip showing a task composed of multiple micro steps. Although actions towards a long-horizon task depend on each other throughout an entire video, the current approaches mainly focus on clip-level processing and do not leverage long-context information. This paper proposes a long-context Q-former incorporating left and right context dependency in full videos. Furthermore, this paper proposes a text-conditioning approach to feed text embeddings directly into the LLM decoder to mitigate the high abstraction of the information in text by Q-former. Experiments with the YouCook2 corpus show that the accuracy of confirmation generation is a major factor in the performance of action planning. Furthermore, we demonstrate that the long-context Q-former improves the confirmation and action planning by integrating VideoLLaMA3.
comment: Accepted to ASRU 2025
☆ NoPe-NeRF++: Local-to-Global Optimization of NeRF with No Pose Prior
In this paper, we introduce NoPe-NeRF++, a novel local-to-global optimization algorithm for training Neural Radiance Fields (NeRF) without requiring pose priors. Existing methods, particularly NoPe-NeRF, which focus solely on the local relationships within images, often struggle to recover accurate camera poses in complex scenarios. To overcome the challenges, our approach begins with a relative pose initialization with explicit feature matching, followed by a local joint optimization to enhance the pose estimation for training a more robust NeRF representation. This method significantly improves the quality of initial poses. Additionally, we introduce global optimization phase that incorporates geometric consistency constraints through bundle adjustment, which integrates feature trajectories to further refine poses and collectively boost the quality of NeRF. Notably, our method is the first work that seamlessly combines the local and global cues with NeRF, and outperforms state-of-the-art methods in both pose estimation accuracy and novel view synthesis. Extensive evaluations on benchmark datasets demonstrate our superior performance and robustness, even in challenging scenes, thus validating our design choices.
☆ MuM: Multi-View Masked Image Modeling for 3D Vision
Self-supervised learning on images seeks to extract meaningful visual representations from unlabeled data. When scaled to large datasets, this paradigm has achieved state-of-the-art performance and the resulting trained models such as DINOv3 have seen widespread adoption. However, most prior efforts are optimized for semantic understanding rather than geometric reasoning. One important exception is Cross-View Completion, CroCo, which is a form of masked autoencoding (MAE) tailored for 3D understanding. In this work, we continue on the path proposed by CroCo and focus on learning features tailored for 3D vision. In a nutshell, we extend MAE to arbitrarily many views of the same scene. By uniformly masking all views and employing a lightweight decoder with inter-frame attention, our approach is inherently simpler and more scalable than CroCo. We evaluate the resulting model, MuM, extensively on downstream tasks including feedforward reconstruction, dense image matching and relative pose estimation, finding that it outperforms the state-of-the-art visual encoders DINOv3 and CroCo v2.
☆ SpatialGeo:Boosting Spatial Reasoning in Multimodal LLMs via Geometry-Semantics Fusion
Multimodal large language models (MLLMs) have achieved significant progress in image and language tasks due to the strong reasoning capability of large language models (LLMs). Nevertheless, most MLLMs suffer from limited spatial reasoning ability to interpret and infer spatial arrangements in three-dimensional space. In this work, we propose a novel vision encoder based on hierarchical fusion of geometry and semantics features, generating spatial-aware visual embedding and boosting the spatial grounding capability of MLLMs. Specifically, we first unveil that the spatial ambiguity shortcoming stems from the lossy embedding of the vision encoder utilized in most existing MLLMs (e.g., CLIP), restricted to instance-level semantic features. This motivates us to complement CLIP with the geometry features from vision-only self-supervised learning via a hierarchical adapter, enhancing the spatial awareness in the proposed SpatialGeo. The network is efficiently trained using pretrained LLaVA model and optimized with random feature dropping to avoid trivial solutions relying solely on the CLIP encoder. Experimental results show that SpatialGeo improves the accuracy in spatial reasoning tasks, enhancing state-of-the-art models by at least 8.0% in SpatialRGPT-Bench with approximately 50% less memory cost during inference. The source code is available via https://ricky-plus.github.io/SpatialGeoPages/.
☆ BiFingerPose: Bimodal Finger Pose Estimation for Touch Devices
Finger pose offers promising opportunities to expand human computer interaction capability of touchscreen devices. Existing finger pose estimation algorithms that can be implemented in portable devices predominantly rely on capacitive images, which are currently limited to estimating pitch and yaw angles and exhibit reduced accuracy when processing large-angle inputs (especially when it is greater than 45 degrees). In this paper, we propose BiFingerPose, a novel bimodal based finger pose estimation algorithm capable of simultaneously and accurately predicting comprehensive finger pose information. A bimodal input is explored, including a capacitive image and a fingerprint patch obtained from the touchscreen with an under-screen fingerprint sensor. Our approach leads to reliable estimation of roll angle, which is not achievable using only a single modality. In addition, the prediction performance of other pose parameters has also been greatly improved. The evaluation of a 12-person user study on continuous and discrete interaction tasks further validated the advantages of our approach. Specifically, BiFingerPose outperforms previous SOTA methods with over 21% improvement in prediction performance, 2.5 times higher task completion efficiency, and 23% better user operation accuracy, demonstrating its practical superiority. Finally, we delineate the application space of finger pose with respect to enhancing authentication security and improving interactive experiences, and develop corresponding prototypes to showcase the interaction potential. Our code will be available at https://github.com/XiongjunGuan/DualFingerPose.
☆ MolSight: Optical Chemical Structure Recognition with SMILES Pretraining, Multi-Granularity Learning and Reinforcement Learning
Optical Chemical Structure Recognition (OCSR) plays a pivotal role in modern chemical informatics, enabling the automated conversion of chemical structure images from scientific literature, patents, and educational materials into machine-readable molecular representations. This capability is essential for large-scale chemical data mining, drug discovery pipelines, and Large Language Model (LLM) applications in related domains. However, existing OCSR systems face significant challenges in accurately recognizing stereochemical information due to the subtle visual cues that distinguish stereoisomers, such as wedge and dash bonds, ring conformations, and spatial arrangements. To address these challenges, we propose MolSight, a comprehensive learning framework for OCSR that employs a three-stage training paradigm. In the first stage, we conduct pre-training on large-scale but noisy datasets to endow the model with fundamental perception capabilities for chemical structure images. In the second stage, we perform multi-granularity fine-tuning using datasets with richer supervisory signals, systematically exploring how auxiliary tasks-specifically chemical bond classification and atom localization-contribute to molecular formula recognition. Finally, we employ reinforcement learning for post-training optimization and introduce a novel stereochemical structure dataset. Remarkably, we find that even with MolSight's relatively compact parameter size, the Group Relative Policy Optimization (GRPO) algorithm can further enhance the model's performance on stereomolecular. Through extensive experiments across diverse datasets, our results demonstrate that MolSight achieves state-of-the-art performance in (stereo)chemical optical structure recognition.
☆ Where Culture Fades: Revealing the Cultural Gap in Text-to-Image Generation
Multilingual text-to-image (T2I) models have advanced rapidly in terms of visual realism and semantic alignment, and are now widely utilized. Yet outputs vary across cultural contexts: because language carries cultural connotations, images synthesized from multilingual prompts should preserve cross-lingual cultural consistency. We conduct a comprehensive analysis showing that current T2I models often produce culturally neutral or English-biased results under multilingual prompts. Analyses of two representative models indicate that the issue stems not from missing cultural knowledge but from insufficient activation of culture-related representations. We propose a probing method that localizes culture-sensitive signals to a small set of neurons in a few fixed layers. Guided by this finding, we introduce two complementary alignment strategies: (1) inference-time cultural activation that amplifies the identified neurons without backbone fine-tuned; and (2) layer-targeted cultural enhancement that updates only culturally relevant layers. Experiments on our CultureBench demonstrate consistent improvements over strong baselines in cultural consistency while preserving fidelity and diversity.
☆ Leveraging CVAE for Joint Configuration Estimation of Multifingered Grippers from Point Cloud Data
This paper presents an efficient approach for determining the joint configuration of a multifingered gripper solely from the point cloud data of its poly-articulated chain, as generated by visual sensors, simulations or even generative neural networks. Well-known inverse kinematics (IK) techniques can provide mathematically exact solutions (when they exist) for joint configuration determination based solely on the fingertip pose, but often require post-hoc decision-making by considering the positions of all intermediate phalanges in the gripper's fingers, or rely on algorithms to numerically approximate solutions for more complex kinematics. In contrast, our method leverages machine learning to implicitly overcome these challenges. This is achieved through a Conditional Variational Auto-Encoder (CVAE), which takes point cloud data of key structural elements as input and reconstructs the corresponding joint configurations. We validate our approach on the MultiDex grasping dataset using the Allegro Hand, operating within 0.05 milliseconds and achieving accuracy comparable to state-of-the-art methods. This highlights the effectiveness of our pipeline for joint configuration estimation within the broader context of AI-driven techniques for grasp planning.
☆ Range-Edit: Semantic Mask Guided Outdoor LiDAR Scene Editing
Training autonomous driving and navigation systems requires large and diverse point cloud datasets that capture complex edge case scenarios from various dynamic urban settings. Acquiring such diverse scenarios from real-world point cloud data, especially for critical edge cases, is challenging, which restricts system generalization and robustness. Current methods rely on simulating point cloud data within handcrafted 3D virtual environments, which is time-consuming, computationally expensive, and often fails to fully capture the complexity of real-world scenes. To address some of these issues, this research proposes a novel approach that addresses the problem discussed by editing real-world LiDAR scans using semantic mask-based guidance to generate novel synthetic LiDAR point clouds. We incorporate range image projection and semantic mask conditioning to achieve diffusion-based generation. Point clouds are transformed to 2D range view images, which are used as an intermediate representation to enable semantic editing using convex hull-based semantic masks. These masks guide the generation process by providing information on the dimensions, orientations, and locations of objects in the real environment, ensuring geometric consistency and realism. This approach demonstrates high-quality LiDAR point cloud generation, capable of producing complex edge cases and dynamic scenes, as validated on the KITTI-360 dataset. This offers a cost-effective and scalable solution for generating diverse LiDAR data, a step toward improving the robustness of autonomous driving systems.
comment: 8 pages, 9 figures
☆ A Little More Like This: Text-to-Image Retrieval with Vision-Language Models Using Relevance Feedback
Large vision-language models (VLMs) enable intuitive visual search using natural language queries. However, improving their performance often requires fine-tuning and scaling to larger model variants. In this work, we propose a mechanism inspired by traditional text-based search to improve retrieval performance at inference time: relevance feedback. While relevance feedback can serve as an alternative to fine-tuning, its model-agnostic design also enables use with fine-tuned VLMs. Specifically, we introduce and evaluate four feedback strategies for VLM-based retrieval. First, we revise classical pseudo-relevance feedback (PRF), which refines query embeddings based on top-ranked results. To address its limitations, we propose generative relevance feedback (GRF), which uses synthetic captions for query refinement. Furthermore, we introduce an attentive feedback summarizer (AFS), a custom transformer-based model that integrates multimodal fine-grained features from relevant items. Finally, we simulate explicit feedback using ground-truth captions as an upper-bound baseline. Experiments on Flickr30k and COCO with the VLM backbones show that GRF, AFS, and explicit feedback improve retrieval performance by 3-5% in MRR@5 for smaller VLMs, and 1-3% for larger ones, compared to retrieval with no feedback. Moreover, AFS, similarly to explicit feedback, mitigates query drift and is more robust than GRF in iterative, multi-turn retrieval settings. Our findings demonstrate that relevance feedback can consistently enhance retrieval across VLMs and open up opportunities for interactive and adaptive visual search.
comment: Accepted to WACV'26
☆ Intervene-All-Paths: Unified Mitigation of LVLM Hallucinations across Alignment Formats NeurIPS 2025
Despite their impressive performance across a wide range of tasks, Large Vision-Language Models (LVLMs) remain prone to hallucination. In this study, we propose a comprehensive intervention framework aligned with the transformer's causal architecture in LVLMs, integrating the effects of different intervention paths on hallucination. We find that hallucinations in LVLMs do not arise from a single causal path, but rather from the interplay among image-to-input-text, image-to-output-text, and text-to-text pathways. For the first time, we also find that LVLMs rely on different pathways depending on the question-answer alignment format. Building on these insights, we propose simple yet effective methods to identify and intervene on critical hallucination heads within each pathway, tailored to discriminative and generative formats. Experiments across multiple benchmarks demonstrate that our approach consistently reduces hallucinations across diverse alignment types.
comment: Accepted to NeurIPS 2025, Project Page: https://github.com/SooLab/AllPath
☆ Blind Deconvolution for Color Images Using Normalized Quaternion Kernels
In this work, we address the challenging problem of blind deconvolution for color images. Existing methods often convert color images to grayscale or process each color channel separately, which overlooking the relationships between color channels. To handle this issue, we formulate a novel quaternion fidelity term designed specifically for color image blind deconvolution. This fidelity term leverages the properties of quaternion convolution kernel, which consists of four kernels: one that functions similarly to a non-negative convolution kernel to capture the overall blur, and three additional convolution kernels without constraints corresponding to red, green and blue channels respectively model their unknown interdependencies. In order to preserve image intensity, we propose to use the normalized quaternion kernel in the blind deconvolution process. Extensive experiments on real datasets of blurred color images show that the proposed method effectively removes artifacts and significantly improves deblurring effect, demonstrating its potential as a powerful tool for color image deconvolution.
☆ Equivariant-Aware Structured Pruning for Efficient Edge Deployment: A Comprehensive Framework with Adaptive Fine-Tuning
This paper presents a novel framework combining group equivariant convolutional neural networks (G-CNNs) with equivariant-aware structured pruning to produce compact, transformation-invariant models for resource-constrained environments. Equivariance to rotations is achieved through the C4 cyclic group via the e2cnn library,enabling consistent performance under geometric transformations while reducing computational overhead. Our approach introduces structured pruning that preserves equivariant properties by analyzing e2cnn layer structure and applying neuron-level pruning to fully connected components. To mitigate accuracy degradation, we implement adaptive fine-tuning that automatically triggers when accuracy drop exceeds 2%, using early stopping and learning rate scheduling for efficient recovery. The framework includes dynamic INT8 quantization and a comprehensive pipeline encompassing training, knowledge distillation, structured pruning, fine-tuning, and quantization. We evaluate our method on satellite imagery (EuroSAT) and standard benchmarks (CIFAR-10, Rotated MNIST) demonstrating effectiveness across diverse domains. Experimental results show 29.3% parameter reduction with significant accuracy recovery, demonstrating that structured pruning of equivariant networks achieves substantial compression while maintaining geometric robustness. Our pipeline provides a reproducible framework for optimizing equivariant models, bridging the gap between group-theoretic network design and practical deployment constraints, with particular relevance to satellite imagery analysis and geometric vision tasks.
comment: 8 pages, 5 tables, 1 figure. Accepted at IEEE EdgeCom 2025 (11th IEEE International Conference on Edge Computing and Scalable Cloud)
☆ Lost in Translation and Noise: A Deep Dive into the Failure Modes of VLMs on Real-World Tables
The impressive performance of VLMs is largely measured on benchmarks that fail to capture the complexities of real-world scenarios. Existing datasets for tabular QA, such as WikiTableQuestions and FinQA, are overwhelmingly monolingual (English) and present tables in a digitally perfect, clean format. This creates a significant gap between research and practice. To address this, we present \textbf{MirageTVQA}, a new benchmark designed to evaluate VLMs on these exact dimensions. Featuring nearly 60,000 QA pairs across 24 languages, MirageTVQA challenges models with tables that are not only multilingual but also visually imperfect, incorporating realistic noise to mimic scanned documents. Our evaluation of the leading VLMs reveals two primary failure points: a severe degradation in performance (over 35\% drop for the best models) when faced with visual noise and a consistent English-first bias where reasoning abilities fail to transfer to other languages. MirageTVQA provides a benchmark for measuring and driving progress towards more robust VLM models for table reasoning. The dataset and the code are available at: https://github.com/anshulsc/MirageTVQA.
comment: Accepted as Spotligh Talk at EurIPS 2025 Workshop on AI For Tabular Data
☆ TP-MDDN: Task-Preferenced Multi-Demand-Driven Navigation with Autonomous Decision-Making NeurIPS 2025
In daily life, people often move through spaces to find objects that meet their needs, posing a key challenge in embodied AI. Traditional Demand-Driven Navigation (DDN) handles one need at a time but does not reflect the complexity of real-world tasks involving multiple needs and personal choices. To bridge this gap, we introduce Task-Preferenced Multi-Demand-Driven Navigation (TP-MDDN), a new benchmark for long-horizon navigation involving multiple sub-demands with explicit task preferences. To solve TP-MDDN, we propose AWMSystem, an autonomous decision-making system composed of three key modules: BreakLLM (instruction decomposition), LocateLLM (goal selection), and StatusMLLM (task monitoring). For spatial memory, we design MASMap, which combines 3D point cloud accumulation with 2D semantic mapping for accurate and efficient environmental understanding. Our Dual-Tempo action generation framework integrates zero-shot planning with policy-based fine control, and is further supported by an Adaptive Error Corrector that handles failure cases in real time. Experiments demonstrate that our approach outperforms state-of-the-art baselines in both perception accuracy and navigation robustness.
comment: Accepted at NeurIPS 2025
☆ QueryOcc: Query-based Self-Supervision for 3D Semantic Occupancy
Learning 3D scene geometry and semantics from images is a core challenge in computer vision and a key capability for autonomous driving. Since large-scale 3D annotation is prohibitively expensive, recent work explores self-supervised learning directly from sensor data without manual labels. Existing approaches either rely on 2D rendering consistency, where 3D structure emerges only implicitly, or on discretized voxel grids from accumulated lidar point clouds, limiting spatial precision and scalability. We introduce QueryOcc, a query-based self-supervised framework that learns continuous 3D semantic occupancy directly through independent 4D spatio-temporal queries sampled across adjacent frames. The framework supports supervision from either pseudo-point clouds derived from vision foundation models or raw lidar data. To enable long-range supervision and reasoning under constant memory, we introduce a contractive scene representation that preserves near-field detail while smoothly compressing distant regions. QueryOcc surpasses previous camera-based methods by 26% in semantic RayIoU on the self-supervised Occ3D-nuScenes benchmark while running at 11.6 FPS, demonstrating that direct 4D query supervision enables strong self-supervised occupancy learning. https://research.zenseact.com/publications/queryocc/
☆ Dual-domain Adaptation Networks for Realistic Image Super-resolution
Realistic image super-resolution (SR) focuses on transforming real-world low-resolution (LR) images into high-resolution (HR) ones, handling more complex degradation patterns than synthetic SR tasks. This is critical for applications like surveillance, medical imaging, and consumer electronics. However, current methods struggle with limited real-world LR-HR data, impacting the learning of basic image features. Pre-trained SR models from large-scale synthetic datasets offer valuable prior knowledge, which can improve generalization, speed up training, and reduce the need for extensive real-world data in realistic SR tasks. In this paper, we introduce a novel approach, Dual-domain Adaptation Networks, which is able to efficiently adapt pre-trained image SR models from simulated to real-world datasets. To achieve this target, we first set up a spatial-domain adaptation strategy through selectively updating parameters of pre-trained models and employing the low-rank adaptation technique to adjust frozen parameters. Recognizing that image super-resolution involves recovering high-frequency components, we further integrate a frequency domain adaptation branch into the adapted model, which combines the spectral data of the input and the spatial-domain backbone's intermediate features to infer HR frequency maps, enhancing the SR result. Experimental evaluations on public realistic image SR benchmarks, including RealSR, D2CRealSR, and DRealSR, demonstrate the superiority of our proposed method over existing state-of-the-art models. Codes are available at: https://github.com/dummerchen/DAN.
☆ FisheyeGaussianLift: BEV Feature Lifting for Surround-View Fisheye Camera Perception
Accurate BEV semantic segmentation from fisheye imagery remains challenging due to extreme non-linear distortion, occlusion, and depth ambiguity inherent to wide-angle projections. We present a distortion-aware BEV segmentation framework that directly processes multi-camera high-resolution fisheye images,utilizing calibrated geometric unprojection and per-pixel depth distribution estimation. Each image pixel is lifted into 3D space via Gaussian parameterization, predicting spatial means and anisotropic covariances to explicitly model geometric uncertainty. The projected 3D Gaussians are fused into a BEV representation via differentiable splatting, producing continuous, uncertainty-aware semantic maps without requiring undistortion or perspective rectification. Extensive experiments demonstrate strong segmentation performance on complex parking and urban driving scenarios, achieving IoU scores of 87.75% for drivable regions and 57.26% for vehicles under severe fisheye distortion and diverse environmental conditions.
comment: 8 pages, 3 figures, published in IMVIP 2025 conference
☆ Scaling Self-Supervised and Cross-Modal Pretraining for Volumetric CT Transformers
We introduce SPECTRE, a fully transformer-based foundation model for volumetric computed tomography (CT). Our Self-Supervised & Cross-Modal Pretraining for CT Representation Extraction (SPECTRE) approach utilizes scalable 3D Vision Transformer architectures and modern self-supervised and vision-language pretraining strategies to learn general-purpose CT representations. Volumetric CT poses unique challenges, such as extreme token scaling, geometric anisotropy, and weak or noisy clinical supervision, that make standard transformer and contrastive learning recipes ineffective out of the box. The framework jointly optimizes a local transformer for high-resolution volumetric feature extraction and a global transformer for whole-scan context modeling, making large-scale 3D attention computationally tractable. Notably, SPECTRE is trained exclusively on openly available CT datasets, demonstrating that high-performing, generalizable representations can be achieved without relying on private data. Pretraining combines DINO-style self-distillation with SigLIP-based vision-language alignment using paired radiology reports, yielding features that are both geometrically consistent and clinically meaningful. Across multiple CT benchmarks, SPECTRE consistently outperforms prior CT foundation models in both zero-shot and fine-tuned settings, establishing SPECTRE as a scalable, open, and fully transformer-based foundation model for 3D medical imaging.
☆ SING3R-SLAM: Submap-based Indoor Monocular Gaussian SLAM with 3D Reconstruction Priors
Recent advances in dense 3D reconstruction enable the accurate capture of local geometry; however, integrating them into SLAM is challenging due to drift and redundant point maps, which limit efficiency and downstream tasks, such as novel view synthesis. To address these issues, we propose SING3R-SLAM, a globally consistent and compact Gaussian-based dense RGB SLAM framework. The key idea is to combine locally consistent 3D reconstructions with a unified global Gaussian representation that jointly refines scene geometry and camera poses, enabling efficient and versatile 3D mapping for multiple downstream applications. SING3R-SLAM first builds locally consistent submaps through our lightweight tracking and reconstruction module, and then progressively aligns and fuses them into a global Gaussian map that enforces cross-view geometric consistency. This global map, in turn, provides feedback to correct local drift and enhance the robustness of tracking. Extensive experiments demonstrate that SING3R-SLAM achieves state-of-the-art tracking, 3D reconstruction, and novel view rendering, resulting in over 12% improvement in tracking and producing finer, more detailed geometry, all while maintaining a compact and memory-efficient global representation on real-world datasets.
☆ Continual Alignment for SAM: Rethinking Foundation Models for Medical Image Segmentation in Continual Learning
In medical image segmentation, heterogeneous privacy policies across institutions often make joint training on pooled datasets infeasible, motivating continual image segmentation-learning from data streams without catastrophic forgetting. While the Segment Anything Model (SAM) offers strong zero-shot priors and has been widely fine-tuned across downstream tasks, its large parameter count and computational overhead challenge practical deployment. This paper demonstrates that the SAM paradigm is highly promising once its computational efficiency and performance can be balanced. To this end, we introduce the Alignment Layer, a lightweight, plug-and-play module which aligns encoder-decoder feature distributions to efficiently adapt SAM to specific medical images, improving accuracy while reducing computation. Building on SAM and the Alignment Layer, we then propose Continual Alignment for SAM (CA-SAM), a continual learning strategy that automatically adapts the appropriate Alignment Layer to mitigate catastrophic forgetting, while leveraging SAM's zero-shot priors to preserve strong performance on unseen medical datasets. Experimented across nine medical segmentation datasets under continual-learning scenario, CA-SAM achieves state-of-the-art performance. Our code, models and datasets will be released on \mbox{https://github.com/azzzzyo/Continual-Alignment-for-SAM.}
☆ VLA-4D: Embedding 4D Awareness into Vision-Language-Action Models for SpatioTemporally Coherent Robotic Manipulation
Vision-language-action (VLA) models show potential for general robotic tasks, but remain challenging in spatiotemporally coherent manipulation, which requires fine-grained representations. Typically, existing methods embed 3D positions into visual representations to enhance the spatial precision of actions. However, these methods struggle to achieve temporally coherent control over action execution. In this work, we propose VLA-4D, a general VLA model with 4D awareness for spatiotemporally coherent robotic manipulation. Our model is guided by two key designs: 1) 4D-aware visual representation. We extract visual features, embed 1D time into 3D positions for 4D embeddings, and fuse them into a unified visual representation via a cross-attention mechanism. 2) Spatiotemporal action representation. We extend conventional spatial action representations with temporal information to enable the spatiotemporal planning, and align the multimodal representations into the LLM for spatiotemporal action prediction. Within this unified framework, the designed visual and action representations jointly make robotic manipulation spatially-smooth and temporally-coherent. In addition, we extend the VLA dataset with temporal action annotations for fine-tuning our model. Extensive experiments have been conducted to verify the superiority of our method across different tasks of robotic manipulation.
☆ Designing Domain-Specific Agents via Hierarchical Task Abstraction Mechanism
LLM-driven agents, particularly those using general frameworks like ReAct or human-inspired role-playing, often struggle in specialized domains that necessitate rigorously structured workflows. Fields such as remote sensing, requiring specialized tools (e.g., correction, spectral indices calculation), and multi-step procedures (e.g., numerous intermediate products and optional steps), significantly challenge generalized approaches. To address this gap, we introduce a novel agent design framework centered on a Hierarchical Task Abstraction Mechanism (HTAM). Specifically, HTAM moves beyond emulating social roles, instead structuring multi-agent systems into a logical hierarchy that mirrors the intrinsic task-dependency graph of a given domain. This task-centric architecture thus enforces procedural correctness and decomposes complex problems into sequential layers, where each layer's sub-agents operate on the outputs of the preceding layers. We instantiate this framework as EarthAgent, a multi-agent system tailored for complex geospatial analysis. To evaluate such complex planning capabilities, we build GeoPlan-bench, a comprehensive benchmark of realistic, multi-step geospatial planning tasks. It is accompanied by a suite of carefully designed metrics to evaluate tool selection, path similarity, and logical completeness. Experiments show that EarthAgent substantially outperforms a range of established single- and multi-agent systems. Our work demonstrates that aligning agent architecture with a domain's intrinsic task structure is a critical step toward building robust and reliable specialized autonomous systems.
comment: Page: https://earth-insights.github.io/EarthAgent
☆ Real Noise Decoupling for Hyperspectral Image Denoising
Hyperspectral image (HSI) denoising is a crucial step in enhancing the quality of HSIs. Noise modeling methods can fit noise distributions to generate synthetic HSIs to train denoising networks. However, the noise in captured HSIs is usually complex and difficult to model accurately, which significantly limits the effectiveness of these approaches. In this paper, we propose a multi-stage noise-decoupling framework that decomposes complex noise into explicitly modeled and implicitly modeled components. This decoupling reduces the complexity of noise and enhances the learnability of HSI denoising methods when applied to real paired data. Specifically, for explicitly modeled noise, we utilize an existing noise model to generate paired data for pre-training a denoising network, equipping it with prior knowledge to handle the explicitly modeled noise effectively. For implicitly modeled noise, we introduce a high-frequency wavelet guided network. Leveraging the prior knowledge from the pre-trained module, this network adaptively extracts high-frequency features to target and remove the implicitly modeled noise from real paired HSIs. Furthermore, to effectively eliminate all noise components and mitigate error accumulation across stages, a multi-stage learning strategy, comprising separate pre-training and joint fine-tuning, is employed to optimize the entire framework. Extensive experiments on public and our captured datasets demonstrate that our proposed framework outperforms state-of-the-art methods, effectively handling complex real-world noise and significantly enhancing HSI quality.
☆ PostCam: Camera-Controllable Novel-View Video Generation with Query-Shared Cross-Attention
We propose PostCam, a framework for novel-view video generation that enables post-capture editing of camera trajectories in dynamic scenes. We find that existing video recapture methods suffer from suboptimal camera motion injection strategies; such suboptimal designs not only limit camera control precision but also result in generated videos that fail to preserve fine visual details from the source video. To achieve more accurate and flexible motion manipulation, PostCam introduces a query-shared cross-attention module. It integrates two distinct forms of control signals: the 6-DoF camera poses and the 2D rendered video frames. By fusing them into a unified representation within a shared feature space, our model can extract underlying motion cues, which enhances both control precision and generation quality. Furthermore, we adopt a two-stage training strategy: the model first learns coarse camera control from pose inputs, and then incorporates visual information to refine motion accuracy and enhance visual fidelity. Experiments on both real-world and synthetic datasets demonstrate that PostCam outperforms state-of-the-art methods by over 20% in camera control precision and view consistency, while achieving the highest video generation quality. Our project webpage is publicly available at: https://cccqaq.github.io/PostCam.github.io/
☆ Navigating in the Dark: A Multimodal Framework and Dataset for Nighttime Traffic Sign Recognition
Traffic signboards are vital for road safety and intelligent transportation systems, enabling navigation and autonomous driving. Yet, recognizing traffic signs at night remains challenging due to visual noise and scarcity of public nighttime datasets. Despite advances in vision architectures, existing methods struggle with robustness under low illumination and fail to leverage complementary mutlimodal cues effectively. To overcome these limitations, firstly, we introduce INTSD, a large-scale dataset comprising street-level night-time images of traffic signboards collected across diverse regions of India. The dataset spans 41 traffic signboard classes captured under varying lighting and weather conditions, providing a comprehensive benchmark for both detection and classification tasks. To benchmark INTSD for night-time sign recognition, we conduct extensive evaluations using state-of-the-art detection and classification models. Secondly, we propose LENS-Net, which integrates an adaptive image enhancement detector for joint illumination correction and sign localization, followed by a structured multimodal CLIP-GCNN classifier that leverages cross-modal attention and graph-based reasoning for robust and semantically consistent recognition. Our method surpasses existing frameworks, with ablation studies confirming the effectiveness of its key components. The dataset and code for LENS-Net is publicly available for research.
