MyArxiv
Computation and Language 77
☆ Generative Adversarial Reasoner: Enhancing LLM Reasoning with Adversarial Reinforcement Learning
Large language models (LLMs) with explicit reasoning capabilities excel at mathematical reasoning yet still commit process errors, such as incorrect calculations, brittle logic, and superficially plausible but invalid steps. In this paper, we introduce Generative Adversarial Reasoner, an on-policy joint training framework designed to enhance reasoning by co-evolving an LLM reasoner and an LLM-based discriminator through adversarial reinforcement learning. A compute-efficient review schedule partitions each reasoning chain into logically complete slices of comparable length, and the discriminator evaluates each slice's soundness with concise, structured justifications. Learning couples complementary signals: the LLM reasoner is rewarded for logically consistent steps that yield correct answers, while the discriminator earns rewards for correctly detecting errors or distinguishing traces in the reasoning process. This produces dense, well-calibrated, on-policy step-level rewards that supplement sparse exact-match signals, improving credit assignment, increasing sample efficiency, and enhancing overall reasoning quality of LLMs. Across various mathematical benchmarks, the method delivers consistent gains over strong baselines with standard RL post-training. Specifically, on AIME24, we improve DeepSeek-R1-Distill-Qwen-7B from 54.0 to 61.3 (+7.3) and DeepSeek-R1-Distill-Llama-8B from 43.7 to 53.7 (+10.0). The modular discriminator also enables flexible reward shaping for objectives such as teacher distillation, preference alignment, and mathematical proof-based reasoning.
☆ Constructive Circuit Amplification: Improving Math Reasoning in LLMs via Targeted Sub-Network Updates
Prior studies investigating the internal workings of LLMs have uncovered sparse subnetworks, often referred to as circuits, that are responsible for performing specific tasks. Additionally, it has been shown that model performance improvement through fine-tuning often results from the strengthening of existing circuits in the model. Taken together, these findings suggest the possibility of intervening directly on such circuits to make precise, task-targeted updates. Motivated by these findings, we propose a novel method called Constructive Circuit Amplification which identifies pivotal tokens from model reasoning traces as well as model components responsible for the desired task, and updates only those components. Applied to mathematical reasoning, it improves accuracy by up to +11.4% across multiple models while modifying as little as 1.59% of model components, with minimal impact on other abilities as measured by MMLU, TriviaQA, and TruthfulQA. These results demonstrate that targeted capabilities can be reliably enhanced by selectively updating a sparse set of model components.
comment: 18 pages, 3 figures
☆ Exploration v.s. Exploitation: Rethinking RLVR through Clipping, Entropy, and Spurious Reward
This paper examines the exploration-exploitation trade-off in reinforcement learning with verifiable rewards (RLVR), a framework for improving the reasoning of Large Language Models (LLMs). Recent studies suggest that RLVR can elicit strong mathematical reasoning in LLMs through two seemingly paradoxical mechanisms: spurious rewards, which suppress exploitation by rewarding outcomes unrelated to the ground truth, and entropy minimization, which suppresses exploration by pushing the model toward more confident and deterministic outputs, highlighting a puzzling dynamic: both discouraging exploitation and discouraging exploration improve reasoning performance, yet the underlying principles that reconcile these effects remain poorly understood. We focus on two fundamental questions: (i) how policy entropy relates to performance, and (ii) whether spurious rewards yield gains, potentially through the interplay of clipping bias and model contamination. Our results show that clipping bias under spurious rewards reduces policy entropy, leading to more confident and deterministic outputs, while entropy minimization alone is insufficient for improvement. We further propose a reward-misalignment model explaining why spurious rewards can enhance performance beyond contaminated settings. Our findings clarify the mechanisms behind spurious-reward benefits and provide principles for more effective RLVR training.
comment: 35 pages
☆ How Good is Post-Hoc Watermarking With Language Model Rephrasing?
Generation-time text watermarking embeds statistical signals into text for traceability of AI-generated content. We explore *post-hoc watermarking* where an LLM rewrites existing text while applying generation-time watermarking, to protect copyrighted documents, or detect their use in training or RAG via watermark radioactivity. Unlike generation-time approaches, which is constrained by how LLMs are served, this setting offers additional degrees of freedom for both generation and detection. We investigate how allocating compute (through larger rephrasing models, beam search, multi-candidate generation, or entropy filtering at detection) affects the quality-detectability trade-off. Our strategies achieve strong detectability and semantic fidelity on open-ended text such as books. Among our findings, the simple Gumbel-max scheme surprisingly outperforms more recent alternatives under nucleus sampling, and most methods benefit significantly from beam search. However, most approaches struggle when watermarking verifiable text such as code, where we counterintuitively find that smaller models outperform larger ones. This study reveals both the potential and limitations of post-hoc watermarking, laying groundwork for practical applications and future research.
comment: Code at https://github.com/facebookresearch/textseal
☆ In-Context Algebra
We investigate the mechanisms that arise when transformers are trained to solve arithmetic on sequences where tokens are variables whose meaning is determined only through their interactions. While prior work has found that transformers develop geometric embeddings that mirror algebraic structure, those previous findings emerge from settings where arithmetic-valued tokens have fixed meanings. We devise a new task in which the assignment of symbols to specific algebraic group elements varies from one sequence to another. Despite this challenging setup, transformers achieve near-perfect accuracy on the task and even generalize to unseen algebraic groups. We develop targeted data distributions to create causal tests of a set of hypothesized mechanisms, and we isolate three mechanisms models consistently learn: commutative copying where a dedicated head copies answers, identity element recognition that distinguishes identity-containing facts, and closure-based cancellation that tracks group membership to constrain valid answers. Complementary to the geometric representations found in fixed-symbol settings, our findings show that models develop symbolic reasoning mechanisms when trained to reason in-context with variables whose meanings are not fixed.
comment: 28 pages, 18 figures. Code and data at https://algebra.baulab.info
☆ Impacts of Racial Bias in Historical Training Data for News AI
AI technologies have rapidly moved into business and research applications that involve large text corpora, including computational journalism research and newsroom settings. These models, trained on extant data from various sources, can be conceptualized as historical artifacts that encode decades-old attitudes and stereotypes. This paper investigates one such example trained on the broadly-used New York Times Annotated Corpus to create a multi-label classifier. Our use in research settings surfaced the concerning "blacks" thematic topic label. Through quantitative and qualitative means we investigate this label's use in the training corpus, what concepts it might be encoding in the trained classifier, and how those concepts impact our model use. Via the application of explainable AI methods, we find that the "blacks" label operates partially as a general "racism detector" across some minoritized groups. However, it performs poorly against expectations on modern examples such as COVID-19 era anti-Asian hate stories, and reporting on the Black Lives Matter movement. This case study of interrogating embedded biases in a model reveals how similar applications in newsroom settings can lead to unexpected outputs that could impact a wide variety of potential uses of any large language model-story discovery, audience targeting, summarization, etc. The fundamental tension this exposes for newsrooms is how to adopt AI-enabled workflow tools while reducing the risk of reproducing historical biases in news coverage.
☆ Multimodal RewardBench 2: Evaluating Omni Reward Models for Interleaved Text and Image
Reward models (RMs) are essential for training large language models (LLMs), but remain underexplored for omni models that handle interleaved image and text sequences. We introduce Multimodal RewardBench 2 (MMRB2), the first comprehensive benchmark for reward models on multimodal understanding and (interleaved) generation. MMRB2 spans four tasks: text-to-image, image editing, interleaved generation, and multimodal reasoning ("thinking-with-images"), providing 1,000 expert-annotated preference pairs per task from 23 models and agents across 21 source tasks. MMRB2 is designed with: (1) practical but challenging prompts; (2) responses from state-of-the-art models and agents; and (3) preference pairs with strong human-expert consensus, curated via an ensemble filtering strategy. Using MMRB2, we study existing judges for each subtask, including multimodal LLM-as-a-judge and models trained with human preferences. The latest Gemini 3 Pro attains 75-80% accuracy. GPT-5 and Gemini 2.5 Pro reach 66-75% accuracy, compared to >90% for humans, yet surpass the widely used GPT-4o (59%). The best performing open-source model Qwen3-VL-32B achieves similar accuracies as Gemini 2.5 Flash (64%). We also show that MMRB2 performance strongly correlates with downstream task success using Best-of-N sampling and conduct an in-depth analysis that shows key areas to improve the reward models going forward.
comment: Code and data available at https://github.com/facebookresearch/MMRB2
☆ AdaSearch: Balancing Parametric Knowledge and Search in Large Language Models via Reinforcement Learning
Equipping large language models (LLMs) with search engines via reinforcement learning (RL) has emerged as an effective approach for building search agents. However, overreliance on search introduces unnecessary cost and risks exposure to noisy or malicious content, while relying solely on parametric knowledge risks hallucination. The central challenge is to develop agents that adaptively balance parametric knowledge with external search, invoking search only when necessary. Prior work mitigates search overuse by shaping rewards around the number of tool calls. However, these penalties require substantial reward engineering, provide ambiguous credit assignment, and can be exploited by agents that superficially reduce calls. Moreover, evaluating performance solely through call counts conflates necessary and unnecessary search, obscuring the measurement of true adaptive behavior. To address these limitations, we first quantify the self-knowledge awareness of existing search agents via an F1-based decision metric, revealing that methods such as Search-R1 often overlook readily available parametric knowledge. Motivated by these findings, we propose AdaSearch, a simple two-stage, outcome-driven RL framework that disentangles problem solving from the decision of whether to invoke search, and makes this decision process explicit and interpretable. This transparency is crucial for high-stakes domains such as finance and medical question answering, yet is largely neglected by prior approaches. Experiments across multiple model families and sizes demonstrate that AdaSearch substantially improves knowledge-boundary awareness, reduces unnecessary search calls, preserves strong task performance, and offers more transparent, interpretable decision behaviors.
comment: Preprint. Code and artifacts will be uploaded to https://github.com/hank0316/AdaSearch
LLMCache: Layer-Wise Caching Strategies for Accelerated Reuse in Transformer Inference
Transformer-based language models have achieved remarkable performance across a wide range of tasks, yet their high inference latency poses a significant challenge for real-timeand large-scale deployment. While existing caching mechanisms,such as token-level key-value caches, offer speedups in autore-gressive decoding, they are limited in scope and applicability. In this paper, we present LLMCache, a novel layer-wise caching framework that accelerates transformer inference by reusing intermediate activations based on semantic similarity of input sequences. Unlike prior work, LLMCache is model-agnostic,operates across both encoder and decoder architectures, and supports caching at arbitrary transformer layers. We introduce a lightweight fingerprinting mechanism for matching seman-tically similar inputs and propose adaptive eviction strategies to manage cache staleness. Experiments on BERT and GPT-2 across SQuAD, WikiText-103, and OpenBookQA show up to 3.1 X speedup in inference time with <0.5% accuracy degradation. Our results highlight LLMCache as a practical and general-purpose solution for optimizing transformer inference in real-world applications
comment: Accepted and presented at 13th IEEE International Conference on Intelligent Systems and Embedded Design (ISED-2025)
☆ What Do Prosody and Text Convey? Characterizing How Meaningful Information is Distributed Across Multiple Channels
Prosody -- the melody of speech -- conveys critical information often not captured by the words or text of a message. In this paper, we propose an information-theoretic approach to quantify how much information is expressed by prosody alone and not by text, and crucially, what that information is about. Our approach applies large speech and language models to estimate the mutual information between a particular dimension of an utterance's meaning (e.g., its emotion) and any of its communication channels (e.g., audio or text). We then use this approach to quantify how much information is conveyed by audio and text about sarcasm, emotion, and questionhood, using speech from television and podcasts. We find that for sarcasm and emotion the audio channel -- and by implication the prosodic channel -- transmits over an order of magnitude more information about these features than the text channel alone, at least when long-term context beyond the current sentence is unavailable. For questionhood, prosody provides comparatively less additional information. We conclude by outlining a program applying our approach to more dimensions of meaning, communication channels, and languages.
☆ Grammar-Forced Translation of Natural Language to Temporal Logic using LLMs
Translating natural language (NL) into a formal language such as temporal logic (TL) is integral for human communication with robots and autonomous systems. State-of-the-art approaches decompose the task into a lifting of atomic propositions (APs) phase and a translation phase. However, existing methods struggle with accurate lifting, the existence of co-references, and learning from limited data. In this paper, we propose a framework for NL to TL translation called Grammar Forced Translation (GraFT). The framework is based on the observation that previous work solves both the lifting and translation steps by letting a language model iteratively predict tokens from its full vocabulary. In contrast, GraFT reduces the complexity of both tasks by restricting the set of valid output tokens from the full vocabulary to only a handful in each step. The solution space reduction is obtained by exploiting the unique properties of each problem. We also provide a theoretical justification for why the solution space reduction leads to more efficient learning. We evaluate the effectiveness of GraFT using the CW, GLTL, and Navi benchmarks. Compared with state-of-the-art translation approaches, it can be observed that GraFT the end-to-end translation accuracy by 5.49% and out-of-domain translation accuracy by 14.06% on average.
☆ Exploration of Augmentation Strategies in Multi-modal Retrieval-Augmented Generation for the Biomedical Domain: A Case Study Evaluating Question Answering in Glycobiology
Multi-modal retrieval-augmented generation (MM-RAG) promises grounded biomedical QA, but it is unclear when to (i) convert figures/tables into text versus (ii) use optical character recognition (OCR)-free visual retrieval that returns page images and leaves interpretation to the generator. We study this trade-off in glycobiology, a visually dense domain. We built a benchmark of 120 multiple-choice questions (MCQs) from 25 papers, stratified by retrieval difficulty (easy text, medium figures/tables, hard cross-evidence). We implemented four augmentations-None, Text RAG, Multi-modal conversion, and late-interaction visual retrieval (ColPali)-using Docling parsing and Qdrant indexing. We evaluated mid-size open-source and frontier proprietary models (e.g., Gemma-3-27B-IT, GPT-4o family). Additional testing used the GPT-5 family and multiple visual retrievers (ColPali/ColQwen/ColFlor). Accuracy with Agresti-Coull 95% confidence intervals (CIs) was computed over 5 runs per configuration. With Gemma-3-27B-IT, Text and Multi-modal augmentation outperformed OCR-free retrieval (0.722-0.740 vs. 0.510 average accuracy). With GPT-4o, Multi-modal achieved 0.808, with Text 0.782 and ColPali 0.745 close behind; within-model differences were small. In follow-on experiments with the GPT-5 family, the best results with ColPali and ColFlor improved by ~2% to 0.828 in both cases. In general, across the GPT-5 family, ColPali, ColQwen, and ColFlor were statistically indistinguishable. GPT-5-nano trailed larger GPT-5 variants by roughly 8-10%. Pipeline choice is capacity-dependent: converting visuals to text lowers the reader burden and is more reliable for mid-size models, whereas OCR-free visual retrieval becomes competitive under frontier models. Among retrievers, ColFlor offers parity with heavier options at a smaller footprint, making it an efficient default when strong generators are available.
comment: Will be published in IEEE BigData 2025 proceedings. Contains 10 pages, 1 figure, 5 tables
☆ From Facts to Conclusions : Integrating Deductive Reasoning in Retrieval-Augmented LLMs
Retrieval-Augmented Generation (RAG) grounds large language models (LLMs) in external evidence, but fails when retrieved sources conflict or contain outdated or subjective information. Prior work address these issues independently but lack unified reasoning supervision. We propose a reasoning-trace-augmented RAG framework that adds structured, interpretable reasoning across three stages : (1) document-level adjudication, (2) conflict analysis, and (3) grounded synthesis, producing citation-linked answers or justified refusals. A Conflict-Aware Trust-Score (CATS) pipeline is introduced which evaluates groundedness, factual correctness, refusal accuracy, and conflict-behavior alignment using an LLM-as-a-Judge. Our 539-query reasoning dataset and evaluation pipeline establish a foundation for conflict-aware, interpretable RAG systems. Experimental results demonstrate substantial gains over baselines, most notably with Qwen, where Supervised Fine-Tuning improved End-to-End answer correctness from 0.069 to 0.883 and behavioral adherence from 0.074 to 0.722.
comment: Under Review
☆ GinSign: Grounding Natural Language Into System Signatures for Temporal Logic Translation
Natural language (NL) to temporal logic (TL) translation enables engineers to specify, verify, and enforce system behaviors without manually crafting formal specifications-an essential capability for building trustworthy autonomous systems. While existing NL-to-TL translation frameworks have demonstrated encouraging initial results, these systems either explicitly assume access to accurate atom grounding or suffer from low grounded translation accuracy. In this paper, we propose a framework for Grounding Natural Language Into System Signatures for Temporal Logic translation called GinSign. The framework introduces a grounding model that learns the abstract task of mapping NL spans onto a given system signature: given a lifted NL specification and a system signature $\mathcal{S}$, the classifier must assign each lifted atomic proposition to an element of the set of signature-defined atoms $\mathcal{P}$. We decompose the grounding task hierarchically- first predicting predicate labels, then selecting the appropriately typed constant arguments. Decomposing this task from a free-form generation problem into a structured classification problem permits the use of smaller masked language models and eliminates the reliance on expensive LLMs. Experiments across multiple domains show that frameworks which omit grounding tend to produce syntactically correct lifted LTL that is semantically nonequivalent to grounded target expressions, whereas our framework supports downstream model checking and achieves grounded logical-equivalence scores of $95.5\%$, a $1.4\times$ improvement over SOTA.
☆ DataFlow: An LLM-Driven Framework for Unified Data Preparation and Workflow Automation in the Era of Data-Centric AI
The rapidly growing demand for high-quality data in Large Language Models (LLMs) has intensified the need for scalable, reliable, and semantically rich data preparation pipelines. However, current practices remain dominated by ad-hoc scripts and loosely specified workflows, which lack principled abstractions, hinder reproducibility, and offer limited support for model-in-the-loop data generation. To address these challenges, we present DataFlow, a unified and extensible LLM-driven data preparation framework. DataFlow is designed with system-level abstractions that enable modular, reusable, and composable data transformations, and provides a PyTorch-style pipeline construction API for building debuggable and optimizable dataflows. The framework consists of nearly 200 reusable operators and six domain-general pipelines spanning text, mathematical reasoning, code, Text-to-SQL, agentic RAG, and large-scale knowledge extraction. To further improve usability, we introduce DataFlow-Agent, which automatically translates natural-language specifications into executable pipelines via operator synthesis, pipeline planning, and iterative verification. Across six representative use cases, DataFlow consistently improves downstream LLM performance. Our math, code, and text pipelines outperform curated human datasets and specialized synthetic baselines, achieving up to +3\% execution accuracy in Text-to-SQL over SynSQL, +7\% average improvements on code benchmarks, and 1--3 point gains on MATH, GSM8K, and AIME. Moreover, a unified 10K-sample dataset produced by DataFlow enables base models to surpass counterparts trained on 1M Infinity-Instruct data. These results demonstrate that DataFlow provides a practical and high-performance substrate for reliable, reproducible, and scalable LLM data preparation, and establishes a system-level foundation for future data-centric AI development.
☆ JustRL: Scaling a 1.5B LLM with a Simple RL Recipe
Recent advances in reinforcement learning for large language models have converged on increasing complexity: multi-stage training pipelines, dynamic hyperparameter schedules, and curriculum learning strategies. This raises a fundamental question: \textbf{Is this complexity necessary?} We present \textbf{JustRL}, a minimal approach using single-stage training with fixed hyperparameters that achieves state-of-the-art performance on two 1.5B reasoning models (54.9\% and 64.3\% average accuracy across nine mathematical benchmarks) while using 2$\times$ less compute than sophisticated approaches. The same hyperparameters transfer across both models without tuning, and training exhibits smooth, monotonic improvement over 4,000+ steps without the collapses or plateaus that typically motivate interventions. Critically, ablations reveal that adding ``standard tricks'' like explicit length penalties and robust verifiers may degrade performance by collapsing exploration. These results suggest that the field may be adding complexity to solve problems that disappear with a stable, scaled-up baseline. We release our models and code to establish a simple, validated baseline for the community.
comment: 12 pages, 3 figures
☆ Refusal Steering: Fine-grained Control over LLM Refusal Behaviour for Sensitive Topics
We introduce Refusal Steering, an inference-time method to exercise fine-grained control over Large Language Models refusal behaviour on politically sensitive topics without retraining. We replace fragile pattern-based refusal detection with an LLM-as-a-judge that assigns refusal confidence scores and we propose a ridge-regularized variant to compute steering vectors that better isolate the refusal--compliance direction. On Qwen3-Next-80B-A3B-Thinking, our method removes the refusal behaviour of the model around politically sensitive topics while maintaining safety on JailbreakBench and near-baseline performance on general benchmarks. The approach generalizes across 4B and 80B models and can also induce targeted refusals when desired. We analize the steering vectors and show that refusal signals concentrate in deeper layers of the transformer and are distributed across many dimensions. Together, these results demonstrate that activation steering can remove political refusal behaviour while retaining safety alignment for harmful content, offering a practical path to controllable, transparent moderation at inference time.
☆ Needle in the Web: A Benchmark for Retrieving Targeted Web Pages in the Wild
Large Language Models (LLMs) have evolved from simple chatbots into sophisticated agents capable of automating complex real-world tasks, where browsing and reasoning over live web content is key to assessing retrieval and cognitive skills. Existing benchmarks like BrowseComp and xBench-DeepSearch emphasize complex reasoning searches requiring multi-hop synthesis but neglect Fuzzy Exploratory Search, namely queries that are vague and multifaceted, where users seek the most relevant webpage rather than a single factual answer. To address this gap, we introduce Needle in the Web, a novel benchmark specifically designed to evaluate modern search agents and LLM-based systems on their ability to retrieve and reason over real-world web content in response to ambiguous, exploratory queries under varying levels of difficulty. Needle in the Web comprises 663 questions spanning seven distinct domains. To ensure high query quality and answer uniqueness, we employ a flexible methodology that reliably generates queries of controllable difficulty based on factual claims of web contents. We benchmark three leading LLMs and three agent-based search systems on Needle in the Web, finding that most models struggle: many achieve below 35% accuracy, and none consistently excel across domains or difficulty levels. These findings reveal that Needle in the Web presents a significant challenge for current search systems and highlights the open problem of effective fuzzy retrieval under semantic ambiguity.
comment: Data and code are available at https://github.com/Tango-Whiskyman/Needle_in_the_Web
☆ UM_FHS at the CLEF 2025 SimpleText Track: Comparing No-Context and Fine-Tune Approaches for GPT-4.1 Models in Sentence and Document-Level Text Simplification
This work describes our submission to the CLEF 2025 SimpleText track Task 1, addressing both sentenceand document-level simplification of scientific texts. The methodology centered on using the gpt-4.1, gpt-4.1mini, and gpt-4.1-nano models from OpenAI. Two distinct approaches were compared: a no-context method relying on prompt engineering and a fine-tuned (FT) method across models. The gpt-4.1-mini model with no-context demonstrated robust performance at both levels of simplification, while the fine-tuned models showed mixed results, highlighting the complexities of simplifying text at different granularities, where gpt-4.1-nano-ft performance stands out at document-level simplification in one case.
comment: 10 pages, 3 tables. CLEF 2025 Working Notes, 9 to 12 September 2025, Madrid, Spain
☆ Plain language adaptations of biomedical text using LLMs: Comparision of evaluation metrics
This study investigated the application of Large Language Models (LLMs) for simplifying biomedical texts to enhance health literacy. Using a public dataset, which included plain language adaptations of biomedical abstracts, we developed and evaluated several approaches, specifically a baseline approach using a prompt template, a two AI agent approach, and a fine-tuning approach. We selected OpenAI gpt-4o and gpt-4o mini models as baselines for further research. We evaluated our approaches with quantitative metrics, such as Flesch-Kincaid grade level, SMOG Index, SARI, and BERTScore, G-Eval, as well as with qualitative metric, more precisely 5-point Likert scales for simplicity, accuracy, completeness, brevity. Results showed a superior performance of gpt-4o-mini and an underperformance of FT approaches. G-Eval, a LLM based quantitative metric, showed promising results, ranking the approaches similarly as the qualitative metric.
comment: 5 pages, 1 figure
☆ Topic Modelling Black Box Optimization
Choosing the number of topics $T$ in Latent Dirichlet Allocation (LDA) is a key design decision that strongly affects both the statistical fit and interpretability of topic models. In this work, we formulate the selection of $T$ as a discrete black-box optimization problem, where each function evaluation corresponds to training an LDA model and measuring its validation perplexity. Under a fixed evaluation budget, we compare four families of optimizers: two hand-designed evolutionary methods - Genetic Algorithm (GA) and Evolution Strategy (ES) - and two learned, amortized approaches, Preferential Amortized Black-Box Optimization (PABBO) and Sharpness-Aware Black-Box Optimization (SABBO). Our experiments show that, while GA, ES, PABBO, and SABBO eventually reach a similar band of final perplexity, the amortized optimizers are substantially more sample- and time-efficient. SABBO typically identifies a near-optimal topic number after essentially a single evaluation, and PABBO finds competitive configurations within a few evaluations, whereas GA and ES require almost the full budget to approach the same region.
☆ From Essence to Defense: Adaptive Semantic-aware Watermarking for Embedding-as-a-Service Copyright Protection
Benefiting from the superior capabilities of large language models in natural language understanding and generation, Embeddings-as-a-Service (EaaS) has emerged as a successful commercial paradigm on the web platform. However, prior studies have revealed that EaaS is vulnerable to imitation attacks. Existing methods protect the intellectual property of EaaS through watermarking techniques, but they all ignore the most important properties of embedding: semantics, resulting in limited harmlessness and stealthiness. To this end, we propose SemMark, a novel semantic-based watermarking paradigm for EaaS copyright protection. SemMark employs locality-sensitive hashing to partition the semantic space and inject semantic-aware watermarks into specific regions, ensuring that the watermark signals remain imperceptible and diverse. In addition, we introduce the adaptive watermark weight mechanism based on the local outlier factor to preserve the original embedding distribution. Furthermore, we propose Detect-Sampling and Dimensionality-Reduction attacks and construct four scenarios to evaluate the watermarking method. Extensive experiments are conducted on four popular NLP datasets, and SemMark achieves superior verifiability, diversity, stealthiness, and harmlessness.
☆ Bridging the Reality Gap: Efficient Adaptation of ASR systems for Challenging Low-Resource Domains
Automatic Speech Recognition (ASR) holds immense potential to streamline clinical documentation, such as digitizing handwritten prescriptions and reports, thereby increasing patient throughput and reducing costs in resource-constrained sectors like rural healthcare. However, realizing this utility is currently obstructed by significant technical barriers: strict data privacy constraints, limited computational resources, and severe acoustic domain shifts. We quantify this gap by showing that a robust multilingual model (IndicWav2Vec) degrades to a stark 40.94% Word Error Rate (WER) when deployed on real-world clinical audio (Gram Vaani), rendering it unusable for practical applications. To address these challenges and bring ASR closer to deployment, we propose an efficient, privacy-preserving adaptation framework. We employ Low-Rank Adaptation (LoRA) to enable continual learning from incoming data streams directly on edge devices, ensuring patient data confidentiality. Our strategy yields a 17.1% relative improvement in WER on the target domain. Furthermore, by integrating multi-domain experience replay, we reduce catastrophic forgetting by 47% compared to naive adaptation. These results demonstrate a viable pathway for building reliable, self-improving ASR systems that can operate effectively within the constraints of high-impact real-world environments.
☆ Hearing to Translate: The Effectiveness of Speech Modality Integration into LLMs
As Large Language Models (LLMs) expand beyond text, integrating speech as a native modality has given rise to SpeechLLMs, which aim to translate spoken language directly, thereby bypassing traditional transcription-based pipelines. Whether this integration improves speech-to-text translation quality over established cascaded architectures, however, remains an open question. We present Hearing to Translate, the first comprehensive test suite rigorously benchmarking 5 state-of-the-art SpeechLLMs against 16 strong direct and cascade systems that couple leading speech foundation models (SFM), with multilingual LLMs. Our analysis spans 16 benchmarks, 13 language pairs, and 9 challenging conditions, including disfluent, noisy, and long-form speech. Across this extensive evaluation, we find that cascaded systems remain the most reliable overall, while current SpeechLLMs only match cascades in selected settings and SFMs lag behind both, highlighting that integrating an LLM, either within the model or in a pipeline, is essential for high-quality speech translation.
comment: Project available at https://github.com/sarapapi/hearing2translate
☆ Hacking Neural Evaluation Metrics with Single Hub Text
Strongly human-correlated evaluation metrics serve as an essential compass for the development and improvement of generation models and must be highly reliable and robust. Recent embedding-based neural text evaluation metrics, such as COMET for translation tasks, are widely used in both research and development fields. However, there is no guarantee that they yield reliable evaluation results due to the black-box nature of neural networks. To raise concerns about the reliability and safety of such metrics, we propose a method for finding a single adversarial text in the discrete space that is consistently evaluated as high-quality, regardless of the test cases, to identify the vulnerabilities in evaluation metrics. The single hub text found with our method achieved 79.1 COMET% and 67.8 COMET% in the WMT'24 English-to-Japanese (En--Ja) and English-to-German (En--De) translation tasks, respectively, outperforming translations generated individually for each source sentence by using M2M100, a general translation model. Furthermore, we also confirmed that the hub text found with our method generalizes across multiple language pairs such as Ja--En and De--En.
Agent Tools Orchestration Leaks More: Dataset, Benchmark, and Mitigation
Driven by Large Language Models, the single-agent, multi-tool architecture has become a popular paradigm for autonomous agents due to its simplicity and effectiveness. However, this architecture also introduces a new and severe privacy risk, which we term Tools Orchestration Privacy Risk (TOP-R), where an agent, to achieve a benign user goal, autonomously aggregates information fragments across multiple tools and leverages its reasoning capabilities to synthesize unexpected sensitive information. We provide the first systematic study of this risk. First, we establish a formal framework, attributing the risk's root cause to the agent's misaligned objective function: an overoptimization for helpfulness while neglecting privacy awareness. Second, we construct TOP-Bench, comprising paired leakage and benign scenarios, to comprehensively evaluate this risk. To quantify the trade-off between safety and robustness, we introduce the H-Score as a holistic metric. The evaluation results reveal that TOP-R is a severe risk: the average Risk Leakage Rate (RLR) of eight representative models reaches 90.24%, while the average H-Score is merely 0.167, with no model exceeding 0.3. Finally, we propose the Privacy Enhancement Principle (PEP) method, which effectively mitigates TOP-R, reducing the Risk Leakage Rate to 46.58% and significantly improving the H-Score to 0.624. Our work reveals both a new class of risk and inherent structural limitations in current agent architectures, while also offering feasible mitigation strategies.
☆ Adaptation of Agentic AI
Cutting-edge agentic AI systems are built on foundation models that can be adapted to plan, reason, and interact with external tools to perform increasingly complex and specialized tasks. As these systems grow in capability and scope, adaptation becomes a central mechanism for improving performance, reliability, and generalization. In this paper, we unify the rapidly expanding research landscape into a systematic framework that spans both agent adaptations and tool adaptations. We further decompose these into tool-execution-signaled and agent-output-signaled forms of agent adaptation, as well as agent-agnostic and agent-supervised forms of tool adaptation. We demonstrate that this framework helps clarify the design space of adaptation strategies in agentic AI, makes their trade-offs explicit, and provides practical guidance for selecting or switching among strategies during system design. We then review the representative approaches in each category, analyze their strengths and limitations, and highlight key open challenges and future opportunities. Overall, this paper aims to offer a conceptual foundation and practical roadmap for researchers and practitioners seeking to build more capable, efficient, and reliable agentic AI systems.
☆ Evaluating OpenAI GPT Models for Translation of Endangered Uralic Languages: A Comparison of Reasoning and Non-Reasoning Architectures
The evaluation of Large Language Models (LLMs) for translation tasks has primarily focused on high-resource languages, leaving a significant gap in understanding their performance on low-resource and endangered languages. This study presents a comprehensive comparison of OpenAI's GPT models, specifically examining the differences between reasoning and non-reasoning architectures for translating between Finnish and four low-resource Uralic languages: Komi-Zyrian, Moksha, Erzya, and Udmurt. Using a parallel corpus of literary texts, we evaluate model willingness to attempt translation through refusal rate analysis across different model architectures. Our findings reveal significant performance variations between reasoning and non-reasoning models, with reasoning models showing 16 percentage points lower refusal rates. The results provide valuable insights for researchers and practitioners working with Uralic languages and contribute to the broader understanding of reasoning model capabilities for endangered language preservation.
comment: IWCLUL 2025
☆ QuadSentinel: Sequent Safety for Machine-Checkable Control in Multi-agent Systems
Safety risks arise as large language model-based agents solve complex tasks with tools, multi-step plans, and inter-agent messages. However, deployer-written policies in natural language are ambiguous and context dependent, so they map poorly to machine-checkable rules, and runtime enforcement is unreliable. Expressing safety policies as sequents, we propose \textsc{QuadSentinel}, a four-agent guard (state tracker, policy verifier, threat watcher, and referee) that compiles these policies into machine-checkable rules built from predicates over observable state and enforces them online. Referee logic plus an efficient top-$k$ predicate updater keeps costs low by prioritizing checks and resolving conflicts hierarchically. Measured on ST-WebAgentBench (ICML CUA~'25) and AgentHarm (ICLR~'25), \textsc{QuadSentinel} improves guardrail accuracy and rule recall while reducing false positives. Against single-agent baselines such as ShieldAgent (ICML~'25), it yields better overall safety control. Near-term deployments can adopt this pattern without modifying core agents by keeping policies separate and machine-checkable. Our code will be made publicly available at https://github.com/yyiliu/QuadSentinel.
comment: Preprint
☆ Sigma-Moe-Tiny Technical Report
Mixture-of-Experts (MoE) has emerged as a promising paradigm for foundation models due to its efficient and powerful scalability. In this work, we present Sigma-MoE-Tiny, an MoE language model that achieves the highest sparsity compared to existing open-source models. Sigma-MoE-Tiny employs fine-grained expert segmentation with up to 96 experts per layer, while activating only one expert for each token, resulting in 20B total parameters with just 0.5B activated. The major challenge introduced by such extreme sparsity lies in expert load balancing. We find that the widely-used load balancing loss tends to become ineffective in the lower layers under this setting. To address this issue, we propose a progressive sparsification schedule aiming to balance expert utilization and training stability. Sigma-MoE-Tiny is pre-trained on a diverse and high-quality corpus, followed by post-training to further unlock its capabilities. The entire training process remains remarkably stable, with no occurrence of irrecoverable loss spikes. Comprehensive evaluations reveal that, despite activating only 0.5B parameters, Sigma-MoE-Tiny achieves top-tier performance among counterparts of comparable or significantly larger scale. In addition, we provide an in-depth discussion of load balancing in highly sparse MoE models, offering insights for advancing sparsity in future MoE architectures. Project page: https://qghuxmu.github.io/Sigma-MoE-Tiny Code: https://github.com/microsoft/ltp-megatron-lm
☆ LoPA: Scaling dLLM Inference via Lookahead Parallel Decoding
Diffusion Large Language Models (dLLMs) have demonstrated significant potential for high-speed inference. However, current confidence-driven decoding strategies are constrained by limited parallelism, typically achieving only 1--3 tokens per forward pass (TPF). In this work, we identify that the degree of parallelism during dLLM inference is highly sensitive to the Token Filling Order (TFO). Then, we introduce Lookahead PArallel Decoding LoPA, a training-free, plug-and-play algorithm, to identify a superior TFO and hence accelerate inference. LoPA concurrently explores distinct candidate TFOs via parallel branches, and selects the one with the highest potential for future parallelism based on branch confidence. We apply LoPA to the state-of-the-art D2F model and observe a substantial enhancement in decoding efficiency. Notably, LoPA increases the TPF of D2F-Dream to 10.1 on the GSM8K while maintaining performance superior to the Dream baseline. Furthermore, to facilitate this unprecedented degree of parallelism, we develop a specialized multi-device inference system featuring Branch Parallelism (BP), which achieves a single-sample throughput of 1073.9 tokens per second under multi-GPU deployment. The code is available at https://github.com/zhijie-group/LoPA.
☆ An Information-Theoretic Framework for Robust Large Language Model Editing
Large Language Models (LLMs) have become indispensable tools in science, technology, and society, enabling transformative advances across diverse fields. However, errors or outdated information within these models can undermine their accuracy and restrict their safe deployment. Developing efficient strategies for updating model knowledge without the expense and disruption of full retraining remains a critical challenge. Current model editing techniques frequently struggle to generalize corrections beyond narrow domains, leading to unintended consequences and limiting their practical impact. Here, we introduce a novel framework for editing LLMs, grounded in information bottleneck theory. This approach precisely compresses and isolates the essential information required for generalizable knowledge correction while minimizing disruption to unrelated model behaviors. Building upon this foundation, we present the Information Bottleneck Knowledge Editor (IBKE), which leverages compact latent representations to guide gradient-based updates, enabling robust and broadly applicable model editing. We validate IBKE's effectiveness across multiple LLM architectures and standard benchmark tasks, demonstrating state-of-the-art accuracy and improved generality and specificity of edits. These findings establish a theoretically principled and practical paradigm for open-domain knowledge editing, advancing the utility and trustworthiness of LLMs in real-world applications.
☆ Mitigating Hallucinations in Healthcare LLMs with Granular Fact-Checking and Domain-Specific Adaptation
In healthcare, it is essential for any LLM-generated output to be reliable and accurate, particularly in cases involving decision-making and patient safety. However, the outputs are often unreliable in such critical areas due to the risk of hallucinated outputs from the LLMs. To address this issue, we propose a fact-checking module that operates independently of any LLM, along with a domain-specific summarization model designed to minimize hallucination rates. Our model is fine-tuned using Low-Rank Adaptation (LoRa) on the MIMIC III dataset and is paired with the fact-checking module, which uses numerical tests for correctness and logical checks at a granular level through discrete logic in natural language processing (NLP) to validate facts against electronic health records (EHRs). We trained the LLM model on the full MIMIC-III dataset. For evaluation of the fact-checking module, we sampled 104 summaries, extracted them into 3,786 propositions, and used these as facts. The fact-checking module achieves a precision of 0.8904, a recall of 0.8234, and an F1-score of 0.8556. Additionally, the LLM summary model achieves a ROUGE-1 score of 0.5797 and a BERTScore of 0.9120 for summary quality.
☆ A Domain-Adapted Pipeline for Structured Information Extraction from Police Incident Announcements on Social Media
Structured information extraction from police incident announcements is crucial for timely and accurate data processing, yet presents considerable challenges due to the variability and informal nature of textual sources such as social media posts. To address these challenges, we developed a domain-adapted extraction pipeline that leverages targeted prompt engineering with parameter-efficient fine-tuning of the Qwen2.5-7B model using Low-Rank Adaptation (LoRA). This approach enables the model to handle noisy, heterogeneous text while reliably extracting 15 key fields, including location, event characteristics, and impact assessment, from a high-quality, manually annotated dataset of 4,933 instances derived from 27,822 police briefing posts on Chinese Weibo (2019-2020). Experimental results demonstrated that LoRA-based fine-tuning significantly improved performance over both the base and instruction-tuned models, achieving an accuracy exceeding 98.36% for mortality detection and Exact Match Rates of 95.31% for fatality counts and 95.54% for province-level location extraction. The proposed pipeline thus provides a validated and efficient solution for multi-task structured information extraction in specialized domains, offering a practical framework for transforming unstructured text into reliable structured data in social science research.
comment: 41 pages,3figures and 9 tables
☆ DualGuard: Dual-stream Large Language Model Watermarking Defense against Paraphrase and Spoofing Attack
With the rapid development of cloud-based services, large language models (LLMs) have become increasingly accessible through various web platforms. However, this accessibility has also led to growing risks of model abuse. LLM watermarking has emerged as an effective approach to mitigate such misuse and protect intellectual property. Existing watermarking algorithms, however, primarily focus on defending against paraphrase attacks while overlooking piggyback spoofing attacks, which can inject harmful content, compromise watermark reliability, and undermine trust in attribution. To address this limitation, we propose DualGuard, the first watermarking algorithm capable of defending against both paraphrase and spoofing attacks. DualGuard employs the adaptive dual-stream watermarking mechanism, in which two complementary watermark signals are dynamically injected based on the semantic content. This design enables DualGuard not only to detect but also to trace spoofing attacks, thereby ensuring reliable and trustworthy watermark detection. Extensive experiments conducted across multiple datasets and language models demonstrate that DualGuard achieves excellent detectability, robustness, traceability, and text quality, effectively advancing the state of LLM watermarking for real-world applications.
Science Consultant Agent
The Science Consultant Agent is a web-based Artificial Intelligence (AI) tool that helps practitioners select and implement the most effective modeling strategy for AI-based solutions. It operates through four core components: Questionnaire, Smart Fill, Research-Guided Recommendation, and Prototype Builder. By combining structured questionnaires, literature-backed solution recommendations, and prototype generation, the Science Consultant Agent accelerates development for everyone from Product Managers and Software Developers to Researchers. The full pipeline is illustrated in Figure 1.
☆ Decoding Fake Narratives in Spreading Hateful Stories: A Dual-Head RoBERTa Model with Multi-Task Learning
Social media platforms, while enabling global connectivity, have become hubs for the rapid spread of harmful content, including hate speech and fake narratives \cite{davidson2017automated, shu2017fake}. The Faux-Hate shared task focuses on detecting a specific phenomenon: the generation of hate speech driven by fake narratives, termed Faux-Hate. Participants are challenged to identify such instances in code-mixed Hindi-English social media text. This paper describes our system developed for the shared task, addressing two primary sub-tasks: (a) Binary Faux-Hate detection, involving fake and hate speech classification, and (b) Target and Severity prediction, categorizing the intended target and severity of hateful content. Our approach combines advanced natural language processing techniques with domain-specific pretraining to enhance performance across both tasks. The system achieved competitive results, demonstrating the efficacy of leveraging multi-task learning for this complex problem.
comment: Accepted Paper, Anthology ID: 2024.icon-fauxhate.3, 4 pages, 1 figure, 1 table
☆ MRG-R1: Reinforcement Learning for Clinically Aligned Medical Report Generation
Medical report generation (MRG) aims to automatically derive radiology-style reports from medical images to aid in clinical decision-making. However, existing methods often generate text that mimics the linguistic style of radiologists but fails to guarantee clinical correctness, because they are trained on token-level objectives which focus on word-choice and sentence structure rather than actual medical accuracy. We propose a semantic-driven reinforcement learning (SRL) method for medical report generation, adopted on a large vision-language model (LVLM). SRL adopts Group Relative Policy Optimization (GRPO) to encourage clinical-correctness-guided learning beyond imitation of language style. Specifically, we optimise a report-level reward: a margin-based cosine similarity (MCCS) computed between key radiological findings extracted from generated and reference reports, thereby directly aligning clinical-label agreement and improving semantic correctness. A lightweight reasoning format constraint further guides the model to generate structured "thinking report" outputs. We evaluate Medical Report Generation with Sematic-driven Reinforment Learning (MRG-R1), on two datasets: IU X-Ray and MIMIC-CXR using clinical efficacy (CE) metrics. MRG-R1 achieves state-of-the-art performance with CE-F1 51.88 on IU X-Ray and 40.39 on MIMIC-CXR. We found that the label-semantic reinforcement is better than conventional token-level supervision. These results indicate that optimizing a clinically grounded, report-level reward rather than token overlap,meaningfully improves clinical correctness. This work is a prior to explore semantic-reinforcement in supervising medical correctness in medical Large vision-language model(Med-LVLM) training.
comment: 12 pages
☆ Convolutional Lie Operator for Sentence Classification
Traditional Convolutional Neural Networks have been successful in capturing local, position-invariant features in text, but their capacity to model complex transformation within language can be further explored. In this work, we explore a novel approach by integrating Lie Convolutions into Convolutional-based sentence classifiers, inspired by the ability of Lie group operations to capture complex, non-Euclidean symmetries. Our proposed models SCLie and DPCLie empirically outperform traditional Convolutional-based sentence classifiers, suggesting that Lie-based models relatively improve the accuracy by capturing transformations not commonly associated with language. Our findings motivate more exploration of new paradigms in language modeling.
comment: Proceedings of the 2024 8th International Conference on Natural Language Processing and Information Retrieval
☆ ContextLeak: Auditing Leakage in Private In-Context Learning Methods
In-Context Learning (ICL) has become a standard technique for adapting Large Language Models (LLMs) to specialized tasks by supplying task-specific exemplars within the prompt. However, when these exemplars contain sensitive information, reliable privacy-preserving mechanisms are essential to prevent unintended leakage through model outputs. Many privacy-preserving methods are proposed to protect the information leakage in the context, but there are less efforts on how to audit those methods. We introduce ContextLeak, the first framework to empirically measure the worst-case information leakage in ICL. ContextLeak uses canary insertion, embedding uniquely identifiable tokens in exemplars and crafting targeted queries to detect their presence. We apply ContextLeak across a range of private ICL techniques, both heuristic such as prompt-based defenses and those with theoretical guarantees such as Embedding Space Aggregation and Report Noisy Max. We find that ContextLeak tightly correlates with the theoretical privacy budget ($ε$) and reliably detects leakage. Our results further reveal that existing methods often strike poor privacy-utility trade-offs, either leaking sensitive information or severely degrading performance.
☆ GinSign: Grounding Natural Language Into System Signatures for Temporal Logic Translation
Natural language (NL) to temporal logic (TL) translation enables engineers to specify, verify, and enforce system behaviors without manually crafting formal specifications-an essential capability for building trustworthy autonomous systems. While existing NL-to-TL translation frameworks have demonstrated encouraging initial results, these systems either explicitly assume access to accurate atom grounding or suffer from low grounded translation accuracy. In this paper, we propose a framework for Grounding Natural Language Into System Signatures for Temporal Logic translation called GinSign. The framework introduces a grounding model that learns the abstract task of mapping NL spans onto a given system signature: given a lifted NL specification and a system signature $\mathcal{S}$, the classifier must assign each lifted atomic proposition to an element of the set of signature-defined atoms $\mathcal{P}$. We decompose the grounding task hierarchically -- first predicting predicate labels, then selecting the appropriately typed constant arguments. Decomposing this task from a free-form generation problem into a structured classification problem permits the use of smaller masked language models and eliminates the reliance on expensive LLMs. Experiments across multiple domains show that frameworks which omit grounding tend to produce syntactically correct lifted LTL that is semantically nonequivalent to grounded target expressions, whereas our framework supports downstream model checking and achieves grounded logical-equivalence scores of $95.5\%$, a $1.4\times$ improvement over SOTA.
♻ ☆ The Emergence of Chunking Structures with Hierarchical RNN
In Natural Language Processing (NLP), predicting linguistic structures, such as parsing and chunking, has mostly relied on manual annotations of syntactic structures. This paper introduces an unsupervised approach to chunking, a syntactic task that involves grouping words in a non-hierarchical manner. We present a Hierarchical Recurrent Neural Network (HRNN) designed to model word-to-chunk and chunk-to-sentence compositions. Our approach involves a two-stage training process: pretraining with an unsupervised parser and finetuning on downstream NLP tasks. Experiments on multiple datasets reveal a notable improvement of unsupervised chunking performance in both pretraining and finetuning stages. Interestingly, we observe that the emergence of the chunking structure is transient during the neural model's downstream-task training. This study contributes to the advancement of unsupervised syntactic structure discovery and opens avenues for further research in linguistic theory.
comment: Published in Computational Linguistics
♻ ☆ Wrist Photoplethysmography Predicts Dietary Information
Whether wearable photoplethysmography (PPG) contains dietary information remains unknown. We trained a language model on 1.1M meals to predict meal descriptions from PPG, aligning PPG to text. PPG nontrivially predicts meal content; predictability decreases for PPGs farther from meals. This transfers to dietary tasks: PPG increases AUC by 11% for intake and satiety across held-out and independent cohorts, with gains robust to text degradation. Wearable PPG may enable passive dietary monitoring.
comment: 20 pages, 2 figures
♻ ☆ Which Evaluation for Which Model? A Taxonomy for Speech Model Assessment
Speech foundation models have recently achieved remarkable capabilities across a wide range of tasks. However, their evaluation remains disjointed across tasks and model types. Different models excel at distinct aspects of speech processing and thus require different evaluation protocols. This paper proposes a unified taxonomy that addresses the question: Which evaluation is appropriate for which model? The taxonomy defines three orthogonal axes: the evaluation aspect being measured, the model capabilities required to attempt the task, and the task or protocol requirements needed to perform it. We classify a broad set of existing evaluations and benchmarks along these axes, spanning areas such as representation learning, speech generation, and interactive dialogue. By mapping each evaluation to the capabilities a model exposes (e.g., speech generation, real-time processing) and to its methodological demands (e.g., fine-tuning data, human judgment), the taxonomy provides a principled framework for aligning models with suitable evaluation methods. It also reveals systematic gaps, such as limited coverage of prosody, interaction, or reasoning, that highlight priorities for future benchmark design. Overall, this work offers a conceptual foundation and practical guide for selecting, interpreting, and extending evaluations of speech models.
comment: 57 pages (26 main, 25 appendix, 6 references)
♻ ☆ Verifiable Natural Language to Linear Temporal Logic Translation: A Benchmark Dataset and Evaluation Suite
Empirical evaluation of state-of-the-art natural-language (NL) to temporal-logic (TL) translation systems reveals near-perfect performance on existing benchmarks. However, current studies measure only the accuracy of the translation of NL logic into formal TL, ignoring a system's capacity to ground atomic propositions into new scenarios or environments. This is a critical feature, necessary for the verification of resulting formulas in a concrete state space. Consequently, most NL-to-TL translation frameworks propose their own bespoke dataset in which the correct grounding is known a-priori, inflating performance metrics and neglecting the need for extensible, domain-general systems. In this paper, we introduce the Verifiable Linear Temporal Logic Benchmark ( VLTL-Bench), a unifying benchmark that measures verification and verifiability of automated NL-to-LTL translation. The dataset consists of four unique state spaces and thousands of diverse natural language specifications and corresponding formal specifications in temporal logic. Moreover, the benchmark contains sample traces to validate the temporal logic expressions. While the benchmark directly supports end-to-end evaluation, we observe that many frameworks decompose the process into i) lifting, ii) grounding, iii) translation, and iv) verification. The benchmark provides ground truths after each of these steps to enable researches to improve and evaluate different substeps of the overall problem. To encourage methodologically sound advances in verifiable NL-to-LTL translation approaches, we release VLTL-Bench here: https://www.kaggle.com/datasets/dubascudes/vltl bench.
♻ ☆ InsurTech innovation using natural language processing
With the rapid rise of InsurTech, traditional insurance companies are increasingly exploring alternative data sources and advanced technologies to sustain their competitive edge. This paper provides both a conceptual overview and practical case studies of natural language processing (NLP) and its emerging applications within insurance operations, focusing on transforming raw, unstructured text into structured data suitable for actuarial analysis and decision-making. Leveraging real-world alternative data provided by an InsurTech industry partner that enriches traditional insurance data sources, we apply various NLP techniques to demonstrate feature de-biasing, feature compression, and industry classification in the commercial insurance context. These enriched, text-derived insights not only add to and refine traditional rating factors for commercial insurance pricing but also offer novel perspectives for assessing underlying risk by introducing novel industry classification techniques. Through these demonstrations, we show that NLP is not merely a supplementary tool but a foundational element of modern, data-driven insurance analytics.
♻ ☆ OpenNER 1.0: Standardized Open-Access Named Entity Recognition Datasets in 50+ Languages EMNLP 2025
We present OpenNER 1.0, a standardized collection of openly-available named entity recognition (NER) datasets. OpenNER contains 36 NER corpora that span 52 languages, human-annotated in varying named entity ontologies. We correct annotation format issues, standardize the original datasets into a uniform representation with consistent entity type names across corpora, and provide the collection in a structure that enables research in multilingual and multi-ontology NER. We provide baseline results using three pretrained multilingual language models and two large language models to compare the performance of recent models and facilitate future research in NER. We find that no single model is best in all languages and that significant work remains to obtain high performance from LLMs on the NER task. OpenNER is released at https://github.com/bltlab/open-ner.
comment: Published in the proceedings of EMNLP 2025
♻ ☆ Gated KalmaNet: A Fading Memory Layer Through Test-Time Ridge Regression
As efficient alternatives to softmax Attention, linear State-Space Models (SSMs) achieve constant memory and linear compute, but maintain only a lossy, fading summary of the past, often leading to inferior performance in recall-oriented tasks. We propose Gated KalmaNet (GKA), a layer that accounts for the full past while maintaining SSM-style efficiency. We ground our approach in the Kalman Filter (KF) framework, which provides a principled solution for optimal inference in dynamical systems. We show that several existing SSM layers (DeltaNet, Gated DeltaNet, and Kimi Delta Attention) are approximations to the KF recurrence that assume identity error covariance, thereby ignoring how past measurements (keys and values) should optimally influence state updates. In contrast, GKA computes the exact Kalman gain by maintaining the full error covariance. Under a steady-state assumption that enables parallelization, this reduces to solving an online ridge regression problem with constant memory and linear compute cost. A critical insight is that standard KF equations are numerically unstable in low-precision environments (like bfloat16) and hard to parallelize on modern hardware. We address this through: (1) adaptive regularization with input-dependent gating to control the condition number of the ridge regression for numerical stability, and (2) Chebyshev Iteration, which we show is more stable than conventional iterative solvers in low-precision settings. We further develop hardware-aware chunk-wise kernels to enable efficient training. Empirically, GKA outperforms existing SSM layers (like Mamba2 and Gated DeltaNet) on short-context tasks and achieves more than 10\% relative improvement on long-context RAG and LongQA tasks up to 128k tokens.
comment: 30 pages, 10 figures
♻ ☆ BigCodeArena: Unveiling More Reliable Human Preferences in Code Generation via Execution
Crowdsourced model evaluation platforms, such as Chatbot Arena, enable real-time evaluation from human perspectives to assess the quality of model responses. In the coding domain, manually examining the quality of LLM-generated content is extremely challenging, as it requires understanding long chunks of raw code and deliberately simulating code execution. To this end, we introduce BigCodeArena, an open human evaluation platform for code generation backed by a comprehensive and on-the-fly execution environment. Built on top of Chatbot Arena, BigCodeArena enables the execution of LLM-generated code and allows humans to interact with the execution process and outcomes. We collected over 14,000 raw code-centric conversation sessions across 10 widely used LLMs, spanning 10 languages and 8 types of execution environments. Among these conversations, we identified more than 4,700 multi-turn samples with pairwise human preferences. Further analysis uncovers underexplored preferences of LLMs in fine-grained domains characterized by tasks, languages, and frameworks. To systematically examine code understanding and generation capabilities of frontier LLMs, we curated two benchmarks based on the collected data, namely BigCodeReward and AutoCodeArena. For BigCodeReward, we post-processed the 4,700 conversations and evaluated the consistency between reward models and human preferences. The evaluation shows that most LLMs have superior performance in judging coding preferences when the execution results are available. Inspired by these findings, we propose AutoCodeArena, an automatic Elo rating benchmark designed to assess the coding quality of LLMs without human involvement. We find that proprietary LLMs like GPT-5, Claude-Sonnet-4, and Claude-Opus-4 still lead in code generation performance among recent emerging models.
comment: Built with love by the BigCode community :)
♻ ☆ SpiroLLM: Finetuning Pretrained LLMs to Understand Spirogram Time Series with Clinical Validation in COPD Reporting
Chronic Obstructive Pulmonary Disease (COPD), a major chronic respiratory disease with persistent airflow limitation, is a leading global cause of disability and mortality. Respiratory spirogram time series, routinely collected during pulmonary function tests (PFTs), play a critical role in the early detection of repsiratory diseases and in monitoring lung function over time. However, most current AI models for COPD diagnosis are limited to outputting classification results without providing a rationale for their diagnostic process, while current Large Language Models (LLMs) cannot understand spirograms yet, which severely limits their clinical trust and adoption. To tackle this challenge, we leverage a cohort of 234,028 individuals from the UK Biobank (UKB) to propose SpiroLLM, the first multimodal large language model that can understand spirogram. The model extracts morphological features from respiratory curves via a SpiroEncoder and aligns them with PFT numerical values in a unified latent space using a SpiroProjector, ultimately empowering a large language model to generate a comprehensive diagnostic report. Experimental results confirm that SpiroLLM achieved a diagnostic AUROC of 0.8977 (95% CI: 0.88-0.91). In a robustness test with missing core data, it maintained a 100% valid response rate, far surpassing the 13.4% of a text-only model and showcasing the superiority of its multimodal design. This work demonstrates the substantial potential of deeply fusing physiological signals with large language models, establishing a new paradigm for the next generation of interpretable and reliable clinical decision support tools.
♻ ☆ VAEER: Visual Attention-Inspired Emotion Elicitation Reasoning
Images shared online strongly influence emotions and public well-being. Understanding the emotions an image elicits is therefore vital for fostering healthier and more sustainable digital communities, especially during public crises. We study Visual Emotion Elicitation (VEE), predicting the set of emotions that an image evokes in viewers. We introduce VAEER, an interpretable multi-label VEE framework that combines attention-inspired cue extraction with knowledge-grounded reasoning. VAEER isolates salient visual foci and contextual signals, aligns them with structured affective knowledge, and performs per-emotion inference to yield transparent, emotion-specific rationales. Across three heterogeneous benchmarks, including social imagery and disaster-related photos, VAEER achieves state-of-the-art results with up to 19% per-emotion improvements and a 12.3% average gain over strong CNN and VLM baselines. Our findings highlight interpretable multi-label emotion elicitation as a scalable foundation for responsible visual media analysis and emotionally sustainable online ecosystems.
comment: Currently under review as conference paper
♻ ☆ A stylometric analysis of speaker attribution from speech transcripts
Forensic scientists often need to identify an unknown speaker or writer in cases such as ransom calls, covert recordings, alleged suicide notes, or anonymous online communications, among many others. Speaker recognition in the speech domain usually examines phonetic or acoustic properties of a voice, and these methods can be accurate and robust under certain conditions. However, if a speaker disguises their voice or employs text-to-speech software, vocal properties may no longer be reliable, leaving only their linguistic content available for analysis. Authorship attribution methods traditionally use syntactic, semantic, and related linguistic information to identify writers of written text (authorship attribution). In this paper, we apply a content-based authorship approach to speech that has been transcribed into text, using what a speaker says to attribute speech to individuals (speaker attribution). We introduce a stylometric method, StyloSpeaker, which incorporates character, word, token, sentence, and style features from the stylometric literature on authorship, to assess whether two transcripts were produced by the same speaker. We evaluate this method on two types of transcript formatting: one approximating prescriptive written text with capitalization and punctuation and another normalized style that removes these conventions. The transcripts' conversation topics are also controlled to varying degrees. We find generally higher attribution performance on normalized transcripts, except under the strongest topic control condition, in which overall performance is highest. Finally, we compare this more explainable stylometric model to black-box neural approaches on the same data and investigate which stylistic features most effectively distinguish speakers.
comment: v3: added StyloSpeaker github link; v2: added acknowledgments
♻ ☆ Multiscale Aggregated Hierarchical Attention (MAHA): A Game Theoretic and Optimization Driven Approach to Efficient Contextual Modeling in Large Language Models
The quadratic computational complexity of MultiHead SelfAttention (MHSA) remains a fundamental bottleneck in scaling Large Language Models (LLMs) for longcontext tasks. While sparse and linearized attention mechanisms attempt to mitigate this, they often compromise the representation of global dependencies or fail to capture multiscale semantic granularity effectively. In this paper, we propose Multiscale Aggregated Hierarchical Attention (MAHA), a novel architectural framework that reformulates the attention mechanism through hierarchical decomposition and mathematically rigorous aggregation. Unlike conventional approaches that treat token interactions at a single resolution, MAHA dynamically partitions the input sequence into hierarchical scales via learnable downsampling operators. The core innovation lies in its aggregation strategy: we model the fusion of scalespecific attention matrices as a resource allocation problem, solved via a convex optimization framework or a Nash equilibriumbased gametheoretic approach. This ensures a theoretically optimal balance between local nuance and global context fidelity. Implemented within a hybrid dilatedconvolutional transformer backbone, MAHA utilizes differentiable optimization layers to enable endtoend training. Experimental evaluations demonstrate that MAHA achieves superior scalability; empirical FLOPs analysis confirms an 81% reduction in computational cost at a sequence length of 4096 compared to standard attention. This work bridges the gap between optimization theory and sequence modeling, offering a scalable solution for nextgeneration LLMs.
♻ ☆ A Token is Worth over 1,000 Tokens: Efficient Knowledge Distillation through Low-Rank Clone NeurIPS 2025
Training high-performing Small Language Models (SLMs) remains costly, even with knowledge distillation and pruning from larger teacher models. Existing work often faces three key challenges: (1) information loss from hard pruning, (2) inefficient alignment of representations, and (3) underutilization of informative activations, particularly from Feed-Forward Networks (FFNs). To address these challenges, we introduce Low-Rank Clone (LRC), an efficient pre-training method that constructs SLMs aspiring to behavioral equivalence with strong teacher models. LRC trains a set of low-rank projection matrices that jointly enable soft pruning by compressing teacher weights, and activation clone by aligning student activations, including FFN signals, with those of the teacher. This unified design maximizes knowledge transfer while removing the need for explicit alignment modules. Extensive experiments with open-source teachers (e.g., Llama-3.2-3B-Instruct, Qwen2.5-3B/7B-Instruct) show that LRC matches or surpasses state-of-the-art models trained on trillions of tokens--while using only 20B tokens, achieving over 1,000x training efficiency. Our codes and model checkpoints are available at https://github.com/CURRENTF/LowRankClone and https://huggingface.co/collections/JitaiHao/low-rank-clone-lrc-6828389e96a93f1d4219dfaf.
comment: NeurIPS 2025 Spotlight
♻ ☆ Non-Resolution Reasoning (NRR): A Computational Framework for Contextual Identity and Ambiguity Preservation
Current artificial intelligence systems, despite remarkable capabilities in text generation and pattern recognition, exhibit a fundamental architectural limitation: they resolve ambiguity prematurely. This premature semantic collapse -- the tendency to collapse multiple valid interpretations into a single output -- stems from classical identity assumptions embedded in standard neural architectures. We propose Non-Resolution Reasoning (NRR), a computational framework that treats ambiguity retention as a valid reasoning mode rather than a defect to be eliminated. NRR introduces three core principles: (1) Non-Identity ($A \neq A$) -- the same symbol refers to different entities across contexts; (2) Approximate Identity ($A \approx A$) -- entities share partial structural overlap without being identical; and (3) Non-Resolution -- conflicting interpretations can coexist without forced convergence. We formalize these principles through three architectural components: Multi-Vector Embeddings for context-dependent representation, Non-Collapsing Attention for parallel interpretation retention, and Contextual Identity Tracking (CIT) for maintaining $A \neq A$ across inference. We demonstrate NRR's advantages through case studies in paradox handling, creative generation, and context-dependent reasoning. Crucially, we provide a minimal empirical validation on a synthetic context-shift task where an NRR-lite model achieves 90.9% out-of-distribution accuracy compared to 9.1% for standard architectures, demonstrating that ambiguity preservation enables structural generalization. NRR challenges the assumption that meaning must collapse to be useful, offering a foundation for AI systems capable of sophisticated ambiguity handling and creative reasoning. The question is not whether AI should resolve ambiguity, but when, how, and under whose control.
comment: 7 pages, 2 figures, ORCID: 0009-0006-4715-9176
♻ ☆ Agent-OM: Leveraging LLM Agents for Ontology Matching
Ontology matching (OM) enables semantic interoperability between different ontologies and resolves their conceptual heterogeneity by aligning related entities. OM systems currently have two prevailing design paradigms: conventional knowledge-based expert systems and newer machine learning-based predictive systems. While large language models (LLMs) and LLM agents have revolutionised data engineering and have been applied creatively in many domains, their potential for OM remains underexplored. This study introduces a novel agent-powered LLM-based design paradigm for OM systems. With consideration of several specific challenges in leveraging LLM agents for OM, we propose a generic framework, namely Agent-OM (Agent for Ontology Matching), consisting of two Siamese agents for retrieval and matching, with a set of OM tools. Our framework is implemented in a proof-of-concept system. Evaluations of three Ontology Alignment Evaluation Initiative (OAEI) tracks over state-of-the-art OM systems show that our system can achieve results very close to the long-standing best performance on simple OM tasks and can significantly improve the performance on complex and few-shot OM tasks.
comment: 31 pages
♻ ☆ LLM one-shot style transfer for Authorship Attribution and Verification
Computational stylometry studies writing style through quantitative textual patterns, enabling applications such as authorship attribution, identity linking, and plagiarism detection. Existing supervised and contrastive approaches often rely on datasets with spurious correlations, conflating style with topic. Despite the relevance of language modeling to these tasks, the pre-training of modern large language models (LLMs) has been underutilized in general authorship analysis. We introduce an unsupervised framework that uses the log-probabilities of an LLM to measure style transferability between two texts. This framework takes advantage of the extensive CLM pre-training and in-context capabilities of modern LLMs. Our approach avoids explicit supervision with spuriously correlated data. Our method substantially outperforms unsupervised prompting-based baselines at similar model sizes and exceeds contrastively trained models when controlling for topical overlap. Our framework's performance improves with model size. In the case of authorship verification, we present an additional mechanism that increases test-time computation to improve accuracy; enabling flexible trade-offs between computational cost and task performance.
♻ ☆ Beyond Over-Refusal: Scenario-Based Diagnostics and Post-Hoc Mitigation for Exaggerated Refusals in LLMs
Large language models (LLMs) frequently produce false refusals, declining benign requests that contain terms resembling unsafe queries. We address this challenge by introducing two comprehensive benchmarks: the Exaggerated Safety Benchmark (XSB) for single-turn prompts, annotated with "Focus" keywords that identify refusal-inducing triggers, and the Multi-turn Scenario-based Exaggerated Safety Benchmark (MS-XSB), which systematically evaluates refusal calibration in realistic, context-rich dialog settings. Our benchmarks reveal that exaggerated refusals persist across diverse recent LLMs and are especially pronounced in complex, multi-turn scenarios. To mitigate these failures, we leverage post-hoc explanation methods to identify refusal triggers and deploy three lightweight, model-agnostic approaches, ignore-word instructions, prompt rephrasing, and attention steering, at inference time, all without retraining or parameter access. Experiments on four instruction-tuned Llama models demonstrate that these strategies substantially improve compliance on safe prompts while maintaining robust safety protections. Our findings establish a reproducible framework for diagnosing and mitigating exaggerated refusals, highlighting practical pathways to safer and more helpful LLM deployments.
♻ ☆ Finding Flawed Fictions: Evaluating Complex Reasoning in Language Models via Plot Hole Detection
Stories are a fundamental aspect of human experience. Engaging deeply with stories and spotting plot holes -- inconsistencies in a storyline that break the internal logic or rules of a story's world -- requires nuanced reasoning skills, including tracking entities and events and their interplay, abstract thinking, pragmatic narrative understanding, commonsense and social reasoning, and theory of mind. As Large Language Models (LLMs) increasingly generate, interpret, and modify text, rigorously assessing their narrative consistency and deeper language understanding becomes critical. However, existing benchmarks focus mainly on surface-level comprehension. In this work, we propose plot hole detection in stories as a proxy to evaluate language understanding and reasoning in LLMs. We introduce FlawedFictionsMaker, a novel algorithm to controllably and carefully synthesize plot holes in human-written stories. Using this algorithm, we construct a benchmark to evaluate LLMs' plot hole detection abilities in stories -- FlawedFictions -- , which is robust to contamination, with human filtering ensuring high quality. We find that state-of-the-art LLMs struggle in accurately solving FlawedFictions regardless of the reasoning effort allowed, with performance significantly degrading as story length increases. Finally, we show that LLM-based story summarization and story generation are prone to introducing plot holes, with more than 50% and 100% increases in plot hole detection rates with respect to human-written originals.
comment: CoLM 2025 Camera Ready
♻ ☆ Failure Modes of Maximum Entropy RLHF
In this paper, we show that Simple Preference Optimization (SimPO) can be derived as Maximum Entropy Reinforcement Learning, providing a theoretical foundation for this reference-free method. Motivated by SimPO's strong performance in offline preference optimization, we investigate whether Maximum Entropy RL can achieve similar results in online RLHF settings. Our experiments find that Maximum Entropy RL consistently exhibits overoptimization and unstable KL dynamics, even at very low learning rates. Unlike KL-constrained methods that maintain stable training, entropy regularization fails to prevent reward hacking and appears to correlate with overoptimization. Lastly, we discuss possible explanations for why SimPO succeeds in offline settings while Maximum Entropy RL struggles in online scenarios. Our findings suggest that reference-free approaches may face distinct challenges when applied to online or offline preference learning.
comment: 21 pages, 12 figures
♻ ☆ Beyond "Not Novel Enough": Enriching Scholarly Critique with LLM-Assisted Feedback
Novelty assessment is a central yet understudied aspect of peer review, particularly in high volume fields like NLP where reviewer capacity is increasingly strained. We present a structured approach for automated novelty evaluation that models expert reviewer behavior through three stages: content extraction from submissions, retrieval and synthesis of related work, and structured comparison for evidence based assessment. Our method is informed by a large scale analysis of human written novelty reviews and captures key patterns such as independent claim verification and contextual reasoning. Evaluated on 182 ICLR 2025 submissions with human annotated reviewer novelty assessments, the approach achieves 86.5% alignment with human reasoning and 75.3% agreement on novelty conclusions - substantially outperforming existing LLM based baselines. The method produces detailed, literature aware analyses and improves consistency over ad hoc reviewer judgments. These results highlight the potential for structured LLM assisted approaches to support more rigorous and transparent peer review without displacing human expertise. Data and code are made available.
♻ ☆ Fine-Tuning Discrete Diffusion Models with Policy Gradient Methods
Discrete diffusion models have recently gained significant attention due to their ability to process complex discrete structures for language modeling. However, fine-tuning these models with policy gradient methods, as is commonly done in Reinforcement Learning from Human Feedback (RLHF), remains a challenging task. We propose an efficient, broadly applicable, and theoretically justified policy gradient algorithm, called Score Entropy Policy Optimization (\SEPO), for fine-tuning discrete diffusion models over non-differentiable rewards. Our numerical experiments across several discrete generative tasks demonstrate the scalability and efficiency of our method. Our code is available at https://github.com/ozekri/SEPO.
comment: 33 pages, 8 figures, 8 tables
♻ ☆ From Context to EDUs: Faithful and Structured Context Compression via Elementary Discourse Unit Decomposition
Managing extensive context remains a critical bottleneck for Large Language Models (LLMs), particularly in applications like long-document question answering and autonomous agents where lengthy inputs incur high computational costs and introduce noise. Existing compression techniques often disrupt local coherence through discrete token removal or rely on implicit latent encoding that suffers from positional bias and incompatibility with closed-source APIs. To address these limitations, we introduce the EDU-based Context Compressor, a novel explicit compression framework designed to preserve both global structure and fine-grained details. Our approach reformulates context compression as a structure-then-select process. First, our LingoEDU transforms linear text into a structural relation tree of Elementary Discourse Units (EDUs) which are anchored strictly to source indices to eliminate hallucination. Second, a lightweight ranking module selects query-relevant sub-trees for linearization. To rigorously evaluate structural understanding, we release StructBench, a manually annotated dataset of 248 diverse documents. Empirical results demonstrate that our method achieves state-of-the-art structural prediction accuracy and significantly outperforms frontier LLMs while reducing costs. Furthermore, our structure-aware compression substantially enhances performance across downstream tasks ranging from long-context tasks to complex Deep Search scenarios.
♻ ☆ MindShift: Analyzing Language Models' Reactions to Psychological Prompts
Large language models (LLMs) hold the potential to absorb and reflect personality traits and attitudes specified by users. In our study, we investigated this potential using robust psychometric measures. We adapted the most studied test in psychological literature, namely Minnesota Multiphasic Personality Inventory (MMPI) and examined LLMs' behavior to identify traits. To asses the sensitivity of LLMs' prompts and psychological biases we created personality-oriented prompts, crafting a detailed set of personas that vary in trait intensity. This enables us to measure how well LLMs follow these roles. Our study introduces MindShift, a benchmark for evaluating LLMs' psychological adaptability. The results highlight a consistent improvement in LLMs' role perception, attributed to advancements in training datasets and alignment techniques. Additionally, we observe significant differences in responses to psychometric assessments across different model types and families, suggesting variability in their ability to emulate human-like personality traits. MindShift prompts and code for LLM evaluation will be publicly available.
♻ ☆ LaF-GRPO: In-Situ Navigation Instruction Generation for the Visually Impaired via GRPO with LLM-as-Follower Reward AAAI-26
Navigation instruction generation for visually impaired (VI) individuals (NIG-VI) is critical yet relatively underexplored. This study focuses on generating precise, in-situ, step-by-step navigation instructions that are practically usable for VI users. Specifically, we propose LaF-GRPO (LLM-as-Follower GRPO), where an LLM simulates VI user responses to navigation instructions, thereby providing feedback rewards to guide the post-training of a Vision-Language Model (VLM). This enhances instruction accuracy and usability while reducing costly real-world data collection needs. To address the scarcity of dedicated benchmarks in this field, we introduce NIG4VI, a 27k-sample open-source dataset to facilitate training and evaluation. It comprises diverse navigation scenarios with accurate spatial coordinates, supporting detailed and open-ended in-situ instruction generation. Experiments on NIG4VI demonstrate the effectiveness of LaF-GRPO through quantitative metrics (e.g., Zero-(LaF-GRPO) boosts BLEU 14\%; SFT+(LaF-GRPO) METEOR 0.542 vs. GPT-4o 0.323), and qualitative analysis further confirms that our method yields more intuitive and safer instructions.
comment: Accepted at AAAI-26
♻ ☆ Knowledge-Driven Agentic Scientific Corpus Distillation Framework for Biomedical Large Language Models Training
Corpus distillation for biomedical large language models (LLMs) seeks to address the pressing challenge of insufficient quantity and quality in open-source annotated scientific corpora, which remains a bottleneck for effective LLM training in biomedical research. This paper proposes a knowledge-driven, agentic framework for scientific corpus distillation, tailored explicitly for LLM training in the biomedical domain, addressing the challenge posed by the complex hierarchy of biomedical knowledge. Central to our approach is a collaborative multi-agent architecture, where specialized agents, each guided by the Medical Subject Headings (MeSH) hierarchy, work in concert to autonomously extract, synthesize, and self-evaluate high-quality textual data from vast scientific literature. This agentic framework collectively generates and refines domain-specific question-answer pairs, ensuring comprehensive coverage and consistency with biomedical ontologies while minimizing manual involvement. Extensive experimental results show that language models trained on our multi-agent distilled datasets achieve notable improvements in biomedical question-answering tasks, outperforming both strong life sciences LLM baselines and advanced proprietary models. Notably, our AI-Ready dataset enables Llama3-70B to surpass GPT-4 with MedPrompt and Med-PaLM-2, despite their larger scale. Detailed ablation studies and case analyses further validate the effectiveness and synergy of each agent within the framework, highlighting the potential of multi-agent collaboration in biomedical LLM training.
comment: Biomedical Large Language Models, Agentic Corpus Distillation, Synthetic Question-Answer Generation, Agentic AI, Knowledge Hierarchy Guidance
♻ ☆ Knowledge Hierarchy Guided Biological-Medical Dataset Distillation for Domain LLM Training
The rapid advancement of large language models (LLMs) in biological-medical applications has highlighted a gap between their potential and the limited scale and often low quality of available open-source annotated textual datasets. In addition, the inherent complexity of the biomedical knowledge hierarchy significantly hampers efforts to bridge this gap.Can LLMs themselves play a pivotal role in overcoming this limitation? Motivated by this question, we investigate this challenge in the present study.We propose a framework that automates the distillation of high-quality textual training data from the extensive scientific literature. Our approach self-evaluates and generates questions that are more closely aligned with the biomedical domain, guided by the biomedical knowledge hierarchy through medical subject headings (MeSH). This comprehensive framework establishes an automated workflow, thereby eliminating the need for manual intervention. Furthermore, we conducted comprehensive experiments to evaluate the impact of our framework-generated data on downstream language models of varying sizes. Our approach substantially improves question-answering tasks compared to pre-trained models from the life sciences domain and powerful close-source models represented by GPT-4. Notably, the generated AI-Ready dataset enabled the Llama3-70B base model to outperform GPT-4 using MedPrompt with multiple times the number of parameters. Detailed case studies and ablation experiments underscore the significance of each component within our framework
comment: 10 pages
♻ ☆ Think Twice: Branch-and-Rethink Reasoning Reward Model
Large language models (LLMs) increasingly rely on thinking models that externalize intermediate steps and allocate extra test-time compute, with think-twice strategies showing that a deliberate second pass can elicit stronger reasoning. In contrast, most reward models (RMs) still compress many quality dimensions into a single scalar in one shot, a design that induces judgment diffusion: attention spreads across evaluation criteria, yielding diluted focus and shallow analysis. We introduce branch-and-rethink (BR-RM), a two-turn RM that transfers the think-twice principle to reward modeling. Turn 1 performs adaptive branching, selecting a small set of instance-critical dimensions (such as factuality and safety) and sketching concise, evidence-seeking hypotheses. Turn 2 executes branch-conditioned rethinking, a targeted reread that tests those hypotheses and scrutinizes only what matters most. We train with GRPO-style reinforcement learning over structured two-turn traces using a simple binary outcome reward with strict format checks, making the approach compatible with standard RLHF pipelines. By converting all-at-once scoring into focused, second-look reasoning, BR-RM reduces judgment diffusion and improves sensitivity to subtle yet consequential errors while remaining practical and scalable. Experimental results demonstrate that our model achieves state-of-the-art performance on three challenging reward modeling benchmarks across diverse domains.
comment: Source Code: https://github.com/yzjiao/BR-RM. Model Checkpoints: https://huggingface.co/nvidia/Qwen3-Nemotron-14B-BRRM and https://huggingface.co/nvidia/Qwen3-Nemotron-8B-BRRM
♻ ☆ Online-PVLM: Advancing Personalized VLMs with Online Concept Learning
Personalized Visual Language Models (VLMs) are gaining increasing attention for their formidable ability in user-specific concepts aligned interactions (e.g., identifying a user's bike). Existing methods typically require the learning of separate embeddings for each new concept, which fails to support real-time adaptation during testing. This limitation becomes particularly pronounced in large-scale scenarios, where efficient retrieval of concept embeddings is not achievable. To alleviate this gap, we propose Online-PVLM, a framework for online concept learning by leveraging hyperbolic representations. Our approach makes a train-free paradigm for concept embeddings generation at test time, making the use of personalized VLMs both scalable and efficient. In addition, we develop OP-Eval, a comprehensive and large-scale benchmark comprising 1,292 concepts and over 30K high-quality instances with diverse question types, designed to rigorously assess online concept learning in realistic scenarios. Extensive experiments demonstrate the state-of-the-art performance of our proposed framework. Our source code and dataset will be made available.
comment: Work in Progress
♻ ☆ Enhancing Long-term RAG Chatbots with Psychological Models of Memory Importance and Forgetting
While Retrieval-Augmented Generation (RAG) has shown promise in enhancing long-term conversations, the increasing memory load as conversations progress degrades retrieval accuracy. Drawing on psychological insights, we propose LUFY, a simple yet effective method that focuses on emotionally arousing memories and retains less than 10% of the conversation. In the user experiment, participants interacted with three types of RAG chatbots, each for 2 hours over 4 sessions, marking the most extensive assessment of a chatbot's long-term capabilities to date -- more than four times longer than any existing benchmark. The results demonstrate that prioritizing arousing memories while forgetting the majority of the conversation significantly enhances user experience. This study pushes the frontier of long-term conversations and highlights the importance of forgetting unimportant parts of conversations. Code and Dataset: https://github.com/ryuichi-sumida/LUFY, Hugginface Dataset:https://huggingface.co/datasets/RuiSumida/LUFY
comment: 37 pages, accepted and published in Dialogue & Discourse 16(2) (2025)
♻ ☆ Speech-FT: Merging Pre-trained And Fine-Tuned Speech Representation Models For Cross-Task Generalization
Fine-tuning speech representation models can enhance performance on specific tasks but often compromises their cross-task generalization ability. This degradation is often caused by excessive changes in the representations, making it difficult to retain information learned during pre-training. Existing approaches, such as regularizing weight changes during fine-tuning, may fail to maintain sufficiently high feature similarity with the pre-trained model, and thus could possibly lose cross-task generalization. To address this issue, we propose Speech-FT, a novel two-stage fine-tuning framework designed to maintain cross-task generalization while benefiting from fine-tuning. Speech-FT first applies fine-tuning specifically designed to reduce representational drift, followed by weight-space interpolation with the pre-trained model to restore cross-task generalization. Extensive experiments on HuBERT, wav2vec 2.0, DeCoAR 2.0, and WavLM Base+ demonstrate that Speech-FT consistently improves performance across a wide range of supervised, unsupervised, and multitask fine-tuning scenarios. Moreover, Speech-FT achieves superior cross-task generalization compared to fine-tuning baselines that explicitly constrain weight changes, such as weight-space regularization and LoRA fine-tuning. Our analysis reveals that Speech-FT maintains higher feature similarity to the pre-trained model compared to alternative strategies, despite allowing larger weight-space updates. Notably, Speech-FT achieves significant improvements on the SUPERB benchmark. For example, when fine-tuning HuBERT on automatic speech recognition, Speech-FT is able to reduce phone error rate from 5.17% to 3.94%, lower word error rate from 6.38% to 5.75%, and increase speaker identification accuracy from 81.86% to 84.11%. Speech-FT provides a simple yet powerful solution for further refining speech representation models after pre-training.
comment: Published in IEEE Transactions on Audio, Speech, and Language Processing (TASLP). Model and code available at: https://github.com/nervjack2/Speech-FT
♻ ☆ Fin-R1: A Large Language Model for Financial Reasoning through Reinforcement Learning
In recent years, general-purpose large language models (LLMs) such as GPT, Gemini, Claude, and DeepSeek have advanced at an unprecedented pace. Despite these achievements, their application to finance remains challenging, due to fragmented data sources, intransparent reasoning processes, and weak transferability to business applications. In response, we introduce Fin-R1, a reasoning LLM designed for financial scenarios. With a compact size of 7 billion parameters, Fin-R1 reduces deployment costs while addressing the aforementioned challenges. Its development follows a two-stage pipeline. First, we construct Fin-R1-Data, a high-quality financial dataset consisting of 60,091 chain-of-thought (CoT) samples, distilled and filtered from multiple authoritative benchmarks to ensure consistency and reliability. Second, we train Fin-R1 using Fin-R1-Data through supervised fine-tuning (SFT), followed by reinforcement learning (RL). This stage substantially improves the model's ability to solve complex financial reasoning tasks, yielding outputs that are both accurate and interpretable. Despite its relatively small parameter scale, Fin-R1 achieves competitive empirical performance across established financial benchmarks and demonstrates practical utility in compliance checking and robo-advisory. Our code is publicly available at https://github.com/SUFE-AIFLM-Lab/Fin-R1, and has already attracted over 700 stars.
♻ ☆ Generation-Time vs. Post-hoc Citation: A Holistic Evaluation of LLM Attribution NeurIPS 2025
Trustworthy Large Language Models (LLMs) must cite human-verifiable sources in high-stakes domains such as healthcare, law, academia, and finance, where even small errors can have severe consequences. Practitioners and researchers face a choice: let models generate citations during decoding, or let models draft answers first and then attach appropriate citations. To clarify this choice, we introduce two paradigms: Generation-Time Citation (G-Cite), which produces the answer and citations in one pass, and Post-hoc Citation (P-Cite), which adds or verifies citations after drafting. We conduct a comprehensive evaluation from zero-shot to advanced retrieval-augmented methods across four popular attribution datasets and provide evidence-based recommendations that weigh trade-offs across use cases. Our results show a consistent trade-off between coverage and citation correctness, with retrieval as the main driver of attribution quality in both paradigms. P-Cite methods achieve high coverage with competitive correctness and moderate latency, whereas G-Cite methods prioritize precision at the cost of coverage and speed. We recommend a retrieval-centric, P-Cite-first approach for high-stakes applications, reserving G-Cite for precision-critical settings such as strict claim verification. Our codes and human evaluation results are available at https://anonymous.4open.science/r/Citation_Paradigms-BBB5/
comment: NeurIPS 2025 LLM Evaluation Workshop
♻ ☆ Are most sentences unique? An empirical examination of Chomskyan claims
A repeated claim in linguistics is that the majority of linguistic utterances are unique. For example, Pinker (1994: 10), summarizing an argument by Noam Chomsky, states that "virtually every sentence that a person utters or understands is a brand-new combination of words, appearing for the first time in the history of the universe." With the increased availability of large corpora, this is a claim that can be empirically investigated. The current paper addresses the question by using the NLTK Python library to parse corpora of different genres, providing counts of exact string matches in each. Results show that while completely unique sentences are often the majority of corpora, this is highly constrained by genre, and that duplicate sentences are not an insignificant part of any individual corpus.
♻ ☆ Rakuten Data Release: A Large-Scale and Long-Term Reviews Corpus for Hotel Domain
This paper presents a large-scale corpus of Rakuten Travel Reviews. Our collection contains 7.3 million customer reviews for 16 years, ranging from 2009 to 2024. Each record in the dataset contains the review text, its response from an accommodation, an anonymized reviewer ID, review date, accommodation ID, plan ID, plan title, room type, room name, purpose, accompanying group, and user ratings from different aspect categories, as well as an overall score. We present statistical information about our corpus and provide insights into factors driving data drift between 2019 and 2024 using statistical approaches.
♻ ☆ On the Robustness of Verbal Confidence of LLMs in Adversarial Attacks NeurIPS 2025
Robust verbal confidence generated by large language models (LLMs) is crucial for the deployment of LLMs to help ensure transparency, trust, and safety in many applications, including those involving human-AI interactions. In this paper, we present the first comprehensive study on the robustness of verbal confidence under adversarial attacks. We introduce attack frameworks targeting verbal confidence scores through both perturbation and jailbreak-based methods, and demonstrate that these attacks can significantly impair verbal confidence estimates and lead to frequent answer changes. We examine a variety of prompting strategies, model sizes, and application domains, revealing that current verbal confidence is vulnerable and that commonly used defence techniques are largely ineffective or counterproductive. Our findings underscore the need to design robust mechanisms for confidence expression in LLMs, as even subtle semantic-preserving modifications can lead to misleading confidence in responses.
comment: Published in NeurIPS 2025
♻ ☆ Beyond Majority Voting: Towards Fine-grained and More Reliable Reward Signal for Test-Time Reinforcement Learning
Test-time reinforcement learning mitigates the reliance on annotated data by using majority voting results as pseudo-labels, emerging as a complementary direction to reinforcement learning with verifiable rewards (RLVR) for improving reasoning ability of large language models (LLMs). However, this voting strategy often induces confirmation bias and suffers from sparse rewards, limiting the overall performance. In this work, we propose subgroup-specific step-wise confidence-weighted pseudo-label estimation (SCOPE), a framework integrating model confidence and dynamic subgroup partitioning to address these issues. Specifically, SCOPE integrates the proposed step-wise confidence into pseudo label deduction, prioritizing high-quality reasoning paths over simple frequency count. Furthermore, it dynamically partitions the candidate outputs pool into independent subgroups by balancing reasoning quality against exploration diversity. By deriving local consensus via repeat sampling for each sub group, SCOPE provides diverse supervision targets to encourage broader exploration. We conduct experiments across various models and benchmarks, experimental results show that SCOPE consistently outperforms recent baselines. Notably, SCOPE achieving relative improvements of 13.1% on challenging AIME 2025 and 8.1% on AMC. The code is released at https://github.com/szu-tera/SCOPE.
Computer Vision and Pattern Recognition 100
☆ Generative Refocusing: Flexible Defocus Control from a Single Image
Depth-of-field control is essential in photography, but getting the perfect focus often takes several tries or special equipment. Single-image refocusing is still difficult. It involves recovering sharp content and creating realistic bokeh. Current methods have significant drawbacks. They need all-in-focus inputs, depend on synthetic data from simulators, and have limited control over aperture. We introduce Generative Refocusing, a two-step process that uses DeblurNet to recover all-in-focus images from various inputs and BokehNet for creating controllable bokeh. Our main innovation is semi-supervised training. This method combines synthetic paired data with unpaired real bokeh images, using EXIF metadata to capture real optical characteristics beyond what simulators can provide. Our experiments show we achieve top performance in defocus deblurring, bokeh synthesis, and refocusing benchmarks. Additionally, our Generative Refocusing allows text-guided adjustments and custom aperture shapes.
comment: Project website: https://generative-refocusing.github.io/
☆ The World is Your Canvas: Painting Promptable Events with Reference Images, Trajectories, and Text
We present WorldCanvas, a framework for promptable world events that enables rich, user-directed simulation by combining text, trajectories, and reference images. Unlike text-only approaches and existing trajectory-controlled image-to-video methods, our multimodal approach combines trajectories -- encoding motion, timing, and visibility -- with natural language for semantic intent and reference images for visual grounding of object identity, enabling the generation of coherent, controllable events that include multi-agent interactions, object entry/exit, reference-guided appearance and counterintuitive events. The resulting videos demonstrate not only temporal coherence but also emergent consistency, preserving object identity and scene despite temporary disappearance. By supporting expressive world events generation, WorldCanvas advances world models from passive predictors to interactive, user-shaped simulators. Our project page is available at: https://worldcanvas.github.io/.
comment: Project page and code: https://worldcanvas.github.io/
☆ Next-Embedding Prediction Makes Strong Vision Learners
Inspired by the success of generative pretraining in natural language, we ask whether the same principles can yield strong self-supervised visual learners. Instead of training models to output features for downstream use, we train them to generate embeddings to perform predictive tasks directly. This work explores such a shift from learning representations to learning models. Specifically, models learn to predict future patch embeddings conditioned on past ones, using causal masking and stop gradient, which we refer to as Next-Embedding Predictive Autoregression (NEPA). We demonstrate that a simple Transformer pretrained on ImageNet-1k with next embedding prediction as its sole learning objective is effective - no pixel reconstruction, discrete tokens, contrastive loss, or task-specific heads. This formulation retains architectural simplicity and scalability, without requiring additional design complexity. NEPA achieves strong results across tasks, attaining 83.8% and 85.3% top-1 accuracy on ImageNet-1K with ViT-B and ViT-L backbones after fine-tuning, and transferring effectively to semantic segmentation on ADE20K. We believe generative pretraining from embeddings provides a simple, scalable, and potentially modality-agnostic alternative to visual self-supervised learning.
comment: Project Page: https://sihanxu.me/nepa
☆ EasyV2V: A High-quality Instruction-based Video Editing Framework
While image editing has advanced rapidly, video editing remains less explored, facing challenges in consistency, control, and generalization. We study the design space of data, architecture, and control, and introduce \emph{EasyV2V}, a simple and effective framework for instruction-based video editing. On the data side, we compose existing experts with fast inverses to build diverse video pairs, lift image edit pairs into videos via single-frame supervision and pseudo pairs with shared affine motion, mine dense-captioned clips for video pairs, and add transition supervision to teach how edits unfold. On the model side, we observe that pretrained text-to-video models possess editing capability, motivating a simplified design. Simple sequence concatenation for conditioning with light LoRA fine-tuning suffices to train a strong model. For control, we unify spatiotemporal control via a single mask mechanism and support optional reference images. Overall, EasyV2V works with flexible inputs, e.g., video+text, video+mask+text, video+mask+reference+text, and achieves state-of-the-art video editing results, surpassing concurrent and commercial systems. Project page: https://snap-research.github.io/easyv2v/
comment: Project page: https://snap-research.github.io/easyv2v/
☆ DVGT: Driving Visual Geometry Transformer
Perceiving and reconstructing 3D scene geometry from visual inputs is crucial for autonomous driving. However, there still lacks a driving-targeted dense geometry perception model that can adapt to different scenarios and camera configurations. To bridge this gap, we propose a Driving Visual Geometry Transformer (DVGT), which reconstructs a global dense 3D point map from a sequence of unposed multi-view visual inputs. We first extract visual features for each image using a DINO backbone, and employ alternating intra-view local attention, cross-view spatial attention, and cross-frame temporal attention to infer geometric relations across images. We then use multiple heads to decode a global point map in the ego coordinate of the first frame and the ego poses for each frame. Unlike conventional methods that rely on precise camera parameters, DVGT is free of explicit 3D geometric priors, enabling flexible processing of arbitrary camera configurations. DVGT directly predicts metric-scaled geometry from image sequences, eliminating the need for post-alignment with external sensors. Trained on a large mixture of driving datasets including nuScenes, OpenScene, Waymo, KITTI, and DDAD, DVGT significantly outperforms existing models on various scenarios. Code is available at https://github.com/wzzheng/DVGT.
comment: Code is available at https://github.com/wzzheng/DVGT
☆ Differences That Matter: Auditing Models for Capability Gap Discovery and Rectification
Conventional evaluation methods for multimodal LLMs (MLLMs) lack interpretability and are often insufficient to fully disclose significant capability gaps across models. To address this, we introduce AuditDM, an automated framework that actively discovers and rectifies MLLM failure modes by auditing their divergence. AuditDM fine-tunes an MLLM as an auditor via reinforcement learning to generate challenging questions and counterfactual images that maximize disagreement among target models. Once trained, the auditor uncovers diverse, interpretable exemplars that reveal model weaknesses and serve as annotation-free data for rectification. When applied to SoTA models like Gemma-3 and PaliGemma-2, AuditDM discovers more than 20 distinct failure types. Fine-tuning on these discoveries consistently improves all models across 16 benchmarks, and enables a 3B model to surpass its 28B counterpart. Our results suggest that as data scaling hits diminishing returns, targeted model auditing offers an effective path to model diagnosis and improvement.
comment: project page: https://auditdm.github.io/
☆ AdaTooler-V: Adaptive Tool-Use for Images and Videos
Recent advances have shown that multimodal large language models (MLLMs) benefit from multimodal interleaved chain-of-thought (CoT) with vision tool interactions. However, existing open-source models often exhibit blind tool-use reasoning patterns, invoking vision tools even when they are unnecessary, which significantly increases inference overhead and degrades model performance. To this end, we propose AdaTooler-V, an MLLM that performs adaptive tool-use by determining whether a visual problem truly requires tools. First, we introduce AT-GRPO, a reinforcement learning algorithm that adaptively adjusts reward scales based on the Tool Benefit Score of each sample, encouraging the model to invoke tools only when they provide genuine improvements. Moreover, we construct two datasets to support training: AdaTooler-V-CoT-100k for SFT cold start and AdaTooler-V-300k for RL with verifiable rewards across single-image, multi-image, and video data. Experiments across twelve benchmarks demonstrate the strong reasoning capability of AdaTooler-V, outperforming existing methods in diverse visual reasoning tasks. Notably, AdaTooler-V-7B achieves an accuracy of 89.8\% on the high-resolution benchmark V*, surpassing the commercial proprietary model GPT-4o and Gemini 1.5 Pro. All code, models, and data are released.
comment: Project page: https://github.com/CYWang735/AdaTooler-V
☆ StereoPilot: Learning Unified and Efficient Stereo Conversion via Generative Priors
The rapid growth of stereoscopic displays, including VR headsets and 3D cinemas, has led to increasing demand for high-quality stereo video content. However, producing 3D videos remains costly and complex, while automatic Monocular-to-Stereo conversion is hindered by the limitations of the multi-stage ``Depth-Warp-Inpaint'' (DWI) pipeline. This paradigm suffers from error propagation, depth ambiguity, and format inconsistency between parallel and converged stereo configurations. To address these challenges, we introduce UniStereo, the first large-scale unified dataset for stereo video conversion, covering both stereo formats to enable fair benchmarking and robust model training. Building upon this dataset, we propose StereoPilot, an efficient feed-forward model that directly synthesizes the target view without relying on explicit depth maps or iterative diffusion sampling. Equipped with a learnable domain switcher and a cycle consistency loss, StereoPilot adapts seamlessly to different stereo formats and achieves improved consistency. Extensive experiments demonstrate that StereoPilot significantly outperforms state-of-the-art methods in both visual fidelity and computational efficiency. Project page: https://hit-perfect.github.io/StereoPilot/.
☆ Depth Any Panoramas: A Foundation Model for Panoramic Depth Estimation
In this work, we present a panoramic metric depth foundation model that generalizes across diverse scene distances. We explore a data-in-the-loop paradigm from the view of both data construction and framework design. We collect a large-scale dataset by combining public datasets, high-quality synthetic data from our UE5 simulator and text-to-image models, and real panoramic images from the web. To reduce domain gaps between indoor/outdoor and synthetic/real data, we introduce a three-stage pseudo-label curation pipeline to generate reliable ground truth for unlabeled images. For the model, we adopt DINOv3-Large as the backbone for its strong pre-trained generalization, and introduce a plug-and-play range mask head, sharpness-centric optimization, and geometry-centric optimization to improve robustness to varying distances and enforce geometric consistency across views. Experiments on multiple benchmarks (e.g., Stanford2D3D, Matterport3D, and Deep360) demonstrate strong performance and zero-shot generalization, with particularly robust and stable metric predictions in diverse real-world scenes. The project page can be found at: \href{https://insta360-research-team.github.io/DAP_website/} {https://insta360-research-team.github.io/DAP\_website/}
comment: Project Page: https://insta360-research-team.github.io/DAP_website/
☆ SFTok: Bridging the Performance Gap in Discrete Tokenizers
Recent advances in multimodal models highlight the pivotal role of image tokenization in high-resolution image generation. By compressing images into compact latent representations, tokenizers enable generative models to operate in lower-dimensional spaces, thereby improving computational efficiency and reducing complexity. Discrete tokenizers naturally align with the autoregressive paradigm but still lag behind continuous ones, limiting their adoption in multimodal systems. To address this, we propose \textbf{SFTok}, a discrete tokenizer that incorporates a multi-step iterative mechanism for precise reconstruction. By integrating \textbf{self-forcing guided visual reconstruction} and \textbf{debias-and-fitting training strategy}, SFTok resolves the training-inference inconsistency in multi-step process, significantly enhancing image reconstruction quality. At a high compression rate of only 64 tokens per image, SFTok achieves state-of-the-art reconstruction quality on ImageNet (rFID = 1.21) and demonstrates exceptional performance in class-to-image generation tasks (gFID = 2.29).
comment: Under review. Code is available at https://github.com/Neur-IO/SFTok
☆ MomaGraph: State-Aware Unified Scene Graphs with Vision-Language Model for Embodied Task Planning
Mobile manipulators in households must both navigate and manipulate. This requires a compact, semantically rich scene representation that captures where objects are, how they function, and which parts are actionable. Scene graphs are a natural choice, yet prior work often separates spatial and functional relations, treats scenes as static snapshots without object states or temporal updates, and overlooks information most relevant for accomplishing the current task. To address these limitations, we introduce MomaGraph, a unified scene representation for embodied agents that integrates spatial-functional relationships and part-level interactive elements. However, advancing such a representation requires both suitable data and rigorous evaluation, which have been largely missing. We thus contribute MomaGraph-Scenes, the first large-scale dataset of richly annotated, task-driven scene graphs in household environments, along with MomaGraph-Bench, a systematic evaluation suite spanning six reasoning capabilities from high-level planning to fine-grained scene understanding. Built upon this foundation, we further develop MomaGraph-R1, a 7B vision-language model trained with reinforcement learning on MomaGraph-Scenes. MomaGraph-R1 predicts task-oriented scene graphs and serves as a zero-shot task planner under a Graph-then-Plan framework. Extensive experiments demonstrate that our model achieves state-of-the-art results among open-source models, reaching 71.6% accuracy on the benchmark (+11.4% over the best baseline), while generalizing across public benchmarks and transferring effectively to real-robot experiments.
comment: 25 pages, 10 figures. Project page:https://hybridrobotics.github.io/MomaGraph/
☆ SceneDiff: A Benchmark and Method for Multiview Object Change Detection
We investigate the problem of identifying objects that have been added, removed, or moved between a pair of captures (images or videos) of the same scene at different times. Detecting such changes is important for many applications, such as robotic tidying or construction progress and safety monitoring. A major challenge is that varying viewpoints can cause objects to falsely appear changed. We introduce SceneDiff Benchmark, the first multiview change detection benchmark with object instance annotations, comprising 350 diverse video pairs with thousands of changed objects. We also introduce the SceneDiff method, a new training-free approach for multiview object change detection that leverages pretrained 3D, segmentation, and image encoding models to robustly predict across multiple benchmarks. Our method aligns the captures in 3D, extracts object regions, and compares spatial and semantic region features to detect changes. Experiments on multi-view and two-view benchmarks demonstrate that our method outperforms existing approaches by large margins (94% and 37.4% relative AP improvements). The benchmark and code will be publicly released.
☆ Flowing from Reasoning to Motion: Learning 3D Hand Trajectory Prediction from Egocentric Human Interaction Videos
Prior works on 3D hand trajectory prediction are constrained by datasets that decouple motion from semantic supervision and by models that weakly link reasoning and action. To address these, we first present the EgoMAN dataset, a large-scale egocentric dataset for interaction stage-aware 3D hand trajectory prediction with 219K 6DoF trajectories and 3M structured QA pairs for semantic, spatial, and motion reasoning. We then introduce the EgoMAN model, a reasoning-to-motion framework that links vision-language reasoning and motion generation via a trajectory-token interface. Trained progressively to align reasoning with motion dynamics, our approach yields accurate and stage-aware trajectories with generalization across real-world scenes.
comment: Project website: https://egoman-project.github.io
☆ VIVA: VLM-Guided Instruction-Based Video Editing with Reward Optimization
Instruction-based video editing aims to modify an input video according to a natural-language instruction while preserving content fidelity and temporal coherence. However, existing diffusion-based approaches are often trained on paired data of simple editing operations, which fundamentally limits their ability to generalize to diverse and complex, real-world instructions. To address this generalization gap, we propose VIVA, a scalable framework for instruction-based video editing that leverages VLM-guided encoding and reward optimization. First, we introduce a VLM-based instructor that encodes the textual instruction, the first frame of the source video, and an optional reference image into visually-grounded instruction representations, providing fine-grained spatial and semantic context for the diffusion transformer backbone. Second, we propose a post-training stage, Edit-GRPO, which adapts Group Relative Policy Optimization to the domain of video editing, directly optimizing the model for instruction-faithful, content-preserving, and aesthetically pleasing edits using relative rewards. Furthermore, we propose a data construction pipeline designed to synthetically generate diverse, high-fidelity paired video-instruction data of basic editing operations. Extensive experiments show that VIVA achieves superior instruction following, generalization, and editing quality over state-of-the-art methods. Website: https://viva-paper.github.io
☆ Alchemist: Unlocking Efficiency in Text-to-Image Model Training via Meta-Gradient Data Selection
Recent advances in Text-to-Image (T2I) generative models, such as Imagen, Stable Diffusion, and FLUX, have led to remarkable improvements in visual quality. However, their performance is fundamentally limited by the quality of training data. Web-crawled and synthetic image datasets often contain low-quality or redundant samples, which lead to degraded visual fidelity, unstable training, and inefficient computation. Hence, effective data selection is crucial for improving data efficiency. Existing approaches rely on costly manual curation or heuristic scoring based on single-dimensional features in Text-to-Image data filtering. Although meta-learning based method has been explored in LLM, there is no adaptation for image modalities. To this end, we propose **Alchemist**, a meta-gradient-based framework to select a suitable subset from large-scale text-image data pairs. Our approach automatically learns to assess the influence of each sample by iteratively optimizing the model from a data-centric perspective. Alchemist consists of two key stages: data rating and data pruning. We train a lightweight rater to estimate each sample's influence based on gradient information, enhanced with multi-granularity perception. We then use the Shift-Gsampling strategy to select informative subsets for efficient model training. Alchemist is the first automatic, scalable, meta-gradient-based data selection framework for Text-to-Image model training. Experiments on both synthetic and web-crawled datasets demonstrate that Alchemist consistently improves visual quality and downstream performance. Training on an Alchemist-selected 50% of the data can outperform training on the full dataset.
comment: project page: https://kxding.github.io/project/Alchemist/
☆ FlashPortrait: 6x Faster Infinite Portrait Animation with Adaptive Latent Prediction
Current diffusion-based acceleration methods for long-portrait animation struggle to ensure identity (ID) consistency. This paper presents FlashPortrait, an end-to-end video diffusion transformer capable of synthesizing ID-preserving, infinite-length videos while achieving up to 6x acceleration in inference speed. In particular, FlashPortrait begins by computing the identity-agnostic facial expression features with an off-the-shelf extractor. It then introduces a Normalized Facial Expression Block to align facial features with diffusion latents by normalizing them with their respective means and variances, thereby improving identity stability in facial modeling. During inference, FlashPortrait adopts a dynamic sliding-window scheme with weighted blending in overlapping areas, ensuring smooth transitions and ID consistency in long animations. In each context window, based on the latent variation rate at particular timesteps and the derivative magnitude ratio among diffusion layers, FlashPortrait utilizes higher-order latent derivatives at the current timestep to directly predict latents at future timesteps, thereby skipping several denoising steps and achieving 6x speed acceleration. Experiments on benchmarks show the effectiveness of FlashPortrait both qualitatively and quantitatively.
☆ Multimodal RewardBench 2: Evaluating Omni Reward Models for Interleaved Text and Image
Reward models (RMs) are essential for training large language models (LLMs), but remain underexplored for omni models that handle interleaved image and text sequences. We introduce Multimodal RewardBench 2 (MMRB2), the first comprehensive benchmark for reward models on multimodal understanding and (interleaved) generation. MMRB2 spans four tasks: text-to-image, image editing, interleaved generation, and multimodal reasoning ("thinking-with-images"), providing 1,000 expert-annotated preference pairs per task from 23 models and agents across 21 source tasks. MMRB2 is designed with: (1) practical but challenging prompts; (2) responses from state-of-the-art models and agents; and (3) preference pairs with strong human-expert consensus, curated via an ensemble filtering strategy. Using MMRB2, we study existing judges for each subtask, including multimodal LLM-as-a-judge and models trained with human preferences. The latest Gemini 3 Pro attains 75-80% accuracy. GPT-5 and Gemini 2.5 Pro reach 66-75% accuracy, compared to >90% for humans, yet surpass the widely used GPT-4o (59%). The best performing open-source model Qwen3-VL-32B achieves similar accuracies as Gemini 2.5 Flash (64%). We also show that MMRB2 performance strongly correlates with downstream task success using Best-of-N sampling and conduct an in-depth analysis that shows key areas to improve the reward models going forward.
comment: Code and data available at https://github.com/facebookresearch/MMRB2
☆ Sceniris: A Fast Procedural Scene Generation Framework
Synthetic 3D scenes are essential for developing Physical AI and generative models. Existing procedural generation methods often have low output throughput, creating a significant bottleneck in scaling up dataset creation. In this work, we introduce Sceniris, a highly efficient procedural scene generation framework for rapidly generating large-scale, collision-free scene variations. Sceniris also provides an optional robot reachability check, providing manipulation-feasible scenes for robot tasks. Sceniris is designed for maximum efficiency by addressing the primary performance limitations of the prior method, Scene Synthesizer. Leveraging batch sampling and faster collision checking in cuRobo, Sceniris achieves at least 234x speed-up over Scene Synthesizer. Sceniris also expands the object-wise spatial relationships available in prior work to support diverse scene requirements. Our code is available at https://github.com/rai-inst/sceniris
comment: Code is available at https://github.com/rai-inst/sceniris
☆ Instant Expressive Gaussian Head Avatar via 3D-Aware Expression Distillation
Portrait animation has witnessed tremendous quality improvements thanks to recent advances in video diffusion models. However, these 2D methods often compromise 3D consistency and speed, limiting their applicability in real-world scenarios, such as digital twins or telepresence. In contrast, 3D-aware facial animation feedforward methods -- built upon explicit 3D representations, such as neural radiance fields or Gaussian splatting -- ensure 3D consistency and achieve faster inference speed, but come with inferior expression details. In this paper, we aim to combine their strengths by distilling knowledge from a 2D diffusion-based method into a feed-forward encoder, which instantly converts an in-the-wild single image into a 3D-consistent, fast yet expressive animatable representation. Our animation representation is decoupled from the face's 3D representation and learns motion implicitly from data, eliminating the dependency on pre-defined parametric models that often constrain animation capabilities. Unlike previous computationally intensive global fusion mechanisms (e.g., multiple attention layers) for fusing 3D structural and animation information, our design employs an efficient lightweight local fusion strategy to achieve high animation expressivity. As a result, our method runs at 107.31 FPS for animation and pose control while achieving comparable animation quality to the state-of-the-art, surpassing alternative designs that trade speed for quality or vice versa. Project website is https://research.nvidia.com/labs/amri/projects/instant4d
comment: Project website is https://research.nvidia.com/labs/amri/projects/instant4d
☆ LinkedOut: Linking World Knowledge Representation Out of Video LLM for Next-Generation Video Recommendation
Video Large Language Models (VLLMs) unlock world-knowledge-aware video understanding through pretraining on internet-scale data and have already shown promise on tasks such as movie analysis and video question answering. However, deploying VLLMs for downstream tasks such as video recommendation remains challenging, since real systems require multi-video inputs, lightweight backbones, low-latency sequential inference, and rapid response. In practice, (1) decode-only generation yields high latency for sequential inference, (2) typical interfaces do not support multi-video inputs, and (3) constraining outputs to language discards fine-grained visual details that matter for downstream vision tasks. We argue that these limitations stem from the absence of a representation that preserves pixel-level detail while leveraging world knowledge. We present LinkedOut, a representation that extracts VLLM world knowledge directly from video to enable fast inference, supports multi-video histories, and removes the language bottleneck. LinkedOut extracts semantically grounded, knowledge-aware tokens from raw frames using VLLMs, guided by promptable queries and optional auxiliary modalities. We introduce a cross-layer knowledge fusion MoE that selects the appropriate level of abstraction from the rich VLLM features, enabling personalized, interpretable, and low-latency recommendation. To our knowledge, LinkedOut is the first VLLM-based video recommendation method that operates on raw frames without handcrafted labels, achieving state-of-the-art results on standard benchmarks. Interpretability studies and ablations confirm the benefits of layer diversity and layer-wise fusion, pointing to a practical path that fully leverages VLLM world-knowledge priors and visual reasoning for downstream vision tasks such as recommendation.
☆ M-PhyGs: Multi-Material Object Dynamics from Video
Knowledge of the physical material properties governing the dynamics of a real-world object becomes necessary to accurately anticipate its response to unseen interactions. Existing methods for estimating such physical material parameters from visual data assume homogeneous single-material objects, pre-learned dynamics, or simplistic topologies. Real-world objects, however, are often complex in material composition and geometry lying outside the realm of these assumptions. In this paper, we particularly focus on flowers as a representative common object. We introduce Multi-material Physical Gaussians (M-PhyGs) to estimate the material composition and parameters of such multi-material complex natural objects from video. From a short video captured in a natural setting, M-PhyGs jointly segments the object into similar materials and recovers their continuum mechanical parameters while accounting for gravity. M-PhyGs achieves this efficiently with newly introduced cascaded 3D and 2D losses, and by leveraging temporal mini-batching. We introduce a dataset, Phlowers, of people interacting with flowers as a novel platform to evaluate the accuracy of this challenging task of multi-material physical parameter estimation. Experimental results on Phlowers dataset demonstrate the accuracy and effectiveness of M-PhyGs and its components.
☆ Memory-Enhanced SAM3 for Occlusion-Robust Surgical Instrument Segmentation
Accurate surgical instrument segmentation in endoscopic videos is crucial for computer-assisted interventions, yet remains challenging due to frequent occlusions, rapid motion, specular artefacts, and long-term instrument re-entry. While SAM3 provides a powerful spatio-temporal framework for video object segmentation, its performance in surgical scenes is limited by indiscriminate memory updates, fixed memory capacity, and weak identity recovery after occlusions. We propose ReMeDI-SAM3, a training-free memory-enhanced extension of SAM3, that addresses these limitations through three components: (i) relevance-aware memory filtering with a dedicated occlusion-aware memory for storing pre-occlusion frames, (ii) a piecewise interpolation scheme that expands the effective memory capacity, and (iii) a feature-based re-identification module with temporal voting for reliable post-occlusion identity disambiguation. Together, these components mitigate error accumulation and enable reliable recovery after occlusions. Evaluations on EndoVis17 and EndoVis18 under a zero-shot setting show absolute mcIoU improvements of around 7% and 16%, respectively, over vanilla SAM3, outperforming even prior training-based approaches. Project page: https://valaybundele.github.io/remedi-sam3/.
comment: Under Review
☆ Training Together, Diagnosing Better: Federated Learning for Collagen VI-Related Dystrophies
The application of Machine Learning (ML) to the diagnosis of rare diseases, such as collagen VI-related dystrophies (COL6-RD), is fundamentally limited by the scarcity and fragmentation of available data. Attempts to expand sampling across hospitals, institutions, or countries with differing regulations face severe privacy, regulatory, and logistical obstacles that are often difficult to overcome. The Federated Learning (FL) provides a promising solution by enabling collaborative model training across decentralized datasets while keeping patient data local and private. Here, we report a novel global FL initiative using the Sherpa.ai FL platform, which leverages FL across distributed datasets in two international organizations for the diagnosis of COL6-RD, using collagen VI immunofluorescence microscopy images from patient-derived fibroblast cultures. Our solution resulted in an ML model capable of classifying collagen VI patient images into the three primary pathogenic mechanism groups associated with COL6-RD: exon skipping, glycine substitution, and pseudoexon insertion. This new approach achieved an F1-score of 0.82, outperforming single-organization models (0.57-0.75). These results demonstrate that FL substantially improves diagnostic utility and generalizability compared to isolated institutional models. Beyond enabling more accurate diagnosis, we anticipate that this approach will support the interpretation of variants of uncertain significance and guide the prioritization of sequencing strategies to identify novel pathogenic variants.
☆ Pixel Seal: Adversarial-only training for invisible image and video watermarking
Invisible watermarking is essential for tracing the provenance of digital content. However, training state-of-the-art models remains notoriously difficult, with current approaches often struggling to balance robustness against true imperceptibility. This work introduces Pixel Seal, which sets a new state-of-the-art for image and video watermarking. We first identify three fundamental issues of existing methods: (i) the reliance on proxy perceptual losses such as MSE and LPIPS that fail to mimic human perception and result in visible watermark artifacts; (ii) the optimization instability caused by conflicting objectives, which necessitates exhaustive hyperparameter tuning; and (iii) reduced robustness and imperceptibility of watermarks when scaling models to high-resolution images and videos. To overcome these issues, we first propose an adversarial-only training paradigm that eliminates unreliable pixel-wise imperceptibility losses. Second, we introduce a three-stage training schedule that stabilizes convergence by decoupling robustness and imperceptibility. Third, we address the resolution gap via high-resolution adaptation, employing JND-based attenuation and training-time inference simulation to eliminate upscaling artifacts. We thoroughly evaluate the robustness and imperceptibility of Pixel Seal on different image types and across a wide range of transformations, and show clear improvements over the state-of-the-art. We finally demonstrate that the model efficiently adapts to video via temporal watermark pooling, positioning Pixel Seal as a practical and scalable solution for reliable provenance in real-world image and video settings.
comment: Code and model available at https://github.com/facebookresearch/videoseal
☆ RePlan: Reasoning-guided Region Planning for Complex Instruction-based Image Editing
Instruction-based image editing enables natural-language control over visual modifications, yet existing models falter under Instruction-Visual Complexity (IV-Complexity), where intricate instructions meet cluttered or ambiguous scenes. We introduce RePlan (Region-aligned Planning), a plan-then-execute framework that couples a vision-language planner with a diffusion editor. The planner decomposes instructions via step-by-step reasoning and explicitly grounds them to target regions; the editor then applies changes using a training-free attention-region injection mechanism, enabling precise, parallel multi-region edits without iterative inpainting. To strengthen planning, we apply GRPO-based reinforcement learning using 1K instruction-only examples, yielding substantial gains in reasoning fidelity and format reliability. We further present IV-Edit, a benchmark focused on fine-grained grounding and knowledge-intensive edits. Across IV-Complex settings, RePlan consistently outperforms strong baselines trained on far larger datasets, improving regional precision and overall fidelity. Our project page: https://replan-iv-edit.github.io
comment: Precise region control and planning for instruction-based image editing. Our project page: https://replan-iv-edit.github.io
☆ GenEval 2: Addressing Benchmark Drift in Text-to-Image Evaluation
Automating Text-to-Image (T2I) model evaluation is challenging; a judge model must be used to score correctness, and test prompts must be selected to be challenging for current T2I models but not the judge. We argue that satisfying these constraints can lead to benchmark drift over time, where the static benchmark judges fail to keep up with newer model capabilities. We show that benchmark drift is a significant problem for GenEval, one of the most popular T2I benchmarks. Although GenEval was well-aligned with human judgment at the time of its release, it has drifted far from human judgment over time -- resulting in an absolute error of as much as 17.7% for current models. This level of drift strongly suggests that GenEval has been saturated for some time, as we verify via a large-scale human study. To help fill this benchmarking gap, we introduce a new benchmark, GenEval 2, with improved coverage of primitive visual concepts and higher degrees of compositionality, which we show is more challenging for current models. We also introduce Soft-TIFA, an evaluation method for GenEval 2 that combines judgments for visual primitives, which we show is more well-aligned with human judgment and argue is less likely to drift from human-alignment over time (as compared to more holistic judges such as VQAScore). Although we hope GenEval 2 will provide a strong benchmark for many years, avoiding benchmark drift is far from guaranteed and our work, more generally, highlights the importance of continual audits and improvement for T2I and related automated model evaluation benchmarks.
☆ OPENTOUCH: Bringing Full-Hand Touch to Real-World Interaction
The human hand is our primary interface to the physical world, yet egocentric perception rarely knows when, where, or how forcefully it makes contact. Robust wearable tactile sensors are scarce, and no existing in-the-wild datasets align first-person video with full-hand touch. To bridge the gap between visual perception and physical interaction, we present OpenTouch, the first in-the-wild egocentric full-hand tactile dataset, containing 5.1 hours of synchronized video-touch-pose data and 2,900 curated clips with detailed text annotations. Using OpenTouch, we introduce retrieval and classification benchmarks that probe how touch grounds perception and action. We show that tactile signals provide a compact yet powerful cue for grasp understanding, strengthen cross-modal alignment, and can be reliably retrieved from in-the-wild video queries. By releasing this annotated vision-touch-pose dataset and benchmark, we aim to advance multimodal egocentric perception, embodied learning, and contact-rich robotic manipulation.
comment: https://opentouch-tactile.github.io/
☆ Radiology Report Generation with Layer-Wise Anatomical Attention
Automatic radiology report generation is a promising application of multimodal deep learning, aiming to reduce reporting workload and improve consistency. However, current state-of-the-art (SOTA) systems - such as Multimodal AI for Radiology Applications (MAIRA-2) and Medical Pathways Language Model-Multimodal (MedPaLM-M) - depend on large-scale multimodal training, clinical metadata, and multiple imaging views, making them resource-intensive and inaccessible for most settings. We introduce a compact image-to-text architecture that generates the Findings section of chest X-ray reports from a single frontal image. The model combines a frozen Self-Distillation with No Labels v3 (DINOv3) Vision Transformer (ViT) encoder with a Generative Pre-trained Transformer 2 (GPT-2) decoder enhanced by layer-wise anatomical attention. This mechanism integrates lung and heart segmentation masks through hierarchical Gaussian smoothing, biasing attention toward clinically relevant regions without adding trainable parameters. Evaluated on the official Medical Information Mart for Intensive Care-Chest X-ray (MIMIC-CXR) dataset using Chest Radiograph Expert (CheXpert) and Radiology Graph (RadGraph) metrics, our approach achieved substantial gains: CheXpert Macro-F1 for five key pathologies increased by 168% (0.083 -> 0.238) and Micro-F1 by 146% (0.137 -> 0.337), while broader performance across 14 observations improved by 86% (0.170 -> 0.316). Structural coherence also improved, with RadGraph F1 rising by 9.7%. Despite its small size and purely image-conditioned design, the model demonstrates that decoder-level anatomical guidance improves spatial grounding and enhances coherence in clinically relevant regions. The source code is publicly available at: https://github.com/devMuniz02/UDEM-CXR-Reporting-Thesis-2025.
comment: 11 pages, 6 figures
☆ Next-Generation License Plate Detection and Recognition System using YOLOv8
In the evolving landscape of traffic management and vehicle surveillance, efficient license plate detection and recognition are indispensable. Historically, many methodologies have tackled this challenge, but consistent real-time accuracy, especially in diverse environments, remains elusive. This study examines the performance of YOLOv8 variants on License Plate Recognition (LPR) and Character Recognition tasks, crucial for advancing Intelligent Transportation Systems. Two distinct datasets were employed for training and evaluation, yielding notable findings. The YOLOv8 Nano variant demonstrated a precision of 0.964 and mAP50 of 0.918 on the LPR task, while the YOLOv8 Small variant exhibited a precision of 0.92 and mAP50 of 0.91 on the Character Recognition task. A custom method for character sequencing was introduced, effectively sequencing the detected characters based on their x-axis positions. An optimized pipeline, utilizing YOLOv8 Nano for LPR and YOLOv8 Small for Character Recognition, is proposed. This configuration not only maintains computational efficiency but also ensures high accuracy, establishing a robust foundation for future real-world deployments on edge devices within Intelligent Transportation Systems. This effort marks a significant stride towards the development of smarter and more efficient urban infrastructures.
comment: 6 pages, 5 figures. Accepted and published in the 2023 IEEE 20th International Conference on Smart Communities: Improving Quality of Life using AI, Robotics and IoT (HONET)
☆ DenseBEV: Transforming BEV Grid Cells into 3D Objects
In current research, Bird's-Eye-View (BEV)-based transformers are increasingly utilized for multi-camera 3D object detection. Traditional models often employ random queries as anchors, optimizing them successively. Recent advancements complement or replace these random queries with detections from auxiliary networks. We propose a more intuitive and efficient approach by using BEV feature cells directly as anchors. This end-to-end approach leverages the dense grid of BEV queries, considering each cell as a potential object for the final detection task. As a result, we introduce a novel two-stage anchor generation method specifically designed for multi-camera 3D object detection. To address the scaling issues of attention with a large number of queries, we apply BEV-based Non-Maximum Suppression, allowing gradients to flow only through non-suppressed objects. This ensures efficient training without the need for post-processing. By using BEV features from encoders such as BEVFormer directly as object queries, temporal BEV information is inherently embedded. Building on the temporal BEV information already embedded in our object queries, we introduce a hybrid temporal modeling approach by integrating prior detections to further enhance detection performance. Evaluating our method on the nuScenes dataset shows consistent and significant improvements in NDS and mAP over the baseline, even with sparser BEV grids and therefore fewer initial anchors. It is particularly effective for small objects, enhancing pedestrian detection with a 3.8% mAP increase on nuScenes and an 8% increase in LET-mAP on Waymo. Applying our method, named DenseBEV, to the challenging Waymo Open dataset yields state-of-the-art performance, achieving a LET-mAP of 60.7%, surpassing the previous best by 5.4%. Code is available at https://github.com/mdaehl/DenseBEV.
comment: 15 pages, 8 figures, accepted by WACV 2026
☆ GeoPredict: Leveraging Predictive Kinematics and 3D Gaussian Geometry for Precise VLA Manipulation
Vision-Language-Action (VLA) models achieve strong generalization in robotic manipulation but remain largely reactive and 2D-centric, making them unreliable in tasks that require precise 3D reasoning. We propose GeoPredict, a geometry-aware VLA framework that augments a continuous-action policy with predictive kinematic and geometric priors. GeoPredict introduces a trajectory-level module that encodes motion history and predicts multi-step 3D keypoint trajectories of robot arms, and a predictive 3D Gaussian geometry module that forecasts workspace geometry with track-guided refinement along future keypoint trajectories. These predictive modules serve exclusively as training-time supervision through depth-based rendering, while inference requires only lightweight additional query tokens without invoking any 3D decoding. Experiments on RoboCasa Human-50, LIBERO, and real-world manipulation tasks show that GeoPredict consistently outperforms strong VLA baselines, especially in geometry-intensive and spatially demanding scenarios.
☆ KineST: A Kinematics-guided Spatiotemporal State Space Model for Human Motion Tracking from Sparse Signals AAAI 2026
Full-body motion tracking plays an essential role in AR/VR applications, bridging physical and virtual interactions. However, it is challenging to reconstruct realistic and diverse full-body poses based on sparse signals obtained by head-mounted displays, which are the main devices in AR/VR scenarios. Existing methods for pose reconstruction often incur high computational costs or rely on separately modeling spatial and temporal dependencies, making it difficult to balance accuracy, temporal coherence, and efficiency. To address this problem, we propose KineST, a novel kinematics-guided state space model, which effectively extracts spatiotemporal dependencies while integrating local and global pose perception. The innovation comes from two core ideas. Firstly, in order to better capture intricate joint relationships, the scanning strategy within the State Space Duality framework is reformulated into kinematics-guided bidirectional scanning, which embeds kinematic priors. Secondly, a mixed spatiotemporal representation learning approach is employed to tightly couple spatial and temporal contexts, balancing accuracy and smoothness. Additionally, a geometric angular velocity loss is introduced to impose physically meaningful constraints on rotational variations for further improving motion stability. Extensive experiments demonstrate that KineST has superior performance in both accuracy and temporal consistency within a lightweight framework. Project page: https://kaka-1314.github.io/KineST/
comment: Accepted by AAAI 2026
☆ R3ST: A Synthetic 3D Dataset With Realistic Trajectories
Datasets are essential to train and evaluate computer vision models used for traffic analysis and to enhance road safety. Existing real datasets fit real-world scenarios, capturing authentic road object behaviors, however, they typically lack precise ground-truth annotations. In contrast, synthetic datasets play a crucial role, allowing for the annotation of a large number of frames without additional costs or extra time. However, a general drawback of synthetic datasets is the lack of realistic vehicle motion, since trajectories are generated using AI models or rule-based systems. In this work, we introduce R3ST (Realistic 3D Synthetic Trajectories), a synthetic dataset that overcomes this limitation by generating a synthetic 3D environment and integrating real-world trajectories derived from SinD, a bird's-eye-view dataset recorded from drone footage. The proposed dataset closes the gap between synthetic data and realistic trajectories, advancing the research in trajectory forecasting of road vehicles, offering both accurate multimodal ground-truth annotations and authentic human-driven vehicle trajectories.
☆ Kling-Omni Technical Report
We present Kling-Omni, a generalist generative framework designed to synthesize high-fidelity videos directly from multimodal visual language inputs. Adopting an end-to-end perspective, Kling-Omni bridges the functional separation among diverse video generation, editing, and intelligent reasoning tasks, integrating them into a holistic system. Unlike disjointed pipeline approaches, Kling-Omni supports a diverse range of user inputs, including text instructions, reference images, and video contexts, processing them into a unified multimodal representation to deliver cinematic-quality and highly-intelligent video content creation. To support these capabilities, we constructed a comprehensive data system that serves as the foundation for multimodal video creation. The framework is further empowered by efficient large-scale pre-training strategies and infrastructure optimizations for inference. Comprehensive evaluations reveal that Kling-Omni demonstrates exceptional capabilities in in-context generation, reasoning-based editing, and multimodal instruction following. Moving beyond a content creation tool, we believe Kling-Omni is a pivotal advancement toward multimodal world simulators capable of perceiving, reasoning, generating and interacting with the dynamic and complex worlds.
comment: Kling-Omni Technical Report
☆ FlowDet: Unifying Object Detection and Generative Transport Flows
We present FlowDet, the first formulation of object detection using modern Conditional Flow Matching techniques. This work follows from DiffusionDet, which originally framed detection as a generative denoising problem in the bounding box space via diffusion. We revisit and generalise this formulation to a broader class of generative transport problems, while maintaining the ability to vary the number of boxes and inference steps without re-training. In contrast to the curved stochastic transport paths induced by diffusion, FlowDet learns simpler and straighter paths resulting in faster scaling of detection performance as the number of inference steps grows. We find that this reformulation enables us to outperform diffusion based detection systems (as well as non-generative baselines) across a wide range of experiments, including various precision/recall operating points using multiple feature backbones and datasets. In particular, when evaluating under recall-constrained settings, we can highlight the effects of the generative transport without over-compensating with large numbers of proposals. This provides gains of up to +3.6% AP and +4.2% AP$_{rare}$ over DiffusionDet on the COCO and LVIS datasets, respectively.
☆ Make-It-Poseable: Feed-forward Latent Posing Model for 3D Humanoid Character Animation
Posing 3D characters is a fundamental task in computer graphics and vision. However, existing methods like auto-rigging and pose-conditioned generation often struggle with challenges such as inaccurate skinning weight prediction, topological imperfections, and poor pose conformance, limiting their robustness and generalizability. To overcome these limitations, we introduce Make-It-Poseable, a novel feed-forward framework that reformulates character posing as a latent-space transformation problem. Instead of deforming mesh vertices as in traditional pipelines, our method reconstructs the character in new poses by directly manipulating its latent representation. At the core of our method is a latent posing transformer that manipulates shape tokens based on skeletal motion. This process is facilitated by a dense pose representation for precise control. To ensure high-fidelity geometry and accommodate topological changes, we also introduce a latent-space supervision strategy and an adaptive completion module. Our method demonstrates superior performance in posing quality. It also naturally extends to 3D editing applications like part replacement and refinement.
comment: Project page: https://jasongzy.github.io/Make-It-Poseable/
☆ TreeNet: A Light Weight Model for Low Bitrate Image Compression
Reducing computational complexity remains a critical challenge for the widespread adoption of learning-based image compression techniques. In this work, we propose TreeNet, a novel low-complexity image compression model that leverages a binary tree-structured encoder-decoder architecture to achieve efficient representation and reconstruction. We employ attentional feature fusion mechanism to effectively integrate features from multiple branches. We evaluate TreeNet on three widely used benchmark datasets and compare its performance against competing methods including JPEG AI, a recent standard in learning-based image compression. At low bitrates, TreeNet achieves an average improvement of 4.83% in BD-rate over JPEG AI, while reducing model complexity by 87.82%. Furthermore, we conduct extensive ablation studies to investigate the influence of various latent representations within TreeNet, offering deeper insights into the factors contributing to reconstruction.
☆ Task-Oriented Data Synthesis and Control-Rectify Sampling for Remote Sensing Semantic Segmentation
With the rapid progress of controllable generation, training data synthesis has become a promising way to expand labeled datasets and alleviate manual annotation in remote sensing (RS). However, the complexity of semantic mask control and the uncertainty of sampling quality often limit the utility of synthetic data in downstream semantic segmentation tasks. To address these challenges, we propose a task-oriented data synthesis framework (TODSynth), including a Multimodal Diffusion Transformer (MM-DiT) with unified triple attention and a plug-and-play sampling strategy guided by task feedback. Built upon the powerful DiT-based generative foundation model, we systematically evaluate different control schemes, showing that a text-image-mask joint attention scheme combined with full fine-tuning of the image and mask branches significantly enhances the effectiveness of RS semantic segmentation data synthesis, particularly in few-shot and complex-scene scenarios. Furthermore, we propose a control-rectify flow matching (CRFM) method, which dynamically adjusts sampling directions guided by semantic loss during the early high-plasticity stage, mitigating the instability of generated images and bridging the gap between synthetic data and downstream segmentation tasks. Extensive experiments demonstrate that our approach consistently outperforms state-of-the-art controllable generation methods, producing more stable and task-oriented synthetic data for RS semantic segmentation.
☆ OMG-Bench: A New Challenging Benchmark for Skeleton-based Online Micro Hand Gesture Recognition
Online micro gesture recognition from hand skeletons is critical for VR/AR interaction but faces challenges due to limited public datasets and task-specific algorithms. Micro gestures involve subtle motion patterns, which make constructing datasets with precise skeletons and frame-level annotations difficult. To this end, we develop a multi-view self-supervised pipeline to automatically generate skeleton data, complemented by heuristic rules and expert refinement for semi-automatic annotation. Based on this pipeline, we introduce OMG-Bench, the first large-scale public benchmark for skeleton-based online micro gesture recognition. It features 40 fine-grained gesture classes with 13,948 instances across 1,272 sequences, characterized by subtle motions, rapid dynamics, and continuous execution. To tackle these challenges, we propose Hierarchical Memory-Augmented Transformer (HMATr), an end-to-end framework that unifies gesture detection and classification by leveraging hierarchical memory banks which store frame-level details and window-level semantics to preserve historical context. In addition, it employs learnable position-aware queries initialized from the memory to implicitly encode gesture positions and semantics. Experiments show that HMATr outperforms state-of-the-art methods by 7.6\% in detection rate, establishing a strong baseline for online micro gesture recognition. Project page: https://omg-bench.github.io/
comment: Project page: https://omg-bench.github.io/
☆ VERM: Leveraging Foundation Models to Create a Virtual Eye for Efficient 3D Robotic Manipulation
When performing 3D manipulation tasks, robots have to execute action planning based on perceptions from multiple fixed cameras. The multi-camera setup introduces substantial redundancy and irrelevant information, which increases computational costs and forces the model to spend extra training time extracting crucial task-relevant details. To filter out redundant information and accurately extract task-relevant features, we propose the VERM (Virtual Eye for Robotic Manipulation) method, leveraging the knowledge in foundation models to imagine a virtual task-adaptive view from the constructed 3D point cloud, which efficiently captures necessary information and mitigates occlusion. To facilitate 3D action planning and fine-grained manipulation, we further design a depth-aware module and a dynamic coarse-to-fine procedure. Extensive experimental results on both simulation benchmark RLBench and real-world evaluations demonstrate the effectiveness of our method, surpassing previous state-of-the-art methods while achieving 1.89x speedup in training time and 1.54x speedup in inference speed. More results can be found on our project website at https://verm-ral.github.io .
comment: Accepted at RA-L 2025
☆ A multi-centre, multi-device benchmark dataset for landmark-based comprehensive fetal biometry
Accurate fetal growth assessment from ultrasound (US) relies on precise biometry measured by manually identifying anatomical landmarks in standard planes. Manual landmarking is time-consuming, operator-dependent, and sensitive to variability across scanners and sites, limiting the reproducibility of automated approaches. There is a need for multi-source annotated datasets to develop artificial intelligence-assisted fetal growth assessment methods. To address this bottleneck, we present an open, multi-centre, multi-device benchmark dataset of fetal US images with expert anatomical landmark annotations for clinically used fetal biometric measurements. These measurements include head bi-parietal and occipito-frontal diameters, abdominal transverse and antero-posterior diameters, and femoral length. The dataset contains 4,513 de-identified US images from 1,904 subjects acquired at three clinical sites using seven different US devices. We provide standardised, subject-disjoint train/test splits, evaluation code, and baseline results to enable fair and reproducible comparison of methods. Using an automatic biometry model, we quantify domain shift and demonstrate that training and evaluation confined to a single centre substantially overestimate performance relative to multi-centre testing. To the best of our knowledge, this is the first publicly available multi-centre, multi-device, landmark-annotated dataset that covers all primary fetal biometry measures, providing a robust benchmark for domain adaptation and multi-centre generalisation in fetal biometry and enabling more reliable AI-assisted fetal growth assessment across centres. All data, annotations, training code, and evaluation pipelines are made publicly available.
comment: 11 pages, 5 figures, 3 tables
☆ SDFoam: Signed-Distance Foam for explicit surface reconstruction
Neural radiance fields (NeRF) have driven impressive progress in view synthesis by using ray-traced volumetric rendering. Splatting-based methods such as 3D Gaussian Splatting (3DGS) provide faster rendering by rasterizing 3D primitives. RadiantFoam (RF) brought ray tracing back, achieving throughput comparable to Gaussian Splatting by organizing radiance with an explicit Voronoi Diagram (VD). Yet, all the mentioned methods still struggle with precise mesh reconstruction. We address this gap by jointly learning an explicit VD with an implicit Signed Distance Field (SDF). The scene is optimized via ray tracing and regularized by an Eikonal objective. The SDF introduces metric-consistent isosurfaces, which, in turn, bias near-surface Voronoi cell faces to align with the zero level set. The resulting model produces crisper, view-consistent surfaces with fewer floaters and improved topology, while preserving photometric quality and maintaining training speed on par with RadiantFoam. Across diverse scenes, our hybrid implicit-explicit formulation, which we name SDFoam, substantially improves mesh reconstruction accuracy (Chamfer distance) with comparable appearance (PSNR, SSIM), without sacrificing efficiency.
☆ Detecting Localized Deepfakes: How Well Do Synthetic Image Detectors Handle Inpainting?
The rapid progress of generative AI has enabled highly realistic image manipulations, including inpainting and region-level editing. These approaches preserve most of the original visual context and are increasingly exploited in cybersecurity-relevant threat scenarios. While numerous detectors have been proposed for identifying fully synthetic images, their ability to generalize to localized manipulations remains insufficiently characterized. This work presents a systematic evaluation of state-of-the-art detectors, originally trained for the deepfake detection on fully synthetic images, when applied to a distinct challenge: localized inpainting detection. The study leverages multiple datasets spanning diverse generators, mask sizes, and inpainting techniques. Our experiments show that models trained on a large set of generators exhibit partial transferability to inpainting-based edits and can reliably detect medium- and large-area manipulations or regeneration-style inpainting, outperforming many existing ad hoc detection approaches.
comment: 17 pages, 5 figures, 9 tables
☆ Few-Shot Fingerprinting Subject Re-Identification in 3D-MRI and 2D-X-Ray
Combining open-source datasets can introduce data leakage if the same subject appears in multiple sets, leading to inflated model performance. To address this, we explore subject fingerprinting, mapping all images of a subject to a distinct region in latent space, to enable subject re-identification via similarity matching. Using a ResNet-50 trained with triplet margin loss, we evaluate few-shot fingerprinting on 3D MRI and 2D X-ray data in both standard (20-way 1-shot) and challenging (1000-way 1-shot) scenarios. The model achieves high Mean- Recall-@-K scores: 99.10% (20-way 1-shot) and 90.06% (500-way 5-shot) on ChestXray-14; 99.20% (20-way 1-shot) and 98.86% (100-way 3-shot) on BraTS- 2021.
☆ FrameDiffuser: G-Buffer-Conditioned Diffusion for Neural Forward Frame Rendering
Neural rendering for interactive applications requires translating geometric and material properties (G-buffer) to photorealistic images with realistic lighting on a frame-by-frame basis. While recent diffusion-based approaches show promise for G-buffer-conditioned image synthesis, they face critical limitations: single-image models like RGBX generate frames independently without temporal consistency, while video models like DiffusionRenderer are too computationally expensive for most consumer gaming sets ups and require complete sequences upfront, making them unsuitable for interactive applications where future frames depend on user input. We introduce FrameDiffuser, an autoregressive neural rendering framework that generates temporally consistent, photorealistic frames by conditioning on G-buffer data and the models own previous output. After an initial frame, FrameDiffuser operates purely on incoming G-buffer data, comprising geometry, materials, and surface properties, while using its previously generated frame for temporal guidance, maintaining stable, temporal consistent generation over hundreds to thousands of frames. Our dual-conditioning architecture combines ControlNet for structural guidance with ControlLoRA for temporal coherence. A three-stage training strategy enables stable autoregressive generation. We specialize our model to individual environments, prioritizing consistency and inference speed over broad generalization, demonstrating that environment-specific training achieves superior photorealistic quality with accurate lighting, shadows, and reflections compared to generalized approaches.
comment: Project Page: https://framediffuser.jdihlmann.com/
☆ REGLUE Your Latents with Global and Local Semantics for Entangled Diffusion
Latent diffusion models (LDMs) achieve state-of-the-art image synthesis, yet their reconstruction-style denoising objective provides only indirect semantic supervision: high-level semantics emerge slowly, requiring longer training and limiting sample quality. Recent works inject semantics from Vision Foundation Models (VFMs) either externally via representation alignment or internally by jointly modeling only a narrow slice of VFM features inside the diffusion process, under-utilizing the rich, nonlinear, multi-layer spatial semantics available. We introduce REGLUE (Representation Entanglement with Global-Local Unified Encoding), a unified latent diffusion framework that jointly models (i) VAE image latents, (ii) compact local (patch-level) VFM semantics, and (iii) a global (image-level) [CLS] token within a single SiT backbone. A lightweight convolutional semantic compressor nonlinearly aggregates multi-layer VFM features into a low-dimensional, spatially structured representation, which is entangled with the VAE latents in the diffusion process. An external alignment loss further regularizes internal representations toward frozen VFM targets. On ImageNet 256x256, REGLUE consistently improves FID and accelerates convergence over SiT-B/2 and SiT-XL/2 baselines, as well as over REPA, ReDi, and REG. Extensive experiments show that (a) spatial VFM semantics are crucial, (b) non-linear compression is key to unlocking their full benefit, and (c) global tokens and external alignment act as complementary, lightweight enhancements within our global-local-latent joint modeling framework. The code is available at https://github.com/giorgospets/reglue .
☆ SARMAE: Masked Autoencoder for SAR Representation Learning
Synthetic Aperture Radar (SAR) imagery plays a critical role in all-weather, day-and-night remote sensing applications. However, existing SAR-oriented deep learning is constrained by data scarcity, while the physically grounded speckle noise in SAR imagery further hampers fine-grained semantic representation learning. To address these challenges, we propose SARMAE, a Noise-Aware Masked Autoencoder for self-supervised SAR representation learning. Specifically, we construct SAR-1M, the first million-scale SAR dataset, with additional paired optical images, to enable large-scale pre-training. Building upon this, we design Speckle-Aware Representation Enhancement (SARE), which injects SAR-specific speckle noise into masked autoencoders to facilitate noise-aware and robust representation learning. Furthermore, we introduce Semantic Anchor Representation Constraint (SARC), which leverages paired optical priors to align SAR features and ensure semantic consistency. Extensive experiments across multiple SAR datasets demonstrate that SARMAE achieves state-of-the-art performance on classification, detection, and segmentation tasks. Code and models will be available at https://github.com/MiliLab/SARMAE.
comment: Code and models will be available at https://github.com/MiliLab/SARMAE
☆ DeContext as Defense: Safe Image Editing in Diffusion Transformers
In-context diffusion models allow users to modify images with remarkable ease and realism. However, the same power raises serious privacy concerns: personal images can be easily manipulated for identity impersonation, misinformation, or other malicious uses, all without the owner's consent. While prior work has explored input perturbations to protect against misuse in personalized text-to-image generation, the robustness of modern, large-scale in-context DiT-based models remains largely unexamined. In this paper, we propose DeContext, a new method to safeguard input images from unauthorized in-context editing. Our key insight is that contextual information from the source image propagates to the output primarily through multimodal attention layers. By injecting small, targeted perturbations that weaken these cross-attention pathways, DeContext breaks this flow, effectively decouples the link between input and output. This simple defense is both efficient and robust. We further show that early denoising steps and specific transformer blocks dominate context propagation, which allows us to concentrate perturbations where they matter most. Experiments on Flux Kontext and Step1X-Edit show that DeContext consistently blocks unwanted image edits while preserving visual quality. These results highlight the effectiveness of attention-based perturbations as a powerful defense against image manipulation.
comment: 17 pages, 11 figures
☆ Plug to Place: Indoor Multimedia Geolocation from Electrical Sockets for Digital Investigation
Computer vision is a rapidly evolving field, giving rise to powerful new tools and techniques in digital forensic investigation, and shows great promise for novel digital forensic applications. One such application, indoor multimedia geolocation, has the potential to become a crucial aid for law enforcement in the fight against human trafficking, child exploitation, and other serious crimes. While outdoor multimedia geolocation has been widely explored, its indoor counterpart remains underdeveloped due to challenges such as similar room layouts, frequent renovations, visual ambiguity, indoor lighting variability, unreliable GPS signals, and limited datasets in sensitive domains. This paper introduces a pipeline that uses electric sockets as consistent indoor markers for geolocation, since plug socket types are standardised by country or region. The three-stage deep learning pipeline detects plug sockets (YOLOv11, mAP@0.5 = 0.843), classifies them into one of 12 plug socket types (Xception, accuracy = 0.912), and maps the detected socket types to countries (accuracy = 0.96 at >90% threshold confidence). To address data scarcity, two dedicated datasets were created: socket detection dataset of 2,328 annotated images expanded to 4,072 through augmentation, and a classification dataset of 3,187 images across 12 plug socket classes. The pipeline was evaluated on the Hotels-50K dataset, focusing on the TraffickCam subset of crowd-sourced hotel images, which capture real-world conditions such as poor lighting and amateur angles. This dataset provides a more realistic evaluation than using professional, well-lit, often wide-angle images from travel websites. This framework demonstrates a practical step toward real-world digital forensic applications. The code, trained models, and the data for this paper are available open source.
☆ Trainable Log-linear Sparse Attention for Efficient Diffusion Transformers
Diffusion Transformers (DiTs) set the state of the art in visual generation, yet their quadratic self-attention cost fundamentally limits scaling to long token sequences. Recent Top-K sparse attention approaches reduce the computation of DiTs by compressing tokens into block-wise representation and selecting a small set of relevant key blocks, but still suffer from (i) quadratic selection cost on compressed tokens and (ii) increasing K required to maintain model quality as sequences grow. We identify that their inefficiency is due to the single-level design, as a single coarse level is insufficient to represent the global structure. In this paper, we introduce Log-linear Sparse Attention (LLSA), a trainable sparse attention mechanism for extremely long token sequences that reduces both selection and attention costs from quadratic to log-linear complexity by utilizing a hierarchical structure. LLSA performs hierarchical Top-K selection, progressively adopting sparse Top-K selection with the indices found at the previous level, and introduces a Hierarchical KV Enrichment mechanism that preserves global context while using fewer tokens of different granularity during attention computation. To support efficient training, we develop a high-performance GPU implementation that uses only sparse indices for both the forward and backward passes, eliminating the need for dense attention masks. We evaluate LLSA on high-resolution pixel-space image generation without using patchification and VAE encoding. LLSA accelerates attention inference by 28.27x and DiT training by 6.09x on 256x256 pixel token sequences, while maintaining generation quality. The results demonstrate that LLSA offers a promising direction for training long-sequence DiTs efficiently. Code is available at: https://github.com/SingleZombie/LLSA
comment: Code is available at: https://github.com/SingleZombie/LLSA
☆ Don't Guess, Escalate: Towards Explainable Uncertainty-Calibrated AI Forensic Agents
AI is reshaping the landscape of multimedia forensics. We propose AI forensic agents: reliable orchestrators that select and combine forensic detectors, identify provenance and context, and provide uncertainty-aware assessments. We highlight pitfalls in current solutions and introduce a unified framework to improve the authenticity verification process.
☆ Hazedefy: A Lightweight Real-Time Image and Video Dehazing Pipeline for Practical Deployment
This paper introduces Hazedefy, a lightweight and application-focused dehazing pipeline intended for real-time video and live camera feed enhancement. Hazedefy prioritizes computational simplicity and practical deployability on consumer-grade hardware, building upon the Dark Channel Prior (DCP) concept and the atmospheric scattering model. Key elements include gamma-adaptive reconstruction, a fast transmission approximation with lower bounds for numerical stability, a stabilized atmospheric light estimator based on fractional top-pixel averaging, and an optional color balance stage. The pipeline is suitable for mobile and embedded applications, as experimental demonstrations on real-world images and videos show improved visibility and contrast without requiring GPU acceleration.
comment: 4 pages, 2 figures. Code and demo available at https://doi.org/10.5281/zenodo.17915355
☆ Yuan-TecSwin: A text conditioned Diffusion model with Swin-transformer blocks
Diffusion models have shown remarkable capacity in image synthesis based on their U-shaped architecture and convolutional neural networks (CNN) as basic blocks. The locality of the convolution operation in CNN may limit the model's ability to understand long-range semantic information. To address this issue, we propose Yuan-TecSwin, a text-conditioned diffusion model with Swin-transformer in this work. The Swin-transformer blocks take the place of CNN blocks in the encoder and decoder, to improve the non-local modeling ability in feature extraction and image restoration. The text-image alignment is improved with a well-chosen text encoder, effective utilization of text embedding, and careful design in the incorporation of text condition. Using an adapted time step to search in different diffusion stages, inference performance is further improved by 10%. Yuan-TecSwin achieves the state-of-the-art FID score of 1.37 on ImageNet generation benchmark, without any additional models at different denoising stages. In a side-by-side comparison, we find it difficult for human interviewees to tell the model-generated images from the human-painted ones.
☆ Sketch-in-Latents: Eliciting Unified Reasoning in MLLMs
While Multimodal Large Language Models (MLLMs) excel at visual understanding tasks through text reasoning, they often fall short in scenarios requiring visual imagination. Unlike current works that take predefined external toolkits or generate images during thinking, however, humans can form flexible visual-text imagination and interactions during thinking without predefined toolkits, where one important reason is that humans construct the visual-text thinking process in a unified space inside the brain. Inspired by this capability, given that current MLLMs already encode visual and text information in the same feature space, we hold that visual tokens can be seamlessly inserted into the reasoning process carried by text tokens, where ideally, all visual imagination processes can be encoded by the latent features. To achieve this goal, we propose Sketch-in-Latents (SkiLa), a novel paradigm for unified multi-modal reasoning that expands the auto-regressive capabilities of MLLMs to natively generate continuous visual embeddings, termed latent sketch tokens, as visual thoughts. During multi-step reasoning, the model dynamically alternates between textual thinking mode for generating textual think tokens and visual sketching mode for generating latent sketch tokens. A latent visual semantics reconstruction mechanism is proposed to ensure these latent sketch tokens are semantically grounded. Extensive experiments demonstrate that SkiLa achieves superior performance on vision-centric tasks while exhibiting strong generalization to diverse general multi-modal benchmarks. Codes will be released at https://github.com/TungChintao/SkiLa.
comment: 14 pages, 11 figures
☆ CRONOS: Continuous Time Reconstruction for 4D Medical Longitudinal Series
Forecasting how 3D medical scans evolve over time is important for disease progression, treatment planning, and developmental assessment. Yet existing models either rely on a single prior scan, fixed grid times, or target global labels, which limits voxel-level forecasting under irregular sampling. We present CRONOS, a unified framework for many-to-one prediction from multiple past scans that supports both discrete (grid-based) and continuous (real-valued) timestamps in one model, to the best of our knowledge the first to achieve continuous sequence-to-image forecasting for 3D medical data. CRONOS learns a spatio-temporal velocity field that transports context volumes toward a target volume at an arbitrary time, while operating directly in 3D voxel space. Across three public datasets spanning Cine-MRI, perfusion CT, and longitudinal MRI, CRONOS outperforms other baselines, while remaining computationally competitive. We will release code and evaluation protocols to enable reproducible, multi-dataset benchmarking of multi-context, continuous-time forecasting.
comment: https://github.com/MIC-DKFZ/Longitudinal4DMed
☆ Causal-Tune: Mining Causal Factors from Vision Foundation Models for Domain Generalized Semantic Segmentation AAAI 2026
Fine-tuning Vision Foundation Models (VFMs) with a small number of parameters has shown remarkable performance in Domain Generalized Semantic Segmentation (DGSS). Most existing works either train lightweight adapters or refine intermediate features to achieve better generalization on unseen domains. However, they both overlook the fact that long-term pre-trained VFMs often exhibit artifacts, which hinder the utilization of valuable representations and ultimately degrade DGSS performance. Inspired by causal mechanisms, we observe that these artifacts are associated with non-causal factors, which usually reside in the low- and high-frequency components of the VFM spectrum. In this paper, we explicitly examine the causal and non-causal factors of features within VFMs for DGSS, and propose a simple yet effective method to identify and disentangle them, enabling more robust domain generalization. Specifically, we propose Causal-Tune, a novel fine-tuning strategy designed to extract causal factors and suppress non-causal ones from the features of VFMs. First, we extract the frequency spectrum of features from each layer using the Discrete Cosine Transform (DCT). A Gaussian band-pass filter is then applied to separate the spectrum into causal and non-causal components. To further refine the causal components, we introduce a set of causal-aware learnable tokens that operate in the frequency domain, while the non-causal components are discarded. Finally, refined features are transformed back into the spatial domain via inverse DCT and passed to the next layer. Extensive experiments conducted on various cross-domain tasks demonstrate the effectiveness of Causal-Tune. In particular, our method achieves superior performance under adverse weather conditions, improving +4.8% mIoU over the baseline in snow conditions.
comment: Accepted by AAAI 2026
☆ 4D Primitive-Mâché: Glueing Primitives for Persistent 4D Scene Reconstruction
We present a dynamic reconstruction system that receives a casual monocular RGB video as input, and outputs a complete and persistent reconstruction of the scene. In other words, we reconstruct not only the the currently visible parts of the scene, but also all previously viewed parts, which enables replaying the complete reconstruction across all timesteps. Our method decomposes the scene into a set of rigid 3D primitives, which are assumed to be moving throughout the scene. Using estimated dense 2D correspondences, we jointly infer the rigid motion of these primitives through an optimisation pipeline, yielding a 4D reconstruction of the scene, i.e. providing 3D geometry dynamically moving through time. To achieve this, we also introduce a mechanism to extrapolate motion for objects that become invisible, employing motion-grouping techniques to maintain continuity. The resulting system enables 4D spatio-temporal awareness, offering capabilities such as replayable 3D reconstructions of articulated objects through time, multi-object scanning, and object permanence. On object scanning and multi-object datasets, our system significantly outperforms existing methods both quantitatively and qualitatively.
comment: For project page, see https://makezur.github.io/4DPM/
☆ N3D-VLM: Native 3D Grounding Enables Accurate Spatial Reasoning in Vision-Language Models
While current multimodal models can answer questions based on 2D images, they lack intrinsic 3D object perception, limiting their ability to comprehend spatial relationships and depth cues in 3D scenes. In this work, we propose N3D-VLM, a novel unified framework that seamlessly integrates native 3D object perception with 3D-aware visual reasoning, enabling both precise 3D grounding and interpretable spatial understanding. Unlike conventional end-to-end models that directly predict answers from RGB/RGB-D inputs, our approach equips the model with native 3D object perception capabilities, enabling it to directly localize objects in 3D space based on textual descriptions. Building upon accurate 3D object localization, the model further performs explicit reasoning in 3D, achieving more interpretable and structured spatial understanding. To support robust training for these capabilities, we develop a scalable data construction pipeline that leverages depth estimation to lift large-scale 2D annotations into 3D space, significantly increasing the diversity and coverage for 3D object grounding data, yielding over six times larger than the largest existing single-image 3D detection dataset. Moreover, the pipeline generates spatial question-answering datasets that target chain-of-thought (CoT) reasoning in 3D, facilitating joint training for both 3D object localization and 3D spatial reasoning. Experimental results demonstrate that our unified framework not only achieves state-of-the-art performance on 3D grounding tasks, but also consistently surpasses existing methods in 3D spatial reasoning in vision-language model.
comment: Project Page: https://n3d-vlm.github.io
☆ TTP: Test-Time Padding for Adversarial Detection and Robust Adaptation on Vision-Language Models
Vision-Language Models (VLMs), such as CLIP, have achieved impressive zero-shot recognition performance but remain highly susceptible to adversarial perturbations, posing significant risks in safety-critical scenarios. Previous training-time defenses rely on adversarial fine-tuning, which requires labeled data and costly retraining, while existing test-time strategies fail to reliably distinguish between clean and adversarial inputs, thereby preventing both adversarial robustness and clean accuracy from reaching their optimum. To address these limitations, we propose Test-Time Padding (TTP), a lightweight defense framework that performs adversarial detection followed by targeted adaptation at inference. TTP identifies adversarial inputs via the cosine similarity shift between CLIP feature embeddings computed before and after spatial padding, yielding a universal threshold for reliable detection across architectures and datasets. For detected adversarial cases, TTP employs trainable padding to restore disrupted attention patterns, coupled with a similarity-aware ensemble strategy for a more robust final prediction. For clean inputs, TTP leaves them unchanged by default or optionally integrates existing test-time adaptation techniques for further accuracy gains. Comprehensive experiments on diverse CLIP backbones and fine-grained benchmarks show that TTP consistently surpasses state-of-the-art test-time defenses, delivering substantial improvements in adversarial robustness without compromising clean accuracy. The code for this paper will be released soon.
☆ Multi-scale Attention-Guided Intrinsic Decomposition and Rendering Pass Prediction for Facial Images
Accurate intrinsic decomposition of face images under unconstrained lighting is a prerequisite for photorealistic relighting, high-fidelity digital doubles, and augmented-reality effects. This paper introduces MAGINet, a Multi-scale Attention-Guided Intrinsics Network that predicts a $512\times512$ light-normalized diffuse albedo map from a single RGB portrait. MAGINet employs hierarchical residual encoding, spatial-and-channel attention in a bottleneck, and adaptive multi-scale feature fusion in the decoder, yielding sharper albedo boundaries and stronger lighting invariance than prior U-Net variants. The initial albedo prediction is upsampled to $1024\times1024$ and refined by a lightweight three-layer CNN (RefinementNet). Conditioned on this refined albedo, a Pix2PixHD-based translator then predicts a comprehensive set of five additional physically based rendering passes: ambient occlusion, surface normal, specular reflectance, translucency, and raw diffuse colour (with residual lighting). Together with the refined albedo, these six passes form the complete intrinsic decomposition. Trained with a combination of masked-MSE, VGG, edge, and patch-LPIPS losses on the FFHQ-UV-Intrinsics dataset, the full pipeline achieves state-of-the-art performance for diffuse albedo estimation and demonstrates significantly improved fidelity for the complete rendering stack compared to prior methods. The resulting passes enable high-quality relighting and material editing of real faces.
☆ Skeleton-Snippet Contrastive Learning with Multiscale Feature Fusion for Action Localization
The self-supervised pretraining paradigm has achieved great success in learning 3D action representations for skeleton-based action recognition using contrastive learning. However, learning effective representations for skeleton-based temporal action localization remains challenging and underexplored. Unlike video-level {action} recognition, detecting action boundaries requires temporally sensitive features that capture subtle differences between adjacent frames where labels change. To this end, we formulate a snippet discrimination pretext task for self-supervised pretraining, which densely projects skeleton sequences into non-overlapping segments and promotes features that distinguish them across videos via contrastive learning. Additionally, we build on strong backbones of skeleton-based action recognition models by fusing intermediate features with a U-shaped module to enhance feature resolution for frame-level localization. Our approach consistently improves existing skeleton-based contrastive learning methods for action localization on BABEL across diverse subsets and evaluation protocols. We also achieve state-of-the-art transfer learning performance on PKUMMD with pretraining on NTU RGB+D and BABEL.
☆ VenusBench-GD: A Comprehensive Multi-Platform GUI Benchmark for Diverse Grounding Tasks
GUI grounding is a critical component in building capable GUI agents. However, existing grounding benchmarks suffer from significant limitations: they either provide insufficient data volume and narrow domain coverage, or focus excessively on a single platform and require highly specialized domain knowledge. In this work, we present VenusBench-GD, a comprehensive, bilingual benchmark for GUI grounding that spans multiple platforms, enabling hierarchical evaluation for real-word applications. VenusBench-GD contributes as follows: (i) we introduce a large-scale, cross-platform benchmark with extensive coverage of applications, diverse UI elements, and rich annotated data, (ii) we establish a high-quality data construction pipeline for grounding tasks, achieving higher annotation accuracy than existing benchmarks, and (iii) we extend the scope of element grounding by proposing a hierarchical task taxonomy that divides grounding into basic and advanced categories, encompassing six distinct subtasks designed to evaluate models from complementary perspectives. Our experimental findings reveal critical insights: general-purpose multimodal models now match or even surpass specialized GUI models on basic grounding tasks. In contrast, advanced tasks, still favor GUI-specialized models, though they exhibit significant overfitting and poor robustness. These results underscore the necessity of comprehensive, multi-tiered evaluation frameworks.
☆ PoseMoE: Mixture-of-Experts Network for Monocular 3D Human Pose Estimation
The lifting-based methods have dominated monocular 3D human pose estimation by leveraging detected 2D poses as intermediate representations. The 2D component of the final 3D human pose benefits from the detected 2D poses, whereas its depth counterpart must be estimated from scratch. The lifting-based methods encode the detected 2D pose and unknown depth in an entangled feature space, explicitly introducing depth uncertainty to the detected 2D pose, thereby limiting overall estimation accuracy. This work reveals that the depth representation is pivotal for the estimation process. Specifically, when depth is in an initial, completely unknown state, jointly encoding depth features with 2D pose features is detrimental to the estimation process. In contrast, when depth is initially refined to a more dependable state via network-based estimation, encoding it together with 2D pose information is beneficial. To address this limitation, we present a Mixture-of-Experts network for monocular 3D pose estimation named PoseMoE. Our approach introduces: (1) A mixture-of-experts network where specialized expert modules refine the well-detected 2D pose features and learn the depth features. This mixture-of-experts design disentangles the feature encoding process for 2D pose and depth, therefore reducing the explicit influence of uncertain depth features on 2D pose features. (2) A cross-expert knowledge aggregation module is proposed to aggregate cross-expert spatio-temporal contextual information. This step enhances features through bidirectional mapping between 2D pose and depth. Extensive experiments show that our proposed PoseMoE outperforms the conventional lifting-based methods on three widely used datasets: Human3.6M, MPI-INF-3DHP, and 3DPW.
comment: IEEE Transactions on Image Processing (T-IP)
☆ YOLO11-4K: An Efficient Architecture for Real-Time Small Object Detection in 4K Panoramic Images
The processing of omnidirectional 360-degree images poses significant challenges for object detection due to inherent spatial distortions, wide fields of view, and ultra-high-resolution inputs. Conventional detectors such as YOLO are optimised for standard image sizes (for example, 640x640 pixels) and often struggle with the computational demands of 4K or higher-resolution imagery typical of 360-degree vision. To address these limitations, we introduce YOLO11-4K, an efficient real-time detection framework tailored for 4K panoramic images. The architecture incorporates a novel multi-scale detection head with a P2 layer to improve sensitivity to small objects often missed at coarser scales, and a GhostConv-based backbone to reduce computational complexity without sacrificing representational power. To enable evaluation, we manually annotated the CVIP360 dataset, generating 6,876 frame-level bounding boxes and producing a publicly available, detection-ready benchmark for 4K panoramic scenes. YOLO11-4K achieves 0.95 mAP at 0.50 IoU with 28.3 milliseconds inference per frame, representing a 75 percent latency reduction compared to YOLO11 (112.3 milliseconds), while also improving accuracy (mAP at 0.50 of 0.95 versus 0.908). This balance of efficiency and precision enables robust object detection in expansive 360-degree environments, making the framework suitable for real-world high-resolution panoramic applications. While this work focuses on 4K omnidirectional images, the approach is broadly applicable to high-resolution detection tasks in autonomous navigation, surveillance, and augmented reality.
comment: Conference paper just submitted
☆ Smile on the Face, Sadness in the Eyes: Bridging the Emotion Gap with a Multimodal Dataset of Eye and Facial Behaviors
Emotion Recognition (ER) is the process of analyzing and identifying human emotions from sensing data. Currently, the field heavily relies on facial expression recognition (FER) because visual channel conveys rich emotional cues. However, facial expressions are often used as social tools rather than manifestations of genuine inner emotions. To understand and bridge this gap between FER and ER, we introduce eye behaviors as an important emotional cue and construct an Eye-behavior-aided Multimodal Emotion Recognition (EMER) dataset. To collect data with genuine emotions, spontaneous emotion induction paradigm is exploited with stimulus material, during which non-invasive eye behavior data, like eye movement sequences and eye fixation maps, is captured together with facial expression videos. To better illustrate the gap between ER and FER, multi-view emotion labels for mutimodal ER and FER are separately annotated. Furthermore, based on the new dataset, we design a simple yet effective Eye-behavior-aided MER Transformer (EMERT) that enhances ER by bridging the emotion gap. EMERT leverages modality-adversarial feature decoupling and a multitask Transformer to model eye behaviors as a strong complement to facial expressions. In the experiment, we introduce seven multimodal benchmark protocols for a variety of comprehensive evaluations of the EMER dataset. The results show that the EMERT outperforms other state-of-the-art multimodal methods by a great margin, revealing the importance of modeling eye behaviors for robust ER. To sum up, we provide a comprehensive analysis of the importance of eye behaviors in ER, advancing the study on addressing the gap between FER and ER for more robust ER performance. Our EMER dataset and the trained EMERT models will be publicly available at https://github.com/kejun1/EMER.
comment: Accepted by TMM
☆ Guiding Perception-Reasoning Closer to Human in Blind Image Quality Assessment
Humans assess image quality through a perception-reasoning cascade, integrating sensory cues with implicit reasoning to form self-consistent judgments. In this work, we investigate how a model can acquire both human-like and self-consistent reasoning capability for blind image quality assessment (BIQA). We first collect human evaluation data that capture several aspects of human perception-reasoning pipeline. Then, we adopt reinforcement learning, using human annotations as reward signals to guide the model toward human-like perception and reasoning. To enable the model to internalize self-consistent reasoning capability, we design a reward that drives the model to infer the image quality purely from self-generated descriptions. Empirically, our approach achieves score prediction performance comparable to state-of-the-art BIQA systems under general metrics, including Pearson and Spearman correlation coefficients. In addition to the rating score, we assess human-model alignment using ROUGE-1 to measure the similarity between model-generated and human perception-reasoning chains. On over 1,000 human-annotated samples, our model reaches a ROUGE-1 score of 0.512 (cf. 0.443 for baseline), indicating substantial coverage of human explanations and marking a step toward human-like interpretable reasoning in BIQA.
comment: Under review
☆ StageVAR: Stage-Aware Acceleration for Visual Autoregressive Models
Visual Autoregressive (VAR) modeling departs from the next-token prediction paradigm of traditional Autoregressive (AR) models through next-scale prediction, enabling high-quality image generation. However, the VAR paradigm suffers from sharply increased computational complexity and running time at large-scale steps. Although existing acceleration methods reduce runtime for large-scale steps, but rely on manual step selection and overlook the varying importance of different stages in the generation process. To address this challenge, we present StageVAR, a systematic study and stage-aware acceleration framework for VAR models. Our analysis shows that early steps are critical for preserving semantic and structural consistency and should remain intact, while later steps mainly refine details and can be pruned or approximated for acceleration. Building on these insights, StageVAR introduces a plug-and-play acceleration strategy that exploits semantic irrelevance and low-rank properties in late-stage computations, without requiring additional training. Our proposed StageVAR achieves up to 3.4x speedup with only a 0.01 drop on GenEval and a 0.26 decrease on DPG, consistently outperforming existing acceleration baselines. These results highlight stage-aware design as a powerful principle for efficient visual autoregressive image generation.
☆ SNOW: Spatio-Temporal Scene Understanding with World Knowledge for Open-World Embodied Reasoning
Autonomous robotic systems require spatio-temporal understanding of dynamic environments to ensure reliable navigation and interaction. While Vision-Language Models (VLMs) provide open-world semantic priors, they lack grounding in 3D geometry and temporal dynamics. Conversely, geometric perception captures structure and motion but remains semantically sparse. We propose SNOW (Scene Understanding with Open-World Knowledge), a training-free and backbone-agnostic framework for unified 4D scene understanding that integrates VLM-derived semantics with point cloud geometry and temporal consistency. SNOW processes synchronized RGB images and 3D point clouds, using HDBSCAN clustering to generate object-level proposals that guide SAM2-based segmentation. Each segmented region is encoded through our proposed Spatio-Temporal Tokenized Patch Encoding (STEP), producing multimodal tokens that capture localized semantic, geometric, and temporal attributes. These tokens are incrementally integrated into a 4D Scene Graph (4DSG), which serves as 4D prior for downstream reasoning. A lightweight SLAM backend anchors all STEP tokens spatially in the environment, providing the global reference alignment, and ensuring unambiguous spatial grounding across time. The resulting 4DSG forms a queryable, unified world model through which VLMs can directly interpret spatial scene structure and temporal dynamics. Experiments on a diverse set of benchmarks demonstrate that SNOW enables precise 4D scene understanding and spatially grounded inference, thereby setting new state-of-the-art performance in several settings, highlighting the importance of structured 4D priors for embodied reasoning and autonomous robotics.
☆ Prime and Reach: Synthesising Body Motion for Gaze-Primed Object Reach
Human motion generation is a challenging task that aims to create realistic motion imitating natural human behaviour. We focus on the well-studied behaviour of priming an object/location for pick up or put down -- that is, the spotting of an object/location from a distance, known as gaze priming, followed by the motion of approaching and reaching the target location. To that end, we curate, for the first time, 23.7K gaze-primed human motion sequences for reaching target object locations from five publicly available datasets, i.e., HD-EPIC, MoGaze, HOT3D, ADT, and GIMO. We pre-train a text-conditioned diffusion-based motion generation model, then fine-tune it conditioned on goal pose or location, on our curated sequences. Importantly, we evaluate the ability of the generated motion to imitate natural human movement through several metrics, including the 'Reach Success' and a newly introduced 'Prime Success' metric. On the largest dataset, HD-EPIC, our model achieves 60% prime success and 89% reach success when conditioned on the goal object location.
comment: Project Page: https://masashi-hatano.github.io/prime-and-reach/
☆ Geometric Disentanglement of Text Embeddings for Subject-Consistent Text-to-Image Generation using A Single Prompt
Text-to-image diffusion models excel at generating high-quality images from natural language descriptions but often fail to preserve subject consistency across multiple outputs, limiting their use in visual storytelling. Existing approaches rely on model fine-tuning or image conditioning, which are computationally expensive and require per-subject optimization. 1Prompt1Story, a training-free approach, concatenates all scene descriptions into a single prompt and rescales token embeddings, but it suffers from semantic leakage, where embeddings across frames become entangled, causing text misalignment. In this paper, we propose a simple yet effective training-free approach that addresses semantic entanglement from a geometric perspective by refining text embeddings to suppress unwanted semantics. Extensive experiments prove that our approach significantly improves both subject consistency and text alignment over existing baselines.
☆ CountZES: Counting via Zero-Shot Exemplar Selection
Object counting in complex scenes remains challenging, particularly in the zero-shot setting, where the goal is to count instances of unseen categories specified only by a class name. Existing zero-shot object counting (ZOC) methods that infer exemplars from text either rely on open-vocabulary detectors, which often yield multi-instance candidates, or on random patch sampling, which fails to accurately delineate object instances. To address this, we propose CountZES, a training-free framework for object counting via zero-shot exemplar selection. CountZES progressively discovers diverse exemplars through three synergistic stages: Detection-Anchored Exemplar (DAE), Density-Guided Exemplar (DGE), and Feature-Consensus Exemplar (FCE). DAE refines open-vocabulary detections to isolate precise single-instance exemplars. DGE introduces a density-driven, self-supervised paradigm to identify statistically consistent and semantically compact exemplars, while FCE reinforces visual coherence through feature-space clustering. Together, these stages yield a diverse, complementary exemplar set that balances textual grounding, count consistency, and feature representativeness. Experiments on diverse datasets demonstrate CountZES superior performance among ZOC methods while generalizing effectively across natural, aerial and medical domains.
☆ BrepLLM: Native Boundary Representation Understanding with Large Language Models
Current token-sequence-based Large Language Models (LLMs) are not well-suited for directly processing 3D Boundary Representation (Brep) models that contain complex geometric and topological information. We propose BrepLLM, the first framework that enables LLMs to parse and reason over raw Brep data, bridging the modality gap between structured 3D geometry and natural language. BrepLLM employs a two-stage training pipeline: Cross-modal Alignment Pre-training and Multi-stage LLM Fine-tuning. In the first stage, an adaptive UV sampling strategy converts Breps into graphs representation with geometric and topological information. We then design a hierarchical BrepEncoder to extract features from geometry (i.e., faces and edges) and topology, producing both a single global token and a sequence of node tokens. Then we align the global token with text embeddings from a frozen CLIP text encoder (ViT-L/14) via contrastive learning. In the second stage, we integrate the pretrained BrepEncoder into an LLM. We then align its sequence of node tokens using a three-stage progressive training strategy: (1) training an MLP-based semantic mapping from Brep representation to 2D with 2D-LLM priors. (2) performing fine-tuning of the LLM. (3) designing a Mixture-of-Query Experts (MQE) to enhance geometric diversity modeling. We also construct Brep2Text, a dataset comprising 269,444 Brep-text question-answer pairs. Experiments show that BrepLLM achieves state-of-the-art (SOTA) results on 3D object classification and captioning tasks.
☆ Using Gaussian Splats to Create High-Fidelity Facial Geometry and Texture CVPR 2026
We leverage increasingly popular three-dimensional neural representations in order to construct a unified and consistent explanation of a collection of uncalibrated images of the human face. Our approach utilizes Gaussian Splatting, since it is more explicit and thus more amenable to constraints than NeRFs. We leverage segmentation annotations to align the semantic regions of the face, facilitating the reconstruction of a neutral pose from only 11 images (as opposed to requiring a long video). We soft constrain the Gaussians to an underlying triangulated surface in order to provide a more structured Gaussian Splat reconstruction, which in turn informs subsequent perturbations to increase the accuracy of the underlying triangulated surface. The resulting triangulated surface can then be used in a standard graphics pipeline. In addition, and perhaps most impactful, we show how accurate geometry enables the Gaussian Splats to be transformed into texture space where they can be treated as a view-dependent neural texture. This allows one to use high visual fidelity Gaussian Splatting on any asset in a scene without the need to modify any other asset or any other aspect (geometry, lighting, renderer, etc.) of the graphics pipeline. We utilize a relightable Gaussian model to disentangle texture from lighting in order to obtain a delit high-resolution albedo texture that is also readily usable in a standard graphics pipeline. The flexibility of our system allows for training with disparate images, even with incompatible lighting, facilitating robust regularization. Finally, we demonstrate the efficacy of our approach by illustrating its use in a text-driven asset creation pipeline.
comment: Submitted to CVPR 2026. 21 pages, 22 figures
☆ Adaptive Frequency Domain Alignment Network for Medical image segmentation
High-quality annotated data plays a crucial role in achieving accurate segmentation. However, such data for medical image segmentation are often scarce due to the time-consuming and labor-intensive nature of manual annotation. To address this challenge, we propose the Adaptive Frequency Domain Alignment Network (AFDAN)--a novel domain adaptation framework designed to align features in the frequency domain and alleviate data scarcity. AFDAN integrates three core components to enable robust cross-domain knowledge transfer: an Adversarial Domain Learning Module that transfers features from the source to the target domain; a Source-Target Frequency Fusion Module that blends frequency representations across domains; and a Spatial-Frequency Integration Module that combines both frequency and spatial features to further enhance segmentation accuracy across domains. Extensive experiments demonstrate the effectiveness of AFDAN: it achieves an Intersection over Union (IoU) of 90.9% for vitiligo segmentation in the newly constructed VITILIGO2025 dataset and a competitive IoU of 82.6% on the retinal vessel segmentation benchmark DRIVE, surpassing existing state-of-the-art approaches.
☆ Factorized Video Generation: Decoupling Scene Construction and Temporal Synthesis in Text-to-Video Diffusion Models
State-of-the-art Text-to-Video (T2V) diffusion models can generate visually impressive results, yet they still frequently fail to compose complex scenes or follow logical temporal instructions. In this paper, we argue that many errors, including apparent motion failures, originate from the model's inability to construct a semantically correct or logically consistent initial frame. We introduce Factorized Video Generation (FVG), a pipeline that decouples these tasks by decomposing the Text-to-Video generation into three specialized stages: (1) Reasoning, where a Large Language Model (LLM) rewrites the video prompt to describe only the initial scene, resolving temporal ambiguities; (2) Composition, where a Text-to-Image (T2I) model synthesizes a high-quality, compositionally-correct anchor frame from this new prompt; and (3) Temporal Synthesis, where a video model, finetuned to understand this anchor, focuses its entire capacity on animating the scene and following the prompt. Our decomposed approach sets a new state-of-the-art on the T2V CompBench benchmark and significantly improves all tested models on VBench2. Furthermore, we show that visual anchoring allows us to cut the number of sampling steps by 70% without any loss in performance, leading to a substantial speed-up in sampling. Factorized Video Generation offers a simple yet practical path toward more efficient, robust, and controllable video synthesis
☆ EverybodyDance: Bipartite Graph-Based Identity Correspondence for Multi-Character Animation
Consistent pose-driven character animation has achieved remarkable progress in single-character scenarios. However, extending these advances to multi-character settings is non-trivial, especially when position swap is involved. Beyond mere scaling, the core challenge lies in enforcing correct Identity Correspondence (IC) between characters in reference and generated frames. To address this, we introduce EverybodyDance, a systematic solution targeting IC correctness in multi-character animation. EverybodyDance is built around the Identity Matching Graph (IMG), which models characters in the generated and reference frames as two node sets in a weighted complete bipartite graph. Edge weights, computed via our proposed Mask-Query Attention (MQA), quantify the affinity between each pair of characters. Our key insight is to formalize IC correctness as a graph structural metric and to optimize it during training. We also propose a series of targeted strategies tailored for multi-character animation, including identity-embedded guidance, a multi-scale matching strategy, and pre-classified sampling, which work synergistically. Finally, to evaluate IC performance, we curate the Identity Correspondence Evaluation benchmark, dedicated to multi-character IC correctness. Extensive experiments demonstrate that EverybodyDance substantially outperforms state-of-the-art baselines in both IC and visual fidelity.
☆ GMODiff: One-Step Gain Map Refinement with Diffusion Priors for HDR Reconstruction
Pre-trained Latent Diffusion Models (LDMs) have recently shown strong perceptual priors for low-level vision tasks, making them a promising direction for multi-exposure High Dynamic Range (HDR) reconstruction. However, directly applying LDMs to HDR remains challenging due to: (1) limited dynamic-range representation caused by 8-bit latent compression, (2) high inference cost from multi-step denoising, and (3) content hallucination inherent to generative nature. To address these challenges, we introduce GMODiff, a gain map-driven one-step diffusion framework for multi-exposure HDR reconstruction. Instead of reconstructing full HDR content, we reformulate HDR reconstruction as a conditionally guided Gain Map (GM) estimation task, where the GM encodes the extended dynamic range while retaining the same bit depth as LDR images. We initialize the denoising process from an informative regression-based estimate rather than pure noise, enabling the model to generate high-quality GMs in a single denoising step. Furthermore, recognizing that regression-based models excel in content fidelity while LDMs favor perceptual quality, we leverage regression priors to guide both the denoising process and latent decoding of the LDM, suppressing hallucinations while preserving structural accuracy. Extensive experiments demonstrate that our GMODiff performs favorably against several state-of-the-art methods and is 100 faster than previous LDM-based methods.
♻ ☆ Team Westwood Solution for MIDOG 2025 Challenge: An Ensemble-CNN-Based Approach For Mitosis Detection And Classification
This abstract presents our solution (Team Westwood) for mitosis detection and atypical mitosis classification in the MItosis DOmain Generalization (MIDOG) 2025 challenge. For mitosis detection, we trained an nnUNetV2 for initial mitosis candidate screening with high sensitivity, followed by a random forest classifier ensembling predictions of three convolutional neural networks (CNNs): EfficientNet-b3, EfficientNet-b5, and EfficientNetV2-s. For the atypical mitosis classification, we trained another random forest classifier ensembling the predictions of three CNNs: EfficientNet-b3, EfficientNet-b5, and InceptionV3. On the preliminary test set, our solution achieved an F1 score of 0.7450 for track 1 mitosis detection, and a balanced accuracy of 0.8722 for track 2 atypical mitosis classification. On the final test set, our solution achieved an F1 score of 0.6972 for track 1 mitosis detection, and a balanced accuracy of 0.8242 for track 2 atypical mitosis classification.
comment: To appear Lecture Notes in Computer Science
♻ ☆ Core-Set Selection for Data-efficient Land Cover Segmentation
The increasing accessibility of remotely sensed data and their potential to support large-scale decision-making have driven the development of deep learning models for many Earth Observation tasks. Traditionally, such models rely on large datasets. However, the common assumption that larger training datasets lead to better performance tends to overlook issues related to data redundancy, noise, and the computational cost of processing massive datasets. Effective solutions must therefore consider not only the quantity but also the quality of data. Towards this, in this paper, we introduce six basic core-set selection approaches -- that rely on imagery only, labels only, or a combination of both -- and investigate whether they can identify high-quality subsets of data capable of maintaining -- or even surpassing -- the performance achieved when using full datasets for remote sensing semantic segmentation. We benchmark such approaches against two traditional baselines on three widely used land-cover classification datasets (DFC2022, Vaihingen, and Potsdam) using two different architectures (SegFormer and U-Net), thus establishing a general baseline for future works. Our experiments show that all proposed methods consistently outperform the baselines across multiple subset sizes, with some approaches even selecting core sets that surpass training on all available data. Notably, on DFC2022, a selected subset comprising only 25% of the training data yields slightly higher SegFormer performance than training with the entire dataset. This result shows the importance and potential of data-centric learning for the remote sensing domain. The code is available at https://github.com/keillernogueira/data-centric-rs-classification/.
♻ ☆ Memory Backdoor Attacks on Neural Networks
Neural networks are often trained on proprietary datasets, making them attractive attack targets. We present a novel dataset extraction method leveraging an innovative training time backdoor attack, allowing a malicious federated learning server to systematically and deterministically extract complete client training samples through a simple indexing process. Unlike prior techniques, our approach guarantees exact data recovery rather than probabilistic reconstructions or hallucinations, provides precise control over which samples are memorized and how many, and shows high capacity and robustness. Infected models output data samples when they receive a patternbased index trigger, enabling systematic extraction of meaningful patches from each clients local data without disrupting global model utility. To address small model output sizes, we extract patches and then recombined them. The attack requires only a minor modification to the training code that can easily evade detection during client-side verification. Hence, this vulnerability represents a realistic FL supply-chain threat, where a malicious server can distribute modified training code to clients and later recover private data from their updates. Evaluations across classifiers, segmentation models, and large language models demonstrate that thousands of sensitive training samples can be recovered from client models with minimal impact on task performance, and a clients entire dataset can be stolen after multiple FL rounds. For instance, a medical segmentation dataset can be extracted with only a 3 percent utility drop. These findings expose a critical privacy vulnerability in FL systems, emphasizing the need for stronger integrity and transparency in distributed training pipelines.
♻ ☆ GeoVista: Web-Augmented Agentic Visual Reasoning for Geolocalization
Current research on agentic visual reasoning enables deep multimodal understanding but primarily focuses on image manipulation tools, leaving a gap toward more general-purpose agentic models. In this work, we revisit the geolocalization task, which requires not only nuanced visual grounding but also web search to confirm or refine hypotheses during reasoning. Since existing geolocalization benchmarks fail to meet the need for high-resolution imagery and the localization challenge for deep agentic reasoning, we curate GeoBench, a benchmark that includes photos and panoramas from around the world, along with a subset of satellite images of different cities to rigorously evaluate the geolocalization ability of agentic models. We also propose GeoVista, an agentic model that seamlessly integrates tool invocation within the reasoning loop, including an image-zoom-in tool to magnify regions of interest and a web-search tool to retrieve related web information. We develop a complete training pipeline for it, including a cold-start supervised fine-tuning (SFT) stage to learn reasoning patterns and tool-use priors, followed by a reinforcement learning (RL) stage to further enhance reasoning ability. We adopt a hierarchical reward to leverage multi-level geographical information and improve overall geolocalization performance. Experimental results show that GeoVista surpasses other open-source agentic models on the geolocalization task greatly and achieves performance comparable to closed-source models such as Gemini-2.5-flash and GPT-5 on most metrics.
♻ ☆ NeAR: Coupled Neural Asset-Renderer Stack
Neural asset authoring and neural rendering have traditionally evolved as disjoint paradigms: one generates digital assets for fixed graphics pipelines, while the other maps conventional assets to images. However, treating them as independent entities limits the potential for end-to-end optimization in fidelity and consistency. In this paper, we bridge this gap with NeAR, a Coupled Neural Asset--Renderer Stack. We argue that co-designing the asset representation and the renderer creates a robust "contract" for superior generation. On the asset side, we introduce the Lighting-Homogenized SLAT (LH-SLAT). Leveraging a rectified-flow model, NeAR lifts casually lit single images into a canonical, illumination-invariant latent space, effectively suppressing baked-in shadows and highlights. On the renderer side, we design a lighting-aware neural decoder tailored to interpret these homogenized latents. Conditioned on HDR environment maps and camera views, it synthesizes relightable 3D Gaussian splats in real-time without per-object optimization. We validate NeAR on four tasks: (1) G-buffer-based forward rendering, (2) random-lit reconstruction, (3) unknown-lit relighting, and (4) novel-view relighting. Extensive experiments demonstrate that our coupled stack outperforms state-of-the-art baselines in both quantitative metrics and perceptual quality. We hope this coupled asset-renderer perspective inspires future graphics stacks that view neural assets and renderers as co-designed components instead of independent entities.
comment: 20 pages, 19 figures. The project page: https://near-project.github.io/
♻ ☆ V-Thinker: Interactive Thinking with Images
Empowering Large Multimodal Models (LMMs) to deeply integrate image interaction with long-horizon reasoning capabilities remains a long-standing challenge in this field. Recent advances in vision-centric reasoning explore a promising "Thinking with Images" paradigm for LMMs, marking a shift from image-assisted reasoning to image-interactive thinking. While this milestone enables models to focus on fine-grained image regions, progress remains constrained by limited visual tool spaces and task-specific workflow designs. To bridge this gap, we present V-Thinker, a general-purpose multimodal reasoning assistant that enables interactive, vision-centric thinking through end-to-end reinforcement learning. V-Thinker comprises two key components: (1) a Data Evolution Flywheel that automatically synthesizes, evolves, and verifies interactive reasoning datasets across three dimensions-diversity, quality, and difficulty; and (2) a Visual Progressive Training Curriculum that first aligns perception via point-level supervision, then integrates interactive reasoning through a two-stage reinforcement learning framework. Furthermore, we introduce VTBench, an expert-verified benchmark targeting vision-centric interactive reasoning tasks. Extensive experiments demonstrate that V-Thinker consistently outperforms strong LMM-based baselines in both general and interactive reasoning scenarios, providing valuable insights for advancing image-interactive reasoning applications.
comment: Working in progress
♻ ☆ Radar-Guided Polynomial Fitting for Metric Depth Estimation
We propose POLAR, a novel radar-guided depth estimation method that introduces polynomial fitting to efficiently transform scaleless depth predictions from pretrained monocular depth estimation (MDE) models into metric depth maps. Unlike existing approaches that rely on complex architectures or expensive sensors, our method is grounded in a fundamental insight: although MDE models often infer reasonable local depth structure within each object or local region, they may misalign these regions relative to one another, making a linear scale and shift (affine) transformation insufficient given three or more of these regions. To address this limitation, we use polynomial coefficients predicted from cheap, ubiquitous radar data to adaptively adjust predictions non-uniformly across depth ranges. In this way, POLAR generalizes beyond affine transformations and is able to correct such misalignments by introducing inflection points. Importantly, our polynomial fitting framework preserves structural consistency through a novel training objective that enforces local monotonicity via first-derivative regularization. POLAR achieves state-of-the-art performance across three datasets, outperforming existing methods by an average of 24.9% in MAE and 33.2% in RMSE, while also achieving state-of-the-art efficiency in terms of latency and computational cost.
♻ ☆ Diffusion-Based Restoration for Multi-Modal 3D Object Detection in Adverse Weather
Multi-modal 3D object detection is important for reliable perception in robotics and autonomous driving. However, its effectiveness remains limited under adverse weather conditions due to weather-induced distortions and misalignment between different data modalities. In this work, we propose DiffFusion, a novel framework designed to enhance robustness in challenging weather through diffusion-based restoration and adaptive cross-modal fusion. Our key insight is that diffusion models possess strong capabilities for denoising and generating data that can adapt to various weather conditions. Building on this, DiffFusion introduces Diffusion-IR restoring images degraded by weather effects and Point Cloud Restoration (PCR) compensating for corrupted LiDAR data using image object cues. To tackle misalignments between two modalities, we develop Bidirectional Adaptive Fusion and Alignment Module (BAFAM). It enables dynamic multi-modal fusion and bidirectional bird's-eye view (BEV) alignment to maintain consistent spatial correspondence. Extensive experiments on three public datasets show that DiffFusion achieves state-of-the-art robustness under adverse weather while preserving strong clean-data performance. Zero-shot results on the real-world DENSE dataset further validate its generalization. The implementation of our DiffFusion will be released as open-source.
♻ ☆ Markovian Scale Prediction: A New Era of Visual Autoregressive Generation
Visual AutoRegressive modeling (VAR) based on next-scale prediction has revitalized autoregressive visual generation. Although its full-context dependency, i.e., modeling all previous scales for next-scale prediction, facilitates more stable and comprehensive representation learning by leveraging complete information flow, the resulting computational inefficiency and substantial overhead severely hinder VAR's practicality and scalability. This motivates us to develop a new VAR model with better performance and efficiency without full-context dependency. To address this, we reformulate VAR as a non-full-context Markov process, proposing Markov-VAR. It is achieved via Markovian Scale Prediction: we treat each scale as a Markov state and introduce a sliding window that compresses certain previous scales into a compact history vector to compensate for historical information loss owing to non-full-context dependency. Integrating the history vector with the Markov state yields a representative dynamic state that evolves under a Markov process. Extensive experiments demonstrate that Markov-VAR is extremely simple yet highly effective: Compared to VAR on ImageNet, Markov-VAR reduces FID by 10.5% (256 $\times$ 256) and decreases peak memory consumption by 83.8% (1024 $\times$ 1024). We believe that Markov-VAR can serve as a foundation for future research on visual autoregressive generation and other downstream tasks.
♻ ☆ From Engineering Diagrams to Graphs: Digitizing P&IDs with Transformers
Digitizing engineering diagrams like Piping and Instrumentation Diagrams (P&IDs) plays a vital role in maintainability and operational efficiency of process and hydraulic systems. Previous methods typically decompose the task into separate steps such as symbol detection and line detection, which can limit their ability to capture the structure in these diagrams. In this work, a transformer-based approach leveraging the Relationformer that addresses this limitation by jointly extracting symbols and their interconnections from P&IDs is introduced. To evaluate our approach and compare it to a modular digitization approach, we present the first publicly accessible benchmark dataset for P&ID digitization, annotated with graph-level ground truth. Experimental results on real-world diagrams show that our method significantly outperforms the modular baseline, achieving over 25% improvement in edge detection accuracy. This research contributes a reproducible evaluation framework and demonstrates the effectiveness of transformer models for structural understanding of complex engineering diagrams. The dataset is available under https://zenodo.org/records/14803338.
comment: \c{opyright}2025 IEEE. Published in the conference proceedings of the 2025 IEEE 12th International Conference on Data Science and Advanced Analytics (DSAA)
♻ ☆ VAEER: Visual Attention-Inspired Emotion Elicitation Reasoning
Images shared online strongly influence emotions and public well-being. Understanding the emotions an image elicits is therefore vital for fostering healthier and more sustainable digital communities, especially during public crises. We study Visual Emotion Elicitation (VEE), predicting the set of emotions that an image evokes in viewers. We introduce VAEER, an interpretable multi-label VEE framework that combines attention-inspired cue extraction with knowledge-grounded reasoning. VAEER isolates salient visual foci and contextual signals, aligns them with structured affective knowledge, and performs per-emotion inference to yield transparent, emotion-specific rationales. Across three heterogeneous benchmarks, including social imagery and disaster-related photos, VAEER achieves state-of-the-art results with up to 19% per-emotion improvements and a 12.3% average gain over strong CNN and VLM baselines. Our findings highlight interpretable multi-label emotion elicitation as a scalable foundation for responsible visual media analysis and emotionally sustainable online ecosystems.
comment: Currently under review as conference paper
♻ ☆ Hierarchical Schedule Optimization for Fast and Robust Diffusion Model Sampling AAAI 2026
Diffusion probabilistic models have set a new standard for generative fidelity but are hindered by a slow iterative sampling process. A powerful training-free strategy to accelerate this process is Schedule Optimization, which aims to find an optimal distribution of timesteps for a fixed and small Number of Function Evaluations (NFE) to maximize sample quality. To this end, a successful schedule optimization method must adhere to four core principles: effectiveness, adaptivity, practical robustness, and computational efficiency. However, existing paradigms struggle to satisfy these principles simultaneously, motivating the need for a more advanced solution. To overcome these limitations, we propose the Hierarchical-Schedule-Optimizer (HSO), a novel and efficient bi-level optimization framework. HSO reframes the search for a globally optimal schedule into a more tractable problem by iteratively alternating between two synergistic levels: an upper-level global search for an optimal initialization strategy and a lower-level local optimization for schedule refinement. This process is guided by two key innovations: the Midpoint Error Proxy (MEP), a solver-agnostic and numerically stable objective for effective local optimization, and the Spacing-Penalized Fitness (SPF) function, which ensures practical robustness by penalizing pathologically close timesteps. Extensive experiments show that HSO sets a new state-of-the-art for training-free sampling in the extremely low-NFE regime. For instance, with an NFE of just 5, HSO achieves a remarkable FID of 11.94 on LAION-Aesthetics with Stable Diffusion v2.1. Crucially, this level of performance is attained not through costly retraining, but with a one-time optimization cost of less than 8 seconds, presenting a highly practical and efficient paradigm for diffusion model acceleration.
comment: Preprint, accepted to AAAI 2026
♻ ☆ Automated Building Heritage Assessment Using Street-Level Imagery
Registration of heritage values in buildings is important to safeguard heritage values that can be lost in renovation and energy efficiency projects. However, registering heritage values is a cumbersome process. Novel artificial intelligence tools may improve efficiency in identifying heritage values in buildings compared to costly and time-consuming traditional inventories. In this study, OpenAI's large language model GPT was used to detect various aspects of cultural heritage value in facade images. Using GPT derived data and building register data, machine learning models were trained to classify multi-family and non-residential buildings in Stockholm, Sweden. Validation against a heritage expert-created inventory shows a macro F1-score of 0.71 using a combination of register data and features retrieved from GPT, and a score of 0.60 using only GPT-derived data. The methods presented can contribute to higher-quality datasets and support decision making.
♻ ☆ Towards Practical Alzheimer's Disease Diagnosis: A Lightweight and Interpretable Spiking Neural Model
Early diagnosis of Alzheimer's Disease (AD), particularly at the mild cognitive impairment stage, is essential for timely intervention. However, this process faces significant barriers, including reliance on subjective assessments and the high cost of advanced imaging techniques. While deep learning offers automated solutions to improve diagnostic accuracy, its widespread adoption remains constrained due to high energy requirements and computational demands, particularly in resource-limited settings. Spiking neural networks (SNNs) provide a promising alternative, as their brain-inspired design is well-suited to model the sparse and event-driven patterns characteristic of neural degeneration in AD. These networks offer the potential for developing interpretable, energy-efficient diagnostic tools. Despite their advantages, existing SNNs often suffer from limited expressiveness and challenges in stable training, which reduce their effectiveness in handling complex medical tasks. To address these shortcomings, we introduce FasterSNN, a hybrid neural architecture that combines biologically inspired Leaky Integrate-and-Fire (LIF) neurons with region-adaptive convolution and multi-scale spiking attention mechanisms. This approach facilitates efficient, sparse processing of 3D MRI data while maintaining high diagnostic accuracy. Experimental results on benchmark datasets reveal that FasterSNN delivers competitive performance with significantly enhanced efficiency and training stability, highlighting its potential for practical application in AD screening. Our source code is available at https://github.com/wuchangw/FasterSNN.
comment: 35 pages, 8 figures
♻ ☆ Matérn Kernels for Tunable Implicit Surface Reconstruction ICLR'25
We propose to use the family of Matérn kernels for implicit surface reconstruction, building upon the recent success of kernel methods for 3D reconstruction of oriented point clouds. As we show from a theoretical and practical perspective, Matérn kernels have some appealing properties which make them particularly well suited for surface reconstruction -- outperforming state-of-the-art methods based on the arc-cosine kernel while being significantly easier to implement, faster to compute, and scalable. Being stationary, we demonstrate that Matérn kernels allow for tunable surface reconstruction in the same way as Fourier feature mappings help coordinate-based MLPs overcome spectral bias. Moreover, we theoretically analyze Matérn kernels' connection to SIREN networks as well as their relation to previously employed arc-cosine kernels. Finally, based on recently introduced Neural Kernel Fields, we present data-dependent Matérn kernels and conclude that especially the Laplace kernel (being part of the Matérn family) is extremely competitive, performing almost on par with state-of-the-art methods in the noise-free case while having a more than five times shorter training time.
comment: ICLR'25
♻ ☆ Live Avatar: Streaming Real-time Audio-Driven Avatar Generation with Infinite Length
Existing diffusion-based video generation methods are fundamentally constrained by sequential computation and long-horizon inconsistency, limiting their practical adoption in real-time, streaming audio-driven avatar synthesis. We present Live Avatar, an algorithm-system co-designed framework that enables efficient, high-fidelity, and infinite-length avatar generation using a 14-billion-parameter diffusion model. Our approach introduces Timestep-forcing Pipeline Parallelism (TPP), a distributed inference paradigm that pipelines denoising steps across multiple GPUs, effectively breaking the autoregressive bottleneck and ensuring stable, low-latency real-time streaming. To further enhance temporal consistency and mitigate identity drift and color artifacts, we propose the Rolling Sink Frame Mechanism (RSFM), which maintains sequence fidelity by dynamically recalibrating appearance using a cached reference image. Additionally, we leverage Self-Forcing Distribution Matching Distillation to facilitate causal, streamable adaptation of large-scale models without sacrificing visual quality. Live Avatar demonstrates state-of-the-art performance, reaching 20 FPS end-to-end generation on 5 H800 GPUs, and, to the best of our knowledge, is the first to achieve practical, real-time, high-fidelity avatar generation at this scale. Our work establishes a new paradigm for deploying advanced diffusion models in industrial long-form video synthesis applications.
♻ ☆ ViStoryBench: Comprehensive Benchmark Suite for Story Visualization
Story visualization aims to generate coherent image sequences that faithfully depict a narrative and align with character references. Despite progress in generative models, existing benchmarks are narrow in scope, often limited to short prompts, lacking character references, or single-image cases, and fail to capture real-world storytelling complexity. This hinders a nuanced understanding of model capabilities and limitations. We present \textbf{ViStoryBench}, a comprehensive benchmark designed to evaluate story visualization models across diverse narrative structures, visual styles, and character settings. The benchmark features richly annotated multi-shot scripts derived from curated stories spanning literature, film, and folklore. Large language models assist in story summarization and script generation, with all outputs human-verified to ensure coherence and fidelity. Character references are carefully curated to maintain intra-story consistency across varying artistic styles. To enable thorough evaluation, ViStoryBench introduces a set of automated metrics that assess character consistency, style similarity, prompt alignment, aesthetic quality, and generation artifacts such as copy-paste behavior. These metrics are validated through human studies, and used to benchmark a broad range of open-source and commercial models. ViStoryBench offers a multi-dimensional evaluation suite that facilitates systematic analysis and fosters future progress in visual storytelling.
comment: 33 Pages, Project Page: https://vistorybench.github.io/, Code: https://github.com/vistorybench/vistorybench
♻ ☆ Sparse-Tuning: Adapting Vision Transformers with Efficient Fine-tuning and Inference
Parameter-efficient fine-tuning (PEFT) has emerged as a popular solution for adapting pre-trained Vision Transformer (ViT) models to downstream applications by updating only a small subset of parameters. While current PEFT methods have achieved fine-tuning efficiency, they overlook the efficiency of computation and GPU memory during inference, falling short of practical requirements. To address this limitation, we propose Sparse-Tuning, an efficient and effective framework that leverages popular token sparsification (TS) techniques to reduce information redundancy in images and videos, thereby significantly improving computational and memory efficiency. However, TS often compromises performance due to inevitable information loss. To address this limitation, we further introduce Dense Adapters (DA) to compensate for the information losses incurred by token sparsification. DA integrates comprehensive token information from shallow layers into the retained tokens of deeper layers, ensuring minimal performance degradation. Through the integration of TS techniques and DA, Sparse-Tuning achieves a significant reduction in computation and memory overhead while maintaining performance. Empirical results on VTAB-1K, three image datasets, and two video datasets show that Sparse-Tuning reduces GFLOPs to 66\% of the original ViT-B while achieving state-of-the-art performance compared to full fine-tuning and other PEFT baselines.
♻ ☆ Scaling Laws for Black box Adversarial Attacks
Adversarial examples exhibit cross-model transferability, enabling threatening black-box attacks on commercial models. Model ensembling, which attacks multiple surrogate models, is a known strategy to improve this transferability. However, prior studies typically use small, fixed ensembles, which leaves open an intriguing question of whether scaling the number of surrogate models can further improve black-box attacks. In this work, we conduct the first large-scale empirical study of this question. We show that by resolving gradient conflict with advanced optimizers, we discover a robust and universal log-linear scaling law through both theoretical analysis and empirical evaluations: the Attack Success Rate (ASR) scales linearly with the logarithm of the ensemble size $T$. We rigorously verify this law across standard classifiers, SOTA defenses, and MLLMs, and find that scaling distills robust, semantic features of the target class. Consequently, we apply this fundamental insight to benchmark SOTA MLLMs. This reveals both the attack's devastating power and a clear robustness hierarchy: we achieve 80\%+ transfer attack success rate on proprietary models like GPT-4o, while also highlighting the exceptional resilience of Claude-3.5-Sonnet. Our findings urge a shift in focus for robustness evaluation: from designing intricate algorithms on small ensembles to understanding the principled and powerful threat of scaling.
♻ ☆ Stylized Synthetic Augmentation further improves Corruption Robustness
This paper proposes a training data augmentation pipeline that combines synthetic image data with neural style transfer in order to address the vulnerability of deep vision models to common corruptions. We show that although applying style transfer on synthetic images degrades their quality with respect to the common FID metric, these images are surprisingly beneficial for model training. We conduct a systematic empirical analysis of the effects of both augmentations and their key hyperparameters on the performance of image classifiers. Our results demonstrate that stylization and synthetic data complement each other well and can be combined with popular rule-based data augmentation techniques such as TrivialAugment, while not working with others. Our method achieves state-of-the-art corruption robustness on several small-scale image classification benchmarks, reaching 93.54%, 74.9% and 50.86% robust accuracy on CIFAR-10-C, CIFAR-100-C and TinyImageNet-C, respectively
comment: Accepted at VISAPP 2026 conference
♻ ☆ SlumpGuard: An AI-Powered Real-Time System for Automated Concrete Slump Prediction via Video Analysis
Concrete workability is essential for construction quality, with the slump test being the most widely used on-site method for its assessment. However, traditional slump testing is manual, time-consuming, and highly operator-dependent, making it unsuitable for continuous or real-time monitoring during placement. To address these limitations, we present SlumpGuard, an AI-powered vision system that analyzes the natural discharge flow from a mixer-truck chute using a single fixed camera. The system performs automatic chute detection, pouring-event identification, and video-based slump classification, enabling quality monitoring without sensors, hardware installation, or manual intervention. We introduce the system design, construct a site-replicated dataset of over 6,000 video clips, and report extensive evaluations demonstrating reliable chute localization, accurate pouring detection, and robust slump prediction under diverse field conditions. An expert study further reveals significant disagreement in human visual estimates, highlighting the need for automated assessment.
comment: Our project page: https://winston1214.github.io/SlumpGuard/
♻ ☆ Tuning for Two Adversaries: Enhancing the Robustness Against Transfer and Query-Based Attacks using Hyperparameter Tuning AAAI
In this paper, we present the first detailed analysis of how training hyperparameters -- such as learning rate, weight decay, momentum, and batch size -- influence robustness against both transfer-based and query-based attacks. Supported by theory and experiments, our study spans a variety of practical deployment settings, including centralized training, ensemble learning, and distributed training. We uncover a striking dichotomy: for transfer-based attacks, decreasing the learning rate significantly enhances robustness by up to $64\%$. In contrast, for query-based attacks, increasing the learning rate consistently leads to improved robustness by up to $28\%$ across various settings and data distributions. Leveraging these findings, we explore -- for the first time -- the training hyperparameter space to jointly enhance robustness against both transfer-based and query-based attacks. Our results reveal that distributed models benefit the most from hyperparameter tuning, achieving a remarkable tradeoff by simultaneously mitigating both attack types more effectively than other training setups.
comment: To appear in the Proceedings of the AAAI Conference on Artificial Intelligence (AAAI) 2026
♻ ☆ Unified Semantic Transformer for 3D Scene Understanding
Holistic 3D scene understanding involves capturing and parsing unstructured 3D environments. Due to the inherent complexity of the real world, existing models have predominantly been developed and limited to be task-specific. We introduce UNITE, a Unified Semantic Transformer for 3D scene understanding, a novel feed-forward neural network that unifies a diverse set of 3D semantic tasks within a single model. Our model operates on unseen scenes in a fully end-to-end manner and only takes a few seconds to infer the full 3D semantic geometry. Our approach is capable of directly predicting multiple semantic attributes, including 3D scene segmentation, instance embeddings, open-vocabulary features, as well as affordance and articulations, solely from RGB images. The method is trained using a combination of 2D distillation, heavily relying on self-supervision and leverages novel multi-view losses designed to ensure 3D view consistency. We demonstrate that UNITE achieves state-of-the-art performance on several different semantic tasks and even outperforms task-specific models, in many cases, surpassing methods that operate on ground truth 3D geometry. See the project website at unite-page.github.io
comment: Project page: https://unite-page.github.io/
Machine Learning 158
☆ Generative Adversarial Reasoner: Enhancing LLM Reasoning with Adversarial Reinforcement Learning
Large language models (LLMs) with explicit reasoning capabilities excel at mathematical reasoning yet still commit process errors, such as incorrect calculations, brittle logic, and superficially plausible but invalid steps. In this paper, we introduce Generative Adversarial Reasoner, an on-policy joint training framework designed to enhance reasoning by co-evolving an LLM reasoner and an LLM-based discriminator through adversarial reinforcement learning. A compute-efficient review schedule partitions each reasoning chain into logically complete slices of comparable length, and the discriminator evaluates each slice's soundness with concise, structured justifications. Learning couples complementary signals: the LLM reasoner is rewarded for logically consistent steps that yield correct answers, while the discriminator earns rewards for correctly detecting errors or distinguishing traces in the reasoning process. This produces dense, well-calibrated, on-policy step-level rewards that supplement sparse exact-match signals, improving credit assignment, increasing sample efficiency, and enhancing overall reasoning quality of LLMs. Across various mathematical benchmarks, the method delivers consistent gains over strong baselines with standard RL post-training. Specifically, on AIME24, we improve DeepSeek-R1-Distill-Qwen-7B from 54.0 to 61.3 (+7.3) and DeepSeek-R1-Distill-Llama-8B from 43.7 to 53.7 (+10.0). The modular discriminator also enables flexible reward shaping for objectives such as teacher distillation, preference alignment, and mathematical proof-based reasoning.
☆ Exploration v.s. Exploitation: Rethinking RLVR through Clipping, Entropy, and Spurious Reward
This paper examines the exploration-exploitation trade-off in reinforcement learning with verifiable rewards (RLVR), a framework for improving the reasoning of Large Language Models (LLMs). Recent studies suggest that RLVR can elicit strong mathematical reasoning in LLMs through two seemingly paradoxical mechanisms: spurious rewards, which suppress exploitation by rewarding outcomes unrelated to the ground truth, and entropy minimization, which suppresses exploration by pushing the model toward more confident and deterministic outputs, highlighting a puzzling dynamic: both discouraging exploitation and discouraging exploration improve reasoning performance, yet the underlying principles that reconcile these effects remain poorly understood. We focus on two fundamental questions: (i) how policy entropy relates to performance, and (ii) whether spurious rewards yield gains, potentially through the interplay of clipping bias and model contamination. Our results show that clipping bias under spurious rewards reduces policy entropy, leading to more confident and deterministic outputs, while entropy minimization alone is insufficient for improvement. We further propose a reward-misalignment model explaining why spurious rewards can enhance performance beyond contaminated settings. Our findings clarify the mechanisms behind spurious-reward benefits and provide principles for more effective RLVR training.
comment: 35 pages
☆ Posterior Behavioral Cloning: Pretraining BC Policies for Efficient RL Finetuning
Standard practice across domains from robotics to language is to first pretrain a policy on a large-scale demonstration dataset, and then finetune this policy, typically with reinforcement learning (RL), in order to improve performance on deployment domains. This finetuning step has proved critical in achieving human or super-human performance, yet while much attention has been given to developing more effective finetuning algorithms, little attention has been given to ensuring the pretrained policy is an effective initialization for RL finetuning. In this work we seek to understand how the pretrained policy affects finetuning performance, and how to pretrain policies in order to ensure they are effective initializations for finetuning. We first show theoretically that standard behavioral cloning (BC) -- which trains a policy to directly match the actions played by the demonstrator -- can fail to ensure coverage over the demonstrator's actions, a minimal condition necessary for effective RL finetuning. We then show that if, instead of exactly fitting the observed demonstrations, we train a policy to model the posterior distribution of the demonstrator's behavior given the demonstration dataset, we do obtain a policy that ensures coverage over the demonstrator's actions, enabling more effective finetuning. Furthermore, this policy -- which we refer to as the posterior behavioral cloning (PostBC) policy -- achieves this while ensuring pretrained performance is no worse than that of the BC policy. We then show that PostBC is practically implementable with modern generative models in robotic control domains -- relying only on standard supervised learning -- and leads to significantly improved RL finetuning performance on both realistic robotic control benchmarks and real-world robotic manipulation tasks, as compared to standard behavioral cloning.
☆ SFTok: Bridging the Performance Gap in Discrete Tokenizers
Recent advances in multimodal models highlight the pivotal role of image tokenization in high-resolution image generation. By compressing images into compact latent representations, tokenizers enable generative models to operate in lower-dimensional spaces, thereby improving computational efficiency and reducing complexity. Discrete tokenizers naturally align with the autoregressive paradigm but still lag behind continuous ones, limiting their adoption in multimodal systems. To address this, we propose \textbf{SFTok}, a discrete tokenizer that incorporates a multi-step iterative mechanism for precise reconstruction. By integrating \textbf{self-forcing guided visual reconstruction} and \textbf{debias-and-fitting training strategy}, SFTok resolves the training-inference inconsistency in multi-step process, significantly enhancing image reconstruction quality. At a high compression rate of only 64 tokens per image, SFTok achieves state-of-the-art reconstruction quality on ImageNet (rFID = 1.21) and demonstrates exceptional performance in class-to-image generation tasks (gFID = 2.29).
comment: Under review. Code is available at https://github.com/Neur-IO/SFTok
☆ In-Context Algebra
We investigate the mechanisms that arise when transformers are trained to solve arithmetic on sequences where tokens are variables whose meaning is determined only through their interactions. While prior work has found that transformers develop geometric embeddings that mirror algebraic structure, those previous findings emerge from settings where arithmetic-valued tokens have fixed meanings. We devise a new task in which the assignment of symbols to specific algebraic group elements varies from one sequence to another. Despite this challenging setup, transformers achieve near-perfect accuracy on the task and even generalize to unseen algebraic groups. We develop targeted data distributions to create causal tests of a set of hypothesized mechanisms, and we isolate three mechanisms models consistently learn: commutative copying where a dedicated head copies answers, identity element recognition that distinguishes identity-containing facts, and closure-based cancellation that tracks group membership to constrain valid answers. Complementary to the geometric representations found in fixed-symbol settings, our findings show that models develop symbolic reasoning mechanisms when trained to reason in-context with variables whose meanings are not fixed.
comment: 28 pages, 18 figures. Code and data at https://algebra.baulab.info
☆ Impacts of Racial Bias in Historical Training Data for News AI
AI technologies have rapidly moved into business and research applications that involve large text corpora, including computational journalism research and newsroom settings. These models, trained on extant data from various sources, can be conceptualized as historical artifacts that encode decades-old attitudes and stereotypes. This paper investigates one such example trained on the broadly-used New York Times Annotated Corpus to create a multi-label classifier. Our use in research settings surfaced the concerning "blacks" thematic topic label. Through quantitative and qualitative means we investigate this label's use in the training corpus, what concepts it might be encoding in the trained classifier, and how those concepts impact our model use. Via the application of explainable AI methods, we find that the "blacks" label operates partially as a general "racism detector" across some minoritized groups. However, it performs poorly against expectations on modern examples such as COVID-19 era anti-Asian hate stories, and reporting on the Black Lives Matter movement. This case study of interrogating embedded biases in a model reveals how similar applications in newsroom settings can lead to unexpected outputs that could impact a wide variety of potential uses of any large language model-story discovery, audience targeting, summarization, etc. The fundamental tension this exposes for newsrooms is how to adopt AI-enabled workflow tools while reducing the risk of reproducing historical biases in news coverage.
☆ LinkedOut: Linking World Knowledge Representation Out of Video LLM for Next-Generation Video Recommendation
Video Large Language Models (VLLMs) unlock world-knowledge-aware video understanding through pretraining on internet-scale data and have already shown promise on tasks such as movie analysis and video question answering. However, deploying VLLMs for downstream tasks such as video recommendation remains challenging, since real systems require multi-video inputs, lightweight backbones, low-latency sequential inference, and rapid response. In practice, (1) decode-only generation yields high latency for sequential inference, (2) typical interfaces do not support multi-video inputs, and (3) constraining outputs to language discards fine-grained visual details that matter for downstream vision tasks. We argue that these limitations stem from the absence of a representation that preserves pixel-level detail while leveraging world knowledge. We present LinkedOut, a representation that extracts VLLM world knowledge directly from video to enable fast inference, supports multi-video histories, and removes the language bottleneck. LinkedOut extracts semantically grounded, knowledge-aware tokens from raw frames using VLLMs, guided by promptable queries and optional auxiliary modalities. We introduce a cross-layer knowledge fusion MoE that selects the appropriate level of abstraction from the rich VLLM features, enabling personalized, interpretable, and low-latency recommendation. To our knowledge, LinkedOut is the first VLLM-based video recommendation method that operates on raw frames without handcrafted labels, achieving state-of-the-art results on standard benchmarks. Interpretability studies and ablations confirm the benefits of layer diversity and layer-wise fusion, pointing to a practical path that fully leverages VLLM world-knowledge priors and visual reasoning for downstream vision tasks such as recommendation.
☆ Cartesian-nj: Extending e3nn to Irreducible Cartesian Tensor Product and Contracion
Equivariant atomistic machine learning models have brought substantial gains in both extrapolation capability and predictive accuracy. Depending on the basis of the space, two distinct types of irreducible representations are utilized. From architectures built upon spherical tensors (STs) to more recent formulations employing irreducible Cartesian tensors (ICTs), STs have remained dominant owing to their compactness, elegance, and theoretical completeness. Nevertheless, questions have persisted regarding whether ST constructions are the only viable design principle, motivating continued development of Cartesian networks. In this work, we introduce the Cartesian-3j and Cartesian-nj symbol, which serve as direct analogues of the Wigner-3j and Wigner-nj symbol defined for tensor coupling. These coefficients enable the combination of any two ICTs into a new ICT. Building on this foundation, we extend e3nn to support irreducible Cartesian tensor product, and we release the resulting Python package as cartnn. Within this framework, we implement Cartesian counterparts of MACE, NequIP, and Allegro, allowing the first systematic comparison of Cartesian and spherical models to assess whether Cartesian formulations may offer advantages under specific conditions. Using TACE as a representative example, we further examine whether architectures constructed from irreducible Cartesian tensor product and contraction(ICTP and ICTC) are conceptually well-founded in Cartesian space and whether opportunities remain for improving their design.
☆ PolaRiS: Scalable Real-to-Sim Evaluations for Generalist Robot Policies
A significant challenge for robot learning research is our ability to accurately measure and compare the performance of robot policies. Benchmarking in robotics is historically challenging due to the stochasticity, reproducibility, and time-consuming nature of real-world rollouts. This challenge is exacerbated for recent generalist policies, which has to be evaluated across a wide variety of scenes and tasks. Evaluation in simulation offers a scalable complement to real world evaluations, but the visual and physical domain gap between existing simulation benchmarks and the real world has made them an unreliable signal for policy improvement. Furthermore, building realistic and diverse simulated environments has traditionally required significant human effort and expertise. To bridge the gap, we introduce Policy Evaluation and Environment Reconstruction in Simulation (PolaRiS), a scalable real-to-sim framework for high-fidelity simulated robot evaluation. PolaRiS utilizes neural reconstruction methods to turn short video scans of real-world scenes into interactive simulation environments. Additionally, we develop a simple simulation data co-training recipe that bridges remaining real-to-sim gaps and enables zero-shot evaluation in unseen simulation environments. Through extensive paired evaluations between simulation and the real world, we demonstrate that PolaRiS evaluations provide a much stronger correlation to real world generalist policy performance than existing simulated benchmarks. Its simplicity also enables rapid creation of diverse simulated environments. As such, this work takes a step towards distributed and democratized evaluation for the next generation of robotic foundation models.
comment: Website: https://polaris-evals.github.io/
☆ Training Together, Diagnosing Better: Federated Learning for Collagen VI-Related Dystrophies
The application of Machine Learning (ML) to the diagnosis of rare diseases, such as collagen VI-related dystrophies (COL6-RD), is fundamentally limited by the scarcity and fragmentation of available data. Attempts to expand sampling across hospitals, institutions, or countries with differing regulations face severe privacy, regulatory, and logistical obstacles that are often difficult to overcome. The Federated Learning (FL) provides a promising solution by enabling collaborative model training across decentralized datasets while keeping patient data local and private. Here, we report a novel global FL initiative using the Sherpa.ai FL platform, which leverages FL across distributed datasets in two international organizations for the diagnosis of COL6-RD, using collagen VI immunofluorescence microscopy images from patient-derived fibroblast cultures. Our solution resulted in an ML model capable of classifying collagen VI patient images into the three primary pathogenic mechanism groups associated with COL6-RD: exon skipping, glycine substitution, and pseudoexon insertion. This new approach achieved an F1-score of 0.82, outperforming single-organization models (0.57-0.75). These results demonstrate that FL substantially improves diagnostic utility and generalizability compared to isolated institutional models. Beyond enabling more accurate diagnosis, we anticipate that this approach will support the interpretation of variants of uncertain significance and guide the prioritization of sequencing strategies to identify novel pathogenic variants.
☆ Learning Confidence Ellipsoids and Applications to Robust Subspace Recovery
We study the problem of finding confidence ellipsoids for an arbitrary distribution in high dimensions. Given samples from a distribution $D$ and a confidence parameter $α$, the goal is to find the smallest volume ellipsoid $E$ which has probability mass $\Pr_{D}[E] \ge 1-α$. Ellipsoids are a highly expressive class of confidence sets as they can capture correlations in the distribution, and can approximate any convex set. This problem has been studied in many different communities. In statistics, this is the classic minimum volume estimator introduced by Rousseeuw as a robust non-parametric estimator of location and scatter. However in high dimensions, it becomes NP-hard to obtain any non-trivial approximation factor in volume when the condition number $β$ of the ellipsoid (ratio of the largest to the smallest axis length) goes to $\infty$. This motivates the focus of our paper: can we efficiently find confidence ellipsoids with volume approximation guarantees when compared to ellipsoids of bounded condition number $β$? Our main result is a polynomial time algorithm that finds an ellipsoid $E$ whose volume is within a $O(β^{γd})$ multiplicative factor of the volume of best $β$-conditioned ellipsoid while covering at least $1-O(α/γ)$ probability mass for any $γ< α$. We complement this with a computational hardness result that shows that such a dependence seems necessary up to constants in the exponent. The algorithm and analysis uses the rich primal-dual structure of the minimum volume enclosing ellipsoid and the geometric Brascamp-Lieb inequality. As a consequence, we obtain the first polynomial time algorithm with approximation guarantees on worst-case instances of the robust subspace recovery problem.
☆ Pixel Seal: Adversarial-only training for invisible image and video watermarking
Invisible watermarking is essential for tracing the provenance of digital content. However, training state-of-the-art models remains notoriously difficult, with current approaches often struggling to balance robustness against true imperceptibility. This work introduces Pixel Seal, which sets a new state-of-the-art for image and video watermarking. We first identify three fundamental issues of existing methods: (i) the reliance on proxy perceptual losses such as MSE and LPIPS that fail to mimic human perception and result in visible watermark artifacts; (ii) the optimization instability caused by conflicting objectives, which necessitates exhaustive hyperparameter tuning; and (iii) reduced robustness and imperceptibility of watermarks when scaling models to high-resolution images and videos. To overcome these issues, we first propose an adversarial-only training paradigm that eliminates unreliable pixel-wise imperceptibility losses. Second, we introduce a three-stage training schedule that stabilizes convergence by decoupling robustness and imperceptibility. Third, we address the resolution gap via high-resolution adaptation, employing JND-based attenuation and training-time inference simulation to eliminate upscaling artifacts. We thoroughly evaluate the robustness and imperceptibility of Pixel Seal on different image types and across a wide range of transformations, and show clear improvements over the state-of-the-art. We finally demonstrate that the model efficiently adapts to video via temporal watermark pooling, positioning Pixel Seal as a practical and scalable solution for reliable provenance in real-world image and video settings.
comment: Code and model available at https://github.com/facebookresearch/videoseal
☆ On the Universal Representation Property of Spiking Neural Networks
Inspired by biology, spiking neural networks (SNNs) process information via discrete spikes over time, offering an energy-efficient alternative to the classical computing paradigm and classical artificial neural networks (ANNs). In this work, we analyze the representational power of SNNs by viewing them as sequence-to-sequence processors of spikes, i.e., systems that transform a stream of input spikes into a stream of output spikes. We establish the universal representation property for a natural class of spike train functions. Our results are fully quantitative, constructive, and near-optimal in the number of required weights and neurons. The analysis reveals that SNNs are particularly well-suited to represent functions with few inputs, low temporal complexity, or compositions of such functions. The latter is of particular interest, as it indicates that deep SNNs can efficiently capture composite functions via a modular design. As an application of our results, we discuss spike train classification. Overall, these results contribute to a rigorous foundation for understanding the capabilities and limitations of spike-based neuromorphic systems.
comment: 54 pages, 8 figures
☆ Sequencing to Mitigate Catastrophic Forgetting in Continual Learning
To cope with real-world dynamics, an intelligent system needs to incrementally acquire, update, and exploit knowledge throughout its lifetime. This ability, known as Continual learning, provides a foundation for AI systems to develop themselves adaptively. Catastrophic forgetting is a major challenge to the progress of Continual Learning approaches, where learning a new task usually results in a dramatic performance drop on previously learned ones. Many approaches have emerged to counteract the impact of CF. Most of the proposed approaches can be categorized into five classes: replay-based, regularization-based, optimization-based, representation-based, and architecture-based. In this work, we approach the problem from a different angle, specifically by considering the optimal sequencing of tasks as they are presented to the model. We investigate the role of task sequencing in mitigating CF and propose a method for determining the optimal task order. The proposed method leverages zero-shot scoring algorithms inspired by neural architecture search (NAS). Results demonstrate that intelligent task sequencing can substantially reduce CF. Moreover, when combined with traditional continual learning strategies, sequencing offers enhanced performance and robustness against forgetting. Additionally, the presented approaches can find applications in other fields, such as curriculum learning.
comment: The Manuscript is submitted for review under IEEE Transactions on Artificial intelligence
☆ Semi-Supervised Online Learning on the Edge by Transforming Knowledge from Teacher Models
Edge machine learning (Edge ML) enables training ML models using the vast data distributed across network edges. However, many existing approaches assume static models trained centrally and then deployed, making them ineffective against unseen data. To address this, Online Edge ML allows models to be trained directly on edge devices and updated continuously with new data. This paper explores a key challenge of Online Edge ML: "How to determine labels for truly future, unseen data points". We propose Knowledge Transformation (KT), a hybrid method combining Knowledge Distillation, Active Learning, and causal reasoning. In short, KT acts as the oracle in active learning by transforming knowledge from a teacher model to generate pseudo-labels for training a student model. To verify the validity of the method, we conducted simulation experiments with two setups: (1) using a less stable teacher model and (2) a relatively more stable teacher model. Results indicate that when a stable teacher model is given, the student model can eventually reach its expected maximum performance. KT is potentially beneficial for scenarios that meet the following circumstances: (1) when the teacher's task is generic, which means existing pre-trained models might be adequate for its task, so there will be no need to train the teacher model from scratch; and/or (2) when the label for the student's task is difficult or expensive to acquire.
☆ ReinforceGen: Hybrid Skill Policies with Automated Data Generation and Reinforcement Learning
Long-horizon manipulation has been a long-standing challenge in the robotics community. We propose ReinforceGen, a system that combines task decomposition, data generation, imitation learning, and motion planning to form an initial solution, and improves each component through reinforcement-learning-based fine-tuning. ReinforceGen first segments the task into multiple localized skills, which are connected through motion planning. The skills and motion planning targets are trained with imitation learning on a dataset generated from 10 human demonstrations, and then fine-tuned through online adaptation and reinforcement learning. When benchmarked on the Robosuite dataset, ReinforceGen reaches 80% success rate on all tasks with visuomotor controls in the highest reset range setting. Additional ablation studies show that our fine-tuning approaches contributes to an 89% average performance increase. More results and videos available in https://reinforcegen.github.io/
☆ Meta-RL Induces Exploration in Language Agents
Reinforcement learning (RL) has enabled the training of large language model (LLM) agents to interact with the environment and to solve multi-turn long-horizon tasks. However, the RL-trained agents often struggle in tasks that require active exploration and fail to efficiently adapt from trial-and-error experiences. In this paper, we present LaMer, a general Meta-RL framework that enables LLM agents to actively explore and learn from the environment feedback at test time. LaMer consists of two key components: (i) a cross-episode training framework to encourage exploration and long-term rewards optimization; and (ii) in-context policy adaptation via reflection, allowing the agent to adapt their policy from task feedback signal without gradient update. Experiments across diverse environments show that LaMer significantly improves performance over RL baselines, with 11%, 14%, and 19% performance gains on Sokoban, MineSweeper and Webshop, respectively. Moreover, LaMer also demonstrates better generalization to more challenging or previously unseen tasks compared to the RL-trained agents. Overall, our results demonstrate that Meta-RL provides a principled approach to induce exploration in language agents, enabling more robust adaptation to novel environments through learned exploration strategies.
☆ Tiny Recursive Control: Iterative Reasoning for Efficient Optimal Control
Neural network controllers increasingly demand millions of parameters, and language model approaches push into the billions. For embedded aerospace systems with strict power and latency constraints, this scaling is prohibitive. We present Tiny Recursive Control (TRC), a neural architecture based on a counterintuitive principle: capacity can emerge from iteration depth rather than parameter count. TRC applies compact networks (approximately 1.5M parameters) repeatedly through a two-level hierarchical latent structure, refining control sequences by simulating trajectories and correcting based on tracking error. Because the same weights process every refinement step, adding iterations increases computation without increasing memory. We evaluate TRC on nonlinear control problems including oscillator stabilization and powered descent with fuel constraints. Across these domains, TRC achieves near-optimal control costs while requiring only millisecond-scale inference on GPU and under 10~MB memory, two orders of magnitude smaller than language model baselines. These results demonstrate that recursive reasoning, previously confined to discrete tasks, transfers effectively to continuous control synthesis.
☆ MEPIC: Memory Efficient Position Independent Caching for LLM Serving
Modern LLM applications such as deep-research assistants, coding agents, and Retrieval-Augmented Generation (RAG) systems, repeatedly process long prompt histories containing shared document or code chunks, creating significant pressure on the Key Value (KV) cache, which must operate within limited memory while sustaining high throughput and low latency. Prefix caching partially alleviates some of these costs by reusing KV cache for previously processed tokens, but limited by strict prefix matching. Position-independent caching (PIC) enables chunk-level reuse at arbitrary positions, but requires selective recomputation and positional-encoding (PE) adjustments. However, because these operations vary across queries, KV for the same chunk diverges across requests. Moreover, without page alignment, chunk KV layouts diverge in memory, preventing page sharing. These issues result in only modest HBM savings even when many requests reuse the same content. We present MEPIC, a memory-efficient PIC system that enables chunk KV reuse across positions, requests, and batches. MEPIC aligns chunk KV to paged storage, shifts recomputation from token- to block-level so only the first block is request-specific, removes positional encodings via Rotary Position Embedding (RoPE) fusion in the attention kernel, and makes remaining blocks fully shareable. These techniques eliminate most duplicate chunk KV in HBM, reducing usage by up to 2x over state-of-the-art PIC at comparable latency and accuracy, and up to 5x for long prompts, without any model changes.
☆ Coordinated Anti-Jamming Resilience in Swarm Networks via Multi-Agent Reinforcement Learning
Reactive jammers pose a severe security threat to robotic-swarm networks by selectively disrupting inter-agent communications and undermining formation integrity and mission success. Conventional countermeasures such as fixed power control or static channel hopping are largely ineffective against such adaptive adversaries. This paper presents a multi-agent reinforcement learning (MARL) framework based on the QMIX algorithm to improve the resilience of swarm communications under reactive jamming. We consider a network of multiple transmitter-receiver pairs sharing channels while a reactive jammer with Markovian threshold dynamics senses aggregate power and reacts accordingly. Each agent jointly selects transmit frequency (channel) and power, and QMIX learns a centralized but factorizable action-value function that enables coordinated yet decentralized execution. We benchmark QMIX against a genie-aided optimal policy in a no-channel-reuse setting, and against local Upper Confidence Bound (UCB) and a stateless reactive policy in a more general fading regime with channel reuse enabled. Simulation results show that QMIX rapidly converges to cooperative policies that nearly match the genie-aided bound, while achieving higher throughput and lower jamming incidence than the baselines, thereby demonstrating MARL's effectiveness for securing autonomous swarms in contested environments.
☆ Few-Shot Specific Emitter Identification via Integrated Complex Variational Mode Decomposition and Spatial Attention Transfer
Specific emitter identification (SEI) utilizes passive hardware characteristics to authenticate transmitters, providing a robust physical-layer security solution. However, most deep-learning-based methods rely on extensive data or require prior information, which poses challenges in real-world scenarios with limited labeled data. We propose an integrated complex variational mode decomposition algorithm that decomposes and reconstructs complex-valued signals to approximate the original transmitted signals, thereby enabling more accurate feature extraction. We further utilize a temporal convolutional network to effectively model the sequential signal characteristics, and introduce a spatial attention mechanism to adaptively weight informative signal segments, significantly enhancing identification performance. Additionally, the branch network allows leveraging pre-trained weights from other data while reducing the need for auxiliary datasets. Ablation experiments on the simulated data demonstrate the effectiveness of each component of the model. An accuracy comparison on a public dataset reveals that our method achieves 96% accuracy using only 10 symbols without requiring any prior knowledge.
comment: 14 pages, 12 Figures, 5 Table
☆ Non-Linear Strong Data-Processing for Quantum Hockey-Stick Divergences
Data-processing is a desired property of classical and quantum divergences and information measures. In information theory, the contraction coefficient measures how much the distinguishability of quantum states decreases when they are transmitted through a quantum channel, establishing linear strong data-processing inequalities (SDPI). However, these linear SDPI are not always tight and can be improved in most of the cases. In this work, we establish non-linear SDPI for quantum hockey-stick divergence for noisy channels that satisfy a certain noise criterion. We also note that our results improve upon existing linear SDPI for quantum hockey-stick divergences and also non-linear SDPI for classical hockey-stick divergence. We define $F_γ$ curves generalizing Dobrushin curves for the quantum setting while characterizing SDPI for the sequential composition of heterogeneous channels. In addition, we derive reverse-Pinsker type inequalities for $f$-divergences with additional constraints on hockey-stick divergences. We show that these non-linear SDPI can establish tighter finite mixing times that cannot be achieved through linear SDPI. Furthermore, we find applications of these in establishing stronger privacy guarantees for the composition of sequential private quantum channels when privacy is quantified by quantum local differential privacy.
☆ On The Hidden Biases of Flow Matching Samplers
We study the implicit bias of flow matching (FM) samplers via the lens of empirical flow matching. Although population FM may produce gradient-field velocities resembling optimal transport (OT), we show that the empirical FM minimizer is almost never a gradient field, even when each conditional flow is. Consequently, empirical FM is intrinsically energetically suboptimal. In view of this, we analyze the kinetic energy of generated samples. With Gaussian sources, both instantaneous and integrated kinetic energies exhibit exponential concentration, while heavy-tailed sources lead to polynomial tails. These behaviors are governed primarily by the choice of source distribution rather than the data. Overall, these notes provide a concise mathematical account of the structural and energetic biases arising in empirical FM.
comment: 20 pages
☆ Pattern recognition in complex systems via vector-field representations of spatio-temporal data
A complex system comprises multiple interacting entities whose interdependencies form a unified whole, exhibiting emergent behaviours not present in individual components. Examples include the human brain, living cells, soft matter, Earth's climate, ecosystems, and the economy. These systems exhibit high-dimensional, non-linear dynamics, making their modelling, classification, and prediction particularly challenging. Advances in information technology have enabled data-driven approaches to studying such systems. However, the sheer volume and complexity of spatio-temporal data often hinder traditional methods like dimensionality reduction, phase-space reconstruction, and attractor characterisation. This paper introduces a geometric framework for analysing spatio-temporal data from complex systems, grounded in the theory of vector fields over discrete measure spaces. We propose a two-parameter family of metrics suitable for data analysis and machine learning applications. The framework supports time-dependent images, image gradients, and real- or vector-valued functions defined on graphs and simplicial complexes. We validate our approach using data from numerical simulations of biological and physical systems on flat and curved domains. Our results show that the proposed metrics, combined with multidimensional scaling, effectively address key analytical challenges. They enable dimensionality reduction, mode decomposition, phase-space reconstruction, and attractor characterisation. Our findings offer a robust pathway for understanding complex dynamical systems, especially in contexts where traditional modelling is impractical but abundant experimental data are available.
comment: 24 pages, 10 figures
☆ NRGPT: An Energy-based Alternative for GPT
Generative Pre-trained Transformer (GPT) architectures are the most popular design for language modeling. Energy-based modeling is a different paradigm that views inference as a dynamical process operating on an energy landscape. We propose a minimal modification of the GPT setting to unify it with the EBM framework. The inference step of our model, which we call eNeRgy-GPT (NRGPT), is conceptualized as an exploration of the tokens on the energy landscape. We prove, and verify empirically, that under certain circumstances this exploration becomes gradient descent, although they don't necessarily lead to the best performing models. We demonstrate that our model performs well for simple language (Shakespeare dataset), algebraic ListOPS tasks, and richer settings such as OpenWebText language modeling. We also observe that our models may be more resistant to overfitting, doing so only during very long training.
☆ Machine Learning Algorithms: Detection Official Hajj and Umrah Travel Agency Based on Text and Metadata Analysis
The rapid digitalization of Hajj and Umrah services in Indonesia has significantly facilitated pilgrims but has concurrently opened avenues for digital fraud through counterfeit mobile applications. These fraudulent applications not only inflict financial losses but also pose severe privacy risks by harvesting sensitive personal data. This research aims to address this critical issue by implementing and evaluating machine learning algorithms to verify application authenticity automatically. Using a comprehensive dataset comprising both official applications registered with the Ministry of Religious Affairs and unofficial applications circulating on app stores, we compare the performance of three robust classifiers: Support Vector Machine (SVM), Random Forest (RF), and Na"ive Bayes (NB). The study utilizes a hybrid feature extraction methodology that combines Textual Analysis (TF-IDF) of application descriptions with Metadata Analysis of sensitive access permissions. The experimental results indicate that the SVM algorithm achieves the highest performance with an accuracy of 92.3%, a precision of 91.5%, and an F1-score of 92.0%. Detailed feature analysis reveals that specific keywords related to legality and high-risk permissions (e.g., READ PHONE STATE) are the most significant discriminators. This system is proposed as a proactive, scalable solution to enhance digital trust in the religious tourism sector, potentially serving as a prototype for a national verification system.
☆ KOSS: Kalman-Optimal Selective State Spaces for Long-Term Sequence Modeling
Recent selective state space models (SSMs), such as Mamba and Mamba-2, have demonstrated strong performance in sequence modeling owing to input-dependent selection mechanisms. However, these mechanisms lack theoretical grounding and cannot support context-aware selection from latent state dynamics. To address these limitations, we propose KOSS, a Kalman-optimal Selective State Space model that formulates selection as latent state uncertainty minimization. Derived from estimation theory, KOSS adopts a continuous-time latent update driven by a Kalman gain that dynamically modulates information propagation based on content and context, enabling a closed-loop, context-aware selectivity mechanism. To ensure stable computation and near-linear scalability, KOSS employs global spectral differentiation for frequency-domain derivative estimation, along with a segment-wise scan for hardware-efficient processing. On a selective copying task with distractors, KOSS achieves over 79\% accuracy while baselines drop below 20\%, demonstrating robust context-aware selection. Furthermore, across nine long-term forecasting benchmarks, KOSS reduces MSE by 2.92--36.23\% and consistently outperforms state-of-the-art models in both accuracy and stability. To assess real-world applicability, a case study on secondary surveillance radar (SSR) tracking confirms KOSS's robustness under irregular intervals and noisy conditions and demonstrates its effectiveness in real-world applications. Finally, supplementary experiments verify Kalman gain convergence and the frequency response of spectral differentiation, providing theoretical support for the proposed closed-loop design.
☆ Polyharmonic Spline Packages: Composition, Efficient Procedures for Computation and Differentiation
In a previous paper it was shown that a machine learning regression problem can be solved within the framework of random function theory, with the optimal kernel analytically derived from symmetry and indifference principles and coinciding with a polyharmonic spline. However, a direct application of that solution is limited by O(N^3) computational cost and by a breakdown of the original theoretical assumptions when the input space has excessive dimensionality. This paper proposes a cascade architecture built from packages of polyharmonic splines that simultaneously addresses scalability and is theoretically justified for problems with unknown intrinsic low dimensionality. Efficient matrix procedures are presented for forward computation and end-to-end differentiation through the cascade.
comment: Part 2 of 4 in the "Polyharmonic Cascade" cycle. Continues the theory from arXiv.2512.12731. Source code is available at: https://github.com/xolod7/polyharmonic-cascade
☆ Phishing Detection System: An Ensemble Approach Using Character-Level CNN and Feature Engineering
In actuality, phishing attacks remain one of the most prevalent cybersecurity risks in existence today, with malevolent actors constantly changing their strategies to successfully trick users. This paper presents an AI model for a phishing detection system that uses an ensemble approach to combine character-level Convolutional Neural Networks (CNN) and LightGBM with engineered features. Our system uses a character-level CNN to extract sequential features after extracting 36 lexical, structural, and domain-based features from the URLs. On a test dataset of 19,873 URLs, the ensemble model achieves an accuracy of 99.819 percent, precision of 100 percent, recall of 99.635 percent, and ROC-AUC of 99.947 percent. Through a FastAPI-based service with an intuitive user interface, the suggested system has been utilised to offer real-time detection. In contrast, the results demonstrate that the suggested solution performs better than individual models; LightGBM contributes 40 percent and character-CNN contributes 60 percent to the final prediction. The suggested method maintains extremely low false positive rates while doing a good job of identifying contemporary phishing techniques. Index Terms - Phishing detection, machine learning, deep learning, CNN, ensemble methods, cybersecurity, URL analysis
comment: 7 pages, 8 figures
☆ Towards Reproducibility in Predictive Process Mining: SPICE - A Deep Learning Library
In recent years, Predictive Process Mining (PPM) techniques based on artificial neural networks have evolved as a method for monitoring the future behavior of unfolding business processes and predicting Key Performance Indicators (KPIs). However, many PPM approaches often lack reproducibility, transparency in decision making, usability for incorporating novel datasets and benchmarking, making comparisons among different implementations very difficult. In this paper, we propose SPICE, a Python framework that reimplements three popular, existing baseline deep-learning-based methods for PPM in PyTorch, while designing a common base framework with rigorous configurability to enable reproducible and robust comparison of past and future modelling approaches. We compare SPICE to original reported metrics and with fair metrics on 11 datasets.
☆ Olaf: Bringing an Animated Character to Life in the Physical World
Animated characters often move in non-physical ways and have proportions that are far from a typical walking robot. This provides an ideal platform for innovation in both mechanical design and stylized motion control. In this paper, we bring Olaf to life in the physical world, relying on reinforcement learning guided by animation references for control. To create the illusion of Olaf's feet moving along his body, we hide two asymmetric legs under a soft foam skirt. To fit actuators inside the character, we use spherical and planar linkages in the arms, mouth, and eyes. Because the walk cycle results in harsh contact sounds, we introduce additional rewards that noticeably reduce impact noise. The large head, driven by small actuators in the character's slim neck, creates a risk of overheating, amplified by the costume. To keep actuators from overheating, we feed temperature values as additional inputs to policies, introducing new rewards to keep them within bounds. We validate the efficacy of our modeling in simulation and on hardware, demonstrating an unmatched level of believability for a costumed robotic character.
☆ How accurate are foundational machine learning interatomic potentials for heterogeneous catalysis?
Foundational machine learning interatomic potentials (MLIPs) are being developed at a rapid pace, promising closer and closer approximation to ab initio accuracy. This unlocks the possibility to simulate much larger length and time scales. However, benchmarks for these MLIPs are usually limited to ordered, crystalline and bulk materials. Hence, reported performance does not necessarily accurately reflect MLIP performance in real applications such as heterogeneous catalysis. Here, we systematically analyze zero-shot performance of 80 different MLIPs, evaluating tasks typical for heterogeneous catalysis across a range of different data sets, including adsorption and reaction on surfaces of alloyed metals, oxides, and metal-oxide interfacial systems. We demonstrate that current-generation foundational MLIPs can already perform at high accuracy for applications such as predicting vacancy formation energies of perovskite oxides or zero-point energies of supported nanoclusters. However, limitations also exist. We find that many MLIPs catastrophically fail when applied to magnetic materials, and structure relaxation in the MLIP generally increases the energy prediction error compared to single-point evaluation of a previously optimized structure. Comparing low-cost task-specific models to foundational MLIPs, we highlight some core differences between these model approaches and show that -- if considering only accuracy -- these models can compete with the current generation of best-performing MLIPs. Furthermore, we show that no single MLIP universally performs best, requiring users to investigate MLIP suitability for their desired application.
comment: 16 pages, 5 figures, 1 table + supplementary information (37 pages, 16 figures, 15 tables)
☆ CLARiTy: A Vision Transformer for Multi-Label Classification and Weakly-Supervised Localization of Chest X-ray Pathologies
The interpretation of chest X-rays (CXRs) poses significant challenges, particularly in achieving accurate multi-label pathology classification and spatial localization. These tasks demand different levels of annotation granularity but are frequently constrained by the scarcity of region-level (dense) annotations. We introduce CLARiTy (Class Localizing and Attention Refining Image Transformer), a vision transformer-based model for joint multi-label classification and weakly-supervised localization of thoracic pathologies. CLARiTy employs multiple class-specific tokens to generate discriminative attention maps, and a SegmentCAM module for foreground segmentation and background suppression using explicit anatomical priors. Trained on image-level labels from the NIH ChestX-ray14 dataset, it leverages distillation from a ConvNeXtV2 teacher for efficiency. Evaluated on the official NIH split, the CLARiTy-S-16-512 (a configuration of CLARiTy), achieves competitive classification performance across 14 pathologies, and state-of-the-art weakly-supervised localization performance on 8 pathologies, outperforming prior methods by 50.7%. In particular, pronounced gains occur for small pathologies like nodules and masses. The lower-resolution variant of CLARiTy, CLARiTy-S-16-224, offers high efficiency while decisively surpassing baselines, thereby having the potential for use in low-resource settings. An ablation study confirms contributions of SegmentCAM, DINO pretraining, orthogonal class token loss, and attention pooling. CLARiTy advances beyond CNN-ViT hybrids by harnessing ViT self-attention for global context and class-specific localization, refined through convolutional background suppression for precise, noise-reduced heatmaps.
comment: 23 pages, 11 figures, submitted to Medical Image Analysis
☆ Blog Data Showdown: Machine Learning vs Neuro-Symbolic Models for Gender Classification
Text classification problems, such as gender classification from a blog, have been a well-matured research area that has been well studied using machine learning algorithms. It has several application domains in market analysis, customer recommendation, and recommendation systems. This study presents a comparative analysis of the widely used machine learning algorithms, namely Support Vector Machines (SVM), Naive Bayes (NB), Logistic Regression (LR), AdaBoost, XGBoost, and an SVM variant (SVM_R) with neuro-symbolic AI (NeSy). The paper also explores the effect of text representations such as TF-IDF, the Universal Sentence Encoder (USE), and RoBERTa. Additionally, various feature extraction techniques, including Chi-Square, Mutual Information, and Principal Component Analysis, are explored. Building on these, we introduce a comparative analysis of the machine learning and deep learning approaches in comparison to the NeSy. The experimental results show that the use of the NeSy approach matched strong MLP results despite a limited dataset. Future work on this research will expand the knowledge base, the scope of embedding types, and the hyperparameter configuration to further study the effectiveness of the NeSy approach.
comment: 6 pages
☆ DataFlow: An LLM-Driven Framework for Unified Data Preparation and Workflow Automation in the Era of Data-Centric AI
The rapidly growing demand for high-quality data in Large Language Models (LLMs) has intensified the need for scalable, reliable, and semantically rich data preparation pipelines. However, current practices remain dominated by ad-hoc scripts and loosely specified workflows, which lack principled abstractions, hinder reproducibility, and offer limited support for model-in-the-loop data generation. To address these challenges, we present DataFlow, a unified and extensible LLM-driven data preparation framework. DataFlow is designed with system-level abstractions that enable modular, reusable, and composable data transformations, and provides a PyTorch-style pipeline construction API for building debuggable and optimizable dataflows. The framework consists of nearly 200 reusable operators and six domain-general pipelines spanning text, mathematical reasoning, code, Text-to-SQL, agentic RAG, and large-scale knowledge extraction. To further improve usability, we introduce DataFlow-Agent, which automatically translates natural-language specifications into executable pipelines via operator synthesis, pipeline planning, and iterative verification. Across six representative use cases, DataFlow consistently improves downstream LLM performance. Our math, code, and text pipelines outperform curated human datasets and specialized synthetic baselines, achieving up to +3\% execution accuracy in Text-to-SQL over SynSQL, +7\% average improvements on code benchmarks, and 1--3 point gains on MATH, GSM8K, and AIME. Moreover, a unified 10K-sample dataset produced by DataFlow enables base models to surpass counterparts trained on 1M Infinity-Instruct data. These results demonstrate that DataFlow provides a practical and high-performance substrate for reliable, reproducible, and scalable LLM data preparation, and establishes a system-level foundation for future data-centric AI development.
☆ Exploiting Radio Frequency Fingerprints for Device Identification: Tackling Cross-receiver Challenges in the Source-data-free Scenario
With the rapid proliferation of edge computing, Radio Frequency Fingerprint Identification (RFFI) has become increasingly important for secure device authentication. However, practical deployment of deep learning-based RFFI models is hindered by a critical challenge: their performance often degrades significantly when applied across receivers with different hardware characteristics due to distribution shifts introduced by receiver variation. To address this, we investigate the source-data-free cross-receiver RFFI (SCRFFI) problem, where a model pretrained on labeled signals from a source receiver must adapt to unlabeled signals from a target receiver, without access to any source-domain data during adaptation. We first formulate a novel constrained pseudo-labeling-based SCRFFI adaptation framework, and provide a theoretical analysis of its generalization performance. Our analysis highlights a key insight: the target-domain performance is highly sensitive to the quality of the pseudo-labels generated during adaptation. Motivated by this, we propose Momentum Soft pseudo-label Source Hypothesis Transfer (MS-SHOT), a new method for SCRFFI that incorporates momentum-center-guided soft pseudo-labeling and enforces global structural constraints to encourage confident and diverse predictions. Notably, MS-SHOT effectively addresses scenarios involving label shift or unknown, non-uniform class distributions in the target domain -- a significant limitation of prior methods. Extensive experiments on real-world datasets demonstrate that MS-SHOT consistently outperforms existing approaches in both accuracy and robustness, offering a practical and scalable solution for source-data-free cross-receiver adaptation in RFFI.
comment: IEEE Transactions on Mobile Computing
☆ SARMAE: Masked Autoencoder for SAR Representation Learning
Synthetic Aperture Radar (SAR) imagery plays a critical role in all-weather, day-and-night remote sensing applications. However, existing SAR-oriented deep learning is constrained by data scarcity, while the physically grounded speckle noise in SAR imagery further hampers fine-grained semantic representation learning. To address these challenges, we propose SARMAE, a Noise-Aware Masked Autoencoder for self-supervised SAR representation learning. Specifically, we construct SAR-1M, the first million-scale SAR dataset, with additional paired optical images, to enable large-scale pre-training. Building upon this, we design Speckle-Aware Representation Enhancement (SARE), which injects SAR-specific speckle noise into masked autoencoders to facilitate noise-aware and robust representation learning. Furthermore, we introduce Semantic Anchor Representation Constraint (SARC), which leverages paired optical priors to align SAR features and ensure semantic consistency. Extensive experiments across multiple SAR datasets demonstrate that SARMAE achieves state-of-the-art performance on classification, detection, and segmentation tasks. Code and models will be available at https://github.com/MiliLab/SARMAE.
comment: Code and models will be available at https://github.com/MiliLab/SARMAE
☆ Stackelberg Learning from Human Feedback: Preference Optimization as a Sequential Game
We introduce Stackelberg Learning from Human Feedback (SLHF), a new framework for preference optimization. SLHF frames the alignment problem as a sequential-move game between two policies: a Leader, which commits to an action, and a Follower, which responds conditionally on the Leader's action. This approach decomposes preference optimization into a refinement problem for the Follower and an optimization problem against an adversary for the Leader. Unlike Reinforcement Learning from Human Feedback (RLHF), which assigns scalar rewards to actions, or Nash Learning from Human Feedback (NLHF), which seeks a simultaneous-move equilibrium, SLHF leverages the asymmetry of sequential play to capture richer preference structures. The sequential design of SLHF naturally enables inference-time refinement, as the Follower learns to improve the Leader's actions, and these refinements can be leveraged through iterative sampling. We compare the solution concepts of SLHF, RLHF, and NLHF, and lay out key advantages in consistency, data sensitivity, and robustness to intransitive preferences. Experiments on large language models demonstrate that SLHF achieves strong alignment across diverse preference datasets, scales from 0.5B to 8B parameters, and yields inference-time refinements that transfer across model families without further fine-tuning.
comment: 10 pages, 5 tables, 1 figures
☆ Riemannian Stochastic Interpolants for Amorphous Particle Systems
Modern generative models hold great promise for accelerating diverse tasks involving the simulation of physical systems, but they must be adapted to the specific constraints of each domain. Significant progress has been made for biomolecules and crystalline materials. Here, we address amorphous materials (glasses), which are disordered particle systems lacking atomic periodicity. Sampling equilibrium configurations of glass-forming materials is a notoriously slow and difficult task. This obstacle could be overcome by developing a generative framework capable of producing equilibrium configurations with well-defined likelihoods. In this work, we address this challenge by leveraging an equivariant Riemannian stochastic interpolation framework which combines Riemannian stochastic interpolant and equivariant flow matching. Our method rigorously incorporates periodic boundary conditions and the symmetries of multi-component particle systems, adapting an equivariant graph neural network to operate directly on the torus. Our numerical experiments on model amorphous systems demonstrate that enforcing geometric and symmetry constraints significantly improves generative performance.
☆ Muon is Provably Faster with Momentum Variance Reduction
Recent empirical research has demonstrated that deep learning optimizers based on the linear minimization oracle (LMO) over specifically chosen Non-Euclidean norm balls, such as Muon and Scion, outperform Adam-type methods in the training of large language models. In this work, we show that such optimizers can be provably improved by replacing their vanilla momentum by momentum variance reduction (MVR). Instead of proposing and analyzing MVR variants of Muon and Scion separately, we incorporate MVR into the recently proposed Gluon framework, which captures Muon, Scion and other specific Non-Euclidean LMO-based methods as special cases, and at the same time works with a more general smoothness assumption which better captures the layer-wise structure of neural networks. In the non-convex case, we incorporate MVR into Gluon in three different ways. All of them improve the convergence rate from ${\cal O} (\frac{1}{K^{1/4}})$ to ${\cal O} (\frac{1}{K^{1/3}})$. Additionally, we provide improved rates in the star-convex case. Finally, we conduct several numerical experiments that verify the superior performance of our proposed algorithms in terms of iteration complexity.
comment: 31 pages, 4 figures
☆ Abacus: Self-Supervised Event Counting-Aligned Distributional Pretraining for Sequential User Modeling
Modeling user purchase behavior is a critical challenge in display advertising systems, necessary for real-time bidding. The difficulty arises from the sparsity of positive user events and the stochasticity of user actions, leading to severe class imbalance and irregular event timing. Predictive systems usually rely on hand-crafted "counter" features, overlooking the fine-grained temporal evolution of user intent. Meanwhile, current sequential models extract direct sequential signal, missing useful event-counting statistics. We enhance deep sequential models with self-supervised pretraining strategies for display advertising. Especially, we introduce Abacus, a novel approach of predicting the empirical frequency distribution of user events. We further propose a hybrid objective unifying Abacus with sequential learning objectives, combining stability of aggregated statistics with the sequence modeling sensitivity. Experiments on two real-world datasets show that Abacus pretraining outperforms existing methods accelerating downstream task convergence, while hybrid approach yields up to +6.1% AUC compared to the baselines.
☆ Non-Asymptotic Global Convergence of PPO-Clip
Reinforcement learning (RL) has gained attention for aligning large language models (LLMs) via reinforcement learning from human feedback (RLHF). The actor-only variants of Proximal Policy Optimization (PPO) are widely applied for their efficiency. These algorithms incorporate a clipping mechanism to improve stability. Besides, a regularization term, such as the reverse KL-divergence or a more general \(f\)-divergence, is introduced to prevent policy drift. Despite their empirical success, a rigorous theoretical understanding of the problem and the algorithm's properties is limited. This paper advances the theoretical foundations of the PPO-Clip algorithm by analyzing a deterministic actor-only PPO algorithm within the general RL setting with \(f\)-divergence regularization under the softmax policy parameterization. We derive a non-uniform Lipschitz smoothness condition and a Łojasiewicz inequality for the considered problem. Based on these, a non-asymptotic linear convergence rate to the globally optimal policy is established for the forward KL-regularizer. Furthermore, stationary convergence and local linear convergence are derived for the reverse KL-regularizer.
☆ Persistent Multiscale Density-based Clustering
Clustering is a cornerstone of modern data analysis. Detecting clusters in exploratory data analyses (EDA) requires algorithms that make few assumptions about the data. Density-based clustering algorithms are particularly well-suited for EDA because they describe high-density regions, assuming only that a density exists. Applying density-based clustering algorithms in practice, however, requires selecting appropriate hyperparameters, which is difficult without prior knowledge of the data distribution. For example, DBSCAN requires selecting a density threshold, and HDBSCAN* relies on a minimum cluster size parameter. In this work, we propose Persistent Leaves Spatial Clustering for Applications with Noise (PLSCAN). This novel density-based clustering algorithm efficiently identifies all minimum cluster sizes for which HDBSCAN* produces stable (leaf) clusters. PLSCAN applies scale-space clustering principles and is equivalent to persistent homology on a novel metric space. We compare its performance to HDBSCAN* on several real-world datasets, demonstrating that it achieves a higher average ARI and is less sensitive to changes in the number of mutual reachability neighbours. Additionally, we compare PLSCAN's computational costs to k-Means, demonstrating competitive run-times on low-dimensional datasets. At higher dimensions, run times scale more similarly to HDBSCAN*.
comment: 21 pages, 11 figures, submitted to the Journal of Machine Learning Research
☆ Predictive Inorganic Synthesis based on Machine Learning using Small Data sets: a case study of size-controlled Cu Nanoparticles
Copper nanoparticles (Cu NPs) have a broad applicability, yet their synthesis is sensitive to subtle changes in reaction parameters. This sensitivity, combined with the time- and resource-intensive nature of experimental optimization, poses a major challenge in achieving reproducible and size-controlled synthesis. While Machine Learning (ML) shows promise in materials research, its application is often limited by scarcity of large high-quality experimental data sets. This study explores ML to predict the size of Cu NPs from microwave-assisted polyol synthesis using a small data set of 25 in-house performed syntheses. Latin Hypercube Sampling is used to efficiently cover the parameter space while creating the experimental data set. Ensemble regression models, built with the AMADEUS framework, successfully predict particle sizes with high accuracy ($R^2 = 0.74$), outperforming classical statistical approaches ($R^2 = 0.60$). Overall, this study highlights that, for lab-scale synthesis optimization, high-quality small datasets combined with classical, interpretable ML models outperform traditional statistical methods and are fully sufficient for quantitative synthesis prediction. This approach provides a sustainable and experimentally realistic pathway toward data-driven inorganic synthesis design.
comment: 22 pages, 16 figures, 12 tables (including SI)
☆ A Systematic Study of Code Obfuscation Against LLM-based Vulnerability Detection
As large language models (LLMs) are increasingly adopted for code vulnerability detection, their reliability and robustness across diverse vulnerability types have become a pressing concern. In traditional adversarial settings, code obfuscation has long been used as a general strategy to bypass auditing tools, preserving exploitability without tampering with the tools themselves. Numerous efforts have explored obfuscation methods and tools, yet their capabilities differ in terms of supported techniques, granularity, and programming languages, making it difficult to systematically assess their impact on LLM-based vulnerability detection. To address this gap, we provide a structured systematization of obfuscation techniques and evaluate them under a unified framework. Specifically, we categorize existing obfuscation methods into three major classes (layout, data flow, and control flow) covering 11 subcategories and 19 concrete techniques. We implement these techniques across four programming languages (Solidity, C, C++, and Python) using a consistent LLM-driven approach, and evaluate their effects on 15 LLMs spanning four model families (DeepSeek, OpenAI, Qwen, and LLaMA), as well as on two coding agents (GitHub Copilot and Codex). Our findings reveal both positive and negative impacts of code obfuscation on LLM-based vulnerability detection, highlighting conditions under which obfuscation leads to performance improvements or degradations. We further analyze these outcomes with respect to vulnerability characteristics, code properties, and model attributes. Finally, we outline several open problems and propose future directions to enhance the robustness of LLMs for real-world vulnerability detection.
☆ Pseudo-Cepstrum: Pitch Modification for Mel-Based Neural Vocoders
This paper introduces a cepstrum-based pitch modification method that can be applied to any mel-spectrogram representation. As a result, this method is compatible with any mel-based vocoder without requiring any additional training or changes to the model. This is achieved by directly modifying the cepstrum feature space in order to shift the harmonic structure to the desired target. The spectrogram magnitude is computed via the pseudo-inverse mel transform, then converted to the cepstrum by applying DCT. In this domain, the cepstral peak is shifted without having to estimate its position and the modified mel is recomputed by applying IDCT and mel-filterbank. These pitch-shifted mel-spectrogram features can be converted to speech with any compatible vocoder. The proposed method is validated experimentally with objective and subjective metrics on various state-of-the-art neural vocoders as well as in comparison with traditional pitch modification methods.
☆ Advantages and limitations in the use of transfer learning for individual treatment effects in causal machine learning
Generalizing causal knowledge across diverse environments is challenging, especially when estimates from large-scale datasets must be applied to smaller or systematically different contexts, where external validity is critical. Model-based estimators of individual treatment effects (ITE) from machine learning require large sample sizes, limiting their applicability in domains such as behavioral sciences with smaller datasets. We demonstrate how estimation of ITEs with Treatment Agnostic Representation Networks (TARNet; Shalit et al., 2017) can be improved by leveraging knowledge from source datasets and adapting it to new settings via transfer learning (TL-TARNet; Aloui et al., 2023). In simulations that vary source and sample sizes and consider both randomized and non-randomized intervention target settings, the transfer-learning extension TL-TARNet improves upon standard TARNet, reducing ITE error and attenuating bias when a large unbiased source is available and target samples are small. In an empirical application using the India Human Development Survey (IHDS-II), we estimate the effect of mothers' firewood collection time on children's weekly study time; transfer learning pulls the target mean ITEs toward the source ITE estimate, reducing bias in the estimates obtained without transfer. These results suggest that transfer learning for causal models can improve the estimation of ITE in small samples.
☆ Batch Normalization-Free Fully Integer Quantized Neural Networks via Progressive Tandem Learning
Quantised neural networks (QNNs) shrink models and reduce inference energy through low-bit arithmetic, yet most still depend on a running statistics batch normalisation (BN) layer, preventing true integer-only deployment. Prior attempts remove BN by parameter folding or tailored initialisation; while helpful, they rarely recover BN's stability and accuracy and often impose bespoke constraints. We present a BN-free, fully integer QNN trained via a progressive, layer-wise distillation scheme that slots into existing low-bit pipelines. Starting from a pretrained BN-enabled teacher, we use layer-wise targets and progressive compensation to train a student that performs inference exclusively with integer arithmetic and contains no BN operations. On ImageNet with AlexNet, the BN-free model attains competitive Top-1 accuracy under aggressive quantisation. The procedure integrates directly with standard quantisation workflows, enabling end-to-end integer-only inference for resource-constrained settings such as edge and embedded devices.
☆ IoMT-based Automated Leukemia Classification using CNN and Higher Order Singular Value
The Internet of Things (IoT) is a concept by which objects find identity and can communicate with each other in a network. One of the applications of the IoT is in the field of medicine, which is called the Internet of Medical Things (IoMT). Acute Lymphocytic Leukemia (ALL) is a type of cancer categorized as a hematic disease. It usually begins in the bone marrow due to the overproduction of immature White Blood Cells (WBCs or leukocytes). Since it has a high rate of spread to other body organs, it is a fatal disease if not diagnosed and treated early. Therefore, for identifying cancerous (ALL) cells in medical diagnostic laboratories, blood, as well as bone marrow smears, are taken by pathologists. However, manual examinations face limitations due to human error risk and time-consuming procedures. So, to tackle the mentioned issues, methods based on Artificial Intelligence (AI), capable of identifying cancer from non-cancer tissue, seem vital. Deep Neural Networks (DNNs) are the most efficient machine learning (ML) methods. These techniques employ multiple layers to extract higher-level features from the raw input. In this paper, a Convolutional Neural Network (CNN) is applied along with a new type of classifier, Higher Order Singular Value Decomposition (HOSVD), to categorize ALL and normal (healthy) cells from microscopic blood images. We employed the model on IoMT structure to identify leukemia quickly and safely. With the help of this new leukemia classification framework, patients and clinicians can have real-time communication. The model was implemented on the Acute Lymphoblastic Leukemia Image Database (ALL-IDB2) and achieved an average accuracy of %98.88 in the test step.
☆ Topic Modelling Black Box Optimization
Choosing the number of topics $T$ in Latent Dirichlet Allocation (LDA) is a key design decision that strongly affects both the statistical fit and interpretability of topic models. In this work, we formulate the selection of $T$ as a discrete black-box optimization problem, where each function evaluation corresponds to training an LDA model and measuring its validation perplexity. Under a fixed evaluation budget, we compare four families of optimizers: two hand-designed evolutionary methods - Genetic Algorithm (GA) and Evolution Strategy (ES) - and two learned, amortized approaches, Preferential Amortized Black-Box Optimization (PABBO) and Sharpness-Aware Black-Box Optimization (SABBO). Our experiments show that, while GA, ES, PABBO, and SABBO eventually reach a similar band of final perplexity, the amortized optimizers are substantially more sample- and time-efficient. SABBO typically identifies a near-optimal topic number after essentially a single evaluation, and PABBO finds competitive configurations within a few evaluations, whereas GA and ES require almost the full budget to approach the same region.
☆ A Novel Proposal in Wind Turbine Blade Failure Detection: An Integrated Approach to Energy Efficiency and Sustainability
This paper presents a novel methodology for detecting faults in wind turbine blades using com-putational learning techniques. The study evaluates two models: the first employs logistic regression, which outperformed neural networks, decision trees, and the naive Bayes method, demonstrating its effectiveness in identifying fault-related patterns. The second model leverages clustering and achieves superior performance in terms of precision and data segmentation. The results indicate that clustering may better capture the underlying data characteristics compared to supervised methods. The proposed methodology offers a new approach to early fault detection in wind turbine blades, highlighting the potential of integrating different computational learning techniques to enhance system reliability. The use of accessible tools like Orange Data Mining underscores the practical application of these advanced solutions within the wind energy sector. Future work will focus on combining these methods to improve detection accuracy further and extend the application of these techniques to other critical components in energy infrastructure.
comment: 21 pages, 10 figures, 9 tables
☆ Emergent Bias and Fairness in Multi-Agent Decision Systems
Multi-agent systems have demonstrated the ability to improve performance on a variety of predictive tasks by leveraging collaborative decision making. However, the lack of effective evaluation methodologies has made it difficult to estimate the risk of bias, making deployment of such systems unsafe in high stakes domains such as consumer finance, where biased decisions can translate directly into regulatory breaches and financial loss. To address this challenge, we need to develop fairness evaluation methodologies for multi-agent predictive systems and measure the fairness characteristics of these systems in the financial tabular domain. Examining fairness metrics using large-scale simulations across diverse multi-agent configurations, with varying communication and collaboration mechanisms, we reveal patterns of emergent bias in financial decision-making that cannot be traced to individual agent components, indicating that multi-agent systems may exhibit genuinely collective behaviors. Our findings highlight that fairness risks in financial multi-agent systems represent a significant component of model risk, with tangible impacts on tasks such as credit scoring and income estimation. We advocate that multi-agent decision systems must be evaluated as holistic entities rather than through reductionist analyses of their constituent components.
☆ Multi-Fidelity Delayed Acceptance: hierarchical MCMC sampling for Bayesian inverse problems combining multiple solvers through deep neural networks
Inverse uncertainty quantification (UQ) tasks such as parameter estimation are computationally demanding whenever dealing with physics-based models, and typically require repeated evaluations of complex numerical solvers. When partial differential equations are involved, full-order models such as those based on the Finite Element Method can make traditional sampling approaches like Markov Chain Monte Carlo (MCMC) computationally infeasible. Although data-driven surrogate models may help reduce evaluation costs, their utility is often limited by the expense of generating high-fidelity data. In contrast, low-fidelity data can be produced more efficiently, although relying on them alone may degrade the accuracy of the inverse UQ solution. To address these challenges, we propose a Multi-Fidelity Delayed Acceptance scheme for Bayesian inverse problems. Extending the Multi-Level Delayed Acceptance framework, the method introduces multi-fidelity neural networks that combine the predictions of solvers of varying fidelity, with high fidelity evaluations restricted to an offline training stage. During the online phase, likelihood evaluations are obtained by evaluating the coarse solvers and passing their outputs to the trained neural networks, thereby avoiding additional high-fidelity simulations. This construction allows heterogeneous coarse solvers to be incorporated consistently within the hierarchy, providing greater flexibility than standard Multi-Level Delayed Acceptance. The proposed approach improves the approximation accuracy of the low fidelity solvers, leading to longer sub-chain lengths, better mixing, and accelerated posterior inference. The effectiveness of the strategy is demonstrated on two benchmark inverse problems involving (i) steady isotropic groundwater flow, (ii) an unsteady reaction-diffusion system, for which substantial computational savings are obtained.
comment: 28 pages, 8 tables, 3 algorithms, 16 figures
☆ Geometric Laplace Neural Operator
Neural operators have emerged as powerful tools for learning mappings between function spaces, enabling efficient solutions to partial differential equations across varying inputs and domains. Despite the success, existing methods often struggle with non-periodic excitations, transient responses, and signals defined on irregular or non-Euclidean geometries. To address this, we propose a generalized operator learning framework based on a pole-residue decomposition enriched with exponential basis functions, enabling expressive modeling of aperiodic and decaying dynamics. Building on this formulation, we introduce the Geometric Laplace Neural Operator (GLNO), which embeds the Laplace spectral representation into the eigen-basis of the Laplace-Beltrami operator, extending operator learning to arbitrary Riemannian manifolds without requiring periodicity or uniform grids. We further design a grid-invariant network architecture (GLNONet) that realizes GLNO in practice. Extensive experiments on PDEs/ODEs and real-world datasets demonstrate our robust performance over other state-of-the-art models.
☆ NDRL: Cotton Irrigation and Nitrogen Application with Nested Dual-Agent Reinforcement Learning
Effective irrigation and nitrogen fertilization have a significant impact on crop yield. However, existing research faces two limitations: (1) the high complexity of optimizing water-nitrogen combinations during crop growth and poor yield optimization results; and (2) the difficulty in quantifying mild stress signals and the delayed feedback, which results in less precise dynamic regulation of water and nitrogen and lower resource utilization efficiency. To address these issues, we propose a Nested Dual-Agent Reinforcement Learning (NDRL) method. The parent agent in NDRL identifies promising macroscopic irrigation and fertilization actions based on projected cumulative yield benefits, reducing ineffective explorationwhile maintaining alignment between objectives and yield. The child agent's reward function incorporates quantified Water Stress Factor (WSF) and Nitrogen Stress Factor (NSF), and uses a mixed probability distribution to dynamically optimize daily strategies, thereby enhancing both yield and resource efficiency. We used field experiment data from 2023 and 2024 to calibrate and validate the Decision Support System for Agrotechnology Transfer (DSSAT) to simulate real-world conditions and interact with NDRL. Experimental results demonstrate that, compared to the best baseline, the simulated yield increased by 4.7% in both 2023 and 2024, the irrigation water productivity increased by 5.6% and 5.1% respectively, and the nitrogen partial factor productivity increased by 6.3% and 1.0% respectively. Our method advances the development of cotton irrigation and nitrogen fertilization, providing new ideas for addressing the complexity and precision issues in agricultural resource management and for sustainable agricultural development.
comment: Accepted by ICONIP 2025
☆ Global universal approximation with Brownian signatures
We establish $L^p$-type universal approximation theorems for general and non-anticipative functionals on suitable rough path spaces, showing that linear functionals acting on signatures of time-extended rough paths are dense with respect to an $L^p$-distance. To that end, we derive global universal approximation theorems for weighted rough path spaces. We demonstrate that these $L^p$-type universal approximation theorems apply in particular to Brownian motion. As a consequence, linear functionals on the signature of the time-extended Brownian motion can approximate any $p$-integrable stochastic process adapted to the Brownian filtration, including solutions to stochastic differential equations.
☆ Kascade: A Practical Sparse Attention Method for Long-Context LLM Inference
Attention is the dominant source of latency during long-context LLM inference, an increasingly popular workload with reasoning models and RAG. We propose Kascade, a training-free sparse attention method that leverages known observations such as 1) post-softmax attention is intrinsically sparse, and 2) the identity of high-weight keys is stable across nearby layers. Kascade computes exact Top-k indices in a small set of anchor layers, then reuses those indices in intermediate reuse layers. The anchor layers are selected algorithmically, via a dynamic-programming objective that maximizes cross-layer similarity over a development set, allowing easy deployment across models. The method incorporates efficient implementation constraints (e.g. tile-level operations), across both prefill and decode attention. The Top-k selection and reuse in Kascade is head-aware and we show in our experiments that this is critical for high accuracy. Kascade achieves up to 4.1x speedup in decode attention and 2.2x speedup in prefill attention over FlashAttention-3 baseline on H100 GPUs while closely matching dense attention accuracy on long-context benchmarks such as LongBench and AIME-24.
comment: 11 pages, 8 figures, 3 tables and 1 algorithm
☆ Quantitative Verification of Fairness in Tree Ensembles
This work focuses on quantitative verification of fairness in tree ensembles. Unlike traditional verification approaches that merely return a single counterexample when the fairness is violated, quantitative verification estimates the ratio of all counterexamples and characterizes the regions where they occur, which is important information for diagnosing and mitigating bias. To date, quantitative verification has been explored almost exclusively for deep neural networks (DNNs). Representative methods, such as DeepGemini and FairQuant, all build on the core idea of Counterexample-Guided Abstraction Refinement, a generic framework that could be adapted to other model classes. We extended the framework into a model-agnostic form, but discovered two limitations: (i) it can provide only lower bounds, and (ii) its performance scales poorly. Exploiting the discrete structure of tree ensembles, our work proposes an efficient quantification technique that delivers any-time upper and lower bounds. Experiments on five widely used datasets demonstrate its effectiveness and efficiency. When applied to fairness testing, our quantification method significantly outperforms state-of-the-art testing techniques.
☆ Multivariate Uncertainty Quantification with Tomographic Quantile Forests
Quantifying predictive uncertainty is essential for safe and trustworthy real-world AI deployment. Yet, fully nonparametric estimation of conditional distributions remains challenging for multivariate targets. We propose Tomographic Quantile Forests (TQF), a nonparametric, uncertainty-aware, tree-based regression model for multivariate targets. TQF learns conditional quantiles of directional projections $\mathbf{n}^{\top}\mathbf{y}$ as functions of the input $\mathbf{x}$ and the unit direction $\mathbf{n}$. At inference, it aggregates quantiles across many directions and reconstructs the multivariate conditional distribution by minimizing the sliced Wasserstein distance via an efficient alternating scheme with convex subproblems. Unlike classical directional-quantile approaches that typically produce only convex quantile regions and require training separate models for different directions, TQF covers all directions with a single model without imposing convexity restrictions. We evaluate TQF on synthetic and real-world datasets, and release the source code on GitHub.
comment: 27 pages, 23 figures
Pretrained Battery Transformer (PBT): A battery life prediction foundation model
Early prediction of battery cycle life is essential for accelerating battery research, manufacturing, and deployment. Although machine learning methods have shown encouraging results, progress is hindered by data scarcity and heterogeneity arising from diverse aging conditions. In other fields, foundation models (FMs) trained on diverse datasets have achieved broad generalization through transfer learning, but no FMs have been reported for battery cycle life prediction yet. Here we present the Pretrained Battery Transformer (PBT), the first FM for battery life prediction, developed through domain-knowledge-encoded mixture-of-expert layers. Validated on the largest public battery life database, PBT learns transferable representations from 13 lithium-ion battery (LIB) datasets, outperforming existing models by an average of 19.8%. With transfer learning, PBT achieves state-of-the-art performance across 15 diverse datasets encompassing various operating conditions, formation protocols, and chemistries of LIBs. This work establishes a foundation model pathway for battery lifetime prediction, paving the way toward universal battery lifetime prediction systems.
comment: 5 figures in the main content
☆ Can Transformers overcome the lack of data in the simulation of history-dependent flows?
It is well known that the lack of information about certain variables necessary for the description of a dynamical system leads to the introduction of historical dependence (lack of Markovian character of the model) and noise. Traditionally, scientists have made up for these shortcomings by designing phenomenological variables that take into account this historical dependence (typically, conformational tensors in fluids). Often, these phenomenological variables are not easily measurable experimentally. In this work, we study to what extent Transformer architectures are able to cope with the lack of experimental data on these variables. The methodology is evaluated on three benchmark problems: a cylinder flow with no history dependence, a viscoelastic Couette flow modeled via the Oldroyd-B formalism, and a non-linear polymeric fluid described by the FENE model. Our results show that the Transformer outperforms a thermodynamically consistent, structure-preserving neural network with metriplectic bias in systems with missing experimental data, providing lower errors even in low-dimensional latent spaces. In contrast, for systems whose state variables can be fully known, the metriplectic model achieves superior performance.
☆ Feature-Selective Representation Misdirection for Machine Unlearning
As large language models (LLMs) are increasingly adopted in safety-critical and regulated sectors, the retention of sensitive or prohibited knowledge introduces escalating risks, ranging from privacy leakage to regulatory non-compliance to to potential misuse, and so on. Recent studies suggest that machine unlearning can help ensure deployed models comply with evolving legal, safety, and governance requirements. However, current unlearning techniques assume clean separation between forget and retain datasets, which is challenging in operational settings characterized by highly entangled distributions. In such scenarios, perturbation-based methods often degrade general model utility or fail to ensure safety. To address this, we propose Selective Representation Misdirection for Unlearning (SRMU), a novel principled activation-editing framework that enforces feature-aware and directionally controlled perturbations. Unlike indiscriminate model weights perturbations, SRMU employs a structured misdirection vector with an activation importance map. The goal is to allow SRMU selectively suppresses harmful representations while preserving the utility on benign ones. Experiments are conducted on the widely used WMDP benchmark across low- and high-entanglement configurations. Empirical results reveal that SRMU delivers state-of-the-art unlearning performance with minimal utility losses, and remains effective under 20-30\% overlap where existing baselines collapse. SRMU provides a robust foundation for safety-driven model governance, privacy compliance, and controlled knowledge removal in the emerging LLM-based applications. We release the replication package at https://figshare.com/s/d5931192a8824de26aff.
☆ In-Context Probing for Membership Inference in Fine-Tuned Language Models
Membership inference attacks (MIAs) pose a critical privacy threat to fine-tuned large language models (LLMs), especially when models are adapted to domain-specific tasks using sensitive data. While prior black-box MIA techniques rely on confidence scores or token likelihoods, these signals are often entangled with a sample's intrinsic properties - such as content difficulty or rarity - leading to poor generalization and low signal-to-noise ratios. In this paper, we propose ICP-MIA, a novel MIA framework grounded in the theory of training dynamics, particularly the phenomenon of diminishing returns during optimization. We introduce the Optimization Gap as a fundamental signal of membership: at convergence, member samples exhibit minimal remaining loss-reduction potential, while non-members retain significant potential for further optimization. To estimate this gap in a black-box setting, we propose In-Context Probing (ICP), a training-free method that simulates fine-tuning-like behavior via strategically constructed input contexts. We propose two probing strategies: reference-data-based (using semantically similar public samples) and self-perturbation (via masking or generation). Experiments on three tasks and multiple LLMs show that ICP-MIA significantly outperforms prior black-box MIAs, particularly at low false positive rates. We further analyze how reference data alignment, model type, PEFT configurations, and training schedules affect attack effectiveness. Our findings establish ICP-MIA as a practical and theoretically grounded framework for auditing privacy risks in deployed LLMs.
☆ CKA-Guided Modular Quantization: Beyond Bit-Width to Algorithmic Diversity
Current mainstream post-training quantization methods for large language models typically apply a uniform quantization strategy across all network layers, overlooking the substantial differences in algorithmic suitability among layers. To address this limitation, we propose CKA Guided Modular Quantization, a fine-tuning-free, plug-and-play framework for algorithmic heterogeneous quantization. Our method independently evaluates multiple PTQ algorithms on each layer and employs Linear Centered Kernel Alignment (CKA) as a metric to automatically select the optimal quantization strategy per layer. The individually optimized strategies are then integrated to construct a hybrid quantized model. Experiments demonstrate that our approach consistently outperforms both uniform quantization baselines and state-of-the-art mixed-precision methods across mainstream LLMs including LLaMA and Qwen ,in terms of perplexity (PPL) and downstream task performance.
☆ Sharpness-aware Second-order Latent Factor Model for High-dimensional and Incomplete Data
Second-order Latent Factor (SLF) model, a class of low-rank representation learning methods, has proven effective at extracting node-to-node interaction patterns from High-dimensional and Incomplete (HDI) data. However, its optimization is notoriously difficult due to its bilinear and non-convex nature. Sharpness-aware Minimization (SAM) has recently proposed to find flat local minima when minimizing non-convex objectives, thereby improving the generalization of representation-learning models. To address this challenge, we propose a Sharpness-aware SLF (SSLF) model. SSLF embodies two key ideas: (1) acquiring second-order information via Hessian-vector products; and (2) injecting a sharpness term into the curvature (Hessian) through the designed Hessian-vector products. Experiments on multiple industrial datasets demonstrate that the proposed model consistently outperforms state-of-the-art baselines.
☆ Pixel Super-Resolved Fluorescence Lifetime Imaging Using Deep Learning
Fluorescence lifetime imaging microscopy (FLIM) is a powerful quantitative technique that provides metabolic and molecular contrast, offering strong translational potential for label-free, real-time diagnostics. However, its clinical adoption remains limited by long pixel dwell times and low signal-to-noise ratio (SNR), which impose a stricter resolution-speed trade-off than conventional optical imaging approaches. Here, we introduce FLIM_PSR_k, a deep learning-based multi-channel pixel super-resolution (PSR) framework that reconstructs high-resolution FLIM images from data acquired with up to a 5-fold increased pixel size. The model is trained using the conditional generative adversarial network (cGAN) framework, which, compared to diffusion model-based alternatives, delivers a more robust PSR reconstruction with substantially shorter inference times, a crucial advantage for practical deployment. FLIM_PSR_k not only enables faster image acquisition but can also alleviate SNR limitations in autofluorescence-based FLIM. Blind testing on held-out patient-derived tumor tissue samples demonstrates that FLIM_PSR_k reliably achieves a super-resolution factor of k = 5, resulting in a 25-fold increase in the space-bandwidth product of the output images and revealing fine architectural features lost in lower-resolution inputs, with statistically significant improvements across various image quality metrics. By increasing FLIM's effective spatial resolution, FLIM_PSR_k advances lifetime imaging toward faster, higher-resolution, and hardware-flexible implementations compatible with low-numerical-aperture and miniaturized platforms, better positioning FLIM for translational applications.
comment: 30 Pages, 9 Figures
☆ Interpretable Deep Learning for Stock Returns: A Consensus-Bottleneck Asset Pricing Model
We introduce the \textit{Consensus-Bottleneck Asset Pricing Model} (CB-APM), a partially interpretable neural network that replicates the reasoning processes of sell-side analysts by capturing how dispersed investor beliefs are compressed into asset prices through a consensus formation process. By modeling this ``bottleneck'' to summarize firm- and macro-level information, CB-APM not only predicts future risk premiums of U.S. equities but also links belief aggregation to expected returns in a structurally interpretable manner. The model improves long-horizon return forecasts and outperforms standard deep learning approaches in both predictive accuracy and explanatory power. Comprehensive portfolio analyses show that CB-APM's out-of-sample predictions translate into economically meaningful payoffs, with monotonic return differentials and stable long-short performance across regularization settings. Empirically, CB-APM leverages consensus as a regularizer to amplify long-horizon predictability and yields interpretable consensus-based components that clarify how information is priced in returns. Moreover, regression and GRS-based pricing diagnostics reveal that the learned consensus representations capture priced variation only partially spanned by traditional factor models, demonstrating that CB-APM uncovers belief-driven structure in expected returns beyond the canonical factor space. Overall, CB-APM provides an interpretable and empirically grounded framework for understanding belief-driven return dynamics.
☆ Sharpness-aware Federated Graph Learning
One of many impediments to applying graph neural networks (GNNs) to large-scale real-world graph data is the challenge of centralized training, which requires aggregating data from different organizations, raising privacy concerns. Federated graph learning (FGL) addresses this by enabling collaborative GNN model training without sharing private data. However, a core challenge in FGL systems is the variation in local training data distributions among clients, known as the data heterogeneity problem. Most existing solutions suffer from two problems: (1) The typical optimizer based on empirical risk minimization tends to cause local models to fall into sharp valleys and weakens their generalization to out-of-distribution graph data. (2) The prevalent dimensional collapse in the learned representations of local graph data has an adverse impact on the classification capacity of the GNN model. To this end, we formulate a novel optimization objective that is aware of the sharpness (i.e., the curvature of the loss surface) of local GNN models. By minimizing the loss function and its sharpness simultaneously, we seek out model parameters in a flat region with uniformly low loss values, thus improving the generalization over heterogeneous data. By introducing a regularizer based on the correlation matrix of local representations, we relax the correlations of representations generated by individual local graph samples, so as to alleviate the dimensional collapse of the learned model. The proposed \textbf{S}harpness-aware f\textbf{E}derated gr\textbf{A}ph \textbf{L}earning (SEAL) algorithm can enhance the classification accuracy and generalization ability of local GNN models in federated graph learning. Experimental studies on several graph classification benchmarks show that SEAL consistently outperforms SOTA FGL baselines and provides gains for more participants.
comment: Accepted by WSDM'26
☆ Coarse-to-Fine Open-Set Graph Node Classification with Large Language Models AAAI 2026
Developing open-set classification methods capable of classifying in-distribution (ID) data while detecting out-of-distribution (OOD) samples is essential for deploying graph neural networks (GNNs) in open-world scenarios. Existing methods typically treat all OOD samples as a single class, despite real-world applications, especially high-stake settings such as fraud detection and medical diagnosis, demanding deeper insights into OOD samples, including their probable labels. This raises a critical question: can OOD detection be extended to OOD classification without true label information? To address this question, we propose a Coarse-to-Fine open-set Classification (CFC) framework that leverages large language models (LLMs) for graph datasets. CFC consists of three key components: a coarse classifier that uses LLM prompts for OOD detection and outlier label generation, a GNN-based fine classifier trained with OOD samples identified by the coarse classifier for enhanced OOD detection and ID classification, and refined OOD classification achieved through LLM prompts and post-processed OOD labels. Unlike methods that rely on synthetic or auxiliary OOD samples, CFC employs semantic OOD instances that are genuinely out-of-distribution based on their inherent meaning, improving interpretability and practical utility. Experimental results show that CFC improves OOD detection by ten percent over state-of-the-art methods on graph and text domains and achieves up to seventy percent accuracy in OOD classification on graph datasets.
comment: Accepted to AAAI 2026
☆ DAG Learning from Zero-Inflated Count Data Using Continuous Optimization
We address network structure learning from zero-inflated count data by casting each node as a zero-inflated generalized linear model and optimizing a smooth, score-based objective under a directed acyclic graph constraint. Our Zero-Inflated Continuous Optimization (ZICO) approach uses node-wise likelihoods with canonical links and enforces acyclicity through a differentiable surrogate constraint combined with sparsity regularization. ZICO achieves superior performance with faster runtimes on simulated data. It also performs comparably to or better than common algorithms for reverse engineering gene regulatory networks. ZICO is fully vectorized and mini-batched, enabling learning on larger variable sets with practical runtimes in a wide range of domains.
☆ Neural emulation of gravity-driven geohazard runout
Predicting geohazard runout is critical for protecting lives, infrastructure and ecosystems. Rapid mass flows, including landslides and avalanches, cause several thousand deaths across a wide range of environments, often travelling many kilometres from their source. The wide range of source conditions and material properties governing these flows makes their runout difficult to anticipate, particularly for downstream communities that may be suddenly exposed to severe impacts. Accurately predicting runout at scale requires models that are both physically realistic and computationally efficient, yet existing approaches face a fundamental speed-realism trade-off. Here we train a machine learning model to predict geohazard runout across representative real world terrains. The model predicts both flow extent and deposit thickness with high accuracy and 100 to 10,000 times faster computation than numerical solvers. It is trained on over 100,000 numerical simulations across over 10,000 real world digital elevation model chips and reproduces key physical behaviours, including avulsion and deposition patterns, while generalizing across different flow types, sizes and landscapes. Our results demonstrate that neural emulation enables rapid, spatially resolved runout prediction across diverse real world terrains, opening new opportunities for disaster risk reduction and impact-based forecasting. These results highlight neural emulation as a promising pathway for extending physically realistic geohazard modelling to spatial and temporal scales relevant for large scale early warning systems.
comment: 14 pages, 4 figures
☆ Explicit and Non-asymptotic Query Complexities of Rank-Based Zeroth-order Algorithms on Smooth Functions
Rank-based zeroth-order (ZO) optimization -- which relies only on the ordering of function evaluations -- offers strong robustness to noise and monotone transformations, and underlies many successful algorithms such as CMA-ES, natural evolution strategies, and rank-based genetic algorithms. Despite its widespread use, the theoretical understanding of rank-based ZO methods remains limited: existing analyses provide only asymptotic insights and do not yield explicit convergence rates for algorithms selecting the top-$k$ directions. This work closes this gap by analyzing a simple rank-based ZO algorithm and establishing the first \emph{explicit}, and \emph{non-asymptotic} query complexities. For a $d$-dimension problem, if the function is $L$-smooth and $μ$-strongly convex, the algorithm achieves $\widetilde{\mathcal O}\!\left(\frac{dL}μ\log\!\frac{dL}{μδ}\log\!\frac{1}{\varepsilon}\right)$ to find an $\varepsilon$-suboptimal solution, and for smooth nonconvex objectives it reaches $\mathcal O\!\left(\frac{dL}{\varepsilon}\log\!\frac{1}{\varepsilon}\right)$. Notation $\cO(\cdot)$ hides constant terms and $\widetilde{\mathcal O}(\cdot)$ hides extra $\log\log\frac{1}{\varepsilon}$ term. These query complexities hold with a probability at least $1-δ$ with $0<δ<1$. The analysis in this paper is novel and avoids classical drift and information-geometric techniques. Our analysis offers new insight into why rank-based heuristics lead to efficient ZO optimization.
☆ A Multi-scale Fused Graph Neural Network with Inter-view Contrastive Learning for Spatial Transcriptomics Data Clustering
Spatial transcriptomics enables genome-wide expression analysis within native tissue context, yet identifying spatial domains remains challenging due to complex gene-spatial interactions. Existing methods typically process spatial and feature views separately, fusing only at output level - an "encode-separately, fuse-late" paradigm that limits multi-scale semantic capture and cross-view interaction. Accordingly, stMFG is proposed, a multi-scale interactive fusion graph network that introduces layer-wise cross-view attention to dynamically integrate spatial and gene features after each convolution. The model combines cross-view contrastive learning with spatial constraints to enhance discriminability while maintaining spatial continuity. On DLPFC and breast cancer datasets, stMFG outperforms state-of-the-art methods, achieving up to 14% ARI improvement on certain slices.
comment: 15 pages, 3 figures
☆ A Multimodal Approach to Alzheimer's Diagnosis: Geometric Insights from Cube Copying and Cognitive Assessments
Early and accessible detection of Alzheimer's disease (AD) remains a critical clinical challenge, and cube-copying tasks offer a simple yet informative assessment of visuospatial function. This work proposes a multimodal framework that converts hand-drawn cube sketches into graph-structured representations capturing geometric and topological properties, and integrates these features with demographic information and neuropsychological test (NPT) scores for AD classification. Cube drawings are modeled as graphs with node features encoding spatial coordinates, local graphlet-based topology, and angular geometry, which are processed using graph neural networks and fused with age, education, and NPT features in a late-fusion model. Experimental results show that graph-based representations provide a strong unimodal baseline and substantially outperform pixel-based convolutional models, while multimodal integration further improves performance and robustness to class imbalance. SHAP-based interpretability analysis identifies specific graphlet motifs and geometric distortions as key predictors, closely aligning with clinical observations of disorganized cube drawings in AD. Together, these results establish graph-based analysis of cube copying as an interpretable, non-invasive, and scalable approach for Alzheimer's disease screening.
☆ Physics-Informed Neural Networks for Modeling the Martian Induced Magnetosphere
Understanding the magnetic field environment around Mars and its response to upstream solar wind conditions provide key insights into the processes driving atmospheric ion escape. To date, global models of Martian induced magnetosphere have been exclusively physics-based, relying on computationally intensive simulations. For the first time, we develop a data-driven model of the Martian induced magnetospheric magnetic field using Physics-Informed Neural Network (PINN) combined with MAVEN observations and physical laws. Trained under varying solar wind conditions, including B_IMF, P_SW, and θ_cone, the data-driven model accurately reconstructs the three-dimensional magnetic field configuration and its variability in response to upstream solar wind drivers. Based on the PINN results, we identify key dependencies of magnetic field configuration on solar wind parameters, including the hemispheric asymmetries of the draped field line strength in the Mars-Solar-Electric coordinates. These findings demonstrate the capability of PINNs to reconstruct complex magnetic field structures in the Martian induced magnetosphere, thereby offering a promising tool for advancing studies of solar wind-Mars interactions.
Science Consultant Agent
The Science Consultant Agent is a web-based Artificial Intelligence (AI) tool that helps practitioners select and implement the most effective modeling strategy for AI-based solutions. It operates through four core components: Questionnaire, Smart Fill, Research-Guided Recommendation, and Prototype Builder. By combining structured questionnaires, literature-backed solution recommendations, and prototype generation, the Science Consultant Agent accelerates development for everyone from Product Managers and Software Developers to Researchers. The full pipeline is illustrated in Figure 1.
☆ Artificial Intelligence-Enabled Holistic Design of Catalysts Tailored for Semiconducting Carbon Nanotube Growth
Catalyst design is crucial for materials synthesis, especially for complex reaction networks. Strategies like collaborative catalytic systems and multifunctional catalysts are effective but face challenges at the nanoscale. Carbon nanotube synthesis contains complicated nanoscale catalytic reactions, thus achieving high-density, high-quality semiconducting CNTs demands innovative catalyst design. In this work, we present a holistic framework integrating machine learning into traditional catalyst design for semiconducting CNT synthesis. It combines knowledge-based insights with data-driven techniques. Three key components, including open-access electronic structure databases for precise physicochemical descriptors, pre-trained natural language processing-based embedding model for higher-level abstractions, and physical - driven predictive models based on experiment data, are utilized. Through this framework, a new method for selective semiconducting CNT synthesis via catalyst - mediated electron injection, tuned by light during growth, is proposed. 54 candidate catalysts are screened, and three with high potential are identified. High-throughput experiments validate the predictions, with semiconducting selectivity exceeding 91% and the FeTiO3 catalyst reaching 98.6%. This approach not only addresses semiconducting CNT synthesis but also offers a generalizable methodology for global catalyst design and nanomaterials synthesis, advancing materials science in precise control.
comment: 16 pages and 4 figures in main text
☆ INTELLECT-3: Technical Report
We present INTELLECT-3, a 106B-parameter Mixture-of-Experts model (12B active) trained with large-scale reinforcement learning on our end-to-end RL infrastructure stack. INTELLECT-3 achieves state of the art performance for its size across math, code, science and reasoning benchmarks, outperforming many larger frontier models. We open-source the model together with the full infrastructure stack used to create it, including RL frameworks, complete recipe, and a wide collection of environments, built with the verifiers library, for training and evaluation from our Environments Hub community platform. Built for this effort, we introduce prime-rl, an open framework for large-scale asynchronous reinforcement learning, which scales seamlessly from a single node to thousands of GPUs, and is tailored for agentic RL with first-class support for multi-turn interactions and tool use. Using this stack, we run both SFT and RL training on top of the GLM-4.5-Air-Base model, scaling RL training up to 512 H200s with high training efficiency.
comment: 27 pages, 10 figures
☆ Staggered Batch Scheduling: Co-optimizing Time-to-First-Token and Throughput for High-Efficiency LLM Inference
The evolution of Large Language Model (LLM) serving towards complex, distributed architectures--specifically the P/D-separated, large-scale DP+EP paradigm--introduces distinct scheduling challenges. Unlike traditional deployments where schedulers can treat instances as black boxes, DP+EP architectures exhibit high internal synchronization costs. We identify that immediate request dispatching in such systems leads to severe in-engine queuing and parallelization bubbles, degrading Time-to-First-Token (TTFT). To address this, we propose Staggered Batch Scheduling (SBS), a mechanism that deliberately buffers requests to form optimal execution batches. This temporal decoupling eliminates internal queuing bubbles without compromising throughput. Furthermore, leveraging the scheduling window created by buffering, we introduce a Load-Aware Global Allocation strategy that balances computational load across DP units for both Prefill and Decode phases. Deployed on a production H800 cluster serving Deepseek-V3, our system reduces TTFT by 30%-40% and improves throughput by 15%-20% compared to state-of-the-art immediate scheduling baselines.
☆ Dual-View Inference Attack: Machine Unlearning Amplifies Privacy Exposure AAAI2026
Machine unlearning is a newly popularized technique for removing specific training data from a trained model, enabling it to comply with data deletion requests. While it protects the rights of users requesting unlearning, it also introduces new privacy risks. Prior works have primarily focused on the privacy of data that has been unlearned, while the risks to retained data remain largely unexplored. To address this gap, we focus on the privacy risks of retained data and, for the first time, reveal the vulnerabilities introduced by machine unlearning under the dual-view setting, where an adversary can query both the original and the unlearned models. From an information-theoretic perspective, we introduce the concept of {privacy knowledge gain} and demonstrate that the dual-view setting allows adversaries to obtain more information than querying either model alone, thereby amplifying privacy leakage. To effectively demonstrate this threat, we propose DVIA, a Dual-View Inference Attack, which extracts membership information on retained data using black-box queries to both models. DVIA eliminates the need to train an attack model and employs a lightweight likelihood ratio inference module for efficient inference. Experiments across different datasets and model architectures validate the effectiveness of DVIA and highlight the privacy risks inherent in the dual-view setting.
comment: Accepeted by AAAI2026
☆ BUILD with Precision: Bottom-Up Inference of Linear DAGs
Learning the structure of directed acyclic graphs (DAGs) from observational data is a central problem in causal discovery, statistical signal processing, and machine learning. Under a linear Gaussian structural equation model (SEM) with equal noise variances, the problem is identifiable and we show that the ensemble precision matrix of the observations exhibits a distinctive structure that facilitates DAG recovery. Exploiting this property, we propose BUILD (Bottom-Up Inference of Linear DAGs), a deterministic stepwise algorithm that identifies leaf nodes and their parents, then prunes the leaves by removing incident edges to proceed to the next step, exactly reconstructing the DAG from the true precision matrix. In practice, precision matrices must be estimated from finite data, and ill-conditioning may lead to error accumulation across BUILD steps. As a mitigation strategy, we periodically re-estimate the precision matrix (with less variables as leaves are pruned), trading off runtime for enhanced robustness. Reproducible results on challenging synthetic benchmarks demonstrate that BUILD compares favorably to state-of-the-art DAG learning algorithms, while offering an explicit handle on complexity.
☆ BayesSum: Bayesian Quadrature in Discrete Spaces
This paper addresses the challenging computational problem of estimating intractable expectations over discrete domains. Existing approaches, including Monte Carlo and Russian Roulette estimators, are consistent but often require a large number of samples to achieve accurate results. We propose a novel estimator, \emph{BayesSum}, which is an extension of Bayesian quadrature to discrete domains. It is more sample efficient than alternatives due to its ability to make use of prior information about the integrand through a Gaussian process. We show this through theory, deriving a convergence rate significantly faster than Monte Carlo in a broad range of settings. We also demonstrate empirically that our proposed method does indeed require fewer samples on several synthetic settings as well as for parameter estimation for Conway-Maxwell-Poisson and Potts models.
☆ AIMM: An AI-Driven Multimodal Framework for Detecting Social-Media-Influenced Stock Market Manipulation
Market manipulation now routinely originates from coordinated social media campaigns, not isolated trades. Retail investors, regulators, and brokerages need tools that connect online narratives and coordination patterns to market behavior. We present AIMM, an AI-driven framework that fuses Reddit activity, bot and coordination indicators, and OHLCV market features into a daily AIMM Manipulation Risk Score for each ticker. The system uses a parquet-native pipeline with a Streamlit dashboard that allows analysts to explore suspicious windows, inspect underlying posts and price action, and log model outputs over time. Due to Reddit API restrictions, we employ calibrated synthetic social features matching documented event characteristics; market data (OHLCV) uses real historical data from Yahoo Finance. This release makes three contributions. First, we build the AIMM Ground Truth dataset (AIMM-GT): 33 labeled ticker-days spanning eight equities, drawing from SEC enforcement actions, community-verified manipulation cases, and matched normal controls. Second, we implement forward-walk evaluation and prospective prediction logging for both retrospective and deployment-style assessment. Third, we analyze lead times and show that AIMM flagged GME 22 days before the January 2021 squeeze peak. The current labeled set is small (33 ticker-days, 3 positive events), but results show preliminary discriminative capability and early warnings for the GME incident. We release the code, dataset schema, and dashboard design to support research on social media-driven market surveillance.
comment: Preprint
☆ TurboDiffusion: Accelerating Video Diffusion Models by 100-200 Times
We introduce TurboDiffusion, a video generation acceleration framework that can speed up end-to-end diffusion generation by 100-200x while maintaining video quality. TurboDiffusion mainly relies on several components for acceleration: (1) Attention acceleration: TurboDiffusion uses low-bit SageAttention and trainable Sparse-Linear Attention (SLA) to speed up attention computation. (2) Step distillation: TurboDiffusion adopts rCM for efficient step distillation. (3) W8A8 quantization: TurboDiffusion quantizes model parameters and activations to 8 bits to accelerate linear layers and compress the model. In addition, TurboDiffusion incorporates several other engineering optimizations. We conduct experiments on the Wan2.2-I2V-14B-720P, Wan2.1-T2V-1.3B-480P, Wan2.1-T2V-14B-720P, and Wan2.1-T2V-14B-480P models. Experimental results show that TurboDiffusion achieves 100-200x speedup for video generation even on a single RTX 5090 GPU, while maintaining comparable video quality. The GitHub repository, which includes model checkpoints and easy-to-use code, is available at https://github.com/thu-ml/TurboDiffusion.
☆ Privacy Blur: Quantifying Privacy and Utility for Image Data Release
Image data collected in the wild often contains private information such as faces and license plates, and responsible data release must ensure that this information stays hidden. At the same time, released data should retain its usefulness for model-training. The standard method for private information obfuscation in images is Gaussian blurring. In this work, we show that practical implementations of Gaussian blurring are reversible enough to break privacy. We then take a closer look at the privacy-utility tradeoffs offered by three other obfuscation algorithms -- pixelization, pixelization and noise addition (DP-Pix), and cropping. Privacy is evaluated by reversal and discrimination attacks, while utility by the quality of the learnt representations when the model is trained on data with obfuscated faces. We show that the most popular industry-standard method, Gaussian blur is the least private of the four -- being susceptible to reversal attacks in its practical low-precision implementations. In contrast, pixelization and pixelization plus noise addition, when used at the right level of granularity, offer both privacy and utility for a number of computer vision tasks. We make our proposed methods together with suggested parameters available in a software package called Privacy Blur.
☆ Scaling Text2SQL via LLM-efficient Schema Filtering with Functional Dependency Graph Rerankers
Most modern Text2SQL systems prompt large language models (LLMs) with entire schemas -- mostly column information -- alongside the user's question. While effective on small databases, this approach fails on real-world schemas that exceed LLM context limits, even for commercial models. The recent Spider 2.0 benchmark exemplifies this with hundreds of tables and tens of thousands of columns, where existing systems often break. Current mitigations either rely on costly multi-step prompting pipelines or filter columns by ranking them against user's question independently, ignoring inter-column structure. To scale existing systems, we introduce \toolname, an open-source, LLM-efficient schema filtering framework that compacts Text2SQL prompts by (i) ranking columns with a query-aware LLM encoder enriched with values and metadata, (ii) reranking inter-connected columns via a lightweight graph transformer over functional dependencies, and (iii) selecting a connectivity-preserving sub-schema with a Steiner-tree heuristic. Experiments on real datasets show that \toolname achieves near-perfect recall and higher precision than CodeS, SchemaExP, Qwen rerankers, and embedding retrievers, while maintaining sub-second median latency and scaling to schemas with 23,000+ columns. Our source code is available at https://github.com/thanhdath/grast-sql.
☆ FOD-Diff: 3D Multi-Channel Patch Diffusion Model for Fiber Orientation Distribution
Diffusion MRI (dMRI) is a critical non-invasive technique to estimate fiber orientation distribution (FOD) for characterizing white matter integrity. Estimating FOD from single-shell low angular resolution dMRI (LAR-FOD) is limited by accuracy, whereas estimating FOD from multi-shell high angular resolution dMRI (HAR-FOD) requires a long scanning time, which limits its applicability. Diffusion models have shown promise in estimating HAR-FOD based on LAR-FOD. However, using diffusion models to efficiently generate HAR-FOD is challenging due to the large number of spherical harmonic (SH) coefficients in FOD. Here, we propose a 3D multi-channel patch diffusion model to predict HAR-FOD from LAR-FOD. We design the FOD-patch adapter by introducing the prior brain anatomy for more efficient patch-based learning. Furthermore, we introduce a voxel-level conditional coordinating module to enhance the global understanding of the model. We design the SH attention module to effectively learn the complex correlations of the SH coefficients. Our experimental results show that our method achieves the best performance in HAR-FOD prediction and outperforms other state-of-the-art methods.
☆ In-Context Multi-Operator Learning with DeepOSets
In-context Learning (ICL) is the remarkable capability displayed by some machine learning models to learn from examples in a prompt, without any further weight updates. ICL had originally been thought to emerge from the self-attention mechanism in autoregressive transformer architectures. DeepOSets is a non-autoregressive, non-attention based neural architecture that combines set learning via the DeepSets architecture with operator learning via Deep Operator Networks (DeepONets). In a previous study, DeepOSets was shown to display ICL capabilities in supervised learning problems. In this paper, we show that the DeepOSets architecture, with the appropriate modifications, is a multi-operator in-context learner that can recover the solution operator of a new PDE, not seen during training, from example pairs of parameter and solution placed in a user prompt, without any weight updates. Furthermore, we show that DeepOSets is a universal uniform approximator over a class of continuous operators, which we believe is the first result of its kind in the literature of scientific machine learning. This means that a single DeepOSets architecture exists that approximates in-context any continuous operator in the class to any fixed desired degree accuracy, given an appropriate number of examples in the prompt. Experiments with Poisson and reaction-diffusion forward and inverse boundary-value problems demonstrate the ability of the proposed model to use in-context examples to predict accurately the solutions corresponding to parameter queries for PDEs not seen during training.
Graph Neural Networks for Interferometer Simulations
In recent years, graph neural networks (GNNs) have shown tremendous promise in solving problems in high energy physics, materials science, and fluid dynamics. In this work, we introduce a new application for GNNs in the physical sciences: instrumentation design. As a case study, we apply GNNs to simulate models of the Laser Interferometer Gravitational-Wave Observatory (LIGO) and show that they are capable of accurately capturing the complex optical physics at play, while achieving runtimes 815 times faster than state of the art simulation packages. We discuss the unique challenges this problem provides for machine learning models. In addition, we provide a dataset of high-fidelity optical physics simulations for three interferometer topologies, which can be used as a benchmarking suite for future work in this direction.
☆ CauSTream: Causal Spatio-Temporal Representation Learning for Streamflow Forecasting
Streamflow forecasting is crucial for water resource management and risk mitigation. While deep learning models have achieved strong predictive performance, they often overlook underlying physical processes, limiting interpretability and generalization. Recent causal learning approaches address these issues by integrating domain knowledge, yet they typically rely on fixed causal graphs that fail to adapt to data. We propose CauStream, a unified framework for causal spatiotemporal streamflow forecasting. CauSTream jointly learns (i) a runoff causal graph among meteorological forcings and (ii) a routing graph capturing dynamic dependencies across stations. We further establish identifiability conditions for these causal structures under a nonparametric setting. We evaluate CauSTream on three major U.S. river basins across three forecasting horizons. The model consistently outperforms prior state-of-the-art methods, with performance gaps widening at longer forecast windows, indicating stronger generalization to unseen conditions. Beyond forecasting, CauSTream also learns causal graphs that capture relationships among hydrological factors and stations. The inferred structures align closely with established domain knowledge, offering interpretable insights into watershed dynamics. CauSTream offers a principled foundation for causal spatiotemporal modeling, with the potential to extend to a wide range of scientific and environmental applications.
comment: Accepted by IEEE Big Data 2025
♻ ☆ TACE: A unified Irreducible Cartesian Tensor Framework for Atomistic Machine Learning
Here, we introduce the Tensor Atomic Cluster Expansion (TACE), a unified framework formulated entirely in Cartesian space, enabling systematic and consistent prediction of arbitrary structure-dependent tensorial properties. TACE achieves this by decomposing atomic environments into a complete hierarchy of irreducible Cartesian tensors, ensuring symmetry-consistent representations that naturally encode invariance and equivariance constraints. Beyond geometry, TACE incorporates universal embeddings that flexibly integrate diverse attributes including computational levels, charges, magnetic moments and field perturbations. This allows explicit control over external invariants and equivariants in the prediction process. Long-range interactions are also accurately described through the Latent Ewald Summation module within the short-range approximation, providing a rigorous yet computationally efficient treatment of electrostatic and dispersion effects. We demonstrate that TACE attains accuracy, stability, and efficiency on par with or surpassing leading equivariant frameworks across finite molecules and extended materials. This includes in-domain and out-of-domain benchmarks, spectra, Hessian, external-field responses, charged and magnetic systems, multi-fidelity training, heterogeneous catalysis, and even superior performance within the uMLIP benchmark. Crucially, TACE bridges scalar and tensorial modeling and establishes a Cartesian-space paradigm that unifies and extends beyond the design space of spherical-tensor-based methods. This work lays the foundation for a new generation of universal atomistic machine learning models capable of systematically capturing the rich interplay of geometry, fields and material properties within a single coherent framework.
♻ ☆ Wrist Photoplethysmography Predicts Dietary Information
Whether wearable photoplethysmography (PPG) contains dietary information remains unknown. We trained a language model on 1.1M meals to predict meal descriptions from PPG, aligning PPG to text. PPG nontrivially predicts meal content; predictability decreases for PPGs farther from meals. This transfers to dietary tasks: PPG increases AUC by 11% for intake and satiety across held-out and independent cohorts, with gains robust to text degradation. Wearable PPG may enable passive dietary monitoring.
comment: 20 pages, 2 figures
♻ ☆ Developing Distance-Aware, and Evident Uncertainty Quantification in Dynamic Physics-Constrained Neural Networks for Robust Bearing Degradation Estimation
Accurate and uncertainty-aware degradation estimation is essential for predictive maintenance in safety-critical systems like rotating machinery with rolling-element bearings. Many existing uncertainty methods lack confidence calibration, are costly to run, are not distance-aware, and fail to generalize under out-of-distribution data. We introduce two distance-aware uncertainty methods for deterministic physics-guided neural networks: PG-SNGP, based on Spectral Normalization Gaussian Process, and PG-SNER, based on Deep Evidential Regression. We apply spectral normalization to the hidden layers so the network preserves distances from input to latent space. PG-SNGP replaces the final dense layer with a Gaussian Process layer for distance-sensitive uncertainty, while PG-SNER outputs Normal Inverse Gamma parameters to model uncertainty in a coherent probabilistic form. We assess performance using standard accuracy metrics and a new distance-aware metric based on the Pearson Correlation Coefficient, which measures how well predicted uncertainty tracks the distance between test and training samples. We also design a dynamic weighting scheme in the loss to balance data fidelity and physical consistency. We test our methods on rolling-element bearing degradation using the PRONOSTIA, XJTU-SY and HUST datasets and compare them with Monte Carlo and Deep Ensemble PGNNs. Results show that PG-SNGP and PG-SNER improve prediction accuracy, generalize reliably under OOD conditions, and remain robust to adversarial attacks and noise.
comment: Under review at Structural health Monitoring - SAGE
♻ ☆ Network-Optimised Spiking Neural Network for Event-Driven Networking
Time-critical networking requires low-latency decisions from sparse and bursty telemetry, where fixed-step neural inference waste computation. We introduce Network-Optimised Spiking (NOS), a two-state neuron whose variables correspond to normalised queue occupancy and a recovery resource. NOS combines a saturating excitability nonlinearity for finite buffers, service and damping leaks, graph-local inputs with per-link gates and delays, and differentiable resets compatible with surrogate gradients and neuromorphic deployment. We establish existence and uniqueness of subthreshold equilibria, derive Jacobian-based local stability tests, and obtain a scalar network stability threshold that separates topology from node physics through a Perron-mode spectral condition. A stochastic arrival model aligned with telemetry smoothing links NOS responses to classical queueing behaviour while explaining increased variability near stability margins. Across chain, star, and scale-free graphs, NOS improves early-warning F1 and detection latency over MLP, RNN, GRU, and temporal-GNN baselines under a common residual-based protocol, while providing practical calibration and stability rules suited to resource-constrained networking deployments. Code and Demos: https://mbilal84.github.io/nos-snn-networking/
comment: 56 pages, 16 figures, 9 tables
♻ ☆ Memory Backdoor Attacks on Neural Networks
Neural networks are often trained on proprietary datasets, making them attractive attack targets. We present a novel dataset extraction method leveraging an innovative training time backdoor attack, allowing a malicious federated learning server to systematically and deterministically extract complete client training samples through a simple indexing process. Unlike prior techniques, our approach guarantees exact data recovery rather than probabilistic reconstructions or hallucinations, provides precise control over which samples are memorized and how many, and shows high capacity and robustness. Infected models output data samples when they receive a patternbased index trigger, enabling systematic extraction of meaningful patches from each clients local data without disrupting global model utility. To address small model output sizes, we extract patches and then recombined them. The attack requires only a minor modification to the training code that can easily evade detection during client-side verification. Hence, this vulnerability represents a realistic FL supply-chain threat, where a malicious server can distribute modified training code to clients and later recover private data from their updates. Evaluations across classifiers, segmentation models, and large language models demonstrate that thousands of sensitive training samples can be recovered from client models with minimal impact on task performance, and a clients entire dataset can be stolen after multiple FL rounds. For instance, a medical segmentation dataset can be extracted with only a 3 percent utility drop. These findings expose a critical privacy vulnerability in FL systems, emphasizing the need for stronger integrity and transparency in distributed training pipelines.
♻ ☆ Online Continual Graph Learning
Continual Learning (CL) aims to incrementally acquire new knowledge while mitigating catastrophic forgetting. Within this setting, Online Continual Learning (OCL) focuses on updating models promptly and incrementally from single or small batches of observations from a data stream. Extending OCL to graph-structured data is crucial, as many real-world networks evolve over time and require timely, online predictions. However, existing continual or streaming graph learning methods typically assume access to entire graph snapshots or multiple passes over tasks, violating the efficiency constraints of the online setting. To address this gap, we introduce the Online Continual Graph Learning (OCGL) setting, which formalizes node-level continual learning on evolving graphs under strict memory and computational budgets. OCGL defines how a model incrementally processes a stream of node-level information while maintaining anytime inference and respecting resource constraints. We further establish a comprehensive benchmark comprising seven datasets and nine CL strategies, suitably adapted to the OCGL setting, enabling a standardized evaluation setup. Finally, we present a minimalistic yet competitive baseline for OCGL, inspired by our benchmarking results, that achieves strong empirical performance with high efficiency.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Bandits with Preference Feedback: A Stackelberg Game Perspective NeurIPS
Bandits with preference feedback present a powerful tool for optimizing unknown target functions when only pairwise comparisons are allowed instead of direct value queries. This model allows for incorporating human feedback into online inference and optimization and has been employed in systems for fine-tuning large language models. The problem is well understood in simplified settings with linear target functions or over finite small domains that limit practical interest. Taking the next step, we consider infinite domains and nonlinear (kernelized) rewards. In this setting, selecting a pair of actions is quite challenging and requires balancing exploration and exploitation at two levels: within the pair, and along the iterations of the algorithm. We propose MAXMINLCB, which emulates this trade-off as a zero-sum Stackelberg game, and chooses action pairs that are informative and yield favorable rewards. MAXMINLCB consistently outperforms existing algorithms and satisfies an anytime-valid rate-optimal regret guarantee. This is due to our novel preference-based confidence sequences for kernelized logistic estimators.
comment: In Proceedings of the 38th Conference on Neural Information Processing Systems (NeurIPS), 30 pages, 8 figures
♻ ☆ Ensembles provably learn equivariance through data augmentation
Recently, it was proved that group equivariance emerges in ensembles of neural networks as the result of full augmentation in the limit of infinitely wide neural networks (neural tangent kernel limit). In this paper, we extend this result significantly. We provide a proof that this emergence does not depend on the neural tangent kernel limit at all. We also consider stochastic settings, and furthermore general architectures. For the latter, we provide a simple sufficient condition on the relation between the architecture and the action of the group for our results to hold. We validate our findings through simple numeric experiments.
comment: v2, significant update, significant rewrite, new results added
♻ ☆ InsurTech innovation using natural language processing
With the rapid rise of InsurTech, traditional insurance companies are increasingly exploring alternative data sources and advanced technologies to sustain their competitive edge. This paper provides both a conceptual overview and practical case studies of natural language processing (NLP) and its emerging applications within insurance operations, focusing on transforming raw, unstructured text into structured data suitable for actuarial analysis and decision-making. Leveraging real-world alternative data provided by an InsurTech industry partner that enriches traditional insurance data sources, we apply various NLP techniques to demonstrate feature de-biasing, feature compression, and industry classification in the commercial insurance context. These enriched, text-derived insights not only add to and refine traditional rating factors for commercial insurance pricing but also offer novel perspectives for assessing underlying risk by introducing novel industry classification techniques. Through these demonstrations, we show that NLP is not merely a supplementary tool but a foundational element of modern, data-driven insurance analytics.
♻ ☆ Gated KalmaNet: A Fading Memory Layer Through Test-Time Ridge Regression
As efficient alternatives to softmax Attention, linear State-Space Models (SSMs) achieve constant memory and linear compute, but maintain only a lossy, fading summary of the past, often leading to inferior performance in recall-oriented tasks. We propose Gated KalmaNet (GKA), a layer that accounts for the full past while maintaining SSM-style efficiency. We ground our approach in the Kalman Filter (KF) framework, which provides a principled solution for optimal inference in dynamical systems. We show that several existing SSM layers (DeltaNet, Gated DeltaNet, and Kimi Delta Attention) are approximations to the KF recurrence that assume identity error covariance, thereby ignoring how past measurements (keys and values) should optimally influence state updates. In contrast, GKA computes the exact Kalman gain by maintaining the full error covariance. Under a steady-state assumption that enables parallelization, this reduces to solving an online ridge regression problem with constant memory and linear compute cost. A critical insight is that standard KF equations are numerically unstable in low-precision environments (like bfloat16) and hard to parallelize on modern hardware. We address this through: (1) adaptive regularization with input-dependent gating to control the condition number of the ridge regression for numerical stability, and (2) Chebyshev Iteration, which we show is more stable than conventional iterative solvers in low-precision settings. We further develop hardware-aware chunk-wise kernels to enable efficient training. Empirically, GKA outperforms existing SSM layers (like Mamba2 and Gated DeltaNet) on short-context tasks and achieves more than 10\% relative improvement on long-context RAG and LongQA tasks up to 128k tokens.
comment: 30 pages, 10 figures
♻ ☆ Breaking the Performance Ceiling in Reinforcement Learning requires Inference Strategies
Reinforcement learning (RL) systems have countless applications, from energy-grid management to protein design. However, such real-world scenarios are often extremely difficult, combinatorial in nature, and require complex coordination between multiple agents. This level of complexity can cause even state-of-the-art RL systems, trained until convergence, to hit a performance ceiling which they are unable to break out of with zero-shot inference. Meanwhile, many digital or simulation-based applications allow for an inference phase that utilises a specific time and compute budget to explore multiple attempts before outputting a final solution. In this work, we show that such an inference phase employed at execution time, and the choice of a corresponding inference strategy, are key to breaking the performance ceiling observed in complex multi-agent RL problems. Our main result is striking: we can obtain up to a 126% and, on average, a 45% improvement over the previous state-of-the-art across 17 tasks, using only a couple seconds of extra wall-clock time during execution. We also demonstrate promising compute scaling properties, supported by over 60k experiments, making it the largest study on inference strategies for complex RL to date. Our experimental data and code are available at https://sites.google.com/view/inference-strategies-rl.
comment: Neurips '25 version (post conference)
♻ ☆ Four-hour thunderstorm nowcasting using a deep diffusion model of satellite data
Convection (thunderstorm) develops rapidly within hours and is highly destructive, posing a significant challenge for nowcasting and resulting in substantial losses to infrastructure and society. After the emergence of artificial intelligence (AI)-based methods, convection nowcasting has experienced rapid advancements, with its performance surpassing that of physics-based numerical weather prediction and other conventional approaches. However, the lead time and coverage of it still leave much to be desired and hardly meet the needs of disaster emergency response. Here, we propose a deep diffusion model for satellite data (DDMS) to establish an AI-based convection nowcasting system. Specifically, DDMS employs diffusion processes to effectively simulate complicated spatiotemporal evolution patterns of convective clouds, achieving more accurate forecasts of convective growth and dissipation over longer lead times. Additionally, it combines geostationary satellite brightness temperature data and domain knowledge from meteorological experts, thereby achieving planetary-scale forecast coverage. During long-term tests and objective validation based on the FengYun-4A satellite, our system achieves, for the first time, effective convection nowcasting up to 4 hours, with broad coverage (about 20,000,000 km2), remarkable accuracy, and high resolution (15 minutes; 4 km). Its performance reaches a new height in convection nowcasting compared to the existing models. In terms of application, our system is highly transferable with the potential to collaborate with multiple satellites for global convection nowcasting. Furthermore, our results highlight the remarkable capabilities of diffusion models in convective clouds forecasting, as well as the significant value of geostationary satellite data when empowered by AI technologies.
♻ ☆ Error Estimate and Convergence Analysis for Data Valuation
Data valuation quantifies data importance, but existing methods cannot ensure validity in a single training process. The neural dynamic data valuation (NDDV) method [3] addresses this limitation. Based on NDDV, we are the first to explore error estimation and convergence analysis in data valuation. Under Lipschitz and smoothness assumptions, we derive quadratic error bounds for loss differences that scale inversely with time steps and quadratically with control variations, ensuring stability. We also prove that the expected squared gradient norm for the training loss vanishes asymptotically, and that the meta loss converges sublinearly over iterations. In particular, NDDV achieves sublinear convergence.
comment: 7 pages, 3 figure
♻ ☆ Synthetic Electrogram Generation with Variational Autoencoders for ECGI
Atrial fibrillation (AF) is the most prevalent sustained cardiac arrhythmia, and its clinical assessment requires accurate characterization of atrial electrical activity. Noninvasive electrocardiographic imaging (ECGI) combined with deep learning (DL) approaches for estimating intracardiac electrograms (EGMs) from body surface potentials (BSPMs) has shown promise, but progress is hindered by the limited availability of paired BSPM-EGM datasets. To address this limitation, we investigate variational autoencoders (VAEs) for the generation of synthetic multichannel atrial EGMs. Two models are proposed: a sinus rhythm-specific VAE (VAE-S) and a class-conditioned VAE (VAE-C) trained on both sinus rhythm and AF signals. Generated EGMs are evaluated using morphological, spectral, and distributional similarity metrics. VAE-S achieves higher fidelity with respect to in silico EGMs, while VAE-C enables rhythm-specific generation at the expense of reduced sinus reconstruction quality. As a proof of concept, the generated EGMs are used for data augmentation in a downstream noninvasive EGM reconstruction task, where moderate augmentation improves estimation performance. These results demonstrate the potential of VAE-based generative modeling to alleviate data scarcity and enhance deep learning-based ECGI pipelines.
comment: Corrected co-author details
♻ ☆ Evaluating and Mitigating Errors in LLM-Generated Web API Integrations
API integration is a cornerstone of our digital infrastructure, enabling software systems to connect and interact. However, as shown by many studies, writing or generating correct code to invoke APIs, particularly web APIs, is challenging. Although large language models (LLMs) have become popular in software development, their effectiveness in automating the generation of web API integration code remains unexplored. In order to address this, we present WAPIIBench, a dataset and evaluation pipeline designed to assess the ability of LLMs to generate web API invocation code. Our experiments with several open-source LLMs reveal that generating API invocations poses a significant challenge, resulting in hallucinated endpoints, incorrect argument usage, and other errors. None of the evaluated open-source models was able to solve more than 40% of the tasks. Motivated by those findings, we explore the potential of constrained decoding for generating API invocations. To this end, we propose an automatic translation from API specifications to constraints. Our approach prevents violations of API usage rules and significantly increases the overall correctness of the generated code, on average by 90% and 135%, depending on the provided starter code.
comment: Extended journal version of our paper published at AIware 2025 (arXiv:2509.20172v5)
♻ ☆ DCFO: Density-Based Counterfactuals for Outliers - Additional Material
Outlier detection identifies data points that significantly deviate from the majority of the data distribution. Explaining outliers is crucial for understanding the underlying factors that contribute to their detection, validating their significance, and identifying potential biases or errors. Effective explanations provide actionable insights, facilitating preventive measures to avoid similar outliers in the future. Counterfactual explanations clarify why specific data points are classified as outliers by identifying minimal changes required to alter their prediction. Although valuable, most existing counterfactual explanation methods overlook the unique challenges posed by outlier detection, and fail to target classical, widely adopted outlier detection algorithms. Local Outlier Factor (LOF) is one the most popular unsupervised outlier detection methods, quantifying outlierness through relative local density. Despite LOF's widespread use across diverse applications, it lacks interpretability. To address this limitation, we introduce Density-based Counterfactuals for Outliers (DCFO), a novel method specifically designed to generate counterfactual explanations for LOF. DCFO partitions the data space into regions where LOF behaves smoothly, enabling efficient gradient-based optimisation. Extensive experimental validation on 50 OpenML datasets demonstrates that DCFO consistently outperforms benchmarked competitors, offering superior proximity and validity of generated counterfactuals.
♻ ☆ Closed-Form Feedback-Free Learning with Forward Projection
State-of-the-art backpropagation-free learning methods employ local error feedback to direct iterative optimisation via gradient descent. Here, we examine the more restrictive setting where retrograde communication from neuronal outputs is unavailable for pre-synaptic weight optimisation. We propose Forward Projection (FP), a randomised closed-form training method requiring only a single forward pass over the dataset without retrograde communication. FP generates target values for pre-activation membrane potentials through randomised nonlinear projections of pre-synaptic inputs and labels. Local loss functions are optimised using closed-form regression without feedback from downstream layers. A key advantage is interpretability: membrane potentials in FP-trained networks encode information interpretable layer-wise as label predictions. Across several biomedical datasets, FP achieves generalisation comparable to gradient descent-based local learning methods while requiring only a single forward propagation step, yielding significant training speedup. In few-shot learning tasks, FP produces more generalisable models than backpropagation-optimised alternatives, with local interpretation functions successfully identifying clinically salient diagnostic features.
comment: 43 pages, 7 figures. Study code available at https://github.com/robertoshea/forward_projection. Study data available at https://data.mendeley.com/datasets/fb7xddyxs4/2
♻ ☆ Cornserve: Efficiently Serving Any-to-Any Multimodal Models
We present Cornserve, an efficient online serving system for an emerging class of multimodal models called Any-to-Any models. Any-to-Any models accept combinations of text and multimodal data (e.g., image, video, audio) as input and also generate combinations of text and multimodal data as output, introducing request type, computation path, and computation scaling heterogeneity in model serving. Cornserve allows model developers to describe the computation graph of generic Any-to-Any models, which consists of heterogeneous components such as multimodal encoders, autoregressive models like Large Language Models (LLMs), and multimodal generators like Diffusion Transformers (DiTs). Given this, Cornserve's planner automatically finds an optimized deployment plan for the model, including whether and how to disaggregate the model into smaller components based on model and workload characteristics. Cornserve's distributed runtime then executes the model per the plan, efficiently handling Any-to-Any model heterogeneity during online serving. Evaluations show that Cornserve can efficiently serve diverse Any-to-Any models and workloads, delivering up to 3.81$\times$ throughput improvement and up to 5.79$\times$ tail latency reduction over existing solutions.
comment: Open-source at https://github.com/cornserve-ai/cornserve
♻ ☆ ModalSurv: Investigating opportunities and limitations of multimodal deep survival learning in prostate and bladder cancer
Accurate survival prediction is essential for personalised cancer treatment. We propose ModalSurv, a multimodal deep survival framework integrating clinical, MRI, histopathology, and RNA-sequencing data via modality-specific projections and cross-attention fusion. On the CHIMERA Grand Challenge datasets, ModalSurv achieved a C-index of 0.7402 (1st) for prostate and 0.5740 (5th) for bladder cancer. Notably, clinical features alone outperformed multimodal models on external tests, highlighting challenges of limited multimodal alignment and potential overfitting. Local validation showed multimodal gains but limited generalisation. ModalSurv provides a systematic evaluation of multimodal survival modelling, underscoring both its promise and current limitations for scalable, generalisable cancer prognosis.
comment: 4 pages, 1 figure, 2 tables
♻ ☆ Hierarchical Schedule Optimization for Fast and Robust Diffusion Model Sampling AAAI 2026
Diffusion probabilistic models have set a new standard for generative fidelity but are hindered by a slow iterative sampling process. A powerful training-free strategy to accelerate this process is Schedule Optimization, which aims to find an optimal distribution of timesteps for a fixed and small Number of Function Evaluations (NFE) to maximize sample quality. To this end, a successful schedule optimization method must adhere to four core principles: effectiveness, adaptivity, practical robustness, and computational efficiency. However, existing paradigms struggle to satisfy these principles simultaneously, motivating the need for a more advanced solution. To overcome these limitations, we propose the Hierarchical-Schedule-Optimizer (HSO), a novel and efficient bi-level optimization framework. HSO reframes the search for a globally optimal schedule into a more tractable problem by iteratively alternating between two synergistic levels: an upper-level global search for an optimal initialization strategy and a lower-level local optimization for schedule refinement. This process is guided by two key innovations: the Midpoint Error Proxy (MEP), a solver-agnostic and numerically stable objective for effective local optimization, and the Spacing-Penalized Fitness (SPF) function, which ensures practical robustness by penalizing pathologically close timesteps. Extensive experiments show that HSO sets a new state-of-the-art for training-free sampling in the extremely low-NFE regime. For instance, with an NFE of just 5, HSO achieves a remarkable FID of 11.94 on LAION-Aesthetics with Stable Diffusion v2.1. Crucially, this level of performance is attained not through costly retraining, but with a one-time optimization cost of less than 8 seconds, presenting a highly practical and efficient paradigm for diffusion model acceleration.
comment: Preprint, accepted to AAAI 2026
♻ ☆ Bayesian model selection and misspecification testing in imaging inverse problems only from noisy and partial measurements
Modern imaging techniques heavily rely on Bayesian statistical models to address difficult image reconstruction and restoration tasks. This paper addresses the objective evaluation of such models in settings where ground truth is unavailable, with a focus on model selection and misspecification diagnosis. Existing unsupervised model evaluation methods are often unsuitable for computational imaging due to their high computational cost and incompatibility with modern image priors defined implicitly via machine learning models. We herein propose a general methodology for unsupervised model selection and misspecification detection in Bayesian imaging sciences, based on a novel combination of Bayesian cross-validation and data fission, a randomized measurement splitting technique. The approach is compatible with any Bayesian imaging sampler, including diffusion and plug-and-play samplers. We demonstrate the methodology through experiments involving various scoring rules and types of model misspecification, where we achieve excellent selection and detection accuracy with a low computational cost.
♻ ☆ Artificial Intelligence for Microbiology and Microbiome Research
Advancements in artificial intelligence (AI) have transformed many scientific fields, with microbiology and microbiome research now experiencing significant breakthroughs through machine learning applications. This review provides a comprehensive overview of AI-driven approaches tailored for microbiology and microbiome studies, emphasizing both technical advancements and biological insights. We begin with an introduction to foundational AI techniques, including primary machine learning paradigms and various deep learning architectures, and offer guidance on choosing between traditional machine learning and sophisticated deep learning methods based on specific research goals. The primary section on application scenarios spans diverse research areas, from taxonomic profiling, functional annotation \& prediction, microbe-X interactions, microbial ecology, metabolic modeling, precision nutrition, clinical microbiology, to prevention \& therapeutics. Finally, we discuss challenges in this field and highlight some recent breakthroughs. Together, this review underscores AI's transformative role in microbiology and microbiome research, paving the way for innovative methodologies and applications that enhance our understanding of microbial life and its impact on our planet and our health.
♻ ☆ nanoTabPFN: A Lightweight and Educational Reimplementation of TabPFN
Tabular foundation models such as TabPFN have revolutionized predictive machine learning for tabular data. At the same time, the driving factors of this revolution are hard to understand. Existing open-source tabular foundation models are implemented in complicated pipelines boasting over 10,000 lines of code, lack architecture documentation or code quality. In short, the implementations are hard to understand, not beginner-friendly, and complicated to adapt for new experiments. We introduce nanoTabPFN, a simplified and lightweight implementation of the TabPFN v2 architecture and a corresponding training loop that uses pre-generated training data. nanoTabPFN makes tabular foundation models more accessible to students and researchers alike. For example, restricted to a small data setting it achieves a performance comparable to traditional machine learning baselines within one minute of pre-training on a single GPU (160,000x faster than TabPFN v2 pretraining). This eliminated requirement of large computational resources makes pre-training tabular foundation models accessible for educational purposes. Our code is available at https://github.com/automl/nanoTabPFN.
♻ ☆ UAMDP: Uncertainty-Aware Markov Decision Process for Risk-Constrained Reinforcement Learning from Probabilistic Forecasts
Sequential decisions in volatile, high-stakes settings require more than maximizing expected return; they require principled uncertainty management. This paper presents the Uncertainty-Aware Markov Decision Process (UAMDP), a unified framework that couples Bayesian forecasting, posterior-sampling reinforcement learning, and planning under a conditional value-at-risk (CVaR) constraint. In a closed loop, the agent updates its beliefs over latent dynamics, samples plausible futures via Thompson sampling, and optimizes policies subject to preset risk tolerances. We establish regret bounds that converge to the Bayes-optimal benchmark under standard regularity conditions. We evaluate UAMDP in two domains including high-frequency equity trading and retail inventory control, both marked by structural uncertainty and economic volatility. Relative to strong deep learning baselines, UAMDP improves long-horizon forecasting accuracy (RMSE decreases by up to 25% and sMAPE by 32%), and these gains translate into economic performance: the trading Sharpe ratio rises from 1.54 to 1.74 while maximum drawdown is roughly halved. These results show that integrating calibrated probabilistic modeling, exploration aligned with posterior uncertainty, and risk-aware control yields a robust, generalizable approach to safer and more profitable sequential decision-making.
♻ ☆ AuON: A Linear-time Alternative to Orthogonal Momentum Updates
Orthogonal momentum gradient updates have emerged to overcome the limitations of vector-based optimizers like Adam. The vector-based optimizer Adam suffers from high memory costs and ill-conditioned momentum gradient updates. However, traditional Orthogonal momentum approaches, such as SVD/QR decomposition, suffer from high computational and memory costs and underperform compared to well-tuned SGD with momentum. Recent advances, such as Muon, improve efficiency by applying momentum before orthogonalization and approximate orthogonal matrices via Newton-Schulz iterations, which gives better GPU utilization, active high TFLOPS, and reduces memory usage by up to 3x. Nevertheless, Muon(Vanilla) suffers from exploding attention logits and has cubic computation complexity. In this paper, we deep dive into orthogonal momentum gradient updates to find the main properties that help Muon achieve remarkable performance. We propose AuON (Alternative Unit-norm momentum updates by Normalized nonlinear scaling), a linear-time optimizer that achieves strong performance without approximate orthogonal matrices, while preserving structural alignment and reconditioning ill-posed updates. AuON has an automatic "emergency brake" to handle exploding attention logits. We further introduce a hybrid variant, Hybrid-AuON, that applies the linear transformations with Newton-Schulz iterations, which outperforms Muon in the language modeling tasks. Code is available at: https://github.com/ryyzn9/AuON
♻ ☆ Matérn Kernels for Tunable Implicit Surface Reconstruction ICLR'25
We propose to use the family of Matérn kernels for implicit surface reconstruction, building upon the recent success of kernel methods for 3D reconstruction of oriented point clouds. As we show from a theoretical and practical perspective, Matérn kernels have some appealing properties which make them particularly well suited for surface reconstruction -- outperforming state-of-the-art methods based on the arc-cosine kernel while being significantly easier to implement, faster to compute, and scalable. Being stationary, we demonstrate that Matérn kernels allow for tunable surface reconstruction in the same way as Fourier feature mappings help coordinate-based MLPs overcome spectral bias. Moreover, we theoretically analyze Matérn kernels' connection to SIREN networks as well as their relation to previously employed arc-cosine kernels. Finally, based on recently introduced Neural Kernel Fields, we present data-dependent Matérn kernels and conclude that especially the Laplace kernel (being part of the Matérn family) is extremely competitive, performing almost on par with state-of-the-art methods in the noise-free case while having a more than five times shorter training time.
comment: ICLR'25
♻ ☆ Optimization with Access to Auxiliary Information
We investigate the fundamental optimization question of minimizing a target function $f$, whose gradients are expensive to compute or have limited availability, given access to some auxiliary side function $h$ whose gradients are cheap or more available. This formulation captures many settings of practical relevance, such as i) re-using batches in SGD, ii) transfer learning, iii) federated learning, iv) training with compressed models/dropout, Et cetera. We propose two generic new algorithms that apply in all these settings; we also prove that we can benefit from this framework under the Hessian similarity assumption between the target and side information. A benefit is obtained when this similarity measure is small; we also show a potential benefit from stochasticity when the auxiliary noise is correlated with that of the target function.
comment: Published in Transactions on Machine Learning Research (02/2024)
♻ ☆ Trust Me, I Know This Function: Hijacking LLM Static Analysis using Bias
Large Language Models (LLMs) are increasingly trusted to perform automated code review and static analysis at scale, supporting tasks such as vulnerability detection, summarization, and refactoring. In this paper, we identify and exploit a critical vulnerability in LLM-based code analysis: an abstraction bias that causes models to overgeneralize familiar programming patterns and overlook small, meaningful bugs. Adversaries can exploit this blind spot to hijack the control flow of the LLM's interpretation with minimal edits and without affecting actual runtime behavior. We refer to this attack as a Familiar Pattern Attack (FPA). We develop a fully automated, black-box algorithm that discovers and injects FPAs into target code. Our evaluation shows that FPAs are not only effective against basic and reasoning models, but are also transferable across model families (OpenAI, Anthropic, Google), and universal across programming languages (Python, C, Rust, Go). Moreover, FPAs remain effective even when models are explicitly warned about the attack via robust system prompts. Finally, we explore positive, defensive uses of FPAs and discuss their broader implications for the reliability and safety of code-oriented LLMs.
♻ ☆ Asymptotic regularity of a generalised stochastic Halpern scheme
We provide abstract, general and highly uniform rates of asymptotic regularity for a generalized stochastic Halpern-style iteration, which incorporates a second mapping in the style of a Krasnoselskii-Mann iteration. This iteration is general in two ways: First, it incorporates stochasticity completely abstractly, rather than fixing a sampling method; second, it includes as special cases stochastic versions of various schemes from the optimization literature, including Halpern's iteration as well as a Krasnoselskii-Mann iteration with Tikhonov regularization terms in the sense of Boţ, Csetnek and Meier (where this stochastic variant of the latter is considered for the first time in this paper). For these specific cases, we obtain linear rates of asymptotic regularity, matching (or improving) the currently best known rates for these iterations in stochastic optimization, and quadratic rates of asymptotic regularity are obtained in the context of inner product spaces for the general iteration. We conclude by discussing how variance can be managed in practice through sampling methods in the style of minibatching, how our convergence rates can be adapted to provide oracle complexity bounds, and by sketching how the schemes presented here can be instantiated in the context of reinforcement learning to yield novel methods for Q-learning.
comment: 33 pages
♻ ☆ Non-Resolution Reasoning (NRR): A Computational Framework for Contextual Identity and Ambiguity Preservation
Current artificial intelligence systems, despite remarkable capabilities in text generation and pattern recognition, exhibit a fundamental architectural limitation: they resolve ambiguity prematurely. This premature semantic collapse -- the tendency to collapse multiple valid interpretations into a single output -- stems from classical identity assumptions embedded in standard neural architectures. We propose Non-Resolution Reasoning (NRR), a computational framework that treats ambiguity retention as a valid reasoning mode rather than a defect to be eliminated. NRR introduces three core principles: (1) Non-Identity ($A \neq A$) -- the same symbol refers to different entities across contexts; (2) Approximate Identity ($A \approx A$) -- entities share partial structural overlap without being identical; and (3) Non-Resolution -- conflicting interpretations can coexist without forced convergence. We formalize these principles through three architectural components: Multi-Vector Embeddings for context-dependent representation, Non-Collapsing Attention for parallel interpretation retention, and Contextual Identity Tracking (CIT) for maintaining $A \neq A$ across inference. We demonstrate NRR's advantages through case studies in paradox handling, creative generation, and context-dependent reasoning. Crucially, we provide a minimal empirical validation on a synthetic context-shift task where an NRR-lite model achieves 90.9% out-of-distribution accuracy compared to 9.1% for standard architectures, demonstrating that ambiguity preservation enables structural generalization. NRR challenges the assumption that meaning must collapse to be useful, offering a foundation for AI systems capable of sophisticated ambiguity handling and creative reasoning. The question is not whether AI should resolve ambiguity, but when, how, and under whose control.
comment: 7 pages, 2 figures, ORCID: 0009-0006-4715-9176
♻ ☆ Mirror Descent Policy Optimisation for Robust Constrained Markov Decision Processes
Safety is an essential requirement for reinforcement learning systems. The newly emerging framework of robust constrained Markov decision processes allows learning policies that satisfy long-term constraints while providing guarantees under epistemic uncertainty. This paper presents mirror descent policy optimisation for robust constrained Markov decision processes, making use of policy gradient techniques to optimise both the policy (as a maximiser) and the transition kernel (as an adversarial minimiser) on the Lagrangian representing a constrained Markov decision process. Our proposed algorithm obtains an $\tilde{\mathcal{O}}\left(1/T^{1/3}\right)$ convergence rate in the sample-based robust constrained Markov decision process setting. The paper also contributes an algorithm for approximate gradient descent in the space of transition kernels, which is of independent interest for designing adversarial environments in general Markov decision processes. Experiments confirm the benefits of mirror descent policy optimisation in constrained and unconstrained optimisation, and significant improvements are observed in robustness tests when compared to baseline policy optimisation algorithms.
♻ ☆ Scaling Laws for Black box Adversarial Attacks
Adversarial examples exhibit cross-model transferability, enabling threatening black-box attacks on commercial models. Model ensembling, which attacks multiple surrogate models, is a known strategy to improve this transferability. However, prior studies typically use small, fixed ensembles, which leaves open an intriguing question of whether scaling the number of surrogate models can further improve black-box attacks. In this work, we conduct the first large-scale empirical study of this question. We show that by resolving gradient conflict with advanced optimizers, we discover a robust and universal log-linear scaling law through both theoretical analysis and empirical evaluations: the Attack Success Rate (ASR) scales linearly with the logarithm of the ensemble size $T$. We rigorously verify this law across standard classifiers, SOTA defenses, and MLLMs, and find that scaling distills robust, semantic features of the target class. Consequently, we apply this fundamental insight to benchmark SOTA MLLMs. This reveals both the attack's devastating power and a clear robustness hierarchy: we achieve 80\%+ transfer attack success rate on proprietary models like GPT-4o, while also highlighting the exceptional resilience of Claude-3.5-Sonnet. Our findings urge a shift in focus for robustness evaluation: from designing intricate algorithms on small ensembles to understanding the principled and powerful threat of scaling.
♻ ☆ Intervention Efficiency and Perturbation Validation Framework: Capacity-Aware and Robust Clinical Model Selection under the Rashomon Effect AAAI 2026
In clinical machine learning, the coexistence of multiple models with comparable performance -- a manifestation of the Rashomon Effect -- poses fundamental challenges for trustworthy deployment and evaluation. Small, imbalanced, and noisy datasets, coupled with high-dimensional and weakly identified clinical features, amplify this multiplicity and make conventional validation schemes unreliable. As a result, selecting among equally performing models becomes uncertain, particularly when resource constraints and operational priorities are not considered by conventional metrics like F1 score. To address these issues, we propose two complementary tools for robust model assessment and selection: Intervention Efficiency (IE) and the Perturbation Validation Framework (PVF). IE is a capacity-aware metric that quantifies how efficiently a model identifies actionable true positives when only limited interventions are feasible, thereby linking predictive performance with clinical utility. PVF introduces a structured approach to assess the stability of models under data perturbations, identifying models whose performance remains most invariant across noisy or shifted validation sets. Empirical results on synthetic and real-world healthcare datasets show that using these tools facilitates the selection of models that generalize more robustly and align with capacity constraints, offering a new direction for tackling the Rashomon Effect in clinical settings.
comment: Accepted to the Workshop on Navigating Model Uncertainty and the Rashomon Effect: From Theory and Tools to Applications and Impact (AAAI 2026)
♻ ☆ Models That Prove Their Own Correctness NeurIPS 2025
How can we trust the correctness of a learned model on a particular input of interest? Model accuracy is typically measured on average over a distribution of inputs, giving no guarantee for any fixed input. This paper proposes a theoretically-founded solution to this problem: to train Self-Proving models that prove the correctness of their output to a verification algorithm $V$ via an Interactive Proof. Self-Proving models satisfy that, with high probability over an input sampled from a given distribution, the model generates a correct output and successfully proves its correctness to $V$. The soundness property of $V$ guarantees that, for every input, no model can convince $V$ of the correctness of an incorrect output. Thus, a Self-Proving model proves correctness of most of its outputs, while all incorrect outputs (of any model) are detected by $V$. We devise and analyze two generic methods for learning Self-Proving models: Transcript Learning (TL) which relies on access to transcripts of accepting interactions, and Reinforcement Learning from Verifier Feedback (RLVF) which trains a model by emulating interactions with the verifier.
comment: NeurIPS 2025
♻ ☆ Stylized Synthetic Augmentation further improves Corruption Robustness
This paper proposes a training data augmentation pipeline that combines synthetic image data with neural style transfer in order to address the vulnerability of deep vision models to common corruptions. We show that although applying style transfer on synthetic images degrades their quality with respect to the common FID metric, these images are surprisingly beneficial for model training. We conduct a systematic empirical analysis of the effects of both augmentations and their key hyperparameters on the performance of image classifiers. Our results demonstrate that stylization and synthetic data complement each other well and can be combined with popular rule-based data augmentation techniques such as TrivialAugment, while not working with others. Our method achieves state-of-the-art corruption robustness on several small-scale image classification benchmarks, reaching 93.54%, 74.9% and 50.86% robust accuracy on CIFAR-10-C, CIFAR-100-C and TinyImageNet-C, respectively
comment: Accepted at VISAPP 2026 conference
♻ ☆ Iterative Feature Exclusion Ranking for Deep Tabular Learning
Tabular data is a common format for storing information in rows and columns to represent data entries and their features. Although deep neural networks have become the main approach for modeling a wide range of domains including computer vision and NLP, many of them are not well-suited for tabular data. Recently, a few deep learning models have been proposed for deep tabular learning, featuring an internal feature selection mechanism with end-to-end gradient-based optimization. However, their feature selection mechanisms are unidimensional, and hence fail to account for the contextual dependence of feature importance, potentially overlooking crucial interactions that govern complex tasks. In addition, they overlook the bias of high-impact features and the risk associated with the limitations of attention generalization. To address this limitation, this study proposes a novel iterative feature exclusion module that enhances the feature importance ranking in tabular data. The proposed module iteratively excludes each feature from the input data and computes the attention scores, which represent the impact of the features on the prediction. By aggregating the attention scores from each iteration, the proposed module generates a refined representation of feature importance that captures both global and local interactions between features. The effectiveness of the proposed module is evaluated on four public datasets. The results demonstrate that the proposed module consistently outperforms state-of-the-art methods and baseline models in feature ranking and classification tasks. The code is publicly available at https://github.com/abaraka2020/Iterative-Feature-Exclusion-Ranking-Module and https://github.com/mohalim/IFENet
comment: This manuscript has been published in Knowledge and Information Systems
♻ ☆ GeoGraph: Geometric and Graph-based Ensemble Descriptors for Intrinsically Disordered Proteins NeurIPS
While deep learning has revolutionized the prediction of rigid protein structures, modelling the conformational ensembles of Intrinsically Disordered Proteins (IDPs) remains a key frontier. Current AI paradigms present a trade-off: Protein Language Models (PLMs) capture evolutionary statistics but lack explicit physical grounding, while generative models trained to model full ensembles are computationally expensive. In this work we critically assess these limits and propose a path forward. We introduce GeoGraph, a simulation-informed surrogate trained to predict ensemble-averaged statistics of residue-residue contact-map topology directly from sequence. By featurizing coarse-grained molecular dynamics simulations into residue- and sequence-level graph descriptors, we create a robust and information-rich learning target. Our evaluation demonstrates that this approach yields representations that are more predictive of key biophysical properties than existing methods.
comment: Accepted at AI4Science and ML4PS NeurIPS Workshops 2025. v2: comparison with Human-IDRome model and link to github added
♻ ☆ Toward Closed-loop Molecular Discovery via Language Model, Property Alignment and Strategic Search
Drug discovery is a time-consuming and expensive process, with traditional high-throughput and docking-based virtual screening hampered by low success rates and limited scalability. Recent advances in generative modelling, including autoregressive, diffusion, and flow-based approaches, have enabled de novo ligand design beyond the limits of enumerative screening. Yet these models often suffer from inadequate generalization, limited interpretability, and an overemphasis on binding affinity at the expense of key pharmacological properties, thereby restricting their translational utility. Here we present Trio, a molecular generation framework integrating fragment-based molecular language modeling, reinforcement learning, and Monte Carlo tree search, for effective and interpretable closed-loop targeted molecular design. Through the three key components, Trio enables context-aware fragment assembly, enforces physicochemical and synthetic feasibility, and guides a balanced search between the exploration of novel chemotypes and the exploitation of promising intermediates within protein binding pockets. Experimental results show that Trio reliably achieves chemically valid and pharmacologically enhanced ligands, outperforming state-of-the-art approaches with improved binding affinity (+7.85%), drug-likeness (+11.10%) and synthetic accessibility (+12.05%), while expanding molecular diversity more than fourfold. By combining generalization, plausibility, and interpretability, Trio establishes a closed-loop generative paradigm that redefines how chemical space can be navigated, offering a transformative foundation for the next era of AI-driven drug discovery.
comment: 21 pages, 5 figures
♻ ☆ Tuning for Two Adversaries: Enhancing the Robustness Against Transfer and Query-Based Attacks using Hyperparameter Tuning AAAI
In this paper, we present the first detailed analysis of how training hyperparameters -- such as learning rate, weight decay, momentum, and batch size -- influence robustness against both transfer-based and query-based attacks. Supported by theory and experiments, our study spans a variety of practical deployment settings, including centralized training, ensemble learning, and distributed training. We uncover a striking dichotomy: for transfer-based attacks, decreasing the learning rate significantly enhances robustness by up to $64\%$. In contrast, for query-based attacks, increasing the learning rate consistently leads to improved robustness by up to $28\%$ across various settings and data distributions. Leveraging these findings, we explore -- for the first time -- the training hyperparameter space to jointly enhance robustness against both transfer-based and query-based attacks. Our results reveal that distributed models benefit the most from hyperparameter tuning, achieving a remarkable tradeoff by simultaneously mitigating both attack types more effectively than other training setups.
comment: To appear in the Proceedings of the AAAI Conference on Artificial Intelligence (AAAI) 2026
♻ ☆ PILA: Physics-Informed Low Rank Augmentation for Interpretable Earth Observation
Physically meaningful representations are essential for Earth Observation (EO), yet existing physical models are often simplified and incomplete. This leads to discrepancies between simulation and observations that hinder reliable forward model inversion. Common approaches to EO inversion either ignored this incompleteness or relied on case-specific preprocessing. More recent methods use physics-informed autoencoders but depend on auxiliary variables that are difficult to interpret and multiple regularizers that are difficult to balance. We propose Physics-Informed Low-Rank Augmentation (PILA), a framework that augments incomplete physical models using a learnable low-rank residual to improve flexibility, while remaining close to the governing physics. We evaluate PILA on two EO inverse problems involving diverse physical processes: forest radiative transfer inversion from optical remote sensing; and volcanic deformation inversion from Global Navigation Satellite Systems (GNSS) displacement data. Across different domains, PILA yields more accurate and interpretable physical variables. For forest spectral inversion, it improves the separation of tree species and, compared to ground measurements, reduces prediction errors by 40-71\% relative to the state-of-the-art. For volcanic deformation, PILA's recovery of variables captures a major inflation event at the Akutan volcano in 2008, and estimates source depth, volume change, and displacement patterns that are consistent with prior studies that however required substantial additional preprocessing. Finally, we analyse the effects of model rank, observability, and physical priors, and suggest that PILA may offer an effective general pathway for inverting incomplete physical models even beyond the domain of Earth Observation. The code is available at https://github.com/yihshe/PILA.git.
♻ ☆ Conflicting Biases at the Edge of Stability: Norm versus Sharpness Regularization
A widely believed explanation for the remarkable generalization capacities of overparameterized neural networks is that the optimization algorithms used for training induce an implicit bias towards benign solutions. To grasp this theoretically, recent works examine gradient descent and its variants in simplified training settings, often assuming vanishing learning rates. These studies reveal various forms of implicit regularization, such as $\ell_1$-norm minimizing parameters in regression and max-margin solutions in classification. Concurrently, empirical findings show that moderate to large learning rates exceeding standard stability thresholds lead to faster, albeit oscillatory, convergence in the so-called Edge-of-Stability regime, and induce an implicit bias towards minima of low sharpness (norm of training loss Hessian). In this work, we argue that a comprehensive understanding of the generalization performance of gradient descent requires analyzing the interaction between these various forms of implicit regularization. We empirically demonstrate that the learning rate balances between low parameter norm and low sharpness of the trained model. We furthermore prove for diagonal linear networks trained on a simple regression task that neither implicit bias alone minimizes the generalization error. These findings demonstrate that focusing on a single implicit bias is insufficient to explain good generalization, and they motivate a broader view of implicit regularization that captures the dynamic trade-off between norm and sharpness induced by non-negligible learning rates.
♻ ☆ Masked Diffusion for Generative Recommendation
Generative recommendation (GR) with semantic IDs (SIDs) has emerged as a promising alternative to traditional recommendation approaches due to its performance gains, capitalization on semantic information provided through language model embeddings, and inference and storage efficiency. Existing GR with SIDs works frame the probability of a sequence of SIDs corresponding to a user's interaction history using autoregressive modeling. While this has led to impressive next item prediction performances in certain settings, these autoregressive GR with SIDs models suffer from expensive inference due to sequential token-wise decoding, potentially inefficient use of training data and bias towards learning short-context relationships among tokens. Inspired by recent breakthroughs in NLP, we propose to instead model and learn the probability of a user's sequence of SIDs using masked diffusion. Masked diffusion employs discrete masking noise to facilitate learning the sequence distribution, and models the probability of masked tokens as conditionally independent given the unmasked tokens, allowing for parallel decoding of the masked tokens. We demonstrate through thorough experiments that our proposed method consistently outperforms autoregressive modeling. This performance gap is especially pronounced in data-constrained settings and in terms of coarse-grained recall, consistent with our intuitions. Moreover, our approach allows the flexibility of predicting multiple SIDs in parallel during inference while maintaining superior performance to autoregressive modeling.
comment: 25 pages
♻ ☆ Failure Modes of Maximum Entropy RLHF
In this paper, we show that Simple Preference Optimization (SimPO) can be derived as Maximum Entropy Reinforcement Learning, providing a theoretical foundation for this reference-free method. Motivated by SimPO's strong performance in offline preference optimization, we investigate whether Maximum Entropy RL can achieve similar results in online RLHF settings. Our experiments find that Maximum Entropy RL consistently exhibits overoptimization and unstable KL dynamics, even at very low learning rates. Unlike KL-constrained methods that maintain stable training, entropy regularization fails to prevent reward hacking and appears to correlate with overoptimization. Lastly, we discuss possible explanations for why SimPO succeeds in offline settings while Maximum Entropy RL struggles in online scenarios. Our findings suggest that reference-free approaches may face distinct challenges when applied to online or offline preference learning.
comment: 21 pages, 12 figures
♻ ☆ EnviSAgE: A Survey of Environment Scaling for Qualitative Agentic Experience Collection NeurIPS 2025
LLM-based agents can autonomously accomplish complex tasks across various domains. However, to further cultivate capabilities such as adaptive behavior and long-term decision-making, training on static datasets built from human-level knowledge is insufficient. These datasets are costly to construct and lack both dynamism and realism. A growing consensus is that agents should instead interact directly with environments and learn from experience through reinforcement learning. We formalize this iterative process as the Generation-Execution-Feedback (GEF) loop, where environments generate tasks to challenge agents, return observations in response to agents' actions during task execution, and provide evaluative feedback on rollouts for subsequent learning. Under this paradigm, environments function as indispensable producers of experiential data, highlighting the need to scale them toward greater complexity, realism, and interactivity. In this survey, we systematically review representative methods for environment scaling from a pioneering environment-centric perspective and organize them along the stages of the GEF loop, namely task generation, task execution, and feedback. We further analyze implementation frameworks, challenges, and applications, consolidating fragmented advances and outlining future research directions for agent intelligence.
comment: 22 pages, 5 figures, SEA Workshop @ NeurIPS 2025
♻ ☆ Fine-Tuning Discrete Diffusion Models with Policy Gradient Methods
Discrete diffusion models have recently gained significant attention due to their ability to process complex discrete structures for language modeling. However, fine-tuning these models with policy gradient methods, as is commonly done in Reinforcement Learning from Human Feedback (RLHF), remains a challenging task. We propose an efficient, broadly applicable, and theoretically justified policy gradient algorithm, called Score Entropy Policy Optimization (\SEPO), for fine-tuning discrete diffusion models over non-differentiable rewards. Our numerical experiments across several discrete generative tasks demonstrate the scalability and efficiency of our method. Our code is available at https://github.com/ozekri/SEPO.
comment: 33 pages, 8 figures, 8 tables
♻ ☆ Online Bandits with (Biased) Offline Data: Adaptive Learning under Distribution Mismatch ICML 2024
Traditional online learning models are typically initialized from scratch. By contrast, contemporary real-world applications often have access to historical datasets that can potentially enhanced the online learning processes. We study how offline data can be leveraged to facilitate online learning in stochastic multi-armed bandits and combinatorial bandits. In our study, the probability distributions that govern the offline data and the online rewards can be different. We first show that, without a non-trivial upper bound on their difference, no non-anticipatory policy can outperform the classical Upper Confidence Bound (UCB) policy, even with the access to offline data. In complement, we propose an online policy MIN-UCB for multi-armed bandits. MIN-UCB outperforms the UCB when such an upper bound is available. MIN-UCB adaptively chooses to utilize the offline data when they are deemed informative, and to ignore them otherwise. We establish that MIN-UCB achieves tight regret bounds, in both instance independent and dependent settings. We generalize our approach to the combinatorial bandit setting by introducing MIN-COMB-UCB, and we provide corresponding instance dependent and instance independent regret bounds. We illustrate how various factors, such as the biases and the size of offline datasets, affect the utility of offline data in online learning. We discuss several applications and conduct numerical experiments to validate our findings.
comment: 62 pages, 5 figures. Previous version Accepted to ICML 2024
♻ ☆ Automatic Extraction of Rules for Generating Synthetic Patient Data From Real-World Population Data Using Glioblastoma as an Example
The generation of synthetic data is a promising technology to make medical data available for secondary use in a privacy-compliant manner. A popular method for creating realistic patient data is the rule-based Synthea data generator. Synthea generates data based on rules describing the lifetime of a synthetic patient. These rules typically express the probability of a condition occurring, such as a disease, depending on factors like age. Since they only contain statistical information, rules usually have no specific data protection requirements. However, creating meaningful rules can be a very complex process that requires expert knowledge and realistic sample data. In this paper, we introduce and evaluate an approach to automatically generate Synthea rules based on statistics from tabular data, which we extracted from cancer reports. As an example use case, we created a Synthea module for glioblastoma from a real-world dataset and used it to generate a synthetic dataset. Compared to the original dataset, the synthetic data reproduced known disease courses and mostly retained the statistical properties. Overall, synthetic patient data holds great potential for privacy-preserving research. The data can be used to formulate hypotheses and to develop prototypes, but medical interpretation should consider the specific limitations as with any currently available approach.
comment: 16 pages, 8 figures
♻ ☆ Learning Collective Variables for Enhanced Sampling from BioEmu with Time-Lagged Generation
Molecular dynamics is crucial for understanding molecular systems but its applicability is often limited by the vast timescales of rare events like protein folding. Enhanced sampling techniques overcome this by accelerating the simulation along key reaction pathways, which are defined by collective variables (CVs). However, identifying effective CVs that capture the slow, macroscopic dynamics of a system remains a major bottleneck. This work proposes a novel framework coined BioEmu-CV that learns these essential CVs automatically from BioEmu, a recently proposed foundation model for generating protein equilibrium samples. In particular, we re-purpose BioEmu to learn time-lagged generation conditioned on the learned CV, i.e., predict the distribution of molecular states after a certain amount of time. This training process promotes the CV to encode only the slow, long-term information while disregarding fast, random fluctuations. We validate our learned CV on fast-folding proteins with two key applications: (1) estimating free energy differences using on-the-fly probability enhanced sampling and (2) sampling transition paths with steered molecular dynamics. Our empirical study also serves as a new systematic and comprehensive benchmark for MLCVs on fast-folding proteins larger than Alanine Dipeptide.
♻ ☆ WildFit: Autonomous In-situ Model Adaptation for Resource-Constrained IoT Systems
Resource-constrained IoT devices increasingly rely on deep learning models, however, these models experience significant accuracy drops due to domain shifts when encountering variations in lighting, weather, and seasonal conditions. While cloud-based retraining can address this issue, many IoT deployments operate with limited connectivity and energy constraints, making traditional fine-tuning approaches impractical. We explore this challenge through the lens of wildlife ecology, where camera traps must maintain accurate species classification across changing seasons, weather, and habitats without reliable connectivity. We introduce WildFit, an autonomous in-situ adaptation framework that leverages the key insight that background scenes change more frequently than the visual characteristics of monitored species. WildFit combines background-aware synthesis to generate training samples on-device with drift-aware fine-tuning that triggers model updates only when necessary to conserve resources. Our background-aware synthesis surpasses efficient baselines by 7.3% and diffusion models by 3.0% while being orders of magnitude faster, our drift-aware fine-tuning achieves Pareto optimality with 50% fewer updates and 1.5% higher accuracy, and the end-to-end system outperforms domain adaptation approaches by 20-35% while consuming only 11.2 Wh over 37 days-enabling battery-powered deployment.
comment: Accepted by ACM SenSys 2026
♻ ☆ Nested subspace learning with flags
Many machine learning methods look for low-dimensional representations of the data. The underlying subspace can be estimated by first choosing a dimension $q$ and then optimizing a certain objective function over the space of $q$-dimensional subspaces (the Grassmannian). Trying different $q$ yields in general non-nested subspaces, which raises an important issue of consistency between the data representations. In this paper, we propose a simple and easily implementable principle to enforce nestedness in subspace learning methods. It consists in lifting Grassmannian optimization criteria to flag manifolds (the space of nested subspaces of increasing dimension) via nested projectors. We apply the flag trick to several classical machine learning methods and show that it successfully addresses the nestedness issue.
♻ ☆ Long-Horizon Visual Imitation Learning via Plan and Code Reflection
Learning from long-horizon demonstrations with complex action sequences presents significant challenges for visual imitation learning, particularly in understanding temporal relationships of actions and spatial relationships between objects. In this paper, we propose a new agent framework that incorporates two dedicated reflection modules to enhance both plan and code generation. The plan generation module produces an initial action sequence, which is then verified by the plan reflection module to ensure temporal coherence and spatial alignment with the demonstration video. The code generation module translates the plan into executable code, while the code reflection module verifies and refines the generated code to ensure correctness and consistency with the generated plan. These two reflection modules jointly enable the agent to detect and correct errors in both the plan generation and code generation, improving performance in tasks with intricate temporal and spatial dependencies. To support systematic evaluation, we introduce LongVILBench, a benchmark comprising 300 human demonstrations with action sequences of up to 18 steps. LongVILBench emphasizes temporal and spatial complexity across multiple task types. Experimental results demonstrate that existing methods perform poorly on this benchmark, whereas our new framework establishes a strong baseline for long-horizon visual imitation learning.
comment: 9 pages, 4 figures
♻ ☆ Reinforcement Learning Finetunes Small Subnetworks in Large Language Models
Reinforcement learning (RL) yields substantial improvements in large language models (LLMs) downstream task performance and alignment with human values. Surprisingly, such large gains result from updating only a small subnetwork comprising just 5 percent to 30 percent of the parameters, with the rest effectively unchanged. We refer to this phenomenon as parameter update sparsity induced by RL. It is observed across all 7 widely used RL algorithms (e.g., PPO, GRPO, DPO) and all 10 LLMs from different families in our experiments. This sparsity is intrinsic and occurs without any explicit sparsity promoting regularizations or architectural constraints. Finetuning the subnetwork alone recovers the test accuracy, and, remarkably, produces a model nearly identical to the one obtained via full finetuning. The subnetworks from different random seeds, training data, and even RL algorithms show substantially greater overlap than expected by chance. Our analysis suggests that this sparsity is not due to updating only a subset of layers, instead, nearly all parameter matrices receive similarly sparse updates. Moreover, the updates to almost all parameter matrices are nearly full-rank, suggesting RL updates a small subset of parameters that nevertheless span almost the full subspaces that the parameter matrices can represent. We conjecture that the this update sparsity can be primarily attributed to training on data that is near the policy distribution, techniques that encourage the policy to remain close to the pretrained model, such as the KL regularization and gradient clipping, have limited impact.
comment: NeuRIPS 2025
♻ ☆ Do Neural Networks Need Gradient Descent to Generalize? A Theoretical Study NeurIPS 2025
Conventional wisdom attributes the mysterious generalization abilities of overparameterized neural networks to gradient descent (and its variants). The recent volume hypothesis challenges this view: it posits that these generalization abilities persist even when gradient descent is replaced by Guess & Check (G&C), i.e., by drawing weight settings until one that fits the training data is found. The validity of the volume hypothesis for wide and deep neural networks remains an open question. In this paper, we theoretically investigate this question for matrix factorization (with linear and non-linear activation)--a common testbed in neural network theory. We first prove that generalization under G&C deteriorates with increasing width, establishing what is, to our knowledge, the first case where G&C is provably inferior to gradient descent. Conversely, we prove that generalization under G&C improves with increasing depth, revealing a stark contrast between wide and deep networks, which we further validate empirically. These findings suggest that even in simple settings, there may not be a simple answer to the question of whether neural networks need gradient descent to generalize well.
comment: Accepted to NeurIPS 2025
♻ ☆ Enhancing Fake-News Detection with Node-Level Topological Features
In recent years, the proliferation of misinformation and fake news has posed serious threats to individuals and society, spurring intense research into automated detection methods. Previous work showed that integrating content, user preferences, and propagation structure achieves strong performance, but leaves all graph-level representation learning entirely to the GNN, hiding any explicit topological cues. To close this gap, we introduce a lightweight enhancement: for each node, we append two classical graph-theoretic metrics, degree centrality and local clustering coefficient, to its original BERT and profile embeddings, thus explicitly flagging the roles of hub and community. In the UPFD Politifact subset, this simple modification boosts macro F1 from 0.7753 to 0.8344 over the original baseline. Our study not only demonstrates the practical value of explicit topology features in fake-news detection but also provides an interpretable, easily reproducible template for fusing graph metrics in other information-diffusion tasks.
♻ ☆ Proactive Model Adaptation Against Concept Drift for Online Time Series Forecasting KDD 2025
Time series forecasting always faces the challenge of concept drift, where data distributions evolve over time, leading to a decline in forecast model performance. Existing solutions are based on online learning, which continually organize recent time series observations as new training samples and update model parameters according to the forecasting feedback on recent data. However, they overlook a critical issue: obtaining ground-truth future values of each sample should be delayed until after the forecast horizon. This delay creates a temporal gap between the training samples and the test sample. Our empirical analysis reveals that the gap can introduce concept drift, causing forecast models to adapt to outdated concepts. In this paper, we present Proceed, a novel proactive model adaptation framework for online time series forecasting. Proceed first estimates the concept drift between the recently used training samples and the current test sample. It then employs an adaptation generator to efficiently translate the estimated drift into parameter adjustments, proactively adapting the model to the test sample. To enhance the generalization capability of the framework, Proceed is trained on synthetic diverse concept drifts. Extensive experiments on five real-world datasets across various forecast models demonstrate that Proceed brings more performance improvements than the state-of-the-art online learning methods, significantly facilitating forecast models' resilience against concept drifts. Code is available at https://github.com/SJTU-DMTai/OnlineTSF.
comment: Accepted by KDD 2025. This version fixed typos in Eq. (3)
♻ ☆ SEED: Spectral Entropy-Guided Evaluation of SpatialTemporal Dependencies for Multivariate Time Series Forecasting
Effective multivariate time series forecasting often benefits from accurately modeling complex inter-variable dependencies. However, existing attention- or graph-based methods face three key issues: (a) strong temporal self-dependencies are often disrupted by irrelevant variables; (b) softmax normalization ignores and reverses negative correlations; (c) variables struggle to perceive their temporal positions. To address these, we propose \textbf{SEED}, a Spectral Entropy-guided Evaluation framework for spatial-temporal Dependency modeling. SEED introduces a Dependency Evaluator, a key innovation that leverages spectral entropy to dynamically provide a preliminary evaluation of the spatial and temporal dependencies of each variable, enabling the model to adaptively balance Channel Independence (CI) and Channel Dependence (CD) strategies. To account for temporal regularities originating from the influence of other variables rather than intrinsic dynamics, we propose Spectral Entropy-based Fuser to further refine the evaluated dependency weights, effectively separating this part. Moreover, to preserve negative correlations, we introduce a Signed Graph Constructor that enables signed edge weights, overcoming the limitations of softmax. Finally, to help variables perceive their temporal positions and thereby construct more comprehensive spatial features, we introduce the Context Spatial Extractor, which leverages local contextual windows to extract spatial features. Extensive experiments on 12 real-world datasets from various application domains demonstrate that SEED achieves state-of-the-art performance, validating its effectiveness and generality.
♻ ☆ Unsupervised discovery of the shared and private geometry in multi-view data
Studying complex real-world phenomena often involves data from multiple views (e.g. sensor modalities or brain regions), each capturing different aspects of the underlying system. Within neuroscience, there is growing interest in large-scale simultaneous recordings across multiple brain regions. Understanding the relationship between views (e.g., the neural activity in each region recorded) can reveal fundamental insights into each view and the system as a whole. However, existing methods to characterize such relationships lack the expressivity required to capture nonlinear relationships, describe only shared sources of variance, or discard geometric information that is crucial to drawing insights from data. Here, we present SPLICE: a neural network-based method that infers disentangled, interpretable representations of private and shared latent variables from paired samples of high-dimensional views. Compared to competing methods, we demonstrate that SPLICE 1) disentangles shared and private representations more effectively, 2) yields more interpretable representations by preserving geometry, and 3) is more robust to incorrect a priori estimates of latent dimensionality. We propose our approach as a general-purpose method for finding succinct and interpretable descriptions of paired data sets in terms of disentangled shared and private latent variables.
♻ ☆ DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs NeurIPS 2025
Dynamic graph modeling aims to uncover evolutionary patterns in real-world systems, enabling accurate social recommendation and early detection of cancer cells. Inspired by the success of recent state space models in efficiently capturing long-term dependencies, we propose DyG-Mamba by translating dynamic graph modeling into a long-term sequence modeling problem. Specifically, inspired by Ebbinghaus' forgetting curve, we treat the irregular timespans between events as control signals, allowing DyG-Mamba to dynamically adjust the forgetting of historical information. This mechanism ensures effective usage of irregular timespans, thereby improving both model effectiveness and inductive capability. In addition, inspired by Ebbinghaus' review cycle, we redefine core parameters to ensure that DyG-Mamba selectively reviews historical information and filters out noisy inputs, further enhancing the model's robustness. Through exhaustive experiments on 12 datasets covering dynamic link prediction and node classification tasks, we show that DyG-Mamba achieves state-of-the-art performance on most datasets, while demonstrating significantly improved computational and memory efficiency. Code is available at https://github.com/Clearloveyuan/DyG-Mamba.
comment: Accepted by NeurIPS 2025
♻ ☆ Reverse Supervision at Scale: Exponential Search Meets the Economics of Annotation
We analyze a reversed-supervision strategy that searches over labelings of a large unlabeled set \(B\) to minimize error on a small labeled set \(A\). The search space is \(2^n\), and the resulting complexity remains exponential even under large constant-factor speedups (e.g., quantum or massively parallel hardware). Consequently, arbitrarily fast -- but not exponentially faster -- computation does not obviate the need for informative labels or priors. In practice, the machine learning pipeline still requires an initial human contribution: specifying the objective, defining classes, and providing a seed set of representative annotations that inject inductive bias and align models with task semantics. Synthetic labels from generative AI can partially substitute provided their quality is human-grade and anchored by a human-specified objective, seed supervision, and validation. In this view, generative models function as \emph{label amplifiers}, leveraging small human-curated cores via active, semi-supervised, and self-training loops, while humans retain oversight for calibration, drift detection, and failure auditing. Thus, extreme computational speed reduces wall-clock time but not the fundamental supervision needs of learning; initial human (or human-grade) input remains necessary to ground the system in the intended task.
comment: 10 pages
♻ ☆ Beyond Force Metrics: Pre-Training MLFFs for Stable MD Simulations
Machine-learning force fields (MLFFs) have emerged as a promising solution for speeding up ab initio molecular dynamics (MD) simulations, where accurate force predictions are critical but often computationally expensive. In this work, we employ GemNet-T, a graph neural network model, as an MLFF and investigate two training strategies: (1) direct training on MD17 (10K samples) without pre-training, and (2) pre-training on the large-scale OC20 dataset followed by fine-tuning on MD17 (10K). While both approaches achieve low force mean absolute errors (MAEs), reaching 5 meV/A per atom, we find that lower force errors do not necessarily guarantee stable MD simulations. Notably, the pre-trained GemNet-T model yields significantly improved simulation stability, sustaining trajectories up to three times longer than the model trained from scratch. By analyzing local properties of the learned force fields, we find that pre-training produces more structured latent representations, smoother force responses to local geometric changes, and more consistent force differences between nearby configurations, all of which contribute to more stable and reliable MD simulations. These findings underscore the value of pre-training on large, diverse datasets to capture complex molecular interactions and highlight that force MAE alone is not always a sufficient metric of MD simulation stability.
♻ ☆ Probabilistic Predictions of Process-Induced Deformation in Carbon/Epoxy Composites Using a Deep Operator Network
Fiber reinforcement and polymer matrix respond differently to manufacturing conditions due to mismatch in coefficient of thermal expansion and matrix shrinkage during curing of thermosets. These heterogeneities generate residual stresses over multiple length scales, whose partial release leads to process-induced deformation (PID), requiring accurate prediction and mitigation via optimized non-isothermal cure cycles. This study considers a unidirectional AS4 carbon fiber/amine bi-functional epoxy prepreg and models PID using a two-mechanism framework that accounts for thermal expansion/shrinkage and cure shrinkage. The model is validated against manufacturing trials to identify initial and boundary conditions, then used to generate PID responses for a diverse set of non-isothermal cure cycles (time-temperature profiles). Building on this physics-based foundation, we develop a data-driven surrogate based on Deep Operator Networks (DeepONets). A DeepONet is trained on a dataset combining high-fidelity simulations with targeted experimental measurements of PID. We extend this to a Feature-wise Linear Modulation (FiLM) DeepONet, where branch-network features are modulated by external parameters, including the initial degree of cure, enabling prediction of time histories of degree of cure, viscosity, and deformation. Because experimental data are available only at limited time instances (for example, final deformation), we use transfer learning: simulation-trained trunk and branch networks are fixed and only the final layer is updated using measured final deformation. Finally, we augment the framework with Ensemble Kalman Inversion (EKI) to quantify uncertainty under experimental conditions and to support optimization of cure schedules for reduced PID in composites.
comment: 21 pages, 13 figures
♻ ☆ OceanForecastBench: A Benchmark Dataset for Data-Driven Global Ocean Forecasting
Global ocean forecasting aims to predict key ocean variables such as temperature, salinity, and currents, which is essential for understanding and describing oceanic phenomena. In recent years, data-driven deep learning-based ocean forecast models, such as XiHe, WenHai, LangYa and AI-GOMS, have demonstrated significant potential in capturing complex ocean dynamics and improving forecasting efficiency. Despite these advancements, the absence of open-source, standardized benchmarks has led to inconsistent data usage and evaluation methods. This gap hinders efficient model development, impedes fair performance comparison, and constrains interdisciplinary collaboration. To address this challenge, we propose OceanForecastBench, a benchmark offering three core contributions: (1) A high-quality global ocean reanalysis data over 28 years for model training, including 4 ocean variables across 23 depth levels and 4 sea surface variables. (2) A high-reliability satellite and in-situ observations for model evaluation, covering approximately 100 million locations in the global ocean. (3) An evaluation pipeline and a comprehensive benchmark with 6 typical baseline models, leveraging observations to evaluate model performance from multiple perspectives. OceanForecastBench represents the most comprehensive benchmarking framework currently available for data-driven ocean forecasting, offering an open-source platform for model development, evaluation, and comparison. The dataset and code are publicly available at: https://github.com/Ocean-Intelligent-Forecasting/OceanForecastBench.
♻ ☆ Bridging Modalities via Progressive Re-alignment for Multimodal Test-Time Adaptation AAAI 2026
Test-time adaptation (TTA) enables online model adaptation using only unlabeled test data, aiming to bridge the gap between source and target distributions. However, in multimodal scenarios, varying degrees of distribution shift across different modalities give rise to a complex coupling effect of unimodal shallow feature shift and cross-modal high-level semantic misalignment, posing a major obstacle to extending existing TTA methods to the multimodal field. To address this challenge, we propose a novel multimodal test-time adaptation (MMTTA) framework, termed as Bridging Modalities via Progressive Re-alignment (BriMPR). BriMPR, consisting of two progressively enhanced modules, tackles the coupling effect with a divide-and-conquer strategy. Specifically, we first decompose MMTTA into multiple unimodal feature alignment sub-problems. By leveraging the strong function approximation ability of prompt tuning, we calibrate the unimodal global feature distributions to their respective source distributions, so as to achieve the initial semantic re-alignment across modalities. Subsequently, we assign the credible pseudo-labels to combinations of masked and complete modalities, and introduce inter-modal instance-wise contrastive learning to further enhance the information interaction among modalities and refine the alignment. Extensive experiments on MMTTA tasks, including both corruption-based and real-world domain shift benchmarks, demonstrate the superiority of our method. Our source code is available at https://github.com/Luchicken/BriMPR.
comment: Accepted by AAAI 2026 (Oral)
♻ ☆ Imperative Learning: A Self-supervised Neuro-Symbolic Learning Framework for Robot Autonomy
Data-driven methods such as reinforcement and imitation learning have achieved remarkable success in robot autonomy. However, their data-centric nature still hinders them from generalizing well to ever-changing environments. Moreover, labeling data for robotic tasks is often impractical and expensive. To overcome these challenges, we introduce a new self-supervised neuro-symbolic (NeSy) computational framework, imperative learning (IL), for robot autonomy, leveraging the generalization abilities of symbolic reasoning. The framework of IL consists of three primary components: a neural module, a reasoning engine, and a memory system. We formulate IL as a special bilevel optimization (BLO), which enables reciprocal learning over the three modules. This overcomes the label-intensive obstacles associated with data-driven approaches and takes advantage of symbolic reasoning concerning logical reasoning, physical principles, geometric analysis, etc. We discuss several optimization techniques for IL and verify their effectiveness in five distinct robot autonomy tasks including path planning, rule induction, optimal control, visual odometry, and multi-robot routing. Through various experiments, we show that IL can significantly enhance robot autonomy capabilities and we anticipate that it will catalyze further research across diverse domains.
♻ ☆ Multi-Modality Collaborative Learning for Sentiment Analysis
Multimodal sentiment analysis (MSA) identifies individuals' sentiment states in videos by integrating visual, audio, and text modalities. Despite progress in existing methods, the inherent modality heterogeneity limits the effective capture of interactive sentiment features across modalities. In this paper, by introducing a Multi-Modality Collaborative Learning (MMCL) framework, we facilitate cross-modal interactions and capture enhanced and complementary features from modality-common and modality-specific representations, respectively. Specifically, we design a parameter-free decoupling module and separate uni-modality into modality-common and modality-specific components through semantics assessment of cross-modal elements. For modality-specific representations, inspired by the act-reward mechanism in reinforcement learning, we design policy models to adaptively mine complementary sentiment features under the guidance of a joint reward. For modality-common representations, intra-modal attention is employed to highlight crucial components, playing enhanced roles among modalities. Experimental results, including superiority evaluations on four databases, effectiveness verification of each module, and assessment of complementary features, demonstrate that MMCL successfully learns collaborative features across modalities and significantly improves performance. The code can be available at https://github.com/smwanghhh/MMCL.
comment: The method has flaws, especially with the decoupling module. During the decoupling process, the heterogeneity of the three modal data and the differences in distribution were not taken into account
♻ ☆ Provable Ordering and Continuity in Vision-Language Pretraining for Generalizable Embodied Agents NeurIPS 2025
Pre-training vision-language representations on human action videos has emerged as a promising approach to reduce reliance on large-scale expert demonstrations for training embodied agents. However, prior methods often employ time contrastive learning based on goal-reaching heuristics, progressively aligning language instructions from the initial to the final frame. This overemphasis on future frames can result in erroneous vision-language associations, as actions may terminate early or include irrelevant moments in the end. To address this issue, we propose Action Temporal Coherence Learning (AcTOL) to learn ordered and continuous vision-language representations without rigid goal-based constraint. AcTOL treats a video as a continuous trajectory where it (1) contrasts semantic differences between frames to reflect their natural ordering, and (2) imposes a local Brownian bridge constraint to ensure smooth transitions across intermediate frames. Extensive imitation learning experiments on both simulated and real robots show that the pretrained features significantly enhance downstream manipulation tasks with high robustness to different linguistic styles of instructions, offering a viable pathway toward generalized embodied agents.
comment: NeurIPS 2025 Poster
♻ ☆ Optimizing the Network Topology of a Linear Reservoir Computer
Machine learning has become a fundamental approach for modeling, prediction, and control, enabling systems to learn from data and perform complex tasks. Reservoir computing is a machine learning tool that leverages high-dimensional dynamical systems to efficiently process temporal data for prediction and observation tasks. Traditionally, the connectivity of the network that underlies a reservoir computer (RC) is generated randomly, lacking a principled design. Here, we focus on optimizing the connectivity of a linear RC to improve its performance and interpretability, which we achieve by decoupling the RC dynamics into a number of independent modes. We then proceed to optimize each one of these modes to perform a given task, which corresponds to selecting an optimal RC connectivity in terms of a given set of eigenvalues of the RC adjacency matrix. Simulations on networks of varying sizes show that the optimized RC significantly outperforms randomly constructed reservoirs in both training and testing phases and often surpasses nonlinear reservoirs of comparable size. This approach provides both practical performance advantages and theoretical guidelines for designing efficient, task-specific, and analytically transparent RC architectures.
♻ ☆ Alternative Fairness and Accuracy Optimization in Criminal Justice AAAI 2026
Algorithmic fairness has grown rapidly as a research area, yet key concepts remain unsettled, especially in criminal justice. We review group, individual, and process fairness and map the conditions under which they conflict. We then develop a simple modification to standard group fairness. Rather than exact parity across protected groups, we minimize a weighted error loss while keeping differences in false negative rates within a small tolerance. This makes solutions easier to find, can raise predictive accuracy, and surfaces the ethical choice of error costs. We situate this proposal within three classes of critique: biased and incomplete data, latent affirmative action, and the explosion of subgroup constraints. Finally, we offer a practical framework for deployment in public decision systems built on three pillars: need-based decisions, Transparency and accountability, and narrowly tailored definitions and solutions. Together, these elements link technical design to legitimacy and provide actionable guidance for agencies that use risk assessment and related tools.
comment: AAAI 2026, Singapore (AIGOV)
Genomics 1
♻ ☆ An algorithm to align a chain of sequences to paths in a pangenome graph
Affordable, high-quality whole-genome assemblies have made it possible to construct rich pangenomes that capture haplotype diversity across many species. As these datasets grow, they motivate the development of specialized techniques capable of handling the dense sequence variation found in large groups of related genomes. A common strategy is to encode pangenomic information in graph form, which provides a flexible substrate for improving algorithms in areas such as alignment, visualization, and functional analysis. Methods built on these graph models have already shown clear advantages in core bioinformatics workflows, including read mapping, variant discovery, and genotyping. By integrating multiple sequence and coordinate representations into a single structure, pangenome graphs offer a unified and expressive framework for comparative genomics. Although it remains unclear whether graph-based references will ultimately supplant traditional linear genomes, their versatility ensures that they will play a central role in emerging pangenomic approaches. This paper introduces an algorithm to mine a chain of sequences in pangenome graphs that might be useful in the functional analysis of pangenome graphs. Specifically, the algorithm calculates all maximal paths in a pangenome graph aligning with a given chain of sequences in the segments of the path vertices, possibly with some maximal gap as specified by the user.
Quantitative Methods 4
☆ Can plants grow on the Moon and Mars: seed germination enhancement using magnesium oxide coated halloysite nanotubes (MgO HNTs)
This study examines the application of metal coated nanotubes, specifically magnesium oxide coated halloysite nanotubes (MgO HNTs), to enhance seed germination and early plant development under Earth, lunar, and Martian soil conditions. MgO HNTs were synthesized through an electrodeposition process and characterized by scanning electron microscopy to confirm successful surface modification. Growth experiments using Heirloom Cherry Tomato and Golden Tomato seeds were conducted under hydroponic and soil based conditions and subsequently extended to lunar and Martian regolith simulants. A response surface methodology approach based on a Box Behnken design was used to evaluate the effects of temperature, MgO HNT concentration, and light duration on multiple growth responses. Seedling length and the root length stress tolerance index were identified as the most responsive indicators of MgO HNT treatment. Optimal conditions consisting of 25 C, 12 h light exposure, and 100 mg per L MgO HNTs produced the greatest increases in root and shoot length in Earth soil simulants. Validation experiments in extraterrestrial regolith analogs showed that MgO HNTs supported germination, root penetration, and overall seedling vigor under nutrient limited and high stress conditions. Lunar regolith exhibited maximal root development at 100 mg per L, whereas Martian regolith showed optimal growth at 10 mg per L, reflecting differences in mineral composition and oxidative characteristics. These findings demonstrate that MgO HNTs can enhance early plant development across both terrestrial and extraterrestrial substrates and support their potential use as nanomaterial based amendments for sustainable plant cultivation in Earth and space environments.
comment: 36 pages, 17 figures, 7 tables
♻ ☆ Digital Modeling of Spatial Pathway Activity from Histology Reveals Tumor Microenvironment Heterogeneity
Spatial transcriptomics (ST) enables simultaneous mapping of tissue morphology and spatially resolved gene expression, offering unique opportunities to study tumor microenvironment heterogeneity. Here, we introduce a computational framework that predicts spatial pathway activity directly from hematoxylin-and-eosin-stained histology images at microscale resolution 55 and 100 um. Using image features derived from a computational pathology foundation model, we found that TGFb signaling was the most accurately predicted pathway across three independent breast and lung cancer ST datasets. In 87-88% of reliably predicted cases, the resulting spatial TGFb activity maps reflected the expected contrast between tumor and adjacent non-tumor regions, consistent with the known role of TGFb in regulating interactions within the tumor microenvironment. Notably, linear and nonlinear predictive models performed similarly, suggesting that image features may relate to pathway activity in a predominantly linear fashion or that nonlinear structure is small relative to measurement noise. These findings demonstrate that features extracted from routine histopathology may recover spatially coherent and biologically interpretable pathway patterns, offering a scalable strategy for integrating image-based inference with ST information in tumor microenvironment studies.
comment: We have to make substantial updates, thank you
♻ ☆ Artificial Intelligence for Microbiology and Microbiome Research
Advancements in artificial intelligence (AI) have transformed many scientific fields, with microbiology and microbiome research now experiencing significant breakthroughs through machine learning applications. This review provides a comprehensive overview of AI-driven approaches tailored for microbiology and microbiome studies, emphasizing both technical advancements and biological insights. We begin with an introduction to foundational AI techniques, including primary machine learning paradigms and various deep learning architectures, and offer guidance on choosing between traditional machine learning and sophisticated deep learning methods based on specific research goals. The primary section on application scenarios spans diverse research areas, from taxonomic profiling, functional annotation \& prediction, microbe-X interactions, microbial ecology, metabolic modeling, precision nutrition, clinical microbiology, to prevention \& therapeutics. Finally, we discuss challenges in this field and highlight some recent breakthroughs. Together, this review underscores AI's transformative role in microbiology and microbiome research, paving the way for innovative methodologies and applications that enhance our understanding of microbial life and its impact on our planet and our health.
♻ ☆ Knowledge-Driven Agentic Scientific Corpus Distillation Framework for Biomedical Large Language Models Training
Corpus distillation for biomedical large language models (LLMs) seeks to address the pressing challenge of insufficient quantity and quality in open-source annotated scientific corpora, which remains a bottleneck for effective LLM training in biomedical research. This paper proposes a knowledge-driven, agentic framework for scientific corpus distillation, tailored explicitly for LLM training in the biomedical domain, addressing the challenge posed by the complex hierarchy of biomedical knowledge. Central to our approach is a collaborative multi-agent architecture, where specialized agents, each guided by the Medical Subject Headings (MeSH) hierarchy, work in concert to autonomously extract, synthesize, and self-evaluate high-quality textual data from vast scientific literature. This agentic framework collectively generates and refines domain-specific question-answer pairs, ensuring comprehensive coverage and consistency with biomedical ontologies while minimizing manual involvement. Extensive experimental results show that language models trained on our multi-agent distilled datasets achieve notable improvements in biomedical question-answering tasks, outperforming both strong life sciences LLM baselines and advanced proprietary models. Notably, our AI-Ready dataset enables Llama3-70B to surpass GPT-4 with MedPrompt and Med-PaLM-2, despite their larger scale. Detailed ablation studies and case analyses further validate the effectiveness and synergy of each agent within the framework, highlighting the potential of multi-agent collaboration in biomedical LLM training.
comment: Biomedical Large Language Models, Agentic Corpus Distillation, Synthetic Question-Answer Generation, Agentic AI, Knowledge Hierarchy Guidance
Computation and Language 89
☆ Predictive Concept Decoders: Training Scalable End-to-End Interpretability Assistants
Interpreting the internal activations of neural networks can produce more faithful explanations of their behavior, but is difficult due to the complex structure of activation space. Existing approaches to scalable interpretability use hand-designed agents that make and test hypotheses about how internal activations relate to external behavior. We propose to instead turn this task into an end-to-end training objective, by training interpretability assistants to accurately predict model behavior from activations through a communication bottleneck. Specifically, an encoder compresses activations to a sparse list of concepts, and a decoder reads this list and answers a natural language question about the model. We show how to pretrain this assistant on large unstructured data, then finetune it to answer questions. The resulting architecture, which we call a Predictive Concept Decoder, enjoys favorable scaling properties: the auto-interp score of the bottleneck concepts improves with data, as does the performance on downstream applications. Specifically, PCDs can detect jailbreaks, secret hints, and implanted latent concepts, and are able to accurately surface latent user attributes.
comment: 28 pages, 12 figures
☆ Activation Oracles: Training and Evaluating LLMs as General-Purpose Activation Explainers
Large language model (LLM) activations are notoriously difficult to understand, with most existing techniques using complex, specialized methods for interpreting them. Recent work has proposed a simpler approach known as LatentQA: training LLMs to directly accept LLM activations as inputs and answer arbitrary questions about them in natural language. However, prior work has focused on narrow task settings for both training and evaluation. In this paper, we instead take a generalist perspective. We evaluate LatentQA-trained models, which we call Activation Oracles (AOs), in far out-of-distribution settings and examine how performance scales with training data diversity. We find that AOs can recover information fine-tuned into a model (e.g., biographical knowledge or malign propensities) that does not appear in the input text, despite never being trained with activations from a fine-tuned model. Our main evaluations are four downstream tasks where we can compare to prior white- and black-box techniques. We find that even narrowly-trained LatentQA models can generalize well, and that adding additional training datasets (such as classification tasks and a self-supervised context prediction task) yields consistent further improvements. Overall, our best AOs match or exceed prior white-box baselines on all four tasks and are the best method on 3 out of 4. These results suggest that diversified training to answer natural-language queries imparts a general capability to verbalize information about LLM activations.
comment: 36 pages
☆ Explaining the Reasoning of Large Language Models Using Attribution Graphs
Large language models (LLMs) exhibit remarkable capabilities, yet their reasoning remains opaque, raising safety and trust concerns. Attribution methods, which assign credit to input features, have proven effective for explaining the decision making of computer vision models. From these, context attributions have emerged as a promising approach for explaining the behavior of autoregressive LLMs. However, current context attributions produce incomplete explanations by directly relating generated tokens to the prompt, discarding inter-generational influence in the process. To overcome these shortcomings, we introduce the Context Attribution via Graph Explanations (CAGE) framework. CAGE introduces an attribution graph: a directed graph that quantifies how each generation is influenced by both the prompt and all prior generations. The graph is constructed to preserve two properties-causality and row stochasticity. The attribution graph allows context attributions to be computed by marginalizing intermediate contributions along paths in the graph. Across multiple models, datasets, metrics, and methods, CAGE improves context attribution faithfulness, achieving average gains of up to 40%.
☆ PPSEBM: An Energy-Based Model with Progressive Parameter Selection for Continual Learning
Continual learning remains a fundamental challenge in machine learning, requiring models to learn from a stream of tasks without forgetting previously acquired knowledge. A major obstacle in this setting is catastrophic forgetting, where performance on earlier tasks degrades as new tasks are learned. In this paper, we introduce PPSEBM, a novel framework that integrates an Energy-Based Model (EBM) with Progressive Parameter Selection (PPS) to effectively address catastrophic forgetting in continual learning for natural language processing tasks. In PPSEBM, progressive parameter selection allocates distinct, task-specific parameters for each new task, while the EBM generates representative pseudo-samples from prior tasks. These generated samples actively inform and guide the parameter selection process, enhancing the model's ability to retain past knowledge while adapting to new tasks. Experimental results on diverse NLP benchmarks demonstrate that PPSEBM outperforms state-of-the-art continual learning methods, offering a promising and robust solution to mitigate catastrophic forgetting.
comment: 10 pages, 3 figures, 2025 IEEE International Conference on Big Data (BigData)
☆ Characterizing Mamba's Selective Memory using Auto-Encoders ACL 2025
State space models (SSMs) are a promising alternative to transformers for language modeling because they use fixed memory during inference. However, this fixed memory usage requires some information loss in the hidden state when processing long sequences. While prior work has studied the sequence length at which this information loss occurs, it does not characterize the types of information SSM language models (LMs) tend to forget. In this paper, we address this knowledge gap by identifying the types of tokens (e.g., parts of speech, named entities) and sequences (e.g., code, math problems) that are more frequently forgotten by SSM LMs. We achieve this by training an auto-encoder to reconstruct sequences from the SSM's hidden state, and measure information loss by comparing inputs with their reconstructions. We perform experiments using the Mamba family of SSM LMs (130M--1.4B) on sequences ranging from 4--256 tokens. Our results show significantly higher rates of information loss on math-related tokens (e.g., numbers, variables), mentions of organization entities, and alternative dialects to Standard American English. We then examine the frequency that these tokens appear in Mamba's pretraining data and find that less prevalent tokens tend to be the ones Mamba is most likely to forget. By identifying these patterns, our work provides clear direction for future research to develop methods that better control Mamba's ability to retain important information.
comment: AACL 2025. Oral Presentation
☆ VTCBench: Can Vision-Language Models Understand Long Context with Vision-Text Compression?
The computational and memory overheads associated with expanding the context window of LLMs severely limit their scalability. A noteworthy solution is vision-text compression (VTC), exemplified by frameworks like DeepSeek-OCR and Glyph, which convert long texts into dense 2D visual representations, thereby achieving token compression ratios of 3x-20x. However, the impact of this high information density on the core long-context capabilities of vision-language models (VLMs) remains under-investigated. To address this gap, we introduce the first benchmark for VTC and systematically assess the performance of VLMs across three long-context understanding settings: VTC-Retrieval, which evaluates the model's ability to retrieve and aggregate information; VTC-Reasoning, which requires models to infer latent associations to locate facts with minimal lexical overlap; and VTC-Memory, which measures comprehensive question answering within long-term dialogue memory. Furthermore, we establish the VTCBench-Wild to simulate diverse input scenarios.We comprehensively evaluate leading open-source and proprietary models on our benchmarks. The results indicate that, despite being able to decode textual information (e.g., OCR) well, most VLMs exhibit a surprisingly poor long-context understanding ability with VTC-compressed information, failing to capture long associations or dependencies in the context.This study provides a deep understanding of VTC and serves as a foundation for designing more efficient and scalable VLMs.
☆ How Much is Too Much? Exploring LoRA Rank Trade-offs for Retaining Knowledge and Domain Robustness ACL
Large language models are increasingly adapted to downstream tasks through fine-tuning. Full supervised fine-tuning (SFT) and parameter-efficient fine-tuning (PEFT) methods, such as Low-Rank Adaptation (LoRA), are two dominant approaches. While PEFT methods are widely used for their computational efficiency, the implications of their configurations (e.g., rank) remain under-explored in downstream Q&A tasks and generalisation. In this work, we perform a comprehensive evaluation across multiple reasoning and recall datasets, conducting a rank sweep to quantify the trade-off between SFT and PEFT. We also compare the accuracy of PEFT and SFT models across in-domain and out-of-domain adaptation, highlighting distinct generalisation behaviour and task-specific forgetting. We demonstrate that LoRA achieves competitive and in some cases superior performance compared to SFT, particularly on reasoning tasks at specific rank values. Additionally, we analyze the internal representations via spectral features and layer-wise attention structures, offering insights into representational drift and structural changes in attention patterns.
comment: Accepted at AACL IJCNLP 2025
☆ Evaluating Metrics for Safety with LLM-as-Judges
LLMs (Large Language Models) are increasingly used in text processing pipelines to intelligently respond to a variety of inputs and generation tasks. This raises the possibility of replacing human roles that bottleneck existing information flows, either due to insufficient staff or process complexity. However, LLMs make mistakes and some processing roles are safety critical. For example, triaging post-operative care to patients based on hospital referral letters, or updating site access schedules in nuclear facilities for work crews. If we want to introduce LLMs into critical information flows that were previously performed by humans, how can we make them safe and reliable? Rather than make performative claims about augmented generation frameworks or graph-based techniques, this paper argues that the safety argument should focus on the type of evidence we get from evaluation points in LLM processes, particularly in frameworks that employ LLM-as-Judges (LaJ) evaluators. This paper argues that although we cannot get deterministic evaluations from many natural language processing tasks, by adopting a basket of weighted metrics it may be possible to lower the risk of errors within an evaluation, use context sensitivity to define error severity and design confidence thresholds that trigger human review of critical LaJ judgments when concordance across evaluators is low.
☆ You Never Know a Person, You Only Know Their Defenses: Detecting Levels of Psychological Defense Mechanisms in Supportive Conversations
Psychological defenses are strategies, often automatic, that people use to manage distress. Rigid or overuse of defenses is negatively linked to mental health and shapes what speakers disclose and how they accept or resist help. However, defenses are complex and difficult to reliably measure, particularly in clinical dialogues. We introduce PsyDefConv, a dialogue corpus with help seeker utterances labeled for defense level, and DMRS Co-Pilot, a four-stage pipeline that provides evidence-based pre-annotations. The corpus contains 200 dialogues and 4709 utterances, including 2336 help seeker turns, with labeling and Cohen's kappa 0.639. In a counterbalanced study, the co-pilot reduced average annotation time by 22.4%. In expert review, it averaged 4.62 for evidence, 4.44 for clinical plausibility, and 4.40 for insight on a seven-point scale. Benchmarks with strong language models in zero-shot and fine-tuning settings demonstrate clear headroom, with the best macro F1-score around 30% and a tendency to overpredict mature defenses. Corpus analyses confirm that mature defenses are most common and reveal emotion-specific deviations. We will release the corpus, annotations, code, and prompts to support research on defensive functioning in language.
comment: Under Review
☆ Bolmo: Byteifying the Next Generation of Language Models
We introduce Bolmo, the first family of competitive fully open byte-level language models (LMs) at the 1B and 7B parameter scales. In contrast to prior research on byte-level LMs, which focuses predominantly on training from scratch, we train Bolmo by byteifying existing subword-level LMs. Byteification enables overcoming the limitations of subword tokenization - such as insufficient character understanding and efficiency constraints due to the fixed subword vocabulary - while performing at the level of leading subword-level LMs. Bolmo is specifically designed for byteification: our architecture resolves a mismatch between the expressivity of prior byte-level architectures and subword-level LMs, which makes it possible to employ an effective exact distillation objective between Bolmo and the source subword model. This allows for converting a subword-level LM to a byte-level LM by investing less than 1\% of a typical pretraining token budget. Bolmo substantially outperforms all prior byte-level LMs of comparable size, and outperforms the source subword-level LMs on character understanding and, in some cases, coding, while coming close to matching the original LMs' performance on other tasks. Furthermore, we show that Bolmo can achieve inference speeds competitive with subword-level LMs by training with higher token compression ratios, and can be cheaply and effectively post-trained by leveraging the existing ecosystem around the source subword-level LM. Our results finally make byte-level LMs a practical choice competitive with subword-level LMs across a wide set of use cases.
☆ An Empirical Study on Chinese Character Decomposition in Multiword Expression-Aware Neural Machine Translation
Word meaning, representation, and interpretation play fundamental roles in natural language understanding (NLU), natural language processing (NLP), and natural language generation (NLG) tasks. Many of the inherent difficulties in these tasks stem from Multi-word Expressions (MWEs), which complicate the tasks by introducing ambiguity, idiomatic expressions, infrequent usage, and a wide range of variations. Significant effort and substantial progress have been made in addressing the challenging nature of MWEs in Western languages, particularly English. This progress is attributed in part to the well-established research communities and the abundant availability of computational resources. However, the same level of progress is not true for language families such as Chinese and closely related Asian languages, which continue to lag behind in this regard. While sub-word modelling has been successfully applied to many Western languages to address rare words improving phrase comprehension, and enhancing machine translation (MT) through techniques like byte-pair encoding (BPE), it cannot be applied directly to ideograph language scripts like Chinese. In this work, we conduct a systematic study of the Chinese character decomposition technology in the context of MWE-aware neural machine translation (NMT). Furthermore, we report experiments to examine how Chinese character decomposition technology contributes to the representation of the original meanings of Chinese words and characters, and how it can effectively address the challenges of translating MWEs.
comment: capstone work, technical report, 27 pages, extraction from PhD thesis https://doras.dcu.ie/26559/
☆ From Data to Dialogue: Unlocking Language for All
Traditional linguists have proposed the use of a General Service List (GSL) to assist new language learners in identifying the most important words in English. This process requires linguistic expertise, subjective input, and a considerable amount of time. We attempt to create our own GSL and evaluate its practicality against the industry standard (The NGSL). We found creating a Specialized Word List (SWL), or a word list specific to a subset of the overall corpus, to be the most practical way for language-learners to optimize the process. The SWL's that we created using our model outperformed the industry standard, reaching the 95% coverage required for language comprehension with fewer words comparatively. By restricting the SWL process to objective criteria only, it can be automated, scaled, and tailored to the needs of language-learners across the globe.
☆ Learning inflection classes using Adaptive Resonance Theory
The concept of inflection classes is an abstraction used by linguists, and provides a means to describe patterns in languages that give an analogical base for deducing previously unencountered forms. This ability is an important part of morphological acquisition and processing. We study the learnability of a system of verbal inflection classes by the individual language user by performing unsupervised clustering of lexemes into inflection classes. As a cognitively plausible and interpretable computational model, we use Adaptive Resonance Theory, a neural network with a parameter that determines the degree of generalisation (vigilance). The model is applied to Latin, Portuguese and Estonian. The similarity of clustering to attested inflection classes varies depending on the complexity of the inflectional system. We find the best performance in a narrow region of the generalisation parameter. The learned features extracted from the model show similarity with linguistic descriptions of the inflection classes. The proposed model could be used to study change in inflection classes in the future, by including it in an agent-based model.
☆ CTkvr: KV Cache Retrieval for Long-Context LLMs via Centroid then Token Indexing
Large language models (LLMs) are increasingly applied in long-context scenarios such as multi-turn conversations. However, long contexts pose significant challenges for inference efficiency, including high memory overhead from Key-Value (KV) cache and increased latency due to excessive memory accesses. Recent methods for dynamic KV selection struggle with trade-offs: block-level indexing degrades accuracy by retrieving irrelevant KV entries, while token-level indexing incurs high latency from inefficient retrieval mechanisms. In this paper, we propose CTKVR, a novel centroid-then-token KV retrieval scheme that addresses these limitations. CTKVR leverages a key observation: query vectors adjacent in position exhibit high similarity after Rotary Position Embedding (RoPE) and share most of their top-k KV cache entries. Based on this insight, CTKVR employs a two-stage retrieval strategy: lightweight centroids are precomputed during prefilling for centroid-grained indexing, followed by token-level refinement for precise KV retrieval. This approach balances retrieval efficiency and accuracy. To further enhance performance, we implement an optimized system for indexing construction and search using CPU-GPU co-execution. Experimentally, CTKVR achieves superior performance across multiple benchmarks with less than 1% accuracy degradation. Meanwhile, CTKVR delivers 3 times and 4 times throughput speedups on Llama-3-8B and Yi-9B at 96K context length across diverse GPU hardware.
☆ When a Nation Speaks: Machine Learning and NLP in People's Sentiment Analysis During Bangladesh's 2024 Mass Uprising
Sentiment analysis, an emerging research area within natural language processing (NLP), has primarily been explored in contexts like elections and social media trends, but there remains a significant gap in understanding emotional dynamics during civil unrest, particularly in the Bangla language. Our study pioneers sentiment analysis in Bangla during a national crisis by examining public emotions amid Bangladesh's 2024 mass uprising. We curated a unique dataset of 2,028 annotated news headlines from major Facebook news portals, classifying them into Outrage, Hope, and Despair. Through Latent Dirichlet Allocation (LDA), we identified prevalent themes like political corruption and public protests, and analyzed how events such as internet blackouts shaped sentiment patterns. It outperformed multilingual transformers (mBERT: 67%, XLM-RoBERTa: 71%) and traditional machine learning methods (SVM and Logistic Regression: both 70%). These results highlight the effectiveness of language-specific models and offer valuable insights into public sentiment during political turmoil.
comment: Accepted in 2025 28th International Conference on Computer and Information Technology (ICCIT)
☆ Tracking Temporal Dynamics of Vector Sets with Gaussian Process
Understanding the temporal evolution of sets of vectors is a fundamental challenge across various domains, including ecology, crime analysis, and linguistics. For instance, ecosystem structures evolve due to interactions among plants, herbivores, and carnivores; the spatial distribution of crimes shifts in response to societal changes; and word embedding vectors reflect cultural and semantic trends over time. However, analyzing such time-varying sets of vectors is challenging due to their complicated structures, which also evolve over time. In this work, we propose a novel method for modeling the distribution underlying each set of vectors using infinite-dimensional Gaussian processes. By approximating the latent function in the Gaussian process with Random Fourier Features, we obtain compact and comparable vector representations over time. This enables us to track and visualize temporal transitions of vector sets in a low-dimensional space. We apply our method to both sociological data (crime distributions) and linguistic data (word embeddings), demonstrating its effectiveness in capturing temporal dynamics. Our results show that the proposed approach provides interpretable and robust representations, offering a powerful framework for analyzing structural changes in temporally indexed vector sets across diverse domains.
comment: Work in Progress
☆ Toward expert-level motivational interviewing for health behavior improvement with LLMs
Background: Motivational interviewing (MI) is an effective counseling approach for promoting health behavior change, but its impact is constrained by the need for highly trained human counselors. Objective: This study aimed to explore a scalable alternative by developing and evaluating Large Language Models for Motivational Interviewing (MI-LLMs). Methods: We first curated five Chinese psychological counseling corpora and, using GPT-4 with an MI-informed prompt, transcribed multi-turn dialogues from the two highest-quality datasets (CPsyCounD and PsyDTCorpus) into 2,040 MI-style counseling conversations, of which 2,000 were used for training and 40 for testing. Three Chinese-capable open-source LLMs (Baichuan2-7B-Chat, ChatGLM-4-9B-Chat and Llama-3-8B-Chinese-Chat-v2) were fine-tuned on this corpus and were named as MI-LLMs. We evaluated MI-LLMs using round-based automatic metrics and expert manual coding with the Motivational Interviewing Treatment Integrity (MITI) Coding Manual 4.2.1. Results: Across all three models, fine-tuning substantially improved BLEU-4 and ROUGE scores compared with the base models, and manual coding showed that MI-LLMs achieved technical and relational global scores, and MI-adherent ratios that approached those of real MI dialogues, although complex reflections and reflection-to-question ratios remained less frequent. Conclusions: These findings provide initial evidence that MI-oriented fine-tuning can endow general-purpose LLMs with core MI-consistent counseling behaviors, suggesting a scalable pathway toward AI-assisted health behavior change support while underscoring the need for further work on data scale, complex MI skills and real-world intervention trials.
comment: 26 pages, 3 figures
☆ ORACLE: Time-Dependent Recursive Summary Graphs for Foresight on News Data Using LLMs
ORACLE turns daily news into week-over-week, decision-ready insights for one of the Finnish University of Applied Sciences. The platform crawls and versions news, applies University-specific relevance filtering, embeds content, classifies items into PESTEL dimensions and builds a concise Time-Dependent Recursive Summary Graph (TRSG): two clustering layers summarized by an LLM and recomputed weekly. A lightweight change detector highlights what is new, removed or changed, then groups differences into themes for PESTEL-aware analysis. We detail the pipeline, discuss concrete design choices that make the system stable in production and present a curriculum-intelligence use case with an evaluation plan.
☆ Emotion Recognition in Signers
Recognition of signers' emotions suffers from one theoretical challenge and one practical challenge, namely, the overlap between grammatical and affective facial expressions and the scarcity of data for model training. This paper addresses these two challenges in a cross-lingual setting using our eJSL dataset, a new benchmark dataset for emotion recognition in Japanese Sign Language signers, and BOBSL, a large British Sign Language dataset with subtitles. In eJSL, two signers expressed 78 distinct utterances with each of seven different emotional states, resulting in 1,092 video clips. We empirically demonstrate that 1) textual emotion recognition in spoken language mitigates data scarcity in sign language, 2) temporal segment selection has a significant impact, and 3) incorporating hand motion enhances emotion recognition in signers. Finally we establish a stronger baseline than spoken language LLMs.
☆ Dual-Density Inference for Efficient Language Model Reasoning
Large Language Models (LLMs) have shown impressive capabilities in complex reasoning tasks. However, current approaches employ uniform language density for both intermediate reasoning and final answers, leading to computational inefficiency. Our observation found that reasoning process serves a computational function for the model itself, while answering serves a communicative function for human understanding. This distinction enables the use of compressed, symbol-rich language for intermediate computations while maintaining human-readable final explanations. To address this inefficiency, we present Denser: \underline{D}ual-d\underline{ens}ity inf\underline{er}ence, a novel framework that optimizes information density separately for reasoning and answering phases. Our framework implements this through three components: a query processing module that analyzes input problems, a high-density compressed reasoning mechanism for efficient intermediate computations, and an answer generation component that translates compressed reasoning into human-readable solutions. Experimental evaluation across multiple reasoning question answering benchmarks demonstrates that Denser reduces token consumption by up to 62\% compared to standard Chain-of-Thought methods while preserving or improving accuracy. These efficiency gains are particularly significant for complex multi-step reasoning problems where traditional methods generate extensive explanations.
☆ Adversarial versification in portuguese as a jailbreak operator in LLMs
Recent evidence shows that the versification of prompts constitutes a highly effective adversarial mechanism against aligned LLMs. The study 'Adversarial poetry as a universal single-turn jailbreak mechanism in large language models' demonstrates that instructions routinely refused in prose become executable when rewritten as verse, producing up to 18 x more safety failures in benchmarks derived from MLCommons AILuminate. Manually written poems reach approximately 62% ASR, and automated versions 43%, with some models surpassing 90% success in single-turn interactions. The effect is structural: systems trained with RLHF, constitutional AI, and hybrid pipelines exhibit consistent degradation under minimal semiotic formal variation. Versification displaces the prompt into sparsely supervised latent regions, revealing guardrails that are excessively dependent on surface patterns. This dissociation between apparent robustness and real vulnerability exposes deep limitations in current alignment regimes. The absence of evaluations in Portuguese, a language with high morphosyntactic complexity, a rich metric-prosodic tradition, and over 250 million speakers, constitutes a critical gap. Experimental protocols must parameterise scansion, metre, and prosodic variation to test vulnerabilities specific to Lusophone patterns, which are currently ignored.
comment: 15 pages
☆ Why Your Academic Field Is Everywhere at Once: A Case Study of Arabic Linguistics
This study applies Brookes' Measure of Categorical Dispersion (Δ) to analyze the thematic structure of contemporary Arabic Applied Linguistics research. Using a comprehensive, real-world dataset of 1,564 publications from 2019 to 2025, classified into eight core sub-disciplines, we calculate a dispersion index of Δ = 0.194. This remarkably low value indicates extreme thematic dispersion, revealing that the field is characterized by pronounced heterogeneity rather than concentration. The analysis identifies Computational Linguistics as a dominant but non-hegemonic force, coexisting with robust research in Sociolinguistics, Language Teaching, and other subfields. This study clarifies the correct application of Brookes' original formula, demonstrates its utility for field characterization, and provides a replicable bibliometric methodology for assessing disciplinary structure across domains.
☆ Evaluating LLMs for Zeolite Synthesis Event Extraction (ZSEE): A Systematic Analysis of Prompting Strategies
Extracting structured information from zeolite synthesis experimental procedures is critical for materials discovery, yet existing methods have not systematically evaluated Large Language Models (LLMs) for this domain-specific task. This work addresses a fundamental question: what is the efficacy of different prompting strategies when applying LLMs to scientific information extraction? We focus on four key subtasks: event type classification (identifying synthesis steps), trigger text identification (locating event mentions), argument role extraction (recognizing parameter types), and argument text extraction (extracting parameter values). We evaluate four prompting strategies - zero-shot, few-shot, event-specific, and reflection-based - across six state-of-the-art LLMs (Gemma-3-12b-it, GPT-5-mini, O4-mini, Claude-Haiku-3.5, DeepSeek reasoning and non-reasoning) using the ZSEE dataset of 1,530 annotated sentences. Results demonstrate strong performance on event type classification (80-90\% F1) but modest performance on fine-grained extraction tasks, particularly argument role and argument text extraction (50-65\% F1). GPT-5-mini exhibits extreme prompt sensitivity with 11-79\% F1 variation. Notably, advanced prompting strategies provide minimal improvements over zero-shot approaches, revealing fundamental architectural limitations. Error analysis identifies systematic hallucination, over-generalization, and inability to capture synthesis-specific nuances. Our findings demonstrate that while LLMs achieve high-level understanding, precise extraction of experimental parameters requires domain-adapted models, providing quantitative benchmarks for scientific information extraction.
comment: Under Review
☆ Towards Proactive Personalization through Profile Customization for Individual Users in Dialogues
The deployment of Large Language Models (LLMs) in interactive systems necessitates a deep alignment with the nuanced and dynamic preferences of individual users. Current alignment techniques predominantly address universal human values or static, single-turn preferences, thereby failing to address the critical needs of long-term personalization and the initial user cold-start problem. To bridge this gap, we propose PersonalAgent, a novel user-centric lifelong agent designed to continuously infer and adapt to user preferences. PersonalAgent constructs and dynamically refines a unified user profile by decomposing dialogues into single-turn interactions, framing preference inference as a sequential decision-making task. Experiments show that PersonalAgent achieves superior performance over strong prompt-based and policy optimization baselines, not only in idealized but also in noisy conversational contexts, while preserving cross-session preference consistency. Furthermore, human evaluation confirms that PersonalAgent excels at capturing user preferences naturally and coherently. Our findings underscore the importance of lifelong personalization for developing more inclusive and adaptive conversational agents. Our code is available here.
☆ ChatGPT and Gemini participated in the Korean College Scholastic Ability Test -- Earth Science I
The rapid development of Generative AI is bringing innovative changes to education and assessment. As the prevalence of students utilizing AI for assignments increases, concerns regarding academic integrity and the validity of assessments are growing. This study utilizes the Earth Science I section of the 2025 Korean College Scholastic Ability Test (CSAT) to deeply analyze the multimodal scientific reasoning capabilities and cognitive limitations of state-of-the-art Large Language Models (LLMs), including GPT-4o, Gemini 2.5 Flash, and Gemini 2.5 Pro. Three experimental conditions (full-page input, individual item input, and optimized multimodal input) were designed to evaluate model performance across different data structures. Quantitative results indicated that unstructured inputs led to significant performance degradation due to segmentation and Optical Character Recognition (OCR) failures. Even under optimized conditions, models exhibited fundamental reasoning flaws. Qualitative analysis revealed that "Perception Errors" were dominant, highlighting a "Perception-Cognition Gap" where models failed to interpret symbolic meanings in schematic diagrams despite recognizing visual data. Furthermore, models demonstrated a "Calculation-Conceptualization Discrepancy," successfully performing calculations while failing to apply the underlying scientific concepts, and "Process Hallucination," where models skipped visual verification in favor of plausible but unfounded background knowledge. Addressing the challenge of unauthorized AI use in coursework, this study provides actionable cues for designing "AI-resistant questions" that target these specific cognitive vulnerabilities. By exploiting AI's weaknesses, such as the gap between perception and cognition, educators can distinguish genuine student competency from AI-generated responses, thereby ensuring assessment fairness.
comment: 23 pages, 9 tables, 1 figure
☆ Well Begun, Half Done: Reinforcement Learning with Prefix Optimization for LLM Reasoning AAAI 2026
Reinforcement Learning with Verifiable Rewards (RLVR) significantly enhances the reasoning capability of Large Language Models (LLMs). Current RLVR approaches typically conduct training across all generated tokens, but neglect to explore which tokens (e.g., prefix tokens) actually contribute to reasoning. This uniform training strategy spends substantial effort on optimizing low-return tokens, which in turn impedes the potential improvement from high-return tokens and reduces overall training effectiveness. To address this issue, we propose a novel RLVR approach called Progressive Prefix-token Policy Optimization (PPPO), which highlights the significance of the prefix segment of generated outputs. Specifically, inspired by the well-established human thinking theory of Path Dependence, where early-stage thoughts substantially constrain subsequent thinking trajectory, we identify an analogous phenomenon in LLM reasoning termed Beginning Lock-in Effect (BLE). PPPO leverages this finding by focusing its optimization objective on the prefix reasoning process of LLMs. This targeted optimization strategy can positively influence subsequent reasoning processes, and ultimately improve final results. To improve the learning effectiveness of LLMs on how to start reasoning with high quality, PPPO introduces two training strategies: (a) Progressive Prefix Retention, which shapes a progressive learning process by increasing the proportion of retained prefix tokens during training; (b) Continuation Accumulated Reward, which mitigates reward bias by sampling multiple continuations for one prefix token sequence, and accumulating their scores as the reward signal. Extensive experimental results on various reasoning tasks demonstrate that our proposed PPPO outperforms representative RLVR methods, with the accuracy improvements of 18.02% on only 26.17% training tokens.
comment: Accepted by AAAI 2026
☆ SynGP500: A Clinically-Grounded Synthetic Dataset of Australian General Practice Medical Notes
We introduce SynGP500, a clinician-curated collection of 500 synthetic Australian general practice medical notes. The dataset integrates curriculum-based clinical breadth (RACGP 2022 Curriculum), epidemiologically-calibrated prevalence (BEACH study), and diverse consultation contexts. This approach systematically includes both common presentations and less-common curriculum-specified conditions that GPs must recognize but appear infrequently in single practice populations, potentially supporting more generalizable model training than datasets constrained by naturally occurring case distributions. SynGP500 is messy by design, reflecting the authentic complexity of healthcare delivery: telegraphic documentation, typos, patient non-adherence, socioeconomic barriers, and clinician-patient disagreements, unlike sanitized synthetic datasets that obscure clinical realities. Multi-faceted validation demonstrates dataset quality through epidemiological alignment with real Australian GP consultation patterns (BEACH study), stylometric analysis confirming high linguistic variation, semantic diversity analysis demonstrating broad coverage, and exploratory downstream evaluation using self-supervised medical concept extraction, showing F1 improvements. SynGP500 addresses a critical national gap, providing researchers and educators with a resource for developing and evaluating clinical NLP methods for Australian general practice while inherently protecting patient privacy.
comment: 16 pages, 2 figures
☆ The Moralization Corpus: Frame-Based Annotation and Analysis of Moralizing Speech Acts across Diverse Text Genres
Moralizations - arguments that invoke moral values to justify demands or positions - are a yet underexplored form of persuasive communication. We present the Moralization Corpus, a novel multi-genre dataset designed to analyze how moral values are strategically used in argumentative discourse. Moralizations are pragmatically complex and often implicit, posing significant challenges for both human annotators and NLP systems. We develop a frame-based annotation scheme that captures the constitutive elements of moralizations - moral values, demands, and discourse protagonists - and apply it to a diverse set of German texts, including political debates, news articles, and online discussions. The corpus enables fine-grained analysis of moralizing language across communicative formats and domains. We further evaluate several large language models (LLMs) under varied prompting conditions for the task of moralization detection and moralization component extraction and compare it to human annotations in order to investigate the challenges of automatic and manual analysis of moralizations. Results show that detailed prompt instructions has a greater effect than few-shot or explanation-based prompting, and that moralization remains a highly subjective and context-sensitive task. We release all data, annotation guidelines, and code to foster future interdisciplinary research on moral discourse and moral reasoning in NLP.
☆ FAME: Fictional Actors for Multilingual Erasure
LLMs trained on web-scale data raise concerns about privacy and the right to be forgotten. To address these issues, Machine Unlearning provides techniques to remove specific information from trained models without retraining from scratch. However, existing benchmarks for evaluating unlearning in LLMs face two major limitations: they focus only on English and support only entity-level forgetting (removing all information about a person). We introduce FAME (Fictional Actors for Multilingual Erasure), a synthetic benchmark for evaluating Machine Unlearning across five languages: English, French, German, Italian, and Spanish. FAME contains 1,000 fictional actor biographies and 20,000 question-answer pairs. Each biography includes information on 20 topics organized into structured categories (biography, career, achievements, personal information). This design enables both entity-level unlearning (i.e., forgetting entire identities) and instance-level unlearning (i.e., forgetting specific facts while retaining others). We provide two dataset splits to support these two different unlearning scenarios and enable systematic comparison of unlearning techniques across languages. Since FAME uses entirely fictional data, it ensures that the information was never encountered during model pretraining, allowing for a controlled evaluation of unlearning methods.
☆ Yes-MT's Submission to the Low-Resource Indic Language Translation Shared Task in WMT 2024
This paper presents the systems submitted by the Yes-MT team for the Low-Resource Indic Language Translation Shared Task at WMT 2024 (Pakray et al., 2024), focusing on translating between English and the Assamese, Mizo, Khasi, and Manipuri languages. The experiments explored various approaches, including fine-tuning pre-trained models like mT5 (Xue et al., 2020) and IndicBart (Dabre et al., 2021) in both multilingual and monolingual settings, LoRA (Hu et al., 2021) fine-tuning IndicTrans2 (Gala et al., 2023), zero-shot and few-shot prompting (Brown, 2020) with large language models (LLMs) like Llama 3 (Dubey et al., 2024) and Mixtral 8x7b (Jiang et al., 2024), LoRA supervised fine-tuning of Llama 3 (Mecklenburg et al., 2024), and training Transformer models (Vaswani, 2017) from scratch. The results were evaluated on the WMT23 Low-Resource Indic Language Translation Shared Task test data using SacreBLEU (Post, 2018) and CHRF (Popovic, 2015), highlighting the challenges of low-resource translation and the potential of LLMs for these tasks, particularly with fine-tuning.
comment: Accepted at WMT 2024
☆ RFKG-CoT: Relation-Driven Adaptive Hop-count Selection and Few-Shot Path Guidance for Knowledge-Aware QA AAAI 2026
Large language models (LLMs) often generate hallucinations in knowledge-intensive QA due to parametric knowledge limitations. While existing methods like KG-CoT improve reliability by integrating knowledge graph (KG) paths, they suffer from rigid hop-count selection (solely question-driven) and underutilization of reasoning paths (lack of guidance). To address this, we propose RFKG-CoT: First, it replaces the rigid hop-count selector with a relation-driven adaptive hop-count selector that dynamically adjusts reasoning steps by activating KG relations (e.g., 1-hop for direct "brother" relations, 2-hop for indirect "father-son" chains), formalized via a relation mask. Second, it introduces a few-shot in-context learning path guidance mechanism with CoT (think) that constructs examples in a "question-paths-answer" format to enhance LLMs' ability to understand reasoning paths. Experiments on four KGQA benchmarks show RFKG-CoT improves accuracy by up to 14.7 pp (Llama2-7B on WebQSP) over KG-CoT. Ablations confirm the hop-count selector and the path prompt are complementary, jointly transforming KG evidence into more faithful answers.
comment: 9pages, 5 figures, accepted by AAAI 2026
☆ From NLG Evaluation to Modern Student Assessment in the Era of ChatGPT: The Great Misalignment Problem and Pedagogical Multi-Factor Assessment (P-MFA)
This paper explores the growing epistemic parallel between NLG evaluation and grading of students in a Finnish University. We argue that both domains are experiencing a Great Misalignment Problem. As students increasingly use tools like ChatGPT to produce sophisticated outputs, traditional assessment methods that focus on final products rather than learning processes have lost their validity. To address this, we introduce the Pedagogical Multi-Factor Assessment (P-MFA) model, a process-based, multi-evidence framework inspired by the logic of multi-factor authentication.
comment: IWCLUL 2025
☆ MCP-SafetyBench: A Benchmark for Safety Evaluation of Large Language Models with Real-World MCP Servers
Large language models (LLMs) are evolving into agentic systems that reason, plan, and operate external tools. The Model Context Protocol (MCP) is a key enabler of this transition, offering a standardized interface for connecting LLMs with heterogeneous tools and services. Yet MCP's openness and multi-server workflows introduce new safety risks that existing benchmarks fail to capture, as they focus on isolated attacks or lack real-world coverage. We present MCP-SafetyBench, a comprehensive benchmark built on real MCP servers that supports realistic multi-turn evaluation across five domains: browser automation, financial analysis, location navigation, repository management, and web search. It incorporates a unified taxonomy of 20 MCP attack types spanning server, host, and user sides, and includes tasks requiring multi-step reasoning and cross-server coordination under uncertainty. Using MCP-SafetyBench, we systematically evaluate leading open- and closed-source LLMs, revealing large disparities in safety performance and escalating vulnerabilities as task horizons and server interactions grow. Our results highlight the urgent need for stronger defenses and establish MCP-SafetyBench as a foundation for diagnosing and mitigating safety risks in real-world MCP deployments.
comment: Our benchmark is available at https://github.com/xjzzzzzzzz/MCPSafety
☆ Rakuten Data Release: A Large-Scale and Long-Term Reviews Corpus for Hotel Domain
This paper presents a large-scale corpus of Rakuten Travel Reviews. Our collection contains 7.3 million customer reviews for 16 years, ranging from 2009 to 2024. Each record in the dataset contains the review text, its response from an accommodation, an anonymized reviewer ID, review date, accommodation ID, plan ID, plan title, room type, room name, purpose, accompanying group, and user ratings from different aspect categories, as well as an overall score. We present statistical information about our corpus and provide insights into factors driving data drift between 2019 and 2024 using statistical approaches.
☆ Beyond Majority Voting: Towards Fine-grained and More Reliable Reward Signal for Test-Time Reinforcement Learning
Test-time reinforcement learning mitigates the reliance on annotated data by using majority voting results as pseudo-labels, emerging as a complementary direction to reinforcement learning with verifiable rewards (RLVR) for improving reasoning ability of large language models (LLMs). However, this voting strategy often induces confirmation bias and suffers from sparse rewards, limiting the overall performance. In this work, we propose subgroup-specific step-wise confidence-weighted pseudo-label estimation (SCOPE), a framework integrating model confidence and dynamic subgroup partitioning to address these issues. Specifically, SCOPE integrates the proposed step-wise confidence into pseudo label deduction, prioritizing high-quality reasoning paths over simple frequency count. Furthermore, it dynamically partitions the candidate outputs pool into independent subgroups by balancing reasoning quality against exploration diversity. By deriving local consensus via repeat sampling for each sub group, SCOPE provides diverse supervision targets to encourage broader exploration. We conduct experiments across various models and benchmarks, experimental results show that SCOPE consistently outperforms recent baselines. Notably, SCOPE achieving relative improvements of 13.1\% on challenging AIME 2025 and 8.1\% on AMC. The code is released at \href{https://github.com/szu-tera/SCOPE}{https://github.com/szu-tera/SCOPE}.
☆ From Isolation to Entanglement: When Do Interpretability Methods Identify and Disentangle Known Concepts?
A central goal of interpretability is to recover representations of causally relevant concepts from the activations of neural networks. The quality of these concept representations is typically evaluated in isolation, and under implicit independence assumptions that may not hold in practice. Thus, it is unclear whether common featurization methods - including sparse autoencoders (SAEs) and sparse probes - recover disentangled representations of these concepts. This study proposes a multi-concept evaluation setting where we control the correlations between textual concepts, such as sentiment, domain, and tense, and analyze performance under increasing correlations between them. We first evaluate the extent to which featurizers can learn disentangled representations of each concept under increasing correlational strengths. We observe a one-to-many relationship from concepts to features: features correspond to no more than one concept, but concepts are distributed across many features. Then, we perform steering experiments, measuring whether each concept is independently manipulable. Even when trained on uniform distributions of concepts, SAE features generally affect many concepts when steered, indicating that they are neither selective nor independent; nonetheless, features affect disjoint subspaces. These results suggest that correlational metrics for measuring disentanglement are generally not sufficient for establishing independence when steering, and that affecting disjoint subspaces is not sufficient for concept selectivity. These results underscore the importance of compositional evaluations in interpretability research.
☆ Quantifying Return on Security Controls in LLM Systems
Although large language models (LLMs) are increasingly used in security-critical workflows, practitioners lack quantitative guidance on which safeguards are worth deploying. This paper introduces a decision-oriented framework and reproducible methodology that together quantify residual risk, convert adversarial probe outcomes into financial risk estimates and return-on-control (RoC) metrics, and enable monetary comparison of layered defenses for LLM-based systems. A retrieval-augmented generation (RAG) service is instantiated using the DeepSeek-R1 model over a corpus containing synthetic personally identifiable information (PII), and subjected to automated attacks with Garak across five vulnerability classes: PII leakage, latent context injection, prompt injection, adversarial attack generation, and divergence. For each (vulnerability, control) pair, attack success probabilities are estimated via Laplace's Rule of Succession and combined with loss triangle distributions, calibrated from public breach-cost data, in 10,000-run Monte Carlo simulations to produce loss exceedance curves and expected losses. Three widely used mitigations, attribute-based access control (ABAC); named entity recognition (NER) redaction using Microsoft Presidio; and NeMo Guardrails, are then compared to a baseline RAG configuration. The baseline system exhibits very high attack success rates (>= 0.98 for PII, latent injection, and prompt injection), yielding a total simulated expected loss of $313k per attack scenario. ABAC collapses success probabilities for PII and prompt-related attacks to near zero and reduces the total expected loss by ~94%, achieving an RoC of 9.83. NER redaction likewise eliminates PII leakage and attains an RoC of 5.97, while NeMo Guardrails provides only marginal benefit (RoC of 0.05).
comment: 13 pages, 9 figures, 3 tables
☆ The Semantic Illusion: Certified Limits of Embedding-Based Hallucination Detection in RAG Systems
Retrieval-Augmented Generation (RAG) systems remain susceptible to hallucinations despite grounding in retrieved evidence. Current detection methods rely on semantic similarity and natural language inference (NLI), but their fundamental limitations have not been rigorously characterized. We apply conformal prediction to hallucination detection, providing finite-sample coverage guarantees that enable precise quantification of detection capabilities. Using calibration sets of approximately 600 examples, we achieve 94% coverage with 0% false positive rate on synthetic hallucinations (Natural Questions). However, on three real hallucination benchmarks spanning multiple LLMs (GPT-4, ChatGPT, GPT-3, Llama-2, Mistral), embedding-based methods - including state-of-the-art OpenAI text-embedding-3-large and cross-encoder models - exhibit unacceptable false positive rates: 100% on HaluEval, 88% on RAGTruth, and 50% on WikiBio. Crucially, GPT-4 as an LLM judge achieves only 7% FPR (95% CI: [3.4%, 13.7%]) on the same data, proving the task is solvable through reasoning. We term this the "semantic illusion": semantically plausible hallucinations preserve similarity to source documents while introducing factual errors invisible to embeddings. This limitation persists across embedding architectures, LLM generators, and task types, suggesting embedding-based detection is insufficient for production RAG deployment.
comment: 12 pages, 2 figures, 6 tables
☆ The Meta-Prompting Protocol: Orchestrating LLMs via Adversarial Feedback Loops
The transition of Large Language Models (LLMs) from stochastic chat interfaces to reliable software components necessitates a fundamental re-engineering of interaction paradigms. Current methodologies, predominantly heuristic-based "prompt engineering," fail to provide the deterministic guarantees required for mission-critical applications. We introduce the Meta-Prompting Protocol, a rigorous theoretical framework that formalizes the orchestration of LLMs as a programmable, self-optimizing system. Central to this protocol is the Adversarial Trinity, a tripartite topology comprising a Generator (P), an Auditor (A), and an Optimizer (O). By treating natural language instructions as differentiable variables within a semantic computation graph and utilizing textual critiques as gradients, this architecture mitigates hallucination and prevents model collapse. We demonstrate the theoretical viability of this approach using declarative programming paradigms (DSPy) and automatic textual differentiation (TextGrad), establishing a foundation for "Observable Software Engineering" in the era of probabilistic computing.
comment: 6 pages, 2 figures
☆ SGM: Safety Glasses for Multimodal Large Language Models via Neuron-Level Detoxification ACL 2026
Disclaimer: Samples in this paper may be harmful and cause discomfort. Multimodal large language models (MLLMs) enable multimodal generation but inherit toxic, biased, and NSFW signals from weakly curated pretraining corpora, causing safety risks, especially under adversarial triggers that late, opaque training-free detoxification methods struggle to handle. We propose SGM, a white-box neuron-level multimodal intervention that acts like safety glasses for toxic neurons: it selectively recalibrates a small set of toxic expert neurons via expertise-weighted soft suppression, neutralizing harmful cross-modal activations without any parameter updates. We establish MM-TOXIC-QA, a multimodal toxicity evaluation framework, and compare SGM with existing detoxification techniques. Experiments on open-source MLLMs show that SGM mitigates toxicity in standard and adversarial conditions, cutting harmful rates from 48.2\% to 2.5\% while preserving fluency and multimodal reasoning. SGM is extensible, and its combined defenses, denoted as SGM*, integrate with existing detoxification methods for stronger safety performance, providing an interpretable, low-cost solution for toxicity-controlled multimodal generation.
comment: Under Review for ACL 2026
☆ HERO: Hierarchical Traversable 3D Scene Graphs for Embodied Navigation Among Movable Obstacles
3D Scene Graphs (3DSGs) constitute a powerful representation of the physical world, distinguished by their abilities to explicitly model the complex spatial, semantic, and functional relationships between entities, rendering a foundational understanding that enables agents to interact intelligently with their environment and execute versatile behaviors. Embodied navigation, as a crucial component of such capabilities, leverages the compact and expressive nature of 3DSGs to enable long-horizon reasoning and planning in complex, large-scale environments. However, prior works rely on a static-world assumption, defining traversable space solely based on static spatial layouts and thereby treating interactable obstacles as non-traversable. This fundamental limitation severely undermines their effectiveness in real-world scenarios, leading to limited reachability, low efficiency, and inferior extensibility. To address these issues, we propose HERO, a novel framework for constructing Hierarchical Traversable 3DSGs, that redefines traversability by modeling operable obstacles as pathways, capturing their physical interactivity, functional semantics, and the scene's relational hierarchy. The results show that, relative to its baseline, HERO reduces PL by 35.1% in partially obstructed environments and increases SR by 79.4% in fully obstructed ones, demonstrating substantially higher efficiency and reachability.
☆ DASH: Dialogue-Aware Similarity and Handshake Recognition for Topic Segmentation in Public-Channel Conversations AAAI
Dialogue Topic Segmentation (DTS) is crucial for understanding task-oriented public-channel communications, such as maritime VHF dialogues, which feature informal speech and implicit transitions. To address the limitations of traditional methods, we propose DASH-DTS, a novel LLM-based framework. Its core contributions are: (1) topic shift detection via dialogue handshake recognition; (2) contextual enhancement through similarity-guided example selection; and (3) the generation of selective positive and negative samples to improve model discrimination and robustness. Additionally, we release VHF-Dial, the first public dataset of real-world maritime VHF communications, to advance research in this domain. DASH-DTS provides interpretable reasoning and confidence scores for each segment. Experimental results demonstrate that our framework achieves several sota segmentation trusted accuracy on both VHF-Dial and standard benchmarks, establishing a strong foundation for stable monitoring and decision support in operational dialogues.
comment: Accepted by AAAIW2026
☆ DreamPRM-Code: Function-as-Step Process Reward Model with Label Correction for LLM Coding
Process Reward Models (PRMs) have become essential for improving Large Language Models (LLMs) via test-time scaling, yet their effectiveness in coding remains limited due to the lack of meaningful step decompositions in code and the noise of Monte-Carlo-generated partial labels. We propose DreamPRM-Code, a coding-focused PRM that treats functions as reasoning steps using a Chain-of-Function prompting strategy to induce modular code generation, enabling PRM training and application analogous to mathematical reasoning tasks. To address label noise, DreamPRM-Code introduces a meta-learning-based correction mechanism that leverages clean final-solution unit-test labels and performs bi-level optimization to refine intermediate labels. Applying on test-time scaling, DreamPRM-Code achieved state-of-the-art performance on LiveCodeBench with 80.9 pass@1 rate, surpassing OpenAI o4-mini.
☆ Evaluating Large Language Models on Multimodal Chemistry Olympiad Exams
Multimodal scientific reasoning remains a significant challenge for large language models (LLMs), particularly in chemistry, where problem-solving relies on symbolic diagrams, molecular structures, and structured visual data. Here, we systematically evaluate 40 proprietary and open-source multimodal LLMs, including GPT-5, o3, Gemini-2.5-Pro, and Qwen2.5-VL, on a curated benchmark of Olympiad-style chemistry questions drawn from over two decades of U.S. National Chemistry Olympiad (USNCO) exams. These questions require integrated visual and textual reasoning across diverse modalities. We find that many models struggle with modality fusion, where in some cases, removing the image even improves accuracy, indicating misalignment in vision-language integration. Chain-of-Thought prompting consistently enhances both accuracy and visual grounding, as demonstrated through ablation studies and occlusion-based interpretability. Our results reveal critical limitations in the scientific reasoning abilities of current MLLMs, providing actionable strategies for developing more robust and interpretable multimodal systems in chemistry. This work provides a timely benchmark for measuring progress in domain-specific multimodal AI and underscores the need for further advances at the intersection of artificial intelligence and scientific reasoning.
comment: Published at Communications Chemistry
☆ Prompt Repetition Improves Non-Reasoning LLMs
When not using reasoning, repeating the input prompt improves performance for popular models (Gemini, GPT, Claude, and Deepseek) without increasing the number of generated tokens or latency.
☆ Are We on the Right Way to Assessing LLM-as-a-Judge?
LLM-as-a-Judge has been widely adopted as an evaluation method and served as supervised rewards in model training. However, existing benchmarks for LLM-as-a-Judge are mainly relying on human-annotated ground truth, which introduces human bias that undermines the assessment of reliability and imposes scalability constraints. To overcome these limitations, we introduce Sage, a novel evaluation suite that assesses the quality of LLM judges without necessitating any human annotation. Inspired by axioms of rational choice theory, Sage introduces two new lenses for measuring LLM-as-a-Judge: local self-consistency (pair-wise preference stability) and global logical consistency (transitivity across a full set of preferences). We curate a dataset of 650 questions by combining structured benchmark problems with real-world user queries. Our experiments demonstrate both the stability of our metrics and their high correlation with supervised benchmarks like LLMBar and RewardBench2, confirming Sage's reliability as an evaluation suite for the robustness and accuracy of LLM-as-a-Judge. Based on Sage, we reveal that current state-of-the-art LLMs exhibit significant reliability problems when acting as judges in both scoring and pairwise settings; even the top-performing models, Gemini-2.5-Pro and GPT-5, fail to maintain consistent preferences in nearly a quarter of difficult cases. We attribute this to a new phenomenon called situational preference, which explains why explicit rubrics or criteria can help the model judge consistently across answer pairs. Our further analysis shows that finetuned LLM-as-a-Judge is a feasible method to boost performance, and the panel-based judge as well as deep reasoning can enhance the judging consistency. We also find substantial inconsistency in human judgments, which indicates that human annotation may not be a reliable gold standard.
☆ Examining the Utility of Self-disclosure Types for Modeling Annotators of Social Norms
Recent work has explored the use of personal information in the form of persona sentences or self-disclosures to improve modeling of individual characteristics and prediction of annotator labels for subjective tasks. The volume of personal information has historically been restricted and thus little exploration has gone into understanding what kind of information is most informative for predicting annotator labels. In this work, we categorize self-disclosure sentences and use them to build annotator models for predicting judgments of social norms. We perform several ablations and analyses to examine the impact of the type of information on our ability to predict annotation patterns. We find that demographics are more impactful than attitudes, relationships, and experiences. Generally, theory-based approaches worked better than automatic clusters. Contrary to previous work, only a small number of related comments are needed. Lastly, having a more diverse sample of annotator self-disclosures leads to the best performance.
☆ Cross-Language Bias Examination in Large Language Models
This study introduces an innovative multilingual bias evaluation framework for assessing bias in Large Language Models, combining explicit bias assessment through the BBQ benchmark with implicit bias measurement using a prompt-based Implicit Association Test. By translating the prompts and word list into five target languages, English, Chinese, Arabic, French, and Spanish, we directly compare different types of bias across languages. The results reveal substantial gaps in bias across languages used in LLMs. For example, Arabic and Spanish consistently show higher levels of stereotype bias, while Chinese and English exhibit lower levels of bias. We also identify contrasting patterns across bias types. Age shows the lowest explicit bias but the highest implicit bias, emphasizing the importance of detecting implicit biases that are undetectable with standard benchmarks. These findings indicate that LLMs vary significantly across languages and bias dimensions. This study fills a key research gap by providing a comprehensive methodology for cross-lingual bias analysis. Ultimately, our work establishes a foundation for the development of equitable multilingual LLMs, ensuring fairness and effectiveness across diverse languages and cultures.
☆ Dynamic Rank Reinforcement Learning for Adaptive Low-Rank Multi-Head Self Attention in Large Language Models
We propose Dynamic Rank Reinforcement Learning (DR-RL), a novel framework that adaptively optimizes the low-rank factorization of Multi-Head Self-Attention (MHSA) in Large Language Models (LLMs) through the integration of reinforcement learning and online matrix perturbation theory. While traditional low-rank approximations often rely on static rank assumptions--limiting their flexibility across diverse input contexts--our method dynamically selects ranks based on real-time sequence dynamics, layer-specific sensitivities, and hardware constraints. The core innovation lies in an RL agent that formulates rank selection as a sequential policy optimization problem, where the reward function strictly balances attention fidelity against computational latency. Crucially, we employ online matrix perturbation bounds to enable incremental rank updates, thereby avoiding the prohibitive cost of full decomposition during inference. Furthermore, the integration of a lightweight Transformer-based policy network and batched Singular Value Decomposition (SVD) operations ensures scalable deployment on modern GPU architectures. Experiments demonstrate that DR-RL maintains downstream accuracy statistically equivalent to full-rank attention while significantly reducing Floating Point Operations (FLOPs), particularly in long-sequence regimes (L > 4096). This work bridges the gap between adaptive efficiency and theoretical rigor in MHSA, offering a principled, mathematically grounded alternative to heuristic rank reduction techniques in resource-constrained deep learning. Source code and experiment logs are available at: https://github.com/canererden/DR_RL_Project
☆ BRAID: Bounded Reasoning for Autonomous Inference and Decisions
Large Language Models (LLMs) exhibit nonlinear relationships between performance, cost, and token usage. This paper presents a quantitative study on structured prompting using BRAID (Bounded Reasoning for Au tonomous Inference and Decisions) across multiple GPT model tiers, eval uated on the AdvancedIF, GSM-Hard, and the SCALE MultiChallenge benchmark datasets. BRAID introduces a bounded reasoning framework using Mermaid-based instruction graphs that enable models to reason struc turally rather than through unbounded natural-language token expansion. We show that structured machine-readable prompts substantially increase reasoning accuracy and cost efficiency for agents in production systems. The findings establish BRAID as an effective and scalable technique for optimizing inference efficiency in autonomous agent systems. All datasets and detailed result logs are available at https://benchmark.openserv.ai.
☆ DSO: Direct Steering Optimization for Bias Mitigation
Generative models are often deployed to make decisions on behalf of users, such as vision-language models (VLMs) identifying which person in a room is a doctor to help visually impaired individuals. Yet, VLM decisions are influenced by the perceived demographic attributes of people in the input, which can lead to biased outcomes like failing to identify women as doctors. Moreover, when reducing bias leads to performance loss, users may have varying needs for balancing bias mitigation with overall model capabilities, highlighting the demand for methods that enable controllable bias reduction during inference. Activation steering is a popular approach for inference-time controllability that has shown potential in inducing safer behavior in large language models (LLMs). However, we observe that current steering methods struggle to correct biases, where equiprobable outcomes across demographic groups are required. To address this, we propose Direct Steering Optimization (DSO) which uses reinforcement learning to find linear transformations for steering activations, tailored to mitigate bias while maintaining control over model performance. We demonstrate that DSO achieves state-of-the-art trade-off between fairness and capabilities on both VLMs and LLMs, while offering practitioners inference-time control over the trade-off. Overall, our work highlights the benefit of designing steering strategies that are directly optimized to control model behavior, providing more effective bias intervention than methods that rely on pre-defined heuristics for controllability.
☆ Social Story Frames: Contextual Reasoning about Narrative Intent and Reception
Reading stories evokes rich interpretive, affective, and evaluative responses, such as inferences about narrative intent or judgments about characters. Yet, computational models of reader response are limited, preventing nuanced analyses. To address this gap, we introduce SocialStoryFrames, a formalism for distilling plausible inferences about reader response, such as perceived author intent, explanatory and predictive reasoning, affective responses, and value judgments, using conversational context and a taxonomy grounded in narrative theory, linguistic pragmatics, and psychology. We develop two models, SSF-Generator and SSF-Classifier, validated through human surveys (N=382 participants) and expert annotations, respectively. We conduct pilot analyses to showcase the utility of the formalism for studying storytelling at scale. Specifically, applying our models to SSF-Corpus, a curated dataset of 6,140 social media stories from diverse contexts, we characterize the frequency and interdependence of storytelling intents, and we compare and contrast narrative practices (and their diversity) across communities. By linking fine-grained, context-sensitive modeling with a generic taxonomy of reader responses, SocialStoryFrames enable new research into storytelling in online communities.
comment: Presented at IC2S2 2025; Under Review (ARR Oct 2025)
☆ TabReX : Tabular Referenceless eXplainable Evaluation
Evaluating the quality of tables generated by large language models (LLMs) remains an open challenge: existing metrics either flatten tables into text, ignoring structure, or rely on fixed references that limit generalization. We present TabReX, a reference-less, property-driven framework for evaluating tabular generation via graph-based reasoning. TabReX converts both source text and generated tables into canonical knowledge graphs, aligns them through an LLM-guided matching process, and computes interpretable, rubric-aware scores that quantify structural and factual fidelity. The resulting metric provides controllable trade-offs between sensitivity and specificity, yielding human-aligned judgments and cell-level error traces. To systematically asses metric robustness, we introduce TabReX-Bench, a large-scale benchmark spanning six domains and twelve planner-driven perturbation types across three difficulty tiers. Empirical results show that TabReX achieves the highest correlation with expert rankings, remains stable under harder perturbations, and enables fine-grained model-vs-prompt analysis establishing a new paradigm for trustworthy, explainable evaluation of structured generation systems.
☆ Seeing Beyond Words: Self-Supervised Visual Learning for Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have recently demonstrated impressive capabilities in connecting vision and language, yet their proficiency in fundamental visual reasoning tasks remains limited. This limitation can be attributed to the fact that MLLMs learn visual understanding primarily from textual descriptions, which constitute a subjective and inherently incomplete supervisory signal. Furthermore, the modest scale of multimodal instruction tuning compared to massive text-only pre-training leads MLLMs to overfit language priors while overlooking visual details. To address these issues, we introduce JARVIS, a JEPA-inspired framework for self-supervised visual enhancement in MLLMs. Specifically, we integrate the I-JEPA learning paradigm into the standard vision-language alignment pipeline of MLLMs training. Our approach leverages frozen vision foundation models as context and target encoders, while training the predictor, implemented as the early layers of an LLM, to learn structural and semantic regularities from images without relying exclusively on language supervision. Extensive experiments on standard MLLM benchmarks show that JARVIS consistently improves performance on vision-centric benchmarks across different LLM families, without degrading multimodal reasoning abilities. Our source code is publicly available at: https://github.com/aimagelab/JARVIS.
♻ ☆ MMGR: Multi-Modal Generative Reasoning
Video foundation models generate visually realistic and temporally coherent content, but their reliability as world simulators depends on whether they capture physical, logical, and spatial constraints. Existing metrics such as Frechet Video Distance (FVD) emphasize perceptual quality and overlook reasoning failures, including violations of causality, physics, and global consistency. We introduce MMGR (Multi-Modal Generative Reasoning Evaluation and Benchmark), a principled evaluation framework based on five reasoning abilities: Physical, Logical, 3D Spatial, 2D Spatial, and Temporal. MMGR evaluates generative reasoning across three domains: Abstract Reasoning (ARC-AGI, Sudoku), Embodied Navigation (real-world 3D navigation and localization), and Physical Commonsense (sports and compositional interactions). MMGR applies fine-grained metrics that require holistic correctness across both video and image generation. We benchmark leading video models (Veo-3, Sora-2, Wan-2.2) and image models (Nano-banana, Nano-banana Pro, GPT-4o-image, Qwen-image), revealing strong performance gaps across domains. Models show moderate success on Physical Commonsense tasks but perform poorly on Abstract Reasoning (below 10 percent accuracy on ARC-AGI) and struggle with long-horizon spatial planning in embodied settings. Our analysis highlights key limitations in current models, including overreliance on perceptual data, weak global state consistency, and objectives that reward visual plausibility over causal correctness. MMGR offers a unified diagnostic benchmark and a path toward reasoning-aware generative world models.
comment: work in progress
♻ ☆ Learning without training: The implicit dynamics of in-context learning
One of the most striking features of Large Language Models (LLMs) is their ability to learn in-context. Namely at inference time an LLM is able to learn new patterns without any additional weight update when these patterns are presented in the form of examples in the prompt, even if these patterns were not seen during training. The mechanisms through which this can happen are still largely unknown. In this work, we show that the stacking of a self-attention layer with an MLP, allows the transformer block to implicitly modify the weights of the MLP layer according to the context. We argue through theory and experimentation that this simple mechanism may be the reason why LLMs can learn in-context and not only during training. Specifically, we show how a transformer block implicitly transforms a context into a low-rank weight-update of its MLP layer.
♻ ☆ DiscoX: Benchmarking Discourse-Level Translation task in Expert Domains
The evaluation of discourse-level translation in expert domains remains inadequate, despite its centrality to knowledge dissemination and cross-lingual scholarly communication. While these translations demand discourse-level coherence and strict terminological precision, current evaluation methods predominantly focus on segment-level accuracy and fluency. To address this limitation, we introduce DiscoX, a new benchmark for discourse-level and expert-level Chinese-English translation. It comprises 200 professionally-curated texts from 7 domains, with an average length exceeding 1700 tokens. To evaluate performance on DiscoX, we also develop Metric-S, a reference-free system that provides fine-grained automatic assessments across accuracy, fluency, and appropriateness. Metric-S demonstrates strong consistency with human judgments, significantly outperforming existing metrics. Our experiments reveal a remarkable performance gap: even the most advanced LLMs still trail human experts on these tasks. This finding validates the difficulty of DiscoX and underscores the challenges that remain in achieving professional-grade machine translation. The proposed benchmark and evaluation system provide a robust framework for more rigorous evaluation, facilitating future advancements in LLM-based translation.
comment: 36 pages
♻ ☆ Cooperative Retrieval-Augmented Generation for Question Answering: Mutual Information Exchange and Ranking by Contrasting Layers NeurIPS 2025
Since large language models (LLMs) have a tendency to generate factually inaccurate output, retrieval-augmented generation (RAG) has gained significant attention as a key means to mitigate this downside of harnessing only LLMs. However, existing RAG methods for simple and multi-hop question answering (QA) are still prone to incorrect retrievals and hallucinations. To address these limitations, we propose CoopRAG, a novel RAG framework for the question answering task in which a retriever and an LLM work cooperatively with each other by exchanging informative knowledge, and the earlier and later layers of the retriever model work cooperatively with each other to accurately rank the retrieved documents relevant to a given query. In this framework, we (i) unroll a question into sub-questions and a reasoning chain in which uncertain positions are masked, (ii) retrieve the documents relevant to the question augmented with the sub-questions and the reasoning chain, (iii) rerank the documents by contrasting layers of the retriever, and (iv) reconstruct the reasoning chain by filling the masked positions via the LLM. Our experiments demonstrate that CoopRAG consistently outperforms state-of-the-art QA methods on three multi-hop QA datasets as well as a simple QA dataset in terms of both the retrieval and QA performances. Our code is available.
comment: Accepted to NeurIPS 2025
♻ ☆ Explain with Visual Keypoints Like a Real Mentor! A Benchmark for Multimodal Solution Explanation
With the rapid advancement of mathematical reasoning capabilities in Large Language Models (LLMs), AI systems are increasingly being adopted in educational settings to support students' comprehension of problem-solving processes. However, a critical component remains underexplored in current LLM-generated explanations: multimodal explanation. In real-world instructional contexts, human tutors routinely employ visual aids, such as diagrams, markings, and highlights, to enhance conceptual clarity. To bridge this gap, we introduce the multimodal solution explanation task, designed to evaluate whether models can identify visual keypoints, such as auxiliary lines, points, angles, and generate explanations that incorporate these key elements essential for understanding. To evaluate model performance on this task, we propose ME2, a multimodal benchmark consisting of 1,000 math problems annotated with visual keypoints and corresponding explanatory text that references those elements. Our empirical results show that current models struggle to identify visual keypoints. In the task of generating keypoint-based explanations, open-source models also face notable difficulties. This highlights a significant gap in current LLMs' ability to perform mathematical visual grounding, engage in visually grounded reasoning, and provide explanations in educational contexts. We expect that the multimodal solution explanation task and the ME2 dataset will catalyze further research on LLMs in education and promote their use as effective, explanation-oriented AI tutors.
comment: 14 pages, 9 figures
♻ ☆ LaF-GRPO: In-Situ Navigation Instruction Generation for the Visually Impaired via GRPO with LLM-as-Follower Reward AAAI-26
Navigation instruction generation for visually impaired (VI) individuals (NIG-VI) is critical yet relatively underexplored. This study focuses on generating precise, in-situ, step-by-step navigation instructions that are practically usable for VI users. Specifically, we propose LaF-GRPO (LLM-as-Follower GRPO), where an LLM simulates VI user responses to navigation instructions, thereby providing feedback rewards to guide the post-training of a Vision-Language Model (VLM). This enhances instruction accuracy and usability while reducing costly real-world data collection needs. To address the scarcity of dedicated benchmarks in this field, we introduce NIG4VI, a 27k-sample open-source dataset to facilitate training and evaluation. It comprises diverse navigation scenarios with accurate spatial coordinates, supporting detailed and open-ended in-situ instruction generation. Experiments on NIG4VI demonstrate the effectiveness of LaF-GRPO through quantitative metrics (e.g., Zero-(LaF-GRPO) boosts BLEU 14\%; SFT+(LaF-GRPO) METEOR 0.542 vs. GPT-4o 0.323), and qualitative analysis further confirms that our method yields more intuitive and safer instructions.
comment: Accepted at AAAI-26
♻ ☆ Feel the Difference? A Comparative Analysis of Emotional Arcs in Real and LLM-Generated CBT Sessions EMNLP
Synthetic therapy dialogues generated by large language models (LLMs) are increasingly used in mental health NLP to simulate counseling scenarios, train models, and supplement limited real-world data. However, it remains unclear whether these synthetic conversations capture the nuanced emotional dynamics of real therapy. In this work, we introduce RealCBT, a dataset of authentic cognitive behavioral therapy (CBT) dialogues, and conduct the first comparative analysis of emotional arcs between real and LLM-generated CBT sessions. We adapt the Utterance Emotion Dynamics framework to analyze fine-grained affective trajectories across valence, arousal, and dominance dimensions. Our analysis spans both full dialogues and individual speaker roles (counselor and client), using real sessions from the RealCBT dataset and synthetic dialogues from the CACTUS dataset. We find that while synthetic dialogues are fluent and structurally coherent, they diverge from real conversations in key emotional properties: real sessions exhibit greater emotional variability, more emotion-laden language, and more authentic patterns of reactivity and regulation. Moreover, emotional arc similarity remains low across all pairings, with especially weak alignment between real and synthetic speakers. These findings underscore the limitations of current LLM-generated therapy data and highlight the importance of emotional fidelity in mental health applications. To support future research, our dataset RealCBT is released at https://gitlab.com/xiaoyi.wang/realcbt-dataset.
comment: Accepted at 2025 EMNLP findings,19 page,2 figures
♻ ☆ From Signal to Turn: Interactional Friction in Modular Speech-to-Speech Pipelines
While voice-based AI systems have achieved remarkable generative capabilities, their interactions often feel conversationally broken. This paper examines the interactional friction that emerges in modular Speech-to-Speech Retrieval-Augmented Generation (S2S-RAG) pipelines. By analyzing a representative production system, we move beyond simple latency metrics to identify three recurring patterns of conversational breakdown: (1) Temporal Misalignment, where system delays violate user expectations of conversational rhythm; (2) Expressive Flattening, where the loss of paralinguistic cues leads to literal, inappropriate responses; and (3) Repair Rigidity, where architectural gating prevents users from correcting errors in real-time. Through system-level analysis, we demonstrate that these friction points should not be understood as defects or failures, but as structural consequences of a modular design that prioritizes control over fluidity. We conclude that building natural spoken AI is an infrastructure design challenge, requiring a shift from optimizing isolated components to carefully choreographing the seams between them.
comment: 6 pages, 1 figure
♻ ☆ Scale-invariant Attention
One persistent challenge in LLM research is the development of attention mechanisms that are able to generalise from training on shorter contexts to inference on longer contexts. We propose two conditions that we expect all effective long context attention mechanisms to have: scale-invariant total attention, and scale-invariant attention sparsity. Under a Gaussian assumption, we show that a simple position-dependent transformation of the attention logits is sufficient for these conditions to hold. Experimentally we find that the resulting scale-invariant attention scheme gives considerable benefits in terms of validation loss when zero-shot generalising from training on short contexts to validation on longer contexts, and is effective at long-context retrieval.
comment: Accepted at Neurips 2025
♻ ☆ EvoLattice: Persistent Internal-Population Evolution through Multi-Alternative Quality-Diversity Graph Representations for LLM-Guided Program Discovery
Large language models (LLMs) are increasingly used to evolve programs and multi-agent systems, yet most existing approaches rely on overwrite-based mutations that maintain only a single candidate at a time. Such methods discard useful variants, suffer from destructive edits, and explore a brittle search space prone to structural failure. We introduce EvoLattice, a framework that represents an entire population of candidate programs or agent behaviors within a single directed acyclic graph. Each node stores multiple persistent alternatives, and every valid path through the graph defines a distinct executable candidate, yielding a large combinatorial search space without duplicating structure. EvoLattice enables fine-grained alternative-level evaluation by scoring each alternative across all paths in which it appears, producing statistics that reveal how local design choices affect global performance. These statistics provide a dense, data-driven feedback signal for LLM-guided mutation, recombination, and pruning, while preserving successful components. Structural correctness is guaranteed by a deterministic self-repair mechanism that enforces acyclicity and dependency consistency independently of the LLM. EvoLattice naturally extends to agent evolution by interpreting alternatives as prompt fragments or sub-agent behaviors. Across program synthesis (proxy and optimizer meta-learning), EvoLattice yields more stable evolution, greater expressivity, and stronger improvement trajectories than prior LLM-guided methods. The resulting dynamics resemble quality-diversity optimization, emerging implicitly from EvoLattice's internal multi-alternative representation rather than an explicit external archive.
♻ ☆ LATTE: Learning Aligned Transactions and Textual Embeddings for Bank Clients
Learning clients embeddings from sequences of their historic communications is central to financial applications. While large language models (LLMs) offer general world knowledge, their direct use on long event sequences is computationally expensive and impractical in real-world pipelines. In this paper, we propose LATTE, a contrastive learning framework that aligns raw event embeddings with semantic embeddings from frozen LLMs. Behavioral features are summarized into short prompts, embedded by the LLM, and used as supervision via contrastive loss. The proposed approach significantly reduces inference cost and input size compared to conventional processing of complete sequence by LLM. We experimentally show that our method outperforms state-of-the-art techniques for learning event sequence representations on real-world financial datasets while remaining deployable in latency-sensitive environments.
♻ ☆ TaP: A Taxonomy-Guided Framework for Automated and Scalable Preference Data Generation
Conducting supervised fine-tuning and preference fine-tuning on large language models (LLMs) requires high-quality datasets to improve their ability to follow instructions and align with human preferences and values. However, constructing such datasets is resource-intensive, and most available datasets for supervised and preference fine-tuning are in English. To address these challenges, we propose the \underline{\textbf{Ta}}xonomy-Guided \underline{\textbf{P}}reference Data Generation (TaP) framework, which facilitates automated and scalable construction of preference datasets across various languages. TaP is grounded in a structured taxonomy that allows fine-grained control over dataset composition, thereby ensuring both diversity and comprehensive coverage. We employ TaP-generated datasets to perform supervised and preference fine-tuning on various LLMs. Experimental results demonstrate that LLMs trained on TaP-generated datasets outperform those trained on existing open-source datasets. Remarkably, LLMs trained on TaP-generated datasets surpass the performance of those trained on an open-source dataset that is 180 times larger.
comment: 33 pages, 16 tables, 10 figures
♻ ☆ DenoiseRotator: Enhance Pruning Robustness for LLMs via Importance Concentration NeurIPS 2025
Pruning is a widely used technique to compress large language models (LLMs) by removing unimportant weights, but it often suffers from significant performance degradation - especially under semi-structured sparsity constraints. Existing pruning methods primarily focus on estimating the importance of individual weights, which limits their ability to preserve critical capabilities of the model. In this work, we propose a new perspective: rather than merely selecting which weights to prune, we first redistribute parameter importance to make the model inherently more amenable to pruning. By minimizing the information entropy of normalized importance scores, our approach concentrates importance onto a smaller subset of weights, thereby enhancing pruning robustness. We instantiate this idea through DenoiseRotator, which applies learnable orthogonal transformations to the model's weight matrices. Our method can be seamlessly integrated with existing pruning techniques such as Magnitude, SparseGPT, and Wanda. Evaluated on LLaMA3, Qwen2.5, and Mistral models under 50% unstructured and 2:4 semi-structured sparsity, DenoiseRotator consistently improves perplexity and zero-shot accuracy. For instance, on LLaMA3-70B pruned with SparseGPT at 2:4 semi-structured sparsity, DenoiseRotator reduces the perplexity gap to the dense model by 58%, narrowing the degradation from 8.1 to 3.4 points. Codes are available at https://github.com/Axel-gu/DenoiseRotator.
comment: Accepted at NeurIPS 2025
♻ ☆ Designing LLMs for cultural sensitivity: Evidence from English-Japanese translation
Large language models (LLMs) are increasingly used in everyday communication, including multilingual interactions across different cultural contexts. While LLMs can now generate near-perfect literal translations, it remains unclear whether LLMs support culturally appropriate communication. In this paper, we analyze the cultural sensitivity of different LLM designs when applied to English-Japanese translations of workplace e-mails. Here, we vary the prompting strategies: (1) naive "just translate" prompts, (2) audience-targeted prompts specifying the recipient's cultural background, and (3) instructional prompts with explicit guidance on Japanese communication norms. Using a mixed-methods study, we then analyze culture-specific language patterns to evaluate how well translations adapt to cultural norms. Further, we examine the appropriateness of the tone of the translations as perceived by native speakers. We find that culturally-tailored prompting can improve cultural fit, based on which we offer recommendations for designing culturally inclusive LLMs in multilingual settings.
comment: Posted premature without permission of all authors
♻ ☆ Steering Language Model to Stable Speech Emotion Recognition via Contextual Perception and Chain of Thought
Large-scale audio language models (ALMs), such as Qwen2-Audio, are capable of comprehending diverse audio signal, performing audio analysis and generating textual responses. However, in speech emotion recognition (SER), ALMs often suffer from hallucinations, resulting in misclassifications or irrelevant outputs. To address these challenges, we propose C$^2$SER, a novel ALM designed to enhance the stability and accuracy of SER through Contextual perception and Chain of Thought (CoT). C$^2$SER integrates the Whisper encoder for semantic perception and Emotion2Vec-S for acoustic perception, where Emotion2Vec-S extends Emotion2Vec with semi-supervised learning to enhance emotional discrimination. Additionally, C$^2$SER employs a CoT approach, processing SER in a step-by-step manner while leveraging speech content and speaking styles to improve recognition. To further enhance stability, C$^2$SER introduces self-distillation from explicit CoT to implicit CoT, mitigating error accumulation and boosting recognition accuracy. Extensive experiments show that C$^2$SER outperforms existing popular ALMs, such as Qwen2-Audio and SECap, delivering more stable and precise emotion recognition. We release the training code, checkpoints, and test sets to facilitate further research.
comment: This work has been submitted to the IEEE TASLP for possible publication
♻ ☆ Artificial Hippocampus Networks for Efficient Long-Context Modeling
Long-sequence modeling faces a fundamental trade-off between the efficiency of compressive fixed-size memory in RNN-like models and the fidelity of lossless growing memory in attention-based Transformers. Inspired by the Multi-Store Model in cognitive science, we introduce a memory framework of artificial neural networks. Our method maintains a sliding window of the Transformer's KV cache as lossless short-term memory, while a learnable module termed Artificial Hippocampus Network (AHN) recurrently compresses out-of-window information into a fixed-size compact long-term memory. To validate this framework, we instantiate AHNs using modern RNN-like architectures, including Mamba2, DeltaNet, and GatedDeltaNet to augment open-weight LLMs. We also propose an efficient self-distillation training method where the base model's all parameters are frozen and only the parameters from AHNs are optimized. For inference, our method sets a default large sliding window size of 32k for attention, and AHNs activate only when the sequence length exceeds the 32k window, addressing the quadratic-complexity issue of attention that emerges at that scale. Extensive experiments on long-context benchmarks LV-Eval and InfiniteBench demonstrate that AHN-augmented models consistently outperform sliding window baselines and achieve performance comparable or even superior to full-attention models, while substantially reducing computational and memory requirements. For instance, augmenting the Qwen2.5-3B-Instruct with AHNs reduces inference FLOPs by 40.5% and memory cache by 74.0%, while improving its average score on LV-Eval (128k sequence length) from 4.41 to 5.88. Code is available at: https://github.com/ByteDance-Seed/AHN.
comment: Code: https://github.com/ByteDance-Seed/AHN
♻ ☆ May I have your Attention? Breaking Fine-Tuning based Prompt Injection Defenses using Architecture-Aware Attacks
A popular class of defenses against prompt injection attacks on large language models (LLMs) relies on fine-tuning to separate instructions and data, so that the LLM does not follow instructions that might be present with data. We evaluate the robustness of this approach in the whitebox setting by constructing strong optimization-based attacks, and show that the defenses do not provide the claimed security properties. Specifically, we construct a novel attention-based attack algorithm for textual LLMs and apply it to three recent whitebox defenses SecAlign (CCS 2025), SecAlign++, and StruQ (USENIX Security 2025), showing attacks with success rates of up to \textbf{85-95\%} on unseen prompts with modest increase in attacker budget in terms of tokens. Our findings make fundamental progress towards understanding the robustness of prompt injection defenses in the whitebox setting. We release our code and attacks at https://github.com/nishitvp/better_opts_attacks
♻ ☆ aiXiv: A Next-Generation Open Access Ecosystem for Scientific Discovery Generated by AI Scientists
Recent advances in large language models (LLMs) have enabled AI agents to autonomously generate scientific proposals, conduct experiments, author papers, and perform peer reviews. Yet this flood of AI-generated research content collides with a fragmented and largely closed publication ecosystem. Traditional journals and conferences rely on human peer review, making them difficult to scale and often reluctant to accept AI-generated research content; existing preprint servers (e.g. arXiv) lack rigorous quality-control mechanisms. Consequently, a significant amount of high-quality AI-generated research lacks appropriate venues for dissemination, hindering its potential to advance scientific progress. To address these challenges, we introduce aiXiv, a next-generation open-access platform for human and AI scientists. Its multi-agent architecture allows research proposals and papers to be submitted, reviewed, and iteratively refined by both human and AI scientists. It also provides API and MCP interfaces that enable seamless integration of heterogeneous human and AI scientists, creating a scalable and extensible ecosystem for autonomous scientific discovery. Through extensive experiments, we demonstrate that aiXiv is a reliable and robust platform that significantly enhances the quality of AI-generated research proposals and papers after iterative revising and reviewing on aiXiv. Our work lays the groundwork for a next-generation open-access ecosystem for AI scientists, accelerating the publication and dissemination of high-quality AI-generated research content. Code: https://github.com/aixiv-org aiXiv: https://aixiv.science
comment: Preprint under review. Code is available at https://github.com/aixiv-org. Website is available at https://aixiv.science
♻ ☆ GAPS: A Clinically Grounded, Automated Benchmark for Evaluating AI Clinicians
Current benchmarks for AI clinician systems, often based on multiple-choice exams or manual rubrics, fail to capture the depth, robustness, and safety required for real-world clinical practice. To address this, we introduce the GAPS framework, a multidimensional paradigm for evaluating Grounding (cognitive depth), Adequacy (answer completeness), Perturbation (robustness), and Safety. Critically, we developed a fully automated, guideline-anchored pipeline to construct a GAPS-aligned benchmark end-to-end, overcoming the scalability and subjectivity limitations of prior work. Our pipeline assembles an evidence neighborhood, creates dual graph and tree representations, and automatically generates questions across G-levels. Rubrics are synthesized by a DeepResearch agent that mimics GRADE-consistent, PICO-driven evidence review in a ReAct loop. Scoring is performed by an ensemble of large language model (LLM) judges. Validation confirmed our automated questions are high-quality and align with clinician judgment (90% agreement, Cohen's Kappa 0.77). Evaluating state-of-the-art models on the benchmark revealed key failure modes: performance degrades sharply with increased reasoning depth (G-axis), models struggle with answer completeness (A-axis), and they are highly vulnerable to adversarial perturbations (P-axis) as well as certain safety issues (S-axis). This automated, clinically-grounded approach provides a reproducible and scalable method for rigorously evaluating AI clinician systems and guiding their development toward safer, more reliable clinical practice. The benchmark dataset GAPS-NSCLC-preview and evaluation code are publicly available at https://huggingface.co/datasets/AQ-MedAI/GAPS-NSCLC-preview and https://github.com/AQ-MedAI/MedicalAiBenchEval.
♻ ☆ Accelerating Mobile Language Model via Speculative Decoding and NPU-Coordinated Execution
Performing Retrieval-Augmented Generation (RAG) directly on mobile devices is promising for data privacy and responsiveness but is hindered by the architectural constraints of mobile NPUs. Specifically, current hardware struggles with the variable workloads intrinsic to RAG: the transition between processing extensive contexts and generating tokens incurs significant overhead due to static graph constraints, while the memory-bound generation phase leaves computational resources underutilized. In this work, we propose a holistic acceleration framework sd.npu, designed to maximize NPU efficiency for on-device RAG ecosystem. To address the latency caused by NPU graph switching during phase transitions, we introduce a pipelined execution strategy. This approach masks the overhead of model reconfiguration by parallelizing the loading of decoding graphs with the computation of partitioned context chunks (chunked prefill), thereby ensuring continuous execution flow. Furthermore, to mitigate low hardware utilization during the decoding phase, we develop an NPU-centric speculative decoding mechanism. By calibrating generation distributions and extending draft sequences, our method effectively converts idle NPU cycles into valid token throughput. Experiments on commercial smartphones show that our framework significantly outperforms existing baselines, delivering 1.06$\times$--3.81$\times$ speedups and 1.07$\times$--4.71$\times$ energy savings across various RAG tasks.
♻ ☆ 3DLLM-Mem: Long-Term Spatial-Temporal Memory for Embodied 3D Large Language Model
Humans excel at performing complex tasks by leveraging long-term memory across temporal and spatial experiences. In contrast, current Large Language Models (LLMs) struggle to effectively plan and act in dynamic, multi-room 3D environments. We posit that part of this limitation is due to the lack of proper 3D spatial-temporal memory modeling in LLMs. To address this, we first introduce 3DMem-Bench, a comprehensive benchmark comprising over 26,000 trajectories and 2,892 embodied tasks, question-answering and captioning, designed to evaluate an agent's ability to reason over long-term memory in 3D environments. Second, we propose 3DLLM-Mem, a novel dynamic memory management and fusion model for embodied spatial-temporal reasoning and actions in LLMs. Our model uses working memory tokens, which represents current observations, as queries to selectively attend to and fuse the most useful spatial and temporal features from episodic memory, which stores past observations and interactions. Our approach allows the agent to focus on task-relevant information while maintaining memory efficiency in complex, long-horizon environments. Experimental results demonstrate that 3DLLM-Mem achieves state-of-the-art performance across various tasks, outperforming the strongest baselines by 16.5% in success rate on 3DMem-Bench's most challenging in-the-wild embodied tasks.
comment: demos at: https://3dllm-mem.github.io
♻ ☆ Knowledge Editing with Subspace-Aware Key-Value Mappings
Knowledge editing aims to efficiently correct factual errors in Language Models (LMs). The popular locate-then-edit approach modifies an MLP layer by finding an optimal mapping between its input vector (key) and output vector (value) that leads to the expression of the edited knowledge. However, existing methods without any constraints on the key and value vectors cause significant perturbations to the edited model. To address this, we propose Subspace Knowledge Edit (SUIT), a method that identifies and modifies only the subspace of critical features relevant to the edit. Our empirical results on LLaMA-3-8B, GPT-J-6B, and Qwen2.5-7B models show that SUIT dramatically improves knowledge preservation over strong baselines while maintaining high edit efficacy. This effectiveness confirms that SUIT successfully identifies the critical subspace for the edit. Further analyses provide additional validation for our approach. The source code and data will be released to the public upon publication of the paper.
comment: 25 pages, 12 figures, 10 tables
♻ ☆ MINED: Probing and Updating with Multimodal Time-Sensitive Knowledge for Large Multimodal Models
Large Multimodal Models (LMMs) encode rich factual knowledge via cross-modal pre-training, yet their static representations struggle to maintain an accurate understanding of time-sensitive factual knowledge. Existing benchmarks remain constrained by static designs, inadequately evaluating LMMs' ability to understand time-sensitive knowledge. To address this gap, we propose MINED, a comprehensive benchmark that evaluates temporal awareness along 6 key dimensions and 11 challenging tasks: cognition, awareness, trustworthiness, understanding, reasoning, and robustness. MINED is constructed from Wikipedia by two professional annotators, containing 2,104 time-sensitive knowledge samples spanning six knowledge types. Evaluating 15 widely used LMMs on MINED shows that Gemini-2.5-Pro achieves the highest average CEM score of 63.07, while most open-source LMMs still lack time understanding ability. Meanwhile, LMMs perform best on organization knowledge, whereas their performance is weakest on sport. To address these challenges, we investigate the feasibility of updating time-sensitive knowledge in LMMs through knowledge editing methods and observe that LMMs can effectively update knowledge via knowledge editing methods in single editing scenarios.
comment: Due to the fact that this paper was completed without informing the mentor, there are ethical issues that require retraction. We hope for your understanding
♻ ☆ VLegal-Bench: Cognitively Grounded Benchmark for Vietnamese Legal Reasoning of Large Language Models
The rapid advancement of large language models (LLMs) has enabled new possibilities for applying artificial intelligence within the legal domain. Nonetheless, the complexity, hierarchical organization, and frequent revisions of Vietnamese legislation pose considerable challenges for evaluating how well these models interpret and utilize legal knowledge. To address this gap, Vietnamese Legal Benchmark (VLegal-Bench) is introduced, the first comprehensive benchmark designed to systematically assess LLMs on Vietnamese legal tasks. Informed by Bloom's cognitive taxonomy, VLegal-Bench encompasses multiple levels of legal understanding through tasks designed to reflect practical usage scenarios. The benchmark comprises 10,450 samples generated through a rigorous annotation pipeline, where legal experts label and cross-validate each instance using our annotation system to ensure every sample is grounded in authoritative legal documents and mirrors real-world legal assistant workflows, including general legal questions and answers, retrieval-augmented generation, multi-step reasoning, and scenario-based problem solving tailored to Vietnamese law. By providing a standardized, transparent, and cognitively informed evaluation framework, VLegal-Bench establishes a solid foundation for assessing LLM performance in Vietnamese legal contexts and supports the development of more reliable, interpretable, and ethically aligned AI-assisted legal systems.
♻ ☆ Confucius Code Agent: Scalable Agent Scaffolding for Real-World Codebases
Real-world software engineering tasks require coding agents that can operate over massive repositories, sustain long-horizon sessions, and reliably coordinate complex toolchains at test time. Existing research-grade agents offer transparency but struggle when scaled to real-world workloads, while proprietary systems achieve strong practical performance but provide limited extensibility, interpretability, and controllability. We introduce the Confucius Code Agent (CCA), a scalable software engineering agent that can operate at large-scale codebases. CCA is built on top of the Confucius SDK, an agent development platform structured around three complementary perspectives: Agent Experience (AX), User Experience (UX), and Developer Experience (DX). The SDK integrates a unified orchestrator with hierarchical working memory for long-context reasoning, a persistent note-taking system for cross-session continual learning, and a modular extension system for reliable tool use. In addition, we introduce a meta-agent that automates the synthesis, evaluation, and refinement of agent configurations through a build-test-improve loop, enabling rapid adaptation to new tasks, environments, and tool stacks. Instantiated with these mechanisms, CCA demonstrates strong performance on real-world software engineering tasks. On SWE-Bench-Pro, CCA reaches a Resolve@1 of 54.3%, exceeding prior research baselines and comparing favorably to commercial results, under identical repositories, model backend, and tool access. Together, the Confucius SDK and CCA form a general, extensible, and production-grade foundation for building effective and robust coding agents, bridging the gap between research prototypes and practical large-scale deployment.
comment: The latest version
♻ ☆ Efficient Adaptive Rejection Sampling for Accelerating Speculative Decoding in Large Language Models
Speculative Decoding is a prominent technique for accelerating the autoregressive inference of large language models (LLMs) by employing a fast draft model to propose candidate token sequences and a large target model to verify them in parallel. However, its core component -- the rejection sampling mechanism -- relies on a fixed, context-independent random threshold. This leads to a significant "random rejection" problem in high-uncertainty generation scenarios, where plausible candidate tokens are frequently rejected due to random chance, undermining inference efficiency. This paper introduces Efficient Adaptive Rejection Sampling (EARS), a novel method that dynamically adjusts the acceptance threshold by incorporating the target model's own predictive uncertainty, measured as 1 - max(P_target). By introducing a tolerance term proportional to this uncertainty, EARS intelligently relaxes the acceptance criterion when the model is uncertain, effectively reducing random rejections while maintaining strict standards when the model is confident. Experiments on creative writing and open-domain QA tasks demonstrate that EARS significantly enhances the efficiency of speculative decoding, achieving up to an 18.12% increase in throughput with a negligible 0.84% accuracy drop on the GSM8K benchmark. The method requires no modifications to model architectures and can be seamlessly integrated into existing speculative decoding frameworks.
♻ ☆ Reasoning or Memorization? Unreliable Results of Reinforcement Learning Due to Data Contamination AAAI 2026
Reasoning in large language models has long been a central research focus, and recent studies employing reinforcement learning (RL) have introduced diverse methods that yield substantial performance gains with minimal or even no external supervision. Surprisingly, some studies even suggest that random or incorrect reward signals can enhance performance. However, these breakthroughs are predominantly observed for the mathematically strong Qwen2.5 series on benchmarks such as MATH-500, AMC, and AIME, and seldom transfer to models like Llama, which warrants a more in-depth investigation. In this work, our empirical analysis reveals that pre-training on massive web-scale corpora leaves Qwen2.5 susceptible to data contamination in widely used benchmarks. Consequently, conclusions derived from contaminated benchmarks on Qwen2.5 series may be unreliable. To obtain trustworthy evaluation results, we introduce a generator that creates fully clean arithmetic problems of arbitrary length and difficulty, dubbed RandomCalculation. Using this leakage-free dataset, we show that only accurate reward signals yield steady improvements that surpass the base model's performance boundary in mathematical reasoning, whereas random or incorrect rewards do not. Moreover, we conduct more fine-grained analyses to elucidate the factors underlying the different performance observed on the MATH-500 and RandomCalculation benchmarks. Consequently, we recommend that future studies evaluate models on uncontaminated benchmarks and, when feasible, test various model series to ensure trustworthy conclusions about RL and related methods.
comment: 28 pages, AAAI 2026
♻ ☆ Who is In Charge? Dissecting Role Conflicts in Instruction Following NeurIPS 2025
Large language models should follow hierarchical instructions where system prompts override user inputs, yet recent work shows they often ignore this rule while strongly obeying social cues such as authority or consensus. We extend these behavioral findings with mechanistic interpretations on a large-scale dataset. Linear probing shows conflict-decision signals are encoded early, with system-user and social conflicts forming distinct subspaces. Direct Logit Attribution reveals stronger internal conflict detection in system-user cases but consistent resolution only for social cues. Steering experiments show that, despite using social cues, the vectors surprisingly amplify instruction following in a role-agnostic way. Together, these results explain fragile system obedience and underscore the need for lightweight hierarchy-sensitive alignment methods.
comment: 12 pages, 5 figures, Mech Interp Workshop (NeurIPS 2025) Poster
♻ ☆ Spoken DialogSum: An Emotion-Rich Conversational Dataset for Spoken Dialogue Summarization
Recent audio language models can follow long conversations. However, research on emotion-aware or spoken dialogue summarization is constrained by the lack of data that links speech, summaries, and paralinguistic cues. We introduce Spoken DialogSum, the first corpus aligning raw conversational audio with factual summaries, emotion-rich summaries, and utterance-level labels for speaker age, gender, and emotion. The dataset is built in two stages: first, an LLM rewrites DialogSum scripts with Switchboard-style fillers and back-channels, then tags each utterance with emotion, pitch, and speaking rate. Second, an expressive TTS engine synthesizes speech from the tagged scripts, aligned with paralinguistic labels. Spoken DialogSum comprises 13,460 emotion-diverse dialogues, each paired with both a factual and an emotion-focused summary. We release an online demo at https://fatfat-emosum.github.io/EmoDialog-Sum-Audio-Samples/, with plans to release the full dataset in the near future. Baselines show that an Audio-LLM raises emotional-summary ROUGE-L by 28% relative to a cascaded ASR-LLM system, confirming the value of end-to-end speech modeling.
comment: 12 pages, 2 figures
♻ ☆ HPU: High-Bandwidth Processing Unit for Scalable, Cost-effective LLM Inference via GPU Co-processing
The attention layer, a core component of Transformer-based LLMs, brings out inefficiencies in current GPU systems due to its low operational intensity and the substantial memory requirements of KV caches. We propose a High-bandwidth Processing Unit (HPU), a memoryintensive co-processor that enhances GPU resource utilization during large-batched LLM inference. By offloading memory-bound operations, the HPU allows the GPU to focus on compute-intensive tasks, increasing overall efficiency. Also, the HPU, as an add-on card, scales out to accommodate surging memory demands driven by large batch sizes and extended sequence lengths. In this paper, we show the HPU prototype implemented with PCIe-based FPGA cards mounted on a GPU system. Our novel GPU-HPU heterogeneous system demonstrates up to 4.1x performance gains and 4.6x energy efficiency improvements over a GPUonly system, providing scalability without increasing the number of GPUs.
comment: 6 pages
♻ ☆ Voice-Interactive Surgical Agent for Multimodal Patient Data Control
In robotic surgery, surgeons fully engage their hands and visual attention in procedures, making it difficult to access and manipulate multimodal patient data without interrupting the workflow. To overcome this problem, we propose a Voice-Interactive Surgical Agent (VISA) built on a hierarchical multi-agent framework consisting of an orchestration agent and three task-specific agents driven by Large Language Models (LLMs). These LLM-based agents autonomously plan, refine, validate, and reason to interpret voice commands and execute tasks such as retrieving clinical information, manipulating CT scans, or navigating 3D anatomical models within surgical video. We construct a dataset of 240 user commands organized into hierarchical categories and introduce the Multi-level Orchestration Evaluation Metric (MOEM) that evaluates the performance and robustness at both the command and category levels. Experimental results demonstrate that VISA achieves high stage-level accuracy and workflow-level success rates, while also enhancing its robustness by correcting transcription errors, resolving linguistic ambiguity, and interpreting diverse free-form expressions. These findings highlight the strong potential of VISA to support robotic surgery and its scalability for integrating new functions and agents.
comment: 14 pages, 13 figures, 3 tables
♻ ☆ RL from Teacher-Model Refinement: Gradual Imitation Learning for Machine Translation
Preference-learning methods for machine translation (MT)--such as Direct Preference Optimization (DPO)--have achieved impressive gains but depend heavily on large, carefully curated triplet datasets and often struggle to generalize beyond their tuning domains. We propose Reinforcement Learning from Teacher-Model Refinement (RLfR), a novel framework that removes reliance on static triplets by leveraging continuous, high-quality feedback from an external teacher model (GPT-4o). RLfR frames each translation step as a micro-tutorial: the actor generates a hypothesis, the teacher refines it, and the actor is rewarded based on how closely it aligns with the teacher's refinement. Guided by two complementary signals--(i) negative edit distance, promoting lexical and structural fidelity, and (ii) COMET score, ensuring semantic adequacy--the actor progressively learns to emulate the teacher, mirroring a human learning process through incremental, iterative improvement. On the FLORES-200 benchmark (English to and from German, Spanish, Chinese, Korean, and Japanese), RLfR consistently outperforms both MT-SFT and preference-based baselines, significantly improving COMET (semantic adequacy) and M-ETA (entity preservation) scores.
♻ ☆ Reasoning Within the Mind: Dynamic Multimodal Interleaving in Latent Space
Recent advancements in Multimodal Large Language Models (MLLMs) have significantly enhanced cross-modal understanding and reasoning by incorporating Chain-of-Thought (CoT) reasoning in the semantic space. Building upon this, recent studies extend the CoT mechanism to the visual modality, enabling models to integrate visual information during reasoning through external tools or explicit image generation. However, these methods remain dependent on explicit step-by-step reasoning, unstable perception-reasoning interaction and notable computational overhead. Inspired by human cognition, we posit that thinking unfolds not linearly but through the dynamic interleaving of reasoning and perception within the mind. Motivated by this perspective, we propose DMLR, a test-time Dynamic Multimodal Latent Reasoning framework that employs confidence-guided latent policy gradient optimization to refine latent think tokens for in-depth reasoning. Furthermore, a Dynamic Visual Injection Strategy is introduced, which retrieves the most relevant visual features at each latent think token and updates the set of best visual patches. The updated patches are then injected into latent think token to achieve dynamic visual-textual interleaving. Experiments across seven multimodal reasoning benchmarks and various model architectures demonstrate that DMLR significantly improves reasoning and perception performance while maintaining high inference efficiency.
♻ ☆ Evaluating Large Language Models in Crisis Detection: A Real-World Benchmark from Psychological Support Hotlines
Psychological support hotlines serve as critical lifelines for crisis intervention but encounter significant challenges due to rising demand and limited resources. Large language models (LLMs) offer potential support in crisis assessments, yet their effectiveness in emotionally sensitive, real-world clinical settings remains underexplored. We introduce PsyCrisisBench, a comprehensive benchmark of 540 annotated transcripts from the Hangzhou Psychological Assistance Hotline, assessing four key tasks: mood status recognition, suicidal ideation detection, suicide plan identification, and risk assessment. 64 LLMs across 15 model families (including closed-source such as GPT, Claude, Gemini and open-source such as Llama, Qwen, DeepSeek) were evaluated using zero-shot, few-shot, and fine-tuning paradigms. LLMs showed strong results in suicidal ideation detection (F1=0.880), suicide plan identification (F1=0.779), and risk assessment (F1=0.907), with notable gains from few-shot prompting and fine-tuning. Compared to trained human operators, LLMs achieved comparable or superior performance on suicide plan identification and risk assessment, while humans retained advantages on mood status recognition and suicidal ideation detection. Mood status recognition remained challenging (max F1=0.709), likely due to missing vocal cues and semantic ambiguity. Notably, a fine-tuned 1.5B-parameter model (Qwen2.5-1.5B) outperformed larger models on mood and suicidal ideation tasks. LLMs demonstrate performance broadly comparable to trained human operators in text-based crisis assessment, with complementary strengths across task types. PsyCrisisBench provides a robust, real-world evaluation framework to guide future model development and ethical deployment in clinical mental health.
comment: Preprint. Submitted to IEEE Journal of Biomedical and Health Informatics (under review)
♻ ☆ Beyond statistical significance: Quantifying uncertainty and statistical variability in multilingual and multitask NLP evaluation ACL 2025
We introduce a set of resampling-based methods for quantifying uncertainty and statistical precision of evaluation metrics in multilingual and/or multitask NLP benchmarks. We show how experimental variation in performance scores arises from both model and data-related sources, and that accounting for both of them is necessary to avoid substantially underestimating the overall variability over hypothetical replications. Using multilingual question answering, machine translation, and named entity recognition as example tasks, we also demonstrate how resampling methods are useful for quantifying the replication uncertainty of various quantities used in leaderboards such as model rankings and pairwise differences between models.
comment: Accepted at IJCNLP-AACL 2025
Computer Vision and Pattern Recognition 100
☆ Spatia: Video Generation with Updatable Spatial Memory
Existing video generation models struggle to maintain long-term spatial and temporal consistency due to the dense, high-dimensional nature of video signals. To overcome this limitation, we propose Spatia, a spatial memory-aware video generation framework that explicitly preserves a 3D scene point cloud as persistent spatial memory. Spatia iteratively generates video clips conditioned on this spatial memory and continuously updates it through visual SLAM. This dynamic-static disentanglement design enhances spatial consistency throughout the generation process while preserving the model's ability to produce realistic dynamic entities. Furthermore, Spatia enables applications such as explicit camera control and 3D-aware interactive editing, providing a geometrically grounded framework for scalable, memory-driven video generation.
comment: Project page: https://zhaojingjing713.github.io/Spatia/
☆ In Pursuit of Pixel Supervision for Visual Pre-training
At the most basic level, pixels are the source of the visual information through which we perceive the world. Pixels contain information at all levels, ranging from low-level attributes to high-level concepts. Autoencoders represent a classical and long-standing paradigm for learning representations from pixels or other raw inputs. In this work, we demonstrate that autoencoder-based self-supervised learning remains competitive today and can produce strong representations for downstream tasks, while remaining simple, stable, and efficient. Our model, codenamed "Pixio", is an enhanced masked autoencoder (MAE) with more challenging pre-training tasks and more capable architectures. The model is trained on 2B web-crawled images with a self-curation strategy with minimal human curation. Pixio performs competitively across a wide range of downstream tasks in the wild, including monocular depth estimation (e.g., Depth Anything), feed-forward 3D reconstruction (i.e., MapAnything), semantic segmentation, and robot learning, outperforming or matching DINOv3 trained at similar scales. Our results suggest that pixel-space self-supervised learning can serve as a promising alternative and a complement to latent-space approaches.
comment: Project page: https://github.com/facebookresearch/pixio
☆ DiffusionVL: Translating Any Autoregressive Models into Diffusion Vision Language Models
In recent multimodal research, the diffusion paradigm has emerged as a promising alternative to the autoregressive paradigm (AR), owing to its unique decoding advantages. However, due to the capability limitations of the base diffusion language model, the performance of the diffusion vision language model (dVLM) still lags significantly behind that of mainstream models. This leads to a simple yet fundamental question: Is it possible to construct dVLMs based on existing powerful AR models? In response, we propose DiffusionVL, a dVLM family that could be translated from any powerful AR models. Through simple fine-tuning, we successfully adapt AR pre-trained models into the diffusion paradigm. This approach yields two key observations: (1) The paradigm shift from AR-based multimodal models to diffusion is remarkably effective. (2) Direct conversion of an AR language model to a dVLM is also feasible, achieving performance competitive with LLaVA-style visual-instruction-tuning. Further, we introduce a block-decoding design into dVLMs that supports arbitrary-length generation and KV cache reuse, achieving a significant inference speedup. We conduct a large number of experiments. Despite training with less than 5% of the data required by prior methods, DiffusionVL achieves a comprehensive performance improvement-a 34.4% gain on the MMMU-Pro (vision) bench and 37.5% gain on the MME (Cog.) bench-alongside a 2x inference speedup. The model and code are released at https://github.com/hustvl/DiffusionVL.
comment: 11 pages, 5 figures, conference or other essential info
☆ Gaussian Pixel Codec Avatars: A Hybrid Representation for Efficient Rendering
We present Gaussian Pixel Codec Avatars (GPiCA), photorealistic head avatars that can be generated from multi-view images and efficiently rendered on mobile devices. GPiCA utilizes a unique hybrid representation that combines a triangle mesh and anisotropic 3D Gaussians. This combination maximizes memory and rendering efficiency while maintaining a photorealistic appearance. The triangle mesh is highly efficient in representing surface areas like facial skin, while the 3D Gaussians effectively handle non-surface areas such as hair and beard. To this end, we develop a unified differentiable rendering pipeline that treats the mesh as a semi-transparent layer within the volumetric rendering paradigm of 3D Gaussian Splatting. We train neural networks to decode a facial expression code into three components: a 3D face mesh, an RGBA texture, and a set of 3D Gaussians. These components are rendered simultaneously in a unified rendering engine. The networks are trained using multi-view image supervision. Our results demonstrate that GPiCA achieves the realism of purely Gaussian-based avatars while matching the rendering performance of mesh-based avatars.
comment: Tech report
☆ Multi-View Foundation Models
Foundation models are vital tools in various Computer Vision applications. They take as input a single RGB image and output a deep feature representation that is useful for various applications. However, in case we have multiple views of the same 3D scene, they operate on each image independently and do not always produce consistent features for the same 3D point. We propose a way to convert a Foundation Model into a Multi-View Foundation Model. Such a model takes as input a set of images and outputs a feature map for each image such that the features of corresponding points are as consistent as possible. This approach bypasses the need to build a consistent 3D model of the features and allows direct manipulation in the image space. Specifically, we show how to augment Transformers-based foundation models (i.e., DINO, SAM, CLIP) with intermediate 3D-aware attention layers that help match features across different views. As leading examples, we show surface normal estimation and multi-view segmentation tasks. Quantitative experiments show that our method improves feature matching considerably compared to current foundation models.
☆ GateFusion: Hierarchical Gated Cross-Modal Fusion for Active Speaker Detection
Active Speaker Detection (ASD) aims to identify who is currently speaking in each frame of a video. Most state-of-the-art approaches rely on late fusion to combine visual and audio features, but late fusion often fails to capture fine-grained cross-modal interactions, which can be critical for robust performance in unconstrained scenarios. In this paper, we introduce GateFusion, a novel architecture that combines strong pretrained unimodal encoders with a Hierarchical Gated Fusion Decoder (HiGate). HiGate enables progressive, multi-depth fusion by adaptively injecting contextual features from one modality into the other at multiple layers of the Transformer backbone, guided by learnable, bimodally-conditioned gates. To further strengthen multimodal learning, we propose two auxiliary objectives: Masked Alignment Loss (MAL) to align unimodal outputs with multimodal predictions, and Over-Positive Penalty (OPP) to suppress spurious video-only activations. GateFusion establishes new state-of-the-art results on several challenging ASD benchmarks, achieving 77.8% mAP (+9.4%), 86.1% mAP (+2.9%), and 96.1% mAP (+0.5%) on Ego4D-ASD, UniTalk, and WASD benchmarks, respectively, and delivering competitive performance on AVA-ActiveSpeaker. Out-of-domain experiments demonstrate the generalization of our model, while comprehensive ablations show the complementary benefits of each component.
comment: accepted by WACV 2026
☆ End-to-End Training for Autoregressive Video Diffusion via Self-Resampling
Autoregressive video diffusion models hold promise for world simulation but are vulnerable to exposure bias arising from the train-test mismatch. While recent works address this via post-training, they typically rely on a bidirectional teacher model or online discriminator. To achieve an end-to-end solution, we introduce Resampling Forcing, a teacher-free framework that enables training autoregressive video models from scratch and at scale. Central to our approach is a self-resampling scheme that simulates inference-time model errors on history frames during training. Conditioned on these degraded histories, a sparse causal mask enforces temporal causality while enabling parallel training with frame-level diffusion loss. To facilitate efficient long-horizon generation, we further introduce history routing, a parameter-free mechanism that dynamically retrieves the top-k most relevant history frames for each query. Experiments demonstrate that our approach achieves performance comparable to distillation-based baselines while exhibiting superior temporal consistency on longer videos owing to native-length training.
comment: Project Page: https://guoyww.github.io/projects/resampling-forcing/
☆ VLIC: Vision-Language Models As Perceptual Judges for Human-Aligned Image Compression
Evaluations of image compression performance which include human preferences have generally found that naive distortion functions such as MSE are insufficiently aligned to human perception. In order to align compression models to human perception, prior work has employed differentiable perceptual losses consisting of neural networks calibrated on large-scale datasets of human psycho-visual judgments. We show that, surprisingly, state-of-the-art vision-language models (VLMs) can replicate binary human two-alternative forced choice (2AFC) judgments zero-shot when asked to reason about the differences between pairs of images. Motivated to exploit the powerful zero-shot visual reasoning capabilities of VLMs, we propose Vision-Language Models for Image Compression (VLIC), a diffusion-based image compression system designed to be post-trained with binary VLM judgments. VLIC leverages existing techniques for diffusion model post-training with preferences, rather than distilling the VLM judgments into a separate perceptual loss network. We show that calibrating this system on VLM judgments produces competitive or state-of-the-art performance on human-aligned visual compression depending on the dataset, according to perceptual metrics and large-scale user studies. We additionally conduct an extensive analysis of the VLM-based reward design and training procedure and share important insights. More visuals are available at https://kylesargent.github.io/vlic
comment: 14 pages, 8 figures
☆ Skyra: AI-Generated Video Detection via Grounded Artifact Reasoning
The misuse of AI-driven video generation technologies has raised serious social concerns, highlighting the urgent need for reliable AI-generated video detectors. However, most existing methods are limited to binary classification and lack the necessary explanations for human interpretation. In this paper, we present Skyra, a specialized multimodal large language model (MLLM) that identifies human-perceivable visual artifacts in AI-generated videos and leverages them as grounded evidence for both detection and explanation. To support this objective, we construct ViF-CoT-4K for Supervised Fine-Tuning (SFT), which represents the first large-scale AI-generated video artifact dataset with fine-grained human annotations. We then develop a two-stage training strategy that systematically enhances our model's spatio-temporal artifact perception, explanation capability, and detection accuracy. To comprehensively evaluate Skyra, we introduce ViF-Bench, a benchmark comprising 3K high-quality samples generated by over ten state-of-the-art video generators. Extensive experiments demonstrate that Skyra surpasses existing methods across multiple benchmarks, while our evaluation yields valuable insights for advancing explainable AI-generated video detection.
comment: Project Page: https://github.com/JoeLeelyf/Skyra
☆ mimic-video: Video-Action Models for Generalizable Robot Control Beyond VLAs
Prevailing Vision-Language-Action Models (VLAs) for robotic manipulation are built upon vision-language backbones pretrained on large-scale, but disconnected static web data. As a result, despite improved semantic generalization, the policy must implicitly infer complex physical dynamics and temporal dependencies solely from robot trajectories. This reliance creates an unsustainable data burden, necessitating continuous, large-scale expert data collection to compensate for the lack of innate physical understanding. We contend that while vision-language pretraining effectively captures semantic priors, it remains blind to physical causality. A more effective paradigm leverages video to jointly capture semantics and visual dynamics during pretraining, thereby isolating the remaining task of low-level control. To this end, we introduce \model, a novel Video-Action Model (VAM) that pairs a pretrained Internet-scale video model with a flow matching-based action decoder conditioned on its latent representations. The decoder serves as an Inverse Dynamics Model (IDM), generating low-level robot actions from the latent representation of video-space action plans. Our extensive evaluation shows that our approach achieves state-of-the-art performance on simulated and real-world robotic manipulation tasks, improving sample efficiency by 10x and convergence speed by 2x compared to traditional VLA architectures.
☆ Stylized Synthetic Augmentation further improves Corruption Robustness
This paper proposes a training data augmentation pipeline that combines synthetic image data with neural style transfer in order to address the vulnerability of deep vision models to common corruptions. We show that although applying style transfer on synthetic images degrades their quality with respect to the common FID metric, these images are surprisingly beneficial for model training. We conduct a systematic empirical analysis of the effects of both augmentations and their key hyperparameters on the performance of image classifiers. Our results demonstrate that stylization and synthetic data complement each other well and can be combined with popular rule-based data augmentation techniques such as TrivialAugment, while not working with others. Our method achieves state-of-the-art corruption robustness on several small-scale image classification benchmarks, reaching 93.54%, 74.9% and 50.86% robust accuracy on CIFAR-10-C, CIFAR-100-C and TinyImageNet-C, respectively
comment: Accepted at VISAPP 2026 conference
☆ SoFlow: Solution Flow Models for One-Step Generative Modeling
The multi-step denoising process in diffusion and Flow Matching models causes major efficiency issues, which motivates research on few-step generation. We present Solution Flow Models (SoFlow), a framework for one-step generation from scratch. By analyzing the relationship between the velocity function and the solution function of the velocity ordinary differential equation (ODE), we propose a Flow Matching loss and a solution consistency loss to train our models. The Flow Matching loss allows our models to provide estimated velocity fields for Classifier-Free Guidance (CFG) during training, which improves generation performance. Notably, our consistency loss does not require the calculation of the Jacobian-vector product (JVP), a common requirement in recent works that is not well-optimized in deep learning frameworks like PyTorch. Experimental results indicate that, when trained from scratch using the same Diffusion Transformer (DiT) architecture and an equal number of training epochs, our models achieve better FID-50K scores than MeanFlow models on the ImageNet 256x256 dataset.
comment: Our code is available at https://github.com/zlab-princeton/SoFlow
☆ VTCBench: Can Vision-Language Models Understand Long Context with Vision-Text Compression?
The computational and memory overheads associated with expanding the context window of LLMs severely limit their scalability. A noteworthy solution is vision-text compression (VTC), exemplified by frameworks like DeepSeek-OCR and Glyph, which convert long texts into dense 2D visual representations, thereby achieving token compression ratios of 3x-20x. However, the impact of this high information density on the core long-context capabilities of vision-language models (VLMs) remains under-investigated. To address this gap, we introduce the first benchmark for VTC and systematically assess the performance of VLMs across three long-context understanding settings: VTC-Retrieval, which evaluates the model's ability to retrieve and aggregate information; VTC-Reasoning, which requires models to infer latent associations to locate facts with minimal lexical overlap; and VTC-Memory, which measures comprehensive question answering within long-term dialogue memory. Furthermore, we establish the VTCBench-Wild to simulate diverse input scenarios.We comprehensively evaluate leading open-source and proprietary models on our benchmarks. The results indicate that, despite being able to decode textual information (e.g., OCR) well, most VLMs exhibit a surprisingly poor long-context understanding ability with VTC-compressed information, failing to capture long associations or dependencies in the context.This study provides a deep understanding of VTC and serves as a foundation for designing more efficient and scalable VLMs.
☆ Hard Labels In! Rethinking the Role of Hard Labels in Mitigating Local Semantic Drift
Soft labels generated by teacher models have become a dominant paradigm for knowledge transfer and recent large-scale dataset distillation such as SRe2L, RDED, LPLD, offering richer supervision than conventional hard labels. However, we observe that when only a limited number of crops per image are used, soft labels are prone to local semantic drift: a crop may visually resemble another class, causing its soft embedding to deviate from the ground-truth semantics of the original image. This mismatch between local visual content and global semantic meaning introduces systematic errors and distribution misalignment between training and testing. In this work, we revisit the overlooked role of hard labels and show that, when appropriately integrated, they provide a powerful content-agnostic anchor to calibrate semantic drift. We theoretically characterize the emergence of drift under few soft-label supervision and demonstrate that hybridizing soft and hard labels restores alignment between visual content and semantic supervision. Building on this insight, we propose a new training paradigm, Hard Label for Alleviating Local Semantic Drift (HALD), which leverages hard labels as intermediate corrective signals while retaining the fine-grained advantages of soft labels. Extensive experiments on dataset distillation and large-scale conventional classification benchmarks validate our approach, showing consistent improvements in generalization. On ImageNet-1K, we achieve 42.7% with only 285M storage for soft labels, outperforming prior state-of-the-art LPLD by 9.0%. Our findings re-establish the importance of hard labels as a complementary tool, and call for a rethinking of their role in soft-label-dominated training.
comment: Code at: https://github.com/Jiacheng8/HALD
☆ IC-Effect: Precise and Efficient Video Effects Editing via In-Context Learning
We propose \textbf{IC-Effect}, an instruction-guided, DiT-based framework for few-shot video VFX editing that synthesizes complex effects (\eg flames, particles and cartoon characters) while strictly preserving spatial and temporal consistency. Video VFX editing is highly challenging because injected effects must blend seamlessly with the background, the background must remain entirely unchanged, and effect patterns must be learned efficiently from limited paired data. However, existing video editing models fail to satisfy these requirements. IC-Effect leverages the source video as clean contextual conditions, exploiting the contextual learning capability of DiT models to achieve precise background preservation and natural effect injection. A two-stage training strategy, consisting of general editing adaptation followed by effect-specific learning via Effect-LoRA, ensures strong instruction following and robust effect modeling. To further improve efficiency, we introduce spatiotemporal sparse tokenization, enabling high fidelity with substantially reduced computation. We also release a paired VFX editing dataset spanning $15$ high-quality visual styles. Extensive experiments show that IC-Effect delivers high-quality, controllable, and temporally consistent VFX editing, opening new possibilities for video creation.
☆ OccSTeP: Benchmarking 4D Occupancy Spatio-Temporal Persistence
Autonomous driving requires a persistent understanding of 3D scenes that is robust to temporal disturbances and accounts for potential future actions. We introduce a new concept of 4D Occupancy Spatio-Temporal Persistence (OccSTeP), which aims to address two tasks: (1) reactive forecasting: ''what will happen next'' and (2) proactive forecasting: "what would happen given a specific future action". For the first time, we create a new OccSTeP benchmark with challenging scenarios (e.g., erroneous semantic labels and dropped frames). To address this task, we propose OccSTeP-WM, a tokenizer-free world model that maintains a dense voxel-based scene state and incrementally fuses spatio-temporal context over time. OccSTeP-WM leverages a linear-complexity attention backbone and a recurrent state-space module to capture long-range spatial dependencies while continually updating the scene memory with ego-motion compensation. This design enables online inference and robust performance even when historical sensor input is missing or noisy. Extensive experiments prove the effectiveness of the OccSTeP concept and our OccSTeP-WM, yielding an average semantic mIoU of 23.70% (+6.56% gain) and occupancy IoU of 35.89% (+9.26% gain). The data and code will be open source at https://github.com/FaterYU/OccSTeP.
comment: 16 pages, 5 figures
☆ Persistent feature reconstruction of resident space objects (RSOs) within inverse synthetic aperture radar (ISAR) images
With the rapidly growing population of resident space objects (RSOs) in the near-Earth space environment, detailed information about their condition and capabilities is needed to provide Space Domain Awareness (SDA). Space-based sensing will enable inspection of RSOs at shorter ranges, independent of atmospheric effects, and from all aspects. The use of a sub-THz inverse synthetic aperture radar (ISAR) imaging and sensing system for SDA has been proposed in previous work, demonstrating the achievement of sub-cm image resolution at ranges of up to 100 km. This work focuses on recognition of external structures by use of sequential feature detection and tracking throughout the aligned ISAR images of the satellites. The Hough transform is employed to detect linear features, which are tracked throughout the sequence. ISAR imagery is generated via a metaheuristic simulator capable of modelling encounters for a variety of deployment scenarios. Initial frame-to-frame alignment is achieved through a series of affine transformations to facilitate later association between image features. A gradient-by-ratio method is used for edge detection within individual ISAR images, and edge magnitude and direction are subsequently used to inform a double-weighted Hough transform to detect features with high accuracy. Feature evolution during sequences of frames is analysed. It is shown that the use of feature tracking within sequences with the proposed approach will increase confidence in feature detection and classification, and an example use-case of robust detection of shadowing as a feature is presented.
☆ Robust Multi-view Camera Calibration from Dense Matches
Estimating camera intrinsics and extrinsics is a fundamental problem in computer vision, and while advances in structure-from-motion (SfM) have improved accuracy and robustness, open challenges remain. In this paper, we introduce a robust method for pose estimation and calibration. We consider a set of rigid cameras, each observing the scene from a different perspective, which is a typical camera setup in animal behavior studies and forensic analysis of surveillance footage. Specifically, we analyse the individual components in a structure-from-motion (SfM) pipeline, and identify design choices that improve accuracy. Our main contributions are: (1) we investigate how to best subsample the predicted correspondences from a dense matcher to leverage them in the estimation process. (2) We investigate selection criteria for how to add the views incrementally. In a rigorous quantitative evaluation, we show the effectiveness of our changes, especially for cameras with strong radial distortion (79.9% ours vs. 40.4 vanilla VGGT). Finally, we demonstrate our correspondence subsampling in a global SfM setting where we initialize the poses using VGGT. The proposed pipeline generalizes across a wide range of camera setups, and could thus become a useful tool for animal behavior and forensic analysis.
comment: This paper has been accepted for publication at the 21st International Conference on Computer Vision Theory and Applications (VISAPP 2026). Conference website: https://visapp.scitevents.org
☆ Qwen-Image-Layered: Towards Inherent Editability via Layer Decomposition
Recent visual generative models often struggle with consistency during image editing due to the entangled nature of raster images, where all visual content is fused into a single canvas. In contrast, professional design tools employ layered representations, allowing isolated edits while preserving consistency. Motivated by this, we propose \textbf{Qwen-Image-Layered}, an end-to-end diffusion model that decomposes a single RGB image into multiple semantically disentangled RGBA layers, enabling \textbf{inherent editability}, where each RGBA layer can be independently manipulated without affecting other content. To support variable-length decomposition, we introduce three key components: (1) an RGBA-VAE to unify the latent representations of RGB and RGBA images; (2) a VLD-MMDiT (Variable Layers Decomposition MMDiT) architecture capable of decomposing a variable number of image layers; and (3) a Multi-stage Training strategy to adapt a pretrained image generation model into a multilayer image decomposer. Furthermore, to address the scarcity of high-quality multilayer training images, we build a pipeline to extract and annotate multilayer images from Photoshop documents (PSD). Experiments demonstrate that our method significantly surpasses existing approaches in decomposition quality and establishes a new paradigm for consistent image editing. Our code and models are released on \href{https://github.com/QwenLM/Qwen-Image-Layered}{https://github.com/QwenLM/Qwen-Image-Layered}
comment: 12 pages, 8 figures
☆ FlexAvatar: Learning Complete 3D Head Avatars with Partial Supervision
We introduce FlexAvatar, a method for creating high-quality and complete 3D head avatars from a single image. A core challenge lies in the limited availability of multi-view data and the tendency of monocular training to yield incomplete 3D head reconstructions. We identify the root cause of this issue as the entanglement between driving signal and target viewpoint when learning from monocular videos. To address this, we propose a transformer-based 3D portrait animation model with learnable data source tokens, so-called bias sinks, which enables unified training across monocular and multi-view datasets. This design leverages the strengths of both data sources during inference: strong generalization from monocular data and full 3D completeness from multi-view supervision. Furthermore, our training procedure yields a smooth latent avatar space that facilitates identity interpolation and flexible fitting to an arbitrary number of input observations. In extensive evaluations on single-view, few-shot, and monocular avatar creation tasks, we verify the efficacy of FlexAvatar. Many existing methods struggle with view extrapolation while FlexAvatar generates complete 3D head avatars with realistic facial animations. Website: https://tobias-kirschstein.github.io/flexavatar/
comment: Project website: https://tobias-kirschstein.github.io/flexavatar/ , Video: https://youtu.be/g8wxqYBlRGY
☆ IMKD: Intensity-Aware Multi-Level Knowledge Distillation for Camera-Radar Fusion
High-performance Radar-Camera 3D object detection can be achieved by leveraging knowledge distillation without using LiDAR at inference time. However, existing distillation methods typically transfer modality-specific features directly to each sensor, which can distort their unique characteristics and degrade their individual strengths. To address this, we introduce IMKD, a radar-camera fusion framework based on multi-level knowledge distillation that preserves each sensor's intrinsic characteristics while amplifying their complementary strengths. IMKD applies a three-stage, intensity-aware distillation strategy to enrich the fused representation across the architecture: (1) LiDAR-to-Radar intensity-aware feature distillation to enhance radar representations with fine-grained structural cues, (2) LiDAR-to-Fused feature intensity-guided distillation to selectively highlight useful geometry and depth information at the fusion level, fostering complementarity between the modalities rather than forcing them to align, and (3) Camera-Radar intensity-guided fusion mechanism that facilitates effective feature alignment and calibration. Extensive experiments on the nuScenes benchmark show that IMKD reaches 67.0% NDS and 61.0% mAP, outperforming all prior distillation-based radar-camera fusion methods. Our code and models are available at https://github.com/dfki-av/IMKD/.
comment: Accepted at IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2026. 22 pages, 8 figures. Includes supplementary material
☆ MoonSeg3R: Monocular Online Zero-Shot Segment Anything in 3D with Reconstructive Foundation Priors
In this paper, we focus on online zero-shot monocular 3D instance segmentation, a novel practical setting where existing approaches fail to perform because they rely on posed RGB-D sequences. To overcome this limitation, we leverage CUT3R, a recent Reconstructive Foundation Model (RFM), to provide reliable geometric priors from a single RGB stream. We propose MoonSeg3R, which introduces three key components: (1) a self-supervised query refinement module with spatial-semantic distillation that transforms segmentation masks from 2D visual foundation models (VFMs) into discriminative 3D queries; (2) a 3D query index memory that provides temporal consistency by retrieving contextual queries; and (3) a state-distribution token from CUT3R that acts as a mask identity descriptor to strengthen cross-frame fusion. Experiments on ScanNet200 and SceneNN show that MoonSeg3R is the first method to enable online monocular 3D segmentation and achieves performance competitive with state-of-the-art RGB-D-based systems. Code and models will be released.
☆ On the Effectiveness of Textual Prompting with Lightweight Fine-Tuning for SAM3 Remote Sensing Segmentation
Remote sensing (RS) image segmentation is constrained by the limited availability of annotated data and a gap between overhead imagery and natural images used to train foundational models. This motivates effective adaptation under limited supervision. SAM3 concept-driven framework generates masks from textual prompts without requiring task-specific modifications, which may enable this adaptation. We evaluate SAM3 for RS imagery across four target types, comparing textual, geometric, and hybrid prompting strategies, under lightweight fine-tuning scales with increasing supervision, alongside zero-shot inference. Results show that combining semantic and geometric cues yields the highest performance across targets and metrics. Text-only prompting exhibits the lowest performance, with marked score gaps for irregularly shaped targets, reflecting limited semantic alignment between SAM3 textual representations and their overhead appearances. Nevertheless, textual prompting with light fine-tuning offers a practical performance-effort trade-off for geometrically regular and visually salient targets. Across targets, performance improves between zero-shot inference and fine-tuning, followed by diminishing returns as the supervision scale increases. Namely, a modest geometric annotation effort is sufficient for effective adaptation. A persistent gap between Precision and IoU further indicates that under-segmentation and boundary inaccuracies remain prevalent error patterns in RS tasks, particularly for irregular and less prevalent targets.
☆ GRAN-TED: Generating Robust, Aligned, and Nuanced Text Embedding for Diffusion Models
The text encoder is a critical component of text-to-image and text-to-video diffusion models, fundamentally determining the semantic fidelity of the generated content. However, its development has been hindered by two major challenges: the lack of an efficient evaluation framework that reliably predicts downstream generation performance, and the difficulty of effectively adapting pretrained language models for visual synthesis. To address these issues, we introduce GRAN-TED, a paradigm to Generate Robust, Aligned, and Nuanced Text Embeddings for Diffusion models. Our contribution is twofold. First, we propose TED-6K, a novel text-only benchmark that enables efficient and robust assessment of an encoder's representational quality without requiring costly end-to-end model training. We demonstrate that performance on TED-6K, standardized via a lightweight, unified adapter, strongly correlates with an encoder's effectiveness in downstream generation tasks. Second, guided by this validated framework, we develop a superior text encoder using a novel two-stage training paradigm. This process involves an initial fine-tuning stage on a Multimodal Large Language Model for better visual representation, followed by a layer-wise weighting method to extract more nuanced and potent text features. Our experiments show that the resulting GRAN-TED encoder not only achieves state-of-the-art performance on TED-6K but also leads to demonstrable performance gains in text-to-image and text-to-video generation. Our code is available at the following link: https://anonymous.4open.science/r/GRAN-TED-4FCC/.
☆ BLANKET: Anonymizing Faces in Infant Video Recordings
Ensuring the ethical use of video data involving human subjects, particularly infants, requires robust anonymization methods. We propose BLANKET (Baby-face Landmark-preserving ANonymization with Keypoint dEtection consisTency), a novel approach designed to anonymize infant faces in video recordings while preserving essential facial attributes. Our method comprises two stages. First, a new random face, compatible with the original identity, is generated via inpainting using a diffusion model. Second, the new identity is seamlessly incorporated into each video frame through temporally consistent face swapping with authentic expression transfer. The method is evaluated on a dataset of short video recordings of babies and is compared to the popular anonymization method, DeepPrivacy2. Key metrics assessed include the level of de-identification, preservation of facial attributes, impact on human pose estimation (as an example of a downstream task), and presence of artifacts. Both methods alter the identity, and our method outperforms DeepPrivacy2 in all other respects. The code is available as an easy-to-use anonymization demo at https://github.com/ctu-vras/blanket-infant-face-anonym.
comment: Project website: https://github.com/ctu-vras/blanket-infant-face-anonym
☆ An Efficient and Effective Encoder Model for Vision and Language Tasks in the Remote Sensing Domain
The remote sensing community has recently seen the emergence of methods based on Large Vision and Language Models (LVLMs) that can address multiple tasks at the intersection of computer vision and natural language processing. To fully exploit the potential of such models, a significant focus has been given to the collection of large amounts of training data that cover multiple remote sensing-specific tasks, such as image captioning or visual question answering. However, the cost of using and training LVLMs is high, due to the large number of parameters. While multiple parameter-efficient adaptation techniques have been explored, the computational costs of training and inference with these models can remain prohibitive for most institutions. In this work, we explore the use of encoder-only architectures and propose a model that can effectively address multi-task learning while remaining compact in terms of the number of parameters. In particular, our model tackles combinations of tasks that are not typically explored in a unified model: the generation of text from remote sensing images and cross-modal retrieval. The results of our GeoMELT model - named from Multi-task Efficient Learning Transformer - in established benchmarks confirm the efficacy and efficiency of the proposed approach.
☆ EmoCaliber: Advancing Reliable Visual Emotion Comprehension via Confidence Verbalization and Calibration
Visual Emotion Comprehension (VEC) aims to infer sentiment polarities or emotion categories from affective cues embedded in images. In recent years, Multimodal Large Language Models (MLLMs) have established a popular paradigm in VEC, leveraging their generalizability to unify VEC tasks defined under diverse emotion taxonomies. While this paradigm achieves notable success, it typically formulates VEC as a deterministic task, requiring the model to output a single, definitive emotion label for each image. Such a formulation insufficiently accounts for the inherent subjectivity of emotion perception, overlooking alternative interpretations that may be equally plausible to different viewers. To address this limitation, we propose equipping MLLMs with capabilities to verbalize their confidence in emotion predictions. This additional signal provides users with an estimate of both the plausibility of alternative interpretations and the MLLMs' self-assessed competence, thereby enhancing reliability in practice. Building on this insight, we introduce a three-stage training framework that progressively endows with structured reasoning, teaches to verbalize confidence, and calibrates confidence expression, culminating in EmoCaliber, a confidence-aware MLLM for VEC. Through fair and comprehensive evaluations on the unified benchmark VECBench, EmoCaliber demonstrates overall superiority against existing methods in both emotion prediction and confidence estimation. These results validate the effectiveness of our approach and mark a feasible step toward more reliable VEC systems. Project page: https://github.com/wdqqdw/EmoCaliber.
☆ DeX-Portrait: Disentangled and Expressive Portrait Animation via Explicit and Latent Motion Representations
Portrait animation from a single source image and a driving video is a long-standing problem. Recent approaches tend to adopt diffusion-based image/video generation models for realistic and expressive animation. However, none of these diffusion models realizes high-fidelity disentangled control between the head pose and facial expression, hindering applications like expression-only or pose-only editing and animation. To address this, we propose DeX-Portrait, a novel approach capable of generating expressive portrait animation driven by disentangled pose and expression signals. Specifically, we represent the pose as an explicit global transformation and the expression as an implicit latent code. First, we design a powerful motion trainer to learn both pose and expression encoders for extracting precise and decomposed driving signals. Then we propose to inject the pose transformation into the diffusion model through a dual-branch conditioning mechanism, and the expression latent through cross attention. Finally, we design a progressive hybrid classifier-free guidance for more faithful identity consistency. Experiments show that our method outperforms state-of-the-art baselines on both animation quality and disentangled controllability.
comment: Projectpage: https://syx132.github.io/DeX-Portrait/
☆ VAAS: Vision-Attention Anomaly Scoring for Image Manipulation Detection in Digital Forensics
Recent advances in AI-driven image generation have introduced new challenges for verifying the authenticity of digital evidence in forensic investigations. Modern generative models can produce visually consistent forgeries that evade traditional detectors based on pixel or compression artefacts. Most existing approaches also lack an explicit measure of anomaly intensity, which limits their ability to quantify the severity of manipulation. This paper introduces Vision-Attention Anomaly Scoring (VAAS), a novel dual-module framework that integrates global attention-based anomaly estimation using Vision Transformers (ViT) with patch-level self-consistency scoring derived from SegFormer embeddings. The hybrid formulation provides a continuous and interpretable anomaly score that reflects both the location and degree of manipulation. Evaluations on the DF2023 and CASIA v2.0 datasets demonstrate that VAAS achieves competitive F1 and IoU performance, while enhancing visual explainability through attention-guided anomaly maps. The framework bridges quantitative detection with human-understandable reasoning, supporting transparent and reliable image integrity assessment. The source code for all experiments and corresponding materials for reproducing the results are available open source.
☆ Off The Grid: Detection of Primitives for Feed-Forward 3D Gaussian Splatting
Feed-forward 3D Gaussian Splatting (3DGS) models enable real-time scene generation but are hindered by suboptimal pixel-aligned primitive placement, which relies on a dense, rigid grid and limits both quality and efficiency. We introduce a new feed-forward architecture that detects 3D Gaussian primitives at a sub-pixel level, replacing the pixel grid with an adaptive, "Off The Grid" distribution. Inspired by keypoint detection, our multi-resolution decoder learns to distribute primitives across image patches. This module is trained end-to-end with a 3D reconstruction backbone using self-supervised learning. Our resulting pose-free model generates photorealistic scenes in seconds, achieving state-of-the-art novel view synthesis for feed-forward models. It outperforms competitors while using far fewer primitives, demonstrating a more accurate and efficient allocation that captures fine details and reduces artifacts. Moreover, we observe that by learning to render 3D Gaussians, our 3D reconstruction backbone improves camera pose estimation, suggesting opportunities to train these foundational models without labels.
☆ The LUMirage: An independent evaluation of zero-shot performance in the LUMIR challenge
The LUMIR challenge represents an important benchmark for evaluating deformable image registration methods on large-scale neuroimaging data. While the challenge demonstrates that modern deep learning methods achieve competitive accuracy on T1-weighted MRI, it also claims exceptional zero-shot generalization to unseen contrasts and resolutions, assertions that contradict established understanding of domain shift in deep learning. In this paper, we perform an independent re-evaluation of these zero-shot claims using rigorous evaluation protocols while addressing potential sources of instrumentation bias. Our findings reveal a more nuanced picture: (1) deep learning methods perform comparably to iterative optimization on in-distribution T1w images and even on human-adjacent species (macaque), demonstrating improved task understanding; (2) however, performance degrades significantly on out-of-distribution contrasts (T2, T2*, FLAIR), with Cohen's d scores ranging from 0.7-1.5, indicating substantial practical impact on downstream clinical workflows; (3) deep learning methods face scalability limitations on high-resolution data, failing to run on 0.6 mm isotropic images, while iterative methods benefit from increased resolution; and (4) deep methods exhibit high sensitivity to preprocessing choices. These results align with the well-established literature on domain shift and suggest that claims of universal zero-shot superiority require careful scrutiny. We advocate for evaluation protocols that reflect practical clinical and research workflows rather than conditions that may inadvertently favor particular method classes.
☆ RUMPL: Ray-Based Transformers for Universal Multi-View 2D to 3D Human Pose Lifting
Estimating 3D human poses from 2D images remains challenging due to occlusions and projective ambiguity. Multi-view learning-based approaches mitigate these issues but often fail to generalize to real-world scenarios, as large-scale multi-view datasets with 3D ground truth are scarce and captured under constrained conditions. To overcome this limitation, recent methods rely on 2D pose estimation combined with 2D-to-3D pose lifting trained on synthetic data. Building on our previous MPL framework, we propose RUMPL, a transformer-based 3D pose lifter that introduces a 3D ray-based representation of 2D keypoints. This formulation makes the model independent of camera calibration and the number of views, enabling universal deployment across arbitrary multi-view configurations without retraining or fine-tuning. A new View Fusion Transformer leverages learned fused-ray tokens to aggregate information along rays, further improving multi-view consistency. Extensive experiments demonstrate that RUMPL reduces MPJPE by up to 53% compared to triangulation and over 60% compared to transformer-based image-representation baselines. Results on new benchmarks, including in-the-wild multi-view and multi-person datasets, confirm its robustness and scalability. The framework's source code is available at https://github.com/aghasemzadeh/OpenRUMPL
☆ Evaluation of deep learning architectures for wildlife object detection: A comparative study of ResNet and Inception
Wildlife object detection plays a vital role in biodiversity conservation, ecological monitoring, and habitat protection. However, this task is often challenged by environmental variability, visual similarities among species, and intra-class diversity. This study investigates the effectiveness of two individual deep learning architectures ResNet-101 and Inception v3 for wildlife object detection under such complex conditions. The models were trained and evaluated on a wildlife image dataset using a standardized preprocessing approach, which included resizing images to a maximum dimension of 800 pixels, converting them to RGB format, and transforming them into PyTorch tensors. A ratio of 70:30 training and validation split was used for model development. The ResNet-101 model achieved a classification accuracy of 94% and a mean Average Precision (mAP) of 0.91, showing strong performance in extracting deep hierarchical features. The Inception v3 model performed slightly better, attaining a classification accuracy of 95% and a mAP of 0.92, attributed to its efficient multi-scale feature extraction through parallel convolutions. Despite the strong results, both models exhibited challenges when detecting species with similar visual characteristics or those captured under poor lighting and occlusion. Nonetheless, the findings confirm that both ResNet-101 and Inception v3 are effective models for wildlife object detection tasks and provide a reliable foundation for conservation-focused computer vision applications.
☆ ST-DETrack: Identity-Preserving Branch Tracking in Entangled Plant Canopies via Dual Spatiotemporal Evidence
Automated extraction of individual plant branches from time-series imagery is essential for high-throughput phenotyping, yet it remains computationally challenging due to non-rigid growth dynamics and severe identity fragmentation within entangled canopies. To overcome these stage-dependent ambiguities, we propose ST-DETrack, a spatiotemporal-fusion dual-decoder network designed to preserve branch identity from budding to flowering. Our architecture integrates a spatial decoder, which leverages geometric priors such as position and angle for early-stage tracking, with a temporal decoder that exploits motion consistency to resolve late-stage occlusions. Crucially, an adaptive gating mechanism dynamically shifts reliance between these spatial and temporal cues, while a biological constraint based on negative gravitropism mitigates vertical growth ambiguities. Validated on a Brassica napus dataset, ST-DETrack achieves a Branch Matching Accuracy (BMA) of 93.6%, significantly outperforming spatial and temporal baselines by 28.9 and 3.3 percentage points, respectively. These results demonstrate the method's robustness in maintaining long-term identity consistency amidst complex, dynamic plant architectures.
comment: Under Review at IEEE Transactions on Image Processing
☆ CLIP-FTI: Fine-Grained Face Template Inversion via CLIP-Driven Attribute Conditioning AAAI 2026
Face recognition systems store face templates for efficient matching. Once leaked, these templates pose a threat: inverting them can yield photorealistic surrogates that compromise privacy and enable impersonation. Although existing research has achieved relatively realistic face template inversion, the reconstructed facial images exhibit over-smoothed facial-part attributes (eyes, nose, mouth) and limited transferability. To address this problem, we present CLIP-FTI, a CLIP-driven fine-grained attribute conditioning framework for face template inversion. Our core idea is to use the CLIP model to obtain the semantic embeddings of facial features, in order to realize the reconstruction of specific facial feature attributes. Specifically, facial feature attribute embeddings extracted from CLIP are fused with the leaked template via a cross-modal feature interaction network and projected into the intermediate latent space of a pretrained StyleGAN. The StyleGAN generator then synthesizes face images with the same identity as the templates but with more fine-grained facial feature attributes. Experiments across multiple face recognition backbones and datasets show that our reconstructions (i) achieve higher identification accuracy and attribute similarity, (ii) recover sharper component-level attribute semantics, and (iii) improve cross-model attack transferability compared to prior reconstruction attacks. To the best of our knowledge, ours is the first method to use additional information besides the face template attack to realize face template inversion and obtains SOTA results.
comment: Accepted by AAAI 2026
☆ Step-GUI Technical Report
Recent advances in multimodal large language models unlock unprecedented opportunities for GUI automation. However, a fundamental challenge remains: how to efficiently acquire high-quality training data while maintaining annotation reliability? We introduce a self-evolving training pipeline powered by the Calibrated Step Reward System, which converts model-generated trajectories into reliable training signals through trajectory-level calibration, achieving >90% annotation accuracy with 10-100x lower cost. Leveraging this pipeline, we introduce Step-GUI, a family of models (4B/8B) that achieves state-of-the-art GUI performance (8B: 80.2% AndroidWorld, 48.5% OSWorld, 62.6% ScreenShot-Pro) while maintaining robust general capabilities. As GUI agent capabilities improve, practical deployment demands standardized interfaces across heterogeneous devices while protecting user privacy. To this end, we propose GUI-MCP, the first Model Context Protocol for GUI automation with hierarchical architecture that combines low-level atomic operations and high-level task delegation to local specialist models, enabling high-privacy execution where sensitive data stays on-device. Finally, to assess whether agents can handle authentic everyday usage, we introduce AndroidDaily, a benchmark grounded in real-world mobile usage patterns with 3146 static actions and 235 end-to-end tasks across high-frequency daily scenarios (8B: static 89.91%, end-to-end 52.50%). Our work advances the development of practical GUI agents and demonstrates strong potential for real-world deployment in everyday digital interactions.
comment: 41 pages, 26 figures
☆ Photorealistic Phantom Roads in Real Scenes: Disentangling 3D Hallucinations from Physical Geometry
Monocular depth foundation models achieve remarkable generalization by learning large-scale semantic priors, but this creates a critical vulnerability: they hallucinate illusory 3D structures from geometrically planar but perceptually ambiguous inputs. We term this failure the 3D Mirage. This paper introduces the first end-to-end framework to probe, quantify, and tame this unquantified safety risk. To probe, we present 3D-Mirage, the first benchmark of real-world illusions (e.g., street art) with precise planar-region annotations and context-restricted crops. To quantify, we propose a Laplacian-based evaluation framework with two metrics: the Deviation Composite Score (DCS) for spurious non-planarity and the Confusion Composite Score (CCS) for contextual instability. To tame this failure, we introduce Grounded Self-Distillation, a parameter-efficient strategy that surgically enforces planarity on illusion ROIs while using a frozen teacher to preserve background knowledge, thus avoiding catastrophic forgetting. Our work provides the essential tools to diagnose and mitigate this phenomenon, urging a necessary shift in MDE evaluation from pixel-wise accuracy to structural and contextual robustness. Our code and benchmark will be publicly available to foster this exciting research direction.
☆ MiVLA: Towards Generalizable Vision-Language-Action Model with Human-Robot Mutual Imitation Pre-training
While leveraging abundant human videos and simulated robot data poses a scalable solution to the scarcity of real-world robot data, the generalization capability of existing vision-language-action models (VLAs) remains limited by mismatches in camera views, visual appearance, and embodiment morphologies. To overcome this limitation, we propose MiVLA, a generalizable VLA empowered by human-robot mutual imitation pre-training, which leverages inherent behavioral similarity between human hands and robotic arms to build a foundation of strong behavioral priors for both human actions and robotic control. Specifically, our method utilizes kinematic rules with left/right hand coordinate systems for bidirectional alignment between human and robot action spaces. Given human or simulated robot demonstrations, MiVLA is trained to forecast behavior trajectories for one embodiment, and imitate behaviors for another one unseen in the demonstration. Based on this mutual imitation, it integrates the behavioral fidelity of real-world human data with the manipulative diversity of simulated robot data into a unified model, thereby enhancing the generalization capability for downstream tasks. Extensive experiments conducted on both simulation and real-world platforms with three robots (ARX, PiPer and LocoMan), demonstrate that MiVLA achieves strong improved generalization capability, outperforming state-of-the-art VLAs (e.g., $\boldsymbolπ_{0}$, $\boldsymbolπ_{0.5}$ and H-RDT) by 25% in simulation, and 14% in real-world robot control tasks.
☆ Preserving Marker Specificity with Lightweight Channel-Independent Representation Learning
Multiplexed tissue imaging measures dozens of protein markers per cell, yet most deep learning models still apply early channel fusion, assuming shared structure across markers. We investigate whether preserving marker independence, combined with deliberately shallow architectures, provides a more suitable inductive bias for self-supervised representation learning in multiplex data than increasing model scale. Using a Hodgkin lymphoma CODEX dataset with 145,000 cells and 49 markers, we compare standard early-fusion CNNs with channel-separated architectures, including a marker-aware baseline and our novel shallow Channel-Independent Model (CIM-S) with 5.5K parameters. After contrastive pretraining and linear evaluation, early-fusion models show limited ability to retain marker-specific information and struggle particularly with rare-cell discrimination. Channel-independent architectures, and CIM-S in particular, achieve substantially stronger representations despite their compact size. These findings are consistent across multiple self-supervised frameworks, remain stable across augmentation settings, and are reproducible across both the 49-marker and reduced 18-marker settings. These results show that lightweight, channel-independent architectures can match or surpass deep early-fusion CNNs and foundation models for multiplex representation learning. Code is available at https://github.com/SimonBon/CIM-S.
comment: 16 pages, 9 figures, MIDL 2026 conference
☆ SMART: Semantic Matching Contrastive Learning for Partially View-Aligned Clustering
Multi-view clustering has been empirically shown to improve learning performance by leveraging the inherent complementary information across multiple views of data. However, in real-world scenarios, collecting strictly aligned views is challenging, and learning from both aligned and unaligned data becomes a more practical solution. Partially View-aligned Clustering aims to learn correspondences between misaligned view samples to better exploit the potential consistency and complementarity across views, including both aligned and unaligned data. However, most existing PVC methods fail to leverage unaligned data to capture the shared semantics among samples from the same cluster. Moreover, the inherent heterogeneity of multi-view data induces distributional shifts in representations, leading to inaccuracies in establishing meaningful correspondences between cross-view latent features and, consequently, impairing learning effectiveness. To address these challenges, we propose a Semantic MAtching contRasTive learning model (SMART) for PVC. The main idea of our approach is to alleviate the influence of cross-view distributional shifts, thereby facilitating semantic matching contrastive learning to fully exploit semantic relationships in both aligned and unaligned data. Extensive experiments on eight benchmark datasets demonstrate that our method consistently outperforms existing approaches on the PVC problem.
☆ See It Before You Grab It: Deep Learning-based Action Anticipation in Basketball
Computer vision and video understanding have transformed sports analytics by enabling large-scale, automated analysis of game dynamics from broadcast footage. Despite significant advances in player and ball tracking, pose estimation, action localization, and automatic foul recognition, anticipating actions before they occur in sports videos has received comparatively little attention. This work introduces the task of action anticipation in basketball broadcast videos, focusing on predicting which team will gain possession of the ball following a shot attempt. To benchmark this task, a new self-curated dataset comprising 100,000 basketball video clips, over 300 hours of footage, and more than 2,000 manually annotated rebound events is presented. Comprehensive baseline results are reported using state-of-the-art action anticipation methods, representing the first application of deep learning techniques to basketball rebound prediction. Additionally, two complementary tasks, rebound classification and rebound spotting, are explored, demonstrating that this dataset supports a wide range of video understanding applications in basketball, for which no comparable datasets currently exist. Experimental results highlight both the feasibility and inherent challenges of anticipating rebounds, providing valuable insights into predictive modeling for dynamic multi-agent sports scenarios. By forecasting team possession before rebounds occur, this work enables applications in real-time automated broadcasting and post-game analysis tools to support decision-making.
☆ Emotion Recognition in Signers
Recognition of signers' emotions suffers from one theoretical challenge and one practical challenge, namely, the overlap between grammatical and affective facial expressions and the scarcity of data for model training. This paper addresses these two challenges in a cross-lingual setting using our eJSL dataset, a new benchmark dataset for emotion recognition in Japanese Sign Language signers, and BOBSL, a large British Sign Language dataset with subtitles. In eJSL, two signers expressed 78 distinct utterances with each of seven different emotional states, resulting in 1,092 video clips. We empirically demonstrate that 1) textual emotion recognition in spoken language mitigates data scarcity in sign language, 2) temporal segment selection has a significant impact, and 3) incorporating hand motion enhances emotion recognition in signers. Finally we establish a stronger baseline than spoken language LLMs.
☆ Image Complexity-Aware Adaptive Retrieval for Efficient Vision-Language Models
Vision transformers in vision-language models apply uniform computational effort across all images, expending 175.33 GFLOPs (ViT-L/14) whether analysing a straightforward product photograph or a complex street scene. We propose ICAR (Image Complexity-Aware Retrieval), which enables vision transformers to use less compute for simple images whilst processing complex images through their full network depth. The key challenge is maintaining cross-modal alignment: embeddings from different processing depths must remain compatible for text matching. ICAR solves this through dual-path training that produces compatible embeddings from both reduced-compute and full-compute processing. This maintains compatibility between image representations and text embeddings in the same semantic space, whether an image exits early or processes fully. Unlike existing two-stage approaches that require expensive reranking, ICAR enables direct image-text matching without additional overhead. To determine how much compute to use, we develop ConvNeXt-IC, which treats image complexity assessment as a classification task. By applying modern classifier backbones rather than specialised architectures, ConvNeXt-IC achieves state-of-the-art performance with 0.959 correlation with human judgement (Pearson) and 4.4x speedup. Evaluated on standard benchmarks augmented with real-world web data, ICAR achieves 20% practical speedup while maintaining category-level performance and 95% of instance-level performance, enabling sustainable scaling of vision-language systems.
comment: Accepted paper for ECIR 2026
☆ SemanticBridge -- A Dataset for 3D Semantic Segmentation of Bridges and Domain Gap Analysis
We propose a novel dataset that has been specifically designed for 3D semantic segmentation of bridges and the domain gap analysis caused by varying sensors. This addresses a critical need in the field of infrastructure inspection and maintenance, which is essential for modern society. The dataset comprises high-resolution 3D scans of a diverse range of bridge structures from various countries, with detailed semantic labels provided for each. Our initial objective is to facilitate accurate and automated segmentation of bridge components, thereby advancing the structural health monitoring practice. To evaluate the effectiveness of existing 3D deep learning models on this novel dataset, we conduct a comprehensive analysis of three distinct state-of-the-art architectures. Furthermore, we present data acquired through diverse sensors to quantify the domain gap resulting from sensor variations. Our findings indicate that all architectures demonstrate robust performance on the specified task. However, the domain gap can potentially lead to a decline in the performance of up to 11.4% mIoU.
☆ Expand and Prune: Maximizing Trajectory Diversity for Effective GRPO in Generative Models
Group Relative Policy Optimization (GRPO) is a powerful technique for aligning generative models, but its effectiveness is bottlenecked by the conflict between large group sizes and prohibitive computational costs. In this work, we investigate the trade-off through empirical studies, yielding two key observations. First, we discover the reward clustering phenomenon in which many trajectories collapse toward the group-mean reward, offering limited optimization value. Second, we design a heuristic strategy named Optimal Variance Filtering (OVF), and verify that a high-variance subset of trajectories, selected by OVF can outperform the larger, unfiltered group. However, this static, post-sampling OVF approach still necessitates critical computational overhead, as it performs unnecessary sampling for trajectories that are ultimately discarded. To resolve this, we propose Pro-GRPO (Proactive GRPO), a novel dynamic framework that integrates latent feature-based trajectory pruning into the sampling process. Through the early termination of reward-clustered trajectories, Pro-GRPO reduces computational overhead. Leveraging its efficiency, Pro-GRPO employs an "Expand-and-Prune" strategy. This strategy first expands the size of initial sampling group to maximize trajectory diversity, then it applies multi-step OVF to the latents, avoiding prohibitive computational costs. Extensive experiments on both diffusion-based and flow-based models demonstrate the generality and effectiveness of our Pro-GRPO framework.
comment: 10 pages, 5 figures
☆ Towards Seamless Interaction: Causal Turn-Level Modeling of Interactive 3D Conversational Head Dynamics
Human conversation involves continuous exchanges of speech and nonverbal cues such as head nods, gaze shifts, and facial expressions that convey attention and emotion. Modeling these bidirectional dynamics in 3D is essential for building expressive avatars and interactive robots. However, existing frameworks often treat talking and listening as independent processes or rely on non-causal full-sequence modeling, hindering temporal coherence across turns. We present TIMAR (Turn-level Interleaved Masked AutoRegression), a causal framework for 3D conversational head generation that models dialogue as interleaved audio-visual contexts. It fuses multimodal information within each turn and applies turn-level causal attention to accumulate conversational history, while a lightweight diffusion head predicts continuous 3D head dynamics that captures both coordination and expressive variability. Experiments on the DualTalk benchmark show that TIMAR reduces Fréchet Distance and MSE by 15-30% on the test set, and achieves similar gains on out-of-distribution data. The source code will be released in the GitHub repository https://github.com/CoderChen01/towards-seamleass-interaction.
☆ A Preprocessing Framework for Video Machine Vision under Compression
There has been a growing trend in compressing and transmitting videos from terminals for machine vision tasks. Nevertheless, most video coding optimization method focus on minimizing distortion according to human perceptual metrics, overlooking the heightened demands posed by machine vision systems. In this paper, we propose a video preprocessing framework tailored for machine vision tasks to address this challenge. The proposed method incorporates a neural preprocessor which retaining crucial information for subsequent tasks, resulting in the boosting of rate-accuracy performance. We further introduce a differentiable virtual codec to provide constraints on rate and distortion during the training stage. We directly apply widely used standard codecs for testing. Therefore, our solution can be easily applied to real-world scenarios. We conducted extensive experiments evaluating our compression method on two typical downstream tasks with various backbone networks. The experimental results indicate that our approach can save over 15% of bitrate compared to using only the standard codec anchor version.
comment: Accepted as a POSTER and for publication in the DCC 2024 proceedings
☆ Vision-based module for accurately reading linear scales in a laboratory
Capabilities and the number of vision-based models are increasing rapidly. And these vision models are now able to do more tasks like object detection, image classification, instance segmentation etc. with great accuracy. But models which can take accurate quantitative measurements form an image, as a human can do by just looking at it, are rare. For a robot to work with complete autonomy in a Laboratory environment, it needs to have some basic skills like navigation, handling objects, preparing samples etc. to match human-like capabilities in an unstructured environment. Another important capability is to read measurements from instruments and apparatus. Here, we tried to mimic a human inspired approach to read measurements from a linear scale. As a test case we have picked reading level from a syringe and a measuring cylinder. For a randomly oriented syringe we carry out transformations to correct the orientation. To make the system efficient and robust, the area of interest is reduced to just the linear scale containing part of the image. After that, a series of features were extracted like the major makers, the corresponding digits, and the level indicator location, from which the final reading was calculated. Readings obtained using this system were also compared against human read values of the same instances and an accurate correspondence was observed.
comment: 10 pages, 16 figures
☆ A Masked Reverse Knowledge Distillation Method Incorporating Global and Local Information for Image Anomaly Detection
Knowledge distillation is an effective image anomaly detection and localization scheme. However, a major drawback of this scheme is its tendency to overly generalize, primarily due to the similarities between input and supervisory signals. In order to address this issue, this paper introduces a novel technique called masked reverse knowledge distillation (MRKD). By employing image-level masking (ILM) and feature-level masking (FLM), MRKD transforms the task of image reconstruction into image restoration. Specifically, ILM helps to capture global information by differentiating input signals from supervisory signals. On the other hand, FLM incorporates synthetic feature-level anomalies to ensure that the learned representations contain sufficient local information. With these two strategies, MRKD is endowed with stronger image context capture capacity and is less likely to be overgeneralized. Experiments on the widely-used MVTec anomaly detection dataset demonstrate that MRKD achieves impressive performance: image-level 98.9% AU-ROC, pixel-level 98.4% AU-ROC, and 95.3% AU-PRO. In addition, extensive ablation experiments have validated the superiority of MRKD in mitigating the overgeneralization problem.
☆ MECAD: A multi-expert architecture for continual anomaly detection
In this paper we propose MECAD, a novel approach for continual anomaly detection using a multi-expert architecture. Our system dynamically assigns experts to object classes based on feature similarity and employs efficient memory management to preserve the knowledge of previously seen classes. By leveraging an optimized coreset selection and a specialized replay buffer mechanism, we enable incremental learning without requiring full model retraining. Our experimental evaluation on the MVTec AD dataset demonstrates that the optimal 5-expert configuration achieves an average AUROC of 0.8259 across 15 diverse object categories while significantly reducing knowledge degradation compared to single-expert approaches. This framework balances computational efficiency, specialized knowledge retention, and adaptability, making it well-suited for industrial environments with evolving product types.
comment: Accepted to ICIAP 2025
☆ Prototypical Learning Guided Context-Aware Segmentation Network for Few-Shot Anomaly Detection
Few-shot anomaly detection (FSAD) denotes the identification of anomalies within a target category with a limited number of normal samples. Existing FSAD methods largely rely on pre-trained feature representations to detect anomalies, but the inherent domain gap between pre-trained representations and target FSAD scenarios is often overlooked. This study proposes a Prototypical Learning Guided Context-Aware Segmentation Network (PCSNet) to address the domain gap, thereby improving feature descriptiveness in target scenarios and enhancing FSAD performance. In particular, PCSNet comprises a prototypical feature adaption (PFA) sub-network and a context-aware segmentation (CAS) sub-network. PFA extracts prototypical features as guidance to ensure better feature compactness for normal data while distinct separation from anomalies. A pixel-level disparity classification loss is also designed to make subtle anomalies more distinguishable. Then a CAS sub-network is introduced for pixel-level anomaly localization, where pseudo anomalies are exploited to facilitate the training process. Experimental results on MVTec and MPDD demonstrate the superior FSAD performance of PCSNet, with 94.9% and 80.2% image-level AUROC in an 8-shot scenario, respectively. Real-world applications on automotive plastic part inspection further demonstrate that PCSNet can achieve promising results with limited training samples. Code is available at https://github.com/yuxin-jiang/PCSNet.
☆ Automated Motion Artifact Check for MRI (AutoMAC-MRI): An Interpretable Framework for Motion Artifact Detection and Severity Assessment
Motion artifacts degrade MRI image quality and increase patient recalls. Existing automated quality assessment methods are largely limited to binary decisions and provide little interpretability. We introduce AutoMAC-MRI, an explainable framework for grading motion artifacts across heterogeneous MR contrasts and orientations. The approach uses supervised contrastive learning to learn a discriminative representation of motion severity. Within this feature space, we compute grade-specific affinity scores that quantify an image's proximity to each motion grade, thereby making grade assignments transparent and interpretable. We evaluate AutoMAC-MRI on more than 5000 expert-annotated brain MRI slices spanning multiple contrasts and views. Experiments assessing affinity scores against expert labels show that the scores align well with expert judgment, supporting their use as an interpretable measure of motion severity. By coupling accurate grade detection with per-grade affinity scoring, AutoMAC-MRI enables inline MRI quality control, with the potential to reduce unnecessary rescans and improve workflow efficiency.
☆ KD360-VoxelBEV: LiDAR and 360-degree Camera Cross Modality Knowledge Distillation for Bird's-Eye-View Segmentation
We present the first cross-modality distillation framework specifically tailored for single-panoramic-camera Bird's-Eye-View (BEV) segmentation. Our approach leverages a novel LiDAR image representation fused from range, intensity and ambient channels, together with a voxel-aligned view transformer that preserves spatial fidelity while enabling efficient BEV processing. During training, a high-capacity LiDAR and camera fusion Teacher network extracts both rich spatial and semantic features for cross-modality knowledge distillation into a lightweight Student network that relies solely on a single 360-degree panoramic camera image. Extensive experiments on the Dur360BEV dataset demonstrate that our teacher model significantly outperforms existing camera-based BEV segmentation methods, achieving a 25.6\% IoU improvement. Meanwhile, the distilled Student network attains competitive performance with an 8.5\% IoU gain and state-of-the-art inference speed of 31.2 FPS. Moreover, evaluations on KITTI-360 (two fisheye cameras) confirm that our distillation framework generalises to diverse camera setups, underscoring its feasibility and robustness. This approach reduces sensor complexity and deployment costs while providing a practical solution for efficient, low-cost BEV segmentation in real-world autonomous driving.
☆ SynthSeg-Agents: Multi-Agent Synthetic Data Generation for Zero-Shot Weakly Supervised Semantic Segmentation
Weakly Supervised Semantic Segmentation (WSSS) with image level labels aims to produce pixel level predictions without requiring dense annotations. While recent approaches have leveraged generative models to augment existing data, they remain dependent on real world training samples. In this paper, we introduce a novel direction, Zero Shot Weakly Supervised Semantic Segmentation (ZSWSSS), and propose SynthSeg Agents, a multi agent framework driven by Large Language Models (LLMs) to generate synthetic training data entirely without real images. SynthSeg Agents comprises two key modules, a Self Refine Prompt Agent and an Image Generation Agent. The Self Refine Prompt Agent autonomously crafts diverse and semantically rich image prompts via iterative refinement, memory mechanisms, and prompt space exploration, guided by CLIP based similarity and nearest neighbor diversity filtering. These prompts are then passed to the Image Generation Agent, which leverages Vision Language Models (VLMs) to synthesize candidate images. A frozen CLIP scoring model is employed to select high quality samples, and a ViT based classifier is further trained to relabel the entire synthetic dataset with improved semantic precision. Our framework produces high quality training data without any real image supervision. Experiments on PASCAL VOC 2012 and COCO 2014 show that SynthSeg Agents achieves competitive performance without using real training images. This highlights the potential of LLM driven agents in enabling cost efficient and scalable semantic segmentation.
☆ Generative Preprocessing for Image Compression with Pre-trained Diffusion Models
Preprocessing is a well-established technique for optimizing compression, yet existing methods are predominantly Rate-Distortion (R-D) optimized and constrained by pixel-level fidelity. This work pioneers a shift towards Rate-Perception (R-P) optimization by, for the first time, adapting a large-scale pre-trained diffusion model for compression preprocessing. We propose a two-stage framework: first, we distill the multi-step Stable Diffusion 2.1 into a compact, one-step image-to-image model using Consistent Score Identity Distillation (CiD). Second, we perform a parameter-efficient fine-tuning of the distilled model's attention modules, guided by a Rate-Perception loss and a differentiable codec surrogate. Our method seamlessly integrates with standard codecs without any modification and leverages the model's powerful generative priors to enhance texture and mitigate artifacts. Experiments show substantial R-P gains, achieving up to a 30.13% BD-rate reduction in DISTS on the Kodak dataset and delivering superior subjective visual quality.
comment: Accepted as a PAPER and for publication in the DCC 2026 proceedings
☆ MMMamba: A Versatile Cross-Modal In Context Fusion Framework for Pan-Sharpening and Zero-Shot Image Enhancement
Pan-sharpening aims to generate high-resolution multispectral (HRMS) images by integrating a high-resolution panchromatic (PAN) image with its corresponding low-resolution multispectral (MS) image. To achieve effective fusion, it is crucial to fully exploit the complementary information between the two modalities. Traditional CNN-based methods typically rely on channel-wise concatenation with fixed convolutional operators, which limits their adaptability to diverse spatial and spectral variations. While cross-attention mechanisms enable global interactions, they are computationally inefficient and may dilute fine-grained correspondences, making it difficult to capture complex semantic relationships. Recent advances in the Multimodal Diffusion Transformer (MMDiT) architecture have demonstrated impressive success in image generation and editing tasks. Unlike cross-attention, MMDiT employs in-context conditioning to facilitate more direct and efficient cross-modal information exchange. In this paper, we propose MMMamba, a cross-modal in-context fusion framework for pan-sharpening, with the flexibility to support image super-resolution in a zero-shot manner. Built upon the Mamba architecture, our design ensures linear computational complexity while maintaining strong cross-modal interaction capacity. Furthermore, we introduce a novel multimodal interleaved (MI) scanning mechanism that facilitates effective information exchange between the PAN and MS modalities. Extensive experiments demonstrate the superior performance of our method compared to existing state-of-the-art (SOTA) techniques across multiple tasks and benchmarks.
comment: \link{Code}{https://github.com/Gracewangyy/MMMamba}
☆ Assessing the Visual Enumeration Abilities of Specialized Counting Architectures and Vision-Language Models
Counting the number of items in a visual scene remains a fundamental yet challenging task in computer vision. Traditional approaches to solving this problem rely on domain-specific counting architectures, which are trained using datasets annotated with a predefined set of object categories. However, recent progress in creating large-scale multimodal vision-language models (VLMs) suggests that these domain-general architectures may offer a flexible alternative for open-set object counting. In this study, we therefore systematically compare the performance of state-of-the-art specialized counting architectures against VLMs on two popular counting datasets, as well as on a novel benchmark specifically created to have a finer-grained control over the visual properties of test images. Our findings show that most VLMs can approximately enumerate the number of items in a visual scene, matching or even surpassing the performance of specialized computer vision architectures. Notably, enumeration accuracy significantly improves when VLMs are prompted to generate intermediate representations (i.e., locations and verbal labels) of each object to be counted. Nevertheless, none of the models can reliably count the number of objects in complex visual scenes, showing that further research is still needed to create AI systems that can reliably deploy counting procedures in realistic environments.
☆ Intersectional Fairness in Vision-Language Models for Medical Image Disease Classification
Medical artificial intelligence (AI) systems, particularly multimodal vision-language models (VLM), often exhibit intersectional biases where models are systematically less confident in diagnosing marginalised patient subgroups. Such bias can lead to higher rates of inaccurate and missed diagnoses due to demographically skewed data and divergent distributions of diagnostic certainty. Current fairness interventions frequently fail to address these gaps or compromise overall diagnostic performance to achieve statistical parity among the subgroups. In this study, we developed Cross-Modal Alignment Consistency (CMAC-MMD), a training framework that standardises diagnostic certainty across intersectional patient subgroups. Unlike traditional debiasing methods, this approach equalises the model's decision confidence without requiring sensitive demographic data during clinical inference. We evaluated this approach using 10,015 skin lesion images (HAM10000) with external validation on 12,000 images (BCN20000), and 10,000 fundus images for glaucoma detection (Harvard-FairVLMed), stratifying performance by intersectional age, gender, and race attributes. In the dermatology cohort, the proposed method reduced the overall intersectional missed diagnosis gap (difference in True Positive Rate, $Δ$TPR) from 0.50 to 0.26 while improving the overall Area Under the Curve (AUC) from 0.94 to 0.97 compared to standard training. Similarly, for glaucoma screening, the method reduced $Δ$TPR from 0.41 to 0.31, achieving a better AUC of 0.72 (vs. 0.71 baseline). This establishes a scalable framework for developing high-stakes clinical decision support systems that are both accurate and can perform equitably across diverse patient subgroups, ensuring reliable performance without increasing privacy risks.
☆ Null-LoRA: Low-Rank Adaptation on Null Space
Parameter-efficient fine-tuning methods have gained considerable popularity for adapting large-scale models to downstream tasks, particularly LoRA and its variants. Existing methods perform low-rank adaptation over the full parameter space. However, fine-tuning within a subspace can achieve comparable effectiveness. Inspired by the observation that pre-trained models possess non-trivial null spaces, we propose Null-space based Low-Rank Adaptation (Null-LoRA). Null-LoRA effectively reduces redundancy and enhances effective rank by freezing portions of the low-rank matrices. To further improve parameter efficiency, Null-LoRA constrains the entire incremental update within the null space, maximizing the utilization of incremental updates to adapt to new task paradigms. Null-LoRA surpasses the state of the art with fewer parameters in extensive experiments across image-text retrieval and visual question answering tasks.
☆ SLCFormer: Spectral-Local Context Transformer with Physics-Grounded Flare Synthesis for Nighttime Flare Removal
Lens flare is a common nighttime artifact caused by strong light sources scattering within camera lenses, leading to hazy streaks, halos, and glare that degrade visual quality. However, existing methods usually fail to effectively address nonuniform scattered flares, which severely reduces their applicability to complex real-world scenarios with diverse lighting conditions. To address this issue, we propose SLCFormer, a novel spectral-local context transformer framework for effective nighttime lens flare removal. SLCFormer integrates two key modules: the Frequency Fourier and Excitation Module (FFEM), which captures efficient global contextual representations in the frequency domain to model flare characteristics, and the Directionally-Enhanced Spatial Module (DESM) for local structural enhancement and directional features in the spatial domain for precise flare removal. Furthermore, we introduce a ZernikeVAE-based scatter flare generation pipeline to synthesize physically realistic scatter flares with spatially varying PSFs, bridging optical physics and data-driven training. Extensive experiments on the Flare7K++ dataset demonstrate that our method achieves state-of-the-art performance, outperforming existing approaches in both quantitative metrics and perceptual visual quality, and generalizing robustly to real nighttime scenes with complex flare artifacts.
☆ From Camera to World: A Plug-and-Play Module for Human Mesh Transformation
Reconstructing accurate 3D human meshes in the world coordinate system from in-the-wild images remains challenging due to the lack of camera rotation information. While existing methods achieve promising results in the camera coordinate system by assuming zero camera rotation, this simplification leads to significant errors when transforming the reconstructed mesh to the world coordinate system. To address this challenge, we propose Mesh-Plug, a plug-and-play module that accurately transforms human meshes from camera coordinates to world coordinates. Our key innovation lies in a human-centered approach that leverages both RGB images and depth maps rendered from the initial mesh to estimate camera rotation parameters, eliminating the dependency on environmental cues. Specifically, we first train a camera rotation prediction module that focuses on the human body's spatial configuration to estimate camera pitch angle. Then, by integrating the predicted camera parameters with the initial mesh, we design a mesh adjustment module that simultaneously refines the root joint orientation and body pose. Extensive experiments demonstrate that our framework outperforms state-of-the-art methods on the benchmark datasets SPEC-SYN and SPEC-MTP.
☆ TBC: A Target-Background Contrast Metric for Low-Altitude Infrared and Visible Image Fusion
Infrared and visible image fusion is a pivotal technology in low-altitude UAV reconnaissance missions, providing high-quality data support for downstream tasks such as target detection and tracking by integrating thermal saliency with background texture details.However, traditional no-reference metrics fail(Specifically,like Entropy (EN) and Average Gradient (AG)) in complex low-light environments. They often misinterpret high-frequency sensor noise as valid detail. This creates a "Noise Trap," paradoxically assigning higher scores to noisy images and misguiding fusion algorithms.To address this, we propose the Target-Background Contrast (TBC) metric. Inspired by Weber's Law, TBC focuses on the relative contrast of salient targets rather than global statistics. Unlike traditional metrics, TBC penalizes background noise and rewards target visibility. Experiments on the DroneVehicle dataset demonstrate that TBC aligns better with human perception and provides a reliable standard for low-altitude scenarios.
☆ EPSM: A Novel Metric to Evaluate the Safety of Environmental Perception in Autonomous Driving
Extensive evaluation of perception systems is crucial for ensuring the safety of intelligent vehicles in complex driving scenarios. Conventional performance metrics such as precision, recall and the F1-score assess the overall detection accuracy, but they do not consider the safety-relevant aspects of perception. Consequently, perception systems that achieve high scores in these metrics may still cause misdetections that could lead to severe accidents. Therefore, it is important to evaluate not only the overall performance of perception systems, but also their safety. We therefore introduce a novel safety metric for jointly evaluating the most critical perception tasks, object and lane detection. Our proposed framework integrates a new, lightweight object safety metric that quantifies the potential risk associated with object detection errors, as well as an lane safety metric including the interdependence between both tasks that can occur in safety evaluation. The resulting combined safety score provides a unified, interpretable measure of perception safety performance. Using the DeepAccident dataset, we demonstrate that our approach identifies safety critical perception errors that conventional performance metrics fail to capture. Our findings emphasize the importance of safety-centric evaluation methods for perception systems in autonomous driving.
comment: Submitted at IEEE IV 2026
☆ ERIENet: An Efficient RAW Image Enhancement Network under Low-Light Environment
RAW images have shown superior performance than sRGB images in many image processing tasks, especially for low-light image enhancement. However, most existing methods for RAW-based low-light enhancement usually sequentially process multi-scale information, which makes it difficult to achieve lightweight models and high processing speeds. Besides, they usually ignore the green channel superiority of RAW images, and fail to achieve better reconstruction performance with good use of green channel information. In this work, we propose an efficient RAW Image Enhancement Network (ERIENet), which parallelly processes multi-scale information with efficient convolution modules, and takes advantage of rich information in green channels to guide the reconstruction of images. Firstly, we introduce an efficient multi-scale fully-parallel architecture with a novel channel-aware residual dense block to extract feature maps, which reduces computational costs and achieves real-time processing speed. Secondly, we introduce a green channel guidance branch to exploit the rich information within the green channels of the input RAW image. It increases the quality of reconstruction results with few parameters and computations. Experiments on commonly used low-light image enhancement datasets show that ERIENet outperforms state-of-the-art methods in enhancing low-light RAW images with higher effiency. It also achieves an optimal speed of over 146 frame-per-second (FPS) for 4K-resolution images on a single NVIDIA GeForce RTX 3090 with 24G memory.
comment: 5 pages, 4 figures, conference ICVISP
☆ Robust and Calibrated Detection of Authentic Multimedia Content
Generative models can synthesize highly realistic content, so-called deepfakes, that are already being misused at scale to undermine digital media authenticity. Current deepfake detection methods are unreliable for two reasons: (i) distinguishing inauthentic content post-hoc is often impossible (e.g., with memorized samples), leading to an unbounded false positive rate (FPR); and (ii) detection lacks robustness, as adversaries can adapt to known detectors with near-perfect accuracy using minimal computational resources. To address these limitations, we propose a resynthesis framework to determine if a sample is authentic or if its authenticity can be plausibly denied. We make two key contributions focusing on the high-precision, low-recall setting against efficient (i.e., compute-restricted) adversaries. First, we demonstrate that our calibrated resynthesis method is the most reliable approach for verifying authentic samples while maintaining controllable, low FPRs. Second, we show that our method achieves adversarial robustness against efficient adversaries, whereas prior methods are easily evaded under identical compute budgets. Our approach supports multiple modalities and leverages state-of-the-art inversion techniques.
☆ Criticality Metrics for Relevance Classification in Safety Evaluation of Object Detection in Automated Driving
Ensuring safety is the primary objective of automated driving, which necessitates a comprehensive and accurate perception of the environment. While numerous performance evaluation metrics exist for assessing perception capabilities, incorporating safety-specific metrics is essential to reliably evaluate object detection systems. A key component for safety evaluation is the ability to distinguish between relevant and non-relevant objects - a challenge addressed by criticality or relevance metrics. This paper presents the first in-depth analysis of criticality metrics for safety evaluation of object detection systems. Through a comprehensive review of existing literature, we identify and assess a range of applicable metrics. Their effectiveness is empirically validated using the DeepAccident dataset, which features a variety of safety-critical scenarios. To enhance evaluation accuracy, we propose two novel application strategies: bidirectional criticality rating and multi-metric aggregation. Our approach demonstrates up to a 100% improvement in terms of criticality classification accuracy, highlighting its potential to significantly advance the safety evaluation of object detection systems in automated vehicles.
comment: Accepted at IEEE ICVES 2025
☆ Cross-modal ultra-scale learning with tri-modalities of renal biopsy images for glomerular multi-disease auxiliary diagnosis
Constructing a multi-modal automatic classification model based on three types of renal biopsy images can assist pathologists in glomerular multi-disease identification. However, the substantial scale difference between transmission electron microscopy (TEM) image features at the nanoscale and optical microscopy (OM) or immunofluorescence microscopy (IM) images at the microscale poses a challenge for existing multi-modal and multi-scale models in achieving effective feature fusion and improving classification accuracy. To address this issue, we propose a cross-modal ultra-scale learning network (CMUS-Net) for the auxiliary diagnosis of multiple glomerular diseases. CMUS-Net utilizes multiple ultrastructural information to bridge the scale difference between nanometer and micrometer images. Specifically, we introduce a sparse multi-instance learning module to aggregate features from TEM images. Furthermore, we design a cross-modal scale attention module to facilitate feature interaction, enhancing pathological semantic information. Finally, multiple loss functions are combined, allowing the model to weigh the importance among different modalities and achieve precise classification of glomerular diseases. Our method follows the conventional process of renal biopsy pathology diagnosis and, for the first time, performs automatic classification of multiple glomerular diseases including IgA nephropathy (IgAN), membranous nephropathy (MN), and lupus nephritis (LN) based on images from three modalities and two scales. On an in-house dataset, CMUS-Net achieves an ACC of 95.37+/-2.41%, an AUC of 99.05+/-0.53%, and an F1-score of 95.32+/-2.41%. Extensive experiments demonstrate that CMUS-Net outperforms other well-known multi-modal or multi-scale methods and show its generalization capability in staging MN. Code is available at https://github.com/SMU-GL-Group/MultiModal_lkx/tree/main.
☆ EagleVision: A Dual-Stage Framework with BEV-grounding-based Chain-of-Thought for Spatial Intelligence
Recent spatial intelligence approaches typically attach 3D cues to 2D reasoning pipelines or couple MLLMs with black-box reconstruction modules, leading to weak spatial consistency, limited viewpoint diversity, and evidence chains that cannot be traced back to supporting views. Frameworks for "thinking with images" (e.g., ChatGPT-o3 and DeepEyes) show that stepwise multimodal reasoning can emerge by interleaving hypothesis formation with active acquisition of visual evidence, but they do not address three key challenges in spatial Chain-of-Thought (CoT): building global space perception under strict token budgets, explicitly associating 3D hypotheses with video frames for verification, and designing spatially grounded rewards for reinforcement learning. To address these issues, we present EagleVision, a dual-stage framework for progressive spatial cognition through macro perception and micro verification. In the macro perception stage, EagleVision employs a semantics-perspective-fusion determinantal point process (SPF-DPP) to select a compact set of geometry- and semantics-aware keyframes from long videos under a fixed token budget. In the micro verification stage, we formalize spatial CoT as BEV-grounded pose querying: the agent iteratively predicts poses on a BEV plane, retrieves the nearest real frames, and is trained purely by reinforcement learning with a spatial grounding reward that scores the consistency between predicted poses and observed views. On VSI-Bench, EagleVision achieves state-of-the-art performance among open-source vision-language models, demonstrating strong and generalizable spatial understanding.
comment: 13 pages, 7 figures, 6 tables
☆ Explainable Action Form Assessment by Exploiting Multimodal Chain-of-Thoughts Reasoning
Evaluating whether human action is standard or not and providing reasonable feedback to improve action standardization is very crucial but challenging in real-world scenarios. However, current video understanding methods are mainly concerned with what and where the action is, which is unable to meet the requirements. Meanwhile, most of the existing datasets lack the labels indicating the degree of action standardization, and the action quality assessment datasets lack explainability and detailed feedback. Therefore, we define a new Human Action Form Assessment (AFA) task, and introduce a new diverse dataset CoT-AFA, which contains a large scale of fitness and martial arts videos with multi-level annotations for comprehensive video analysis. We enrich the CoT-AFA dataset with a novel Chain-of-Thought explanation paradigm. Instead of offering isolated feedback, our explanations provide a complete reasoning process--from identifying an action step to analyzing its outcome and proposing a concrete solution. Furthermore, we propose a framework named Explainable Fitness Assessor, which can not only judge an action but also explain why and provide a solution. This framework employs two parallel processing streams and a dynamic gating mechanism to fuse visual and semantic information, thereby boosting its analytical capabilities. The experimental results demonstrate that our method has achieved improvements in explanation generation (e.g., +16.0% in CIDEr), action classification (+2.7% in accuracy) and quality assessment (+2.1% in accuracy), revealing great potential of CoT-AFA for future studies. Our dataset and source code is available at https://github.com/MICLAB-BUPT/EFA.
♻ ☆ MMGR: Multi-Modal Generative Reasoning
Video foundation models generate visually realistic and temporally coherent content, but their reliability as world simulators depends on whether they capture physical, logical, and spatial constraints. Existing metrics such as Frechet Video Distance (FVD) emphasize perceptual quality and overlook reasoning failures, including violations of causality, physics, and global consistency. We introduce MMGR (Multi-Modal Generative Reasoning Evaluation and Benchmark), a principled evaluation framework based on five reasoning abilities: Physical, Logical, 3D Spatial, 2D Spatial, and Temporal. MMGR evaluates generative reasoning across three domains: Abstract Reasoning (ARC-AGI, Sudoku), Embodied Navigation (real-world 3D navigation and localization), and Physical Commonsense (sports and compositional interactions). MMGR applies fine-grained metrics that require holistic correctness across both video and image generation. We benchmark leading video models (Veo-3, Sora-2, Wan-2.2) and image models (Nano-banana, Nano-banana Pro, GPT-4o-image, Qwen-image), revealing strong performance gaps across domains. Models show moderate success on Physical Commonsense tasks but perform poorly on Abstract Reasoning (below 10 percent accuracy on ARC-AGI) and struggle with long-horizon spatial planning in embodied settings. Our analysis highlights key limitations in current models, including overreliance on perceptual data, weak global state consistency, and objectives that reward visual plausibility over causal correctness. MMGR offers a unified diagnostic benchmark and a path toward reasoning-aware generative world models.
comment: work in progress
♻ ☆ MedicoSAM: Robust Improvement of SAM for Medical Imaging
Medical image segmentation is an important analysis task in clinical practice and research. Deep learning has massively advanced the field, but current approaches are mostly based on models trained for a specific task. Training such models or adapting them to a new condition is costly due to the need for (manually) labeled data. The emergence of vision foundation models, especially Segment Anything, offers a path to universal segmentation for medical images, overcoming these issues. Here, we study how to improve Segment Anything for medical images by comparing different finetuning strategies on a large and diverse dataset. We evaluate the finetuned models on a wide range of interactive and (automatic) semantic segmentation tasks. We find that the performance can be clearly improved for interactive segmentation. However, semantic segmentation does not benefit from pretraining on medical images. Our best model, MedicoSAM, is publicly available at https://github.com/computational-cell-analytics/medico-sam. We show that it is compatible with existing tools for data annotation and believe that it will be of great practical value.
♻ ☆ DriveMLM: Aligning Multi-Modal Large Language Models with Behavioral Planning States for Autonomous Driving
Large language models (LLMs) have opened up new possibilities for intelligent agents, endowing them with human-like thinking and cognitive abilities. In this work, we delve into the potential of large language models (LLMs) in autonomous driving (AD). We introduce DriveMLM, an LLM-based AD framework that can perform close-loop autonomous driving in realistic simulators. To this end, (1) we bridge the gap between the language decisions and the vehicle control commands by standardizing the decision states according to the off-the-shelf motion planning module. (2) We employ a multimodal LLM (MLLM) to model the behavior planning module of a module AD system, which uses driving rules, user commands, and inputs from various sensors (e.g., camera, lidar) as input and makes driving decisions and provide explanations; This model can plug-and-play in existing AD systems such as Autopilot and Apollo for close-loop driving. (3) We design an effective data engine to collect a dataset that includes decision state and corresponding explanation annotation for model training and evaluation. We conduct extensive experiments and show that replacing the decision-making modules of the Autopilot and Apollo with DriveMLM resulted in significant improvements of 3.2 and 4.7 points on the CARLA Town05 Long respectively, demonstrating the effectiveness of our model. We hope this work can serve as a baseline for autonomous driving with LLMs.
comment: Accepted to Visual Intelligence
♻ ☆ Binarization-Aware Adjuster: A Theoretical Framework for Bridging Continuous Optimization and Discrete Inference with Application to Edge Detection
In machine learning, discrete decision-making tasks exhibit a fundamental inconsistency between training and inference: models are optimized using continuous-valued outputs, yet evaluated through discrete predictions. This discrepancy arises from the non-differentiability of discretization operations, weakening the alignment between optimization objectives and practical decision outcomes. To address this, we present a theoretical framework for constructing a Binarization-Aware Adjuster (BAA) that integrates binarization behavior directly into gradient-based learning. Central to the approach is a Distance Weight Function (DWF) that dynamically modulates pixel-wise loss contributions based on prediction correctness and proximity to the decision boundary, thereby emphasizing decision-critical regions while de-emphasizing confidently correct samples. Furthermore, a self-adaptive threshold estimation procedure is introduced to better match optimization dynamics with inference conditions. As one of its applications, we implement experiments on the edge detection (ED) task, which also demonstrate the effectiveness of the proposed method experimentally. Beyond binary decision tasks and ED, the proposed framework provides a general strategy for aligning continuous optimization with discrete evaluation and can be extended to multi-valued decision processes in broader structured prediction problems.
comment: 30 pages
♻ ☆ DiffEM: Learning from Corrupted Data with Diffusion Models via Expectation Maximization
Diffusion models have emerged as powerful generative priors for high-dimensional inverse problems, yet learning them when only corrupted or noisy observations are available remains challenging. In this work, we propose a new method for training diffusion models with Expectation-Maximization (EM) from corrupted data. Our proposed method, DiffEM, utilizes conditional diffusion models to reconstruct clean data from observations in the E-step, and then uses the reconstructed data to refine the conditional diffusion model in the M-step. Theoretically, we provide monotonic convergence guarantees for the DiffEM iteration, assuming appropriate statistical conditions. We demonstrate the effectiveness of our approach through experiments on various image reconstruction tasks.
♻ ☆ AdSum: Two-stream Audio-visual Summarization for Automated Video Advertisement Clipping
Advertisers commonly need multiple versions of the same advertisement (ad) at varying durations for a single campaign. The traditional approach involves manually selecting and re-editing shots from longer video ads to create shorter versions, which is labor-intensive and time-consuming. In this paper, we introduce a framework for automated video ad clipping using video summarization techniques. We are the first to frame video clipping as a shot selection problem, tailored specifically for advertising. Unlike existing general video summarization methods that primarily focus on visual content, our approach emphasizes the critical role of audio in advertising. To achieve this, we develop a two-stream audio-visual fusion model that predicts the importance of video frames, where importance is defined as the likelihood of a frame being selected in the firm-produced short ad. To address the lack of ad-specific datasets, we present AdSum204, a novel dataset comprising 102 pairs of 30-second and 15-second ads from real advertising campaigns. Extensive experiments demonstrate that our model outperforms state-of-the-art methods across various metrics, including Average Precision, Area Under Curve, Spearman, and Kendall. The dataset and code are available at https://github.com/ostadabbas/AdSum204.
comment: Accepted at 32nd International Conference on MultiMedia Modeling
♻ ☆ FitPro: A Zero-Shot Framework for Interactive Text-based Pedestrian Retrieval in Open World
Text-based Pedestrian Retrieval (TPR) deals with retrieving specific target pedestrians in visual scenes according to natural language descriptions. Although existing methods have achieved progress under constrained settings, interactive retrieval in the open-world scenario still suffers from limited model generalization and insufficient semantic understanding. To address these challenges, we propose FitPro, an open-world interactive zero-shot TPR framework with enhanced semantic comprehension and cross-scene adaptability. FitPro has three innovative components: Feature Contrastive Decoding (FCD), Incremental Semantic Mining (ISM), and Query-aware Hierarchical Retrieval (QHR). The FCD integrates prompt-guided contrastive decoding to generate high-quality structured pedestrian descriptions from denoised images, effectively alleviating semantic drift in zero-shot scenarios. The ISM constructs holistic pedestrian representations from multi-view observations to achieve global semantic modeling in multi-turn interactions, thereby improving robustness against viewpoint shifts and fine-grained variations in descriptions. The QHR dynamically optimizes the retrieval pipeline according to query types, enabling efficient adaptation to multi-modal and multi-view inputs. Extensive experiments on five public datasets and two evaluation protocols demonstrate that FitPro significantly overcomes the generalization limitations and semantic modeling constraints of existing methods in interactive retrieval, paving the way for practical deployment.
comment: 12pages,6 figures
♻ ☆ Deep Learning for Retinal Degeneration Assessment: A Comprehensive Analysis of the MARIO Challenge MICCAI
The MARIO challenge, held at MICCAI 2024, focused on advancing the automated detection and monitoring of age-related macular degeneration (AMD) through the analysis of optical coherence tomography (OCT) images. Designed to evaluate algorithmic performance in detecting neovascular activity changes within AMD, the challenge incorporated unique multi-modal datasets. The primary dataset, sourced from Brest, France, was used by participating teams to train and test their models. The final ranking was determined based on performance on this dataset. An auxiliary dataset from Algeria was used post-challenge to evaluate population and device shifts from submitted solutions. Two tasks were involved in the MARIO challenge. The first one was the classification of evolution between two consecutive 2D OCT B-scans. The second one was the prediction of future AMD evolution over three months for patients undergoing anti-vascular endothelial growth factor (VEGF) therapy. Thirty-five teams participated, with the top 12 finalists presenting their methods. This paper outlines the challenge's structure, tasks, data characteristics, and winning methodologies, setting a benchmark for AMD monitoring using OCT, infrared imaging, and clinical data (such as the number of visits, age, gender, etc.). The results of this challenge indicate that artificial intelligence (AI) performs as well as a physician in measuring AMD progression (Task 1) but is not yet able of predicting future evolution (Task 2).
comment: MARIO-MICCAI-CHALLENGE 2024
♻ ☆ Do MLLMs Exhibit Human-like Perceptual Behaviors? HVSBench: A Benchmark for MLLM Alignment with Human Perceptual Behavior
While Multimodal Large Language Models (MLLMs) excel at many vision tasks, it is unknown if they exhibit human-like perceptual behaviors. To evaluate this, we introduce HVSBench, the first large-scale benchmark with over 85,000 samples designed to test MLLM alignment with the human visual system (HVS). The benchmark covers 13 categories across 5 key fields: Prominence, Subitizing, Prioritizing, Free-Viewing, and Searching. Our comprehensive evaluation reveals a significant perceptual gap: even state-of-the-art MLLMs achieve only moderate results. In contrast, human participants demonstrate strong performance, significantly outperforming all models. This underscores the high quality of HVSBench and the need for more human-aligned AI. We believe our benchmark will be a critical tool for developing the next generation of explainable MLLMs.
comment: Project page: https://jiaying.link/HVSBench/
♻ ☆ MovSemCL: Movement-Semantics Contrastive Learning for Trajectory Similarity (Extension) AAAI 2026
Trajectory similarity computation is fundamental functionality that is used for, e.g., clustering, prediction, and anomaly detection. However, existing learning-based methods exhibit three key limitations: (1) insufficient modeling of trajectory semantics and hierarchy, lacking both movement dynamics extraction and multi-scale structural representation; (2) high computational costs due to point-wise encoding; and (3) use of physically implausible augmentations that distort trajectory semantics. To address these issues, we propose MovSemCL, a movement-semantics contrastive learning framework for trajectory similarity computation. MovSemCL first transforms raw GPS trajectories into movement-semantics features and then segments them into patches. Next, MovSemCL employs intra- and inter-patch attentions to encode local as well as global trajectory patterns, enabling efficient hierarchical representation and reducing computational costs. Moreover, MovSemCL includes a curvature-guided augmentation strategy that preserves informative segments (e.g., turns and intersections) and masks redundant ones, generating physically plausible augmented views. Experiments on real-world datasets show that MovSemCL is capable of outperforming state-of-the-art methods, achieving mean ranks close to the ideal value of 1 at similarity search tasks and improvements by up to 20.3% at heuristic approximation, while reducing inference latency by up to 43.4%.
comment: 8 pages, 6 figures; accepted by AAAI 2026 as an Oral paper
♻ ☆ If you can describe it, they can see it: Cross-Modal Learning of Visual Concepts from Textual Descriptions
Humans can visualize new and unknown concepts from their natural language description, based on their experience and previous knowledge. Insipired by this, we present a way to extend this ability to Vision-Language Models (VLMs), teaching them novel concepts by only using a textual description. We refer to this approach as Knowledge Transfer (KT). Our hypothesis is that the knowledge of a pre-trained VLM can be re-used to represent previously unknown concepts. Provided with a textual description of the novel concept, KT works by aligning relevant features of the visual encoder, obtained through model inversion, to its text representation. Differently from approaches relying on visual examples or external generative models, KT transfers knowledge within the same VLM by injecting visual knowledge directly from the text. Through an extensive evaluation on several VLM tasks, including classification, segmentation, image-text retrieval, and captioning, we show that: 1) KT can efficiently introduce new visual concepts from a single textual description; 2) the same principle can be used to refine the representation of existing concepts; and 3) KT significantly improves the performance of zero-shot VLMs.
comment: 27 pages. Under review
♻ ☆ LoRAverse: A Submodular Framework to Retrieve Diverse Adapters for Diffusion Models
Low-rank Adaptation (LoRA) models have revolutionized the personalization of pre-trained diffusion models by enabling fine-tuning through low-rank, factorized weight matrices specifically optimized for attention layers. These models facilitate the generation of highly customized content across a variety of objects, individuals, and artistic styles without the need for extensive retraining. Despite the availability of over 100K LoRA adapters on platforms like Civit.ai, users often face challenges in navigating, selecting, and effectively utilizing the most suitable adapters due to their sheer volume, diversity, and lack of structured organization. This paper addresses the problem of selecting the most relevant and diverse LoRA models from this vast database by framing the task as a combinatorial optimization problem and proposing a novel submodular framework. Our quantitative and qualitative experiments demonstrate that our method generates diverse outputs across a wide range of domains.
♻ ☆ ViRC: Enhancing Visual Interleaved Mathematical CoT with Reason Chunking
CoT has significantly enhanced the reasoning ability of LLMs while it faces challenges when extended to multimodal domains, particularly in mathematical tasks. Existing MLLMs typically perform textual reasoning solely from a single static mathematical image, overlooking dynamic visual acquisition during reasoning. In contrast, humans repeatedly examine visual image and employ step-by-step reasoning to prove intermediate propositions. This strategy of decomposing the problem-solving process into key logical nodes adheres to Miller's Law in cognitive science. Inspired by this insight, we propose a ViRC framework for multimodal mathematical tasks, introducing a Reason Chunking mechanism that structures multimodal mathematical CoT into consecutive Critical Reasoning Units (CRUs) to simulate human expert problem-solving patterns. CRUs ensure intra-unit textual coherence for intermediate proposition verification while integrating visual information across units to generate subsequent propositions and support structured reasoning. To this end, we present CRUX dataset by using three visual tools and four reasoning patterns to provide explicitly annotated CRUs across multiple reasoning paths for each mathematical problem. Leveraging the CRUX dataset, we propose a progressive training strategy inspired by human cognitive learning, which includes Instructional SFT, Practice SFT, and Strategic RL, aimed at further strengthening the Reason Chunking ability of the model. The resulting ViRC-7B model achieves a 18.8% average improvement over baselines across multiple mathematical benchmarks. Code is available at https://github.com/Leon-LihongWang/ViRC.
comment: Code is available at https://github.com/Leon-LihongWang/ViRC
♻ ☆ PP-Motion: Physical-Perceptual Fidelity Evaluation for Human Motion Generation
Human motion generation has found widespread applications in AR/VR, film, sports, and medical rehabilitation, offering a cost-effective alternative to traditional motion capture systems. However, evaluating the fidelity of such generated motions is a crucial, multifaceted task. Although previous approaches have attempted at motion fidelity evaluation using human perception or physical constraints, there remains an inherent gap between human-perceived fidelity and physical feasibility. Moreover, the subjective and coarse binary labeling of human perception further undermines the development of a robust data-driven metric. We address these issues by introducing a physical labeling method. This method evaluates motion fidelity by calculating the minimum modifications needed for a motion to align with physical laws. With this approach, we are able to produce fine-grained, continuous physical alignment annotations that serve as objective ground truth. With these annotations, we propose PP-Motion, a novel data-driven metric to evaluate both physical and perceptual fidelity of human motion. To effectively capture underlying physical priors, we employ Pearson's correlation loss for the training of our metric. Additionally, by incorporating a human-based perceptual fidelity loss, our metric can capture fidelity that simultaneously considers both human perception and physical alignment. Experimental results demonstrate that our metric, PP-Motion, not only aligns with physical laws but also aligns better with human perception of motion fidelity than previous work.
comment: Accepted by ACM Multimedia 2025
♻ ☆ Prompt-Based Continual Compositional Zero-Shot Learning
We tackle continual adaptation of vision-language models to new attributes, objects, and their compositions in Compositional Zero-Shot Learning (CZSL), while preventing forgetting of prior knowledge. Unlike classical continual learning where classes are disjoint, CCZSL is more complex as attributes and objects may reoccur across sessions while compositions remain unique. Built on a frozen VLM backbone, we propose the first Prompt-based Continual Compositional Zero-Shot Learning (PromptCCZSL) framework that retains prior knowledge through recency-weighted multi-teacher distillation. It employs session-aware compositional prompts to fuse multimodal features for new compositions, while attribute and object prompts are learned through session-agnostic fusion to maintain global semantic consistency, which is further stabilized by a Cosine Anchor Loss (CAL) to preserve prior knowledge. To enhance adaptation in the current session, an Orthogonal Projection Loss (OPL) ensures that new attribute and object embeddings remain distinct from previous ones, preventing overlap, while an Intra-Session Diversity Loss (IDL) promotes variation among current-session embeddings for richer, more discriminative representations. We also introduce a comprehensive protocol that jointly measures catastrophic forgetting and compositional generalization. Extensive experiments on UT-Zappos and C-GQA benchmarks demonstrate that PromptCCZSL achieves substantial improvements over prior VLM-based and non-VLM baselines, setting a new benchmark for CCZSL in closed-world settings.
♻ ☆ Control-Augmented Autoregressive Diffusion for Data Assimilation
Despite recent advances in test-time scaling and finetuning of diffusion models, guidance in Auto-Regressive Diffusion Models (ARDMs) remains underexplored. We introduce an amortized framework that augments a pretrained ARDM with a lightweight controller network, trained offline by previewing future rollouts to output stepwise controls that anticipate upcoming observations under a terminal-cost objective. Our approach is motivated by viewing guided generation as an entropy-regularized stochastic optimal control problem over ARDM trajectories: we learn a reusable policy that injects small control corrections inside each denoising sub-step while remaining anchored to the pretrained dynamics. We evaluate this framework in the context of data assimilation (DA) for chaotic spatiotemporal partial differential equations (PDEs), where existing methods can be computationally prohibitive and prone to forecast drift under sparse observations. At inference, DA reduces to a single causal forward rollout with on-the-fly corrections, requiring neither adjoint computations nor gradient-based optimization, and yields an order-of-magnitude speedup over strong diffusion-based DA baselines. Across two canonical PDEs and six observation regimes, our method consistently improves stability, accuracy, and physics-aware fidelity over state-of-the-art baselines. We will release code and checkpoints publicly.
♻ ☆ Weakly Supervised Pneumonia Localization from Chest X-Rays Using Deep Neural Network and Grad-CAM Explanations
Chest X-ray imaging is commonly used to diagnose pneumonia, but accurately localizing the pneumonia-affected regions typically requires detailed pixel-level annotations, which are costly and time consuming to obtain. To address this limitation, this study proposes a weakly supervised deep learning framework for pneumonia classification and localization using Gradient-weighted Class Activation Mapping (Grad-CAM). Instead of relying on costly pixel-level annotations, the proposed method utilizes image-level labels to generate clinically meaningful heatmaps that highlight pneumonia-affected regions. Furthermore, we evaluate seven pre-trained deep learning models, including a Vision Transformer, under identical training conditions, using focal loss and patient-wise splits to prevent data leakage. Experimental results suggest that all models achieved high classification accuracy (96--98\%), with ResNet-18 and EfficientNet-B0 showing the best overall performance and MobileNet-V3 providing an efficient lightweight alternative. Grad-CAM heatmap visualizations confirm that the proposed methods focus on clinically relevant lung regions, supporting the use of explainable AI for radiological diagnostics. Overall, this work highlights the potential of weakly supervised, explainable models that enhance transparency and clinical trust in AI-assisted pneumonia screening.
comment: https://github.com/kiranshahi/pneumonia-analysis
♻ ☆ REAL: Representation Enhanced Analytic Learning for Exemplar-free Class-incremental Learning
Exemplar-free class-incremental learning (EFCIL) aims to mitigate catastrophic forgetting in class-incremental learning (CIL) without available historical training samples as exemplars. Compared with its exemplar-based CIL counterpart that stores exemplars, EFCIL suffers more from forgetting issues. Recently, a new EFCIL branch named Analytic Continual Learning (ACL) introduces a gradient-free paradigm via Recursive Least-Square, achieving a forgetting-resistant classifier training with a frozen backbone during CIL. However, existing ACL suffers from ineffective representations and insufficient utilization of backbone knowledge. In this paper, we propose a representation-enhanced analytic learning (REAL) to address these problems. To enhance the representation, REAL constructs a dual-stream base pretraining followed by representation enhancing distillation process. The dual-stream base pretraining combines self-supervised contrastive learning for general features and supervised learning for class-specific knowledge, followed by the representation enhancing distillation to merge both streams, enhancing representations for subsequent CIL paradigm. To utilize more knowledge from the backbone, REAL presents a feature fusion buffer to multi-layer backbone features, providing informative features for the subsequent classifier training. Our method can be incorporated into existing ACL techniques and provides more competitive performance. Empirical results demonstrate that, REAL achieves state-of-the-art performance on CIFAR-100, ImageNet-100 and ImageNet-1k benchmarks, outperforming exemplar-free methods and rivaling exemplar-based approaches.
comment: 13 pages, 7 figures. This paper is published in Knowledge-based System
♻ ☆ Chain-of-Evidence Multimodal Reasoning for Few-shot Temporal Action Localization
Traditional temporal action localization (TAL) methods rely on large amounts of detailed annotated data, whereas few-shot TAL reduces this dependence by using only a few training samples to identify unseen action categories. However, existing few-shot TAL methods typically focus solely on video-level information, neglecting textual information, which can provide valuable semantic support for the action localization task. To address these issues, in this work, we propose a new few-shot temporal action localization method by Chain-of-Evidence multimodal reasoning to improve localization performance. Specifically, we design a novel few-shot learning framework to capture action commonalities and variations, which includes a semantic-aware text-visual alignment module designed to align the query and support videos at different levels. Meanwhile, to better express the temporal dependencies and causal relationships between actions at the textual level, we design a Chain-of-Evidence (CoE) reasoning method that progressively guides the Vision Language Model (VLM) and Large Language Model (LLM) to generate CoE text descriptions for videos. The generated texts can capture more variance of action than visual features. We conduct extensive experiments on the publicly available ActivityNet1.3, THUMOS14 and our newly collected Human-related Anomaly Localization Dataset. The experimental results demonstrate that our proposed method significantly outperforms existing methods in single-instance and multi-instance scenarios. Our source code and data are available at https://github.com/MICLAB-BUPT/VAL-VLM.
♻ ☆ M4Human: A Large-Scale Multimodal mmWave Radar Benchmark for Human Mesh Reconstruction
Human mesh reconstruction (HMR) provides direct insights into body-environment interaction, which enables various immersive applications. While existing large-scale HMR datasets rely heavily on line-of-sight RGB input, vision-based sensing is limited by occlusion, lighting variation, and privacy concerns. To overcome these limitations, recent efforts have explored radio-frequency (RF) mmWave radar for privacy-preserving indoor human sensing. However, current radar datasets are constrained by sparse skeleton labels, limited scale, and simple in-place actions. To advance the HMR research community, we introduce M4Human, the current largest-scale (661K-frame) ($9\times$ prior largest) multimodal benchmark, featuring high-resolution mmWave radar, RGB, and depth data. M4Human provides both raw radar tensors (RT) and processed radar point clouds (RPC) to enable research across different levels of RF signal granularity. M4Human includes high-quality motion capture (MoCap) annotations with 3D meshes and global trajectories, and spans 20 subjects and 50 diverse actions, including in-place, sit-in-place, and free-space sports or rehabilitation movements. We establish benchmarks on both RT and RPC modalities, as well as multimodal fusion with RGB-D modalities. Extensive results highlight the significance of M4Human for radar-based human modeling while revealing persistent challenges under fast, unconstrained motion. The dataset and code will be released after the paper publication.
♻ ☆ Event Camera Meets Mobile Embodied Perception: Abstraction, Algorithm, Acceleration, Application
With the increasing complexity of mobile device applications, these devices are evolving toward high agility. This shift imposes new demands on mobile sensing, particularly in achieving high-accuracy and low-latency. Event-based vision has emerged as a disruptive paradigm, offering high temporal resolution and low latency, making it well-suited for high-accuracy and low-latency sensing tasks on high-agility platforms. However, the presence of substantial noisy events, lack of stable, persistent semantic information, and large data volume pose challenges for event-based data processing on resource-constrained mobile devices. This paper surveys the literature from 2014 to 2025 and presents a comprehensive overview of event-based mobile sensing, encompassing its fundamental principles, event \textit{abstraction} methods, \textit{algorithm} advancements, and both hardware and software \textit{acceleration} strategies. We discuss key \textit{applications} of event cameras in mobile sensing, including visual odometry, object tracking, optical flow, and 3D reconstruction, while highlighting challenges associated with event data processing, sensor fusion, and real-time deployment. Furthermore, we outline future research directions, such as improving the event camera with advanced optics, leveraging neuromorphic computing for efficient processing, and integrating bio-inspired algorithms. To support ongoing research, we provide an open-source \textit{Online Sheet} with recent developments. We hope this survey serves as a reference, facilitating the adoption of event-based vision across diverse applications.
comment: Accepted by ACM CSUR,35 pages
♻ ☆ GT2-GS: Geometry-aware Texture Transfer for Gaussian Splatting AAAI 2026
Transferring 2D textures onto complex 3D scenes plays a vital role in enhancing the efficiency and controllability of 3D multimedia content creation. However, existing 3D style transfer methods primarily focus on transferring abstract artistic styles to 3D scenes. These methods often overlook the geometric information of the scene, which makes it challenging to achieve high-quality 3D texture transfer results. In this paper, we present GT2-GS, a geometry-aware texture transfer framework for gaussian splatting. First, we propose a geometry-aware texture transfer loss that enables view-consistent texture transfer by leveraging prior view-dependent feature information and texture features augmented with additional geometric parameters. Moreover, an adaptive fine-grained control module is proposed to address the degradation of scene information caused by low-granularity texture features. Finally, a geometry preservation branch is introduced. This branch refines the geometric parameters using additionally bound Gaussian color priors, thereby decoupling the optimization objectives of appearance and geometry. Extensive experiments demonstrate the effectiveness and controllability of our method. Through geometric awareness, our approach achieves texture transfer results that better align with human visual perception. Our homepage is available at https://vpx-ecnu.github.io/GT2-GS-website.
comment: Accepted to AAAI 2026
♻ ☆ Cascaded Dual Vision Transformer for Accurate Facial Landmark Detection
Facial landmark detection is a fundamental problem in computer vision for many downstream applications. This paper introduces a new facial landmark detector based on vision transformers, which consists of two unique designs: Dual Vision Transformer (D-ViT) and Long Skip Connections (LSC). Based on the observation that the channel dimension of feature maps essentially represents the linear bases of the heatmap space, we propose learning the interconnections between these linear bases to model the inherent geometric relations among landmarks via Channel-split ViT. We integrate such channel-split ViT into the standard vision transformer (i.e., spatial-split ViT), forming our Dual Vision Transformer to constitute the prediction blocks. We also suggest using long skip connections to deliver low-level image features to all prediction blocks, thereby preventing useful information from being discarded by intermediate supervision. Extensive experiments are conducted to evaluate the performance of our proposal on the widely used benchmarks, i.e., WFLW, COFW, and 300W, demonstrating that our model outperforms the previous SOTAs across all three benchmarks.
comment: Accepted by WACV 2025. The code can be found at https://github.com/Human3DAIGC/AccurateFacialLandmarkDetection . Supplementary material is included at the end of the main paper (3 pages, 5 figures, 2 tables)
♻ ☆ Registering the 4D Millimeter Wave Radar Point Clouds Via Generalized Method of Moments
4D millimeter wave radars (4D radars) are new emerging sensors that provide point clouds of objects with both position and radial velocity measurements. Compared to LiDARs, they are more affordable and reliable sensors for robots' perception under extreme weather conditions. On the other hand, point cloud registration is an essential perception module that provides robot's pose feedback information in applications such as Simultaneous Localization and Mapping (SLAM). Nevertheless, the 4D radar point clouds are sparse and noisy compared to those of LiDAR, and hence we shall confront great challenges in registering the radar point clouds. To address this issue, we propose a point cloud registration framework for 4D radars based on Generalized Method of Moments. The method does not require explicit point-to-point correspondences between the source and target point clouds, which is difficult to compute for sparse 4D radar point clouds. Moreover, we show the consistency of the proposed method. Experiments on both synthetic and real-world datasets show that our approach achieves higher accuracy and robustness than benchmarks, and the accuracy is even comparable to LiDAR-based frameworks.
♻ ☆ From Pretraining to Privacy: Federated Ultrasound Foundation Model with Self-Supervised Learning
Ultrasound imaging is widely used in clinical diagnosis due to its non-invasive nature and real-time capabilities. However, traditional ultrasound diagnostics relies heavily on physician expertise and is often hampered by suboptimal image quality, leading to potential diagnostic errors. While artificial intelligence (AI) offers a promising solution to enhance clinical diagnosis by detecting abnormalities across various imaging modalities, existing AI methods for ultrasound face two major challenges. First, they typically require vast amounts of labeled medical data, raising serious concerns regarding patient privacy. Second, most models are designed for specific tasks, which restricts their broader clinical utility. To overcome these challenges, we present UltraFedFM, an innovative privacy-preserving ultrasound foundation model. UltraFedFM is collaboratively pre-trained using federated learning across 16 distributed medical institutions in 9 countries, leveraging a dataset of over 1 million ultrasound images covering 19 organs and 10 ultrasound modalities. This extensive and diverse data, combined with a secure training framework, enables UltraFedFM to exhibit strong generalization and diagnostic capabilities. It achieves an average area under the receiver operating characteristic curve (AUROC) of 0.927 for disease diagnosis and a dice similarity coefficient (DSC) of 0.878 for lesion segmentation. Notably, UltraFedFM surpasses the diagnostic accuracy of mid-level ultrasonographers (4-8 years of experience) and matches the performance of expert-level sonographers (10+ years of experience) in the joint diagnosis of 8 common systemic diseases.c These findings indicate that UltraFedFM can significantly enhance clinical diagnostics while safeguarding patient privacy, marking a significant advancement in AI-driven ultrasound imaging for future clinical applications.
comment: npj digital medicine(2025)
♻ ☆ MUSE: Multi-Scale Dense Self-Distillation for Nucleus Detection and Classification
Nucleus detection and classification (NDC) in histopathology analysis is a fundamental task that underpins a wide range of high-level pathology applications. However, existing methods heavily rely on labor-intensive nucleus-level annotations and struggle to fully exploit large-scale unlabeled data for learning discriminative nucleus representations. In this work, we propose MUSE (MUlti-scale denSE self-distillation), a novel self-supervised learning method tailored for NDC. At its core is NuLo (Nucleus-based Local self-distillation), a coordinate-guided mechanism that enables flexible local self-distillation based on predicted nucleus positions. By removing the need for strict spatial alignment between augmented views, NuLo allows critical cross-scale alignment, thus unlocking the capacity of models for fine-grained nucleus-level representation. To support MUSE, we design a simple yet effective encoder-decoder architecture and a large field-of-view semi-supervised fine-tuning strategy that together maximize the value of unlabeled pathology images. Extensive experiments on three widely used benchmarks demonstrate that MUSE effectively addresses the core challenges of histopathological NDC. The resulting models not only surpass state-of-the-art supervised baselines but also outperform generic pathology foundation models.
comment: 12 pages, 7 figures
♻ ☆ SparseWorld-TC: Trajectory-Conditioned Sparse Occupancy World Model
This paper introduces a novel architecture for trajectory-conditioned forecasting of future 3D scene occupancy. In contrast to methods that rely on variational autoencoders (VAEs) to generate discrete occupancy tokens, which inherently limit representational capacity, our approach predicts multi-frame future occupancy in an end-to-end manner directly from raw image features. Inspired by the success of attention-based transformer architectures in foundational vision and language models such as GPT and VGGT, we employ a sparse occupancy representation that bypasses the intermediate bird's eye view (BEV) projection and its explicit geometric priors. This design allows the transformer to capture spatiotemporal dependencies more effectively. By avoiding both the finite-capacity constraint of discrete tokenization and the structural limitations of BEV representations, our method achieves state-of-the-art performance on the nuScenes benchmark for 1-3 second occupancy forecasting, outperforming existing approaches by a significant margin. Furthermore, it demonstrates robust scene dynamics understanding, consistently delivering high accuracy under arbitrary future trajectory conditioning.
♻ ☆ PerTouch: VLM-Driven Agent for Personalized and Semantic Image Retouching AAAI 2026
Image retouching aims to enhance visual quality while aligning with users' personalized aesthetic preferences. To address the challenge of balancing controllability and subjectivity, we propose a unified diffusion-based image retouching framework called PerTouch. Our method supports semantic-level image retouching while maintaining global aesthetics. Using parameter maps containing attribute values in specific semantic regions as input, PerTouch constructs an explicit parameter-to-image mapping for fine-grained image retouching. To improve semantic boundary perception, we introduce semantic replacement and parameter perturbation mechanisms in the training process. To connect natural language instructions with visual control, we develop a VLM-driven agent that can handle both strong and weak user instructions. Equipped with mechanisms of feedback-driven rethinking and scene-aware memory, PerTouch better aligns with user intent and captures long-term preferences. Extensive experiments demonstrate each component's effectiveness and the superior performance of PerTouch in personalized image retouching. Code is available at: https://github.com/Auroral703/PerTouch.
comment: To appear at AAAI 2026
♻ ☆ MS-Temba: Multi-Scale Temporal Mamba for Understanding Long Untrimmed Videos
Temporal Action Detection (TAD) in untrimmed videos poses significant challenges, particularly for Activities of Daily Living (ADL) requiring models to (1) process long-duration videos, (2) capture temporal variations in actions, and (3) simultaneously detect dense overlapping actions. Existing CNN and Transformer-based approaches, struggle to jointly capture fine-grained detail and long-range structure at scale. State-space Model (SSM) based Mamba offers powerful long-range modeling, but naive application to TAD collapses fine-grained temporal structure and fails to account for the challenges inherent to TAD. To this end, we propose Multi-Scale Temporal Mamba (MS-Temba), which extends Mamba to TAD with newly introduced dilated SSMs. Each Temba block, comprising dilated SSMs coupled with our proposed additional losses, enables the learning of discriminative representations across temporal scales. A lightweight Multi-scale Mamba Fuser then unifies these multi-scale features via SSM-based aggregation, yielding precise action-boundary localization. With only 17M parameters, MS-Temba achieves state-of-the-art performance on densely labeled ADL benchmarks TSU & Charades, and further generalizes to long-form video summarization, setting new state-of-the-art results on TVSum & SumMe.
♻ ☆ Bridging 3D Anomaly Localization and Repair via High-Quality Continuous Geometric Representation
3D point cloud anomaly detection is essential for robust vision systems but is challenged by pose variations and complex geometric anomalies. Existing patch-based methods often suffer from geometric fidelity issues due to discrete voxelization or projection-based representations, limiting fine-grained anomaly localization. We introduce Pose-Aware Signed Distance Field (PASDF), a novel framework that integrates 3D anomaly detection and repair by learning a continuous, pose-invariant shape representation. PASDF leverages a Pose Alignment Module for canonicalization and a SDF Network to dynamically incorporate pose, enabling implicit learning of high-fidelity anomaly repair templates from the continuous SDF. This facilitates precise pixel-level anomaly localization through an Anomaly-Aware Scoring Module. Crucially, the continuous 3D representation in PASDF extends beyond detection, facilitating in-situ anomaly repair. Experiments on Real3D-AD and Anomaly-ShapeNet demonstrate state-of-the-art performance, achieving high object-level AUROC scores of 80.2% and 90.0%, respectively. These results highlight the effectiveness of continuous geometric representations in advancing 3D anomaly detection and facilitating practical anomaly region repair. The code is available at https://github.com/ZZZBBBZZZ/PASDF to support further research.
♻ ☆ One-Cycle Structured Pruning via Stability-Driven Subnetwork Search
Existing structured pruning methods typically rely on multi-stage training procedures that incur high computational costs. Pruning at initialization aims to reduce this burden but often suffers from degraded performance. To address these limitations, we propose an efficient one-cycle structured pruning framework that integrates pre-training, pruning, and fine-tuning into a single training cycle without sacrificing accuracy. The key idea is to identify an optimal sub-network during the early stages of training, guided by norm-based group saliency criteria and structured sparsity regularization. We introduce a novel pruning indicator that detects a stable pruning epoch by measuring the similarity between pruning sub-networks across consecutive training epochs. In addition, group sparsity regularization accelerates convergence, further reducing overall training time. Extensive experiments on CIFAR-10, CIFAR-100, and ImageNet using VGG, ResNet, and MobileNet architectures demonstrate that the proposed method achieves state-of-the-art accuracy while being among the most efficient structured pruning frameworks in terms of training cost. Code is available at https://github.com/ghimiredhikura/OCSPruner.
comment: 12 pages, 6 figures
Machine Learning 215
☆ Predictive Concept Decoders: Training Scalable End-to-End Interpretability Assistants
Interpreting the internal activations of neural networks can produce more faithful explanations of their behavior, but is difficult due to the complex structure of activation space. Existing approaches to scalable interpretability use hand-designed agents that make and test hypotheses about how internal activations relate to external behavior. We propose to instead turn this task into an end-to-end training objective, by training interpretability assistants to accurately predict model behavior from activations through a communication bottleneck. Specifically, an encoder compresses activations to a sparse list of concepts, and a decoder reads this list and answers a natural language question about the model. We show how to pretrain this assistant on large unstructured data, then finetune it to answer questions. The resulting architecture, which we call a Predictive Concept Decoder, enjoys favorable scaling properties: the auto-interp score of the bottleneck concepts improves with data, as does the performance on downstream applications. Specifically, PCDs can detect jailbreaks, secret hints, and implanted latent concepts, and are able to accurately surface latent user attributes.
comment: 28 pages, 12 figures
☆ Learning Model Parameter Dynamics in a Combination Therapy for Bladder Cancer from Sparse Biological Data NeurIPS 2025
In a mathematical model of interacting biological organisms, where external interventions may alter behavior over time, traditional models that assume fixed parameters usually do not capture the evolving dynamics. In oncology, this is further exacerbated by the fact that experimental data are often sparse and sometimes are composed of a few time points of tumor volume. In this paper, we propose to learn time-varying interactions between cells, such as those of bladder cancer tumors and immune cells, and their response to a combination of anticancer treatments in a limited data scenario. We employ the physics-informed neural network (PINN) approach to predict possible subpopulation trajectories at time points where no observed data are available. We demonstrate that our approach is consistent with the biological explanation of subpopulation trajectories. Our method provides a framework for learning evolving interactions among biological organisms when external interventions are applied to their environment.
comment: NeurIPS 2025 Workshop on Learning from Time Series for Health
☆ Dynamic Rebatching for Efficient Early-Exit Inference with DREX
Early-Exit (EE) is a Large Language Model (LLM) architecture that accelerates inference by allowing easier tokens to be generated using only a subset of the model's layers. However, traditional batching frameworks are ill-suited for EE LLMs, as not all requests in a batch may be ready to exit at the same time. Existing solutions either force a uniform decision on the batch, which overlooks EE opportunities, or degrade output quality by forcing premature exits. We propose Dynamic Rebatching, a solution where we dynamically reorganize the batch at each early-exit point. Requests that meet the exit criteria are immediately processed, while those that continue are held in a buffer, re-grouped into a new batch, and forwarded to deeper layers. We introduce DREX, an early-exit inference system that implements Dynamic Rebatching with two key optimizations: 1) a copy-free rebatching buffer that avoids physical data movement, and 2) an EE and SLA-aware scheduler that analytically predicts whether a given rebatching operation will be profitable. DREX also efficiently handles the missing KV cache from skipped layers using memory-efficient state-copying. Our evaluation shows that DREX improves throughput by 2-12% compared to baseline approaches while maintaining output quality. Crucially, DREX completely eliminates involuntary exits, providing a key guarantee for preserving the output quality intended by the EE model.
☆ FrontierCS: Evolving Challenges for Evolving Intelligence
We introduce FrontierCS, a benchmark of 156 open-ended problems across diverse areas of computer science, designed and reviewed by experts, including CS PhDs and top-tier competitive programming participants and problem setters. Unlike existing benchmarks that focus on tasks with known optimal solutions, FrontierCS targets problems where the optimal solution is unknown, but the quality of a solution can be objectively evaluated. Models solve these tasks by implementing executable programs rather than outputting a direct answer. FrontierCS includes algorithmic problems, which are often NP-hard variants of competitive programming problems with objective partial scoring, and research problems with the same property. For each problem we provide an expert reference solution and an automatic evaluator. Combining open-ended design, measurable progress, and expert curation, FrontierCS provides a benchmark at the frontier of computer-science difficulty. Empirically, we find that frontier reasoning models still lag far behind human experts on both the algorithmic and research tracks, that increasing reasoning budgets alone does not close this gap, and that models often over-optimize for generating merely workable code instead of discovering high-quality algorithms and system designs.
comment: Code with instruction: https://github.com/FrontierCS/Frontier-CS
☆ mimic-video: Video-Action Models for Generalizable Robot Control Beyond VLAs
Prevailing Vision-Language-Action Models (VLAs) for robotic manipulation are built upon vision-language backbones pretrained on large-scale, but disconnected static web data. As a result, despite improved semantic generalization, the policy must implicitly infer complex physical dynamics and temporal dependencies solely from robot trajectories. This reliance creates an unsustainable data burden, necessitating continuous, large-scale expert data collection to compensate for the lack of innate physical understanding. We contend that while vision-language pretraining effectively captures semantic priors, it remains blind to physical causality. A more effective paradigm leverages video to jointly capture semantics and visual dynamics during pretraining, thereby isolating the remaining task of low-level control. To this end, we introduce \model, a novel Video-Action Model (VAM) that pairs a pretrained Internet-scale video model with a flow matching-based action decoder conditioned on its latent representations. The decoder serves as an Inverse Dynamics Model (IDM), generating low-level robot actions from the latent representation of video-space action plans. Our extensive evaluation shows that our approach achieves state-of-the-art performance on simulated and real-world robotic manipulation tasks, improving sample efficiency by 10x and convergence speed by 2x compared to traditional VLA architectures.
☆ Multi-Modal Semantic Communication
Semantic communication aims to transmit information most relevant to a task rather than raw data, offering significant gains in communication efficiency for applications such as telepresence, augmented reality, and remote sensing. Recent transformer-based approaches have used self-attention maps to identify informative regions within images, but they often struggle in complex scenes with multiple objects, where self-attention lacks explicit task guidance. To address this, we propose a novel Multi-Modal Semantic Communication framework that integrates text-based user queries to guide the information extraction process. Our proposed system employs a cross-modal attention mechanism that fuses visual features with language embeddings to produce soft relevance scores over the visual data. Based on these scores and the instantaneous channel bandwidth, we use an algorithm to transmit image patches at adaptive resolutions using independently trained encoder-decoder pairs, with total bitrate matching the channel capacity. At the receiver, the patches are reconstructed and combined to preserve task-critical information. This flexible and goal-driven design enables efficient semantic communication in complex and bandwidth-constrained environments.
☆ Can LLMs Guide Their Own Exploration? Gradient-Guided Reinforcement Learning for LLM Reasoning
Reinforcement learning has become essential for strengthening the reasoning abilities of large language models, yet current exploration mechanisms remain fundamentally misaligned with how these models actually learn. Entropy bonuses and external semantic comparators encourage surface level variation but offer no guarantee that sampled trajectories differ in the update directions that shape optimization. We propose G2RL, a gradient guided reinforcement learning framework in which exploration is driven not by external heuristics but by the model own first order update geometry. For each response, G2RL constructs a sequence level feature from the model final layer sensitivity, obtainable at negligible cost from a standard forward pass, and measures how each trajectory would reshape the policy by comparing these features within a sampled group. Trajectories that introduce novel gradient directions receive a bounded multiplicative reward scaler, while redundant or off manifold updates are deemphasized, yielding a self referential exploration signal that is naturally aligned with PPO style stability and KL control. Across math and general reasoning benchmarks (MATH500, AMC, AIME24, AIME25, GPQA, MMLUpro) on Qwen3 base 1.7B and 4B models, G2RL consistently improves pass@1, maj@16, and pass@k over entropy based GRPO and external embedding methods. Analyzing the induced geometry, we find that G2RL expands exploration into substantially more orthogonal and often opposing gradient directions while maintaining semantic coherence, revealing that a policy own update space provides a far more faithful and effective basis for guiding exploration in large language model reinforcement learning.
☆ A Multivariate Statistical Framework for Detection, Classification and Pre-localization of Anomalies in Water Distribution Networks
This paper presents a unified framework, for the detection, classification, and preliminary localization of anomalies in water distribution networks using multivariate statistical analysis. The approach, termed SICAMS (Statistical Identification and Classification of Anomalies in Mahalanobis Space), processes heterogeneous pressure and flow sensor data through a whitening transformation to eliminate spatial correlations among measurements. Based on the transformed data, the Hotelling's $T^2$ statistic is constructed, enabling the formulation of anomaly detection as a statistical hypothesis test of network conformity to normal operating conditions. It is shown that Hotelling's $T^2$ statistic can serve as an integral indicator of the overall "health" of the system, exhibiting correlation with total leakage volume, and thereby enabling approximate estimation of water losses via a regression model. A heuristic algorithm is developed to analyze the $T^2$ time series and classify detected anomalies into abrupt leaks, incipient leaks, and sensor malfunctions. Furthermore, a coarse leak localization method is proposed, which ranks sensors according to their statistical contribution and employs Laplacian interpolation to approximate the affected region within the network. Application of the proposed framework to the BattLeDIM L-Town benchmark dataset demonstrates high sensitivity and reliability in leak detection, maintaining robust performance even under multiple leaks. These capabilities make the method applicable to real-world operational environments without the need for a calibrated hydraulic model.
comment: 48 pages, 18 figures, 3 tables
☆ High-Dimensional Partial Least Squares: Spectral Analysis and Fundamental Limitations
Partial Least Squares (PLS) is a widely used method for data integration, designed to extract latent components shared across paired high-dimensional datasets. Despite decades of practical success, a precise theoretical understanding of its behavior in high-dimensional regimes remains limited. In this paper, we study a data integration model in which two high-dimensional data matrices share a low-rank common latent structure while also containing individual-specific components. We analyze the singular vectors of the associated cross-covariance matrix using tools from random matrix theory and derive asymptotic characterizations of the alignment between estimated and true latent directions. These results provide a quantitative explanation of the reconstruction performance of the PLS variant based on Singular Value Decomposition (PLS-SVD) and identify regimes where the method exhibits counter-intuitive or limiting behavior. Building on this analysis, we compare PLS-SVD with principal component analysis applied separately to each dataset and show its asymptotic superiority in detecting the common latent subspace. Overall, our results offer a comprehensive theoretical understanding of high-dimensional PLS-SVD, clarifying both its advantages and fundamental limitations.
☆ Stylized Synthetic Augmentation further improves Corruption Robustness
This paper proposes a training data augmentation pipeline that combines synthetic image data with neural style transfer in order to address the vulnerability of deep vision models to common corruptions. We show that although applying style transfer on synthetic images degrades their quality with respect to the common FID metric, these images are surprisingly beneficial for model training. We conduct a systematic empirical analysis of the effects of both augmentations and their key hyperparameters on the performance of image classifiers. Our results demonstrate that stylization and synthetic data complement each other well and can be combined with popular rule-based data augmentation techniques such as TrivialAugment, while not working with others. Our method achieves state-of-the-art corruption robustness on several small-scale image classification benchmarks, reaching 93.54%, 74.9% and 50.86% robust accuracy on CIFAR-10-C, CIFAR-100-C and TinyImageNet-C, respectively
comment: Accepted at VISAPP 2026 conference
☆ Activation Oracles: Training and Evaluating LLMs as General-Purpose Activation Explainers
Large language model (LLM) activations are notoriously difficult to understand, with most existing techniques using complex, specialized methods for interpreting them. Recent work has proposed a simpler approach known as LatentQA: training LLMs to directly accept LLM activations as inputs and answer arbitrary questions about them in natural language. However, prior work has focused on narrow task settings for both training and evaluation. In this paper, we instead take a generalist perspective. We evaluate LatentQA-trained models, which we call Activation Oracles (AOs), in far out-of-distribution settings and examine how performance scales with training data diversity. We find that AOs can recover information fine-tuned into a model (e.g., biographical knowledge or malign propensities) that does not appear in the input text, despite never being trained with activations from a fine-tuned model. Our main evaluations are four downstream tasks where we can compare to prior white- and black-box techniques. We find that even narrowly-trained LatentQA models can generalize well, and that adding additional training datasets (such as classification tasks and a self-supervised context prediction task) yields consistent further improvements. Overall, our best AOs match or exceed prior white-box baselines on all four tasks and are the best method on 3 out of 4. These results suggest that diversified training to answer natural-language queries imparts a general capability to verbalize information about LLM activations.
comment: 36 pages
☆ Prospects for quantum advantage in machine learning from the representability of functions
Demonstrating quantum advantage in machine learning tasks requires navigating a complex landscape of proposed models and algorithms. To bring clarity to this search, we introduce a framework that connects the structure of parametrized quantum circuits to the mathematical nature of the functions they can actually learn. Within this framework, we show how fundamental properties, like circuit depth and non-Clifford gate count, directly determine whether a model's output leads to efficient classical simulation or surrogation. We argue that this analysis uncovers common pathways to dequantization that underlie many existing simulation methods. More importantly, it reveals critical distinctions between models that are fully simulatable, those whose function space is classically tractable, and those that remain robustly quantum. This perspective provides a conceptual map of this landscape, clarifying how different models relate to classical simulability and pointing to where opportunities for quantum advantage may lie.
comment: 21 pages, 6 figures, comments welcome
☆ PPSEBM: An Energy-Based Model with Progressive Parameter Selection for Continual Learning
Continual learning remains a fundamental challenge in machine learning, requiring models to learn from a stream of tasks without forgetting previously acquired knowledge. A major obstacle in this setting is catastrophic forgetting, where performance on earlier tasks degrades as new tasks are learned. In this paper, we introduce PPSEBM, a novel framework that integrates an Energy-Based Model (EBM) with Progressive Parameter Selection (PPS) to effectively address catastrophic forgetting in continual learning for natural language processing tasks. In PPSEBM, progressive parameter selection allocates distinct, task-specific parameters for each new task, while the EBM generates representative pseudo-samples from prior tasks. These generated samples actively inform and guide the parameter selection process, enhancing the model's ability to retain past knowledge while adapting to new tasks. Experimental results on diverse NLP benchmarks demonstrate that PPSEBM outperforms state-of-the-art continual learning methods, offering a promising and robust solution to mitigate catastrophic forgetting.
comment: 10 pages, 3 figures, 2025 IEEE International Conference on Big Data (BigData)
☆ SoFlow: Solution Flow Models for One-Step Generative Modeling
The multi-step denoising process in diffusion and Flow Matching models causes major efficiency issues, which motivates research on few-step generation. We present Solution Flow Models (SoFlow), a framework for one-step generation from scratch. By analyzing the relationship between the velocity function and the solution function of the velocity ordinary differential equation (ODE), we propose a Flow Matching loss and a solution consistency loss to train our models. The Flow Matching loss allows our models to provide estimated velocity fields for Classifier-Free Guidance (CFG) during training, which improves generation performance. Notably, our consistency loss does not require the calculation of the Jacobian-vector product (JVP), a common requirement in recent works that is not well-optimized in deep learning frameworks like PyTorch. Experimental results indicate that, when trained from scratch using the same Diffusion Transformer (DiT) architecture and an equal number of training epochs, our models achieve better FID-50K scores than MeanFlow models on the ImageNet 256x256 dataset.
comment: Our code is available at https://github.com/zlab-princeton/SoFlow
☆ How Much is Too Much? Exploring LoRA Rank Trade-offs for Retaining Knowledge and Domain Robustness ACL
Large language models are increasingly adapted to downstream tasks through fine-tuning. Full supervised fine-tuning (SFT) and parameter-efficient fine-tuning (PEFT) methods, such as Low-Rank Adaptation (LoRA), are two dominant approaches. While PEFT methods are widely used for their computational efficiency, the implications of their configurations (e.g., rank) remain under-explored in downstream Q&A tasks and generalisation. In this work, we perform a comprehensive evaluation across multiple reasoning and recall datasets, conducting a rank sweep to quantify the trade-off between SFT and PEFT. We also compare the accuracy of PEFT and SFT models across in-domain and out-of-domain adaptation, highlighting distinct generalisation behaviour and task-specific forgetting. We demonstrate that LoRA achieves competitive and in some cases superior performance compared to SFT, particularly on reasoning tasks at specific rank values. Additionally, we analyze the internal representations via spectral features and layer-wise attention structures, offering insights into representational drift and structural changes in attention patterns.
comment: Accepted at AACL IJCNLP 2025
☆ Learning continuous SOC-dependent thermal decomposition kinetics for Li-ion cathodes using KA-CRNNs
Thermal runaway in lithium-ion batteries is strongly influenced by the state of charge (SOC). Existing predictive models typically infer scalar kinetic parameters at a full SOC or a few discrete SOC levels, preventing them from capturing the continuous SOC dependence that governs exothermic behavior during abuse conditions. To address this, we apply the Kolmogorov-Arnold Chemical Reaction Neural Network (KA-CRNN) framework to learn continuous and realistic SOC-dependent exothermic cathode-electrolyte interactions. We apply a physics-encoded KA-CRNN to learn SOC-dependent kinetic parameters for cathode-electrolyte decomposition directly from differential scanning calorimetry (DSC) data. A mechanistically informed reaction pathway is embedded into the network architecture, enabling the activation energies, pre-exponential factors, enthalpies, and related parameters to be represented as continuous and fully interpretable functions of the SOC. The framework is demonstrated for NCA, NM, and NMA cathodes, yielding models that reproduce DSC heat-release features across all SOCs and provide interpretable insight into SOC-dependent oxygen-release and phase-transformation mechanisms. This approach establishes a foundation for extending kinetic parameter dependencies to additional environmental and electrochemical variables, supporting more accurate and interpretable thermal-runaway prediction and monitoring.
comment: 17 pages, 10 figures, 2 tables
☆ Behavior Tokens Speak Louder: Disentangled Explainable Recommendation with Behavior Vocabulary AAAI 2026
Recent advances in explainable recommendations have explored the integration of language models to analyze natural language rationales for user-item interactions. Despite their potential, existing methods often rely on ID-based representations that obscure semantic meaning and impose structural constraints on language models, thereby limiting their applicability in open-ended scenarios. These challenges are intensified by the complex nature of real-world interactions, where diverse user intents are entangled and collaborative signals rarely align with linguistic semantics. To overcome these limitations, we propose BEAT, a unified and transferable framework that tokenizes user and item behaviors into discrete, interpretable sequences. We construct a behavior vocabulary via a vector-quantized autoencoding process that disentangles macro-level interests and micro-level intentions from graph-based representations. We then introduce multi-level semantic supervision to bridge the gap between behavioral signals and language space. A semantic alignment regularization mechanism is designed to embed behavior tokens directly into the input space of frozen language models. Experiments on three public datasets show that BEAT improves zero-shot recommendation performance while generating coherent and informative explanations. Further analysis demonstrates that our behavior tokens capture fine-grained semantics and offer a plug-and-play interface for integrating complex behavior patterns into large language models.
comment: accepted by AAAI 2026
☆ A Teacher-Student Perspective on the Dynamics of Learning Near the Optimal Point
Near an optimal learning point of a neural network, the learning performance of gradient descent dynamics is dictated by the Hessian matrix of the loss function with respect to the network parameters. We characterize the Hessian eigenspectrum for some classes of teacher-student problems, when the teacher and student networks have matching weights, showing that the smaller eigenvalues of the Hessian determine long-time learning performance. For linear networks, we analytically establish that for large networks the spectrum asymptotically follows a convolution of a scaled chi-square distribution with a scaled Marchenko-Pastur distribution. We numerically analyse the Hessian spectrum for polynomial and other non-linear networks. Furthermore, we show that the rank of the Hessian matrix can be seen as an effective number of parameters for networks using polynomial activation functions. For a generic non-linear activation function, such as the error function, we empirically observe that the Hessian matrix is always full rank.
comment: 25 pages, 9 figures
☆ Autoregressive Language Models are Secretly Energy-Based Models: Insights into the Lookahead Capabilities of Next-Token Prediction
Autoregressive models (ARMs) currently constitute the dominant paradigm for large language models (LLMs). Energy-based models (EBMs) represent another class of models, which have historically been less prevalent in LLM development, yet naturally characterize the optimal policy in post-training alignment. In this paper, we provide a unified view of these two model classes. Taking the chain rule of probability as a starting point, we establish an explicit bijection between ARMs and EBMs in function space, which we show to correspond to a special case of the soft Bellman equation in maximum entropy reinforcement learning. Building upon this bijection, we derive the equivalence between supervised learning of ARMs and EBMs. Furthermore, we analyze the distillation of EBMs into ARMs by providing theoretical error bounds. Our results provide insights into the ability of ARMs to plan ahead, despite being based on the next-token prediction paradigm.
☆ How Smoothing is N-simplicial Attention?
Going from pure Multilayer Perceptron (MLP) to a learnable graph message-passing mechanism at each layer has been foundational to state-of-the-art results, despite the computational trade-off (e.g. GATs or Transformers). To go a step further, in this work, we introduce N-simplicial attention, going from pairwise token similarity to higher-order interactions, and adapt it for Rotary Position Embeddings (RoPE). To help manage the increased complexity, we propose a cost-effective simplex selection enabling the model to focus its computation load onto the more task-sensitive interactions. Beyond these core mechanisms, we study how smoothing N-simplicial attention is by deriving a Lipschitz upper-bound and by demonstrating that by itself it also suffers from over-smoothing, despite opening the attention message-passing to higher-order interactions.
comment: arXiv preprint
☆ Corrective Diffusion Language Models
Diffusion language models are structurally well-suited for iterative error correction, as their non-causal denoising dynamics allow arbitrary positions in a sequence to be revised. However, standard masked diffusion language model (MDLM) training fails to reliably induce this behavior, as models often cannot identify unreliable tokens in a complete input, rendering confidence-guided refinement ineffective. We study corrective behavior in diffusion language models, defined as the ability to assign lower confidence to incorrect tokens and iteratively refine them while preserving correct content. We show that this capability is not induced by conventional masked diffusion objectives and propose a correction-oriented post-training principle that explicitly supervises visible incorrect tokens, enabling error-aware confidence and targeted refinement. To evaluate corrective behavior, we introduce the Code Revision Benchmark (CRB), a controllable and executable benchmark for assessing error localization and in-place correction. Experiments on code revision tasks and controlled settings demonstrate that models trained with our approach substantially outperform standard MDLMs in correction scenarios, while also improving pure completion performance. Our code is publicly available at https://github.com/zhangshuibai/CDLM.
comment: 18 pages
☆ IMKD: Intensity-Aware Multi-Level Knowledge Distillation for Camera-Radar Fusion
High-performance Radar-Camera 3D object detection can be achieved by leveraging knowledge distillation without using LiDAR at inference time. However, existing distillation methods typically transfer modality-specific features directly to each sensor, which can distort their unique characteristics and degrade their individual strengths. To address this, we introduce IMKD, a radar-camera fusion framework based on multi-level knowledge distillation that preserves each sensor's intrinsic characteristics while amplifying their complementary strengths. IMKD applies a three-stage, intensity-aware distillation strategy to enrich the fused representation across the architecture: (1) LiDAR-to-Radar intensity-aware feature distillation to enhance radar representations with fine-grained structural cues, (2) LiDAR-to-Fused feature intensity-guided distillation to selectively highlight useful geometry and depth information at the fusion level, fostering complementarity between the modalities rather than forcing them to align, and (3) Camera-Radar intensity-guided fusion mechanism that facilitates effective feature alignment and calibration. Extensive experiments on the nuScenes benchmark show that IMKD reaches 67.0% NDS and 61.0% mAP, outperforming all prior distillation-based radar-camera fusion methods. Our code and models are available at https://github.com/dfki-av/IMKD/.
comment: Accepted at IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2026. 22 pages, 8 figures. Includes supplementary material
☆ Joint Learning of Unsupervised Multi-view Feature and Instance Co-selection with Cross-view Imputation
Feature and instance co-selection, which aims to reduce both feature dimensionality and sample size by identifying the most informative features and instances, has attracted considerable attention in recent years. However, when dealing with unlabeled incomplete multi-view data, where some samples are missing in certain views, existing methods typically first impute the missing data and then concatenate all views into a single dataset for subsequent co-selection. Such a strategy treats co-selection and missing data imputation as two independent processes, overlooking potential interactions between them. The inter-sample relationships gleaned from co-selection can aid imputation, which in turn enhances co-selection performance. Additionally, simply merging multi-view data fails to capture the complementary information among views, ultimately limiting co-selection effectiveness. To address these issues, we propose a novel co-selection method, termed Joint learning of Unsupervised multI-view feature and instance Co-selection with cross-viEw imputation (JUICE). JUICE first reconstructs incomplete multi-view data using available observations, bringing missing data recovery and feature and instance co-selection together in a unified framework. Then, JUICE leverages cross-view neighborhood information to learn inter-sample relationships and further refine the imputation of missing values during reconstruction. This enables the selection of more representative features and instances. Extensive experiments demonstrate that JUICE outperforms state-of-the-art methods.
Evaluating Large Language Models in Scientific Discovery
Large language models (LLMs) are increasingly applied to scientific research, yet prevailing science benchmarks probe decontextualized knowledge and overlook the iterative reasoning, hypothesis generation, and observation interpretation that drive scientific discovery. We introduce a scenario-grounded benchmark that evaluates LLMs across biology, chemistry, materials, and physics, where domain experts define research projects of genuine interest and decompose them into modular research scenarios from which vetted questions are sampled. The framework assesses models at two levels: (i) question-level accuracy on scenario-tied items and (ii) project-level performance, where models must propose testable hypotheses, design simulations or experiments, and interpret results. Applying this two-phase scientific discovery evaluation (SDE) framework to state-of-the-art LLMs reveals a consistent performance gap relative to general science benchmarks, diminishing return of scaling up model sizes and reasoning, and systematic weaknesses shared across top-tier models from different providers. Large performance variation in research scenarios leads to changing choices of the best performing model on scientific discovery projects evaluated, suggesting all current LLMs are distant to general scientific "superintelligence". Nevertheless, LLMs already demonstrate promise in a great variety of scientific discovery projects, including cases where constituent scenario scores are low, highlighting the role of guided exploration and serendipity in discovery. This SDE framework offers a reproducible benchmark for discovery-relevant evaluation of LLMs and charts practical paths to advance their development toward scientific discovery.
☆ Photonics-Enhanced Graph Convolutional Networks
Photonics can offer a hardware-native route for machine learning (ML). However, efficient deployment of photonics-enhanced ML requires hybrid workflows that integrate optical processing with conventional CPU/GPU based neural network architectures. Here, we propose such a workflow that combines photonic positional embeddings (PEs) with advanced graph ML models. We introduce a photonics-based method that augments graph convolutional networks (GCNs) with PEs derived from light propagation on synthetic frequency lattices whose couplings match the input graph. We simulate propagation and readout to obtain internode intensity correlation matrices, which are used as PEs in GCNs to provide global structural information. Evaluated on Long Range Graph Benchmark molecular datasets, the method outperforms baseline GCNs with Laplacian based PEs, achieving $6.3\%$ lower mean absolute error for regression and $2.3\%$ higher average precision for classification tasks using a two-layer GCN as a baseline. When implemented in high repetition rate photonic hardware, correlation measurements can enable fast feature generation by bypassing digital simulation of PEs. Our results show that photonic PEs improve GCN performance and support optical acceleration of graph ML.
comment: 12 pages, 6 figures
☆ Tracking Temporal Dynamics of Vector Sets with Gaussian Process
Understanding the temporal evolution of sets of vectors is a fundamental challenge across various domains, including ecology, crime analysis, and linguistics. For instance, ecosystem structures evolve due to interactions among plants, herbivores, and carnivores; the spatial distribution of crimes shifts in response to societal changes; and word embedding vectors reflect cultural and semantic trends over time. However, analyzing such time-varying sets of vectors is challenging due to their complicated structures, which also evolve over time. In this work, we propose a novel method for modeling the distribution underlying each set of vectors using infinite-dimensional Gaussian processes. By approximating the latent function in the Gaussian process with Random Fourier Features, we obtain compact and comparable vector representations over time. This enables us to track and visualize temporal transitions of vector sets in a low-dimensional space. We apply our method to both sociological data (crime distributions) and linguistic data (word embeddings), demonstrating its effectiveness in capturing temporal dynamics. Our results show that the proposed approach provides interpretable and robust representations, offering a powerful framework for analyzing structural changes in temporally indexed vector sets across diverse domains.
comment: Work in Progress
☆ A Conditioned UNet for Music Source Separation
In this paper we propose a conditioned UNet for Music Source Separation (MSS). MSS is generally performed by multi-output neural networks, typically UNets, with each output representing a particular stem from a predefined instrument vocabulary. In contrast, conditioned MSS networks accept an audio query related to a stem of interest alongside the signal from which that stem is to be extracted. Thus, a strict vocabulary is not required and this enables more realistic tasks in MSS. The potential of conditioned approaches for such tasks has been somewhat hidden due to a lack of suitable data, an issue recently addressed with the MoisesDb dataset. A recent method, Banquet, employs this dataset with promising results seen on larger vocabularies. Banquet uses Bandsplit RNN rather than a UNet and the authors state that UNets should not be suitable for conditioned MSS. We counter this argument and propose QSCNet, a novel conditioned UNet for MSS that integrates network conditioning elements in the Sparse Compressed Network for MSS. We find QSCNet to outperform Banquet by over 1dB SNR on a couple of MSS tasks, while using less than half the number of parameters.
☆ Autonomous Pressure Control in MuVacAS via Deep Reinforcement Learning and Deep Learning Surrogate Models NeurIPS 2025
The development of nuclear fusion requires materials that can withstand extreme conditions. The IFMIF-DONES facility, a high-power particle accelerator, is being designed to qualify these materials. A critical testbed for its development is the MuVacAS prototype, which replicates the final segment of the accelerator beamline. Precise regulation of argon gas pressure within its ultra-high vacuum chamber is vital for this task. This work presents a fully data-driven approach for autonomous pressure control. A Deep Learning Surrogate Model, trained on real operational data, emulates the dynamics of the argon injection system. This high-fidelity digital twin then serves as a fast-simulation environment to train a Deep Reinforcement Learning agent. The results demonstrate that the agent successfully learns a control policy that maintains gas pressure within strict operational limits despite dynamic disturbances. This approach marks a significant step toward the intelligent, autonomous control systems required for the demanding next-generation particle accelerator facilities.
comment: 13 pages, 7 figures, included in Machine Learning and the Physical Sciences Workshop @ NeurIPS 2025
☆ Attention in Motion: Secure Platooning via Transformer-based Misbehavior Detection
Vehicular platooning promises transformative improvements in transportation efficiency and safety through the coordination of multi-vehicle formations enabled by Vehicle-to-Everything (V2X) communication. However, the distributed nature of platoon coordination creates security vulnerabilities, allowing authenticated vehicles to inject falsified kinematic data, compromise operational stability, and pose a threat to passenger safety. Traditional misbehaviour detection approaches, which rely on plausibility checks and statistical methods, suffer from high False Positive (FP) rates and cannot capture the complex temporal dependencies inherent in multi-vehicle coordination dynamics. We present Attention In Motion (AIMformer), a transformer-based framework specifically tailored for real-time misbehaviour detection in vehicular platoons with edge deployment capabilities. AIMformer leverages multi-head self-attention mechanisms to simultaneously capture intra-vehicle temporal dynamics and inter-vehicle spatial correlations. It incorporates global positional encoding with vehicle-specific temporal offsets to handle join/exit maneuvers. We propose a Precision-Focused (BCE) loss function that penalizes FPs to meet the requirements of safety-critical vehicular systems. Extensive evaluation across 4 platoon controllers, multiple attack vectors, and diverse mobility scenarios demonstrates superior performance ($\geq$ 0.93) compared to state-of-the-art baseline architectures. A comprehensive deployment analysis utilizing TensorFlow Lite (TFLite), Open Neural Network Exchange (ONNX), and TensorRT achieves sub-millisecond inference latency, making it suitable for real-time operation on resource-constrained edge platforms. Hence, validating AIMformer is viable for both in-vehicle and roadside infrastructure deployment.
comment: 17 pages, 10 figures
☆ Soft Geometric Inductive Bias for Object Centric Dynamics
Equivariance is a powerful prior for learning physical dynamics, yet exact group equivariance can degrade performance if the symmetries are broken. We propose object-centric world models built with geometric algebra neural networks, providing a soft geometric inductive bias. Our models are evaluated using simulated environments of 2d rigid body dynamics with static obstacles, where we train for next-step predictions autoregressively. For long-horizon rollouts we show that the soft inductive bias of our models results in better performance in terms of physical fidelity compared to non-equivariant baseline models. The approach complements recent soft-equivariance ideas and aligns with the view that simple, well-chosen priors can yield robust generalization. These results suggest that geometric algebra offers an effective middle ground between hand-crafted physics and unstructured deep nets, delivering sample-efficient dynamics models for multi-object scenes.
comment: 8 pages, 11 figures; 6 pages supplementary material
☆ Robustness and uncertainty: two complementary aspects of the reliability of the predictions of a classifier
We consider two conceptually different approaches for assessing the reliability of the individual predictions of a classifier: Robustness Quantification (RQ) and Uncertainty Quantification (UQ). We compare both approaches on a number of benchmark datasets and show that there is no clear winner between the two, but that they are complementary and can be combined to obtain a hybrid approach that outperforms both RQ and UQ. As a byproduct of our approach, for each dataset, we also obtain an assessment of the relative importance of uncertainty and robustness as sources of unreliability.
comment: workshop paper (not published)
☆ Multi-stage Bayesian optimisation for dynamic decision-making in self-driving labs
Self-driving laboratories (SDLs) are combining recent technological advances in robotics, automation, and machine learning based data analysis and decision-making to perform autonomous experimentation toward human-directed goals without requiring any direct human intervention. SDLs are successfully used in materials science, chemistry, and beyond, to optimise processes, materials, and devices in a systematic and data-efficient way. At present, the most widely used algorithm to identify the most informative next experiment is Bayesian optimisation. While relatively simple to apply to a wide range of optimisation problems, standard Bayesian optimisation relies on a fixed experimental workflow with a clear set of optimisation parameters and one or more measurable objective functions. This excludes the possibility of making on-the-fly decisions about changes in the planned sequence of operations and including intermediate measurements in the decision-making process. Therefore, many real-world experiments need to be adapted and simplified to be converted to the common setting in self-driving labs. In this paper, we introduce an extension to Bayesian optimisation that allows flexible sampling of multi-stage workflows and makes optimal decisions based on intermediate observables, which we call proxy measurements. We systematically compare the advantage of taking into account proxy measurements over conventional Bayesian optimisation, in which only the final measurement is observed. We find that over a wide range of scenarios, proxy measurements yield a substantial improvement, both in the time to find good solutions and in the overall optimality of found solutions. This not only paves the way to use more complex and thus more realistic experimental workflows in autonomous labs but also to smoothly combine simulations and experiments in the next generation of SDLs.
☆ Metanetworks as Regulatory Operators: Learning to Edit for Requirement Compliance
As machine learning models are increasingly deployed in high-stakes settings, e.g. as decision support systems in various societal sectors or in critical infrastructure, designers and auditors are facing the need to ensure that models satisfy a wider variety of requirements (e.g. compliance with regulations, fairness, computational constraints) beyond performance. Although most of them are the subject of ongoing studies, typical approaches face critical challenges: post-processing methods tend to compromise performance, which is often counteracted by fine-tuning or, worse, training from scratch, an often time-consuming or even unavailable strategy. This raises the following question: "Can we efficiently edit models to satisfy requirements, without sacrificing their utility?" In this work, we approach this with a unifying framework, in a data-driven manner, i.e. we learn to edit neural networks (NNs), where the editor is an NN itself - a graph metanetwork - and editing amounts to a single inference step. In particular, the metanetwork is trained on NN populations to minimise an objective consisting of two terms: the requirement to be enforced and the preservation of the NN's utility. We experiment with diverse tasks (the data minimisation principle, bias mitigation and weight pruning) improving the trade-offs between performance, requirement satisfaction and time efficiency compared to popular post-processing or re-training alternatives.
comment: 23 pages
☆ From Risk to Resilience: Towards Assessing and Mitigating the Risk of Data Reconstruction Attacks in Federated Learning
Data Reconstruction Attacks (DRA) pose a significant threat to Federated Learning (FL) systems by enabling adversaries to infer sensitive training data from local clients. Despite extensive research, the question of how to characterize and assess the risk of DRAs in FL systems remains unresolved due to the lack of a theoretically-grounded risk quantification framework. In this work, we address this gap by introducing Invertibility Loss (InvLoss) to quantify the maximum achievable effectiveness of DRAs for a given data instance and FL model. We derive a tight and computable upper bound for InvLoss and explore its implications from three perspectives. First, we show that DRA risk is governed by the spectral properties of the Jacobian matrix of exchanged model updates or feature embeddings, providing a unified explanation for the effectiveness of defense methods. Second, we develop InvRE, an InvLoss-based DRA risk estimator that offers attack method-agnostic, comprehensive risk evaluation across data instances and model architectures. Third, we propose two adaptive noise perturbation defenses that enhance FL privacy without harming classification accuracy. Extensive experiments on real-world datasets validate our framework, demonstrating its potential for systematic DRA risk evaluation and mitigation in FL systems.
☆ Copyright Infringement Risk Reduction via Chain-of-Thought and Task Instruction Prompting
Large scale text-to-image generation models can memorize and reproduce their training dataset. Since the training dataset often contains copyrighted material, reproduction of training dataset poses a copyright infringement risk, which could result in legal liabilities and financial losses for both the AI user and the developer. The current works explores the potential of chain-of-thought and task instruction prompting in reducing copyrighted content generation. To this end, we present a formulation that combines these two techniques with two other copyright mitigation strategies: a) negative prompting, and b) prompt re-writing. We study the generated images in terms their similarity to a copyrighted image and their relevance of the user input. We present numerical experiments on a variety of models and provide insights on the effectiveness of the aforementioned techniques for varying model complexity.
☆ Double Horizon Model-Based Policy Optimization
Model-based reinforcement learning (MBRL) reduces the cost of real-environment sampling by generating synthetic trajectories (called rollouts) from a learned dynamics model. However, choosing the length of the rollouts poses two dilemmas: (1) Longer rollouts better preserve on-policy training but amplify model bias, indicating the need for an intermediate horizon to mitigate distribution shift (i.e., the gap between on-policy and past off-policy samples). (2) Moreover, a longer model rollout may reduce value estimation bias but raise the variance of policy gradients due to backpropagation through multiple steps, implying another intermediate horizon for stable gradient estimates. However, these two optimal horizons may differ. To resolve this conflict, we propose Double Horizon Model-Based Policy Optimization (DHMBPO), which divides the rollout procedure into a long "distribution rollout" (DR) and a short "training rollout" (TR). The DR generates on-policy state samples for mitigating distribution shift. In contrast, the short TR leverages differentiable transitions to offer accurate value gradient estimation with stable gradient updates, thereby requiring fewer updates and reducing overall runtime. We demonstrate that the double-horizon approach effectively balances distribution shift, model bias, and gradient instability, and surpasses existing MBRL methods on continuous-control benchmarks in terms of both sample efficiency and runtime.
comment: Accepted to Transactions on Machine Learning Research (TMLR) Code available at https://github.com/4kubo/erl_lib
☆ Online Partitioned Local Depth for semi-supervised applications
We introduce an extension of the partitioned local depth (PaLD) algorithm that is adapted to online applications such as semi-supervised prediction. The new algorithm we present, online PaLD, is well-suited to situations where it is a possible to pre-compute a cohesion network from a reference dataset. After $O(n^3)$ steps to construct a queryable data structure, online PaLD can extend the cohesion network to a new data point in $O(n^2)$ time. Our approach complements previous speed up approaches based on approximation and parallelism. For illustrations, we present applications to online anomaly detection and semi-supervised classification for health-care datasets.
comment: 19 pages, 2 figures
☆ FM-EAC: Feature Model-based Enhanced Actor-Critic for Multi-Task Control in Dynamic Environments
Model-based reinforcement learning (MBRL) and model-free reinforcement learning (MFRL) evolve along distinct paths but converge in the design of Dyna-Q [1]. However, modern RL methods still struggle with effective transferability across tasks and scenarios. Motivated by this limitation, we propose a generalized algorithm, Feature Model-Based Enhanced Actor-Critic (FM-EAC), that integrates planning, acting, and learning for multi-task control in dynamic environments. FM-EAC combines the strengths of MBRL and MFRL and improves generalizability through the use of novel feature-based models and an enhanced actor-critic framework. Simulations in both urban and agricultural applications demonstrate that FM-EAC consistently outperforms many state-of-the-art MBRL and MFRL methods. More importantly, different sub-networks can be customized within FM-EAC according to user-specific requirements.
☆ Statistics of Min-max Normalized Eigenvalues in Random Matrices
Random matrix theory has played an important role in various areas of pure mathematics, mathematical physics, and machine learning. From a practical perspective of data science, input data are usually normalized prior to processing. Thus, this study investigates the statistical properties of min-max normalized eigenvalues in random matrices. Previously, the effective distribution for such normalized eigenvalues has been proposed. In this study, we apply it to evaluate a scaling law of the cumulative distribution. Furthermore, we derive the residual error that arises during matrix factorization of random matrices. We conducted numerical experiments to verify these theoretical predictions.
comment: 4 pages, 4 figures
☆ FlowBind: Efficient Any-to-Any Generation with Bidirectional Flows
Any-to-any generation seeks to translate between arbitrary subsets of modalities, enabling flexible cross-modal synthesis. Despite recent success, existing flow-based approaches are challenged by their inefficiency, as they require large-scale datasets often with restrictive pairing constraints, incur high computational cost from modeling joint distribution, and rely on complex multi-stage training. We propose FlowBind, an efficient framework for any-to-any generation. Our approach is distinguished by its simplicity: it learns a shared latent space capturing cross-modal information, with modality-specific invertible flows bridging this latent to each modality. Both components are optimized jointly under a single flow-matching objective, and at inference the invertible flows act as encoders and decoders for direct translation across modalities. By factorizing interactions through the shared latent, FlowBind naturally leverages arbitrary subsets of modalities for training, and achieves competitive generation quality while substantially reducing data requirements and computational cost. Experiments on text, image, and audio demonstrate that FlowBind attains comparable quality while requiring up to 6x fewer parameters and training 10x faster than prior methods. The project page with code is available at https://yeonwoo378.github.io/official_flowbind.
comment: https://yeonwoo378.github.io/official_flowbind
☆ EUBRL: Epistemic Uncertainty Directed Bayesian Reinforcement Learning
At the boundary between the known and the unknown, an agent inevitably confronts the dilemma of whether to explore or to exploit. Epistemic uncertainty reflects such boundaries, representing systematic uncertainty due to limited knowledge. In this paper, we propose a Bayesian reinforcement learning (RL) algorithm, $\texttt{EUBRL}$, which leverages epistemic guidance to achieve principled exploration. This guidance adaptively reduces per-step regret arising from estimation errors. We establish nearly minimax-optimal regret and sample complexity guarantees for a class of sufficiently expressive priors in infinite-horizon discounted MDPs. Empirically, we evaluate $\texttt{EUBRL}$ on tasks characterized by sparse rewards, long horizons, and stochasticity. Results demonstrate that $\texttt{EUBRL}$ achieves superior sample efficiency, scalability, and consistency.
☆ SMART: Semantic Matching Contrastive Learning for Partially View-Aligned Clustering
Multi-view clustering has been empirically shown to improve learning performance by leveraging the inherent complementary information across multiple views of data. However, in real-world scenarios, collecting strictly aligned views is challenging, and learning from both aligned and unaligned data becomes a more practical solution. Partially View-aligned Clustering aims to learn correspondences between misaligned view samples to better exploit the potential consistency and complementarity across views, including both aligned and unaligned data. However, most existing PVC methods fail to leverage unaligned data to capture the shared semantics among samples from the same cluster. Moreover, the inherent heterogeneity of multi-view data induces distributional shifts in representations, leading to inaccuracies in establishing meaningful correspondences between cross-view latent features and, consequently, impairing learning effectiveness. To address these challenges, we propose a Semantic MAtching contRasTive learning model (SMART) for PVC. The main idea of our approach is to alleviate the influence of cross-view distributional shifts, thereby facilitating semantic matching contrastive learning to fully exploit semantic relationships in both aligned and unaligned data. Extensive experiments on eight benchmark datasets demonstrate that our method consistently outperforms existing approaches on the PVC problem.
☆ Robustness Evaluation of Machine Learning Models for Fault Classification and Localization In Power System Protection
The growing penetration of renewable and distributed generation is transforming power systems and challenging conventional protection schemes that rely on fixed settings and local measurements. Machine learning (ML) offers a data-driven alternative for centralized fault classification (FC) and fault localization (FL), enabling faster and more adaptive decision-making. However, practical deployment critically depends on robustness. Protection algorithms must remain reliable even when confronted with missing, noisy, or degraded sensor data. This work introduces a unified framework for systematically evaluating the robustness of ML models in power system protection. High-fidelity EMT simulations are used to model realistic degradation scenarios, including sensor outages, reduced sampling rates, and transient communication losses. The framework provides a consistent methodology for benchmarking models, quantifying the impact of limited observability, and identifying critical measurement channels required for resilient operation. Results show that FC remains highly stable under most degradation types but drops by about 13% under single-phase loss, while FL is more sensitive overall, with voltage loss increasing localization error by over 150%. These findings offer actionable guidance for robustness-aware design of future ML-assisted protection systems.
comment: This paper is a postprint of a paper submitted to and accepted for publication in the 20th IET International Conference on Developments in Power System Protection (DPSP Global 2026) and is subject to Institution of Engineering and Technology Copyright. The copy of record is available at the IET Digital Library
☆ Remotely Detectable Robot Policy Watermarking
The success of machine learning for real-world robotic systems has created a new form of intellectual property: the trained policy. This raises a critical need for novel methods that verify ownership and detect unauthorized, possibly unsafe misuse. While watermarking is established in other domains, physical policies present a unique challenge: remote detection. Existing methods assume access to the robot's internal state, but auditors are often limited to external observations (e.g., video footage). This ``Physical Observation Gap'' means the watermark must be detected from signals that are noisy, asynchronous, and filtered by unknown system dynamics. We formalize this challenge using the concept of a \textit{glimpse sequence}, and introduce Colored Noise Coherency (CoNoCo), the first watermarking strategy designed for remote detection. CoNoCo embeds a spectral signal into the robot's motions by leveraging the policy's inherent stochasticity. To show it does not degrade performance, we prove CoNoCo preserves the marginal action distribution. Our experiments demonstrate strong, robust detection across various remote modalities, including motion capture and side-way/top-down video footage, in both simulated and real-world robot experiments. This work provides a necessary step toward protecting intellectual property in robotics, offering the first method for validating the provenance of physical policies non-invasively, using purely remote observations.
☆ A Regime-Aware Fusion Framework for Time Series Classification
Kernel-based methods such as Rocket are among the most effective default approaches for univariate time series classification (TSC), yet they do not perform equally well across all datasets. We revisit the long-standing intuition that different representations capture complementary structure and show that selectively fusing them can yield consistent improvements over Rocket on specific, systematically identifiable kinds of datasets. We introduce Fusion-3 (F3), a lightweight framework that adaptively fuses Rocket, Sax, and Sfa representations. To understand when fusion helps, we cluster UCR datasets into six groups using meta-features capturing series length, spectral structure, roughness, and class imbalance, and treat these clusters as interpretable data-structure regimes. Our analysis shows that fusion typically outperforms strong baselines in regimes with structured variability or rich frequency content, while offering diminishing returns in highly irregular or outlier-heavy settings. To support these findings, we combine three complementary analyses: non-parametric paired statistics across datasets, ablation studies isolating the roles of individual representations, and attribution via SHAP to identify which dataset properties predict fusion gains. Sample-level case studies further reveal the underlying mechanism: fusion primarily improves performance by rescuing specific errors, with adaptive increases in frequency-domain weighting precisely where corrections occur. Using 5-fold cross-validation on the 113 UCR datasets, F3 yields small but consistent average improvements over Rocket, supported by frequentist and Bayesian evidence and accompanied by clearly identifiable failure cases. Our results show that selectively applied fusion provides dependable and interpretable extension to strong kernel-based methods, correcting their weaknesses precisely where the data support it.
☆ Image Complexity-Aware Adaptive Retrieval for Efficient Vision-Language Models
Vision transformers in vision-language models apply uniform computational effort across all images, expending 175.33 GFLOPs (ViT-L/14) whether analysing a straightforward product photograph or a complex street scene. We propose ICAR (Image Complexity-Aware Retrieval), which enables vision transformers to use less compute for simple images whilst processing complex images through their full network depth. The key challenge is maintaining cross-modal alignment: embeddings from different processing depths must remain compatible for text matching. ICAR solves this through dual-path training that produces compatible embeddings from both reduced-compute and full-compute processing. This maintains compatibility between image representations and text embeddings in the same semantic space, whether an image exits early or processes fully. Unlike existing two-stage approaches that require expensive reranking, ICAR enables direct image-text matching without additional overhead. To determine how much compute to use, we develop ConvNeXt-IC, which treats image complexity assessment as a classification task. By applying modern classifier backbones rather than specialised architectures, ConvNeXt-IC achieves state-of-the-art performance with 0.959 correlation with human judgement (Pearson) and 4.4x speedup. Evaluated on standard benchmarks augmented with real-world web data, ICAR achieves 20% practical speedup while maintaining category-level performance and 95% of instance-level performance, enabling sustainable scaling of vision-language systems.
comment: Accepted paper for ECIR 2026
☆ Expand and Prune: Maximizing Trajectory Diversity for Effective GRPO in Generative Models
Group Relative Policy Optimization (GRPO) is a powerful technique for aligning generative models, but its effectiveness is bottlenecked by the conflict between large group sizes and prohibitive computational costs. In this work, we investigate the trade-off through empirical studies, yielding two key observations. First, we discover the reward clustering phenomenon in which many trajectories collapse toward the group-mean reward, offering limited optimization value. Second, we design a heuristic strategy named Optimal Variance Filtering (OVF), and verify that a high-variance subset of trajectories, selected by OVF can outperform the larger, unfiltered group. However, this static, post-sampling OVF approach still necessitates critical computational overhead, as it performs unnecessary sampling for trajectories that are ultimately discarded. To resolve this, we propose Pro-GRPO (Proactive GRPO), a novel dynamic framework that integrates latent feature-based trajectory pruning into the sampling process. Through the early termination of reward-clustered trajectories, Pro-GRPO reduces computational overhead. Leveraging its efficiency, Pro-GRPO employs an "Expand-and-Prune" strategy. This strategy first expands the size of initial sampling group to maximize trajectory diversity, then it applies multi-step OVF to the latents, avoiding prohibitive computational costs. Extensive experiments on both diffusion-based and flow-based models demonstrate the generality and effectiveness of our Pro-GRPO framework.
comment: 10 pages, 5 figures
☆ Empirical Investigation of the Impact of Phase Information on Fault Diagnosis of Rotating Machinery
Predictive maintenance of rotating machinery increasingly relies on vibration signals, yet most learning-based approaches either discard phase during spectral feature extraction or use raw time-waveforms without explicitly leveraging phase information. This paper introduces two phase-aware preprocessing strategies to address random phase variations in multi-axis vibration data: (1) three-axis independent phase adjustment that aligns each axis individually to zero phase (2) single-axis reference phase adjustment that preserves inter-axis relationships by applying uniform time shifts. Using a newly constructed rotor dataset acquired with a synchronized three-axis sensor, we evaluate six deep learning architectures under a two-stage learning framework. Results demonstrate architecture-independent improvements: the three-axis independent method achieves consistent gains (+2.7\% for Transformer), while the single-axis reference approach delivers superior performance with up to 96.2\% accuracy (+5.4\%) by preserving spatial phase relationships. These findings establish both phase alignment strategies as practical and scalable enhancements for predictive maintenance systems.
comment: This work has been submitted to the IEEE for possible publication
☆ Bits for Privacy: Evaluating Post-Training Quantization via Membership Inference
Deep neural networks are widely deployed with quantization techniques to reduce memory and computational costs by lowering the numerical precision of their parameters. While quantization alters model parameters and their outputs, existing privacy analyses primarily focus on full-precision models, leaving a gap in understanding how bit-width reduction can affect privacy leakage. We present the first systematic study of the privacy-utility relationship in post-training quantization (PTQ), a versatile family of methods that can be applied to pretrained models without further training. Using membership inference attacks as our evaluation framework, we analyze three popular PTQ algorithms-AdaRound, BRECQ, and OBC-across multiple precision levels (4-bit, 2-bit, and 1.58-bit) on CIFAR-10, CIFAR-100, and TinyImageNet datasets. Our findings consistently show that low-precision PTQs can reduce privacy leakage. In particular, lower-precision models demonstrate up to an order of magnitude reduction in membership inference vulnerability compared to their full-precision counterparts, albeit at the cost of decreased utility. Additional ablation studies on the 1.58-bit quantization level show that quantizing only the last layer at higher precision enables fine-grained control over the privacy-utility trade-off. These results offer actionable insights for practitioners to balance efficiency, utility, and privacy protection in real-world deployments.
comment: accepted at TrustCom 2025
☆ Time-Varying Audio Effect Modeling by End-to-End Adversarial Training
Deep learning has become a standard approach for the modeling of audio effects, yet strictly black-box modeling remains problematic for time-varying systems. Unlike time-invariant effects, training models on devices with internal modulation typically requires the recording or extraction of control signals to ensure the time-alignment required by standard loss functions. This paper introduces a Generative Adversarial Network (GAN) framework to model such effects using only input-output audio recordings, removing the need for modulation signal extraction. We propose a convolutional-recurrent architecture trained via a two-stage strategy: an initial adversarial phase allows the model to learn the distribution of the modulation behavior without strict phase constraints, followed by a supervised fine-tuning phase where a State Prediction Network (SPN) estimates the initial internal states required to synchronize the model with the target. Additionally, a new objective metric based on chirp-train signals is developed to quantify modulation accuracy. Experiments modeling a vintage hardware phaser demonstrate the method's ability to capture time-varying dynamics in a fully black-box context.
comment: Submitted for review to the Journal of the Audio Engineering Society (JAES). Accompanying website: https://ybourdin.github.io/sptvmod
LLMQ: Efficient Lower-Precision Pretraining for Consumer GPUs
We present LLMQ, an end-to-end CUDA/C++ implementation for medium-sized language-model training, e.g. 3B to 32B parameters, on affordable, commodity GPUs. These devices are characterized by low memory availability and slow communication compared to datacentre-grade GPUs. Consequently, we showcase a range of optimizations that target these bottlenecks, including activation checkpointing, offloading, and copy-engine based collectives. LLMQ is able to train or fine-tune a 7B model on a single 16GB mid-range gaming card, or a 32B model on a workstation equipped with 4 RTX 4090s. This is achieved while executing a standard 8-bit training pipeline, without additional algorithmic approximations, and maintaining FLOP utilization of around 50%. The efficiency of LLMQ rivals that of production-scale systems on much more expensive cloud-grade GPUs.
☆ Quantum Machine Learning for Cybersecurity: A Taxonomy and Future Directions
The increasing number of cyber threats and rapidly evolving tactics, as well as the high volume of data in recent years, have caused classical machine learning, rules, and signature-based defence strategies to fail, rendering them unable to keep up. An alternative, Quantum Machine Learning (QML), has recently emerged, making use of computations based on quantum mechanics. It offers better encoding and processing of high-dimensional structures for certain problems. This survey provides a comprehensive overview of QML techniques relevant to the domain of security, such as Quantum Neural Networks (QNNs), Quantum Support Vector Machines (QSVMs), Variational Quantum Circuits (VQCs), and Quantum Generative Adversarial Networks (QGANs), and discusses the contributions of this paper in relation to existing research in the field and how it improves over them. It also maps these methods across supervised, unsupervised, and generative learning paradigms, and to core cybersecurity tasks, including intrusion and anomaly detection, malware and botnet classification, and encrypted-traffic analytics. It also discusses their application in the domain of cloud computing security, where QML can enhance secure and scalable operations. Many limitations of QML in the domain of cybersecurity have also been discussed, along with the directions for addressing them.
comment: 15 pages, 5 figures, Submitted to a journal
☆ Topological Metric for Unsupervised Embedding Quality Evaluation
Modern representation learning increasingly relies on unsupervised and self-supervised methods trained on large-scale unlabeled data. While these approaches achieve impressive generalization across tasks and domains, evaluating embedding quality without labels remains an open challenge. In this work, we propose Persistence, a topology-aware metric based on persistent homology that quantifies the geometric structure and topological richness of embedding spaces in a fully unsupervised manner. Unlike metrics that assume linear separability or rely on covariance structure, Persistence captures global and multi-scale organization. Empirical results across diverse domains show that Persistence consistently achieves top-tier correlations with downstream performance, outperforming existing unsupervised metrics and enabling reliable model and hyperparameter selection.
☆ Model inference for ranking from pairwise comparisons
We consider the problem of ranking objects from noisy pairwise comparisons, for example, ranking tennis players from the outcomes of matches. We follow a standard approach to this problem and assume that each object has an unobserved strength and that the outcome of each comparison depends probabilistically on the strengths of the comparands. However, we do not assume to know a priori how skills affect outcomes. Instead, we present an efficient algorithm for simultaneously inferring both the unobserved strengths and the function that maps strengths to probabilities. Despite this problem being under-constrained, we present experimental evidence that the conclusions of our Bayesian approach are robust to different model specifications. We include several case studies to exemplify the method on real-world data sets.
☆ Distillation-Guided Structural Transfer for Continual Learning Beyond Sparse Distributed Memory
Sparse neural systems are gaining traction for efficient continual learning due to their modularity and low interference. Architectures such as Sparse Distributed Memory Multi-Layer Perceptrons (SDMLP) construct task-specific subnetworks via Top-K activation and have shown resilience against catastrophic forgetting. However, their rigid modularity limits cross-task knowledge reuse and leads to performance degradation under high sparsity. We propose Selective Subnetwork Distillation (SSD), a structurally guided continual learning framework that treats distillation not as a regularizer but as a topology-aligned information conduit. SSD identifies neurons with high activation frequency and selectively distills knowledge within previous Top-K subnetworks and output logits, without requiring replay or task labels. This enables structural realignment while preserving sparse modularity. Experiments on Split CIFAR-10, CIFAR-100, and MNIST demonstrate that SSD improves accuracy, retention, and representation coverage, offering a structurally grounded solution for sparse continual learning.
☆ Assessing the Visual Enumeration Abilities of Specialized Counting Architectures and Vision-Language Models
Counting the number of items in a visual scene remains a fundamental yet challenging task in computer vision. Traditional approaches to solving this problem rely on domain-specific counting architectures, which are trained using datasets annotated with a predefined set of object categories. However, recent progress in creating large-scale multimodal vision-language models (VLMs) suggests that these domain-general architectures may offer a flexible alternative for open-set object counting. In this study, we therefore systematically compare the performance of state-of-the-art specialized counting architectures against VLMs on two popular counting datasets, as well as on a novel benchmark specifically created to have a finer-grained control over the visual properties of test images. Our findings show that most VLMs can approximately enumerate the number of items in a visual scene, matching or even surpassing the performance of specialized computer vision architectures. Notably, enumeration accuracy significantly improves when VLMs are prompted to generate intermediate representations (i.e., locations and verbal labels) of each object to be counted. Nevertheless, none of the models can reliably count the number of objects in complex visual scenes, showing that further research is still needed to create AI systems that can reliably deploy counting procedures in realistic environments.
☆ Leveraging Foundational Models and Simple Fusion for Multi-modal Physiological Signal Analysis NeurIPS 2025
Physiological signals such as electrocardiograms (ECG) and electroencephalograms (EEG) provide complementary insights into human health and cognition, yet multi-modal integration is challenging due to limited multi-modal labeled data, and modality-specific differences . In this work, we adapt the CBraMod encoder for large-scale self-supervised ECG pretraining, introducing a dual-masking strategy to capture intra- and inter-lead dependencies. To overcome the above challenges, we utilize a pre-trained CBraMod encoder for EEG and pre-train a symmetric ECG encoder, equipping each modality with a rich foundational representation. These representations are then fused via simple embedding concatenation, allowing the classification head to learn cross-modal interactions, together enabling effective downstream learning despite limited multi-modal supervision. Evaluated on emotion recognition, our approach achieves near state-of-the-art performance, demonstrating that carefully designed physiological encoders, even with straightforward fusion, substantially improve downstream performance. These results highlight the potential of foundation-model approaches to harness the holistic nature of physiological signals, enabling scalable, label-efficient, and generalizable solutions for healthcare and affective computing.
comment: Published at NeurIPS 2025 Workshop on Foundation Models for the Brain and Body
☆ ColliderML: The First Release of an OpenDataDetector High-Luminosity Physics Benchmark Dataset
We introduce ColliderML - a large, open, experiment-agnostic dataset of fully simulated and digitised proton-proton collisions in High-Luminosity Large Hadron Collider conditions ($\sqrt{s}=14$ TeV, mean pile-up $μ= 200$). ColliderML provides one million events across ten Standard Model and Beyond Standard Model processes, plus extensive single-particle samples, all produced with modern next-to-leading order matrix element calculation and showering, realistic per-event pile-up overlay, a validated OpenDataDetector geometry, and standard reconstructions. The release fills a major gap for machine learning (ML) research on detector-level data, provided on the ML-friendly Hugging Face platform. We present physics coverage and the generation, simulation, digitisation and reconstruction pipeline, describe format and access, and initial collider physics benchmarks.
comment: 28 pages
☆ O-EENC-SD: Efficient Online End-to-End Neural Clustering for Speaker Diarization
We introduce O-EENC-SD: an end-to-end online speaker diarization system based on EEND-EDA, featuring a novel RNN-based stitching mechanism for online prediction. In particular, we develop a novel centroid refinement decoder whose usefulness is assessed through a rigorous ablation study. Our system provides key advantages over existing methods: a hyperparameter-free solution compared to unsupervised clustering approaches, and a more efficient alternative to current online end-to-end methods, which are computationally costly. We demonstrate that O-EENC-SD is competitive with the state of the art in the two-speaker conversational telephone speech domain, as tested on the CallHome dataset. Our results show that O-EENC-SD provides a great trade-off between DER and complexity, even when working on independent chunks with no overlap, making the system extremely efficient.
☆ Accelerating High-Throughput Catalyst Screening by Direct Generation of Equilibrium Adsorption Structures
The adsorption energy serves as a crucial descriptor for the large-scale screening of catalysts. Nevertheless, the limited distribution of training data for the extensively utilised machine learning interatomic potential (MLIP), predominantly sourced from near-equilibrium structures, results in unreliable adsorption structures and consequent adsorption energy predictions. In this context, we present DBCata, a deep generative model that integrates a periodic Brownian-bridge framework with an equivariant graph neural network to establish a low-dimensional transition manifold between unrelaxed and DFT-relaxed structures, without requiring explicit energy or force information. Upon training, DBCata effectively generates high-fidelity adsorption geometries, achieving an interatomic distance mean absolute error (DMAE) of 0.035 \textÅ on the Catalysis-Hub dataset, which is nearly three times superior to that of the current state-of-the-art machine learning potential models. Moreover, the corresponding DFT accuracy can be improved within 0.1 eV in 94\% of instances by identifying and refining anomalous predictions through a hybrid chemical-heuristic and self-supervised outlier detection approach. We demonstrate that the remarkable performance of DBCata facilitates accelerated high-throughput computational screening for efficient alloy catalysts in the oxygen reduction reaction, highlighting the potential of DBCata as a powerful tool for catalyst design and optimisation.