☆ Investigating self-supervised representations for audio-visual deepfake detection
Self-supervised representations excel at many vision and speech tasks, but their potential for audio-visual deepfake detection remains underexplored. Unlike prior work that uses these features in isolation or buried within complex architectures, we systematically evaluate them across modalities (audio, video, multimodal) and domains (lip movements, generic visual content). We assess three key dimensions: detection effectiveness, interpretability of encoded information, and cross-modal complementarity. We find that most self-supervised features capture deepfake-relevant information, and that this information is complementary. Moreover, models primarily attend to semantically meaningful regions rather than spurious artifacts. Yet none generalize reliably across datasets. This generalization failure likely stems from dataset characteristics, not from the features themselves latching onto superficial patterns. These results expose both the promise and fundamental challenges of self-supervised representations for deepfake detection: while they learn meaningful patterns, achieving robust cross-domain performance remains elusive.
☆ FireScope: Wildfire Risk Prediction with a Chain-of-Thought Oracle
Predicting wildfire risk is a reasoning-intensive spatial problem that requires the integration of visual, climatic, and geographic factors to infer continuous risk maps. Existing methods lack the causal reasoning and multimodal understanding required for reliable generalization. We introduce $\textbf{FireScope-Bench}$, a large-scale dataset and benchmark that couples Sentinel-2 imagery and climate data with expert-defined risk rasters across the USA, and real wildfire events in Europe for cross-continental evaluation. Building on this dataset, we propose $\textbf{FireScope}$, a VLM-based reasoning-to-generation framework that learns from both reinforcement learning and visual supervision to predict risk rasters with complementary reasoning traces. When trained in the USA and tested in Europe, $\textbf{FireScope}$ achieves substantial performance gains, while expert feedback and automated analysis confirm that its reasoning traces are faithful and semantically meaningful. Our findings demonstrate that reasoning can ground raster prediction models, improving both generalization and interpretability. To our knowledge, this is the first framework to (1) demonstrate that language-based reasoning can improve generalization in visual generation, (2) propose a high-resolution wildfire risk model that can be applied across continents, and (3) enable systematic studies of robust cross-continental generalization for multimodal fire risk models. We believe that $\textbf{FireScope-Bench}$ has the potential to serve as a foundation for advancing reasoning-driven, interpretable and generalizable spatial modeling. Data and source code will be made publicly available.
☆ Exploring the added value of pretherapeutic MR descriptors in predicting breast cancer pathologic complete response to neoadjuvant chemotherapy
Objectives: To evaluate the association between pretreatment MRI descriptors and breast cancer (BC) pathological complete response (pCR) to neoadjuvant chemotherapy (NAC). Materials \& Methods: Patients with BC treated by NAC with a breast MRI between 2016 and 2020 were included in this retrospective observational single-center study. MR studies were described using the standardized BI-RADS and breast edema score on T2-weighted MRI. Univariable and multivariable logistic regression analyses were performed to assess variables association with pCR according to residual cancer burden. Random forest classifiers were trained to predict pCR on a random split including 70% of the database and were validated on the remaining cases. Results: Among 129 BC, 59 (46%) achieved pCR after NAC (luminal (n=7/37, 19%), triple negative (TN) (n=30/55, 55%), HER2+ (n=22/37, 59%). Clinical and biological items associated with pCR were BC subtype (p<0.001), T stage 0/I/II (p=0.008), higher Ki67 (p=0.005) and higher tumor-infiltrating lymphocytes levels (p=0.016). Univariate analysis showed that the following MRI features, oval or round shape (p=0.047), unifocality (p=0.026), non-spiculated margins (p=0.018), no associated non-mass enhancement (NME) (p = 0.024) and a lower MRI size (p = 0.031) were significantly associated with pCR. Unifocality and non-spiculated margins remained independently associated with pCR at multivariable analysis. Adding significant MRI features to clinicobiological variables in random forest classifiers significantly increased sensitivity (0.67 versus 0.62), specificity (0.69 versus 0.67) and precision (0.71 versus 0.67) for pCR prediction. Conclusion: Non-spiculated margins and unifocality are independently associated with pCR and can increase models performance to predict BC response to NAC. Clinical Relevance Statement: A multimodal approach integrating pretreatment MRI features with clinicobiological predictors, including TILs, could be employed to develop machine learning models for identifying patients at risk of non-response. This may enable consideration of alternative therapeutic strategies to optimize treatment outcomes
☆ UI-Styler: Ultrasound Image Style Transfer with Class-Aware Prompts for Cross-Device Diagnosis Using a Frozen Black-Box Inference Network
The appearance of ultrasound images varies across acquisition devices, causing domain shifts that degrade the performance of fixed black-box downstream inference models when reused. To mitigate this issue, it is practical to develop unpaired image translation (UIT) methods that effectively align the statistical distributions between source and target domains, particularly under the constraint of a reused inference-blackbox setting. However, existing UIT approaches often overlook class-specific semantic alignment during domain adaptation, resulting in misaligned content-class mappings that can impair diagnostic accuracy. To address this limitation, we propose UI-Styler, a novel ultrasound-specific, class-aware image style transfer framework. UI-Styler leverages a pattern-matching mechanism to transfer texture patterns embedded in the target images onto source images while preserving the source structural content. In addition, we introduce a class-aware prompting strategy guided by pseudo labels of the target domain, which enforces accurate semantic alignment with diagnostic categories. Extensive experiments on ultrasound cross-device tasks demonstrate that UI-Styler consistently outperforms existing UIT methods, achieving state-of-the-art performance in distribution distance and downstream tasks, such as classification and segmentation.
comment: Project page: https://dotrannhattuong.github.io/UIStyler, Accepted to WACV 2026
☆ DiffRefiner: Coarse to Fine Trajectory Planning via Diffusion Refinement with Semantic Interaction for End to End Autonomous Driving AAAI 2026
Unlike discriminative approaches in autonomous driving that predict a fixed set of candidate trajectories of the ego vehicle, generative methods, such as diffusion models, learn the underlying distribution of future motion, enabling more flexible trajectory prediction. However, since these methods typically rely on denoising human-crafted trajectory anchors or random noise, there remains significant room for improvement. In this paper, we propose DiffRefiner, a novel two-stage trajectory prediction framework. The first stage uses a transformer-based Proposal Decoder to generate coarse trajectory predictions by regressing from sensor inputs using predefined trajectory anchors. The second stage applies a Diffusion Refiner that iteratively denoises and refines these initial predictions. In this way, we enhance the performance of diffusion-based planning by incorporating a discriminative trajectory proposal module, which provides strong guidance for the generative refinement process. Furthermore, we design a fine-grained denoising decoder to enhance scene compliance, enabling more accurate trajectory prediction through enhanced alignment with the surrounding environment. Experimental results demonstrate that DiffRefiner achieves state-of-the-art performance, attaining 87.4 EPDMS on NAVSIM v2, and 87.1 DS along with 71.4 SR on Bench2Drive, thereby setting new records on both public benchmarks. The effectiveness of each component is validated via ablation studies as well.
comment: Accepted to AAAI 2026
☆ A lightweight detector for real-time detection of remote sensing images
Remote sensing imagery is widely used across various fields, yet real-time detection remains challenging due to the prevalence of small objects and the need to balance accuracy with efficiency. To address this, we propose DMG-YOLO, a lightweight real-time detector tailored for small object detection in remote sensing images. Specifically, we design a Dual-branch Feature Extraction (DFE) module in the backbone, which partitions feature maps into two parallel branches: one extracts local features via depthwise separable convolutions, and the other captures global context using a vision transformer with a gating mechanism. Additionally, a Multi-scale Feature Fusion (MFF) module with dilated convolutions enhances multi-scale integration while preserving fine details. In the neck, we introduce the Global and Local Aggregate Feature Pyramid Network (GLAFPN) to further boost small object detection through global-local feature fusion. Extensive experiments on the VisDrone2019 and NWPU VHR-10 datasets show that DMG-YOLO achieves competitive performance in terms of mAP, model size, and other key metrics.
comment: none
☆ Learning to Look Closer: A New Instance-Wise Loss for Small Cerebral Lesion Segmentation
Traditional loss functions in medical image segmentation, such as Dice, often under-segment small lesions because their small relative volume contributes negligibly to the overall loss. To address this, instance-wise loss functions and metrics have been proposed to evaluate segmentation quality on a per-lesion basis. We introduce CC-DiceCE, a loss function based on the CC-Metrics framework, and compare it with the existing blob loss. Both are benchmarked against a DiceCE baseline within the nnU-Net framework, which provides a robust and standardized setup. We find that CC-DiceCE loss increases detection (recall) with minimal to no degradation in segmentation performance, albeit at the cost of slightly more false positives. Furthermore, our multi-dataset study shows that CC-DiceCE generally outperforms blob loss.
comment: 5 pages, 2 figures, 2 tables
♻ ☆ ID-Crafter: VLM-Grounded Online RL for Compositional Multi-Subject Video Generation
Significant progress has been achieved in high-fidelity video synthesis, yet current paradigms often fall short in effectively integrating identity information from multiple subjects. This leads to semantic conflicts and suboptimal performance in preserving identities and interactions, limiting controllability and applicability. To tackle this issue, we introduce ID-Crafter, a framework for multi-subject video generation that achieves superior identity preservation and semantic coherence. ID-Crafter integrates three key components: (i) a hierarchical identity-preserving attention mechanism that progressively aggregates features at intra-subject, inter-subject, and cross-modal levels; (ii) a semantic understanding module powered by a pretrained Vision-Language Model (VLM) to provide fine-grained guidance and capture complex inter-subject relationships; and (iii) an online reinforcement learning phase to further refine the model for critical concepts. Furthermore, we construct a new dataset to facilitate robust training and evaluation. Extensive experiments demonstrate that ID-Crafter establishes new state-of-the-art performance on multi-subject video generation benchmarks, excelling in identity preservation, temporal consistency, and overall video quality.
♻ ☆ YOLO Meets Mixture-of-Experts: Adaptive Expert Routing for Robust Object Detection
This paper presents a novel Mixture-of-Experts framework for object detection, incorporating adaptive routing among multiple YOLOv9-T experts to enable dynamic feature specialization and achieve higher mean Average Precision (mAP) and Average Recall (AR) compared to a single YOLOv9-T model.
comment: 1 figure, 1 table
♻ ☆ MF-GCN: A Multi-Frequency Graph Convolutional Network for Tri-Modal Depression Detection Using Eye-Tracking, Facial, and Acoustic Features
Depression is a prevalent global mental health disorder, characterised by persistent low mood and anhedonia. However, it remains underdiagnosed because current diagnostic methods depend heavily on subjective clinical assessments. To enable objective detection, we introduce a gold standard dataset of 103 clinically assessed participants collected through a tripartite data approach which uniquely integrated eye tracking data with audio and video to give a comprehensive representation of depressive symptoms. Eye tracking data quantifies the attentional bias towards negative stimuli that is frequently observed in depressed groups. Audio and video data capture the affective flattening and psychomotor retardation characteristic of depression. Statistical validation confirmed their significant discriminative power in distinguishing depressed from non depressed groups. We address a critical limitation of existing graph-based models that focus on low-frequency information and propose a Multi-Frequency Graph Convolutional Network (MF-GCN). This framework consists of a novel Multi-Frequency Filter Bank Module (MFFBM), which can leverage both low and high frequency signals. Extensive evaluation against traditional machine learning algorithms and deep learning frameworks demonstrates that MF-GCN consistently outperforms baselines. In binary classification, the model achieved a sensitivity of 0.96 and F2 score of 0.94. For the 3 class classification task, the proposed method achieved a sensitivity of 0.79 and specificity of 0.87 and siginificantly suprassed other models. To validate generalizability, the model was also evaluated on the Chinese Multimodal Depression Corpus (CMDC) dataset and achieved a sensitivity of 0.95 and F2 score of 0.96. These results confirm that our trimodal, multi frequency framework effectively captures cross modal interaction for accurate depression detection.
♻ ☆ Topology Aware Neural Interpolation of Scalar Fields
This paper presents a neural scheme for the topology-aware interpolation of time-varying scalar fields. Given a time-varying sequence of persistence diagrams, along with a sparse temporal sampling of the corresponding scalar fields, denoted as keyframes, our interpolation approach aims at "inverting" the non-keyframe diagrams to produce plausible estimations of the corresponding, missing data. For this, we rely on a neural architecture which learns the relation from a time value to the corresponding scalar field, based on the keyframe examples, and reliably extends this relation to the non-keyframe time steps. We show how augmenting this architecture with specific topological losses exploiting the input diagrams both improves the geometrical and topological reconstruction of the non-keyframe time steps. At query time, given an input time value for which an interpolation is desired, our approach instantaneously produces an output, via a single propagation of the time input through the network. Experiments interpolating 2D and 3D time-varying datasets show our approach superiority, both in terms of data and topological fitting, with regard to reference interpolation schemes. Our implementation is available at this GitHub link : https://github.com/MohamedKISSI/Topology-Aware-Neural-Interpolation-of-Scalar-Fields.git.
♻ ☆ Forecasting Future Anatomies: Longitudinal Brain Mri-to-Mri Prediction
Predicting future brain state from a baseline magnetic resonance image (MRI) is a central challenge in neuroimaging and has important implications for studying neurodegenerative diseases such as Alzheimer's disease (AD). Most existing approaches predict future cognitive scores or clinical outcomes, such as conversion from mild cognitive impairment to dementia. Instead, here we investigate longitudinal MRI image-to-image prediction that forecasts a participant's entire brain MRI several years into the future, intrinsically modeling complex, spatially distributed neurodegenerative patterns. We implement and evaluate five deep learning architectures (UNet, U2-Net, UNETR, Time-Embedding UNet, and ODE-UNet) on two longitudinal cohorts (ADNI and AIBL). Predicted follow-up MRIs are directly compared with the actual follow-up scans using metrics that capture global similarity and local differences. The best performing models achieve high-fidelity predictions, and all models generalize well to an independent external dataset, demonstrating robust cross-cohort performance. Our results indicate that deep learning can reliably predict participant-specific brain MRI at the voxel level, offering new opportunities for individualized prognosis.
♻ ☆ Automated Interpretable 2D Video Extraction from 3D Echocardiography
Although the heart has complex three-dimensional (3D) anatomy, conventional medical imaging with cardiac ultrasound relies on a series of 2D videos showing individual cardiac structures. 3D echocardiography is a developing modality that now offers adequate image quality for clinical use, with potential to streamline acquisition and improve assessment of off-axis features. We propose an automated method to select standard 2D views from 3D cardiac ultrasound volumes, allowing physicians to interpret the data in their usual format while benefiting from the speed and usability of 3D scanning. Applying a deep learning view classifier and downstream heuristics based on anatomical landmarks together with heuristics provided by cardiologists, we reconstruct standard echocardiography views. This approach was validated by three cardiologists in blinded evaluation (96\% accuracy in 1,600 videos from 2 hospitals). The downstream 2D videos were also validated in their ability to detect cardiac abnormalities using AI echocardiography models (EchoPrime and PanEcho) as well as ability to generate clinical-grade measurements of cardiac anatomy (EchoNet-Measurement). We demonstrated that the extracted 2D videos preserve spatial calibration and diagnostic features, allowing clinicians to obtain accurate real-world interpretations from 3D volumes. We release the code and a dataset of 29 3D echocardiography videos https://github.com/echonet/3d-echo .
comment: 12 pages, 5 figures
♻ ☆ TrackGS: Optimizing COLMAP-Free 3D Gaussian Splatting with Global Track Constraints
We present TrackGS, a novel method to integrate global feature tracks with 3D Gaussian Splatting (3DGS) for COLMAP-free novel view synthesis. While 3DGS delivers impressive rendering quality, its reliance on accurate precomputed camera parameters remains a significant limitation. Existing COLMAP-free approaches depend on local constraints that fail in complex scenarios. Our key innovation lies in leveraging feature tracks to establish global geometric constraints, enabling simultaneous optimization of camera parameters and 3D Gaussians. Specifically, we: (1) introduce track-constrained Gaussians that serve as geometric anchors, (2) propose novel 2D and 3D track losses to enforce multi-view consistency, and (3) derive differentiable formulations for camera intrinsics optimization. Extensive experiments on challenging real-world and synthetic datasets demonstrate state-of-the-art performance, with much lower pose error than previous methods while maintaining superior rendering quality. Our approach eliminates the need for COLMAP preprocessing, making 3DGS more accessible for practical applications.
♻ ☆ Seeing the Forest and the Trees: Query-Aware Tokenizer for Long-Video Multimodal Language Models
Despite the recent advances in the video understanding ability of multimodal large language models (MLLMs), long video understanding remains a challenge. One of the main issues is that the number of vision tokens grows linearly with video length, which causes an explosion in attention cost, memory, and latency. To solve this challenge, we present Query-aware Token Selector (\textbf{QTSplus}), a lightweight yet powerful visual token selection module that serves as an information gate between the vision encoder and LLMs. Given a text query and video tokens, QTSplus dynamically selects the most important visual evidence for the input text query by (i) scoring visual tokens via cross-attention, (ii) \emph{predicting} an instance-specific retention budget based on the complexity of the query, and (iii) \emph{selecting} Top-$n$ tokens with a differentiable straight-through estimator during training and a hard gate at inference. Furthermore, a small re-encoder preserves temporal order using absolute time information, enabling second-level localization while maintaining global coverage. Integrated into Qwen2.5-VL, QTSplus compresses the vision stream by up to \textbf{89\%} and reduces end-to-end latency by \textbf{28\%} on long videos. The evaluation on eight long video understanding benchmarks shows near-parity accuracy overall when compared with the original Qwen models and outperforms the original model by \textbf{+20.5} and \textbf{+5.6} points respectively on TempCompass direction and order accuracies. These results show that QTSplus is an effective, general mechanism for scaling MLLMs to real-world long-video scenarios while preserving task-relevant evidence.
♻ ☆ A Training-Free Style-Personalization via SVD-Based Feature Decomposition
We present a training-free framework for style-personalized image generation that operates during inference using a scale-wise autoregressive model. Our method generates a stylized image guided by a single reference style while preserving semantic consistency and mitigating content leakage. Through a detailed step-wise analysis of the generation process, we identify a pivotal step where the dominant singular values of the internal feature encode style-related components. Building upon this insight, we introduce two lightweight control modules: Principal Feature Blending, which enables precise modulation of style through SVD-based feature reconstruction, and Structural Attention Correction, which stabilizes structural consistency by leveraging content-guided attention correction across fine stages. Without any additional training, extensive experiments demonstrate that our method achieves competitive style fidelity and prompt fidelity compared to fine-tuned baselines, while offering faster inference and greater deployment flexibility.
comment: 21 pages, 14 figures
♻ ☆ A Unified Voxel Diffusion Module for Point Cloud 3D Object Detection
Recent advances in point cloud object detection have increasingly adopted Transformer-based and State Space Models (SSMs), demonstrating strong performance. However, voxelbased representations in these models require strict consistency in input and output dimensions due to their serialized processing, which limits the spatial diffusion capability typically offered by convolutional operations. This limitation significantly affects detection accuracy. Inspired by CNN-based object detection architectures, we propose a novel Voxel Diffusion Module (VDM) to enhance voxel-level representation and diffusion in point cloud data. VDM is composed of sparse 3D convolutions, submanifold sparse convolutions, and residual connections. To ensure computational efficiency, the output feature maps are downsampled to one-fourth of the original input resolution. VDM serves two primary functions: (1) diffusing foreground voxel features through sparse 3D convolutions to enrich spatial context, and (2) aggregating fine-grained spatial information to strengthen voxelwise feature representation. The enhanced voxel features produced by VDM can be seamlessly integrated into mainstream Transformer- or SSM-based detection models for accurate object classification and localization, highlighting the generalizability of our method. We evaluate VDM on several benchmark datasets by embedding it into both Transformerbased and SSM-based models. Experimental results show that our approach consistently improves detection accuracy over baseline models. Specifically, VDM-SSMs achieve 74.7 mAPH (L2) on Waymo, 72.9 NDS on nuScenes, 42.3 mAP on Argoverse 2, and 67.6 mAP on ONCE, setting new stateof-the-art performance across all datasets. Our code will be made publicly available.
comment: Under review
♻ ☆ Lung-DDPM+: Efficient Thoracic CT Image Synthesis using Diffusion Probabilistic Model
Generative artificial intelligence (AI) has been playing an important role in various domains. Leveraging its high capability to generate high-fidelity and diverse synthetic data, generative AI is widely applied in diagnostic tasks, such as lung cancer diagnosis using computed tomography (CT). However, existing generative models for lung cancer diagnosis suffer from low efficiency and anatomical imprecision, which limit their clinical applicability. To address these drawbacks, we propose Lung-DDPM+, an improved version of our previous model, Lung-DDPM. This novel approach is a denoising diffusion probabilistic model (DDPM) guided by nodule semantic layouts and accelerated by a pulmonary DPM-solver, enabling the method to focus on lesion areas while achieving a better trade-off between sampling efficiency and quality. Evaluation results on the public LIDC-IDRI dataset suggest that the proposed method achieves 8$\times$ fewer FLOPs (floating point operations per second), 6.8$\times$ lower GPU memory consumption, and 14$\times$ faster sampling compared to Lung-DDPM. Moreover, it maintains comparable sample quality to both Lung-DDPM and other state-of-the-art (SOTA) generative models in two downstream segmentation tasks. We also conducted a Visual Turing Test by an experienced radiologist, showing the advanced quality and fidelity of synthetic samples generated by the proposed method. These experimental results demonstrate that Lung-DDPM+ can effectively generate high-quality thoracic CT images with lung nodules, highlighting its potential for broader applications, such as general tumor synthesis and lesion generation in medical imaging. The code and pretrained models are available at https://github.com/Manem-Lab/Lung-DDPM-PLUS.
comment: Accepted by Computers in Biology and Medicine (CIBM)
♻ ☆ HazeMatching: Dehazing Light Microscopy Images with Guided Conditional Flow Matching
Fluorescence microscopy is a major driver of scientific progress in the life sciences. Although high-end confocal microscopes are capable of filtering out-of-focus light, cheaper and more accessible microscopy modalities, such as widefield microscopy, can not, which consequently leads to hazy image data. Computational dehazing is trying to combine the best of both worlds, leading to cheap microscopy but crisp-looking images. The perception-distortion trade-off tells us that we can optimize either for data fidelity, e.g. low MSE or high PSNR, or for data realism, measured by perceptual metrics such as LPIPS or FID. Existing methods either prioritize fidelity at the expense of realism, or produce perceptually convincing results that lack quantitative accuracy. In this work, we propose HazeMatching, a novel iterative method for dehazing light microscopy images, which effectively balances these objectives. Our goal was to find a balanced trade-off between the fidelity of the dehazing results and the realism of individual predictions (samples). We achieve this by adapting the conditional flow matching framework by guiding the generative process with a hazy observation in the conditional velocity field. We evaluate HazeMatching on 5 datasets, covering both synthetic and real data, assessing both distortion and perceptual quality. Our method is compared against 11 baselines, achieving a consistent balance between fidelity and realism on average. Additionally, with calibration analysis, we show that HazeMatching produces well-calibrated predictions. Note that our method does not need an explicit degradation operator to exist, making it easily applicable on real microscopy data. All data used for training and evaluation and our code will be publicly available under a permissive license.
comment: 4 figures, 8 pages + refs, 45 pages total (including supplement), 28 supplementary figures
♻ ☆ ResMatching: Noise-Resilient Computational Super-Resolution via Guided Conditional Flow Matching
Computational Super-Resolution (CSR) in fluorescence microscopy has, despite being an ill-posed problem, a long history. At its very core, CSR is about finding a prior that can be used to extrapolate frequencies in a micrograph that have never been imaged by the image-generating microscope. It stands to reason that, with the advent of better data-driven machine learning techniques, stronger prior can be learned and hence CSR can lead to better results. Here, we present ResMatching, a novel CSR method that uses guided conditional flow matching to learn such improved data-priors. We evaluate ResMatching on 4 diverse biological structures from the BioSR dataset and compare its results against 7 baselines. ResMatching consistently achieves competitive results, demonstrating in all cases the best trade-off between data fidelity and perceptual realism. We observe that CSR using ResMatching is particularly effective in cases where a strong prior is hard to learn, e.g. when the given low-resolution images contain a lot of noise. Additionally, we show that ResMatching can be used to sample from an implicitly learned posterior distribution and that this distribution is calibrated for all tested use-cases, enabling our method to deliver a pixel-wise data-uncertainty term that can guide future users to reject uncertain predictions.
comment: 5 pages, 4 figures
♻ ☆ Disentangled Concepts Speak Louder Than Words: Explainable Video Action Recognition NeurIPS 2025
Effective explanations of video action recognition models should disentangle how movements unfold over time from the surrounding spatial context. However, existing methods based on saliency produce entangled explanations, making it unclear whether predictions rely on motion or spatial context. Language-based approaches offer structure but often fail to explain motions due to their tacit nature -- intuitively understood but difficult to verbalize. To address these challenges, we propose Disentangled Action aNd Context concept-based Explainable (DANCE) video action recognition, a framework that predicts actions through disentangled concept types: motion dynamics, objects, and scenes. We define motion dynamics concepts as human pose sequences. We employ a large language model to automatically extract object and scene concepts. Built on an ante-hoc concept bottleneck design, DANCE enforces prediction through these concepts. Experiments on four datasets -- KTH, Penn Action, HAA500, and UCF-101 -- demonstrate that DANCE significantly improves explanation clarity with competitive performance. We validate the superior interpretability of DANCE through a user study. Experimental results also show that DANCE is beneficial for model debugging, editing, and failure analysis.
comment: NeurIPS 2025 Spotlight paper. Project page: https://jong980812.github.io/DANCE/
♻ ☆ OpenDriveVLA: Towards End-to-end Autonomous Driving with Large Vision Language Action Model
We present OpenDriveVLA, a Vision Language Action model designed for end-to-end autonomous driving, built upon open-source large language models. OpenDriveVLA generates spatially grounded driving actions by leveraging multimodal inputs, including 2D and 3D instance-aware visual representations, ego vehicle states, and language commands. To bridge the modality gap between driving visual representations and language embeddings, we introduce a hierarchical vision language alignment process, projecting both 2D and 3D structured visual tokens into a unified semantic space. Furthermore, we incorporate structured agent environment ego interaction modeling into the autoregressive decoding process, enabling the model to capture fine-grained spatial dependencies and behavior-aware dynamics critical for reliable trajectory planning. Extensive experiments on the nuScenes dataset demonstrate that OpenDriveVLA achieves state-of-the-art results across open-loop trajectory planning and driving-related question answering tasks. Qualitative analyses further illustrate its capability to follow high-level driving commands and generate trajectories under challenging scenarios, highlighting its potential for next-generation end-to-end autonomous driving.
♻ ☆ LinVideo: A Post-Training Framework towards O(n) Attention in Efficient Video Generation
Video diffusion models (DMs) have enabled high-quality video synthesis. However, their computation costs scale quadratically with sequence length because self-attention has quadratic complexity. While linear attention lowers the cost, fully replacing quadratic attention requires expensive pretraining due to the limited expressiveness of linear attention and the complexity of spatiotemporal modeling in video generation. In this paper, we present LinVideo, an efficient data-free post-training framework that replaces a target number of self-attention modules with linear attention while preserving the original model's performance. First, we observe a significant disparity in the replaceability of different layers. Instead of manual or heuristic choices, we frame layer selection as a binary classification problem and propose selective transfer, which automatically and progressively converts layers to linear attention with minimal performance impact. Additionally, to overcome the ineffectiveness and inefficiency of existing objectives for this transfer process, we introduce an anytime distribution matching (ADM) objective that aligns the distributions of samples across any timestep along the sampling trajectory. This objective is efficient and recovers model performance. Extensive experiments show that our method achieves a 1.25-2.00x speedup while preserving generation quality, and our 4-step distilled model further delivers a 15.92x latency reduction with minimal visual quality drop.
comment: Code will be released upon acceptance
♻ ☆ One Small Step in Latent, One Giant Leap for Pixels: Fast Latent Upscale Adapter for Your Diffusion Models
Diffusion models struggle to scale beyond their training resolutions, as direct high-resolution sampling is slow and costly, while post-hoc image super-resolution (ISR) introduces artifacts and additional latency by operating after decoding. We present the Latent Upscaler Adapter (LUA), a lightweight module that performs super-resolution directly on the generator's latent code before the final VAE decoding step. LUA integrates as a drop-in component, requiring no modifications to the base model or additional diffusion stages, and enables high-resolution synthesis through a single feed-forward pass in latent space. A shared Swin-style backbone with scale-specific pixel-shuffle heads supports 2x and 4x factors and remains compatible with image-space SR baselines, achieving comparable perceptual quality with nearly 3x lower decoding and upscaling time (adding only +0.42 s for 1024 px generation from 512 px, compared to 1.87 s for pixel-space SR using the same SwinIR architecture). Furthermore, LUA shows strong generalization across the latent spaces of different VAEs, making it easy to deploy without retraining from scratch for each new decoder. Extensive experiments demonstrate that LUA closely matches the fidelity of native high-resolution generation while offering a practical and efficient path to scalable, high-fidelity image synthesis in modern diffusion pipelines.
♻ ☆ MOCHA: Multi-modal Objects-aware Cross-arcHitecture Alignment
Personalized object detection aims to adapt a general-purpose detector to recognize user-specific instances from only a few examples. Lightweight models often struggle in this setting due to their weak semantic priors, while large vision-language models (VLMs) offer strong object-level understanding but are too computationally demanding for real-time or on-device applications. We introduce MOCHA (Multi-modal Objects-aware Cross-arcHitecture Alignment), a distillation framework that transfers multimodal region-level knowledge from a frozen VLM teacher into a lightweight vision-only detector. MOCHA extracts fused visual and textual teacher's embeddings and uses them to guide student training through a dual-objective loss that enforces accurate local alignment and global relational consistency across regions. This process enables efficient transfer of semantics without the need for teacher modifications or textual input at inference. MOCHA consistently outperforms prior baselines across four personalized detection benchmarks under strict few-shot regimes, yielding a +10.1 average improvement, with minimal inference cost.
♻ ☆ DocSLM: A Small Vision-Language Model for Long Multimodal Document Understanding
Large Vision-Language Models (LVLMs) have demonstrated strong multimodal reasoning capabilities on long and complex documents. However, their high memory footprint makes them impractical for deployment on resource-constrained edge devices. We present DocSLM, an efficient Small Vision-Language Model designed for long-document understanding under constrained memory resources. DocSLM incorporates a Hierarchical Multimodal Compressor that jointly encodes visual, textual, and layout information from each page into a fixed-length sequence, greatly reducing memory consumption while preserving both local and global semantics. To enable scalable processing over arbitrarily long inputs, we introduce a Streaming Abstention mechanism that operates on document segments sequentially and filters low-confidence responses using an entropy-based uncertainty calibrator. Across multiple long multimodal document benchmarks, DocSLM matches or surpasses state-of-the-art methods while using 82\% fewer visual tokens, 75\% fewer parameters, and 71\% lower latency, delivering reliable multimodal document understanding on lightweight edge devices. Code and Model are available in https://github.com/Tanveer81/DocSLM.git.
♻ ☆ Resolving Sentiment Discrepancy for Multimodal Sentiment Detection via Semantics Completion and Decomposition
With the proliferation of social media posts in recent years, the need to detect sentiments in multimodal (image-text) content has grown rapidly. Since posts are user-generated, the image and text from the same post can express different or even contradictory sentiments, leading to potential \textbf{sentiment discrepancy}. However, existing works mainly adopt a single-branch fusion structure that primarily captures the consistent sentiment between image and text. The ignorance or implicit modeling of discrepant sentiment results in compromised unimodal encoding and limited performance. In this paper, we propose a semantics Completion and Decomposition (CoDe) network to resolve the above issue. In the semantics completion module, we complement image and text representations with the semantics of the in-image text, helping bridge the sentiment gap. In the semantics decomposition module, we decompose image and text representations with exclusive projection and contrastive learning, thereby explicitly capturing the discrepant sentiment between modalities. Finally, we fuse image and text representations by cross-attention and combine them with the learned discrepant sentiment for final classification. Extensive experiments on four datasets demonstrate the superiority of CoDe and the effectiveness of each proposed module.
comment: Accepted by Pattern Recognition
♻ ☆ HPPP: Halpern-type Preconditioned Proximal Point Algorithms and Applications to Image Restoration
Recently, the degenerate preconditioned proximal point (PPP) method provides a unified and flexible framework for designing and analyzing operator-splitting algorithms such as Douglas-Rachford (DR). However, the degenerate PPP method exhibits weak convergence in the infinite-dimensional Hilbert space and lacks accelerated variants. To address these issues, we propose a Halpern-type PPP (HPPP) algorithm, which leverages the strong convergence and acceleration properties of Halpern's iteration method. Moreover, we propose a novel algorithm for image restoration by combining HPPP with denoiser priors such as Plug-and-Play (PnP) prior, which can be viewed as an accelerated PnP method. Finally, numerical experiments including several toy examples and image restoration validate the effectiveness of our proposed algorithms.
♻ ☆ CLIMB-3D: Continual Learning for Imbalanced 3D Instance Segmentation
While 3D instance segmentation (3DIS) has advanced significantly, most existing methods assume that all object classes are known in advance and uniformly distributed. However, this assumption is unrealistic in dynamic, real-world environments where new classes emerge gradually and exhibit natural imbalance. Although some approaches address the emergence of new classes, they often overlook class imbalance, which leads to suboptimal performance, particularly on rare categories. To tackle this, we propose \ourmethodbf, a unified framework for \textbf{CL}ass-incremental \textbf{Imb}alance-aware \textbf{3D}IS. Building upon established exemplar replay (ER) strategies, we show that ER alone is insufficient to achieve robust performance under memory constraints. To mitigate this, we introduce a novel pseudo-label generator (PLG) that extends supervision to previously learned categories by leveraging predictions from a frozen model trained on prior tasks. Despite its promise, PLG tends to be biased towards frequent classes. Therefore, we propose a class-balanced re-weighting (CBR) scheme that estimates object frequencies from pseudo-labels and dynamically adjusts training bias, without requiring access to past data. We design and evaluate three incremental scenarios for 3DIS on the challenging ScanNet200 dataset and additionally validate our method for semantic segmentation on ScanNetV2. Our approach achieves state-of-the-art results, surpassing prior work by up to 16.76\% mAP for instance segmentation and approximately 30\% mIoU for semantic segmentation, demonstrating strong generalisation across both frequent and rare classes. Code is available at: https://github.com/vgthengane/CLIMB3D
comment: Accepted at BMVC 2025
♻ ☆ CleverDistiller: Simple and Spatially Consistent Cross-modal Distillation
Vision foundation models (VFMs) such as DINO have led to a paradigm shift in 2D camera-based perception towards extracting generalized features to support many downstream tasks. Recent works introduce self-supervised cross-modal knowledge distillation (KD) as a way to transfer these powerful generalization capabilities into 3D LiDAR-based models. However, they either rely on highly complex distillation losses, pseudo-semantic maps, or limit KD to features useful for semantic segmentation only. In this work, we propose CleverDistiller, a self-supervised, cross-modal 2D-to-3D KD framework introducing a set of simple yet effective design choices: Unlike contrastive approaches relying on complex loss design choices, our method employs a direct feature similarity loss in combination with a multi layer perceptron (MLP) projection head to allow the 3D network to learn complex semantic dependencies throughout the projection. Crucially, our approach does not depend on pseudo-semantic maps, allowing for direct knowledge transfer from a VFM without explicit semantic supervision. Additionally, we introduce the auxiliary self-supervised spatial task of occupancy prediction to enhance the semantic knowledge, obtained from a VFM through KD, with 3D spatial reasoning capabilities. Experiments on standard autonomous driving benchmarks for 2D-to-3D KD demonstrate that CleverDistiller achieves state-of-the-art performance in both semantic segmentation and 3D object detection (3DOD) by up to 10% mIoU, especially when fine tuning on really low data amounts, showing the effectiveness of our simple yet powerful KD strategy
comment: Accepted to BMVC 2025
♻ ☆ The Cooperative Network Architecture: Learning Structured Networks as Representation of Sensory Patterns
We introduce the Cooperative Network Architecture (CNA), a model that represents sensory signals using structured, recurrently connected networks of neurons, termed "nets." Nets are dynamically assembled from overlapping net fragments, which are learned based on statistical regularities in sensory input. This architecture offers robustness to noise, deformation, and generalization to out-of-distribution data, addressing challenges in current vision systems from a novel perspective. We demonstrate that net fragments can be learned without supervision and flexibly recombined to encode novel patterns, enabling figure completion and resilience to noise. Our findings establish CNA as a promising paradigm for developing neural representations that integrate local feature processing with global structure formation, providing a foundation for future research on invariant object recognition.
comment: Accepted at Neural Computation
♻ ☆ VSI: Visual Subtitle Integration for Keyframe Selection to enhance Long Video Understanding
Multimodal large language models (MLLMs) demonstrate exceptional performance in vision-language tasks, yet their processing of long videos is constrained by input context length and high computational costs. Sparse frame sampling thus becomes a necessary preprocessing step, with sampled frame quality directly impacting downstream performance. Existing keyframe search algorithms achieve a balance between efficiency and sampled frame quality but heavily rely on the visual modality alone. This makes them difficult to adapt to text-related tasks and often leads to retrieval results deviating from core semantic content. To address this, we propose the VISUAL-SUBTITLE INTEGRATION (VSI), a multimodal keyframe retrieval framework. It employs a dual-branch collaborative retrieval approach combining Video Search and Subtitle Match to fuse complementary visual and textual information for precise localization. Experiments on LongVideoBench and VideoMME demonstrate that VSI achieves state-of-the-art accuracy in keyframe retrieval while delivering breakthrough performance in text-related tasks and exhibiting strong generalization across other tasks.
comment: 9 pages,3 figures
♻ ☆ Attention Via Convolutional Nearest Neighbors
The shift from Convolutional Neural Networks to Transformers has reshaped computer vision, yet these two architectural families are typically viewed as fundamentally distinct. We argue that convolution and self-attention, despite their apparent differences, can be unified within a single k-nearest neighbor aggregation framework. The critical insight is that both operations are special cases of neighbor selection and aggregation; convolution selects neighbors by spatial proximity, while attention selects by feature similarity, revealing they exist on a continuous spectrum. We introduce Convolutional Nearest Neighbors (ConvNN), a unified framework that formalizes this connection. Crucially, ConvNN serves as a drop-in replacement for convolutional and attention layers, enabling systematic exploration of the intermediate spectrum between these two extremes. We validate the framework's coherence on CIFAR-10 and CIFAR-100 classification tasks across two complementary architectures: (1) Hybrid branching in VGG improves accuracy on both CIFAR datasets by combining spatial-proximity and feature-similarity selection; and (2) ConvNN in ViT outperforms standard attention and other attention variants on both datasets. Extensive ablations on $k$ values and architectural variants reveal that interpolating along this spectrum provides regularization benefits by balancing local and global receptive fields. Our work provides a unifying framework that dissolves the apparent distinction between convolution and attention, with implications for designing more principled and interpretable vision architectures.
♻ ☆ PhyBlock: A Progressive Benchmark for Physical Understanding and Planning via 3D Block Assembly
While vision-language models (VLMs) have demonstrated promising capabilities in reasoning and planning for embodied agents, their ability to comprehend physical phenomena, particularly within structured 3D environments, remains severely limited. To close this gap, we introduce PhyBlock, a progressive benchmark designed to assess VLMs on physical understanding and planning through robotic 3D block assembly tasks. PhyBlock integrates a novel four-level cognitive hierarchy assembly task alongside targeted Visual Question Answering (VQA) samples, collectively aimed at evaluating progressive spatial reasoning and fundamental physical comprehension, including object properties, spatial relationships, and holistic scene understanding. PhyBlock includes 2600 block tasks (400 assembly tasks, 2200 VQA tasks) and evaluates models across three key dimensions: partial completion, failure diagnosis, and planning robustness. We benchmark 21 state-of-the-art VLMs, highlighting their strengths and limitations in physically grounded, multi-step planning. Our empirical findings indicate that the performance of VLMs exhibits pronounced limitations in high-level planning and reasoning capabilities, leading to a notable decline in performance for the growing complexity of the tasks. Error analysis reveals persistent difficulties in spatial orientation and dependency reasoning. Surprisingly, chain-of-thought prompting offers minimal improvements, suggesting spatial tasks heavily rely on intuitive model comprehension. We position PhyBlock as a unified testbed to advance embodied reasoning, bridging vision-language understanding and real-world physical problem-solving.
♻ ☆ EatGAN: An Edge-Attention Guided Generative Adversarial Network for Single Image Super-Resolution
Single-image super-resolution (SISR) is an important task in image processing, aiming to enhance the resolution of imaging systems. Recently, SISR has made a significant leap and achieved promising results with deep learning. GAN-based models stand out among all the deep learning models because of their excellent performance in perceiving quality. However, it is rather difficult for them to reconstruct realistic high-frequency details and achieve stable training. To solve these issues, we introduce an Edge-Attention guided Generative Adversarial Network (EatGAN), the first GAN-based SISR model that simultaneously leverages edge priors both explicitly and implicitly inside the generator, which (i) proposes a Normalized Edge Attention (NEA) mechanism based on channel-affine and spatial gating that transforms edge prior into lightweight, learnable modulation parameters and injects and fuses them multiple times in a (ii) edge-guided hybrid residual block, which progressively enforces structural consistency across scales; and (iii) a composite generator objective combining pixel, perceptual, edge-gradient, and adversarial terms. Experiments show consistent state-of-the-art across distortion-oriented benchmarks and perception oriented benchmarks. Notably, our model achieves 40.87 dB and 0.073 (LPIPS) on Manga 109, which indicates that reframing image priors from passive guidance into a controllable modulation primitive for generators can chart a practical path toward trustworthy, high-fidelity Super-Resolution.
comment: 17 pages (8 pages of main text + 3 pages of reference + 6 pages of supplementary material)
♻ ☆ TDSNNs: Competitive Topographic Deep Spiking Neural Networks for Visual Cortex Modeling AAAI 2026
The primate visual cortex exhibits topographic organization, where functionally similar neurons are spatially clustered, a structure widely believed to enhance neural processing efficiency. While prior works have demonstrated that conventional deep ANNs can develop topographic representations, these models largely neglect crucial temporal dynamics. This oversight often leads to significant performance degradation in tasks like object recognition and compromises their biological fidelity. To address this, we leverage spiking neural networks (SNNs), which inherently capture spike-based temporal dynamics and offer enhanced biological plausibility. We propose a novel Spatio-Temporal Constraints (STC) loss function for topographic deep spiking neural networks (TDSNNs), successfully replicating the hierarchical spatial functional organization observed in the primate visual cortex from low-level sensory input to high-level abstract representations. Our results show that STC effectively generates representative topographic features across simulated visual cortical areas. While introducing topography typically leads to significant performance degradation in ANNs, our spiking architecture exhibits a remarkably small performance drop (No drop in ImageNet top-1 accuracy, compared to a 3% drop observed in TopoNet, which is the best-performing topographic ANN so far) and outperforms topographic ANNs in brain-likeness. We also reveal that topographic organization facilitates efficient and stable temporal information processing via the spike mechanism in TDSNNs, contributing to model robustness. These findings suggest that TDSNNs offer a compelling balance between computational performance and brain-like features, providing not only a framework for interpreting neural science phenomena but also novel insights for designing more efficient and robust deep learning models.
comment: AAAI 2026 (Oral)
♻ ☆ Synthetic Object Compositions for Scalable and Accurate Learning in Detection, Segmentation, and Grounding
Visual grouping -- operationalized through tasks such as instance segmentation, visual grounding, and object detection -- enables applications ranging from robotic perception to photo editing. These fundamental problems in computer vision are powered by large-scale, painstakingly annotated datasets. Despite their impact, these datasets are costly to build, biased in coverage, and difficult to scale. Synthetic datasets offer a promising alternative but struggle with flexibility, accuracy, and compositional diversity. We introduce Synthetic Object Compositions (SOC), an accurate and scalable data synthesis pipeline via a novel object-centric composition strategy. It composes high-quality synthetic object segments into new images using 3D geometric layout augmentation and camera configuration augmentation with generative harmonization and mask-area-weighted blending, yielding accurate and diverse masks, boxes, and referring expressions. Models trained on just 100K of our synthetic images outperform those trained on larger real datasets (GRIT 20M, V3Det 200K) and synthetic pipelines (Copy-Paste, X-Paste, SynGround, SegGen) by +24-36% -- achieving +10.9 AP on LVIS and +8.4 NAcc on gRefCOCO. Beyond the general open-vocabulary setup, SOC also enables controllable dataset construction for different use cases and boosts performance in both low-data and closed-vocabulary scenarios. Augmenting LVIS and COCO with synthetic object segments delivers strong performance across different real-data scales and yields even greater improvements under extremely limited real-data conditions, including +6.59 AP on a 1% COCO data setup. Furthermore, this controllability enables targeted data generation for intra-class referring, a diagnostic grounding task we propose that requires fine-grained attribute discrimination.
comment: Project website: https://github.com/weikaih04/Synthetic-Detection-Segmentation-Grounding-Data
♻ ☆ VLA-Pruner: Temporal-Aware Dual-Level Visual Token Pruning for Efficient Vision-Language-Action Inference
Vision-Language-Action (VLA) models have shown great promise for embodied AI, yet the heavy computational cost of processing continuous visual streams severely limits their real-time deployment. Token pruning (keeping salient visual tokens and dropping redundant ones) has emerged as an effective approach for accelerating Vision-Language Models (VLMs), offering a solution for efficient VLA. However, these VLM-specific token pruning methods select tokens based solely on semantic salience metrics (e.g., prefill attention), while overlooking the VLA's intrinsic dual-system nature of high-level semantic understanding and low-level action execution. Consequently, these methods bias token retention toward semantic cues, discard critical information for action generation, and significantly degrade VLA performance. To bridge this gap, we propose VLA-Pruner, a versatile plug-and-play VLA-specific token prune method that aligns with the dual-system nature of VLA models and exploits the temporal continuity in robot manipulation. Specifically, VLA-Pruner adopts a dual-level importance criterion for visual token retention: vision-language prefill attention for semantic-level relevance and action decode attention, estimated via temporal smoothing, for action-level importance. Based on this criterion, VLA-Pruner proposes a novel dual-level token selection strategy that adaptively preserves a compact, informative set of visual tokens for both semantic understanding and action execution under given compute budget. Experiments show that VLA-Pruner achieves state-of-the-art performance across multiple VLA architectures and diverse robotic tasks.
♻ ☆ Model Inversion Attack Against Deep Hashing
Deep hashing improves retrieval efficiency through compact binary codes, yet it introduces severe and often overlooked privacy risks. The ability to reconstruct original training data from hash codes could lead to serious threats such as biometric forgery and privacy breaches. However, model inversion attacks specifically targeting deep hashing models remain unexplored, leaving their security implications unexamined. This research gap stems from the inaccessibility of genuine training hash codes and the highly discrete Hamming space, which prevents existing methods from adapting to deep hashing. To address these challenges, we propose DHMI, the first diffusion-based model inversion framework designed for deep hashing. DHMI first clusters an auxiliary dataset to derive semantic hash centers as surrogate anchors. It then introduces a surrogate-guided denoising optimization method that leverages a novel attack metric (fusing classification consistency and hash proximity) to dynamically select candidate samples. A cluster of surrogate models guides the refinement of these candidates, ensuring the generation of high-fidelity and semantically consistent images. Experiments on multiple datasets demonstrate that DHMI successfully reconstructs high-resolution, high-quality images even under the most challenging black-box setting, where no training hash codes are available. Our method outperforms the existing state-of-the-art model inversion attacks in black-box scenarios, confirming both its practical efficacy and the critical privacy risks inherent in deep hashing systems.
♻ ☆ HDCompression: Hybrid-Diffusion Image Compression for Ultra-Low Bitrates
Image compression under ultra-low bitrates remains challenging for both conventional learned image compression (LIC) and generative vector-quantized (VQ) modeling. Conventional LIC suffers from severe artifacts due to heavy quantization, while generative VQ modeling gives poor fidelity due to the mismatch between learned generative priors and specific inputs. In this work, we propose Hybrid-Diffusion Image Compression (HDCompression), a dual-stream framework that utilizes both generative VQ-modeling and diffusion models, as well as conventional LIC, to achieve both high fidelity and high perceptual quality. Different from previous hybrid methods that directly use pre-trained LIC models to generate low-quality fidelity-preserving information from heavily quantized latent, we use diffusion models to extract high-quality complementary fidelity information from the ground-truth input, which can enhance the system performance in several aspects: improving index map prediction, enhancing the fidelity-preserving output of the LIC stream, and refining conditioned image reconstruction with VQ-latent correction. In addition, our diffusion model is based on a dense representative vector (DRV), which is lightweight with very simple sampling schedulers. Extensive experiments demonstrate that our HDCompression outperforms the previous conventional LIC, generative VQ-modeling, and hybrid frameworks in both quantitative metrics and qualitative visualization, providing balanced robust compression performance at ultra-low bitrates.
comment: Accepted by PRICAI 2025 (Oral Presentation)
♻ ☆ Explore More, Learn Better: Parallel MLLM Embeddings under Mutual Information Minimization
Embedding models are a cornerstone of modern AI. Driven by Multimodal Large Language Models (MLLMs), they have made great progress in architecture and data curation, while the holistic paradigm is still limited to SSC, i.e., single input, singular embedding, contrastive supervision, which collapses rich, multifaceted inputs into monolithic embeddings and fails to fully exploit MLLM capabilities. In this paper, we tailor one Parallel Decoupling Framework (PDF) for multimodal embedding learning, by utilizing the proprietary steerability of MLLMs, i.e., their ability to flexibly generate quite differentiated response under explicit instructions. Concretely, PDF conditions a shared MLLM backbone on distinct, learnable prefixes to roll out multiple parallel paths for one input, then relies on these paths to obtain parallel embeddings. To promote full parallel diversity, we employ Mutual Information Minimization (MIM) as an explicit constraint, coupled with per-path contrastive supervision to maintain semantic alignment. Such dual-objectives force PDF to yield robust semantic coverage and a generalizable embedding space. Ultimately, the remarkable embedding space are accessible at inference via one single forward pass, incurring negligible computational overhead. We instantiate PDF on multiple MLLM backbones and prove its effectiveness on MMEB benchmark. Significant gains are consistently achieved across various resolutions and model sizes, e.g., boosting the VLM2Vec-LLaVA-1.6-LR model by a remarkable +8.9% (7B), while the VLM2Vec-Qwen2VL models by +4.2% (2B) and +3.1% (7B). In terms of efficiency, our 2B model surpasses its baseline by +2.6% using only half the computational budget.
♻ ☆ POMA-3D: The Point Map Way to 3D Scene Understanding
In this paper, we introduce POMA-3D, the first self-supervised 3D representation model learned from point maps. Point maps encode explicit 3D coordinates on a structured 2D grid, preserving global 3D geometry while remaining compatible with the input format of 2D foundation models. To transfer rich 2D priors into POMA-3D, a view-to-scene alignment strategy is designed. Moreover, as point maps are view-dependent with respect to a canonical space, we introduce POMA-JEPA, a joint embedding-predictive architecture that enforces geometrically consistent point map features across multiple views. Additionally, we introduce ScenePoint, a point map dataset constructed from 6.5K room-level RGB-D scenes and 1M 2D image scenes to facilitate large-scale POMA-3D pretraining. Experiments show that POMA-3D serves as a strong backbone for both specialist and generalist 3D understanding. It benefits diverse tasks, including 3D question answering, embodied navigation, scene retrieval, and embodied localization, all achieved using only geometric inputs (i.e., 3D coordinates). Overall, our POMA-3D explores a point map way to 3D scene understanding, addressing the scarcity of pretrained priors and limited data in 3D representation learning. Project Page: https://matchlab-imperial.github.io/poma3d/
comment: 11 pages, 6 tables, 5 figures
Machine Learning 128
☆ Harnessing Data from Clustered LQR Systems: Personalized and Collaborative Policy Optimization
It is known that reinforcement learning (RL) is data-hungry. To improve sample-efficiency of RL, it has been proposed that the learning algorithm utilize data from 'approximately similar' processes. However, since the process models are unknown, identifying which other processes are similar poses a challenge. In this work, we study this problem in the context of the benchmark Linear Quadratic Regulator (LQR) setting. Specifically, we consider a setting with multiple agents, each corresponding to a copy of a linear process to be controlled. The agents' local processes can be partitioned into clusters based on similarities in dynamics and tasks. Combining ideas from sequential elimination and zeroth-order policy optimization, we propose a new algorithm that performs simultaneous clustering and learning to output a personalized policy (controller) for each cluster. Under a suitable notion of cluster separation that captures differences in closed-loop performance across systems, we prove that our approach guarantees correct clustering with high probability. Furthermore, we show that the sub-optimality gap of the policy learned for each cluster scales inversely with the size of the cluster, with no additional bias, unlike in prior works on collaborative learning-based control. Our work is the first to reveal how clustering can be used in data-driven control to learn personalized policies that enjoy statistical gains from collaboration but do not suffer sub-optimality due to inclusion of data from dissimilar processes. From a distributed implementation perspective, our method is attractive as it incurs only a mild logarithmic communication overhead.
☆ Addressing A Posteriori Performance Degradation in Neural Network Subgrid Stress Models
Neural network subgrid stress models often have a priori performance that is far better than the a posteriori performance, leading to neural network models that look very promising a priori completely failing in a posteriori Large Eddy Simulations (LES). This performance gap can be decreased by combining two different methods, training data augmentation and reducing input complexity to the neural network. Augmenting the training data with two different filters before training the neural networks has no performance degradation a priori as compared to a neural network trained with one filter. A posteriori, neural networks trained with two different filters are far more robust across two different LES codes with different numerical schemes. In addition, by ablating away the higher order terms input into the neural network, the a priori versus a posteriori performance changes become less apparent. When combined, neural networks that use both training data augmentation and a less complex set of inputs have a posteriori performance far more reflective of their a priori evaluation.
☆ Masked-and-Reordered Self-Supervision for Reinforcement Learning from Verifiable Rewards
Test-time scaling has been shown to substantially improve large language models' (LLMs) mathematical reasoning. However, for a large portion of mathematical corpora, especially theorem proving, RLVR's scalability is limited: intermediate reasoning is crucial, while final answers are difficult to directly and reliably verify. Meanwhile, token-level SFT often degenerates into rote memorization rather than inducing longer chains of thought. Inspired by BERT's self-supervised tasks, we propose MR-RLVR (Masked-and-Reordered RLVR), which constructs process-level self-supervised rewards via "masked-then-fill" and "step reordering" to extract learnable signals from intermediate reasoning. Our training pipeline comprises two stages: we first perform self-supervised training on sampled mathematical calculation and proof data; we then conduct RLVR fine-tuning on mathematical calculation datasets where only outcomes are verifiable. We implement MR-RLVR on Qwen2.5-3B and DeepSeek-R1-Distill-Qwen-1.5B, and evaluate on AIME24, AIME25, AMC23, and MATH500. Under a fixed sampling and decoding budget, MR-RLVR achieves average relative gains over the original RLVR of +9.86% Pass@1, +5.27% Pass@5, and +4.00% Pass@8. These results indicate that incorporating process-aware self-supervised signals can effectively enhance RLVR's scalability and performance in only outcome-verifiable settings.
☆ PersonaAgent with GraphRAG: Community-Aware Knowledge Graphs for Personalized LLM
We propose a novel framework for persona-based language model system, motivated by the need for personalized AI agents that adapt to individual user preferences. In our approach, the agent embodies the user's "persona" (e.g. user profile or taste) and is powered by a large language model (LLM). To enable the agent to leverage rich contextual information, we introduce a Knowledge-Graph-enhanced Retrieval-Augmented Generation (Graph RAG) mechanism that constructs an LLM-derived graph index of relevant documents and summarizes communities of related information. Our framework generates personalized prompts by combining: (1) a summary of the user's historical behaviors and preferences extracted from the knowledge graph, and (2) relevant global interaction patterns identified through graph-based community detection. This dynamic prompt engineering approach allows the agent to maintain consistent persona-aligned behaviors while benefiting from collective knowledge. On the LaMP benchmark, our method improves news categorization F1 by 11.1%, movie tagging F1 by 56.1%, and reduces product rating MAE by 10.4% over prior methods. Our code is available at https://anonymous.4open.science/r/PersonaAgentwGraphRAG-DE6F
☆ Unmasking Airborne Threats: Guided-Transformers for Portable Aerosol Mass Spectrometry
Matrix Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) is a cornerstone in biomolecular analysis, offering precise identification of pathogens through unique mass spectral signatures. Yet, its reliance on labor-intensive sample preparation and multi-shot spectral averaging restricts its use to laboratory settings, rendering it impractical for real-time environmental monitoring. These limitations are especially pronounced in emerging aerosol MALDI-MS systems, where autonomous sampling generates noisy spectra for unknown aerosol analytes, requiring single-shot detection for effective analysis. Addressing these challenges, we propose the Mass Spectral Dictionary-Guided Transformer (MS-DGFormer): a data-driven framework that redefines spectral analysis by directly processing raw, minimally prepared mass spectral data. MS-DGFormer leverages a transformer architecture, designed to capture the long-range dependencies inherent in these time-series spectra. To enhance feature extraction, we introduce a novel dictionary encoder that integrates denoised spectral information derived from Singular Value Decomposition (SVD), enabling the model to discern critical biomolecular patterns from single-shot spectra with robust performance. This innovation provides a system to achieve superior pathogen identification from aerosol samples, facilitating autonomous, real-time analysis in field conditions. By eliminating the need for extensive preprocessing, our method unlocks the potential for portable, deployable MALDI-MS platforms, revolutionizing environmental pathogen detection and rapid response to biological threats.
comment: 13 pages, 9 figures. Preprint. Submitted to Computers in Biology and Medicine
☆ InTAct: Interval-based Task Activation Consolidation for Continual Learning
Continual learning aims to enable neural networks to acquire new knowledge without forgetting previously learned information. While recent prompt-based methods perform strongly in class-incremental settings, they remain vulnerable under domain shifts, where the input distribution changes but the label space remains fixed. This exposes a persistent problem known as representation drift. Shared representations evolve in ways that overwrite previously useful features and cause forgetting even when prompts isolate task-specific parameters. To address this issue, we introduce InTAct, a method that preserves functional behavior in shared layers without freezing parameters or storing past data. InTAct captures the characteristic activation ranges associated with previously learned tasks and constrains updates to ensure the network remains consistent within these regions, while still allowing for flexible adaptation elsewhere. In doing so, InTAct stabilizes the functional role of important neurons rather than directly restricting parameter values. The approach is architecture-agnostic and integrates seamlessly into existing prompt-based continual learning frameworks. By regulating representation changes where past knowledge is encoded, InTAct achieves a principled balance between stability and plasticity. Across diverse domain-incremental benchmarks, including DomainNet and ImageNet-R, InTAct consistently reduces representation drift and improves performance, increasing Average Accuracy by up to 8 percentage points over state-of-the-art baselines.