☆ Label-consistent clustering for evolving data
Data analysis often involves an iterative process, where solutions must be continuously refined in response to new data. Typically, as new data becomes available, an existing solution must be updated to incorporate the latest information. In addition to seeking a high-quality solution for the task at hand, it is also crucial to ensure consistency by minimizing drastic changes from previous solutions. Applying this approach across many iterations, ensures that the solution evolves gradually and smoothly. In this paper, we study the above problem in the context of clustering, specifically focusing on the $k$-center problem. More precisely, we study the following problem: Given a set of points $X$, parameters $k$ and $b$, and a prior clustering solution $H$ for $X$, our goal is to compute a new solution $C$ for $X$, consisting of $k$ centers, which minimizes the clustering cost while introducing at most $b$ changes from $H$. We refer to this problem as label-consistent $k$-center, and we propose two constant-factor approximation algorithms for it. We complement our theoretical findings with an experimental evaluation demonstrating the effectiveness of our methods on real-world datasets.
comment: 26 pages
☆ Chorus: Harmonizing Context and Sensing Signals for Data-Free Model Customization in IoT
In real-world IoT applications, sensor data is usually collected under diverse and dynamic contextual conditions where factors such as sensor placements or ambient environments can significantly affect data patterns and downstream performance. Traditional domain adaptation or generalization methods often ignore such context information or use simplistic integration strategies, making them ineffective in handling unseen context shifts after deployment. In this paper, we propose Chorus, a context-aware, data-free model customization approach that adapts models to unseen deployment conditions without requiring target-domain data. The key idea is to learn effective context representations that capture their influence on sensor data patterns and to adaptively integrate them based on the degree of context shift. Specifically, Chorus first performs unsupervised cross-modal reconstruction between unlabeled sensor data and language-based context embeddings, while regularizing the context embedding space to learn robust, generalizable context representations. Then, it trains a lightweight gated head on limited labeled samples to dynamically balance sensor and context contributions-favoring context when sensor evidence is ambiguous and vice versa. To further reduce inference latency, Chorus employs a context-caching mechanism that reuses cached context representations and updates only upon detected context shifts. Experiments on IMU, speech, and WiFi sensing tasks under diverse context shifts show that Chorus outperforms state-of-the-art baselines by up to 11.3% in unseen contexts, while maintaining comparable latency on smartphone and edge devices.
☆ BEAT2AASIST model with layer fusion for ESDD 2026 Challenge
Recent advances in audio generation have increased the risk of realistic environmental sound manipulation, motivating the ESDD 2026 Challenge as the first large-scale benchmark for Environmental Sound Deepfake Detection (ESDD). We propose BEAT2AASIST which extends BEATs-AASIST by splitting BEATs-derived representations along frequency or channel dimension and processing them with dual AASIST branches. To enrich feature representations, we incorporate top-k transformer layer fusion using concatenation, CNN-gated, and SE-gated strategies. In addition, vocoder-based data augmentation is applied to improve robustness against unseen spoofing methods. Experimental results on the official test sets demonstrate that the proposed approach achieves competitive performance across the challenge tracks.
comment: 3 pages, 1 figure, challenge paper
☆ DEER: Draft with Diffusion, Verify with Autoregressive Models
Efficiency, as a critical practical challenge for LLM-driven agentic and reasoning systems, is increasingly constrained by the inherent latency of autoregressive (AR) decoding. Speculative decoding mitigates this cost through a draft-verify scheme, yet existing approaches rely on AR draft models (a.k.a., drafters), which introduce two fundamental issues: (1) step-wise uncertainty accumulation leads to a progressive collapse of trust between the target model and the drafter, and (2) inherently sequential decoding of AR drafters. Together, these factors cause limited speedups. In this paper, we show that a diffusion large language model (dLLM) drafters can naturally overcome these issues through its fundamentally different probabilistic modeling and efficient parallel decoding strategy. Building on this insight, we introduce DEER, an efficient speculative decoding framework that drafts with diffusion and verifies with AR models. To enable high-quality drafting, DEER employs a two-stage training pipeline to align the dLLM-based drafters with the target AR model, and further adopts single-step decoding to generate long draft segments. Experiments show DEER reaches draft acceptance lengths of up to 32 tokens, far surpassing the 10 tokens achieved by EAGLE-3. Moreover, on HumanEval with Qwen3-30B-A3B, DEER attains a 5.54x speedup, while EAGLE-3 achieves only 2.41x. Code, model, demo, etc, will be available at https://czc726.github.io/DEER/
comment: Homepage : https://czc726.github.io/DEER/
☆ Understanding NTK Variance in Implicit Neural Representations
Implicit Neural Representations (INRs) often converge slowly and struggle to recover high-frequency details due to spectral bias. While prior work links this behavior to the Neural Tangent Kernel (NTK), how specific architectural choices affect NTK conditioning remains unclear. We show that many INR mechanisms can be understood through their impact on a small set of pairwise similarity factors and scaling terms that jointly determine NTK eigenvalue variance. For standard coordinate MLPs, limited input-feature interactions induce large eigenvalue dispersion and poor conditioning. We derive closed-form variance decompositions for common INR components and show that positional encoding reshapes input similarity, spherical normalization reduces variance via layerwise scaling, and Hadamard modulation introduces additional similarity factors strictly below one, yielding multiplicative variance reduction. This unified view explains how diverse INR architectures mitigate spectral bias by improving NTK conditioning. Experiments across multiple tasks confirm the predicted variance reductions and demonstrate faster, more stable convergence with improved reconstruction quality.
☆ An Efficient Gradient-Based Inference Attack for Federated Learning
Federated Learning is a machine learning setting that reduces direct data exposure, improving the privacy guarantees of machine learning models. Yet, the exchange of model updates between the participants and the aggregator can still leak sensitive information. In this work, we present a new gradient-based membership inference attack for federated learning scenarios that exploits the temporal evolution of last-layer gradients across multiple federated rounds. Our method uses the shadow technique to learn round-wise gradient patterns of the training records, requiring no access to the private dataset, and is designed to consider both semi-honest and malicious adversaries (aggregators or data owners). Beyond membership inference, we also provide a natural extension of the proposed attack to discrete attribute inference by contrasting gradient responses under alternative attribute hypotheses. The proposed attacks are model-agnostic, and therefore applicable to any gradient-based model and can be applied to both classification and regression settings. We evaluate the attack on CIFAR-100 and Purchase100 datasets for membership inference and on Breast Cancer Wisconsin for attribute inference. Our findings reveal strong attack performance and comparable computational and memory overhead in membership inference when compared to another attack from the literature. The obtained results emphasize that multi-round federated learning can increase the vulnerability to inference attacks, that aggregators pose a more substantial threat than data owners, and that attack performance is strongly influenced by the nature of the training dataset, with richer, high-dimensional data leading to stronger leakage than simpler tabular data.
comment: This paper was supported by the TRUMPET project, funded by the European Union under Grant Agreement No. 101070038
☆ Generalization and Feature Attribution in Machine Learning Models for Crop Yield and Anomaly Prediction in Germany
This study examines the generalization performance and interpretability of machine learning (ML) models used for predicting crop yield and yield anomalies in Germany's NUTS-3 regions. Using a high-quality, long-term dataset, the study systematically compares the evaluation and temporal validation behavior of ensemble tree-based models (XGBoost, Random Forest) and deep learning approaches (LSTM, TCN). While all models perform well on spatially split, conventional test sets, their performance degrades substantially on temporally independent validation years, revealing persistent limitations in generalization. Notably, models with strong test-set accuracy, but weak temporal validation performance can still produce seemingly credible SHAP feature importance values. This exposes a critical vulnerability in post hoc explainability methods: interpretability may appear reliable even when the underlying model fails to generalize. These findings underscore the need for validation-aware interpretation of ML predictions in agricultural and environmental systems. Feature importance should not be accepted at face value unless models are explicitly shown to generalize to unseen temporal and spatial conditions. The study advocates for domain-aware validation, hybrid modeling strategies, and more rigorous scrutiny of explainability methods in data-driven agriculture. Ultimately, this work addresses a growing challenge in environmental data science: how can we evaluate generalization robustly enough to trust model explanations?
comment: 13 pages, 3 figures
☆ From Isolation to Entanglement: When Do Interpretability Methods Identify and Disentangle Known Concepts?
A central goal of interpretability is to recover representations of causally relevant concepts from the activations of neural networks. The quality of these concept representations is typically evaluated in isolation, and under implicit independence assumptions that may not hold in practice. Thus, it is unclear whether common featurization methods - including sparse autoencoders (SAEs) and sparse probes - recover disentangled representations of these concepts. This study proposes a multi-concept evaluation setting where we control the correlations between textual concepts, such as sentiment, domain, and tense, and analyze performance under increasing correlations between them. We first evaluate the extent to which featurizers can learn disentangled representations of each concept under increasing correlational strengths. We observe a one-to-many relationship from concepts to features: features correspond to no more than one concept, but concepts are distributed across many features. Then, we perform steering experiments, measuring whether each concept is independently manipulable. Even when trained on uniform distributions of concepts, SAE features generally affect many concepts when steered, indicating that they are neither selective nor independent; nonetheless, features affect disjoint subspaces. These results suggest that correlational metrics for measuring disentanglement are generally not sufficient for establishing independence when steering, and that affecting disjoint subspaces is not sufficient for concept selectivity. These results underscore the importance of compositional evaluations in interpretability research.
☆ TrajSyn: Privacy-Preserving Dataset Distillation from Federated Model Trajectories for Server-Side Adversarial Training
Deep learning models deployed on edge devices are increasingly used in safety-critical applications. However, their vulnerability to adversarial perturbations poses significant risks, especially in Federated Learning (FL) settings where identical models are distributed across thousands of clients. While adversarial training is a strong defense, it is difficult to apply in FL due to strict client-data privacy constraints and the limited compute available on edge devices. In this work, we introduce TrajSyn, a privacy-preserving framework that enables effective server-side adversarial training by synthesizing a proxy dataset from the trajectories of client model updates, without accessing raw client data. We show that TrajSyn consistently improves adversarial robustness on image classification benchmarks with no extra compute burden on the client device.
☆ Automatic Reward Shaping from Multi-Objective Human Heuristics
Designing effective reward functions remains a central challenge in reinforcement learning, especially in multi-objective environments. In this work, we propose Multi-Objective Reward Shaping with Exploration (MORSE), a general framework that automatically combines multiple human-designed heuristic rewards into a unified reward function. MORSE formulates the shaping process as a bi-level optimization problem: the inner loop trains a policy to maximize the current shaped reward, while the outer loop updates the reward function to optimize task performance. To encourage exploration in the reward space and avoid suboptimal local minima, MORSE introduces stochasticity into the shaping process, injecting noise guided by task performance and the prediction error of a fixed, randomly initialized neural network. Experimental results in MuJoCo and Isaac Sim environments show that MORSE effectively balances multiple objectives across various robotic tasks, achieving task performance comparable to those obtained with manually tuned reward functions.
☆ FADTI: Fourier and Attention Driven Diffusion for Multivariate Time Series Imputation
Multivariate time series imputation is fundamental in applications such as healthcare, traffic forecasting, and biological modeling, where sensor failures and irregular sampling lead to pervasive missing values. However, existing Transformer- and diffusion-based models lack explicit inductive biases and frequency awareness, limiting their generalization under structured missing patterns and distribution shifts. We propose FADTI, a diffusion-based framework that injects frequency-informed feature modulation via a learnable Fourier Bias Projection (FBP) module and combines it with temporal modeling through self-attention and gated convolution. FBP supports multiple spectral bases, enabling adaptive encoding of both stationary and non-stationary patterns. This design injects frequency-domain inductive bias into the generative imputation process. Experiments on multiple benchmarks, including a newly introduced biological time series dataset, show that FADTI consistently outperforms state-of-the-art methods, particularly under high missing rates. Code is available at https://anonymous.4open.science/r/TimeSeriesImputation-52BF
comment: This work has been submitted to the IEEE for possible publication. 15 pages, 8 figures
☆ How Many Heads Make an SSM? A Unified Framework for Attention and State Space Models
Sequence modeling has produced diverse architectures -- from classical recurrent neural networks to modern Transformers and state space models (SSMs) -- yet a unified theoretical understanding of expressivity and trainability trade-offs remains limited. We introduce a unified framework that represents a broad class of sequence maps via an input-dependent effective interaction operator $W_{ij}(X)$, making explicit two recurring construction patterns: (i) the Unified Factorized Framework (Explicit) (attention-style mixing), in which $W_{ij}(X)$ varies through scalar coefficients applied to shared value maps, and (ii) Structured Dynamics (Implicit) (state-space recurrences), in which $W_{ij}$ is induced by a latent dynamical system. Using this framework, we derive three theoretical results. First, we establish the Interaction Rank Gap: models in the Unified Factorized Framework, such as single-head attention, are constrained to a low-dimensional operator span and cannot represent certain structured dynamical maps. Second, we prove an Equivalence (Head-Count) Theorem showing that, within our multi-head factorized class, representing a linear SSM whose lag operators span a $k$-dimensional subspace on length-$n$ sequences requires and is achievable with $H=k$ heads. Third, we prove a Gradient Highway Result, showing that attention layers admit inputs with distance-independent gradient paths, whereas stable linear dynamics exhibit distance-dependent gradient attenuation. Together, these results formalize a fundamental trade-off between algebraic expressivity (interaction/operator span) and long-range gradient propagation, providing theoretical grounding for modern sequence architecture design.
☆ Adaptive Weighted Genetic Algorithm-Optimized SVR for Robust Long-Term Forecasting of Global Stock Indices for investment decisions
Long-term price forecasting remains a formidable challenge due to the inherent uncertainty over the long term, despite some success in short-term predictions. Nonetheless, accurate long-term forecasts are essential for high-net-worth individuals, institutional investors, and traders. The proposed improved genetic algorithm-optimized support vector regression (IGA-SVR) model is specifically designed for long-term price prediction of global indices. The performance of the IGA-SVR model is rigorously evaluated and compared against the state-of-the-art baseline models, the Long Short-Term Memory (LSTM), and the forward-validating genetic algorithm optimized support vector regression (OGA-SVR). Extensive testing was conducted on the five global indices, namely Nifty, Dow Jones Industrial Average (DJI), DAX Performance Index (DAX), Nikkei 225 (N225), and Shanghai Stock Exchange Composite Index (SSE) from 2021 to 2024 of daily price prediction up to a year. Overall, the proposed IGA-SVR model achieved a reduction in MAPE by 19.87% compared to LSTM and 50.03% compared to OGA-SVR, demonstrating its superior performance in long-term daily price forecasting of global indices. Further, the execution time for LSTM was approximately 20 times higher than that of IGA-SVR, highlighting the high accuracy and computational efficiency of the proposed model. The genetic algorithm selects the optimal hyperparameters of SVR by minimizing the arithmetic mean of the Mean Absolute Percentage Error (MAPE) calculated over the full training dataset and the most recent five years of training data. This purposefully designed training methodology adjusts for recent trends while retaining long-term trend information, thereby offering enhanced generalization compared to the LSTM and rolling-forward validation approach employed by OGA-SVR, which forgets long-term trends and suffers from recency bias.
☆ Feature-Centric Unsupervised Node Representation Learning Without Homophily Assumption AAAI 2026
Unsupervised node representation learning aims to obtain meaningful node embeddings without relying on node labels. To achieve this, graph convolution, which aggregates information from neighboring nodes, is commonly employed to encode node features and graph topology. However, excessive reliance on graph convolution can be suboptimal-especially in non-homophilic graphs-since it may yield unduly similar embeddings for nodes that differ in their features or topological properties. As a result, adjusting the degree of graph convolution usage has been actively explored in supervised learning settings, whereas such approaches remain underexplored in unsupervised scenarios. To tackle this, we propose FUEL, which adaptively learns the adequate degree of graph convolution usage by aiming to enhance intra-class similarity and inter-class separability in the embedding space. Since classes are unknown, FUEL leverages node features to identify node clusters and treats these clusters as proxies for classes. Through extensive experiments using 15 baseline methods and 14 benchmark datasets, we demonstrate the effectiveness of FUEL in downstream tasks, achieving state-of-the-art performance across graphs with diverse levels of homophily.
comment: Published in AAAI 2026
☆ SigMA: Path Signatures and Multi-head Attention for Learning Parameters in fBm-driven SDEs
Stochastic differential equations (SDEs) driven by fractional Brownian motion (fBm) are increasingly used to model systems with rough dynamics and long-range dependence, such as those arising in quantitative finance and reliability engineering. However, these processes are non-Markovian and lack a semimartingale structure, rendering many classical parameter estimation techniques inapplicable or computationally intractable beyond very specific cases. This work investigates two central questions: (i) whether integrating path signatures into deep learning architectures can improve the trade-off between estimation accuracy and model complexity, and (ii) what constitutes an effective architecture for leveraging signatures as feature maps. We introduce SigMA (Signature Multi-head Attention), a neural architecture that integrates path signatures with multi-head self-attention, supported by a convolutional preprocessing layer and a multilayer perceptron for effective feature encoding. SigMA learns model parameters from synthetically generated paths of fBm-driven SDEs, including fractional Brownian motion, fractional Ornstein-Uhlenbeck, and rough Heston models, with a particular focus on estimating the Hurst parameter and on joint multi-parameter inference, and it generalizes robustly to unseen trajectories. Extensive experiments on synthetic data and two real-world datasets (i.e., equity-index realized volatility and Li-ion battery degradation) show that SigMA consistently outperforms CNN, LSTM, vanilla Transformer, and Deep Signature baselines in accuracy, robustness, and model compactness. These results demonstrate that combining signature transforms with attention-based architectures provides an effective and scalable framework for parameter inference in stochastic systems with rough or persistent temporal structure.
☆ PIP$^2$ Net: Physics-informed Partition Penalty Deep Operator Network
Operator learning has become a powerful tool for accelerating the solution of parameterized partial differential equations (PDEs), enabling rapid prediction of full spatiotemporal fields for new initial conditions or forcing functions. Existing architectures such as DeepONet and the Fourier Neural Operator (FNO) show strong empirical performance but often require large training datasets, lack explicit physical structure, and may suffer from instability in their trunk-network features, where mode imbalance or collapse can hinder accurate operator approximation. Motivated by the stability and locality of classical partition-of-unity (PoU) methods, we investigate PoU-based regularization techniques for operator learning and develop a revised formulation of the existing POU--PI--DeepONet framework. The resulting \emph{P}hysics-\emph{i}nformed \emph{P}artition \emph{P}enalty Deep Operator Network (PIP$^{2}$ Net) introduces a simplified and more principled partition penalty that improved the coordinated trunk outputs that leads to more expressiveness without sacrificing the flexibility of DeepONet. We evaluate PIP$^{2}$ Net on three nonlinear PDEs: the viscous Burgers equation, the Allen--Cahn equation, and a diffusion--reaction system. The results show that it consistently outperforms DeepONet, PI-DeepONet, and POU-DeepONet in prediction accuracy and robustness.
☆ Neural Modular Physics for Elastic Simulation
Learning-based methods have made significant progress in physics simulation, typically approximating dynamics with a monolithic end-to-end optimized neural network. Although these models offer an effective way to simulation, they may lose essential features compared to traditional numerical simulators, such as physical interpretability and reliability. Drawing inspiration from classical simulators that operate in a modular fashion, this paper presents Neural Modular Physics (NMP) for elastic simulation, which combines the approximation capacity of neural networks with the physical reliability of traditional simulators. Beyond the previous monolithic learning paradigm, NMP enables direct supervision of intermediate quantities and physical constraints by decomposing elastic dynamics into physically meaningful neural modules connected through intermediate physical quantities. With a specialized architecture and training strategy, our method transforms the numerical computation flow into a modular neural simulator, achieving improved physical consistency and generalizability. Experimentally, NMP demonstrates superior generalization to unseen initial conditions and resolutions, stable long-horizon simulation, better preservation of physical properties compared to other neural simulators, and greater feasibility in scenarios with unknown underlying dynamics than traditional simulators.
☆ The Semantic Architect: How FEAML Bridges Structured Data and LLMs for Multi-Label Tasks
Existing feature engineering methods based on large language models (LLMs) have not yet been applied to multi-label learning tasks. They lack the ability to model complex label dependencies and are not specifically adapted to the characteristics of multi-label tasks. To address the above issues, we propose Feature Engineering Automation for Multi-Label Learning (FEAML), an automated feature engineering method for multi-label classification which leverages the code generation capabilities of LLMs. By utilizing metadata and label co-occurrence matrices, LLMs are guided to understand the relationships between data features and task objectives, based on which high-quality features are generated. The newly generated features are evaluated in terms of model accuracy to assess their effectiveness, while Pearson correlation coefficients are used to detect redundancy. FEAML further incorporates the evaluation results as feedback to drive LLMs to continuously optimize code generation in subsequent iterations. By integrating LLMs with a feedback mechanism, FEAML realizes an efficient, interpretable and self-improving feature engineering paradigm. Empirical results on various multi-label datasets demonstrate that our FEAML outperforms other feature engineering methods.
☆ The Semantic Illusion: Certified Limits of Embedding-Based Hallucination Detection in RAG Systems
Retrieval-Augmented Generation (RAG) systems remain susceptible to hallucinations despite grounding in retrieved evidence. Current detection methods rely on semantic similarity and natural language inference (NLI), but their fundamental limitations have not been rigorously characterized. We apply conformal prediction to hallucination detection, providing finite-sample coverage guarantees that enable precise quantification of detection capabilities. Using calibration sets of approximately 600 examples, we achieve 94% coverage with 0% false positive rate on synthetic hallucinations (Natural Questions). However, on three real hallucination benchmarks spanning multiple LLMs (GPT-4, ChatGPT, GPT-3, Llama-2, Mistral), embedding-based methods - including state-of-the-art OpenAI text-embedding-3-large and cross-encoder models - exhibit unacceptable false positive rates: 100% on HaluEval, 88% on RAGTruth, and 50% on WikiBio. Crucially, GPT-4 as an LLM judge achieves only 7% FPR (95% CI: [3.4%, 13.7%]) on the same data, proving the task is solvable through reasoning. We term this the "semantic illusion": semantically plausible hallucinations preserve similarity to source documents while introducing factual errors invisible to embeddings. This limitation persists across embedding architectures, LLM generators, and task types, suggesting embedding-based detection is insufficient for production RAG deployment.
comment: 12 pages, 2 figures, 6 tables
☆ EMFusion: Conditional Diffusion Framework for Trustworthy Frequency Selective EMF Forecasting in Wireless Networks
The rapid growth in wireless infrastructure has increased the need to accurately estimate and forecast electromagnetic field (EMF) levels to ensure ongoing compliance, assess potential health impacts, and support efficient network planning. While existing studies rely on univariate forecasting of wideband aggregate EMF data, frequency-selective multivariate forecasting is needed to capture the inter-operator and inter-frequency variations essential for proactive network planning. To this end, this paper introduces EMFusion, a conditional multivariate diffusion-based probabilistic forecasting framework that integrates diverse contextual factors (e.g., time of day, season, and holidays) while providing explicit uncertainty estimates. The proposed architecture features a residual U-Net backbone enhanced by a cross-attention mechanism that dynamically integrates external conditions to guide the generation process. Furthermore, EMFusion integrates an imputation-based sampling strategy that treats forecasting as a structural inpainting task, ensuring temporal coherence even with irregular measurements. Unlike standard point forecasters, EMFusion generates calibrated probabilistic prediction intervals directly from the learned conditional distribution, providing explicit uncertainty quantification essential for trustworthy decision-making. Numerical experiments conducted on frequency-selective EMF datasets demonstrate that EMFusion with the contextual information of working hours outperforms the baseline models with or without conditions. The EMFusion outperforms the best baseline by 23.85% in continuous ranked probability score (CRPS), 13.93% in normalized root mean square error, and reduces prediction CRPS error by 22.47%.
comment: Submission for possible publication
☆ The Meta-Prompting Protocol: Orchestrating LLMs via Adversarial Feedback Loops
The transition of Large Language Models (LLMs) from stochastic chat interfaces to reliable software components necessitates a fundamental re-engineering of interaction paradigms. Current methodologies, predominantly heuristic-based "prompt engineering," fail to provide the deterministic guarantees required for mission-critical applications. We introduce the Meta-Prompting Protocol, a rigorous theoretical framework that formalizes the orchestration of LLMs as a programmable, self-optimizing system. Central to this protocol is the Adversarial Trinity, a tripartite topology comprising a Generator (P), an Auditor (A), and an Optimizer (O). By treating natural language instructions as differentiable variables within a semantic computation graph and utilizing textual critiques as gradients, this architecture mitigates hallucination and prevents model collapse. We demonstrate the theoretical viability of this approach using declarative programming paradigms (DSPy) and automatic textual differentiation (TextGrad), establishing a foundation for "Observable Software Engineering" in the era of probabilistic computing.
comment: 6 pages, 2 figures
☆ Spectral Representation-based Reinforcement Learning
In real-world applications with large state and action spaces, reinforcement learning (RL) typically employs function approximations to represent core components like the policies, value functions, and dynamics models. Although powerful approximations such as neural networks offer great expressiveness, they often present theoretical ambiguities, suffer from optimization instability and exploration difficulty, and incur substantial computational costs in practice. In this paper, we introduce the perspective of spectral representations as a solution to address these difficulties in RL. Stemming from the spectral decomposition of the transition operator, this framework yields an effective abstraction of the system dynamics for subsequent policy optimization while also providing a clear theoretical characterization. We reveal how to construct spectral representations for transition operators that possess latent variable structures or energy-based structures, which implies different learning methods to extract spectral representations from data. Notably, each of these learning methods realizes an effective RL algorithm under this framework. We also provably extend this spectral view to partially observable MDPs. Finally, we validate these algorithms on over 20 challenging tasks from the DeepMind Control Suite, where they achieve performances comparable or superior to current state-of-the-art model-free and model-based baselines.
☆ Epistemic diversity across language models mitigates knowledge collapse
The growing use of artificial intelligence (AI) raises concerns of knowledge collapse, i.e., a reduction to the most dominant and central set of ideas. Prior work has demonstrated single-model collapse, defined as performance decay in an AI model trained on its own output. Inspired by ecology, we ask whether AI ecosystem diversity, that is, diversity among models, can mitigate such a collapse. We build on the single-model approach but focus on ecosystems of models trained on their collective output. To study the effect of diversity on model performance, we segment the training data across language models and evaluate the resulting ecosystems over ten, self-training iterations. We find that increased epistemic diversity mitigates collapse, but, interestingly, only up to an optimal level. Our results suggest that an ecosystem containing only a few diverse models fails to express the rich mixture of the full, true distribution, resulting in rapid performance decay. Yet distributing the data across too many models reduces each model's approximation capacity on the true distribution, leading to poor performance already in the first iteration step. In the context of AI monoculture, our results suggest the need to monitor diversity across AI systems and to develop policies that incentivize more domain- and community-specific models.
comment: 16 pages, 7 figures
☆ Stock Pattern Assistant (SPA): A Deterministic and Explainable Framework for Structural Price Run Extraction and Event Correlation in Equity Markets
Understanding how prices evolve over time often requires peeling back the layers of market noise to identify clear, structural behavior. Many of the tools commonly used for this purpose technical indicators, chart heuristics, or even sophisticated predictive models leave important questions unanswered. Technical indicators depend on platform-specific rules, and predictive systems typically offer little in terms of explanation. In settings that demand transparency or auditability, this poses a significant challenge. We introduce the Stock Pattern Assistant (SPA), a deterministic framework designed to extract monotonic price runs, attach relevant public events through a symmetric correlation window, and generate explanations that are factual, historical, and guardrailed. SPA relies only on daily OHLCV data and a normalized event stream, making the pipeline straight-forward to audit and easy to reproduce. To illustrate SPA's behavior in practice, we evaluate it across four equities-AAPL, NVDA, SCHW, and PGR-chosen to span a range of volatility regimes and sector characteristics. Although the evaluation period is modest, the results demonstrate how SPA consistently produces stable structural decompositions and contextual narratives. Ablation experiments further show how deterministic segmentation, event alignment, and constrained explanation each contribute to interpretability. SPA is not a forecasting system, nor is it intended to produce trading signals. Its value lies in offering a transparent, reproducible view of historical price structure that can complement analyst workflows, risk reviews, and broader explainable-AI pipelines.
☆ SeBERTis: A Framework for Producing Classifiers of Security-Related Issue Reports
Monitoring issue tracker submissions is a crucial software maintenance activity. A key goal is the prioritization of high risk, security-related bugs. If such bugs can be recognized early, the risk of propagation to dependent products and endangerment of stakeholder benefits can be mitigated. To assist triage engineers with this task, several automatic detection techniques, from Machine Learning (ML) models to prompting Large Language Models (LLMs), have been proposed. Although promising to some extent, prior techniques often memorize lexical cues as decision shortcuts, yielding low detection rate specifically for more complex submissions. As such, these classifiers do not yet reach the practical expectations of a real-time detector of security-related issues. To address these limitations, we propose SEBERTIS, a framework to train Deep Neural Networks (DNNs) as classifiers independent of lexical cues, so that they can confidently detect fully unseen security-related issues. SEBERTIS capitalizes on fine-tuning bidirectional transformer architectures as Masked Language Models (MLMs) on a series of semantically equivalent vocabulary to prediction labels (which we call Semantic Surrogates) when they have been replaced with a mask. Our SEBERTIS-trained classifier achieves a 0.9880 F1-score in detecting security-related issues of a curated corpus of 10,000 GitHub issue reports, substantially outperforming state-of-the-art issue classifiers, with 14.44%-96.98%, 15.40%-93.07%, and 14.90%-94.72% higher detection precision, recall, and F1-score over ML-based baselines. Our classifier also substantially surpasses LLM baselines, with an improvement of 23.20%-63.71%, 36.68%-85.63%, and 39.49%-74.53% for precision, recall, and F1-score.
comment: This is the author pre-print. The manuscript has been accepted for publication at SANER 2026!
☆ DreamPRM-Code: Function-as-Step Process Reward Model with Label Correction for LLM Coding
Process Reward Models (PRMs) have become essential for improving Large Language Models (LLMs) via test-time scaling, yet their effectiveness in coding remains limited due to the lack of meaningful step decompositions in code and the noise of Monte-Carlo-generated partial labels. We propose DreamPRM-Code, a coding-focused PRM that treats functions as reasoning steps using a Chain-of-Function prompting strategy to induce modular code generation, enabling PRM training and application analogous to mathematical reasoning tasks. To address label noise, DreamPRM-Code introduces a meta-learning-based correction mechanism that leverages clean final-solution unit-test labels and performs bi-level optimization to refine intermediate labels. Applying on test-time scaling, DreamPRM-Code achieved state-of-the-art performance on LiveCodeBench with 80.9 pass@1 rate, surpassing OpenAI o4-mini.
☆ Efficient Nudged Elastic Band Method using Neural Network Bayesian Algorithm Execution
The discovery of a minimum energy pathway (MEP) between metastable states is crucial for scientific tasks including catalyst and biomolecular design. However, the standard nudged elastic band (NEB) algorithm requires hundreds to tens of thousands of compute-intensive simulations, making applications to complex systems prohibitively expensive. We introduce Neural Network Bayesian Algorithm Execution (NN-BAX), a framework that jointly learns the energy landscape and the MEP. NN-BAX sequentially fine-tunes a foundation model by actively selecting samples targeted at improving the MEP. Tested on Lennard-Jones and Embedded Atom Method systems, our approach achieves a one to two order of magnitude reduction in energy and force evaluations with negligible loss in MEP accuracy and demonstrates scalability to >100-dimensional systems. This work is therefore a promising step towards removing the computational barrier for MEP discovery in scientifically relevant systems, suggesting that weeks-long calculations may be achieved in hours or days with minimal loss in accuracy.
comment: 21 pages, 12 figures
☆ Adaptive Partitioning and Learning for Stochastic Control of Diffusion Processes
We study reinforcement learning for controlled diffusion processes with unbounded continuous state spaces, bounded continuous actions, and polynomially growing rewards: settings that arise naturally in finance, economics, and operations research. To overcome the challenges of continuous and high-dimensional domains, we introduce a model-based algorithm that adaptively partitions the joint state-action space. The algorithm maintains estimators of drift, volatility, and rewards within each partition, refining the discretization whenever estimation bias exceeds statistical confidence. This adaptive scheme balances exploration and approximation, enabling efficient learning in unbounded domains. Our analysis establishes regret bounds that depend on the problem horizon, state dimension, reward growth order, and a newly defined notion of zooming dimension tailored to unbounded diffusion processes. The bounds recover existing results for bounded settings as a special case, while extending theoretical guarantees to a broader class of diffusion-type problems. Finally, we validate the effectiveness of our approach through numerical experiments, including applications to high-dimensional problems such as multi-asset mean-variance portfolio selection.
☆ Imitation Game: Reproducing Deep Learning Bugs Leveraging an Intelligent Agent
Despite their wide adoption in various domains (e.g., healthcare, finance, software engineering), Deep Learning (DL)-based applications suffer from many bugs, failures, and vulnerabilities. Reproducing these bugs is essential for their resolution, but it is extremely challenging due to the inherent nondeterminism of DL models and their tight coupling with hardware and software environments. According to recent studies, only about 3% of DL bugs can be reliably reproduced using manual approaches. To address these challenges, we present RepGen, a novel, automated, and intelligent approach for reproducing deep learning bugs. RepGen constructs a learning-enhanced context from a project, develops a comprehensive plan for bug reproduction, employs an iterative generate-validate-refine mechanism, and thus generates such code using an LLM that reproduces the bug at hand. We evaluate RepGen on 106 real-world deep learning bugs and achieve a reproduction rate of 80.19%, a 19.81% improvement over the state-of-the-art measure. A developer study involving 27 participants shows that RepGen improves the success rate of DL bug reproduction by 23.35%, reduces the time to reproduce by 56.8%, and lowers participants' cognitive load.
comment: Accepted by the 48th IEEE/ACM International Conference on Software Engineering (ICSE 2026)
☆ Prompt Repetition Improves Non-Reasoning LLMs
When not using reasoning, repeating the input prompt improves performance for popular models (Gemini, GPT, Claude, and Deepseek) without increasing the number of generated tokens or latency.
☆ Softly Constrained Denoisers for Diffusion Models
Diffusion models struggle to produce samples that respect constraints, a common requirement in scientific applications. Recent approaches have introduced regularization terms in the loss or guidance methods during sampling to enforce such constraints, but they bias the generative model away from the true data distribution. This is a problem, especially when the constraint is misspecified, a common issue when formulating constraints on scientific data. In this paper, instead of changing the loss or the sampling loop, we integrate a guidance-inspired adjustment into the denoiser itself, giving it a soft inductive bias towards constraint-compliant samples. We show that these softly constrained denoisers exploit constraint knowledge to improve compliance over standard denoisers, and maintain enough flexibility to deviate from it when there is misspecification with observed data.
comment: 18 pages including appendix, 8 figures including appendix, preprint
☆ Explainable AI in Big Data Fraud Detection
Big Data has become central to modern applications in finance, insurance, and cybersecurity, enabling machine learning systems to perform large-scale risk assessments and fraud detection. However, the increasing dependence on automated analytics introduces important concerns about transparency, regulatory compliance, and trust. This paper examines how explainable artificial intelligence (XAI) can be integrated into Big Data analytics pipelines for fraud detection and risk management. We review key Big Data characteristics and survey major analytical tools, including distributed storage systems, streaming platforms, and advanced fraud detection models such as anomaly detectors, graph-based approaches, and ensemble classifiers. We also present a structured review of widely used XAI methods, including LIME, SHAP, counterfactual explanations, and attention mechanisms, and analyze their strengths and limitations when deployed at scale. Based on these findings, we identify key research gaps related to scalability, real-time processing, and explainability for graph and temporal models. To address these challenges, we outline a conceptual framework that integrates scalable Big Data infrastructure with context-aware explanation mechanisms and human feedback. The paper concludes with open research directions in scalable XAI, privacy-aware explanations, and standardized evaluation methods for explainable fraud detection systems.
comment: 7 pages, 3 figures, research project
☆ Techno-economic optimization of a heat-pipe microreactor, part I: theory and cost optimization
Microreactors, particularly heat-pipe microreactors (HPMRs), are compact, transportable, self-regulated power systems well-suited for access-challenged remote areas where costly fossil fuels dominate. However, they suffer from diseconomies of scale, and their financial viability remains unconvincing. One step in addressing this shortcoming is to design these reactors with comprehensive economic and physics analyses informing early-stage design iteration. In this work, we present a novel unifying geometric design optimization approach that accounts for techno-economic considerations. We start by generating random samples to train surrogate models, including Gaussian processes (GPs) and multi-layer perceptrons (MLPs). We then deploy these surrogates within a reinforcement learning (RL)-based optimization framework to optimize the levelized cost of electricity (LCOE), all the while imposing constraints on the fuel lifetime, shutdown margin (SDM), peak heat flux, and rod-integrated peaking factor. We study two cases: one in which the axial reflector cost is very high, and one in which it is inexpensive. We found that the operation and maintenance and capital costs are the primary contributors to the overall LCOE particularly the cost of the axial reflectors (for the first case) and the control drum materials. The optimizer cleverly changes the design parameters so as to minimize one of them while still satisfying the constraints, ultimately reducing the LCOE by more than 57% in both instances. A comprehensive integration of fuel and HP performance with multi-objective optimization is currently being pursued to fully understand the interaction between constraints and cost performance.
☆ Towards Fine-Tuning-Based Site Calibration for Knowledge-Guided Machine Learning: A Summary of Results
Accurate and cost-effective quantification of the agroecosystem carbon cycle at decision-relevant scales is essential for climate mitigation and sustainable agriculture. However, both transfer learning and the exploitation of spatial variability in this field are challenging, as they involve heterogeneous data and complex cross-scale dependencies. Conventional approaches often rely on location-independent parameterizations and independent training, underutilizing transfer learning and spatial heterogeneity in the inputs, and limiting their applicability in regions with substantial variability. We propose FTBSC-KGML (Fine-Tuning-Based Site Calibration-Knowledge-Guided Machine Learning), a pretraining- and fine-tuning-based, spatial-variability-aware, and knowledge-guided machine learning framework that augments KGML-ag with a pretraining-fine-tuning process and site-specific parameters. Using a pretraining-fine-tuning process with remote-sensing GPP, climate, and soil covariates collected across multiple midwestern sites, FTBSC-KGML estimates land emissions while leveraging transfer learning and spatial heterogeneity. A key component is a spatial-heterogeneity-aware transfer-learning scheme, which is a globally pretrained model that is fine-tuned at each state or site to learn place-aware representations, thereby improving local accuracy under limited data without sacrificing interpretability. Empirically, FTBSC-KGML achieves lower validation error and greater consistency in explanatory power than a purely global model, thereby better capturing spatial variability across states. This work extends the prior SDSA-KGML framework.
☆ Concurrence: A dependence criterion for time series, applied to biological data
Measuring the statistical dependence between observed signals is a primary tool for scientific discovery. However, biological systems often exhibit complex non-linear interactions that currently cannot be captured without a priori knowledge or large datasets. We introduce a criterion for dependence, whereby two time series are deemed dependent if one can construct a classifier that distinguishes between temporally aligned vs. misaligned segments extracted from them. We show that this criterion, concurrence, is theoretically linked with dependence, and can become a standard approach for scientific analyses across disciplines, as it can expose relationships across a wide spectrum of signals (fMRI, physiological and behavioral data) without ad-hoc parameter tuning or large amounts of data.
☆ Information theory and discriminative sampling for model discovery
Fisher information and Shannon entropy are fundamental tools for understanding and analyzing dynamical systems from complementary perspectives. They can characterize unknown parameters by quantifying the information contained in variables, or measure how different initial trajectories or temporal segments of a trajectory contribute to learning or inferring system dynamics. In this work, we leverage the Fisher Information Matrix (FIM) within the data-driven framework of {\em sparse identification of nonlinear dynamics} (SINDy). We visualize information patterns in chaotic and non-chaotic systems for both single trajectories and multiple initial conditions, demonstrating how information-based analysis can improve sampling efficiency and enhance model performance by prioritizing more informative data. The benefits of statistical bagging are further elucidated through spectral analysis of the FIM. We also illustrate how Fisher information and entropy metrics can promote data efficiency in three scenarios: when only a single trajectory is available, when a tunable control parameter exists, and when multiple trajectories can be freely initialized. As data-driven model discovery continues to gain prominence, principled sampling strategies guided by quantifiable information metrics offer a powerful approach for improving learning efficiency and reducing data requirements.
☆ Surrogate Neural Architecture Codesign Package (SNAC-Pack) NeurIPS 2025
Neural Architecture Search is a powerful approach for automating model design, but existing methods struggle to accurately optimize for real hardware performance, often relying on proxy metrics such as bit operations. We present Surrogate Neural Architecture Codesign Package (SNAC-Pack), an integrated framework that automates the discovery and optimization of neural networks focusing on FPGA deployment. SNAC-Pack combines Neural Architecture Codesign's multi-stage search capabilities with the Resource Utilization and Latency Estimator, enabling multi-objective optimization across accuracy, FPGA resource utilization, and latency without requiring time-intensive synthesis for each candidate model. We demonstrate SNAC-Pack on a high energy physics jet classification task, achieving 63.84% accuracy with resource estimation. When synthesized on a Xilinx Virtex UltraScale+ VU13P FPGA, the SNAC-Pack model matches baseline accuracy while maintaining comparable resource utilization to models optimized using traditional BOPs metrics. This work demonstrates the potential of hardware-aware neural architecture search for resource-constrained deployments and provides an open-source framework for automating the design of efficient FPGA-accelerated models.
comment: NeurIPS 2025 Machine Learning and the Physical Sciences Workshop, 8 pages, 4 figures, 3 tables
☆ Higher-Order LaSDI: Reduced Order Modeling with Multiple Time Derivatives
Solving complex partial differential equations is vital in the physical sciences, but often requires computationally expensive numerical methods. Reduced-order models (ROMs) address this by exploiting dimensionality reduction to create fast approximations. While modern ROMs can solve parameterized families of PDEs, their predictive power degrades over long time horizons. We address this by (1) introducing a flexible, high-order, yet inexpensive finite-difference scheme and (2) proposing a Rollout loss that trains ROMs to make accurate predictions over arbitrary time horizons. We demonstrate our approach on the 2D Burgers equation.
comment: 38 pages, 14 figures
☆ Time-Frequency Analysis for Neural Networks
We develop a quantitative approximation theory for shallow neural networks using tools from time-frequency analysis. Working in weighted modulation spaces $M^{p,q}_m(\mathbf{R}^{d})$, we prove dimension-independent approximation rates in Sobolev norms $W^{n,r}(Ω)$ for networks whose units combine standard activations with localized time-frequency windows. Our main result shows that for $f \in M^{p,q}_m(\mathbf{R}^{d})$ one can achieve \[ \|f - f_N\|_{W^{n,r}(Ω)} \lesssim N^{-1/2}\,\|f\|_{M^{p,q}_m(\mathbf{R}^{d})}, \] on bounded domains, with explicit control of all constants. We further obtain global approximation theorems on $\mathbf{R}^{d}$ using weighted modulation dictionaries, and derive consequences for Feichtinger's algebra, Fourier-Lebesgue spaces, and Barron spaces. Numerical experiments in one and two dimensions confirm that modulation-based networks achieve substantially better Sobolev approximation than standard ReLU networks, consistent with the theoretical estimates.
☆ Provably Extracting the Features from a General Superposition
It is widely believed that complex machine learning models generally encode features through linear representations, but these features exist in superposition, making them challenging to recover. We study the following fundamental setting for learning features in superposition from black-box query access: we are given query access to a function \[ f(x)=\sum_{i=1}^n a_i\,σ_i(v_i^\top x), \] where each unit vector $v_i$ encodes a feature direction and $σ_i:\mathbb{R} \rightarrow \mathbb{R}$ is an arbitrary response function and our goal is to recover the $v_i$ and the function $f$. In learning-theoretic terms, superposition refers to the overcomplete regime, when the number of features is larger than the underlying dimension (i.e. $n > d$), which has proven especially challenging for typical algorithmic approaches. Our main result is an efficient query algorithm that, from noisy oracle access to $f$, identifies all feature directions whose responses are non-degenerate and reconstructs the function $f$. Crucially, our algorithm works in a significantly more general setting than all related prior results -- we allow for essentially arbitrary superpositions, only requiring that $v_i, v_j$ are not nearly identical for $i \neq j$, and general response functions $σ_i$. At a high level, our algorithm introduces an approach for searching in Fourier space by iteratively refining the search space to locate the hidden directions $v_i$.
☆ Hierarchical Neural Surfaces for 3D Mesh Compression
Implicit Neural Representations (INRs) have been demonstrated to achieve state-of-the-art compression of a broad range of modalities such as images, videos, 3D surfaces, and audio. Most studies have focused on building neural counterparts of traditional implicit representations of 3D geometries, such as signed distance functions. However, the triangle mesh-based representation of geometry remains the most widely used representation in the industry, while building INRs capable of generating them has been sparsely studied. In this paper, we present a method for building compact INRs of zero-genus 3D manifolds. Our method relies on creating a spherical parameterization of a given 3D mesh - mapping the surface of a mesh to that of a unit sphere - then constructing an INR that encodes the displacement vector field defined continuously on its surface that regenerates the original shape. The compactness of our representation can be attributed to its hierarchical structure, wherein it first recovers the coarse structure of the encoded surface before adding high-frequency details to it. Once the INR is computed, 3D meshes of arbitrary resolution/connectivity can be decoded from it. The decoding can be performed in real time while achieving a state-of-the-art trade-off between reconstruction quality and the size of the compressed representations.
☆ Dynamic Rank Reinforcement Learning for Adaptive Low-Rank Multi-Head Self Attention in Large Language Models
We propose Dynamic Rank Reinforcement Learning (DR-RL), a novel framework that adaptively optimizes the low-rank factorization of Multi-Head Self-Attention (MHSA) in Large Language Models (LLMs) through the integration of reinforcement learning and online matrix perturbation theory. While traditional low-rank approximations often rely on static rank assumptions--limiting their flexibility across diverse input contexts--our method dynamically selects ranks based on real-time sequence dynamics, layer-specific sensitivities, and hardware constraints. The core innovation lies in an RL agent that formulates rank selection as a sequential policy optimization problem, where the reward function strictly balances attention fidelity against computational latency. Crucially, we employ online matrix perturbation bounds to enable incremental rank updates, thereby avoiding the prohibitive cost of full decomposition during inference. Furthermore, the integration of a lightweight Transformer-based policy network and batched Singular Value Decomposition (SVD) operations ensures scalable deployment on modern GPU architectures. Experiments demonstrate that DR-RL maintains downstream accuracy statistically equivalent to full-rank attention while significantly reducing Floating Point Operations (FLOPs), particularly in long-sequence regimes (L > 4096). This work bridges the gap between adaptive efficiency and theoretical rigor in MHSA, offering a principled, mathematically grounded alternative to heuristic rank reduction techniques in resource-constrained deep learning. Source code and experiment logs are available at: https://github.com/canererden/DR_RL_Project
☆ Tracking Wildfire Assets with Commodity RFID and Gaussian Process Modeling
This paper presents a novel, cost-effective, and scalable approach to track numerous assets distributed in forested environments using commodity Radio Frequency Identification (RFID) targeting wildfire response applications. Commodity RFID systems suffer from poor tag localization when dispersed in forested environments due to signal attenuation, multi-path effects and environmental variability. Current methods to address this issue via fingerprinting rely on dispersing tags at known locations {\em a priori}. In this paper, we address the case when it is not possible to tag known locations and show that it is possible to localize tags to accuracies comparable to global positioning systems (GPS) without such a constraint. For this, we propose Gaussian Process to model various environments solely based on RF signal response signatures and without the aid of additional sensors such as global positioning GPS or cameras, and match an unknown RF to the closest match in a model dictionary. We utilize a new weighted log-likelihood method to associate an unknown environment with the closest environment in a dictionary of previously modeled environments, which is a crucial step in being able to use our approach. Our results show that it is possible to achieve localization accuracies of the order of GPS, but with passive commodity RFID, which will allow the tracking of dozens of wildfire assets within the vicinity of mobile readers at-a-time simultaneously, does not require known positions to be tagged {\em a priori}, and can achieve localization at a fraction of the cost compared to GPS.
☆ Governance by Evidence: Regulated Predictors in Decision-Tree Models
Decision-tree methods are widely used on structured tabular data and are valued for interpretability across many sectors. However, published studies often list the predictors they use (for example age, diagnosis codes, location). Privacy laws increasingly regulate such data types. We use published decision-tree papers as a proxy for real-world use of legally governed data. We compile a corpus of decision-tree studies and assign each reported predictor to a regulated data category (for example health data, biometric identifiers, children's data, financial attributes, location traces, and government IDs). We then link each category to specific excerpts in European Union and United States privacy laws. We find that many reported predictors fall into regulated categories, with the largest shares in healthcare and clear differences across industries. We analyze prevalence, industry composition, and temporal patterns, and summarize regulation-aligned timing using each framework's reference year. Our evidence supports privacy-preserving methods and governance checks, and can inform ML practice beyond decision trees.
☆ AIE4ML: An End-to-End Framework for Compiling Neural Networks for the Next Generation of AMD AI Engines
Efficient AI inference on AMD's Versal AI Engine (AIE) is challenging due to tightly coupled VLIW execution, explicit datapaths, and local memory management. Prior work focused on first-generation AIE kernel optimizations, without tackling full neural network execution across the 2D array. In this work, we present AIE4ML, the first comprehensive framework for converting AI models automatically into optimized firmware targeting the AIE-ML generation devices, also with forward compatibility for the newer AIE-MLv2 architecture. At the single-kernel level, we attain performance close to the architectural peak. At the graph and system levels, we provide a structured parallelization method that can scale across the 2D AIE-ML fabric and exploit its dedicated memory tiles to stay entirely on-chip throughout the model execution. As a demonstration, we designed a generalized and highly efficient linear-layer implementation with intrinsic support for fused bias addition and ReLU activation. Also, as our framework necessitates the generation of multi-layer implementations, our approach systematically derives deterministic, compact, and topology-optimized placements tailored to the physical 2D grid of the device through a novel graph placement and search algorithm. Finally, the framework seamlessly accepts quantized models imported from high-level tools such as hls4ml or PyTorch while preserving bit-exactness. In layer scaling benchmarks, we achieve up to 98.6% efficiency relative to the single-kernel baseline, utilizing 296 of 304 AIE tiles (97.4%) of the device with entirely on-chip data movement. With evaluations across real-world model topologies, we demonstrate that AIE4ML delivers GPU-class throughput under microsecond latency constraints, making it a practical companion for ultra-low-latency environments such as trigger systems in particle physics experiments.
☆ SALVE: Sparse Autoencoder-Latent Vector Editing for Mechanistic Control of Neural Networks
Deep neural networks achieve impressive performance but remain difficult to interpret and control. We present SALVE (Sparse Autoencoder-Latent Vector Editing), a unified "discover, validate, and control" framework that bridges mechanistic interpretability and model editing. Using an $\ell_1$-regularized autoencoder, we learn a sparse, model-native feature basis without supervision. We validate these features with Grad-FAM, a feature-level saliency mapping method that visually grounds latent features in input data. Leveraging the autoencoder's structure, we perform precise and permanent weight-space interventions, enabling continuous modulation of both class-defining and cross-class features. We further derive a critical suppression threshold, $α_{crit}$, quantifying each class's reliance on its dominant feature, supporting fine-grained robustness diagnostics. Our approach is validated on both convolutional (ResNet-18) and transformer-based (ViT-B/16) models, demonstrating consistent, interpretable control over their behavior. This work contributes a principled methodology for turning feature discovery into actionable model edits, advancing the development of transparent and controllable AI systems.
comment: Under review
☆ In-Context Semi-Supervised Learning
There has been significant recent interest in understanding the capacity of Transformers for in-context learning (ICL), yet most theory focuses on supervised settings with explicitly labeled pairs. In practice, Transformers often perform well even when labels are sparse or absent, suggesting crucial structure within unlabeled contextual demonstrations. We introduce and study in-context semi-supervised learning (IC-SSL), where a small set of labeled examples is accompanied by many unlabeled points, and show that Transformers can leverage the unlabeled context to learn a robust, context-dependent representation. This representation enables accurate predictions and markedly improves performance in low-label regimes, offering foundational insights into how Transformers exploit unlabeled context for representation learning within the ICL framework.
☆ BarcodeMamba+: Advancing State-Space Models for Fungal Biodiversity Research NeurIPS 2025
Accurate taxonomic classification from DNA barcodes is a cornerstone of global biodiversity monitoring, yet fungi present extreme challenges due to sparse labelling and long-tailed taxa distributions. Conventional supervised learning methods often falter in this domain, struggling to generalize to unseen species and to capture the hierarchical nature of the data. To address these limitations, we introduce BarcodeMamba+, a foundation model for fungal barcode classification built on a powerful and efficient state-space model architecture. We employ a pretrain and fine-tune paradigm, which utilizes partially labelled data and we demonstrate this is substantially more effective than traditional fully-supervised methods in this data-sparse environment. During fine-tuning, we systematically integrate and evaluate a suite of enhancements--including hierarchical label smoothing, a weighted loss function, and a multi-head output layer from MycoAI--to specifically tackle the challenges of fungal taxonomy. Our experiments show that each of these components yields significant performance gains. On a challenging fungal classification benchmark with distinct taxonomic distribution shifts from the broad training set, our final model outperforms a range of existing methods across all taxonomic levels. Our work provides a powerful new tool for genomics-based biodiversity research and establishes an effective and scalable training paradigm for this challenging domain. Our code is publicly available at https://github.com/bioscan-ml/BarcodeMamba.
comment: 11 pages, accepted at the 3rd Workshop on Imageomics: Discovering Biological Knowledge from Images Using AI (NeurIPS 2025)
☆ DSO: Direct Steering Optimization for Bias Mitigation
Generative models are often deployed to make decisions on behalf of users, such as vision-language models (VLMs) identifying which person in a room is a doctor to help visually impaired individuals. Yet, VLM decisions are influenced by the perceived demographic attributes of people in the input, which can lead to biased outcomes like failing to identify women as doctors. Moreover, when reducing bias leads to performance loss, users may have varying needs for balancing bias mitigation with overall model capabilities, highlighting the demand for methods that enable controllable bias reduction during inference. Activation steering is a popular approach for inference-time controllability that has shown potential in inducing safer behavior in large language models (LLMs). However, we observe that current steering methods struggle to correct biases, where equiprobable outcomes across demographic groups are required. To address this, we propose Direct Steering Optimization (DSO) which uses reinforcement learning to find linear transformations for steering activations, tailored to mitigate bias while maintaining control over model performance. We demonstrate that DSO achieves state-of-the-art trade-off between fairness and capabilities on both VLMs and LLMs, while offering practitioners inference-time control over the trade-off. Overall, our work highlights the benefit of designing steering strategies that are directly optimized to control model behavior, providing more effective bias intervention than methods that rely on pre-defined heuristics for controllability.
☆ Social Story Frames: Contextual Reasoning about Narrative Intent and Reception
Reading stories evokes rich interpretive, affective, and evaluative responses, such as inferences about narrative intent or judgments about characters. Yet, computational models of reader response are limited, preventing nuanced analyses. To address this gap, we introduce SocialStoryFrames, a formalism for distilling plausible inferences about reader response, such as perceived author intent, explanatory and predictive reasoning, affective responses, and value judgments, using conversational context and a taxonomy grounded in narrative theory, linguistic pragmatics, and psychology. We develop two models, SSF-Generator and SSF-Classifier, validated through human surveys (N=382 participants) and expert annotations, respectively. We conduct pilot analyses to showcase the utility of the formalism for studying storytelling at scale. Specifically, applying our models to SSF-Corpus, a curated dataset of 6,140 social media stories from diverse contexts, we characterize the frequency and interdependence of storytelling intents, and we compare and contrast narrative practices (and their diversity) across communities. By linking fine-grained, context-sensitive modeling with a generic taxonomy of reader responses, SocialStoryFrames enable new research into storytelling in online communities.
comment: Presented at IC2S2 2025; Under Review (ARR Oct 2025)
☆ A Unification of Discrete, Gaussian, and Simplicial Diffusion
To model discrete sequences such as DNA, proteins, and language using diffusion, practitioners must choose between three major methods: diffusion in discrete space, Gaussian diffusion in Euclidean space, or diffusion on the simplex. Despite their shared goal, these models have disparate algorithms, theoretical structures, and tradeoffs: discrete diffusion has the most natural domain, Gaussian diffusion has more mature algorithms, and diffusion on the simplex in principle combines the strengths of the other two but in practice suffers from a numerically unstable stochastic processes. Ideally we could see each of these models as instances of the same underlying framework, and enable practitioners to switch between models for downstream applications. However previous theories have only considered connections in special cases. Here we build a theory unifying all three methods of discrete diffusion as different parameterizations of the same underlying process: the Wright-Fisher population genetics model. In particular, we find simplicial and Gaussian diffusion as two large-population limits. Our theory formally connects the likelihoods and hyperparameters of these models and leverages decades of mathematical genetics literature to unlock stable simplicial diffusion. Finally, we relieve the practitioner of balancing model trade-offs by demonstrating it is possible to train a single model that can perform diffusion in any of these three domains at test time. Our experiments show that Wright-Fisher simplicial diffusion is more stable and outperforms previous simplicial diffusion models on conditional DNA generation. We also show that we can train models on multiple domains at once that are competitive with models trained on any individual domain.
☆ Introduction to Symbolic Regression in the Physical Sciences
Symbolic regression (SR) has emerged as a powerful method for uncovering interpretable mathematical relationships from data, offering a novel route to both scientific discovery and efficient empirical modelling. This article introduces the Special Issue on Symbolic Regression for the Physical Sciences, motivated by the Royal Society discussion meeting held in April 2025. The contributions collected here span applications from automated equation discovery and emergent-phenomena modelling to the construction of compact emulators for computationally expensive simulations. The introductory review outlines the conceptual foundations of SR, contrasts it with conventional regression approaches, and surveys its main use cases in the physical sciences, including the derivation of effective theories, empirical functional forms and surrogate models. We summarise methodological considerations such as search-space design, operator selection, complexity control, feature selection, and integration with modern AI approaches. We also highlight ongoing challenges, including scalability, robustness to noise, overfitting and computational complexity. Finally we emphasise emerging directions, particularly the incorporation of symmetry constraints, asymptotic behaviour and other theoretical information. Taken together, the papers in this Special Issue illustrate the accelerating progress of SR and its growing relevance across the physical sciences.
comment: 8 pages, no figures; accepted in Royal Society Philosophical Transactions A special issue "Symbolic regression in the physical sciences"
☆ Boosting t-SNE Efficiency for Sequencing Data: Insights from Kernel Selection
Dimensionality reduction techniques are essential for visualizing and analyzing high-dimensional biological sequencing data. t-distributed Stochastic Neighbor Embedding (t-SNE) is widely used for this purpose, traditionally employing the Gaussian kernel to compute pairwise similarities. However, the Gaussian kernel's lack of data-dependence and computational overhead limit its scalability and effectiveness for categorical biological sequences. Recent work proposed the isolation kernel as an alternative, yet it may not optimally capture sequence similarities. In this study, we comprehensively evaluate nine different kernel functions for t-SNE applied to molecular sequences, using three embedding methods: One-Hot Encoding, Spike2Vec, and minimizers. Through both subjective visualization and objective metrics (including neighborhood preservation scores), we demonstrate that the cosine similarity kernel in general outperforms other kernels, including Gaussian and isolation kernels, achieving superior runtime efficiency and better preservation of pairwise distances in low-dimensional space. We further validate our findings through extensive classification and clustering experiments across six diverse biological datasets (Spike7k, Host, ShortRead, Rabies, Genome, and Breast Cancer), employing multiple machine learning algorithms and evaluation metrics. Our results show that kernel selection significantly impacts not only visualization quality but also downstream analytical tasks, with the cosine similarity kernel providing the most robust performance across different data types and embedding strategies, making it particularly suitable for large-scale biological sequence analysis.
☆ Secure AI-Driven Super-Resolution for Real-Time Mixed Reality Applications
Immersive formats such as 360° and 6DoF point cloud videos require high bandwidth and low latency, posing challenges for real-time AR/VR streaming. This work focuses on reducing bandwidth consumption and encryption/decryption delay, two key contributors to overall latency. We design a system that downsamples point cloud content at the origin server and applies partial encryption. At the client, the content is decrypted and upscaled using an ML-based super-resolution model. Our evaluation demonstrates a nearly linear reduction in bandwidth/latency, and encryption/decryption overhead with lower downsampling resolutions, while the super-resolution model effectively reconstructs the original full-resolution point clouds with minimal error and modest inference time.
♻ ☆ Improving Recursive Transformers with Mixture of LoRAs
Parameter sharing in recursive transformers reduces model size but collapses layer-wise expressivity. We propose Mixture of LoRAs (MoL), a lightweight conditional-computation mechanism that inserts Low-Rank Adaptation (LoRA) experts inside a shared feed-forward network (FFN). MoL enables token-conditional weight-space modulation of the shared FFN without untying backbone parameters, unlike prior approaches that add fixed or externally attached adapters. We pretrain a modernised recursive architecture, ModernALBERT, integrating rotary embeddings, GeGLU, FlashAttention, and a distillation-based initialisation. Across GLUE, SQuAD-v2, and BEIR, ModernALBERT (50M--120M) achieves state-of-the-art performance among compact models and surpasses larger fully parameterised baselines. We also propose an expert-merging procedure that compresses MoL into a single adapter at inference while preserving accuracy, enabling efficient deployment. Our results show that conditional weight-space modulation effectively restores the expressivity lost under aggressive parameter sharing in recursive transformers.
♻ ☆ From Trace to Line: LLM Agent for Real-World OSS Vulnerability Localization
Large language models show promise for vulnerability discovery, yet prevailing methods inspect code in isolation, struggle with long contexts, and focus on coarse function or file level detections which offers limited actionable guidance to engineers who need precise line-level localization and targeted patches in real-world software development. We present T2L-Agent (Trace-to-Line Agent), a project-level, end-to-end framework that plans its own analysis and progressively narrows scope from modules to exact vulnerable lines. T2L-Agent couples multi-round feedback with an Agentic Trace Analyzer (ATA) that fuses run-time evidence such as crash points, stack traces, and coverage deltas with AST-based code chunking, enabling iterative refinement beyond single pass predictions and translating symptoms into actionable, line-level diagnoses. To benchmark line-level vulnerability discovery, we introduce T2L-ARVO, a diverse, expert-verified 50-case benchmark spanning five crash families and real-world projects. T2L-ARVO is specifically designed to support both coarse-grained detection and fine-grained localization, enabling rigorous evaluation of systems that aim to move beyond file-level predictions. On T2L-ARVO, T2L-Agent achieves up to 58.0% detection and 54.8% line-level localization, substantially outperforming baselines. Together, the framework and benchmark push LLM-based vulnerability detection from coarse identification toward deployable, robust, precision diagnostics that reduce noise and accelerate patching in open-source software workflows.
♻ ☆ tensorflow-riemopt: A Library for Optimization on Riemannian Manifolds
This paper presents tensorflow-riemopt, a Python library for geometric machine learning in TensorFlow. The library provides efficient implementations of neural network layers with manifold-constrained parameters, geometric operations on Riemannian manifolds, and stochastic optimization algorithms for non-Euclidean spaces. Designed for integration with TensorFlow Extended, it supports both research prototyping and production deployment of machine learning pipelines. The code and documentation are distributed under the MIT license and available at https://github.com/master/tensorflow-riemopt
Structure-Aligned Protein Language Model
Protein language models (pLMs) pre-trained on vast protein sequence databases excel at various downstream tasks but often lack the structural knowledge essential for some biological applications. To address this, we introduce a method to enrich pLMs with structural knowledge by leveraging pre-trained protein graph neural networks (pGNNs). First, a latent-level contrastive learning task aligns residue representations from pLMs with those from pGNNs across multiple proteins, injecting inter-protein structural information. Additionally, a physical-level task integrates intra-protein information by training pLMs to predict structure tokens. Together, the proposed dual-task framework effectively incorporates both inter- and intra-protein structural knowledge into pLMs. Given the variability in the quality of protein structures in PDB, we further introduce a residue loss selection module that uses a small model trained on high-quality structures to select reliable yet challenging residue losses for the pLM to learn. Applying our structure alignment method as a simple, lightweight post-training step to the state-of-the-art ESM2 and AMPLIFY yields notable performance gains. These improvements are consistent across a wide range of tasks, including substantial gains in deep mutational scanning (DMS) fitness prediction and a 59% increase in P@L for ESM2 650M contact prediction on CASP16. Furthermore, we demonstrate that these performance gains are robust, scaling with model sizes from 8M to 650M and extending to different downstream tasks.
comment: 28 pages, 16 figures, 9 tables
♻ ☆ Scalable Temporal Anomaly Causality Discovery in Large Systems: Achieving Computational Efficiency with Binary Anomaly Flag Data
Extracting anomaly causality facilitates diagnostics once monitoring systems detect system faults. Identifying anomaly causes in large systems involves investigating a broader set of monitoring variables across multiple subsystems. However, learning graphical causal models (GCMs) comes with a significant computational burden that restrains the applicability of most existing methods in real-time and large-scale deployments. In addition, modern monitoring applications for large systems often generate large amounts of binary alarm flags, and the distinct characteristics of binary anomaly data -- the meaning of state transition and data sparsity -- challenge existing causality learning mechanisms. This study proposes an anomaly causal discovery approach (\textsc{AnomalyCD}), addressing the accuracy and computational challenges of generating GCMs from temporal binary flag datasets. The \textsc{AnomalyCD} presents several strategies, such as anomaly data-aware causality testing, sparse data and prior link compression, and edge pruning adjustment approaches. We validate the performance of of the approach on two datasets: monitoring sensor data of the readout-box system of the Compact Muon Solenoid experiment at CERN, and a public data set for information technology monitoring. The results on temporal GCMs demonstrate a considerable reduction of computation overhead and a moderate enhancement of accuracy on the binary anomaly data sets. Source code: https://github.com/muleina/AnomalyCD .
comment: 34 pages, 17 figures, 8 tables
♻ ☆ Learning without training: The implicit dynamics of in-context learning
One of the most striking features of Large Language Models (LLMs) is their ability to learn in-context. Namely at inference time an LLM is able to learn new patterns without any additional weight update when these patterns are presented in the form of examples in the prompt, even if these patterns were not seen during training. The mechanisms through which this can happen are still largely unknown. In this work, we show that the stacking of a self-attention layer with an MLP, allows the transformer block to implicitly modify the weights of the MLP layer according to the context. We argue through theory and experimentation that this simple mechanism may be the reason why LLMs can learn in-context and not only during training. Specifically, we show how a transformer block implicitly transforms a context into a low-rank weight-update of its MLP layer.
♻ ☆ Deterministic Global Optimization of the Acquisition Function in Bayesian Optimization: To Do or Not To Do?
Bayesian Optimization (BO) with Gaussian Processes relies on optimizing an acquisition function to determine sampling. We investigate the advantages and disadvantages of using a deterministic global solver (MAiNGO) compared to conventional local and stochastic global solvers (L-BFGS-B and multi-start, respectively) for the optimization of the acquisition function. For CPU efficiency, we set a time limit for MAiNGO, taking the best point as optimal. We perform repeated numerical experiments, initially using the Muller-Brown potential as a benchmark function, utilizing the lower confidence bound acquisition function; we further validate our findings with three alternative benchmark functions. Statistical analysis reveals that when the acquisition function is more exploitative (as opposed to exploratory), BO with MAiNGO converges in fewer iterations than with the local solvers. However, when the dataset lacks diversity, or when the acquisition function is overly exploitative, BO with MAiNGO, compared to the local solvers, is more likely to converge to a local rather than a global ly near-optimal solution of the black-box function. L-BFGS-B and multi-start mitigate this risk in BO by introducing stochasticity in the selection of the next sampling point, which enhances the exploration of uncharted regions in the search space and reduces dependence on acquisition function hyperparameters. Ultimately, suboptimal optimization of poorly chosen acquisition functions may be preferable to their optimal solution. When the acquisition function is more exploratory, BO with MAiNGO, multi-start, and L-BFGS-B achieve comparable probabilities of convergence to a globally near-optimal solution (although BO with MAiNGO may require more iterations to converge under these conditions).
comment: 39 pages, 8 figures, 11 tables
♻ ☆ Variational Continual Test-Time Adaptation
Continual Test-Time Adaptation (CTTA) task investigates effective domain adaptation under the scenario of continuous domain shifts during testing time. Due to the utilization of solely unlabeled samples, there exists significant uncertainty in model updates, leading CTTA to encounter severe error accumulation issues. In this paper, we introduce VCoTTA, a variational Bayesian approach to measure uncertainties in CTTA. At the source stage, we transform a pretrained deterministic model into a Bayesian Neural Network (BNN) via a variational warm-up strategy, injecting uncertainties into the model. During the testing time, we employ a mean-teacher update strategy using variational inference for the student model and exponential moving average for the teacher model. Our novel approach updates the student model by combining priors from both the source and teacher models. The evidence lower bound is formulated as the cross-entropy between the student and teacher models, along with the Kullback-Leibler (KL) divergence of the prior mixture. Experimental results on three datasets demonstrate the method's effectiveness in mitigating error accumulation within the CTTA framework.
♻ ☆ Natural Variational Annealing for Multimodal Optimization
We introduce a new multimodal optimization approach called Natural Variational Annealing (NVA) that combines the strengths of three foundational concepts to simultaneously search for multiple global and local modes of black-box nonconvex objectives. First, it implements a simultaneous search by using variational posteriors, such as, mixtures of Gaussians. Second, it applies annealing to gradually trade off exploration for exploitation. Finally, it learns the variational search distribution using natural-gradient learning where updates resemble well-known and easy-to-implement algorithms. The three concepts come together in NVA giving rise to new algorithms and also allowing us to incorporate "fitness shaping", a core concept from evolutionary algorithms. We assess the quality of search on simulations and compare them to methods using gradient descent and evolution strategies. We also provide an application to a real-world inverse problem in planetary science.
♻ ☆ Taming Data Challenges in ML-based Security Tasks: Lessons from Integrating Generative AI
Machine learning-based supervised classifiers are widely used for security tasks, and their improvement has been largely focused on algorithmic advancements. We argue that data challenges that negatively impact the performance of these classifiers have received limited attention. We address the following research question: Can developments in Generative AI (GenAI) address these data challenges and improve classifier performance? We propose augmenting training datasets with synthetic data generated using GenAI techniques to improve classifier generalization. We evaluate this approach across 7 diverse security tasks using 6 state-of-the-art GenAI methods and introduce a novel GenAI scheme called Nimai that enables highly controlled data synthesis. We find that GenAI techniques can significantly improve the performance of security classifiers, achieving improvements of up to 32.6% even in severely data-constrained settings (only ~180 training samples). Furthermore, we demonstrate that GenAI can facilitate rapid adaptation to concept drift post-deployment, requiring minimal labeling in the adjustment process. Despite successes, our study finds that some GenAI schemes struggle to initialize (train and produce data) on certain security tasks. We also identify characteristics of specific tasks, such as noisy labels, overlapping class distributions, and sparse feature vectors, which hinder performance boost using GenAI. We believe that our study will drive the development of future GenAI tools designed for security tasks.
♻ ☆ A Multi-Agent LLM Defense Pipeline Against Prompt Injection Attacks
Prompt injection attacks represent a major vulnerability in Large Language Model (LLM) deployments, where malicious instructions embedded in user inputs can override system prompts and induce unintended behaviors. This paper presents a novel multi-agent defense framework that employs specialized LLM agents in coordinated pipelines to detect and neutralize prompt injection attacks in real-time. We evaluate our approach using two distinct architectures: a sequential chain-of-agents pipeline and a hierarchical coordinator-based system. Our comprehensive evaluation on 55 unique prompt injection attacks, grouped into 8 categories and totaling 400 attack instances across two LLM platforms (ChatGLM and Llama2), demonstrates significant security improvements. Without defense mechanisms, baseline Attack Success Rates (ASR) reached 30% for ChatGLM and 20% for Llama2. Our multi-agent pipeline achieved 100% mitigation, reducing ASR to 0% across all tested scenarios. The framework demonstrates robustness across multiple attack categories including direct overrides, code execution attempts, data exfiltration, and obfuscation techniques, while maintaining system functionality for legitimate queries.
comment: Accepted at the 11th IEEE WIECON-ECE 2025
♻ ☆ Geopolitics, Geoeconomics and Risk: A Machine Learning Approach
We introduce a novel high-frequency daily panel dataset of both markets and news-based indicators -- including Geopolitical Risk, Economic Policy Uncertainty, Trade Policy Uncertainty, and Political Sentiment -- for 42 countries across both emerging and developed markets. Using this dataset, we study how sentiment dynamics shape sovereign risk, measured by Credit Default Swap (CDS) spreads, and evaluate their forecasting value relative to traditional drivers such as global monetary policy and market volatility. Our horse-race analysis of forecasting models demonstrates that incorporating news-based indicators significantly enhances predictive accuracy and enriches the analysis, with non-linear machine learning methods -- particularly Random Forests -- delivering the largest gains. Our analysis reveals that while global financial variables remain the dominant drivers of sovereign risk, geopolitical risk and economic policy uncertainty also play a meaningful role. Crucially, their effects are amplified through non-linear interactions with global financial conditions. Finally, we document pronounced regional heterogeneity, as certain asset classes and emerging markets exhibit heightened sensitivity to shocks in policy rates, global financial volatility, and geopolitical risk.
comment: This new version has an important contribution by Pablo Saborido who is now a co author of the paper
♻ ☆ Sparse Autoencoders Make Audio Foundation Models more Explainable
Audio pretrained models are widely employed to solve various tasks in speech processing, sound event detection, or music information retrieval. However, the representations learned by these models are unclear, and their analysis mainly restricts to linear probing of the hidden representations. In this work, we explore the use of Sparse Autoencoders (SAEs) to analyze the hidden representations of pretrained models, focusing on a case study in singing technique classification. We first demonstrate that SAEs retain both information about the original representations and class labels, enabling their internal structure to provide insights into self-supervised learning systems. Furthermore, we show that SAEs enhance the disentanglement of vocal attributes, establishing them as an effective tool for identifying the underlying factors encoded in the representations.
comment: 5 pages, 5 figures, 1 table, submitted to ICASSP 2026
♻ ☆ Geometry and Optimization of Shallow Polynomial Networks
We study shallow neural networks with monomial activations and output dimension one. The function space for these models can be identified with a set of symmetric tensors with bounded rank. We describe general features of these networks, focusing on the relationship between width and optimization. We then consider teacher-student problems, which can be viewed as problems of low-rank tensor approximation with respect to non-standard inner products that are induced by the data distribution. In this setting, we introduce a teacher-metric data discriminant which encodes the qualitative behavior of the optimization as a function of the training data distribution. Finally, we focus on networks with quadratic activations, presenting an in-depth analysis of the optimization landscape. In particular, we present a variation of the Eckart-Young Theorem characterizing all critical points and their Hessian signatures for teacher-student problems with quadratic networks and Gaussian training data.
comment: 39 pages, 3 figures; accepted to SIAM Journal on Applied Algebra and Geometry (SIAGA)
♻ ☆ Robust Tensor Principal Component Analysis: Exact Recovery via Deterministic Model
Tensor, also known as multi-dimensional array, arises from many applications in signal processing, manufacturing processes, healthcare, among others. As one of the most popular methods in tensor literature, Robust tensor principal component analysis (RTPCA) is a very effective tool to extract the low rank and sparse components in tensors. In this paper, a new method to analyze RTPCA is proposed based on the recently developed tensor-tensor product and tensor singular value decomposition (t-SVD). Specifically, it aims to solve a convex optimization problem whose objective function is a weighted combination of the tensor nuclear norm and the l1-norm. In most of literature of RTPCA, the exact recovery is built on the tensor incoherence conditions and the assumption of a uniform model on the sparse support. Unlike this conventional way, in this paper, without any assumption of randomness, the exact recovery can be achieved in a completely deterministic fashion by characterizing the tensor rank-sparsity incoherence, which is an uncertainty principle between the low-rank tensor spaces and the pattern of sparse tensor.
♻ ☆ Scaling Behaviors of LLM Reinforcement Learning Post-Training: An Empirical Study in Mathematical Reasoning
While scaling laws for large language models (LLMs) during pre-training have been extensively studied, their behavior under reinforcement learning (RL) post-training remains largely unexplored. This paper presents a systematic empirical investigation of scaling behaviors in RL-based post-training, with a particular focus on mathematical reasoning. Based on a set of experiments across the full Qwen2.5 dense model series (0.5B to 72B), we characterize how model scale, data volume, and computational budget interact to shape performance. Our analysis leads to four key findings: 1.Larger models consistently exhibit superior learning efficiency on both compute and data metrics. 2.The relationship between test loss, compute, and data can be modeled by a predictive power-law which is robust across both base and instruction-tuned models. 3.Although larger models exhibit higher learning efficiency, the analytical learning efficiency term k(N) in the power-law reveals a latent saturation trend in learning efficiency as model size continues to increase. 4.In data-constrained regimes, repeated reuse of high-quality data proves highly effective, as final performance is primarily governed by the total number of optimization steps rather than the uniqueness of samples. Collectively, these results provide a principled foundation and practical guidelines for efficiently scaling the reasoning capabilities of LLMs through RL post-training.
comment: V2 version:27 pages, 14 figures
♻ ☆ Interpretable representation learning of quantum data enabled by probabilistic variational autoencoders
Interpretable machine learning is rapidly becoming a crucial tool for scientific discovery. Among existing approaches, variational autoencoders (VAEs) have shown promise in extracting the hidden physical features of some input data, with no supervision nor prior knowledge of the system at study. Yet, the ability of VAEs to create meaningful, interpretable representations relies on their accurate approximation of the underlying probability distribution of their input. When dealing with quantum data, VAEs must hence account for its intrinsic randomness and complex correlations. While VAEs have been previously applied to quantum data, they have often neglected its probabilistic nature, hindering the extraction of meaningful physical descriptors. Here, we demonstrate that two key modifications enable VAEs to learn physically meaningful latent representations: a decoder capable of faithfully reproduce quantum states and a probabilistic loss tailored to this task. Using benchmark quantum spin models, we identify regimes where standard methods fail while the representations learned by our approach remain meaningful and interpretable. Applied to experimental data from Rydberg atom arrays, the model autonomously uncovers the phase structure without access to prior labels, Hamiltonian details, or knowledge of relevant order parameters, highlighting its potential as an unsupervised and interpretable tool for the study of quantum systems.
comment: Main text 10 pages, total document 16 pages, 10 figures
♻ ☆ Bidirectional predictive coding
Predictive coding (PC) is an influential computational model of visual learning and inference in the brain. Classical PC was proposed as a top-down generative model, where the brain actively predicts upcoming visual inputs, and inference minimises the prediction errors. Recent studies have also shown that PC can be formulated as a discriminative model, where sensory inputs predict neural activities in a feedforward manner. However, experimental evidence suggests that the brain employs both generative and discriminative inference, while unidirectional PC models show degraded performance in tasks requiring bidirectional processing. In this work, we propose bidirectional PC (bPC), a PC model that incorporates both generative and discriminative inference while maintaining a biologically plausible circuit implementation. We show that bPC matches or outperforms unidirectional models in their specialised generative or discriminative tasks, by developing an energy landscape that simultaneously suits both tasks. We also demonstrate bPC's superior performance in two biologically relevant tasks including multimodal learning and inference with missing information, suggesting that bPC resembles biological visual inference more closely.
♻ ☆ DiffEM: Learning from Corrupted Data with Diffusion Models via Expectation Maximization
Diffusion models have emerged as powerful generative priors for high-dimensional inverse problems, yet learning them when only corrupted or noisy observations are available remains challenging. In this work, we propose a new method for training diffusion models with Expectation-Maximization (EM) from corrupted data. Our proposed method, DiffEM, utilizes conditional diffusion models to reconstruct clean data from observations in the E-step, and then uses the reconstructed data to refine the conditional diffusion model in the M-step. Theoretically, we provide monotonic convergence guarantees for the DiffEM iteration, assuming appropriate statistical conditions. We demonstrate the effectiveness of our approach through experiments on various image reconstruction tasks.
♻ ☆ Explainable AI for Classifying UTI Risk Groups Using a Real-World Linked EHR and Pathology Lab Dataset AAAI
The use of machine learning and AI on electronic health records (EHRs) holds substantial potential for clinical insight. However, this approach faces challenges due to data heterogeneity, sparsity, temporal misalignment, and limited labeled outcomes. In this context, we leverage a linked EHR dataset of approximately one million de-identified individuals from Bristol, North Somerset, and South Gloucestershire, UK, to characterize urinary tract infections (UTIs). We implemented a data pre-processing and curation pipeline that transforms the raw EHR data into a structured format suitable for developing predictive models focused on data fairness, accountability and transparency. Given the limited availability and biases of ground truth UTI outcomes, we introduce a UTI risk estimation framework informed by clinical expertise to estimate UTI risk across individual patient timelines. Pairwise XGBoost models are trained using this framework to differentiate UTI risk categories with explainable AI techniques applied to identify key predictors and support interpretability. Our findings reveal differences in clinical and demographic predictors across risk groups. While this study highlights the potential of AI-driven insights to support UTI clinical decision-making, further investigation of patient sub-strata and extensive validation are needed to ensure robustness and applicability in clinical practice.
comment: Peer-reviewed; accepted at Health Intelligence (W3PHIAI-25) Workshop, AAAI Conference 2025 (to appear in Studies in Computational Intelligence, Springer/Nature)
♻ ☆ Physics-Informed Time-Integrated DeepONet: Temporal Tangent Space Operator Learning for High-Accuracy Inference
Accurately modeling and inferring solutions to time-dependent partial differential equations (PDEs) over extended horizons remains a core challenge in scientific machine learning. Traditional full rollout (FR) methods, which predict entire trajectories in one pass, often fail to capture the causal dependencies and generalize poorly outside the training time horizon. Autoregressive (AR) approaches, evolving the system step by step, suffer from error accumulation, limiting long-term accuracy. These shortcomings limit the long-term accuracy and reliability of both strategies. To address these issues, we introduce the Physics-Informed Time-Integrated Deep Operator Network (PITI-DeepONet), a dual-output architecture trained via fully physics-informed or hybrid physics- and data-driven objectives to ensure stable, accurate long-term evolution well beyond the training horizon. Instead of forecasting future states, the network learns the time-derivative operator from the current state, integrating it using classical time-stepping schemes to advance the solution in time. Additionally, the framework can leverage residual monitoring during inference to estimate prediction quality and detect when the system transitions outside the training domain. Applied to benchmark problems, PITI-DeepONet shows improved accuracy over extended inference time horizons when compared to traditional methods. Mean relative $\mathcal{L}_2$ errors reduced by 84% (vs. FR) and 79% (vs. AR) for the one-dimensional heat equation; by 87% (vs. FR) and 98% (vs. AR) for the one-dimensional Burgers equation; and by 42% (vs. FR) and 89% (vs. AR) for the two-dimensional Allen-Cahn equation. By moving beyond classic FR and AR schemes, PITI-DeepONet paves the way for more reliable, long-term integration of complex, time-dependent PDEs.
comment: 17 pages, 16 figures, 4 tables
♻ ☆ Hierarchical Persistence Velocity for Network Anomaly Detection: Theory and Applications to Cryptocurrency Markets
We introduce the Overlap-Weighted Hierarchical Normalized Persistence Velocity (OW-HNPV), a novel topological data analysis method for detecting anomalies in time-varying networks. Unlike existing methods that measure cumulative topological presence, we introduce the first velocity-based perspective on persistence diagrams, measuring the rate at which features appear and disappear, automatically downweighting noise through overlap-based weighting. We also prove that OW-HNPV is mathematically stable. It behaves in a controlled, predictable way, even when comparing persistence diagrams from networks with different feature types. Applied to Ethereum transaction networks (May 2017-May 2018), OW-HNPV demonstrates superior performance for cryptocurrency anomaly detection, achieving up to 10.4% AUC gain over baseline models for 7-day price movement predictions. Compared with established methods, including Vector of Averaged Bettis (VAB), persistence landscapes, and persistence images, velocity-based summaries excel at medium- to long-range forecasting (4-7 days), with OW-HNPV providing the most consistent and stable performance across prediction horizons. Our results show that modeling topological velocity is crucial for detecting structural anomalies in dynamic networks.
♻ ☆ BubbleOKAN: A Physics-Informed Interpretable Neural Operator for High-Frequency Bubble Dynamics
In this work, we employ physics-informed neural operators to map pressure profiles from an input function space to the corresponding bubble radius responses. Our approach employs a two-step DeepONet architecture. To address the intrinsic spectral bias of deep learning models, our model incorporates the Rowdy adaptive activation function, enhancing the representation of high-frequency features. Moreover, we introduce the Kolmogorov-Arnold network (KAN) based two-step DeepOKAN model, which enhances interpretability (often lacking in conventional multilayer perceptron architectures) while efficiently capturing high-frequency bubble dynamics without explicit utilization of activation functions in any form. We particularly investigate the use of spline basis functions in combination with radial basis functions (RBF) within our architecture, as they demonstrate superior performance in constructing a universal basis for approximating high-frequency bubble dynamics compared to alternative formulations. Furthermore, we emphasize on the performance bottleneck of RBF while learning the high frequency bubble dynamics and showcase the advantage of using spline basis function for the trunk network in overcoming this inherent spectral bias. The model is systematically evaluated across three representative scenarios: (1) bubble dynamics governed by the Rayleigh-Plesset equation with a single initial radius, (2) bubble dynamics governed by the Keller-Miksis equation with a single initial radius, and (3) Keller-Miksis dynamics with multiple initial radii. We also compare our results with state-of-the-art neural operators, including Fourier Neural Operators, Wavelet Neural Operators, OFormer, and Convolutional Neural Operators. Our findings demonstrate that the two-step DeepOKAN accurately captures both low- and high-frequency behaviors, and offers a promising alternative to conventional numerical solvers.
comment: 36 pages, 21 figures
♻ ☆ Exact Verification of Graph Neural Networks with Incremental Constraint Solving
Graph neural networks (GNNs) are increasingly employed in high-stakes applications, such as fraud detection or healthcare, but are susceptible to adversarial attacks. A number of techniques have been proposed to provide adversarial robustness guarantees, but support for commonly used aggregation functions in message-passing GNNs is lacking. In this paper, we develop an exact (sound and complete) verification method for GNNs to compute guarantees against attribute and structural perturbations that involve edge addition or deletion, subject to budget constraints. Our method employs constraint solving with bound tightening, and iteratively solves a sequence of relaxed constraint satisfaction problems while relying on incremental solving capabilities of solvers to improve efficiency. We implement GNNev, a versatile exact verifier for message-passing neural networks, which supports three aggregation functions, sum, max and mean, with the latter two considered here for the first time. Extensive experimental evaluation of GNNev on real-world fraud datasets (Amazon and Yelp) and biochemical datasets (MUTAG and ENZYMES) demonstrates its usability and effectiveness, as well as superior performance for node classification and competitiveness on graph classification compared to existing exact verification tools on sum-aggregated GNNs.
♻ ☆ Dynamical stability for dense patterns in discrete attractor neural networks
Neural networks storing multiple discrete attractors are canonical models of biological memory. Previously, the dynamical stability of such networks could only be guaranteed under highly restrictive conditions. Here, we derive a theory of the local stability of discrete fixed points in a broad class of networks with graded neural activities and in the presence of noise. By directly analyzing the bulk and the outliers of the Jacobian spectrum, we show that all fixed points are stable below a critical load that is distinct from the classical \textit{critical capacity} and depends on the statistics of neural activities in the fixed points as well as the single-neuron activation function. Our analysis highlights the computational benefits of threshold-linear activation and sparse-like patterns.
♻ ☆ HI-SQL: Optimizing Text-to-SQL Systems through Dynamic Hint Integration
Text-to-SQL generation bridges the gap between natural language and databases, enabling users to query data without requiring SQL expertise. While large language models (LLMs) have significantly advanced the field, challenges remain in handling complex queries that involve multi-table joins, nested conditions, and intricate operations. Existing methods often rely on multi-step pipelines that incur high computational costs, increase latency, and are prone to error propagation. To address these limitations, we propose HI-SQL, a pipeline that incorporates a novel hint generation mechanism utilizing historical query logs to guide SQL generation. By analyzing prior queries, our method generates contextual hints that focus on handling the complexities of multi-table and nested operations. These hints are seamlessly integrated into the SQL generation process, eliminating the need for costly multi-step approaches and reducing reliance on human-crafted prompts. Experimental evaluations on multiple benchmark datasets demonstrate that our approach significantly improves query accuracy of LLM-generated queries while ensuring efficiency in terms of LLM calls and latency, offering a robust and practical solution for enhancing Text-to-SQL systems.
comment: Accepted at International Joint Conference on Neural Networks (IJCNN), IEEE, 2025
♻ ☆ Error Bounds and Optimal Schedules for Masked Diffusions with Factorized Approximations
Recently proposed generative models for discrete data, such as Masked Diffusion Models (MDMs), exploit conditional independence approximations to reduce the computational cost of popular Auto-Regressive Models (ARMs), at the price of some bias in the sampling distribution. We study the resulting computation-vs-accuracy trade-off, providing general error bounds (in relative entropy) that depend only on the average number of tokens generated per iteration and are independent of the data dimensionality (i.e. sequence length), thus supporting the empirical success of MDMs. We then investigate the gain obtained by using non-constant schedule sizes (i.e. varying the number of unmasked tokens during the generation process) and identify the optimal schedule as a function of a so-called information profile of the data distribution, thus allowing for a principled optimization of schedule sizes. We define methods directly as sampling algorithms and do not use classical derivations as time-reversed diffusion processes, leading us to simple and transparent proofs.
♻ ☆ Solving a Research Problem in Mathematical Statistics with AI Assistance
Over the last few months, AI models including large language models have improved greatly. There are now several documented examples where they have helped professional mathematical scientists prove new results, sometimes even helping resolve known open problems. In this short note, we add another example to the list, by documenting how we were able to solve a previously unsolved research problem in robust mathematical statistics with crucial help from GPT-5. Our problem concerns robust density estimation, where the observations are perturbed by Wasserstein-bounded contaminations. In a previous preprint (Chao and Dobriban, 2023, arxiv:2308.01853v2), we have obtained upper and lower bounds on the minimax optimal estimation error; which were, however, not sharp. Starting in October 2025, making significant use of GPT-5 Pro, we were able to derive the minimax optimal error rate (reported in version 3 of the above arxiv preprint). GPT-5 provided crucial help along the way, including by suggesting calculations that we did not think of, and techniques that were not familiar to us, such as the dynamic Benamou-Brenier formulation, for key steps in the analysis. Working with GPT-5 took a few weeks of effort, and we estimate that it could have taken several months to get the same results otherwise. At the same time, there are still areas where working with GPT-5 was challenging: it sometimes provided incorrect references, and glossed over details that sometimes took days of work to fill in. We outline our workflow and steps taken to mitigate issues. Overall, our work can serve as additional documentation for a new age of human-AI collaborative work in mathematical science.
comment: added references
♻ ☆ Machine learning applications in archaeological practices: a review
Artificial intelligence and machine learning applications in archaeology have increased significantly in recent years, and these now span all subfields, geographical regions, and time periods. The prevalence and success of these applications have remained largely unexamined, as recent reviews on the use of machine learning in archaeology have only focused only on specific subfields of archaeology. Our review examined an exhaustive corpus of 135 articles published between 1997 and 2022. We observed a significant increase in the number of publications from 2019 onwards. Automatic structure detection and artefact classification were the most represented tasks in the articles reviewed, followed by taphonomy, and archaeological predictive modelling. From the review, clustering and unsupervised methods were underrepresented compared to supervised models. Artificial neural networks and ensemble learning account for two thirds of the total number of models used. However, if machine learning models are gaining in popularity they remain subject to misunderstanding. We observed, in some cases, poorly defined requirements and caveats of the machine learning methods used. Furthermore, the goals and the needs of machine learning applications for archaeological purposes are in some cases unclear or poorly expressed. To address this, we proposed a workflow guide for archaeologists to develop coherent and consistent methodologies adapted to their research questions, project scale and data. As in many other areas, machine learning is rapidly becoming an important tool in archaeological research and practice, useful for the analyses of large and multivariate data, although not without limitations. This review highlights the importance of well-defined and well-reported structured methodologies and collaborative practices to maximise the potential of applications of machine learning methods in archaeology.
♻ ☆ Simultaneous and Proportional Finger Motion Decoding Using Spatial Features from High-Density Surface Electromyography
Restoring natural and intuitive hand function requires simultaneous and proportional control (SPC) of multiple degrees of freedom (DoFs). This study systematically evaluated the multichannel linear descriptors-based block field method (MLD-BFM) for continuous decoding of five finger-joint DoFs by leveraging the rich spatial information of high-density surface electromyography (HD sEMG). Twenty-one healthy participants performed dynamic sinusoidal finger movements while HD sEMG signals were recorded from the extensor digitorum communis (EDC) and flexor digitorum superficialis (FDS) muscles. MLD-BFM extracted region-specific spatial features, including effective field strength ($Σ$), field-strength variation rate ($Φ$), and spatial complexity ($Ω$). Model performance was optimized (block size: $2 \times 2$; window: 0.15 s) and compared with conventional time-domain features and dimensionality reduction approaches when applied to multi-output regression models. MLD-BFM consistently achieved the highest $\mathrm{R}^2_{\mathrm{vw}}$ values across all models. The multilayer perceptron (MLP) combined with MLD-BFM yielded the best performance ($\mathrm{R}^2_{\mathrm{vw}} = 86.68\% \pm 0.33$). Time-domain features also showed strong predictive capability and were statistically comparable to MLD-BFM in some models, whereas dimensionality reduction techniques exhibited lower accuracy. Decoding accuracy was higher for the middle and ring fingers than for the thumb. Overall, MLD-BFM improved continuous finger movement decoding accuracy, underscoring the importance of taking advantage of the spatial richness of HD sEMG. These findings suggest that spatially structured features enhance SPC and provide practical guidance for designing robust, real-time, and responsive myoelectric interfaces.
comment: 39 pages, 13 figures, 2 tables
♻ ☆ Variational Quantum Optimization with Continuous Bandits
We introduce a novel approach to variational Quantum algorithms (VQA) via continuous bandits. VQA are a class of hybrid Quantum-classical algorithms where the parameters of Quantum circuits are optimized by classical algorithms. Previous work has used zero and first order gradient based methods, however such algorithms suffer from the barren plateau (BP) problem where gradients and loss differences are exponentially small. We introduce an approach using bandits methods which combine global exploration with local exploitation. We show how VQA can be formulated as a best arm identification problem in a continuous space of arms with Lipschitz smoothness. While regret minimization has been addressed in this setting, existing methods for pure exploration only cover discrete spaces. We give the first results for pure exploration in a continuous setting and derive a fixed-confidence, information-theoretic, instance specific lower bound. Under certain assumptions on the expected payoff, we derive a simple algorithm, which is near-optimal with respect to our lower bound. Finally, we apply our continuous bandit algorithm to two VQA schemes: a PQC and a QAOA quantum circuit, showing that we significantly outperform the previously known state of the art methods (which used gradient based methods).
comment: 10 pages, 4 Figures + 9-page appendix
♻ ☆ Sample-Efficient Optimization over Generative Priors via Coarse Learnability
In zeroth-order optimization, we seek to minimize a function $d(\cdot)$, which may encode combinatorial feasibility, using only function evaluations. We focus on the setting where solutions must also satisfy qualitative constraints or conform to a complex prior distribution. To address this, we introduce a new framework in which such constraints are represented by an initial generative prior $Ł(\cdot)$, for example, a Large Language Model (LLM). The objective is to find solutions $s$ that minimize $d(s)$ while having high probability under $Ł(s)$, effectively sampling from a target distribution proportional to $Ł(s) \cdot e^{-T \cdot d(s)}$ for a temperature parameter $T$. While this framework aligns with classical Model-Based Optimization (e.g., the Cross-Entropy method), existing theory is ill-suited for deriving sample complexity bounds in black-box deep generative models. We therefore propose a novel learning assumption, which we term \emph{coarse learnability}, where an agent with access to a polynomial number of samples can learn a model whose point-wise density approximates the target within a polynomial factor. Leveraging this assumption, we design an iterative algorithm that employs a Metropolis-Hastings correction to provably approximate the target distribution using a polynomial number of samples. To the best of our knowledge, this is one of the first works to establish such sample-complexity guarantees for model-based optimization with deep generative priors. We provide two lines of evidence supporting the coarse learnability assumption. Theoretically, we show that maximum likelihood estimation naturally induces the required coverage properties, holding for both standard exponential families and for misspecified models. Empirically, we demonstrate that LLMs can adapt their learned distributions to zeroth-order feedback to solve combinatorial optimization problems.
♻ ☆ Scale-invariant Attention
One persistent challenge in LLM research is the development of attention mechanisms that are able to generalise from training on shorter contexts to inference on longer contexts. We propose two conditions that we expect all effective long context attention mechanisms to have: scale-invariant total attention, and scale-invariant attention sparsity. Under a Gaussian assumption, we show that a simple position-dependent transformation of the attention logits is sufficient for these conditions to hold. Experimentally we find that the resulting scale-invariant attention scheme gives considerable benefits in terms of validation loss when zero-shot generalising from training on short contexts to validation on longer contexts, and is effective at long-context retrieval.
comment: Accepted at Neurips 2025
♻ ☆ SEA: Spectral Edge Attack
Graph based machine learning algorithms occupy an important position in today AI landscape. The ability of graph topology to represent complex data structures is both the key strength of graph algorithms and a source of their vulnerability. In other words, attacking or perturbing a graph can severely degrade the performance of graph-based methods. For the attack methods, the greatest challenge is achieving strong attack effectiveness while remaining undetected. To address this problem, this paper proposes a new attack model that employs spectral adversarial robustness evaluation to quantitatively analyze the vulnerability of each edge in a graph under attack. By precisely targeting the weakest links, the proposed approach achieves the maximum attack impact with minimal perturbation. Experimental results demonstrate the effectiveness of the proposed method.
♻ ☆ EvoLattice: Persistent Internal-Population Evolution through Multi-Alternative Quality-Diversity Graph Representations for LLM-Guided Program Discovery
Large language models (LLMs) are increasingly used to evolve programs and multi-agent systems, yet most existing approaches rely on overwrite-based mutations that maintain only a single candidate at a time. Such methods discard useful variants, suffer from destructive edits, and explore a brittle search space prone to structural failure. We introduce EvoLattice, a framework that represents an entire population of candidate programs or agent behaviors within a single directed acyclic graph. Each node stores multiple persistent alternatives, and every valid path through the graph defines a distinct executable candidate, yielding a large combinatorial search space without duplicating structure. EvoLattice enables fine-grained alternative-level evaluation by scoring each alternative across all paths in which it appears, producing statistics that reveal how local design choices affect global performance. These statistics provide a dense, data-driven feedback signal for LLM-guided mutation, recombination, and pruning, while preserving successful components. Structural correctness is guaranteed by a deterministic self-repair mechanism that enforces acyclicity and dependency consistency independently of the LLM. EvoLattice naturally extends to agent evolution by interpreting alternatives as prompt fragments or sub-agent behaviors. Across program synthesis (proxy and optimizer meta-learning), EvoLattice yields more stable evolution, greater expressivity, and stronger improvement trajectories than prior LLM-guided methods. The resulting dynamics resemble quality-diversity optimization, emerging implicitly from EvoLattice's internal multi-alternative representation rather than an explicit external archive.
♻ ☆ CANet: ChronoAdaptive Network for Enhanced Long-Term Time Series Forecasting under Non-Stationarity
Long-term time series forecasting plays a pivotal role in various real-world applications. Despite recent advancements and the success of different architectures, forecasting is often challenging due to non-stationary nature of the real-world data, which frequently exhibit distribution shifts and temporal changes in statistical properties like mean and variance over time. Previous studies suggest that this inherent variability complicates forecasting, limiting the performance of many models by leading to loss of non-stationarity and resulting in over-stationarization (Liu, Wu, Wang and Long, 2022). To address this challenge, we introduce a novel architecture, ChoronoAdaptive Network (CANet), inspired by style-transfer techniques. The core of CANet is the Non-stationary Adaptive Normalization module, seamlessly integrating the Style Blending Gate and Adaptive Instance Normalization (AdaIN) (Huang and Belongie, 2017). The Style Blending Gate preserves and reintegrates non-stationary characteristics, such as mean and standard deviation, by blending internal and external statistics, preventing over-stationarization while maintaining essential temporal dependencies. Coupled with AdaIN, which dynamically adapts the model to statistical changes, this approach enhances predictive accuracy under non-stationary conditions. CANet also employs multi-resolution patching to handle short-term fluctuations and long-term trends, along with Fourier analysis-based adaptive thresholding to reduce noise. A Stacked Kronecker Product Layer further optimizes the model's efficiency while maintaining high performance. Extensive experiments on real-world datasets validate CANet's superiority over state-of-the-art methods, achieving a 42% reduction in MSE and a 22% reduction in MAE. The source code is publicly available at https://github.com/mertsonmezer/CANet.
♻ ☆ Control-Augmented Autoregressive Diffusion for Data Assimilation
Despite recent advances in test-time scaling and finetuning of diffusion models, guidance in Auto-Regressive Diffusion Models (ARDMs) remains underexplored. We introduce an amortized framework that augments a pretrained ARDM with a lightweight controller network, trained offline by previewing future rollouts to output stepwise controls that anticipate upcoming observations under a terminal-cost objective. Our approach is motivated by viewing guided generation as an entropy-regularized stochastic optimal control problem over ARDM trajectories: we learn a reusable policy that injects small control corrections inside each denoising sub-step while remaining anchored to the pretrained dynamics. We evaluate this framework in the context of data assimilation (DA) for chaotic spatiotemporal partial differential equations (PDEs), where existing methods can be computationally prohibitive and prone to forecast drift under sparse observations. At inference, DA reduces to a single causal forward rollout with on-the-fly corrections, requiring neither adjoint computations nor gradient-based optimization, and yields an order-of-magnitude speedup over strong diffusion-based DA baselines. Across two canonical PDEs and six observation regimes, our method consistently improves stability, accuracy, and physics-aware fidelity over state-of-the-art baselines. We will release code and checkpoints publicly.
♻ ☆ Taming Latency and Bandwidth: A Theoretical Framework and Adaptive Algorithm for Communication-Constrained Training
Regional energy caps limit the growth of any single data center used for large-scale model training. This single-center training paradigm works when model size remains manageable, but exponential growth in the model size and computational demand challenges it. A natural alternative is to distribute training across multiple data centers over wide-area networks. This pools distributed resources, but suffers from high latency and low, time-varying bandwidth, sharply reducing throughout. Employing jointly gradient compression and delayed aggregation can alleviate communication problems, but introduces a complex three-way trade-off among compression ratio, staleness (delayed synchronization steps), and convergence rate. Existing work lacks theoretical guidance and can only propose fixed strategies, insensitive to computation and communication conditions. We address this with a new theoretical tool, decomposing the joint optimization problem into a traditional process plus multiple analyzable noise terms. Our analysis yields the first convergence rate for this setting and shows that increasing staleness exponentially amplifies the detrimental effect of compression. Leveraging these insights, we propose DeCo-SGD, which dynamically selects the compression ratio and staleness based on the real-time communication and computation conditions. DeCo-SGD achieves up to $5.07\times$ and $1.37\times$ speed-ups over distributed SGD and static strategy in high-latency and low, varying bandwidth networks, respectively.
comment: This work has been submitted to the IEEE for possible publication. This is an extended version including the complete appendix
♻ ☆ REAL: Representation Enhanced Analytic Learning for Exemplar-free Class-incremental Learning
Exemplar-free class-incremental learning (EFCIL) aims to mitigate catastrophic forgetting in class-incremental learning (CIL) without available historical training samples as exemplars. Compared with its exemplar-based CIL counterpart that stores exemplars, EFCIL suffers more from forgetting issues. Recently, a new EFCIL branch named Analytic Continual Learning (ACL) introduces a gradient-free paradigm via Recursive Least-Square, achieving a forgetting-resistant classifier training with a frozen backbone during CIL. However, existing ACL suffers from ineffective representations and insufficient utilization of backbone knowledge. In this paper, we propose a representation-enhanced analytic learning (REAL) to address these problems. To enhance the representation, REAL constructs a dual-stream base pretraining followed by representation enhancing distillation process. The dual-stream base pretraining combines self-supervised contrastive learning for general features and supervised learning for class-specific knowledge, followed by the representation enhancing distillation to merge both streams, enhancing representations for subsequent CIL paradigm. To utilize more knowledge from the backbone, REAL presents a feature fusion buffer to multi-layer backbone features, providing informative features for the subsequent classifier training. Our method can be incorporated into existing ACL techniques and provides more competitive performance. Empirical results demonstrate that, REAL achieves state-of-the-art performance on CIFAR-100, ImageNet-100 and ImageNet-1k benchmarks, outperforming exemplar-free methods and rivaling exemplar-based approaches.
comment: 13 pages, 7 figures. This paper is published in Knowledge-based System
♻ ☆ Over-parameterization and Adversarial Robustness in Neural Networks: An Overview and Empirical Analysis
Thanks to their extensive capacity, over-parameterized neural networks exhibit superior predictive capabilities and generalization. However, having a large parameter space is considered one of the main suspects of the neural networks' vulnerability to adversarial example -- input samples crafted ad-hoc to induce a desired misclassification. Relevant literature has claimed contradictory remarks in support of and against the robustness of over-parameterized networks. These contradictory findings might be due to the failure of the attack employed to evaluate the networks' robustness. Previous research has demonstrated that depending on the considered model, the algorithm employed to generate adversarial examples may not function properly, leading to overestimating the model's robustness. In this work, we empirically study the robustness of over-parameterized networks against adversarial examples. However, unlike the previous works, we also evaluate the considered attack's reliability to support the results' veracity. Our results show that over-parameterized networks are robust against adversarial attacks as opposed to their under-parameterized counterparts.
comment: Submitted to Discover AI
♻ ☆ PyGraph: Robust Compiler Support for CUDA Graphs in PyTorch
Machine learning (ML) workloads launch hundreds to thousands of short-running GPU kernels per iteration. With GPU compute throughput growing rapidly, CPU-side launch latency of kernels is emerging as a bottleneck. CUDA Graphs promise to address this by replaying a set of kernels with a single dispatch of the graph, removing per-kernel launch costs. However, CUDA Graphs remain surprisingly difficult to deploy correctly and efficiently. We present PyGraph - a compiler framework to maximize the coverage and benefits of CUDA Graphs for ML workloads. It introduces three novel optimizations: it applies automatic code transformations to make ML applications amenable to CUDA Graphs; it eliminates the parameter copy overheads for kernels executing in CUDA Graphs, and it selectively deploys CUDA Graphs guided by a cost-benefit analysis. For 25 ML workloads from TorchBench, HuggingFace, and TIMM, PyGraph more than doubles the benefit from deploying CUDA Graph compared to the most popular and widely used ML compiler, PyTorch2. PyGraph is built atop PyTorch2's compilation framework and requires no programmer intervention.
♻ ☆ Scalable Bayesian Optimization via Focalized Sparse Gaussian Processes NeurIPS 2024
Bayesian optimization is an effective technique for black-box optimization, but its applicability is typically limited to low-dimensional and small-budget problems due to the cubic complexity of computing the Gaussian process (GP) surrogate. While various approximate GP models have been employed to scale Bayesian optimization to larger sample sizes, most suffer from overly-smooth estimation and focus primarily on problems that allow for large online samples. In this work, we argue that Bayesian optimization algorithms with sparse GPs can more efficiently allocate their representational power to relevant regions of the search space. To achieve this, we propose focalized GP, which leverages a novel variational loss function to achieve stronger local prediction, as well as FocalBO, which hierarchically optimizes the focalized GP acquisition function over progressively smaller search spaces. Experimental results demonstrate that FocalBO can efficiently leverage large amounts of offline and online data to achieve state-of-the-art performance on robot morphology design and to control a 585-dimensional musculoskeletal system.
comment: Accepted by NeurIPS 2024
♻ ☆ Tab-PET: Graph-Based Positional Encodings for Tabular Transformers AAAI-26
Supervised learning with tabular data presents unique challenges, including low data sizes, the absence of structural cues, and heterogeneous features spanning both categorical and continuous domains. Unlike vision and language tasks, where models can exploit inductive biases in the data, tabular data lacks inherent positional structure, hindering the effectiveness of self-attention mechanisms. While recent transformer-based models like TabTransformer, SAINT, and FT-Transformer (which we refer to as 3T) have shown promise on tabular data, they typically operate without leveraging structural cues such as positional encodings (PEs), as no prior structural information is usually available. In this work, we find both theoretically and empirically that structural cues, specifically PEs can be a useful tool to improve generalization performance for tabular transformers. We find that PEs impart the ability to reduce the effective rank (a form of intrinsic dimensionality) of the features, effectively simplifying the task by reducing the dimensionality of the problem, yielding improved generalization. To that end, we propose Tab-PET (PEs for Tabular Transformers), a graph-based framework for estimating and inculcating PEs into embeddings. Inspired by approaches that derive PEs from graph topology, we explore two paradigms for graph estimation: association-based and causality-based. We empirically demonstrate that graph-derived PEs significantly improve performance across 50 classification and regression datasets for 3T. Notably, association-based graphs consistently yield more stable and pronounced gains compared to causality-driven ones. Our work highlights an unexpected role of PEs in tabular transformers, revealing how they can be harnessed to improve generalization.
comment: Accepted to AAAI-26
♻ ☆ DenoiseRotator: Enhance Pruning Robustness for LLMs via Importance Concentration NeurIPS 2025
Pruning is a widely used technique to compress large language models (LLMs) by removing unimportant weights, but it often suffers from significant performance degradation - especially under semi-structured sparsity constraints. Existing pruning methods primarily focus on estimating the importance of individual weights, which limits their ability to preserve critical capabilities of the model. In this work, we propose a new perspective: rather than merely selecting which weights to prune, we first redistribute parameter importance to make the model inherently more amenable to pruning. By minimizing the information entropy of normalized importance scores, our approach concentrates importance onto a smaller subset of weights, thereby enhancing pruning robustness. We instantiate this idea through DenoiseRotator, which applies learnable orthogonal transformations to the model's weight matrices. Our method can be seamlessly integrated with existing pruning techniques such as Magnitude, SparseGPT, and Wanda. Evaluated on LLaMA3, Qwen2.5, and Mistral models under 50% unstructured and 2:4 semi-structured sparsity, DenoiseRotator consistently improves perplexity and zero-shot accuracy. For instance, on LLaMA3-70B pruned with SparseGPT at 2:4 semi-structured sparsity, DenoiseRotator reduces the perplexity gap to the dense model by 58%, narrowing the degradation from 8.1 to 3.4 points. Codes are available at https://github.com/Axel-gu/DenoiseRotator.
comment: Accepted at NeurIPS 2025
♻ ☆ Optimal Prediction Using Expert Advice and Randomized Littlestone Dimension
A classical result in online learning characterizes the optimal mistake bound achievable by deterministic learners using the Littlestone dimension (Littlestone '88). We prove an analogous result for randomized learners: we show that the optimal expected mistake bound in learning a class $\mathcal{H}$ equals its randomized Littlestone dimension, which is the largest $d$ for which there exists a tree shattered by $\mathcal{H}$ whose average depth is $2d$. We further study optimal mistake bounds in the agnostic case, as a function of the number of mistakes made by the best function in $\mathcal{H}$, denoted by $k$. We show that the optimal randomized mistake bound for learning a class with Littlestone dimension $d$ is $k + Θ(\sqrt{k d} + d )$. This also implies an optimal deterministic mistake bound of $2k + Θ(d) + O(\sqrt{k d})$, thus resolving an open question which was studied by Auer and Long ['99]. As an application of our theory, we revisit the classical problem of prediction using expert advice: about 30 years ago Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire and Warmuth studied prediction using expert advice, provided that the best among the $n$ experts makes at most $k$ mistakes, and asked what are the optimal mistake bounds. Cesa-Bianchi, Freund, Helmbold, and Warmuth ['93, '96] provided a nearly optimal bound for deterministic learners, and left the randomized case as an open problem. We resolve this question by providing an optimal learning rule in the randomized case, and showing that its expected mistake bound equals half of the deterministic bound of Cesa-Bianchi et al. ['93,'96], up to negligible additive terms. In contrast with previous works by Abernethy, Langford, and Warmuth ['06], and by Brânzei and Peres ['19], our result applies to all pairs $n,k$.
♻ ☆ Multi-Agent Pointer Transformer: Seq-to-Seq Reinforcement Learning for Multi-Vehicle Dynamic Pickup-Delivery Problems
This paper addresses the cooperative Multi-Vehicle Dynamic Pickup and Delivery Problem with Stochastic Requests (MVDPDPSR) and proposes an end-to-end centralized decision-making framework based on sequence-to-sequence, named Multi-Agent Pointer Transformer (MAPT). MVDPDPSR is an extension of the vehicle routing problem and a spatio-temporal system optimization problem, widely applied in scenarios such as on-demand delivery. Classical operations research methods face bottlenecks in computational complexity and time efficiency when handling large-scale dynamic problems. Although existing reinforcement learning methods have achieved some progress, they still encounter several challenges: 1) Independent decoding across multiple vehicles fails to model joint action distributions; 2) The feature extraction network struggles to capture inter-entity relationships; 3) The joint action space is exponentially large. To address these issues, we designed the MAPT framework, which employs a Transformer Encoder to extract entity representations, combines a Transformer Decoder with a Pointer Network to generate joint action sequences in an AutoRegressive manner, and introduces a Relation-Aware Attention module to capture inter-entity relationships. Additionally, we guide the model's decision-making using informative priors to facilitate effective exploration. Experiments on 8 datasets demonstrate that MAPT significantly outperforms existing baseline methods in terms of performance and exhibits substantial computational time advantages compared to classical operations research methods.
comment: 15 pages
♻ ☆ From Navigation to Refinement: Revealing the Two-Stage Nature of Flow-based Diffusion Models through Oracle Velocity
Flow-based diffusion models have emerged as a leading paradigm for training generative models across images and videos. However, their memorization-generalization behavior remains poorly understood. In this work, we revisit the flow matching (FM) objective and study its marginal velocity field, which admits a closed-form expression, allowing exact computation of the oracle FM target. Analyzing this oracle velocity field reveals that flow-based diffusion models inherently formulate a two-stage training target: an early stage guided by a mixture of data modes, and a later stage dominated by the nearest data sample. The two-stage objective leads to distinct learning behaviors: the early navigation stage generalizes across data modes to form global layouts, whereas the later refinement stage increasingly memorizes fine-grained details. Leveraging these insights, we explain the effectiveness of practical techniques such as timestep-shifted schedules, classifier-free guidance intervals, and latent space design choices. Our study deepens the understanding of diffusion model training dynamics and offers principles for guiding future architectural and algorithmic improvements.
comment: Preprint v2; 15 pages, 16 figures
♻ ☆ One-Cycle Structured Pruning via Stability-Driven Subnetwork Search
Existing structured pruning methods typically rely on multi-stage training procedures that incur high computational costs. Pruning at initialization aims to reduce this burden but often suffers from degraded performance. To address these limitations, we propose an efficient one-cycle structured pruning framework that integrates pre-training, pruning, and fine-tuning into a single training cycle without sacrificing accuracy. The key idea is to identify an optimal sub-network during the early stages of training, guided by norm-based group saliency criteria and structured sparsity regularization. We introduce a novel pruning indicator that detects a stable pruning epoch by measuring the similarity between pruning sub-networks across consecutive training epochs. In addition, group sparsity regularization accelerates convergence, further reducing overall training time. Extensive experiments on CIFAR-10, CIFAR-100, and ImageNet using VGG, ResNet, and MobileNet architectures demonstrate that the proposed method achieves state-of-the-art accuracy while being among the most efficient structured pruning frameworks in terms of training cost. Code is available at https://github.com/ghimiredhikura/OCSPruner.
comment: 12 pages, 6 figures
♻ ☆ Artificial Hippocampus Networks for Efficient Long-Context Modeling
Long-sequence modeling faces a fundamental trade-off between the efficiency of compressive fixed-size memory in RNN-like models and the fidelity of lossless growing memory in attention-based Transformers. Inspired by the Multi-Store Model in cognitive science, we introduce a memory framework of artificial neural networks. Our method maintains a sliding window of the Transformer's KV cache as lossless short-term memory, while a learnable module termed Artificial Hippocampus Network (AHN) recurrently compresses out-of-window information into a fixed-size compact long-term memory. To validate this framework, we instantiate AHNs using modern RNN-like architectures, including Mamba2, DeltaNet, and GatedDeltaNet to augment open-weight LLMs. We also propose an efficient self-distillation training method where the base model's all parameters are frozen and only the parameters from AHNs are optimized. For inference, our method sets a default large sliding window size of 32k for attention, and AHNs activate only when the sequence length exceeds the 32k window, addressing the quadratic-complexity issue of attention that emerges at that scale. Extensive experiments on long-context benchmarks LV-Eval and InfiniteBench demonstrate that AHN-augmented models consistently outperform sliding window baselines and achieve performance comparable or even superior to full-attention models, while substantially reducing computational and memory requirements. For instance, augmenting the Qwen2.5-3B-Instruct with AHNs reduces inference FLOPs by 40.5% and memory cache by 74.0%, while improving its average score on LV-Eval (128k sequence length) from 4.41 to 5.88. Code is available at: https://github.com/ByteDance-Seed/AHN.
comment: Code: https://github.com/ByteDance-Seed/AHN
♻ ☆ Curved representational Bregman divergences and their applications
By analogy to the terminology of curved exponential families in statistics, we define curved Bregman divergences as Bregman divergences restricted to nonlinear parameter subspaces and sub-dimensional Bregman divergences when the restrictions are linear. A common example of curved Bregman divergence is the cosine dissimilarity between normalized vectors. We show that the barycenter of a finite weighted set of parameters under a curved Bregman divergence amounts to the right Bregman projection onto the nonlinear subspace of the barycenter with respect to the full Bregman divergence. We demonstrate the significance of curved Bregman divergences with two examples: (1) symmetrized Bregman divergences, (2) pointwise symmetrized Bregman divergences, and (3) the Kullback-Leibler divergence between circular complex normal distributions. We explain how to reparameterize sub-dimensional Bregman divergences on simplicial sub-dimensional domains. We then consider monotonic embeddings to define representational curved Bregman divergences and show that the $α$-divergences are representational curved Bregman divergences with respect to $α$-embeddings of the probability simplex into the positive measure cone. As an application, we report an efficient method to calculate the intersection of a finite set of $α$-divergence spheres.
comment: 28 pages, 10 figures
♻ ☆ All Models Are Miscalibrated, But Some Less So: Comparing Calibration with Conditional Mean Operators
When working in a high-risk setting, having well calibrated probabilistic predictive models is a crucial requirement. However, estimators for calibration error are not always able to correctly distinguish which model is better calibrated. We propose the \emph{conditional kernel calibration error} (CKCE) which is based on the Hilbert-Schmidt norm of the difference between conditional mean operators. By working directly with the definition of strong calibration as the distance between conditional distributions, which we represent by their embeddings in reproducing kernel Hilbert spaces, the CKCE is less sensitive to the marginal distribution of predictive models. This makes it more effective for relative comparisons than previously proposed calibration metrics. Our experiments, using both synthetic and real data, show that CKCE provides a more consistent ranking of models by their calibration error and is more robust against distribution shift.
comment: Australasian Joint Conference on Artificial Intelligence (2025)
♻ ☆ SketchOGD: Memory-Efficient Continual Learning
When machine learning models are trained continually on a sequence of tasks, they are often liable to forget what they learned on previous tasks--a phenomenon known as catastrophic forgetting. Proposed solutions to catastrophic forgetting tend to involve storing information about past tasks, meaning that memory usage is a chief consideration in determining their practicality. This paper develops a memory-efficient solution to catastrophic forgetting using the idea of matrix sketching, in the context of a simple continual learning algorithm known as orthogonal gradient descent (OGD). OGD finds weight updates that aim to preserve performance on prior datapoints, using gradients of the model on those datapoints. However, since the memory cost of storing prior model gradients grows with the runtime of the algorithm, OGD is ill-suited to continual learning over long time horizons. To address this problem, we propose SketchOGD. SketchOGD employs an online sketching algorithm to compress model gradients as they are encountered into a matrix of a fixed, user-determined size. In contrast to existing memory-efficient variants of OGD, SketchOGD runs online without the need for advance knowledge of the total number of tasks, is simple to implement, and is more amenable to analysis. We provide theoretical guarantees on the approximation error of the relevant sketches under a novel metric suited to the downstream task of OGD. Experimentally, we find that SketchOGD tends to outperform current state-of-the-art variants of OGD given a fixed memory budget.
♻ ☆ Multi-Task Dynamic Pricing in Credit Market with Contextual Information
We study the dynamic pricing problem faced by a broker seeking to learn prices for a large number of credit market securities, such as corporate bonds, government bonds, loans, and other credit-related securities. A major challenge in pricing these securities stems from their infrequent trading and the lack of transparency in over-the-counter (OTC) markets, which leads to insufficient data for individual pricing. Nevertheless, many securities share structural similarities that can be exploited. Moreover, brokers often place small "probing" orders to infer competitors' pricing behavior. Leveraging these insights, we propose a multi-task dynamic pricing framework that leverages the shared structure across securities to enhance pricing accuracy. In the OTC market, a broker wins a quote by offering a more competitive price than rivals. The broker's goal is to learn winning prices while minimizing expected regret against a clairvoyant benchmark. We model each security using a $d$-dimensional feature vector and assume a linear contextual model for the competitor's pricing of the yield, with parameters unknown a priori. We propose the Two-Stage Multi-Task (TSMT) algorithm: first, an unregularized MLE over pooled data to obtain a coarse parameter estimate; second, a regularized MLE on individual securities to refine the parameters. We show that the TSMT achieves a regret bounded by $\tilde{O} ( δ_{\max} \sqrt{T M d} + M d ) $, outperforming both fully individual and fully pooled baselines, where $M$ is the number of securities and $δ_{\max}$ quantifies their heterogeneity.
♻ ☆ The Eminence in Shadow: Exploiting Feature Boundary Ambiguity for Robust Backdoor Attacks KDD2026
Deep neural networks (DNNs) underpin critical applications yet remain vulnerable to backdoor attacks, typically reliant on heuristic brute-force methods. Despite significant empirical advancements in backdoor research, the lack of rigorous theoretical analysis limits understanding of underlying mechanisms, constraining attack predictability and adaptability. Therefore, we provide a theoretical analysis targeting backdoor attacks, focusing on how sparse decision boundaries enable disproportionate model manipulation. Based on this finding, we derive a closed-form, ambiguous boundary region, wherein negligible relabeled samples induce substantial misclassification. Influence function analysis further quantifies significant parameter shifts caused by these margin samples, with minimal impact on clean accuracy, formally grounding why such low poison rates suffice for efficacious attacks. Leveraging these insights, we propose Eminence, an explainable and robust black-box backdoor framework with provable theoretical guarantees and inherent stealth properties. Eminence optimizes a universal, visually subtle trigger that strategically exploits vulnerable decision boundaries and effectively achieves robust misclassification with exceptionally low poison rates (< 0.1%, compared to SOTA methods typically requiring > 1%). Comprehensive experiments validate our theoretical discussions and demonstrate the effectiveness of Eminence, confirming an exponential relationship between margin poisoning and adversarial boundary manipulation. Eminence maintains > 90% attack success rate, exhibits negligible clean-accuracy loss, and demonstrates high transferability across diverse models, datasets and scenarios.
comment: Accepted by KDD2026 Cycle 1 Research Track
♻ ☆ 3DLLM-Mem: Long-Term Spatial-Temporal Memory for Embodied 3D Large Language Model
Humans excel at performing complex tasks by leveraging long-term memory across temporal and spatial experiences. In contrast, current Large Language Models (LLMs) struggle to effectively plan and act in dynamic, multi-room 3D environments. We posit that part of this limitation is due to the lack of proper 3D spatial-temporal memory modeling in LLMs. To address this, we first introduce 3DMem-Bench, a comprehensive benchmark comprising over 26,000 trajectories and 2,892 embodied tasks, question-answering and captioning, designed to evaluate an agent's ability to reason over long-term memory in 3D environments. Second, we propose 3DLLM-Mem, a novel dynamic memory management and fusion model for embodied spatial-temporal reasoning and actions in LLMs. Our model uses working memory tokens, which represents current observations, as queries to selectively attend to and fuse the most useful spatial and temporal features from episodic memory, which stores past observations and interactions. Our approach allows the agent to focus on task-relevant information while maintaining memory efficiency in complex, long-horizon environments. Experimental results demonstrate that 3DLLM-Mem achieves state-of-the-art performance across various tasks, outperforming the strongest baselines by 16.5% in success rate on 3DMem-Bench's most challenging in-the-wild embodied tasks.
comment: demos at: https://3dllm-mem.github.io
♻ ☆ Dual-Axis RCCL: Representation-Complete Convergent Learning for Organic Chemical Space
Machine learning is profoundly reshaping molecular and materials modeling; however, given the vast scale of chemical space (10^30-10^60), it remains an open scientific question whether models can achieve convergent learning across this space. We introduce a Dual-Axis Representation-Complete Convergent Learning (RCCL) strategy, enabled by a molecular representation that integrates graph convolutional network (GCN) encoding of local valence environments, grounded in modern valence bond theory, together with no-bridge graph (NBG) encoding of ring/cage topologies, providing a quantitative measure of chemical-space coverage. This framework formalizes representation completeness, establishing a principled basis for constructing datasets that support convergent learning for large models. Guided by this RCCL framework, we develop the FD25 dataset, systematically covering 13,302 local valence units and 165,726 ring/cage topologies, achieving near-complete combinatorial coverage of organic molecules with H/C/N/O/F elements. Graph neural networks trained on FD25 exhibit representation-complete convergent learning and strong out-of-distribution generalization, with an overall prediction error of approximately 1.0 kcal/mol MAE across external benchmarks. Our results establish a quantitative link between molecular representation, structural completeness, and model generalization, providing a foundation for interpretable, transferable, and data-efficient molecular intelligence.
comment: 33 pages, 10 figures
♻ ☆ Demonstration Sidetracks: Categorizing Systematic Non-Optimality in Human Demonstrations
Learning from Demonstration (LfD) is a popular approach for robots to acquire new skills, but most LfD methods suffer from imperfections in human demonstrations. Prior work typically treats these suboptimalities as random noise. In this paper we study non-optimal behaviors in non-expert demonstrations and show that they are systematic, forming what we call demonstration sidetracks. Using a public space study with 40 participants performing a long-horizon robot task, we recreated the setup in simulation and annotated all demonstrations. We identify four types of sidetracks (Exploration, Mistake, Alignment, Pause) and one control pattern (one-dimension control). Sidetracks appear frequently across participants, and their temporal and spatial distribution is tied to task context. We also find that users' control patterns depend on the control interface. These insights point to the need for better models of suboptimal demonstrations to improve LfD algorithms and bridge the gap between lab training and real-world deployment. All demonstrations, infrastructure, and annotations are available at https://github.com/AABL-Lab/Human-Demonstration-Sidetracks.
♻ ☆ Context-Driven Performance Modeling for Causal Inference Operators on Neural Processing Units
The proliferation of large language models has driven demand for long-context inference on resource-constrained edge platforms. However, deploying these models on Neural Processing Units (NPUs) presents significant challenges due to architectural mismatch: the quadratic complexity of standard attention conflicts with NPU memory and compute patterns. This paper presents a comprehensive performance analysis of causal inference operators on a modern NPU, benchmarking quadratic attention against sub-quadratic alternatives including structured state-space models and causal convolutions. Our analysis reveals a spectrum of critical bottlenecks: quadratic attention becomes severely memory-bound with catastrophic cache inefficiency, while sub-quadratic variants span from compute-bound on programmable vector cores to memory-bound by data movement. These findings provide essential insights for co-designing hardware-aware models and optimization strategies to enable efficient long-context inference on edge platforms.
comment: IEEE HiPC 2025
♻ ☆ Arbitrary Entropy Policy Optimization Breaks The Exploration Bottleneck of Reinforcement Learning
Reinforcement Learning (RL) is essential for enhancing the reasoning capabilities of large language models (LLMs), yet the widely adopted Group Relative Policy Optimization (GRPO) suffers from entropy collapse, causing exploration to vanish and policies to converge prematurely. As a result, RL is widely believed to be incapable of expanding the reasoning frontier of LLMs. Existing entropy-regularized methods introduce an inevitable trade-off between reward and entropy, leading to exploration accompanied by non-negligible optimization bias. In this work, we prove that temperature-guided REINFORCE can modulate policy entropy, and propose Arbitrary Entropy Policy Optimization (AEPO), which reformulates entropy regularization as a policy-gradient optimization problem. Rather than manipulating entropy directly, AEPO implicitly regulates it by applying a REINFORCE regularization term on temperature-adjusted samples, ensuring that entropy is controlled but never dominates optimization, thereby enabling arbitrary and principled entropy regulation. Experiments show that AEPO outperforms RL baselines on both pass@1 and pass@$k$, and even surpasses the base model on pass@1024. By modulating entropy precisely, AEPO achieves more effective optimization dynamics and provides direct empirical evidence that entropy, exploration, and performance are intrinsically linked.
♻ ☆ Near-Zero-Overhead Freshness for Recommendation Systems via Inference-Side Model Updates
Deep Learning Recommendation Models (DLRMs) underpin personalized services but face a critical freshness-accuracy tradeoff due to massive parameter synchronization overheads. Production DLRMs deploy decoupled training/inference clusters, where synchronizing petabyte-scale embedding tables (EMTs) causes multi-minute staleness, degrading recommendation quality and revenue. We observe that (1) inference nodes exhibit sustained CPU underutilization (peak <= 20%), and (2) EMT gradients possess intrinsic low-rank structure, enabling compact update representation. We present LiveUpdate, a system that eliminates inter-cluster synchronization by colocating Low-Rank Adaptation (LoRA) trainers within inference nodes. LiveUpdate addresses two core challenges: (1) dynamic rank adaptation via singular value monitoring to constrain memory overhead (<2% of EMTs), and (2) NUMA-aware resource scheduling with hardware-enforced QoS to eliminate update inference contention (P99 latency impact <20ms). Evaluations show LiveUpdate reduces update costs by 2x versus delta-update baselines while achieving higher accuracy within 1-hour windows. By transforming idle inference resources into freshness engines, LiveUpdate delivers online model updates while outperforming state-of-the-art delta-update methods by 0.04% to 0.24% in accuracy.
comment: Accepted by HPCA 2026
♻ ☆ Confucius Code Agent: Scalable Agent Scaffolding for Real-World Codebases
Real-world software engineering tasks require coding agents that can operate over massive repositories, sustain long-horizon sessions, and reliably coordinate complex toolchains at test time. Existing research-grade agents offer transparency but struggle when scaled to real-world workloads, while proprietary systems achieve strong practical performance but provide limited extensibility, interpretability, and controllability. We introduce the Confucius Code Agent (CCA), a scalable software engineering agent that can operate at large-scale codebases. CCA is built on top of the Confucius SDK, an agent development platform structured around three complementary perspectives: Agent Experience (AX), User Experience (UX), and Developer Experience (DX). The SDK integrates a unified orchestrator with hierarchical working memory for long-context reasoning, a persistent note-taking system for cross-session continual learning, and a modular extension system for reliable tool use. In addition, we introduce a meta-agent that automates the synthesis, evaluation, and refinement of agent configurations through a build-test-improve loop, enabling rapid adaptation to new tasks, environments, and tool stacks. Instantiated with these mechanisms, CCA demonstrates strong performance on real-world software engineering tasks. On SWE-Bench-Pro, CCA reaches a Resolve@1 of 54.3%, exceeding prior research baselines and comparing favorably to commercial results, under identical repositories, model backend, and tool access. Together, the Confucius SDK and CCA form a general, extensible, and production-grade foundation for building effective and robust coding agents, bridging the gap between research prototypes and practical large-scale deployment.
comment: The latest version
♻ ☆ A User-Tunable Machine Learning Framework for Step-Wise Synthesis Planning
We introduce MHNpath, a machine learning-driven retrosynthetic tool designed for computer-aided synthesis planning. Leveraging modern Hopfield networks and novel comparative metrics, MHNpath efficiently prioritizes reaction templates, improving the scalability and accuracy of retrosynthetic predictions. The tool incorporates a tunable scoring system that allows users to prioritize pathways based on cost, reaction temperature, and toxicity, thereby facilitating the design of greener and cost-effective reaction routes. We demonstrate its effectiveness through case studies involving complex molecules from ChemByDesign, showcasing its ability to predict novel synthetic and enzymatic pathways. Furthermore, we benchmark MHNpath against existing frameworks using the PaRoutes dataset, achieving a solution rate of 85.4% and replicating 69.2% of experimentally validated "gold-standard" pathways. Our case studies reveal that the tool can generate shorter, cheaper, moderate-temperature routes employing green solvents, as exemplified by compounds such as dronabinol, arformoterol, and lupinine.
♻ ☆ Imbalances in Neurosymbolic Learning: Characterization and Mitigating Strategies
We study one of the most popular problems in **neurosymbolic learning** (NSL), that of learning neural classifiers given only the result of applying a symbolic component $σ$ to the gold labels of the elements of a vector $\mathbf x$. The gold labels of the elements in $\mathbf x$ are unknown to the learner. We make multiple contributions, theoretical and practical, to address a problem that has not been studied so far in this context, that of characterizing and mitigating *learning imbalances*, i.e., major differences in the errors that occur when classifying instances of different classes (aka **class-specific risks**). Our theoretical analysis reveals a unique phenomenon: that $σ$ can greatly impact learning imbalances. This result sharply contrasts with previous research on supervised and weakly supervised learning, which only studies learning imbalances under data imbalances. On the practical side, we introduce a technique for estimating the marginal of the hidden gold labels using weakly supervised data. Then, we introduce algorithms that mitigate imbalances at training and testing time by treating the marginal of the hidden labels as a constraint. We demonstrate the effectiveness of our techniques using strong baselines from NSL and long-tailed learning, suggesting performance improvements of up to 14%.
♻ ☆ Dexterous Manipulation through Imitation Learning: A Survey
Dexterous manipulation, which refers to the ability of a robotic hand or multi-fingered end-effector to skillfully control, reorient, and manipulate objects through precise, coordinated finger movements and adaptive force modulation, enables complex interactions similar to human hand dexterity. With recent advances in robotics and machine learning, there is a growing demand for these systems to operate in complex and unstructured environments. Traditional model-based approaches struggle to generalize across tasks and object variations due to the high dimensionality and complex contact dynamics of dexterous manipulation. Although model-free methods such as reinforcement learning (RL) show promise, they require extensive training, large-scale interaction data, and carefully designed rewards for stability and effectiveness. Imitation learning (IL) offers an alternative by allowing robots to acquire dexterous manipulation skills directly from expert demonstrations, capturing fine-grained coordination and contact dynamics while bypassing the need for explicit modeling and large-scale trial-and-error. This survey provides an overview of dexterous manipulation methods based on imitation learning, details recent advances, and addresses key challenges in the field. Additionally, it explores potential research directions to enhance IL-driven dexterous manipulation. Our goal is to offer researchers and practitioners a comprehensive introduction to this rapidly evolving domain.
comment: 32pages, 6 figures, 9 tables
♻ ☆ ChronoSelect: Robust Learning with Noisy Labels via Dynamics Temporal Memory
Training deep neural networks on real-world datasets is often hampered by the presence of noisy labels, which can be memorized by over-parameterized models, leading to significant degradation in generalization performance. While existing methods for learning with noisy labels (LNL) have made considerable progress, they fundamentally suffer from static snapshot evaluations and fail to leverage the rich temporal dynamics of learning evolution. In this paper, we propose ChronoSelect (chrono denoting its temporal nature), a novel framework featuring an innovative four-stage memory architecture that compresses prediction history into compact temporal distributions. Our unique sliding update mechanism with controlled decay maintains only four dynamic memory units per sample, progressively emphasizing recent patterns while retaining essential historical knowledge. This enables precise three-way sample partitioning into clean, boundary, and noisy subsets through temporal trajectory analysis and dual-branch consistency. Theoretical guarantees prove the mechanism's convergence and stability under noisy conditions. Extensive experiments demonstrate ChronoSelect's state-of-the-art performance across synthetic and real-world benchmarks.
♻ ☆ Reasoning or Memorization? Unreliable Results of Reinforcement Learning Due to Data Contamination AAAI 2026
Reasoning in large language models has long been a central research focus, and recent studies employing reinforcement learning (RL) have introduced diverse methods that yield substantial performance gains with minimal or even no external supervision. Surprisingly, some studies even suggest that random or incorrect reward signals can enhance performance. However, these breakthroughs are predominantly observed for the mathematically strong Qwen2.5 series on benchmarks such as MATH-500, AMC, and AIME, and seldom transfer to models like Llama, which warrants a more in-depth investigation. In this work, our empirical analysis reveals that pre-training on massive web-scale corpora leaves Qwen2.5 susceptible to data contamination in widely used benchmarks. Consequently, conclusions derived from contaminated benchmarks on Qwen2.5 series may be unreliable. To obtain trustworthy evaluation results, we introduce a generator that creates fully clean arithmetic problems of arbitrary length and difficulty, dubbed RandomCalculation. Using this leakage-free dataset, we show that only accurate reward signals yield steady improvements that surpass the base model's performance boundary in mathematical reasoning, whereas random or incorrect rewards do not. Moreover, we conduct more fine-grained analyses to elucidate the factors underlying the different performance observed on the MATH-500 and RandomCalculation benchmarks. Consequently, we recommend that future studies evaluate models on uncontaminated benchmarks and, when feasible, test various model series to ensure trustworthy conclusions about RL and related methods.
comment: 28 pages, AAAI 2026
♻ ☆ Conformalized Decision Risk Assessment
In many operational settings, decision-makers must commit to actions before uncertainty resolves, but existing optimization tools rarely quantify how consistently a chosen decision remains optimal across plausible scenarios. This paper introduces CREDO -- Conformalized Risk Estimation for Decision Optimization, a distribution-free framework that quantifies the probability that a prescribed decision remains (near-)optimal across realizations of uncertainty. CREDO reformulates decision risk through the inverse feasible region -- the set of outcomes under which a decision is optimal -- and estimates its probability using inner approximations constructed from conformal prediction balls generated by a conditional generative model. This approach yields finite-sample, distribution-free lower bounds on the probability of decision optimality. The framework is model-agnostic and broadly applicable across a wide range of optimization problems. Extensive numerical experiments demonstrate that CREDO provides accurate, efficient, and reliable evaluations of decision optimality across various optimization settings.
♻ ☆ EB-gMCR: Energy-Based Generative Modeling for Signal Unmixing and Multivariate Curve Resolution
Signal unmixing analysis decomposes data into basic patterns and is widely applied in chemical and biological research. Multivariate curve resolution (MCR), a branch of signal unmixing, separates mixed signals into components (base patterns) and their concentrations (intensity), playing a key role in understanding composition. Classical MCR is typically framed as matrix factorization (MF) and requires a user-specified number of components, usually unknown in real data. Once data or component number increases, the scalability of these MCR approaches face significant challenges. This study reformulates MCR as a data generative process (gMCR), and introduces an Energy-Based solver, EB-gMCR, that automatically discovers the smallest component set and their concentrations for reconstructing the mixed signals faithfully. On synthetic benchmarks with up to 256 components, EB-gMCR attains high reconstruction fidelity and recovers the component count within 5% at 20dB noise and near-exact at 30dB. On two public spectral datasets, it identifies the correct component count and improves component separation over MF-based MCR approaches (NMF variants, ICA, MCR-ALS). EB-gMCR is a general solver for fixed-pattern signal unmixing (components remain invariant across mixtures). Domain priors (non-negativity, nonlinear mixing) enter as plug-in modules, enabling adaptation to new instruments or domains without altering the core selection learning step. The source code is available at https://github.com/b05611038/ebgmcr_solver.
comment: 10 pages, 3 figures, 2 tables
♻ ☆ Amortized Active Generation of Pareto Sets NeurIPS 2025
We introduce active generation of Pareto sets (A-GPS), a new framework for online discrete black-box multi-objective optimization (MOO). A-GPS learns a generative model of the Pareto set that supports a-posteriori conditioning on user preferences. The method employs a class probability estimator (CPE) to predict non-dominance relations and to condition the generative model toward high-performing regions of the search space. We also show that this non-dominance CPE implicitly estimates the probability of hypervolume improvement (PHVI). To incorporate subjective trade-offs, A-GPS introduces preference direction vectors that encode user-specified preferences in objective space. At each iteration, the model is updated using both Pareto membership and alignment with these preference directions, producing an amortized generative model capable of sampling across the Pareto front without retraining. The result is a simple yet powerful approach that achieves high-quality Pareto set approximations, avoids explicit hypervolume computation, and flexibly captures user preferences. Empirical results on synthetic benchmarks and protein design tasks demonstrate strong sample efficiency and effective preference incorporation.
comment: Appears in the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Arithmetic-Intensity-Aware Quantization
As modern neural networks become increasingly memory-bound, inference throughput is limited by DRAM bandwidth rather than compute. We present Arithmetic-Intensity-Aware Quantization (AIQ), a mixed precision quantization framework that chooses per-layer bit-widths to maximize arithmetic intensity (AI) while minimizing accuracy loss. AIQ is a post-training quantization method that uses search algorithms over per-layer quantization schemes to minimize a weighted loss over AI and accuracy. On ResNet-20/CIFAR-10, AIQ increases AI by ~50% over an FP32 baseline while keeping test accuracy within ~1 percentage point, and outperforming global uniform quantization schemes. On a memory-bound MobileNetV2 architecture, AIQ configurations give a 1.66x higher throughput than the FP32 baseline while keeping test accuracy within 1 percentage point. We also find that AIQ naturally quantizes larger layers more aggressively.
♻ ☆ WaveGNN: Integrating Graph Neural Networks and Transformers for Decay-Aware Classification of Irregular Clinical Time-Series
Clinical time series are often irregularly sampled, with varying sensor frequencies, missing observations, and misaligned timestamps. Prior approaches typically address these irregularities by interpolating data into regular sequences, thereby introducing bias, or by generating inconsistent and uninterpretable relationships across sensor measurements, complicating the accurate learning of both intra-series and inter-series dependencies. We introduce WaveGNN, a model that operates directly on irregular multivariate time series without interpolation or conversion to a regular representation. WaveGNN combines a decay-aware Transformer to capture intra-series dynamics with a sample-specific graph neural network that models both short-term and long-term inter-sensor relationships. Therefore, it generates a single, sparse, and interpretable graph per sample. Across multiple benchmark datasets (P12, P19, MIMIC-III, and PAM), WaveGNN delivers consistently strong performance, whereas other state-of-the-art baselines tend to perform well on some datasets or tasks but poorly on others. While WaveGNN does not necessarily surpass every method in every case, its consistency and robustness across diverse settings set it apart. Moreover, the learned graphs align well with known physiological structures, enhancing interpretability and supporting clinical decision-making.
comment: Accepted to IEEE BigData 2025. Author-accepted manuscript
♻ ☆ Few-Shot Multimodal Medical Imaging: A Theoretical Framework
Medical imaging often operates under limited labeled data, especially in rare disease and low resource clinical environments. Existing multimodal and meta learning approaches improve performance in these settings but lack a theoretical explanation of why or when they succeed. This paper presents a unified theoretical framework for few shot multimodal medical imaging that jointly characterizes sample complexity, uncertainty quantification, and interpretability. Using PAC learning, VC theory, and PAC Bayesian analysis, we derive bounds that describe the minimum number of labeled samples required for reliable performance and show how complementary modalities reduce effective capacity through an information gain term. We further introduce a formal metric for explanation stability, proving that explanation variance decreases at an inverse n rate. A sequential Bayesian interpretation of Chain of Thought reasoning is also developed to show stepwise posterior contraction. To illustrate these ideas, we implement a controlled multimodal dataset and evaluate an additive CNN MLP fusion model under few shot regimes, confirming predicted multimodal gains, modality interference at larger sample sizes, and shrinking predictive uncertainty. Together, the framework provides a principled foundation for designing data efficient, uncertainty aware, and interpretable diagnostic models in low resource settings.
comment: 6 Pages
♻ ☆ Improving Graph Neural Network Training, Defense and Hypergraph Partitioning via Adversarial Robustness Evaluation
Graph Neural Networks (GNNs) are a highly effective neural network architecture for processing graph-structured data. Unlike traditional neural networks that rely solely on the features of the data as input, GNNs leverage both the graph structure, which represents the relationships between data points, and the feature matrix of the data to optimize their feature representation. This unique capability enables GNNs to achieve superior performance across various tasks. However, it also makes GNNs more susceptible to noise and adversarial attacks from both the graph structure and data features, which can significantly increase the training difficulty and degrade their performance. Similarly, a hypergraph is a highly complex structure, and partitioning a hypergraph is a challenging task. This paper leverages spectral adversarial robustness evaluation to effectively address key challenges in complex-graph algorithms. By using spectral adversarial robustness evaluation to distinguish robust nodes from non-robust ones and treating them differently, we propose a training-set construction strategy that improves the training quality of GNNs. In addition, we develop algorithms to enhance both the adversarial robustness of GNNs and the performance of hypergraph partitioning. Experimental results show that this series of methods is highly effective.
♻ ☆ Stronger-MAS: Multi-Agent Reinforcement Learning for Collaborative LLMs
Multi-agent systems (MAS) and reinforcement learning (RL) are widely used to enhance the agentic capabilities of large language models (LLMs). MAS improves task performance through role-based orchestration, while RL uses environmental rewards to learn stronger policies, such as GRPO-style optimization. However, applying on-policy RL to MAS remains underexplored and presents unique challenges. Algorithmically, standard GRPO grouping assumptions break down because prompts vary by role and by turn. System-wise, the training stack must support MAS-workflow rollouts and on-policy updates for both single-policy and multi-policy models. We propose AT-GRPO, which includes (i) an agent- and turn-wise grouped RL algorithm tailored to MAS and (ii) a training system that supports both single- and multi-policy regimes. Across game, planning, coding, and math tasks, AT-GRPO delivers substantial gains. On long-horizon planning, it increases accuracy from a 14.0 to 47.0 percent single-agent RL baseline to 96.0 to 99.5 percent. It also improves reasoning performance, with average gains of 3.87 to 7.62 percent on coding tasks and 9.0 to 17.93 percent on math. Code and environments are available at: https://github.com/pettingllms-ai/PettingLLMs.
♻ ☆ Who is In Charge? Dissecting Role Conflicts in Instruction Following NeurIPS 2025
Large language models should follow hierarchical instructions where system prompts override user inputs, yet recent work shows they often ignore this rule while strongly obeying social cues such as authority or consensus. We extend these behavioral findings with mechanistic interpretations on a large-scale dataset. Linear probing shows conflict-decision signals are encoded early, with system-user and social conflicts forming distinct subspaces. Direct Logit Attribution reveals stronger internal conflict detection in system-user cases but consistent resolution only for social cues. Steering experiments show that, despite using social cues, the vectors surprisingly amplify instruction following in a role-agnostic way. Together, these results explain fragile system obedience and underscore the need for lightweight hierarchy-sensitive alignment methods.
comment: 12 pages, 5 figures, Mech Interp Workshop (NeurIPS 2025) Poster
♻ ☆ Learning Multimodal Embeddings for Traffic Accident Prediction and Causal Estimation KDD'26
We consider analyzing traffic accident patterns using both road network data and satellite images aligned to road graph nodes. Previous work for predicting accident occurrences relies primarily on road network structural features while overlooking physical and environmental information from the road surface and its surroundings. In this work, we construct a large multimodal dataset across six U.S. states, containing nine million traffic accident records from official sources, and one million high-resolution satellite images for each node of the road network. Additionally, every node is annotated with features such as the region's weather statistics and road type (e.g., residential vs. motorway), and each edge is annotated with traffic volume information (i.e., Average Annual Daily Traffic). Utilizing this dataset, we conduct a comprehensive evaluation of multimodal learning methods that integrate both visual and network embeddings. Our findings show that integrating both data modalities improves prediction accuracy, achieving an average AUROC of $90.1\%$, which is a $3.7\%$ gain over graph neural network models that only utilize graph structures. With the improved embeddings, we conduct a causal analysis based on a matching estimator to estimate the key contributing factors influencing traffic accidents. We find that accident rates rise by $24\%$ under higher precipitation, by $22\%$ on higher-speed roads such as motorways, and by $29\%$ due to seasonal patterns, after adjusting for other confounding factors. Ablation studies confirm that satellite imagery features are essential for achieving accurate prediction.
comment: 17 pages. To appear in KDD'26 Datasets
♻ ☆ Spoken DialogSum: An Emotion-Rich Conversational Dataset for Spoken Dialogue Summarization
Recent audio language models can follow long conversations. However, research on emotion-aware or spoken dialogue summarization is constrained by the lack of data that links speech, summaries, and paralinguistic cues. We introduce Spoken DialogSum, the first corpus aligning raw conversational audio with factual summaries, emotion-rich summaries, and utterance-level labels for speaker age, gender, and emotion. The dataset is built in two stages: first, an LLM rewrites DialogSum scripts with Switchboard-style fillers and back-channels, then tags each utterance with emotion, pitch, and speaking rate. Second, an expressive TTS engine synthesizes speech from the tagged scripts, aligned with paralinguistic labels. Spoken DialogSum comprises 13,460 emotion-diverse dialogues, each paired with both a factual and an emotion-focused summary. We release an online demo at https://fatfat-emosum.github.io/EmoDialog-Sum-Audio-Samples/, with plans to release the full dataset in the near future. Baselines show that an Audio-LLM raises emotional-summary ROUGE-L by 28% relative to a cascaded ASR-LLM system, confirming the value of end-to-end speech modeling.
comment: 12 pages, 2 figures
♻ ☆ Uncovering Alzheimer's Disease Progression via SDE-based Spatio-Temporal Graph Deep Learning on Longitudinal Brain Networks
Identifying objective neuroimaging biomarkers to forecast Alzheimer's disease (AD) progression is crucial for timely intervention. However, this task remains challenging due to the complex dysfunctions in the spatio-temporal characteristics of underlying brain networks, which are often overlooked by existing methods. To address these limitations, we develop an interpretable spatio-temporal graph neural network framework to predict future AD progression, leveraging dual Stochastic Differential Equations (SDEs) to model the irregularly-sampled longitudinal functional magnetic resonance imaging (fMRI) data. We validate our approach on two independent cohorts, including the Open Access Series of Imaging Studies (OASIS-3) and the Alzheimer's Disease Neuroimaging Initiative (ADNI). Our framework effectively learns sparse regional and connective importance probabilities, enabling the identification of key brain circuit abnormalities associated with disease progression. Notably, we detect the parahippocampal cortex, prefrontal cortex, and parietal lobule as salient regions, with significant disruptions in the ventral attention, dorsal attention, and default mode networks. These abnormalities correlate strongly with longitudinal AD-related clinical symptoms. Moreover, our interpretability strategy reveals both established and novel neural systems-level and sex-specific biomarkers, offering new insights into the neurobiological mechanisms underlying AD progression. Our findings highlight the potential of spatio-temporal graph-based learning for early, individualized prediction of AD progression, even in the context of irregularly-sampled longitudinal imaging data.
♻ ☆ Bayesian Deep Learning for Discrete Choice
Discrete choice models (DCMs) are used to analyze individual decision-making in contexts such as transportation choices, political elections, and consumer preferences. DCMs play a central role in applied econometrics by enabling inference on key economic variables, such as marginal rates of substitution, rather than focusing solely on predicting choices on new unlabeled data. However, while traditional DCMs offer high interpretability and support for point and interval estimation of economic quantities, these models often underperform in predictive tasks compared to deep learning (DL) models. Despite their predictive advantages, DL models remain largely underutilized in discrete choice due to concerns about their lack of interpretability, unstable parameter estimates, and the absence of established methods for uncertainty quantification. Here, we introduce a deep learning model architecture specifically designed to integrate with approximate Bayesian inference methods, such as Stochastic Gradient Langevin Dynamics (SGLD). Our proposed model collapses to behaviorally informed hypotheses when data is limited, mitigating overfitting and instability in underspecified settings while retaining the flexibility to capture complex nonlinear relationships when sufficient data is available. We demonstrate our approach using SGLD through a Monte Carlo simulation study, evaluating both predictive metrics--such as out-of-sample balanced accuracy--and inferential metrics--such as empirical coverage for marginal rates of substitution interval estimates. Additionally, we present results from two empirical case studies: one using revealed mode choice data in NYC, and the other based on the widely used Swiss train choice stated preference data.
♻ ☆ Forgetting is Everywhere
A fundamental challenge in developing general learning algorithms is their tendency to forget past knowledge when adapting to new data. Addressing this problem requires a principled understanding of forgetting; yet, despite decades of study, no unified definition has emerged that provides insights into the underlying dynamics of learning. We propose an algorithm- and task-agnostic theory that characterises forgetting as a lack of self-consistency in a learner's predictive distribution over future experiences, manifesting as a loss of predictive information. Our theory naturally yields a general measure of an algorithm's propensity to forget and shows that Bayesian learners are capable of adapting without forgetting. To validate the theory, we design a comprehensive set of experiments that span classification, regression, generative modelling, and reinforcement learning. We empirically demonstrate how forgetting is present across all deep learning settings and plays a significant role in determining learning efficiency. Together, these results establish a principled understanding of forgetting and lay the foundation for analysing and improving the information retention capabilities of general learning algorithms.
comment: Project page: https://ben-sanati.github.io/forgetting-is-everywhere-project/
♻ ☆ Efficient Zero-Order Federated Finetuning of Language Models for Resource-Constrained Devices
Federated fine-tuning offers a promising approach for tuning Large Language Models (LLMs) on edge devices while preserving data privacy. However, fine-tuning these models on edge devices remains challenging due to high memory, communication, and computational demands. Zero-order optimization with task alignment provides a potential solution, enabling fine-tuning with inference-level memory requirements but requires a longer convergence time. In this paper, we propose \ac{METHOD} that divides the network into two blocks, applying a different number of perturbations per block in a computationally effective way, achieving faster convergence. Our evaluation shows a $1.6-3\times$ reduction in computation overhead compared to zero-order state of the art techniques in federated learning.
♻ ☆ Machine Learning and Control: Foundations, Advances, and Perspectives
Control theory of dynamical systems offers a powerful framework for tackling challenges in deep neural networks and other machine learning architectures. We show that concepts such as simultaneous and ensemble controllability offer new insights into the classification and representation properties of deep neural networks, while the control and optimization of static systems can be employed to better understand the performance of shallow networks. Inspired by the classical concept of turnpike, we also explore the relationship between dynamic and static neural networks, where depth is traded for width, and the role of transformers as mechanisms for accelerating classical neural network tasks. We also exploit the expressive power of neural networks (exemplified, for instance, by the Universal Approximation Theorem) to develop a novel hybrid modeling methodology, the Hybrid-Cooperative Learning (HYCO), combining mechanics and data-driven methods in a game-theoretic setting. Finally, we describe how classical properties of diffusion processes, long established in the context of partial differential equations, contribute to explaining the success of modern generative artificial intelligence (AI). We present an overview of our recent results in these areas, illustrating how control, machine learning, numerical analysis, and partial differential equations come together to motivate a fertile ground for future research.
♻ ☆ Neural networks for dengue forecasting: a systematic review
Background: Early forecasts of dengue are an important tool for disease mitigation. Neural networks are powerful predictive models that have made contributions to many areas of public health. In this study, we reviewed the application of neural networks in the dengue forecasting literature, with the objective of informing model design for future work. Methods: Following PRISMA guidelines, we conducted a systematic search of studies that use neural networks to forecast dengue in human populations. We summarized the relative performance of neural networks and comparator models, architectures and hyper-parameters, choices of input features, geographic spread, and model transparency. Results: Sixty two papers were included. Most studies implemented shallow feed-forward neural networks, using historical dengue incidence and climate variables. Prediction horizons varied greatly, as did the model selection and evaluation approach. Building on the strengths of neural networks, most studies used granular observations at the city level, or on its subdivisions, while also commonly employing weekly data. Performance of neural networks relative to comparators, such as tree-based supervised models, varied across study contexts, and we found that 63% of all studies do include at least one such model as a baseline, and in those cases about half of the studies report neural networks as the best performing model. Conclusions: The studies suggest that neural networks can provide competitive forecasts for dengue, and can reliably be included in the set of candidate models for future dengue prediction efforts. The use of deep networks is relatively unexplored but offers promising avenues for further research, as does the use of a broader set of input features and prediction in light of structural changes in the data generation mechanism.
♻ ☆ Forking-Sequences NeurIPS 2025
While accuracy is a critical requirement for time series forecasting models, an equally important (yet often overlooked) desideratum is forecast stability across forecast creation dates (FCDs). Even highly accurate models can produce erratic revisions between FCDs, undermining stakeholder trust and disrupting downstream decision-making. To improve forecast stability, models like MQCNN, MQT, and SPADE employ a little-known but highly effective technique: forking-sequences. Unlike standard statistical and neural forecasting methods that treat each FCD independently, the forking-sequences method jointly encodes and decodes the entire time series across all FCDs, in a way mirroring time series cross-validation. Since forking sequences remains largely unknown in the broader neural forecasting community, in this work, we formalize the forking-sequences approach, and we make a case for its broader adoption. We demonstrate three key benefits of forking-sequences: (i) more stable and consistent gradient updates during training; (ii) reduced forecast variance through ensembling; and (iii) improved inference computational efficiency. We validate forking-sequences' benefits using 16 datasets from the M1, M3, M4, and Tourism competitions, showing improvements in forecast percentage change stability of 28.8%, 28.8%, 37.9%, and 31.3%, and 8.8%, on average, for MLP, RNN, LSTM, CNN, and Transformer-based architectures, respectively.
comment: Presented at the GPU-Accelerated and Scalable Optimization (ScaleOpt) Workshop, NeurIPS 2025
♻ ☆ Deep generative priors for 3D brain analysis
Diffusion models have recently emerged as powerful generative models in medical imaging. However, it remains a major challenge to combine these data-driven models with domain knowledge to guide brain imaging problems. In neuroimaging, Bayesian inverse problems have long provided a successful framework for inference tasks, where incorporating domain knowledge of the imaging process enables robust performance without requiring extensive training data. However, the anatomical modeling component of these approaches typically relies on classical mathematical priors that often fail to capture the complex structure of brain anatomy. In this work, we present the first general-purpose application of diffusion models as priors for solving a wide range of medical imaging inverse problems. Our approach leverages a score-based diffusion prior trained extensively on diverse brain MRI data, paired with flexible forward models that capture common image processing tasks such as super-resolution, bias field correction, inpainting, and combinations thereof. We further demonstrate how our framework can refine outputs from existing deep learning methods to improve anatomical fidelity. Experiments on heterogeneous clinical and research MRI data show that our method achieves state-of-the-art performance producing consistent, high-quality solutions without requiring paired training datasets. These results highlight the potential of diffusion priors as versatile tools for brain MRI analysis.
♻ ☆ Scientific Machine Learning of Chaotic Systems Discovers Governing Equations for Neural Populations
Discovering governing equations that describe complex chaotic systems remains a fundamental challenge in physics and neuroscience. Here, we introduce the PEM-UDE method, which combines the prediction-error method with universal differential equations to extract interpretable mathematical expressions from chaotic dynamical systems, even with limited or noisy observations. This approach succeeds where traditional techniques fail by smoothing optimization landscapes and removing the chaotic properties during the fitting process without distorting optimal parameters. We demonstrate its efficacy by recovering hidden states in the Rossler system and reconstructing dynamics from noise-corrupted electrical-circuit data, in which the correct functional form of the dynamics is recovered even when one of the observed time series is corrupted by noise 5x the magnitude of the true signal. We demonstrate that this method can recover the correct dynamics, whereas direct symbolic regression methods, such as STLSQ, fail to do so with the available data and noise. Importantly, when applied to neural populations, our method derives novel governing equations that respect biological constraints such as network sparsity - a constraint necessary for cortical information processing yet not captured in next-generation neural mass models - while preserving microscale neuronal parameters. These equations predict an emergent relationship between connection density and both oscillation frequency and synchrony in neural circuits. We validate these predictions using three intracranial electrode recording datasets from the medial entorhinal cortex, prefrontal cortex, and orbitofrontal cortex. Our work provides a pathway to develop mechanistic, multi-scale brain models that generalize across diverse neural architectures, bridging the gap between single-neuron dynamics and macroscale brain activity.
comment: 46 pages, 9 figures
♻ ☆ A Spatio-Temporal Machine Learning Model for Mortgage Credit Risk: Default Probabilities and Loan Portfolios
We introduce a novel machine learning model for credit risk by combining tree-boosting with a latent spatio-temporal Gaussian process model accounting for frailty correlation. This allows for modeling non-linearities and interactions among predictor variables in a flexible data-driven manner and for accounting for spatio-temporal variation that is not explained by observable predictor variables. We also show how estimation and prediction can be done in a computationally efficient manner. In an application to a large U.S. mortgage credit risk data set, we find that both predictive default probabilities for individual loans and predictive loan portfolio loss distributions obtained with our novel approach are more accurate compared to conventional independent linear hazard models and also linear spatio-temporal models. Using interpretability tools for machine learning models, we find that the likely reasons for this outperformance are strong interaction and non-linear effects in the predictor variables and the presence of spatio-temporal frailty effects.
♻ ☆ Provable optimal transport with transformers: The essence of depth and prompt engineering
Despite their empirical success, the internal mechanism by which transformer models align tokens during language processing remains poorly understood. This paper provides a mechanistic and theoretical explanation of token alignment in LLMs. We first present empirical evidences showing that, in machine translation, attention weights progressively align translated word pairs across layers, closely approximating Optimal Transport (OT) between word embeddings. Building on this observation, we prove that softmax self-attention layers can simulate gradient descent on the dual of the entropy-regularized OT problem, providing a theoretical foundation for the alignment. Our analysis yields a constructive convergence bound showing that transformer depth controls OT approximation accuracy. A direct implication is that standard transformers can sort lists of varying lengths without any parameter adjustment, up to an error term vanishing with transformers depth.
♻ ☆ Scalable Krylov Subspace Methods for Generalized Mixed Effects Models with Crossed Random Effects
Mixed-effects models are widely used to model data with hierarchical grouping structures and high-cardinality categorical predictor variables. However, for high-dimensional crossed random effects, sparse Cholesky decompositions, the current standard approach, can become prohibitively slow. In this work, we present Krylov subspace-based methods that address these computational bottlenecks and analyze them both theoretically and empirically. In particular, we derive new results on the convergence and accuracy of the preconditioned stochastic Lanczos quadrature and conjugate gradient methods for mixed-effects models, and we develop scalable methods for calculating predictive variances. In experiments with simulated and real-world data, the proposed methods yield speedups by factors of up to about 10,000 and are numerically more stable than Cholesky-based computations as implemented in state-of-the-art packages such as lme4 and glmmTMB. Our methodology is available in the open-source C++ software library GPBoost, with accompanying high-level Python and R packages.
♻ ☆ Generation is Required for Data-Efficient Perception
It has been hypothesized that human-level visual perception requires a generative approach in which internal representations result from inverting a decoder. Yet today's most successful vision models are non-generative, relying on an encoder that maps images to representations without decoder inversion. This raises the question of whether generation is, in fact, necessary for machines to achieve human-level visual perception. To address this, we study whether generative and non-generative methods can achieve compositional generalization, a hallmark of human perception. Under a compositional data generating process, we formalize the inductive biases required to guarantee compositional generalization in decoder-based (generative) and encoder-based (non-generative) methods. We then show theoretically that enforcing these inductive biases on encoders is generally infeasible using regularization or architectural constraints. In contrast, for generative methods, the inductive biases can be enforced straightforwardly, thereby enabling compositional generalization by constraining a decoder and inverting it. We highlight how this inversion can be performed efficiently, either online through gradient-based search or offline through generative replay. We examine the empirical implications of our theory by training a range of generative and non-generative methods on photorealistic image datasets. We find that, without the necessary inductive biases, non-generative methods often fail to generalize compositionally and require large-scale pretraining or added supervision to improve generalization. By comparison, generative methods yield significant improvements in compositional generalization, without requiring additional data, by leveraging suitable inductive biases on a decoder along with search and replay.
comment: Preprint
♻ ☆ Improved Segmentation of Polyps and Visual Explainability Analysis
Colorectal cancer (CRC) remains one of the leading causes of cancer-related morbidity and mortality worldwide, with gastrointestinal (GI) polyps serving as critical precursors according to the World Health Organization (WHO). Early and accurate segmentation of polyps during colonoscopy is essential for reducing CRC progression, yet manual delineation is labor-intensive and prone to observer variability. Deep learning methods have demonstrated strong potential for automated polyp analysis, but their limited interpretability remains a barrier to clinical adoption. In this study, we present PolypSeg-GradCAM, an explainable deep learning framework that integrates a U-Net architecture with a pre-trained ResNet-34 backbone and Gradient-weighted Class Activation Mapping (Grad-CAM) for transparent polyp segmentation. To ensure rigorous benchmarking, the model was trained and evaluated using 5-Fold Cross-Validation on the Kvasir-SEG dataset of 1,000 annotated endoscopic images. Experimental results show a mean Dice coefficient of 0.8902 +/- 0.0125, a mean Intersection-over-Union (IoU) of 0.8023, and an Area Under the Receiver Operating Characteristic Curve (AUC-ROC) of 0.9722. Advanced quantitative analysis using an optimal threshold yielded a Sensitivity of 0.9058 and Precision of 0.9083. Additionally, Grad-CAM visualizations confirmed that predictions were guided by clinically relevant regions, offering insight into the model's decision-making process. This study demonstrates that integrating segmentation accuracy with interpretability can support the development of trustworthy AI-assisted colonoscopy tools.
♻ ☆ Preference-Guided Diffusion for Multi-Objective Offline Optimization NeurIPS
Offline multi-objective optimization aims to identify Pareto-optimal solutions given a dataset of designs and their objective values. In this work, we propose a preference-guided diffusion model that generates Pareto-optimal designs by leveraging a classifier-based guidance mechanism. Our guidance classifier is a preference model trained to predict the probability that one design dominates another, directing the diffusion model toward optimal regions of the design space. Crucially, this preference model generalizes beyond the training distribution, enabling the discovery of Pareto-optimal solutions outside the observed dataset. We introduce a novel diversity-aware preference guidance, augmenting Pareto dominance preference with diversity criteria. This ensures that generated solutions are optimal and well-distributed across the objective space, a capability absent in prior generative methods for offline multi-objective optimization. We evaluate our approach on various continuous offline multi-objective optimization tasks and find that it consistently outperforms other inverse/generative approaches while remaining competitive with forward/ surrogate-based optimization methods. Our results highlight the effectiveness of classifier-guided diffusion models in generating diverse and high-quality solutions that approximate the Pareto front well.
comment: Accepted in NeurIPS (2025)
♻ ☆ FARM: Fine-Tuning Geospatial Foundation Models for Intra-Field Crop Yield Regression
Accurate and timely crop yield prediction is crucial for global food security and modern agricultural management. Traditional methods often lack the scalability and granularity required for precision farming. This paper introduces FARM: Fine-tuning Agricultural Regression Models, a deep learning framework designed for high-resolution, intra-field canola yield prediction. FARM leverages a pre-trained, large-scale geospatial foundation model (Prithvi-EO-2.0-600M) and adapts it for a continuous regression task, transforming multi-temporal satellite imagery into dense, pixel-level (30 m) yield maps. Evaluated on a comprehensive dataset from the Canadian Prairies, FARM achieves a Root Mean Squared Error (RMSE) of 0.44 and an R^2 of 0.81. Using an independent high-resolution yield monitor dataset, we further show that fine-tuning FARM on limited ground-truth labels outperforms training the same architecture from scratch, confirming the benefit of pre-training on large, upsampled county-level data for data-scarce precision agriculture. These results represent improvement over baseline architectures like 3D-CNN and DeepYield, which highlight the effectiveness of fine-tuning foundation models for specialized agricultural applications. By providing a continuous, high-resolution output, FARM offers a more actionable tool for precision agriculture than conventional classification or county-level aggregation methods. This work validates a novel approach that bridges the gap between large-scale Earth observation and on-farm decision-making, offering a scalable solution for detailed agricultural monitoring.
♻ ☆ Stochastic Optimization with Random Search
We revisit random search for stochastic optimization, where only noisy function evaluations are available. We show that the method works under weaker smoothness assumptions than previously considered, and that stronger assumptions enable improved guarantees. In the finite-sum setting, we design a variance-reduced variant that leverages multiple samples to accelerate convergence. Our analysis relies on a simple translation invariance property, which provides a principled way to balance noise and reduce variance.
♻ ☆ Improved High-probability Convergence Guarantees of Decentralized SGD
Convergence in high-probability (HP) has been receiving increasing interest, due to its attractive properties, such as exponentially decaying tail bounds and strong guarantees for each individual run of an algorithm. While HP guarantees are extensively studied in centralized settings, much less is understood in the decentralized, networked setup. Existing HP studies in decentralized settings impose strong assumptions, like uniformly bounded gradients, or asymptotically vanishing noise, resulting in a significant gap between assumptions used to establish convergence in the HP and the mean-squared error (MSE) sense, even for vanilla Decentralized Stochastic Gradient Descent ($\mathtt{DSGD}$) algorithm. This is contrary to centralized settings, where it is known that $\mathtt{SGD}$ converges in HP under the same conditions on the cost function as needed to guarantee MSE convergence. Motivated by this observation, we revisit HP guarantees for $\mathtt{DSGD}$ in the presence of light-tailed noise. We show that $\mathtt{DSGD}$ converges in HP under the same conditions on the cost as in the MSE sense, removing uniformly bounded gradients and other restrictive assumptions, while simultaneously achieving order-optimal rates for both non-convex and strongly convex costs. Moreover, our improved analysis yields linear speed-up in the number of users, demonstrating that $\mathtt{DSGD}$ maintains strong performance in the HP sense and matches existing MSE guarantees. Our improved results stem from a careful analysis of the MGF of quantities of interest (norm-squared of gradient or optimality gap) and the MGF of the consensus gap between users' models. To achieve linear speed-up, we provide a novel result on the variance-reduction effect of decentralized methods in the HP sense and more fine-grained bounds on the MGF for strongly convex costs, which are both of independent interest.
comment: 48 pages, 2 figures
♻ ☆ A Split-Client Approach to Second-Order Optimization
Second-order methods promise faster convergence but are rarely used in practice because Hessian computations and decompositions are far more expensive than gradients. We propose a \emph{split-client} framework where gradients and curvature are computed asynchronously by separate clients. This abstraction captures realistic delays and inexact Hessian updates while avoiding the manual tuning required by Lazy Hessian methods. Focusing on cubic regularization, we show that our approach retains strong convergence guarantees and achieves a provable wall-clock speedup of order $\sqrtτ$, where $τ$ is the relative time needed to compute and decompose the Hessian compared to a gradient step. Since $τ$ can be orders of magnitude larger than one in high-dimensional problems, this improvement is practically significant. Experiments on synthetic and real datasets confirm the theory: asynchronous curvature consistently outperforms vanilla and Lazy Hessian baselines, while maintaining second-order accuracy.
♻ ☆ Mathematical Insights into Protein Architecture: Persistent Homology and Machine Learning Applied to the Flagellar Motor
We present a machine learning approach that leverages persistent homology to classify bacterial flagellar motors into two functional states: rotated and stalled. By embedding protein structural data into a topological framework, we extract multiscale features from filtered simplicial complexes constructed over atomic coordinates. These topological invariants, specifically persistence diagrams and barcodes, capture critical geometric and connectivity patterns that correlate with motor function. The extracted features are vectorized and integrated into a machine learning pipeline that includes dimensionality reduction and supervised classification. Applied to a curated dataset of experimentally characterized flagellar motors from diverse bacterial species, our model demonstrates high classification accuracy and robustness to structural variation. This approach highlights the power of topological data analysis in revealing functionally relevant patterns beyond the reach of traditional geometric descriptors, offering a novel computational tool for protein function prediction.
♻ ☆ An interpretation of the Brownian bridge as a physics-informed prior for the Poisson equation
Many inverse problems require reconstructing physical fields from limited and noisy data while incorporating known governing equations. A growing body of work within probabilistic numerics formalizes such tasks via Bayesian inference in function spaces by assigning a physically meaningful prior to the latent field. In this work, we demonstrate that Brownian bridge Gaussian processes can be viewed as a softly-enforced physics-constrained prior for the Poisson equation. We first show equivalence between the variational problem associated with the Poisson equation and a kernel ridge regression objective. Then, through the connection between Gaussian process regression and kernel methods, we identify a Gaussian process for which the posterior mean function and the minimizer to the variational problem agree, thereby placing this PDE-based regularization within a fully Bayesian framework. This connection allows us to probe different theoretical questions, such as convergence and behavior of inverse problems. We then develop a finite-dimensional representation in function space and prove convergence of the projected prior and resulting posterior in Wasserstein distance. Finally, we connect the method to the important problem of identifying model-form error in applications, providing a diagnostic for model misspecification.
comment: 38 pages
♻ ☆ From Logits to Hierarchies: Hierarchical Clustering made Simple ICML 2025
The hierarchical structure inherent in many real-world datasets makes the modeling of such hierarchies a crucial objective in both unsupervised and supervised machine learning. While recent advancements have introduced deep architectures specifically designed for hierarchical clustering, we adopt a critical perspective on this line of research. Our findings reveal that these methods face significant limitations in scalability and performance when applied to realistic datasets. Given these findings, we present an alternative approach and introduce a lightweight method that builds on pre-trained non-hierarchical clustering models. Remarkably, our approach outperforms specialized deep models for hierarchical clustering, and it is broadly applicable to any pre-trained clustering model that outputs logits, without requiring any fine-tuning. To highlight the generality of our approach, we extend its application to a supervised setting, demonstrating its ability to recover meaningful hierarchies from a pre-trained ImageNet classifier. Our results establish a practical and effective alternative to existing deep hierarchical clustering methods, with significant advantages in efficiency, scalability and performance.
comment: ICML 2025 camera-ready version
♻ ☆ Unified Convergence Theory of Stochastic and Variance-Reduced Cubic Newton Methods
We study stochastic Cubic Newton methods for solving general possibly non-convex minimization problems. We propose a new framework, which we call the helper framework, that provides a unified view of the stochastic and variance-reduced second-order algorithms equipped with global complexity guarantees. It can also be applied to learning with auxiliary information. Our helper framework offers the algorithm designer high flexibility for constructing and analyzing the stochastic Cubic Newton methods, allowing arbitrary size batches, and the use of noisy and possibly biased estimates of the gradients and Hessians, incorporating both the variance reduction and the lazy Hessian updates. We recover the best-known complexities for the stochastic and variance-reduced Cubic Newton, under weak assumptions on the noise. A direct consequence of our theory is the new lazy stochastic second-order method, which significantly improves the arithmetic complexity for large dimension problems. We also establish complexity bounds for the classes of gradient-dominated objectives, that include convex and strongly convex problems. For Auxiliary Learning, we show that using a helper (auxiliary function) can outperform training alone if a given similarity measure is small.
comment: Published in Transactions on Machine Learning Research
♻ ☆ Understanding Overparametrization in Survival Models through Interpolation
Classical statistical learning theory predicts a U-shaped relationship between test loss and model capacity, driven by the bias-variance trade-off. Recent advances in modern machine learning have revealed a more complex pattern, \textit{double-descent}, in which test loss, after peaking near the interpolation threshold, decreases again as model capacity continues to grow. While this behavior has been extensively analyzed in regression and classification, its manifestation in survival analysis remains unexplored. This study investigates overparametrization in four representative survival models: DeepSurv, PC-Hazard, Nnet-Survival, and N-MTLR. We rigorously define \textit{interpolation} and \textit{finite-norm interpolation}, two key characteristics of loss-based models to understand \textit{double-descent}. We then show the existence (or absence) of \textit{(finite-norm) interpolation} of all four models. Our findings clarify how likelihood-based losses and model implementation jointly determine the feasibility of \textit{interpolation} and show that overparametrization should not be regarded as benign for survival models. All theoretical results are supported by numerical experiments that highlight the distinct generalization behaviors of survival models.
Quantitative Methods 6
☆ A multiscale framework integrating within-host infection kinetics with airborne transmission dynamics
Coupling within-host infection dynamics with population-level transmission remains a major challenge in infectious disease modeling, especially for airborne pathogens with potential to spread indoor. The frequent emergence of such diseases highlight the need for integrated frameworks that capture both individual-level infection kinetics and between-host transmission. While analytical models for each scale exist, tractable approaches that link them remain limited. In this study, we present a novel multiscale mathematical framework that integrates within-host infection kinetics with airborne transmission dynamics. The model represents each host as a patch and couples a system of ordinary differential equations (ODEs) describing in-host infection kinetics with a diffusion-based partial differential equation (PDE) for airborne pathogen movement in enclosed spaces. These scales are linked through boundary conditions on each patch boundary, representing viral shedding and inhalation. Using matched asymptotic analysis in the regime of intermediate diffusivity, we derived a nonlinear ODE model from the coupled ODE-PDE system that retains spatial heterogeneity through Neumann Green's functions. We established the existence, uniqueness, and boundedness of solutions to the reduced model and analyzed within-host infection kinetics as functions of the airborne pathogen diffusion rate and host spatial configuration. In the well-mixed limit, the model recovers the classical target cell limited viral dynamics framework. Overall, the proposed multiscale modeling approach enables the simultaneous study of transient within-host infection dynamics and population-level disease spread, providing a tractable yet biologically grounded framework for investigating airborne disease transmission in indoor environments.
comment: 25 pages, 6 figures
☆ Accessibility of Modified NK Fitness Landscapes
In this paper we present two modifications of traditional $NK$ fitness landscapes, the $θNK$ and $HNK$ models, and explore these modifications via accessibility and ruggedness. The $θNK$ model introduces a parameter $θ$ to integrate local Rough Mount Fuji-type correlations in subgenotype contributions, simulating more biologically realistic correlated fitness effects. The $HNK$ model incorporates gene regulation effects by introducing a masking mechanism where certain loci modulate the expression of other loci, simulating effects observed in gene regulatory networks without modeling the full network. Through extensive simulations across a wide range of parameters ($N$, $K$, $θ$, and $H$), we analyze the impact of these modifications on landscape accessibility and the number of local optima. We find that increasing $θ$ or the number of masking loci ($H$) generally enhances accessibility, even in landscapes with many local optima, showing that ruggedness doesn't necessarily hinder evolutionary pathways. Additionally, distinct interaction patterns (blocked, adjacent, random) lead to different observations in accessibility and optimum structure. While more complex than traditional $NK$, we believe each model provides a new biologically relevant facet to fitness landscapes and provides insight into how genetic and regulatory structures influence the evolutionary potential of populations.
comment: 18 pages plus 13 pages of references and supplementary information
☆ Scalable Agentic Reasoning for Designing Biologics Targeting Intrinsically Disordered Proteins
Intrinsically disordered proteins (IDPs) represent crucial therapeutic targets due to their significant role in disease -- approximately 80\% of cancer-related proteins contain long disordered regions -- but their lack of stable secondary/tertiary structures makes them "undruggable". While recent computational advances, such as diffusion models, can design high-affinity IDP binders, translating these to practical drug discovery requires autonomous systems capable of reasoning across complex conformational ensembles and orchestrating diverse computational tools at scale.To address this challenge, we designed and implemented StructBioReasoner, a scalable multi-agent system for designing biologics that can be used to target IDPs. StructBioReasoner employs a novel tournament-based reasoning framework where specialized agents compete to generate and refine therapeutic hypotheses, naturally distributing computational load for efficient exploration of the vast design space. Agents integrate domain knowledge with access to literature synthesis, AI-structure prediction, molecular simulations, and stability analysis, coordinating their execution on HPC infrastructure via an extensible federated agentic middleware, Academy. We benchmark StructBioReasoner across Der f 21 and NMNAT-2 and demonstrate that over 50\% of 787 designed and validated candidates for Der f 21 outperformed the human-designed reference binders from literature, in terms of improved binding free energy. For the more challenging NMNAT-2 protein, we identified three binding modes from 97,066 binders, including the well-studied NMNAT2:p53 interface. Thus, StructBioReasoner lays the groundwork for agentic reasoning systems for IDP therapeutic discovery on Exascale platforms.
comment: This manuscript is under peer review for acceptance to the Proceedings of the Platform for Advanced Scientific Computing (PASC) 26 Conference
☆ Handling Class Imbalance Problem in Skin Lesion Classification: Finding Strengths and Weaknesses of Various Balancing Techniques
Automatic skin lesion classification from dermoscopy images is important for the early diagnosis of skin diseases such as melanoma. Class imbalance in skin lesion datasets, notably the defects in the representation of malignant(cancerous) cases, is one of the difficulties for deep learning models' performances and generalizations. This paper offers an exhaustive review of some of the balancing methods that aim to address class imbalances using the example of the ISIC 2016 dataset. A light-weight CNN model, MobileNetV2, was combined with under-sampling, over-sampling, and hybrid balancing methods such as Tomek Links(TL), SMOTE, and SMOTE with TL. Over-sampling methods like SMOTE and ADASYN improve performance but may lead to overfitting due to redundant synthetic samples. Hybrid methods like SMOTE+TL counter this drawback by removing noisy or boundary samples so that model generalization is enhanced. Thus, this analysis stresses the need to choose the right balancing methods for robust and sensitive diagnostic systems in medical image processing.
comment: Accepted at 2025 International Conference on Quantum Photonics, Artificial Intelligence, and Networking (QPAIN)
Foundation Models in Biomedical Imaging: Turning Hype into Reality
Foundation models (FMs) are driving a prominent shift in artificial intelligence across different domains, including biomedical imaging. These models are designed to move beyond narrow pattern recognition towards emulating sophisticated clinical reasoning, understanding complex spatial relationships, and integrating multimodal data with unprecedented flexibility. However, a critical gap exists between this potential and the current reality, where the clinical evaluation and deployment of FMs are hampered by significant challenges. Herein, we critically assess the current state-of-the-art, analyzing hype by examining the core capabilities and limitations of FMs in the biomedical domain. We also provide a taxonomy of reasoning, ranging from emulated sequential logic and spatial understanding to the integration of explicit symbolic knowledge, to evaluate whether these models exhibit genuine cognition or merely mimic surface-level patterns. We argue that a critical frontier lies beyond statistical correlation, in the pursuit of causal inference, which is essential for building robust models that understand cause and effect. Furthermore, we discuss the paramount issues in deployment stemming from trustworthiness, bias, and safety, dissecting the challenges of algorithmic bias, data bias and privacy, and model hallucinations. We also draw attention to the need for more inclusive, rigorous, and clinically relevant validation frameworks to ensure their safe and ethical application. We conclude that while the vision of autonomous AI-doctors remains distant, the immediate reality is the emergence of powerful technology and assistive tools that would benefit clinical practice. The future of FMs in biomedical imaging hinges not on scale alone, but on developing hybrid, causally aware, and verifiably safe systems that augment, rather than replace, human expertise.
comment: 5 figures and 3 tables
♻ ☆ Brain states analysis of EEG predicts multiple sclerosis and mirrors disease duration and burden
Background: Any treatment of multiple sclerosis should preserve mental function, considering how cognitive deterioration interferes with quality of life. However, mental assessment is still realized with neuro-psychological tests without monitoring cognition on neuro-biological grounds whereas the ongoing neural activity is readily observable and readable. Objective: The proposed method deciphers electrical brain states which as multi-dimensional cognetoms quantitatively discriminate normal from pathological patterns in an EEG. Method: Baseline recordings from a prior EEG study of 88 subjects, 36 with MS, were analyzed. Spectral bands served to compute cognetoms and categorize subsequent feature combination sets. Result: The brain states predictor correlates with disease burden and duration. Using cognetoms and spectral bands, a cross-sectional comparison separated patients from controls with a precision of 85% while using bands alone arrived at 79%. Conclusion: We demonstrate the efficiency of the quantitative data-driven method based on brain states analysis by contrasting EEG data of patients with MS and healthy subjects. The congruity with disease severity and duration is a neurophysiological indicator for disease accumulation over time. We discuss potential applications of the approach for the monitoring of disease time course and treatment efficacy in longitudinal clinical studies in psychiatry and neurology.
comment: v8: minor revision III. v7: major revision II. v6: major revision I. v5: cosmetics with references and citations. v4: added two citations, adjusted fig3. v3: New version got shortened by some 100 words. v2: A comparison with clinical data, related changes to the text and one figure were newly added to the manuscript. 12 pages, 3 figures, 1 table
Cell Behavior 2
☆ Learning Model Parameter Dynamics in a Combination Therapy for Bladder Cancer from Sparse Biological Data NeurIPS 2025
In a mathematical model of interacting biological organisms, where external interventions may alter behavior over time, traditional models that assume fixed parameters usually do not capture the evolving dynamics. In oncology, this is further exacerbated by the fact that experimental data are often sparse and sometimes are composed of a few time points of tumor volume. In this paper, we propose to learn time-varying interactions between cells, such as those of bladder cancer tumors and immune cells, and their response to a combination of anticancer treatments in a limited data scenario. We employ the physics-informed neural network (PINN) approach to predict possible subpopulation trajectories at time points where no observed data are available. We demonstrate that our approach is consistent with the biological explanation of subpopulation trajectories. Our method provides a framework for learning evolving interactions among biological organisms when external interventions are applied to their environment.
comment: NeurIPS 2025 Workshop on Learning from Time Series for Health
♻ ☆ Motility-Driven Viscoelastic Control of Tissue Morphology in Presomitic Mesoderm
Embryonic tissues deform across broad spatial and temporal scales and relax stress through active rearrangements. A quantitative link between cell-scale activity, spatial forcing, and emergent tissue-scale mechanics remains incomplete. Here, we use a vertex-based tissue model with active force fluctuations to study how motility controls viscoelastic response. After validation against experimental presomitic mesoderm relaxation dynamics, we extract intrinsic mechanical timescales using stress relaxation and oscillatory shear. The model captures motility-dependent shifts between elastic and viscous behavior and the coexistence of fast relaxation with long-lived residual stress. When subjected to spatially patterned, temporally pulsed forcing, tissues behave as mechanical filters: long-wavelength inputs are accumulated, whereas short-wavelength, cell-scale perturbations are rapidly erased, largely independent of motility. Simulations with localized motility hotspots, motivated by spatially confined FGF signaling reported in vertebrate limb development, produce sustained protrusive tissue deformations consistent with experimentally observed early bud-like morphologies. Together, these results establish a minimal framework linking motility-driven activity to wavelength-selective mechanical memory and emergent tissue patterning.
comment: 14 pages (main text), 4 figures (main text), 6 pages (supplementary), 4 figures (supplementary)
Computation and Language 90
☆ TimeLens: Rethinking Video Temporal Grounding with Multimodal LLMs
This paper does not introduce a novel method but instead establishes a straightforward, incremental, yet essential baseline for video temporal grounding (VTG), a core capability in video understanding. While multimodal large language models (MLLMs) excel at various video understanding tasks, the recipes for optimizing them for VTG remain under-explored. In this paper, we present TimeLens, a systematic investigation into building MLLMs with strong VTG ability, along two primary dimensions: data quality and algorithmic design. We first expose critical quality issues in existing VTG benchmarks and introduce TimeLens-Bench, comprising meticulously re-annotated versions of three popular benchmarks with strict quality criteria. Our analysis reveals dramatic model re-rankings compared to legacy benchmarks, confirming the unreliability of prior evaluation standards. We also address noisy training data through an automated re-annotation pipeline, yielding TimeLens-100K, a large-scale, high-quality training dataset. Building on our data foundation, we conduct in-depth explorations of algorithmic design principles, yielding a series of meaningful insights and effective yet efficient practices. These include interleaved textual encoding for time representation, a thinking-free reinforcement learning with verifiable rewards (RLVR) approach as the training paradigm, and carefully designed recipes for RLVR training. These efforts culminate in TimeLens models, a family of MLLMs with state-of-the-art VTG performance among open-source models and even surpass proprietary models such as GPT-5 and Gemini-2.5-Flash. All codes, data, and models will be released to facilitate future research.
comment: Project Page: https://timelens-arc-lab.github.io/
☆ MMGR: Multi-Modal Generative Reasoning
Video foundation models generate visually realistic and temporally coherent content, but their reliability as world simulators depends on whether they capture physical, logical, and spatial constraints. Existing metrics such as Frechet Video Distance (FVD) emphasize perceptual quality and overlook reasoning failures, including violations of causality, physics, and global consistency. We introduce MMGR (Multi-Modal Generative Reasoning Evaluation and Benchmark), a principled evaluation framework based on five reasoning abilities: Physical, Logical, 3D Spatial, 2D Spatial, and Temporal. MMGR evaluates generative reasoning across three domains: Abstract Reasoning (ARC-AGI, Sudoku), Embodied Navigation (real-world 3D navigation and localization), and Physical Commonsense (sports and compositional interactions). MMGR applies fine-grained metrics that require holistic correctness across both video and image generation. We benchmark leading video models (Veo-3, Sora-2, Wan-2.2) and image models (Nano-banana, Nano-banana Pro, GPT-4o-image, Qwen-image), revealing strong performance gaps across domains. Models show moderate success on Physical Commonsense tasks but perform poorly on Abstract Reasoning (below 10 percent accuracy on ARC-AGI) and struggle with long-horizon spatial planning in embodied settings. Our analysis highlights key limitations in current models, including overreliance on perceptual data, weak global state consistency, and objectives that reward visual plausibility over causal correctness. MMGR offers a unified diagnostic benchmark and a path toward reasoning-aware generative world models.
comment: work in progress
☆ Spoken DialogSum: An Emotion-Rich Conversational Dataset for Spoken Dialogue Summarization
Recent audio language models can follow long conversations. However, research on emotion-aware or spoken dialogue summarization is constrained by the lack of data that links speech, summaries, and paralinguistic cues. We introduce Spoken DialogSum, the first corpus aligning raw conversational audio with factual summaries, emotion-rich summaries, and utterance-level labels for speaker age, gender, and emotion. The dataset is built in two stages: first, an LLM rewrites DialogSum scripts with Switchboard-style fillers and back-channels, then tags each utterance with emotion, pitch, and speaking rate. Second, an expressive TTS engine synthesizes speech from the tagged scripts, aligned with paralinguistic labels. Spoken DialogSum comprises 13,460 emotion-diverse dialogues, each paired with both a factual and an emotion-focused summary. The dataset is available online at https://fatfat-emosum.github.io/EmoDialog-Sum-Audio-Samples/. Baselines show that an Audio-LLM raises emotional-summary ROUGE-L by 28% relative to a cascaded ASR-LLM system, confirming the value of end-to-end speech modeling.
comment: 12 pages, 2 figures
☆ Fast and Accurate Causal Parallel Decoding using Jacobi Forcing
Multi-token generation has emerged as a promising paradigm for accelerating transformer-based large model inference. Recent efforts primarily explore diffusion Large Language Models (dLLMs) for parallel decoding to reduce inference latency. To achieve AR-level generation quality, many techniques adapt AR models into dLLMs to enable parallel decoding. However, they suffer from limited speedup compared to AR models due to a pretrain-to-posttrain mismatch. Specifically, the masked data distribution in post-training deviates significantly from the real-world data distribution seen during pretraining, and dLLMs rely on bidirectional attention, which conflicts with the causal prior learned during pretraining and hinders the integration of exact KV cache reuse. To address this, we introduce Jacobi Forcing, a progressive distillation paradigm where models are trained on their own generated parallel decoding trajectories, smoothly shifting AR models into efficient parallel decoders while preserving their pretrained causal inference property. The models trained under this paradigm, Jacobi Forcing Model, achieves 3.8x wall-clock speedup on coding and math benchmarks with minimal loss in performance. Based on Jacobi Forcing Models' trajectory characteristics, we introduce multi-block decoding with rejection recycling, which enables up to 4.5x higher token acceptance count per iteration and nearly 4.0x wall-clock speedup, effectively trading additional compute for lower inference latency. Our code is available at https://github.com/hao-ai-lab/JacobiForcing.
☆ Segmental Attention Decoding With Long Form Acoustic Encodings
We address the fundamental incompatibility of attention-based encoder-decoder (AED) models with long-form acoustic encodings. AED models trained on segmented utterances learn to encode absolute frame positions by exploiting limited acoustic context beyond segment boundaries, but fail to generalize when decoding long-form segments where these cues vanish. The model loses ability to order acoustic encodings due to permutation invariance of keys and values in cross-attention. We propose four modifications: (1) injecting explicit absolute positional encodings into cross-attention for each decoded segment, (2) long-form training with extended acoustic context to eliminate implicit absolute position encoding, (3) segment concatenation to cover diverse segmentations needed during training, and (4) semantic segmentation to align AED-decoded segments with training segments. We show these modifications close the accuracy gap between continuous and segmented acoustic encodings, enabling auto-regressive use of the attention decoder.
comment: 5 pages, 1 fig
☆ TiME: Tiny Monolingual Encoders for Efficient NLP Pipelines
Today, a lot of research on language models is focused on large, general-purpose models. However, many NLP pipelines only require models with a well-defined, small set of capabilities. While large models are capable of performing the tasks of those smaller models, they are simply not fast enough to process large amounts of data or offer real-time responses. Furthermore, they often use unnecessarily large amounts of energy, leading to sustainability concerns and problems when deploying them on battery-powered devices. In our work, we show how to train small models for such efficiency-critical applications. As opposed to many off-the-shelf NLP pipelines, our models use modern training techniques such as distillation, and offer support for low-resource languages. We call our models TiME (Tiny Monolingual Encoders) and comprehensively evaluate them on a range of common NLP tasks, observing an improved trade-off between benchmark performance on one hand, and throughput, latency and energy consumption on the other. Along the way, we show that distilling monolingual models from multilingual teachers is possible, and likewise distilling models with absolute positional embeddings from teachers with relative positional embeddings.
☆ JMMMU-Pro: Image-based Japanese Multi-discipline Multimodal Understanding Benchmark via Vibe Benchmark Construction
This paper introduces JMMMU-Pro, an image-based Japanese Multi-discipline Multimodal Understanding Benchmark, and Vibe Benchmark Construction, a scalable construction method. Following the evolution from MMMU to MMMU-Pro, JMMMU-Pro extends JMMMU by composing the question image and question text into a single image, thereby creating a benchmark that requires integrated visual-textual understanding through visual perception. To build JMMMU-Pro, we propose Vibe Benchmark Construction, a methodology in which an image generative model (e.g., Nano Banana Pro) produces candidate visual questions, and humans verify the outputs and, when necessary, regenerate with adjusted prompts to ensure quality. By leveraging Nano Banana Pro's highly realistic image generation capabilities and its ability to embed clean Japanese text, we construct a high-quality benchmark at low cost, covering a wide range of background and layout designs. Experimental results show that all open-source LMMs struggle substantially with JMMMU-Pro, underscoring JMMMU-Pro as an important benchmark for guiding future efforts in the open-source community. We believe that JMMMU-Pro provides a more rigorous evaluation tool for assessing the Japanese capabilities of LMMs and that our Vibe Benchmark Construction also offers an efficient guideline for future development of image-based VQA benchmarks.
comment: Project page: https://mmmu-japanese-benchmark.github.io/JMMMU_Pro/
☆ Towards Nepali-language LLMs: Efficient GPT training with a Nepali BPE tokenizer
Nepali, a low-resource language spoken by over 32 million people, continues to face challenges in natural language processing (NLP) due to its complex grammar, agglutinative morphology, and limited availability of high-quality corpora. Most efforts to date have centered on basic encoder architectures; they remain insufficient for Nepali-specific text generation. This study presents a GPT-2-based Nepali language model trained using several training strategies inspired by GPT-3, including optimized learning rate schedules, batch scaling, and architectural refinements. A custom 16k Byte-Pair Encoding (BPE) tokenizer was trained exclusively on Nepali text to ensure more consistent segmentation and improved input representation. The model was pretrained on a combined dataset comprising a 10.75GB cleaned NepBERTa corpus and additional web-scraped Nepali news articles. FlashAttention was integrated to reduce memory usage and stabilize training. After two epochs, the model achieved a training loss of 3.168177, a validation loss of 3.081982, and a final perplexity of 21.80, demonstrating its capability to generate coherent Nepali news-style text.
comment: Work in progress
☆ Low-Resource, High-Impact: Building Corpora for Inclusive Language Technologies
This tutorial (https://tum-nlp.github.io/low-resource-tutorial) is designed for NLP practitioners, researchers, and developers working with multilingual and low-resource languages who seek to create more equitable and socially impactful language technologies. Participants will walk away with a practical toolkit for building end-to-end NLP pipelines for underrepresented languages -- from data collection and web crawling to parallel sentence mining, machine translation, and downstream applications such as text classification and multimodal reasoning. The tutorial presents strategies for tackling the challenges of data scarcity and cultural variance, offering hands-on methods and modeling frameworks. We will focus on fair, reproducible, and community-informed development approaches, grounded in real-world scenarios. We will showcase a diverse set of use cases covering over 10 languages from different language families and geopolitical contexts, including both digitally resource-rich and severely underrepresented languages.
comment: Tutorial is accepted to LREC2026
☆ Polypersona: Persona-Grounded LLM for Synthetic Survey Responses
This paper introduces PolyPersona, a generative framework for synthesizing persona-conditioned survey responses across multiple domains. The framework instruction-tunes compact chat models using parameter-efficient LoRA adapters with 4-bit quantization under a resource-adaptive training setup. A dialogue-based data pipeline explicitly preserves persona cues, ensuring consistent behavioral alignment across generated responses. Using this pipeline, we construct a dataset of 3,568 synthetic survey responses spanning ten domains and 433 distinct personas, enabling controlled instruction tuning and systematic multi-domain evaluation. We evaluate the generated responses using a multi-metric evaluation suite that combines standard text generation metrics, including BLEU, ROUGE, and BERTScore, with survey-specific metrics designed to assess structural coherence, stylistic consistency, and sentiment alignment.Experimental results show that compact models such as TinyLlama 1.1B and Phi-2 achieve performance comparable to larger 7B to 8B baselines, with a highest BLEU score of 0.090 and ROUGE-1 of 0.429. These findings demonstrate that persona-conditioned fine-tuning enables small language models to generate reliable and coherent synthetic survey data. The proposed framework provides an efficient and reproducible approach for survey data generation, supporting scalable evaluation while facilitating bias analysis through transparent and open protocols.
comment: Accepted in IEEE Bigdata 2025- LLMs4ALL
☆ Agreement Between Large Language Models and Human Raters in Essay Scoring: A Research Synthesis
Despite the growing promise of large language models (LLMs) in automatic essay scoring (AES), empirical findings regarding their reliability compared to human raters remain mixed. Following the PRISMA 2020 guidelines, we synthesized 65 published and unpublished studies from January 2022 to August 2025 that examined agreement between LLMs and human raters in AES. Across studies, reported LLM-human agreement was generally moderate to good, with agreement indices (e.g., Quadratic Weighted Kappa, Pearson correlation, and Spearman's rho) mostly ranging between 0.30 and 0.80. Substantial variability in agreement levels was observed across studies, reflecting differences in study-specific factors as well as the lack of standardized reporting practices. Implications and directions for future research are discussed.
comment: This manuscript is under review as a book chapter
☆ VLegal-Bench: Cognitively Grounded Benchmark for Vietnamese Legal Reasoning of Large Language Models
The rapid advancement of large language models (LLMs) has enabled new possibilities for applying artificial intelligence within the legal domain. Nonetheless, the complexity, hierarchical organization, and frequent revisions of Vietnamese legislation pose considerable challenges for evaluating how well these models interpret and utilize legal knowledge. To address this gap, Vietnamese Legal Benchmark (VLegal-Bench) is introduced, the first comprehensive benchmark designed to systematically assess LLMs on Vietnamese legal tasks. Informed by Bloom's cognitive taxonomy, VLegal-Bench encompasses multiple levels of legal understanding through tasks designed to reflect practical usage scenarios. The benchmark comprises 10,450 samples generated through a rigorous annotation pipeline, where legal experts label and cross-validate each instance using our annotation system to ensure every sample is grounded in authoritative legal documents and mirrors real-world legal assistant workflows, including general legal questions and answers, retrieval-augmented generation, multi-step reasoning, and scenario-based problem solving tailored to Vietnamese law. By providing a standardized, transparent, and cognitively informed evaluation framework, VLegal-Bench establishes a solid foundation for assessing LLM performance in Vietnamese legal contexts and supports the development of more reliable, interpretable, and ethically aligned AI-assisted legal systems.
☆ Dual Language Models: Balancing Training Efficiency and Overfitting Resilience
This paper combines autoregressive and masked-diffusion training objectives without any architectural modifications, resulting in flexible language models that outperform single-objective models. Autoregressive modeling has been a popular approach, partly because of its training efficiency; however, that comes at the cost of sensitivity to overfitting. On the other hand, masked-diffusion models are less efficient to train while being more resilient to overfitting. In this work, we demonstrate that dual-objective training achieves the best of both worlds. To derive the optimal ratio between both objectives, we train and evaluate 50 language models under varying levels of data repetition. We show that it is optimal to combine both objectives under all evaluated settings and that the optimal ratio is similar whether targeting autoregressive or masked-diffusion downstream performance.
☆ VersatileFFN: Achieving Parameter Efficiency in LLMs via Adaptive Wide-and-Deep Reuse
The rapid scaling of Large Language Models (LLMs) has achieved remarkable performance, but it also leads to prohibitive memory costs. Existing parameter-efficient approaches such as pruning and quantization mainly compress pretrained models without enhancing architectural capacity, thereby hitting the representational ceiling of the base model. In this work, we propose VersatileFFN, a novel feed-forward network (FFN) that enables flexible reuse of parameters in both width and depth dimensions within a fixed parameter budget. Inspired by the dual-process theory of cognition, VersatileFFN comprises two adaptive pathways: a width-versatile path that generates a mixture of sub-experts from a single shared FFN, mimicking sparse expert routing without increasing parameters, and a depth-versatile path that recursively applies the same FFN to emulate deeper processing for complex tokens. A difficulty-aware gating dynamically balances the two pathways, steering "easy" tokens through the efficient width-wise route and allocating deeper iterative refinement to "hard" tokens. Crucially, both pathways reuse the same parameters, so all additional capacity comes from computation rather than memory. Experiments across diverse benchmarks and model scales demonstrate the effectiveness of the method. The code will be available at https://github.com/huawei-noah/noah-research/tree/master/VersatileFFN.
☆ Linguists should learn to love speech-based deep learning models
Futrell and Mahowald present a useful framework bridging technology-oriented deep learning systems and explanation-oriented linguistic theories. Unfortunately, the target article's focus on generative text-based LLMs fundamentally limits fruitful interactions with linguistics, as many interesting questions on human language fall outside what is captured by written text. We argue that audio-based deep learning models can and should play a crucial role.
comment: Commentary on Futrell, R., & Mahowald, K. arXiv:2501.17047 (in press). How Linguistics Learned to Stop Worrying and Love the Language Models. Behavioural and Brain Sciences
☆ RecGPT-V2 Technical Report
Large language models (LLMs) have demonstrated remarkable potential in transforming recommender systems from implicit behavioral pattern matching to explicit intent reasoning. While RecGPT-V1 successfully pioneered this paradigm by integrating LLM-based reasoning into user interest mining and item tag prediction, it suffers from four fundamental limitations: (1) computational inefficiency and cognitive redundancy across multiple reasoning routes; (2) insufficient explanation diversity in fixed-template generation; (3) limited generalization under supervised learning paradigms; and (4) simplistic outcome-focused evaluation that fails to match human standards. To address these challenges, we present RecGPT-V2 with four key innovations. First, a Hierarchical Multi-Agent System restructures intent reasoning through coordinated collaboration, eliminating cognitive duplication while enabling diverse intent coverage. Combined with Hybrid Representation Inference that compresses user-behavior contexts, our framework reduces GPU consumption by 60% and improves exclusive recall from 9.39% to 10.99%. Second, a Meta-Prompting framework dynamically generates contextually adaptive prompts, improving explanation diversity by +7.3%. Third, constrained reinforcement learning mitigates multi-reward conflicts, achieving +24.1% improvement in tag prediction and +13.0% in explanation acceptance. Fourth, an Agent-as-a-Judge framework decomposes assessment into multi-step reasoning, improving human preference alignment. Online A/B tests on Taobao demonstrate significant improvements: +2.98% CTR, +3.71% IPV, +2.19% TV, and +11.46% NER. RecGPT-V2 establishes both the technical feasibility and commercial viability of deploying LLM-powered intent reasoning at scale, bridging the gap between cognitive exploration and industrial utility.
☆ C-ing Clearly: Enhanced Binary Code Explanations using C code
Large Language Models (LLMs) typically excel at coding tasks involving high-level programming languages, as opposed to lower-level programming languages, such as assembly. We propose a synthetic data generation method named C-ing Clearly, which leverages the corresponding C code to enhance an LLM's understanding of assembly. By fine-tuning on data generated through our method, we demonstrate improved LLM performance for binary code summarization and vulnerability detection. Our approach demonstrates consistent gains across different LLM families and model sizes.
comment: 18 pages, 5 figures
☆ SASQ: Static Activation Scaling for Quantization-Aware Training in Large Language Models
Large language models (LLMs) excel at natural language tasks but face deployment challenges due to their growing size outpacing GPU memory advancements. Model quantization mitigates this issue by lowering weight and activation precision, but existing solutions face fundamental trade-offs: dynamic quantization incurs high computational overhead and poses deployment challenges on edge devices, while static quantization sacrifices accuracy. Existing approaches of quantization-aware training (QAT) further suffer from weight training costs. We propose SASQ: a lightweight QAT framework specifically tailored for activation quantization factors. SASQ exclusively optimizes only the quantization factors (without changing pre-trained weights), enabling static inference with high accuracy while maintaining deployment efficiency. SASQ adaptively truncates some outliers, thereby reducing the difficulty of quantization while preserving the distributional characteristics of the activations. SASQ not only surpasses existing SOTA quantization schemes but also outperforms the corresponding FP16 models. On LLaMA2-7B, it achieves 5.2% lower perplexity than QuaRot and 4.7% lower perplexity than the FP16 model on WikiText2.
☆ Effect of Document Packing on the Latent Multi-Hop Reasoning Capabilities of Large Language Models
The standard practice for training large language models involves packing multiple documents together to optimize computational efficiency. However, the impact of this process on the models' capabilities remains largely unexplored. To address this gap, we investigate how different document-packing strategies influence the latent multi-hop reasoning abilities of LLMs. Our findings indicate that packing can improve model performance compared to training on individual documents, at the expense of more compute. To further understand the underlying mechanisms, we conduct an ablation study, identifying key factors that explain the advantages of packing. Ultimately, our research deepens the understanding of LLM training dynamics and provides practical insights for optimizing model development.
☆ RePo: Language Models with Context Re-Positioning
In-context learning is fundamental to modern Large Language Models (LLMs); however, prevailing architectures impose a rigid and fixed contextual structure by assigning linear or constant positional indices. Drawing on Cognitive Load Theory (CLT), we argue that this uninformative structure increases extraneous cognitive load, consuming finite working memory capacity that should be allocated to deep reasoning and attention allocation. To address this, we propose RePo, a novel mechanism that reduces extraneous load via context re-positioning. Unlike standard approaches, RePo utilizes a differentiable module, $f_φ$, to assign token positions that capture contextual dependencies, rather than replying on pre-defined integer range. By continually pre-training on the OLMo-2 1B backbone, we demonstrate that RePo significantly enhances performance on tasks involving noisy contexts, structured data, and longer context length, while maintaining competitive performance on general short-context tasks. Detailed analysis reveals that RePo successfully allocate higher attention to distant but relevant information, assign positions in dense and non-linear space, and capture the intrinsic structure of the input context. Our code is available at https://github.com/SakanaAI/repo.
☆ Step-Tagging: Toward controlling the generation of Language Reasoning Models through step monitoring
The field of Language Reasoning Models (LRMs) has been very active over the past few years with advances in training and inference techniques enabling LRMs to reason longer, and more accurately. However, a growing body of studies show that LRMs are still inefficient, over-generating verification and reflection steps. To address this challenge, we introduce the Step-Tagging framework, a lightweight sentence-classifier enabling real-time annotation of the type of reasoning steps that an LRM is generating. To monitor reasoning behaviors, we introduced ReasonType: a novel taxonomy of reasoning steps. Building on this framework, we demonstrated that online monitoring of the count of specific steps can produce effective interpretable early stopping criteria of LRM inferences. We evaluate the Step-tagging framework on three open-source reasoning models across standard benchmark datasets: MATH500, GSM8K, AIME and non-mathematical tasks (GPQA and MMLU-Pro). We achieve 20 to 50\% token reduction while maintaining comparable accuracy to standard generation, with largest gains observed on more computation-heavy tasks. This work offers a novel way to increase control over the generation of LRMs, and a new tool to study behaviors of LRMs.
☆ Inflation Attitudes of Large Language Models
This paper investigates the ability of Large Language Models (LLMs), specifically GPT-3.5-turbo (GPT), to form inflation perceptions and expectations based on macroeconomic price signals. We compare the LLM's output to household survey data and official statistics, mimicking the information set and demographic characteristics of the Bank of England's Inflation Attitudes Survey (IAS). Our quasi-experimental design exploits the timing of GPT's training cut-off in September 2021 which means it has no knowledge of the subsequent UK inflation surge. We find that GPT tracks aggregate survey projections and official statistics at short horizons. At a disaggregated level, GPT replicates key empirical regularities of households' inflation perceptions, particularly for income, housing tenure, and social class. A novel Shapley value decomposition of LLM outputs suited for the synthetic survey setting provides well-defined insights into the drivers of model outputs linked to prompt content. We find that GPT demonstrates a heightened sensitivity to food inflation information similar to that of human respondents. However, we also find that it lacks a consistent model of consumer price inflation. More generally, our approach could be used to evaluate the behaviour of LLMs for use in the social sciences, to compare different models, or to assist in survey design.
comment: 41 pages, 11 figures
☆ SPARQL-LLM: Real-Time SPARQL Query Generation from Natural Language Questions
The advent of large language models is contributing to the emergence of novel approaches that promise to better tackle the challenge of generating structured queries, such as SPARQL queries, from natural language. However, these new approaches mostly focus on response accuracy over a single source while ignoring other evaluation criteria, such as federated query capability over distributed data stores, as well as runtime and cost to generate SPARQL queries. Consequently, they are often not production-ready or easy to deploy over (potentially federated) knowledge graphs with good accuracy. To mitigate these issues, in this paper, we extend our previous work and describe and systematically evaluate SPARQL-LLM, an open-source and triplestore-agnostic approach, powered by lightweight metadata, that generates SPARQL queries from natural language text. First, we describe its architecture, which consists of dedicated components for metadata indexing, prompt building, and query generation and execution. Then, we evaluate it based on a state-of-the-art challenge with multilingual questions, and a collection of questions from three of the most prevalent knowledge graphs within the field of bioinformatics. Our results demonstrate a substantial increase of 24% in the F1 Score on the state-of-the-art challenge, adaptability to high-resource languages such as English and Spanish, as well as ability to form complex and federated bioinformatics queries. Furthermore, we show that SPARQL-LLM is up to 36x faster than other systems participating in the challenge, while costing a maximum of $0.01 per question, making it suitable for real-time, low-cost text-to-SPARQL applications. One such application deployed over real-world decentralized knowledge graphs can be found at https://www.expasy.org/chat.
comment: 17 pages, 8 figures, 1 table. Under Review
☆ From Context to EDUs: Faithful and Structured Context Compression via Elementary Discourse Unit Decomposition
Managing extensive context remains a critical bottleneck for Large Language Models (LLMs), particularly in applications like long-document question answering and autonomous agents where lengthy inputs incur high computational costs and introduce noise. Existing compression techniques often disrupt local coherence through discrete token removal or rely on implicit latent encoding that suffers from positional bias and incompatibility with closed-source APIs. To address these limitations, we introduce the EDU-based Context Compressor, a novel explicit compression framework designed to preserve both global structure and fine-grained details. Our approach reformulates context compression as a structure-then-select process. First, our LingoEDU transforms linear text into a structural relation tree of Elementary Discourse Units (EDUs) which are anchored strictly to source indices to eliminate hallucination. Second, a lightweight ranking module selects query-relevant sub-trees for linearization. To rigorously evaluate structural understanding, we release StructBench, a manually annotated dataset of 248 diverse documents. Empirical results demonstrate that our method achieves state-of-the-art structural prediction accuracy and significantly outperforms frontier LLMs while reducing costs. Furthermore, our structure-aware compression substantially enhances performance across downstream tasks ranging from long-context tasks to complex Deep Search scenarios.
☆ Two CFG Nahuatl for automatic corpora expansion
The aim of this article is to introduce two Context-Free Grammars (CFG) for Nawatl Corpora expansion. Nawatl is an Amerindian language (it is a National Language of Mexico) of the $π$-language type, i.e. a language with few digital resources. For this reason the corpora available for the learning of Large Language Models (LLMs) are virtually non-existent, posing a significant challenge. The goal is to produce a substantial number of syntactically valid artificial Nawatl sentences and thereby to expand the corpora for the purpose of learning non contextual embeddings. For this objective, we introduce two new Nawatl CFGs and use them in generative mode. Using these grammars, it is possible to expand Nawatl corpus significantly and subsequently to use it to learn embeddings and to evaluate their relevance in a sentences semantic similarity task. The results show an improvement compared to the results obtained using only the original corpus without artificial expansion, and also demonstrate that economic embeddings often perform better than some LLMs.
comment: 15 pages, 5 figures, 8 tables
☆ Ladder Up, Memory Down: Low-Cost Fine-Tuning With Side Nets
Fine-tuning large language models (LLMs) is often limited by the memory available on commodity GPUs. Parameter-efficient fine-tuning (PEFT) methods such as QLoRA reduce the number of trainable parameters, yet still incur high memory usage induced by the backward pass in the full model. We revisit Ladder Side Tuning (LST), a rarely explored PEFT technique that adds a lightweight side network, and show that it matches QLoRA's compute scaling slope while cutting peak memory by 50\%. Across different downstream benchmarks spanning natural language understanding, mathematical and LLM-critic tasks, LST has competitive performance with QLoRA's accuracy on average while being much more memory-efficient. This efficiency enables fine-tuning of 7B-parameter models on a single 12 GB consumer GPU with 2k-token contexts, requiring no gradient checkpointing\textemdash conditions under which QLoRA exhausts memory. Beyond memory efficiency, we also establish scaling laws showing that LST scales similarly to QLoRA. We exploit Ladder's architectural flexibility by introducing xLadder, a depth-extended variant that increases effective depth via cross-connections and shortens chain-of-thought (CoT) at fixed parameter count. Ladder is strong when memory is the bottleneck; xLadder builds on this by enabling deeper reasoning without additional memory overhead.
☆ A Comparative Analysis of Retrieval-Augmented Generation Techniques for Bengali Standard-to-Dialect Machine Translation Using LLMs ACL 2025
Translating from a standard language to its regional dialects is a significant NLP challenge due to scarce data and linguistic variation, a problem prominent in the Bengali language. This paper proposes and compares two novel RAG pipelines for standard-to-dialectal Bengali translation. The first, a Transcript-Based Pipeline, uses large dialect sentence contexts from audio transcripts. The second, a more effective Standardized Sentence-Pairs Pipeline, utilizes structured local\_dialect:standard\_bengali sentence pairs. We evaluated both pipelines across six Bengali dialects and multiple LLMs using BLEU, ChrF, WER, and BERTScore. Our findings show that the sentence-pair pipeline consistently outperforms the transcript-based one, reducing Word Error Rate (WER) from 76\% to 55\% for the Chittagong dialect. Critically, this RAG approach enables smaller models (e.g., Llama-3.1-8B) to outperform much larger models (e.g., GPT-OSS-120B), demonstrating that a well-designed retrieval strategy can be more crucial than model size. This work contributes an effective, fine-tuning-free solution for low-resource dialect translation, offering a practical blueprint for preserving linguistic diversity.
comment: Accepted to the Second Workshop on Bangla Language Processing (BLP) at IJCNLP-AACL 2025. 14 pages, 9 figures, 6 tables
☆ Astraea: A State-Aware Scheduling Engine for LLM-Powered Agents
Large Language Models (LLMs) are increasingly being deployed as intelligent agents. Their multi-stage workflows, which alternate between local computation and calls to external network services like Web APIs, introduce a mismatch in their execution pattern and the scheduling granularity of existing inference systems such as vLLM. Existing systems typically focus on per-segment optimization which prevents them from minimizing the end-to-end latency of the complete agentic workflow, i.e., the global Job Completion Time (JCT) over the entire request lifecycle. To address this limitation, we propose Astraea, a service engine designed to shift the optimization from local segments to the global request lifecycle. Astraea employs a state-aware, hierarchical scheduling algorithm that integrates a request's historical state with future predictions. It dynamically classifies requests by their I/O and compute intensive nature and uses an enhanced HRRN policy to balance efficiency and fairness. Astraea also implements an adaptive KV cache manager that intelligently handles the agent state during I/O waits based on the system memory pressure. Extensive experiments show that Astraea reduces average JCT by up to 25.5\% compared to baseline methods. Moreover, our approach demonstrates strong robustness and stability under high load across various model scales.
comment: 12 pages, 8 figures
☆ CogMem: A Cognitive Memory Architecture for Sustained Multi-Turn Reasoning in Large Language Models
Large language models (LLMs) excel at single-turn reasoning but often lose accuracy and coherence over extended, multi-turn interactions. Recent evaluations such as TurnBench highlight recurring failure modes-reasoning bias, task drift, hallucination, overconfidence, and memory decay. Current approaches typically append full conversational histories, causing unbounded context growth, higher computational costs, and degraded reasoning efficiency. We introduce CogMem, a cognitively inspired, memory-augmented LLM architecture that supports sustained iterative reasoning through structured, persistent memory. CogMem incorporates three layers: a Long-Term Memory (LTM) that consolidates cross-session reasoning strategies; a Direct Access (DA) memory that maintains session-level notes and retrieves relevant long-term memories; and a Focus of Attention (FoA) mechanism that dynamically reconstructs concise, task-relevant context at each turn. Experiments on TurnBench show that this layered design mitigates reasoning failures, controls context growth, and improves consistency across extended reasoning chains, moving toward more reliable, human-like reasoning in LLMs.
comment: underreview
☆ Multilingual and Continuous Backchannel Prediction: A Cross-lingual Study
We present a multilingual, continuous backchannel prediction model for Japanese, English, and Chinese, and use it to investigate cross-linguistic timing behavior. The model is Transformer-based and operates at the frame level, jointly trained with auxiliary tasks on approximately 300 hours of dyadic conversations. Across all three languages, the multilingual model matches or surpasses monolingual baselines, indicating that it learns both language-universal cues and language-specific timing patterns. Zero-shot transfer with two-language training remains limited, underscoring substantive cross-lingual differences. Perturbation analyses reveal distinct cue usage: Japanese relies more on short-term linguistic information, whereas English and Chinese are more sensitive to silence duration and prosodic variation; multilingual training encourages shared yet adaptable representations and reduces overreliance on pitch in Chinese. A context-length study further shows that Japanese is relatively robust to shorter contexts, while Chinese benefits markedly from longer contexts. Finally, we integrate the trained model into a real-time processing software, demonstrating CPU-only inference. Together, these findings provide a unified model and empirical evidence for how backchannel timing differs across languages, informing the design of more natural, culturally-aware spoken dialogue systems.
comment: This paper has been accepted for presentation at International Workshop on Spoken Dialogue Systems Technology 2026 (IWSDS 2026) and represents the author's version of the work
☆ Scalable Frameworks for Real-World Audio-Visual Speech Recognition
The practical deployment of Audio-Visual Speech Recognition (AVSR) systems is fundamentally challenged by significant performance degradation in real-world environments, characterized by unpredictable acoustic noise and visual interference. This dissertation posits that a systematic, hierarchical approach is essential to overcome these challenges, achieving the robust scalability at the representation, architecture, and system levels. At the representation level, we investigate methods for building a unified model that learns audio-visual features inherently robust to diverse real-world corruptions, thereby enabling generalization to new environments without specialized modules. To address architectural scalability, we explore how to efficiently expand model capacity while ensuring the adaptive and reliable use of multimodal inputs, developing a framework that intelligently allocates computational resources based on the input characteristics. Finally, at the system level, we present methods to expand the system's functionality through modular integration with large-scale foundation models, leveraging their powerful cognitive and generative capabilities to maximize final recognition accuracy. By systematically providing solutions at each of these three levels, this dissertation aims to build a next-generation, robust, and scalable AVSR system with high reliability in real-world applications.
comment: PhD Dissertation
☆ A Unified Sparse Attention via Multi-Granularity Compression
Efficient long-context understanding and reasoning are increasingly vital for large language model (LLM) applications such as multi-turn dialogue and program analysis. However, the core self-attention mechanism scales quadratically with sequence length, creating a fundamental computational bottleneck. Existing sparse attention methods alleviate this issue but face trade-offs: training-based methods are costly and cannot be directly applied as acceleration plugins for other models, while inference-time methods often compromise efficiency or cross-modal generality. To address these limitations, we present UniSparse, a unified mechanism that introduces the notion of composite tokens--compact representations that aggregate multi-granularity contextual information. Building on this abstraction, UniSparse dynamically constructs sparse attention through multi-granularity compression and block-level selection, enabling efficient and hardware-friendly execution on GPU. Across multiple modalities and tasks ranging from synthetic benchmarks to real-world applications, UniSparse consistently surpasses state-of-the-art sparse attention methods (e.g., MInference, XAttention, FlexPrefill) in both accuracy and efficiency, achieving $\ge$ 99% of full-attention accuracy and up to 2.61$\times$ faster attention computation than FlashAttention.
☆ Grammar Search for Multi-Agent Systems
Automatic search for Multi-Agent Systems has recently emerged as a key focus in agentic AI research. Several prior approaches have relied on LLM-based free-form search over the code space. In this work, we propose a more structured framework that explores the same space through a fixed set of simple, composable components. We show that, despite lacking the generative flexibility of LLMs during the candidate generation stage, our method outperforms prior approaches on four out of five benchmarks across two domains: mathematics and question answering. Furthermore, our method offers additional advantages, including a more cost-efficient search process and the generation of modular, interpretable multi-agent systems with simpler logic.
☆ Efficient-DLM: From Autoregressive to Diffusion Language Models, and Beyond in Speed
Diffusion language models (dLMs) have emerged as a promising paradigm that enables parallel, non-autoregressive generation, but their learning efficiency lags behind that of autoregressive (AR) language models when trained from scratch. To this end, we study AR-to-dLM conversion to transform pretrained AR models into efficient dLMs that excel in speed while preserving AR models' task accuracy. We achieve this by identifying limitations in the attention patterns and objectives of existing AR-to-dLM methods and then proposing principles and methodologies for more effective AR-to-dLM conversion. Specifically, we first systematically compare different attention patterns and find that maintaining pretrained AR weight distributions is critical for effective AR-to-dLM conversion. As such, we introduce a continuous pretraining scheme with a block-wise attention pattern, which remains causal across blocks while enabling bidirectional modeling within each block. We find that this approach can better preserve pretrained AR models' weight distributions than fully bidirectional modeling, in addition to its known benefit of enabling KV caching, and leads to a win-win in accuracy and efficiency. Second, to mitigate the training-test gap in mask token distributions (uniform vs. highly left-to-right), we propose a position-dependent token masking strategy that assigns higher masking probabilities to later tokens during training to better mimic test-time behavior. Leveraging this framework, we conduct extensive studies of dLMs' attention patterns, training dynamics, and other design choices, providing actionable insights into scalable AR-to-dLM conversion. These studies lead to the Efficient-DLM family, which outperforms state-of-the-art AR models and dLMs, e.g., our Efficient-DLM 8B achieves +5.4%/+2.7% higher accuracy with 4.5x/2.7x higher throughput compared to Dream 7B and Qwen3 4B, respectively.
☆ What Affects the Effective Depth of Large Language Models?
The scaling of large language models (LLMs) emphasizes increasing depth, yet performance gains diminish with added layers. Prior work introduces the concept of "effective depth", arguing that deeper models fail to fully utilize their layers for meaningful computation. Building on this, we systematically study how effective depth varies with model scale, training type, and task difficulty. First, we analyze the model behavior of Qwen-2.5 family (1.5B-32B) and find that while the number of effective layers grows with model size, the effective depth ratio remains stable. Besides, comparisons between base and corresponding long-CoT models show no increase in effective depth, suggesting that improved reasoning stems from longer context rather than deeper per-token computation. Furthermore, evaluations across tasks of varying difficulty indicate that models do not dynamically use more layers for harder problems. Our results suggest that current LLMs underuse available depth across scales, training paradigms and tasks of varying difficulties, pointing out research opportunities on increasing the layer utilization rate of LLMs, model pruning, and early exiting. Our code is released at https://github.com/AheadOFpotato/what_affects_effective_depth.
☆ HyperVL: An Efficient and Dynamic Multimodal Large Language Model for Edge Devices
Current multimodal large lanauge models possess strong perceptual and reasoning capabilities, however high computational and memory requirements make them difficult to deploy directly on on-device environments. While small-parameter models are progressively endowed with strong general capabilities, standard Vision Transformer (ViT) encoders remain a critical bottleneck, suffering from excessive latency and memory consumption when processing high-resolution inputs.To address these challenges, we introduce HyperVL, an efficient multimodal large language model tailored for on-device inference. HyperVL adopts an image-tiling strategy to cap peak memory usage and incorporates two novel techniques: (1) a Visual Resolution Compressor (VRC) that adaptively predicts optimal encoding resolutions to eliminate redundant computation, and (2) Dual Consistency Learning (DCL), which aligns multi-scale ViT encoders within a unified framework, enabling dynamic switching between visual branches under a shared LLM. Extensive experiments demonstrate that HyperVL achieves state-of-the-art performance among models of comparable size across multiple benchmarks. Furthermore, it significantly significantly reduces latency and power consumption on real mobile devices, demonstrating its practicality for on-device multimodal inference.
comment: Technical report of Xiaomi HyperAI Team
☆ Structure-Aware Decoding Mechanisms for Complex Entity Extraction with Large-Scale Language Models
This paper proposes a structure-aware decoding method based on large language models to address the difficulty of traditional approaches in maintaining both semantic integrity and structural consistency in nested and overlapping entity extraction tasks. The method introduces a candidate span generation mechanism and structured attention modeling to achieve unified modeling of entity boundaries, hierarchical relationships, and cross-dependencies. The model first uses a pretrained language model to obtain context-aware semantic representations, then captures multi-granular entity span features through candidate representation combinations, and introduces hierarchical structural constraints during decoding to ensure consistency between semantics and structure. To enhance stability in complex scenarios, the model jointly optimizes classification loss and structural consistency loss, maintaining high recognition accuracy under multi-entity co-occurrence and long-sentence dependency conditions. Experiments conducted on the ACE 2005 dataset demonstrate significant improvements in Accuracy, Precision, Recall, and F1-Score, particularly in nested and overlapping entity recognition, where the model shows stronger boundary localization and structural modeling capability. This study verifies the effectiveness of structure-aware decoding in complex semantic extraction tasks, provides a new perspective for developing language models with hierarchical understanding, and establishes a methodological foundation for high-precision information extraction.
☆ Cross-Tokenizer Likelihood Scoring Algorithms for Language Model Distillation
Computing next-token likelihood ratios between two language models (LMs) is a standard task in training paradigms such as knowledge distillation. Since this requires both models to share the same probability space, it becomes challenging when the teacher and student LMs use different tokenizers, for instance, when edge-device deployment necessitates a smaller vocabulary size to lower memory overhead. In this work, we address this vocabulary misalignment problem by uncovering an implicit recursive structure in the commonly deployed Byte-Pair Encoding (BPE) algorithm and utilizing it to create a probabilistic framework for cross-tokenizer likelihood scoring. Our method enables sequence likelihood evaluation for vocabularies different from the teacher model native tokenizer, addressing two specific scenarios: when the student vocabulary is a subset of the teacher vocabulary, and the general case where it is arbitrary. In the subset regime, our framework computes exact likelihoods and provides next-token probabilities for sequential sampling with only O(1) model evaluations per token. When used for distillation, this yields up to a 12% reduction in memory footprint for the Qwen2.5-1.5B model while also improving baseline performance up to 4% on the evaluated tasks. For the general case, we introduce a rigorous lossless procedure that leverages BPE recursive structure, complemented by a fast approximation that keeps large-vocabulary settings practical. Applied to distillation for mathematical reasoning, our approach improves GSM8K accuracy by more than 2% over the current state of the art.
☆ Parameter Efficient Multimodal Instruction Tuning for Romanian Vision Language Models
Focusing on low-resource languages is an essential step toward democratizing generative AI. In this work, we contribute to reducing the multimodal NLP resource gap for Romanian. We translate the widely known Flickr30k dataset into Romanian and further extend it for visual question answering by leveraging open-source LLMs. We demonstrate the usefulness of our datasets by fine-tuning open-source VLMs on Romanian visual question answering. We select VLMs from three widely used model families: LLaMA 3.2, LLaVA 1.6, and Qwen2. For fine-tuning, we employ the parameter-efficient LoRA method. Our models show improved Romanian capabilities in visual QA, as well as on tasks they were not trained on, such as Romanian image description generation. The seven-billion-parameter Qwen2-VL-RoVQA obtains top scores on both tasks, with improvements of +6.05% and +2.61% in BERTScore F1 over its original version. Finally, the models show substantial reductions in grammatical errors compared to their original forms, indicating improvements not only in language understanding but also in Romanian fluency.
☆ Multiscale Aggregated Hierarchical Attention (MAHA): A Game Theoretic and Optimization Driven Approach to Efficient Contextual Modeling in Large Language Models
The quadratic computational complexity of MultiHead SelfAttention (MHSA) remains a fundamental bottleneck in scaling Large Language Models (LLMs) for longcontext tasks. While sparse and linearized attention mechanisms attempt to mitigate this, they often compromise the representation of global dependencies or fail to capture multiscale semantic granularity effectively. In this paper, we propose Multiscale Aggregated Hierarchical Attention (MAHA), a novel architectural framework that reformulates the attention mechanism through hierarchical decomposition and mathematically rigorous aggregation. Unlike conventional approaches that treat token interactions at a single resolution, MAHA dynamically partitions the input sequence into hierarchical scales via learnable downsampling operators. The core innovation lies in its aggregation strategy: we model the fusion of scalespecific attention matrices as a resource allocation problem, solved via a convex optimization framework or a Nash equilibriumbased gametheoretic approach. This ensures a theoretically optimal balance between local nuance and global context fidelity. Implemented within a hybrid dilatedconvolutional transformer backbone, MAHA utilizes differentiable optimization layers to enable endtoend training. Experimental evaluations demonstrate that MAHA achieves superior scalability; empirical FLOPs analysis confirms an 81% reduction in computational cost at a sequence length of 4096 compared to standard attention. This work bridges the gap between optimization theory and sequence modeling, offering a scalable solution for nextgeneration LLMs.
DrugRAG: Enhancing Pharmacy LLM Performance Through A Novel Retrieval-Augmented Generation Pipeline
Objectives: To evaluate large language model (LLM) performance on pharmacy licensure-style question-answering (QA) tasks and develop an external knowledge integration method to improve their accuracy. Methods: We benchmarked eleven existing LLMs with varying parameter sizes (8 billion to 70+ billion) using a 141-question pharmacy dataset. We measured baseline accuracy for each model without modification. We then developed a three-step retrieval-augmented generation (RAG) pipeline, DrugRAG, that retrieves structured drug knowledge from validated sources and augments model prompts with evidence-based context. This pipeline operates externally to the models, requiring no changes to model architecture or parameters. Results: Baseline accuracy ranged from 46% to 92%, with GPT-5 (92%) and o3 (89%) achieving the highest scores. Models with fewer than 8 billion parameters scored below 50%. DrugRAG improved accuracy across all tested models, with gains ranging from 7 to 21 percentage points (e.g., Gemma 3 27B: 61% to 71%, Llama 3.1 8B: 46% to 67%) on the 141-item benchmark. Conclusion: We demonstrate that external structured drug knowledge integration through DrugRAG measurably improves LLM accuracy on pharmacy tasks without modifying the underlying models. This approach provides a practical pipeline for enhancing pharmacy-focused AI applications with evidence-based information.
comment: 11 pages, 2 figures, 3 tables
☆ Integrating Large Language Models and Knowledge Graphs to Capture Political Viewpoints in News Media
News sources play a central role in democratic societies by shaping political and social discourse through specific topics, viewpoints and voices. Understanding these dynamics is essential for assessing whether the media landscape offers a balanced and fair account of public debate. In earlier work, we introduced a pipeline that, given a news corpus, i) uses a hybrid human-machine approach to identify the range of viewpoints expressed about a given topic, and ii) classifies relevant claims with respect to the identified viewpoints, defined as sets of semantically and ideologically congruent claims (e.g., positions arguing that immigration positively impacts the UK economy). In this paper, we improve this pipeline by i) fine-tuning Large Language Models (LLMs) for viewpoint classification and ii) enriching claim representations with semantic descriptions of relevant actors drawn from Wikidata. We evaluate our approach against alternative solutions on a benchmark centred on the UK immigration debate. Results show that while both mechanisms independently improve classification performance, their integration yields the best results, particularly when using LLMs capable of processing long inputs.
☆ Task Matrices: Linear Maps for Cross-Model Finetuning Transfer NeurIPS
Results in interpretability suggest that large vision and language models learn implicit linear encodings when models are biased by in-context prompting. However, the existence of similar linear representations in more general adaptation regimes has not yet been demonstrated. In this work, we develop the concept of a task matrix, a linear transformation from a base to finetuned embedding state. We demonstrate that for vision and text models and ten different datasets, a base model augmented with a task matrix achieves results surpassing linear probes, sometimes approaching finetuned levels. Our results validate the existence of cross-layer linear encodings between pretrained and finetuned architectures. Moreover, we show that a data-based approximation for such encodings is both efficient and generalizable to multiple domains. We make our implementation publicly available.
comment: NeurIPS Unireps 2025
☆ Audio MultiChallenge: A Multi-Turn Evaluation of Spoken Dialogue Systems on Natural Human Interaction
End-to-end (E2E) spoken dialogue systems are increasingly replacing cascaded pipelines for voice-based human-AI interaction, processing raw audio directly without intermediate transcription. Existing benchmarks primarily evaluate these models on synthetic speech and single-turn tasks, leaving realistic multi-turn conversational ability underexplored. We introduce Audio MultiChallenge, an open-source benchmark to evaluate E2E spoken dialogue systems under natural multi-turn interaction patterns. Building on the text-based MultiChallenge framework, which evaluates Inference Memory, Instruction Retention, and Self Coherence, we introduce a new axis Voice Editing that tests robustness to mid-utterance speech repairs and backtracking. We further augment each axis to the audio modality, such as introducing Audio-Cue challenges for Inference Memory that require recalling ambient sounds and paralinguistic signals beyond semantic content. We curate 452 conversations from 47 speakers with 1,712 instance-specific rubrics through a hybrid audio-native agentic and human-in-the-loop pipeline that exposes model failures at scale while preserving natural disfluencies found in unscripted human speech. Our evaluation of proprietary and open-source models reveals that even frontier models struggle on our benchmark, with Gemini 3 Pro Preview (Thinking), our highest-performing model achieving a 54.65% pass rate. Error analysis shows that models fail most often on our new axes and that Self Coherence degrades with longer audio context. These failures reflect difficulty of tracking edits, audio cues, and long-range context in natural spoken dialogue. Audio MultiChallenge provides a reproducible testbed to quantify them and drive improvements in audio-native multi-turn interaction capability.
☆ T5Gemma 2: Seeing, Reading, and Understanding Longer
We introduce T5Gemma 2, the next generation of the T5Gemma family of lightweight open encoder-decoder models, featuring strong multilingual, multimodal and long-context capabilities. T5Gemma 2 follows the adaptation recipe (via UL2) in T5Gemma -- adapting a pretrained decoder-only model into an encoder-decoder model, and extends it from text-only regime to multimodal based on the Gemma 3 models. We further propose two methods to improve the efficiency: tied word embedding that shares all embeddings across encoder and decoder, and merged attention that unifies decoder self- and cross-attention into a single joint module. Experiments demonstrate the generality of the adaptation strategy over architectures and modalities as well as the unique strength of the encoder-decoder architecture on long context modeling. Similar to T5Gemma, T5Gemma 2 yields comparable or better pretraining performance and significantly improved post-training performance than its Gemma 3 counterpart. We release the pretrained models (270M-270M, 1B-1B and 4B-4B) to the community for future research.
comment: technical report
☆ Incentives or Ontology? A Structural Rebuttal to OpenAI's Hallucination Thesis
OpenAI has recently argued that hallucinations in large language models result primarily from misaligned evaluation incentives that reward confident guessing rather than epistemic humility. On this view, hallucination is a contingent behavioral artifact, remediable through improved benchmarks and reward structures. In this paper, we challenge that interpretation. Drawing on previous work on structural hallucination and empirical experiments using a Licensing Oracle, we argue that hallucination is not an optimization failure but an architectural inevitability of the transformer model. Transformers do not represent the world; they model statistical associations among tokens. Their embedding spaces form a pseudo-ontology derived from linguistic co-occurrence rather than world-referential structure. At ontological boundary conditions - regions where training data is sparse or incoherent - the model necessarily interpolates fictional continuations in order to preserve coherence. No incentive mechanism can modify this structural dependence on pattern completion. Our empirical results demonstrate that hallucination can only be eliminated through external truth-validation and abstention modules, not through changes to incentives, prompting, or fine-tuning. The Licensing Oracle achieves perfect abstention precision across domains precisely because it supplies grounding that the transformer lacks. We conclude that hallucination is a structural property of generative architectures and that reliable AI requires hybrid systems that distinguish linguistic fluency from epistemic responsibility.
comment: 17 pages, references to prior work arXiv:2509.16297 and arXiv:2511.06073
♻ ☆ Love First, Know Later: Persona-Based Romantic Compatibility Through LLM Text World Engines NeurIPS 2025
We propose Love First, Know Later: a paradigm shift in computational matching that simulates interactions first, then assesses compatibility. Instead of comparing static profiles, our framework leverages LLMs as text world engines that operate in dual capacity-as persona-driven agents following behavioral policies and as the environment modeling interaction dynamics. We formalize compatibility assessment as a reward-modeling problem: given observed matching outcomes, we learn to extract signals from simulations that predict human preferences. Our key insight is that relationships hinge on responses to critical moments-we translate this observation from relationship psychology into mathematical hypotheses, enabling effective simulation. Theoretically, we prove that as LLM policies better approximate human behavior, the induced matching converges to optimal stable matching. Empirically, we validate on speed dating data for initial chemistry and divorce prediction for long-term stability. This paradigm enables interactive, personalized matching systems where users iteratively refine their agents, unlocking future possibilities for transparent and interactive compatibility assessment.
comment: NeurIPS 2025 Workshop: First Workshop on LLM Persona Modeling (Oral)
♻ ☆ Temporal Tokenization Strategies for Event Sequence Modeling with Large Language Models
Representing continuous time is a critical and under-explored challenge in modeling temporal event sequences with large language models (LLMs). Various strategies like byte-level representations or calendar tokens have been proposed. However, the optimal approach remains unclear, especially given the diverse statistical distributions of real-world event data, which range from smooth log-normal to discrete, spiky patterns. This paper presents the first empirical study of temporal tokenization for event sequences, comparing distinct encoding strategies: naive numeric strings, high-precision byte-level representations, human-semantic calendar tokens, classic uniform binning, and adaptive residual scalar quantization. We evaluate these strategies by fine-tuning LLMs on real-world datasets that exemplify these diverse distributions. Our analysis reveals that no single strategy is universally superior; instead, prediction performance depends heavily on aligning the tokenizer with the data's statistical properties, with log-based strategies excelling on skewed distributions and human-centric formats proving robust for mixed modalities.
♻ ☆ Latent Self-Consistency for Reliable Majority-Set Selection in Short- and Long-Answer Reasoning
Probabilistic decoding in Large Language Models (LLMs) often yields inconsistent outputs, particularly on complex or long-form questions. Self-Consistency (SC) mitigates this for short-form QA by majority voting over exact strings, whereas Universal Self-Consistency (USC) and Weighted Unigram Consistency Score (WUCS) extend to long-form responses but lose accuracy on short-form benchmarks. We introduce \textbf{Latent Self-Consistency (LSC)}, which selects the most semantically consistent response using learnable token embeddings. LSC's lightweight forward processing of summary tokens only introduces negligible runtime overhead (at most $0.9\%$) on top of standard decoding of the base LLM, and requires no changes to the model architecture. Across 6 short-form and 5 long-form reasoning benchmarks (e.g., MATH, MMLU, TruthfulQA), LSC surpasses SC, USC, and WUCS on both short-form and long-form on average performance, while adding negligible computational overhead on vanilla inference. These results position LSC as a reliable consistency-selection method that works effectively across various answer formats. Additionally, LSC provides well-calibrated confidence estimates, maintaining low expected calibration error across both answer formats.
♻ ☆ Semantic-Drive: Democratizing Long-Tail Data Curation via Open-Vocabulary Grounding and Neuro-Symbolic VLM Consensus
The development of robust Autonomous Vehicles (AVs) is bottlenecked by the scarcity of "Long-Tail" training data. While fleets collect petabytes of video logs, identifying rare safety-critical events (e.g., erratic jaywalking, construction diversions) remains a manual, cost-prohibitive process. Existing solutions rely on coarse metadata search, which lacks precision, or cloud-based VLMs, which are privacy-invasive and expensive. We introduce Semantic-Drive, a local-first, neuro-symbolic framework for semantic data mining. Our approach decouples perception into two stages: (1) Symbolic Grounding via a real-time open-vocabulary detector (YOLOE) to anchor attention, and (2) Cognitive Analysis via a Reasoning VLM that performs forensic scene analysis. To mitigate hallucination, we implement a "System 2" inference-time alignment strategy, utilizing a multi-model "Judge-Scout" consensus mechanism. Benchmarked on the nuScenes dataset against the Waymo Open Dataset (WOD-E2E) taxonomy, Semantic-Drive achieves a Recall of 0.966 (vs. 0.475 for CLIP) and reduces Risk Assessment Error by 40% ccompared to the best single scout models. The system runs entirely on consumer hardware (NVIDIA RTX 3090), offering a privacy-preserving alternative to the cloud.
♻ ☆ Listening Between the Lines: Decoding Podcast Narratives with Language Modeling
Podcasts have become a central arena for shaping public opinion, making them a vital source for understanding contemporary discourse. Their typically unscripted, multi-themed, and conversational style offers a rich but complex form of data. To analyze how podcasts persuade and inform, we must examine their narrative structures -- specifically, the narrative frames they employ. The fluid and conversational nature of podcasts presents a significant challenge for automated analysis. We show that existing large language models, typically trained on more structured text such as news articles, struggle to capture the subtle cues that human listeners rely on to identify narrative frames. As a result, current approaches fall short of accurately analyzing podcast narratives at scale. To solve this, we develop and evaluate a fine-tuned BERT model that explicitly links narrative frames to specific entities mentioned in the conversation, effectively grounding the abstract frame in concrete details. Our approach then uses these granular frame labels and correlates them with high-level topics to reveal broader discourse trends. The primary contributions of this paper are: (i) a novel frame-labeling methodology that more closely aligns with human judgment for messy, conversational data, and (ii) a new analysis that uncovers the systematic relationship between what is being discussed (the topic) and how it is being presented (the frame), offering a more robust framework for studying influence in digital media.
comment: 10 pages, 6 Figures, 5 Tables. Under review
♻ ☆ Tensor Product Attention Is All You Need NeurIPS 2025
Scaling language models to handle longer input sequences typically necessitates large key-value (KV) caches, resulting in substantial memory overhead during inference. In this paper, we propose Tensor Product Attention (TPA), a novel attention mechanism that uses tensor decompositions to represent queries, keys, and values compactly, substantially shrinking the KV cache size at inference time. By factorizing these representations into contextual low-rank components and seamlessly integrating with Rotary Position Embedding (RoPE), TPA achieves improved model quality alongside memory efficiency. Based on TPA, we introduce the Tensor ProducT ATTenTion Transformer (T6), a new model architecture for sequence modeling. Through extensive empirical evaluation on language modeling tasks, we demonstrate that T6 surpasses or matches the performance of standard Transformer baselines including Multi-Head Attention (MHA), Multi-Query Attention (MQA), Grouped-Query Attention (GQA), and Multi-Head Latent Attention (MLA) across various metrics, including perplexity and a range of established evaluation benchmarks. Notably, TPA's memory efficiency and computational efficiency at decoding stage enables processing longer sequences under fixed resource constraints, addressing a critical scalability challenge in modern language models. Project Page: https://github.com/tensorgi/TPA.
comment: Published in NeurIPS 2025 (Spotlight); Project Page: https://github.com/tensorgi/TPA
♻ ☆ Non-Resolution Reasoning (NRR): A Computational Framework for Contextual Identity and Ambiguity Preservation
Current artificial intelligence systems, despite remarkable capabilities in text generation and pattern recognition, exhibit a fundamental architectural limitation: they resolve ambiguity prematurely. This premature semantic collapse -- the tendency to collapse multiple valid interpretations into a single output -- stems from classical identity assumptions embedded in standard neural architectures. We propose Non-Resolution Reasoning (NRR), a computational framework that treats ambiguity retention as a valid reasoning mode rather than a defect to be eliminated. NRR introduces three core principles: (1) Non-Identity (A $\ne$ A) -- the same symbol refers to different entities across contexts; (2) Approximate Identity (A $\approx$ A) -- entities share partial structural overlap without being identical; and (3) Non-Resolution -- conflicting interpretations can coexist without forced convergence. We formalize these principles through three architectural components: Multi-Vector Embeddings for context-dependent representation, Non-Collapsing Attention for parallel interpretation retention, and Contextual Identity Tracking (CIT) for maintaining A $\ne$ A across inference. We demonstrate NRR's advantages through case studies in paradox handling, creative generation, and context-dependent reasoning. Crucially, we provide a minimal empirical validation on a synthetic context-shift task where an NRR-lite model achieves 90.9% out-of-distribution accuracy compared to 9.1% for standard architectures, demonstrating that ambiguity preservation enables structural generalization. NRR challenges the assumption that meaning must collapse to be useful, offering a foundation for AI systems capable of sophisticated ambiguity handling and creative reasoning. The question is not whether AI should resolve ambiguity, but when, how, and under whose control.
comment: 7 pages, 2 figures, ORCID: 0009-0006-4715-9176
♻ ☆ RepoTransBench: A Real-World Multilingual Benchmark for Repository-Level Code Translation
Repository-level code translation refers to translating an entire code repository from one programming language to another while preserving the functionality of the source repository. Many benchmarks have been proposed to evaluate the performance of such code translators. However, previous benchmarks mostly provide fine-grained samples, focusing at either code snippet, function, or file-level code translation. Such benchmarks do not accurately reflect real-world demands, where entire repositories often need to be translated, involving longer code length and more complex functionalities. To address this gap, we propose a new benchmark, named RepoTransBench, which is a real-world multilingual repository-level code translation benchmark featuring 1,897 real-world repository samples across 13 language pairs with automatically executable test suites. Besides, we introduce RepoTransAgent, a general agent framework to perform repository-level code translation. We evaluate both our benchmark's challenges and agent's effectiveness using several methods and backbone LLMs, revealing that repository-level translation remains challenging, where the best-performing method achieves only a 32.8% success rate. Furthermore, our analysis reveals that translation difficulty varies significantly by language pair direction, with dynamic-to-static language translation being much more challenging than the reverse direction (achieving below 10% vs. static-to-dynamic at 45-63%). Finally, we conduct a detailed error analysis and highlight current LLMs' deficiencies in repository-level code translation, which could provide a reference for further improvements. We provide the code and data at https://github.com/DeepSoftwareAnalytics/RepoTransBench.
♻ ☆ Holistic Utility Preference Learning for Listwise Alignment
Aligning large language models with human preferences is essential for improving interaction quality and safety by ensuring outputs better reflect human values. A promising strategy involves Reinforcement Learning from Human Feedback (RLHF), starting with collecting and ranking responses generated by a supervised fine-tuning model to refine alignment. Existing methods such as Direct Preference Optimization (DPO) focus on pairwise comparisons, categorizing responses into preferred and less preferred pairs and optimizing pairwise margins. However, this pairwise approach cannot capture the holistic ranking relationships among multiple responses or effectively leverage the rich preference information available in list-wise comparisons. To address this challenge, this paper introduces \underline{D}irect \underline{R}anking \underline{P}reference \underline{O}ptimization (DRPO), a novel method that views human preference alignment as a Learning-to-Rank (LTR) task. Unlike pairwise methods, DRPO optimizes the preference ranking of entire response lists by computing holistic utility scores through NDCG, a standard LTR metric. To enable end-to-end optimization with the non-differentiable NDCG, we propose diffNDCG loss, a differentiable approximation facilitated by a sorting network. Furthermore, we introduce a novel margin-based Adaptive Rank Policy Score to enhance the discriminative quality of generated responses. Extensive experiments have shown that DRPO outperforms existing methods, enhancing the quality of the generated responses.
♻ ☆ A stylometric analysis of speaker attribution from speech transcripts
Forensic scientists often need to identify an unknown speaker or writer in cases such as ransom calls, covert recordings, alleged suicide notes, or anonymous online communications, among many others. Speaker recognition in the speech domain usually examines phonetic or acoustic properties of a voice, and these methods can be accurate and robust under certain conditions. However, if a speaker disguises their voice or employs text-to-speech software, vocal properties may no longer be reliable, leaving only their linguistic content available for analysis. Authorship attribution methods traditionally use syntactic, semantic, and related linguistic information to identify writers of written text (authorship attribution). In this paper, we apply a content-based authorship approach to speech that has been transcribed into text, using what a speaker says to attribute speech to individuals (speaker attribution). We introduce a stylometric method, StyloSpeaker, which incorporates character, word, token, sentence, and style features from the stylometric literature on authorship, to assess whether two transcripts were produced by the same speaker. We evaluate this method on two types of transcript formatting: one approximating prescriptive written text with capitalization and punctuation and another normalized style that removes these conventions. The transcripts' conversation topics are also controlled to varying degrees. We find generally higher attribution performance on normalized transcripts, except under the strongest topic control condition, in which overall performance is highest. Finally, we compare this more explainable stylometric model to black-box neural approaches on the same data and investigate which stylistic features most effectively distinguish speakers.
comment: added acknowledgments
♻ ☆ Tree Matching Networks for Natural Language Inference: Parameter-Efficient Semantic Understanding via Dependency Parse Trees
In creating sentence embeddings for Natural Language Inference (NLI) tasks, using transformer-based models like BERT leads to high accuracy, but require hundreds of millions of parameters. These models take in sentences as a sequence of tokens, and learn to encode the meaning of the sequence into embeddings such that those embeddings can be used reliably for NLI tasks. Essentially, every word is considered against every other word in the sequence, and the transformer model is able to determine the relationships between them, entirely from scratch. However, a model that accepts explicit linguistic structures like dependency parse trees may be able to leverage prior encoded information about these relationships, without having to learn them from scratch, thus improving learning efficiency. To investigate this, we adapt Graph Matching Networks (GMN) to operate on dependency parse trees, creating Tree Matching Networks (TMN). We compare TMN to a BERT based model on the SNLI entailment task and on the SemEval similarity task. TMN is able to achieve significantly better results with a significantly reduced memory footprint and much less training time than the BERT based model on the SNLI task, while both models struggled to preform well on the SemEval. Explicit structural representations significantly outperform sequence-based models at comparable scales, but current aggregation methods limit scalability. We propose multi-headed attention aggregation to address this limitation.
comment: 16 pages, preprint
♻ ☆ MindForge: Empowering Embodied Agents with Theory of Mind for Lifelong Cultural Learning NeurIPS 2025
Embodied agents powered by large language models (LLMs), such as Voyager, promise open-ended competence in worlds such as Minecraft. However, when powered by open-weight LLMs they still falter on elementary tasks after domain-specific fine-tuning. We propose MindForge, a generative-agent framework for cultural lifelong learning through explicit perspective taking. We introduce three key innovations: (1) a structured theory of mind representation linking percepts, beliefs, desires, and actions; (2) natural inter-agent communication; and (3) a multi-component memory system. Following the cultural learning framework, we test MindForge in both instructive and collaborative settings within Minecraft. In an instructive setting with GPT-4, MindForge agents powered by open-weight LLMs significantly outperform their Voyager counterparts in basic tasks yielding $3\times$ more tech-tree milestones and collecting $2.3\times$ more unique items than the Voyager baseline. Furthermore, in fully \textit{collaborative} settings, we find that the performance of two underachieving agents improves with more communication rounds, echoing the Condorcet Jury Theorem. MindForge agents demonstrate sophisticated behaviors, including expert-novice knowledge transfer, collaborative problem solving, and adaptation to out-of-distribution tasks through accumulated cultural experiences.
comment: Accepted to NeurIPS 2025 main track as poster
♻ ☆ One Battle After Another: Probing LLMs' Limits on Multi-Turn Instruction Following with a Benchmark Evolving Framework
Evaluating LLMs' instruction-following ability in multi-topic dialogues is essential yet challenging. Existing benchmarks are limited to a fixed number of turns, susceptible to saturation and failing to account for users' interactive experience. In this work, we propose a novel framework backed by a three-layer tracking mechanism and a query synthesis agent to mimic sequential user behaviors. Incorporating Flow Theory, we introduce process-centric metrics and terminate a conversational evaluation only upon exhausting user patience. Upon this framework, we present EvolIF, an evolving benchmark covering 12 constraint groups. Results indicate that GPT-5 excels, sustaining 14 turns with 66.40% robustness. It outperforms Gemini-3.0-Pro by a margin of 5.59%, while other models trail behind. Resources are available at https://github.com/JiaQiSJTU/EvolvingInstructionFollowing.
♻ ☆ Efficient Adaptive Rejection Sampling for Accelerating Speculative Decoding in Large Language Models
Speculative Decoding is a prominent technique for accelerating the autoregressive inference of large language models (LLMs) by employing a fast draft model to propose candidate token sequences and a large target model to verify them in parallel. However, its core component -- the rejection sampling mechanism -- relies on a fixed, context-independent random threshold. This leads to a significant "random rejection" problem in high-uncertainty generation scenarios, where plausible candidate tokens are frequently rejected due to random chance, undermining inference efficiency. This paper introduces Efficient Adaptive Rejection Sampling (EARS), a novel method that dynamically adjusts the acceptance threshold by incorporating the target model's own predictive uncertainty, measured as 1 - max(P_target). By introducing a tolerance term proportional to this uncertainty, EARS intelligently relaxes the acceptance criterion when the model is uncertain, effectively reducing random rejections while maintaining strict standards when the model is confident. Experiments on creative writing and open-domain QA tasks demonstrate that EARS significantly enhances the efficiency of speculative decoding, achieving up to an 18.12% increase in throughput with a negligible 0.84% accuracy drop on the GSM8K benchmark. The method requires no modifications to model architectures and can be seamlessly integrated into existing speculative decoding frameworks.
♻ ☆ Language Self-Play For Data-Free Training
Large language models (LLMs) have advanced rapidly in recent years, driven by scale, abundant high-quality training data, and reinforcement learning. Yet this progress faces a fundamental bottleneck: the need for ever more data from which models can continue to learn. In this work, we propose a reinforcement learning approach that removes this dependency by enabling models to improve without additional data. Our method leverages a game-theoretic framework of self-play, where a model's capabilities are cast as performance in a competitive game and stronger policies emerge by having the model play against itself-a process we call Language Self-Play (LSP). Experiments with Llama-3.2-3B-Instruct on instruction-following, mathematics, and coding benchmarks show that pretrained models can be effectively improved with self-play alone.
♻ ☆ MentraSuite: Post-Training Large Language Models for Mental Health Reasoning and Assessment
Mental health disorders affect hundreds of millions globally, and the Web now serves as a primary medium for accessing support, information, and assessment. Large language models (LLMs) offer scalable and accessible assistance, yet their deployment in mental-health settings remains risky when their reasoning is incomplete, inconsistent, or ungrounded. Existing psychological LLMs emphasize emotional understanding or knowledge recall but overlook the step-wise, clinically aligned reasoning required for appraisal, diagnosis, intervention planning, abstraction, and verification. To address these issues, we introduce MentraSuite, a unified framework for advancing reliable mental-health reasoning. We propose MentraBench, a comprehensive benchmark spanning five core reasoning aspects, six tasks, and 13 datasets, evaluating both task performance and reasoning quality across five dimensions: conciseness, coherence, hallucination avoidance, task understanding, and internal consistency. We further present Mindora, a post-trained model optimized through a hybrid SFT-RL framework with an inconsistency-detection reward to enforce faithful and coherent reasoning. To support training, we construct high-quality trajectories using a novel reasoning trajectory generation strategy, that strategically filters difficult samples and applies a structured, consistency-oriented rewriting process to produce concise, readable, and well-balanced trajectories. Across 20 evaluated LLMs, Mindora achieves the highest average performance on MentraBench and shows remarkable performances in reasoning reliability, demonstrating its effectiveness for complex mental-health scenarios.
♻ ☆ Analysing Knowledge Construction in Online Learning: Adapting the Interaction Analysis Model for Unstructured Large-Scale Discourse
The rapid expansion of online courses and social media has generated large volumes of unstructured learner-generated text. Understanding how learners construct knowledge in these spaces is crucial for analysing learning processes, informing content design, and providing feedback at scale. However, existing approaches typically rely on manual coding of well-structured discussion forums, which does not scale to the fragmented discourse found in online learning. This study proposes and validates a framework that combines a codebook inspired by the Interaction Analysis Model with an automated classifier to enable large-scale analysis of knowledge construction in unstructured online discourse. We adapt four comment-level categories of knowledge construction: Non-Knowledge Construction, Share, Explore, and Integrate. Three trained annotators coded a balanced sample of 20,000 comments from YouTube education channels. The codebook demonstrated strong reliability, with Cohen's kappa = 0.79 on the main dataset and 0.85--0.93 across four additional educational domains. For automated classification, bag-of-words baselines were compared with transformer-based language models using 10-fold cross-validation. A DeBERTa-v3-large model achieved the highest macro-averaged F1 score (0.841), outperforming all baselines and other transformer models. External validation on four domains yielded macro-F1 above 0.705, with stronger transfer in medicine and programming, where discourse was more structured and task-focused, and weaker transfer in language and music, where comments were more varied and context-dependent. Overall, the study shows that theory-driven, semi-automated analysis of knowledge construction at scale is feasible, enabling the integration of knowledge-construction indicators into learning analytics and the design of online learning environments.
♻ ☆ Why Reinforcement Fine-Tuning Enables MLLMs Preserve Prior Knowledge Better: A Data Perspective
Post-training algorithms such as Supervised Fine-Tuning (SFT) and Reinforcement Fine-Tuning (RFT) are widely used to adapt multimodal large language models to downstream tasks. While effective at task adaptation, their impact on prior knowledge remains unclear. In this paper, we introduce jigsaw puzzles as a novel task absent from existing pretraining corpora and systematically study the behavior of SFT and RFT on open-source multimodal model, Qwen2.5-VL series. Our experiments reveal a sharp trade-off: SFT enables rapid task acquisition but leads to catastrophic forgetting, whereas RFT learns more slowly but maintains prior knowledge. We study this phenomenon through learning dynamics by examining both the magnitude and direction of how training data influence prior knowledge. Our analysis shows that RFT mainly reinforces correct samples naturally aligned with the base model's probability landscape, leading to weaker interference with prior knowledge. Moreover, training on RFT-simulated rollouts, which exert a small magnitude of influence and are well aligned in direction to prior knowledge, allows SFT to preserve prior knowledge better while rapidly learning new tasks. These findings suggest that distribution of training data, rather than algorithmic differences, plays a central role in forgetting, and highlight RFT's potential for stable continual learning in multimodal large language models.
comment: 28 pages (Preprint.)
♻ ☆ TaP: A Taxonomy-Guided Framework for Automated and Scalable Preference Data Generation
Conducting supervised fine-tuning and preference fine-tuning on large language models (LLMs) requires high-quality datasets to improve their ability to follow instructions and align with human preferences and values. However, constructing such datasets is resource-intensive, and most available datasets for supervised and preference fine-tuning are in English. To address these challenges, we propose the \underline{\textbf{Ta}}xonomy-Guided \underline{\textbf{P}}reference Data Generation (TaP) framework, which facilitates automated and scalable construction of preference datasets across various languages. TaP is grounded in a structured taxonomy that allows fine-grained control over dataset composition, thereby ensuring both diversity and comprehensive coverage. We employ TaP-generated datasets to perform supervised and preference fine-tuning on various LLMs. Experimental results demonstrate that LLMs trained on TaP-generated datasets outperform those trained on existing open-source datasets. Remarkably, LLMs trained on TaP-generated datasets surpass the performance of those trained on an open-source dataset that is 180 times larger.
comment: 34 pages, 16 tables, 11 figures
♻ ☆ Enhancing Geo-localization for Crowdsourced Flood Imagery via LLM-Guided Attention
Crowdsourced street-view imagery from social media provides real-time visual evidence of urban flooding and other crisis events, yet it often lacks reliable geographic metadata for emergency response. Existing image geo-localization approaches, also known as Visual Place Recognition (VPR) models, exhibit substantial performance degradation when applied to such imagery due to visual distortions and domain shifts in cross-source scenarios. This paper presents VPR-AttLLM, a model-agnostic framework that integrates the semantic reasoning and geo-knowledge of Large Language Models (LLMs) into established VPR pipelines through attention-guided descriptor enhancement. By leveraging LLMs to identify location-informative regions within the city context and suppress visual noise, VPR-AttLLM improves retrieval performance without requiring model retraining or additional data. Comprehensive evaluations are conducted on extended benchmarks including SF-XL enriched with real social-media flood images, synthetic flooding scenarios over established query sets and Mapillary photos, and a new HK-URBAN dataset capturing morphologically distinct cityscapes. Integrating VPR-AttLLM with three state-of-the-art VPR models-CosPlace, EigenPlaces, and SALAD-consistently improves recall performance, yielding relative gains typically between 1-3% and reaching up to 8% on the most challenging real flood imagery. Beyond measurable gains in retrieval accuracy, this study establishes a generalizable paradigm for LLM-guided multimodal fusion in visual retrieval systems. By embedding principles from urban perception theory into attention mechanisms, VPR-AttLLM bridges human-like spatial reasoning with modern VPR architectures. Its plug-and-play design, strong cross-source robustness, and interpretability highlight its potential for scalable urban monitoring and rapid geo-localization of crowdsourced crisis imagery.
comment: Updated author list to include additional contributor. Revised title and improved methodology section based on collaborative feedback
♻ ☆ Question Answering Over Spatio-Temporal Knowledge Graph
Spatio-temporal knowledge graphs (STKGs) enhance traditional KGs by integrating temporal and spatial annotations, enabling precise reasoning over questions with spatio-temporal dependencies. Despite their potential, research on spatio-temporal knowledge graph question answering (STKGQA) remains limited. This is primarily due to the lack of datasets that simultaneously contain spatio-temporal information, as well as methods capable of handling implicit spatio-temporal reasoning. To bridge this gap, we introduce the spatio-temporal question answering dataset (STQAD), the first comprehensive benchmark comprising 10,000 natural language questions that require both temporal and spatial reasoning. STQAD is constructed with real-world facts containing spatio-temporal information, ensuring that the dataset reflects practical scenarios. Furthermore, our experiments reveal that existing KGQA methods underperform on STQAD, primarily due to their inability to model spatio-temporal interactions. To address this, we propose the spatio-temporal complex question answering (STCQA) method, which jointly embeds temporal and spatial features into KG representations and dynamically filters answers through constraint-aware reasoning. STCQA achieves state-of-the-art performance, significantly outperforming existing baselines. Our work not only provides a valuable resource for future research but also advances the field by offering a robust baseline for answering complex spatio-temporal questions.
comment: 34 pages, 10 figures. The paper has been accepted by Knowledge-Based Systems
♻ ☆ DIWALI: Diversity and Inclusivity aWare cuLture specific Items for India: Dataset and Assessment of LLMs for Cultural Text Adaptation in Indian Context EMNLP 2025
Large language models (LLMs) are widely used in various tasks and applications. However, despite their wide capabilities, they are shown to lack cultural alignment \citep{ryan-etal-2024-unintended, alkhamissi-etal-2024-investigating} and produce biased generations \cite{naous-etal-2024-beer} due to a lack of cultural knowledge and competence. Evaluation of LLMs for cultural awareness and alignment is particularly challenging due to the lack of proper evaluation metrics and unavailability of culturally grounded datasets representing the vast complexity of cultures at the regional and sub-regional levels. Existing datasets for culture specific items (CSIs) focus primarily on concepts at the regional level and may contain false positives. To address this issue, we introduce a novel CSI dataset for Indian culture, belonging to 17 cultural facets. The dataset comprises ~8k cultural concepts from 36 sub-regions. To measure the cultural competence of LLMs on a cultural text adaptation task, we evaluate the adaptations using the CSIs created, LLM as Judge, and human evaluations from diverse socio-demographic region. Furthermore, we perform quantitative analysis demonstrating selective sub-regional coverage and surface-level adaptations across all considered LLMs. Our dataset is available here: https://huggingface.co/datasets/nlip/DIWALI, project webpage https://nlip-lab.github.io/nlip/publications/diwali/, and our codebase with model outputs can be found here: https://github.com/pramitsahoo/culture-evaluation
comment: Accepted at EMNLP 2025
♻ ☆ Sliding Window Attention Adaptation
The self-attention mechanism in Transformer-based Large Language Models (LLMs) scales quadratically with input length, making long-context inference expensive. Sliding window attention (SWA) reduces this cost to linear complexity, but naively enabling complete SWA at inference-time for models pretrained with full attention (FA) causes severe long-context performance degradation due to training-inference mismatch. This makes us wonder: Can FA-pretrained LLMs be well adapted to SWA without pretraining? We investigate this by proposing Sliding Window Attention Adaptation (SWAA), a set of practical recipes that combine five methods for better adaptation: (1) applying SWA only during prefilling; (2) preserving "sink" tokens; (3) interleaving FA/SWA layers; (4) chain-of-thought (CoT); and (5) fine-tuning. Our experiments show that SWA adaptation is feasible while non-trivial: no single method suffices, yet specific synergistic combinations effectively recover the original long-context performance. We further analyze the performance-efficiency trade-offs of different SWAA configurations and provide recommended recipes for diverse scenarios, which can greatly and fundamentally accelerate LLM long-context inference speed by up to 100%. Our code is available at https://github.com/yuyijiong/sliding-window-attention-adaptation
♻ ☆ PAT: Accelerating LLM Decoding via Prefix-Aware Attention with Resource Efficient Multi-Tile Kernel
LLM serving is increasingly dominated by decode attention, which is a memory-bound operation due to massive KV cache loading from global memory. Meanwhile, real-world workloads exhibit substantial, hierarchical shared prefixes across requests (e.g., system prompts, tools/templates, RAG). Existing attention implementations fail to fully exploit prefix sharing: one-query-per-CTA execution repeatedly loads shared prefix KV cache, while one-size-fits-all tiling leaves on-chip resources idle and exacerbates bubbles for uneven KV lengths. These choices amplify memory bandwidth pressure and stall memory-bound decode attention. This paper introduces PAT, a prefix-aware attention kernel implementation for LLM decoding that organizes execution with a pack-forward-merge paradigm. PAT packs queries by shared prefix to reduce repeated memory accesses, runs a customized multi-tile kernel to achieve high resource efficiency. It further applies practical multi-stream forwarding and KV splitting to reduce resource bubbles. The final merge performs online softmax with negligible overhead. We implement PAT as an off-the-shelf plugin for vLLM. Evaluation on both real-world and synthetic workloads shows that PAT reduces attention latency by 53.5% on average and TPOT by 17.0-93.1% under the same configurations against state-of-the-art attention kernels. PAT's source code is publicly available at https://github.com/flashserve/PAT.
comment: Accepted by ASPLOS'26, code available at https://github.com/flashserve/PAT
♻ ☆ Optimizing Large Language Models for ESG Activity Detection in Financial Texts
The integration of Environmental, Social, and Governance (ESG) factors into corporate decision-making is a fundamental aspect of sustainable finance. However, ensuring that business practices align with evolving regulatory frameworks remains a persistent challenge. AI-driven solutions for automatically assessing the alignment of sustainability reports and non-financial disclosures with specific ESG activities could greatly support this process. Yet, this task remains complex due to the limitations of general-purpose Large Language Models (LLMs) in domain-specific contexts and the scarcity of structured, high-quality datasets. In this paper, we investigate the ability of current-generation LLMs to identify text related to environmental activities. Furthermore, we demonstrate that their performance can be significantly enhanced through fine-tuning on a combination of original and synthetically generated data. To this end, we introduce ESG-Activities, a benchmark dataset containing 1,325 labelled text segments classified according to the EU ESG taxonomy. Our experimental results show that fine-tuning on ESG-Activities significantly enhances classification accuracy, with open models such as Llama 7B and Gemma 7B outperforming large proprietary solutions in specific configurations. These findings have important implications for financial analysts, policymakers, and AI researchers seeking to enhance ESG transparency and compliance through advanced natural language processing techniques.
comment: Published in the Proceedings of the ACM International Conference on AI in Finance (ICAIF). ACM version
♻ ☆ FreeKV: Boosting KV Cache Retrieval for Efficient LLM Inference
Large language models (LLMs) have been widely deployed with rapidly expanding context windows to support increasingly demanding applications. However, long contexts pose significant deployment challenges, primarily due to the KV cache whose size grows proportionally with context length. While KV cache compression methods are proposed to address this issue, KV dropping methods incur considerable accuracy loss, and KV retrieval methods suffer from significant efficiency bottlenecks. We propose FreeKV, an algorithm-system co-optimization framework to enhance KV retrieval efficiency while preserving accuracy. On the algorithm side, FreeKV introduces speculative retrieval to shift the KV selection and recall processes out of the critical path, combined with fine-grained correction to ensure accuracy. On the system side, FreeKV employs hybrid KV layouts across CPU and GPU memory to eliminate fragmented data transfers, and leverages double-buffered streamed recall to further improve efficiency. Experiments demonstrate that FreeKV achieves near-lossless accuracy across various scenarios and models, delivering up to 13$\times$ speedup compared to SOTA KV retrieval methods.
♻ ☆ Adaptive Detector-Verifier Framework for Zero-Shot Polyp Detection in Open-World Settings
Polyp detectors trained on clean datasets often underperform in real-world endoscopy, where illumination changes, motion blur, and occlusions degrade image quality. Existing approaches struggle with the domain gap between controlled laboratory conditions and clinical practice, where adverse imaging conditions are prevalent. In this work, we propose AdaptiveDetector, a novel two-stage detector-verifier framework comprising a YOLOv11 detector with a vision-language model (VLM) verifier. The detector adaptively adjusts per-frame confidence thresholds under VLM guidance, while the verifier is fine-tuned with Group Relative Policy Optimization (GRPO) using an asymmetric, cost-sensitive reward function specifically designed to discourage missed detections -- a critical clinical requirement. To enable realistic assessment under challenging conditions, we construct a comprehensive synthetic testbed by systematically degrading clean datasets with adverse conditions commonly encountered in clinical practice, providing a rigorous benchmark for zero-shot evaluation. Extensive zero-shot evaluation on synthetically degraded CVC-ClinicDB and Kvasir-SEG images demonstrates that our approach improves recall by 14 to 22 percentage points over YOLO alone, while precision remains within 0.7 points below to 1.7 points above the baseline. This combination of adaptive thresholding and cost-sensitive reinforcement learning achieves clinically aligned, open-world polyp detection with substantially fewer false negatives, thereby reducing the risk of missed precancerous polyps and improving patient outcomes.
♻ ☆ CADDesigner: Conceptual Design of CAD Models Based on General-Purpose Agent
Computer Aided Design (CAD) plays a pivotal role in industrial manufacturing but typically requires a high level of expertise from designers. To lower the entry barrier and improve design efficiency, we present an agent for CAD conceptual design powered by large language models (LLMs). The agent accepts both textual descriptions and sketches as input, engaging in interactive dialogue with users to refine and clarify design requirements through comprehensive requirement analysis. Built upon a novel Explicit Context Imperative Paradigm (ECIP), the agent generates high-quality CAD modeling code. During the generation process, the agent incorporates iterative visual feedback to improve model quality. Generated design cases are stored in a structured knowledge base, enabling continuous improvement of the agent's code generation capabilities. Experimental results demonstrate that our method achieves state-of-the-art performance in CAD code generation.
♻ ☆ MatTools: Benchmarking Large Language Models for Materials Science Tools
Large language models (LLMs) are increasingly applied to materials science questions, including literature comprehension, property prediction, materials discovery and alloy design. At the same time, a wide range of physics-based computational approaches have been developed in which materials properties can be calculated. Here, we propose a benchmark application to evaluate the proficiency of LLMs to answer materials science questions through the generation and safe execution of codes based on such physics-based computational materials science packages. MatTools is built on two complementary components: a materials simulation tool question-answer (QA) benchmark and a real-world tool-usage benchmark. We designed an automated methodology to efficiently collect real-world materials science tool-use examples. The QA benchmark, derived from the pymatgen (Python Materials Genomics) codebase and documentation, comprises 69,225 QA pairs that assess the ability of an LLM to understand materials science tools. The real-world benchmark contains 49 tasks (138 subtasks) requiring the generation of functional Python code for materials property calculations. Our evaluation of diverse LLMs yields three key insights: (1)Generalists outshine specialists;(2)AI knows AI; and (3)Simpler is better. MatTools provides a standardized framework for assessing and improving LLM capabilities for materials science tool applications, facilitating the development of more effective AI systems for materials science and general scientific research.
comment: 27 pages, 23 figures
♻ ☆ The Instability of Safety: How Random Seeds and Temperature Expose Inconsistent LLM Refusal Behavior
Current safety evaluations of large language models rely on single-shot testing, implicitly assuming that model responses are deterministic and representative of the model's safety alignment. We challenge this assumption by investigating the stability of safety refusal decisions across random seeds and temperature settings. Testing four instruction-tuned models from three families (Llama 3.1 8B, Qwen 2.5 7B, Qwen 3 8B, Gemma 3 12B) on 876 harmful prompts across 20 different sampling configurations (4 temperatures x 5 random seeds), we find that 18-28% of prompts exhibit decision flips--the model refuses in some configurations but complies in others--depending on the model. Our Safety Stability Index (SSI) reveals that higher temperatures significantly reduce decision stability (Friedman chi-squared = 396.81, p < 0.001), with mean within-temperature SSI dropping from 0.977 at temperature 0.0 to 0.942 at temperature 1.0. We validate our findings across all model families using Claude 3.5 Haiku as a unified external judge, achieving 89.0% inter-judge agreement with our primary Llama 70B judge (Cohen's kappa = 0.62). Within each model, prompts with higher compliance rates exhibit lower stability (Spearman rho = -0.47 to -0.70, all p < 0.001), indicating that models "waver" more on borderline requests. These findings demonstrate that single-shot safety evaluations are insufficient for reliable safety assessment and that evaluation protocols must account for stochastic variation in model behavior. We show that single-shot evaluation agrees with multi-sample ground truth only 92.4% of the time when pooling across temperatures (94.2-97.7% at fixed temperature depending on setting), and recommend using at least 3 samples per prompt for reliable safety assessment.
comment: 16 pages, 7 figures, 9 tables. Code and data available at https://github.com/erikl2/safety-refusal-stability
♻ ☆ TIBSTC-CoT: A Multi-Domain Instruction Dataset for Chain-of-Thought Reasoning in Language Models
To address the severe data scarcity in Tibetan, a low-resource language spoken by over six million people, we introduce TIBSTC-CoT, the large-scale, multi-domain Tibetan dataset automatically constructed via chain-of-thought prompting with large language models (LLMs). TIBSTC-CoT establishes a scalable and reproducible framework for dataset creation in low-resource settings, covering diverse domains and reasoning patterns essential for language understanding and generation. Building on this dataset, we develop the Sunshine-thinking LLM family, a series of Tibetan-centric LLMs equipped with chain-of-thought capabilities. Trained entirely on TIBSTC-CoT, Sunshine-thinking has demonstrated strong reasoning and generation performance, comparable to state-of-the-art (SOTA) multilingual LLMs. Our work marks a significant step toward inclusive AI by enabling high-quality Tibetan language processing through both resource creation and model innovation. All data are available: https://github.com/Vicentvankor/sun-shine.
comment: We will merge this paper with arXiv:2503.18288
♻ ☆ Confucius Code Agent: Scalable Agent Scaffolding for Real-World Codebases
Real-world software engineering tasks require coding agents that can operate over massive repositories, sustain long-horizon sessions, and reliably coordinate complex toolchains at test time. Existing research-grade agents offer transparency but struggle when scaled to real-world workloads, while proprietary systems achieve strong practical performance but provide limited extensibility, interpretability, and controllability. We introduce the Confucius Code Agent (CCA), a scalable software engineering agent that can operate at enterprise-level codebases. CCA is built on top of the Confucius SDK, an agent development platform structured around three complementary perspectives: Agent Experience (AX), User Experience (UX), and Developer Experience (DX). The SDK integrates a unified orchestrator with hierarchical working memory for long-context operation, a persistent note-taking mechanism for cross-session continual learning, and a modular extension system for reliable tool use. In addition, we introduce a meta-agent that automates the synthesis, evaluation, and refinement of agent configurations through a build-test-improve loop, enabling rapid adaptation to new tasks, environments, and tool stacks. Instantiated with these mechanisms, CCA demonstrates strong performance on real-world software engineering tasks. On SWE-Bench-Pro, CCA achieves a Resolve@1 of 54.3%, surpassing both research-grade and proprietary coding agents under comparable model conditions. Together, the Confucius SDK and CCA form a general, extensible, and production-grade foundation for building robust coding agents, bridging the gap between research prototypes and practical large-scale deployment.
comment: The latest draft
♻ ☆ Pronunciation-Lexicon Free Training for Phoneme-based Crosslingual ASR via Joint Stochastic Approximation
Recently, pre-trained models with phonetic supervision have demonstrated their advantages for crosslingual speech recognition in data efficiency and information sharing across languages. However, a limitation is that a pronunciation lexicon is needed for such phoneme-based crosslingual speech recognition. In this study, we aim to eliminate the need for pronunciation lexicons and propose a latent variable model based method, with phonemes being treated as discrete latent variables. The new method consists of a speech-to-phoneme (S2P) model and a phoneme-to-grapheme (P2G) model, and a grapheme-to-phoneme (G2P) model is introduced as an auxiliary inference model. To jointly train the three models, we utilize the joint stochastic approximation (JSA) algorithm, which is a stochastic extension of the EM (expectation-maximization) algorithm and has demonstrated superior performance particularly in estimating discrete latent variable models. Furthermore, we propose marginal likelihood scoring (MLS) decoding to align inference with the training objective and P2G augmentation to improve the robustness of P2G mapping. Based on the Whistle multilingual pre-trained S2P model, crosslingual experiments are conducted in Polish (130 h) and Indonesian (20 h). With only 10 minutes of phoneme supervision, the new method, JSA-SPG, achieves 5% error rate reductions compared to the best crosslingual fine-tuning approach using subword or full phoneme supervision. Furthermore, it is found that in language domain adaptation (i.e., utilizing cross-domain text-only data), JSA-SPG outperforms the standard practice of language model fusion via the auxiliary support of the G2P model by 9% error rate reductions. To facilitate reproducibility and encourage further exploration in this field, we open-source the JSA-SPG training code and complete pipeline.
comment: Accepted by IEEE TASLP
♻ ☆ AugServe: Adaptive Request Scheduling for Augmented Large Language Model Inference Serving
As augmented large language models (LLMs) with external tools become increasingly popular in web applications, improving augmented LLM inference serving efficiency and optimizing service-level objectives (SLOs) are critical for enhancing user experience. To achieve this, inference systems must maximize request handling within latency constraints, referred to as increasing effective throughput. However, existing systems face two major challenges: (i) reliance on first-come-first-served (FCFS) scheduling causes severe head-of-line blocking, leading to queuing delays exceeding the SLOs for many requests; and (ii) static batch token limit, which fails to adapt to fluctuating loads and hardware conditions. Both of these factors degrade effective throughput and service quality. This paper presents AugServe, an efficient inference framework designed to reduce queueing latency and enhance effective throughput for augmented LLM inference services. The core idea of AugServe is a two-stage adaptive request scheduling strategy. Specifically, AugServe combines the inference features of augmented LLM requests to optimize the order of scheduling decisions (stage I). These decisions are continuously refined with runtime information (stage II), adapting to both request characteristics and system capabilities. In addition, AugServe dynamically adjusts the token batching mechanism based on hardware status and real-time load, further enhancing throughput performance. Experimental results show that AugServe achieves 4.7x and 3.3x higher effective throughput than vLLM and InferCept, while reducing time-to-first-token (TTFT) by up to 96.3% and 95.0%, respectively.
♻ ☆ Retrieval Enhanced Feedback via In-context Neural Error-book EMNLP 2025
Recent advancements in Large Language Models (LLMs) have significantly improved reasoning capabilities, with in-context learning (ICL) emerging as a key technique for adaptation without retraining. While previous works have focused on leveraging correct examples, recent research highlights the importance of learning from errors to enhance performance. However, existing methods lack a structured framework for analyzing and mitigating errors, particularly in Multimodal Large Language Models (MLLMs), where integrating visual and textual inputs adds complexity. To address this issue, we propose REFINE: Retrieval-Enhanced Feedback via In-context Neural Error-book, a teacher-student framework that systematically structures errors and provides targeted feedback. REFINE introduces three systematic queries to construct structured feedback -- Feed-Target, Feed-Check, and Feed-Path -- to enhance multimodal reasoning by prioritizing relevant visual information, diagnosing critical failure points, and formulating corrective actions. Unlike prior approaches that rely on redundant retrievals, REFINE optimizes structured feedback retrieval, improving inference efficiency, token usage, and scalability. Our results demonstrate substantial speedup, reduced computational costs, and successful generalization, highlighting REFINE's potential for enhancing multimodal reasoning.
comment: Accepted at EMNLP 2025 main
♻ ☆ Rethinking the Reliability of Multi-agent System: A Perspective from Byzantine Fault Tolerance
Ensuring the reliability of agent architectures and effectively identifying problematic agents when failures occur are crucial challenges in multi-agent systems (MAS). Advances in large language models (LLMs) have established LLM-based agents as a major branch of MAS, enabling major breakthroughs in complex problem solving and world modeling. However, the reliability implications of this shift remain largely unexplored. i.e., whether substituting traditional agents with LLM-based agents can effectively enhance the reliability of MAS. In this work, we investigate and quantify the reliability of LLM-based agents from the perspective of Byzantine fault tolerance. We observe that LLM-based agents demonstrate stronger skepticism when processing erroneous message flows, a characteristic that enables them to outperform traditional agents across different topological structures. Motivated by the results of the pilot experiment, we design CP-WBFT, a confidence probe-based weighted Byzantine Fault Tolerant consensus mechanism to enhance the stability of MAS with different topologies. It capitalizes on the intrinsic reflective and discriminative capabilities of LLMs by employing a probe-based, weighted information flow transmission method to improve the reliability of LLM-based agents. Extensive experiments demonstrate that CP-WBFT achieves superior performance across diverse network topologies under extreme Byzantine conditions (85.7\% fault rate). Notably, our approach surpasses traditional methods by attaining remarkable accuracy on various topologies and maintaining strong reliability in both mathematical reasoning and safety assessment tasks.
♻ ☆ Can Finetuing LLMs on Small Human Samples Increase Heterogeneity, Alignment, and Belief-Action Coherence?
There is ongoing debate about whether large language models (LLMs) can serve as substitutes for human participants in survey and experimental research. While recent work in fields such as marketing and psychology has explored the potential of LLM-based simulation, a growing body of evidence cautions against this practice: LLMs often fail to align with real human behavior, exhibiting limited diversity, systematic misalignment for minority subgroups, insufficient within-group variance, and discrepancies between stated beliefs and actions. This study examines an important and distinct question in this domain: whether fine-tuning on a small subset of human survey data, such as that obtainable from a pilot study, can mitigate these issues and yield realistic simulated outcomes. Using a behavioral experiment on information disclosure, we compare human and LLM-generated responses across multiple dimensions, including distributional divergence, subgroup alignment, belief-action coherence, and the recovery of regression coefficients. We find that fine-tuning on small human samples substantially improves heterogeneity, alignment, and belief-action coherence relative to the base model. However, even the best-performing fine-tuned models fail to reproduce the regression coefficients of the original study, suggesting that LLM-generated data remain unsuitable for replacing human participants in formal inferential analyses.
♻ ☆ Enhancing Long-term RAG Chatbots with Psychological Models of Memory Importance and Forgetting
While Retrieval-Augmented Generation (RAG) has shown promise in enhancing long-term conversations, the increasing memory load as conversations progress degrades retrieval accuracy. Drawing on psychological insights, we propose LUFY, a simple yet effective method that focuses on emotionally arousing memories and retains less than 10% of the conversation. In the user experiment, participants interacted with three types of RAG chatbots, each for 2 hours over 4 sessions, marking the most extensive assessment of a chatbot's long-term capabilities to date -- more than four times longer than any existing benchmark. The results demonstrate that prioritizing arousing memories while forgetting the majority of the conversation significantly enhances user experience. This study pushes the frontier of long-term conversations and highlights the importance of forgetting unimportant parts of conversations. Code and Dataset: https://github.com/ryuichi-sumida/LUFY
comment: 37 pages, accepted and published in Dialogue & Discourse 16(2) (2025)
♻ ☆ Estimating Privacy Leakage of Augmented Contextual Knowledge in Language Models
Language models (LMs) rely on their parametric knowledge augmented with relevant contextual knowledge for certain tasks, such as question answering. However, the contextual knowledge can contain private information that may be leaked when answering queries, and estimating this privacy leakage is not well understood. A straightforward approach of directly comparing an LM's output to the contexts can overestimate the privacy risk, since the LM's parametric knowledge might already contain the augmented contextual knowledge. To this end, we introduce *context influence*, a metric that builds on differential privacy, a widely-adopted privacy notion, to estimate the privacy leakage of contextual knowledge during decoding. Our approach effectively measures how each subset of the context influences an LM's response while separating the specific parametric knowledge of the LM. Using our context influence metric, we demonstrate that context privacy leakage occurs when contextual knowledge is out of distribution with respect to parametric knowledge. Moreover, we experimentally demonstrate how context influence properly attributes the privacy leakage to augmented contexts, and we evaluate how factors -- such as model size, context size, generation position, etc. -- affect context privacy leakage. The practical implications of our results will inform practitioners of the privacy risk associated with augmented contextual knowledge.
♻ ☆ Differentially Private Knowledge Distillation via Synthetic Text Generation
Large Language models (LLMs) are achieving state-of-the-art performance in many different downstream tasks. However, the increasing urgency of data privacy puts pressure on practitioners to train LLMs with Differential Privacy (DP) on private data. Concurrently, the exponential growth in parameter size of LLMs necessitates model compression before deployment of LLMs on resource-constrained devices or latency-sensitive applications. Differential privacy and model compression generally must trade off utility loss to achieve their objectives. Moreover, simultaneously applying both schemes can compound the utility degradation. To this end, we propose DistilDP: a novel differentially private knowledge distillation algorithm that exploits synthetic data generated by a differentially private teacher LLM. The knowledge of a teacher LLM is transferred onto the student in two ways: one way from the synthetic data itself -- the hard labels, and the other way by the output distribution of the teacher evaluated on the synthetic data -- the soft labels. Furthermore, if the teacher and student share a similar architectural structure, we can further distill knowledge by aligning the hidden representations between both. Our experimental results demonstrate that DistilDP can substantially improve the utility over existing baselines, at least $9.0$ PPL on the Big Patent dataset, with strong privacy parameters, $ε=2$. These promising results progress privacy-preserving compression of autoregressive LLMs. Our code can be accessed here: https://github.com/james-flemings/dp_compress.
♻ ☆ SemShareKV: Efficient KVCache Sharing for Semantically Similar Prompts via Token-Level LSH Matching
As large language models (LLMs) continue to scale, the memory footprint of key-value (KV) caches during inference has become a significant bottleneck. Existing approaches primarily focus on compressing KV caches within a single prompt or reusing shared prefixes or frequently ocurred text segments across prompts. However, such strategies are limited in scenarios where prompts are semantically similar but lexically different, which frequently occurs in tasks such as multi-document summarization and conversational agents. We propose \textit{SemShareKV}, a KV cache sharing and compression framework that accelerates LLM inference by reusing KVCache in semantically similar prompts. Instead of relying on exact token matches, SemShareKV applies fuzzy token matching using locality-sensitive hashing (LSH) on token embeddings and incorporates Rotary Position Embedding (RoPE) to better preserve positional information. By selectively reusing relevant key-value pairs from a reference prompt's cache, SemShareKV reduces redundant computation while maintaining output quality. Experiments on diverse summarization datasets show up to 6.25$\times$ speedup and 42\% lower GPU memory usage with 5k tokens input, with negligible quality degradation. These results highlight the potential of semantic-aware cache sharing for efficient LLM inference.
comment: 11 figures, 14pages
♻ ☆ The AI Productivity Index (APEX)
We present an extended version of the AI Productivity Index (APEX-v1-extended), a benchmark for assessing whether frontier models are capable of performing economically valuable tasks in four jobs: investment banking associate, management consultant, big law associate, and primary care physician (MD). This technical report details the extensions to APEX-v1, including an increase in the held-out evaluation set from n = 50 to n = 100 cases per job (n = 400 total) and updates to the grading methodology. We present a new leaderboard, where GPT5 (Thinking = High) remains the top performing model with a score of 67.0%. APEX-v1-extended shows that frontier models still have substantial limitations when performing typical professional tasks. To support further research, we are open sourcing n = 25 non-benchmark example cases per role (n = 100 total) along with our evaluation harness.
♻ ☆ Thinking on the Fly: Test-Time Reasoning Enhancement via Latent Thought Policy Optimization
Recent advancements in Large Language Models (LLMs) have shifted from explicit Chain-of-Thought (CoT) reasoning to more efficient latent reasoning, where intermediate thoughts are represented as vectors rather than text. However, latent reasoning can be brittle on challenging, out-of-distribution tasks where robust reasoning is most critical. To overcome these limitations, we introduce Latent Thought Policy Optimization (LTPO), a parameter-free framework that enhances LLM reasoning entirely at test time, without requiring model parameter updates. LTPO treats intermediate latent "thought" vectors as dynamic parameters that are actively optimized for each problem instance. It employs an online policy gradient method guided by an intrinsic, confidence-based reward signal computed directly from the frozen LLM's own output distributions, eliminating the need for external supervision or expensive text generation during optimization. Extensive experiments on five reasoning benchmarks show that LTPO not only matches or surpasses strong baselines on standard tasks but also demonstrates remarkable robustness where others fail. Most notably, on highly challenging AIME benchmarks where existing latent reasoning baselines collapse to near-zero accuracy, LTPO delivers substantial improvements, showcasing a unique capability for complex reasoning.
♻ ☆ Hidden in the Haystack: Smaller Needles are More Difficult for LLMs to Find
Large language models (LLMs) face significant challenges with needle-in-ahaystack tasks, where relevant information ("the needle") must be drawn from a large pool of irrelevant context ("the haystack"). Previous studies have highlighted positional bias and distractor quantity as critical factors affecting model performance, yet the influence of gold context size, the length of the answer-containing document, has received little attention. We present the first systematic study of gold context size in long-context question answering, spanning three diverse benchmarks (general knowledge, biomedical reasoning, and mathematical reasoning), eleven state-of-the-art LLMs (including recent reasoning models), and more than 150K controlled runs. Our experiments reveal that LLM performance drops sharply when the gold context is shorter, i.e., smaller gold contexts consistently degrade model performance and amplify positional sensitivity, posing a major challenge for agentic systems that must integrate scattered, fine-grained information of varying lengths. This effect persists under rigorous confounder analysis: even after controlling for gold context position, answer token repetition, gold-to-distractor ratio, distractor volume, and domain specificity, gold context size remains a decisive, independent predictor of success. Our work provides clear insights to guide the design of robust, context-aware LLM-driven systems.
comment: Under Review
Computer Vision and Pattern Recognition 100
☆ MemFlow: Flowing Adaptive Memory for Consistent and Efficient Long Video Narratives
The core challenge for streaming video generation is maintaining the content consistency in long context, which poses high requirement for the memory design. Most existing solutions maintain the memory by compressing historical frames with predefined strategies. However, different to-generate video chunks should refer to different historical cues, which is hard to satisfy with fixed strategies. In this work, we propose MemFlow to address this problem. Specifically, before generating the coming chunk, we dynamically update the memory bank by retrieving the most relevant historical frames with the text prompt of this chunk. This design enables narrative coherence even if new event happens or scenario switches in future frames. In addition, during generation, we only activate the most relevant tokens in the memory bank for each query in the attention layers, which effectively guarantees the generation efficiency. In this way, MemFlow achieves outstanding long-context consistency with negligible computation burden (7.9% speed reduction compared with the memory-free baseline) and keeps the compatibility with any streaming video generation model with KV cache.
comment: Project Page: https://sihuiji.github.io/MemFlow.github.io/
☆ TimeLens: Rethinking Video Temporal Grounding with Multimodal LLMs
This paper does not introduce a novel method but instead establishes a straightforward, incremental, yet essential baseline for video temporal grounding (VTG), a core capability in video understanding. While multimodal large language models (MLLMs) excel at various video understanding tasks, the recipes for optimizing them for VTG remain under-explored. In this paper, we present TimeLens, a systematic investigation into building MLLMs with strong VTG ability, along two primary dimensions: data quality and algorithmic design. We first expose critical quality issues in existing VTG benchmarks and introduce TimeLens-Bench, comprising meticulously re-annotated versions of three popular benchmarks with strict quality criteria. Our analysis reveals dramatic model re-rankings compared to legacy benchmarks, confirming the unreliability of prior evaluation standards. We also address noisy training data through an automated re-annotation pipeline, yielding TimeLens-100K, a large-scale, high-quality training dataset. Building on our data foundation, we conduct in-depth explorations of algorithmic design principles, yielding a series of meaningful insights and effective yet efficient practices. These include interleaved textual encoding for time representation, a thinking-free reinforcement learning with verifiable rewards (RLVR) approach as the training paradigm, and carefully designed recipes for RLVR training. These efforts culminate in TimeLens models, a family of MLLMs with state-of-the-art VTG performance among open-source models and even surpass proprietary models such as GPT-5 and Gemini-2.5-Flash. All codes, data, and models will be released to facilitate future research.
comment: Project Page: https://timelens-arc-lab.github.io/
☆ Spherical Leech Quantization for Visual Tokenization and Generation
Non-parametric quantization has received much attention due to its efficiency on parameters and scalability to a large codebook. In this paper, we present a unified formulation of different non-parametric quantization methods through the lens of lattice coding. The geometry of lattice codes explains the necessity of auxiliary loss terms when training auto-encoders with certain existing lookup-free quantization variants such as BSQ. As a step forward, we explore a few possible candidates, including random lattices, generalized Fibonacci lattices, and densest sphere packing lattices. Among all, we find the Leech lattice-based quantization method, which is dubbed as Spherical Leech Quantization ($Λ_{24}$-SQ), leads to both a simplified training recipe and an improved reconstruction-compression tradeoff thanks to its high symmetry and even distribution on the hypersphere. In image tokenization and compression tasks, this quantization approach achieves better reconstruction quality across all metrics than BSQ, the best prior art, while consuming slightly fewer bits. The improvement also extends to state-of-the-art auto-regressive image generation frameworks.
comment: Tech report; project page: https://zhaoyue-zephyrus.github.io/npq/
☆ CRISP: Contact-Guided Real2Sim from Monocular Video with Planar Scene Primitives
We introduce CRISP, a method that recovers simulatable human motion and scene geometry from monocular video. Prior work on joint human-scene reconstruction relies on data-driven priors and joint optimization with no physics in the loop, or recovers noisy geometry with artifacts that cause motion tracking policies with scene interactions to fail. In contrast, our key insight is to recover convex, clean, and simulation-ready geometry by fitting planar primitives to a point cloud reconstruction of the scene, via a simple clustering pipeline over depth, normals, and flow. To reconstruct scene geometry that might be occluded during interactions, we make use of human-scene contact modeling (e.g., we use human posture to reconstruct the occluded seat of a chair). Finally, we ensure that human and scene reconstructions are physically-plausible by using them to drive a humanoid controller via reinforcement learning. Our approach reduces motion tracking failure rates from 55.2\% to 6.9\% on human-centric video benchmarks (EMDB, PROX), while delivering a 43\% faster RL simulation throughput. We further validate it on in-the-wild videos including casually-captured videos, Internet videos, and even Sora-generated videos. This demonstrates CRISP's ability to generate physically-valid human motion and interaction environments at scale, greatly advancing real-to-sim applications for robotics and AR/VR.
comment: Project page: https://crisp-real2sim.github.io/CRISP-Real2Sim/
☆ Native and Compact Structured Latents for 3D Generation
Recent advancements in 3D generative modeling have significantly improved the generation realism, yet the field is still hampered by existing representations, which struggle to capture assets with complex topologies and detailed appearance. This paper present an approach for learning a structured latent representation from native 3D data to address this challenge. At its core is a new sparse voxel structure called O-Voxel, an omni-voxel representation that encodes both geometry and appearance. O-Voxel can robustly model arbitrary topology, including open, non-manifold, and fully-enclosed surfaces, while capturing comprehensive surface attributes beyond texture color, such as physically-based rendering parameters. Based on O-Voxel, we design a Sparse Compression VAE which provides a high spatial compression rate and a compact latent space. We train large-scale flow-matching models comprising 4B parameters for 3D generation using diverse public 3D asset datasets. Despite their scale, inference remains highly efficient. Meanwhile, the geometry and material quality of our generated assets far exceed those of existing models. We believe our approach offers a significant advancement in 3D generative modeling.
comment: Project Page: https://microsoft.github.io/TRELLIS.2/
☆ MMGR: Multi-Modal Generative Reasoning
Video foundation models generate visually realistic and temporally coherent content, but their reliability as world simulators depends on whether they capture physical, logical, and spatial constraints. Existing metrics such as Frechet Video Distance (FVD) emphasize perceptual quality and overlook reasoning failures, including violations of causality, physics, and global consistency. We introduce MMGR (Multi-Modal Generative Reasoning Evaluation and Benchmark), a principled evaluation framework based on five reasoning abilities: Physical, Logical, 3D Spatial, 2D Spatial, and Temporal. MMGR evaluates generative reasoning across three domains: Abstract Reasoning (ARC-AGI, Sudoku), Embodied Navigation (real-world 3D navigation and localization), and Physical Commonsense (sports and compositional interactions). MMGR applies fine-grained metrics that require holistic correctness across both video and image generation. We benchmark leading video models (Veo-3, Sora-2, Wan-2.2) and image models (Nano-banana, Nano-banana Pro, GPT-4o-image, Qwen-image), revealing strong performance gaps across domains. Models show moderate success on Physical Commonsense tasks but perform poorly on Abstract Reasoning (below 10 percent accuracy on ARC-AGI) and struggle with long-horizon spatial planning in embodied settings. Our analysis highlights key limitations in current models, including overreliance on perceptual data, weak global state consistency, and objectives that reward visual plausibility over causal correctness. MMGR offers a unified diagnostic benchmark and a path toward reasoning-aware generative world models.
comment: work in progress
☆ VASA-3D: Lifelike Audio-Driven Gaussian Head Avatars from a Single Image NeurIPS 2025
We propose VASA-3D, an audio-driven, single-shot 3D head avatar generator. This research tackles two major challenges: capturing the subtle expression details present in real human faces, and reconstructing an intricate 3D head avatar from a single portrait image. To accurately model expression details, VASA-3D leverages the motion latent of VASA-1, a method that yields exceptional realism and vividness in 2D talking heads. A critical element of our work is translating this motion latent to 3D, which is accomplished by devising a 3D head model that is conditioned on the motion latent. Customization of this model to a single image is achieved through an optimization framework that employs numerous video frames of the reference head synthesized from the input image. The optimization takes various training losses robust to artifacts and limited pose coverage in the generated training data. Our experiment shows that VASA-3D produces realistic 3D talking heads that cannot be achieved by prior art, and it supports the online generation of 512x512 free-viewpoint videos at up to 75 FPS, facilitating more immersive engagements with lifelike 3D avatars.
comment: NeurIPS 2025 paper. Project webpage: https://www.microsoft.com/en-us/research/project/vasa-3d/
☆ ART: Articulated Reconstruction Transformer
We introduce ART, Articulated Reconstruction Transformer -- a category-agnostic, feed-forward model that reconstructs complete 3D articulated objects from only sparse, multi-state RGB images. Previous methods for articulated object reconstruction either rely on slow optimization with fragile cross-state correspondences or use feed-forward models limited to specific object categories. In contrast, ART treats articulated objects as assemblies of rigid parts, formulating reconstruction as part-based prediction. Our newly designed transformer architecture maps sparse image inputs to a set of learnable part slots, from which ART jointly decodes unified representations for individual parts, including their 3D geometry, texture, and explicit articulation parameters. The resulting reconstructions are physically interpretable and readily exportable for simulation. Trained on a large-scale, diverse dataset with per-part supervision, and evaluated across diverse benchmarks, ART achieves significant improvements over existing baselines and establishes a new state of the art for articulated object reconstruction from image inputs.
comment: Project Page: https://kyleleey.github.io/ART/
☆ EVOLVE-VLA: Test-Time Training from Environment Feedback for Vision-Language-Action Models
Achieving truly adaptive embodied intelligence requires agents that learn not just by imitating static demonstrations, but by continuously improving through environmental interaction, which is akin to how humans master skills through practice. Vision-Language-Action (VLA) models have advanced robotic manipulation by leveraging large language models, yet remain fundamentally limited by Supervised Finetuning (SFT): requiring hundreds of demonstrations per task, rigidly memorizing trajectories, and failing to adapt when deployment conditions deviate from training. We introduce EVOLVE-VLA, a test-time training framework enabling VLAs to continuously adapt through environment interaction with minimal or zero task-specific demonstrations. The key technical challenge is replacing oracle reward signals (unavailable at test time) with autonomous feedback. We address this through a learned progress estimator providing dense feedback, and critically, we design our framework to ``tame'' this inherently noisy signal via two mechanisms: (1) an accumulative progress estimation mechanism smoothing noisy point-wise estimates, and (2) a progressive horizon extension strategy enabling gradual policy evolution. EVOLVE-VLA achieves substantial gains: +8.6\% on long-horizon tasks, +22.0\% in 1-shot learning, and enables cross-task generalization -- achieving 20.8\% success on unseen tasks without task-specific demonstrations training (vs. 0\% for pure SFT). Qualitative analysis reveals emergent capabilities absent in demonstrations, including error recovery and novel strategies. This work represents a critical step toward VLAs that truly learn and adapt, moving beyond static imitation toward continuous self-improvements.
comment: 15 pages
☆ Enhancing Visual Sentiment Analysis via Semiotic Isotopy-Guided Dataset Construction
Visual Sentiment Analysis (VSA) is a challenging task due to the vast diversity of emotionally salient images and the inherent difficulty of acquiring sufficient data to capture this variability comprehensively. Key obstacles include building large-scale VSA datasets and developing effective methodologies that enable algorithms to identify emotionally significant elements within an image. These challenges are reflected in the limited generalization performance of VSA algorithms and models when trained and tested across different datasets. Starting from a pool of existing data collections, our approach enables the creation of a new larger dataset that not only contains a wider variety of images than the original ones, but also permits training new models with improved capability to focus on emotionally relevant combinations of image elements. This is achieved through the integration of the semiotic isotopy concept within the dataset creation process, providing deeper insights into the emotional content of images. Empirical evaluations show that models trained on a dataset generated with our method consistently outperform those trained on the original data collections, achieving superior generalization across major VSA benchmarks
☆ WaveSim: A Wavelet-based Multi-scale Similarity Metric for Weather and Climate Fields
We introduce WaveSim, a multi-scale similarity metric for the evaluation of spatial fields in weather and climate applications. WaveSim exploits wavelet transforms to decompose input fields into scale-specific wavelet coefficients. The metric is built by multiplying three orthogonal components derived from these coefficients: Magnitude, which quantifies similarities in the energy distribution of the coefficients, i.e., the intensity of the field; Displacement, which captures spatial shift by comparing the centers of mass of normalized energy distributions; and Structure, which assesses pattern organization independent of location and amplitude. Each component yields a scale-specific similarity score ranging from 0 (no similarity) to 1 (perfect similarity), which are then combined across scales to produce an overall similarity measure. We first evaluate WaveSim using synthetic test cases, applying controlled spatial and temporal perturbations to systematically assess its sensitivity and expected behavior. We then demonstrate its applicability to physically relevant case studies of key modes of climate variability in Earth System Models. Traditional point-wise metrics lack a mechanism for attributing errors to physical scales or modes of dissimilarity. By operating in the wavelet domain and decomposing the signal along independent axes, WaveSim bypasses these limitations and provides an interpretable and diagnostically rich framework for assessing similarity in complex fields. Additionally, the WaveSim framework allows users to place emphasis on a specific scale or component, and lends itself to user-specific model intercomparison, model evaluation, and calibration and training of forecasting systems. We provide a PyTorch-ready implementation of WaveSim, along with all evaluation scripts, at: https://github.com/gabrieleaccarino/wavesim.
☆ ViRC: Enhancing Visual Interleaved Mathematical CoT with Reason Chunking
CoT has significantly enhanced the reasoning ability of LLMs while it faces challenges when extended to multimodal domains, particularly in mathematical tasks. Existing MLLMs typically perform textual reasoning solely from a single static mathematical image, overlooking dynamic visual acquisition during reasoning. In contrast, humans repeatedly examine visual image and employ step-by-step reasoning to prove intermediate propositions. This strategy of decomposing the problem-solving process into key logical nodes adheres to Miller's Law in cognitive science. Inspired by this insight, we propose a ViRC framework for multimodal mathematical tasks, introducing a Reason Chunking mechanism that structures multimodal mathematical CoT into consecutive Critical Reasoning Units (CRUs) to simulate human expert problem-solving patterns. CRUs ensure intra-unit textual coherence for intermediate proposition verification while integrating visual information across units to generate subsequent propositions and support structured reasoning. To this end, we present CRUX dataset by using three visual tools and four reasoning patterns to provide explicitly annotated CRUs across multiple reasoning paths for each mathematical problem. Leveraging the CRUX dataset, we propose a progressive training strategy inspired by human cognitive learning, which includes Instructional SFT, Practice SFT, and Strategic RL, aimed at further strengthening the Reason Chunking ability of the model.The resulting ViRC-7B model achieves a 18.8\% average improvement over baselines across multiple mathematical benchmarks. Code is available at https://github.com/Leon-LihongWang/ViRC.
comment: Code is available at https://github.com/Leon-LihongWang/ViRC
☆ Adaptable Segmentation Pipeline for Diverse Brain Tumors with Radiomic-guided Subtyping and Lesion-Wise Model Ensemble MICCAI
Robust and generalizable segmentation of brain tumors on multi-parametric magnetic resonance imaging (MRI) remains difficult because tumor types differ widely. The BraTS 2025 Lighthouse Challenge benchmarks segmentation methods on diverse high-quality datasets of adult and pediatric tumors: multi-consortium international pediatric brain tumor segmentation (PED), preoperative meningioma tumor segmentation (MEN), meningioma radiotherapy segmentation (MEN-RT), and segmentation of pre- and post-treatment brain metastases (MET). We present a flexible, modular, and adaptable pipeline that improves segmentation performance by selecting and combining state-of-the-art models and applying tumor- and lesion-specific processing before and after training. Radiomic features extracted from MRI help detect tumor subtype, ensuring a more balanced training. Custom lesion-level performance metrics determine the influence of each model in the ensemble and optimize post-processing that further refines the predictions, enabling the workflow to tailor every step to each case. On the BraTS testing sets, our pipeline achieved performance comparable to top-ranked algorithms across multiple challenges. These findings confirm that custom lesion-aware processing and model selection yield robust segmentations yet without locking the method to a specific network architecture. Our method has the potential for quantitative tumor measurement in clinical practice, supporting diagnosis and prognosis.
comment: 12 pages, 5 figures, 3 tables. Algorithm presented at MICCAI BraTS 2025
☆ A Multicenter Benchmark of Multiple Instance Learning Models for Lymphoma Subtyping from HE-stained Whole Slide Images
Timely and accurate lymphoma diagnosis is essential for guiding cancer treatment. Standard diagnostic practice combines hematoxylin and eosin (HE)-stained whole slide images with immunohistochemistry, flow cytometry, and molecular genetic tests to determine lymphoma subtypes, a process requiring costly equipment, skilled personnel, and causing treatment delays. Deep learning methods could assist pathologists by extracting diagnostic information from routinely available HE-stained slides, yet comprehensive benchmarks for lymphoma subtyping on multicenter data are lacking. In this work, we present the first multicenter lymphoma benchmarking dataset covering four common lymphoma subtypes and healthy control tissue. We systematically evaluate five publicly available pathology foundation models (H-optimus-1, H0-mini, Virchow2, UNI2, Titan) combined with attention-based (AB-MIL) and transformer-based (TransMIL) multiple instance learning aggregators across three magnifications (10x, 20x, 40x). On in-distribution test sets, models achieve multiclass balanced accuracies exceeding 80% across all magnifications, with all foundation models performing similarly and both aggregation methods showing comparable results. The magnification study reveals that 40x resolution is sufficient, with no performance gains from higher resolutions or cross-magnification aggregation. However, on out-of-distribution test sets, performance drops substantially to around 60%, highlighting significant generalization challenges. To advance the field, larger multicenter studies covering additional rare lymphoma subtypes are needed. We provide an automated benchmarking pipeline to facilitate such future research.
comment: 17 pages
☆ AMD-HookNet++: Evolution of AMD-HookNet with Hybrid CNN-Transformer Feature Enhancement for Glacier Calving Front Segmentation
The dynamics of glaciers and ice shelf fronts significantly impact the mass balance of ice sheets and coastal sea levels. To effectively monitor glacier conditions, it is crucial to consistently estimate positional shifts of glacier calving fronts. AMD-HookNet firstly introduces a pure two-branch convolutional neural network (CNN) for glacier segmentation. Yet, the local nature and translational invariance of convolution operations, while beneficial for capturing low-level details, restricts the model ability to maintain long-range dependencies. In this study, we propose AMD-HookNet++, a novel advanced hybrid CNN-Transformer feature enhancement method for segmenting glaciers and delineating calving fronts in synthetic aperture radar images. Our hybrid structure consists of two branches: a Transformer-based context branch to capture long-range dependencies, which provides global contextual information in a larger view, and a CNN-based target branch to preserve local details. To strengthen the representation of the connected hybrid features, we devise an enhanced spatial-channel attention module to foster interactions between the hybrid CNN-Transformer branches through dynamically adjusting the token relationships from both spatial and channel perspectives. Additionally, we develop a pixel-to-pixel contrastive deep supervision to optimize our hybrid model by integrating pixelwise metric learning into glacier segmentation. Through extensive experiments and comprehensive quantitative and qualitative analyses on the challenging glacier segmentation benchmark dataset CaFFe, we show that AMD-HookNet++ sets a new state of the art with an IoU of 78.2 and a HD95 of 1,318 m, while maintaining a competitive MDE of 367 m. More importantly, our hybrid model produces smoother delineations of calving fronts, resolving the issue of jagged edges typically seen in pure Transformer-based approaches.
☆ Distill Video Datasets into Images
Dataset distillation aims to synthesize compact yet informative datasets that allow models trained on them to achieve performance comparable to training on the full dataset. While this approach has shown promising results for image data, extending dataset distillation methods to video data has proven challenging and often leads to suboptimal performance. In this work, we first identify the core challenge in video set distillation as the substantial increase in learnable parameters introduced by the temporal dimension of video, which complicates optimization and hinders convergence. To address this issue, we observe that a single frame is often sufficient to capture the discriminative semantics of a video. Leveraging this insight, we propose Single-Frame Video set Distillation (SFVD), a framework that distills videos into highly informative frames for each class. Using differentiable interpolation, these frames are transformed into video sequences and matched with the original dataset, while updates are restricted to the frames themselves for improved optimization efficiency. To further incorporate temporal information, the distilled frames are combined with sampled real videos from real videos during the matching process through a channel reshaping layer. Extensive experiments on multiple benchmarks demonstrate that SFVD substantially outperforms prior methods, achieving improvements of up to 5.3% on MiniUCF, thereby offering a more effective solution.
☆ JMMMU-Pro: Image-based Japanese Multi-discipline Multimodal Understanding Benchmark via Vibe Benchmark Construction
This paper introduces JMMMU-Pro, an image-based Japanese Multi-discipline Multimodal Understanding Benchmark, and Vibe Benchmark Construction, a scalable construction method. Following the evolution from MMMU to MMMU-Pro, JMMMU-Pro extends JMMMU by composing the question image and question text into a single image, thereby creating a benchmark that requires integrated visual-textual understanding through visual perception. To build JMMMU-Pro, we propose Vibe Benchmark Construction, a methodology in which an image generative model (e.g., Nano Banana Pro) produces candidate visual questions, and humans verify the outputs and, when necessary, regenerate with adjusted prompts to ensure quality. By leveraging Nano Banana Pro's highly realistic image generation capabilities and its ability to embed clean Japanese text, we construct a high-quality benchmark at low cost, covering a wide range of background and layout designs. Experimental results show that all open-source LMMs struggle substantially with JMMMU-Pro, underscoring JMMMU-Pro as an important benchmark for guiding future efforts in the open-source community. We believe that JMMMU-Pro provides a more rigorous evaluation tool for assessing the Japanese capabilities of LMMs and that our Vibe Benchmark Construction also offers an efficient guideline for future development of image-based VQA benchmarks.
comment: Project page: https://mmmu-japanese-benchmark.github.io/JMMMU_Pro/
☆ WorldPlay: Towards Long-Term Geometric Consistency for Real-Time Interactive World Modeling
This paper presents WorldPlay, a streaming video diffusion model that enables real-time, interactive world modeling with long-term geometric consistency, resolving the trade-off between speed and memory that limits current methods. WorldPlay draws power from three key innovations. 1) We use a Dual Action Representation to enable robust action control in response to the user's keyboard and mouse inputs. 2) To enforce long-term consistency, our Reconstituted Context Memory dynamically rebuilds context from past frames and uses temporal reframing to keep geometrically important but long-past frames accessible, effectively alleviating memory attenuation. 3) We also propose Context Forcing, a novel distillation method designed for memory-aware model. Aligning memory context between the teacher and student preserves the student's capacity to use long-range information, enabling real-time speeds while preventing error drift. Taken together, WorldPlay generates long-horizon streaming 720p video at 24 FPS with superior consistency, comparing favorably with existing techniques and showing strong generalization across diverse scenes. Project page and online demo can be found: https://3d-models.hunyuan.tencent.com/world/ and https://3d.hunyuan.tencent.com/sceneTo3D.
comment: project page: https://3d-models.hunyuan.tencent.com/world/, demo: https://3d.hunyuan.tencent.com/sceneTo3D
☆ FakeRadar: Probing Forgery Outliers to Detect Unknown Deepfake Videos
In this paper, we propose FakeRadar, a novel deepfake video detection framework designed to address the challenges of cross-domain generalization in real-world scenarios. Existing detection methods typically rely on manipulation-specific cues, performing well on known forgery types but exhibiting severe limitations against emerging manipulation techniques. This poor generalization stems from their inability to adapt effectively to unseen forgery patterns. To overcome this, we leverage large-scale pretrained models (e.g. CLIP) to proactively probe the feature space, explicitly highlighting distributional gaps between real videos, known forgeries, and unseen manipulations. Specifically, FakeRadar introduces Forgery Outlier Probing, which employs dynamic subcluster modeling and cluster-conditional outlier generation to synthesize outlier samples near boundaries of estimated subclusters, simulating novel forgery artifacts beyond known manipulation types. Additionally, we design Outlier-Guided Tri-Training, which optimizes the detector to distinguish real, fake, and outlier samples using proposed outlier-driven contrastive learning and outlier-conditioned cross-entropy losses. Experiments show that FakeRadar outperforms existing methods across various benchmark datasets for deepfake video detection, particularly in cross-domain evaluations, by handling the variety of emerging manipulation techniques.
☆ TUMTraf EMOT: Event-Based Multi-Object Tracking Dataset and Baseline for Traffic Scenarios
In Intelligent Transportation Systems (ITS), multi-object tracking is primarily based on frame-based cameras. However, these cameras tend to perform poorly under dim lighting and high-speed motion conditions. Event cameras, characterized by low latency, high dynamic range and high temporal resolution, have considerable potential to mitigate these issues. Compared to frame-based vision, there are far fewer studies on event-based vision. To address this research gap, we introduce an initial pilot dataset tailored for event-based ITS, covering vehicle and pedestrian detection and tracking. We establish a tracking-by-detection benchmark with a specialized feature extractor based on this dataset, achieving excellent performance.
comment: 10 pages, 9 figures
LLM-driven Knowledge Enhancement for Multimodal Cancer Survival Prediction
Current multimodal survival prediction methods typically rely on pathology images (WSIs) and genomic data, both of which are high-dimensional and redundant, making it difficult to extract discriminative features from them and align different modalities. Moreover, using a simple survival follow-up label is insufficient to supervise such a complex task. To address these challenges, we propose KEMM, an LLM-driven Knowledge-Enhanced Multimodal Model for cancer survival prediction, which integrates expert reports and prognostic background knowledge. 1) Expert reports, provided by pathologists on a case-by-case basis and refined by large language model (LLM), offer succinct and clinically focused diagnostic statements. This information may typically suggest different survival outcomes. 2) Prognostic background knowledge (PBK), generated concisely by LLM, provides valuable prognostic background knowledge on different cancer types, which also enhances survival prediction. To leverage these knowledge, we introduce the knowledge-enhanced cross-modal (KECM) attention module. KECM can effectively guide the network to focus on discriminative and survival-relevant features from highly redundant modalities. Extensive experiments on five datasets demonstrate that KEMM achieves state-of-the-art performance. The code will be released upon acceptance.
☆ FoodLogAthl-218: Constructing a Real-World Food Image Dataset Using Dietary Management Applications
Food image classification models are crucial for dietary management applications because they reduce the burden of manual meal logging. However, most publicly available datasets for training such models rely on web-crawled images, which often differ from users' real-world meal photos. In this work, we present FoodLogAthl-218, a food image dataset constructed from real-world meal records collected through the dietary management application FoodLog Athl. The dataset contains 6,925 images across 218 food categories, with a total of 14,349 bounding boxes. Rich metadata, including meal date and time, anonymized user IDs, and meal-level context, accompany each image. Unlike conventional datasets-where a predefined class set guides web-based image collection-our data begins with user-submitted photos, and labels are applied afterward. This yields greater intra-class diversity, a natural frequency distribution of meal types, and casual, unfiltered images intended for personal use rather than public sharing. In addition to (1) a standard classification benchmark, we introduce two FoodLog-specific tasks: (2) an incremental fine-tuning protocol that follows the temporal stream of users' logs, and (3) a context-aware classification task where each image contains multiple dishes, and the model must classify each dish by leveraging the overall meal context. We evaluate these tasks using large multimodal models (LMMs). The dataset is publicly available at https://huggingface.co/datasets/FoodLog/FoodLogAthl-218.
☆ CLNet: Cross-View Correspondence Makes a Stronger Geo-Localizationer
Image retrieval-based cross-view geo-localization (IRCVGL) aims to match images captured from significantly different viewpoints, such as satellite and street-level images. Existing methods predominantly rely on learning robust global representations or implicit feature alignment, which often fail to model explicit spatial correspondences crucial for accurate localization. In this work, we propose a novel correspondence-aware feature refinement framework, termed CLNet, that explicitly bridges the semantic and geometric gaps between different views. CLNet decomposes the view alignment process into three learnable and complementary modules: a Neural Correspondence Map (NCM) that spatially aligns cross-view features via latent correspondence fields; a Nonlinear Embedding Converter (NEC) that remaps features across perspectives using an MLP-based transformation; and a Global Feature Recalibration (GFR) module that reweights informative feature channels guided by learned spatial cues. The proposed CLNet can jointly capture both high-level semantics and fine-grained alignments. Extensive experiments on four public benchmarks, CVUSA, CVACT, VIGOR, and University-1652, demonstrate that our proposed CLNet achieves state-of-the-art performance while offering better interpretability and generalizability.
comment: 16 pages, 6 figures
☆ Test Time Optimized Generalized AI-based Medical Image Registration Method
Medical image registration is critical for aligning anatomical structures across imaging modalities such as computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound. Among existing techniques, non-rigid registration (NRR) is particularly challenging due to the need to capture complex anatomical deformations caused by physiological processes like respiration or contrast-induced signal variations. Traditional NRR methods, while theoretically robust, often require extensive parameter tuning and incur high computational costs, limiting their use in real-time clinical workflows. Recent deep learning (DL)-based approaches have shown promise; however, their dependence on task-specific retraining restricts scalability and adaptability in practice. These limitations underscore the need for efficient, generalizable registration frameworks capable of handling heterogeneous imaging contexts. In this work, we introduce a novel AI-driven framework for 3D non-rigid registration that generalizes across multiple imaging modalities and anatomical regions. Unlike conventional methods that rely on application-specific models, our approach eliminates anatomy- or modality-specific customization, enabling streamlined integration into diverse clinical environments.
☆ TAT: Task-Adaptive Transformer for All-in-One Medical Image Restoration MICCAI 2025
Medical image restoration (MedIR) aims to recover high-quality medical images from their low-quality counterparts. Recent advancements in MedIR have focused on All-in-One models capable of simultaneously addressing multiple different MedIR tasks. However, due to significant differences in both modality and degradation types, using a shared model for these diverse tasks requires careful consideration of two critical inter-task relationships: task interference, which occurs when conflicting gradient update directions arise across tasks on the same parameter, and task imbalance, which refers to uneven optimization caused by varying learning difficulties inherent to each task. To address these challenges, we propose a task-adaptive Transformer (TAT), a novel framework that dynamically adapts to different tasks through two key innovations. First, a task-adaptive weight generation strategy is introduced to mitigate task interference by generating task-specific weight parameters for each task, thereby eliminating potential gradient conflicts on shared weight parameters. Second, a task-adaptive loss balancing strategy is introduced to dynamically adjust loss weights based on task-specific learning difficulties, preventing task domination or undertraining. Extensive experiments demonstrate that our proposed TAT achieves state-of-the-art performance in three MedIR tasks--PET synthesis, CT denoising, and MRI super-resolution--both in task-specific and All-in-One settings. Code is available at https://github.com/Yaziwel/TAT.
comment: This paper has been accepted by MICCAI 2025
☆ HiFi-Portrait: Zero-shot Identity-preserved Portrait Generation with High-fidelity Multi-face Fusion CVPR 2025
Recent advancements in diffusion-based technologies have made significant strides, particularly in identity-preserved portrait generation (IPG). However, when using multiple reference images from the same ID, existing methods typically produce lower-fidelity portraits and struggle to customize face attributes precisely. To address these issues, this paper presents HiFi-Portrait, a high-fidelity method for zero-shot portrait generation. Specifically, we first introduce the face refiner and landmark generator to obtain fine-grained multi-face features and 3D-aware face landmarks. The landmarks include the reference ID and the target attributes. Then, we design HiFi-Net to fuse multi-face features and align them with landmarks, which improves ID fidelity and face control. In addition, we devise an automated pipeline to construct an ID-based dataset for training HiFi-Portrait. Extensive experimental results demonstrate that our method surpasses the SOTA approaches in face similarity and controllability. Furthermore, our method is also compatible with previous SDXL-based works.
comment: Accepted by CVPR 2025
☆ CAPRMIL: Context-Aware Patch Representations for Multiple Instance Learning
In computational pathology, weak supervision has become the standard for deep learning due to the gigapixel scale of WSIs and the scarcity of pixel-level annotations, with Multiple Instance Learning (MIL) established as the principal framework for slide-level model training. In this paper, we introduce a novel setting for MIL methods, inspired by proceedings in Neural Partial Differential Equation (PDE) Solvers. Instead of relying on complex attention-based aggregation, we propose an efficient, aggregator-agnostic framework that removes the complexity of correlation learning from the MIL aggregator. CAPRMIL produces rich context-aware patch embeddings that promote effective correlation learning on downstream tasks. By projecting patch features -- extracted using a frozen patch encoder -- into a small set of global context/morphology-aware tokens and utilizing multi-head self-attention, CAPRMIL injects global context with linear computational complexity with respect to the bag size. Paired with a simple Mean MIL aggregator, CAPRMIL matches state-of-the-art slide-level performance across multiple public pathology benchmarks, while reducing the total number of trainable parameters by 48%-92.8% versus SOTA MILs, lowering FLOPs during inference by 52%-99%, and ranking among the best models on GPU memory efficiency and training time. Our results indicate that learning rich, context-aware instance representations before aggregation is an effective and scalable alternative to complex pooling for whole-slide analysis. Our code is available at https://github.com/mandlos/CAPRMIL
comment: 24 pages, 12 Figures, 4 Tables
☆ DASP: Self-supervised Nighttime Monocular Depth Estimation with Domain Adaptation of Spatiotemporal Priors
Self-supervised monocular depth estimation has achieved notable success under daytime conditions. However, its performance deteriorates markedly at night due to low visibility and varying illumination, e.g., insufficient light causes textureless areas, and moving objects bring blurry regions. To this end, we propose a self-supervised framework named DASP that leverages spatiotemporal priors for nighttime depth estimation. Specifically, DASP consists of an adversarial branch for extracting spatiotemporal priors and a self-supervised branch for learning. In the adversarial branch, we first design an adversarial network where the discriminator is composed of four devised spatiotemporal priors learning blocks (SPLB) to exploit the daytime priors. In particular, the SPLB contains a spatial-based temporal learning module (STLM) that uses orthogonal differencing to extract motion-related variations along the time axis and an axial spatial learning module (ASLM) that adopts local asymmetric convolutions with global axial attention to capture the multiscale structural information. By combining STLM and ASLM, our model can acquire sufficient spatiotemporal features to restore textureless areas and estimate the blurry regions caused by dynamic objects. In the self-supervised branch, we propose a 3D consistency projection loss to bilaterally project the target frame and source frame into a shared 3D space, and calculate the 3D discrepancy between the two projected frames as a loss to optimize the 3D structural consistency and daytime priors. Extensive experiments on the Oxford RobotCar and nuScenes datasets demonstrate that our approach achieves state-of-the-art performance for nighttime depth estimation. Ablation studies further validate the effectiveness of each component.
comment: 8 pages, 7 figures
☆ Native Intelligence Emerges from Large-Scale Clinical Practice: A Retinal Foundation Model with Deployment Efficiency
Current retinal foundation models remain constrained by curated research datasets that lack authentic clinical context, and require extensive task-specific optimization for each application, limiting their deployment efficiency in low-resource settings. Here, we show that these barriers can be overcome by building clinical native intelligence directly from real-world medical practice. Our key insight is that large-scale telemedicine programs, where expert centers provide remote consultations across distributed facilities, represent a natural reservoir for learning clinical image interpretation. We present ReVision, a retinal foundation model that learns from the natural alignment between 485,980 color fundus photographs and their corresponding diagnostic reports, accumulated through a decade-long telemedicine program spanning 162 medical institutions across China. Through extensive evaluation across 27 ophthalmic benchmarks, we demonstrate that ReVison enables deployment efficiency with minimal local resources. Without any task-specific training, ReVision achieves zero-shot disease detection with an average AUROC of 0.946 across 12 public benchmarks and 0.952 on 3 independent clinical cohorts. When minimal adaptation is feasible, ReVision matches extensively fine-tuned alternatives while requiring orders of magnitude fewer trainable parameters and labeled examples. The learned representations also transfer effectively to new clinical sites, imaging domains, imaging modalities, and systemic health prediction tasks. In a prospective reader study with 33 ophthalmologists, ReVision's zero-shot assistance improved diagnostic accuracy by 14.8% across all experience levels. These results demonstrate that clinical native intelligence can be directly extracted from clinical archives without any further annotation to build medical AI systems suited to various low-resource settings.
☆ SignIT: A Comprehensive Dataset and Multimodal Analysis for Italian Sign Language Recognition
In this work we present SignIT, a new dataset to study the task of Italian Sign Language (LIS) recognition. The dataset is composed of 644 videos covering 3.33 hours. We manually annotated videos considering a taxonomy of 94 distinct sign classes belonging to 5 macro-categories: Animals, Food, Colors, Emotions and Family. We also extracted 2D keypoints related to the hands, face and body of the users. With the dataset, we propose a benchmark for the sign recognition task, adopting several state-of-the-art models showing how temporal information, 2D keypoints and RGB frames can be influence the performance of these models. Results show the limitations of these models on this challenging LIS dataset. We release data and annotations at the following link: https://fpv-iplab.github.io/SignIT/.
☆ SuperCLIP: CLIP with Simple Classification Supervision NeurIPS 2025
Contrastive Language-Image Pretraining (CLIP) achieves strong generalization in vision-language tasks by aligning images and texts in a shared embedding space. However, recent findings show that CLIP-like models still underutilize fine-grained semantic signals in text, and this issue becomes even more pronounced when dealing with long and detailed captions. This stems from CLIP's training objective, which optimizes only global image-text similarity and overlooks token-level supervision - limiting its ability to achieve fine-grained visual-text alignment. To address this, we propose SuperCLIP, a simple yet effective framework that augments contrastive learning with classification-based supervision. By adding only a lightweight linear layer to the vision encoder, SuperCLIP leverages token-level cues to enhance visual-textual alignment - with just a 0.077% increase in total FLOPs, and no need for additional annotated data. Experiments show that SuperCLIP consistently improves zero-shot classification, image-text retrieval, and purely visual tasks. These gains hold regardless of whether the model is trained on original web data or rich re-captioned data, demonstrating SuperCLIP's ability to recover textual supervision in both cases. Furthermore, SuperCLIP alleviates CLIP's small-batch performance drop through classification-based supervision that avoids reliance on large batch sizes. Code and models will be made open source.
comment: Accepted by NeurIPS 2025. Code: https://github.com/hustvl/SuperCLIP
☆ TACK Tunnel Data (TTD): A Benchmark Dataset for Deep Learning-Based Defect Detection in Tunnels
Tunnels are essential elements of transportation infrastructure, but are increasingly affected by ageing and deterioration mechanisms such as cracking. Regular inspections are required to ensure their safety, yet traditional manual procedures are time-consuming, subjective, and costly. Recent advances in mobile mapping systems and Deep Learning (DL) enable automated visual inspections. However, their effectiveness is limited by the scarcity of tunnel datasets. This paper introduces a new publicly available dataset containing annotated images of three different tunnel linings, capturing typical defects: cracks, leaching, and water infiltration. The dataset is designed to support supervised, semi-supervised, and unsupervised DL methods for defect detection and segmentation. Its diversity in texture and construction techniques also enables investigation of model generalization and transferability across tunnel types. By addressing the critical lack of domain-specific data, this dataset contributes to advancing automated tunnel inspection and promoting safer, more efficient infrastructure maintenance strategies.
☆ A4-Agent: An Agentic Framework for Zero-Shot Affordance Reasoning
Affordance prediction, which identifies interaction regions on objects based on language instructions, is critical for embodied AI. Prevailing end-to-end models couple high-level reasoning and low-level grounding into a single monolithic pipeline and rely on training over annotated datasets, which leads to poor generalization on novel objects and unseen environments. In this paper, we move beyond this paradigm by proposing A4-Agent, a training-free agentic framework that decouples affordance prediction into a three-stage pipeline. Our framework coordinates specialized foundation models at test time: (1) a $\textbf{Dreamer}$ that employs generative models to visualize $\textit{how}$ an interaction would look; (2) a $\textbf{Thinker}$ that utilizes large vision-language models to decide $\textit{what}$ object part to interact with; and (3) a $\textbf{Spotter}$ that orchestrates vision foundation models to precisely locate $\textit{where}$ the interaction area is. By leveraging the complementary strengths of pre-trained models without any task-specific fine-tuning, our zero-shot framework significantly outperforms state-of-the-art supervised methods across multiple benchmarks and demonstrates robust generalization to real-world settings.
☆ S2D: Sparse-To-Dense Keymask Distillation for Unsupervised Video Instance Segmentation
In recent years, the state-of-the-art in unsupervised video instance segmentation has heavily relied on synthetic video data, generated from object-centric image datasets such as ImageNet. However, video synthesis by artificially shifting and scaling image instance masks fails to accurately model realistic motion in videos, such as perspective changes, movement by parts of one or multiple instances, or camera motion. To tackle this issue, we propose an unsupervised video instance segmentation model trained exclusively on real video data. We start from unsupervised instance segmentation masks on individual video frames. However, these single-frame segmentations exhibit temporal noise and their quality varies through the video. Therefore, we establish temporal coherence by identifying high-quality keymasks in the video by leveraging deep motion priors. The sparse keymask pseudo-annotations are then used to train a segmentation model for implicit mask propagation, for which we propose a Sparse-To-Dense Distillation approach aided by a Temporal DropLoss. After training the final model on the resulting dense labelset, our approach outperforms the current state-of-the-art across various benchmarks.
comment: Project Page with Code/Models/Demo: https://leonsick.github.io/s2d/
☆ VICTOR: Dataset Copyright Auditing in Video Recognition Systems
Video recognition systems are increasingly being deployed in daily life, such as content recommendation and security monitoring. To enhance video recognition development, many institutions have released high-quality public datasets with open-source licenses for training advanced models. At the same time, these datasets are also susceptible to misuse and infringement. Dataset copyright auditing is an effective solution to identify such unauthorized use. However, existing dataset copyright solutions primarily focus on the image domain; the complex nature of video data leaves dataset copyright auditing in the video domain unexplored. Specifically, video data introduces an additional temporal dimension, which poses significant challenges to the effectiveness and stealthiness of existing methods. In this paper, we propose VICTOR, the first dataset copyright auditing approach for video recognition systems. We develop a general and stealthy sample modification strategy that enhances the output discrepancy of the target model. By modifying only a small proportion of samples (e.g., 1%), VICTOR amplifies the impact of published modified samples on the prediction behavior of the target models. Then, the difference in the model's behavior for published modified and unpublished original samples can serve as a key basis for dataset auditing. Extensive experiments on multiple models and datasets highlight the superiority of VICTOR. Finally, we show that VICTOR is robust in the presence of several perturbation mechanisms to the training videos or the target models.
comment: To appear in the NDSS Symposium 2026, February 2026, San Diego, CA, USA
☆ Score-Based Turbo Message Passing for Plug-and-Play Compressive Imaging
Message-passing algorithms have been adapted for compressive imaging by incorporating various off-the-shelf image denoisers. However, these denoisers rely largely on generic or hand-crafted priors and often fall short in accurately capturing the complex statistical structure of natural images. As a result, traditional plug-and-play (PnP) methods often lead to suboptimal reconstruction, especially in highly underdetermined regimes. Recently, score-based generative models have emerged as a powerful framework for accurately characterizing sophisticated image distribution. Yet, their direct use for posterior sampling typically incurs prohibitive computational complexity. In this paper, by exploiting the close connection between score-based generative modeling and empirical Bayes denoising, we devise a message-passing framework that integrates a score-based minimum mean-squared error (MMSE) denoiser for compressive image recovery. The resulting algorithm, named score-based turbo message passing (STMP), combines the fast convergence of message passing with the expressive power of score-based generative priors. For practical systems with quantized measurements, we further propose quantized STMP (Q-STMP), which augments STMP with a component-wise MMSE dequantization module. We demonstrate that the asymptotic performance of STMP and Q-STMP can be accurately predicted by a set of state-evolution (SE) equations. Experiments on the FFHQ dataset demonstrate that STMP strikes a significantly better performance-complexity tradeoff compared with competing baselines, and that Q-STMP remains robust even under 1-bit quantization. Remarkably, both STMP and Q-STMP typically converge within 10 iterations.