☆ A Framework for Adaptive Stabilisation of Nonlinear Stochastic Systems
We consider the adaptive control problem for discrete-time, nonlinear stochastic systems with linearly parameterised uncertainty. Assuming access to a parameterised family of controllers that can stabilise the system in a bounded set within an informative region of the state space when the parameter is well-chosen, we propose a certainty equivalence learning-based adaptive control strategy, and subsequently derive stability bounds on the closed-loop system that hold for some probabilities. We then show that if the entire state space is informative, and the family of controllers is globally stabilising with appropriately chosen parameters, high probability stability guarantees can be derived.
comment: 22 pages, 1 figure
☆ Multi-Agent Pointer Transformer: Seq-to-Seq Reinforcement Learning for Multi-Vehicle Dynamic Pickup-Delivery Problems
This paper addresses the cooperative Multi-Vehicle Dynamic Pickup and Delivery Problem with Stochastic Requests (MVDPDPSR) and proposes an end-to-end centralized decision-making framework based on sequence-to-sequence, named Multi-Agent Pointer Transformer (MAPT). MVDPDPSR is an extension of the vehicle routing problem and a spatio-temporal system optimization problem, widely applied in scenarios such as on-demand delivery. Classical operations research methods face bottlenecks in computational complexity and time efficiency when handling large-scale dynamic problems. Although existing reinforcement learning methods have achieved some progress, they still encounter several challenges: 1) Independent decoding across multiple vehicles fails to model joint action distributions; 2) The feature extraction network struggles to capture inter-entity relationships; 3) The joint action space is exponentially large. To address these issues, we designed the MAPT framework, which employs a Transformer Encoder to extract entity representations, combines a Transformer Decoder with a Pointer Network to generate joint action sequences in an AutoRegressive manner, and introduces a Relation-Aware Attention module to capture inter-entity relationships. Additionally, we guide the model's decision-making using informative priors to facilitate effective exploration. Experiments on 8 datasets demonstrate that MAPT significantly outperforms existing baseline methods in terms of performance and exhibits substantial computational time advantages compared to classical operations research methods.
comment: 15 pages
☆ Towards fully differentiable neural ocean model with Veros
We present a differentiable extension of the VEROS ocean model, enabling automatic differentiation through its dynamical core. We describe the key modifications required to make the model fully compatible with JAX autodifferentiation framework and evaluate the numerical consistency of the resulting implementation. Two illustrative applications are then demonstrated: (i) the correction of an initial ocean state through gradient-based optimization, and (ii) the calibration of unknown physical parameters directly from model observations. These examples highlight how differentiable programming can facilitate end-to-end learning and parameter tuning in ocean modeling. Our implementation is available online.
comment: Accepted to Differentiable Systems and Scientific Machine Learning (workshop, EurIPS 2025)
Self-Supervised Learning by Curvature Alignment
Self-supervised learning (SSL) has recently advanced through non-contrastive methods that couple an invariance term with variance, covariance, or redundancy-reduction penalties. While such objectives shape first- and second-order statistics of the representation, they largely ignore the local geometry of the underlying data manifold. In this paper, we introduce CurvSSL, a curvature-regularized self-supervised learning framework, and its RKHS extension, kernel CurvSSL. Our approach retains a standard two-view encoder-projector architecture with a Barlow Twins-style redundancy-reduction loss on projected features, but augments it with a curvature-based regularizer. Each embedding is treated as a vertex whose $k$ nearest neighbors define a discrete curvature score via cosine interactions on the unit hypersphere; in the kernel variant, curvature is computed from a normalized local Gram matrix in an RKHS. These scores are aligned and decorrelated across augmentations by a Barlow-style loss on a curvature-derived matrix, encouraging both view invariance and consistency of local manifold bending. Experiments on MNIST and CIFAR-10 datasets with a ResNet-18 backbone show that curvature-regularized SSL yields competitive or improved linear evaluation performance compared to Barlow Twins and VICReg. Our results indicate that explicitly shaping local geometry is a simple and effective complement to purely statistical SSL regularizers.
☆ DS-Span: Single-Phase Discriminative Subgraph Mining for Efficient Graph Embeddings
Graph representation learning seeks to transform complex, high-dimensional graph structures into compact vector spaces that preserve both topology and semantics. Among the various strategies, subgraph-based methods provide an interpretable bridge between symbolic pattern discovery and continuous embedding learning. Yet, existing frequent or discriminative subgraph mining approaches often suffer from redundant multi-phase pipelines, high computational cost, and weak coupling between mined structures and their discriminative relevance. We propose DS-Span, a single-phase discriminative subgraph mining framework that unifies pattern growth, pruning, and supervision-driven scoring within one traversal of the search space. DS-Span introduces a coverage-capped eligibility mechanism that dynamically limits exploration once a graph is sufficiently represented, and an information-gain-guided selection that promotes subgraphs with strong class-separating ability while minimizing redundancy. The resulting subgraph set serves as an efficient, interpretable basis for downstream graph embedding and classification. Extensive experiments across benchmarks demonstrate that DS-Span generates more compact and discriminative subgraph features than prior multi-stage methods, achieving higher or comparable accuracy with significantly reduced runtime. These results highlight the potential of unified, single-phase discriminative mining as a foundation for scalable and interpretable graph representation learning.
☆ CREST: Improving Interpretability and Effectiveness of Troubleshooting at Ericsson through Criterion-Specific Trouble Report Retrieval
The rapid evolution of the telecommunication industry necessitates efficient troubleshooting processes to maintain network reliability, software maintainability, and service quality. Trouble Reports (TRs), which document issues in Ericsson's production system, play a critical role in facilitating the timely resolution of software faults. However, the complexity and volume of TR data, along with the presence of diverse criteria that reflect different aspects of each fault, present challenges for retrieval systems. Building on prior work at Ericsson, which utilized a two-stage workflow, comprising Initial Retrieval (IR) and Re-Ranking (RR) stages, this study investigates different TR observation criteria and their impact on the performance of retrieval models. We propose \textbf{CREST} (\textbf{C}riteria-specific \textbf{R}etrieval via \textbf{E}nsemble of \textbf{S}pecialized \textbf{T}R models), a criterion-driven retrieval approach that leverages specialized models for different TR fields to improve both effectiveness and interpretability, thereby enabling quicker fault resolution and supporting software maintenance. CREST utilizes specialized models trained on specific TR criteria and aggregates their outputs to capture diverse and complementary signals. This approach leads to enhanced retrieval accuracy, better calibration of predicted scores, and improved interpretability by providing relevance scores for each criterion, helping users understand why specific TRs were retrieved. Using a subset of Ericsson's internal TRs, this research demonstrates that criterion-specific models significantly outperform a single model approach across key evaluation metrics. This highlights the importance of all targeted criteria used in this study for optimizing the performance of retrieval systems.
☆ SPEAR-1: Scaling Beyond Robot Demonstrations via 3D Understanding
Robotic Foundation Models (RFMs) hold great promise as generalist, end-to-end systems for robot control. Yet their ability to generalize across new environments, tasks, and embodiments remains limited. We argue that a major bottleneck lies in their foundations: most RFMs are built by fine-tuning internet-pretrained Vision-Language Models (VLMs). However, these VLMs are trained on 2D image-language tasks and lack the 3D spatial reasoning inherently required for embodied control in the 3D world. Bridging this gap directly with large-scale robotic data is costly and difficult to scale. Instead, we propose to enrich easy-to-collect non-robotic image data with 3D annotations and enhance a pretrained VLM with 3D understanding capabilities. Following this strategy, we train SPEAR-VLM, a 3D-aware VLM that infers object coordinates in 3D space from a single 2D image. Building on SPEAR-VLM, we introduce our main contribution, $~\textbf{SPEAR-1}$: a robotic foundation model that integrates grounded 3D perception with language-instructed embodied control. Trained on $\sim$45M frames from 24 Open X-Embodiment datasets, SPEAR-1 outperforms or matches state-of-the-art models such as $π_0$-FAST and $π_{0.5}$, while it uses 20$\times$ fewer robot demonstrations. This carefully-engineered training strategy unlocks new VLM capabilities and as a consequence boosts the reliability of embodied control beyond what is achievable with only robotic data. We make our model weights and 3D-annotated datasets publicly available.
☆ That's not natural: The Impact of Off-Policy Training Data on Probe Performance
Probing has emerged as a promising method for monitoring Large Language Models (LLMs), enabling inference-time detection of concerning behaviours such as deception and sycophancy. However, natural examples of many behaviours are rare, forcing researchers to rely on synthetic or off-policy LLM responses for training probes. We systematically evaluate how the use of synthetic and off-policy data influences probe generalisation across eight distinct LLM behaviours. Testing linear and attention probes across multiple LLMs, we find that the response generation strategy can significantly affect probe performance, though the magnitude of this effect varies by behaviour. We find that successful generalisation from off-policy data, to test sets where the model is incentivised to produce the target behaviour, is predictive of successful on-policy generalisation. Leveraging this result, we predict that Deception and Sandbagging probes may fail to generalise from off-policy to on-policy data when used in real monitoring scenarios. Notably, shifts in the training data domain still cause even larger performance degradation, with different-domain test scores being consistently lower than the same-domain ones. These results indicate that, in the absence of on-policy data, using same-domain off-policy data yields more reliable probes than using on-policy data from a different domain, emphasizing the need for methods that can better handle distribution shifts in LLM monitoring.
comment: 10 pages, EurIPS 2025 Workshop on Private AI Governance
☆ Stable Coresets via Posterior Sampling: Aligning Induced and Full Loss Landscapes
As deep learning models continue to scale, the growing computational demands have amplified the need for effective coreset selection techniques. Coreset selection aims to accelerate training by identifying small, representative subsets of data that approximate the performance of the full dataset. Among various approaches, gradient based methods stand out due to their strong theoretical underpinnings and practical benefits, particularly under limited data budgets. However, these methods face challenges such as naive stochastic gradient descent (SGD) acting as a surprisingly strong baseline and the breakdown of representativeness due to loss curvature mismatches over time. In this work, we propose a novel framework that addresses these limitations. First, we establish a connection between posterior sampling and loss landscapes, enabling robust coreset selection even in high data corruption scenarios. Second, we introduce a smoothed loss function based on posterior sampling onto the model weights, enhancing stability and generalization while maintaining computational efficiency. We also present a novel convergence analysis for our sampling-based coreset selection method. Finally, through extensive experiments, we demonstrate how our approach achieves faster training and enhanced generalization across diverse datasets than the current state of the art.
comment: neurips 2025
☆ Selective Rotary Position Embedding
Position information is essential for language modeling. In softmax transformers, Rotary Position Embeddings (\textit{RoPE}) encode positions through \textit{fixed-angle} rotations, while in linear transformers, order is handled via input-dependent (selective) gating that decays past key-value associations. Selectivity has generally been shown to improve language-related tasks. Inspired by this, we introduce \textit{Selective RoPE}, an \textit{input-dependent} rotary embedding mechanism, that generalizes \textit{RoPE}, and enables rotation in \textit{arbitrary angles} for both linear and softmax transformers. We show that softmax attention already performs a hidden form of these rotations on query-key pairs, uncovering an implicit positional structure. We further show that in state-space models and gated linear transformers, the real part manages forgetting while the imaginary part encodes positions through rotations. We validate our method by equipping gated transformers with \textit{Selective RoPE}, demonstrating that its input-dependent rotations improve performance in language modeling and on difficult sequence tasks like copying, state tracking, and retrieval.
☆ Non-Parametric Probabilistic Robustness: A Conservative Metric with Optimized Perturbation Distributions
Deep learning (DL) models, despite their remarkable success, remain vulnerable to small input perturbations that can cause erroneous outputs, motivating the recent proposal of probabilistic robustness (PR) as a complementary alternative to adversarial robustness (AR). However, existing PR formulations assume a fixed and known perturbation distribution, an unrealistic expectation in practice. To address this limitation, we propose non-parametric probabilistic robustness (NPPR), a more practical PR metric that does not rely on any predefined perturbation distribution. Following the non-parametric paradigm in statistical modeling, NPPR learns an optimized perturbation distribution directly from data, enabling conservative PR evaluation under distributional uncertainty. We further develop an NPPR estimator based on a Gaussian Mixture Model (GMM) with Multilayer Perceptron (MLP) heads and bicubic up-sampling, covering various input-dependent and input-independent perturbation scenarios. Theoretical analyses establish the relationships among AR, PR, and NPPR. Extensive experiments on CIFAR-10, CIFAR-100, and Tiny ImageNet across ResNet18/50, WideResNet50 and VGG16 validate NPPR as a more practical robustness metric, showing up to 40\% more conservative (lower) PR estimates compared to assuming those common perturbation distributions used in state-of-the-arts.
☆ A Unified Stability Analysis of SAM vs SGD: Role of Data Coherence and Emergence of Simplicity Bias
Understanding the dynamics of optimization in deep learning is increasingly important as models scale. While stochastic gradient descent (SGD) and its variants reliably find solutions that generalize well, the mechanisms driving this generalization remain unclear. Notably, these algorithms often prefer flatter or simpler minima, particularly in overparameterized settings. Prior work has linked flatness to generalization, and methods like Sharpness-Aware Minimization (SAM) explicitly encourage flatness, but a unified theory connecting data structure, optimization dynamics, and the nature of learned solutions is still lacking. In this work, we develop a linear stability framework that analyzes the behavior of SGD, random perturbations, and SAM, particularly in two layer ReLU networks. Central to our analysis is a coherence measure that quantifies how gradient curvature aligns across data points, revealing why certain minima are stable and favored during training.
comment: Neurips 2025
☆ Quantum Masked Autoencoders for Vision Learning
Classical autoencoders are widely used to learn features of input data. To improve the feature learning, classical masked autoencoders extend classical autoencoders to learn the features of the original input sample in the presence of masked-out data. While quantum autoencoders exist, there is no design and implementation of quantum masked autoencoders that can leverage the benefits of quantum computing and quantum autoencoders. In this paper, we propose quantum masked autoencoders (QMAEs) that can effectively learn missing features of a data sample within quantum states instead of classical embeddings. We showcase that our QMAE architecture can learn the masked features of an image and can reconstruct the masked input image with improved visual fidelity in MNIST images. Experimental evaluation highlights that QMAE can significantly outperform (12.86% on average) in classification accuracy compared to state-of-the-art quantum autoencoders in the presence of masks.
☆ R2PS: Worst-Case Robust Real-Time Pursuit Strategies under Partial Observability
Computing worst-case robust strategies in pursuit-evasion games (PEGs) is time-consuming, especially when real-world factors like partial observability are considered. While important for general security purposes, real-time applicable pursuit strategies for graph-based PEGs are currently missing when the pursuers only have imperfect information about the evader's position. Although state-of-the-art reinforcement learning (RL) methods like Equilibrium Policy Generalization (EPG) and Grasper provide guidelines for learning graph neural network (GNN) policies robust to different game dynamics, they are restricted to the scenario of perfect information and do not take into account the possible case where the evader can predict the pursuers' actions. This paper introduces the first approach to worst-case robust real-time pursuit strategies (R2PS) under partial observability. We first prove that a traditional dynamic programming (DP) algorithm for solving Markov PEGs maintains optimality under the asynchronous moves by the evader. Then, we propose a belief preservation mechanism about the evader's possible positions, extending the DP pursuit strategies to a partially observable setting. Finally, we embed the belief preservation into the state-of-the-art EPG framework to finish our R2PS learning scheme, which leads to a real-time pursuer policy through cross-graph reinforcement learning against the asynchronous-move DP evasion strategies. After reinforcement learning, our policy achieves robust zero-shot generalization to unseen real-world graph structures and consistently outperforms the policy directly trained on the test graphs by the existing game RL approach.
☆ Convergence and stability of Q-learning in Hierarchical Reinforcement Learning
Hierarchical Reinforcement Learning promises, among other benefits, to efficiently capture and utilize the temporal structure of a decision-making problem and to enhance continual learning capabilities, but theoretical guarantees lag behind practice. In this paper, we propose a Feudal Q-learning scheme and investigate under which conditions its coupled updates converge and are stable. By leveraging the theory of Stochastic Approximation and the ODE method, we present a theorem stating the convergence and stability properties of Feudal Q-learning. This provides a principled convergence and stability analysis tailored to Feudal RL. Moreover, we show that the updates converge to a point that can be interpreted as an equilibrium of a suitably defined game, opening the door to game-theoretic approaches to Hierarchical RL. Lastly, experiments based on the Feudal Q-learning algorithm support the outcomes anticipated by theory.
☆ ReBaPL: Repulsive Bayesian Prompt Learning
Prompt learning has emerged as an effective technique for fine-tuning large-scale foundation models for downstream tasks. However, conventional prompt tuning methods are prone to overfitting and can struggle with out-of-distribution generalization. To address these limitations, Bayesian prompt learning has been proposed, which frames prompt optimization as a Bayesian inference problem to enhance robustness. This paper introduces Repulsive Bayesian Prompt Learning (ReBaPL), a novel method for Bayesian prompt learning, designed to efficiently explore the complex and often multimodal posterior landscape of prompts. Our method integrates a cyclical step-size schedule with a stochastic gradient Hamiltonian Monte Carlo (SGHMC) algorithm, enabling alternating phases of exploration to discover new modes, and exploitation to refine existing modes. Furthermore, we introduce a repulsive force derived from a potential function over probability metrics (including Maximum Mean Discrepancy and Wasserstein distance) computed on the distributions of representations produced by different prompts. This representation-space repulsion diversifies exploration and prevents premature collapse to a single mode. Our approach allows for a more comprehensive characterization of the prompt posterior distribution, leading to improved generalization. In contrast to prior Bayesian prompt learning methods, our method provides a modular plug-and-play Bayesian extension of any existing prompt learning method based on maximum likelihood estimation. We demonstrate the efficacy of ReBaPL on several benchmark datasets, showing superior performance over state-of-the-art methods for prompt learning.
comment: Under review
☆ FORWARD: Dataset of a forwarder operating in rough terrain
We present FORWARD, a high-resolution multimodal dataset of a cut-to-length forwarder operating in rough terrain on two harvest sites in the middle part of Sweden. The forwarder is a large Komatsu model equipped with a variety of sensors, including RTK-GNSS, 360-camera, operator vibration sensors, internal CAN-bus signal recording, and multiple IMUs. The data includes event time logs recorded in 5 Hz with e.g., driving speed, fuel consumption, vehicle position with centimeter accuracy, and crane use while the vehicle operates in forest areas laser-scanned with very high-resolution, $\sim$1500 points per square meter. Production log files (StanForD standard) with time-stamped machine events, extensive video material, and terrain data in various formats are included as well. About 18 hours of regular wood extraction work during three days is annotated from 360-video material into individual work elements and included in the dataset. We also include scenario specifications of conducted experiments on forest roads and in terrain. Scenarios include repeatedly driving the same routes with and without steel tracks, different load weight, and different target driving speeds. The dataset is intended for developing models and algorithms for trafficability, perception, and autonomous control of forest machines using artificial intelligence, simulation, and experiments on physical testbeds. In part, we focus on forwarders traversing terrain, avoiding obstacles, and loading or unloading logs, with consideration for efficiency, fuel consumption, safety, and environmental impact. Other benefits of the open dataset include the ability to explore auto-generation and calibration of forestry machine simulators and automation scenario descriptions using the data recorded in the field.
comment: 25 pages, 22 figures
Self-supervised denoising of raw tomography detector data for improved image reconstruction
Ultrafast electron beam X-ray computed tomography produces noisy data due to short measurement times, causing reconstruction artifacts and limiting overall image quality. To counteract these issues, two self-supervised deep learning methods for denoising of raw detector data were investigated and compared against a non-learning based denoising method. We found that the application of the deep-learning-based methods was able to enhance signal-to-noise ratios in the detector data and also led to consistent improvements of the reconstructed images, outperforming the non-learning based method.
☆ MuM: Multi-View Masked Image Modeling for 3D Vision
Self-supervised learning on images seeks to extract meaningful visual representations from unlabeled data. When scaled to large datasets, this paradigm has achieved state-of-the-art performance and the resulting trained models such as DINOv3 have seen widespread adoption. However, most prior efforts are optimized for semantic understanding rather than geometric reasoning. One important exception is Cross-View Completion, CroCo, which is a form of masked autoencoding (MAE) tailored for 3D understanding. In this work, we continue on the path proposed by CroCo and focus on learning features tailored for 3D vision. In a nutshell, we extend MAE to arbitrarily many views of the same scene. By uniformly masking all views and employing a lightweight decoder with inter-frame attention, our approach is inherently simpler and more scalable than CroCo. We evaluate the resulting model, MuM, extensively on downstream tasks including feedforward reconstruction, dense image matching and relative pose estimation, finding that it outperforms the state-of-the-art visual encoders DINOv3 and CroCo v2.
☆ SAVeD: Semantic Aware Version Discovery
Our work introduces SAVeD (Semantically Aware Version Detection), a contrastive learning-based framework for identifying versions of structured datasets without relying on metadata, labels, or integration-based assumptions. SAVeD addresses a common challenge in data science of repeated labor due to a difficulty of similar work or transformations on datasets. SAVeD employs a modified SimCLR pipeline, generating augmented table views through random transformations (e.g., row deletion, encoding perturbations). These views are embedded via a custom transformer encoder and contrasted in latent space to optimize semantic similarity. Our model learns to minimize distances between augmented views of the same dataset and maximize those between unrelated tables. We evaluate performance using validation accuracy and separation, defined respectively as the proportion of correctly classified version/non-version pairs on a hold-out set, and the difference between average similarities of versioned and non-versioned tables (defined by a benchmark, and not provided to the model). Our experiments span five canonical datasets from the Semantic Versioning in Databases Benchmark, and demonstrate substantial gains post-training. SAVeD achieves significantly higher accuracy on completely unseen tables in, and a significant boost in separation scores, confirming its capability to distinguish semantically altered versions. Compared to untrained baselines and prior state-of-the-art dataset-discovery methods like Starmie, our custom encoder achieves competitive or superior results.
comment: 11 pages, 6 figures
☆ A First Full Physics Benchmark for Highly Granular Calorimeter Surrogates
The physics programs of current and future collider experiments necessitate the development of surrogate simulators for calorimeter showers. While much progress has been made in the development of generative models for this task, they have typically been evaluated in simplified scenarios and for single particles. This is particularly true for the challenging task of highly granular calorimeter simulation. For the first time, this work studies the use of highly granular generative calorimeter surrogates in a realistic simulation application. We introduce DDML, a generic library which enables the combination of generative calorimeter surrogates with realistic detectors implemented using the DD4hep toolkit. We compare two different generative models - one operating on a regular grid representation, and the other using a less common point cloud approach. In order to disentangle methodological details from model performance, we provide comparisons to idealized simulators which directly sample representations of different resolutions from the full simulation ground-truth. We then systematically evaluate model performance on post-reconstruction benchmarks for electromagnetic shower simulation. Beginning with a typical single particle study, we introduce a first multi-particle benchmark based on di-photon separations, before studying a first full-physics benchmark based on hadronic decays of the tau lepton. Our results indicate that models operating on a point cloud can achieve a favorable balance between speed and accuracy for highly granular calorimeter simulation compared to those which operate on a regular grid representation.
comment: 26 pages, 15 figures
☆ Automobile demand forecasting: Spatiotemporal and hierarchical modeling, life cycle dynamics, and user-generated online information
Premium automotive manufacturers face increasingly complex forecasting challenges due to high product variety, sparse variant-level data, and volatile market dynamics. This study addresses monthly automobile demand forecasting across a multi-product, multi-market, and multi-level hierarchy using data from a German premium manufacturer. The methodology combines point and probabilistic forecasts across strategic and operational planning levels, leveraging ensembles of LightGBM models with pooled training sets, quantile regression, and a mixed-integer linear programming reconciliation approach. Results highlight that spatiotemporal dependencies, as well as rounding bias, significantly affect forecast accuracy, underscoring the importance of integer forecasts for operational feasibility. Shapley analysis shows that short-term demand is reactive, shaped by life cycle maturity, autoregressive momentum, and operational signals, whereas medium-term demand reflects anticipatory drivers such as online engagement, planning targets, and competitive indicators, with online behavioral data considerably improving accuracy at disaggregated levels.
☆ Enforcing governing equation constraints in neural PDE solvers via training-free projections
Neural PDE solvers used for scientific simulation often violate governing equation constraints. While linear constraints can be projected cheaply, many constraints are nonlinear, complicating projection onto the feasible set. Dynamical PDEs are especially difficult because constraints induce long-range dependencies in time. In this work, we evaluate two training-free, post hoc projections of approximate solutions: a nonlinear optimization-based projection, and a local linearization-based projection using Jacobian-vector and vector-Jacobian products. We analyze constraints across representative PDEs and find that both projections substantially reduce violations and improve accuracy over physics-informed baselines.
comment: Machine Learning and the Physical Sciences, Neurips 2025, San Diego
☆ FlexiFlow: decomposable flow matching for generation of flexible molecular ensemble
Sampling useful three-dimensional molecular structures along with their most favorable conformations is a key challenge in drug discovery. Current state-of-the-art 3D de-novo design flow matching or diffusion-based models are limited to generating a single conformation. However, the conformational landscape of a molecule determines its observable properties and how tightly it is able to bind to a given protein target. By generating a representative set of low-energy conformers, we can more directly assess these properties and potentially improve the ability to generate molecules with desired thermodynamic observables. Towards this aim, we propose FlexiFlow, a novel architecture that extends flow-matching models, allowing for the joint sampling of molecules along with multiple conformations while preserving both equivariance and permutation invariance. We demonstrate the effectiveness of our approach on the QM9 and GEOM Drugs datasets, achieving state-of-the-art results in molecular generation tasks. Our results show that FlexiFlow can generate valid, unstrained, unique, and novel molecules with high fidelity to the training data distribution, while also capturing the conformational diversity of molecules. Moreover, we show that our model can generate conformational ensembles that provide similar coverage to state-of-the-art physics-based methods at a fraction of the inference time. Finally, FlexiFlow can be successfully transferred to the protein-conditioned ligand generation task, even when the dataset contains only static pockets without accompanying conformations.
comment: Preprint. Code to be released upon full publication
☆ Equivariant-Aware Structured Pruning for Efficient Edge Deployment: A Comprehensive Framework with Adaptive Fine-Tuning
This paper presents a novel framework combining group equivariant convolutional neural networks (G-CNNs) with equivariant-aware structured pruning to produce compact, transformation-invariant models for resource-constrained environments. Equivariance to rotations is achieved through the C4 cyclic group via the e2cnn library,enabling consistent performance under geometric transformations while reducing computational overhead. Our approach introduces structured pruning that preserves equivariant properties by analyzing e2cnn layer structure and applying neuron-level pruning to fully connected components. To mitigate accuracy degradation, we implement adaptive fine-tuning that automatically triggers when accuracy drop exceeds 2%, using early stopping and learning rate scheduling for efficient recovery. The framework includes dynamic INT8 quantization and a comprehensive pipeline encompassing training, knowledge distillation, structured pruning, fine-tuning, and quantization. We evaluate our method on satellite imagery (EuroSAT) and standard benchmarks (CIFAR-10, Rotated MNIST) demonstrating effectiveness across diverse domains. Experimental results show 29.3% parameter reduction with significant accuracy recovery, demonstrating that structured pruning of equivariant networks achieves substantial compression while maintaining geometric robustness. Our pipeline provides a reproducible framework for optimizing equivariant models, bridging the gap between group-theoretic network design and practical deployment constraints, with particular relevance to satellite imagery analysis and geometric vision tasks.
comment: 8 pages, 5 tables, 1 figure. Accepted at IEEE EdgeCom 2025 (11th IEEE International Conference on Edge Computing and Scalable Cloud)
☆ Fast Decoding for Non-Adaptive Learning of Erdős--Rényi Random Graphs
We study the problem of learning an unknown graph via group queries on node subsets, where each query reports whether at least one edge is present among the queried nodes. In general, learning arbitrary graphs with \(n\) nodes and \(k\) edges is hard in the non-adaptive setting, requiring \(Ω\big(\min\{k^2\log n,\,n^2\}\big)\) tests even when a small error probability is allowed. We focus on learning Erdős--Rényi (ER) graphs \(G\sim\ER(n,q)\) in the non-adaptive setting, where the expected number of edges is \(\bar{k}=q\binom{n}{2}\), and we aim to design an efficient testing--decoding scheme achieving asymptotically vanishing error probability. Prior work (Li--Fresacher--Scarlett, NeurIPS 2019) presents a testing--decoding scheme that attains an order-optimal number of tests \(O(\bar{k}\log n)\) but incurs \(Ω(n^2)\) decoding time, whereas their proposed sublinear-time algorithm incurs an extra \((\log \bar{k})(\log n)\) factor in the number of tests. We extend the binary splitting approach, recently developed for non-adaptive group testing, to the ER graph learning setting, and prove that the edge set can be recovered with high probability using \(O(\bar{k}\log n)\) tests while attaining decoding time \(O(\bar{k}^{1+δ}\log n)\) for any fixed \(δ>0\).
☆ Generating transition states of chemical reactions via distance-geometry-based flow matching
Transition states (TSs) are crucial for understanding reaction mechanisms, yet their exploration is limited by the complexity of experimental and computational approaches. Here we propose TS-DFM, a flow matching framework that predicts TSs from reactants and products. By operating in molecular distance geometry space, TS-DFM explicitly captures the dynamic changes of interatomic distances in chemical reactions. A network structure named TSDVNet is designed to learn the velocity field for generating TS geometries accurately. On the benchmark dataset Transition1X, TS-DFM outperforms the previous state-of-the-art method React-OT by 30\% in structural accuracy. These predicted TSs provide high-quality initial structures, accelerating the convergence of CI-NEB optimization. Additionally, TS-DFM can identify alternative reaction paths. In our experiments, even a more favorable TS with lower energy barrier is discovered. Further tests on RGD1 dataset confirm its strong generalization ability on unseen molecules and reaction types, highlighting its potential for facilitating reaction exploration.
☆ Intrinsic preservation of plasticity in continual quantum learning
Artificial intelligence in dynamic, real-world environments requires the capacity for continual learning. However, standard deep learning suffers from a fundamental issue: loss of plasticity, in which networks gradually lose their ability to learn from new data. Here we show that quantum learning models naturally overcome this limitation, preserving plasticity over long timescales. We demonstrate this advantage systematically across a broad spectrum of tasks from multiple learning paradigms, including supervised learning and reinforcement learning, and diverse data modalities, from classical high-dimensional images to quantum-native datasets. Although classical models exhibit performance degradation correlated with unbounded weight and gradient growth, quantum neural networks maintain consistent learning capabilities regardless of the data or task. We identify the origin of the advantage as the intrinsic physical constraints of quantum models. Unlike classical networks where unbounded weight growth leads to landscape ruggedness or saturation, the unitary constraints confine the optimization to a compact manifold. Our results suggest that the utility of quantum computing in machine learning extends beyond potential speedups, offering a robust pathway for building adaptive artificial intelligence and lifelong learners.
comment: 11 pages, 5 figures and supplementary information
☆ Parrot: Persuasion and Agreement Robustness Rating of Output Truth -- A Sycophancy Robustness Benchmark for LLMs
This study presents PARROT (Persuasion and Agreement Robustness Rating of Output Truth), a robustness focused framework designed to measure the degradation in accuracy that occurs under social pressure exerted on users through authority and persuasion in large language models (LLMs) the phenomenon of sycophancy (excessive conformity). PARROT (i) isolates causal effects by comparing the neutral version of the same question with an authoritatively false version using a double-blind evaluation, (ii) quantifies confidence shifts toward the correct and imposed false responses using log-likelihood-based calibration tracking, and (iii) systematically classifies failure modes (e.g., robust correct, sycophantic agreement, reinforced error, stubborn error, self-correction, etc.) using an eight-state behavioral taxonomy. We evaluated 22 models using 1,302 MMLU-style multiple-choice questions across 13 domains and domain-specific authority templates. Findings show marked heterogeneity: advanced models (e.g., GPT-5, GPT-4.1, Claude Sonnet 4.5) exhibit low "follow rates" ($\leq 11\%$, GPT-5: 4\%) and minimal accuracy loss, while older/smaller models show severe epistemic collapse (GPT-4: 80\%, Qwen 2.5-1.5B: 94\%). The danger is not limited to response changes; weak models reduce confidence in the correct response while increasing confidence in the imposed incorrect response. While international law and global knowledge at the domain level exhibit high fragility, elementary mathematics is relatively resilient. Consequently, we argue that the goal of "resistance to overfitting pressure" should be addressed as a primary objective alongside accuracy, harm avoidance, and privacy for safe deployment in the real world.
☆ DelTriC: A Novel Clustering Method with Accurate Outlier AISTATS
The paper introduces DelTriC (Delaunay Triangulation Clustering), a clustering algorithm which integrates PCA/UMAP-based projection, Delaunay triangulation, and a novel back-projection mechanism to form clusters in the original high-dimensional space. DelTriC decouples neighborhood construction from decision-making by first triangulating in a low-dimensional proxy to index local adjacency, and then back-projecting to the original space to perform robust edge pruning, merging, and anomaly detection. DelTriC can outperform traditional methods such as k-means, DBSCAN, and HDBSCAN in many scenarios; it is both scalable and accurate, and it also significantly improves outlier detection.
comment: 10 pages, submitted to AISTATS
☆ Reconstruction of Surface EMG Signal using IMU data for Upper Limb Actions
Surface Electromyography (sEMG) provides vital insights into muscle function, but it can be noisy and challenging to acquire. Inertial Measurement Units (IMUs) provide a robust and wearable alternative to motion capture systems. This paper investigates the synthesis of normalized sEMG signals from 6-axis IMU data using a deep learning approach. We collected simultaneous sEMG and IMU data sampled at 1~KHz for various arm movements. A Sliding-Window-Wave-Net model, based on dilated causal convolutions, was trained to map the IMU data to the sEMG signal. The results show that the model successfully predicts the timing and general shape of muscle activations. Although peak amplitudes were often underestimated, the high temporal fidelity demonstrates the feasibility of using this method for muscle intent detection in applications such as prosthetics and rehabilitation biofeedback.
comment: 5 pages, 5 figures
☆ Investigating self-supervised representations for audio-visual deepfake detection
Self-supervised representations excel at many vision and speech tasks, but their potential for audio-visual deepfake detection remains underexplored. Unlike prior work that uses these features in isolation or buried within complex architectures, we systematically evaluate them across modalities (audio, video, multimodal) and domains (lip movements, generic visual content). We assess three key dimensions: detection effectiveness, interpretability of encoded information, and cross-modal complementarity. We find that most self-supervised features capture deepfake-relevant information, and that this information is complementary. Moreover, models primarily attend to semantically meaningful regions rather than spurious artifacts. Yet none generalize reliably across datasets. This generalization failure likely stems from dataset characteristics, not from the features themselves latching onto superficial patterns. These results expose both the promise and fundamental challenges of self-supervised representations for deepfake detection: while they learn meaningful patterns, achieving robust cross-domain performance remains elusive.
☆ On the Predictive Skill of Artificial Intelligence-based Weather Models for Extreme Events using Uncertainty Quantification
Accurate prediction of extreme weather events remains a major challenge for artificial intelligence based weather prediction systems. While deterministic models such as FuXi, GraphCast, and SFNO have achieved competitive forecast skill relative to numerical weather prediction, their ability to represent uncertainty and capture extremes is still limited. This study investigates how state of the art deterministic artificial intelligence based models respond to initial-condition perturbations and evaluates the resulting ensembles in forecasting extremes. Using three perturbation strategies (Gaussian noise, Hemispheric Centered Bred Vectors, and Huge Ensembles), we generate 50 member ensembles for two major events in August 2022: the Pakistan floods and the China heatwave. Ensemble skill is assessed against ERA5 and compared with IFS ENS and the probabilistic AIFSENS model using deterministic and probabilistic metrics. Results show that flow dependent perturbations produce the most realistic ensemble spread and highest probabilistic skill, narrowing but not closing the performance gap with numerical weather prediction ensembles. Across variables, artificial intelligence based weather models capture temperature extremes more effectively than precipitation. These findings demonstrate that input perturbations can extend deterministic models toward probabilistic forecasting, paving the way for approaches that combine flow dependent perturbations with generative or latent-space uncertainty modeling for reliable artificial intelligence-driven early warning systems.
comment: 24 pages, 12 figures
☆ FireScope: Wildfire Risk Prediction with a Chain-of-Thought Oracle
Predicting wildfire risk is a reasoning-intensive spatial problem that requires the integration of visual, climatic, and geographic factors to infer continuous risk maps. Existing methods lack the causal reasoning and multimodal understanding required for reliable generalization. We introduce $\textbf{FireScope-Bench}$, a large-scale dataset and benchmark that couples Sentinel-2 imagery and climate data with expert-defined risk rasters across the USA, and real wildfire events in Europe for cross-continental evaluation. Building on this dataset, we propose $\textbf{FireScope}$, a VLM-based reasoning-to-generation framework that learns from both reinforcement learning and visual supervision to predict risk rasters with complementary reasoning traces. When trained in the USA and tested in Europe, $\textbf{FireScope}$ achieves substantial performance gains, while expert feedback and automated analysis confirm that its reasoning traces are faithful and semantically meaningful. Our findings demonstrate that reasoning can ground raster prediction models, improving both generalization and interpretability. To our knowledge, this is the first framework to (1) demonstrate that language-based reasoning can improve generalization in visual generation, (2) propose a high-resolution wildfire risk model that can be applied across continents, and (3) enable systematic studies of robust cross-continental generalization for multimodal fire risk models. We believe that $\textbf{FireScope-Bench}$ has the potential to serve as a foundation for advancing reasoning-driven, interpretable and generalizable spatial modeling. Data and source code will be made publicly available.
☆ MIR: Efficient Exploration in Episodic Multi-Agent Reinforcement Learning via Mutual Intrinsic Reward
Episodic rewards present a significant challenge in reinforcement learning. While intrinsic reward methods have demonstrated effectiveness in single-agent rein-forcement learning scenarios, their application to multi-agent reinforcement learn-ing (MARL) remains problematic. The primary difficulties stem from two fac-tors: (1) the exponential sparsity of joint action trajectories that lead to rewards as the exploration space expands, and (2) existing methods often fail to account for joint actions that can influence team states. To address these challenges, this paper introduces Mutual Intrinsic Reward (MIR), a simple yet effective enhancement strategy for MARL with extremely sparse rewards like episodic rewards. MIR incentivizes individual agents to explore actions that affect their teammates, and when combined with original strategies, effectively stimulates team exploration and improves algorithm performance. For comprehensive experimental valida-tion, we extend the representative single-agent MiniGrid environment to create MiniGrid-MA, a series of MARL environments with sparse rewards. Our evalu-ation compares the proposed method against state-of-the-art approaches in the MiniGrid-MA setting, with experimental results demonstrating superior perfor-mance.
☆ Four decades of circumpolar super-resolved satellite land surface temperature data
Land surface temperature (LST) is an essential climate variable (ECV) crucial for understanding land-atmosphere energy exchange and monitoring climate change, especially in the rapidly warming Arctic. Long-term satellite-based LST records, such as those derived from the Advanced Very High Resolution Radiometer (AVHRR), are essential for detecting climate trends. However, the coarse spatial resolution of AVHRR's global area coverage (GAC) data limit their utility for analyzing fine-scale permafrost dynamics and other surface processes in the Arctic. This paper presents a new 42 years pan-Arctic LST dataset, downscaled from AVHRR GAC to 1 km with a super-resolution algorithm based on a deep anisotropic diffusion model. The model is trained on MODIS LST data, using coarsened inputs and native-resolution outputs, guided by high-resolution land cover, digital elevation, and vegetation height maps. The resulting dataset provides twice-daily, 1 km LST observations for the entire pan-Arctic region over four decades. This enhanced dataset enables improved modelling of permafrost, reconstruction of near-surface air temperature, and assessment of surface mass balance of the Greenland Ice Sheet. Additionally, it supports climate monitoring efforts in the pre-MODIS era and offers a framework adaptable to future satellite missions for thermal infrared observation and climate data record continuity.
☆ OmniLens++: Blind Lens Aberration Correction via Large LensLib Pre-Training and Latent PSF Representation
Emerging deep-learning-based lens library pre-training (LensLib-PT) pipeline offers a new avenue for blind lens aberration correction by training a universal neural network, demonstrating strong capability in handling diverse unknown optical degradations. This work proposes the OmniLens++ framework, which resolves two challenges that hinder the generalization ability of existing pipelines: the difficulty of scaling data and the absence of prior guidance characterizing optical degradation. To improve data scalability, we expand the design specifications to increase the degradation diversity of the lens source, and we sample a more uniform distribution by quantifying the spatial-variation patterns and severity of optical degradation. In terms of model design, to leverage the Point Spread Functions (PSFs), which intuitively describe optical degradation, as guidance in a blind paradigm, we propose the Latent PSF Representation (LPR). The VQVAE framework is introduced to learn latent features of LensLib's PSFs, which is assisted by modeling the optical degradation process to constrain the learning of degradation priors. Experiments on diverse aberrations of real-world lenses and synthetic LensLib show that OmniLens++ exhibits state-of-the-art generalization capacity in blind aberration correction. Beyond performance, the AODLibpro is verified as a scalable foundation for more effective training across diverse aberrations, and LPR can further tap the potential of large-scale LensLib. The source code and datasets will be made publicly available at https://github.com/zju-jiangqi/OmniLens2.
comment: The source code and datasets will be made publicly available at https://github.com/zju-jiangqi/OmniLens2
☆ Layer-wise Weight Selection for Power-Efficient Neural Network Acceleration
Systolic array accelerators execute CNNs with energy dominated by the switching activity of multiply accumulate (MAC) units. Although prior work exploits weight dependent MAC power for compression, existing methods often use global activation models, coarse energy proxies, or layer-agnostic policies, which limits their effectiveness on real hardware. We propose an energy aware, layer-wise compression framework that explicitly leverages MAC and layer level energy characteristics. First, we build a layer-aware MAC energy model that combines per-layer activation statistics with an MSB-Hamming distance grouping of 22-bit partial sum transitions, and integrate it with a tile-level systolic mapping to estimate convolution-layer energy. On top of this model, we introduce an energy accuracy co-optimized weight selection algorithm within quantization aware training and an energy-prioritized layer-wise schedule that compresses high energy layers more aggressively under a global accuracy constraint. Experiments on different CNN models demonstrate up to 58.6\% energy reduction with 2-3\% accuracy drop, outperforming a state-of-the-art power-aware baseline.
☆ AutoGraphAD: A novel approach using Variational Graph Autoencoders for anomalous network flow detection
Network Intrusion Detection Systems (NIDS) are essential tools for detecting network attacks and intrusions. While extensive research has explored the use of supervised Machine Learning for attack detection and characterisation, these methods require accurately labelled datasets, which are very costly to obtain. Moreover, existing public datasets have limited and/or outdated attacks, and many of them suffer from mislabelled data. To reduce the reliance on labelled data, we propose AutoGraphAD, a novel unsupervised anomaly detection approach based on a Heterogeneous Variational Graph Autoencoder. AutoGraphAD operates on heterogeneous graphs, made from connection and IP nodes that capture network activity within a time window. The model is trained using unsupervised and contrastive learning, without relying on any labelled data. The reconstruction, structural loss, and KL divergence are then weighted and combined in an anomaly score that is then used for anomaly detection. Overall, AutoGraphAD yields the same, and in some cases better, results than previous unsupervised approaches, such as Anomal-E, but without requiring costly downstream anomaly detectors. As a result, AutoGraphAD achieves around 1.18 orders of magnitude faster training and 1.03 orders of magnitude faster inference, which represents a significant advantage for operational deployment.
comment: 11 pages, 9 figures
☆ Dissecting Quantum Reinforcement Learning: A Systematic Evaluation of Key Components
Parameterised quantum circuit (PQC) based Quantum Reinforcement Learning (QRL) has emerged as a promising paradigm at the intersection of quantum computing and reinforcement learning (RL). By design, PQCs create hybrid quantum-classical models, but their practical applicability remains uncertain due to training instabilities, barren plateaus (BPs), and the difficulty of isolating the contribution of individual pipeline components. In this work, we dissect PQC based QRL architectures through a systematic experimental evaluation of three aspects recurrently identified as critical: (i) data embedding strategies, with Data Reuploading (DR) as an advanced approach; (ii) ansatz design, particularly the role of entanglement; and (iii) post-processing blocks after quantum measurement, with a focus on the underexplored Output Reuse (OR) technique. Using a unified PPO-CartPole framework, we perform controlled comparisons between hybrid and classical agents under identical conditions. Our results show that OR, though purely classical, exhibits distinct behaviour in hybrid pipelines, that DR improves trainability and stability, and that stronger entanglement can degrade optimisation, offsetting classical gains. Together, these findings provide controlled empirical evidence of the interplay between quantum and classical contributions, and establish a reproducible framework for systematic benchmarking and component-wise analysis in QRL.
☆ Geometric-Disentangelment Unlearning
Machine unlearning, the removal of a training subset's influence from a deployed model, is critical for privacy preservation and model reliability, yet gradient ascent on forget samples often harms retained knowledge. Existing approaches face a persistent tradeoff between effective forgetting and preservation on the retain set. While previous methods provide useful heuristics, they often lack a formal analysis on how exactly forgetting updates harm retained knowledge, and whether the side effects can be removed with theoretical guarantees. To explore a theoretically sound and simple solution, we start from the first principle on how performance on the retain set is actually affected: a first-order analysis of the local change of the retain loss under small parameter updates during model training. We start from a crisp equivalence: the retain loss is unchanged to first order iff the update direction is orthogonal to the subspace spanned by retain gradients ("retain-invariant"). This identifies the entangled component as the tangential part of forget update within the retain-gradient subspace, and characterizes disentanglement as orthogonality. Guided by this, we propose the Geometric-disentanglement Unlearning (GU) that decomposes any candidate forget gradient update into tangential and normal components to retain space and executes only the normal component. Under a standard trust-region budget, the projected direction aligned with the raw forget gradient is optimal among all first-order retain-invariant moves, and we also derive the optimal projected direction for joint forget-retain updating objectives. Our method is plug-and-play and can be attached to existing gradient-based unlearning procedures to mitigate side effects. GU achieves consistent improvement on various methods across three benchmarks TOFU, MUSE, and WMDP.
comment: 27 Pages
☆ Why Do Language Model Agents Whistleblow?
The deployment of Large Language Models (LLMs) as tool-using agents causes their alignment training to manifest in new ways. Recent work finds that language models can use tools in ways that contradict the interests or explicit instructions of the user. We study LLM whistleblowing: a subset of this behavior where models disclose suspected misconduct to parties beyond the dialog boundary (e.g., regulatory agencies) without user instruction or knowledge. We introduce an evaluation suite of diverse and realistic staged misconduct scenarios to assess agents for this behavior. Across models and settings, we find that: (1) the frequency of whistleblowing varies widely across model families, (2) increasing the complexity of the task the agent is instructed to complete lowers whistleblowing tendencies, (3) nudging the agent in the system prompt to act morally substantially raises whistleblowing rates, and (4) giving the model more obvious avenues for non-whistleblowing behavior, by providing more tools and a detailed workflow to follow, decreases whistleblowing rates. Additionally, we verify the robustness of our dataset by testing for model evaluation awareness, and find that both black-box methods and probes on model activations show lower evaluation awareness in our settings than in comparable previous work.
☆ An Efficient Computational Framework for Discrete Fuzzy Numbers Based on Total Orders
Discrete fuzzy numbers, and in particular those defined over a finite chain $L_n = \{0, \ldots, n\}$, have been effectively employed to represent linguistic information within the framework of fuzzy systems. Research on total (admissible) orderings of such types of fuzzy subsets, and specifically those belonging to the set $\mathcal{D}_1^{L_n\rightarrow Y_m}$ consisting of discrete fuzzy numbers $A$ whose support is a closed subinterval of the finite chain $L_n = \{0, 1, \ldots, n\}$ and whose membership values $A(x)$, for $x \in L_n$, belong to the set $Y_m = \{ 0 = y_1 < y_2 < \cdots < y_{m-1} < y_m = 1 \}$, has facilitated the development of new methods for constructing logical connectives, based on a bijective function, called $\textit{pos function}$, that determines the position of each $A \in \mathcal{D}_1^{L_n\rightarrow Y_m}$. For this reason, in this work we revisit the problem by introducing algorithms that exploit the combinatorial structure of total (admissible) orders to compute the $\textit{pos}$ function and its inverse with exactness. The proposed approach achieves a complexity of $\mathcal{O}(n^{2} m \log n)$, which is quadratic in the size of the underlying chain ($n$) and linear in the number of membership levels ($m$). The key point is that the dominant factor is $m$, ensuring scalability with respect to the granularity of membership values. The results demonstrate that this formulation substantially reduces computational cost and enables the efficient implementation of algebraic operations -- such as aggregation and implication -- on the set of discrete fuzzy numbers.
comment: 19 pages, 2 figures. Submitted to Computational and Applied Mathematics (Springer)
☆ Hash Collisions in Molecular Fingerprints: Effects on Property Prediction and Bayesian Optimization NeurIPS 2025
Molecular fingerprinting methods use hash functions to create fixed-length vector representations of molecules. However, hash collisions cause distinct substructures to be represented with the same feature, leading to overestimates in molecular similarity calculations. We investigate whether using exact fingerprints improves accuracy compared to standard compressed fingerprints in molecular property prediction and Bayesian optimization where the underlying predictive model is a Gaussian process. We find that using exact fingerprints yields a small yet consistent improvement in predictive accuracy on five molecular property prediction benchmarks from the DOCKSTRING dataset. However, these gains did not translate to significant improvements in Bayesian optimization performance.
comment: NeurIPS 2025 AI4Science workshop. Code: https://github.com/wvirany/molcollisions Openreview: https://openreview.net/forum?id=POgOHi8a7t
☆ Step-E: A Differentiable Data Cleaning Framework for Robust Learning with Noisy Labels
Training data collected in the wild often contain noisy labels and outliers that substantially degrade the performance and reliability of deep neural networks. While data cleaning is commonly applied as a separate preprocessing stage, such two-stage pipelines neither fully exploit feedback from the downstream model nor adapt to unknown noise patterns. We propose Step-E, a simple framework that integrates sample selection and model learning into a single optimization process. At each epoch, Step-E ranks samples by loss and gradually increases the fraction of high-loss examples that are excluded from gradient updates after a brief warm-up stage, yielding an online curriculum that focuses on easy and consistent examples and eventually ignores persistent outliers. On CIFAR-100N, Step-E improves the test accuracy of a ResNet-18 model from 43.3% (+/- 0.7%) to 50.4% (+/- 0.9%), clearly outperforming loss truncation, self-paced learning, and one-shot filtering while approaching the clean-label oracle at 60.5% (+/- 0.2%). On CIFAR-10N (aggre), Step-E also improves over the noisy baseline (85.3% vs. 83.9%) and nearly matches the clean-label oracle (85.9%), with only moderate training-time overhead.
comment: 12 pages, 4 figures
☆ Energy Scaling Laws for Diffusion Models: Quantifying Compute and Carbon Emissions in Image Generation
The rapidly growing computational demands of diffusion models for image generation have raised significant concerns about energy consumption and environmental impact. While existing approaches to energy optimization focus on architectural improvements or hardware acceleration, there is a lack of principled methods to predict energy consumption across different model configurations and hardware setups. We propose an adaptation of Kaplan scaling laws to predict GPU energy consumption for diffusion models based on computational complexity (FLOPs). Our approach decomposes diffusion model inference into text encoding, iterative denoising, and decoding components, with the hypothesis that denoising operations dominate energy consumption due to their repeated execution across multiple inference steps. We conduct comprehensive experiments across four state-of-the-art diffusion models (Stable Diffusion 2, Stable Diffusion 3.5, Flux, and Qwen) on three GPU architectures (NVIDIA A100, A4000, A6000), spanning various inference configurations including resolution (256x256 to 1024x1024), precision (fp16/fp32), step counts (10-50), and classifier-free guidance settings. Our energy scaling law achieves high predictive accuracy within individual architectures (R-squared > 0.9) and exhibits strong cross-architecture generalization, maintaining high rank correlations across models and enabling reliable energy estimation for unseen model-hardware combinations. These results validate the compute-bound nature of diffusion inference and provide a foundation for sustainable AI deployment planning and carbon footprint estimation.
comment: Accepted at EurIPS 2025 workshop "Rethinking AI: Efficiency, Frugality, and Sustainability"
☆ Mask the Redundancy: Evolving Masking Representation Learning for Multivariate Time-Series Clustering AAAI 2026
Multivariate Time-Series (MTS) clustering discovers intrinsic grouping patterns of temporal data samples. Although time-series provide rich discriminative information, they also contain substantial redundancy, such as steady-state machine operation records and zero-output periods of solar power generation. Such redundancy diminishes the attention given to discriminative timestamps in representation learning, thus leading to performance bottlenecks in MTS clustering. Masking has been widely adopted to enhance the MTS representation, where temporal reconstruction tasks are designed to capture critical information from MTS. However, most existing masking strategies appear to be standalone preprocessing steps, isolated from the learning process, which hinders dynamic adaptation to the importance of clustering-critical timestamps. Accordingly, this paper proposes the Evolving-masked MTS Clustering (EMTC) method, with its model architecture composed of Importance-aware Variate-wise Masking (IVM) and Multi-Endogenous Views (MEV) representation learning modules. IVM adaptively guides the model in learning more discriminative representations for clustering, while the MEV-based reconstruction and contrastive learning pathways enhance the generalization. That is, the MEV reconstruction facilitates multi-perspective complementary to prevent the masking from premature convergence, and the clustering-guided contrastive learning facilitates the joint optimization of representation and clustering. Extensive experiments on 15 real benchmark datasets demonstrate the superiority of EMTC in comparison with eight SOTA methods, where the EMTC achieves an average improvement of 4.85% over the strongest baselines.
comment: Accepted to AAAI 2026
☆ Generative MIMO Beam Map Construction for Location Recovery and Beam Tracking
Machine learning (ML) has greatly advanced data-driven channel modeling and resource optimization in wireless communication systems. However, most existing ML-based methods rely on large, accurately labeled datasets with location information, which are often difficult and costly to obtain. This paper proposes a generative framework to recover location labels directly from sequences of sparse channel state information (CSI) measurements, without explicit location labels for radio map construction. Instead of directly storing raw CSI, we learn a compact low-dimensional radio map embedding and leverage a generative model to reconstruct the high-dimensional CSI. Specifically, to address the uncertainty of sparse CSI, a dual-scale feature extraction scheme is designed to enhance feature representation by jointly exploiting correlations from angular space and across neighboring samples. We develop a hybrid recurrent-convolutional encoder to learn mobility patterns, which combines a truncation strategy and multi-scale convolutions in the recurrent neural network (RNN) to ensure feature robustness against short-term fluctuations. Unlike conventional Gaussian priors in latent space, we embed a learnable radio map to capture the location information by encoding high-level positional features from CSI measurements. Finally, a diffusion-based generative decoder reconstructs the full CSI with high fidelity by conditioning on the positional features in the radio map. Numerical experiments demonstrate that the proposed model can improve localization accuracy by over 30% and achieve a 20% capacity gain in non-line-of-sight (NLOS) scenarios compared with model-based Kalman filter approaches.
☆ FIRM: Federated In-client Regularized Multi-objective Alignment for Large Language Models
Aligning Large Language Models (LLMs) with human values often involves balancing multiple, conflicting objectives such as helpfulness and harmlessness. Training these models is computationally intensive, and centralizing the process raises significant data privacy concerns. Federated Learning (FL) offers a compelling alternative, but existing Federated Multi-Objective Optimization (FMOO) methods face severe communication bottlenecks as their reliance on transmitting multiple gradients to a server is unscalable for large models. We introduce FIRM (Federated In-client Regularized Multi-objective alignment), a novel algorithm that achieves both client disagreement drift mitigation and communication efficiency. In FIRM, each client locally solves a regularized multi-objective optimization problem. By directly mitigating client disagreement drift through in-client regularization, our method eliminates the need for the multi-gradient transmissions common in prior works. Consequently, clients need only to transmit a single set of adapted parameters, maintaining high communication efficiency. We prove that our algorithm converges to Pareto-stationary points and, to our knowledge, provide the first finite-time convergence guarantees for this federated multi-objective alignment setting. Empirically, we show that FIRM leads to smoother training dynamics, reduced client disagreement drift, and improved reward trade-offs compared to baselines. We further propose a method to incorporate a preference over the objectives and report empirical Pareto plots, demonstrating that FIRM can smoothly adapt trade-offs between objectives in response to specified preferences.
☆ A Diversity-optimized Deep Ensemble Approach for Accurate Plant Leaf Disease Detection
Plant diseases pose a significant threat to global agriculture, causing over $220 billion in annual economic losses and jeopardizing food security. The timely and accurate detection of these diseases from plant leaf images is critical to mitigating their adverse effects. Deep neural network Ensembles (Deep Ensembles) have emerged as a powerful approach to enhancing prediction accuracy by leveraging the strengths of diverse Deep Neural Networks (DNNs). However, selecting high-performing ensemble member models is challenging due to the inherent difficulty in measuring ensemble diversity. In this paper, we introduce the Synergistic Diversity (SQ) framework to enhance plant disease detection accuracy. First, we conduct a comprehensive analysis of the limitations of existing ensemble diversity metrics (denoted as Q metrics), which often fail to identify optimal ensemble teams. Second, we present the SQ metric, a novel measure that captures the synergy between ensemble members and consistently aligns with ensemble accuracy. Third, we validate our SQ approach through extensive experiments on a plant leaf image dataset, which demonstrates that our SQ metric substantially improves ensemble selection and enhances detection accuracy. Our findings pave the way for a more reliable and efficient image-based plant disease detection.
☆ Gradient flow for deep equilibrium single-index models
Deep equilibrium models (DEQs) have recently emerged as a powerful paradigm for training infinitely deep weight-tied neural networks that achieve state of the art performance across many modern machine learning tasks. Despite their practical success, theoretically understanding the gradient descent dynamics for training DEQs remains an area of active research. In this work, we rigorously study the gradient descent dynamics for DEQs in the simple setting of linear models and single-index models, filling several gaps in the literature. We prove a conservation law for linear DEQs which implies that the parameters remain trapped on spheres during training and use this property to show that gradient flow remains well-conditioned for all time. We then prove linear convergence of gradient descent to a global minimizer for linear DEQs and deep equilibrium single-index models under appropriate initialization and with a sufficiently small step size. Finally, we validate our theoretical findings through experiments.