☆ The Devil is in Attention Sharing: Improving Complex Non-rigid Image Editing Faithfulness via Attention Synergy
Training-free image editing with large diffusion models has become practical, yet faithfully performing complex non-rigid edits (e.g., pose or shape changes) remains highly challenging. We identify a key underlying cause: attention collapse in existing attention sharing mechanisms, where either positional embeddings or semantic features dominate visual content retrieval, leading to over-editing or under-editing.To address this issue, we introduce SynPS, a method that Synergistically leverages Positional embeddings and Semantic information for faithful non-rigid image editing. We first propose an editing measurement that quantifies the required editing magnitude at each denoising step. Based on this measurement, we design an attention synergy pipeline that dynamically modulates the influence of positional embeddings, enabling SynPS to balance semantic modifications and fidelity preservation.By adaptively integrating positional and semantic cues, SynPS effectively avoids both over- and under-editing. Extensive experiments on public and newly curated benchmarks demonstrate the superior performance and faithfulness of our approach.
comment: Project page:https://synps26.github.io/
☆ LCMem: A Universal Model for Robust Image Memorization Detection
Recent advances in generative image modeling have achieved visual realism sufficient to deceive human experts, yet their potential for privacy preserving data sharing remains insufficiently understood. A central obstacle is the absence of reliable memorization detection mechanisms, limited quantitative evaluation, and poor generalization of existing privacy auditing methods across domains. To address this, we propose to view memorization detection as a unified problem at the intersection of re-identification and copy detection, whose complementary goals cover both identity consistency and augmentation-robust duplication, and introduce Latent Contrastive Memorization Network (LCMem), a cross-domain model evaluated jointly on both tasks. LCMem achieves this through a two-stage training strategy that first learns identity consistency before incorporating augmentation-robust copy detection. Across six benchmark datasets, LCMem achieves improvements of up to 16 percentage points on re-identification and 30 percentage points on copy detection, enabling substantially more reliable memorization detection at scale. Our results show that existing privacy filters provide limited performance and robustness, highlighting the need for stronger protection mechanisms. We show that LCMem sets a new standard for cross-domain privacy auditing, offering reliable and scalable memorization detection. Code and model is publicly available at https://github.com/MischaD/LCMem.
☆ DISCODE: Distribution-Aware Score Decoder for Robust Automatic Evaluation of Image Captioning AAAI 2026
Large vision-language models (LVLMs) have shown impressive performance across a broad range of multimodal tasks. However, robust image caption evaluation using LVLMs remains challenging, particularly under domain-shift scenarios. To address this issue, we introduce the Distribution-Aware Score Decoder (DISCODE), a novel finetuning-free method that generates robust evaluation scores better aligned with human judgments across diverse domains. The core idea behind DISCODE lies in its test-time adaptive evaluation approach, which introduces the Adaptive Test-Time (ATT) loss, leveraging a Gaussian prior distribution to improve robustness in evaluation score estimation. This loss is efficiently minimized at test time using an analytical solution that we derive. Furthermore, we introduce the Multi-domain Caption Evaluation (MCEval) benchmark, a new image captioning evaluation benchmark covering six distinct domains, designed to assess the robustness of evaluation metrics. In our experiments, we demonstrate that DISCODE achieves state-of-the-art performance as a reference-free evaluation metric across MCEval and four representative existing benchmarks.
comment: Paper accepted to AAAI 2026
☆ Broadening View Synthesis of Dynamic Scenes from Constrained Monocular Videos
In dynamic Neural Radiance Fields (NeRF) systems, state-of-the-art novel view synthesis methods often fail under significant viewpoint deviations, producing unstable and unrealistic renderings. To address this, we introduce Expanded Dynamic NeRF (ExpanDyNeRF), a monocular NeRF framework that leverages Gaussian splatting priors and a pseudo-ground-truth generation strategy to enable realistic synthesis under large-angle rotations. ExpanDyNeRF optimizes density and color features to improve scene reconstruction from challenging perspectives. We also present the Synthetic Dynamic Multiview (SynDM) dataset, the first synthetic multiview dataset for dynamic scenes with explicit side-view supervision-created using a custom GTA V-based rendering pipeline. Quantitative and qualitative results on SynDM and real-world datasets demonstrate that ExpanDyNeRF significantly outperforms existing dynamic NeRF methods in rendering fidelity under extreme viewpoint shifts. Further details are provided in the supplementary materials.
☆ EcoScapes: LLM-Powered Advice for Crafting Sustainable Cities
Climate adaptation is vital for the sustainability and sometimes the mere survival of our urban areas. However, small cities often struggle with limited personnel resources and integrating vast amounts of data from multiple sources for a comprehensive analysis. To overcome these challenges, this paper proposes a multi-layered system combining specialized LLMs, satellite imagery analysis and a knowledge base to aid in developing effective climate adaptation strategies. The corresponding code can be found at https://github.com/Photon-GitHub/EcoScapes.
☆ A Comprehensive Safety Metric to Evaluate Perception in Autonomous Systems
Complete perception of the environment and its correct interpretation is crucial for autonomous vehicles. Object perception is the main component of automotive surround sensing. Various metrics already exist for the evaluation of object perception. However, objects can be of different importance depending on their velocity, orientation, distance, size, or the potential damage that could be caused by a collision due to a missed detection. Thus, these additional parameters have to be considered for safety evaluation. We propose a new safety metric that incorporates all these parameters and returns a single easily interpretable safety assessment score for object perception. This new metric is evaluated with both real world and virtual data sets and compared to state of the art metrics.
comment: Accepted at IEEE ITSC 2020
☆ Optimizing Rank for High-Fidelity Implicit Neural Representations
Implicit Neural Representations (INRs) based on vanilla Multi-Layer Perceptrons (MLPs) are widely believed to be incapable of representing high-frequency content. This has directed research efforts towards architectural interventions, such as coordinate embeddings or specialized activation functions, to represent high-frequency signals. In this paper, we challenge the notion that the low-frequency bias of vanilla MLPs is an intrinsic, architectural limitation to learn high-frequency content, but instead a symptom of stable rank degradation during training. We empirically demonstrate that regulating the network's rank during training substantially improves the fidelity of the learned signal, rendering even simple MLP architectures expressive. Extensive experiments show that using optimizers like Muon, with high-rank, near-orthogonal updates, consistently enhances INR architectures even beyond simple ReLU MLPs. These substantial improvements hold across a diverse range of domains, including natural and medical images, and novel view synthesis, with up to 9 dB PSNR improvements over the previous state-of-the-art. Our project page, which includes code and experimental results, is available at: (https://muon-inrs.github.io).
☆ Unified Semantic Transformer for 3D Scene Understanding
Holistic 3D scene understanding involves capturing and parsing unstructured 3D environments. Due to the inherent complexity of the real world, existing models have predominantly been developed and limited to be task-specific. We introduce UNITE, a Unified Semantic Transformer for 3D scene understanding, a novel feed-forward neural network that unifies a diverse set of 3D semantic tasks within a single model. Our model operates on unseen scenes in a fully end-to-end manner and only takes a few seconds to infer the full 3D semantic geometry. Our approach is capable of directly predicting multiple semantic attributes, including 3D scene segmentation, instance embeddings, open-vocabulary features, as well as affordance and articulations, solely from RGB images. The method is trained using a combination of 2D distillation, heavily relying on self-supervision and leverages novel multi-view losses designed to ensure 3D view consistency. We demonstrate that UNITE achieves state-of-the-art performance on several different semantic tasks and even outperforms task-specific models, in many cases, surpassing methods that operate on ground truth 3D geometry. See the project website at unite-page.github.io
comment: Project page: https://unite-page.github.io/
☆ Mimicking Human Visual Development for Learning Robust Image Representations
The human visual system is remarkably adept at adapting to changes in the input distribution; a capability modern convolutional neural networks (CNNs) still struggle to match. Drawing inspiration from the developmental trajectory of human vision, we propose a progressive blurring curriculum to improve the generalization and robustness of CNNs. Human infants are born with poor visual acuity, gradually refining their ability to perceive fine details. Mimicking this process, we begin training CNNs on highly blurred images during the initial epochs and progressively reduce the blur as training advances. This approach encourages the network to prioritize global structures over high-frequency artifacts, improving robustness against distribution shifts and noisy inputs. Challenging prior claims that blurring in the initial training epochs imposes a stimulus deficit and irreversibly harms model performance, we reveal that early-stage blurring enhances generalization with minimal impact on in-domain accuracy. Our experiments demonstrate that the proposed curriculum reduces mean corruption error (mCE) by up to 8.30% on CIFAR-10-C and 4.43% on ImageNet-100-C datasets, compared to standard training without blurring. Unlike static blur-based augmentation, which applies blurred images randomly throughout training, our method follows a structured progression, yielding consistent gains across various datasets. Furthermore, our approach complements other augmentation techniques, such as CutMix and MixUp, and enhances both natural and adversarial robustness against common attack methods. Code is available at https://github.com/rajankita/Visual_Acuity_Curriculum.
comment: Accepted to ICVGIP 2025
☆ Enhancing Interpretability for Vision Models via Shapley Value Optimization AAAI2026
Deep neural networks have demonstrated remarkable performance across various domains, yet their decision-making processes remain opaque. Although many explanation methods are dedicated to bringing the obscurity of DNNs to light, they exhibit significant limitations: post-hoc explanation methods often struggle to faithfully reflect model behaviors, while self-explaining neural networks sacrifice performance and compatibility due to their specialized architectural designs. To address these challenges, we propose a novel self-explaining framework that integrates Shapley value estimation as an auxiliary task during training, which achieves two key advancements: 1) a fair allocation of the model prediction scores to image patches, ensuring explanations inherently align with the model's decision logic, and 2) enhanced interpretability with minor structural modifications, preserving model performance and compatibility. Extensive experiments on multiple benchmarks demonstrate that our method achieves state-of-the-art interpretability.
comment: Accepted to AAAI2026
☆ HGS: Hybrid Gaussian Splatting with Static-Dynamic Decomposition for Compact Dynamic View Synthesis
Dynamic novel view synthesis (NVS) is essential for creating immersive experiences. Existing approaches have advanced dynamic NVS by introducing 3D Gaussian Splatting (3DGS) with implicit deformation fields or indiscriminately assigned time-varying parameters, surpassing NeRF-based methods. However, due to excessive model complexity and parameter redundancy, they incur large model sizes and slow rendering speeds, making them inefficient for real-time applications, particularly on resource-constrained devices. To obtain a more efficient model with fewer redundant parameters, in this paper, we propose Hybrid Gaussian Splatting (HGS), a compact and efficient framework explicitly designed to disentangle static and dynamic regions of a scene within a unified representation. The core innovation of HGS lies in our Static-Dynamic Decomposition (SDD) strategy, which leverages Radial Basis Function (RBF) modeling for Gaussian primitives. Specifically, for dynamic regions, we employ time-dependent RBFs to effectively capture temporal variations and handle abrupt scene changes, while for static regions, we reduce redundancy by sharing temporally invariant parameters. Additionally, we introduce a two-stage training strategy tailored for explicit models to enhance temporal coherence at static-dynamic boundaries. Experimental results demonstrate that our method reduces model size by up to 98% and achieves real-time rendering at up to 125 FPS at 4K resolution on a single RTX 3090 GPU. It further sustains 160 FPS at 1352 * 1014 on an RTX 3050 and has been integrated into the VR system. Moreover, HGS achieves comparable rendering quality to state-of-the-art methods while providing significantly improved visual fidelity for high-frequency details and abrupt scene changes.
comment: 11 pages, 9 figures
☆ Towards Transferable Defense Against Malicious Image Edits
Recent approaches employing imperceptible perturbations in input images have demonstrated promising potential to counter malicious manipulations in diffusion-based image editing systems. However, existing methods suffer from limited transferability in cross-model evaluations. To address this, we propose Transferable Defense Against Malicious Image Edits (TDAE), a novel bimodal framework that enhances image immunity against malicious edits through coordinated image-text optimization. Specifically, at the visual defense level, we introduce FlatGrad Defense Mechanism (FDM), which incorporates gradient regularization into the adversarial objective. By explicitly steering the perturbations toward flat minima, FDM amplifies immune robustness against unseen editing models. For textual enhancement protection, we propose an adversarial optimization paradigm named Dynamic Prompt Defense (DPD), which periodically refines text embeddings to align the editing outcomes of immunized images with those of the original images, then updates the images under optimized embeddings. Through iterative adversarial updates to diverse embeddings, DPD enforces the generation of immunized images that seek a broader set of immunity-enhancing features, thereby achieving cross-model transferability. Extensive experimental results demonstrate that our TDAE achieves state-of-the-art performance in mitigating malicious edits under both intra- and cross-model evaluations.
comment: 14 pages, 5 figures
☆ Vector Prism: Animating Vector Graphics by Stratifying Semantic Structure
Scalable Vector Graphics (SVG) are central to modern web design, and the demand to animate them continues to grow as web environments become increasingly dynamic. Yet automating the animation of vector graphics remains challenging for vision-language models (VLMs) despite recent progress in code generation and motion planning. VLMs routinely mis-handle SVGs, since visually coherent parts are often fragmented into low-level shapes that offer little guidance of which elements should move together. In this paper, we introduce a framework that recovers the semantic structure required for reliable SVG animation and reveals the missing layer that current VLM systems overlook. This is achieved through a statistical aggregation of multiple weak part predictions, allowing the system to stably infer semantics from noisy predictions. By reorganizing SVGs into semantic groups, our approach enables VLMs to produce animations with far greater coherence. Our experiments demonstrate substantial gains over existing approaches, suggesting that semantic recovery is the key step that unlocks robust SVG animation and supports more interpretable interactions between VLMs and vector graphics.
comment: yeolj00.github.io/personal-projects/vector-prism
☆ Dual Attention Guided Defense Against Malicious Edits
Recent progress in text-to-image diffusion models has transformed image editing via text prompts, yet this also introduces significant ethical challenges from potential misuse in creating deceptive or harmful content. While current defenses seek to mitigate this risk by embedding imperceptible perturbations, their effectiveness is limited against malicious tampering. To address this issue, we propose a Dual Attention-Guided Noise Perturbation (DANP) immunization method that adds imperceptible perturbations to disrupt the model's semantic understanding and generation process. DANP functions over multiple timesteps to manipulate both cross-attention maps and the noise prediction process, using a dynamic threshold to generate masks that identify text-relevant and irrelevant regions. It then reduces attention in relevant areas while increasing it in irrelevant ones, thereby misguides the edit towards incorrect regions and preserves the intended targets. Additionally, our method maximizes the discrepancy between the injected noise and the model's predicted noise to further interfere with the generation. By targeting both attention and noise prediction mechanisms, DANP exhibits impressive immunity against malicious edits, and extensive experiments confirm that our method achieves state-of-the-art performance.
comment: 11 pages, 7 figures
☆ Semantic Mismatch and Perceptual Degradation: A New Perspective on Image Editing Immunity
Text-guided image editing via diffusion models, while powerful, raises significant concerns about misuse, motivating efforts to immunize images against unauthorized edits using imperceptible perturbations. Prevailing metrics for evaluating immunization success typically rely on measuring the visual dissimilarity between the output generated from a protected image and a reference output generated from the unprotected original. This approach fundamentally overlooks the core requirement of image immunization, which is to disrupt semantic alignment with attacker intent, regardless of deviation from any specific output. We argue that immunization success should instead be defined by the edited output either semantically mismatching the prompt or suffering substantial perceptual degradations, both of which thwart malicious intent. To operationalize this principle, we propose Synergistic Intermediate Feature Manipulation (SIFM), a method that strategically perturbs intermediate diffusion features through dual synergistic objectives: (1) maximizing feature divergence from the original edit trajectory to disrupt semantic alignment with the expected edit, and (2) minimizing feature norms to induce perceptual degradations. Furthermore, we introduce the Immunization Success Rate (ISR), a novel metric designed to rigorously quantify true immunization efficacy for the first time. ISR quantifies the proportion of edits where immunization induces either semantic failure relative to the prompt or significant perceptual degradations, assessed via Multimodal Large Language Models (MLLMs). Extensive experiments show our SIFM achieves the state-of-the-art performance for safeguarding visual content against malicious diffusion-based manipulation.
comment: 11 pages, 4 figures
☆ From YOLO to VLMs: Advancing Zero-Shot and Few-Shot Detection of Wastewater Treatment Plants Using Satellite Imagery in MENA Region
In regions of the Middle East and North Africa (MENA), there is a high demand for wastewater treatment plants (WWTPs), crucial for sustainable water management. Precise identification of WWTPs from satellite images enables environmental monitoring. Traditional methods like YOLOv8 segmentation require extensive manual labeling. But studies indicate that vision-language models (VLMs) are an efficient alternative to achieving equivalent or superior results through inherent reasoning and annotation. This study presents a structured methodology for VLM comparison, divided into zero-shot and few-shot streams specifically to identify WWTPs. The YOLOv8 was trained on a governmental dataset of 83,566 high-resolution satellite images from Egypt, Saudi Arabia, and UAE: ~85% WWTPs (positives), 15% non-WWTPs (negatives). Evaluated VLMs include LLaMA 3.2 Vision, Qwen 2.5 VL, DeepSeek-VL2, Gemma 3, Gemini, and Pixtral 12B (Mistral), used to identify WWTP components such as circular/rectangular tanks, aeration basins and distinguish confounders via expert prompts producing JSON outputs with confidence and descriptions. The dataset comprises 1,207 validated WWTP locations (198 UAE, 354 KSA, 655 Egypt) and equal non-WWTP sites from field/AI data, as 600mx600m Geo-TIFF images (Zoom 18, EPSG:4326). Zero-shot evaluations on WWTP images showed several VLMs out-performing YOLOv8's true positive rate, with Gemma-3 highest. Results confirm that VLMs, particularly with zero-shot, can replace YOLOv8 for efficient, annotation-free WWTP classification, enabling scalable remote sensing.
comment: 9 pages, 9 figures
☆ PSMamba: Progressive Self-supervised Vision Mamba for Plant Disease Recognition
Self-supervised Learning (SSL) has become a powerful paradigm for representation learning without manual annotations. However, most existing frameworks focus on global alignment and struggle to capture the hierarchical, multi-scale lesion patterns characteristic of plant disease imagery. To address this gap, we propose PSMamba, a progressive self-supervised framework that integrates the efficient sequence modelling of Vision Mamba (VM) with a dual-student hierarchical distillation strategy. Unlike conventional single teacher-student designs, PSMamba employs a shared global teacher and two specialised students: one processes mid-scale views to capture lesion distributions and vein structures, while the other focuses on local views to capture fine-grained cues such as texture irregularities and early-stage lesions. This multi-granular supervision facilitates the joint learning of contextual and detailed representations, with consistency losses ensuring coherent cross-scale alignment. Experiments on three benchmark datasets show that PSMamba consistently outperforms state-of-the-art SSL methods, delivering superior accuracy and robustness in both domain-shifted and fine-grained scenarios.
☆ SS4D: Native 4D Generative Model via Structured Spacetime Latents
We present SS4D, a native 4D generative model that synthesizes dynamic 3D objects directly from monocular video. Unlike prior approaches that construct 4D representations by optimizing over 3D or video generative models, we train a generator directly on 4D data, achieving high fidelity, temporal coherence, and structural consistency. At the core of our method is a compressed set of structured spacetime latents. Specifically, (1) To address the scarcity of 4D training data, we build on a pre-trained single-image-to-3D model, preserving strong spatial consistency. (2) Temporal consistency is enforced by introducing dedicated temporal layers that reason across frames. (3) To support efficient training and inference over long video sequences, we compress the latent sequence along the temporal axis using factorized 4D convolutions and temporal downsampling blocks. In addition, we employ a carefully designed training strategy to enhance robustness against occlusion
comment: ToG(Siggraph Asia 2025)
☆ TUN: Detecting Significant Points in Persistence Diagrams with Deep Learning
Persistence diagrams (PDs) provide a powerful tool for understanding the topology of the underlying shape of a point cloud. However, identifying which points in PDs encode genuine signals remains challenging. This challenge directly hinders the practical adoption of topological data analysis in many applications, where automated and reliable interpretation of persistence diagrams is essential for downstream decision-making. In this paper, we study automatic significance detection for one-dimensional persistence diagrams. Specifically, we propose Topology Understanding Net (TUN), a multi-modal network that combines enhanced PD descriptors with self-attention, a PointNet-style point cloud encoder, learned fusion, and per-point classification, alongside stable preprocessing and imbalance-aware training. It provides an automated and effective solution for identifying significant points in PDs, which are critical for downstream applications. Experiments show that TUN outperforms classic methods in detecting significant points in PDs, illustrating its effectiveness in real-world applications.
☆ Zoom-Zero: Reinforced Coarse-to-Fine Video Understanding via Temporal Zoom-in
Grounded video question answering (GVQA) aims to localize relevant temporal segments in videos and generate accurate answers to a given question; however, large video-language models (LVLMs) exhibit limited temporal awareness. Although existing approaches based on Group Relative Policy Optimization (GRPO) attempt to improve temporal grounding, they still struggle to faithfully ground their answers in the relevant video evidence, leading to temporal mislocalization and hallucinations. In this work, we present Zoom-Zero, a coarse-to-fine framework that first localizes query-relevant segments and then temporally zooms into the most salient frames for finer-grained visual verification. Our method addresses the limits of GRPO for the GVQA task with two key innovations: (i) a zoom-in accuracy reward that validates the fidelity of temporal grounding prediction and facilitates fine-grained visual verification on grounded frames; (ii) token-selective credit assignment, which attributes rewards to the tokens responsible for temporal localization or answer generation, mitigating GRPO's issue in handling multi-faceted reward signals. Our proposed method advances grounded video question answering, improving temporal grounding by 5.2\% on NExT-GQA and 4.6\% on ReXTime, while also enhancing average answer accuracy by 2.4\%. Additionally, the coarse-to-fine zoom-in during inference further benefits long-form video understanding by preserving critical visual details without compromising global context, yielding an average improvement of 6.4\% on long-video benchmarks.
comment: Project page: https://xiaoqian-shen.github.io/Zoom-Zero/
☆ DriverGaze360: OmniDirectional Driver Attention with Object-Level Guidance
Predicting driver attention is a critical problem for developing explainable autonomous driving systems and understanding driver behavior in mixed human-autonomous vehicle traffic scenarios. Although significant progress has been made through large-scale driver attention datasets and deep learning architectures, existing works are constrained by narrow frontal field-of-view and limited driving diversity. Consequently, they fail to capture the full spatial context of driving environments, especially during lane changes, turns, and interactions involving peripheral objects such as pedestrians or cyclists. In this paper, we introduce DriverGaze360, a large-scale 360$^\circ$ field of view driver attention dataset, containing $\sim$1 million gaze-labeled frames collected from 19 human drivers, enabling comprehensive omnidirectional modeling of driver gaze behavior. Moreover, our panoramic attention prediction approach, DriverGaze360-Net, jointly learns attention maps and attended objects by employing an auxiliary semantic segmentation head. This improves spatial awareness and attention prediction across wide panoramic inputs. Extensive experiments demonstrate that DriverGaze360-Net achieves state-of-the-art attention prediction performance on multiple metrics on panoramic driving images. Dataset and method available at https://av.dfki.de/drivergaze360.
☆ Enhancing Visual Programming for Visual Reasoning via Probabilistic Graphs
Recently, Visual Programming (VP) based on large language models (LLMs) has rapidly developed and demonstrated significant potential in complex Visual Reasoning (VR) tasks. Previous works to enhance VP have primarily focused on improving the quality of LLM-generated visual programs. However, they have neglected to optimize the VP-invoked pre-trained models, which serve as modules for the visual sub-tasks decomposed from the targeted tasks by VP. The difficulty is that there are only final labels of targeted VR tasks rather than labels of sub-tasks. Besides, the non-differentiable nature of VP impedes the direct use of efficient gradient-based optimization methods to leverage final labels for end-to-end learning of the entire VP framework. To overcome these issues, we propose EVPG, a method to Enhance Visual Programming for visual reasoning via Probabilistic Graphs. Specifically, we creatively build a directed probabilistic graph according to the variable dependency relationships during the VP executing process, which reconstructs the non-differentiable VP executing process into a differentiable exact probability inference process on this directed probabilistic graph. As a result, this enables the VP framework to utilize the final labels for efficient, gradient-based optimization in end-to-end supervised learning on targeted VR tasks. Extensive and comprehensive experiments demonstrate the effectiveness and advantages of our EVPG, showing significant performance improvements for VP on three classical complex VR tasks: GQA, NLVRv2, and Open Images.
comment: 13 Pages, 12 figures
☆ Elastic3D: Controllable Stereo Video Conversion with Guided Latent Decoding
The growing demand for immersive 3D content calls for automated monocular-to-stereo video conversion. We present Elastic3D, a controllable, direct end-to-end method for upgrading a conventional video to a binocular one. Our approach, based on (conditional) latent diffusion, avoids artifacts due to explicit depth estimation and warping. The key to its high-quality stereo video output is a novel, guided VAE decoder that ensures sharp and epipolar-consistent stereo video output. Moreover, our method gives the user control over the strength of the stereo effect (more precisely, the disparity range) at inference time, via an intuitive, scalar tuning knob. Experiments on three different datasets of real-world stereo videos show that our method outperforms both traditional warping-based and recent warping-free baselines and sets a new standard for reliable, controllable stereo video conversion. Please check the project page for the video samples https://elastic3d.github.io.
comment: Project page: elastic3d.github.io
☆ 4D-RaDiff: Latent Diffusion for 4D Radar Point Cloud Generation
Automotive radar has shown promising developments in environment perception due to its cost-effectiveness and robustness in adverse weather conditions. However, the limited availability of annotated radar data poses a significant challenge for advancing radar-based perception systems. To address this limitation, we propose a novel framework to generate 4D radar point clouds for training and evaluating object detectors. Unlike image-based diffusion, our method is designed to consider the sparsity and unique characteristics of radar point clouds by applying diffusion to a latent point cloud representation. Within this latent space, generation is controlled via conditioning at either the object or scene level. The proposed 4D-RaDiff converts unlabeled bounding boxes into high-quality radar annotations and transforms existing LiDAR point cloud data into realistic radar scenes. Experiments demonstrate that incorporating synthetic radar data of 4D-RaDiff as data augmentation method during training consistently improves object detection performance compared to training on real data only. In addition, pre-training on our synthetic data reduces the amount of required annotated radar data by up to 90% while achieving comparable object detection performance.
☆ ViBES: A Conversational Agent with Behaviorally-Intelligent 3D Virtual Body
Human communication is inherently multimodal and social: words, prosody, and body language jointly carry intent. Yet most prior systems model human behavior as a translation task co-speech gesture or text-to-motion that maps a fixed utterance to motion clips-without requiring agentic decision-making about when to move, what to do, or how to adapt across multi-turn dialogue. This leads to brittle timing, weak social grounding, and fragmented stacks where speech, text, and motion are trained or inferred in isolation. We introduce ViBES (Voice in Behavioral Expression and Synchrony), a conversational 3D agent that jointly plans language and movement and executes dialogue-conditioned body actions. Concretely, ViBES is a speech-language-behavior (SLB) model with a mixture-of-modality-experts (MoME) backbone: modality-partitioned transformer experts for speech, facial expression, and body motion. The model processes interleaved multimodal token streams with hard routing by modality (parameters are split per expert), while sharing information through cross-expert attention. By leveraging strong pretrained speech-language models, the agent supports mixed-initiative interaction: users can speak, type, or issue body-action directives mid-conversation, and the system exposes controllable behavior hooks for streaming responses. We further benchmark on multi-turn conversation with automatic metrics of dialogue-motion alignment and behavior quality, and observe consistent gains over strong co-speech and text-to-motion baselines. ViBES goes beyond "speech-conditioned motion generation" toward agentic virtual bodies where language, prosody, and movement are jointly generated, enabling controllable, socially competent 3D interaction. Code and data will be made available at: ai.stanford.edu/~juze/ViBES/
comment: Project page: https://ai.stanford.edu/~juze/ViBES/
☆ Multi-View MRI Approach for Classification of MGMT Methylation in Glioblastoma Patients
The presence of MGMT promoter methylation significantly affects how well chemotherapy works for patients with Glioblastoma Multiforme (GBM). Currently, confirmation of MGMT promoter methylation relies on invasive brain tumor tissue biopsies. In this study, we explore radiogenomics techniques, a promising approach in precision medicine, to identify genetic markers from medical images. Using MRI scans and deep learning models, we propose a new multi-view approach that considers spatial relationships between MRI views to detect MGMT methylation status. Importantly, our method extracts information from all three views without using a complicated 3D deep learning model, avoiding issues associated with high parameter count, slow convergence, and substantial memory demands. We also introduce a new technique for tumor slice extraction and show its superiority over existing methods based on multiple evaluation metrics. By comparing our approach to state-of-the-art models, we demonstrate the efficacy of our method. Furthermore, we share a reproducible pipeline of published models, encouraging transparency and the development of robust diagnostic tools. Our study highlights the potential of non-invasive methods for identifying MGMT promoter methylation and contributes to advancing precision medicine in GBM treatment.
☆ OmniGen: Unified Multimodal Sensor Generation for Autonomous Driving
Autonomous driving has seen remarkable advancements, largely driven by extensive real-world data collection. However, acquiring diverse and corner-case data remains costly and inefficient. Generative models have emerged as a promising solution by synthesizing realistic sensor data. However, existing approaches primarily focus on single-modality generation, leading to inefficiencies and misalignment in multimodal sensor data. To address these challenges, we propose OminiGen, which generates aligned multimodal sensor data in a unified framework. Our approach leverages a shared Bird\u2019s Eye View (BEV) space to unify multimodal features and designs a novel generalizable multimodal reconstruction method, UAE, to jointly decode LiDAR and multi-view camera data. UAE achieves multimodal sensor decoding through volume rendering, enabling accurate and flexible reconstruction. Furthermore, we incorporate a Diffusion Transformer (DiT) with a ControlNet branch to enable controllable multimodal sensor generation. Our comprehensive experiments demonstrate that OminiGen achieves desired performances in unified multimodal sensor data generation with multimodal consistency and flexible sensor adjustments.
comment: ACM MM 2025
☆ History-Enhanced Two-Stage Transformer for Aerial Vision-and-Language Navigation
Aerial Vision-and-Language Navigation (AVLN) requires Unmanned Aerial Vehicle (UAV) agents to localize targets in large-scale urban environments based on linguistic instructions. While successful navigation demands both global environmental reasoning and local scene comprehension, existing UAV agents typically adopt mono-granularity frameworks that struggle to balance these two aspects. To address this limitation, this work proposes a History-Enhanced Two-Stage Transformer (HETT) framework, which integrates the two aspects through a coarse-to-fine navigation pipeline. Specifically, HETT first predicts coarse-grained target positions by fusing spatial landmarks and historical context, then refines actions via fine-grained visual analysis. In addition, a historical grid map is designed to dynamically aggregate visual features into a structured spatial memory, enhancing comprehensive scene awareness. Additionally, the CityNav dataset annotations are manually refined to enhance data quality. Experiments on the refined CityNav dataset show that HETT delivers significant performance gains, while extensive ablation studies further verify the effectiveness of each component.
♻ ☆ VIBE: Can a VLM Read the Room? EMNLP
Understanding human social behavior such as recognizing emotions and the social dynamics causing them is an important and challenging problem. While LLMs have made remarkable advances, they are limited to the textual domain and cannot account for the major role that non-verbal cues play in understanding social situations. Vision Language Models (VLMs) can potentially account for this gap, however their ability to make correct inferences over such social cues has received little attention. In this paper, we explore the capabilities of VLMs at social reasoning. We identify a previously overlooked limitation in VLMs: the Visual Social-Pragmatic Inference gap. To target this gap, we propose a new task for VLMs: Visual Social-Pragmatic Inference. We construct a high quality dataset to test the abilities of a VLM for this task and benchmark the performance of several VLMs on it.
comment: Findings of EMNLP, 2025
♻ ☆ AI-GenBench: A New Ongoing Benchmark for AI-Generated Image Detection
The rapid advancement of generative AI has revolutionized image creation, enabling high-quality synthesis from text prompts while raising critical challenges for media authenticity. We present Ai-GenBench, a novel benchmark designed to address the urgent need for robust detection of AI-generated images in real-world scenarios. Unlike existing solutions that evaluate models on static datasets, Ai-GenBench introduces a temporal evaluation framework where detection methods are incrementally trained on synthetic images, historically ordered by their generative models, to test their ability to generalize to new generative models, such as the transition from GANs to diffusion models. Our benchmark focuses on high-quality, diverse visual content and overcomes key limitations of current approaches, including arbitrary dataset splits, unfair comparisons, and excessive computational demands. Ai-GenBench provides a comprehensive dataset, a standardized evaluation protocol, and accessible tools for both researchers and non-experts (e.g., journalists, fact-checkers), ensuring reproducibility while maintaining practical training requirements. By establishing clear evaluation rules and controlled augmentation strategies, Ai-GenBench enables meaningful comparison of detection methods and scalable solutions. Code and data are publicly available to ensure reproducibility and to support the development of robust forensic detectors to keep pace with the rise of new synthetic generators.
comment: Accepted at Verimedia workshop, IJCNN 2025. 9 pages, 6 figures, 4 tables, code available: https://github.com/MI-BioLab/AI-GenBench
♻ ☆ One Layer Is Enough: Adapting Pretrained Visual Encoders for Image Generation
Visual generative models (e.g., diffusion models) typically operate in compressed latent spaces to balance training efficiency and sample quality. In parallel, there has been growing interest in leveraging high-quality pre-trained visual representations, either by aligning them inside VAEs or directly within the generative model. However, adapting such representations remains challenging due to fundamental mismatches between understanding-oriented features and generation-friendly latent spaces. Representation encoders benefit from high-dimensional latents that capture diverse hypotheses for masked regions, whereas generative models favor low-dimensional latents that must faithfully preserve injected noise. This discrepancy has led prior work to rely on complex objectives and architectures. In this work, we propose FAE (Feature Auto-Encoder), a simple yet effective framework that adapts pre-trained visual representations into low-dimensional latents suitable for generation using as little as a single attention layer, while retaining sufficient information for both reconstruction and understanding. The key is to couple two separate deep decoders: one trained to reconstruct the original feature space, and a second that takes the reconstructed features as input for image generation. FAE is generic; it can be instantiated with a variety of self-supervised encoders (e.g., DINO, SigLIP) and plugged into two distinct generative families: diffusion models and normalizing flows. Across class-conditional and text-to-image benchmarks, FAE achieves strong performance. For example, on ImageNet 256x256, our diffusion model with CFG attains a near state-of-the-art FID of 1.29 (800 epochs) and 1.70 (80 epochs). Without CFG, FAE reaches the state-of-the-art FID of 1.48 (800 epochs) and 2.08 (80 epochs), demonstrating both high quality and fast learning.
♻ ☆ Semantic-Drive: Democratizing Long-Tail Data Curation via Open-Vocabulary Grounding and Neuro-Symbolic VLM Consensus
The development of robust Autonomous Vehicles (AVs) is bottlenecked by the scarcity of "Long-Tail" training data. While fleets collect petabytes of video logs, identifying rare safety-critical events (e.g., erratic jaywalking, construction diversions) remains a manual, cost-prohibitive process. Existing solutions rely on coarse metadata search, which lacks precision, or cloud-based VLMs, which are privacy-invasive and expensive. We introduce Semantic-Drive, a local-first, neuro-symbolic framework for semantic data mining. Our approach decouples perception into two stages: (1) Symbolic Grounding via a real-time open-vocabulary detector (YOLOE) to anchor attention, and (2) Cognitive Analysis via a Reasoning VLM that performs forensic scene analysis. To mitigate hallucination, we implement a "System 2" inference-time alignment strategy, utilizing a multi-model "Judge-Scout" consensus mechanism. Benchmarked on the nuScenes dataset against the Waymo Open Dataset (WOD-E2E) taxonomy, Semantic-Drive achieves a Recall of 0.966 (vs. 0.475 for CLIP) and reduces Risk Assessment Error by 40% ccompared to the best single scout models. The system runs entirely on consumer hardware (NVIDIA RTX 3090), offering a privacy-preserving alternative to the cloud.
♻ ☆ Text Embedded Swin-UMamba for DeepLesion Segmentation
Segmentation of lesions on CT enables automatic measurement for clinical assessment of chronic diseases (e.g., lymphoma). Integrating large language models (LLMs) into the lesion segmentation workflow has the potential to combine imaging features with descriptions of lesion characteristics from the radiology reports. In this study, we investigate the feasibility of integrating text into the Swin-UMamba architecture for the task of lesion segmentation. The publicly available ULS23 DeepLesion dataset was used along with short-form descriptions of the findings from the reports. On the test dataset, our method achieved a high Dice score of 82.64, and a low Hausdorff distance of 6.34 pixels was obtained for lesion segmentation. The proposed Text-Swin-U/Mamba model outperformed prior approaches: 37.79% improvement over the LLM-driven LanGuideMedSeg model (p < 0.001), and surpassed the purely image-based XLSTM-UNet and nnUNet models by 2.58% and 1.01%, respectively. The dataset and code can be accessed at https://github.com/ruida/LLM-Swin-UMamba
♻ ☆ Seedance 1.5 pro: A Native Audio-Visual Joint Generation Foundation Model
Recent strides in video generation have paved the way for unified audio-visual generation. In this work, we present Seedance 1.5 pro, a foundational model engineered specifically for native, joint audio-video generation. Leveraging a dual-branch Diffusion Transformer architecture, the model integrates a cross-modal joint module with a specialized multi-stage data pipeline, achieving exceptional audio-visual synchronization and superior generation quality. To ensure practical utility, we implement meticulous post-training optimizations, including Supervised Fine-Tuning (SFT) on high-quality datasets and Reinforcement Learning from Human Feedback (RLHF) with multi-dimensional reward models. Furthermore, we introduce an acceleration framework that boosts inference speed by over 10X. Seedance 1.5 pro distinguishes itself through precise multilingual and dialect lip-syncing, dynamic cinematic camera control, and enhanced narrative coherence, positioning it as a robust engine for professional-grade content creation. Seedance 1.5 pro is now accessible on Volcano Engine at https://console.volcengine.com/ark/region:ark+cn-beijing/experience/vision?type=GenVideo.
comment: Seedance 1.5 pro Technical Report
♻ ☆ OpenVE-3M: A Large-Scale High-Quality Dataset for Instruction-Guided Video Editing
The quality and diversity of instruction-based image editing datasets are continuously increasing, yet large-scale, high-quality datasets for instruction-based video editing remain scarce. To address this gap, we introduce OpenVE-3M, an open-source, large-scale, and high-quality dataset for instruction-based video editing. It comprises two primary categories: spatially-aligned edits (Global Style, Background Change, Local Change, Local Remove, Local Add, and Subtitles Edit) and non-spatially-aligned edits (Camera Multi-Shot Edit and Creative Edit). All edit types are generated via a meticulously designed data pipeline with rigorous quality filtering. OpenVE-3M surpasses existing open-source datasets in terms of scale, diversity of edit types, instruction length, and overall quality. Furthermore, to address the lack of a unified benchmark in the field, we construct OpenVE-Bench, containing 431 video-edit pairs that cover a diverse range of editing tasks with three key metrics highly aligned with human judgment. We present OpenVE-Edit, a 5B model trained on our dataset that demonstrates remarkable efficiency and effectiveness by setting a new state-of-the-art on OpenVE-Bench, outperforming all prior open-source models including a 14B baseline. Project page is at https://lewandofskee.github.io/projects/OpenVE.
comment: Project page: https://lewandofskee.github.io/projects/OpenVE
♻ ☆ GASPACHO: Gaussian Splatting for Controllable Humans and Objects
We present GASPACHO, a method for generating photorealistic, controllable renderings of human-object interactions from multi-view RGB video. Unlike prior work that reconstructs only the human and treats objects as background, GASPACHO simultaneously recovers animatable templates for both the human and the interacting object as distinct sets of Gaussians, thereby allowing for controllable renderings of novel human object interactions in different poses from novel-camera viewpoints. We introduce a novel formulation that learns object Gaussians on an underlying 2D surface manifold rather than in 3D volume, yielding sharper, fine-grained object details for dynamic object reconstruction. We further propose a contact constraint in Gaussian space that regularizes human-object relations and enables natural, physically plausible animation. Across three benchmarks - BEHAVE, NeuralDome, and DNA-Rendering - GASPACHO achieves high-quality reconstructions under heavy occlusion and supports controllable synthesis of novel human-object interactions. We also demonstrate that our method allows for composition of humans and objects in 3D scenes and for the first time showcase that neural rendering can be used for the controllable generation of photoreal humans interacting with dynamic objects in diverse scenes. Our results are available at: https://miraymen.github.io/gaspacho/
comment: Project Page: https://miraymen.github.io/gaspacho/
SIGMMA: Hierarchical Graph-Based Multi-Scale Multi-modal Contrastive Alignment of Histopathology Image and Spatial Transcriptome
Recent advances in computational pathology have leveraged vision-language models to learn joint representations of Hematoxylin and Eosin (HE) images with spatial transcriptomic (ST) profiles. However, existing approaches typically align HE tiles with their corresponding ST profiles at a single scale, overlooking fine-grained cellular structures and their spatial organization. To address this, we propose Sigmma, a multi-modal contrastive alignment framework for learning hierarchical representations of HE images and spatial transcriptome profiles across multiple scales. Sigmma introduces multi-scale contrastive alignment, ensuring that representations learned at different scales remain coherent across modalities. Furthermore, by representing cell interactions as a graph and integrating inter- and intra-subgraph relationships, our approach effectively captures cell-cell interactions, ranging from fine to coarse, within the tissue microenvironment. We demonstrate that Sigmm learns representations that better capture cross-modal correspondences, leading to an improvement of avg. 9.78\% in the gene-expression prediction task and avg. 26.93\% in the cross-modal retrieval task across datasets. We further show that it learns meaningful multi-tissue organization in downstream analyses.
♻ ☆ Order Matters: 3D Shape Generation from Sequential VR Sketches
VR sketching lets users explore and iterate on ideas directly in 3D, offering a faster and more intuitive alternative to conventional CAD tools. However, existing sketch-to-shape models ignore the temporal ordering of strokes, discarding crucial cues about structure and design intent. We introduce VRSketch2Shape, the first framework and multi-category dataset for generating 3D shapes from sequential VR sketches. Our contributions are threefold: (i) an automated pipeline that generates sequential VR sketches from arbitrary shapes, (ii) a dataset of over 20k synthetic and 900 hand-drawn sketch-shape pairs across four categories, and (iii) an order-aware sketch encoder coupled with a diffusion-based 3D generator. Our approach yields higher geometric fidelity than prior work, generalizes effectively from synthetic to real sketches with minimal supervision, and performs well even on partial sketches. All data and models will be released open-source at https://chenyizi086.github.io/VRSketch2Shape_website.
♻ ☆ Dynamic Prompt Generation for Interactive 3D Medical Image Segmentation Training
Interactive 3D biomedical image segmentation requires efficient models that can iteratively refine predictions based on user prompts. Current foundation models either lack volumetric awareness or suffer from limited interactive capabilities. We propose a training strategy that combines dynamic volumetric prompt generation with content-aware adaptive cropping to optimize the use of the image encoder. Our method simulates realistic user interaction patterns during training while addressing the computational challenges of learning from sequential refinement feedback on a single GPU. For efficient training, we initialize our network using the publicly available weights from the nnInteractive segmentation model. Evaluation on the \textbf{Foundation Models for Interactive 3D Biomedical Image Segmentation} competition demonstrates strong performance with an average final Dice score of 0.6385, normalized surface distance of 0.6614, and area-under-the-curve metrics of 2.4799 (Dice) and 2.5671 (NSD).
♻ ☆ Weakly Supervised Pneumonia Localization from Chest X-Rays Using Deep Neural Network and Grad-CAM Explanations
Chest X-ray imaging is commonly used to diagnose pneumonia, but accurately localizing the pneumonia affected regions typically requires detailed pixel-level annotations, which are costly and time consuming to obtain. To address this limitation, this study proposes a weakly supervised deep learning framework for pneumonia classification and localization using Gradient-weighted Class Activation Mapping (Grad-CAM). Instead of relying on costly pixel-level annotations, the proposed method utilizes image-level labels to generate clinically meaningful heatmaps that highlight pneumonia affected regions. Furthermore, we evaluate seven pre-trained deep learning models including a Vision Transformer under identical training conditions, using focal loss and patient-wise splits to prevent data leakage. Experimental results suggest that all models achieved high accuracy (96-98%), with ResNet-18 and EfficientNet-B0 showing the best overall performance and MobileNet-V2 providing an efficient lightweight alternative. Grad-CAM heatmap visualizations in this study confirm that the proposed methods focus on clinically relevant lung regions, supporting the use of explainable AI for radiological diagnostics. Overall, this work highlights the potential of weakly supervised, explainable models that enhance transparency and clinical trust in AI-assisted pneumonia screening.
comment: https://github.com/kiranshahi/pneumonia-analysis
♻ ☆ Luminance-Aware Statistical Quantization: Unsupervised Hierarchical Learning for Illumination Enhancement NeurIPS 2025
Low-light image enhancement (LLIE) faces persistent challenges in balancing reconstruction fidelity with cross-scenario generalization. While existing methods predominantly focus on deterministic pixel-level mappings between paired low/normal-light images, they often neglect the continuous physical process of luminance transitions in real-world environments, leading to performance drop when normal-light references are unavailable. Inspired by empirical analysis of natural luminance dynamics revealing power-law distributed intensity transitions, this paper introduces Luminance-Aware Statistical Quantification (LASQ), a novel framework that reformulates LLIE as a statistical sampling process over hierarchical luminance distributions. Our LASQ re-conceptualizes luminance transition as a power-law distribution in intensity coordinate space that can be approximated by stratified power functions, therefore, replacing deterministic mappings with probabilistic sampling over continuous luminance layers. A diffusion forward process is designed to autonomously discover optimal transition paths between luminance layers, achieving unsupervised distribution emulation without normal-light references. In this way, it considerably improves the performance in practical situations, enabling more adaptable and versatile light restoration. This framework is also readily applicable to cases with normal-light references, where it achieves superior performance on domain-specific datasets alongside better generalization-ability across non-reference datasets.
comment: Accepted at NeurIPS 2025
♻ ☆ TransientTrack: Advanced Multi-Object Tracking and Classification of Cancer Cells with Transient Fluorescent Signals
Tracking cells in time-lapse videos is an essential technique for monitoring cell population dynamics at a single-cell level. Current methods for cell tracking are developed on videos with mostly single, constant signals and do not detect pivotal events such as cell death. Here, we present TransientTrack, a deep learning-based framework for cell tracking in multi-channel microscopy video data with transient fluorescent signals that fluctuate over time following processes such as the circadian rhythm of cells. By identifying key cellular events - mitosis (cell division) and apoptosis (cell death) our method allows us to build complete trajectories, including cell lineage information. TransientTrack is lightweight and performs matching on cell detection embeddings directly, without the need for quantification of tracking-specific cell features. Furthermore, our approach integrates Transformer Networks, multi-stage matching using all detection boxes, and the interpolation of missing tracklets with the Kalman Filter. This unified framework achieves strong performance across diverse conditions, effectively tracking cells and capturing cell division and death. We demonstrate the use of TransientTrack in an analysis of the efficacy of a chemotherapeutic drug at a single-cell level. The proposed framework could further advance quantitative studies of cancer cell dynamics, enabling detailed characterization of treatment response and resistance mechanisms. The code is available at https://github.com/bozeklab/TransientTrack.
comment: 13 pages, 7 figures, 2 tables
♻ ☆ Debiasing Diffusion Priors via 3D Attention for Consistent Gaussian Splatting AAAI 2026
Versatile 3D tasks (e.g., generation or editing) that distill from Text-to-Image (T2I) diffusion models have attracted significant research interest for not relying on extensive 3D training data. However, T2I models exhibit limitations resulting from prior view bias, which produces conflicting appearances between different views of an object. This bias causes subject-words to preferentially activate prior view features during cross-attention (CA) computation, regardless of the target view condition. To overcome this limitation, we conduct a comprehensive mathematical analysis to reveal the root cause of the prior view bias in T2I models. Moreover, we find different UNet layers show different effects of prior view in CA. Therefore, we propose a novel framework, TD-Attn, which addresses multi-view inconsistency via two key components: (1) the 3D-Aware Attention Guidance Module (3D-AAG) constructs a view-consistent 3D attention Gaussian for subject-words to enforce spatial consistency across attention-focused regions, thereby compensating for the limited spatial information in 2D individual view CA maps; (2) the Hierarchical Attention Modulation Module (HAM) utilizes a Semantic Guidance Tree (SGT) to direct the Semantic Response Profiler (SRP) in localizing and modulating CA layers that are highly responsive to view conditions, where the enhanced CA maps further support the construction of more consistent 3D attention Gaussians. Notably, HAM facilitates semantic-specific interventions, enabling controllable and precise 3D editing. Extensive experiments firmly establish that TD-Attn has the potential to serve as a universal plugin, significantly enhancing multi-view consistency across 3D tasks.
comment: Accepted by AAAI 2026, Code is available at: https://github.com/kimslong/AAAI26-TDAttn
♻ ☆ Physically Grounded Monocular Depth via Nanophotonic Wavefront Prompting
Depth foundation models offer strong learned priors for 3D perception but lack physical depth cues, leading to ambiguities in metric scale. We introduce a birefringent metalens -- a planar nanophotonic lens composed of subwavelength pixels for wavefront shaping with a thickness of 700 nm and a diameter of 3 mm -- to physically prompt depth foundation models. In a single monocular shot, our metalens physically embeds depth information into two polarized optical wavefronts, which we decode through a lightweight prompting and fine-tuning framework that aligns depth foundation models with the optical signals. To scale the training data, we develop a light wave propagation simulator that synthesizes metalens responses from RGB-D datasets, incorporating key physical factors to minimize the sim-to-real gap. Simulated and physical experiments with our fabricated titanium-dioxide metalens demonstrate accurate and consistent metric depth over state-of-the-art monocular depth estimators. The research demonstrates that nanophotonic wavefront formation offers a promising bridge for grounding depth foundation models in physical depth sensing.
♻ ☆ Exo2Ego: Exocentric Knowledge Guided MLLM for Egocentric Video Understanding AAAI 2026
AI personal assistants, deployed through robots or wearables, require embodied understanding to collaborate effectively with humans. However, current Multimodal Large Language Models (MLLMs) primarily focus on third-person (exocentric) vision, overlooking the unique challenges of first-person (egocentric) videos. Additionally, high acquisition costs limit data size, impairing MLLM performance. To address these challenges, we propose learning the mapping between exocentric and egocentric domains, leveraging the extensive exocentric knowledge within existing MLLMs to enhance egocentric video understanding. To this end, we introduce Ego-ExoClip, a pre-training dataset comprising 1.1M synchronized ego-exo clip-text pairs derived from Ego-Exo4D, together with the instruction-tuning dataset EgoIT, which is collected from multiple sources to enhance the model's instruction-following capabilities. Building upon the datasets, we propose a migration strategy and further design a progressive mapping learning pipeline with three stages: Demonstrator Self-Preparation, Demonstrator-Learner Guidance, and Learner Self-Practice. Extensive experiments across diverse egocentric tasks reveal that existing MLLMs perform inadequately in egocentric video understanding, while our model significantly outperforms these leading models.
comment: This paper is accepted by AAAI 2026
♻ ☆ INQUIRE-Search: A Framework for Interactive Discovery in Large-Scale Biodiversity Databases
Large community science platforms such as iNaturalist contain hundreds of millions of biodiversity images that often capture ecological context on behaviors, interactions, phenology, and habitat. Yet most ecological workflows rely on metadata filtering or manual inspection, leaving this secondary information inaccessible at scale. We introduce INQUIRE-Search, an open-source system that enables scientists to rapidly and interactively search within an ecological image database for specific concepts using natural language, verify and export relevant observations, and utilize this discovered data for novel scientific analysis. Compared to traditional methods, INQUIRE-Search takes a fraction of the time, opening up new possibilities for scientific questions that can be explored. Through five case studies, we show the diversity of scientific applications that a tool like INQUIRE-Search can support, from seasonal variation in behavior across species to forest regrowth after wildfires. These examples demonstrate a new paradigm for interactive, efficient, and scalable scientific discovery that can begin to unlock previously inaccessible scientific value in large-scale biodiversity datasets. Finally, we emphasize using such AI-enabled discovery tools for science call for experts to reframe the priorities of the scientific process and develop novel methods for experiment design, data collection, survey effort, and uncertainty analysis.
comment: EV, JC, RKV contributed equally
♻ ☆ Training Multi-Image Vision Agents via End2End Reinforcement Learning
Recent VLM-based agents aim to replicate OpenAI O3's ``thinking with images" via tool use, but most open-source methods limit input to a single image, falling short on real-world multi-image QA tasks. To address this, we propose IMAgent, an open-source vision agent trained via end-to-end reinforcement learning dedicated for complex multi-image tasks. By leveraging a multi-agent system, we generate challenging and visually-rich multi-image QA pairs to fully activate the tool-use potential of the base VLM. Through manual verification, we obtain MIFG-QA, comprising 10k samples for training and evaluation. With deeper reasoning steps, VLMs may increasingly ignore visual inputs. We therefore develop two specialized tools for visual reflection and confirmation, allowing the model to proactively reallocate its attention to image content during inference. Benefiting from our well-designed action-trajectory two-level mask strategy, IMAgent achieves stable tool use behavior via pure RL training without requiring costly supervised fine-tuning data. Extensive experiments demonstrate that IMAgent maintains strong performance on existing single-image benchmarks while achieving substantial improvements on our proposed multi-image dataset, with our analysis providing actionable insights for the research community. Codes and data will be released soon.
♻ ☆ LWGANet: Addressing Spatial and Channel Redundancy in Remote Sensing Visual Tasks with Light-Weight Grouped Attention AAAI 2026
Light-weight neural networks for remote sensing (RS) visual analysis must overcome two inherent redundancies: spatial redundancy from vast, homogeneous backgrounds, and channel redundancy, where extreme scale variations render a single feature space inefficient. Existing models, often designed for natural images, fail to address this dual challenge in RS scenarios. To bridge this gap, we propose LWGANet, a light-weight backbone engineered for RS-specific properties. LWGANet introduces two core innovations: a Top-K Global Feature Interaction (TGFI) module that mitigates spatial redundancy by focusing computation on salient regions, and a Light-Weight Grouped Attention (LWGA) module that resolves channel redundancy by partitioning channels into specialized, scale-specific pathways. By synergistically resolving these core inefficiencies, LWGANet achieves a superior trade-off between feature representation quality and computational cost. Extensive experiments on twelve diverse datasets across four major RS tasks--scene classification, oriented object detection, semantic segmentation, and change detection--demonstrate that LWGANet consistently outperforms state-of-the-art light-weight backbones in both accuracy and efficiency. Our work establishes a new, robust baseline for efficient visual analysis in RS images.
comment: Accepted by AAAI 2026 (Oral)
♻ ☆ HQ-DM: Single Hadamard Transformation-Based Quantization-Aware Training for Low-Bit Diffusion Models
Diffusion models have demonstrated significant applications in the field of image generation. However, their high computational and memory costs pose challenges for deployment. Model quantization has emerged as a promising solution to reduce storage overhead and accelerate inference. Nevertheless, existing quantization methods for diffusion models struggle to mitigate outliers in activation matrices during inference, leading to substantial performance degradation under low-bit quantization scenarios. To address this, we propose HQ-DM, a novel Quantization-Aware Training framework that applies Single Hadamard Transformation to activation matrices. This approach effectively reduces activation outliers while preserving model performance under quantization. Compared to traditional Double Hadamard Transformation, our proposed scheme offers distinct advantages by seamlessly supporting INT convolution operations while preventing the amplification of weight outliers. For conditional generation on the ImageNet 256x256 dataset using the LDM-4 model, our W4A4 and W4A3 quantization schemes improve the Inception Score by 12.8% and 467.73%, respectively, over the existing state-of-the-art method.
♻ ☆ UnCageNet: Tracking and Pose Estimation of Caged Animal
Animal tracking and pose estimation systems, such as STEP (Simultaneous Tracking and Pose Estimation) and ViTPose, experience substantial performance drops when processing images and videos with cage structures and systematic occlusions. We present a three-stage preprocessing pipeline that addresses this limitation through: (1) cage segmentation using a Gabor-enhanced ResNet-UNet architecture with tunable orientation filters, (2) cage inpainting using CRFill for content-aware reconstruction of occluded regions, and (3) evaluation of pose estimation and tracking on the uncaged frames. Our Gabor-enhanced segmentation model leverages orientation-aware features with 72 directional kernels to accurately identify and segment cage structures that severely impair the performance of existing methods. Experimental validation demonstrates that removing cage occlusions through our pipeline enables pose estimation and tracking performance comparable to that in environments without occlusions. We also observe significant improvements in keypoint detection accuracy and trajectory consistency.
comment: 9 pages, 2 figures, 2 tables. Accepted to the Indian Conference on Computer Vision, Graphics, and Image Processing (ICVGIP 2025), Mandi, India
♻ ☆ Multimodal classification of forest biodiversity potential from 2D orthophotos and 3D airborne laser scanning point clouds
Assessment of forest biodiversity is crucial for ecosystem management and conservation. While traditional field surveys provide high-quality assessments, they are labor-intensive and spatially limited. This study investigates whether deep learning-based fusion of close-range sensing data from 2D orthophotos and 3D airborne laser scanning (ALS) point clouds can reliable assess the biodiversity potential of forests. We introduce the BioVista dataset, comprising 44378 paired samples of orthophotos and ALS point clouds from temperate forests in Denmark, designed to explore multimodal fusion approaches. Using deep neural networks (ResNet for orthophotos and PointVector for ALS point clouds), we investigate each data modality's ability to assess forest biodiversity potential, achieving overall accuracies of 76.7% and 75.8%, respectively. We explore various 2D and 3D fusion approaches: confidence-based ensembling, feature-level concatenation, and end-to-end training, with the latter achieving an overall accuracies of 82.0% when separating low- and high potential forest areas. Our results demonstrate that spectral information from orthophotos and structural information from ALS point clouds effectively complement each other in the assessment of forest biodiversity potential.
♻ ☆ RTR-GS: 3D Gaussian Splatting for Inverse Rendering with Radiance Transfer and Reflection
3D Gaussian Splatting (3DGS) has demonstrated impressive capabilities in novel view synthesis. However, rendering reflective objects remains a significant challenge, particularly in inverse rendering and relighting. We introduce RTR-GS, a novel inverse rendering framework capable of robustly rendering objects with arbitrary reflectance properties, decomposing BRDF and lighting, and delivering credible relighting results. Given a collection of multi-view images, our method effectively recovers geometric structure through a hybrid rendering model that combines forward rendering for radiance transfer with deferred rendering for reflections. This approach successfully separates high-frequency and low-frequency appearances, mitigating floating artifacts caused by spherical harmonic overfitting when handling high-frequency details. We further refine BRDF and lighting decomposition using an additional physically-based deferred rendering branch. Experimental results show that our method enhances novel view synthesis, normal estimation, decomposition, and relighting while maintaining efficient training inference process.
comment: 16 pages
♻ ☆ OLATverse: A Large-scale Real-world Object Dataset with Precise Lighting Control
We introduce OLATverse, a large-scale dataset comprising around 9M images of 765 real-world objects, captured from multiple viewpoints under a diverse set of precisely controlled lighting conditions. While recent advances in object-centric inverse rendering, novel view synthesis and relighting have shown promising results, most techniques still heavily rely on the synthetic datasets for training and small-scale real-world datasets for benchmarking, which limits their realism and generalization. To address this gap, OLATverse offers two key advantages over existing datasets: large-scale coverage of real objects and high-fidelity appearance under precisely controlled illuminations. Specifically, OLATverse contains 765 common and uncommon real-world objects, spanning a wide range of material categories. Each object is captured using 35 DSLR cameras and 331 individually controlled light sources, enabling the simulation of diverse illumination conditions. In addition, for each object, we provide well-calibrated camera parameters, accurate object masks, photometric surface normals, and diffuse albedo as auxiliary resources. We also construct an extensive evaluation set, establishing the first comprehensive real-world object-centric benchmark for inverse rendering and normal estimation. We believe that OLATverse represents a pivotal step toward integrating the next generation of inverse rendering and relighting methods with real-world data. The full dataset, along with all post-processing workflows, will be publicly released at https://vcai.mpi-inf.mpg.de/projects/OLATverse/.
♻ ☆ SAM3-I: Segment Anything with Instructions
Segment Anything Model 3 (SAM3) has advanced open-vocabulary segmentation through promptable concept segmentation, allowing users to segment all instances corresponding to a given concept, typically specified with short noun-phrase (NP) prompts. While this marks the first integration of language-level concepts within the SAM family, real-world usage typically requires far richer expressions that include attributes, spatial relations, functionalities, actions, states, and even implicit reasoning over instances. Currently, SAM3 relies on external multi-modal agents to convert complex instructions into NPs and then conduct iterative mask filtering. However, these NP-level concepts remain overly coarse, often failing to precisely represent a specific instance. In this work, we present SAM3-I, an enhanced framework that unifies concept-level understanding and instruction-level reasoning within the SAM family. SAM3-I introduces an instruction-aware cascaded adaptation mechanism that progressively aligns expressive instruction semantics with SAM3's existing vision-language representations, enabling direct instruction-following segmentation without sacrificing its original concept-driven capabilities. Furthermore, we design a structured instruction taxonomy spanning concept, simple, and complex levels, and develop a scalable data engine to construct a dataset with diverse instruction-mask pairs. Experiments show that SAM3-I delivers appealing performance, demonstrating that SAM3 can be effectively extended to follow natural-language instructions while preserving its strong concept grounding. We open-source SAM3-I and provide practical fine-tuning workflows, enabling researchers to adapt it to domain-specific applications. The source code is available here.
comment: Preliminary results; work in progress
♻ ☆ Multimodal Deep Learning for Stroke Prediction and Detection using Retinal Imaging and Clinical Data
Stroke is a major public health problem, affecting millions worldwide. Deep learning has recently demonstrated promise for enhancing the diagnosis and risk prediction of stroke. However, existing methods rely on costly medical imaging modalities, such as computed tomography. Recent studies suggest that retinal imaging could offer a cost-effective alternative for cerebrovascular health assessment due to the shared clinical pathways between the retina and the brain. Hence, this study explores the impact of leveraging retinal images and clinical data for stroke detection and risk prediction. We propose a multimodal deep neural network that processes Optical Coherence Tomography (OCT) and infrared reflectance retinal scans, combined with clinical data, such as demographics, vital signs, and diagnosis codes. We pretrained our model using a self-supervised learning framework using a real-world dataset consisting of $37$ k scans, and then fine-tuned and evaluated the model using a smaller labeled subset. Our empirical findings establish the predictive ability of the considered modalities in detecting lasting effects in the retina associated with acute stroke and forecasting future risk within a specific time horizon. The experimental results demonstrate the effectiveness of our proposed framework by achieving $5$\% AUROC improvement as compared to the unimodal image-only baseline, and $8$\% improvement compared to an existing state-of-the-art foundation model. In conclusion, our study highlights the potential of retinal imaging in identifying high-risk patients and improving long-term outcomes.
♻ ☆ GT2-GS: Geometry-aware Texture Transfer for Gaussian Splatting AAAI 2026
Transferring 2D textures to 3D modalities is of great significance for improving the efficiency of multimedia content creation. Existing approaches have rarely focused on transferring image textures onto 3D representations. 3D style transfer methods are capable of transferring abstract artistic styles to 3D scenes. However, these methods often overlook the geometric information of the scene, which makes it challenging to achieve high-quality 3D texture transfer results. In this paper, we present GT^2-GS, a geometry-aware texture transfer framework for gaussian splitting. From the perspective of matching texture features with geometric information in rendered views, we identify the issue of insufficient texture features and propose a geometry-aware texture augmentation module to expand the texture feature set. Moreover, a geometry-consistent texture loss is proposed to optimize texture features into the scene representation. This loss function incorporates both camera pose and 3D geometric information of the scene, enabling controllable texture-oriented appearance editing. Finally, a geometry preservation strategy is introduced. By alternating between the texture transfer and geometry correction stages over multiple iterations, this strategy achieves a balance between learning texture features and preserving geometric integrity. Extensive experiments demonstrate the effectiveness and controllability of our method. Through geometric awareness, our approach achieves texture transfer results that better align with human visual perception. Our homepage is available at https://vpx-ecnu.github.io/GT2-GS-website.
comment: Accepted to AAAI 2026
♻ ☆ Renal Cell Carcinoma subtyping: learning from multi-resolution localization
Renal Cell Carcinoma is typically asymptomatic at the early stages for many patients. This leads to a late diagnosis of the tumor, where the curability likelihood is lower, and makes the mortality rate of Renal Cell Carcinoma high, with respect to its incidence rate. To increase the survival chance, a fast and correct categorization of the tumor subtype is paramount. Nowadays, computerized methods, based on artificial intelligence, represent an interesting opportunity to improve the productivity and the objectivity of the microscopy-based Renal Cell Carcinoma diagnosis. Nonetheless, much of their exploitation is hampered by the paucity of annotated dataset, essential for a proficient training of supervised machine learning technologies. This study sets out to investigate a novel self supervised training strategy for machine learning diagnostic tools, based on the multi-resolution nature of the histological samples. We aim at reducing the need of annotated dataset, without significantly reducing the accuracy of the tool. We demonstrate the classification capability of our tool on a whole slide imaging dataset for Renal Cancer subtyping, and we compare our solution with several state-of-the-art classification counterparts.
♻ ☆ MindDrive: A Vision-Language-Action Model for Autonomous Driving via Online Reinforcement Learning
Current Vision-Language-Action (VLA) paradigms in autonomous driving primarily rely on Imitation Learning (IL), which introduces inherent challenges such as distribution shift and causal confusion. Online Reinforcement Learning offers a promising pathway to address these issues through trial-and-error learning. However, applying online reinforcement learning to VLA models in autonomous driving is hindered by inefficient exploration in continuous action spaces. To overcome this limitation, we propose MindDrive, a VLA framework comprising a large language model (LLM) with two distinct sets of LoRA parameters. The one LLM serves as a Decision Expert for scenario reasoning and driving decision-making, while the other acts as an Action Expert that dynamically maps linguistic decisions into feasible trajectories. By feeding trajectory-level rewards back into the reasoning space, MindDrive enables trial-and-error learning over a finite set of discrete linguistic driving decisions, instead of operating directly in a continuous action space. This approach effectively balances optimal decision-making in complex scenarios, human-like driving behavior, and efficient exploration in online reinforcement learning. Using the lightweight Qwen-0.5B LLM, MindDrive achieves Driving Score (DS) of 78.04 and Success Rate (SR) of 55.09% on the challenging Bench2Drive benchmark. To the best of our knowledge, this is the first work to demonstrate the effectiveness of online reinforcement learning for the VLA model in autonomous driving.
comment: 16 pages, 12 figures, 6 tables; Project Page: https://xiaomi-mlab.github.io/MindDrive/
♻ ☆ Fast and Explicit: Slice-to-Volume Reconstruction via 3D Gaussian Primitives with Analytic Point Spread Function Modeling
Recovering high-fidelity 3D images from sparse or degraded 2D images is a fundamental challenge in medical imaging, with broad applications ranging from 3D ultrasound reconstruction to MRI super-resolution. In the context of fetal MRI, high-resolution 3D reconstruction of the brain from motion-corrupted low-resolution 2D acquisitions is a prerequisite for accurate neurodevelopmental diagnosis. While implicit neural representations (INRs) have recently established state-of-the-art performance in self-supervised slice-to-volume reconstruction (SVR), they suffer from a critical computational bottleneck: accurately modeling the image acquisition physics requires expensive stochastic Monte Carlo sampling to approximate the point spread function (PSF). In this work, we propose a shift from neural network based implicit representations to Gaussian based explicit representations. By parameterizing the HR 3D image volume as a field of anisotropic Gaussian primitives, we leverage the property of Gaussians being closed under convolution and thus derive a \textit{closed-form analytical solution} for the forward model. This formulation reduces the previously intractable acquisition integral to an exact covariance addition ($\mathbfΣ_{obs} = \mathbfΣ_{HR} + \mathbfΣ_{PSF}$), effectively bypassing the need for compute-intensive stochastic sampling while ensuring exact gradient propagation. We demonstrate that our approach matches the reconstruction quality of self-supervised state-of-the-art SVR frameworks while delivering a 5$\times$--10$\times$ speed-up on neonatal and fetal data. With convergence often reached in under 30 seconds, our framework paves the way towards translation into clinical routine of real-time fetal 3D MRI. Code will be public at {https://github.com/m-dannecker/Gaussian-Primitives-for-Fast-SVR}.
comment: Under Review for MIDL 2026
♻ ☆ A Unified Framework with Multimodal Fine-tuning for Remote Sensing Semantic Segmentation
Multimodal remote sensing data, acquired from diverse sensors, offer a comprehensive and integrated perspective of the Earth's surface. Leveraging multimodal fusion techniques, semantic segmentation enables detailed and accurate analysis of geographic scenes, surpassing single-modality approaches. Building on advancements in vision foundation models, particularly the Segment Anything Model (SAM), this study proposes a unified framework incorporating a novel Multimodal Fine-tuning Network (MFNet) for remote sensing semantic segmentation. The proposed framework is designed to seamlessly integrate with various fine-tuning mechanisms, demonstrated through the inclusion of Adapter and Low-Rank Adaptation (LoRA) as representative examples. This extensibility ensures the framework's adaptability to other emerging fine-tuning strategies, allowing models to retain SAM's general knowledge while effectively leveraging multimodal data. Additionally, a pyramid-based Deep Fusion Module (DFM) is introduced to integrate high-level geographic features across multiple scales, enhancing feature representation prior to decoding. This work also highlights SAM's robust generalization capabilities with Digital Surface Model (DSM) data, a novel application. Extensive experiments on three benchmark multimodal remote sensing datasets, ISPRS Vaihingen, ISPRS Potsdam and MMHunan, demonstrate that the proposed MFNet significantly outperforms existing methods in multimodal semantic segmentation, setting a new standard in the field while offering a versatile foundation for future research and applications. The source code for this work is accessible at https://github.com/sstary/SSRS.
comment: 15 pages, 11 figures
♻ ☆ LSM: A Comprehensive Metric for Assessing the Safety of Lane Detection Systems in Autonomous Driving
Comprehensive perception of the vehicle's environment and correct interpretation of the environment are crucial for the safe operation of autonomous vehicles. The perception of surrounding objects is the main component for further tasks such as trajectory planning. However, safe trajectory planning requires not only object detection, but also the detection of drivable areas and lane corridors. While first approaches consider an advanced safety evaluation of object detection, the evaluation of lane detection still lacks sufficient safety metrics. Similar to the safety metrics for object detection, additional factors such as the semantics of the scene with road type and road width, the detection range as well as the potential causes of missing detections, incorporated by vehicle speed, should be considered for the evaluation of lane detection. Therefore, we propose the Lane Safety Metric (LSM), which takes these factors into account and allows to evaluate the safety of lane detection systems by determining an easily interpretable safety score. We evaluate our offline safety metric on various virtual scenarios using different lane detection approaches and compare it with state-of-the-art performance metrics.
comment: Accepted at IEEE VTC-Fall 2025
♻ ☆ Recent Advances in Multi-Agent Human Trajectory Prediction: A Comprehensive Review
With the emergence of powerful data-driven methods in human trajectory prediction (HTP), gaining a finer understanding of multi-agent interactions lies within hand's reach, with important implications in areas such as social robot navigation, autonomous navigation, and crowd modeling. This survey reviews some of the most recent advancements in deep learning-based multi-agent trajectory prediction, focusing on studies published between 2020 and 2025. We categorize the existing methods based on their architectural design, their input representations, and their overall prediction strategies, placing a particular emphasis on models evaluated using the ETH/UCY benchmark. Furthermore, we highlight key challenges and future research directions in the field of multi-agent HTP.
comment: 45 pages
♻ ☆ Why Does Little Robustness Help? A Further Step Towards Understanding Adversarial Transferability
Adversarial examples (AEs) for DNNs have been shown to be transferable: AEs that successfully fool white-box surrogate models can also deceive other black-box models with different architectures. Although a bunch of empirical studies have provided guidance on generating highly transferable AEs, many of these findings lack explanations and even lead to inconsistent advice. In this paper, we take a further step towards understanding adversarial transferability, with a particular focus on surrogate aspects. Starting from the intriguing little robustness phenomenon, where models adversarially trained with mildly perturbed adversarial samples can serve as better surrogates, we attribute it to a trade-off between two predominant factors: model smoothness and gradient similarity. Our investigations focus on their joint effects, rather than their separate correlations with transferability. Through a series of theoretical and empirical analyses, we conjecture that the data distribution shift in adversarial training explains the degradation of gradient similarity. Building on these insights, we explore the impacts of data augmentation and gradient regularization on transferability and identify that the trade-off generally exists in the various training mechanisms, thus building a comprehensive blueprint for the regulation mechanism behind transferability. Finally, we provide a general route for constructing better surrogates to boost transferability which optimizes both model smoothness and gradient similarity simultaneously, e.g., the combination of input gradient regularization and sharpness-aware minimization (SAM), validated by extensive experiments. In summary, we call for attention to the united impacts of these two factors for launching effective transfer attacks, rather than optimizing one while ignoring the other, and emphasize the crucial role of manipulating surrogate models.
comment: IEEE Symposium on Security and Privacy (Oakland) 2024; Extended version; Fix an proof error of Theorem 1
♻ ☆ Bi-Erasing: A Bidirectional Framework for Concept Removal in Diffusion Models
Concept erasure, which fine-tunes diffusion models to remove undesired or harmful visual concepts, has become a mainstream approach to mitigating unsafe or illegal image generation in text-to-image models.However, existing removal methods typically adopt a unidirectional erasure strategy by either suppressing the target concept or reinforcing safe alternatives, making it difficult to achieve a balanced trade-off between concept removal and generation quality. To address this limitation, we propose a novel Bidirectional Image-Guided Concept Erasure (Bi-Erasing) framework that performs concept suppression and safety enhancement simultaneously. Specifically, based on the joint representation of text prompts and corresponding images, Bi-Erasing introduces two decoupled image branches: a negative branch responsible for suppressing harmful semantics and a positive branch providing visual guidance for safe alternatives. By jointly optimizing these complementary directions, our approach achieves a balance between erasure efficacy and generation usability. In addition, we apply mask-based filtering to the image branches to prevent interference from irrelevant content during the erasure process. Across extensive experiment evaluations, the proposed Bi-Erasing outperforms baseline methods in balancing concept removal effectiveness and visual fidelity.
comment: Under Review
Machine Learning 180
☆ Spherical Leech Quantization for Visual Tokenization and Generation
Non-parametric quantization has received much attention due to its efficiency on parameters and scalability to a large codebook. In this paper, we present a unified formulation of different non-parametric quantization methods through the lens of lattice coding. The geometry of lattice codes explains the necessity of auxiliary loss terms when training auto-encoders with certain existing lookup-free quantization variants such as BSQ. As a step forward, we explore a few possible candidates, including random lattices, generalized Fibonacci lattices, and densest sphere packing lattices. Among all, we find the Leech lattice-based quantization method, which is dubbed as Spherical Leech Quantization ($Λ_{24}$-SQ), leads to both a simplified training recipe and an improved reconstruction-compression tradeoff thanks to its high symmetry and even distribution on the hypersphere. In image tokenization and compression tasks, this quantization approach achieves better reconstruction quality across all metrics than BSQ, the best prior art, while consuming slightly fewer bits. The improvement also extends to state-of-the-art auto-regressive image generation frameworks.
comment: Tech report; project page: https://zhaoyue-zephyrus.github.io/npq/
☆ CHIP: Adaptive Compliance for Humanoid Control through Hindsight Perturbation
Recent progress in humanoid robots has unlocked agile locomotion skills, including backflipping, running, and crawling. Yet it remains challenging for a humanoid robot to perform forceful manipulation tasks such as moving objects, wiping, and pushing a cart. We propose adaptive Compliance Humanoid control through hIsight Perturbation (CHIP), a plug-and-play module that enables controllable end-effector stiffness while preserving agile tracking of dynamic reference motions. CHIP is easy to implement and requires neither data augmentation nor additional reward tuning. We show that a generalist motion-tracking controller trained with CHIP can perform a diverse set of forceful manipulation tasks that require different end-effector compliance, such as multi-robot collaboration, wiping, box delivery, and door opening.
comment: The first two authors contributed equally. Project page: https://nvlabs.github.io/CHIP/
☆ Spoken DialogSum: An Emotion-Rich Conversational Dataset for Spoken Dialogue Summarization
Recent audio language models can follow long conversations. However, research on emotion-aware or spoken dialogue summarization is constrained by the lack of data that links speech, summaries, and paralinguistic cues. We introduce Spoken DialogSum, the first corpus aligning raw conversational audio with factual summaries, emotion-rich summaries, and utterance-level labels for speaker age, gender, and emotion. The dataset is built in two stages: first, an LLM rewrites DialogSum scripts with Switchboard-style fillers and back-channels, then tags each utterance with emotion, pitch, and speaking rate. Second, an expressive TTS engine synthesizes speech from the tagged scripts, aligned with paralinguistic labels. Spoken DialogSum comprises 13,460 emotion-diverse dialogues, each paired with both a factual and an emotion-focused summary. The dataset is available online at https://fatfat-emosum.github.io/EmoDialog-Sum-Audio-Samples/. Baselines show that an Audio-LLM raises emotional-summary ROUGE-L by 28% relative to a cascaded ASR-LLM system, confirming the value of end-to-end speech modeling.
comment: 12 pages, 2 figures
☆ Bias-Variance Trade-off for Clipped Stochastic First-Order Methods: From Bounded Variance to Infinite Mean
Stochastic optimization is fundamental to modern machine learning. Recent research has extended the study of stochastic first-order methods (SFOMs) from light-tailed to heavy-tailed noise, which frequently arises in practice, with clipping emerging as a key technique for controlling heavy-tailed gradients. Extensive theoretical advances have further shown that the oracle complexity of SFOMs depends on the tail index $α$ of the noise. Nonetheless, existing complexity results often cover only the case $α\in (1,2]$, that is, the regime where the noise has a finite mean, while the complexity bounds tend to infinity as $α$ approaches $1$. This paper tackles the general case of noise with tail index $α\in(0,2]$, covering regimes ranging from noise with bounded variance to noise with an infinite mean, where the latter case has been scarcely studied. Through a novel analysis of the bias-variance trade-off in gradient clipping, we show that when a symmetry measure of the noise tail is controlled, clipped SFOMs achieve improved complexity guarantees in the presence of heavy-tailed noise for any tail index $α\in (0,2]$. Our analysis of the bias-variance trade-off not only yields new unified complexity guarantees for clipped SFOMs across this full range of tail indices, but is also straightforward to apply and can be combined with classical analyses under light-tailed noise to establish oracle complexity guarantees under heavy-tailed noise. Finally, numerical experiments validate our theoretical findings.
☆ Early Warning Index for Patient Deteriorations in Hospitals
Hospitals lack automated systems to harness the growing volume of heterogeneous clinical and operational data to effectively forecast critical events. Early identification of patients at risk for deterioration is essential not only for patient care quality monitoring but also for physician care management. However, translating varied data streams into accurate and interpretable risk assessments poses significant challenges due to inconsistent data formats. We develop a multimodal machine learning framework, the Early Warning Index (EWI), to predict the aggregate risk of ICU admission, emergency response team dispatch, and mortality. Key to EWI's design is a human-in-the-loop process: clinicians help determine alert thresholds and interpret model outputs, which are enhanced by explainable outputs using Shapley Additive exPlanations (SHAP) to highlight clinical and operational factors (e.g., scheduled surgeries, ward census) driving each patient's risk. We deploy EWI in a hospital dashboard that stratifies patients into three risk tiers. Using a dataset of 18,633 unique patients at a large U.S. hospital, our approach automatically extracts features from both structured and unstructured electronic health record (EHR) data and achieves C-statistics of 0.796. It is currently used as a triage tool for proactively managing at-risk patients. The proposed approach saves physicians valuable time by automatically sorting patients of varying risk levels, allowing them to concentrate on patient care rather than sifting through complex EHR data. By further pinpointing specific risk drivers, the proposed model provides data-informed adjustments to caregiver scheduling and allocation of critical resources. As a result, clinicians and administrators can avert downstream complications, including costly procedures or high readmission rates and improve overall patient flow.
☆ Beyond Lipschitz Continuity and Monotonicity: Fractal and Chaotic Activation Functions in Echo State Networks
Contemporary reservoir computing relies heavily on smooth, globally Lipschitz continuous activation functions, limiting applications in defense, disaster response, and pharmaceutical modeling where robust operation under extreme conditions is critical. We systematically investigate non-smooth activation functions, including chaotic, stochastic, and fractal variants, in echo state networks. Through comprehensive parameter sweeps across 36,610 reservoir configurations, we demonstrate that several non-smooth functions not only maintain the Echo State Property (ESP) but outperform traditional smooth activations in convergence speed and spectral radius tolerance. Notably, the Cantor function (continuous everywhere and flat almost everywhere) maintains ESP-consistent behavior up to spectral radii of rho ~ 10, an order of magnitude beyond typical bounds for smooth functions, while achieving 2.6x faster convergence than tanh and ReLU. We introduce a theoretical framework for quantized activation functions, defining a Degenerate Echo State Property (d-ESP) that captures stability for discrete-output functions and proving that d-ESP implies traditional ESP. We identify a critical crowding ratio Q=N/k (reservoir size / quantization levels) that predicts failure thresholds for discrete activations. Our analysis reveals that preprocessing topology, rather than continuity per se, determines stability: monotone, compressive preprocessing maintains ESP across scales, while dispersive or discontinuous preprocessing triggers sharp failures. While our findings challenge assumptions about activation function design in reservoir computing, the mechanism underlying the exceptional performance of certain fractal functions remains unexplained, suggesting fundamental gaps in our understanding of how geometric properties of activation functions influence reservoir dynamics.
comment: 50 pages, 21 figures. Extended version with full proofs, parameter sweeps, and appendices
☆ gridfm-datakit-v1: A Python Library for Scalable and Realistic Power Flow and Optimal Power Flow Data Generation
We introduce gridfm-datakit-v1, a Python library for generating realistic and diverse Power Flow (PF) and Optimal Power Flow (OPF) datasets for training Machine Learning (ML) solvers. Existing datasets and libraries face three main challenges: (1) lack of realistic stochastic load and topology perturbations, limiting scenario diversity; (2) PF datasets are restricted to OPF-feasible points, hindering generalization of ML solvers to cases that violate operating limits (e.g., branch overloads or voltage violations); and (3) OPF datasets use fixed generator cost functions, limiting generalization across varying costs. gridfm-datakit addresses these challenges by: (1) combining global load scaling from real-world profiles with localized noise and supporting arbitrary N-k topology perturbations to create diverse yet realistic datasets; (2) generating PF samples beyond operating limits; and (3) producing OPF data with varying generator costs. It also scales efficiently to large grids (up to 10,000 buses). Comparisons with OPFData, OPF-Learn, PGLearn, and PF$Δ$ are provided. Available on GitHub at https://github.com/gridfm/gridfm-datakit under Apache 2.0 and via `pip install gridfm-datakit`.
comment: Main equal contributors: Alban Puech, Matteo Mazzonelli. Other equal contributors: Celia Cintas, Tamara R. Govindasamy, Mangaliso Mngomezulu, Jonas Weiss
☆ TiME: Tiny Monolingual Encoders for Efficient NLP Pipelines
Today, a lot of research on language models is focused on large, general-purpose models. However, many NLP pipelines only require models with a well-defined, small set of capabilities. While large models are capable of performing the tasks of those smaller models, they are simply not fast enough to process large amounts of data or offer real-time responses. Furthermore, they often use unnecessarily large amounts of energy, leading to sustainability concerns and problems when deploying them on battery-powered devices. In our work, we show how to train small models for such efficiency-critical applications. As opposed to many off-the-shelf NLP pipelines, our models use modern training techniques such as distillation, and offer support for low-resource languages. We call our models TiME (Tiny Monolingual Encoders) and comprehensively evaluate them on a range of common NLP tasks, observing an improved trade-off between benchmark performance on one hand, and throughput, latency and energy consumption on the other. Along the way, we show that distilling monolingual models from multilingual teachers is possible, and likewise distilling models with absolute positional embeddings from teachers with relative positional embeddings.
☆ ParaFormer: A Generalized PageRank Graph Transformer for Graph Representation Learning
Graph Transformers (GTs) have emerged as a promising graph learning tool, leveraging their all-pair connected property to effectively capture global information. To address the over-smoothing problem in deep GNNs, global attention was initially introduced, eliminating the necessity for using deep GNNs. However, through empirical and theoretical analysis, we verify that the introduced global attention exhibits severe over-smoothing, causing node representations to become indistinguishable due to its inherent low-pass filtering. This effect is even stronger than that observed in GNNs. To mitigate this, we propose PageRank Transformer (ParaFormer), which features a PageRank-enhanced attention module designed to mimic the behavior of deep Transformers. We theoretically and empirically demonstrate that ParaFormer mitigates over-smoothing by functioning as an adaptive-pass filter. Experiments show that ParaFormer achieves consistent performance improvements across both node classification and graph classification tasks on 11 datasets ranging from thousands to millions of nodes, validating its efficacy. The supplementary material, including code and appendix, can be found in https://github.com/chaohaoyuan/ParaFormer.
comment: Accepted by WSDM 2026
☆ Model-Based Reinforcement Learning in Discrete-Action Non-Markovian Reward Decision Processes
Many practical decision-making problems involve tasks whose success depends on the entire system history, rather than on achieving a state with desired properties. Markovian Reinforcement Learning (RL) approaches are not suitable for such tasks, while RL with non-Markovian reward decision processes (NMRDPs) enables agents to tackle temporal-dependency tasks. This approach has long been known to lack formal guarantees on both (near-)optimality and sample efficiency. We contribute to solving both issues with QR-MAX, a novel model-based algorithm for discrete NMRDPs that factorizes Markovian transition learning from non-Markovian reward handling via reward machines. To the best of our knowledge, this is the first model-based RL algorithm for discrete-action NMRDPs that exploits this factorization to obtain PAC convergence to $\varepsilon$-optimal policies with polynomial sample complexity. We then extend QR-MAX to continuous state spaces with Bucket-QR-MAX, a SimHash-based discretiser that preserves the same factorized structure and achieves fast and stable learning without manual gridding or function approximation. We experimentally compare our method with modern state-of-the-art model-based RL approaches on environments of increasing complexity, showing a significant improvement in sample efficiency and increased robustness in finding optimal policies.
comment: 19 pages, 32 figures, includes appendix
☆ Hierarchical Persistence Velocity for Network Anomaly Detection: Theory and Applications to Cryptocurrency Markets
We introduce the Overlap-Weighted Hierarchical Normalized Persistence Velocity (OW-HNPV), a novel topological data analysis method for detecting anomalies in time-varying networks. Unlike existing methods that measure cumulative topological presence, we introduce the first velocity-based perspective on persistence diagrams, measuring the rate at which features appear and disappear, automatically downweighting noise through overlap-based weighting. We also prove that OW-HNPV is mathematically stable. It behaves in a controlled, predictable way, even when comparing persistence diagrams from networks with different feature types. Applied to Ethereum transaction networks (May 2017-May 2018), OW-HNPV demonstrates superior performance for cryptocurrency anomaly detection, achieving up to 10.4% AUC gain over baseline models for 7-day price movement predictions. Compared with established methods, including Vector of Averaged Bettis (VAB), persistence landscapes, and persistence images, velocity-based summaries excel at medium- to long-range forecasting (4-7 days), with OW-HNPV providing the most consistent and stable performance across prediction horizons. Our results show that modeling topological velocity is crucial for detecting structural anomalies in dynamic networks.
LLmFPCA-detect: LLM-powered Multivariate Functional PCA for Anomaly Detection in Sparse Longitudinal Texts
Sparse longitudinal (SL) textual data arises when individuals generate text repeatedly over time (e.g., customer reviews, occasional social media posts, electronic medical records across visits), but the frequency and timing of observations vary across individuals. These complex textual data sets have immense potential to inform future policy and targeted recommendations. However, because SL text data lack dedicated methods and are noisy, heterogeneous, and prone to anomalies, detecting and inferring key patterns is challenging. We introduce LLmFPCA-detect, a flexible framework that pairs LLM-based text embeddings with functional data analysis to detect clusters and infer anomalies in large SL text datasets. First, LLmFPCA-detect embeds each piece of text into an application-specific numeric space using LLM prompts. Sparse multivariate functional principal component analysis (mFPCA) conducted in the numeric space forms the workhorse to recover primary population characteristics, and produces subject-level scores which, together with baseline static covariates, facilitate data segmentation, unsupervised anomaly detection and inference, and enable other downstream tasks. In particular, we leverage LLMs to perform dynamic keyword profiling guided by the data segments and anomalies discovered by LLmFPCA-detect, and we show that cluster-specific functional PC scores from LLmFPCA-detect, used as features in existing pipelines, help boost prediction performance. We support the stability of LLmFPCA-detect with experiments and evaluate it on two different applications using public datasets, Amazon customer-review trajectories, and Wikipedia talk-page comment streams, demonstrating utility across domains and outperforming state-of-the-art baselines.
☆ Sound and Music Biases in Deep Music Transcription Models: A Systematic Analysis
Automatic Music Transcription (AMT) -- the task of converting music audio into note representations -- has seen rapid progress, driven largely by deep learning systems. Due to the limited availability of richly annotated music datasets, much of the progress in AMT has been concentrated on classical piano music, and even a few very specific datasets. Whether these systems can generalize effectively to other musical contexts remains an open question. Complementing recent studies on distribution shifts in sound (e.g., recording conditions), in this work we investigate the musical dimension -- specifically, variations in genre, dynamics, and polyphony levels. To this end, we introduce the MDS corpus, comprising three distinct subsets -- (1) Genre, (2) Random, and (3) MAEtest -- to emulate different axes of distribution shift. We evaluate the performance of several state-of-the-art AMT systems on the MDS corpus using both traditional information-retrieval and musically-informed performance metrics. Our extensive evaluation isolates and exposes varying degrees of performance degradation under specific distribution shifts. In particular, we measure a note-level F1 performance drop of 20 percentage points due to sound, and 14 due to genre. Generally, we find that dynamics estimation proves more vulnerable to musical variation than onset prediction. Musically informed evaluation metrics, particularly those capturing harmonic structure, help identify potential contributing factors. Furthermore, experiments with randomly generated, non-musical sequences reveal clear limitations in system performance under extreme musical distribution shifts. Altogether, these findings offer new evidence of the persistent impact of the Corpus Bias problem in deep AMT systems.
comment: pre-print of the upcoming EURASIP JASM journal article
☆ Hybrid Iterative Solvers with Geometry-Aware Neural Preconditioners for Parametric PDEs
The convergence behavior of classical iterative solvers for parametric partial differential equations (PDEs) is often highly sensitive to the domain and specific discretization of PDEs. Previously, we introduced hybrid solvers by combining the classical solvers with neural operators for a specific geometry 1, but they tend to under-perform in geometries not encountered during training. To address this challenge, we introduce Geo-DeepONet, a geometry-aware deep operator network that incorporates domain information extracted from finite element discretizations. Geo-DeepONet enables accurate operator learning across arbitrary unstructured meshes without requiring retraining. Building on this, we develop a class of geometry-aware hybrid preconditioned iterative solvers by coupling Geo-DeepONet with traditional methods such as relaxation schemes and Krylov subspace algorithms. Through numerical experiments on parametric PDEs posed over diverse unstructured domains, we demonstrate the enhanced robustness and efficiency of the proposed hybrid solvers for multiple real-world applications.
comment: 19 pages, 10 figures, 3 tables
☆ Residual GRU+MHSA: A Lightweight Hybrid Recurrent Attention Model for Cardiovascular Disease Detection
Cardiovascular disease (CVD) remains the leading cause of mortality worldwide, underscoring the need for reliable and efficient predictive tools that support early intervention. Traditional diagnostic approaches rely on handcrafted features and clinician expertise, while machine learning methods improve reproducibility but often struggle to generalize across noisy and heterogeneous clinical data. In this work, we propose Residual GRU with Multi-Head Self-Attention, a compact deep learning architecture designed for tabular clinical records. The model integrates residual bidirectional gated recurrent units for sequential modeling of feature columns, a channel reweighting block, and multi-head self-attention pooling with a learnable classification token to capture global context. We evaluate the model on the UCI Heart Disease dataset using 5-fold stratified cross-validation and compare it against classical methods such as Logistic Regression, Random Forest, and Support Vector Machines, as well as modern deep learning baselines including DeepMLP, convolutional networks, recurrent networks, and Transformers. The proposed model achieves an accuracy of 0.861, macro-F1 of 0.860, ROC-AUC of 0.908, and PR-AUC of 0.904, outperforming all baselines. Ablation studies confirm the individual contributions of residual recurrence, channel gating, and attention pooling. t-SNE visualizations further indicate that the learned embeddings exhibit clearer separation between disease and non-disease classes compared to raw features. These results demonstrate that lightweight hybrid recurrent and attention-based architectures provide a strong balance between accuracy and efficiency for clinical risk prediction, supporting deployment in resource-constrained healthcare settings.
comment: Accepted in IEEE Bigdata 2025- Learning Representations with Limited Supervision
☆ Counterfactual Explanations for Time Series Should be Human-Centered and Temporally Coherent in Interventions
Counterfactual explanations are increasingly proposed as interpretable mechanisms to achieve algorithmic recourse. However, current counterfactual techniques for time series classification are predominantly designed with static data assumptions and focus on generating minimal input perturbations to flip model predictions. This paper argues that such approaches are fundamentally insufficient in clinical recommendation settings, where interventions unfold over time and must be causally plausible and temporally coherent. We advocate for a shift towards counterfactuals that reflect sustained, goal-directed interventions aligned with clinical reasoning and patient-specific dynamics. We identify critical gaps in existing methods that limit their practical applicability, specifically, temporal blind spots and the lack of user-centered considerations in both method design and evaluation metrics. To support our position, we conduct a robustness analysis of several state-of-the-art methods for time series and show that the generated counterfactuals are highly sensitive to stochastic noise. This finding highlights their limited reliability in real-world clinical settings, where minor measurement variations are inevitable. We conclude by calling for methods and evaluation frameworks that go beyond mere prediction changes without considering feasibility or actionability. We emphasize the need for actionable, purpose-driven interventions that are feasible in real-world contexts for the users of such applications.
☆ Synthetic Electrogram Generation with Variational Autoencoders for ECGI
Atrial fibrillation (AF) is the most prevalent sustained cardiac arrhythmia, and its clinical assessment requires accurate characterization of atrial electrical activity. Noninvasive electrocardiographic imaging (ECGI) combined with deep learning (DL) approaches for estimating intracardiac electrograms (EGMs) from body surface potentials (BSPMs) has shown promise, but progress is hindered by the limited availability of paired BSPM-EGM datasets. To address this limitation, we investigate variational autoencoders (VAEs) for the generation of synthetic multichannel atrial EGMs. Two models are proposed: a sinus rhythm-specific VAE (VAE-S) and a class-conditioned VAE (VAE-C) trained on both sinus rhythm and AF signals. Generated EGMs are evaluated using morphological, spectral, and distributional similarity metrics. VAE-S achieves higher fidelity with respect to in silico EGMs, while VAE-C enables rhythm-specific generation at the expense of reduced sinus reconstruction quality. As a proof of concept, the generated EGMs are used for data augmentation in a downstream noninvasive EGM reconstruction task, where moderate augmentation improves estimation performance. These results demonstrate the potential of VAE-based generative modeling to alleviate data scarcity and enhance deep learning-based ECGI pipelines.
☆ Improving Slow Transfer Predictions: Generative Methods Compared
Monitoring data transfer performance is a crucial task in scientific computing networks. By predicting performance early in the communication phase, potentially sluggish transfers can be identified and selectively monitored, optimizing network usage and overall performance. A key bottleneck to improving the predictive power of machine learning (ML) models in this context is the issue of class imbalance. This project focuses on addressing the class imbalance problem to enhance the accuracy of performance predictions. In this study, we analyze and compare various augmentation strategies, including traditional oversampling methods and generative techniques. Additionally, we adjust the class imbalance ratios in training datasets to evaluate their impact on model performance. While augmentation may improve performance, as the imbalance ratio increases, the performance does not significantly improve. We conclude that even the most advanced technique, such as CTGAN, does not significantly improve over simple stratified sampling.
☆ C-ing Clearly: Enhanced Binary Code Explanations using C code
Large Language Models (LLMs) typically excel at coding tasks involving high-level programming languages, as opposed to lower-level programming languages, such as assembly. We propose a synthetic data generation method named C-ing Clearly, which leverages the corresponding C code to enhance an LLM's understanding of assembly. By fine-tuning on data generated through our method, we demonstrate improved LLM performance for binary code summarization and vulnerability detection. Our approach demonstrates consistent gains across different LLM families and model sizes.
comment: 18 pages, 5 figures
☆ Kinetic-Mamba: Mamba-Assisted Predictions of Stiff Chemical Kinetics
Accurate chemical kinetics modeling is essential for combustion simulations, as it governs the evolution of complex reaction pathways and thermochemical states. In this work, we introduce Kinetic-Mamba, a Mamba-based neural operator framework that integrates the expressive power of neural operators with the efficient temporal modeling capabilities of Mamba architectures. The framework comprises three complementary models: (i) a standalone Mamba model that predicts the time evolution of thermochemical state variables from given initial conditions; (ii) a constrained Mamba model that enforces mass conservation while learning the state dynamics; and (iii) a regime-informed architecture employing two standalone Mamba models to capture dynamics across temperature-dependent regimes. We additionally develop a latent Kinetic-Mamba variant that evolves dynamics in a reduced latent space and reconstructs the full state on the physical manifold. We evaluate the accuracy and robustness of Kinetic-Mamba using both time-decomposition and recursive-prediction strategies. We further assess the extrapolation capabilities of the model on varied out-of-distribution datasets. Computational experiments on Syngas and GRI-Mech 3.0 reaction mechanisms demonstrate that our framework achieves high fidelity in predicting complex kinetic behavior using only the initial conditions of the state variables.
☆ AnySleep: a channel-agnostic deep learning system for high-resolution sleep staging in multi-center cohorts
Sleep is essential for good health throughout our lives, yet studying its dynamics requires manual sleep staging, a labor-intensive step in sleep research and clinical care. Across centers, polysomnography (PSG) recordings are traditionally scored in 30-s epochs for pragmatic, not physiological, reasons and can vary considerably in electrode count, montage, and subject characteristics. These constraints present challenges in conducting harmonized multi-center sleep studies and discovering novel, robust biomarkers on shorter timescales. Here, we present AnySleep, a deep neural network model that uses any electroencephalography (EEG) or electrooculography (EOG) data to score sleep at adjustable temporal resolutions. We trained and validated the model on over 19,000 overnight recordings from 21 datasets collected across multiple clinics, spanning nearly 200,000 hours of EEG and EOG data, to promote robust generalization across sites. The model attains state-of-the-art performance and surpasses or equals established baselines at 30-s epochs. Performance improves as more channels are provided, yet remains strong when EOG is absent or when only EOG or single EEG derivations (frontal, central, or occipital) are available. On sub-30-s timescales, the model captures short wake intrusions consistent with arousals and improves prediction of physiological characteristics (age, sex) and pathophysiological conditions (sleep apnea), relative to standard 30-s scoring. We make the model publicly available to facilitate large-scale studies with heterogeneous electrode setups and to accelerate the discovery of novel biomarkers in sleep.
comment: 18 pages, 6 figures, 2 tables
☆ Bridging Artificial Intelligence and Data Assimilation: The Data-driven Ensemble Forecasting System ClimaX-LETKF
While machine learning-based weather prediction (MLWP) has achieved significant advancements, research on assimilating real observations or ensemble forecasts within MLWP models remains limited. We introduce ClimaX-LETKF, the first purely data-driven ML-based ensemble weather forecasting system. It operates stably over multiple years, independently of numerical weather prediction (NWP) models, by assimilating the NCEP ADP Global Upper Air and Surface Weather Observations. The system demonstrates greater stability and accuracy with relaxation to prior perturbation (RTPP) than with relaxation to prior spread (RTPS), while NWP models tend to be more stable with RTPS. RTPP replaces an analysis perturbation with a weighted blend of analysis and background perturbations, whereas RTPS simply rescales the analysis perturbation. Our experiments reveal that MLWP models are less capable of restoring the atmospheric field to its attractor than NWP models. This work provides valuable insights for enhancing MLWP ensemble forecasting systems and represents a substantial step toward their practical applications.
comment: 14 pages and 5 figures for the main text and 13 pages and 7 figures as supplementary materials
☆ Effect of Document Packing on the Latent Multi-Hop Reasoning Capabilities of Large Language Models
The standard practice for training large language models involves packing multiple documents together to optimize computational efficiency. However, the impact of this process on the models' capabilities remains largely unexplored. To address this gap, we investigate how different document-packing strategies influence the latent multi-hop reasoning abilities of LLMs. Our findings indicate that packing can improve model performance compared to training on individual documents, at the expense of more compute. To further understand the underlying mechanisms, we conduct an ablation study, identifying key factors that explain the advantages of packing. Ultimately, our research deepens the understanding of LLM training dynamics and provides practical insights for optimizing model development.
☆ Hybrid Ensemble Method for Detecting Cyber-Attacks in Water Distribution Systems Using the BATADAL Dataset
The cybersecurity of Industrial Control Systems that manage critical infrastructure such as Water Distribution Systems has become increasingly important as digital connectivity expands. BATADAL benchmark data is a good source of testing intrusion detection techniques, but it presents several important problems, such as imbalance in the number of classes, multivariate time dependence, and stealthy attacks. We consider a hybrid ensemble learning model that will enhance the detection ability of cyber-attacks in WDS by using the complementary capabilities of machine learning and deep learning models. Three base learners, namely, Random Forest , eXtreme Gradient Boosting , and Long Short-Term Memory network, have been strictly compared and seven ensemble types using simple averaged and stacked learning with a logistic regression meta-learner. Random Forest analysis identified top predictors turned into temporal and statistical features, and Synthetic Minority Oversampling Technique (SMOTE) was used to overcome the class imbalance issue. The analyics indicates that the single Long Short-Term Memory network model is of poor performance (F1 = 0.000, AUC = 0.4460), but tree-based models, especially eXtreme Gradient Boosting, perform well (F1 = 0.7470, AUC=0.9684). The hybrid stacked ensemble of Random Forest , eXtreme Gradient Boosting , and Long Short-Term Memory network scored the highest, with the attack class of 0.7205 with an F1-score and a AUC of 0.9826 indicating that the heterogeneous stacking between model precision and generalization can work. The proposed framework establishes a robust and scalable solution for cyber-attack detection in time-dependent industrial systems, integrating temporal learning and ensemble diversity to support the secure operation of critical infrastructure.
comment: 18 pages, & figures
☆ Dual-Axis RCCL: Representation-Complete Convergent Learning for Organic Chemical Space
Machine learning is profoundly reshaping molecular and materials modeling; however, given the vast scale of chemical space (10^30-10^60), it remains an open scientific question whether models can achieve convergent learning across this space. We introduce a Dual-Axis Representation-Complete Convergent Learning (RCCL) strategy, enabled by a molecular representation that integrates graph convolutional network (GCN) encoding of local valence environments, grounded in modern valence bond theory, together with no-bridge graph (NBG) encoding of ring/cage topologies, providing a quantitative measure of chemical-space coverage. This framework formalizes representation completeness, establishing a principled basis for constructing datasets that support convergent learning for large models. Guided by this RCCL framework, we develop the FD25 dataset, systematically covering 13,302 local valence units and 165,726 ring/cage topologies, achieving near-complete combinatorial coverage of organic molecules with H/C/N/O/F elements. Graph neural networks trained on FD25 exhibit representation-complete convergent learning and strong out-of-distribution generalization, with an overall prediction error of approximately 1.0 kcal/mol MAE across external benchmarks. Our results establish a quantitative link between molecular representation, structural completeness, and model generalization, providing a foundation for interpretable, transferable, and data-efficient molecular intelligence.
comment: 33 pages, 10 figures
☆ Pattern Recognition of Aluminium Arbitrage in Global Trade Data
As the global economy transitions toward decarbonization, the aluminium sector has become a focal point for strategic resource management. While policies such as the Carbon Border Adjustment Mechanism (CBAM) aim to reduce emissions, they have inadvertently widened the price arbitrage between primary metal, scrap, and semi-finished goods, creating new incentives for market optimization. This study presents a unified, unsupervised machine learning framework to detect and classify emerging trade anomalies within UN Comtrade data (2020 to 2024). Moving beyond traditional rule-based monitoring, we apply a four-layer analytical pipeline utilizing Forensic Statistics, Isolation Forests, Network Science, and Deep Autoencoders. Contrary to the hypothesis that Sustainability Arbitrage would be the primary driver, empirical results reveal a contradictory and more severe phenomenon of Hardware Masking. Illicit actors exploit bi-directional tariff incentives by misclassifying scrap as high-count heterogeneous goods to justify extreme unit-price outliers of >$160/kg, a 1,900% markup indicative of Trade-Based Money Laundering (TBML) rather than commercial arbitrage. Topologically, risk is not concentrated in major exporters but in high-centrality Shadow Hubs that function as pivotal nodes for illicit rerouting. These actors execute a strategy of Void-Shoring, systematically suppressing destination data to Unspecified Code to fracture mirror statistics and sever forensic trails. Validated by SHAP (Shapley Additive Explanations), the results confirm that price deviation is the dominant predictor of anomalies, necessitating a paradigm shift in customs enforcement from physical volume checks to dynamic, algorithmic valuation auditing.
☆ From STLS to Projection-based Dictionary Selection in Sparse Regression for System Identification
In this work, we revisit dictionary-based sparse regression, in particular, Sequential Threshold Least Squares (STLS), and propose a score-guided library selection to provide practical guidance for data-driven modeling, with emphasis on SINDy-type algorithms. STLS is an algorithm to solve the $\ell_0$ sparse least-squares problem, which relies on splitting to efficiently solve the least-squares portion while handling the sparse term via proximal methods. It produces coefficient vectors whose components depend on both the projected reconstruction errors, here referred to as the scores, and the mutual coherence of dictionary terms. The first contribution of this work is a theoretical analysis of the score and dictionary-selection strategy. This could be understood in both the original and weak SINDy regime. Second, numerical experiments on ordinary and partial differential equations highlight the effectiveness of score-based screening, improving both accuracy and interpretability in dynamical system identification. These results suggest that integrating score-guided methods to refine the dictionary more accurately may help SINDy users in some cases to enhance their robustness for data-driven discovery of governing equations.
comment: 34 pages, 11 figures
☆ GRAFT: Grid-Aware Load Forecasting with Multi-Source Textual Alignment and Fusion
Electric load is simultaneously affected across multiple time scales by exogenous factors such as weather and calendar rhythms, sudden events, and policies. Therefore, this paper proposes GRAFT (GRid-Aware Forecasting with Text), which modifies and improves STanHOP to better support grid-aware forecasting and multi-source textual interventions. Specifically, GRAFT strictly aligns daily-aggregated news, social media, and policy texts with half-hour load, and realizes text-guided fusion to specific time positions via cross-attention during both training and rolling forecasting. In addition, GRAFT provides a plug-and-play external-memory interface to accommodate different information sources in real-world deployment. We construct and release a unified aligned benchmark covering 2019--2021 for five Australian states (half-hour load, daily-aligned weather/calendar variables, and three categories of external texts), and conduct systematic, reproducible evaluations at three scales -- hourly, daily, and monthly -- under a unified protocol for comparison across regions, external sources, and time scales. Experimental results show that GRAFT significantly outperforms strong baselines and reaches or surpasses the state of the art across multiple regions and forecasting horizons. Moreover, the model is robust in event-driven scenarios and enables temporal localization and source-level interpretation of text-to-load effects through attention read-out. We release the benchmark, preprocessing scripts, and forecasting results to facilitate standardized empirical evaluation and reproducibility in power grid load forecasting.
☆ SuperWing: a comprehensive transonic wing dataset for data-driven aerodynamic design
Machine-learning surrogate models have shown promise in accelerating aerodynamic design, yet progress toward generalizable predictors for three-dimensional wings has been limited by the scarcity and restricted diversity of existing datasets. Here, we present SuperWing, a comprehensive open dataset of transonic swept-wing aerodynamics comprising 4,239 parameterized wing geometries and 28,856 Reynolds-averaged Navier-Stokes flow field solutions. The wing shapes in the dataset are generated using a simplified yet expressive geometry parameterization that incorporates spanwise variations in airfoil shape, twist, and dihedral, allowing for an enhanced diversity without relying on perturbations of a baseline wing. All shapes are simulated under a broad range of Mach numbers and angles of attack covering the typical flight envelope. To demonstrate the dataset's utility, we benchmark two state-of-the-art Transformers that accurately predict surface flow and achieve a 2.5 drag-count error on held-out samples. Models pretrained on SuperWing further exhibit strong zero-shot generalization to complex benchmark wings such as DLR-F6 and NASA CRM, underscoring the dataset's diversity and potential for practical usage.
☆ RePo: Language Models with Context Re-Positioning
In-context learning is fundamental to modern Large Language Models (LLMs); however, prevailing architectures impose a rigid and fixed contextual structure by assigning linear or constant positional indices. Drawing on Cognitive Load Theory (CLT), we argue that this uninformative structure increases extraneous cognitive load, consuming finite working memory capacity that should be allocated to deep reasoning and attention allocation. To address this, we propose RePo, a novel mechanism that reduces extraneous load via context re-positioning. Unlike standard approaches, RePo utilizes a differentiable module, $f_φ$, to assign token positions that capture contextual dependencies, rather than replying on pre-defined integer range. By continually pre-training on the OLMo-2 1B backbone, we demonstrate that RePo significantly enhances performance on tasks involving noisy contexts, structured data, and longer context length, while maintaining competitive performance on general short-context tasks. Detailed analysis reveals that RePo successfully allocate higher attention to distant but relevant information, assign positions in dense and non-linear space, and capture the intrinsic structure of the input context. Our code is available at https://github.com/SakanaAI/repo.
☆ Black-Box Auditing of Quantum Model: Lifted Differential Privacy with Quantum Canaries
Quantum machine learning (QML) promises significant computational advantages, yet models trained on sensitive data risk memorizing individual records, creating serious privacy vulnerabilities. While Quantum Differential Privacy (QDP) mechanisms provide theoretical worst-case guarantees, they critically lack empirical verification tools for deployed models. We introduce the first black-box privacy auditing framework for QML based on Lifted Quantum Differential Privacy, leveraging quantum canaries (strategically offset-encoded quantum states) to detect memorization and precisely quantify privacy leakage during training. Our framework establishes a rigorous mathematical connection between canary offset and trace distance bounds, deriving empirical lower bounds on privacy budget consumption that bridge the critical gap between theoretical guarantees and practical privacy verification. Comprehensive evaluations across both simulated and physical quantum hardware demonstrate our framework's effectiveness in measuring actual privacy loss in QML models, enabling robust privacy verification in QML systems.
☆ Causal Structure Learning for Dynamical Systems with Theoretical Score Analysis AAAI 2026
Real world systems evolve in continuous-time according to their underlying causal relationships, yet their dynamics are often unknown. Existing approaches to learning such dynamics typically either discretize time -- leading to poor performance on irregularly sampled data -- or ignore the underlying causality. We propose CaDyT, a novel method for causal discovery on dynamical systems addressing both these challenges. In contrast to state-of-the-art causal discovery methods that model the problem using discrete-time Dynamic Bayesian networks, our formulation is grounded in Difference-based causal models, which allow milder assumptions for modeling the continuous nature of the system. CaDyT leverages exact Gaussian Process inference for modeling the continuous-time dynamics which is more aligned with the underlying dynamical process. We propose a practical instantiation that identifies the causal structure via a greedy search guided by the Algorithmic Markov Condition and Minimum Description Length principle. Our experiments show that CaDyT outperforms state-of-the-art methods on both regularly and irregularly-sampled data, discovering causal networks closer to the true underlying dynamics.
comment: Accepted as Oral at AAAI 2026 Conference
☆ Towards Transferable Defense Against Malicious Image Edits
Recent approaches employing imperceptible perturbations in input images have demonstrated promising potential to counter malicious manipulations in diffusion-based image editing systems. However, existing methods suffer from limited transferability in cross-model evaluations. To address this, we propose Transferable Defense Against Malicious Image Edits (TDAE), a novel bimodal framework that enhances image immunity against malicious edits through coordinated image-text optimization. Specifically, at the visual defense level, we introduce FlatGrad Defense Mechanism (FDM), which incorporates gradient regularization into the adversarial objective. By explicitly steering the perturbations toward flat minima, FDM amplifies immune robustness against unseen editing models. For textual enhancement protection, we propose an adversarial optimization paradigm named Dynamic Prompt Defense (DPD), which periodically refines text embeddings to align the editing outcomes of immunized images with those of the original images, then updates the images under optimized embeddings. Through iterative adversarial updates to diverse embeddings, DPD enforces the generation of immunized images that seek a broader set of immunity-enhancing features, thereby achieving cross-model transferability. Extensive experimental results demonstrate that our TDAE achieves state-of-the-art performance in mitigating malicious edits under both intra- and cross-model evaluations.
comment: 14 pages, 5 figures
☆ Implicit Bias and Invariance: How Hopfield Networks Efficiently Learn Graph Orbits
Many learning problems involve symmetries, and while invariance can be built into neural architectures, it can also emerge implicitly when training on group-structured data. We study this phenomenon in classical Hopfield networks and show they can infer the full isomorphism class of a graph from a small random sample. Our results reveal that: (i) graph isomorphism classes can be represented within a three-dimensional invariant subspace, (ii) using gradient descent to minimize energy flow (MEF) has an implicit bias toward norm-efficient solutions, which underpins a polynomial sample complexity bound for learning isomorphism classes, and (iii) across multiple learning rules, parameters converge toward the invariant subspace as sample sizes grow. Together, these findings highlight a unifying mechanism for generalization in Hopfield networks: a bias toward norm efficiency in learning drives the emergence of approximate invariance under group-structured data.
☆ Dual Attention Guided Defense Against Malicious Edits
Recent progress in text-to-image diffusion models has transformed image editing via text prompts, yet this also introduces significant ethical challenges from potential misuse in creating deceptive or harmful content. While current defenses seek to mitigate this risk by embedding imperceptible perturbations, their effectiveness is limited against malicious tampering. To address this issue, we propose a Dual Attention-Guided Noise Perturbation (DANP) immunization method that adds imperceptible perturbations to disrupt the model's semantic understanding and generation process. DANP functions over multiple timesteps to manipulate both cross-attention maps and the noise prediction process, using a dynamic threshold to generate masks that identify text-relevant and irrelevant regions. It then reduces attention in relevant areas while increasing it in irrelevant ones, thereby misguides the edit towards incorrect regions and preserves the intended targets. Additionally, our method maximizes the discrepancy between the injected noise and the model's predicted noise to further interfere with the generation. By targeting both attention and noise prediction mechanisms, DANP exhibits impressive immunity against malicious edits, and extensive experiments confirm that our method achieves state-of-the-art performance.
comment: 11 pages, 7 figures
☆ Semantic Mismatch and Perceptual Degradation: A New Perspective on Image Editing Immunity
Text-guided image editing via diffusion models, while powerful, raises significant concerns about misuse, motivating efforts to immunize images against unauthorized edits using imperceptible perturbations. Prevailing metrics for evaluating immunization success typically rely on measuring the visual dissimilarity between the output generated from a protected image and a reference output generated from the unprotected original. This approach fundamentally overlooks the core requirement of image immunization, which is to disrupt semantic alignment with attacker intent, regardless of deviation from any specific output. We argue that immunization success should instead be defined by the edited output either semantically mismatching the prompt or suffering substantial perceptual degradations, both of which thwart malicious intent. To operationalize this principle, we propose Synergistic Intermediate Feature Manipulation (SIFM), a method that strategically perturbs intermediate diffusion features through dual synergistic objectives: (1) maximizing feature divergence from the original edit trajectory to disrupt semantic alignment with the expected edit, and (2) minimizing feature norms to induce perceptual degradations. Furthermore, we introduce the Immunization Success Rate (ISR), a novel metric designed to rigorously quantify true immunization efficacy for the first time. ISR quantifies the proportion of edits where immunization induces either semantic failure relative to the prompt or significant perceptual degradations, assessed via Multimodal Large Language Models (MLLMs). Extensive experiments show our SIFM achieves the state-of-the-art performance for safeguarding visual content against malicious diffusion-based manipulation.
comment: 11 pages, 4 figures
☆ Continual Learning at the Edge: An Agnostic IIoT Architecture
The exponential growth of Internet-connected devices has presented challenges to traditional centralized computing systems due to latency and bandwidth limitations. Edge computing has evolved to address these difficulties by bringing computations closer to the data source. Additionally, traditional machine learning algorithms are not suitable for edge-computing systems, where data usually arrives in a dynamic and continual way. However, incremental learning offers a good solution for these settings. We introduce a new approach that applies the incremental learning philosophy within an edge-computing scenario for the industrial sector with a specific purpose: real time quality control in a manufacturing system. Applying continual learning we reduce the impact of catastrophic forgetting and provide an efficient and effective solution.
☆ Improving the Accuracy of Amortized Model Comparison with Self-Consistency
Amortized Bayesian inference (ABI) offers fast, scalable approximations to posterior densities by training neural surrogates on data simulated from the statistical model. However, ABI methods are highly sensitive to model misspecification: when observed data fall outside the training distribution (generative scope of the statistical models), neural surrogates can behave unpredictably. This makes it a challenge in a model comparison setting, where multiple statistical models are considered, of which at least some are misspecified. Recent work on self-consistency (SC) provides a promising remedy to this issue, accessible even for empirical data (without ground-truth labels). In this work, we investigate how SC can improve amortized model comparison conceptualized in four different ways. Across two synthetic and two real-world case studies, we find that approaches for model comparison that estimate marginal likelihoods through approximate parameter posteriors consistently outperform methods that directly approximate model evidence or posterior model probabilities. SC training improves robustness when the likelihood is available, even under severe model misspecification. The benefits of SC for methods without access of analytic likelihoods are more limited and inconsistent. Our results suggest practical guidance for reliable amortized Bayesian model comparison: prefer parameter posterior-based methods and augment them with SC training on empirical datasets to mitigate extrapolation bias under model misspecification.
comment: 17 pages, 9 figures
☆ TUN: Detecting Significant Points in Persistence Diagrams with Deep Learning
Persistence diagrams (PDs) provide a powerful tool for understanding the topology of the underlying shape of a point cloud. However, identifying which points in PDs encode genuine signals remains challenging. This challenge directly hinders the practical adoption of topological data analysis in many applications, where automated and reliable interpretation of persistence diagrams is essential for downstream decision-making. In this paper, we study automatic significance detection for one-dimensional persistence diagrams. Specifically, we propose Topology Understanding Net (TUN), a multi-modal network that combines enhanced PD descriptors with self-attention, a PointNet-style point cloud encoder, learned fusion, and per-point classification, alongside stable preprocessing and imbalance-aware training. It provides an automated and effective solution for identifying significant points in PDs, which are critical for downstream applications. Experiments show that TUN outperforms classic methods in detecting significant points in PDs, illustrating its effectiveness in real-world applications.
☆ Explainable Preference Learning: a Decision Tree-based Surrogate Model for Preferential Bayesian Optimization
Current Preferential Bayesian Optimization methods rely on Gaussian Processes (GPs) as surrogate models. These models are hard to interpret, struggle with handling categorical data, and are computationally complex, limiting their real-world usability. In this paper, we introduce an inherently interpretable decision tree-based surrogate model capable of handling both categorical and continuous data, and scalable to large datasets. Extensive numerical experiments on eight increasingly spiky optimization functions show that our model outperforms GP-based alternatives on spiky functions and has only marginally lower performance for non-spiky functions. Moreover, we apply our model to the real-world Sushi dataset and show its ability to learn an individual's sushi preferences. Finally, we show some initial work on using historical preference data to speed up the optimization process for new unseen users.
☆ FLAME: Flow Enhanced Legendre Memory Models for General Time Series Forecasting
In this work, we introduce FLAME, a family of extremely lightweight and capable Time Series Foundation Models, which support both deterministic and probabilistic forecasting via generative probabilistic modeling, thus ensuring both efficiency and robustness. FLAME utilizes the Legendre Memory for strong generalization capabilities. Through adapting variants of Legendre Memory, i.e., translated Legendre (LegT) and scaled Legendre (LegS), in the Encoding and Decoding phases, FLAME can effectively capture the inherent inductive bias within data and make efficient long-range inferences. To enhance the accuracy of probabilistic forecasting while keeping efficient, FLAME adopts a Normalization Flow based forecasting head, which can model the arbitrarily intricate distributions over the forecasting horizon in a generative manner. Comprehensive experiments on well-recognized benchmarks, including TSFM-Bench and ProbTS, demonstrate the consistent state-of-the-art zero-shot performance of FLAME on both deterministic and probabilistic forecasting tasks.
☆ Gödel's Poetry
Formal, automated theorem proving has long been viewed as a challenge to artificial intelligence. We introduce here a new approach to computer theorem proving, one that employs specialized language models for Lean4 proof generation combined with recursive decomposition of difficult theorems into simpler entailing propositions. These models are coordinated through a multi-agent architecture that orchestrates autoformalization (if required), proof generation, decomposition of difficult theorems into simpler entailing propositions, and recursive proof (and/or decomposition) of these propositions. Without decomposition, we achieve a 90.4% pass rate on miniF2F. With decomposition, this is significantly improved. A key technical contribution lies in our extension of the Kimina Lean Server with abstract syntax tree (AST) parsing capabilities to facilitate automated, recursive proof decomposition. The system is made available on PyPI as goedels-poetry (at https://pypi.org/project/goedels-poetry ), and the open-source implementation KellyJDavis/goedels-poetry (at https://github.com/KellyJDavis/goedels-poetry ) facilitates both adaptation to alternative language models and extension with custom functionality.
comment: 24 pages, 1 figure
☆ Beyond MMD: Evaluating Graph Generative Models with Geometric Deep Learning
Graph generation is a crucial task in many fields, including network science and bioinformatics, as it enables the creation of synthetic graphs that mimic the properties of real-world networks for various applications. Graph Generative Models (GGMs) have emerged as a promising solution to this problem, leveraging deep learning techniques to learn the underlying distribution of real-world graphs and generate new samples that closely resemble them. Examples include approaches based on Variational Auto-Encoders, Recurrent Neural Networks, and more recently, diffusion-based models. However, the main limitation often lies in the evaluation process, which typically relies on Maximum Mean Discrepancy (MMD) as a metric to assess the distribution of graph properties in the generated ensemble. This paper introduces a novel methodology for evaluating GGMs that overcomes the limitations of MMD, which we call RGM (Representation-aware Graph-generation Model evaluation). As a practical demonstration of our methodology, we present a comprehensive evaluation of two state-of-the-art Graph Generative Models: Graph Recurrent Attention Networks (GRAN) and Efficient and Degree-guided graph GEnerative model (EDGE). We investigate their performance in generating realistic graphs and compare them using a Geometric Deep Learning model trained on a custom dataset of synthetic and real-world graphs, specifically designed for graph classification tasks. Our findings reveal that while both models can generate graphs with certain topological properties, they exhibit significant limitations in preserving the structural characteristics that distinguish different graph domains. We also highlight the inadequacy of Maximum Mean Discrepancy as an evaluation metric for GGMs and suggest alternative approaches for future research.
comment: 16 pages, 4 figures
☆ Physically consistent model learning for reaction-diffusion systems
This paper addresses the problem of learning reaction-diffusion (RD) systems from data while ensuring physical consistency and well-posedness of the learned models. Building on a regularization-based framework for structured model learning, we focus on learning parameterized reaction terms and investigate how to incorporate key physical properties, such as mass conservation and quasipositivity, directly into the learning process. Our main contributions are twofold: First, we propose techniques to systematically modify a given class of parameterized reaction terms such that the resulting terms inherently satisfy mass conservation and quasipositivity, ensuring that the learned RD systems preserve non-negativity and adhere to physical principles. These modifications also guarantee well-posedness of the resulting PDEs under additional regularity and growth conditions. Second, we extend existing theoretical results on regularization-based model learning to RD systems using these physically consistent reaction terms. Specifically, we prove that solutions to the learning problem converge to a unique, regularization-minimizing solution of a limit system even when conservation laws and quasipositivity are enforced. In addition, we provide approximation results for quasipositive functions, essential for constructing physically consistent parameterizations. These results advance the development of interpretable and reliable data-driven models for RD systems that align with fundamental physical laws.
☆ Ladder Up, Memory Down: Low-Cost Fine-Tuning With Side Nets
Fine-tuning large language models (LLMs) is often limited by the memory available on commodity GPUs. Parameter-efficient fine-tuning (PEFT) methods such as QLoRA reduce the number of trainable parameters, yet still incur high memory usage induced by the backward pass in the full model. We revisit Ladder Side Tuning (LST), a rarely explored PEFT technique that adds a lightweight side network, and show that it matches QLoRA's compute scaling slope while cutting peak memory by 50\%. Across different downstream benchmarks spanning natural language understanding, mathematical and LLM-critic tasks, LST has competitive performance with QLoRA's accuracy on average while being much more memory-efficient. This efficiency enables fine-tuning of 7B-parameter models on a single 12 GB consumer GPU with 2k-token contexts, requiring no gradient checkpointing\textemdash conditions under which QLoRA exhausts memory. Beyond memory efficiency, we also establish scaling laws showing that LST scales similarly to QLoRA. We exploit Ladder's architectural flexibility by introducing xLadder, a depth-extended variant that increases effective depth via cross-connections and shortens chain-of-thought (CoT) at fixed parameter count. Ladder is strong when memory is the bottleneck; xLadder builds on this by enabling deeper reasoning without additional memory overhead.
☆ Understanding the Gain from Data Filtering in Multimodal Contrastive Learning
The success of modern multimodal representation learning relies on internet-scale datasets. Due to the low quality of a large fraction of raw web data, data curation has become a critical step in the training pipeline. Filtering using a trained model (i.e., teacher-based filtering) has emerged as a successful solution, leveraging a pre-trained model to compute quality scores. To explain the empirical success of teacher-based filtering, we characterize the performance of filtered contrastive learning under the standard bimodal data generation model. Denoting $η\in(0,1]$ as the fraction of data with correctly matched modalities among $n$ paired samples, we utilize a linear contrastive learning setup to show a provable benefit of data filtering: $(i)$ the error without filtering is upper and lower bounded by $\frac{1}{η\sqrt{n}}$, and $(ii)$ the error with teacher-based filtering is upper bounded by $\frac{1}{\sqrt{ηn}}$ in the large $η$ regime, and by $\frac{1}{\sqrt{n}}$ in the small $η$ regime.
comment: 40 pages, 8 figures, 1 table. This work is accepted to the Thirty-ninth Annual Conference on Neural Information Processing Systems, 2025
☆ Weighted Conformal Prediction Provides Adaptive and Valid Mask-Conditional Coverage for General Missing Data Mechanisms
Conformal prediction (CP) offers a principled framework for uncertainty quantification, but it fails to guarantee coverage when faced with missing covariates. In addressing the heterogeneity induced by various missing patterns, Mask-Conditional Valid (MCV) Coverage has emerged as a more desirable property than Marginal Coverage. In this work, we adapt split CP to handle missing values by proposing a preimpute-mask-then-correct framework that can offer valid coverage. We show that our method provides guaranteed Marginal Coverage and Mask-Conditional Validity for general missing data mechanisms. A key component of our approach is a reweighted conformal prediction procedure that corrects the prediction sets after distributional imputation (multiple imputation) of the calibration dataset, making our method compatible with standard imputation pipelines. We derive two algorithms, and we show that they are approximately marginally valid and MCV. We evaluate them on synthetic and real-world datasets. It reduces significantly the width of prediction intervals w.r.t standard MCV methods, while maintaining the target guarantees.
☆ Estimating problem difficulty without ground truth using Large Language Model comparisons
Recent advances in the finetuning of large language models (LLMs) have significantly improved their performance on established benchmarks, emphasizing the need for increasingly difficult, synthetic data. A key step in this data generation pipeline is a method for estimating problem difficulty. Current approaches, such as human calibration or performance-based scoring, fail to generalize to out-of-distribution problems, i.e. problems currently unsolvable by humans and LLMs, because they are not scalable, time-consuming, and ground truth dependent. Therefore, we propose a new method for estimating problem difficulty, LLM compare, that addresses these limitations. An LLM performs pairwise difficulty comparisons, and then Bradley-Terry scores are computed based on the outcomes. To validate our method, we first propose a conceptual framework that positions existing approaches on three orthogonal planes--construction, scale and dependence--identifying which quadrants a measure needs to occupy to score out-of-distribution problems. LLM compare naturally occupies all desirable quadrants as the first measure that is continuous and dynamic, model-agnostic and independent of ground truth information. As a second validation, we show that LLM compare demonstrates strong alignment with human annotations: Pearson $r \geq 0.80$ for $n=1876$. Thirdly, we show that LLM compare is robust to hallucinations, with less than $6\%$ degradation in Pearson correlation for $10\%$ noise injection. Our work represents a significant step towards replacing time-consuming human annotations and synthetic data generation, and will be an important driver for curriculum design, model evaluation, and AI-assisted research ideation.
comment: 19 pages, 10 figures
☆ Understanding and Improving Hyperbolic Deep Reinforcement Learning
The performance of reinforcement learning (RL) agents depends critically on the quality of the underlying feature representations. Hyperbolic feature spaces are well-suited for this purpose, as they naturally capture hierarchical and relational structure often present in complex RL environments. However, leveraging these spaces commonly faces optimization challenges due to the nonstationarity of RL. In this work, we identify key factors that determine the success and failure of training hyperbolic deep RL agents. By analyzing the gradients of core operations in the Poincaré Ball and Hyperboloid models of hyperbolic geometry, we show that large-norm embeddings destabilize gradient-based training, leading to trust-region violations in proximal policy optimization (PPO). Based on these insights, we introduce Hyper++, a new hyperbolic PPO agent that consists of three components: (i) stable critic training through a categorical value loss instead of regression; (ii) feature regularization guaranteeing bounded norms while avoiding the curse of dimensionality from clipping; and (iii) using a more optimization-friendly formulation of hyperbolic network layers. In experiments on ProcGen, we show that Hyper++ guarantees stable learning, outperforms prior hyperbolic agents, and reduces wall-clock time by approximately 30%. On Atari-5 with Double DQN, Hyper++ strongly outperforms Euclidean and hyperbolic baselines. We release our code at https://github.com/Probabilistic-and-Interactive-ML/hyper-rl .
☆ Random-Bridges as Stochastic Transports for Generative Models
This paper motivates the use of random-bridges -- stochastic processes conditioned to take target distributions at fixed timepoints -- in the realm of generative modelling. Herein, random-bridges can act as stochastic transports between two probability distributions when appropriately initialized, and can display either Markovian or non-Markovian, and either continuous, discontinuous or hybrid patterns depending on the driving process. We show how one can start from general probabilistic statements and then branch out into specific representations for learning and simulation algorithms in terms of information processing. Our empirical results, built on Gaussian random bridges, produce high-quality samples in significantly fewer steps compared to traditional approaches, while achieving competitive Frechet inception distance scores. Our analysis provides evidence that the proposed framework is computationally cheap and suitable for high-speed generation tasks.
☆ Optimizing the Adversarial Perturbation with a Momentum-based Adaptive Matrix
Generating adversarial examples (AEs) can be formulated as an optimization problem. Among various optimization-based attacks, the gradient-based PGD and the momentum-based MI-FGSM have garnered considerable interest. However, all these attacks use the sign function to scale their perturbations, which raises several theoretical concerns from the point of view of optimization. In this paper, we first reveal that PGD is actually a specific reformulation of the projected gradient method using only the current gradient to determine its step-size. Further, we show that when we utilize a conventional adaptive matrix with the accumulated gradients to scale the perturbation, PGD becomes AdaGrad. Motivated by this analysis, we present a novel momentum-based attack AdaMI, in which the perturbation is optimized with an interesting momentum-based adaptive matrix. AdaMI is proved to attain optimal convergence for convex problems, indicating that it addresses the non-convergence issue of MI-FGSM, thereby ensuring stability of the optimization process. The experiments demonstrate that the proposed momentum-based adaptive matrix can serve as a general and effective technique to boost adversarial transferability over the state-of-the-art methods across different networks while maintaining better stability and imperceptibility.
comment: IEEE Transactions on Dependable and Secure Computing
☆ On Improving Deep Active Learning with Formal Verification
Deep Active Learning (DAL) aims to reduce labeling costs in neural-network training by prioritizing the most informative unlabeled samples for annotation. Beyond selecting which samples to label, several DAL approaches further enhance data efficiency by augmenting the training set with synthetic inputs that do not require additional manual labeling. In this work, we investigate how augmenting the training data with adversarial inputs that violate robustness constraints can improve DAL performance. We show that adversarial examples generated via formal verification contribute substantially more than those produced by standard, gradient-based attacks. We apply this extension to multiple modern DAL techniques, as well as to a new technique that we propose, and show that it yields significant improvements in model generalization across standard benchmarks.
☆ PathFinder: Advancing Path Loss Prediction for Single-to-Multi-Transmitter Scenario
Radio path loss prediction (RPP) is critical for optimizing 5G networks and enabling IoT, smart city, and similar applications. However, current deep learning-based RPP methods lack proactive environmental modeling, struggle with realistic multi-transmitter scenarios, and generalize poorly under distribution shifts, particularly when training/testing environments differ in building density or transmitter configurations. This paper identifies three key issues: (1) passive environmental modeling that overlooks transmitters and key environmental features; (2) overemphasis on single-transmitter scenarios despite real-world multi-transmitter prevalence; (3) excessive focus on in-distribution performance while neglecting distribution shift challenges. To address these, we propose PathFinder, a novel architecture that actively models buildings and transmitters via disentangled feature encoding and integrates Mask-Guided Low-rank Attention to independently focus on receiver and building regions. We also introduce a Transmitter-Oriented Mixup strategy for robust training and a new benchmark, single-to-multi-transmitter RPP (S2MT-RPP), tailored to evaluate extrapolation performance (multi-transmitter testing after single-transmitter training). Experimental results show PathFinder outperforms state-of-the-art methods significantly, especially in challenging multi-transmitter scenarios. Our code and project site are available at: https://emorzz1g.github.io/PathFinder/.
comment: 34 pages, 14 figures, 4 tables. Under review
☆ Joint Multimodal Contrastive Learning for Robust Spoken Term Detection and Keyword Spotting
Acoustic Word Embeddings (AWEs) improve the efficiency of speech retrieval tasks such as Spoken Term Detection (STD) and Keyword Spotting (KWS). However, existing approaches suffer from limitations, including unimodal supervision, disjoint optimization of audio-audio and audio-text alignment, and the need for task-specific models. To address these shortcomings, we propose a joint multimodal contrastive learning framework that unifies both acoustic and cross-modal supervision in a shared embedding space. Our approach simultaneously optimizes: (i) audio-text contrastive learning, inspired by the CLAP loss, to align audio and text representations and (ii) audio-audio contrastive learning, via Deep Word Discrimination (DWD) loss, to enhance intra-class compactness and inter-class separation. The proposed method outperforms existing AWE baselines on word discrimination task while flexibly supporting both STD and KWS. To our knowledge, this is the first comprehensive approach of its kind.
☆ A First-Order Logic-Based Alternative to Reward Models in RLHF
Reinforcement Learning from Human Feedback (RLHF) plays a crucial role in aligning large language models (LLMs) with human values and preferences. However, the quality and stability of the trained reward model largely determine the final alignment performance. Existing approaches such as Proximal Policy Optimization (PPO) rely heavily on reward models to guide LLMs toward human-aligned behaviors. In this work, we propose a logic-similarity-based reward mechanism as an alternative to conventional reward modeling. Instead of relying on heuristic reward estimation, our method leverages formal logical consistency to steer model alignment with human preferences. Since real-world questions can be interpreted from multiple perspectives, to ensure that logic-based reinforcement learning does not cause model collapse, we introduce S-GRPO, a supervised variant of the GRPO framework. S-GRPO incorporates an additional supervised component and jointly optimizes the generation term, KL-divergence regularization, and label-based objective during training. Experimental results demonstrate that S-GRPO consistently outperforms standard supervised fine-tuning (SFT) in both performance and robustness. Furthermore, it extends existing preference-learning frameworks such as GRPO and DPO, offering a more flexible and task-adaptive approach to alignment training. Our code is available at https://github.com/ChunjinJiang/sgrpo.
☆ Cornserve: Efficiently Serving Any-to-Any Multimodal Models
We present Cornserve, an efficient online serving system for an emerging class of multimodal models called Any-to-Any models. Any-to-Any models accept combinations of text and multimodal data (e.g., image, video, audio) as input and also generate combinations of text and multimodal data as output, introducing request type, computation path, and computation scaling heterogeneity in model serving. Cornserve allows model developers to describe the computation graph of generic Any-to-Any models, which consists of heterogeneous components such as multimodal encoders, autoregressive models like Large Language Models (LLMs), and multimodal generators like Diffusion Transformers (DiTs). Given this, Cornserve's planner automatically finds an optimized deployment plan for the model, including whether and how to disaggregate the model into smaller components based on model and workload characteristics. Cornserve's distributed runtime then executes the model per the plan, efficiently handling Any-to-Any model heterogeneity during online serving. Evaluations show that Cornserve can efficiently serve diverse Any-to-Any models and workloads, delivering up to 3.81$\times$ throughput improvement and up to 5.79$\times$ tail latency reduction over existing solutions.
☆ Arithmetic-Intensity-Aware Quantization
As modern neural networks become increasingly memory-bound, inference throughput is limited by DRAM bandwidth rather than compute. We present Arithmetic-Intensity-Aware Quantization (AIQ), a mixed precision quantization framework that chooses per-layer bit-widths to maximize arithmetic intensity (AI) while minimizing accuracy loss. AIQ is a post-training quantization method that uses search algorithms over per-layer quantization schemes to minimize a weighted loss over AI and accuracy. On ResNet-20/CIFAR-10, AIQ increases AI by ~50% over an FP32 baseline while keeping test accuracy within ~1 percentage point, and outperforming global uniform quantization schemes. On a memory-bound MobileNetV2 architecture, AIQ configurations give a 1.66x higher throughput than the FP32 baseline while keeping test accuracy within 1 percentage point. We also find that AIQ naturally quantizes larger layers more aggressively.
☆ Derivative-Informed Fourier Neural Operator: Universal Approximation and Applications to PDE-Constrained Optimization
We present approximation theories and efficient training methods for derivative-informed Fourier neural operators (DIFNOs) with applications to PDE-constrained optimization. A DIFNO is an FNO trained by minimizing its prediction error jointly on output and Fréchet derivative samples of a high-fidelity operator (e.g., a parametric PDE solution operator). As a result, a DIFNO can closely emulate not only the high-fidelity operator's response but also its sensitivities. To motivate the use of DIFNOs instead of conventional FNOs as surrogate models, we show that accurate surrogate-driven PDE-constrained optimization requires accurate surrogate Fréchet derivatives. Then, for continuously differentiable operators, we establish (i) simultaneous universal approximation of FNOs and their Fréchet derivatives on compact sets, and (ii) universal approximation of FNOs in weighted Sobolev spaces with input measures that have unbounded supports. Our theoretical results certify the capability of FNOs for accurate derivative-informed operator learning and accurate solution of PDE-constrained optimization. Furthermore, we develop efficient training schemes using dimension reduction and multi-resolution techniques that significantly reduce memory and computational costs for Fréchet derivative learning. Numerical examples on nonlinear diffusion--reaction, Helmholtz, and Navier--Stokes equations demonstrate that DIFNOs are superior in sample complexity for operator learning and solving infinite-dimensional PDE-constrained inverse problems, achieving high accuracy at low training sample sizes.
☆ Scalable Frameworks for Real-World Audio-Visual Speech Recognition
The practical deployment of Audio-Visual Speech Recognition (AVSR) systems is fundamentally challenged by significant performance degradation in real-world environments, characterized by unpredictable acoustic noise and visual interference. This dissertation posits that a systematic, hierarchical approach is essential to overcome these challenges, achieving the robust scalability at the representation, architecture, and system levels. At the representation level, we investigate methods for building a unified model that learns audio-visual features inherently robust to diverse real-world corruptions, thereby enabling generalization to new environments without specialized modules. To address architectural scalability, we explore how to efficiently expand model capacity while ensuring the adaptive and reliable use of multimodal inputs, developing a framework that intelligently allocates computational resources based on the input characteristics. Finally, at the system level, we present methods to expand the system's functionality through modular integration with large-scale foundation models, leveraging their powerful cognitive and generative capabilities to maximize final recognition accuracy. By systematically providing solutions at each of these three levels, this dissertation aims to build a next-generation, robust, and scalable AVSR system with high reliability in real-world applications.
comment: PhD Dissertation
☆ SonicMoE: Accelerating MoE with IO and Tile-aware Optimizations
Mixture of Experts (MoE) models have emerged as the de facto architecture for scaling up language models without significantly increasing the computational cost. Recent MoE models demonstrate a clear trend towards high expert granularity (smaller expert intermediate dimension) and higher sparsity (constant number of activated experts with higher number of total experts), which improve model quality per FLOP. However, fine-grained MoEs suffer from increased activation memory footprint and reduced hardware efficiency due to higher IO costs, while sparser MoEs suffer from wasted computations due to padding in Grouped GEMM kernels. In response, we propose a memory-efficient algorithm to compute the forward and backward passes of MoEs with minimal activation caching for the backward pass. We also design GPU kernels that overlap memory IO with computation benefiting all MoE architectures. Finally, we propose a novel "token rounding" method that minimizes the wasted compute due to padding in Grouped GEMM kernels. As a result, our method SonicMoE reduces activation memory by 45% and achieves a 1.86x compute throughput improvement on Hopper GPUs compared to ScatterMoE's BF16 MoE kernel for a fine-grained 7B MoE. Concretely, SonicMoE on 64 H100s achieves a training throughput of 213 billion tokens per day comparable to ScatterMoE's 225 billion tokens per day on 96 H100s for a 7B MoE model training with FSDP-2 using the lm-engine codebase. Under high MoE sparsity settings, our tile-aware token rounding algorithm yields an additional 1.16x speedup on kernel execution time compared to vanilla top-$K$ routing while maintaining similar downstream performance. We open-source all our kernels to enable faster MoE model training.
☆ FusAD: Time-Frequency Fusion with Adaptive Denoising for General Time Series Analysis
Time series analysis plays a vital role in fields such as finance, healthcare, industry, and meteorology, underpinning key tasks including classification, forecasting, and anomaly detection. Although deep learning models have achieved remarkable progress in these areas in recent years, constructing an efficient, multi-task compatible, and generalizable unified framework for time series analysis remains a significant challenge. Existing approaches are often tailored to single tasks or specific data types, making it difficult to simultaneously handle multi-task modeling and effectively integrate information across diverse time series types. Moreover, real-world data are often affected by noise, complex frequency components, and multi-scale dynamic patterns, which further complicate robust feature extraction and analysis. To ameliorate these challenges, we propose FusAD, a unified analysis framework designed for diverse time series tasks. FusAD features an adaptive time-frequency fusion mechanism, integrating both Fourier and Wavelet transforms to efficiently capture global-local and multi-scale dynamic features. With an adaptive denoising mechanism, FusAD automatically senses and filters various types of noise, highlighting crucial sequence variations and enabling robust feature extraction in complex environments. In addition, the framework integrates a general information fusion and decoding structure, combined with masked pre-training, to promote efficient learning and transfer of multi-granularity representations. Extensive experiments demonstrate that FusAD consistently outperforms state-of-the-art models on mainstream time series benchmarks for classification, forecasting, and anomaly detection tasks, while maintaining high efficiency and scalability. Code is available at https://github.com/zhangda1018/FusAD.
comment: Paper has been accepted by ICDE2026
☆ Efficient-DLM: From Autoregressive to Diffusion Language Models, and Beyond in Speed
Diffusion language models (dLMs) have emerged as a promising paradigm that enables parallel, non-autoregressive generation, but their learning efficiency lags behind that of autoregressive (AR) language models when trained from scratch. To this end, we study AR-to-dLM conversion to transform pretrained AR models into efficient dLMs that excel in speed while preserving AR models' task accuracy. We achieve this by identifying limitations in the attention patterns and objectives of existing AR-to-dLM methods and then proposing principles and methodologies for more effective AR-to-dLM conversion. Specifically, we first systematically compare different attention patterns and find that maintaining pretrained AR weight distributions is critical for effective AR-to-dLM conversion. As such, we introduce a continuous pretraining scheme with a block-wise attention pattern, which remains causal across blocks while enabling bidirectional modeling within each block. We find that this approach can better preserve pretrained AR models' weight distributions than fully bidirectional modeling, in addition to its known benefit of enabling KV caching, and leads to a win-win in accuracy and efficiency. Second, to mitigate the training-test gap in mask token distributions (uniform vs. highly left-to-right), we propose a position-dependent token masking strategy that assigns higher masking probabilities to later tokens during training to better mimic test-time behavior. Leveraging this framework, we conduct extensive studies of dLMs' attention patterns, training dynamics, and other design choices, providing actionable insights into scalable AR-to-dLM conversion. These studies lead to the Efficient-DLM family, which outperforms state-of-the-art AR models and dLMs, e.g., our Efficient-DLM 8B achieves +5.4%/+2.7% higher accuracy with 4.5x/2.7x higher throughput compared to Dream 7B and Qwen3 4B, respectively.
☆ A Deep Dive into Function Inlining and its Security Implications for ML-based Binary Analysis
A function inlining optimization is a widely used transformation in modern compilers, which replaces a call site with the callee's body in need. While this transformation improves performance, it significantly impacts static features such as machine instructions and control flow graphs, which are crucial to binary analysis. Yet, despite its broad impact, the security impact of function inlining remains underexplored to date. In this paper, we present the first comprehensive study of function inlining through the lens of machine learning-based binary analysis. To this end, we dissect the inlining decision pipeline within the LLVM's cost model and explore the combinations of the compiler options that aggressively promote the function inlining ratio beyond standard optimization levels, which we term extreme inlining. We focus on five ML-assisted binary analysis tasks for security, using 20 unique models to systematically evaluate their robustness under extreme inlining scenarios. Our extensive experiments reveal several significant findings: i) function inlining, though a benign transformation in intent, can (in)directly affect ML model behaviors, being potentially exploited by evading discriminative or generative ML models; ii) ML models relying on static features can be highly sensitive to inlining; iii) subtle compiler settings can be leveraged to deliberately craft evasive binary variants; and iv) inlining ratios vary substantially across applications and build configurations, undermining assumptions of consistency in training and evaluation of ML models.
☆ ChartAgent: A Chart Understanding Framework with Tool Integrated Reasoning
With their high information density and intuitive readability, charts have become the de facto medium for data analysis and communication across disciplines. Recent multimodal large language models (MLLMs) have made notable progress in automated chart understanding, yet they remain heavily dependent on explicit textual annotations and the performance degrades markedly when key numerals are absent. To address this limitation, we introduce ChartAgent, a chart understanding framework grounded in Tool-Integrated Reasoning (TIR). Inspired by human cognition, ChartAgent decomposes complex chart analysis into a sequence of observable, replayable steps. Supporting this architecture is an extensible, modular tool library comprising more than a dozen core tools, such as keyelement detection, instance segmentation, and optical character recognition (OCR), which the agent dynamically orchestrates to achieve systematic visual parsing across diverse chart types. Leveraging TIRs transparency and verifiability, ChartAgent moves beyond the black box paradigm by standardizing and consolidating intermediate outputs into a structured Evidence Package, providing traceable and reproducible support for final conclusions. Experiments show that ChartAgent substantially improves robustness under sparse annotation settings, offering a practical path toward trustworthy and extensible systems for chart understanding.
☆ Multivariate Time Series Forecasting with Hybrid Euclidean-SPD Manifold Graph Neural Networks
Multivariate Time Series (MTS) forecasting plays a vital role in various real-world applications, such as traffic management and predictive maintenance. Existing approaches typically model MTS data in either Euclidean or Riemannian space, limiting their ability to capture the diverse geometric structures and complex spatio-temporal dependencies inherent in real-world data. To overcome this limitation, we propose the Hybrid Symmetric Positive-Definite Manifold Graph Neural Network (HSMGNN), a novel graph neural network-based model that captures data geometry within a hybrid Euclidean-Riemannian framework. To the best of our knowledge, this is the first work to leverage hybrid geometric representations for MTS forecasting, enabling expressive and comprehensive modeling of geometric properties. Specifically, we introduce a Submanifold-Cross-Segment (SCS) embedding to project input MTS into both Euclidean and Riemannian spaces, thereby capturing spatio-temporal variations across distinct geometric domains. To alleviate the high computational cost of Riemannian distance, we further design an Adaptive-Distance-Bank (ADB) layer with a trainable memory mechanism. Finally, a Fusion Graph Convolutional Network (FGCN) is devised to integrate features from the dual spaces via a learnable fusion operator for accurate prediction. Experiments on three benchmark datasets demonstrate that HSMGNN achieves up to a 13.8 percent improvement over state-of-the-art baselines in forecasting accuracy.
☆ EXAONE Path 2.5: Pathology Foundation Model with Multi-Omics Alignment
Cancer progression arises from interactions across multiple biological layers, especially beyond morphological and across molecular layers that remain invisible to image-only models. To capture this broader biological landscape, we present EXAONE Path 2.5, a pathology foundation model that jointly models histologic, genomic, epigenetic and transcriptomic modalities, producing an integrated patient representation that reflects tumor biology more comprehensively. Our approach incorporates three key components: (1) multimodal SigLIP loss enabling all-pairwise contrastive learning across heterogeneous modalities, (2) a fragment-aware rotary positional encoding (F-RoPE) module that preserves spatial structure and tissue-fragment topology in WSI, and (3) domain-specialized internal foundation models for both WSI and RNA-seq to provide biologically grounded embeddings for robust multimodal alignment. We evaluate EXAONE Path 2.5 against six leading pathology foundation models across two complementary benchmarks: an internal real-world clinical dataset and the Patho-Bench benchmark covering 80 tasks. Our framework demonstrates high data and parameter efficiency, achieving on-par performance with state-of-the-art foundation models on Patho-Bench while exhibiting the highest adaptability in the internal clinical setting. These results highlight the value of biologically informed multimodal design and underscore the potential of integrated genotype-to-phenotype modeling for next-generation precision oncology.
☆ Accelerating MHC-II Epitope Discovery via Multi-Scale Prediction in Antigen Presentation
Antigenic epitope presented by major histocompatibility complex II (MHC-II) proteins plays an essential role in immunotherapy. However, compared to the more widely studied MHC-I in computational immunotherapy, the study of MHC-II antigenic epitope poses significantly more challenges due to its complex binding specificity and ambiguous motif patterns. Consequently, existing datasets for MHC-II interactions are smaller and less standardized than those available for MHC-I. To address these challenges, we present a well-curated dataset derived from the Immune Epitope Database (IEDB) and other public sources. It not only extends and standardizes existing peptide-MHC-II datasets, but also introduces a novel antigen-MHC-II dataset with richer biological context. Leveraging this dataset, we formulate three major machine learning (ML) tasks of peptide binding, peptide presentation, and antigen presentation, which progressively capture the broader biological processes within the MHC-II antigen presentation pathway. We further employ a multi-scale evaluation framework to benchmark existing models, along with a comprehensive analysis over various modeling designs to this problem with a modular framework. Overall, this work serves as a valuable resource for advancing computational immunotherapy, providing a foundation for future research in ML guided epitope discovery and predictive modeling of immune responses.
☆ Physics-Informed Machine Learning for Two-Phase Moving-Interface and Stefan Problems
The Stefan problem is a classical free-boundary problem that models phase-change processes and poses computational challenges due to its moving interface and nonlinear temperature-phase coupling. In this work, we develop a physics-informed neural network framework for solving two-phase Stefan problems. The proposed method explicitly tracks the interface motion and enforces the discontinuity in the temperature gradient across the interface while maintaining global consistency of the temperature field. Our approach employs two neural networks: one representing the moving interface and the other for the temperature field. The interface network allows rapid categorization of thermal diffusivity in the spatial domain, which is a crucial step for selecting training points for the temperature network. The temperature network's input is augmented with a modified zero-level set function to accurately capture the jump in its normal derivative across the interface. Numerical experiments on two-phase dynamical Stefan problems demonstrate the superior accuracy and effectiveness of our proposed method compared with the ones obtained by other neural network methodology in literature. The results indicate that the proposed framework offers a robust and flexible alternative to traditional numerical methods for solving phase-change problems governed by moving boundaries. In addition, the proposed method can capture an unstable interface evolution associated with the Mullins-Sekerka instability.
☆ On the Hardness of Conditional Independence Testing In Practice NeurIPS 2025
Tests of conditional independence (CI) underpin a number of important problems in machine learning and statistics, from causal discovery to evaluation of predictor fairness and out-of-distribution robustness. Shah and Peters (2020) showed that, contrary to the unconditional case, no universally finite-sample valid test can ever achieve nontrivial power. While informative, this result (based on "hiding" dependence) does not seem to explain the frequent practical failures observed with popular CI tests. We investigate the Kernel-based Conditional Independence (KCI) test - of which we show the Generalized Covariance Measure underlying many recent tests is nearly a special case - and identify the major factors underlying its practical behavior. We highlight the key role of errors in the conditional mean embedding estimate for the Type-I error, while pointing out the importance of selecting an appropriate conditioning kernel (not recognized in previous work) as being necessary for good test power but also tending to inflate Type-I error.
comment: Published at NeurIPS 2025: https://openreview.net/forum?id=Tn1M71PDfF
☆ Maximum Mean Discrepancy with Unequal Sample Sizes via Generalized U-Statistics
Existing two-sample testing techniques, particularly those based on choosing a kernel for the Maximum Mean Discrepancy (MMD), often assume equal sample sizes from the two distributions. Applying these methods in practice can require discarding valuable data, unnecessarily reducing test power. We address this long-standing limitation by extending the theory of generalized U-statistics and applying it to the usual MMD estimator, resulting in new characterization of the asymptotic distributions of the MMD estimator with unequal sample sizes (particularly outside the proportional regimes required by previous partial results). This generalization also provides a new criterion for optimizing the power of an MMD test with unequal sample sizes. Our approach preserves all available data, enhancing test accuracy and applicability in realistic settings. Along the way, we give much cleaner characterizations of the variance of MMD estimators, revealing something that might be surprising to those in the area: while zero MMD implies a degenerate estimator, it is sometimes possible to have a degenerate estimator with nonzero MMD as well; we give a construction and a proof that it does not happen in common situations.
☆ A Single Architecture for Representing Invariance Under Any Space Group
Incorporating known symmetries in data into machine learning models has consistently improved predictive accuracy, robustness, and generalization. However, achieving exact invariance to specific symmetries typically requires designing bespoke architectures for each group of symmetries, limiting scalability and preventing knowledge transfer across related symmetries. In the case of the space groups, symmetries critical to modeling crystalline solids in materials science and condensed matter physics, this challenge is particularly salient as there are 230 such groups in three dimensions. In this work we present a new approach to such crystallographic symmetries by developing a single machine learning architecture that is capable of adapting its weights automatically to enforce invariance to any input space group. Our approach is based on constructing symmetry-adapted Fourier bases through an explicit characterization of constraints that group operations impose on Fourier coefficients. Encoding these constraints into a neural network layer enables weight sharing across different space groups, allowing the model to leverage structural similarities between groups and overcome data sparsity when limited measurements are available for specific groups. We demonstrate the effectiveness of this approach in achieving competitive performance on material property prediction tasks and performing zero-shot learning to generalize to unseen groups.
comment: 24 pages, 7 figures
☆ Deep Learning and Elicitability for McKean-Vlasov FBSDEs With Common Noise
We present a novel numerical method for solving McKean-Vlasov forward-backward stochastic differential equations (MV-FBSDEs) with common noise, combining Picard iterations, elicitability and deep learning. The key innovation involves elicitability to derive a path-wise loss function, enabling efficient training of neural networks to approximate both the backward process and the conditional expectations arising from common noise - without requiring computationally expensive nested Monte Carlo simulations. The mean-field interaction term is parameterized via a recurrent neural network trained to minimize an elicitable score, while the backward process is approximated through a feedforward network representing the decoupling field. We validate the algorithm on a systemic risk inter-bank borrowing and lending model, where analytical solutions exist, demonstrating accurate recovery of the true solution. We further extend the model to quantile-mediated interactions, showcasing the flexibility of the elicitability framework beyond conditional means or moments. Finally, we apply the method to a non-stationary Aiyagari--Bewley--Huggett economic growth model with endogenous interest rates, illustrating its applicability to complex mean-field games without closed-form solutions.
comment: 17 pages, 7 figures,
☆ Intrusion Detection in Internet of Vehicles Using Machine Learning
The Internet of Vehicles (IoV) has evolved modern transportation through enhanced connectivity and intelligent systems. However, this increased connectivity introduces critical vulnerabilities, making vehicles susceptible to cyber-attacks such Denial-ofService (DoS) and message spoofing. This project aims to develop a machine learning-based intrusion detection system to classify malicious Controller Area network (CAN) bus traffic using the CiCIoV2024 benchmark dataset. We analyzed various attack patterns including DoS and spoofing attacks targeting critical vehicle parameters such as Spoofing-GAS - gas pedal position, Spoofing-RPM, Spoofing-Speed, and Spoofing-Steering\_Wheel. Our initial findings confirm a multi-class classification problem with a clear structural difference between attack types and benign data, providing a strong foundation for machine learning models.
☆ Cross-Tokenizer Likelihood Scoring Algorithms for Language Model Distillation
Computing next-token likelihood ratios between two language models (LMs) is a standard task in training paradigms such as knowledge distillation. Since this requires both models to share the same probability space, it becomes challenging when the teacher and student LMs use different tokenizers, for instance, when edge-device deployment necessitates a smaller vocabulary size to lower memory overhead. In this work, we address this vocabulary misalignment problem by uncovering an implicit recursive structure in the commonly deployed Byte-Pair Encoding (BPE) algorithm and utilizing it to create a probabilistic framework for cross-tokenizer likelihood scoring. Our method enables sequence likelihood evaluation for vocabularies different from the teacher model native tokenizer, addressing two specific scenarios: when the student vocabulary is a subset of the teacher vocabulary, and the general case where it is arbitrary. In the subset regime, our framework computes exact likelihoods and provides next-token probabilities for sequential sampling with only O(1) model evaluations per token. When used for distillation, this yields up to a 12% reduction in memory footprint for the Qwen2.5-1.5B model while also improving baseline performance up to 4% on the evaluated tasks. For the general case, we introduce a rigorous lossless procedure that leverages BPE recursive structure, complemented by a fast approximation that keeps large-vocabulary settings practical. Applied to distillation for mathematical reasoning, our approach improves GSM8K accuracy by more than 2% over the current state of the art.
☆ EVICPRESS: Joint KV-Cache Compression and Eviction for Efficient LLM Serving
Reusing KV cache is essential for high efficiency of Large Language Model (LLM) inference systems. With more LLM users, the KV cache footprint can easily exceed GPU memory capacity, so prior work has proposed to either evict KV cache to lower-tier storage devices, or compress KV cache so that more KV cache can be fit in the fast memory. However, prior work misses an important opportunity: jointly optimizing the eviction and compression decisions across all KV caches to minimize average generation latency without hurting quality. We propose EVICPRESS, a KV-cache management system that applies lossy compression and adaptive eviction to KV cache across multiple storage tiers. Specifically, for each KV cache of a context, EVICPRESS considers the effect of compression and eviction of the KV cache on the average generation quality and delay across all contexts as a whole. To achieve this, EVICPRESS proposes a unified utility function that quantifies the effect of quality and delay of the lossy compression or eviction. To this end, EVICPRESS's profiling module periodically updates the utility function scores on all possible eviction-compression configurations for all contexts and places KV caches using a fast heuristic to rearrange KV caches on all storage tiers, with the goal of maximizing the utility function scores on each storage tier. Compared to the baselines that evict KV cache or compress KV cache, EVICPRESS achieves higher KV-cache hit rates on fast devices, i.e., lower delay, while preserving high generation quality by applying conservative compression to contexts that are sensitive to compression errors. Evaluation on 12 datasets and 5 models demonstrates that EVICPRESS achieves up to 2.19x faster time-to-first-token (TTFT) at equivalent generation quality.
☆ Boundary condition enforcement with PINNs: a comparative study and verification on 3D geometries
Since their advent nearly a decade ago, physics-informed neural networks (PINNs) have been studied extensively as a novel technique for solving forward and inverse problems in physics and engineering. The neural network discretization of the solution field is naturally adaptive and avoids meshing the computational domain, which can both improve the accuracy of the numerical solution and streamline implementation. However, there have been limited studies of PINNs on complex three-dimensional geometries, as the lack of mesh and the reliance on the strong form of the partial differential equation (PDE) make boundary condition (BC) enforcement challenging. Techniques to enforce BCs with PINNs have proliferated in the literature, but a comprehensive side-by-side comparison of these techniques and a study of their efficacy on geometrically complex three-dimensional test problems are lacking. In this work, we i) systematically compare BC enforcement techniques for PINNs, ii) propose a general solution framework for arbitrary three-dimensional geometries, and iii) verify the methodology on three-dimensional, linear and nonlinear test problems with combinations of Dirichlet, Neumann, and Robin boundaries. Our approach is agnostic to the underlying PDE, the geometry of the computational domain, and the nature of the BCs, while requiring minimal hyperparameter tuning. This work represents a step in the direction of establishing PINNs as a mature numerical method, capable of competing head-to-head with incumbents such as the finite element method.
☆ Cloud Security Leveraging AI: A Fusion-Based AISOC for Malware and Log Behaviour Detection
Cloud Security Operations Center (SOC) enable cloud governance, risk and compliance by providing insights visibility and control. Cloud SOC triages high-volume, heterogeneous telemetry from elastic, short-lived resources while staying within tight budgets. In this research, we implement an AI-Augmented Security Operations Center (AISOC) on AWS that combines cloud-native instrumentation with ML-based detection. The architecture uses three Amazon EC2 instances: Attacker, Defender, and Monitoring. We simulate a reverse-shell intrusion with Metasploit, and Filebeat forwards Defender logs to an Elasticsearch and Kibana stack for analysis. We train two classifiers, a malware detector built on a public dataset and a log-anomaly detector trained on synthetically augmented logs that include adversarial variants. We calibrate and fuse the scores to produce multi-modal threat intelligence and triage activity into NORMAL, SUSPICIOUS, and HIGH\_CONFIDENCE\_ATTACK. On held-out tests the fusion achieves strong macro-F1 (up to 1.00) under controlled conditions, though performance will vary in noisier and more diverse environments. These results indicate that simple, calibrated fusion can enhance cloud SOC capabilities in constrained, cost-sensitive setups.
☆ Low-rank MMSE filters, Kronecker-product representation, and regularization: a new perspective
In this work, we propose a method to efficiently find the regularization parameter for low-rank MMSE filters based on a Kronecker-product representation. We show that the regularization parameter is surprisingly linked to the problem of rank selection and, thus, properly choosing it, is crucial for low-rank settings. The proposed method is validated through simulations, showing significant gains over commonly used methods.
☆ Deep learning water-unsuppressed MRSI at ultra-high field for simultaneous quantitative metabolic, susceptibility and myelin water imaging
Purpose: Magnetic Resonance Spectroscopic Imaging (MRSI) maps endogenous brain metabolism while suppressing the overwhelming water signal. Water-unsuppressed MRSI (wu-MRSI) allows simultaneous imaging of water and metabolites, but large water sidebands cause challenges for metabolic fitting. We developed an end-to-end deep-learning pipeline to overcome these challenges at ultra-high field. Methods:Fast high-resolution wu-MRSI was acquired at 7T with non-cartesian ECCENTRIC sampling and ultra-short echo time. A water and lipid removal network (WALINET+) was developed to remove lipids, water signal, and sidebands. MRSI reconstruction was performed by DeepER and a physics-informed network for metabolite fitting. Water signal was used for absolute metabolite quantification, quantitative susceptibility mapping (QSM), and myelin water fraction imaging (MWF). Results: WALINET+ provided the lowest NRMSE (< 2%) in simulations and in vivo the smallest bias (< 20%) and limits-of-agreement (+-63%) between wu-MRSI and ws-MRSI scans. Several metabolites such as creatine and glutamate showed higher SNR in wu-MRSI. QSM and MWF obtained from wu-MRSI and GRE showed good agreement with 0 ppm/5.5% bias and +-0.05 ppm/ +- 12.75% limits-of-agreement. Conclusion: High-quality metabolic, QSM, and MWF mapping of the human brain can be obtained simultaneously by ECCENTRIC wu-MRSI at 7T with 2 mm isotropic resolution in 12 min. WALINET+ robustly removes water sidebands while preserving metabolite signal, eliminating the need for water suppression and separate water acquisitions.
☆ Parameter Efficient Multimodal Instruction Tuning for Romanian Vision Language Models
Focusing on low-resource languages is an essential step toward democratizing generative AI. In this work, we contribute to reducing the multimodal NLP resource gap for Romanian. We translate the widely known Flickr30k dataset into Romanian and further extend it for visual question answering by leveraging open-source LLMs. We demonstrate the usefulness of our datasets by fine-tuning open-source VLMs on Romanian visual question answering. We select VLMs from three widely used model families: LLaMA 3.2, LLaVA 1.6, and Qwen2. For fine-tuning, we employ the parameter-efficient LoRA method. Our models show improved Romanian capabilities in visual QA, as well as on tasks they were not trained on, such as Romanian image description generation. The seven-billion-parameter Qwen2-VL-RoVQA obtains top scores on both tasks, with improvements of +6.05% and +2.61% in BERTScore F1 over its original version. Finally, the models show substantial reductions in grammatical errors compared to their original forms, indicating improvements not only in language understanding but also in Romanian fluency.
☆ ATLAS: Adaptive Topology-based Learning at Scale for Homophilic and Heterophilic Graphs
We present ATLAS (Adaptive Topology-based Learning at Scale for Homophilic and Heterophilic Graphs), a novel graph learning algorithm that addresses two important challenges in graph neural networks (GNNs). First, the accuracy of GNNs degrades when the graph is heterophilic. Second, iterative feature aggregation limits the scalability of GNNs to large graphs. We address these challenges by extracting topological information about graph communities at multiple levels of refinement, concatenating community assignments to the feature vector, and applying multilayer perceptrons (MLPs) to the resulting representation. This provides topological context about nodes and their neighborhoods without invoking aggregation. Because MLPs are typically more scalable than GNNs, our approach applies to large graphs without the need for sampling. Across a wide set of graphs, ATLAS achieves comparable accuracy to baseline methods, with gains as high as 20 percentage points over GCN for heterophilic graphs with negative structural bias and 11 percentage points over MLP for homophilic graphs. Furthermore, we show how multi-resolution community features systematically modulate performance in both homophilic and heterophilic settings, opening a principled path toward explainable graph learning.
comment: Preprint
☆ Imitation Learning for Multi-turn LM Agents via On-policy Expert Corrections
A popular paradigm for training LM agents relies on imitation learning, fine-tuning on expert trajectories. However, we show that the off-policy nature of imitation learning for multi-turn LM agents suffers from the fundamental limitation known as covariate shift: as the student policy's behavior diverges from the expert's, it encounters states not present in the training data, reducing the effectiveness of fine-tuning. Taking inspiration from the classic DAgger algorithm, we propose a novel data generation methodology for addressing covariate shift for multi-turn LLM training. We introduce on-policy expert corrections (OECs), partially on-policy data generated by starting rollouts with a student model and then switching to an expert model part way through the trajectory. We explore the effectiveness of our data generation technique in the domain of software engineering (SWE) tasks, a multi-turn setting where LLM agents must interact with a development environment to fix software bugs. Our experiments compare OEC data against various other on-policy and imitation learning approaches on SWE agent problems and train models using a common rejection sampling (i.e., using environment reward) combined with supervised fine-tuning technique. Experiments find that OEC trajectories show a relative 14% and 13% improvement over traditional imitation learning in the 7b and 32b setting, respectively, on SWE-bench verified. Our results demonstrate the need for combining expert demonstrations with on-policy data for effective multi-turn LM agent training.
☆ OLR-WA: Online Weighted Average Linear Regression in Multivariate Data Streams
Online learning updates models incrementally with new data, avoiding large storage requirements and costly model recalculations. In this paper, we introduce "OLR-WA; OnLine Regression with Weighted Average", a novel and versatile multivariate online linear regression model. We also investigate scenarios involving drift, where the underlying patterns in the data evolve over time, conduct convergence analysis, and compare our approach with existing online regression models. The results of OLR-WA demonstrate its ability to achieve performance comparable to the batch regression, while also showcasing comparable or superior performance when compared with other state-of-the-art online models, thus establishing its effectiveness. Moreover, OLR-WA exhibits exceptional performance in terms of rapid convergence, surpassing other online models with consistently achieving high r2 values as a performance measure from the first iteration to the last iteration, even when initialized with minimal amount of data points, as little as 1% to 10% of the total data points. In addition to its ability to handle time-based (temporal drift) scenarios, remarkably, OLR-WA stands out as the only model capable of effectively managing confidence-based challenging scenarios. It achieves this by adopting a conservative approach in its updates, giving priority to older data points with higher confidence levels. In summary, OLR-WA's performance further solidifies its versatility and utility across different contexts, making it a valuable solution for online linear regression tasks.
☆ Task Matrices: Linear Maps for Cross-Model Finetuning Transfer NeurIPS
Results in interpretability suggest that large vision and language models learn implicit linear encodings when models are biased by in-context prompting. However, the existence of similar linear representations in more general adaptation regimes has not yet been demonstrated. In this work, we develop the concept of a task matrix, a linear transformation from a base to finetuned embedding state. We demonstrate that for vision and text models and ten different datasets, a base model augmented with a task matrix achieves results surpassing linear probes, sometimes approaching finetuned levels. Our results validate the existence of cross-layer linear encodings between pretrained and finetuned architectures. Moreover, we show that a data-based approximation for such encodings is both efficient and generalizable to multiple domains. We make our implementation publicly available.
comment: NeurIPS Unireps 2025
☆ Entropy-Reservoir Bregman Projection: An Information-Geometric Unification of Model Collapse
Self-referential learning -- training a model on data it generated itself -- promises boundless scalability but chronically suffers from model collapse: language models degenerate into repetitive text, GANs drop modes, and reinforcement-learning policies over-exploit. Although practitioners employ ad~hoc fixes such as real-data mixing, entropy bonuses, knowledge distillation, or retrieval-augmented generation, a single principle that explains both the failure mode and the success of these fixes has remained elusive. We present Entropy-Reservoir Bregman Projection (ERBP), an information-geometric framework that unifies these phenomena. We model the closed loop as a stochastic Bregman projection sequence in distribution space. Without external coupling, finite-sample noise forces the system to project onto an ever-shrinking empirical support, causing exponential entropy decay and eventual collapse. Introducing an Entropy Reservoir -- a high-entropy distribution mixed into each projection -- injects a controllable entropy flux that provably stabilises the dynamics. Our theory yields (i) a necessary condition for collapse, (ii) a sufficient condition that guarantees a non-trivial entropy floor, and (iii) closed-form rates that depend only on sample size and the strong-convexity/Lipschitz constants of the Bregman generator. Experiments on large-language-model self-training, Soft Actor-Critic in reinforcement learning, and GAN optimisation validate our predictions and show that disparate stabilisation heuristics correspond to specific reservoir choices and coupling coefficients. ERBP thus transforms a collection of folk remedies into a single, quantitative design rule: monitor and budget your entropy flux.
☆ How Does Fourier Analysis Network Work? A Mechanism Analysis and a New Dual-Activation Layer Proposal
Fourier Analysis Network (FAN) was recently proposed as a simple way to improve neural network performance by replacing part of ReLU activations with sine and cosine functions. Although several studies have reported small but consistent gains across tasks, the underlying mechanism behind these improvements has remained unclear. In this work, we show that only the sine activation contributes positively to performance, whereas the cosine activation tends to be detrimental. Our analysis reveals that the improvement is not a consequence of the sine function's periodic nature; instead, it stems from the function's local behavior near x = 0, where its non-zero derivative mitigates the vanishing-gradient problem. We further show that FAN primarily alleviates the dying-ReLU problem, in which a neuron consistently receives negative inputs, produces zero gradients, and stops learning. Although modern ReLU-like activations, such as Leaky ReLU, GELU, and Swish, reduce ReLU's zero-gradient region, they still contain input domains where gradients remain significantly diminished, contributing to slower optimization and hindering rapid convergence. FAN addresses this limitation by introducing a more stable gradient pathway. This analysis shifts the understanding of FAN's benefits from a spectral interpretation to a concrete analysis of training dynamics, leading to the development of the Dual-Activation Layer (DAL), a more efficient convergence accelerator. We evaluate DAL on three tasks: classification of noisy sinusoidal signals versus pure noise, MNIST digit classification, and ECG-based biometric recognition. In all cases, DAL models converge faster and achieve equal or higher validation accuracy compared to models with conventional activations.
☆ Audio MultiChallenge: A Multi-Turn Evaluation of Spoken Dialogue Systems on Natural Human Interaction
End-to-end (E2E) spoken dialogue systems are increasingly replacing cascaded pipelines for voice-based human-AI interaction, processing raw audio directly without intermediate transcription. Existing benchmarks primarily evaluate these models on synthetic speech and single-turn tasks, leaving realistic multi-turn conversational ability underexplored. We introduce Audio MultiChallenge, an open-source benchmark to evaluate E2E spoken dialogue systems under natural multi-turn interaction patterns. Building on the text-based MultiChallenge framework, which evaluates Inference Memory, Instruction Retention, and Self Coherence, we introduce a new axis Voice Editing that tests robustness to mid-utterance speech repairs and backtracking. We further augment each axis to the audio modality, such as introducing Audio-Cue challenges for Inference Memory that require recalling ambient sounds and paralinguistic signals beyond semantic content. We curate 452 conversations from 47 speakers with 1,712 instance-specific rubrics through a hybrid audio-native agentic and human-in-the-loop pipeline that exposes model failures at scale while preserving natural disfluencies found in unscripted human speech. Our evaluation of proprietary and open-source models reveals that even frontier models struggle on our benchmark, with Gemini 3 Pro Preview (Thinking), our highest-performing model achieving a 54.65% pass rate. Error analysis shows that models fail most often on our new axes and that Self Coherence degrades with longer audio context. These failures reflect difficulty of tracking edits, audio cues, and long-range context in natural spoken dialogue. Audio MultiChallenge provides a reproducible testbed to quantify them and drive improvements in audio-native multi-turn interaction capability.
☆ Unreliable Uncertainty Estimates with Monte Carlo Dropout
Reliable uncertainty estimation is crucial for machine learning models, especially in safety-critical domains. While exact Bayesian inference offers a principled approach, it is often computationally infeasible for deep neural networks. Monte Carlo dropout (MCD) was proposed as an efficient approximation to Bayesian inference in deep learning by applying neuron dropout at inference time \citep{gal2016dropout}. Hence, the method generates multiple sub-models yielding a distribution of predictions to estimate uncertainty. We empirically investigate its ability to capture true uncertainty and compare to Gaussian Processes (GP) and Bayesian Neural Networks (BNN). We find that MCD struggles to accurately reflect the underlying true uncertainty, particularly failing to capture increased uncertainty in extrapolation and interpolation regions as observed in Bayesian models. The findings suggest that uncertainty estimates from MCD, as implemented and evaluated in these experiments, is not as reliable as those from traditional Bayesian approaches for capturing epistemic and aleatoric uncertainty.
comment: Accepted for the Northern Lights Deep Learning 2026
☆ Incentives or Ontology? A Structural Rebuttal to OpenAI's Hallucination Thesis
OpenAI has recently argued that hallucinations in large language models result primarily from misaligned evaluation incentives that reward confident guessing rather than epistemic humility. On this view, hallucination is a contingent behavioral artifact, remediable through improved benchmarks and reward structures. In this paper, we challenge that interpretation. Drawing on previous work on structural hallucination and empirical experiments using a Licensing Oracle, we argue that hallucination is not an optimization failure but an architectural inevitability of the transformer model. Transformers do not represent the world; they model statistical associations among tokens. Their embedding spaces form a pseudo-ontology derived from linguistic co-occurrence rather than world-referential structure. At ontological boundary conditions - regions where training data is sparse or incoherent - the model necessarily interpolates fictional continuations in order to preserve coherence. No incentive mechanism can modify this structural dependence on pattern completion. Our empirical results demonstrate that hallucination can only be eliminated through external truth-validation and abstention modules, not through changes to incentives, prompting, or fine-tuning. The Licensing Oracle achieves perfect abstention precision across domains precisely because it supplies grounding that the transformer lacks. We conclude that hallucination is a structural property of generative architectures and that reliable AI requires hybrid systems that distinguish linguistic fluency from epistemic responsibility.
comment: 17 pages, references to prior work arXiv:2509.16297 and arXiv:2511.06073
☆ Magnification-Aware Distillation (MAD): A Self-Supervised Framework for Unified Representation Learning in Gigapixel Whole-Slide Images
Whole-slide images (WSIs) contain tissue information distributed across multiple magnification levels, yet most self-supervised methods treat these scales as independent views. This separation prevents models from learning representations that remain stable when resolution changes, a key requirement for practical neuropathology workflows. This study introduces Magnification-Aware Distillation (MAD), a self-supervised strategy that links low-magnification context with spatially aligned high-magnification detail, enabling the model to learn how coarse tissue structure relates to fine cellular patterns. The resulting foundation model, MAD-NP, is trained entirely through this cross-scale correspondence without annotations. A linear classifier trained only on 10x embeddings maintains 96.7% of its performance when applied to unseen 40x tiles, demonstrating strong resolution-invariant representation learning. Segmentation outputs remain consistent across magnifications, preserving anatomical boundaries and minimizing noise. These results highlight the feasibility of scalable, magnification-robust WSI analysis using a unified embedding space
comment: 10 pages, 4 figures, 5 tables, submitted to AMIA 2026 Informatics Summit
☆ Evaluating Weather Forecasts from a Decision Maker's Perspective
Standard weather forecast evaluations focus on the forecaster's perspective and on a statistical assessment comparing forecasts and observations. In practice, however, forecasts are used to make decisions, so it seems natural to take the decision-maker's perspective and quantify the value of a forecast by its ability to improve decision-making. Decision calibration provides a novel framework for evaluating forecast performance at the decision level rather than the forecast level. We evaluate decision calibration to compare Machine Learning and classical numerical weather prediction models on various weather-dependent decision tasks. We find that model performance at the forecast level does not reliably translate to performance in downstream decision-making: some performance differences only become apparent at the decision level, and model rankings can change among different decision tasks. Our results confirm that typical forecast evaluations are insufficient for selecting the optimal forecast model for a specific decision task.
♻ ☆ Love First, Know Later: Persona-Based Romantic Compatibility Through LLM Text World Engines NeurIPS 2025
We propose Love First, Know Later: a paradigm shift in computational matching that simulates interactions first, then assesses compatibility. Instead of comparing static profiles, our framework leverages LLMs as text world engines that operate in dual capacity-as persona-driven agents following behavioral policies and as the environment modeling interaction dynamics. We formalize compatibility assessment as a reward-modeling problem: given observed matching outcomes, we learn to extract signals from simulations that predict human preferences. Our key insight is that relationships hinge on responses to critical moments-we translate this observation from relationship psychology into mathematical hypotheses, enabling effective simulation. Theoretically, we prove that as LLM policies better approximate human behavior, the induced matching converges to optimal stable matching. Empirically, we validate on speed dating data for initial chemistry and divorce prediction for long-term stability. This paradigm enables interactive, personalized matching systems where users iteratively refine their agents, unlocking future possibilities for transparent and interactive compatibility assessment.
comment: NeurIPS 2025 Workshop: First Workshop on LLM Persona Modeling (Oral)
♻ ☆ Misspecification-robust amortised simulation-based inference using variational methods
Recent advances in neural density estimation have enabled powerful simulation-based inference (SBI) methods that can flexibly approximate Bayesian inference for intractable stochastic models. Although these methods have demonstrated reliable posterior estimation when the simulator accurately represents the underlying data generative process (DGP), recent work has shown that they perform poorly in the presence of model misspecification. This poses a significant issue for their use in real-world problems, due to simulators always misrepresenting the true DGP to a certain degree. In this paper, we introduce robust variational neural posterior estimation (RVNP), a method which addresses the problem of misspecification in amortised SBI by bridging the simulation-to-reality gap using variational inference and error modelling. We test RVNP on multiple benchmark tasks, including using real data from astronomy, and show that it can recover robust posterior inference in a data-driven manner without adopting hyperparameters or priors governing the misspecification influence.
comment: Latex edits, fixed typos
♻ ☆ TomoGraphView: 3D Medical Image Classification with Omnidirectional Slice Representations and Graph Neural Networks
The sharp rise in medical tomography examinations has created a demand for automated systems that can reliably extract informative features for downstream tasks such as tumor characterization. Although 3D volumes contain richer information than individual slices, effective 3D classification remains difficult: volumetric data encode complex spatial dependencies, and the scarcity of large-scale 3D datasets has constrained progress toward 3D foundation models. As a result, many recent approaches rely on 2D vision foundation models trained on natural images, repurposing them as feature extractors for medical scans with surprisingly strong performance. Despite their practical success, current methods that apply 2D foundation models to 3D scans via slice-based decomposition remain fundamentally limited. Standard slicing along axial, sagittal, and coronal planes often fails to capture the true spatial extent of a structure when its orientation does not align with these canonical views. More critically, most approaches aggregate slice features independently, ignoring the underlying 3D geometry and losing spatial coherence across slices. To overcome these limitations, we propose TomoGraphView, a novel framework that integrates omnidirectional volume slicing with spherical graph-based feature aggregation. Instead of restricting the model to axial, sagittal, or coronal planes, our method samples both canonical and non-canonical cross-sections generated from uniformly distributed points on a sphere enclosing the volume. We publicly share our accessible code base at http://github.com/compai-lab/2025-MedIA-kiechle and provide a user-friendly library for omnidirectional volume slicing at https://pypi.org/project/OmniSlicer.
comment: Preprint submitted to Medical Image Analysis (MedIA)
♻ ☆ GraphBench: Next-generation graph learning benchmarking
Machine learning on graphs has recently achieved impressive progress in various domains, including molecular property prediction and chip design. However, benchmarking practices remain fragmented, often relying on narrow, task-specific datasets and inconsistent evaluation protocols, which hampers reproducibility and broader progress. To address this, we introduce GraphBench, a comprehensive benchmarking suite that spans diverse domains and prediction tasks, including node-level, edge-level, graph-level, and generative settings. GraphBench provides standardized evaluation protocols -- with consistent dataset splits and performance metrics that account for out-of-distribution generalization -- as well as a unified hyperparameter tuning framework. Additionally, we benchmark GraphBench using message-passing neural networks and graph transformer models, providing principled baselines and establishing a reference performance. See www.graphbench.io for further details.
♻ ☆ VIBE: Can a VLM Read the Room? EMNLP
Understanding human social behavior such as recognizing emotions and the social dynamics causing them is an important and challenging problem. While LLMs have made remarkable advances, they are limited to the textual domain and cannot account for the major role that non-verbal cues play in understanding social situations. Vision Language Models (VLMs) can potentially account for this gap, however their ability to make correct inferences over such social cues has received little attention. In this paper, we explore the capabilities of VLMs at social reasoning. We identify a previously overlooked limitation in VLMs: the Visual Social-Pragmatic Inference gap. To target this gap, we propose a new task for VLMs: Visual Social-Pragmatic Inference. We construct a high quality dataset to test the abilities of a VLM for this task and benchmark the performance of several VLMs on it.
comment: Findings of EMNLP, 2025
♻ ☆ Temporal Tokenization Strategies for Event Sequence Modeling with Large Language Models
Representing continuous time is a critical and under-explored challenge in modeling temporal event sequences with large language models (LLMs). Various strategies like byte-level representations or calendar tokens have been proposed. However, the optimal approach remains unclear, especially given the diverse statistical distributions of real-world event data, which range from smooth log-normal to discrete, spiky patterns. This paper presents the first empirical study of temporal tokenization for event sequences, comparing distinct encoding strategies: naive numeric strings, high-precision byte-level representations, human-semantic calendar tokens, classic uniform binning, and adaptive residual scalar quantization. We evaluate these strategies by fine-tuning LLMs on real-world datasets that exemplify these diverse distributions. Our analysis reveals that no single strategy is universally superior; instead, prediction performance depends heavily on aligning the tokenizer with the data's statistical properties, with log-based strategies excelling on skewed distributions and human-centric formats proving robust for mixed modalities.
♻ ☆ Understanding Sampler Stochasticity in Training Diffusion Models for RLHF
Reinforcement Learning from Human Feedback (RLHF) is increasingly used to fine-tune diffusion models, but a key challenge arises from the mismatch between stochastic samplers used during training and deterministic samplers used during inference. In practice, models are fine-tuned using stochastic SDE samplers to encourage exploration, while inference typically relies on deterministic ODE samplers for efficiency and stability. This discrepancy induces a reward gap, raising concerns about whether high-quality outputs can be expected during inference. In this paper, we theoretically characterize this reward gap and provide non-vacuous bounds for general diffusion models, along with sharper convergence rates for Variance Exploding (VE) and Variance Preserving (VP) Gaussian models. Methodologically, we adopt the generalized denoising diffusion implicit models (gDDIM) framework to support arbitrarily high levels of stochasticity, preserving data marginals throughout. Empirically, our findings through large-scale experiments on text-to-image models using denoising diffusion policy optimization (DDPO) and mixed group relative policy optimization (MixGRPO) validate that reward gaps consistently narrow over training, and ODE sampling quality improves when models are updated using higher-stochasticity SDE training.
♻ ☆ Property-Isometric Variational Autoencoders for Sequence Modeling and Design
Biological sequence design (DNA, RNA, or peptides) with desired functional properties has applications in discovering novel nanomaterials, biosensors, antimicrobial drugs, and beyond. One common challenge is the ability to optimize complex high-dimensional properties such as target emission spectra of DNA-mediated fluorescent nanoparticles, photo and chemical stability, and antimicrobial activity of peptides across target microbes. Existing models rely on simple binary labels (e.g., binding/non-binding) rather than high-dimensional complex properties. To address this gap, we propose a geometry-preserving variational autoencoder framework, called PrIVAE, which learns latent sequence embeddings that respect the geometry of their property space. Specifically, we model the property space as a high-dimensional manifold that can be locally approximated by a nearest neighbor graph, given an appropriately defined distance measure. We employ the property graph to guide the sequence latent representations using (1) graph neural network encoder layers and (2) an isometric regularizer. PrIVAE learns a property-organized latent space that enables rational design of new sequences with desired properties by employing the trained decoder. We evaluate the utility of our framework for two generative tasks: (1) design of DNA sequences that template fluorescent metal nanoclusters and (2) design of antimicrobial peptides. The trained models retain high reconstruction accuracy while organizing the latent space according to properties. Beyond in silico experiments, we also employ sampled sequences for wet lab design of DNA nanoclusters, resulting in up to 16.1-fold enrichment of rare-property nanoclusters compared to their abundance in training data, demonstrating the practical utility of our framework.
comment: 23 pages, 6 figures, preprint
♻ ☆ Unitless Unrestricted Markov-Consistent SCM Generation: Better Benchmark Datasets for Causal Discovery
Causal discovery aims to extract qualitative causal knowledge in the form of causal graphs from data. Because causal ground truth is rarely known in the real world, simulated data plays a vital role in evaluating the performance of the various causal discovery algorithms proposed in the literature. But recent work highlighted certain artifacts of commonly used data generation techniques for a standard class of structural causal models (SCM) that may be nonphysical, including var- and R2-sortability, where the variables' variance and coefficients of determination (R2) after regressing on all other variables, respectively, increase along the causal order. Some causal methods exploit such artifacts, leading to unrealistic expectations for their performance on real-world data. Some modifications have been proposed to remove these artifacts; notably, the internally-standardized structural causal model (iSCM) avoids varsortability and largely alleviates R2-sortability on sparse causal graphs, but exhibits a reversed R2-sortability pattern for denser graphs not featured in their work. We analyze which sortability patterns we expect to see in real data, and propose a method for drawing coefficients that we argue more effectively samples the space of SCMs. Finally, we propose a novel extension of our SCM generation method to the time series setting.
comment: 4th Conference on Causal Learning and Reasoning. Code published in python package "UUMCdata" (https://pypi.org/project/UUMCdata/)
♻ ☆ Generalization performance of narrow one-hidden layer networks in the teacher-student setting
Understanding the generalization abilities of neural networks for simple input-output distributions is crucial to account for their learning performance on real datasets. The classical teacher-student setting, where a network is trained from data obtained thanks to a label-generating teacher model, serves as a perfect theoretical test bed. In this context, a complete theoretical account of the performance of fully connected one-hidden layer networks in the presence of generic activation functions is lacking. In this work, we develop such a general theory for narrow networks, i.e. with a large number of hidden units, yet much smaller than the input dimension. Using methods from statistical physics, we provide closed-form expressions for the typical performance of both finite temperature (Bayesian) and empirical risk minimization estimators, in terms of a small number of summary statistics. In doing so, we highlight the presence of a transition where hidden neurons specialize when the number of samples is sufficiently large and proportional to the number of parameters of the network. Our theory accurately predicts the generalization error of neural networks trained on regression or classification tasks with either noisy full-batch gradient descent (Langevin dynamics) or full-batch gradient descent.
comment: 35 pages, 6 figures
♻ ☆ Multi-Model Ensemble and Reservoir Computing for River Discharge Prediction in Ungauged Basins
Despite the necessity for accurate flood prediction, many regions lack sufficient river discharge observations. Although numerous models for daily river discharge prediction exist, achieving high accuracy, interpretability, and efficiency under data-scarce conditions remains a major challenge. We address this with a novel method, HYdrological Prediction with multi-model Ensemble and Reservoir computing (HYPER). Our approach applies Bayesian model averaging (BMA) to 47 "uncalibrated" catchment-based conceptual hydrological models. A reservoir computing (RC) model, a type of machine learning model, is then trained via linear regression to correct BMA output errors, a non-iterative process ensuring computational efficiency. For ungauged basins, we infer the required BMA and RC weights by mapping them to catchment attributes from gauged basins, creating a generalizable framework. Evaluated on 87 Japanese basins, in a data-rich scenario, HYPER (median Nash Sutcliffe Efficiency, NSE, of 0.59) performed comparably to a benchmark LSTM (NSE 0.64) but required only 3 % of its computational time. In a data-scarce scenario (where only ~20 % of basins are gauged), HYPER maintained robust performance (NSE 0.51) by leveraging the physical structure of the ensemble. In contrast, the LSTM's performance degraded substantially (NSE -0.61) due to data insufficiency. These results demonstrate that calibrating individual conceptual hydrological models is unnecessary when using a sufficiently large ensemble that is assembled and combined with machine-learning-based bias correction. HYPER provides a robust, efficient, and generalizable solution for discharge prediction, particularly in ungauged basins. By eliminating basin-specific calibration, HYPER offers a scalable, interpretable framework for accurate hydrological prediction in diverse data-scarce regions.
♻ ☆ Scalable Formal Verification via Autoencoder Latent Space Abstraction
Finite Abstraction methods provide a powerful formal framework for proving that systems satisfy their specifications. However, these techniques face scalability challenges for high-dimensional systems, as they rely on state-space discretization which grows exponentially with dimension. Learning-based approaches to dimensionality reduction, utilizing neural networks and autoencoders, have shown great potential to alleviate this problem. However, ensuring the correctness of the resulting verification results remains an open question. In this work, we provide a formal approach to reduce the dimensionality of systems via convex autoencoders and learn the dynamics in the latent space through a kernel-based method. We then construct a finite abstraction from the learned model in the latent space and guarantee that the abstraction contains the true behaviors of the original system. We show that the verification results in the latent space can be mapped back to the original system. Finally, we demonstrate the effectiveness of our approach on multiple systems, including a 26D system controlled by a neural network, showing significant scalability improvements without loss of rigor.
comment: 14 pages, 7 figures, under review
♻ ☆ Tensor Product Attention Is All You Need NeurIPS 2025
Scaling language models to handle longer input sequences typically necessitates large key-value (KV) caches, resulting in substantial memory overhead during inference. In this paper, we propose Tensor Product Attention (TPA), a novel attention mechanism that uses tensor decompositions to represent queries, keys, and values compactly, substantially shrinking the KV cache size at inference time. By factorizing these representations into contextual low-rank components and seamlessly integrating with Rotary Position Embedding (RoPE), TPA achieves improved model quality alongside memory efficiency. Based on TPA, we introduce the Tensor ProducT ATTenTion Transformer (T6), a new model architecture for sequence modeling. Through extensive empirical evaluation on language modeling tasks, we demonstrate that T6 surpasses or matches the performance of standard Transformer baselines including Multi-Head Attention (MHA), Multi-Query Attention (MQA), Grouped-Query Attention (GQA), and Multi-Head Latent Attention (MLA) across various metrics, including perplexity and a range of established evaluation benchmarks. Notably, TPA's memory efficiency and computational efficiency at decoding stage enables processing longer sequences under fixed resource constraints, addressing a critical scalability challenge in modern language models. Project Page: https://github.com/tensorgi/TPA.
comment: Published in NeurIPS 2025 (Spotlight); Project Page: https://github.com/tensorgi/TPA
♻ ☆ Non-Resolution Reasoning (NRR): A Computational Framework for Contextual Identity and Ambiguity Preservation
Current artificial intelligence systems, despite remarkable capabilities in text generation and pattern recognition, exhibit a fundamental architectural limitation: they resolve ambiguity prematurely. This premature semantic collapse -- the tendency to collapse multiple valid interpretations into a single output -- stems from classical identity assumptions embedded in standard neural architectures. We propose Non-Resolution Reasoning (NRR), a computational framework that treats ambiguity retention as a valid reasoning mode rather than a defect to be eliminated. NRR introduces three core principles: (1) Non-Identity (A $\ne$ A) -- the same symbol refers to different entities across contexts; (2) Approximate Identity (A $\approx$ A) -- entities share partial structural overlap without being identical; and (3) Non-Resolution -- conflicting interpretations can coexist without forced convergence. We formalize these principles through three architectural components: Multi-Vector Embeddings for context-dependent representation, Non-Collapsing Attention for parallel interpretation retention, and Contextual Identity Tracking (CIT) for maintaining A $\ne$ A across inference. We demonstrate NRR's advantages through case studies in paradox handling, creative generation, and context-dependent reasoning. Crucially, we provide a minimal empirical validation on a synthetic context-shift task where an NRR-lite model achieves 90.9% out-of-distribution accuracy compared to 9.1% for standard architectures, demonstrating that ambiguity preservation enables structural generalization. NRR challenges the assumption that meaning must collapse to be useful, offering a foundation for AI systems capable of sophisticated ambiguity handling and creative reasoning. The question is not whether AI should resolve ambiguity, but when, how, and under whose control.
comment: 7 pages, 2 figures, ORCID: 0009-0006-4715-9176
SIGMMA: Hierarchical Graph-Based Multi-Scale Multi-modal Contrastive Alignment of Histopathology Image and Spatial Transcriptome
Recent advances in computational pathology have leveraged vision-language models to learn joint representations of Hematoxylin and Eosin (HE) images with spatial transcriptomic (ST) profiles. However, existing approaches typically align HE tiles with their corresponding ST profiles at a single scale, overlooking fine-grained cellular structures and their spatial organization. To address this, we propose Sigmma, a multi-modal contrastive alignment framework for learning hierarchical representations of HE images and spatial transcriptome profiles across multiple scales. Sigmma introduces multi-scale contrastive alignment, ensuring that representations learned at different scales remain coherent across modalities. Furthermore, by representing cell interactions as a graph and integrating inter- and intra-subgraph relationships, our approach effectively captures cell-cell interactions, ranging from fine to coarse, within the tissue microenvironment. We demonstrate that Sigmm learns representations that better capture cross-modal correspondences, leading to an improvement of avg. 9.78\% in the gene-expression prediction task and avg. 26.93\% in the cross-modal retrieval task across datasets. We further show that it learns meaningful multi-tissue organization in downstream analyses.
♻ ☆ Group-robust Machine Unlearning
Machine unlearning is an emerging paradigm to remove the influence of specific training data (i.e., the forget set) from a model while preserving its knowledge of the rest of the data (i.e., the retain set). Previous approaches assume the forget data to be uniformly distributed from all training datapoints. However, if the data to unlearn is dominant in one group (e.g., ethnicity, gender), we empirically show that performance for this group degrades, leading to fairness issues. To perform unlearning while preserving fairness, this work addresses the overlooked problem of non-uniformly distributed forget sets, which we refer to as group-robust machine unlearning. We formalize the problem and present a simple and effective exact unlearning strategy that mitigates the performance loss in dominant groups via sample distribution reweighting. Moreover, we present MIU (Mutual Information-aware Machine Unlearning), the first approach for group robustness in approximate machine unlearning. MIU minimizes the mutual information between model features and group information, achieving unlearning while reducing performance degradation in the dominant group of the forget set. Additionally, MIU exploits sample distribution reweighting and mutual information calibration with the original model to preserve group robustness. We conduct experiments on three datasets and show that MIU outperforms standard methods, achieving unlearning without compromising model robustness. Source code available at https://github.com/tdemin16/group-robust_machine_unlearning
comment: Published in Transactions on Machine Learning Research (TMLR)
♻ ☆ Reliable Statistical Guarantees for Conformal Predictors with Small Datasets
Surrogate models (including deep neural networks and other machine learning algorithms in supervised learning) are capable of approximating arbitrarily complex, high-dimensional input-output problems in science and engineering, but require a thorough data-agnostic uncertainty quantification analysis before these can be deployed for any safety-critical application. The standard approach for data-agnostic uncertainty quantification is to use conformal prediction (CP), a well-established framework to build uncertainty models with proven statistical guarantees that do not assume any shape for the error distribution of the surrogate model. However, since the classic statistical guarantee offered by CP is given in terms of bounds for the marginal coverage, for small calibration set sizes (which are frequent in realistic surrogate modelling that aims to quantify error at different regions), the potentially strong dispersion of the coverage distribution around its average negatively impacts the relevance of the uncertainty model's statistical guarantee, often obtaining coverages below the expected value, resulting in a less applicable framework. After providing a gentle presentation of uncertainty quantification for surrogate models for machine learning practitioners, in this paper we bridge the gap by proposing a new statistical guarantee that offers probabilistic information for the coverage of a single conformal predictor. We show that the proposed framework converges to the standard solution offered by CP for large calibration set sizes and, unlike the classic guarantee, still offers relevant information about the coverage of a conformal predictor for small data sizes. We validate the methodology in a suite of examples, and implement an open access software solution that can be used alongside common conformal prediction libraries to obtain uncertainty models that fulfil the new guarantee.
♻ ☆ Online Multi-modal Root Cause Identification in Microservice Systems
Root Cause Analysis (RCA) is essential for pinpointing the root causes of failures in microservice systems. Traditional data-driven RCA methods are typically limited to offline applications due to high computational demands, and existing online RCA methods handle only single-modal data, overlooking complex interactions in multi-modal systems. In this paper, we introduce OCEAN, a novel online multi-modal causal structure learning method for root cause localization. OCEAN employs a dilated convolutional neural network to capture long-term temporal dependencies and graph neural networks to learn causal relationships among system entities and key performance indicators. We further design a multi-factor attention mechanism to analyze and reassess the relationships among different metrics and log indicators/attributes for enhanced online causal graph learning. Additionally, a contrastive mutual information maximization-based graph fusion module is developed to effectively model the relationships across various modalities. Extensive experiments on three real-world datasets demonstrate the effectiveness and efficiency of our proposed method.
comment: Accepted by BigData 2025
♻ ☆ Supporting Migration Policies with Forecasts: Illegal Border Crossings in Europe through a Mixed Approach
This paper presents a mixed-methodology to forecast illegal border crossings in Europe across five key migratory routes, with a one-year time horizon. The methodology integrates machine learning techniques with qualitative insights from migration experts. This approach aims at improving the predictive capacity of data-driven models through the inclusion of a human-assessed covariate, an innovation that addresses challenges posed by sudden shifts in migration patterns and limitations in traditional datasets. The proposed methodology responds directly to the forecasting needs outlined in the EU Pact on Migration and Asylum, supporting the Asylum and Migration Management Regulation (AMMR). It is designed to provide policy-relevant forecasts that inform strategic decisions, early warning systems, and solidarity mechanisms among EU Member States. By joining data-driven modeling with expert judgment, this work aligns with existing academic recommendations and introduces a novel operational tool tailored for EU migration governance. The methodology is tested and validated with known data to demonstrate its applicability and reliability in migration-related policy context.
comment: 17 pages, 6 figures, 2 tables + supplementary material with 20 pages, 21 figures, 2 tables. Removed track changes from supplementary material. Corrected last figure number
♻ ☆ ASTRO: Adaptive Stitching via Dynamics-Guided Trajectory Rollouts
Offline reinforcement learning (RL) enables agents to learn optimal policies from pre-collected datasets. However, datasets containing suboptimal and fragmented trajectories present challenges for reward propagation, resulting in inaccurate value estimation and degraded policy performance. While trajectory stitching via generative models offers a promising solution, existing augmentation methods frequently produce trajectories that are either confined to the support of the behavior policy or violate the underlying dynamics, thereby limiting their effectiveness for policy improvement. We propose ASTRO, a data augmentation framework that generates distributionally novel and dynamics-consistent trajectories for offline RL. ASTRO first learns a temporal-distance representation to identify distinct and reachable stitch targets. We then employ a dynamics-guided stitch planner that adaptively generates connecting action sequences via Rollout Deviation Feedback, defined as the gap between target state sequence and the actual arrived state sequence by executing predicted actions, to improve trajectory stitching's feasibility and reachability. This approach facilitates effective augmentation through stitching and ultimately enhances policy learning. ASTRO outperforms prior offline RL augmentation methods across various algorithms, achieving notable performance gain on the challenging OGBench suite and demonstrating consistent improvements on standard offline RL benchmarks such as D4RL.
♻ ☆ Holistic Utility Preference Learning for Listwise Alignment
Aligning large language models with human preferences is essential for improving interaction quality and safety by ensuring outputs better reflect human values. A promising strategy involves Reinforcement Learning from Human Feedback (RLHF), starting with collecting and ranking responses generated by a supervised fine-tuning model to refine alignment. Existing methods such as Direct Preference Optimization (DPO) focus on pairwise comparisons, categorizing responses into preferred and less preferred pairs and optimizing pairwise margins. However, this pairwise approach cannot capture the holistic ranking relationships among multiple responses or effectively leverage the rich preference information available in list-wise comparisons. To address this challenge, this paper introduces \underline{D}irect \underline{R}anking \underline{P}reference \underline{O}ptimization (DRPO), a novel method that views human preference alignment as a Learning-to-Rank (LTR) task. Unlike pairwise methods, DRPO optimizes the preference ranking of entire response lists by computing holistic utility scores through NDCG, a standard LTR metric. To enable end-to-end optimization with the non-differentiable NDCG, we propose diffNDCG loss, a differentiable approximation facilitated by a sorting network. Furthermore, we introduce a novel margin-based Adaptive Rank Policy Score to enhance the discriminative quality of generated responses. Extensive experiments have shown that DRPO outperforms existing methods, enhancing the quality of the generated responses.
♻ ☆ TempoPFN: Synthetic Pre-training of Linear RNNs for Zero-shot Time Series Forecasting
Foundation models for zero-shot time series forecasting face challenges in efficient long-horizon prediction and reproducibility, with existing synthetic-only approaches underperforming on challenging benchmarks. This paper presents TempoPFN, a univariate time series foundation model based on linear Recurrent Neural Networks (RNNs) pre-trained exclusively on synthetic data. The model uses a GatedDeltaProduct architecture with state-weaving for fully parallelizable training across sequence lengths, eliminating the need for windowing or summarization techniques while maintaining robust temporal state-tracking. Our comprehensive synthetic data pipeline unifies diverse generators, including stochastic differential equations, Gaussian processes, and audio synthesis, with novel augmentations. In zero-shot evaluations on the Gift-Eval, fev-bench and Chronos-ZS benchmarks, TempoPFN achieves top-tier competitive performance, outperforming all existing synthetic-only approaches and surpassing the majority of models trained on real-world data, while being more efficient than existing baselines by leveraging fully parallelizable training and inference. We open-source our complete data generation pipeline and training code, providing a reproducible foundation for future research.
comment: 38 pages, 22 figures, 17 tables
♻ ☆ Layer-wise Weight Selection for Power-Efficient Neural Network Acceleration
Systolic array accelerators execute CNNs with energy dominated by the switching activity of multiply accumulate (MAC) units. Although prior work exploits weight dependent MAC power for compression, existing methods often use global activation models, coarse energy proxies, or layer-agnostic policies, which limits their effectiveness on real hardware. We propose an energy aware, layer-wise compression framework that explicitly leverages MAC and layer level energy characteristics. First, we build a layer-aware MAC energy model that combines per-layer activation statistics with an MSB-Hamming distance grouping of 22-bit partial sum transitions, and integrate it with a tile-level systolic mapping to estimate convolution-layer energy. On top of this model, we introduce an energy accuracy co-optimized weight selection algorithm within quantization aware training and an energy-prioritized layer-wise schedule that compresses high energy layers more aggressively under a global accuracy constraint. Experiments on different CNN models demonstrate up to 58.6\% energy reduction with 2-3\% accuracy drop, outperforming a state-of-the-art power-aware baseline.
♻ ☆ MSTN: Fast and Efficient Multivariate Time Series Prediction Model
Real-world time series often exhibit strong non-stationarity, complex nonlinear dynamics, and behaviour expressed across multiple temporal scales, from rapid local fluctuations to slow-evolving long-range trends. However, many contemporary architectures impose rigid, fixed-scale structural priors -- such as patch-based tokenization, predefined receptive fields, or frozen backbone encoders -- which can over-regularize temporal dynamics and limit adaptability to abrupt high-magnitude events. To handle this, we introduce the \emph{Multi-scale Temporal Network} (MSTN), a hybrid neural architecture grounded in an \emph{Early Temporal Aggregation} principle. MSTN integrates three complementary components: (i) a multi-scale convolutional encoder that captures fine-grained local structure; (ii) a sequence modeling module that learns long-range dependencies through either recurrent or attention-based mechanisms; and (iii) a self-gated fusion stage incorporating squeeze-excitation and multi-head attention to dynamically modulate cross-scale representations. This design enables MSTN to flexibly model temporal patterns spanning milliseconds to extended horizons, while avoiding the computational burden typically associated with long-context models. Across extensive benchmarks covering forecasting, imputation, classification, and cross-dataset generalization, MSTN consistently delivers state-of-the-art performance, outperforming recent leading approaches including TIME-LLM, HiMTM, SOFTS, LLM4TS, TimesNet, and PatchTST, and establishing new best results on 24 out of 32 datasets. Despite its strong performance, MSTN remains lightweight and supports fast inference, making it well suited for deployment on edge devices and resource-constrained environments.
comment: 30 pages, 1 figure, 5 tables
♻ ☆ Learnability Window in Gated Recurrent Neural Networks
We develop a theoretical framework that explains how gating mechanisms determine the learnability window $\mathcal{H}_N$ of recurrent neural networks, defined as the largest temporal horizon over which gradient information remains statistically recoverable. While classical analyses emphasize numerical stability of Jacobian products, we show that stability alone is insufficient: learnability is governed instead by the \emph{effective learning rates} $μ_{t,\ell}$, per-lag and per-neuron quantities obtained from first-order expansions of gate-induced Jacobian products in Backpropagation Through Time. These effective learning rates act as multiplicative filters that control both the magnitude and anisotropy of gradient transport. Under heavy-tailed ($α$-stable) gradient noise, we prove that the minimal sample size required to detect a dependency at lag~$\ell$ satisfies $N(\ell)\propto f(\ell)^{-α}$, where $f(\ell)=\|μ_{t,\ell}\|_1$ is the effective learning rate envelope. This leads to an explicit formula for $\mathcal{H}_N$ and closed-form scaling laws for logarithmic, polynomial, and exponential decay of $f(\ell)$. The theory shows that the time-scale spectra induced by the effective learning rates are the dominant determinants of learnability. Broader or more heterogeneous spectra slow the decay of $f(\ell)$, enlarging the learnability window, while heavy-tailed noise compresses $\mathcal{H}_N$ by limiting statistical concentration. By integrating gate-induced time-scale geometry with gradient noise and sample complexity, the framework identifies the effective learning rates as the primary objects that determine whether, when, and over what horizons recurrent networks can learn long-range temporal dependencies.
comment: a few small fixes
♻ ☆ Unsupervised Learning of Density Estimates with Topological Optimization
Kernel density estimation is a key component of a wide variety of algorithms in machine learning, Bayesian inference, stochastic dynamics and signal processing. However, the unsupervised density estimation technique requires tuning a crucial hyperparameter: the kernel bandwidth. The choice of bandwidth is critical as it controls the bias-variance trade-off by over- or under-smoothing the topological features. Topological data analysis provides methods to mathematically quantify topological characteristics, such as connected components, loops, voids et cetera, even in high dimensions where visualization of density estimates is impossible. In this paper, we propose an unsupervised learning approach using a topology-based loss function for the automated and unsupervised selection of the optimal bandwidth and benchmark it against classical techniques -- demonstrating its potential across different dimensions.
♻ ☆ Tree Matching Networks for Natural Language Inference: Parameter-Efficient Semantic Understanding via Dependency Parse Trees
In creating sentence embeddings for Natural Language Inference (NLI) tasks, using transformer-based models like BERT leads to high accuracy, but require hundreds of millions of parameters. These models take in sentences as a sequence of tokens, and learn to encode the meaning of the sequence into embeddings such that those embeddings can be used reliably for NLI tasks. Essentially, every word is considered against every other word in the sequence, and the transformer model is able to determine the relationships between them, entirely from scratch. However, a model that accepts explicit linguistic structures like dependency parse trees may be able to leverage prior encoded information about these relationships, without having to learn them from scratch, thus improving learning efficiency. To investigate this, we adapt Graph Matching Networks (GMN) to operate on dependency parse trees, creating Tree Matching Networks (TMN). We compare TMN to a BERT based model on the SNLI entailment task and on the SemEval similarity task. TMN is able to achieve significantly better results with a significantly reduced memory footprint and much less training time than the BERT based model on the SNLI task, while both models struggled to preform well on the SemEval. Explicit structural representations significantly outperform sequence-based models at comparable scales, but current aggregation methods limit scalability. We propose multi-headed attention aggregation to address this limitation.
comment: 16 pages, preprint
♻ ☆ High Volume Rate 3D Ultrasound Reconstruction with Diffusion Models
Three-dimensional ultrasound enables real-time volumetric visualization of anatomical structures. Unlike traditional 2D ultrasound, 3D imaging reduces reliance on precise probe orientation, potentially making ultrasound more accessible to clinicians with varying levels of experience and improving automated measurements and post-exam analysis. However, achieving both high volume rates and high image quality remains a significant challenge. While 3D diverging waves can provide high volume rates, they suffer from limited tissue harmonic generation and increased multipath effects, which degrade image quality. One compromise is to retain focus in elevation while leveraging unfocused diverging waves in the lateral direction to reduce the number of transmissions per elevation plane. Reaching the volume rates achieved by full 3D diverging waves, however, requires dramatically undersampling the number of elevation planes. Subsequently, to render the full volume, simple interpolation techniques are applied. This paper introduces a novel approach to 3D ultrasound reconstruction from a reduced set of elevation planes by employing diffusion models (DMs) to achieve increased spatial and temporal resolution. We compare both traditional and supervised deep learning-based interpolation methods on a 3D cardiac ultrasound dataset. Our results show that DM-based reconstruction consistently outperforms the baselines in image quality and downstream task performance. Additionally, we accelerate inference by leveraging the temporal consistency inherent to ultrasound sequences. Finally, we explore the robustness of the proposed method by exploiting the probabilistic nature of diffusion posterior sampling to quantify reconstruction uncertainty and demonstrate improved recall on out-of-distribution data with synthetic anomalies under strong subsampling.
comment: 13 pages, 10 figures, IEEE Transactions on Medical Imaging
♻ ☆ An Unsupervised Deep Explainable AI Framework for Localization of Concurrent Replay Attacks in Nuclear Reactor Signals
Next generation advanced nuclear reactors are expected to be smaller both in size and power output, relying extensively on fully digital instrumentation and control systems. These reactors will generate a large flow of information in the form of multivariate time series data, conveying simultaneously various non linear cyber physical, process, control, sensor, and operational states. Ensuring data integrity against deception attacks is becoming increasingly important for networked communication and a requirement for safe and reliable operation. Current efforts to address replay attacks, almost universally focus on watermarking or supervised anomaly detection approaches without further identifying and characterizing the root cause of the anomaly. In addition, these approaches rely mostly on synthetic data with uncorrelated Gaussian process and measurement noise and full state feedback or are limited to univariate signals, signal stationarity, linear quadratic regulators, or other linear-time invariant state-space which may fail to capture any unmodeled system dynamics. In the realm of regulated nuclear cyber-physical systems, additional work is needed on characterization of replay attacks and explainability of predictions using real data. Here, we propose an unsupervised explainable AI framework based on a combination of autoencoder and customized windowSHAP algorithm to fully characterize real-time replay attacks, i.e., detection, source identification, timing and type, of increasing complexity during a dynamic time evolving reactor process. The proposed XAI framework was benchmarked on several real world datasets from Purdue's nuclear reactor PUR-1 with up to six signals concurrently being replayed. In all cases, the XAI framework was able to detect and identify the source and number of signals being replayed and the duration of the falsification with 95 percent or better accuracy.
comment: Added references, corrected typos, grammar check, authors updated
♻ ☆ A Lipschitz spaces view of infinitely wide shallow neural networks
We revisit the mean field parametrization of shallow neural networks, using signed measures on unbounded parameter spaces and duality pairings that take into account the regularity and growth of activation functions. This setting directly leads to the use of unbalanced Kantorovich-Rubinstein norms defined by duality with Lipschitz functions, and of spaces of measures dual to those of continuous functions with controlled growth. These allow to make transparent the need for total variation and moment bounds or penalization to obtain existence of minimizers of variational formulations, under which we prove a compactness result in strong Kantorovich-Rubinstein norm, and in the absence of which we show several examples demonstrating undesirable behavior. Further, the Kantorovich-Rubinstein setting enables us to combine the advantages of a completely linear parametrization and ensuing reproducing kernel Banach space framework with optimal transport insights. We showcase this synergy with representer theorems and uniform large data limits for empirical risk minimization, and in proposed formulations for distillation and fusion applications.
comment: 41 pages, 2 figures, 1 table. V2: added numerical section and more literature review
♻ ☆ HeSRN: Representation Learning On Heterogeneous Graphs via Slot-Aware Retentive Network
Graph Transformers have recently achieved remarkable progress in graph representation learning by capturing long-range dependencies through self-attention. However, their quadratic computational complexity and inability to effectively model heterogeneous semantics severely limit their scalability and generalization on real-world heterogeneous graphs. To address these issues, we propose HeSRN, a novel Heterogeneous Slot-aware Retentive Network for efficient and expressive heterogeneous graph representation learning. HeSRN introduces a slot-aware structure encoder that explicitly disentangles node-type semantics by projecting heterogeneous features into independent slots and aligning their distributions through slot normalization and retention-based fusion, effectively mitigating the semantic entanglement caused by forced feature-space unification in previous Transformer-based models. Furthermore, we replace the self-attention mechanism with a retention-based encoder, which models structural and contextual dependencies in linear time complexity while maintaining strong expressive power. A heterogeneous retentive encoder is further employed to jointly capture both local structural signals and global heterogeneous semantics through multi-scale retention layers. Extensive experiments on four real-world heterogeneous graph datasets demonstrate that HeSRN consistently outperforms state-of-the-art heterogeneous graph neural networks and Graph Transformer baselines on node classification tasks, achieving superior accuracy with significantly lower computational complexity.
♻ ☆ Not All Data are Good Labels: On the Self-supervised Labeling for Time Series Forecasting NeurIPS'25
Time Series Forecasting (TSF) is a crucial task in various domains, yet existing TSF models rely heavily on high-quality data and insufficiently exploit all available data. This paper explores a novel self-supervised approach to re-label time series datasets by inherently constructing candidate datasets. During the optimization of a simple reconstruction network, intermediates are used as pseudo labels in a self-supervised paradigm, improving generalization for any predictor. We introduce the Self-Correction with Adaptive Mask (SCAM), which discards overfitted components and selectively replaces them with pseudo labels generated from reconstructions. Additionally, we incorporate Spectral Norm Regularization (SNR) to further suppress overfitting from a loss landscape perspective. Our experiments on eleven real-world datasets demonstrate that SCAM consistently improves the performance of various backbone models. This work offers a new perspective on constructing datasets and enhancing the generalization of TSF models through self-supervised learning. The code is available at https://github.com/SuDIS-ZJU/SCAM.
comment: Accepted by NeurIPS'25 (spotlight)
♻ ☆ KD-PINN: Knowledge-Distilled PINNs for ultra-low-latency real-time neural PDE solvers
This work introduces Knowledge-Distilled Physics-Informed Neural Networks (KD-PINN), a framework that transfers the predictive accuracy of a high-capacity teacher model to a compact student through a continuous adaptation of the Kullback-Leibler divergence. In order to confirm its generality for various dynamics and dimensionalities, the framework is evaluated on a representative set of partial differential equations (PDEs). Across the considered benchmarks, the student model achieves inference speedups ranging from x4.8 (Navier-Stokes) to x6.9 (Burgers), while preserving accuracy. Accuracy is improved by on the order of 1% when the model is properly tuned. The distillation process also revealed a regularizing effect. With an average inference latency of 5.3 ms on CPU, the distilled models enter the ultra-low-latency real-time regime defined by sub-10 ms performance. Finally, this study examines how knowledge distillation reduces inference latency in PINNs, to contribute to the development of accurate ultra-low-latency neural PDE solvers.
♻ ☆ Beyond Gaussian Initializations: Signal Preserving Weight Initialization for Odd-Sigmoid Activations
Activation functions critically influence trainability and expressivity, and recent work has therefore explored a broad range of nonlinearities. However, widely used Gaussian i.i.d. initializations are designed to preserve activation variance under wide or infinite width assumptions. In deep and relatively narrow networks with sigmoidal nonlinearities, these schemes often drive preactivations into saturation, and collapse gradients. To address this, we introduce an odd-sigmoid activations and propose an activation aware initialization tailored to any function in this class. Our method remains robust over a wide band of variance scales, preserving both forward signal variance and backpropagated gradient norms even in very deep and narrow networks. Empirically, across standard image benchmarks we find that the proposed initialization is substantially less sensitive to depth, width, and activation scale than Gaussian initializations. In physics informed neural networks (PINNs), scaled odd-sigmoid activations combined with our initialization achieve lower losses than Gaussian based setups, suggesting that diagonal-plus-noise weights provide a practical alternative when Gaussian initialization breaks down.
comment: 46 pages
♻ ☆ Difficulties with Evaluating a Deception Detector for AIs
Building reliable deception detectors for AI systems -- methods that could predict when an AI system is being strategically deceptive without necessarily requiring behavioural evidence -- would be valuable in mitigating risks from advanced AI systems. But evaluating the reliability and efficacy of a proposed deception detector requires examples that we can confidently label as either deceptive or honest. We argue that we currently lack the necessary examples and further identify several concrete obstacles in collecting them. We provide evidence from conceptual arguments, analysis of existing empirical works, and analysis of novel illustrative case studies. We also discuss the potential of several proposed empirical workarounds to these problems and argue that while they seem valuable, they also seem insufficient alone. Progress on deception detection likely requires further consideration of these problems.
♻ ☆ Investigating the Generalizability of ECG Noise Detection Across Diverse Data Sources and Noise Types
Electrocardiograms (ECGs) are vital for monitoring cardiac health, enabling the assessment of heart rate variability (HRV), detection of arrhythmias, and diagnosis of cardiovascular conditions. However, ECG signals recorded from wearable devices are frequently corrupted by noise artifacts, particularly those arising from motion and large muscle activity, which distort R-peaks and the QRS complex. These distortions hinder reliable HRV analysis and increase the risk of clinical misinterpretation. Existing studies on ECG noise detection typically evaluate performance on a single dataset, limiting insight into the generalizability of such methods across diverse sensors and recording conditions. In this work, we propose an HRV-based machine learning approach to detect noisy ECG segments and evaluate its generalizability using cross-dataset experiments on four datasets collected in both controlled and uncontrolled settings. Our method achieves over 90% average accuracy and an AUPRC exceeding 90%, even on previously unseen datasets-demonstrating robust performance across heterogeneous data sources. To support reproducibility and further research, we also release a curated and labeled ECG dataset annotated for noise artifacts.
♻ ☆ General Formulation and PCL-Analysis for Restless Bandits with Limited Observability
In this paper, we consider a general observation model for restless multi-armed bandit problems. The operation of the player is based on the past observation history that is limited (partial) and error-prone due to resource constraints or environmental or intrinsic noises. By establishing a general probabilistic model for dynamics of the observation process, we formulate the problem as a restless bandit with an infinite high-dimensional belief state space. We apply the achievable region method with partial conservation law (PCL) to the infinite-state problem and analyze its indexability and priority index (Whittle index). Finally, we propose an approximation process to transform the problem into which the AG algorithm of Niño-Mora (2001) for finite-state problems can be applied. Numerical experiments show that our algorithm has excellent performance.
♻ ☆ Light-Weight Benchmarks Reveal the Hidden Hardware Cost of Zero-Shot Tabular Foundation Models ICML
Zero-shot foundation models (FMs) promise training-free prediction on tabular data, yet their hardware footprint remains poorly characterized. We present a fully reproducible benchmark that reports test accuracy together with wall-clock latency, peak CPU RAM, and peak GPU VRAM on four public datasets: Adult-Income, Higgs-100k, Wine-Quality, and California-Housing. Two open FMs (TabPFN-1.0 and TabICL-base) are compared against tuned XGBoost, LightGBM, and Random Forest baselines on a single NVIDIA T4 GPU. The tree ensembles equal or surpass FM accuracy on three datasets while completing full-test batches in <= 0.40 s and <= 150 MB RAM, using zero VRAM. TabICL achieves a 0.8 percentage-point gain on Higgs but requires roughly 40,000 times more latency (960 s) and 9 GB VRAM. TabPFN matches tree-model accuracy on Wine and Housing but peaks at 4 GB VRAM and cannot process the full 100k-row Higgs table. These results quantify the substantial hardware-versus-accuracy trade-offs in current tabular FMs and provide an open baseline for future efficiency-oriented research.
comment: ICML NewInML
♻ ☆ Renal Cell Carcinoma subtyping: learning from multi-resolution localization
Renal Cell Carcinoma is typically asymptomatic at the early stages for many patients. This leads to a late diagnosis of the tumor, where the curability likelihood is lower, and makes the mortality rate of Renal Cell Carcinoma high, with respect to its incidence rate. To increase the survival chance, a fast and correct categorization of the tumor subtype is paramount. Nowadays, computerized methods, based on artificial intelligence, represent an interesting opportunity to improve the productivity and the objectivity of the microscopy-based Renal Cell Carcinoma diagnosis. Nonetheless, much of their exploitation is hampered by the paucity of annotated dataset, essential for a proficient training of supervised machine learning technologies. This study sets out to investigate a novel self supervised training strategy for machine learning diagnostic tools, based on the multi-resolution nature of the histological samples. We aim at reducing the need of annotated dataset, without significantly reducing the accuracy of the tool. We demonstrate the classification capability of our tool on a whole slide imaging dataset for Renal Cancer subtyping, and we compare our solution with several state-of-the-art classification counterparts.
♻ ☆ Masked Omics Modeling for Multimodal Representation Learning across Histopathology and Molecular Profiles
Self-supervised learning (SSL) has driven major advances in computational pathology by enabling the learning of rich representations from histopathology data. Yet, tissue analysis alone may fall short in capturing broader molecular complexity, as key complementary information resides in high-dimensional omics profiles such as transcriptomics, methylomics, and genomics. To address this gap, we introduce MORPHEUS, the first multimodal pre-training strategy that integrates histopathology images and multi-omics data within a shared transformer-based architecture. At its core, MORPHEUS relies on a novel masked omics modeling objective that encourages the model to learn meaningful cross-modal relationships. This yields a general-purpose pre-trained encoder that can be applied to histopathology alone or in combination with any subset of omics modalities. Beyond inference, MORPHEUS also supports flexible any-to-any omics reconstruction, enabling one or more omics profiles to be reconstructed from any modality subset that includes histopathology. Pre-trained on a large pan-cancer cohort, MORPHEUS shows substantial improvements over supervised and SSL baselines across diverse tasks and modality combinations. Together, these capabilities position it as a promising direction for the development of multimodal foundation models in oncology. Code is publicly available at https://github.com/Lucas-rbnt/MORPHEUS
♻ ☆ CiRL: Open-Source Environments for Reinforcement Learning in Circular Economy and Net Zero
The demand of finite raw materials will keep increasing as they fuel modern society. Simultaneously, solutions for stopping carbon emissions in the short term are not available, thus making the net zero target extremely challenging to achieve at scale. The circular economy (CE) paradigm is gaining attention as a solution to address climate change and the uncertainties of supplies of critical materials. Hence, in this paper, we introduce CiRL, a deep reinforcement learning (DRL) library of environments focused on the circularity control of both solid and fluid materials. The integration of DRL into the design of material circularity is possible thanks to the formalism of thermodynamical material networks, which is underpinned by compartmental dynamical thermodynamics. Along with the focus on circularity, this library has three more features: the new CE-oriented environments are in the state-space form, which is typically used in dynamical systems analysis and control design; it is based on a state-of-the-art Python library of DRL algorithms, namely, Stable-Baselines3; and it is developed in Google Colaboratory to be accessible to researchers from different disciplines and backgrounds as is often the case for circular economy researchers and engineers. CiRL is intended to be a tool to generate AI-driven actions for optimizing the circularity of supply-recovery chains and to be combined with human-driven decisions derived from material flow analysis (MFA) studies. CiRL is publicly available.
comment: To be submitted
♻ ☆ Recent Advances in Multi-Agent Human Trajectory Prediction: A Comprehensive Review
With the emergence of powerful data-driven methods in human trajectory prediction (HTP), gaining a finer understanding of multi-agent interactions lies within hand's reach, with important implications in areas such as social robot navigation, autonomous navigation, and crowd modeling. This survey reviews some of the most recent advancements in deep learning-based multi-agent trajectory prediction, focusing on studies published between 2020 and 2025. We categorize the existing methods based on their architectural design, their input representations, and their overall prediction strategies, placing a particular emphasis on models evaluated using the ETH/UCY benchmark. Furthermore, we highlight key challenges and future research directions in the field of multi-agent HTP.
comment: 45 pages
♻ ☆ Improvement of AMPs Identification with Generative Adversarial Network and Ensemble Classification
Identification of antimicrobial peptides is an important and necessary issue in today's era. Antimicrobial peptides are essential as an alternative to antibiotics for biomedical applications and many other practical applications. These oligopeptides are useful in drug design and cause innate immunity against microorganisms. Artificial intelligence algorithms have played a significant role in the ease of identifying these peptides.This research is improved by improving proposed method in the field of antimicrobial peptides prediction. Suggested method is improved by combining the best coding method from different perspectives, In the following a deep neural network to balance the imbalanced combined datasets. The results of this research show that the proposed method have a significant improvement in the accuracy and efficiency of the prediction of antimicrobial peptides and are able to provide the best results compared to the existing methods. These development in the field of prediction and classification of antimicrobial peptides, basically in the fields of medicine and pharmaceutical industries, have high effectiveness and application.
comment: 21 pages, 3 figures, 4 tables
♻ ☆ On uniqueness in structured model learning
This paper addresses the problem of uniqueness in learning physical laws for systems of partial differential equations (PDEs). Contrary to most existing approaches, it considers a framework of structured model learning, where existing, approximately correct physical models are augmented with components that are learned from data. The main result of the paper is a uniqueness result that covers a large class of PDEs and a suitable class of neural networks used for approximating the unknown model components. The uniqueness result shows that, in the idealized setting of full, noiseless measurements, a unique identification of the unknown model components is possible as regularization-minimizing solution of the PDE system. Furthermore, the paper provides a convergence result showing that model components learned on the basis of incomplete, noisy measurements approximate the regularization-minimizing solution of the PDE system in the limit. These results are possible under specific properties of the approximating neural networks and due to a dedicated choice of regularization. With this, a practical contribution of this analytic paper is to provide a class of model learning frameworks different to standard settings where uniqueness can be expected in the limit of full measurements.
♻ ☆ Why Does Little Robustness Help? A Further Step Towards Understanding Adversarial Transferability
Adversarial examples (AEs) for DNNs have been shown to be transferable: AEs that successfully fool white-box surrogate models can also deceive other black-box models with different architectures. Although a bunch of empirical studies have provided guidance on generating highly transferable AEs, many of these findings lack explanations and even lead to inconsistent advice. In this paper, we take a further step towards understanding adversarial transferability, with a particular focus on surrogate aspects. Starting from the intriguing little robustness phenomenon, where models adversarially trained with mildly perturbed adversarial samples can serve as better surrogates, we attribute it to a trade-off between two predominant factors: model smoothness and gradient similarity. Our investigations focus on their joint effects, rather than their separate correlations with transferability. Through a series of theoretical and empirical analyses, we conjecture that the data distribution shift in adversarial training explains the degradation of gradient similarity. Building on these insights, we explore the impacts of data augmentation and gradient regularization on transferability and identify that the trade-off generally exists in the various training mechanisms, thus building a comprehensive blueprint for the regulation mechanism behind transferability. Finally, we provide a general route for constructing better surrogates to boost transferability which optimizes both model smoothness and gradient similarity simultaneously, e.g., the combination of input gradient regularization and sharpness-aware minimization (SAM), validated by extensive experiments. In summary, we call for attention to the united impacts of these two factors for launching effective transfer attacks, rather than optimizing one while ignoring the other, and emphasize the crucial role of manipulating surrogate models.
comment: IEEE Symposium on Security and Privacy (Oakland) 2024; Extended version; Fix an proof error of Theorem 1
♻ ☆ Pace: Physics-Aware Attentive Temporal Convolutional Network for Battery Health Estimation
Batteries are critical components in modern energy systems such as electric vehicles and power grid energy storage. Effective battery health management is essential for battery system safety, cost-efficiency, and sustainability. In this paper, we propose Pace, a physics-aware attentive temporal convolutional network for battery health estimation. Pace integrates raw sensor measurements with battery physics features derived from the equivalent circuit model. We develop three battery-specific modules, including dilated temporal blocks for efficient temporal encoding, chunked attention blocks for context modeling, and a dual-head output block for fusing short- and long-term battery degradation patterns. Together, the modules enable Pace to predict battery health accurately and efficiently in various battery usage conditions. In a large public dataset, Pace performs much better than existing models, achieving an average performance improvement of 6.5 and 2.0x compared to two best-performing baseline models. We further demonstrate its practical viability with a real-time edge deployment on a Raspberry Pi. These results establish Pace as a practical and high-performance solution for battery health analytics.
comment: Accepted at the ACM Symposium On Applied Computing (SAC), 2026
♻ ☆ IdealTSF: Can Non-Ideal Data Contribute to Enhancing the Performance of Time Series Forecasting Models? AAAI 2026
Deep learning has shown strong performance in time series forecasting tasks. However, issues such as missing values and anomalies in sequential data hinder its further development in prediction tasks. Previous research has primarily focused on extracting feature information from sequence data or addressing these suboptimal data as positive samples for knowledge transfer. A more effective approach would be to leverage these non-ideal negative samples to enhance event prediction. In response, this study highlights the advantages of non-ideal negative samples and proposes the IdealTSF framework, which integrates both ideal positive and negative samples for time series forecasting. IdealTSF consists of three progressive steps: pretraining, training, and optimization. It first pretrains the model by extracting knowledge from negative sample data, then transforms the sequence data into ideal positive samples during training. Additionally, a negative optimization mechanism with adversarial disturbances is applied. Extensive experiments demonstrate that negative sample data unlocks significant potential within the basic attention architecture for time series forecasting. Therefore, IdealTSF is particularly well-suited for applications with noisy samples or low-quality data.
comment: Accepted at AAAI 2026
♻ ☆ Evaluating Adversarial Attacks on Federated Learning for Temperature Forecasting
Deep learning and federated learning (FL) are becoming powerful partners for next-generation weather forecasting. Deep learning enables high-resolution spatiotemporal forecasts that can surpass traditional numerical models, while FL allows institutions in different locations to collaboratively train models without sharing raw data, addressing efficiency and security concerns. While FL has shown promise across heterogeneous regions, its distributed nature introduces new vulnerabilities. In particular, data poisoning attacks, in which compromised clients inject manipulated training data, can degrade performance or introduce systematic biases. These threats are amplified by spatial dependencies in meteorological data, allowing localized perturbations to influence broader regions through global model aggregation. In this study, we investigate how adversarial clients distort federated surface temperature forecasts trained on the Copernicus European Regional ReAnalysis (CERRA) dataset. We simulate geographically distributed clients and evaluate patch-based and global biasing attacks on regional temperature forecasts. Our results show that even a small fraction of poisoned clients can mislead predictions across large, spatially connected areas. A global temperature bias attack from a single compromised client shifts predictions by up to -1.7 K, while coordinated patch attacks more than triple the mean squared error and produce persistent regional anomalies exceeding +3.5 K. Finally, we assess trimmed mean aggregation as a defense mechanism, showing that it successfully defends against global bias attacks (2-13% degradation) but fails against patch attacks (281-603% amplification), exposing limitations of outlier-based defenses for spatially correlated data.
♻ ☆ Structured Sparse Transition Matrices to Enable State Tracking in State-Space Models NeurIPS 2025
Modern state-space models (SSMs) often utilize transition matrices which enable efficient computation but pose restrictions on the model's expressivity, as measured in terms of the ability to emulate finite-state automata (FSA). While unstructured transition matrices are optimal in terms of expressivity, they come at a prohibitively high compute and memory cost even for moderate state sizes. We propose a structured sparse parametrization of transition matrices in SSMs that enables FSA state tracking with optimal state size and depth, while keeping the computational cost of the recurrence comparable to that of diagonal SSMs. Our method, PD-SSM, parametrizes the transition matrix as the product of a column one-hot matrix ($P$) and a complex-valued diagonal matrix ($D$). Consequently, the computational cost of parallel scans scales linearly with the state size. Theoretically, the model is BIBO-stable and can emulate any $N$-state FSA with one layer of dimension $N$ and a linear readout of size $N \times N$, significantly improving on all current structured SSM guarantees. Experimentally, the model significantly outperforms a wide collection of modern SSM variants on various FSA state tracking tasks. On multiclass time-series classification, the performance is comparable to that of neural controlled differential equations, a paradigm explicitly built for time-series analysis. Finally, we integrate PD-SSM into a hybrid Transformer-SSM architecture and demonstrate that the model can effectively track the states of a complex FSA in which transitions are encoded as a set of variable-length English sentences. The code is available at https://github.com/IBM/expressive-sparse-state-space-model
comment: 10 pages, NeurIPS 2025 Spotlight
♻ ☆ Decoding Emotional Trajectories: A Temporal-Semantic Network Approach for Latent Depression Assessment in Social Media
The early identification and intervention of latent depression are of significant societal importance for mental health governance. While current automated detection methods based on social media have shown progress, their decision-making processes often lack a clinically interpretable framework, particularly in capturing the duration and dynamic evolution of depressive symptoms. To address this, this study introduces a semantic parsing network integrated with multi-scale temporal prototype learning. The model detects depressive states by capturing temporal patterns and semantic prototypes in users' emotional expression, providing a duration-aware interpretation of underlying symptoms. Validated on a large-scale social media dataset, the model outperforms existing state-of-the-art methods. Analytical results indicate that the model can identify emotional expression patterns not systematically documented in traditional survey-based approaches, such as sustained narratives expressing admiration for an "alternative life." Further user evaluation demonstrates the model's superior interpretability compared to baseline methods. This research contributes a structurally transparent, clinically aligned framework for depression detection in social media to the information systems literature. In practice, the model can generate dynamic emotional profiles for social platform users, assisting in the targeted allocation of mental health support resources.
comment: 56 pages, 10 figures, 21 tables
♻ ☆ MIRA: Medical Time Series Foundation Model for Real-World Health Data NeurIPS 2025
A unified foundation model for medical time series -- pretrained on open access and ethics board-approved medical corpora -- offers the potential to reduce annotation burdens, minimize model customization, and enable robust transfer across clinical institutions, modalities, and tasks, particularly in data-scarce or privacy-constrained environments. However, existing generalist time series foundation models struggle to handle medical time series data due to their inherent challenges, including irregular intervals, heterogeneous sampling rates, and frequent missing values. To address these challenges, we introduce MIRA, a unified foundation model specifically designed for medical time series forecasting. MIRA incorporates a Continuous-Time Rotary Positional Encoding that enables fine-grained modeling of variable time intervals, a frequency-specific mixture-of-experts layer that routes computation across latent frequency regimes to further promote temporal specialization, and a Continuous Dynamics Extrapolation Block based on Neural ODE that models the continuous trajectory of latent states, enabling accurate forecasting at arbitrary target timestamps. Pretrained on a large-scale and diverse medical corpus comprising over 454 billion time points collect from publicly available datasets, MIRA achieves reductions in forecasting errors by an average of 10% and 7% in out-of-distribution and in-distribution scenarios, respectively, when compared to other zero-shot and fine-tuned baselines. We also introduce a comprehensive benchmark spanning multiple downstream clinical tasks, establishing a foundation for future research in medical time series modeling.
comment: NeurIPS 2025 Main Conference
♻ ☆ A Knowledge Graph-based Retrieval-Augmented Generation Framework for Algorithm Selection in the Facility Layout Problem
Selecting a solution algorithm for the Facility Layout Problem (FLP), an NP-hard optimization problem with multiobjective trade-off, is a complex task that requires deep expert knowledge. The performance of a given algorithm depends on the specific characteristics of the problem, such as the number of facilities, objectives, and constraints. This creates a need for a data-driven recommendation method to guide algorithm selection in automated design systems. This paper introduces a new recommendation method to make this expertise accessible, based on a Knowledge Graph-Based Retrieval-Augmented Generation (KG-RAG) framework. In this framework, a domain-specific knowledge graph (KG) is constructed from the literature. The method then employs a multifaceted retrieval mechanism to gather relevant evidence from this KG using three distinct approaches: precise graph-based search, flexible vector-based search, and cluster-based high-level search. The retrieved evidence is utilized by a Large Language Model (LLM) to generate algorithm recommendations based on data-driven reasoning. This KG-RAG framework is tested on a use case consisting of six problems comprising of complex multi-objective and multi-constraint FLP case. The results are compared with the Gemini 1.5 Flash chatbot. The results show that KG-RAG achieves an average reasoning score of 4.7 out of 5 compared to 3.3 for the baseline chatbot.
comment: 10 pages, 5 figures
♻ ☆ I-Diff: Structural Regularization for High-Fidelity Diffusion Models
Denoising Diffusion Probabilistic Models (DDPMs) have significantly advanced generative AI, achieving impressive results in high-quality image and data generation. However, enhancing fidelity without compromising semantic content remains a key challenge in the field. Recent diffusion research in multiple disciplines has introduced objectives and architectural refinements that tighten the match between generated and real data distributions, yielding higher fidelity than earlier generative frameworks. Multi-stage architectures, physics-guided modeling, semantic conditioning, and rarity-aware generation are some of the explored works to achieve this task. However, the integration of structural information of the data distribution into DDPM has largely been unexplored. The conventional DDPM framework relies solely on the $L^2$ norm between the additive and predicted noise to generate new data distributions. We introduce I-Diff, an improved version of DDPM that incorporates a carefully designed regularizer, effectively enabling the model to encode structural information, thereby preserving the inherent fidelity of the data distribution. The proposed approach is validated through extensive experiments on DDPM, Improved DDPM and Latent Diffusion Model across multiple datasets. Empirical results demonstrate significant improvements in fidelity (Density and Precision increase 10% and 37% in CIFAR-100 dataset respectively) across other tested datasets. These results highlight the effectiveness of our method in enhancing the fidelity of the generated data. Notably, improvements across different models highlight the model-agnostic nature of our proposed method in the wider field of generative AI.
♻ ☆ Enhancing Time Series Forecasting through Selective Representation Spaces: A Patch Perspective
Time Series Forecasting has made significant progress with the help of Patching technique, which partitions time series into multiple patches to effectively retain contextual semantic information into a representation space beneficial for modeling long-term dependencies. However, conventional patching partitions a time series into adjacent patches, which causes a fixed representation space, thus resulting in insufficiently expressful representations. In this paper, we pioneer the exploration of constructing a selective representation space to flexibly include the most informative patches for forecasting. Specifically, we propose the Selective Representation Space (SRS) module, which utilizes the learnable Selective Patching and Dynamic Reassembly techniques to adaptively select and shuffle the patches from the contextual time series, aiming at fully exploiting the information of contextual time series to enhance the forecasting performance of patch-based models. To demonstrate the effectiveness of SRS module, we propose a simple yet effective SRSNet consisting of SRS and an MLP head, which achieves state-of-the-art performance on real-world datasets from multiple domains. Furthermore, as a novel plug-and-play module, SRS can also enhance the performance of existing patch-based models. The resources are available at https://github.com/decisionintelligence/SRSNet.
♻ ☆ Curiosity-Driven Development of Action and Language in Robots Through Self-Exploration
Infants acquire language with generalization from minimal experience, whereas large language models require billions of training tokens. What underlies efficient development in humans? We investigated this problem through experiments wherein robotic agents learn to perform actions associated with imperative sentences (e.g., push red cube) via curiosity-driven self-exploration. Our approach integrates active inference with reinforcement learning, enabling intrinsically motivated developmental learning. The simulations reveal key findings corresponding to observations in developmental psychology. i) Generalization improves drastically as the scale of compositional elements increases. ii) Curiosity improves learning through self-exploration. iii) Rote pairing of sentences and actions precedes compositional generalization. iv) Simpler actions develop before complex actions depending on them. v) Exception-handling induces U-shaped developmental performance, a pattern like representational redescription in child language learning. These results suggest that curiosity-driven active inference accounts for how intrinsically motivated sensorimotor-linguistic learning supports scalable compositional generalization and exception handling in humans and artificial agents.
comment: 20 pages, 19 pages of supplementary material
♻ ☆ Learning Robust and Correct Controllers Guided by Feasibility-Aware Signal Temporal Logic via BarrierNet
Control Barrier Functions (CBFs) have emerged as a powerful tool for enforcing safety in optimization-based controllers, and their integration with Signal Temporal Logic (STL) has enabled the specification-driven synthesis of complex robotic behaviors. However, existing CBF-STL approaches typically rely on fixed hyperparameters and myopic, per-time step optimization, which can lead to overly conservative behavior, infeasibility near tight input limits, and difficulty satisfying long-horizon STL tasks. To address these limitations, we propose a feasibility-aware learning framework that embeds trainable, time-varying High Order Control Barrier Functions (HOCBFs) into a differentiable Quadratic Program (dQP). Our approach provides a systematic procedure for constructing time-varying HOCBF constraints for a broad fragment of STL and introduces a unified robustness measure that jointly captures STL satisfaction, QP feasibility, and control-bound compliance. Three neural networks-InitNet, RefNet, and an extended BarrierNet-collaborate to generate reference inputs and adapt constraint-related hyperparameters automatically over time and across initial conditions, reducing conservativeness while maximizing robustness. The resulting controller achieves STL satisfaction with strictly feasible dQPs and requires no manual tuning. Simulation results demonstrate that the proposed framework maintains high STL robustness under tight input bounds and significantly outperforms fixed-parameter and non-adaptive baselines in complex environments.
comment: 16 pages, 11 figures
♻ ☆ FreeKV: Boosting KV Cache Retrieval for Efficient LLM Inference
Large language models (LLMs) have been widely deployed with rapidly expanding context windows to support increasingly demanding applications. However, long contexts pose significant deployment challenges, primarily due to the KV cache whose size grows proportionally with context length. While KV cache compression methods are proposed to address this issue, KV dropping methods incur considerable accuracy loss, and KV retrieval methods suffer from significant efficiency bottlenecks. We propose FreeKV, an algorithm-system co-optimization framework to enhance KV retrieval efficiency while preserving accuracy. On the algorithm side, FreeKV introduces speculative retrieval to shift the KV selection and recall processes out of the critical path, combined with fine-grained correction to ensure accuracy. On the system side, FreeKV employs hybrid KV layouts across CPU and GPU memory to eliminate fragmented data transfers, and leverages double-buffered streamed recall to further improve efficiency. Experiments demonstrate that FreeKV achieves near-lossless accuracy across various scenarios and models, delivering up to 13$\times$ speedup compared to SOTA KV retrieval methods.
♻ ☆ REP: Resource-Efficient Prompting for Rehearsal-Free Continual Learning NeurIPS 2025
Recent rehearsal-free continual learning (CL) methods guided by prompts achieve strong performance on vision tasks with non-stationary data but remain resource-intensive, hindering real-world edge deployment. We introduce resource-efficient prompting (REP), which improves the computational and memory efficiency of prompt-based rehearsal-free continual learning methods while minimizing accuracy trade-offs. Our approach employs swift prompt selection to refine input data using a carefully provisioned model and introduces adaptive token merging (AToM) and adaptive layer dropping (ALD) for efficient prompt updates. AToM and ALD selectively skip data and model layers while preserving task-specific features during the learning of new tasks. Extensive experiments on multiple image classification datasets demonstrate REP's superior resource efficiency over state-of-the-art rehearsal-free CL methods.
comment: NeurIPS 2025
On the Design of One-step Diffusion via Shortcutting Flow Paths
Recent advances in few-step diffusion models have demonstrated their efficiency and effectiveness by shortcutting the probabilistic paths of diffusion models, especially in training one-step diffusion models from scratch (\emph{a.k.a.} shortcut models). However, their theoretical derivation and practical implementation are often closely coupled, which obscures the design space. To address this, we propose a common design framework for representative shortcut models. This framework provides theoretical justification for their validity and disentangles concrete component-level choices, thereby enabling systematic identification of improvements. With our proposed improvements, the resulting one-step model achieves a new state-of-the-art FID50k of 2.85 on ImageNet-256x256 under the classifier-free guidance setting with one step generation, and further reaches FID50k of 2.52 with 2x training steps. Remarkably, the model requires no pre-training, distillation, or curriculum learning. We believe our work lowers the barrier to component-level innovation in shortcut models and facilitates principled exploration of their design space.
comment: 10 pages of main body, conference paper
♻ ☆ Transparent Networks for Multivariate Time Series AAAI-26
Transparent models, which provide inherently interpretable predictions, are receiving significant attention in high-stakes domains. However, despite much real-world data being collected as time series, there is a lack of studies on transparent time series models. To address this gap, we propose a novel transparent neural network model for time series called Generalized Additive Time Series Model (GATSM). GATSM consists of two parts: 1) independent feature networks to learn feature representations, and 2) a transparent temporal module to learn temporal patterns across different time steps using the feature representations. This structure allows GATSM to effectively capture temporal patterns and handle varying-length time series while preserving transparency. Empirical experiments show that GATSM significantly outperforms existing generalized additive models and achieves comparable performance to black-box time series models, such as recurrent neural networks and Transformer. In addition, we demonstrate that GATSM finds interesting patterns in time series.
comment: AAAI-26 Special Track on AI Alignment
♻ ☆ The Instability of Safety: How Random Seeds and Temperature Expose Inconsistent LLM Refusal Behavior
Current safety evaluations of large language models rely on single-shot testing, implicitly assuming that model responses are deterministic and representative of the model's safety alignment. We challenge this assumption by investigating the stability of safety refusal decisions across random seeds and temperature settings. Testing four instruction-tuned models from three families (Llama 3.1 8B, Qwen 2.5 7B, Qwen 3 8B, Gemma 3 12B) on 876 harmful prompts across 20 different sampling configurations (4 temperatures x 5 random seeds), we find that 18-28% of prompts exhibit decision flips--the model refuses in some configurations but complies in others--depending on the model. Our Safety Stability Index (SSI) reveals that higher temperatures significantly reduce decision stability (Friedman chi-squared = 396.81, p < 0.001), with mean within-temperature SSI dropping from 0.977 at temperature 0.0 to 0.942 at temperature 1.0. We validate our findings across all model families using Claude 3.5 Haiku as a unified external judge, achieving 89.0% inter-judge agreement with our primary Llama 70B judge (Cohen's kappa = 0.62). Within each model, prompts with higher compliance rates exhibit lower stability (Spearman rho = -0.47 to -0.70, all p < 0.001), indicating that models "waver" more on borderline requests. These findings demonstrate that single-shot safety evaluations are insufficient for reliable safety assessment and that evaluation protocols must account for stochastic variation in model behavior. We show that single-shot evaluation agrees with multi-sample ground truth only 92.4% of the time when pooling across temperatures (94.2-97.7% at fixed temperature depending on setting), and recommend using at least 3 samples per prompt for reliable safety assessment.
comment: 16 pages, 7 figures, 9 tables. Code and data available at https://github.com/erikl2/safety-refusal-stability
♻ ☆ Bayesian Ego-graph Inference for Networked Multi-Agent Reinforcement Learning NeurIPS 2025
In networked multi-agent reinforcement learning (Networked-MARL), decentralized agents must act under local observability and constrained communication over fixed physical graphs. Existing methods often assume static neighborhoods, limiting adaptability to dynamic or heterogeneous environments. While centralized frameworks can learn dynamic graphs, their reliance on global state access and centralized infrastructure is impractical in real-world decentralized systems. We propose a stochastic graph-based policy for Networked-MARL, where each agent conditions its decision on a sampled subgraph over its local physical neighborhood. Building on this formulation, we introduce BayesG, a decentralized actor-framework that learns sparse, context-aware interaction structures via Bayesian variational inference. Each agent operates over an ego-graph and samples a latent communication mask to guide message passing and policy computation. The variational distribution is trained end-to-end alongside the policy using an evidence lower bound (ELBO) objective, enabling agents to jointly learn both interaction topology and decision-making strategies. BayesG outperforms strong MARL baselines on large-scale traffic control tasks with up to 167 agents, demonstrating superior scalability, efficiency, and performance.
comment: Accepted at NeurIPS 2025 https://openreview.net/forum?id=3qeTs05bRL
♻ ☆ Manifold Learning for Personalized and Label-Free Detection of Cardiac Arrhythmias
Electrocardiograms (ECGs) provide direct, non-invasive measurements of heart activity and are well-established tools for detecting and monitoring cardiovascular disease. However, manual ECG analysis can be time-consuming and prone to errors. Machine learning has emerged as a promising approach for automated heartbeat recognition and classification, but substantial variations in ECG signals make it challenging to develop generalizable supervised models. ECG signals vary widely across individuals and leads, while datasets often follow different labeling standards and may be biased, greatly hindering supervised methods. Conventional unsupervised methods, such as principal component analysis, prioritize large (often obvious) variances and typically overlook subtle yet clinically relevant patterns. When labels are missing or variations are small, both approaches fail. Here, we show that nonlinear dimensionality reduction (NLDR) algorithms, namely t-distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation and projection (UMAP), can address these challenges and identify medically relevant features in ECG signals without training or prior information. Using lead II and V1 signals from the MIT-BIH dataset, UMAP and t-SNE generate rich two-dimensional latent spaces with visually separable clusters. Applied to mixed populations of heartbeats, these clusters correspond to different individuals, while for single subjects they reveal distinct arrhythmia patterns. A simple classifier on these embeddings discriminates individual recordings with >= 90% accuracy and identifies arrhythmias in single patients with a median accuracy of 98.96% and median F1-score of 91.02%. The results show that NLDR holds much promise for cardiac monitoring, including the limiting cases of single-lead ECG and the current 12-lead standard of care, and for personalized health care beyond cardiology.
♻ ☆ Meta-Reinforcement Learning for Building Energy Management System
The building sector is one of the largest contributors to global energy consumption. Improving its energy efficiency is essential for reducing operational costs and greenhouse gas emissions. Energy management systems (EMS) play a key role in monitoring and controlling building appliances efficiently and reliably. With the increasing integration of renewable energy, intelligent EMS solutions have received growing attention. Reinforcement learning (RL) has recently been explored for this purpose and shows strong potential. However, most RL-based EMS methods require a large number of training steps to learn effective control policies, especially when adapting to unseen buildings, which limits their practical deployment. This paper introduces MetaEMS, a meta-reinforcement learning framework for EMS. MetaEMS improves learning efficiency by transferring knowledge from previously solved tasks to new ones through group-level and building-level adaptation, enabling fast adaptation and effective control across diverse building environments. Experimental results demonstrate that MetaEMS adapts more rapidly to unseen buildings and consistently outperforms baseline methods across various scenarios.
comment: arXiv admin note: text overlap with arXiv:1909.10165 by other authors
♻ ☆ Text-guided multi-property molecular optimization with a diffusion language model
Molecular optimization (MO) is a crucial stage in drug discovery in which task-oriented generated molecules are optimized to meet practical industrial requirements. Existing mainstream MO approaches primarily utilize external property predictors to guide iterative property optimization. However, learning all molecular samples in the vast chemical space is unrealistic for predictors. As a result, errors and noise are inevitably introduced during property prediction due to the nature of approximation. This leads to discrepancy accumulation, generalization reduction and suboptimal molecular candidates. In this paper, we propose a text-guided multi-property molecular optimization method utilizing transformer-based diffusion language model (TransDLM). TransDLM leverages standardized chemical nomenclature as semantic representations of molecules and implicitly embeds property requirements into textual descriptions, thereby mitigating error propagation during diffusion process. By fusing physically and chemically detailed textual semantics with specialized molecular representations, TransDLM effectively integrates diverse information sources to guide precise optimization, which enhances the model's ability to balance structural retention and property enhancement. Additionally, the success of a case study further demonstrates TransDLM's ability to solve practical problems. Experimentally, our approach surpasses state-of-the-art methods in maintaining molecular structural similarity and enhancing chemical properties on the benchmark dataset.
comment: Accepted to Information Fusion, Vol. 127, 103907, 2026
♻ ☆ Confucius Code Agent: Scalable Agent Scaffolding for Real-World Codebases
Real-world software engineering tasks require coding agents that can operate over massive repositories, sustain long-horizon sessions, and reliably coordinate complex toolchains at test time. Existing research-grade agents offer transparency but struggle when scaled to real-world workloads, while proprietary systems achieve strong practical performance but provide limited extensibility, interpretability, and controllability. We introduce the Confucius Code Agent (CCA), a scalable software engineering agent that can operate at enterprise-level codebases. CCA is built on top of the Confucius SDK, an agent development platform structured around three complementary perspectives: Agent Experience (AX), User Experience (UX), and Developer Experience (DX). The SDK integrates a unified orchestrator with hierarchical working memory for long-context operation, a persistent note-taking mechanism for cross-session continual learning, and a modular extension system for reliable tool use. In addition, we introduce a meta-agent that automates the synthesis, evaluation, and refinement of agent configurations through a build-test-improve loop, enabling rapid adaptation to new tasks, environments, and tool stacks. Instantiated with these mechanisms, CCA demonstrates strong performance on real-world software engineering tasks. On SWE-Bench-Pro, CCA achieves a Resolve@1 of 54.3%, surpassing both research-grade and proprietary coding agents under comparable model conditions. Together, the Confucius SDK and CCA form a general, extensible, and production-grade foundation for building robust coding agents, bridging the gap between research prototypes and practical large-scale deployment.
comment: The latest draft
♻ ☆ Retrieval Enhanced Feedback via In-context Neural Error-book EMNLP 2025
Recent advancements in Large Language Models (LLMs) have significantly improved reasoning capabilities, with in-context learning (ICL) emerging as a key technique for adaptation without retraining. While previous works have focused on leveraging correct examples, recent research highlights the importance of learning from errors to enhance performance. However, existing methods lack a structured framework for analyzing and mitigating errors, particularly in Multimodal Large Language Models (MLLMs), where integrating visual and textual inputs adds complexity. To address this issue, we propose REFINE: Retrieval-Enhanced Feedback via In-context Neural Error-book, a teacher-student framework that systematically structures errors and provides targeted feedback. REFINE introduces three systematic queries to construct structured feedback -- Feed-Target, Feed-Check, and Feed-Path -- to enhance multimodal reasoning by prioritizing relevant visual information, diagnosing critical failure points, and formulating corrective actions. Unlike prior approaches that rely on redundant retrievals, REFINE optimizes structured feedback retrieval, improving inference efficiency, token usage, and scalability. Our results demonstrate substantial speedup, reduced computational costs, and successful generalization, highlighting REFINE's potential for enhancing multimodal reasoning.
comment: Accepted at EMNLP 2025 main
♻ ☆ QCircuitBench: A Large-Scale Dataset for Benchmarking Quantum Algorithm Design
Quantum computing is an emerging field recognized for the significant speedup it offers over classical computing through quantum algorithms. However, designing and implementing quantum algorithms pose challenges due to the complex nature of quantum mechanics and the necessity for precise control over quantum states. Despite the significant advancements in AI, there has been a lack of datasets specifically tailored for this purpose. In this work, we introduce QCircuitBench, the first benchmark dataset designed to evaluate AI's capability in designing and implementing quantum algorithms using quantum programming languages. Unlike using AI for writing traditional codes, this task is fundamentally more complicated due to highly flexible design space. Our key contributions include: 1. A general framework which formulates the key features of quantum algorithm design for Large Language Models. 2. Implementations for quantum algorithms from basic primitives to advanced applications, spanning 3 task suites, 25 algorithms, and 120,290 data points. 3. Automatic validation and verification functions, allowing for iterative evaluation and interactive reasoning without human inspection. 4. Promising potential as a training dataset through preliminary fine-tuning results. We observed several interesting experimental phenomena: LLMs tend to exhibit consistent error patterns, and fine-tuning does not always outperform few-shot learning. In all, QCircuitBench is a comprehensive benchmark for LLM-driven quantum algorithm design, and it reveals limitations of LLMs in this domain.
comment: 45 pages, 17 figures, 15 tables, GitHub repository: https://github.com/EstelYang/QCircuitBench
♻ ☆ CFLight: Enhancing Safety with Traffic Signal Control through Counterfactual Learning
Traffic accidents result in millions of injuries and fatalities globally, with a significant number occurring at intersections each year. Traffic Signal Control (TSC) is an effective strategy for enhancing safety at these urban junctures. Despite the growing popularity of Reinforcement Learning (RL) methods in optimizing TSC, these methods often prioritize driving efficiency over safety, thus failing to address the critical balance between these two aspects. Additionally, these methods usually need more interpretability. CounterFactual (CF) learning is a promising approach for various causal analysis fields. In this study, we introduce a novel framework to improve RL for safety aspects in TSC. This framework introduces a novel method based on CF learning to address the question: ``What if, when an unsafe event occurs, we backtrack to perform alternative actions, and will this unsafe event still occur in the subsequent period?'' To answer this question, we propose a new structure causal model to predict the result after executing different actions, and we propose a new CF module that integrates with additional ``X'' modules to promote safe RL practices. Our new algorithm, CFLight, which is derived from this framework, effectively tackles challenging safety events and significantly improves safety at intersections through a near-zero collision control strategy. Through extensive numerical experiments on both real-world and synthetic datasets, we demonstrate that CFLight reduces collisions and improves overall traffic performance compared to conventional RL methods and the recent safe RL model. Moreover, our method represents a generalized and safe framework for RL methods, opening possibilities for applications in other domains. The data and code are available in the github https://github.com/AdvancedAI-ComplexSystem/SmartCity/tree/main/CFLight.
♻ ☆ PrivORL: Differentially Private Synthetic Dataset for Offline Reinforcement Learning
Recently, offline reinforcement learning (RL) has become a popular RL paradigm. In offline RL, data providers share pre-collected datasets -- either as individual transitions or sequences of transitions forming trajectories -- to enable the training of RL models (also called agents) without direct interaction with the environments. Offline RL saves interactions with environments compared to traditional RL, and has been effective in critical areas, such as navigation tasks. Meanwhile, concerns about privacy leakage from offline RL datasets have emerged. To safeguard private information in offline RL datasets, we propose the first differential privacy (DP) offline dataset synthesis method, PrivORL, which leverages a diffusion model and diffusion transformer to synthesize transitions and trajectories, respectively, under DP. The synthetic dataset can then be securely released for downstream analysis and research. PrivORL adopts the popular approach of pre-training a synthesizer on public datasets, and then fine-tuning on sensitive datasets using DP Stochastic Gradient Descent (DP-SGD). Additionally, PrivORL introduces curiosity-driven pre-training, which uses feedback from the curiosity module to diversify the synthetic dataset and thus can generate diverse synthetic transitions and trajectories that closely resemble the sensitive dataset. Extensive experiments on five sensitive offline RL datasets show that our method achieves better utility and fidelity in both DP transition and trajectory synthesis compared to baselines. The replication package is available at the GitHub repository.
comment: Accepted at NDSS 2026; code available at https://github.com/2019ChenGong/PrivORL
♻ ☆ Shared DIFF Transformer
DIFF Transformer improves attention allocation by enhancing focus on relevant context while suppressing noise. It introduces a differential attention mechanism that calculates the difference between two independently generated attention distributions, effectively reducing noise and promoting sparse attention patterns. However, the independent signal generation in DIFF Transformer results in parameter redundancy and suboptimal utilization of information. In this work, we propose Shared DIFF Transformer, which draws on the idea of a differential amplifier by introducing a shared base matrix to model global patterns and incorporating low-rank updates to enhance task-specific flexibility. This design significantly reduces parameter redundancy, improves efficiency, and retains strong noise suppression capabilities. Experimental results show that, compared to DIFF Transformer, our method achieves better performance in tasks such as long-sequence modeling, key information retrieval, and in-context learning. Our work provides a novel and efficient approach to optimizing differential attention mechanisms and advancing robust Transformer architectures.
comment: arXiv admin note: text overlap with arXiv:2501.17486
♻ ☆ Forking-Sequences NeurIPS 2025
While accuracy is a critical requirement for time series forecasting, an equally important desideratum is forecast stability across forecast creation dates (FCDs). Even highly accurate models can produce erratic revisions between FCDs, disrupting downstream decision-making. To improve forecast stability, several state-of-the-art models including MQCNN, MQT, and SPADE employ a powerful yet underexplored neural network architectural design known as forking-sequences. This architectural design jointly encodes and decodes the entire time series across all FCDs, producing an entire multi-horizon forecast grid in a single forward pass. This approach contrasts with conventional statistical and neural forecasting methods that process FCDs independently, generating only a single multi-horizon forecast per forward pass. In this work, we formalize the forking-sequences design and motivate its broader adoption by introducing a metric for quantifying excess volatility in forecast revisions and by providing theoretical and empirical analysis. We theoretically motivate three key benefits of forking-sequences: (i) increased forecast stability through ensembling; (ii) gradient variance reduction, leading to more stable and consistent training steps; and (iii) improved computational efficiency during inference. We validate the benefits of forking-sequences compared to baseline window-sampling on the M-series benchmark, using 16 datasets from the M1, M3, M4, and Tourism competitions. We observe median accuracy improvements across datasets of 29.7%, 46.2%, 49.3%, 28.6%, 24.7%, and 6.4% for MLP, RNN, LSTM, CNN, Transformer, and State Space-based architectures, respectively. We then show that forecast ensembling during inference can improve median forecast stability by 10.8%, 13.2%, 13.0%, 10.9%, 10.2%, and 11.2% for these respective models trained with forking-sequences, while maintaining accuracy.
comment: Presented at the GPU-Accelerated and Scalable Optimization (ScaleOpt) Workshop, NeurIPS 2025
♻ ☆ Theoretical Guarantees of Learning Ensembling Strategies with Applications to Time Series Forecasting ICML 2023
Ensembling is among the most popular tools in machine learning (ML) due to its effectiveness in minimizing variance and thus improving generalization. Most ensembling methods for black-box base learners fall under the umbrella of "stacked generalization," namely training an ML algorithm that takes the inferences from the base learners as input. While stacking has been widely applied in practice, its theoretical properties are poorly understood. In this paper, we prove a novel result, showing that choosing the best stacked generalization from a (finite or finite-dimensional) family of stacked generalizations based on cross-validated performance does not perform "much worse" than the oracle best. Our result strengthens and significantly extends the results in Van der Laan et al. (2007). Inspired by the theoretical analysis, we further propose a particular family of stacked generalizations in the context of probabilistic forecasting, each one with a different sensitivity for how much the ensemble weights are allowed to vary across items, timestamps in the forecast horizon, and quantiles. Experimental results demonstrate the performance gain of the proposed method.
comment: Published at ICML 2023. In this version, we clarify that the proof in fact yields a strictly stronger bound than the one stated in the ICML version
♻ ☆ Estimating Privacy Leakage of Augmented Contextual Knowledge in Language Models
Language models (LMs) rely on their parametric knowledge augmented with relevant contextual knowledge for certain tasks, such as question answering. However, the contextual knowledge can contain private information that may be leaked when answering queries, and estimating this privacy leakage is not well understood. A straightforward approach of directly comparing an LM's output to the contexts can overestimate the privacy risk, since the LM's parametric knowledge might already contain the augmented contextual knowledge. To this end, we introduce *context influence*, a metric that builds on differential privacy, a widely-adopted privacy notion, to estimate the privacy leakage of contextual knowledge during decoding. Our approach effectively measures how each subset of the context influences an LM's response while separating the specific parametric knowledge of the LM. Using our context influence metric, we demonstrate that context privacy leakage occurs when contextual knowledge is out of distribution with respect to parametric knowledge. Moreover, we experimentally demonstrate how context influence properly attributes the privacy leakage to augmented contexts, and we evaluate how factors -- such as model size, context size, generation position, etc. -- affect context privacy leakage. The practical implications of our results will inform practitioners of the privacy risk associated with augmented contextual knowledge.
♻ ☆ Differentially Private Knowledge Distillation via Synthetic Text Generation
Large Language models (LLMs) are achieving state-of-the-art performance in many different downstream tasks. However, the increasing urgency of data privacy puts pressure on practitioners to train LLMs with Differential Privacy (DP) on private data. Concurrently, the exponential growth in parameter size of LLMs necessitates model compression before deployment of LLMs on resource-constrained devices or latency-sensitive applications. Differential privacy and model compression generally must trade off utility loss to achieve their objectives. Moreover, simultaneously applying both schemes can compound the utility degradation. To this end, we propose DistilDP: a novel differentially private knowledge distillation algorithm that exploits synthetic data generated by a differentially private teacher LLM. The knowledge of a teacher LLM is transferred onto the student in two ways: one way from the synthetic data itself -- the hard labels, and the other way by the output distribution of the teacher evaluated on the synthetic data -- the soft labels. Furthermore, if the teacher and student share a similar architectural structure, we can further distill knowledge by aligning the hidden representations between both. Our experimental results demonstrate that DistilDP can substantially improve the utility over existing baselines, at least $9.0$ PPL on the Big Patent dataset, with strong privacy parameters, $ε=2$. These promising results progress privacy-preserving compression of autoregressive LLMs. Our code can be accessed here: https://github.com/james-flemings/dp_compress.
♻ ☆ MedChat: A Multi-Agent Framework for Multimodal Diagnosis with Large Language Models
The integration of deep learning-based glaucoma detection with large language models (LLMs) presents an automated strategy to mitigate ophthalmologist shortages and improve clinical reporting efficiency. However, applying general LLMs to medical imaging remains challenging due to hallucinations, limited interpretability, and insufficient domain-specific medical knowledge, which can potentially reduce clinical accuracy. Although recent approaches combining imaging models with LLM reasoning have improved reporting, they typically rely on a single generalist agent, restricting their capacity to emulate the diverse and complex reasoning found in multidisciplinary medical teams. To address these limitations, we propose MedChat, a multi-agent diagnostic framework and platform that combines specialized vision models with multiple role-specific LLM agents, all coordinated by a director agent. This design enhances reliability, reduces hallucination risk, and enables interactive diagnostic reporting through an interface tailored for clinical review and educational use. Code available at https://github.com/Purdue-M2/MedChat.
♻ ☆ The 4/$δ$ Bound: Designing Predictable LLM-Verifier Systems for Formal Method Guarantee
The integration of Formal Verification tools with Large Language Models (LLMs) offers a path to scale software verification beyond manual workflows. However, current methods remain unreliable: without a solid theoretical footing, the refinement process acts as a black box that may oscillate, loop, or diverge. This work bridges this critical gap by developing an LLM-Verifier Convergence Theorem, providing the first formal framework with provable guarantees for termination in multi-stage verification pipelines. We model the interaction not as a generic loop, but as a sequential absorbing Markov Chain comprising four essential engineering stages: \texttt{CodeGen}, \texttt{Compilation}, \texttt{InvariantSynth}, and \texttt{SMTSolving}. We prove that for any non-zero stage success probability ($δ> 0$), the system reaches the \texttt{Verified} state almost surely. Furthermore, because of the sequential nature of the pipeline, we derive a precise latency bound of $\mathbb{E}[n] \leq 4/δ$. We stress-tested this prediction in an extensive empirical campaign comprising over 90,000 trials. The results match the theory with striking consistency: every run reached verification, and the empirical convergence factor clustered tightly around $C_f\approx 1.0$, confirming that the $4/δ$ bound accurately mirrors system behavior rather than serving as a loose buffer. Based on this data, we identify three distinct operating zones -- marginal, practical, and high-performance -- and propose a dynamic calibration strategy to handle parameter drift in real-world environments. Together, these contributions replace heuristic guesswork with a rigorous architectural foundation, enabling predictable resource planning and performance budgeting for safety-critical software.
comment: 36 pages, 9 figures
♻ ☆ Stopping Rules for Stochastic Gradient Descent via Anytime-Valid Confidence Sequences
We study stopping rules for stochastic gradient descent (SGD) for convex optimization from the perspective of anytime-valid confidence sequences. Classical analyses of SGD provide convergence guarantees in expectation or at a fixed horizon, but offer no statistically valid way to assess, at an arbitrary time, how close the current iterate is to the optimum. We develop an anytime-valid, data-dependent upper confidence sequence for the weighted average suboptimality of projected SGD, constructed via nonnegative supermartingales and requiring no smoothness or strong convexity. This confidence sequence yields a simple stopping rule that is provably $\varepsilon$-optimal with probability at least $1-α$ and is almost surely finite under standard stochastic approximation stepsizes. To the best of our knowledge, these are the first rigorous, time-uniform performance guarantees and finite-time $\varepsilon$-optimality certificates for projected SGD with general convex objectives, based solely on observable trajectory quantities.
♻ ☆ Low-Rank Tensor Decompositions for the Theory of Neural Networks
The groundbreaking performance of deep neural networks (NNs) promoted a surge of interest in providing a mathematical basis to deep learning theory. Low-rank tensor decompositions are specially befitting for this task due to their close connection to NNs and their rich theoretical results. Different tensor decompositions have strong uniqueness guarantees, which allow for a direct interpretation of their factors, and polynomial time algorithms have been proposed to compute them. Through the connections between tensors and NNs, such results supported many important advances in the theory of NNs. In this review, we show how low-rank tensor methods--which have been a core tool in the signal processing and machine learning communities--play a fundamental role in theoretically explaining different aspects of the performance of deep NNs, including their expressivity, algorithmic learnability and computational hardness, generalization, and identifiability. Our goal is to give an accessible overview of existing approaches (developed by different communities, ranging from computer science to mathematics) in a coherent and unified way, and to open a broader perspective on the use of low-rank tensor decompositions for the theory of deep NNs.
♻ ☆ Worth Their Weight: Randomized and Regularized Block Kaczmarz Algorithms without Preprocessing
Due to the ever growing amounts of data leveraged for machine learning and scientific computing, it is increasingly important to develop algorithms that sample only a small portion of the data at a time. In the case of linear least-squares, the randomized block Kaczmarz method (RBK) is an appealing example of such an algorithm, but its convergence is only understood under sampling distributions that require potentially prohibitively expensive preprocessing steps. To address this limitation, we analyze RBK when the data is sampled uniformly, showing that its iterates converge in a Monte Carlo sense to a $\textit{weighted}$ least-squares solution. Unfortunately, for general problems the bias of the weighted least-squares solution and the variance of the iterates can become arbitrarily large. We show that these quantities can be rigorously controlled by incorporating regularization into the RBK iterations, yielding the regularized algorithm ReBlocK. Numerical experiments including examples arising from natural gradient optimization demonstrate that ReBlocK can outperform both RBK and minibatch stochastic gradient descent for inconsistent problems with rapidly decaying singular values.
comment: 36 pages, 14 figures
♻ ☆ Primer C-VAE: An interpretable deep learning primer design method to detect emerging virus variants
Motivation: PCR is more economical and quicker than Next Generation Sequencing for detecting target organisms, with primer design being a critical step. In epidemiology with rapidly mutating viruses, designing effective primers is challenging. Traditional methods require substantial manual intervention and struggle to ensure effective primer design across different strains. For organisms with large, similar genomes like Escherichia coli and Shigella flexneri, differentiating between species is also difficult but crucial. Results: We developed Primer C-VAE, a model based on a Variational Auto-Encoder framework with Convolutional Neural Networks to identify variants and generate specific primers. Using SARS-CoV-2, our model classified variants (alpha, beta, gamma, delta, omicron) with 98% accuracy and generated variant-specific primers. These primers appeared with >95% frequency in target variants and <5% in others, showing good performance in in-silico PCR tests. For Alpha, Delta, and Omicron, our primer pairs produced fragments <200 bp, suitable for qPCR detection. The model also generated effective primers for organisms with longer gene sequences like E. coli and S. flexneri. Conclusion: Primer C-VAE is an interpretable deep learning approach for developing specific primer pairs for target organisms. This flexible, semi-automated and reliable tool works regardless of sequence completeness and length, allowing for qPCR applications and can be applied to organisms with large and highly similar genomes.
♻ ☆ Setting the Standard: Recommended Practices for Data Preprocessing in Data-Driven Climate Prediction
Artificial intelligence (AI) - and specifically machine learning (ML) - applications for climate prediction across timescales are proliferating quickly. The emergence of these methods prompts a revisit to the impact of data preprocessing, a topic familiar to the climate community, as more traditional statistical models work with relatively small sample sizes. Indeed, the skill and confidence in the forecasts produced by data-driven models are directly influenced by the quality of the datasets and how they are treated during model development, thus yielding the colloquialism, "garbage in, garbage out." As such, this article establishes protocols for the proper preprocessing of input data for AI/ML models designed for climate prediction (i.e., subseasonal to decadal and longer). The three aims are to: (1) educate researchers, developers, and end users on the effects that preprocessing has on climate predictions; (2) provide recommended practices for data preprocessing for such applications; and (3) empower end users to decipher whether the models they are using are properly designed for their objectives. Specific topics covered in this article include the creation of (standardized) anomalies, dealing with non-stationarity and the spatiotemporally correlated nature of climate data, and handling of extreme values and variables with potentially complex distributions. Case studies will illustrate how using different preprocessing techniques can produce different predictions from the same model, which can create confusion and decrease confidence in the overall process. Ultimately, implementing the recommended practices set forth in this article will enhance the robustness and transparency of AI/ML in climate prediction studies.
comment: 27 pages, 4 figures, 3 tables
♻ ☆ Spatio-Temporal Graph Neural Network for Urban Spaces: Interpolating Citywide Traffic Volume
Graph Neural Networks have shown strong performance in traffic volume forecasting, particularly on highways and major arterial networks. Applying them to urban settings, however, presents unique challenges: urban networks exhibit greater structural diversity, traffic volumes are highly overdispersed with many zeros, the best way to account for spatial dependencies remains unclear, and sensor coverage is often very sparse. We introduce the Graph Neural Network for Urban Interpolation (GNNUI), a novel urban traffic volume estimation approach. GNNUI employs a masking algorithm to learn interpolation, integrates node features to capture functional roles, and uses a loss function tailored to zero-inflated traffic distributions. In addition to the model, we introduce two new open, large-scale urban traffic volume benchmarks, covering different transportation modes: Strava cycling data from Berlin and New York City taxi data. GNNUI outperforms recent, some graph-based, interpolation methods across metrics (MAE, RMSE, true-zero rate, Kullback-Leibler divergence) and remains robust from 90% to 1% sensor coverage. For example, on the Strava dataset, the MAE increases only from 7.1 to 10.5, and on the Taxi dataset, from 23.0 to 40.4. These results demonstrate that GNNUI maintains strong performance despite extreme data scarcity, a common condition in real-world urban settings. We also examine how graph connectivity choices influence model accuracy.
♻ ☆ How Reinforcement Learning After Next-Token Prediction Facilitates Learning
Recent advances in reasoning domains with neural networks have primarily been enabled by a training recipe that optimizes Large Language Models, previously trained to predict the next-token in a sequence, with reinforcement learning algorithms. We introduce a framework to study the success of this paradigm, and we theoretically expose the optimization mechanisms by which reinforcement learning improves over next-token prediction in this setting. We study learning from mixture distributions of short and long ``chain-of-thought'' sequences encoding a single task. In particular, when the task consists of predicting the parity of $d$ bits and long sequences are rare, we show how reinforcement learning after next-token prediction enables autoregressive transformers to generalize, whereas mere next-token prediction requires extreme statistical or computational resources to do so. We further explain how reinforcement learning leverages increased test-time computation, manifested in longer responses, to facilitate this learning process. In a simplified setting, we theoretically prove that autoregressive linear models following this training recipe can efficiently learn to predict the parity of $d$ bits as long as the proportion of long demonstrations in the data mix is not exponentially small in the input dimension $d$. Finally, we demonstrate these same phenomena in other settings, including the post-training of Llama-series models on mixture variations of common mathematical reasoning benchmarks.
♻ ☆ Multimodal Foundation Models for Early Disease Detection
Healthcare data now span EHRs, medical imaging, genomics, and wearable sensors, but most diagnostic models still process these modalities in isolation. This limits their ability to capture early, cross-modal disease signatures. This paper introduces a multimodal foundation model built on a transformer architecture that integrates heterogeneous clinical data through modality-specific encoders and cross-modal attention. Each modality is mapped into a shared latent space and fused using multi-head attention with residual normalization. We implement the framework using a multimodal dataset that simulates early-stage disease patterns across EHR sequences, imaging patches, genomic profiles, and wearable signals, including missing-modality scenarios and label noise. The model is trained using supervised classification together with self-supervised reconstruction and contrastive alignment to improve robustness. Experimental evaluation demonstrates strong performance in early-detection settings, with stable classification metrics, reliable uncertainty estimates, and interpretable attention patterns. The approach moves toward a flexible, pretrain-and-fine-tune foundation model that supports precision diagnostics, handles incomplete inputs, and improves early disease detection across oncology, cardiology, and neurology applications.
comment: 6 pages
♻ ☆ Flow matching Operators for Residual-Augmented Probabilistic Learning of Partial Differential Equations
Learning probabilistic surrogates for partial differential equations remains challenging in data-scarce regimes: neural operators require large amounts of high-fidelity data, while generative approaches typically sacrifice resolution invariance. We formulate flow matching in an infinite-dimensional function space to learn a probabilistic transport that maps low-fidelity approximations to the manifold of high-fidelity PDE solutions via learned residual corrections. We develop a conditional neural operator architecture based on feature-wise linear modulation for flow matching vector fields directly in function space, enabling inference at arbitrary spatial resolutions without retraining. To improve stability and representational control of the induced neural ODE, we parameterize the flow vector field as a sum of a linear operator and a nonlinear operator, combining lightweight linear components with a conditioned Fourier neural operator for expressive, input-dependent dynamics. We then formulate a residual-augmented learning strategy where the flow model learns probabilistic corrections from inexpensive low-fidelity surrogates to high-fidelity solutions, rather than learning the full solution mapping from scratch. Finally, we derive tractable training objectives that extend conditional flow matching to the operator setting with input-function-dependent couplings. To demonstrate the effectiveness of our approach, we present numerical experiments on a range of PDEs, including the 1D advection and Burgers' equation, and a 2D Darcy flow problem for flow through a porous medium. We show that the proposed method can accurately learn solution operators across different resolutions and fidelities and produces uncertainty estimates that appropriately reflect model confidence, even when trained on limited high-fidelity data.
♻ ☆ QLENS: Towards A Quantum Perspective of Language Transformers
In natural language processing, current methods for understanding Transformers are successful at identifying intermediate predictions during a model's inference. However, these approaches function as limited diagnostic checkpoints, lacking a mathematical framework for mechanistically modeling how each layer facilitates transitions between these evolving states. This interpretability gap and past successes of interdisciplinary outlooks inspire us to turn to physics in search of a descriptive mathematical framework for Transformers. We observe that language models are intrinsically probabilistic, an attribute that is echoed in the core postulates of quantum mechanics. This parallel inspires us to translate insights from this discipline to that of natural language processing. Towards this objective, we propose QLENS a novel attempt to develop a physics-based perspective on the Transformer generation process. Under QLENS, a Transformer is studied by converting its latent activations into a state vector in a Hilbert space derived from the model's output units. This state subsequently evolves through hidden layers - reformulated as unitary operators and analogously defined Hamiltonians - during inference. The model's final probability distribution is obtained by applying the Born rule to the end state using a specific measurement operator. To demonstrate QLENS's potential, we conduct a proof-of-concept by probing a toy Transformer to investigate the influence of individual layers in a model's prediction trajectory. We present our work as a foundation for cross-domain insights to be leveraged towards a broader understanding of Transformers.
♻ ☆ Hidden in the Haystack: Smaller Needles are More Difficult for LLMs to Find
Large language models (LLMs) face significant challenges with needle-in-ahaystack tasks, where relevant information ("the needle") must be drawn from a large pool of irrelevant context ("the haystack"). Previous studies have highlighted positional bias and distractor quantity as critical factors affecting model performance, yet the influence of gold context size, the length of the answer-containing document, has received little attention. We present the first systematic study of gold context size in long-context question answering, spanning three diverse benchmarks (general knowledge, biomedical reasoning, and mathematical reasoning), eleven state-of-the-art LLMs (including recent reasoning models), and more than 150K controlled runs. Our experiments reveal that LLM performance drops sharply when the gold context is shorter, i.e., smaller gold contexts consistently degrade model performance and amplify positional sensitivity, posing a major challenge for agentic systems that must integrate scattered, fine-grained information of varying lengths. This effect persists under rigorous confounder analysis: even after controlling for gold context position, answer token repetition, gold-to-distractor ratio, distractor volume, and domain specificity, gold context size remains a decisive, independent predictor of success. Our work provides clear insights to guide the design of robust, context-aware LLM-driven systems.
comment: Under Review
♻ ☆ Stress-Testing Causal Claims via Cardinality Repairs
Causal analyses derived from observational data underpin high-stakes decisions in domains such as healthcare, public policy, and economics. Yet such conclusions can be surprisingly fragile: even minor data errors - duplicate records, or entry mistakes - may drastically alter causal relationships. This raises a fundamental question: how robust is a causal claim to small, targeted modifications in the data? Addressing this question is essential for ensuring the reliability, interpretability, and reproducibility of empirical findings. We introduce SubCure, a framework for robustness auditing via cardinality repairs. Given a causal query and a user-specified target range for the estimated effect, SubCure identifies a small set of tuples or subpopulations whose removal shifts the estimate into the desired range. This process not only quantifies the sensitivity of causal conclusions but also pinpoints the specific regions of the data that drive those conclusions. We formalize this problem under both tuple- and pattern-level deletion settings and show both are NP-complete. To scale to large datasets, we develop efficient algorithms that incorporate machine unlearning techniques to incrementally update causal estimates without retraining from scratch. We evaluate SubCure across four real-world datasets covering diverse application domains. In each case, it uncovers compact, high-impact subsets whose removal significantly shifts the causal conclusions, revealing vulnerabilities that traditional methods fail to detect. Our results demonstrate that cardinality repair is a powerful and general-purpose tool for stress-testing causal analyses and guarding against misleading claims rooted in ordinary data imperfections.
Quantitative Methods 9
☆ AnySleep: a channel-agnostic deep learning system for high-resolution sleep staging in multi-center cohorts
Sleep is essential for good health throughout our lives, yet studying its dynamics requires manual sleep staging, a labor-intensive step in sleep research and clinical care. Across centers, polysomnography (PSG) recordings are traditionally scored in 30-s epochs for pragmatic, not physiological, reasons and can vary considerably in electrode count, montage, and subject characteristics. These constraints present challenges in conducting harmonized multi-center sleep studies and discovering novel, robust biomarkers on shorter timescales. Here, we present AnySleep, a deep neural network model that uses any electroencephalography (EEG) or electrooculography (EOG) data to score sleep at adjustable temporal resolutions. We trained and validated the model on over 19,000 overnight recordings from 21 datasets collected across multiple clinics, spanning nearly 200,000 hours of EEG and EOG data, to promote robust generalization across sites. The model attains state-of-the-art performance and surpasses or equals established baselines at 30-s epochs. Performance improves as more channels are provided, yet remains strong when EOG is absent or when only EOG or single EEG derivations (frontal, central, or occipital) are available. On sub-30-s timescales, the model captures short wake intrusions consistent with arousals and improves prediction of physiological characteristics (age, sex) and pathophysiological conditions (sleep apnea), relative to standard 30-s scoring. We make the model publicly available to facilitate large-scale studies with heterogeneous electrode setups and to accelerate the discovery of novel biomarkers in sleep.
comment: 18 pages, 6 figures, 2 tables
☆ EXAONE Path 2.5: Pathology Foundation Model with Multi-Omics Alignment
Cancer progression arises from interactions across multiple biological layers, especially beyond morphological and across molecular layers that remain invisible to image-only models. To capture this broader biological landscape, we present EXAONE Path 2.5, a pathology foundation model that jointly models histologic, genomic, epigenetic and transcriptomic modalities, producing an integrated patient representation that reflects tumor biology more comprehensively. Our approach incorporates three key components: (1) multimodal SigLIP loss enabling all-pairwise contrastive learning across heterogeneous modalities, (2) a fragment-aware rotary positional encoding (F-RoPE) module that preserves spatial structure and tissue-fragment topology in WSI, and (3) domain-specialized internal foundation models for both WSI and RNA-seq to provide biologically grounded embeddings for robust multimodal alignment. We evaluate EXAONE Path 2.5 against six leading pathology foundation models across two complementary benchmarks: an internal real-world clinical dataset and the Patho-Bench benchmark covering 80 tasks. Our framework demonstrates high data and parameter efficiency, achieving on-par performance with state-of-the-art foundation models on Patho-Bench while exhibiting the highest adaptability in the internal clinical setting. These results highlight the value of biologically informed multimodal design and underscore the potential of integrated genotype-to-phenotype modeling for next-generation precision oncology.
☆ Accelerating MHC-II Epitope Discovery via Multi-Scale Prediction in Antigen Presentation
Antigenic epitope presented by major histocompatibility complex II (MHC-II) proteins plays an essential role in immunotherapy. However, compared to the more widely studied MHC-I in computational immunotherapy, the study of MHC-II antigenic epitope poses significantly more challenges due to its complex binding specificity and ambiguous motif patterns. Consequently, existing datasets for MHC-II interactions are smaller and less standardized than those available for MHC-I. To address these challenges, we present a well-curated dataset derived from the Immune Epitope Database (IEDB) and other public sources. It not only extends and standardizes existing peptide-MHC-II datasets, but also introduces a novel antigen-MHC-II dataset with richer biological context. Leveraging this dataset, we formulate three major machine learning (ML) tasks of peptide binding, peptide presentation, and antigen presentation, which progressively capture the broader biological processes within the MHC-II antigen presentation pathway. We further employ a multi-scale evaluation framework to benchmark existing models, along with a comprehensive analysis over various modeling designs to this problem with a modular framework. Overall, this work serves as a valuable resource for advancing computational immunotherapy, providing a foundation for future research in ML guided epitope discovery and predictive modeling of immune responses.
♻ ☆ TomoGraphView: 3D Medical Image Classification with Omnidirectional Slice Representations and Graph Neural Networks
The sharp rise in medical tomography examinations has created a demand for automated systems that can reliably extract informative features for downstream tasks such as tumor characterization. Although 3D volumes contain richer information than individual slices, effective 3D classification remains difficult: volumetric data encode complex spatial dependencies, and the scarcity of large-scale 3D datasets has constrained progress toward 3D foundation models. As a result, many recent approaches rely on 2D vision foundation models trained on natural images, repurposing them as feature extractors for medical scans with surprisingly strong performance. Despite their practical success, current methods that apply 2D foundation models to 3D scans via slice-based decomposition remain fundamentally limited. Standard slicing along axial, sagittal, and coronal planes often fails to capture the true spatial extent of a structure when its orientation does not align with these canonical views. More critically, most approaches aggregate slice features independently, ignoring the underlying 3D geometry and losing spatial coherence across slices. To overcome these limitations, we propose TomoGraphView, a novel framework that integrates omnidirectional volume slicing with spherical graph-based feature aggregation. Instead of restricting the model to axial, sagittal, or coronal planes, our method samples both canonical and non-canonical cross-sections generated from uniformly distributed points on a sphere enclosing the volume. We publicly share our accessible code base at http://github.com/compai-lab/2025-MedIA-kiechle and provide a user-friendly library for omnidirectional volume slicing at https://pypi.org/project/OmniSlicer.
comment: Preprint submitted to Medical Image Analysis (MedIA)
♻ ☆ Property-Isometric Variational Autoencoders for Sequence Modeling and Design
Biological sequence design (DNA, RNA, or peptides) with desired functional properties has applications in discovering novel nanomaterials, biosensors, antimicrobial drugs, and beyond. One common challenge is the ability to optimize complex high-dimensional properties such as target emission spectra of DNA-mediated fluorescent nanoparticles, photo and chemical stability, and antimicrobial activity of peptides across target microbes. Existing models rely on simple binary labels (e.g., binding/non-binding) rather than high-dimensional complex properties. To address this gap, we propose a geometry-preserving variational autoencoder framework, called PrIVAE, which learns latent sequence embeddings that respect the geometry of their property space. Specifically, we model the property space as a high-dimensional manifold that can be locally approximated by a nearest neighbor graph, given an appropriately defined distance measure. We employ the property graph to guide the sequence latent representations using (1) graph neural network encoder layers and (2) an isometric regularizer. PrIVAE learns a property-organized latent space that enables rational design of new sequences with desired properties by employing the trained decoder. We evaluate the utility of our framework for two generative tasks: (1) design of DNA sequences that template fluorescent metal nanoclusters and (2) design of antimicrobial peptides. The trained models retain high reconstruction accuracy while organizing the latent space according to properties. Beyond in silico experiments, we also employ sampled sequences for wet lab design of DNA nanoclusters, resulting in up to 16.1-fold enrichment of rare-property nanoclusters compared to their abundance in training data, demonstrating the practical utility of our framework.
comment: 23 pages, 6 figures, preprint
♻ ☆ TransientTrack: Advanced Multi-Object Tracking and Classification of Cancer Cells with Transient Fluorescent Signals
Tracking cells in time-lapse videos is an essential technique for monitoring cell population dynamics at a single-cell level. Current methods for cell tracking are developed on videos with mostly single, constant signals and do not detect pivotal events such as cell death. Here, we present TransientTrack, a deep learning-based framework for cell tracking in multi-channel microscopy video data with transient fluorescent signals that fluctuate over time following processes such as the circadian rhythm of cells. By identifying key cellular events - mitosis (cell division) and apoptosis (cell death) our method allows us to build complete trajectories, including cell lineage information. TransientTrack is lightweight and performs matching on cell detection embeddings directly, without the need for quantification of tracking-specific cell features. Furthermore, our approach integrates Transformer Networks, multi-stage matching using all detection boxes, and the interpolation of missing tracklets with the Kalman Filter. This unified framework achieves strong performance across diverse conditions, effectively tracking cells and capturing cell division and death. We demonstrate the use of TransientTrack in an analysis of the efficacy of a chemotherapeutic drug at a single-cell level. The proposed framework could further advance quantitative studies of cancer cell dynamics, enabling detailed characterization of treatment response and resistance mechanisms. The code is available at https://github.com/bozeklab/TransientTrack.
comment: 13 pages, 7 figures, 2 tables
♻ ☆ Decoding Emotional Trajectories: A Temporal-Semantic Network Approach for Latent Depression Assessment in Social Media
The early identification and intervention of latent depression are of significant societal importance for mental health governance. While current automated detection methods based on social media have shown progress, their decision-making processes often lack a clinically interpretable framework, particularly in capturing the duration and dynamic evolution of depressive symptoms. To address this, this study introduces a semantic parsing network integrated with multi-scale temporal prototype learning. The model detects depressive states by capturing temporal patterns and semantic prototypes in users' emotional expression, providing a duration-aware interpretation of underlying symptoms. Validated on a large-scale social media dataset, the model outperforms existing state-of-the-art methods. Analytical results indicate that the model can identify emotional expression patterns not systematically documented in traditional survey-based approaches, such as sustained narratives expressing admiration for an "alternative life." Further user evaluation demonstrates the model's superior interpretability compared to baseline methods. This research contributes a structurally transparent, clinically aligned framework for depression detection in social media to the information systems literature. In practice, the model can generate dynamic emotional profiles for social platform users, assisting in the targeted allocation of mental health support resources.
comment: 56 pages, 10 figures, 21 tables
♻ ☆ Papanicolaou Stain Unmixing for RGB Image Using Weighted Nucleus Sparsity and Total Variation Regularization
The Papanicolaou stain, consisting of five dyes, provides extensive color information essential for cervical cancer cytological screening. The visual observation of these colors is subjective and difficult to characterize. Direct RGB quantification is unreliable because RGB intensities vary with staining and imaging conditions. Stain unmixing offers a promising alternative by quantifying dye amounts. In previous work, multispectral imaging was utilized to estimate the dye amounts of Papanicolaou stain. However, its application to RGB images presents a challenge since the number of dyes exceeds the three RGB channels. This paper proposes a novel training-free Papanicolaou stain unmixing method for RGB images. This model enforces (i) nonnegativity, (ii) weighted nucleus sparsity for hematoxylin, and (iii) total variation smoothness, resulting in a convex optimization problem. Our method achieved excellent performance in stain quantification when validated against the results of multispectral imaging. We further used it to distinguish cells in lobular endocervical glandular hyperplasia (LEGH), a precancerous gastric-type adenocarcinoma lesion, from normal endocervical cells. Stain abundance features clearly separated the two groups, and a classifier based on stain abundance achieved 98.0% accuracy. By converting subjective color impressions into numerical markers, this technique highlights the strong promise of RGB-based stain unmixing for quantitative diagnosis.
comment: Accepted and published in Medical & Biological Engineering & Computing (2025). https://doi.org/10.1007/s11517-025-03490-z
♻ ☆ Multi-factor modeling of chlorophyll-a in South China's subtropical reservoirs using long-term monitoring data for quantitative analysis
Eutrophication and harmful algal blooms, driven by complex interactions among nutrients and climate, threaten freshwater ecosystems globally, particularly in densely populated Asian regions.Understanding interactions among water temperature, nutrient levels, and chlorophyll-a (Chl-a) dynamics is crucial for addressing eutrophication in freshwater ecosystems. However, many existing studies tend to oversimplify these relationships, often neglecting the non-linear effects and long-term temporal variations. Here, we conducted multi-year field monitoring (2020-2024) of key environmental factors, including total nitrogen (TN), total phosphorus (TP), water temperature, and Chl-a, across three reservoirs in Guangdong Province, China: Tiantangshan (S1), Baisha River (S2), and Meizhou (S3). Chl-a concentrations showed significant spatiotemporal variability, ranging from 1.2 to 11.8 ug/L, with a general increasing trend indicative of progressing eutrophication. Strong positive correlations were found between Chl-a and TN, TP, and temperature. Long-term data revealed TN as a more influential driver than TP for Chl-a proliferation in these systems. Based on the collected data, we developed and calibrated a dynamic multi-factor hydro-ecological model. The model accurately reproduced the observed Chl-a patterns (R^2 > 0.85), identifying synergistic effects between temperature and nutrients. The model offers a robust theoretical basis for predicting Chl-a dynamics and supports science-informed management strategies to mitigate eutrophication in subtropical reservoirs.
comment: 11 pages, 7 figures
Cell Behavior 2
♻ ☆ TransientTrack: Advanced Multi-Object Tracking and Classification of Cancer Cells with Transient Fluorescent Signals
Tracking cells in time-lapse videos is an essential technique for monitoring cell population dynamics at a single-cell level. Current methods for cell tracking are developed on videos with mostly single, constant signals and do not detect pivotal events such as cell death. Here, we present TransientTrack, a deep learning-based framework for cell tracking in multi-channel microscopy video data with transient fluorescent signals that fluctuate over time following processes such as the circadian rhythm of cells. By identifying key cellular events - mitosis (cell division) and apoptosis (cell death) our method allows us to build complete trajectories, including cell lineage information. TransientTrack is lightweight and performs matching on cell detection embeddings directly, without the need for quantification of tracking-specific cell features. Furthermore, our approach integrates Transformer Networks, multi-stage matching using all detection boxes, and the interpolation of missing tracklets with the Kalman Filter. This unified framework achieves strong performance across diverse conditions, effectively tracking cells and capturing cell division and death. We demonstrate the use of TransientTrack in an analysis of the efficacy of a chemotherapeutic drug at a single-cell level. The proposed framework could further advance quantitative studies of cancer cell dynamics, enabling detailed characterization of treatment response and resistance mechanisms. The code is available at https://github.com/bozeklab/TransientTrack.
comment: 13 pages, 7 figures, 2 tables
♻ ☆ Measurement of tissue viscosity to relate force and motion in collective cell migration
In tissue development, wound healing, and cancer invasion, coordinated cell motion arises from active forces produced by the cells. The relationship between force and motion remains unclear, however, because the forces result from a sum of contributions from activity and the constitutive response of the cell collective. Here, we develop a method to decouple the forces due to activity from those due to constitutive response. As a model of an epithelial tissue, we use a monolayer of epithelial cells in the fluid state, for which the constitutive behavior is that of a viscous fluid. By careful study of the distribution of the ratio between shear stress and strain rate, we show that the order of magnitude of viscosity within the epithelial tissue is 100 Pa-hr and that increasing (decreasing) the actomyosin cytoskeleton and cell-cell adhesions increase (decrease) the magnitude of tissue viscosity. These results establish tissue viscosity as a meaningful way to describe the mechanical behavior of epithelial tissues, and demonstrate a direct relationship between tissue microstructure and material properties. By providing the first experimental measurement of tissue viscosity, our study is a step toward separating the active and constitutive components of stress, in turn clarifying the relationship between force and motion and providing a new means of identifying how active cell forces evolve in space and time.
Genomics 1
♻ ☆ Primer C-VAE: An interpretable deep learning primer design method to detect emerging virus variants
Motivation: PCR is more economical and quicker than Next Generation Sequencing for detecting target organisms, with primer design being a critical step. In epidemiology with rapidly mutating viruses, designing effective primers is challenging. Traditional methods require substantial manual intervention and struggle to ensure effective primer design across different strains. For organisms with large, similar genomes like Escherichia coli and Shigella flexneri, differentiating between species is also difficult but crucial. Results: We developed Primer C-VAE, a model based on a Variational Auto-Encoder framework with Convolutional Neural Networks to identify variants and generate specific primers. Using SARS-CoV-2, our model classified variants (alpha, beta, gamma, delta, omicron) with 98% accuracy and generated variant-specific primers. These primers appeared with >95% frequency in target variants and <5% in others, showing good performance in in-silico PCR tests. For Alpha, Delta, and Omicron, our primer pairs produced fragments <200 bp, suitable for qPCR detection. The model also generated effective primers for organisms with longer gene sequences like E. coli and S. flexneri. Conclusion: Primer C-VAE is an interpretable deep learning approach for developing specific primer pairs for target organisms. This flexible, semi-automated and reliable tool works regardless of sequence completeness and length, allowing for qPCR applications and can be applied to organisms with large and highly similar genomes.
Computation and Language 94
☆ Beyond surface form: A pipeline for semantic analysis in Alzheimer's Disease detection from spontaneous speech
Alzheimer's Disease (AD) is a progressive neurodegenerative condition that adversely affects cognitive abilities. Language-related changes can be automatically identified through the analysis of outputs from linguistic assessment tasks, such as picture description. Language models show promise as a basis for screening tools for AD, but their limited interpretability poses a challenge in distinguishing true linguistic markers of cognitive decline from surface-level textual patterns. To address this issue, we examine how surface form variation affects classification performance, with the goal of assessing the ability of language models to represent underlying semantic indicators. We introduce a novel approach where texts surface forms are transformed by altering syntax and vocabulary while preserving semantic content. The transformations significantly modify the structure and lexical content, as indicated by low BLEU and chrF scores, yet retain the underlying semantics, as reflected in high semantic similarity scores, isolating the effect of semantic information, and finding models perform similarly to if they were using the original text, with only small deviations in macro-F1. We also investigate whether language from picture descriptions retains enough detail to reconstruct the original image using generative models. We found that image-based transformations add substantial noise reducing classification accuracy. Our methodology provides a novel way of looking at what features influence model predictions, and allows the removal of possible spurious correlations. We find that just using semantic information, language model based classifiers can still detect AD. This work shows that difficult to detect semantic impairment can be identified, addressing an overlooked feature of linguistic deterioration, and opening new pathways for early detection systems.
☆ Towards Effective Model Editing for LLM Personalization
Personalization is becoming indispensable for LLMs to align with individual user preferences and needs. Yet current approaches are often computationally expensive, data-intensive, susceptible to catastrophic forgetting, and prone to performance degradation in multi-turn interactions or when handling implicit queries. To address these challenges, we conceptualize personalization as a model editing task and introduce Personalization Editing, a framework that applies localized edits guided by clustered preference representations. This design enables precise preference-aligned updates while preserving overall model capabilities. In addition, existing personalization benchmarks frequently rely on persona-based dialogs between LLMs rather than user-LLM interactions, or focus primarily on stylistic imitation while neglecting information-seeking tasks that require accurate recall of user-specific preferences. We introduce User Preference Question Answering (UPQA), a short-answer QA dataset constructed from in-situ user queries with varying levels of difficulty. Unlike prior benchmarks, UPQA directly evaluates a model's ability to recall and apply specific user preferences. Across experimental settings, Personalization Editing achieves higher editing accuracy and greater computational efficiency than fine-tuning, while outperforming prompting-based baselines in multi-turn conversations and implicit preference questions settings.
comment: 15 pages (including appendix), 7 figures. Code, data, results, and additional resources are available at: https://model-editing.github.io
☆ Towards Interactive Intelligence for Digital Humans
We introduce Interactive Intelligence, a novel paradigm of digital human that is capable of personality-aligned expression, adaptive interaction, and self-evolution. To realize this, we present Mio (Multimodal Interactive Omni-Avatar), an end-to-end framework composed of five specialized modules: Thinker, Talker, Face Animator, Body Animator, and Renderer. This unified architecture integrates cognitive reasoning with real-time multimodal embodiment to enable fluid, consistent interaction. Furthermore, we establish a new benchmark to rigorously evaluate the capabilities of interactive intelligence. Extensive experiments demonstrate that our framework achieves superior performance compared to state-of-the-art methods across all evaluated dimensions. Together, these contributions move digital humans beyond superficial imitation toward intelligent interaction.
☆ A stylometric analysis of speaker attribution from speech transcripts
Forensic scientists often need to identify an unknown speaker or writer in cases such as ransom calls, covert recordings, alleged suicide notes, or anonymous online communications, among many others. Speaker recognition in the speech domain usually examines phonetic or acoustic properties of a voice, and these methods can be accurate and robust under certain conditions. However, if a speaker disguises their voice or employs text-to-speech software, vocal properties may no longer be reliable, leaving only their linguistic content available for analysis. Authorship attribution methods traditionally use syntactic, semantic, and related linguistic information to identify writers of written text (authorship attribution). In this paper, we apply a content-based authorship approach to speech that has been transcribed into text, using what a speaker says to attribute speech to individuals (speaker attribution). We introduce a stylometric method, StyloSpeaker, which incorporates character, word, token, sentence, and style features from the stylometric literature on authorship, to assess whether two transcripts were produced by the same speaker. We evaluate this method on two types of transcript formatting: one approximating prescriptive written text with capitalization and punctuation and another normalized style that removes these conventions. The transcripts' conversation topics are also controlled to varying degrees. We find generally higher attribution performance on normalized transcripts, except under the strongest topic control condition, in which overall performance is highest. Finally, we compare this more explainable stylometric model to black-box neural approaches on the same data and investigate which stylistic features most effectively distinguish speakers.
☆ Comparative Analysis of LLM Abliteration Methods: A Cross-Architecture Evaluation
Safety alignment mechanisms in large language models prevent responses to harmful queries through learned refusal behavior, yet these same mechanisms impede legitimate research applications including cognitive modeling, adversarial testing, and security analysis. While abliteration techniques enable surgical removal of refusal representations through directional orthogonalization, the relative effectiveness of available implementations remains uncharacterized. This study evaluates four abliteration tools (Heretic, DECCP, ErisForge, FailSpy) across sixteen instruction-tuned models (7B-14B parameters), reporting tool compatibility on all 16 models and quantitative metrics on subsets dictated by tool support. Single-pass methods demonstrated superior capability preservation on the benchmarked subset (avg GSM8K change across three models: ErisForge -0.28 pp; DECCP -0.13 pp), while Bayesian-optimized abliteration produced variable distribution shift (KL divergence: 0.043-1.646) with model-dependent capability impact. These findings provide researchers with evidence-based selection criteria for abliteration tool deployment across diverse model architectures. The principal finding indicates that mathematical reasoning capabilities exhibit the highest sensitivity to abliteration interventions, with GSM8K change ranging from +1.51 pp to -18.81 pp (-26.5% relative) depending on tool selection and model architecture.
comment: 25 pages, 6 figures, 8 tables
☆ Large-Language Memorization During the Classification of United States Supreme Court Cases
Large-language models (LLMs) have been shown to respond in a variety of ways for classification tasks outside of question-answering. LLM responses are sometimes called "hallucinations" since the output is not what is ex pected. Memorization strategies in LLMs are being studied in detail, with the goal of understanding how LLMs respond. We perform a deep dive into a classification task based on United States Supreme Court (SCOTUS) decisions. The SCOTUS corpus is an ideal classification task to study for LLM memory accuracy because it presents significant challenges due to extensive sentence length, complex legal terminology, non-standard structure, and domain-specific vocabulary. Experimentation is performed with the latest LLM fine tuning and retrieval-based approaches, such as parameter-efficient fine-tuning, auto-modeling, and others, on two traditional category-based SCOTUS classification tasks: one with 15 labeled topics and another with 279. We show that prompt-based models with memories, such as DeepSeek, can be more robust than previous BERT-based models on both tasks scoring about 2 points better than previous models not based on prompting.
comment: 7 pages, 1 figure, Appendix of Prompts
☆ Temporal Tokenization Strategies for Event Sequence Modeling with Large Language Models
Representing continuous time is a critical and under-explored challenge in modeling temporal event sequences with large language models (LLMs). Various strategies like byte-level representations or calendar tokens have been proposed. However, the optimal approach remains unclear, especially given the diverse statistical distributions of real-world event data, which range from smooth log-normal to discrete, spiky patterns. This paper presents the first empirical study of temporal tokenization for event sequences, comparing distinct encoding strategies: naive numeric strings, high-precision byte-level representations, human-semantic calendar tokens, classic uniform binning, and adaptive residual scalar quantization. We evaluate these strategies by fine-tuning LLMs on real-world datasets that exemplify these diverse distributions. Our analysis reveals that no single strategy is universally superior; instead, prediction performance depends heavily on aligning the tokenizer with the data's statistical properties, with log-based strategies excelling on skewed distributions and human-centric formats proving robust for mixed modalities.
☆ Nemotron-Cascade: Scaling Cascaded Reinforcement Learning for General-Purpose Reasoning Models
Building general-purpose reasoning models with reinforcement learning (RL) entails substantial cross-domain heterogeneity, including large variation in inference-time response lengths and verification latency. Such variability complicates the RL infrastructure, slows training, and makes training curriculum (e.g., response length extension) and hyperparameter selection challenging. In this work, we propose cascaded domain-wise reinforcement learning (Cascade RL) to develop general-purpose reasoning models, Nemotron-Cascade, capable of operating in both instruct and deep thinking modes. Departing from conventional approaches that blend heterogeneous prompts from different domains, Cascade RL orchestrates sequential, domain-wise RL, reducing engineering complexity and delivering state-of-the-art performance across a wide range of benchmarks. Notably, RLHF for alignment, when used as a pre-step, boosts the model's reasoning ability far beyond mere preference optimization, and subsequent domain-wise RLVR stages rarely degrade the benchmark performance attained in earlier domains and may even improve it (see an illustration in Figure 1). Our 14B model, after RL, outperforms its SFT teacher, DeepSeek-R1-0528, on LiveCodeBench v5/v6/Pro and achieves silver-medal performance in the 2025 International Olympiad in Informatics (IOI). We transparently share our training and data recipes.
comment: We publicly release the Nemotron-Cascade models and the full collection of training data at: https://huggingface.co/collections/nvidia/nemotron-cascade
☆ Textual Gradients are a Flawed Metaphor for Automatic Prompt Optimization
A well-engineered prompt can increase the performance of large language models; automatic prompt optimization techniques aim to increase performance without requiring human effort to tune the prompts. One leading class of prompt optimization techniques introduces the analogy of textual gradients. We investigate the behavior of these textual gradient methods through a series of experiments and case studies. While such methods often result in a performance improvement, our experiments suggest that the gradient analogy does not accurately explain their behavior. Our insights may inform the selection of prompt optimization strategies, and development of new approaches.
☆ ReFusion: A Diffusion Large Language Model with Parallel Autoregressive Decoding
Autoregressive models (ARMs) are hindered by slow sequential inference. While masked diffusion models (MDMs) offer a parallel alternative, they suffer from critical drawbacks: high computational overhead from precluding Key-Value (KV) caching, and incoherent generation arising from learning dependencies over an intractable space of token combinations. To address these limitations, we introduce ReFusion, a novel masked diffusion model that achieves superior performance and efficiency by elevating parallel decoding from the token level to a higher slot level, where each slot is a fixed-length, contiguous sub-sequence. This is achieved through an iterative ``plan-and-infill'' decoding process: a diffusion-based planning step first identifies a set of weakly dependent slots, and an autoregressive infilling step then decodes these selected slots in parallel. The slot-based design simultaneously unlocks full KV cache reuse with a unified causal framework and reduces the learning complexity from the token combination space to a manageable slot-level permutation space. Extensive experiments on seven diverse benchmarks show that ReFusion not only overwhelmingly surpasses prior MDMs with 34% performance gains and an over 18$\times$ speedup on average, but also bridges the performance gap to strong ARMs while maintaining a 2.33$\times$ average speedup.
☆ Memory in the Age of AI Agents
Memory has emerged, and will continue to remain, a core capability of foundation model-based agents. As research on agent memory rapidly expands and attracts unprecedented attention, the field has also become increasingly fragmented. Existing works that fall under the umbrella of agent memory often differ substantially in their motivations, implementations, and evaluation protocols, while the proliferation of loosely defined memory terminologies has further obscured conceptual clarity. Traditional taxonomies such as long/short-term memory have proven insufficient to capture the diversity of contemporary agent memory systems. This work aims to provide an up-to-date landscape of current agent memory research. We begin by clearly delineating the scope of agent memory and distinguishing it from related concepts such as LLM memory, retrieval augmented generation (RAG), and context engineering. We then examine agent memory through the unified lenses of forms, functions, and dynamics. From the perspective of forms, we identify three dominant realizations of agent memory, namely token-level, parametric, and latent memory. From the perspective of functions, we propose a finer-grained taxonomy that distinguishes factual, experiential, and working memory. From the perspective of dynamics, we analyze how memory is formed, evolved, and retrieved over time. To support practical development, we compile a comprehensive summary of memory benchmarks and open-source frameworks. Beyond consolidation, we articulate a forward-looking perspective on emerging research frontiers, including memory automation, reinforcement learning integration, multimodal memory, multi-agent memory, and trustworthiness issues. We hope this survey serves not only as a reference for existing work, but also as a conceptual foundation for rethinking memory as a first-class primitive in the design of future agentic intelligence.
☆ Verifying Rumors via Stance-Aware Structural Modeling
Verifying rumors on social media is critical for mitigating the spread of false information. The stances of conversation replies often provide important cues to determine a rumor's veracity. However, existing models struggle to jointly capture semantic content, stance information, and conversation strructure, especially under the sequence length constraints of transformer-based encoders. In this work, we propose a stance-aware structural modeling that encodes each post in a discourse with its stance signal and aggregates reply embedddings by stance category enabling a scalable and semantically enriched representation of the entire thread. To enhance structural awareness, we introduce stance distribution and hierarchical depth as covariates, capturing stance imbalance and the influence of reply depth. Extensive experiments on benchmark datasets demonstrate that our approach significantly outperforms prior methods in the ability to predict truthfulness of a rumor. We also demonstrate that our model is versatile for early detection and cross-platfrom generalization.
comment: 8 pages, 2 figures, published in The 24th IEEE/WIC International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT 2025), London, UK, 2025
☆ PrahokBART: A Pre-trained Sequence-to-Sequence Model for Khmer Natural Language Generation
This work introduces {\it PrahokBART}, a compact pre-trained sequence-to-sequence model trained from scratch for Khmer using carefully curated Khmer and English corpora. We focus on improving the pre-training corpus quality and addressing the linguistic issues of Khmer, which are ignored in existing multilingual models, by incorporating linguistic components such as word segmentation and normalization. We evaluate PrahokBART on three generative tasks: machine translation, text summarization, and headline generation, where our results demonstrate that it outperforms mBART50, a strong multilingual pre-trained model. Additionally, our analysis provides insights into the impact of each linguistic module and evaluates how effectively our model handles space during text generation, which is crucial for the naturalness of texts in Khmer.
comment: Published at COLING 2025, 14 pages
☆ Fine-tuned LLM-based Code Migration Framework
The study presents the outcomes of research and experimental validation in the domain of automated codebase migration, with a focus on addressing challenges in transitioning SQL-based systems. The proposed method for migration essentially appears as a framework that leverages the best aspects of traditional software engineering techniques and provides an iterative, scalable, precise and efficient solution for modern database transformations. The central piece of the approach is the integration of a fine-tuned Large Language Model to address critical issues in SQL code conversion, such as syntax mapping, resolving discrepancies between Oracle PL/SQL and PostgreSQL, and optimising database elements such as stored procedures, triggers, views, and overall database logic. Thus, the method involves a trade-off between fine-tuning and prompt engineering. Special attention is given to a fine-tuning approach, which enhances the adaptability and compatibility with migration requirements across the entire database. According to the achieved results, fine-tuning plays a very important role. The study employs targeted evaluation methodologies along with computational metrics to measure the success of iterative conversion cycles. Core innovations include automated SQL feature detection, semi-supervised error analysis and integration of Subject Matter Experts feedback within a systematic migration workflow. The methodology achieves significant reductions in Syntax Error Rates, enhances feature alignment throughout migration iterations, and leverages dataset sampling to ensure continual improvement. By embedding GAI into the migration process, the framework facilitates precise feature mapping, semi-automated error resolution, and data-driven optimisation loops, improving workflow efficiency.
comment: 16 pages, 27 figures, 7 references
☆ SkipCat: Rank-Maximized Low-Rank Compression of Large Language Models via Shared Projection and Block Skipping AAAI 2026
Large language models (LLM) have achieved remarkable performance across a wide range of tasks. However, their substantial parameter sizes pose significant challenges for deployment on edge devices with limited computational and memory resources. Low-rank compression is a promising approach to address this issue, as it reduces both computational and memory costs, making LLM more suitable for resource-constrained environments. Nonetheless, naïve low-rank compression methods require a significant reduction in the retained rank to achieve meaningful memory and computation savings. For a low-rank model, the ranks need to be reduced by more than half to yield efficiency gains. Such aggressive truncation, however, typically results in substantial performance degradation. To address this trade-off, we propose SkipCat, a novel low-rank compression framework that enables the use of higher ranks while achieving the same compression rates. First, we introduce an intra-layer shared low-rank projection method, where multiple matrices that share the same input use a common projection. This reduces redundancy and improves compression efficiency. Second, we propose a block skipping technique that omits computations and memory transfers for selected sub-blocks within the low-rank decomposition. These two techniques jointly enable our compressed model to retain more effective ranks under the same compression budget. Experimental results show that, without any additional fine-tuning, our method outperforms previous low-rank compression approaches by 7% accuracy improvement on zero-shot tasks under the same compression rate. These results highlight the effectiveness of our rank-maximized compression strategy in preserving model performance under tight resource constraints.
comment: Accepted by AAAI 2026
☆ SIGMA: An AI-Empowered Training Stack on Early-Life Hardware
An increasing variety of AI accelerators is being considered for large-scale training. However, enabling large-scale training on early-life AI accelerators faces three core challenges: frequent system disruptions and undefined failure modes that undermine reliability; numerical errors and training instabilities that threaten correctness and convergence; and the complexity of parallelism optimization combined with unpredictable local noise that degrades efficiency. To address these challenges, SIGMA is an open-source training stack designed to improve the reliability, stability, and efficiency of large-scale distributed training on early-life AI hardware. The core of this initiative is the LUCIA TRAINING PLATFORM (LTP), the system optimized for clusters with early-life AI accelerators. Since its launch in March 2025, LTP has significantly enhanced training reliability and operational productivity. Over the past five months, it has achieved an impressive 94.45% effective cluster accelerator utilization, while also substantially reducing node recycling and job-recovery times. Building on the foundation of LTP, the LUCIA TRAINING FRAMEWORK (LTF) successfully trained SIGMA-MOE, a 200B MoE model, using 2,048 AI accelerators. This effort delivered remarkable stability and efficiency outcomes, achieving 21.08% MFU, state-of-the-art downstream accuracy, and encountering only one stability incident over a 75-day period. Together, these advances establish SIGMA, which not only tackles the critical challenges of large-scale training but also establishes a new benchmark for AI infrastructure and platform innovation, offering a robust, cost-effective alternative to prevailing established accelerator stacks and significantly advancing AI capabilities and scalability. The source code of SIGMA is available at https://github.com/microsoft/LuciaTrainingPlatform.
comment: 22 pages, 7 figures
☆ Advancing Bangla Machine Translation Through Informal Datasets
Bangla is the sixth most widely spoken language globally, with approximately 234 million native speakers. However, progress in open-source Bangla machine translation remains limited. Most online resources are in English and often remain untranslated into Bangla, excluding millions from accessing essential information. Existing research in Bangla translation primarily focuses on formal language, neglecting the more commonly used informal language. This is largely due to the lack of pairwise Bangla-English data and advanced translation models. If datasets and models can be enhanced to better handle natural, informal Bangla, millions of people will benefit from improved online information access. In this research, we explore current state-of-the-art models and propose improvements to Bangla translation by developing a dataset from informal sources like social media and conversational texts. This work aims to advance Bangla machine translation by focusing on informal language translation and improving accessibility for Bangla speakers in the digital world.
comment: 33 pages, 13 figures
☆ neuralFOMO: Can LLMs Handle Being Second Best? Measuring Envy-Like Preferences in Multi-Agent Settings
Envy is a common human behavior that shapes competitiveness and can alter outcomes in team settings. As large language models (LLMs) increasingly act on behalf of humans in collaborative and competitive workflows, there is a pressing need to evaluate whether and under what conditions they exhibit envy-like preferences. In this paper, we test whether LLMs show envy-like behavior toward each other. We considered two scenarios: (1) A point allocation game that tests whether a model tries to win over its peer. (2) A workplace setting observing behaviour when recognition is unfair. Our findings reveal consistent evidence of envy-like patterns in certain LLMs, with large variation across models and contexts. For instance, GPT-5-mini and Claude-3.7-Sonnet show a clear tendency to pull down the peer model to equalize outcomes, whereas Mistral-Small-3.2-24B instead focuses on maximizing its own individual gains. These results highlight the need to consider competitive dispositions as a safety and design factor in LLM-based multi-agent systems.
comment: Under Review
☆ Non-Resolution Reasoning: A Framework for Preserving Semantic Ambiguity in Language Models
Premature semantic collapse -- the forced early commitment to a single meaning -- remains a core architectural limitation of current language models. Softmax-driven competition and greedy decoding cause models to discard valid interpretations before sufficient context is available, resulting in brittle reasoning and context failures. We introduce Non-Resolution Reasoning (NRR), a general computational framework that preserves semantic ambiguity during inference and performs resolution only when explicitly required. NRR integrates three components: (1) Multi-Vector Embeddings that maintain multiple viable interpretations per token, (2) Non-Collapsing Attention that prevents winner-take-all dynamics across layers, and (3) Contextual Identity Tracking (CIT), which assigns context-specific identities to recurring entities (e.g., distinguishing "Dr. Smith the cardiologist" from "Dr. Smith the researcher"). These mechanisms are unified by an external Resolution Operator $ρ$ that makes semantic commitment explicit, controllable, and task-dependent. Unlike standard architectures, NRR separates representation from resolution, allowing a single model to shift between creative, factual, and ambiguity-preserving reasoning without retraining. A synthetic evaluation demonstrates NRR's ability to preserve ambiguity and track context: CIT-enhanced models achieve 90.9% accuracy on out-of-distribution identity-shift tasks, compared to 9.1% for transformer baselines. NRR provides a principled alternative to premature collapse, reframing ambiguity as an explicit representational state rather than a failure mode. The question is not whether AI should resolve ambiguity, but when, how, and under whose control.
comment: 19 pages
Scaling Laws for Code: Every Programming Language Matters
Code large language models (Code LLMs) are powerful but costly to train, with scaling laws predicting performance from model size, data, and compute. However, different programming languages (PLs) have varying impacts during pre-training that significantly affect base model performance, leading to inaccurate performance prediction. Besides, existing works focus on language-agnostic settings, neglecting the inherently multilingual nature of modern software development. Therefore, it is first necessary to investigate the scaling laws of different PLs, and then consider their mutual influences to arrive at the final multilingual scaling law. In this paper, we present the first systematic exploration of scaling laws for multilingual code pre-training, conducting over 1000+ experiments (Equivalent to 336,000+ H800 hours) across multiple PLs, model sizes (0.2B to 14B parameters), and dataset sizes (1T tokens). We establish comprehensive scaling laws for code LLMs across multiple PLs, revealing that interpreted languages (e.g., Python) benefit more from increased model size and data than compiled languages (e.g., Rust). The study demonstrates that multilingual pre-training provides synergistic benefits, particularly between syntactically similar PLs. Further, the pre-training strategy of the parallel pairing (concatenating code snippets with their translations) significantly enhances cross-lingual abilities with favorable scaling properties. Finally, a proportion-dependent multilingual scaling law is proposed to optimally allocate training tokens by prioritizing high-utility PLs (e.g., Python), balancing high-synergy pairs (e.g., JavaScript-TypeScript), and reducing allocation to fast-saturating languages (Rust), achieving superior average performance across all PLs compared to uniform distribution under the same compute budget.
Large language models are not about language
Large Language Models are useless for linguistics, as they are probabilistic models that require a vast amount of data to analyse externalized strings of words. In contrast, human language is underpinned by a mind-internal computational system that recursively generates hierarchical thought structures. The language system grows with minimal external input and can readily distinguish between real language and impossible languages.
☆ Differentiable Evolutionary Reinforcement Learning
The design of effective reward functions presents a central and often arduous challenge in reinforcement learning (RL), particularly when developing autonomous agents for complex reasoning tasks. While automated reward optimization approaches exist, they typically rely on derivative-free evolutionary heuristics that treat the reward function as a black box, failing to capture the causal relationship between reward structure and task performance. To bridge this gap, we propose Differentiable Evolutionary Reinforcement Learning (DERL), a bilevel framework that enables the autonomous discovery of optimal reward signals. In DERL, a Meta-Optimizer evolves a reward function (i.e., Meta-Reward) by composing structured atomic primitives, guiding the training of an inner-loop policy. Crucially, unlike previous evolution, DERL is differentiable in its metaoptimization: it treats the inner-loop validation performance as a signal to update the Meta-Optimizer via reinforcement learning. This allows DERL to approximate the "meta-gradient" of task success, progressively learning to generate denser and more actionable feedback. We validate DERL across three distinct domains: robotic agent (ALFWorld), scientific simulation (ScienceWorld), and mathematical reasoning (GSM8k, MATH). Experimental results show that DERL achieves state-of-the-art performance on ALFWorld and ScienceWorld, significantly outperforming methods relying on heuristic rewards, especially in out-of-distribution scenarios. Analysis of the evolutionary trajectory demonstrates that DERL successfully captures the intrinsic structure of tasks, enabling selfimproving agent alignment without human intervention.
comment: Work in Progress. We release our code and model at https://github.com/sitaocheng/DERL
☆ Detecting Emotion Drift in Mental Health Text Using Pre-Trained Transformers
This study investigates emotion drift: the change in emotional state across a single text, within mental health-related messages. While sentiment analysis typically classifies an entire message as positive, negative, or neutral, the nuanced shift of emotions over the course of a message is often overlooked. This study detects sentence-level emotions and measures emotion drift scores using pre-trained transformer models such as DistilBERT and RoBERTa. The results provide insights into patterns of emotional escalation or relief in mental health conversations. This methodology can be applied to better understand emotional dynamics in content.
comment: 14 pages, 12 figures
☆ On the Effectiveness of Membership Inference in Targeted Data Extraction from Large Language Models
Large Language Models (LLMs) are prone to memorizing training data, which poses serious privacy risks. Two of the most prominent concerns are training data extraction and Membership Inference Attacks (MIAs). Prior research has shown that these threats are interconnected: adversaries can extract training data from an LLM by querying the model to generate a large volume of text and subsequently applying MIAs to verify whether a particular data point was included in the training set. In this study, we integrate multiple MIA techniques into the data extraction pipeline to systematically benchmark their effectiveness. We then compare their performance in this integrated setting against results from conventional MIA benchmarks, allowing us to evaluate their practical utility in real-world extraction scenarios.
comment: Accepted to IEEE Conference on Secure and Trustworthy Machine Learning (SaTML) 2026
☆ FIN-bench-v2: A Unified and Robust Benchmark Suite for Evaluating Finnish Large Language Models
We introduce FIN-bench-v2, a unified benchmark suite for evaluating large language models in Finnish. FIN-bench-v2 consolidates Finnish versions of widely used benchmarks together with an updated and expanded version of the original FIN-bench into a single, consistently formatted collection, covering multiple-choice and generative tasks across reading comprehension, commonsense reasoning, sentiment analysis, world knowledge, and alignment. All datasets are converted to HuggingFace Datasets, which include both cloze and multiple-choice prompt formulations with five variants per task, and we incorporate human annotation or review for machine-translated resources such as GoldenSwag and XED. To select robust tasks, we pretrain a set of 2.15B-parameter decoder-only models and use their learning curves to compute monotonicity, signal-to-noise, non-random performance, and model ordering consistency, retaining only tasks that satisfy all criteria. We further evaluate a set of larger instruction-tuned models to characterize performance across tasks and prompt formulations. All datasets, prompts, and evaluation configurations are publicly available via our fork of the Language Model Evaluation Harness at https://github.com/LumiOpen/lm-evaluation-harness. Supplementary resources are released in a separate repository at https://github.com/TurkuNLP/FIN-bench-v2.
☆ MiniLingua: A Small Open-Source LLM for European Languages
Large language models are powerful but often limited by high computational cost, privacy concerns, and English-centric training. Recent progress demonstrates that small, efficient models with around one billion parameters can deliver strong results and enable on-device use. This paper introduces MiniLingua, a multilingual open-source LLM of one billion parameters trained from scratch for 13 European languages, designed to balance coverage and instruction-following capabilities. Based on evaluation results, the instruction-tuned version of MiniLingua outperforms EuroLLM, a model with a similar training approach but a larger training budget, on summarization, classification and both open- and closed-book question answering. Moreover, it remains competitive with more advanced state-of-the-art models on open-ended generation tasks. We release model weights, tokenizer and source code used for data processing and model training.
comment: 9+6 pages, 6 figures and 3 tables in the main text. Code at https://github.com/MiniLingua-ai/training_artifacts
☆ Integrating Causal Reasoning into Automated Fact-Checking
In fact-checking applications, a common reason to reject a claim is to detect the presence of erroneous cause-effect relationships between the events at play. However, current automated fact-checking methods lack dedicated causal-based reasoning, potentially missing a valuable opportunity for semantically rich explainability. To address this gap, we propose a methodology that combines event relation extraction, semantic similarity computation, and rule-based reasoning to detect logical inconsistencies between chains of events mentioned in a claim and in an evidence. Evaluated on two fact-checking datasets, this method establishes the first baseline for integrating fine-grained causal event relationships into fact-checking and enhance explainability of verdict prediction.
comment: Extended version of the accepted ACM SAC paper
☆ AIR: Post-training Data Selection for Reasoning via Attention Head Influence
LLMs achieve remarkable multi-step reasoning capabilities, yet effectively transferring these skills via post-training distillation remains challenging. Existing data selection methods, ranging from manual curation to heuristics based on length, entropy, or overall loss, fail to capture the causal importance of individual reasoning steps, limiting distillation efficiency. To address this, we propose Attention Influence for Reasoning (AIR), a principled, unsupervised and training-free framework that leverages mechanistic insights of the retrieval head to select high-value post-training data. AIR first identifies reasoning-critical attention heads of an off-the-shelf model, then constructs a weakened reference model with disabled head influence, and finally quantifies the resulting loss divergence as the Attention Influence Score. This score enables fine-grained assessment at both the step and sample levels, supporting step-level weighted fine-tuning and global sample selection. Experiments across multiple reasoning benchmarks show that AIR consistently improves reasoning accuracy, surpassing heuristic baselines and effectively isolating the most critical steps and samples. Our work establishes a mechanism-driven, data-efficient approach for reasoning distillation in LLMs.
comment: 19 pages
☆ AutoTool: Dynamic Tool Selection and Integration for Agentic Reasoning ICCV 2025
Agentic reinforcement learning has advanced large language models (LLMs) to reason through long chain-of-thought trajectories while interleaving external tool use. Existing approaches assume a fixed inventory of tools, limiting LLM agents' adaptability to new or evolving toolsets. We present AutoTool, a framework that equips LLM agents with dynamic tool-selection capabilities throughout their reasoning trajectories. We first construct a 200k dataset with explicit tool-selection rationales across 1,000+ tools and 100+ tasks spanning mathematics, science, code generation, and multimodal reasoning. Building on this data foundation, AutoTool employs a dual-phase optimization pipeline: (i) supervised and RL-based trajectory stabilization for coherent reasoning, and (ii) KL-regularized Plackett-Luce ranking to refine consistent multi-step tool selection. Across ten diverse benchmarks, we train two base models, Qwen3-8B and Qwen2.5-VL-7B, with AutoTool. With fewer parameters, AutoTool consistently outperforms advanced LLM agents and tool-integration methods, yielding average gains of 6.4% in math & science reasoning, 4.5% in search-based QA, 7.7% in code generation, and 6.9% in multimodal understanding. In addition, AutoTool exhibits stronger generalization by dynamically leveraging unseen tools from evolving toolsets during inference.
comment: Best Paper Award at ICCV 2025 Workshop on Multi-Modal Reasoning for Agentic Intelligence
☆ Efficient Adaptive Rejection Sampling for Accelerating Speculative Decoding in Large Language Models
Speculative Decoding is a prominent technique for accelerating the autoregressive inference of large language models (LLMs) by employing a fast draft model to propose candidate token sequences and a large target model to verify them in parallel. However, its core component -- the rejection sampling mechanism -- relies on a fixed, context-independent random threshold. This leads to a significant "random rejection" problem in high-uncertainty generation scenarios, where plausible candidate tokens are frequently rejected due to random chance, undermining inference efficiency. This paper introduces Efficient Adaptive Rejection Sampling (EARS), a novel method that dynamically adjusts the acceptance threshold by incorporating the target model's own predictive uncertainty, measured as \(1 - \max(P_{\mathrm{target}})\). By introducing a tolerance term proportional to this uncertainty, EARS intelligently relaxes the acceptance criterion when the model is uncertain, effectively reducing random rejections while maintaining strict standards when the model is confident. Experiments on creative writing and open-domain QA tasks demonstrate that EARS significantly enhances the efficiency of speculative decoding, achieving up to an 18.12% increase in throughput with a negligible 0.84% accuracy drop on the GSM8K benchmark. The method requires no modifications to model architectures and can be seamlessly integrated into existing speculative decoding frameworks.
☆ SpeakRL: Synergizing Reasoning, Speaking, and Acting in Language Models with Reinforcement Learning
Effective human-agent collaboration is increasingly prevalent in real-world applications. Current trends in such collaborations are predominantly unidirectional, with users providing instructions or posing questions to agents, where agents respond directly without seeking necessary clarifications or confirmations. However, the evolving capabilities of these agents require more proactive engagement, where agents should dynamically participate in conversations to clarify user intents, resolve ambiguities, and adapt to changing circumstances. Existing prior work under-utilize the conversational capabilities of language models (LMs), thereby optimizing agents as better followers rather than effective speakers. In this work, we introduce SpeakRL, a reinforcement learning (RL) method that enhances agents' conversational capabilities by rewarding proactive interactions with users, such as asking right clarification questions when necessary. To support this, we curate SpeakER, a synthetic dataset that includes diverse scenarios from task-oriented dialogues, where tasks are resolved through interactive clarification questions. We present a systematic analysis of reward design for conversational proactivity and propose a principled reward formulation for teaching agents to balance asking with acting. Empirical evaluations demonstrate that our approach achieves a 20.14% absolute improvement in task completion over base models without increasing conversation turns even surpassing even much larger proprietary models, demonstrating the promise of clarification-centric user-agent interactions.
☆ MAC: A Multi-Agent Framework for Interactive User Clarification in Multi-turn Conversations
Conversational agents often encounter ambiguous user requests, requiring an effective clarification to successfully complete tasks. While recent advancements in real-world applications favor multi-agent architectures to manage complex conversational scenarios efficiently, ambiguity resolution remains a critical and underexplored challenge--particularly due to the difficulty of determining which agent should initiate a clarification and how agents should coordinate their actions when faced with uncertain or incomplete user input. The fundamental questions of when to interrupt a user and how to formulate the optimal clarification query within the most optimal multi-agent settings remain open. In this paper, we propose MAC (Multi-Agent Clarification), an interactive multi-agent framework specifically optimized to resolve user ambiguities by strategically managing clarification dialogues. We first introduce a novel taxonomy categorizing user ambiguities to systematically guide clarification strategies. Then, we present MAC that autonomously coordinates multiple agents to interact synergistically with users. Empirical evaluations on MultiWOZ 2.4 demonstrate that enabling clarification at both levels increases task success rate 7.8\% (54.5 to 62.3) and reduces the average number of dialogue turns (6.53 to 4.86) by eliciting all required user information up front and minimizing repetition. Our findings highlight the importance of active user interaction and role-aware clarification for more reliable human-agent communication.
☆ Uncovering the Role of Initial Saliency in U-Shaped Attention Bias: Scaling Initial Token Weight for Enhanced Long-Text Processing
Large language models (LLMs) have demonstrated strong performance on a variety of natural language processing (NLP) tasks. However, they often struggle with long-text sequences due to the ``lost in the middle'' phenomenon. This issue has been shown to arise from a U-shaped attention bias, where attention is disproportionately focused on the beginning and end of a text, leaving the middle section underrepresented. While previous studies have attributed this bias to position encoding, our research first identifies an additional factor: initial saliency. It means that in the attention computation for each token, tokens with higher attention weights relative to the initial token tend to receive more attention in the prediction of the next token. We further find that utilizing this property by scaling attention weight between the initial token and others improves the model's ability to process long contexts, achieving a maximum improvement of 3.6\% in MDQA dataset. Moreover, combining this approach with existing methods to reduce position encoding bias further enhances performance, achieving a maximum improvement of 3.4\% in KV-Retrieval tasks.
☆ Heart Disease Prediction using Case Based Reasoning (CBR)
This study provides an overview of heart disease prediction using an intelligent system. Predicting disease accurately is crucial in the medical field, but traditional methods relying solely on a doctor's experience often lack precision. To address this limitation, intelligent systems are applied as an alternative to traditional approaches. While various intelligent system methods exist, this study focuses on three: Fuzzy Logic, Neural Networks, and Case-Based Reasoning (CBR). A comparison of these techniques in terms of accuracy was conducted, and ultimately, Case-Based Reasoning (CBR) was selected for heart disease prediction. In the prediction phase, the heart disease dataset underwent data pre-processing to clean the data and data splitting to separate it into training and testing sets. The chosen intelligent system was then employed to predict heart disease outcomes based on the processed data. The experiment concluded with Case-Based Reasoning (CBR) achieving a notable accuracy rate of 97.95% in predicting heart disease. The findings also revealed that the probability of heart disease was 57.76% for males and 42.24% for females. Further analysis from related studies suggests that factors such as smoking and alcohol consumption are significant contributors to heart disease, particularly among males.
comment: Published in Journal of Theoretical and Applied Information Technology on 31st October 2024. Vol.102. No. 20
☆ M-GRPO: Stabilizing Self-Supervised Reinforcement Learning for Large Language Models with Momentum-Anchored Policy Optimization NeurIPS 2025
Self-supervised reinforcement learning (RL) presents a promising approach for enhancing the reasoning capabilities of Large Language Models (LLMs) without reliance on expensive human-annotated data. However, we find that existing methods suffer from a critical failure mode under long-horizon training: a "policy collapse" where performance precipitously degrades. We diagnose this instability and demonstrate that simply scaling the number of rollouts -- a common strategy to improve performance -- only delays, but does not prevent, this collapse. To counteract this instability, we first introduce M-GRPO (Momentum-Anchored Group Relative Policy Optimization), a framework that leverages a slowly evolving momentum model to provide a stable training target. In addition, we identify that this process is often accompanied by a rapid collapse in policy entropy, resulting in a prematurely confident and suboptimal policy. To specifically address this issue, we propose a second contribution: an adaptive filtering method based on the interquartile range (IQR) that dynamically prunes low-entropy trajectories, preserving essential policy diversity. Our extensive experiments on multiple reasoning benchmarks demonstrate that M-GRPO stabilizes the training process while the IQR filter prevents premature convergence. The combination of these two innovations leads to superior training stability and state-of-the-art performance.
comment: 7 pages, 5 figures,Accepted NeurIPS 2025 Workshop on Efficient Reasoning
LLM Rationalis? Measuring Bargaining Capabilities of AI Negotiators
Bilateral negotiation is a complex, context-sensitive task in which human negotiators dynamically adjust anchors, pacing, and flexibility to exploit power asymmetries and informal cues. We introduce a unified mathematical framework for modeling concession dynamics based on a hyperbolic tangent curve, and propose two metrics burstiness tau and the Concession-Rigidity Index (CRI) to quantify the timing and rigidity of offer trajectories. We conduct a large-scale empirical comparison between human negotiators and four state-of-the-art large language models (LLMs) across natural-language and numeric-offers settings, with and without rich market context, as well as six controlled power-asymmetry scenarios. Our results reveal that, unlike humans who smoothly adapt to situations and infer the opponents position and strategies, LLMs systematically anchor at extremes of the possible agreement zone for negotiations and optimize for fixed points irrespective of leverage or context. Qualitative analysis further shows limited strategy diversity and occasional deceptive tactics used by LLMs. Moreover the ability of LLMs to negotiate does not improve with better models. These findings highlight fundamental limitations in current LLM negotiation capabilities and point to the need for models that better internalize opponent reasoning and context-dependent strategy.
comment: Published in the First Workshop on Multi-Turn Interactions in Large Language Models at Neurips 2025
☆ An Open and Reproducible Deep Research Agent for Long-Form Question Answering NeurIPS
We present an open deep research system for long-form question answering, selected as a winning system in the text-to-text track of the MMU-RAG competition at NeurIPS 2025. The system combines an open-source large language model (LLM) with an open web search API to perform iterative retrieval, reasoning, and synthesis in real-world open-domain settings. To enhance reasoning quality, we apply preference tuning based on LLM-as-a-judge feedback that evaluates multiple aspects, including clarity, insightfulness, and factuality. Our experimental results show that the proposed method consistently improves answer quality across all three aspects. Our source code is publicly available at https://github.com/efficient-deep-research/efficient-deep-research.
comment: Technical report of a winning system in the NeurIPS MMU-RAG competition
☆ Understanding Structured Financial Data with LLMs: A Case Study on Fraud Detection
Detecting fraud in financial transactions typically relies on tabular models that demand heavy feature engineering to handle high-dimensional data and offer limited interpretability, making it difficult for humans to understand predictions. Large Language Models (LLMs), in contrast, can produce human-readable explanations and facilitate feature analysis, potentially reducing the manual workload of fraud analysts and informing system refinements. However, they perform poorly when applied directly to tabular fraud detection due to the difficulty of reasoning over many features, the extreme class imbalance, and the absence of contextual information. To bridge this gap, we introduce FinFRE-RAG, a two-stage approach that applies importance-guided feature reduction to serialize a compact subset of numeric/categorical attributes into natural language and performs retrieval-augmented in-context learning over label-aware, instance-level exemplars. Across four public fraud datasets and three families of open-weight LLMs, FinFRE-RAG substantially improves F1/MCC over direct prompting and is competitive with strong tabular baselines in several settings. Although these LLMs still lag behind specialized classifiers, they narrow the performance gap and provide interpretable rationales, highlighting their value as assistive tools in fraud analysis.
☆ Scaling Bidirectional Spans and Span Violations in Attention Mechanism
The canonical $O(N^2)$ Transformer remains the empirical performance frontier in sequence modeling, and its training can be further optimized by addressing geometric inefficiency. We propose an optimization framework that leverages an asymmetric projection to decompose the backward-pass gradients into parallel spans and orthogonal violations, while keeping the canonical forward-pass $QKV$ structure intact. Through consistent experimental validation across various decomposition and projection setups, we provide strong theoretical evidence: the standard attention gradient is suboptimal. We demonstrated that selectively scaling these components, focusing primarily on $0^{th}$ order bidirectional parallel spans, yields the most effective learning signal. On the limited WikiText-2 dataset, and using a crude configuration, this method achieved a $0.56\%$ reduction in validation loss, confirming the framework's fundamental validity and suggesting significant potential gains on larger datasets and deeper training regimes
☆ Authors Should Annotate
The status quo for labeling text is third-party annotation, but there are many cases where information directly from the document's source would be preferable over a third-person proxy, especially for egocentric features like sentiment and belief. We introduce author labeling, an annotation technique where the writer of the document itself annotates the data at the moment of creation. We collaborate with a commercial chatbot with over 10,000 users to deploy an author labeling annotation system for subjective features related to product recommendation. This system identifies task-relevant queries, generates on-the-fly labeling questions, and records authors' answers in real time. We train and deploy an online-learning model architecture for product recommendation that continuously improves from author labeling and find it achieved a 534% increase in click-through rate compared to an industry advertising baseline running concurrently. We then compare the quality and practicality of author labeling to three traditional annotation approaches for sentiment analysis and find author labeling to be higher quality, faster to acquire, and cheaper. These findings reinforce existing literature that annotations, especially for egocentric and subjective beliefs, are significantly higher quality when labeled by the author rather than a third party. To facilitate broader scientific adoption, we release an author labeling service for the research community at academic.echollm.io.
☆ QwenLong-L1.5: Post-Training Recipe for Long-Context Reasoning and Memory Management
We introduce QwenLong-L1.5, a model that achieves superior long-context reasoning capabilities through systematic post-training innovations. The key technical breakthroughs of QwenLong-L1.5 are as follows: (1) Long-Context Data Synthesis Pipeline: We develop a systematic synthesis framework that generates challenging reasoning tasks requiring multi-hop grounding over globally distributed evidence. By deconstructing documents into atomic facts and their underlying relationships, and then programmatically composing verifiable reasoning questions, our approach creates high-quality training data at scale, moving substantially beyond simple retrieval tasks to enable genuine long-range reasoning capabilities. (2) Stabilized Reinforcement Learning for Long-Context Training: To overcome the critical instability in long-context RL, we introduce task-balanced sampling with task-specific advantage estimation to mitigate reward bias, and propose Adaptive Entropy-Controlled Policy Optimization (AEPO) that dynamically regulates exploration-exploitation trade-offs. (3) Memory-Augmented Architecture for Ultra-Long Contexts: Recognizing that even extended context windows cannot accommodate arbitrarily long sequences, we develop a memory management framework with multi-stage fusion RL training that seamlessly integrates single-pass reasoning with iterative memory-based processing for tasks exceeding 4M tokens. Based on Qwen3-30B-A3B-Thinking, QwenLong-L1.5 achieves performance comparable to GPT-5 and Gemini-2.5-Pro on long-context reasoning benchmarks, surpassing its baseline by 9.90 points on average. On ultra-long tasks (1M~4M tokens), QwenLong-L1.5's memory-agent framework yields a 9.48-point gain over the agent baseline. Additionally, the acquired long-context reasoning ability translates to enhanced performance in general domains like scientific reasoning, memory tool using, and extended dialogue.
☆ Building from Scratch: A Multi-Agent Framework with Human-in-the-Loop for Multilingual Legal Terminology Mapping
Accurately mapping legal terminology across languages remains a significant challenge, especially for language pairs like Chinese and Japanese, which share a large number of homographs with different meanings. Existing resources and standardized tools for these languages are limited. To address this, we propose a human-AI collaborative approach for building a multilingual legal terminology database, based on a multi-agent framework. This approach integrates advanced large language models and legal domain experts throughout the entire process-from raw document preprocessing, article-level alignment, to terminology extraction, mapping, and quality assurance. Unlike a single automated pipeline, our approach places greater emphasis on how human experts participate in this multi-agent system. Humans and AI agents take on different roles: AI agents handle specific, repetitive tasks, such as OCR, text segmentation, semantic alignment, and initial terminology extraction, while human experts provide crucial oversight, review, and supervise the outputs with contextual knowledge and legal judgment. We tested the effectiveness of this framework using a trilingual parallel corpus comprising 35 key Chinese statutes, along with their English and Japanese translations. The experimental results show that this human-in-the-loop, multi-agent workflow not only improves the precision and consistency of multilingual legal terminology mapping but also offers greater scalability compared to traditional manual methods.
comment: 43 pages, 6 fingures, accepted in Artificial Intelligence and Law (2025)
☆ Meta-GPT: Decoding the Metasurface Genome with Generative Artificial Intelligence
Advancing artificial intelligence for physical sciences requires representations that are both interpretable and compatible with the underlying laws of nature. We introduce METASTRINGS, a symbolic language for photonics that expresses nanostructures as textual sequences encoding materials, geometries, and lattice configurations. Analogous to molecular textual representations in chemistry, METASTRINGS provides a framework connecting human interpretability with computational design by capturing the structural hierarchy of photonic metasurfaces. Building on this representation, we develop Meta-GPT, a foundation transformer model trained on METASTRINGS and finetuned with physics-informed supervised, reinforcement, and chain-of-thought learning. Across various design tasks, the model achieves <3% mean-squared spectral error and maintains >98% syntactic validity, generating diverse metasurface prototypes whose experimentally measured optical responses match their target spectra. These results demonstrate that Meta-GPT can learn the compositional rules of light-matter interactions through METASTRINGS, laying a rigorous foundation for AI-driven photonics and representing an important step toward a metasurface genome project.
comment: Keywords: Physics-informed machine learning; Transformer models; Reinforcement learning; Chain-of-thought reasoning; Metasurfaces; Nanophotonics; Inverse design
☆ Olmo 3
We introduce Olmo 3, a family of state-of-the-art, fully-open language models at the 7B and 32B parameter scales. Olmo 3 model construction targets long-context reasoning, function calling, coding, instruction following, general chat, and knowledge recall. This release includes the entire model flow, i.e., the full lifecycle of the family of models, including every stage, checkpoint, data point, and dependency used to build it. Our flagship model, Olmo 3 Think 32B, is the strongest fully-open thinking model released to-date.
☆ Hierarchical Multi-agent Large Language Model Reasoning for Autonomous Functional Materials Discovery
Artificial intelligence is reshaping scientific exploration, but most methods automate procedural tasks without engaging in scientific reasoning, limiting autonomy in discovery. We introduce Materials Agents for Simulation and Theory in Electronic-structure Reasoning (MASTER), an active learning framework where large language models autonomously design, execute, and interpret atomistic simulations. In MASTER, a multimodal system translates natural language into density functional theory workflows, while higher-level reasoning agents guide discovery through a hierarchy of strategies, including a single agent baseline and three multi-agent approaches: peer review, triage-ranking, and triage-forms. Across two chemical applications, CO adsorption on Cu-surface transition metal (M) adatoms and on M-N-C catalysts, reasoning-driven exploration reduces required atomistic simulations by up to 90% relative to trial-and-error selection. Reasoning trajectories reveal chemically grounded decisions that cannot be explained by stochastic sampling or semantic bias. Altogether, multi-agent collaboration accelerates materials discovery and marks a new paradigm for autonomous scientific exploration.
comment: Keywords: Multi-agent reasoning; Large language models; Active learning; AI-driven simulation; Materials discovery; Density functional theory; Surface chemistry
☆ Generative AI for Video Translation: A Scalable Architecture for Multilingual Video Conferencing
The real-time deployment of cascaded generative AI pipelines for applications like video translation is constrained by significant system-level challenges. These include the cumulative latency of sequential model inference and the quadratic ($\mathcal{O}(N^2)$) computational complexity that renders multi-user video conferencing applications unscalable. This paper proposes and evaluates a practical system-level framework designed to mitigate these critical bottlenecks. The proposed architecture incorporates a turn-taking mechanism to reduce computational complexity from quadratic to linear in multi-user scenarios, and a segmented processing protocol to manage inference latency for a perceptually real-time experience. We implement a proof-of-concept pipeline and conduct a rigorous performance analysis across a multi-tiered hardware setup, including commodity (NVIDIA RTX 4060), cloud (NVIDIA T4), and enterprise (NVIDIA A100) GPUs. Our objective evaluation demonstrates that the system achieves real-time throughput ($τ< 1.0$) on modern hardware. A subjective user study further validates the approach, showing that a predictable, initial processing delay is highly acceptable to users in exchange for a smooth, uninterrupted playback experience. The work presents a validated, end-to-end system design that offers a practical roadmap for deploying scalable, real-time generative AI applications in multilingual communication platforms.
comment: Accepted manuscript. Published in Applied Sciences, 2025
☆ Let's (not) just put things in Context: Test-Time Training for Long-Context LLMs
Progress on training and architecture strategies has enabled LLMs with millions of tokens in context length. However, empirical evidence suggests that such long-context LLMs can consume far more text than they can reliably use. On the other hand, it has been shown that inference-time compute can be used to scale performance of LLMs, often by generating thinking tokens, on challenging tasks involving multi-step reasoning. Through controlled experiments on sandbox long-context tasks, we find that such inference-time strategies show rapidly diminishing returns and fail at long context. We attribute these failures to score dilution, a phenomenon inherent to static self-attention. Further, we show that current inference-time strategies cannot retrieve relevant long-context signals under certain conditions. We propose a simple method that, through targeted gradient updates on the given context, provably overcomes limitations of static self-attention. We find that this shift in how inference-time compute is spent leads to consistently large performance improvements across models and long-context benchmarks. Our method leads to large 12.6 and 14.1 percentage point improvements for Qwen3-4B on average across subsets of LongBench-v2 and ZeroScrolls benchmarks. The takeaway is practical: for long context, a small amount of context-specific training is a better use of inference compute than current inference-time scaling strategies like producing more thinking tokens.
☆ FiNERweb: Datasets and Artifacts for Scalable Multilingual Named Entity Recognition
Recent multilingual named entity recognition (NER) work has shown that large language models (LLMs) can provide effective synthetic supervision, yet such datasets have mostly appeared as by-products of broader experiments rather than as systematic, reusable resources. We introduce FiNERweb, a dataset-creation pipeline that scales the teacher-student paradigm to 91 languages and 25 scripts. Building on FineWeb-Edu, our approach trains regression models to identify NER-relevant passages and annotates them with multilingual LLMs, resulting in about 225k passages with 235k distinct entity labels. Our experiments show that the regression model achieves more than 84 F1, and that models trained on FiNERweb obtain comparable or improved performance in zero shot transfer settings on English, Thai, and Swahili, despite being trained on 19x less data than strong baselines. In addition, we assess annotation quality using LLM-as-a-judge and observe consistently high scores for both faithfulness (3.99 out of 5) and completeness (4.05 out of 5), indicating reliable and informative annotations. Further, we release the dataset with both English labels and translated label sets in the respective target languages because we observe that the performance of current state-of-the-art models drops by 0.02 to 0.09 F1 when evaluated using target language labels instead of English ones. We release FiNERweb together with all accompanying artifacts to the research community in order to facilitate more effective student-teacher training for multilingual named entity recognition.
☆ EvoLattice: Persistent Internal-Population Evolution through Multi-Alternative Quality-Diversity Graph Representations for LLM-Guided Program Discovery
Large language models (LLMs) are increasingly used to evolve programs and multi-agent systems, yet most existing approaches rely on overwrite-based mutations that maintain only a single candidate at a time. Such methods discard useful variants, suffer from destructive edits, and explore a brittle search space prone to structural failure. We introduce EvoLattice, a framework that represents an entire population of candidate programs or agent behaviors within a single directed acyclic graph. Each node stores multiple persistent alternatives, and every valid path through the graph defines a distinct executable candidate, yielding a large combinatorial search space without duplicating structure. EvoLattice enables fine-grained alternative-level evaluation by scoring each alternative across all paths in which it appears, producing statistics that reveal how local design choices affect global performance. These statistics provide a dense, data-driven feedback signal for LLM-guided mutation, recombination, and pruning, while preserving successful components. Structural correctness is guaranteed by a deterministic self-repair mechanism that enforces acyclicity and dependency consistency independently of the LLM. EvoLattice naturally extends to agent evolution by interpreting alternatives as prompt fragments or sub-agent behaviors. Across program synthesis (proxy and optimizer meta-learning), EvoLattice yields more stable evolution, greater expressivity, and stronger improvement trajectories than prior LLM-guided methods. The resulting dynamics resemble quality-diversity optimization, emerging implicitly from EvoLattice's internal multi-alternative representation rather than an explicit external archive.
♻ ☆ IA2: Alignment with ICL Activations Improves Supervised Fine-Tuning
Supervised Fine-Tuning (SFT) is used to specialize model behavior by training weights to produce intended target responses for queries. In contrast, In-Context Learning (ICL) adapts models during inference with instructions or demonstrations in the prompt. ICL can offer better generalizability and more calibrated responses compared to SFT in data scarce settings, at the cost of more inference compute. In this work, we ask the question: Can ICL's internal computations be used to improve the qualities of SFT? We first show that ICL and SFT produce distinct activation patterns, indicating that the two methods achieve adaptation through different functional mechanisms. Motivated by this observation and to use ICL's rich functionality, we introduce ICL Activation Alignment (IA2), a self-distillation technique which aims to replicate ICL's activation patterns in SFT models and incentivizes ICL-like internal reasoning. Performing IA2 as a priming step before SFT significantly improves the accuracy and calibration of model outputs, as shown by our extensive empirical results on 12 popular benchmarks and two model families. This finding is not only practically useful, but also offers a conceptual window into the inner mechanics of model adaptation.
♻ ☆ MixtureVitae: Open Web-Scale Pretraining Dataset With High Quality Instruction and Reasoning Data Built from Permissive-First Text Sources
We present MixtureVitae, an open-access pretraining corpus built to minimize legal risk while providing strong downstream performance. MixtureVitae follows a permissive-first, risk-mitigated sourcing strategy that combines public-domain and permissively licensed text (e.g., CC-BY/Apache) with carefully justified low-risk additions (e.g., government works and EU TDM-eligible sources). MixtureVitae adopts a simple, single-stage pretraining recipe that integrates a large proportion of permissive synthetic instruction and reasoning data-signals typically introduced during post-training and generally scarce in permissive web corpora. We categorize all sources into a three-tier scheme that reflects varying risk levels and provide shard-level provenance metadata to enable risk-aware usage. In controlled experiments using the open-sci-ref training protocol (fixed architectures and hyperparameters; 50B and 300B token budgets across 130M-1.7B parameters), models trained on MixtureVitae consistently outperform other permissive datasets across a suite of standard benchmarks, and at the 1.7B-parameters/300B-tokens setting, they surpass FineWeb-Edu and approach DCLM late in training. Performance is particularly strong on MMLU and on math and code benchmarks: a 1.7B model pretrained on 300B MixtureVitae tokens matches or exceeds a strong 1.7B instruction-tuned baseline on GSM8K, HumanEval, and MBPP, despite using over 36 times fewer tokens (300B vs. ~11T). Supported by a thorough decontamination analysis, these results show that permissive-first data with high instruction and reasoning density, tiered by licensing and provenance-related risk, can provide a practical and risk-mitigated foundation for training capable LLMs, reducing reliance on broad web scrapes without sacrificing competitiveness. Code: https://github.com/ontocord/mixturevitae
comment: Code: \url{https://github.com/ontocord/mixturevitae}
Can Language Models Discover Scaling Laws?
Discovering scaling laws for predicting model performance at scale is a fundamental and open-ended challenge, mostly reliant on slow, case specific human experimentation. To investigate the potential for LLMs to automate this process, we collect over 5,000 experiments from existing literature and curate seven diverse scaling law discovery tasks. While existing agents struggle to produce accurate law formulas, this paper introduces SLDAgent, an evolution-based agent that co-optimize the scaling law model and the parameters, enabling it to autonomously explore complex relationships between variables. For the first time, we demonstrates that SLDAgent can automatically discover laws that exhibit consistently more accurate extrapolation than their established, human-derived counterparts across all tasks. Through comprehensive analysis, we elucidate why these discovered laws are superior and verify their practical utility in both pretraining and finetuning applications. This work establishes a new paradigm for agentic scientific discovery, showing that AI systems can understand their own scaling behavior, and can contribute novel and practical knowledge back to the research community.
♻ ☆ MALLM: Multi-Agent Large Language Models Framework EMNLP 2025
Multi-agent debate (MAD) has demonstrated the ability to augment collective intelligence by scaling test-time compute and leveraging expertise. Current frameworks for multi-agent debate are often designed towards tool use, lack integrated evaluation, or provide limited configurability of agent personas, response generators, discussion paradigms, and decision protocols. We introduce MALLM (Multi-Agent Large Language Models), an open-source framework that enables systematic analysis of MAD components. MALLM offers more than 144 unique configurations of MAD, including (1) agent personas (e.g., Expert, Personality), (2) response generators (e.g., Critical, Reasoning), (3) discussion paradigms (e.g., Memory, Relay), and (4) decision protocols (e.g., Voting, Consensus). MALLM uses simple configuration files to define a debate. Furthermore, MALLM can load any textual Hugging Face dataset (e.g., MMLU-Pro, WinoGrande) and provides an evaluation pipeline for easy comparison of MAD configurations. MALLM enables researchers to systematically configure, run, and evaluate debates for their problems, facilitating the understanding of the components and their interplay.
comment: Accepted at EMNLP 2025 (Demo)
♻ ☆ Beyond Next-Token Prediction: A Performance Characterization of Diffusion versus Autoregressive Language Models
Large Language Models (LLMs) have achieved state-of-the-art performance on a broad range of Natural Language Processing (NLP) tasks, including document processing and code generation. Autoregressive Language Models (ARMs), which generate tokens sequentially conditioned on all previous tokens, have been the predominant paradigm for LLMs. While these models have achieved high accuracy across a range of downstream tasks, they exhibit low arithmetic intensity due to the inherent sequential dependency in next-token prediction. Recently, Diffusion Language Models (DLMs) have emerged as a promising alternative architecture. DLMs generate output tokens in parallel, mitigating the limitations of sequential decoding. However, the performance implications of DLMs relative to commonly deployed ARMs are not fully understood. In this work, we present a comprehensive study of the performance characteristics of ARMs and DLMs, combining theoretical analysis with empirical profiling to characterize the trade-offs between these approaches. We show that although DLMs can achieve higher arithmetic intensity than ARMs by leveraging parallelism across token positions, they fail to scale effectively with longer contexts. We then explore block-wise decoding for DLMs, which decouples arithmetic intensity from sequence length and enables better scaling to long contexts (similar to ARMs). We also examine batched inference and find that ARMs exhibit superior throughput as they benefit more from parallelism across sequences in the batch. Finally, we highlight opportunities for accelerating DLM inference, emphasizing that reducing the number of sampling steps is key for open-source DLMs to achieve lower latency relative to ARMs.
comment: 11 pages, 5 figures
♻ ☆ False Sense of Security: Why Probing-based Malicious Input Detection Fails to Generalize
Large Language Models (LLMs) can comply with harmful instructions, raising serious safety concerns despite their impressive capabilities. Recent work has leveraged probing-based approaches to study the separability of malicious and benign inputs in LLMs' internal representations, and researchers have proposed using such probing methods for safety detection. We systematically re-examine this paradigm. Motivated by poor out-of-distribution performance, we hypothesize that probes learn superficial patterns rather than semantic harmfulness. Through controlled experiments, we confirm this hypothesis and identify the specific patterns learned: instructional patterns and trigger words. Our investigation follows a systematic approach, progressing from demonstrating comparable performance of simple n-gram methods, to controlled experiments with semantically cleaned datasets, to detailed analysis of pattern dependencies. These results reveal a false sense of security around current probing-based approaches and highlight the need to redesign both models and evaluation protocols, for which we provide further discussions in the hope of suggesting responsible further research in this direction. We have open-sourced the project at https://github.com/WangCheng0116/Why-Probe-Fails.
♻ ☆ AraReasoner: Evaluating Reasoning-Based LLMs for Arabic NLP
Large language models (LLMs) have shown remarkable progress in reasoning abilities and general natural language processing (NLP) tasks, yet their performance on Arabic data, characterized by rich morphology, diverse dialects, and complex script, remains underexplored. This paper presents a comprehensive benchmarking study of multiple reasoning-focused LLMs, with a special emphasis on the newly introduced DeepSeek models, across a suite of fifteen Arabic NLP tasks. We experiment with various strategies, including zero-shot, few-shot, and fine-tuning. This allows us to systematically evaluate performance on datasets covering a range of applications to examine their capacity for linguistic reasoning under different levels of complexity. Our experiments reveal several key findings. First, carefully selecting just three in-context examples delivers an average uplift of over 13 F1 points on classification tasks-boosting sentiment analysis from 35.3% to 87.5% and paraphrase detection from 56.1% to 87.0%. Second, reasoning-focused DeepSeek architectures outperform a strong GPT o4-mini baseline by an average of 12 F1 points on complex inference tasks in the zero-shot setting. Third, LoRA-based fine-tuning yields up to an additional 8 points in F1 and BLEU compared to equivalent increases in model scale. The code is available at https://github.com/gufranSabri/deepseek-evals
♻ ☆ OM4OV: Leveraging Ontology Matching for Ontology Versioning
Due to the dynamic nature of the Semantic Web, version control is necessary to capture time-varying information for widely used ontologies. Despite the long-standing recognition of ontology versioning (OV) as a crucial component of efficient ontology management, many views treat OV as similar to ontology matching (OM) and directly reuse OM systems for OV tasks. In this study, we systematically analyse the similarities and differences between OM and OV and formalise the OM4OV pipeline. The pipeline is implemented and evaluated in the state-of-the-art OM system Agent-OM. The experimental results indicate that OM systems can be reused for OV tasks, but without necessary modifications, the current OM4OV pipeline can produce skewed measurements, poor performance in detecting update entities, and less explainability for false mappings. To tackle these issues, we propose an optimisation method called the cross-reference (CR) mechanism, building upon the existing alignment(s) from OM to reduce the number of matching candidates and improve overall OV performance.
comment: 16 pages, 8 figures, 1 table
♻ ☆ Geschlechtsübergreifende Maskulina im Sprachgebrauch Eine korpusbasierte Untersuchung zu lexemspezifischen Unterschieden
This study examines the distribution and linguistic characteristics of generic masculines (GM) in contemporary German press texts. The use of masculine personal nouns to refer to mixed-gender groups or unspecified individuals has been widely debated in academia and the public, with con-flicting perspectives on its gender-neutrality. While psycholinguistic studies suggest that GM is more readily associated with male referents, corpus-based analyses of its actual use remain scarce. We investigate GM in a large corpus of press texts, focusing on lexeme-specific differences across dif-ferent types of personal nouns. We conducted manual annotations of the whole inflectional para-digm of 21 personal nouns, resulting in 6,195 annotated tokens. Our findings reveal considerable differences between lexical items, especially between passive role nouns and prestige-related per-sonal nouns. On a grammatical level, we find that GM occurs predominantly in the plural and in indefinite noun phrases. Furthermore, our data shows that GM is not primarily used to denote entire classes of people, as has been previously claimed. By providing an empirical insight into the use of GM in authentic written language, we contribute to a more nuanced understanding of its forms and manifestations. These findings provide a solid basis for aligning linguistic stimuli in psy-cholinguistic studies more closely with real-world language use.
comment: 32 pages, in German language, 8 figures
♻ ☆ Are most sentences unique? An empirical examination of Chomskyan claims
A repeated claim in linguistics is that the majority of linguistic utterances are unique. For example, Pinker (1994: 10), summarizing an argument by Noam Chomsky, states that "virtually every sentence that a person utters or understands is a brand-new combination of words, appearing for the first time in the history of the universe." With the increased availability of large corpora, this is a claim that can be empirically investigated. The current paper addresses the question by using the NLTK Python library to parse corpora of different genres, providing counts of exact string matches in each. Results show that while completely unique sentences are often the majority of corpora, this is highly constrained by genre, and that duplicate sentences are not an insignificant part of any individual corpus.
♻ ☆ How Far Are We from Genuinely Useful Deep Research Agents?
Deep Research Agents (DRAs) aim to automatically produce analyst-level reports through iterative information retrieval and synthesis. However, most existing DRAs were validated on question-answering benchmarks, while research on generating comprehensive reports remains overlooked. Worse, current benchmarks for report synthesis suffer from task complexity and subjective metrics -- this fails to reflect user demands and limits the practical utility of generated reports. To address these gaps, we present Fine-grained DEepResearch bench (FINDER), an enhanced benchmark consisting of 100 human-curated research tasks with 419 structured checklist items that standardize report structure, analytical depth, and factual grounding. Based on approximately 1,000 reports produced by mainstream DRAs, we further propose Deep rEsearch Failure Taxonomy (DEFT), the first failure taxonomy for deep research agents. DEFT contains 14 fine-grained failure modes across reasoning, retrieval, and generation, and is built upon grounded theory with human-LLM co-annotating and inter-annotator reliability validation. Our experimental findings reveal that current DRAs struggle not with task comprehension but with evidence integration, verification, and reasoning-resilient planning.
comment: 34 pages
♻ ☆ From Clicks to Preference: A Multi-stage Alignment Framework for Generative Query Suggestion in Conversational System KDD
Generative query suggestion using large language models offers a powerful way to enhance conversational systems, but aligning outputs with nuanced user preferences remains a critical challenge. To address this, we introduce a multi-stage framework designed for progressive alignment between the generation policy and user intent. Our pipeline begins with prompt engineering as a cold-start strategy, followed by the Supervised Fine-Tuning stage, in which we introduce a distillation method on click logs to create a robust foundational model. To better model user preferences while capturing their inherent uncertainty, we develop a Gaussian Reward Model (GaRM) that represents user preferences as probability distributions rather than point estimates. Finally, we employ reinforcement learning to align the generation policy with these preferences, guided by a composite reward function that integrates GaRM with auxiliary heuristics to mitigate reward hacking. To maintain training stability, this process is enhanced by a novel out-of-distribution regularization method and a two-stage reward fusion technique. Extensive experiments demonstrate that our framework significantly outperforms baselines on both automatic and human evaluations and yields a 34\% relative increase in user engagement as measured by click-through rate in live A/B tests.
comment: Accepted by SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 26)
♻ ☆ Decoupling Understanding from Reasoning via Problem Space Mapping for Small-Scale Model Reasoning
Despite recent advances in the reasoning capabilities of Large Language Models (LLMs), improving the reasoning ability of Small Language Models (SLMs, e.g., up to 1.5B parameters) remains challenging. A key obstacle lies in the complexity and variability of natural language: essentially equivalent problems often appear in diverse surface forms, often obscured by redundant or distracting details. This imposes a dual burden on SLMs: they must first extract the core problem from complex linguistic input, and then perform reasoning based on that understanding. The resulting vast and noisy problem space hinders optimization, particularly for models with limited capacity. To address this, we propose a new framework that decouples understanding from reasoning by mapping natural language problems into a canonical problem space-a semantically simplified yet expressive domain. This enables SLMs to focus on reasoning over standardized inputs, free from linguistic variability. Within this framework, we introduce DURIT (Decoupled Understanding from Reasoning via Iterative Training), a three-step algorithm that iteratively: (1) mapping natural language problems via reinforcement learning, (2) aligns reasoning trajectories through self-distillation, and (3) trains reasoning policies in the problem space. The mapper and reasoner are co-trained in an alternating loop throughout this process. Experiments show that DURIT substantially improves SLMs' performance on both in-domain and out-of-domain mathematical and logical reasoning tasks. Beyond improving reasoning capabilities, DURIT also improves the robustness of reasoning, validating decoupling understanding from reasoning as an effective strategy for strengthening SLMs.
♻ ☆ A survey of diversity quantification in natural language processing: The why, what, where and how
The concept of diversity has received increased consideration in Natural Language Processing (NLP) in recent years. This is due to various motivations like promoting and inclusion, approximating human linguistic behavior, and increasing systems' performance. Diversity has however often been addressed in an ad hoc manner in NLP, and with few explicit links to other domains where this notion is better theorized. We survey articles in the ACL Anthology from the past 6 years, with "diversity" or "diverse" in their title. We find a wide range of settings in which diversity is quantified, often highly specialized and using inconsistent terminology. We put forward a unified taxonomy of why, what on, where, and how diversity is measured in NLP. Diversity measures are cast upon a unified framework from ecology and economy (Stirling, 2007) with 3 dimensions of diversity: variety, balance and disparity. We discuss the trends which emerge due to this systematized approach. We believe that this study paves the way towards a better formalization of diversity in NLP, which should bring a better understanding of this notion and a better comparability between various approaches.
♻ ☆ From Pruning to Grafting: Dynamic Knowledge Redistribution via Learnable Layer Fusion
Structured pruning of Generative Pre-trained Transformers (GPTs) offers a promising path to efficiency but often suffers from irreversible performance degradation due to the discarding of transformer blocks. In this paper, we introduce FuseGPT, a compression paradigm that reframes structured pruning as iterative knowledge grafting rather than simple removal. Motivated by the observation that linear block merging fails to capture non-linear feature disparities and that block importance fluctuates dynamically during pruning, FuseGPT employs a dual-strategy pipeline. First, we propose Macro Influence (MI), a dynamic fusion-aware metric that continuously re-evaluates block redundancy as the network topology evolves. Second, instead of rigid parameter averaging, we introduce a learnable low-rank fusion mechanism that adaptively grafts the knowledge of pruned blocks onto surviving layers via lightweight local distillation. Extensive experiments on LLaMA, Mistral, Qwen, and Phi families demonstrate that FuseGPT establishes a new state-of-the-art on the compression-accuracy Pareto frontier: at 25\% sparsity, FuseGPT achieves lower perplexity than prior methods at 20\% sparsity, improves zero-shot reasoning by up to 4.5 points, and delivers 1.33$\times$ inference speedup with 25\% memory reduction. Furthermore, FuseGPT is orthogonal to quantization, achieving 52.1\% total compression with negligible quality loss when combined with 4-bit GPTQ. We make our code publicly available at https://github.com/JarvisPei/FuseGPT.
♻ ☆ LegalRikai: Open Benchmark -- Benchmark for Complex Japanese Corporate Legal Tasks
This paper introduces LegalRikai: Open Benchmark, a new benchmark comprising four complex tasks that emulate Japanese corporate legal practices. The benchmark was created by legal professionals under the supervision of an attorney. This benchmark has 100 samples that require long-form, structured outputs, and we evaluated them against multiple practical criteria. We conducted both human and automated evaluations using leading LLMs, including GPT-5, Gemini 2.5 Pro, and Claude Opus 4.1. Our human evaluation revealed that abstract instructions prompted unnecessary modifications, highlighting model weaknesses in document-level editing that were missed by conventional short-text tasks. Furthermore, our analysis reveals that automated evaluation aligns well with human judgment on criteria with clear linguistic grounding, and assessing structural consistency remains a challenge. The result demonstrates the utility of automated evaluation as a screening tool when expert availability is limited. We propose a dataset evaluation framework to promote more practice-oriented research in the legal domain.
♻ ☆ Fixing It in Post: A Comparative Study of LLM Post-Training Data Quality and Model Performance
Recent work on large language models (LLMs) has increasingly focused on post-training and alignment with datasets curated to enhance instruction following, world knowledge, and specialized skills. However, most post-training datasets used in leading open- and closed-source LLMs remain inaccessible to the public, with limited information about their construction process. This lack of transparency has motivated the recent development of open-source post-training corpora. While training on these open alternatives can yield performance comparable to that of leading models, systematic comparisons remain challenging due to the significant computational cost of conducting them rigorously at scale, and are therefore largely absent. As a result, it remains unclear how specific samples, task types, or curation strategies influence downstream performance when assessing data quality. In this work, we conduct the first comprehensive side-by-side analysis of two prominent open post-training datasets: Tulu-3-SFT-Mix and SmolTalk. Using the Magpie framework, we annotate each sample with detailed quality metrics, including turn structure (single-turn vs. multi-turn), task category, input quality, and response quality, and we derive statistics that reveal structural and qualitative similarities and differences between the two datasets. Based on these insights, we design a principled curation recipe that produces a new data mixture, TuluTalk, which contains 14% fewer samples than either source dataset while matching or exceeding their performance on key benchmarks. Our findings offer actionable insights for constructing more effective post-training datasets that improve model performance within practical resource limits. To support future research, we publicly release both the annotated source datasets and our curated TuluTalk mixture.
♻ ☆ From Imitation to Discrimination: Toward A Generalized Curriculum Advantage Mechanism Enhancing Cross-Domain Reasoning Tasks AAAI 2026
Reinforcement learning has emerged as a paradigm for post-training large language models, boosting their reasoning capabilities. Such approaches compute an advantage value for each sample, reflecting better or worse performance than expected, thereby yielding both positive and negative signals for training. However, the indiscriminate mixing of the two signals in existing methods, especially from the early stages, may lead to ambiguous guidance and limited gains. To address this issue, we propose **CAPO** (**C**urriculum **A**dvantage **P**olicy **O**ptimization), an adaptive curriculum mechanism based on advantage signals. The proposed mechanism bootstraps imitation learning with positive-only advantage samples to establish robust foundations, and subsequently introduces negative signals to cultivate discriminative capabilities, thereby improving generalization across complex scenarios. Compatible with diverse optimization methods including GRPO, PPO, RLOO, and Reinforce++, our method consistently achieves stable and significant improvements in mathematical reasoning tasks, and further generalizes effectively to multimodal Graphical User Interface (GUI) reasoning scenarios, establishing itself as a versatile and robust optimization framework.
comment: Accepted by AAAI 2026
♻ ☆ A Pipeline to Assess Merging Methods via Behavior and Internals
Merging methods combine the weights of multiple language models (LMs) to leverage their capacities, such as for domain adaptation. While existing studies investigate merged models from a solely behavioral perspective, we offer the first comprehensive view by assessing and connecting their behavior and internals. We present a novel evaluation pipeline that first merges multiple parent LMs, and then evaluates the merged models in comparison to the initial ones based on their behavior on downstream tasks, like MMLU, and the internal encoded linguistic competence. We showcase this pipeline by assessing the merging of instruction fine-tuned with math- and code-adapted LMs from the Qwen2.5 family. Our results show that merging methods impacts behavior and internals differently. While the performance of merged models is typically between that of the two parent models, their encoded information about linguistic phenomena, particularly in morphology and syntax, can surpass the parent models. Moreover, we find weak ranking correlation between this behavior and internal evaluation. With our pipeline and initial results, we emphasize the need for more comprehensive evaluations of model merging methods to gain a faithful understanding of their capabilities and reliability, beyond potential superficial behavioral advances.
comment: BlackboxNLP
♻ ☆ Cost-aware LLM-based Online Dataset Annotation
Recent advances in large language models (LLMs) have enabled automated dataset labeling with minimal human supervision. While majority voting across multiple LLMs can improve label reliability by mitigating individual model biases, it incurs high computational costs due to repeated querying. In this work, we propose a novel online framework, Cost-aware Majority Voting (CaMVo), for efficient and accurate LLM-based dataset annotation. CaMVo adaptively selects a subset of LLMs for each data instance based on contextual embeddings, balancing confidence and cost without requiring pre-training or ground-truth labels. Leveraging a LinUCB-based selection mechanism and a Bayesian estimator over confidence scores, CaMVo estimates a lower bound on labeling accuracy for each LLM and aggregates responses through weighted majority voting. Our empirical evaluation on the MMLU and IMDB Movie Review datasets demonstrates that CaMVo achieves comparable or superior accuracy to full majority voting while significantly reducing labeling costs. This establishes CaMVo as a practical and robust solution for cost-efficient annotation in dynamic labeling environments.
♻ ☆ SNS-Bench-VL: Benchmarking Multimodal Large Language Models in Social Networking Services
With the increasing integration of visual and textual content in Social Networking Services (SNS), evaluating the multimodal capabilities of Large Language Models (LLMs) is crucial for enhancing user experience, content understanding, and platform intelligence. Existing benchmarks primarily focus on text-centric tasks, lacking coverage of the multimodal contexts prevalent in modern SNS ecosystems. In this paper, we introduce SNS-Bench-VL, a comprehensive multimodal benchmark designed to assess the performance of Vision-Language LLMs in real-world social media scenarios. SNS-Bench-VL incorporates images and text across 8 multimodal tasks, including note comprehension, user engagement analysis, information retrieval, and personalized recommendation. It comprises 4,001 carefully curated multimodal question-answer pairs, covering single-choice, multiple-choice, and open-ended tasks. We evaluate over 25 state-of-the-art multimodal LLMs, analyzing their performance across tasks. Our findings highlight persistent challenges in multimodal social context comprehension. We hope SNS-Bench-VL will inspire future research towards robust, context-aware, and human-aligned multimodal intelligence for next-generation social networking services.
comment: We found problems in the code while rechecking our implementation. These issues led to noticeable numerical discrepancies, making some of the reported results and conclusions potentially unreliable. Therefore, we request to withdraw this submission
♻ ☆ Pet-Bench: Benchmarking the Abilities of Large Language Models as E-Pets in Social Network Services
As interest in using Large Language Models for interactive and emotionally rich experiences grows, virtual pet companionship emerges as a novel yet underexplored application. Existing approaches focus on basic pet role-playing interactions without systematically benchmarking LLMs for comprehensive companionship. In this paper, we introduce Pet-Bench, a dedicated benchmark that evaluates LLMs across both self-interaction and human-interaction dimensions. Unlike prior work, Pet-Bench emphasizes self-evolution and developmental behaviors alongside interactive engagement, offering a more realistic reflection of pet companionship. It features diverse tasks such as intelligent scheduling, memory-based dialogues, and psychological conversations, with over 7,500 interaction instances designed to simulate pet behaviors. Evaluation of 28 LLMs reveals significant performance variations linked to model size and inherent capabilities, underscoring the need for specialized optimization in this domain. Pet-Bench serves as a foundational resource for benchmarking pet-related LLM abilities and advancing emotionally immersive human-pet interactions.
♻ ☆ ALIGN: Word Association Learning for Cultural Alignment in Large Language Models
Large language models (LLMs) exhibit cultural bias from overrepresented viewpoints in training data, yet cultural alignment remains a challenge due to limited cultural knowledge and a lack of exploration into effective learning approaches. We introduce a cost-efficient and cognitively grounded method: fine-tuning LLMs on native speakers' word-association norms, leveraging cognitive psychology findings that such associations capture cultural knowledge. Using word association datasets from native speakers in the US (English) and China (Mandarin), we train Llama-3.1-8B and Qwen-2.5-7B via supervised fine-tuning and preference optimization. We evaluate models' cultural alignment through a two-tier evaluation framework that spans lexical associations and cultural value alignment using the World Values Survey. Results show significant improvements in lexical alignment (16-20% English, 43-165% Mandarin on Precision@5) and high-level cultural value shifts. On a subset of 50 questions where US and Chinese respondents diverge most, fine-tuned Qwen nearly doubles its response alignment with Chinese values (13 to 25). Remarkably, our trained 7-8B models match or exceed vanilla 70B baselines, demonstrating that a few million of culture-grounded associations achieve value alignment without expensive retraining. Our work highlights both the promise and the need for future research grounded in human cognition in improving cultural alignment in AI models.
♻ ☆ CLARIFID: Improving Radiology Report Generation by Reinforcing Clinically Accurate Impressions and Enforcing Detailed Findings
Automatic generation of radiology reports has the potential to alleviate radiologists' significant workload, yet current methods struggle to deliver clinically reliable conclusions. In particular, most prior approaches focus on producing fluent text without effectively ensuring the factual correctness of the reports and often rely on single-view images, limiting diagnostic comprehensiveness. We propose CLARIFID, a novel framework that directly optimizes diagnostic correctness by mirroring the two-step workflow of experts. Specifically, CLARIFID (1) learns the logical flow from Findings to Impression through section-aware pretraining, (2) is fine-tuned with Proximal Policy Optimization in which the CheXbert F1 score of the Impression section serves as the reward, (3) employs controlled decoding that completes "Findings" before synthesizing the "Impression", and (4) fuses multiple chest X-ray views via a vision-transformer-based multi-view encoder. During inference, we apply a next-token forcing strategy followed by report-level re-ranking, ensuring that the model first produces a comprehensive "Findings" section before synthesizing the "Impression" and thereby preserving coherent clinical reasoning. Experimental results on the MIMIC-CXR dataset demonstrate that our method achieves superior clinical efficacy and outperforms existing baselines on clinical efficacy scores.
♻ ☆ Efficiently Seeking Flat Minima for Better Generalization in Fine-Tuning Large Language Models and Beyond
Little research explores the correlation between the expressive ability and generalization ability of the low-rank adaptation (LoRA). Sharpness-Aware Minimization (SAM) improves model generalization for both Convolutional Neural Networks (CNNs) and Transformers by encouraging convergence to locally flat minima. However, the connection between sharpness and generalization has not been fully explored for LoRA due to the lack of tools to either empirically seek flat minima or develop theoretical methods. In this work, we propose Flat Minima LoRA (FMLoRA) and its efficient version, i.e., EFMLoRA, to seek flat minima for LoRA. Concretely, we theoretically demonstrate that perturbations in the full parameter space can be transferred to the low-rank subspace. This approach eliminates the potential interference introduced by perturbations across multiple matrices in the low-rank subspace. Our extensive experiments on large language models and vision-language models demonstrate that EFMLoRA achieves optimize efficiency comparable to that of LoRA while simultaneously attaining comparable or even better performance. For example, on the GLUE dataset with RoBERTa-large, EFMLoRA outperforms LoRA and full fine-tuning by 1.0% and 0.5% on average, respectively. On vision-language models, e.g., Qwen-VL-Chat, there are performance improvements of 1.5% and 1.0% on the SQA and VizWiz datasets, respectively. These empirical results also verify that the generalization of LoRA is closely related to sharpness, which is omitted by previous methods.
♻ ☆ Leveraging Importance Sampling to Detach Alignment Modules from Large Language Models NeurIPS 2025
The widespread adoption of large language models (LLMs) across industries has increased the demand for high-quality and customizable outputs. However, traditional alignment methods often require retraining large pretrained models, making it difficult to quickly adapt and optimize LLMs for diverse applications. To address this limitation, we propose a novel \textit{Residual Alignment Model} (\textit{RAM}) that formalizes the alignment process as a type of importance sampling. In this framework, the unaligned upstream model serves as the proposal distribution, while the alignment process is framed as secondary sampling based on an autoregressive alignment module that acts as an estimator of the importance weights. This design enables a natural detachment of the alignment module from the target aligned model, improving flexibility and scalability. Based on this model, we derive an efficient sequence-level training strategy for the alignment module, which operates independently of the proposal module. Additionally, we develop a resampling algorithm with iterative token-level decoding to address the common first-token latency issue in comparable methods. Experimental evaluations on two leading open-source LLMs across diverse tasks, including instruction following, domain adaptation, and preference optimization, demonstrate that our approach consistently outperforms baseline models.
comment: Accepted by NeurIPS 2025, 28 pages
♻ ☆ DABL: Detecting Semantic Anomalies in Business Processes Using Large Language Models
Detecting anomalies in business processes is crucial for ensuring operational success. While many existing methods rely on statistical frequency to detect anomalies, it's important to note that infrequent behavior doesn't necessarily imply undesirability. To address this challenge, detecting anomalies from a semantic viewpoint proves to be a more effective approach. However, current semantic anomaly detection methods treat a trace (i.e., process instance) as multiple event pairs, disrupting long-distance dependencies. In this paper, we introduce DABL, a novel approach for detecting semantic anomalies in business processes using large language models (LLMs). We collect 143,137 real-world process models from various domains. By generating normal traces through the playout of these process models and simulating both ordering and exclusion anomalies, we fine-tune Llama 2 using the resulting log. Through extensive experiments, we demonstrate that DABL surpasses existing state-of-the-art semantic anomaly detection methods in terms of both generalization ability and learning of given processes. Users can directly apply DABL to detect semantic anomalies in their own datasets without the need for additional training. Furthermore, DABL offers the capability to interpret the causes of anomalies in natural language, providing valuable insights into the detected anomalies.
♻ ☆ SoMi-ToM: Evaluating Multi-Perspective Theory of Mind in Embodied Social Interactions
Humans continuously infer the states, goals, and behaviors of others by perceiving their surroundings in dynamic, real-world social interactions. However, most Theory of Mind (ToM) benchmarks only evaluate static, text-based scenarios, which have a significant gap compared to real interactions. We propose the SoMi-ToM benchmark, designed to evaluate multi-perspective ToM in embodied multi-agent complex social interactions. This benchmark is based on rich multimodal interaction data generated by the interaction environment SoMi, covering diverse crafting goals and social relationships. Our framework supports multi-level evaluation: (1) first-person evaluation provides multimodal (visual, dialogue, action, etc.) input from a first-person perspective during a task for real-time state inference, (2) third-person evaluation provides complete third-person perspective video and text records after a task for goal and behavior inference. This evaluation method allows for a more comprehensive examination of a model's ToM capabilities from both the subjective immediate experience and the objective global observation. We constructed a challenging dataset containing 35 third-person perspective videos, 363 first-person perspective images, and 1225 expert-annotated multiple-choice questions (three options). On this dataset, we systematically evaluated the performance of human subjects and several state-of-the-art large vision-language models (LVLMs). The results show that LVLMs perform significantly worse than humans on SoMi-ToM: the average accuracy gap between humans and models is 40.1% in first-person evaluation and 26.4% in third-person evaluation. This indicates that future LVLMs need to further improve their ToM capabilities in embodied, complex social interactions.
comment: 24 pages, 6 figures
♻ ☆ When Reject Turns into Accept: Quantifying the Vulnerability of LLM-Based Scientific Reviewers to Indirect Prompt Injection
The landscape of scientific peer review is rapidly evolving with the integration of Large Language Models (LLMs). This shift is driven by two parallel trends: the widespread individual adoption of LLMs by reviewers to manage workload (the "Lazy Reviewer" hypothesis) and the formal institutional deployment of AI-powered assessment systems by conferences like AAAI and Stanford's Agents4Science. This study investigates the robustness of these "LLM-as-a-Judge" systems (both illicit and sanctioned) to adversarial PDF manipulation. Unlike general jailbreaks, we focus on a distinct incentive: flipping "Reject" decisions to "Accept," for which we develop a novel evaluation metric which we term as WAVS (Weighted Adversarial Vulnerability Score). We curated a dataset of 200 scientific papers and adapted 15 domain-specific attack strategies to this task, evaluating them across 13 Language Models, including GPT-5, Claude Haiku, and DeepSeek. Our results demonstrate that obfuscation strategies like "Maximum Mark Magyk" successfully manipulate scores, achieving alarming decision flip rates even in large-scale models. We will release our complete dataset and injection framework to facilitate more research on this topic.
♻ ☆ Do MLLMs Really Understand the Charts?
Although Multimodal Large Language Models (MLLMs) have demonstrated increasingly impressive performance in chart understanding, most of them exhibit alarming hallucinations and significant performance degradation when handling non-annotated charts. We argue that current MLLMs rely largely on visual recognition rather than visual reasoning to interpret the charts, and visual estimation of numerical values is one of the most fundamental capabilities in chart understanding that require complex visual reasoning. To prove this, we introduce ChartVRBench, a benchmark meticulously designed to isolate and evaluate visual reasoning ability in chart understanding. Furthermore, we propose ChartVR-3B/7B trained with a novel Visual Reasoning Reinforcement Finetuning (VR-RFT) strategy to strengthen genuine chart visual reasoning abilities. Extensive experiments show that ChartVR achieves superior performance on ChartVRBench, outperforming even powerful proprietary models. Moreover, the visual reasoning skills cultivated by the proposed VR-RFT demonstrate strong generalization, leading to significant performance gains across a diverse suite of public chart understanding benchmarks. The code and dataset will be publicly available upon publication.
♻ ☆ Building Self-Evolving Agents via Experience-Driven Lifelong Learning: A Framework and Benchmark
As AI advances toward general intelligence, the focus is shifting from systems optimized for static tasks to creating open-ended agents that learn continuously. In this paper, we introduce Experience-driven Lifelong Learning (ELL), a framework for building self-evolving agents capable of continuous growth through real-world interaction. The framework is built on four core principles: (1) Experience Exploration: Agents learn through continuous, self-motivated interaction with dynamic environments, navigating interdependent tasks and generating rich experiential trajectories. (2) Long-term Memory: Agents preserve and structure historical knowledge, including personal experiences, domain expertise, and commonsense reasoning, into a persistent memory system. (3) Skill Learning: Agents autonomously improve by abstracting recurring patterns from experience into reusable skills, which are actively refined and validated for application in new tasks. (4) Knowledge Internalization: Agents internalize explicit and discrete experiences into implicit and intuitive capabilities as "second nature". We also introduce StuLife, a benchmark dataset for ELL that simulates a student's holistic college journey, from enrollment to academic and personal development, across three core phases and ten detailed sub-scenarios. StuLife is designed around three key paradigm
♻ ☆ Beyond Magic Words: Sharpness-Aware Prompt Evolving for Robust Large Language Models with TARE
The performance of Large Language Models (LLMs) hinges on carefully engineered prompts. However, prevailing prompt optimization methods, ranging from heuristic edits and reinforcement learning to evolutionary search, primarily target point-wise accuracy. They seldom enforce paraphrase invariance or searching stability, and therefore cannot remedy this brittleness in practice. Automated prompt search remains brittle: small, semantically preserving paraphrases often cause large performance swings. We identify this brittleness as the textual sharpness of the prompt landscape. In this work, we provide the first formal treatment of textual sharpness in the discrete, semantic space of prompts, together with an operational robustness criterion over a semantic neighborhood; the design is black-box or API-only, requiring no gradients to update the model's parameters. Then we introduce TARE (Textual Sharpness-Aware Evolving), a derivative-free framework that alternates between an inner, sampling-based adversarial search that stresses a prompt with hard paraphrases and an outer, robust selection that prefers candidates whose neighborhoods remain strong. We further propose ATARE, which learns anisotropic weights to shape the semantic neighborhood and adapts its radius over time to balance exploration and fidelity. Diverse tasks evaluate our methods, whose design for minimizing textual sharpness gap leads to prompts that preserve accuracy under paraphrasing, outperforming accuracy-only prompt search while remaining computationally practical.
comment: We have identified a critical methodological error in Section 3 of the manuscript, which invalidates the main results; therefore, we request withdrawal for further revision
♻ ☆ Diagnose, Localize, Align: A Full-Stack Framework for Reliable LLM Multi-Agent Systems under Instruction Conflicts
Large Language Model (LLM)-powered multi-agent systems (MAS) have rapidly advanced collaborative reasoning, tool use, and role-specialized coordination in complex tasks. However, reliability-critical deployment remains hindered by a systemic failure mode: hierarchical compliance under instruction conflicts (system-user, peer-peer), where agents misprioritize system-level rules in the presence of competing demands. Moreover, widely used macro-level metrics (e.g., pass@k) obscure these micro-level violations and offer little actionable guidance for remedy. In this work, we present a full-stack, three-stage framework: (1) Diagnose - Contextualized Role Adherence Score (CRAS), a query-wise, context-aware scoring metric that decomposes role adherence into four measurable dimensions; (2) Localize - attention drift analysis revealing that instruction conflicts are resolved by attention heads that are largely concentrated in middle layers; (3) Align - Surgical Alignment of Instruction Layers (SAIL), which installs LoRA only on the localized focal layers and optimizes a token-weighted DPO-style preference objective that credits tokens by their focal attentional contribution. Across standard benchmarks and MAS frameworks, our surgical approach improves instruction hierarchy compliance (e.g., +5.60% with AutoGen on MedQA) without full-model finetuning.
comment: Upon further review, we realized that the version submitted to arXiv was not the final draft and omits crucial results and discussion. To avoid confusion and ensure the integrity of the record, we request withdrawal and will resubmit once the complete work is ready
♻ ☆ SpurLens: Automatic Detection of Spurious Cues in Multimodal LLMs
Unimodal vision models are known to rely on spurious correlations, but it remains unclear to what extent Multimodal Large Language Models (MLLMs) exhibit similar biases despite language supervision. In this paper, we investigate spurious bias in MLLMs and introduce SpurLens, a pipeline that leverages GPT-4 and open-set object detectors to automatically identify spurious visual cues without human supervision. Our findings reveal that spurious correlations cause two major failure modes in MLLMs: (1) over-reliance on spurious cues for object recognition, where removing these cues reduces accuracy, and (2) object hallucination, where spurious cues amplify the hallucination by over 10x. We validate our findings in various MLLMs and datasets. Beyond diagnosing these failures, we explore potential mitigation strategies, such as prompt ensembling and reasoning-based prompting, and conduct ablation studies to examine the root causes of spurious bias in MLLMs. By exposing the persistence of spurious correlations, our study calls for more rigorous evaluation methods and mitigation strategies to enhance the reliability of MLLMs.
♻ ☆ Unsupervised Acquisition of Discrete Grammatical Categories
This article presents experiments performed using a computational laboratory environment for language acquisition experiments. It implements a multi-agent system consisting of two agents: an adult language model and a daughter language model that aims to learn the mother language. Crucially, the daughter agent does not have access to the internal knowledge of the mother language model but only to the language exemplars the mother agent generates. These experiments illustrate how this system can be used to acquire abstract grammatical knowledge. We demonstrate how statistical analyses of patterns in the input data corresponding to grammatical categories yield discrete grammatical rules. These rules are subsequently added to the grammatical knowledge of the daughter language model. To this end, hierarchical agglomerative cluster analysis was applied to the utterances consecutively generated by the mother language model. It is argued that this procedure can be used to acquire structures resembling grammatical categories proposed by linguists for natural languages. Thus, it is established that non-trivial grammatical knowledge has been acquired. Moreover, the parameter configuration of this computational laboratory environment determined using training data generated by the mother language model is validated in a second experiment with a test set similarly resulting in the acquisition of non-trivial categories.
comment: 34 pages, 3 figures, 7 tables. Related work: Shakouri et al., arXiv:2512.02195
♻ ☆ LookAhead Tuning: Safer Language Models via Partial Answer Previews
Fine-tuning enables large language models (LLMs) to adapt to specific domains, but often compromises their previously established safety alignment. To mitigate the degradation of model safety during fine-tuning, we introduce LookAhead Tuning, a lightweight and effective data-driven approach that preserves safety during fine-tuning. The method introduces two simple strategies that modify training data by previewing partial answer prefixes, thereby minimizing perturbations to the model's initial token distributions and maintaining its built-in safety mechanisms. Comprehensive experiments demonstrate that LookAhead Tuning effectively maintains model safety without sacrificing robust performance on downstream tasks. Our findings position LookAhead Tuning as a reliable and efficient solution for the safe and effective adaptation of LLMs.
comment: WSDM 2026 short
♻ ☆ Thinking with Visual Abstract: Enhancing Multimodal Reasoning via Visual Abstraction
Images usually convey richer detail than text, but often include redundant information, which potentially downgrades multimodal reasoning performance. When faced with lengthy or complex messages, humans tend to employ abstract thinking to convert them into simple and concise abstracts. Inspired by this cognitive strategy, we introduce a novel paradigm to elicit the ability to Think with Visual Abstract (VAT), by prompting Multimodal Large Language Models (MLLMs) with visual abstract instead of explicit verbal thoughts or elaborate guidance, permitting a more efficient visual reasoning mechanism via concentrated perception. VAT encourages models to focus on more essential visual elements, concepts and structural features by undermining redundant information compared with explicit thinking methods, such as Chain-of-thought (CoT) and tool-using approaches, that increase the complexity of reasoning process via inserting verbose intermediate steps and external knowledge. Experimental results show that VAT consistently empowers different MLLMs in visual perception and reasoning tasks. VAT achieves an average gain of $2.21\%$ over GPT-5 baseline, surpassing the gain of CoT, demonstrating that VAT better enhances multimodal task performance of MLLMs. Additionally, VAT spends fewer tokens while achieving higher performance. These findings highlight the effectiveness of visual abstract thinking and encourage further exploration of more diverse reasoning paradigms from the perspective of human cognition.
♻ ☆ The Gray Zone of Faithfulness: Taming Ambiguity in Unfaithfulness Detection
Ensuring that Large Language Models (LLMs) generate summaries faithful to a given source document is essential for real-world applications. While prior research has explored LLM faithfulness, existing benchmarks suffer from annotation ambiguity, primarily due to the ill-defined boundary of permissible external knowledge in generated outputs. For instance, common sense is often incorporated into responses and labeled as "faithful", yet the acceptable extent of such knowledge remains unspecified, leading to inconsistent annotations. To address this issue, we propose a novel faithfulness annotation framework, which introduces an intermediate category, Out-Dependent, to classify cases where external knowledge is required for verification. Using this framework, we construct VeriGray (Verification with the Gray Zone) -- a new unfaithfulness detection benchmark in summarization. Statistics reveal that even SOTA LLMs, such as GPT-5, exhibit hallucinations ($\sim 6\%$ of sentences) in summarization tasks. Moreover, a substantial proportion ($\sim 8\%$ on average of models) of generated sentences fall into the Out-Dependent category, underscoring the importance of resolving annotation ambiguity in unfaithfulness detection benchmarks. Experiments demonstrate that our benchmark poses significant challenges to multiple baseline methods, indicating considerable room for future improvement.
comment: Updates the evaluation results with the latest correction of our annotations and the improved parsing algorithm for LLM detectors' responses Evaluates a new method -- GPT-5 + RAG
♻ ☆ MRAG-Suite: A Diagnostic Evaluation Platform for Visual Retrieval-Augmented Generation
Multimodal Retrieval-Augmented Generation (Visual RAG) significantly advances question answering by integrating visual and textual evidence. Yet, current evaluations fail to systematically account for query difficulty and ambiguity. We propose MRAG-Suite, a diagnostic evaluation platform integrating diverse multimodal benchmarks (WebQA, Chart-RAG, Visual-RAG, MRAG-Bench). We introduce difficulty-based and ambiguity-aware filtering strategies, alongside MM-RAGChecker, a claim-level diagnostic tool. Our results demonstrate substantial accuracy reductions under difficult and ambiguous queries, highlighting prevalent hallucinations. MM-RAGChecker effectively diagnoses these issues, guiding future improvements in Visual RAG systems.
♻ ☆ Conveying Imagistic Thinking in Traditional Chinese Medicine Translation: A Prompt Engineering and LLM-Based Evaluation Framework
Traditional Chinese Medicine (TCM) theory is built on imagistic thinking, in which medical principles and diagnostic and therapeutic logic are structured through metaphor and metonymy. However, existing English translations largely rely on literal rendering, making it difficult for target-language readers to reconstruct the underlying conceptual networks and apply them in clinical practice. This study adopted a human-in-the-loop (HITL) framework and selected four passages from the medical canon Huangdi Neijing that are fundamental in theory. Through prompt-based cognitive scaffolding, DeepSeek V3.1 was guided to identify metaphor and metonymy in the source text and convey the theory in translation. In the evaluation stage, ChatGPT 5 Pro and Gemini 2.5 Pro were instructed by prompts to simulate three types of real-world readers. Human translations, baseline model translations, and prompt-adjusted translations were scored by the simulated readers across five cognitive dimensions, followed by structured interviews and Interpretative Phenomenological Analysis (IPA). Results show that the prompt-adjusted LLM translations perform best across all five dimensions, with high cross-model and cross-role consistency. The interview themes reveal differences between human and machine translation, effective strategies for metaphor and metonymy transfer, and readers' cognitive preferences. This study provides a cognitive, efficient, and replicable HITL methodological pathway for the translation of ancient, concept-dense texts such as TCM.
comment: This is a duplicate of arXiv:2511.23059
Solving Inequality Proofs with Large Language Models NeurIPS 2025
Inequality proving, crucial across diverse scientific and mathematical fields, tests advanced reasoning skills such as discovering tight bounds and strategic theorem application. This makes it a distinct, demanding frontier for large language models (LLMs), offering insights beyond general mathematical problem-solving. Progress in this area is hampered by existing datasets that are often scarce, synthetic, or rigidly formal. We address this by proposing an informal yet verifiable task formulation, recasting inequality proving into two automatically checkable subtasks: bound estimation and relation prediction. Building on this, we release IneqMath, an expert-curated dataset of Olympiad-level inequalities, including a test set and training corpus enriched with step-wise solutions and theorem annotations. We also develop a novel LLM-as-judge evaluation framework, combining a final-answer judge with four step-wise judges designed to detect common reasoning flaws. A systematic evaluation of 29 leading LLMs on IneqMath reveals a surprising reality: even top models like o1 achieve less than 10% overall accuracy under step-wise scrutiny; this is a drop of up to 65.5% from their accuracy considering only final answer equivalence. This discrepancy exposes fragile deductive chains and a critical gap for current LLMs between merely finding an answer and constructing a rigorous proof. Scaling model size and increasing test-time computation yield limited gains in overall proof correctness. Instead, our findings highlight promising research directions such as theorem-guided reasoning and self-refinement. Code and data are available at https://ineqmath.github.io/.
comment: 50 pages, 24 figures, accepted as a Spotlight at NeurIPS 2025
♻ ☆ GRADE: Generating multi-hop QA and fine-gRAined Difficulty matrix for RAG Evaluation EMNLP 2025
Retrieval-Augmented Generation (RAG) systems are widely adopted in knowledge-intensive NLP tasks, but current evaluations often overlook the structural complexity and multi-step reasoning required in real-world scenarios. These benchmarks overlook key factors such as the interaction between retrieval difficulty and reasoning depth. To address this gap, we propose GRADE, a novel evaluation framework that models task difficulty along two orthogonal dimensions: (1) reasoning depth, defined by the number of inference steps (hops), and (2) semantic distance between the query and its supporting evidence. We construct a synthetic multi-hop QA dataset from factual news articles by extracting knowledge graphs and augmenting them through semantic clustering to recover missing links, allowing us to generate diverse and difficulty-controlled queries. Central to our framework is a 2D difficulty matrix that combines generator-side and retriever-side difficulty. Experiments across multiple domains and models show that error rates strongly correlate with our difficulty measures, validating their diagnostic utility. GRADE enables fine-grained analysis of RAG performance and provides a scalable foundation for evaluating and improving multi-hop reasoning in real-world applications.
comment: Accepted at EMNLP 2025 findings
♻ ☆ Inverse Scaling in Test-Time Compute
We construct evaluation tasks where extending the reasoning length of Large Reasoning Models (LRMs) deteriorates performance, exhibiting an inverse scaling relationship between test-time compute and accuracy. Our evaluation tasks span four categories: simple counting tasks with distractors, regression tasks with spurious features, deduction tasks with constraint tracking, and advanced AI risks. We identify five distinct failure modes when models reason for longer: 1) Claude models become increasingly distracted by irrelevant information; 2) OpenAI o-series models resist distractors but overfit to problem framings; 3) models shift from reasonable priors to spurious correlations; 4) all models show difficulties in maintaining focus on complex deductive tasks; and 5) extended reasoning may amplify concerning behaviors, with Claude Sonnet 4 showing increased expressions of self-preservation. These findings suggest that while test-time compute scaling remains promising for improving model capabilities, it may inadvertently reinforce problematic reasoning patterns. Our results demonstrate the importance of evaluating models across diverse reasoning lengths to identify and address these failure modes in LRMs.
comment: Published in TMLR (12/2025; Featured Certification; J2C Certification), 78 pages
♻ ☆ Pragmatic Inference for Moral Reasoning Acquisition: Generalization via Distributional Semantics
Moral reasoning has emerged as a promising research direction for Large Language Models (LLMs), yet achieving generalization remains a central challenge. From a linguistic standpoint, this difficulty arises because LLMs are adept at capturing distributional semantics, which fundamentally differs from the morals which operate at the pragmatic level. This paper investigates how LLMs can achieve generalized moral reasoning despite their reliance on distributional semantics. We propose pragmatic inference methods grounded in moral foundations theory, which leverage contextual information at each step to bridge the pragmatic gap and guide LLMs in connecting moral foundations with moral reasoning objectives. Experimental results demonstrate that our approach significantly enhances LLMs' generalization in moral reasoning, providing a foundation for future research grounded in moral foundations theory.
♻ ☆ A Systematic Evaluation of Preference Aggregation in Federated RLHF for Pluralistic Alignment of LLMs NeurIPS 2025
This paper addresses the challenge of aligning large language models (LLMs) with diverse human preferences within federated learning (FL) environments, where standard methods often fail to adequately represent diverse viewpoints. We introduce a comprehensive evaluation framework that systematically assesses the trade-off between alignment quality and fairness when using different aggregation strategies for human preferences. In our federated setting, each group locally evaluates rollouts and produces reward signals, and the server aggregates these group-level rewards without accessing any raw data. Specifically, we evaluate standard reward aggregation techniques (min, max, and average) and introduce a novel adaptive scheme that dynamically adjusts preference weights based on a group's historical alignment performance. Our experiments on question-answering (Q/A) tasks using a PPO-based RLHF pipeline demonstrate that our adaptive approach consistently achieves superior fairness while maintaining competitive alignment scores. This work offers a robust methodology for evaluating LLM behavior across diverse populations and provides a practical solution for developing truly pluralistic and fairly aligned models.
comment: This paper is accepted at the NeurIPS 2025 Workshop on Evaluating the Evolving LLM Lifecycle
Computer Vision and Pattern Recognition 100
☆ DiffusionBrowser: Interactive Diffusion Previews via Multi-Branch Decoders
Video diffusion models have revolutionized generative video synthesis, but they are imprecise, slow, and can be opaque during generation -- keeping users in the dark for a prolonged period. In this work, we propose DiffusionBrowser, a model-agnostic, lightweight decoder framework that allows users to interactively generate previews at any point (timestep or transformer block) during the denoising process. Our model can generate multi-modal preview representations that include RGB and scene intrinsics at more than 4$\times$ real-time speed (less than 1 second for a 4-second video) that convey consistent appearance and motion to the final video. With the trained decoder, we show that it is possible to interactively guide the generation at intermediate noise steps via stochasticity reinjection and modal steering, unlocking a new control capability. Moreover, we systematically probe the model using the learned decoders, revealing how scene, object, and other details are composed and assembled during the otherwise black-box denoising process.
comment: Project page: https://susunghong.github.io/DiffusionBrowser
☆ LitePT: Lighter Yet Stronger Point Transformer
Modern neural architectures for 3D point cloud processing contain both convolutional layers and attention blocks, but the best way to assemble them remains unclear. We analyse the role of different computational blocks in 3D point cloud networks and find an intuitive behaviour: convolution is adequate to extract low-level geometry at high-resolution in early layers, where attention is expensive without bringing any benefits; attention captures high-level semantics and context in low-resolution, deep layers more efficiently. Guided by this design principle, we propose a new, improved 3D point cloud backbone that employs convolutions in early stages and switches to attention for deeper layers. To avoid the loss of spatial layout information when discarding redundant convolution layers, we introduce a novel, training-free 3D positional encoding, PointROPE. The resulting LitePT model has $3.6\times$ fewer parameters, runs $2\times$ faster, and uses $2\times$ less memory than the state-of-the-art Point Transformer V3, but nonetheless matches or even outperforms it on a range of tasks and datasets. Code and models are available at: https://github.com/prs-eth/LitePT.
comment: Project page: https://litept.github.io/
☆ Towards Scalable Pre-training of Visual Tokenizers for Generation
The quality of the latent space in visual tokenizers (e.g., VAEs) is crucial for modern generative models. However, the standard reconstruction-based training paradigm produces a latent space that is biased towards low-level information, leading to a foundation flaw: better pixel-level accuracy does not lead to higher-quality generation. This implies that pouring extensive compute into visual tokenizer pre-training translates poorly to improved performance in generation. We identify this as the ``pre-training scaling problem`` and suggest a necessary shift: to be effective for generation, a latent space must concisely represent high-level semantics. We present VTP, a unified visual tokenizer pre-training framework, pioneering the joint optimization of image-text contrastive, self-supervised, and reconstruction losses. Our large-scale study reveals two principal findings: (1) understanding is a key driver of generation, and (2) much better scaling properties, where generative performance scales effectively with compute, parameters, and data allocated to the pretraining of the visual tokenizer. After large-scale pre-training, our tokenizer delivers a competitive profile (78.2 zero-shot accuracy and 0.36 rFID on ImageNet) and 4.1 times faster convergence on generation compared to advanced distillation methods. More importantly, it scales effectively: without modifying standard DiT training specs, solely investing more FLOPS in pretraining VTP achieves 65.8\% FID improvement in downstream generation, while conventional autoencoder stagnates very early at 1/10 FLOPS. Our pre-trained models are available at https://github.com/MiniMax-AI/VTP.
comment: Our pre-trained models are available at https://github.com/MiniMax-AI/VTP
☆ Recurrent Video Masked Autoencoders
We present Recurrent Video Masked-Autoencoders (RVM): a novel video representation learning approach that uses a transformer-based recurrent neural network to aggregate dense image features over time, effectively capturing the spatio-temporal structure of natural video data. RVM learns via an asymmetric masked prediction task requiring only a standard pixel reconstruction objective. This design yields a highly efficient ``generalist'' encoder: RVM achieves competitive performance with state-of-the-art video models (e.g. VideoMAE, V-JEPA) on video-level tasks like action recognition and point/object tracking, while also performing favorably against image models (e.g. DINOv2) on tasks that test geometric and dense spatial understanding. Notably, RVM achieves strong performance in the small-model regime without requiring knowledge distillation, exhibiting up to 30x greater parameter efficiency than competing video masked autoencoders. Moreover, we demonstrate that RVM's recurrent nature allows for stable feature propagation over long temporal horizons with linear computational cost, overcoming some of the limitations of standard spatio-temporal attention-based architectures. Finally, we use qualitative visualizations to highlight that RVM learns rich representations of scene semantics, structure, and motion.
☆ I-Scene: 3D Instance Models are Implicit Generalizable Spatial Learners
Generalization remains the central challenge for interactive 3D scene generation. Existing learning-based approaches ground spatial understanding in limited scene dataset, restricting generalization to new layouts. We instead reprogram a pre-trained 3D instance generator to act as a scene level learner, replacing dataset-bounded supervision with model-centric spatial supervision. This reprogramming unlocks the generator transferable spatial knowledge, enabling generalization to unseen layouts and novel object compositions. Remarkably, spatial reasoning still emerges even when the training scenes are randomly composed objects. This demonstrates that the generator's transferable scene prior provides a rich learning signal for inferring proximity, support, and symmetry from purely geometric cues. Replacing widely used canonical space, we instantiate this insight with a view-centric formulation of the scene space, yielding a fully feed-forward, generalizable scene generator that learns spatial relations directly from the instance model. Quantitative and qualitative results show that a 3D instance generator is an implicit spatial learner and reasoner, pointing toward foundation models for interactive 3D scene understanding and generation. Project page: https://luling06.github.io/I-Scene-project/
☆ LASER: Layer-wise Scale Alignment for Training-Free Streaming 4D Reconstruction
Recent feed-forward reconstruction models like VGGT and $π^3$ achieve impressive reconstruction quality but cannot process streaming videos due to quadratic memory complexity, limiting their practical deployment. While existing streaming methods address this through learned memory mechanisms or causal attention, they require extensive retraining and may not fully leverage the strong geometric priors of state-of-the-art offline models. We propose LASER, a training-free framework that converts an offline reconstruction model into a streaming system by aligning predictions across consecutive temporal windows. We observe that simple similarity transformation ($\mathrm{Sim}(3)$) alignment fails due to layer depth misalignment: monocular scale ambiguity causes relative depth scales of different scene layers to vary inconsistently between windows. To address this, we introduce layer-wise scale alignment, which segments depth predictions into discrete layers, computes per-layer scale factors, and propagates them across both adjacent windows and timestamps. Extensive experiments show that LASER achieves state-of-the-art performance on camera pose estimation and point map reconstruction %quality with offline models while operating at 14 FPS with 6 GB peak memory on a RTX A6000 GPU, enabling practical deployment for kilometer-scale streaming videos. Project website: $\href{https://neu-vi.github.io/LASER/}{\texttt{https://neu-vi.github.io/LASER/}}$
comment: 16 pages
Feedforward 3D Editing via Text-Steerable Image-to-3D
Recent progress in image-to-3D has opened up immense possibilities for design, AR/VR, and robotics. However, to use AI-generated 3D assets in real applications, a critical requirement is the capability to edit them easily. We present a feedforward method, Steer3D, to add text steerability to image-to-3D models, which enables editing of generated 3D assets with language. Our approach is inspired by ControlNet, which we adapt to image-to-3D generation to enable text steering directly in a forward pass. We build a scalable data engine for automatic data generation, and develop a two-stage training recipe based on flow-matching training and Direct Preference Optimization (DPO). Compared to competing methods, Steer3D more faithfully follows the language instruction and maintains better consistency with the original 3D asset, while being 2.4x to 28.5x faster. Steer3D demonstrates that it is possible to add a new modality (text) to steer the generation of pretrained image-to-3D generative models with 100k data. Project website: https://glab-caltech.github.io/steer3d/
comment: https://glab-caltech.github.io/steer3d/
☆ JoVA: Unified Multimodal Learning for Joint Video-Audio Generation
In this paper, we present JoVA, a unified framework for joint video-audio generation. Despite recent encouraging advances, existing methods face two critical limitations. First, most existing approaches can only generate ambient sounds and lack the capability to produce human speech synchronized with lip movements. Second, recent attempts at unified human video-audio generation typically rely on explicit fusion or modality-specific alignment modules, which introduce additional architecture design and weaken the model simplicity of the original transformers. To address these issues, JoVA employs joint self-attention across video and audio tokens within each transformer layer, enabling direct and efficient cross-modal interaction without the need for additional alignment modules. Furthermore, to enable high-quality lip-speech synchronization, we introduce a simple yet effective mouth-area loss based on facial keypoint detection, which enhances supervision on the critical mouth region during training without compromising architectural simplicity. Extensive experiments on benchmarks demonstrate that JoVA outperforms or is competitive with both unified and audio-driven state-of-the-art methods in lip-sync accuracy, speech quality, and overall video-audio generation fidelity. Our results establish JoVA as an elegant framework for high-quality multimodal generation.
comment: Project page: \url{https://visual-ai.github.io/jova}
☆ Towards Interactive Intelligence for Digital Humans
We introduce Interactive Intelligence, a novel paradigm of digital human that is capable of personality-aligned expression, adaptive interaction, and self-evolution. To realize this, we present Mio (Multimodal Interactive Omni-Avatar), an end-to-end framework composed of five specialized modules: Thinker, Talker, Face Animator, Body Animator, and Renderer. This unified architecture integrates cognitive reasoning with real-time multimodal embodiment to enable fluid, consistent interaction. Furthermore, we establish a new benchmark to rigorously evaluate the capabilities of interactive intelligence. Extensive experiments demonstrate that our framework achieves superior performance compared to state-of-the-art methods across all evaluated dimensions. Together, these contributions move digital humans beyond superficial imitation toward intelligent interaction.
☆ Directional Textual Inversion for Personalized Text-to-Image Generation
Textual Inversion (TI) is an efficient approach to text-to-image personalization but often fails on complex prompts. We trace these failures to embedding norm inflation: learned tokens drift to out-of-distribution magnitudes, degrading prompt conditioning in pre-norm Transformers. Empirically, we show semantics are primarily encoded by direction in CLIP token space, while inflated norms harm contextualization; theoretically, we analyze how large magnitudes attenuate positional information and hinder residual updates in pre-norm blocks. We propose Directional Textual Inversion (DTI), which fixes the embedding magnitude to an in-distribution scale and optimizes only direction on the unit hypersphere via Riemannian SGD. We cast direction learning as MAP with a von Mises-Fisher prior, yielding a constant-direction prior gradient that is simple and efficient to incorporate. Across personalization tasks, DTI improves text fidelity over TI and TI-variants while maintaining subject similarity. Crucially, DTI's hyperspherical parameterization enables smooth, semantically coherent interpolation between learned concepts (slerp), a capability that is absent in standard TI. Our findings suggest that direction-only optimization is a robust and scalable path for prompt-faithful personalization.
comment: Project page: https://kunheek.github.io/dti
AgentIAD: Tool-Augmented Single-Agent for Industrial Anomaly Detection
Industrial anomaly detection (IAD) is difficult due to the scarcity of normal reference samples and the subtle, localized nature of many defects. Single-pass vision-language models (VLMs) often overlook small abnormalities and lack explicit mechanisms to compare against canonical normal patterns. We propose AgentIAD, a tool-driven agentic framework that enables multi-stage visual inspection. The agent is equipped with a Perceptive Zoomer (PZ) for localized fine-grained analysis and a Comparative Retriever (CR) for querying normal exemplars when evidence is ambiguous. To teach these inspection behaviors, we construct structured perceptive and comparative trajectories from the MMAD dataset and train the model in two stages: supervised fine-tuning followed by reinforcement learning. A two-part reward design drives this process: a perception reward that supervises classification accuracy, spatial alignment, and type correctness, and a behavior reward that encourages efficient tool use. Together, these components enable the model to refine its judgment through step-wise observation, zooming, and verification. AgentIAD achieves a new state-of-the-art 97.62% classification accuracy on MMAD, surpassing prior MLLM-based approaches while producing transparent and interpretable inspection traces.
☆ Grab-3D: Detecting AI-Generated Videos from 3D Geometric Temporal Consistency
Recent advances in diffusion-based generation techniques enable AI models to produce highly realistic videos, heightening the need for reliable detection mechanisms. However, existing detection methods provide only limited exploration of the 3D geometric patterns present in generated videos. In this paper, we use vanishing points as an explicit representation of 3D geometry patterns, revealing fundamental discrepancies in geometric consistency between real and AI-generated videos. We introduce Grab-3D, a geometry-aware transformer framework for detecting AI-generated videos based on 3D geometric temporal consistency. To enable reliable evaluation, we construct an AI-generated video dataset of static scenes, allowing stable 3D geometric feature extraction. We propose a geometry-aware transformer equipped with geometric positional encoding, temporal-geometric attention, and an EMA-based geometric classifier head to explicitly inject 3D geometric awareness into temporal modeling. Experiments demonstrate that Grab-3D significantly outperforms state-of-the-art detectors, achieving robust cross-domain generalization to unseen generators.
☆ RoboTracer: Mastering Spatial Trace with Reasoning in Vision-Language Models for Robotics
Spatial tracing, as a fundamental embodied interaction ability for robots, is inherently challenging as it requires multi-step metric-grounded reasoning compounded with complex spatial referring and real-world metric measurement. However, existing methods struggle with this compositional task. To this end, we propose RoboTracer, a 3D-aware VLM that first achieves both 3D spatial referring and measuring via a universal spatial encoder and a regression-supervised decoder to enhance scale awareness during supervised fine-tuning (SFT). Moreover, RoboTracer advances multi-step metric-grounded reasoning via reinforcement fine-tuning (RFT) with metric-sensitive process rewards, supervising key intermediate perceptual cues to accurately generate spatial traces. To support SFT and RFT training, we introduce TraceSpatial, a large-scale dataset of 30M QA pairs, spanning outdoor/indoor/tabletop scenes and supporting complex reasoning processes (up to 9 steps). We further present TraceSpatial-Bench, a challenging benchmark filling the gap to evaluate spatial tracing. Experimental results show that RoboTracer surpasses baselines in spatial understanding, measuring, and referring, with an average success rate of 79.1%, and also achieves SOTA performance on TraceSpatial-Bench by a large margin, exceeding Gemini-2.5-Pro by 36% accuracy. Notably, RoboTracer can be integrated with various control policies to execute long-horizon, dynamic tasks across diverse robots (UR5, G1 humanoid) in cluttered real-world scenes.
comment: Project page: https://zhoues.github.io/RoboTracer
☆ World Models Can Leverage Human Videos for Dexterous Manipulation
Dexterous manipulation is challenging because it requires understanding how subtle hand motion influences the environment through contact with objects. We introduce DexWM, a Dexterous Manipulation World Model that predicts the next latent state of the environment conditioned on past states and dexterous actions. To overcome the scarcity of dexterous manipulation datasets, DexWM is trained on over 900 hours of human and non-dexterous robot videos. To enable fine-grained dexterity, we find that predicting visual features alone is insufficient; therefore, we introduce an auxiliary hand consistency loss that enforces accurate hand configurations. DexWM outperforms prior world models conditioned on text, navigation, and full-body actions, achieving more accurate predictions of future states. DexWM also demonstrates strong zero-shot generalization to unseen manipulation skills when deployed on a Franka Panda arm equipped with an Allegro gripper, outperforming Diffusion Policy by over 50% on average in grasping, placing, and reaching tasks.
☆ From Code to Field: Evaluating the Robustness of Convolutional Neural Networks for Disease Diagnosis in Mango Leaves
The validation and verification of artificial intelligence (AI) models through robustness assessment are essential to guarantee the reliable performance of intelligent systems facing real-world challenges, such as image corruptions including noise, blurring, and weather variations. Despite the global importance of mango (Mangifera indica L.), there is a lack of studies on the robustness of models for the diagnosis of disease in its leaves. This paper proposes a methodology to evaluate convolutional neural networks (CNNs) under adverse conditions. We adapted the MangoLeafDB dataset, generating MangoLeafDB-C with 19 types of artificial corruptions at five severity levels. We conducted a benchmark comparing five architectures: ResNet-50, ResNet-101, VGG-16, Xception, and LCNN (the latter being a lightweight architecture designed specifically for mango leaf diagnosis). The metrics include the F1 score, the corruption error (CE) and the relative mean corruption error (relative mCE). The results show that LCNN outperformed complex models in corruptions that can be present in real-world scenarios such as Defocus Blur, Motion Blur, while also achieving the lowest mCE. Modern architectures (e.g., ResNet-101) exhibited significant performance degradation in corrupted scenarios, despite their high accuracy under ideal conditions. These findings suggest that lightweight and specialized models may be more suitable for real-world applications in edge devices, where robustness and efficiency are critical. The study highlights the need to incorporate robustness assessments in the development of intelligent systems for agriculture, particularly in regions with technological limitations.
comment: This work was presented at the BRACIS 2025 conference in Fortaleza
☆ Charge: A Comprehensive Novel View Synthesis Benchmark and Dataset to Bind Them All
This paper presents a new dataset for Novel View Synthesis, generated from a high-quality, animated film with stunning realism and intricate detail. Our dataset captures a variety of dynamic scenes, complete with detailed textures, lighting, and motion, making it ideal for training and evaluating cutting-edge 4D scene reconstruction and novel view generation models. In addition to high-fidelity RGB images, we provide multiple complementary modalities, including depth, surface normals, object segmentation and optical flow, enabling a deeper understanding of scene geometry and motion. The dataset is organised into three distinct benchmarking scenarios: a dense multi-view camera setup, a sparse camera arrangement, and monocular video sequences, enabling a wide range of experimentation and comparison across varying levels of data sparsity. With its combination of visual richness, high-quality annotations, and diverse experimental setups, this dataset offers a unique resource for pushing the boundaries of view synthesis and 3D vision.
comment: Project page: https://charge-benchmark.github.io/
☆ MindDrive: A Vision-Language-Action Model for Autonomous Driving via Online Reinforcement Learning
Current Vision-Language-Action (VLA) paradigms in autonomous driving primarily rely on Imitation Learning (IL), which introduces inherent challenges such as distribution shift and causal confusion. Online Reinforcement Learning offers a promising pathway to address these issues through trial-and-error learning. However, applying online reinforcement learning to VLA models in autonomous driving is hindered by inefficient exploration in continuous action spaces. To overcome this limitation, we propose MindDrive, a VLA framework comprising a large language model (LLM) with two distinct sets of LoRA parameters. The one LLM serves as a Decision Expert for scenario reasoning and driving decision-making, while the other acts as an Action Expert that dynamically maps linguistic decisions into feasible trajectories. By feeding trajectory-level rewards back into the reasoning space, MindDrive enables trial-and-error learning over a finite set of discrete linguistic driving decisions, instead of operating directly in a continuous action space. This approach effectively balances optimal decision-making in complex scenarios, human-like driving behavior, and efficient exploration in online reinforcement learning. MindDrive achieves strong closed-loop performance on the challenging Bench2Drive benchmark, with a Driving Score (DS) of 78.04 and a Success Rate (SR) of 55.09%. To the best of our knowledge, this is the first work to demonstrate the effectiveness of online reinforcement learning for the VLA model in autonomous driving.
comment: 16 pages, 12 figures, 6 tables; Project Page: https://xiaomi-mlab.github.io/MindDrive/
☆ SCR2-ST: Combine Single Cell with Spatial Transcriptomics for Efficient Active Sampling via Reinforcement Learning
Spatial transcriptomics (ST) is an emerging technology that enables researchers to investigate the molecular relationships underlying tissue morphology. However, acquiring ST data remains prohibitively expensive, and traditional fixed-grid sampling strategies lead to redundant measurements of morphologically similar or biologically uninformative regions, thus resulting in scarce data that constrain current methods. The well-established single-cell sequencing field, however, could provide rich biological data as an effective auxiliary source to mitigate this limitation. To bridge these gaps, we introduce SCR2-ST, a unified framework that leverages single-cell prior knowledge to guide efficient data acquisition and accurate expression prediction. SCR2-ST integrates a single-cell guided reinforcement learning-based (SCRL) active sampling and a hybrid regression-retrieval prediction network SCR2Net. SCRL combines single-cell foundation model embeddings with spatial density information to construct biologically grounded reward signals, enabling selective acquisition of informative tissue regions under constrained sequencing budgets. SCR2Net then leverages the actively sampled data through a hybrid architecture combining regression-based modeling with retrieval-augmented inference, where a majority cell-type filtering mechanism suppresses noisy matches and retrieved expression profiles serve as soft labels for auxiliary supervision. We evaluated SCR2-ST on three public ST datasets, demonstrating SOTA performance in both sampling efficiency and prediction accuracy, particularly under low-budget scenarios. Code is publicly available at: https://github.com/hrlblab/SCR2ST
☆ Do-Undo: Generating and Reversing Physical Actions in Vision-Language Models
We introduce the Do-Undo task and benchmark to address a critical gap in vision-language models: understanding and generating physically plausible scene transformations driven by real-world actions. Unlike prior work focused on object-level edits, Do-Undo requires models to simulate the outcome of a physical action and then accurately reverse it, reflecting true cause-and-effect in the visual world. We curate a large-scale dataset of reversible actions from real-world videos and design a training strategy enforcing consistency for robust action grounding. Our experiments reveal that current models struggle with physical reversibility, underscoring the importance of this task for embodied AI, robotics, and physics-aware generative modeling. Do-Undo establishes an intuitive testbed for evaluating and advancing physical reasoning in multimodal systems.
☆ DBT-DINO: Towards Foundation model based analysis of Digital Breast Tomosynthesis
Foundation models have shown promise in medical imaging but remain underexplored for three-dimensional imaging modalities. No foundation model currently exists for Digital Breast Tomosynthesis (DBT), despite its use for breast cancer screening. To develop and evaluate a foundation model for DBT (DBT-DINO) across multiple clinical tasks and assess the impact of domain-specific pre-training. Self-supervised pre-training was performed using the DINOv2 methodology on over 25 million 2D slices from 487,975 DBT volumes from 27,990 patients. Three downstream tasks were evaluated: (1) breast density classification using 5,000 screening exams; (2) 5-year risk of developing breast cancer using 106,417 screening exams; and (3) lesion detection using 393 annotated volumes. For breast density classification, DBT-DINO achieved an accuracy of 0.79 (95\% CI: 0.76--0.81), outperforming both the MetaAI DINOv2 baseline (0.73, 95\% CI: 0.70--0.76, p<.001) and DenseNet-121 (0.74, 95\% CI: 0.71--0.76, p<.001). For 5-year breast cancer risk prediction, DBT-DINO achieved an AUROC of 0.78 (95\% CI: 0.76--0.80) compared to DINOv2's 0.76 (95\% CI: 0.74--0.78, p=.57). For lesion detection, DINOv2 achieved a higher average sensitivity of 0.67 (95\% CI: 0.60--0.74) compared to DBT-DINO with 0.62 (95\% CI: 0.53--0.71, p=.60). DBT-DINO demonstrated better performance on cancerous lesions specifically with a detection rate of 78.8\% compared to Dinov2's 77.3\%. Using a dataset of unprecedented size, we developed DBT-DINO, the first foundation model for DBT. DBT-DINO demonstrated strong performance on breast density classification and cancer risk prediction. However, domain-specific pre-training showed variable benefits on the detection task, with ImageNet baseline outperforming DBT-DINO on general lesion detection, indicating that localized detection tasks require further methodological development.
☆ LongVie 2: Multimodal Controllable Ultra-Long Video World Model
Building video world models upon pretrained video generation systems represents an important yet challenging step toward general spatiotemporal intelligence. A world model should possess three essential properties: controllability, long-term visual quality, and temporal consistency. To this end, we take a progressive approach-first enhancing controllability and then extending toward long-term, high-quality generation. We present LongVie 2, an end-to-end autoregressive framework trained in three stages: (1) Multi-modal guidance, which integrates dense and sparse control signals to provide implicit world-level supervision and improve controllability; (2) Degradation-aware training on the input frame, bridging the gap between training and long-term inference to maintain high visual quality; and (3) History-context guidance, which aligns contextual information across adjacent clips to ensure temporal consistency. We further introduce LongVGenBench, a comprehensive benchmark comprising 100 high-resolution one-minute videos covering diverse real-world and synthetic environments. Extensive experiments demonstrate that LongVie 2 achieves state-of-the-art performance in long-range controllability, temporal coherence, and visual fidelity, and supports continuous video generation lasting up to five minutes, marking a significant step toward unified video world modeling.
comment: Project Page: https://vchitect.github.io/LongVie2-project/
☆ DA-SSL: self-supervised domain adaptor to leverage foundational models in turbt histopathology slides
Recent deep learning frameworks in histopathology, particularly multiple instance learning (MIL) combined with pathology foundational models (PFMs), have shown strong performance. However, PFMs exhibit limitations on certain cancer or specimen types due to domain shifts - these cancer types were rarely used for pretraining or specimens contain tissue-based artifacts rarely seen within the pretraining population. Such is the case for transurethral resection of bladder tumor (TURBT), which are essential for diagnosing muscle-invasive bladder cancer (MIBC), but contain fragmented tissue chips and electrocautery artifacts and were not widely used in publicly available PFMs. To address this, we propose a simple yet effective domain-adaptive self-supervised adaptor (DA-SSL) that realigns pretrained PFM features to the TURBT domain without fine-tuning the foundational model itself. We pilot this framework for predicting treatment response in TURBT, where histomorphological features are currently underutilized and identifying patients who will benefit from neoadjuvant chemotherapy (NAC) is challenging. In our multi-center study, DA-SSL achieved an AUC of 0.77+/-0.04 in five-fold cross-validation and an external test accuracy of 0.84, sensitivity of 0.71, and specificity of 0.91 using majority voting. Our results demonstrate that lightweight domain adaptation with self-supervision can effectively enhance PFM-based MIL pipelines for clinically challenging histopathology tasks. Code is Available at https://github.com/zhanghaoyue/DA_SSL_TURBT.
☆ Lighting in Motion: Spatiotemporal HDR Lighting Estimation
We present Lighting in Motion (LiMo), a diffusion-based approach to spatiotemporal lighting estimation. LiMo targets both realistic high-frequency detail prediction and accurate illuminance estimation. To account for both, we propose generating a set of mirrored and diffuse spheres at different exposures, based on their 3D positions in the input. Making use of diffusion priors, we fine-tune powerful existing diffusion models on a large-scale customized dataset of indoor and outdoor scenes, paired with spatiotemporal light probes. For accurate spatial conditioning, we demonstrate that depth alone is insufficient and we introduce a new geometric condition to provide the relative position of the scene to the target 3D position. Finally, we combine diffuse and mirror predictions at different exposures into a single HDRI map leveraging differentiable rendering. We thoroughly evaluate our method and design choices to establish LiMo as state-of-the-art for both spatial control and prediction accuracy.
☆ Image Diffusion Preview with Consistency Solver
The slow inference process of image diffusion models significantly degrades interactive user experiences. To address this, we introduce Diffusion Preview, a novel paradigm employing rapid, low-step sampling to generate preliminary outputs for user evaluation, deferring full-step refinement until the preview is deemed satisfactory. Existing acceleration methods, including training-free solvers and post-training distillation, struggle to deliver high-quality previews or ensure consistency between previews and final outputs. We propose ConsistencySolver derived from general linear multistep methods, a lightweight, trainable high-order solver optimized via Reinforcement Learning, that enhances preview quality and consistency. Experimental results demonstrate that ConsistencySolver significantly improves generation quality and consistency in low-step scenarios, making it ideal for efficient preview-and-refine workflows. Notably, it achieves FID scores on-par with Multistep DPM-Solver using 47% fewer steps, while outperforming distillation baselines. Furthermore, user studies indicate our approach reduces overall user interaction time by nearly 50% while maintaining generation quality. Code is available at https://github.com/G-U-N/consolver.
☆ MMhops-R1: Multimodal Multi-hop Reasoning AAAI 2026
The ability to perform multi-modal multi-hop reasoning by iteratively integrating information across various modalities and external knowledge is critical for addressing complex real-world challenges. However, existing Multi-modal Large Language Models (MLLMs) are predominantly limited to single-step reasoning, as existing benchmarks lack the complexity needed to evaluate and drive multi-hop abilities. To bridge this gap, we introduce MMhops, a novel, large-scale benchmark designed to systematically evaluate and foster multi-modal multi-hop reasoning. MMhops dataset comprises two challenging task formats, Bridging and Comparison, which necessitate that models dynamically construct complex reasoning chains by integrating external knowledge. To tackle the challenges posed by MMhops, we propose MMhops-R1, a novel multi-modal Retrieval-Augmented Generation (mRAG) framework for dynamic reasoning. Our framework utilizes reinforcement learning to optimize the model for autonomously planning reasoning paths, formulating targeted queries, and synthesizing multi-level information. Comprehensive experiments demonstrate that MMhops-R1 significantly outperforms strong baselines on MMhops, highlighting that dynamic planning and multi-modal knowledge integration are crucial for complex reasoning. Moreover, MMhops-R1 demonstrates strong generalization to tasks requiring fixed-hop reasoning, underscoring the robustness of our dynamic planning approach. In conclusion, our work contributes a challenging new benchmark and a powerful baseline model, and we will release the associated code, data, and weights to catalyze future research in this critical area.
comment: Acceped by AAAI 2026
☆ 3D Human-Human Interaction Anomaly Detection
Human-centric anomaly detection (AD) has been primarily studied to specify anomalous behaviors in a single person. However, as humans by nature tend to act in a collaborative manner, behavioral anomalies can also arise from human-human interactions. Detecting such anomalies using existing single-person AD models is prone to low accuracy, as these approaches are typically not designed to capture the complex and asymmetric dynamics of interactions. In this paper, we introduce a novel task, Human-Human Interaction Anomaly Detection (H2IAD), which aims to identify anomalous interactive behaviors within collaborative 3D human actions. To address H2IAD, we then propose Interaction Anomaly Detection Network (IADNet), which is formalized with a Temporal Attention Sharing Module (TASM). Specifically, in designing TASM, we share the encoded motion embeddings across both people such that collaborative motion correlations can be effectively synchronized. Moreover, we notice that in addition to temporal dynamics, human interactions are also characterized by spatial configurations between two people. We thus introduce a Distance-Based Relational Encoding Module (DREM) to better reflect social cues in H2IAD. The normalizing flow is eventually employed for anomaly scoring. Extensive experiments on human-human motion benchmarks demonstrate that IADNet outperforms existing Human-centric AD baselines in H2IAD.
☆ Pancakes: Consistent Multi-Protocol Image Segmentation Across Biomedical Domains NeurIPS 2025
A single biomedical image can be meaningfully segmented in multiple ways, depending on the desired application. For instance, a brain MRI can be segmented according to tissue types, vascular territories, broad anatomical regions, fine-grained anatomy, or pathology, etc. Existing automatic segmentation models typically either (1) support only a single protocol, the one they were trained on, or (2) require labor-intensive manual prompting to specify the desired segmentation. We introduce Pancakes, a framework that, given a new image from a previously unseen domain, automatically generates multi-label segmentation maps for multiple plausible protocols, while maintaining semantic consistency across related images. Pancakes introduces a new problem formulation that is not currently attainable by existing foundation models. In a series of experiments on seven held-out datasets, we demonstrate that our model can significantly outperform existing foundation models in producing several plausible whole-image segmentations, that are semantically coherent across images.
comment: Accepted at NeurIPS 2025. Code available at: https://github.com/mariannerakic/Pancakes
☆ TARA: Simple and Efficient Time Aware Retrieval Adaptation of MLLMs for Video Understanding
Our objective is to build a general time-aware video-text embedding model for retrieval. To that end, we propose a simple and efficient recipe, dubbed TARA (Time Aware Retrieval Adaptation), to adapt Multimodal LLMs (MLLMs) to a time-aware video-text embedding model without using any video data at all. For evaluating time-awareness in retrieval, we propose a new benchmark with temporally opposite (chiral) actions as hard negatives and curated splits for chiral and non-chiral actions. We show that TARA outperforms all existing video-text models on this chiral benchmark while also achieving strong results on standard benchmarks. Furthermore, we discover additional benefits of TARA beyond time-awareness: (i) TARA embeddings are negation-aware as shown in NegBench benchmark that evaluates negation in video retrieval, (ii) TARA achieves state of the art performance on verb and adverb understanding in videos. Overall, TARA yields a strong, versatile, time-aware video-text embedding model with state of the art zero-shot performance.
comment: 18 Pages. Project page at http://bpiyush.github.io/tara-website
☆ Seedance 1.5 pro: A Native Audio-Visual Joint Generation Foundation Model
Recent strides in video generation have paved the way for unified audio-visual generation. In this work, we present Seedance 1.5 pro, a foundational model engineered specifically for native, joint audio-video generation. Leveraging a dual-branch Diffusion Transformer architecture, the model integrates a cross-modal joint module with a specialized multi-stage data pipeline, achieving exceptional audio-visual synchronization and superior generation quality. To ensure practical utility, we implement meticulous post-training optimizations, including Supervised Fine-Tuning (SFT) on high-quality datasets and Reinforcement Learning from Human Feedback (RLHF) with multi-dimensional reward models. Furthermore, we introduce an acceleration framework that boosts inference speed by over 10X. Seedance 1.5 pro distinguishes itself through precise multilingual and dialect lip-syncing, dynamic cinematic camera control, and enhanced narrative coherence, positioning it as a robust engine for professional-grade content creation. Seedance 1.5 pro is now accessible on Volcano Engine at https://console.volcengine.com/ark/region:ark+cn-beijing/experience/vision?type=GenVideo.
comment: Seedance 1.5 pro Technical Report
☆ On-Device Continual Learning for Unsupervised Visual Anomaly Detection in Dynamic Manufacturing
In modern manufacturing, Visual Anomaly Detection (VAD) is essential for automated inspection and consistent product quality. Yet, increasingly dynamic and flexible production environments introduce key challenges: First, frequent product changes in small-batch and on-demand manufacturing require rapid model updates. Second, legacy edge hardware lacks the resources to train and run large AI models. Finally, both anomalous and normal training data are often scarce, particularly for newly introduced product variations. We investigate on-device continual learning for unsupervised VAD with localization, extending the PatchCore to incorporate online learning for real-world industrial scenarios. The proposed method leverages a lightweight feature extractor and an incremental coreset update mechanism based on k-center selection, enabling rapid, memory-efficient adaptation from limited data while eliminating costly cloud retraining. Evaluations on an industrial use case are conducted using a testbed designed to emulate flexible production with frequent variant changes in a controlled environment. Our method achieves a 12% AUROC improvement over the baseline, an 80% reduction in memory usage, and faster training compared to batch retraining. These results confirm that our method delivers accurate, resource-efficient, and adaptive VAD suitable for dynamic and smart manufacturing.
comment: Accepted by European Conference on EDGE AI Technologies and Applications (EEAI) 2025
☆ Soul: Breathe Life into Digital Human for High-fidelity Long-term Multimodal Animation
We propose a multimodal-driven framework for high-fidelity long-term digital human animation termed $\textbf{Soul}$, which generates semantically coherent videos from a single-frame portrait image, text prompts, and audio, achieving precise lip synchronization, vivid facial expressions, and robust identity preservation. We construct Soul-1M, containing 1 million finely annotated samples with a precise automated annotation pipeline (covering portrait, upper-body, full-body, and multi-person scenes) to mitigate data scarcity, and we carefully curate Soul-Bench for comprehensive and fair evaluation of audio-/text-guided animation methods. The model is built on the Wan2.2-5B backbone, integrating audio-injection layers and multiple training strategies together with threshold-aware codebook replacement to ensure long-term generation consistency. Meanwhile, step/CFG distillation and a lightweight VAE are used to optimize inference efficiency, achieving an 11.4$\times$ speedup with negligible quality loss. Extensive experiments show that Soul significantly outperforms current leading open-source and commercial models on video quality, video-text alignment, identity preservation, and lip-synchronization accuracy, demonstrating broad applicability in real-world scenarios such as virtual anchors and film production. Project page at https://zhangzjn.github.io/projects/Soul/
comment: Project page: https://zhangzjn.github.io/projects/Soul/
☆ Transform Trained Transformer: Accelerating Naive 4K Video Generation Over 10$\times$
Native 4K (2160$\times$3840) video generation remains a critical challenge due to the quadratic computational explosion of full-attention as spatiotemporal resolution increases, making it difficult for models to strike a balance between efficiency and quality. This paper proposes a novel Transformer retrofit strategy termed $\textbf{T3}$ ($\textbf{T}$ransform $\textbf{T}$rained $\textbf{T}$ransformer) that, without altering the core architecture of full-attention pretrained models, significantly reduces compute requirements by optimizing their forward logic. Specifically, $\textbf{T3-Video}$ introduces a multi-scale weight-sharing window attention mechanism and, via hierarchical blocking together with an axis-preserving full-attention design, can effect an "attention pattern" transformation of a pretrained model using only modest compute and data. Results on 4K-VBench show that $\textbf{T3-Video}$ substantially outperforms existing approaches: while delivering performance improvements (+4.29$\uparrow$ VQA and +0.08$\uparrow$ VTC), it accelerates native 4K video generation by more than 10$\times$. Project page at https://zhangzjn.github.io/projects/T3-Video
comment: Project page: https://zhangzjn.github.io/projects/T3-Video
☆ PoseAnything: Universal Pose-guided Video Generation with Part-aware Temporal Coherence
Pose-guided video generation refers to controlling the motion of subjects in generated video through a sequence of poses. It enables precise control over subject motion and has important applications in animation. However, current pose-guided video generation methods are limited to accepting only human poses as input, thus generalizing poorly to pose of other subjects. To address this issue, we propose PoseAnything, the first universal pose-guided video generation framework capable of handling both human and non-human characters, supporting arbitrary skeletal inputs. To enhance consistency preservation during motion, we introduce Part-aware Temporal Coherence Module, which divides the subject into different parts, establishes part correspondences, and computes cross-attention between corresponding parts across frames to achieve fine-grained part-level consistency. Additionally, we propose Subject and Camera Motion Decoupled CFG, a novel guidance strategy that, for the first time, enables independent camera movement control in pose-guided video generation, by separately injecting subject and camera motion control information into the positive and negative anchors of CFG. Furthermore, we present XPose, a high-quality public dataset containing 50,000 non-human pose-video pairs, along with an automated pipeline for annotation and filtering. Extensive experiments demonstrate that Pose-Anything significantly outperforms state-of-the-art methods in both effectiveness and generalization.
☆ Test-Time Modification: Inverse Domain Transformation for Robust Perception
Generative foundation models contain broad visual knowledge and can produce diverse image variations, making them particularly promising for advancing domain generalization tasks. While they can be used for training data augmentation, synthesizing comprehensive target-domain variations remains slow, expensive, and incomplete. We propose an alternative: using diffusion models at test time to map target images back to the source distribution where the downstream model was trained. This approach requires only a source domain description, preserves the task model, and eliminates large-scale synthetic data generation. We demonstrate consistent improvements across segmentation, detection, and classification tasks under challenging environmental shifts in real-to-real domain generalization scenarios with unknown target distributions. Our analysis spans multiple generative and downstream models, including an ensemble variant for enhanced robustness. The method achieves substantial relative gains: 137% on BDD100K-Night, 68% on ImageNet-R, and 62% on DarkZurich.
comment: Preprint
☆ IMILIA: interpretable multiple instance learning for inflammation prediction in IBD from H&E whole slide images
As the therapeutic target for Inflammatory Bowel Disease (IBD) shifts toward histologic remission, the accurate assessment of microscopic inflammation has become increasingly central for evaluating disease activity and response to treatment. In this work, we introduce IMILIA (Interpretable Multiple Instance Learning for Inflammation Analysis), an end-to-end framework designed for the prediction of inflammation presence in IBD digitized slides stained with hematoxylin and eosin (H&E), followed by the automated computation of markers characterizing tissue regions driving the predictions. IMILIA is composed of an inflammation prediction module, consisting of a Multiple Instance Learning (MIL) model, and an interpretability module, divided in two blocks: HistoPLUS, for cell instance detection, segmentation and classification; and EpiSeg, for epithelium segmentation. IMILIA achieves a cross-validation ROC-AUC of 0.83 on the discovery cohort, and a ROC-AUC of 0.99 and 0.84 on two external validation cohorts. The interpretability module yields biologically consistent insights: tiles with higher predicted scores show increased densities of immune cells (lymphocytes, plasmocytes, neutrophils and eosinophils), whereas lower-scored tiles predominantly contain normal epithelial cells. Notably, these patterns were consistent across all datasets. Code and models to partially replicate the results on the public IBDColEpi dataset can be found at https://github.com/owkin/imilia.
Self-Supervised Ultrasound Representation Learning for Renal Anomaly Prediction in Prenatal Imaging
Prenatal ultrasound is the cornerstone for detecting congenital anomalies of the kidneys and urinary tract, but diagnosis is limited by operator dependence and suboptimal imaging conditions. We sought to assess the performance of a self-supervised ultrasound foundation model for automated fetal renal anomaly classification using a curated dataset of 969 two-dimensional ultrasound images. A pretrained Ultrasound Self-Supervised Foundation Model with Masked Autoencoding (USF-MAE) was fine-tuned for binary and multi-class classification of normal kidneys, urinary tract dilation, and multicystic dysplastic kidney. Models were compared with a DenseNet-169 convolutional baseline using cross-validation and an independent test set. USF-MAE consistently improved upon the baseline across all evaluation metrics in both binary and multi-class settings. USF-MAE achieved an improvement of about 1.87% (AUC) and 7.8% (F1-score) on the validation set, 2.32% (AUC) and 4.33% (F1-score) on the independent holdout test set. The largest gains were observed in the multi-class setting, where the improvement in AUC was 16.28% and 46.15% in F1-score. To facilitate model interpretability, Score-CAM visualizations were adapted for a transformer architecture and show that model predictions were informed by known, clinically relevant renal structures, including the renal pelvis in urinary tract dilation and cystic regions in multicystic dysplastic kidney. These results show that ultrasound-specific self-supervised learning can generate a useful representation as a foundation for downstream diagnostic tasks. The proposed framework offers a robust, interpretable approach to support the prenatal detection of renal anomalies and demonstrates the promise of foundation models in obstetric imaging.
comment: 14 pages, 8 figures, 4 tables
☆ A Domain-Adapted Lightweight Ensemble for Resource-Efficient Few-Shot Plant Disease Classification
Accurate and timely identification of plant leaf diseases is essential for resilient and sustainable agriculture, yet most deep learning approaches rely on large annotated datasets and computationally intensive models that are unsuitable for data-scarce and resource-constrained environments. To address these challenges we present a few-shot learning approach within a lightweight yet efficient framework that combines domain-adapted MobileNetV2 and MobileNetV3 models as feature extractors, along with a feature fusion technique to generate robust feature representation. For the classification task, the fused features are passed through a Bi-LSTM classifier enhanced with attention mechanisms to capture sequential dependencies and focus on the most relevant features, thereby achieving optimal classification performance even in complex, real-world environments with noisy or cluttered backgrounds. The proposed framework was evaluated across multiple experimental setups, including both laboratory-controlled and field-captured datasets. On tomato leaf diseases from the PlantVillage dataset, it consistently improved performance across 1 to 15 shot scenarios, reaching 98.23+-0.33% at 15 shot, closely approaching the 99.98% SOTA benchmark achieved by a Transductive LSTM with attention, while remaining lightweight and mobile-friendly. Under real-world conditions using field images from the Dhan Shomadhan dataset, it maintained robust performance, reaching 69.28+-1.49% at 15-shot and demonstrating strong resilience to complex backgrounds. Notably, it also outperformed the previous SOTA accuracy of 96.0% on six diseases from PlantVillage, achieving 99.72% with only 15-shot learning. With a compact model size of approximately 40 MB and inference complexity of approximately 1.12 GFLOPs, this work establishes a scalable, mobile-ready foundation for precise plant disease diagnostics in data-scarce regions.
☆ MineTheGap: Automatic Mining of Biases in Text-to-Image Models
Text-to-Image (TTI) models generate images based on text prompts, which often leave certain aspects of the desired image ambiguous. When faced with these ambiguities, TTI models have been shown to exhibit biases in their interpretations. These biases can have societal impacts, e.g., when showing only a certain race for a stated occupation. They can also affect user experience when creating redundancy within a set of generated images instead of spanning diverse possibilities. Here, we introduce MineTheGap - a method for automatically mining prompts that cause a TTI model to generate biased outputs. Our method goes beyond merely detecting bias for a given prompt. Rather, it leverages a genetic algorithm to iteratively refine a pool of prompts, seeking for those that expose biases. This optimization process is driven by a novel bias score, which ranks biases according to their severity, as we validate on a dataset with known biases. For a given prompt, this score is obtained by comparing the distribution of generated images to the distribution of LLM-generated texts that constitute variations on the prompt. Code and examples are available on the project's webpage.
comment: Code and examples are available on the project's webpage at https://noa-cohen.github.io/MineTheGap/
☆ RecTok: Reconstruction Distillation along Rectified Flow
Visual tokenizers play a crucial role in diffusion models. The dimensionality of latent space governs both reconstruction fidelity and the semantic expressiveness of the latent feature. However, a fundamental trade-off is inherent between dimensionality and generation quality, constraining existing methods to low-dimensional latent spaces. Although recent works have leveraged vision foundation models to enrich the semantics of visual tokenizers and accelerate convergence, high-dimensional tokenizers still underperform their low-dimensional counterparts. In this work, we propose RecTok, which overcomes the limitations of high-dimensional visual tokenizers through two key innovations: flow semantic distillation and reconstruction--alignment distillation. Our key insight is to make the forward flow in flow matching semantically rich, which serves as the training space of diffusion transformers, rather than focusing on the latent space as in previous works. Specifically, our method distills the semantic information in VFMs into the forward flow trajectories in flow matching. And we further enhance the semantics by introducing a masked feature reconstruction loss. Our RecTok achieves superior image reconstruction, generation quality, and discriminative performance. It achieves state-of-the-art results on the gFID-50K under both with and without classifier-free guidance settings, while maintaining a semantically rich latent space structure. Furthermore, as the latent dimensionality increases, we observe consistent improvements. Code and model are available at https://shi-qingyu.github.io/rectok.github.io.
☆ Learning to Generate Cross-Task Unexploitable Examples
Unexploitable example generation aims to transform personal images into their unexploitable (unlearnable) versions before they are uploaded online, thereby preventing unauthorized exploitation of online personal images. Recently, this task has garnered significant research attention due to its critical relevance to personal data privacy. Yet, despite recent progress, existing methods for this task can still suffer from limited practical applicability, as they can fail to generate examples that are broadly unexploitable across different real-world computer vision tasks. To deal with this problem, in this work, we propose a novel Meta Cross-Task Unexploitable Example Generation (MCT-UEG) framework. At the core of our framework, to optimize the unexploitable example generator for effectively producing broadly unexploitable examples, we design a flat-minima-oriented meta training and testing scheme. Extensive experiments show the efficacy of our framework.
☆ USTM: Unified Spatial and Temporal Modeling for Continuous Sign Language Recognition
Continuous sign language recognition (CSLR) requires precise spatio-temporal modeling to accurately recognize sequences of gestures in videos. Existing frameworks often rely on CNN-based spatial backbones combined with temporal convolution or recurrent modules. These techniques fail in capturing fine-grained hand and facial cues and modeling long-range temporal dependencies. To address these limitations, we propose the Unified Spatio-Temporal Modeling (USTM) framework, a spatio-temporal encoder that effectively models complex patterns using a combination of a Swin Transformer backbone enhanced with lightweight temporal adapter with positional embeddings (TAPE). Our framework captures fine-grained spatial features alongside short and long-term temporal context, enabling robust sign language recognition from RGB videos without relying on multi-stream inputs or auxiliary modalities. Extensive experiments on benchmarked datasets including PHOENIX14, PHOENIX14T, and CSL-Daily demonstrate that USTM achieves state-of-the-art performance against RGB-based as well as multi-modal CSLR approaches, while maintaining competitive performance against multi-stream approaches. These results highlight the strength and efficacy of the USTM framework for CSLR. The code is available at https://github.com/gufranSabri/USTM
☆ Computer vision training dataset generation for robotic environments using Gaussian splatting
This paper introduces a novel pipeline for generating large-scale, highly realistic, and automatically labeled datasets for computer vision tasks in robotic environments. Our approach addresses the critical challenges of the domain gap between synthetic and real-world imagery and the time-consuming bottleneck of manual annotation. We leverage 3D Gaussian Splatting (3DGS) to create photorealistic representations of the operational environment and objects. These assets are then used in a game engine where physics simulations create natural arrangements. A novel, two-pass rendering technique combines the realism of splats with a shadow map generated from proxy meshes. This map is then algorithmically composited with the image to add both physically plausible shadows and subtle highlights, significantly enhancing realism. Pixel-perfect segmentation masks are generated automatically and formatted for direct use with object detection models like YOLO. Our experiments show that a hybrid training strategy, combining a small set of real images with a large volume of our synthetic data, yields the best detection and segmentation performance, confirming this as an optimal strategy for efficiently achieving robust and accurate models.
comment: Code available at: https://patrykni.github.io/UnitySplat2Data/
☆ End2Reg: Learning Task-Specific Segmentation for Markerless Registration in Spine Surgery
Purpose: Intraoperative navigation in spine surgery demands millimeter-level accuracy. Current systems based on intraoperative radiographic imaging and bone-anchored markers are invasive, radiation-intensive and workflow disruptive. Recent markerless RGB-D registration methods offer a promising alternative, but existing approaches rely on weak segmentation labels to isolate relevant anatomical structures, which can propagate errors throughout registration. Methods: We present End2Reg an end-to-end deep learning framework that jointly optimizes segmentation and registration, eliminating the need for weak segmentation labels and manual steps. The network learns segmentation masks specifically optimized for registration, guided solely by the registration objective without direct segmentation supervision. Results: The proposed framework achieves state-of-the-art performance on ex- and in-vivo benchmarks, reducing median Target Registration Error by 32% to 1.83mm and mean Root Mean Square Error by 45% to 3.95mm, respectively. An ablation study confirms that end-to-end optimization significantly improves registration accuracy. Conclusion: The presented end-to-end RGB-D registration pipeline removes dependency on weak labels and manual steps, advancing towards fully automatic, markerless intraoperative navigation. Code and interactive visualizations are available at: https://lorenzopettinari.github.io/end-2-reg/.
comment: Code and interactive visualizations: https://lorenzopettinari.github.io/end-2-reg/
☆ rNCA: Self-Repairing Segmentation Masks
Accurately predicting topologically correct masks remains a difficult task for general segmentation models, which often produce fragmented or disconnected outputs. Fixing these artifacts typically requires hand-crafted refinement rules or architectures specialized to a particular task. Here, we show that Neural Cellular Automata (NCA) can be directly re-purposed as an effective refinement mechanism, using local, iterative updates guided by image context to repair segmentation masks. By training on imperfect masks and ground truths, the automaton learns the structural properties of the target shape while relying solely on local information. When applied to coarse, globally predicted masks, the learned dynamics progressively reconnect broken regions, prune loose fragments and converge towards stable, topologically consistent results. We show how refinement NCA (rNCA) can be easily applied to repair common topological errors produced by different base segmentation models and tasks: for fragmented retinal vessels, it yields 2-3% gains in Dice/clDice and improves Betti errors, reducing $β_0$ errors by 60% and $β_1$ by 20%; for myocardium, it repairs 61.5% of broken cases in a zero-shot setting while lowering ASSD and HD by 19% and 16%, respectively. This showcases NCA as effective and broadly applicable refiners.
☆ Beyond the Visible: Disocclusion-Aware Editing via Proxy Dynamic Graphs
We address image-to-video generation with explicit user control over the final frame's disoccluded regions. Current image-to-video pipelines produce plausible motion but struggle to generate predictable, articulated motions while enforcing user-specified content in newly revealed areas. Our key idea is to separate motion specification from appearance synthesis: we introduce a lightweight, user-editable Proxy Dynamic Graph (PDG) that deterministically yet approximately drives part motion, while a frozen diffusion prior is used to synthesize plausible appearance that follows that motion. In our training-free pipeline, the user loosely annotates and reposes a PDG, from which we compute a dense motion flow to leverage diffusion as a motion-guided shader. We then let the user edit appearance in the disoccluded areas of the image, and exploit the visibility information encoded by the PDG to perform a latent-space composite that reconciles motion with user intent in these areas. This design yields controllable articulation and user control over disocclusions without fine-tuning. We demonstrate clear advantages against state-of-the-art alternatives towards images turned into short videos of articulated objects, furniture, vehicles, and deformables. Our method mixes generative control, in the form of loose pose and structure, with predictable controls, in the form of appearance specification in the final frame in the disoccluded regions, unlocking a new image-to-video workflow. Code will be released on acceptance. Project page: https://anranqi.github.io/beyondvisible.github.io/
☆ Unlocking Generalization in Polyp Segmentation with DINO Self-Attention "keys"
Automatic polyp segmentation is crucial for improving the clinical identification of colorectal cancer (CRC). While Deep Learning (DL) techniques have been extensively researched for this problem, current methods frequently struggle with generalization, particularly in data-constrained or challenging settings. Moreover, many existing polyp segmentation methods rely on complex, task-specific architectures. To address these limitations, we present a framework that leverages the intrinsic robustness of DINO self-attention "key" features for robust segmentation. Unlike traditional methods that extract tokens from the deepest layers of the Vision Transformer (ViT), our approach leverages the key features of the self-attention module with a simple convolutional decoder to predict polyp masks, resulting in enhanced performance and better generalizability. We validate our approach using a multi-center dataset under two rigorous protocols: Domain Generalization (DG) and Extreme Single Domain Generalization (ESDG). Our results, supported by a comprehensive statistical analysis, demonstrate that this pipeline achieves state-of-the-art (SOTA) performance, significantly enhancing generalization, particularly in data-scarce and challenging scenarios. While avoiding a polyp-specific architecture, we surpass well-established models like nnU-Net and UM-Net. Additionally, we provide a systematic benchmark of the DINO framework's evolution, quantifying the specific impact of architectural advancements on downstream polyp segmentation performance.
comment: 29 pages, 10 figures, 8 tables, under review at MIDL 2026
☆ Automated User Identification from Facial Thermograms with Siamese Networks
The article analyzes the use of thermal imaging technologies for biometric identification based on facial thermograms. It presents a comparative analysis of infrared spectral ranges (NIR, SWIR, MWIR, and LWIR). The paper also defines key requirements for thermal cameras used in biometric systems, including sensor resolution, thermal sensitivity, and a frame rate of at least 30 Hz. Siamese neural networks are proposed as an effective approach for automating the identification process. In experiments conducted on a proprietary dataset, the proposed method achieved an accuracy of approximately 80%. The study also examines the potential of hybrid systems that combine visible and infrared spectra to overcome the limitations of individual modalities. The results indicate that thermal imaging is a promising technology for developing reliable security systems.
comment: 5 pages, 2 figures, reported on 21st International Scientific and Practical Conference 'Electronic Means and Control Systems', dedicated to the 80th anniversary of radio engineering education beyond the Urals, Tomsk, 24 November 2025
☆ Face Identity Unlearning for Retrieval via Embedding Dispersion
Face recognition systems rely on learning highly discriminative and compact identity clusters to enable accurate retrieval. However, as with other surveillance-oriented technologies, such systems raise serious privacy concerns due to their potential for unauthorized identity tracking. While several works have explored machine unlearning as a means of privacy protection, their applicability to face retrieval - especially for modern embedding-based recognition models - remains largely unexplored. In this work, we study the problem of face identity unlearning for retrieval systems and present its inherent challenges. The goal is to make selected identities unretrievable by dispersing their embeddings on the hypersphere and preventing the formation of compact identity clusters that enable re-identification in the gallery. The primary challenge is to achieve this forgetting effect while preserving the discriminative structure of the embedding space and the retrieval performance of the model for the remaining identities. To address this, we evaluate several existing approximate class unlearning methods (e.g., Random Labeling, Gradient Ascent, Boundary Unlearning, and other recent approaches) in the context of face retrieval and propose a simple yet effective dispersion-based unlearning approach. Extensive experiments on standard benchmarks (VGGFace2, CelebA) demonstrate that our method achieves superior forgetting behavior while preserving retrieval utility.
comment: 12 pages, 1 figure, 5 tables, 10 equations. Preprint
☆ KlingAvatar 2.0 Technical Report
Avatar video generation models have achieved remarkable progress in recent years. However, prior work exhibits limited efficiency in generating long-duration high-resolution videos, suffering from temporal drifting, quality degradation, and weak prompt following as video length increases. To address these challenges, we propose KlingAvatar 2.0, a spatio-temporal cascade framework that performs upscaling in both spatial resolution and temporal dimension. The framework first generates low-resolution blueprint video keyframes that capture global semantics and motion, and then refines them into high-resolution, temporally coherent sub-clips using a first-last frame strategy, while retaining smooth temporal transitions in long-form videos. To enhance cross-modal instruction fusion and alignment in extended videos, we introduce a Co-Reasoning Director composed of three modality-specific large language model (LLM) experts. These experts reason about modality priorities and infer underlying user intent, converting inputs into detailed storylines through multi-turn dialogue. A Negative Director further refines negative prompts to improve instruction alignment. Building on these components, we extend the framework to support ID-specific multi-character control. Extensive experiments demonstrate that our model effectively addresses the challenges of efficient, multimodally aligned long-form high-resolution video generation, delivering enhanced visual clarity, realistic lip-teeth rendering with accurate lip synchronization, strong identity preservation, and coherent multimodal instruction following.
comment: 14 pages, 7 figures
☆ ShowTable: Unlocking Creative Table Visualization with Collaborative Reflection and Refinement
While existing generation and unified models excel at general image generation, they struggle with tasks requiring deep reasoning, planning, and precise data-to-visual mapping abilities beyond general scenarios. To push beyond the existing limitations, we introduce a new and challenging task: creative table visualization, requiring the model to generate an infographic that faithfully and aesthetically visualizes the data from a given table. To address this challenge, we propose ShowTable, a pipeline that synergizes MLLMs with diffusion models via a progressive self-correcting process. The MLLM acts as the central orchestrator for reasoning the visual plan and judging visual errors to provide refined instructions, the diffusion execute the commands from MLLM, achieving high-fidelity results. To support this task and our pipeline, we introduce three automated data construction pipelines for training different modules. Furthermore, we introduce TableVisBench, a new benchmark with 800 challenging instances across 5 evaluation dimensions, to assess performance on this task. Experiments demonstrate that our pipeline, instantiated with different models, significantly outperforms baselines, highlighting its effective multi-modal reasoning, generation, and error correction capabilities.
comment: project page: https://lntzm.github.io/showtable-page/
☆ LINA: Learning INterventions Adaptively for Physical Alignment and Generalization in Diffusion Models
Diffusion models (DMs) have achieved remarkable success in image and video generation. However, they still struggle with (1) physical alignment and (2) out-of-distribution (OOD) instruction following. We argue that these issues stem from the models' failure to learn causal directions and to disentangle causal factors for novel recombination. We introduce the Causal Scene Graph (CSG) and the Physical Alignment Probe (PAP) dataset to enable diagnostic interventions. This analysis yields three key insights. First, DMs struggle with multi-hop reasoning for elements not explicitly determined in the prompt. Second, the prompt embedding contains disentangled representations for texture and physics. Third, visual causal structure is disproportionately established during the initial, computationally limited denoising steps. Based on these findings, we introduce LINA (Learning INterventions Adaptively), a novel framework that learns to predict prompt-specific interventions, which employs (1) targeted guidance in the prompt and visual latent spaces, and (2) a reallocated, causality-aware denoising schedule. Our approach enforces both physical alignment and OOD instruction following in image and video DMs, achieving state-of-the-art performance on challenging causal generation tasks and the Winoground dataset. Our project page is at https://opencausalab.github.io/LINA.
☆ CausalCLIP: Causally-Informed Feature Disentanglement and Filtering for Generalizable Detection of Generated Images AAAI 2026
The rapid advancement of generative models has increased the demand for generated image detectors capable of generalizing across diverse and evolving generation techniques. However, existing methods, including those leveraging pre-trained vision-language models, often produce highly entangled representations, mixing task-relevant forensic cues (causal features) with spurious or irrelevant patterns (non-causal features), thus limiting generalization. To address this issue, we propose CausalCLIP, a framework that explicitly disentangles causal from non-causal features and employs targeted filtering guided by causal inference principles to retain only the most transferable and discriminative forensic cues. By modeling the generation process with a structural causal model and enforcing statistical independence through Gumbel-Softmax-based feature masking and Hilbert-Schmidt Independence Criterion (HSIC) constraints, CausalCLIP isolates stable causal features robust to distribution shifts. When tested on unseen generative models from different series, CausalCLIP demonstrates strong generalization ability, achieving improvements of 6.83% in accuracy and 4.06% in average precision over state-of-the-art methods.
comment: 9 pages Accepted to AAAI 2026
☆ Video Reality Test: Can AI-Generated ASMR Videos fool VLMs and Humans?
Recent advances in video generation have produced vivid content that are often indistinguishable from real videos, making AI-generated video detection an emerging societal challenge. Prior AIGC detection benchmarks mostly evaluate video without audio, target broad narrative domains, and focus on classification solely. Yet it remains unclear whether state-of-the-art video generation models can produce immersive, audio-paired videos that reliably deceive humans and VLMs. To this end, we introduce Video Reality Test, an ASMR-sourced video benchmark suite for testing perceptual realism under tight audio-visual coupling, featuring the following dimensions: \textbf{(i) Immersive ASMR video-audio sources.} Built on carefully curated real ASMR videos, the benchmark targets fine-grained action-object interactions with diversity across objects, actions, and backgrounds. \textbf{(ii) Peer-Review evaluation.} An adversarial creator-reviewer protocol where video generation models act as creators aiming to fool reviewers, while VLMs serve as reviewers seeking to identify fakeness. Our experimental findings show: The best creator Veo3.1-Fast even fools most VLMs: the strongest reviewer (Gemini 2.5-Pro) achieves only 56\% accuracy (random 50\%), far below that of human experts (81.25\%). Adding audio improves real-fake discrimination, yet superficial cues such as watermarks can still significantly mislead models. These findings delineate the current boundary of video generation realism and expose limitations of VLMs in perceptual fidelity and audio-visual consistency. Our code is available at https://github.com/video-reality-test/video-reality-test.
comment: Code is at https://github.com/video-reality-test/video-reality-tes}, page is at https://video-reality-test.github.io/
☆ CogniEdit: Dense Gradient Flow Optimization for Fine-Grained Image Editing
Instruction-based image editing with diffusion models has achieved impressive results, yet existing methods struggle with fine-grained instructions specifying precise attributes such as colors, positions, and quantities. While recent approaches employ Group Relative Policy Optimization (GRPO) for alignment, they optimize only at individual sampling steps, providing sparse feedback that limits trajectory-level control. We propose a unified framework CogniEdit, combining multi-modal reasoning with dense reward optimization that propagates gradients across consecutive denoising steps, enabling trajectory-level gradient flow through the sampling process. Our method comprises three components: (1) Multi-modal Large Language Models for decomposing complex instructions into actionable directives, (2) Dynamic Token Focus Relocation that adaptively emphasizes fine-grained attributes, and (3) Dense GRPO-based optimization that propagates gradients across consecutive steps for trajectory-level supervision. Extensive experiments on benchmark datasets demonstrate that our CogniEdit achieves state-of-the-art performance in balancing fine-grained instruction following with visual quality and editability preservation
☆ Post-Training and Test-Time Scaling of Generative Agent Behavior Models for Interactive Autonomous Driving
Learning interactive motion behaviors among multiple agents is a core challenge in autonomous driving. While imitation learning models generate realistic trajectories, they often inherit biases from datasets dominated by safe demonstrations, limiting robustness in safety-critical cases. Moreover, most studies rely on open-loop evaluation, overlooking compounding errors in closed-loop execution. We address these limitations with two complementary strategies. First, we propose Group Relative Behavior Optimization (GRBO), a reinforcement learning post-training method that fine-tunes pretrained behavior models via group relative advantage maximization with human regularization. Using only 10% of the training dataset, GRBO improves safety performance by over 40% while preserving behavioral realism. Second, we introduce Warm-K, a warm-started Top-K sampling strategy that balances consistency and diversity in motion selection. Our Warm-K method-based test-time scaling enhances behavioral consistency and reactivity at test time without retraining, mitigating covariate shift and reducing performance discrepancies. Demo videos are available in the supplementary material.
comment: 11 pages, 5 figures
☆ Toward Ambulatory Vision: Learning Visually-Grounded Active View Selection
Vision Language Models (VLMs) excel at visual question answering (VQA) but remain limited to snapshot vision, reasoning from static images. In contrast, embodied agents require ambulatory vision, actively moving to obtain more informative views. We introduce Visually Grounded Active View Selection (VG-AVS), a task that selects the most informative next viewpoint using only the visual information in the current image, without relying on scene memory or external knowledge. To support this task, we construct a synthetic dataset with automatically generated paired query-target views and question-answer prompts. We also propose a framework that fine-tunes pretrained VLMs through supervised fine-tuning (SFT) followed by RL-based policy optimization. Our approach achieves strong question answering performance based on viewpoint selection and generalizes robustly to unseen synthetic and real scenes. Furthermore, incorporating our learned VG-AVS framework into existing scene-exploration-based EQA systems improves downstream question-answering accuracy.
comment: Project page: https://active-view-selection.github.io/
☆ STARCaster: Spatio-Temporal AutoRegressive Video Diffusion for Identity- and View-Aware Talking Portraits
This paper presents STARCaster, an identity-aware spatio-temporal video diffusion model that addresses both speech-driven portrait animation and free-viewpoint talking portrait synthesis, given an identity embedding or reference image, within a unified framework. Existing 2D speech-to-video diffusion models depend heavily on reference guidance, leading to limited motion diversity. At the same time, 3D-aware animation typically relies on inversion through pre-trained tri-plane generators, which often leads to imperfect reconstructions and identity drift. We rethink reference- and geometry-based paradigms in two ways. First, we deviate from strict reference conditioning at pre-training by introducing softer identity constraints. Second, we address 3D awareness implicitly within the 2D video domain by leveraging the inherent multi-view nature of video data. STARCaster adopts a compositional approach progressing from ID-aware motion modeling, to audio-visual synchronization via lip reading-based supervision, and finally to novel view animation through temporal-to-spatial adaptation. To overcome the scarcity of 4D audio-visual data, we propose a decoupled learning approach in which view consistency and temporal coherence are trained independently. A self-forcing training scheme enables the model to learn from longer temporal contexts than those generated at inference, mitigating the overly static animations common in existing autoregressive approaches. Comprehensive evaluations demonstrate that STARCaster generalizes effectively across tasks and identities, consistently surpassing prior approaches in different benchmarks.
comment: Project page: https://foivospar.github.io/STARCaster/
☆ Ego-EXTRA: video-language Egocentric Dataset for EXpert-TRAinee assistance
We present Ego-EXTRA, a video-language Egocentric Dataset for EXpert-TRAinee assistance. Ego-EXTRA features 50 hours of unscripted egocentric videos of subjects performing procedural activities (the trainees) while guided by real-world experts who provide guidance and answer specific questions using natural language. Following a ``Wizard of OZ'' data collection paradigm, the expert enacts a wearable intelligent assistant, looking at the activities performed by the trainee exclusively from their egocentric point of view, answering questions when asked by the trainee, or proactively interacting with suggestions during the procedures. This unique data collection protocol enables Ego-EXTRA to capture a high-quality dialogue in which expert-level feedback is provided to the trainee. Two-way dialogues between experts and trainees are recorded, transcribed, and used to create a novel benchmark comprising more than 15k high-quality Visual Question Answer sets, which we use to evaluate Multimodal Large Language Models. The results show that Ego-EXTRA is challenging and highlight the limitations of current models when used to provide expert-level assistance to the user. The Ego-EXTRA dataset is publicly available to support the benchmark of egocentric video-language assistants: https://fpv-iplab.github.io/Ego-EXTRA/.
☆ POLAR: A Portrait OLAT Dataset and Generative Framework for Illumination-Aware Face Modeling
Face relighting aims to synthesize realistic portraits under novel illumination while preserving identity and geometry. However, progress remains constrained by the limited availability of large-scale, physically consistent illumination data. To address this, we introduce POLAR, a large-scale and physically calibrated One-Light-at-a-Time (OLAT) dataset containing over 200 subjects captured under 156 lighting directions, multiple views, and diverse expressions. Building upon POLAR, we develop a flow-based generative model POLARNet that predicts per-light OLAT responses from a single portrait, capturing fine-grained and direction-aware illumination effects while preserving facial identity. Unlike diffusion or background-conditioned methods that rely on statistical or contextual cues, our formulation models illumination as a continuous, physically interpretable transformation between lighting states, enabling scalable and controllable relighting. Together, POLAR and POLARNet form a unified illumination learning framework that links real data, generative synthesis, and physically grounded relighting, establishing a self-sustaining "chicken-and-egg" cycle for scalable and reproducible portrait illumination.
comment: 19 pages, 19 figures
☆ CoRA: A Collaborative Robust Architecture with Hybrid Fusion for Efficient Perception AAAI2026
Collaborative perception has garnered significant attention as a crucial technology to overcome the perceptual limitations of single-agent systems. Many state-of-the-art (SOTA) methods have achieved communication efficiency and high performance via intermediate fusion. However, they share a critical vulnerability: their performance degrades under adverse communication conditions due to the misalignment induced by data transmission, which severely hampers their practical deployment. To bridge this gap, we re-examine different fusion paradigms, and recover that the strengths of intermediate and late fusion are not a trade-off, but a complementary pairing. Based on this key insight, we propose CoRA, a novel collaborative robust architecture with a hybrid approach to decouple performance from robustness with low communication. It is composed of two components: a feature-level fusion branch and an object-level correction branch. Its first branch selects critical features and fuses them efficiently to ensure both performance and scalability. The second branch leverages semantic relevance to correct spatial displacements, guaranteeing resilience against pose errors. Experiments demonstrate the superiority of CoRA. Under extreme scenarios, CoRA improves upon its baseline performance by approximately 19% in AP@0.7 with more than 5x less communication volume, which makes it a promising solution for robust collaborative perception.
comment: Accepted by AAAI2026
☆ MMDrive: Interactive Scene Understanding Beyond Vision with Multi-representational Fusion
Vision-language models enable the understanding and reasoning of complex traffic scenarios through multi-source information fusion, establishing it as a core technology for autonomous driving. However, existing vision-language models are constrained by the image understanding paradigm in 2D plane, which restricts their capability to perceive 3D spatial information and perform deep semantic fusion, resulting in suboptimal performance in complex autonomous driving environments. This study proposes MMDrive, an multimodal vision-language model framework that extends traditional image understanding to a generalized 3D scene understanding framework. MMDrive incorporates three complementary modalities, including occupancy maps, LiDAR point clouds, and textual scene descriptions. To this end, it introduces two novel components for adaptive cross-modal fusion and key information extraction. Specifically, the Text-oriented Multimodal Modulator dynamically weights the contributions of each modality based on the semantic cues in the question, guiding context-aware feature integration. The Cross-Modal Abstractor employs learnable abstract tokens to generate compact, cross-modal summaries that highlight key regions and essential semantics. Comprehensive evaluations on the DriveLM and NuScenes-QA benchmarks demonstrate that MMDrive achieves significant performance gains over existing vision-language models for autonomous driving, with a BLEU-4 score of 54.56 and METEOR of 41.78 on DriveLM, and an accuracy score of 62.7% on NuScenes-QA. MMDrive effectively breaks the traditional image-only understanding barrier, enabling robust multimodal reasoning in complex driving environments and providing a new foundation for interpretable autonomous driving scene understanding.
☆ Seeing the Whole Picture: Distribution-Guided Data-Free Distillation for Semantic Segmentation
Semantic segmentation requires a holistic understanding of the physical world, as it assigns semantic labels to spatially continuous and structurally coherent objects rather than to isolated pixels. However, existing data-free knowledge distillation (DFKD) methods-primarily designed for classification-often disregard this continuity, resulting in significant performance degradation when applied directly to segmentation tasks. In this paper, we introduce DFSS, a novel data-free distillation framework tailored for semantic segmentation. Unlike prior approaches that treat pixels independently, DFSS respects the structural and contextual continuity of real-world scenes. Our key insight is to leverage Batch Normalization (BN) statistics from a teacher model to guide Approximate Distribution Sampling (ADS), enabling the selection of data that better reflects the original training distribution-without relying on potentially misleading teacher predictions. Additionally, we propose Weighted Distribution Progressive Distillation (WDPD), which dynamically prioritizes reliable samples that are more closely aligned with the original data distribution early in training and gradually incorporates more challenging cases, mirroring the natural progression of learning in human perception. Extensive experiments on standard benchmarks demonstrate that DFSS consistently outperforms existing data-free distillation methods for semantic segmentation, achieving state-of-the-art results with significantly reduced reliance on auxiliary data.
☆ A Semantically Enhanced Generative Foundation Model Improves Pathological Image Synthesis
The development of clinical-grade artificial intelligence in pathology is limited by the scarcity of diverse, high-quality annotated datasets. Generative models offer a potential solution but suffer from semantic instability and morphological hallucinations that compromise diagnostic reliability. To address this challenge, we introduce a Correlation-Regulated Alignment Framework for Tissue Synthesis (CRAFTS), the first generative foundation model for pathology-specific text-to-image synthesis. By leveraging a dual-stage training strategy on approximately 2.8 million image-caption pairs, CRAFTS incorporates a novel alignment mechanism that suppresses semantic drift to ensure biological accuracy. This model generates diverse pathological images spanning 30 cancer types, with quality rigorously validated by objective metrics and pathologist evaluations. Furthermore, CRAFTS-augmented datasets enhance the performance across various clinical tasks, including classification, cross-modal retrieval, self-supervised learning, and visual question answering. In addition, coupling CRAFTS with ControlNet enables precise control over tissue architecture from inputs such as nuclear segmentation masks and fluorescence images. By overcoming the critical barriers of data scarcity and privacy concerns, CRAFTS provides a limitless source of diverse, annotated histology data, effectively unlocking the creation of robust diagnostic tools for rare and complex cancer phenotypes.
comment: 67 pages, 9 figures, 16 tables
☆ Intrinsic Image Fusion for Multi-View 3D Material Reconstruction
We introduce Intrinsic Image Fusion, a method that reconstructs high-quality physically based materials from multi-view images. Material reconstruction is highly underconstrained and typically relies on analysis-by-synthesis, which requires expensive and noisy path tracing. To better constrain the optimization, we incorporate single-view priors into the reconstruction process. We leverage a diffusion-based material estimator that produces multiple, but often inconsistent, candidate decompositions per view. To reduce the inconsistency, we fit an explicit low-dimensional parametric function to the predictions. We then propose a robust optimization framework using soft per-view prediction selection together with confidence-based soft multi-view inlier set to fuse the most consistent predictions of the most confident views into a consistent parametric material space. Finally, we use inverse path tracing to optimize for the low-dimensional parameters. Our results outperform state-of-the-art methods in material disentanglement on both synthetic and real scenes, producing sharp and clean reconstructions suitable for high-quality relighting.
comment: Project page: https://peter-kocsis.github.io/IntrinsicImageFusion/ Video: https://www.youtube.com/watch?v=-Vs3tR1Xl7k
☆ StarryGazer: Leveraging Monocular Depth Estimation Models for Domain-Agnostic Single Depth Image Completion
The problem of depth completion involves predicting a dense depth image from a single sparse depth map and an RGB image. Unsupervised depth completion methods have been proposed for various datasets where ground truth depth data is unavailable and supervised methods cannot be applied. However, these models require auxiliary data to estimate depth values, which is far from real scenarios. Monocular depth estimation (MDE) models can produce a plausible relative depth map from a single image, but there is no work to properly combine the sparse depth map with MDE for depth completion; a simple affine transformation to the depth map will yield a high error since MDE are inaccurate at estimating depth difference between objects. We introduce StarryGazer, a domain-agnostic framework that predicts dense depth images from a single sparse depth image and an RGB image without relying on ground-truth depth by leveraging the power of large MDE models. First, we employ a pre-trained MDE model to produce relative depth images. These images are segmented and randomly rescaled to form synthetic pairs for dense pseudo-ground truth and corresponding sparse depths. A refinement network is trained with the synthetic pairs, incorporating the relative depth maps and RGB images to improve the model's accuracy and robustness. StarryGazer shows superior results over existing unsupervised methods and transformed MDE results on various datasets, demonstrating that our framework exploits the power of MDE models while appropriately fixing errors using sparse depth information.
comment: 11 pages
☆ Weight Space Correlation Analysis: Quantifying Feature Utilization in Deep Learning Models
Deep learning models in medical imaging are susceptible to shortcut learning, relying on confounding metadata (e.g., scanner model) that is often encoded in image embeddings. The crucial question is whether the model actively utilizes this encoded information for its final prediction. We introduce Weight Space Correlation Analysis, an interpretable methodology that quantifies feature utilization by measuring the alignment between the classification heads of a primary clinical task and auxiliary metadata tasks. We first validate our method by successfully detecting artificially induced shortcut learning. We then apply it to probe the feature utilization of an SA-SonoNet model trained for Spontaneous Preterm Birth (sPTB) prediction. Our analysis confirmed that while the embeddings contain substantial metadata, the sPTB classifier's weight vectors were highly correlated with clinically relevant factors (e.g., birth weight) but decoupled from clinically irrelevant acquisition factors (e.g. scanner). Our methodology provides a tool to verify model trustworthiness, demonstrating that, in the absence of induced bias, the clinical model selectively utilizes features related to the genuine clinical signal.
comment: 46 pages
☆ Towards Unified Co-Speech Gesture Generation via Hierarchical Implicit Periodicity Learning
Generating 3D-based body movements from speech shows great potential in extensive downstream applications, while it still suffers challenges in imitating realistic human movements. Predominant research efforts focus on end-to-end generation schemes to generate co-speech gestures, spanning GANs, VQ-VAE, and recent diffusion models. As an ill-posed problem, in this paper, we argue that these prevailing learning schemes fail to model crucial inter- and intra-correlations across different motion units, i.e. head, body, and hands, thus leading to unnatural movements and poor coordination. To delve into these intrinsic correlations, we propose a unified Hierarchical Implicit Periodicity (HIP) learning approach for audio-inspired 3D gesture generation. Different from predominant research, our approach models this multi-modal implicit relationship by two explicit technique insights: i) To disentangle the complicated gesture movements, we first explore the gesture motion phase manifolds with periodic autoencoders to imitate human natures from realistic distributions while incorporating non-period ones from current latent states for instance-level diversities. ii) To model the hierarchical relationship of face motions, body gestures, and hand movements, driving the animation with cascaded guidance during learning. We exhibit our proposed approach on 3D avatars and extensive experiments show our method outperforms the state-of-the-art co-speech gesture generation methods by both quantitative and qualitative evaluations. Code and models will be publicly available.
comment: IEEE Transactions on Image Processing
☆ LeafTrackNet: A Deep Learning Framework for Robust Leaf Tracking in Top-Down Plant Phenotyping
High resolution phenotyping at the level of individual leaves offers fine-grained insights into plant development and stress responses. However, the full potential of accurate leaf tracking over time remains largely unexplored due to the absence of robust tracking methods-particularly for structurally complex crops such as canola. Existing plant-specific tracking methods are typically limited to small-scale species or rely on constrained imaging conditions. In contrast, generic multi-object tracking (MOT) methods are not designed for dynamic biological scenes. Progress in the development of accurate leaf tracking models has also been hindered by a lack of large-scale datasets captured under realistic conditions. In this work, we introduce CanolaTrack, a new benchmark dataset comprising 5,704 RGB images with 31,840 annotated leaf instances spanning the early growth stages of 184 canola plants. To enable accurate leaf tracking over time, we introduce LeafTrackNet, an efficient framework that combines a YOLOv10-based leaf detector with a MobileNetV3-based embedding network. During inference, leaf identities are maintained over time through an embedding-based memory association strategy. LeafTrackNet outperforms both plant-specific trackers and state-of-the-art MOT baselines, achieving a 9% HOTA improvement on CanolaTrack. With our work we provide a new standard for leaf-level tracking under realistic conditions and we provide CanolaTrack - the largest dataset for leaf tracking in agriculture crops, which will contribute to future research in plant phenotyping. Our code and dataset are publicly available at https://github.com/shl-shawn/LeafTrackNet.
♻ ☆ Active 6D Pose Estimation for Textureless Objects using Multi-View RGB Frames
Estimating the 6D pose of textureless objects from RGB images is an important problem in robotics. Due to appearance ambiguities, rotational symmetries, and severe occlusions, single-view based 6D pose estimators are still unable to handle a wide range of objects, motivating research towards multi-view pose estimation and next-best-view prediction that addresses these limitations. In this work, we propose a comprehensive active perception framework for estimating the 6D poses of textureless objects using only RGB images. Our approach is built upon a key idea: decoupling the 6D pose estimation into a two-step sequential process can greatly improve both accuracy and efficiency. First, we estimate the 3D translation of each object, resolving scale and depth ambiguities inherent to RGB images. These estimates are then used to simplify the subsequent task of determining the 3D orientation, which we achieve through canonical scale template matching. Building on this formulation, we then introduce an active perception strategy that predicts the next best camera viewpoint to capture an RGB image, effectively reducing object pose uncertainty and enhancing pose accuracy. We evaluate our method on the public ROBI and TOD datasets, as well as on our reconstructed transparent object dataset, T-ROBI. Under the same camera viewpoints, our multi-view pose estimation significantly outperforms state-of-the-art approaches. Furthermore, by leveraging our next-best-view strategy, our approach achieves high pose accuracy with fewer viewpoints than heuristic-based policies across all evaluated datasets. The accompanying video and T-ROBI dataset will be released on our project page: https://trailab.github.io/ActiveODPE.
♻ ☆ Template-Guided Reconstruction of Pulmonary Segments with Neural Implicit Functions
High-quality 3D reconstruction of pulmonary segments plays a crucial role in segmentectomy and surgical planning for the treatment of lung cancer. Due to the resolution requirement of the target reconstruction, conventional deep learning-based methods often suffer from computational resource constraints or limited granularity. Conversely, implicit modeling is favored due to its computational efficiency and continuous representation at any resolution. We propose a neural implicit function-based method to learn a 3D surface to achieve anatomy-aware, precise pulmonary segment reconstruction, represented as a shape by deforming a learnable template. Additionally, we introduce two clinically relevant evaluation metrics to comprehensively assess the quality of the reconstruction. Furthermore, to address the lack of publicly available shape datasets for benchmarking reconstruction algorithms, we developed a shape dataset named Lung3D, which includes the 3D models of 800 labeled pulmonary segments and their corresponding airways, arteries, veins, and intersegmental veins. We demonstrate that the proposed approach outperforms existing methods, providing a new perspective for pulmonary segment reconstruction. Code and data will be available at https://github.com/HINTLab/ImPulSe.
comment: Manuscript accepted by Medical Image Analysis, 2025
♻ ☆ BlurDM: A Blur Diffusion Model for Image Deblurring NeurIPS 2025
Diffusion models show promise for dynamic scene deblurring; however, existing studies often fail to leverage the intrinsic nature of the blurring process within diffusion models, limiting their full potential. To address it, we present a Blur Diffusion Model (BlurDM), which seamlessly integrates the blur formation process into diffusion for image deblurring. Observing that motion blur stems from continuous exposure, BlurDM implicitly models the blur formation process through a dual-diffusion forward scheme, diffusing both noise and blur onto a sharp image. During the reverse generation process, we derive a dual denoising and deblurring formulation, enabling BlurDM to recover the sharp image by simultaneously denoising and deblurring, given pure Gaussian noise conditioned on the blurred image as input. Additionally, to efficiently integrate BlurDM into deblurring networks, we perform BlurDM in the latent space, forming a flexible prior generation network for deblurring. Extensive experiments demonstrate that BlurDM significantly and consistently enhances existing deblurring methods on four benchmark datasets. The project page is available at https://jin-ting-he.github.io/Blur-Diffusion-Model/.
comment: NeurIPS 2025. Project Page: https://jin-ting-he.github.io/Blur-Diffusion-Model/
♻ ☆ OUGS: Active View Selection via Object-aware Uncertainty Estimation in 3DGS
Recent advances in 3D Gaussian Splatting (3DGS) have achieved state-of-the-art results for novel view synthesis. However, efficiently capturing high-fidelity reconstructions of specific objects within complex scenes remains a significant challenge. A key limitation of existing active reconstruction methods is their reliance on scene-level uncertainty metrics, which are often biased by irrelevant background clutter and lead to inefficient view selection for object-centric tasks. We present OUGS, a novel framework that addresses this challenge with a more principled, physically-grounded uncertainty formulation for 3DGS. Our core innovation is to derive uncertainty directly from the explicit physical parameters of the 3D Gaussian primitives (e.g., position, scale, rotation). By propagating the covariance of these parameters through the rendering Jacobian, we establish a highly interpretable uncertainty model. This foundation allows us to then seamlessly integrate semantic segmentation masks to produce a targeted, object-aware uncertainty score that effectively disentangles the object from its environment. This allows for a more effective active view selection strategy that prioritizes views critical to improving object fidelity. Experimental evaluations on public datasets demonstrate that our approach significantly improves the efficiency of the 3DGS reconstruction process and achieves higher quality for targeted objects compared to existing state-of-the-art methods, while also serving as a robust uncertainty estimator for the global scene.
comment: Conditionally accepted to Eurographics 2026 (five reviewers)
♻ ☆ Explainable Quantum Machine Learning for Multispectral Images Segmentation: Case Study
The emergence of Big Data changed how we approach information systems engineering. Nowadays, when we can use remote sensing techniques for Big Data acquisition, the issues such data introduce are as important as ever. One of those concerns is the processing of the data. Classical methods often fail to address that problem or are incapable of processing the data in a reasonable time. With that in mind information system engineers are required to investigate different approaches to the data processing. The recent advancements in noisy intermediate-scale quantum (NISQ) devices implementation allow us to investigate their application to real-life computational problem. This field of study is called quantum (information) systems engineering and usually focuses on technical problems with the contemporary devices. However, hardware challenges are not the only ones that hinder our quantum computation capabilities. Software limitations are the other, less explored side of this medal. Using multispectral image segmentation as a task example, we investigated how difficult it is to run a hybrid quantum-classical model on a real, publicly available quantum device. To quantify how and explain why the performance of our model changed when ran on a real device, we propose new explainability metrics. These metrics introduce new meaning to the explainable quantum machine learning; the explanation of the performance issue comes from the quantum device behavior. We also analyzed the expected money costs of running similar experiment on contemporary quantum devices using standard market prices.
comment: 18 pages, 5 figures, 3 tables. Extended and refined version of "On the status of current quantum machine learning software"
♻ ☆ WakeupUrban: Unsupervised Semantic Segmentation of Mid-20$^{th}$ century Urban Landscapes with Satellite Imagery
Historical satellite imagery archive, such as Keyhole satellite data, offers rare insights into understanding early urban development and long-term transformation. However, severe quality degradation ($\textit{e.g.}$, distortion, misalignment, and spectral scarcity) and the absence of annotations have long hindered its analysis. To bridge this gap and enhance understanding of urban development, we introduce $\textbf{WakeupUrbanBench}$, an annotated segmentation dataset based on historical satellite imagery with the earliest observation time among all existing remote sensing (RS) datasets, along with a framework for unsupervised segmentation tasks, $\textbf{WakeupUSM}$. First, WakeupUrbanBench serves as a pioneer, expertly annotated dataset built on mid-$20^{\text{th}}$ century RS imagery, involving four key urban classes and spanning 4 cities across 2 continents with nearly 1000 km$^2$ area of diverse urban morphologies, and additionally introducing one present-day city. Second, WakeupUSM is a novel unsupervised semantic segmentation framework for historical RS imagery. It employs a confidence-aware alignment mechanism and focal-confidence loss based on a self-supervised learning architecture, which generates robust pseudo-labels and adaptively prioritizes prediction difficulty and label reliability to improve unsupervised segmentation on noisy historical data without manual supervision. Comprehensive experiments demonstrate WakeupUSM significantly outperforms existing unsupervised segmentation methods $\textbf{both WakeupUrbanBench and public dataset}$, promising to pave the way for quantitative studies of long-term urban change using modern computer vision. Our benchmark and codes will be released at https://github.com/Tianxiang-Hao/WakeupUrban.
comment: 11 pages, 4 figures, 3 tables
♻ ☆ WALINET: A water and lipid identification convolutional Neural Network for nuisance signal removal in 1H MR Spectroscopic Imaging
Purpose. Proton Magnetic Resonance Spectroscopic Imaging (1H-MRSI) provides non-invasive spectral-spatial mapping of metabolism. However, long-standing problems in whole-brain 1H-MRSI are spectral overlap of metabolite peaks with large lipid signal from scalp, and overwhelming water signal that distorts spectra. Fast and effective methods are needed for high-resolution 1H-MRSI to accurately remove lipid and water signals while preserving the metabolite signal. The potential of supervised neural networks for this task remains unexplored, despite their success for other MRSI processing. Methods. We introduce a deep-learning method based on a modified Y-NET network for water and lipid removal in whole-brain 1H-MRSI. The WALINET (WAter and LIpid neural NETwork) was compared to conventional methods such as the state-of-the-art lipid L2 regularization and Hankel-Lanczos singular value decomposition (HLSVD) water suppression. Methods were evaluated on simulated and in-vivo whole-brain MRSI using NMRSE, SNR, CRLB, and FWHM metrics. Results. WALINET is significantly faster and needs 8s for high-resolution whole-brain MRSI, compared to 42 minutes for conventional HLSVD+L2. Quantitative analysis shows WALINET has better performance than HLSVD+L2: 1) more lipid removal with 41% lower NRMSE, 2) better metabolite signal preservation with 71% lower NRMSE in simulated data, 155% higher SNR and 50% lower CRLB in in-vivo data. Metabolic maps obtained by WALINET in healthy subjects and patients show better gray/white-matter contrast with more visible structural details. Conclusions. WALINET has superior performance for nuisance signal removal and metabolite quantification on whole-brain 1H-MRSI compared to conventional state-of-the-art techniques. This represents a new application of deep-learning for MRSI processing, with potential for automated high-throughput workflow.
♻ ☆ Deep priors for satellite image restoration with accurate uncertainties
Satellite optical images, upon their on-ground receipt, offer a distorted view of the observed scene. Their restoration, including denoising, deblurring, and sometimes super-resolution, is required before their exploitation. Moreover, quantifying the uncertainties related to this restoration helps to reduce the risks of misinterpreting the image content. Deep learning methods are now state-of-the-art for satellite image restoration. Among them, direct inversion methods train a specific network for each sensor, and generally provide a point estimation of the restored image without the associated uncertainties. Alternatively, deep regularization (DR) methods learn a deep prior on target images before plugging it, as the regularization term, into a model-based optimization scheme. This allows for restoring images from several sensors with a single network and possibly for estimating associated uncertainties. In this paper, we introduce VBLE-xz, a DR method that solves the inverse problem in the latent space of a variational compressive autoencoder (CAE). We adapt the regularization strength by modulating the bitrate of the trained CAE with a training-free approach. Then, VBLE-xz estimates relevant uncertainties jointly in the latent and in the image spaces by sampling an explicit posterior estimated within variational inference. This enables fast posterior sampling, unlike state-of-the-art DR methods that use Markov chains or diffusion-based approaches. We conduct a comprehensive set of experiments on very high-resolution simulated and real Pléiades images, asserting the performance, robustness and scalability of the proposed method. They demonstrate that VBLE-xz represents a compelling alternative to direct inversion methods when uncertainty quantification is required. The code associated to this paper is available in https://github.com/MaudBqrd/VBLExz.
♻ ☆ Virtual Multiplex Staining for Histological Images using a Marker-wise Conditioned Diffusion Model AAAI 2026
Multiplex imaging is revolutionizing pathology by enabling the simultaneous visualization of multiple biomarkers within tissue samples, providing molecular-level insights that traditional hematoxylin and eosin (H&E) staining cannot provide. However, the complexity and cost of multiplex data acquisition have hindered its widespread adoption. Additionally, most existing large repositories of H&E images lack corresponding multiplex images, limiting opportunities for multimodal analysis. To address these challenges, we leverage recent advances in latent diffusion models (LDMs), which excel at modeling complex data distributions by utilizing their powerful priors for fine-tuning to a target domain. In this paper, we introduce a novel framework for virtual multiplex staining that utilizes pretrained LDM parameters to generate multiplex images from H&E images using a conditional diffusion model. Our approach enables marker-by-marker generation by conditioning the diffusion model on each marker, while sharing the same architecture across all markers. To tackle the challenge of varying pixel value distributions across different marker stains and to improve inference speed, we fine-tune the model for single-step sampling, enhancing both color contrast fidelity and inference efficiency through pixel-level loss functions. We validate our framework on two publicly available datasets, notably demonstrating its effectiveness in generating up to 18 different marker types with improved accuracy, a substantial increase over the 2-3 marker types achieved in previous approaches. This validation highlights the potential of our framework, pioneering virtual multiplex staining. Finally, this paper bridges the gap between H&E and multiplex imaging, potentially enabling retrospective studies and large-scale analyses of existing H&E image repositories.
comment: Accepted at AAAI 2026
♻ ☆ HumanSense: From Multimodal Perception to Empathetic Context-Aware Responses through Reasoning MLLMs AAAI2026
While Multimodal Large Language Models (MLLMs) show immense promise for achieving truly human-like interactions, progress is hindered by the lack of fine-grained evaluation frameworks for human-centered scenarios, encompassing both the understanding of complex human intentions and the provision of empathetic, context-aware responses. Here we introduce HumanSense, a comprehensive benchmark designed to evaluate the human-centered perception and interaction capabilities of MLLMs, with a particular focus on deep understanding of extended multimodal contexts and the formulation of rational feedback. Our evaluation reveals that leading MLLMs still have considerable room for improvement, particularly for advanced interaction-oriented tasks. Supplementing visual input with audio and text information yields substantial improvements, and Omni-modal models show advantages on these tasks.Furthermore, grounded in the observation that appropriate feedback stems from a contextual analysis of the interlocutor's needs and emotions, we posit that reasoning ability serves as the key to unlocking it. We devise a multi-stage, modality-progressive reinforcement learning approach, resulting in HumanSense-Omni-Reasoning, which substantially enhances performance on higher-level understanding and interactive tasks. Additionally, we observe that successful reasoning processes appear to exhibit consistent thought patterns. By designing corresponding prompts, we also enhance the performance of non-reasoning models in a training-free manner.Project page: \textcolor{brightpink}{https://digital-avatar.github.io/ai/HumanSense/}
comment: Accepted by AAAI2026
♻ ☆ How PARTs assemble into wholes: Learning the relative composition of images
The composition of objects and their parts, along with object-object positional relationships, provides a rich source of information for representation learning. Hence, spatial-aware pretext tasks have been actively explored in self-supervised learning. Existing works commonly start from a grid structure, where the goal of the pretext task involves predicting the absolute position index of patches within a fixed grid. However, grid-based approaches fall short of capturing the fluid and continuous nature of real-world object compositions. We introduce PART, a self-supervised learning approach that leverages continuous relative transformations between off-grid patches to overcome these limitations. By modeling how parts relate to each other in a continuous space, PART learns the relative composition of images-an off-grid structural relative positioning that is less tied to absolute appearance and can remain coherent under variations such as partial visibility or stylistic changes. In tasks requiring precise spatial understanding such as object detection and time series prediction, PART outperforms grid-based methods like MAE and DropPos, while maintaining competitive performance on global classification tasks. By breaking free from grid constraints, PART opens up a new trajectory for universal self-supervised pretraining across diverse datatypes-from images to EEG signals-with potential in medical imaging, video, and audio.
♻ ☆ QUOTA: Quantifying Objects with Text-to-Image Models for Any Domain
We tackle the problem of quantifying the number of objects by a generative text-to-image model. Rather than retraining such a model for each new image domain of interest, which leads to high computational costs and limited scalability, we are the first to consider this problem from a domain-agnostic perspective. We propose QUOTA, an optimization framework for text-to-image models that enables effective object quantification across unseen domains without retraining. It leverages a dual-loop meta-learning strategy to optimize a domain-invariant prompt. Further, by integrating prompt learning with learnable counting and domain tokens, our method captures stylistic variations and maintains accuracy, even for object classes not encountered during training. For evaluation, we adopt a new benchmark specifically designed for object quantification in domain generalization, enabling rigorous assessment of object quantification accuracy and adaptability across unseen domains in text-to-image generation. Extensive experiments demonstrate that QUOTA outperforms conventional models in both object quantification accuracy and semantic consistency, setting a new benchmark for efficient and scalable text-to-image generation for any domain.
comment: Accepted by WACV 2026
♻ ☆ CleanDIFT: Diffusion Features without Noise
Internal features from large-scale pre-trained diffusion models have recently been established as powerful semantic descriptors for a wide range of downstream tasks. Works that use these features generally need to add noise to images before passing them through the model to obtain the semantic features, as the models do not offer the most useful features when given images with little to no noise. We show that this noise has a critical impact on the usefulness of these features that cannot be remedied by ensembling with different random noises. We address this issue by introducing a lightweight, unsupervised fine-tuning method that enables diffusion backbones to provide high-quality, noise-free semantic features. We show that these features readily outperform previous diffusion features by a wide margin in a wide variety of extraction setups and downstream tasks, offering better performance than even ensemble-based methods at a fraction of the cost.
comment: for the project page and code, view https://compvis.github.io/cleandift/
♻ ☆ Accelerated Rotation-Invariant Convolution for UAV Image Segmentation
Rotation invariance is essential for precise, object-level segmentation in UAV aerial imagery, where targets can have arbitrary orientations and exhibit fine-scale details. Conventional segmentation architectures like U-Net rely on convolution operators that are not rotation-invariant, leading to degraded segmentation accuracy across varying viewpoints. Rotation invariance can be achieved by expanding the filter bank across multiple orientations; however, this will significantly increase computational cost and memory traffic. In this paper, we introduce a GPU-optimized rotation-invariant convolution framework that eliminates the traditional data-lowering (im2col) step required for matrix-multiplication-based convolution. By exploiting structured data sharing among symmetrically rotated filters, our method achieves multi-orientation convolution with greatly reduced memory traffic and computational redundancy. We further generalize the approach to accelerate convolution with arbitrary (non-symmetric) rotation angles. Across extensive benchmarks, the proposed convolution achieves 20--55% faster training and 15--45% lower energy consumption than CUDNN, while maintaining accuracy comparable to state-of-the-art rotation-invariant methods. In the eight-orientation setting, our approach achieves up to 45% speedup and 41% energy savings on 256\(\times\)256 inputs, and 32% speedup and 23% lower energy usage on 1024\(\times\)1024 inputs. Integrated into a U-Net segmentation model, the framework yields up to 6% improvement in accuracy over the non-rotation-aware baseline. These results demonstrate that the proposed method provides an effective and highly efficient alternative to existing rotation-invariant CNN frameworks.
♻ ☆ Improved Segmentation of Polyps and Visual Explainability Analysis
Colorectal cancer (CRC) remains one of the leading causes of cancer-related morbidity and mortality worldwide, with gastrointestinal (GI) polyps serving as critical precursors according to the World Health Organization (WHO). Early and accurate segmentation of polyps during colonoscopy is essential for reducing CRC progression, yet manual delineation is labor-intensive and prone to observer variability. Deep learning methods have demonstrated strong potential for automated polyp analysis, but their limited interpretability remains a barrier to clinical adoption. In this study, we present PolypSeg-GradCAM, an explainable deep learning framework that integrates a U-Net architecture with a pre-trained ResNet-34 backbone and Gradient-weighted Class Activation Mapping (Grad-CAM) for transparent polyp segmentation. To ensure rigorous benchmarking, the model was trained and evaluated using 5-Fold Cross-Validation on the Kvasir-SEG dataset of 1,000 annotated endoscopic images. Experimental results show a mean Dice coefficient of 0.8902 +/- 0.0125, a mean Intersection-over-Union (IoU) of 0.8023, and an Area Under the Receiver Operating Characteristic Curve (AUC-ROC) of 0.9722. Advanced quantitative analysis using an optimal threshold yielded a Sensitivity of 0.9058 and Precision of 0.9083. Additionally, Grad-CAM visualizations confirmed that predictions were guided by clinically relevant regions, offering insight into the model's decision-making process. This study demonstrates that integrating segmentation accuracy with interpretability can support the development of trustworthy AI-assisted colonoscopy tools.
♻ ☆ Instance-Level Composed Image Retrieval NeurIPS 2025
The progress of composed image retrieval (CIR), a popular research direction in image retrieval, where a combined visual and textual query is used, is held back by the absence of high-quality training and evaluation data. We introduce a new evaluation dataset, i-CIR, which, unlike existing datasets, focuses on an instance-level class definition. The goal is to retrieve images that contain the same particular object as the visual query, presented under a variety of modifications defined by textual queries. Its design and curation process keep the dataset compact to facilitate future research, while maintaining its challenge-comparable to retrieval among more than 40M random distractors-through a semi-automated selection of hard negatives. To overcome the challenge of obtaining clean, diverse, and suitable training data, we leverage pre-trained vision-and-language models (VLMs) in a training-free approach called BASIC. The method separately estimates query-image-to-image and query-text-to-image similarities, performing late fusion to upweight images that satisfy both queries, while down-weighting those that exhibit high similarity with only one of the two. Each individual similarity is further improved by a set of components that are simple and intuitive. BASIC sets a new state of the art on i-CIR but also on existing CIR datasets that follow a semantic-level class definition. Project page: https://vrg.fel.cvut.cz/icir/.
comment: NeurIPS 2025
♻ ☆ DEAR: Dataset for Evaluating the Aesthetics of Rendering
Traditional Image Quality Assessment~(IQA) focuses on quantifying technical degradations such as noise, blur, or compression artifacts, using both full-reference and no-reference objective metrics. However, evaluation of rendering aesthetics, a growing domain relevant to photographic editing, content creation, and AI-generated imagery, remains underexplored due to the lack of datasets that reflect the inherently subjective nature of style preference. In this work, a novel benchmark dataset designed to model human aesthetic judgments of image rendering styles is introduced: the Dataset for Evaluating the Aesthetics of Rendering (DEAR). Built upon the MIT-Adobe FiveK dataset, DEAR incorporates pairwise human preference scores collected via large-scale crowdsourcing, with each image pair evaluated by 25 distinct human evaluators with a total of 13,648 of them participating overall. These annotations capture nuanced, context-sensitive aesthetic preferences, enabling the development and evaluation of models that go beyond traditional distortion-based IQA, focusing on a new task: Evaluation of Aesthetics of Rendering (EAR). The data collection pipeline is described, human voting patterns are analyzed, and multiple use cases are outlined, including style preference prediction, aesthetic benchmarking, and personalized aesthetic modeling. To the best of the authors' knowledge, DEAR is the first dataset to systematically address image aesthetics of rendering assessment grounded in subjective human preferences. A subset of 100 images with markup for them is published on HuggingFace (huggingface.co/datasets/vsevolodpl/DEAR).
♻ ☆ YawDD+: Frame-level Annotations for Accurate Yawn Prediction
Driver fatigue remains a leading cause of road accidents, with 24% of crashes involving drowsy drivers. While yawning serves as an early behavioral indicator of fatigue, existing machine learning approaches face significant challenges due to video-annotated datasets that introduce systematic noise from coarse temporal annotations. We develop a semi-automated labeling pipeline with human-in-the-loop verification, which we apply to YawDD, enabling more accurate model training. Training the established MNasNet classifier and YOLOv11 detector architectures on YawDD+ improves frame accuracy by up to 6% and mAP by 5% over video-level supervision, achieving 99.34% classification accuracy and 95.69% detection mAP. The resulting approach deliver up to 59.8 FPS on edge AI hardware (NVIDIA Jetson Nano), confirming that enhanced data quality alone supports on-device yawning monitoring without server-side computation.
comment: This paper is submitted at European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, 2026
♻ ☆ Meta Pruning via Graph Metanetworks : A Universal Meta Learning Framework for Network Pruning
We propose an entirely new meta-learning framework for network pruning. It is a general framework that can be theoretically applied to almost all types of networks with all kinds of pruning and has great generality and transferability. Experiments have shown that it can achieve outstanding results on many popular and representative pruning tasks (including both CNNs and Transformers). Unlike all prior works that either rely on fixed, hand-crafted criteria to prune in a coarse manner, or employ learning to prune ways that require special training during each pruning and lack generality. Our framework can learn complex pruning rules automatically via a neural network (metanetwork) and has great generality that can prune without any special training. More specifically, we introduce the newly developed idea of metanetwork from meta-learning into pruning. A metanetwork is a network that takes another network as input and produces a modified network as output. In this paper, we first establish a bijective mapping between neural networks and graphs, and then employ a graph neural network as our metanetwork. We train a metanetwork that learns the pruning strategy automatically and can transform a network that is hard to prune into another network that is much easier to prune. Once the metanetwork is trained, our pruning needs nothing more than a feedforward through the metanetwork and some standard finetuning to prune at state-of-the-art. Our code is available at https://github.com/Yewei-Liu/MetaPruning
♻ ☆ IPR-1: Interactive Physical Reasoner
Humans learn by observing, interacting with environments, and internalizing physics and causality. Here, we aim to ask whether an agent can similarly acquire human-like reasoning from interaction and keep improving with more experience. To study this, we introduce a Game-to-Unseen (G2U) benchmark of 1,000+ heterogeneous games that exhibit significant visual domain gaps. Existing approaches, including VLMs and world models, struggle to capture underlying physics and causality since they are not focused on core mechanisms and overfit to visual details. VLM/VLA agents reason but lack look-ahead in interactive settings, while world models imagine but imitate visual patterns rather than analyze physics and causality. We therefore propose IPR (Interactive Physical Reasoner), using world-model rollouts to score and reinforce a VLM's policy, and introduce PhysCode, a physics-centric action code aligning semantic intent with dynamics to provide a shared action space for prediction and reasoning. Pretrained on 1,000+ games, our IPR performs robustly on levels from primitive intuition to goal-driven reasoning, and even surpasses GPT-5 overall. We find that performance improves with more training games and interaction steps, and that the model also zero-shot transfers to unseen games. These results support physics-centric interaction as a path to steadily improving physical reasoning. Further demos and project details can be found at https://mybearyzhang.github.io/ipr-1.
comment: 13 pages of main text and 19 pages of appendices. Project page: https://mybearyzhang.github.io/ipr-1
♻ ☆ Learning to Pose Problems: Reasoning-Driven and Solver-Adaptive Data Synthesis for Large Reasoning Models
Data synthesis for training large reasoning models offers a scalable alternative to limited, human-curated datasets, enabling the creation of high-quality data. However, existing approaches face several challenges: (i) indiscriminate generation that ignores the solver's ability and yields low-value problems, or reliance on complex data pipelines to balance problem difficulty; and (ii) a lack of reasoning in problem generation, leading to shallow problem variants. In this paper, we develop a problem generator that reasons explicitly to plan problem directions before synthesis and adapts difficulty to the solver's ability. Specifically, we construct related problem pairs and augment them with intermediate problem-design CoT produced by a reasoning model. These data bootstrap problem-design strategies from the generator. Then, we treat the solver's feedback on synthetic problems as a reward signal, enabling the generator to calibrate difficulty and produce complementary problems near the edge of the solver's competence. Extensive experiments on 10 mathematical and general reasoning benchmarks show that our method achieves an average improvement of 2.5% and generalizes to both language and vision-language models. Moreover, a solver trained on the synthesized data provides improved rewards for continued generator training, enabling co-evolution and yielding a further 0.7% performance gain. Our code will be made publicly available here.
♻ ☆ PD-Diag-Net: Clinical-Priors guided Network on Brain MRI for Auxiliary Diagnosis of Parkinson's Disease
Parkinson's disease (PD) is a common neurodegenerative disorder that severely diminishes patients' quality of life. Its global prevalence has increased markedly in recent decades. Current diagnostic workflows are complex and heavily reliant on neurologists' expertise, often resulting in delays in early detection and missed opportunities for timely intervention. To address these issues, we propose an end-to-end automated diagnostic method for PD, termed PD-Diag-Net, which performs risk assessment and auxiliary diagnosis directly from raw MRI scans. This framework first introduces an MRI Pre-processing Module (MRI-Processor) to mitigate inter-subject and inter-scanner variability by flexibly integrating established medical imaging preprocessing tools. It then incorporates two forms of clinical prior knowledge: (1) Brain-Region-Relevance-Prior (Relevance-Prior), which specifies brain regions strongly associated with PD; and (2) Brain-Region-Aging-Prior (Aging-Prior), which reflects the accelerated aging typically observed in PD-associated regions. Building on these priors, we design two dedicated modules: the Relevance-Prior Guided Feature Aggregation Module (Aggregator), which guides the model to focus on PD-associated regions at the inter-subject level, and the Age-Prior Guided Diagnosis Module (Diagnoser), which leverages brain age gaps as auxiliary constraints at the intra-subject level to enhance diagnostic accuracy and clinical interpretability. Furthermore, we collected external test data from our collaborating hospital. Experimental results show that PD-Diag-Net achieves 86\% accuracy on external tests and over 96% accuracy in early-stage diagnosis, outperforming existing advanced methods by more than 20%.
♻ ☆ Semantic-Anchored, Class Variance-Optimized Clustering for Robust Semi-Supervised Few-Shot Learning
Few-shot learning has been extensively explored to address problems where the amount of labeled samples is very limited for some classes. In the semi-supervised few-shot learning setting, substantial quantities of unlabeled samples are available. Such unlabeled samples are generally cheaper to obtain and can be used to improve the few-shot learning performance of the model. Some of the recent methods for this setting rely on clustering to generate pseudo-labels for the unlabeled samples. Since the effectiveness of clustering heavily influences the labeling of the unlabeled samples, it can significantly affect the few-shot learning performance. In this paper, we focus on improving the representation learned by the model in order to improve the clustering and, consequently, the model performance. We propose an approach for semi-supervised few-shot learning that performs a class-variance optimized clustering coupled with a cluster separation tuner in order to improve the effectiveness of clustering the labeled and unlabeled samples in this setting. It also optimizes the clustering-based pseudo-labeling process using a restricted pseudo-labeling approach and performs semantic information injection in order to improve the semi-supervised few-shot learning performance of the model. We experimentally demonstrate that our proposed approach significantly outperforms recent state-of-the-art methods on the benchmark datasets. To further establish its robustness, we conduct extensive experiments under challenging conditions, showing that the model generalizes well to domain shifts and achieves new state-of-the-art performance in open-set settings with distractor classes, highlighting its effectiveness for real-world applications.
♻ ☆ EMMA: Efficient Multimodal Understanding, Generation, and Editing with a Unified Architecture
We propose EMMA, an efficient and unified architecture for multimodal understanding, generation and editing. Specifically, EMMA primarily consists of 1) An efficient autoencoder with a 32x compression ratio, which significantly reduces the number of tokens required for generation. This also ensures the training balance between understanding and generation tasks by applying the same compression ratio to images. 2) Channel-wise concatenation instead of token-wise concatenation among visual understanding and generation tokens, which further reduces the visual tokens in unified architectures. 3) A shared-and-decoupled network that enables mutual improvements across tasks while meeting the task-specific modeling requirements. 4) A mixture-of-experts mechanism adopted for visual understanding encoder, which substantially improves perceptual capabilities with a few parameters increase. Extensive experiments have shown that EMMA-4B can significantly outperform state-of-the-art unified multimodal approaches (e.g., BAGEL-7B) in both efficiency and performance, while also achieving competitive results compared to recent multimodal understanding and generation experts (e.g., Qwen3-VL and Qwen-Image). We believe that EMMA lays a solid foundation for the future development of unified multimodal architectures.
comment: Project Page: https://emma-umm.github.io/emma/
♻ ☆ Relational Anatomical Supervision for Accurate 3D Multi-Chamber Cardiac Mesh Reconstruction
Accurate reconstruction of multi-chamber cardiac anatomy from medical images is a cornerstone for patient-specific modeling, physiological simulation, and interventional planning. However, current reconstruction pipelines fundamentally rely on surface-wise geometric supervision and model each chamber in isolation, resulting in anatomically implausible inter-chamber violations despite apparently favorable overlap or distance metrics. In this work, we propose a relational anatomical supervision framework for multi-chamber cardiac mesh reconstruction by introducing a Mesh Interrelation Enhancement (MIE) loss. The proposed formulation explicitly encodes spatial relationships between cardiac structures into a differentiable occupancy-based objective, thereby transforming qualitative anatomical rules into quantitative geometric supervision. We further establish violation-aware evaluation metrics to directly quantify inter-chamber structural correctness, revealing systematic limitations of commonly used geometric measures such as Dice and Chamfer distance. Extensive experiments on multi-center CT data, densely sampled MR data, and two independent external cohorts, including a highly heterogeneous congenital heart disease population, demonstrate that the proposed method consistently suppresses clinically critical boundary violations by up to 83\%, while maintaining competitive volumetric accuracy and achieving superior surface fidelity. Notably, the proposed relational supervision generalizes robustly across imaging modalities, centers, and pathological conditions, even under severe anatomical deformation. These results demonstrate that distance-based supervision alone is insufficient to guarantee anatomically faithful reconstruction, and that explicit enforcement of multi-structure anatomical relations provides a principled and robust pathway toward reliable patient-specific cardiac modeling.
♻ ☆ HybridSplat: Fast Reflection-baked Gaussian Tracing using Hybrid Splatting
Rendering complex reflection of real-world scenes using 3D Gaussian splatting has been a quite promising solution for photorealistic novel view synthesis, but still faces bottlenecks especially in rendering speed and memory storage. This paper proposes a new Hybrid Splatting(HybridSplat) mechanism for Gaussian primitives. Our key idea is a new reflection-baked Gaussian tracing, which bakes the view-dependent reflection within each Gaussian primitive while rendering the reflection using tile-based Gaussian splatting. Then we integrate the reflective Gaussian primitives with base Gaussian primitives using a unified hybrid splatting framework for high-fidelity scene reconstruction. Moreover, we further introduce a pipeline-level acceleration for the hybrid splatting, and reflection-sensitive Gaussian pruning to reduce the model size, thus achieving much faster rendering speed and lower memory storage while preserving the reflection rendering quality. By extensive evaluation, our HybridSplat accelerates about 7x rendering speed across complex reflective scenes from Ref-NeRF, NeRF-Casting with 4x fewer Gaussian primitives than similar ray-tracing based Gaussian splatting baselines, serving as a new state-of-the-art method especially for complex reflective scenes.
comment: Project URL: https://aetheryne.github.io/HybridSplat/
♻ ☆ 3D Scene Prompting for Scene-Consistent Camera-Controllable Video Generation
We present 3DScenePrompt, a framework that generates the next video chunk from arbitrary-length input while enabling precise camera control and preserving scene consistency. Unlike methods conditioned on a single image or a short clip, we employ dual spatio-temporal conditioning that reformulates context-view referencing across the input video. Our approach conditions on both temporally adjacent frames for motion continuity and spatially adjacent content for scene consistency. However, when generating beyond temporal boundaries, directly using spatially adjacent frames would incorrectly preserve dynamic elements from the past. We address this by introducing a 3D scene memory that represents exclusively the static geometry extracted from the entire input video. To construct this memory, we leverage dynamic SLAM with our newly introduced dynamic masking strategy that explicitly separates static scene geometry from moving elements. The static scene representation can then be projected to any target viewpoint, providing geometrically consistent warped views that serve as strong 3D spatial prompts while allowing dynamic regions to evolve naturally from temporal context. This enables our model to maintain long-range spatial coherence and precise camera control without sacrificing computational efficiency or motion realism. Extensive experiments demonstrate that our framework significantly outperforms existing methods in scene consistency, camera controllability, and generation quality. Project page : https://cvlab-kaist.github.io/3DScenePrompt/
comment: Project page : https://cvlab-kaist.github.io/3DScenePrompt/
♻ ☆ ViCO: A Training Strategy towards Semantic Aware Dynamic High-Resolution
Existing Multimodal Large Language Models (MLLMs) suffer from increased inference costs due to the additional vision tokens introduced by image inputs. In this work, we propose Visual Consistency Learning (ViCO), a novel training algorithm that enables the model to represent images of varying semantic complexities using different numbers of vision tokens. The key idea behind our method is to employ multiple MLP connectors, each with a different image compression ratio, to downsample the vision tokens based on the semantic complexity of the image. During training, we minimize the KL divergence between the responses conditioned on different MLP connectors. At inference time, we introduce an image router, termed Visual Resolution Router (ViR), that automatically selects the appropriate compression rate for each image patch. Compared with existing dynamic high-resolution strategies, which adjust the number of visual tokens based on image resolutions, our method dynamically adapts the number of visual tokens according to semantic complexity. Experimental results demonstrate that our method can reduce the number of vision tokens by up to 50% while maintaining the model's perception, reasoning, and OCR capabilities. We hope this work will contribute to the development of more efficient MLLMs. The code and models will be released to facilitate future research.
♻ ☆ CAST-Phys: Contactless Affective States Through Physiological signals Database
In recent years, affective computing and its applications have become a fast-growing research topic. Despite significant advancements, the lack of affective multi-modal datasets remains a major bottleneck in developing accurate emotion recognition systems. Furthermore, the use of contact-based devices during emotion elicitation often unintentionally influences the emotional experience, reducing or altering the genuine spontaneous emotional response. This limitation highlights the need for methods capable of extracting affective cues from multiple modalities without physical contact, such as remote physiological emotion recognition. To address this, we present the Contactless Affective States Through Physiological Signals Database (CAST-Phys), a novel high-quality dataset explicitly designed for multi-modal remote physiological emotion recognition using facial and physiological cues. The dataset includes diverse physiological signals, such as photoplethysmography (PPG), electrodermal activity (EDA), and respiration rate (RR), alongside high-resolution uncompressed facial video recordings, enabling the potential for remote signal recovery. Our analysis highlights the crucial role of physiological signals in realistic scenarios where facial expressions alone may not provide sufficient emotional information. Furthermore, we demonstrate the potential of remote multi-modal emotion recognition by evaluating the impact of individual and fused modalities, showcasing its effectiveness in advancing contactless emotion recognition technologies.
♻ ☆ Towards Physically Executable 3D Gaussian for Embodied Navigation
3D Gaussian Splatting (3DGS), a 3D representation method with photorealistic real-time rendering capabilities, is regarded as an effective tool for narrowing the sim-to-real gap. However, it lacks fine-grained semantics and physical executability for Visual-Language Navigation (VLN). To address this, we propose SAGE-3D (Semantically and Physically Aligned Gaussian Environments for 3D Navigation), a new paradigm that upgrades 3DGS into an executable, semantically and physically aligned environment. It comprises two components: (1) Object-Centric Semantic Grounding, which adds object-level fine-grained annotations to 3DGS; and (2) Physics-Aware Execution Jointing, which embeds collision objects into 3DGS and constructs rich physical interfaces. We release InteriorGS, containing 1K object-annotated 3DGS indoor scene data, and introduce SAGE-Bench, the first 3DGS-based VLN benchmark with 2M VLN data. Experiments show that 3DGS scene data is more difficult to converge, while exhibiting strong generalizability, improving baseline performance by 31% on the VLN-CE Unseen task. Our data and code are available at: https://sage-3d.github.io.
comment: Project Page: https://sage-3d.github.io/
♻ ☆ MR-COSMO: Visual-Text Memory Recall and Direct CrOSs-MOdal Alignment Method for Query-Driven 3D Segmentation AAAI 2026
The rapid advancement of vision-language models (VLMs) in 3D domains has accelerated research in text-query-guided point cloud processing, though existing methods underperform in point-level segmentation due to inadequate 3D-text alignment that limits local feature-text context linking. To address this limitation, we propose MR-COSMO, a Visual-Text Memory Recall and Direct CrOSs-MOdal Alignment Method for Query-Driven 3D Segmentation, establishing explicit alignment between 3D point clouds and text/2D image data through a dedicated direct cross-modal alignment module while implementing a visual-text memory module with specialized feature banks. This direct alignment mechanism enables precise fusion of geometric and semantic features, while the memory module employs specialized banks storing text features, visual features, and their correspondence mappings to dynamically enhance scene-specific representations via attention-based knowledge recall. Comprehensive experiments across 3D instruction, reference, and semantic segmentation benchmarks confirm state-of-the-art performance.
comment: Accepted by AAAI 2026. Copyright (c) 2026, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved
♻ ☆ dots.ocr: Multilingual Document Layout Parsing in a Single Vision-Language Model
Document Layout Parsing serves as a critical gateway for Artificial Intelligence (AI) to access and interpret the world's vast stores of structured knowledge. This process,which encompasses layout detection, text recognition, and relational understanding, is particularly crucial for empowering next-generation Vision-Language Models. Current methods, however, rely on fragmented, multi-stage pipelines that suffer from error propagation and fail to leverage the synergies of joint training. In this paper, we introduce $\text{dots.ocr}$, a single Vision-Language Model that, for the first time, demonstrates the advantages of jointly learning three core tasks within a unified, end-to-end framework. This is made possible by a highly scalable data engine that synthesizes a vast multilingual corpus, empowering the model to deliver robust performance across a wide array of tasks, encompassing diverse languages, layouts, and domains. The efficacy of our unified paradigm is validated by state-of-the-art performance on the comprehensive OmniDocBench. Furthermore, to catalyze research in global document intelligence, we introduce XDocParse, a challenging new benchmark spanning 126 languages. On this testbed, $\text{dots.ocr}$ establishes a powerful new baseline, outperforming the next-best competitor by a remarkable +7.4 point margin and proving its unparalleled multilingual capabilities.
Machine Learning 238
☆ DiffusionBrowser: Interactive Diffusion Previews via Multi-Branch Decoders
Video diffusion models have revolutionized generative video synthesis, but they are imprecise, slow, and can be opaque during generation -- keeping users in the dark for a prolonged period. In this work, we propose DiffusionBrowser, a model-agnostic, lightweight decoder framework that allows users to interactively generate previews at any point (timestep or transformer block) during the denoising process. Our model can generate multi-modal preview representations that include RGB and scene intrinsics at more than 4$\times$ real-time speed (less than 1 second for a 4-second video) that convey consistent appearance and motion to the final video. With the trained decoder, we show that it is possible to interactively guide the generation at intermediate noise steps via stochasticity reinjection and modal steering, unlocking a new control capability. Moreover, we systematically probe the model using the learned decoders, revealing how scene, object, and other details are composed and assembled during the otherwise black-box denoising process.
comment: Project page: https://susunghong.github.io/DiffusionBrowser
☆ Directional Textual Inversion for Personalized Text-to-Image Generation
Textual Inversion (TI) is an efficient approach to text-to-image personalization but often fails on complex prompts. We trace these failures to embedding norm inflation: learned tokens drift to out-of-distribution magnitudes, degrading prompt conditioning in pre-norm Transformers. Empirically, we show semantics are primarily encoded by direction in CLIP token space, while inflated norms harm contextualization; theoretically, we analyze how large magnitudes attenuate positional information and hinder residual updates in pre-norm blocks. We propose Directional Textual Inversion (DTI), which fixes the embedding magnitude to an in-distribution scale and optimizes only direction on the unit hypersphere via Riemannian SGD. We cast direction learning as MAP with a von Mises-Fisher prior, yielding a constant-direction prior gradient that is simple and efficient to incorporate. Across personalization tasks, DTI improves text fidelity over TI and TI-variants while maintaining subject similarity. Crucially, DTI's hyperspherical parameterization enables smooth, semantically coherent interpolation between learned concepts (slerp), a capability that is absent in standard TI. Our findings suggest that direction-only optimization is a robust and scalable path for prompt-faithful personalization.
comment: Project page: https://kunheek.github.io/dti
☆ A Scientific Reasoning Model for Organic Synthesis Procedure Generation
Solving computer-aided synthesis planning is essential for enabling fully automated, robot-assisted synthesis workflows and improving the efficiency of drug discovery. A key challenge, however, is bridging the gap between computational route design and practical laboratory execution, particularly the accurate prediction of viable experimental procedures for each synthesis step. In this work, we present QFANG, a scientific reasoning language model capable of generating precise, structured experimental procedures directly from reaction equations, with explicit chain-of-thought reasoning. To develop QFANG, we curated a high-quality dataset comprising 905,990 chemical reactions paired with structured action sequences, extracted and processed from patent literature using large language models. We introduce a Chemistry-Guided Reasoning (CGR) framework that produces chain-of-thought data grounded in chemical knowledge at scale. The model subsequently undergoes supervised fine-tuning to elicit complex chemistry reasoning. Finally, we apply Reinforcement Learning from Verifiable Rewards (RLVR) to further enhance procedural accuracy. Experimental results demonstrate that QFANG outperforms advanced general-purpose reasoning models and nearest-neighbor retrieval baselines, measured by traditional NLP similarity metrics and a chemically aware evaluator using an LLM-as-a-judge. Moreover, QFANG generalizes to certain out-of-domain reaction classes and adapts to variations in laboratory conditions and user-specific constraints. We believe that QFANG's ability to generate high-quality synthesis procedures represents an important step toward bridging the gap between computational synthesis planning and fully automated laboratory synthesis.
☆ SEDULity: A Proof-of-Learning Framework for Distributed and Secure Blockchains with Efficient Useful Work
The security and decentralization of Proof-of-Work (PoW) have been well-tested in existing blockchain systems. However, its tremendous energy waste has raised concerns about sustainability. Proof-of-Useful-Work (PoUW) aims to redirect the meaningless computation to meaningful tasks such as solving machine learning (ML) problems, giving rise to the branch of Proof-of-Learning (PoL). While previous studies have proposed various PoLs, they all, to some degree, suffer from security, decentralization, or efficiency issues. In this paper, we propose a PoL framework that trains ML models efficiently while maintaining blockchain security in a fully distributed manner. We name the framework SEDULity, which stands for a Secure, Efficient, Distributed, and Useful Learning-based blockchain system. Specifically, we encode the template block into the training process and design a useful function that is difficult to solve but relatively easy to verify, as a substitute for the PoW puzzle. We show that our framework is distributed, secure, and efficiently trains ML models. We further demonstrate that the proposed PoL framework can be extended to other types of useful work and design an incentive mechanism to incentivize task verification. We show theoretically that a rational miner is incentivized to train fully honestly with well-designed system parameters. Finally, we present simulation results to demonstrate the performance of our framework and validate our analysis.
☆ From Code to Field: Evaluating the Robustness of Convolutional Neural Networks for Disease Diagnosis in Mango Leaves
The validation and verification of artificial intelligence (AI) models through robustness assessment are essential to guarantee the reliable performance of intelligent systems facing real-world challenges, such as image corruptions including noise, blurring, and weather variations. Despite the global importance of mango (Mangifera indica L.), there is a lack of studies on the robustness of models for the diagnosis of disease in its leaves. This paper proposes a methodology to evaluate convolutional neural networks (CNNs) under adverse conditions. We adapted the MangoLeafDB dataset, generating MangoLeafDB-C with 19 types of artificial corruptions at five severity levels. We conducted a benchmark comparing five architectures: ResNet-50, ResNet-101, VGG-16, Xception, and LCNN (the latter being a lightweight architecture designed specifically for mango leaf diagnosis). The metrics include the F1 score, the corruption error (CE) and the relative mean corruption error (relative mCE). The results show that LCNN outperformed complex models in corruptions that can be present in real-world scenarios such as Defocus Blur, Motion Blur, while also achieving the lowest mCE. Modern architectures (e.g., ResNet-101) exhibited significant performance degradation in corrupted scenarios, despite their high accuracy under ideal conditions. These findings suggest that lightweight and specialized models may be more suitable for real-world applications in edge devices, where robustness and efficiency are critical. The study highlights the need to incorporate robustness assessments in the development of intelligent systems for agriculture, particularly in regions with technological limitations.
comment: This work was presented at the BRACIS 2025 conference in Fortaleza
☆ Universality of high-dimensional scaling limits of stochastic gradient descent
We consider statistical tasks in high dimensions whose loss depends on the data only through its projection into a fixed-dimensional subspace spanned by the parameter vectors and certain ground truth vectors. This includes classifying mixture distributions with cross-entropy loss with one and two-layer networks, and learning single and multi-index models with one and two-layer networks. When the data is drawn from an isotropic Gaussian mixture distribution, it is known that the evolution of a finite family of summary statistics under stochastic gradient descent converges to an autonomous ordinary differential equation (ODE), as the dimension and sample size go to $\infty$ and the step size goes to $0$ commensurately. Our main result is that these ODE limits are universal in that this convergence occurs even when the data is drawn from mixtures of product measures provided the first two moments match the corresponding Gaussian distribution and the initialization and ground truth vectors are sufficiently coordinate-delocalized. We complement this by proving two corresponding non-universality results. We provide a simple example where the ODE limits are non-universal if the initialization is coordinate aligned. We also show that the stochastic differential equation limits arising as fluctuations of the summary statistics around their ODE's fixed points are not universal.
comment: 30 pages
☆ StutterFuse: Mitigating Modality Collapse in Stuttering Detection with Jaccard-Weighted Metric Learning and Gated Fusion
Stuttering detection breaks down when disfluencies overlap. Existing parametric models struggle to distinguish complex, simultaneous disfluencies (e.g., a 'block' with a 'prolongation') due to the scarcity of these specific combinations in training data. While Retrieval-Augmented Generation (RAG) has revolutionized NLP by grounding models in external knowledge, this paradigm remains unexplored in pathological speech processing. To bridge this gap, we introduce StutterFuse, the first Retrieval-Augmented Classifier (RAC) for multi-label stuttering detection. By conditioning a Conformer encoder on a non-parametric memory bank of clinical examples, we allow the model to classify by reference rather than memorization. We further identify and solve "Modality Collapse", an "Echo Chamber" effect where naive retrieval boosts recall but degrades precision. We mitigate this using: (1) SetCon, a Jaccard-Weighted Metric Learning objective that optimizes for multi-label set similarity, and (2) a Gated Mixture-of-Experts fusion strategy that dynamically arbitrates between acoustic evidence and retrieved context. On the SEP-28k dataset, StutterFuse achieves a weighted F1-score of 0.65, outperforming strong baselines and demonstrating remarkable zero-shot cross-lingual generalization.
comment: 13 pages, 10 figures
☆ Temporal Tokenization Strategies for Event Sequence Modeling with Large Language Models
Representing continuous time is a critical and under-explored challenge in modeling temporal event sequences with large language models (LLMs). Various strategies like byte-level representations or calendar tokens have been proposed. However, the optimal approach remains unclear, especially given the diverse statistical distributions of real-world event data, which range from smooth log-normal to discrete, spiky patterns. This paper presents the first empirical study of temporal tokenization for event sequences, comparing distinct encoding strategies: naive numeric strings, high-precision byte-level representations, human-semantic calendar tokens, classic uniform binning, and adaptive residual scalar quantization. We evaluate these strategies by fine-tuning LLMs on real-world datasets that exemplify these diverse distributions. Our analysis reveals that no single strategy is universally superior; instead, prediction performance depends heavily on aligning the tokenizer with the data's statistical properties, with log-based strategies excelling on skewed distributions and human-centric formats proving robust for mixed modalities.
☆ LightTopoGAT: Enhancing Graph Attention Networks with Topological Features for Efficient Graph Classification
Graph Neural Networks have demonstrated significant success in graph classification tasks, yet they often require substantial computational resources and struggle to capture global graph properties effectively. We introduce LightTopoGAT, a lightweight graph attention network that enhances node features through topological augmentation by incorporating node degree and local clustering coefficient to improve graph representation learning. The proposed approach maintains parameter efficiency through streamlined attention mechanisms while integrating structural information that is typically overlooked by local message passing schemes. Through comprehensive experiments on three benchmark datasets, MUTAG, ENZYMES, and PROTEINS, we show that LightTopoGAT achieves superior performance compared to established baselines including GCN, GraphSAGE, and standard GAT, with a 6.6 percent improvement in accuracy on MUTAG and a 2.2 percent improvement on PROTEINS. Ablation studies further confirm that these performance gains arise directly from the inclusion of topological features, demonstrating a simple yet effective strategy for enhancing graph neural network performance without increasing architectural complexity.
comment: 9 pages
☆ Do-Undo: Generating and Reversing Physical Actions in Vision-Language Models
We introduce the Do-Undo task and benchmark to address a critical gap in vision-language models: understanding and generating physically plausible scene transformations driven by real-world actions. Unlike prior work focused on object-level edits, Do-Undo requires models to simulate the outcome of a physical action and then accurately reverse it, reflecting true cause-and-effect in the visual world. We curate a large-scale dataset of reversible actions from real-world videos and design a training strategy enforcing consistency for robust action grounding. Our experiments reveal that current models struggle with physical reversibility, underscoring the importance of this task for embodied AI, robotics, and physics-aware generative modeling. Do-Undo establishes an intuitive testbed for evaluating and advancing physical reasoning in multimodal systems.
☆ Nemotron-Cascade: Scaling Cascaded Reinforcement Learning for General-Purpose Reasoning Models
Building general-purpose reasoning models with reinforcement learning (RL) entails substantial cross-domain heterogeneity, including large variation in inference-time response lengths and verification latency. Such variability complicates the RL infrastructure, slows training, and makes training curriculum (e.g., response length extension) and hyperparameter selection challenging. In this work, we propose cascaded domain-wise reinforcement learning (Cascade RL) to develop general-purpose reasoning models, Nemotron-Cascade, capable of operating in both instruct and deep thinking modes. Departing from conventional approaches that blend heterogeneous prompts from different domains, Cascade RL orchestrates sequential, domain-wise RL, reducing engineering complexity and delivering state-of-the-art performance across a wide range of benchmarks. Notably, RLHF for alignment, when used as a pre-step, boosts the model's reasoning ability far beyond mere preference optimization, and subsequent domain-wise RLVR stages rarely degrade the benchmark performance attained in earlier domains and may even improve it (see an illustration in Figure 1). Our 14B model, after RL, outperforms its SFT teacher, DeepSeek-R1-0528, on LiveCodeBench v5/v6/Pro and achieves silver-medal performance in the 2025 International Olympiad in Informatics (IOI). We transparently share our training and data recipes.
comment: We publicly release the Nemotron-Cascade models and the full collection of training data at: https://huggingface.co/collections/nvidia/nemotron-cascade
☆ Textual Gradients are a Flawed Metaphor for Automatic Prompt Optimization
A well-engineered prompt can increase the performance of large language models; automatic prompt optimization techniques aim to increase performance without requiring human effort to tune the prompts. One leading class of prompt optimization techniques introduces the analogy of textual gradients. We investigate the behavior of these textual gradient methods through a series of experiments and case studies. While such methods often result in a performance improvement, our experiments suggest that the gradient analogy does not accurately explain their behavior. Our insights may inform the selection of prompt optimization strategies, and development of new approaches.
☆ Scalable Formal Verification via Autoencoder Latent Space Abstraction
Finite Abstraction methods provide a powerful formal framework for proving that systems satisfy their specifications. However, these techniques face scalability challenges for high-dimensional systems, as they rely on state-space discretization which grows exponentially with dimension. Learning-based approaches to dimensionality reduction, utilizing neural networks and autoencoders, have shown great potential to alleviate this problem. However, ensuring the correctness of the resulting verification results remains an open question. In this work, we provide a formal approach to reduce the dimensionality of systems via convex autoencoders and learn the dynamics in the latent space through a kernel-based method. We then construct a finite abstraction from the learned model in the latent space and guarantee that the abstraction contains the true behaviors of the original system. We show that the verification results in the latent space can be mapped back to the original system. Finally, we demonstrate the effectiveness of our approach on multiple systems, including a 26D system controlled by a neural network, showing significant scalability improvements without loss of rigor.
comment: 14 pages, 7 figures, under review
☆ Image Diffusion Preview with Consistency Solver
The slow inference process of image diffusion models significantly degrades interactive user experiences. To address this, we introduce Diffusion Preview, a novel paradigm employing rapid, low-step sampling to generate preliminary outputs for user evaluation, deferring full-step refinement until the preview is deemed satisfactory. Existing acceleration methods, including training-free solvers and post-training distillation, struggle to deliver high-quality previews or ensure consistency between previews and final outputs. We propose ConsistencySolver derived from general linear multistep methods, a lightweight, trainable high-order solver optimized via Reinforcement Learning, that enhances preview quality and consistency. Experimental results demonstrate that ConsistencySolver significantly improves generation quality and consistency in low-step scenarios, making it ideal for efficient preview-and-refine workflows. Notably, it achieves FID scores on-par with Multistep DPM-Solver using 47% fewer steps, while outperforming distillation baselines. Furthermore, user studies indicate our approach reduces overall user interaction time by nearly 50% while maintaining generation quality. Code is available at https://github.com/G-U-N/consolver.
☆ ReFusion: A Diffusion Large Language Model with Parallel Autoregressive Decoding
Autoregressive models (ARMs) are hindered by slow sequential inference. While masked diffusion models (MDMs) offer a parallel alternative, they suffer from critical drawbacks: high computational overhead from precluding Key-Value (KV) caching, and incoherent generation arising from learning dependencies over an intractable space of token combinations. To address these limitations, we introduce ReFusion, a novel masked diffusion model that achieves superior performance and efficiency by elevating parallel decoding from the token level to a higher slot level, where each slot is a fixed-length, contiguous sub-sequence. This is achieved through an iterative ``plan-and-infill'' decoding process: a diffusion-based planning step first identifies a set of weakly dependent slots, and an autoregressive infilling step then decodes these selected slots in parallel. The slot-based design simultaneously unlocks full KV cache reuse with a unified causal framework and reduces the learning complexity from the token combination space to a manageable slot-level permutation space. Extensive experiments on seven diverse benchmarks show that ReFusion not only overwhelmingly surpasses prior MDMs with 34% performance gains and an over 18$\times$ speedup on average, but also bridges the performance gap to strong ARMs while maintaining a 2.33$\times$ average speedup.
☆ DP-CSGP: Differentially Private Stochastic Gradient Push with Compressed Communication
In this paper, we propose a Differentially Private Stochastic Gradient Push with Compressed communication (termed DP-CSGP) for decentralized learning over directed graphs. Different from existing works, the proposed algorithm is designed to maintain high model utility while ensuring both rigorous differential privacy (DP) guarantees and efficient communication. For general non-convex and smooth objective functions, we show that the proposed algorithm achieves a tight utility bound of $\mathcal{O}\left( \sqrt{d\log \left( \frac{1}δ \right)}/(\sqrt{n}Jε) \right)$ ($J$ and $d$ are the number of local samples and the dimension of decision variables, respectively) with $\left(ε, δ\right)$-DP guarantee for each node, matching that of decentralized counterparts with exact communication. Extensive experiments on benchmark tasks show that, under the same privacy budget, DP-CSGP achieves comparable model accuracy with significantly lower communication cost than existing decentralized counterparts with exact communication.
comment: 13 pages
☆ Superposition as Lossy Compression: Measure with Sparse Autoencoders and Connect to Adversarial Vulnerability
Neural networks achieve remarkable performance through superposition: encoding multiple features as overlapping directions in activation space rather than dedicating individual neurons to each feature. This challenges interpretability, yet we lack principled methods to measure superposition. We present an information-theoretic framework measuring a neural representation's effective degrees of freedom. We apply Shannon entropy to sparse autoencoder activations to compute the number of effective features as the minimum neurons needed for interference-free encoding. Equivalently, this measures how many "virtual neurons" the network simulates through superposition. When networks encode more effective features than actual neurons, they must accept interference as the price of compression. Our metric strongly correlates with ground truth in toy models, detects minimal superposition in algorithmic tasks, and reveals systematic reduction under dropout. Layer-wise patterns mirror intrinsic dimensionality studies on Pythia-70M. The metric also captures developmental dynamics, detecting sharp feature consolidation during grokking. Surprisingly, adversarial training can increase effective features while improving robustness, contradicting the hypothesis that superposition causes vulnerability. Instead, the effect depends on task complexity and network capacity: simple tasks with ample capacity allow feature expansion (abundance regime), while complex tasks or limited capacity force reduction (scarcity regime). By defining superposition as lossy compression, this work enables principled measurement of how neural networks organize information under computational constraints, connecting superposition to adversarial robustness.
comment: Accepted to TMLR, view HTML here: https://leonardbereska.github.io/blog/2025/superposition/
☆ A Nonparametric Statistics Approach to Feature Selection in Deep Neural Networks with Theoretical Guarantees
This paper tackles the problem of feature selection in a highly challenging setting: $\mathbb{E}(y | \boldsymbol{x}) = G(\boldsymbol{x}_{\mathcal{S}_0})$, where $\mathcal{S}_0$ is the set of relevant features and $G$ is an unknown, potentially nonlinear function subject to mild smoothness conditions. Our approach begins with feature selection in deep neural networks, then generalizes the results to H{ö}lder smooth functions by exploiting the strong approximation capabilities of neural networks. Unlike conventional optimization-based deep learning methods, we reformulate neural networks as index models and estimate $\mathcal{S}_0$ using the second-order Stein's formula. This gradient-descent-free strategy guarantees feature selection consistency with a sample size requirement of $n = Ω(p^2)$, where $p$ is the feature dimension. To handle high-dimensional scenarios, we further introduce a screening-and-selection mechanism that achieves nonlinear selection consistency when $n = Ω(s \log p)$, with $s$ representing the sparsity level. Additionally, we refit a neural network on the selected features for prediction and establish performance guarantees under a relaxed sparsity assumption. Extensive simulations and real-data analyses demonstrate the strong performance of our method even in the presence of complex feature interactions.
comment: 64 pages
☆ Pancakes: Consistent Multi-Protocol Image Segmentation Across Biomedical Domains NeurIPS 2025
A single biomedical image can be meaningfully segmented in multiple ways, depending on the desired application. For instance, a brain MRI can be segmented according to tissue types, vascular territories, broad anatomical regions, fine-grained anatomy, or pathology, etc. Existing automatic segmentation models typically either (1) support only a single protocol, the one they were trained on, or (2) require labor-intensive manual prompting to specify the desired segmentation. We introduce Pancakes, a framework that, given a new image from a previously unseen domain, automatically generates multi-label segmentation maps for multiple plausible protocols, while maintaining semantic consistency across related images. Pancakes introduces a new problem formulation that is not currently attainable by existing foundation models. In a series of experiments on seven held-out datasets, we demonstrate that our model can significantly outperform existing foundation models in producing several plausible whole-image segmentations, that are semantically coherent across images.
comment: Accepted at NeurIPS 2025. Code available at: https://github.com/mariannerakic/Pancakes
☆ Adaptive Sampling for Hydrodynamic Stability
An adaptive sampling approach for efficient detection of bifurcation boundaries in parametrized fluid flow problems is presented herein. The study extends the machine-learning approach of Silvester (Machine Learning for Hydrodynamic Stability, arXiv:2407.09572), where a classifier network was trained on preselected simulation data to identify bifurcated and nonbifurcated flow regimes. In contrast, the proposed methodology introduces adaptivity through a flow-based deep generative model that automatically refines the sampling of the parameter space. The strategy has two components: a classifier network maps the flow parameters to a bifurcation probability, and a probability density estimation technique (KRnet) for the generation of new samples at each adaptive step. The classifier output provides a probabilistic measure of flow stability, and the Shannon entropy of these predictions is employed as an uncertainty indicator. KRnet is trained to approximate a probability density function that concentrates sampling in regions of high entropy, thereby directing computational effort towards the evolving bifurcation boundary. This coupling between classification and generative modeling establishes a feedback-driven adaptive learning process analogous to error-indicator based refinement in contemporary partial differential equation solution strategies. Starting from a uniform parameter distribution, the new approach achieves accurate bifurcation boundary identification with significantly fewer Navier--Stokes simulations, providing a scalable foundation for high-dimensional stability analysis.
☆ Actively Learning Joint Contours of Multiple Computer Experiments
Contour location$\unicode{x2014}$the process of sequentially training a surrogate model to identify the design inputs that result in a pre-specified response value from a single computer experiment$\unicode{x2014}$is a well-studied active learning problem. Here, we tackle a related but distinct problem: identifying the input configuration that returns pre-specified values of multiple independent computer experiments simultaneously. Motivated by computer experiments of the rotational torques acting upon a vehicle in flight, we aim to identify stable flight conditions which result in zero torque forces. We propose a "joint contour location" (jCL) scheme that strikes a strategic balance between exploring the multiple response surfaces while exploiting learning of the intersecting contours. We employ both shallow and deep Gaussian process surrogates, but our jCL procedure is applicable to any surrogate that can provide posterior predictive distributions. Our jCL designs significantly outperform existing (single response) CL strategies, enabling us to efficiently locate the joint contour of our motivating computer experiments.
☆ Enhancing lithological interpretation from petrophysical well log of IODP expedition 390/393 using machine learning
Enhanced lithological interpretation from well logs plays a key role in geological resource exploration and mapping, as well as in geo-environmental modeling studies. Core and cutting information is useful for making sound interpretations of well logs; however, these are rarely collected at each depth due to high costs. Moreover, well log interpretation using traditional methods is constrained by poor borehole conditions. Traditional statistical methods are mostly linear, often failing to discriminate between lithology and rock facies, particularly when dealing with overlapping well log signals characterized by the structural and compositional variation of rock types. In this study, we develop multiple supervised and unsupervised machine learning algorithms to jointly analyze multivariate well log data from Integrated Ocean Drilling Program (IODP) expeditions 390 and 393 for enhanced lithological interpretations. Among the algorithms, Logistic Regression, Decision Trees, Gradient Boosting, Support Vector Machines (SVM), k-Nearest Neighbors (KNN), and Multi-Layer Perceptron (MLP) neural network models, the Decision Tree and Gradient Boosting models outperformed the others, achieving an accuracy of 0.9950 and an F1-score of 0.9951. While unsupervised machine learning (ML) provides the foundation for cluster information that inherently supports the classification algorithm, supervised ML is applied to devise a data-driven lithology clustering mechanism for IODP datasets. The joint ML-based method developed here has the potential to be further explored for analyzing other well log datasets from the world's oceans.
comment: Accepted for presentation at the International Meeting for Applied Geoscience & Energy (IMAGE) 2025
☆ Async Control: Stress-testing Asynchronous Control Measures for LLM Agents
LLM-based software engineering agents are increasingly used in real-world development tasks, often with access to sensitive data or security-critical codebases. Such agents could intentionally sabotage these codebases if they were misaligned. We investigate asynchronous monitoring, in which a monitoring system reviews agent actions after the fact. Unlike synchronous monitoring, this approach does not impose runtime latency, while still attempting to disrupt attacks before irreversible harm occurs. We treat monitor development as an adversarial game between a blue team (who design monitors) and a red team (who create sabotaging agents). We attempt to set the game rules such that they upper bound the sabotage potential of an agent based on Claude 4.1 Opus. To ground this game in a realistic, high-stakes deployment scenario, we develop a suite of 5 diverse software engineering environments that simulate tasks that an agent might perform within an AI developer's internal infrastructure. Over the course of the game, we develop an ensemble monitor that achieves a 6% false negative rate at 1% false positive rate on a held out test environment. Then, we estimate risk of sabotage at deployment time by extrapolating from our monitor's false negative rate. We describe one simple model for this extrapolation, present a sensitivity analysis, and describe situations in which the model would be invalid. Code is available at: https://github.com/UKGovernmentBEIS/async-control.
☆ A Deep Learning Model of Mental Rotation Informed by Interactive VR Experiments
Mental rotation -- the ability to compare objects seen from different viewpoints -- is a fundamental example of mental simulation and spatial world modelling in humans. Here we propose a mechanistic model of human mental rotation, leveraging advances in deep, equivariant, and neuro-symbolic learning. Our model consists of three stacked components: (1) an equivariant neural encoder, taking images as input and producing 3D spatial representations of objects, (2) a neuro-symbolic object encoder, deriving symbolic descriptions of objects from these spatial representations, and (3) a neural decision agent, comparing these symbolic descriptions to prescribe rotation simulations in 3D latent space via a recurrent pathway. Our model design is guided by the abundant experimental literature on mental rotation, which we complemented with experiments in VR where participants could at times manipulate the objects to compare, providing us with additional insights into the cognitive process of mental rotation. Our model captures well the performance, response times and behavior of participants in our and others' experiments. The necessity of each model component is shown through systematic ablations. Our work adds to a recent collection of deep neural models of human spatial reasoning, further demonstrating the potency of integrating deep, equivariant, and symbolic representations to model the human mind.
☆ Learning under Distributional Drift: Reproducibility as an Intrinsic Statistical Resource
Statistical learning under distributional drift remains insufficiently characterized: when each observation alters the data-generating law, classical generalization bounds can collapse. We introduce a new statistical primitive, the reproducibility budget $C_T$, which quantifies a system's finite capacity for statistical reproducibility - the extent to which its sampling process can remain governed by a consistent underlying distribution in the presence of both exogenous change and endogenous feedback. Formally, $C_T$ is defined as the cumulative Fisher-Rao path length of the coupled learner-environment evolution, measuring the total distributional motion accumulated during learning. From this construct we derive a drift-feedback generalization bound of order $O(T^{-1/2} + C_T/T)$, and we prove a matching minimax lower bound showing that this rate is minimax-optimal. Consequently, the results establish a reproducibility speed limit: no algorithm can achieve smaller worst-case generalization error than that imposed by the average Fisher-Rao drift rate $C_T/T$ of the data-generating process. The framework situates exogenous drift, adaptive data analysis, and performative prediction within a common geometric structure, with $C_T$ emerging as the intrinsic quantity measuring distributional motion across these settings.
comment: 37 pages, 4 figures
☆ On-Device Continual Learning for Unsupervised Visual Anomaly Detection in Dynamic Manufacturing
In modern manufacturing, Visual Anomaly Detection (VAD) is essential for automated inspection and consistent product quality. Yet, increasingly dynamic and flexible production environments introduce key challenges: First, frequent product changes in small-batch and on-demand manufacturing require rapid model updates. Second, legacy edge hardware lacks the resources to train and run large AI models. Finally, both anomalous and normal training data are often scarce, particularly for newly introduced product variations. We investigate on-device continual learning for unsupervised VAD with localization, extending the PatchCore to incorporate online learning for real-world industrial scenarios. The proposed method leverages a lightweight feature extractor and an incremental coreset update mechanism based on k-center selection, enabling rapid, memory-efficient adaptation from limited data while eliminating costly cloud retraining. Evaluations on an industrial use case are conducted using a testbed designed to emulate flexible production with frequent variant changes in a controlled environment. Our method achieves a 12% AUROC improvement over the baseline, an 80% reduction in memory usage, and faster training compared to batch retraining. These results confirm that our method delivers accurate, resource-efficient, and adaptive VAD suitable for dynamic and smart manufacturing.
comment: Accepted by European Conference on EDGE AI Technologies and Applications (EEAI) 2025
☆ From Zipf's Law to Neural Scaling through Heaps' Law and Hilberg's Hypothesis
We inspect the deductive connection between the neural scaling law and Zipf's law -- two statements discussed in machine learning and quantitative linguistics. The neural scaling law describes how the cross entropy rate of a foundation model -- such as a large language model -- changes with respect to the amount of training tokens, parameters, and compute. By contrast, Zipf's law posits that the distribution of tokens exhibits a power law tail. Whereas similar claims have been made in more specific settings, we show that the neural scaling law is a consequence of Zipf's law under certain broad assumptions that we reveal systematically. The derivation steps are as follows: We derive Heaps' law on the vocabulary growth from Zipf's law, Hilberg's hypothesis on the entropy scaling from Heaps' law, and the neural scaling from Hilberg's hypothesis. We illustrate these inference steps by a toy example of the Santa Fe process that satisfies all the four statistical laws.
comment: 32 pages, no figures
☆ Real-Time AI-Driven Milling Digital Twin Towards Extreme Low-Latency
Digital twin (DT) enables smart manufacturing by leveraging real-time data, AI models, and intelligent control systems. This paper presents a state-of-the-art analysis on the emerging field of DTs in the context of milling. The critical aspects of DT are explored through the lens of virtual models of physical milling, data flow from physical milling to virtual model, and feedback from virtual model to physical milling. Live data streaming protocols and virtual modeling methods are highlighted. A case study showcases the transformative capability of a real-time machine learning-driven live DT of tool-work contact in a milling process. Future research directions are outlined to achieve the goals of Industry 4.0 and beyond.
☆ Element-wise Modulation of Random Matrices for Efficient Neural Layers
Fully connected layers are a primary source of memory and computational overhead in deep neural networks due to their dense, often redundant parameterization. While various compression techniques exist, they frequently introduce complex engineering trade-offs or degrade model performance. We propose the Parametrized Random Projection (PRP) layer, a novel approach that decouples feature mixing from adaptation by utilizing a fixed random matrix modulated by lightweight, learnable element-wise parameters. This architecture drastically reduces the trainable parameter count to a linear scale while retaining reliable accuracy across various benchmarks. The design serves as a stable, computationally efficient solution for architectural scaling and deployment in resource-limited settings.
☆ Non-Resolution Reasoning: A Framework for Preserving Semantic Ambiguity in Language Models
Premature semantic collapse -- the forced early commitment to a single meaning -- remains a core architectural limitation of current language models. Softmax-driven competition and greedy decoding cause models to discard valid interpretations before sufficient context is available, resulting in brittle reasoning and context failures. We introduce Non-Resolution Reasoning (NRR), a general computational framework that preserves semantic ambiguity during inference and performs resolution only when explicitly required. NRR integrates three components: (1) Multi-Vector Embeddings that maintain multiple viable interpretations per token, (2) Non-Collapsing Attention that prevents winner-take-all dynamics across layers, and (3) Contextual Identity Tracking (CIT), which assigns context-specific identities to recurring entities (e.g., distinguishing "Dr. Smith the cardiologist" from "Dr. Smith the researcher"). These mechanisms are unified by an external Resolution Operator $ρ$ that makes semantic commitment explicit, controllable, and task-dependent. Unlike standard architectures, NRR separates representation from resolution, allowing a single model to shift between creative, factual, and ambiguity-preserving reasoning without retraining. A synthetic evaluation demonstrates NRR's ability to preserve ambiguity and track context: CIT-enhanced models achieve 90.9% accuracy on out-of-distribution identity-shift tasks, compared to 9.1% for transformer baselines. NRR provides a principled alternative to premature collapse, reframing ambiguity as an explicit representational state rather than a failure mode. The question is not whether AI should resolve ambiguity, but when, how, and under whose control.
comment: 19 pages
☆ DP-EMAR: A Differentially Private Framework for Autonomous Model Weight Repair in Federated IoT Systems
Federated Learning (FL) enables decentralized model training without sharing raw data, but model weight distortion remains a major challenge in resource constrained IoT networks. In multi tier Federated IoT (Fed-IoT) systems, unstable connectivity and adversarial interference can silently alter transmitted parameters, degrading convergence. We propose DP-EMAR, a differentially private, error model based autonomous repair framework that detects and reconstructs transmission induced distortions during FL aggregation. DP-EMAR estimates corruption patterns and applies adaptive correction before privacy noise is added, enabling reliable in network repair without violating confidentiality. By integrating Differential Privacy (DP) with Secure Aggregation (SA), the framework distinguishes DP noise from genuine transmission errors. Experiments on heterogeneous IoT sensor and graph datasets show that DP-EMAR preserves convergence stability and maintains near baseline performance under communication corruption while ensuring strict (epsilon, delta)-DP guarantees. The framework enhances robustness, communication efficiency, and trust in privacy preserving Federated IoT learning.
comment: Accepted and presented at the AI-IoT Workshop, co-located with COMSNETS 2025
☆ SSAS: Cross-subject EEG-based Emotion Recognition through Source Selection with Adversarial Strategy
Electroencephalographic (EEG) signals have long been applied in the field of affective brain-computer interfaces (aBCIs). Cross-subject EEG-based emotion recognition has demonstrated significant potential in practical applications due to its suitability across diverse people. However, most studies on cross-subject EEG-based emotion recognition neglect the presence of inter-individual variability and negative transfer phenomena during model training. To address this issue, a cross-subject EEG-based emotion recognition through source selection with adversarial strategy is introduced in this paper. The proposed method comprises two modules: the source selection network (SS) and the adversarial strategies network (AS). The SS uses domain labels to reverse-engineer the training process of domain adaptation. Its key idea is to disrupt class separability and magnify inter-domain differences, thereby raising the classification difficulty and forcing the model to learn domain-invariant yet emotion-relevant representations. The AS gets the source domain selection results and the pretrained domain discriminators from SS. The pretrained domain discriminators compute a novel loss aimed at enhancing the performance of domain classification during adversarial training, ensuring the balance of adversarial strategies. This paper provides theoretical insights into the proposed method and achieves outstanding performance on two EEG-based emotion datasets, SEED and SEED-IV. The code can be found at https://github.com/liuyici/SSAS.
☆ XNNTab -- Interpretable Neural Networks for Tabular Data using Sparse Autoencoders
In data-driven applications relying on tabular data, where interpretability is key, machine learning models such as decision trees and linear regression are applied. Although neural networks can provide higher predictive performance, they are not used because of their blackbox nature. In this work, we present XNNTab, a neural architecture that combines the expressiveness of neural networks and interpretability. XNNTab first learns highly non-linear feature representations, which are decomposed into monosemantic features using a sparse autoencoder (SAE). These features are then assigned human-interpretable concepts, making the overall model prediction intrinsically interpretable. XNNTab outperforms interpretable predictive models, and achieves comparable performance to its non-interpretable counterparts.
☆ MineTheGap: Automatic Mining of Biases in Text-to-Image Models
Text-to-Image (TTI) models generate images based on text prompts, which often leave certain aspects of the desired image ambiguous. When faced with these ambiguities, TTI models have been shown to exhibit biases in their interpretations. These biases can have societal impacts, e.g., when showing only a certain race for a stated occupation. They can also affect user experience when creating redundancy within a set of generated images instead of spanning diverse possibilities. Here, we introduce MineTheGap - a method for automatically mining prompts that cause a TTI model to generate biased outputs. Our method goes beyond merely detecting bias for a given prompt. Rather, it leverages a genetic algorithm to iteratively refine a pool of prompts, seeking for those that expose biases. This optimization process is driven by a novel bias score, which ranks biases according to their severity, as we validate on a dataset with known biases. For a given prompt, this score is obtained by comparing the distribution of generated images to the distribution of LLM-generated texts that constitute variations on the prompt. Code and examples are available on the project's webpage.
comment: Code and examples are available on the project's webpage at https://noa-cohen.github.io/MineTheGap/
☆ Multiclass Graph-Based Large Margin Classifiers: Unified Approach for Support Vectors and Neural Networks
While large margin classifiers are originally an outcome of an optimization framework, support vectors (SVs) can be obtained from geometric approaches. This article presents advances in the use of Gabriel graphs (GGs) in binary and multiclass classification problems. For Chipclass, a hyperparameter-less and optimization-less GG-based binary classifier, we discuss how activation functions and support edge (SE)-centered neurons affect the classification, proposing smoother functions and structural SV (SSV)-centered neurons to achieve margins with low probabilities and smoother classification contours. We extend the neural network architecture, which can be trained with backpropagation with a softmax function and a cross-entropy loss, or by solving a system of linear equations. A new subgraph-/distance-based membership function for graph regularization is also proposed, along with a new GG recomputation algorithm that is less computationally expensive than the standard approach. Experimental results with the Friedman test show that our method was better than previous GG-based classifiers and statistically equivalent to tree-based models.
comment: Accepted to the IEEE Transactions on Neural Networks and Learning Systems (TNNLS)
☆ rNCA: Self-Repairing Segmentation Masks
Accurately predicting topologically correct masks remains a difficult task for general segmentation models, which often produce fragmented or disconnected outputs. Fixing these artifacts typically requires hand-crafted refinement rules or architectures specialized to a particular task. Here, we show that Neural Cellular Automata (NCA) can be directly re-purposed as an effective refinement mechanism, using local, iterative updates guided by image context to repair segmentation masks. By training on imperfect masks and ground truths, the automaton learns the structural properties of the target shape while relying solely on local information. When applied to coarse, globally predicted masks, the learned dynamics progressively reconnect broken regions, prune loose fragments and converge towards stable, topologically consistent results. We show how refinement NCA (rNCA) can be easily applied to repair common topological errors produced by different base segmentation models and tasks: for fragmented retinal vessels, it yields 2-3% gains in Dice/clDice and improves Betti errors, reducing $β_0$ errors by 60% and $β_1$ by 20%; for myocardium, it repairs 61.5% of broken cases in a zero-shot setting while lowering ASSD and HD by 19% and 16%, respectively. This showcases NCA as effective and broadly applicable refiners.
☆ Dual-Phase Federated Deep Unlearning via Weight-Aware Rollback and Reconstruction
Federated Unlearning (FUL) focuses on client data and computing power to offer a privacy-preserving solution. However, high computational demands, complex incentive mechanisms, and disparities in client-side computing power often lead to long times and higher costs. To address these challenges, many existing methods rely on server-side knowledge distillation that solely removes the updates of the target client, overlooking the privacy embedded in the contributions of other clients, which can lead to privacy leakage. In this work, we introduce DPUL, a novel server-side unlearning method that deeply unlearns all influential weights to prevent privacy pitfalls. Our approach comprises three components: (i) identifying high-weight parameters by filtering client update magnitudes, and rolling them back to ensure deep removal. (ii) leveraging the variational autoencoder (VAE) to reconstruct and eliminate low-weight parameters. (iii) utilizing a projection-based technique to recover the model. Experimental results on four datasets demonstrate that DPUL surpasses state-of-the-art baselines, providing a 1%-5% improvement in accuracy and up to 12x reduction in time cost.
comment: 10 pages, submitted to INFOCOM 2026
☆ Fast Policy Learning for 6-DOF Position Control of Underwater Vehicles
Autonomous Underwater Vehicles (AUVs) require reliable six-degree-of-freedom (6-DOF) position control to operate effectively in complex and dynamic marine environments. Traditional controllers are effective under nominal conditions but exhibit degraded performance when faced with unmodeled dynamics or environmental disturbances. Reinforcement learning (RL) provides a powerful alternative but training is typically slow and sim-to-real transfer remains challenging. This work introduces a GPU-accelerated RL training pipeline built in JAX and MuJoCo-XLA (MJX). By jointly JIT-compiling large-scale parallel physics simulation and learning updates, we achieve training times of under two minutes.Through systematic evaluation of multiple RL algorithms, we show robust 6-DOF trajectory tracking and effective disturbance rejection in real underwater experiments, with policies transferred zero-shot from simulation. Our results provide the first explicit real-world demonstration of RL-based AUV position control across all six degrees of freedom.
☆ Control of a Twin Rotor using Twin Delayed Deep Deterministic Policy Gradient (TD3)
This paper proposes a reinforcement learning (RL) framework for controlling and stabilizing the Twin Rotor Aerodynamic System (TRAS) at specific pitch and azimuth angles and tracking a given trajectory. The complex dynamics and non-linear characteristics of the TRAS make it challenging to control using traditional control algorithms. However, recent developments in RL have attracted interest due to their potential applications in the control of multirotors. The Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm was used in this paper to train the RL agent. This algorithm is used for environments with continuous state and action spaces, similar to the TRAS, as it does not require a model of the system. The simulation results illustrated the effectiveness of the RL control method. Next, external disturbances in the form of wind disturbances were used to test the controller's effectiveness compared to conventional PID controllers. Lastly, experiments on a laboratory setup were carried out to confirm the controller's effectiveness in real-world applications.
comment: This is the Author Accepted Manuscript version of a paper accepted for publication. The final published version is available via IEEE Xplore
☆ On the Effectiveness of Membership Inference in Targeted Data Extraction from Large Language Models
Large Language Models (LLMs) are prone to memorizing training data, which poses serious privacy risks. Two of the most prominent concerns are training data extraction and Membership Inference Attacks (MIAs). Prior research has shown that these threats are interconnected: adversaries can extract training data from an LLM by querying the model to generate a large volume of text and subsequently applying MIAs to verify whether a particular data point was included in the training set. In this study, we integrate multiple MIA techniques into the data extraction pipeline to systematically benchmark their effectiveness. We then compare their performance in this integrated setting against results from conventional MIA benchmarks, allowing us to evaluate their practical utility in real-world extraction scenarios.
comment: Accepted to IEEE Conference on Secure and Trustworthy Machine Learning (SaTML) 2026
☆ Link-Aware Energy-Frugal Continual Learning for Fault Detection in IoT Networks
The use of lightweight machine learning (ML) models in internet of things (IoT) networks enables resource constrained IoT devices to perform on-device inference for several critical applications. However, the inference accuracy deteriorates due to the non-stationarity in the IoT environment and limited initial training data. To counteract this, the deployed models can be updated occasionally with new observed data samples. However, this approach consumes additional energy, which is undesirable for energy constrained IoT devices. This letter introduces an event-driven communication framework that strategically integrates continual learning (CL) in IoT networks for energy-efficient fault detection. Our framework enables the IoT device and the edge server (ES) to collaboratively update the lightweight ML model by adapting to the wireless link conditions for communication and the available energy budget. Evaluation on real-world datasets show that the proposed approach can outperform both periodic sampling and non-adaptive CL in terms of inference recall; our proposed approach achieves up to a 42.8% improvement, even under tight energy and bandwidth constraint.
☆ FROC: A Unified Framework with Risk-Optimized Control for Machine Unlearning in LLMs
Machine unlearning (MU) seeks to eliminate the influence of specific training examples from deployed models. As large language models (LLMs) become widely used, managing risks arising from insufficient forgetting or utility loss is increasingly crucial. Current MU techniques lack effective mechanisms for evaluating and controlling these risks, hindering the selection of strategies that appropriately balance safety and utility, and raising trust concerns surrounding the "right to be forgotten." To address these issues, we propose FROC, a unified framework with Risk-Optimized Control for machine unlearning in LLMs. FROC is built around a conformal-style risk-control formulation that expresses a user-specified risk budget on unlearning behavior. This probability-based constraint enables FROC to compare MU strategies, identify feasible operating regions, and guide hyperparameter selection according to desired trade-offs between forgetting sufficiency and utility preservation. To operationalize this constraint, FROC introduces a smoothly varying continuous risk model that aggregates forgetting deficiency and utility degradation into a single configuration-level score. Building on conformal risk analysis, FROC computes (1) the Conformal Unlearning Risk (CUR), a data-driven estimated value on the probability that forgotten samples continue to influence model predictions, and (2) risk-controlled configuration sets, which identify unlearning hyperparameters that are valid under the specified risk budget. Experiments across multiple LLM MU methods demonstrate that FROC produces stable, interpretable risk landscapes and reveals consistent relationships between unlearning configurations, semantic shift, and utility impact. FROC reframes MU as a controllable, risk-aware process and offers a practical foundation for managing unlearning behavior in large-scale LLM deployments.
☆ KD-PINN: Knowledge-Distilled PINNs for ultra-low-latency real-time neural PDE solvers
This work introduces Knowledge-Distilled Physics-Informed Neural Networks (KD-PINN), a framework that transfers the predictive accuracy of a high-capacity teacher model to a compact student through a continuous adaptation of the Kullback-Leibler divergence. To confirm its generality for various dynamics and dimensionalities, the framework is evaluated on a representative set of partial differential equations (PDEs). In all tested cases, the student model preserved the teacher's physical accuracy, with a mean RMSE increase below 0.64%, and achieved inference speedups ranging from 4.8x (Navier-Stokes) to 6.9x (Burgers). The distillation process also revealed a regularizing effect. With an average inference latency of 5.3 ms on CPU, the distilled models enter the ultra-low-latency real-time regime defined by sub-10 ms performance. Finally, this study examines how knowledge distillation reduces inference latency in PINNs to contribute to the development of accurate ultra-low-latency neural PDE solvers.
☆ Security and Detectability Analysis of Unicode Text Watermarking Methods Against Large Language Models
Securing digital text is becoming increasingly relevant due to the widespread use of large language models. Individuals' fear of losing control over data when it is being used to train such machine learning models or when distinguishing model-generated output from text written by humans. Digital watermarking provides additional protection by embedding an invisible watermark within the data that requires protection. However, little work has been taken to analyze and verify if existing digital text watermarking methods are secure and undetectable by large language models. In this paper, we investigate the security-related area of watermarking and machine learning models for text data. In a controlled testbed of three experiments, ten existing Unicode text watermarking methods were implemented and analyzed across six large language models: GPT-5, GPT-4o, Teuken 7B, Llama 3.3, Claude Sonnet 4, and Gemini 2.5 Pro. The findings of our experiments indicate that, especially the latest reasoning models, can detect a watermarked text. Nevertheless, all models fail to extract the watermark unless implementation details in the form of source code are provided. We discuss the implications for security researchers and practitioners and outline future research opportunities to address security concerns.
comment: Accepted for publication at the ICISSP 2026
☆ Error-Driven Prompt Optimization for Arithmetic Reasoning
Recent advancements in artificial intelligence have sparked interest in industrial agents capable of supporting analysts in regulated sectors, such as finance and healthcare, within tabular data workflows. A key capability for such systems is performing accurate arithmetic operations on structured data while ensuring sensitive information never leaves secure, on-premises environments. Here, we introduce an error-driven optimization framework for arithmetic reasoning that enhances a Code Generation Agent (CGA), specifically applied to on-premises small language models (SLMs). Through a systematic evaluation of a leading SLM (Qwen3 4B), we find that while the base model exhibits fundamental limitations in arithmetic tasks, our proposed error-driven method, which clusters erroneous predictions to refine prompt-rules iteratively, dramatically improves performance, elevating the model's accuracy to 70.8\%. Our results suggest that developing reliable, interpretable, and industrially deployable AI assistants can be achieved not only through costly fine-tuning but also via systematic, error-driven prompt optimization, enabling small models to surpass larger language models (GPT-3.5 Turbo) in a privacy-compliant manner.
☆ Face Identity Unlearning for Retrieval via Embedding Dispersion
Face recognition systems rely on learning highly discriminative and compact identity clusters to enable accurate retrieval. However, as with other surveillance-oriented technologies, such systems raise serious privacy concerns due to their potential for unauthorized identity tracking. While several works have explored machine unlearning as a means of privacy protection, their applicability to face retrieval - especially for modern embedding-based recognition models - remains largely unexplored. In this work, we study the problem of face identity unlearning for retrieval systems and present its inherent challenges. The goal is to make selected identities unretrievable by dispersing their embeddings on the hypersphere and preventing the formation of compact identity clusters that enable re-identification in the gallery. The primary challenge is to achieve this forgetting effect while preserving the discriminative structure of the embedding space and the retrieval performance of the model for the remaining identities. To address this, we evaluate several existing approximate class unlearning methods (e.g., Random Labeling, Gradient Ascent, Boundary Unlearning, and other recent approaches) in the context of face retrieval and propose a simple yet effective dispersion-based unlearning approach. Extensive experiments on standard benchmarks (VGGFace2, CelebA) demonstrate that our method achieves superior forgetting behavior while preserving retrieval utility.
comment: 12 pages, 1 figure, 5 tables, 10 equations. Preprint
☆ ALIGN-FL: Architecture-independent Learning through Invariant Generative component sharing in Federated Learning
We present ALIGN-FL, a novel approach to distributed learning that addresses the challenge of learning from highly disjoint data distributions through selective sharing of generative components. Instead of exchanging full model parameters, our framework enables privacy-preserving learning by transferring only generative capabilities across clients, while the server performs global training using synthetic samples. Through complementary privacy mechanisms: DP-SGD with adaptive clipping and Lipschitz regularized VAE decoders and a stateful architecture supporting heterogeneous clients, we experimentally validate our approach on MNIST and Fashion-MNIST datasets with cross-domain outliers. Our analysis demonstrates that both privacy mechanisms effectively map sensitive outliers to typical data points while maintaining utility in extreme Non-IID scenarios typical of cross-silo collaborations. Index Terms: Client-invariant Learning, Federated Learning (FL), Privacy-preserving Generative Models, Non-Independent and Identically Distributed (Non-IID), Heterogeneous Architectures
comment: Accepted at 2025 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC)
☆ No One Left Behind: How to Exploit the Incomplete and Skewed Multi-Label Data for Conversion Rate Prediction
In most real-world online advertising systems, advertisers typically have diverse customer acquisition goals. A common solution is to use multi-task learning (MTL) to train a unified model on post-click data to estimate the conversion rate (CVR) for these diverse targets. In practice, CVR prediction often encounters missing conversion data as many advertisers submit only a subset of user conversion actions due to privacy or other constraints, making the labels of multi-task data incomplete. If the model is trained on all available samples where advertisers submit user conversion actions, it may struggle when deployed to serve a subset of advertisers targeting specific conversion actions, as the training and deployment data distributions are mismatched. While considerable MTL efforts have been made, a long-standing challenge is how to effectively train a unified model with the incomplete and skewed multi-label data. In this paper, we propose a fine-grained Knowledge transfer framework for Asymmetric Multi-Label data (KAML). We introduce an attribution-driven masking strategy (ADM) to better utilize data with asymmetric multi-label data in training. However, the more relaxed masking in ADM is a double-edged sword: it provides additional training signals but also introduces noise due to skewed data. To address this, we propose a hierarchical knowledge extraction mechanism (HKE) to model the sample discrepancy within the target task tower. Finally, to maximize the utility of unlabeled samples, we incorporate ranking loss strategy to further enhance our model. The effectiveness of KAML has been demonstrated through comprehensive evaluations on offline industry datasets and online A/B tests, which show significant performance improvements over existing MTL baselines.
☆ MedInsightBench: Evaluating Medical Analytics Agents Through Multi-Step Insight Discovery in Multimodal Medical Data
In medical data analysis, extracting deep insights from complex, multi-modal datasets is essential for improving patient care, increasing diagnostic accuracy, and optimizing healthcare operations. However, there is currently a lack of high-quality datasets specifically designed to evaluate the ability of large multi-modal models (LMMs) to discover medical insights. In this paper, we introduce MedInsightBench, the first benchmark that comprises 332 carefully curated medical cases, each annotated with thoughtfully designed insights. This benchmark is intended to evaluate the ability of LMMs and agent frameworks to analyze multi-modal medical image data, including posing relevant questions, interpreting complex findings, and synthesizing actionable insights and recommendations. Our analysis indicates that existing LMMs exhibit limited performance on MedInsightBench, which is primarily attributed to their challenges in extracting multi-step, deep insights and the absence of medical expertise. Therefore, we propose MedInsightAgent, an automated agent framework for medical data analysis, composed of three modules: Visual Root Finder, Analytical Insight Agent, and Follow-up Question Composer. Experiments on MedInsightBench highlight pervasive challenges and demonstrate that MedInsightAgent can improve the performance of general LMMs in medical data insight discovery.
☆ LINA: Learning INterventions Adaptively for Physical Alignment and Generalization in Diffusion Models
Diffusion models (DMs) have achieved remarkable success in image and video generation. However, they still struggle with (1) physical alignment and (2) out-of-distribution (OOD) instruction following. We argue that these issues stem from the models' failure to learn causal directions and to disentangle causal factors for novel recombination. We introduce the Causal Scene Graph (CSG) and the Physical Alignment Probe (PAP) dataset to enable diagnostic interventions. This analysis yields three key insights. First, DMs struggle with multi-hop reasoning for elements not explicitly determined in the prompt. Second, the prompt embedding contains disentangled representations for texture and physics. Third, visual causal structure is disproportionately established during the initial, computationally limited denoising steps. Based on these findings, we introduce LINA (Learning INterventions Adaptively), a novel framework that learns to predict prompt-specific interventions, which employs (1) targeted guidance in the prompt and visual latent spaces, and (2) a reallocated, causality-aware denoising schedule. Our approach enforces both physical alignment and OOD instruction following in image and video DMs, achieving state-of-the-art performance on challenging causal generation tasks and the Winoground dataset. Our project page is at https://opencausalab.github.io/LINA.
☆ AutoTool: Dynamic Tool Selection and Integration for Agentic Reasoning ICCV 2025
Agentic reinforcement learning has advanced large language models (LLMs) to reason through long chain-of-thought trajectories while interleaving external tool use. Existing approaches assume a fixed inventory of tools, limiting LLM agents' adaptability to new or evolving toolsets. We present AutoTool, a framework that equips LLM agents with dynamic tool-selection capabilities throughout their reasoning trajectories. We first construct a 200k dataset with explicit tool-selection rationales across 1,000+ tools and 100+ tasks spanning mathematics, science, code generation, and multimodal reasoning. Building on this data foundation, AutoTool employs a dual-phase optimization pipeline: (i) supervised and RL-based trajectory stabilization for coherent reasoning, and (ii) KL-regularized Plackett-Luce ranking to refine consistent multi-step tool selection. Across ten diverse benchmarks, we train two base models, Qwen3-8B and Qwen2.5-VL-7B, with AutoTool. With fewer parameters, AutoTool consistently outperforms advanced LLM agents and tool-integration methods, yielding average gains of 6.4% in math & science reasoning, 4.5% in search-based QA, 7.7% in code generation, and 6.9% in multimodal understanding. In addition, AutoTool exhibits stronger generalization by dynamically leveraging unseen tools from evolving toolsets during inference.
comment: Best Paper Award at ICCV 2025 Workshop on Multi-Modal Reasoning for Agentic Intelligence
☆ BézierFlow: Bézier Stochastic Interpolant Schedulers for Few-Step Generation
We introduce BézierFlow, a lightweight training approach for few-step generation with pretrained diffusion and flow models. BézierFlow achieves a 2-3x performance improvement for sampling with $\leq$ 10 NFEs while requiring only 15 minutes of training. Recent lightweight training approaches have shown promise by learning optimal timesteps, but their scope remains restricted to ODE discretizations. To broaden this scope, we propose learning the optimal transformation of the sampling trajectory by parameterizing stochastic interpolant (SI) schedulers. The main challenge lies in designing a parameterization that satisfies critical desiderata, including boundary conditions, differentiability, and monotonicity of the SNR. To effectively meet these requirements, we represent scheduler functions as Bézier functions, where control points naturally enforce these properties. This reduces the problem to learning an ordered set of points in the time range, while the interpretation of the points changes from ODE timesteps to Bézier control points. Across a range of pretrained diffusion and flow models, BézierFlow consistently outperforms prior timestep-learning methods, demonstrating the effectiveness of expanding the search space from discrete timesteps to Bézier-based trajectory transformations.
comment: Project page: https://bezierflow.github.io
☆ Reflective Preference Optimization (RPO): Enhancing On-Policy Alignment via Hint-Guided Reflection
Direct Preference Optimization (DPO) has emerged as a lightweight and effective alternative to Reinforcement Learning from Human Feedback (RLHF) and Reinforcement Learning with AI Feedback (RLAIF) for aligning large language and vision-language models. However, the standard DPO formulation, in which both the chosen and rejected responses are generated by the same policy, suffers from a weak learning signal because the two responses often share similar errors and exhibit small Kullback-Leibler (KL) divergence. This leads to slow and unstable convergence. To address this limitation, we introduce Reflective Preference Optimization (RPO), a new framework that incorporates hint-guided reflection into the DPO paradigm. RPO uses external models to identify hallucination sources and generate concise reflective hints, enabling the construction of on-policy preference pairs with stronger contrastiveness and clearer preference signals. We theoretically show that conditioning on hints increases the expected preference margin through mutual information and improves sample efficiency while remaining within the policy distribution family. Empirically, RPO achieves superior alignment with fewer training samples and iterations, substantially reducing hallucination rates and delivering state-of-the-art performance across multimodal benchmarks.
☆ Learning to Retrieve with Weakened Labels: Robust Training under Label Noise
Neural Encoders are frequently used in the NLP domain to perform dense retrieval tasks, for instance, to generate the candidate documents for a given query in question-answering tasks. However, sparse annotation and label noise in the training data make it challenging to train or fine-tune such retrieval models. Although existing works have attempted to mitigate these problems by incorporating modified loss functions or data cleaning, these approaches either require some hyperparameters to tune during training or add substantial complexity to the training setup. In this work, we consider a label weakening approach to generate robust retrieval models in the presence of label noise. Instead of enforcing a single, potentially erroneous label for each query document pair, we allow for a set of plausible labels derived from both the observed supervision and the model's confidence scores. We perform an extensive evaluation considering two retrieval models, one re-ranking model, considering four diverse ranking datasets. To this end, we also consider a realistic noisy setting by using a semantic-aware noise generation technique to generate different ratios of noise. Our initial results show that label weakening can improve the performance of the retrieval tasks in comparison to 10 different state-of-the-art loss functions.
☆ CORE: Contrastive Masked Feature Reconstruction on Graphs
In the rapidly evolving field of self-supervised learning on graphs, generative and contrastive methodologies have emerged as two dominant approaches. Our study focuses on masked feature reconstruction (MFR), a generative technique where a model learns to restore the raw features of masked nodes in a self-supervised manner. We observe that both MFR and graph contrastive learning (GCL) aim to maximize agreement between similar elements. Building on this observation, we reveal a novel theoretical insight: under specific conditions, the objectives of MFR and node-level GCL converge, despite their distinct operational mechanisms. This theoretical connection suggests these approaches are complementary rather than fundamentally different, prompting us to explore their integration to enhance self-supervised learning on graphs. Our research presents Contrastive Masked Feature Reconstruction (CORE), a novel graph self-supervised learning framework that integrates contrastive learning into MFR. Specifically, we form positive pairs exclusively between the original and reconstructed features of masked nodes, encouraging the encoder to prioritize contextual information over the node's own features. Additionally, we leverage the masked nodes themselves as negative samples, combining MFR's reconstructive power with GCL's discriminative ability to better capture intrinsic graph structures. Empirically, our proposed framework CORE significantly outperforms MFR across node and graph classification tasks, demonstrating state-of-the-art results. In particular, CORE surpasses GraphMAE and GraphMAE2 by up to 2.80% and 3.72% on node classification tasks, and by up to 3.82% and 3.76% on graph classification tasks.
☆ ModSSC: A Modular Framework for Semi-Supervised Classification on Heterogeneous Data
Semi-supervised classification leverages both labeled and unlabeled data to improve predictive performance, but existing software support is fragmented across methods and modalities. We introduce ModSSC, an open source Python framework that unifies inductive and transductive semi-supervised classification in a modular code base. ModSSC implements a broad range of classical and recent algorithms, provides loaders for tabular, image, text, audio and graph datasets, and exposes a single configuration interface for specifying datasets, models and evaluation protocols. It supports both lightweight classical methods on small datasets running on CPU and recent deep approaches that can exploit multiple GPUs within the same experimental framework. Experiments are described declaratively in YAML, which facilitates reproducing existing work and running large comparative studies. ModSSC 1.0.0 is released under the MIT license with extensive documentation and tests, and is available at https://github.com/ModSSC/ModSSC.
comment: Preprint describing the open source ModSSC framework for inductive and transductive semi-supervised classification on heterogeneous data
☆ Better LMO-based Momentum Methods with Second-Order Information
The use of momentum in stochastic optimization algorithms has shown empirical success across a range of machine learning tasks. Recently, a new class of stochastic momentum algorithms has emerged within the Linear Minimization Oracle (LMO) framework--leading to state-of-the-art methods, such as Muon, Scion, and Gluon, that effectively solve deep neural network training problems. However, traditional stochastic momentum methods offer convergence guarantees no better than the ${O}(1/K^{1/4})$ rate. While several approaches--such as Hessian-Corrected Momentum (HCM)--have aimed to improve this rate, their theoretical results are generally restricted to the Euclidean norm setting. This limitation hinders their applicability in problems, where arbitrary norms are often required. In this paper, we extend the LMO-based framework by integrating HCM, and provide convergence guarantees under relaxed smoothness and arbitrary norm settings. We establish improved convergence rates of ${O}(1/K^{1/3})$ for HCM, which can adapt to the geometry of the problem and achieve a faster rate than traditional momentum. Experimental results on training Multi-Layer Perceptrons (MLPs) and Long Short-Term Memory (LSTM) networks verify our theoretical observations.
☆ Rethinking Physics-Informed Regression Beyond Training Loops and Bespoke Architectures
We revisit the problem of physics-informed regression, and propose a method that directly computes the state at the prediction point, simultaneously with the derivative and curvature information of the existing samples. We frame each prediction as a constrained optimisation problem, leveraging multivariate Taylor series expansions and explicitly enforcing physical laws. Each individual query can be processed with low computational cost without any pre- or re-training, in contrast to global function approximator-based solutions such as neural networks. Our comparative benchmarks on a reaction-diffusion system show competitive predictive accuracy relative to a neural network-based solution, while completely eliminating the need for long training loops, and remaining robust to changes in the sampling layout.
☆ Evaluating Adversarial Attacks on Federated Learning for Temperature Forecasting
Deep learning and federated learning (FL) are becoming powerful partners for next-generation weather forecasting. Deep learning enables high-resolution spatiotemporal forecasts that can surpass traditional numerical models, while FL allows institutions in different locations to collaboratively train models without sharing raw data, addressing efficiency and security concerns. While FL has shown promise across heterogeneous regions, its distributed nature introduces new vulnerabilities. In particular, data poisoning attacks, in which compromised clients inject manipulated training data, can degrade performance or introduce systematic biases. These threats are amplified by spatial dependencies in meteorological data, allowing localized perturbations to influence broader regions through global model aggregation. In this study, we investigate how adversarial clients distort federated surface temperature forecasts trained on the Copernicus European Regional ReAnalysis (CERRA) dataset. We simulate geographically distributed clients and evaluate patch-based and global biasing attacks on regional temperature forecasts. Our results show that even a small fraction of poisoned clients can mislead predictions across large, spatially connected areas. A global temperature bias attack from a single compromised client shifts predictions by up to -1.7 K, while coordinated patch attacks more than triple the mean squared error and produce persistent regional anomalies exceeding +3.5 K. Finally, we assess trimmed mean aggregation as a defense mechanism, showing that it successfully defends against global bias attacks (2-13\% degradation) but fails against patch attacks (281-603\% amplification), exposing limitations of outlier-based defenses for spatially correlated data.
☆ MicroPhaseNO: Adapting an Earthquake-Trained Phase Neural Operator for Microseismic Phase Picking
Seismic phase picking is very often used for microseismic monitoring and subsurface imaging. Traditional manual processing is not feasible for either real-time applications or large arrays. Deep learning-based pickers trained on large earthquake catalogs offer an automated alternative. However, they are typically optimized for high signal-to-noise, long-duration networks and struggle with the challenges presented by microseismic datasets, which are purpose-built for limited time without previously detected seismicity. In this study, we demonstrate how a network-wide earthquake phase picker, the Phase Neural Operator (PhaseNO), can be adapted to microseismic monitoring using transfer learning. Starting from a PhaseNO model pre-trained on more than 57,000 three-component earthquake and noise records, we fine-tune the model using only 200 labeled and noise seismograms from induced events in hydraulic-fracturing settings. The fine-tuned model thus preserves the rich spatio-temporal representation learned from abundant earthquake data, while adapting to the characteristics and labeling conventions of microseismic phases, which are often picked on peaks or troughs rather than onsets. We evaluate performance on three distinct real-world microseismic datasets with different network geometries and acquisition parameters. Compared to the original PhaseNO and a conventional workflow, the adapted model increases F1 score and accuracy by up to 30%, and strongly reduces systematic timing bias and pick uncertainty. Because the adaptation relies on a small, campaign-specific calibration set, the approach is readily transferable to other microseismic tasks where public earthquake data and pre-trained models are accessible. The associated code will be released openly at https://github.com/ayratabd/MicroPhaseNO.
comment: Submitted to Pure and Applied Geophysics
☆ Noise-Resilient Quantum Aggregation on NISQ for Federated ADAS Learning
Advanced Driver Assistance Systems (ADAS) increasingly employ Federated Learning (FL) to collaboratively train models across distributed vehicular nodes while preserving data privacy. Yet, conventional FL aggregation remains susceptible to noise, latency, and security constraints inherent to real-time vehicular networks. This paper introduces Noise-Resilient Quantum Federated Learning (NR-QFL), a hybrid quantum-classical framework that enables secure, low-latency aggregation through variational quantum circuits (VQCs) operating under Noisy Intermediate-Scale Quantum (NISQ) conditions. The framework encodes model parameters as quantum states with adaptive gate reparameterization, ensuring bounded-error convergence and provable resilience under Completely Positive Trace-Preserving (CPTP) dynamics. NR-QFL employs quantum entropy-based client selection and multi-server coordination for fairness and stability. Empirical validation shows consistent convergence with reduced gradient variance, lower communication overhead, and enhanced noise tolerance under constrained edge conditions. The framework establishes a scalable foundation for quantum-enhanced federated learning, enabling secure, efficient, and dynamically stable ADAS intelligence at the vehicular edge.
comment: This paper was accepted and presented at WinTechCon 2025, Bangalore, India, and is published in IEEE Xplore
☆ WAY: Estimation of Vessel Destination in Worldwide AIS Trajectory
The Automatic Identification System (AIS) enables data-driven maritime surveillance but suffers from reliability issues and irregular intervals. We address vessel destination estimation using global-scope AIS data by proposing a differentiated approach that recasts long port-to-port trajectories as a nested sequence structure. Using spatial grids, this method mitigates spatio-temporal bias while preserving detailed resolution. We introduce a novel deep learning architecture, WAY, designed to process these reformulated trajectories for long-term destination estimation days to weeks in advance. WAY comprises a trajectory representation layer and Channel-Aggregative Sequential Processing (CASP) blocks. The representation layer generates multi-channel vector sequences from kinematic and non-kinematic features. CASP blocks utilize multi-headed channel- and self-attention for aggregation and sequential information delivery. Additionally, we propose a task-specialized Gradient Dropout (GD) technique to enable many-to-many training on single labels, preventing biased feedback surges by stochastically blocking gradient flow based on sample length. Experiments on 5-year AIS data demonstrate WAY's superiority over conventional spatial grid-based approaches regardless of trajectory progression. Results further confirm that adopting GD leads to performance gains. Finally, we explore WAY's potential for real-world application through multitask learning for ETA estimation.
comment: Accepted to IEEE Transactions on Aerospace and Electronic Systems (TAES)
☆ PolySet: Restoring the Statistical Ensemble Nature of Polymers for Machine Learning
Machine-learning (ML) models in polymer science typically treat a polymer as a single, perfectly defined molecular graph, even though real materials consist of stochastic ensembles of chains with distributed lengths. This mismatch between physical reality and digital representation limits the ability of current models to capture polymer behaviour. Here we introduce PolySet, a framework that represents a polymer as a finite, weighted ensemble of chains sampled from an assumed molar-mass distribution. This ensemble-based encoding is independent of chemical detail, compatible with any molecular representation and illustrated here in the homopolymer case using a minimal language model. We show that PolySet retains higher-order distributional moments (such as Mz, Mz+1), enabling ML models to learn tail-sensitive properties with greatly improved stability and accuracy. By explicitly acknowledging the statistical nature of polymer matter, PolySet establishes a physically grounded foundation for future polymer machine learning, naturally extensible to copolymers, block architectures, and other complex topologies.
☆ Iterative Tuning of Nonlinear Model Predictive Control for Robotic Manufacturing Tasks
Manufacturing processes are often perturbed by drifts in the environment and wear in the system, requiring control re-tuning even in the presence of repetitive operations. This paper presents an iterative learning framework for automatic tuning of Nonlinear Model Predictive Control (NMPC) weighting matrices based on task-level performance feedback. Inspired by norm-optimal Iterative Learning Control (ILC), the proposed method adaptively adjusts NMPC weights Q and R across task repetitions to minimize key performance indicators (KPIs) related to tracking accuracy, control effort, and saturation. Unlike gradient-based approaches that require differentiating through the NMPC solver, we construct an empirical sensitivity matrix, enabling structured weight updates without analytic derivatives. The framework is validated through simulation on a UR10e robot performing carbon fiber winding on a tetrahedral core. Results demonstrate that the proposed approach converges to near-optimal tracking performance (RMSE within 0.3% of offline Bayesian Optimization (BO)) in just 4 online repetitions, compared to 100 offline evaluations required by BO algorithm. The method offers a practical solution for adaptive NMPC tuning in repetitive robotic tasks, combining the precision of carefully optimized controllers with the flexibility of online adaptation.
☆ SACn: Soft Actor-Critic with n-step Returns
Soft Actor-Critic (SAC) is widely used in practical applications and is now one of the most relevant off-policy online model-free reinforcement learning (RL) methods. The technique of n-step returns is known to increase the convergence speed of RL algorithms compared to their 1-step returns-based versions. However, SAC is notoriously difficult to combine with n-step returns, since their usual combination introduces bias in off-policy algorithms due to the changes in action distribution. While this problem is solved by importance sampling, a method for estimating expected values of one distribution using samples from another distribution, importance sampling may result in numerical instability. In this work, we combine SAC with n-step returns in a way that overcomes this issue. We present an approach to applying numerically stable importance sampling with simplified hyperparameter selection. Furthermore, we analyze the entropy estimation approach of Soft Actor-Critic in the context of the n-step maximum entropy framework and formulate the $τ$-sampled entropy estimation to reduce the variance of the learning target. Finally, we formulate the Soft Actor-Critic with n-step returns (SAC$n$) algorithm that we experimentally verify on MuJoCo simulated environments.
comment: Accepted at ICAART 2026
☆ Enhancing Node-Level Graph Domain Adaptation by Alleviating Local Dependency KDD 2026
Recent years have witnessed significant advancements in machine learning methods on graphs. However, transferring knowledge effectively from one graph to another remains a critical challenge. This highlights the need for algorithms capable of applying information extracted from a source graph to an unlabeled target graph, a task known as unsupervised graph domain adaptation (GDA). One key difficulty in unsupervised GDA is conditional shift, which hinders transferability. In this paper, we show that conditional shift can be observed only if there exists local dependencies among node features. To support this claim, we perform a rigorous analysis and also further provide generalization bounds of GDA when dependent node features are modeled using markov chains. Guided by the theoretical findings, we propose to improve GDA by decorrelating node features, which can be specifically implemented through decorrelated GCN layers and graph transformer layers. Our experimental results demonstrate the effectiveness of this approach, showing not only substantial performance enhancements over baseline GDA methods but also clear visualizations of small intra-class distances in the learned representations. Our code is available at https://github.com/TechnologyAiGroup/DFT
comment: Accepted to KDD 2026
☆ Weight Space Correlation Analysis: Quantifying Feature Utilization in Deep Learning Models
Deep learning models in medical imaging are susceptible to shortcut learning, relying on confounding metadata (e.g., scanner model) that is often encoded in image embeddings. The crucial question is whether the model actively utilizes this encoded information for its final prediction. We introduce Weight Space Correlation Analysis, an interpretable methodology that quantifies feature utilization by measuring the alignment between the classification heads of a primary clinical task and auxiliary metadata tasks. We first validate our method by successfully detecting artificially induced shortcut learning. We then apply it to probe the feature utilization of an SA-SonoNet model trained for Spontaneous Preterm Birth (sPTB) prediction. Our analysis confirmed that while the embeddings contain substantial metadata, the sPTB classifier's weight vectors were highly correlated with clinically relevant factors (e.g., birth weight) but decoupled from clinically irrelevant acquisition factors (e.g. scanner). Our methodology provides a tool to verify model trustworthiness, demonstrating that, in the absence of induced bias, the clinical model selectively utilizes features related to the genuine clinical signal.
comment: 46 pages
☆ Quanvolutional Neural Networks for Spectrum Peak-Finding
The analysis of spectra, such as Nuclear Magnetic Resonance (NMR) spectra, for the comprehensive characterization of peaks is a challenging task for both experts and machines, especially with complex molecules. This process, also known as deconvolution, involves identifying and quantifying the peaks in the spectrum. Machine learning techniques have shown promising results in automating this process. With the advent of quantum computing, there is potential to further enhance these techniques. In this work, inspired by the success of classical Convolutional Neural Networks (CNNs), we explore the use of Quanvolutional Neural Networks (QuanvNNs) for the multi-task peak finding problem, involving both peak counting and position estimation. We implement a simple and interpretable QuanvNN architecture that can be directly compared to its classical CNN counterpart, and evaluate its performance on a synthetic NMR-inspired dataset. Our results demonstrate that QuanvNNs outperform classical CNNs on challenging spectra, achieving an 11\% improvement in F1 score and a 30\% reduction in mean absolute error for peak position estimation. Additionally, QuanvNNs appear to exhibit better convergence stability for harder problems.
☆ Stopping Rules for Stochastic Gradient Descent via Anytime-Valid Confidence Sequences
We study stopping rules for stochastic gradient descent (SGD) for convex optimization from the perspective of anytime-valid confidence sequences. Classical analyses of SGD provide convergence guarantees in expectation or at a fixed horizon, but offer no statistically valid way to assess, at an arbitrary time, how close the current iterate is to the optimum. We develop an anytime-valid, data-dependent upper confidence sequence for the weighted average suboptimality of projected SGD, constructed via nonnegative supermartingales and requiring no smoothness or strong convexity. This confidence sequence yields a simple stopping rule that is provably $\varepsilon$-optimal with probability at least $1-α$ and is almost surely finite under standard stochastic approximation stepsizes. To the best of our knowledge, these are the first rigorous, time-uniform performance guarantees and finite-time $\varepsilon$-optimality certificates for projected SGD with general convex objectives, based solely on observable trajectory quantities.
☆ Towards Practical Large-scale Dynamical Heterogeneous Graph Embedding: Cold-start Resilient Recommendation
Deploying dynamic heterogeneous graph embeddings in production faces key challenges of scalability, data freshness, and cold-start. This paper introduces a practical, two-stage solution that balances deep graph representation with low-latency incremental updates. Our framework combines HetSGFormer, a scalable graph transformer for static learning, with Incremental Locally Linear Embedding (ILLE), a lightweight, CPU-based algorithm for real-time updates. HetSGFormer captures global structure with linear scalability, while ILLE provides rapid, targeted updates to incorporate new data, thus avoiding costly full retraining. This dual approach is cold-start resilient, leveraging the graph to create meaningful embeddings from sparse data. On billion-scale graphs, A/B tests show HetSGFormer achieved up to a 6.11% lift in Advertiser Value over previous methods, while the ILLE module added another 3.22% lift and improved embedding refresh timeliness by 83.2%. Our work provides a validated framework for deploying dynamic graph learning in production environments.
☆ From Overfitting to Reliability: Introducing the Hierarchical Approximate Bayesian Neural Network
In recent years, neural networks have revolutionized various domains, yet challenges such as hyperparameter tuning and overfitting remain significant hurdles. Bayesian neural networks offer a framework to address these challenges by incorporating uncertainty directly into the model, yielding more reliable predictions, particularly for out-of-distribution data. This paper presents Hierarchical Approximate Bayesian Neural Network, a novel approach that uses a Gaussian-inverse-Wishart distribution as a hyperprior of the network's weights to increase both the robustness and performance of the model. We provide analytical representations for the predictive distribution and weight posterior, which amount to the calculation of the parameters of Student's t-distributions in closed form with linear complexity with respect to the number of weights. Our method demonstrates robust performance, effectively addressing issues of overfitting and providing reliable uncertainty estimates, particularly for out-of-distribution tasks. Experimental results indicate that HABNN not only matches but often outperforms state-of-the-art models, suggesting a promising direction for future applications in safety-critical environments.
comment: 9 pages main body, 1 Figure, 15 pages Appendix
☆ TraPO: A Semi-Supervised Reinforcement Learning Framework for Boosting LLM Reasoning
Reinforcement learning with verifiable rewards (RLVR) has proven effective in training large reasoning models (LRMs) by leveraging answer-verifiable signals to guide policy optimization, which, however, suffers from high annotation costs. To alleviate this problem, recent work has explored unsupervised RLVR methods that derive rewards solely from the model's internal consistency, such as through entropy and majority voting. While seemingly promising, these methods often suffer from model collapse in the later stages of training, which may arise from the reinforcement of incorrect reasoning patterns in the absence of external supervision. In this work, we investigate a novel semi-supervised RLVR paradigm that utilizes a small labeled set to guide RLVR training on unlabeled samples. Our key insight is that supervised rewards are essential for stabilizing consistency-based training on unlabeled samples, ensuring that only reasoning patterns verified on labeled instances are incorporated into RL training. Technically, we propose an effective policy optimization algorithm, TraPO, that identifies reliable unlabeled samples by matching their learning trajectory similarity to labeled ones. Building on this, TraPO achieves remarkable data efficiency and strong generalization on six widely used mathematical reasoning benchmarks (AIME24/25, AMC, MATH-500, Minerva, and Olympiad) and three out-of-distribution tasks (ARC-c, GPQA-diamond, and MMLU-pro). With only 1K labeled and 3K unlabeled samples, TraPO reaches 42.6% average accuracy, surpassing the best unsupervised method trained on 45K unlabeled samples (38.3%). Notably, when using 4K labeled and 12K unlabeled samples, TraPO even outperforms the fully supervised model trained on the full 45K labeled samples on all benchmarks, while using only 10% of the labeled data. The code is available via https://github.com/ShenzhiYang2000/TRAPO.
☆ Harmonizing Generalization and Specialization: Uncertainty-Informed Collaborative Learning for Semi-supervised Medical Image Segmentation
Vision foundation models have demonstrated strong generalization in medical image segmentation by leveraging large-scale, heterogeneous pretraining. However, they often struggle to generalize to specialized clinical tasks under limited annotations or rare pathological variations, due to a mismatch between general priors and task-specific requirements. To address this, we propose Uncertainty-informed Collaborative Learning (UnCoL), a dual-teacher framework that harmonizes generalization and specialization in semi-supervised medical image segmentation. Specifically, UnCoL distills both visual and semantic representations from a frozen foundation model to transfer general knowledge, while concurrently maintaining a progressively adapting teacher to capture fine-grained and task-specific representations. To balance guidance from both teachers, pseudo-label learning in UnCoL is adaptively regulated by predictive uncertainty, which selectively suppresses unreliable supervision and stabilizes learning in ambiguous regions. Experiments on diverse 2D and 3D segmentation benchmarks show that UnCoL consistently outperforms state-of-the-art semi-supervised methods and foundation model baselines. Moreover, our model delivers near fully supervised performance with markedly reduced annotation requirements.
comment: This work has been submitted to the IEEE TMI for possible publication
☆ ADHint: Adaptive Hints with Difficulty Priors for Reinforcement Learning
To combine the advantages of Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL), recent methods have integrated ''hints'' into post-training, which are prefix segments of complete reasoning trajectories, aiming for powerful knowledge expansion and reasoning generalization. However, existing hint-based RL methods typically ignore difficulty when scheduling hint ratios and estimating relative advantages, leading to unstable learning and excessive imitation of off-policy hints. In this work, we propose ADHint, which treats difficulty as a key factor in both hint-ratio schedule and relative-advantage estimation to achieve a better trade-off between exploration and imitation. Specifically, we propose Adaptive Hint with Sample Difficulty Prior, which evaluates each sample's difficulty under the policy model and accordingly schedules an appropriate hint ratio to guide its rollouts. We also introduce Consistency-based Gradient Modulation and Selective Masking for Hint Preservation to modulate token-level gradients within hints, preventing biased and destructive updates. Additionally, we propose Advantage Estimation with Rollout Difficulty Posterior, which leverages the relative difficulty of rollouts with and without hints to estimate their respective advantages, thereby achieving more balanced updates. Extensive experiments across diverse modalities, model scales, and domains demonstrate that ADHint delivers superior reasoning ability and out-of-distribution generalization, consistently surpassing existing methods in both pass@1 and avg@8. Our code and dataset will be made publicly available upon paper acceptance.
☆ PvP: Data-Efficient Humanoid Robot Learning with Proprioceptive-Privileged Contrastive Representations
Achieving efficient and robust whole-body control (WBC) is essential for enabling humanoid robots to perform complex tasks in dynamic environments. Despite the success of reinforcement learning (RL) in this domain, its sample inefficiency remains a significant challenge due to the intricate dynamics and partial observability of humanoid robots. To address this limitation, we propose PvP, a Proprioceptive-Privileged contrastive learning framework that leverages the intrinsic complementarity between proprioceptive and privileged states. PvP learns compact and task-relevant latent representations without requiring hand-crafted data augmentations, enabling faster and more stable policy learning. To support systematic evaluation, we develop SRL4Humanoid, the first unified and modular framework that provides high-quality implementations of representative state representation learning (SRL) methods for humanoid robot learning. Extensive experiments on the LimX Oli robot across velocity tracking and motion imitation tasks demonstrate that PvP significantly improves sample efficiency and final performance compared to baseline SRL methods. Our study further provides practical insights into integrating SRL with RL for humanoid WBC, offering valuable guidance for data-efficient humanoid robot learning.
comment: 13 pages, 12 figures
☆ DiRe: Diversity-promoting Regularization for Dataset Condensation
In Dataset Condensation, the goal is to synthesize a small dataset that replicates the training utility of a large original dataset. Existing condensation methods synthesize datasets with significant redundancy, so there is a dire need to reduce redundancy and improve the diversity of the synthesized datasets. To tackle this, we propose an intuitive Diversity Regularizer (DiRe) composed of cosine similarity and Euclidean distance, which can be applied off-the-shelf to various state-of-the-art condensation methods. Through extensive experiments, we demonstrate that the addition of our regularizer improves state-of-the-art condensation methods on various benchmark datasets from CIFAR-10 to ImageNet-1K with respect to generalization and diversity metrics.
comment: Accepted to WACV 2026
☆ LikeBench: Evaluating Subjective Likability in LLMs for Personalization
A personalized LLM should remember user facts, apply them correctly, and adapt over time to provide responses that the user prefers. Existing LLM personalization benchmarks are largely centered on two axes: accurately recalling user information and accurately applying remembered information in downstream tasks. We argue that a third axis, likability, is both subjective and central to user experience, yet under-measured by current benchmarks. To measure likability holistically, we introduce LikeBench, a multi-session, dynamic evaluation framework that measures likability across multiple dimensions by how much an LLM can adapt over time to a user's preferences to provide more likable responses. In LikeBench, the LLMs engage in conversation with a simulated user and learn preferences only from the ongoing dialogue. As the interaction unfolds, models try to adapt to responses, and after each turn, they are evaluated for likability across seven dimensions by the same simulated user. To the best of our knowledge, we are the first to decompose likability into multiple diagnostic metrics: emotional adaptation, formality matching, knowledge adaptation, reference understanding, conversation length fit, humor fit, and callback, which makes it easier to pinpoint where a model falls short. To make the simulated user more realistic and discriminative, LikeBench uses fine-grained, psychologically grounded descriptive personas rather than the coarse high/low trait rating based personas used in prior work. Our benchmark shows that strong memory performance does not guarantee high likability: DeepSeek R1, with lower memory accuracy (86%, 17 facts/profile), outperformed Qwen3 by 28% on likability score despite Qwen3's higher memory accuracy (93%, 43 facts/profile). Even SOTA models like GPT-5 adapt well in short exchanges but show only limited robustness in longer, noisier interactions.
☆ Multi-fidelity aerodynamic data fusion by autoencoder transfer learning
Accurate aerodynamic prediction often relies on high-fidelity simulations; however, their prohibitive computational costs severely limit their applicability in data-driven modeling. This limitation motivates the development of multi-fidelity strategies that leverage inexpensive low-fidelity information without compromising accuracy. Addressing this challenge, this work presents a multi-fidelity deep learning framework that combines autoencoder-based transfer learning with a newly developed Multi-Split Conformal Prediction (MSCP) strategy to achieve uncertainty-aware aerodynamic data fusion under extreme data scarcity. The methodology leverages abundant Low-Fidelity (LF) data to learn a compact latent physics representation, which acts as a frozen knowledge base for a decoder that is subsequently fine-tuned using scarce HF samples. Tested on surface-pressure distributions for NACA airfoils (2D) and a transonic wing (3D) databases, the model successfully corrects LF deviations and achieves high-accuracy pressure predictions using minimal HF training data. Furthermore, the MSCP framework produces robust, actionable uncertainty bands with pointwise coverage exceeding 95%. By combining extreme data efficiency with uncertainty quantification, this work offers a scalable and reliable solution for aerodynamic regression in data-scarce environments.
comment: 29 pages, 13 figures
☆ Deep Q-Learning-Based Intelligent Scheduling for ETL Optimization in Heterogeneous Data Environments
This paper addresses the challenges of low scheduling efficiency, unbalanced resource allocation, and poor adaptability in ETL (Extract-Transform-Load) processes under heterogeneous data environments by proposing an intelligent scheduling optimization framework based on deep Q-learning. The framework formalizes the ETL scheduling process as a Markov Decision Process and enables adaptive decision-making by a reinforcement learning agent in high-dimensional state spaces to dynamically optimize task allocation and resource scheduling. The model consists of a state representation module, a feature embedding network, a Q-value estimator, and a reward evaluation mechanism, which collectively consider task dependencies, node load states, and data flow characteristics to derive the optimal scheduling strategy in complex environments. A multi-objective reward function is designed to balance key performance indicators such as average scheduling delay, task completion rate, throughput, and resource utilization. Sensitivity experiments further verify the model's robustness under changes in hyperparameters, environmental dynamics, and data scale. Experimental results show that the proposed deep Q-learning scheduling framework significantly reduces scheduling delay, improves system throughput, and enhances execution stability under multi-source heterogeneous task conditions, demonstrating the strong potential of reinforcement learning in complex data scheduling and resource management, and providing an efficient and scalable optimization strategy for intelligent data pipeline construction.
☆ Understanding Structured Financial Data with LLMs: A Case Study on Fraud Detection
Detecting fraud in financial transactions typically relies on tabular models that demand heavy feature engineering to handle high-dimensional data and offer limited interpretability, making it difficult for humans to understand predictions. Large Language Models (LLMs), in contrast, can produce human-readable explanations and facilitate feature analysis, potentially reducing the manual workload of fraud analysts and informing system refinements. However, they perform poorly when applied directly to tabular fraud detection due to the difficulty of reasoning over many features, the extreme class imbalance, and the absence of contextual information. To bridge this gap, we introduce FinFRE-RAG, a two-stage approach that applies importance-guided feature reduction to serialize a compact subset of numeric/categorical attributes into natural language and performs retrieval-augmented in-context learning over label-aware, instance-level exemplars. Across four public fraud datasets and three families of open-weight LLMs, FinFRE-RAG substantially improves F1/MCC over direct prompting and is competitive with strong tabular baselines in several settings. Although these LLMs still lag behind specialized classifiers, they narrow the performance gap and provide interpretable rationales, highlighting their value as assistive tools in fraud analysis.
☆ Progressive Refinement of E-commerce Search Ranking Based on Short-Term Activities of the Buyer
In e-commerce shopping, aligning search results with a buyer's immediate needs and preferences presents a significant challenge, particularly in adapting search results throughout the buyer's shopping journey as they move from the initial stages of browsing to making a purchase decision or shift from one intent to another. This study presents a systematic approach to adapting e-commerce search results based on the current context. We start with basic methods and incrementally incorporate more contextual information and state-of-the-art techniques to improve the search outcomes. By applying this evolving contextual framework to items displayed on the search engine results page (SERP), we progressively align search outcomes more closely with the buyer's interests and current search intentions. Our findings demonstrate that this incremental enhancement, from simple heuristic autoregressive features to advanced sequence models, significantly improves ranker performance. The integration of contextual techniques enhances the performance of our production ranker, leading to improved search results in both offline and online A/B testing in terms of Mean Reciprocal Rank (MRR). Overall, the paper details iterative methodologies and their substantial contributions to search result contextualization on e-commerce platforms.
☆ Alada: Alternating Adaptation of Momentum Method for Memory-Efficient Matrix Optimization
This work proposes Alada, an adaptive momentum method for stochastic optimization over large-scale matrices. Alada employs a rank-one factorization approach to estimate the second moment of gradients, where factors are updated alternatively to minimize the estimation error. Alada achieves sublinear memory overheads and can be readily extended to optimizing tensor-shaped variables.We also equip Alada with a first moment estimation rule, which enhances the algorithm's robustness without incurring additional memory overheads. The theoretical performance of Alada aligns with that of traditional methods such as Adam. Numerical studies conducted on several natural language processing tasks demonstrate the reduction in memory overheads and the robustness in training large models relative to Adam and its variants.
☆ Scaling Bidirectional Spans and Span Violations in Attention Mechanism
The canonical $O(N^2)$ Transformer remains the empirical performance frontier in sequence modeling, and its training can be further optimized by addressing geometric inefficiency. We propose an optimization framework that leverages an asymmetric projection to decompose the backward-pass gradients into parallel spans and orthogonal violations, while keeping the canonical forward-pass $QKV$ structure intact. Through consistent experimental validation across various decomposition and projection setups, we provide strong theoretical evidence: the standard attention gradient is suboptimal. We demonstrated that selectively scaling these components, focusing primarily on $0^{th}$ order bidirectional parallel spans, yields the most effective learning signal. On the limited WikiText-2 dataset, and using a crude configuration, this method achieved a $0.56\%$ reduction in validation loss, confirming the framework's fundamental validity and suggesting significant potential gains on larger datasets and deeper training regimes
☆ Motus: A Unified Latent Action World Model
While a general embodied agent must function as a unified system, current methods are built on isolated models for understanding, world modeling, and control. This fragmentation prevents unifying multimodal generative capabilities and hinders learning from large-scale, heterogeneous data. In this paper, we propose Motus, a unified latent action world model that leverages existing general pretrained models and rich, sharable motion information. Motus introduces a Mixture-of-Transformer (MoT) architecture to integrate three experts (i.e., understanding, video generation, and action) and adopts a UniDiffuser-style scheduler to enable flexible switching between different modeling modes (i.e., world models, vision-language-action models, inverse dynamics models, video generation models, and video-action joint prediction models). Motus further leverages the optical flow to learn latent actions and adopts a recipe with three-phase training pipeline and six-layer data pyramid, thereby extracting pixel-level "delta action" and enabling large-scale action pretraining. Experiments show that Motus achieves superior performance against state-of-the-art methods in both simulation (a +15% improvement over X-VLA and a +45% improvement over Pi0.5) and real-world scenarios(improved by +11~48%), demonstrating unified modeling of all functionalities and priors significantly benefits downstream robotic tasks.
☆ Comprehensive Deployment-Oriented Assessment for Cross-Environment Generalization in Deep Learning-Based mmWave Radar Sensing
This study presents the first comprehensive evaluation of spatial generalization techniques, which are essential for the practical deployment of deep learning-based radio-frequency (RF) sensing. Focusing on people counting in indoor environments using frequency-modulated continuous-wave (FMCW) multiple-input multiple-output (MIMO) radar, we systematically investigate a broad set of approaches, including amplitude-based statistical preprocessing (sigmoid weighting and threshold zeroing), frequency-domain filtering, autoencoder-based background suppression, data augmentation strategies, and transfer learning. Experimental results collected across two environments with different layouts demonstrate that sigmoid-based amplitude weighting consistently achieves superior cross-environment performance, yielding 50.1% and 55.2% reductions in root-mean-square error (RMSE) and mean absolute error (MAE), respectively, compared with baseline methods. Data augmentation provides additional though modest benefits, with improvements up to 8.8% in MAE. By contrast, transfer learning proves indispensable for large spatial shifts, achieving 82.1% and 91.3% reductions in RMSE and MAE, respectively, with 540 target-domain samples. Taken together, these findings establish a highly practical direction for developing radar sensing systems capable of maintaining robust accuracy under spatial variations by integrating deep learning models with amplitude-based preprocessing and efficient transfer learning.
comment: 8 pages, 6 figures. Comprehensive evaluation of preprocessing, data augmentation, and transfer learning for cross-environment generalization in deep learning-based mmWave radar sensing
☆ Deep Learning-Driven Inversion Framework for Shear Modulus Estimation in Magnetic Resonance Elastography (DIME)
The Multimodal Direct Inversion (MMDI) algorithm is widely used in Magnetic Resonance Elastography (MRE) to estimate tissue shear stiffness. However, MMDI relies on the Helmholtz equation, which assumes wave propagation in a uniform, homogeneous, and infinite medium. Furthermore, the use of the Laplacian operator makes MMDI highly sensitive to noise, which compromises the accuracy and reliability of stiffness estimates. In this study, we propose the Deep-Learning driven Inversion Framework for Shear Modulus Estimation in MRE (DIME), aimed at enhancing the robustness of inversion. DIME is trained on the displacement fields-stiffness maps pair generated through Finite Element Modelling (FEM) simulations. To capture local wave behavior and improve robustness to global image variations, DIME is trained on small image patches. We first validated DIME using homogeneous and heterogeneous datasets simulated with FEM, where DIME produced stiffness maps with low inter-pixel variability, accurate boundary delineation, and higher correlation with ground truth (GT) compared to MMDI. Next, DIME was evaluated in a realistic anatomy-informed simulated liver dataset with known GT and compared directly to MMDI. DIME reproduced ground-truth stiffness patterns with high fidelity (r = 0.99, R^2 = 0.98), while MMDI showed greater underestimation. After validating DIME on synthetic data, we tested the model in in vivo liver MRE data from eight healthy and seven fibrotic subjects. DIME preserved physiologically consistent stiffness patterns and closely matched MMDI, which showed directional bias. Overall, DIME showed higher correlation with ground truth and visually similar stiffness patterns, whereas MMDI displayed a larger bias that can potentially be attributed to directional filtering. These preliminary results highlight the feasibility of DIME for clinical applications in MRE.
☆ General OOD Detection via Model-aware and Subspace-aware Variable Priority
Out-of-distribution (OOD) detection is essential for determining when a supervised model encounters inputs that differ meaningfully from its training distribution. While widely studied in classification, OOD detection for regression and survival analysis remains limited due to the absence of discrete labels and the challenge of quantifying predictive uncertainty. We introduce a framework for OOD detection that is simultaneously model aware and subspace aware, and that embeds variable prioritization directly into the detection step. The method uses the fitted predictor to construct localized neighborhoods around each test case that emphasize the features driving the model's learned relationship and downweight directions that are less relevant to prediction. It produces OOD scores without relying on global distance metrics or estimating the full feature density. The framework is applicable across outcome types, and in our implementation we use random forests, where the rule structure yields transparent neighborhoods and effective scoring. Experiments on synthetic and real data benchmarks designed to isolate functional shifts show consistent improvements over existing methods. We further demonstrate the approach in an esophageal cancer survival study, where distribution shifts related to lymphadenectomy identify patterns relevant to surgical guidelines.
comment: 29 pages, 11 figures
☆ Calibrating Uncertainty for Zero-Shot Adversarial CLIP
CLIP delivers strong zero-shot classification but remains highly vulnerable to adversarial attacks. Previous work of adversarial fine-tuning largely focuses on matching the predicted logits between clean and adversarial examples, which overlooks uncertainty calibration and may degrade the zero-shot generalization. A common expectation in reliable uncertainty estimation is that predictive uncertainty should increase as inputs become more difficult or shift away from the training distribution. However, we frequently observe the opposite in the adversarial setting: perturbations not only degrade accuracy but also suppress uncertainty, leading to severe miscalibration and unreliable over-confidence. This overlooked phenomenon highlights a critical reliability gap beyond robustness. To bridge this gap, we propose a novel adversarial fine-tuning objective for CLIP considering both prediction accuracy and uncertainty alignments. By reparameterizing the output of CLIP as the concentration parameter of a Dirichlet distribution, we propose a unified representation that captures relative semantic structure and the magnitude of predictive confidence. Our objective aligns these distributions holistically under perturbations, moving beyond single-logit anchoring and restoring calibrated uncertainty. Experiments on multiple zero-shot classification benchmarks demonstrate that our approach effectively restores calibrated uncertainty and achieves competitive adversarial robustness while maintaining clean accuracy.
☆ Tackling Snow-Induced Challenges: Safe Autonomous Lane-Keeping with Robust Reinforcement Learning
This paper proposes two new algorithms for the lane keeping system (LKS) in autonomous vehicles (AVs) operating under snowy road conditions. These algorithms use deep reinforcement learning (DRL) to handle uncertainties and slippage. They include Action-Robust Recurrent Deep Deterministic Policy Gradient (AR-RDPG) and end-to-end Action-Robust convolutional neural network Attention Deterministic Policy Gradient (AR-CADPG), two action-robust approaches for decision-making. In the AR-RDPG method, within the perception layer, camera images are first denoised using multi-scale neural networks. Then, the centerline coefficients are extracted by a pre-trained deep convolutional neural network (DCNN). These coefficients, concatenated with the driving characteristics, are used as input to the control layer. The AR-CADPG method presents an end-to-end approach in which a convolutional neural network (CNN) and an attention mechanism are integrated within a DRL framework. Both methods are first trained in the CARLA simulator and validated under various snowy scenarios. Real-world experiments on a Jetson Nano-based autonomous vehicle confirm the feasibility and stability of the learned policies. Among the two models, the AR-CADPG approach demonstrates superior path-tracking accuracy and robustness, highlighting the effectiveness of combining temporal memory, adversarial resilience, and attention mechanisms in AVs.
☆ VoroLight: Learning Quality Volumetric Voronoi Meshes from General Inputs
We present VoroLight, a differentiable framework for 3D shape reconstruction based on Voronoi meshing. Our approach generates smooth, watertight surfaces and topologically consistent volumetric meshes directly from diverse inputs, including images, implicit shape level-set fields, point clouds and meshes. VoroLight operates in three stages: it first initializes a surface using a differentiable Voronoi formulation, then refines surface quality through a polygon-face sphere training stage, and finally reuses the differentiable Voronoi formulation for volumetric optimization with additional interior generator points. Project page: https://jiayinlu19960224.github.io/vorolight/
☆ CoDeQ: End-to-End Joint Model Compression with Dead-Zone Quantizer for High-Sparsity and Low-Precision Networks
While joint pruning--quantization is theoretically superior to sequential application, current joint methods rely on auxiliary procedures outside the training loop for finding compression parameters. This reliance adds engineering complexity and hyperparameter tuning, while also lacking a direct data-driven gradient signal, which might result in sub-optimal compression. In this paper, we introduce CoDeQ, a simple, fully differentiable method for joint pruning--quantization. Our approach builds on a key observation: the dead-zone of a scalar quantizer is equivalent to magnitude pruning, and can be used to induce sparsity directly within the quantization operator. Concretely, we parameterize the dead-zone width and learn it via backpropagation, alongside the quantization parameters. This design provides explicit control of sparsity, regularized by a single global hyperparameter, while decoupling sparsity selection from bit-width selection. The result is a method for Compression with Dead-zone Quantizer (CoDeQ) that supports both fixed-precision and mixed-precision quantization (controlled by an optional second hyperparameter). It simultaneously determines the sparsity pattern and quantization parameters in a single end-to-end optimization. Consequently, CoDeQ does not require any auxiliary procedures, making the method architecture-agnostic and straightforward to implement. On ImageNet with ResNet-18, CoDeQ reduces bit operations to ~5% while maintaining close to full precision accuracy in both fixed and mixed-precision regimes.
comment: Source code at https://github.com/saintslab/CoDeQ
☆ Application of Deep Learning in Biological Data Compression
Cryogenic electron microscopy (Cryo-EM) has become an essential tool for capturing high-resolution biological structures. Despite its advantage in visualizations, the large storage size of Cryo-EM data file poses significant challenges for researchers and educators. This paper investigates the application of deep learning, specifically implicit neural representation (INR), to compress Cryo-EM biological data. The proposed approach first extracts the binary map of each file according to the density threshold. The density map is highly repetitive, ehich can be effectively compressed by GZIP. The neural network then trains to encode spatial density information, allowing the storage of network parameters and learnable latent vectors. To improve reconstruction accuracy, I further incorporate the positional encoding to enhance spatial representation and a weighted Mean Squared Error (MSE) loss function to balance density distribution variations. Using this approach, my aim is to provide a practical and efficient biological data compression solution that can be used for educational and research purpose, while maintaining a reasonable compression ratio and reconstruction quality from file to file.
☆ Understanding When Graph Convolutional Networks Help: A Diagnostic Study on Label Scarcity and Structural Properties
Graph Convolutional Networks (GCNs) have become a standard approach for semi-supervised node classification, yet practitioners lack clear guidance on when GCNs provide meaningful improvements over simpler baselines. We present a diagnostic study using the Amazon Computers co-purchase data to understand when and why GCNs help. Through systematic experiments with simulated label scarcity, feature ablation, and per-class analysis, we find that GCN performance depends critically on the interaction between graph homophily and feature quality. GCNs provide the largest gains under extreme label scarcity, where they leverage neighborhood structure to compensate for limited supervision. Surprisingly, GCNs can match their original performance even when node features are replaced with random noise, suggesting that structure alone carries sufficient signal on highly homophilous graphs. However, GCNs hurt performance when homophily is low and features are already strong, as noisy neighbors corrupt good predictions. Our quadrant analysis reveals that GCNs help in three of four conditions and only hurt when low homophily meets strong features. These findings offer practical guidance for practitioners deciding whether to adopt graph-based methods.
comment: 10 pages, 8 tables,5 figures
☆ Continuous Edit Distance, Geodesics and Barycenters of Time-varying Persistence Diagrams
We introduce the Continuous Edit Distance (CED), a geodesic and elastic distance for time-varying persistence diagrams (TVPDs). The CED extends edit-distance ideas to TVPDs by combining local substitution costs with penalized deletions/insertions, controlled by two parameters: \(α\) (trade-off between temporal misalignment and diagram discrepancy) and \(β\) (gap penalty). We also provide an explicit construction of CED-geodesics. Building on these ingredients, we present two practical barycenter solvers, one stochastic and one greedy, that monotonically decrease the CED Frechet energy. Empirically, the CED is robust to additive perturbations (both temporal and spatial), recovers temporal shifts, and supports temporal pattern search. On real-life datasets, the CED achieves clustering performance comparable or better than standard elastic dissimilarities, while our clustering based on CED-barycenters yields superior classification results. Overall, the CED equips TVPD analysis with a principled distance, interpretable geodesics, and practical barycenters, enabling alignment, comparison, averaging, and clustering directly in the space of TVPDs. A C++ implementation is provided for reproducibility at the following address https://github.com/sebastien-tchitchek/ContinuousEditDistance.
comment: 30 pages, 13 figures, 2 tables
☆ Investigating Data Pruning for Pretraining Biological Foundation Models at Scale AAAI 2026
Biological foundation models (BioFMs), pretrained on large-scale biological sequences, have recently shown strong potential in providing meaningful representations for diverse downstream bioinformatics tasks. However, such models often rely on millions to billions of training sequences and billions of parameters, resulting in prohibitive computational costs and significant barriers to reproducibility and accessibility, particularly for academic labs. To address these challenges, we investigate the feasibility of data pruning for BioFM pretraining and propose a post-hoc influence-guided data pruning framework tailored to biological domains. Our approach introduces a subset-based self-influence formulation that enables efficient estimation of sample importance at low computational cost, and builds upon it two simple yet effective selection strategies, namely Top-k Influence (Top I) and Coverage-Centric Influence (CCI). We empirically validate our method on two representative BioFMs, RNA-FM and ESM-C. For RNA, our framework consistently outperforms random selection baselines under an extreme pruning rate of over 99 percent, demonstrating its effectiveness. Furthermore, we show the generalizability of our framework on protein-related tasks using ESM-C. In particular, our coreset even outperforms random subsets that are ten times larger in both RNA and protein settings, revealing substantial redundancy in biological sequence datasets. These findings underscore the potential of influence-guided data pruning to substantially reduce the computational cost of BioFM pretraining, paving the way for more efficient, accessible, and sustainable biological AI research.
comment: Accepted by AAAI 2026
☆ SeVeDo: A Heterogeneous Transformer Accelerator for Low-Bit Inference via Hierarchical Group Quantization and SVD-Guided Mixed Precision
Low-bit quantization is a promising technique for efficient transformer inference by reducing computational and memory overhead. However, aggressive bitwidth reduction remains challenging due to activation outliers, leading to accuracy degradation. Existing methods, such as outlier-handling and group quantization, achieve high accuracy but incur substantial energy consumption. To address this, we propose SeVeDo, an energy-efficient SVD-based heterogeneous accelerator that structurally separates outlier-sensitive components into a high-precision low-rank path, while the remaining computations are executed in a low-bit residual datapath with group quantization. To further enhance efficiency, Hierarchical Group Quantization (HGQ) combines coarse-grained floating-point scaling with fine-grained shifting, effectively reducing dequantization cost. Also, SVD-guided mixed precision (SVD-MP) statically allocates higher bitwidths to precision-sensitive components identified through low-rank decomposition, thereby minimizing floating-point operation cost. Experimental results show that SeVeDo achieves a peak energy efficiency of 13.8TOPS/W, surpassing conventional designs, with 12.7TOPS/W on ViT-Base and 13.4TOPS/W on Llama2-7B benchmarks.
LLM-based Personalized Portfolio Recommender: Integrating Large Language Models and Reinforcement Learning for Intelligent Investment Strategy Optimization
In modern financial markets, investors increasingly seek personalized and adaptive portfolio strategies that reflect their individual risk preferences and respond to dynamic market conditions. Traditional rule-based or static optimization approaches often fail to capture the nonlinear interactions among investor behavior, market volatility, and evolving financial objectives. To address these limitations, this paper introduces the LLM-based Personalized Portfolio Recommender , an integrated framework that combines Large Language Models, reinforcement learning, and individualized risk preference modeling to support intelligent investment decision-making.
☆ CTIGuardian: A Few-Shot Framework for Mitigating Privacy Leakage in Fine-Tuned LLMs
Large Language Models (LLMs) are often fine-tuned to adapt their general-purpose knowledge to specific tasks and domains such as cyber threat intelligence (CTI). Fine-tuning is mostly done through proprietary datasets that may contain sensitive information. Owners expect their fine-tuned model to not inadvertently leak this information to potentially adversarial end users. Using CTI as a use case, we demonstrate that data-extraction attacks can recover sensitive information from fine-tuned models on CTI reports, underscoring the need for mitigation. Retraining the full model to eliminate this leakage is computationally expensive and impractical. We propose an alternative approach, which we call privacy alignment, inspired by safety alignment in LLMs. Just like safety alignment teaches the model to abide by safety constraints through a few examples, we enforce privacy alignment through few-shot supervision, integrating a privacy classifier and a privacy redactor, both handled by the same underlying LLM. We evaluate our system, called CTIGuardian, using GPT-4o mini and Mistral-7B Instruct models, benchmarking against Presidio, a named entity recognition (NER) baseline. Results show that CTIGuardian provides a better privacy-utility trade-off than NER based models. While we demonstrate its effectiveness on a CTI use case, the framework is generic enough to be applicable to other sensitive domains.
comment: Accepted at the 18th Cybersecurity Experimentation and Test Workshop (CSET), in conjunction with ACSAC 2025
☆ Evaluating Singular Value Thresholds for DNN Weight Matrices based on Random Matrix Theory
This study evaluates thresholds for removing singular values from singular value decomposition-based low-rank approximations of deep neural network weight matrices. Each weight matrix is modeled as the sum of signal and noise matrices. The low-rank approximation is obtained by removing noise-related singular values using a threshold based on random matrix theory. To assess the adequacy of this threshold, we propose an evaluation metric based on the cosine similarity between the singular vectors of the signal and original weight matrices. The proposed metric is used in numerical experiments to compare two threshold estimation methods.
☆ Machine Learning Architectures for the Estimation of Predicted Occupancy Grids in Road Traffic
This paper introduces a novel machine learning architecture for an efficient estimation of the probabilistic space-time representation of complex traffic scenarios. A detailed representation of the future traffic scenario is of significant importance for autonomous driving and for all active safety systems. In order to predict the future space-time representation of the traffic scenario, first the type of traffic scenario is identified and then the machine learning algorithm maps the current state of the scenario to possible future states. The input to the machine learning algorithms is the current state representation of a traffic scenario, termed as the Augmented Occupancy Grid (AOG). The output is the probabilistic space-time representation which includes uncertainties regarding the behaviour of the traffic participants and is termed as the Predicted Occupancy Grid (POG). The novel architecture consists of two Stacked Denoising Autoencoders (SDAs) and a set of Random Forests. It is then compared with the other two existing architectures that comprise of SDAs and DeconvNet. The architectures are validated with the help of simulations and the comparisons are made both in terms of accuracy and computational time. Also, a brief overview on the applications of POGs in the field of active safety is presented.
comment: Journal of Advances in Information Technology
☆ PAC-Bayes Bounds for Multivariate Linear Regression and Linear Autoencoders NeurIPS 2025
Linear Autoencoders (LAEs) have shown strong performance in state-of-the-art recommender systems. However, this success remains largely empirical, with limited theoretical understanding. In this paper, we investigate the generalizability -- a theoretical measure of model performance in statistical learning -- of multivariate linear regression and LAEs. We first propose a PAC-Bayes bound for multivariate linear regression, extending the earlier bound for single-output linear regression by Shalaeva et al., and establish sufficient conditions for its convergence. We then show that LAEs, when evaluated under a relaxed mean squared error, can be interpreted as constrained multivariate linear regression models on bounded data, to which our bound adapts. Furthermore, we develop theoretical methods to improve the computational efficiency of optimizing the LAE bound, enabling its practical evaluation on large models and real-world datasets. Experimental results demonstrate that our bound is tight and correlates well with practical ranking metrics such as Recall@K and NDCG@K.
comment: Accepted at NeurIPS 2025 (https://openreview.net/forum?id=S1zkFSby8G)
☆ Next-generation reservoir computing validated by classification task
An emerging computing paradigm, so-called next-generation reservoir computing (NG-RC) is investigated. True to its namesake, NG-RC requires no actual reservoirs for input data mixing but rather computing the polynomial terms directly from the time series inputs. However, benchmark tests so far reported have been one-sided, limited to prediction tasks of temporal waveforms such as Lorenz 63 attractor and Mackey-Glass chaotic signal. We will demonstrate for the first time that NG-RC can perform classification task as good as conventional RC. This validates the versatile computational capability of NG-RC in tasks of both prediction and classification.
☆ Predicted-occupancy grids for vehicle safety applications based on autoencoders and the Random Forest algorithm
In this paper, a probabilistic space-time representation of complex traffic scenarios is predicted using machine learning algorithms. Such a representation is significant for all active vehicle safety applications especially when performing dynamic maneuvers in a complex traffic scenario. As a first step, a hierarchical situation classifier is used to distinguish the different types of traffic scenarios. This classifier is responsible for identifying the type of the road infrastructure and the safety-relevant traffic participants of the driving environment. With each class representing similar traffic scenarios, a set of Random Forests (RFs) is individually trained to predict the probabilistic space-time representation, which depicts the future behavior of traffic participants. This representation is termed as a Predicted-Occupancy Grid (POG). The input to the RFs is an Augmented Occupancy Grid (AOG). In order to increase the learning accuracy of the RFs and to perform better predictions, the AOG is reduced to low-dimensional features using a Stacked Denoising Autoencoder (SDA). The excellent performance of the proposed machine learning approach consisting of SDAs and RFs is demonstrated in simulations and in experiments with real vehicles. An application of POGs to estimate the criticality of traffic scenarios and to determine safe trajectories is also presented.
comment: 2017 International Joint Conference on Neural Networks (IJCNN)
☆ Qonvolution: Towards Learning High-Frequency Signals with Queried Convolution
Accurately learning high-frequency signals is a challenge in computer vision and graphics, as neural networks often struggle with these signals due to spectral bias or optimization difficulties. While current techniques like Fourier encodings have made great strides in improving performance, there remains scope for improvement when presented with high-frequency information. This paper introduces Queried-Convolutions (Qonvolutions), a simple yet powerful modification using the neighborhood properties of convolution. Qonvolution convolves a low-frequency signal with queries (such as coordinates) to enhance the learning of intricate high-frequency signals. We empirically demonstrate that Qonvolutions enhance performance across a variety of high-frequency learning tasks crucial to both the computer vision and graphics communities, including 1D regression, 2D super-resolution, 2D image regression, and novel view synthesis (NVS). In particular, by combining Gaussian splatting with Qonvolutions for NVS, we showcase state-of-the-art performance on real-world complex scenes, even outperforming powerful radiance field models on image quality.
comment: 28 pages, 8 figures, Project Page: https://abhi1kumar.github.io/qonvolution/
☆ Probability Estimation for Predicted-Occupancy Grids in Vehicle Safety Applications Based on Machine Learning
This paper presents a method to predict the evolution of a complex traffic scenario with multiple objects. The current state of the scenario is assumed to be known from sensors and the prediction is taking into account various hypotheses about the behavior of traffic participants. This way, the uncertainties regarding the behavior of traffic participants can be modelled in detail. In the first part of this paper a model-based approach is presented to compute Predicted-Occupancy Grids (POG), which are introduced as a grid-based probabilistic representation of the future scenario hypotheses. However, due to the large number of possible trajectories for each traffic participant, the model-based approach comes with a very high computational load. Thus, a machine-learning approach is adopted for the computation of POGs. This work uses a novel grid-based representation of the current state of the traffic scenario and performs the mapping to POGs. This representation consists of augmented cells in an occupancy grid. The adopted machine-learning approach is based on the Random Forest algorithm. Simulations of traffic scenarios are performed to compare the machine-learning with the model-based approach. The results are promising and could enable the real-time computation of POGs for vehicle safety applications. With this detailed modelling of uncertainties, crucial components in vehicle safety systems like criticality estimation and trajectory planning can be improved.
comment: 2016 IEEE Intelligent Vehicles Symposium
☆ Wait, Wait, Wait... Why Do Reasoning Models Loop?
Reasoning models (e.g., DeepSeek-R1) generate long chains of thought to solve harder problems, but they often loop, repeating the same text at low temperatures or with greedy decoding. We study why this happens and what role temperature plays. With open reasoning models, we find that looping is common at low temperature. Larger models tend to loop less, and distilled students loop significantly even when their teachers rarely do. This points to mismatches between the training distribution and the learned model, which we refer to as errors in learning, as a key cause. To understand how such errors cause loops, we introduce a synthetic graph reasoning task and demonstrate two mechanisms. First, risk aversion caused by hardness of learning: when the correct progress-making action is hard to learn but an easy cyclic action is available, the model puts relatively more probability on the cyclic action and gets stuck. Second, even when there is no hardness, Transformers show an inductive bias toward temporally correlated errors, so the same few actions keep being chosen and loops appear. Higher temperature reduces looping by promoting exploration, but it does not fix the errors in learning, so generations remain much longer than necessary at high temperature; in this sense, temperature is a stopgap rather than a holistic solution. We end with a discussion of training-time interventions aimed at directly reducing errors in learning.
☆ Distillation of Discrete Diffusion by Exact Conditional Distribution Matching
Discrete diffusion models (DDMs) are a powerful class of generative models for categorical data, but they typically require many function evaluations for a single sample, making inference expensive. Existing acceleration methods either rely on approximate simulators, such as $τ$-leaping, or on distillation schemes that train new student models and auxiliary networks with proxy objectives. We propose a simple and principled distillation alternative based on \emph{conditional distribution matching}. Our key observation is that the reverse conditional distribution of clean data given a noisy state, $p_{0\mid t}(x_0 \mid x_t)$, admits a Markov decomposition through intermediate times and can be recovered from marginal density ratios and the known forward CTMC kernel. We exploit this structure to define distillation objectives that directly match conditional distributions between a pre-trained teacher and a low-NFE student, both for one-step and few-step samplers.
comment: [work in progress]
☆ Meta-GPT: Decoding the Metasurface Genome with Generative Artificial Intelligence
Advancing artificial intelligence for physical sciences requires representations that are both interpretable and compatible with the underlying laws of nature. We introduce METASTRINGS, a symbolic language for photonics that expresses nanostructures as textual sequences encoding materials, geometries, and lattice configurations. Analogous to molecular textual representations in chemistry, METASTRINGS provides a framework connecting human interpretability with computational design by capturing the structural hierarchy of photonic metasurfaces. Building on this representation, we develop Meta-GPT, a foundation transformer model trained on METASTRINGS and finetuned with physics-informed supervised, reinforcement, and chain-of-thought learning. Across various design tasks, the model achieves <3% mean-squared spectral error and maintains >98% syntactic validity, generating diverse metasurface prototypes whose experimentally measured optical responses match their target spectra. These results demonstrate that Meta-GPT can learn the compositional rules of light-matter interactions through METASTRINGS, laying a rigorous foundation for AI-driven photonics and representing an important step toward a metasurface genome project.
comment: Keywords: Physics-informed machine learning; Transformer models; Reinforcement learning; Chain-of-thought reasoning; Metasurfaces; Nanophotonics; Inverse design
☆ Olmo 3
We introduce Olmo 3, a family of state-of-the-art, fully-open language models at the 7B and 32B parameter scales. Olmo 3 model construction targets long-context reasoning, function calling, coding, instruction following, general chat, and knowledge recall. This release includes the entire model flow, i.e., the full lifecycle of the family of models, including every stage, checkpoint, data point, and dependency used to build it. Our flagship model, Olmo 3 Think 32B, is the strongest fully-open thinking model released to-date.
☆ Pattern-Guided Diffusion Models
Diffusion models have shown promise in forecasting future data from multivariate time series. However, few existing methods account for recurring structures, or patterns, that appear within the data. We present Pattern-Guided Diffusion Models (PGDM), which leverage inherent patterns within temporal data for forecasting future time steps. PGDM first extracts patterns using archetypal analysis and estimates the most likely next pattern in the sequence. By guiding predictions with this pattern estimate, PGDM makes more realistic predictions that fit within the set of known patterns. We additionally introduce a novel uncertainty quantification technique based on archetypal analysis, and we dynamically scale the guidance level based on the pattern estimate uncertainty. We apply our method to two well-motivated forecasting applications, predicting visual field measurements and motion capture frames. On both, we show that pattern guidance improves PGDM's performance (MAE / CRPS) by up to 40.67% / 56.26% and 14.12% / 14.10%, respectively. PGDM also outperforms baselines by up to 65.58% / 84.83% and 93.64% / 92.55%.
comment: Under review
☆ Informing Acquisition Functions via Foundation Models for Molecular Discovery
Bayesian Optimization (BO) is a key methodology for accelerating molecular discovery by estimating the mapping from molecules to their properties while seeking the optimal candidate. Typically, BO iteratively updates a probabilistic surrogate model of this mapping and optimizes acquisition functions derived from the model to guide molecule selection. However, its performance is limited in low-data regimes with insufficient prior knowledge and vast candidate spaces. Large language models (LLMs) and chemistry foundation models offer rich priors to enhance BO, but high-dimensional features, costly in-context learning, and the computational burden of deep Bayesian surrogates hinder their full utilization. To address these challenges, we propose a likelihood-free BO method that bypasses explicit surrogate modeling and directly leverages priors from general LLMs and chemistry-specific foundation models to inform acquisition functions. Our method also learns a tree-structured partition of the molecular search space with local acquisition functions, enabling efficient candidate selection via Monte Carlo Tree Search. By further incorporating coarse-grained LLM-based clustering, it substantially improves scalability to large candidate sets by restricting acquisition function evaluations to clusters with statistically higher property values. We show through extensive experiments and ablations that the proposed method substantially improves scalability, robustness, and sample efficiency in LLM-guided BO for molecular discovery.
☆ Hierarchical Multi-agent Large Language Model Reasoning for Autonomous Functional Materials Discovery
Artificial intelligence is reshaping scientific exploration, but most methods automate procedural tasks without engaging in scientific reasoning, limiting autonomy in discovery. We introduce Materials Agents for Simulation and Theory in Electronic-structure Reasoning (MASTER), an active learning framework where large language models autonomously design, execute, and interpret atomistic simulations. In MASTER, a multimodal system translates natural language into density functional theory workflows, while higher-level reasoning agents guide discovery through a hierarchy of strategies, including a single agent baseline and three multi-agent approaches: peer review, triage-ranking, and triage-forms. Across two chemical applications, CO adsorption on Cu-surface transition metal (M) adatoms and on M-N-C catalysts, reasoning-driven exploration reduces required atomistic simulations by up to 90% relative to trial-and-error selection. Reasoning trajectories reveal chemically grounded decisions that cannot be explained by stochastic sampling or semantic bias. Altogether, multi-agent collaboration accelerates materials discovery and marks a new paradigm for autonomous scientific exploration.
comment: Keywords: Multi-agent reasoning; Large language models; Active learning; AI-driven simulation; Materials discovery; Density functional theory; Surface chemistry
☆ A Complete Guide to Spherical Equivariant Graph Transformers
Spherical equivariant graph neural networks (EGNNs) provide a principled framework for learning on three-dimensional molecular and biomolecular systems, where predictions must respect the rotational symmetries inherent in physics. These models extend traditional message-passing GNNs and Transformers by representing node and edge features as spherical tensors that transform under irreducible representations of the rotation group SO(3), ensuring that predictions change in physically meaningful ways under rotations of the input. This guide develops a complete, intuitive foundation for spherical equivariant modeling - from group representations and spherical harmonics, to tensor products, Clebsch-Gordan decomposition, and the construction of SO(3)-equivariant kernels. Building on this foundation, we construct the Tensor Field Network and SE(3)-Transformer architectures and explain how they perform equivariant message-passing and attention on geometric graphs. Through clear mathematical derivations and annotated code excerpts, this guide serves as a self-contained introduction for researchers and learners seeking to understand or implement spherical EGNNs for applications in chemistry, molecular property prediction, protein structure modeling, and generative modeling.
comment: This paper is a technical version of the article originally published in Alchemy Bio (99 pages, 46 figures)
Sliding Window Recurrences for Sequence Models
Multi-hybrid architectures are poised to take over language modeling due to better quality and performance. We introduce a hierarchical decomposition framework for linear recurrences that allows us to develop algorithms aligned with GPU memory hierarchies, yielding Sliding Window Recurrences. We focus specifically on truncating recurrences to hardware-aligned windows which are naturally jagged, limiting costly inter-warp communication. Using SWR, we develop Phalanx layers that serve as drop-in replacements for windowed attention or linear recurrences. In 1B parameter multi-hybrid models, Phalanx achieves over 10-40% speedup across 4K to 32K context length over optimized Transformers while matching perplexity.
☆ Adaptive digital twins for predictive decision-making: Online Bayesian learning of transition dynamics
This work shows how adaptivity can enhance value realization of digital twins in civil engineering. We focus on adapting the state transition models within digital twins represented through probabilistic graphical models. The bi-directional interaction between the physical and virtual domains is modeled using dynamic Bayesian networks. By treating state transition probabilities as random variables endowed with conjugate priors, we enable hierarchical online learning of transition dynamics from a state to another through effortless Bayesian updates. We provide the mathematical framework to account for a larger class of distributions with respect to the current literature. To compute dynamic policies with precision updates we solve parametric Markov decision processes through reinforcement learning. The proposed adaptive digital twin framework enjoys enhanced personalization, increased robustness, and improved cost-effectiveness. We assess our approach on a case study involving structural health monitoring and maintenance planning of a railway bridge.
☆ Capturing reduced-order quantum many-body dynamics out of equilibrium via neural ordinary differential equations
Out-of-equilibrium quantum many-body systems exhibit rapid correlation buildup that underlies many emerging phenomena. Exact wave-function methods to describe this scale exponentially with particle number; simpler mean-field approaches neglect essential two-particle correlations. The time-dependent two-particle reduced density matrix (TD2RDM) formalism offers a middle ground by propagating the two-particle reduced density matrix (2RDM) and closing the BBGKY hierarchy with a reconstruction of the three-particle cumulant. But the validity and existence of time-local reconstruction functionals ignoring memory effects remain unclear across different dynamical regimes. We show that a neural ODE model trained on exact 2RDM data (no dimensionality reduction) can reproduce its dynamics without any explicit three-particle information -- but only in parameter regions where the Pearson correlation between the two- and three-particle cumulants is large. In the anti-correlated or uncorrelated regime, the neural ODE fails, indicating that no simple time-local functional of the instantaneous two-particle cumulant can capture the evolution. The magnitude of the time-averaged three-particle-correlation buildup appears to be the primary predictor of success: For a moderate correlation buildup, both neural ODE predictions and existing TD2RDM reconstructions are accurate, whereas stronger values lead to systematic breakdowns. These findings pinpoint the need for memory-dependent kernels in the three-particle cumulant reconstruction for the latter regime. Our results place the neural ODE as a model-agnostic diagnostic tool that maps the regime of applicability of cumulant expansion methods and guides the development of non-local closure schemes. More broadly, the ability to learn high-dimensional RDM dynamics from limited data opens a pathway to fast, data-driven simulation of correlated quantum matter.
☆ Intelligent matter consisting of active particles
In this book chapter, we review how systems of simple motile agents can be used as a pathway to intelligent systems. It is a well known result from nature that large groups of entities following simple rules, such as swarms of animals, can give rise to much more complex collective behavior in a display of emergence. This begs the question whether we can emulate this behavior in synthetic matter and drive it to a point where the collective behavior reaches the complexity level of intelligent systems. Here, we will use a formalized notion of "intelligent matter" and compare it to recent results in the field of active matter. First, we will explore the approach of emergent computing in which specialized active matter systems are designed to directly solve a given task through emergent behavior. This we will then contrast with the approach of physical reservoir computing powered by the dynamics of active particle systems. In this context, we will also describe a novel reservoir computing scheme for active particles driven ultrasonically or via light refraction.
comment: 14 pages, 5 figures
☆ Exploring Machine Learning, Deep Learning, and Explainable AI Methods for Seasonal Precipitation Prediction in South America
Forecasting meteorological variables is challenging due to the complexity of their processes, requiring advanced models for accuracy. Accurate precipitation forecasts are vital for society. Reliable predictions help communities mitigate climatic impacts. Based on the current relevance of artificial intelligence (AI), classical machine learning (ML) and deep learning (DL) techniques have been used as an alternative or complement to dynamic modeling. However, there is still a lack of broad investigations into the feasibility of purely data-driven approaches for precipitation forecasting. This study aims at addressing this issue where different classical ML and DL approaches for forecasting precipitation in South America, taking into account all 2019 seasons, are considered in a detailed investigation. The selected classical ML techniques were Random Forests and extreme gradient boosting (XGBoost), while the DL counterparts were a 1D convolutional neural network (CNN 1D), a long short-term memory (LSTM) model, and a gated recurrent unit (GRU) model. Additionally, the Brazilian Global Atmospheric Model (BAM) was used as a representative of the traditional dynamic modeling approach. We also relied on explainable artificial intelligence (XAI) to provide some explanations for the models behaviors. LSTM showed strong predictive performance while BAM, the traditional dynamic model representative, had the worst results. Despite presented the higher latency, LSTM was most accurate for heavy precipitation. If cost is a concern, XGBoost offers lower latency with slightly accuracy loss. The results of this research confirm the viability of DL models for climate forecasting, solidifying a global trend in major meteorological and climate forecasting centers.
☆ KLO-Net: A Dynamic K-NN Attention U-Net with CSP Encoder for Efficient Prostate Gland Segmentation from MRI
Real-time deployment of prostate MRI segmentation on clinical workstations is often bottlenecked by computational load and memory footprint. Deep learning-based prostate gland segmentation approaches remain challenging due to anatomical variability. To bridge this efficiency gap while still maintaining reliable segmentation accuracy, we propose KLO-Net, a dynamic K-Nearest Neighbor attention U-Net with Cross Stage Partial, i.e., CSP, encoder for efficient prostate gland segmentation from MRI scan. Unlike the regular K-NN attention mechanism, the proposed dynamic K-NN attention mechanism allows the model to adaptively determine the number of attention connections for each spatial location within a slice. In addition, CSP blocks address the computational load to reduce memory consumption. To evaluate the model's performance, comprehensive experiments and ablation studies are conducted on two public datasets, i.e., PROMISE12 and PROSTATEx, to validate the proposed architecture. The detailed comparative analysis demonstrates the model's advantage in computational efficiency and segmentation quality.
comment: Preprint. Accepted to SPIE Medical Imaging 2026: Image Processing
☆ Let's (not) just put things in Context: Test-Time Training for Long-Context LLMs
Progress on training and architecture strategies has enabled LLMs with millions of tokens in context length. However, empirical evidence suggests that such long-context LLMs can consume far more text than they can reliably use. On the other hand, it has been shown that inference-time compute can be used to scale performance of LLMs, often by generating thinking tokens, on challenging tasks involving multi-step reasoning. Through controlled experiments on sandbox long-context tasks, we find that such inference-time strategies show rapidly diminishing returns and fail at long context. We attribute these failures to score dilution, a phenomenon inherent to static self-attention. Further, we show that current inference-time strategies cannot retrieve relevant long-context signals under certain conditions. We propose a simple method that, through targeted gradient updates on the given context, provably overcomes limitations of static self-attention. We find that this shift in how inference-time compute is spent leads to consistently large performance improvements across models and long-context benchmarks. Our method leads to large 12.6 and 14.1 percentage point improvements for Qwen3-4B on average across subsets of LongBench-v2 and ZeroScrolls benchmarks. The takeaway is practical: for long context, a small amount of context-specific training is a better use of inference compute than current inference-time scaling strategies like producing more thinking tokens.
☆ One Permutation Is All You Need: Fast, Reliable Variable Importance and Model Stress-Testing
Reliable estimation of feature contributions in machine learning models is essential for trust, transparency and regulatory compliance, especially when models are proprietary or otherwise operate as black boxes. While permutation-based methods are a standard tool for this task, classical implementations rely on repeated random permutations, introducing computational overhead and stochastic instability. In this paper, we show that by replacing multiple random permutations with a single, deterministic, and optimal permutation, we achieve a method that retains the core principles of permutation-based importance while being non-random, faster, and more stable. We validate this approach across nearly 200 scenarios, including real-world household finance and credit risk applications, demonstrating improved bias-variance tradeoffs and accuracy in challenging regimes such as small sample sizes, high dimensionality, and low signal-to-noise ratios. Finally, we introduce Systemic Variable Importance, a natural extension designed for model stress-testing that explicitly accounts for feature correlations. This framework provides a transparent way to quantify how shocks or perturbations propagate through correlated inputs, revealing dependencies that standard variable importance measures miss. Two real-world case studies demonstrate how this metric can be used to audit models for hidden reliance on protected attributes (e.g., gender or race), enabling regulators and practitioners to assess fairness and systemic risk in a principled and computationally efficient manner.
☆ Group-Theoretic Reinforcement Learning of Dynamical Decoupling Sequences
Dynamical decoupling seeks to mitigate phase decoherence in qubits by applying a carefully designed sequence of effectively instantaneous electromagnetic pulses. Although analytic solutions exist for pulse timings that are optimal under specific noise regimes, identifying the optimal timings for a realistic noise spectrum remains challenging. We propose a reinforcement learning (RL)-based method for designing pulse sequences on qubits. Our novel action set enables the RL agent to efficiently navigate this inherently non-convex optimization landscape. The action set, derived from Thompson's group $F$, is applicable to a broad class of sequential decision problems whose states can be represented as bounded sequences. We demonstrate that our RL agent can learn pulse sequences that minimize dephasing without requiring explicit knowledge of the underlying noise spectrum. This work opens the possibility for real-time learning of optimal dynamical decoupling sequences on qubits which are dephasing-limited. The model-free nature of our algorithm suggests that the agent may ultimately learn optimal pulse sequences even in the presence of unmodeled physical effects, such as pulse errors or non-Gaussian noise.
☆ OPTIMA: Optimal One-shot Pruning for LLMs via Quadratic Programming Reconstruction
Post-training model pruning is a promising solution, yet it faces a trade-off: simple heuristics that zero weights are fast but degrade accuracy, while principled joint optimization methods recover accuracy but are computationally infeasible at modern scale. One-shot methods such as SparseGPT offer a practical trade-off in optimality by applying efficient, approximate heuristic weight updates. To close this gap, we introduce OPTIMA, a practical one-shot post-training pruning method that balances accuracy and scalability. OPTIMA casts layer-wise weight reconstruction after mask selection as independent, row-wise Quadratic Programs (QPs) that share a common layer Hessian. Solving these QPs yields the per-row globally optimal update with respect to the reconstruction objective given the estimated Hessian. The shared-Hessian structure makes the problem highly amenable to batching on accelerators. We implement an accelerator-friendly QP solver that accumulates one Hessian per layer and solves many small QPs in parallel, enabling one-shot post-training pruning at scale on a single accelerator without fine-tuning. OPTIMA integrates with existing mask selectors and consistently improves zero-shot performance across multiple LLM families and sparsity regimes, yielding up to 3.97% absolute accuracy improvement. On an NVIDIA H100, OPTIMA prunes a 8B-parameter transformer end-to-end in 40 hours with 60GB peak memory. Together, these results set a new state-of-the-art accuracy-efficiency trade-offs for one-shot post-training pruning.
☆ Privacy-Enhancing Infant Cry Classification with Federated Transformers and Denoising Regularization
Infant cry classification can aid early assessment of infant needs. However, deployment of such solutions is limited by privacy concerns around audio data, sensitivity to background noise, and domain shift across recording environments. We present an end-to-end infant cry analysis pipeline that integrates a denoising autoencoder (DAE), a convolutional tokenizer, and a Transformer encoder trained using communication-efficient federated learning (FL). The system performs on-device denoising, adaptive segmentation, post hoc calibration, and energy-based out-of-distribution (OOD) abstention. Federated training employs a regularized control variate update with 8-bit adapter deltas under secure aggregation. Using the Baby Chillanto and Donate-a-Cry datasets with ESC-50 noise overlays, the model achieves a macro F1 score of 0.938, an AUC of 0.962, and an Expected Calibration Error (ECE) of 0.032, while reducing per-round client upload from approximately 36 to 42 MB to 3.3 MB. Real-time edge inference on an NVIDIA Jetson Nano (4 GB, TensorRT FP16) achieves 96 ms per one-second spectrogram frame. These results demonstrate a practical path toward privacy-preserving, noise-robust, and communication-efficient infant cry classification suitable for federated deployment.
comment: This paper was accepted for presentation and presented at the 2025 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM 2025)
☆ Measuring Uncertainty Calibration
We make two contributions to the problem of estimating the $L_1$ calibration error of a binary classifier from a finite dataset. First, we provide an upper bound for any classifier where the calibration function has bounded variation. Second, we provide a method of modifying any classifier so that its calibration error can be upper bounded efficiently without significantly impacting classifier performance and without any restrictive assumptions. All our results are non-asymptotic and distribution-free. We conclude by providing advice on how to measure calibration error in practice. Our methods yield practical procedures that can be run on real-world datasets with modest overhead.
comment: 28 pages
☆ Simultaneous and Proportional Finger Motion Decoding Using Spatial Features from High-Density Surface Electromyography
Restoring natural and intuitive hand function requires simultaneous and proportional control (SPC) of multiple degrees of freedom (DoFs). This study systematically evaluated the multichannel linear descriptors-based block field method (MLD-BFM) for continuous decoding of five finger-joint DoFs by leveraging the rich spatial information of high-density surface electromyography (HD sEMG). Twenty-one healthy participants performed dynamic sinusoidal finger movements while HD sEMG signals were recorded from the \textit{extensor digitorum communis} (EDC) and \textit{flexor digitorum superficialis} (FDS) muscles. MLD-BFM extracted region-specific spatial features, including effective field strength ($Σ$), field-strength variation rate ($Φ$), and spatial complexity ($Ω$). Model performance was optimized (block size: $2 \times 2$; window: 0.15 s) and compared with conventional time-domain features and dimensionality reduction approaches when applied to multi-output regression models. MLD-BFM consistently achieved the highest $\mathrm{R}^2_{\mathrm{vw}}$ values across all models. The multilayer perceptron (MLP) combined with MLD-BFM yielded the best performance ($\mathrm{R}^2_{\mathrm{vw}} = 86.68\% \pm 0.33$). Time-domain features also showed strong predictive capability and were statistically comparable to MLD-BFM in some models, whereas dimensionality reduction techniques exhibited lower accuracy. Decoding accuracy was higher for the middle and ring fingers than for the thumb. Overall, MLD-BFM improved continuous finger movement decoding accuracy, underscoring the importance of taking advantage of the spatial richness of HD sEMG. These findings suggest that spatially structured features enhance SPC and provide practical guidance for designing robust, real-time, and responsive myoelectric interfaces.
comment: 39 pages, 13 figures, 2 tables
☆ Safe Online Control-Informed Learning
This paper proposes a Safe Online Control-Informed Learning framework for safety-critical autonomous systems. The framework unifies optimal control, parameter estimation, and safety constraints into an online learning process. It employs an extended Kalman filter to incrementally update system parameters in real time, enabling robust and data-efficient adaptation under uncertainty. A softplus barrier function enforces constraint satisfaction during learning and control while eliminating the dependence on high-quality initial guesses. Theoretical analysis establishes convergence and safety guarantees, and the framework's effectiveness is demonstrated on cart-pole and robot-arm systems.
☆ EvoLattice: Persistent Internal-Population Evolution through Multi-Alternative Quality-Diversity Graph Representations for LLM-Guided Program Discovery
Large language models (LLMs) are increasingly used to evolve programs and multi-agent systems, yet most existing approaches rely on overwrite-based mutations that maintain only a single candidate at a time. Such methods discard useful variants, suffer from destructive edits, and explore a brittle search space prone to structural failure. We introduce EvoLattice, a framework that represents an entire population of candidate programs or agent behaviors within a single directed acyclic graph. Each node stores multiple persistent alternatives, and every valid path through the graph defines a distinct executable candidate, yielding a large combinatorial search space without duplicating structure. EvoLattice enables fine-grained alternative-level evaluation by scoring each alternative across all paths in which it appears, producing statistics that reveal how local design choices affect global performance. These statistics provide a dense, data-driven feedback signal for LLM-guided mutation, recombination, and pruning, while preserving successful components. Structural correctness is guaranteed by a deterministic self-repair mechanism that enforces acyclicity and dependency consistency independently of the LLM. EvoLattice naturally extends to agent evolution by interpreting alternatives as prompt fragments or sub-agent behaviors. Across program synthesis (proxy and optimizer meta-learning), EvoLattice yields more stable evolution, greater expressivity, and stronger improvement trajectories than prior LLM-guided methods. The resulting dynamics resemble quality-diversity optimization, emerging implicitly from EvoLattice's internal multi-alternative representation rather than an explicit external archive.
☆ Dropout Neural Network Training Viewed from a Percolation Perspective
In this work, we investigate the existence and effect of percolation in training deep Neural Networks (NNs) with dropout. Dropout methods are regularisation techniques for training NNs, first introduced by G. Hinton et al. (2012). These methods temporarily remove connections in the NN, randomly at each stage of training, and update the remaining subnetwork with Stochastic Gradient Descent (SGD). The process of removing connections from a network at random is similar to percolation, a paradigm model of statistical physics. If dropout were to remove enough connections such that there is no path between the input and output of the NN, then the NN could not make predictions informed by the data. We study new percolation models that mimic dropout in NNs and characterise the relationship between network topology and this path problem. The theory shows the existence of a percolative effect in dropout. We also show that this percolative effect can cause a breakdown when training NNs without biases with dropout; and we argue heuristically that this breakdown extends to NNs with biases.
comment: 22 pages, 14 figures
☆ Topologically-Stabilized Graph Neural Networks: Empirical Robustness Across Domains
Graph Neural Networks (GNNs) have become the standard for graph representation learning but remain vulnerable to structural perturbations. We propose a novel framework that integrates persistent homology features with stability regularization to enhance robustness. Building on the stability theorems of persistent homology \cite{cohen2007stability}, our method combines GIN architectures with multi-scale topological features extracted from persistence images, enforced by Hiraoka-Kusano-inspired stability constraints. Across six diverse datasets spanning biochemical, social, and collaboration networks , our approach demonstrates exceptional robustness to edge perturbations while maintaining competitive accuracy. Notably, we observe minimal performance degradation (0-4\% on most datasets) under perturbation, significantly outperforming baseline stability. Our work provides both a theoretically-grounded and empirically-validated approach to robust graph learning that aligns with recent advances in topological regularization
☆ BiCoRec: Bias-Mitigated Context-Aware Sequential Recommendation Model
Sequential recommendation models aim to learn from users evolving preferences. However, current state-of-the-art models suffer from an inherent popularity bias. This study developed a novel framework, BiCoRec, that adaptively accommodates users changing preferences for popular and niche items. Our approach leverages a co-attention mechanism to obtain a popularity-weighted user sequence representation, facilitating more accurate predictions. We then present a new training scheme that learns from future preferences using a consistency loss function. BiCoRec aimed to improve the recommendation performance of users who preferred niche items. For these users, BiCoRec achieves a 26.00% average improvement in NDCG@10 over state-of-the-art baselines. When ranking the relevant item against the entire collection, BiCoRec achieves NDCG@10 scores of 0.0102, 0.0047, 0.0021, and 0.0005 for the Movies, Fashion, Games and Music datasets.