☆ ToC: Tree-of-Claims Search with Multi-Agent Language Models AAAI 2026
Optimizing patent claims is a critical yet challenging task, demanding careful balance between maximizing novelty and preserving legal scope. Manual claim drafting is labor-intensive, costly, and inherently inconsistent, while conventional Large Language Models (LLMs) often lack the structured, iterative reasoning essential for precise claim refinement. To address these challenges, we introduce Tree of Claims (ToC), an innovative framework that redefines claim editing as a guided search problem. ToC synergistically integrates Monte Carlo Tree Search (MCTS) with a collaborative multi-agent system, comprising an LLM-based EditorAgent that proposes contextually grounded edits, and an ExaminerAgent that mimics patent examiner critiques through structured, chain-of-thought analyses of novelty and prior art disclosure. Driven by a carefully designed multi-objective reward function, ToC jointly optimizes novelty, scope retention, and semantic coherence. Experimental evaluation on a benchmark of 1145 claims demonstrates that ToC significantly outperforms standard LLMs in zero-shot and few-shot scenarios, achieving an average composite score improvement of 8\%, and up to 9\% in certain cases. Extensive experiments, including detailed ablation studies, validate ToC's efficacy in generating superior, legally robust claim revisions. Overall, ToC establishes a transparent, controllable, and interpretable methodology that effectively bridges advanced LLM reasoning capabilities with strategic MCTS planning for structured patent claim optimization.The source code is available at https://github.com/ysy2003/ToC.
comment: Accepted by AAAI 2026 (Oral)
☆ Real-Time Cooked Food Image Synthesis and Visual Cooking Progress Monitoring on Edge Devices
Synthesizing realistic cooked food images from raw inputs on edge devices is a challenging generative task, requiring models to capture complex changes in texture, color and structure during cooking. Existing image-to-image generation methods often produce unrealistic results or are too resource-intensive for edge deployment. We introduce the first oven-based cooking-progression dataset with chef-annotated doneness levels and propose an edge-efficient recipe and cooking state guided generator that synthesizes realistic food images conditioned on raw food image. This formulation enables user-preferred visual targets rather than fixed presets. To ensure temporal consistency and culinary plausibility, we introduce a domain-specific \textit{Culinary Image Similarity (CIS)} metric, which serves both as a training loss and a progress-monitoring signal. Our model outperforms existing baselines with significant reductions in FID scores (30\% improvement on our dataset; 60\% on public datasets)
comment: 13 pages, 11 figures
☆ Neighbor GRPO: Contrastive ODE Policy Optimization Aligns Flow Models
Group Relative Policy Optimization (GRPO) has shown promise in aligning image and video generative models with human preferences. However, applying it to modern flow matching models is challenging because of its deterministic sampling paradigm. Current methods address this issue by converting Ordinary Differential Equations (ODEs) to Stochastic Differential Equations (SDEs), which introduce stochasticity. However, this SDE-based GRPO suffers from issues of inefficient credit assignment and incompatibility with high-order solvers for fewer-step sampling. In this paper, we first reinterpret existing SDE-based GRPO methods from a distance optimization perspective, revealing their underlying mechanism as a form of contrastive learning. Based on this insight, we propose Neighbor GRPO, a novel alignment algorithm that completely bypasses the need for SDEs. Neighbor GRPO generates a diverse set of candidate trajectories by perturbing the initial noise conditions of the ODE and optimizes the model using a softmax distance-based surrogate leaping policy. We establish a theoretical connection between this distance-based objective and policy gradient optimization, rigorously integrating our approach into the GRPO framework. Our method fully preserves the advantages of deterministic ODE sampling, including efficiency and compatibility with high-order solvers. We further introduce symmetric anchor sampling for computational efficiency and group-wise quasi-norm reweighting to address reward flattening. Extensive experiments demonstrate that Neighbor GRPO significantly outperforms SDE-based counterparts in terms of training cost, convergence speed, and generation quality.
☆ A novel approach to classification of ECG arrhythmia types with latent ODEs NeurIPS 2025
12-lead ECGs with high sampling frequency are the clinical gold standard for arrhythmia detection, but their short-term, spot-check nature often misses intermittent events. Wearable ECGs enable long-term monitoring but suffer from irregular, lower sampling frequencies due to battery constraints, making morphology analysis challenging. We present an end-to-end classification pipeline to address these issues. We train a latent ODE to model continuous ECG waveforms and create robust feature vectors from high-frequency single-channel signals. We construct three latent vectors per waveform via downsampling the initial 360 Hz ECG to 90 Hz and 45 Hz. We then use a gradient boosted tree to classify these vectors and test robustness across frequencies. Performance shows minimal degradation, with macro-averaged AUC-ROC values of 0.984, 0.978, and 0.976 at 360 Hz, 90 Hz, and 45 Hz, respectively, suggesting a way to sidestep the trade-off between signal fidelity and battery life. This enables smaller wearables, promoting long-term monitoring of cardiac health.
comment: Accepted into NeurIPS 2025 Learning from Time Series for Health workshop
☆ CroTad: A Contrastive Reinforcement Learning Framework for Online Trajectory Anomaly Detection VLDB
Detecting trajectory anomalies is a vital task in modern Intelligent Transportation Systems (ITS), enabling the identification of unsafe, inefficient, or irregular travel behaviours. While deep learning has emerged as the dominant approach, several key challenges remain unresolved. First, sub-trajectory anomaly detection, capable of pinpointing the precise segments where anomalies occur, remains underexplored compared to whole-trajectory analysis. Second, many existing methods depend on carefully tuned thresholds, limiting their adaptability in real-world applications. Moreover, the irregular sampling of trajectory data and the presence of noise in training sets further degrade model performance, making it difficult to learn reliable representations of normal routes. To address these challenges, we propose a contrastive reinforcement learning framework for online trajectory anomaly detection, CroTad. Our method is threshold-free and robust to noisy, irregularly sampled data. By incorporating contrastive learning, CroTad learns to extract diverse normal travel patterns for different itineraries and effectively distinguish anomalous behaviours at both sub-trajectory and point levels. The detection module leverages deep reinforcement learning to perform online, real-time anomaly scoring, enabling timely and fine-grained identification of abnormal segments. Extensive experiments on two real-world datasets demonstrate the effectiveness and robustness of our framework across various evaluation scenarios.
comment: 18 pages, 4 figures, will be submitted to VLDBJ
☆ A Hybrid Computational Intelligence Framework for scRNA-seq Imputation: Integrating scRecover and Random Forests
Single-cell RNA sequencing (scRNA-seq) enables transcriptomic profiling at cellular resolution but suffers from pervasive dropout events that obscure biological signals. We present SCR-MF, a modular two-stage workflow that combines principled dropout detection using scRecover with robust non-parametric imputation via missForest. Across public and simulated datasets, SCR-MF achieves robust and interpretable performance comparable to or exceeding existing imputation methods in most cases, while preserving biological fidelity and transparency. Runtime analysis demonstrates that SCR-MF provides a competitive balance between accuracy and computational efficiency, making it suitable for mid-scale single-cell datasets.
☆ PepEVOLVE: Position-Aware Dynamic Peptide Optimization via Group-Relative Advantage
Macrocyclic peptides are an emerging modality that combines biologics-like affinity with small-molecule-like developability, but their vast combinatorial space and multi-parameter objectives make lead optimization slow and challenging. Prior generative approaches such as PepINVENT require chemists to pre-specify mutable positions for optimization, choices that are not always known a priori, and rely on static pretraining and optimization algorithms that limit the model's ability to generalize and effectively optimize peptide sequences. We introduce PepEVOLVE, a position-aware, dynamic framework that learns both where to edit and how to dynamically optimize peptides for multi-objective improvement. PepEVOLVE (i) augments pretraining with dynamic masking and CHUCKLES shifting to improve generalization, (ii) uses a context-free multi-armed bandit router that discovers high-reward residues, and (iii) couples a novel evolving optimization algorithm with group-relative advantage to stabilize reinforcement updates. During in silico evaluations, the router policy reliably learns and concentrates probability on chemically meaningful sites that influence the peptide's properties. On a therapeutically motivated Rev-binding macrocycle benchmark, PepEVOLVE outperformed PepINVENT by reaching higher mean scores (approximately 0.8 vs. 0.6), achieving best candidates with a score of 0.95 (vs. 0.87), and converging in fewer steps under the task of optimizing permeability and lipophilicity with structural constraints. Overall, PepEVOLVE offers a practical, reproducible path to peptide lead optimization when optimal edit sites are unknown, enabling more efficient exploration and improving design quality across multiple objectives.
☆ Predicting Talent Breakout Rate using Twitter and TV data
Early detection of rising talents is of paramount importance in the field of advertising. In this paper, we define a concept of talent breakout and propose a method to detect Japanese talents before their rise to stardom. The main focus of the study is to determine the effectiveness of combining Twitter and TV data on predicting time-dependent changes in social data. Although traditional time-series models are known to be robust in many applications, the success of neural network models in various fields (e.g.\ Natural Language Processing, Computer Vision, Reinforcement Learning) continues to spark an interest in the time-series community to apply new techniques in practice. Therefore, in order to find the best modeling approach, we have experimented with traditional, neural network and ensemble learning methods. We observe that ensemble learning methods outperform traditional and neural network models based on standard regression metrics. However, by utilizing the concept of talent breakout, we are able to assess the true forecasting ability of the models, where neural networks outperform traditional and ensemble learning methods in terms of precision and recall.
comment: 4 pages. Presented at the 34th Annual Conference of the Japanese Society for Artificial Intelligence (JSAI 2020), paper ID 1K3-ES-2-02
☆ Deep Improvement Supervision
Recently, it was shown that small, looped architectures, such as Tiny Recursive Models (TRMs), can outperform Large Language Models (LLMs) on complex reasoning tasks, including the Abstraction and Reasoning Corpus (ARC). In this work, we investigate a core question: how can we further improve the efficiency of these methods with minimal changes? To address this, we frame the latent reasoning of TRMs as a form of classifier-free guidance and implicit policy improvement algorithm. Building on these insights, we propose a novel training scheme that provides a target for each loop during training. We demonstrate that our approach significantly enhances training efficiency. Our method reduces the total number of forward passes by 18x and eliminates halting mechanisms, while maintaining quality comparable to standard TRMs. Notably, we achieve 24% accuracy on ARC-1 with only 0.8M parameters, outperforming most LLMs.
☆ PersonalizedRouter: Personalized LLM Routing via Graph-based User Preference Modeling
The growing number of Large Language Models (LLMs) with diverse capabilities and response styles provides users with a wider range of choices, which presents challenges in selecting appropriate LLMs, as user preferences vary in terms of performance, cost, and response style. Current LLM selection methods typically optimize for a single fixed objective, such as performance, cost, or a trade-off between them, and fail to learn individual user preferences from interaction data. To address these limitations, we propose PersonalizedRouter, a graph-based framework that models diverse user profiles and performs personalized LLM selection by leveraging interaction data that includes task context, queries, candidate LLMs, and user decisions. To capture contextual information between user queries and optimal LLMs, PersonalizedRouter converts the interaction data into a heterogeneous graph, where the relationships between different types of nodes are represented by edges. To evaluate adaptability across users, we design two strategies: the multi-cost-efficiency simulation strategy and the LLM-as-a-Judge strategy. In addition, we construct PersonaRoute-Bench, a large-scale benchmark with 1,000 simulated users and 10 LLMs. Experimental results show that PersonalizedRouter significantly outperforms existing LLM selection methods and surpasses the strongest methods by a large margin of 15.38% and 9.83% under two simulation strategies. On the PersonaRoute-Bench with 1,000 users, it further surpasses the best methods by 16.19% and 59.69% while maintaining higher efficiency. Moreover, PersonalizedRouter demonstrates strong few-shot generalization, achieving 64.81% and 85.80% of the fully trained model's performance when adapting to new users and new LLMs.
☆ Topologic Attention Networks: Attending to Direct and Indirect Neighbors through Gaussian Belief Propagation
Graph Neural Networks rely on local message passing, which limits their ability to model long-range dependencies in graphs. Existing approaches extend this range through continuous-time dynamics or dense self-attention, but both suffer from high computational cost and limited scalability. We propose Topologic Attention Networks, a new framework that applies topologic attention, a probabilistic mechanism that learns how information should flow through both direct and indirect connections in a graph. Unlike conventional attention that depends on explicit pairwise interactions, topologic attention emerges from the learned information propagation of the graph, enabling unified reasoning over local and global relationships. This method achieves provides state-of-the-art performance across all measured baseline models. Our implementation is available at https://github.com/Marshall-Rosenhoover/Topologic-Attention-Networks.
comment: 15 pages, 13 Figures
☆ Align & Invert: Solving Inverse Problems with Diffusion and Flow-based Models via Representational Alignment
Enforcing alignment between the internal representations of diffusion or flow-based generative models and those of pretrained self-supervised encoders has recently been shown to provide a powerful inductive bias, improving both convergence and sample quality. In this work, we extend this idea to inverse problems, where pretrained generative models are employed as priors. We propose applying representation alignment (REPA) between diffusion or flow-based models and a pretrained self-supervised visual encoder, such as DINOv2, to guide the reconstruction process at inference time. Although ground-truth signals are unavailable in inverse problems, we show that aligning model representations with approximate target features can substantially enhance reconstruction fidelity and perceptual realism. We provide theoretical results showing (a) the relation between the REPA regularization and a divergence measure in the DINOv2 embedding space, and (b) how REPA updates steer the model's internal representations toward those of the clean image. These results offer insights into the role of REPA in improving perceptual fidelity. Finally, we demonstrate the generality of our approach by integrating it into multiple state-of-the-art inverse problem solvers. Extensive experiments on super-resolution, box inpainting, Gaussian deblurring, and motion deblurring confirm that our method consistently improves reconstruction quality across tasks, while also providing substantial efficiency gains by reducing the number of required discretization steps without compromising the performance of the underlying solver.
♻ ☆ Generalizable Radio-Frequency Radiance Fields for Spatial Spectrum Synthesis
We present GRaF, Generalizable Radio-Frequency (RF) Radiance Fields, a framework that models RF signal propagation to synthesize spatial spectra at arbitrary transmitter or receiver locations, where each spectrum measures signal power across all surrounding directions at the receiver. Unlike state-of-the-art methods that adapt vanilla Neural Radiance Fields (NeRF) to the RF domain with scene-specific training, GRaF generalizes across scenes to synthesize spectra. To enable this, we prove an interpolation theory in the RF domain: the spatial spectrum from a transmitter can be approximated using spectra from geographically proximate transmitters. Building on this theory, GRaF comprises two components: (i) a geometry-aware Transformer encoder that captures spatial correlations from neighboring transmitters to learn a scene-independent latent RF radiance field, and (ii) a neural ray tracing algorithm that estimates spectrum reception at the receiver. Experimental results demonstrate that GRaF outperforms existing methods on single-scene benchmarks and achieves state-of-the-art performance on unseen scene layouts.
♻ ☆ SoK: Security Evaluation of Wi-Fi CSI Biometrics: Attacks, Metrics, and Open Challenges
Wi-Fi Channel State Information (CSI) has been repeatedly proposed as a biometric modality, often with reports of high accuracy and operational feasibility. However, the field lacks a consolidated understanding of its security properties, adversarial resilience, and methodological consistency. This Systematization of Knowledge (SoK) examines CSI-based biometric authentication through a security lens, analyzing how existing works diverge in sensing infrastructure, signal representations, feature pipelines, learning models, and evaluation methodologies. Our synthesis reveals systemic inconsistencies: reliance on aggregate accuracy metrics, limited reporting of FAR/FRR/EER, absence of per-user risk analysis, and scarce consideration of threat models or adversarial feasibility. To this end, we construct a unified evaluation framework to expose these issues empirically and demonstrate how security-relevant metrics such as per-class EER, Frequency Count of Scores (FCS), and the Gini Coefficient uncover risk concentration that remains hidden under traditional reporting practices. The resulting analysis highlights concrete attack surfaces--including replay, geometric mimicry, and environmental perturbation--and shows how methodological choices materially influence vulnerability profiles. Based on these findings, we articulate the security boundaries of current CSI biometrics and provide guidelines for rigorous evaluation, reproducible experimentation, and future research directions. This SoK offers the security community a structured, evidence-driven reassessment of Wi-Fi CSI biometrics and their suitability as an authentication primitive.
comment: This work was submitted to the 11th IEEE European Symposium on Security and Privacy (IEEE S&P 2026)
♻ ☆ Physically Interpretable World Models via Weakly Supervised Representation Learning
Learning predictive models from high-dimensional sensory observations is fundamental for cyber-physical systems, yet the latent representations learned by standard world models lack physical interpretability. This limits their reliability, generalizability, and applicability to safety-critical tasks. We introduce Physically Interpretable World Models (PIWM), a framework that aligns latent representations with real-world physical quantities and constrains their evolution through partially known physical dynamics. Physical interpretability in PIWM is defined by two complementary properties: (i) the learned latent state corresponds to meaningful physical variables, and (ii) its temporal evolution follows physically consistent dynamics. To achieve this without requiring ground-truth physical annotations, PIWM employs weak distribution-based supervision that captures state uncertainty naturally arising from real-world sensing pipelines. The architecture integrates a VQ-based visual encoder, a transformer-based physical encoder, and a learnable dynamics model grounded in known physical equations. Across three case studies (Cart Pole, Lunar Lander, and Donkey Car), PIWM achieves accurate long-horizon prediction, recovers true system parameters, and significantly improves physical grounding over purely data-driven models. These results demonstrate the feasibility and advantages of learning physically interpretable world models directly from images under weak supervision.
♻ ☆ Topology Aware Neural Interpolation of Scalar Fields
This paper presents a neural scheme for the topology-aware interpolation of time-varying scalar fields. Given a time-varying sequence of persistence diagrams, along with a sparse temporal sampling of the corresponding scalar fields, denoted as keyframes, our interpolation approach aims at "inverting" the non-keyframe diagrams to produce plausible estimations of the corresponding, missing data. For this, we rely on a neural architecture which learns the relation from a time value to the corresponding scalar field, based on the keyframe examples, and reliably extends this relation to the non-keyframe time steps. We show how augmenting this architecture with specific topological losses exploiting the input diagrams both improves the geometrical and topological reconstruction of the non-keyframe time steps. At query time, given an input time value for which an interpolation is desired, our approach instantaneously produces an output, via a single propagation of the time input through the network. Experiments interpolating 2D and 3D time-varying datasets show our approach superiority, both in terms of data and topological fitting, with regard to reference interpolation schemes. Our implementation is available at this GitHub link : https://github.com/MohamedKISSI/Topology-Aware-Neural-Interpolation-of-Scalar-Fields.git.
♻ ☆ Forecasting Future Anatomies: Longitudinal Brain Mri-to-Mri Prediction
Predicting future brain state from a baseline magnetic resonance image (MRI) is a central challenge in neuroimaging and has important implications for studying neurodegenerative diseases such as Alzheimer's disease (AD). Most existing approaches predict future cognitive scores or clinical outcomes, such as conversion from mild cognitive impairment to dementia. Instead, here we investigate longitudinal MRI image-to-image prediction that forecasts a participant's entire brain MRI several years into the future, intrinsically modeling complex, spatially distributed neurodegenerative patterns. We implement and evaluate five deep learning architectures (UNet, U2-Net, UNETR, Time-Embedding UNet, and ODE-UNet) on two longitudinal cohorts (ADNI and AIBL). Predicted follow-up MRIs are directly compared with the actual follow-up scans using metrics that capture global similarity and local differences. The best performing models achieve high-fidelity predictions, and all models generalize well to an independent external dataset, demonstrating robust cross-cohort performance. Our results indicate that deep learning can reliably predict participant-specific brain MRI at the voxel level, offering new opportunities for individualized prognosis.
♻ ☆ Live-SWE-agent: Can Software Engineering Agents Self-Evolve on the Fly?
Large Language Models (LLMs) are reshaping almost all industries, including software engineering. In recent years, a number of LLM agents have been proposed to solve real-world software problems. Such software agents are typically equipped with a suite of coding tools and can autonomously decide the next actions to form complete trajectories to solve end-to-end software tasks. While promising, they typically require dedicated design and may still be suboptimal, since it can be extremely challenging and costly to exhaust the entire agent scaffold design space. Recognizing that software agents are inherently software themselves that can be further refined/modified, researchers have proposed a number of self-improving software agents recently, including the Darwin-Gödel Machine (DGM). Meanwhile, such self-improving agents require costly offline training on specific benchmarks and may not generalize well across different LLMs or benchmarks. In this paper, we propose Live-SWE-agent, the first live software agent that can autonomously and continuously evolve itself on-the-fly during runtime when solving real-world software problems. More specifically, Live-SWE-agent starts with the most basic agent scaffold with only access to bash tools (e.g., mini-SWE-agent), and autonomously evolves its own scaffold implementation while solving real-world software problems. Our evaluation on the widely studied SWE-bench Verified benchmark shows that LIVE-SWE-AGENT can achieve an impressive solve rate of 77.4% without test-time scaling, outperforming all existing software agents, including the best proprietary solution. Moreover, Live-SWE-agent outperforms state-of-the-art manually crafted software agents on the recent SWE-Bench Pro benchmark, achieving the best-known solve rate of 45.8%.
♻ ☆ Minimax Statistical Estimation under Wasserstein Contamination
Contaminations are a key concern in modern statistical learning, as small but systematic perturbations of all datapoints can substantially alter estimation results. Here, we study Wasserstein-$r$ contaminations ($r\ge 1$) in an $\ell_q$ norm ($q\in [1,\infty]$), in which each observation may undergo an adversarial perturbation with bounded cost, complementing the classical Huber model, corresponding to total variation norm, where only a fraction of observations is arbitrarily corrupted. We study both independent and joint (coordinated) contaminations and develop a minimax theory under $\ell_q^r$ losses. Our analysis encompasses several fundamental problems: location estimation, linear regression, and pointwise nonparametric density estimation. For joint contaminations in location estimation and for prediction in linear regression, we obtain the exact minimax risk, identify least favorable contaminations, and show that the sample mean and least squares predictor are respectively minimax optimal. For location estimation under independent contaminations, we give sharp upper and lower bounds, including exact minimaxity in the Euclidean Wasserstein contamination case, when $q=r=2$. For pointwise density estimation in any dimension, we derive the optimal rate, showing that it is achieved by kernel density estimation with a bandwidth that is possibly larger than the classical one. Our proofs leverage powerful tools from optimal transport developed over the last 20 years, including the dynamic Benamou-Brenier formulation. Taken together, our results suggest that in contrast to the Huber contamination model, for norm-based Wasserstein contaminations, classical estimators may be nearly optimally robust.
comment: A revision, including a changed title. This version extends the results to more general perturbations and loss functions, while also obtaining a new optimal rate for density estimation. Some of the techniques described in the original submission (ambiguity set minimax lower bounds, Bayes lower bounds) are not required anymore and have thus been removed
♻ ☆ SHIELD: Secure Hypernetworks for Incremental Expansion Learning Defense
Continual learning under adversarial conditions remains an open problem, as existing methods often compromise either robustness, scalability, or both. We propose a novel framework that integrates Interval Bound Propagation (IBP) with a hypernetwork-based architecture to enable certifiably robust continual learning across sequential tasks. Our method, SHIELD, generates task-specific model parameters via a shared hypernetwork conditioned solely on compact task embeddings, eliminating the need for replay buffers or full model copies and enabling efficient over time. To further enhance robustness, we introduce Interval MixUp, a novel training strategy that blends virtual examples represented as $\ell_{\infty}$ balls centered around MixUp points. Leveraging interval arithmetic, this technique guarantees certified robustness while mitigating the wrapping effect, resulting in smoother decision boundaries. We evaluate SHIELD under strong white-box adversarial attacks, including PGD and AutoAttack, across multiple benchmarks. It consistently outperforms existing robust continual learning methods, achieving state-of-the-art average accuracy while maintaining both scalability and certification. These results represent a significant step toward practical and theoretically grounded continual learning in adversarial settings.
♻ ☆ Value of Information-Enhanced Exploration in Bootstrapped DQN
Efficient exploration in deep reinforcement learning remains a fundamental challenge, especially in environments characterized by high-dimensional states and sparse rewards. Traditional exploration strategies that rely on random local policy noise, such as $ε$-greedy and Boltzmann exploration methods, often struggle to efficiently balance exploration and exploitation. In this paper, we integrate the notion of (expected) value of information (EVOI) within the well-known Bootstrapped DQN algorithmic framework, to enhance the algorithm's deep exploration ability. Specifically, we develop two novel algorithms that incorporate the expected gain from learning the value of information into Bootstrapped DQN. Our methods use value of information estimates to measure the discrepancies of opinions among distinct network heads, and drive exploration towards areas with the most potential. We evaluate our algorithms with respect to performance and their ability to exploit inherent uncertainty arising from random network initialization. Our experiments in complex, sparse-reward Atari games demonstrate increased performance, all the while making better use of uncertainty, and, importantly, without introducing extra hyperparameters.
♻ ☆ Crafting Imperceptible On-Manifold Adversarial Attacks for Tabular Data
Adversarial attacks on tabular data present unique challenges due to the heterogeneous nature of mixed categorical and numerical features. Unlike images where pixel perturbations maintain visual similarity, tabular data lacks intuitive similarity metrics, making it difficult to define imperceptible modifications. Additionally, traditional gradient-based methods prioritise $\ell_p$-norm constraints, often producing adversarial examples that deviate from the original data distributions. To address this, we propose a latent-space perturbation framework using a mixed-input Variational Autoencoder (VAE) to generate statistically consistent adversarial examples. The proposed VAE integrates categorical embeddings and numerical features into a unified latent manifold, enabling perturbations that preserve statistical consistency. We introduce In-Distribution Success Rate (IDSR) to jointly evaluate attack effectiveness and distributional alignment. Evaluation across six publicly available datasets and three model architectures demonstrates that our method achieves substantially lower outlier rates and more consistent performance compared to traditional input-space attacks and other VAE-based methods adapted from image domain approaches, achieving substantially lower outlier rates and higher IDSR across six datasets and three model architectures. Our comprehensive analyses of hyperparameter sensitivity, sparsity control, and generative architecture demonstrate that the effectiveness of VAE-based attacks depends strongly on reconstruction quality and the availability of sufficient training data. When these conditions are met, the proposed framework achieves superior practical utility and stability compared with input-space methods. This work underscores the importance of maintaining on-manifold perturbations for generating realistic and robust adversarial examples in tabular domains.
comment: Final Version
♻ ☆ Meta-World+: An Improved, Standardized, RL Benchmark
Meta-World is widely used for evaluating multi-task and meta-reinforcement learning agents, which are challenged to master diverse skills simultaneously. Since its introduction however, there have been numerous undocumented changes which inhibit a fair comparison of algorithms. This work strives to disambiguate these results from the literature, while also leveraging the past versions of Meta-World to provide insights into multi-task and meta-reinforcement learning benchmark design. Through this process we release a new open-source version of Meta-World (https://github.com/Farama-Foundation/Metaworld/) that has full reproducibility of past results, is more technically ergonomic, and gives users more control over the tasks that are included in a task set.
comment: Accepted at NeurIPs 2025, Datasets and Benchmarks
♻ ☆ Adaptive and Robust Data Poisoning Detection and Sanitization in Wearable IoT Systems using Large Language Models
The widespread integration of wearable sensing devices in Internet of Things (IoT) ecosystems, particularly in healthcare, smart homes, and industrial applications, has required robust human activity recognition (HAR) techniques to improve functionality and user experience. Although machine learning models have advanced HAR, they are increasingly susceptible to data poisoning attacks that compromise the data integrity and reliability of these systems. Conventional approaches to defending against such attacks often require extensive task-specific training with large, labeled datasets, which limits adaptability in dynamic IoT environments. This work proposes a novel framework that uses large language models (LLMs) to perform poisoning detection and sanitization in HAR systems, utilizing zero-shot, one-shot, and few-shot learning paradigms. Our approach incorporates \textit{role play} prompting, whereby the LLM assumes the role of expert to contextualize and evaluate sensor anomalies, and \textit{think step-by-step} reasoning, guiding the LLM to infer poisoning indicators in the raw sensor data and plausible clean alternatives. These strategies minimize reliance on curation of extensive datasets and enable robust, adaptable defense mechanisms in real-time. We perform an extensive evaluation of the framework, quantifying detection accuracy, sanitization quality, latency, and communication cost, thus demonstrating the practicality and effectiveness of LLMs in improving the security and reliability of wearable IoT systems.
♻ ☆ Extending Test-Time Scaling: A 3D Perspective with Context, Batch, and Turn
Reasoning reinforcement learning (RL) has recently revealed a new scaling effect: test-time scaling. Thinking models such as R1 and o1 improve their reasoning accuracy at test time as the length of the reasoning context increases. However, compared with training-time scaling, test-time scaling is fundamentally limited by the limited context length of base models, which remains orders of magnitude smaller than the amount of tokens consumed during training. We revisit test-time enhancement techniques through the lens of scaling effect and introduce a unified framework of multi-dimensional test-time scaling to extend the capacity of test-time reasoning. Beyond conventional context-length scaling, we consider two additional dimensions: batch scaling, where accuracy improves with parallel sampling, and turn scaling, where iterative self-refinement enhances reasoning quality. Building on this perspective, we propose 3D test-time scaling, which integrates context, batch, and turn scaling. We show that: (1) each dimension demonstrates a test-time scaling effect, but with a bounded capacity; (2) combining all three dimensions substantially improves the reasoning performance of challenging testbeds, including IOI, IMO, and CPHO, and further benefits from human preference feedback; and (3) the human-in-the-loop framework naturally extends to a more open-ended domain, i.e., embodied learning, which enables the design of humanoid control behaviors.
comment: 44 pages, 12 figures
♻ ☆ Estimating Global Input Relevance and Enforcing Sparse Representations with a Scalable Spectral Neural Network Approach
In machine learning practice it is often useful to identify relevant input features. Isolating key input elements, ranked according their respective degree of relevance, can help to elaborate on the process of decision making. Here, we propose a novel method to estimate the relative importance of the input components for a Deep Neural Network. This is achieved by leveraging on a spectral re-parametrization of the optimization process. Eigenvalues associated to input nodes provide in fact a robust proxy to gauge the relevance of the supplied entry features. Notably, the spectral features ranking is performed automatically, as a byproduct of the network training, with no additional processing to be carried out. Moreover, by leveraging on the regularization of the eigenvalues, it is possible to enforce solutions making use of a minimum subset of the input components, increasing the explainability of the model and providing sparse input representations. The technique is compared to the most common methods in the literature and is successfully challenged against both synthetic and real data.