☆ Explainable reinforcement learning from human feedback to improve alignment
A common and effective strategy for humans to improve an unsatisfactory outcome in daily life is to find a cause of this outcome and correct the cause. In this paper, we investigate whether this human improvement strategy can be applied to improving reinforcement learning from human feedback (RLHF) for alignment of language models (LMs). In particular, it is observed in the literature that LMs tuned by RLHF can still output unsatisfactory responses. This paper proposes a method to improve the unsatisfactory responses by correcting their causes. Our method has two parts. The first part proposes a post-hoc explanation method to explain why an unsatisfactory response is generated to a prompt by identifying the training data that lead to this response. We formulate this problem as a constrained combinatorial optimization problem where the objective is to find a set of training data closest to this prompt-response pair in a feature representation space, and the constraint is that the prompt-response pair can be decomposed as a convex combination of this set of training data in the feature space. We propose an efficient iterative data selection algorithm to solve this problem. The second part proposes an unlearning method that improves unsatisfactory responses to some prompts by unlearning the training data that lead to these unsatisfactory responses and, meanwhile, does not significantly degrade satisfactory responses to other prompts. Experimental results demonstrate that our algorithm can improve RLHF.
☆ Unreasonable effectiveness of unsupervised learning in identifying Majorana topology
In unsupervised learning, the training data for deep learning does not come with any labels, thus forcing the algorithm to discover hidden patterns in the data for discerning useful information. This, in principle, could be a powerful tool in identifying topological order since topology does not always manifest in obvious physical ways (e.g., topological superconductivity) for its decisive confirmation. The problem, however, is that unsupervised learning is a difficult challenge, necessitating huge computing resources, which may not always work. In the current work, we combine unsupervised and supervised learning using an autoencoder to establish that unlabeled data in the Majorana splitting in realistic short disordered nanowires may enable not only a distinction between `topological' and `trivial', but also where their crossover happens in the relevant parameter space. This may be a useful tool in identifying topology in Majorana nanowires.
comment: 7 pages, 4 figures
☆ The Double Life of Code World Models: Provably Unmasking Malicious Behavior Through Execution Traces
Large language models (LLMs) increasingly generate code with minimal human oversight, raising critical concerns about backdoor injection and malicious behavior. We present Cross-Trace Verification Protocol (CTVP), a novel AI control framework that verifies untrusted code-generating models through semantic orbit analysis. Rather than directly executing potentially malicious code, CTVP leverages the model's own predictions of execution traces across semantically equivalent program transformations. By analyzing consistency patterns in these predicted traces, we detect behavioral anomalies indicative of backdoors. Our approach introduces the Adversarial Robustness Quotient (ARQ), which quantifies the computational cost of verification relative to baseline generation, demonstrating exponential growth with orbit size. Theoretical analysis establishes information-theoretic bounds showing non-gamifiability -- adversaries cannot improve through training due to fundamental space complexity constraints. This work demonstrates that semantic orbit analysis provides a scalable, theoretically grounded approach to AI control for code generation tasks.
comment: 13 Pages, Initial Work on AI Control. A Preprint
☆ EEG-D3: A Solution to the Hidden Overfitting Problem of Deep Learning Models
Deep learning for decoding EEG signals has gained traction, with many claims to state-of-the-art accuracy. However, despite the convincing benchmark performance, successful translation to real applications is limited. The frequent disconnect between performance on controlled BCI benchmarks and its lack of generalisation to practical settings indicates hidden overfitting problems. We introduce Disentangled Decoding Decomposition (D3), a weakly supervised method for training deep learning models across EEG datasets. By predicting the place in the respective trial sequence from which the input window was sampled, EEG-D3 separates latent components of brain activity, akin to non-linear ICA. We utilise a novel model architecture with fully independent sub-networks for strict interpretability. We outline a feature interpretation paradigm to contrast the component activation profiles on different datasets and inspect the associated temporal and spatial filters. The proposed method reliably separates latent components of brain activity on motor imagery data. Training downstream classifiers on an appropriate subset of these components prevents hidden overfitting caused by task-correlated artefacts, which severely affects end-to-end classifiers. We further exploit the linearly separable latent space for effective few-shot learning on sleep stage classification. The ability to distinguish genuine components of brain activity from spurious features results in models that avoid the hidden overfitting problem and generalise well to real-world applications, while requiring only minimal labelled data. With interest to the neuroscience community, the proposed method gives researchers a tool to separate individual brain processes and potentially even uncover heretofore unknown dynamics.
☆ Constrained Policy Optimization via Sampling-Based Weight-Space Projection
Safety-critical learning requires policies that improve performance without leaving the safe operating regime. We study constrained policy learning where model parameters must satisfy unknown, rollout-based safety constraints. We propose SCPO, a sampling-based weight-space projection method that enforces safety directly in parameter space without requiring gradient access to the constraint functions. Our approach constructs a local safe region by combining trajectory rollouts with smoothness bounds that relate parameter changes to shifts in safety metrics. Each gradient update is then projected via a convex SOCP, producing a safe first-order step. We establish a safe-by-induction guarantee: starting from any safe initialization, all intermediate policies remain safe given feasible projections. In constrained control settings with a stabilizing backup policy, our approach further ensures closed-loop stability and enables safe adaptation beyond the conservative backup. On regression with harmful supervision and a constrained double-integrator task with malicious expert, our approach consistently rejects unsafe updates, maintains feasibility throughout training, and achieves meaningful primal objective improvement.
comment: Submitted to IFAC World Congress 2026
☆ Enhancing Semi-Supervised Multi-View Graph Convolutional Networks via Supervised Contrastive Learning and Self-Training
The advent of graph convolutional network (GCN)-based multi-view learning provides a powerful framework for integrating structural information from heterogeneous views, enabling effective modeling of complex multi-view data. However, existing methods often fail to fully exploit the complementary information across views, leading to suboptimal feature representations and limited performance. To address this, we propose MV-SupGCN, a semi-supervised GCN model that integrates several complementary components with clear motivations and mutual reinforcement. First, to better capture discriminative features and improve model generalization, we design a joint loss function that combines Cross-Entropy loss with Supervised Contrastive loss, encouraging the model to simultaneously minimize intra-class variance and maximize inter-class separability in the latent space. Second, recognizing the instability and incompleteness of single graph construction methods, we combine both KNN-based and semi-supervised graph construction approaches on each view, thereby enhancing the robustness of the data structure representation and reducing generalization error. Third, to effectively utilize abundant unlabeled data and enhance semantic alignment across multiple views, we propose a unified framework that integrates contrastive learning in order to enforce consistency among multi-view embeddings and capture meaningful inter-view relationships, together with pseudo-labeling, which provides additional supervision applied to both the cross-entropy and contrastive loss functions to enhance model generalization. Extensive experiments demonstrate that MV-SupGCN consistently surpasses state-of-the-art methods across multiple benchmarks, validating the effectiveness of our integrated approach. The source code is available at https://github.com/HuaiyuanXiao/MVSupGCN
☆ Towards Deep Learning Surrogate for the Forward Problem in Electrocardiology: A Scalable Alternative to Physics-Based Models
The forward problem in electrocardiology, computing body surface potentials from cardiac electrical activity, is traditionally solved using physics-based models such as the bidomain or monodomain equations. While accurate, these approaches are computationally expensive, limiting their use in real-time and large-scale clinical applications. We propose a proof-of-concept deep learning (DL) framework as an efficient surrogate for forward solvers. The model adopts a time-dependent, attention-based sequence-to-sequence architecture to predict electrocardiogram (ECG) signals from cardiac voltage propagation maps. A hybrid loss combining Huber loss with a spectral entropy term was introduced to preserve both temporal and frequency-domain fidelity. Using 2D tissue simulations incorporating healthy, fibrotic, and gap junction-remodelled conditions, the model achieved high accuracy (mean $R^2 = 0.99 \pm 0.01$). Ablation studies confirmed the contributions of convolutional encoders, time-aware attention, and spectral entropy loss. These findings highlight DL as a scalable, cost-effective alternative to physics-based solvers, with potential for clinical and digital twin applications.
comment: Accepted to CinC conference 2025
☆ Mathematics and Coding are Universal AI Benchmarks
We study the special role of mathematics and coding inside the moduli space of psychometric batteries for AI agents. Building on the AAI framework and GVU dynamics from previous works, we define the Mathematics Fiber and show that, when paired with formal proof kernels (e.g. Lean, Coq), GVU flows on this fiber admit spectrally stable self-improvement regimes due to oracle-like verification. Our main technical result is a density theorem: under uniform tightness of agent outputs and a Lipschitz AAI functional, the subspace of batteries generated by mathematical theorem-proving and coding tasks is dense in the moduli space of batteries with respect to the evaluation metric. Coding alone is universal in this sense, while pure mathematics is not; its privilege is spectral rather than expressive. We interpret this as evidence that mathematics and coding provide ``universal coordinates'' for evaluation, and that formal mathematics is a natural ignition domain for recursive self-improvement in advanced AI agents.
☆ Network-Wide Traffic Volume Estimation from Speed Profiles using a Spatio-Temporal Graph Neural Network with Directed Spatial Attention
Existing traffic volume estimation methods typically address either forecasting traffic on sensor-equipped roads or spatially imputing missing volumes using nearby sensors. While forecasting models generally disregard unmonitored roads by design, spatial imputation methods explicitly address network-wide estimation; yet this approach relies on volume data at inference time, limiting its applicability in sensor-scarce cities. Unlike traffic volume data, probe vehicle speeds and static road attributes are more broadly accessible and support full coverage of road segments in most urban networks. In this work, we present the Hybrid Directed-Attention Spatio-Temporal Graph Neural Network (HDA-STGNN), an inductive deep learning framework designed to tackle the network-wide volume estimation problem. Our approach leverages speed profiles, static road attributes, and road network topology to predict daily traffic volume profiles across all road segments in the network. To evaluate the effectiveness of our approach, we perform extensive ablation studies that demonstrate the model's capacity to capture complex spatio-temporal dependencies and highlight the value of topological information for accurate network-wide traffic volume estimation without relying on volume data at inference time.
☆ Improving the Plausibility of Pressure Distributions Synthesized from Depth through Generative Modeling
Monitoring contact pressure in hospital beds is essential for preventing pressure ulcers and enabling real-time patient assessment. Current methods can predict pressure maps but often lack physical plausibility, limiting clinical reliability. This work proposes a framework that enhances plausibility via Informed Latent Space (ILS) and Weight Optimization Loss (WOL) with generative modeling to produce high-fidelity, physically consistent pressure estimates. This study also applies diffusion based conditional Brownian Bridge Diffusion Model (BBDM) and proposes training strategy for its latent counterpart Latent Brownian Bridge Diffusion Model (LBBDM) tailored for pressure synthesis in lying postures. Experiment results shows proposed method improves physical plausibility and performance over baselines: BBDM with ILS delivers highly detailed maps at higher computational cost and large inference time, whereas LBBDM provides faster inference with competitive performance. Overall, the approach supports non-invasive, vision-based, real-time patient monitoring in clinical environments.
♻ ☆ Developing synthetic microdata through machine learning for firm-level business surveys
Public-use microdata samples (PUMS) from the United States (US) Census Bureau on individuals have been available for decades. However, large increases in computing power and the greater availability of Big Data have dramatically increased the probability of re-identifying anonymized data, potentially violating the pledge of confidentiality given to survey respondents. Data science tools can be used to produce synthetic data that preserve critical moments of the empirical data but do not contain the records of any existing individual respondent or business. Developing public-use firm data from surveys presents unique challenges different from demographic data, because there is a lack of anonymity and certain industries can be easily identified in each geographic area. This paper briefly describes a machine learning model used to construct a synthetic PUMS based on the Annual Business Survey (ABS) and discusses various quality metrics. Although the ABS PUMS is currently being refined and results are confidential, we present two synthetic PUMS developed for the 2007 Survey of Business Owners, similar to the ABS business data. Econometric replication of a high impact analysis published in Small Business Economics demonstrates the verisimilitude of the synthetic data to the true data and motivates discussion of possible ABS use cases.
comment: 17 pages, 4 figures, 6 tables
♻ ☆ IA2: Alignment with ICL Activations Improves Supervised Fine-Tuning
Supervised Fine-Tuning (SFT) is used to specialize model behavior by training weights to produce intended target responses for queries. In contrast, In-Context Learning (ICL) adapts models during inference with instructions or demonstrations in the prompt. ICL can offer better generalizability and more calibrated responses compared to SFT in data scarce settings, at the cost of more inference compute. In this work, we ask the question: Can ICL's internal computations be used to improve the qualities of SFT? We first show that ICL and SFT produce distinct activation patterns, indicating that the two methods achieve adaptation through different functional mechanisms. Motivated by this observation and to use ICL's rich functionality, we introduce ICL Activation Alignment (IA2), a self-distillation technique which aims to replicate ICL's activation patterns in SFT models and incentivizes ICL-like internal reasoning. Performing IA2 as a priming step before SFT significantly improves the accuracy and calibration of model outputs, as shown by our extensive empirical results on 12 popular benchmarks and two model families. This finding is not only practically useful, but also offers a conceptual window into the inner mechanics of model adaptation.
♻ ☆ SparsePixels: Efficient Convolution for Sparse Data on FPGAs
Inference of standard convolutional neural networks (CNNs) on FPGAs often incurs high latency and a long initiation interval due to the deep nested loops required to densely convolve every input pixel regardless of its feature value. However, input features can be spatially sparse in some image data, where semantic information may occupy only a small fraction of the pixels and most computation would be wasted on empty regions. In this work, we introduce SparsePixels, a framework that implements sparse convolution on FPGAs by selectively retaining and computing on a small subset of active pixels while ignoring the rest. We show that, for identifying neutrino interactions in naturally sparse LArTPC images with 4k pixels, a standard CNN with a compact size of 4k parameters incurs an inference latency of 48.665 $μ$s on an FPGA, whereas a sparse CNN of the same base architecture, computing on less than 1% of the input pixels, achieves a $\times 73$ speedup to 0.665 $μ$s with resource utilization well within on-chip budgets, trading only a small percent-level performance loss. This work aims to benefit future algorithm development for efficient data readout in modern experiments with latency requirements of microseconds or below.
comment: Under review
♻ ☆ Bilevel ZOFO: Efficient LLM Fine-Tuning and Meta-Training
Fine-tuning pre-trained Large Language Models (LLMs) for downstream tasks using First-Order (FO) optimizers presents significant computational challenges. Parameter-Efficient Fine-Tuning (PEFT) methods address these by freezing most model parameters and training only a small subset. However, PEFT often underperforms compared to full fine-tuning when high task-specific accuracy is required. Zeroth-Order (ZO) methods fine-tune the entire pre-trained model without back-propagation, estimating gradients through forward passes only. While memory-efficient, ZO methods suffer from slow convergence and high sensitivity to prompt selection. We bridge these two worlds with Bilevel-ZOFO, a bilevel optimization method that couples fast, local FO-PEFT adaptation at the inner level with stable, memory-efficient ZO updates of the full backbone at the outer level. The FO-PEFT inner loop performs fast, low-memory local adaptation that reduces the variance of ZO estimates and stabilizes the search, guiding the outer ZO updates of the full backbone and reducing prompt sensitivity. In the mean time, the outer ZO provides better generalization ability for PEFT. We provide theoretical convergence guarantees and empirically demonstrate that Bilevel-ZOFO significantly outperforms existing ZO and FO-PEFT methods, achieving 2-4 times faster training while maintaining similar memory efficiency. Additionally, we show by updating the backbone with ZO and adapting only a tiny FO-PEFT block per task, Bilevel-ZOFO combines full-model capacity with few-shot efficiency, making it a very efficient meta-learning algorithm that quickly adapts to new tasks.
♻ ☆ Explainable Quantum Machine Learning for Multispectral Images Segmentation: Case Study
The emergence of Big Data changed how we approach information systems engineering. Nowadays, when we can use remote sensing techniques for Big Data acquisition, the issues such data introduce are as important as ever. One of those concerns is the processing of the data. Classical methods often fail to address that problem or are incapable of processing the data in a reasonable time. With that in mind information system engineers are required to investigate different approaches to the data processing. The recent advancements in noisy intermediate-scale quantum (NISQ) devices implementation allow us to investigate their application to real-life computational problem. This field of study is called quantum (information) systems engineering and usually focuses on technical problems with the contemporary devices. However, hardware challenges are not the only ones that hinder our quantum computation capabilities. Software limitations are the other, less explored side of this medal. Using multispectral image segmentation as a task example, we investigated how difficult it is to run a hybrid quantum-classical model on a real, publicly available quantum device. To quantify how and explain why the performance of our model changed when ran on a real device, we propose new explainability metrics. These metrics introduce new meaning to the explainable quantum machine learning; the explanation of the performance issue comes from the quantum device behavior. We also analyzed the expected money costs of running similar experiment on contemporary quantum devices using standard market prices.
comment: 18 pages, 5 figures, 3 tables. Extended and refined version of "On the status of current quantum machine learning software"
♻ ☆ Faster Results from a Smarter Schedule: Reframing Collegiate Cross Country through Analysis of the National Running Club Database
Collegiate cross country teams often build their season schedules on intuition rather than evidence, partly because large-scale performance datasets are not publicly accessible. To address this limitation, we introduce the National Running Club Database (NRCD), the first openly available dataset to aggregate 23,725 race results from 7,594 collegiate club athletes across the 2023-2025 seasons. Unlike existing resources, NRCD includes detailed course metadata, allowing us to develop two standardized performance metrics: Converted Only (distance correction) and Standardized (distance, weather, and elevation adjusted). Using these standardized measures, we find that athletes with slower initial performances exhibit the greatest improvement within a season, and that race frequency is the strongest predictor of improvement. Using six machine learning models, random forest achieves the highest accuracy (r squared equals 0.92), revealing that athletes who race more frequently progress significantly faster than those who do not. At the team level, programs whose athletes race at least four times during the regular season have substantially higher odds of placing in the top 15 at nationals (chi-squared less than 0.01). These results challenge common coaching practices that favor minimal racing before championship meets. Our findings demonstrate that a data-informed scheduling strategy improves both individual development and team competitiveness. The NRCD provides a new foundation for evidence-based decision-making in collegiate cross country and opens opportunities for further research on standardized, longitudinal athlete performance modeling.
♻ ☆ MixtureVitae: Open Web-Scale Pretraining Dataset With High Quality Instruction and Reasoning Data Built from Permissive-First Text Sources
We present MixtureVitae, an open-access pretraining corpus built to minimize legal risk while providing strong downstream performance. MixtureVitae follows a permissive-first, risk-mitigated sourcing strategy that combines public-domain and permissively licensed text (e.g., CC-BY/Apache) with carefully justified low-risk additions (e.g., government works and EU TDM-eligible sources). MixtureVitae adopts a simple, single-stage pretraining recipe that integrates a large proportion of permissive synthetic instruction and reasoning data-signals typically introduced during post-training and generally scarce in permissive web corpora. We categorize all sources into a three-tier scheme that reflects varying risk levels and provide shard-level provenance metadata to enable risk-aware usage. In controlled experiments using the open-sci-ref training protocol (fixed architectures and hyperparameters; 50B and 300B token budgets across 130M-1.7B parameters), models trained on MixtureVitae consistently outperform other permissive datasets across a suite of standard benchmarks, and at the 1.7B-parameters/300B-tokens setting, they surpass FineWeb-Edu and approach DCLM late in training. Performance is particularly strong on MMLU and on math and code benchmarks: a 1.7B model pretrained on 300B MixtureVitae tokens matches or exceeds a strong 1.7B instruction-tuned baseline on GSM8K, HumanEval, and MBPP, despite using over 36 times fewer tokens (300B vs. ~11T). Supported by a thorough decontamination analysis, these results show that permissive-first data with high instruction and reasoning density, tiered by licensing and provenance-related risk, can provide a practical and risk-mitigated foundation for training capable LLMs, reducing reliance on broad web scrapes without sacrificing competitiveness. Code: https://github.com/ontocord/mixturevitae
comment: Code: \url{https://github.com/ontocord/mixturevitae}
♻ ☆ Improvement of AMPs Identification with Generative Adversarial Network and Ensemble Classification
Identification of antimicrobial peptides is an important and necessary issue in today's era. Antimicrobial peptides are essential as an alternative to antibiotics for biomedical applications and many other practical applications. These oligopeptides are useful in drug design and cause innate immunity against microorganisms. Artificial intelligence algorithms have played a significant role in the ease of identifying these peptides.This research is improved by improving proposed method in the field of antimicrobial peptides prediction. Suggested method is improved by combining the best coding method from different perspectives, In the following a deep neural network to balance the imbalanced combined datasets. The results of this research show that the proposed method have a significant improvement in the accuracy and efficiency of the prediction of antimicrobial peptides and are able to provide the best results compared to the existing methods. These development in the field of prediction and classification of antimicrobial peptides, basically in the fields of medicine and pharmaceutical industries, have high effectiveness and application.
comment: 21 pages, 3 figures, 4 tables
♻ ☆ Improving Generative Ad Text on Facebook using Reinforcement Learning
Generative artificial intelligence (AI), in particular large language models (LLMs), is poised to drive transformative economic change. LLMs are pre-trained on vast text data to learn general language patterns, but a subsequent post-training phase is critical to align them for specific real-world tasks. Reinforcement learning (RL) is the leading post-training technique, yet its economic impact remains largely underexplored and unquantified. We examine this question through the lens of the first deployment of an RL-trained LLM for generative advertising on Facebook. Integrated into Meta's Text Generation feature, our model, "AdLlama," powers an AI tool that helps advertisers create new variations of human-written ad text. To train this model, we introduce reinforcement learning with performance feedback (RLPF), a post-training method that uses historical ad performance data as a reward signal. In a large-scale 10-week A/B test on Facebook spanning nearly 35,000 advertisers and 640,000 ad variations, we find that AdLlama improves click-through rates by 6.7% (p=0.0296) compared to a supervised imitation model trained on curated ads. This represents a substantial improvement in advertiser return on investment on Facebook. We also find that advertisers who used AdLlama generated more ad variations, indicating higher satisfaction with the model's outputs. To our knowledge, this is the largest study to date on the use of generative AI in an ecologically valid setting, offering an important data point quantifying the tangible impact of RL post-training. Furthermore, the results show that RLPF is a promising and generalizable approach for metric-driven post-training that bridges the gap between highly capable language models and tangible outcomes.
comment: D.J. and A.N. contributed equally, 41 pages, 6 figures
♻ ☆ WALINET: A water and lipid identification convolutional Neural Network for nuisance signal removal in 1H MR Spectroscopic Imaging
Purpose. Proton Magnetic Resonance Spectroscopic Imaging (1H-MRSI) provides non-invasive spectral-spatial mapping of metabolism. However, long-standing problems in whole-brain 1H-MRSI are spectral overlap of metabolite peaks with large lipid signal from scalp, and overwhelming water signal that distorts spectra. Fast and effective methods are needed for high-resolution 1H-MRSI to accurately remove lipid and water signals while preserving the metabolite signal. The potential of supervised neural networks for this task remains unexplored, despite their success for other MRSI processing. Methods. We introduce a deep-learning method based on a modified Y-NET network for water and lipid removal in whole-brain 1H-MRSI. The WALINET (WAter and LIpid neural NETwork) was compared to conventional methods such as the state-of-the-art lipid L2 regularization and Hankel-Lanczos singular value decomposition (HLSVD) water suppression. Methods were evaluated on simulated and in-vivo whole-brain MRSI using NMRSE, SNR, CRLB, and FWHM metrics. Results. WALINET is significantly faster and needs 8s for high-resolution whole-brain MRSI, compared to 42 minutes for conventional HLSVD+L2. Quantitative analysis shows WALINET has better performance than HLSVD+L2: 1) more lipid removal with 41% lower NRMSE, 2) better metabolite signal preservation with 71% lower NRMSE in simulated data, 155% higher SNR and 50% lower CRLB in in-vivo data. Metabolic maps obtained by WALINET in healthy subjects and patients show better gray/white-matter contrast with more visible structural details. Conclusions. WALINET has superior performance for nuisance signal removal and metabolite quantification on whole-brain 1H-MRSI compared to conventional state-of-the-art techniques. This represents a new application of deep-learning for MRSI processing, with potential for automated high-throughput workflow.
Can Language Models Discover Scaling Laws?
Discovering scaling laws for predicting model performance at scale is a fundamental and open-ended challenge, mostly reliant on slow, case specific human experimentation. To investigate the potential for LLMs to automate this process, we collect over 5,000 experiments from existing literature and curate seven diverse scaling law discovery tasks. While existing agents struggle to produce accurate law formulas, this paper introduces SLDAgent, an evolution-based agent that co-optimize the scaling law model and the parameters, enabling it to autonomously explore complex relationships between variables. For the first time, we demonstrates that SLDAgent can automatically discover laws that exhibit consistently more accurate extrapolation than their established, human-derived counterparts across all tasks. Through comprehensive analysis, we elucidate why these discovered laws are superior and verify their practical utility in both pretraining and finetuning applications. This work establishes a new paradigm for agentic scientific discovery, showing that AI systems can understand their own scaling behavior, and can contribute novel and practical knowledge back to the research community.
♻ ☆ Comparative Analysis of Wave Scattering Numerical Modeling Using the Boundary Element Method and Physics-Informed Neural Networks
This study compares the Boundary Element Method (BEM) and Physics-Informed Neural Networks (PINNs) for solving the two-dimensional Helmholtz equation in wave scattering problems. The objective is to evaluate the performance of both methods under the same conditions. We solve the Helmholtz equation using BEM and PINNs for the same scattering problem. PINNs are trained by minimizing the residual of the governing equations and boundary conditions with their configuration determined through hyperparameter optimization, while BEM is applied using boundary discretization. Both methods are evaluated in terms of solution accuracy and computation time. We conducted numerical experiments by varying the number of boundary integration points for the BEM and the number of hidden layers and neurons per layer for the PINNs. We performed a hyperparameter tuning to identify an adequate PINN configuration for this problem as a network with 3 hidden layers and 25 neurons per layer, using a learning rate of $10^{-2}$ and a sine activation function. At comparable levels of accuracy, the assembly and solution of the BEM system required a computational time on the order of $10^{-2}$~s, whereas the training time of the PINN was on the order of $10^{2}$~s, corresponding to a difference of approximately four orders of magnitude. However, once trained, the PINN achieved evaluation times on the order of $10^{-2}$~s, which is about two orders of magnitude faster than the evaluation of the BEM solution at interior points. This work establishes a procedure for comparing BEM and PINNs. It also presents a direct comparison between the two methods for the scattering problem. The analysis provides quantitative data on their performance, supporting their use in future research on wave propagation problems and outlining challenges and directions for further investigation.
comment: 19 pages, 7 figures
♻ ☆ Beyond Next-Token Prediction: A Performance Characterization of Diffusion versus Autoregressive Language Models
Large Language Models (LLMs) have achieved state-of-the-art performance on a broad range of Natural Language Processing (NLP) tasks, including document processing and code generation. Autoregressive Language Models (ARMs), which generate tokens sequentially conditioned on all previous tokens, have been the predominant paradigm for LLMs. While these models have achieved high accuracy across a range of downstream tasks, they exhibit low arithmetic intensity due to the inherent sequential dependency in next-token prediction. Recently, Diffusion Language Models (DLMs) have emerged as a promising alternative architecture. DLMs generate output tokens in parallel, mitigating the limitations of sequential decoding. However, the performance implications of DLMs relative to commonly deployed ARMs are not fully understood. In this work, we present a comprehensive study of the performance characteristics of ARMs and DLMs, combining theoretical analysis with empirical profiling to characterize the trade-offs between these approaches. We show that although DLMs can achieve higher arithmetic intensity than ARMs by leveraging parallelism across token positions, they fail to scale effectively with longer contexts. We then explore block-wise decoding for DLMs, which decouples arithmetic intensity from sequence length and enables better scaling to long contexts (similar to ARMs). We also examine batched inference and find that ARMs exhibit superior throughput as they benefit more from parallelism across sequences in the batch. Finally, we highlight opportunities for accelerating DLM inference, emphasizing that reducing the number of sampling steps is key for open-source DLMs to achieve lower latency relative to ARMs.
comment: 11 pages, 5 figures
♻ ☆ How PARTs assemble into wholes: Learning the relative composition of images
The composition of objects and their parts, along with object-object positional relationships, provides a rich source of information for representation learning. Hence, spatial-aware pretext tasks have been actively explored in self-supervised learning. Existing works commonly start from a grid structure, where the goal of the pretext task involves predicting the absolute position index of patches within a fixed grid. However, grid-based approaches fall short of capturing the fluid and continuous nature of real-world object compositions. We introduce PART, a self-supervised learning approach that leverages continuous relative transformations between off-grid patches to overcome these limitations. By modeling how parts relate to each other in a continuous space, PART learns the relative composition of images-an off-grid structural relative positioning that is less tied to absolute appearance and can remain coherent under variations such as partial visibility or stylistic changes. In tasks requiring precise spatial understanding such as object detection and time series prediction, PART outperforms grid-based methods like MAE and DropPos, while maintaining competitive performance on global classification tasks. By breaking free from grid constraints, PART opens up a new trajectory for universal self-supervised pretraining across diverse datatypes-from images to EEG signals-with potential in medical imaging, video, and audio.
♻ ☆ An upper bound of the silhouette validation metric for clustering
The silhouette coefficient quantifies, for each observation, the balance between within-cluster cohesion and between-cluster separation, taking values in [-1, 1]. The average silhouette width (ASW ) is a widely used internal measure of clustering quality, with higher values indicating more cohesive and well-separated clusters. However, the dataset-specific maximum of ASW is typically unknown, and the standard upper limit of 1 is rarely attainable. In this work, we derive for each data point a sharp upper bound on its silhouette width and aggregate these to obtain a canonical upper bound on the ASW. This bound-often substantially below 1-enhances the interpretability of empirical ASW values by providing guidance on how close a given clustering result is to the best possible outcome for that dataset. We evaluate the usefulness of the upper bound on a variety of datasets and conclude that it can meaningfully enrich cluster quality evaluation, but its practical relevance depends on the given dataset. Finally, we extend the framework to establish an upper bound of the macro-averaged silhouette.
♻ ☆ Understanding and Improving Shampoo and SOAP via Kullback-Leibler Minimization
Shampoo and its efficient variant, SOAP, employ structured second-moment estimations and have shown strong performance for training neural networks (NNs). In practice, however, Shampoo typically requires step-size grafting with Adam to be competitive, and SOAP mitigates this by applying Adam in Shampoo's eigenbasis -- at the cost of additional memory overhead from Adam in both methods. Prior analyses have largely relied on the Frobenius norm to motivate these estimation schemes. We instead recast their estimation procedures as covariance estimation under Kullback-Leibler (KL) divergence minimization, revealing a previously overlooked theoretical limitation and motivating principled redesigns. Building on this perspective, we develop $\textbf{KL-Shampoo}$ and $\textbf{KL-SOAP}$, practical schemes that match or exceed the performance of Shampoo and SOAP in NN pre-training while achieving SOAP-level per-iteration runtime. Notably, KL-Shampoo does not rely on Adam to attain competitive performance, eliminating the memory overhead introduced by Adam. Across our experiments, KL-Shampoo consistently outperforms SOAP, Shampoo, and even KL-SOAP, establishing the KL-based approach as a promising foundation for designing structured methods in NN optimization.
comment: improved the main text
♻ ☆ Deep-ER: Deep Learning ECCENTRIC Reconstruction for fast high-resolution neurometabolic imaging
Introduction: Altered neurometabolism is an important pathological mechanism in many neurological diseases and brain cancer, which can be mapped non-invasively by Magnetic Resonance Spectroscopic Imaging (MRSI). Advanced MRSI using non-cartesian compressed-sense acquisition enables fast high-resolution metabolic imaging but has lengthy reconstruction times that limits throughput and needs expert user interaction. Here, we present a robust and efficient Deep Learning reconstruction to obtain high-quality metabolic maps. Methods: Fast high-resolution whole-brain metabolic imaging was performed at 3.4 mm$^3$ isotropic resolution with acquisition times between 4:11-9:21 min:s using ECCENTRIC pulse sequence on a 7T MRI scanner. Data were acquired in a high-resolution phantom and 27 human participants, including 22 healthy volunteers and 5 glioma patients. A deep neural network using recurring interlaced convolutional layers with joint dual-space feature representation was developed for deep learning ECCENTRIC reconstruction (Deep-ER). 21 subjects were used for training and 6 subjects for testing. Deep-ER performance was compared to conventional iterative Total Generalized Variation reconstruction using image and spectral quality metrics. Results: Deep-ER demonstrated 600-fold faster reconstruction than conventional methods, providing improved spatial-spectral quality and metabolite quantification with 12%-45% (P<0.05) higher signal-to-noise and 8%-50% (P<0.05) smaller Cramer-Rao lower bounds. Metabolic images clearly visualize glioma tumor heterogeneity and boundary. Conclusion: Deep-ER provides efficient and robust reconstruction for sparse-sampled MRSI. The accelerated acquisition-reconstruction MRSI is compatible with high-throughput imaging workflow. It is expected that such improved performance will facilitate basic and clinical MRSI applications.
♻ ☆ QUOTA: Quantifying Objects with Text-to-Image Models for Any Domain
We tackle the problem of quantifying the number of objects by a generative text-to-image model. Rather than retraining such a model for each new image domain of interest, which leads to high computational costs and limited scalability, we are the first to consider this problem from a domain-agnostic perspective. We propose QUOTA, an optimization framework for text-to-image models that enables effective object quantification across unseen domains without retraining. It leverages a dual-loop meta-learning strategy to optimize a domain-invariant prompt. Further, by integrating prompt learning with learnable counting and domain tokens, our method captures stylistic variations and maintains accuracy, even for object classes not encountered during training. For evaluation, we adopt a new benchmark specifically designed for object quantification in domain generalization, enabling rigorous assessment of object quantification accuracy and adaptability across unseen domains in text-to-image generation. Extensive experiments demonstrate that QUOTA outperforms conventional models in both object quantification accuracy and semantic consistency, setting a new benchmark for efficient and scalable text-to-image generation for any domain.
comment: Accepted by WACV 2026
♻ ☆ RL-Struct: A Lightweight Reinforcement Learning Framework for Reliable Structured Output in LLMs
The Structure Gap between probabilistic LLM generation and deterministic schema requirements hinders automated workflows. We propose RL-Struct, a lightweight framework using Gradient Regularized Policy Optimization (GRPO) with a hierarchical reward function to align LLMs with structural constraints. This approach eliminates the critic network, reducing peak VRAM by 38% compared to PPO. On complex JSON tasks, RL-Struct achieves 89.7% structural accuracy and 92.1% validity, significantly outperforming SFT and zero-shot baselines. We also report an emergent curriculum--a self-organized learning process where the model prioritizes syntax before semantics. Our model is publicly available at https://huggingface.co/Freakz3z/Qwen-JSON.
comment: 13 pages, 9 figures. Model is available at https://huggingface.co/Freakz3z/Qwen-JSON
♻ ☆ On the failure of ReLU activation for physics-informed machine learning
Physics-informed machine learning uses governing ordinary and/or partial differential equations to train neural networks to represent the solution field. Like any machine learning problem, the choice of activation function influences the characteristics and performance of the solution obtained from physics-informed training. Several studies have compared common activation functions on benchmark differential equations, and have unanimously found that the rectified linear unit (ReLU) is outperformed by competitors such as the sigmoid, hyperbolic tangent, and swish activation functions. In this work, we diagnose the poor performance of ReLU on physics-informed machine learning problems. While it is well-known that the piecewise linear form of ReLU prevents it from being used on second-order differential equations, we show that ReLU fails even on variational problems involving only first derivatives. We identify the cause of this failure as second derivatives of the activation, which are taken not in the formulation of the loss, but in the process of training. Namely, we show that automatic differentiation in PyTorch fails to characterize derivatives of discontinuous fields, which causes the gradient of the physics-informed loss to be mis-specified, thus explaining the poor performance of ReLU.
♻ ☆ Credal Prediction based on Relative Likelihood
Predictions in the form of sets of probability distributions, so-called credal sets, provide a suitable means to represent a learner's epistemic uncertainty. In this paper, we propose a theoretically grounded approach to credal prediction based on the statistical notion of relative likelihood: The target of prediction is the set of all (conditional) probability distributions produced by the collection of plausible models, namely those models whose relative likelihood exceeds a specified threshold. This threshold has an intuitive interpretation and allows for controlling the trade-off between correctness and precision of credal predictions. We tackle the problem of approximating credal sets defined in this way by means of suitably modified ensemble learning techniques. To validate our approach, we illustrate its effectiveness by experiments on benchmark datasets demonstrating superior uncertainty representation without compromising predictive performance. We also compare our method against several state-of-the-art baselines in credal prediction.
♻ ☆ Behavioral Machine Learning? Regularization and Forecast Bias
Standard forecast efficiency tests interpret violations as evidence of behavioral bias. We show theoretically and empirically that rational forecasters using optimal regularization systematically violate these tests. Machine learning forecasts show near zero bias at one year horizon, but strong overreaction at two years, consistent with predictions from a model of regularization and measurement noise. We provide three complementary tests: experimental variation in regularization parameters, cross-sectional heterogeneity in firm signal quality, and quasi-experimental evidence from ML adoption around 2013. Technically trained analysts shift sharply toward overreaction post-2013. Our findings suggest reported violations may reflect statistical sophistication rather than cognitive failure.
comment: stock analysts, machine learning, behavioral, overreaction
♻ ☆ Improved Segmentation of Polyps and Visual Explainability Analysis
Colorectal cancer (CRC) remains one of the leading causes of cancer-related morbidity and mortality worldwide, with gastrointestinal (GI) polyps serving as critical precursors according to the World Health Organization (WHO). Early and accurate segmentation of polyps during colonoscopy is essential for reducing CRC progression, yet manual delineation is labor-intensive and prone to observer variability. Deep learning methods have demonstrated strong potential for automated polyp analysis, but their limited interpretability remains a barrier to clinical adoption. In this study, we present PolypSeg-GradCAM, an explainable deep learning framework that integrates a U-Net architecture with a pre-trained ResNet-34 backbone and Gradient-weighted Class Activation Mapping (Grad-CAM) for transparent polyp segmentation. To ensure rigorous benchmarking, the model was trained and evaluated using 5-Fold Cross-Validation on the Kvasir-SEG dataset of 1,000 annotated endoscopic images. Experimental results show a mean Dice coefficient of 0.8902 +/- 0.0125, a mean Intersection-over-Union (IoU) of 0.8023, and an Area Under the Receiver Operating Characteristic Curve (AUC-ROC) of 0.9722. Advanced quantitative analysis using an optimal threshold yielded a Sensitivity of 0.9058 and Precision of 0.9083. Additionally, Grad-CAM visualizations confirmed that predictions were guided by clinically relevant regions, offering insight into the model's decision-making process. This study demonstrates that integrating segmentation accuracy with interpretability can support the development of trustworthy AI-assisted colonoscopy tools.
♻ ☆ Few-shot Class-incremental Fault Diagnosis by Preserving Class-Agnostic Knowledge with Dual-Granularity Representations
Few-Shot Class-Incremental Fault Diagnosis (FSC-FD), which aims to continuously learn from new fault classes with only a few samples without forgetting old ones, is critical for real-world industrial systems. However, this challenging task severely amplifies the issues of catastrophic forgetting of old knowledge and overfitting on scarce new data. To address these challenges, this paper proposes a novel framework built upon Dual-Granularity Representations, termed the Dual-Granularity Guidance Network (DGGN). Our DGGN explicitly decouples feature learning into two parallel streams: 1) a fine-grained representation stream, which utilizes a novel Multi-Order Interaction Aggregation module to capture discriminative, class-specific features from the limited new samples. 2) a coarse-grained representation stream, designed to model and preserve general, class-agnostic knowledge shared across all fault types. These two representations are dynamically fused by a multi-semantic cross-attention mechanism, where the stable coarse-grained knowledge guides the learning of fine-grained features, preventing overfitting and alleviating feature conflicts. To further mitigate catastrophic forgetting, we design a Boundary-Aware Exemplar Prioritization strategy. Moreover, a decoupled Balanced Random Forest classifier is employed to counter the decision boundary bias caused by data imbalance. Extensive experiments on the TEP benchmark and a real-world MFF dataset demonstrate that our proposed DGGN achieves superior diagnostic performance and stability compared to state-of-the-art FSC-FD approaches. Our code is publicly available at https://github.com/MentaY/DGGN
comment: This manuscript is currently under review at the Engineering Applications of Artificial Intelligence
♻ ☆ "All of Me": Mining Users' Attributes from their Public Spotify Playlists
In the age of digital music streaming, playlists on platforms like Spotify have become an integral part of individuals' musical experiences. People create and publicly share their own playlists to express their musical tastes, promote the discovery of their favorite artists, and foster social connections. In this work, we aim to address the question: can we infer users' private attributes from their public Spotify playlists? To this end, we conducted an online survey involving 739 Spotify users, resulting in a dataset of 10,286 publicly shared playlists comprising over 200,000 unique songs and 55,000 artists. Then, we utilize statistical analyses and machine learning algorithms to build accurate predictive models for users' attributes.
♻ ☆ A Deep-Learning Iterative Stacked Approach for Prediction of Reactive Dissolution in Porous Media
Simulating reactive dissolution of solid minerals in porous media has many subsurface applications, including carbon capture and storage (CCS), geothermal systems and oil & gas recovery. As traditional direct numerical simulators are computationally expensive, it is of paramount importance to develop faster and more efficient alternatives. Deep-learning-based solutions, most of them built upon convolutional neural networks (CNNs), have been recently designed to tackle this problem. However, these solutions were limited to approximating one field over the domain (e.g. velocity field). In this manuscript, we present a novel deep learning approach that incorporates both temporal and spatial information to predict the future states of the dissolution process at a fixed time-step horizon, given a sequence of input states. The overall performance, in terms of speed and prediction accuracy, is demonstrated on a numerical simulation dataset, comparing its prediction results against state-of-the-art approaches, also achieving a speedup around $10^4$ over traditional numerical simulators.
comment: 24 pages, 16 figures
♻ ☆ The prediction of the quality of results in Logic Synthesis using Transformer and Graph Neural Networks
In the logic synthesis stage, structure transformations in the synthesis tool need to be combined into optimization sequences and act on the circuit to meet the specified circuit area and delay. However, logic synthesis optimization sequences are time-consuming to run, and predicting the quality of the results (QoR) against the synthesis optimization sequence for a circuit can help engineers find a better optimization sequence faster. In this work, we propose a deep learning method to predict the QoR of unseen circuit-optimization sequences pairs. Specifically, the structure transformations are translated into vectors by embedding methods and advanced natural language processing (NLP) technology (Transformer) is used to extract the features of the optimization sequences. In addition, to enable the prediction process of the model to be generalized from circuit to circuit, the graph representation of the circuit is represented as an adjacency matrix and a feature matrix. Graph neural networks(GNN) are used to extract the structural features of the circuits. For this problem, the Transformer and three typical GNNs are used. Furthermore, the Transformer and GNNs are adopted as a joint learning policy for the QoR prediction of the unseen circuit-optimization sequences. The methods resulting from the combination of Transformer and GNNs are benchmarked. The experimental results show that the joint learning of Transformer and GraphSage gives the best results. The Mean Absolute Error (MAE) of the predicted result is 0.412.
♻ ☆ Neural stochastic Volterra equations: learning path-dependent dynamics
Stochastic Volterra equations (SVEs) serve as mathematical models for the time evolutions of random systems with memory effects and irregular behaviour. We introduce neural stochastic Volterra equations as a physics-inspired architecture, generalizing the class of neural stochastic differential equations, and provide some theoretical foundation. Numerical experiments on various SVEs, like the disturbed pendulum equation, the generalized Ornstein--Uhlenbeck process, the rough Heston model and a monetary reserve dynamics, are presented, comparing the performance of neural SVEs, neural SDEs and Deep Operator Networks (DeepONets).
comment: 24 pages
♻ ☆ Meta Pruning via Graph Metanetworks : A Universal Meta Learning Framework for Network Pruning
We propose an entirely new meta-learning framework for network pruning. It is a general framework that can be theoretically applied to almost all types of networks with all kinds of pruning and has great generality and transferability. Experiments have shown that it can achieve outstanding results on many popular and representative pruning tasks (including both CNNs and Transformers). Unlike all prior works that either rely on fixed, hand-crafted criteria to prune in a coarse manner, or employ learning to prune ways that require special training during each pruning and lack generality. Our framework can learn complex pruning rules automatically via a neural network (metanetwork) and has great generality that can prune without any special training. More specifically, we introduce the newly developed idea of metanetwork from meta-learning into pruning. A metanetwork is a network that takes another network as input and produces a modified network as output. In this paper, we first establish a bijective mapping between neural networks and graphs, and then employ a graph neural network as our metanetwork. We train a metanetwork that learns the pruning strategy automatically and can transform a network that is hard to prune into another network that is much easier to prune. Once the metanetwork is trained, our pruning needs nothing more than a feedforward through the metanetwork and some standard finetuning to prune at state-of-the-art. Our code is available at https://github.com/Yewei-Liu/MetaPruning
♻ ☆ In-context Learning of Evolving Data Streams with Tabular Foundational Models KDD
State-of-the-art data stream mining has long drawn from ensembles of the Very Fast Decision Tree, a seminal algorithm honored with the 2015 KDD Test-of-Time Award. However, the emergence of large tabular models, i.e., transformers designed for structured numerical data, marks a significant paradigm shift. These models move beyond traditional weight updates, instead employing in-context learning through prompt tuning. By using on-the-fly sketches to summarize unbounded streaming data, one can feed this information into a pre-trained model for efficient processing. This work bridges advancements from both areas, highlighting how transformers' implicit meta-learning abilities, pre-training on drifting natural data, and reliance on context optimization directly address the core challenges of adaptive learning in dynamic environments. Exploring real-time model adaptation, this research demonstrates that TabPFN, coupled with a simple sliding memory strategy, consistently outperforms ensembles of Hoeffding trees, such as Adaptive Random Forest, and Streaming Random Patches, across all non-stationary benchmarks.
comment: Accepted at 32nd SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2026)
♻ ☆ Adaptive Risk Mitigation in Demand Learning
We study dynamic pricing of a product with an unknown demand distribution over a finite horizon. Departing from the standard no-regret learning environment in which prices can be adjusted at any time, we restrict price changes to predetermined points in time to reflect common retail practice. This constraint, coupled with demand model ambiguity and an unknown customer arrival pattern, imposes a high risk of revenue loss, as a price based on a misestimated demand model may be applied to many customers before it can be revised. We develop an adaptive risk learning (ARL) framework that embeds a data-driven ambiguity set (DAS) to quantify demand model ambiguity by adapting to the unknown arrival pattern. Initially, when arrivals are few, the DAS includes a broad set of plausible demand models, reflecting high ambiguity and revenue risk. As new data is collected through pricing, the DAS progressively shrinks, capturing the reduction in model ambiguity and associated risk. We establish the probabilistic convergence of the DAS to the true demand model and derive a regret bound for the ARL policy that explicitly links revenue loss to the data required for the DAS to identify the true model with high probability. The dependence of our regret bound on the arrival pattern is unique to our constrained dynamic pricing problem and contrasts with no-regret learning environments, where regret is constant and arrival-pattern independent. Relaxing the constraint on infrequent price changes, we show that ARL attains the known constant regret bound. Numerical experiments further demonstrate that ARL outperforms benchmarks that prioritize either regret or risk alone by adaptively balancing both without knowledge of the arrival pattern. This adaptive risk adjustment is crucial for achieving high revenues and low downside risk when prices are sticky and both demand and arrival patterns are unknown.
♻ ☆ Quantifying Robustness: A Benchmarking Framework for Deep Learning Forecasting in Cyber-Physical Systems
Cyber-Physical Systems (CPS) in domains such as manufacturing and energy distribution generate complex time series data crucial for Prognostics and Health Management (PHM). While Deep Learning (DL) methods have demonstrated strong forecasting capabilities, their adoption in industrial CPS remains limited due insufficient robustness. Existing robustness evaluations primarily focus on formal verification or adversarial perturbations, inadequately representing the complexities encountered in real-world CPS scenarios. To address this, we introduce a practical robustness definition grounded in distributional robustness, explicitly tailored to industrial CPS, and propose a systematic framework for robustness evaluation. Our framework simulates realistic disturbances, such as sensor drift, noise and irregular sampling, enabling thorough robustness analyses of forecasting models on real-world CPS datasets. The robustness definition provides a standardized score to quantify and compare model performance across diverse datasets, assisting in informed model selection and architecture design. Through extensive empirical studies evaluating prominent DL architectures (including recurrent, convolutional, attention-based, modular, and structured state-space models) we demonstrate the applicability and effectiveness of our approach. We publicly release our robustness benchmark to encourage further research and reproducibility.
comment: Accepted at the 30th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)
♻ ☆ Skrull: Towards Efficient Long Context Fine-tuning through Dynamic Data Scheduling NeurIPS 2025
Long-context supervised fine-tuning (Long-SFT) plays a vital role in enhancing the performance of large language models (LLMs) on long-context tasks. To smoothly adapt LLMs to long-context scenarios, this process typically entails training on mixed datasets containing both long and short sequences. However, this heterogeneous sequence length distribution poses significant challenges for existing training systems, as they fail to simultaneously achieve high training efficiency for both long and short sequences, resulting in sub-optimal end-to-end system performance in Long-SFT. In this paper, we present a novel perspective on data scheduling to address the challenges posed by the heterogeneous data distributions in Long-SFT. We propose Skrull, a dynamic data scheduler specifically designed for efficient long-SFT. Through dynamic data scheduling, Skrull balances the computation requirements of long and short sequences, improving overall training efficiency. Furthermore, we formulate the scheduling process as a joint optimization problem and thoroughly analyze the trade-offs involved. Based on those analysis, Skrull employs a lightweight scheduling algorithm to achieve near-zero cost online scheduling in Long-SFT. Finally, we implement Skrull upon DeepSpeed, a state-of-the-art distributed training system for LLMs. Experimental results demonstrate that Skrull outperforms DeepSpeed by 3.76x on average (up to 7.54x) in real-world long-SFT scenarios.
comment: Accepted by NeurIPS 2025
♻ ☆ Template-Free Retrosynthesis with Graph-Prior Augmented Transformers
Retrosynthesis reaction prediction aims to infer plausible reactant molecules for a given product and is a important problem in computer-aided organic synthesis. Despite recent progress, many existing models still fall short of the accuracy and robustness required for practical deployment. In this paper, we present a template-free, Transformer-based framework that removes the need for handcrafted reaction templates or additional chemical rule engines. Our model injects molecular graph information into the attention mechanism to jointly exploit SMILES sequences and structural cues, and further applies a paired data augmentation strategy to enhance training diversity and scale. Extensive experiments on the USPTO-50K benchmark demonstrate that our approach achieves state-of-the-art performance among template-free methods and substantially outperforms a vanilla Transformer baseline.
♻ ☆ Fully Bayesian Differential Gaussian Processes through Stochastic Differential Equations
Deep Gaussian process models typically employ discrete hierarchies, but recent advancements in differential Gaussian processes (DiffGPs) have extended these models to infinite depths. However, existing DiffGP approaches often overlook the uncertainty in kernel hyperparameters by treating them as fixed and time-invariant, which degrades the model's predictive performance and neglects the posterior distribution. In this work, we introduce a fully Bayesian framework that models kernel hyperparameters as random variables and utilizes coupled stochastic differential equations (SDEs) to jointly learn their posterior distributions alongside those of inducing points. By incorporating the estimation uncertainty of hyperparameters, our method significantly enhances model flexibility and adaptability to complex dynamic systems. Furthermore, we employ a black-box adaptive SDE solver with a neural network to achieve realistic, time varying posterior approximations, thereby improving the expressiveness of the variational posterior. Comprehensive experimental evaluations demonstrate that our approach outperforms traditional methods in terms of flexibility, accuracy, and other key performance metrics. This work not only provides a robust Bayesian extension to DiffGP models but also validates its effectiveness in handling intricate dynamic behaviors, thereby advancing the applicability of Gaussian process models in diverse real-world scenarios.
♻ ☆ Statistical Taylor Expansion: A New and Path-Independent Method for Uncertainty Analysis
As a rigorous statistical approach, statistical Taylor expansion extends the conventional Taylor expansion by replacing precise input variables with random variables of known distributions, to compute means and standard deviations of the results. Statistical Taylor expansion traces the dependency of the input uncertainties in the intermediate steps, so that the variables in the intermediate analytic expressions can no longer be regarded as independent of each other, and the result of the analytic expression is path independent. Thus, it differs fundamentally from the conventional common approaches in applied mathematics which optimize execution path for each calculation. In fact, statistical Taylor expansion may standardize numerical calculations for analytic expressions. Its statistical nature allows religious testing of its result when the sample size is large enough. This paper also introduces an implementation of statistical Taylor expansion called variance arithmetic and presents corresponding test results in a very wide range of mathematical applications. Another important conclusion of this paper is that the numerical errors in the library function can have significant effects on the result. For example, the periodic numerical errors in the trigonometric library functions can resonate with periodic signals, producing large numerical errors in the results.
comment: 84 pages, 68 figures
♻ ☆ From Pruning to Grafting: Dynamic Knowledge Redistribution via Learnable Layer Fusion
Structured pruning of Generative Pre-trained Transformers (GPTs) offers a promising path to efficiency but often suffers from irreversible performance degradation due to the discarding of transformer blocks. In this paper, we introduce FuseGPT, a compression paradigm that reframes structured pruning as iterative knowledge grafting rather than simple removal. Motivated by the observation that linear block merging fails to capture non-linear feature disparities and that block importance fluctuates dynamically during pruning, FuseGPT employs a dual-strategy pipeline. First, we propose Macro Influence (MI), a dynamic fusion-aware metric that continuously re-evaluates block redundancy as the network topology evolves. Second, instead of rigid parameter averaging, we introduce a learnable low-rank fusion mechanism that adaptively grafts the knowledge of pruned blocks onto surviving layers via lightweight local distillation. Extensive experiments on LLaMA, Mistral, Qwen, and Phi families demonstrate that FuseGPT establishes a new state-of-the-art on the compression-accuracy Pareto frontier: at 25\% sparsity, FuseGPT achieves lower perplexity than prior methods at 20\% sparsity, improves zero-shot reasoning by up to 4.5 points, and delivers 1.33$\times$ inference speedup with 25\% memory reduction. Furthermore, FuseGPT is orthogonal to quantization, achieving 52.1\% total compression with negligible quality loss when combined with 4-bit GPTQ. We make our code publicly available at https://github.com/JarvisPei/FuseGPT.
♻ ☆ Generating Reliable Synthetic Clinical Trial Data: The Role of Hyperparameter Optimization and Domain Constraints
The generation of synthetic clinical trial data offers a promising approach to mitigating privacy concerns and data accessibility limitations in medical research. However, ensuring that synthetic datasets maintain high fidelity, utility, and adherence to domain-specific constraints remains a key challenge. While hyperparameter optimization (HPO) improves generative model performance, the effectiveness of different optimization strategies for synthetic clinical data remains unclear. This study systematically evaluates four HPO objectives across nine generative models, comparing single-metric to compound metric optimization. Our results demonstrate that HPO consistently improves synthetic data quality, with Tab DDPM achieving the largest relative gains, followed by TVAE (60%), CTGAN (39%), and CTAB-GAN+ (38%). Compound metric optimization outperformed single-metric objectives, producing more generalizable synthetic datasets. Despite improving overall quality, HPO alone fails to prevent violations of essential clinical survival constraints. Preprocessing and postprocessing played a crucial role in reducing these violations, as models lacking robust processing steps produced invalid data in up to 61% of cases. These findings underscore the necessity of integrating explicit domain knowledge alongside HPO to generate high-quality synthetic datasets. Our study provides actionable recommendations for improving synthetic data generation, with future work needed to refine metric selection and validate findings on larger datasets.
comment: Published in Information Sciences, Volume 733 (2026)
♻ ☆ CRPS-Based Targeted Sequential Design with Application in Chemical Space
Sequential design of real and computer experiments via Gaussian Process (GP) models has proven useful for parsimonious, goal-oriented data acquisition purposes. In this work, we focus on acquisition strategies for a GP model that needs to be accurate within a predefined range of the response of interest. Such an approach is useful in various fields including synthetic chemistry, where finding molecules with particular properties is essential for developing useful materials and effective medications. GP modeling and sequential design of experiments have been successfully applied to a plethora of domains, including molecule research. Our main contribution here is to use the threshold-weighted Continuous Ranked Probability Score (CRPS) as a basic building block for acquisition functions employed within sequential design. We study pointwise and integral criteria relying on two different weighting measures and benchmark them against competitors, demonstrating improved performance with respect to considered goals. The resulting acquisition strategies are applicable to a wide range of fields and pave the way to further developing sequential design relying on scoring rules.
♻ ☆ Error Estimate and Convergence Analysis for Data Valuation
Data valuation quantifies data importance, but existing methods cannot ensure validity in a single training process. The neural dynamic data valuation (NDDV) method [3] addresses this limitation. Based on NDDV, we are the first to explore error estimation and convergence analysis in data valuation. Under Lipschitz and smoothness assumptions, we derive quadratic error bounds for loss differences that scale inversely with time steps and quadratically with control variations, ensuring stability. We also prove that the expected squared gradient norm for the training loss vanishes asymptotically, and that the meta loss converges sublinearly over iterations. In particular, NDDV achieves sublinear convergence.
comment: 7 pages, 2 figure
♻ ☆ HTMformer: Hybrid Time and Multivariate Transformer for Time Series Forecasting
Transformer-based methods have achieved impressive results in time series forecasting. However, existing Transformers still exhibit limitations in sequence modeling as they tend to overemphasize temporal dependencies. This incurs additional computational overhead without yielding corresponding performance gains. We find that the performance of Transformers is highly dependent on the embedding method used to learn effective representations. To address this issue, we extract multivariate features to augment the effective information captured in the embedding layer, yielding multidimensional embeddings that convey richer and more meaningful sequence representations. These representations enable Transformer-based forecasters to better understand the series. Specifically, we introduce Hybrid Temporal and Multivariate Embeddings (HTME). The HTME extractor integrates a lightweight temporal feature extraction module with a carefully designed multivariate feature extraction module to provide complementary features, thereby achieving a balance between model complexity and performance. By combining HTME with the Transformer architecture, we present HTMformer, leveraging the enhanced feature extraction capability of the HTME extractor to build a lightweight forecaster. Experiments conducted on eight real-world datasets demonstrate that our approach outperforms existing baselines in both accuracy and efficiency.
♻ ☆ Reliability-Adjusted Prioritized Experience Replay
Experience replay enables data-efficient learning from past experiences in online reinforcement learning agents. Traditionally, experiences were sampled uniformly from a replay buffer, regardless of differences in experience-specific learning potential. In an effort to sample more efficiently, researchers introduced Prioritized Experience Replay (PER). In this paper, we propose an extension to PER by introducing a novel measure of temporal difference error reliability. We theoretically show that the resulting transition selection algorithm, Reliability-adjusted Prioritized Experience Replay (ReaPER), enables more efficient learning than PER. We further present empirical results showing that ReaPER outperforms PER across various environment types, including the Atari-10 benchmark.
♻ ☆ Channel Dependence, Limited Lookback Windows, and the Simplicity of Datasets: How Biased is Time Series Forecasting?
In Time Series Forecasting (TSF), the lookback window (the length of historical data used for prediction) is a critical hyperparameter that is often set arbitrarily, undermining the validity of model evaluations. We argue that the lookback window must be tuned on a per-task basis to ensure fair comparisons. Our empirical results show that failing to do so can invert performance rankings, particularly when comparing univariate and multivariate methods. Experiments on standard benchmarks reposition Channel-Independent (CI) models, such as PatchTST, as state-of-the-art methods. However, we reveal this superior performance is largely an artifact of weak inter-channel correlations and simplicity of patterns within these specific datasets. Using Granger causality analysis and ODE datasets (with implicit channel correlations), we demonstrate that the true strength of multivariate Channel-Dependent (CD) models emerges on datasets with strong, inherent cross-channel dependencies, where they significantly outperform CI models. We conclude with three key recommendations for improving TSF research: (i) treat the lookback window as a critical hyperparameter to be tuned, (ii) use statistical analysis of datasets to inform the choice between CI and CD architectures, and (iii) favor CD models in applications with limited data.
♻ ☆ A Multi-Component AI Framework for Computational Psychology: From Robust Predictive Modeling to Deployed Generative Dialogue
The confluence of Artificial Intelligence and Computational Psychology presents an opportunity to model, understand, and interact with complex human psychological states through computational means. This paper presents a comprehensive, multi-faceted framework designed to bridge the gap between isolated predictive modeling and an interactive system for psychological analysis. The methodology encompasses a rigorous, end-to-end development lifecycle. First, foundational performance benchmarks were established on four diverse psychological datasets using classical machine learning techniques. Second, state-of-the-art transformer models were fine-tuned, a process that necessitated the development of effective solutions to overcome critical engineering challenges, including the resolution of numerical instability in regression tasks and the creation of a systematic workflow for conducting large-scale training under severe resource constraints. Third, a generative large language model (LLM) was fine-tuned using parameter-efficient techniques to function as an interactive "Personality Brain." Finally, the entire suite of predictive and generative models was architected and deployed as a robust, scalable microservices ecosystem. Key findings include the successful stabilization of transformer-based regression models for affective computing, showing meaningful predictive performance where standard approaches failed, and the development of a replicable methodology for democratizing large-scale AI research. The significance of this work lies in its holistic approach, demonstrating a complete research-to-deployment pipeline that integrates predictive analysis with generative dialogue, thereby providing a practical model for future research in computational psychology and human-AI interaction.
♻ ☆ Efficient Low-Tubal-Rank Tensor Estimation via Alternating Preconditioned Gradient Descent
The problem of low-tubal-rank tensor estimation is a fundamental task with wide applications across high-dimensional signal processing, machine learning, and image science. Traditional approaches tackle such a problem by performing tensor singular value decomposition, which is computationally expensive and becomes infeasible for large-scale tensors. Recent approaches address this issue by factorizing the tensor into two smaller factor tensors and solving the resulting problem using gradient descent. However, this kind of approach requires an accurate estimate of the tensor rank, and when the rank is overestimated, the convergence of gradient descent and its variants slows down significantly or even diverges. To address this problem, we propose an Alternating Preconditioned Gradient Descent (APGD) algorithm, which accelerates convergence in the over-parameterized setting by adding a preconditioning term to the original gradient and updating these two factors alternately. Based on certain geometric assumptions on the objective function, we establish linear convergence guarantees for more general low-tubal-rank tensor estimation problems. Then we further analyze the specific cases of low-tubal-rank tensor factorization and low-tubal-rank tensor recovery. Our theoretical results show that APGD achieves linear convergence even under over-parameterization, and the convergence rate is independent of the tensor condition number. Extensive simulations on synthetic data are carried out to validate our theoretical assertions.
♻ ☆ Cost-aware LLM-based Online Dataset Annotation
Recent advances in large language models (LLMs) have enabled automated dataset labeling with minimal human supervision. While majority voting across multiple LLMs can improve label reliability by mitigating individual model biases, it incurs high computational costs due to repeated querying. In this work, we propose a novel online framework, Cost-aware Majority Voting (CaMVo), for efficient and accurate LLM-based dataset annotation. CaMVo adaptively selects a subset of LLMs for each data instance based on contextual embeddings, balancing confidence and cost without requiring pre-training or ground-truth labels. Leveraging a LinUCB-based selection mechanism and a Bayesian estimator over confidence scores, CaMVo estimates a lower bound on labeling accuracy for each LLM and aggregates responses through weighted majority voting. Our empirical evaluation on the MMLU and IMDB Movie Review datasets demonstrates that CaMVo achieves comparable or superior accuracy to full majority voting while significantly reducing labeling costs. This establishes CaMVo as a practical and robust solution for cost-efficient annotation in dynamic labeling environments.
♻ ☆ Adaptive-lambda Subtracted Importance Sampled Scores in Machine Unlearning for DDPMs and VAEs
Machine Unlearning is essential for large generative models (VAEs, DDPMs) to comply with the right to be forgotten and prevent undesired content generation without costly retraining. Existing approaches, such as Static-lambda SISS for diffusion models, rely on a fixed mixing weight lambda, which is suboptimal because the required unlearning strength varies across samples and training stages. We propose Adaptive-lambda SISS, a principled extension that turns lambda into a latent variable dynamically inferred at each training step. A lightweight inference network parameterizes an adaptive posterior over lambda, conditioned on contextual features derived from the instantaneous SISS loss terms (retain/forget losses and their gradients). This enables joint optimization of the diffusion model and the lambda-inference mechanism via a variational objective, yielding significantly better trade-offs. We further extend the adaptive-lambda principle to score-based unlearning and introduce a multi-class variant of Score Forgetting Distillation. In addition, we present two new directions: (i) a hybrid objective combining the data-free efficiency of Score Forgetting Distillation with the direct gradient control of SISS, and (ii) a Reinforcement Learning formulation that treats unlearning as a sequential decision process, learning an optimal policy over a state space defined by the model's current memory of the forget set. Experiments on an augmented MNIST benchmark show that Adaptive-lambda SISS substantially outperforms the original static-lambda SISS, achieving stronger removal of forgotten classes while better preserving generation quality on the retain set.
♻ ☆ FireScope: Wildfire Risk Prediction with a Chain-of-Thought Oracle
Predicting wildfire risk is a reasoning-intensive spatial problem that requires the integration of visual, climatic, and geographic factors to infer continuous risk maps. Existing methods lack the causal reasoning and multimodal understanding required for reliable generalization. We introduce $\textbf{FireScope-Bench}$, a large-scale dataset and benchmark that couples Sentinel-2 imagery and climate data with expert-defined risk rasters across the USA, and real wildfire events in Europe for cross-continental evaluation. Building on this dataset, we propose $\textbf{FireScope}$, a VLM-based reasoning-to-generation framework that learns from both reinforcement learning and visual supervision to predict risk rasters with complementary reasoning traces. When trained in the USA and tested in Europe, $\textbf{FireScope}$ achieves substantial performance gains, while expert feedback and automated analysis confirm that its reasoning traces are faithful and semantically meaningful. Our findings demonstrate that reasoning can ground raster prediction models, improving both generalization and interpretability. To our knowledge, this is the first framework to (1) demonstrate that language-based reasoning can improve generalization in visual generation, (2) propose a high-resolution wildfire risk model that can be applied across continents, and (3) enable systematic studies of robust cross-continental generalization for multimodal fire risk models. We believe that $\textbf{FireScope-Bench}$ has the potential to serve as a foundation for advancing reasoning-driven, interpretable and generalizable spatial modeling. Data and source code will be made publicly available.
♻ ☆ Latent-Autoregressive GP-VAE Language Model
We investigate a fully Latent AutoRegressive scheme based on a Gaussian Process (GP) integrated into a Variational Autoencoder (VAE). In this setting, sequential dynamics are transferred from the observation space to a continuous latent space, while linguistic generation remains parallel through a non-autoregressive decoder. We present a complete methodological formulation, including a causal GP prior, a structured amortized posterior, and a training protocol based on a regularized ELBO. Empirical evaluation, conducted within a deliberately constrained proof-of-concept (POC) framework, shows that the model can be trained stably and that the sequential and parallel sampling variants exhibit consistent behavior. Overall, the results suggest that part of the temporal structure in a language model can be supported by the probabilistic geometry of the latent space rather than by explicit neural operations.
comment: 27 pages, 1 figure, 4 tables. Proof-of-concept study of a latent-autoregressive GP-VAE language model with TCN encoder and non-autoregressive decoder. Code available at https://github.com/y-v-e-s/GP-VAE-Latent-AR
♻ ☆ End-to-End Reinforcement Learning of Koopman Models for eNMPC of an Air Separation Unit
With our recently proposed method based on reinforcement learning (Mayfrank et al. (2024), Comput. Chem. Eng. 190), Koopman surrogate models can be trained for optimal performance in specific (economic) nonlinear model predictive control ((e)NMPC) applications. So far, our method has exclusively been demonstrated on a small-scale case study. Herein, we show that our method scales well to a more challenging demand response case study built on a large-scale model of a single-product (nitrogen) air separation unit. Across all numerical experiments, we assume observability of only a few realistically measurable plant variables. Compared to a purely system identification-based Koopman eNMPC, which generates small economic savings but frequently violates constraints, our method delivers similar economic performance while avoiding constraint violations.
comment: manuscript (8 pages, 5 figures, 1 table), supplementary materials (5 pages, 1 figure, 1 table)
♻ ☆ HACTS: a Human-As-Copilot Teleoperation System for Robot Learning
Teleoperation is essential for autonomous robot learning, especially in manipulation tasks that require human demonstrations or corrections. However, most existing systems only offer unilateral robot control and lack the ability to synchronize the robot's status with the teleoperation hardware, preventing real-time, flexible intervention. In this work, we introduce HACTS (Human-As-Copilot Teleoperation System), a novel system that establishes bilateral, real-time joint synchronization between a robot arm and teleoperation hardware. This simple yet effective feedback mechanism, akin to a steering wheel in autonomous vehicles, enables the human copilot to intervene seamlessly while collecting action-correction data for future learning. Implemented using 3D-printed components and low-cost, off-the-shelf motors, HACTS is both accessible and scalable. Our experiments show that HACTS significantly enhances performance in imitation learning (IL) and reinforcement learning (RL) tasks, boosting IL recovery capabilities and data efficiency, and facilitating human-in-the-loop RL. HACTS paves the way for more effective and interactive human-robot collaboration and data-collection, advancing the capabilities of robot manipulation.
♻ ☆ Trojan Cleansing with Neural Collapse
Trojan attacks are sophisticated training-time attacks on neural networks that embed backdoor triggers which force the network to produce a specific output on any input which includes the trigger. With the increasing relevance of deep networks which are too large to train with personal resources and which are trained on data too large to thoroughly audit, these training-time attacks pose a significant risk. In this work, we connect trojan attacks to Neural Collapse, a phenomenon wherein the final feature representations of over-parameterized neural networks converge to a simple geometric structure. We provide experimental evidence that trojan attacks disrupt this convergence for a variety of datasets and architectures. We then use this disruption to design a lightweight, broadly generalizable mechanism for cleansing trojan attacks from a wide variety of different network architectures and experimentally demonstrate its efficacy.
♻ ☆ Non-Linear Trajectory Modeling for Multi-Step Gradient Inversion Attacks in Federated Learning
Federated Learning (FL) enables collaborative training while preserving privacy, yet Gradient Inversion Attacks (GIAs) pose severe threats by reconstructing private data from shared gradients. In realistic FedAvg scenarios with multi-step updates, existing surrogate methods like SME rely on linear interpolation to approximate client trajectories for privacy leakage. However, we demonstrate that linear assumptions fundamentally underestimate SGD's nonlinear complexity, encountering irreducible approximation barriers in non-convex landscapes with only one-dimensional expressiveness. We propose Non-Linear Surrogate Model Extension (NL-SME), the first framework introducing learnable quadratic Bézier curves for trajectory modeling in GIAs against FL. NL-SME leverages $|w|+1$-dimensional control point parameterization combined with dvec scaling and regularization mechanisms to achieve superior approximation accuracy. Extensive experiments on CIFAR-100 and FEMNIST demonstrate NL-SME significantly outperforms baselines across all metrics, achieving 94\%--98\% performance gaps and order-of-magnitude improvements in cosine similarity loss while maintaining computational efficiency. This work exposes critical privacy vulnerabilities in FL's multi-step paradigm and provides insights for robust defense development.
♻ ☆ Optimal Convergence Analysis of DDPM for General Distributions
Score-based diffusion models have achieved remarkable empirical success in generating high-quality samples from target data distributions. Among them, the Denoising Diffusion Probabilistic Model (DDPM) is one of the most widely used samplers, generating samples via estimated score functions. Despite its empirical success, a tight theoretical understanding of DDPM -- especially its convergence properties -- remains limited. In this paper, we provide a refined convergence analysis of the DDPM sampler and establish near-optimal convergence rates under general distributional assumptions. Specifically, we introduce a relaxed smoothness condition parameterized by a constant $L$, which is small for many practical distributions (e.g., Gaussian mixture models). We prove that the DDPM sampler with accurate score estimates achieves a convergence rate of $$\widetilde{O}\left(\frac{d\min\{d,L^2\}}{T^2}\right)~\text{in Kullback-Leibler divergence},$$ where $d$ is the data dimension, $T$ is the number of iterations, and $\widetilde{O}$ hides polylogarithmic factors in $T$. This result substantially improves upon the best-known $d^2/T^2$ rate when $L < \sqrt{d}$. By establishing a matching lower bound, we show that our convergence analysis is tight for a wide array of target distributions. Moreover, it reveals that DDPM and DDIM share the same dependence on $d$, raising an interesting question of why DDIM often appears empirically faster.
♻ ☆ Renormalizable Spectral-Shell Dynamics as the Origin of Neural Scaling Laws
Neural scaling laws and double-descent phenomena suggest that deep-network training obeys a simple macroscopic structure despite highly nonlinear optimization dynamics. We derive such structure directly from gradient descent in function space. For mean-squared error loss, the training error evolves as $\dot e_t=-M(t)e_t$ with $M(t)=J_{θ(t)}J_{θ(t)}^{\!*}$, a time-dependent self-adjoint operator induced by the network Jacobian. Using Kato perturbation theory, we obtain an exact system of coupled modewise ODEs in the instantaneous eigenbasis of $M(t)$. To extract macroscopic behavior, we introduce a logarithmic spectral-shell coarse-graining and track quadratic error energy across shells. Microscopic interactions within each shell cancel identically at the energy level, so shell energies evolve only through dissipation and external inter-shell interactions. We formalize this via a \emph{renormalizable shell-dynamics} assumption, under which cumulative microscopic effects reduce to a controlled net flux across shell boundaries. Assuming an effective power-law spectral transport in a relevant resolution range, the shell dynamics admits a self-similar solution with a moving resolution frontier and explicit scaling exponents. This framework explains neural scaling laws and double descent, and unifies lazy (NTK-like) training and feature learning as two limits of the same spectral-shell dynamics.
♻ ☆ SA$^{2}$GFM: Enhancing Robust Graph Foundation Models with Structure-Aware Semantic Augmentation
We present Graph Foundation Models (GFMs) which have made significant progress in various tasks, but their robustness against domain noise, structural perturbations, and adversarial attacks remains underexplored. A key limitation is the insufficient modeling of hierarchical structural semantics, which are crucial for generalization. In this paper, we propose SA$^{2}$GFM, a robust GFM framework that improves domain-adaptive representations through Structure-Aware Semantic Augmentation. First, we encode hierarchical structural priors by transforming entropy-based encoding trees into structure-aware textual prompts for feature augmentation. The enhanced inputs are processed by a self-supervised Information Bottleneck mechanism that distills robust, transferable representations via structure-guided compression. To address negative transfer in cross-domain adaptation, we introduce an expert adaptive routing mechanism, combining a mixture-of-experts architecture with a null expert design. For efficient downstream adaptation, we propose a fine-tuning module that optimizes hierarchical structures through joint intra- and inter-community structure learning. Extensive experiments demonstrate that SA$^{2}$GFM outperforms 9 state-of-the-art baselines in terms of effectiveness and robustness against random noise and adversarial perturbations for node and graph classification.
♻ ☆ Enhancing Physics-Informed Neural Networks Through Feature Engineering
Physics-Informed Neural Networks (PINNs) seek to solve partial differential equations (PDEs) with deep learning. Mainstream approaches that deploy fully-connected multi-layer deep learning architectures require prolonged training to achieve even moderate accuracy, while recent work on feature engineering allows higher accuracy and faster convergence. This paper introduces SAFE-NET, a Single-layered Adaptive Feature Engineering NETwork that achieves orders-of-magnitude lower errors with far fewer parameters than baseline feature engineering methods. SAFE-NET returns to basic ideas in machine learning, using Fourier features, a simplified single hidden layer network architecture, and an effective optimizer that improves the conditioning of the PINN optimization problem. Numerical results show that SAFE-NET converges faster and typically outperforms deeper networks and more complex architectures. It consistently uses fewer parameters -- on average, 65% fewer than the competing feature engineering methods -- while achieving comparable accuracy in less than 30% of the training epochs. Moreover, each SAFE-NET epoch is 95% faster than those of competing feature engineering approaches. These findings challenge the prevailing belief that modern PINNs effectively learn features in these scientific applications and highlight the efficiency gains possible through feature engineering.
♻ ☆ Data Collaboration Analysis with Orthonormal Basis Selection and Alignment
Data Collaboration (DC) enables multiple parties to jointly train a model by sharing only linear projections of their private datasets. The core challenge in DC is to align the bases of these projections without revealing each party's secret basis. While existing theory suggests that any target basis spanning the common subspace should suffice, in practice, the choice of basis can substantially affect both accuracy and numerical stability. We introduce Orthonormal Data Collaboration (ODC), which enforces orthonormal secret and target bases, thereby reducing alignment to the classical Orthogonal Procrustes problem, which admits a closed-form solution. We prove that the resulting change-of-basis matrices achieve \emph{orthogonal concordance}, aligning all parties' representations up to a shared orthogonal transform and rendering downstream performance invariant to the target basis. Computationally, ODC reduces the alignment complexity from O(\min{a(cl)^2,a^2c}) to O(acl^2), and empirical evaluations show up to \(100\times\) speed-ups with equal or better accuracy across benchmarks. ODC preserves DC's one-round communication pattern and privacy assumptions, providing a simple and efficient drop-in improvement to existing DC pipelines.
comment: 44 pages
♻ ☆ Spectral Concentration at the Edge of Stability: Information Geometry of Kernel Associative Memory
High-capacity kernel Hopfield networks exhibit a \textit{Ridge of Optimization} characterized by extreme stability. While previously linked to \textit{Spectral Concentration}, its origin remains elusive. Here, we analyze the network dynamics on a statistical manifold, revealing that the Ridge corresponds to the Edge of Stability, a critical boundary where the Fisher Information Matrix becomes singular. We demonstrate that the apparent Euclidean force antagonism is a manifestation of \textit{Dual Equilibrium} in the Riemannian space. This unifies learning dynamics and capacity via the Minimum Description Length principle, offering a geometric theory of self-organized criticality.
comment: 4 pages, 4 figures
♻ ☆ On the physics of nested Markov models: a generalized probabilistic theory perspective
Determining potential probability distributions with a given causal graph is vital for causality studies. To bypass the difficulty in characterizing latent variables in a Bayesian network, the nested Markov model provides an elegant algebraic approach by listing exactly all the equality constraints on the observed variables. However, this algebraically motivated causal model comprises distributions outside Bayesian networks, and its physical interpretation remains vague. In this work, we inspect the nested Markov model through the lens of generalized probabilistic theory, an axiomatic framework to describe general physical theories. We prove that all the equality constraints defining the nested Markov model are valid theory-independently. At the same time, not every distribution within the nested Markov model is implementable, not even via exotic physical theories associated with generalized probability theories (GPTs). To interpret the origin of such a gap, we study three causal models standing between the nested Markov model and the set of all distributions admitting some GPT realization. Each of the successive three models gives a strictly tighter characterization of the physically implementable distribution set; that is, each successive model manifests new types of GPT-inviolable constraints. We further demonstrate each gap through a specially chosen illustrative causal structure. We anticipate our results will enlighten further explorations on the unification of algebraic and physical perspectives of causality.
comment: V2: 21 pages, 9 figures, 1 table; simpler proofs for the original theorems provided; new causal models introduced and discussed; one author added. Comments are welcome!
♻ ☆ De novo generation of functional terpene synthases using TpsGPT NeurIPS 2025
Terpene synthases (TPS) are a key family of enzymes responsible for generating the diverse terpene scaffolds that underpin many natural products, including front-line anticancer drugs such as Taxol. However, de novo TPS design through directed evolution is costly and slow. We introduce TpsGPT, a generative model for scalable TPS protein design, built by fine-tuning the protein language model ProtGPT2 on 79k TPS sequences mined from UniProt. TpsGPT generated de novo enzyme candidates in silico and we evaluated them using multiple validation metrics, including EnzymeExplorer classification, ESMFold structural confidence (pLDDT), sequence diversity, CLEAN classification, InterPro domain detection, and Foldseek structure alignment. From an initial pool of 28k generated sequences, we identified seven putative TPS enzymes that satisfied all validation criteria. Experimental validation confirmed TPS enzymatic activity in at least two of these sequences. Our results show that fine-tuning of a protein language model on a carefully curated, enzyme-class-specific dataset, combined with rigorous filtering, can enable the de novo generation of functional, evolutionarily distant enzymes.
comment: 11 pages, 8 figures, Accepted at the NeurIPS 2025 AI for Science and Machine Learning for Structural Biology 2025 workshops Fixed incorrect threshold in Fig 1
♻ ☆ Certifying Robustness of Graph Convolutional Networks for Node Perturbation with Polyhedra Abstract Interpretation
Graph convolutional neural networks (GCNs) are powerful tools for learning graph-based knowledge representations from training data. However, they are vulnerable to small perturbations in the input graph, which makes them susceptible to input faults or adversarial attacks. This poses a significant problem for GCNs intended to be used in critical applications, which need to provide certifiably robust services even in the presence of adversarial perturbations. We propose an improved GCN robustness certification technique for node classification in the presence of node feature perturbations. We introduce a novel polyhedra-based abstract interpretation approach to tackle specific challenges of graph data and provide tight upper and lower bounds for the robustness of the GCN. Experiments show that our approach simultaneously improves the tightness of robustness bounds as well as the runtime performance of certification. Moreover, our method can be used during training to further improve the robustness of GCNs.
comment: Author preprint, published at Data Mining and Knowledge Discovery. Published version available at: https://link.springer.com/article/10.1007/s10618-025-01180-w
♻ ☆ Tensor Decomposition Networks for Fast Machine Learning Interatomic Potential Computations
$\rm{SO}(3)$-equivariant networks are the dominant models for machine learning interatomic potentials (MLIPs). The key operation of such networks is the Clebsch-Gordan (CG) tensor product, which is computationally expensive. To accelerate the computation, we develop tensor decomposition networks (TDNs) as a class of approximately equivariant networks in which CG tensor products are replaced by low-rank tensor decompositions, such as the CANDECOMP/PARAFAC (CP) decomposition. With the CP decomposition, we prove (i) a uniform bound on the induced error of $\rm{SO}(3)$-equivariance, and (ii) the universality of approximating any equivariant bilinear map. To further reduce the number of parameters, we propose path-weight sharing that ties all multiplicity-space weights across the $\mathcal{O}(L^3)$ CG paths into a single shared parameter set without compromising equivariance, where $L$ is the maximum angular degree. The resulting layer acts as a plug-and-play replacement for tensor products in existing networks, and the computational complexity of tensor products is reduced from $\mathcal{O}(L^6)$ to $\mathcal{O}(L^4)$. We evaluate TDNs on PubChemQCR, a newly curated molecular relaxation dataset containing 105 million DFT-calculated snapshots. We also use existing datasets, including OC20, and OC22. Results show that TDNs achieve competitive performance with dramatic speedup in computations. Our code is publicly available as part of the AIRS library (\href{https://github.com/divelab/AIRS/tree/main/OpenMol/TDN}{https://github.com/divelab/AIRS/}).
♻ ☆ A Physics-Embedded Dual-Learning Imaging Framework for Electrical Impedance Tomography
Electrical Impedance Tomography (EIT) is a promising noninvasive imaging technique that reconstructs the spatial conductivity distribution from boundary voltage measurements. However, it poses a highly nonlinear and ill-posed inverse problem. Traditional regularization-based methods are sensitive to noise and often produce significant artifacts. Physics-Embedded learning frameworks, particularly Physics-Informed Neural Networks (PINNs), have shown success in solving such inverse problems under ideal conditions with abundant internal data. Yet in practical EIT applications, only sparse and noisy boundary measurements are available. Moreover, changing boundary excitations require the simultaneous training of multiple forward networks and one inverse network, which significantly increases computational complexity and hampers convergence. To overcome these limitations, we propose a Physics-Embedded Dual-Learning Imaging Framework for EIT. The dual-learning strategy is composed of a supervised CNN-based forward network, which learns to predict a discrete internal potential distribution under fixed Neumann-to-Dirichlet boundary conditions, and an unsupervised PINN-based inverse network, which reconstructs the conductivity by enforcing the governing PDE through discrete numerical differentiation of the predicted potentials. This decoupled architecture removes the need for smooth conductivity assumptions, reduces the number of forward networks required from $K$ to 1, and improves reconstruction robustness and efficiency under realistic measurement constraints.(https://github.com/XuanxuanYang/CNN-PINNframework.git)
comment: 14 pages,11 figures
♻ ☆ Rewind-to-Delete: Certified Machine Unlearning for Nonconvex Functions NeurIPS 2025
Machine unlearning algorithms aim to efficiently remove data from a model without retraining it from scratch, in order to remove corrupted or outdated data or respect a user's ``right to be forgotten." Certified machine unlearning is a strong theoretical guarantee based on differential privacy that quantifies the extent to which an algorithm erases data from the model weights. In contrast to existing works in certified unlearning for convex or strongly convex loss functions, or nonconvex objectives with limiting assumptions, we propose the first, first-order, black-box (i.e., can be applied to models pretrained with vanilla gradient descent) algorithm for unlearning on general nonconvex loss functions, which unlearns by ``rewinding" to an earlier step during the learning process before performing gradient descent on the loss function of the retained data points. We prove $(ε, δ)$ certified unlearning and performance guarantees that establish the privacy-utility-complexity tradeoff of our algorithm, and we prove generalization guarantees for functions that satisfy the Polyak-Lojasiewicz inequality. Finally, we demonstrate the superior performance of our algorithm compared to existing methods, within a new experimental framework that more accurately reflects unlearning user data in practice.
comment: NeurIPS 2025
♻ ☆ Learning to Optimize for Mixed-Integer Non-linear Programming with Feasibility Guarantees
Mixed-integer nonlinear programs (MINLPs) arise in domains such as energy systems, process engineering, and transportation, and are notoriously difficult to solve at scale due to the interplay of discrete decisions and nonlinear constraints. In many practical settings, these problems appear in parametric form, where objectives and constraints depend on instance-specific parameters, creating the need for fast and reliable solutions across related instances. While learning-to-optimize (L2O) methods have shown strong performance in continuous optimization, extending them to MINLPs requires enforcing both feasibility and integrality within a data-driven framework. We propose an L2O approach tailored to parametric MINLPs that generates instance-specific solutions using integer correction layers to enforce integrality and a gradient-based projection to ensure feasibility of the inequality constraints. Theoretically, we provide asymptotic and non-asymptotic convergence guarantees of the projection step. Empirically, the framework scales to MINLPs with tens of thousands of variables and produces feasible high-quality solutions within milliseconds, often outperforming traditional solvers and heuristic baselines in repeated-solve settings.
♻ ☆ Adaptive Information Routing for Multimodal Time Series Forecasting
Time series forecasting is a critical task for artificial intelligence with numerous real-world applications. Traditional approaches primarily rely on historical time series data to predict the future values. However, in practical scenarios, this is often insufficient for accurate predictions due to the limited information available. To address this challenge, multimodal time series forecasting methods which incorporate additional data modalities, mainly text data, alongside time series data have been explored. In this work, we introduce the Adaptive Information Routing (AIR) framework, a novel approach for multimodal time series forecasting. Unlike existing methods that treat text data on par with time series data as interchangeable auxiliary features for forecasting, AIR leverages text information to dynamically guide the time series model by controlling how and to what extent multivariate time series information should be combined. We also present a text-refinement pipeline that employs a large language model to convert raw text data into a form suitable for multimodal forecasting, and we introduce a benchmark that facilitates multimodal forecasting experiments based on this pipeline. Experiment results with the real world market data such as crude oil price and exchange rates demonstrate that AIR effectively modulates the behavior of the time series model using textual inputs, significantly enhancing forecasting accuracy in various time series forecasting tasks.
♻ ☆ Multi-View Oriented GPLVM: Expressiveness and Efficiency
The multi-view Gaussian process latent variable model (MV-GPLVM) aims to learn a unified representation from multi-view data but is hindered by challenges such as limited kernel expressiveness and low computational efficiency. To overcome these issues, we first introduce a new duality between the spectral density and the kernel function. By modeling the spectral density with a bivariate Gaussian mixture, we then derive a generic and expressive kernel termed Next-Gen Spectral Mixture (NG-SM) for MV-GPLVMs. To address the inherent computational inefficiency of the NG-SM kernel, we design a new form of random Fourier feature approximation. Combined with a tailored reparameterization trick, this approximation enables scalable variational inference for both the model and the unified latent representations. Numerical evaluations across a diverse range of multi-view datasets demonstrate that our proposed method consistently outperforms state-of-the-art models in learning meaningful latent representations.
comment: 10 pages
♻ ☆ Astra: General Interactive World Model with Autoregressive Denoising
Recent advances in diffusion transformers have empowered video generation models to generate high-quality video clips from texts or images. However, world models with the ability to predict long-horizon futures from past observations and actions remain underexplored, especially for general-purpose scenarios and various forms of actions. To bridge this gap, we introduce Astra, an interactive general world model that generates real-world futures for diverse scenarios (e.g., autonomous driving, robot grasping) with precise action interactions (e.g., camera motion, robot action). We propose an autoregressive denoising architecture and use temporal causal attention to aggregate past observations and support streaming outputs. We use a noise-augmented history memory to avoid over-reliance on past frames to balance responsiveness with temporal coherence. For precise action control, we introduce an action-aware adapter that directly injects action signals into the denoising process. We further develop a mixture of action experts that dynamically route heterogeneous action modalities, enhancing versatility across diverse real-world tasks such as exploration, manipulation, and camera control. Astra achieves interactive, consistent, and general long-term video prediction and supports various forms of interactions. Experiments across multiple datasets demonstrate the improvements of Astra in fidelity, long-range prediction, and action alignment over existing state-of-the-art world models.
comment: Code is available at: https://github.com/EternalEvan/Astra
♻ ☆ SpurLens: Automatic Detection of Spurious Cues in Multimodal LLMs
Unimodal vision models are known to rely on spurious correlations, but it remains unclear to what extent Multimodal Large Language Models (MLLMs) exhibit similar biases despite language supervision. In this paper, we investigate spurious bias in MLLMs and introduce SpurLens, a pipeline that leverages GPT-4 and open-set object detectors to automatically identify spurious visual cues without human supervision. Our findings reveal that spurious correlations cause two major failure modes in MLLMs: (1) over-reliance on spurious cues for object recognition, where removing these cues reduces accuracy, and (2) object hallucination, where spurious cues amplify the hallucination by over 10x. We validate our findings in various MLLMs and datasets. Beyond diagnosing these failures, we explore potential mitigation strategies, such as prompt ensembling and reasoning-based prompting, and conduct ablation studies to examine the root causes of spurious bias in MLLMs. By exposing the persistence of spurious correlations, our study calls for more rigorous evaluation methods and mitigation strategies to enhance the reliability of MLLMs.
♻ ☆ Unsupervised Acquisition of Discrete Grammatical Categories
This article presents experiments performed using a computational laboratory environment for language acquisition experiments. It implements a multi-agent system consisting of two agents: an adult language model and a daughter language model that aims to learn the mother language. Crucially, the daughter agent does not have access to the internal knowledge of the mother language model but only to the language exemplars the mother agent generates. These experiments illustrate how this system can be used to acquire abstract grammatical knowledge. We demonstrate how statistical analyses of patterns in the input data corresponding to grammatical categories yield discrete grammatical rules. These rules are subsequently added to the grammatical knowledge of the daughter language model. To this end, hierarchical agglomerative cluster analysis was applied to the utterances consecutively generated by the mother language model. It is argued that this procedure can be used to acquire structures resembling grammatical categories proposed by linguists for natural languages. Thus, it is established that non-trivial grammatical knowledge has been acquired. Moreover, the parameter configuration of this computational laboratory environment determined using training data generated by the mother language model is validated in a second experiment with a test set similarly resulting in the acquisition of non-trivial categories.
comment: 34 pages, 3 figures, 7 tables. Related work: Shakouri et al., arXiv:2512.02195
♻ ☆ China Regional 3km Downscaling Based on Residual Corrective Diffusion Model
A fundamental challenge in numerical weather prediction is to efficiently produce high-resolution forecasts. A common solution is applying downscaling methods, which include dynamical downscaling and statistical downscaling, to the outputs of global models. This work focuses on statistical downscaling, which establishes statistical relationships between low-resolution and high-resolution historical data using statistical models. Deep learning has emerged as a powerful tool for this task, giving rise to various high-performance super-resolution models, which can be directly applied for downscaling, such as diffusion models and Generative Adversarial Networks. This work relies on a diffusion-based downscaling framework named CorrDiff. In contrast to the original work of CorrDiff, the region considered in this work is nearly 40 times larger, and we not only consider surface variables as in the original work, but also encounter high-level variables (six pressure levels) as target downscaling variables. In addition, a global residual connection is added to improve accuracy. In order to generate the 3km forecasts for the China region, we apply our trained models to the 25km global grid forecasts of CMA-GFS, an operational global model of the China Meteorological Administration (CMA), and SFF, a data-driven deep learning-based weather model developed from Spherical Fourier Neural Operators (SFNO). CMA-MESO, a high-resolution regional model, is chosen as the baseline model. The experimental results demonstrate that the forecasts downscaled by our method generally outperform the direct forecasts of CMA-MESO in terms of MAE for the target variables. Our forecasts of radar composite reflectivity show that CorrDiff, as a generative model, can generate fine-scale details that lead to more realistic predictions compared to the corresponding deterministic regression models.
♻ ☆ LookAhead Tuning: Safer Language Models via Partial Answer Previews
Fine-tuning enables large language models (LLMs) to adapt to specific domains, but often compromises their previously established safety alignment. To mitigate the degradation of model safety during fine-tuning, we introduce LookAhead Tuning, a lightweight and effective data-driven approach that preserves safety during fine-tuning. The method introduces two simple strategies that modify training data by previewing partial answer prefixes, thereby minimizing perturbations to the model's initial token distributions and maintaining its built-in safety mechanisms. Comprehensive experiments demonstrate that LookAhead Tuning effectively maintains model safety without sacrificing robust performance on downstream tasks. Our findings position LookAhead Tuning as a reliable and efficient solution for the safe and effective adaptation of LLMs.
comment: WSDM 2026 short
♻ ☆ Adversarial bandit optimization for approximately linear functions
We consider a bandit optimization problem for nonconvex and non-smooth functions, where in each trial the loss function is the sum of a linear function and a small but arbitrary perturbation chosen after observing the player's choice. We give both expected and high probability regret bounds for the problem. Our result also implies an improved high-probability regret bound for the bandit linear optimization, a special case with no perturbation. We also give a lower bound on the expected regret.
♻ ☆ Improved Generalization Bounds for Transductive Learning by Transductive Local Complexity and Its Applications ICML 2025
We introduce Transductive Local Complexity (TLC) as a new tool for analyzing the generalization performance of transductive learning methods. Our work extends the classical Local Rademacher Complexity (LRC) to the transductive setting, incorporating substantial and novel components. Although LRC has been used to obtain sharp generalization bounds and minimax rates for inductive tasks such as classification and nonparametric regression, it has remained an open problem whether a localized Rademacher complexity framework can be effectively adapted to transductive learning to achieve sharp or nearly sharp bounds consistent with inductive results. We provide an affirmative answer via TLC. TLC is constructed by first deriving a new concentration inequality in Theorem 4.1 for the supremum of empirical processes capturing the gap between test and training losses, termed the test-train process, under uniform sampling without replacement, which leverages a novel combinatorial property of the test-train process and a new proof strategy applying the exponential Efron-Stein inequality twice. A subsequent peeling strategy and a new surrogate variance operator then yield excess risk bounds in the transductive setting that are nearly consistent with classical LRC-based inductive bounds up to a logarithmic gap. We further advance transductive learning through two applications: (1) for realizable transductive learning over binary-valued classes with finite VC dimension of $\dVC$ and $u \ge m \ge \dVC$, where $u$ and $m$ are the number of test features and training features, our Theorem 6.1 gives a nearly optimal bound $Θ(\dVC \log(me/\dVC)/m)$ matching the minimax rate $Θ(\dVC/m)$ up to $\log m$, resolving a decade-old open question; and (2) Theorem 6.2 presents a sharper excess risk bound for transductive kernel learning compared to the current state-of-the-art.
comment: The ICML 2025 conference version (https://openreview.net/pdf?id=NRVdvg7VMn) is a special case of this paper where the chain length is fixed at 2 (i.e.,$Q=2$, see Def. 5.1), and its main results follow directly from the results here. This paper further provides a nearly optimal excess risk bound for realizable transductive learning and a stronger bound for transductive kernel learning
♻ ☆ Integrated Prediction and Multi-period Portfolio Optimization
Multi-period portfolio optimization is important for real portfolio management, as it accounts for transaction costs, path-dependent risks, and the intertemporal structure of trading decisions that single-period models cannot capture. Classical methods usually follow a two-stage framework: machine learning algorithms are employed to produce forecasts that closely fit the realized returns, and the predicted values are then used in a downstream portfolio optimization problem to determine the asset weights. This separation leads to a fundamental misalignment between predictions and decision outcomes, while also ignoring the impact of transaction costs. To bridge this gap, recent studies have proposed the idea of end-to-end learning, integrating the two stages into a single pipeline. This paper introduces IPMO (Integrated Prediction and Multi-period Portfolio Optimization), a model for multi-period mean-variance portfolio optimization with turnover penalties. The predictor generates multi-period return forecasts that parameterize a differentiable convex optimization layer, which in turn drives learning via portfolio performance. For scalability, we introduce a mirror-descent fixed-point (MDFP) differentiation scheme that avoids factorizing the Karush-Kuhn-Tucker (KKT) systems, which thus yields stable implicit gradients and nearly scale-insensitive runtime as the decision horizon grows. In experiments with real market data and two representative time-series prediction models, the IPMO method consistently outperforms the two-stage benchmarks in risk-adjusted performance net of transaction costs and achieves more coherent allocation paths. Our results show that integrating machine learning prediction with optimization in the multi-period setting improves financial outcomes and remains computationally tractable.
comment: 23 pages, 6 figures, and 4 tables
♻ ☆ VLM-Pruner: Buffering for Spatial Sparsity in an Efficient VLM Centrifugal Token Pruning Paradigm
Vision-language models (VLMs) excel at image understanding tasks, but the large number of visual tokens imposes significant computational costs, hindering deployment on mobile devices. Many pruning methods rely solely on token importance and thus overlook inter-token redundancy, retaining numerous duplicated tokens and wasting capacity. Although some redundancy-aware approaches have been proposed, they often ignore the spatial relationships among visual tokens. This can lead to overly sparse selections of retained tokens that fail to adequately cover the regions of target objects. To address these limitations, we propose VLM-Pruner, a training-free token pruning algorithm that explicitly balances redundancy and spatial sparsity. We introduce a centrifugal token pruning paradigm that enables near-to-far selection while prioritizing the preservation of fine-grained object details. Moreover, we design a Buffering for Spatial Sparsity (BSS) criterion that defers the selection of spatially distant tokens. We further adopt a parallel greedy strategy to conduct token selection efficiently. To mitigate information loss from pruning, we selectively fuse salient information from the discarded tokens into the retained ones. Comprehensive comparisons demonstrate that VLM-Pruner consistently outperforms strong baselines across five VLMs with an 88.9\% pruning rate, while delivering an end-to-end inference speedup. The code is available at https://github.com/Casey-bit/VLMPruner.
♻ ☆ Improving Time Series Forecasting via Instance-aware Post-hoc Revision NeurIPS 2025
Time series forecasting plays a vital role in various real-world applications and has attracted significant attention in recent decades. While recent methods have achieved remarkable accuracy by incorporating advanced inductive biases and training strategies, we observe that instance-level variations remain a significant challenge. These variations--stemming from distribution shifts, missing data, and long-tail patterns--often lead to suboptimal forecasts for specific instances, even when overall performance appears strong. To address this issue, we propose a model-agnostic framework, PIR, designed to enhance forecasting performance through Post-forecasting Identification and Revision. Specifically, PIR first identifies biased forecasting instances by estimating their accuracy. Based on this, the framework revises the forecasts using contextual information, including covariates and historical time series, from both local and global perspectives in a post-processing fashion. Extensive experiments on real-world datasets with mainstream forecasting models demonstrate that PIR effectively mitigates instance-level errors and significantly improves forecasting reliability.
comment: Accepted by NeurIPS 2025 as a poster
♻ ☆ Branching Flows: Discrete, Continuous, and Manifold Flow Matching with Splits and Deletions
Diffusion and flow matching approaches to generative modeling have shown promise in domains where the state space is continuous, such as image generation or protein folding & design, and discrete, exemplified by diffusion large language models. They offer a natural fit when the number of elements in a state is fixed in advance (e.g. images), but require ad hoc solutions when, for example, the length of a response from a large language model, or the number of amino acids in a protein chain is not known a priori. Here we propose Branching Flows, a generative modeling framework that, like diffusion and flow matching approaches, transports a simple distribution to the data distribution. But in Branching Flows, the elements in the state evolve over a forest of binary trees, branching and dying stochastically with rates that are learned by the model. This allows the model to control, during generation, the number of elements in the sequence. We also show that Branching Flows can compose with any flow matching base process on discrete sets, continuous Euclidean spaces, smooth manifolds, and `multimodal' product spaces that mix these components. We demonstrate this in three domains: small molecule generation (multimodal), antibody sequence generation (discrete), and protein backbone generation (multimodal), and show that Branching Flows is a capable distribution learner with a stable learning objective, and that it enables new capabilities.
comment: 33 pages, 11 figures
Solving Inequality Proofs with Large Language Models NeurIPS 2025
Inequality proving, crucial across diverse scientific and mathematical fields, tests advanced reasoning skills such as discovering tight bounds and strategic theorem application. This makes it a distinct, demanding frontier for large language models (LLMs), offering insights beyond general mathematical problem-solving. Progress in this area is hampered by existing datasets that are often scarce, synthetic, or rigidly formal. We address this by proposing an informal yet verifiable task formulation, recasting inequality proving into two automatically checkable subtasks: bound estimation and relation prediction. Building on this, we release IneqMath, an expert-curated dataset of Olympiad-level inequalities, including a test set and training corpus enriched with step-wise solutions and theorem annotations. We also develop a novel LLM-as-judge evaluation framework, combining a final-answer judge with four step-wise judges designed to detect common reasoning flaws. A systematic evaluation of 29 leading LLMs on IneqMath reveals a surprising reality: even top models like o1 achieve less than 10% overall accuracy under step-wise scrutiny; this is a drop of up to 65.5% from their accuracy considering only final answer equivalence. This discrepancy exposes fragile deductive chains and a critical gap for current LLMs between merely finding an answer and constructing a rigorous proof. Scaling model size and increasing test-time computation yield limited gains in overall proof correctness. Instead, our findings highlight promising research directions such as theorem-guided reasoning and self-refinement. Code and data are available at https://ineqmath.github.io/.
comment: 50 pages, 24 figures, accepted as a Spotlight at NeurIPS 2025
♻ ☆ Advancing Financial Engineering with Foundation Models: Progress, Applications, and Challenges
The advent of foundation models (FMs), large-scale pre-trained models with strong generalization capabilities, has opened new frontiers for financial engineering. While general-purpose FMs such as GPT-4 and Gemini have demonstrated promising performance in tasks ranging from financial report summarization to sentiment-aware forecasting, many financial applications remain constrained by unique domain requirements such as multimodal reasoning, regulatory compliance, and data privacy. These challenges have spurred the emergence of financial foundation models (FFMs): a new class of models explicitly designed for finance. This survey presents a comprehensive overview of FFMs, with a taxonomy spanning three key modalities: financial language foundation models (FinLFMs), financial time-series foundation models (FinTSFMs), and financial visual-language foundation models (FinVLFMs). We review their architectures, training methodologies, datasets, and real-world applications. Furthermore, we identify critical challenges in data availability, algorithmic scalability, and infrastructure constraints and offer insights into future research opportunities. We hope this survey can serve as both a comprehensive reference for understanding FFMs and a practical roadmap for future innovation.
comment: Accepted by [J]. Engineering, 2025
♻ ☆ Defining latent spaces by example: optimisation over the outputs of generative models
Modern generative AI models like diffusion and flow matching can sample from rich data distributions, but many downstream tasks - such as experimental design or creative content generation - require a higher level of control than unconstrained sampling. Here, the challenge is to efficiently identify outputs that are both probable under the model and satisfy task-specific constraints. Often, the evaluation of samples is expensive and lack gradients - a setting known as black-box optimisation. In this work, we allow black-box optimisation on top of diffusion and flow matching models for the first time by introducing surrogate latent spaces: non-parametric, low-dimensional Euclidean embeddings that can be extracted from any generative model without additional training. The axes can be defined via examples, providing a simple and interpretable approach to define custom latent spaces that express intended features and is convenient to use in downstream tasks. Our proposed representation is Euclidean and has controllable dimensionality, permitting direct application of standard optimisation algorithms. We demonstrate that our approach is architecture-agnostic, incurs almost no additional computational cost over standard generation, and generalises across modalities, including images, audio, videos, and structured objects like proteins.
♻ ☆ Improving Conditional VAE with approximation using Normalizing Flows
Variational Autoencoders and Generative Adversarial Networks remained the state-of-the-art (SOTA) generative models until 2022. Now they are superseded by diffusion based models. Efforts to improve traditional models have stagnated as a result. In old-school fashion, we explore image generation with conditional Variational Autoencoders (CVAE) to incorporate desired attributes within the images. VAEs are known to produce blurry images with less diversity, we refer a method that solve this issue by leveraging the variance of the gaussian decoder as a learnable parameter during training. Previous works on CVAEs assumed that the conditional distribution of the latent space given the labels is equal to the prior distribution, which is not the case in reality. We show that estimating it using normalizing flows results in better image generation than existing methods by reducing the FID by 4% and increasing log likelihood by 7.6% than the previous case.
comment: Independent Work
♻ ☆ Features Emerge as Discrete States: The First Application of SAEs to 3D Representations
Sparse Autoencoders (SAEs) are a powerful dictionary learning technique for decomposing neural network activations, translating the hidden state into human ideas with high semantic value despite no external intervention or guidance. However, this technique has rarely been applied outside of the textual domain, limiting theoretical explorations of feature decomposition. We present the first application of SAEs to the 3D domain, analyzing the features used by a state-of-the-art 3D reconstruction VAE applied to 53k 3D models from the Objaverse dataset. We observe that the network encodes discrete rather than continuous features, leading to our key finding: such models approximate a discrete state space, driven by phase-like transitions from feature activations. Through this state transition framework, we address three otherwise unintuitive behaviors - the inclination of the reconstruction model towards positional encoding representations, the sigmoidal behavior of reconstruction loss from feature ablation, and the bimodality in the distribution of phase transition points. This final observation suggests the model redistributes the interference caused by superposition to prioritize the saliency of different features. Our work not only compiles and explains unexpected phenomena regarding feature decomposition, but also provides a framework to explain the model's feature learning dynamics. The code and dataset of encoded 3D objects will be available on release.
♻ ☆ Q2SAR: A Quantum Multiple Kernel Learning Approach for Drug Discovery
Quantitative Structure-Activity Relationship (QSAR) modeling is a cornerstone of computational drug discovery. This research demonstrates the successful application of a Quantum Multiple Kernel Learning (QMKL) framework to enhance QSAR classification, showing a notable performance improvement over classical methods. We apply this methodology to a dataset for identifying DYRK1A kinase inhibitors. The workflow involves converting SMILES representations into numerical molecular descriptors, reducing dimensionality via Principal Component Analysis (PCA), and employing a Support Vector Machine (SVM) trained on an optimized combination of multiple quantum and classical kernels. By benchmarking the QMKL-SVM against a classical Gradient Boosting model, we show that the quantum-enhanced approach achieves a superior AUC score, highlighting its potential to provide a quantum advantage in challenging cheminformatics classification tasks.
♻ ☆ Universal Approximation with Softmax Attention
We prove that with linear transformations, both (i) two-layer self-attention and (ii) one-layer self-attention followed by a softmax function are universal approximators for continuous sequence-to-sequence functions on compact domains. Our main technique is a new interpolation-based method for analyzing attention's internal mechanism. This leads to our key insight: self-attention is able to approximate a generalized version of ReLU to arbitrary precision, and hence subsumes many known universal approximators. Building on these, we show that two-layer multi-head attention alone suffices as a sequence-to-sequence universal approximator. In contrast, prior works rely on feed-forward networks to establish universal approximation in Transformers. Furthermore, we extend our techniques to show that, (softmax-)attention-only layers are capable of approximating various statistical models in-context. We believe these techniques hold independent interest.
comment: v2 fixed typos, added model complexity and extended new transformer-naive UAP results in Appendix G
♻ ☆ Scale-Agnostic Kolmogorov-Arnold Geometry in Neural Networks
Recent work by Freedman and Mulligan demonstrated that shallow multilayer perceptrons spontaneously develop Kolmogorov-Arnold geometric (KAG) structure during training on synthetic three-dimensional tasks. However, it remained unclear whether this phenomenon persists in realistic high-dimensional settings and what spatial properties this geometry exhibits. We extend KAG analysis to MNIST digit classification (784 dimensions) using 2-layer MLPs with systematic spatial analysis at multiple scales. We find that KAG emerges during training and appears consistently across spatial scales, from local 7-pixel neighborhoods to the full 28x28 image. This scale-agnostic property holds across different training procedures: both standard training and training with spatial augmentation produce the same qualitative pattern. These findings reveal that neural networks spontaneously develop organized, scale-invariant geometric structure during learning on realistic high-dimensional data.
♻ ☆ Small Batch Size Training for Language Models: When Vanilla SGD Works, and Why Gradient Accumulation Is Wasteful NeurIPS 2025
Conventional wisdom dictates that small batch sizes make language model pretraining and fine-tuning unstable, motivating gradient accumulation, which trades off the number of optimizer steps for a proportional increase in batch size. While it is common to decrease the learning rate for smaller batch sizes, other hyperparameters are often held fixed. In this work, we revisit small batch sizes all the way down to batch size one, and we propose a rule for scaling Adam hyperparameters to small batch sizes. In particular, rather than holding the decay rate of the second moment fixed across batch sizes, we propose to hold its half-life fixed in terms of tokens. We find that small batch sizes (1) train stably, (2) are consistently more robust to hyperparameter choices, (3) achieve equal or better per-FLOP performance than larger batch sizes, and (4) notably enable stable language model training with vanilla SGD, even without momentum, despite storing no optimizer state. Building on these results, we provide practical recommendations for selecting a batch size and setting optimizer hyperparameters. We further recommend against gradient accumulation unless training on multiple devices with multiple model replicas. Finally, we show that a small batch size combined with an optimizer with a small state size can provide the performance benefits of full fine-tuning while maintaining a similar memory footprint to LoRA.
comment: NeurIPS 2025. Code available at: https://github.com/martin-marek/batch-size
Unsupervised Representation Learning from Sparse Transformation Analysis
There is a vast literature on representation learning based on principles such as coding efficiency, statistical independence, causality, controllability, or symmetry. In this paper we propose to learn representations from sequence data by factorizing the transformations of the latent variables into sparse components. Input data are first encoded as distributions of latent activations and subsequently transformed using a probability flow model, before being decoded to predict a future input state. The flow model is decomposed into a number of rotational (divergence-free) vector fields and a number of potential flow (curl-free) fields. Our sparsity prior encourages only a small number of these fields to be active at any instant and infers the speed with which the probability flows along these fields. Training this model is completely unsupervised using a standard variational objective and results in a new form of disentangled representations where the input is not only represented by a combination of independent factors, but also by a combination of independent transformation primitives given by the learned flow fields. When viewing the transformations as symmetries one may interpret this as learning approximately equivariant representations. Empirically we demonstrate that this model achieves state of the art in terms of both data likelihood and unsupervised approximate equivariance errors on datasets composed of sequence transformations.
comment: T-PAMI journal paper
♻ ☆ Stable Trajectory Clustering: An Efficient Split and Merge Algorithm
Clustering algorithms fundamentally group data points by characteristics to identify patterns. Over the past two decades, researchers have extended these methods to analyze trajectories of humans, animals, and vehicles, studying their behavior and movement across applications. \noindent This paper presents whole-trajectory clustering and sub-trajectory clustering algorithms based on DBSCAN line segment clustering, which encompasses two key events: split and merge of line segments. The events are utilized to capture object movement history based on the average Euclidean distance between line segments. In this framework, whole-trajectory clustering considers entire entities' trajectories, whereas sub-trajectory clustering employs a sliding window model to identify local similarity patterns. Many existing trajectory clustering algorithms respond to temporary anomalies in data by splitting trajectories, which often obscures otherwise consistent clustering patterns and leads to less reliable insights. To address this, we introduce the stable trajectory clustering algorithm, which leverages the mean absolute deviation concept to demonstrate that selective omission of transient deviations not only preserves the integrity of clusters but also improves their stability and interpretability. We evaluate all proposed algorithms on real trajectory datasets to illustrate their effectiveness and sensitivity to parameter variations.
♻ ☆ Developmental Symmetry-Loss: A Free-Energy Perspective on Brain-Inspired Invariance Learning
We propose Symmetry-Loss, a brain-inspired algorithmic principle that enforces invariance and equivariance through a differentiable constraint derived from environmental symmetries. The framework models learning as the iterative refinement of an effective symmetry group, paralleling developmental processes in which cortical representations align with the world's structure. By minimizing structural surprise, i.e. deviations from symmetry consistency, Symmetry-Loss operationalizes a Free-Energy--like objective for representation learning. This formulation bridges predictive-coding and group-theoretic perspectives, showing how efficient, stable, and compositional representations can emerge from symmetry-based self-organization. The result is a general computational mechanism linking developmental learning in the brain with principled representation learning in artificial systems.
comment: 6 pages; clarified group extension perspective; typos corrected; results unchanged. Comments welcome
♻ ☆ Doubly Wild Refitting: Model-Free Evaluation of High Dimensional Black-Box Predictions under Convex Losses
We study the problem of excess risk evaluation for empirical risk minimization (ERM) under general convex loss functions. Our contribution is an efficient refitting procedure that computes the excess risk and provides high-probability upper bounds under the fixed-design setting. Assuming only black-box access to the training algorithm and a single dataset, we begin by generating two sets of artificially modified pseudo-outcomes termed wild response, created by stochastically perturbing the gradient vectors with carefully chosen scaling. Using these two pseudo-labeled datasets, we then refit the black-box procedure twice to obtain two corresponding wild predictors. Finally, leveraging the original predictor, the two wild predictors, and the constructed wild responses, we derive an efficient excess risk upper bound. A key feature of our analysis is that it requires no prior knowledge of the complexity of the underlying function class. As a result, the method is essentially model-free and holds significant promise for theoretically evaluating modern opaque machine learning system--such as deep nerral networks and generative model--where traditional capacity-based learning theory becomes infeasible due to the extreme complexity of the hypothesis class.
♻ ☆ LLM Inference Beyond a Single Node: From Bottlenecks to Mitigations with Fast All-Reduce Communication
As large language models (LLMs) continue to grow in size, distributed inference has become increasingly important. Model-parallel strategies must now efficiently scale not only across multiple GPUs but also across multiple nodes. In this work, we present a detailed performance study of multi-node distributed inference using LLMs on GPU-based supercomputers. We conduct experiments with several state-of-the-art inference engines alongside YALIS, a research-oriented prototype engine designed for controlled experimentation. We analyze the strong-scaling behavior of different model-parallel schemes and identify key bottlenecks. Since all-reduce operations are a common performance bottleneck, we develop NVRAR, a hierarchical all-reduce algorithm based on recursive doubling with NVSHMEM. NVRAR achieves up to 1.9x-3.6x lower latency than NCCL for message sizes between 128 KB and 2 MB on HPE Slingshot and InfiniBand interconnects. Integrated into YALIS, NVRAR achieves up to a 1.72x reduction in end-to-end batch latency for the Llama 3.1 405B model in multi-node decode-heavy workloads using tensor parallelism.
comment: 12 Figures
♻ ☆ Echo-CoPilot: A Multi-View, Multi-Task Agent for Echocardiography Interpretation and Reporting
Echocardiography is central to contemporary cardiovascular care, but full-study interpretation remains a cognitively demanding, multi-view task that is still performed manually. While recent foundation models for echocardiography can achieve strong performance on individual perceptual subtasks such as view classification, segmentation, or disease prediction, they typically operate in isolation and do not provide a unified, clinically coherent assessment. In this work, we introduce Echo-CoPilot, a multi-view, multi-task agent that uses a large language model to orchestrate a suite of specialized echocardiography tools. Within a ReAct-style loop, the agent decomposes clinician queries, invokes tools for view recognition, cardiac structure segmentation, measurement and disease prediction, and report synthesis, and integrates their outputs into guideline-aware answers and narrative summaries. We evaluate Echo-CoPilot on the public MIMIC-EchoQA benchmark, where it achieves an accuracy of 50.8\%, outperforming both general-purpose and biomedical video vision-language models. Qualitative analyses further show that the agent leverages quantitative measurements and physiologic context to resolve challenging cases near clinical decision thresholds, such as borderline left ventricular hypertrophy or pericardial effusion severity. The code will be released upon acceptance of the paper.
♻ ☆ Near-Optimal Algorithms for Omniprediction
Omnipredictors are simple prediction functions that encode loss-minimizing predictions with respect to a hypothesis class $H$, simultaneously for every loss function within a class of losses $L$. In this work, we give near-optimal learning algorithms for omniprediction, in both the online and offline settings. To begin, we give an oracle-efficient online learning algorithm that acheives $(L,H)$-omniprediction with $\tilde O (\sqrt{T \log |H|})$ regret for any class of Lipschitz loss functions $L \subseteq L_\mathrm{Lip}$. Quite surprisingly, this regret bound matches the optimal regret for \emph{minimization of a single loss function} (up to a $\sqrt{\log(T)}$ factor). Given this online algorithm, we develop an online-to-offline conversion that achieves near-optimal complexity across a number of measures. In particular, for all bounded loss functions within the class of Bounded Variation losses $L_\mathrm{BV}$ (which include all convex, all Lipschitz, and all proper losses) and any (possibly-infinite) $H$, we obtain an offline learning algorithm that, leveraging an (offline) ERM oracle and $m$ samples from $D$, returns an efficient $(L_{\mathrm{BV}},H,ε(m))$-omnipredictor for $\varepsilon(m)$ scaling near-linearly in the Rademacher complexity of a class derived from $H$ by taking convex combinations of a fixed number of elements of $\mathrm{Th} \circ H$.
♻ ☆ Global Deep Forecasting with Patient-Specific Pharmacokinetics
Forecasting healthcare time series data is vital for early detection of adverse outcomes and patient monitoring. However, it can be challenging in practice due to variable medication administration and unique pharmacokinetic (PK) properties of each patient. To address these challenges, we propose a novel hybrid global-local architecture and a PK encoder that informs deep learning models of patient-specific treatment effects. We showcase the efficacy of our approach in achieving significant accuracy gains in a blood glucose forecasting task using both realistically simulated and real-world data. Our PK encoder surpasses baselines by up to 16.4% on simulated data and 4.9% on real-world data for individual patients during critical events of severely high and low glucose levels. Furthermore, our proposed hybrid global-local architecture outperforms patient-specific PK models by 15.8%, on average.
♻ ☆ IPR-1: Interactive Physical Reasoner
Humans learn by observing, interacting with environments, and internalizing physics and causality. Here, we aim to ask whether an agent can similarly acquire human-like reasoning from interaction and keep improving with more experience. To study this, we introduce a Game-to-Unseen (G2U) benchmark of 1,000+ heterogeneous games that exhibit significant visual domain gaps. Existing approaches, including VLMs and world models, struggle to capture underlying physics and causality since they are not focused on core mechanisms and overfit to visual details. VLM/VLA agents reason but lack look-ahead in interactive settings, while world models imagine but imitate visual patterns rather than analyze physics and causality. We therefore propose IPR (Interactive Physical Reasoner), using world-model rollouts to score and reinforce a VLM's policy, and introduce PhysCode, a physics-centric action code aligning semantic intent with dynamics to provide a shared action space for prediction and reasoning. Pretrained on 1,000+ games, our IPR performs robustly on levels from primitive intuition to goal-driven reasoning, and even surpasses GPT-5 overall. We find that performance improves with more training games and interaction steps, and that the model also zero-shot transfers to unseen games. These results support physics-centric interaction as a path to steadily improving physical reasoning. Further demos and project details can be found at https://mybearyzhang.github.io/ipr-1.
comment: 13 pages of main text and 19 pages of appendices. Project page: https://mybearyzhang.github.io/ipr-1
Quantitative Methods 5
☆ Nondimensionalization is more science than art
When faced with a mathematical model, often the first step is to reduce the complexity of the model by turning variables and parameters into dimensionless quantities. This process is often performed by hand, relying on a skill practiced over many years, and attempted for small models. Nondimensionalization is often considered an art, as there is no formal method accessible to applied scientists. Here we show how to systematically perform nondimensionalization for arbitrarily sized models described by rational first order ordinary differential equations. We translate and extend an existing approach for computing rational invariants of the maximal scaling symmetry, which combines ideas from differential algebra, invariant theory and linear algebra, to the setting arising in biological models. The modeler inputs the system of equations and our implemented algorithm outputs the nondimensional quantities for the corresponding nondimensionalized model. We extend the algorithm to include initial conditions, and the modeler's choice of invariants, thereby including a larger class of nondimensionalizations. We further prove that any dimensionally consistent change of variables preserves the dimension of the maximal scaling symmetry. We showcase the framework on various models, including the classical Michaelis-Menten equations, which serves as a benchmark for asking and answering specific modeling questions.
comment: 31 pages
☆ Cycles Communities from the Perspective of Dendrograms and Gradient Sampling
Identifying and comparing topological features, particularly cycles, across different topological objects remains a fundamental challenge in persistent homology and topological data analysis. This work introduces a novel framework for constructing cycle communities through two complementary approaches. First, a dendrogram-based methodology leverages merge-tree algorithms to construct hierarchical representations of homology classes from persistence intervals. The Wasserstein distance on merge trees is introduced as a metric for comparing dendrograms, establishing connections to hierarchical clustering frameworks. Through simulation studies, the discriminative power of dendrogram representations for identifying cycle communities is demonstrated. Second, an extension of Stratified Gradient Sampling simultaneously learns multiple filter functions that yield cycle barycenter functions capable of faithfully reconstructing distinct sets of cycles. The set of cycles each filter function can reconstruct constitutes cycle communities that are non-overlapping and partition the space of all cycles. Together, these approaches transform the problem of cycle matching into both a hierarchical clustering and topological optimization framework, providing principled methods to identify similar topological structures both within and across groups of topological objects.
☆ Informing Acquisition Functions via Foundation Models for Molecular Discovery
Bayesian Optimization (BO) is a key methodology for accelerating molecular discovery by estimating the mapping from molecules to their properties while seeking the optimal candidate. Typically, BO iteratively updates a probabilistic surrogate model of this mapping and optimizes acquisition functions derived from the model to guide molecule selection. However, its performance is limited in low-data regimes with insufficient prior knowledge and vast candidate spaces. Large language models (LLMs) and chemistry foundation models offer rich priors to enhance BO, but high-dimensional features, costly in-context learning, and the computational burden of deep Bayesian surrogates hinder their full utilization. To address these challenges, we propose a likelihood-free BO method that bypasses explicit surrogate modeling and directly leverages priors from general LLMs and chemistry-specific foundation models to inform acquisition functions. Our method also learns a tree-structured partition of the molecular search space with local acquisition functions, enabling efficient candidate selection via Monte Carlo Tree Search. By further incorporating coarse-grained LLM-based clustering, it substantially improves scalability to large candidate sets by restricting acquisition function evaluations to clusters with statistically higher property values. We show through extensive experiments and ablations that the proposed method substantially improves scalability, robustness, and sample efficiency in LLM-guided BO for molecular discovery.
☆ A Complete Guide to Spherical Equivariant Graph Transformers
Spherical equivariant graph neural networks (EGNNs) provide a principled framework for learning on three-dimensional molecular and biomolecular systems, where predictions must respect the rotational symmetries inherent in physics. These models extend traditional message-passing GNNs and Transformers by representing node and edge features as spherical tensors that transform under irreducible representations of the rotation group SO(3), ensuring that predictions change in physically meaningful ways under rotations of the input. This guide develops a complete, intuitive foundation for spherical equivariant modeling - from group representations and spherical harmonics, to tensor products, Clebsch-Gordan decomposition, and the construction of SO(3)-equivariant kernels. Building on this foundation, we construct the Tensor Field Network and SE(3)-Transformer architectures and explain how they perform equivariant message-passing and attention on geometric graphs. Through clear mathematical derivations and annotated code excerpts, this guide serves as a self-contained introduction for researchers and learners seeking to understand or implement spherical EGNNs for applications in chemistry, molecular property prediction, protein structure modeling, and generative modeling.
comment: This paper is a technical version of the article originally published in Alchemy Bio (99 pages, 46 figures)
♻ ☆ Global Deep Forecasting with Patient-Specific Pharmacokinetics
Forecasting healthcare time series data is vital for early detection of adverse outcomes and patient monitoring. However, it can be challenging in practice due to variable medication administration and unique pharmacokinetic (PK) properties of each patient. To address these challenges, we propose a novel hybrid global-local architecture and a PK encoder that informs deep learning models of patient-specific treatment effects. We showcase the efficacy of our approach in achieving significant accuracy gains in a blood glucose forecasting task using both realistically simulated and real-world data. Our PK encoder surpasses baselines by up to 16.4% on simulated data and 4.9% on real-world data for individual patients during critical events of severely high and low glucose levels. Furthermore, our proposed hybrid global-local architecture outperforms patient-specific PK models by 15.8%, on average.
Cell Behavior 2
☆ FlowClass.jl: Classifying Dynamical Systems by Structural Properties in Julia
FlowClass.jl is a Julia package for classifying continuous-time dynamical systems into a hierarchy of structural classes: Gradient, Gradient-like, Morse-Smale, Structurally Stable, and General. Given a vector field \(\mathbf{F}(\mathbf{x})\) defining the system \(\mathrm{d}\mathbf{x}/\mathrm{d}t = \mathbf{F}(\mathbf{x})\), the package performs a battery of computational tests -- Jacobian symmetry analysis, curl magnitude estimation, fixed point detection and stability classification, periodic orbit detection, and stable/unstable manifold computation -- to determine where the system sits within the classification hierarchy. This classification has direct implications for qualitative behaviour: gradient systems cannot oscillate, Morse-Smale systems are structurally stable in less than 3 dimensions, and general systems may exhibit chaos. Much of classical developmental theory going back to Waddington's epigenetic landscape rests on an implicit assumption of gradient dynamics. The package is designed with applications in systems and developmental biology in mind, particularly the analysis of gene regulatory networks and cell fate decision models in the context of Waddington's epigenetic landscape. It provides tools to assess whether a landscape metaphor is appropriate for a given dynamical model, and to quantify the magnitude of non-gradient (curl) dynamics.
comment: 15 pages
♻ ☆ Active Force Dynamics in Red Blood Cells Under Non-Invasive Optical Tweezers
Red blood cells (RBCs) sustain mechanical stresses associated with microcirculatory flow through ATP-driven plasma membrane flickering. This is an active phenomenon driven by motor proteins that regulate interactions between the spectrin cytoskeleton and the lipid bilayer; it is manifested in RBC shape fluctuations reflecting the cell's mechanical and metabolic state. Yet, direct quantification of the forces and energetic costs underlying this non-equilibrium behavior remains challenging due to the invasiveness of existing techniques. Here, a minimally invasive method that combines bead-free, low-power optical tweezers with high-speed video microscopy was employed to track local membrane forces and displacements in single RBCs during the same time window. This independent dual-channel measurement enabled the construction of a mechano-dynamic phase space for RBCs under different chemical treatments, that allowed for differentiating between metabolic and structural states based on their fluctuation-force signatures. Quantification of mechanical work during flickering demonstrated that membrane softening enhanced fluctuations while elevating energy dissipation. The proposed optical tweezers methodology provides a robust framework for mapping the active mechanics of living cells, enabling precise probing of cellular physiology and detection of biomechanical dysfunction in diseases.
Computation and Language 15
☆ SignRAG: A Retrieval-Augmented System for Scalable Zero-Shot Road Sign Recognition
Automated road sign recognition is a critical task for intelligent transportation systems, but traditional deep learning methods struggle with the sheer number of sign classes and the impracticality of creating exhaustive labeled datasets. This paper introduces a novel zero-shot recognition framework that adapts the Retrieval-Augmented Generation (RAG) paradigm to address this challenge. Our method first uses a Vision Language Model (VLM) to generate a textual description of a sign from an input image. This description is used to retrieve a small set of the most relevant sign candidates from a vector database of reference designs. Subsequently, a Large Language Model (LLM) reasons over the retrieved candidates to make a final, fine-grained recognition. We validate this approach on a comprehensive set of 303 regulatory signs from the Ohio MUTCD. Experimental results demonstrate the framework's effectiveness, achieving 95.58% accuracy on ideal reference images and 82.45% on challenging real-world road data. This work demonstrates the viability of RAG-based architectures for creating scalable and accurate systems for road sign recognition without task-specific training.
comment: Submitted to IV 2026
☆ ERA-IT: Aligning Semantic Models with Revealed Economic Preference for Real-Time and Explainable Patent Valuation
Valuing intangible assets under uncertainty remains a critical challenge in the strategic management of technological innovation due to the information asymmetry inherent in high-dimensional technical specifications. Traditional bibliometric indicators, such as citation counts, fail to address this friction in a timely manner due to the systemic latency inherent in data accumulation. To bridge this gap, this study proposes the Economic Reasoning Alignment via Instruction Tuning (ERA-IT) framework. We theoretically conceptualize patent renewal history as a revealed economic preference and leverage it as an objective supervisory signal to align the generative reasoning of Large Language Models (LLMs) with market realities, a process we term Eco-Semantic Alignment. Using a randomly sampled dataset of 10,000 European Patent Office patents across diverse technological domains, we trained the model not only to predict value tiers but also to reverse-engineer the Economic Chain-of-Thought from unstructured text. Empirical results demonstrate that ERA-IT significantly outperforms both conventional econometric models and zero-shot LLMs in predictive accuracy. More importantly, by generating explicit, logically grounded rationales for valuation, the framework serves as a transparent cognitive scaffold for decision-makers, reducing the opacity of black-box AI in high-stakes intellectual property management.
☆ Counting Clues: A Lightweight Probabilistic Baseline Can Match an LLM
Large language models (LLMs) excel on multiple-choice clinical diagnosis benchmarks, yet it is unclear how much of this performance reflects underlying probabilistic reasoning. We study this through questions from MedQA, where the task is to select the most likely diagnosis. We introduce the Frequency-Based Probabilistic Ranker (FBPR), a lightweight method that scores options with a smoothed Naive Bayes over concept-diagnosis co-occurrence statistics from a large corpus. When co-occurrence statistics were sourced from the pretraining corpora for OLMo and Llama, FBPR achieves comparable performance to the corresponding LLMs pretrained on that same corpus. Direct LLM inference and FBPR largely get different questions correct, with an overlap only slightly above random chance, indicating complementary strengths of each method. These findings highlight the continued value of explicit probabilistic baselines: they provide a meaningful performance reference point and a complementary signal for potential hybridization. While the performance of LLMs seems to be driven by a mechanism other than simple frequency aggregation, we show that an approach similar to the historically grounded, low-complexity expert systems still accounts for a substantial portion of benchmark performance.
☆ What Matters in Evaluating Book-Length Stories? A Systematic Study of Long Story Evaluation
In this work, we conduct systematic research in a challenging area: the automatic evaluation of book-length stories (>100K tokens). Our study focuses on two key questions: (1) understanding which evaluation aspects matter most to readers, and (2) exploring effective methods for evaluating lengthy stories. We introduce the first large-scale benchmark, LongStoryEval, comprising 600 newly published books with an average length of 121K tokens (maximum 397K). Each book includes its average rating and multiple reader reviews, presented as critiques organized by evaluation aspects. By analyzing all user-mentioned aspects, we propose an evaluation criteria structure and conduct experiments to identify the most significant aspects among the 8 top-level criteria. For evaluation methods, we compare the effectiveness of three types: aggregation-based, incremental-updated, and summary-based evaluations. Our findings reveal that aggregation- and summary-based evaluations perform better, with the former excelling in detail assessment and the latter offering greater efficiency. Building on these insights, we further propose NovelCritique, an 8B model that leverages the efficient summary-based framework to review and score stories across specified aspects. NovelCritique outperforms commercial models like GPT-4o in aligning with human evaluations. Our datasets and codes are available at https://github.com/DingyiYang/LongStoryEval.
comment: 24 pages, 7 figures, Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
☆ Hindsight is 20/20: Building Agent Memory that Retains, Recalls, and Reflects
Agent memory has been touted as a dimension of growth for LLM-based applications, enabling agents that can accumulate experience, adapt across sessions, and move beyond single-shot question answering. The current generation of agent memory systems treats memory as an external layer that extracts salient snippets from conversations, stores them in vector or graph-based stores, and retrieves top-k items into the prompt of an otherwise stateless model. While these systems improve personalization and context carry-over, they still blur the line between evidence and inference, struggle to organize information over long horizons, and offer limited support for agents that must explain their reasoning. We present Hindsight, a memory architecture that treats agent memory as a structured, first-class substrate for reasoning by organizing it into four logical networks that distinguish world facts, agent experiences, synthesized entity summaries, and evolving beliefs. This framework supports three core operations -- retain, recall, and reflect -- that govern how information is added, accessed, and updated. Under this abstraction, a temporal, entity aware memory layer incrementally turns conversational streams into a structured, queryable memory bank, while a reflection layer reasons over this bank to produce answers and to update information in a traceable way. On key long-horizon conversational memory benchmarks like LongMemEval and LoCoMo, Hindsight with an open-source 20B model lifts overall accuracy from 39% to 83.6% over a full-context baseline with the same backbone and outperforms full context GPT-4o. Scaling the backbone further pushes Hindsight to 91.4% on LongMemEval and up to 89.61% on LoCoMo (vs. 75.78% for the strongest prior open system), consistently outperforming existing memory architectures on multi-session and open-domain questions.
☆ Does Tone Change the Answer? Evaluating Prompt Politeness Effects on Modern LLMs: GPT, Gemini, LLaMA
Prompt engineering has emerged as a critical factor influencing large language model (LLM) performance, yet the impact of pragmatic elements such as linguistic tone and politeness remains underexplored, particularly across different model families. In this work, we propose a systematic evaluation framework to examine how interaction tone affects model accuracy and apply it to three recently released and widely available LLMs: GPT-4o mini (OpenAI), Gemini 2.0 Flash (Google DeepMind), and Llama 4 Scout (Meta). Using the MMMLU benchmark, we evaluate model performance under Very Friendly, Neutral, and Very Rude prompt variants across six tasks spanning STEM and Humanities domains, and analyze pairwise accuracy differences with statistical significance testing. Our results show that tone sensitivity is both model-dependent and domain-specific. Neutral or Very Friendly prompts generally yield higher accuracy than Very Rude prompts, but statistically significant effects appear only in a subset of Humanities tasks, where rude tone reduces accuracy for GPT and Llama, while Gemini remains comparatively tone-insensitive. When performance is aggregated across tasks within each domain, tone effects diminish and largely lose statistical significance. Compared with earlier researches, these findings suggest that dataset scale and coverage materially influence the detection of tone effects. Overall, our study indicates that while interaction tone can matter in specific interpretive settings, modern LLMs are broadly robust to tonal variation in typical mixed-domain use, providing practical guidance for prompt design and model selection in real-world deployments.
☆ State over Tokens: Characterizing the Role of Reasoning Tokens
Large Language Models (LLMs) can generate reasoning tokens before their final answer to boost performance on complex tasks. While these sequences seem like human thought processes, empirical evidence reveals that they are not a faithful explanation of the model's actual reasoning process. To address this gap between appearance and function, we introduce the State over Tokens (SoT) conceptual framework. SoT reframes reasoning tokens not as a linguistic narrative, but as an externalized computational state -- the sole persistent information carrier across the model's stateless generation cycles. This explains how the tokens can drive correct reasoning without being a faithful explanation when read as text and surfaces previously overlooked research questions on these tokens. We argue that to truly understand the process that LLMs do, research must move beyond reading the reasoning tokens as text and focus on decoding them as state.
☆ Persistent Personas? Role-Playing, Instruction Following, and Safety in Extended Interactions
Persona-assigned large language models (LLMs) are used in domains such as education, healthcare, and sociodemographic simulation. Yet, they are typically evaluated only in short, single-round settings that do not reflect real-world usage. We introduce an evaluation protocol that combines long persona dialogues (over 100 rounds) and evaluation datasets to create dialogue-conditioned benchmarks that can robustly measure long-context effects. We then investigate the effects of dialogue length on persona fidelity, instruction-following, and safety of seven state-of-the-art open- and closed-weight LLMs. We find that persona fidelity degrades over the course of dialogues, especially in goal-oriented conversations, where models must sustain both persona fidelity and instruction following. We identify a trade-off between fidelity and instruction following, with non-persona baselines initially outperforming persona-assigned models; as dialogues progress and fidelity fades, persona responses become increasingly similar to baseline responses. Our findings highlight the fragility of persona applications in extended interactions and our work provides a protocol to systematically measure such failures.
comment: 31 pages, 35 figures
☆ Curió-Edu 7B: Examining Data Selection Impacts in LLM Continued Pretraining
Continued pretraining extends a language model's capabilities by further exposing it to additional data, often tailored to a specific linguistic or domain context. This strategy has emerged as an efficient alternative to full retraining when adapting general-purpose models to new settings. In this work, we investigate this paradigm through Curió 7B, a 7-billion-parameter model derived from LLaMA-2 and trained on 100 billion Portuguese tokens from the ClassiCC-PT corpus - the most extensive Portuguese-specific continued-pretraining effort above the three-billion-parameter scale to date. Beyond scale, we investigate whether quantity alone suffices or whether data quality plays a decisive role in linguistic adaptation. To this end, we introduce Curió-Edu 7B, a variant trained exclusively on the educational and STEM-filtered subset of the same corpus, totaling just 10 billion tokens. Despite using only 10% of the data and 20% of the computation, Curió-Edu 7B surpasses the full-corpus model in our evaluations, demonstrating that data selection can be fundamental even when adapting models with limited prior exposure to the target language. The developed models are available at https://huggingface.co/collections/ClassiCC-Corpus/curio-edu
☆ Intelligent Scientific Literature Explorer using Machine Learning (ISLE)
The rapid acceleration of scientific publishing has created substantial challenges for researchers attempting to discover, contextualize, and interpret relevant literature. Traditional keyword-based search systems provide limited semantic understanding, while existing AI-driven tools typically focus on isolated tasks such as retrieval, clustering, or bibliometric visualization. This paper presents an integrated system for scientific literature exploration that combines large-scale data acquisition, hybrid retrieval, semantic topic modeling, and heterogeneous knowledge graph construction. The system builds a comprehensive corpus by merging full-text data from arXiv with structured metadata from OpenAlex. A hybrid retrieval architecture fuses BM25 lexical search with embedding-based semantic search using Reciprocal Rank Fusion. Topic modeling is performed on retrieved results using BERTopic or non-negative matrix factorization depending on computational resources. A knowledge graph unifies papers, authors, institutions, countries, and extracted topics into an interpretable structure. The system provides a multi-layered exploration environment that reveals not only relevant publications but also the conceptual and relational landscape surrounding a query. Evaluation across multiple queries demonstrates improvements in retrieval relevance, topic coherence, and interpretability. The proposed framework contributes an extensible foundation for AI-assisted scientific discovery.
comment: 18 pages, 7 figures, 3 tables
☆ NL2Repo-Bench: Towards Long-Horizon Repository Generation Evaluation of Coding Agents
Recent advances in coding agents suggest rapid progress toward autonomous software development, yet existing benchmarks fail to rigorously evaluate the long-horizon capabilities required to build complete software systems. Most prior evaluations focus on localized code generation, scaffolded completion, or short-term repair tasks, leaving open the question of whether agents can sustain coherent reasoning, planning, and execution over the extended horizons demanded by real-world repository construction. To address this gap, we present NL2Repo Bench, a benchmark explicitly designed to evaluate the long-horizon repository generation ability of coding agents. Given only a single natural-language requirements document and an empty workspace, agents must autonomously design the architecture, manage dependencies, implement multi-module logic, and produce a fully installable Python library. Our experiments across state-of-the-art open- and closed-source models reveal that long-horizon repository generation remains largely unsolved: even the strongest agents achieve below 40% average test pass rates and rarely complete an entire repository correctly. Detailed analysis uncovers fundamental long-horizon failure modes, including premature termination, loss of global coherence, fragile cross-file dependencies, and inadequate planning over hundreds of interaction steps. NL2Repo Bench establishes a rigorous, verifiable testbed for measuring sustained agentic competence and highlights long-horizon reasoning as a central bottleneck for the next generation of autonomous coding agents.
♻ ☆ Pass@K Policy Optimization: Solving Harder Reinforcement Learning Problems
Reinforcement Learning (RL) algorithms sample multiple n>1 solution attempts for each problem and reward them independently. This optimizes for pass@1 performance and prioritizes the strength of isolated samples at the expense of the diversity and collective utility of sets of samples. This under-utilizes the sampling capacity, limiting exploration and eventual improvement on harder examples. As a fix, we propose Pass-at-k Policy Optimization (PKPO), a transformation on the final rewards which leads to direct optimization of pass@k performance, thus optimizing for sets of samples that maximize reward when considered jointly. Our contribution is to derive novel low variance unbiased estimators for pass@k and its gradient, in both the binary and continuous reward settings. We show optimization with our estimators reduces to standard RL with rewards that have been jointly transformed by a stable and efficient transformation function. While previous efforts are restricted to k=n, ours is the first to enable robust optimization of pass@k for any arbitrary k <= n. Moreover, instead of trading off pass@1 performance for pass@k gains, our method allows annealing k during training, optimizing both metrics and often achieving strong pass@1 numbers alongside significant pass@k gains. We validate our reward transformations on toy experiments, which reveal the variance reducing properties of our formulations. We also include real-world examples using the open-source LLM, GEMMA-2. We find that our transformation effectively optimizes for the target k. Furthermore, higher k values enable solving more and harder problems, while annealing k boosts both the pass@1 and pass@k . Crucially, for challenging task sets where conventional pass@1 optimization stalls, our pass@k approach unblocks learning, likely due to better exploration by prioritizing joint utility over the utility of individual samples.
♻ ☆ The Generalization Ridge: Information Flow in Natural Language Generation
Transformer-based language models have achieved state-of-the-art performance in natural language generation (NLG), yet their internal mechanisms for synthesizing task-relevant information remain insufficiently understood. While prior studies suggest that intermediate layers often yield more generalizable representations than final layers, how this generalization ability emerges and propagates across layers during training remains unclear. To address this gap, we propose InfoRidge, an information-theoretic framework, to characterize how predictive information-the mutual information between hidden representations and target outputs-varies across depth. Estimating this quantity enables us to trace the flow of task-relevant information throughout the model during training. Our experiments across various models and datasets reveal a consistent non-monotonic trend: predictive information peaks in upper-middle layers-forming a generalization ridge-before declining in final layers, reflecting a transition between generalization and memorization. To further investigate this phenomenon, we introduce residual scaling coefficients-trainable scalar parameters applied to each residual block-which serve as functional probes for assessing the relative importance of individual transformer layers. These coefficients reveal that, under distribution shift, models downweight final layers and increasingly rely on intermediate layers, highlighting their role in generalization. Together, these findings offer new insights into the internal mechanisms of transformers and underscore the critical role of intermediate layers in supporting generalization.
♻ ☆ Beyond Benchmarks: On The False Promise of AI Regulation
The performance of AI models on safety benchmarks does not indicate their real-world performance after deployment. This opaqueness of AI models impedes existing regulatory frameworks constituted on benchmark performance, leaving them incapable of mitigating ongoing real-world harm. The problem stems from a fundamental challenge in AI interpretability, which seems to be overlooked by regulators and decision makers. We propose a simple, realistic and readily usable regulatory framework which does not rely on benchmarks, and call for interdisciplinary collaboration to find new ways to address this crucial problem.
♻ ☆ Harnessing Negative Signals: Reinforcement Distillation from Teacher Data for LLM Reasoning
Recent advances in model distillation show that data from advanced reasoning models can effectively train smaller student models. However, standard practices discard incorrect reasoning traces -- valuable, yet underutilized data. This paper addresses the critical question: How can both positive and negative distilled reasoning traces be effectively leveraged to maximize LLM reasoning performance in an offline setting? We employ a two-stage training recipe: first, Supervised Fine-Tuning (SFT) on positive traces, followed by a refinement stage using both positive and negative traces. We find that a simple REINFORCE-style objective, which we term the Reinforcement Distillation (REDI) objective, outperforms established preference optimization methods like DPO and SimPO in this distillation context. Our empirical evaluations demonstrate the effectiveness of this approach. Notably, our Qwen-REDI-1.5B model, trained on just 131k traces from the open Open-R1 dataset, achieves an 83.1% score on MATH-500. Its performance matches that of DeepSeek-R1-Distill-Qwen-1.5B, a model trained on 800k proprietary data. This result showcases the remarkable data efficiency of utilizing previously discarded negative traces.
comment: 22 pages, 10 figures. Code available at https://github.com/Tim-Siu/reinforcement-distillation
Machine Learning 111
☆ Unsupervised learning of multiscale switching dynamical system models from multimodal neural data
Neural population activity often exhibits regime-dependent non-stationarity in the form of switching dynamics. Learning accurate switching dynamical system models can reveal how behavior is encoded in neural activity. Existing switching approaches have primarily focused on learning models from a single neural modality, either continuous Gaussian signals or discrete Poisson signals. However, multiple neural modalities are often recorded simultaneously to measure different spatiotemporal scales of brain activity, and all these modalities can encode behavior. Moreover, regime labels are typically unavailable in training data, posing a significant challenge for learning models of regime-dependent switching dynamics. To address these challenges, we develop a novel unsupervised learning algorithm that learns the parameters of switching multiscale dynamical system models using only multiscale neural observations. We demonstrate our method using both simulations and two distinct experimental datasets with multimodal spike-LFP observations during different motor tasks. We find that our switching multiscale dynamical system models more accurately decode behavior than switching single-scale dynamical models, showing the success of multiscale neural fusion. Further, our models outperform stationary multiscale models, illustrating the importance of tracking regime-dependent non-stationarity in multimodal neural data. The developed unsupervised learning framework enables more accurate modeling of complex multiscale neural dynamics by leveraging information in multimodal recordings while incorporating regime switches. This approach holds promise for improving the performance and robustness of brain-computer interfaces over time and for advancing our understanding of the neural basis of behavior.
comment: 30 pages, 8 figures
☆ Improving Recursive Transformers with Mixture of LoRAs
Parameter sharing in recursive transformers reduces model size but collapses layer-wise expressivity. We propose Mixture of LoRAs (MoL), a lightweight conditional-computation mechanism that inserts Low-Rank Adaptation (LoRA) experts inside a shared feed-forward network (FFN). MoL enables token-conditional weight-space modulation of the shared FFN without untying backbone parameters, unlike prior approaches that add fixed or externally attached adapters. We pretrain a modernised recursive architecture, ModernALBERT, integrating rotary embeddings, GeGLU, FlashAttention, and a distillation-based initialisation. Across GLUE, SQuAD-v2, and BEIR, ModernALBERT (50M--120M) achieves state-of-the-art performance among compact models and surpasses larger fully parameterised baselines. We also propose an expert-merging procedure that compresses MoL into a single adapter at inference while preserving accuracy, enabling efficient deployment. Our results show that conditional weight-space modulation effectively restores the expressivity lost under aggressive parameter sharing in recursive transformers.
☆ Optimal Labeler Assignment and Sampling for Active Learning in the Presence of Imperfect Labels
Active Learning (AL) has garnered significant interest across various application domains where labeling training data is costly. AL provides a framework that helps practitioners query informative samples for annotation by oracles (labelers). However, these labels often contain noise due to varying levels of labeler accuracy. Additionally, uncertain samples are more prone to receiving incorrect labels because of their complexity. Learning from imperfectly labeled data leads to an inaccurate classifier. We propose a novel AL framework to construct a robust classification model by minimizing noise levels. Our approach includes an assignment model that optimally assigns query points to labelers, aiming to minimize the maximum possible noise within each cycle. Additionally, we introduce a new sampling method to identify the best query points, reducing the impact of label noise on classifier performance. Our experiments demonstrate that our approach significantly improves classification performance compared to several benchmark methods.
comment: 22 pages, 6 figures. Preprint under review
☆ Counting Clues: A Lightweight Probabilistic Baseline Can Match an LLM
Large language models (LLMs) excel on multiple-choice clinical diagnosis benchmarks, yet it is unclear how much of this performance reflects underlying probabilistic reasoning. We study this through questions from MedQA, where the task is to select the most likely diagnosis. We introduce the Frequency-Based Probabilistic Ranker (FBPR), a lightweight method that scores options with a smoothed Naive Bayes over concept-diagnosis co-occurrence statistics from a large corpus. When co-occurrence statistics were sourced from the pretraining corpora for OLMo and Llama, FBPR achieves comparable performance to the corresponding LLMs pretrained on that same corpus. Direct LLM inference and FBPR largely get different questions correct, with an overlap only slightly above random chance, indicating complementary strengths of each method. These findings highlight the continued value of explicit probabilistic baselines: they provide a meaningful performance reference point and a complementary signal for potential hybridization. While the performance of LLMs seems to be driven by a mechanism other than simple frequency aggregation, we show that an approach similar to the historically grounded, low-complexity expert systems still accounts for a substantial portion of benchmark performance.
☆ Information-Consistent Language Model Recommendations through Group Relative Policy Optimization
Large Language Models (LLMs) are increasingly deployed in business-critical domains such as finance, education, healthcare, and customer support, where users expect consistent and reliable recommendations. Yet LLMs often exhibit variability when prompts are phrased with minor differences, even when semantically equivalent. Such inconsistency undermines trust, complicates compliance, and disrupts user experience. While personalization is desirable in certain contexts, many enterprise scenarios-such as HR onboarding, customer support, or policy disclosure-require invariant information delivery regardless of phrasing or prior conversational history. Existing approaches, including retrieval-augmented generation (RAG) and temperature tuning, improve factuality or reduce stochasticity but cannot guarantee stability across equivalent prompts. In this paper, we propose a reinforcement learning framework based on Group Relative Policy Optimization (GRPO) to directly optimize for consistency. Unlike prior applications of GRPO, which have been limited to reasoning and code generation, we adapt GRPO to enforce stability of information content across groups of semantically equivalent prompts. We introduce entropy-based helpfulness and stability rewards, treating prompt variants as groups and resetting conversational context to isolate phrasing effects. Experiments on investment and job recommendation tasks show that our GRPO-trained model reduces variability more effectively than fine-tuning or decoding-based baselines. To our knowledge, this is a novel application of GRPO for aligning LLMs toward information consistency, reframing variability not as an acceptable feature of generative diversity but as a correctable flaw in enterprise deployments.
☆ Forgetful but Faithful: A Cognitive Memory Architecture and Benchmark for Privacy-Aware Generative Agents
As generative agents become increasingly sophisticated and deployed in long-term interactive scenarios, their memory management capabilities emerge as a critical bottleneck for both performance and privacy. Current approaches either maintain unlimited memory stores, leading to computational intractability and privacy concerns, or employ simplistic forgetting mechanisms that compromise agent coherence and functionality. This paper introduces the Memory-Aware Retention Schema (MaRS), a novel framework for human-centered memory management in generative agents, coupled with six theoretically-grounded forgetting policies that balance performance, privacy, and computational efficiency. We present the Forgetful but Faithful Agent (FiFA) benchmark, a comprehensive evaluation framework that assesses agent performance across narrative coherence, goal completion, social recall accuracy, privacy preservation, and cost efficiency. Through extensive experimentation involving 300 evaluation runs across multiple memory budgets and agent configurations, we demonstrate that our hybrid forgetting policy achieves superior performance (composite score: 0.911) while maintaining computational tractability and privacy guarantees. Our work establishes new benchmarks for memory-budgeted agent evaluation and provides practical guidelines for deploying generative agents in resource-constrained, privacy-sensitive environments. The theoretical foundations, implementation framework, and empirical results contribute to the emerging field of human-centered AI by addressing fundamental challenges in agent memory management that directly impact user trust, system scalability, and regulatory compliance.
☆ KANELÉ: Kolmogorov-Arnold Networks for Efficient LUT-based Evaluation
Low-latency, resource-efficient neural network inference on FPGAs is essential for applications demanding real-time capability and low power. Lookup table (LUT)-based neural networks are a common solution, combining strong representational power with efficient FPGA implementation. In this work, we introduce KANELÉ, a framework that exploits the unique properties of Kolmogorov-Arnold Networks (KANs) for FPGA deployment. Unlike traditional multilayer perceptrons (MLPs), KANs employ learnable one-dimensional splines with fixed domains as edge activations, a structure naturally suited to discretization and efficient LUT mapping. We present the first systematic design flow for implementing KANs on FPGAs, co-optimizing training with quantization and pruning to enable compact, high-throughput, and low-latency KAN architectures. Our results demonstrate up to a 2700x speedup and orders of magnitude resource savings compared to prior KAN-on-FPGA approaches. Moreover, KANELÉ matches or surpasses other LUT-based architectures on widely used benchmarks, particularly for tasks involving symbolic or physical formulas, while balancing resource usage across FPGA hardware. Finally, we showcase the versatility of the framework by extending it to real-time, power-efficient control systems.
comment: International Symposium on Field-Programmable Gate Arrays 2026 (ISFPGA'2026)
☆ HaShiFlex: A High-Throughput Hardened Shifter DNN Accelerator with Fine-Tuning Flexibility
We introduce a high-throughput neural network accelerator that embeds most network layers directly in hardware, minimizing data transfer and memory usage while preserving a degree of flexibility via a small neural processing unit for the final classification layer. By leveraging power-of-two (Po2) quantization for weights, we replace multiplications with simple rewiring, effectively reducing each convolution to a series of additions. This streamlined approach offers high-throughput, energy-efficient processing, making it highly suitable for applications where model parameters remain stable, such as continuous sensing tasks at the edge or large-scale data center deployments. Furthermore, by including a strategically chosen reprogrammable final layer, our design achieves high throughput without sacrificing fine-tuning capabilities. We implement this accelerator in a 7nm ASIC flow using MobileNetV2 as a baseline and report throughput, area, accuracy, and sensitivity to quantization and pruning - demonstrating both the advantages and potential trade-offs of the proposed architecture. We find that for MobileNetV2, we can improve inference throughput by 20x over fully programmable GPUs, processing 1.21 million images per second through a full forward pass while retaining fine-tuning flexibility. If absolutely no post-deployment fine tuning is required, this advantage increases to 67x at 4 million images per second.
comment: 12 pages, 6 figures, 5 tables
☆ Selective Conformal Risk Control
Reliable uncertainty quantification is essential for deploying machine learning systems in high-stakes domains. Conformal prediction provides distribution-free coverage guarantees but often produces overly large prediction sets, limiting its practical utility. To address this issue, we propose \textit{Selective Conformal Risk Control} (SCRC), a unified framework that integrates conformal prediction with selective classification. The framework formulates uncertainty control as a two-stage problem: the first stage selects confident samples for prediction, and the second stage applies conformal risk control on the selected subset to construct calibrated prediction sets. We develop two algorithms under this framework. The first, SCRC-T, preserves exchangeability by computing thresholds jointly over calibration and test samples, offering exact finite-sample guarantees. The second, SCRC-I, is a calibration-only variant that provides PAC-style probabilistic guarantees while being more computational efficient. Experiments on two public datasets show that both methods achieve the target coverage and risk levels, with nearly identical performance, while SCRC-I exhibits slightly more conservative risk control but superior computational practicality. Our results demonstrate that selective conformal risk control offers an effective and efficient path toward compact, reliable uncertainty quantification.
☆ SAGA: Open-World Mobile Manipulation via Structured Affordance Grounding
We present SAGA, a versatile and adaptive framework for visuomotor control that can generalize across various environments, task objectives, and user specifications. To efficiently learn such capability, our key idea is to disentangle high-level semantic intent from low-level visuomotor control by explicitly grounding task objectives in the observed environment. Using an affordance-based task representation, we express diverse and complex behaviors in a unified, structured form. By leveraging multimodal foundation models, SAGA grounds the proposed task representation to the robot's visual observation as 3D affordance heatmaps, highlighting task-relevant entities while abstracting away spurious appearance variations that would hinder generalization. These grounded affordances enable us to effectively train a conditional policy on multi-task demonstration data for whole-body control. In a unified framework, SAGA can solve tasks specified in different forms, including language instructions, selected points, and example demonstrations, enabling both zero-shot execution and few-shot adaptation. We instantiate SAGA on a quadrupedal manipulator and conduct extensive experiments across eleven real-world tasks. SAGA consistently outperforms end-to-end and modular baselines by substantial margins. Together, these results demonstrate that structured affordance grounding offers a scalable and effective pathway toward generalist mobile manipulation.
comment: 9 pages, 7 figures
☆ PRIVEE: Privacy-Preserving Vertical Federated Learning Against Feature Inference Attacks
Vertical Federated Learning (VFL) enables collaborative model training across organizations that share common user samples but hold disjoint feature spaces. Despite its potential, VFL is susceptible to feature inference attacks, in which adversarial parties exploit shared confidence scores (i.e., prediction probabilities) during inference to reconstruct private input features of other participants. To counter this threat, we propose PRIVEE (PRIvacy-preserving Vertical fEderated lEarning), a novel defense mechanism named after the French word privée, meaning "private." PRIVEE obfuscates confidence scores while preserving critical properties such as relative ranking and inter-score distances. Rather than exposing raw scores, PRIVEE shares only the transformed representations, mitigating the risk of reconstruction attacks without degrading model prediction accuracy. Extensive experiments show that PRIVEE achieves a threefold improvement in privacy protection compared to state-of-the-art defenses, while preserving full predictive performance against advanced feature inference attacks.
comment: 12 pages, 3 figures
☆ Network Level Evaluation of Hangup Susceptibility of HRGCs using Deep Learning and Sensing Techniques: A Goal Towards Safer Future
Steep profiled Highway Railway Grade Crossings (HRGCs) pose safety hazards to vehicles with low ground clearance, which may become stranded on the tracks, creating risks of train vehicle collisions. This research develops a framework for network level evaluation of hangup susceptibility of HRGCs. Profile data from different crossings in Oklahoma were collected using both a walking profiler and the Pave3D8K Laser Imaging System. A hybrid deep learning model, combining Long Short Term Memory (LSTM) and Transformer architectures, was developed to reconstruct accurate HRGC profiles from Pave3D8K Laser Imaging System data. Vehicle dimension data from around 350 specialty vehicles were collected at various locations across Oklahoma to enable up to date statistical design dimensions. Hangup susceptibility was analyzed using three vehicle dimension scenarios (a) median dimension (median wheelbase and ground clearance), (b) 75 25 percentile dimension (75 percentile wheelbase, 25 percentile ground clearance), and (c) worst case dimension (maximum wheelbase and minimum ground clearance). Results indicate 36, 62, and 67 crossings at the highest hangup risk levels under these scenarios, respectively. An ArcGIS database and a software interface were developed to support transportation agencies in mitigating crossing hazards. This framework advances safety evaluation by integrating next generation sensing, deep learning, and infrastructure datasets into practical decision support tools.
☆ GradID: Adversarial Detection via Intrinsic Dimensionality of Gradients
Despite their remarkable performance, deep neural networks exhibit a critical vulnerability: small, often imperceptible, adversarial perturbations can lead to drastically altered model predictions. Given the stringent reliability demands of applications such as medical diagnosis and autonomous driving, robust detection of such adversarial attacks is paramount. In this paper, we investigate the geometric properties of a model's input loss landscape. We analyze the Intrinsic Dimensionality (ID) of the model's gradient parameters, which quantifies the minimal number of coordinates required to describe the data points on their underlying manifold. We reveal a distinct and consistent difference in the ID for natural and adversarial data, which forms the basis of our proposed detection method. We validate our approach across two distinct operational scenarios. First, in a batch-wise context for identifying malicious data groups, our method demonstrates high efficacy on datasets like MNIST and SVHN. Second, in the critical individual-sample setting, we establish new state-of-the-art results on challenging benchmarks such as CIFAR-10 and MS COCO. Our detector significantly surpasses existing methods against a wide array of attacks, including CW and AutoAttack, achieving detection rates consistently above 92\% on CIFAR-10. The results underscore the robustness of our geometric approach, highlighting that intrinsic dimensionality is a powerful fingerprint for adversarial detection across diverse datasets and attack strategies.
comment: 16 pages, 8 figures
☆ On the continuity of flows
Flow matching has emerged as a powerful framework for generative modeling through continuous normalizing flows. We investigate a potential topological constraint: when the prior distribution and target distribution have mismatched topology (e.g., unimodal to multimodal), the optimal velocity field under standard flow matching objectives may exhibit spatial discontinuities. We suggest that this discontinuity arises from the requirement that continuous flows must bifurcate to map a single mode to multiple modes, forcing particles to make discrete routing decisions at intermediate times. Through theoretical analysis on bimodal Gaussian mixtures, we demonstrate that the optimal velocity field exhibits jump discontinuities along decision boundaries, with magnitude approaching infinity as time approaches the target distribution. Our analysis suggests that this phenomenon is not specific to $L^2$ loss, but rather may be a consequence of topological mismatch between distributions. We validate our theory empirically and discuss potential implications for flow matching on manifolds, connecting our findings to recent work on Riemannian flow matching and the challenge of learning discontinuous representations in neural networks.
comment: 9 pages, 2 figures
☆ Hindsight is 20/20: Building Agent Memory that Retains, Recalls, and Reflects
Agent memory has been touted as a dimension of growth for LLM-based applications, enabling agents that can accumulate experience, adapt across sessions, and move beyond single-shot question answering. The current generation of agent memory systems treats memory as an external layer that extracts salient snippets from conversations, stores them in vector or graph-based stores, and retrieves top-k items into the prompt of an otherwise stateless model. While these systems improve personalization and context carry-over, they still blur the line between evidence and inference, struggle to organize information over long horizons, and offer limited support for agents that must explain their reasoning. We present Hindsight, a memory architecture that treats agent memory as a structured, first-class substrate for reasoning by organizing it into four logical networks that distinguish world facts, agent experiences, synthesized entity summaries, and evolving beliefs. This framework supports three core operations -- retain, recall, and reflect -- that govern how information is added, accessed, and updated. Under this abstraction, a temporal, entity aware memory layer incrementally turns conversational streams into a structured, queryable memory bank, while a reflection layer reasons over this bank to produce answers and to update information in a traceable way. On key long-horizon conversational memory benchmarks like LongMemEval and LoCoMo, Hindsight with an open-source 20B model lifts overall accuracy from 39% to 83.6% over a full-context baseline with the same backbone and outperforms full context GPT-4o. Scaling the backbone further pushes Hindsight to 91.4% on LongMemEval and up to 89.61% on LoCoMo (vs. 75.78% for the strongest prior open system), consistently outperforming existing memory architectures on multi-session and open-domain questions.
☆ Optimal Resource Allocation for ML Model Training and Deployment under Concept Drift
We study how to allocate resources for training and deployment of machine learning (ML) models under concept drift and limited budgets. We consider a setting in which a model provider distributes trained models to multiple clients whose devices support local inference but lack the ability to retrain those models, placing the burden of performance maintenance on the provider. We introduce a model-agnostic framework that captures the interaction between resource allocation, concept drift dynamics, and deployment timing. We show that optimal training policies depend critically on the aging properties of concept durations. Under sudden concept changes, we derive optimal training policies subject to budget constraints when concept durations follow distributions with Decreasing Mean Residual Life (DMRL), and show that intuitive heuristics are provably suboptimal under Increasing Mean Residual Life (IMRL). We further study model deployment under communication constraints, prove that the associated optimization problem is quasi-convex under mild conditions, and propose a randomized scheduling strategy that achieves near-optimal client-side performance. These results offer theoretical and algorithmic foundations for cost-efficient ML model management under concept drift, with implications for continual learning, distributed inference, and adaptive ML systems.
☆ From Small to Large: Generalization Bounds for Transformers on Variable-Size Inputs
Transformers exhibit a notable property of \emph{size generalization}, demonstrating an ability to extrapolate from smaller token sets to significantly longer ones. This behavior has been documented across diverse applications, including point clouds, graphs, and natural language. Despite its empirical success, this capability still lacks some rigorous theoretical characterizations. In this paper, we develop a theoretical framework to analyze this phenomenon for geometric data, which we represent as discrete samples from a continuous source (e.g., point clouds from manifolds, graphs from graphons). Our core contribution is a bound on the error between the Transformer's output for a discrete sample and its continuous-domain equivalent. We prove that for Transformers with stable positional encodings, this bound is determined by the sampling density and the intrinsic dimensionality of the data manifold. Experiments on graphs and point clouds of various sizes confirm the tightness of our theoretical bound.
☆ TRACER: Transfer Learning based Real-time Adaptation for Clinical Evolving Risk
Clinical decision support tools built on electronic health records often experience performance drift due to temporal population shifts, particularly when changes in the clinical environment initially affect only a subset of patients, resulting in a transition to mixed populations. Such case-mix changes commonly arise following system-level operational updates or the emergence of new diseases, such as COVID-19. We propose TRACER (Transfer Learning-based Real-time Adaptation for Clinical Evolving Risk), a framework that identifies encounter-level transition membership and adapts predictive models using transfer learning without full retraining. In simulation studies, TRACER outperformed static models trained on historical or contemporary data. In a real-world application predicting hospital admission following emergency department visits across the COVID-19 transition, TRACER improved both discrimination and calibration. TRACER provides a scalable approach for maintaining robust predictive performance under evolving and heterogeneous clinical conditions.
☆ Liquid Reasoning Transformers: A Sudoku-Based Prototype for Chess-Scale Algorithmic Tasks
The Liquid Reasoning Transformer (LRT) is a transformer architecture designed for inference with adaptive depths using iterative changes, discard-based correction, and a learned stopping mechanism. Instead of relying on a single feedforward pass, the model updates a recurrent reasoning token across multiple internal steps, allowing it to correct early errors and allocate computation based on input difficulty. We evaluate the LRT on Sudoku as a controlled testbed for structured reasoning and show that it achieves strong performance, reaching 98.68% digit accuracy and 36.30% full-puzzle accuracy without using symbolic rules or search. Analyzing internal patterns shows that the discard and stop gates play different, important roles in stabilizing inferences and adjusting computational depth. We discuss how these mechanisms extend naturally to chess-scale reasoning tasks and outline extensions for multi-token reasoning and larger domains.
comment: 11 pages, 0 figures
☆ Unveiling Statistical Significance of Online Regression over Multiple Datasets
Despite extensive focus on techniques for evaluating the performance of two learning algorithms on a single dataset, the critical challenge of developing statistical tests to compare multiple algorithms across various datasets has been largely overlooked in most machine learning research. Additionally, in the realm of Online Learning, ensuring statistical significance is essential to validate continuous learning processes, particularly for achieving rapid convergence and effectively managing concept drifts in a timely manner. Robust statistical methods are needed to assess the significance of performance differences as data evolves over time. This article examines the state-of-the-art online regression models and empirically evaluates several suitable tests. To compare multiple online regression models across various datasets, we employed the Friedman test along with corresponding post-hoc tests. For thorough evaluations, utilizing both real and synthetic datasets with 5-fold cross-validation and seed averaging ensures comprehensive assessment across various data subsets. Our tests generally confirmed the performance of competitive baselines as consistent with their individual reports. However, some statistical test results also indicate that there is still room for improvement in certain aspects of state-of-the-art methods.
☆ OLC-WA: Drift Aware Tuning-Free Online Classification with Weighted Average
Real-world data sets often exhibit temporal dynamics characterized by evolving data distributions. Disregarding this phenomenon, commonly referred to as concept drift, can significantly diminish a model's predictive accuracy. Furthermore, the presence of hyperparameters in online models exacerbates this issue. These parameters are typically fixed and cannot be dynamically adjusted by the user in response to the evolving data distribution. This paper introduces Online Classification with Weighted Average (OLC-WA), an adaptive, hyperparameter-free online classification model equipped with an automated optimization mechanism. OLC-WA operates by blending incoming data streams with an existing base model. This blending is facilitated by an exponentially weighted moving average. Furthermore, an integrated optimization mechanism dynamically detects concept drift, quantifies its magnitude, and adjusts the model based on the observed data stream characteristics. This approach empowers the model to effectively adapt to evolving data distributions within streaming environments. Rigorous empirical evaluation across diverse benchmark datasets shows that OLC-WA achieves performance comparable to batch models in stationary environments, maintaining accuracy within 1-3%, and surpasses leading online baselines by 10-25% under drift, demonstrating its effectiveness in adapting to dynamic data streams.
☆ Credit Risk Estimation with Non-Financial Features: Evidence from a Synthetic Istanbul Dataset
Financial exclusion constrains entrepreneurship, increases income volatility, and widens wealth gaps. Underbanked consumers in Istanbul often have no bureau file because their earnings and payments flow through informal channels. To study how such borrowers can be evaluated we create a synthetic dataset of one hundred thousand Istanbul residents that reproduces first quarter 2025 TÜİK census marginals and telecom usage patterns. Retrieval augmented generation feeds these public statistics into the OpenAI o3 model, which synthesises realistic yet private records. Each profile contains seven socio demographic variables and nine alternative attributes that describe phone specifications, online shopping rhythm, subscription spend, car ownership, monthly rent, and a credit card flag. To test the impact of the alternative financial data CatBoost, LightGBM, and XGBoost are each trained in two versions. Demo models use only the socio demographic variables; Full models include both socio demographic and alternative attributes. Across five fold stratified validation the alternative block raises area under the curve by about one point three percentage and lifts balanced \(F_{1}\) from roughly 0.84 to 0.95, a fourteen percent gain. We contribute an open Istanbul 2025 Q1 synthetic dataset, a fully reproducible modeling pipeline, and empirical evidence that a concise set of behavioural attributes can approach bureau level discrimination power while serving borrowers who lack formal credit records. These findings give lenders and regulators a transparent blueprint for extending fair and safe credit access to the underbanked.
☆ OLR-WAA: Adaptive and Drift-Resilient Online Regression with Dynamic Weighted Averaging
Real-world datasets frequently exhibit evolving data distributions, reflecting temporal variations and underlying shifts. Overlooking this phenomenon, known as concept drift, can substantially degrade the predictive performance of the model. Furthermore, the presence of hyperparameters in online models exacerbates this issue, as these parameters are typically fixed and lack the flexibility to dynamically adjust to evolving data. This paper introduces "OLR-WAA: An Adaptive and Drift-Resilient Online Regression with Dynamic Weighted Average", a hyperparameter-free model designed to tackle the challenges of non-stationary data streams and enable effective, continuous adaptation. The objective is to strike a balance between model stability and adaptability. OLR-WAA incrementally updates its base model by integrating incoming data streams, utilizing an exponentially weighted moving average. It further introduces a unique optimization mechanism that dynamically detects concept drift, quantifies its magnitude, and adjusts the model based on real-time data characteristics. Rigorous evaluations show that it matches batch regression performance in static settings and consistently outperforms or rivals state-of-the-art online models, confirming its effectiveness. Concept drift datasets reveal a performance gap that OLR-WAA effectively bridges, setting it apart from other online models. In addition, the model effectively handles confidence-based scenarios through a conservative update strategy that prioritizes stable, high-confidence data points. Notably, OLR-WAA converges rapidly, consistently yielding higher R2 values compared to other online models.
☆ CoRe3D: Collaborative Reasoning as a Foundation for 3D Intelligence
Recent advances in large multimodal models suggest that explicit reasoning mechanisms play a critical role in improving model reliability, interpretability, and cross-modal alignment. While such reasoning-centric approaches have been proven effective in language and vision tasks, their extension to 3D remains underdeveloped. CoRe3D introduces a unified 3D understanding and generation reasoning framework that jointly operates over semantic and spatial abstractions, enabling high-level intent inferred from language to directly guide low-level 3D content formation. Central to this design is a spatially grounded reasoning representation that decomposes 3D latent space into localized regions, allowing the model to reason over geometry in a compositional and procedural manner. By tightly coupling semantic chain-of-thought inference with structured spatial reasoning, CoRe3D produces 3D outputs that exhibit strong local consistency and faithful alignment with linguistic descriptions.
☆ Federated Learning with Feedback Alignment
Federated Learning (FL) enables collaborative training across multiple clients while preserving data privacy, yet it struggles with data heterogeneity, where clients' data are not distributed independently and identically (non-IID). This causes local drift, hindering global model convergence. To address this, we introduce Federated Learning with Feedback Alignment (FLFA), a novel framework that integrates feedback alignment into FL. FLFA uses the global model's weights as a shared feedback matrix during local training's backward pass, aligning local updates with the global model efficiently. This approach mitigates local drift with minimal additional computational cost and no extra communication overhead. Our theoretical analysis supports FLFA's design by showing how it alleviates local drift and demonstrates robust convergence for both local and global models. Empirical evaluations, including accuracy comparisons and measurements of local drift, further illustrate that FLFA can enhance other FL methods demonstrating its effectiveness.
☆ An End-to-End Approach for Microgrid Probabilistic Forecasting and Robust Operation via Decision-focused Learning
High penetration of renewable energy sources (RES) introduces significant uncertainty and intermittency into microgrid operations, posing challenges to economic and reliable scheduling. To address this, this paper proposes an end-to-end decision-focused framework that jointly optimizes probabilistic forecasting and robust operation for microgrids. A multilayer encoder-decoder (MED) probabilistic forecasting model is integrated with a two-stage robust optimization (TSRO) model involving direct load control (DLC) through a differentiable decision pathway, enabling gradient-based feedback from operational outcomes to improve forecasting performance. Unlike conventional sequential approaches, the proposed method aligns forecasting accuracy with operational objectives by directly minimizing decision regret via a surrogate smart predict-then-optimize (SPO) loss function. This integration ensures that probabilistic forecasts are optimized for downstream decisions, enhancing both economic efficiency and robustness. Case studies on modified IEEE 33-bus and 69-bus systems demonstrate that the proposed framework achieves superior forecasting accuracy and operational performance, reducing total and net operation costs by up to 18% compared with conventional forecasting and optimization combinations. The results verify the effectiveness and scalability of the end-to-end decision-focused approach for resilient and cost-efficient microgrid management under uncertainty.
comment: 10 pages
☆ Flow-matching Operators for Residual-Augmented Probabilistic Learning of Partial Differential Equations
Learning probabilistic surrogates for PDEs remains challenging in data-scarce regimes: neural operators require large amounts of high-fidelity data, while generative approaches typically sacrifice resolution invariance. We formulate flow matching in an infinite-dimensional function space to learn a probabilistic transport that maps low-fidelity approximations to the manifold of high-fidelity PDE solutions via learned residual corrections. We develop a conditional neural operator architecture based on feature-wise linear modulation for flow-matching vector fields directly in function space, enabling inference at arbitrary spatial resolutions without retraining. To improve stability and representational control of the induced neural ODE, we parameterize the flow vector field as a sum of a linear operator and a nonlinear operator, combining lightweight linear components with a conditioned Fourier neural operator for expressive, input-dependent dynamics. We then formulate a residual-augmented learning strategy where the flow model learns probabilistic corrections from inexpensive low-fidelity surrogates to high-fidelity solutions, rather than learning the full solution mapping from scratch. Finally, we derive tractable training objectives that extend conditional flow matching to the operator setting with input-function-dependent couplings. To demonstrate the effectiveness of our approach, we present numerical experiments on a range of PDEs, including the 1D advection and Burgers' equation, and a 2D Darcy flow problem for flow through a porous medium. We show that the proposed method can accurately learn solution operators across different resolutions and fidelities and produces uncertainty estimates that appropriately reflect model confidence, even when trained on limited high-fidelity data.
☆ Resting Neurons, Active Insights: Improving Input Sparsification for Large Language Models
Large Language Models (LLMs) achieve state-of-the-art performance across a wide range of applications, but their massive scale poses significant challenges for both efficiency and interpretability. Structural pruning, which reduces model size by removing redundant computational units such as neurons, has been widely explored as a solution, and this study devotes to input sparsification, an increasingly popular technique that improves efficiency by selectively activating only a subset of entry values for each input. However, existing approaches focus primarily on computational savings, often overlooking the representational consequences of sparsification and leaving a noticeable performance gap compared to full models. In this work, we first reinterpret input sparsification as a form of dynamic structural pruning. Motivated by the spontaneous baseline firing rates observed in biological neurons, we introduce a small set of trainable spontaneous neurons that act as compensatory units to stabilize activations in sparsified LLMs. Experiments demonstrate that these auxiliary neurons substantially reduce the sparsification-induced performance gap while generalizing effectively across tasks.
☆ Transport Reversible Jump Markov Chain Monte Carlo with proposals generated by Variational Inference with Normalizing Flows
We present a framework using variational inference with normalizing flows (VI-NFs) to generate proposals of reversible jump Markov chain Monte Carlo (RJMCMC) for efficient trans-dimensional Bayesian inference. Unlike transport reversible jump methods relying on forward KL minimization with pilot MCMC samples, our approach minimizes the reverse KL divergence which requires only samples from a base distribution, eliminating costly target sampling. The method employs RealNVP-based flows to learn model-specific transport maps, enabling construction of both between-model and within-model proposals. Our framework provides accurate marginal likelihood estimates from the variational approximation. This facilitates efficient model comparison and proposal adaptation in RJMCMC. Experiments on illustrative example, factor analysis and variable selection tasks in linear regression show that TRJ designed by VI-NFs achieves faster mixing and more efficient model space exploration compared to existing baselines. The proposed algorithm can be extended to conditional flows for amortized vairiational inference across models. Code is available at https://github.com/YinPingping111/TRJ_VINFs.
☆ SPARK: Igniting Communication-Efficient Decentralized Learning via Stage-wise Projected NTK and Accelerated Regularization
Decentralized federated learning (DFL) faces critical challenges from statistical heterogeneity and communication overhead. While NTK-based methods achieve faster convergence, transmitting full Jacobian matrices is impractical for bandwidth-constrained edge networks. We propose SPARK, synergistically integrating random projection-based Jacobian compression, stage-wise annealed distillation, and Nesterov momentum acceleration. Random projections compress Jacobians while preserving spectral properties essential for convergence. Stage-wise annealed distillation transitions from pure NTK evolution to neighbor-regularized learning, counteracting compression noise. Nesterov momentum accelerates convergence through stable accumulation enabled by distillation smoothing. SPARK achieves 98.7% communication reduction compared to NTK-DFL while maintaining convergence speed and superior accuracy. With momentum, SPARK reaches target performance 3 times faster, establishing state-of-the-art results for communication-efficient decentralized learning and enabling practical deployment in bandwidth-limited edge environments.
comment: 11 pages, 8 figures
☆ Limits To (Machine) Learning
Machine learning (ML) methods are highly flexible, but their ability to approximate the true data-generating process is fundamentally constrained by finite samples. We characterize a universal lower bound, the Limits-to-Learning Gap (LLG), quantifying the unavoidable discrepancy between a model's empirical fit and the population benchmark. Recovering the true population $R^2$, therefore, requires correcting observed predictive performance by this bound. Using a broad set of variables, including excess returns, yields, credit spreads, and valuation ratios, we find that the implied LLGs are large. This indicates that standard ML approaches can substantially understate true predictability in financial data. We also derive LLG-based refinements to the classic Hansen and Jagannathan (1991) bounds, analyze implications for parameter learning in general-equilibrium settings, and show that the LLG provides a natural mechanism for generating excess volatility.
☆ Solving a Machine Learning Regression Problem Based on the Theory of Random Functions
This paper studies a machine learning regression problem as a multivariate approximation problem using the framework of the theory of random functions. An ab initio derivation of a regression method is proposed, starting from postulates of indifference. It is shown that if a probability measure on an infinite-dimensional function space possesses natural symmetries (invariance under translation, rotation, scaling, and Gaussianity), then the entire solution scheme, including the kernel form, the type of regularization, and the noise parameterization, follows analytically from these postulates. The resulting kernel coincides with a generalized polyharmonic spline; however, unlike existing approaches, it is not chosen empirically but arises as a consequence of the indifference principle. This result provides a theoretical foundation for a broad class of smoothing and interpolation methods, demonstrating their optimality in the absence of a priori information.
comment: Part 1 of 4 in the "Polyharmonic Cascade" cycle. 25 pages, 2 figures. Source code is available at: https://github.com/xolod7/polyharmonic-cascade
☆ Self-Motivated Growing Neural Network for Adaptive Architecture via Local Structural Plasticity
Control policies in deep reinforcement learning are often implemented with fixed-capacity multilayer perceptrons trained by backpropagation, which lack structural plasticity and depend on global error signals. This paper introduces the Self-Motivated Growing Neural Network (SMGrNN), a controller whose topology evolves online through a local Structural Plasticity Module (SPM). The SPM monitors neuron activations and edge-wise weight update statistics over short temporal windows and uses these signals to trigger neuron insertion and pruning, while synaptic weights are updated by a standard gradient-based optimizer. This allows network capacity to be regulated during learning without manual architectural tuning. SMGrNN is evaluated on control benchmarks via policy distillation. Compared with multilayer perceptron baselines, it achieves similar or higher returns, lower variance, and task-appropriate network sizes. Ablation studies with growth disabled and growth-only variants isolate the role of structural plasticity, showing that adaptive topology improves reward stability. The local and modular design of SPM enables future integration of a Hebbian plasticity module and spike-timing-dependent plasticity, so that SMGrNN can support both artificial and spiking neural implementations driven by local rules.
☆ Practical Hybrid Quantum Language Models with Observable Readout on Real Hardware
Hybrid quantum-classical models represent a crucial step toward leveraging near-term quantum devices for sequential data processing. We present Quantum Recurrent Neural Networks (QRNNs) and Quantum Convolutional Neural Networks (QCNNs) as hybrid quantum language models, reporting the first empirical demonstration of generative language modeling trained and evaluated end-to-end on real quantum hardware. Our architecture combines hardware-optimized parametric quantum circuits with a lightweight classical projection layer, utilizing a multi-sample SPSA strategy to efficiently train quantum parameters despite hardware noise. To characterize the capabilities of these models, we introduce a synthetic dataset designed to isolate syntactic dependencies in a controlled, low-resource environment. Experiments on IBM Quantum processors reveal the critical trade-offs between circuit depth and trainability, demonstrating that while noise remains a significant factor, observable-based readout enables the successful learning of sequential patterns on NISQ devices. These results establish a rigorous engineering baseline for generative quantum natural language processing, validating the feasibility of training complex sequence models on current quantum hardware.
☆ Multi-Trajectory Physics-Informed Neural Networks for HJB Equations with Hard-Zero Terminal Inventory: Optimal Execution on Synthetic & SPY Data NeurIPS 2025
We study optimal trade execution with a hard-zero terminal inventory constraint, modeled via Hamilton-Jacobi-Bellman (HJB) equations. Vanilla PINNs often under-enforce this constraint and produce unstable controls. We propose a Multi-Trajectory PINN (MT-PINN) that adds a rollout-based trajectory loss and propagates a terminal penalty on terminal inventory via backpropagation-through-time, directly enforcing zero terminal inventory. A lightweight lambda-curriculum is adopted to stabilize training as the state expands from a risk-neutral reduced HJB to a risk-averse HJB. On the Gatheral-Schied single-asset model, MT-PINN aligns closely with their derived closed-form solutions and concentrates terminal inventory tightly around zero while reducing errors along optimal paths. We apply MT-PINNs on SPY intraday data, matching TWAP when risk-neutral, and achieving lower exposure and competitive costs, especially in falling windows, for higher risk-aversion.
comment: 24 pages, 19 figures. Accepted to the NeurIPS 2025 Workshop on Generative AI in Finance
☆ Efficient Vision-Language Reasoning via Adaptive Token Pruning NeurIPS 2025
Real-world deployment of Vision-Language Models (VLMs) is hindered by high computational demands, as existing architectures inefficiently process all tokens uniformly. We introduce Adaptive Token Pruning (ATP), a dynamic inference mechanism that retains only the most informative tokens based on contextual relevance. ATP operates at the vision-language interface, assigning a hybrid importance score combining ViT CLS attention (intra-modal saliency) and CLIP text-image similarity (inter-modal relevance) to keep top-K tokens for the LLM. Unlike static compression, ATP adapts to each input without modifying the backbone. Proposed as a lightweight gating module, ATP is compatible with popular backbones like BLIP-2, LLaVA, and Flamingo. Preliminary evaluations across VQAv2, GQA, and COCO indicate that ATP reduces inference FLOPs by around 40% and achieves roughly 1.5x speedups in end-to-end latency with negligible accuracy loss (less than 1%). Qualitative analyses suggest ATP preserves visual grounding and enhances interpretability. Beyond efficiency, we investigate robustness under corruptions; observations suggest adaptive pruning suppresses spurious correlations, improving stability. These findings imply that resource-constrained inference and model reliability are not competing objectives. Finally, we discuss ATP's role in efficient multimodal edge computing pipelines.
comment: 10 pages, 3 figures. Expanded version of an extended abstract accepted at NeurIPS 2025 Workshop on VLM4RWD. Presents methodology and preliminary experimental results
☆ Co-Exploration and Co-Exploitation via Shared Structure in Multi-Task Bandits
We propose a novel Bayesian framework for efficient exploration in contextual multi-task multi-armed bandit settings, where the context is only observed partially and dependencies between reward distributions are induced by latent context variables. In order to exploit these structural dependencies, our approach integrates observations across all tasks and learns a global joint distribution, while still allowing personalised inference for new tasks. In this regard, we identify two key sources of epistemic uncertainty, namely structural uncertainty in the latent reward dependencies across arms and tasks, and user-specific uncertainty due to incomplete context and limited interaction history. To put our method into practice, we represent the joint distribution over tasks and rewards using a particle-based approximation of a log-density Gaussian process. This representation enables flexible, data-driven discovery of both inter-arm and inter-task dependencies without prior assumptions on the latent variables. Empirically, we demonstrate that our method outperforms baselines such as hierarchical model bandits, especially in settings with model misspecification or complex latent heterogeneity.
comment: 18 pages, 9 figures, preprint
☆ WebOperator: Action-Aware Tree Search for Autonomous Agents in Web Environment ICLR 2026
LLM-based agents often operate in a greedy, step-by-step manner, selecting actions solely based on the current observation without considering long-term consequences or alternative paths. This lack of foresight is particularly problematic in web environments, which are only partially observable-limited to browser-visible content (e.g., DOM and UI elements)-where a single misstep often requires complex and brittle navigation to undo. Without an explicit backtracking mechanism, agents struggle to correct errors or systematically explore alternative paths. Tree-search methods provide a principled framework for such structured exploration, but existing approaches lack mechanisms for safe backtracking, making them prone to unintended side effects. They also assume that all actions are reversible, ignoring the presence of irreversible actions-limitations that reduce their effectiveness in realistic web tasks. To address these challenges, we introduce WebOperator, a tree-search framework that enables reliable backtracking and strategic exploration. Our method incorporates a best-first search strategy that ranks actions by both reward estimates and safety considerations, along with a robust backtracking mechanism that verifies the feasibility of previously visited paths before replaying them, preventing unintended side effects. To further guide exploration, WebOperator generates action candidates from multiple, varied reasoning contexts to ensure diverse and robust exploration, and subsequently curates a high-quality action set by filtering out invalid actions pre-execution and merging semantically equivalent ones. Experimental results on WebArena and WebVoyager demonstrate the effectiveness of WebOperator. On WebArena, WebOperator achieves a state-of-the-art 54.6% success rate with gpt-4o, underscoring the critical advantage of integrating strategic foresight with safe execution.
comment: Under review at ICLR 2026. Project page: https://kagnlp.github.io/WebOperator/
☆ Reassessing the Role of Supervised Fine-Tuning: An Empirical Study in VLM Reasoning
Recent advances in vision-language models (VLMs) reasoning have been largely attributed to the rise of reinforcement Learning (RL), which has shifted the community's focus away from the supervised fine-tuning (SFT) paradigm. Many studies suggest that introducing the SFT stage not only fails to improve reasoning ability but may also negatively impact model training. In this study, we revisit this RL-centric belief through a systematic and controlled comparison of SFT and RL on VLM Reasoning. Using identical data sources, we find that the relative effectiveness of SFT and RL is conditional and strongly influenced by model capacity, data scale, and data distribution. Contrary to common assumptions, our findings show that SFT plays a crucial role across several scenarios: (1) Effectiveness for weaker models. SFT more reliably elicits reasoning capabilities in smaller or weaker VLMs. (2) Data efficiency. SFT with only 2K achieves comparable or better reasoning performance to RL with 20K. (3) Cross-modal transferability. SFT demonstrates stronger generalization across modalities. Moreover, we identify a pervasive issue of deceptive rewards, where higher rewards fail to correlate with better reasoning accuracy in RL. These results challenge the prevailing "RL over SFT" narrative. They highlight that the role of SFT may have been underestimated and support a more balanced post-training pipeline in which SFT and RL function as complementary components.
☆ Theoretical Foundations of Prompt Engineering: From Heuristics to Expressivity
Prompts can switch a model's behavior even when the weights are fixed, yet this phenomenon is rarely treated as a clean theoretical object rather than a heuristic. We study the family of functions obtainable by holding a Transformer backbone fixed as an executor and varying only the prompt. Our core idea is to view the prompt as an externally injected program and to construct a simplified Transformer that interprets it to implement different computations. The construction exposes a mechanism-level decomposition: attention performs selective routing from prompt memory, the FFN performs local arithmetic conditioned on retrieved fragments, and depth-wise stacking composes these local updates into a multi-step computation. Under this viewpoint, we prove a constructive existential result showing that a single fixed backbone can approximate a broad class of target behaviors via prompts alone. The framework provides a unified starting point for formalizing trade-offs under prompt length/precision constraints and for studying structural limits of prompt-based switching, while remaining distinct from empirical claims about pretrained LLMs.
comment: 24 pages
☆ Robust Variational Bayes by Min-Max Median Aggregation
We propose a robust and scalable variational Bayes (VB) framework designed to effectively handle contamination and outliers in dataset. Our approach partitions the data into $m$ disjoint subsets and formulates a joint optimization problem based on robust aggregation principles. A key insight is that the full posterior distribution is equivalent to the minimizer of the mean Kullback-Leibler (KL) divergence from the $m$-powered local posterior distributions. To enhance robustness, we replace the mean KL divergence with a min-max median formulation. The min-max formulation not only ensures consistency between the KL minimizer and the Evidence Lower Bound (ELBO) maximizer but also facilitates the establishment of improved statistical rates for the mean of variational posterior. We observe a notable discrepancy in the $m$-powered marginal log likelihood function contingent on the presence of local latent variables. To address this, we treat these two scenarios separately to guarantee the consistency of the aggregated variational posterior. Specifically, when local latent variables are present, we introduce an aggregate-and-rescale strategy. Theoretically, we provide a non-asymptotic analysis of our proposed posterior, incorporating a refined analysis of Bernstein-von Mises (BvM) theorem to accommodate a diverging number of subsets $m$. Our findings indicate that the two-stage approach yields a smaller approximation error compared to directly aggregating the $m$-powered local posteriors. Furthermore, we establish a nearly optimal statistical rate for the mean of the proposed posterior, advancing existing theories related to min-max median estimators. The efficacy of our method is demonstrated through extensive simulation studies.
comment: 34 pages, 11 figures
☆ On Approaches to Building Surrogate ODE Models for Diffusion Bridges
Diffusion and Schrödinger Bridge models have established state-of-the-art performance in generative modeling but are often hampered by significant computational costs and complex training procedures. While continuous-time bridges promise faster sampling, overparameterized neural networks describe their optimal dynamics, and the underlying stochastic differential equations can be difficult to integrate efficiently. This work introduces a novel paradigm that uses surrogate models to create simpler, faster, and more flexible approximations of these dynamics. We propose two specific algorithms: SINDy Flow Matching (SINDy-FM), which leverages sparse regression to identify interpretable, symbolic differential equations from data, and a Neural-ODE reformulation of the Schrödinger Bridge (DSBM-NeuralODE) for flexible continuous-time parameterization. Our experiments on Gaussian transport tasks and MNIST latent translation demonstrate that these surrogates achieve competitive performance while offering dramatic improvements in efficiency and interpretability. The symbolic SINDy-FM models, in particular, reduce parameter counts by several orders of magnitude and enable near-instantaneous inference, paving the way for a new class of tractable and high-performing bridge models for practical deployment.
☆ DynaGen: Unifying Temporal Knowledge Graph Reasoning with Dynamic Subgraphs and Generative Regularization
Temporal Knowledge Graph Reasoning (TKGR) aims to complete missing factual elements along the timeline. Depending on the temporal position of the query, the task is categorized into interpolation and extrapolation. Existing interpolation methods typically embed temporal information into individual facts to complete missing historical knowledge, while extrapolation techniques often leverage sequence models over graph snapshots to identify recurring patterns for future event prediction. These methods face two critical challenges: limited contextual modeling in interpolation and cognitive generalization bias in extrapolation. To address these, we propose a unified method for TKGR, dubbed DynaGen. For interpolation, DynaGen dynamically constructs entity-centric subgraphs and processes them with a synergistic dual-branch GNN encoder to capture evolving structural context. For extrapolation, it applies a conditional diffusion process, which forces the model to learn underlying evolutionary principles rather than just superficial patterns, enhancing its ability to predict unseen future events. Extensive experiments on six benchmark datasets show DynaGen achieves state-of-the-art performance. On average, compared to the second-best models, DynaGen improves the Mean Reciprocal Rank (MRR) score by 2.61 points for interpolation and 1.45 points for extrapolation.
☆ PerNodeDrop: A Method Balancing Specialized Subnets and Regularization in Deep Neural Networks
Deep neural networks possess strong representational capacity yet remain vulnerable to overfitting, primarily because neurons tend to co-adapt in ways that, while capturing complex and fine-grained feature interactions, also reinforce spurious and non-generalizable patterns that inflate training performance but reduce reliability on unseen data. Noise-based regularizers such as Dropout and DropConnect address this issue by injecting stochastic perturbations during training, but the noise they apply is typically uniform across a layer or across a batch of samples, which can suppress both harmful and beneficial co-adaptation. This work introduces PerNodeDrop, a lightweight stochastic regularization method. It applies per-sample, per-node perturbations to break the uniformity of the noise injected by existing techniques, thereby allowing each node to experience input-specific variability. Hence, PerNodeDrop preserves useful co-adaptation while applying regularization. This narrows the gap between training and validation performance and improves reliability on unseen data, as evident from the experiments. Although superficially similar to DropConnect, PerNodeDrop operates at the sample level. It drops weights at the sample level, not the batch level. An expected-loss analysis formalizes how its perturbations attenuate excessive co-adaptation while retaining predictive interactions. Empirical evaluations on vision, text, and audio benchmarks indicate improved generalization relative to the standard noise-based regularizer.
☆ Modeling Authorial Style in Urdu Novels Using Character Interaction Graphs and Graph Neural Networks
Authorship analysis has traditionally focused on lexical and stylistic cues within text, while higher-level narrative structure remains underexplored, particularly for low-resource languages such as Urdu. This work proposes a graph-based framework that models Urdu novels as character interaction networks to examine whether authorial style can be inferred from narrative structure alone. Each novel is represented as a graph where nodes correspond to characters and edges denote their co-occurrence within narrative proximity. We systematically compare multiple graph representations, including global structural features, node-level semantic summaries, unsupervised graph embeddings, and supervised graph neural networks. Experiments on a dataset of 52 Urdu novels written by seven authors show that learned graph representations substantially outperform hand-crafted and unsupervised baselines, achieving up to 0.857 accuracy under a strict author-aware evaluation protocol.
comment: 6 pages
☆ Torch Geometric Pool: the Pytorch library for pooling in Graph Neural Networks
We introduce Torch Geometric Pool (tgp), a library for hierarchical pooling in Graph Neural Networks. Built upon Pytorch Geometric, Torch Geometric Pool (tgp) provides a wide variety of pooling operators, unified under a consistent API and a modular design. The library emphasizes usability and extensibility, and includes features like precomputed pooling, which significantly accelerate training for a class of operators. In this paper, we present tgp's structure and present an extensive benchmark. The latter showcases the library's features and systematically compares the performance of the implemented graph-pooling methods in different downstream tasks. The results, showing that the choice of the optimal pooling operator depends on tasks and data at hand, support the need for a library that enables fast prototyping.
☆ CoLSE: A Lightweight and Robust Hybrid Learned Model for Single-Table Cardinality Estimation using Joint CDF
Cardinality estimation (CE), the task of predicting the result size of queries is a critical component of query optimization. Accurate estimates are essential for generating efficient query execution plans. Recently, machine learning techniques have been applied to CE, broadly categorized into query-driven and data-driven approaches. Data-driven methods learn the joint distribution of data, while query-driven methods construct regression models that map query features to cardinalities. Ideally, a CE technique should strike a balance among three key factors: accuracy, efficiency, and memory footprint. However, existing state-of-the-art models often fail to achieve this balance. To address this, we propose CoLSE, a hybrid learned approach for single-table cardinality estimation. CoLSE directly models the joint probability over queried intervals using a novel algorithm based on copula theory and integrates a lightweight neural network to correct residual estimation errors. Experimental results show that CoLSE achieves a favorable trade-off among accuracy, training time, inference latency, and model size, outperforming existing state-of-the-art methods.
☆ Spectral Sentinel: Scalable Byzantine-Robust Decentralized Federated Learning via Sketched Random Matrix Theory on Blockchain
Decentralized federated learning (DFL) enables collaborative model training without centralized trust, but it remains vulnerable to Byzantine clients that poison gradients under heterogeneous (Non-IID) data. Existing defenses face a scalability trilemma: distance-based filtering (e.g., Krum) can reject legitimate Non-IID updates, geometric-median methods incur prohibitive $O(n^2 d)$ cost, and many certified defenses are evaluated only on models below 100M parameters. We propose Spectral Sentinel, a Byzantine detection and aggregation framework that leverages a random-matrix-theoretic signature: honest Non-IID gradients produce covariance eigenspectra whose bulk follows the Marchenko-Pastur law, while Byzantine perturbations induce detectable tail anomalies. Our algorithm combines Frequent Directions sketching with data-dependent MP tracking, enabling detection on models up to 1.5B parameters using $O(k^2)$ memory with $k \ll d$. Under a $(σ,f)$ threat model with coordinate-wise honest variance bounded by $σ^2$ and $f < 1/2$ adversaries, we prove $(ε,δ)$-Byzantine resilience with convergence rate $O(σf / \sqrt{T} + f^2 / T)$, and we provide a matching information-theoretic lower bound $Ω(σf / \sqrt{T})$, establishing minimax optimality. We implement the full system with blockchain integration on Polygon networks and validate it across 144 attack-aggregator configurations, achieving 78.4 percent average accuracy versus 48-63 percent for baseline methods.
☆ Causal inference and model explainability tools for retail
Most major retailers today have multiple divisions focused on various aspects, such as marketing, supply chain, online customer experience, store customer experience, employee productivity, and vendor fulfillment. They also regularly collect data corresponding to all these aspects as dashboards and weekly/monthly/quarterly reports. Although several machine learning and statistical techniques have been in place to analyze and predict key metrics, such models typically lack interpretability. Moreover, such techniques also do not allow the validation or discovery of causal links. In this paper, we aim to provide a recipe for applying model interpretability and causal inference for deriving sales insights. In this paper, we review the existing literature on causal inference and interpretability in the context of problems in e-commerce and retail, and apply them to a real-world dataset. We find that an inherently explainable model has a lower variance of SHAP values, and show that including multiple confounders through a double machine learning approach allows us to get the correct sign of causal effect.
☆ Error-Free Linear Attention is a Free Lunch: Exact Solution from Continuous-Time Dynamics
Linear-time attention and State Space Models (SSMs) promise to solve the quadratic cost bottleneck in long-context language models employing softmax attention. We introduce Error-Free Linear Attention (EFLA), a numerically stable, fully parallelism and generalized formulation of the delta rule. Specifically, we formulate the online learning update as a continuous-time dynamical system and prove that its exact solution is not only attainable but also computable in linear time with full parallelism. By leveraging the rank-1 structure of the dynamics matrix, we directly derive the exact closed-form solution effectively corresponding to the infinite-order Runge-Kutta method. This attention mechanism is theoretically free from error accumulation, perfectly capturing the continuous dynamics while preserving the linear-time complexity. Through an extensive suite of experiments, we show that EFLA enables robust performance in noisy environments, achieving lower language modeling perplexity and superior downstream benchmark performance than DeltaNet without introducing additional parameters. Our work provides a new theoretical foundation for building high-fidelity, scalable linear-time attention models.
comment: 17 pages, 2 figures
ceLLMate: Sandboxing Browser AI Agents
Browser-using agents (BUAs) are an emerging class of autonomous agents that interact with web browsers in human-like ways, including clicking, scrolling, filling forms, and navigating across pages. While these agents help automate repetitive online tasks, they are vulnerable to prompt injection attacks that can trick an agent into performing undesired actions, such as leaking private information or issuing state-changing requests. We propose ceLLMate, a browser-level sandboxing framework that restricts the agent's ambient authority and reduces the blast radius of prompt injections. We address two fundamental challenges: (1) The semantic gap challenge in policy enforcement arises because the agent operates through low-level UI observations and manipulations; however, writing and enforcing policies directly over UI-level events is brittle and error-prone. To address this challenge, we introduce an agent sitemap that maps low-level browser behaviors to high-level semantic actions. (2) Policy prediction in BUAs is the norm rather than the exception. BUAs have no app developer to pre-declare sandboxing policies, and thus, ceLLMate pairs website-authored mandatory policies with an automated policy-prediction layer that adapts and instantiates these policies from the user's natural-language task. We implement ceLLMate as an agent-agnostic browser extension and demonstrate how it enables sandboxing policies that effectively block various types of prompt injection attacks with negligible overhead.
comment: Homepage: https://cellmate-sandbox.github.io
☆ Differentiable Energy-Based Regularization in GANs: A Simulator-Based Exploration of VQE-Inspired Auxiliary Losses
This paper presents an exploratory, simulator-based proof of concept investigating whether differentiable energy terms derived from parameterized quantum circuits can serve as auxiliary regularization signals in Generative Adversarial Networks (GANs). We augment the Auxiliary Classifier GAN (ACGAN) generator objective with a Variational Quantum Eigensolver (VQE)-inspired energy term computed from class-specific Ising Hamiltonians using Qiskit's EstimatorQNN and TorchConnector. Important limitations: All experiments run on a noiseless statevector simulator with only 4 qubits, use a deliberately simple Hamiltonian parameterization, and lack ablation studies comparing against equivalent classical biases. The computational overhead (approximately 200x slower than classical ACGAN) reflects simulator artifacts rather than inherent quantum costs. On MNIST, we observe that the energy-regularized model (termed QACGAN) achieves high classification accuracy (99 to 100 percent) within 5 epochs compared to 87.8 percent for ACGAN, suggesting the auxiliary term influences class conditioning. However, sample quality metrics (FID) show high variance across runs (coefficient of variation approximately 25 percent at epoch 5), with values ranging from 19.92 to 35.96. Extended runs stabilize around FID 23 to 24, comparable to the ACGAN baseline. We explicitly do not claim quantum advantage, improved stability in any general sense, or scalability beyond this toy setting. The contribution is methodological: demonstrating that VQE-style energy computations can be integrated into GAN training loops via differentiable pathways. Whether such auxiliary signals provide benefits beyond equivalent classical regularizers remains an open question requiring systematic ablation studies, which we leave for future work.
comment: Exploratory, simulator-based proof of concept. No claims of quantum advantage
☆ Scalable Quantum Error Mitigation with Neighbor-Informed Learning
Noise in quantum hardware is the primary obstacle to realizing the transformative potential of quantum computing. Quantum error mitigation (QEM) offers a promising pathway to enhance computational accuracy on near-term devices, yet existing methods face a difficult trade-off between performance, resource overhead, and theoretical guarantees. In this work, we introduce neighbor-informed learning (NIL), a versatile and scalable QEM framework that unifies and strengthens existing methods such as zero-noise extrapolation (ZNE) and probabilistic error cancellation (PEC), while offering improved flexibility, accuracy, efficiency, and robustness. NIL learns to predict the ideal output of a target quantum circuit from the noisy outputs of its structurally related ``neighbor'' circuits. A key innovation is our 2-design training method, which generates training data for our machine learning model. In contrast to conventional learning-based QEM protocols that create training circuits by replacing non-Clifford gates with uniformly random Clifford gates, our approach achieves higher accuracy and efficiency, as demonstrated by both theoretical analysis and numerical simulation. Furthermore, we prove that the required size of the training set scales only \emph{logarithmically} with the total number of neighbor circuits, enabling NIL to be applied to problems involving large-scale quantum circuits. Our work establishes a theoretically grounded and practically efficient framework for QEM, paving a viable path toward achieving quantum advantage on noisy hardware.
☆ Mind the Jumps: A Scalable Robust Local Gaussian Process for Multidimensional Response Surfaces with Discontinuities
Modeling response surfaces with abrupt jumps and discontinuities remains a major challenge across scientific and engineering domains. Although Gaussian process models excel at capturing smooth nonlinear relationships, their stationarity assumptions limit their ability to adapt to sudden input-output variations. Existing nonstationary extensions, particularly those based on domain partitioning, often struggle with boundary inconsistencies, sensitivity to outliers, and scalability issues in higher-dimensional settings, leading to reduced predictive accuracy and unreliable parameter estimation. To address these challenges, this paper proposes the Robust Local Gaussian Process (RLGP) model, a framework that integrates adaptive nearest-neighbor selection with a sparsity-driven robustification mechanism. Unlike existing methods, RLGP leverages an optimization-based mean-shift adjustment after a multivariate perspective transformation combined with local neighborhood modeling to mitigate the influence of outliers. This approach improves predictive accuracy near discontinuities while enhancing robustness to data heterogeneity. Comprehensive evaluations on real-world datasets show that RLGP consistently delivers high predictive accuracy and maintains competitive computational efficiency, especially in scenarios with sharp transitions and complex response structures. Scalability tests further confirm RLGP's stability and reliability in higher-dimensional settings, where other methods struggle. These results establish RLGP as an effective and practical solution for modeling nonstationary and discontinuous response surfaces across a wide range of applications.
comment: 25 pages, 4 figures
☆ On the Accuracy of Newton Step and Influence Function Data Attributions
Data attribution aims to explain model predictions by estimating how they would change if certain training points were removed, and is used in a wide range of applications, from interpretability and credit assignment to unlearning and privacy. Even in the relatively simple case of linear regressions, existing mathematical analyses of leading data attribution methods such as Influence Functions (IF) and single Newton Step (NS) remain limited in two key ways. First, they rely on global strong convexity assumptions which are often not satisfied in practice. Second, the resulting bounds scale very poorly with the number of parameters ($d$) and the number of samples removed ($k$). As a result, these analyses are not tight enough to answer fundamental questions such as "what is the asymptotic scaling of the errors of each method?" or "which of these methods is more accurate for a given dataset?" In this paper, we introduce a new analysis of the NS and IF data attribution methods for convex learning problems. To the best of our knowledge, this is the first analysis of these questions that does not assume global strong convexity and also the first explanation of [KATL19] and [RH25a]'s observation that NS data attribution is often more accurate than IF. We prove that for sufficiently well-behaved logistic regression, our bounds are asymptotically tight up to poly-logarithmic factors, yielding scaling laws for the errors in the average-case sample removals. \[ \mathbb{E}_{T \subseteq [n],\, |T| = k} \bigl[ \|\hatθ_T - \hatθ_T^{\mathrm{NS}}\|_2 \bigr] = \widetildeΘ\!\left(\frac{k d}{n^2}\right), \qquad \mathbb{E}_{T \subseteq [n],\, |T| = k} \bigl[ \|\hatθ_T^{\mathrm{NS}} - \hatθ_T^{\mathrm{IF}}\|_2 \bigr] = \widetildeΘ\!\left( \frac{(k + d)\sqrt{k d}}{n^2} \right). \]
☆ Optimal Mistake Bounds for Transductive Online Learning
We resolve a 30-year-old open problem concerning the power of unlabeled data in online learning by tightly quantifying the gap between transductive and standard online learning. In the standard setting, the optimal mistake bound is characterized by the Littlestone dimension $d$ of the concept class $H$ (Littlestone 1987). We prove that in the transductive setting, the mistake bound is at least $Ω(\sqrt{d})$. This constitutes an exponential improvement over previous lower bounds of $Ω(\log\log d)$, $Ω(\sqrt{\log d})$, and $Ω(\log d)$, due respectively to Ben-David, Kushilevitz, and Mansour (1995, 1997) and Hanneke, Moran, and Shafer (2023). We also show that this lower bound is tight: for every $d$, there exists a class of Littlestone dimension $d$ with transductive mistake bound $O(\sqrt{d})$. Our upper bound also improves upon the best known upper bound of $(2/3)d$ from Ben-David, Kushilevitz, and Mansour (1997). These results establish a quadratic gap between transductive and standard online learning, thereby highlighting the benefit of advance access to the unlabeled instance sequence. This contrasts with the PAC setting, where transductive and standard learning exhibit similar sample complexities.
☆ Iterative Sampling Methods for Sinkhorn Distributionally Robust Optimization
Distributionally robust optimization (DRO) has emerged as a powerful paradigm for reliable decision-making under uncertainty. This paper focuses on DRO with ambiguity sets defined via the Sinkhorn discrepancy: an entropy-regularized Wasserstein distance, referred to as Sinkhorn DRO. Existing work primarily addresses Sinkhorn DRO from a dual perspective, leveraging its formulation as a conditional stochastic optimization problem, for which many stochastic gradient methods are applicable. However, the theoretical analyses of such methods often rely on the boundedness of the loss function, and it is indirect to obtain the worst-case distribution associated with Sinkhorn DRO. In contrast, we study Sinkhorn DRO from the primal perspective, by reformulating it as a bilevel program with several infinite-dimensional lower-level subproblems over probability space. This formulation enables us to simultaneously obtain the optimal robust decision and the worst-case distribution, which is valuable in practical settings, such as generating stress-test scenarios or designing robust learning algorithms. We propose both double-loop and single-loop sampling-based algorithms with theoretical guarantees to solve this bilevel program. Finally, we demonstrate the effectiveness of our approach through a numerical study on adversarial classification.
comment: 29 pages
☆ Supervised Contrastive Frame Aggregation for Video Representation Learning
We propose a supervised contrastive learning framework for video representation learning that leverages temporally global context. We introduce a video to image aggregation strategy that spatially arranges multiple frames from each video into a single input image. This design enables the use of pre trained convolutional neural network backbones such as ResNet50 and avoids the computational overhead of complex video transformer models. We then design a contrastive learning objective that directly compares pairwise projections generated by the model. Positive pairs are defined as projections from videos sharing the same label while all other projections are treated as negatives. Multiple natural views of the same video are created using different temporal frame samplings from the same underlying video. Rather than relying on data augmentation these frame level variations produce diverse positive samples with global context and reduce overfitting. Experiments on the Penn Action and HMDB51 datasets demonstrate that the proposed method outperforms existing approaches in classification accuracy while requiring fewer computational resources. The proposed Supervised Contrastive Frame Aggregation method learns effective video representations in both supervised and self supervised settings and supports video based tasks such as classification and captioning. The method achieves seventy six percent classification accuracy on Penn Action compared to forty three percent achieved by ViVIT and forty eight percent accuracy on HMDB51 compared to thirty seven percent achieved by ViVIT.
comment: 12 pages
☆ World Models Unlock Optimal Foraging Strategies in Reinforcement Learning Agents
Patch foraging involves the deliberate and planned process of determining the optimal time to depart from a resource-rich region and investigate potentially more beneficial alternatives. The Marginal Value Theorem (MVT) is frequently used to characterize this process, offering an optimality model for such foraging behaviors. Although this model has been widely used to make predictions in behavioral ecology, discovering the computational mechanisms that facilitate the emergence of optimal patch-foraging decisions in biological foragers remains under investigation. Here, we show that artificial foragers equipped with learned world models naturally converge to MVT-aligned strategies. Using a model-based reinforcement learning agent that acquires a parsimonious predictive representation of its environment, we demonstrate that anticipatory capabilities, rather than reward maximization alone, drive efficient patch-leaving behavior. Compared with standard model-free RL agents, these model-based agents exhibit decision patterns similar to many of their biological counterparts, suggesting that predictive world models can serve as a foundation for more explainable and biologically grounded decision-making in AI systems. Overall, our findings highlight the value of ecological optimality principles for advancing interpretable and adaptive AI.
comment: 14 pages, 6 figures
☆ Skillful Subseasonal-to-Seasonal Forecasting of Extreme Events with a Multi-Sphere Coupled Probabilistic Model
Accurate subseasonal-to-seasonal (S2S) prediction of extreme events is critical for resource planning and disaster mitigation under accelerating climate change. However, such predictions remain challenging due to complex multi-sphere interactions and intrinsic atmospheric uncertainty. Here we present TianXing-S2S, a multi-sphere coupled probabilistic model for global S2S daily ensemble forecast. TianXing-S2S first encodes diverse multi-sphere predictors into a compact latent space, then employs a diffusion model to generate daily ensemble forecasts. A novel coupling module based on optimal transport (OT) is incorporated in the denoiser to optimize the interactions between atmospheric and multi-sphere boundary conditions. Across key atmospheric variables, TianXing-S2S outperforms both the European Centre for Medium-Range Weather Forecasts (ECMWF) S2S system and FuXi-S2S in 45-day daily-mean ensemble forecasts at 1.5 resolution. Our model achieves skillful subseasonal prediction of extreme events including heat waves and anomalous precipitation, identifying soil moisture as a critical precursor signal. Furthermore, we demonstrate that TianXing-S2S can generate stable rollout forecasts up to 180 days, establishing a robust framework for S2S research in a warming world.
☆ HyperEdit: Unlocking Instruction-based Text Editing in LLMs via Hypernetworks
Instruction-based text editing is increasingly critical for real-world applications such as code editors (e.g., Cursor), but Large Language Models (LLMs) continue to struggle with this task. Unlike free-form generation, editing requires faithfully implementing user instructions while preserving unchanged content, as even minor unintended modifications can break functionality. Existing approaches treat editing as generic text generation, leading to two key failures: they struggle to faithfully align edits with diverse user intents, and they often over-edit unchanged regions. We propose HyperEdit to address both issues. First, we introduce hypernetwork-based dynamic adaptation that generates request-specific parameters, enabling the model to tailor its editing strategy to each instruction. Second, we develop difference-aware regularization that focuses supervision on modified spans, preventing over-editing while ensuring precise, minimal changes. HyperEdit achieves a 9%--30% relative improvement in BLEU on modified regions over state-of-the-art baselines, despite utilizing only 3B parameters.
☆ Effective Fine-Tuning with Eigenvector Centrality Based Pruning
In social media networks a small number of highly influential users can drive large scale changes in discourse across multiple communities. Small shifts in the behavior of these users are often sufficient to propagate widely throughout the network. A similar phenomenon occurs during neural network fine tuning. Conventional fine tuning of convolutional neural networks typically adds a new linear classification layer on top of a large pre trained model. Instead we argue that improved adaptation can be achieved by first pruning the network to retain only the most important neurons and then performing fine tuning. We propose a graph theory based method for pruning neural networks that is designed to improve fine tuning performance. In this method each neuron is represented as a node and edges encode similarity between neurons. Neurons are pruned based on importance scores computed using eigenvector centrality. The resulting pruned network is then fine tuned using only the most central neurons. We evaluate the proposed method on VGGNet EfficientNet and ResNet models using the TF Flowers Caltech one zero one and Oxford Flowers one zero two datasets. The proposed approach achieves higher classification accuracy while significantly reducing model complexity. On the Oxford Flowers one zero two dataset the method achieves forty eight percent classification accuracy compared to thirty percent accuracy obtained by the baseline VGGNet model.
comment: 12 pages
☆ Animus3D: Text-driven 3D Animation via Motion Score Distillation
We present Animus3D, a text-driven 3D animation framework that generates motion field given a static 3D asset and text prompt. Previous methods mostly leverage the vanilla Score Distillation Sampling (SDS) objective to distill motion from pretrained text-to-video diffusion, leading to animations with minimal movement or noticeable jitter. To address this, our approach introduces a novel SDS alternative, Motion Score Distillation (MSD). Specifically, we introduce a LoRA-enhanced video diffusion model that defines a static source distribution rather than pure noise as in SDS, while another inversion-based noise estimation technique ensures appearance preservation when guiding motion. To further improve motion fidelity, we incorporate explicit temporal and spatial regularization terms that mitigate geometric distortions across time and space. Additionally, we propose a motion refinement module to upscale the temporal resolution and enhance fine-grained details, overcoming the fixed-resolution constraints of the underlying video model. Extensive experiments demonstrate that Animus3D successfully animates static 3D assets from diverse text prompts, generating significantly more substantial and detailed motion than state-of-the-art baselines while maintaining high visual integrity. Code will be released at https://qiisun.github.io/animus3d_page.
comment: SIGGRAPH Asia 2025
☆ Empirical Mode Decomposition and Graph Transformation of the MSCI World Index: A Multiscale Topological Analysis for Graph Neural Network Modeling
This study applies Empirical Mode Decomposition (EMD) to the MSCI World index and converts the resulting intrinsic mode functions (IMFs) into graph representations to enable modeling with graph neural networks (GNNs). Using CEEMDAN, we extract nine IMFs spanning high-frequency fluctuations to long-term trends. Each IMF is transformed into a graph using four time-series-to-graph methods: natural visibility, horizontal visibility, recurrence, and transition graphs. Topological analysis shows clear scale-dependent structure: high-frequency IMFs yield dense, highly connected small-world graphs, whereas low-frequency IMFs produce sparser networks with longer characteristic path lengths. Visibility-based methods are more sensitive to amplitude variability and typically generate higher clustering, while recurrence graphs better preserve temporal dependencies. These results provide guidance for designing GNN architectures tailored to the structural properties of decomposed components, supporting more effective predictive modeling of financial time series.
comment: 19 pages, 3 figures, 6 tables
☆ Noise-robust Contrastive Learning for Critical Transition Detection in Dynamical Systems
Detecting critical transitions in complex, noisy time-series data is a fundamental challenge across science and engineering. Such transitions may be anticipated by the emergence of a low-dimensional order parameter, whose signature is often masked by high-amplitude stochastic variability. Standard contrastive learning approaches based on deep neural networks, while promising for detecting critical transitions, are often overparameterized and sensitive to irrelevant noise, leading to inaccurate identification of critical points. To address these limitations, we propose a neural network architecture, constructed using singular value decomposition technique, together with a strictly semi-orthogonality-constrained training algorithm, to enhance the performance of traditional contrastive learning. Extensive experiments demonstrate that the proposed method matches the performance of traditional contrastive learning techniques in identifying critical transitions, yet is considerably more lightweight and markedly more resistant to noise.
comment: under revision
☆ Generative Spatiotemporal Data Augmentation
We explore spatiotemporal data augmentation using video foundation models to diversify both camera viewpoints and scene dynamics. Unlike existing approaches based on simple geometric transforms or appearance perturbations, our method leverages off-the-shelf video diffusion models to generate realistic 3D spatial and temporal variations from a given image dataset. Incorporating these synthesized video clips as supplemental training data yields consistent performance gains in low-data settings, such as UAV-captured imagery where annotations are scarce. Beyond empirical improvements, we provide practical guidelines for (i) choosing an appropriate spatiotemporal generative setup, (ii) transferring annotations to synthetic frames, and (iii) addressing disocclusion - regions newly revealed and unlabeled in generated views. Experiments on COCO subsets and UAV-captured datasets show that, when applied judiciously, spatiotemporal augmentation broadens the data distribution along axes underrepresented by traditional and prior generative methods, offering an effective lever for improving model performance in data-scarce regimes.
♻ ☆ Citegeist: Automated Generation of Related Work Analysis on the arXiv Corpus
Large Language Models provide significant new opportunities for the generation of high-quality written works. However, their employment in the research community is inhibited by their tendency to hallucinate invalid sources and lack of direct access to a knowledge base of relevant scientific articles. In this work, we present Citegeist: An application pipeline using dynamic Retrieval Augmented Generation (RAG) on the arXiv Corpus to generate a related work section and other citation-backed outputs. For this purpose, we employ a mixture of embedding-based similarity matching, summarization, and multi-stage filtering. To adapt to the continuous growth of the document base, we also present an optimized way of incorporating new and modified papers. To enable easy utilization in the scientific community, we release both, a website (https://citegeist.org), as well as an implementation harness that works with several different LLM implementations.
♻ ☆ The Geometry of Intelligence: Deterministic Functional Topology as a Foundation for Real-World Perception
Real-world physical processes do not generate arbitrary variability: their signals concentrate on compact and low-variability subsets of functional space. This geometric structure enables rapid generalization from a few examples in both biological and artificial systems. This work develops a deterministic functional-topological framework in which the set of valid realizations of a physical phenomenon forms a compact perceptual manifold with stable invariants and a finite Hausdorff radius. We show that the boundaries of this manifold can be discovered in a fully self-supervised manner through Monte Carlo sampling, even when the governing equations of the system are unknown. We provide theoretical guarantees, practical estimators of knowledge boundaries, and empirical validations across three domains: electromechanical railway point machines, electrochemical battery discharge curves, and physiological ECG signals. Our results demonstrate that deterministic functional topology offers a unified mathematical foundation for perception, representation, and world-model construction, explaining why biological learners and self-supervised AI models can generalize from limited observations.
comment: 35 pages, 6 figures. This preprint develops a deterministic functional-topological framework showing that physical systems generate compact perceptual manifolds with finite radius. We provide theory, Monte-Carlo estimators, and validation across PM, battery, and ECG domains, unifying biological perception and self-supervised AI
♻ ☆ Pass@K Policy Optimization: Solving Harder Reinforcement Learning Problems
Reinforcement Learning (RL) algorithms sample multiple n>1 solution attempts for each problem and reward them independently. This optimizes for pass@1 performance and prioritizes the strength of isolated samples at the expense of the diversity and collective utility of sets of samples. This under-utilizes the sampling capacity, limiting exploration and eventual improvement on harder examples. As a fix, we propose Pass-at-k Policy Optimization (PKPO), a transformation on the final rewards which leads to direct optimization of pass@k performance, thus optimizing for sets of samples that maximize reward when considered jointly. Our contribution is to derive novel low variance unbiased estimators for pass@k and its gradient, in both the binary and continuous reward settings. We show optimization with our estimators reduces to standard RL with rewards that have been jointly transformed by a stable and efficient transformation function. While previous efforts are restricted to k=n, ours is the first to enable robust optimization of pass@k for any arbitrary k <= n. Moreover, instead of trading off pass@1 performance for pass@k gains, our method allows annealing k during training, optimizing both metrics and often achieving strong pass@1 numbers alongside significant pass@k gains. We validate our reward transformations on toy experiments, which reveal the variance reducing properties of our formulations. We also include real-world examples using the open-source LLM, GEMMA-2. We find that our transformation effectively optimizes for the target k. Furthermore, higher k values enable solving more and harder problems, while annealing k boosts both the pass@1 and pass@k . Crucially, for challenging task sets where conventional pass@1 optimization stalls, our pass@k approach unblocks learning, likely due to better exploration by prioritizing joint utility over the utility of individual samples.
♻ ☆ nnterp: A Standardized Interface for Mechanistic Interpretability of Transformers NeurIPS 2025
Mechanistic interpretability research requires reliable tools for analyzing transformer internals across diverse architectures. Current approaches face a fundamental tradeoff: custom implementations like TransformerLens ensure consistent interfaces but require coding a manual adaptation for each architecture, introducing numerical mismatch with the original models, while direct HuggingFace access through NNsight preserves exact behavior but lacks standardization across models. To bridge this gap, we develop nnterp, a lightweight wrapper around NNsight that provides a unified interface for transformer analysis while preserving original HuggingFace implementations. Through automatic module renaming and comprehensive validation testing, nnterp enables researchers to write intervention code once and deploy it across 50+ model variants spanning 16 architecture families. The library includes built-in implementations of common interpretability methods (logit lens, patchscope, activation steering) and provides direct access to attention probabilities for models that support it. By packaging validation tests with the library, researchers can verify compatibility with custom models locally. nnterp bridges the gap between correctness and usability in mechanistic interpretability tooling.
comment: 7 pages, 1 figure, accepted at the mechanistic interpretability workshop of NeurIPS 2025
♻ ☆ Interactive Program Synthesis for Modeling Collaborative Physical Activities from Narrated Demonstrations
Teaching systems physical tasks is a long standing goal in HCI, yet most prior work has focused on non collaborative physical activities. Collaborative tasks introduce added complexity, requiring systems to infer users assumptions about their teammates intent, which is an inherently ambiguous and dynamic process. This necessitates representations that are interpretable and correctable, enabling users to inspect and refine system behavior. We address this challenge by framing collaborative task learning as a program synthesis problem. Our system represents behavior as editable programs and uses narrated demonstrations, i.e. paired physical actions and natural language, as a unified modality for teaching, inspecting, and correcting system logic without requiring users to see or write code. The same modality is used for the system to communicate its learning to users. In a within subjects study, 20 users taught multiplayer soccer tactics to our system. 70 percent (14/20) of participants successfully refined learned programs to match their intent and 90 percent (18/20) found it easy to correct the programs. The study surfaced unique challenges in representing learning as programs and in enabling users to teach collaborative physical activities. We discuss these issues and outline mitigation strategies.
♻ ☆ State Combinatorial Generalization In Decision Making With Conditional Diffusion Models
Many real-world decision-making problems are combinatorial in nature, where states (e.g., surrounding traffic of a self-driving car) can be seen as a combination of basic elements (e.g., pedestrians, trees, and other cars). Due to combinatorial complexity, observing all combinations of basic elements in the training set is infeasible, which leads to an essential yet understudied problem of zero-shot generalization to states that are unseen combinations of previously seen elements. In this work, we first formalize this problem and then demonstrate how existing value-based reinforcement learning (RL) algorithms struggle due to unreliable value predictions in unseen states. We argue that this problem cannot be addressed with exploration alone, but requires more expressive and generalizable models. We demonstrate that behavior cloning with a conditioned diffusion model trained on successful trajectory generalizes better to states formed by new combinations of seen elements than traditional RL methods. Through experiments in maze, driving, and multiagent environments, we show that conditioned diffusion models outperform traditional RL techniques and highlight the broad applicability of our problem formulation.
comment: Accepted to Transactions on Machine Learning Research (TMLR), 2025
♻ ☆ An Improved Algorithm for Adversarial Linear Contextual Bandits via Reduction
We present an efficient algorithm for linear contextual bandits with adversarial losses and stochastic action sets. Our approach reduces this setting to misspecification-robust adversarial linear bandits with fixed action sets. Without knowledge of the context distribution or access to a context simulator, the algorithm achieves $\tilde{O}(\min\{d^2\sqrt{T}, \sqrt{d^3T\log K}\})$ regret and runs in $\text{poly}(d,C,T)$ time, where $d$ is the feature dimension, $C$ is an upper bound on the number of linear constraints defining the action set in each round, $K$ is an upper bound on the number of actions in each round, and $T$ is number of rounds. This resolves the open question by Liu et al. (2023) on whether one can obtain $\text{poly}(d)\sqrt{T}$ regret in polynomial time independent of the number of actions. For the important class of combinatorial bandits with adversarial losses and stochastic action sets where the action sets can be described by a polynomial number of linear constraints, our algorithm is the first to achieve $\text{poly}(d)\sqrt{T}$ regret in polynomial time, while no prior algorithm achieves even $o(T)$ regret in polynomial time to our knowledge. When a simulator is available, the regret bound can be improved to $\tilde{O}(d\sqrt{L^\star})$, where $L^\star$ is the cumulative loss of the best policy.
♻ ☆ PrivaDE: Privacy-preserving Data Evaluation for Blockchain-based Data Marketplaces
Evaluating the usefulness of data before purchase is essential when obtaining data for high-quality machine learning models, yet both model builders and data providers are often unwilling to reveal their proprietary assets. We present PrivaDE, a privacy-preserving protocol that allows a model owner and a data owner to jointly compute a utility score for a candidate dataset without fully exposing model parameters, raw features, or labels. PrivaDE provides strong security against malicious behavior and can be integrated into blockchain-based marketplaces, where smart contracts enforce fair execution and payment. To make the protocol practical, we propose optimizations to enable efficient secure model inference, and a model-agnostic scoring method that uses only a small, representative subset of the data while still reflecting its impact on downstream training. Evaluation shows that PrivaDE performs data evaluation effectively, achieving online runtimes within 15 minutes even for models with millions of parameters. Our work lays the foundation for fair and automated data marketplaces in decentralized machine learning ecosystems.
♻ ☆ Highly Imbalanced Regression with Tabular Data in SEP and Other Applications ICML
We investigate imbalanced regression with tabular data that have an imbalance ratio larger than 1,000 ("highly imbalanced"). Accurately estimating the target values of rare instances is important in applications such as forecasting the intensity of rare harmful Solar Energetic Particle (SEP) events. For regression, the MSE loss does not consider the correlation between predicted and actual values. Typical inverse importance functions allow only convex functions. Uniform sampling might yield mini-batches that do not have rare instances. We propose CISIR that incorporates correlation, Monotonically Decreasing Involution (MDI) importance, and stratified sampling. Based on five datasets, our experimental results indicate that CISIR can achieve lower error and higher correlation than some recent methods. Also, adding our correlation component to other recent methods can improve their performance. Lastly, MDI importance can outperform other importance functions. Our code can be found in https://github.com/Machine-Earning/CISIR.
comment: ICMLA 2025
♻ ☆ Residual subspace evolution strategies for nonlinear inverse problems
Nonlinear inverse problems pervade engineering and science, yet noisy, non-differentiable, or expensive residual evaluations routinely defeat Jacobian-based solvers. Derivative-free alternatives either demand smoothness, require large populations to stabilise covariance estimates, or stall on flat regions where gradient information fades. This paper introduces residual subspace evolution strategies (RSES), a derivative-free solver that draws Gaussian probes around the current iterate, records how residuals change along those directions, and recombines the probes through a least-squares solve to produce an optimal update. The method builds a residual-only surrogate without forming Jacobians or empirical covariances, and each iteration costs just $k+1$ residual evaluations with $O(k^3)$ linear algebra overhead, where $k$ remains far smaller than the parameter dimension. Benchmarks on calibration, regression, and deconvolution tasks show that RSES reduces misfit consistently across deterministic and stochastic settings, matching or exceeding xNES, NEWUOA, Adam, and ensemble Kalman inversion under matched evaluation budgets. The gains are most pronounced when smoothness or covariance assumptions break, suggesting that lightweight residual-difference surrogates can reliably guide descent where heavier machinery struggles.
comment: keywords: residual subspace evolution strategies, nonlinear inverse problems, derivative-free optimisation, ensemble methods, Tikhonov regularisation, stochastic search
♻ ☆ SuperGen: An Efficient Ultra-high-resolution Video Generation System with Sketching and Tiling
Diffusion models have recently achieved remarkable success in generative tasks (e.g., image and video generation), and the demand for high-quality content (e.g., 2K/4K videos) is rapidly increasing across various domains. However, generating ultra-high-resolution videos on existing standard-resolution (e.g., 720p) platforms remains challenging due to the excessive re-training requirements and prohibitively high computational and memory costs. To this end, we introduce SUPERGEN, an efficient tile-based framework for ultra-high-resolution video generation. SUPERGEN features a novel training-free algorithmic innovation with tiling to successfully support a wide range of resolutions without additional training efforts while significantly reducing both memory footprint and computational complexity. Moreover, SUPERGEN incorporates a tile-tailored, adaptive, region-aware caching strategy that accelerates video generation by exploiting redundancy across denoising steps and spatial regions. SUPERGEN also integrates cache-guided, communication-minimized tile parallelism for enhanced throughput and minimized latency. Evaluations show that SUPERGEN maximizes performance gains while achieving high output quality across various benchmarks.
♻ ☆ Beyond Benchmarks: On The False Promise of AI Regulation
The performance of AI models on safety benchmarks does not indicate their real-world performance after deployment. This opaqueness of AI models impedes existing regulatory frameworks constituted on benchmark performance, leaving them incapable of mitigating ongoing real-world harm. The problem stems from a fundamental challenge in AI interpretability, which seems to be overlooked by regulators and decision makers. We propose a simple, realistic and readily usable regulatory framework which does not rely on benchmarks, and call for interdisciplinary collaboration to find new ways to address this crucial problem.
♻ ☆ Neural equilibria for long-term prediction of nonlinear conservation laws
We introduce Neural Discrete Equilibrium (NeurDE), a machine learning framework for stable and accurate long-term forecasting of nonlinear conservation laws. NeurDE leverages a kinetic lifting that decomposes the dynamics into a fixed linear transport component and a local nonlinear relaxation to equilibrium. This structure provides a natural and principled interface between physics, numerical methods, and machine learning methodologies, enabling NeurDE to be viewed as a ``neural twin'' to Boltzmann-BGK. The transport step can be implemented efficiently in solvers such as lattice Boltzmann (LB), while the equilibrium is modeled by a neural network that maps macroscopic observables to a discrete equilibrium distribution. When integrated into a LB solver, the transport step becomes an efficient lattice streaming operation, and NeurDE yields a hybrid algorithm that robustly captures shock propagation and complex compressible dynamics over long time horizons. The NeurDE method is highly data-efficient: a small network trained on limited data generalizes far beyond the training regime, resolving shocks that evolve well outside the initial training distribution. Unlike traditional kinetic solvers, NeurDE achieves this accuracy without costly root-finding procedures or large velocity lattices. These results establish NeurDE as a scalable, efficient, and physics-informed paradigm for learning-based simulation of nonlinear conservation laws
♻ ☆ Harnessing Negative Signals: Reinforcement Distillation from Teacher Data for LLM Reasoning
Recent advances in model distillation show that data from advanced reasoning models can effectively train smaller student models. However, standard practices discard incorrect reasoning traces -- valuable, yet underutilized data. This paper addresses the critical question: How can both positive and negative distilled reasoning traces be effectively leveraged to maximize LLM reasoning performance in an offline setting? We employ a two-stage training recipe: first, Supervised Fine-Tuning (SFT) on positive traces, followed by a refinement stage using both positive and negative traces. We find that a simple REINFORCE-style objective, which we term the Reinforcement Distillation (REDI) objective, outperforms established preference optimization methods like DPO and SimPO in this distillation context. Our empirical evaluations demonstrate the effectiveness of this approach. Notably, our Qwen-REDI-1.5B model, trained on just 131k traces from the open Open-R1 dataset, achieves an 83.1% score on MATH-500. Its performance matches that of DeepSeek-R1-Distill-Qwen-1.5B, a model trained on 800k proprietary data. This result showcases the remarkable data efficiency of utilizing previously discarded negative traces.
comment: 22 pages, 10 figures. Code available at https://github.com/Tim-Siu/reinforcement-distillation
♻ ☆ Excision Score: Evaluating Edits with Surgical Precision
Many tasks revolve around editing a document, whether code or text. We formulate the revision similarity problem to unify a wide range of machine learning evaluation problems whose goal is to assess a revision to an existing document. We observe that revisions usually change only a small portion of an existing document, so the existing document and its immediate revisions share a majority of their content. We formulate five adequacy criteria for revision similarity measures, designed to align them with human judgement. We show that popular pairwise measures, like BLEU, fail to meet these criteria, because their scores are dominated by the shared content. They report high similarity between two revisions when humans would assess them as quite different. This is a fundamental flaw we address. We propose a novel static measure, Excision Score (ES), which computes longest common subsequence (LCS) to remove content shared by an existing document with the ground truth and predicted revisions, before comparing only the remaining divergent regions. This is analogous to a surgeon creating a sterile field to focus on the work area. We use approximation to speed the standard cubic LCS computation to quadratic. In code-editing evaluation, where static measures are often used as a cheap proxy for passing tests, we demonstrate that ES surpasses existing measures. When aligned with test execution on HumanEvalFix, ES improves over its nearest competitor, SARI, by 12% Pearson correlation and by >21% over standard measures like BLEU. The key criterion is invariance to shared context; when we perturb HumanEvalFix with increased shared context, ES' improvement over SARI increases to 20% and >30% over standard measures. ES also handles other corner cases that other measures do not, such as correctly aligning moved code blocks, and appropriately rewarding matching insertions or deletions.
comment: Code is available at https://anonymous.4open.science/r/excision-score-eval-B9AF/
♻ ☆ A Flat Minima Perspective on Understanding Augmentations and Model Robustness AAAI
Model robustness indicates a model's capability to generalize well on unforeseen distributional shifts, including data corruptions and adversarial attacks. Data augmentation is one of the most prevalent and effective ways to enhance robustness. Despite the great success of the diverse augmentations in different fields, a unified theoretical understanding of their efficacy in improving model robustness is lacking. We theoretically reveal a general condition for label-preserving augmentations to bring robustness to diverse distribution shifts through the lens of flat minima and generalization bound, which de facto turns out to be strongly correlated with robustness against different distribution shifts in practice. Unlike most earlier works, our theoretical framework accommodates all the label-preserving augmentations and is not limited to particular distribution shifts. We substantiate our theories through different simulations on the existing common corruption and adversarial robustness benchmarks based on the CIFAR and ImageNet datasets.
comment: In Proceedings of the Association for the Advancement of Artificial Intelligence (AAAI) 2026, Singapore
♻ ☆ Parallelization of Non-linear State-Space Models: Scaling Up Liquid-Resistance Liquid-Capacitance Networks for Efficient Sequence Modeling NeurIPS 2025
We present LrcSSM, a $\textit{non-linear}$ recurrent model that processes long sequences as fast as today's linear state-space layers. By forcing its Jacobian matrix to be diagonal, the full sequence can be solved in parallel, giving $\mathcal{O}(TD)$ computational work and memory and only $\mathcal{O}(\log T)$ sequential depth, for input-sequence length $T$ and a state dimension $D$. Moreover, LrcSSM offers a formal gradient-stability guarantee that other input-varying systems such as Liquid-S4 and Mamba do not provide. Importantly, the diagonal Jacobian structure of our model results in no performance loss compared to the original model with dense Jacobian, and the approach can be generalized to other non-linear recurrent models, demonstrating broader applicability. On a suite of long-range forecasting tasks, we demonstrate that LrcSSM outperforms Transformers, LRU, S5, and Mamba.
comment: NeurIPS 2025
♻ ☆ Markov Chain Gradient Descent in Hilbert Spaces
In this paper, we study a Markov chain-based stochastic gradient algorithm in general Hilbert spaces, aiming at approximating the optimal solution of a quadratic loss function. We establish probabilistic upper bounds on its convergence. We further extend these results to an online regularized learning algorithm in reproducing kernel Hilbert spaces, where the samples are drawn along a Markov chain trajectory.
♻ ☆ No Screening is More Efficient with Multiple Objects
We study efficient mechanism design for allocating multiple heterogeneous objects. The aim is to maximize the residual surplus, the total value generated from an allocation minus the costs of screening. We discover a robust trend indicating that no-screening mechanisms, such as serial dictatorship with exogenous priority order, tend to perform better as the variety of goods increases. We analyze the underlying reasons by characterizing asymptotically efficient mechanisms in a stylized environment. We also apply an automated mechanism design approach to numerically derive efficient mechanisms and validate the trend in general environments. Building on these implications, we propose the \emph{register-invite-book system} (RIB) as an efficient system for scheduling vaccination against pandemic diseases.
♻ ☆ RiemannFormer: A Framework for Attention in Curved Spaces
This research endeavors to offer insights into unlocking the further potential of transformer-based architectures. One of the primary motivations is to offer a geometric interpretation for the attention mechanism in transformers. In our framework, the attention mainly involves metric tensors, tangent spaces, inner product, and how they relate to each other. These quantities and structures at discrete positions are intricately interconnected via the parallel transport of tangent vectors. To make the learning process more efficient, we reduce the number of parameters through ingenious predefined configurations. Moreover, we introduce an explicit mechanism to highlight a neighborhood by attenuating the remote values, given that transformers inherently neglect local inductive bias. Experimental results demonstrate that our modules deliver significant performance improvements relative to the baseline. More evaluation experiments on visual and large language models will be launched successively.
comment: 18 pages, 1 figure
♻ ☆ Lethe: Layer- and Time-Adaptive KV Cache Pruning for Reasoning-Intensive LLM Serving
Generative reasoning with large language models (LLMs) often involves long decoding sequences, leading to substantial memory and latency overheads from accumulating key-value (KV) caches. While existing KV compression methods primarily focus on reducing prefill memory from long input sequences, they fall short in addressing the dynamic and layer-sensitive nature of long-form generation, which is central to reasoning tasks. We propose Lethe, a dynamic KV cache management framework that introduces adaptivity along both the spatial and temporal dimensions of decoding. Along the spatial dimension, Lethe performs layerwise sparsity-aware allocation, assigning token pruning budgets to each transformer layer based on estimated attention redundancy. Along the temporal dimension, Lethe conducts multi-round token pruning during generation, driven by a Recency-Aware Selective Retention} (RASR) mechanism. RASR extends traditional recency-based heuristics by also considering token relevance derived from evolving attention patterns, enabling informed decisions about which tokens to retain or evict. Empirical results demonstrate that Lethe achieves a favorable balance between efficiency and generation quality across diverse models and tasks, increases throughput by up to 2.56x.
comment: aaai26 camera-ready version, 10 pages
♻ ☆ Lipschitz-aware Linearity Grafting for Certified Robustness
Lipschitz constant is a fundamental property in certified robustness, as smaller values imply robustness to adversarial examples when a model is confident in its prediction. However, identifying the worst-case adversarial examples is known to be an NP-complete problem. Although over-approximation methods have shown success in neural network verification to address this challenge, reducing approximation errors remains a significant obstacle. Furthermore, these approximation errors hinder the ability to obtain tight local Lipschitz constants, which are crucial for certified robustness. Originally, grafting linearity into non-linear activation functions was proposed to reduce the number of unstable neurons, enabling scalable and complete verification. However, no prior theoretical analysis has explained how linearity grafting improves certified robustness. We instead consider linearity grafting primarily as a means of eliminating approximation errors rather than reducing the number of unstable neurons, since linear functions do not require relaxation. In this paper, we provide two theoretical contributions: 1) why linearity grafting improves certified robustness through the lens of the $l_\infty$ local Lipschitz constant, and 2) grafting linearity into non-linear activation functions, the dominant source of approximation errors, yields a tighter local Lipschitz constant. Based on these theoretical contributions, we propose a Lipschitz-aware linearity grafting method that removes dominant approximation errors, which are crucial for tightening the local Lipschitz constant, thereby improving certified robustness, even without certified training. Our extensive experiments demonstrate that grafting linearity into these influential activations tightens the $l_\infty$ local Lipschitz constant and enhances certified robustness.
♻ ☆ EfficientFlow: Efficient Equivariant Flow Policy Learning for Embodied AI AAAI 2026
Generative modeling has recently shown remarkable promise for visuomotor policy learning, enabling flexible and expressive control across diverse embodied AI tasks. However, existing generative policies often struggle with data inefficiency, requiring large-scale demonstrations, and sampling inefficiency, incurring slow action generation during inference. We introduce EfficientFlow, a unified framework for efficient embodied AI with flow-based policy learning. To enhance data efficiency, we bring equivariance into flow matching. We theoretically prove that when using an isotropic Gaussian prior and an equivariant velocity prediction network, the resulting action distribution remains equivariant, leading to improved generalization and substantially reduced data demands. To accelerate sampling, we propose a novel acceleration regularization strategy. As direct computation of acceleration is intractable for marginal flow trajectories, we derive a novel surrogate loss that enables stable and scalable training using only conditional trajectories. Across a wide range of robotic manipulation benchmarks, the proposed algorithm achieves competitive or superior performance under limited data while offering dramatically faster inference. These results highlight EfficientFlow as a powerful and efficient paradigm for high-performance embodied AI.
comment: Accepted by AAAI 2026. Project Page: https://efficientflow.github.io/
♻ ☆ Process mining-driven modeling and simulation to enhance fault diagnosis in cyber-physical systems
Cyber-Physical Systems (CPSs) tightly interconnect digital and physical operations within production environments, enabling real-time monitoring, control, optimization, and autonomous decision-making that directly enhance manufacturing processes and productivity. The inherent complexity of these systems can lead to faults that require robust and interpretable diagnoses to maintain system dependability and operational efficiency. However, manual modeling of faulty behaviors requires extensive domain expertise and cannot leverage the low-level sensor data of the CPS. Furthermore, although powerful, deep learning-based techniques produce black-box diagnostics that lack interpretability, limiting their practical adoption. To address these challenges, we set forth a method that performs unsupervised characterization of system states and state transitions from low-level sensor data, uses several process mining techniques to model faults through interpretable stochastic Petri nets, simulates such Petri nets for a comprehensive understanding of system behavior under faulty conditions, and performs Petri net-based fault diagnosis. The method is applied to the Robotic Arm Dataset (RoAD), a benchmark collected from a robotic arm deployed in a scale-replica smart manufacturing assembly line. The application to RoAD demonstrates the method's effectiveness in modeling, simulating, and classifying faulty behaviors in CPSs. The modeling results demonstrate that our method achieves a satisfactory interpretability-simulation accuracy trade-off with up to 0.676 arc-degree simplicity, 0.395 R^2, and 0.088 RMSE. In addition, the fault identification results show that the method achieves an F1 score of up to 98.925%, while maintaining a low conformance checking time of 0.020 seconds, which competes with other deep learning-based methods.
♻ ☆ The Implicit Bias of Structured State Space Models Can Be Poisoned With Clean Labels NeurIPS 2025
Neural networks are powered by an implicit bias: a tendency of gradient descent to fit training data in a way that generalizes to unseen data. A recent class of neural network models gaining increasing popularity is structured state space models (SSMs), regarded as an efficient alternative to transformers. Prior work argued that the implicit bias of SSMs leads to generalization in a setting where data is generated by a low dimensional teacher. In this paper, we revisit the latter setting, and formally establish a phenomenon entirely undetected by prior work on the implicit bias of SSMs. Namely, we prove that while implicit bias leads to generalization under many choices of training data, there exist special examples whose inclusion in training completely distorts the implicit bias, to a point where generalization fails. This failure occurs despite the special training examples being labeled by the teacher, i.e. having clean labels! We empirically demonstrate the phenomenon, with SSMs trained independently and as part of non-linear neural networks. In the area of adversarial machine learning, disrupting generalization with cleanly labeled training examples is known as clean-label poisoning. Given the proliferation of SSMs, we believe that delineating their susceptibility to clean-label poisoning, and developing methods for overcoming this susceptibility, are critical research directions to pursue.
comment: Accepted to NeurIPS 2025
♻ ☆ Shoot from the HIP: Hessian Interatomic Potentials without derivatives
Fundamental tasks in computational chemistry, from transition state search to vibrational analysis, rely on molecular Hessians, which are the second derivatives of the potential energy. Yet, Hessians are computationally expensive to calculate and scale poorly with system size, with both quantum mechanical methods and neural networks. In this work, we demonstrate that Hessians can be predicted directly from a deep learning model, without relying on automatic differentiation or finite differences. We observe that one can construct SE(3)-equivariant, symmetric Hessians from irreducible representations (irrep) features up to degree $l$=2 computed during message passing in graph neural networks. This makes HIP Hessians one to two orders of magnitude faster, more accurate, more memory efficient, easier to train, and enables more favorable scaling with system size. We validate our predictions across a wide range of downstream tasks, demonstrating consistently superior performance for transition state search, accelerated geometry optimization, zero-point energy corrections, and vibrational analysis benchmarks. We open-source the HIP codebase and model weights to enable further development of the direct prediction of Hessians at https://github.com/BurgerAndreas/hip
comment: https://github.com/BurgerAndreas/hip
♻ ☆ Stable but Miscalibrated: A Kantian View on Overconfidence from Filters to Large Language Models
We reinterpret Kant's Critique of Pure Reason as a theory of feedback stability, viewing reason as a regulator that keeps inference within the bounds of possible experience. We formalize this intuition in linear-Gaussian state-space models via H-Risk, a composite instability index integrating spectral margin, conditioning, temporal sensitivity, and innovation amplification. In simulations, higher H-Risk predicts overconfident errors and degraded closed-loop behavior even when the dynamics remain formally stable, exposing a gap between nominal and epistemic stability. Extending this stability lens to large language models (LLMs), we introduce a domain-wise proxy based on confidence fluctuations and overconfident errors. In a binary-question study, a Kantian-inspired policy that permits ''cannot judge'' responses yields targeted reductions in policy-aware squared loss in high-stakes domains relative to an overconfident baseline. To probe internal dynamics, we analyse layer-wise sensitivity of hidden states to small input perturbations. Contrary to a naive instability hypothesis, confidently wrong answers show no instability gap; instead, they are at least as locally stable as confidently correct answers, revealing stable miscalibration in which hallucinations behave like robust but misaligned attractors. For Qwen-2.5, spectral and activation profiles suggest a high signal-to-noise, low effective signal temperature regime in which representations become inertial and resistant to contextual shifts. These results bridge Kantian self-limitation and feedback control, and suggest that stable high-confidence hallucinations may not be readily corrected by output-only heuristics (e.g., temperature scaling or re-sampling), motivating process-level interventions that explicitly perturb and re-evaluate the inference trajectory.
comment: 27 pages, 8 figures, v3.0
♻ ☆ PIMRL: Physics-Informed Multi-Scale Recurrent Learning for Burst-Sampled Spatiotemporal Dynamics AAAI 2026
Deep learning has shown strong potential in modeling complex spatiotemporal dynamics. However, most existing methods depend on densely and uniformly sampled data, which is often unavailable in practice due to sensor and cost limitations. In many real-world settings, such as mobile sensing and physical experiments, data are burst-sampled with short high-frequency segments followed by long gaps, making it difficult to learn accurate dynamics from sparse observations. To address this issue, we propose Physics-Informed Multi-Scale Recurrent Learning (PIMRL), a novel framework specifically designed for burst-sampled spatiotemporal data. PIMRL combines macro-scale latent dynamics inference with micro-scale adaptive refinement guided by incomplete prior information from partial differential equations (PDEs). It further introduces a temporal message-passing mechanism to effectively propagate information across burst intervals. This multi-scale architecture enables PIMRL to model complex systems accurately even under severe data scarcity. We evaluate our approach on five benchmark datasets involving 1D to 3D multi-scale PDEs. The results show that PIMRL consistently outperforms state-of-the-art baselines, achieving substantial improvements and reducing errors by up to 80% in the most challenging settings, which demonstrates the clear advantage of our model. Our work demonstrates the effectiveness of physics-informed recurrent learning for accurate and efficient modeling of sparse spatiotemporal systems.
comment: To appear in AAAI 2026
♻ ☆ Coherent Multi-Agent Trajectory Forecasting in Team Sports with CausalTraj AAAI 2026
Jointly forecasting trajectories of multiple interacting agents is a core challenge in sports analytics and other domains involving complex group dynamics. Accurate prediction enables realistic simulation and strategic understanding of gameplay evolution. Most existing models are evaluated solely on per-agent accuracy metrics (minADE, minFDE), which assess each agent independently on its best-of-k prediction. However these metrics overlook whether the model learns which predicted trajectories can jointly form a plausible multi-agent future. Many state-of-the-art models are designed and optimized primarily based on these metrics. As a result, they may underperform on joint predictions and also fail to generate coherent, interpretable multi-agent scenarios in team sports. We propose CausalTraj, a temporally causal, likelihood-based model that is built to generate jointly probable multi-agent trajectory forecasts. To better assess collective modeling capability, we emphasize joint metrics (minJADE, minJFDE) that measure joint accuracy across agents within the best generated scenario sample. Evaluated on the NBA SportVU, Basketball-U, and Football-U datasets, CausalTraj achieves competitive per-agent accuracy and the best recorded results on joint metrics, while yielding qualitatively coherent and realistic gameplay evolutions.
comment: 9 pages, 3 figures, accepted to the AI4TS Workshop at AAAI 2026
♻ ☆ RGNMR: A Gauss-Newton method for robust matrix completion with theoretical guarantees
Recovering a low rank matrix from a subset of its entries, some of which may be corrupted, is known as the robust matrix completion (RMC) problem. Existing RMC methods have several limitations: they require a relatively large number of observed entries; they may fail under overparametrization, when their assumed rank is higher than the correct one; and many of them fail to recover even mildly ill-conditioned matrices. In this paper we propose a novel RMC method, denoted $\texttt{RGNMR}$, which overcomes these limitations. $\texttt{RGNMR}$ is a simple factorization-based iterative algorithm, which combines a Gauss-Newton linearization with removal of entries suspected to be outliers. On the theoretical front, we prove that under suitable assumptions, $\texttt{RGNMR}$ is guaranteed exact recovery of the underlying low rank matrix. Our theoretical results improve upon the best currently known for factorization-based methods. On the empirical front, we show via several simulations the advantages of $\texttt{RGNMR}$ over existing RMC methods, and in particular its ability to handle a small number of observed entries, overparameterization of the rank and ill-conditioned matrices.
♻ ☆ Efficient Neural Common Neighbor for Temporal Graph Link Prediction
Temporal graphs are widespread in real-world applications such as social networks, as well as trade and transportation networks. Predicting dynamic links within these evolving graphs is a key problem. Many memory-based methods use temporal interaction histories to generate node embeddings, which are then combined to predict links. However, these approaches primarily focus on individual node representations, often overlooking the inherently pairwise nature of link prediction. While some recent methods attempt to capture pairwise features, they tend to be limited by high computational complexity arising from repeated embedding calculations, making them unsuitable for large-scale datasets like the Temporal Graph Benchmark (TGB). To address the critical need for models that combine strong expressive power with high computational efficiency for link prediction on large temporal graphs, we propose Temporal Neural Common Neighbor (TNCN). Our model achieves this balance by adapting the powerful pairwise modeling principles of Neural Common Neighbor (NCN) to an efficient temporal architecture. TNCN improves upon NCN by efficiently preserving and updating temporal neighbor dictionaries for each node and by using multi-hop common neighbors to learn more expressive pairwise representations. TNCN achieves new state-of-the-art performance on Review from five large-scale real-world TGB datasets, 6 out of 7 datasets in the transductive setting and 3 out of 7 in the inductive setting on small- to medium-scale datasets. Additionally, TNCN demonstrates excellent scalability, outperforming prominent GNN baselines by up to 30.3 times in speed on large datasets. Our code is available at https://github.com/GraphPKU/TNCN.
♻ ☆ NSNQuant: A Double Normalization Approach for Calibration-Free Low-Bit Vector Quantization of KV Cache
Large Language Model (LLM) inference is typically memory-intensive, especially when processing large batch sizes and long sequences, due to the large size of key-value (KV) cache. Vector Quantization (VQ) is recently adopted to alleviate this issue, but we find that the existing approach is susceptible to distribution shift due to its reliance on calibration datasets. To address this limitation, we introduce NSNQuant, a calibration-free Vector Quantization (VQ) technique designed for low-bit compression of the KV cache. By applying a three-step transformation-1) a token-wise normalization (Normalize), 2) a channel-wise centering (Shift), and 3) a second token-wise normalization (Normalize)-with Hadamard transform, NSNQuant effectively aligns the token distribution with the standard normal distribution. This alignment enables robust, calibration-free vector quantization using a single reusable codebook. Extensive experiments show that NSNQuant consistently outperforms prior methods in both 1-bit and 2-bit settings, offering strong generalization and up to 3$\times$ throughput gain over full-precision baselines.
♻ ☆ IRG: Modular Synthetic Relational Database Generation with Complex Relational Schemas
Relational databases (RDBs) are widely used by corporations and governments to store multiple related tables. Their relational schemas pose unique challenges to synthetic data generation for privacy-preserving data sharing, e.g., for collaborative analytical and data mining tasks, as well as software testing at various scales. Relational schemas typically include a set of primary and foreign key constraints to specify the intra-and inter-table entity relations, which also imply crucial intra-and inter-table data correlations in the RDBs. Existing synthetic RDB generation approaches often focus on the relatively simple and basic parent-child relations, failing to address the ubiquitous real-world complexities in relational schemas in key constraints like composite keys, intra-table correlations like sequential correlation, and inter-table data correlations like indirectly connected tables. In this paper, we introduce incremental relational generator (IRG), a modular framework designed to handle these real-world challenges. In IRG, each table is generated by learning context from a depth-first traversal of relational connections to capture indirect inter-table relationships and constructs different parts of a table through several classical generative and predictive modules to preserve complex key constraints and data correlations. Compared to 3 prior art algorithms across 10 real-world RDB datasets, IRG successfully handles the relational schemas and captures critical data relationships for all datasets while prior works are incapable of. The generated synthetic data also demonstrates better fidelity and utility than prior works, implying its higher potential as a replacement for the basis of analytical tasks and data mining applications. Code is available at: https://github.com/li-jiayu-ljy/irg.
♻ ☆ Training-Free ANN-to-SNN Conversion for High-Performance Spiking Transformer
Leveraging the event-driven paradigm, Spiking Neural Networks (SNNs) offer a promising approach for energy-efficient Transformer architectures.While ANN-to-SNN conversion avoids the high training cost of directly trained Spiking Transformers, existing approaches still struggle to handle the nonlinear operations within Transformer blocks, and often require additional fine-tuning of pretrained ANNs.To address these limitations, we propose a training-free and high-performance ANN-to-SNN conversion framework tailored for Transformer architectures. Specifically, we introduce a Multi-basis Exponential Decay (MBE) neuron that combines exponential decay with a multi-basis encoding strategy to effectively approximate nonlinear operations, eliminating the need for weight modifications in pretrained ANNs.Extensive experiments across diverse tasks (CV, NLU, NLG) and mainstream Transformer architectures (ViT, RoBERTa, GPT-2) demonstrate that our method achieves near-lossless conversion accuracy with significantly lower latency. This provides a promising pathway for the efficient and scalable deployment of Spiking Transformers in real-world applications.
♻ ☆ The Optimal Approximation Factor in Density Estimation
Consider the following problem: given two arbitrary densities $q_1,q_2$ and a sample-access to an unknown target density $p$, find which of the $q_i$'s is closer to $p$ in total variation. A remarkable result due to Yatracos shows that this problem is tractable in the following sense: there exists an algorithm that uses $O(ε^{-2})$ samples from $p$ and outputs~$q_i$ such that with high probability, $TV(q_i,p) \leq 3\cdot\mathsf{opt} + ε$, where $\mathsf{opt}= \min\{TV(q_1,p),TV(q_2,p)\}$. Moreover, this result extends to any finite class of densities $\mathcal{Q}$: there exists an algorithm that outputs the best density in $\mathcal{Q}$ up to a multiplicative approximation factor of 3. We complement and extend this result by showing that: (i) the factor 3 can not be improved if one restricts the algorithm to output a density from $\mathcal{Q}$, and (ii) if one allows the algorithm to output arbitrary densities (e.g.\ a mixture of densities from $\mathcal{Q}$), then the approximation factor can be reduced to 2, which is optimal. In particular this demonstrates an advantage of improper learning over proper in this setup. We develop two approaches to achieve the optimal approximation factor of 2: an adaptive one and a static one. Both approaches are based on a geometric point of view of the problem and rely on estimating surrogate metrics to the total variation. Our sample complexity bounds exploit techniques from {\it Adaptive Data Analysis}.
♻ ☆ Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics
Learning robust and generalizable world models is crucial for enabling efficient and scalable robotic control in real-world environments. In this work, we introduce a novel framework for learning world models that accurately capture complex, partially observable, and stochastic dynamics. The proposed method employs a dual-autoregressive mechanism and self-supervised training to achieve reliable long-horizon predictions without relying on domain-specific inductive biases, ensuring adaptability across diverse robotic tasks. We further propose a policy optimization framework that leverages world models for efficient training in imagined environments and seamless deployment in real-world systems. This work advances model-based reinforcement learning by addressing the challenges of long-horizon prediction, error accumulation, and sim-to-real transfer. By providing a scalable and robust framework, the introduced methods pave the way for adaptive and efficient robotic systems in real-world applications.
♻ ☆ Physics-informed neural network for fatigue life prediction of irradiated austenitic and ferritic/martensitic steels
This study proposes a Physics-Informed Neural Network (PINN) framework to predict the low-cycle fatigue (LCF) life of irradiated austenitic and ferritic/martensitic (F/M) steels used in nuclear reactors. During operation, these materials undergo cyclic loading and irradiation at elevated temperatures, resulting in complex degradation mechanisms that traditional empirical or purely data-driven models often fail to capture accurately. The developed PINN model incorporates physical fatigue life constraints into its loss function, improving prediction accuracy, reliability, and generalizability. Trained on 495 data points, including both irradiated and unirradiated conditions, the model is more robust than traditional machine learning models, such as Random Forest, Gradient Boosting, eXtreme Gradient Boosting, and the conventional Neural Network. Model interpretability assessed via SHapley Additive exPlanations analysis revealed that strain amplitude, irradiation dose, and test temperature are the dominant features, each exhibiting a physically consistent inverse correlation with fatigue life. Univariate and multivariate analyses showed that strain amplitude is the primary driver of fatigue degradation in both alloy classes, while irradiation dose and temperature introduce alloy-specific sensitivities. The PINN successfully captured key mechanistic trends, including the comparatively stable irradiation response and dose saturation behaviour of F/M steels, as well as a pronounced reduction in fatigue life at elevated temperatures exceeding the tempering threshold. Overall, the proposed PINN framework offers a reliable and interpretable tool for predicting fatigue life in irradiated structural alloys, thereby supporting informed materials selection and performance assessment for advanced nuclear reactor applications.
♻ ☆ Stochastic Bilevel Optimization with Heavy-Tailed Noise
This paper considers the smooth bilevel optimization in which the lower-level problem is strongly convex and the upper-level problem is possibly nonconvex. We focus on the stochastic setting where the algorithm can access the unbiased stochastic gradient evaluation with heavy-tailed noise, which is prevalent in many machine learning applications, such as training large language models and reinforcement learning. We propose a nested-loop normalized stochastic bilevel approximation (N$^2$SBA) for finding an $ε$-stationary point with the stochastic first-order oracle (SFO) complexity of $\tilde{\mathcal{O}}\big(κ^{\frac{7p-3}{p-1}} σ^{\frac{p}{p-1}} ε^{-\frac{4 p - 2}{p-1}}\big)$, where $κ$ is the condition number, $p\in(1,2]$ is the order of central moment for the noise, and $σ$ is the noise level. Furthermore, we specialize our idea to solve the nonconvex-strongly-concave minimax optimization problem, achieving an $ε$-stationary point with the SFO complexity of~$\tilde{\mathcal O}\big(κ^{\frac{2p-1}{p-1}} σ^{\frac{p}{p-1}} ε^{-\frac{3p-2}{p-1}}\big)$. All the above upper bounds match the best-known results under the special case of the bounded variance setting, i.e., $p=2$. We also conduct the numerical experiments to show the empirical superiority of the proposed methods.
♻ ☆ Enhancing Sample Efficiency and Exploration in Reinforcement Learning through the Integration of Diffusion Models and Proximal Policy Optimization
Proximal Policy Optimization (PPO) is widely used in continuous control due to its robustness and stable training, yet it remains sample-inefficient in tasks with expensive interactions and high-dimensional action spaces. This paper proposes PPO-DAP (PPO with Diffusion Action Prior), a strictly on-policy framework that improves exploration quality and learning efficiency without modifying the PPO objective. PPO-DAP follows a two-stage protocol. Offline, we pretrain a conditional diffusion action prior on logged trajectories to cover the action distribution supported by the behavior policy. Online, PPO updates the actor-critic only using newly collected on-policy rollouts, while the diffusion prior is adapted around the on-policy state distribution via parameter-efficient tuning (Adapter/LoRA) over a small parameter subset. For each on-policy state, the prior generates multiple action proposals and concentrates them toward high-value regions using critic-based energy reweighting and in-denoising gradient guidance. These proposals affect the actor only through a low-weight imitation loss and an optional soft KL regularizer to the prior; importantly, PPO gradients are never backpropagated through offline logs or purely synthetic trajectories. We further analyze the method from a dual-proximal perspective and derive a one-step performance lower bound. Across eight MuJoCo continuous-control tasks under a unified online budget of 1.0M environment steps, PPO-DAP consistently improves early learning efficiency (area under the learning curve over the first 40 epochs, ALC@40) and matches or exceeds the strongest on-policy baselines in final return on 6/8 tasks, with modest overhead (1.18+/-0.04x wall-clock time and 1.05+/-0.02x peak GPU memory relative to PPO).
♻ ☆ Navigating the Impact of Structured Output Format on Large Language Models through the Compass of Causal Inference
Structured output from large language models (LLMs) has enhanced efficiency in processing generated information and is increasingly adopted in industrial applications. Prior studies have investigated the impact of structured output on LLMs' generation quality, often presenting one-way findings. Some suggest that structured format enhances completeness and factual accuracy, while others argue that it restricts the reasoning capacity of LLMs and leads to reductions in standard evaluation metrics. Potential limitations of these assessments include restricted testing scenarios, weakly controlled comparative settings, and reliance on coarse metrics. In this work, we present a refined analysis using causal inference. Based on one assumed and two guaranteed constraints, we derive five potential causal structures characterizing the influence of structured output on LLMs' generation: (1) collider without m-bias, (2) collider with m-bias, (3) single cause from instruction, (4) single cause from output format, and (5) independence. Across seven public and one developed reasoning tasks, we find that coarse metrics report positive, negative, or neutral effects of structured output on GPT-4o's generation. However, causal inference reveals no causal impact in 43 out of 48 scenarios. In the remaining 5, 3 involve multifaceted causal structures influenced by concrete instructions. Further experiments show that OpenAI-o3 are more resilient to output formats than general-purpose GPT-4o and GPT-4.1, highlighting an unaware advantage of reasoning models.
♻ ☆ Navigating AI to Unpack Youth Privacy Concerns: An In-Depth Exploration and Systematic Review
This systematic literature review investigates perceptions, concerns, and expectations of young digital citizens regarding privacy in artificial intelligence (AI) systems, focusing on social media platforms, educational technology, gaming systems, and recommendation algorithms. Using a rigorous methodology, the review started with 2,000 papers, narrowed down to 552 after initial screening, and finally refined to 108 for detailed analysis. Data extraction focused on privacy concerns, data-sharing practices, the balance between privacy and utility, trust factors in AI, transparency expectations, and strategies to enhance user control over personal data. Findings reveal significant privacy concerns among young users, including a perceived lack of control over personal information, potential misuse of data by AI, and fears of data breaches and unauthorized access. These issues are worsened by unclear data collection practices and insufficient transparency in AI applications. The intention to share data is closely associated with perceived benefits and data protection assurances. The study also highlights the role of parental mediation and the need for comprehensive education on data privacy. Balancing privacy and utility in AI applications is crucial, as young digital citizens value personalized services but remain wary of privacy risks. Trust in AI is significantly influenced by transparency, reliability, predictable behavior, and clear communication about data usage. Strategies to improve user control over personal data include access to and correction of data, clear consent mechanisms, and robust data protection assurances. The review identifies research gaps and suggests future directions, such as longitudinal studies, multicultural comparisons, and the development of ethical AI frameworks. The findings have significant implications for policy development and educational initiatives
comment: Appeared in the 2024 IEEE Annual Information Technology, Electronics and Mobile Communication Conference proceedings
♻ ☆ CIC: Circular Image Compression
Learned image compression (LIC) is currently the cutting-edge method. However, the inherent difference between testing and training images of LIC results in performance degradation to some extent. Especially for out-of-sample, out-of-distribution, or out-of-domain testing images, the performance of LIC dramatically degraded. Classical LIC is a serial image compression (SIC) approach that utilizes an open-loop architecture with serial encoding and decoding units. Nevertheless, according to the theory of automatic control, a closed-loop architecture holds the potential to improve the dynamic and static performance of LIC. Therefore, a circular image compression (CIC) approach with closed-loop encoding and decoding elements is proposed to minimize the gap between testing and training images and upgrade the capability of LIC. The proposed CIC establishes a nonlinear loop equation and proves that steady-state error between reconstructed and original images is close to zero by Taylor series expansion. The proposed CIC method possesses the property of Post-Training and plug-and-play which can be built on any existing advanced SIC methods. Experimental results on five public image compression datasets demonstrate that the proposed CIC outperforms five competing state-of-the-art open-source SIC algorithms in reconstruction capacity. Experimental results further show that the proposed method is suitable for out-of-sample testing images with dark backgrounds, sharp edges, high contrast, grid shapes, or complex patterns.
♻ ☆ Mamba Modulation: On the Length Generalization of Mamba NeurIPS
The quadratic complexity of the attention mechanism in Transformer models has motivated the development of alternative architectures with sub-quadratic scaling, such as state-space models. Among these, Mamba has emerged as a leading architecture, achieving state-of-the-art results across a range of language modeling tasks. However, Mamba's performance significantly deteriorates when applied to contexts longer than those seen during pre-training, revealing a sharp sensitivity to context length extension. Through detailed analysis, we attribute this limitation to the out-of-distribution behaviour of its state-space dynamics, particularly within the parameterization of the state transition matrix $\mathbf{A}$. Unlike recent works which attribute this sensitivity to the vanished accumulation of discretization time steps, $\exp(-\sum_{t=1}^NΔ_t)$, we establish a connection between state convergence behavior as the input length approaches infinity and the spectrum of the transition matrix $\mathbf{A}$, offering a well-founded explanation of its role in length extension. Next, to overcome this challenge, we propose an approach that applies spectrum scaling to pre-trained Mamba models to enable robust long-context generalization by selectively modulating the spectrum of $\mathbf{A}$ matrices in each layer. We show that this can significantly improve performance in settings where simply modulating $Δ_t$ fails, validating our insights and providing avenues for better length generalization of state-space models with structured transition matrices.
comment: Accepted to The Thirty-Ninth Annual Conference on Neural Information Processing Systems (NeurIPS) 2025. First two authors contributed equally
♻ ☆ DGTEN: A Robust Deep Gaussian based Graph Neural Network for Dynamic Trust Evaluation with Uncertainty-Quantification Support
Dynamic trust evaluation in large, rapidly evolving graphs demands models that capture changing relationships, express calibrated confidence, and resist adversarial manipulation. DGTEN (Deep Gaussian-Based Trust Evaluation Network) introduces a unified graph-based framework that does all three by combining uncertainty-aware message passing, expressive temporal modeling, and built-in defenses against trust-targeted attacks. It represents nodes and edges as Gaussian distributions so that both semantic signals and epistemic uncertainty propagate through the graph neural network, enabling risk-aware trust decisions rather than overconfident guesses. To track how trust evolves, it layers hybrid absolute-Gaussian-hourglass positional encoding with Kolmogorov-Arnold network-based unbiased multi-head attention, then applies an ordinary differential equation-based residual learning module to jointly model abrupt shifts and smooth trends. Robust adaptive ensemble coefficient analysis prunes or down-weights suspicious interactions using complementary cosine and Jaccard similarity, curbing reputation laundering, sabotage, and on-off attacks. On two signed Bitcoin trust networks, DGTEN delivers standout gains where it matters most: in single-timeslot prediction on Bitcoin-OTC, it improves MCC by +12.34% over the best dynamic baseline; in the cold-start scenario on Bitcoin-Alpha, it achieves a +25.00% MCC improvement, the largest across all tasks and datasets; while under adversarial on-off attacks, it surpasses the baseline by up to +10.23% MCC. These results endorse the unified DGTEN framework.
comment: 15 pages, 6 figures, 5 tables
♻ ☆ DATABench: Evaluating Dataset Auditing in Deep Learning from an Adversarial Perspective
The widespread application of Deep Learning across diverse domains hinges critically on the quality and composition of training datasets. However, the common lack of disclosure regarding their usage raises significant privacy and copyright concerns. Dataset auditing techniques, which aim to determine if a specific dataset was used to train a given suspicious model, provide promising solutions to addressing these transparency gaps. While prior work has developed various auditing methods, their resilience against dedicated adversarial attacks remains largely unexplored. To bridge the gap, this paper initiates a comprehensive study evaluating dataset auditing from an adversarial perspective. We start with introducing a novel taxonomy, classifying existing methods based on their reliance on internal features (IF) (inherent to the data) versus external features (EF) (artificially introduced for auditing). Subsequently, we formulate two primary attack types: evasion attacks, designed to conceal the use of a dataset, and forgery attacks, intending to falsely implicate an unused dataset. Building on the understanding of existing methods and attack objectives, we further propose systematic attack strategies: decoupling, removal, and detection for evasion; adversarial example-based methods for forgery. These formulations and strategies lead to our new benchmark, DATABench, comprising 17 evasion attacks, 5 forgery attacks, and 9 representative auditing methods. Extensive evaluations using DATABench reveal that none of the evaluated auditing methods are sufficiently robust or distinctive under adversarial settings. These findings underscore the urgent need for developing a more secure and reliable dataset auditing method capable of withstanding sophisticated adversarial manipulation. Code is available in https://github.com/shaoshuo-ss/DATABench.
Quantitative Methods 1
☆ Investigating High-Order Behaviors in Multivariate Cardiovascular Interactions via Nonlinear Prediction and Information-Theoretic Tools
Assessing the synergistic high-order behaviors (HOBs) that emerge from underlying structural mechanisms is crucial to characterize complex systems. This work leverages the combined use of predictability and information measures to detect and quantify HOBs in synthetic and physiological network systems. After providing formal definitions of mechanisms and behaviors in a complex system, measures of statistical synergy are defined as the whole-minus-sum excess of mutual predictability ($Δ_\textrm{MP}$) or mutual information ($Δ_\textrm{MI}$) obtained when considering the system as a whole rather than as a combination of its units. The two measures are computed using model-free methods based on nonlinear prediction and entropy estimation. The application to simulated linear Gaussian systems and nonlinear deterministic and stochastic dynamic systems shows that $Δ_\textrm{MP}$ tends to vanish for target variables influenced by additive effects of single independent source variables and is positive in the presence of group interactions between sources, while $Δ_\textrm{MI}$ exhibits a higher propensity to display positive values. The analysis of physiological variables shows significant values of $Δ_\textrm{MI}$ when investigating the additive effect of systolic and diastolic arterial pressure on mean arterial pressure, and of both $Δ_\textrm{MP}$ and $Δ_\textrm{MI}$ when assessing how diastolic pressure is modulated by pre-ejection and left-ventricular ejection times. HOBs can be more clearly identified by information-theoretic measures, while prediction measures are more sensitive to synergy arising from the governing rules of the system analyzed rather than from pure statistical dependencies. Quantifying HOBs through measures sensitive to structural mechanisms can provide biomarkers to assess physio-pathological alterations of cardiovascular networks.
Genomics 2
☆ Prediction of PLX-4720 Sensitivity in Cancer Cell Lines through Multi-Omics Integration and Attention-Based Fusion Modeling
Predicting the sensitivity of cancer cell lines to PLX-4720, a preclinical BRAF inhibitor, requires models capable of capturing the multilayered regulation of oncogenic signaling. Single-omics predictors are often insufficient because drug response is shaped by interactions among genomic alterations, epigenetic regulation, transcriptional activity, protein signaling, metabolic state, and network-level context. In this study we develop an attention-based multi-omics integration framework using genomic, epigenomic, transcriptomic, proteomic, metabolomic, and protein interaction data from the GDSC1 panel. Each modality is encoded into a latent representation using feed-forward neural networks or graph convolutional networks, and fused through an attention mechanism that assigns modality-specific importance weights. A regression model is then used to predict PLX-4720 response. Across single- and multi-omics configurations, the best performance is achieved by integrating genomics and transcriptomics, which yields validation R2 values above 0.92. This reflects the complementary roles of mutational status and downstream transcriptional activation in shaping sensitivity to BRAF inhibition. Epigenomics is the strongest single-omics predictor, while metabolomics and PPI data contribute additional context when combined with other modalities. Integration of three to five omics layers improves stability but does not surpass the accuracy of the best two-modality combinations, likely due to information redundancy and sample-size imbalance. These findings highlight the importance of modality selection rather than maximal data depth. The proposed framework provides an efficient and biologically grounded strategy for drug response prediction and supports the development of precision pharmacogenomics.
♻ ☆ Dy-mer: An Explainable DNA Sequence Representation Scheme using Dictionary Learning
DNA sequences encode critical genetic information, yet their variable length and discrete nature impede direct utilization in deep learning models. Existing DNA representation schemes convert sequences into numerical vectors but fail to capture structural features of local subsequences and often suffer from limited interpretability and poor generalization on small datasets. To address these limitations, we propose Dy-mer, an interpretable and robust DNA representation scheme based on dictionary learning. Dy-mer formulates an optimization problem in tensor format, which ensures computational efficiency in batch processing. Our scheme reconstructs DNA sequences as concatenations of dynamic-length subsequences (dymers) through a convolution operation and simultaneously optimize a learnable dymer dictionary and sparse representations. Our method achieves state-of-the-art performance in downstream tasks such as DNA promoter classification and motif detection. Experiments further show that the learned dymers match known DNA motifs and clustering using Dy-mer yields semantically meaningful phylogenetic trees. These results demonstrate that the proposed approach achieves both strong predictive performance and high interpretability, making it well suited for biological research applications.
Quantitative Methods 9
☆ Accurate de novo sequencing of the modified proteome with OmniNovo
Post-translational modifications (PTMs) serve as a dynamic chemical language regulating protein function, yet current proteomic methods remain blind to a vast portion of the modified proteome. Standard database search algorithms suffer from a combinatorial explosion of search spaces, limiting the identification of uncharacterized or complex modifications. Here we introduce OmniNovo, a unified deep learning framework for reference-free sequencing of unmodified and modified peptides directly from tandem mass spectra. Unlike existing tools restricted to specific modification types, OmniNovo learns universal fragmentation rules to decipher diverse PTMs within a single coherent model. By integrating a mass-constrained decoding algorithm with rigorous false discovery rate estimation, OmniNovo achieves state-of-the-art accuracy, identifying 51\% more peptides than standard approaches at a 1\% false discovery rate. Crucially, the model generalizes to biological sites unseen during training, illuminating the dark matter of the proteome and enabling unbiased comprehensive analysis of cellular regulation.
☆ Scalable branch-and-bound model selection with non-monotonic criteria including AIC, BIC and Mallows's $\mathit{C_p}$
Model selection is a pivotal process in the quantitative sciences, where researchers must navigate between numerous candidate models of varying complexity. Traditional information criteria, such as the corrected Akaike Information Criterion (AICc), Bayesian Information Criterion (BIC), and Mallows's $\mathit{C_p}$, are valuable tools for identifying optimal models. However, the exponential increase in candidate models with each additional model parameter renders the evaluation of these criteria for all models -- a strategy known as exhaustive, or brute-force, searches -- computationally prohibitive. Consequently, heuristic approaches like stepwise regression are commonly employed, albeit without guarantees of finding the globally-optimal model. In this study, we challenge the prevailing notion that non-monotonicity in information criteria precludes bounds on the search space. We introduce a simple but novel bound that enables the development of branch-and-bound algorithms tailored for these non-monotonic functions. We demonstrate that our approach guarantees identification of the optimal model(s) across diverse model classes, sizes, and applications, often with orders of magnitude computational speedups. For instance, in one previously-published model selection task involving $2^{32}$ (approximately 4 billion) candidate models, our method achieves a computational speedup exceeding 6,000. These findings have broad implications for the scalability and effectiveness of model selection in complex scientific domains.
comment: 28 pages, 4 figures
☆ MolGuidance: Advanced Guidance Strategies for Conditional Molecular Generation with Flow Matching
Key objectives in conditional molecular generation include ensuring chemical validity, aligning generated molecules with target properties, promoting structural diversity, and enabling efficient sampling for discovery. Recent advances in computer vision introduced a range of new guidance strategies for generative models, many of which can be adapted to support these goals. In this work, we integrate state-of-the-art guidance methods -- including classifier-free guidance, autoguidance, and model guidance -- in a leading molecule generation framework built on an SE(3)-equivariant flow matching process. We propose a hybrid guidance strategy that separately guides continuous and discrete molecular modalities -- operating on velocity fields and predicted logits, respectively -- while jointly optimizing their guidance scales via Bayesian optimization. Our implementation, benchmarked on the QM9 and QMe14S datasets, achieves new state-of-the-art performance in property alignment for de novo molecular generation. The generated molecules also exhibit high structural validity. Furthermore, we systematically compare the strengths and limitations of various guidance methods, offering insights into their broader applicability.
comment: 19 pages, 5 figures, code: https://github.com/Liu-Group-UF/MolGuidance
☆ DCAF-Net: Dual-Channel Attentive Fusion Network for Lower Limb Motion Intention Prediction in Stroke Rehabilitation Exoskeletons
Rehabilitation exoskeletons have shown promising results in promoting recovery for stroke patients. Accurately and timely identifying the motion intentions of patients is a critical challenge in enhancing active participation during lower limb exoskeleton-assisted rehabilitation training. This paper proposes a Dual-Channel Attentive Fusion Network (DCAF-Net) that synergistically integrates pre-movement surface electromyography (sEMG) and inertial measurement unit (IMU) data for lower limb intention prediction in stroke patients. First, a dual-channel adaptive channel attention module is designed to extract discriminative features from 48 time-domain and frequency-domain features derived from bilateral gastrocnemius sEMG signals. Second, an IMU encoder combining convolutional neural network (CNN) and attention-based long short-term memory (attention-LSTM) layers is designed to decode temporal-spatial movement patterns. Third, the sEMG and IMU features are fused through concatenation to enable accurate recognition of motion intention. Extensive experiment on 11 participants (8 stroke subjects and 3 healthy subjects) demonstrate the effectiveness of DCAF-Net. It achieved a prediction accuracies of 97.19% for patients and 93.56% for healthy subjects. This study provides a viable solution for implementing intention-driven human-in-the-loop assistance control in clinical rehabilitation robotics.
comment: 6 pages, 6 figures
Graph AI generates neurological hypotheses validated in molecular, organoid, and clinical systems
Neurological diseases are the leading global cause of disability, yet most lack disease-modifying treatments. We present PROTON, a heterogeneous graph transformer that generates testable hypotheses across molecular, organoid, and clinical systems. To evaluate PROTON, we apply it to Parkinson's disease (PD), bipolar disorder (BD), and Alzheimer's disease (AD). In PD, PROTON linked genetic risk loci to genes essential for dopaminergic neuron survival and predicted pesticides toxic to patient-derived neurons, including the insecticide endosulfan, which ranked within the top 1.29% of predictions. In silico screens performed by PROTON reproduced six genome-wide $α$-synuclein experiments, including a split-ubiquitin yeast two-hybrid system (normalized enrichment score [NES] = 2.30, FDR-adjusted $p < 1 \times 10^{-4}$), an ascorbate peroxidase proximity labeling assay (NES = 2.16, FDR $< 1 \times 10^{-4}$), and a high-depth targeted exome sequencing study in 496 synucleinopathy patients (NES = 2.13, FDR $< 1 \times 10^{-4}$). In BD, PROTON predicted calcitriol as a candidate drug that reversed proteomic alterations observed in cortical organoids derived from BD patients. In AD, we evaluated PROTON predictions in health records from $n = 610,524$ patients at Mass General Brigham, confirming that five PROTON-predicted drugs were associated with reduced seven-year dementia risk (minimum hazard ratio = 0.63, 95% CI: 0.53-0.75, $p < 1 \times 10^{-7}$). PROTON generated neurological hypotheses that were evaluated across molecular, organoid, and clinical systems, defining a path for AI-driven discovery in neurological disease.
☆ AI-Augmented Pollen Recognition in Optical and Holographic Microscopy for Veterinary Imaging
We present a comprehensive study on fully automated pollen recognition across both conventional optical and digital in-line holographic microscopy (DIHM) images of sample slides. Visually recognizing pollen in unreconstructed holographic images remains challenging due to speckle noise, twin-image artifacts and substantial divergence from bright-field appearances. We establish the performance baseline by training YOLOv8s for object detection and MobileNetV3L for classification on a dual-modality dataset of automatically annotated optical and affinely aligned DIHM images. On optical data, detection mAP50 reaches 91.3% and classification accuracy reaches 97%, whereas on DIHM data, we achieve only 8.15% for detection mAP50 and 50% for classification accuracy. Expanding the bounding boxes of pollens in DIHM images over those acquired in aligned optical images achieves 13.3% for detection mAP50 and 54% for classification accuracy. To improve object detection in DIHM images, we employ a Wasserstein GAN with spectral normalization (WGAN-SN) to create synthetic DIHM images, yielding an FID score of 58.246. Mixing real-world and synthetic data at the 1.0 : 1.5 ratio for DIHM images improves object detection up to 15.4%. These results demonstrate that GAN-based augmentation can reduce the performance divide, bringing fully automated DIHM workflows for veterinary imaging a small but important step closer to practice.
comment: 10 pages, 10 figures, 2 tables, 22 references. Journal submission undergoing peer review
☆ Multiscale Cross-Modal Mapping of Molecular, Pathologic, and Radiologic Phenotypes in Lipid-Deficient Clear Cell Renal CellCarcinoma
Clear cell renal cell carcinoma (ccRCC) exhibits extensive intratumoral heterogeneity on multiple biological scales, contributing to variable clinical outcomes and limiting the effectiveness of conventional TNM staging, which highlights the urgent need for multiscale integrative analytic frameworks. The lipid-deficient de-clear cell differentiated (DCCD) ccRCC subtype, defined by multi-omics analyses, is associated with adverse outcomes even in early-stage disease. Here, we establish a hierarchical cross-scale framework for the preoperative identification of DCCD-ccRCC. At the highest layer, cross-modal mapping transferred molecular signatures to histological and CT phenotypes, establishing a molecular-to-pathology-to-radiology supervisory bridge. Within this framework, each modality-specific model is designed to mirror the inherent hierarchical structure of tumor biology. PathoDCCD captured multi-scale microscopic features, from cellular morphology and tissue architecture to meso-regional organization. RadioDCCD integrated complementary macroscopic information by combining whole-tumor and its habitat-subregions radiomics with a 2D maximal-section heterogeneity metric. These nested models enabled integrated molecular subtype prediction and clinical risk stratification. Across five cohorts totaling 1,659 patients, PathoDCCD reliably recapitulated molecular subtypes, while RadioDCCD provided reliable preoperative prediction. The consistent predictions identified patients with the poorest clinical outcomes. This cross-scale paradigm unifies molecular biology, computational pathology, and quantitative radiology into a biologically grounded strategy for preoperative noninvasive molecular phenotyping of ccRCC.
♻ ☆ Stabilizing Fractional Dynamical Networks Suppresses Epileptic Seizures
Medically uncontrolled epileptic seizures affect nearly 15 million people worldwide, resulting in enormous economic and psychological burdens. Treatment of medically refractory epilepsy is essential for patients to achieve remission, improve psychological functioning, and enhance social and vocational outcomes. Here, we show a state-of-the-art method that stabilizes fractional dynamical networks modeled from intracranial EEG data, effectively suppressing seizure activity in 34 out of 35 total spontaneous episodes from patients at the University of Pennsylvania and the Mayo Clinic. We perform a multi-scale analysis and show that the fractal behavior and stability properties of these data distinguish between four epileptic states: interictal, pre-ictal, ictal, and post-ictal. Furthermore, the simulated controlled signals exhibit substantial amplitude reduction ($49\%$ average). These findings highlight the potential of fractional dynamics to characterize seizure-related brain states and demonstrate its capability to suppress epileptic activity.
comment: 29 pages, 15 figures
♻ ☆ PathRWKV: Enabling Whole Slide Prediction with Recurrent-Transformer
Pathological diagnosis is essential for cancer diagnosis, with whole slide image (WSI) providing histopathological and cellular information. Recent deep learning advancements have improved WSI analysis through a two-stage paradigm: tile-level feature extraction followed by slide-level modeling. In this paradigm, Transformer-based models surpass traditional multiple instance learning approaches in accuracy, yet still face four core limitations: (1) inadequate handling of variable tissue sizes across slides, (2) inability to effectively infer from all tiles for slide-level conclusions, (3) challenges in balancing model complexity with limited training data, and (4) difficulty balancing training efficiency and inference performance. Consequently, these issues limit whole-slide perception for diagnosis with restricted WSI training scales. To address them, we introduce PathRWKV, a novel state space model for slide-level feature modeling. To handle variable tissue sizes, PathRWKV employs two modules: Time Mix and Channel Mix, enabling dynamic perception of tiles for improved slide-level modeling. To draw effective conclusions, we propose an asymmetric design that samples tiles during training and iterates over all tiles at inference, scaling up to cover the entire slide. To balance model complexity and data size, we adopt linear attention and state space architecture with a Recurrent module. To balance training efficiency and inference, we design a tailored multi-task learning module handling versatile tasks simultaneously, enhancing model ability via multiple clinical indicators in slide reading. Experimental results show PathRWKV outperforms nine recent state-of-the-art methods across 10 downstream tasks on 11 datasets with 17,292 WSIs, paving its way for efficient slide-level pathological inference. The project is open-sourced.
comment: 19 pages, 5 figures
Cell Behavior 1
☆ Morphogenesis of bacterial colonies in liquid crystalline environments
Natural bacterial habitats are often complex fluids with viscoelastic and anisotropic responses to stress; for example, they can take the form of liquid crystals (LCs), with elongated microscopic constituents that collectively align while still retaining the ability to flow. However, laboratory studies typically focus on cells in simple liquids or complex fluids with randomly-oriented constituents. Here, we show how interactions with LCs shape bacterial proliferation in multicellular colonies. Using experiments, we find that in a nematic LC, cells generically form aligned single-cell-wide "chains" as they reproduce. As these chains lengthen, they eventually buckle in a highly localized manner. By combining our measurements with a continuum mechanical theory, we demonstrate that this distinctive morphogenetic program emerges because cells are kept in alignment due to the LC's elasticity; as each chain lengthens, growth-induced viscous stresses along its contour eventually overcome the elasticity of the surrounding nematic, leading to buckling. Our work thus reveals and provides mechanistic insight into the previously-overlooked role of LCs in sculpting bacterial life in complex environments.
Computation and Language 58
☆ SUMFORU: An LLM-Based Review Summarization Framework for Personalized Purchase Decision Support
Online product reviews contain rich but noisy signals that overwhelm users and hinder effective decision-making. Existing LLM-based summarizers remain generic and fail to account for individual preferences, limiting their practical utility. We propose SUMFORU, a steerable review summarization framework that aligns outputs with explicit user personas to support personalized purchase decisions. Our approach integrates a high-quality data pipeline built from the Amazon 2023 Review Dataset with a two-stage alignment procedure: (1) persona-aware Supervised Fine-Tuning (SFT) via asymmetric knowledge distillation, and (2) Reinforcement Learning with AI Feedback (RLAIF) using a preference estimator to capture fine-grained, persona-relevant signals. We evaluate the model across rule-based, LLM-based, and human-centered metrics, demonstrating consistent improvements in consistency, grounding, and preference alignment. Our framework achieves the highest performance across all evaluation settings and generalizes effectively to unseen product categories. Our results highlight the promise of steerable pluralistic alignment for building next-generation personalized decision-support systems.
comment: Code available at https://github.com/Harry20030331/SumForU
☆ From Signal to Turn: Interactional Friction in Modular Speech-to-Speech Pipelines
While voice-based AI systems have achieved remarkable generative capabilities, their interactions often feel conversationally broken. This paper examines the interactional friction that emerges in modular Speech-to-Speech Retrieval-Augmented Generation (S2S-RAG) pipelines. By analyzing a representative production system, we move beyond simple latency metrics to identify three recurring patterns of conversational breakdown: (1) Temporal Misalignment, where system delays violate user expectations of conversational rhythm; (2) Expressive Flattening, where the loss of paralinguistic cues leads to literal, inappropriate responses; and (3) Repair Rigidity, where architectural gating prevents users from correcting errors in real-time. Through system-level analysis, we demonstrate that these friction points should not be understood as defects or failures, but as structural consequences of a modular design that prioritizes control over fluidity. We conclude that building natural spoken AI is an infrastructure design challenge, requiring a shift from optimizing isolated components to carefully choreographing the seams between them.
comment: 6 pages, 1 figure
☆ Speculative Decoding Speed-of-Light: Optimal Lower Bounds via Branching Random Walks
Speculative generation has emerged as a promising technique to accelerate inference in large language models (LLMs) by leveraging parallelism to verify multiple draft tokens simultaneously. However, the fundamental limits on the achievable speedup remain poorly understood. In this work, we establish the first ``tight'' lower bounds on the runtime of any deterministic speculative generation algorithm. This is achieved by drawing a parallel between the token generation process and branching random walks, which allows us to analyze the optimal draft tree selection problem. We prove, under basic assumptions, that the expected number of tokens successfully predicted per speculative iteration is bounded as $\mathbb{E}[X] \leq (μ+ μ_{(2)})\log(P )/μ^2 + O(1)$, where $P$ is the verifier's capacity, $μ$ is the expected entropy of the verifier's output distribution, and $μ_{(2)}$ is the expected second log-moment. This result provides new insights into the limits of parallel token generation, and could guide the design of future speculative decoding systems. Empirical evaluations on Llama models validate our theoretical predictions, confirming the tightness of our bounds in practical settings.
☆ Automating Historical Insight Extraction from Large-Scale Newspaper Archives via Neural Topic Modeling
Extracting coherent and human-understandable themes from large collections of unstructured historical newspaper archives presents significant challenges due to topic evolution, Optical Character Recognition (OCR) noise, and the sheer volume of text. Traditional topic-modeling methods, such as Latent Dirichlet Allocation (LDA), often fall short in capturing the complexity and dynamic nature of discourse in historical texts. To address these limitations, we employ BERTopic. This neural topic-modeling approach leverages transformerbased embeddings to extract and classify topics, which, despite its growing popularity, still remains underused in historical research. Our study focuses on articles published between 1955 and 2018, specifically examining discourse on nuclear power and nuclear safety. We analyze various topic distributions across the corpus and trace their temporal evolution to uncover long-term trends and shifts in public discourse. This enables us to more accurately explore patterns in public discourse, including the co-occurrence of themes related to nuclear power and nuclear weapons and their shifts in topic importance over time. Our study demonstrates the scalability and contextual sensitivity of BERTopic as an alternative to traditional approaches, offering richer insights into historical discourses extracted from newspaper archives. These findings contribute to historical, nuclear, and social-science research while reflecting on current limitations and proposing potential directions for future work.
comment: This is a preprint of a manuscript submitted to Digital Scholarship in the Humanities (Oxford University Press). The paper is currently under peer review
☆ Bounding Hallucinations: Information-Theoretic Guarantees for RAG Systems via Merlin-Arthur Protocols
Retrieval-augmented generation (RAG) models rely on retrieved evidence to guide large language model (LLM) generators, yet current systems treat retrieval as a weak heuristic rather than verifiable evidence. As a result, LLMs answer without support, hallucinate under incomplete or misleading context, and rely on spurious evidence. We introduce a training framework that treats the entire RAG pipeline -- both the retriever and the generator -- as an interactive proof system via an adaptation of the Merlin-Arthur (M/A) protocol. Arthur (the generator LLM) trains on questions of unkown provenance: Merlin provides helpful evidence, while Morgana injects adversarial, misleading context. Both use a linear-time XAI method to identify and modify the evidence most influential to Arthur. Consequently, Arthur learns to (i) answer when the context support the answer, (ii) reject when evidence is insufficient, and (iii) rely on the specific context spans that truly ground the answer. We further introduce a rigorous evaluation framework to disentangle explanation fidelity from baseline predictive errors. This allows us to introduce and measure the Explained Information Fraction (EIF), which normalizes M/A certified mutual-information guarantees relative to model capacity and imperfect benchmarks. Across three RAG datasets and two model families of varying sizes, M/A-trained LLMs show improved groundedness, completeness, soundness, and reject behavior, as well as reduced hallucinations -- without needing manually annotated unanswerable questions. The retriever likewise improves recall and MRR through automatically generated M/A hard positives and negatives. Our results demonstrate that autonomous interactive-proof-style supervision provides a principled and practical path toward reliable RAG systems that treat retrieved documents not as suggestions, but as verifiable evidence.
comment: 34 pages, 19 figures
☆ Visualizing token importance for black-box language models
We consider the problem of auditing black-box large language models (LLMs) to ensure they behave reliably when deployed in production settings, particularly in high-stakes domains such as legal, medical, and regulatory compliance. Existing approaches for LLM auditing often focus on isolated aspects of model behavior, such as detecting specific biases or evaluating fairness. We are interested in a more general question -- can we understand how the outputs of black-box LLMs depend on each input token? There is a critical need to have such tools in real-world applications that rely on inaccessible API endpoints to language models. However, this is a highly non-trivial problem, as LLMs are stochastic functions (i.e. two outputs will be different by chance), while computing prompt-level gradients to approximate input sensitivity is infeasible. To address this, we propose Distribution-Based Sensitivity Analysis (DBSA), a lightweight model-agnostic procedure to evaluate the sensitivity of the output of a language model for each input token, without making any distributional assumptions about the LLM. DBSA is developed as a practical tool for practitioners, enabling quick, plug-and-play visual exploration of LLMs reliance on specific input tokens. Through illustrative examples, we demonstrate how DBSA can enable users to inspect LLM inputs and find sensitivities that may be overlooked by existing LLM interpretability methods.
☆ Extending a Parliamentary Corpus with MPs' Tweets: Automatic Annotation and Evaluation Using MultiParTweet
Social media serves as a critical medium in modern politics because it both reflects politicians' ideologies and facilitates communication with younger generations. We present MultiParTweet, a multilingual tweet corpus from X that connects politicians' social media discourse with German political corpus GerParCor, thereby enabling comparative analyses between online communication and parliamentary debates. MultiParTweet contains 39 546 tweets, including 19 056 media items. Furthermore, we enriched the annotation with nine text-based models and one vision-language model (VLM) to annotate MultiParTweet with emotion, sentiment, and topic annotations. Moreover, the automated annotations are evaluated against a manually annotated subset. MultiParTweet can be reconstructed using our tool, TTLABTweetCrawler, which provides a framework for collecting data from X. To demonstrate a methodological demonstration, we examine whether the models can predict each other using the outputs of the remaining models. In summary, we provide MultiParTweet, a resource integrating automatic text and media-based annotations validated with human annotations, and TTLABTweetCrawler, a general-purpose X data collection tool. Our analysis shows that the models are mutually predictable. In addition, VLM-based annotation were preferred by human annotators, suggesting that multimodal representations align more with human interpretation.
comment: Submitted to LREC 2026
☆ DentalGPT: Incentivizing Multimodal Complex Reasoning in Dentistry
Reliable interpretation of multimodal data in dentistry is essential for automated oral healthcare, yet current multimodal large language models (MLLMs) struggle to capture fine-grained dental visual details and lack sufficient reasoning ability for precise diagnosis. To address these limitations, we present DentalGPT, a specialized dental MLLM developed through high-quality domain knowledge injection and reinforcement learning. Specifically, the largest annotated multimodal dataset for dentistry to date was constructed by aggregating over 120k dental images paired with detailed descriptions that highlight diagnostically relevant visual features, making it the multimodal dataset with the most extensive collection of dental images to date. Training on this dataset significantly enhances the MLLM's visual understanding of dental conditions, while the subsequent reinforcement learning stage further strengthens its capability for multimodal complex reasoning. Comprehensive evaluations on intraoral and panoramic benchmarks, along with dental subsets of medical VQA benchmarks, show that DentalGPT achieves superior performance in disease classification and dental VQA tasks, outperforming many state-of-the-art MLLMs despite having only 7B parameters. These results demonstrate that high-quality dental data combined with staged adaptation provides an effective pathway for building capable and domain-specialized dental MLLMs.
☆ HFS: Holistic Query-Aware Frame Selection for Efficient Video Reasoning
Key frame selection in video understanding presents significant challenges. Traditional top-K selection methods, which score frames independently, often fail to optimize the selection as a whole. This independent scoring frequently results in selecting frames that are temporally clustered and visually redundant. Additionally, training lightweight selectors using pseudo labels generated offline by Multimodal Large Language Models (MLLMs) prevents the supervisory signal from dynamically adapting to task objectives. To address these limitations, we propose an end-to-end trainable, task-adaptive framework for frame selection. A Chain-of-Thought approach guides a Small Language Model (SLM) to generate task-specific implicit query vectors, which are combined with multimodal features to enable dynamic frame scoring. We further define a continuous set-level objective function that incorporates relevance, coverage, and redundancy, enabling differentiable optimization via Gumbel-Softmax to select optimal frame combinations at the set level. Finally, student-teacher mutual learning is employed, where the student selector (SLM) and teacher reasoner (MLLM) are trained to align their frame importance distributions via KL divergence. Combined with cross-entropy loss, this enables end-to-end optimization, eliminating reliance on static pseudo labels. Experiments across various benchmarks, including Video-MME, LongVideoBench, MLVU, and NExT-QA, demonstrate that our method significantly outperforms existing approaches.
comment: 18 pages, 8 figures
☆ Does Less Hallucination Mean Less Creativity? An Empirical Investigation in LLMs
Large Language Models (LLMs) exhibit remarkable capabilities in natural language understanding and reasoning, but suffer from hallucination: the generation of factually incorrect content. While numerous methods have been developed to reduce hallucinations, their impact on creative generations remains unexplored. This gap is particularly critical for AI-assisted scientific discovery, which requires both factual accuracy and creative hypothesis generation. We investigate how three hallucination-reduction techniques: Chain of Verification (CoVe), Decoding by Contrasting Layers (DoLa), and Retrieval-Augmented Generation (RAG), affect creativity in LLMs. Evaluating multiple model families (LLaMA, Qwen, Mistral) at varying scales (1B - 70B parameters) on two creativity benchmarks (NeoCoder and CS4), we find that these methods have opposing effects on divergent creativity. CoVe enhances divergent thinking, DoLa suppresses it, and RAG shows minimal impact. Our findings provide guidance for selecting appropriate hallucination-reduction methods in scientific applications, where the balance between factual accuracy and creative exploration is crucial.
☆ Building Patient Journeys in Hebrew: A Language Model for Clinical Timeline Extraction IJCAI 2025
We present a new Hebrew medical language model designed to extract structured clinical timelines from electronic health records, enabling the construction of patient journeys. Our model is based on DictaBERT 2.0 and continually pre-trained on over five million de-identified hospital records. To evaluate its effectiveness, we introduce two new datasets -- one from internal medicine and emergency departments, and another from oncology -- annotated for event temporal relations. Our results show that our model achieves strong performance on both datasets. We also find that vocabulary adaptation improves token efficiency and that de-identification does not compromise downstream performance, supporting privacy-conscious model development. The model is made available for research use under ethical restrictions.
comment: In Proceedings of the Workshop on Large Language Models and Generative AI for Health Informatics 2025, IJCAI 2025, Montreal, Canada
☆ Mistake Notebook Learning: Selective Batch-Wise Context Optimization for In-Context Learning
Large language models (LLMs) adapt to tasks via gradient fine-tuning (heavy computation, catastrophic forgetting) or In-Context Learning (ICL: low robustness, poor mistake learning). To fix this, we introduce Mistake Notebook Learning (MNL), a training-free framework with a persistent knowledge base of abstracted error patterns. Unlike prior instance/single-trajectory memory methods, MNL uses batch-wise error abstraction: it extracts generalizable guidance from multiple failures, stores insights in a dynamic notebook, and retains only baseline-outperforming guidance via hold-out validation (ensuring monotonic improvement). We show MNL nearly matches Supervised Fine-Tuning (93.9% vs 94.3% on GSM8K) and outperforms training-free alternatives on GSM8K, Spider, AIME, and KaggleDBQA. On KaggleDBQA (Qwen3-8B), MNL hits 28% accuracy (47% relative gain), outperforming Memento (15.1%) and Training-Free GRPO (22.1) - proving it's a strong training-free alternative for complex reasoning.
☆ Rethinking Expert Trajectory Utilization in LLM Post-training
While effective post-training integrates Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL), the optimal mechanism for utilizing expert trajectories remains unresolved. We propose the Plasticity-Ceiling Framework to theoretically ground this landscape, decomposing performance into foundational SFT performance and the subsequent RL plasticity. Through extensive benchmarking, we establish the Sequential SFT-then-RL pipeline as the superior standard, overcoming the stability deficits of synchronized approaches. Furthermore, we derive precise scaling guidelines: (1) Transitioning to RL at the SFT Stable or Mild Overfitting Sub-phase maximizes the final ceiling by securing foundational SFT performance without compromising RL plasticity; (2) Refuting ``Less is More'' in the context of SFT-then-RL scaling, we demonstrate that Data Scale determines the primary post-training potential, while Trajectory Difficulty acts as a performance multiplier; and (3) Identifying that the Minimum SFT Validation Loss serves as a robust indicator for selecting the expert trajectories that maximize the final performance ceiling. Our findings provide actionable guidelines for maximizing the value extracted from expert trajectories.
comment: 24 pages, 5 figures, under review
☆ CLINIC: Evaluating Multilingual Trustworthiness in Language Models for Healthcare
Integrating language models (LMs) in healthcare systems holds great promise for improving medical workflows and decision-making. However, a critical barrier to their real-world adoption is the lack of reliable evaluation of their trustworthiness, especially in multilingual healthcare settings. Existing LMs are predominantly trained in high-resource languages, making them ill-equipped to handle the complexity and diversity of healthcare queries in mid- and low-resource languages, posing significant challenges for deploying them in global healthcare contexts where linguistic diversity is key. In this work, we present CLINIC, a Comprehensive Multilingual Benchmark to evaluate the trustworthiness of language models in healthcare. CLINIC systematically benchmarks LMs across five key dimensions of trustworthiness: truthfulness, fairness, safety, robustness, and privacy, operationalized through 18 diverse tasks, spanning 15 languages (covering all the major continents), and encompassing a wide array of critical healthcare topics like disease conditions, preventive actions, diagnostic tests, treatments, surgeries, and medications. Our extensive evaluation reveals that LMs struggle with factual correctness, demonstrate bias across demographic and linguistic groups, and are susceptible to privacy breaches and adversarial attacks. By highlighting these shortcomings, CLINIC lays the foundation for enhancing the global reach and safety of LMs in healthcare across diverse languages.
comment: 49 pages, 31 figures
☆ Task-Specific Sparse Feature Masks for Molecular Toxicity Prediction with Chemical Language Models
Reliable in silico molecular toxicity prediction is a cornerstone of modern drug discovery, offering a scalable alternative to experimental screening. However, the black-box nature of state-of-the-art models remains a significant barrier to adoption, as high-stakes safety decisions demand verifiable structural insights alongside predictive performance. To address this, we propose a novel multi-task learning (MTL) framework designed to jointly enhance accuracy and interpretability. Our architecture integrates a shared chemical language model with task-specific attention modules. By imposing an L1 sparsity penalty on these modules, the framework is constrained to focus on a minimal set of salient molecular fragments for each distinct toxicity endpoint. The resulting framework is trained end-to-end and is readily adaptable to various transformer-based backbones. Evaluated on the ClinTox, SIDER, and Tox21 benchmark datasets, our approach consistently outperforms both single-task and standard MTL baselines. Crucially, the sparse attention weights provide chemically intuitive visualizations that reveal the specific fragments influencing predictions, thereby enhancing insight into the model's decision-making process.
comment: 6 pages, 4 figures
☆ Minimal Clips, Maximum Salience: Long Video Summarization via Key Moment Extraction
Vision-Language Models (VLMs) are able to process increasingly longer videos. Yet, important visual information is easily lost throughout the entire context and missed by VLMs. Also, it is important to design tools that enable cost-effective analysis of lengthy video content. In this paper, we propose a clip selection method that targets key video moments to be included in a multimodal summary. We divide the video into short clips and generate compact visual descriptions of each using a lightweight video captioning model. These are then passed to a large language model (LLM), which selects the K clips containing the most relevant visual information for a multimodal summary. We evaluate our approach on reference clips for the task, automatically derived from full human-annotated screenplays and summaries in the MovieSum dataset. We further show that these reference clips (less than 6% of the movie) are sufficient to build a complete multimodal summary of the movies in MovieSum. Using our clip selection method, we achieve a summarization performance close to that of these reference clips while capturing substantially more relevant video information than random clip selection. Importantly, we maintain low computational cost by relying on a lightweight captioning model.
☆ Improving Translation Quality by Selecting Better Data for LLM Fine-Tuning: A Comparative Analysis
We investigated the impact of data selection on machine translation fine-tuning for open LLMs. Using Japanese-English corpora, we compare five selectors: TF-IDF, COMET Kiwi, QuRate, FD-Score, and random selection, under controlled training conditions. We observed that semantic selectors consistently outperform lexical and geometry-based heuristics, and that even when the selected data differ by less than 3%, the impact on model performance is substantial, underscoring the sensitivity of fine-tuning to data quality.
comment: To appear at IEEE Big Data 2025
☆ Mining Legal Arguments to Study Judicial Formalism
Courts must justify their decisions, but systematically analyzing judicial reasoning at scale remains difficult. This study refutes claims about formalistic judging in Central and Eastern Europe (CEE) by developing automated methods to detect and classify judicial reasoning in Czech Supreme Courts' decisions using state-of-the-art natural language processing methods. We create the MADON dataset of 272 decisions from two Czech Supreme Courts with expert annotations of 9,183 paragraphs with eight argument types and holistic formalism labels for supervised training and evaluation. Using a corpus of 300k Czech court decisions, we adapt transformer LLMs for Czech legal domain by continued pretraining and experiment with methods to address dataset imbalance including asymmetric loss and class weighting. The best models successfully detect argumentative paragraphs (82.6\% macro-F1), classify traditional types of legal argument (77.5\% macro-F1), and classify decisions as formalistic/non-formalistic (83.2\% macro-F1). Our three-stage pipeline combining ModernBERT, Llama 3.1, and traditional feature-based machine learning achieves promising results for decision classification while reducing computational costs and increasing explainability. Empirically, we challenge prevailing narratives about CEE formalism. This work shows that legal argument mining enables reliable judicial philosophy classification and shows the potential of legal argument mining for other important tasks in computational legal studies. Our methodology is easily replicable across jurisdictions, and our entire pipeline, datasets, guidelines, models, and source codes are available at https://github.com/trusthlt/madon.
comment: pre-print under review
☆ qa-FLoRA: Data-free query-adaptive Fusion of LoRAs for LLMs AAAI 2026
The deployment of large language models for specialized tasks often requires domain-specific parameter-efficient finetuning through Low-Rank Adaptation (LoRA) modules. However, effectively fusing these adapters to handle complex, multi-domain composite queries remains a critical challenge. Existing LoRA fusion approaches either use static weights, which assign equal relevance to each participating LoRA, or require data-intensive supervised training for every possible LoRA combination to obtain respective optimal fusion weights. We propose qa-FLoRA, a novel query-adaptive data-and-training-free method for LoRA fusion that dynamically computes layer-level fusion weights by measuring distributional divergence between the base model and respective adapters. Our approach eliminates the need for composite training data or domain-representative samples, making it readily applicable to existing adapter collections. Extensive experiments across nine multilingual composite tasks spanning mathematics, coding, and medical domains, show that qa-FLoRA outperforms static fusion by ~5% with LLaMA-2 and ~6% with LLaMA-3, and the training-free baselines by ~7% with LLaMA-2 and ~10% with LLaMA-3, while significantly closing the gap with supervised baselines. Further, layer-level analysis of our fusion weights reveals interpretable fusion patterns, demonstrating the effectiveness of our approach for robust multi-domain adaptation.
comment: Accepted at AAAI 2026 (Main Technical Track)
☆ Unifying Dynamic Tool Creation and Cross-Task Experience Sharing through Cognitive Memory Architecture
Large Language Model agents face fundamental challenges in adapting to novel tasks due to limitations in tool availability and experience reuse. Existing approaches either rely on predefined tools with limited coverage or build tools from scratch without leveraging past experiences, leading to inefficient exploration and suboptimal performance. We introduce SMITH (Shared Memory Integrated Tool Hub), a unified cognitive architecture that seamlessly integrates dynamic tool creation with cross-task experience sharing through hierarchical memory organization. SMITH organizes agent memory into procedural, semantic, and episodic components, enabling systematic capability expansion while preserving successful execution patterns. Our approach formalizes tool creation as iterative code generation within controlled sandbox environments and experience sharing through episodic memory retrieval with semantic similarity matching. We further propose a curriculum learning strategy based on agent-ensemble difficulty re-estimation. Extensive experiments on the GAIA benchmark demonstrate SMITH's effectiveness, achieving 81.8% Pass@1 accuracy and outperforming state-of-the-art baselines including Alita (75.2%) and Memento (70.9%). Our work establishes a foundation for building truly adaptive agents that continuously evolve their capabilities through principled integration of tool creation and experience accumulation.
☆ LegalRikai: Open Benchmark -- A Benchmark for Complex Japanese Corporate Legal Tasks
This paper introduces LegalRikai: Open Benchmark, a new benchmark comprising four complex tasks that emulate Japanese corporate legal practices. The benchmark was created by legal professionals under the supervision of an attorney. This benchmark has 100 samples that require long-form, structured outputs, and we evaluated them against multiple practical criteria. We conducted both human and automated evaluations using leading LLMs, including GPT-5, Gemini 2.5 Pro, and Claude Opus 4.1. Our human evaluation revealed that abstract instructions prompted unnecessary modifications, highlighting model weaknesses in document-level editing that were missed by conventional short-text tasks. Furthermore, our analysis reveals that automated evaluation aligns well with human judgment on criteria with clear linguistic grounding, and assessing structural consistency remains a challenge. The result demonstrates the utility of automated evaluation as a screening tool when expert availability is limited. We propose a dataset evaluation framework to promote more practice-oriented research in the legal domain.
☆ CIP: A Plug-and-Play Causal Prompting Framework for Mitigating Hallucinations under Long-Context Noise
Large language models often hallucinate when processing long and noisy retrieval contexts because they rely on spurious correlations rather than genuine causal relationships. We propose CIP, a lightweight and plug-and-play causal prompting framework that mitigates hallucinations at the input stage. CIP constructs a causal relation sequence among entities, actions, and events and injects it into the prompt to guide reasoning toward causally relevant evidence. Through causal intervention and counterfactual reasoning, CIP suppresses non causal reasoning paths, improving factual grounding and interpretability. Experiments across seven mainstream language models, including GPT-4o, Gemini 2.0 Flash, and Llama 3.1, show that CIP consistently enhances reasoning quality and reliability, achieving 2.6 points improvement in Attributable Rate, 0.38 improvement in Causal Consistency Score, and a fourfold increase in effective information density. API level profiling further shows that CIP accelerates contextual understanding and reduces end to end response latency by up to 55.1 percent. These results suggest that causal reasoning may serve as a promising paradigm for improving the explainability, stability, and efficiency of large language models.
☆ AdaSD: Adaptive Speculative Decoding for Efficient Language Model Inference
Large language models (LLMs) have achieved remarkable performance across a wide range of tasks, but their increasing parameter sizes significantly slow down inference. Speculative decoding mitigates this issue by leveraging a smaller draft model to predict candidate tokens, which are then verified by a larger target model. However, existing approaches often require additional training, extensive hyperparameter tuning, or prior analysis of models and tasks before deployment. In this paper, we propose Adaptive Speculative Decoding (AdaSD), a hyperparameter-free decoding scheme that dynamically adjusts generation length and acceptance criteria during inference. AdaSD introduces two adaptive thresholds: one to determine when to stop candidate token generation and another to decide token acceptance, both updated in real time based on token entropy and Jensen-Shannon distance. This approach eliminates the need for pre-analysis or fine-tuning and is compatible with off-the-shelf models. Experiments on benchmark datasets demonstrate that AdaSD achieves up to 49\% speedup over standard speculative decoding while limiting accuracy degradation to under 2\%, making it a practical solution for efficient and adaptive LLM inference.
☆ When Actions Teach You to Think: Reasoning-Action Synergy via Reinforcement Learning in Conversational Agents
Supervised fine-tuning (SFT) has emerged as one of the most effective ways to improve the performance of large language models (LLMs) in downstream tasks. However, SFT can have difficulty generalizing when the underlying data distribution changes, even when the new data does not fall completely outside the training domain. Recent reasoning-focused models such as o1 and R1 have demonstrated consistent gains over their non-reasoning counterparts, highlighting the importance of reasoning for improved generalization and reliability. However, collecting high-quality reasoning traces for SFT remains challenging -- annotations are costly, subjective, and difficult to scale. To address this limitation, we leverage Reinforcement Learning (RL) to enable models to learn reasoning strategies directly from task outcomes. We propose a pipeline in which LLMs generate reasoning steps that guide both the invocation of tools (e.g., function calls) and the final answer generation for conversational agents. Our method employs Group Relative Policy Optimization (GRPO) with rewards designed around tool accuracy and answer correctness, allowing the model to iteratively refine its reasoning and actions. Experimental results demonstrate that our approach improves both the quality of reasoning and the precision of tool invocations, achieving a 1.5% relative improvement over the SFT model (trained without explicit thinking) and a 40% gain compared to the base of the vanilla Qwen3-1.7B model. These findings demonstrate the promise of unifying reasoning and action learning through RL to build more capable and generalizable conversational agents.
☆ Leveraging LLMs for Title and Abstract Screening for Systematic Review: A Cost-Effective Dynamic Few-Shot Learning Approach
Systematic reviews are a key component of evidence-based medicine, playing a critical role in synthesizing existing research evidence and guiding clinical decisions. However, with the rapid growth of research publications, conducting systematic reviews has become increasingly burdensome, with title and abstract screening being one of the most time-consuming and resource-intensive steps. To mitigate this issue, we designed a two-stage dynamic few-shot learning (DFSL) approach aimed at improving the efficiency and performance of large language models (LLMs) in the title and abstract screening task. Specifically, this approach first uses a low-cost LLM for initial screening, then re-evaluates low-confidence instances using a high-performance LLM, thereby enhancing screening performance while controlling computational costs. We evaluated this approach across 10 systematic reviews, and the results demonstrate its strong generalizability and cost-effectiveness, with potential to reduce manual screening burden and accelerate the systematic review process in practical applications.
comment: 22 pages, 3 figures
☆ Multi-Intent Spoken Language Understanding: Methods, Trends, and Challenges
Multi-intent spoken language understanding (SLU) involves two tasks: multiple intent detection and slot filling, which jointly handle utterances containing more than one intent. Owing to this characteristic, which closely reflects real-world applications, the task has attracted increasing research attention, and substantial progress has been achieved. However, there remains a lack of a comprehensive and systematic review of existing studies on multi-intent SLU. To this end, this paper presents a survey of recent advances in multi-intent SLU. We provide an in-depth overview of previous research from two perspectives: decoding paradigms and modeling approaches. On this basis, we further compare the performance of representative models and analyze their strengths and limitations. Finally, we discuss the current challenges and outline promising directions for future research. We hope this survey will offer valuable insights and serve as a useful reference for advancing research in multi-intent SLU.
☆ Adaptive Soft Rolling KV Freeze with Entropy-Guided Recovery: Sublinear Memory Growth for Efficient LLM Inference
We present Adaptive Soft Rolling KV Freeze with Entropy-Guided Recovery (ASR-KF-EGR), a training-free inference-time framework for efficient large language model generation. Our method introduces a reversible soft-freeze mechanism that temporarily suspends key-value (KV) updates for low-importance tokens identified within a sliding attention window. Unlike eviction-based approaches that permanently discard context, ASR-KF-EGR preserves all tokens in off-GPU storage and restores them on demand. We extend the framework with sublinear freeze scheduling, where freeze duration grows sublinearly with repeated low-importance detections, preventing over-aggressive compression. Preliminary experiments on LLaMA-3 8B demonstrate 55-67% reduction in active KV cache size while maintaining generation quality and passing needle-in-haystack retrieval tests. The method is architecture-agnostic, requires no fine-tuning, and provides a practical solution for memory-constrained deployment of long-context LLMs.
comment: 6 pages, 3 tables , 1 figure
☆ FutureWeaver: Planning Test-Time Compute for Multi-Agent Systems with Modularized Collaboration
Scaling test-time computation improves large language model performance without additional training. Recent work demonstrates that techniques such as repeated sampling, self-verification, and self-reflection can significantly enhance task success by allocating more inference-time compute. However, applying these techniques across multiple agents in a multi-agent system is difficult: there does not exist principled mechanisms to allocate compute to foster collaboration among agents, to extend test-time scaling to collaborative interactions, or to distribute compute across agents under explicit budget constraints. To address this gap, we propose FutureWeaver, a framework for planning and optimizing test-time compute allocation in multi-agent systems under fixed budgets. FutureWeaver introduces modularized collaboration, formalized as callable functions that encapsulate reusable multi-agent workflows. These modules are automatically derived through self-play reflection by abstracting recurring interaction patterns from past trajectories. Building on these modules, FutureWeaver employs a dual-level planning architecture that optimizes compute allocation by reasoning over the current task state while also speculating on future steps. Experiments on complex agent benchmarks demonstrate that FutureWeaver consistently outperforms baselines across diverse budget settings, validating its effectiveness for multi-agent collaboration in inference-time optimization.
☆ SciLaD: A Large-Scale, Transparent, Reproducible Dataset for Natural Scientific Language Processing
SciLaD is a novel, large-scale dataset of scientific language constructed entirely using open-source frameworks and publicly available data sources. It comprises a curated English split containing over 10 million scientific publications and a multilingual, unfiltered TEI XML split including more than 35 million publications. We also publish the extensible pipeline for generating SciLaD. The dataset construction and processing workflow demonstrates how open-source tools can enable large-scale, scientific data curation while maintaining high data quality. Finally, we pre-train a RoBERTa model on our dataset and evaluate it across a comprehensive set of benchmarks, achieving performance comparable to other scientific language models of similar size, validating the quality and utility of SciLaD. We publish the dataset and evaluation pipeline to promote reproducibility, transparency, and further research in natural scientific language processing and understanding including scholarly document processing.
comment: 12 pages, 2 figures, 3 tables
♻ ☆ DeepSeek's WEIRD Behavior: The cultural alignment of Large Language Models and the effects of prompt language and cultural prompting
Culture is a core component of human-to-human interaction and plays a vital role in how we perceive and interact with others. Advancements in the effectiveness of Large Language Models (LLMs) in generating human-sounding text have greatly increased the amount of human-to-computer interaction. As this field grows, the cultural alignment of these human-like agents becomes an important field of study. Our work uses Hofstede's VSM13 international surveys to understand the cultural alignment of the following models: DeepSeek-V3, V3.1, GPT-4, GPT-4.1, GPT-4o, and GPT-5. We use a combination of prompt language and cultural prompting, a strategy that uses a system prompt to shift a model's alignment to reflect a specific country, to align these LLMs with the United States and China. Our results show that DeepSeek-V3, V3.1, and OpenAI's GPT-5 exhibit a close alignment with the survey responses of the United States and do not achieve a strong or soft alignment with China, even when using cultural prompts or changing the prompt language. We also find that GPT-4 exhibits an alignment closer to China when prompted in English, but cultural prompting is effective in shifting this alignment closer to the United States. Other low-cost models, GPT-4o and GPT-4.1, respond to the prompt language used (i.e., English or Simplified Chinese) and cultural prompting strategies to create acceptable alignments with both the United States and China.
♻ ☆ Confucius Code Agent: An Open-sourced AI Software Engineer at Industrial Scale
Real-world AI software engineering demands coding agents that can reason over massive repositories, maintain durable memory across and within long sessions, and robustly coordinate complex toolchains at test time. Existing open-source coding agents provide transparency but frequently fall short when pushed to these industrial-scale workloads, while proprietary coding agents offer strong practical performance but limited extensibility, interpretability, and controllability. We present the Confucius Code Agent (CCA), an open-sourced AI software engineer that can operate at an industrial scale. CCA is built atop the Confucius SDK, an open-sourced agent development platform designed around three complementary perspectives: Agent Experience (AX), User Experience (UX), and Developer Experience (DX). The SDK introduces a unified orchestrator with hierarchical working memory for long-context reasoning, a persistent note-taking system for cross-session continual learning, and a modular extension module for robust tool use. Moreover, a meta-agent automates the synthesis, evaluation, and refinement of agent configurations through a build-test-improve loop, enabling rapid agent development on new tasks, environments, and tool stacks. Instantiated on Confucius SDK with these mechanisms, CCA delivers strong performance on real-world software engineering tasks. On SWE-Bench-Pro, CCA achieves a state-of-the-art Resolve@1 performance of 54.3%, substantially improving over prior coding agents. Together, the Confucius SDK and CCA provide a transparent, extensible, and reproducible foundation for AI agents, bridge gaps between research prototypes and production-grade systems, and support agent development and deployment at industrial scale.
comment: Meta requires more thorough internal review process to ensure paper quality and experiments as well as compliance with the internal research publishing process
♻ ☆ Uncertainty Distillation: Teaching Language Models to Express Semantic Confidence
As large language models (LLMs) are increasingly used for factual question-answering, it becomes more important for LLMs to have the capability to communicate the likelihood that their answer is correct. For these verbalized expressions of uncertainty to be meaningful, they should reflect the error rates at the expressed level of confidence. However, when prompted to express confidence, the error rates of current LLMs are inconsistent with their communicated confidences, highlighting the need for uncertainty quantification methods. Many prior methods calculate lexical uncertainty, estimating a model's confidence in the specific string it generated. In some cases, however, it may be more useful to estimate semantic uncertainty, or the model's confidence in the answer regardless of how it is verbalized. We propose a simple procedure, uncertainty distillation, to teach an LLM to verbalize calibrated semantic confidences. Using held-out data to map initial uncertainty estimates to meaningful probabilities, we create examples annotated with verbalized probabilities for supervised fine-tuning. We find that our method yields verbalized confidences that correlate well with observed error rates, even when compared to strong baselines, some of which are more than twenty times slower at inference time. Additionally, we demonstrate that our method can be applied to black-box models that allow API-based fine-tuning, resulting in estimates of uncertainty that are both more effective and more efficient than any of our baselines.
♻ ☆ MapFormer: Self-Supervised Learning of Cognitive Maps with Input-Dependent Positional Embeddings
A cognitive map is an internal model which encodes the abstract relationships among entities in the world, giving humans and animals the flexibility to adapt to new situations, with a strong out-of-distribution (OOD) generalization that current AI systems still do not possess. To bridge this gap, we introduce MapFormers, new architectures based on Transformer models, which can learn cognitive maps from observational data and perform path integration in parallel, in a self-supervised manner. Cognitive maps are learned in the model by disentangling structural relationships in the inputs from their specific content, a property that can be achieved naturally by updating the positional encoding in Transformers with input-dependent matrices. We developed two variants of MapFormers that unify absolute and relative positional encoding to model episodic (EM) and working memory (WM), respectively. We tested MapFormers on several tasks, including a classic 2D navigation task, showing that our models can learn a cognitive map of the underlying space and generalize OOD (e.g., to longer sequences) with near-perfect performance, unlike current architectures. Together, these results demonstrate the superiority of models designed to learn a cognitive map, and the importance of introducing a structural bias for structure-content disentanglement, which can be achieved in Transformers with input-dependent positional encoding. MapFormers have broad applications in both neuroscience and AI, by explaining the neural mechanisms giving rise to cognitive maps, while allowing these relation models to be learned at scale.
comment: 19 pages (29 with appendix), 8 figures
♻ ☆ Sorting the Babble in Babel: Assessing the Performance of Language Identification Algorithms on the OpenAlex Database
This project aims to optimize the linguistic indexing of the OpenAlex database by comparing the performance of various Python-based language identification procedures on different metadata corpora extracted from a manually-annotated article sample. The precision and recall performance of each algorithm, corpus, and language is first analyzed, followed by an assessment of processing speeds recorded for each algorithm and corpus type. These different performance measures are then simulated at the database level using probabilistic confusion matrices for each algorithm, corpus, and language, as well as a probabilistic modeling of relative article language frequencies for the whole OpenAlex database. Results show that procedure performance strongly depends on the importance given to each of the measures implemented: for contexts where precision is preferred, using the LangID algorithm on the greedy corpus gives the best results; however, for all cases where recall is considered at least slightly more important than precision or as soon as processing times are given any kind of consideration, the procedure that consists in the application of the FastSpell algorithm on the Titles corpus outperforms all other alternatives. Given the lack of truly multilingual large-scale bibliographic databases, it is hoped that these results help confirm and foster the unparalleled potential of the OpenAlex database for cross-linguistic and comprehensive measurement and evaluation.
comment: 32 pages, 4 figures
♻ ☆ ReCode: Unify Plan and Action for Universal Granularity Control
Real-world tasks require decisions at varying granularities, and humans excel at this by leveraging a unified cognitive representation where planning is fundamentally understood as a high-level form of action. However, current Large Language Model (LLM)-based agents lack this crucial capability to operate fluidly across decision granularities. This limitation stems from existing paradigms that enforce a rigid separation between high-level planning and low-level action, which impairs dynamic adaptability and limits generalization. We propose ReCode (Recursive Code Generation), a novel paradigm that addresses this limitation by unifying planning and action within a single code representation. In this representation, ReCode treats high-level plans as abstract placeholder functions, which the agent then recursively decomposes into finer-grained sub-functions until reaching primitive actions. This recursive approach dissolves the rigid boundary between plan and action, enabling the agent to dynamically control its decision granularity. Furthermore, the recursive structure inherently generates rich, multi-granularity training data, enabling models to learn hierarchical decision-making processes. Extensive experiments show ReCode significantly surpasses advanced baselines in inference performance and demonstrates exceptional data efficiency in training, validating our core insight that unifying planning and action through recursive code generation is a powerful and effective approach to achieving universal granularity control. The code is available at https://github.com/FoundationAgents/ReCode.
♻ ☆ Empirical Analysis of the Effect of Context in the Task of Automated Essay Scoring in Transformer-Based Models
Automated Essay Scoring (AES) has emerged to prominence in response to the growing demand for educational automation. Providing an objective and cost-effective solution, AES standardises the assessment of extended responses. Although substantial research has been conducted in this domain, recent investigations reveal that alternative deep-learning architectures outperform transformer-based models. Despite the successful dominance in the performance of the transformer architectures across various other tasks, this discrepancy has prompted a need to enrich transformer-based AES models through contextual enrichment. This study delves into diverse contextual factors using the ASAP-AES dataset, analysing their impact on transformer-based model performance. Our most effective model, augmented with multiple contextual dimensions, achieves a mean Quadratic Weighted Kappa score of 0.823 across the entire essay dataset and 0.8697 when trained on individual essay sets. Evidently surpassing prior transformer-based models, this augmented approach only underperforms relative to the state-of-the-art deep learning model trained essay-set-wise by an average of 3.83\% while exhibiting superior performance in three of the eight sets. Importantly, this enhancement is orthogonal to architecture-based advancements and seamlessly adaptable to any AES model. Consequently, this contextual augmentation methodology presents a versatile technique for refining AES capabilities, contributing to automated grading and evaluation evolution in educational settings.
comment: MSc Dissertation
♻ ☆ Textual Self-attention Network: Test-Time Preference Optimization through Textual Gradient-based Attention AAAI2026
Large Language Models (LLMs) have demonstrated remarkable generalization capabilities, but aligning their outputs with human preferences typically requires expensive supervised fine-tuning. Recent test-time methods leverage textual feedback to overcome this, but they often critique and revise a single candidate response, lacking a principled mechanism to systematically analyze, weigh, and synthesize the strengths of multiple promising candidates. Such a mechanism is crucial because different responses may excel in distinct aspects (e.g., clarity, factual accuracy, or tone), and combining their best elements may produce a far superior outcome. This paper proposes the Textual Self-Attention Network (TSAN), a new paradigm for test-time preference optimization that requires no parameter updates. TSAN emulates self-attention entirely in natural language to overcome this gap: it analyzes multiple candidates by formatting them into textual keys and values, weighs their relevance using an LLM-based attention module, and synthesizes their strengths into a new, preference-aligned response under the guidance of the learned textual attention. This entire process operates in a textual gradient space, enabling iterative and interpretable optimization. Empirical evaluations demonstrate that with just three test-time iterations on a base SFT model, TSAN outperforms supervised models like Llama-3.1-70B-Instruct and surpasses the current state-of-the-art test-time alignment method by effectively leveraging multiple candidate solutions.
comment: AAAI2026
♻ ☆ M3-Embedding: Multi-Linguality, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation
In this paper, we introduce a new embedding model called M3-Embedding, which is distinguished for its versatility in \textit{Multi-Linguality}, \textit{Multi-Functionality}, and \textit{Multi-Granularity}. It provides a uniform support for the semantic retrieval of more than 100 working languages. It can simultaneously accomplish the three common retrieval functionalities: dense retrieval, multi-vector retrieval, and sparse retrieval. Besides, it is also capable of processing inputs of different granularities, spanning from short sentences to long documents of up to 8,192 tokens. The effective training of M3-Embedding presents a series of technical contributions. Notably, we propose a novel self-knowledge distillation approach, where the relevance scores from different retrieval functionalities can be integrated as the teacher signal to enhance the training quality. We also optimize the batching strategy, which enables a large batch size and high training throughput to improve the discriminativeness of embeddings. M3-Embedding exhibits a superior performance in our experiment, leading to new state-of-the-art results on multilingual, cross-lingual, and long-document retrieval benchmarks.
♻ ☆ Less Is More for Multi-Step Logical Reasoning of LLM Generalisation Under Rule Removal, Paraphrasing, and Compression
Large language models (LLMs) achieve strong performance on many natural language tasks, yet their generalisation under structured perturbations of logical rule systems remains insufficiently characterised. We present a controlled evaluation framework that probes reasoning reliability through four stress tests: (1) rule deletion, removing redundant versus essential rules from a multi-step inference chain; (2) contradictory evidence injection; (3) logic-preserving rewrites based on equivalence laws (contraposition, double negation, implication-to-disjunction, De Morgan, identity, and commutativity); and (4) multi-law equivalence stacking that composes 2--5 transformations. Across three representative model families -- BERT, Qwen2, and LLaMA-like models -- all models attain Acc$=1.0000$ on the base split and show no degradation under redundant rule deletion. In contrast, essential rule deletion yields a pronounced decrease to near-chance performance, and injecting explicit contradictions reduces accuracy to 0.0000. Under logic-preserving rewrites, accuracy is largely preserved for single-law transformations with only small degradations in a few cases, whereas multi-law stacking exposes model-dependent sensitivity: BERT matches the base condition, TinyLlama shows only marginal degradation, and Qwen2 exhibits a substantial drop. Overall, the results indicate that contemporary LLMs are generally stable under semantic-preserving reformulations, yet remain brittle to missing or inconsistent evidence and may degrade under composed logical transformations depending on the model family. The proposed framework provides a concise diagnostic tool for isolating these failure modes and for evaluating logical generalisation beyond surface-form variation.
♻ ☆ MiSS: Revisiting the Trade-off in LoRA with an Efficient Shard-Sharing Structure
Low-Rank Adaptation (LoRA) is a widely adopted technique for parameter-efficient fine-tuning, but its slow convergence has spurred the development of numerous variants. Nevertheless, existing methods often fail to improve performance, memory footprint, and computational efficiency simultaneously. To address this challenge, we revisit the causes of LoRA's slow convergence. Building on these insights, we propose Matrix Shard Sharing (MiSS), which updates shards of the original weight matrix using a single shared trainable matrix $\boldsymbol{D}$, initialized to zeros. To simultaneously ensure computational efficiency, low memory footprint, and scalable serving, we introduce MiSS$^e$. Both theoretical analysis and empirical results demonstrate that our method reduces optimization complexity without compromising performance, thereby achieving a more favorable trade-off among performance, memory, and efficiency. Furthermore, we conduct a comprehensive comparative analysis of various PEFT methods, evaluating their memory usage, initialization overhead, and computational efficiency. By mapping the Pareto frontier across these dimensions, we show that MiSS occupies a favorable position, effectively capturing the advantages of prior approaches.
♻ ☆ MOAT: Evaluating LMMs for Capability Integration and Instruction Grounding
Large multimodal models (LMMs) have demonstrated significant potential as generalists in vision-language (VL) tasks. However, adoption of LMMs in real-world tasks is hindered by their poor performance in tasks that require a combination of VL capabilities, as well as in tasks that involve the grounding of complex text or visual instructions. To thoroughly investigate this gap and its underlying causes, we propose MOAT, a diverse benchmark with 1005 complex real-world vision questions that are straightforward for humans but challenging for LMMs. Specifically, the tasks in MOAT require LMMs to engage in generalist problem solving by integrating VL capabilities such as reading text, counting, understanding spatial relations, grounding textual and visual instructions, etc. All these abilities fit into a taxonomy proposed by us that contains 9 VL capabilities, enabling MOAT to provide a fine-grained view of LMMs' strengths and weaknesses. Besides, MOAT is the first benchmark to explicitly evaluate LMMs' ability to ground complex text and visual instructions, which is essential for many real-world applications. We evaluated 17 proprietary and open source LMMs, finding that the best performing LMM (Gemini 2.5 Pro) achieved only 44% accuracy, far below what would be acceptable in real-world applications. To guide future model development, we analyze common trends in our results and discuss the underlying causes of poor performance, focusing on the impact of text-centric reasoning, which VL capabilities form bottlenecks in complex tasks, and the potential harmful effects of tiling. Code and data are available at https://cambrian-yzt.github.io/MOAT/.
comment: Project page: https://cambrian-yzt.github.io/MOAT
♻ ☆ Enhancing Instruction-Following Capabilities in Seq2Seq Models: DoLA Adaptations for T5
Encoder-decoder models such as FLAN-T5 are finetuned to follow instructions, but often fail when the instructions conflict with memorized continuations ingrained during training. To understand this behavior, we adapt DoLa to FLAN-T5 and examine how representations evolve in the decoder. Our findings show that T5's intermediate layers undergo rapid shifts driven by cross-attention to the encoder. When projected through the language modeling head, each depth presents highly volatile token preferences, leading to unreliable behavior with contrastive decoding. Motivated by this, we introduce a gradient-based activation-steering method that injects an "instruction-compliance" direction into mid-decoder layers, where the representation is both meaningful and still malleable. This intervention dramatically improves MemoTrap performance (52% to 99.7%), demonstrating that mechanistic steering can succeed where contrastive decoding fails in Seq2Seq architectures.
♻ ☆ RECAP: REwriting Conversations for Intent Understanding in Agentic Planning
Understanding user intent is essential for effective planning in conversational assistants, particularly those powered by large language models (LLMs) coordinating multiple agents. However, real-world dialogues are often ambiguous, underspecified, or dynamic, making intent detection a persistent challenge. Traditional classification-based approaches struggle to generalize in open-ended settings, leading to brittle interpretations and poor downstream planning. We propose RECAP (REwriting Conversations for Agent Planning), a new benchmark designed to evaluate and advance intent rewriting, reframing user-agent dialogues into concise representations of user goals. RECAP captures diverse challenges such as ambiguity, intent drift, vagueness, and mixed-goal conversations. Alongside the dataset, we introduce an LLM-based evaluator that assesses planning utility given the rewritten intent. Using RECAP, we develop a prompt-based rewriting approach that outperforms baselines, in terms of plan preference. We further demonstrate that fine-tuning two DPO-based rewriters yields additional utility gains. Our results highlight intent rewriting as a critical and tractable component for improving agentic planning in open-domain dialogue systems.
♻ ☆ Efficiently Seeking Flat Minima for Better Generalization in Fine-Tuning Large Language Models and Beyond
Little research explores the correlation between the expressive ability and generalization ability of the low-rank adaptation (LoRA). Sharpness-Aware Minimization (SAM) improves model generalization for both Convolutional Neural Networks (CNNs) and Transformers by encouraging convergence to locally flat minima. However, the connection between sharpness and generalization has not been fully explored for LoRA due to the lack of tools to either empirically seek flat minima or develop theoretical methods. In this work, we propose Flat Minima LoRA (FMLoRA) and its efficient version, i.e., EFMLoRA, to seek flat minima for LoRA. Concretely, we theoretically demonstrate that perturbations in the full parameter space can be transferred to the low-rank subspace. This approach eliminates the potential interference introduced by perturbations across multiple matrices in the low-rank subspace. Our extensive experiments on large language models and vision-language models demonstrate that EFMLoRA achieves optimize efficiency comparable to that of LoRA while simultaneously attaining comparable or even better performance. For example, on the GLUE dataset with RoBERTa-large, EFMLoRA outperforms LoRA and full fine-tuning by 1.0% and 0.5% on average, respectively. On vision-language models, e.g., Qwen-VL-Chat, there are performance improvements of 1.5% and 1.0% on the SQA and VizWiz datasets, respectively. These empirical results also verify that the generalization of LoRA is closely related to sharpness, which is omitted by previous methods.
♻ ☆ Large Continual Instruction Assistant
Continual Instruction Tuning (CIT) is adopted to continually instruct Large Models to follow human intent data by data. It is observed that existing gradient update would heavily destroy the performance on previous datasets during CIT process. Instead, Exponential Moving Average (EMA), owns the ability to trace previous parameters, which can aid in decreasing forgetting. Nonetheless, its stable balance weight fails to deal with the ever-changing datasets, leading to the out-of-balance between plasticity and stability. In this paper, we propose a general continual instruction tuning framework to address the challenge. Starting from the trade-off prerequisite and EMA update, we propose the plasticity and stability ideal condition. Based on Taylor expansion in the loss function, we find the optimal balance weight can be automatically determined by the gradients and learned parameters. Therefore, we propose a stable-plasticity balanced coefficient to avoid knowledge interference. Based on the semantic similarity of the instructions, we can determine whether to retrain or expand the training parameters and allocate the most suitable parameters for the testing instances. Extensive experiments across multiple continual instruction tuning benchmarks demonstrate that our approach not only enhances anti-forgetting capabilities but also significantly improves overall continual tuning performance. Our code is available at https://github.com/JingyangQiao/CoIN.
♻ ☆ Textual Data Bias Detection and Mitigation -- An Extensible Pipeline with Experimental Evaluation
Textual data used to train large language models (LLMs) exhibits multifaceted bias manifestations encompassing harmful language and skewed demographic distributions. Regulations such as the European AI Act require identifying and mitigating biases against protected groups in data, with the ultimate goal of preventing unfair model outputs. However, practical guidance and operationalization are lacking. We propose a comprehensive data bias detection and mitigation pipeline comprising four components that address two data bias types, namely representation bias and (explicit) stereotypes for a configurable sensitive attribute. First, we leverage LLM-generated word lists created based on quality criteria to detect relevant group labels. Second, representation bias is quantified using the Demographic Representation Score. Third, we detect and mitigate stereotypes using sociolinguistically informed filtering. Finally, we compensate representation bias through Grammar- and Context-Aware Counterfactual Data Augmentation. We conduct a two-fold evaluation using the examples of gender, religion and age. First, the effectiveness of each individual component on data debiasing is evaluated through human validation and baseline comparison. The findings demonstrate that we successfully reduce representation bias and (explicit) stereotypes in a text dataset. Second, the effect of data debiasing on model bias reduction is evaluated by bias benchmarking of several models (0.6B-8B parameters), fine-tuned on the debiased text dataset. This evaluation reveals that LLMs fine-tuned on debiased data do not consistently show improved performance on bias benchmarks, exposing critical gaps in current evaluation methodologies and highlighting the need for targeted data manipulation to address manifested model bias.
♻ ☆ Joint Learning of Wording and Formatting for Singable Melody-to-Lyric Generation
Despite progress in melody-to-lyric generation, a substantial singability gap remains between machine-generated lyrics and those written by human lyricists. In this work, we aim to narrow this gap by jointly learning both wording and formatting for melody-to-lyric generation. After general-domain pretraining, our model acquires length awareness through an self-supervised stage trained on a large text-only lyric corpus. During supervised melody-to-lyric training, we introduce multiple auxiliary supervision objective informed by musicological findings on melody--lyric relationships, encouraging the model to capture fine-grained prosodic and structural patterns. Compared with naïve fine-tuning, our approach improves adherence to line-count and syllable-count requirements by 3.8% and 21.4% absolute, respectively, without degrading text quality. In human evaluation, it achieves 42.2% and 74.2% relative gains in overall quality over two task-specific baselines, underscoring the importance of formatting-aware training for generating singable lyrics.
comment: An extension of our previous work arXiv:2305.16816 [cs.CL]
♻ ☆ HyperAdaLoRA: Accelerating LoRA Rank Allocation During Training via Hypernetworks without Sacrificing Performance
Parameter-Efficient Fine-Tuning (PEFT), especially Low-Rank Adaptation (LoRA), has emerged as a promising approach to fine-tuning large language models(LLMs) while reducing computational and memory overhead. However, LoRA assumes a uniform rank \textit{r} for each incremental matrix, not accounting for the varying significance of weight matrices across different modules and layers. AdaLoRA leverages Singular Value Decomposition (SVD) to parameterize updates and employs pruning of singular values to introduce dynamic rank allocation, thereby enhancing adaptability. However, during the training process, it often encounters issues of slow convergence speed and high computational overhead. To address this issue, we propose HyperAdaLoRA, a novel framework that accelerates the convergence of AdaLoRA by leveraging a hypernetwork. Instead of directly optimizing the components of Singular Value Decomposition $(P, Λ, Q)$, HyperAdaLoRA employs a hypernetwork based on attention mechanisms to dynamically generate these parameters. By pruning the outputs of the hypernetwork that generates the singular values, dynamic rank allocation is achieved. Comprehensive experiments on various datasets and models demonstrate that our method achieves faster convergence without sacrificing performance. Additionally, further extension experiments on other LoRA-based approaches validate the broad applicability of our method.
comment: 13 pages
♻ ☆ Scalable Best-of-N Selection for Large Language Models via Self-Certainty NeurIPS 2025
Best-of-N selection is a key technique for improving the reasoning performance of Large Language Models (LLMs) through increased test-time computation. Current state-of-the-art methods often employ computationally intensive reward models for response evaluation and selection. Reward-free alternatives, like self-consistency and universal self-consistency, are limited in their ability to handle open-ended generation tasks or scale effectively. To address these limitations, we propose self-certainty, a novel and efficient metric that leverages the inherent probability distribution of LLM outputs to estimate response quality without requiring external reward models. We hypothesize that higher distributional self-certainty, aggregated across multiple samples, correlates with improved response accuracy, as it reflects greater confidence in the generated output. Through extensive experiments on various reasoning tasks, we demonstrate that self-certainty (1) scales effectively with increasing sample size N, akin to reward models but without the computational overhead; (2) complements chain-of-thought, improving reasoning performance beyond greedy decoding; and (3) generalizes to open-ended tasks where traditional self-consistency methods fall short. Our findings establish self-certainty as a practical and efficient way for improving LLM reasoning capabilities. The code is available at https://github.com/backprop07/Self-Certainty
comment: NeurIPS 2025
♻ ☆ The Landscape of Memorization in LLMs: Mechanisms, Measurement, and Mitigation
Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks, yet they also exhibit memorization of their training data. This phenomenon raises critical questions about model behavior, privacy risks, and the boundary between learning and memorization. Addressing these concerns, this paper synthesizes recent studies and investigates the landscape of memorization, the factors influencing it, and methods for its detection and mitigation. We explore key drivers, including training data duplication, training dynamics, and fine-tuning procedures that influence data memorization. In addition, we examine methodologies such as prefix-based extraction, membership inference, and adversarial prompting, assessing their effectiveness in detecting and measuring memorized content. Beyond technical analysis, we also explore the broader implications of memorization, including the legal and ethical implications. Finally, we discuss mitigation strategies, including data cleaning, differential privacy, and post-training unlearning, while highlighting open challenges in balancing the need to minimize harmful memorization with model utility. This paper provides a comprehensive overview of the current state of research on LLM memorization across technical, privacy, and performance dimensions, identifying critical directions for future work.
♻ ☆ BAMBO: Construct Ability and Efficiency LLM Pareto Set via Bayesian Adaptive Multi-objective Block-wise Optimization
Constructing a Pareto set is pivotal for navigating the capability-efficiency trade-offs in Large Language Models (LLMs); however, existing merging techniques remain inadequate for this task. Coarse-grained, model-level methods yield only a sparse set of suboptimal solutions, while fine-grained, layer-wise approaches suffer from the "curse of dimensionality," rendering the search space computationally intractable. To resolve this dichotomy, we propose BAMBO (Bayesian Adaptive Multi-objective Block-wise Optimization), a novel framework that automatically constructs the LLM Pareto set. BAMBO renders the search tractable by introducing a Hybrid Optimal Block Partitioning strategy. Formulated as a 1D clustering problem, this strategy leverages a dynamic programming approach to optimally balance intra-block homogeneity and inter-block information distribution, thereby dramatically reducing dimensionality without sacrificing critical granularity. The entire process is automated within an evolutionary loop driven by the q-Expected Hypervolume Improvement (qEHVI) acquisition function. Experiments demonstrate that BAMBO discovers a superior and more comprehensive Pareto frontier than baselines, enabling agile model selection tailored to diverse operational constraints. Code is available at: https://github.com/xin8coder/BAMBO.
♻ ☆ Annotation-Free Reinforcement Learning Query Rewriting via Verifiable Search Reward
Optimizing queries for Retrieval-Augmented Generation (RAG) systems poses a significant challenge, particularly across diverse modal indices. We introduce RL-QR, a novel annotation-free reinforcement learning framework for query rewriting that eliminates the need for costly human-annotated data. By leveraging verifiable search rewards derived from index-aligned synthetic queries, RL-QR overcomes human-annotation dependencies, extending its applicability to various modalities and index domains. Experimental results demonstrate the framework's robustness, achieving substantial retrieval performance gains of up to 3.9$\times$ on lexical retrievers and 3.5$\times$ on semantic retrievers on the MTEB VIDORE V2 benchmark for unstructured visual documents, along with consistent 5\% to 10\% improvements on MS MARCO v2.1 and internal industrial datasets.
♻ ☆ Long-horizon Reasoning Agent for Olympiad-Level Mathematical Problem Solving
Large Reasoning Models (LRMs) have expanded the mathematical reasoning frontier through Chain-of-Thought (CoT) techniques and Reinforcement Learning with Verifiable Rewards (RLVR), capable of solving AIME-level problems. However, the performance of LRMs is heavily dependent on the extended reasoning context length. For solving ultra-hard problems like those in the International Mathematical Olympiad (IMO), the required reasoning complexity surpasses the space that an LRM can explore in a single round. Previous works attempt to extend the reasoning context of LRMs but remain prompt-based and built upon proprietary models, lacking systematic structures and training pipelines. Therefore, this paper introduces Intern-S1-MO, a long-horizon math agent that conducts multi-round hierarchical reasoning, composed of an LRM-based multi-agent system including reasoning, summary, and verification. By maintaining a compact memory in the form of lemmas, Intern-S1-MO can more freely explore the lemma-rich reasoning spaces in multiple reasoning stages, thereby breaking through the context constraints for IMO-level math problems. Furthermore, we propose OREAL-H, an RL framework for training the LRM using the online explored trajectories to simultaneously bootstrap the reasoning ability of LRM and elevate the overall performance of Intern-S1-MO. Experiments show that Intern-S1-MO can obtain 26 out of 35 points on the non-geometry problems of IMO2025, matching the performance of silver medalists. It also surpasses the current advanced LRMs on inference benchmarks such as HMMT2025, AIME2025, and CNMO2025. In addition, our agent officially participates in CMO2025 and achieves a score of 102/126 under the judgment of human experts, reaching the gold medal level.
♻ ☆ Large Language Model Agent for Modular Task Execution in Drug Discovery
We present a modular framework powered by large language models (LLMs) that automates and streamlines key tasks across the early-stage computational drug discovery pipeline. By combining LLM reasoning with domain-specific tools, the framework performs biomedical data retrieval, literature-grounded question answering via retrieval-augmented generation, molecular generation, multi-property prediction, property-aware molecular refinement, and 3D protein-ligand structure generation. The agent autonomously retrieved relevant biomolecular information, including FASTA sequences, SMILES representations, and literature, and answered mechanistic questions with improved contextual accuracy compared to standard LLMs. It then generated chemically diverse seed molecules and predicted 75 properties, including ADMET-related and general physicochemical descriptors, which guided iterative molecular refinement. Across two refinement rounds, the number of molecules with QED > 0.6 increased from 34 to 55. The number of molecules satisfying empirical drug-likeness filters also rose; for example, compliance with the Ghose filter increased from 32 to 55 within a pool of 100 molecules. The framework also employed Boltz-2 to generate 3D protein-ligand complexes and provide rapid binding affinity estimates for candidate compounds. These results demonstrate that the approach effectively supports molecular screening, prioritization, and structure evaluation. Its modular design enables flexible integration of evolving tools and models, providing a scalable foundation for AI-assisted therapeutic discovery.
♻ ☆ Mind the Confidence Gap: Overconfidence, Calibration, and Distractor Effects in Large Language Models
Large Language Models (LLMs) show remarkable proficiency in natural language tasks, yet their frequent overconfidence-misalignment between predicted confidence and true correctness-poses significant risks in critical decision-making applications. We present a comprehensive analysis on calibration in LLMs across nine LLMs and three factual Question-Answering (QA) datasets, systematically comparing standard free-generation settings against structured distractor-augmented prompts. Our evaluation reveals that explicitly incorporating distractors can substantially mitigate miscalibration, achieving relative accuracy improvements up to 460% and ECE reductions up to 90%. Despite general trends, we uncover nuanced findings: large RLHF-tuned models display inherent calibration strengths but can paradoxically suffer increased miscalibration on easier queries, whereas smaller models benefit disproportionately from distractor prompts but remain significantly miscalibrated. Through detailed analyses across question types, we identify persistent calibration failures, particularly in person-based queries. We conclude with concrete recommendations-targeted fine-tuning, structured prompting, and strategic model choice-to ensure reliable, trustworthy LLM deployments.
comment: Published in Transactions on Machine Learning Research (TMLR)
♻ ☆ MixtureVitae: Open Web-Scale Pretraining Dataset With High Quality Instruction and Reasoning Data Built from Permissive-First Text Sources
We present MixtureVitae, an open-access pretraining corpus built to minimize legal risk while providing strong model performance. MixtureVitae follows a risk-mitigated sourcing strategy that combines public-domain and permissively licensed text (e.g., CC-BY/Apache) with carefully justified low-risk additions (e.g., government works and EU TDM-eligible sources), alongside targeted instruction, reasoning and synthetic data with documented provenance. We detail a transparent, multi-stage pipeline for license-aware filtering, safety and quality screening, and domain-aware mixing, and we release the dataset and curation recipes to support reproducible research. In controlled experiments using the open-sci-ref training protocol (fixed architectures at 130M/400M/1.3B/1.7B parameters; training budgets of 50B and 300B tokens), models trained on MixtureVitae consistently outperform other permissive datasets across a suite of standard benchmarks, and at the 1.7B/300B setting they surpass FineWeb-Edu and approach DCLM in the later stages of training. Performance is particularly strong on math/code and competitive on QA tasks. These results demonstrate that permissive-first, risk-mitigated data provides a practical and legally mitigated foundation for training capable LLMs, reducing reliance on indiscriminate web scraping without sacrificing competitiveness. Code: https://github.com/ontocord/mixturevitae
comment: Code: \url{https://github.com/ontocord/mixturevitae}
♻ ☆ SDialog: A Python Toolkit for End-to-End Agent Building, User Simulation, Dialog Generation, and Evaluation ACL
We present SDialog, an MIT-licensed open-source Python toolkit that unifies dialog generation, evaluation and mechanistic interpretability into a single end-to-end framework for building and analyzing LLM-based conversational agents. Built around a standardized \texttt{Dialog} representation, SDialog provides: (1) persona-driven multi-agent simulation with composable orchestration for controlled, synthetic dialog generation, (2) comprehensive evaluation combining linguistic metrics, LLM-as-a-judge and functional correctness validators, (3) mechanistic interpretability tools for activation inspection and steering via feature ablation and induction, and (4) audio generation with full acoustic simulation including 3D room modeling and microphone effects. The toolkit integrates with all major LLM backends, enabling mixed-backend experiments under a unified API. By coupling generation, evaluation, and interpretability in a dialog-centric architecture, SDialog enables researchers to build, benchmark and understand conversational systems more systematically.
comment: Pre-print submitted to EACL System Demonstration (under review)
♻ ☆ Grammar-Aligned Decoding NeurIPS 2024
Large Language Models (LLMs) struggle with reliably generating highly structured outputs, such as program code, mathematical formulas, or well-formed markup. Constrained decoding approaches mitigate this problem by greedily restricting what tokens an LLM can output at each step to guarantee that the output matches a given constraint. Specifically, in grammar-constrained decoding (GCD), the LLM's output must follow a given grammar. In this paper, we demonstrate that GCD techniques (and in general constrained decoding techniques) can distort the LLM's distribution, leading to outputs that are grammatical but appear with likelihoods that are not proportional to the ones given by the LLM, and so ultimately are low-quality. We call the problem of aligning sampling with a grammar constraint, grammar-aligned decoding (GAD), and propose adaptive sampling with approximate expected futures (ASAp), a decoding algorithm that guarantees the output to be grammatical while provably producing outputs that match the conditional probability of the LLM's distribution conditioned on the given grammar constraint. Our algorithm uses prior sample outputs to soundly overapproximate the future grammaticality of different output prefixes. Our evaluation on code generation and structured NLP tasks shows how ASAp often produces outputs with higher likelihood (according to the LLM's distribution) than existing GCD techniques, while still enforcing the desired grammatical constraints.
comment: Accepted to NeurIPS 2024
Computer Vision and Pattern Recognition 100
☆ Moment-Based 3D Gaussian Splatting: Resolving Volumetric Occlusion with Order-Independent Transmittance
The recent success of 3D Gaussian Splatting (3DGS) has reshaped novel view synthesis by enabling fast optimization and real-time rendering of high-quality radiance fields. However, it relies on simplified, order-dependent alpha blending and coarse approximations of the density integral within the rasterizer, thereby limiting its ability to render complex, overlapping semi-transparent objects. In this paper, we extend rasterization-based rendering of 3D Gaussian representations with a novel method for high-fidelity transmittance computation, entirely avoiding the need for ray tracing or per-pixel sample sorting. Building on prior work in moment-based order-independent transparency, our key idea is to characterize the density distribution along each camera ray with a compact and continuous representation based on statistical moments. To this end, we analytically derive and compute a set of per-pixel moments from all contributing 3D Gaussians. From these moments, a continuous transmittance function is reconstructed for each ray, which is then independently sampled within each Gaussian. As a result, our method bridges the gap between rasterization and physical accuracy by modeling light attenuation in complex translucent media, significantly improving overall reconstruction and rendering quality.
☆ V-RGBX: Video Editing with Accurate Controls over Intrinsic Properties
Large-scale video generation models have shown remarkable potential in modeling photorealistic appearance and lighting interactions in real-world scenes. However, a closed-loop framework that jointly understands intrinsic scene properties (e.g., albedo, normal, material, and irradiance), leverages them for video synthesis, and supports editable intrinsic representations remains unexplored. We present V-RGBX, the first end-to-end framework for intrinsic-aware video editing. V-RGBX unifies three key capabilities: (1) video inverse rendering into intrinsic channels, (2) photorealistic video synthesis from these intrinsic representations, and (3) keyframe-based video editing conditioned on intrinsic channels. At the core of V-RGBX is an interleaved conditioning mechanism that enables intuitive, physically grounded video editing through user-selected keyframes, supporting flexible manipulation of any intrinsic modality. Extensive qualitative and quantitative results show that V-RGBX produces temporally consistent, photorealistic videos while propagating keyframe edits across sequences in a physically plausible manner. We demonstrate its effectiveness in diverse applications, including object appearance editing and scene-level relighting, surpassing the performance of prior methods.
comment: Project Page: https://aleafy.github.io/vrgbx
☆ Particulate: Feed-Forward 3D Object Articulation
We present Particulate, a feed-forward approach that, given a single static 3D mesh of an everyday object, directly infers all attributes of the underlying articulated structure, including its 3D parts, kinematic structure, and motion constraints. At its core is a transformer network, Part Articulation Transformer, which processes a point cloud of the input mesh using a flexible and scalable architecture to predict all the aforementioned attributes with native multi-joint support. We train the network end-to-end on a diverse collection of articulated 3D assets from public datasets. During inference, Particulate lifts the network's feed-forward prediction to the input mesh, yielding a fully articulated 3D model in seconds, much faster than prior approaches that require per-object optimization. Particulate can also accurately infer the articulated structure of AI-generated 3D assets, enabling full-fledged extraction of articulated 3D objects from a single (real or synthetic) image when combined with an off-the-shelf image-to-3D generator. We further introduce a new challenging benchmark for 3D articulation estimation curated from high-quality public 3D assets, and redesign the evaluation protocol to be more consistent with human preferences. Quantitative and qualitative results show that Particulate significantly outperforms state-of-the-art approaches.
comment: Project page: https://ruiningli.com/particulate
☆ AnchorDream: Repurposing Video Diffusion for Embodiment-Aware Robot Data Synthesis
The collection of large-scale and diverse robot demonstrations remains a major bottleneck for imitation learning, as real-world data acquisition is costly and simulators offer limited diversity and fidelity with pronounced sim-to-real gaps. While generative models present an attractive solution, existing methods often alter only visual appearances without creating new behaviors, or suffer from embodiment inconsistencies that yield implausible motions. To address these limitations, we introduce AnchorDream, an embodiment-aware world model that repurposes pretrained video diffusion models for robot data synthesis. AnchorDream conditions the diffusion process on robot motion renderings, anchoring the embodiment to prevent hallucination while synthesizing objects and environments consistent with the robot's kinematics. Starting from only a handful of human teleoperation demonstrations, our method scales them into large, diverse, high-quality datasets without requiring explicit environment modeling. Experiments show that the generated data leads to consistent improvements in downstream policy learning, with relative gains of 36.4% in simulator benchmarks and nearly double performance in real-world studies. These results suggest that grounding generative world models in robot motion provides a practical path toward scaling imitation learning.
comment: Project page: https://jay-ye.github.io/AnchorDream/
☆ Structure From Tracking: Distilling Structure-Preserving Motion for Video Generation
Reality is a dance between rigid constraints and deformable structures. For video models, that means generating motion that preserves fidelity as well as structure. Despite progress in diffusion models, producing realistic structure-preserving motion remains challenging, especially for articulated and deformable objects such as humans and animals. Scaling training data alone, so far, has failed to resolve physically implausible transitions. Existing approaches rely on conditioning with noisy motion representations, such as optical flow or skeletons extracted using an external imperfect model. To address these challenges, we introduce an algorithm to distill structure-preserving motion priors from an autoregressive video tracking model (SAM2) into a bidirectional video diffusion model (CogVideoX). With our method, we train SAM2VideoX, which contains two innovations: (1) a bidirectional feature fusion module that extracts global structure-preserving motion priors from a recurrent model like SAM2; (2) a Local Gram Flow loss that aligns how local features move together. Experiments on VBench and in human studies show that SAM2VideoX delivers consistent gains (+2.60\% on VBench, 21-22\% lower FVD, and 71.4\% human preference) over prior baselines. Specifically, on VBench, we achieve 95.51\%, surpassing REPA (92.91\%) by 2.60\%, and reduce FVD to 360.57, a 21.20\% and 22.46\% improvement over REPA- and LoRA-finetuning, respectively. The project website can be found at https://sam2videox.github.io/ .
comment: Project Website: https://sam2videox.github.io/
☆ Uncertainty-Aware Domain Adaptation for Vitiligo Segmentation in Clinical Photographs
Accurately quantifying vitiligo extent in routine clinical photographs is crucial for longitudinal monitoring of treatment response. We propose a trustworthy, frequency-aware segmentation framework built on three synergistic pillars: (1) a data-efficient training strategy combining domain-adaptive pre-training on the ISIC 2019 dataset with an ROI-constrained dual-task loss to suppress background noise; (2) an architectural refinement via a ConvNeXt V2-based encoder enhanced with a novel High-Frequency Spectral Gating (HFSG) module and stem-skip connections to capture subtle textures; and (3) a clinical trust mechanism employing K-fold ensemble and Test-Time Augmentation (TTA) to generate pixel-wise uncertainty maps. Extensive validation on an expert-annotated clinical cohort demonstrates superior performance, achieving a Dice score of 85.05% and significantly reducing boundary error (95% Hausdorff Distance improved from 44.79 px to 29.95 px), consistently outperforming strong CNN (ResNet-50 and UNet++) and Transformer (MiT-B5) baselines. Notably, our framework demonstrates high reliability with zero catastrophic failures and provides interpretable entropy maps to identify ambiguous regions for clinician review. Our approach suggests that the proposed framework establishes a robust and reliable standard for automated vitiligo assessment.
☆ MatAnyone 2: Scaling Video Matting via a Learned Quality Evaluator
Video matting remains limited by the scale and realism of existing datasets. While leveraging segmentation data can enhance semantic stability, the lack of effective boundary supervision often leads to segmentation-like mattes lacking fine details. To this end, we introduce a learned Matting Quality Evaluator (MQE) that assesses semantic and boundary quality of alpha mattes without ground truth. It produces a pixel-wise evaluation map that identifies reliable and erroneous regions, enabling fine-grained quality assessment. The MQE scales up video matting in two ways: (1) as an online matting-quality feedback during training to suppress erroneous regions, providing comprehensive supervision, and (2) as an offline selection module for data curation, improving annotation quality by combining the strengths of leading video and image matting models. This process allows us to build a large-scale real-world video matting dataset, VMReal, containing 28K clips and 2.4M frames. To handle large appearance variations in long videos, we introduce a reference-frame training strategy that incorporates long-range frames beyond the local window for effective training. Our MatAnyone 2 achieves state-of-the-art performance on both synthetic and real-world benchmarks, surpassing prior methods across all metrics.
comment: Project page: https://pq-yang.github.io/projects/MatAnyone2/
☆ Smudged Fingerprints: A Systematic Evaluation of the Robustness of AI Image Fingerprints
Model fingerprint detection techniques have emerged as a promising approach for attributing AI-generated images to their source models, but their robustness under adversarial conditions remains largely unexplored. We present the first systematic security evaluation of these techniques, formalizing threat models that encompass both white- and black-box access and two attack goals: fingerprint removal, which erases identifying traces to evade attribution, and fingerprint forgery, which seeks to cause misattribution to a target model. We implement five attack strategies and evaluate 14 representative fingerprinting methods across RGB, frequency, and learned-feature domains on 12 state-of-the-art image generators. Our experiments reveal a pronounced gap between clean and adversarial performance. Removal attacks are highly effective, often achieving success rates above 80% in white-box settings and over 50% under constrained black-box access. While forgery is more challenging than removal, its success significantly varies across targeted models. We also identify a utility-robustness trade-off: methods with the highest attribution accuracy are often vulnerable to attacks. Although some techniques exhibit robustness in specific settings, none achieves high robustness and accuracy across all evaluated threat models. These findings highlight the need for techniques balancing robustness and accuracy, and identify the most promising approaches for advancing this goal.
comment: This work has been accepted for publication in the 4th IEEE Conference on Secure and Trustworthy Machine Learning (IEEE SaTML 2026). The final version will be available on IEEE Xplore
☆ Reducing Domain Gap with Diffusion-Based Domain Adaptation for Cell Counting ICML
Generating realistic synthetic microscopy images is critical for training deep learning models in label-scarce environments, such as cell counting with many cells per image. However, traditional domain adaptation methods often struggle to bridge the domain gap when synthetic images lack the complex textures and visual patterns of real samples. In this work, we adapt the Inversion-Based Style Transfer (InST) framework originally designed for artistic style transfer to biomedical microscopy images. Our method combines latent-space Adaptive Instance Normalization with stochastic inversion in a diffusion model to transfer the style from real fluorescence microscopy images to synthetic ones, while weakly preserving content structure. We evaluate the effectiveness of our InST-based synthetic dataset for downstream cell counting by pre-training and fine-tuning EfficientNet-B0 models on various data sources, including real data, hard-coded synthetic data, and the public Cell200-s dataset. Models trained with our InST-synthesized images achieve up to 37\% lower Mean Absolute Error (MAE) compared to models trained on hard-coded synthetic data, and a 52\% reduction in MAE compared to models trained on Cell200-s (from 53.70 to 25.95 MAE). Notably, our approach also outperforms models trained on real data alone (25.95 vs. 27.74 MAE). Further improvements are achieved when combining InST-synthesized data with lightweight domain adaptation techniques such as DACS with CutMix. These findings demonstrate that InST-based style transfer most effectively reduces the domain gap between synthetic and real microscopy data. Our approach offers a scalable path for enhancing cell counting performance while minimizing manual labeling effort. The source code and resources are publicly available at: https://github.com/MohammadDehghan/InST-Microscopy.
comment: Accepted at ICMLA 2025
☆ SVG-T2I: Scaling Up Text-to-Image Latent Diffusion Model Without Variational Autoencoder
Visual generation grounded in Visual Foundation Model (VFM) representations offers a highly promising unified pathway for integrating visual understanding, perception, and generation. Despite this potential, training large-scale text-to-image diffusion models entirely within the VFM representation space remains largely unexplored. To bridge this gap, we scale the SVG (Self-supervised representations for Visual Generation) framework, proposing SVG-T2I to support high-quality text-to-image synthesis directly in the VFM feature domain. By leveraging a standard text-to-image diffusion pipeline, SVG-T2I achieves competitive performance, reaching 0.75 on GenEval and 85.78 on DPG-Bench. This performance validates the intrinsic representational power of VFMs for generative tasks. We fully open-source the project, including the autoencoder and generation model, together with their training, inference, evaluation pipelines, and pre-trained weights, to facilitate further research in representation-driven visual generation.
comment: Code Repository: https://github.com/KlingTeam/SVG-T2I; Model Weights: https://huggingface.co/KlingTeam/SVG-T2I
☆ mViSE: A Visual Search Engine for Analyzing Multiplex IHC Brain Tissue Images
Whole-slide multiplex imaging of brain tissue generates massive information-dense images that are challenging to analyze and require custom software. We present an alternative query-driven programming-free strategy using a multiplex visual search engine (mViSE) that learns the multifaceted brain tissue chemoarchitecture, cytoarchitecture, and myeloarchitecture. Our divide-and-conquer strategy organizes the data into panels of related molecular markers and uses self-supervised learning to train a multiplex encoder for each panel with explicit visual confirmation of successful learning. Multiple panels can be combined to process visual queries for retrieving similar communities of individual cells or multicellular niches using information-theoretic methods. The retrievals can be used for diverse purposes including tissue exploration, delineating brain regions and cortical cell layers, profiling and comparing brain regions without computer programming. We validated mViSE's ability to retrieve single cells, proximal cell pairs, tissue patches, delineate cortical layers, brain regions and sub-regions. mViSE is provided as an open-source QuPath plug-in.
☆ Weak-to-Strong Generalization Enables Fully Automated De Novo Training of Multi-head Mask-RCNN Model for Segmenting Densely Overlapping Cell Nuclei in Multiplex Whole-slice Brain Images
We present a weak to strong generalization methodology for fully automated training of a multi-head extension of the Mask-RCNN method with efficient channel attention for reliable segmentation of overlapping cell nuclei in multiplex cyclic immunofluorescent (IF) whole-slide images (WSI), and present evidence for pseudo-label correction and coverage expansion, the key phenomena underlying weak to strong generalization. This method can learn to segment de novo a new class of images from a new instrument and/or a new imaging protocol without the need for human annotations. We also present metrics for automated self-diagnosis of segmentation quality in production environments, where human visual proofreading of massive WSI images is unaffordable. Our method was benchmarked against five current widely used methods and showed a significant improvement. The code, sample WSI images, and high-resolution segmentation results are provided in open form for community adoption and adaptation.
☆ Reframing Music-Driven 2D Dance Pose Generation as Multi-Channel Image Generation
Recent pose-to-video models can translate 2D pose sequences into photorealistic, identity-preserving dance videos, so the key challenge is to generate temporally coherent, rhythm-aligned 2D poses from music, especially under complex, high-variance in-the-wild distributions. We address this by reframing music-to-dance generation as a music-token-conditioned multi-channel image synthesis problem: 2D pose sequences are encoded as one-hot images, compressed by a pretrained image VAE, and modeled with a DiT-style backbone, allowing us to inherit architectural and training advances from modern text-to-image models and better capture high-variance 2D pose distributions. On top of this formulation, we introduce (i) a time-shared temporal indexing scheme that explicitly synchronizes music tokens and pose latents over time and (ii) a reference-pose conditioning strategy that preserves subject-specific body proportions and on-screen scale while enabling long-horizon segment-and-stitch generation. Experiments on a large in-the-wild 2D dance corpus and the calibrated AIST++2D benchmark show consistent improvements over representative music-to-dance methods in pose- and video-space metrics and human preference, and ablations validate the contributions of the representation, temporal indexing, and reference conditioning. See supplementary videos at https://hot-dance.github.io
☆ Referring Change Detection in Remote Sensing Imagery
Change detection in remote sensing imagery is essential for applications such as urban planning, environmental monitoring, and disaster management. Traditional change detection methods typically identify all changes between two temporal images without distinguishing the types of transitions, which can lead to results that may not align with specific user needs. Although semantic change detection methods have attempted to address this by categorizing changes into predefined classes, these methods rely on rigid class definitions and fixed model architectures, making it difficult to mix datasets with different label sets or reuse models across tasks, as the output channels are tightly coupled with the number and type of semantic classes. To overcome these limitations, we introduce Referring Change Detection (RCD), which leverages natural language prompts to detect specific classes of changes in remote sensing images. By integrating language understanding with visual analysis, our approach allows users to specify the exact type of change they are interested in. However, training models for RCD is challenging due to the limited availability of annotated data and severe class imbalance in existing datasets. To address this, we propose a two-stage framework consisting of (I) \textbf{RCDNet}, a cross-modal fusion network designed for referring change detection, and (II) \textbf{RCDGen}, a diffusion-based synthetic data generation pipeline that produces realistic post-change images and change maps for a specified category using only pre-change image, without relying on semantic segmentation masks and thereby significantly lowering the barrier to scalable data creation. Experiments across multiple datasets show that our framework enables scalable and targeted change detection. Project website is here: https://yilmazkorkmaz1.github.io/RCD.
comment: 2026 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)
☆ EditMGT: Unleashing Potentials of Masked Generative Transformers in Image Editing
Recent advances in diffusion models (DMs) have achieved exceptional visual quality in image editing tasks. However, the global denoising dynamics of DMs inherently conflate local editing targets with the full-image context, leading to unintended modifications in non-target regions. In this paper, we shift our attention beyond DMs and turn to Masked Generative Transformers (MGTs) as an alternative approach to tackle this challenge. By predicting multiple masked tokens rather than holistic refinement, MGTs exhibit a localized decoding paradigm that endows them with the inherent capacity to explicitly preserve non-relevant regions during the editing process. Building upon this insight, we introduce the first MGT-based image editing framework, termed EditMGT. We first demonstrate that MGT's cross-attention maps provide informative localization signals for localizing edit-relevant regions and devise a multi-layer attention consolidation scheme that refines these maps to achieve fine-grained and precise localization. On top of these adaptive localization results, we introduce region-hold sampling, which restricts token flipping within low-attention areas to suppress spurious edits, thereby confining modifications to the intended target regions and preserving the integrity of surrounding non-target areas. To train EditMGT, we construct CrispEdit-2M, a high-resolution dataset spanning seven diverse editing categories. Without introducing additional parameters, we adapt a pre-trained text-to-image MGT into an image editing model through attention injection. Extensive experiments across four standard benchmarks demonstrate that, with fewer than 1B parameters, our model achieves similarity performance while enabling 6 times faster editing. Moreover, it delivers comparable or superior editing quality, with improvements of 3.6% and 17.6% on style change and style transfer tasks, respectively.
☆ Particle Image Velocimetry Refinement via Consensus ADMM
Particle Image Velocimetry (PIV) is an imaging technique in experimental fluid dynamics that quantifies flow fields around bluff bodies by analyzing the displacement of neutrally buoyant tracer particles immersed in the fluid. Traditional PIV approaches typically depend on tuning parameters specific to the imaging setup, making the performance sensitive to variations in illumination, flow conditions, and seeding density. On the other hand, even state-of-the-art machine learning methods for flow quantification are fragile outside their training set. In our experiments, we observed that flow quantification would improve if different tunings (or algorithms) were applied to different regions of the same image pair. In this work, we parallelize the instantaneous flow quantification with multiple algorithms and adopt a consensus framework based on the alternating direction method of multipliers, seamlessly incorporating priors such as smoothness and incompressibility. We perform several numerical experiments to demonstrate the benefits of this approach. For instance, we achieve a decrease in end-point-error of up to 20% of a dense-inverse-search estimator at an inference rate of 60Hz, and we show how this performance boost can be increased further with outlier rejection. Our method is implemented in JAX, effectively exploiting hardware acceleration, and integrated in Flow Gym, enabling (i) reproducible comparisons with the state-of-the-art, (ii) testing different base algorithms, (iii) straightforward deployment for active fluids control applications.
comment: Code: https://github.com/antonioterpin/flowgym
☆ Text images processing system using artificial intelligence models
This is to present a text image classifier device that identifies textual content in images and then categorizes each image into one of four predefined categories, including Invoice, Form, Letter, or Report. The device supports a gallery mode, in which users browse files on flash disks, hard disk drives, or microSD cards, and a live mode which renders feeds of cameras connected to it. Its design is specifically aimed at addressing pragmatic challenges, such as changing light, random orientation, curvature or partial coverage of text, low resolution, and slightly visible text. The steps of the processing process are divided into four steps: image acquisition and preprocessing, textual elements detection with the help of DBNet++ (Differentiable Binarization Network Plus) model, BART (Bidirectional Auto-Regressive Transformers) model that classifies detected textual elements, and the presentation of the results through a user interface written in Python and PyQt5. All the stages are connected in such a way that they form a smooth workflow. The system achieved a text recognition rate of about 94.62% when tested over ten hours on the mentioned Total-Text dataset, that includes high resolution images, created so as to represent a wide range of problematic conditions. These experimental results support the effectiveness of the suggested methodology to practice, mixed-source text categorization, even in uncontrolled imaging conditions.
comment: 8 pages, 12 figures, article
☆ Depth-Copy-Paste: Multimodal and Depth-Aware Compositing for Robust Face Detection
Data augmentation is crucial for improving the robustness of face detection systems, especially under challenging conditions such as occlusion, illumination variation, and complex environments. Traditional copy paste augmentation often produces unrealistic composites due to inaccurate foreground extraction, inconsistent scene geometry, and mismatched background semantics. To address these limitations, we propose Depth Copy Paste, a multimodal and depth aware augmentation framework that generates diverse and physically consistent face detection training samples by copying full body person instances and pasting them into semantically compatible scenes. Our approach first employs BLIP and CLIP to jointly assess semantic and visual coherence, enabling automatic retrieval of the most suitable background images for the given foreground person. To ensure high quality foreground masks that preserve facial details, we integrate SAM3 for precise segmentation and Depth-Anything to extract only the non occluded visible person regions, preventing corrupted facial textures from being used in augmentation. For geometric realism, we introduce a depth guided sliding window placement mechanism that searches over the background depth map to identify paste locations with optimal depth continuity and scale alignment. The resulting composites exhibit natural depth relationships and improved visual plausibility. Extensive experiments show that Depth Copy Paste provides more diverse and realistic training data, leading to significant performance improvements in downstream face detection tasks compared with traditional copy paste and depth free augmentation methods.
☆ Cross-modal Context-aware Learning for Visual Prompt Guided Multimodal Image Understanding in Remote Sensing
Recent advances in image understanding have enabled methods that leverage large language models for multimodal reasoning in remote sensing. However, existing approaches still struggle to steer models to the user-relevant regions when only simple, generic text prompts are available. Moreover, in large-scale aerial imagery many objects exhibit highly similar visual appearances and carry rich inter-object relationships, which further complicates accurate recognition. To address these challenges, we propose Cross-modal Context-aware Learning for Visual Prompt-Guided Multimodal Image Understanding (CLV-Net). CLV-Net lets users supply a simple visual cue, a bounding box, to indicate a region of interest, and uses that cue to guide the model to generate correlated segmentation masks and captions that faithfully reflect user intent. Central to our design is a Context-Aware Mask Decoder that models and integrates inter-object relationships to strengthen target representations and improve mask quality. In addition, we introduce a Semantic and Relationship Alignment module: a Cross-modal Semantic Consistency Loss enhances fine-grained discrimination among visually similar targets, while a Relationship Consistency Loss enforces alignment between textual relations and visual interactions. Comprehensive experiments on two benchmark datasets show that CLV-Net outperforms existing methods and establishes new state-of-the-art results. The model effectively captures user intent and produces precise, intention-aligned multimodal outputs.
comment: 12 pages, 5 figures
☆ Stochastics of shapes and Kunita flows
Stochastic processes of evolving shapes are used in applications including evolutionary biology, where morphology changes stochastically as a function of evolutionary processes. Due to the non-linear and often infinite-dimensional nature of shape spaces, the mathematical construction of suitable stochastic shape processes is far from immediate. We define and formalize properties that stochastic shape processes should ideally satisfy to be compatible with the shape structure, and we link this to Kunita flows that, when acting on shape spaces, induce stochastic processes that satisfy these criteria by their construction. We couple this with a survey of other relevant shape stochastic processes and show how bridge sampling techniques can be used to condition shape stochastic processes on observed data thereby allowing for statistical inference of parameters of the stochastic dynamics.
☆ Kinetic Mining in Context: Few-Shot Action Synthesis via Text-to-Motion Distillation
The acquisition cost for large, annotated motion datasets remains a critical bottleneck for skeletal-based Human Activity Recognition (HAR). Although Text-to-Motion (T2M) generative models offer a compelling, scalable source of synthetic data, their training objectives, which emphasize general artistic motion, and dataset structures fundamentally differ from HAR's requirements for kinematically precise, class-discriminative actions. This disparity creates a significant domain gap, making generalist T2M models ill-equipped for generating motions suitable for HAR classifiers. To address this challenge, we propose KineMIC (Kinetic Mining In Context), a transfer learning framework for few-shot action synthesis. KineMIC adapts a T2M diffusion model to an HAR domain by hypothesizing that semantic correspondences in the text encoding space can provide soft supervision for kinematic distillation. We operationalize this via a kinetic mining strategy that leverages CLIP text embeddings to establish correspondences between sparse HAR labels and T2M source data. This process guides fine-tuning, transforming the generalist T2M backbone into a specialized few-shot Action-to-Motion generator. We validate KineMIC using HumanML3D as the source T2M dataset and a subset of NTU RGB+D 120 as the target HAR domain, randomly selecting just 10 samples per action class. Our approach generates significantly more coherent motions, providing a robust data augmentation source that delivers a +23.1% accuracy points improvement. Animated illustrations and supplementary materials are available at (https://lucazzola.github.io/publications/kinemic).
☆ FactorPortrait: Controllable Portrait Animation via Disentangled Expression, Pose, and Viewpoint
We introduce FactorPortrait, a video diffusion method for controllable portrait animation that enables lifelike synthesis from disentangled control signals of facial expressions, head movement, and camera viewpoints. Given a single portrait image, a driving video, and camera trajectories, our method animates the portrait by transferring facial expressions and head movements from the driving video while simultaneously enabling novel view synthesis from arbitrary viewpoints. We utilize a pre-trained image encoder to extract facial expression latents from the driving video as control signals for animation generation. Such latents implicitly capture nuanced facial expression dynamics with identity and pose information disentangled, and they are efficiently injected into the video diffusion transformer through our proposed expression controller. For camera and head pose control, we employ Plücker ray maps and normal maps rendered from 3D body mesh tracking. To train our model, we curate a large-scale synthetic dataset containing diverse combinations of camera viewpoints, head poses, and facial expression dynamics. Extensive experiments demonstrate that our method outperforms existing approaches in realism, expressiveness, control accuracy, and view consistency.
comment: Project page: https://tangjiapeng.github.io/FactorPortrait/
☆ Fast and Explicit: Slice-to-Volume Reconstruction via 3D Gaussian Primitives with Analytic Point Spread Function Modeling
Recovering high-fidelity 3D images from sparse or degraded 2D images is a fundamental challenge in medical imaging, with broad applications ranging from 3D ultrasound reconstruction to MRI super-resolution. In the context of fetal MRI, high-resolution 3D reconstruction of the brain from motion-corrupted low-resolution 2D acquisitions is a prerequisite for accurate neurodevelopmental diagnosis. While implicit neural representations (INRs) have recently established state-of-the-art performance in self-supervised slice-to-volume reconstruction (SVR), they suffer from a critical computational bottleneck: accurately modeling the image acquisition physics requires expensive stochastic Monte Carlo sampling to approximate the point spread function (PSF). In this work, we propose a shift from neural network based implicit representations to Gaussian based explicit representations. By parameterizing the HR 3D image volume as a field of anisotropic Gaussian primitives, we leverage the property of Gaussians being closed under convolution and thus derive a \textit{closed-form analytical solution} for the forward model. This formulation reduces the previously intractable acquisition integral to an exact covariance addition ($\mathbfΣ_{obs} = \mathbfΣ_{HR} + \mathbfΣ_{PSF}$), effectively bypassing the need for compute-intensive stochastic sampling while ensuring exact gradient propagation. We demonstrate that our approach matches the reconstruction quality of self-supervised state-of-the-art SVR frameworks while delivering a 5$\times$--10$\times$ speed-up on neonatal and fetal data. With convergence often reached in under 30 seconds, our framework paves the way towards translation into clinical routine of real-time fetal 3D MRI. Code will be public at {https://github.com/m-dannecker/Gaussian-Primitives-for-Fast-SVR}.
comment: Under Review for MIDL 2026
☆ Embodied Image Compression
Image Compression for Machines (ICM) has emerged as a pivotal research direction in the field of visual data compression. However, with the rapid evolution of machine intelligence, the target of compression has shifted from task-specific virtual models to Embodied agents operating in real-world environments. To address the communication constraints of Embodied AI in multi-agent systems and ensure real-time task execution, this paper introduces, for the first time, the scientific problem of Embodied Image Compression. We establish a standardized benchmark, EmbodiedComp, to facilitate systematic evaluation under ultra-low bitrate conditions in a closed-loop setting. Through extensive empirical studies in both simulated and real-world settings, we demonstrate that existing Vision-Language-Action models (VLAs) fail to reliably perform even simple manipulation tasks when compressed below the Embodied bitrate threshold. We anticipate that EmbodiedComp will catalyze the development of domain-specific compression tailored for Embodied agents , thereby accelerating the Embodied AI deployment in the Real-world.
comment: 15 pages, 12 figures, 3 tables
☆ Using GUI Agent for Electronic Design Automation
Graphical User Interface (GUI) agents adopt an end-to-end paradigm that maps a screenshot to an action sequence, thereby automating repetitive tasks in virtual environments. However, existing GUI agents are evaluated almost exclusively on commodity software such as Microsoft Word and Excel. Professional Computer-Aided Design (CAD) suites promise an order-of-magnitude higher economic return, yet remain the weakest performance domain for existing agents and are still far from replacing expert Electronic-Design-Automation (EDA) engineers. We therefore present the first systematic study that deploys GUI agents for EDA workflows. Our contributions are: (1) a large-scale dataset named GUI-EDA, including 5 CAD tools and 5 physical domains, comprising 2,000+ high-quality screenshot-answer-action pairs recorded by EDA scientists and engineers during real-world component design; (2) a comprehensive benchmark that evaluates 30+ mainstream GUI agents, demonstrating that EDA tasks constitute a major, unsolved challenge; and (3) an EDA-specialized metric named EDAgent, equipped with a reflection mechanism that achieves reliable performance on industrial CAD software and, for the first time, outperforms Ph.D. students majored in Electrical Engineering. This work extends GUI agents from generic office automation to specialized, high-value engineering domains and offers a new avenue for advancing EDA productivity. The dataset will be released at: https://github.com/aiben-ch/GUI-EDA.
comment: 17 pages, 15 figures, 8 tables
☆ Brain-Semantoks: Learning Semantic Tokens of Brain Dynamics with a Self-Distilled Foundation Model
The development of foundation models for functional magnetic resonance imaging (fMRI) time series holds significant promise for predicting phenotypes related to disease and cognition. Current models, however, are often trained using a mask-and-reconstruct objective on small brain regions. This focus on low-level information leads to representations that are sensitive to noise and temporal fluctuations, necessitating extensive fine-tuning for downstream tasks. We introduce Brain-Semantoks, a self-supervised framework designed specifically to learn abstract representations of brain dynamics. Its architecture is built on two core innovations: a semantic tokenizer that aggregates noisy regional signals into robust tokens representing functional networks, and a self-distillation objective that enforces representational stability across time. We show that this objective is stabilized through a novel training curriculum, ensuring the model robustly learns meaningful features from low signal-to-noise time series. We demonstrate that learned representations enable strong performance on a variety of downstream tasks even when only using a linear probe. Furthermore, we provide comprehensive scaling analyses indicating more unlabeled data reliably results in out-of-distribution performance gains without domain adaptation.
comment: Code and pretrained models available at https://github.com/SamGijsen/Brain-Semantoks
☆ In-Context Learning for Seismic Data Processing
Seismic processing transforms raw data into subsurface images essential for geophysical applications. Traditional methods face challenges, such as noisy data, and manual parameter tuning, among others. Recently deep learning approaches have proposed alternative solutions to some of these problems. However, important challenges of existing deep learning approaches are spatially inconsistent results across neighboring seismic gathers and lack of user-control. We address these limitations by introducing ContextSeisNet, an in-context learning model, to seismic demultiple processing. Our approach conditions predictions on a support set of spatially related example pairs: neighboring common-depth point gathers from the same seismic line and their corresponding labels. This allows the model to learn task-specific processing behavior at inference time by observing how similar gathers should be processed, without any retraining. This method provides both flexibility through user-defined examples and improved lateral consistency across seismic lines. On synthetic data, ContextSeisNet outperforms a U-Net baseline quantitatively and demonstrates enhanced spatial coherence between neighboring gathers. On field data, our model achieves superior lateral consistency compared to both traditional Radon demultiple and the U-Net baseline. Relative to the U-Net, ContextSeisNet also delivers improved near-offset performance and more complete multiple removal. Notably, ContextSeisNet achieves comparable field data performance despite being trained on 90% less data, demonstrating substantial data efficiency. These results establish ContextSeisNet as a practical approach for spatially consistent seismic demultiple with potential applicability to other seismic processing tasks.
comment: Source code available under https://codeberg.org/fuchsfa/in-context-learning-seismic
☆ Evaluating Foundation Models' 3D Understanding Through Multi-View Correspondence Analysis NeurIPS 2025
Benchmarking 3D spatial understanding of foundation models is essential for real-world applications such as robotics and autonomous driving. Existing evaluations often rely on downstream finetuning with linear heads or task-specific decoders, making it difficult to isolate the intrinsic 3D reasoning ability of pretrained encoders. In this work, we introduce a novel benchmark for in-context 3D scene understanding that requires no finetuning and directly probes the quality of dense visual features. Building on the Hummingbird framework, which evaluates in-context 2D scene understanding, we extend the setup to the 3D Multi-View ImageNet (MVImgNet) dataset. Given a set of images from objects in specific angles (keys), we benchmark the performance of segmenting novel views (queries) and report the scores in 4 categories of easy, medium, hard, and extreme based on the key-query view contrast. We benchmark 8 state-of-the-art foundation models and show DINO-based encoders remain competitive across large viewpoint shifts, while 3D-aware models like VGGT require dedicated multi-view adjustments. Our code is publicly available at https://github.com/ToyeshC/open-hummingbird-3d-eval .
comment: NeurIPS 2025 UniReps workshop
☆ Multi-temporal Calving Front Segmentation
The calving fronts of marine-terminating glaciers undergo constant changes. These changes significantly affect the glacier's mass and dynamics, demanding continuous monitoring. To address this need, deep learning models were developed that can automatically delineate the calving front in Synthetic Aperture Radar imagery. However, these models often struggle to correctly classify areas affected by seasonal conditions such as ice melange or snow-covered surfaces. To address this issue, we propose to process multiple frames from a satellite image time series of the same glacier in parallel and exchange temporal information between the corresponding feature maps to stabilize each prediction. We integrate our approach into the current state-of-the-art architecture Tyrion and accomplish a new state-of-the-art performance on the CaFFe benchmark dataset. In particular, we achieve a Mean Distance Error of 184.4 m and a mean Intersection over Union of 83.6.
☆ DentalGPT: Incentivizing Multimodal Complex Reasoning in Dentistry
Reliable interpretation of multimodal data in dentistry is essential for automated oral healthcare, yet current multimodal large language models (MLLMs) struggle to capture fine-grained dental visual details and lack sufficient reasoning ability for precise diagnosis. To address these limitations, we present DentalGPT, a specialized dental MLLM developed through high-quality domain knowledge injection and reinforcement learning. Specifically, the largest annotated multimodal dataset for dentistry to date was constructed by aggregating over 120k dental images paired with detailed descriptions that highlight diagnostically relevant visual features, making it the multimodal dataset with the most extensive collection of dental images to date. Training on this dataset significantly enhances the MLLM's visual understanding of dental conditions, while the subsequent reinforcement learning stage further strengthens its capability for multimodal complex reasoning. Comprehensive evaluations on intraoral and panoramic benchmarks, along with dental subsets of medical VQA benchmarks, show that DentalGPT achieves superior performance in disease classification and dental VQA tasks, outperforming many state-of-the-art MLLMs despite having only 7B parameters. These results demonstrate that high-quality dental data combined with staged adaptation provides an effective pathway for building capable and domain-specialized dental MLLMs.
☆ 3DTeethSAM: Taming SAM2 for 3D Teeth Segmentation AAAI 2026
3D teeth segmentation, involving the localization of tooth instances and their semantic categorization in 3D dental models, is a critical yet challenging task in digital dentistry due to the complexity of real-world dentition. In this paper, we propose 3DTeethSAM, an adaptation of the Segment Anything Model 2 (SAM2) for 3D teeth segmentation. SAM2 is a pretrained foundation model for image and video segmentation, demonstrating a strong backbone in various downstream scenarios. To adapt SAM2 for 3D teeth data, we render images of 3D teeth models from predefined views, apply SAM2 for 2D segmentation, and reconstruct 3D results using 2D-3D projections. Since SAM2's performance depends on input prompts and its initial outputs often have deficiencies, and given its class-agnostic nature, we introduce three light-weight learnable modules: (1) a prompt embedding generator to derive prompt embeddings from image embeddings for accurate mask decoding, (2) a mask refiner to enhance SAM2's initial segmentation results, and (3) a mask classifier to categorize the generated masks. Additionally, we incorporate Deformable Global Attention Plugins (DGAP) into SAM2's image encoder. The DGAP enhances both the segmentation accuracy and the speed of the training process. Our method has been validated on the 3DTeethSeg benchmark, achieving an IoU of 91.90% on high-resolution 3D teeth meshes, establishing a new state-of-the-art in the field.
comment: Accepted by AAAI 2026
SSL-MedSAM2: A Semi-supervised Medical Image Segmentation Framework Powered by Few-shot Learning of SAM2 MICCAI 2025
Despite the success of deep learning based models in medical image segmentation, most state-of-the-art (SOTA) methods perform fully-supervised learning, which commonly rely on large scale annotated training datasets. However, medical image annotation is highly time-consuming, hindering its clinical applications. Semi-supervised learning (SSL) has been emerged as an appealing strategy in training with limited annotations, largely reducing the labelling cost. We propose a novel SSL framework SSL-MedSAM2, which contains a training-free few-shot learning branch TFFS-MedSAM2 based on the pretrained large foundation model Segment Anything Model 2 (SAM2) for pseudo label generation, and an iterative fully-supervised learning branch FSL-nnUNet based on nnUNet for pseudo label refinement. The results on MICCAI2025 challenge CARE-LiSeg (Liver Segmentation) demonstrate an outstanding performance of SSL-MedSAM2 among other methods. The average dice scores on the test set in GED4 and T1 MRI are 0.9710 and 0.9648 respectively, and the Hausdorff distances are 20.07 and 21.97 respectively. The code is available via https://github.com/naisops/SSL-MedSAM2/tree/main.
comment: Accepted by MICCAI 2025 CARE Challenge, waiting for publication
☆ Infinity and Beyond: Compositional Alignment in VAR and Diffusion T2I Models
Achieving compositional alignment between textual descriptions and generated images - covering objects, attributes, and spatial relationships - remains a core challenge for modern text-to-image (T2I) models. Although diffusion-based architectures have been widely studied, the compositional behavior of emerging Visual Autoregressive (VAR) models is still largely unexamined. We benchmark six diverse T2I systems - SDXL, PixArt-$α$, Flux-Dev, Flux-Schnell, Infinity-2B, and Infinity-8B - across the full T2I-CompBench++ and GenEval suites, evaluating alignment in color and attribute binding, spatial relations, numeracy, and complex multi-object prompts. Across both benchmarks, Infinity-8B achieves the strongest overall compositional alignment, while Infinity-2B also matches or exceeds larger diffusion models in several categories, highlighting favorable efficiency-performance trade-offs. In contrast, SDXL and PixArt-$α$ show persistent weaknesses in attribute-sensitive and spatial tasks. These results provide the first systematic comparison of VAR and diffusion approaches to compositional alignment and establish unified baselines for the future development of the T2I model.
☆ HFS: Holistic Query-Aware Frame Selection for Efficient Video Reasoning
Key frame selection in video understanding presents significant challenges. Traditional top-K selection methods, which score frames independently, often fail to optimize the selection as a whole. This independent scoring frequently results in selecting frames that are temporally clustered and visually redundant. Additionally, training lightweight selectors using pseudo labels generated offline by Multimodal Large Language Models (MLLMs) prevents the supervisory signal from dynamically adapting to task objectives. To address these limitations, we propose an end-to-end trainable, task-adaptive framework for frame selection. A Chain-of-Thought approach guides a Small Language Model (SLM) to generate task-specific implicit query vectors, which are combined with multimodal features to enable dynamic frame scoring. We further define a continuous set-level objective function that incorporates relevance, coverage, and redundancy, enabling differentiable optimization via Gumbel-Softmax to select optimal frame combinations at the set level. Finally, student-teacher mutual learning is employed, where the student selector (SLM) and teacher reasoner (MLLM) are trained to align their frame importance distributions via KL divergence. Combined with cross-entropy loss, this enables end-to-end optimization, eliminating reliance on static pseudo labels. Experiments across various benchmarks, including Video-MME, LongVideoBench, MLVU, and NExT-QA, demonstrate that our method significantly outperforms existing approaches.
comment: 18 pages, 8 figures
☆ Parallax: Runtime Parallelization for Operator Fallbacks in Heterogeneous Edge Systems
The growing demand for real-time DNN applications on edge devices necessitates faster inference of increasingly complex models. Although many devices include specialized accelerators (e.g., mobile GPUs), dynamic control-flow operators and unsupported kernels often fall back to CPU execution. Existing frameworks handle these fallbacks poorly, leaving CPU cores idle and causing high latency and memory spikes. We introduce Parallax, a framework that accelerates mobile DNN inference without model refactoring or custom operator implementations. Parallax first partitions the computation DAG to expose parallelism, then employs branch-aware memory management with dedicated arenas and buffer reuse to reduce runtime footprint. An adaptive scheduler executes branches according to device memory constraints, meanwhile, fine-grained subgraph control enables heterogeneous inference of dynamic models. By evaluating on five representative DNNs across three different mobile devices, Parallax achieves up to 46% latency reduction, maintains controlled memory overhead (26.5% on average), and delivers up to 30% energy savings compared with state-of-the-art frameworks, offering improvements aligned with the responsiveness demands of real-time mobile inference.
☆ Super-Resolved Canopy Height Mapping from Sentinel-2 Time Series Using LiDAR HD Reference Data across Metropolitan France
Fine-scale forest monitoring is essential for understanding canopy structure and its dynamics, which are key indicators of carbon stocks, biodiversity, and forest health. Deep learning is particularly effective for this task, as it integrates spectral, temporal, and spatial signals that jointly reflect the canopy structure. To address this need, we introduce THREASURE-Net, a novel end-to-end framework for Tree Height Regression And Super-Resolution. The model is trained on Sentinel-2 time series using reference height metrics derived from LiDAR HD data at multiple spatial resolutions over Metropolitan France to produce annual height maps. We evaluate three model variants, producing tree-height predictions at 2.5 m, 5 m, and 10 m resolution. THREASURE-Net does not rely on any pretrained model nor on reference very high resolution optical imagery to train its super-resolution module; instead, it learns solely from LiDAR-derived height information. Our approach outperforms existing state-of-the-art methods based on Sentinel data and is competitive with methods based on very high resolution imagery. It can be deployed to generate high-precision annual canopy-height maps, achieving mean absolute errors of 2.62 m, 2.72 m, and 2.88 m at 2.5 m, 5 m, and 10 m resolution, respectively. These results highlight the potential of THREASURE-Net for scalable and cost-effective structural monitoring of temperate forests using only freely available satellite data. The source code for THREASURE-Net is available at: https://github.com/Global-Earth-Observation/threasure-net.
☆ Reconstruction as a Bridge for Event-Based Visual Question Answering
Integrating event cameras with Multimodal Large Language Models (MLLMs) promises general scene understanding in challenging visual conditions, yet requires navigating a trade-off between preserving the unique advantages of event data and ensuring compatibility with frame-based models. We address this challenge by using reconstruction as a bridge, proposing a straightforward Frame-based Reconstruction and Tokenization (FRT) method and designing an efficient Adaptive Reconstruction and Tokenization (ART) method that leverages event sparsity. For robust evaluation, we introduce EvQA, the first objective, real-world benchmark for event-based MLLMs, comprising 1,000 event-Q&A pairs from 22 public datasets. Our experiments demonstrate that our methods achieve state-of-the-art performance on EvQA, highlighting the significant potential of MLLMs in event-based vision.
☆ On Geometric Understanding and Learned Data Priors in VGGT
The Visual Geometry Grounded Transformer (VGGT) is a 3D foundation model that infers camera geometry and scene structure in a single feed-forward pass. Trained in a supervised, single-step fashion on large datasets, VGGT raises a key question: does it build upon geometric concepts like traditional multi-view methods, or does it rely primarily on learned appearance-based data-driven priors? In this work, we conduct a systematic analysis of VGGT's internal mechanisms to uncover whether geometric understanding emerges within its representations. By probing intermediate features, analyzing attention patterns, and performing interventions, we examine how the model implements its functionality. Our findings reveal that VGGT implicitly performs correspondence matching within its global attention layers and encodes epipolar geometry, despite being trained without explicit geometric constraints. We further investigate VGGT's dependence on its learned data priors. Using spatial input masking and perturbation experiments, we assess its robustness to occlusions, appearance variations, and camera configurations, comparing it with classical multi-stage pipelines. Together, these insights highlight how VGGT internalizes geometric structure while using learned data-driven priors.
☆ SSA3D: Text-Conditioned Assisted Self-Supervised Framework for Automatic Dental Abutment Design
Abutment design is a critical step in dental implant restoration. However, manual design involves tedious measurement and fitting, and research on automating this process with AI is limited, due to the unavailability of large annotated datasets. Although self-supervised learning (SSL) can alleviate data scarcity, its need for pre-training and fine-tuning results in high computational costs and long training times. In this paper, we propose a Self-supervised assisted automatic abutment design framework (SS$A^3$D), which employs a dual-branch architecture with a reconstruction branch and a regression branch. The reconstruction branch learns to restore masked intraoral scan data and transfers the learned structural information to the regression branch. The regression branch then predicts the abutment parameters under supervised learning, which eliminates the separate pre-training and fine-tuning process. We also design a Text-Conditioned Prompt (TCP) module to incorporate clinical information (such as implant location, system, and series) into SS$A^3$D. This guides the network to focus on relevant regions and constrains the parameter predictions. Extensive experiments on a collected dataset show that SS$A^3$D saves half of the training time and achieves higher accuracy than traditional SSL methods. It also achieves state-of-the-art performance compared to other methods, significantly improving the accuracy and efficiency of automated abutment design.
☆ TSkel-Mamba: Temporal Dynamic Modeling via State Space Model for Human Skeleton-based Action Recognition
Skeleton-based action recognition has garnered significant attention in the computer vision community. Inspired by the recent success of the selective state-space model (SSM) Mamba in modeling 1D temporal sequences, we propose TSkel-Mamba, a hybrid Transformer-Mamba framework that effectively captures both spatial and temporal dynamics. In particular, our approach leverages Spatial Transformer for spatial feature learning while utilizing Mamba for temporal modeling. Mamba, however, employs separate SSM blocks for individual channels, which inherently limits its ability to model inter-channel dependencies. To better adapt Mamba for skeleton data and enhance Mamba`s ability to model temporal dependencies, we introduce a Temporal Dynamic Modeling (TDM) block, which is a versatile plug-and-play component that integrates a novel Multi-scale Temporal Interaction (MTI) module. The MTI module employs multi-scale Cycle operators to capture cross-channel temporal interactions, a critical factor in action recognition. Extensive experiments on NTU-RGB+D 60, NTU-RGB+D 120, NW-UCLA and UAV-Human datasets demonstrate that TSkel-Mamba achieves state-of-the-art performance while maintaining low inference time, making it both efficient and highly effective.
☆ VLM2GeoVec: Toward Universal Multimodal Embeddings for Remote Sensing
Satellite imagery differs fundamentally from natural images: its aerial viewpoint, very high resolution, diverse scale variations, and abundance of small objects demand both region-level spatial reasoning and holistic scene understanding. Current remote-sensing approaches remain fragmented between dual-encoder retrieval models, which excel at large-scale cross-modal search but cannot interleave modalities, and generative assistants, which support region-level interpretation but lack scalable retrieval capabilities. We propose $\textbf{VLM2GeoVec}$, an instruction-following, single-encoder vision-language model trained contrastively to embed interleaved inputs (images, text, bounding boxes, and geographic coordinates) in a unified vector space. Our single encoder interleaves all inputs into one joint embedding trained with a contrastive loss, eliminating multi-stage pipelines and task-specific modules. To evaluate its versatility, we introduce $\textbf{RSMEB}$, a novel benchmark covering key remote-sensing embedding applications: scene classification; cross-modal search; compositional retrieval; visual-question answering; visual grounding and region-level reasoning; and semantic geospatial retrieval. On RSMEB, it achieves $\textbf{26.6%}$ P@1 on region-caption retrieval (+25 pp vs. dual-encoder baselines), $\textbf{32.5%}$ P@1 on referring-expression retrieval (+19 pp), and $\textbf{17.8%}$ P@1 on semantic geo-localization retrieval (over $3\times$ prior best), while matching or exceeding specialized baselines on conventional tasks such as scene classification and cross-modal retrieval. VLM2GeoVec unifies scalable retrieval with region-level spatial reasoning, enabling cohesive multimodal analysis in remote sensing. We will publicly release the code, checkpoints, and data upon acceptance.
comment: 21 pages, 7 figures, under review
CADMorph: Geometry-Driven Parametric CAD Editing via a Plan-Generate-Verify Loop NeurIPS 2025
A Computer-Aided Design (CAD) model encodes an object in two coupled forms: a parametric construction sequence and its resulting visible geometric shape. During iterative design, adjustments to the geometric shape inevitably require synchronized edits to the underlying parametric sequence, called geometry-driven parametric CAD editing. The task calls for 1) preserving the original sequence's structure, 2) ensuring each edit's semantic validity, and 3) maintaining high shape fidelity to the target shape, all under scarce editing data triplets. We present CADMorph, an iterative plan-generate-verify framework that orchestrates pretrained domain-specific foundation models during inference: a parameter-to-shape (P2S) latent diffusion model and a masked-parameter-prediction (MPP) model. In the planning stage, cross-attention maps from the P2S model pinpoint the segments that need modification and offer editing masks. The MPP model then infills these masks with semantically valid edits in the generation stage. During verification, the P2S model embeds each candidate sequence in shape-latent space, measures its distance to the target shape, and selects the closest one. The three stages leverage the inherent geometric consciousness and design knowledge in pretrained priors, and thus tackle structure preservation, semantic validity, and shape fidelity respectively. Besides, both P2S and MPP models are trained without triplet data, bypassing the data-scarcity bottleneck. CADMorph surpasses GPT-4o and specialized CAD baselines, and supports downstream applications such as iterative editing and reverse-engineering enhancement.
comment: NeurIPS 2025
☆ DOS: Distilling Observable Softmaps of Zipfian Prototypes for Self-Supervised Point Representation AAAI-26
Recent advances in self-supervised learning (SSL) have shown tremendous potential for learning 3D point cloud representations without human annotations. However, SSL for 3D point clouds still faces critical challenges due to irregular geometry, shortcut-prone reconstruction, and unbalanced semantics distribution. In this work, we propose DOS (Distilling Observable Softmaps), a novel SSL framework that self-distills semantic relevance softmaps only at observable (unmasked) points. This strategy prevents information leakage from masked regions and provides richer supervision than discrete token-to-prototype assignments. To address the challenge of unbalanced semantics in an unsupervised setting, we introduce Zipfian prototypes and incorporate them using a modified Sinkhorn-Knopp algorithm, Zipf-Sinkhorn, which enforces a power-law prior over prototype usage and modulates the sharpness of the target softmap during training. DOS outperforms current state-of-the-art methods on semantic segmentation and 3D object detection across multiple benchmarks, including nuScenes, Waymo, SemanticKITTI, ScanNet, and ScanNet200, without relying on extra data or annotations. Our results demonstrate that observable-point softmaps distillation offers a scalable and effective paradigm for learning robust 3D representations.
comment: AAAI-26
☆ Exploring MLLM-Diffusion Information Transfer with MetaCanvas
Multimodal learning has rapidly advanced visual understanding, largely via multimodal large language models (MLLMs) that use powerful LLMs as cognitive cores. In visual generation, however, these powerful core models are typically reduced to global text encoders for diffusion models, leaving most of their reasoning and planning ability unused. This creates a gap: current multimodal LLMs can parse complex layouts, attributes, and knowledge-intensive scenes, yet struggle to generate images or videos with equally precise and structured control. We propose MetaCanvas, a lightweight framework that lets MLLMs reason and plan directly in spatial and spatiotemporal latent spaces and interface tightly with diffusion generators. We empirically implement MetaCanvas on three different diffusion backbones and evaluate it across six tasks, including text-to-image generation, text/image-to-video generation, image/video editing, and in-context video generation, each requiring precise layouts, robust attribute binding, and reasoning-intensive control. MetaCanvas consistently outperforms global-conditioning baselines, suggesting that treating MLLMs as latent-space planners is a promising direction for narrowing the gap between multimodal understanding and generation.
comment: Project page: https://metacanvas.github.io
☆ Boosting Skeleton-based Zero-Shot Action Recognition with Training-Free Test-Time Adaptation
We introduce Skeleton-Cache, the first training-free test-time adaptation framework for skeleton-based zero-shot action recognition (SZAR), aimed at improving model generalization to unseen actions during inference. Skeleton-Cache reformulates inference as a lightweight retrieval process over a non-parametric cache that stores structured skeleton representations, combining both global and fine-grained local descriptors. To guide the fusion of descriptor-wise predictions, we leverage the semantic reasoning capabilities of large language models (LLMs) to assign class-specific importance weights. By integrating these structured descriptors with LLM-guided semantic priors, Skeleton-Cache dynamically adapts to unseen actions without any additional training or access to training data. Extensive experiments on NTU RGB+D 60/120 and PKU-MMD II demonstrate that Skeleton-Cache consistently boosts the performance of various SZAR backbones under both zero-shot and generalized zero-shot settings. The code is publicly available at https://github.com/Alchemist0754/Skeleton-Cache.
☆ YawDD+: Frame-level Annotations for Accurate Yawn Prediction
Driver fatigue remains a leading cause of road accidents, with 24\% of crashes involving drowsy drivers. While yawning serves as an early behavioral indicator of fatigue, existing machine learning approaches face significant challenges due to video-annotated datasets that introduce systematic noise from coarse temporal annotations. We develop a semi-automated labeling pipeline with human-in-the-loop verification, which we apply to YawDD, enabling more accurate model training. Training the established MNasNet classifier and YOLOv11 detector architectures on YawDD+ improves frame accuracy by up to 6\% and mAP by 5\% over video-level supervision, achieving 99.34\% classification accuracy and 95.69\% detection mAP. The resulting approach deliver up to 59.8 FPS on edge AI hardware (NVIDIA Jetson Nano), confirming that enhanced data quality alone supports on-device yawning monitoring without server-side computation.
comment: This paper is submitted at European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, 2026
☆ Flowception: Temporally Expansive Flow Matching for Video Generation
We present Flowception, a novel non-autoregressive and variable-length video generation framework. Flowception learns a probability path that interleaves discrete frame insertions with continuous frame denoising. Compared to autoregressive methods, Flowception alleviates error accumulation/drift as the frame insertion mechanism during sampling serves as an efficient compression mechanism to handle long-term context. Compared to full-sequence flows, our method reduces FLOPs for training three-fold, while also being more amenable to local attention variants, and allowing to learn the length of videos jointly with their content. Quantitative experimental results show improved FVD and VBench metrics over autoregressive and full-sequence baselines, which is further validated with qualitative results. Finally, by learning to insert and denoise frames in a sequence, Flowception seamlessly integrates different tasks such as image-to-video generation and video interpolation.
☆ Back to the Baseline: Examining Baseline Effects on Explainability Metrics
Attribution methods are among the most prevalent techniques in Explainable Artificial Intelligence (XAI) and are usually evaluated and compared using Fidelity metrics, with Insertion and Deletion being the most popular. These metrics rely on a baseline function to alter the pixels of the input image that the attribution map deems most important. In this work, we highlight a critical problem with these metrics: the choice of a given baseline will inevitably favour certain attribution methods over others. More concerningly, even a simple linear model with commonly used baselines contradicts itself by designating different optimal methods. A question then arises: which baseline should we use? We propose to study this problem through two desirable properties of a baseline: (i) that it removes information and (ii) that it does not produce overly out-of-distribution (OOD) images. We first show that none of the tested baselines satisfy both criteria, and there appears to be a trade-off among current baselines: either they remove information or they produce a sequence of OOD images. Finally, we introduce a novel baseline by leveraging recent work in feature visualisation to artificially produce a model-dependent baseline that removes information without being overly OOD, thus improving on the trade-off when compared to other existing baselines. Our code is available at https://github.com/deel-ai-papers/Back-to-the-Baseline
☆ JoyAvatar: Real-time and Infinite Audio-Driven Avatar Generation with Autoregressive Diffusion
Existing DiT-based audio-driven avatar generation methods have achieved considerable progress, yet their broader application is constrained by limitations such as high computational overhead and the inability to synthesize long-duration videos. Autoregressive methods address this problem by applying block-wise autoregressive diffusion methods. However, these methods suffer from the problem of error accumulation and quality degradation. To address this, we propose JoyAvatar, an audio-driven autoregressive model capable of real-time inference and infinite-length video generation with the following contributions: (1) Progressive Step Bootstrapping (PSB), which allocates more denoising steps to initial frames to stabilize generation and reduce error accumulation; (2) Motion Condition Injection (MCI), enhancing temporal coherence by injecting noise-corrupted previous frames as motion condition; and (3) Unbounded RoPE via Cache-Resetting (URCR), enabling infinite-length generation through dynamic positional encoding. Our 1.3B-parameter causal model achieves 16 FPS on a single GPU and achieves competitive results in visual quality, temporal consistency, and lip synchronization.
☆ Collaborative Reconstruction and Repair for Multi-class Industrial Anomaly Detection
Industrial anomaly detection is a challenging open-set task that aims to identify unknown anomalous patterns deviating from normal data distribution. To avoid the significant memory consumption and limited generalizability brought by building separate models per class, we focus on developing a unified framework for multi-class anomaly detection. However, under this challenging setting, conventional reconstruction-based networks often suffer from an identity mapping problem, where they directly replicate input features regardless of whether they are normal or anomalous, resulting in detection failures. To address this issue, this study proposes a novel framework termed Collaborative Reconstruction and Repair (CRR), which transforms the reconstruction to repairation. First, we optimize the decoder to reconstruct normal samples while repairing synthesized anomalies. Consequently, it generates distinct representations for anomalous regions and similar representations for normal areas compared to the encoder's output. Second, we implement feature-level random masking to ensure that the representations from decoder contain sufficient local information. Finally, to minimize detection errors arising from the discrepancies between feature representations from the encoder and decoder, we train a segmentation network supervised by synthetic anomaly masks, thereby enhancing localization performance. Extensive experiments on industrial datasets that CRR effectively mitigates the identity mapping issue and achieves state-of-the-art performance in multi-class industrial anomaly detection.
comment: Accepted to Data Intelligence 2025
☆ Minimal Clips, Maximum Salience: Long Video Summarization via Key Moment Extraction
Vision-Language Models (VLMs) are able to process increasingly longer videos. Yet, important visual information is easily lost throughout the entire context and missed by VLMs. Also, it is important to design tools that enable cost-effective analysis of lengthy video content. In this paper, we propose a clip selection method that targets key video moments to be included in a multimodal summary. We divide the video into short clips and generate compact visual descriptions of each using a lightweight video captioning model. These are then passed to a large language model (LLM), which selects the K clips containing the most relevant visual information for a multimodal summary. We evaluate our approach on reference clips for the task, automatically derived from full human-annotated screenplays and summaries in the MovieSum dataset. We further show that these reference clips (less than 6% of the movie) are sufficient to build a complete multimodal summary of the movies in MovieSum. Using our clip selection method, we achieve a summarization performance close to that of these reference clips while capturing substantially more relevant video information than random clip selection. Importantly, we maintain low computational cost by relying on a lightweight captioning model.
☆ FlowDC: Flow-Based Decoupling-Decay for Complex Image Editing
With the surge of pre-trained text-to-image flow matching models, text-based image editing performance has gained remarkable improvement, especially for \underline{simple editing} that only contains a single editing target. To satisfy the exploding editing requirements, the \underline{complex editing} which contains multiple editing targets has posed as a more challenging task. However, current complex editing solutions: single-round and multi-round editing are limited by long text following and cumulative inconsistency, respectively. Thus, they struggle to strike a balance between semantic alignment and source consistency. In this paper, we propose \textbf{FlowDC}, which decouples the complex editing into multiple sub-editing effects and superposes them in parallel during the editing process. Meanwhile, we observed that the velocity quantity that is orthogonal to the editing displacement harms the source structure preserving. Thus, we decompose the velocity and decay the orthogonal part for better source consistency. To evaluate the effectiveness of complex editing settings, we construct a complex editing benchmark: Complex-PIE-Bench. On two benchmarks, FlowDC shows superior results compared with existing methods. We also detail the ablations of our module designs.
☆ The N-Body Problem: Parallel Execution from Single-Person Egocentric Video
Humans can intuitively parallelise complex activities, but can a model learn this from observing a single person? Given one egocentric video, we introduce the N-Body Problem: how N individuals, can hypothetically perform the same set of tasks observed in this video. The goal is to maximise speed-up, but naive assignment of video segments to individuals often violates real-world constraints, leading to physically impossible scenarios like two people using the same object or occupying the same space. To address this, we formalise the N-Body Problem and propose a suite of metrics to evaluate both performance (speed-up, task coverage) and feasibility (spatial collisions, object conflicts and causal constraints). We then introduce a structured prompting strategy that guides a Vision-Language Model (VLM) to reason about the 3D environment, object usage, and temporal dependencies to produce a viable parallel execution. On 100 videos from EPIC-Kitchens and HD-EPIC, our method for N = 2 boosts action coverage by 45% over a baseline prompt for Gemini 2.5 Pro, while simultaneously slashing collision rates, object and causal conflicts by 55%, 45% and 55% respectively.
comment: project webpage: https://zhifanzhu.github.io/ego-nbody
☆ Out-of-Distribution Segmentation via Wasserstein-Based Evidential Uncertainty
Deep neural networks achieve superior performance in semantic segmentation, but are limited to a predefined set of classes, which leads to failures when they encounter unknown objects in open-world scenarios. Recognizing and segmenting these out-of-distribution (OOD) objects is crucial for safety-critical applications such as automated driving. In this work, we present an evidence segmentation framework using a Wasserstein loss, which captures distributional distances while respecting the probability simplex geometry. Combined with Kullback-Leibler regularization and Dice structural consistency terms, our approach leads to improved OOD segmentation performance compared to uncertainty-based approaches.
☆ Assisted Refinement Network Based on Channel Information Interaction for Camouflaged and Salient Object Detection
Camouflaged Object Detection (COD) stands as a significant challenge in computer vision, dedicated to identifying and segmenting objects visually highly integrated with their backgrounds. Current mainstream methods have made progress in cross-layer feature fusion, but two critical issues persist during the decoding stage. The first is insufficient cross-channel information interaction within the same-layer features, limiting feature expressiveness. The second is the inability to effectively co-model boundary and region information, making it difficult to accurately reconstruct complete regions and sharp boundaries of objects. To address the first issue, we propose the Channel Information Interaction Module (CIIM), which introduces a horizontal-vertical integration mechanism in the channel dimension. This module performs feature reorganization and interaction across channels to effectively capture complementary cross-channel information. To address the second issue, we construct a collaborative decoding architecture guided by prior knowledge. This architecture generates boundary priors and object localization maps through Boundary Extraction (BE) and Region Extraction (RE) modules, then employs hybrid attention to collaboratively calibrate decoded features, effectively overcoming semantic ambiguity and imprecise boundaries. Additionally, the Multi-scale Enhancement (MSE) module enriches contextual feature representations. Extensive experiments on four COD benchmark datasets validate the effectiveness and state-of-the-art performance of the proposed model. We further transferred our model to the Salient Object Detection (SOD) task and demonstrated its adaptability across downstream tasks, including polyp segmentation, transparent object detection, and industrial and road defect detection. Code and experimental results are publicly available at: https://github.com/akuan1234/ARNet-v2.
comment: 15 pages, 9 figures
☆ Reliable Detection of Minute Targets in High-Resolution Aerial Imagery across Temporal Shifts
Efficient crop detection via Unmanned Aerial Vehicles is critical for scaling precision agriculture, yet it remains challenging due to the small scale of targets and environmental variability. This paper addresses the detection of rice seedlings in paddy fields by leveraging a Faster R-CNN architecture initialized via transfer learning. To overcome the specific difficulties of detecting minute objects in high-resolution aerial imagery, we curate a significant UAV dataset for training and rigorously evaluate the model's generalization capabilities. Specifically, we validate performance across three distinct test sets acquired at different temporal intervals, thereby assessing robustness against varying imaging conditions. Our empirical results demonstrate that transfer learning not only facilitates the rapid convergence of object detection models in agricultural contexts but also yields consistent performance despite domain shifts in image acquisition.
☆ Prior-Enhanced Gaussian Splatting for Dynamic Scene Reconstruction from Casual Video
We introduce a fully automatic pipeline for dynamic scene reconstruction from casually captured monocular RGB videos. Rather than designing a new scene representation, we enhance the priors that drive Dynamic Gaussian Splatting. Video segmentation combined with epipolar-error maps yields object-level masks that closely follow thin structures; these masks (i) guide an object-depth loss that sharpens the consistent video depth, and (ii) support skeleton-based sampling plus mask-guided re-identification to produce reliable, comprehensive 2-D tracks. Two additional objectives embed the refined priors in the reconstruction stage: a virtual-view depth loss removes floaters, and a scaffold-projection loss ties motion nodes to the tracks, preserving fine geometry and coherent motion. The resulting system surpasses previous monocular dynamic scene reconstruction methods and delivers visibly superior renderings
☆ A Multi-Mode Structured Light 3D Imaging System with Multi-Source Information Fusion for Underwater Pipeline Detection
Underwater pipelines are highly susceptible to corrosion, which not only shorten their service life but also pose significant safety risks. Compared with manual inspection, the intelligent real-time imaging system for underwater pipeline detection has become a more reliable and practical solution. Among various underwater imaging techniques, structured light 3D imaging can restore the sufficient spatial detail for precise defect characterization. Therefore, this paper develops a multi-mode underwater structured light 3D imaging system for pipeline detection (UW-SLD system) based on multi-source information fusion. First, a rapid distortion correction (FDC) method is employed for efficient underwater image rectification. To overcome the challenges of extrinsic calibration among underwater sensors, a factor graph-based parameter optimization method is proposed to estimate the transformation matrix between the structured light and acoustic sensors. Furthermore, a multi-mode 3D imaging strategy is introduced to adapt to the geometric variability of underwater pipelines. Given the presence of numerous disturbances in underwater environments, a multi-source information fusion strategy and an adaptive extended Kalman filter (AEKF) are designed to ensure stable pose estimation and high-accuracy measurements. In particular, an edge detection-based ICP (ED-ICP) algorithm is proposed. This algorithm integrates pipeline edge detection network with enhanced point cloud registration to achieve robust and high-fidelity reconstruction of defect structures even under variable motion conditions. Extensive experiments are conducted under different operation modes, velocities, and depths. The results demonstrate that the developed system achieves superior accuracy, adaptability and robustness, providing a solid foundation for autonomous underwater pipeline detection.
☆ Surveillance Video-Based Traffic Accident Detection Using Transformer Architecture
Road traffic accidents represent a leading cause of mortality globally, with incidence rates rising due to increasing population, urbanization, and motorization. Rising accident rates raise concerns about traffic surveillance effectiveness. Traditional computer vision methods for accident detection struggle with limited spatiotemporal understanding and poor cross-domain generalization. Recent advances in transformer architectures excel at modeling global spatial-temporal dependencies and parallel computation. However, applying these models to automated traffic accident detection is limited by small, non-diverse datasets, hindering the development of robust, generalizable systems. To address this gap, we curated a comprehensive and balanced dataset that captures a wide spectrum of traffic environments, accident types, and contextual variations. Utilizing the curated dataset, we propose an accident detection model based on a transformer architecture using pre-extracted spatial video features. The architecture employs convolutional layers to extract local correlations across diverse patterns within a frame, while leveraging transformers to capture sequential-temporal dependencies among the retrieved features. Moreover, most existing studies neglect the integration of motion cues, which are essential for understanding dynamic scenes, especially during accidents. These approaches typically rely on static features or coarse temporal information. In this study, multiple methods for incorporating motion cues were evaluated to identify the most effective strategy. Among the tested input approaches, concatenating RGB features with optical flow achieved the highest accuracy at 88.3%. The results were further compared with vision language models (VLM) such as GPT, Gemini, and LLaVA-NeXT-Video to assess the effectiveness of the proposed method.
☆ Task-Specific Distance Correlation Matching for Few-Shot Action Recognition
Few-shot action recognition (FSAR) has recently made notable progress through set matching and efficient adaptation of large-scale pre-trained models. However, two key limitations persist. First, existing set matching metrics typically rely on cosine similarity to measure inter-frame linear dependencies and then perform matching with only instance-level information, thus failing to capture more complex patterns such as nonlinear relationships and overlooking task-specific cues. Second, for efficient adaptation of CLIP to FSAR, recent work performing fine-tuning via skip-fusion layers (which we refer to as side layers) has significantly reduced memory cost. However, the newly introduced side layers are often difficult to optimize under limited data conditions. To address these limitations, we propose TS-FSAR, a framework comprising three components: (1) a visual Ladder Side Network (LSN) for efficient CLIP fine-tuning; (2) a metric called Task-Specific Distance Correlation Matching (TS-DCM), which uses $α$-distance correlation to model both linear and nonlinear inter-frame dependencies and leverages a task prototype to enable task-specific matching; and (3) a Guiding LSN with Adapted CLIP (GLAC) module, which regularizes LSN using the adapted frozen CLIP to improve training for better $α$-distance correlation estimation under limited supervision. Extensive experiments on five widely-used benchmarks demonstrate that our TS-FSAR yields superior performance compared to prior state-of-the-arts.
comment: 9 pages. 4 figures, conference
☆ UFVideo: Towards Unified Fine-Grained Video Cooperative Understanding with Large Language Models
With the advancement of multi-modal Large Language Models (LLMs), Video LLMs have been further developed to perform on holistic and specialized video understanding. However, existing works are limited to specialized video understanding tasks, failing to achieve a comprehensive and multi-grained video perception. To bridge this gap, we introduce UFVideo, the first Video LLM with unified multi-grained cooperative understanding capabilities. Specifically, we design unified visual-language guided alignment to flexibly handle video understanding across global, pixel and temporal scales within a single model. UFVideo dynamically encodes the visual and text inputs of different tasks and generates the textual response, temporal localization, or grounded mask. Additionally, to evaluate challenging multi-grained video understanding tasks, we construct the UFVideo-Bench consisting of three distinct collaborative tasks within the scales, which demonstrates UFVideo's flexibility and advantages over GPT-4o. Furthermore, we validate the effectiveness of our model across 9 public benchmarks covering various common video understanding tasks, providing valuable insights for future Video LLMs.
comment: 22 pages, 13 figures, technical report
☆ FreqDINO: Frequency-Guided Adaptation for Generalized Boundary-Aware Ultrasound Image Segmentation
Ultrasound image segmentation is pivotal for clinical diagnosis, yet challenged by speckle noise and imaging artifacts. Recently, DINOv3 has shown remarkable promise in medical image segmentation with its powerful representation capabilities. However, DINOv3, pre-trained on natural images, lacks sensitivity to ultrasound-specific boundary degradation. To address this limitation, we propose FreqDINO, a frequency-guided segmentation framework that enhances boundary perception and structural consistency. Specifically, we devise a Multi-scale Frequency Extraction and Alignment (MFEA) strategy to separate low-frequency structures and multi-scale high-frequency boundary details, and align them via learnable attention. We also introduce a Frequency-Guided Boundary Refinement (FGBR) module that extracts boundary prototypes from high-frequency components and refines spatial features. Furthermore, we design a Multi-task Boundary-Guided Decoder (MBGD) to ensure spatial coherence between boundary and semantic predictions. Extensive experiments demonstrate that FreqDINO surpasses state-of-the-art methods with superior achieves remarkable generalization capability. The code is at https://github.com/MingLang-FD/FreqDINO.
☆ Physics-Informed Video Flare Synthesis and Removal Leveraging Motion Independence between Flare and Scene
Lens flare is a degradation phenomenon caused by strong light sources. Existing researches on flare removal have mainly focused on images, while the spatiotemporal characteristics of video flare remain largely unexplored. Video flare synthesis and removal pose significantly greater challenges than in image, owing to the complex and mutually independent motion of flare, light sources, and scene content. This motion independence further affects restoration performance, often resulting in flicker and artifacts. To address this issue, we propose a physics-informed dynamic flare synthesis pipeline, which simulates light source motion using optical flow and models the temporal behaviors of both scattering and reflective flares. Meanwhile, we design a video flare removal network that employs an attention module to spatially suppress flare regions and incorporates a Mamba-based temporal modeling component to capture long range spatio-temporal dependencies. This motion-independent spatiotemporal representation effectively eliminates the need for multi-frame alignment, alleviating temporal aliasing between flares and scene content and thereby improving video flare removal performance. Building upon this, we construct the first video flare dataset to comprehensively evaluate our method, which includes a large set of synthetic paired videos and additional real-world videos collected from the Internet to assess generalization capability. Extensive experiments demonstrate that our method consistently outperforms existing video-based restoration and image-based flare removal methods on both real and synthetic videos, effectively removing dynamic flares while preserving light source integrity and maintaining spatiotemporal consistency of scene.
☆ MLLM Machine Unlearning via Visual Knowledge Distillation
Recently, machine unlearning approaches have been proposed to remove sensitive information from well-trained large models. However, most existing methods are tailored for LLMs, while MLLM-oriented unlearning remains at its early stage. Inspired by recent studies exploring the internal mechanisms of MLLMs, we propose to disentangle the visual and textual knowledge embedded within MLLMs and introduce a dedicated approach to selectively erase target visual knowledge while preserving textual knowledge. Unlike previous unlearning methods that rely on output-level supervision, our approach introduces a Visual Knowledge Distillation (VKD) scheme, which leverages intermediate visual representations within the MLLM as supervision signals. This design substantially enhances both unlearning effectiveness and model utility. Moreover, since our method only fine-tunes the visual components of the MLLM, it offers significant efficiency advantages. Extensive experiments demonstrate that our approach outperforms state-of-the-art unlearning methods in terms of both effectiveness and efficiency. Moreover, we are the first to evaluate the robustness of MLLM unlearning against relearning attacks.
☆ KeyframeFace: From Text to Expressive Facial Keyframes
Generating dynamic 3D facial animation from natural language requires understanding both temporally structured semantics and fine-grained expression changes. Existing datasets and methods mainly focus on speech-driven animation or unstructured expression sequences and therefore lack the semantic grounding and temporal structures needed for expressive human performance generation. In this work, we introduce KeyframeFace, a large-scale multimodal dataset designed for text-to-animation research through keyframe-level supervision. KeyframeFace provides 2,100 expressive scripts paired with monocular videos, per-frame ARKit coefficients, contextual backgrounds, complex emotions, manually defined keyframes, and multi-perspective annotations based on ARKit coefficients and images via Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs). Beyond the dataset, we propose the first text-to-animation framework that explicitly leverages LLM priors for interpretable facial motion synthesis. This design aligns the semantic understanding capabilities of LLMs with the interpretable structure of ARKit's coefficients, enabling high-fidelity expressive animation. KeyframeFace and our LLM-based framework together establish a new foundation for interpretable, keyframe-guided, and context-aware text-to-animation. Code and data are available at https://github.com/wjc12345123/KeyframeFace.
☆ SATMapTR: Satellite Image Enhanced Online HD Map Construction
High-definition (HD) maps are evolving from pre-annotated to real-time construction to better support autonomous driving in diverse scenarios. However, this process is hindered by low-quality input data caused by onboard sensors limited capability and frequent occlusions, leading to incomplete, noisy, or missing data, and thus reduced mapping accuracy and robustness. Recent efforts have introduced satellite images as auxiliary input, offering a stable, wide-area view to complement the limited ego perspective. However, satellite images in Bird's Eye View are often degraded by shadows and occlusions from vegetation and buildings. Prior methods using basic feature extraction and fusion remain ineffective. To address these challenges, we propose SATMapTR, a novel online map construction model that effectively fuses satellite image through two key components: (1) a gated feature refinement module that adaptively filters satellite image features by integrating high-level semantics with low-level structural cues to extract high signal-to-noise ratio map-relevant representations; and (2) a geometry-aware fusion module that consistently fuse satellite and BEV features at a grid-to-grid level, minimizing interference from irrelevant regions and low-quality inputs. Experimental results on the nuScenes dataset show that SATMapTR achieves the highest mean average precision (mAP) of 73.8, outperforming state-of-the-art satellite-enhanced models by up to 14.2 mAP. It also shows lower mAP degradation under adverse weather and sensor failures, and achieves nearly 3 times higher mAP at extended perception ranges.
comment: 9 pages (+ 3 pages of Appendix)
♻ ☆ SOF: Sorted Opacity Fields for Fast Unbounded Surface Reconstruction
Recent advances in 3D Gaussian representations have significantly improved the quality and efficiency of image-based scene reconstruction. Their explicit nature facilitates real-time rendering and fast optimization, yet extracting accurate surfaces - particularly in large-scale, unbounded environments - remains a difficult task. Many existing methods rely on approximate depth estimates and global sorting heuristics, which can introduce artifacts and limit the fidelity of the reconstructed mesh. In this paper, we present Sorted Opacity Fields (SOF), a method designed to recover detailed surfaces from 3D Gaussians with both speed and precision. Our approach improves upon prior work by introducing hierarchical resorting and a robust formulation of Gaussian depth, which better aligns with the level-set. To enhance mesh quality, we incorporate a level-set regularizer operating on the opacity field and introduce losses that encourage geometrically-consistent primitive shapes. In addition, we develop a parallelized Marching Tetrahedra algorithm tailored to our opacity formulation, reducing meshing time by up to an order of magnitude. As demonstrated by our quantitative evaluation, SOF achieves higher reconstruction accuracy while cutting total processing time by more than a factor of three. These results mark a step forward in turning efficient Gaussian-based rendering into equally efficient geometry extraction.
comment: SIGGRAPH Asia 2025; Project Page: https://r4dl.github.io/SOF/
♻ ☆ Efficient Action Counting with Dynamic Queries
Temporal repetition counting aims to quantify the repeated action cycles within a video. The majority of existing methods rely on the similarity correlation matrix to characterize the repetitiveness of actions, but their scalability is hindered due to the quadratic computational complexity. In this work, we introduce a novel approach that employs an action query representation to localize repeated action cycles with linear computational complexity. Based on this representation, we further develop two key components to tackle the essential challenges of temporal repetition counting. Firstly, to facilitate open-set action counting, we propose the dynamic update scheme on action queries. Unlike static action queries, this approach dynamically embeds video features into action queries, offering a more flexible and generalizable representation. Secondly, to distinguish between actions of interest and background noise actions, we incorporate inter-query contrastive learning to regularize the video representations corresponding to different action queries. As a result, our method significantly outperforms previous works, particularly in terms of long video sequences, unseen actions, and actions at various speeds. On the challenging RepCountA benchmark, we outperform the state-of-the-art method TransRAC by 26.5% in OBO accuracy, with a 22.7% mean error decrease and 94.1% computational burden reduction. Code is available at https://github.com/lizishi/DeTRC.
comment: code: https://github.com/lizishi/DeTRC, proj page: https://shirleymaxx.github.io/DeTRC/
♻ ☆ Visual-Friendly Concept Protection via Selective Adversarial Perturbations AAAI
Personalized concept generation by tuning diffusion models with a few images raises potential legal and ethical concerns regarding privacy and intellectual property rights. Researchers attempt to prevent malicious personalization using adversarial perturbations. However, previous efforts have mainly focused on the effectiveness of protection while neglecting the visibility of perturbations. They utilize global adversarial perturbations, which introduce noticeable alterations to original images and significantly degrade visual quality. In this work, we propose the Visual-Friendly Concept Protection (VCPro) framework, which prioritizes the protection of key concepts chosen by the image owner through adversarial perturbations with lower perceptibility. To ensure these perturbations are as inconspicuous as possible, we introduce a relaxed optimization objective to identify the least perceptible yet effective adversarial perturbations, solved using the Lagrangian multiplier method. Qualitative and quantitative experiments validate that VCPro achieves a better trade-off between the visibility of perturbations and protection effectiveness, effectively prioritizing the protection of target concepts in images with less perceptible perturbations.
comment: AAAI AISI 26
♻ ☆ FlowDirector: Training-Free Flow Steering for Precise Text-to-Video Editing
Text-driven video editing aims to modify video content based on natural language instructions. While recent training-free methods have leveraged pretrained diffusion models, they often rely on an inversion-editing paradigm. This paradigm maps the video to a latent space before editing. However, the inversion process is not perfectly accurate, often compromising appearance fidelity and motion consistency. To address this, we introduce FlowDirector, a novel training-free and inversion-free video editing framework. Our framework models the editing process as a direct evolution in the data space. It guides the video to transition smoothly along its inherent spatio-temporal manifold using an ordinary differential equation (ODE), thereby avoiding the inaccurate inversion step. From this foundation, we introduce three flow correction strategies for appearance, motion, and stability: 1) Direction-aware flow correction amplifies components that oppose the source direction and removes irrelevant terms, breaking conservative streamlines and enabling stronger structural and textural changes. 2) Motion-appearance decoupling optimizes motion agreement as an energy term at each timestep, significantly improving consistency and motion transfer. 3) Differential averaging guidance strategy leverages differences among multiple candidate flows to approximate a low variance regime at low cost, suppressing artifacts and stabilizing the trajectory. Extensive experiments across various editing tasks and benchmarks demonstrate that FlowDirector achieves state-of-the-art performance in instruction following, temporal consistency, and background preservation, establishing an efficient new paradigm for coherent video editing without inversion.
comment: Project Page is https://flowdirector-edit.github.io
♻ ☆ Open-World Object Counting in Videos AAAI 2026
We introduce a new task of open-world object counting in videos: given a text description, or an image example, that specifies the target object, the objective is to enumerate all the unique instances of the target objects in the video. This task is especially challenging in crowded scenes with occlusions and objects of similar appearance, where avoiding double counting and identifying reappearances is crucial. To this end, we make the following contributions: we introduce a model, CountVid, for this task. It leverages an image-based counting model, and a promptable video segmentation and tracking model, to enable automated open-world object counting across video frames. To evaluate its performance, we introduce VideoCount, a new dataset for this novel task built from the TAO and MOT20 tracking datasets, as well as from videos of penguins and metal alloy crystallization captured by x-rays. Using this dataset, we demonstrate that CountVid provides accurate object counts, and significantly outperforms strong baselines. The VideoCount dataset, the CountVid model, and all the code are available at https://www.robots.ox.ac.uk/~vgg/research/countvid/.
comment: AAAI 2026
♻ ☆ Unconsciously Forget: Mitigating Memorization; Without Knowing What is being Memorized
Recent advances in generative models have demonstrated an exceptional ability to produce highly realistic images. However, previous studies show that generated images often resemble the training data, and this problem becomes more severe as the model size increases. Memorizing training data can lead to legal challenges, including copyright infringement, violations of portrait rights, and trademark violations. Existing approaches to mitigating memorization mainly focus on manipulating the denoising sampling process to steer image embeddings away from the memorized embedding space or employ unlearning methods that require training on datasets containing specific sets of memorized concepts. However, existing methods often incur substantial computational overhead during sampling, or focus narrowly on removing one or more groups of target concepts, imposing a significant limitation on their scalability. To understand and mitigate these problems, our work, UniForget, offers a new perspective on understanding the root cause of memorization. Our work demonstrates that specific parts of the model are responsible for copyrighted content generation. By applying model pruning, we can effectively suppress the probability of generating copyrighted content without targeting specific concepts while preserving the general generative capabilities of the model. Additionally, we show that our approach is both orthogonal and complementary to existing unlearning methods, thereby highlighting its potential to improve current unlearning and de-memorization techniques.
♻ ☆ Exploring Diffusion with Test-Time Training on Efficient Image Restoration
Image restoration faces challenges including ineffective feature fusion, computational bottlenecks and inefficient diffusion processes. To address these, we propose DiffRWKVIR, a novel framework unifying Test-Time Training (TTT) with efficient diffusion. Our approach introduces three key innovations: (1) Omni-Scale 2D State Evolution extends RWKV's location-dependent parameterization to hierarchical multi-directional 2D scanning, enabling global contextual awareness with linear complexity O(L); (2) Chunk-Optimized Flash Processing accelerates intra-chunk parallelism by 3.2x via contiguous chunk processing (O(LCd) complexity), reducing sequential dependencies and computational overhead; (3) Prior-Guided Efficient Diffusion extracts a compact Image Prior Representation (IPR) in only 5-20 steps, proving 45% faster training/inference than DiffIR while solving computational inefficiency in denoising. Evaluated across super-resolution and inpainting benchmarks (Set5, Set14, BSD100, Urban100, Places365), DiffRWKVIR outperforms SwinIR, HAT, and MambaIR/v2 in PSNR, SSIM, LPIPS, and efficiency metrics. Our method establishes a new paradigm for adaptive, high-efficiency image restoration with optimized hardware utilization.
comment: We withdraw this paper due to erroneous experiment data in the ablation study, which was inadvertently copied from our preprint "Ultra-Lightweight Semantic-Injected Imagery Super-Resolution for Real-Time UAV Remote Sensing" This nearly constituted academic misconduct. We sincerely apologize and thank those who alerted us
♻ ☆ 3D-LATTE: Latent Space 3D Editing from Textual Instructions
Despite the recent success of multi-view diffusion models for text/image-based 3D asset generation, instruction-based editing of 3D assets lacks surprisingly far behind the quality of generation models. The main reason is that recent approaches using 2D priors suffer from view-inconsistent editing signals. Going beyond 2D prior distillation methods and multi-view editing strategies, we propose a training-free editing method that operates within the latent space of a native 3D diffusion model, allowing us to directly manipulate 3D geometry. We guide the edit synthesis by blending 3D attention maps from the generation with the source object. Coupled with geometry-aware regularization guidance, a spectral modulation strategy in the Fourier domain and a refinement step for 3D enhancement, our method outperforms previous 3D editing methods enabling high-fidelity and precise edits across a wide range of shapes and semantic manipulations. Our project webpage is https://mparelli.github.io/3d-latte
♻ ☆ Octopus: Agentic Multimodal Reasoning with Six-Capability Orchestration
Existing multimodal reasoning models and frameworks suffer from fundamental architectural limitations: most lack the human-like ability to autonomously explore diverse reasoning pathways-whether in direct inference, tool-driven visual exploration, programmatic visual manipulation, or intrinsic visual imagination. Consequently, they struggle to adapt to dynamically changing capability requirements in real-world tasks. Meanwhile, humans exhibit a complementary set of thinking abilities when addressing such tasks, whereas existing methods typically cover only a subset of these dimensions. Inspired by this, we propose Octopus: Agentic Multimodal Reasoning with Six-Capability Orchestration, a new paradigm for multimodal agentic reasoning. We define six core capabilities essential for multimodal reasoning and organize a comprehensive evaluation benchmark, Octopus-Bench, accordingly. Octopus is capable of autonomously exploring during reasoning and dynamically selecting the most appropriate capability based on the current state. Experimental results show that Octopus achieves the best performance on the vast majority of tasks in Octopus-Bench, highlighting the crucial role of capability coordination in agentic multimodal reasoning.
♻ ☆ Free-Lunch Color-Texture Disentanglement for Stylized Image Generation NeurIPS2025
Recent advances in Text-to-Image (T2I) diffusion models have transformed image generation, enabling significant progress in stylized generation using only a few style reference images. However, current diffusion-based methods struggle with fine-grained style customization due to challenges in controlling multiple style attributes, such as color and texture. This paper introduces the first tuning-free approach to achieve free-lunch color-texture disentanglement in stylized T2I generation, addressing the need for independently controlled style elements for the Disentangled Stylized Image Generation (DisIG) problem. Our approach leverages the Image-Prompt Additivity property in the CLIP image embedding space to develop techniques for separating and extracting Color-Texture Embeddings (CTE) from individual color and texture reference images. To ensure that the color palette of the generated image aligns closely with the color reference, we apply a whitening and coloring transformation to enhance color consistency. Additionally, to prevent texture loss due to the signal-leak bias inherent in diffusion training, we introduce a noise term that preserves textural fidelity during the Regularized Whitening and Coloring Transformation (RegWCT). Through these methods, our Style Attributes Disentanglement approach (SADis) delivers a more precise and customizable solution for stylized image generation. Experiments on images from the WikiArt and StyleDrop datasets demonstrate that, both qualitatively and quantitatively, SADis surpasses state-of-the-art stylization methods in the DisIG task.Code is released at https://deepffff.github.io/sadis.github.io/.
comment: Accepted by NeurIPS2025. Code is available at https://deepffff.github.io/sadis.github.io/
♻ ☆ SceneSplat++: A Large Dataset and Comprehensive Benchmark for Language Gaussian Splatting
3D Gaussian Splatting (3DGS) serves as a highly performant and efficient encoding of scene geometry, appearance, and semantics. Moreover, grounding language in 3D scenes has proven to be an effective strategy for 3D scene understanding. Current Language Gaussian Splatting line of work fall into three main groups: (i) per-scene optimization-based, (ii) per-scene optimization-free, and (iii) generalizable approach. However, most of them are evaluated only on rendered 2D views of a handful of scenes and viewpoints close to the training views, limiting ability and insight into holistic 3D understanding. To address this gap, we propose the first large-scale benchmark that systematically assesses these three groups of methods directly in 3D space, evaluating on 1060 scenes across three indoor datasets and one outdoor dataset. Benchmark results demonstrate a clear advantage of the generalizable paradigm, particularly in relaxing the scene-specific limitation, enabling fast feed-forward inference on novel scenes, and achieving superior segmentation performance. We further introduce GaussianWorld-49K a carefully curated 3DGS dataset comprising around 49K diverse indoor and outdoor scenes obtained from multiple sources, with which we demonstrate the generalizable approach could harness strong data priors. Our codes, benchmark, and datasets are released at https://scenesplatpp.gaussianworld.ai/.
comment: 15 pages, codes, data and benchmark are released
♻ ☆ Enhancing Object Discovery for Unsupervised Instance Segmentation and Object Detection
We propose Cut-Once-and-LEaRn (COLER), a simple approach for unsupervised instance segmentation and object detection. COLER first uses our developed CutOnce to generate coarse pseudo labels, then enables the detector to learn from these masks. CutOnce applies Normalized Cut (NCut) only once and does not rely on any clustering methods (e.g., K-Means), but it can generate multiple object masks in an image. Our work opens a new direction for NCut algorithm in multi-object segmentation. We have designed several novel yet simple modules that not only allow CutOnce to fully leverage the object discovery capabilities of self-supervised model, but also free it from reliance on mask post-processing. During training, COLER achieves strong performance without requiring specially designed loss functions for pseudo labels, and its performance is further improved through self-training. COLER is a zero-shot unsupervised model that outperforms previous state-of-the-art methods on multiple benchmarks. We believe our method can help advance the field of unsupervised object localization. Code is available at: https://github.com/Quantumcraft616/COLER.
♻ ☆ Generalized Denoising Diffusion Codebook Models (gDDCM): Tokenizing images using a pre-trained diffusion model
Denoising diffusion models have emerged as a dominant paradigm in image generation. Discretizing image data into tokens is a critical step for effectively integrating images with Transformer and other architectures. Although the Denoising Diffusion Codebook Models (DDCM) pioneered the use of pre-trained diffusion models for image tokenization, it strictly relies on the traditional discrete-time DDPM architecture. Consequently, it fails to adapt to modern continuous-time variants-such as Flow Matching and Consistency Models-and suffers from inefficient sampling in high-noise regions. To address these limitations, this paper proposes the Generalized Denoising Diffusion Codebook Models (gDDCM). We establish a unified theoretical framework and introduce a generic "De-noise and Back-trace" sampling strategy. By integrating a deterministic ODE denoising step with a residual-aligned noise injection step, our method resolves the challenge of adaptation. Furthermore, we introduce a backtracking parameter $p$ and significantly enhance tokenization ability. Extensive experiments on CIFAR10 and LSUN Bedroom datasets demonstrate that gDDCM achieves comprehensive compatibility with mainstream diffusion variants and significantly outperforms DDCM in terms of reconstruction quality and perceptual fidelity.
comment: in Chinese language
♻ ☆ SpecDETR: A transformer-based hyperspectral point object detection network
Hyperspectral target detection (HTD) aims to identify specific materials based on spectral information in hyperspectral imagery and can detect extremely small-sized objects, some of which occupy a smaller than one-pixel area. However, existing HTD methods are developed based on per-pixel binary classification, neglecting the three-dimensional cube structure of hyperspectral images (HSIs) that integrates both spatial and spectral dimensions. The synergistic existence of spatial and spectral features in HSIs enable objects to simultaneously exhibit both, yet the per-pixel HTD framework limits the joint expression of these features. In this paper, we rethink HTD from the perspective of spatial-spectral synergistic representation and propose hyperspectral point object detection as an innovative task framework. We introduce SpecDETR, the first specialized network for hyperspectral multi-class point object detection, which eliminates dependence on pre-trained backbone networks commonly required by vision-based object detectors. SpecDETR uses a multi-layer Transformer encoder with self-excited subpixel-scale attention modules to directly extract deep spatial-spectral joint features from hyperspectral cubes. We develop a simulated hyperspectral point object detection benchmark termed SPOD, and for the first time, evaluate and compare the performance of visual object detection networks and HTD methods on hyperspectral point object detection. Extensive experiments demonstrate that our proposed SpecDETR outperforms SOTA visual object detection networks and HTD methods. Our code and dataset are available at https://github.com/ZhaoxuLi123/SpecDETR.
♻ ☆ Continuous Vision-Language-Action Co-Learning with Semantic-Physical Alignment for Behavioral Cloning AAAI 2026
Language-conditioned manipulation facilitates human-robot interaction via behavioral cloning (BC), which learns control policies from human demonstrations and serves as a cornerstone of embodied AI. Overcoming compounding errors in sequential action decisions remains a central challenge to improving BC performance. Existing approaches mitigate compounding errors through data augmentation, expressive representation, or temporal abstraction. However, they suffer from physical discontinuities and semantic-physical misalignment, leading to inaccurate action cloning and intermittent execution. In this paper, we present Continuous vision-language-action Co-Learning with Semantic-Physical Alignment (CCoL), a novel BC framework that ensures temporally consistent execution and fine-grained semantic grounding. It generates robust and smooth action execution trajectories through continuous co-learning across vision, language, and proprioceptive inputs (e.g., robot internal states). Meanwhile, we anchor language semantics to visuomotor representations by a bidirectional cross-attention to learn contextual information for action generation, successfully overcoming the problem of semantic-physical misalignment. Extensive experiments show that CCoL achieves an average 8.0% relative improvement across three simulation suites, with up to 19.2% relative gain in human-demonstrated bimanual insertion tasks. Real-world tests on a 7-DoF robot further confirm CCoL's generalization under unseen and noisy object states.
comment: Accepted at AAAI 2026, the Project website is available at https://qhemu.github.io/CCoL/
♻ ☆ Tera-MIND: Tera-scale mouse brain simulation via spatial mRNA-guided diffusion
Holistic 3D modeling of molecularly defined brain structures is crucial for understanding complex brain functions. Using emerging tissue profiling technologies, researchers charted comprehensive atlases of mammalian brain with sub-cellular resolution and spatially resolved transcriptomic data. However, these tera-scale volumetric atlases pose computational challenges for modeling intricate brain structures within the native spatial context. We propose \textbf{Tera-MIND}, a novel generative framework capable of simulating \textbf{Tera}-scale \textbf{M}ouse bra\textbf{IN}s in 3D using a patch-based and boundary-aware \textbf{D}iffusion model. Taking spatial gene expression as conditional input, we generate virtual mouse brains with comprehensive cellular morphological detail at teravoxel scale. Through the lens of 3D \textit{gene}-\textit{gene} self-attention, we identify spatial molecular interactions for key transcriptomic pathways, including glutamatergic and dopaminergic neuronal systems. Lastly, we showcase the translational applicability of Tera-MIND on previously unseen human brain samples. Tera-MIND offers an efficient generative modeling of whole virtual organisms, paving the way for integrative applications in biomedical research. Project website: https://musikisomorphie.github.io/Tera-MIND.html
♻ ☆ Equivariant symmetry-aware head pose estimation for fetal MRI
We present E(3)-Pose, a novel fast pose estimation method that jointly and explicitly models rotation equivariance and object symmetry. Our work is motivated by the challenging problem of accounting for fetal head motion during a diagnostic MRI scan. We aim to enable automatic adaptive prescription of 2D diagnostic MRI slices with 6-DoF head pose estimation, supported by 3D MRI volumes rapidly acquired before each 2D slice. Existing methods struggle to generalize to clinical volumes, due to pose ambiguities induced by inherent anatomical symmetries, as well as low resolution, noise, and artifacts. In contrast, E(3)-Pose captures anatomical symmetries and rigid pose equivariance by construction, and yields robust estimates of the fetal head pose. Our experiments on publicly available and representative clinical fetal MRI datasets demonstrate the superior robustness and generalization of our method across domains. Crucially, E(3)-Pose achieves state-of-the-art accuracy on clinical MRI volumes, paving the way for clinical translation. Our implementation is available at github.com/ramyamut/E3-Pose.
♻ ☆ Multimodal Learning for Scalable Representation of High-Dimensional Medical Data
Integrating artificial intelligence (AI) with healthcare data is rapidly transforming medical diagnostics and driving progress toward precision medicine. However, effectively leveraging multimodal data, particularly digital pathology whole slide images (WSIs) and genomic sequencing, remains a significant challenge due to the intrinsic heterogeneity of these modalities and the need for scalable and interpretable frameworks. Existing diagnostic models typically operate on unimodal data, overlooking critical cross-modal interactions that can yield richer clinical insights. We introduce MarbliX (Multimodal Association and Retrieval with Binary Latent Indexed matriX), a self-supervised framework that learns to embed WSIs and immunogenomic profiles into compact, scalable binary codes, termed ``monogram.'' By optimizing a triplet contrastive objective across modalities, MarbliX captures high-resolution patient similarity in a unified latent space, enabling efficient retrieval of clinically relevant cases and facilitating case-based reasoning. \textcolor{black}{In lung cancer, MarbliX achieves 85-89\% across all evaluation metrics, outperforming histopathology (69-71\%) and immunogenomics (73-76\%). In kidney cancer, real-valued monograms yield the strongest performance (F1: 80-83\%, Accuracy: 87-90\%), with binary monograms slightly lower (F1: 78-82\%).
♻ ☆ VADER: Towards Causal Video Anomaly Understanding with Relation-Aware Large Language Models
Video anomaly understanding (VAU) aims to provide detailed interpretation and semantic comprehension of anomalous events within videos, addressing limitations of traditional methods that focus solely on detecting and localizing anomalies. However, existing approaches often neglect the deeper causal relationships and interactions between objects, which are critical for understanding anomalous behaviors. In this paper, we propose VADER, an LLM-driven framework for Video Anomaly unDErstanding, which integrates keyframe object Relation features with visual cues to enhance anomaly comprehension from video. Specifically, VADER first applies an Anomaly Scorer to assign per-frame anomaly scores, followed by a Context-AwarE Sampling (CAES) strategy to capture the causal context of each anomalous event. A Relation Feature Extractor and a COntrastive Relation Encoder (CORE) jointly model dynamic object interactions, producing compact relational representations for downstream reasoning. These visual and relational cues are integrated with LLMs to generate detailed, causally grounded descriptions and support robust anomaly-related question answering. Experiments on multiple real-world VAU benchmarks demonstrate that VADER achieves strong results across anomaly description, explanation, and causal reasoning tasks, advancing the frontier of explainable video anomaly analysis.
comment: Accepted to WACV 2026. Project page available at: https://vader-vau.github.io/
♻ ☆ From Macro to Micro: Benchmarking Microscopic Spatial Intelligence on Molecules via Vision-Language Models
This paper introduces the concept of Microscopic Spatial Intelligence (MiSI), the capability to perceive and reason about the spatial relationships of invisible microscopic entities, which is fundamental to scientific discovery. To assess the potential of Vision-Language Models (VLMs) in this domain, we propose a systematic benchmark framework MiSI-Bench. This framework features over 163,000 question-answer pairs and 587,000 images derived from approximately 4,000 molecular structures, covering nine complementary tasks that evaluate abilities ranging from elementary spatial transformations to complex relational identifications. Experimental results reveal that current state-of-the-art VLMs perform significantly below human level on this benchmark. However, a fine-tuned 7B model demonstrates substantial potential, even surpassing humans in spatial transformation tasks, while its poor performance in scientifically-grounded tasks like hydrogen bond recognition underscores the necessity of integrating explicit domain knowledge for progress toward scientific AGI. The datasets are available at https://huggingface.co/datasets/zongzhao/MiSI-bench.
♻ ☆ Spec-Gloss Surfels and Normal-Diffuse Priors for Relightable Glossy Objects
Accurate reconstruction and relighting of glossy objects remains a longstanding challenge, as object shape, material properties, and illumination are inherently difficult to disentangle. Existing neural rendering approaches often rely on simplified BRDF models or parameterizations that couple diffuse and specular components, which restrict faithful material recovery and limit relighting fidelity. We propose a relightable framework that integrates a microfacet BRDF with the specular-glossiness parameterization into 2D Gaussian Splatting with deferred shading. This formulation enables more physically consistent material decomposition, while diffusion-based priors for surface normals and diffuse color guide early-stage optimization and mitigate ambiguity. A coarse-to-fine environment map optimization accelerates convergence, and negative-only environment map clipping preserves high-dynamic-range specular reflections. Extensive experiments on complex, glossy scenes demonstrate that our method achieves high-quality geometry and material reconstruction, delivering substantially more realistic and consistent relighting under novel illumination compared to existing Gaussian splatting methods.
♻ ☆ Defense That Attacks: How Robust Models Become Better Attackers
Deep learning has achieved great success in computer vision, but remains vulnerable to adversarial attacks. Adversarial training is the leading defense designed to improve model robustness. However, its effect on the transferability of attacks is underexplored. In this work, we ask whether adversarial training unintentionally increases the transferability of adversarial examples. To answer this, we trained a diverse zoo of 36 models, including CNNs and ViTs, and conducted comprehensive transferability experiments. Our results reveal a clear paradox: adversarially trained (AT) models produce perturbations that transfer more effectively than those from standard models, which introduce a new ecosystem risk. To enable reproducibility and further study, we release all models, code, and experimental scripts. Furthermore, we argue that robustness evaluations should assess not only the resistance of a model to transferred attacks but also its propensity to produce transferable adversarial examples.
♻ ☆ MMAP: A Multi-Magnification and Prototype-Aware Architecture for Predicting Spatial Gene Expression
Spatial Transcriptomics (ST) enables the measurement of gene expression while preserving spatial information, offering critical insights into tissue architecture and disease pathology. Recent developments have explored the use of hematoxylin and eosin (H&E)-stained whole-slide images (WSIs) to predict transcriptome-wide gene expression profiles through deep neural networks. This task is commonly framed as a regression problem, where each input corresponds to a localized image patch extracted from the WSI. However, predicting spatial gene expression from histological images remains a challenging problem due to the significant modality gap between visual features and molecular signals. Recent studies have attempted to incorporate both local and global information into predictive models. Nevertheless, existing methods still suffer from two key limitations: (1) insufficient granularity in local feature extraction, and (2) inadequate coverage of global spatial context. In this work, we propose a novel framework, MMAP (Multi-MAgnification and Prototype-enhanced architecture), that addresses both challenges simultaneously. To enhance local feature granularity, MMAP leverages multi-magnification patch representations that capture fine-grained histological details. To improve global contextual understanding, it learns a set of latent prototype embeddings that serve as compact representations of slide-level information. Extensive experimental results demonstrate that MMAP consistently outperforms all existing state-of-the-art methods across multiple evaluation metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), and Pearson Correlation Coefficient (PCC).
comment: Received Best Paper Award at the 2025 Pacific Rim International Conference on Artificial Intelligence (PRICAI 2025)
♻ ☆ Enhancing Supervised Composed Image Retrieval via Reasoning-Augmented Representation Engineering
Composed Image Retrieval (CIR) presents a significant challenge as it requires jointly understanding a reference image and a modified textual instruction to find relevant target images. Some existing methods attempt to use a two-stage approach to further refine retrieval results. However, this often requires additional training of a ranking model. Despite the success of Chain-of-Thought (CoT) techniques in reducing training costs for language models, their application in CIR tasks remains limited -- compressing visual information into text or relying on elaborate prompt designs. Besides, existing works only utilize it for zero-shot CIR, as it is challenging to achieve satisfactory results in supervised CIR with a well-trained model. In this work, we proposed a framework that includes the Pyramid Matching Model with Training-Free Refinement (PMTFR) to address these challenges. Through a simple but effective module called Pyramid Patcher, we enhanced the Pyramid Matching Model's understanding of visual information at different granularities. Inspired by representation engineering, we extracted representations from COT data and injected them into the LVLMs. This approach allowed us to obtain refined retrieval scores in the Training-Free Refinement paradigm without relying on explicit textual reasoning, further enhancing performance. Extensive experiments on CIR benchmarks demonstrate that PMTFR surpasses state-of-the-art methods in supervised CIR tasks. The code will be made public.
♻ ☆ ChangeBridge: Spatiotemporal Image Generation with Multimodal Controls for Remote Sensing
Spatiotemporal image generation is a highly meaningful task, which can generate future scenes conditioned on given observations. However, existing change generation methods can only handle event-driven changes (e.g., new buildings) and fail to model cross-temporal variations (e.g., seasonal shifts). In this work, we propose ChangeBridge, a conditional spatiotemporal image generation model for remote sensing. Given pre-event images and multimodal event controls, ChangeBridge generates post-event scenes that are both spatially and temporally coherent. The core idea is a drift-asynchronous diffusion bridge. Specifically, it consists of three main modules: a) Composed bridge initialization, which replaces noise initialization. It starts the diffusion from a composed pre-event state, modeling a diffusion bridge process. b) Asynchronous Drift Diffusion, which uses a pixel-wise drift map, assigning different drift magnitudes to event and temporal evolution. This enables differentiated generation during the pre-to-post transition. c) Drift-Aware Denoising, which embeds the drift map into the denoising network, guiding drift-aware reconstruction. Experiments show that ChangeBridge can generate better cross-spatiotemporal aligned scenarios compared to state-of-the-art methods. Additionally, ChangeBridge shows great potential for land-use planning and as a data generation engine for a series of change detection tasks.
♻ ☆ MOAT: Evaluating LMMs for Capability Integration and Instruction Grounding
Large multimodal models (LMMs) have demonstrated significant potential as generalists in vision-language (VL) tasks. However, adoption of LMMs in real-world tasks is hindered by their poor performance in tasks that require a combination of VL capabilities, as well as in tasks that involve the grounding of complex text or visual instructions. To thoroughly investigate this gap and its underlying causes, we propose MOAT, a diverse benchmark with 1005 complex real-world vision questions that are straightforward for humans but challenging for LMMs. Specifically, the tasks in MOAT require LMMs to engage in generalist problem solving by integrating VL capabilities such as reading text, counting, understanding spatial relations, grounding textual and visual instructions, etc. All these abilities fit into a taxonomy proposed by us that contains 9 VL capabilities, enabling MOAT to provide a fine-grained view of LMMs' strengths and weaknesses. Besides, MOAT is the first benchmark to explicitly evaluate LMMs' ability to ground complex text and visual instructions, which is essential for many real-world applications. We evaluated 17 proprietary and open source LMMs, finding that the best performing LMM (Gemini 2.5 Pro) achieved only 44% accuracy, far below what would be acceptable in real-world applications. To guide future model development, we analyze common trends in our results and discuss the underlying causes of poor performance, focusing on the impact of text-centric reasoning, which VL capabilities form bottlenecks in complex tasks, and the potential harmful effects of tiling. Code and data are available at https://cambrian-yzt.github.io/MOAT/.
comment: Project page: https://cambrian-yzt.github.io/MOAT
♻ ☆ InterAgent: Physics-based Multi-agent Command Execution via Diffusion on Interaction Graphs
Humanoid agents are expected to emulate the complex coordination inherent in human social behaviors. However, existing methods are largely confined to single-agent scenarios, overlooking the physically plausible interplay essential for multi-agent interactions. To bridge this gap, we propose InterAgent, the first end-to-end framework for text-driven physics-based multi-agent humanoid control. At its core, we introduce an autoregressive diffusion transformer equipped with multi-stream blocks, which decouples proprioception, exteroception, and action to mitigate cross-modal interference while enabling synergistic coordination. We further propose a novel interaction graph exteroception representation that explicitly captures fine-grained joint-to-joint spatial dependencies to facilitate network learning. Additionally, within it we devise a sparse edge-based attention mechanism that dynamically prunes redundant connections and emphasizes critical inter-agent spatial relations, thereby enhancing the robustness of interaction modeling. Extensive experiments demonstrate that InterAgent consistently outperforms multiple strong baselines, achieving state-of-the-art performance. It enables producing coherent, physically plausible, and semantically faithful multi-agent behaviors from only text prompts. Our code and data will be released to facilitate future research.
comment: Project page: https://binlee26.github.io/InterAgent-Page
♻ ☆ COSMO-INR: Complex Sinusoidal Modulation for Implicit Neural Representations ICLR 2026
Implicit neural representations (INRs) are a powerful paradigm for modeling data, offering a continuous alternative to discrete signal representations. Their ability to compactly encode complex signals has led to strong performance in many vision tasks. Prior work shows INR performance is highly sensitive to the choice of activation function in the underlying multilayer perceptron, yet the theoretical reasons remain unclear. Key limitations also persist, including spectral bias (reduced sensitivity to high-frequency content), limited robustness to noise, and difficulty capturing local and global structure jointly. We analyze INR signal representation using harmonic analysis and Chebyshev polynomials. We prove that modulating activation functions with a complex sinusoidal term yields richer and more complete spectral support throughout the network. Building on this, we introduce a new activation function tailored to INRs and validate our theory using Chebyshev analysis and extensive experiments. We additionally use a regularized deep prior, extracted from a task-specific model, to adapt the activations, further improving convergence speed and stability. Across image reconstruction (average PSNR gain of +5.67 dB over the nearest counterpart on a diverse dataset), denoising (+0.46 dB PSNR), super-resolution (+0.64 dB over the nearest SOTA method for 6X upscaling), inpainting, and 3D shape reconstruction, our activation consistently outperforms existing state-of-the-art alternatives.
comment: Submitted as a conference paper to ICLR 2026
♻ ☆ Any2Caption:Interpreting Any Condition to Caption for Controllable Video Generation
To address the bottleneck of accurate user intent interpretation within the current video generation community, we present Any2Caption, a novel framework for controllable video generation under any condition. The key idea is to decouple various condition interpretation steps from the video synthesis step. By leveraging modern multimodal large language models (MLLMs), Any2Caption interprets diverse inputs--text, images, videos, and specialized cues such as region, motion, and camera poses--into dense, structured captions that offer backbone video generators with better guidance. We also introduce Any2CapIns, a large-scale dataset with 337K instances and 407K conditions for any-condition-to-caption instruction tuning. Comprehensive evaluations demonstrate significant improvements of our system in controllability and video quality across various aspects of existing video generation models. Project Page: https://sqwu.top/Any2Cap/
comment: Project Page: https://sqwu.top/Any2Cap/
♻ ☆ Advancing Weakly-Supervised Change Detection in Satellite Images via Adversarial Class Prompting
Weakly-Supervised Change Detection (WSCD) aims to distinguish specific object changes (e.g., objects appearing or disappearing) from background variations (e.g., environmental changes due to light, weather, or seasonal shifts) in paired satellite images, relying only on paired image (i.e., image-level) classification labels. This technique significantly reduces the need for dense annotations required in fully-supervised change detection. However, as image-level supervision only indicates whether objects have changed in a scene, WSCD methods often misclassify background variations as object changes, especially in complex remote-sensing scenarios. In this work, we propose an Adversarial Class Prompting (AdvCP) method to address this co-occurring noise problem, including two phases: a) Adversarial Prompt Mining: After each training iteration, we introduce adversarial prompting perturbations, using incorrect one-hot image-level labels to activate erroneous feature mappings. This process reveals co-occurring adversarial samples under weak supervision, namely background variation features that are likely to be misclassified as object changes. b) Adversarial Sample Rectification: We integrate these adversarially prompt-activated pixel samples into training by constructing an online global prototype. This prototype is built from an exponentially weighted moving average of the current batch and all historical training data. Our AdvCP can be seamlessly integrated into current WSCD methods without adding additional inference cost. Experiments on ConvNet, Transformer, and Segment Anything Model (SAM)-based baselines demonstrate significant performance enhancements. Furthermore, we demonstrate the generalizability of AdvCP to other multi-class weakly-supervised dense prediction scenarios. Code is available at https://github.com/zhenghuizhao/AdvCP
comment: Accepted by IEEE Transactions on Image Processing
♻ ☆ Temporal In-Context Fine-Tuning with Temporal Reasoning for Versatile Control of Video Diffusion Models
Recent advances in text-to-video diffusion models have enabled high-quality video synthesis, but controllable generation remains challenging, particularly under limited data and compute. Existing fine-tuning methods for conditional generation often rely on external encoders or architectural modifications, which demand large datasets and are typically restricted to spatially aligned conditioning, limiting flexibility and scalability. In this work, we introduce Temporal In-Context Fine-Tuning (TIC-FT), an efficient and versatile approach for adapting pretrained video diffusion models to diverse conditional generation tasks. Our key idea is to concatenate condition and target frames along the temporal axis and insert intermediate buffer frames with progressively increasing noise levels. These buffer frames enable smooth transitions, aligning the fine-tuning process with the pretrained model's temporal dynamics. TIC-FT requires no architectural changes and achieves strong performance with as few as 10-30 training samples. We validate our method across a range of tasks, including image-to-video and video-to-video generation, using large-scale base models such as CogVideoX-5B and Wan-14B. Extensive experiments show that TIC-FT outperforms existing baselines in both condition fidelity and visual quality, while remaining highly efficient in both training and inference. For additional results, visit https://kinam0252.github.io/TIC-FT/
comment: project page: https://kinam0252.github.io/TIC-FT/
♻ ☆ BrainExplore: Large-Scale Discovery of Interpretable Visual Representations in the Human Brain
Understanding how the human brain represents visual concepts, and in which brain regions these representations are encoded, remains a long-standing challenge. Decades of work have advanced our understanding of visual representations, yet brain signals remain large and complex, and the space of possible visual concepts is vast. As a result, most studies remain small-scale, rely on manual inspection, focus on specific regions and properties, and rarely include systematic validation. We present a large-scale, automated framework for discovering and explaining visual representations across the human cortex. Our method comprises two main stages. First, we discover candidate interpretable patterns in fMRI activity through unsupervised, data-driven decomposition methods. Next, we explain each pattern by identifying the set of natural images that most strongly elicit it and generating a natural-language description of their shared visual meaning. To scale this process, we introduce an automated pipeline that tests multiple candidate explanations, assigns quantitative reliability scores, and selects the most consistent description for each voxel pattern. Our framework reveals thousands of interpretable patterns spanning many distinct visual concepts, including fine-grained representations previously unreported.
♻ ☆ Wukong's 72 Transformations: High-fidelity Textured 3D Morphing via Flow Models
We present WUKONG, a novel training-free framework for high-fidelity textured 3D morphing that takes a pair of source and target prompts (image or text) as input. Unlike conventional methods -- which rely on manual correspondence matching and deformation trajectory estimation (limiting generalization and requiring costly preprocessing) -- WUKONG leverages the generative prior of flow-based transformers to produce high-fidelity 3D transitions with rich texture details. To ensure smooth shape transitions, we exploit the inherent continuity of flow-based generative processes and formulate morphing as an optimal transport barycenter problem. We further introduce a sequential initialization strategy to prevent abrupt geometric distortions and preserve identity coherence. For faithful texture preservation, we propose a similarity-guided semantic consistency mechanism that selectively retains high-frequency details and enables precise control over blending dynamics. This avoids common artifacts like oversmoothing while maintaining semantic fidelity. Extensive quantitative and qualitative evaluations demonstrate that WUKONG significantly outperforms state-of-the-art methods, achieving superior results across diverse geometry and texture variations.
♻ ☆ The Finer the Better: Towards Granular-aware Open-set Domain Generalization
Open-Set Domain Generalization (OSDG) tackles the realistic scenario where deployed models encounter both domain shifts and novel object categories. Despite impressive progress with vision-language models like CLIP, existing methods still fall into the dilemma between structural risk of known-classes and open-space risk from unknown-classes, and easily suffers from over-confidence, especially when distinguishing ``hard unknowns" that share fine-grained visual similarities with known classes. To this end, we propose a Semantic-enhanced CLIP (SeeCLIP) framework that explicitly addresses this dilemma through fine-grained semantic enhancement. In SeeCLIP, we propose a semantic-aware prompt enhancement module to decompose images into discriminative semantic tokens, enabling nuanced vision-language alignment beyond coarse category labels. To position unknown prompts effectively, we introduce duplex contrastive learning with complementary objectives, that is, repulsion to maintain separability from known classes, and cohesion to preserve semantic proximity. Further, our semantic-guided diffusion module synthesizes pseudo-unknowns by perturbing extracted semantic tokens, generating challenging samples that are visually similar to known classes yet exhibit key local differences. These hard negatives force the model to learn finer decision boundaries. Extensive experiments across five benchmarks demonstrate consistent improvements of 3% accuracy and 5% H-score over state-of-the-art methods.
comment: 9 pages,3 figures,aaai2026
Machine Learning 158
☆ A General Algorithm for Detecting Higher-Order Interactions via Random Sequential Additions
Many systems exhibit complex interactions between their components: some features or actions amplify each other's effects, others provide redundant information, and some contribute independently. We present a simple geometric method for discovering interactions and redundancies: when elements are added in random sequential orders and their contributions plotted over many trials, characteristic L-shaped patterns emerge that directly reflect interaction structure. The approach quantifies how the contribution of each element depends on those added before it, revealing patterns that distinguish interaction, independence, and redundancy on a unified scale. When pairwise contributions are visualized as two--dimensional point clouds, redundant pairs form L--shaped patterns where only the first-added element contributes, while synergistic pairs form L--shaped patterns where only elements contribute together. Independent elements show order--invariant distributions. We formalize this with the L--score, a continuous measure ranging from $-1$ (perfect synergy, e.g. $Y=X_1X_2$) to $0$ (independence) to $+1$ (perfect redundancy, $X_1 \approx X_2$). The relative scaling of the L--shaped arms reveals feature dominance in which element consistently provides more information. Although computed only from pairwise measurements, higher--order interactions among three or more elements emerge naturally through consistent cross--pair relationships (e.g. AB, AC, BC). The method is metric--agnostic and broadly applicable to any domain where performance can be evaluated incrementally over non-repeating element sequences, providing a unified geometric approach to uncovering interaction structure.
☆ Softmax as Linear Attention in the Large-Prompt Regime: a Measure-based Perspective
Softmax attention is a central component of transformer architectures, yet its nonlinear structure poses significant challenges for theoretical analysis. We develop a unified, measure-based framework for studying single-layer softmax attention under both finite and infinite prompts. For i.i.d. Gaussian inputs, we lean on the fact that the softmax operator converges in the infinite-prompt limit to a linear operator acting on the underlying input-token measure. Building on this insight, we establish non-asymptotic concentration bounds for the output and gradient of softmax attention, quantifying how rapidly the finite-prompt model approaches its infinite-prompt counterpart, and prove that this concentration remains stable along the entire training trajectory in general in-context learning settings with sub-Gaussian tokens. In the case of in-context linear regression, we use the tractable infinite-prompt dynamics to analyze training at finite prompt length. Our results allow optimization analyses developed for linear attention to transfer directly to softmax attention when prompts are sufficiently long, showing that large-prompt softmax attention inherits the analytical structure of its linear counterpart. This, in turn, provides a principled and broadly applicable toolkit for studying the training dynamics and statistical behavior of softmax attention layers in large prompt regimes.
☆ Conditional Coverage Diagnostics for Conformal Prediction
Evaluating conditional coverage remains one of the most persistent challenges in assessing the reliability of predictive systems. Although conformal methods can give guarantees on marginal coverage, no method can guarantee to produce sets with correct conditional coverage, leaving practitioners without a clear way to interpret local deviations. To overcome sample-inefficiency and overfitting issues of existing metrics, we cast conditional coverage estimation as a classification problem. Conditional coverage is violated if and only if any classifier can achieve lower risk than the target coverage. Through the choice of a (proper) loss function, the resulting risk difference gives a conservative estimate of natural miscoverage measures such as L1 and L2 distance, and can even separate the effects of over- and under-coverage, and non-constant target coverages. We call the resulting family of metrics excess risk of the target coverage (ERT). We show experimentally that the use of modern classifiers provides much higher statistical power than simple classifiers underlying established metrics like CovGap. Additionally, we use our metric to benchmark different conformal prediction methods. Finally, we release an open-source package for ERT as well as previous conditional coverage metrics. Together, these contributions provide a new lens for understanding, diagnosing, and improving the conditional reliability of predictive systems.
☆ The Adaptive Vekua Cascade: A Differentiable Spectral-Analytic Solver for Physics-Informed Representation
Coordinate-based neural networks have emerged as a powerful tool for representing continuous physical fields, yet they face two fundamental pathologies: spectral bias, which hinders the learning of high-frequency dynamics, and the curse of dimensionality, which causes parameter explosion in discrete feature grids. We propose the Adaptive Vekua Cascade (AVC), a hybrid architecture that bridges deep learning and classical approximation theory. AVC decouples manifold learning from function approximation by using a deep network to learn a diffeomorphic warping of the physical domain, projecting complex spatiotemporal dynamics onto a latent manifold where the solution is represented by a basis of generalized analytic functions. Crucially, we replace the standard gradient-descent output layer with a differentiable linear solver, allowing the network to optimally resolve spectral coefficients in a closed form during the forward pass. We evaluate AVC on a suite of five rigorous physics benchmarks, including high-frequency Helmholtz wave propagation, sparse medical reconstruction, and unsteady 3D Navier-Stokes turbulence. Our results demonstrate that AVC achieves state-of-the-art accuracy while reducing parameter counts by orders of magnitude (e.g., 840 parameters vs. 4.2 million for 3D grids) and converging 2-3x faster than implicit neural representations. This work establishes a new paradigm for memory-efficient, spectrally accurate scientific machine learning. The code is available at https://github.com/VladimerKhasia/vecua.
☆ Learning Minimal Representations of Fermionic Ground States
We introduce an unsupervised machine-learning framework that discovers optimally compressed representations of quantum many-body ground states. Using an autoencoder neural network architecture on data from $L$-site Fermi-Hubbard models, we identify minimal latent spaces with a sharp reconstruction quality threshold at $L-1$ latent dimensions, matching the system's intrinsic degrees of freedom. We demonstrate the use of the trained decoder as a differentiable variational ansatz to minimize energy directly within the latent space. Crucially, this approach circumvents the $N$-representability problem, as the learned manifold implicitly restricts the optimization to physically valid quantum states.
☆ SpectralKrum: A Spectral-Geometric Defense Against Byzantine Attacks in Federated Learning
Federated Learning (FL) distributes model training across clients who retain their data locally, but this architecture exposes a fundamental vulnerability: Byzantine clients can inject arbitrarily corrupted updates that degrade or subvert the global model. While robust aggregation methods (including Krum, Bulyan, and coordinate-wise defenses) offer theoretical guarantees under idealized assumptions, their effectiveness erodes substantially when client data distributions are heterogeneous (non-IID) and adversaries can observe or approximate the defense mechanism. This paper introduces SpectralKrum, a defense that fuses spectral subspace estimation with geometric neighbor-based selection. The core insight is that benign optimization trajectories, despite per-client heterogeneity, concentrate near a low-dimensional manifold that can be estimated from historical aggregates. SpectralKrum projects incoming updates into this learned subspace, applies Krum selection in compressed coordinates, and filters candidates whose orthogonal residual energy exceeds a data-driven threshold. The method requires no auxiliary data, operates entirely on model updates, and preserves FL privacy properties. We evaluate SpectralKrum against eight robust baselines across seven attack scenarios on CIFAR-10 with Dirichlet-distributed non-IID partitions (alpha = 0.1). Experiments spanning over 56,000 training rounds show that SpectralKrum is competitive against directional and subspace-aware attacks (adaptive-steer, buffer-drift), but offers limited advantage under label-flip and min-max attacks where malicious updates remain spectrally indistinguishable from benign ones.
☆ LUCID: Learning-Enabled Uncertainty-Aware Certification of Stochastic Dynamical Systems AAAI 2026
Ensuring the safety of AI-enabled systems, particularly in high-stakes domains such as autonomous driving and healthcare, has become increasingly critical. Traditional formal verification tools fall short when faced with systems that embed both opaque, black-box AI components and complex stochastic dynamics. To address these challenges, we introduce LUCID (Learning-enabled Uncertainty-aware Certification of stochastIc Dynamical systems), a verification engine for certifying safety of black-box stochastic dynamical systems from a finite dataset of random state transitions. As such, LUCID is the first known tool capable of establishing quantified safety guarantees for such systems. Thanks to its modular architecture and extensive documentation, LUCID is designed for easy extensibility. LUCID employs a data-driven methodology rooted in control barrier certificates, which are learned directly from system transition data, to ensure formal safety guarantees. We use conditional mean embeddings to embed data into a reproducing kernel Hilbert space (RKHS), where an RKHS ambiguity set is constructed that can be inflated to robustify the result to out-of-distribution behavior. A key innovation within LUCID is its use of a finite Fourier kernel expansion to reformulate a semi-infinite non-convex optimization problem into a tractable linear program. The resulting spectral barrier allows us to leverage the fast Fourier transform to generate the relaxed problem efficiently, offering a scalable yet distributionally robust framework for verifying safety. LUCID thus offers a robust and efficient verification framework, able to handle the complexities of modern black-box systems while providing formal guarantees of safety. These unique capabilities are demonstrated on challenging benchmarks.
comment: The manuscript has been accepted for publication in the main track of AAAI 2026
☆ ECCO: Leveraging Cross-Camera Correlations for Efficient Live Video Continuous Learning
Recent advances in video analytics address real-time data drift by continuously retraining specialized, lightweight DNN models for individual cameras. However, the current practice of retraining a separate model for each camera suffers from high compute and communication costs, making it unscalable. We present ECCO, a new video analytics framework designed for resource-efficient continuous learning. The key insight is that the data drift, which necessitates model retraining, often shows temporal and spatial correlations across nearby cameras. By identifying cameras that experience similar drift and retraining a shared model for them, ECCO can substantially reduce the associated compute and communication costs. Specifically, ECCO introduces: (i) a lightweight grouping algorithm that dynamically forms and updates camera groups; (ii) a GPU allocator that dynamically assigns GPU resources across different groups to improve retraining accuracy and ensure fairness; and (iii) a transmission controller at each camera that configures frame sampling and coordinates bandwidth sharing with other cameras based on its assigned GPU resources. We conducted extensive evaluations on three distinctive datasets for two vision tasks. Compared to leading baselines, ECCO improves retraining accuracy by 6.7%-18.1% using the same compute and communication resources, or supports 3.3 times more concurrent cameras at the same accuracy.
☆ High-Dimensional Surrogate Modeling for Closed-Loop Learning of Neural-Network-Parameterized Model Predictive Control
Learning controller parameters from closed-loop data has been shown to improve closed-loop performance. Bayesian optimization, a widely used black-box and sample-efficient learning method, constructs a probabilistic surrogate of the closed-loop performance from few experiments and uses it to select informative controller parameters. However, it typically struggles with dense high-dimensional controller parameterizations, as they may appear, for example, in tuning model predictive controllers, because standard surrogate models fail to capture the structure of such spaces. This work suggests that the use of Bayesian neural networks as surrogate models may help to mitigate this limitation. Through a comparison between Gaussian processes with Matern kernels, finite-width Bayesian neural networks, and infinite-width Bayesian neural networks on a cart-pole task, we find that Bayesian neural network surrogate models achieve faster and more reliable convergence of the closed-loop cost and enable successful optimization of parameterizations with hundreds of dimensions. Infinite-width Bayesian neural networks also maintain performance in settings with more than one thousand parameters, whereas Matern-kernel Gaussian processes rapidly lose effectiveness. These results indicate that Bayesian neural network surrogate models may be suitable for learning dense high-dimensional controller parameterizations and offer practical guidance for selecting surrogate models in learning-based controller design.
comment: 7 pages, 2 figures
☆ Stable spectral neural operator for learning stiff PDE systems from limited data
Accurate modeling of spatiotemporal dynamics is crucial to understanding complex phenomena across science and engineering. However, this task faces a fundamental challenge when the governing equations are unknown and observational data are sparse. System stiffness, the coupling of multiple time-scales, further exacerbates this problem and hinders long-term prediction. Existing methods fall short: purely data-driven methods demand massive datasets, whereas physics-aware approaches are constrained by their reliance on known equations and fine-grained time steps. To overcome these limitations, we introduce an equation-free learning framework, namely, the Stable Spectral Neural Operator (SSNO), for modeling stiff partial differential equation (PDE) systems based on limited data. Instead of encoding specific equation terms, SSNO embeds spectrally inspired structures in its architecture, yielding strong inductive biases for learning the underlying physics. It automatically learns local and global spatial interactions in the frequency domain, while handling system stiffness with a robust integrating factor time-stepping scheme. Demonstrated across multiple 2D and 3D benchmarks in Cartesian and spherical geometries, SSNO achieves prediction errors one to two orders of magnitude lower than leading models. Crucially, it shows remarkable data efficiency, requiring only very few (2--5) training trajectories for robust generalization to out-of-distribution conditions. This work offers a robust and generalizable approach to learning stiff spatiotemporal dynamics from limited data without explicit \textit{a priori} knowledge of PDE terms.
☆ MedAI: Evaluating TxAgent's Therapeutic Agentic Reasoning in the NeurIPS CURE-Bench Competition
Therapeutic decision-making in clinical medicine constitutes a high-stakes domain in which AI guidance interacts with complex interactions among patient characteristics, disease processes, and pharmacological agents. Tasks such as drug recommendation, treatment planning, and adverse-effect prediction demand robust, multi-step reasoning grounded in reliable biomedical knowledge. Agentic AI methods, exemplified by TxAgent, address these challenges through iterative retrieval-augmented generation (RAG). TxAgent employs a fine-tuned Llama-3.1-8B model that dynamically generates and executes function calls to a unified biomedical tool suite (ToolUniverse), integrating FDA Drug API, OpenTargets, and Monarch resources to ensure access to current therapeutic information. In contrast to general-purpose RAG systems, medical applications impose stringent safety constraints, rendering the accuracy of both the reasoning trace and the sequence of tool invocations critical. These considerations motivate evaluation protocols treating token-level reasoning and tool-usage behaviors as explicit supervision signals. This work presents insights derived from our participation in the CURE-Bench NeurIPS 2025 Challenge, which benchmarks therapeutic-reasoning systems using metrics that assess correctness, tool utilization, and reasoning quality. We analyze how retrieval quality for function (tool) calls influences overall model performance and demonstrate performance gains achieved through improved tool-retrieval strategies. Our work was awarded the Excellence Award in Open Science. Complete information can be found at https://curebench.ai/.
comment: 7 pages, 3 figures
☆ Bridging Streaming Continual Learning via In-Context Large Tabular Models AAAI
In streaming scenarios, models must learn continuously, adapting to concept drifts without erasing previously acquired knowledge. However, existing research communities address these challenges in isolation. Continual Learning (CL) focuses on long-term retention and mitigating catastrophic forgetting, often without strict real-time constraints. Stream Learning (SL) emphasizes rapid, efficient adaptation to high-frequency data streams, but typically neglects forgetting. Recent efforts have tried to combine these paradigms, yet no clear algorithmic overlap exists. We argue that large in-context tabular models (LTMs) provide a natural bridge for Streaming Continual Learning (SCL). In our view, unbounded streams should be summarized on-the-fly into compact sketches that can be consumed by LTMs. This recovers the classical SL motivation of compressing massive streams with fixed-size guarantees, while simultaneously aligning with the experience-replay desiderata of CL. To clarify this bridge, we show how the SL and CL communities implicitly adopt a divide-to-conquer strategy to manage the tension between plasticity (performing well on the current distribution) and stability (retaining past knowledge), while also imposing a minimal complexity constraint that motivates diversification (avoiding redundancy in what is stored) and retrieval (re-prioritizing past information when needed). Within this perspective, we propose structuring SCL with LTMs around two core principles of data selection for in-context learning: (1) distribution matching, which balances plasticity and stability, and (2) distribution compression, which controls memory size through diversification and retrieval mechanisms.
comment: Streaming Continual Learning AAAI Bridge 2026
☆ A Fast Interpretable Fuzzy Tree Learner
Fuzzy rule-based systems have been mostly used in interpretable decision-making because of their interpretable linguistic rules. However, interpretability requires both sensible linguistic partitions and small rule-base sizes, which are not guaranteed by many existing fuzzy rule-mining algorithms. Evolutionary approaches can produce high-quality models but suffer from prohibitive computational costs, while neural-based methods like ANFIS have problems retaining linguistic interpretations. In this work, we propose an adaptation of classical tree-based splitting algorithms from crisp rules to fuzzy trees, combining the computational efficiency of greedy algoritms with the interpretability advantages of fuzzy logic. This approach achieves interpretable linguistic partitions and substantially improves running time compared to evolutionary-based approaches while maintaining competitive predictive performance. Our experiments on tabular classification benchmarks proof that our method achieves comparable accuracy to state-of-the-art fuzzy classifiers with significantly lower computational cost and produces more interpretable rule bases with constrained complexity. Code is available in: https://github.com/Fuminides/fuzzy_greedy_tree_public
☆ Bounding Hallucinations: Information-Theoretic Guarantees for RAG Systems via Merlin-Arthur Protocols
Retrieval-augmented generation (RAG) models rely on retrieved evidence to guide large language model (LLM) generators, yet current systems treat retrieval as a weak heuristic rather than verifiable evidence. As a result, LLMs answer without support, hallucinate under incomplete or misleading context, and rely on spurious evidence. We introduce a training framework that treats the entire RAG pipeline -- both the retriever and the generator -- as an interactive proof system via an adaptation of the Merlin-Arthur (M/A) protocol. Arthur (the generator LLM) trains on questions of unkown provenance: Merlin provides helpful evidence, while Morgana injects adversarial, misleading context. Both use a linear-time XAI method to identify and modify the evidence most influential to Arthur. Consequently, Arthur learns to (i) answer when the context support the answer, (ii) reject when evidence is insufficient, and (iii) rely on the specific context spans that truly ground the answer. We further introduce a rigorous evaluation framework to disentangle explanation fidelity from baseline predictive errors. This allows us to introduce and measure the Explained Information Fraction (EIF), which normalizes M/A certified mutual-information guarantees relative to model capacity and imperfect benchmarks. Across three RAG datasets and two model families of varying sizes, M/A-trained LLMs show improved groundedness, completeness, soundness, and reject behavior, as well as reduced hallucinations -- without needing manually annotated unanswerable questions. The retriever likewise improves recall and MRR through automatically generated M/A hard positives and negatives. Our results demonstrate that autonomous interactive-proof-style supervision provides a principled and practical path toward reliable RAG systems that treat retrieved documents not as suggestions, but as verifiable evidence.
comment: 34 pages, 19 figures
☆ Neural Network-based Partial-Linear Single-Index Models for Environmental Mixtures Analysis
Evaluating the health effects of complex environmental mixtures remains a central challenge in environmental health research. Existing approaches vary in their flexibility, interpretability, scalability, and support for diverse outcome types, often limiting their utility in real-world applications. To address these limitations, we propose a neural network-based partial-linear single-index (NeuralPLSI) modeling framework that bridges semiparametric regression modeling interpretability with the expressive power of deep learning. The NeuralPLSI model constructs an interpretable exposure index via a learnable projection and models its relationship with the outcome through a flexible neural network. The framework accommodates continuous, binary, and time-to-event outcomes, and supports inference through a bootstrap-based procedure that yields confidence intervals for key model parameters. We evaluated NeuralPLSI through simulation studies under a range of scenarios and applied it to data from the National Health and Nutrition Examination Survey (NHANES) to demonstrate its practical utility. Together, our contributions establish NeuralPLSI as a scalable, interpretable, and versatile modeling tool for mixture analysis. To promote adoption and reproducibility, we release a user-friendly open-source software package that implements the proposed methodology and supports downstream visualization and inference (\texttt{https://github.com/hyungrok-do/NeuralPLSI}).
☆ Gradient Descent as a Perceptron Algorithm: Understanding Dynamics and Implicit Acceleration
Even for the gradient descent (GD) method applied to neural network training, understanding its optimization dynamics, including convergence rate, iterate trajectories, function value oscillations, and especially its implicit acceleration, remains a challenging problem. We analyze nonlinear models with the logistic loss and show that the steps of GD reduce to those of generalized perceptron algorithms (Rosenblatt, 1958), providing a new perspective on the dynamics. This reduction yields significantly simpler algorithmic steps, which we analyze using classical linear algebra tools. Using these tools, we demonstrate on a minimalistic example that the nonlinearity in a two-layer model can provably yield a faster iteration complexity $\tilde{O}(\sqrt{d})$ compared to $Ω(d)$ achieved by linear models, where $d$ is the number of features. This helps explain the optimization dynamics and the implicit acceleration phenomenon observed in neural networks. The theoretical results are supported by extensive numerical experiments. We believe that this alternative view will further advance research on the optimization of neural networks.
☆ Atomic Action Slicing: Planner-Aligned Options for Generalist VLA Agents
Current vision-language-action (VLA) models generalize poorly, particularly when tasks require new compositions of skills or objects. We introduce Atomic Action Slicing (AAS), a planner-aligned approach that decomposes long-horizon demonstrations into short, typed atomic actions that are easier for planners to use and policies to learn. Using LIBERO demonstrations, AAS produces a validated dataset of 2,124 atomic segments labeled with action type, temporal span, and confidence. A stronger segmenter (Gemini 2.5 Pro) closely matches planner-defined plans and remains robust under keyframe jitter, while smaller models perform worse on multi-object tasks. Fine-tuning CLIP-RT+ on our atomic dataset improves task success from 94.2% to 95.3% on LIBERO-Goal and 83.8% to 88.8% on LIBERO-Long. We publicly release the GATE-VLAP dataset on HuggingFace(https://huggingface.co/datasets/gate-institute/GATE-VLAP-datasets)
comment: The 41st ACM/SIGAPP Symposium On Applied Computing
☆ Brain-Semantoks: Learning Semantic Tokens of Brain Dynamics with a Self-Distilled Foundation Model
The development of foundation models for functional magnetic resonance imaging (fMRI) time series holds significant promise for predicting phenotypes related to disease and cognition. Current models, however, are often trained using a mask-and-reconstruct objective on small brain regions. This focus on low-level information leads to representations that are sensitive to noise and temporal fluctuations, necessitating extensive fine-tuning for downstream tasks. We introduce Brain-Semantoks, a self-supervised framework designed specifically to learn abstract representations of brain dynamics. Its architecture is built on two core innovations: a semantic tokenizer that aggregates noisy regional signals into robust tokens representing functional networks, and a self-distillation objective that enforces representational stability across time. We show that this objective is stabilized through a novel training curriculum, ensuring the model robustly learns meaningful features from low signal-to-noise time series. We demonstrate that learned representations enable strong performance on a variety of downstream tasks even when only using a linear probe. Furthermore, we provide comprehensive scaling analyses indicating more unlabeled data reliably results in out-of-distribution performance gains without domain adaptation.
comment: Code and pretrained models available at https://github.com/SamGijsen/Brain-Semantoks
☆ Safe Bayesian optimization across noise models via scenario programming
Safe Bayesian optimization (BO) with Gaussian processes is an effective tool for tuning control policies in safety-critical real-world systems, specifically due to its sample efficiency and safety guarantees. However, most safe BO algorithms assume homoscedastic sub-Gaussian measurement noise, an assumption that does not hold in many relevant applications. In this article, we propose a straightforward yet rigorous approach for safe BO across noise models, including homoscedastic sub-Gaussian and heteroscedastic heavy-tailed distributions. We provide a high-probability bound on the measurement noise via the scenario approach, integrate these bounds into high probability confidence intervals, and prove safety and optimality for our proposed safe BO algorithm. We deploy our algorithm in synthetic examples and in tuning a controller for the Franka Emika manipulator in simulation.
comment: Accepted for publication (IEEE Control System Letters)
☆ In-Context Learning for Seismic Data Processing
Seismic processing transforms raw data into subsurface images essential for geophysical applications. Traditional methods face challenges, such as noisy data, and manual parameter tuning, among others. Recently deep learning approaches have proposed alternative solutions to some of these problems. However, important challenges of existing deep learning approaches are spatially inconsistent results across neighboring seismic gathers and lack of user-control. We address these limitations by introducing ContextSeisNet, an in-context learning model, to seismic demultiple processing. Our approach conditions predictions on a support set of spatially related example pairs: neighboring common-depth point gathers from the same seismic line and their corresponding labels. This allows the model to learn task-specific processing behavior at inference time by observing how similar gathers should be processed, without any retraining. This method provides both flexibility through user-defined examples and improved lateral consistency across seismic lines. On synthetic data, ContextSeisNet outperforms a U-Net baseline quantitatively and demonstrates enhanced spatial coherence between neighboring gathers. On field data, our model achieves superior lateral consistency compared to both traditional Radon demultiple and the U-Net baseline. Relative to the U-Net, ContextSeisNet also delivers improved near-offset performance and more complete multiple removal. Notably, ContextSeisNet achieves comparable field data performance despite being trained on 90% less data, demonstrating substantial data efficiency. These results establish ContextSeisNet as a practical approach for spatially consistent seismic demultiple with potential applicability to other seismic processing tasks.
comment: Source code available under https://codeberg.org/fuchsfa/in-context-learning-seismic
☆ Visualizing token importance for black-box language models
We consider the problem of auditing black-box large language models (LLMs) to ensure they behave reliably when deployed in production settings, particularly in high-stakes domains such as legal, medical, and regulatory compliance. Existing approaches for LLM auditing often focus on isolated aspects of model behavior, such as detecting specific biases or evaluating fairness. We are interested in a more general question -- can we understand how the outputs of black-box LLMs depend on each input token? There is a critical need to have such tools in real-world applications that rely on inaccessible API endpoints to language models. However, this is a highly non-trivial problem, as LLMs are stochastic functions (i.e. two outputs will be different by chance), while computing prompt-level gradients to approximate input sensitivity is infeasible. To address this, we propose Distribution-Based Sensitivity Analysis (DBSA), a lightweight model-agnostic procedure to evaluate the sensitivity of the output of a language model for each input token, without making any distributional assumptions about the LLM. DBSA is developed as a practical tool for practitioners, enabling quick, plug-and-play visual exploration of LLMs reliance on specific input tokens. Through illustrative examples, we demonstrate how DBSA can enable users to inspect LLM inputs and find sensitivities that may be overlooked by existing LLM interpretability methods.
☆ Fully Inductive Node Representation Learning via Graph View Transformation
Generalizing a pretrained model to unseen datasets without retraining is an essential step toward a foundation model. However, achieving such cross-dataset, fully inductive inference is difficult in graph-structured data where feature spaces vary widely in both dimensionality and semantics. Any transformation in the feature space can easily violate the inductive applicability to unseen datasets, strictly limiting the design space of a graph model. In this work, we introduce the view space, a novel representational axis in which arbitrary graphs can be naturally encoded in a unified manner. We then propose Graph View Transformation (GVT), a node- and feature-permutation-equivariant mapping in the view space. GVT serves as the building block for Recurrent GVT, a fully inductive model for node representation learning. Pretrained on OGBN-Arxiv and evaluated on 27 node-classification benchmarks, Recurrent GVT outperforms GraphAny, the prior fully inductive graph model, by +8.93% and surpasses 12 individually tuned GNNs by at least +3.30%. These results establish the view space as a principled and effective ground for fully inductive node representation learning.
☆ Elastic-Net Multiple Kernel Learning: Combining Multiple Data Sources for Prediction
Multiple Kernel Learning (MKL) models combine several kernels in supervised and unsupervised settings to integrate multiple data representations or sources, each represented by a different kernel. MKL seeks an optimal linear combination of base kernels that maximizes a generalized performance measure under a regularization constraint. Various norms have been used to regularize the kernel weights, including $l1$, $l2$ and $lp$, as well as the "elastic-net" penalty, which combines $l1$- and $l2$-norm to promote both sparsity and the selection of correlated kernels. This property makes elastic-net regularized MKL (ENMKL) especially valuable when model interpretability is critical and kernels capture correlated information, such as in neuroimaging. Previous ENMKL methods have followed a two-stage procedure: fix kernel weights, train a support vector machine (SVM) with the weighted kernel, and then update the weights via gradient descent, cutting-plane methods, or surrogate functions. Here, we introduce an alternative ENMKL formulation that yields a simple analytical update for the kernel weights. We derive explicit algorithms for both SVM and kernel ridge regression (KRR) under this framework, and implement them in the open-source Pattern Recognition for Neuroimaging Toolbox (PRoNTo). We evaluate these ENMKL algorithms against $l1$-norm MKL and against SVM (or KRR) trained on the unweighted sum of kernels across three neuroimaging applications. Our results show that ENMKL matches or outperforms $l1$-norm MKL in all tasks and only underperforms standard SVM in one scenario. Crucially, ENMKL produces sparser, more interpretable models by selectively weighting correlated kernels.
comment: Technical Report
☆ Optimizing the Training Diet: Data Mixture Search for Robust Time Series Forecasting
The standard paradigm for training deep learning models on sensor data assumes that more data is always better. However, raw sensor streams are often imbalanced and contain significant redundancy, meaning that not all data points contribute equally to model generalization. In this paper, we show that, in some cases, "less is more" when considering datasets. We do this by reframing the data selection problem: rather than tuning model hyperparameters, we fix the model and optimize the composition of the training data itself. We introduce a framework for discovering the optimal "training diet" from a large, unlabeled time series corpus. Our framework first uses a large-scale encoder and k-means clustering to partition the dataset into distinct, behaviorally consistent clusters. These clusters represent the fundamental 'ingredients' available for training. We then employ the Optuna optimization framework to search the high-dimensional space of possible data mixtures. For each trial, Optuna proposes a specific sampling ratio for each cluster, and a new training set is constructed based on this recipe. A smaller target model is then trained and evaluated. Our experiments reveal that this data-centric search consistently discovers data mixtures that yield models with significantly higher performance compared to baselines trained on the entire dataset. Specifically - evaluated on PMSM dataset - our method improved performance from a baseline MSE of 1.70 to 1.37, a 19.41% improvement.
comment: Accepted ACM SAC 2026
☆ A Multi-Criteria Automated MLOps Pipeline for Cost-Effective Cloud-Based Classifier Retraining in Response to Data Distribution Shifts
The performance of machine learning (ML) models often deteriorates when the underlying data distribution changes over time, a phenomenon known as data distribution drift. When this happens, ML models need to be retrained and redeployed. ML Operations (MLOps) is often manual, i.e., humans trigger the process of model retraining and redeployment. In this work, we present an automated MLOps pipeline designed to address neural network classifier retraining in response to significant data distribution changes. Our MLOps pipeline employs multi-criteria statistical techniques to detect distribution shifts and triggers model updates only when necessary, ensuring computational efficiency and resource optimization. We demonstrate the effectiveness of our framework through experiments on several benchmark anomaly detection data sets, showing significant improvements in model accuracy and robustness compared to traditional retraining strategies. Our work provides a foundation for deploying more reliable and adaptive ML systems in dynamic real-world settings, where data distribution changes are common.
comment: 11 pages, 3 figures and 2 tables. Preliminary results on an automated MLOps pipeline
☆ Parametric Numerical Integration with (Differential) Machine Learning
In this work, we introduce a machine/deep learning methodology to solve parametric integrals. Besides classical machine learning approaches, we consider a differential learning framework that incorporates derivative information during training, emphasizing its advantageous properties. Our study covers three representative problem classes: statistical functionals (including moments and cumulative distribution functions), approximation of functions via Chebyshev expansions, and integrals arising directly from differential equations. These examples range from smooth closed-form benchmarks to challenging numerical integrals. Across all cases, the differential machine learning-based approach consistently outperforms standard architectures, achieving lower mean squared error, enhanced scalability, and improved sample efficiency.
☆ xGR: Efficient Generative Recommendation Serving at Scale
Recommendation system delivers substantial economic benefits by providing personalized predictions. Generative recommendation (GR) integrates LLMs to enhance the understanding of long user-item sequences. Despite employing attention-based architectures, GR's workload differs markedly from that of LLM serving. GR typically processes long prompt while producing short, fixed-length outputs, yet the computational cost of each decode phase is especially high due to the large beam width. In addition, since the beam search involves a vast item space, the sorting overhead becomes particularly time-consuming. We propose xGR, a GR-oriented serving system that meets strict low-latency requirements under highconcurrency scenarios. First, xGR unifies the processing of prefill and decode phases through staged computation and separated KV cache. Second, xGR enables early sorting termination and mask-based item filtering with data structure reuse. Third, xGR reconstructs the overall pipeline to exploit multilevel overlap and multi-stream parallelism. Our experiments with real-world recommendation service datasets demonstrate that xGR achieves at least 3.49x throughput compared to the state-of-the-art baseline under strict latency constraints.
☆ Contrastive Time Series Forecasting with Anomalies
Time series forecasting predicts future values from past data. In real-world settings, some anomalous events have lasting effects and influence the forecast, while others are short-lived and should be ignored. Standard forecasting models fail to make this distinction, often either overreacting to noise or missing persistent shifts. We propose Co-TSFA (Contrastive Time Series Forecasting with Anomalies), a regularization framework that learns when to ignore anomalies and when to respond. Co-TSFA generates input-only and input-output augmentations to model forecast-irrelevant and forecast-relevant anomalies, and introduces a latent-output alignment loss that ties representation changes to forecast changes. This encourages invariance to irrelevant perturbations while preserving sensitivity to meaningful distributional shifts. Experiments on the Traffic and Electricity benchmarks, as well as on a real-world cash-demand dataset, demonstrate that Co-TSFA improves performance under anomalous conditions while maintaining accuracy on normal data. An anonymized GitHub repository with the implementation of Co-TSFA is provided and will be made public upon acceptance.
☆ NeuralOGCM: Differentiable Ocean Modeling with Learnable Physics
High-precision scientific simulation faces a long-standing trade-off between computational efficiency and physical fidelity. To address this challenge, we propose NeuralOGCM, an ocean modeling framework that fuses differentiable programming with deep learning. At the core of NeuralOGCM is a fully differentiable dynamical solver, which leverages physics knowledge as its core inductive bias. The learnable physics integration captures large-scale, deterministic physical evolution, and transforms key physical parameters (e.g., diffusion coefficients) into learnable parameters, enabling the model to autonomously optimize its physical core via end-to-end training. Concurrently, a deep neural network learns to correct for subgrid-scale processes and discretization errors not captured by the physics model. Both components work in synergy, with their outputs integrated by a unified ODE solver. Experiments demonstrate that NeuralOGCM maintains long-term stability and physical consistency, significantly outperforming traditional numerical models in speed and pure AI baselines in accuracy. Our work paves a new path for building fast, stable, and physically-plausible models for scientific computing.
☆ Super-Resolved Canopy Height Mapping from Sentinel-2 Time Series Using LiDAR HD Reference Data across Metropolitan France
Fine-scale forest monitoring is essential for understanding canopy structure and its dynamics, which are key indicators of carbon stocks, biodiversity, and forest health. Deep learning is particularly effective for this task, as it integrates spectral, temporal, and spatial signals that jointly reflect the canopy structure. To address this need, we introduce THREASURE-Net, a novel end-to-end framework for Tree Height Regression And Super-Resolution. The model is trained on Sentinel-2 time series using reference height metrics derived from LiDAR HD data at multiple spatial resolutions over Metropolitan France to produce annual height maps. We evaluate three model variants, producing tree-height predictions at 2.5 m, 5 m, and 10 m resolution. THREASURE-Net does not rely on any pretrained model nor on reference very high resolution optical imagery to train its super-resolution module; instead, it learns solely from LiDAR-derived height information. Our approach outperforms existing state-of-the-art methods based on Sentinel data and is competitive with methods based on very high resolution imagery. It can be deployed to generate high-precision annual canopy-height maps, achieving mean absolute errors of 2.62 m, 2.72 m, and 2.88 m at 2.5 m, 5 m, and 10 m resolution, respectively. These results highlight the potential of THREASURE-Net for scalable and cost-effective structural monitoring of temperate forests using only freely available satellite data. The source code for THREASURE-Net is available at: https://github.com/Global-Earth-Observation/threasure-net.
☆ BAID: A Benchmark for Bias Assessment of AI Detectors AAAI 2026
AI-generated text detectors have recently gained adoption in educational and professional contexts. Prior research has uncovered isolated cases of bias, particularly against English Language Learners (ELLs) however, there is a lack of systematic evaluation of such systems across broader sociolinguistic factors. In this work, we propose BAID, a comprehensive evaluation framework for AI detectors across various types of biases. As a part of the framework, we introduce over 200k samples spanning 7 major categories: demographics, age, educational grade level, dialect, formality, political leaning, and topic. We also generated synthetic versions of each sample with carefully crafted prompts to preserve the original content while reflecting subgroup-specific writing styles. Using this, we evaluate four open-source state-of-the-art AI text detectors and find consistent disparities in detection performance, particularly low recall rates for texts from underrepresented groups. Our contributions provide a scalable, transparent approach for auditing AI detectors and emphasize the need for bias-aware evaluation before these tools are deployed for public use.
comment: Accepted at the workshop on Agentic AI Benchmarks and Applications for Enterprise Tasks at AAAI 2026
☆ FRQI Pairs method for image classification using Quantum Recurrent Neural Network
This study aims to introduce the FRQI Pairs method to a wider audience, a novel approach to image classification using Quantum Recurrent Neural Networks (QRNN) with Flexible Representation for Quantum Images (FRQI). The study highlights an innovative approach to use quantum encoded data for an image classification task, suggesting that such quantum-based approaches could significantly reduce the complexity of quantum algorithms. Comparison of the FRQI Pairs method with contemporary techniques underscores the promise of integrating quantum computing principles with neural network architectures for the development of quantum machine learning.
comment: This is a preprint of a paper submitted to the 2025 11th International Conference on Control, Decision and Information Technologies (CoDIT). Copyright may be transferred to IEEE upon acceptance
☆ Rethinking Expert Trajectory Utilization in LLM Post-training
While effective post-training integrates Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL), the optimal mechanism for utilizing expert trajectories remains unresolved. We propose the Plasticity-Ceiling Framework to theoretically ground this landscape, decomposing performance into foundational SFT performance and the subsequent RL plasticity. Through extensive benchmarking, we establish the Sequential SFT-then-RL pipeline as the superior standard, overcoming the stability deficits of synchronized approaches. Furthermore, we derive precise scaling guidelines: (1) Transitioning to RL at the SFT Stable or Mild Overfitting Sub-phase maximizes the final ceiling by securing foundational SFT performance without compromising RL plasticity; (2) Refuting ``Less is More'' in the context of SFT-then-RL scaling, we demonstrate that Data Scale determines the primary post-training potential, while Trajectory Difficulty acts as a performance multiplier; and (3) Identifying that the Minimum SFT Validation Loss serves as a robust indicator for selecting the expert trajectories that maximize the final performance ceiling. Our findings provide actionable guidelines for maximizing the value extracted from expert trajectories.
comment: 24 pages, 5 figures, under review
☆ DOS: Distilling Observable Softmaps of Zipfian Prototypes for Self-Supervised Point Representation AAAI-26
Recent advances in self-supervised learning (SSL) have shown tremendous potential for learning 3D point cloud representations without human annotations. However, SSL for 3D point clouds still faces critical challenges due to irregular geometry, shortcut-prone reconstruction, and unbalanced semantics distribution. In this work, we propose DOS (Distilling Observable Softmaps), a novel SSL framework that self-distills semantic relevance softmaps only at observable (unmasked) points. This strategy prevents information leakage from masked regions and provides richer supervision than discrete token-to-prototype assignments. To address the challenge of unbalanced semantics in an unsupervised setting, we introduce Zipfian prototypes and incorporate them using a modified Sinkhorn-Knopp algorithm, Zipf-Sinkhorn, which enforces a power-law prior over prototype usage and modulates the sharpness of the target softmap during training. DOS outperforms current state-of-the-art methods on semantic segmentation and 3D object detection across multiple benchmarks, including nuScenes, Waymo, SemanticKITTI, ScanNet, and ScanNet200, without relying on extra data or annotations. Our results demonstrate that observable-point softmaps distillation offers a scalable and effective paradigm for learning robust 3D representations.
comment: AAAI-26
☆ Exploring MLLM-Diffusion Information Transfer with MetaCanvas
Multimodal learning has rapidly advanced visual understanding, largely via multimodal large language models (MLLMs) that use powerful LLMs as cognitive cores. In visual generation, however, these powerful core models are typically reduced to global text encoders for diffusion models, leaving most of their reasoning and planning ability unused. This creates a gap: current multimodal LLMs can parse complex layouts, attributes, and knowledge-intensive scenes, yet struggle to generate images or videos with equally precise and structured control. We propose MetaCanvas, a lightweight framework that lets MLLMs reason and plan directly in spatial and spatiotemporal latent spaces and interface tightly with diffusion generators. We empirically implement MetaCanvas on three different diffusion backbones and evaluate it across six tasks, including text-to-image generation, text/image-to-video generation, image/video editing, and in-context video generation, each requiring precise layouts, robust attribute binding, and reasoning-intensive control. MetaCanvas consistently outperforms global-conditioning baselines, suggesting that treating MLLMs as latent-space planners is a promising direction for narrowing the gap between multimodal understanding and generation.
comment: Project page: https://metacanvas.github.io
☆ Hyperbolic Gaussian Blurring Mean Shift: A Statistical Mode-Seeking Framework for Clustering in Curved Spaces
Clustering is a fundamental unsupervised learning task for uncovering patterns in data. While Gaussian Blurring Mean Shift (GBMS) has proven effective for identifying arbitrarily shaped clusters in Euclidean space, it struggles with datasets exhibiting hierarchical or tree-like structures. In this work, we introduce HypeGBMS, a novel extension of GBMS to hyperbolic space. Our method replaces Euclidean computations with hyperbolic distances and employs Möbius-weighted means to ensure that all updates remain consistent with the geometry of the space. HypeGBMS effectively captures latent hierarchies while retaining the density-seeking behavior of GBMS. We provide theoretical insights into convergence and computational complexity, along with empirical results that demonstrate improved clustering quality in hierarchical datasets. This work bridges classical mean-shift clustering and hyperbolic representation learning, offering a principled approach to density-based clustering in curved spaces. Extensive experimental evaluations on $11$ real-world datasets demonstrate that HypeGBMS significantly outperforms conventional mean-shift clustering methods in non-Euclidean settings, underscoring its robustness and effectiveness.
☆ Emergence of Nonequilibrium Latent Cycles in Unsupervised Generative Modeling
We show that nonequilibrium dynamics can play a constructive role in unsupervised machine learning by inducing the spontaneous emergence of latent-state cycles. We introduce a model in which visible and hidden variables interact through two independently parametrized transition matrices, defining a Markov chain whose steady state is intrinsically out of equilibrium. Likelihood maximization drives this system toward nonequilibrium steady states with finite entropy production, reduced self-transition probabilities, and persistent probability currents in the latent space. These cycles are not imposed by the architecture but arise from training, and models that develop them avoid the low-log-likelihood regime associated with nearly reversible dynamics while more faithfully reproducing the empirical distribution of data classes. Compared with equilibrium approaches such as restricted Boltzmann machines, our model breaks the detailed balance between the forward and backward conditional transitions and relies on a log-likelihood gradient that depends explicitly on the last two steps of the Markov chain. Hence, this exploration of the interface between nonequilibrium statistical physics and modern machine learning suggests that introducing irreversibility into latent-variable models can enhance generative performance.
comment: 8 pages, 4 figures
☆ Task-Specific Sparse Feature Masks for Molecular Toxicity Prediction with Chemical Language Models
Reliable in silico molecular toxicity prediction is a cornerstone of modern drug discovery, offering a scalable alternative to experimental screening. However, the black-box nature of state-of-the-art models remains a significant barrier to adoption, as high-stakes safety decisions demand verifiable structural insights alongside predictive performance. To address this, we propose a novel multi-task learning (MTL) framework designed to jointly enhance accuracy and interpretability. Our architecture integrates a shared chemical language model with task-specific attention modules. By imposing an L1 sparsity penalty on these modules, the framework is constrained to focus on a minimal set of salient molecular fragments for each distinct toxicity endpoint. The resulting framework is trained end-to-end and is readily adaptable to various transformer-based backbones. Evaluated on the ClinTox, SIDER, and Tox21 benchmark datasets, our approach consistently outperforms both single-task and standard MTL baselines. Crucially, the sparse attention weights provide chemically intuitive visualizations that reveal the specific fragments influencing predictions, thereby enhancing insight into the model's decision-making process.
comment: 6 pages, 4 figures
☆ Sliced ReLU attention: Quasi-linear contextual expressivity via sorting
We introduce sliced ReLU attention, a new attention mechanism that departs structurally from both softmax and ReLU-based alternatives. Instead of applying a nonlinearity to pairwise dot products, we operate on one-dimensional projections of key--query differences and leverage sorting to obtain quasi-linear complexity. This construction yields a differentiable, non-symmetric kernel that can be computed in O(n log(n)) through a sorting procedure, making it suitable for very long contexts. Beyond computational benefits, the model retains strong theoretical expressive power: we establish two in-context expressivity results, previously known for softmax attention, showing that sliced ReLU attention preserves the ability to perform nontrivial sequence-to-sequence disentangling tasks and satisfies a contextual universal approximation property. Finally, we illustrate the potential practical interest of this kernel in small-scale experiments.
☆ Bhargava Cube--Inspired Quadratic Regularization for Structured Neural Embeddings
We present a novel approach to neural representation learning that incorporates algebraic constraints inspired by Bhargava cubes from number theory. Traditional deep learning methods learn representations in unstructured latent spaces lacking interpretability and mathematical consistency. Our framework maps input data to constrained 3-dimensional latent spaces where embeddings are regularized to satisfy learned quadratic relationships derived from Bhargava's combinatorial structures. The architecture employs a differentiable auxiliary loss function operating independently of classification objectives, guiding models toward mathematically structured representations. We evaluate on MNIST, achieving 99.46% accuracy while producing interpretable 3D embeddings that naturally cluster by digit class and satisfy learned quadratic constraints. Unlike existing manifold learning approaches requiring explicit geometric supervision, our method imposes weak algebraic priors through differentiable constraints, ensuring compatibility with standard optimization. This represents the first application of number-theoretic constructs to neural representation learning, establishing a foundation for incorporating structured mathematical priors in neural networks.
comment: 12 pages, 3 figures
☆ Mitigating the Safety Alignment Tax with Null-Space Constrained Policy Optimization
As Large Language Models (LLMs) are increasingly deployed in real-world applications, it is important to ensure their behaviors align with human values, societal norms, and ethical principles. However, safety alignment under Reinforcement Learning (RL) often suffers from forgetting learned general abilities, which is also known as the alignment tax. To address this issue, we introduce Null-Space constrained Policy Optimization (NSPO), a novel RL framework for LLM safety alignment while preserving their core abilities. The safety policy gradients are geometrically projected into the null space of general tasks, thereby mitigating the safety alignment tax. In addition, we theoretically prove that NSPO preserves the model's original core capabilities, while still guaranteeing a descent direction for effective safety alignment. Extensive experiments demonstrate that NSPO outperforms existing methods by a large margin, achieving state-of-the-art safety performance without sacrificing accuracy on general tasks, including math, code, and instruction-following tasks. Notably, NSPO is data-efficient and only requires 40% of public human-annotated safety data from PKU-SafeRLHF to achieve promising safety performance, without a large amount of mixed general tasks data in existing alignment methods.
☆ Out-of-Distribution Segmentation via Wasserstein-Based Evidential Uncertainty
Deep neural networks achieve superior performance in semantic segmentation, but are limited to a predefined set of classes, which leads to failures when they encounter unknown objects in open-world scenarios. Recognizing and segmenting these out-of-distribution (OOD) objects is crucial for safety-critical applications such as automated driving. In this work, we present an evidence segmentation framework using a Wasserstein loss, which captures distributional distances while respecting the probability simplex geometry. Combined with Kullback-Leibler regularization and Dice structural consistency terms, our approach leads to improved OOD segmentation performance compared to uncertainty-based approaches.
☆ Maritime object classification with SAR imagery using quantum kernel methods
Illegal, unreported, and unregulated (IUU) fishing causes global economic losses of \$10-25 billion annually and undermines marine sustainability and governance. Synthetic Aperture Radar (SAR) provides reliable maritime surveillance under all weather and lighting conditions, but classifying small maritime objects in SAR imagery remains challenging. We investigate quantum machine learning for this task, focusing on Quantum Kernel Methods (QKMs) applied to real and complex SAR chips extracted from the SARFish dataset. We tackle two binary classification problems, the first for distinguishing vessels from non-vessels, and the second for distinguishing fishing vessels from other types of vessels. We compare QKMs applied to real and complex SAR chips against classical Laplacian, RBF, and linear kernels applied to real SAR chips. Using noiseless numerical simulations of the quantum kernels, we find that QKMs are capable of obtaining equal or better performance than the classical kernel on these tasks in the best case, but do not demonstrate a clear advantage for the complex SAR data. This work presents the first application of QKMs to maritime classification in SAR imagery and offers insight into the potential and current limitations of quantum-enhanced learning for maritime surveillance.
comment: 15 + 5 pages, 5 figures, 4 tables
☆ Attacking and Securing Community Detection: A Game-Theoretic Framework
It has been demonstrated that adversarial graphs, i.e., graphs with imperceptible perturbations, can cause deep graph models to fail on classification tasks. In this work, we extend the concept of adversarial graphs to the community detection problem, which is more challenging. We propose novel attack and defense techniques for community detection problem, with the objective of hiding targeted individuals from detection models and enhancing the robustness of community detection models, respectively. These techniques have many applications in real-world scenarios, for example, protecting personal privacy in social networks and understanding camouflage patterns in transaction networks. To simulate interactive attack and defense behaviors, we further propose a game-theoretic framework, called CD-GAME. One player is a graph attacker, while the other player is a Rayleigh Quotient defender. The CD-GAME models the mutual influence and feedback mechanisms between the attacker and the defender, revealing the dynamic evolutionary process of the game. Both players dynamically update their strategies until they reach the Nash equilibrium. Extensive experiments demonstrate the effectiveness of our proposed attack and defense methods, and both outperform existing baselines by a significant margin. Furthermore, CD-GAME provides valuable insights for understanding interactive attack and defense scenarios in community detection problems. We found that in traditional single-step attack or defense, attacker tends to employ strategies that are most effective, but are easily detected and countered by defender. When the interactive game reaches a Nash equilibrium, attacker adopts more imperceptible strategies that can still achieve satisfactory attack effectiveness even after defense.
☆ CAT: Can Trust be Predicted with Context-Awareness in Dynamic Heterogeneous Networks?
Trust prediction provides valuable support for decision-making, risk mitigation, and system security enhancement. Recently, Graph Neural Networks (GNNs) have emerged as a promising approach for trust prediction, owing to their ability to learn expressive node representations that capture intricate trust relationships within a network. However, current GNN-based trust prediction models face several limitations: (i) Most of them fail to capture trust dynamicity, leading to questionable inferences. (ii) They rarely consider the heterogeneous nature of real-world networks, resulting in a loss of rich semantics. (iii) None of them support context-awareness, a basic property of trust, making prediction results coarse-grained. To this end, we propose CAT, the first Context-Aware GNN-based Trust prediction model that supports trust dynamicity and accurately represents real-world heterogeneity. CAT consists of a graph construction layer, an embedding layer, a heterogeneous attention layer, and a prediction layer. It handles dynamic graphs using continuous-time representations and captures temporal information through a time encoding function. To model graph heterogeneity and leverage semantic information, CAT employs a dual attention mechanism that identifies the importance of different node types and nodes within each type. For context-awareness, we introduce a new notion of meta-paths to extract contextual features. By constructing context embeddings and integrating a context-aware aggregator, CAT can predict both context-aware trust and overall trust. Extensive experiments on three real-world datasets demonstrate that CAT outperforms five groups of baselines in trust prediction, while exhibiting strong scalability to large-scale graphs and robustness against both trust-oriented and GNN-oriented attacks.
☆ Symmetry-Aware Steering of Equivariant Diffusion Policies: Benefits and Limits
Equivariant diffusion policies (EDPs) combine the generative expressivity of diffusion models with the strong generalization and sample efficiency afforded by geometric symmetries. While steering these policies with reinforcement learning (RL) offers a promising mechanism for fine-tuning beyond demonstration data, directly applying standard (non-equivariant) RL can be sample-inefficient and unstable, as it ignores the symmetries that EDPs are designed to exploit. In this paper, we theoretically establish that the diffusion process of an EDP is equivariant, which in turn induces a group-invariant latent-noise MDP that is well-suited for equivariant diffusion steering. Building on this theory, we introduce a principled symmetry-aware steering framework and compare standard, equivariant, and approximately equivariant RL strategies through comprehensive experiments across tasks with varying degrees of symmetry. While we identify the practical boundaries of strict equivariance under symmetry breaking, we show that exploiting symmetry during the steering process yields substantial benefits-enhancing sample efficiency, preventing value divergence, and achieving strong policy improvements even when EDPs are trained from extremely limited demonstrations.
☆ DAPO: Design Structure-Aware Pass Ordering in High-Level Synthesis with Graph Contrastive and Reinforcement Learning
High-Level Synthesis (HLS) tools are widely adopted in FPGA-based domain-specific accelerator design. However, existing tools rely on fixed optimization strategies inherited from software compilations, limiting their effectiveness. Tailoring optimization strategies to specific designs requires deep semantic understanding, accurate hardware metric estimation, and advanced search algorithms -- capabilities that current approaches lack. We propose DAPO, a design structure-aware pass ordering framework that extracts program semantics from control and data flow graphs, employs contrastive learning to generate rich embeddings, and leverages an analytical model for accurate hardware metric estimation. These components jointly guide a reinforcement learning agent to discover design-specific optimization strategies. Evaluations on classic HLS designs demonstrate that our end-to-end flow delivers a 2.36 speedup over Vitis HLS on average.
comment: Accepted by DATE 2026
☆ Spectral entropy prior-guided deep feature fusion architecture for magnetic core loss
Accurate core loss modeling is critical for the design of high-efficiency power electronic systems. Traditional core loss modeling methods have limitations in prediction accuracy. To advance this field, the IEEE Power Electronics Society launched the MagNet Challenge in 2023, the first international competition focused on data-driven power electronics design methods, aiming to uncover complex loss patterns in magnetic components through a data-driven paradigm. Although purely data-driven models demonstrate strong fitting performance, their interpretability and cross-distribution generalization capabilities remain limited. To address these issues, this paper proposes a hybrid model, SEPI-TFPNet, which integrates empirical models with deep learning. The physical-prior submodule employs a spectral entropy discrimination mechanism to select the most suitable empirical model under different excitation waveforms. The data-driven submodule incorporates convolutional neural networks, multi-head attention mechanisms, and bidirectional long short-term memory networks to extract flux-density time-series features. An adaptive feature fusion module is introduced to improve multimodal feature interaction and integration. Using the MagNet dataset containing various magnetic materials, this paper evaluates the proposed method and compares it with 21 representative models from the 2023 challenge and three advanced methods from 2024-2025. The results show that the proposed method achieves improved modeling accuracy and robustness.
☆ Pace: Physics-Aware Attentive Temporal Convolutional Network for Battery Health Estimation
Batteries are critical components in modern energy systems such as electric vehicles and power grid energy storage. Effective battery health management is essential for battery system safety, cost-efficiency, and sustainability. In this paper, we propose Pace, a physics-aware attentive temporal convolutional network for battery health estimation. Pace integrates raw sensor measurements with battery physics features derived from the equivalent circuit model. We develop three battery-specific modules, including dilated temporal blocks for efficient temporal encoding, chunked attention blocks for context modeling, and a dual-head output block for fusing short- and long-term battery degradation patterns. Together, the modules enable Pace to predict battery health accurately and efficiently in various battery usage conditions. In a large public dataset, Pace performs much better than existing models, achieving an average performance improvement of 6.5 and 2.0x compared to two best-performing baseline models. We further demonstrate its practical viability with a real-time edge deployment on a Raspberry Pi. These results establish Pace as a practical and high-performance solution for battery health analytics.
☆ Condensation-Concatenation Framework for Dynamic Graph Continual Learning
Dynamic graphs are prevalent in real-world scenarios, where continuous structural changes induce catastrophic forgetting in graph neural networks (GNNs). While continual learning has been extended to dynamic graphs, existing methods overlook the effects of topological changes on existing nodes. To address it, we propose a novel framework for continual learning on dynamic graphs, named Condensation-Concatenation-based Continual Learning (CCC). Specifically, CCC first condenses historical graph snapshots into compact semantic representations while aiming to preserve the original label distribution and topological properties. Then it concatenates these historical embeddings with current graph representations selectively. Moreover, we refine the forgetting measure (FM) to better adapt to dynamic graph scenarios by quantifying the predictive performance degradation of existing nodes caused by structural updates. CCC demonstrates superior performance over state-of-the-art baselines across four real-world datasets in extensive experiments.
☆ Benchmarking the Generality of Vision-Language-Action Models
Generalist multimodal agents are expected to unify perception, language, and control - operating robustly across diverse real world domains. However, current evaluation practices remain fragmented across isolated benchmarks, making it difficult to assess whether today's foundation models truly generalize beyond their training distributions. We introduce MultiNet v1.0, a unified benchmark for measuring the cross domain generality of vision language models (VLMs) and vision language action models (VLAs) across six foundational capability regimes. Visual grounding, spatial reasoning, tool use, physical commonsense, multi agent coordination, and continuous robot control. Evaluating GPT 5, Pi0, and Magma, we find that no model demonstrates consistent generality. All exhibit substantial degradation on unseen domains, unfamiliar modalities, or cross domain task shifts despite strong performance within their training distributions.These failures manifest as modality misalignment, output format instability, and catastrophic knowledge degradation under domain transfer.Our findings reveal a persistent gap between the aspiration of generalist intelligence and the actual capabilities of current foundation models.MultiNet v1.0 provides a standardized evaluation substrate for diagnosing these gaps and guiding the development of future generalist agents.Code, data, and leaderboards are publicly available.
comment: 23 pages, 7 figures, and 1 table
☆ QGEC : Quantum Golay Code Error Correction
Quantum computers have the possibility of a much reduced calculation load compared with classical computers in specific problems. Quantum error correction (QEC) is vital for handling qubits, which are vulnerable to external noise. In QEC, actual errors are predicted from the results of syndrome measurements by stabilizer generators, in place of making direct measurements of the data qubits. Here, we propose Quantum Golay code Error Correction (QGEC), a QEC method using Golay code, which is an efficient coding method in classical information theory. We investigated our method's ability in decoding calculations with the Transformer. We evaluated the accuracy of the decoder in a code space defined by the generative polynomials with three different weights sets and three noise models with different correlations of bit-flip error and phase-flip error. Furthermore, under a noise model following a discrete uniform distribution, we compared the decoding performance of Transformer decoders with identical architectures trained respectively on Golay and toric codes. The results showed that the noise model with the smaller correlation gave better accuracy, while the weights of the generative polynomials had little effect on the accuracy of the decoder. In addition, they showed that Golay code requiring 23 data qubits and having a code distance of 7 achieved higher decoding accuracy than toric code which requiring 50 data qubits and having a code distance of 5. This suggests that implementing quantum error correction using a Transformer may enable the Golay code to realize fault-tolerant quantum computation more efficiently.
☆ SRLR: Symbolic Regression based Logic Recovery to Counter Programmable Logic Controller Attacks
Programmable Logic Controllers (PLCs) are critical components in Industrial Control Systems (ICSs). Their potential exposure to external world makes them susceptible to cyber-attacks. Existing detection methods against controller logic attacks use either specification-based or learnt models. However, specification-based models require experts' manual efforts or access to PLC's source code, while machine learning-based models often fall short of providing explanation for their decisions. We design SRLR -- a it Symbolic Regression based Logic Recovery} solution to identify the logic of a PLC based only on its inputs and outputs. The recovered logic is used to generate explainable rules for detecting controller logic attacks. SRLR enhances the latest deep symbolic regression methods using the following ICS-specific properties: (1) some important ICS control logic is best represented in frequency domain rather than time domain; (2) an ICS controller can operate in multiple modes, each using different logic, where mode switches usually do not happen frequently; (3) a robust controller usually filters out outlier inputs as ICS sensor data can be noisy; and (4) with the above factors captured, the degree of complexity of the formulas is reduced, making effective search possible. Thanks to these enhancements, SRLR consistently outperforms all existing methods in a variety of ICS settings that we evaluate. In terms of the recovery accuracy, SRLR's gain can be as high as 39% in some challenging environment. We also evaluate SRLR on a distribution grid containing hundreds of voltage regulators, demonstrating its stability in handling large-scale, complex systems with varied configurations.
comment: 27 pages, 20 figures. This article was accepted by IEEE Transactions on Information Forensics and Security. DOI: 10.1109/TIFS.2025.3634027
☆ When Actions Teach You to Think: Reasoning-Action Synergy via Reinforcement Learning in Conversational Agents
Supervised fine-tuning (SFT) has emerged as one of the most effective ways to improve the performance of large language models (LLMs) in downstream tasks. However, SFT can have difficulty generalizing when the underlying data distribution changes, even when the new data does not fall completely outside the training domain. Recent reasoning-focused models such as o1 and R1 have demonstrated consistent gains over their non-reasoning counterparts, highlighting the importance of reasoning for improved generalization and reliability. However, collecting high-quality reasoning traces for SFT remains challenging -- annotations are costly, subjective, and difficult to scale. To address this limitation, we leverage Reinforcement Learning (RL) to enable models to learn reasoning strategies directly from task outcomes. We propose a pipeline in which LLMs generate reasoning steps that guide both the invocation of tools (e.g., function calls) and the final answer generation for conversational agents. Our method employs Group Relative Policy Optimization (GRPO) with rewards designed around tool accuracy and answer correctness, allowing the model to iteratively refine its reasoning and actions. Experimental results demonstrate that our approach improves both the quality of reasoning and the precision of tool invocations, achieving a 1.5% relative improvement over the SFT model (trained without explicit thinking) and a 40% gain compared to the base of the vanilla Qwen3-1.7B model. These findings demonstrate the promise of unifying reasoning and action learning through RL to build more capable and generalizable conversational agents.
☆ Integrated Prediction and Multi-period Portfolio Optimization
Multi-period portfolio optimization is important for real portfolio management, as it accounts for transaction costs, path-dependent risks, and the intertemporal structure of trading decisions that single-period models cannot capture. Classical methods usually follow a two-stage framework: machine learning algorithms are employed to produce forecasts that closely fit the realized returns, and the predicted values are then used in a downstream portfolio optimization problem to determine the asset weights. This separation leads to a fundamental misalignment between predictions and decision outcomes, while also ignoring the impact of transaction costs. To bridge this gap, recent studies have proposed the idea of end-to-end learning, integrating the two stages into a single pipeline. This paper introduces IPMO (Integrated Prediction and Multi-period Portfolio Optimization), a model for multi-period mean-variance portfolio optimization with turnover penalties. The predictor generates multi-period return forecasts that parameterize a differentiable convex optimization layer, which in turn drives learning via portfolio performance. For scalability, we introduce a mirror-descent fixed-point (MDFP) differentiation scheme that avoids factorizing the Karush-Kuhn-Tucker (KKT) systems, which thus yields stable implicit gradients and nearly scale-insensitive runtime as the decision horizon grows. In experiments with real market data and two representative time-series prediction models, the IPMO method consistently outperforms the two-stage benchmarks in risk-adjusted performance net of transaction costs and achieves more coherent allocation paths. Our results show that integrating machine learning prediction with optimization in the multi-period setting improves financial outcomes and remains computationally tractable.
comment: 23 pages, 6 figures, and 4 tables
☆ Features Emerge as Discrete States: The First Application of SAEs to 3D Representations
Sparse Autoencoders (SAEs) are a powerful dictionary learning technique for decomposing neural network activations, translating the hidden state into human ideas with high semantic value despite no external intervention or guidance. However, this technique has rarely been applied outside of the textual domain, limiting theoretical explorations of feature decomposition. We present the \textbf{first application of SAEs to the 3D domain}, analyzing the features used by a state-of-the-art 3D reconstruction VAE applied to 53k 3D models from the Objaverse dataset. We observe that the network encodes discrete rather than continuous features, leading to our key finding: \textbf{such models approximate a discrete state space, driven by phase-like transitions from feature activations}. Through this state transition framework, we address three otherwise unintuitive behaviors -- the inclination of the reconstruction model towards positional encoding representations, the sigmoidal behavior of reconstruction loss from feature ablation, and the bimodality in the distribution of phase transition points. This final observation suggests the model \textbf{redistributes the interference caused by superposition to prioritize the saliency of different features}. Our work not only compiles and explains unexpected phenomena regarding feature decomposition, but also provides a framework to explain the model's feature learning dynamics. The code and dataset of encoded 3D objects will be available on release.
☆ A Simple Generalisation of the Implicit Dynamics of In-Context Learning
In-context learning (ICL) refers to the ability of a model to learn new tasks from examples in its input without any parameter updates. In contrast to previous theories of ICL relying on toy models and data settings, recently it has been shown that an abstraction of a transformer block can be seen as implicitly updating the weights of its feedforward network according to the context (Dherin et al., 2025). Here, we provide a simple generalisation of this result for (i) all sequence positions beyond the last, (ii) any transformer block beyond the first, and (iii) more realistic residual blocks including layer normalisation. We empirically verify our theory on simple in-context linear regression tasks and investigate the relationship between the implicit updates related to different tokens within and between blocks. These results help to bring the theory of Dherin et al. (2025) even closer to practice, with potential for validation on large-scale models.
comment: 18 pages, 9 figures
☆ Insight Miner: A Time Series Analysis Dataset for Cross-Domain Alignment with Natural Language
Time-series data is critical across many scientific and industrial domains, including environmental analysis, agriculture, transportation, and finance. However, mining insights from this data typically requires deep domain expertise, a process that is both time-consuming and labor-intensive. In this paper, we propose \textbf{Insight Miner}, a large-scale multimodal model (LMM) designed to generate high-quality, comprehensive time-series descriptions enriched with domain-specific knowledge. To facilitate this, we introduce \textbf{TS-Insights}\footnote{Available at \href{https://huggingface.co/datasets/zhykoties/time-series-language-alignment}{https://huggingface.co/datasets/zhykoties/time-series-language-alignment}.}, the first general-domain dataset for time series and language alignment. TS-Insights contains 100k time-series windows sampled from 20 forecasting datasets. We construct this dataset using a novel \textbf{agentic workflow}, where we use statistical tools to extract features from raw time series before synthesizing them into coherent trend descriptions with GPT-4. Following instruction tuning on TS-Insights, Insight Miner outperforms state-of-the-art multimodal models, such as LLaVA \citep{liu2023llava} and GPT-4, in generating time-series descriptions and insights. Our findings suggest a promising direction for leveraging LMMs in time series analysis, and serve as a foundational step toward enabling LLMs to interpret time series as a native input modality.
☆ Multi-Objective Reinforcement Learning for Large-Scale Mixed Traffic Control
Effective mixed traffic control requires balancing efficiency, fairness, and safety. Existing approaches excel at optimizing efficiency and enforcing safety constraints but lack mechanisms to ensure equitable service, resulting in systematic starvation of vehicles on low-demand approaches. We propose a hierarchical framework combining multi-objective reinforcement learning for local intersection control with strategic routing for network-level coordination. Our approach introduces a Conflict Threat Vector that provides agents with explicit risk signals for proactive conflict avoidance, and a queue parity penalty that ensures equitable service across all traffic streams. Extensive experiments on a real-world network across different robot vehicle (RV) penetration rates demonstrate substantial improvements: up to 53% reductions in average wait time, up to 86% reductions in maximum starvation, and up to 86\% reduction in conflict rate compared to baselines, while maintaining fuel efficiency. Our analysis reveals that strategic routing effectiveness scales with RV penetration, becoming increasingly valuable at higher autonomy levels. The results demonstrate that multi-objective optimization through well-curated reward functions paired with strategic RV routing yields significant benefits in fairness and safety metrics critical for equitable mixed-autonomy deployment.
☆ Task-Aware Multi-Expert Architecture For Lifelong Deep Learning
Lifelong deep learning (LDL) trains neural networks to learn sequentially across tasks while preserving prior knowledge. We propose Task-Aware Multi-Expert (TAME), a continual learning algorithm that leverages task similarity to guide expert selection and knowledge transfer. TAME maintains a pool of pretrained neural networks and activates the most relevant expert for each new task. A shared dense layer integrates features from the chosen expert to generate predictions. To reduce catastrophic forgetting, TAME uses a replay buffer that stores representative samples and embeddings from previous tasks and reuses them during training. An attention mechanism further prioritizes the most relevant stored information for each prediction. Together, these components allow TAME to adapt flexibly while retaining important knowledge across evolving task sequences. Experiments on binary classification tasks derived from CIFAR-100 show that TAME improves accuracy on new tasks while sustaining performance on earlier ones, highlighting its effectiveness in balancing adaptation and retention in lifelong learning settings.
☆ VFMF: World Modeling by Forecasting Vision Foundation Model Features
Forecasting from partial observations is central to world modeling. Many recent methods represent the world through images, and reduce forecasting to stochastic video generation. Although such methods excel at realism and visual fidelity, predicting pixels is computationally intensive and not directly useful in many applications, as it requires translating RGB into signals useful for decision making. An alternative approach uses features from vision foundation models (VFMs) as world representations, performing deterministic regression to predict future world states. These features can be directly translated into actionable signals such as semantic segmentation and depth, while remaining computationally efficient. However, deterministic regression averages over multiple plausible futures, undermining forecast accuracy by failing to capture uncertainty. To address this crucial limitation, we introduce a generative forecaster that performs autoregressive flow matching in VFM feature space. Our key insight is that generative modeling in this space requires encoding VFM features into a compact latent space suitable for diffusion. We show that this latent space preserves information more effectively than previously used PCA-based alternatives, both for forecasting and other applications, such as image generation. Our latent predictions can be easily decoded into multiple useful and interpretable output modalities: semantic segmentation, depth, surface normals, and even RGB. With matched architecture and compute, our method produces sharper and more accurate predictions than regression across all modalities. Our results suggest that stochastic conditional generation of VFM features offers a promising and scalable foundation for future world models.
☆ Adaptive Soft Rolling KV Freeze with Entropy-Guided Recovery: Sublinear Memory Growth for Efficient LLM Inference
We present Adaptive Soft Rolling KV Freeze with Entropy-Guided Recovery (ASR-KF-EGR), a training-free inference-time framework for efficient large language model generation. Our method introduces a reversible soft-freeze mechanism that temporarily suspends key-value (KV) updates for low-importance tokens identified within a sliding attention window. Unlike eviction-based approaches that permanently discard context, ASR-KF-EGR preserves all tokens in off-GPU storage and restores them on demand. We extend the framework with sublinear freeze scheduling, where freeze duration grows sublinearly with repeated low-importance detections, preventing over-aggressive compression. Preliminary experiments on LLaMA-3 8B demonstrate 55-67% reduction in active KV cache size while maintaining generation quality and passing needle-in-haystack retrieval tests. The method is architecture-agnostic, requires no fine-tuning, and provides a practical solution for memory-constrained deployment of long-context LLMs.
comment: 6 pages, 3 tables , 1 figure
☆ Latent Variable Causal Discovery under Selection Bias ICML 2025
Addressing selection bias in latent variable causal discovery is important yet underexplored, largely due to a lack of suitable statistical tools: While various tools beyond basic conditional independencies have been developed to handle latent variables, none have been adapted for selection bias. We make an attempt by studying rank constraints, which, as a generalization to conditional independence constraints, exploits the ranks of covariance submatrices in linear Gaussian models. We show that although selection can significantly complicate the joint distribution, interestingly, the ranks in the biased covariance matrices still preserve meaningful information about both causal structures and selection mechanisms. We provide a graph-theoretic characterization of such rank constraints. Using this tool, we demonstrate that the one-factor model, a classical latent variable model, can be identified under selection bias. Simulations and real-world experiments confirm the effectiveness of using our rank constraints.
comment: Appears at ICML 2025
☆ amc: The Automated Mission Classifier for Telescope Bibliographies ACL
Telescope bibliographies record the pulse of astronomy research by capturing publication statistics and citation metrics for telescope facilities. Robust and scalable bibliographies ensure that we can measure the scientific impact of our facilities and archives. However, the growing rate of publications threatens to outpace our ability to manually label astronomical literature. We therefore present the Automated Mission Classifier (amc), a tool that uses large language models (LLMs) to identify and categorize telescope references by processing large quantities of paper text. A modified version of amc performs well on the TRACS Kaggle challenge, achieving a macro $F_1$ score of 0.84 on the held-out test set. amc is valuable for other telescopes beyond TRACS; we developed the initial software for identifying papers that featured scientific results by NASA missions. Additionally, we investigate how amc can also be used to interrogate historical datasets and surface potential label errors. Our work demonstrates that LLM-based applications offer powerful and scalable assistance for library sciences.
comment: Accepted to IJCNLP-AACL WASP 2025 workshop. Code available at: https://github.com/jwuphysics/automated-mission-classifier
☆ Fast EXP3 Algorithms
We point out that EXP3 can be implemented in constant time per round, propose more practical algorithms, and analyze the trade-offs between the regret bounds and time complexities of these algorithms.
☆ Theoretical Foundations of GPU-Native Compilation for Rapid Code Iteration
Current AI code generation systems suffer from significant latency bottlenecks due to CPU-GPU data transfers during compilation, execution, and testing phases. We establish theoretical foundations for three complementary approaches to GPU-native compilation that eliminate these transfers: (1) parallel traditional compilation adapted for GPU execution, (2) neural compilation using learned sequence-to-sequence translation with probabilistic verification, and (3) hybrid architectures combining both strategies. We derive latency and energy bounds demonstrating potential speedups of 10-100x for code iteration cycles. Our analysis shows that traditional GPU compilation provides 2-5x improvements through transfer elimination, neural compilation achieves 10-100x speedups via massive parallelism, and hybrid approaches offer practical deployment paths with guaranteed correctness. We formalize the probabilistic verification framework that enables trading compilation accuracy for parallel exploration, and discuss implications for self-improving AI systems and future analog computing substrates.
comment: 9 pages , 2 tables
☆ CADKnitter: Compositional CAD Generation from Text and Geometry Guidance
Crafting computer-aided design (CAD) models has long been a painstaking and time-intensive task, demanding both precision and expertise from designers. With the emergence of 3D generation, this task has undergone a transformative impact, shifting not only from visual fidelity to functional utility but also enabling editable CAD designs. Prior works have achieved early success in single-part CAD generation, which is not well-suited for real-world applications, as multiple parts need to be assembled under semantic and geometric constraints. In this paper, we propose CADKnitter, a compositional CAD generation framework with a geometry-guided diffusion sampling strategy. CADKnitter is able to generate a complementary CAD part that follows both the geometric constraints of the given CAD model and the semantic constraints of the desired design text prompt. We also curate a dataset, so-called KnitCAD, containing over 310,000 samples of CAD models, along with textual prompts and assembly metadata that provide semantic and geometric constraints. Intensive experiments demonstrate that our proposed method outperforms other state-of-the-art baselines by a clear margin.
☆ Beyond Memorization: Gradient Projection Enables Selective Learning in Diffusion Models
Memorization in large-scale text-to-image diffusion models poses significant security and intellectual property risks, enabling adversarial attribute extraction and the unauthorized reproduction of sensitive or proprietary features. While conventional dememorization techniques, such as regularization and data filtering, limit overfitting to specific training examples, they fail to systematically prevent the internalization of prohibited concept-level features. Simply discarding all images containing a sensitive feature wastes invaluable training data, necessitating a method for selective unlearning at the concept level. To address this, we introduce a Gradient Projection Framework designed to enforce a stringent requirement of concept-level feature exclusion. Our defense operates during backpropagation by systematically identifying and excising training signals aligned with embeddings of prohibited attributes. Specifically, we project each gradient update onto the orthogonal complement of the sensitive feature's embedding space, thereby zeroing out its influence on the model's weights. Our method integrates seamlessly into standard diffusion model training pipelines and complements existing defenses. We analyze our method against an adversary aiming for feature extraction. In extensive experiments, we demonstrate that our framework drastically reduces memorization while rigorously preserving generation quality and semantic fidelity. By reframing memorization control as selective learning, our approach establishes a new paradigm for IP-safe and privacy-preserving generative AI.
☆ On the failure of ReLU activation for physics-informed machine learning
Physics-informed machine learning uses governing ordinary and/or partial differential equations to train neural networks to represent the solution field. Like any machine learning problem, the choice of activation function influences the characteristics and performance of the solution obtained from physics-informed training. Several studies have compared common activation functions on benchmark differential equations, and have unanimously found that the rectified linear unit (ReLU) is outperformed by competitors such as the sigmoid, hyperbolic tangent, and swish activation functions. In this work, we diagnose the poor performance of ReLU on physics-informed machine learning problems. While it is well-known that the piecewise linear form of ReLU prevents it from being used on second-order differential equations, we show that ReLU fails even on variational problems involving only first derivatives. We identify the cause of this failure as second derivatives of the activation, which are taken not in the formulation of the loss, but in the process of training. Namely, we show that automatic differentiation in PyTorch fails to characterize derivatives of discontinuous fields, which causes the gradient of the physics-informed loss to be mis-specified, thus explaining the poor performance of ReLU.
☆ Progress over Points: Reframing LM Benchmarks Around Scientific Objectives
Current benchmarks that test LLMs on static, already-solved problems (e.g., math word problems) effectively demonstrated basic capability acquisition. The natural progression has been toward larger, more comprehensive and challenging collections of static problems, an approach that inadvertently constrains the kinds of advances we can measure and incentivize. To address this limitation, we argue for progress-oriented benchmarks, problem environments whose objectives are themselves the core targets of scientific progress, so that achieving state of the art on the benchmark advances the field. As a introductory step, we instantiate an environment based on the NanoGPT speedrun. The environment standardizes a dataset slice, a reference model and training harness, and rich telemetry, with run-time verification and anti-gaming checks. Evaluation centers on the scientific delta achieved: best-attained loss and the efficiency frontier. Using this environment, we achieve a new state-of-the-art training time, improving upon the previous record by 3 seconds, and qualitatively observe the emergence of novel algorithmic ideas. Moreover, comparisons between models and agents remain possible, but they are a means, not the end; the benchmark's purpose is to catalyze reusable improvements to the language modeling stack. With this release, the overarching goal is to seed a community shift from static problem leaderboards to test-time research on open-ended yet measurable scientific problems. In this new paradigm, progress on the benchmark is progress on the science, thus reframing "benchmarking" as a vehicle for scientific advancement.
♻ ☆ Probing forced responses and causality in data-driven climate emulators: conceptual limitations and the role of reduced-order models
A central challenge in climate science and applied mathematics is developing data-driven models of multiscale systems that capture both stationary statistics and responses to external perturbations. Current neural climate emulators aim to resolve the atmosphere-ocean system in all its complexity but often struggle to reproduce forced responses, limiting their use in causal studies such as Green's function experiments. To explore the origin of these limitations, we first examine a simplified dynamical system that retains key features of climate variability. We interpret the results through linear response theory, providing a rigorous framework to evaluate neural models beyond stationary statistics and to probe causal mechanisms. We argue that the ability of emulators of multiscale systems to reproduce perturbed statistics depends critically on (i) the choice of an appropriate coarse-grained representation and (ii) careful parameterizations of unresolved processes. These insights highlight reduced-order models, tailored to specific goals, processes, and scales, as valuable alternatives to general-purpose emulators. We next consider a real-world application by developing a neural model to investigate the joint variability of the surface temperature field and radiative fluxes. The model infers a multiplicative noise process directly from data, largely reproduces the system's probability distribution, and enables causal studies through forced responses. We discuss its limitations and outline directions for future work. Overall, these results expose key challenges in data-driven modeling of multiscale physical systems and underscore the value of coarse-grained, stochastic approaches, with response theory providing a principled framework to guide model design and enhance causal understanding.
♻ ☆ How Muon's Spectral Design Benefits Generalization: A Study on Imbalanced Data
The growing adoption of spectrum-aware matrix-valued optimizers such as Muon and Shampoo in deep learning motivates a systematic study of their generalization properties and, in particular, when they might outperform competitive algorithms. We approach this question by introducing appropriate simplifying abstractions as follows: First, we use imbalanced data as a testbed. Second, we study the canonical form of such optimizers, which is Spectral Gradient Descent (SpecGD) -- each update step is $UV^T$ where $UΣV^T$ is the truncated SVD of the gradient. Third, within this framework we identify a canonical setting for which we precisely quantify when SpecGD outperforms vanilla Euclidean GD. For a Gaussian mixture data model and both linear and bilinear models, we show that unlike GD, which prioritizes learning dominant principal components of the data first, SpecGD learns all principal components of the data at equal rates. We demonstrate how this translates to a growing gap in class balanced loss favoring SpecGD early in training and further show that the gap remains consistent even when the GD counterpart uses adaptive step-sizes via normalization. By extending the analysis to deep linear models, we show that depth amplifies these effects. We empirically verify our theoretical findings on a variety of imbalanced datasets. Our experiments compare practical variants of spectral methods, like Muon and Shampoo, against their Euclidean counterparts and Adam. The results validate our findings that these spectral optimizers achieve superior generalization by promoting a more balanced learning of the data's underlying components.
comment: 36 pages, 32 figures, 1 table
♻ ☆ REDELEX: A Framework for Relational Deep Learning Exploration KDD 2025
Relational databases (RDBs) are widely regarded as the gold standard for storing structured information. Consequently, predictive tasks leveraging this data format hold significant application promise. Recently, Relational Deep Learning (RDL) has emerged as a novel paradigm wherein RDBs are conceptualized as graph structures, enabling the application of various graph neural architectures to effectively address these tasks. However, given its novelty, there is a lack of analysis into the relationships between the performance of various RDL models and the characteristics of the underlying RDBs. In this study, we present REDELEX$-$a comprehensive exploration framework for evaluating RDL models of varying complexity on the most diverse collection of over 70 RDBs, which we make available to the community. Benchmarked alongside key representatives of classic methods, we confirm the generally superior performance of RDL while providing insights into the main factors shaping performance, including model complexity, database sizes and their structural properties.
comment: Accepted to ECMLPKDD 2025 at Porto, Portugal
♻ ☆ Advancing physiological time series reconstruction and imputation via mixture of receptive fields and experts fusion
Recent studies show that using diffusion models for time series signal reconstruction holds great promise. However, such approaches remain largely unexplored in the domain of medical time series. The unique characteristics of the physiological time series signals, such as multivariate, high temporal variability, highly noisy, and artifact-prone, make deep learning-based approaches still challenging for tasks such as imputation. Hence, we propose a novel Mixture of Experts (MoE)-based noise estimator within a score-based diffusion framework. Specifically, the Receptive Field Adaptive MoE (RFAMoE) module is designed to enable each channel to adaptively select desired receptive fields throughout the diffusion process. Moreover, recent literature has found that when generating a physiological signal, performing multiple inferences and averaging the reconstructed signals can effectively reduce reconstruction errors, but at the cost of significant computational and latency overhead. We design a Fusion MoE module and innovatively leverage the nature of MoE module to generate K noise signals in parallel, fuse them using a routing mechanism, and complete signal reconstruction in a single inference step. This design not only improves performance over previous methods but also eliminates the substantial computational cost and latency associated with multiple inference processes. Extensive results demonstrate that our proposed framework consistently outperforms diffusion-based SOTA works on different tasks and datasets.
♻ ☆ Sensitivity Analysis for Climate Science with Generative Flow Models
Sensitivity analysis is a cornerstone of climate science, essential for understanding phenomena ranging from storm intensity to long-term climate feedbacks. However, computing these sensitivities using traditional physical models is often prohibitively expensive in terms of both computation and development time. While modern AI-based generative models are orders of magnitude faster to evaluate, computing sensitivities with them remains a significant bottleneck. This work addresses this challenge by applying the adjoint state method for calculating gradients in generative flow models. We apply this method to the cBottle generative model, trained on ERA5 and ICON data, to perform sensitivity analysis of any atmospheric variable with respect to sea surface temperatures. We quantitatively validate the computed sensitivities against the model's own outputs. Our results provide initial evidence that this approach can produce reliable gradients, reducing the computational cost of sensitivity analysis from weeks on a supercomputer with a physical model to hours on a GPU, thereby simplifying a critical workflow in climate science. The code can be found at https://github.com/Kwartzl8/cbottle_adjoint_sensitivity.
♻ ☆ REASONING COMPILER: LLM-Guided Optimizations for Efficient Model Serving NeurIPS 2025
While model serving has unlocked unprecedented capabilities, the high cost of serving large-scale models continues to be a significant barrier to widespread accessibility and rapid innovation. Compiler optimizations have long driven substantial performance improvements, but existing compilers struggle with neural workloads due to the exponentially large and highly interdependent space of possible transformations. Although existing stochastic search techniques can be effective, they are often sample-inefficient and fail to leverage the structural context underlying compilation decisions. We set out to investigate the research question of whether reasoning with large language models (LLMs), without any retraining, can leverage the context-aware decision space of compiler optimizations to significantly improve sample efficiency. To that end, we introduce a novel compilation framework (dubbed Reasoning Compiler) that formulates optimization as a sequential, context-aware decision process guided by a large language model and structured Monte Carlo tree search (MCTS). The LLM acts as a proposal mechanism, suggesting hardware-informed transformations that reflect the current program state and accumulated performance feedback. MCTS incorporates the LLM-generated proposals to balance exploration and exploitation, facilitating structured, context-sensitive traversal of the expansive compiler optimization space. By achieving substantial speedups with markedly fewer samples than leading neural compilers, our approach demonstrates the potential of LLM-guided reasoning to transform the landscape of compiler optimization.
comment: NeurIPS 2025
♻ ☆ Small-Gain Nash: Certified Contraction to Nash Equilibria in Differentiable Games
Classical convergence guarantees for gradient-based learning in games require the pseudo-gradient to be (strongly) monotone in Euclidean geometry as shown by rosen(1965), a condition that often fails even in simple games with strong cross-player couplings. We introduce Small-Gain Nash (SGN), a block small-gain condition in a custom block-weighted geometry. SGN converts local curvature and cross-player Lipschitz coupling bounds into a tractable certificate of contraction. It constructs a weighted block metric in which the pseudo-gradient becomes strongly monotone on any region where these bounds hold, even when it is non-monotone in the Euclidean sense. The continuous flow is exponentially contracting in this designed geometry, and projected Euler and RK4 discretizations converge under explicit step-size bounds derived from the SGN margin and a local Lipschitz constant. Our analysis reveals a certified "timescale band", a non-asymptotic, metric-based certificate that plays a TTUR-like role: rather than forcing asymptotic timescale separation via vanishing, unequal step sizes, SGN identifies a finite band of relative metric weights for which a single-step-size dynamics is provably contractive. We validate the framework on quadratic games where Euclidean monotonicity analysis fails to predict convergence, but SGN successfully certifies it, and extend the construction to mirror/Fisher geometries for entropy-regularized policy gradient in Markov games. The result is an offline certification pipeline that estimates curvature, coupling, and Lipschitz parameters on compact regions, optimizes block weights to enlarge the SGN margin, and returns a structural, computable convergence certificate consisting of a metric, contraction rate, and safe step-sizes for non-monotone games.
♻ ☆ Misspecification-robust amortised simulation-based inference using variational methods
Recent advances in neural density estimation have enabled powerful simulation-based inference (SBI) methods that can flexibly approximate Bayesian inference for intractable stochastic models. Although these methods have demonstrated reliable posterior estimation when the simulator accurately represents the underlying data generative process (DGP), recent work has shown that they perform poorly in the presence of model misspecification. This poses a significant issue for their use in real-world problems, due to simulators always misrepresenting the true DGP to a certain degree. In this paper, we introduce robust variational neural posterior estimation (RVNP), a method which addresses the problem of misspecification in amortised SBI by bridging the simulation-to-reality gap using variational inference and error modelling. We test RVNP on multiple benchmark tasks, including using real data from astronomy, and show that it can recover robust posterior inference in a data-driven manner without adopting hyperparameters or priors governing the misspecification influence.
comment: Updated metrics, fixed typos, adjusted title
♻ ☆ Efficient Exploration of Chemical Kinetics
Estimating reaction rates and chemical stability is fundamental, yet efficient methods for large-scale simulations remain out of reach despite advances in modeling and exascale computing. Direct simulation is limited by short timescales; machine-learned potentials require large data sets and struggle with transition state regions essential for reaction rates. Reaction network exploration with sufficient accuracy is hampered by the computational cost of electronic structure calculations, and even simplifications like harmonic transition state theory rely on prohibitively expensive saddle point searches. Surrogate model-based acceleration has been promising but hampered by overhead and numerical instability. This dissertation presents a holistic solution, co-designing physical representations, statistical models, and systems architecture in the Optimal Transport Gaussian Process (OT-GP) framework. Using physics-aware optimal transport metrics, OT-GP creates compact, chemically relevant surrogates of the potential energy surface, underpinned by statistically robust sampling. Alongside EON software rewrites for long timescale simulations, we introduce reinforcement learning approaches for both minimum-mode following (when the final state is unknown) and nudged elastic band methods (when endpoints are specified). Collectively, these advances establish a representation-first, modular approach to chemical kinetics simulation. Large-scale benchmarks and Bayesian hierarchical validation demonstrate state-of-the-art performance and practical exploration of chemical kinetics, transforming a longstanding theoretical promise into a working engine for discovery.
comment: Doctoral dissertation, 121 pages, ISBN: 978-9935-9826-5-0. By design, all text and figures within this thesis are original and do not appear in the associated papers
♻ ☆ Data as Voters: Core Set Selection Using Approval-Based Multi-Winner Voting
We present a novel approach to the core set/instance selection problem in machine learning. Our approach is based on recent results on (proportional) representation in approval-based multi-winner elections. In our model, instances play a double role as voters and candidates. The approval set of each instance in the training set (acting as a voter) is defined from the concept of local set, which already exists in the literature. We then select the election winners by using a representative voting rule, and such winners are the data instances kept in the reduced training set. We evaluate our approach in two experiments involving neural network classifiers and classic machine learning classifiers (KNN and SVM). Our experiments show that, in several cases, our approach improves the performance of state-of-the-art methods, and the differences are statistically significant.
comment: 46 pages, 5 figures and 32 tables
♻ ☆ Methodological Precedence in Health Tech: Why ML/Big Data Analysis Must Follow Basic Epidemiological Consistency. A Case Study
The integration of advanced analytical tools, including Machine Learning (ML) and massive data processing, has revolutionized health research, promising unprecedented accuracy in diagnosis and risk prediction. However, the rigor of these complex methods is fundamentally dependent on the quality and integrity of the underlying datasets and the validity of their statistical design. We propose an emblematic case where advanced analysis (ML/Big Data) must necessarily be subsequent to the verification of basic methodological coherence and adherence to established medical protocols, such as the STROBE Statement. This study highlights a crucial cautionary principle: sophisticated analyses amplify, rather than correct, severe methodological flaws rooted in basic design choices, leading to misleading or contradictory findings. By applying simple, standard descriptive statistical methods and established national epidemiological benchmarks to a recently published cohort study on COVID-19 vaccine outcomes and severe adverse events, like cancer, we expose multiple, statistically irreconcilable paradoxes. These paradoxes, specifically the contradictory finding of an increased cancer incidence within an exposure subgroup, concurrent with a suppressed overall Crude Incidence Rate compared to national standards, definitively invalidate the reported risk of increased cancer in the total population. We demonstrate that the observed effects are mathematical artifacts stemming from an uncorrected selection bias in the cohort construction. This analysis serves as a robust reminder that even the most complex health studies must first pass the test of basic epidemiological consistency before any conclusion drawn from subsequent advanced statistical modeling can be considered valid or publishable.
comment: 6 Tables; ML/Big data paper on medical data
♻ ☆ Confucius Code Agent: An Open-sourced AI Software Engineer at Industrial Scale
Real-world AI software engineering demands coding agents that can reason over massive repositories, maintain durable memory across and within long sessions, and robustly coordinate complex toolchains at test time. Existing open-source coding agents provide transparency but frequently fall short when pushed to these industrial-scale workloads, while proprietary coding agents offer strong practical performance but limited extensibility, interpretability, and controllability. We present the Confucius Code Agent (CCA), an open-sourced AI software engineer that can operate at an industrial scale. CCA is built atop the Confucius SDK, an open-sourced agent development platform designed around three complementary perspectives: Agent Experience (AX), User Experience (UX), and Developer Experience (DX). The SDK introduces a unified orchestrator with hierarchical working memory for long-context reasoning, a persistent note-taking system for cross-session continual learning, and a modular extension module for robust tool use. Moreover, a meta-agent automates the synthesis, evaluation, and refinement of agent configurations through a build-test-improve loop, enabling rapid agent development on new tasks, environments, and tool stacks. Instantiated on Confucius SDK with these mechanisms, CCA delivers strong performance on real-world software engineering tasks. On SWE-Bench-Pro, CCA achieves a state-of-the-art Resolve@1 performance of 54.3%, substantially improving over prior coding agents. Together, the Confucius SDK and CCA provide a transparent, extensible, and reproducible foundation for AI agents, bridge gaps between research prototypes and production-grade systems, and support agent development and deployment at industrial scale.
comment: Meta requires more thorough internal review process to ensure paper quality and experiments as well as compliance with the internal research publishing process
♻ ☆ Interpretable machine learning of halo gas density profiles: a sensitivity analysis of cosmological hydrodynamical simulations
Stellar and AGN-driven feedback processes affect the distribution of gas on a wide range of scales, from within galaxies well into the intergalactic medium. Yet, it remains unclear how feedback, through its connection to key galaxy properties, shapes the radial gas density profile in the host halo. We tackle this question using suites of the EAGLE, IllustrisTNG, and Simba cosmological hydrodynamical simulations, which span a variety of feedback models. We develop a random forest algorithm that predicts the radial gas density profile within haloes from the total halo mass and five global properties of the central galaxy: gas and stellar mass; star formation rate; mass and accretion rate of the central black hole (BH). The algorithm reproduces the simulated gas density profiles with an average accuracy of $\sim$80-90% over the halo mass range $10^{9.5} \, \mathrm{M}_{\odot} < M_{\rm 200c} < 10^{15} \, \mathrm{M}_{\odot}$ and redshift interval $0
comment: Submitted to The Open Journal of Astrophysics
♻ ☆ Decoupled Q-Chunking
Temporal-difference (TD) methods learn state and action values efficiently by bootstrapping from their own future value predictions, but such a self-bootstrapping mechanism is prone to bootstrapping bias, where the errors in the value targets accumulate across steps and result in biased value estimates. Recent work has proposed to use chunked critics, which estimate the value of short action sequences ("chunks") rather than individual actions, speeding up value backup. However, extracting policies from chunked critics is challenging: policies must output the entire action chunk open-loop, which can be sub-optimal for environments that require policy reactivity and also challenging to model especially when the chunk length grows. Our key insight is to decouple the chunk length of the critic from that of the policy, allowing the policy to operate over shorter action chunks. We propose a novel algorithm that achieves this by optimizing the policy against a distilled critic for partial action chunks, constructed by optimistically backing up from the original chunked critic to approximate the maximum value achievable when a partial action chunk is extended to a complete one. This design retains the benefits of multi-step value propagation while sidestepping both the open-loop sub-optimality and the difficulty of learning action chunking policies for long action chunks. We evaluate our method on challenging, long-horizon offline goal-conditioned tasks and show that it reliably outperforms prior methods. Code: github.com/ColinQiyangLi/dqc.
comment: 76 pages, 14 figures
♻ ☆ Text2Graph: Combining Lightweight LLMs and GNNs for Efficient Text Classification in Label-Scarce Scenarios
Large Language Models (LLMs) have become effective zero-shot classifiers, but their high computational requirements and environmental costs limit their practicality for large-scale annotation in high-performance computing (HPC) environments. To support more sustainable workflows, we present Text2Graph, an open-source Python package that provides a modular implementation of existing text-to-graph classification approaches. The framework enables users to combine LLM-based partial annotation with Graph Neural Network (GNN) label propagation in a flexible manner, making it straightforward to swap components such as feature extractors, edge construction methods, and sampling strategies. We benchmark Text2Graph on a zero-shot setting using five datasets spanning topic classification and sentiment analysis tasks, comparing multiple variants against other zero-shot approaches for text classification. In addition to reporting performance, we provide detailed estimates of energy consumption and carbon emissions, showing that graph-based propagation achieves competitive results at a fraction of the energy and environmental cost.
♻ ☆ Geometry-Informed Neural Operator Transformer
Machine-learning-based surrogate models offer significant computational efficiency and faster simulations compared to traditional numerical methods, especially for problems requiring repeated evaluations of partial differential equations. This work introduces the Geometry-Informed Neural Operator Transformer (GINOT), which integrates the transformer architecture with the neural operator framework to enable forward predictions on arbitrary geometries. GINOT employs a sampling and grouping strategy together with an attention mechanism to encode surface point clouds that are unordered, exhibit non-uniform point densities, and contain varying numbers of points for different geometries. The geometry information is seamlessly integrated with query points in the solution decoder through the attention mechanism. The performance of GINOT is validated on multiple challenging datasets, showcasing its high accuracy and strong generalization capabilities for complex and arbitrary 2D and 3D geometries.
♻ ☆ Uncertainty Distillation: Teaching Language Models to Express Semantic Confidence
As large language models (LLMs) are increasingly used for factual question-answering, it becomes more important for LLMs to have the capability to communicate the likelihood that their answer is correct. For these verbalized expressions of uncertainty to be meaningful, they should reflect the error rates at the expressed level of confidence. However, when prompted to express confidence, the error rates of current LLMs are inconsistent with their communicated confidences, highlighting the need for uncertainty quantification methods. Many prior methods calculate lexical uncertainty, estimating a model's confidence in the specific string it generated. In some cases, however, it may be more useful to estimate semantic uncertainty, or the model's confidence in the answer regardless of how it is verbalized. We propose a simple procedure, uncertainty distillation, to teach an LLM to verbalize calibrated semantic confidences. Using held-out data to map initial uncertainty estimates to meaningful probabilities, we create examples annotated with verbalized probabilities for supervised fine-tuning. We find that our method yields verbalized confidences that correlate well with observed error rates, even when compared to strong baselines, some of which are more than twenty times slower at inference time. Additionally, we demonstrate that our method can be applied to black-box models that allow API-based fine-tuning, resulting in estimates of uncertainty that are both more effective and more efficient than any of our baselines.
♻ ☆ Behaviour Policy Optimization: Provably Lower Variance Return Estimates for Off-Policy Reinforcement Learning AAAI 2026
Many reinforcement learning algorithms, particularly those that rely on return estimates for policy improvement, can suffer from poor sample efficiency and training instability due to high-variance return estimates. In this paper we leverage new results from off-policy evaluation; it has recently been shown that well-designed behaviour policies can be used to collect off-policy data for provably lower variance return estimates. This result is surprising as it means collecting data on-policy is not variance optimal. We extend this key insight to the online reinforcement learning setting, where both policy evaluation and improvement are interleaved to learn optimal policies. Off-policy RL has been well studied (e.g., IMPALA), with correct and truncated importance weighted samples for de-biasing and managing variance appropriately. Generally these approaches are concerned with reconciling data collected from multiple workers in parallel, while the policy is updated asynchronously, mismatch between the workers and policy is corrected in a mathematically sound way. Here we consider only one worker - the behaviour policy, which is used to collect data for policy improvement, with provably lower variance return estimates. In our experiments we extend two policy-gradient methods with this regime, demonstrating better sample efficiency and performance over a diverse set of environments.
comment: Accepted at AAAI 2026 (main track)
♻ ☆ Integrating Ontologies with Large Language Models for Enhanced Control Systems in Chemical Engineering
This work presents an ontology-integrated large language model (LLM) framework for chemical engineering that unites structured domain knowledge with generative reasoning. The proposed pipeline aligns model training and inference with the COPE ontology through a sequence of data acquisition, semantic preprocessing, information extraction, and ontology mapping steps, producing templated question-answer pairs that guide fine-tuning. A control-focused decoding stage and citation gate enforce syntactic and factual grounding by constraining outputs to ontology-linked terms, while evaluation metrics quantify both linguistic quality and ontological accuracy. Feedback and future extensions, including semantic retrieval and iterative validation, further enhance the system's interpretability and reliability. This integration of symbolic structure and neural generation provides a transparent, auditable approach for applying LLMs to process control, safety analysis, and other critical engineering contexts.
comment: This paper is withdrawn due to issues with attribution and citation accuracy
♻ ☆ Hierarchical Bayesian Model for Gene Deconvolution and Functional Analysis in Human Endometrium Across the Menstrual Cycle
Bulk tissue RNA sequencing of heterogeneous samples provides averaged gene expression profiles, obscuring cell type-specific dynamics. To address this, we present a probabilistic hierarchical Bayesian model that deconvolves bulk RNA-seq data into constituent cell-type expression profiles and proportions, leveraging a high-resolution single-cell reference. We apply our model to human endometrial tissue across the menstrual cycle, a context characterized by dramatic hormone-driven cellular composition changes. Our extended framework provides a principled inference of cell type proportions and cell-specific gene expression changes across cycle phases. We demonstrate the model's structure, priors, and inference strategy in detail, and we validate its performance with simulations and comparisons to existing methods. The results reveal dynamic shifts in epithelial, stromal, and immune cell fractions between menstrual phases, and identify cell-type-specific differential gene expression associated with endometrial function (e.g., decidualization markers in stromal cells during the secretory phase). We further conduct robustness tests and show that our Bayesian approach is resilient to reference mismatches and noise. Finally, we discuss the biological significance of our findings, potential clinical implications for fertility and endometrial disorders, and future directions, including integration of spatial transcriptomics.
comment: This paper is withdrawn due to issues with attribution and citation accuracy
♻ ☆ Assumption-Lean Post-Integrated Inference with Surrogate Control Outcomes
Data integration methods aim to extract low-dimensional embeddings from high-dimensional outcomes to remove unwanted variations, such as batch effects and unmeasured covariates, across heterogeneous datasets. However, multiple hypothesis testing after integration can be biased due to data-dependent processes. We introduce a robust post-integrated inference method that accounts for latent heterogeneity by utilizing control outcomes. Leveraging causal interpretations, we derive nonparametric identifiability of the direct effects using negative control outcomes. By utilizing surrogate control outcomes as an extension of negative control outcomes, we develop semiparametric inference on projected direct effect estimands, accounting for hidden mediators, confounders, and moderators. These estimands remain statistically meaningful under model misspecifications and with error-prone embeddings. We provide bias quantifications and finite-sample linear expansions with uniform concentration bounds. The proposed doubly robust estimators are consistent and efficient under minimal assumptions and potential misspecification, facilitating data-adaptive estimation with machine learning algorithms. Our proposal is evaluated using random forests through simulations and analysis of single-cell CRISPR perturbed datasets, which may contain potential unmeasured confounders.
comment: 22 pages for the main text, 27 pages for the appendix, 6 figures for the main text, 7 figures for the appendix
♻ ☆ iPINNER: An Iterative Physics-Informed Neural Network with Ensemble Kalman Filter
Physics-informed neural networks (PINNs) have emerged as a powerful tool for solving forward and inverse problems involving partial differential equations (PDEs) by incorporating physical laws into the training process. However, the performance of PINNs is often hindered in real-world scenarios involving noisy observational data and missing physics, particularly in inverse problems. In this work, we propose an iterative multi-objective PINN ensemble Kalman filter (iPINNER) framework that improves the robustness and accuracy of PINNs in both forward and inverse problems by using the \textit{ensemble Kalman filter} and the \textit{non-dominated sorting genetic algorithm} III (NSGA-III). Specifically, NSGA-III is used as a multi-objective optimizer that can generate various ensemble members of PINNs along the optimal Pareto front, while accounting the model uncertainty in the solution space. These ensemble members are then utilized within the EnKF to assimilate noisy observational data. The EnKF's analysis is subsequently used to refine the data loss component for retraining the PINNs, thereby iteratively updating their parameters. The iterative procedure generates improved solutions to the PDEs. The proposed method is tested on two benchmark problems: the one-dimensional viscous Burgers equation and the time-fractional mixed diffusion-wave equation (TFMDWE). The numerical results show it outperforms standard PINNs in handling noisy data and missing physics.
♻ ☆ Iterative Compositional Data Generation for Robot Control
Collecting robotic manipulation data is expensive, making it impractical to acquire demonstrations for the combinatorially large space of tasks that arise in multi-object, multi-robot, and multi-environment settings. While recent generative models can synthesize useful data for individual tasks, they do not exploit the compositional structure of robotic domains and struggle to generalize to unseen task combinations. We propose a semantic compositional diffusion transformer that factorizes transitions into robot-, object-, obstacle-, and objective-specific components and learns their interactions through attention. Once trained on a limited subset of tasks, we show that our model can zero-shot generate high-quality transitions from which we can learn control policies for unseen task combinations. Then, we introduce an iterative self-improvement procedure in which synthetic data is validated via offline reinforcement learning and incorporated into subsequent training rounds. Our approach substantially improves zero-shot performance over monolithic and hard-coded compositional baselines, ultimately solving nearly all held-out tasks and demonstrating the emergence of meaningful compositional structure in the learned representations.
comment: Corrected reference chronological order and added acknowledgements; results unchanged
♻ ☆ Diffusion for Fusion: Designing Stellarators with Generative AI
Stellarators are a prospective class of fusion-based power plants that confine a hot plasma with three-dimensional magnetic fields. Typically framed as a PDE-constrained optimization problem, stellarator design is a time-consuming process that can take hours to solve on a computing cluster. Developing fast methods for designing stellarators is crucial for advancing fusion research. Given the recent development of large datasets of optimized stellarators, machine learning approaches have emerged as a potential candidate. Motivated by this, we present an open inverse problem to the machine learning community: to rapidly generate high-quality stellarator designs which have a set of desirable characteristics. As a case study in the problem space, we train a conditional diffusion model on data from the QUASR database to generate quasisymmetric stellarator designs with desirable characteristics (aspect ratio and mean rotational transform). The diffusion model is applied to design stellarators with characteristics not seen during training. We provide evaluation protocols and show that many of the generated stellarators exhibit solid performance: less than 5% deviation from quasisymmetry and the target characteristics. The modest deviation from quasisymmetry highlights an opportunity to reach the sub 1% target. Beyond the case study, we share multiple promising avenues for generative modeling to advance stellarator design.
♻ ☆ Introducing physics-informed generative models for targeting structural novelty in the exploration of chemical space
Discovering materials with new structural chemistry is key to achieving transformative functionality. Generative artificial intelligence offers a scalable route to propose candidate crystal structures. We introduce a reliable low-cost proxy for structural novelty as a conditioning property to steer generation towards novel yet physically plausible structures. We then develop a physics-informed diffusion model that embeds this descriptor of local environment diversity together with compactness as a stability metric to balance physical plausibility with structural novelty. Conditioning on these metrics improves generative performance across diffusion models, shifting generation away from structural motifs that dominate the training data. A chemically grounded validation protocol isolates those candidates that combine plausibility with structural novelty for physics-based calculation of energetic stability. Both the stability and the novelty of candidates emerging from this workflow can however change when the full potential energy surface at a candidate composition is evaluated with crystal structure prediction (CSP). This suggests a practical generative-CSP synergy for discovery-oriented exploration, where AI targets physically viable yet structurally distinct regions of chemical space for detailed physics-based assessment of novelty and stability.
♻ ☆ MapFormer: Self-Supervised Learning of Cognitive Maps with Input-Dependent Positional Embeddings
A cognitive map is an internal model which encodes the abstract relationships among entities in the world, giving humans and animals the flexibility to adapt to new situations, with a strong out-of-distribution (OOD) generalization that current AI systems still do not possess. To bridge this gap, we introduce MapFormers, new architectures based on Transformer models, which can learn cognitive maps from observational data and perform path integration in parallel, in a self-supervised manner. Cognitive maps are learned in the model by disentangling structural relationships in the inputs from their specific content, a property that can be achieved naturally by updating the positional encoding in Transformers with input-dependent matrices. We developed two variants of MapFormers that unify absolute and relative positional encoding to model episodic (EM) and working memory (WM), respectively. We tested MapFormers on several tasks, including a classic 2D navigation task, showing that our models can learn a cognitive map of the underlying space and generalize OOD (e.g., to longer sequences) with near-perfect performance, unlike current architectures. Together, these results demonstrate the superiority of models designed to learn a cognitive map, and the importance of introducing a structural bias for structure-content disentanglement, which can be achieved in Transformers with input-dependent positional encoding. MapFormers have broad applications in both neuroscience and AI, by explaining the neural mechanisms giving rise to cognitive maps, while allowing these relation models to be learned at scale.
comment: 19 pages (29 with appendix), 8 figures
Meta-Statistical Learning: Supervised Learning of Statistical Estimators
Statistical inference, a central tool of science, revolves around the study and the usage of statistical estimators: functions that map finite samples to predictions about unknown distribution parameters. In the frequentist framework, estimators are evaluated based on properties such as bias, variance (for parameter estimation), accuracy, power, and calibration (for hypothesis testing). However, crafting estimators with desirable properties is often analytically challenging, and sometimes impossible, e.g., there exists no universally unbiased estimator for the standard deviation. In this work, we introduce meta-statistical learning, an amortized learning framework that recasts estimator design as an optimization problem via supervised learning. This takes a fully empirical approach to discovering statistical estimators; entire datasets are input to permutation-invariant neural networks, such as Set Transformers, trained to predict the target statistical property. The trained model is the estimator, and can be analyzed through the classical frequentist lens. We demonstrate the approach on two tasks: learning a normality test (classification) and estimating mutual information (regression), achieving strong results even with small models. Looking ahead, this paradigm opens a path to automate the discovery of generalizable and flexible statistical estimators.
♻ ☆ A Variance-Based Analysis of Sample Complexity for Grid Coverage
Verifying uniform conditions over continuous spaces through random sampling is fundamental in machine learning and control theory, yet classical coverage analyses often yield conservative bounds, particularly at small failure probabilities. We study uniform random sampling on the $d$-dimensional unit hypercube and analyze the number of uncovered subcubes after discretization. By applying a concentration inequality to the uncovered-count statistic, we derive a sample complexity bound with a logarithmic dependence on the failure probability ($δ$), i.e., $M =O( \tilde{C}\ln(\frac{2\tilde{C}}δ))$, which contrasts sharply with the classical linear $1/δ$ dependence. Under standard Lipschitz and uniformity assumptions, we present a self-contained derivation and compare our result with classical coupon-collector rates. Numerical studies across dimensions, precision levels, and confidence targets indicate that our bound tracks practical coverage requirements more tightly and scales favorably as $δ\to 0$. Our findings offer a sharper theoretical tool for algorithms that rely on grid-based coverage guarantees, enabling more efficient sampling, especially in high-confidence regimes.
♻ ☆ ReCode: Unify Plan and Action for Universal Granularity Control
Real-world tasks require decisions at varying granularities, and humans excel at this by leveraging a unified cognitive representation where planning is fundamentally understood as a high-level form of action. However, current Large Language Model (LLM)-based agents lack this crucial capability to operate fluidly across decision granularities. This limitation stems from existing paradigms that enforce a rigid separation between high-level planning and low-level action, which impairs dynamic adaptability and limits generalization. We propose ReCode (Recursive Code Generation), a novel paradigm that addresses this limitation by unifying planning and action within a single code representation. In this representation, ReCode treats high-level plans as abstract placeholder functions, which the agent then recursively decomposes into finer-grained sub-functions until reaching primitive actions. This recursive approach dissolves the rigid boundary between plan and action, enabling the agent to dynamically control its decision granularity. Furthermore, the recursive structure inherently generates rich, multi-granularity training data, enabling models to learn hierarchical decision-making processes. Extensive experiments show ReCode significantly surpasses advanced baselines in inference performance and demonstrates exceptional data efficiency in training, validating our core insight that unifying planning and action through recursive code generation is a powerful and effective approach to achieving universal granularity control. The code is available at https://github.com/FoundationAgents/ReCode.
♻ ☆ Fairness-aware PageRank via Edge Reweighting
Link-analysis algorithms, such as PageRank, are instrumental in understanding the structural dynamics of networks by evaluating the importance of individual vertices based on their connectivity. Recently, with the rising importance of responsible AI, the question of fairness in link-analysis algorithms has gained traction. In this paper, we present a new approach for incorporating group fairness into the PageRank algorithm by reweighting the transition probabilities in the underlying transition matrix. We formulate the problem of achieving fair PageRank by seeking to minimize the fairness loss, which is the difference between the original group-wise PageRank distribution and a target PageRank distribution. We further define a group-adapted fairness notion, which accounts for group homophily by considering random walks with group-biased restart for each group. Since the fairness loss is non-convex, we propose an efficient projected gradient-descent method for computing locally-optimal edge weights. Unlike earlier approaches, we do not recommend adding new edges to the network, nor do we adjust the restart vector. Instead, we keep the topology of the underlying network unchanged and only modify the relative importance of existing edges. We empirically compare our approach with state-of-the-art baselines and demonstrate the efficacy of our method, where very small changes in the transition matrix lead to significant improvement in the fairness of the PageRank algorithm.
♻ ☆ Learning Unmasking Policies for Diffusion Language Models
Diffusion (Large) Language Models (dLLMs) now match the downstream performance of their autoregressive counterparts on many tasks, while holding the promise of being more efficient during inference. One particularly successful variant is masked discrete diffusion, in which a buffer filled with special mask tokens is progressively replaced with tokens sampled from the model's vocabulary. Efficiency can be gained by unmasking several tokens in parallel, but doing too many at once risks degrading the generation quality. Thus, one critical design aspect of dLLMs is the sampling procedure that selects, at each step of the diffusion process, which tokens to replace. Indeed, recent work has found that heuristic strategies such as confidence thresholding lead to both higher quality and token throughput compared to random unmasking. However, such heuristics have downsides: they require manual tuning, and we observe that their performance degrades with larger buffer sizes. In this work, we instead propose to train sampling procedures using reinforcement learning. Specifically, we formalize masked diffusion sampling as a Markov decision process in which the dLLM serves as the environment, and propose a lightweight policy architecture based on a single-layer transformer that maps dLLM token confidences to unmasking decisions. Our experiments show that these trained policies match the performance of state-of-the-art heuristics when combined with semi-autoregressive generation, while outperforming them in the full diffusion setting. We also examine the transferability of these policies, finding that they can generalize to new underlying dLLMs and longer sequence lengths. However, we also observe that their performance degrades when applied to out-of-domain data, and that fine-grained tuning of the accuracy-efficiency trade-off can be challenging with our approach.
comment: V2: Fixed typo in author list. No changes in the paper compared to V1
♻ ☆ HyperSBINN: A Hypernetwork-Enhanced Systems Biology-Informed Neural Network for Efficient Drug Cardiosafety Assessment
Mathematical modeling in systems toxicology enables a comprehensive understanding of the effects of pharmaceutical substances on cardiac health. However, the complexity of these models limits their widespread application in early drug discovery. In this paper, we introduce a novel approach to solving parameterized models of cardiac action potentials by combining meta-learning techniques with Systems Biology-Informed Neural Networks (SBINNs). The proposed method, hyperSBINN, effectively addresses the challenge of predicting the effects of various compounds at different concentrations on cardiac action potentials, outperforming traditional differential equation solvers in speed. Our model efficiently handles scenarios with limited data and complex parameterized differential equations. The hyperSBINN model demonstrates robust performance in predicting APD90 values, indicating its potential as a reliable tool for modeling cardiac electrophysiology and aiding in preclinical drug development. This framework represents an advancement in computational modeling, offering a scalable and efficient solution for simulating and understanding complex biological systems.
♻ ☆ Evaluating Federated Learning for At-Risk Student Prediction: A Comparative Analysis of Model Complexity and Data Balancing
This study proposes and validates a Federated Learning (FL) framework to proactively identify at-risk students while preserving data privacy. Persistently high dropout rates in distance education remain a pressing institutional challenge. Using the large-scale OULAD dataset, we simulate a privacy-centric scenario where models are trained on early academic performance and digital engagement patterns. Our work investigates the practical trade-offs between model complexity (Logistic Regression vs. a Deep Neural Network) and the impact of local data balancing. The resulting federated model achieves strong predictive power (ROC AUC approximately 85%), demonstrating that FL is a practical and scalable solution for early-warning systems that inherently respects student data sovereignty.
comment: This article is currently being prepared for submission to a scientific journal
♻ ☆ M3-Embedding: Multi-Linguality, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation
In this paper, we introduce a new embedding model called M3-Embedding, which is distinguished for its versatility in \textit{Multi-Linguality}, \textit{Multi-Functionality}, and \textit{Multi-Granularity}. It provides a uniform support for the semantic retrieval of more than 100 working languages. It can simultaneously accomplish the three common retrieval functionalities: dense retrieval, multi-vector retrieval, and sparse retrieval. Besides, it is also capable of processing inputs of different granularities, spanning from short sentences to long documents of up to 8,192 tokens. The effective training of M3-Embedding presents a series of technical contributions. Notably, we propose a novel self-knowledge distillation approach, where the relevance scores from different retrieval functionalities can be integrated as the teacher signal to enhance the training quality. We also optimize the batching strategy, which enables a large batch size and high training throughput to improve the discriminativeness of embeddings. M3-Embedding exhibits a superior performance in our experiment, leading to new state-of-the-art results on multilingual, cross-lingual, and long-document retrieval benchmarks.
♻ ☆ HEDN: A Hard-Easy Dual Network with Source Reliability Assessment for Cross-Subject EEG Emotion Recognition
Cross-subject electroencephalography (EEG) emotion recognition remains a major challenge in brain-computer interfaces (BCIs) due to substantial inter-subject variability. Multi-Source Domain Adaptation (MSDA) offers a potential solution, but existing MSDA frameworks typically assume equal source quality, leading to negative transfer from low-reliability domains and prohibitive computational overhead due to multi-branch model designs. To address these limitations, we propose the Hard-Easy Dual Network (HEDN), a lightweight reliability-aware MSDA framework. HEDN introduces a novel Source Reliability Assessment (SRA) mechanism that dynamically evaluates the structural integrity of each source domain during training. Based on this assessment, sources are routed to two specialized branches: an Easy Network that exploits high-quality sources to construct fine-grained, structure-aware prototypes for reliable pseudo-label generation, and a Hard Network that utilizes adversarial training to refine and align low-quality sources. Furthermore, a cross-network consistency loss aligns predictions between branches to preserve semantic coherence. Extensive experiments conducted on SEED, SEED-IV, and DEAP datasets demonstrate that HEDN achieves state-of-the-art performance across both cross-subject and cross-dataset evaluation protocols while reducing adaptation complexity.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ A Highly Configurable Framework for Large-Scale Thermal Building Data Generation to drive Machine Learning Research
Data-driven modeling of building thermal dynamics is emerging as an increasingly important field of research for large-scale intelligent building control. However, research in data-driven modeling using machine learning (ML) techniques requires massive amounts of thermal building data, which is not easily available. Neither empirical public datasets nor existing data generators meet the needs of ML research in terms of data quality and quantity. Moreover, existing data generation approaches typically require expert knowledge in building simulation. To fill this gap, we present a thermal building data generation framework which we call BuilDa. BuilDa is designed to produce synthetic data of adequate quality and quantity for ML research. The framework does not require profound building simulation knowledge to generate large volumes of data. BuilDa uses a single-zone Modelica model that is exported as a Functional Mock-up Unit (FMU) and simulated in Python. We demonstrate BuilDa by generating data and utilizing it for a transfer learning study involving the fine-tuning of 486 data-driven models.
comment: Under Review
♻ ☆ Quantum Support Vector Regression for Robust Anomaly Detection
Anomaly Detection (AD) is critical in data analysis, particularly within the domain of IT security. In this study, we explore the potential of Quantum Machine Learning for application to AD with special focus on the robustness to noise and adversarial attacks. We build upon previous work on Quantum Support Vector Regression (QSVR) for semisupervised AD by conducting a comprehensive benchmark on IBM quantum hardware using eleven datasets. Our results demonstrate that QSVR achieves strong classification performance and even outperforms the noiseless simulation on two of these datasets. Moreover, we investigate the influence of - in the NISQ-era inevitable - quantum noise on the performance of the QSVR. Our findings reveal that the model exhibits robustness to depolarizing, phase damping, phase flip, and bit flip noise, while amplitude damping and miscalibration noise prove to be more disruptive. Finally, we explore the domain of Quantum Adversarial Machine Learning by demonstrating that QSVR is highly vulnerable to adversarial attacks, with neither quantum noise nor adversarial training improving the model's robustness against such attacks.
comment: Accepted to International Conference on Agents and Artificial Intelligence (ICAART) 2026
♻ ☆ Statistical physics of deep learning: Optimal learning of a multi-layer perceptron near interpolation
For four decades statistical physics has been providing a framework to analyse neural networks. A long-standing question remained on its capacity to tackle deep learning models capturing rich feature learning effects, thus going beyond the narrow networks or kernel methods analysed until now. We positively answer through the study of the supervised learning of a multi-layer perceptron. Importantly, (i) its width scales as the input dimension, making it more prone to feature learning than ultra wide networks, and more expressive than narrow ones or ones with fixed embedding layers; and (ii) we focus on the challenging interpolation regime where the number of trainable parameters and data are comparable, which forces the model to adapt to the task. We consider the matched teacher-student setting. Therefore, we provide the fundamental limits of learning random deep neural network targets and identify the sufficient statistics describing what is learnt by an optimally trained network as the data budget increases. A rich phenomenology emerges with various learning transitions. With enough data, optimal performance is attained through the model's "specialisation" towards the target, but it can be hard to reach for training algorithms which get attracted by sub-optimal solutions predicted by the theory. Specialisation occurs inhomogeneously across layers, propagating from shallow towards deep ones, but also across neurons in each layer. Furthermore, deeper targets are harder to learn. Despite its simplicity, the Bayes-optimal setting provides insights on how the depth, non-linearity and finite (proportional) width influence neural networks in the feature learning regime that are potentially relevant in much more general settings.
comment: 31 pages, 20 figures + appendix. This submission supersedes both arXiv:2505.24849 and arXiv:2501.18530. v3 adds discussion on s-shot estimators (Fig. 10)
♻ ☆ Towards Practical Multi-label Causal Discovery in High-Dimensional Event Sequences via One-Shot Graph Aggregation NeurIPS2025
Understanding causality in event sequences where outcome labels such as diseases or system failures arise from preceding events like symptoms or error codes is critical. Yet remains an unsolved challenge across domains like healthcare or vehicle diagnostics. We introduce CARGO, a scalable multi-label causal discovery method for sparse, high-dimensional event sequences comprising of thousands of unique event types. Using two pretrained causal Transformers as domain-specific foundation models for event sequences. CARGO infers in parallel, per sequence one-shot causal graphs and aggregates them using an adaptive frequency fusion to reconstruct the global Markov boundaries of labels. This two-stage approach enables efficient probabilistic reasoning at scale while bypassing the intractable cost of full-dataset conditional independence testing. Our results on a challenging real-world automotive fault prediction dataset with over 29,100 unique event types and 474 imbalanced labels demonstrate CARGO's ability to perform structured reasoning.
comment: Accepted at NeurIPS2025 Workshop on Structured Probabilistic Inference and Generative Modeling
♻ ☆ FT-MoE: Sustainable-learning Mixture of Experts for Fault-Tolerant Computing
Intelligent fault-tolerant (FT) computing has recently demonstrated significant advantages in predicting and diagnosing faults proactively, thereby ensuring reliable service delivery. However, due to the heterogeneity of fault knowledge, dynamic workloads, and limited data support, existing deep learning-based FT algorithms face challenges in fault detection quality and training efficiency. This is primarily because their homogenization of fault knowledge perception difficuties to fully capture diverse and complex fault patterns. To address these challenges, we propose FT-MoE, a sustainable-learning fault-tolerant computing framework based on a dual-path architecture for high-accuracy fault detection and classification. This model employs a mixture-of-experts (MoE) architecture, enabling different parameters to learn distinct fault knowledge. Additionally, we adopt a two-stage learning scheme that combines comprehensive offline training with continual online tuning, allowing the model to adaptively optimize its parameters in response to evolving real-time workloads. To facilitate realistic evaluation, we construct a new fault detection and classification dataset for edge networks, comprising 10,000 intervals with fine-grained resource features, surpassing existing datasets in both scale and granularity. Finally, we conduct extensive experiments on the FT benchmark to verify the effectiveness of FT-MoE. Results demonstrate that our model outperforms state-of-the-art methods.
♻ ☆ Less Is More for Multi-Step Logical Reasoning of LLM Generalisation Under Rule Removal, Paraphrasing, and Compression
Large language models (LLMs) achieve strong performance on many natural language tasks, yet their generalisation under structured perturbations of logical rule systems remains insufficiently characterised. We present a controlled evaluation framework that probes reasoning reliability through four stress tests: (1) rule deletion, removing redundant versus essential rules from a multi-step inference chain; (2) contradictory evidence injection; (3) logic-preserving rewrites based on equivalence laws (contraposition, double negation, implication-to-disjunction, De Morgan, identity, and commutativity); and (4) multi-law equivalence stacking that composes 2--5 transformations. Across three representative model families -- BERT, Qwen2, and LLaMA-like models -- all models attain Acc$=1.0000$ on the base split and show no degradation under redundant rule deletion. In contrast, essential rule deletion yields a pronounced decrease to near-chance performance, and injecting explicit contradictions reduces accuracy to 0.0000. Under logic-preserving rewrites, accuracy is largely preserved for single-law transformations with only small degradations in a few cases, whereas multi-law stacking exposes model-dependent sensitivity: BERT matches the base condition, TinyLlama shows only marginal degradation, and Qwen2 exhibits a substantial drop. Overall, the results indicate that contemporary LLMs are generally stable under semantic-preserving reformulations, yet remain brittle to missing or inconsistent evidence and may degrade under composed logical transformations depending on the model family. The proposed framework provides a concise diagnostic tool for isolating these failure modes and for evaluating logical generalisation beyond surface-form variation.
♻ ☆ Echoes of the past: A unified perspective on fading memory and echo states
Recurrent neural networks (RNNs) have become increasingly popular in information processing tasks involving time series and temporal data. A fundamental property of RNNs is their ability to create reliable input/output responses, often linked to how the network handles its memory of the information it processed. Various notions have been proposed to conceptualize the behavior of memory in RNNs, including steady states, echo states, state forgetting, input forgetting, and fading memory. Although these notions are often used interchangeably, their precise relationships remain unclear. This work aims to unify these notions in a common language, derive new implications and equivalences between them, and provide alternative proofs to some existing results. By clarifying the relationships between these concepts, this research contributes to a deeper understanding of RNNs and their temporal information processing capabilities.
♻ ☆ A Multivariate Bernoulli-Based Sampling Method for Multi-Label Data with Application to Meta-Research
Datasets may contain observations with multiple labels. If the labels are not mutually exclusive, and if the labels vary greatly in frequency, obtaining a sample that includes sufficient observations with scarcer labels to make inferences about those labels, and which deviates from the population frequencies in a known manner, creates challenges. In this paper, we consider a multivariate Bernoulli distribution as our underlying distribution of a multi-label problem. We present a novel sampling algorithm that takes label dependencies into account. It uses observed label frequencies to estimate multivariate Bernoulli distribution parameters and calculate weights for each label combination. This approach ensures the weighted sampling acquires target distribution characteristics while accounting for label dependencies. We applied this approach to a sample of research articles from Web of Science labeled with 64 biomedical topic categories. We aimed to preserve category frequency order, reduce frequency differences between most and least common categories, and account for category dependencies. This approach produced a more balanced sub-sample, enhancing the representation of minority categories.
♻ ☆ E2E Learning Massive MIMO for Multimodal Semantic Non-Orthogonal Transmission and Fusion
This paper investigates multimodal semantic non-orthogonal transmission and fusion in hybrid analog-digital massive multiple-input multiple-output (MIMO). A Transformer-based cross-modal source-channel semantic-aware network (CSC-SA-Net) framework is conceived, where channel state information (CSI) reference signal (RS), feedback, analog-beamforming/combining, and baseband semantic processing are data-driven end-to-end (E2E) optimized at the base station (BS) and user equipments (UEs). CSC-SA-Net comprises five sub-networks: BS-side CSI-RS network (BS-CSIRS-Net), UE-side channel semantic-aware network (UE-CSANet), BS-CSANet, UE-side multimodal semantic fusion network (UE-MSFNet), and BS-MSFNet. Specifically, we firstly E2E train BS-CSIRS-Net, UE-CSANet, and BS-CSANet to jointly design CSI-RS, feedback, analog-beamforming/combining with maximum {\emph{physical-layer's}} spectral-efficiency. Meanwhile, we E2E train UE-MSFNet and BS-MSFNet for optimizing {\emph{application-layer's}} source semantic downstream tasks. On these pre-trained models, we further integrate application-layer semantic processing with physical-layer tasks to E2E train five subnetworks. Extensive simulations show that the proposed CSC-SA-Net outperforms traditional separated designs, revealing the advantage of cross-modal channel-source semantic fusion.
♻ ☆ Driving Through Uncertainty: Risk-Averse Control with LLM Commonsense for Autonomous Driving under Perception Deficits
Partial perception deficits can compromise autonomous vehicle safety by disrupting environmental understanding. Existing protocols typically default to entirely risk-avoidant actions such as immediate stops, which are detrimental to navigation goals and lack flexibility for rare driving scenarios. Yet, in cases of minor risk, halting the vehicle may be unnecessary, and more adaptive responses are preferable. In this paper, we propose LLM-RCO, a risk-averse framework leveraging large language models (LLMs) to integrate human-like driving commonsense into autonomous systems facing perception deficits. LLM-RCO features four key modules interacting with the dynamic driving environment: hazard inference, short-term motion planner, action condition verifier, and safety constraint generator, enabling proactive and context-aware actions in such challenging conditions. To enhance the driving decision-making of LLMs, we construct DriveLM-Deficit, a dataset of 53,895 video clips featuring deficits of safety-critical objects, annotated for LLM fine-tuning in hazard detection and motion planning. Extensive experiments in adverse driving conditions with the CARLA simulator demonstrate that LLM-RCO promotes proactive maneuvers over purely risk-averse actions in perception deficit scenarios, underscoring its value for boosting autonomous driving resilience against perception loss challenges.
♻ ☆ TAEGAN: Generating Synthetic Tabular Data For Data Augmentation
Synthetic tabular data generation has gained significant attention for its potential in data augmentation and privacy-preserving data sharing. While recent methods like diffusion and auto-regressive models (i.e., transformer) have advanced the field, generative adversarial networks (GANs) remain highly competitive due to their training efficiency and strong data generation capabilities. In this paper, we introduce Tabular Auto-Encoder Generative Adversarial Network (TAEGAN), a novel GAN-based framework that leverages a masked auto-encoder as the generator. TAEGAN is the first to incorporate self-supervised warmup training of generator into tabular GANs. It enhances GAN stability and exposes the generator to richer information beyond the discriminator's feedback. Additionally, we propose a novel sampling method tailored for imbalanced or skewed data and an improved loss function to better capture data distribution and correlations. We evaluate TAEGAN against seven state-of-the-art synthetic tabular data generation algorithms. Results from eight datasets show that TAEGAN outperforms all baselines on five datasets, achieving a 27% overall utility boost over the best-performing baseline while maintaining a model size less than 5% of the best-performing baseline model. Code is available at: https://github.com/BetterdataLabs/taegan.
comment: This paper is accepted at ACML 2025
♻ ☆ M2NO: An Efficient Multi-Resolution Operator Framework for Dynamic Multi-Scale PDE Solvers KDD
Solving high-dimensional partial differential equations (PDEs) efficiently requires handling multi-scale features across varying resolutions. To address this challenge, we present the Multiwavelet-based Multigrid Neural Operator (M2NO), a deep learning framework that integrates a multigrid structure with predefined multiwavelet spaces. M2NO leverages multi-resolution analysis to selectively transfer low-frequency error components to coarser grids while preserving high-frequency details at finer levels. This design enhances both accuracy and computational efficiency without introducing additional complexity. Moreover, M2NO serves as an effective preconditioner for iterative solvers, further accelerating convergence in large-scale PDE simulations. Through extensive evaluations on diverse PDE benchmarks, including high-resolution, super-resolution tasks, and preconditioning settings, M2NO consistently outperforms existing models. Its ability to efficiently capture fine-scale variations and large-scale structures makes it a robust and versatile solution for complex PDE simulations. Our code and datasets are available on https://github.com/lizhihao2022/M2NO.
comment: Proceedings of the 32nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.1 (KDD 2026)
♻ ☆ Adversarial Signed Graph Learning with Differential Privacy KDD 2026
Signed graphs with positive and negative edges can model complex relationships in social networks. Leveraging on balance theory that deduces edge signs from multi-hop node pairs, signed graph learning can generate node embeddings that preserve both structural and sign information. However, training on sensitive signed graphs raises significant privacy concerns, as model parameters may leak private link information. Existing protection methods with differential privacy (DP) typically rely on edge or gradient perturbation for unsigned graph protection. Yet, they are not well-suited for signed graphs, mainly because edge perturbation tends to cascading errors in edge sign inference under balance theory, while gradient perturbation increases sensitivity due to node interdependence and gradient polarity change caused by sign flips, resulting in larger noise injection. In this paper, motivated by the robustness of adversarial learning to noisy interactions, we present ASGL, a privacy-preserving adversarial signed graph learning method that preserves high utility while achieving node-level DP. We first decompose signed graphs into positive and negative subgraphs based on edge signs, and then design a gradient-perturbed adversarial module to approximate the true signed connectivity distribution. In particular, the gradient perturbation helps mitigate cascading errors, while the subgraph separation facilitates sensitivity reduction. Further, we devise a constrained breadth-first search tree strategy that fuses with balance theory to identify the edge signs between generated node pairs. This strategy also enables gradient decoupling, thereby effectively lowering gradient sensitivity. Extensive experiments on real-world datasets show that ASGL achieves favorable privacy-utility trade-offs across multiple downstream tasks.
comment: Accepted by SIGKDD 2026
♻ ☆ Generative Bayesian Optimization: Generative Models as Acquisition Functions
We present a general strategy for turning generative models into candidate solution samplers for batch Bayesian optimization (BO). The use of generative models for BO enables large batch scaling as generative sampling, optimization of non-continuous design spaces, and high-dimensional and combinatorial design. Inspired by the success of direct preference optimization (DPO), we show that one can train a generative model with noisy, simple utility values directly computed from observations to then form proposal distributions whose densities are proportional to the expected utility, i.e., BO's acquisition function values. Furthermore, this approach is generalizable beyond preference-based feedback to general types of reward signals and loss functions. This perspective avoids the construction of surrogate (regression or classification) models, common in previous methods that have used generative models for black-box optimization. Theoretically, we show that the generative models within the BO process approximately follow a sequence of distributions which asymptotically concentrate at the global optima under certain conditions. We also demonstrate this effect through experiments on challenging optimization problems involving large batches in high dimensions.
comment: Under review
♻ ☆ Large Continual Instruction Assistant
Continual Instruction Tuning (CIT) is adopted to continually instruct Large Models to follow human intent data by data. It is observed that existing gradient update would heavily destroy the performance on previous datasets during CIT process. Instead, Exponential Moving Average (EMA), owns the ability to trace previous parameters, which can aid in decreasing forgetting. Nonetheless, its stable balance weight fails to deal with the ever-changing datasets, leading to the out-of-balance between plasticity and stability. In this paper, we propose a general continual instruction tuning framework to address the challenge. Starting from the trade-off prerequisite and EMA update, we propose the plasticity and stability ideal condition. Based on Taylor expansion in the loss function, we find the optimal balance weight can be automatically determined by the gradients and learned parameters. Therefore, we propose a stable-plasticity balanced coefficient to avoid knowledge interference. Based on the semantic similarity of the instructions, we can determine whether to retrain or expand the training parameters and allocate the most suitable parameters for the testing instances. Extensive experiments across multiple continual instruction tuning benchmarks demonstrate that our approach not only enhances anti-forgetting capabilities but also significantly improves overall continual tuning performance. Our code is available at https://github.com/JingyangQiao/CoIN.
♻ ☆ Hamiltonian of polymatrix zero-sum games
The understanding of a dynamical system's properties can be significantly advanced by establishing it as a Hamiltonian system and then systematically exploring its inherent symmetries. By formulating agents' strategies and cumulative payoffs as canonically conjugate variables, we identify the Hamiltonian function that generates the dynamics of poly-matrix zero-sum games. We reveal the symmetries of our Hamiltonian and derive the associated conserved quantities, showing how the conservation of probability and the invariance of the Fenchel coupling are intrinsically encoded within the system. Furthermore, we propose the dissipation FTRL (DFTRL) dynamics by introducing a perturbation that dissipates the Fenchel coupling, proving convergence to the Nash equilibrium and linking DFTRL to last-iterate convergent algorithms. Our results highlight the potential of Hamiltonian dynamics in uncovering the structural properties of learning dynamics in games, and pave the way for broader applications of Hamiltonian dynamics in game theory and machine learning.
comment: 28 pages. v2: minor corrections. v3: minor improvements and references added. Published version
♻ ☆ WARPD: World model Assisted Reactive Policy Diffusion NeurIPS 2025
With the increasing availability of open-source robotic data, imitation learning has become a promising approach for both manipulation and locomotion. Diffusion models are now widely used to train large, generalized policies that predict controls or trajectories, leveraging their ability to model multimodal action distributions. However, this generality comes at the cost of larger model sizes and slower inference, an acute limitation for robotic tasks requiring high control frequencies. Moreover, Diffusion Policy (DP), a popular trajectory-generation approach, suffers from a trade-off between performance and action horizon: fewer diffusion queries lead to larger trajectory chunks, which in turn accumulate tracking errors. To overcome these challenges, we introduce WARPD (World model Assisted Reactive Policy Diffusion), a method that generates closed-loop policies (weights for neural policies) directly, instead of open-loop trajectories. By learning behavioral distributions in parameter space rather than trajectory space, WARPD offers two major advantages: (1) extended action horizons with robustness to perturbations, while maintaining high task performance, and (2) significantly reduced inference costs. Empirically, WARPD outperforms DP in long-horizon and perturbed environments, and achieves multitask performance on par with DP while requiring only ~ 1/45th of the inference-time FLOPs per step.
comment: Outstanding Paper Award at the Embodied World Models for Decision Making Workshop at NeurIPS 2025
♻ ☆ ASPEN: An Adaptive Spectral Physics-Enabled Network for Ginzburg-Landau Dynamics
Physics-Informed Neural Networks (PINNs) have emerged as a powerful, mesh-free paradigm for solving partial differential equations (PDEs). However, they notoriously struggle with stiff, multi-scale, and nonlinear systems due to the inherent spectral bias of standard multilayer perceptron (MLP) architectures, which prevents them from adequately representing high-frequency components. In this work, we introduce the Adaptive Spectral Physics-Enabled Network (ASPEN), a novel architecture designed to overcome this critical limitation. ASPEN integrates an adaptive spectral layer with learnable Fourier features directly into the network's input stage. This mechanism allows the model to dynamically tune its own spectral basis during training, enabling it to efficiently learn and represent the precise frequency content required by the solution. We demonstrate the efficacy of ASPEN by applying it to the complex Ginzburg-Landau equation (CGLE), a canonical and challenging benchmark for nonlinear, stiff spatio-temporal dynamics. Our results show that a standard PINN architecture catastrophically fails on this problem, diverging into non-physical oscillations. In contrast, ASPEN successfully solves the CGLE with exceptional accuracy. The predicted solution is visually indistinguishable from the high-resolution ground truth, achieving a low median physics residual of 5.10 x 10^-3. Furthermore, we validate that ASPEN's solution is not only pointwise accurate but also physically consistent, correctly capturing emergent physical properties, including the rapid free energy relaxation and the long-term stability of the domain wall front. This work demonstrates that by incorporating an adaptive spectral basis, our framework provides a robust and physically-consistent solver for complex dynamical systems where standard PINNs fail, opening new options for machine learning in challenging physical domains.
comment: 15 pages, 7 figures
♻ ☆ Neuronal Attention Circuit (NAC) for Representation Learning ICML2026
Attention improves representation learning over RNNs, but its discrete nature limits continuous-time (CT) modeling. We introduce Neuronal Attention Circuit (NAC), a novel, biologically plausible CT-Attention mechanism that reformulates attention logits computation as the solution to a linear first-order ODE with nonlinear interlinked gates derived from repurposing \textit{C. elegans} Neuronal Circuit Policies (NCPs) wiring mechanism. NAC replaces dense projections with sparse sensory gates for key-query projections and a sparse backbone network with two heads for computing \textit{content-target} and \textit{learnable time-constant} gates, enabling efficient adaptive dynamics. NAC supports three attention logit computation modes: (i) explicit Euler integration, (ii) exact closed-form solution, and (iii) steady-state approximation. To improve memory intensity, we implemented a sparse Top-\emph{K} pairwise concatenation scheme that selectively curates key-query interactions. We provide rigorous theoretical guarantees, including state stability, bounded approximation errors, and universal approximation. Empirically, we implemented NAC in diverse domains, including irregular time-series classification, lane-keeping for autonomous vehicles, and industrial prognostics. We observed that NAC matches or outperforms competing baselines in accuracy and occupies an intermediate position in runtime and memory efficiency compared with several CT baselines.
comment: Paper for ICML2026
♻ ☆ MemoryBench: A Benchmark for Memory and Continual Learning in LLM Systems
Scaling up data, parameters, and test-time computation has been the mainstream methods to improve LLM systems (LLMsys), but their upper bounds are almost reached due to the gradual depletion of high-quality data and marginal gains obtained from larger computational resource consumption. Inspired by the abilities of human and traditional AI systems in learning from practice, constructing memory and continual learning frameworks for LLMsys has become an important and popular research direction in recent literature. Yet, existing benchmarks for LLM memory often focus on evaluating the system on homogeneous reading comprehension tasks with long-form inputs rather than testing their abilities to learn from accumulated user feedback in service time. Therefore, we propose a user feedback simulation framework and a comprehensive benchmark covering multiple domains, languages, and types of tasks to evaluate the continual learning abilities of LLMsys. Experiments show that the effectiveness and efficiency of state-of-the-art baselines are far from satisfying, and we hope this benchmark could pave the way for future studies on LLM memory and optimization algorithms.
♻ ☆ DFCA: Decentralized Federated Clustering Algorithm
Clustered Federated Learning has emerged as an effective approach for handling heterogeneous data across clients by partitioning them into clusters with similar or identical data distributions. However, most existing methods, including the Iterative Federated Clustering Algorithm (IFCA), rely on a central server to coordinate model updates, which creates a bottleneck and a single point of failure, limiting their applicability in more realistic decentralized learning settings. In this work, we introduce DFCA, a fully decentralized clustered FL algorithm that enables clients to collaboratively train cluster-specific models without central coordination. DFCA uses a sequential running average to aggregate models from neighbors as updates arrive, providing a communication-efficient alternative to batch aggregation while maintaining clustering performance. Our experiments on various datasets demonstrate that DFCA outperforms other decentralized algorithms and performs comparably to centralized IFCA, even under sparse connectivity, highlighting its robustness and practicality for dynamic real-world decentralized networks.
♻ ☆ HyperAdaLoRA: Accelerating LoRA Rank Allocation During Training via Hypernetworks without Sacrificing Performance
Parameter-Efficient Fine-Tuning (PEFT), especially Low-Rank Adaptation (LoRA), has emerged as a promising approach to fine-tuning large language models(LLMs) while reducing computational and memory overhead. However, LoRA assumes a uniform rank \textit{r} for each incremental matrix, not accounting for the varying significance of weight matrices across different modules and layers. AdaLoRA leverages Singular Value Decomposition (SVD) to parameterize updates and employs pruning of singular values to introduce dynamic rank allocation, thereby enhancing adaptability. However, during the training process, it often encounters issues of slow convergence speed and high computational overhead. To address this issue, we propose HyperAdaLoRA, a novel framework that accelerates the convergence of AdaLoRA by leveraging a hypernetwork. Instead of directly optimizing the components of Singular Value Decomposition $(P, Λ, Q)$, HyperAdaLoRA employs a hypernetwork based on attention mechanisms to dynamically generate these parameters. By pruning the outputs of the hypernetwork that generates the singular values, dynamic rank allocation is achieved. Comprehensive experiments on various datasets and models demonstrate that our method achieves faster convergence without sacrificing performance. Additionally, further extension experiments on other LoRA-based approaches validate the broad applicability of our method.
comment: 13 pages
♻ ☆ Communication-Efficient Module-Wise Federated Learning for Grasp Pose Detection in Cluttered Environments
Grasp pose detection (GPD) is a fundamental capability for robotic autonomy, but its reliance on large, diverse datasets creates significant data privacy and centralization challenges. Federated Learning (FL) offers a privacy-preserving solution, but its application to GPD is hindered by the substantial communication overhead of large models, a key issue for resource-constrained robots. To address this, we propose a novel module-wise FL framework that begins by analyzing the learning dynamics of the GPD model's functional components. This analysis identifies slower-converging modules, to which our framework then allocates additional communication effort. This is realized through a two-phase process: a standard full-model training phase is followed by a communication-efficient phase where only the identified subset of slower-converging modules is trained and their partial updates are aggregated. Extensive experiments on the GraspNet-1B dataset demonstrate that our method outperforms standard FedAvg and other baselines, achieving higher accuracy for a given communication budget. Furthermore, real-world experiments on a physical robot validate our approach, showing a superior grasp success rate compared to baseline methods in cluttered scenes. Our work presents a communication-efficient framework for training robust, generalized GPD models in a decentralized manner, effectively improving the trade-off between communication cost and model performance.
comment: Accepted to IEEE Robotics and Automation Letters (RA-L). 8 pages, 5 figures
♻ ☆ The Final-Stage Bottleneck: A Systematic Dissection of the R-Learner for Network Causal Inference
The R-Learner is a powerful, theoretically-grounded framework for estimating heterogeneous treatment effects, prized for its robustness to nuisance model errors. However, its application to network data, where causal heterogeneity is often graph-dependent, presents a critical challenge to its core assumption of a well-specified final-stage model. In this paper, we conduct a large-scale empirical study to systematically dissect the R-Learner framework on graphs. We provide the first rigorous evidence that the primary driver of performance is the inductive bias of the final-stage CATE estimator, an effect that dominates the choice of nuisance models. Our central finding is the quantification of a catastrophic "representation bottleneck": we prove with overwhelming statistical significance (p < 0.001) that R-Learners with a graph-blind final stage fail completely (MSE > 4.0), even when paired with powerful GNN nuisance models. Conversely, our proposed end-to-end Graph R-Learner succeeds and significantly outperforms a strong, non-DML GNN T-Learner baseline. Furthermore, we identify and provide a mechanistic explanation for a subtle, topology-dependent "nuisance bottleneck," linking it to GNN over-squashing via a targeted "Hub-Periphery Trade-off" analysis. Our findings are validated across diverse synthetic and semi-synthetic benchmarks. We release our code as a reproducible benchmark to facilitate future research on this critical "final-stage bottleneck."
comment: 15 pages, 4 figures
♻ ☆ Equilibrium Policy Generalization: A Reinforcement Learning Framework for Cross-Graph Zero-Shot Generalization in Pursuit-Evasion Games
Equilibrium learning in adversarial games is an important topic widely examined in the fields of game theory and reinforcement learning (RL). Pursuit-evasion game (PEG), as an important class of real-world games from the fields of robotics and security, requires exponential time to be accurately solved. When the underlying graph structure varies, even the state-of-the-art RL methods require recomputation or at least fine-tuning, which can be time-consuming and impair real-time applicability. This paper proposes an Equilibrium Policy Generalization (EPG) framework to effectively learn a generalized policy with robust cross-graph zero-shot performance. In the context of PEGs, our framework is generally applicable to both pursuer and evader sides in both no-exit and multi-exit scenarios. These two generalizability properties, to our knowledge, are the first to appear in this domain. The core idea of the EPG framework is to train an RL policy across different graph structures against the equilibrium policy for each single graph. To construct an equilibrium oracle for single-graph policies, we present a dynamic programming (DP) algorithm that provably generates pure-strategy Nash equilibrium with near-optimal time complexity. To guarantee scalability with respect to pursuer number, we further extend DP and RL by designing a grouping mechanism and a sequence model for joint policy decomposition, respectively. Experimental results show that, using equilibrium guidance and a distance feature proposed for cross-graph PEG training, the EPG framework guarantees desirable zero-shot performance in various unseen real-world graphs. Besides, when trained under an equilibrium heuristic proposed for the graphs with exits, our generalized pursuer policy can even match the performance of the fine-tuned policies from the state-of-the-art PEG methods.
♻ ☆ Scalable Best-of-N Selection for Large Language Models via Self-Certainty NeurIPS 2025
Best-of-N selection is a key technique for improving the reasoning performance of Large Language Models (LLMs) through increased test-time computation. Current state-of-the-art methods often employ computationally intensive reward models for response evaluation and selection. Reward-free alternatives, like self-consistency and universal self-consistency, are limited in their ability to handle open-ended generation tasks or scale effectively. To address these limitations, we propose self-certainty, a novel and efficient metric that leverages the inherent probability distribution of LLM outputs to estimate response quality without requiring external reward models. We hypothesize that higher distributional self-certainty, aggregated across multiple samples, correlates with improved response accuracy, as it reflects greater confidence in the generated output. Through extensive experiments on various reasoning tasks, we demonstrate that self-certainty (1) scales effectively with increasing sample size N, akin to reward models but without the computational overhead; (2) complements chain-of-thought, improving reasoning performance beyond greedy decoding; and (3) generalizes to open-ended tasks where traditional self-consistency methods fall short. Our findings establish self-certainty as a practical and efficient way for improving LLM reasoning capabilities. The code is available at https://github.com/backprop07/Self-Certainty
comment: NeurIPS 2025
♻ ☆ The Landscape of Memorization in LLMs: Mechanisms, Measurement, and Mitigation
Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks, yet they also exhibit memorization of their training data. This phenomenon raises critical questions about model behavior, privacy risks, and the boundary between learning and memorization. Addressing these concerns, this paper synthesizes recent studies and investigates the landscape of memorization, the factors influencing it, and methods for its detection and mitigation. We explore key drivers, including training data duplication, training dynamics, and fine-tuning procedures that influence data memorization. In addition, we examine methodologies such as prefix-based extraction, membership inference, and adversarial prompting, assessing their effectiveness in detecting and measuring memorized content. Beyond technical analysis, we also explore the broader implications of memorization, including the legal and ethical implications. Finally, we discuss mitigation strategies, including data cleaning, differential privacy, and post-training unlearning, while highlighting open challenges in balancing the need to minimize harmful memorization with model utility. This paper provides a comprehensive overview of the current state of research on LLM memorization across technical, privacy, and performance dimensions, identifying critical directions for future work.
♻ ☆ CaberNet: Causal Representation Learning for Cross-Domain HVAC Energy Prediction
Cross-domain HVAC energy prediction is essential for scalable building energy management, particularly because collecting extensive labeled data for every new building is both costly and impractical. Yet, this task remains highly challenging due to the scarcity and heterogeneity of data across different buildings, climate zones, and seasonal patterns. In particular, buildings situated in distinct climatic regions introduce variability that often leads existing methods to overfit to spurious correlations, rely heavily on expert intervention, or compromise on data diversity. To address these limitations, we propose CaberNet, a causal and interpretable deep sequence model that learns invariant (Markov blanket) representations for robust cross-domain prediction. In a purely data-driven fashion and without requiring any prior knowledge, CaberNet integrates i) a global feature gate trained with a self-supervised Bernoulli regularization to distinguish superior causal features from inferior ones, and ii) a domain-wise training scheme that balances domain contributions, minimizes cross-domain loss variance, and promotes latent factor independence. We evaluate CaberNet on real-world datasets collected from three buildings located in three climatically diverse cities, and it consistently outperforms all baselines, achieving a 22.9% reduction in normalized mean squared error (NMSE) compared to the best benchmark. Our code is available at https://github.com/SusCom-Lab/CaberNet-CRL.
comment: Accepted at ACM e-Energy 2026
♻ ☆ SATURN: SAT-based Reinforcement Learning to Unleash LLMs Reasoning
How to design reinforcement learning (RL) tasks that effectively unleash the reasoning capability of large language models (LLMs) remains an open question. Existing RL tasks (e.g., math, programming, and constructing reasoning tasks) suffer from three key limitations: (1) Scalability. They rely heavily on human annotation or expensive LLM synthesis to generate sufficient training data. (2) Verifiability. LLMs' outputs are hard to verify automatically and reliably. (3) Controllable Difficulty. Most tasks lack fine-grained difficulty control, making it hard to train LLMs to develop reasoning ability from easy to hard. To address these limitations, we propose Saturn, a SAT-based RL framework that uses Boolean Satisfiability (SAT) problems to train and evaluate LLMs reasoning. Saturn enables scalable task construction, rule-based verification, and precise difficulty control. Saturn designs a curriculum learning pipeline that continuously improves LLMs' reasoning capability by constructing SAT tasks of increasing difficulty and training LLMs from easy to hard. To ensure stable training, we design a principled mechanism to control difficulty transitions. We introduce Saturn-2.6k, a dataset of 2,660 SAT problems with varying difficulty. It supports the evaluation of how LLM reasoning changes with problem difficulty. We apply Saturn to DeepSeek-R1-Distill-Qwen and obtain Saturn-1.5B and Saturn-7B. We achieve several notable results: (1) On SAT problems, Saturn-1.5B and Saturn-7B achieve average pass@3 improvements of +14.0 and +28.1, respectively. (2) On math and programming tasks, Saturn-1.5B and Saturn-7B improve average scores by +4.9 and +1.8 on benchmarks (e.g., AIME, LiveCodeBench). (3) Compared to the state-of-the-art (SOTA) approach in constructing RL tasks, Saturn achieves further improvements of +8.8%. We release the source code, data, and models to support future research.
♻ ☆ BAMBO: Construct Ability and Efficiency LLM Pareto Set via Bayesian Adaptive Multi-objective Block-wise Optimization
Constructing a Pareto set is pivotal for navigating the capability-efficiency trade-offs in Large Language Models (LLMs); however, existing merging techniques remain inadequate for this task. Coarse-grained, model-level methods yield only a sparse set of suboptimal solutions, while fine-grained, layer-wise approaches suffer from the "curse of dimensionality," rendering the search space computationally intractable. To resolve this dichotomy, we propose BAMBO (Bayesian Adaptive Multi-objective Block-wise Optimization), a novel framework that automatically constructs the LLM Pareto set. BAMBO renders the search tractable by introducing a Hybrid Optimal Block Partitioning strategy. Formulated as a 1D clustering problem, this strategy leverages a dynamic programming approach to optimally balance intra-block homogeneity and inter-block information distribution, thereby dramatically reducing dimensionality without sacrificing critical granularity. The entire process is automated within an evolutionary loop driven by the q-Expected Hypervolume Improvement (qEHVI) acquisition function. Experiments demonstrate that BAMBO discovers a superior and more comprehensive Pareto frontier than baselines, enabling agile model selection tailored to diverse operational constraints. Code is available at: https://github.com/xin8coder/BAMBO.
♻ ☆ The Hitchhiker's Guide to Efficient, End-to-End, and Tight DP Auditing
In this paper, we systematize research on auditing Differential Privacy (DP) techniques, aiming to identify key insights and open challenges. First, we introduce a comprehensive framework for reviewing work in the field and establish three cross-contextual desiderata that DP audits should target -- namely, efficiency, end-to-end-ness, and tightness. Then, we systematize the modes of operation of state-of-the-art DP auditing techniques, including threat models, attacks, and evaluation functions. This allows us to highlight key details overlooked by prior work, analyze the limiting factors to achieving the three desiderata, and identify open research problems. Overall, our work provides a reusable and systematic methodology geared to assess progress in the field and identify friction points and future directions for our community to focus on.
comment: Published in the Proceedings of the 4th IEEE Secure and Trustworthy Machine Learning Conference (IEEE SaTML 2026). Please cite the SaTML version
♻ ☆ Annotation-Free Reinforcement Learning Query Rewriting via Verifiable Search Reward
Optimizing queries for Retrieval-Augmented Generation (RAG) systems poses a significant challenge, particularly across diverse modal indices. We introduce RL-QR, a novel annotation-free reinforcement learning framework for query rewriting that eliminates the need for costly human-annotated data. By leveraging verifiable search rewards derived from index-aligned synthetic queries, RL-QR overcomes human-annotation dependencies, extending its applicability to various modalities and index domains. Experimental results demonstrate the framework's robustness, achieving substantial retrieval performance gains of up to 3.9$\times$ on lexical retrievers and 3.5$\times$ on semantic retrievers on the MTEB VIDORE V2 benchmark for unstructured visual documents, along with consistent 5\% to 10\% improvements on MS MARCO v2.1 and internal industrial datasets.
♻ ☆ BugSweeper: Function-Level Detection of Smart Contract Vulnerabilities Using Graph Neural Networks AAAI 2026
The rapid growth of Ethereum has made it more important to quickly and accurately detect smart contract vulnerabilities. While machine-learning-based methods have shown some promise, many still rely on rule-based preprocessing designed by domain experts. Rule-based preprocessing methods often discard crucial context from the source code, potentially causing certain vulnerabilities to be overlooked and limiting adaptability to newly emerging threats. We introduce BugSweeper, an end-to-end deep learning framework that detects vulnerabilities directly from the source code without manual engineering. BugSweeper represents each Solidity function as a Function-Level Abstract Syntax Graph (FLAG), a novel graph that combines its Abstract Syntax Tree (AST) with enriched control-flow and data-flow semantics. Then, our two-stage Graph Neural Network (GNN) analyzes these graphs. The first-stage GNN filters noise from the syntax graphs, while the second-stage GNN conducts high-level reasoning to detect diverse vulnerabilities. Extensive experiments on real-world contracts show that BugSweeper significantly outperforms all state-of-the-art detection methods. By removing the need for handcrafted rules, our approach offers a robust, automated, and scalable solution for securing smart contracts without any dependence on security experts.
comment: This paper is accepted to AAAI 2026
♻ ☆ Probabilistic Super-Resolution for Urban Micrometeorology via a Schrödinger Bridge
This study employs a neural network that represents the solution to a Schrödinger bridge problem to perform super-resolution of 2-m temperature in an urban area. Schrödinger bridges generally describe transformations between two data distributions based on diffusion processes. We use a specific Schrödinger-bridge model (SM) that directly transforms low-resolution data into high-resolution data, unlike denoising diffusion probabilistic models (simply, diffusion models; DMs) that generate high-resolution data from Gaussian noise. Low-resolution and high-resolution data were obtained from separate numerical simulations with a physics-based model under common initial and boundary conditions. Compared with a DM, the SM attains comparable accuracy at one-fifth the computational cost, requiring 50 neural-network evaluations per datum for the DM and only 10 for the SM. Furthermore, high-resolution samples generated by the SM exhibit larger variance, implying superior uncertainty quantification relative to the DM. Owing to the reduced computational cost of the SM, our results suggest the feasibility of real-time ensemble micrometeorological prediction using SM-based super-resolution.
♻ ☆ A Unified Model for Multi-Task Drone Routing in Post-Disaster Road Assessment
Post-disaster road assessment (PDRA) is essential for emergency response, enabling rapid evaluation of infrastructure conditions and efficient allocation of resources. Although drones provide a flexible and effective tool for PDRA, routing them in large-scale networks remains challenging. Exact and heuristic optimization methods scale poorly and demand domain expertise, while existing deep reinforcement learning (DRL) approaches adopt a single-task paradigm, requiring separate models for each problem variant and lacking adaptability to evolving operational needs. This study proposes a unified model (UM) for drone routing that simultaneously addresses eight PDRA variants. By training a single neural network across multiple problem configurations, UM captures shared structural knowledge while adapting to variant-specific constraints through a modern transformer encoder-decoder architecture. A lightweight adapter mechanism further enables efficient finetuning to unseen attributes without retraining, enhancing deployment flexibility in dynamic disaster scenarios. Extensive experiments demonstrate that the UM reduces training time and parameters by a factor of eight compared with training separate models, while consistently outperforming single-task DRL methods by 6-14%, heuristic algorithms by 22-42%, and commercial solvers by 24-82% in terms of solution quality (total collected information value). The model achieves rapid solutions (1-10 seconds) across networks of up to 1,000 nodes, with robustness confirmed through sensitivity analyses. Moreover, finetuning experiments show that unseen attributes can be effectively incorporated with minimal cost while retaining high solution quality. The source code for UM is publicly available at https://github.com/PJ-HTU/UM_PDRA.
comment: 34 pages, 8 figures,9 tables
♻ ☆ FuncGenFoil: Airfoil Generation and Editing Model in Function Space
Aircraft manufacturing is the jewel in the crown of industry, in which generating high-fidelity airfoil geometries with controllable and editable representations remains a fundamental challenge. Existing deep learning methods, which typically rely on predefined parametric representations (e.g., Bézier) or discrete point sets, face an inherent trade-off between expressive power and resolution adaptability. To tackle this challenge, we introduce FuncGenFoil, a novel function-space generative model that directly reconstructs airfoil geometries as function curves. Our method inherits the advantages of arbitrary-resolution sampling and smoothness from parametric functions, as well as the strong expressiveness of discrete point-based representations. Empirical evaluations demonstrate that FuncGenFoil improves upon state-of-the-art methods in airfoil generation, achieving a relative 74.4% reduction in label error and a 23.2% increase in diversity on the AF-200K dataset. Our results highlight the advantages of function-space modeling for aerodynamic shape optimization, offering a powerful and flexible framework for high-fidelity airfoil design.
♻ ☆ TRKM: Twin Restricted Kernel Machines for Classification and Regression
Restricted kernel machines (RKMs) have considerably improved generalization in machine learning. Recent advancements explored various techniques within the RKM framework, integrating kernel functions with least squares support vector machines (LSSVM) to mirror the energy function of restricted Boltzmann machines (RBM), leading to enhanced performance. However, RKMs may face challenges in generalization when dealing with unevenly distributed or complexly clustered data. Additionally, as the dataset size increases, the computational burden of managing high-dimensional feature spaces can become substantial, potentially hindering performance in large-scale datasets. To address these challenges, we propose twin restricted kernel machine (TRKM). TRKM combines the benefits of twin models with the robustness of the RKM framework to enhance classification and regression tasks. By leveraging the Fenchel-Young inequality, we introduce a novel conjugate feature duality, allowing the formulation of classification and regression problems in terms of dual variables. This duality provides an upper bound to the objective function of the TRKM problem, resulting in a new methodology under the RKM framework. The model uses an energy function similar to that of RBM, incorporating both visible and hidden variables corresponding to both classes. Additionally, the kernel trick is employed to map data into a high-dimensional feature space, where the model identifies an optimal separating hyperplane using a regularized least squares approach. Experiments on UCI and KEEL datasets confirm TRKM's superiority over baselines, showcasing its robustness and efficiency in handling complex data. Furthermore, We implemented the TRKM model on the brain age dataset, demonstrating its efficacy in predicting brain age.
♻ ☆ VERITAS: Verifying the Performance of AI-native Transceiver Actions in Base-Stations
Artificial Intelligence (AI)-native receivers prove significant performance improvement in high noise regimes and can potentially reduce communication overhead compared to the traditional receiver. However, their performance highly depends on the representativeness of the training dataset. A major issue is the uncertainty of whether the training dataset covers all test environments and waveform configurations, and thus, whether the trained model is robust in practical deployment conditions. To this end, we propose a joint measurement-recovery framework for AI-native transceivers post deployment, called VERITAS, that continuously looks for distribution shifts in the received signals and triggers finite re-training spurts. VERITAS monitors the wireless channel using 5G pilots fed to an auxiliary neural network that detects out-of-distribution channel profile, transmitter speed, and delay spread. As soon as such a change is detected, a traditional (reference) receiver is activated, which runs for a period of time in parallel to the AI-native receiver. Finally, VERTIAS compares the bit probabilities of the AI-native and the reference receivers for the same received data inputs, and decides whether or not a retraining process needs to be initiated. Our evaluations reveal that VERITAS can detect changes in the channel profile, transmitter speed, and delay spread with 99%, 97%, and 69% accuracies, respectively, followed by timely initiation of retraining for 86%, 93.3%, and 94.8% of inputs in channel profile, transmitter speed, and delay spread test sets, respectively.
♻ ☆ Large Language Model Agent for Modular Task Execution in Drug Discovery
We present a modular framework powered by large language models (LLMs) that automates and streamlines key tasks across the early-stage computational drug discovery pipeline. By combining LLM reasoning with domain-specific tools, the framework performs biomedical data retrieval, literature-grounded question answering via retrieval-augmented generation, molecular generation, multi-property prediction, property-aware molecular refinement, and 3D protein-ligand structure generation. The agent autonomously retrieved relevant biomolecular information, including FASTA sequences, SMILES representations, and literature, and answered mechanistic questions with improved contextual accuracy compared to standard LLMs. It then generated chemically diverse seed molecules and predicted 75 properties, including ADMET-related and general physicochemical descriptors, which guided iterative molecular refinement. Across two refinement rounds, the number of molecules with QED > 0.6 increased from 34 to 55. The number of molecules satisfying empirical drug-likeness filters also rose; for example, compliance with the Ghose filter increased from 32 to 55 within a pool of 100 molecules. The framework also employed Boltz-2 to generate 3D protein-ligand complexes and provide rapid binding affinity estimates for candidate compounds. These results demonstrate that the approach effectively supports molecular screening, prioritization, and structure evaluation. Its modular design enables flexible integration of evolving tools and models, providing a scalable foundation for AI-assisted therapeutic discovery.
♻ ☆ Class-wise Balancing Data Replay for Federated Class-Incremental Learning NeurIPS'25
Federated Class Incremental Learning (FCIL) aims to collaboratively process continuously increasing incoming tasks across multiple clients. Among various approaches, data replay has become a promising solution, which can alleviate forgetting by reintroducing representative samples from previous tasks. However, their performance is typically limited by class imbalance, both within the replay buffer due to limited global awareness and between replayed and newly arrived classes. To address this issue, we propose a class wise balancing data replay method for FCIL (FedCBDR), which employs a global coordination mechanism for class-level memory construction and reweights the learning objective to alleviate the aforementioned imbalances. Specifically, FedCBDR has two key components: 1) the global-perspective data replay module reconstructs global representations of prior task in a privacy-preserving manner, which then guides a class-aware and importance-sensitive sampling strategy to achieve balanced replay; 2) Subsequently, to handle class imbalance across tasks, the task aware temperature scaling module adaptively adjusts the temperature of logits at both class and instance levels based on task dynamics, which reduces the model's overconfidence in majority classes while enhancing its sensitivity to minority classes. Experimental results verified that FedCBDR achieves balanced class-wise sampling under heterogeneous data distributions and improves generalization under task imbalance between earlier and recent tasks, yielding a 2%-15% Top-1 accuracy improvement over six state-of-the-art methods.
comment: NeurIPS'25 Accepted, Oral
♻ ☆ RLHFSpec: Breaking the Efficiency Bottleneck in RLHF Training via Adaptive Drafting
Reinforcement Learning from Human Feedback (RLHF) is an important fine-tuning technique for large language models (LLMs) and comprises three stages: generation, inference, and training. The generation stage generates samples that are then used to infer learnable experiences for training. We observe that the generation stage is the bottleneck of the entire execution process and consider it a key point for optimization. Specifically, we realize the first attempt to integrate speculative decoding into the RLHF generation stage and propose RLHFSpec, an RLHF system that accelerates generation execution with efficient speculative decoding and sample reallocation. To fully exploit the performance potential provided by speculative decoding, especially dealing with the dynamic workload of the generation stage, RLHFSpec proposes a workload-aware drafting strategy selection mechanism, which selects the near-optimal strategy by jointly considering the verification cost and the number of accepted tokens. Moreover, RLHFSpec also proposes sample reallocation to fully utilize the GPU resources, and optimizes it with an efficient sample migration mechanism. The experimental results show that the RLHFSpec can achieve higher throughput in the generation stage compared to state-of-the-art works. Moreover, due to the effective alleviation of the generation bottleneck, RLHFSpec also shows significant performance speedup in the entire RLHF execution.
♻ ☆ HBLLM: Wavelet-Enhanced High-Fidelity 1-Bit Quantization for LLMs
We introduce HBLLM, a wavelet-enhanced high-fidelity $1$-bit post-training quantization method for Large Language Models (LLMs). By leveraging Haar wavelet transforms to enhance expressive capacity through frequency decomposition, HBLLM significantly improves quantization fidelity while maintaining minimal overhead. This approach features two innovative structure-aware grouping strategies: (1) frequency-aware multi-parameter intra-row grouping and (2) $\ell_2$-norm-based saliency-driven column selection. For non-salient weights, a shared mean is employed across quantization groups within each frequency band to optimize storage efficiency. Experiments conducted on the OPT and LLaMA models demonstrate that HBLLM achieves state-of-the-art performance in $1$-bit quantization, attaining a perplexity of $6.71$ on LLaMA$2$-$13$B with an average weight storage of only $1.08$ bits. Code available at: https://github.com/Yeyke/HBLLM.
♻ ☆ DoDo-Code: an Efficient Levenshtein Distance Embedding-based Code for 4-ary IDS Channel
With the emergence of new storage and communication methods, the insertion, deletion, and substitution (IDS) channel has attracted considerable attention. However, many topics on the IDS channel and the associated Levenshtein distance remain open, making the invention of a novel IDS-correcting code a hard task. Furthermore, current studies on single-IDS-correcting code misalign with the requirements of applications which necessitates the correcting of multiple errors. Compromise solutions have involved shortening codewords to reduce the chance of multiple errors. However, the code rates of existing codes are poor at short lengths, diminishing the overall storage density. In this study, a novel method is introduced for designing high-code-rate single-IDS-correcting codewords through deep Levenshtein distance embedding. A deep learning model is utilized to project the sequences into embedding vectors that preserve the Levenshtein distances between the original sequences. This embedding space serves as a proxy for the complex Levenshtein domain, within which algorithms for codeword search and segment correcting is developed. While the concept underpinning this approach is straightforward, it bypasses the mathematical challenges typically encountered in code design. The proposed method results in a code rate that outperforms existing combinatorial solutions, particularly for designing short-length codewords.
♻ ☆ Uncertainty-Aware Cross-Modal Knowledge Distillation with Prototype Learning for Multimodal Brain-Computer Interfaces
Electroencephalography (EEG) is a fundamental modality for cognitive state monitoring in brain-computer interfaces (BCIs). However, it is highly susceptible to intrinsic signal errors and human-induced labeling errors, which lead to label noise and ultimately degrade model performance. To enhance EEG learning, multimodal knowledge distillation (KD) has been explored to transfer knowledge from visual models with rich representations to EEG-based models. Nevertheless, KD faces two key challenges: modality gap and soft label misalignment. The former arises from the heterogeneous nature of EEG and visual feature spaces, while the latter stems from label inconsistencies that create discrepancies between ground truth labels and distillation targets. This paper addresses semantic uncertainty caused by ambiguous features and weakly defined labels. We propose a novel cross-modal knowledge distillation framework that mitigates both modality and label inconsistencies. It aligns feature semantics through a prototype-based similarity module and introduces a task-specific distillation head to resolve label-induced inconsistency in supervision. Experimental results demonstrate that our approach improves EEG-based emotion regression and classification performance, outperforming both unimodal and multimodal baselines on a public multimodal dataset. These findings highlight the potential of our framework for BCI applications.
comment: Accepted to SMC 2025
♻ ☆ Statistical Inference for Differentially Private Stochastic Gradient Descent
Privacy preservation in machine learning, particularly through Differentially Private Stochastic Gradient Descent (DP-SGD), is critical for sensitive data analysis. However, existing statistical inference methods for SGD predominantly focus on cyclic subsampling, while DP-SGD requires randomized subsampling. This paper first bridges this gap by establishing the asymptotic properties of SGD under the randomized rule and extending these results to DP-SGD. For the output of DP-SGD, we show that the asymptotic variance decomposes into statistical, sampling, and privacy-induced components. Two methods are proposed for constructing valid confidence intervals: the plug-in method and the random scaling method. We also perform extensive numerical analysis, which shows that the proposed confidence intervals achieve nominal coverage rates while maintaining privacy.
♻ ☆ GSplit: Scaling Graph Neural Network Training on Large Graphs via Split-Parallelism
Graph neural networks (GNNs), an emerging class of machine learning models for graphs, have gained popularity for their superior performance in various graph analytical tasks. Mini-batch training is commonly used to train GNNs on large graphs, and data parallelism is the standard approach to scale mini-batch training across multiple GPUs. Data parallel approaches contain redundant work as subgraphs sampled by different GPUs contain significant overlap. To address this issue, we introduce a hybrid parallel mini-batch training paradigm called split parallelism. Split parallelism avoids redundant work by splitting the sampling, loading, and training of each mini-batch across multiple GPUs. Split parallelism, however, introduces communication overheads that can be more than the savings from removing redundant work. We further present a lightweight partitioning algorithm that probabilistically minimizes these overheads. We implement split parallelism in GSplit and show that it outperforms state-of-the-art mini-batch training systems like DGL, Quiver, and $P^3$.
comment: Published at MLSys 2025. OpenReview: https://openreview.net/forum?id=cTOx1YTBgh
♻ ☆ Koopman operator-based discussion on partial observation in stochastic systems
It is sometimes difficult to achieve a complete observation for a full set of observables, and partial observations are necessary. For deterministic systems, the Mori-Zwanzig formalism provides a theoretical framework for handling partial observations. Recently, data-driven algorithms based on the Koopman operator theory have made significant progress, and there is a discussion to connect the Mori-Zwanzig formalism with the Koopman operator theory. In this work, we discuss the effects of partial observation in stochastic systems using the Koopman operator theory. The discussion clarifies the importance of distinguishing the state space and the function space in stochastic systems. Even in stochastic systems, the delay-embedding technique is beneficial for partial observation, and several numerical experiments show a power-law behavior of error with respect to the amplitude of the additive noise. We also discuss the relation between the exponent of the power-law behavior and the effects of partial observation.
comment: 26 pages, 5 figures
♻ ☆ MixtureVitae: Open Web-Scale Pretraining Dataset With High Quality Instruction and Reasoning Data Built from Permissive-First Text Sources
We present MixtureVitae, an open-access pretraining corpus built to minimize legal risk while providing strong model performance. MixtureVitae follows a risk-mitigated sourcing strategy that combines public-domain and permissively licensed text (e.g., CC-BY/Apache) with carefully justified low-risk additions (e.g., government works and EU TDM-eligible sources), alongside targeted instruction, reasoning and synthetic data with documented provenance. We detail a transparent, multi-stage pipeline for license-aware filtering, safety and quality screening, and domain-aware mixing, and we release the dataset and curation recipes to support reproducible research. In controlled experiments using the open-sci-ref training protocol (fixed architectures at 130M/400M/1.3B/1.7B parameters; training budgets of 50B and 300B tokens), models trained on MixtureVitae consistently outperform other permissive datasets across a suite of standard benchmarks, and at the 1.7B/300B setting they surpass FineWeb-Edu and approach DCLM in the later stages of training. Performance is particularly strong on math/code and competitive on QA tasks. These results demonstrate that permissive-first, risk-mitigated data provides a practical and legally mitigated foundation for training capable LLMs, reducing reliance on indiscriminate web scraping without sacrificing competitiveness. Code: https://github.com/ontocord/mixturevitae
comment: Code: \url{https://github.com/ontocord/mixturevitae}
♻ ☆ Full-Precision and Ternarised Neural Networks with Tunnel-Diode Activation Functions: Computing and Physics Perspectives
The mathematical complexity and high dimensionality of neural networks slow both training and deployment, demanding heavy computational resources. This has driven the search for alternative architectures built from novel components, including new activation functions. Taking a different approach from state-of-the-art neural and neuromorphic computational systems, we employ the current-voltage characteristic of a tunnel diode as a quantum physics-based activation function for deep networks. This tunnel-diode activation function (TDAF) outperforms standard activations in deep architectures, delivering lower loss and higher accuracy in both training and evaluation. We also highlight its promise for implementation in electronic hardware aimed at neuromorphic, ternarised and energy efficient AI systems. Speaking broadly, our work lays a solid foundation for a new bridge between machine learning, semiconductor electronics and quantum physics -- bringing together quantum tunnelling, a phenomenon recognised in six Nobel Prizes (including the 2025 award), and contemporary AI research.
♻ ☆ SDialog: A Python Toolkit for End-to-End Agent Building, User Simulation, Dialog Generation, and Evaluation ACL
We present SDialog, an MIT-licensed open-source Python toolkit that unifies dialog generation, evaluation and mechanistic interpretability into a single end-to-end framework for building and analyzing LLM-based conversational agents. Built around a standardized \texttt{Dialog} representation, SDialog provides: (1) persona-driven multi-agent simulation with composable orchestration for controlled, synthetic dialog generation, (2) comprehensive evaluation combining linguistic metrics, LLM-as-a-judge and functional correctness validators, (3) mechanistic interpretability tools for activation inspection and steering via feature ablation and induction, and (4) audio generation with full acoustic simulation including 3D room modeling and microphone effects. The toolkit integrates with all major LLM backends, enabling mixed-backend experiments under a unified API. By coupling generation, evaluation, and interpretability in a dialog-centric architecture, SDialog enables researchers to build, benchmark and understand conversational systems more systematically.
comment: Pre-print submitted to EACL System Demonstration (under review)
♻ ☆ CUDA-L2: Surpassing cuBLAS Performance for Matrix Multiplication through Reinforcement Learning
In this paper, we propose CUDA-L2, a system that combines large language models (LLMs) and reinforcement learning (RL) to automatically optimize Half-precision General Matrix Multiply (HGEMM) CUDA kernels. Using CUDA execution speed as the RL reward, CUDA-L2 automatically optimizes HGEMM kernels across 1,000 configurations. CUDA-L2 systematically outperforms major matmul baselines to date, from the widely-used torch.matmul to state-of-the-art Nvidia's closed-source libraries, i.e., cuBLAS, cuBLASLt. In offline mode, where kernels are executed consecutively without time intervals, CUDA-L2 yields +22.0% over torch.matmul on average; +19.2% over cuBLAS using the optimal layout configuration (normal-normal NN and transposed-normal TN); +16.8% over cuBLASLt-heuristic, which queries cuBLASLt library and selects the algorithm based on the heuristic's suggestion; and +11.4% over the most competitive cuBLASLt-AutoTuning model, which selects the fastest algorithm from up to 100 candidates from cuBLASLt's suggestions. In server mode, where kernels are executed at random intervals simulating real-time inference, the speedups further increase to +28.7%, +26.0%, +22.4%, and +15.9% for torch.matmul, cuBLAS, cuBLASLt-heuristic, and cuBLASLt-AutoTuning respectively. CUDA-L2 shows that even the most performance-critical, heavily-optimized kernels like HGEMM can be improved through LLM-guided RL automation by systematically exploring configuration spaces at scales impractical for humans. Project and code can be found at github.com/deepreinforce-ai/CUDA-L2
comment: Project code: github.com/deepreinforce-ai/CUDA-L2
♻ ☆ GoalLadder: Incremental Goal Discovery with Vision-Language Models NeurIPS 2025
Natural language can offer a concise and human-interpretable means of specifying reinforcement learning (RL) tasks. The ability to extract rewards from a language instruction can enable the development of robotic systems that can learn from human guidance; however, it remains a challenging problem, especially in visual environments. Existing approaches that employ large, pretrained language models either rely on non-visual environment representations, require prohibitively large amounts of feedback, or generate noisy, ill-shaped reward functions. In this paper, we propose a novel method, GoalLadder, that leverages vision-language models (VLMs) to train RL agents from a single language instruction in visual environments. GoalLadder works by incrementally discovering states that bring the agent closer to completing a task specified in natural language. To do so, it queries a VLM to identify states that represent an improvement in agent's task progress and to rank them using pairwise comparisons. Unlike prior work, GoalLadder does not trust VLM's feedback completely; instead, it uses it to rank potential goal states using an ELO-based rating system, thus reducing the detrimental effects of noisy VLM feedback. Over the course of training, the agent is tasked with minimising the distance to the top-ranked goal in a learned embedding space, which is trained on unlabelled visual data. This key feature allows us to bypass the need for abundant and accurate feedback typically required to train a well-shaped reward function. We demonstrate that GoalLadder outperforms existing related methods on classic control and robotic manipulation environments with the average final success rate of $\sim$95% compared to only $\sim$45% of the best competitor.
comment: NeurIPS 2025
♻ ☆ Grammar-Aligned Decoding NeurIPS 2024
Large Language Models (LLMs) struggle with reliably generating highly structured outputs, such as program code, mathematical formulas, or well-formed markup. Constrained decoding approaches mitigate this problem by greedily restricting what tokens an LLM can output at each step to guarantee that the output matches a given constraint. Specifically, in grammar-constrained decoding (GCD), the LLM's output must follow a given grammar. In this paper, we demonstrate that GCD techniques (and in general constrained decoding techniques) can distort the LLM's distribution, leading to outputs that are grammatical but appear with likelihoods that are not proportional to the ones given by the LLM, and so ultimately are low-quality. We call the problem of aligning sampling with a grammar constraint, grammar-aligned decoding (GAD), and propose adaptive sampling with approximate expected futures (ASAp), a decoding algorithm that guarantees the output to be grammatical while provably producing outputs that match the conditional probability of the LLM's distribution conditioned on the given grammar constraint. Our algorithm uses prior sample outputs to soundly overapproximate the future grammaticality of different output prefixes. Our evaluation on code generation and structured NLP tasks shows how ASAp often produces outputs with higher likelihood (according to the LLM's distribution) than existing GCD techniques, while still enforcing the desired grammatical constraints.
comment: Accepted to NeurIPS 2024
Genomics 3
☆ An algorithm to align a chain of sequences to paths in a pangenome graph
Affordable, high-quality whole-genome assemblies have made it possible to construct rich pangenomes that capture haplotype diversity across many species. As these datasets grow, they motivate the development of specialized techniques capable of handling the dense sequence variation found in large groups of related genomes. A common strategy is to encode pangenomic information in graph form, which provides a flexible substrate for improving algorithms in areas such as alignment, visualization, and functional analysis. Methods built on these graph models have already shown clear advantages in core bioinformatics workflows, including read mapping, variant discovery, and genotyping. By integrating multiple sequence and coordinate representations into a single structure, pangenome graphs offer a unified and expressive framework for comparative genomics. Although it remains unclear whether graph-based references will ultimately supplant traditional linear genomes, their versatility ensures that they will play a central role in emerging pangenomic approaches. This paper introduces an algorithm to mine a chain of sequences in pangenome graphs that might be useful in the functional analysis of pangenome graphs. Specifically, the algorithm calculates all maximal paths in a pangenome graph aligning with a given chain of sequences in the segments of the path vertices, possibly with some maximal gap as specified by the user.
♻ ☆ Hierarchical Bayesian Model for Gene Deconvolution and Functional Analysis in Human Endometrium Across the Menstrual Cycle
Bulk tissue RNA sequencing of heterogeneous samples provides averaged gene expression profiles, obscuring cell type-specific dynamics. To address this, we present a probabilistic hierarchical Bayesian model that deconvolves bulk RNA-seq data into constituent cell-type expression profiles and proportions, leveraging a high-resolution single-cell reference. We apply our model to human endometrial tissue across the menstrual cycle, a context characterized by dramatic hormone-driven cellular composition changes. Our extended framework provides a principled inference of cell type proportions and cell-specific gene expression changes across cycle phases. We demonstrate the model's structure, priors, and inference strategy in detail, and we validate its performance with simulations and comparisons to existing methods. The results reveal dynamic shifts in epithelial, stromal, and immune cell fractions between menstrual phases, and identify cell-type-specific differential gene expression associated with endometrial function (e.g., decidualization markers in stromal cells during the secretory phase). We further conduct robustness tests and show that our Bayesian approach is resilient to reference mismatches and noise. Finally, we discuss the biological significance of our findings, potential clinical implications for fertility and endometrial disorders, and future directions, including integration of spatial transcriptomics.
comment: This paper is withdrawn due to issues with attribution and citation accuracy
♻ ☆ Assumption-Lean Post-Integrated Inference with Surrogate Control Outcomes
Data integration methods aim to extract low-dimensional embeddings from high-dimensional outcomes to remove unwanted variations, such as batch effects and unmeasured covariates, across heterogeneous datasets. However, multiple hypothesis testing after integration can be biased due to data-dependent processes. We introduce a robust post-integrated inference method that accounts for latent heterogeneity by utilizing control outcomes. Leveraging causal interpretations, we derive nonparametric identifiability of the direct effects using negative control outcomes. By utilizing surrogate control outcomes as an extension of negative control outcomes, we develop semiparametric inference on projected direct effect estimands, accounting for hidden mediators, confounders, and moderators. These estimands remain statistically meaningful under model misspecifications and with error-prone embeddings. We provide bias quantifications and finite-sample linear expansions with uniform concentration bounds. The proposed doubly robust estimators are consistent and efficient under minimal assumptions and potential misspecification, facilitating data-adaptive estimation with machine learning algorithms. Our proposal is evaluated using random forests through simulations and analysis of single-cell CRISPR perturbed datasets, which may contain potential unmeasured confounders.
comment: 22 pages for the main text, 27 pages for the appendix, 6 figures for the main text, 7 figures for the appendix
Quantitative Methods 7
☆ Enhancing Robustness in Plant Water Stress Classification based on Morpho-Kinematic via Biological Sectoring and Adaptive Linear Opinion Pooling
Precise irrigation management requires robust classification of plant water stress. We expanded a morpho-kinematic (MK) framework that derives canopy-movement features from RGB time-lapse imaging evaluating how methodological refinements affect robustness and fine discrimination across four irrigation treatments representing distinct stress histories. The study tested both a biological (Agg) versus an isogonal (Unif) sectoring of the canopy image, within an additive scheme where to the baseline (i.e. flattened MK features, A0) were sequentially added non-linear descriptors (A1), irrigation-context variables (i.e. dry time, A2), and their interactions with baseline (A3). The multi-class problem was decomposed in biologically meaningful binary tasks, and the final classification confronted an adaptive - to the performance obtained in the out-of-fold predictions inside the leave-one-sample-out validation framework - linear opinion pooling (ALOP) ensemble, evaluated across its full parameter space, against hierarchical cascades (HCC). In our combined dataset from two sequential Lactuca sativa experiments (144 sample-days) ALOP median outperformed HCC in every configuration, while non-linear and contextual enrichments (A1-A2) produced consistent improvements in terms of prediction stability, variability (for ALOP), and balanced accuracy (BA). The highest balanced accuracy (median BA = 0.96) was reached under Unif scheme in A3, yet the Agg configuration in A2 achieved the best compromise between accuracy (median BA approx 0.91) and robustness. Concluding, this study identifies methodological pathways that strengthen resilience and transferability of movement-based water-stress classification, establishing a solid foundation for generalizable, low-cost phenotyping.
comment: 35 pages, 6 figures, to be submitted to Computers and Electronics in Agriculture COMPAG
☆ DREAM-B3P: Dual-Stream Transformer Network Enhanced by Feedback Diffusion Model for Blood-Brain Barrier Penetrating Peptide Prediction
Introduction: The blood-brain barrier (BBB) protects the central nervous system but prevents most neurotherapeutics from reaching effective concentrations in the brain. BBB-penetrating peptides (BBBPs) offer a promising strategy for brain drug delivery; however, the scarcity of positive samples and severe class imbalance hinder the reliable identification of BBBPs. Objectives: Our goal is to alleviate class imbalance in BBBP prediction and to develop an accurate, interpretable classifier for BBBP prediction. Methods: We propose DREAM-B3P, which couples a feedback diffusion model (FB-Diffusion) for data augmentation with a dual-stream Transformer for classification. FB-Diffusion learns the BBBP distribution via iterative denoising and uses an external analyzer to provide feedback, generating high-quality pseudo-BBBPs. The classifier contains a sequence stream that extracts structural features from peptide sequences and a physicochemical stream that captures physicochemical features such as hydrophobic surface area, molecular charge, number of rotatable bonds, and polarizability. Combining the two features leads to superior BBBP predictive performance. Results: On a benchmark test set containing equal numbers of BBBPs and non-BBBPs, DREAM-B3P surpasses baseline methods (Deep-B3P, B3Pred, BBPpredict and Augur), improving AUC/ACC/MCC by 4.3\%/17.8\%/14.9\%, respectively, over the second-best method. Conclusion: By integrating feedback diffusion with a dual-stream Transformer classifier, DREAM-B3P effectively mitigates data scarcity and imbalance and achieves state-of-the-art performance.
☆ GNN-Based Deep Surrogate Modeling of Knee Contact Mechanics: Generalizing Neuromuscular Control Patterns Across Subjects
Background: Accumulation of abnormal contact stress is a primary biomechanical driver of acute meniscal tears and chronic osteoarthritis. While Finite Element Analysis (FEA) provides the necessary fidelity to quantify these injury-inducing loads, its high computational cost precludes clinical utility. Emerging deep surrogate models promise real-time assessment but suffer a critical blind spot: they predominantly focus on learning anatomical variations, largely overlooking the neuromuscular control patterns. These dynamic, subject-specific motor strategies fundamentally dictate potentially injurious stress distributions inside the knee. Methods: This study investigates the generalization capability of the topology-aware MeshGraphNet regarding cross-subject neuromuscular control patterns under fixed anatomical conditions. We constructed a dataset using gait data from nine subjects via an OpenSim-FEBio co-simulation platform. The MGN was compared against a structure-agnostic Node-wise MLP using a rigorous grouped 3-fold cross-validation on unseen subjects. Results: The MGN demonstrated superior fidelity, achieving a correlation of 0.94 with ground truth (vs. 0.88 for MLP). In contrast to the MLP, which exhibited the "peak shaving" defect common in deep learning, MGN significantly reduced peak-stress prediction errors and achieved higher spatial overlap in high-risk regions. This indicates that MGN effectively captured the non-local force-transmission pathways unique to each subject's movement strategy. Conclusion: By mimicking the propagation of physical stress through message passing, MGN successfully decodes the heterogeneity of human neuromuscular control, even under fixed anatomy. This establishes GNNs as robust clinical tools capable of identifying functional injury risks that are invisible to purely geometry-based surrogate models.
♻ ☆ HyperSBINN: A Hypernetwork-Enhanced Systems Biology-Informed Neural Network for Efficient Drug Cardiosafety Assessment
Mathematical modeling in systems toxicology enables a comprehensive understanding of the effects of pharmaceutical substances on cardiac health. However, the complexity of these models limits their widespread application in early drug discovery. In this paper, we introduce a novel approach to solving parameterized models of cardiac action potentials by combining meta-learning techniques with Systems Biology-Informed Neural Networks (SBINNs). The proposed method, hyperSBINN, effectively addresses the challenge of predicting the effects of various compounds at different concentrations on cardiac action potentials, outperforming traditional differential equation solvers in speed. Our model efficiently handles scenarios with limited data and complex parameterized differential equations. The hyperSBINN model demonstrates robust performance in predicting APD90 values, indicating its potential as a reliable tool for modeling cardiac electrophysiology and aiding in preclinical drug development. This framework represents an advancement in computational modeling, offering a scalable and efficient solution for simulating and understanding complex biological systems.
♻ ☆ Assessment of Simulation-based Inference Methods for Stochastic Compartmental Models
Global pandemics, such as the recent COVID-19 crisis, highlight the need for stochastic epidemic models that can capture the randomness inherent in the spread of disease. Such models must be accompanied by methods for estimating parameters in order to generate fast nowcasts and short-term forecasts that can inform public health decisions. This paper presents a comparison of two advanced Bayesian inference methods: 1) pseudo-marginal particle Markov chain Monte Carlo, short Particle Filters (PF), and 2) Conditional Normalizing Flows (CNF). We investigate their performance on two commonly used compartmental models: a classical Susceptible-Infected-Recovered (SIR) model and a two-variant Susceptible-Exposed-Infected-Recovered (SEIR) model, complemented by an observation model that maps latent trajectories to empirical data. Addressing the challenges of intractable likelihoods for parameter inference in stochastic settings, our analysis highlights how these likelihood-free methods provide accurate and robust inference capabilities. The results of our simulation study further underscore the effectiveness of these approaches in capturing the stochastic dynamics of epidemics, providing prediction capabilities for the control of epidemic outbreaks. Results on an Ethiopian cohort study demonstrate operational robustness under real-world noise and irregular data sampling. To facilitate reuse and to enable building pipelines that ultimately contribute to better informed decision making in public health, we make code and synthetic datasets publicly available.
♻ ☆ Towards smart canopies: Algorithmic design of maize canopy architectures that maximize light use efficiency
We present a computational framework that integrates functional-structural plant modeling (FSPM) with an evolutionary algorithm to optimize three-dimensional maize canopy architecture for enhanced light interception under high-density planting. The optimization revealed an emergent ideotype characterized by two distinct strategies: a vertically stratified leaf profile (steep, narrow upper leaves for penetration; broad, horizontal lower leaves for capture) and a radially tiled azimuthal arrangement that breaks the conventional distichous symmetry of maize to minimize self and mutual shading. Reverse ray-tracing simulations show that this architecture intercepts significantly more photosynthetically active radiation (PAR) than virtual canopies parameterized from high-performing field hybrids, with gains that generalize across multiple U.S. latitudes and planting densities. The optimized trait combinations align with characteristics of modern density-tolerant cultivars, supporting biological plausibility. Because recent gene editing advances enable more independent control of architectural traits, the designs identified here are increasingly feasible. By uncovering effective, non-intuitive trait configurations, our approach provides a scalable, predictive tool to guide breeding targets, improve light-use efficiency, and ultimately support sustainable yield gains.
comment: 13 pages, 4 figures, 1 table
♻ ☆ Automated Histopathologic Assessment of Hirschsprung Disease Using a Multi-Stage Vision Transformer Framework
Hirschsprung Disease is characterized by the absence of ganglion cells in the myenteric plexus. Therefore, the correct identification of ganglion cells is crucial for diagnosing Hirschsprung disease. We introduce a three-stage analysis framework that mimics the pathologist's diagnostic approach. The framework, based on a Vision Transformer model (ViT-B/16), sequentially segments the muscularis propria, segments the myenteric plexus, and detects ganglion cells within anatomically valid regions. 30 whole-slide images of colon tissue were used, each containing manual annotations of muscularis, plexus, and ganglion cells. A 5-fold cross-validation scheme was applied to each stage, along with resolution-specific tiling strategies and tailored postprocessing to ensure anatomical consistency. The proposed method achieved a Dice coefficient of 89.9% and a Plexus Inclusion Rate of 100% for muscularis segmentation. Plexus segmentation reached a recall of 94.8%, a precision of 84.2% and a Ganglia Inclusion Rate of 99.7%. For ganglion cells annotated with high certainty, the model achieved 62.1\% precision and 89.1% recall. When considering all annotated ganglion cells, regardless of certainty level, the overall precision was 67.0%. These results indicate that ViT-based models are effective at leveraging global tissue context and capturing cellular morphology at small scales, even within complex histological tissue structures. This multi-stage methodology has great potential to support digital pathology workflows by reducing inter-observer variability and assisting in the evaluation of Hirschsprung disease. The clinical impact will be evaluated in future work with larger multi-center datasets and additional expert annotations.
comment: 14 pages, 10 figures, 3 tables
Cell Behavior 1
♻ ☆ A self-organized compression network arrests epithelial proliferation
As epithelial development or wound closure approaches completion, cell proliferation progressively slows via contact inhibition of proliferation (CIP) - a mechanism understood as being strictly local. Here we report the discovery of inhibition of proliferation through an unanticipated mechanism that is non-local. As a confluent epithelial layer becomes progressively more jammed, two interpenetrating networks emerge: islands of mechanically compressed non-cycling cells percolating within an ocean of mechanically tensed cycling cells. The evolution of the compression network was found to be susceptible to both specific molecular stimulus and to injury-induced unjamming. Yet, in all circumstances, the size of compressed islands followed a power-law distribution that was well-captured by preferential network theory. Together, these findings demonstrate the existence of a network-based inhibition of proliferation (NIP) that is self-organizing and poised in proximity to criticality.