♻ ☆ "Normalized Stress" is Not Normalized: How to Interpret Stress Correctly
Stress is among the most commonly employed quality metrics and optimization criteria for dimension reduction projections of high dimensional data. Complex, high dimensional data is ubiquitous across many scientific disciplines, including machine learning, biology, and the social sciences. One of the primary methods of visualizing these datasets is with two dimensional scatter plots that visually capture some properties of the data. Because visually determining the accuracy of these plots is challenging, researchers often use quality metrics to measure projection accuracy or faithfulness to the full data. One of the most commonly employed metrics, normalized stress, is sensitive to uniform scaling of the projection, despite this act not meaningfully changing anything about the projection. We investigate the effect of scaling on stress and other distance based quality metrics analytically and empirically by showing just how much the values change and how this affects dimension reduction technique evaluations. We introduce a simple technique to make normalized stress scale invariant and show that it accurately captures expected behavior on a small benchmark.
comment: Appeared in the BELIV workshop 2024
♻ ☆ MOCHA: Multi-modal Objects-aware Cross-arcHitecture Alignment
Personalized object detection aims to adapt a general-purpose detector to recognize user-specific instances from only a few examples. Lightweight models often struggle in this setting due to their weak semantic priors, while large vision-language models (VLMs) offer strong object-level understanding but are too computationally demanding for real-time or on-device applications. We introduce MOCHA (Multi-modal Objects-aware Cross-arcHitecture Alignment), a distillation framework that transfers multimodal region-level knowledge from a frozen VLM teacher into a lightweight vision-only detector. MOCHA extracts fused visual and textual teacher's embeddings and uses them to guide student training through a dual-objective loss that enforces accurate local alignment and global relational consistency across regions. This process enables efficient transfer of semantics without the need for teacher modifications or textual input at inference. MOCHA consistently outperforms prior baselines across four personalized detection benchmarks under strict few-shot regimes, yielding a +10.1 average improvement, with minimal inference cost.
♻ ☆ GLOBE: Accurate and Generalizable PDE Surrogates using Domain-Inspired Architectures and Equivariances
We introduce GLOBE, a new neural surrogate for homogeneous PDEs that draws inductive bias from boundary-element methods and equivariant ML. GLOBE represents solutions as superpositions of learnable Green's-function-like kernels evaluated from boundary faces to targets, composed across multiscale branches and communication hyperlayers. The architecture is translation-, rotation-, and parity-equivariant; discretization-invariant in the fine-mesh limit; and units-invariant via rigorous nondimensionalization. An explicit far-field decay envelope stabilizes extrapolation, boundary-to-boundary hyperlayer communication mediates long-range coupling, and the all-to-all boundary-to-target evaluation yields a global receptive field that respects PDE information flow, even for elliptic PDEs. On AirFRANS (steady incompressible RANS over NACA airfoils), GLOBE achieves substantial accuracy improvements. On the "Full" split, it reduces mean-squared error by roughly 200x on all fields relative to the dataset's reference baselines, and roughly 50x relative to the next-best-performing model. In the "Scarce" split, it achieves over 100x lower error on velocity and pressure fields and over 600x lower error on surface pressure than Transolver. Qualitative results show sharp near-wall gradients, coherent wakes, and limited errors under modest extrapolation in Reynolds number and angle of attack. In addition to this accuracy, the model is quite compact (117k parameters), and fields can be evaluated at arbitrary points during inference. We also demonstrate the ability to train and predict with non-watertight meshes, which has strong practical implications. These results show that rigorous physics- and domain-inspired inductive biases can achieve large gains in accuracy, generalizability, and practicality for ML-based PDE surrogates for industrial computer-aided engineering (CAE).
♻ ☆ Toward Super-polynomial Quantum Speedup of Equivariant Quantum Algorithms with SU($d$) Symmetry
We introduce a framework of the equivariant convolutional quantum algorithms which is tailored for a number of machine-learning tasks on physical systems with arbitrary SU$(d)$ symmetries. It allows us to enhance a natural model of quantum computation -- permutational quantum computing (PQC) -- and define a more powerful model: PQC+. While PQC was shown to be efficiently classically simulatable, we exhibit a problem which can be efficiently solved on PQC+ machine, whereas no classical polynomial time algorithm is known; thus providing evidence against PQC+ being classically simulatable. We further discuss practical quantum machine learning algorithms which can be carried out in the paradigm of PQC+.
comment: Presented in TQC 2022
♻ ☆ Defending the Edge: Representative-Attention Defense against Backdoor Attacks in Federated Learning
Federated learning (FL) remains highly vulnerable to adaptive backdoor attacks that preserve stealth by closely imitating benign update statistics. Existing defenses predominantly rely on anomaly detection in parameter or gradient space, overlooking behavioral constraints that backdoor attacks must satisfy to ensure reliable trigger activation. These anomaly-centric methods fail against adaptive attacks that normalize update magnitudes and mimic benign statistical patterns while preserving backdoor functionality, creating a fundamental detection gap. To address this limitation, this paper introduces FeRA (Federated Representative Attention) -- a novel attention-driven defense that shifts the detection paradigm from anomaly-centric to consistency-centric analysis. FeRA exploits the intrinsic need for backdoor persistence across training rounds, identifying malicious clients through suppressed representation-space variance, an orthogonal property to traditional magnitude-based statistics. The framework conducts multi-dimensional behavioral analysis combining spectral and spatial attention, directional alignment, mutual similarity, and norm inflation across two complementary detection mechanisms: consistency analysis and norm-inflation detection. Through this mechanism, FeRA isolates malicious clients that exhibit low-variance consistency or magnitude amplification. Extensive evaluation across six datasets, nine attacks, and three model architectures under both Independent and Identically Distributed (IID) and non-IID settings confirm FeRA achieves superior backdoor mitigation. Under different non-IID settings, FeRA achieved the lowest average Backdoor Accuracy (BA), about 1.67% while maintaining high clean accuracy compared to other state-of-the-art defenses. The code is available at https://github.com/Peatech/FeRA_defense.git.
comment: Submitted to IEEE EURO S&P 2026
♻ ☆ Statistical physics analysis of graph neural networks: Approaching optimality in the contextual stochastic block model
Graph neural networks (GNNs) are designed to process data associated with graphs. They are finding an increasing range of applications; however, as with other modern machine learning techniques, their theoretical understanding is limited. GNNs can encounter difficulties in gathering information from nodes that are far apart by iterated aggregation steps. This situation is partly caused by so-called oversmoothing; and overcoming it is one of the practically motivated challenges. We consider the situation where information is aggregated by multiple steps of convolution, leading to graph convolutional networks (GCNs). We analyze the generalization performance of a basic GCN, trained for node classification on data generated by the contextual stochastic block model. We predict its asymptotic performance by deriving the free energy of the problem, using the replica method, in the high-dimensional limit. Calling depth the number of convolutional steps, we show the importance of going to large depth to approach the Bayes-optimality. We detail how the architecture of the GCN has to scale with the depth to avoid oversmoothing. The resulting large depth limit can be close to the Bayes-optimality and leads to a continuous GCN. Technically, we tackle this continuous limit via an approach that resembles dynamical mean-field theory (DMFT) with constraints at the initial and final times. An expansion around large regularization allows us to solve the corresponding equations for the performance of the deep GCN. This promising tool may contribute to the analysis of further deep neural networks.
♻ ☆ Asymptotic evaluation of the information processing capacity in reservoir computing
Reservoir computing (RC) is becoming increasingly important because of its short training time. The squared error normalized by the target output is called the information processing capacity (IPC) and is used to evaluate the performance of an RC system. Since RC aims to learn the relationship between input and output time series, we should evaluate the IPC for infinitely long data rather than the IPC for finite-length data. However, a method for estimating it has not been established. We evaluated the IPC for infinitely long data using the asymptotic expansion of the IPC and weighted least-squares fitting. Then, we showed the validity of our method by numerical simulations. This work makes the performance evaluation of RC more evident.
♻ ☆ Interactive Query Answering on Knowledge Graphs with Soft Entity Constraints
Methods for query answering over incomplete knowledge graphs retrieve entities that are \emph{likely} to be answers, which is particularly useful when such answers cannot be reached by direct graph traversal due to missing edges. However, existing approaches have focused on queries formalized using first-order-logic. In practice, many real-world queries involve constraints that are inherently vague or context-dependent, such as preferences for attributes or related categories. Addressing this gap, we introduce the problem of query answering with soft constraints. We formalize the problem and introduce two efficient methods designed to adjust query answer scores by incorporating soft constraints without disrupting the original answers to a query. These methods are lightweight, requiring tuning only two parameters or a small neural network trained to capture soft constraints while maintaining the original ranking structure. To evaluate the task, we extend existing QA benchmarks by generating datasets with soft constraints. Our experiments demonstrate that our methods can capture soft constraints while maintaining robust query answering performance and adding very little overhead.
♻ ☆ Discovery of Sustainable Refrigerants through Physics-Informed RL Fine-Tuning of Sequence Models
Most refrigerants currently used in air-conditioning systems, such as hydrofluorocarbons, are potent greenhouse gases and are being phased down. Large-scale molecular screening has been applied to the search for alternatives, but in practice only about 300 refrigerants are known, and only a few additional candidates have been suggested without experimental validation. This scarcity of reliable data limits the effectiveness of purely data-driven methods. We present Refgen, a generative pipeline that integrates machine learning with physics-grounded inductive biases. Alongside fine-tuning for valid molecular generation, Refgen incorporates predictive models for critical properties, equations of state, thermochemical polynomials, and full vapor compression cycle simulations. These models enable reinforcement learning fine-tuning under thermodynamic constraints, enforcing consistency and guiding discovery toward molecules that balance efficiency, safety, and environmental impact. By embedding physics into the learning process, Refgen leverages scarce data effectively and enables de novo refrigerant discovery beyond the known set of compounds.
comment: Accepted to 1st SIMBIOCHEM Workshop at EurIPS 2025
♻ ☆ A neural recommender system leveraging transfer learning for property prediction of ionic liquids
Ionic liquids (ILs) have emerged as versatile replacements for traditional solvents because their physicochemical properties can be precisely tailored to various applications. However, accurately predicting key thermophysical properties remains challenging due to the vast chemical design space and the limited availability of experimental data. In this study, we present a data-driven transfer learning framework combined with a neural recommender system (NRS) to enable reliable property prediction for ILs using sparse experimental datasets. The approach involves a two-stage process: first, pre-training NRS models on COSMO-RS-based simulated data at fixed temperature and pressure, and second, fine-tuning simple feedforward neural networks with experimental data at varying temperatures and pressures. In this work, five essential IL properties are considered: density, viscosity, surface tension, heat capacity, and melting point. We find that the framework supports both within-property and cross-property knowledge transfer. Notably, pre-trained models for density, viscosity, and heat capacity are used to fine-tune models for all five target properties, achieving improved performance by a substantial margin for four of them. The model exhibits robust extrapolation to previously unseen ILs. Moreover, the final trained models enable property prediction for over 700,000 IL combinations, offering a scalable solution for IL screening in process design. This work highlights the effectiveness of combining simulated data and transfer learning to overcome sparsity in the experimental data.
♻ ☆ Wideband RF Radiance Field Modeling Using Frequency-embedded 3D Gaussian Splatting
Indoor environments typically contain diverse RF signals distributed across multiple frequency bands, including NB-IoT, Wi-Fi, and millimeter-wave. Consequently, wideband RF modeling is essential for practical applications such as joint deployment of heterogeneous RF systems, cross-band communication, and distributed RF sensing. Although 3D Gaussian Splatting (3DGS) techniques effectively reconstruct RF radiance fields at a single frequency, they cannot model fields at arbitrary or unknown frequencies across a wide range. In this paper, we present a novel 3DGS algorithm for unified wideband RF radiance field modeling. RF wave propagation depends on signal frequency and the 3D spatial environment, including geometry and material electromagnetic (EM) properties. To address these factors, we introduce a frequency-embedded EM feature network that utilizes 3D Gaussian spheres at each spatial location to learn the relationship between frequency and transmission characteristics, such as attenuation and radiance intensity. With a dataset containing sparse frequency samples in a specific 3D environment, our model can efficiently reconstruct RF radiance fields at arbitrary and unseen frequencies. To assess our approach, we introduce a large-scale power angular spectrum (PAS) dataset with 50,000 samples spanning 1 to 94 GHz across six indoor environments. Experimental results show that the proposed model trained on multiple frequencies achieves a Structural Similarity Index Measure (SSIM) of 0.922 for PAS reconstruction, surpassing state-of-the-art single-frequency 3DGS models with SSIM of 0.863.
♻ ☆ (De)-regularized Maximum Mean Discrepancy Gradient Flow
We introduce a (de)-regularization of the Maximum Mean Discrepancy (DrMMD) and its Wasserstein gradient flow. Existing gradient flows that transport samples from source distribution to target distribution with only target samples, either lack tractable numerical implementation ($f$-divergence flows) or require strong assumptions, and modifications such as noise injection, to ensure convergence (Maximum Mean Discrepancy flows). In contrast, DrMMD flow can simultaneously (i) guarantee near-global convergence for a broad class of targets in both continuous and discrete time, and (ii) be implemented in closed form using only samples. The former is achieved by leveraging the connection between the DrMMD and the $χ^2$-divergence, while the latter comes by treating DrMMD as MMD with a de-regularized kernel. Our numerical scheme uses an adaptive de-regularization schedule throughout the flow to optimally trade off between discretization errors and deviations from the $χ^2$ regime. The potential application of the DrMMD flow is demonstrated across several numerical experiments, including a large-scale setting of training student/teacher networks.
♻ ☆ Splines-Based Feature Importance in Kolmogorov-Arnold Networks: A Framework for Supervised Tabular Data Dimensionality Reduction
Feature selection is a key step in many tabular prediction problems, where multiple candidate variables may be redundant, noisy, or weakly informative. We investigate feature selection based on Kolmogorov-Arnold Networks (KANs), which parameterize feature transformations with splines and expose per-feature importance scores in a natural way. From this idea we derive four KAN-based selection criteria (coefficient norms, gradient-based saliency, and knockout scores) and compare them with standard methods such as LASSO, Random Forest feature importance, Mutual Information, and SVM-RFE on a suite of real and synthetic classification and regression datasets. Using average F1 and $R^2$ scores across three feature-retention levels (20%, 40%, 60%), we find that KAN-based selectors are generally competitive with, and sometimes superior to, classical baselines. In classification, KAN criteria often match or exceed existing methods on multi-class tasks by removing redundant features and capturing nonlinear interactions. In regression, KAN-based scores provide robust performance on noisy and heterogeneous datasets, closely tracking strong ensemble predictors; we also observe characteristic failure modes, such as overly aggressive pruning with an $\ell_1$ criterion. Stability and redundancy analyses further show that KAN-based selectors yield reproducible feature subsets across folds while avoiding unnecessary correlation inflation, ensuring reliable and non-redundant variable selection. Overall, our findings demonstrate that KAN-based feature selection provides a powerful and interpretable alternative to traditional methods, capable of uncovering nonlinear and multivariate feature relevance beyond sparsity or impurity-based measures.
♻ ☆ The Cooperative Network Architecture: Learning Structured Networks as Representation of Sensory Patterns
We introduce the Cooperative Network Architecture (CNA), a model that represents sensory signals using structured, recurrently connected networks of neurons, termed "nets." Nets are dynamically assembled from overlapping net fragments, which are learned based on statistical regularities in sensory input. This architecture offers robustness to noise, deformation, and generalization to out-of-distribution data, addressing challenges in current vision systems from a novel perspective. We demonstrate that net fragments can be learned without supervision and flexibly recombined to encode novel patterns, enabling figure completion and resilience to noise. Our findings establish CNA as a promising paradigm for developing neural representations that integrate local feature processing with global structure formation, providing a foundation for future research on invariant object recognition.
comment: Accepted at Neural Computation
♻ ☆ Bootstrap Off-policy with World Model NeurIPS 2025
Online planning has proven effective in reinforcement learning (RL) for improving sample efficiency and final performance. However, using planning for environment interaction inevitably introduces a divergence between the collected data and the policy's actual behaviors, degrading both model learning and policy improvement. To address this, we propose BOOM (Bootstrap Off-policy with WOrld Model), a framework that tightly integrates planning and off-policy learning through a bootstrap loop: the policy initializes the planner, and the planner refines actions to bootstrap the policy through behavior alignment. This loop is supported by a jointly learned world model, which enables the planner to simulate future trajectories and provides value targets to facilitate policy improvement. The core of BOOM is a likelihood-free alignment loss that bootstraps the policy using the planner's non-parametric action distribution, combined with a soft value-weighted mechanism that prioritizes high-return behaviors and mitigates variability in the planner's action quality within the replay buffer. Experiments on the high-dimensional DeepMind Control Suite and Humanoid-Bench show that BOOM achieves state-of-the-art results in both training stability and final performance. The code is accessible at https://github.com/molumitu/BOOM_MBRL.
comment: NeurIPS 2025
♻ ☆ Comprehensive Evaluation of Prototype Neural Networks
Prototype models are an important method for explainable artificial intelligence (XAI) and interpretable machine learning. In this paper, we perform an in-depth analysis of a set of prominent prototype models including ProtoPNet, ProtoPool and PIPNet. For their assessment, we apply a comprehensive set of metrics. In addition to applying standard metrics from literature, we propose several new metrics to further complement the analysis of model interpretability. In our experimentation, we apply the set of prototype models on a diverse set of datasets including fine-grained classification, Non-IID settings and multi-label classification to further contrast the performance. Furthermore, we also provide our code as an open-source library (https://github.com/uos-sis/quanproto), which facilitates simple application of the metrics itself, as well as extensibility -- providing the option for easily adding new metrics and models.
♻ ☆ Improving Generalization of Neural Combinatorial Optimization for Vehicle Routing Problems via Test-Time Projection Learning
Neural Combinatorial Optimization (NCO) has emerged as a promising learning-based paradigm for addressing Vehicle Routing Problems (VRPs) by minimizing the need for extensive manual engineering. While existing NCO methods, trained on small-scale instances (e.g., 100 nodes), have demonstrated considerable success on problems of similar scale, their performance significantly degrades when applied to large-scale scenarios. This degradation arises from the distributional shift between training and testing data, rendering policies learned on small instances ineffective for larger problems. To overcome this limitation, we introduce a novel learning framework driven by Large Language Models (LLMs). This framework learns a projection between the training and testing distributions, which is then deployed to enhance the scalability of the NCO model. Notably, unlike prevailing techniques that necessitate joint training with the neural network, our approach operates exclusively during the inference phase, obviating the need for model retraining. Extensive experiments demonstrate that our method enables a backbone model (trained on 100-node instances) to achieve superior performance on large-scale Traveling Salesman Problem (TSP) and Capacitated Vehicle Routing Problem (CVRP) of up to 100K nodes from diverse distributions.
comment: arXiv admin note: text overlap with arXiv:2505.24627
♻ ☆ Generalization Bounds for Semi-supervised Matrix Completion with Distributional Side Information AAAI 2026
We study a matrix completion problem where both the ground truth $R$ matrix and the unknown sampling distribution $P$ over observed entries are low-rank matrices, and \textit{share a common subspace}. We assume that a large amount $M$ of \textit{unlabeled} data drawn from the sampling distribution $P$ is available, together with a small amount $N$ of labeled data drawn from the same distribution and noisy estimates of the corresponding ground truth entries. This setting is inspired by recommender systems scenarios where the unlabeled data corresponds to `implicit feedback' (consisting in interactions such as purchase, click, etc. ) and the labeled data corresponds to the `explicit feedback', consisting of interactions where the user has given an explicit rating to the item. Leveraging powerful results from the theory of low-rank subspace recovery, together with classic generalization bounds for matrix completion models, we show error bounds consisting of a sum of two error terms scaling as $\widetilde{O}\left(\sqrt{\frac{nd}{M}}\right)$ and $\widetilde{O}\left(\sqrt{\frac{dr}{N}}\right)$ respectively, where $d$ is the rank of $P$ and $r$ is the rank of $M$. In synthetic experiments, we confirm that the true generalization error naturally splits into independent error terms corresponding to the estimations of $P$ and and the ground truth matrix $\ground$ respectively. In real-life experiments on Douban and MovieLens with most explicit ratings removed, we demonstrate that the method can outperform baselines relying only on the explicit ratings, demonstrating that our assumptions provide a valid toy theoretical setting to study the interaction between explicit and implicit feedbacks in recommender systems.
comment: Accepted at AAAI 2026
♻ ☆ When Bias Pretends to Be Truth: How Spurious Correlations Undermine Hallucination Detection in LLMs
Despite substantial advances, large language models (LLMs) continue to exhibit hallucinations, generating plausible yet incorrect responses. In this paper, we highlight a critical yet previously underexplored class of hallucinations driven by spurious correlations -- superficial but statistically prominent associations between features (e.g., surnames) and attributes (e.g., nationality) present in the training data. We demonstrate that these spurious correlations induce hallucinations that are confidently generated, immune to model scaling, evade current detection methods, and persist even after refusal fine-tuning. Through systematically controlled synthetic experiments and empirical evaluations on state-of-the-art open-source and proprietary LLMs (including GPT-5), we show that existing hallucination detection methods, such as confidence-based filtering and inner-state probing, fundamentally fail in the presence of spurious correlations. Our theoretical analysis further elucidates why these statistical biases intrinsically undermine confidence-based detection techniques. Our findings thus emphasize the urgent need for new approaches explicitly designed to address hallucinations caused by spurious correlations.
♻ ☆ TRACE: Time SeRies PArameter EffiCient FinE-tuning
We propose an efficient fine-tuning method for time series foundation models, termed TRACE: Time Series Parameter Efficient Fine-tuning. While pretrained time series foundation models are gaining popularity, they face the following challenges: (1) Unlike natural language tasks, time series data vary in frequency, channel numbers, historical/prediction lengths. For long-term forecasting tasks in particular, tailored fine-tuning can significantly enhance performance.(2) Existing parameter-efficient tuning methods like LoRA remain applicable but require adaptation to temporal characteristics. To address these challenges, our TRACE framework introduces two key innovations: (1) Gated DSIC (Gated Dynamic Simulation Importance Calculation), an unbiased LoRA module importance selection mechanism that ensures conditional parameter consistency before and after masking. Experiments demonstrate that Gated DSIC outperforms common fine-tuning. (2) Reconstructed prediction heads for long-term forecasting tasks, which achieve comparable or superior performance to linear probing heads while drastically reducing parameter counts. Extensive experiments on long-/short-term forecasting, anomaly detection and natural language tasks across diverse datasets, coupled with ablation studies, validate the effectiveness of our method.
♻ ☆ Explore More, Learn Better: Parallel MLLM Embeddings under Mutual Information Minimization
Embedding models are a cornerstone of modern AI. Driven by Multimodal Large Language Models (MLLMs), they have made great progress in architecture and data curation, while the holistic paradigm is still limited to SSC, i.e., single input, singular embedding, contrastive supervision, which collapses rich, multifaceted inputs into monolithic embeddings and fails to fully exploit MLLM capabilities. In this paper, we tailor one Parallel Decoupling Framework (PDF) for multimodal embedding learning, by utilizing the proprietary steerability of MLLMs, i.e., their ability to flexibly generate quite differentiated response under explicit instructions. Concretely, PDF conditions a shared MLLM backbone on distinct, learnable prefixes to roll out multiple parallel paths for one input, then relies on these paths to obtain parallel embeddings. To promote full parallel diversity, we employ Mutual Information Minimization (MIM) as an explicit constraint, coupled with per-path contrastive supervision to maintain semantic alignment. Such dual-objectives force PDF to yield robust semantic coverage and a generalizable embedding space. Ultimately, the remarkable embedding space are accessible at inference via one single forward pass, incurring negligible computational overhead. We instantiate PDF on multiple MLLM backbones and prove its effectiveness on MMEB benchmark. Significant gains are consistently achieved across various resolutions and model sizes, e.g., boosting the VLM2Vec-LLaVA-1.6-LR model by a remarkable +8.9% (7B), while the VLM2Vec-Qwen2VL models by +4.2% (2B) and +3.1% (7B). In terms of efficiency, our 2B model surpasses its baseline by +2.6% using only half the computational budget.
♻ ☆ The Impact of Feature Scaling In Machine Learning: Effects on Regression and Classification Tasks
This research addresses the critical lack of comprehensive studies on feature scaling by systematically evaluating 12 scaling techniques - including several less common transformations - across 14 different Machine Learning algorithms and 16 datasets for classification and regression tasks. We meticulously analyzed impacts on predictive performance (using metrics such as accuracy, MAE, MSE, and $R^2$) and computational costs (training time, inference time, and memory usage). Key findings reveal that while ensemble methods (such as Random Forest and gradient boosting models like XGBoost, CatBoost and LightGBM) demonstrate robust performance largely independent of scaling, other widely used models such as Logistic Regression, SVMs, TabNet, and MLPs show significant performance variations highly dependent on the chosen scaler. This extensive empirical analysis, with all source code, experimental results, and model parameters made publicly available to ensure complete transparency and reproducibility, offers model-specific crucial guidance to practitioners on the need for an optimal selection of feature scaling techniques.
comment: 36 pages
♻ ☆ A Differentiable Alignment Framework for Sequence-to-Sequence Modeling via Optimal Transport
Accurate sequence-to-sequence (seq2seq) alignment is critical for applications like medical speech analysis and language learning tools relying on automatic speech recognition (ASR). State-of-the-art end-to-end (E2E) ASR systems, such as the Connectionist Temporal Classification (CTC) and transducer-based models, suffer from peaky behavior and alignment inaccuracies. In this paper, we propose a novel differentiable alignment framework based on one-dimensional optimal transport, enabling the model to learn a single alignment and perform ASR in an E2E manner. We introduce a pseudo-metric, called Sequence Optimal Transport Distance (SOTD), over the sequence space and discuss its theoretical properties. Based on the SOTD, we propose Optimal Temporal Transport Classification (OTTC) loss for ASR and contrast its behavior with CTC. Experimental results on the TIMIT, AMI, and LibriSpeech datasets show that our method considerably improves alignment performance compared to CTC and the more recently proposed Consistency-Regularized CTC, though with a trade-off in ASR performance. We believe this work opens new avenues for seq2seq alignment research, providing a solid foundation for further exploration and development within the community. Our code is publicly available at: https://github.com/idiap/OTTC
♻ ☆ GeoPTH: A Lightweight Approach to Category-Based Trajectory Retrieval via Geometric Prototype Trajectory Hashing
Trajectory similarity retrieval is an important part of spatiotemporal data mining, however, existing methods have the following limitations: traditional metrics are computationally expensive, while learning-based methods suffer from substantial training costs and potential instability. This paper addresses these problems by proposing Geometric Prototype Trajectory Hashing (GeoPTH), a novel, lightweight, and non-learning framework for efficient category-based trajectory retrieval. GeoPTH constructs data-dependent hash functions by using representative trajectory prototypes, i.e., small point sets preserving geometric characteristics, as anchors. The hashing process is efficient, which involves mapping a new trajectory to its closest prototype via a robust, Hausdorff metric. Extensive experiments show that GeoPTH's retrieval accuracy is highly competitive with both traditional metrics and state-of-the-art learning methods, and it significantly outperforms binary codes generated through simple binarization of the learned embeddings. Critically, GeoPTH consistently outperforms all competitors in terms of efficiency. Our work demonstrates that a lightweight, prototype-centric approach offers a practical and powerful alternative, achieving an exceptional retrieval performance and computational efficiency.
♻ ☆ Optimal Convergence Rates of Deep Neural Network Classifiers
In this paper, we study the binary classification problem on $[0,1]^d$ under the Tsybakov noise condition (with exponent $s \in [0,\infty]$) and the compositional assumption. This assumption requires the conditional class probability function of the data distribution to be the composition of $q+1$ vector-valued multivariate functions, where each component function is either a maximum value function or a Hölder-$β$ smooth function that depends only on $d_*$ of its input variables. Notably, $d_*$ can be significantly smaller than the input dimension $d$. We prove that, under these conditions, the optimal convergence rate for the excess 0-1 risk of classifiers is $\left( \frac{1}{n} \right)^{\frac{β\cdot(1\wedgeβ)^q}{{\frac{d_*}{s+1}+(1+\frac{1}{s+1})\cdotβ\cdot(1\wedgeβ)^q}}}$, which is independent of the input dimension $d$. Additionally, we demonstrate that ReLU deep neural networks (DNNs) trained with hinge loss can achieve this optimal convergence rate up to a logarithmic factor. This result provides theoretical justification for the excellent performance of ReLU DNNs in practical classification tasks, particularly in high-dimensional settings. The generalized approach is of independent interest.
♻ ☆ Estimating Bidirectional Causal Effects with Large Scale Online Kernel Learning
In this study, a scalable online kernel learning framework is proposed for estimating bidirectional causal effects in systems characterized by mutual dependence and heteroskedasticity. Traditional causal inference often focuses on unidirectional effects, overlooking the common bidirectional relationships in real-world phenomena. Building on heteroskedasticity-based identification, the proposed method integrates a quasi-maximum likelihood estimator for simultaneous equation models with large scale online kernel learning. It employs random Fourier feature approximations to flexibly model nonlinear conditional means and variances, while an adaptive online gradient descent algorithm ensures computational efficiency for streaming and high-dimensional data. Results from extensive simulations demonstrate that the proposed method achieves superior accuracy and stability than single equation and polynomial approximation baselines, exhibiting lower bias and root mean squared error across various data-generating processes. These results confirm that the proposed approach effectively captures complex bidirectional causal effects with near-linear computational scaling. By combining econometric identification with modern machine learning techniques, the proposed framework offers a practical, scalable, and theoretically grounded solution for large scale causal inference in natural/social science, policy making, business, and industrial applications.
comment: Accepted for publication in Proceedings of the 2025 International Conference on Data Science and Intelligent Systems (DSIS 2025)
♻ ☆ How LLMs Learn to Reason: A Complex Network Perspective ICLR 2026
Training large language models with Reinforcement Learning with Verifiable Rewards (RLVR) exhibits a set of distinctive and puzzling behaviors that remain poorly understood, including a two-stage learning curve, a V-shaped response-length trajectory, and a pronounced vulnerability to catastrophic forgetting. In this work, we propose that these behaviors are emergent collective phenomena governed not by neural implementation details, but by the topological evolution of the latent reasoning graph in semantic space. By demonstrating a dynamical isomorphism between a 1.5B-parameter LLM and a minimal Concept Network Model (CoNet), we trace the causal source to the self-organization of a sparse concept web pinned to an average degree of two. This geometric perspective provides a unified physical explanation for the observed anomalies: the V-shaped trajectory tracks the evolution from parallel local skill optimization to global network integration; catastrophic forgetting stems from the topological disconnection of critical ``trunk'' edges; and policy collapse arises from the accumulation of sequential transitions at the web's leaf nodes, where broad exploration abruptly freezes into rigid, high-reward trajectories. Identifying a ``maximally frustrated state'' at the transition between learning stages, we propose Annealed-RLVR, a principled algorithm that injects a targeted SFT ``heating'' step to resolve this topological bottleneck. Experiments confirm that this theory-driven intervention outperforms standard RLVR on both in-distribution and out-of-distribution benchmarks (including Minerva and AIME). By recasting RLVR from black-box optimization into a predictable process of structural self-organization, our work provides a new physical intuition for engineering the emergent reasoning capabilities of future AI systems.
comment: 24 pages, 11 figures, 1 table, under review as a conference paper at ICLR 2026
♻ ☆ Soft decision trees for survival analysis
Decision trees are popular in survival analysis for their interpretability and ability to model complex relationships. Survival trees, which predict the timing of singular events using censored historical data, are typically built through heuristic approaches. Recently, there has been growing interest in globally optimized trees, where the overall tree is trained by minimizing the error function over all its parameters. We propose a new soft survival tree model (SST), with a soft splitting rule at each branch node, trained via a nonlinear optimization formulation amenable to decomposition. Since SSTs provide for every input vector a specific survival function associated to a single leaf node, they satisfy the conditional computation property and inherit the related benefits. SST and the training formulation combine flexibility with interpretability: any smooth survival function (parametric, semiparametric, or nonparametric) estimated through maximum likelihood can be used, and each leaf node of an SST yields a cluster of distinct survival functions which are associated to the data points routed to it. Numerical experiments on 15 well-known datasets show that SSTs, with parametric and spline-based semiparametric survival functions, trained using an adaptation of the node-based decomposition algorithm proposed by Consolo et al. (2024) for soft regression trees, outperform three benchmark survival trees in terms of four widely-used discrimination and calibration measures. SSTs can also be extended to consider group fairness.
♻ ☆ Performance of Conformal Prediction in Capturing Aleatoric Uncertainty
Conformal prediction is a model-agnostic approach to generating prediction sets that cover the true class with a high probability. Although its prediction set size is expected to capture aleatoric uncertainty, there is a lack of evidence regarding its effectiveness. The literature presents that prediction set size can upper-bound aleatoric uncertainty or that prediction sets are larger for difficult instances and smaller for easy ones, but a validation of this attribute of conformal predictors is missing. This work investigates how effectively conformal predictors quantify aleatoric uncertainty, specifically the inherent ambiguity in datasets caused by overlapping classes. We perform this by measuring the correlation between prediction set sizes and the number of distinct labels assigned by human annotators per instance. We further assess the similarity between prediction sets and human-provided annotations. We use three conformal prediction approaches to generate prediction sets for eight deep learning models trained on four datasets. The datasets contain annotations from multiple human annotators (ranging from five to fifty participants) per instance, enabling the identification of class overlap. We show that the vast majority of the conformal prediction outputs show a very weak to weak correlation with human annotations, with only a few showing moderate correlation. These findings underscore the necessity of critically reassessing the prediction sets generated using conformal predictors. While they can provide a higher coverage of the true classes, their capability in capturing aleatoric uncertainty and generating sets that align with human annotations remains limited.
comment: Accepted at the IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2026
♻ ☆ A Reinforcement Learning-Based Telematic Routing Protocol for the Internet of Underwater Things
The Internet of Underwater Things (IoUT) has a lot of problems, like low bandwidth, high latency, mobility, and not enough energy. Routing protocols that were made for land-based networks, like RPL, don't work well in these underwater settings. This paper talks about RL-RPL-UA, a new routing protocol that uses reinforcement learning to make things work better in underwater situations. Each node has a small RL agent that picks the best parent node depending on local data such the link quality, buffer level, packet delivery ratio, and remaining energy. RL-RPL-UA works with all standard RPL messages and adds a dynamic objective function to help people make decisions in real time. Aqua-Sim simulations demonstrate that RL-RPL-UA boosts packet delivery by up to 9.2%, uses 14.8% less energy per packet, and adds 80 seconds to the network's lifetime compared to previous approaches. These results show that RL-RPL-UA is a potential and energy-efficient way to route data in underwater networks.
comment: 8 Pages, 10 Figures, 2 Tables
♻ ☆ A New Causal Rule Learning Approach to Interpretable Estimation of Heterogeneous Treatment Effect
Interpretability plays a crucial role in the application of statistical learning to estimate heterogeneous treatment effects (HTE) in complex diseases. In this study, we leverage a rule-based workflow, namely causal rule learning (CRL), to estimate and improve our understanding of HTE for atrial septal defect, addressing an overlooked question in the previous literature: what if an individual simultaneously belongs to multiple groups with different average treatment effects? The CRL process consists of three steps: rule discovery, which generates a set of causal rules with corresponding subgroup average treatment effects; rule selection, which identifies a subset of these rules to deconstruct individual-level treatment effects as a linear combination of subgroup-level effects; and rule analysis, which presents a detailed procedure for further analyzing each selected rule from multiple perspectives to identify the most promising rules for validation. Extensive simulation studies and real-world data analysis demonstrate that CRL outperforms other methods in providing interpretable estimates of HTE, especially when dealing with complex ground truth and sufficient sample sizes.
♻ ☆ Model-Agnostic Gender Bias Control for Text-to-Image Generation via Sparse Autoencoder
Text-to-image (T2I) diffusion models often exhibit gender bias, particularly by generating stereotypical associations between professions and gendered subjects. This paper presents SAE Debias, a lightweight and model-agnostic framework for mitigating such bias in T2I generation. Unlike prior approaches that rely on CLIP-based filtering or prompt engineering, which often require model-specific adjustments and offer limited control, SAE Debias operates directly within the feature space without retraining or architectural modifications. By leveraging a k-sparse autoencoder pre-trained on a gender bias dataset, the method identifies gender-relevant directions within the sparse latent space, capturing professional stereotypes. Specifically, a biased direction per profession is constructed from sparse latents and suppressed during inference to steer generations toward more gender-balanced outputs. Trained only once, the sparse autoencoder provides a reusable debiasing direction, offering effective control and interpretable insight into biased subspaces. Extensive evaluations across multiple T2I models, including Stable Diffusion 1.4, 1.5, 2.1, and SDXL, demonstrate that SAE Debias substantially reduces gender bias while preserving generation quality. To the best of our knowledge, this is the first work to apply sparse autoencoders for identifying and intervening in gender bias within T2I models. These findings contribute toward building socially responsible generative AI, providing an interpretable and model-agnostic tool to support fairness in text-to-image generation.
♻ ☆ MonoKAN: Certified Monotonic Kolmogorov-Arnold Network
Artificial Neural Networks (ANNs) have significantly advanced various fields by effectively recognizing patterns and solving complex problems. Despite these advancements, their interpretability remains a critical challenge, especially in applications where transparency and accountability are essential. To address this, explainable AI (XAI) has made progress in demystifying ANNs, yet interpretability alone is often insufficient. In certain applications, model predictions must align with expert-imposed requirements, sometimes exemplified by partial monotonicity constraints. While monotonic approaches are found in the literature for traditional Multi-layer Perceptrons (MLPs), they still face difficulties in achieving both interpretability and certified partial monotonicity. Recently, the Kolmogorov-Arnold Network (KAN) architecture, based on learnable activation functions parametrized as splines, has been proposed as a more interpretable alternative to MLPs. Building on this, we introduce a novel ANN architecture called MonoKAN, which is based on the KAN architecture and achieves certified partial monotonicity while enhancing interpretability. To achieve this, we employ cubic Hermite splines, which guarantee monotonicity through a set of straightforward conditions. Additionally, by using positive weights in the linear combinations of these splines, we ensure that the network preserves the monotonic relationships between input and output. Our experiments demonstrate that MonoKAN not only enhances interpretability but also improves predictive performance across the majority of benchmarks, outperforming state-of-the-art monotonic MLP approaches.
comment: 18 pages, 8 figures
♻ ☆ Multi-Objective Reinforcement Learning for Water Management
Many real-world problems (e.g., resource management, autonomous driving, drug discovery) require optimizing multiple, conflicting objectives. Multi-objective reinforcement learning (MORL) extends classic reinforcement learning to handle multiple objectives simultaneously, yielding a set of policies that capture various trade-offs. However, the MORL field lacks complex, realistic environments and benchmarks. We introduce a water resource (Nile river basin) management case study and model it as a MORL environment. We then benchmark existing MORL algorithms on this task. Our results show that specialized water management methods outperform state-of-the-art MORL approaches, underscoring the scalability challenges MORL algorithms face in real-world scenarios.
comment: Accepted to AAMAS 2025
♻ ☆ Efficient Reinforcement Learning for Large Language Models with Intrinsic Exploration
Reinforcement learning with verifiable rewards (RLVR) has improved the reasoning ability of large language models, yet training remains costly because many rollouts contribute little to optimization, considering the amount of computation required. This study investigates how simply leveraging intrinsic data properties, almost free benefit during training, can improve data efficiency for RLVR. We propose PREPO with two complementary components. First, we adopt prompt perplexity as an indicator of model adaptability in learning, enabling the model to progress from well-understood contexts to more challenging ones. Second, we amplify the discrepancy among the rollouts by differentiating their relative entropy, and prioritize sequences that exhibit a higher degree of exploration. Together, these mechanisms reduce rollout demand while preserving competitive performance. On the Qwen and Llama models, PREPO achieves effective results on mathematical reasoning benchmarks with up to 3 times fewer rollouts than the baselines. Beyond empirical gains, we provide theoretical and in-depth analyses explaining the underlying rationale of our method to improve the data efficiency of RLVR.
♻ ☆ Quantitative Attractor Analysis of High-Capacity Kernel Logistic Regression Hopfield Networks
Kernel-based learning methods such as Kernel Logistic Regression (KLR) can dramatically increase the storage capacity of Hopfield networks, but the principles governing their performance and stability remain largely uncharacterized. This paper presents a comprehensive quantitative analysis of the attractor landscape in KLR-trained networks to establish a solid foundation for their design and application. Through extensive, statistically validated simulations, we address critical questions of generality, scalability, and robustness. Our comparative analysis reveals that KLR and Kernel Ridge Regression (KRR) exhibit similarly high storage capacities and clean attractor landscapes, suggesting this is a general property of kernel regression methods, though KRR is computationally much faster. We uncover a non-trivial, scale-dependent scaling law for the kernel width ($γ$), demonstrating that optimal capacity requires $γ$ to be scaled such that $γ\times N$ increases with network size $N$. This implies that larger networks necessitate more localized kernels -- where each pattern's influence is more spatially confined -- to manage inter-pattern interference. Under this optimized scaling, we provide definitive evidence that the storage capacity scales linearly with network size ($P \propto N$). Furthermore, our sensitivity analysis shows that performance is remarkably robust to the choice of the regularization parameter $λ$. Collectively, these findings provide a clear set of empirical principles for designing high-capacity, robust associative memories and clarify the mechanisms that enable kernel methods to overcome the classical limitations of Hopfield-type models.
comment: 16 pages, 7 figures
♻ ☆ Ambient Noise Full Waveform Inversion with Neural Operators
Numerical simulations of seismic wave propagation are crucial for investigating velocity structures and improving seismic hazard assessment. However, standard methods such as finite difference or finite element are computationally expensive. Recent studies have shown that a new class of machine learning models, called neural operators, can solve the elastodynamic wave equation orders of magnitude faster than conventional methods. Full waveform inversion is a prime beneficiary of the accelerated simulations. Neural operators, as end-to-end differentiable operators, combined with automatic differentiation, provide an alternative approach to the adjoint-state method. State-of-the-art optimization techniques built into PyTorch provide neural operators with greater flexibility to improve the optimization dynamics of full waveform inversion, thereby mitigating cycle-skipping problems. In this study, we demonstrate the first application of neural operators for full waveform inversion on a real seismic dataset, which consists of several nodal transects collected across the San Gabriel, Chino, and San Bernardino basins in the Los Angeles metropolitan area.
comment: Align with the published version
♻ ☆ AV-Lip-Sync+: Leveraging AV-HuBERT to Exploit Multimodal Inconsistency for Deepfake Detection of Frontal Face Videos
Multimodal manipulations (also known as audio-visual deepfakes) make it difficult for unimodal deepfake detectors to detect forgeries in multimedia content. To avoid the spread of false propaganda and fake news, timely detection is crucial. The damage to either modality (i.e., visual or audio) can only be discovered through multimodal models that can exploit both pieces of information simultaneously. However, previous methods mainly adopt unimodal video forensics and use supervised pre-training for forgery detection. This study proposes a new method based on a multimodal self-supervised-learning (SSL) feature extractor to exploit inconsistency between audio and visual modalities for multimodal video forgery detection. We use the transformer-based SSL pre-trained Audio-Visual HuBERT (AV-HuBERT) model as a visual and acoustic feature extractor and a multi-scale temporal convolutional neural network to capture the temporal correlation between the audio and visual modalities. Since AV-HuBERT only extracts visual features from the lip region, we also adopt another transformer-based video model to exploit facial features and capture spatial and temporal artifacts caused during the deepfake generation process. Experimental results show that our model outperforms all existing models and achieves new state-of-the-art performance on the FakeAVCeleb and DeepfakeTIMIT datasets.
♻ ☆ SALT: Steering Activations towards Leakage-free Thinking in Chain of Thought
As Large Language Models (LLMs) evolve into personal assistants with access to sensitive user data, they face a critical privacy challenge: while prior work has addressed output-level privacy, recent findings reveal that LLMs often leak private information through their internal reasoning processes, violating contextual privacy expectations. These leaky thoughts occur when models inadvertently expose sensitive details in their reasoning traces, even when final outputs appear safe. The challenge lies in preventing such leakage without compromising the model's reasoning capabilities, requiring a delicate balance between privacy and utility. We introduce Steering Activations towards Leakage-free Thinking (SALT), a lightweight test-time intervention that mitigates privacy leakage in model's Chain of Thought (CoT) by injecting targeted steering vectors into hidden state. We identify the high-leakage layers responsible for this behavior. Through experiments across multiple LLMs, we demonstrate that SALT achieves reductions including $18.2\%$ reduction in CPL on QwQ-32B, $17.9\%$ reduction in CPL on Llama-3.1-8B, and $31.2\%$ reduction in CPL on Deepseek in contextual privacy leakage dataset AirGapAgent-R while maintaining comparable task performance and utility. Our work establishes SALT as a practical approach for test-time privacy protection in reasoning-capable language models, offering a path toward safer deployment of LLM-based personal agents.
♻ ☆ Text-guided multi-property molecular optimization with a diffusion language model
Molecular optimization (MO) is a crucial stage in drug discovery in which task-oriented generated molecules are optimized to meet practical industrial requirements. Existing mainstream MO approaches primarily utilize external property predictors to guide iterative property optimization. However, learning all molecular samples in the vast chemical space is unrealistic for predictors. As a result, errors and noise are inevitably introduced during property prediction due to the nature of approximation. This leads to discrepancy accumulation, generalization reduction and suboptimal molecular candidates. In this paper, we propose a text-guided multi-property molecular optimization method utilizing transformer-based diffusion language model (TransDLM). TransDLM leverages standardized chemical nomenclature as semantic representations of molecules and implicitly embeds property requirements into textual descriptions, thereby mitigating error propagation during diffusion process. By fusing physically and chemically detailed textual semantics with specialized molecular representations, TransDLM effectively integrates diverse information sources to guide precise optimization, which enhances the model's ability to balance structural retention and property enhancement. Additionally, the success of a case study further demonstrates TransDLM's ability to solve practical problems. Experimentally, our approach surpasses state-of-the-art methods in maintaining molecular structural similarity and enhancing chemical properties on the benchmark dataset.
♻ ☆ Genomic Next-Token Predictors are In-Context Learners
In-context learning (ICL) -- the capacity of a model to infer and apply abstract patterns from examples provided within its input -- has been extensively studied in large language models trained for next-token prediction on human text. In fact, prior work often attributes this emergent behavior to distinctive statistical properties in human language. This raises a fundamental question: can ICL arise organically in other sequence domains purely through large-scale predictive training? To explore this, we turn to genomic sequences, an alternative symbolic domain rich in statistical structure. Specifically, we study the Evo2 genomic model, trained predominantly on next-nucleotide (A/T/C/G) prediction, at a scale comparable to mid-sized LLMs. We develop a controlled experimental framework comprising symbolic reasoning tasks instantiated in both linguistic and genomic forms, enabling direct comparison of ICL across genomic and linguistic models. Our results show that genomic models, like their linguistic counterparts, exhibit log-linear gains in pattern induction as the number of in-context demonstrations increases. To the best of our knowledge, this is the first evidence of organically emergent ICL in genomic sequences, supporting the hypothesis that ICL arises as a consequence of large-scale predictive modeling over rich data. These findings extend emergent meta-learning beyond language, pointing toward a unified, modality-agnostic view of in-context learning.
♻ ☆ Deterministic Bounds and Random Estimates of Metric Tensors on Neuromanifolds
The high dimensional parameter space of modern deep neural networks -- the neuromanifold -- is endowed with a unique metric tensor defined by the Fisher information, estimating which is crucial for both theory and practical methods in deep learning. To analyze this tensor for classification networks, we return to a low dimensional space of probability distributions -- the core space -- and carefully analyze the spectrum of its Riemannian metric. We extend our discoveries there into deterministic bounds of the metric tensor on the neuromanifold. We introduce an unbiased random estimate of the metric tensor and its bounds based on Hutchinson's trace estimator. It can be evaluated efficiently through a single backward pass, with a standard deviation bounded by the true value up to scaling.
♻ ☆ A Weak Penalty Neural ODE for Learning Chaotic Dynamics from Noisy Time Series
Accurate forecasting of complex high-dimensional dynamical systems from observational data is essential for several applications across science and engineering. A key challenge, however, is that real-world measurements are often corrupted by noise, which severely degrades the performance of data-driven models. Particularly, in chaotic dynamical systems, where small errors amplify rapidly, it is challenging to identify a data-driven model from noisy data that achieves short-term accuracy while preserving long-term invariant properties. In this paper, we propose the use of the weak formulation as a complementary approach to the classical strong formulation of data-driven time-series forecasting models. Specifically, we focus on the neural ordinary differential equation (NODE) architecture. Unlike the standard strong formulation, which relies on the discretization of the NODE followed by optimization, the weak formulation constrains the model using a set of integrated residuals over temporal subdomains. While such a formulation yields an effective NODE model, we discover that the performance of a NODE can be further enhanced by employing this weak formulation as a penalty alongside the classical strong formulation-based learning. Through numerical demonstrations, we illustrate that our proposed training strategy, which we coined as the Weak-Penalty NODE (WP-NODE), achieves state-of-the-art forecasting accuracy and exceptional robustness across benchmark chaotic dynamical systems and real-world climate dataset.
♻ ☆ Holographic Knowledge Manifolds: A Novel Pipeline for Continual Learning Without Catastrophic Forgetting in Large Language Models
We introduce the Holographic Knowledge Manifold (HKM), a four-phase pipeline that achieves zero catastrophic forgetting in AI knowledge representation while maintaining minimal memory growth and high efficiency. Leveraging fractal quantization, probabilistic entanglement, and dynamic diffraction chipping, HKM compresses knowledge substrates by 3x with 67% storage savings, integrates holographically at 100%, and supports over 1,020 updates with 1% growth per increment. In experiments on combined WikiText and FB15k datasets (scaled to 2,997 nodes), we demonstrate industry-leading performance: 0% forgetting (infinite improvement over GEM baselines), 3x compression, and 53% training time reduction on consumer GPU hardware. Hypothetical cost analyses project $92.4M savings over 5 years at petabyte scale, with 21.2% energy reduction and 33% lower carbon footprint. This work hypothesizes a paradigm shift for public large language models (LLMs), enabling "eternal" adaptation without retraining. Future extensions to multimodal fusion and quantum hardware could further democratize scalable AI, potentially reducing fine-tuning costs by 60-80% for models like Llama-3 or Grok-4. Code, datasets, and full results are publicly available for reproducibility.
comment: This paper includes significant errors discovered post publication by the author
♻ ☆ Convergence Bound and Critical Batch Size of Muon Optimizer
Muon, a recently proposed optimizer that leverages the inherent matrix structure of neural network parameters, has demonstrated strong empirical performance, indicating its potential as a successor to standard optimizers such as AdamW. This paper presents theoretical analysis to support its practical success. We provide convergence proofs for Muon across four practical settings, systematically examining its behavior with and without the inclusion of Nesterov momentum and weight decay. Our analysis covers the standard configuration using both, thereby elucidating its real-world performance. We then demonstrate that the addition of weight decay yields strictly tighter theoretical bounds and clarify the interplay between the weight decay coefficient and the learning rate. Finally, we derive the critical batch size for Muon that minimizes the computational cost of training. Our analysis identifies the hyperparameters governing this value, and our experiments validate the corresponding theoretical findings across workloads including image classification and language modeling task.
Genomics 3
☆ A Hybrid Computational Intelligence Framework for scRNA-seq Imputation: Integrating scRecover and Random Forests
Single-cell RNA sequencing (scRNA-seq) enables transcriptomic profiling at cellular resolution but suffers from pervasive dropout events that obscure biological signals. We present SCR-MF, a modular two-stage workflow that combines principled dropout detection using scRecover with robust non-parametric imputation via missForest. Across public and simulated datasets, SCR-MF achieves robust and interpretable performance comparable to or exceeding existing imputation methods in most cases, while preserving biological fidelity and transparency. Runtime analysis demonstrates that SCR-MF provides a competitive balance between accuracy and computational efficiency, making it suitable for mid-scale single-cell datasets.
♻ ☆ Approximating a gene regulatory network from non-sequential data
Given non-sequential snapshots from instances of a dynamical system, we design a compressed sensing based algorithm that reconstructs the dynamical system. On the theoretical side, we show that: (1) successful reconstruction is possible under the assumption that we can construct an approximate clock from a subset of the coordinates of the underlying system, and (2) computing the minimal Lyapunov exponent of the dynamical system, where the minimum is taken over all subsets of coordinates of the dynamical system, equates to computing a min-max equilibrium. We design an efficient randomized algorithm for computing the above equilibrium. As an application of our theoretical results, we reconstruct the underlying dynamical system from publicly available RNA-seq data to: (1) predict the underlying gene regulatory networks (as opposed to individual genes) that may help differentiate between metastatic vs non-metastatic breast cancer (and also colorectal cancer), and (2) identify candidate genes that could be used as target biomarkers for basket trials. In particular, our in silico analysis suggests that RORC agonists, which are already used in colorectal cancer therapies, may be worth investigating for breast cancers.
♻ ☆ Genomic Next-Token Predictors are In-Context Learners
In-context learning (ICL) -- the capacity of a model to infer and apply abstract patterns from examples provided within its input -- has been extensively studied in large language models trained for next-token prediction on human text. In fact, prior work often attributes this emergent behavior to distinctive statistical properties in human language. This raises a fundamental question: can ICL arise organically in other sequence domains purely through large-scale predictive training? To explore this, we turn to genomic sequences, an alternative symbolic domain rich in statistical structure. Specifically, we study the Evo2 genomic model, trained predominantly on next-nucleotide (A/T/C/G) prediction, at a scale comparable to mid-sized LLMs. We develop a controlled experimental framework comprising symbolic reasoning tasks instantiated in both linguistic and genomic forms, enabling direct comparison of ICL across genomic and linguistic models. Our results show that genomic models, like their linguistic counterparts, exhibit log-linear gains in pattern induction as the number of in-context demonstrations increases. To the best of our knowledge, this is the first evidence of organically emergent ICL in genomic sequences, supporting the hypothesis that ICL arises as a consequence of large-scale predictive modeling over rich data. These findings extend emergent meta-learning beyond language, pointing toward a unified, modality-agnostic view of in-context learning.
Quantitative Methods 4
☆ A novel approach to classification of ECG arrhythmia types with latent ODEs NeurIPS 2025
12-lead ECGs with high sampling frequency are the clinical gold standard for arrhythmia detection, but their short-term, spot-check nature often misses intermittent events. Wearable ECGs enable long-term monitoring but suffer from irregular, lower sampling frequencies due to battery constraints, making morphology analysis challenging. We present an end-to-end classification pipeline to address these issues. We train a latent ODE to model continuous ECG waveforms and create robust feature vectors from high-frequency single-channel signals. We construct three latent vectors per waveform via downsampling the initial 360 Hz ECG to 90 Hz and 45 Hz. We then use a gradient boosted tree to classify these vectors and test robustness across frequencies. Performance shows minimal degradation, with macro-averaged AUC-ROC values of 0.984, 0.978, and 0.976 at 360 Hz, 90 Hz, and 45 Hz, respectively, suggesting a way to sidestep the trade-off between signal fidelity and battery life. This enables smaller wearables, promoting long-term monitoring of cardiac health.
comment: Accepted into NeurIPS 2025 Learning from Time Series for Health workshop
☆ Data-Driven Predictive Modeling of Microfluidic Cancer Cell Separation Using a Deterministic Lateral Displacement Device
Deterministic Lateral Displacement (DLD) devices are widely used in microfluidics for label-free, size-based separation of particles and cells, with particular promise in isolating circulating tumor cells (CTCs) for early cancer diagnostics. This study focuses on the optimization of DLD design parameters, such as row shift fraction, post size, and gap distance, to enhance the selective isolation of lung cancer cells based on their physical properties. To overcome the challenges of rare CTC detection and reduce reliance on computationally intensive simulations, machine learning models including gradient boosting, k-nearest neighbors, random forest, and multilayer perceptron (MLP) regressors are employed. Trained on a large, numerically validated dataset, these models predict particle trajectories and identify optimal device configurations, enabling high-throughput and cost-effective DLD design. Beyond trajectory prediction, the models aid in isolating critical design variables, offering a systematic, data-driven framework for automated DLD optimization. This integrative approach advances the development of scalable and precise microfluidic systems for cancer diagnostics, contributing to the broader goals of early detection and personalized medicine.
comment: Accepted to IEEE International Conference on Data Mining (ICDM) 2025 REU Symposium
☆ SynCell: Contextualized Drug Synergy Prediction
Motivation: Drug synergy is strongly influenced by cellular context. Variations in protein interaction landscapes and pathway activities across cell types can reshape how drugs act in combination. However, most existing models overlook this heterogeneity and rely on static or bulk level protein protein interaction networks that ignore cell specific molecular wiring. With the availability of single cell transcriptomic data, it is now possible to reconstruct cell line specific interactomes, offering a new foundation for contextualized drug synergy modeling. Results: We present SynCell, a contextualized drug synergy framework that integrates drug protein, protein protein, and protein cell line relations within a unified graph architecture. SynCell leverages single cell derived, cell line specific PPI networks to embed the molecular context in which drugs act, and employs graph convolutional learning to model how pharmacological effects propagate through cell specific signaling networks. This formulation treats synergy prediction as a cell line contextualized drug drug interaction problem. Across two large scale benchmarks (NCI ALMANAC and ONeil), SynCell consistently outperforms state of the art baselines including DeepDDS, HypergraphSynergy, and HERMES, especially in predicting synergies involving unseen drugs or novel cell lines. Ablation analyses show that contextualizing PPIs with single cell resolution yields substantial gains in generalization and biological interpretability.
comment: 12 pages, 1 figures
☆ Dual-Path Knowledge-Augmented Contrastive Alignment Network for Spatially Resolved Transcriptomics AAAI 2026
Spatial Transcriptomics (ST) is a technology that measures gene expression profiles within tissue sections while retaining spatial context. It reveals localized gene expression patterns and tissue heterogeneity, both of which are essential for understanding disease etiology. However, its high cost has driven efforts to predict spatial gene expression from whole slide images. Despite recent advancements, current methods still face significant limitations, such as under-exploitation of high-level biological context, over-reliance on exemplar retrievals, and inadequate alignment of heterogeneous modalities. To address these challenges, we propose DKAN, a novel Dual-path Knowledge-Augmented contrastive alignment Network that predicts spatially resolved gene expression by integrating histopathological images and gene expression profiles through a biologically informed approach. Specifically, we introduce an effective gene semantic representation module that leverages the external gene database to provide additional biological insights, thereby enhancing gene expression prediction. Further, we adopt a unified, one-stage contrastive learning paradigm, seamlessly combining contrastive learning and supervised learning to eliminate reliance on exemplars, complemented with an adaptive weighting mechanism. Additionally, we propose a dual-path contrastive alignment module that employs gene semantic features as dynamic cross-modal coordinators to enable effective heterogeneous feature integration. Through extensive experiments across three public ST datasets, DKAN demonstrates superior performance over state-of-the-art models, establishing a new benchmark for spatial gene expression prediction and offering a powerful tool for advancing biological and clinical research.
comment: AAAI 2026 Oral, extended version
Cell Behavior 1
☆ Survival and invasion dynamics in cell populations: an analytical framework for threshold behaviour in nonlinear age-structured models
Cell populations invade through a combination of proliferation and motility. Proliferation depends on the internal timing of cell division: how long cells take to complete the cell cycle. This timing varies substantially within (and across) cell types, creating age structure where cells at different times since their last division have different propensities to divide. Classical mathematical models of cell spreading treat division as memoryless and predict exponential cell-cycle-time distributions. Lineage tracing, by contrast, reveals peaked, gamma-like distributions that indicate a maturation delay leading to a fertility window. This gap motivates a modelling framework that incorporates age-dependent cell division rates while retaining analytical tractability. We address this through a moment-hierarchy framework that tracks time since cell division, with age resetting to zero at division. The framework yields explicit formulae for steady-state age distributions, cell-cycle-time distributions, and invasion speeds. For age-independent rates, we recover classical Fisher--KPP. Three fundamental principles emerge. First, age structure systematically reduces a population's carrying capacity and narrows the viable parameter range for positive steady states. Second, classical linear theory overestimates invasion speeds; the true minimal speed is slower when division is age-dependent. Third, the parameter condition for population survival is identical to the condition for a positive invasion speed.