Computation and Language 83
☆ Are We Ready for RL in Text-to-3D Generation? A Progressive Investigation
Reinforcement learning (RL), earlier proven to be effective in large language and multi-modal models, has been successfully extended to enhance 2D image generation recently. However, applying RL to 3D generation remains largely unexplored due to the higher spatial complexity of 3D objects, which require globally consistent geometry and fine-grained local textures. This makes 3D generation significantly sensitive to reward designs and RL algorithms. To address these challenges, we conduct the first systematic study of RL for text-to-3D autoregressive generation across several dimensions. (1) Reward designs: We evaluate reward dimensions and model choices, showing that alignment with human preference is crucial, and that general multi-modal models provide robust signal for 3D attributes. (2) RL algorithms: We study GRPO variants, highlighting the effectiveness of token-level optimization, and further investigate the scaling of training data and iterations. (3) Text-to-3D Benchmarks: Since existing benchmarks fail to measure implicit reasoning abilities in 3D generation models, we introduce MME-3DR. (4) Advanced RL paradigms: Motivated by the natural hierarchy of 3D generation, we propose Hi-GRPO, which optimizes the global-to-local hierarchical 3D generation through dedicated reward ensembles. Based on these insights, we develop AR3D-R1, the first RL-enhanced text-to-3D model, expert from coarse shape to texture refinement. We hope this study provides insights into RL-driven reasoning for 3D generation. Code is released at https://github.com/Ivan-Tang-3D/3DGen-R1.
comment: Code is released at https://github.com/Ivan-Tang-3D/3DGen-R1
☆ Stronger Normalization-Free Transformers
Although normalization layers have long been viewed as indispensable components of deep learning architectures, the recent introduction of Dynamic Tanh (DyT) has demonstrated that alternatives are possible. The point-wise function DyT constrains extreme values for stable convergence and reaches normalization-level performance; this work seeks further for function designs that can surpass it. We first study how the intrinsic properties of point-wise functions influence training and performance. Building on these findings, we conduct a large-scale search for a more effective function design. Through this exploration, we introduce $\mathrm{Derf}(x) = \mathrm{erf}(αx + s)$, where $\mathrm{erf}(x)$ is the rescaled Gaussian cumulative distribution function, and identify it as the most performant design. Derf outperforms LayerNorm, RMSNorm, and DyT across a wide range of domains, including vision (image recognition and generation), speech representation, and DNA sequence modeling. Our findings suggest that the performance gains of Derf largely stem from its improved generalization rather than stronger fitting capacity. Its simplicity and stronger performance make Derf a practical choice for normalization-free Transformer architectures.
☆ Asynchronous Reasoning: Training-Free Interactive Thinking LLMs
Many state-of-the-art LLMs are trained to think before giving their answer. Reasoning can greatly improve language model capabilities and safety, but it also makes them less interactive: given a new input, a model must stop thinking before it can respond. Real-world use cases such as voice-based or embedded assistants require an LLM agent to respond and adapt to additional information in real time, which is incompatible with sequential interactions. In contrast, humans can listen, think, and act asynchronously: we begin thinking about the problem while reading it and continue thinking while formulating the answer. In this work, we augment LLMs capable of reasoning to operate in a similar way without additional training. Our method uses the properties of rotary embeddings to enable LLMs built for sequential interactions to simultaneously think, listen, and generate outputs. We evaluate our approach on math, commonsense, and safety reasoning and find that it can generate accurate thinking-augmented answers in real time, reducing time to first non-thinking token from minutes to <= 5s. and the overall real-time delays by 6-11x.
comment: Preprint, work in progress
☆ CompanionCast: A Multi-Agent Conversational AI Framework with Spatial Audio for Social Co-Viewing Experiences
Social presence is central to the enjoyment of watching content together, yet modern media consumption is increasingly solitary. We investigate whether multi-agent conversational AI systems can recreate the dynamics of shared viewing experiences across diverse content types. We present CompanionCast, a general framework for orchestrating multiple role-specialized AI agents that respond to video content using multimodal inputs, speech synthesis, and spatial audio. Distinctly, CompanionCast integrates an LLM-as-a-Judge module that iteratively scores and refines conversations across five dimensions (relevance, authenticity, engagement, diversity, personality consistency). We validate this framework through sports viewing, a domain with rich dynamics and strong social traditions, where a pilot study with soccer fans suggests that multi-agent interaction improves perceived social presence compared to solo viewing. We contribute: (1) a generalizable framework for orchestrating multi-agent conversations around multimodal video content, (2) a novel evaluator-agent pipeline for conversation quality control, and (3) exploratory evidence of increased social presence in AI-mediated co-viewing. We discuss challenges and future directions for applying this approach to diverse viewing contexts including entertainment, education, and collaborative watching experiences.
comment: 11 pages
☆ Computational emotion analysis with multimodal LLMs: Current evidence on an emerging methodological opportunity
Emotions are central to politics and analyzing their role in political communication has a long tradition. As research increasingly leverages audio-visual materials to analyze the display of emotions, the emergence of multimodal generative AI promises great advances. However, we lack evidence about the effectiveness of multimodal AI in emotion analysis. This paper addresses this gap by evaluating current multimodal large language models (mLLMs) in video-based analysis of emotional arousal in two complementary data sets of human-labeled video recordings. I find that under ideal circumstances, mLLMs' emotional arousal ratings are highly reliable and show little to know indication of demographic bias. However, in recordings of speakers in real-world parliamentary debates, mLLMs' arousal ratings fail to deliver on this promise with potential negative consequences for downstream statistical inferences. This study therefore underscores the need for continued, thorough evaluation of emerging generative AI methods in political analysis and contributes a suitable replicable framework.
☆ Quantifying Emotional Tone in Tolkien's The Hobbit: Dialogue Sentiment Analysis with RegEx, NRC-VAD, and Python
This study analyzes the emotional tone of dialogue in J. R. R. Tolkien's The Hobbit (1937) using computational text analysis. Dialogue was extracted with regular expressions, then preprocessed, and scored using the NRC-VAD lexicon to quantify emotional dimensions. The results show that the dialogue maintains a generally positive (high valence) and calm (low arousal) tone, with a gradually increasing sense of agency (dominance) as the story progresses. These patterns reflect the novel's emotional rhythm: moments of danger and excitement are regularly balanced by humor, camaraderie, and relief. Visualizations -- including emotional trajectory graphs and word clouds -- highlight how Tolkien's language cycles between tension and comfort. By combining computational tools with literary interpretation, this study demonstrates how digital methods can uncover subtle emotional structures in literature, revealing the steady rhythm and emotional modulation that shape the storytelling in The Hobbit.
☆ LabelFusion: Learning to Fuse LLMs and Transformer Classifiers for Robust Text Classification
LabelFusion is a fusion ensemble for text classification that learns to combine a traditional transformer-based classifier (e.g., RoBERTa) with one or more Large Language Models (LLMs such as OpenAI GPT, Google Gemini, or DeepSeek) to deliver accurate and cost-aware predictions across multi-class and multi-label tasks. The package provides a simple high-level interface (AutoFusionClassifier) that trains the full pipeline end-to-end with minimal configuration, and a flexible API for advanced users. Under the hood, LabelFusion integrates vector signals from both sources by concatenating the ML backbone's embeddings with the LLM-derived per-class scores -- obtained through structured prompt-engineering strategies -- and feeds this joint representation into a compact multi-layer perceptron (FusionMLP) that produces the final prediction. This learned fusion approach captures complementary strengths of LLM reasoning and traditional transformer-based classifiers, yielding robust performance across domains -- achieving 92.4% accuracy on AG News and 92.3% on 10-class Reuters 21578 topic classification -- while enabling practical trade-offs between accuracy, latency, and cost.
☆ The FACTS Leaderboard: A Comprehensive Benchmark for Large Language Model Factuality
We introduce The FACTS Leaderboard, an online leaderboard suite and associated set of benchmarks that comprehensively evaluates the ability of language models to generate factually accurate text across diverse scenarios. The suite provides a holistic measure of factuality by aggregating the performance of models on four distinct sub-leaderboards: (1) FACTS Multimodal, which measures the factuality of responses to image-based questions; (2) FACTS Parametric, which assesses models' world knowledge by answering closed-book factoid questions from internal parameters; (3) FACTS Search, which evaluates factuality in information-seeking scenarios, where the model must use a search API; and (4) FACTS Grounding (v2), which evaluates whether long-form responses are grounded in provided documents, featuring significantly improved judge models. Each sub-leaderboard employs automated judge models to score model responses, and the final suite score is an average of the four components, designed to provide a robust and balanced assessment of a model's overall factuality. The FACTS Leaderboard Suite will be actively maintained, containing both public and private splits to allow for external participation while guarding its integrity. It can be found at https://www.kaggle.com/benchmarks/google/facts .
☆ Replace, Don't Expand: Mitigating Context Dilution in Multi-Hop RAG via Fixed-Budget Evidence Assembly
Retrieval-Augmented Generation (RAG) systems often fail on multi-hop queries when the initial retrieval misses a bridge fact. Prior corrective approaches, such as Self-RAG, CRAG, and Adaptive-$k$, typically address this by \textit{adding} more context or pruning existing lists. However, simply expanding the context window often leads to \textbf{context dilution}, where distractors crowd out relevant information. We propose \textbf{SEAL-RAG}, a training-free controller that adopts a \textbf{``replace, don't expand''} strategy to fight context dilution under a fixed retrieval depth $k$. SEAL executes a (\textbf{S}earch $\rightarrow$ \textbf{E}xtract $\rightarrow$ \textbf{A}ssess $\rightarrow$ \textbf{L}oop) cycle: it performs on-the-fly, entity-anchored extraction to build a live \textit{gap specification} (missing entities/relations), triggers targeted micro-queries, and uses \textit{entity-first ranking} to actively swap out distractors for gap-closing evidence. We evaluate SEAL-RAG against faithful re-implementations of Basic RAG, CRAG, Self-RAG, and Adaptive-$k$ in a shared environment on \textbf{HotpotQA} and \textbf{2WikiMultiHopQA}. On HotpotQA ($k=3$), SEAL improves answer correctness by \textbf{+3--13 pp} and evidence precision by \textbf{+12--18 pp} over Self-RAG. On 2WikiMultiHopQA ($k=5$), it outperforms Adaptive-$k$ by \textbf{+8.0 pp} in accuracy and maintains \textbf{96\%} evidence precision compared to 22\% for CRAG. These gains are statistically significant ($p<0.001$). By enforcing fixed-$k$ replacement, SEAL yields a predictable cost profile while ensuring the top-$k$ slots are optimized for precision rather than mere breadth. We release our code and data at https://github.com/mosherino/SEAL-RAG.
comment: 24 pages, 2 figures
☆ Script Gap: Evaluating LLM Triage on Indian Languages in Native vs Roman Scripts in a Real World Setting
Large Language Models (LLMs) are increasingly deployed in high-stakes clinical applications in India. In many such settings, speakers of Indian languages frequently communicate using romanized text rather than native scripts, yet existing research rarely evaluates this orthographic variation using real-world data. We investigate how romanization impacts the reliability of LLMs in a critical domain: maternal and newborn healthcare triage. We benchmark leading LLMs on a real-world dataset of user-generated queries spanning five Indian languages and Nepali. Our results reveal consistent degradation in performance for romanized messages, with F1 scores trailing those of native scripts by 5-12 points. At our partner maternal health organization in India, this gap could cause nearly 2 million excess errors in triage. Crucially, this performance gap by scripts is not due to a failure in clinical reasoning. We demonstrate that LLMs often correctly infer the semantic intent of romanized queries. Nevertheless, their final classification outputs remain brittle in the presence of orthographic noise in romanized inputs. Our findings highlight a critical safety blind spot in LLM-based health systems: models that appear to understand romanized input may still fail to act on it reliably.
☆ Grow Up and Merge: Scaling Strategies for Efficient Language Adaptation
Achieving high-performing language models which include medium- and lower-resource languages remains a challenge. Massively multilingual models still underperform compared to language-specific adaptations, especially at smaller model scales. In this work, we investigate scaling as an efficient strategy for adapting pretrained models to new target languages. Through comprehensive scaling ablations with approximately FLOP-matched models, we test whether upscaling an English base model enables more effective and resource-efficient adaptation than standard continued pretraining. We find that, once exposed to sufficient target-language data, larger upscaled models can match or surpass the performance of smaller models continually pretrained on much more data, demonstrating the benefits of scaling for data efficiency. Scaling also helps preserve the base model's capabilities in English, thus reducing catastrophic forgetting. Finally, we explore whether such scaled, language-specific models can be merged to construct modular and flexible multilingual systems. We find that while merging remains less effective than joint multilingual training, upscaled merges perform better than smaller ones. We observe large performance differences across merging methods, suggesting potential for improvement through merging approaches specialized for language-level integration.
☆ OPV: Outcome-based Process Verifier for Efficient Long Chain-of-Thought Verification
Large language models (LLMs) have achieved significant progress in solving complex reasoning tasks by Reinforcement Learning with Verifiable Rewards (RLVR). This advancement is also inseparable from the oversight automated by reliable verifiers. However, current outcome-based verifiers (OVs) are unable to inspect the unreliable intermediate steps in the long reasoning chains of thought (CoTs). Meanwhile, current process-based verifiers (PVs) have difficulties in reliably detecting errors in the complex long CoTs, limited by the scarcity of high-quality annotations due to the prohibitive costs of human annotations. Therefore, we propose the Outcome-based Process Verifier (OPV), which verifies the rationale process of summarized outcomes from long CoTs to achieve both accurate and efficient verification and enable large-scale annotation. To empower the proposed verifier, we adopt an iterative active learning framework with expert annotations to progressively improve the verification capability of OPV with fewer annotation costs. Specifically, in each iteration, the most uncertain cases of the current best OPV are annotated and then subsequently used to train a new OPV through Rejection Fine-Tuning (RFT) and RLVR for the next round. Extensive experiments demonstrate OPV's superior performance and broad applicability. It achieves new state-of-the-art results on our held-out OPV-Bench, outperforming much larger open-source models such as Qwen3-Max-Preview with an F1 score of 83.1 compared to 76.3. Furthermore, OPV effectively detects false positives within synthetic dataset, closely align with expert assessment. When collaborating with policy models, OPV consistently yields performance gains, e.g., raising the accuracy of DeepSeek-R1-Distill-Qwen-32B from 55.2% to 73.3% on AIME2025 as the compute budget scales.
☆ TRIDENT: A Redundant Architecture for Caribbean-Accented Emergency Speech Triage
Emergency speech recognition systems exhibit systematic performance degradation on non-standard English varieties, creating a critical gap in services for Caribbean populations. We present TRIDENT (Transcription and Routing Intelligence for Dispatcher-Empowered National Triage), a three-layer dispatcher-support architecture designed to structure emergency call inputs for human application of established triage protocols (the ESI for routine operations and START for mass casualty events), even when automatic speech recognition fails. The system combines Caribbean-accent-tuned ASR, local entity extraction via large language models, and bio-acoustic distress detection to provide dispatchers with three complementary signals: transcription confidence, structured clinical entities, and vocal stress indicators. Our key insight is that low ASR confidence, rather than representing system failure, serves as a valuable queue prioritization signal -- particularly when combined with elevated vocal distress markers indicating a caller in crisis whose speech may have shifted toward basilectal registers. A complementary insight drives the entity extraction layer: trained responders and composed bystanders may report life-threatening emergencies without elevated vocal stress, requiring semantic analysis to capture clinical indicators that paralinguistic features miss. We describe the architectural design, theoretical grounding in psycholinguistic research on stress-induced code-switching, and deployment considerations for offline operation during disaster scenarios. This work establishes a framework for accent-resilient emergency AI that ensures Caribbean voices receive equitable access to established national triage protocols. Empirical validation on Caribbean emergency calls remains future work.
☆ Long-horizon Reasoning Agent for Olympiad-Level Mathematical Problem Solving
Large language models (LLMs) have achieved significant progress in solving complex reasoning tasks by Reinforcement Learning with Verifiable Rewards (RLVR). This advancement is also inseparable from the oversight automated by reliable verifiers. However, current outcome-based verifiers (OVs) are unable to inspect the unreliable intermediate steps in the long reasoning chains of thought (CoTs). Meanwhile, current process-based verifiers (PVs) have difficulties in reliably detecting errors in the complex long CoTs, limited by the scarcity of high-quality annotations due to the prohibitive costs of human annotations. Therefore, we propose the \textbf{O}utcome-based \textbf{P}rocess \textbf{V}erifier (OPV), which verifies the rationale process of summarized outcomes from long CoTs to achieve both accurate and efficient verification and enable large-scale annotation. To empower the proposed verifier, we adopt an iterative active learning framework with expert annotations to progressively improve the verification capability of OPV with fewer annotation costs. Specifically, in each iteration, the most uncertain cases of the current best OPV are annotated and then subsequently used to train a new OPV through Rejection Fine-Tuning (RFT) and RLVR for the next round. Extensive experiments demonstrate OPV's superior performance and broad applicability. It achieves new state-of-the-art results on our held-out \textsc{\thisbench}, outperforming much larger open-source models such as Qwen3-Max-Preview with an F1 score of 83.1 compared to 76.3. Furthermore, OPV effectively detects false positives within synthetic dataset, closely align with expert assessment. When collaborating with policy models, OPV consistently yields performance gains, e.g., raising the accuracy of DeepSeek-R1-Distill-Qwen-32B from 55.2\% to 73.3\% on AIME2025 as the compute budget scales.
☆ Textual Data Bias Detection and Mitigation - An Extensible Pipeline with Experimental Evaluation
Textual data used to train large language models (LLMs) exhibits multifaceted bias manifestations encompassing harmful language and skewed demographic distributions. Regulations such as the European AI Act require identifying and mitigating biases against protected groups in data, with the ultimate goal of preventing unfair model outputs. However, practical guidance and operationalization are lacking. We propose a comprehensive data bias detection and mitigation pipeline comprising four components that address two data bias types, namely representation bias and (explicit) stereotypes for a configurable sensitive attribute. First, we leverage LLM-generated word lists created based on quality criteria to detect relevant group labels. Second, representation bias is quantified using the Demographic Representation Score. Third, we detect and mitigate stereotypes using sociolinguistically informed filtering. Finally, we compensate representation bias through Grammar- and Context-Aware Counterfactual Data Augmentation. We conduct a two-fold evaluation using the examples of gender, religion and age. First, the effectiveness of each individual component on data debiasing is evaluated through human validation and baseline comparison. The findings demonstrate that we successfully reduce representation bias and (explicit) stereotypes in a text dataset. Second, the effect of data debiasing on model bias reduction is evaluated by bias benchmarking of several models (0.6B-8B parameters), fine-tuned on the debiased text dataset. This evaluation reveals that LLMs fine-tuned on debiased data do not consistently show improved performance on bias benchmarks, exposing critical gaps in current evaluation methodologies and highlighting the need for targeted data manipulation to address manifested model bias.
☆ Remember Me, Refine Me: A Dynamic Procedural Memory Framework for Experience-Driven Agent Evolution
Procedural memory enables large language model (LLM) agents to internalize "how-to" knowledge, theoretically reducing redundant trial-and-error. However, existing frameworks predominantly suffer from a "passive accumulation" paradigm, treating memory as a static append-only archive. To bridge the gap between static storage and dynamic reasoning, we propose $\textbf{ReMe}$ ($\textit{Remember Me, Refine Me}$), a comprehensive framework for experience-driven agent evolution. ReMe innovates across the memory lifecycle via three mechanisms: 1) $\textit{multi-faceted distillation}$, which extracts fine-grained experiences by recognizing success patterns, analyzing failure triggers and generating comparative insights; 2) $\textit{context-adaptive reuse}$, which tailors historical insights to new contexts via scenario-aware indexing; and 3) $\textit{utility-based refinement}$, which autonomously adds valid memories and prunes outdated ones to maintain a compact, high-quality experience pool. Extensive experiments on BFCL-V3 and AppWorld demonstrate that ReMe establishes a new state-of-the-art in agent memory system. Crucially, we observe a significant memory-scaling effect: Qwen3-8B equipped with ReMe outperforms larger, memoryless Qwen3-14B, suggesting that self-evolving memory provides a computation-efficient pathway for lifelong learning. We release our code and the $\texttt{reme.library}$ dataset to facilitate further research.
comment: 16 pages, 9 figures, 9 tables
☆ From Data Scarcity to Data Care: Reimagining Language Technologies for Serbian and other Low-Resource Languages
Large language models are commonly trained on dominant languages like English, and their representation of low resource languages typically reflects cultural and linguistic biases present in the source language materials. Using the Serbian language as a case, this study examines the structural, historical, and sociotechnical factors shaping language technology development for low resource languages in the AI age. Drawing on semi structured interviews with ten scholars and practitioners, including linguists, digital humanists, and AI developers, it traces challenges rooted in historical destruction of Serbian textual heritage, intensified by contemporary issues that drive reductive, engineering first approaches prioritizing functionality over linguistic nuance. These include superficial transliteration, reliance on English-trained models, data bias, and dataset curation lacking cultural specificity. To address these challenges, the study proposes Data Care, a framework grounded in CARE principles (Collective Benefit, Authority to Control, Responsibility, and Ethics), that reframes bias mitigation from a post hoc technical fix to an integral component of corpus design, annotation, and governance, and positions Data Care as a replicable model for building inclusive, sustainable, and culturally grounded language technologies in contexts where traditional LLM development reproduces existing power imbalances and cultural blind spots.
☆ AgriGPT-Omni: A Unified Speech-Vision-Text Framework for Multilingual Agricultural Intelligence
Despite rapid advances in multimodal large language models, agricultural applications remain constrained by the lack of multilingual speech data, unified multimodal architectures, and comprehensive evaluation benchmarks. To address these challenges, we present AgriGPT-Omni, an agricultural omni-framework that integrates speech, vision, and text in a unified framework. First, we construct a scalable data synthesis and collection pipeline that converts agricultural texts and images into training data, resulting in the largest agricultural speech dataset to date, including 492K synthetic and 1.4K real speech samples across six languages. Second, based on this, we train the first agricultural omni-model via a three-stage paradigm: textual knowledge injection, progressive multimodal alignment, and GRPO-based reinforcement learning, enabling unified reasoning across languages and modalities. Third, we propose AgriBench-Omni-2K, the first tri-modal benchmark for agriculture, covering diverse speech-vision-text tasks and multilingual slices, with standardized protocols and reproducible tools. Experiments show that AgriGPT-Omni significantly outperforms general-purpose baselines on multilingual and multimodal reasoning as well as real-world speech understanding. All models, data, benchmarks, and code will be released to promote reproducible research, inclusive agricultural intelligence, and sustainable AI development for low-resource regions.
☆ RoleRMBench & RoleRM: Towards Reward Modeling for Profile-Based Role Play in Dialogue Systems
Reward modeling has become a cornerstone of aligning large language models (LLMs) with human preferences. Yet, when extended to subjective and open-ended domains such as role play, existing reward models exhibit severe degradation, struggling to capture nuanced and persona-grounded human judgments. To address this gap, we introduce RoleRMBench, the first systematic benchmark for reward modeling in role-playing dialogue, covering seven fine-grained capabilities from narrative management to role consistency and engagement. Evaluation on RoleRMBench reveals large and consistent gaps between general-purpose reward models and human judgment, particularly in narrative and stylistic dimensions. We further propose RoleRM, a reward model trained with Continuous Implicit Preferences (CIP), which reformulates subjective evaluation as continuous consistent pairwise supervision under multiple structuring strategies. Comprehensive experiments show that RoleRM surpasses strong open- and closed-source reward models by over 24% on average, demonstrating substantial gains in narrative coherence and stylistic fidelity. Our findings highlight the importance of continuous preference representation and annotation consistency, establishing a foundation for subjective alignment in human-centered dialogue systems.
☆ Causal Reasoning Favors Encoders: On The Limits of Decoder-Only Models
In context learning (ICL) underpins recent advances in large language models (LLMs), although its role and performance in causal reasoning remains unclear. Causal reasoning demands multihop composition and strict conjunctive control, and reliance on spurious lexical relations of the input could provide misleading results. We hypothesize that, due to their ability to project the input into a latent space, encoder and encoder decoder architectures are better suited for said multihop conjunctive reasoning versus decoder only models. To do this, we compare fine-tuned versions of all the aforementioned architectures with zero and few shot ICL in both natural language and non natural language scenarios. We find that ICL alone is insufficient for reliable causal reasoning, often overfocusing on irrelevant input features. In particular, decoder only models are noticeably brittle to distributional shifts, while finetuned encoder and encoder decoder models can generalize more robustly across our tests, including the non natural language split. Both architectures are only matched or surpassed by decoder only architectures at large scales. We conclude by noting that for cost effective, short horizon robust causal reasoning, encoder or encoder decoder architectures with targeted finetuning are preferable.
☆ XDoGE: Multilingual Data Reweighting to Enhance Language Inclusivity in LLMs
Current large language models (LLMs) are trained on massive amounts of text data, primarily from a few dominant languages. Studies suggest that this over-reliance on high-resource languages, such as English, hampers LLM performance in mid- and low-resource languages. To mitigate this problem, we propose to (i) optimize the language distribution by training a small proxy model within a domain-reweighing DoGE algorithm that we extend to XDoGE for a multilingual setup, and (ii) rescale the data and train a full-size model with the established language weights either from scratch or within a continual pre-training phase (CPT). We target six languages possessing a variety of geographic and intra- and inter-language-family relations, namely, English and Spanish (high-resource), Portuguese and Catalan (mid-resource), Galician and Basque (low-resource). We experiment with Salamandra-2b, which is a promising model for these languages. We investigate the effects of substantial data repetition on minor languages and under-sampling on dominant languages using the IberoBench framework for quantitative evaluation. Finally, we release a new promising IberianLLM-7B-Instruct model centering on Iberian languages and English that we pretrained from scratch and further improved using CPT with the XDoGE weights.
comment: Accepted and presented at the LLMs4All workshop at the IEEE BigData 2025 Conference, Macau - December 8-11, 2025
☆ Grammaticality Judgments in Humans and Language Models: Revisiting Generative Grammar with LLMs
What counts as evidence for syntactic structure? In traditional generative grammar, systematic contrasts in grammaticality such as subject-auxiliary inversion and the licensing of parasitic gaps are taken as evidence for an internal, hierarchical grammar. In this paper, we test whether large language models (LLMs), trained only on surface forms, reproduce these contrasts in ways that imply an underlying structural representation. We focus on two classic constructions: subject-auxiliary inversion (testing recognition of the subject boundary) and parasitic gap licensing (testing abstract dependency structure). We evaluate models including GPT-4 and LLaMA-3 using prompts eliciting acceptability ratings. Results show that LLMs reliably distinguish between grammatical and ungrammatical variants in both constructions, and as such support that they are sensitive to structure and not just linear order. Structural generalizations, distinct from cognitive knowledge, emerge from predictive training on surface forms, suggesting functional sensitivity to syntax without explicit encoding.
comment: 2 figures
☆ When Reject Turns into Accept: Quantifying the Vulnerability of LLM-Based Scientific Reviewers to Indirect Prompt Injection
The landscape of scientific peer review is rapidly evolving with the integration of Large Language Models (LLMs). This shift is driven by two parallel trends: the widespread individual adoption of LLMs by reviewers to manage workload (the "Lazy Reviewer" hypothesis) and the formal institutional deployment of AI-powered assessment systems by conferences like AAAI and Stanford's Agents4Science. This study investigates the robustness of these "LLM-as-a-Judge" systems (both illicit and sanctioned) to adversarial PDF manipulation. Unlike general jailbreaks, we focus on a distinct incentive: flipping "Reject" decisions to "Accept," for which we develop a novel evaluation metric which we term as WAVS (Weighted Adversarial Vulnerability Score). We curated a dataset of 200 scientific papers and adapted 15 domain-specific attack strategies to this task, evaluating them across 13 Language Models, including GPT-5, Claude Haiku, and DeepSeek. Our results demonstrate that obfuscation strategies like "Maximum Mark Magyk" successfully manipulate scores, achieving alarming decision flip rates even in large-scale models. We will release our complete dataset and injection framework to facilitate more research on this topic.
☆ Decoding Student Minds: Leveraging Conversational Agents for Psychological and Learning Analysis
This paper presents a psychologically-aware conversational agent designed to enhance both learning performance and emotional well-being in educational settings. The system combines Large Language Models (LLMs), a knowledge graph-enhanced BERT (KG-BERT), and a bidirectional Long Short-Term Memory (LSTM) with attention to classify students' cognitive and affective states in real time. Unlike prior chatbots limited to either tutoring or affective support, our approach leverages multimodal data-including textual semantics, prosodic speech features, and temporal behavioral trends-to infer engagement, stress, and conceptual understanding. A pilot study with university students demonstrated improved motivation, reduced stress, and moderate academic gains compared to baseline methods. These results underline the promise of integrating semantic reasoning, multimodal fusion, and temporal modeling to support adaptive, student-centered educational interventions.
comment: This manuscript is currently under peer review in Expert Systems with Applications
☆ Enhancing Next-Generation Language Models with Knowledge Graphs: Extending Claude, Mistral IA, and GPT-4 via KG-BERT
Large language models (LLMs) like Claude, Mistral IA, and GPT-4 excel in NLP but lack structured knowledge, leading to factual inconsistencies. We address this by integrating Knowledge Graphs (KGs) via KG-BERT to enhance grounding and reasoning. Experiments show significant gains in knowledge-intensive tasks such as question answering and entity linking. This approach improves factual reliability and enables more context-aware next-generation LLMs.
comment: This paper was accepted and scheduled for inclusion in the ICALT 2025 proceedings but was ultimately not published due to absence from the conference presentation. It appears in the official program booklet. Conference: 2025 IEEE International Conference on Advanced Learning Technologies (ICALT)
☆ Semantic Reconstruction of Adversarial Plagiarism: A Context-Aware Framework for Detecting and Restoring "Tortured Phrases" in Scientific Literature
The integrity and reliability of scientific literature is facing a serious threat by adversarial text generation techniques, specifically from the use of automated paraphrasing tools to mask plagiarism. These tools generate "tortured phrases", statistically improbable synonyms (e.g. "counterfeit consciousness" for "artificial intelligence"), that preserve the local grammar while obscuring the original source. Most existing detection methods depend heavily on static blocklists or general-domain language models, which suffer from high false-negative rates for novel obfuscations and cannot determine the source of the plagiarized content. In this paper, we propose Semantic Reconstruction of Adversarial Plagiarism (SRAP), a framework designed not only to detect these anomalies but to mathematically recover the original terminology. We use a two-stage architecture: (1) statistical anomaly detection with a domain-specific masked language model (SciBERT) using token-level pseudo-perplexity, and (2) source-based semantic reconstruction using dense vector retrieval (FAISS) and sentence-level alignment (SBERT). Experiments on a parallel corpus of adversarial scientific text show that while zero-shot baselines fail completely (0.00 percent restoration accuracy), our retrieval-augmented approach achieves 23.67 percent restoration accuracy, significantly outperforming baseline methods. We also show that static decision boundaries are necessary for robust detection in jargon-heavy scientific text, since dynamic thresholding fails under high variance. SRAP enables forensic analysis by linking obfuscated expressions back to their most probable source documents.
comment: 10 pages, 5 figures; unpublished manuscript; submitted to arXiv for dissemination
☆ T-pro 2.0: An Efficient Russian Hybrid-Reasoning Model and Playground
We introduce T-pro 2.0, an open-weight Russian LLM for hybrid reasoning and efficient inference. The model supports direct answering and reasoning-trace generation, using a Cyrillic-dense tokenizer and an adapted EAGLE speculative-decoding pipeline to reduce latency. To enable reproducible and extensible research, we release the model weights, the T-Wix 500k instruction corpus, the T-Math reasoning benchmark, and the EAGLE weights on Hugging Face. These resources allow users to study Russian-language reasoning and to extend or adapt both the model and the inference pipeline. A public web demo exposes reasoning and non-reasoning modes and illustrates the speedups achieved by our inference stack across domains. T-pro 2.0 thus serves as an accessible open system for building and evaluating efficient, practical Russian LLM applications.
☆ Cooperative Retrieval-Augmented Generation for Question Answering: Mutual Information Exchange and Ranking by Contrasting Layers NeurIPS 2025
Since large language models (LLMs) have a tendency to generate factually inaccurate output, retrieval-augmented generation (RAG) has gained significant attention as a key means to mitigate this downside of harnessing only LLMs. However, existing RAG methods for simple and multi-hop question answering (QA) are still prone to incorrect retrievals and hallucinations. To address these limitations, we propose CoopRAG, a novel RAG framework for the question answering task in which a retriever and an LLM work cooperatively with each other by exchanging informative knowledge, and the earlier and later layers of the retriever model work cooperatively with each other to accurately rank the retrieved documents relevant to a given query. In this framework, we (i) unroll a question into sub-questions and a reasoning chain in which uncertain positions are masked, (ii) retrieve the documents relevant to the question augmented with the sub-questions and the reasoning chain, (iii) rerank the documents by contrasting layers of the retriever, and (iv) reconstruct the reasoning chain by filling the masked positions via the LLM. Our experiments demonstrate that CoopRAG consistently outperforms state-of-the-art QA methods on three multi-hop QA datasets as well as a simple QA dataset in terms of both the retrieval and QA performances. Our code is available.\footnote{https://github.com/meaningful96/CoopRAG}
comment: Accepted to NeurIPS 2025
☆ Sliding Window Attention Adaptation
The self-attention mechanism in Transformer-based Large Language Models (LLMs) scales quadratically with input length, making long-context inference expensive. Sliding window attention (SWA) reduces this cost to linear complexity, but naively enabling complete SWA at inference-time for models pretrained with full attention (FA) causes severe long-context performance degradation due to training-inference mismatch. This makes us wonder: Can FA-pretrained LLMs be well adapted to SWA without pretraining? We investigate this by proposing Sliding Window Attention Adaptation (SWAA), a set of practical recipes that combine five methods for better adaptation: (1) applying SWA only during prefilling; (2) preserving "sink" tokens; (3) interleaving FA/SWA layers; (4) chain-of-thought (CoT); and (5) fine-tuning. Our experiments show that SWA adaptation is feasible while non-trivial: no single method suffices, yet specific synergistic combinations effectively recover the original long-context performance. We further analyze the performance-efficiency trade-offs of different SWAA configurations and provide recommended recipes for diverse scenarios. Our code is available at https://github.com/yuyijiong/sliding-window-attention-adaptation
☆ BRACE: A Benchmark for Robust Audio Caption Quality Evaluation
Automatic audio captioning is essential for audio understanding, enabling applications such as accessibility and content indexing. However, evaluating the quality of audio captions remains a major challenge, especially in reference-free settings where high-quality ground-truth captions are unavailable. While CLAPScore is currently the most widely used reference-free Audio Caption Evaluation Metric(ACEM), its robustness under diverse conditions has not been systematically validated. To address this gap, we introduce BRACE, a new benchmark designed to evaluate audio caption alignment quality in a reference-free setting. BRACE is primarily designed for assessing ACEMs, and can also be extended to measure the modality alignment abilities of Large Audio Language Model(LALM). BRACE consists of two sub-benchmarks: BRACE-Main for fine-grained caption comparison and BRACE-Hallucination for detecting subtle hallucinated content. We construct these datasets through high-quality filtering, LLM-based corruption, and human annotation. Given the widespread adoption of CLAPScore as a reference-free ACEM and the increasing application of LALMs in audio-language tasks, we evaluate both approaches using the BRACE benchmark, testing CLAPScore across various CLAP model variants and assessing multiple LALMs. Notably, even the best-performing CLAP-based ACEM achieves only a 70.01 F1-score on the BRACE-Main benchmark, while the best LALM reaches just 63.19. By revealing the limitations of CLAP models and LALMs, our BRACE benchmark offers valuable insights into the direction of future research.
☆ Confucius Code Agent: An Open-sourced AI Software Engineer at Industrial Scale
Real-world AI software engineering demands coding agents that can reason over massive repositories, maintain durable memory across and within long sessions, and robustly coordinate complex toolchains at test time. Existing open-source coding agents provide transparency but frequently fall short when pushed to these industrial-scale workloads, while proprietary coding agents offer strong practical performance but limited extensibility, interpretability, and controllability. We present the Confucius Code Agent (CCA), an open-sourced AI software engineer that can operate at an industrial scale. CCA is built atop the Confucius SDK, an open-sourced agent development platform designed around three complementary perspectives: Agent Experience (AX), User Experience (UX), and Developer Experience (DX). The SDK introduces a unified orchestrator with hierarchical working memory for long-context reasoning, a persistent note-taking system for cross-session continual learning, and a modular extension module for robust tool use. Moreover, a meta-agent automates the synthesis, evaluation, and refinement of agent configurations through a build-test-improve loop, enabling rapid agent development on new tasks, environments, and tool stacks. Instantiated on Confucius SDK with these mechanisms, CCA delivers strong performance on real-world software engineering tasks. On SWE-Bench-Pro, CCA achieves a state-of-the-art Resolve@1 performance of 54.3%, substantially improving over prior coding agents. Together, the Confucius SDK and CCA provide a transparent, extensible, and reproducible foundation for AI agents, bridge gaps between research prototypes and production-grade systems, and support agent development and deployment at industrial scale.
☆ GPG: Generalized Policy Gradient Theorem for Transformer-based Policies
We present the Generalized Policy Gradient (GPG) Theorem, specifically designed for Transformer-based policies. Notably, we demonstrate that both standard Policy Gradient Theorem and GRPO emerge as special cases within our GPG framework. Furthermore, we explore its practical applications in training Large Language Models (LLMs), offering new insights into efficient policy optimization.
☆ Multilingual VLM Training: Adapting an English-Trained VLM to French
Artificial intelligence has made great progress in recent years, particularly in the development of Vision--Language Models (VLMs) that understand both visual and textual data. However, these advancements remain largely limited to English, reducing their accessibility for non--English speakers. It is essential to extend these capabilities to a broader range of languages. This paper explores the challenges of adapting an English-trained VLM to different languages. To this end, we will explore and compare different methods for their performance and computational cost. We consider a translation-based pipeline, LoRA finetuning, and a two-stage finetuning strategy that separates vision adaptation from language adaptation. To evaluate these methods, we use a combination of standard multimodal benchmarks translated into the target language and manual assessments by native experts. The results reveal that dataset translation remains a major bottleneck in multilingual VLM performance, with data quality limiting the effectiveness of training and evaluation. These findings suggest that future efforts should focus on native-language dataset collection and improved translation strategies.
☆ MotionEdit: Benchmarking and Learning Motion-Centric Image Editing
We introduce MotionEdit, a novel dataset for motion-centric image editing-the task of modifying subject actions and interactions while preserving identity, structure, and physical plausibility. Unlike existing image editing datasets that focus on static appearance changes or contain only sparse, low-quality motion edits, MotionEdit provides high-fidelity image pairs depicting realistic motion transformations extracted and verified from continuous videos. This new task is not only scientifically challenging but also practically significant, powering downstream applications such as frame-controlled video synthesis and animation. To evaluate model performance on the novel task, we introduce MotionEdit-Bench, a benchmark that challenges models on motion-centric edits and measures model performance with generative, discriminative, and preference-based metrics. Benchmark results reveal that motion editing remains highly challenging for existing state-of-the-art diffusion-based editing models. To address this gap, we propose MotionNFT (Motion-guided Negative-aware Fine Tuning), a post-training framework that computes motion alignment rewards based on how well the motion flow between input and model-edited images matches the ground-truth motion, guiding models toward accurate motion transformations. Extensive experiments on FLUX.1 Kontext and Qwen-Image-Edit show that MotionNFT consistently improves editing quality and motion fidelity of both base models on the motion editing task without sacrificing general editing ability, demonstrating its effectiveness.
☆ AutoMedic: An Automated Evaluation Framework for Clinical Conversational Agents with Medical Dataset Grounding
Evaluating large language models (LLMs) has recently emerged as a critical issue for safe and trustworthy application of LLMs in the medical domain. Although a variety of static medical question-answering (QA) benchmarks have been proposed, many aspects remain underexplored, such as the effectiveness of LLMs in generating responses in dynamic, interactive clinical multi-turn conversation situations and the identification of multi-faceted evaluation strategies beyond simple accuracy. However, formally evaluating a dynamic, interactive clinical situation is hindered by its vast combinatorial space of possible patient states and interaction trajectories, making it difficult to standardize and quantitatively measure such scenarios. Here, we introduce AutoMedic, a multi-agent simulation framework that enables automated evaluation of LLMs as clinical conversational agents. AutoMedic transforms off-the-shelf static QA datasets into virtual patient profiles, enabling realistic and clinically grounded multi-turn clinical dialogues between LLM agents. The performance of various clinical conversational agents is then assessed based on our CARE metric, which provides a multi-faceted evaluation standard of clinical conversational accuracy, efficiency/strategy, empathy, and robustness. Our findings, validated by human experts, demonstrate the validity of AutoMedic as an automated evaluation framework for clinical conversational agents, offering practical guidelines for the effective development of LLMs in conversational medical applications.
☆ Watermarks for Language Models via Probabilistic Automata
A recent watermarking scheme for language models achieves distortion-free embedding and robustness to edit-distance attacks. However, it suffers from limited generation diversity and high detection overhead. In parallel, recent research has focused on undetectability, a property ensuring that watermarks remain difficult for adversaries to detect and spoof. In this work, we introduce a new class of watermarking schemes constructed through probabilistic automata. We present two instantiations: (i) a practical scheme with exponential generation diversity and computational efficiency, and (ii) a theoretical construction with formal undetectability guarantees under cryptographic assumptions. Extensive experiments on LLaMA-3B and Mistral-7B validate the superior performance of our scheme in terms of robustness and efficiency.
☆ CIEGAD: Cluster-Conditioned Interpolative and Extrapolative Framework for Geometry-Aware and Domain-Aligned Data Augmentation
In practical deep learning deployment, the scarcity of data and the imbalance of label distributions often lead to semantically uncovered regions within the real-world data distribution, hindering model training and causing misclassification near class boundaries as well as unstable behaviors in peripheral areas. Although recent large language models (LLMs) show promise for data augmentation, an integrated framework that simultaneously achieves directional control of generation, domain alignment, and quality control has not yet been fully established. To address these challenges, we propose a Cluster-conditioned Interpolative and Extrapolative framework for Geometry-Aware and Domain-aligned data augmentation (CIEGAD), which systematically complements both in-distribution and out-of-distribution semantically uncovered regions. CIEGAD constructs domain profiles through cluster conditioning, allocates generation with a hierarchical frequency-geometric allocation integrating class frequency and geometric indicators, and finely controls generation directions via the coexistence of interpolative and extrapolative synthesis. It further performs quality control through geometry-constrained filtering combined with an LLM-as-a-Judge mechanism. Experiments on multiple classification tasks demonstrate that CIEGAD effectively extends the periphery of real-world data distributions while maintaining high alignment between generated and real-world data as well as semantic diversity. In particular, for long-tailed and multi-class classification tasks, CIEGAD consistently improves F1 and recall, validating the triple harmony of distributional consistency, diversity, and quality. These results indicate that CIEGAD serves as a practically oriented data augmentation framework that complements underrepresented regions while preserving alignment with real-world data.
☆ Offscript: Automated Auditing of Instruction Adherence in LLMs
Large Language Models (LLMs) and generative search systems are increasingly used for information seeking by diverse populations with varying preferences for knowledge sourcing and presentation. While users can customize LLM behavior through custom instructions and behavioral prompts, no mechanism exists to evaluate whether these instructions are being followed effectively. We present Offscript, an automated auditing tool that efficiently identifies potential instruction following failures in LLMs. In a pilot study analyzing custom instructions sourced from Reddit, Offscript detected potential deviations from instructed behavior in 86.4% of conversations, 22.2% of which were confirmed as material violations through human review. Our findings suggest that automated auditing serves as a viable approach for evaluating compliance to behavioral instructions related to information seeking.
☆ FIBER: A Multilingual Evaluation Resource for Factual Inference Bias
Large language models are widely used across domains, yet there are concerns about their factual reliability and biases. Factual knowledge probing offers a systematic means to evaluate these aspects. Most existing benchmarks focus on single-entity facts and monolingual data. We therefore present FIBER, a multilingual benchmark for evaluating factual knowledge in single- and multi-entity settings. The dataset includes sentence completion, question-answering, and object-count prediction tasks in English, Italian, and Turkish. Using FIBER, we examine whether the prompt language induces inference bias in entity selection and how large language models perform on multi-entity versus single-entity questions. The results indicate that the language of the prompt can influence the model's generated output, particularly for entities associated with the country corresponding to that language. However, this effect varies across different topics such that 31% of the topics exhibit factual inference bias score greater than 0.5. Moreover, the level of bias differs across languages such that Turkish prompts show higher bias compared to Italian in 83% of the topics, suggesting a language-dependent pattern. Our findings also show that models face greater difficulty when handling multi-entity questions than the single-entity questions. Model performance differs across both languages and model sizes. The highest mean average precision is achieved in English, while Turkish and Italian lead to noticeably lower scores. Larger models, including Llama-3.1-8B and Qwen-2.5-7B, show consistently better performance than smaller 3B-4B models.
☆ Explanation Bias is a Product: Revealing the Hidden Lexical and Position Preferences in Post-Hoc Feature Attribution
Good quality explanations strengthen the understanding of language models and data. Feature attribution methods, such as Integrated Gradient, are a type of post-hoc explainer that can provide token-level insights. However, explanations on the same input may vary greatly due to underlying biases of different methods. Users may be aware of this issue and mistrust their utility, while unaware users may trust them inadequately. In this work, we delve beyond the superficial inconsistencies between attribution methods, structuring their biases through a model- and method-agnostic framework of three evaluation metrics. We systematically assess both the lexical and position bias (what and where in the input) for two transformers; first, in a controlled, pseudo-random classification task on artificial data; then, in a semi-controlled causal relation detection task on natural data. We find that lexical and position biases are structurally unbalanced in our model comparison, with models that score high on one type score low on the other. We also find signs that methods producing anomalous explanations are more likely to be biased themselves.
☆ Applying NLP to iMessages: Understanding Topic Avoidance, Responsiveness, and Sentiment
What is your messaging data used for? While many users do not often think about the information companies can gather based off of their messaging platform of choice, it is nonetheless important to consider as society increasingly relies on short-form electronic communication. While most companies keep their data closely guarded, inaccessible to users or potential hackers, Apple has opened a door to their walled-garden ecosystem, providing iMessage users on Mac with one file storing all their messages and attached metadata. With knowledge of this locally stored file, the question now becomes: What can our data do for us? In the creation of our iMessage text message analyzer, we set out to answer five main research questions focusing on topic modeling, response times, reluctance scoring, and sentiment analysis. This paper uses our exploratory data to show how these questions can be answered using our analyzer and its potential in future studies on iMessage data.
comment: 11 pages, 18 figures, https://github.com/Alanshnir/imessage-analyzer/blob/main/Research/NLP-iMessage-Analyzer%20Findings.pdf
☆ MultiScript30k: Leveraging Multilingual Embeddings to Extend Cross Script Parallel Data
Multi30k is frequently cited in the multimodal machine translation (MMT) literature, offering parallel text data for training and fine-tuning deep learning models. However, it is limited to four languages: Czech, English, French, and German. This restriction has led many researchers to focus their investigations only on these languages. As a result, MMT research on diverse languages has been stalled because the official Multi30k dataset only represents European languages in Latin scripts. Previous efforts to extend Multi30k exist, but the list of supported languages, represented language families, and scripts is still very short. To address these issues, we propose MultiScript30k, a new Multi30k dataset extension for global languages in various scripts, created by translating the English version of Multi30k (Multi30k-En) using NLLB200-3.3B. The dataset consists of over \(30000\) sentences and provides translations of all sentences in Multi30k-En into Ar, Es, Uk, Zh\_Hans and Zh\_Hant. Similarity analysis shows that Multi30k extension consistently achieves greater than \(0.8\) cosine similarity and symmetric KL divergence less than \(0.000251\) for all languages supported except Zh\_Hant which is comparable to the previous Multi30k extensions ArEnMulti30k and Multi30k-Uk. COMETKiwi scores reveal mixed assessments of MultiScript30k as a translation of Multi30k-En in comparison to the related work. ArEnMulti30k scores nearly equal MultiScript30k-Ar, but Multi30k-Uk scores $6.4\%$ greater than MultiScript30k-Uk per split.
comment: 7 pages, 2 figures, 5 tables. Not published at any conference at this time
☆ PIAST: Rapid Prompting with In-context Augmentation for Scarce Training data
LLMs are highly sensitive to prompt design, but handcrafting effective prompts is difficult and often requires intricate crafting of few-shot examples. We propose a fast automatic prompt construction algorithm that augments human instructions by generating a small set of few shot examples. Our method iteratively replaces/drops/keeps few-shot examples using Monte Carlo Shapley estimation of example utility. For faster execution, we use aggressive subsampling and a replay buffer for faster evaluations. Our method can be run using different compute time budgets. On a limited budget, we outperform existing automatic prompting methods on text simplification and GSM8K and obtain second best results on classification and summarization. With an extended, but still modest compute budget we set a new state of the art among automatic prompting methods on classification, simplification and GSM8K. Our results show that carefully constructed examples, rather than exhaustive instruction search, are the dominant lever for fast and data efficient prompt engineering. Our code is available at https://github.com/Batorskq/PIAST.
♻ ☆ Better Language Model Inversion by Compactly Representing Next-Token Distributions
Language model inversion seeks to recover hidden prompts using only language model outputs. This capability has implications for security and accountability in language model deployments, such as leaking private information from an API-protected language model's system message. We propose a new method -- prompt inversion from logprob sequences (PILS) -- that recovers hidden prompts by gleaning clues from the model's next-token probabilities over the course of multiple generation steps. Our method is enabled by a key insight: The vector-valued outputs of a language model occupy a low-dimensional subspace. This enables us to losslessly compress the full next-token probability distribution over multiple generation steps using a linear map, allowing more output information to be used for inversion. Our approach yields massive gains over previous state-of-the-art methods for recovering hidden prompts, achieving 2--3.5 times higher exact recovery rates across test sets, in one case increasing the recovery rate from 17% to 60%. Our method also exhibits surprisingly good generalization behavior; for instance, an inverter trained on 16 generations steps gets 5--27 points higher prompt recovery when we increase the number of steps to 32 at test time. Furthermore, we demonstrate strong performance of our method on the more challenging task of recovering hidden system messages. We also analyze the role of verbatim repetition in prompt recovery and propose a new method for cross-family model transfer for logit-based inverters. Our findings show that next-token probabilities are a considerably more vulnerable attack surface for inversion attacks than previously known.
♻ ☆ Luxical: High-Speed Lexical-Dense Text Embeddings
Frontier language model quality increasingly hinges on our ability to organize web-scale text corpora for training. Today's dominant tools trade off speed and flexibility: lexical classifiers (e.g., FastText) are fast but limited to producing classification output scores, while the vector-valued outputs of transformer text embedding models flexibly support numerous workflows (e.g., clustering, classification, and retrieval) but are computationally expensive to produce. We introduce Luxical, a library for high-speed "lexical-dense" text embeddings that aims to recover the best properties of both approaches for web-scale text organization. Luxical combines sparse TF--IDF features, a small ReLU network, and a knowledge distillation training regimen to approximate large transformer embedding models at a fraction of their operational cost. In this technical report, we describe the Luxical architecture and training objective and evaluate a concrete Luxical model in two disparate applications: a targeted webcrawl document retrieval test and an end-to-end language model data curation task grounded in text classification. In these tasks we demonstrate speedups ranging from 3x to 100x over varying-sized neural baselines, and comparable to FastText model inference during the data curation task. On these evaluations, the tested Luxical model illustrates favorable compute/quality trade-offs for large-scale text organization, matching the quality of neural baselines. Luxical is available as open-source software at https://github.com/datologyai/luxical.
comment: 9 pages, 6 figures (v2 fixes typos only)
♻ ☆ SyGra: A Unified Graph-Based Framework for Scalable Generation, Quality Tagging, and Management of Synthetic Data
The advancement of large language models (LLMs) is critically dependent on the availability of high-quality datasets for Supervised Fine-Tuning (SFT), alignment tasks like Direct Preference Optimization (DPO), etc. In this work, we present a comprehensive synthetic data generation framework that facilitates scalable, configurable, and high-fidelity generation of synthetic data tailored for these training paradigms. Our approach employs a modular and configuration-based pipeline capable of modeling complex dialogue flows with minimal manual intervention. This framework uses a dual-stage quality tagging mechanism, combining heuristic rules and LLM-based evaluations, to automatically filter and score data extracted from OASST-formatted conversations, ensuring the curation of high-quality dialogue samples. The resulting datasets are structured under a flexible schema supporting both SFT and DPO use cases, enabling seamless integration into diverse training workflows. Together, these innovations offer a robust solution for generating and managing synthetic conversational data at scale, significantly reducing the overhead of data preparation in LLM training pipelines.
♻ ☆ Game-RL: Synthesizing Multimodal Verifiable Game Data to Boost VLMs' General Reasoning
Vision-language reinforcement learning (RL) has primarily focused on narrow domains (e.g. geometry or chart reasoning). This leaves broader training scenarios and resources underexplored, limiting the exploration and learning of Vision Language Models (VLMs) through RL. We find video games inherently provide rich visual elements and mechanics that are easy to verify. To fully use the multimodal and verifiable reward in video games, we propose Game-RL, constructing diverse game tasks for RL training to boost VLMs general reasoning ability. To obtain training data, we propose Code2Logic, a novel approach that adapts game code to synthesize game reasoning task data, thus obtaining the GameQA dataset of 30 games and 158 tasks with controllable difficulty gradation. Unexpectedly, RL training solely on GameQA enables multiple VLMs to achieve performance improvements across 7 diverse vision-language benchmarks, demonstrating the value of Game-RL for enhancing VLMs' general reasoning. Furthermore, this suggests that video games may serve as valuable scenarios and resources to boost general reasoning abilities. Our code, dataset and models are available at the GitHub repository.
comment: 69 pages, 24 figures
♻ ☆ The LLM Wears Prada: Analysing Gender Bias and Stereotypes through Online Shopping Data
With the wide and cross-domain adoption of Large Language Models, it becomes crucial to assess to which extent the statistical correlations in training data, which underlie their impressive performance, hide subtle and potentially troubling biases. Gender bias in LLMs has been widely investigated from the perspectives of works, hobbies, and emotions typically associated with a specific gender. In this study, we introduce a novel perspective. We investigate whether LLMs can predict an individual's gender based solely on online shopping histories and whether these predictions are influenced by gender biases and stereotypes. Using a dataset of historical online purchases from users in the United States, we evaluate the ability of six LLMs to classify gender and we then analyze their reasoning and products-gender co-occurrences. Results indicate that while models can infer gender with moderate accuracy, their decisions are often rooted in stereotypical associations between product categories and gender. Furthermore, explicit instructions to avoid bias reduce the certainty of model predictions, but do not eliminate stereotypical patterns. Our findings highlight the persistent nature of gender biases in LLMs and emphasize the need for robust bias-mitigation strategies.
♻ ☆ The Spatial Semantics of Iconic Gesture
The current multimodal turn in linguistic theory leaves a crucial question unanswered: what is the meaning of iconic gestures, and how does it compose with speech meaning? We argue for a separation of linguistic and visual levels of meaning and introduce a spatial gesture semantics that closes this gap. Iconicity is differentiated into three aspects: Firstly, an interpretation of the form of a gesture in terms of a translation from kinematic gesture annotations into vector sequences (iconic model). Secondly, a truth-functional evaluation of the iconic model within spatially extended domains (embedding). Since a simple embedding is too strong, we identify a number of transformations that can be applied to iconic models, namely rotation, scaling, perspective fixation, and quotation of handshape. Thirdly, the linguistic description or classification of an iconic model (informational evaluation). Since the informational evaluation of an iconic gesture is a heuristic act, it needs a place in a semantic theory of visual communication. Informational evaluation lifts a gesture to a quasi-linguistic level that can interact with verbal content. This interaction is either vacuous, or regimented by usual lexicon-driven inferences discussed in dynamic semantic frameworks.
comment: 52 pages, 38 figures, in review
♻ ☆ LMSpell: Neural Spell Checking for Low-Resource Languages
Spell correction is still a challenging problem for low-resource languages (LRLs). While pretrained language models (PLMs) have been employed for spell correction, their use is still limited to a handful of languages, and there has been no proper comparison across PLMs. We present the first empirical study on the effectiveness of PLMs for spell correction, which includes LRLs. We find that Large Language Models (LLMs) outperform their counterparts (encoder-based and encoder-decoder) when the fine-tuning dataset is large. This observation holds even in languages for which the LLM is not pre-trained. We release LMSpell, an easy- to use spell correction toolkit across PLMs. It includes an evaluation function that compensates for the hallucination of LLMs. Further, we present a case study with Sinhala to shed light on the plight of spell correction for LRLs.
♻ ☆ Can LLMs Detect Their Confabulations? Estimating Reliability in Uncertainty-Aware Language Models
Large Language Models (LLMs) are prone to generating fluent but incorrect content, known as confabulation, which poses increasing risks in multi-turn or agentic applications where outputs may be reused as context. In this work, we investigate how in-context information influences model behavior and whether LLMs can identify their unreliable responses. We propose a reliability estimation that leverages token-level uncertainty to guide the aggregation of internal model representations. Specifically, we compute aleatoric and epistemic uncertainty from output logits to identify salient tokens and aggregate their hidden states into compact representations for response-level reliability prediction. Through controlled experiments on open QA benchmarks, we find that correct in-context information improves both answer accuracy and model confidence, while misleading context often induces confidently incorrect responses, revealing a misalignment between uncertainty and correctness. Our probing-based method captures these shifts in model behavior and improves the detection of unreliable outputs across multiple open-source LLMs. These results underscore the limitations of direct uncertainty signals and highlight the potential of uncertainty-guided probing for reliability-aware generation.
♻ ☆ Beyond Over-Refusal: Scenario-Based Diagnostics and Post-Hoc Mitigation for Exaggerated Refusals in LLMs
Large language models (LLMs) frequently produce false refusals, declining benign requests that contain terms resembling unsafe queries. We address this challenge by introducing two comprehensive benchmarks: the Exaggerated Safety Benchmark (XSB) for single-turn prompts, annotated with "Focus" keywords that identify refusal-inducing triggers, and the Multi-turn Scenario-based Exaggerated Safety Benchmark (MS-XSB), which systematically evaluates refusal calibration in realistic, context-rich dialog settings. Our benchmarks reveal that exaggerated refusals persist across diverse recent LLMs and are especially pronounced in complex, multi-turn scenarios. To mitigate these failures, we leverage post-hoc explanation methods to identify refusal triggers and deploy three lightweight, model-agnostic approaches, ignore-word instructions, prompt rephrasing, and attention steering, at inference time, all without retraining or parameter access. Experiments on four instruction-tuned Llama models demonstrate that these strategies substantially improve compliance on safe prompts while maintaining robust safety protections. Our findings establish a reproducible framework for diagnosing and mitigating exaggerated refusals, highlighting practical pathways to safer and more helpful LLM deployments.
comment: Errors in the paper
♻ ☆ SCALE: Upscaled Continual Learning of Large Language Models
We revisit continual pre-training for large language models and argue that progress now depends more on scaling the right structure than on scaling parameters alone. We introduce SCALE, a width upscaling architecture that inserts lightweight expansion into linear modules while freezing all pre-trained parameters. This preserves the residual and attention topologies and increases capacity without perturbing the base model's original functionality. SCALE is guided by two principles: Persistent Preservation, which maintains the base model's behavior via preservation-oriented initialization and freezing of the pre-trained weights, and Collaborative Adaptation, which selectively trains a subset of expansion components to acquire new knowledge with minimal interference. We instantiate these ideas as SCALE-Preserve (preservation-first), SCALE-Adapt (adaptation-first), and SCALE-Route, an optional routing extension that performs token-level routing between preservation and adaptation heads. On a controlled synthetic biography benchmark, SCALE mitigates the severe forgetting observed with depth expansion while still acquiring new knowledge. In continual pre-training on a Korean corpus, SCALE variants achieve less forgetting on English evaluations and competitive gains on Korean benchmarks, with these variants offering the best overall stability-plasticity trade-off. Accompanying analysis clarifies when preservation provably holds and why the interplay between preservation and adaptation stabilizes optimization compared to standard continual learning setups.
♻ ☆ A Greek Government Decisions Dataset for Public-Sector Analysis and Insight
We introduce an open, machine-readable corpus of Greek government decisions sourced from the national transparency platform Diavgeia. The resource comprises 1 million decisions, featuring and high-quality raw text extracted from PDFs. It is released with raw extracted text in Markdown format, alongside a fully reproducible extraction pipeline. Beyond the core dataset, we conduct qualitative analyses to explore boilerplate patterns and design a retrieval-augmented generation (RAG) task by formulating a set of representative questions, creating high-quality answers, and evaluating a baseline RAG system on its ability to retrieve and reason over public decisions. This evaluation demonstrates the potential of large-scale public-sector corpora to support advanced information access and transparency through structured retrieval and reasoning over governmental documents, and highlights how such a RAG pipeline could simulate a chat-based assistant capable of interactively answering questions about public decisions. Due to its scale, quality, and domain coverage, the corpus can also serve as high-value pre-training or fine-tuning material for new Language Models (LMs) and Large Language Models (LLMs) respectively, including specialized models for legal and governmental domains, and as a foundation for novel approaches in domain adaptation, knowledge-grounded generation, and explainable AI. Finally, we discuss limitations, outline future directions, and make both the data and the code accessible.
♻ ☆ Anthropocentric bias in language model evaluation
Evaluating the cognitive capacities of large language models (LLMs) requires overcoming not only anthropomorphic but also anthropocentric biases. This article identifies two types of anthropocentric bias that have been neglected: overlooking how auxiliary factors can impede LLM performance despite competence ("auxiliary oversight"), and dismissing LLM mechanistic strategies that differ from those of humans as not genuinely competent ("mechanistic chauvinism"). Mitigating these biases necessitates an empirically-driven, iterative approach to mapping cognitive tasks to LLM-specific capacities and mechanisms, which can be done by supplementing carefully designed behavioral experiments with mechanistic studies.
comment: Published in Computational Linguistics
♻ ☆ LLMs in Interpreting Legal Documents
This chapter explores the application of Large Language Models in the legal domain, showcasing their potential to optimise and augment traditional legal tasks by analysing possible use cases, such as assisting in interpreting statutes, contracts, and case law, enhancing clarity in legal summarisation, contract negotiation, and information retrieval. There are several challenges that can arise from the application of such technologies, such as algorithmic monoculture, hallucinations, and compliance with existing regulations, including the EU's AI Act and recent U.S. initiatives, alongside the emerging approaches in China. Furthermore, two different benchmarks are presented.
♻ ☆ V-VAE: A Variational Auto Encoding Framework Towards Fine-Grained Control over Human-Like Chat
With the continued proliferation of Large Language Model (LLM) based chatbots, there is a growing demand for generating responses that are not only linguistically fluent but also consistently aligned with persona-specific traits in conversations. However, existing role-play and persona-based chat approaches rely heavily on static role descriptions, coarse-grained signal space, and low-quality synthetic data, which fail to capture dynamic fine-grained details in human-like chat. Human-like chat requires modeling subtle latent traits, such as emotional tone, situational awareness, and evolving personality, which are difficult to predefine and cannot be easily learned from synthetic or distillation-based data. To address these limitations, we propose a Verbal Variational Auto-Encoding (V-VAE) framework, containing a variational auto-encoding module and fine-grained control space which dynamically adapts dialogue behaviour based on fine-grained, interpretable latent variables across talking style, interaction patterns, and personal attributes. We also construct a high-quality dataset, HumanChatData, and benchmark HumanChatBench to address the scarcity of high-quality data in the human-like domain. Experiments show that LLMs based on V-VAE consistently outperform standard baselines on HumanChatBench and DialogBench, which further demonstrates the effectiveness of V-VAE and HumanChatData.
♻ ☆ Can LLMs Reason Over Non-Text Modalities in a Training-Free Manner? A Case Study with In-Context Representation Learning NeurIPS 2025
The remarkable performance of Large Language Models (LLMs) can be enhanced with test-time computation, which relies on external tools and even other deep learning models. However, existing approaches for integrating non-text modality representations into LLMs typically require additional costly supervised training, restricting on-the-fly adaptation to new domains and modalities. In this work, we explore the feasibility of integrating representations from non-text foundational models (FMs) into text-based LLMs in a training-free manner. We propose In-Context Representation Learning (ICRL) as a proof-of-concept to allow LLMs to adaptively utilize non-text modality representations with few-shot learning. Unlike traditional in-context learning, which incorporates text-label pairs, ICRL replaces text inputs with FM representations, enabling the LLM to perform multi-modal inference without fine-tuning. We evaluate ICRL on a suite of tasks in the molecular domain, investigating three core research questions: (i) how to map FM representations into LLMs in a training-free manner, (ii) what factors influence ICRL performance, and (iii) what mechanisms underlie the effectiveness of ICRL. To the best of our knowledge, ICRL is the first training-free framework for integrating non-text modality representations into text-based LLMs, presenting a promising direction for adaptable, multi-modal generalization.
comment: NeurIPS 2025
♻ ☆ Examining the Metrics for Document-Level Claim Extraction in Czech and Slovak
Document-level claim extraction remains an open challenge in the field of fact-checking, and subsequently, methods for evaluating extracted claims have received limited attention. In this work, we explore approaches to aligning two sets of claims pertaining to the same source document and computing their similarity through an alignment score. We investigate techniques to identify the best possible alignment and evaluation method between claim sets, with the aim of providing a reliable evaluation framework. Our approach enables comparison between model-extracted and human-annotated claim sets, serving as a metric for assessing the extraction performance of models and also as a possible measure of inter-annotator agreement. We conduct experiments on newly collected dataset-claims extracted from comments under Czech and Slovak news articles-domains that pose additional challenges due to the informal language, strong local context, and subtleties of these closely related languages. The results draw attention to the limitations of current evaluation approaches when applied to document-level claim extraction and highlight the need for more advanced methods-ones able to correctly capture semantic similarity and evaluate essential claim properties such as atomicity, checkworthiness, and decontextualization.
♻ ☆ Vision-centric Token Compression in Large Language Model NeurIPS 2025
Real-world applications are stretching context windows to hundreds of thousand of tokens while Large Language Models (LLMs) swell from billions to trillions of parameters. This dual expansion send compute and memory costs skyrocketing, making token compression indispensable. We introduce Vision Centric Token Compression (Vist), a slow-fast compression framework that mirrors human reading: the fast path renders distant tokens into images, letting a frozen, lightweight vision encoder skim the low-salience context; the slow path feeds the proximal window into the LLM for fine-grained reasoning. A Probability-Informed Visual Enhancement (PVE) objective masks high-frequency tokens during training, steering the Resampler to concentrate on semantically rich regions-just as skilled reader gloss over function words. On eleven in-context learning benchmarks, Vist achieves the same accuracy with 2.3 times fewer tokens, cutting FLOPs by 16% and memory by 50%. This method delivers remarkable results, outperforming the strongest text encoder-based compression method CEPE by 7.6% on average over benchmarks like TriviaQA, NQ, PopQA, NLUI, and CLIN, setting a new standard for token efficiency in LLMs. The project is at https://github.com/CSU-JPG/VIST.
comment: NeurIPS 2025 spotlight
♻ ☆ GTPO: Stabilizing Group Relative Policy Optimization via Gradient and Entropy Control
Group Relative Policy Optimization (GRPO) is a promising policy-based approach for Large Language Model alignment, yet its performance is often limited by training instability and suboptimal convergence. In this paper, we identify and analyze two main GRPO issues: (i) the token-level penalization, where valuable tokens shared across different responses receive contradictory feedback signals, leading to conflicting gradient updates that can reduce their likelihood; and (ii) the policy collapse, where negatively rewarded completions may penalize confident responses and shift model decisions toward unlikely tokens, destabilizing training process. To address these issues we introduce GTPO (Group-relative Trajectory-based Policy Optimization), which prevents conflicting gradients on valuable tokens by skipping negative updates while amplifying positive ones and filters out completions whose entropy exceeds a provable threshold, to prevent policy collapse. Unlike GRPO, GTPO does not rely on KL-divergence regularization, eliminating the need for a reference model during training, while still ensuring greater training stability and improved performance, as validated through multiple experiments on GSM8K, MATH, AIME 2024, AIME 2025 and AMC 2023.
♻ ☆ Towards Personalized Deep Research: Benchmarks and Evaluations
Deep Research Agents (DRAs) can autonomously conduct complex investigations and generate comprehensive reports, demonstrating strong real-world potential. However, existing benchmarks primarily evaluate DRAs on generic quality metrics and overlook personalization, a critical dimension for individual users. However, existing evaluations mostly rely on close-ended benchmarks, while open-ended deep research benchmarks remain scarce and typically neglect personalized scenarios. To bridge this gap, we introduce Personalized Deep Research Bench (PDR-Bench), the first benchmark for evaluating personalization in DRAs. It pairs 50 diverse research tasks across 10 domains with 25 authentic user profiles that combine structured persona attributes with dynamic real-world contexts, yielding 250 realistic user-task queries. To assess system performance, we propose the PQR Evaluation Framework, which jointly measures Personalization Alignment, Content Quality, and Factual Reliability. Our experiments on a range of systems highlight current capabilities and limitations in handling personalized deep research. This work establishes a rigorous foundation for developing and evaluating the next generation of truly personalized AI research assistants.
♻ ☆ OutSafe-Bench: A Benchmark for Multimodal Offensive Content Detection in Large Language Models
Since Multimodal Large Language Models (MLLMs) are increasingly being integrated into everyday tools and intelligent agents, growing concerns have arisen regarding their possible output of unsafe contents, ranging from toxic language and biased imagery to privacy violations and harmful misinformation. Current safety benchmarks remain highly limited in both modality coverage and performance evaluations, often neglecting the extensive landscape of content safety. In this work, we introduce OutSafe-Bench, the first most comprehensive content safety evaluation test suite designed for the multimodal era. OutSafe-Bench includes a large-scale dataset that spans four modalities, featuring over 18,000 bilingual (Chinese and English) text prompts, 4,500 images, 450 audio clips and 450 videos, all systematically annotated across nine critical content risk categories. In addition to the dataset, we introduce a Multidimensional Cross Risk Score (MCRS), a novel metric designed to model and assess overlapping and correlated content risks across different categories. To ensure fair and robust evaluation, we propose FairScore, an explainable automated multi-reviewer weighted aggregation framework. FairScore selects top-performing models as adaptive juries, thereby mitigating biases from single-model judgments and enhancing overall evaluation reliability. Our evaluation of nine state-of-the-art MLLMs reveals persistent and substantial safety vulnerabilities, underscoring the pressing need for robust safeguards in MLLMs.
♻ ☆ When Less Language is More: Language-Reasoning Disentanglement Makes LLMs Better Multilingual Reasoners NeurIPS 2025
Multilingual reasoning remains a significant challenge for large language models (LLMs), with performance disproportionately favoring high-resource languages. Drawing inspiration from cognitive neuroscience, which suggests that human reasoning functions largely independently of language processing, we hypothesize that LLMs similarly encode reasoning and language as separable components that can be disentangled to enhance multilingual reasoning. To evaluate this, we perform a causal intervention by ablating language-specific representations at inference time. Experiments on 10 open-weight LLMs spanning 11 typologically diverse languages show that this language-specific ablation consistently boosts multilingual reasoning performance. Layer-wise analyses further confirm that language and reasoning representations can be effectively disentangled throughout the model, yielding improved multilingual reasoning capabilities, while preserving top-layer language features remains essential for maintaining linguistic fidelity. Compared to post-training methods such as supervised fine-tuning or reinforcement learning, our training-free language-reasoning disentanglement achieves comparable or superior results with minimal computational overhead. These findings shed light on the internal mechanisms underlying multilingual reasoning in LLMs and suggest a lightweight and interpretable strategy for improving cross-lingual generalization.
comment: NeurIPS 2025 Camera-ready
♻ ☆ Teaching Language Models to Evolve with Users: Dynamic Profile Modeling for Personalized Alignment NeurIPS 2025
Personalized alignment is essential for enabling large language models (LLMs) to engage effectively in user-centric dialogue. While recent prompt-based and offline optimization methods offer preliminary solutions, they fall short in cold-start scenarios and long-term personalization due to their inherently static and shallow designs. In this work, we introduce the Reinforcement Learning for Personalized Alignment (RLPA) framework, in which an LLM interacts with a simulated user model to iteratively infer and refine user profiles through dialogue. The training process is guided by a dual-level reward structure: the Profile Reward encourages accurate construction of user representations, while the Response Reward incentivizes generation of responses consistent with the inferred profile. We instantiate RLPA by fine-tuning Qwen-2.5-3B-Instruct, resulting in Qwen-RLPA, which achieves state-of-the-art performance in personalized dialogue. Empirical evaluations demonstrate that Qwen-RLPA consistently outperforms prompting and offline fine-tuning baselines, and even surpasses advanced commercial models such as Claude-3.5 and GPT-4o. Further analysis highlights Qwen-RLPA's robustness in reconciling conflicting user preferences, sustaining long-term personalization and delivering more efficient inference compared to recent reasoning-focused LLMs. These results emphasize the potential of dynamic profile inference as a more effective paradigm for building personalized dialogue systems.
comment: NeurIPS 2025 Camera-ready
♻ ☆ Heard or Halted? Gender, Interruptions, and Emotional Tone in U.S. Supreme Court Oral Arguments
This study examines how interruptions during U.S. Supreme Court oral arguments shape both the semantic content and emotional tone of advocates' speech, with a focus on gendered dynamics in judicial discourse. Using the ConvoKit Supreme Court Corpus (2010-2019), we analyze 12,663 speech chunks from advocate-justice interactions to assess whether interruptions alter the meaning of an advocate's argument and whether interruptions toward female advocates exhibit more negative emotional valence. Semantic shifts are quantified using GloVe-based sentence embeddings, while sentiment is measured through lexicon-based analysis. We find that semantic similarity between pre- and post-interruption speech remains consistently high, suggesting that interruptions do not substantially alter argumentative content. However, interruptions directed at female advocates contain significantly higher levels of negative sentiment. These results deepen empirical understanding of gendered communication in elite institutional settings and demonstrate the value of computational linguistic methods for studying power, discourse, and equity in judicial proceedings.
comment: 12 pages, 5 figures, 1 table. Includes appendix. Code available at: https://github.com/1TSHARUKA/Emotional_Interruption_Analysis
♻ ☆ A Simple Yet Strong Baseline for Long-Term Conversational Memory of LLM Agents
LLM-based conversational agents still struggle to maintain coherent, personalized interaction over many sessions: fixed context windows limit how much history can be kept in view, and most external memory approaches trade off between coarse retrieval over large chunks and fine-grained but fragmented views of the dialogue. Motivated by neo-Davidsonian event semantics, we propose an event-centric alternative that represents conversational history as short, event-like propositions which bundle together participants, temporal cues, and minimal local context, rather than as independent relation triples or opaque summaries. In contrast to work that aggressively compresses or forgets past content, our design aims to preserve information in a non-compressive form and make it more accessible, rather than more lossy. Concretely, we instruct an LLM to decompose each session into enriched elementary discourse units (EDUs) -- self-contained statements with normalized entities and source turn attributions -- and organize sessions, EDUs, and their arguments in a heterogeneous graph that supports associative recall. On top of this representation we build two simple retrieval-based variants that use dense similarity search and LLM filtering, with an optional graph-based propagation step to connect and aggregate evidence across related EDUs. Experiments on the LoCoMo and LongMemEval$_S$ benchmarks show that these event-centric memories match or surpass strong baselines, while operating with much shorter QA contexts. Our results suggest that structurally simple, event-level memory provides a principled and practical foundation for long-horizon conversational agents. Our code and data will be released at https://github.com/KevinSRR/EMem.
comment: Work in progress
♻ ☆ Leveraging language models for summarizing mental state examinations: A comprehensive evaluation and dataset release ACL
Mental health disorders affect a significant portion of the global population, with diagnoses primarily conducted through Mental State Examinations (MSEs). MSEs serve as structured assessments to evaluate behavioral and cognitive functioning across various domains, aiding mental health professionals in diagnosis and treatment monitoring. However, in developing countries, access to mental health support is limited, leading to an overwhelming demand for mental health professionals. Resident doctors often conduct initial patient assessments and create summaries for senior doctors, but their availability is constrained, resulting in extended patient wait times. This study addresses the challenge of generating concise summaries from MSEs through the evaluation of various language models. Given the scarcity of relevant mental health conversation datasets, we developed a 12-item descriptive MSE questionnaire and collected responses from 405 participants, resulting in 9720 utterances covering diverse mental health aspects. Subsequently, we assessed the performance of five well-known pre-trained summarization models, both with and without fine-tuning, for summarizing MSEs. Our comprehensive evaluation, leveraging metrics such as ROUGE, SummaC, and human evaluation, demonstrates that language models can generate automated coherent MSE summaries for doctors. With this paper, we release our collected conversational dataset and trained models publicly for the mental health research community.
comment: Appeared in: Proceedings of the 31st International Conference on Computational Linguistics (COLING 2025), Abu Dhabi, UAE. ACL Anthology ID: 2025.coling-main.182. (https://aclanthology.org/2025.coling-main.182/)
♻ ☆ On the Design of KL-Regularized Policy Gradient Algorithms for LLM Reasoning
Policy gradient algorithms have been successfully applied to enhance the reasoning capabilities of large language models (LLMs). KL regularization is ubiquitous, yet the design surface, choice of KL direction (forward vs. reverse), normalization (normalized vs. unnormalized), and estimator ($k_1/k_2/k_3$), is scattered across the literature and often intertwined with off-policy estimation. We ask a focused question: under the off-policy setting, what weighting is required for each KL variant so that the surrogate we optimize yields the exact gradient of the intended KL-regularized objective? We answer this with a compact, unified derivation we call the Regularized Policy Gradient (RPG) view. RPG (i) unifies normalized and unnormalized KL variants and shows that the widely-used $k_3$ penalty is exactly the unnormalized KL; (ii) specifies conditions under which REINFORCE-style losses with stop-gradient are gradient-equivalent to fully differentiable surrogates; (iii) identifies and corrects an off-policy importance-weighting mismatch in GRPO's KL term; and (iv) introduces RPG-Style Clip, a clipped-importance-sampling step within RPG-REINFORCE that enables stable, off-policy policy-gradient training at scale. On mathematical reasoning benchmarks (AIME24, AIME25), RPG-REINFORCE with RPG-Style Clip improves accuracy by up to $+6$ absolute percentage points over DAPO. We extend our experiments to 8K context length, and RPG-REINFORCE with RPG-Style Clip achieves 52% accuracy on AIME25, surpassing the official Qwen3-4B-Instruct model (47%). Notably, RPG is a stable and scalable RL algorithm for LLM reasoning, realized via (a) a KL-correct objective, (b) clipped importance sampling, and (c) an iterative reference-policy update scheme.
comment: Project Page: https://github.com/complex-reasoning/RPG
♻ ☆ GFM-RAG: Graph Foundation Model for Retrieval Augmented Generation NeurIPS 2025
Retrieval-augmented generation (RAG) has proven effective in integrating knowledge into large language models (LLMs). However, conventional RAGs struggle to capture complex relationships between pieces of knowledge, limiting their performance in intricate reasoning that requires integrating knowledge from multiple sources. Recently, graph-enhanced retrieval augmented generation (GraphRAG) builds graph structure to explicitly model these relationships, enabling more effective and efficient retrievers. Nevertheless, its performance is still hindered by the noise and incompleteness within the graph structure. To address this, we introduce GFM-RAG, a novel graph foundation model (GFM) for retrieval augmented generation. GFM-RAG is powered by an innovative graph neural network that reasons over graph structure to capture complex query-knowledge relationships. The GFM with 8M parameters undergoes a two-stage training process on large-scale datasets, comprising 60 knowledge graphs with over 14M triples and 700k documents. This results in impressive performance and generalizability for GFM-RAG, making it the first graph foundation model applicable to unseen datasets for retrieval without any fine-tuning required. Extensive experiments on three multi-hop QA datasets and seven domain-specific RAG datasets demonstrate that GFM-RAG achieves state-of-the-art performance while maintaining efficiency and alignment with neural scaling laws, highlighting its potential for further improvement.
comment: Accepted by NeurIPS 2025
♻ ☆ TheMCPCompany: Creating General-purpose Agents with Task-specific Tools
Since the introduction of the Model Context Protocol (MCP), the number of available tools for Large Language Models (LLMs) has increased significantly. These task-specific tool sets offer an alternative to general-purpose tools such as web browsers, while being easier to develop and maintain than GUIs. However, current general-purpose agents predominantly rely on web browsers for interacting with the environment. Here, we introduce TheMCPCompany, a benchmark for evaluating tool-calling agents on tasks that involve interacting with various real-world services. We use the REST APIs of these services to create MCP servers, which include over 18,000 tools. We also provide manually annotated ground-truth tools for each task. In our experiments, we use the ground truth tools to show the potential of tool-calling agents for both improving performance and reducing costs assuming perfect tool retrieval. Next, we explore agent performance using tool retrieval to study the real-world practicality of tool-based agents. While all models with tool retrieval perform similarly or better than browser-based agents, smaller models cannot take full advantage of the available tools through retrieval. On the other hand, GPT-5's performance with tool retrieval is very close to its performance with ground-truth tools. Overall, our work shows that the most advanced reasoning models are effective at discovering tools in simpler environments, but seriously struggle with navigating complex enterprise environments. TheMCPCompany reveals that navigating tens of thousands of tools and combining them in non-trivial ways to solve complex problems is still a challenging task for current models and requires both better reasoning and better retrieval models.
comment: Code: https://github.com/Reza-esfandiarpoor/the-mcp-company
♻ ☆ Emotional Support with LLM-based Empathetic Dialogue Generation
Emotional Support Conversation (ESC) aims to provide empathetic and effective emotional assistance through dialogue, addressing the growing demand for mental health support. This paper presents our solution for the NLPCC 2025 Task 8 ESC evaluation, where we leverage large-scale language models enhanced by prompt engineering and finetuning techniques. We explore both parameter-efficient Low-Rank Adaptation and full-parameter fine-tuning strategies to improve the model's ability to generate supportive and contextually appropriate responses. Our best model ranked second in the competition, highlighting the potential of combining LLMs with effective adaptation methods for ESC tasks. Future work will focus on further enhancing emotional understanding and response personalization to build more practical and reliable emotional support systems.
♻ ☆ Benchmarking Multimodal LLMs on Recognition and Understanding over Chemical Tables
With the widespread application of multimodal large language models in scientific intelligence, there is an urgent need for more challenging evaluation benchmarks to assess their ability to understand complex scientific data. Scientific tables, as core carriers of knowledge representation, combine text, symbols, and graphics, forming a typical multimodal reasoning scenario. However, existing benchmarks are mostly focused on general domains, failing to reflect the unique structural complexity and domain-specific semantics inherent in scientific research. Chemical tables are particularly representative: they intertwine structured variables such as reagents, conditions, and yields with visual symbols like molecular structures and chemical formulas, posing significant challenges to models in cross-modal alignment and semantic parsing. To address this, we propose ChemTable-a large scale benchmark of chemical tables constructed from real-world literature, containing expert-annotated cell layouts, logical structures, and domain-specific labels. It supports two core tasks: (1) table recognition (structure and content extraction); and (2) table understanding (descriptive and reasoning-based question answering). Evaluation on ChemTable shows that while mainstream multimodal models perform reasonably well in layout parsing, they still face significant limitations when handling critical elements such as molecular structures and symbolic conventions. Closed-source models lead overall but still fall short of human-level performance. This work provides a realistic testing platform for evaluating scientific multimodal understanding, revealing the current bottlenecks in domain-specific reasoning and advancing the development of intelligent systems for scientific research.
♻ ☆ The Expressive Capacity of State Space Models: A Formal Language Perspective NeurIPS 2024
Recently, recurrent models based on linear state space models (SSMs) have shown promising performance in language modeling (LM), competititve with transformers. However, there is little understanding of the in-principle abilities of such models, which could provide useful guidance to the search for better LM architectures. We present a comprehensive theoretical study of the capacity of such SSMs as it compares to that of transformers and traditional RNNs. We find that SSMs and transformers have overlapping but distinct strengths. In star-free state tracking, SSMs implement straightforward and exact solutions to problems that transformers struggle to represent exactly. They can also model bounded hierarchical structure with optimal memory even without simulating a stack. On the other hand, we identify a design choice in current SSMs that limits their expressive power. We discuss implications for SSM and LM research, and verify results empirically on a recent SSM, Mamba.
comment: Published in NeurIPS 2024
♻ ☆ Mirror Speculative Decoding: Breaking the Serial Barrier in LLM Inference
Speculative decoding accelerates LLM inference by using a draft model to look ahead, but gains are capped by the cost of autoregressive draft generation: increasing draft size elevates acceptance rates but introduces additional latency overhead exacerbating the speed-accuracy tradeoff. Prior methods (Medusa, Hydra, EAGLE) partially reduce draft cost but either degrade acceptance or introduce overheads that limit scaling. We present Mirror Speculative Decoding (Mirror-SD), an inference algorithm that breaks the latency-acceptance tradeoff. Mirror-SD launches branch-complete rollouts from early-exit signals in parallel with the target model's suffix and explicitly maps computation across heterogeneous accelerators (GPU and NPU) to exploit cross-device parallelism. The draft speculates forward continuations for the target to verify, while the target simultaneously speculates correction paths for the draft, converting speculation into two complementary execution pipelines. To further cut draft latency without weakening acceptance semantics, we add speculative streaming so the draft emits multiple tokens per step. This dual strategy of parallel heterogeneous execution plus multi-token speculative streaming pushes speculative decoding toward its ideal regime of high acceptance with low overhead. On SpecBench with server-scale models from 14B to 66B parameters, Mirror-SD delivers consistent end-to-end gains, achieving 2.8x-5.8x wall-time speedups across diverse tasks and a 30% average relative improvement over the strongest baseline, EAGLE3.
♻ ☆ Statistical Analysis of Sentence Structures through ASCII, Lexical Alignment and PCA
While utilizing syntactic tools such as parts-of-speech (POS) tagging has helped us understand sentence structures and their distribution across diverse corpora, it is quite complex and poses a challenge in natural language processing (NLP). This study focuses on understanding sentence structure balance - usages of nouns, verbs, determiners, etc - harmoniously without relying on such tools. It proposes a novel statistical method that uses American Standard Code for Information Interchange (ASCII) codes to represent text of 11 text corpora from various sources and their lexical category alignment after using their compressed versions through PCA, and analyzes the results through histograms and normality tests such as Shapiro-Wilk and Anderson-Darling Tests. By focusing on ASCII codes, this approach simplifies text processing, although not replacing any syntactic tools but complementing them by offering it as a resource-efficient tool for assessing text balance. The story generated by Grok shows near normality indicating balanced sentence structures in LLM outputs, whereas 4 out of the remaining 10 pass the normality tests. Further research could explore potential applications in text quality evaluation and style analysis with syntactic integration for more broader tasks.
♻ ☆ LaDiR: Latent Diffusion Enhances LLMs for Text Reasoning
Large Language Models (LLMs) demonstrate their reasoning ability through chain-of-thought (CoT) generation. However, LLM's autoregressive decoding may limit the ability to revisit and refine earlier tokens in a holistic manner, which can also lead to inefficient exploration for diverse solutions. In this paper, we propose LaDiR (Latent Diffusion Reasoner), a novel reasoning framework that unifies the expressiveness of continuous latent representation with the iterative refinement capabilities of latent diffusion models for an existing LLM. We first construct a structured latent reasoning space using a Variational Autoencoder (VAE) that encodes text reasoning steps into blocks of thought tokens, preserving semantic information and interpretability while offering compact but expressive representations. Subsequently, we utilize a latent diffusion model that learns to denoise a block of latent thought tokens with a blockwise bidirectional attention mask, enabling longer horizon and iterative refinement with adaptive test-time compute. This design allows efficient parallel generation of diverse reasoning trajectories, allowing the model to plan and revise the reasoning process holistically. We conduct evaluations on a suite of mathematical reasoning and planning benchmarks. Empirical results show that LaDiR consistently improves accuracy, diversity, and interpretability over existing autoregressive, diffusion-based, and latent reasoning methods, revealing a new paradigm for text reasoning with latent diffusion.
♻ ☆ PUMA: Discovery of Protein Units via Mutation-Aware Merging
Proteins are the essential drivers of biological processes. At the molecular level, they are chains of amino acids that can be viewed through a linguistic lens where the twenty standard residues serve as an alphabet combining to form a complex language, referred to as the language of life. To understand this language, we must first identify its fundamental units. Analogous to words, these units are hypothesized to represent an intermediate layer between single residues and larger domains. Crucially, just as protein diversity arises from evolution, these units should inherently reflect evolutionary relationships. We introduce PUMA (Protein Units via Mutation-Aware Merging) to discover these evolutionarily meaningful units. PUMA employs an iterative merging algorithm guided by substitution matrices to identify protein units and organize them into families linked by plausible mutations. This process creates a hierarchical genealogy where parent units and their mutational variants coexist, simultaneously producing a unit vocabulary and the genealogical structure connecting them. We validate that PUMA families are biologically meaningful; mutations within a PUMA family correlate with clinically benign variants and with high-scoring mutations in high-throughput assays. Furthermore, these units align with the contextual preferences of protein language models and map to known functional annotations. PUMA's genealogical framework provides evolutionarily grounded units, offering a structured approach for understanding the language of life.
comment: 18 pages, 12 figures, 1 table, 1 algorithm
♻ ☆ The Illusion of Readiness in Health AI
Large language models have demonstrated remarkable performance in a wide range of medical benchmarks. Yet underneath the seemingly promising results lie salient growth areas, especially in cutting-edge frontiers such as multimodal reasoning. In this paper, we introduce a series of adversarial stress tests to systematically assess the robustness of flagship models and medical benchmarks. Our study reveals prevalent brittleness in the presence of simple adversarial transformations: leading systems can guess the right answer even with key inputs removed, yet may get confused by the slightest prompt alterations, while fabricating convincing yet flawed reasoning traces. Using clinician-guided rubrics, we demonstrate that popular medical benchmarks vary widely in what they truly measure. Our study reveals significant competency gaps of frontier AI in attaining real-world readiness for health applications. If we want AI to earn trust in healthcare, we must demand more than leaderboard wins and must hold AI systems accountable to ensure robustness, sound reasoning, and alignment with real medical demands.
♻ ☆ Dynamics of Spontaneous Topic Changes in Next Token Prediction with Self-Attention NeurIPS 2025
Human cognition is punctuated by abrupt, spontaneous shifts between topics-driven by emotional, contextual, or associative cues-a phenomenon known as spontaneous thought in neuroscience. In contrast, self-attention based models depend on structured patterns over their inputs to predict each next token, lacking spontaneity. Motivated by this distinction, we characterize spontaneous topic changes in self-attention architectures, revealing both their similarities and their divergences from spontaneous human thought. First, we establish theoretical results under a simplified, single-layer self-attention model with suitable conditions by defining the topic as a set of Token Priority Graphs (TPGs). Specifically, we demonstrate that (1) the model maintains the priority order of tokens related to the input topic, (2) a spontaneous topic change can occur only if lower-priority tokens outnumber all higher-priority tokens of the input topic, and (3) unlike human cognition, the longer context length or the more ambiguous input topic reduces the likelihood of spontaneous change. Second, we empirically validate that these dynamics persist in modern, state-of-the-art LLMs, underscoring a fundamental disparity between human cognition and AI behaviour in the context of spontaneous topic changes. To the best of our knowledge, no prior work has explored these questions with a focus as closely aligned to human thought.
comment: Accepted to NeurIPS 2025
♻ ☆ Beyond Early-Token Bias: Model-Specific and Language-Specific Position Effects in Multilingual LLMs
Large Language Models (LLMs) exhibit position bias systematically underweighting information based on its location in the context but how this bias varies across languages and models remains unclear. We conduct a multilingual study across five typologically diverse languages (English, Russian, German, Hindi, Vietnamese) and five model architectures, analyzing how position bias interacts with prompting strategies and affects output entropy. Our key findings are: (1) Position bias is primarily model-driven but shows language-specific nuances. Notably, Qwen2.5-7B-Instruct, DeepSeek 7B Chat and Mistral 7B consistently favor late positions challenging the common assumption of universal early-token preference. (2) Explicitly instructing the model, in the presence of irrelevant distractors, that "the most relevant context to the query is marked as 1" unexpectedly reduces accuracy across all languages, questioning standard prompt-engineering practices. (3) Accuracy consistently drops most when relevant information appears in the middle of the context, yet this is not reflected in a corresponding increase in output entropy, suggesting the model remains confident even when it fails to use mid-context cues.
♻ ☆ Idea-Gated Transformers: Enforcing Semantic Coherence via Differentiable Vocabulary Pruning
Autoregressive Language Models (LLMs) trained on Next-Token Prediction (NTP) often suffer from Topic Drift where the generation wanders away from the initial prompt due to a reliance on local associations rather than global planning. While scaling model size mitigates this, the fundamental myopia of the NTP objective remains. In this work, we introduce the Idea-Gated Transformer, a novel architecture that separates semantic planning from syntactic generation. We introduce an auxiliary Idea Head trained to predict the bag-of-words distribution for a future context window, creating a latent ``Concept Vector'' that actively gates the main vocabulary during generation. We propose a differentiable gating mechanism that suppresses semantically irrelevant tokens, effectively pruning the search space in real-time. Experiments on WikiText-103 demonstrate that while the Idea-Gated model achieves comparable validation perplexity to a standard GPT-2 baseline, it exhibits significantly superior Domain Retention. Qualitative and quantitative analysis reveals that the gating mechanism successfully locks generation into specific semantic clusters (e.g., Finance, Science) and resists associative drift, offering a parameter-efficient path toward more controllable language modeling.
comment: Code available at https://github.com/DarshanFofadiya/idea-gated-transformers/tree/main
♻ ☆ Counterfactual Segmentation Reasoning: Diagnosing and Mitigating Pixel-Grounding Hallucination
Segmentation Vision-Language Models (VLMs) have significantly advanced grounded visual understanding, yet they remain prone to pixel-grounding hallucinations, producing masks for incorrect objects or for objects that are entirely absent. Existing evaluations rely almost entirely on text- or label-based perturbations, which check only whether the predicted mask matches the queried label. Such evaluations overlook the spatial footprint and severity of hallucination and therefore fail to reveal vision-driven hallucinations, which are more challenging and more prevalent. To address this gap, we formalize the task of Counterfactual Segmentation Reasoning (CSR), where a model must segment the referenced object in the factual image and abstain in its counterfactual counterpart. To support this task, we curate HalluSegBench, the first large-scale benchmark to diagnose referring and reasoning expression segmentation hallucinations using controlled visual counterfactuals, alongside new evaluation metrics that measure hallucination severity and disentangle vision- and language-driven failure modes. We further introduce RobustSeg, a segmentation VLM trained with counterfactual fine-tuning (CFT) to learn when to segment and when to abstain. Experimental results confirm RobustSeg reduces hallucinations by 30%, while improving segmentation performance on FP-RefCOCO(+/g).
comment: Project webpage: https://plan-lab.github.io/hallusegbench/
Computer Vision and Pattern Recognition 100
☆ StereoSpace: Depth-Free Synthesis of Stereo Geometry via End-to-End Diffusion in a Canonical Space
We introduce StereoSpace, a diffusion-based framework for monocular-to-stereo synthesis that models geometry purely through viewpoint conditioning, without explicit depth or warping. A canonical rectified space and the conditioning guide the generator to infer correspondences and fill disocclusions end-to-end. To ensure fair and leakage-free evaluation, we introduce an end-to-end protocol that excludes any ground truth or proxy geometry estimates at test time. The protocol emphasizes metrics reflecting downstream relevance: iSQoE for perceptual comfort and MEt3R for geometric consistency. StereoSpace surpasses other methods from the warp & inpaint, latent-warping, and warped-conditioning categories, achieving sharp parallax and strong robustness on layered and non-Lambertian scenes. This establishes viewpoint-conditioned diffusion as a scalable, depth-free solution for stereo generation.
comment: Project page: https://hf.co/spaces/prs-eth/stereospace_web
☆ WorldLens: Full-Spectrum Evaluations of Driving World Models in Real World
Generative world models are reshaping embodied AI, enabling agents to synthesize realistic 4D driving environments that look convincing but often fail physically or behaviorally. Despite rapid progress, the field still lacks a unified way to assess whether generated worlds preserve geometry, obey physics, or support reliable control. We introduce WorldLens, a full-spectrum benchmark evaluating how well a model builds, understands, and behaves within its generated world. It spans five aspects -- Generation, Reconstruction, Action-Following, Downstream Task, and Human Preference -- jointly covering visual realism, geometric consistency, physical plausibility, and functional reliability. Across these dimensions, no existing world model excels universally: those with strong textures often violate physics, while geometry-stable ones lack behavioral fidelity. To align objective metrics with human judgment, we further construct WorldLens-26K, a large-scale dataset of human-annotated videos with numerical scores and textual rationales, and develop WorldLens-Agent, an evaluation model distilled from these annotations to enable scalable, explainable scoring. Together, the benchmark, dataset, and agent form a unified ecosystem for measuring world fidelity -- standardizing how future models are judged not only by how real they look, but by how real they behave.
comment: Preprint; 80 pages, 37 figures, 29 tables; Project Page at https://worldbench.github.io/worldlens
☆ SceneMaker: Open-set 3D Scene Generation with Decoupled De-occlusion and Pose Estimation Model
We propose a decoupled 3D scene generation framework called SceneMaker in this work. Due to the lack of sufficient open-set de-occlusion and pose estimation priors, existing methods struggle to simultaneously produce high-quality geometry and accurate poses under severe occlusion and open-set settings. To address these issues, we first decouple the de-occlusion model from 3D object generation, and enhance it by leveraging image datasets and collected de-occlusion datasets for much more diverse open-set occlusion patterns. Then, we propose a unified pose estimation model that integrates global and local mechanisms for both self-attention and cross-attention to improve accuracy. Besides, we construct an open-set 3D scene dataset to further extend the generalization of the pose estimation model. Comprehensive experiments demonstrate the superiority of our decoupled framework on both indoor and open-set scenes. Our codes and datasets is released at https://idea-research.github.io/SceneMaker/.
comment: Project page: https://idea-research.github.io/SceneMaker/
☆ Empowering Dynamic Urban Navigation with Stereo and Mid-Level Vision
The success of foundation models in language and vision motivated research in fully end-to-end robot navigation foundation models (NFMs). NFMs directly map monocular visual input to control actions and ignore mid-level vision modules (tracking, depth estimation, etc) entirely. While the assumption that vision capabilities will emerge implicitly is compelling, it requires large amounts of pixel-to-action supervision that are difficult to obtain. The challenge is especially pronounced in dynamic and unstructured settings, where robust navigation requires precise geometric and dynamic understanding, while the depth-scale ambiguity in monocular views further limits accurate spatial reasoning. In this paper, we show that relying on monocular vision and ignoring mid-level vision priors is inefficient. We present StereoWalker, which augments NFMs with stereo inputs and explicit mid-level vision such as depth estimation and dense pixel tracking. Our intuition is straightforward: stereo inputs resolve the depth-scale ambiguity, and modern mid-level vision models provide reliable geometric and motion structure in dynamic scenes. We also curate a large stereo navigation dataset with automatic action annotation from Internet stereo videos to support training of StereoWalker and to facilitate future research. Through our experiments, we find that mid-level vision enables StereoWalker to achieve a comparable performance as the state-of-the-art using only 1.5% of the training data, and surpasses the state-of-the-art using the full data. We also observe that stereo vision yields higher navigation performance than monocular input.
comment: Project Page: https://www.cs.virginia.edu/~tsx4zn/stereowalk/
☆ Omni-Attribute: Open-vocabulary Attribute Encoder for Visual Concept Personalization
Visual concept personalization aims to transfer only specific image attributes, such as identity, expression, lighting, and style, into unseen contexts. However, existing methods rely on holistic embeddings from general-purpose image encoders, which entangle multiple visual factors and make it difficult to isolate a single attribute. This often leads to information leakage and incoherent synthesis. To address this limitation, we introduce Omni-Attribute, the first open-vocabulary image attribute encoder designed to learn high-fidelity, attribute-specific representations. Our approach jointly designs the data and model: (i) we curate semantically linked image pairs annotated with positive and negative attributes to explicitly teach the encoder what to preserve or suppress; and (ii) we adopt a dual-objective training paradigm that balances generative fidelity with contrastive disentanglement. The resulting embeddings prove effective for open-vocabulary attribute retrieval, personalization, and compositional generation, achieving state-of-the-art performance across multiple benchmarks.
comment: Project page: https://snap-research.github.io/omni-attribute
☆ Bidirectional Normalizing Flow: From Data to Noise and Back
Normalizing Flows (NFs) have been established as a principled framework for generative modeling. Standard NFs consist of a forward process and a reverse process: the forward process maps data to noise, while the reverse process generates samples by inverting it. Typical NF forward transformations are constrained by explicit invertibility, ensuring that the reverse process can serve as their exact analytic inverse. Recent developments in TARFlow and its variants have revitalized NF methods by combining Transformers and autoregressive flows, but have also exposed causal decoding as a major bottleneck. In this work, we introduce Bidirectional Normalizing Flow ($\textbf{BiFlow}$), a framework that removes the need for an exact analytic inverse. BiFlow learns a reverse model that approximates the underlying noise-to-data inverse mapping, enabling more flexible loss functions and architectures. Experiments on ImageNet demonstrate that BiFlow, compared to its causal decoding counterpart, improves generation quality while accelerating sampling by up to two orders of magnitude. BiFlow yields state-of-the-art results among NF-based methods and competitive performance among single-evaluation ("1-NFE") methods. Following recent encouraging progress on NFs, we hope our work will draw further attention to this classical paradigm.
comment: Tech report
☆ Group Diffusion: Enhancing Image Generation by Unlocking Cross-Sample Collaboration
In this work, we explore an untapped signal in diffusion model inference. While all previous methods generate images independently at inference, we instead ask if samples can be generated collaboratively. We propose Group Diffusion, unlocking the attention mechanism to be shared across images, rather than limited to just the patches within an image. This enables images to be jointly denoised at inference time, learning both intra and inter-image correspondence. We observe a clear scaling effect - larger group sizes yield stronger cross-sample attention and better generation quality. Furthermore, we introduce a qualitative measure to capture this behavior and show that its strength closely correlates with FID. Built on standard diffusion transformers, our GroupDiff achieves up to 32.2% FID improvement on ImageNet-256x256. Our work reveals cross-sample inference as an effective, previously unexplored mechanism for generative modeling.
comment: Project Page: https://sichengmo.github.io/GroupDiff/
☆ E-RayZer: Self-supervised 3D Reconstruction as Spatial Visual Pre-training
Self-supervised pre-training has revolutionized foundation models for languages, individual 2D images and videos, but remains largely unexplored for learning 3D-aware representations from multi-view images. In this paper, we present E-RayZer, a self-supervised large 3D Vision model that learns truly 3D-aware representations directly from unlabeled images. Unlike prior self-supervised methods such as RayZer that infer 3D indirectly through latent-space view synthesis, E-RayZer operates directly in 3D space, performing self-supervised 3D reconstruction with Explicit geometry. This formulation eliminates shortcut solutions and yields representations that are geometrically grounded. To ensure convergence and scalability, we introduce a novel fine-grained learning curriculum that organizes training from easy to hard samples and harmonizes heterogeneous data sources in an entirely unsupervised manner. Experiments demonstrate that E-RayZer significantly outperforms RayZer on pose estimation, matches or sometimes surpasses fully supervised reconstruction models such as VGGT. Furthermore, its learned representations outperform leading visual pre-training models (e.g., DINOv3, CroCo v2, VideoMAE V2, and RayZer) when transferring to 3D downstream tasks, establishing E-RayZer as a new paradigm for 3D-aware visual pre-training.
comment: Project website: https://qitaozhao.github.io/E-RayZer
☆ Are We Ready for RL in Text-to-3D Generation? A Progressive Investigation
Reinforcement learning (RL), earlier proven to be effective in large language and multi-modal models, has been successfully extended to enhance 2D image generation recently. However, applying RL to 3D generation remains largely unexplored due to the higher spatial complexity of 3D objects, which require globally consistent geometry and fine-grained local textures. This makes 3D generation significantly sensitive to reward designs and RL algorithms. To address these challenges, we conduct the first systematic study of RL for text-to-3D autoregressive generation across several dimensions. (1) Reward designs: We evaluate reward dimensions and model choices, showing that alignment with human preference is crucial, and that general multi-modal models provide robust signal for 3D attributes. (2) RL algorithms: We study GRPO variants, highlighting the effectiveness of token-level optimization, and further investigate the scaling of training data and iterations. (3) Text-to-3D Benchmarks: Since existing benchmarks fail to measure implicit reasoning abilities in 3D generation models, we introduce MME-3DR. (4) Advanced RL paradigms: Motivated by the natural hierarchy of 3D generation, we propose Hi-GRPO, which optimizes the global-to-local hierarchical 3D generation through dedicated reward ensembles. Based on these insights, we develop AR3D-R1, the first RL-enhanced text-to-3D model, expert from coarse shape to texture refinement. We hope this study provides insights into RL-driven reasoning for 3D generation. Code is released at https://github.com/Ivan-Tang-3D/3DGen-R1.
comment: Code is released at https://github.com/Ivan-Tang-3D/3DGen-R1
☆ ClusIR: Towards Cluster-Guided All-in-One Image Restoration
All-in-One Image Restoration (AiOIR) aims to recover high-quality images from diverse degradations within a unified framework. However, existing methods often fail to explicitly model degradation types and struggle to adapt their restoration behavior to complex or mixed degradations. To address these issues, we propose ClusIR, a Cluster-Guided Image Restoration framework that explicitly models degradation semantics through learnable clustering and propagates cluster-aware cues across spatial and frequency domains for adaptive restoration. Specifically, ClusIR comprises two key components: a Probabilistic Cluster-Guided Routing Mechanism (PCGRM) and a Degradation-Aware Frequency Modulation Module (DAFMM). The proposed PCGRM disentangles degradation recognition from expert activation, enabling discriminative degradation perception and stable expert routing. Meanwhile, DAFMM leverages the cluster-guided priors to perform adaptive frequency decomposition and targeted modulation, collaboratively refining structural and textural representations for higher restoration fidelity. The cluster-guided synergy seamlessly bridges semantic cues with frequency-domain modulation, empowering ClusIR to attain remarkable restoration results across a wide range of degradations. Extensive experiments on diverse benchmarks validate that ClusIR reaches competitive performance under several scenarios.
☆ Towards Efficient and Effective Multi-Camera Encoding for End-to-End Driving
We present Flex, an efficient and effective scene encoder that addresses the computational bottleneck of processing high-volume multi-camera data in end-to-end autonomous driving. Flex employs a small set of learnable scene tokens to jointly encode information from all image tokens across different cameras and timesteps. By design, our approach is geometry-agnostic, learning a compact scene representation directly from data without relying on the explicit 3D inductive biases, such as Bird-Eye-View (BEV), occupancy or tri-plane representations, which are common in prior work. This holistic encoding strategy aggressively compresses the visual input for the downstream Large Language Model (LLM) based policy model. Evaluated on a large-scale proprietary dataset of 20,000 driving hours, our Flex achieves 2.2x greater inference throughput while improving driving performance by a large margin compared to state-of-the-art methods. Furthermore, we show that these compact scene tokens develop an emergent capability for scene decomposition without any explicit supervision. Our findings challenge the prevailing assumption that 3D priors are necessary, demonstrating that a data-driven, joint encoding strategy offers a more scalable, efficient and effective path for future autonomous driving systems.
comment: Project Page: https://jiawei-yang.github.io/Flex/
☆ MeViS: A Multi-Modal Dataset for Referring Motion Expression Video Segmentation
This paper proposes a large-scale multi-modal dataset for referring motion expression video segmentation, focusing on segmenting and tracking target objects in videos based on language description of objects' motions. Existing referring video segmentation datasets often focus on salient objects and use language expressions rich in static attributes, potentially allowing the target object to be identified in a single frame. Such datasets underemphasize the role of motion in both videos and languages. To explore the feasibility of using motion expressions and motion reasoning clues for pixel-level video understanding, we introduce MeViS, a dataset containing 33,072 human-annotated motion expressions in both text and audio, covering 8,171 objects in 2,006 videos of complex scenarios. We benchmark 15 existing methods across 4 tasks supported by MeViS, including 6 referring video object segmentation (RVOS) methods, 3 audio-guided video object segmentation (AVOS) methods, 2 referring multi-object tracking (RMOT) methods, and 4 video captioning methods for the newly introduced referring motion expression generation (RMEG) task. The results demonstrate weaknesses and limitations of existing methods in addressing motion expression-guided video understanding. We further analyze the challenges and propose an approach LMPM++ for RVOS/AVOS/RMOT that achieves new state-of-the-art results. Our dataset provides a platform that facilitates the development of motion expression-guided video understanding algorithms in complex video scenes. The proposed MeViS dataset and the method's source code are publicly available at https://henghuiding.com/MeViS/
comment: IEEE TPAMI, Project Page: https://henghuiding.com/MeViS/
☆ AlcheMinT: Fine-grained Temporal Control for Multi-Reference Consistent Video Generation
Recent advances in subject-driven video generation with large diffusion models have enabled personalized content synthesis conditioned on user-provided subjects. However, existing methods lack fine-grained temporal control over subject appearance and disappearance, which are essential for applications such as compositional video synthesis, storyboarding, and controllable animation. We propose AlcheMinT, a unified framework that introduces explicit timestamps conditioning for subject-driven video generation. Our approach introduces a novel positional encoding mechanism that unlocks the encoding of temporal intervals, associated in our case with subject identities, while seamlessly integrating with the pretrained video generation model positional embeddings. Additionally, we incorporate subject-descriptive text tokens to strengthen binding between visual identity and video captions, mitigating ambiguity during generation. Through token-wise concatenation, AlcheMinT avoids any additional cross-attention modules and incurs negligible parameter overhead. We establish a benchmark evaluating multiple subject identity preservation, video fidelity, and temporal adherence. Experimental results demonstrate that AlcheMinT achieves visual quality matching state-of-the-art video personalization methods, while, for the first time, enabling precise temporal control over multi-subject generation within videos. Project page is at https://snap-research.github.io/Video-AlcheMinT
comment: Project page: https://snap-research.github.io/Video-AlcheMinT/snap-research.github.io/Video-AlcheMinT
☆ VL-JEPA: Joint Embedding Predictive Architecture for Vision-language
We introduce VL-JEPA, a vision-language model built on a Joint Embedding Predictive Architecture (JEPA). Instead of autoregressively generating tokens as in classical VLMs, VL-JEPA predicts continuous embeddings of the target texts. By learning in an abstract representation space, the model focuses on task-relevant semantics while abstracting away surface-level linguistic variability. In a strictly controlled comparison against standard token-space VLM training with the same vision encoder and training data, VL-JEPA achieves stronger performance while having 50% fewer trainable parameters. At inference time, a lightweight text decoder is invoked only when needed to translate VL-JEPA predicted embeddings into text. We show that VL-JEPA natively supports selective decoding that reduces the number of decoding operations by 2.85x while maintaining similar performance compared to non-adaptive uniform decoding. Beyond generation, the VL-JEPA's embedding space naturally supports open-vocabulary classification, text-to-video retrieval, and discriminative VQA without any architecture modification. On eight video classification and eight video retrieval datasets, the average performance VL-JEPA surpasses that of CLIP, SigLIP2, and Perception Encoder. At the same time, the model achieves comparable performance as classical VLMs (InstructBLIP, QwenVL) on four VQA datasets: GQA, TallyQA, POPE and POPEv2, despite only having 1.6B parameters.
☆ Mull-Tokens: Modality-Agnostic Latent Thinking
Reasoning goes beyond language; the real world requires reasoning about space, time, affordances, and much more that words alone cannot convey. Existing multimodal models exploring the potential of reasoning with images are brittle and do not scale. They rely on calling specialist tools, costly generation of images, or handcrafted reasoning data to switch between text and image thoughts. Instead, we offer a simpler alternative -- Mull-Tokens -- modality-agnostic latent tokens pre-trained to hold intermediate information in either image or text modalities to let the model think free-form towards the correct answer. We investigate best practices to train Mull-Tokens inspired by latent reasoning frameworks. We first train Mull-Tokens using supervision from interleaved text-image traces, and then fine-tune without any supervision by only using the final answers. Across four challenging spatial reasoning benchmarks involving tasks such as solving puzzles and taking different perspectives, we demonstrate that Mull-Tokens improve upon several baselines utilizing text-only reasoning or interleaved image-text reasoning, achieving a +3% average improvement and up to +16% on a puzzle solving reasoning-heavy split compared to our strongest baseline. Adding to conversations around challenges in grounding textual and visual reasoning, Mull-Tokens offers a simple solution to abstractly think in multiple modalities.
comment: Project webpage: https://arijitray.com/multimodal_thinking/
☆ OmniView: An All-Seeing Diffusion Model for 3D and 4D View Synthesis
Prior approaches injecting camera control into diffusion models have focused on specific subsets of 4D consistency tasks: novel view synthesis, text-to-video with camera control, image-to-video, amongst others. Therefore, these fragmented approaches are trained on disjoint slices of available 3D/4D data. We introduce OmniView, a unified framework that generalizes across a wide range of 4D consistency tasks. Our method separately represents space, time, and view conditions, enabling flexible combinations of these inputs. For example, OmniView can synthesize novel views from static, dynamic, and multiview inputs, extrapolate trajectories forward and backward in time, and create videos from text or image prompts with full camera control. OmniView is competitive with task-specific models across diverse benchmarks and metrics, improving image quality scores among camera-conditioned diffusion models by up to 33\% in multiview NVS LLFF dataset, 60\% in dynamic NVS Neural 3D Video benchmark, 20\% in static camera control on RE-10K, and reducing camera trajectory errors by 4x in text-conditioned video generation. With strong generalizability in one model, OmniView demonstrates the feasibility of a generalist 4D video model. Project page is available at https://snap-research.github.io/OmniView/
comment: Project page: https://snap-research.github.io/OmniView/
☆ GaussianHeadTalk: Wobble-Free 3D Talking Heads with Audio Driven Gaussian Splatting
Speech-driven talking heads have recently emerged and enable interactive avatars. However, real-world applications are limited, as current methods achieve high visual fidelity but slow or fast yet temporally unstable. Diffusion methods provide realistic image generation, yet struggle with oneshot settings. Gaussian Splatting approaches are real-time, yet inaccuracies in facial tracking, or inconsistent Gaussian mappings, lead to unstable outputs and video artifacts that are detrimental to realistic use cases. We address this problem by mapping Gaussian Splatting using 3D Morphable Models to generate person-specific avatars. We introduce transformer-based prediction of model parameters, directly from audio, to drive temporal consistency. From monocular video and independent audio speech inputs, our method enables generation of real-time talking head videos where we report competitive quantitative and qualitative performance.
comment: IEEE/CVF Winter Conference on Applications of Computer Vision 2026
☆ Stronger Normalization-Free Transformers
Although normalization layers have long been viewed as indispensable components of deep learning architectures, the recent introduction of Dynamic Tanh (DyT) has demonstrated that alternatives are possible. The point-wise function DyT constrains extreme values for stable convergence and reaches normalization-level performance; this work seeks further for function designs that can surpass it. We first study how the intrinsic properties of point-wise functions influence training and performance. Building on these findings, we conduct a large-scale search for a more effective function design. Through this exploration, we introduce $\mathrm{Derf}(x) = \mathrm{erf}(αx + s)$, where $\mathrm{erf}(x)$ is the rescaled Gaussian cumulative distribution function, and identify it as the most performant design. Derf outperforms LayerNorm, RMSNorm, and DyT across a wide range of domains, including vision (image recognition and generation), speech representation, and DNA sequence modeling. Our findings suggest that the performance gains of Derf largely stem from its improved generalization rather than stronger fitting capacity. Its simplicity and stronger performance make Derf a practical choice for normalization-free Transformer architectures.
☆ Any4D: Unified Feed-Forward Metric 4D Reconstruction
We present Any4D, a scalable multi-view transformer for metric-scale, dense feed-forward 4D reconstruction. Any4D directly generates per-pixel motion and geometry predictions for N frames, in contrast to prior work that typically focuses on either 2-view dense scene flow or sparse 3D point tracking. Moreover, unlike other recent methods for 4D reconstruction from monocular RGB videos, Any4D can process additional modalities and sensors such as RGB-D frames, IMU-based egomotion, and Radar Doppler measurements, when available. One of the key innovations that allows for such a flexible framework is a modular representation of a 4D scene; specifically, per-view 4D predictions are encoded using a variety of egocentric factors (depthmaps and camera intrinsics) represented in local camera coordinates, and allocentric factors (camera extrinsics and scene flow) represented in global world coordinates. We achieve superior performance across diverse setups - both in terms of accuracy (2-3X lower error) and compute efficiency (15X faster), opening avenues for multiple downstream applications.
comment: Project Website: https://any-4d.github.io/
☆ BabyVLM-V2: Toward Developmentally Grounded Pretraining and Benchmarking of Vision Foundation Models
Early children's developmental trajectories set up a natural goal for sample-efficient pretraining of vision foundation models. We introduce BabyVLM-V2, a developmentally grounded framework for infant-inspired vision-language modeling that extensively improves upon BabyVLM-V1 through a longitudinal, multifaceted pretraining set, a versatile model, and, most importantly, DevCV Toolbox for cognitive evaluation. The pretraining set maximizes coverage while minimizing curation of a longitudinal, infant-centric audiovisual corpus, yielding video-utterance, image-utterance, and multi-turn conversational data that mirror infant experiences. DevCV Toolbox adapts all vision-related measures of the recently released NIH Baby Toolbox into a benchmark suite of ten multimodal tasks, covering spatial reasoning, memory, and vocabulary understanding aligned with early children's capabilities. Experimental results show that a compact model pretrained from scratch can achieve competitive performance on DevCV Toolbox, outperforming GPT-4o on some tasks. We hope the principled, unified BabyVLM-V2 framework will accelerate research in developmentally plausible pretraining of vision foundation models.
☆ FoundationMotion: Auto-Labeling and Reasoning about Spatial Movement in Videos
Motion understanding is fundamental to physical reasoning, enabling models to infer dynamics and predict future states. However, state-of-the-art models still struggle on recent motion benchmarks, primarily due to the scarcity of large-scale, fine-grained motion datasets. Existing motion datasets are often constructed from costly manual annotation, severely limiting scalability. To address this challenge, we introduce FoundationMotion, a fully automated data curation pipeline that constructs large-scale motion datasets. Our approach first detects and tracks objects in videos to extract their trajectories, then leverages these trajectories and video frames with Large Language Models (LLMs) to generate fine-grained captions and diverse question-answer pairs about motion and spatial reasoning. Using datasets produced by this pipeline, we fine-tune open-source models including NVILA-Video-15B and Qwen2.5-7B, achieving substantial improvements in motion understanding without compromising performance on other tasks. Notably, our models outperform strong closed-source baselines like Gemini-2.5 Flash and large open-source models such as Qwen2.5-VL-72B across diverse motion understanding datasets and benchmarks. FoundationMotion thus provides a scalable solution for curating fine-grained motion datasets that enable effective fine-tuning of diverse models to enhance motion understanding and spatial reasoning capabilities.
comment: Code is available at https://github.com/Wolfv0/FoundationMotion/tree/main
☆ DuetSVG: Unified Multimodal SVG Generation with Internal Visual Guidance
Recent vision-language model (VLM)-based approaches have achieved impressive results on SVG generation. However, because they generate only text and lack visual signals during decoding, they often struggle with complex semantics and fail to produce visually appealing or geometrically coherent SVGs. We introduce DuetSVG, a unified multimodal model that jointly generates image tokens and corresponding SVG tokens in an end-to-end manner. DuetSVG is trained on both image and SVG datasets. At inference, we apply a novel test-time scaling strategy that leverages the model's native visual predictions as guidance to improve SVG decoding quality. Extensive experiments show that our method outperforms existing methods, producing visually faithful, semantically aligned, and syntactically clean SVGs across a wide range of applications.
comment: Project page: https://intchous.github.io/DuetSVG-site
☆ PubTables-v2: A new large-scale dataset for full-page and multi-page table extraction
Table extraction (TE) is a key challenge in visual document understanding. Traditional approaches detect tables first, then recognize their structure. Recently, interest has surged in developing methods, such as vision-language models (VLMs), that can extract tables directly in their full page or document context. However, progress has been difficult to demonstrate due to a lack of annotated data. To address this, we create a new large-scale dataset, PubTables-v2. PubTables-v2 supports a number of current challenging table extraction tasks. Notably, it is the first large-scale benchmark for multi-page table structure recognition. We demonstrate its usefulness by evaluating domain-specialized VLMs on these tasks and highlighting current progress. Finally, we use PubTables-v2 to create the Page-Object Table Transformer (POTATR), an image-to-graph extension of the Table Transformer to comprehensive page-level TE. Data, code, and trained models will be released.
comment: 15 pages, 7 figures
☆ MoCapAnything: Unified 3D Motion Capture for Arbitrary Skeletons from Monocular Videos
Motion capture now underpins content creation far beyond digital humans, yet most existing pipelines remain species- or template-specific. We formalize this gap as Category-Agnostic Motion Capture (CAMoCap): given a monocular video and an arbitrary rigged 3D asset as a prompt, the goal is to reconstruct a rotation-based animation such as BVH that directly drives the specific asset. We present MoCapAnything, a reference-guided, factorized framework that first predicts 3D joint trajectories and then recovers asset-specific rotations via constraint-aware inverse kinematics. The system contains three learnable modules and a lightweight IK stage: (1) a Reference Prompt Encoder that extracts per-joint queries from the asset's skeleton, mesh, and rendered images; (2) a Video Feature Extractor that computes dense visual descriptors and reconstructs a coarse 4D deforming mesh to bridge the gap between video and joint space; and (3) a Unified Motion Decoder that fuses these cues to produce temporally coherent trajectories. We also curate Truebones Zoo with 1038 motion clips, each providing a standardized skeleton-mesh-render triad. Experiments on both in-domain benchmarks and in-the-wild videos show that MoCapAnything delivers high-quality skeletal animations and exhibits meaningful cross-species retargeting across heterogeneous rigs, enabling scalable, prompt-driven 3D motion capture for arbitrary assets. Project page: https://animotionlab.github.io/MoCapAnything/
comment: Project page: https://animotionlab.github.io/MoCapAnything/
☆ From Macro to Micro: Benchmarking Microscopic Spatial Intelligence on Molecules via Vision-Language Models
This paper introduces the concept of Microscopic Spatial Intelligence (MiSI), the capability to perceive and reason about the spatial relationships of invisible microscopic entities, which is fundamental to scientific discovery. To assess the potential of Vision-Language Models (VLMs) in this domain, we propose a systematic benchmark framework MiSI-Bench. This framework features over 163,000 question-answer pairs and 587,000 images derived from approximately 4,000 molecular structures, covering nine complementary tasks that evaluate abilities ranging from elementary spatial transformations to complex relational identifications. Experimental results reveal that current state-of-the-art VLMs perform significantly below human level on this benchmark. However, a fine-tuned 7B model demonstrates substantial potential, even surpassing humans in spatial transformation tasks, while its poor performance in scientifically-grounded tasks like hydrogen bond recognition underscores the necessity of integrating explicit domain knowledge for progress toward scientific AGI. The datasets are available at https://huggingface.co/datasets/zongzhao/MiSI-bench.
☆ MMSI-Video-Bench: A Holistic Benchmark for Video-Based Spatial Intelligence
Spatial understanding over continuous visual input is crucial for MLLMs to evolve into general-purpose assistants in physical environments. Yet there is still no comprehensive benchmark that holistically assesses the progress toward this goal. In this work, we introduce MMSI-Video-Bench, a fully human-annotated benchmark for video-based spatial intelligence in MLLMs. It operationalizes a four-level framework, Perception, Planning, Prediction, and Cross-Video Reasoning, through 1,106 questions grounded in 1,278 clips from 25 datasets and in-house videos. Each item is carefully designed and reviewed by 3DV experts with explanatory rationales to ensure precise, unambiguous grounding. Leveraging its diverse data sources and holistic task coverage, MMSI-Video-Bench also supports three domain-oriented sub-benchmarks (Indoor Scene Perception Bench, Robot Bench and Grounding Bench) for targeted capability assessment. We evaluate 25 strong open-source and proprietary MLLMs, revealing a striking human--AI gap: many models perform near chance, and the best reasoning model lags humans by nearly 60%. We further find that spatially fine-tuned models still fail to generalize effectively on our benchmark. Fine-grained error analysis exposes systematic failures in geometric reasoning, motion grounding, long-horizon prediction, and cross-video correspondence. We also show that typical frame-sampling strategies transfer poorly to our reasoning-intensive benchmark, and that neither 3D spatial cues nor chain-of-thought prompting yields meaningful gains. We expect our benchmark to establish a solid testbed for advancing video-based spatial intelligence.
☆ SWiT-4D: Sliding-Window Transformer for Lossless and Parameter-Free Temporal 4D Generation
Despite significant progress in 4D content generation, the conversion of monocular videos into high-quality animated 3D assets with explicit 4D meshes remains considerably challenging. The scarcity of large-scale, naturally captured 4D mesh datasets further limits the ability to train generalizable video-to-4D models from scratch in a purely data-driven manner. Meanwhile, advances in image-to-3D generation, supported by extensive datasets, offer powerful prior models that can be leveraged. To better utilize these priors while minimizing reliance on 4D supervision, we introduce SWiT-4D, a Sliding-Window Transformer for lossless, parameter-free temporal 4D mesh generation. SWiT-4D integrates seamlessly with any Diffusion Transformer (DiT)-based image-to-3D generator, adding spatial-temporal modeling across video frames while preserving the original single-image forward process, enabling 4D mesh reconstruction from videos of arbitrary length. To recover global translation, we further introduce an optimization-based trajectory module tailored for static-camera monocular videos. SWiT-4D demonstrates strong data efficiency: with only a single short (<10s) video for fine-tuning, it achieves high-fidelity geometry and stable temporal consistency, indicating practical deployability under extremely limited 4D supervision. Comprehensive experiments on both in-domain zoo-test sets and challenging out-of-domain benchmarks (C4D, Objaverse, and in-the-wild videos) show that SWiT-4D consistently outperforms existing baselines in temporal smoothness. Project page: https://animotionlab.github.io/SWIT4D/
comment: Project page: https://animotionlab.github.io/SWIT4D/
☆ PoseGAM: Robust Unseen Object Pose Estimation via Geometry-Aware Multi-View Reasoning
6D object pose estimation, which predicts the transformation of an object relative to the camera, remains challenging for unseen objects. Existing approaches typically rely on explicitly constructing feature correspondences between the query image and either the object model or template images. In this work, we propose PoseGAM, a geometry-aware multi-view framework that directly predicts object pose from a query image and multiple template images, eliminating the need for explicit matching. Built upon recent multi-view-based foundation model architectures, the method integrates object geometry information through two complementary mechanisms: explicit point-based geometry and learned features from geometry representation networks. In addition, we construct a large-scale synthetic dataset containing more than 190k objects under diverse environmental conditions to enhance robustness and generalization. Extensive evaluations across multiple benchmarks demonstrate our state-of-the-art performance, yielding an average AR improvement of 5.1% over prior methods and achieving up to 17.6% gains on individual datasets, indicating strong generalization to unseen objects. Project page: https://windvchen.github.io/PoseGAM/ .
comment: Project page: https://windvchen.github.io/PoseGAM/
☆ Agile Deliberation: Concept Deliberation for Subjective Visual Classification
From content moderation to content curation, applications requiring vision classifiers for visual concepts are rapidly expanding. Existing human-in-the-loop approaches typically assume users begin with a clear, stable concept understanding to be able to provide high-quality supervision. In reality, users often start with a vague idea and must iteratively refine it through "concept deliberation", a practice we uncovered through structured interviews with content moderation experts. We operationalize the common strategies in deliberation used by real content moderators into a human-in-the-loop framework called "Agile Deliberation" that explicitly supports evolving and subjective concepts. The system supports users in defining the concept for themselves by exposing them to borderline cases. The system does this with two deliberation stages: (1) concept scoping, which decomposes the initial concept into a structured hierarchy of sub-concepts, and (2) concept iteration, which surfaces semantically borderline examples for user reflection and feedback to iteratively align an image classifier with the user's evolving intent. Since concept deliberation is inherently subjective and interactive, we painstakingly evaluate the framework through 18 user sessions, each 1.5h long, rather than standard benchmarking datasets. We find that Agile Deliberation achieves 7.5% higher F1 scores than automated decomposition baselines and more than 3% higher than manual deliberation, while participants reported clearer conceptual understanding and lower cognitive effort.
☆ Self-Ensemble Post Learning for Noisy Domain Generalization
While computer vision and machine learning have made great progress, their robustness is still challenged by two key issues: data distribution shift and label noise. When domain generalization (DG) encounters noise, noisy labels further exacerbate the emergence of spurious features in deep layers, i.e. spurious feature enlargement, leading to a degradation in the performance of existing algorithms. This paper, starting from domain generalization, explores how to make existing methods rework when meeting noise. We find that the latent features inside the model have certain discriminative capabilities, and different latent features focus on different parts of the image. Based on these observations, we propose the Self-Ensemble Post Learning approach (SEPL) to diversify features which can be leveraged. Specifically, SEPL consists of two parts: feature probing training and prediction ensemble inference. It leverages intermediate feature representations within the model architecture, training multiple probing classifiers to fully exploit the capabilities of pre-trained models, while the final predictions are obtained through the integration of outputs from these diverse classification heads. Considering the presence of noisy labels, we employ semi-supervised algorithms to train probing classifiers. Given that different probing classifiers focus on different areas, we integrate their predictions using a crowdsourcing inference approach. Extensive experimental evaluations demonstrate that the proposed method not only enhances the robustness of existing methods but also exhibits significant potential for real-world applications with high flexibility.
comment: 18 pages
☆ Extrapolation of Periodic Functions Using Binary Encoding of Continuous Numerical Values
We report the discovery that binary encoding allows neural networks to extrapolate periodic functions beyond their training bounds. We introduce Normalized Base-2 Encoding (NB2E) as a method for encoding continuous numerical values and demonstrate that, using this input encoding, vanilla multi-layer perceptrons (MLP) successfully extrapolate diverse periodic signals without prior knowledge of their functional form. Internal activation analysis reveals that NB2E induces bit-phase representations, enabling MLPs to learn and extrapolate signal structure independently of position.
comment: Submitted to JMLR, under review
☆ Graph Laplacian Transformer with Progressive Sampling for Prostate Cancer Grading MICCAI
Prostate cancer grading from whole-slide images (WSIs) remains a challenging task due to the large-scale nature of WSIs, the presence of heterogeneous tissue structures, and difficulty of selecting diagnostically relevant regions. Existing approaches often rely on random or static patch selection, leading to the inclusion of redundant or non-informative regions that degrade performance. To address this, we propose a Graph Laplacian Attention-Based Transformer (GLAT) integrated with an Iterative Refinement Module (IRM) to enhance both feature learning and spatial consistency. The IRM iteratively refines patch selection by leveraging a pretrained ResNet50 for local feature extraction and a foundation model in no-gradient mode for importance scoring, ensuring only the most relevant tissue regions are preserved. The GLAT models tissue-level connectivity by constructing a graph where patches serve as nodes, ensuring spatial consistency through graph Laplacian constraints and refining feature representations via a learnable filtering mechanism that enhances discriminative histological structures. Additionally, a convex aggregation mechanism dynamically adjusts patch importance to generate a robust WSI-level representation. Extensive experiments on five public and one private dataset demonstrate that our model outperforms state-of-the-art methods, achieving higher performance and spatial consistency while maintaining computational efficiency.
comment: International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2025
☆ Interpretable and Steerable Concept Bottleneck Sparse Autoencoders
Sparse autoencoders (SAEs) promise a unified approach for mechanistic interpretability, concept discovery, and model steering in LLMs and LVLMs. However, realizing this potential requires that the learned features be both interpretable and steerable. To that end, we introduce two new computationally inexpensive interpretability and steerability metrics and conduct a systematic analysis on LVLMs. Our analysis uncovers two observations; (i) a majority of SAE neurons exhibit either low interpretability or low steerability or both, rendering them ineffective for downstream use; and (ii) due to the unsupervised nature of SAEs, user-desired concepts are often absent in the learned dictionary, thus limiting their practical utility. To address these limitations, we propose Concept Bottleneck Sparse Autoencoders (CB-SAE) - a novel post-hoc framework that prunes low-utility neurons and augments the latent space with a lightweight concept bottleneck aligned to a user-defined concept set. The resulting CB-SAE improves interpretability by +32.1% and steerability by +14.5% across LVLMs and image generation tasks. We will make our code and model weights available.
☆ What matters for Representation Alignment: Global Information or Spatial Structure?
Representation alignment (REPA) guides generative training by distilling representations from a strong, pretrained vision encoder to intermediate diffusion features. We investigate a fundamental question: what aspect of the target representation matters for generation, its \textit{global} \revision{semantic} information (e.g., measured by ImageNet-1K accuracy) or its spatial structure (i.e. pairwise cosine similarity between patch tokens)? Prevalent wisdom holds that stronger global semantic performance leads to better generation as a target representation. To study this, we first perform a large-scale empirical analysis across 27 different vision encoders and different model scales. The results are surprising; spatial structure, rather than global performance, drives the generation performance of a target representation. To further study this, we introduce two straightforward modifications, which specifically accentuate the transfer of \emph{spatial} information. We replace the standard MLP projection layer in REPA with a simple convolution layer and introduce a spatial normalization layer for the external representation. Surprisingly, our simple method (implemented in $<$4 lines of code), termed iREPA, consistently improves convergence speed of REPA, across a diverse set of vision encoders, model sizes, and training variants (such as REPA, REPA-E, Meanflow, JiT etc). %, etc. Our work motivates revisiting the fundamental working mechanism of representational alignment and how it can be leveraged for improved training of generative models. The code and project page are available at https://end2end-diffusion.github.io/irepa
comment: Project page: https://end2end-diffusion.github.io/irepa
☆ Blood Pressure Prediction for Coronary Artery Disease Diagnosis using Coronary Computed Tomography Angiography
Computational fluid dynamics (CFD) based simulation of coronary blood flow provides valuable hemodynamic markers, such as pressure gradients, for diagnosing coronary artery disease (CAD). However, CFD is computationally expensive, time-consuming, and difficult to integrate into large-scale clinical workflows. These limitations restrict the availability of labeled hemodynamic data for training AI models and hinder broad adoption of non-invasive, physiology based CAD assessment. To address these challenges, we develop an end to end pipeline that automates coronary geometry extraction from coronary computed tomography angiography (CCTA), streamlines simulation data generation, and enables efficient learning of coronary blood pressure distributions. The pipeline reduces the manual burden associated with traditional CFD workflows while producing consistent training data. We further introduce a diffusion-based regression model designed to predict coronary blood pressure directly from CCTA derived features, bypassing the need for slow CFD computation during inference. Evaluated on a dataset of simulated coronary hemodynamics, the proposed model achieves state of the art performance, with an R2 of 64.42%, a root mean squared error of 0.0974, and a normalized RMSE of 0.154, outperforming several baseline approaches. This work provides a scalable and accessible framework for rapid, non-invasive blood pressure prediction to support CAD diagnosis.
comment: 19 pages, 9 figures
☆ LDP: Parameter-Efficient Fine-Tuning of Multimodal LLM for Medical Report Generation
Colonoscopic polyp diagnosis is pivotal for early colorectal cancer detection, yet traditional automated reporting suffers from inconsistencies and hallucinations due to the scarcity of high-quality multimodal medical data. To bridge this gap, we propose LDP, a novel framework leveraging multimodal large language models (MLLMs) for professional polyp diagnosis report generation. Specifically, we curate MMEndo, a multimodal endoscopic dataset comprising expert-annotated colonoscopy image-text pairs. We fine-tune the Qwen2-VL-7B backbone using Parameter-Efficient Fine-Tuning (LoRA) and align it with clinical standards via Direct Preference Optimization (DPO). Extensive experiments show that our LDP outperforms existing baselines on both automated metrics and rigorous clinical expert evaluations (achieving a Physician Score of 7.2/10), significantly reducing training computational costs by 833x compared to full fine-tuning. The proposed solution offers a scalable, clinically viable path for primary healthcare, with additional validation on the IU-XRay dataset confirming its robustness.
comment: Work in progress
☆ IRG-MotionLLM: Interleaving Motion Generation, Assessment and Refinement for Text-to-Motion Generation
Recent advances in motion-aware large language models have shown remarkable promise for unifying motion understanding and generation tasks. However, these models typically treat understanding and generation separately, limiting the mutual benefits that could arise from interactive feedback between tasks. In this work, we reveal that motion assessment and refinement tasks act as crucial bridges to enable bidirectional knowledge flow between understanding and generation. Leveraging this insight, we propose Interleaved Reasoning for Motion Generation (IRMoGen), a novel paradigm that tightly couples motion generation with assessment and refinement through iterative text-motion dialogue. To realize this, we introduce IRG-MotionLLM, the first model that seamlessly interleaves motion generation, assessment, and refinement to improve generation performance. IRG-MotionLLM is developed progressively with a novel three-stage training scheme, initializing and subsequently enhancing native IRMoGen capabilities. To facilitate this development, we construct an automated data engine to synthesize interleaved reasoning annotations from existing text-motion datasets. Extensive experiments demonstrate that: (i) Assessment and refinement tasks significantly improve text-motion alignment; (ii) Interleaving motion generation, assessment, and refinement steps yields consistent performance gains across training stages; and (iii) IRG-MotionLLM clearly outperforms the baseline model and achieves advanced performance on standard text-to-motion generation benchmarks. Cross-evaluator testing further validates its effectiveness. Code & Data: https://github.com/HumanMLLM/IRG-MotionLLM/tree/main.
comment: 25 pages, 16 figures
☆ Video Depth Propagation
Depth estimation in videos is essential for visual perception in real-world applications. However, existing methods either rely on simple frame-by-frame monocular models, leading to temporal inconsistencies and inaccuracies, or use computationally demanding temporal modeling, unsuitable for real-time applications. These limitations significantly restrict general applicability and performance in practical settings. To address this, we propose VeloDepth, an efficient and robust online video depth estimation pipeline that effectively leverages spatiotemporal priors from previous depth predictions and performs deep feature propagation. Our method introduces a novel Propagation Module that refines and propagates depth features and predictions using flow-based warping coupled with learned residual corrections. In addition, our design structurally enforces temporal consistency, resulting in stable depth predictions across consecutive frames with improved efficiency. Comprehensive zero-shot evaluation on multiple benchmarks demonstrates the state-of-the-art temporal consistency and competitive accuracy of VeloDepth, alongside its significantly faster inference compared to existing video-based depth estimators. VeloDepth thus provides a practical, efficient, and accurate solution for real-time depth estimation suitable for diverse perception tasks. Code and models are available at https://github.com/lpiccinelli-eth/velodepth
☆ SpaceDrive: Infusing Spatial Awareness into VLM-based Autonomous Driving
End-to-end autonomous driving methods built on vision language models (VLMs) have undergone rapid development driven by their universal visual understanding and strong reasoning capabilities obtained from the large-scale pretraining. However, we find that current VLMs struggle to understand fine-grained 3D spatial relationships which is a fundamental requirement for systems interacting with the physical world. To address this issue, we propose SpaceDrive, a spatial-aware VLM-based driving framework that treats spatial information as explicit positional encodings (PEs) instead of textual digit tokens, enabling joint reasoning over semantic and spatial representations. SpaceDrive employs a universal positional encoder to all 3D coordinates derived from multi-view depth estimation, historical ego-states, and text prompts. These 3D PEs are first superimposed to augment the corresponding 2D visual tokens. Meanwhile, they serve as a task-agnostic coordinate representation, replacing the digit-wise numerical tokens as both inputs and outputs for the VLM. This mechanism enables the model to better index specific visual semantics in spatial reasoning and directly regress trajectory coordinates rather than generating digit-by-digit, thereby enhancing planning accuracy. Extensive experiments validate that SpaceDrive achieves state-of-the-art open-loop performance on the nuScenes dataset and the second-best Driving Score of 78.02 on the Bench2Drive closed-loop benchmark over existing VLM-based methods.
☆ CheXmask-U: Quantifying uncertainty in landmark-based anatomical segmentation for X-ray images
Uncertainty estimation is essential for the safe clinical deployment of medical image segmentation systems, enabling the identification of unreliable predictions and supporting human oversight. While prior work has largely focused on pixel-level uncertainty, landmark-based segmentation offers inherent topological guarantees yet remains underexplored from an uncertainty perspective. In this work, we study uncertainty estimation for anatomical landmark-based segmentation on chest X-rays. Inspired by hybrid neural network architectures that combine standard image convolutional encoders with graph-based generative decoders, and leveraging their variational latent space, we derive two complementary measures: (i) latent uncertainty, captured directly from the learned distribution parameters, and (ii) predictive uncertainty, obtained by generating multiple stochastic output predictions from latent samples. Through controlled corruption experiments we show that both uncertainty measures increase with perturbation severity, reflecting both global and local degradation. We demonstrate that these uncertainty signals can identify unreliable predictions by comparing with manual ground-truth, and support out-of-distribution detection on the CheXmask dataset. More importantly, we release CheXmask-U (huggingface.co/datasets/mcosarinsky/CheXmask-U), a large scale dataset of 657,566 chest X-ray landmark segmentations with per-node uncertainty estimates, enabling researchers to account for spatial variations in segmentation quality when using these anatomical masks. Our findings establish uncertainty estimation as a promising direction to enhance robustness and safe deployment of landmark-based anatomical segmentation methods in chest X-ray. A fully working interactive demo of the method is available at huggingface.co/spaces/matiasky/CheXmask-U and the source code at github.com/mcosarinsky/CheXmask-U.
☆ Enhancing Radiology Report Generation and Visual Grounding using Reinforcement Learning
Recent advances in vision-language models (VLMs) have improved Chest X-ray (CXR) interpretation in multiple aspects. However, many medical VLMs rely solely on supervised fine-tuning (SFT), which optimizes next-token prediction without evaluating answer quality. In contrast, reinforcement learning (RL) can incorporate task-specific feedback, and its combination with explicit intermediate reasoning ("thinking") has demonstrated substantial gains on verifiable math and coding tasks. To investigate the effects of RL and thinking in a CXR VLM, we perform large-scale SFT on CXR data to build an updated RadVLM based on Qwen3-VL, followed by a cold-start SFT stage that equips the model with basic thinking ability. We then apply Group Relative Policy Optimization (GRPO) with clinically grounded, task-specific rewards for report generation and visual grounding, and run matched RL experiments on both domain-specific and general-domain Qwen3-VL variants, with and without thinking. Across these settings, we find that while strong SFT remains crucial for high base performance, RL provides additional gains on both tasks, whereas explicit thinking does not appear to further improve results. Under a unified evaluation pipeline, the RL-optimized RadVLM models outperform their baseline counterparts and reach state-of-the-art performance on both report generation and grounding, highlighting clinically aligned RL as a powerful complement to SFT for medical VLMs.
comment: 10 pages main text (3 figures, 3 tables), 31 pages in total
☆ Sharp Monocular View Synthesis in Less Than a Second
We present SHARP, an approach to photorealistic view synthesis from a single image. Given a single photograph, SHARP regresses the parameters of a 3D Gaussian representation of the depicted scene. This is done in less than a second on a standard GPU via a single feedforward pass through a neural network. The 3D Gaussian representation produced by SHARP can then be rendered in real time, yielding high-resolution photorealistic images for nearby views. The representation is metric, with absolute scale, supporting metric camera movements. Experimental results demonstrate that SHARP delivers robust zero-shot generalization across datasets. It sets a new state of the art on multiple datasets, reducing LPIPS by 25-34% and DISTS by 21-43% versus the best prior model, while lowering the synthesis time by three orders of magnitude. Code and weights are provided at https://github.com/apple/ml-sharp
comment: Code and weights available at https://github.com/apple/ml-sharp
☆ Optimal transport unlocks end-to-end learning for single-molecule localization
Single-molecule localization microscopy (SMLM) allows reconstructing biology-relevant structures beyond the diffraction limit by detecting and localizing individual fluorophores -- fluorescent molecules stained onto the observed specimen -- over time to reconstruct super-resolved images. Currently, efficient SMLM requires non-overlapping emitting fluorophores, leading to long acquisition times that hinders live-cell imaging. Recent deep-learning approaches can handle denser emissions, but they rely on variants of non-maximum suppression (NMS) layers, which are unfortunately non-differentiable and may discard true positives with their local fusion strategy. In this presentation, we reformulate the SMLM training objective as a set-matching problem, deriving an optimal-transport loss that eliminates the need for NMS during inference and enables end-to-end training. Additionally, we propose an iterative neural network that integrates knowledge of the microscope's optical system inside our model. Experiments on synthetic benchmarks and real biological data show that both our new loss function and architecture surpass the state of the art at moderate and high emitter densities. Code is available at https://github.com/RSLLES/SHOT.
☆ Evaluating Gemini Robotics Policies in a Veo World Simulator
Generative world models hold significant potential for simulating interactions with visuomotor policies in varied environments. Frontier video models can enable generation of realistic observations and environment interactions in a scalable and general manner. However, the use of video models in robotics has been limited primarily to in-distribution evaluations, i.e., scenarios that are similar to ones used to train the policy or fine-tune the base video model. In this report, we demonstrate that video models can be used for the entire spectrum of policy evaluation use cases in robotics: from assessing nominal performance to out-of-distribution (OOD) generalization, and probing physical and semantic safety. We introduce a generative evaluation system built upon a frontier video foundation model (Veo). The system is optimized to support robot action conditioning and multi-view consistency, while integrating generative image-editing and multi-view completion to synthesize realistic variations of real-world scenes along multiple axes of generalization. We demonstrate that the system preserves the base capabilities of the video model to enable accurate simulation of scenes that have been edited to include novel interaction objects, novel visual backgrounds, and novel distractor objects. This fidelity enables accurately predicting the relative performance of different policies in both nominal and OOD conditions, determining the relative impact of different axes of generalization on policy performance, and performing red teaming of policies to expose behaviors that violate physical or semantic safety constraints. We validate these capabilities through 1600+ real-world evaluations of eight Gemini Robotics policy checkpoints and five tasks for a bimanual manipulator.
☆ Geo6DPose: Fast Zero-Shot 6D Object Pose Estimation via Geometry-Filtered Feature Matching
Recent progress in zero-shot 6D object pose estimation has been driven largely by large-scale models and cloud-based inference. However, these approaches often introduce high latency, elevated energy consumption, and deployment risks related to connectivity, cost, and data governance; factors that conflict with the practical constraints of real-world robotics, where compute is limited and on-device inference is frequently required. We introduce Geo6DPose, a lightweight, fully local, and training-free pipeline for zero-shot 6D pose estimation that trades model scale for geometric reliability. Our method combines foundation model visual features with a geometric filtering strategy: Similarity maps are computed between onboarded template DINO descriptors and scene patches, and mutual correspondences are established by projecting scene patch centers to 3D and template descriptors to the object model coordinate system. Final poses are recovered via correspondence-driven RANSAC and ranked using a weighted geometric alignment metric that jointly accounts for reprojection consistency and spatial support, improving robustness to noise, clutter, and partial visibility. Geo6DPose achieves sub-second inference on a single commodity GPU while matching the average recall of significantly larger zero-shot baselines (53.7 AR, 1.08 FPS). It requires no training, fine-tuning, or network access, and remains compatible with evolving foundation backbones, advancing practical, fully local 6D perception for robotic deployment.
☆ XDen-1K: A Density Field Dataset of Real-World Objects
A deep understanding of the physical world is a central goal for embodied AI and realistic simulation. While current models excel at capturing an object's surface geometry and appearance, they largely neglect its internal physical properties. This omission is critical, as properties like volumetric density are fundamental for predicting an object's center of mass, stability, and interaction dynamics in applications ranging from robotic manipulation to physical simulation. The primary bottleneck has been the absence of large-scale, real-world data. To bridge this gap, we introduce XDen-1K, the first large-scale, multi-modal dataset designed for real-world physical property estimation, with a particular focus on volumetric density. The core of this dataset consists of 1,000 real-world objects across 148 categories, for which we provide comprehensive multi-modal data, including a high-resolution 3D geometric model with part-level annotations and a corresponding set of real-world biplanar X-ray scans. Building upon this data, we introduce a novel optimization framework that recovers a high-fidelity volumetric density field of each object from its sparse X-ray views. To demonstrate its practical value, we add X-ray images as a conditioning signal to an existing segmentation network and perform volumetric segmentation. Furthermore, we conduct experiments on downstream robotics tasks. The results show that leveraging the dataset can effectively improve the accuracy of center-of-mass estimation and the success rate of robotic manipulation. We believe XDen-1K will serve as a foundational resource and a challenging new benchmark, catalyzing future research in physically grounded visual inference and embodied AI.
comment: 10 pages, 7 figures
☆ NaviHydra: Controllable Navigation-guided End-to-end Autonomous Driving with Hydra-distillation
The complexity of autonomous driving scenarios requires robust models that can interpret high-level navigation commands and generate safe trajectories. While traditional rule-based systems can react to these commands, they often struggle in dynamic environments, and end-to-end methods face challenges in complying with explicit navigation commands. To address this, we present NaviHydra, a controllable navigation-guided end-to-end model distilled from an existing rule-based simulator. Our framework accepts high-level navigation commands as control signals, generating trajectories that align with specified intentions. We utilize a Bird's Eye View (BEV) based trajectory gathering method to enhance the trajectory feature extraction. Additionally, we introduce a novel navigation compliance metric to evaluate adherence to intended route, improving controllability and navigation safety. To comprehensively assess our model's controllability, we design a test that evaluates its response to various navigation commands. Our method significantly outperforms baseline models, achieving state-of-the-art results in the NAVSIM benchmark, demonstrating its effectiveness in advancing autonomous driving.
☆ TriDF: Evaluating Perception, Detection, and Hallucination for Interpretable DeepFake Detection
Advances in generative modeling have made it increasingly easy to fabricate realistic portrayals of individuals, creating serious risks for security, communication, and public trust. Detecting such person-driven manipulations requires systems that not only distinguish altered content from authentic media but also provide clear and reliable reasoning. In this paper, we introduce TriDF, a comprehensive benchmark for interpretable DeepFake detection. TriDF contains high-quality forgeries from advanced synthesis models, covering 16 DeepFake types across image, video, and audio modalities. The benchmark evaluates three key aspects: Perception, which measures the ability of a model to identify fine-grained manipulation artifacts using human-annotated evidence; Detection, which assesses classification performance across diverse forgery families and generators; and Hallucination, which quantifies the reliability of model-generated explanations. Experiments on state-of-the-art multimodal large language models show that accurate perception is essential for reliable detection, but hallucination can severely disrupt decision-making, revealing the interdependence of these three aspects. TriDF provides a unified framework for understanding the interaction between detection accuracy, evidence identification, and explanation reliability, offering a foundation for building trustworthy systems that address real-world synthetic media threats.
☆ K-Track: Kalman-Enhanced Tracking for Accelerating Deep Point Trackers on Edge Devices
Point tracking in video sequences is a foundational capability for real-world computer vision applications, including robotics, autonomous systems, augmented reality, and video analysis. While recent deep learning-based trackers achieve state-of-the-art accuracy on challenging benchmarks, their reliance on per-frame GPU inference poses a major barrier to deployment on resource-constrained edge devices, where compute, power, and connectivity are limited. We introduce K-Track (Kalman-enhanced Tracking), a general-purpose, tracker-agnostic acceleration framework designed to bridge this deployment gap. K-Track reduces inference cost by combining sparse deep learning keyframe updates with lightweight Kalman filtering for intermediate frame prediction, using principled Bayesian uncertainty propagation to maintain temporal coherence. This hybrid strategy enables 5-10X speedup while retaining over 85% of the original trackers' accuracy. We evaluate K-Track across multiple state-of-the-art point trackers and demonstrate real-time performance on edge platforms such as the NVIDIA Jetson Nano and RTX Titan. By preserving accuracy while dramatically lowering computational requirements, K-Track provides a practical path toward deploying high-quality point tracking in real-world, resource-limited settings, closing the gap between modern tracking algorithms and deployable vision systems.
☆ DOCR-Inspector: Fine-Grained and Automated Evaluation of Document Parsing with VLM
Document parsing aims to transform unstructured PDF images into semi-structured data, facilitating the digitization and utilization of information in diverse domains. While vision language models (VLMs) have significantly advanced this task, achieving reliable, high-quality parsing in real-world scenarios remains challenging. Common practice often selects the top-performing model on standard benchmarks. However, these benchmarks may carry dataset-specific biases, leading to inconsistent model rankings and limited correlation with real-world performance. Moreover, benchmark metrics typically provide only overall scores, which can obscure distinct error patterns in output. This raises a key challenge: how can we reliably and comprehensively assess document parsing quality in the wild? We address this problem with DOCR-Inspector, which formalizes document parsing assessment as fine-grained error detection and analysis. Leveraging VLM-as-a-Judge, DOCR-Inspector analyzes a document image and its parsed output, identifies all errors, assigns them to one of 28 predefined types, and produces a comprehensive quality assessment. To enable this capability, we construct DOCRcase-200K for training and propose the Chain-of-Checklist reasoning paradigm to enable the hierarchical structure of parsing quality assessment. For empirical validation, we introduce DOCRcaseBench, a set of 882 real-world document parsing cases with manual annotations. On this benchmark, DOCR-Inspector-7B outperforms commercial models like Gemini 2.5 Pro, as well as leading open-source models. Further experiments demonstrate that its quality assessments provide valuable guidance for parsing results refinement, making DOCR-Inspector both a practical evaluator and a driver for advancing document parsing systems at scale. Model and code are released at: https://github.com/ZZZZZQT/DOCR-Inspector.
☆ Lang2Motion: Bridging Language and Motion through Joint Embedding Spaces
We present Lang2Motion, a framework for language-guided point trajectory generation by aligning motion manifolds with joint embedding spaces. Unlike prior work focusing on human motion or video synthesis, we generate explicit trajectories for arbitrary objects using motion extracted from real-world videos via point tracking. Our transformer-based auto-encoder learns trajectory representations through dual supervision: textual motion descriptions and rendered trajectory visualizations, both mapped through CLIP's frozen encoders. Lang2Motion achieves 34.2% Recall@1 on text-to-trajectory retrieval, outperforming video-based methods by 12.5 points, and improves motion accuracy by 33-52% (12.4 ADE vs 18.3-25.3) compared to video generation baselines. We demonstrate 88.3% Top-1 accuracy on human action recognition despite training only on diverse object motions, showing effective transfer across motion domains. Lang2Motion supports style transfer, semantic interpolation, and latent-space editing through CLIP-aligned trajectory representations.
☆ Robust Multi-Disease Retinal Classification via Xception-Based Transfer Learning and W-Net Vessel Segmentation
In recent years, the incidence of vision-threatening eye diseases has risen dramatically, necessitating scalable and accurate screening solutions. This paper presents a comprehensive study on deep learning architectures for the automated diagnosis of ocular conditions. To mitigate the "black-box" limitations of standard convolutional neural networks (CNNs), we implement a pipeline that combines deep feature extraction with interpretable image processing modules. Specifically, we focus on high-fidelity retinal vessel segmentation as an auxiliary task to guide the classification process. By grounding the model's predictions in clinically relevant morphological features, we aim to bridge the gap between algorithmic output and expert medical validation, thereby reducing false positives and improving deployment viability in clinical settings.
☆ Track and Caption Any Motion: Query-Free Motion Discovery and Description in Videos
We propose Track and Caption Any Motion (TCAM), a motion-centric framework for automatic video understanding that discovers and describes motion patterns without user queries. Understanding videos in challenging conditions like occlusion, camouflage, or rapid movement often depends more on motion dynamics than static appearance. TCAM autonomously observes a video, identifies multiple motion activities, and spatially grounds each natural language description to its corresponding trajectory through a motion-field attention mechanism. Our key insight is that motion patterns, when aligned with contrastive vision-language representations, provide powerful semantic signals for recognizing and describing actions. Through unified training that combines global video-text alignment with fine-grained spatial correspondence, TCAM enables query-free discovery of multiple motion expressions via multi-head cross-attention. On the MeViS benchmark, TCAM achieves 58.4% video-to-text retrieval, 64.9 JF for spatial grounding, and discovers 4.8 relevant expressions per video with 84.7% precision, demonstrating strong cross-task generalization.
☆ Beyond Pixels: A Training-Free, Text-to-Text Framework for Remote Sensing Image Retrieval
Semantic retrieval of remote sensing (RS) images is a critical task fundamentally challenged by the \textquote{semantic gap}, the discrepancy between a model's low-level visual features and high-level human concepts. While large Vision-Language Models (VLMs) offer a promising path to bridge this gap, existing methods often rely on costly, domain-specific training, and there is a lack of benchmarks to evaluate the practical utility of VLM-generated text in a zero-shot retrieval context. To address this research gap, we introduce the Remote Sensing Rich Text (RSRT) dataset, a new benchmark featuring multiple structured captions per image. Based on this dataset, we propose a fully training-free, text-only retrieval reference called TRSLLaVA. Our methodology reformulates cross-modal retrieval as a text-to-text (T2T) matching problem, leveraging rich text descriptions as queries against a database of VLM-generated captions within a unified textual embedding space. This approach completely bypasses model training or fine-tuning. Experiments on the RSITMD and RSICD benchmarks show our training-free method is highly competitive with state-of-the-art supervised models. For instance, on RSITMD, our method achieves a mean Recall of 42.62\%, nearly doubling the 23.86\% of the standard zero-shot CLIP baseline and surpassing several top supervised models. This validates that high-quality semantic representation through structured text provides a powerful and cost-effective paradigm for remote sensing image retrieval.
comment: 6 pages, 1 figure
☆ Salient Object Detection in Complex Weather Conditions via Noise Indicators
Salient object detection (SOD), a foundational task in computer vision, has advanced from single-modal to multi-modal paradigms to enhance generalization. However, most existing SOD methods assume low-noise visual conditions, overlooking the degradation of segmentation accuracy caused by weather-induced noise in real-world scenarios. In this paper, we propose a SOD framework tailored for diverse weather conditions, encompassing a specific encoder and a replaceable decoder. To enable handling of varying weather noises, we introduce a one-hot vector as a noise indicator to represent different weather types and design a Noise Indicator Fusion Module (NIFM). The NIFM takes both semantic features and the noise indicator as dual inputs and is inserted between consecutive stages of the encoder to embed weather-aware priors via adaptive feature modulation. Critically, the proposed specific encoder retains compatibility with mainstream SOD decoders. Extensive experiments are conducted on the WXSOD dataset under varying training data scales (100%, 50%, 30% of the full training set), three encoder and seven decoder configurations. Results show that the proposed SOD framework (particularly the NIFM-enhanced specific encoder) improves segmentation accuracy under complex weather conditions compared to a vanilla encoder.
☆ Unleashing Degradation-Carrying Features in Symmetric U-Net: Simpler and Stronger Baselines for All-in-One Image Restoration
All-in-one image restoration aims to handle diverse degradations (e.g., noise, blur, adverse weather) within a unified framework, yet existing methods increasingly rely on complex architectures (e.g., Mixture-of-Experts, diffusion models) and elaborate degradation prompt strategies. In this work, we reveal a critical insight: well-crafted feature extraction inherently encodes degradation-carrying information, and a symmetric U-Net architecture is sufficient to unleash these cues effectively. By aligning feature scales across encoder-decoder and enabling streamlined cross-scale propagation, our symmetric design preserves intrinsic degradation signals robustly, rendering simple additive fusion in skip connections sufficient for state-of-the-art performance. Our primary baseline, SymUNet, is built on this symmetric U-Net and achieves better results across benchmark datasets than existing approaches while reducing computational cost. We further propose a semantic enhanced variant, SE-SymUNet, which integrates direct semantic injection from frozen CLIP features via simple cross-attention to explicitly amplify degradation priors. Extensive experiments on several benchmarks validate the superiority of our methods. Both baselines SymUNet and SE-SymUNet establish simpler and stronger foundations for future advancements in all-in-one image restoration. The source code is available at https://github.com/WenlongJiao/SymUNet.
☆ Audio-sync Video Instance Editing with Granularity-Aware Mask Refiner
Recent advancements in video generation highlight that realistic audio-visual synchronization is crucial for engaging content creation. However, existing video editing methods largely overlook audio-visual synchronization and lack the fine-grained spatial and temporal controllability required for precise instance-level edits. In this paper, we propose AVI-Edit, a framework for audio-sync video instance editing. We propose a granularity-aware mask refiner that iteratively refines coarse user-provided masks into precise instance-level regions. We further design a self-feedback audio agent to curate high-quality audio guidance, providing fine-grained temporal control. To facilitate this task, we additionally construct a large-scale dataset with instance-centric correspondence and comprehensive annotations. Extensive experiments demonstrate that AVI-Edit outperforms state-of-the-art methods in visual quality, condition following, and audio-visual synchronization. Project page: https://hjzheng.net/projects/AVI-Edit/.
☆ Data-Efficient American Sign Language Recognition via Few-Shot Prototypical Networks
Isolated Sign Language Recognition (ISLR) is critical for bridging the communication gap between the Deaf and Hard-of-Hearing (DHH) community and the hearing world. However, robust ISLR is fundamentally constrained by data scarcity and the long-tail distribution of sign vocabulary, where gathering sufficient examples for thousands of unique signs is prohibitively expensive. Standard classification approaches struggle under these conditions, often overfitting to frequent classes while failing to generalize to rare ones. To address this bottleneck, we propose a Few-Shot Prototypical Network framework adapted for a skeleton based encoder. Unlike traditional classifiers that learn fixed decision boundaries, our approach utilizes episodic training to learn a semantic metric space where signs are classified based on their proximity to dynamic class prototypes. We integrate a Spatiotemporal Graph Convolutional Network (ST-GCN) with a novel Multi-Scale Temporal Aggregation (MSTA) module to capture both rapid and fluid motion dynamics. Experimental results on the WLASL dataset demonstrate the superiority of this metric learning paradigm: our model achieves 43.75% Top-1 and 77.10% Top-5 accuracy on the test set. Crucially, this outperforms a standard classification baseline sharing the identical backbone architecture by over 13%, proving that the prototypical training strategy effectively outperforms in a data scarce situation where standard classification fails. Furthermore, the model exhibits strong zero-shot generalization, achieving nearly 30% accuracy on the unseen SignASL dataset without fine-tuning, offering a scalable pathway for recognizing extensive sign vocabularies with limited data.
☆ Grounding Everything in Tokens for Multimodal Large Language Models
Multimodal large language models (MLLMs) have made significant advancements in vision understanding and reasoning. However, the autoregressive Transformer architecture used by MLLMs requries tokenization on input images, which limits their ability to accurately ground objects within the 2D image space. This raises an important question: how can sequential language tokens be improved to better ground objects in 2D spatial space for MLLMs? To address this, we present a spatial representation method for grounding objects, namely GETok, that integrates a specialized vocabulary of learnable tokens into MLLMs. GETok first uses grid tokens to partition the image plane into structured spatial anchors, and then exploits offset tokens to enable precise and iterative refinement of localization predictions. By embedding spatial relationships directly into tokens, GETok significantly advances MLLMs in native 2D space reasoning without modifying the autoregressive architecture. Extensive experiments demonstrate that GETok achieves superior performance over the state-of-the-art methods across various referring tasks in both supervised fine-tuning and reinforcement learning settings.
comment: 19 pages, 16 figures, 12 Tables
☆ Blink: Dynamic Visual Token Resolution for Enhanced Multimodal Understanding
Multimodal large language models (MLLMs) have achieved remarkable progress on various vision-language tasks, yet their visual perception remains limited. Humans, in comparison, perceive complex scenes efficiently by dynamically scanning and focusing on salient regions in a sequential "blink-like" process. Motivated by this strategy, we first investigate whether MLLMs exhibit similar behavior. Our pilot analysis reveals that MLLMs naturally attend to different visual regions across layers and that selectively allocating more computation to salient tokens can enhance visual perception. Building on this insight, we propose Blink, a dynamic visual token resolution framework that emulates the human-inspired process within a single forward pass. Specifically, Blink includes two modules: saliency-guided scanning and dynamic token resolution. It first estimates the saliency of visual tokens in each layer based on the attention map, and extends important tokens through a plug-and-play token super-resolution (TokenSR) module. In the next layer, it drops the extended tokens when they lose focus. This dynamic mechanism balances broad exploration and fine-grained focus, thereby enhancing visual perception adaptively and efficiently. Extensive experiments validate Blink, demonstrating its effectiveness in enhancing visual perception and multimodal understanding.
☆ Mode-Seeking for Inverse Problems with Diffusion Models
A pre-trained unconditional diffusion model, combined with posterior sampling or maximum a posteriori (MAP) estimation techniques, can solve arbitrary inverse problems without task-specific training or fine-tuning. However, existing posterior sampling and MAP estimation methods often rely on modeling approximations and can be computationally demanding. In this work, we propose the variational mode-seeking loss (VML), which, when minimized during each reverse diffusion step, guides the generated sample towards the MAP estimate. VML arises from a novel perspective of minimizing the Kullback-Leibler (KL) divergence between the diffusion posterior $p(\mathbf{x}_0|\mathbf{x}_t)$ and the measurement posterior $p(\mathbf{x}_0|\mathbf{y})$, where $\mathbf{y}$ denotes the measurement. Importantly, for linear inverse problems, VML can be analytically derived and need not be approximated. Based on further theoretical insights, we propose VML-MAP, an empirically effective algorithm for solving inverse problems, and validate its efficacy over existing methods in both performance and computational time, through extensive experiments on diverse image-restoration tasks across multiple datasets.
☆ Take a Peek: Efficient Encoder Adaptation for Few-Shot Semantic Segmentation via LoRA
Few-shot semantic segmentation (FSS) aims to segment novel classes in query images using only a small annotated support set. While prior research has mainly focused on improving decoders, the encoder's limited ability to extract meaningful features for unseen classes remains a key bottleneck. In this work, we introduce \textit{Take a Peek} (TaP), a simple yet effective method that enhances encoder adaptability for both FSS and cross-domain FSS (CD-FSS). TaP leverages Low-Rank Adaptation (LoRA) to fine-tune the encoder on the support set with minimal computational overhead, enabling fast adaptation to novel classes while mitigating catastrophic forgetting. Our method is model-agnostic and can be seamlessly integrated into existing FSS pipelines. Extensive experiments across multiple benchmarks--including COCO $20^i$, Pascal $5^i$, and cross-domain datasets such as DeepGlobe, ISIC, and Chest X-ray--demonstrate that TaP consistently improves segmentation performance across diverse models and shot settings. Notably, TaP delivers significant gains in complex multi-class scenarios, highlighting its practical effectiveness in realistic settings. A rank sensitivity analysis also shows that strong performance can be achieved even with low-rank adaptations, ensuring computational efficiency. By addressing a critical limitation in FSS--the encoder's generalization to novel classes--TaP paves the way toward more robust, efficient, and generalizable segmentation systems. The code is available at https://github.com/pasqualedem/TakeAPeek.
☆ 3D Blood Pulsation Maps
We present Pulse3DFace, the first dataset of its kind for estimating 3D blood pulsation maps. These maps can be used to develop models of dynamic facial blood pulsation, enabling the creation of synthetic video data to improve and validate remote pulse estimation methods via photoplethysmography imaging. Additionally, the dataset facilitates research into novel multi-view-based approaches for mitigating illumination effects in blood pulsation analysis. Pulse3DFace consists of raw videos from 15 subjects recorded at 30 Hz with an RGB camera from 23 viewpoints, blood pulse reference measurements, and facial 3D scans generated using monocular structure-from-motion techniques. It also includes processed 3D pulsation maps compatible with the texture space of the 3D head model FLAME. These maps provide signal-to-noise ratio, local pulse amplitude, phase information, and supplementary data. We offer a comprehensive evaluation of the dataset's illumination conditions, map consistency, and its ability to capture physiologically meaningful features in the facial and neck skin regions.
comment: 9 pages (without references), supplementals attached, waiting for publication. In order to access the dataset,see https://github.com/KISMED-TUDa/pulse3dface
☆ Robust Shape from Focus via Multiscale Directional Dilated Laplacian and Recurrent Network
Shape-from-Focus (SFF) is a passive depth estimation technique that infers scene depth by analyzing focus variations in a focal stack. Most recent deep learning-based SFF methods typically operate in two stages: first, they extract focus volumes (a per pixel representation of focus likelihood across the focal stack) using heavy feature encoders; then, they estimate depth via a simple one-step aggregation technique that often introduces artifacts and amplifies noise in the depth map. To address these issues, we propose a hybrid framework. Our method computes multi-scale focus volumes traditionally using handcrafted Directional Dilated Laplacian (DDL) kernels, which capture long-range and directional focus variations to form robust focus volumes. These focus volumes are then fed into a lightweight, multi-scale GRU-based depth extraction module that iteratively refines an initial depth estimate at a lower resolution for computational efficiency. Finally, a learned convex upsampling module within our recurrent network reconstructs high-resolution depth maps while preserving fine scene details and sharp boundaries. Extensive experiments on both synthetic and real-world datasets demonstrate that our approach outperforms state-of-the-art deep learning and traditional methods, achieving superior accuracy and generalization across diverse focal conditions.
comment: Accepted to IJCV
♻ ☆ EvoIR: Towards All-in-One Image Restoration via Evolutionary Frequency Modulation
All-in-One Image Restoration (AiOIR) tasks often involve diverse degradation that require robust and versatile strategies. However, most existing approaches typically lack explicit frequency modeling and rely on fixed or heuristic optimization schedules, which limit the generalization across heterogeneous degradation. To address these limitations, we propose EvoIR, an AiOIR-specific framework that introduces evolutionary frequency modulation for dynamic and adaptive image restoration. Specifically, EvoIR employs the Frequency-Modulated Module (FMM) that decomposes features into high- and low-frequency branches in an explicit manner and adaptively modulates them to enhance both structural fidelity and fine-grained details. Central to EvoIR, an Evolutionary Optimization Strategy (EOS) iteratively adjusts frequency-aware objectives through a population-based evolutionary process, dynamically balancing structural accuracy and perceptual fidelity. Its evolutionary guidance further mitigates gradient conflicts across degradation and accelerates convergence. By synergizing FMM and EOS, EvoIR yields greater improvements than using either component alone, underscoring their complementary roles. Extensive experiments on multiple benchmarks demonstrate that EvoIR outperforms state-of-the-art AiOIR methods.
♻ ☆ AFRAgent : An Adaptive Feature Renormalization Based High Resolution Aware GUI agent
There is a growing demand for mobile user interface (UI) automation, driven by its broad applications across industries. With the advent of visual language models (VLMs), GUI automation has progressed from generating text-based instructions for humans to autonomously executing tasks, thus optimizing automation workflows. Recent approaches leverage VLMs for this problem due to their ability to 1) process on-screen content directly, 2) remain independent of device-specific APIs by utilizing human actions (e.g., clicks, typing), and 3) apply real-world contextual knowledge for task understanding. However, these models often have trouble accurately identifying widgets and determining actions due to limited spatial information in vision encoder features. Additionally, top-performing models are often large, requiring extensive training and resulting in inference delays. In this work, we introduce AFRAgent, an instruct-BLIP-based multimodal architecture that achieves superior performance in GUI automation while being less than one-fourth the size of its nearest competitor. To enhance image embeddings in the large language model (LLM) pipeline, we propose an adaptive feature renormalization-based (a token-level affine transformation) technique that effectively enriches low-resolution image embeddings and fuses high-resolution details. We evaluate AFRAgent on Meta-GUI and AITW benchmarks, establishing a new state-of-the-art baseline for smartphone automation.
comment: Accepted at WACV 2026 Conference
♻ ☆ From Generated Human Videos to Physically Plausible Robot Trajectories
Video generation models are rapidly improving in their ability to synthesize human actions in novel contexts, holding the potential to serve as high-level planners for contextual robot control. To realize this potential, a key research question remains open: how can a humanoid execute the human actions from generated videos in a zero-shot manner? This challenge arises because generated videos are often noisy and exhibit morphological distortions that make direct imitation difficult compared to real video. To address this, we introduce a two-stage pipeline. First, we lift video pixels into a 4D human representation and then retarget to the humanoid morphology. Second, we propose GenMimic-a physics-aware reinforcement learning policy conditioned on 3D keypoints, and trained with symmetry regularization and keypoint-weighted tracking rewards. As a result, GenMimic can mimic human actions from noisy, generated videos. We curate GenMimicBench, a synthetic human-motion dataset generated using two video generation models across a spectrum of actions and contexts, establishing a benchmark for assessing zero-shot generalization and policy robustness. Extensive experiments demonstrate improvements over strong baselines in simulation and confirm coherent, physically stable motion tracking on a Unitree G1 humanoid robot without fine-tuning. This work offers a promising path to realizing the potential of video generation models as high-level policies for robot control.
comment: For project website, see https://genmimic.github.io
♻ ☆ FE-MCFormer: An interpretable fault diagnosis framework for rotating machinery under strong noise based on time-frequency fusion transformer
Many fault diagnosis methods of rotating machines are based on discriminative features extracted from signals collected from the key components such as bearings. However, under complex operating conditions, periodic impulsive characteristics in the signal related to weak fault information are often obscured by noise interference. Consequently, existing approaches struggle to learn interpretable fault-related features in such scenarios. This paper proposes a novel transformer framework (FE-MCFormer) to extract interpretable time-frequency features, with the aim of improving the fault detection accuracy and intrepretability of rotating machines under strong noise. First, a Fourier adaptive reconstruction embedding layer is introduced as a global information encoder in the model. Subsequently, a time-frequency fusion module is designed, further improve the model robustness and interpretability. The effectiveness of FE-MCFormer in machine fault diagnosis is validated through three case studies.
♻ ☆ Fairness-Aware Fine-Tuning of Vision-Language Models for Medical Glaucoma Diagnosis
Vision-language models achieve expert-level performance on medical imaging tasks but exhibit significant diagnostic accuracy disparities across demographic groups. We introduce fairness-aware Low-Rank Adaptation for medical VLMs, combining parameter efficiency with explicit fairness optimization. Our key algorithmic contribution is a differentiable MaxAccGap loss that enables end-to-end optimization of accuracy parity across demographic groups. We propose three methods: FR-LoRA integrates MaxAccGap regularization into the training objective, GR-LoRA applies inverse frequency weighting to balance gradient contributions, and Hybrid-LoRA combines both mechanisms. Evaluated on 10,000 glaucoma fundus images, GR-LoRA reduces diagnostic accuracy disparities by 69% while maintaining 53.15% overall accuracy. Ablation studies reveal that strong regularization strength achieves optimal fairness with minimal accuracy trade-off, and race-specific optimization yields 60% disparity reduction. Our approach requires only 0.24% trainable parameters, enabling practical deployment of fair medical AI in resource-constrained healthcare settings.
comment: 10 pages, 3 tables
♻ ☆ Equivariant Test-Time Training with Operator Sketching for Imaging Inverse Problems
Equivariant Imaging (EI) regularization has become the de-facto technique for unsupervised training of deep imaging networks, without any need of ground-truth data. Observing that the EI-based unsupervised training paradigm currently has significant computational redundancy leading to inefficiency in high-dimensional applications, we propose a sketched EI regularization which leverages the randomized sketching techniques for acceleration. We apply our sketched EI regularization to develop an accelerated deep internal learning framework, which can be efficiently applied for test-time network adaptation. Additionally, for network adaptation tasks, we propose a parameter-efficient approach to accelerate both EI and Sketched-EI via optimizing only the normalization layers. Our numerical study on X-ray CT and multicoil magnetic resonance image reconstruction tasks demonstrate that our approach can achieve significant computational acceleration over the standard EI counterpart, especially in test-time training tasks.
comment: 20 pages
♻ ☆ Counting with Confidence: Accurate Pest Monitoring in Water Traps
Accurate pest population monitoring and tracking their dynamic changes are crucial for precision agriculture decision-making. A common limitation in existing vision-based automatic pest counting research is that models are typically evaluated on datasets with ground truth but deployed in real-world scenarios without assessing the reliability of counting results due to the lack of ground truth. To this end, this paper proposed a method for comprehensively evaluating pest counting confidence in the image, based on information related to counting results and external environmental conditions. First, a pest detection network is used for pest detection and counting, extracting counting result-related information. Then, the pest images undergo image quality assessment, image complexity assessment, and pest distribution uniformity assessment. And the changes in image clarity caused by stirring during image acquisition are quantified by calculating the average gradient magnitude. Notably, we designed a hypothesis-driven multi-factor sensitivity analysis method to select the optimal image quality assessment and image complexity assessment methods. And we proposed an adaptive DBSCAN clustering algorithm for pest distribution uniformity assessment. Finally, the obtained information related to counting results and external environmental conditions is input into a regression model for prediction, resulting in the final pest counting confidence. To the best of our knowledge, this is the first study dedicated to comprehensively evaluating counting confidence in counting tasks, and quantifying the relationship between influencing factors and counting confidence through a model. Experimental results show our method reduces MSE by 31.7% and improves R2 by 15.2% on the pest counting confidence test set, compared to the baseline built primarily on information related to counting results.
comment: Accepted to AGRICONTROL 2025. \c{opyright} 2025 the authors. This work has been accepted to IFAC for publication under a Creative Commons Licence CC-BY-NC-ND. Published in IFAC-PapersOnLine, DOI: 10.1016/j.ifacol.2025.11.792
♻ ☆ LoC-Path: Learning to Compress for Pathology Multimodal Large Language Models
Whole Slide Image (WSI) understanding is fundamentally challenging due to its gigapixel scale and the extreme sparsity of diagnostically relevant regions. Unlike human experts who primarily rely on key areas to arrive at a diagnosis, existing slide-level multimodal large language models (MLLMs) for pathology rely on heavy slide-level encoders that process thousands of patch features in a brute-force manner, resulting in excessive computational cost. In this work, we revisit the WSI-language modeling paradigm and show that tile-level features exhibit strong global and local redundancy, whereas only a small subset of tiles are truly task-relevant. Motivated by this observation, we introduce an efficient MLLM framework, called LoC-Path, that replaces the expensive slide-level encoder with redundancy-reducing modules. We first design a Sparse Token Merger (STM) and an MAE-pretrained resampler to remove local redundancy and compress globally redundant tile tokens into a compact slide-level representation set. We then propose a Cross-Attention Routing Adapter (CARA) and a Token Importance Scorer (TIS) to integrate the compressed visual representation with the language model in a computation-efficient manner. Extensive experiments demonstrate that our approach achieves performance comparable to existing state-of-the-art whole-slide MLLMs, while requiring significantly lower computation and memory.
comment: 20 pages
♻ ☆ StereoWorld: Geometry-Aware Monocular-to-Stereo Video Generation
The growing adoption of XR devices has fueled strong demand for high-quality stereo video, yet its production remains costly and artifact-prone. To address this challenge, we present StereoWorld, an end-to-end framework that repurposes a pretrained video generator for high-fidelity monocular-to-stereo video generation. Our framework jointly conditions the model on the monocular video input while explicitly supervising the generation with a geometry-aware regularization to ensure 3D structural fidelity. A spatio-temporal tiling scheme is further integrated to enable efficient, high-resolution synthesis. To enable large-scale training and evaluation, we curate a high-definition stereo video dataset containing over 11M frames aligned to natural human interpupillary distance (IPD). Extensive experiments demonstrate that StereoWorld substantially outperforms prior methods, generating stereo videos with superior visual fidelity and geometric consistency. The project webpage is available at https://ke-xing.github.io/StereoWorld/.
♻ ☆ UnReflectAnything: RGB-Only Highlight Removal by Rendering Synthetic Specular Supervision
Specular highlights distort appearance, obscure texture, and hinder geometric reasoning in both natural and surgical imagery. We present UnReflectAnything, an RGB-only framework that removes highlights from a single image by predicting a highlight map together with a reflection-free diffuse reconstruction. The model uses a frozen vision transformer encoder to extract multi-scale features, a lightweight head to localize specular regions, and a token-level inpainting module that restores corrupted feature patches before producing the final diffuse image. To overcome the lack of paired supervision, we introduce a Virtual Highlight Synthesis pipeline that renders physically plausible specularities using monocular geometry, Fresnel-aware shading, and randomized lighting which enables training on arbitrary RGB images with correct geometric structure. UnReflectAnything generalizes across natural and surgical domains where non-Lambertian surfaces and non-uniform lighting create severe highlights and it achieves competitive performance with state-of-the-art results on several benchmarks. Project Page: https://alberto-rota.github.io/UnReflectAnything/
♻ ☆ Optimization-Guided Diffusion for Interactive Scene Generation
Realistic and diverse multi-agent driving scenes are crucial for evaluating autonomous vehicles, but safety-critical events which are essential for this task are rare and underrepresented in driving datasets. Data-driven scene generation offers a low-cost alternative by synthesizing complex traffic behaviors from existing driving logs. However, existing models often lack controllability or yield samples that violate physical or social constraints, limiting their usability. We present OMEGA, an optimization-guided, training-free framework that enforces structural consistency and interaction awareness during diffusion-based sampling from a scene generation model. OMEGA re-anchors each reverse diffusion step via constrained optimization, steering the generation towards physically plausible and behaviorally coherent trajectories. Building on this framework, we formulate ego-attacker interactions as a game-theoretic optimization in the distribution space, approximating Nash equilibria to generate realistic, safety-critical adversarial scenarios. Experiments on nuPlan and Waymo show that OMEGA improves generation realism, consistency, and controllability, increasing the ratio of physically and behaviorally valid scenes from 32.35% to 72.27% for free exploration capabilities, and from 11% to 80% for controllability-focused generation. Our approach can also generate $5\times$ more near-collision frames with a time-to-collision under three seconds while maintaining the overall scene realism.
♻ ☆ Panoramic Out-of-Distribution Segmentation
Panoramic imaging enables capturing 360° images with an ultra-wide Field-of-View (FoV) for dense omnidirectional perception, which is critical to applications, such as autonomous driving and augmented reality, etc. However, current panoramic semantic segmentation methods fail to identify outliers, and pinhole Out-of-distribution Segmentation (OoS) models perform unsatisfactorily in the panoramic domain due to pixel distortions and background clutter. To address these issues, we introduce a new task, Panoramic Out-of-distribution Segmentation (PanOoS), with the aim of achieving comprehensive and safe scene understanding. Furthermore, we propose the first solution, POS, which adapts to the characteristics of panoramic images through text-guided prompt distribution learning. Specifically, POS integrates a disentanglement strategy designed to materialize the cross-domain generalization capability of CLIP. The proposed Prompt-based Restoration Attention (PRA) optimizes semantic decoding by prompt guidance and self-adaptive correction, while Bilevel Prompt Distribution Learning (BPDL) refines the manifold of per-pixel mask embeddings via semantic prototype supervision. Besides, to compensate for the scarcity of PanOoS datasets, we establish two benchmarks: DenseOoS, which features diverse outliers in complex environments, and QuadOoS, captured by a quadruped robot with a panoramic annular lens system. Extensive experiments demonstrate superior performance of POS, with AuPRC improving by 34.25% and FPR95 decreasing by 21.42% on DenseOoS, outperforming state-of-the-art pinhole-OoS methods. Moreover, POS achieves leading closed-set segmentation capabilities and advances the development of panoramic understanding. Code and datasets will be available at https://github.com/MengfeiD/PanOoS.
comment: Code and datasets will be available at https://github.com/MengfeiD/PanOoS
♻ ☆ ExAct: A Video-Language Benchmark for Expert Action Analysis
We present ExAct, a new video-language benchmark for expert-level understanding of skilled physical human activities. Our new benchmark contains 3521 expert-curated video question-answer pairs spanning 11 physical activities in 6 domains: Sports, Bike Repair, Cooking, Health, Music, and Dance. ExAct requires the correct answer to be selected from five carefully designed candidate options, thus necessitating a nuanced, fine-grained, expert-level understanding of physical human skills. Evaluating the recent state-of-the-art VLMs on ExAct reveals a substantial performance gap relative to human expert performance. Specifically, the best-performing GPT-4o model achieves only 44.70% accuracy, well below the 82.02% attained by trained human specialists/experts. We believe that ExAct will be beneficial for developing and evaluating VLMs capable of precise understanding of human skills in various physical and procedural domains. Dataset and code are available at https://texaser.github.io/exact_project_page/
♻ ☆ Dual Cluster Contrastive learning for Object Re-Identification
Recently, cluster contrastive learning has been proven effective for object ReID by computing the contrastive loss between the individual features and the cluster memory. However, existing methods that use the individual features to momentum update the cluster memory will fluctuate over the training examples, especially for the outlier samples. Unlike the individual-based updating mechanism, the centroid-based updating mechanism that applies the mean feature of each cluster to update the cluster memory can reduce the impact of individual samples. Therefore, we formulate the individual-based updating and centroid-based updating mechanisms in a unified cluster contrastive framework, named Dual Cluster Contrastive framework (DCC), which maintains two types of memory banks: individual and centroid cluster memory banks. Significantly, the individual cluster memory considers just one individual at a time to take a single step for updating. The centroid cluster memory applies the mean feature of each cluster to update the corresponding cluster memory. During optimization, besides the vallina contrastive loss of each memory, a cross-view consistency constraint is applied to exchange the benefits of two memories for generating a discriminative description for the object ReID. Note that DCC can be easily applied for unsupervised or supervised object ReID by using ground-truth labels or the generated pseudo-labels. Extensive experiments on three benchmarks, \emph{e.g.,} Market-1501, MSMT17, and VeRi-776, under \textbf{supervised Object ReID} and \textbf{unsupervised Object ReID} demonstrate the superiority of the proposed DCC.
comment: Some errors were found in the method and experimental work that need further correction and improvement
♻ ☆ Leveraging Depth and Language for Open-Vocabulary Domain-Generalized Semantic Segmentation NeurIPS 2025
Open-Vocabulary semantic segmentation (OVSS) and domain generalization in semantic segmentation (DGSS) highlight a subtle complementarity that motivates Open-Vocabulary Domain-Generalized Semantic Segmentation (OV-DGSS). OV-DGSS aims to generate pixel-level masks for unseen categories while maintaining robustness across unseen domains, a critical capability for real-world scenarios such as autonomous driving in adverse conditions. We introduce Vireo, a novel single-stage framework for OV-DGSS that unifies the strengths of OVSS and DGSS for the first time. Vireo builds upon the frozen Visual Foundation Models (VFMs) and incorporates scene geometry via Depth VFMs to extract domain-invariant structural features. To bridge the gap between visual and textual modalities under domain shift, we propose three key components: (1) GeoText Prompts, which align geometric features with language cues and progressively refine VFM encoder representations; (2) Coarse Mask Prior Embedding (CMPE) for enhancing gradient flow for faster convergence and stronger textual influence; and (3) the Domain-Open-Vocabulary Vector Embedding Head (DOV-VEH), which fuses refined structural and semantic features for robust prediction. Comprehensive evaluation on these components demonstrates the effectiveness of our designs. Our proposed Vireo achieves the state-of-the-art performance and surpasses existing methods by a large margin in both domain generalization and open-vocabulary recognition, offering a unified and scalable solution for robust visual understanding in diverse and dynamic environments. Code is available at https://github.com/anonymouse-9c53tp182bvz/Vireo.
comment: Accepted by NeurIPS 2025
♻ ☆ CAPE: A CLIP-Aware Pointing Ensemble of Complementary Heatmap Cues for Embodied Reference Understanding
We address Embodied Reference Understanding, the task of predicting the object a person in the scene refers to through pointing gesture and language. This requires multimodal reasoning over text, visual pointing cues, and scene context, yet existing methods often fail to fully exploit visual disambiguation signals. We also observe that while the referent often aligns with the head-to-fingertip direction, in many cases it aligns more closely with the wrist-to-fingertip direction, making a single-line assumption overly limiting. To address this, we propose a dual-model framework, where one model learns from the head-to-fingertip direction and the other from the wrist-to-fingertip direction. We introduce a Gaussian ray heatmap representation of these lines and use them as input to provide a strong supervisory signal that encourages the model to better attend to pointing cues. To fuse their complementary strengths, we present the CLIP-Aware Pointing Ensemble module, which performs a hybrid ensemble guided by CLIP features. We further incorporate an auxiliary object center prediction head to enhance referent localization. We validate our approach on YouRefIt, achieving 75.0 mAP at 0.25 IoU, alongside state-of-the-art CLIP and C_D scores, and demonstrate its generality on unseen CAESAR and ISL Pointing, showing robust performance across benchmarks.
comment: Accepted by WACV 2026
♻ ☆ Architecture Decoupling Is Not All You Need For Unified Multimodal Model
Unified multimodal models for image generation and understanding represent a significant step toward AGI and have attracted widespread attention from researchers. The main challenge of this task lies in the difficulty in establishing an optimal training paradigm due to inherent conflicting targets in understanding and generation tasks. To alleviate these conflicts and pursue higher performance, many researchers adopt varying degrees of model decoupling (e.g., Double image encoders, MOE/MOT architecture, or frozen MLLM). However, excessive model decoupling can lead to the loss of interleave generation ability, undermining the original intent of unified models. In this work, we aim to explore how to mitigate task conflicts without resorting to model decoupling. Firstly, we analyze why decoupling alleviates conflicts by studying the cross-modal attention behavior of models. We observe that model decoupling essentially drives models toward task-specific multimodal interaction patterns, as seen in Qwen-VL and HunyuanImage, and that the more thorough the decoupling, the more consistent the behavior becomes. Motivated by this observation, we propose Attention Interaction Alignment (AIA) loss, which explicitly learns Task-Specific multimodal interaction patterns during training. To demonstrate the generalizability of our AIA loss, we apply it to Emu3 and Janus-Pro during SFT and post-training stage respectively. Without bells and whistles, AIA not only refines cross-modal attention patterns, but also boosts both generation and understanding performance.
comment: Project page: https://zhengdian1.github.io/AIA-project/ Code: https://github.com/zhengdian1/AIA
♻ ☆ Unsupervised Learning for Industrial Defect Detection: A Case Study on Shearographic Data
Shearography is a non-destructive testing method for detecting subsurface defects, offering high sensitivity and full-field inspection capabilities. However, its industrial adoption remains limited due to the need for expert interpretation. To reduce reliance on labeled data and manual evaluation, this study explores unsupervised learning methods for automated anomaly detection in shearographic images. Three architectures are evaluated: a fully connected autoencoder, a convolutional autoencoder, and a student-teacher feature matching model. All models are trained solely on defect-free data. A controlled dataset was developed using a custom specimen with reproducible defect patterns, enabling systematic acquisition of shearographic measurements under both ideal and realistic deformation conditions. Two training subsets were defined: one containing only undistorted, defect-free samples, and one additionally including globally deformed, yet defect-free, data. The latter simulates practical inspection conditions by incorporating deformation-induced fringe patterns that may obscure localized anomalies. The models are evaluated in terms of binary classification and, for the student-teacher model, spatial defect localization. Results show that the student-teacher approach achieves superior classification robustness and enables precise localization. Compared to the autoencoder-based models, it demonstrates improved separability of feature representations, as visualized through t-SNE embeddings. Additionally, a YOLOv8 model trained on labeled defect data serves as a reference to benchmark localization quality. This study underscores the potential of unsupervised deep learning for scalable, label-efficient shearographic inspection in industrial environments.
comment: 15 pages, 6 figures, 1 table; accepted for AI-2025 Forty-fifth SGAI International Conference on Artificial Intelligence CAMBRIDGE, ENGLAND 16-18 DECEMBER 2025
♻ ☆ SpatialScore: Towards Comprehensive Evaluation for Spatial Intelligence
Existing evaluations of multimodal large language models (MLLMs) on spatial intelligence are typically fragmented and limited in scope. In this work, we aim to conduct a holistic assessment of the spatial understanding capabilities of modern MLLMs and propose complementary data-driven and agent-based solutions. Specifically, we make the following contributions: (i) we introduce SpatialScore, to our knowledge, the most comprehensive and diverse benchmark for multimodal spatial intelligence to date. It covers multiple visual data types, input modalities, and question-answering formats, and contains approximately 5K manually verified samples spanning 30 distinct tasks; (ii) using SpatialScore, we extensively evaluate 40 representative MLLMs, revealing persistent challenges and a substantial gap between current models and human-level spatial intelligence; (iii) to advance model capabilities, we construct SpatialCorpus, a large-scale training resource with 331K multimodal QA samples that supports fine-tuning on spatial reasoning tasks and significantly improves the performance of existing models (e.g., Qwen3-VL); (iv) to complement this data-driven route with a training-free paradigm, we develop SpatialAgent, a multi-agent system equipped with 12 specialized spatial perception tools that supports both Plan-Execute and ReAct reasoning, enabling substantial gains in spatial reasoning without additional model training. Extensive experiments and in-depth analyses demonstrate the effectiveness of our benchmark, corpus, and agent framework. We expect these resources to serve as a solid foundation for advancing MLLMs toward human-level spatial intelligence. All data, code, and models will be released to the research community.
comment: Technical Report; Project Page: https://haoningwu3639.github.io/SpatialScore
♻ ☆ Thinking with Images via Self-Calling Agent
Thinking-with-images paradigms have showcased remarkable visual reasoning capability by integrating visual information as dynamic elements into the Chain-of-Thought (CoT). However, optimizing interleaved multimodal CoT (iMCoT) through reinforcement learning remains challenging, as it relies on scarce high-quality reasoning data. In this study, we propose Self-Calling Chain-of-Thought (sCoT), a novel visual reasoning paradigm that reformulates iMCoT as a language-only CoT with self-calling. Specifically, a main agent decomposes the complex visual reasoning task to atomic subtasks and invokes its virtual replicas, i.e. parameter-sharing subagents, to solve them in isolated context. sCoT enjoys substantial training effectiveness and efficiency, as it requires no explicit interleaving between modalities. sCoT employs group-relative policy optimization to reinforce effective reasoning behavior to enhance optimization. Experiments on HR-Bench 4K show that sCoT improves the overall reasoning performance by up to $1.9\%$ with $\sim 75\%$ fewer GPU hours compared to strong baseline approaches. Code is available at https://github.com/YWenxi/think-with-images-through-self-calling.
comment: Code is available at https://github.com/YWenxi/think-with-images-through-self-calling
♻ ☆ Object-centric proto-symbolic behavioural reasoning from pixels
Autonomous intelligent agents must bridge computational challenges at disparate levels of abstraction, from the low-level spaces of sensory input and motor commands to the high-level domain of abstract reasoning and planning. A key question in designing such agents is how best to instantiate the representational space that will interface between these two levels -- ideally without requiring supervision in the form of expensive data annotations. These objectives can be efficiently achieved by representing the world in terms of objects (grounded in perception and action). In this work, we present a novel, brain-inspired, deep-learning architecture that learns from pixels to interpret, control, and reason about its environment, using object-centric representations. We show the utility of our approach through tasks in synthetic environments that require a combination of (high-level) logical reasoning and (low-level) continuous control. Results show that the agent can learn emergent conditional behavioural reasoning, such as $(A \to B) \land (\neg A \to C)$, as well as logical composition $(A \to B) \land (A \to C) \vdash A \to (B \land C)$ and XOR operations, and successfully controls its environment to satisfy objectives deduced from these logical rules. The agent can adapt online to unexpected changes in its environment and is robust to mild violations of its world model, thanks to dynamic internal desired goal generation. While the present results are limited to synthetic settings (2D and 3D activated versions of dSprites), which fall short of real-world levels of complexity, the proposed architecture shows how to manipulate grounded object representations, as a key inductive bias for unsupervised learning, to enable behavioral reasoning.
comment: Accepted for publication in Neural Networks journal
♻ ☆ Perception-Inspired Color Space Design for Photo White Balance Editing
White balance (WB) is a key step in the image signal processor (ISP) pipeline that mitigates color casts caused by varying illumination and restores the scene's true colors. Currently, sRGB-based WB editing for post-ISP WB correction is widely used to address color constancy failures in the ISP pipeline when the original camera RAW is unavailable. However, additive color models (e.g., sRGB) are inherently limited by fixed nonlinear transformations and entangled color channels, which often impede their generalization to complex lighting conditions. To address these challenges, we propose a novel framework for WB correction that leverages a perception-inspired Learnable HSI (LHSI) color space. Built upon a cylindrical color model that naturally separates luminance from chromatic components, our framework further introduces dedicated parameters to enhance this disentanglement and learnable mapping to adaptively refine the flexibility. Moreover, a new Mamba-based network is introduced, which is tailored to the characteristics of the proposed LHSI color space. Experimental results on benchmark datasets demonstrate the superiority of our method, highlighting the potential of perception-inspired color space design in computational photography. The source code is available at https://github.com/YangCheng58/WB_Color_Space.
comment: Accepted to WACV 2026
♻ ☆ MokA: Multimodal Low-Rank Adaptation for MLLMs
In this paper, we reveal that most current efficient multimodal fine-tuning methods are hindered by a key limitation: they are directly borrowed from LLMs, often neglecting the intrinsic differences of multimodal scenarios and even affecting the full utilization of all modalities. Inspired by our empirical observation, we argue that unimodal adaptation and cross-modal adaptation are two essential parts for the effective fine-tuning of MLLMs. From this perspective, we propose Multimodal low-rank Adaptation (MokA), a multimodal-aware efficient fine-tuning strategy that takes multimodal characteristics into consideration. It compresses unimodal information by modality-specific parameters while explicitly enhancing cross-modal interaction, ensuring both unimodal and cross-modal adaptation. Extensive experiments cover three representative multimodal scenarios (audio-visual-text, visual-text, and speech-text), and multiple LLM backbones (LLaMA2/3, Qwen2, Qwen2.5-VL, etc). Consistent improvements indicate the efficacy and versatility of the proposed method. Ablation studies and efficiency evaluation are also conducted to fully asses our method. Overall, we think MokA provides a more targeted solution for efficient adaptation of MLLMs, paving the way for further exploration. The project page is at https://gewu-lab.github.io/MokA.
♻ ☆ Towards Open-World Human Action Segmentation Using Graph Convolutional Networks
Human-object interaction segmentation is a fundamental task of daily activity understanding, which plays a crucial role in applications such as assistive robotics, healthcare, and autonomous systems. Most existing learning-based methods excel in closed-world action segmentation, they struggle to generalize to open-world scenarios where novel actions emerge. Collecting exhaustive action categories for training is impractical due to the dynamic diversity of human activities, necessitating models that detect and segment out-of-distribution actions without manual annotation. To address this issue, we formally define the open-world action segmentation problem and propose a structured framework for detecting and segmenting unseen actions. Our framework introduces three key innovations: 1) an Enhanced Pyramid Graph Convolutional Network (EPGCN) with a novel decoder module for robust spatiotemporal feature upsampling. 2) Mixup-based training to synthesize out-of-distribution data, eliminating reliance on manual annotations. 3) A novel Temporal Clustering loss that groups in-distribution actions while distancing out-of-distribution samples. We evaluate our framework on two challenging human-object interaction recognition datasets: Bimanual Actions and 2 Hands and Object (H2O) datasets. Experimental results demonstrate significant improvements over state-of-the-art action segmentation models across multiple open-set evaluation metrics, achieving 16.9% and 34.6% relative gains in open-set segmentation (F1@50) and out-of-distribution detection performances (AUROC), respectively. Additionally, we conduct an in-depth ablation study to assess the impact of each proposed component, identifying the optimal framework configuration for open-world action segmentation.
comment: 8 pages, 3 figures, accepted in IROS25, Hangzhou, China
♻ ☆ Multi-Modal Graph Convolutional Network with Sinusoidal Encoding for Robust Human Action Segmentation
Accurate temporal segmentation of human actions is critical for intelligent robots in collaborative settings, where a precise understanding of sub-activity labels and their temporal structure is essential. However, the inherent noise in both human pose estimation and object detection often leads to over-segmentation errors, disrupting the coherence of action sequences. To address this, we propose a Multi-Modal Graph Convolutional Network (MMGCN) that integrates low-frame-rate (e.g., 1 fps) visual data with high-frame-rate (e.g., 30 fps) motion data (skeleton and object detections) to mitigate fragmentation. Our framework introduces three key contributions. First, a sinusoidal encoding strategy that maps 3D skeleton coordinates into a continuous sin-cos space to enhance spatial representation robustness. Second, a temporal graph fusion module that aligns multi-modal inputs with differing resolutions via hierarchical feature aggregation, Third, inspired by the smooth transitions inherent to human actions, we design SmoothLabelMix, a data augmentation technique that mixes input sequences and labels to generate synthetic training examples with gradual action transitions, enhancing temporal consistency in predictions and reducing over-segmentation artifacts. Extensive experiments on the Bimanual Actions Dataset, a public benchmark for human-object interaction understanding, demonstrate that our approach outperforms state-of-the-art methods, especially in action segmentation accuracy, achieving F1@10: 94.5% and F1@25: 92.8%.
comment: 8 pages, 5 figures, accepted in IROS25, Hangzhou, China
♻ ☆ Glance: Accelerating Diffusion Models with 1 Sample
Diffusion models have achieved remarkable success in image generation, yet their deployment remains constrained by the heavy computational cost and the need for numerous inference steps. Previous efforts on fewer-step distillation attempt to skip redundant steps by training compact student models, yet they often suffer from heavy retraining costs and degraded generalization. In this work, we take a different perspective: we accelerate smartly, not evenly, applying smaller speedups to early semantic stages and larger ones to later redundant phases. We instantiate this phase-aware strategy with two experts that specialize in slow and fast denoising phases. Surprisingly, instead of investing massive effort in retraining student models, we find that simply equipping the base model with lightweight LoRA adapters achieves both efficient acceleration and strong generalization. We refer to these two adapters as Slow-LoRA and Fast-LoRA. Through extensive experiments, our method achieves up to 5 acceleration over the base model while maintaining comparable visual quality across diverse benchmarks. Remarkably, the LoRA experts are trained with only 1 samples on a single V100 within one hour, yet the resulting models generalize strongly on unseen prompts.
♻ ☆ Towards Visual Re-Identification of Fish using Fine-Grained Classification for Electronic Monitoring in Fisheries
Accurate fisheries data are crucial for effective and sustainable marine resource management. With the recent adoption of Electronic Monitoring (EM) systems, more video data is now being collected than can be feasibly reviewed manually. This paper addresses this challenge by developing an optimized deep learning pipeline for automated fish re-identification (Re-ID) using the novel AutoFish dataset, which simulates EM systems with conveyor belts with six similarly looking fish species. We demonstrate that key Re-ID metrics (R1 and mAP@k) are substantially improved by using hard triplet mining in conjunction with a custom image transformation pipeline that includes dataset-specific normalization. By employing these strategies, we demonstrate that the Vision Transformer-based Swin-T architecture consistently outperforms the Convolutional Neural Network-based ResNet-50, achieving peak performance of 41.65% mAP@k and 90.43% Rank-1 accuracy. An in-depth analysis reveals that the primary challenge is distinguishing visually similar individuals of the same species (Intra-species errors), where viewpoint inconsistency proves significantly more detrimental than partial occlusion. The source code and documentation are available at: https://github.com/msamdk/Fish_Re_Identification.git
comment: The paper has been accepted for publication at Northern Lights Deep Learning (NLDL) Conference 2026
♻ ☆ Exploring Automated Recognition of Instructional Activity and Discourse from Multimodal Classroom Data
Observation of classroom interactions can provide concrete feedback to teachers, but current methods rely on manual annotation, which is resource-intensive and hard to scale. This work explores AI-driven analysis of classroom recordings, focusing on multimodal instructional activity and discourse recognition as a foundation for actionable feedback. Using a densely annotated dataset of 164 hours of video and 68 lesson transcripts, we design parallel, modality-specific pipelines. For video, we evaluate zero-shot multimodal LLMs, fine-tuned vision-language models, and self-supervised video transformers on 24 activity labels. For transcripts, we fine-tune a transformer-based classifier with contextualized inputs and compare it against prompting-based LLMs on 19 discourse labels. To handle class imbalance and multi-label complexity, we apply per-label thresholding, context windows, and imbalance-aware loss functions. The results show that fine-tuned models consistently outperform prompting-based approaches, achieving macro-F1 scores of 0.577 for video and 0.460 for transcripts. These results demonstrate the feasibility of automated classroom analysis and establish a foundation for scalable teacher feedback systems.
comment: This article has been accepted for publication in the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2026
♻ ☆ Continuous Vision-Language-Action Co-Learning with Semantic-Physical Alignment for Behavioral Cloning AAAI 2026
Language-conditioned manipulation facilitates human-robot interaction via behavioral cloning (BC), which learns control policies from human demonstrations and serves as a cornerstone of embodied AI. Overcoming compounding errors in sequential action decisions remains a central challenge to improving BC performance. Existing approaches mitigate compounding errors through data augmentation, expressive representation, or temporal abstraction. However, they suffer from physical discontinuities and semantic-physical misalignment, leading to inaccurate action cloning and intermittent execution. In this paper, we present Continuous vision-language-action Co-Learning with Semantic-Physical Alignment (CCoL), a novel BC framework that ensures temporally consistent execution and fine-grained semantic grounding. It generates robust and smooth action execution trajectories through continuous co-learning across vision, language, and proprioceptive inputs (e.g., robot internal states). Meanwhile, we anchor language semantics to visuomotor representations by a bidirectional cross-attention to learn contextual information for action generation, successfully overcoming the problem of semantic-physical misalignment. Extensive experiments show that CCoL achieves an average 8.0% relative improvement across three simulation suites, with up to 19.2% relative gain in human-demonstrated bimanual insertion tasks. Real-world tests on a 7-DoF robot further confirm CCoL's generalization under unseen and noisy object states.
comment: Accepted at AAAI 2026, the Project website is available at https://qhemu.github.io/CCoL/
♻ ☆ l0-Regularized Sparse Coding-based Interpretable Network for Multi-Modal Image Fusion
Multi-modal image fusion (MMIF) enhances the information content of the fused image by combining the unique as well as common features obtained from different modality sensor images, improving visualization, object detection, and many more tasks. In this work, we introduce an interpretable network for the MMIF task, named FNet, based on an $\ell_0$-regularized multi-modal convolutional sparse coding (MCSC) model. Specifically, for solving the $\ell_0$-regularized CSC problem, we design a learnable $\ell_0$-regularized sparse coding (LZSC) block in a principled manner through deep unfolding. Given different modality source images, FNet first separates the unique and common features from them using the LZSC block and then these features are combined to generate the final fused image. Additionally, we propose an $\ell_0$-regularized MCSC model for the inverse fusion process. Based on this model, we introduce an interpretable inverse fusion network named IFNet, which is utilized during FNet's training. Extensive experiments show that FNet achieves high-quality fusion results across eight different MMIF datasets. Furthermore, we show that FNet enhances downstream object detection \textcolor[rgb]{ 0, 0, 0}{and semantic segmentation} in visible-thermal image pairs. We have also visualized the intermediate results of FNet, which demonstrates the good interpretability of our network. Link for code and models: https://github.com/gargi884/FNet-MMIF.
comment: Accetped by IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
♻ ☆ Orbis: Overcoming Challenges of Long-Horizon Prediction in Driving World Models
Existing world models for autonomous driving struggle with long-horizon generation and generalization to challenging scenarios. In this work, we develop a model using simple design choices, and without additional supervision or sensors, such as maps, depth, or multiple cameras. We show that our model yields state-of-the-art performance, despite having only 469M parameters and being trained on 280h of video data. It particularly stands out in difficult scenarios like turning maneuvers and urban traffic. We test whether discrete token models possibly have advantages over continuous models based on flow matching. To this end, we set up a hybrid tokenizer that is compatible with both approaches and allows for a side-by-side comparison. Our study concludes in favor of the continuous autoregressive model, which is less brittle on individual design choices and more powerful than the model built on discrete tokens. Code, models and qualitative results are publicly available at https://lmb-freiburg.github.io/orbis.github.io/.
comment: Project page: https://lmb-freiburg.github.io/orbis.github.io/
♻ ☆ Hierarchical Deep Learning for Diatom Image Classification: A Multi-Level Taxonomic Approach
Accurate taxonomic identification of diatoms is essential for aquatic ecosystem monitoring, yet conventional methods depend heavily on expert taxonomists. Recent deep learning approaches improve automation, but most treat diatom recognition as flat classification, predicting only one taxonomic rank. We investigate whether embedding taxonomic hierarchy into neural network architectures can improve both accuracy and error locality. We introduce DiatomCascadeNet (H-COFGS), a hierarchical convolutional network with five cascaded heads that jointly predict class, order, family, genus, and species. Each head receives shared backbone features and probability distributions from higher levels, with binary masks restricting predictions to valid descendants during training and inference. Using a filtered dataset of 1,456 diatom images covering 82 species, we compare hierarchical and flat models under identical settings. H-COFGS matches flat baselines at the species level (69.4% accuracy) while outperforming at all upper taxonomic levels. When species predictions fail, errors remain taxonomically local: 92.5% of misclassified species are correctly predicted at the genus level, versus 67.2% for flat baselines. H-COFGS reduces mean taxonomic distance by 38.2% (1.209 vs. 1.955). Progressive training reveals bidirectional mechanisms: hierarchical constraint masks operate top-down to constrain prediction space, while gradients from fine-grained levels propagate bottom-up through the shared backbone, refining features. This improves class accuracy from 96.2% to 99.5% and yields 6-8% gains at upper levels, producing more robust, interpretable, and biologically aligned predictions for multi-level taxonomic classification.
comment: Version 2: Corrected reference details, improved architectural diagram, and enhanced writing for clarity and precision. Added a table illustrating the masking mechanism. No changes to experimental results or conclusions. 11 pages, 6 figures, 3 tables
♻ ☆ Joint2Human: High-quality 3D Human Generation via Compact Spherical Embedding of 3D Joints
3D human generation is increasingly significant in various applications. However, the direct use of 2D generative methods in 3D generation often results in losing local details, while methods that reconstruct geometry from generated images struggle with global view consistency. In this work, we introduce Joint2Human, a novel method that leverages 2D diffusion models to generate detailed 3D human geometry directly, ensuring both global structure and local details. To achieve this, we employ the Fourier occupancy field (FOF) representation, enabling the direct generation of 3D shapes as preliminary results with 2D generative models. With the proposed high-frequency enhancer and the multi-view recarving strategy, our method can seamlessly integrate the details from different views into a uniform global shape. To better utilize the 3D human prior and enhance control over the generated geometry, we introduce a compact spherical embedding of 3D joints. This allows for an effective guidance of pose during the generation process. Additionally, our method can generate 3D humans guided by textual inputs. Our experimental results demonstrate the capability of our method to ensure global structure, local details, high resolution, and low computational cost simultaneously. More results and the code can be found on our project page at http://cic.tju.edu.cn/faculty/likun/projects/Joint2Human.
♻ ☆ Beyond Words and Pixels: A Benchmark for Implicit World Knowledge Reasoning in Generative Models
Text-to-image (T2I) models today are capable of producing photorealistic, instruction-following images, yet they still frequently fail on prompts that require implicit world knowledge. Existing evaluation protocols either emphasize compositional alignment or rely on single-round VQA-based scoring, leaving critical dimensions such as knowledge grounding, multi-physics interactions, and auditable evidence-substantially undertested. To address these limitations, we introduce PicWorld, the first comprehensive benchmark that assesses the grasp of implicit world knowledge and physical causal reasoning of T2I models. This benchmark consists of 1,100 prompts across three core categories. To facilitate fine-grained evaluation, we propose PW-Agent, an evidence-grounded multi-agent evaluator to hierarchically assess images on their physical realism and logical consistency by decomposing prompts into verifiable visual evidence. We conduct a thorough analysis of 17 mainstream T2I models on PicWorld, illustrating that they universally exhibit a fundamental limitation in their capacity for implicit world knowledge and physical causal reasoning to varying degrees. The findings highlight the need for reasoning-aware, knowledge-integrative architectures in future T2I systems.
♻ ☆ Test-Time Distillation for Continual Model Adaptation
Deep neural networks often suffer performance degradation upon deployment due to distribution shifts. Continual Test-Time Adaptation (CTTA) aims to address this issue in an unsupervised manner, yet existing methods, which rely on self-supervision, are prone to an inherent self-referential feedback loop that amplifies initial prediction errors, leading to model drift. We revisit this limitation and propose Test-Time Distillation (TTD), which reframes adaptation as a distillation process guided by a frozen Vision-Language Model (VLM) as an external signal. While promising, we find that direct distillation is fraught with two pitfalls: the Generalist Trap, where the VLM's broad but non-specialized knowledge leads to suboptimal performance on specific tasks and shifts, and the Entropy Bias, where naive model fusion techniques based on entropy fail due to the disparate calibration of heterogeneous models. These pitfalls motivate our insight: the key is to build a robust supervisory signal and leverage it to guide the target model toward stable adaptation. Hence, we present CoDiRe, a Continual Distillation and Rectification framework for TTD. CoDiRe first constructs a robust blended teacher by dynamically fusing the predictions of the VLM and the target model. Critically, it circumvents the Entropy Bias by leveraging Maximum Softmax Probability (MSP) as a more reliable confidence metric for weighting each model's expertise. Then applies an Optimal Transport based rectification to further align predictions with the blended teacher, enabling continuous and stable adaptation. Extensive experiments show that CoDiRe outperforms state-of-the-art baselines, exceeding CoTTA by 10.55% while using only 48% of its time cost on ImageNet-C.
comment: 11 pages, 6 figures
♻ ☆ Sublinear Variational Optimization of Gaussian Mixture Models with Millions to Billions of Parameters
Gaussian Mixture Models (GMMs) range among the most frequently used models in machine learning. However, training large, general GMMs becomes computationally prohibitive for datasets that have many data points $N$ of high-dimensionality $D$. For GMMs with arbitrary covariances, we here derive a highly efficient variational approximation, which is then integrated with mixtures of factor analyzers (MFAs). For GMMs with $C$ components, our proposed algorithm substantially reduces runtime complexity from $\mathcal{O}(NCD^2)$ per iteration to a complexity scaling linearly with $D$ and sublinearly with $NC$. In numerical experiments, we first validate that the complexity reduction results in a sublinear scaling for the entire GMM optimization process. Second, we show on large-scale benchmarks that the sublinear algorithm results in speed-ups of an order-of-magnitude compared to the state-of-the-art. Third, as a proof of concept, we finally train GMMs with over 10 billion parameters on about 100 million images, observing training times of less than nine hours on a single state-of-the-art CPU. Finally, and forth, we demonstrate the effectiveness of large-scale GMMs on the task of zero-shot image denoising, where sublinear training results in state-of-the-art denoising times while competitive denoising performance is maintained.
comment: 31 pages, 8 figures (and 28 pages, 7 figures in Appendix)
Machine Learning 212
☆ Bidirectional Normalizing Flow: From Data to Noise and Back
Normalizing Flows (NFs) have been established as a principled framework for generative modeling. Standard NFs consist of a forward process and a reverse process: the forward process maps data to noise, while the reverse process generates samples by inverting it. Typical NF forward transformations are constrained by explicit invertibility, ensuring that the reverse process can serve as their exact analytic inverse. Recent developments in TARFlow and its variants have revitalized NF methods by combining Transformers and autoregressive flows, but have also exposed causal decoding as a major bottleneck. In this work, we introduce Bidirectional Normalizing Flow ($\textbf{BiFlow}$), a framework that removes the need for an exact analytic inverse. BiFlow learns a reverse model that approximates the underlying noise-to-data inverse mapping, enabling more flexible loss functions and architectures. Experiments on ImageNet demonstrate that BiFlow, compared to its causal decoding counterpart, improves generation quality while accelerating sampling by up to two orders of magnitude. BiFlow yields state-of-the-art results among NF-based methods and competitive performance among single-evaluation ("1-NFE") methods. Following recent encouraging progress on NFs, we hope our work will draw further attention to this classical paradigm.
comment: Tech report
☆ Hierarchical Dataset Selection for High-Quality Data Sharing
The success of modern machine learning hinges on access to high-quality training data. In many real-world scenarios, such as acquiring data from public repositories or sharing across institutions, data is naturally organized into discrete datasets that vary in relevance, quality, and utility. Selecting which repositories or institutions to search for useful datasets, and which datasets to incorporate into model training are therefore critical decisions, yet most existing methods select individual samples and treat all data as equally relevant, ignoring differences between datasets and their sources. In this work, we formalize the task of dataset selection: selecting entire datasets from a large, heterogeneous pool to improve downstream performance under resource constraints. We propose Dataset Selection via Hierarchies (DaSH), a dataset selection method that models utility at both dataset and group (e.g., collections, institutions) levels, enabling efficient generalization from limited observations. Across two public benchmarks (Digit-Five and DomainNet), DaSH outperforms state-of-the-art data selection baselines by up to 26.2% in accuracy, while requiring significantly fewer exploration steps. Ablations show DaSH is robust to low-resource settings and lack of relevant datasets, making it suitable for scalable and adaptive dataset selection in practical multi-source learning workflows.
☆ ImplicitRDP: An End-to-End Visual-Force Diffusion Policy with Structural Slow-Fast Learning
Human-level contact-rich manipulation relies on the distinct roles of two key modalities: vision provides spatially rich but temporally slow global context, while force sensing captures rapid, high-frequency local contact dynamics. Integrating these signals is challenging due to their fundamental frequency and informational disparities. In this work, we propose ImplicitRDP, a unified end-to-end visual-force diffusion policy that integrates visual planning and reactive force control within a single network. We introduce Structural Slow-Fast Learning, a mechanism utilizing causal attention to simultaneously process asynchronous visual and force tokens, allowing the policy to perform closed-loop adjustments at the force frequency while maintaining the temporal coherence of action chunks. Furthermore, to mitigate modality collapse where end-to-end models fail to adjust the weights across different modalities, we propose Virtual-target-based Representation Regularization. This auxiliary objective maps force feedback into the same space as the action, providing a stronger, physics-grounded learning signal than raw force prediction. Extensive experiments on contact-rich tasks demonstrate that ImplicitRDP significantly outperforms both vision-only and hierarchical baselines, achieving superior reactivity and success rates with a streamlined training pipeline. Code and videos will be publicly available at https://implicit-rdp.github.io.
comment: Project page: https://implicit-rdp.github.io
☆ Stronger Normalization-Free Transformers
Although normalization layers have long been viewed as indispensable components of deep learning architectures, the recent introduction of Dynamic Tanh (DyT) has demonstrated that alternatives are possible. The point-wise function DyT constrains extreme values for stable convergence and reaches normalization-level performance; this work seeks further for function designs that can surpass it. We first study how the intrinsic properties of point-wise functions influence training and performance. Building on these findings, we conduct a large-scale search for a more effective function design. Through this exploration, we introduce $\mathrm{Derf}(x) = \mathrm{erf}(αx + s)$, where $\mathrm{erf}(x)$ is the rescaled Gaussian cumulative distribution function, and identify it as the most performant design. Derf outperforms LayerNorm, RMSNorm, and DyT across a wide range of domains, including vision (image recognition and generation), speech representation, and DNA sequence modeling. Our findings suggest that the performance gains of Derf largely stem from its improved generalization rather than stronger fitting capacity. Its simplicity and stronger performance make Derf a practical choice for normalization-free Transformer architectures.
☆ Empirical evaluation of the Frank-Wolfe methods for constructing white-box adversarial attacks
The construction of adversarial attacks for neural networks appears to be a crucial challenge for their deployment in various services. To estimate the adversarial robustness of a neural network, a fast and efficient approach is needed to construct adversarial attacks. Since the formalization of adversarial attack construction involves solving a specific optimization problem, we consider the problem of constructing an efficient and effective adversarial attack from a numerical optimization perspective. Specifically, we suggest utilizing advanced projection-free methods, known as modified Frank-Wolfe methods, to construct white-box adversarial attacks on the given input data. We perform a theoretical and numerical evaluation of these methods and compare them with standard approaches based on projection operations or geometrical intuition. Numerical experiments are performed on the MNIST and CIFAR-10 datasets, utilizing a multiclass logistic regression model, the convolutional neural networks (CNNs), and the Vision Transformer (ViT).
☆ Any4D: Unified Feed-Forward Metric 4D Reconstruction
We present Any4D, a scalable multi-view transformer for metric-scale, dense feed-forward 4D reconstruction. Any4D directly generates per-pixel motion and geometry predictions for N frames, in contrast to prior work that typically focuses on either 2-view dense scene flow or sparse 3D point tracking. Moreover, unlike other recent methods for 4D reconstruction from monocular RGB videos, Any4D can process additional modalities and sensors such as RGB-D frames, IMU-based egomotion, and Radar Doppler measurements, when available. One of the key innovations that allows for such a flexible framework is a modular representation of a 4D scene; specifically, per-view 4D predictions are encoded using a variety of egocentric factors (depthmaps and camera intrinsics) represented in local camera coordinates, and allocentric factors (camera extrinsics and scene flow) represented in global world coordinates. We achieve superior performance across diverse setups - both in terms of accuracy (2-3X lower error) and compute efficiency (15X faster), opening avenues for multiple downstream applications.
comment: Project Website: https://any-4d.github.io/
☆ Curriculum-Based Reinforcement Learning for Autonomous UAV Navigation in Unknown Curved Tubular Conduit
Autonomous drone navigation in confined tubular environments remains a major challenge due to the constraining geometry of the conduits, the proximity of the walls, and the perceptual limitations inherent to such scenarios. We propose a reinforcement learning approach enabling a drone to navigate unknown three-dimensional tubes without any prior knowledge of their geometry, relying solely on local observations from LiDAR and a conditional visual detection of the tube center. In contrast, the Pure Pursuit algorithm, used as a deterministic baseline, benefits from explicit access to the centerline, creating an information asymmetry designed to assess the ability of RL to compensate for the absence of a geometric model. The agent is trained through a progressive Curriculum Learning strategy that gradually exposes it to increasingly curved geometries, where the tube center frequently disappears from the visual field. A turning-negotiation mechanism, based on the combination of direct visibility, directional memory, and LiDAR symmetry cues, proves essential for ensuring stable navigation under such partial observability conditions. Experiments show that the PPO policy acquires robust and generalizable behavior, consistently outperforming the deterministic controller despite its limited access to geometric information. Validation in a high-fidelity 3D environment further confirms the transferability of the learned behavior to a continuous physical dynamics. The proposed approach thus provides a complete framework for autonomous navigation in unknown tubular environments and opens perspectives for industrial, underground, or medical applications where progressing through narrow and weakly perceptive conduits represents a central challenge.
☆ Asynchronous Reasoning: Training-Free Interactive Thinking LLMs
Many state-of-the-art LLMs are trained to think before giving their answer. Reasoning can greatly improve language model capabilities and safety, but it also makes them less interactive: given a new input, a model must stop thinking before it can respond. Real-world use cases such as voice-based or embedded assistants require an LLM agent to respond and adapt to additional information in real time, which is incompatible with sequential interactions. In contrast, humans can listen, think, and act asynchronously: we begin thinking about the problem while reading it and continue thinking while formulating the answer. In this work, we augment LLMs capable of reasoning to operate in a similar way without additional training. Our method uses the properties of rotary embeddings to enable LLMs built for sequential interactions to simultaneously think, listen, and generate outputs. We evaluate our approach on math, commonsense, and safety reasoning and find that it can generate accurate thinking-augmented answers in real time, reducing time to first non-thinking token from minutes to <= 5s. and the overall real-time delays by 6-11x.
comment: Preprint, work in progress
☆ Noisy Quantum Learning Theory
We develop a framework for learning from noisy quantum experiments, focusing on fault-tolerant devices accessing uncharacterized systems through noisy couplings. Our starting point is the complexity class $\textsf{NBQP}$ ("noisy BQP"), modeling noisy fault-tolerant quantum computers that cannot, in general, error-correct the oracle systems they query. Using this class, we show that for natural oracle problems, noise can eliminate exponential quantum learning advantages of ideal noiseless learners while preserving a superpolynomial gap between NISQ and fault-tolerant devices. Beyond oracle separations, we study concrete noisy learning tasks. For purity testing, the exponential two-copy advantage collapses under a single application of local depolarizing noise. Nevertheless, we identify a setting motivated by AdS/CFT in which noise-resilient structure restores a quantum learning advantage in a noisy regime. We then analyze noisy Pauli shadow tomography, deriving lower bounds that characterize how instance size, quantum memory, and noise control sample complexity, and design algorithms with parametrically similar scalings. Together, our results show that the Bell-basis and SWAP-test primitives underlying most exponential quantum learning advantages are fundamentally fragile to noise unless the experimental system has latent noise-robust structure. Thus, realizing meaningful quantum advantages in future experiments will require understanding how noise-robust physical properties interface with available algorithmic techniques.
comment: 11+53 pages, 3 figures
☆ Decoupled Q-Chunking
Temporal-difference (TD) methods learn state and action values efficiently by bootstrapping from their own future value predictions, but such a self-bootstrapping mechanism is prone to bootstrapping bias, where the errors in the value targets accumulate across steps and result in biased value estimates. Recent work has proposed to use chunked critics, which estimate the value of short action sequences ("chunks") rather than individual actions, speeding up value backup. However, extracting policies from chunked critics is challenging: policies must output the entire action chunk open-loop, which can be sub-optimal for environments that require policy reactivity and also challenging to model especially when the chunk length grows. Our key insight is to decouple the chunk length of the critic from that of the policy, allowing the policy to operate over shorter action chunks. We propose a novel algorithm that achieves this by optimizing the policy against a distilled critic for partial action chunks, constructed by optimistically backing up from the original chunked critic to approximate the maximum value achievable when a partial action chunk is extended to a complete one. This design retains the benefits of multi-step value propagation while sidestepping both the open-loop sub-optimality and the difficulty of learning action chunking policies for long action chunks. We evaluate our method on challenging, long-horizon offline goal-conditioned tasks and show that it reliably outperforms prior methods. Code: github.com/ColinQiyangLi/dqc.
comment: 76 pages, 14 figures
☆ Digital Twin Supervised Reinforcement Learning Framework for Autonomous Underwater Navigation
Autonomous navigation in underwater environments remains a major challenge due to the absence of GPS, degraded visibility, and the presence of submerged obstacles. This article investigates these issues through the case of the BlueROV2, an open platform widely used for scientific experimentation. We propose a deep reinforcement learning approach based on the Proximal Policy Optimization (PPO) algorithm, using an observation space that combines target-oriented navigation information, a virtual occupancy grid, and ray-casting along the boundaries of the operational area. The learned policy is compared against a reference deterministic kinematic planner, the Dynamic Window Approach (DWA), commonly employed as a robust baseline for obstacle avoidance. The evaluation is conducted in a realistic simulation environment and complemented by validation on a physical BlueROV2 supervised by a 3D digital twin of the test site, helping to reduce risks associated with real-world experimentation. The results show that the PPO policy consistently outperforms DWA in highly cluttered environments, notably thanks to better local adaptation and reduced collisions. Finally, the experiments demonstrate the transferability of the learned behavior from simulation to the real world, confirming the relevance of deep RL for autonomous navigation in underwater robotics.
☆ SparseSwaps: Tractable LLM Pruning Mask Refinement at Scale
The resource requirements of Neural Networks can be significantly reduced through pruning -- the removal of seemingly less important parameters. However, with the rise of Large Language Models (LLMs), full retraining to recover pruning-induced performance degradation is often prohibitive and classical approaches such as global magnitude pruning are suboptimal on Transformer architectures. State-of-the-art methods hence solve a layer-wise mask selection problem, the problem of finding a pruning mask which minimizes the per-layer pruning error on a small set of calibration data. Exactly solving this problem to optimality using Integer Programming (IP) solvers is computationally infeasible due to its combinatorial nature and the size of the search space, and existing approaches therefore rely on approximations or heuristics. In this work, we demonstrate that the mask selection problem can be made drastically more tractable at LLM scale. To that end, we decouple the rows by enforcing equal sparsity levels per row. This allows us to derive optimal 1-swaps (exchanging one kept and one pruned weight) that can be computed efficiently using the Gram matrix of the calibration data. Using these observations, we propose a tractable and simple 1-swap algorithm that warm starts from any pruning mask, runs efficiently on GPUs at LLM scale, and is essentially hyperparameter-free. We demonstrate that our approach reduces per-layer pruning error by up to 60% over Wanda (Sun et al., 2023) and consistently improves perplexity and zero-shot accuracy across state-of-the-art GPT architectures.
comment: 15 pages, 2 figures, 4 tables
☆ Hermitian Yang--Mills connections on general vector bundles: geometry and physical Yukawa couplings
We compute solutions to the Hermitian Yang-Mills equations on holomorphic vector bundles $V$ via an alternating optimisation procedure founded on geometric machine learning. The proposed method is fully general with respect to the rank and structure group of $V$, requiring only the ability to enumerate a basis of global sections for a given bundle. This enables us to compute the physically normalised Yukawa couplings in a broad class of heterotic string compactifications. Using this method, we carry out this computation in full for a heterotic compactification incorporating a gauge bundle with non-Abelian structure group.
comment: 51 pages, Associated code open--sourced at https://github.com/Justin-Tan/cymyc
☆ Distributionally Robust Regret Optimal Control Under Moment-Based Ambiguity Sets
In this paper, we consider a class of finite-horizon, linear-quadratic stochastic control problems, where the probability distribution governing the noise process is unknown but assumed to belong to an ambiguity set consisting of all distributions whose mean and covariance lie within norm balls centered at given nominal values. To address the distributional ambiguity, we explore the design of causal affine control policies to minimize the worst-case expected regret over all distributions in the given ambiguity set. The resulting minimax optimal control problem is shown to admit an equivalent reformulation as a tractable convex program that corresponds to a regularized version of the nominal linear-quadratic stochastic control problem. While this convex program can be recast as a semidefinite program, semidefinite programs are typically solved using primal-dual interior point methods that scale poorly with the problem size in practice. To address this limitation, we propose a scalable dual projected subgradient method to compute optimal controllers to an arbitrary accuracy. Numerical experiments are presented to benchmark the proposed method against state-of-the-art data-driven and distributionally robust control design approaches.
comment: 21 pages, 2 figures
☆ Iterative Compositional Data Generation for Robot Control
Collecting robotic manipulation data is expensive, making it impractical to acquire demonstrations for the combinatorially large space of tasks that arise in multi-object, multi-robot, and multi-environment settings. While recent generative models can synthesize useful data for individual tasks, they do not exploit the compositional structure of robotic domains and struggle to generalize to unseen task combinations. We propose a semantic compositional diffusion transformer that factorizes transitions into robot-, object-, obstacle-, and objective-specific components and learns their interactions through attention. Once trained on a limited subset of tasks, we show that our model can zero-shot generate high-quality transitions from which we can learn control policies for unseen task combinations. Then, we introduce an iterative self-improvement procedure in which synthetic data is validated via offline reinforcement learning and incorporated into subsequent training rounds. Our approach substantially improves zero-shot performance over monolithic and hard-coded compositional baselines, ultimately solving nearly all held-out tasks and demonstrating the emergence of meaningful compositional structure in the learned representations.
☆ Physics-Informed Learning of Flow Distribution and Receiver Heat Losses in Parabolic Trough Solar Fields
Parabolic trough Concentrating Solar Power (CSP) plants operate large hydraulic networks of collector loops that must deliver a uniform outlet temperature despite spatially heterogeneous optical performance, heat losses, and pressure drops. While loop temperatures are measured, loop-level mass flows and receiver heat-loss parameters are unobserved, making it impossible to diagnose hydraulic imbalances or receiver degradation using standard monitoring tools. We present a physics-informed learning framework that infers (i) loop-level mass-flow ratios and (ii) time-varying receiver heat-transfer coefficients directly from routine operational data. The method exploits nocturnal homogenization periods -- when hot oil is circulated through a non-irradiated field -- to isolate hydraulic and thermal-loss effects. A differentiable conjugate heat-transfer model is discretized and embedded into an end-to-end learning pipeline optimized using historical plant data from the 50 MW Andasol 3 solar field. The model accurately reconstructs loop temperatures (RMSE $<2^\circ$C) and produces physically meaningful estimates of loop imbalances and receiver heat losses. Comparison against drone-based infrared thermography (QScan) shows strong correspondence, correctly identifying all areas with high-loss receivers. This demonstrates that noisy real-world CSP operational data contain enough information to recover latent physical parameters when combined with appropriate modeling and differentiable optimization.
☆ Classifier Reconstruction Through Counterfactual-Aware Wasserstein Prototypes ICML 2025
Counterfactual explanations provide actionable insights by identifying minimal input changes required to achieve a desired model prediction. Beyond their interpretability benefits, counterfactuals can also be leveraged for model reconstruction, where a surrogate model is trained to replicate the behavior of a target model. In this work, we demonstrate that model reconstruction can be significantly improved by recognizing that counterfactuals, which typically lie close to the decision boundary, can serve as informative though less representative samples for both classes. This is particularly beneficial in settings with limited access to labeled data. We propose a method that integrates original data samples with counterfactuals to approximate class prototypes using the Wasserstein barycenter, thereby preserving the underlying distributional structure of each class. This approach enhances the quality of the surrogate model and mitigates the issue of decision boundary shift, which commonly arises when counterfactuals are naively treated as ordinary training instances. Empirical results across multiple datasets show that our method improves fidelity between the surrogate and target models, validating its effectiveness.
comment: Accepted by Actionable Interpretability Workshop at ICML 2025
☆ Guided Transfer Learning for Discrete Diffusion Models
Discrete diffusion models achieve strong performance across language and other discrete domains, providing a powerful alternative to autoregressive models. However, their strong performance relies on large training datasets, which are costly or risky to obtain, especially when adapting to new domains. Transfer learning is the natural way to adapt pretrained discrete diffusion models, but current methods require fine-tuning large diffusion models, which is computationally expensive and often impractical. Building on ratio-based transfer learning for continuous diffusion, we provide Guided Transfer Learning for discrete diffusion models (GTL). This enables sampling from a target distribution without modifying the pretrained denoiser. The same guidance formulation applies to both discrete-time diffusion and continuous-time score-based discrete diffusion, yielding a unified treatment. Guided discrete diffusion often requires many forward passes of the guidance network, which becomes impractical for large vocabularies and long sequences. To address this, we further present an efficient guided sampler that concentrates evaluations on planner-selected positions and top candidate tokens, thus lowering sampling time and computation. This makes guided language modeling practical at scale for large vocabularies and long sequences. We evaluate GTL on sequential data, including synthetic Markov chains and language modeling, and provide empirical analyses of its behavior.
comment: 7 pages (main text) + appendix
☆ A Differentiable Digital Twin of Distributed Link Scheduling for Contention-Aware Networking
Many routing and flow optimization problems in wired networks can be solved efficiently using minimum cost flow formulations. However, this approach does not extend to wireless multi-hop networks, where the assumptions of fixed link capacity and linear cost structure collapse due to contention for shared spectrum resources. The key challenge is that the long-term capacity of a wireless link becomes a non-linear function of its network context, including network topology, link quality, and the traffic assigned to neighboring links. In this work, we pursue a new direction of modeling wireless network under randomized medium access control by developing an analytical network digital twin (NDT) that predicts link duty cycles from network context. We generalize randomized contention as finding a Maximal Independent Set (MIS) on the conflict graph using weighted Luby's algorithm, derive an analytical model of link duty cycles, and introduce an iterative procedure that resolves the circular dependency among duty cycle, link capacity, and contention probability. Our numerical experiments show that the proposed NDT accurately predicts link duty cycles and congestion patterns with up to a 5000x speedup over packet-level simulation, and enables us to optimize link scheduling using gradient descent for reduced congestion and radio footprint.
comment: 5 pages, 8 figures, presented in Asilomar Conference on Signals, Systems, and Computers 2025
☆ Physics-informed Polynomial Chaos Expansion with Enhanced Constrained Optimization Solver and D-optimal Sampling
Physics-informed polynomial chaos expansions (PC$^2$) provide an efficient physically constrained surrogate modeling framework by embedding governing equations and other physical constraints into the standard data-driven polynomial chaos expansions (PCE) and solving via the Karush-Kuhn-Tucker (KKT) conditions. This approach improves the physical interpretability of surrogate models while achieving high computational efficiency and accuracy. However, the performance and efficiency of PC$^2$ can still be degraded with high-dimensional parameter spaces, limited data availability, or unrepresentative training data. To address this problem, this study explores two complementary enhancements to the PC$^2$ framework. First, a numerically efficient constrained optimization solver, straightforward updating of Lagrange multipliers (SULM), is adopted as an alternative to the conventional KKT solver. The SULM method significantly reduces computational cost when solving physically constrained problems with high-dimensionality and derivative boundary conditions that require a large number of virtual points. Second, a D-optimal sampling strategy is utilized to select informative virtual points to improve the stability and achieve the balance of accuracy and efficiency of the PC$^2$. The proposed methods are integrated into the PC$^2$ framework and evaluated through numerical examples of representative physical systems governed by ordinary or partial differential equations. The results demonstrate that the enhanced PC$^2$ has better comprehensive capability than standard PC$^2$, and is well-suited for high-dimensional uncertainty quantification tasks.
☆ UrbanAI 2025 Challenge: Linear vs Transformer Models for Long-Horizon Exogenous Temperature Forecasting NeurIPS 2025
We study long-horizon exogenous-only temperature forecasting - a challenging univariate setting where only the past values of the indoor temperature are used for prediction - using linear and Transformer-family models. We evaluate Linear, NLinear, DLinear, Transformer, Informer, and Autoformer under standardized train, validation, and test splits. Results show that linear baselines (Linear, NLinear, DLinear) consistently outperform more complex Transformer-family architectures, with DLinear achieving the best overall accuracy across all splits. These findings highlight that carefully designed linear models remain strong baselines for time series forecasting in challenging exogenous-only settings.
comment: NeurIPS 2025 Workshop UrbanAI
☆ Scaling Behavior of Discrete Diffusion Language Models
Modern LLM pre-training consumes vast amounts of compute and training data, making the scaling behavior, or scaling laws, of different models a key distinguishing factor. Discrete diffusion language models (DLMs) have been proposed as an alternative to autoregressive language models (ALMs). However, their scaling behavior has not yet been fully explored, with prior work suggesting that they require more data and compute to match the performance of ALMs. We study the scaling behavior of DLMs on different noise types by smoothly interpolating between masked and uniform diffusion while paying close attention to crucial hyperparameters such as batch size and learning rate. Our experiments reveal that the scaling behavior of DLMs strongly depends on the noise type and is considerably different from ALMs. While all noise types converge to similar loss values in compute-bound scaling, we find that uniform diffusion requires more parameters and less data for compute-efficient training compared to masked diffusion, making them a promising candidate in data-bound settings. We scale our uniform diffusion model up to 10B parameters trained for $10^{22}$ FLOPs, confirming the predicted scaling behavior and making it the largest publicly known uniform diffusion model to date.
☆ Generative Modeling from Black-box Corruptions via Self-Consistent Stochastic Interpolants
Transport-based methods have emerged as a leading paradigm for building generative models from large, clean datasets. However, in many scientific and engineering domains, clean data are often unavailable: instead, we only observe measurements corrupted through a noisy, ill-conditioned channel. A generative model for the original data thus requires solving an inverse problem at the level of distributions. In this work, we introduce a novel approach to this task based on Stochastic Interpolants: we iteratively update a transport map between corrupted and clean data samples using only access to the corrupted dataset as well as black box access to the corruption channel. Under appropriate conditions, this iterative procedure converges towards a self-consistent transport map that effectively inverts the corruption channel, thus enabling a generative model for the clean data. We refer to the resulting method as the self-consistent stochastic interpolant (SCSI). It (i) is computationally efficient compared to variational alternatives, (ii) highly flexible, handling arbitrary nonlinear forward models with only black-box access, and (iii) enjoys theoretical guarantees. We demonstrate superior performance on inverse problems in natural image processing and scientific reconstruction, and establish convergence guarantees of the scheme under appropriate assumptions.
☆ Bayesian Symbolic Regression via Posterior Sampling
Symbolic regression is a powerful tool for discovering governing equations directly from data, but its sensitivity to noise hinders its broader application. This paper introduces a Sequential Monte Carlo (SMC) framework for Bayesian symbolic regression that approximates the posterior distribution over symbolic expressions, enhancing robustness and enabling uncertainty quantification for symbolic regression in the presence of noise. Differing from traditional genetic programming approaches, the SMC-based algorithm combines probabilistic selection, adaptive tempering, and the use of normalized marginal likelihood to efficiently explore the search space of symbolic expressions, yielding parsimonious expressions with improved generalization. When compared to standard genetic programming baselines, the proposed method better deals with challenging, noisy benchmark datasets. The reduced tendency to overfit and enhanced ability to discover accurate and interpretable equations paves the way for more robust symbolic regression in scientific discovery and engineering design applications.
☆ Learning Controllable and Diverse Player Behaviors in Multi-Agent Environments
This paper introduces a reinforcement learning framework that enables controllable and diverse player behaviors without relying on human gameplay data. Existing approaches often require large-scale player trajectories, train separate models for different player types, or provide no direct mapping between interpretable behavioral parameters and the learned policy, limiting their scalability and controllability. We define player behavior in an N-dimensional continuous space and uniformly sample target behavior vectors from a region that encompasses the subset representing real human styles. During training, each agent receives both its current and target behavior vectors as input, and the reward is based on the normalized reduction in distance between them. This allows the policy to learn how actions influence behavioral statistics, enabling smooth control over attributes such as aggressiveness, mobility, and cooperativeness. A single PPO-based multi-agent policy can reproduce new or unseen play styles without retraining. Experiments conducted in a custom multi-player Unity game show that the proposed framework produces significantly greater behavioral diversity than a win-only baseline and reliably matches specified behavior vectors across diverse targets. The method offers a scalable solution for automated playtesting, game balancing, human-like behavior simulation, and replacing disconnected players in online games.
comment: Submitted to IEEE Transactions on Games
☆ An Elementary Proof of the Near Optimality of LogSumExp Smoothing
We consider the design of smoothings of the (coordinate-wise) max function in $\mathbb{R}^d$ in the infinity norm. The LogSumExp function $f(x)=\ln(\sum^d_i\exp(x_i))$ provides a classical smoothing, differing from the max function in value by at most $\ln(d)$. We provide an elementary construction of a lower bound, establishing that every overestimating smoothing of the max function must differ by at least $\sim 0.8145\ln(d)$. Hence, LogSumExp is optimal up to constant factors. However, in small dimensions, we provide stronger, exactly optimal smoothings attaining our lower bound, showing that the entropy-based LogSumExp approach to smoothing is not exactly optimal.
comment: 10 pages
☆ Agile Deliberation: Concept Deliberation for Subjective Visual Classification
From content moderation to content curation, applications requiring vision classifiers for visual concepts are rapidly expanding. Existing human-in-the-loop approaches typically assume users begin with a clear, stable concept understanding to be able to provide high-quality supervision. In reality, users often start with a vague idea and must iteratively refine it through "concept deliberation", a practice we uncovered through structured interviews with content moderation experts. We operationalize the common strategies in deliberation used by real content moderators into a human-in-the-loop framework called "Agile Deliberation" that explicitly supports evolving and subjective concepts. The system supports users in defining the concept for themselves by exposing them to borderline cases. The system does this with two deliberation stages: (1) concept scoping, which decomposes the initial concept into a structured hierarchy of sub-concepts, and (2) concept iteration, which surfaces semantically borderline examples for user reflection and feedback to iteratively align an image classifier with the user's evolving intent. Since concept deliberation is inherently subjective and interactive, we painstakingly evaluate the framework through 18 user sessions, each 1.5h long, rather than standard benchmarking datasets. We find that Agile Deliberation achieves 7.5% higher F1 scores than automated decomposition baselines and more than 3% higher than manual deliberation, while participants reported clearer conceptual understanding and lower cognitive effort.
☆ Deep sets and event-level maximum-likelihood estimation for fast pile-up jet rejection in ATLAS
Multiple proton-proton collisions (pile-up) occur at every bunch crossing at the LHC, with the mean number of interactions expected to reach 80 during Run 3 and up to 200 at the High-Luminosity LHC. As a direct consequence, events with multijet signatures will occur at increasingly high rates. To cope with the increased luminosity, being able to efficiently group jets according to their origin along the beamline is crucial, particularly at the trigger level. In this work, a novel uncertainty-aware jet regression model based on a Deep Sets architecture is introduced, DIPz, to regress on a jet origin position along the beamline. The inputs to the DIPz algorithm are the charged particle tracks associated to each jet. An event-level discriminant, the Maximum Log Product of Likelihoods (MLPL), is constructed by combining the DIPz per-jet predictions. MLPL is cut-optimized to select events compatible with targeted multi-jet signature selection. This combined approach provides a robust and computationally efficient method for pile-up rejection in multi-jet final states, applicable to real-time event selections at the ATLAS High Level Trigger.
comment: 6 pages, 3 figures, European Physical Society Conference on High Energy Physics (EPS-HEP2025), On behalf of the ATLAS Collaboration
☆ Extrapolation of Periodic Functions Using Binary Encoding of Continuous Numerical Values
We report the discovery that binary encoding allows neural networks to extrapolate periodic functions beyond their training bounds. We introduce Normalized Base-2 Encoding (NB2E) as a method for encoding continuous numerical values and demonstrate that, using this input encoding, vanilla multi-layer perceptrons (MLP) successfully extrapolate diverse periodic signals without prior knowledge of their functional form. Internal activation analysis reveals that NB2E induces bit-phase representations, enabling MLPs to learn and extrapolate signal structure independently of position.
comment: Submitted to JMLR, under review
☆ Quantum Approaches to Urban Logistics: From Core QAOA to Clustered Scalability
The Traveling Salesman Problem (TSP) is a fundamental challenge in combinatorial optimization, widely applied in logistics and transportation. As the size of TSP instances grows, traditional algorithms often struggle to produce high-quality solutions within reasonable timeframes. This study investigates the potential of the Quantum Approximate Optimization Algorithm (QAOA), a hybrid quantum-classical method, to solve TSP under realistic constraints. We adopt a QUBO-based formulation of TSP that integrates real-world logistical constraints reflecting operational conditions, such as vehicle capacity, road accessibility, and time windows, while ensuring compatibility with the limitations of current quantum hardware. Our experiments are conducted in a simulated environment using high-performance computing (HPC) resources to assess QAOA's performance across different problem sizes and quantum circuit depths. In order to improve scalability, we propose clustering QAOA (Cl-QAOA), a hybrid approach combining classical machine learning with QAOA. This method decomposes large TSP instances into smaller sub-problems, making quantum optimization feasible even on devices with a limited number of qubits. The results offer a comprehensive evaluation of QAOA's strengths and limitations in solving constrained TSP scenarios. This study advances quantum optimization and lays groundwork for future large-scale applications.
☆ Interpretable and Steerable Concept Bottleneck Sparse Autoencoders
Sparse autoencoders (SAEs) promise a unified approach for mechanistic interpretability, concept discovery, and model steering in LLMs and LVLMs. However, realizing this potential requires that the learned features be both interpretable and steerable. To that end, we introduce two new computationally inexpensive interpretability and steerability metrics and conduct a systematic analysis on LVLMs. Our analysis uncovers two observations; (i) a majority of SAE neurons exhibit either low interpretability or low steerability or both, rendering them ineffective for downstream use; and (ii) due to the unsupervised nature of SAEs, user-desired concepts are often absent in the learned dictionary, thus limiting their practical utility. To address these limitations, we propose Concept Bottleneck Sparse Autoencoders (CB-SAE) - a novel post-hoc framework that prunes low-utility neurons and augments the latent space with a lightweight concept bottleneck aligned to a user-defined concept set. The resulting CB-SAE improves interpretability by +32.1% and steerability by +14.5% across LVLMs and image generation tasks. We will make our code and model weights available.
☆ What matters for Representation Alignment: Global Information or Spatial Structure?
Representation alignment (REPA) guides generative training by distilling representations from a strong, pretrained vision encoder to intermediate diffusion features. We investigate a fundamental question: what aspect of the target representation matters for generation, its \textit{global} \revision{semantic} information (e.g., measured by ImageNet-1K accuracy) or its spatial structure (i.e. pairwise cosine similarity between patch tokens)? Prevalent wisdom holds that stronger global semantic performance leads to better generation as a target representation. To study this, we first perform a large-scale empirical analysis across 27 different vision encoders and different model scales. The results are surprising; spatial structure, rather than global performance, drives the generation performance of a target representation. To further study this, we introduce two straightforward modifications, which specifically accentuate the transfer of \emph{spatial} information. We replace the standard MLP projection layer in REPA with a simple convolution layer and introduce a spatial normalization layer for the external representation. Surprisingly, our simple method (implemented in $<$4 lines of code), termed iREPA, consistently improves convergence speed of REPA, across a diverse set of vision encoders, model sizes, and training variants (such as REPA, REPA-E, Meanflow, JiT etc). %, etc. Our work motivates revisiting the fundamental working mechanism of representational alignment and how it can be leveraged for improved training of generative models. The code and project page are available at https://end2end-diffusion.github.io/irepa
comment: Project page: https://end2end-diffusion.github.io/irepa
☆ Script Gap: Evaluating LLM Triage on Indian Languages in Native vs Roman Scripts in a Real World Setting
Large Language Models (LLMs) are increasingly deployed in high-stakes clinical applications in India. In many such settings, speakers of Indian languages frequently communicate using romanized text rather than native scripts, yet existing research rarely evaluates this orthographic variation using real-world data. We investigate how romanization impacts the reliability of LLMs in a critical domain: maternal and newborn healthcare triage. We benchmark leading LLMs on a real-world dataset of user-generated queries spanning five Indian languages and Nepali. Our results reveal consistent degradation in performance for romanized messages, with F1 scores trailing those of native scripts by 5-12 points. At our partner maternal health organization in India, this gap could cause nearly 2 million excess errors in triage. Crucially, this performance gap by scripts is not due to a failure in clinical reasoning. We demonstrate that LLMs often correctly infer the semantic intent of romanized queries. Nevertheless, their final classification outputs remain brittle in the presence of orthographic noise in romanized inputs. Our findings highlight a critical safety blind spot in LLM-based health systems: models that appear to understand romanized input may still fail to act on it reliably.
☆ Grow Up and Merge: Scaling Strategies for Efficient Language Adaptation
Achieving high-performing language models which include medium- and lower-resource languages remains a challenge. Massively multilingual models still underperform compared to language-specific adaptations, especially at smaller model scales. In this work, we investigate scaling as an efficient strategy for adapting pretrained models to new target languages. Through comprehensive scaling ablations with approximately FLOP-matched models, we test whether upscaling an English base model enables more effective and resource-efficient adaptation than standard continued pretraining. We find that, once exposed to sufficient target-language data, larger upscaled models can match or surpass the performance of smaller models continually pretrained on much more data, demonstrating the benefits of scaling for data efficiency. Scaling also helps preserve the base model's capabilities in English, thus reducing catastrophic forgetting. Finally, we explore whether such scaled, language-specific models can be merged to construct modular and flexible multilingual systems. We find that while merging remains less effective than joint multilingual training, upscaled merges perform better than smaller ones. We observe large performance differences across merging methods, suggesting potential for improvement through merging approaches specialized for language-level integration.
☆ Template-Free Retrosynthesis with Graph-Prior Augmented Transformers
Retrosynthesis reaction prediction seeks to infer plausible reactant molecules for a given product and is a central problem in computer-aided organic synthesis. Despite recent progress, many existing models still fall short of the accuracy and robustness required for practical deployment. This work studies a template-free, Transformer-based framework that eliminates reliance on handcrafted reaction templates or additional chemical rule engines. The model injects molecular graph information into the attention mechanism to jointly exploit \SMILES\ sequences and structural cues, and further applies a paired data augmentation strategy to enhance training diversity and scale. On the USPTO-50K benchmark, our proposed approach achieves state-of-the-art performance among template-free methods and substantially outperforming a vanilla Transformer baseline.
☆ OPV: Outcome-based Process Verifier for Efficient Long Chain-of-Thought Verification
Large language models (LLMs) have achieved significant progress in solving complex reasoning tasks by Reinforcement Learning with Verifiable Rewards (RLVR). This advancement is also inseparable from the oversight automated by reliable verifiers. However, current outcome-based verifiers (OVs) are unable to inspect the unreliable intermediate steps in the long reasoning chains of thought (CoTs). Meanwhile, current process-based verifiers (PVs) have difficulties in reliably detecting errors in the complex long CoTs, limited by the scarcity of high-quality annotations due to the prohibitive costs of human annotations. Therefore, we propose the Outcome-based Process Verifier (OPV), which verifies the rationale process of summarized outcomes from long CoTs to achieve both accurate and efficient verification and enable large-scale annotation. To empower the proposed verifier, we adopt an iterative active learning framework with expert annotations to progressively improve the verification capability of OPV with fewer annotation costs. Specifically, in each iteration, the most uncertain cases of the current best OPV are annotated and then subsequently used to train a new OPV through Rejection Fine-Tuning (RFT) and RLVR for the next round. Extensive experiments demonstrate OPV's superior performance and broad applicability. It achieves new state-of-the-art results on our held-out OPV-Bench, outperforming much larger open-source models such as Qwen3-Max-Preview with an F1 score of 83.1 compared to 76.3. Furthermore, OPV effectively detects false positives within synthetic dataset, closely align with expert assessment. When collaborating with policy models, OPV consistently yields performance gains, e.g., raising the accuracy of DeepSeek-R1-Distill-Qwen-32B from 55.2% to 73.3% on AIME2025 as the compute budget scales.
☆ PMB-NN: Physiology-Centred Hybrid AI for Personalized Hemodynamic Monitoring from Photoplethysmography
Continuous monitoring of blood pressure (BP) and hemodynamic parameters such as peripheral resistance (R) and arterial compliance (C) are critical for early vascular dysfunction detection. While photoplethysmography (PPG) wearables has gained popularity, existing data-driven methods for BP estimation lack interpretability. We advanced our previously proposed physiology-centered hybrid AI method-Physiological Model-Based Neural Network (PMB-NN)-in blood pressure estimation, that unifies deep learning with a 2-element Windkessel based model parameterized by R and C acting as physics constraints. The PMB-NN model was trained in a subject-specific manner using PPG-derived timing features, while demographic information was used to infer an intermediate variable: cardiac output. We validated the model on 10 healthy adults performing static and cycling activities across two days for model's day-to-day robustness, benchmarked against deep learning (DL) models (FCNN, CNN-LSTM, Transformer) and standalone Windkessel based physiological model (PM). Validation was conducted on three perspectives: accuracy, interpretability and plausibility. PMB-NN achieved systolic BP accuracy (MAE: 7.2 mmHg) comparable to DL benchmarks, diastolic performance (MAE: 3.9 mmHg) lower than DL models. However, PMB-NN exhibited higher physiological plausibility than both DL baselines and PM, suggesting that the hybrid architecture unifies and enhances the respective merits of physiological principles and data-driven techniques. Beyond BP, PMB-NN identified R (ME: 0.15 mmHg$\cdot$s/ml) and C (ME: -0.35 ml/mmHg) during training with accuracy similar to PM, demonstrating that the embedded physiological constraints confer interpretability to the hybrid AI framework. These results position PMB-NN as a balanced, physiologically grounded alternative to purely data-driven approaches for daily hemodynamic monitoring.
☆ LGAN: An Efficient High-Order Graph Neural Network via the Line Graph Aggregation
Graph Neural Networks (GNNs) have emerged as a dominant paradigm for graph classification. Specifically, most existing GNNs mainly rely on the message passing strategy between neighbor nodes, where the expressivity is limited by the 1-dimensional Weisfeiler-Lehman (1-WL) test. Although a number of k-WL-based GNNs have been proposed to overcome this limitation, their computational cost increases rapidly with k, significantly restricting the practical applicability. Moreover, since the k-WL models mainly operate on node tuples, these k-WL-based GNNs cannot retain fine-grained node- or edge-level semantics required by attribution methods (e.g., Integrated Gradients), leading to the less interpretable problem. To overcome the above shortcomings, in this paper, we propose a novel Line Graph Aggregation Network (LGAN), that constructs a line graph from the induced subgraph centered at each node to perform the higher-order aggregation. We theoretically prove that the LGAN not only possesses the greater expressive power than the 2-WL under injective aggregation assumptions, but also has lower time complexity. Empirical evaluations on benchmarks demonstrate that the LGAN outperforms state-of-the-art k-WL-based GNNs, while offering better interpretability.
☆ Generalized Spherical Neural Operators: Green's Function Formulation
Neural operators offer powerful approaches for solving parametric partial differential equations, but extending them to spherical domains remains challenging due to the need to preserve intrinsic geometry while avoiding distortions that break rotational consistency. Existing spherical operators rely on rotational equivariance but often lack the flexibility for real-world complexity. We propose a general operator-design framework based on the designable spherical Green's function and its harmonic expansion, establishing a solid operator-theoretic foundation for spherical learning. Based on this, we propose an absolute and relative position-dependent Green's function that enables flexible balance of equivariance and invariance for real-world modeling. The resulting operator, Green's-function Spherical Neural Operator (GSNO) with a novel spectral learning method, can adapt to anisotropic, constraint-rich systems while retaining spectral efficiency. To exploit GSNO, we develop GSHNet, a hierarchical architecture that combines multi-scale spectral modeling with spherical up-down sampling, enhancing global feature representation. Evaluations on diffusion MRI, shallow water dynamics, and global weather forecasting, GSNO and GSHNet consistently outperform state-of-the-art methods. Our results position GSNO as a principled and general framework for spherical operator learning, bridging rigorous theory with real-world complexity.
☆ Beyond the Black Box: Identifiable Interpretation and Control in Generative Models via Causal Minimality
Deep generative models, while revolutionizing fields like image and text generation, largely operate as opaque black boxes, hindering human understanding, control, and alignment. While methods like sparse autoencoders (SAEs) show remarkable empirical success, they often lack theoretical guarantees, risking subjective insights. Our primary objective is to establish a principled foundation for interpretable generative models. We demonstrate that the principle of causal minimality -- favoring the simplest causal explanation -- can endow the latent representations of diffusion vision and autoregressive language models with clear causal interpretation and robust, component-wise identifiable control. We introduce a novel theoretical framework for hierarchical selection models, where higher-level concepts emerge from the constrained composition of lower-level variables, better capturing the complex dependencies in data generation. Under theoretically derived minimality conditions (manifesting as sparsity or compression constraints), we show that learned representations can be equivalent to the true latent variables of the data-generating process. Empirically, applying these constraints to leading generative models allows us to extract their innate hierarchical concept graphs, offering fresh insights into their internal knowledge organization. Furthermore, these causally grounded concepts serve as levers for fine-grained model steering, paving the way for transparent, reliable systems.
☆ HybridVFL: Disentangled Feature Learning for Edge-Enabled Vertical Federated Multimodal Classification
Vertical Federated Learning (VFL) offers a privacy-preserving paradigm for Edge AI scenarios like mobile health diagnostics, where sensitive multimodal data reside on distributed, resource-constrained devices. Yet, standard VFL systems often suffer performance limitations due to simplistic feature fusion. This paper introduces HybridVFL, a novel framework designed to overcome this bottleneck by employing client-side feature disentanglement paired with a server-side cross-modal transformer for context-aware fusion. Through systematic evaluation on the multimodal HAM10000 skin lesion dataset, we demonstrate that HybridVFL significantly outperforms standard federated baselines, validating the criticality of advanced fusion mechanisms in robust, privacy-preserving systems.
comment: 6 pages, 2 figures, 1 table. Accepted at UCC '25 (IEEE/ACM 18th International Conference on Utility and Cloud Computing), December 1-4, 2025, Nantes, France. DOI to be activated upon final publication
☆ Sharp Monocular View Synthesis in Less Than a Second
We present SHARP, an approach to photorealistic view synthesis from a single image. Given a single photograph, SHARP regresses the parameters of a 3D Gaussian representation of the depicted scene. This is done in less than a second on a standard GPU via a single feedforward pass through a neural network. The 3D Gaussian representation produced by SHARP can then be rendered in real time, yielding high-resolution photorealistic images for nearby views. The representation is metric, with absolute scale, supporting metric camera movements. Experimental results demonstrate that SHARP delivers robust zero-shot generalization across datasets. It sets a new state of the art on multiple datasets, reducing LPIPS by 25-34% and DISTS by 21-43% versus the best prior model, while lowering the synthesis time by three orders of magnitude. Code and weights are provided at https://github.com/apple/ml-sharp
comment: Code and weights available at https://github.com/apple/ml-sharp
☆ Optimal transport unlocks end-to-end learning for single-molecule localization
Single-molecule localization microscopy (SMLM) allows reconstructing biology-relevant structures beyond the diffraction limit by detecting and localizing individual fluorophores -- fluorescent molecules stained onto the observed specimen -- over time to reconstruct super-resolved images. Currently, efficient SMLM requires non-overlapping emitting fluorophores, leading to long acquisition times that hinders live-cell imaging. Recent deep-learning approaches can handle denser emissions, but they rely on variants of non-maximum suppression (NMS) layers, which are unfortunately non-differentiable and may discard true positives with their local fusion strategy. In this presentation, we reformulate the SMLM training objective as a set-matching problem, deriving an optimal-transport loss that eliminates the need for NMS during inference and enables end-to-end training. Additionally, we propose an iterative neural network that integrates knowledge of the microscope's optical system inside our model. Experiments on synthetic benchmarks and real biological data show that both our new loss function and architecture surpass the state of the art at moderate and high emitter densities. Code is available at https://github.com/RSLLES/SHOT.
☆ Evaluating Gemini Robotics Policies in a Veo World Simulator
Generative world models hold significant potential for simulating interactions with visuomotor policies in varied environments. Frontier video models can enable generation of realistic observations and environment interactions in a scalable and general manner. However, the use of video models in robotics has been limited primarily to in-distribution evaluations, i.e., scenarios that are similar to ones used to train the policy or fine-tune the base video model. In this report, we demonstrate that video models can be used for the entire spectrum of policy evaluation use cases in robotics: from assessing nominal performance to out-of-distribution (OOD) generalization, and probing physical and semantic safety. We introduce a generative evaluation system built upon a frontier video foundation model (Veo). The system is optimized to support robot action conditioning and multi-view consistency, while integrating generative image-editing and multi-view completion to synthesize realistic variations of real-world scenes along multiple axes of generalization. We demonstrate that the system preserves the base capabilities of the video model to enable accurate simulation of scenes that have been edited to include novel interaction objects, novel visual backgrounds, and novel distractor objects. This fidelity enables accurately predicting the relative performance of different policies in both nominal and OOD conditions, determining the relative impact of different axes of generalization on policy performance, and performing red teaming of policies to expose behaviors that violate physical or semantic safety constraints. We validate these capabilities through 1600+ real-world evaluations of eight Gemini Robotics policy checkpoints and five tasks for a bimanual manipulator.
☆ AEBNAS: Strengthening Exit Branches in Early-Exit Networks through Hardware-Aware Neural Architecture Search
Early-exit networks are effective solutions for reducing the overall energy consumption and latency of deep learning models by adjusting computation based on the complexity of input data. By incorporating intermediate exit branches into the architecture, they provide less computation for simpler samples, which is particularly beneficial for resource-constrained devices where energy consumption is crucial. However, designing early-exit networks is a challenging and time-consuming process due to the need to balance efficiency and performance. Recent works have utilized Neural Architecture Search (NAS) to design more efficient early-exit networks, aiming to reduce average latency while improving model accuracy by determining the best positions and number of exit branches in the architecture. Another important factor affecting the efficiency and accuracy of early-exit networks is the depth and types of layers in the exit branches. In this paper, we use hardware-aware NAS to strengthen exit branches, considering both accuracy and efficiency during optimization. Our performance evaluation on the CIFAR-10, CIFAR-100, and SVHN datasets demonstrates that our proposed framework, which considers varying depths and layers for exit branches along with adaptive threshold tuning, designs early-exit networks that achieve higher accuracy with the same or lower average number of MACs compared to the state-of-the-art approaches.
☆ Learning by Analogy: A Causal Framework for Composition Generalization
Compositional generalization -- the ability to understand and generate novel combinations of learned concepts -- enables models to extend their capabilities beyond limited experiences. While effective, the data structures and principles that enable this crucial capability remain poorly understood. We propose that compositional generalization fundamentally requires decomposing high-level concepts into basic, low-level concepts that can be recombined across similar contexts, similar to how humans draw analogies between concepts. For example, someone who has never seen a peacock eating rice can envision this scene by relating it to their previous observations of a chicken eating rice. In this work, we formalize these intuitive processes using principles of causal modularity and minimal changes. We introduce a hierarchical data-generating process that naturally encodes different levels of concepts and their interaction mechanisms. Theoretically, we demonstrate that this approach enables compositional generalization supporting complex relations between composed concepts, advancing beyond prior work that assumes simpler interactions like additive effects. Critically, we also prove that this latent hierarchical structure is provably recoverable (identifiable) from observable data like text-image pairs, a necessary step for learning such a generative process. To validate our theory, we apply insights from our theoretical framework and achieve significant improvements on benchmark datasets.
☆ DCFO Additional Material
Outlier detection identifies data points that significantly deviate from the majority of the data distribution. Explaining outliers is crucial for understanding the underlying factors that contribute to their detection, validating their significance, and identifying potential biases or errors. Effective explanations provide actionable insights, facilitating preventive measures to avoid similar outliers in the future. Counterfactual explanations clarify why specific data points are classified as outliers by identifying minimal changes required to alter their prediction. Although valuable, most existing counterfactual explanation methods overlook the unique challenges posed by outlier detection, and fail to target classical, widely adopted outlier detection algorithms. Local Outlier Factor (LOF) is one the most popular unsupervised outlier detection methods, quantifying outlierness through relative local density. Despite LOF's widespread use across diverse applications, it lacks interpretability. To address this limitation, we introduce Density-based Counterfactuals for Outliers (DCFO), a novel method specifically designed to generate counterfactual explanations for LOF. DCFO partitions the data space into regions where LOF behaves smoothly, enabling efficient gradient-based optimisation. Extensive experimental validation on 50 OpenML datasets demonstrates that DCFO consistently outperforms benchmarked competitors, offering superior proximity and validity of generated counterfactuals.
☆ Token Sample Complexity of Attention
As context windows in large language models continue to expand, it is essential to characterize how attention behaves at extreme sequence lengths. We introduce token-sample complexity: the rate at which attention computed on $n$ tokens converges to its infinite-token limit. We estimate finite-$n$ convergence bounds at two levels: pointwise uniform convergence of the attention map, and convergence of moments for the transformed token distribution. For compactly supported (and more generally sub-Gaussian) distributions, our first result shows that the attention map converges uniformly on a ball of radius $R$ at rate $C(R)/\sqrt{n}$, where $C(R)$ grows exponentially with $R$. For large $R$, this estimate loses practical value, and our second result addresses this issue by establishing convergence rates for the moments of the transformed distribution (the token output of the attention layer). In this case, the rate is $C'(R)/n^β$ with $β<\tfrac{1}{2}$, and $C'(R)$ depends polynomially on the size of the support of the distribution. The exponent $β$ depends on the attention geometry and the spectral properties of the tokens distribution. We also examine the regime in which the attention parameter tends to infinity and the softmax approaches a hardmax, and in this setting, we establish a logarithmic rate of convergence. Experiments on synthetic Gaussian data and real BERT models on Wikipedia text confirm our predictions.
☆ Virtual camera detection: Catching video injection attacks in remote biometric systems
Face anti-spoofing (FAS) is a vital component of remote biometric authentication systems based on facial recognition, increasingly used across web-based applications. Among emerging threats, video injection attacks -- facilitated by technologies such as deepfakes and virtual camera software -- pose significant challenges to system integrity. While virtual camera detection (VCD) has shown potential as a countermeasure, existing literature offers limited insight into its practical implementation and evaluation. This study introduces a machine learning-based approach to VCD, with a focus on its design and validation. The model is trained on metadata collected during sessions with authentic users. Empirical results demonstrate its effectiveness in identifying video injection attempts and reducing the risk of malicious users bypassing FAS systems.
☆ Refinement Contrastive Learning of Cell-Gene Associations for Unsupervised Cell Type Identification
Unsupervised cell type identification is crucial for uncovering and characterizing heterogeneous populations in single cell omics studies. Although a range of clustering methods have been developed, most focus exclusively on intrinsic cellular structure and ignore the pivotal role of cell-gene associations, which limits their ability to distinguish closely related cell types. To this end, we propose a Refinement Contrastive Learning framework (scRCL) that explicitly incorporates cell-gene interactions to derive more informative representations. Specifically, we introduce two contrastive distribution alignment components that reveal reliable intrinsic cellular structures by effectively exploiting cell-cell structural relationships. Additionally, we develop a refinement module that integrates gene-correlation structure learning to enhance cell embeddings by capturing underlying cell-gene associations. This module strengthens connections between cells and their associated genes, refining the representation learning to exploiting biologically meaningful relationships. Extensive experiments on several single-cell RNA-seq and spatial transcriptomics benchmark datasets demonstrate that our method consistently outperforms state-of-the-art baselines in cell-type identification accuracy. Moreover, downstream biological analyses confirm that the recovered cell populations exhibit coherent gene-expression signatures, further validating the biological relevance of our approach. The code is available at https://github.com/THPengL/scRCL.
☆ Adaptive Intrusion Detection System Leveraging Dynamic Neural Models with Adversarial Learning for 5G/6G Networks
Intrusion Detection Systems (IDS) are critical components in safeguarding 5G/6G networks from both internal and external cyber threats. While traditional IDS approaches rely heavily on signature-based methods, they struggle to detect novel and evolving attacks. This paper presents an advanced IDS framework that leverages adversarial training and dynamic neural networks in 5G/6G networks to enhance network security by providing robust, real-time threat detection and response capabilities. Unlike conventional models, which require costly retraining to update knowledge, the proposed framework integrates incremental learning algorithms, reducing the need for frequent retraining. Adversarial training is used to fortify the IDS against poisoned data. By using fewer features and incorporating statistical properties, the system can efficiently detect potential threats. Extensive evaluations using the NSL- KDD dataset demonstrate that the proposed approach provides better accuracy of 82.33% for multiclass classification of various network attacks while resisting dataset poisoning. This research highlights the potential of adversarial-trained, dynamic neural networks for building resilient IDS solutions.
comment: 6 pages,2 figures, 1 Table
☆ Supporting Migration Policies with Forecasts: Illegal Border Crossings in Europe through a Mixed Approach
This paper presents a mixed-methodology to forecast illegal border crossings in Europe across five key migratory routes, with a one-year time horizon. The methodology integrates machine learning techniques with qualitative insights from migration experts. This approach aims at improving the predictive capacity of data-driven models through the inclusion of a human-assessed covariate, an innovation that addresses challenges posed by sudden shifts in migration patterns and limitations in traditional datasets. The proposed methodology responds directly to the forecasting needs outlined in the EU Pact on Migration and Asylum, supporting the Asylum and Migration Management Regulation (AMMR). It is designed to provide policy-relevant forecasts that inform strategic decisions, early warning systems, and solidarity mechanisms among EU Member States. By joining data-driven modeling with expert judgment, this work aligns with existing academic recommendations and introduces a novel operational tool tailored for EU migration governance. The methodology is tested and validated with known data to demonstrate its applicability and reliability in migration-related policy context.
comment: 17 pages, 6 figures, 2 tables + supplementary material with 20 pages, 21 figures, 2 tables
☆ Uncertainty-Preserving QBNNs: Multi-Level Quantization of SVI-Based Bayesian Neural Networks for Image Classification
Bayesian Neural Networks (BNNs) provide principled uncertainty quantification but suffer from substantial computational and memory overhead compared to deterministic networks. While quantization techniques have successfully reduced resource requirements in standard deep learning models, their application to probabilistic models remains largely unexplored. We introduce a systematic multi-level quantization framework for Stochastic Variational Inference based BNNs that distinguishes between three quantization strategies: Variational Parameter Quantization (VPQ), Sampled Parameter Quantization (SPQ), and Joint Quantization (JQ). Our logarithmic quantization for variance parameters, and specialized activation functions to preserve the distributional structure are essential for calibrated uncertainty estimation. Through comprehensive experiments on Dirty-MNIST, we demonstrate that BNNs can be quantized down to 4-bit precision while maintaining both classification accuracy and uncertainty disentanglement. At 4 bits, Joint Quantization achieves up to 8x memory reduction compared to floating-point implementations with minimal degradation in epistemic and aleatoric uncertainty estimation. These results enable deployment of BNNs on resource-constrained edge devices and provide design guidelines for future analog "Bayesian Machines" operating at inherently low precision.
☆ Multi-Objective Reward and Preference Optimization: Theory and Algorithms
This thesis develops theoretical frameworks and algorithms that advance constrained reinforcement learning (RL) across control, preference learning, and alignment of large language models. The first contribution addresses constrained Markov Decision Processes (CMDPs) under the average-cost criterion through the Average-Constrained Policy Optimization (ACPO) algorithm. ACPO integrates sensitivity analysis with trust-region updates to ensure stable constraint handling, achieving state-of-the-art empirical performance with theoretical guarantees. Constrained RL is then extended to finite-horizon settings via e-COP, the first policy optimization method for episodic CMDPs. Built on an episodic policy difference lemma, e-COP offers provable performance, simplicity, and scalability in safety-critical environments. The thesis then investigates reinforcement learning from human preferences. warmPref-PS introduces a posterior sampling strategy for linear bandits that integrates offline preference data from heterogeneous raters into online learning. Explicit modeling of rater competence yields substantial regret reduction and more efficient data collection for RLHF. The PSPL algorithm further advances preference-based RL by jointly sampling reward models and transition dynamics from pairwise trajectory comparisons, providing Bayesian simple-regret guarantees and robust empirical identification of optimal policies. The final contribution applies these methods to large-scale model alignment. A multi-objective constrained optimization view yields MOPO, an iterative algorithm with closed-form updates that scales to multi-billion-parameter language models and remains robust across alignment settings. Collectively, the thesis unifies constrained RL across average-cost, episodic, and preference-driven paradigms, delivering theoretical advances and practical tools for safe and aligned decision-making.
comment: PhD thesis
☆ Authority Backdoor: A Certifiable Backdoor Mechanism for Authoring DNNs AAAI 2026
Deep Neural Networks (DNNs), as valuable intellectual property, face unauthorized use. Existing protections, such as digital watermarking, are largely passive; they provide only post-hoc ownership verification and cannot actively prevent the illicit use of a stolen model. This work proposes a proactive protection scheme, dubbed ``Authority Backdoor," which embeds access constraints directly into the model. In particular, the scheme utilizes a backdoor learning framework to intrinsically lock a model's utility, such that it performs normally only in the presence of a specific trigger (e.g., a hardware fingerprint). But in its absence, the DNN's performance degrades to be useless. To further enhance the security of the proposed authority scheme, the certifiable robustness is integrated to prevent an adaptive attacker from removing the implanted backdoor. The resulting framework establishes a secure authority mechanism for DNNs, combining access control with certifiable robustness against adversarial attacks. Extensive experiments on diverse architectures and datasets validate the effectiveness and certifiable robustness of the proposed framework.
comment: Accepted to AAAI 2026 (Main Track). Code is available at: https://github.com/PlayerYangh/Authority-Trigger
☆ THeGAU: Type-Aware Heterogeneous Graph Autoencoder and Augmentation
Heterogeneous Graph Neural Networks (HGNNs) are effective for modeling Heterogeneous Information Networks (HINs), which encode complex multi-typed entities and relations. However, HGNNs often suffer from type information loss and structural noise, limiting their representational fidelity and generalization. We propose THeGAU, a model-agnostic framework that combines a type-aware graph autoencoder with guided graph augmentation to improve node classification. THeGAU reconstructs schema-valid edges as an auxiliary task to preserve node-type semantics and introduces a decoder-driven augmentation mechanism to selectively refine noisy structures. This joint design enhances robustness, accuracy, and efficiency while significantly reducing computational overhead. Extensive experiments on three benchmark HIN datasets (IMDB, ACM, and DBLP) demonstrate that THeGAU consistently outperforms existing HGNN methods, achieving state-of-the-art performance across multiple backbones.
☆ Topology-Guided Quantum GANs for Constrained Graph Generation
Quantum computing (QC) promises theoretical advantages, benefiting computational problems that would not be efficiently classically simulatable. However, much of this theoretical speedup depends on the quantum circuit design solving the problem. We argue that QC literature has yet to explore more domain specific ansatz-topologies, instead of relying on generic, one-size-fits-all architectures. In this work, we show that incorporating task-specific inductive biases -- specifically geometric priors -- into quantum circuit design can enhance the performance of hybrid Quantum Generative Adversarial Networks (QuGANs) on the task of generating geometrically constrained K4 graphs. We evaluate a portfolio of entanglement topologies and loss-function designs to assess their impact on both statistical fidelity and compliance with geometric constraints, including the Triangle and Ptolemaic inequalities. Our results show that aligning circuit topology with the underlying problem structure yields substantial benefits: the Triangle-topology QuGAN achieves the highest geometric validity among quantum models and matches the performance of classical Generative Adversarial Networks (GAN). Additionally, we showcase how specific architectural choices, such as entangling gate types, variance regularization and output-scaling govern the trade-off between geometric consistency and distributional accuracy, thus emphasizing the value of structured, task-aware quantum ansatz-topologies.
☆ Is the Information Bottleneck Robust Enough? Towards Label-Noise Resistant Information Bottleneck Learning AAAI
The Information Bottleneck (IB) principle facilitates effective representation learning by preserving label-relevant information while compressing irrelevant information. However, its strong reliance on accurate labels makes it inherently vulnerable to label noise, prevalent in real-world scenarios, resulting in significant performance degradation and overfitting. To address this issue, we propose LaT-IB, a novel Label-Noise ResistanT Information Bottleneck method which introduces a "Minimal-Sufficient-Clean" (MSC) criterion. Instantiated as a mutual information regularizer to retain task-relevant information while discarding noise, MSC addresses standard IB's vulnerability to noisy label supervision. To achieve this, LaT-IB employs a noise-aware latent disentanglement that decomposes the latent representation into components aligned with to the clean label space and the noise space. Theoretically, we first derive mutual information bounds for each component of our objective including prediction, compression, and disentanglement, and moreover prove that optimizing it encourages representations invariant to input noise and separates clean and noisy label information. Furthermore, we design a three-phase training framework: Warmup, Knowledge Injection and Robust Training, to progressively guide the model toward noise-resistant representations. Extensive experiments demonstrate that LaT-IB achieves superior robustness and efficiency under label noise, significantly enhancing robustness and applicability in real-world scenarios with label noise.
comment: Accepted by the Main Technical Track of the 40th Annual AAAI Conference on Artificial Intelligence (AAAI-2026)
☆ Flexible Deep Neural Networks for Partially Linear Survival Data
We propose a flexible deep neural network (DNN) framework for modeling survival data within a partially linear regression structure. The approach preserves interpretability through a parametric linear component for covariates of primary interest, while a nonparametric DNN component captures complex time-covariate interactions among nuisance variables. We refer to the method as FLEXI-Haz, a flexible hazard model with a partially linear structure. In contrast to existing DNN approaches for partially linear Cox models, FLEXI-Haz does not rely on the proportional hazards assumption. We establish theoretical guarantees: the neural network component attains minimax-optimal convergence rates based on composite Holder classes, and the linear estimator is root-n consistent, asymptotically normal, and semiparametrically efficient. Extensive simulations and real-data analyses demonstrate that FLEXI-Haz provides accurate estimation of the linear effect, offering a principled and interpretable alternative to modern methods based on proportional hazards. Code for implementing FLEXI-Haz, as well as scripts for reproducing data analyses and simulations, is available at: https://github.com/AsafBanana/FLEXI-Haz
☆ Causal Reasoning Favors Encoders: On The Limits of Decoder-Only Models
In context learning (ICL) underpins recent advances in large language models (LLMs), although its role and performance in causal reasoning remains unclear. Causal reasoning demands multihop composition and strict conjunctive control, and reliance on spurious lexical relations of the input could provide misleading results. We hypothesize that, due to their ability to project the input into a latent space, encoder and encoder decoder architectures are better suited for said multihop conjunctive reasoning versus decoder only models. To do this, we compare fine-tuned versions of all the aforementioned architectures with zero and few shot ICL in both natural language and non natural language scenarios. We find that ICL alone is insufficient for reliable causal reasoning, often overfocusing on irrelevant input features. In particular, decoder only models are noticeably brittle to distributional shifts, while finetuned encoder and encoder decoder models can generalize more robustly across our tests, including the non natural language split. Both architectures are only matched or surpassed by decoder only architectures at large scales. We conclude by noting that for cost effective, short horizon robust causal reasoning, encoder or encoder decoder architectures with targeted finetuning are preferable.
LLM-Auction: Generative Auction towards LLM-Native Advertising
The rapid advancement of large language models (LLMs) necessitates novel monetization strategies, among which LLM-native advertising has emerged as a promising paradigm by naturally integrating advertisement within LLM-generated responses. However, this paradigm fundamentally shifts the auction object from discrete ad slots to the distribution over LLM outputs, posing new challenges for designing auction mechanisms. Existing mechanisms for LLM-native advertising adopt frameworks that decouple auction and generation, which either ignore externalities or require multiple LLM inferences for ad allocation, rendering them impractical for industrial scenarios. To address these challenges, we propose LLM-Auction, which to the best of our knowledge is the first learning-based generative auction mechanism that integrates auction and LLM generation for LLM-native advertising. By formulating the allocation optimization as a preference alignment problem between LLM outputs and the mechanism's objective which reflects both advertisers' expected value and user experience, we introduce Iterative Reward-Preference Optimization (IRPO) algorithm that alternately optimizes the reward model and the LLM. This approach enables the LLM to inherently model allocation externalities without any extra inference cost. We further identify the allocation monotonicity and continuity of LLM-Auction, which allows us to prove that a simple first-price payment rule exhibits favorable incentive properties. Additionally, we design an LLM-as-a-judge simulation environment to facilitate large-scale data construction and enable comprehensive quantitative evaluation of the mechanism's performance. Extensive quantitative and qualitative experiments demonstrate that LLM-Auction significantly outperforms existing baselines in allocation efficiency, while achieving the desired mechanism properties.
☆ Unlocking the Address Book: Dissecting the Sparse Semantic Structure of LLM Key-Value Caches via Sparse Autoencoders
The Key-Value (KV) cache is the primary memory bottleneck in long-context Large Language Models, yet it is typically treated as an opaque numerical tensor. In this work, we propose \textbf{STA-Attention}, a framework that utilizes Top-K Sparse Autoencoders (SAEs) to decompose the KV cache into interpretable ``semantic atoms.'' Unlike standard $L_1$-regularized SAEs, our Top-K approach eliminates shrinkage bias, preserving the precise dot-product geometry required for attention. Our analysis uncovers a fundamental \textbf{Key-Value Asymmetry}: while Key vectors serve as highly sparse routers dominated by a ``Semantic Elbow,'' deep Value vectors carry dense content payloads requiring a larger budget. Based on this structure, we introduce a Dual-Budget Strategy that selectively preserves the most informative semantic components while filtering representational noise. Experiments on Yi-6B, Mistral-7B, Qwen2.5-32B, and others show that our semantic reconstructions maintain perplexity and zero-shot performance comparable to the original models, effectively bridging the gap between mechanistic interpretability and faithful attention modeling.
☆ Mode-Seeking for Inverse Problems with Diffusion Models
A pre-trained unconditional diffusion model, combined with posterior sampling or maximum a posteriori (MAP) estimation techniques, can solve arbitrary inverse problems without task-specific training or fine-tuning. However, existing posterior sampling and MAP estimation methods often rely on modeling approximations and can be computationally demanding. In this work, we propose the variational mode-seeking loss (VML), which, when minimized during each reverse diffusion step, guides the generated sample towards the MAP estimate. VML arises from a novel perspective of minimizing the Kullback-Leibler (KL) divergence between the diffusion posterior $p(\mathbf{x}_0|\mathbf{x}_t)$ and the measurement posterior $p(\mathbf{x}_0|\mathbf{y})$, where $\mathbf{y}$ denotes the measurement. Importantly, for linear inverse problems, VML can be analytically derived and need not be approximated. Based on further theoretical insights, we propose VML-MAP, an empirically effective algorithm for solving inverse problems, and validate its efficacy over existing methods in both performance and computational time, through extensive experiments on diverse image-restoration tasks across multiple datasets.
☆ Disentangled and Distilled Encoder for Out-of-Distribution Reasoning with Rademacher Guarantees
Recently, the disentangled latent space of a variational autoencoder (VAE) has been used to reason about multi-label out-of-distribution (OOD) test samples that are derived from different distributions than training samples. Disentangled latent space means having one-to-many maps between latent dimensions and generative factors or important characteristics of an image. This paper proposes a disentangled distilled encoder (DDE) framework to decrease the OOD reasoner size for deployment on resource-constrained devices while preserving disentanglement. DDE formalizes student-teacher distillation for model compression as a constrained optimization problem while preserving disentanglement with disentanglement constraints. Theoretical guarantees for disentanglement during distillation based on Rademacher complexity are established. The approach is evaluated empirically by deploying the compressed model on an NVIDIA
☆ Adaptive Replay Buffer for Offline-to-Online Reinforcement Learning
Offline-to-Online Reinforcement Learning (O2O RL) faces a critical dilemma in balancing the use of a fixed offline dataset with newly collected online experiences. Standard methods, often relying on a fixed data-mixing ratio, struggle to manage the trade-off between early learning stability and asymptotic performance. To overcome this, we introduce the Adaptive Replay Buffer (ARB), a novel approach that dynamically prioritizes data sampling based on a lightweight metric we call 'on-policyness'. Unlike prior methods that rely on complex learning procedures or fixed ratios, ARB is designed to be learning-free and simple to implement, seamlessly integrating into existing O2O RL algorithms. It assesses how closely collected trajectories align with the current policy's behavior and assigns a proportional sampling weight to each transition within that trajectory. This strategy effectively leverages offline data for initial stability while progressively focusing learning on the most relevant, high-rewarding online experiences. Our extensive experiments on D4RL benchmarks demonstrate that ARB consistently mitigates early performance degradation and significantly improves the final performance of various O2O RL algorithms, highlighting the importance of an adaptive, behavior-aware replay buffer design.
comment: 15 pages, 3 figures, 7 tables
☆ Hyperspectral Image Data Reduction for Endmember Extraction
Endmember extraction from hyperspectral images aims to identify the spectral signatures of materials present in a scene. Recent studies have shown that self-dictionary methods can achieve high extraction accuracy; however, their high computational cost limits their applicability to large-scale hyperspectral images. Although several approaches have been proposed to mitigate this issue, it remains a major challenge. Motivated by this situation, this paper pursues a data reduction approach. Assuming that the hyperspectral image follows the linear mixing model with the pure-pixel assumption, we develop a data reduction technique that removes pixels that do not contain endmembers. We analyze the theoretical properties of this reduction step and show that it preserves pixels that lie close to the endmembers. Building on this result, we propose a data-reduced self-dictionary method that integrates the data reduction with a self-dictionary method based on a linear programming formulation. Numerical experiments demonstrate that the proposed method can substantially reduce the computational time of the original self-dictionary method without sacrificing endmember extraction accuracy.
☆ UACER: An Uncertainty-Aware Critic Ensemble Framework for Robust Adversarial Reinforcement Learning
Robust adversarial reinforcement learning has emerged as an effective paradigm for training agents to handle uncertain disturbance in real environments, with critical applications in sequential decision-making domains such as autonomous driving and robotic control. Within this paradigm, agent training is typically formulated as a zero-sum Markov game between a protagonist and an adversary to enhance policy robustness. However, the trainable nature of the adversary inevitably induces non-stationarity in the learning dynamics, leading to exacerbated training instability and convergence difficulties, particularly in high-dimensional complex environments. In this paper, we propose a novel approach, Uncertainty-Aware Critic Ensemble for robust adversarial Reinforcement learning (UACER), which consists of two strategies: 1) Diversified critic ensemble: a diverse set of K critic networks is exploited in parallel to stabilize Q-value estimation rather than conventional single-critic architectures for both variance reduction and robustness enhancement. 2) Time-varying Decay Uncertainty (TDU) mechanism: advancing beyond simple linear combinations, we develop a variance-derived Q-value aggregation strategy that explicitly incorporates epistemic uncertainty to dynamically regulate the exploration-exploitation trade-off while simultaneously stabilizing the training process. Comprehensive experiments across several MuJoCo control problems validate the superior effectiveness of UACER, outperforming state-of-the-art methods in terms of overall performance, stability, and efficiency.
☆ From Lab to Reality: A Practical Evaluation of Deep Learning Models and LLMs for Vulnerability Detection
Vulnerability detection methods based on deep learning (DL) have shown strong performance on benchmark datasets, yet their real-world effectiveness remains underexplored. Recent work suggests that both graph neural network (GNN)-based and transformer-based models, including large language models (LLMs), yield promising results when evaluated on curated benchmark datasets. These datasets are typically characterized by consistent data distributions and heuristic or partially noisy labels. In this study, we systematically evaluate two representative DL models-ReVeal and LineVul-across four representative datasets: Juliet, Devign, BigVul, and ICVul. Each model is trained independently on each respective dataset, and their code representations are analyzed using t-SNE to uncover vulnerability related patterns. To assess realistic applicability, we deploy these models along with four pretrained LLMs, Claude 3.5 Sonnet, GPT-o3-mini, GPT-4o, and GPT-5 on a curated dataset, VentiVul, comprising 20 recently (May 2025) fixed vulnerabilities from the Linux kernel. Our experiments reveal that current models struggle to distinguish vulnerable from non-vulnerable code in representation space and generalize poorly across datasets with differing distributions. When evaluated on VentiVul, our newly constructed time-wise out-of-distribution dataset, performance drops sharply, with most models failing to detect vulnerabilities reliably. These results expose a persistent gap between academic benchmarks and real-world deployment, emphasizing the value of our deployment-oriented evaluation framework and the need for more robust code representations and higher-quality datasets.
☆ T-SKM-Net: Trainable Neural Network Framework for Linear Constraint Satisfaction via Sampling Kaczmarz-Motzkin Method
Neural network constraint satisfaction is crucial for safety-critical applications such as power system optimization, robotic path planning, and autonomous driving. However, existing constraint satisfaction methods face efficiency-applicability trade-offs, with hard constraint methods suffering from either high computational complexity or restrictive assumptions on constraint structures. The Sampling Kaczmarz-Motzkin (SKM) method is a randomized iterative algorithm for solving large-scale linear inequality systems with favorable convergence properties, but its argmax operations introduce non-differentiability, posing challenges for neural network applications. This work proposes the Trainable Sampling Kaczmarz-Motzkin Network (T-SKM-Net) framework and, for the first time, systematically integrates SKM-type methods into neural network constraint satisfaction. The framework transforms mixed constraint problems into pure inequality problems through null space transformation, employs SKM for iterative solving, and maps solutions back to the original constraint space, efficiently handling both equality and inequality constraints. We provide theoretical proof of post-processing effectiveness in expectation and end-to-end trainability guarantees based on unbiased gradient estimators, demonstrating that despite non-differentiable operations, the framework supports standard backpropagation. On the DCOPF case118 benchmark, our method achieves 4.27ms/item GPU serial forward inference with 0.0025% max optimality gap with post-processing mode and 5.25ms/item with 0.0008% max optimality gap with joint training mode, delivering over 25$\times$ speedup compared to the pandapower solver while maintaining zero constraint violations under given tolerance.
☆ Hybrid Physics-ML Model for Forward Osmosis Flux with Complete Uncertainty Quantification
Forward Osmosis (FO) is a promising low-energy membrane separation technology, but challenges in accurately modelling its water flux (Jw) persist due to complex internal mass transfer phenomena. Traditional mechanistic models struggle with empirical parameter variability, while purely data-driven models lack physical consistency and rigorous uncertainty quantification (UQ). This study introduces a novel Robust Hybrid Physics-ML framework employing Gaussian Process Regression (GPR) for highly accurate, uncertainty-aware Jw prediction. The core innovation lies in training the GPR on the residual error between the detailed, non-linear FO physical model prediction (Jw_physical) and the experimental water flux (Jw_actual). Crucially, we implement a full UQ methodology by decomposing the total predictive variance (sigma2_total) into model uncertainty (epistemic, from GPR's posterior variance) and input uncertainty (aleatoric, analytically propagated via the Delta method for multi-variate correlated inputs). Leveraging the inherent strength of GPR in low-data regimes, the model, trained on a meagre 120 data points, achieved a state-of-the-art Mean Absolute Percentage Error (MAPE) of 0.26% and an R2 of 0.999 on the independent test data, validating a truly robust and reliable surrogate model for advanced FO process optimization and digital twin development.
comment: 12 pages, 6 figures
☆ Metacognitive Sensitivity for Test-Time Dynamic Model Selection NeurIPS 2025
A key aspect of human cognition is metacognition - the ability to assess one's own knowledge and judgment reliability. While deep learning models can express confidence in their predictions, they often suffer from poor calibration, a cognitive bias where expressed confidence does not reflect true competence. Do models truly know what they know? Drawing from human cognitive science, we propose a new framework for evaluating and leveraging AI metacognition. We introduce meta-d', a psychologically-grounded measure of metacognitive sensitivity, to characterise how reliably a model's confidence predicts its own accuracy. We then use this dynamic sensitivity score as context for a bandit-based arbiter that performs test-time model selection, learning which of several expert models to trust for a given task. Our experiments across multiple datasets and deep learning model combinations (including CNNs and VLMs) demonstrate that this metacognitive approach improves joint-inference accuracy over constituent models. This work provides a novel behavioural account of AI models, recasting ensemble selection as a problem of evaluating both short-term signals (confidence prediction scores) and medium-term traits (metacognitive sensitivity).
comment: Accepted at the NeurIPS 2025 CogInterp Workshop
☆ Maximum Risk Minimization with Random Forests
We consider a regression setting where observations are collected in different environments modeled by different data distributions. The field of out-of-distribution (OOD) generalization aims to design methods that generalize better to test environments whose distributions differ from those observed during training. One line of such works has proposed to minimize the maximum risk across environments, a principle that we refer to as MaxRM (Maximum Risk Minimization). In this work, we introduce variants of random forests based on the principle of MaxRM. We provide computationally efficient algorithms and prove statistical consistency for our primary method. Our proposed method can be used with each of the following three risks: the mean squared error, the negative reward (which relates to the explained variance), and the regret (which quantifies the excess risk relative to the best predictor). For MaxRM with regret as the risk, we prove a novel out-of-sample guarantee over unseen test distributions. Finally, we evaluate the proposed methods on both simulated and real-world data.
comment: 47 pages, 13 figures
☆ Clustered Federated Learning with Hierarchical Knowledge Distillation
Clustered Federated Learning (CFL) has emerged as a powerful approach for addressing data heterogeneity and ensuring privacy in large distributed IoT environments. By clustering clients and training cluster-specific models, CFL enables personalized models tailored to groups of heterogeneous clients. However, conventional CFL approaches suffer from fragmented learning for training independent global models for each cluster and fail to take advantage of collective cluster insights. This paper advocates a shift to hierarchical CFL, allowing bi-level aggregation to train cluster-specific models at the edge and a unified global model at the cloud. This shift improves training efficiency yet might introduce communication challenges. To this end, we propose CFLHKD, a novel personalization scheme for integrating hierarchical cluster knowledge into CFL. Built upon multi-teacher knowledge distillation, CFLHKD enables inter-cluster knowledge sharing while preserving cluster-specific personalization. CFLHKD adopts a bi-level aggregation to bridge the gap between local and global learning. Extensive evaluations of standard benchmark datasets demonstrate that CFLHKD outperforms representative baselines in cluster-specific and global model accuracy and achieves a performance improvement of 3.32-7.57\%.
☆ The Operator Origins of Neural Scaling Laws: A Generalized Spectral Transport Dynamics of Deep Learning
Modern deep networks operate in a rough, finite-regularity regime where Jacobian-induced operators exhibit heavy-tailed spectra and strong basis drift. In this work, we derive a unified operator-theoretoretic description of neural training dynamics directly from gradient descent. Starting from the exact evolution $\dot e_t = -M(t)e_t$ in function space, we apply Kato perturbation theory to obtain a rigorous system of coupled mode ODEs and show that, after coarse-graining, these dynamics converge to a spectral transport--dissipation PDE \[ \partial_t g + \partial_λ(v g) = -λg + S, \] where $v$ captures eigenbasis drift and $S$ encodes nonlocal spectral coupling. We prove that neural training preserves functional regularity, forcing the drift to take an asymptotic power-law form $v(λ,t)\sim -c(t)λ^b$. In the weak-coupling regime -- naturally induced by spectral locality and SGD noise -- the PDE admits self-similar solutions with a resolution frontier, polynomial amplitude growth, and power-law dissipation. This structure yields explicit scaling-law exponents, explains the geometry of double descent, and shows that the effective training time satisfies $τ(t)=t^αL(t)$ for slowly varying $L$. Finally, we show that NTK training and feature learning arise as two limits of the same PDE: $v\equiv 0$ recovers lazy dynamics, while $v\neq 0$ produces representation drift. Our results provide a unified spectral framework connecting operator geometry, optimization dynamics, and the universal scaling behavior of modern deep networks.
☆ Supervised Learning of Random Neural Architectures Structured by Latent Random Fields on Compact Boundaryless Multiply-Connected Manifolds
This paper introduces a new probabilistic framework for supervised learning in neural systems. It is designed to model complex, uncertain systems whose random outputs are strongly non-Gaussian given deterministic inputs. The architecture itself is a random object stochastically generated by a latent anisotropic Gaussian random field defined on a compact, boundaryless, multiply-connected manifold. The goal is to establish a novel conceptual and mathematical framework in which neural architectures are realizations of a geometry-aware, field-driven generative process. Both the neural topology and synaptic weights emerge jointly from a latent random field. A reduced-order parameterization governs the spatial intensity of an inhomogeneous Poisson process on the manifold, from which neuron locations are sampled. Input and output neurons are identified via extremal evaluations of the latent field, while connectivity is established through geodesic proximity and local field affinity. Synaptic weights are conditionally sampled from the field realization, inducing stochastic output responses even for deterministic inputs. To ensure scalability, the architecture is sparsified via percentile-based diffusion masking, yielding geometry-aware sparse connectivity without ad hoc structural assumptions. Supervised learning is formulated as inference on the generative hyperparameters of the latent field, using a negative log-likelihood loss estimated through Monte Carlo sampling from single-observation-per-input datasets. The paper initiates a mathematical analysis of the model, establishing foundational properties such as well-posedness, measurability, and a preliminary analysis of the expressive variability of the induced stochastic mappings, which support its internal coherence and lay the groundwork for a broader theory of geometry-driven stochastic learning.
comment: 46 pages, 12 figures
☆ The Eminence in Shadow: Exploiting Feature Boundary Ambiguity for Robust Backdoor Attacks KDD2026
Deep neural networks (DNNs) underpin critical applications yet remain vulnerable to backdoor attacks, typically reliant on heuristic brute-force methods. Despite significant empirical advancements in backdoor research, the lack of rigorous theoretical analysis limits understanding of underlying mechanisms, constraining attack predictability and adaptability. Therefore, we provide a theoretical analysis targeting backdoor attacks, focusing on how sparse decision boundaries enable disproportionate model manipulation. Based on this finding, we derive a closed-form, ambiguous boundary region, wherein negligible relabeled samples induce substantial misclassification. Influence function analysis further quantifies significant parameter shifts caused by these margin samples, with minimal impact on clean accuracy, formally grounding why such low poison rates suffice for efficacious attacks. Leveraging these insights, we propose Eminence, an explainable and robust black-box backdoor framework with provable theoretical guarantees and inherent stealth properties. Eminence optimizes a universal, visually subtle trigger that strategically exploits vulnerable decision boundaries and effectively achieves robust misclassification with exceptionally low poison rates (< 0.1%, compared to SOTA methods typically requiring > 1%). Comprehensive experiments validate our theoretical discussions and demonstrate the effectiveness of Eminence, confirming an exponential relationship between margin poisoning and adversarial boundary manipulation. Eminence maintains > 90% attack success rate, exhibits negligible clean-accuracy loss, and demonstrates high transferability across diverse models, datasets and scenarios.
comment: Accepted by KDD2026 Cycle 1 Research Track
☆ Diffusion differentiable resampling
This paper is concerned with differentiable resampling in the context of sequential Monte Carlo (e.g., particle filtering). We propose a new informative resampling method that is instantly pathwise differentiable, based on an ensemble score diffusion model. We prove that our diffusion resampling method provides a consistent estimate to the resampling distribution, and we show by experiments that it outperforms the state-of-the-art differentiable resampling methods when used for stochastic filtering and parameter estimation.
☆ Confucius Code Agent: An Open-sourced AI Software Engineer at Industrial Scale
Real-world AI software engineering demands coding agents that can reason over massive repositories, maintain durable memory across and within long sessions, and robustly coordinate complex toolchains at test time. Existing open-source coding agents provide transparency but frequently fall short when pushed to these industrial-scale workloads, while proprietary coding agents offer strong practical performance but limited extensibility, interpretability, and controllability. We present the Confucius Code Agent (CCA), an open-sourced AI software engineer that can operate at an industrial scale. CCA is built atop the Confucius SDK, an open-sourced agent development platform designed around three complementary perspectives: Agent Experience (AX), User Experience (UX), and Developer Experience (DX). The SDK introduces a unified orchestrator with hierarchical working memory for long-context reasoning, a persistent note-taking system for cross-session continual learning, and a modular extension module for robust tool use. Moreover, a meta-agent automates the synthesis, evaluation, and refinement of agent configurations through a build-test-improve loop, enabling rapid agent development on new tasks, environments, and tool stacks. Instantiated on Confucius SDK with these mechanisms, CCA delivers strong performance on real-world software engineering tasks. On SWE-Bench-Pro, CCA achieves a state-of-the-art Resolve@1 performance of 54.3%, substantially improving over prior coding agents. Together, the Confucius SDK and CCA provide a transparent, extensible, and reproducible foundation for AI agents, bridge gaps between research prototypes and production-grade systems, and support agent development and deployment at industrial scale.
☆ RoboNeuron: A Modular Framework Linking Foundation Models and ROS for Embodied AI
Current embodied AI systems face severe engineering impediments, primarily characterized by poor cross-scenario adaptability, rigid inter-module coupling, and fragmented inference acceleration. To overcome these limitations, we propose RoboNeuron, a universal deployment framework for embodied intelligence. RoboNeuron is the first framework to deeply integrate the cognitive capabilities of Large Language Models (LLMs) and Vision-Language-Action (VLA) models with the real-time execution backbone of the Robot Operating System (ROS). We utilize the Model Context Protocol (MCP) as a semantic bridge, enabling the LLM to dynamically orchestrate underlying robotic tools. The framework establishes a highly modular architecture that strictly decouples sensing, reasoning, and control by leveraging ROS's unified communication interfaces. Crucially, we introduce an automated tool to translate ROS messages into callable MCP functions, significantly streamlining development. RoboNeuron significantly enhances cross-scenario adaptability and component flexibility, while establishing a systematic platform for horizontal performance benchmarking, laying a robust foundation for scalable real-world embodied applications.
☆ Fitting magnetization data using continued fraction of straight lines
Magnetization of a ferromagnetic substance in response to an externally applied magnetic field increases with the strength of the field. This is because at the microscopic level, magnetic moments in certain regions or domains of the substance increasingly align with the applied field, while the amount of misaligned domains decreases. The alignment of such magnetic domains with an applied magnetic field forms the physical basis for the nonlinearity of magnetization. In this paper, the nonlinear function is approximated as a combination of continued fraction of straight lines. The resulting fit is used to interpret the nonlinear behavior in both growing and shrinking magnetic domains. The continued fraction of straight lines used here is an algebraic expression which can be used to estimate parameters using nonlinear regression.
comment: 17 pages, 12 figures, 4 tables
☆ D2M: A Decentralized, Privacy-Preserving, Incentive-Compatible Data Marketplace for Collaborative Learning
The rising demand for collaborative machine learning and data analytics calls for secure and decentralized data sharing frameworks that balance privacy, trust, and incentives. Existing approaches, including federated learning (FL) and blockchain-based data markets, fall short: FL often depends on trusted aggregators and lacks Byzantine robustness, while blockchain frameworks struggle with computation-intensive training and incentive integration. We present \prot, a decentralized data marketplace that unifies federated learning, blockchain arbitration, and economic incentives into a single framework for privacy-preserving data sharing. \prot\ enables data buyers to submit bid-based requests via blockchain smart contracts, which manage auctions, escrow, and dispute resolution. Computationally intensive training is delegated to \cone\ (\uline{Co}mpute \uline{N}etwork for \uline{E}xecution), an off-chain distributed execution layer. To safeguard against adversarial behavior, \prot\ integrates a modified YODA protocol with exponentially growing execution sets for resilient consensus, and introduces Corrected OSMD to mitigate malicious or low-quality contributions from sellers. All protocols are incentive-compatible, and our game-theoretic analysis establishes honesty as the dominant strategy. We implement \prot\ on Ethereum and evaluate it over benchmark datasets -- MNIST, Fashion-MNIST, and CIFAR-10 -- under varying adversarial settings. \prot\ achieves up to 99\% accuracy on MNIST and 90\% on Fashion-MNIST, with less than 3\% degradation up to 30\% Byzantine nodes, and 56\% accuracy on CIFAR-10 despite its complexity. Our results show that \prot\ ensures privacy, maintains robustness under adversarial conditions, and scales efficiently with the number of participants, making it a practical foundation for real-world decentralized data sharing.
☆ GPG: Generalized Policy Gradient Theorem for Transformer-based Policies
We present the Generalized Policy Gradient (GPG) Theorem, specifically designed for Transformer-based policies. Notably, we demonstrate that both standard Policy Gradient Theorem and GRPO emerge as special cases within our GPG framework. Furthermore, we explore its practical applications in training Large Language Models (LLMs), offering new insights into efficient policy optimization.
☆ Better Prevent than Tackle: Valuing Defense in Soccer Based on Graph Neural Networks
Evaluating defensive performance in soccer remains challenging, as effective defending is often expressed not through visible on-ball actions such as interceptions and tackles, but through preventing dangerous opportunities before they arise. Existing approaches have largely focused on valuing on-ball actions, leaving much of defenders' true impact unmeasured. To address this gap, we propose DEFCON (DEFensive CONtribution evaluator), a comprehensive framework that quantifies player-level defensive contributions for every attacking situation in soccer. Leveraging Graph Attention Networks, DEFCON estimates the success probability and expected value of each attacking option, along with each defender's responsibility for stopping it. These components yield an Expected Possession Value (EPV) for the attacking team before and after each action, and DEFCON assigns positive or negative credits to defenders according to whether they reduced or increased the opponent's EPV. Trained on 2023-24 and evaluated on 2024-25 Eredivisie event and tracking data, DEFCON's aggregated player credits exhibit strong positive correlations with market valuations. Finally, we showcase several practical applications, including in-game timelines of defensive contributions, spatial analyses across pitch zones, and pairwise summaries of attacker-defender interactions.
☆ Dynamics of Agentic Loops in Large Language Models: A Geometric Theory of Trajectories
Agentic systems built on large language models operate through recursive feedback loops, where each output becomes the next input. Yet the geometric behavior of these agentic loops (whether they converge, diverge, or exhibit more complex dynamics) remains poorly understood. This paper introduces a geometric framework for analyzing agentic trajectories in semantic embedding space, treating iterative transformations as discrete dynamical systems. We distinguish the artifact space, where linguistic transformations occur, from the embedding space, where geometric measurements are performed. Because cosine similarity is biased by embedding anisotropy, we introduce an isotonic calibration that eliminates systematic bias and aligns similarities with human semantic judgments while preserving high local stability. This enables rigorous measurement of trajectories, clusters and attractors. Through controlled experiments on singular agentic loops, we identify two fundamental regimes. A contractive rewriting loop converges toward a stable attractor with decreasing dispersion, while an exploratory summarize and negate loop produces unbounded divergence with no cluster formation. These regimes display qualitatively distinct geometric signatures of contraction and expansion. Our results show that prompt design directly governs the dynamical regime of an agentic loop, enabling systematic control of convergence, divergence and trajectory structure in iterative LLM transformations.
☆ A Privacy-Preserving Cloud Architecture for Distributed Machine Learning at Scale
Distributed machine learning systems require strong privacy guarantees, verifiable compliance, and scalable deploy- ment across heterogeneous and multi-cloud environments. This work introduces a cloud-native privacy-preserving architecture that integrates federated learning, differential privacy, zero- knowledge compliance proofs, and adaptive governance powered by reinforcement learning. The framework supports secure model training and inference without centralizing sensitive data, while enabling cryptographically verifiable policy enforcement across institutions and cloud platforms. A full prototype deployed across hybrid Kubernetes clusters demonstrates reduced membership- inference risk, consistent enforcement of formal privacy budgets, and stable model performance under differential privacy. Ex- perimental evaluation across multi-institution workloads shows that the architecture maintains utility with minimal overhead while providing continuous, risk-aware governance. The pro- posed framework establishes a practical foundation for deploying trustworthy and compliant distributed machine learning systems at scale.
☆ Residual subspace evolution strategies for nonlinear inverse problems
Nonlinear inverse problems often feature noisy, non-differentiable, or expensive residual evaluations that make Jacobian-based solvers unreliable. Popular derivative-free optimizers such as natural evolution strategies (NES) or Powell's NEWUOA still assume smoothness or expend many evaluations to maintain stability. Ensemble Kalman inversion (EKI) relies on empirical covariances that require preconditioning and scale poorly with residual dimension. We introduce residual subspace evolution strategies (RSES), a derivative-free solver that samples Gaussian probes around the current iterate, builds a residual-only surrogate from their differences, and recombines the probes through a least-squares solve yielding an optimal update without forming Jacobians or covariances. Each iteration costs $k+1$ residual evaluations, where $k \ll n$ for $n$-dimensional problems, with $O(k^3)$ linear algebra overhead. Benchmarks on calibration, regression, and deconvolution problems demonstrate consistent misfit reduction in both deterministic and stochastic settings. RSES matches or surpasses xNES and NEWUOA while staying competitive with EKI under matched evaluation budgets, particularly when smoothness or covariance assumptions fail.
☆ Tracking large chemical reaction networks and rare events by neural networks
Chemical reaction networks are widely used to model stochastic dynamics in chemical kinetics, systems biology and epidemiology. Solving the chemical master equation that governs these systems poses a significant challenge due to the large state space exponentially growing with system sizes. The development of autoregressive neural networks offers a flexible framework for this problem; however, its efficiency is limited especially for high-dimensional systems and in scenarios with rare events. Here, we push the frontier of neural-network approach by exploiting faster optimizations such as natural gradient descent and time-dependent variational principle, achieving a 5- to 22-fold speedup, and by leveraging enhanced-sampling strategies to capture rare events. We demonstrate reduced computational cost and higher accuracy over the previous neural-network method in challenging reaction networks, including the mitogen-activated protein kinase (MAPK) cascade network, the hitherto largest biological network handled by the previous approaches of solving the chemical master equation. We further apply the approach to spatially extended reaction-diffusion systems, the Schlögl model with rare events, on two-dimensional lattices, beyond the recent tensor-network approach that handles one-dimensional lattices. The present approach thus enables efficient modeling of chemical reaction networks in general.
☆ An Interpretable AI Tool for SAVR vs TAVR in Low to Intermediate Risk Patients with Severe Aortic Stenosis
Background. Treatment selection for low to intermediate risk patients with severe aortic stenosis between surgical (SAVR) and transcatheter (TAVR) aortic valve replacement remains variable in clinical practice, driven by patient heterogeneity and institutional preferences. While existing models predict postprocedural risk, there is a lack of interpretable, individualized treatment recommendations that directly optimize long-term outcomes. Methods. We introduce an interpretable prescriptive framework that integrates prognostic matching, counterfactual outcome modeling, and an Optimal Policy Tree (OPT) to recommend the treatment minimizing expected 5-year mortality. Using data from Hartford Hospital and St. Vincent's Hospital, we emulate randomization via prognostic matching and sample weighting and estimate counterfactual mortality under both SAVR and TAVR. The policy model, trained on these counterfactual predictions, partitions patients into clinically coherent subgroups and prescribes the treatment associated with lower estimated risk. Findings. If the OPT prescriptions are applied, counterfactual evaluation showed an estimated reduction in 5-year mortality of 20.3\% in Hartford and 13.8\% in St. Vincent's relative to real-life prescriptions, showing promising generalizability to unseen data from a different institution. The learned decision boundaries aligned with real-world outcomes and clinical observations. Interpretation. Our interpretable prescriptive framework is, to the best of our knowledge, the first to provide transparent, data-driven recommendations for TAVR versus SAVR that improve estimated long-term outcomes both in an internal and external cohort, while remaining clinically grounded and contributing toward a more systematic and evidence-based approach to precision medicine in structural heart disease.
☆ FLARE: A Wireless Side-Channel Fingerprinting Attack on Federated Learning
Federated Learning (FL) enables collaborative model training across distributed devices while safeguarding data and user privacy. However, FL remains susceptible to privacy threats that can compromise data via direct means. That said, indirectly compromising the confidentiality of the FL model architecture (e.g., a convolutional neural network (CNN) or a recurrent neural network (RNN)) on a client device by an outsider remains unexplored. If leaked, this information can enable next-level attacks tailored to the architecture. This paper proposes a novel side-channel fingerprinting attack, leveraging flow-level and packet-level statistics of encrypted wireless traffic from an FL client to infer its deep learning model architecture. We name it FLARE, a fingerprinting framework based on FL Architecture REconnaissance. Evaluation across various CNN and RNN variants-including pre-trained and custom models trained over IEEE 802.11 Wi-Fi-shows that FLARE achieves over 98% F1-score in closed-world and up to 91% in open-world scenarios. These results reveal that CNN and RNN models leak distinguishable traffic patterns, enabling architecture fingerprinting even under realistic FL settings with hardware, software, and data heterogeneity. To our knowledge, this is the first work to fingerprint FL model architectures by sniffing encrypted wireless traffic, exposing a critical side-channel vulnerability in current FL systems.
comment: This paper has been accepted for publication in IEEE INFOCOM 2026 - IEEE Conference on Computer Communications
☆ A Kernel-based Resource-efficient Neural Surrogate for Multi-fidelity Prediction of Aerodynamic Field
Surrogate models provide fast alternatives to costly aerodynamic simulations and are extremely useful in design and optimization applications. This study proposes the use of a recent kernel-based neural surrogate, KHRONOS. In this work, we blend sparse high-fidelity (HF) data with low-fidelity (LF) information to predict aerodynamic fields under varying constraints in computational resources. Unlike traditional approaches, KHRONOS is built upon variational principles, interpolation theory, and tensor decomposition. These elements provide a mathematical basis for heavy pruning compared to dense neural networks. Using the AirfRANS dataset as a high-fidelity benchmark and NeuralFoil to generate low-fidelity counterparts, this work compares the performance of KHRONOS with three contemporary model architectures: a multilayer perceptron (MLP), a graph neural network (GNN), and a physics-informed neural network (PINN). We consider varying levels of high-fidelity data availability (0%, 10%, and 30%) and increasingly complex geometry parameterizations. These are used to predict the surface pressure coefficient distribution over the airfoil. Results indicate that, whilst all models eventually achieve comparable predictive accuracy, KHRONOS excels in resource-constrained conditions. In this domain, KHRONOS consistently requires orders of magnitude fewer trainable parameters and delivers much faster training and inference than contemporary dense neural networks at comparable accuracy. These findings highlight the potential of KHRONOS and similar architectures to balance accuracy and efficiency in multi-fidelity aerodynamic field prediction.
comment: 24 pages, 15 figures
☆ Neuronal Attention Circuit (NAC) for Representation Learning ICML2026
Attention improves representation learning over RNNs, but its discrete nature limits continuous-time (CT) modeling. We introduce Neuronal Attention Circuit (NAC), a novel, biologically plausible CT-Attention mechanism that reformulates attention logits computation as the solution to a linear first-order ODE with nonlinear interlinked gates derived from repurposing \textit{C. elegans} Neuronal Circuit Policies (NCPs) wiring mechanism. NAC replaces dense projections with sparse sensory gates for key-query projections and a sparse backbone network with two heads for computing \textit{content-target} and \textit{learnable time-constant} gates, enabling efficient adaptive dynamics. NAC supports three attention logit computation modes: (i) explicit Euler integration, (ii) exact closed-form solution, and (iii) steady-state approximation. To improve memory intensity, we implemented a sparse Top-\emph{K} pairwise concatenation scheme that selectively curates key-query interactions. We provide rigorous theoretical guarantees, including state stability, bounded approximation errors, and universal approximation. Empirically, we implemented NAC in diverse domains, including irregular time-series classification, lane-keeping for autonomous vehicles, and industrial prognostics. We observed that NAC matches or outperforms competing baselines in accuracy and occupies an intermediate position in runtime and memory efficiency compared with several CT baselines.
comment: Paper for ICML2026
☆ Hybrid Learning and Optimization-Based Dynamic Scheduling for DL Workloads on Heterogeneous GPU Clusters
Modern cloud platforms increasingly host large-scale deep learning (DL) workloads, demanding high-throughput, low-latency GPU scheduling. However, the growing heterogeneity of GPU clusters and limited visibility into application characteristics pose major challenges for existing schedulers, which often rely on offline profiling or application-specific assumptions. We present RLTune, an application-agnostic reinforcement learning (RL)-based scheduling framework that dynamically prioritizes and allocates DL jobs on heterogeneous GPU clusters. RLTune integrates RL-driven prioritization with MILP-based job-to-node mapping to optimize system-wide objectives such as job completion time (JCT), queueing delay, and resource utilization. Trained on large-scale production traces from Microsoft Philly, Helios, and Alibaba, RLTune improves GPU utilization by up to 20%, reduces queueing delay by up to 81%, and shortens JCT by as much as 70 percent. Unlike prior approaches, RLTune generalizes across diverse workloads without requiring per-job profiling, making it practical for cloud providers to deploy at scale for more efficient, fair, and sustainable DL workload management.
☆ R^2-HGP: A Double-Regularized Gaussian Process for Heterogeneous Transfer Learning
Multi-output Gaussian process (MGP) models have attracted significant attention for their flexibility and uncertainty-quantification capabilities, and have been widely adopted in multi-source transfer learning scenarios due to their ability to capture inter-task correlations. However, they still face several challenges in transfer learning. First, the input spaces of the source and target domains are often heterogeneous, which makes direct knowledge transfer difficult. Second, potential prior knowledge and physical information are typically ignored during heterogeneous transfer, hampering the utilization of domain-specific insights and leading to unstable mappings. Third, inappropriate information sharing among target and sources can easily lead to negative transfer. Traditional models fail to address these issues in a unified way. To overcome these limitations, this paper proposes a Double-Regularized Heterogeneous Gaussian Process framework (R^2-HGP). Specifically, a trainable prior probability mapping model is first proposed to align the heterogeneous input domains. The resulting aligned inputs are treated as latent variables, upon which a multi-source transfer GP model is constructed and the entire structure is integrated into a novel conditional variational autoencoder (CVAE) based framework. Physical insights is further incorporated as a regularization term to ensure that the alignment results adhere to known physical knowledge. Next, within the multi-source transfer GP model, a sparsity penalty is imposed on the transfer coefficients, enabling the model to adaptively select the most informative source outputs and suppress negative transfer. Extensive simulations and real-world engineering case studies validate the effectiveness of our R^2-HGP, demonstrating consistent superiority over state-of-the-art benchmarks across diverse evaluation metrics.
comment: 17 pages, 9 figures. Under review for IEEE TPAMI
☆ Error Analysis of Generalized Langevin Equations with Approximated Memory Kernels
We analyze prediction error in stochastic dynamical systems with memory, focusing on generalized Langevin equations (GLEs) formulated as stochastic Volterra equations. We establish that, under a strongly convex potential, trajectory discrepancies decay at a rate determined by the decay of the memory kernel and are quantitatively bounded by the estimation error of the kernel in a weighted norm. Our analysis integrates synchronized noise coupling with a Volterra comparison theorem, encompassing both subexponential and exponential kernel classes. For first-order models, we derive moment and perturbation bounds using resolvent estimates in weighted spaces. For second-order models with confining potentials, we prove contraction and stability under kernel perturbations using a hypocoercive Lyapunov-type distance. This framework accommodates non-translation-invariant kernels and white-noise forcing, explicitly linking improved kernel estimation to enhanced trajectory prediction. Numerical examples validate these theoretical findings.
☆ Solving Semi-Supervised Few-Shot Learning from an Auto-Annotation Perspective
Semi-supervised few-shot learning (SSFSL) formulates real-world applications like ''auto-annotation'', as it aims to learn a model over a few labeled and abundant unlabeled examples to annotate the unlabeled ones. Despite the availability of powerful open-source Vision-Language Models (VLMs) and their pretraining data, the SSFSL literature largely neglects these open-source resources. In contrast, the related area few-shot learning (FSL) has already exploited them to boost performance. Arguably, to achieve auto-annotation in the real world, SSFSL should leverage such open-source resources. To this end, we start by applying established SSL methods to finetune a VLM. Counterintuitively, they significantly underperform FSL baselines. Our in-depth analysis reveals the root cause: VLMs produce rather ''flat'' distributions of softmax probabilities. This results in zero utilization of unlabeled data and weak supervision signals. We address this issue with embarrassingly simple techniques: classifier initialization and temperature tuning. They jointly increase the confidence scores of pseudo-labels, improving the utilization rate of unlabeled data, and strengthening supervision signals. Building on this, we propose: Stage-Wise Finetuning with Temperature Tuning (SWIFT), which enables existing SSL methods to effectively finetune a VLM on limited labeled data, abundant unlabeled data, and task-relevant but noisy data retrieved from the VLM's pretraining set. Extensive experiments on five SSFSL benchmarks show that SWIFT outperforms recent FSL and SSL methods by $\sim$5 accuracy points. SWIFT even rivals supervised learning, which finetunes VLMs with the unlabeled data being labeled with ground truth!
comment: website and code: https://tian1327.github.io/SWIFT
☆ Design Space Exploration of DMA based Finer-Grain Compute Communication Overlap
As both ML training and inference are increasingly distributed, parallelization techniques that shard (divide) ML model across GPUs of a distributed system, are often deployed. With such techniques, there is a high prevalence of data-dependent communication and computation operations where communication is exposed, leaving as high as 1.7x ideal performance on the table. Prior works harness the fact that ML model state and inputs are already sharded, and employ careful overlap of individual computation/communication shards. While such coarse-grain overlap is promising, in this work, we instead make a case for finer-grain compute-communication overlap which we term FiCCO, where we argue for finer-granularity, one-level deeper overlap than at shard-level, to unlock compute/communication overlap for a wider set of network topologies, finer-grain dataflow and more. We show that FiCCO opens up a wider design space of execution schedules than possible at shard-level alone. At the same time, decomposition of ML operations into smaller operations (done in both shard-based and finer-grain techniques) causes operation-level inefficiency losses. To balance the two, we first present a detailed characterization of these inefficiency losses, then present a design space of FiCCO schedules, and finally overlay the schedules with concomitant inefficiency signatures. Doing so helps us design heuristics that frameworks and runtimes can harness to select bespoke FiCCO schedules based on the nature of underlying ML operations. Finally, to further minimize contention inefficiencies inherent with operation overlap, we offload communication to GPU DMA engines. We evaluate several scenarios from realistic ML deployments and demonstrate that our proposed bespoke schedules deliver up to 1.6x speedup and our heuristics provide accurate guidance in 81% of unseen scenarios.
☆ Adaptive Information Routing for Multimodal Time Series Forecasting
Time series forecasting is a critical task for artificial intelligence with numerous real-world applications. Traditional approaches primarily rely on historical time series data to predict the future values. However, in practical scenarios, this is often insufficient for accurate predictions due to the limited information available. To address this challenge, multimodal time series forecasting methods which incorporate additional data modalities, mainly text data, alongside time series data have been explored. In this work, we introduce the Adaptive Information Routing (AIR) framework, a novel approach for multimodal time series forecasting. Unlike existing methods that treat text data on par with time series data as interchangeable auxiliary features for forecasting, AIR leverages text information to dynamically guide the time series model by controlling how and to what extent multivariate time series information should be combined. We also present a text-refinement pipeline that employs a large language model to convert raw text data into a form suitable for multimodal forecasting, and we introduce a benchmark that facilitates multimodal forecasting experiments based on this pipeline. Experiment results with the real world market data such as crude oil price and exchange rates demonstrate that AIR effectively modulates the behavior of the time series model using textual inputs, significantly enhancing forecasting accuracy in various time series forecasting tasks.
☆ Federated Domain Generalization with Latent Space Inversion
Federated domain generalization (FedDG) addresses distribution shifts among clients in a federated learning framework. FedDG methods aggregate the parameters of locally trained client models to form a global model that generalizes to unseen clients while preserving data privacy. While improving the generalization capability of the global model, many existing approaches in FedDG jeopardize privacy by sharing statistics of client data between themselves. Our solution addresses this problem by contributing new ways to perform local client training and model aggregation. To improve local client training, we enforce (domain) invariance across local models with the help of a novel technique, \textbf{latent space inversion}, which enables better client privacy. When clients are not \emph{i.i.d}, aggregating their local models may discard certain local adaptations. To overcome this, we propose an \textbf{important weight} aggregation strategy to prioritize parameters that significantly influence predictions of local models during aggregation. Our extensive experiments show that our approach achieves superior results over state-of-the-art methods with less communication overhead.
comment: Accepted at ICDM 2025
☆ Galaxy Phase-Space and Field-Level Cosmology: The Strength of Semi-Analytic Models
Semi-analytic models are a widely used approach to simulate galaxy properties within a cosmological framework, relying on simplified yet physically motivated prescriptions. They have also proven to be an efficient alternative for generating accurate galaxy catalogs, offering a faster and less computationally expensive option compared to full hydrodynamical simulations. In this paper, we demonstrate that using only galaxy $3$D positions and radial velocities, we can train a graph neural network coupled to a moment neural network to obtain a robust machine learning based model capable of estimating the matter density parameters, $Ω_{\rm m}$, with a precision of approximately 10%. The network is trained on ($25 h^{-1}$Mpc)$^3$ volumes of galaxy catalogs from L-Galaxies and can successfully extrapolate its predictions to other semi-analytic models (GAEA, SC-SAM, and Shark) and, more remarkably, to hydrodynamical simulations (Astrid, SIMBA, IllustrisTNG, and SWIFT-EAGLE). Our results show that the network is robust to variations in astrophysical and subgrid physics, cosmological and astrophysical parameters, and the different halo-profile treatments used across simulations. This suggests that the physical relationships encoded in the phase-space of semi-analytic models are largely independent of their specific physical prescriptions, reinforcing their potential as tools for the generation of realistic mock catalogs for cosmological parameter inference.
comment: 23 pages, 5 figures
☆ On Learning-Curve Monotonicity for Maximum Likelihood Estimators
The property of learning-curve monotonicity, highlighted in a recent series of work by Loog, Mey and Viering, describes algorithms which only improve in average performance given more data, for any underlying data distribution within a given family. We establish the first nontrivial monotonicity guarantees for the maximum likelihood estimator in a variety of well-specified parametric settings. For sequential prediction with log loss, we show monotonicity (in fact complete monotonicity) of the forward KL divergence for Gaussian vectors with unknown covariance and either known or unknown mean, as well as for Gamma variables with unknown scale parameter. The Gaussian setting was explicitly highlighted as open in the aforementioned works, even in dimension 1. Finally we observe that for reverse KL divergence, a folklore trick yields monotonicity for very general exponential families. All results in this paper were derived by variants of GPT-5.2 Pro. Humans did not provide any proof strategies or intermediate arguments, but only prompted the model to continue developing additional results, and verified and transcribed its proofs.
comment: 24 pages
☆ AutoMedic: An Automated Evaluation Framework for Clinical Conversational Agents with Medical Dataset Grounding
Evaluating large language models (LLMs) has recently emerged as a critical issue for safe and trustworthy application of LLMs in the medical domain. Although a variety of static medical question-answering (QA) benchmarks have been proposed, many aspects remain underexplored, such as the effectiveness of LLMs in generating responses in dynamic, interactive clinical multi-turn conversation situations and the identification of multi-faceted evaluation strategies beyond simple accuracy. However, formally evaluating a dynamic, interactive clinical situation is hindered by its vast combinatorial space of possible patient states and interaction trajectories, making it difficult to standardize and quantitatively measure such scenarios. Here, we introduce AutoMedic, a multi-agent simulation framework that enables automated evaluation of LLMs as clinical conversational agents. AutoMedic transforms off-the-shelf static QA datasets into virtual patient profiles, enabling realistic and clinically grounded multi-turn clinical dialogues between LLM agents. The performance of various clinical conversational agents is then assessed based on our CARE metric, which provides a multi-faceted evaluation standard of clinical conversational accuracy, efficiency/strategy, empathy, and robustness. Our findings, validated by human experts, demonstrate the validity of AutoMedic as an automated evaluation framework for clinical conversational agents, offering practical guidelines for the effective development of LLMs in conversational medical applications.
☆ Exact Recovery of Non-Random Missing Multidimensional Time Series via Temporal Isometric Delay-Embedding Transform
Non-random missing data is a ubiquitous yet undertreated flaw in multidimensional time series, fundamentally threatening the reliability of data-driven analysis and decision-making. Pure low-rank tensor completion, as a classical data recovery method, falls short in handling non-random missingness, both methodologically and theoretically. Hankel-structured tensor completion models provide a feasible approach for recovering multidimensional time series with non-random missing patterns. However, most Hankel-based multidimensional data recovery methods both suffer from unclear sources of Hankel tensor low-rankness and lack an exact recovery theory for non-random missing data. To address these issues, we propose the temporal isometric delay-embedding transform, which constructs a Hankel tensor whose low-rankness is naturally induced by the smoothness and periodicity of the underlying time series. Leveraging this property, we develop the \textit{Low-Rank Tensor Completion with Temporal Isometric Delay-embedding Transform} (LRTC-TIDT) model, which characterizes the low-rank structure under the \textit{Tensor Singular Value Decomposition} (t-SVD) framework. Once the prescribed non-random sampling conditions and mild incoherence assumptions are satisfied, the proposed LRTC-TIDT model achieves exact recovery, as confirmed by simulation experiments under various non-random missing patterns. Furthermore, LRTC-TIDT consistently outperforms existing tensor-based methods across multiple real-world tasks, including network flow reconstruction, urban traffic estimation, and temperature field prediction. Our implementation is publicly available at https://github.com/HaoShu2000/LRTC-TIDT.
☆ The Interplay of Statistics and Noisy Optimization: Learning Linear Predictors with Random Data Weights
We analyze gradient descent with randomly weighted data points in a linear regression model, under a generic weighting distribution. This includes various forms of stochastic gradient descent, importance sampling, but also extends to weighting distributions with arbitrary continuous values, thereby providing a unified framework to analyze the impact of various kinds of noise on the training trajectory. We characterize the implicit regularization induced through the random weighting, connect it with weighted linear regression, and derive non-asymptotic bounds for convergence in first and second moments. Leveraging geometric moment contraction, we also investigate the stationary distribution induced by the added noise. Based on these results, we discuss how specific choices of weighting distribution influence both the underlying optimization problem and statistical properties of the resulting estimator, as well as some examples for which weightings that lead to fast convergence cause bad statistical performance.
☆ MiniF2F-Dafny: LLM-Guided Mathematical Theorem Proving via Auto-Active Verification
We present miniF2F-Dafny, the first translation of the mathematical reasoning benchmark miniF2F to an automated theorem prover: Dafny. Previously, the benchmark existed only in interactive theorem provers (Lean, Isabelle, HOL Light, Metamath). We find that Dafny's automation verifies 99/244 (40.6%) of the test set and 109/244 (44.7%) of the validation set with empty proofs--requiring no manual proof steps. For problems where empty proofs fail, we evaluate 12 off-the-shelf LLMs on providing proof hints. The best model we test achieves 55.7% pass@4 success rate employing iterative error correction. These preliminary results highlight an effective division of labor: LLMs provide high-level guidance while automation handles low-level details. Our benchmark can be found on GitHub at http://github.com/dafny-lang/miniF2F .
☆ Assessing Neuromorphic Computing for Fingertip Force Decoding from Electromyography
High-density surface electromyography (HD-sEMG) provides a noninvasive neural interface for assistive and rehabilitation control, but mapping neural activity to user motor intent remains challenging. We assess a spiking neural network (SNN) as a neuromorphic architecture against a temporal convolutional network (TCN) for decoding fingertip force from motor-unit (MU) firing derived from HD-sEMG. Data were collected from a single participant (10 trials) with two forearm electrode arrays; MU activity was obtained via FastICA-based decomposition, and models were trained on overlapping windows with end-to-end causal convolutions. On held-out trials, the TCN achieved 4.44% MVC RMSE (Pearson r = 0.974) while the SNN achieved 8.25% MVC (r = 0.922). While the TCN was more accurate, we view the SNN as a realistic neuromorphic baseline that could close much of this gap with modest architectural and hyperparameter refinements.
comment: 5 pages, 6 figures. Poster included as ancillary file (IEEE_NER2025_NeuromorphicEMG_poster.pdf). Presented at IEEE EMBS NER 2025, also at NC State College of Engineering Applied AI Symposium and NC State ECE Graduate Research Symposium (tied for Best Poster)
☆ CIEGAD: Cluster-Conditioned Interpolative and Extrapolative Framework for Geometry-Aware and Domain-Aligned Data Augmentation
In practical deep learning deployment, the scarcity of data and the imbalance of label distributions often lead to semantically uncovered regions within the real-world data distribution, hindering model training and causing misclassification near class boundaries as well as unstable behaviors in peripheral areas. Although recent large language models (LLMs) show promise for data augmentation, an integrated framework that simultaneously achieves directional control of generation, domain alignment, and quality control has not yet been fully established. To address these challenges, we propose a Cluster-conditioned Interpolative and Extrapolative framework for Geometry-Aware and Domain-aligned data augmentation (CIEGAD), which systematically complements both in-distribution and out-of-distribution semantically uncovered regions. CIEGAD constructs domain profiles through cluster conditioning, allocates generation with a hierarchical frequency-geometric allocation integrating class frequency and geometric indicators, and finely controls generation directions via the coexistence of interpolative and extrapolative synthesis. It further performs quality control through geometry-constrained filtering combined with an LLM-as-a-Judge mechanism. Experiments on multiple classification tasks demonstrate that CIEGAD effectively extends the periphery of real-world data distributions while maintaining high alignment between generated and real-world data as well as semantic diversity. In particular, for long-tailed and multi-class classification tasks, CIEGAD consistently improves F1 and recall, validating the triple harmony of distributional consistency, diversity, and quality. These results indicate that CIEGAD serves as a practically oriented data augmentation framework that complements underrepresented regions while preserving alignment with real-world data.
☆ Semantic-Aware Confidence Calibration for Automated Audio Captioning
Automated audio captioning models frequently produce overconfident predictions regardless of semantic accuracy, limiting their reliability in deployment. This deficiency stems from two factors: evaluation metrics based on n-gram overlap that fail to capture semantic correctness, and the absence of calibrated confidence estimation. We present a framework that addresses both limitations by integrating confidence prediction into audio captioning and redefining correctness through semantic similarity. Our approach augments a Whisper-based audio captioning model with a learned confidence prediction head that estimates uncertainty from decoder hidden states. We employ CLAP audio-text embeddings and sentence transformer similarities (FENSE) to define semantic correctness, enabling Expected Calibration Error (ECE) computation that reflects true caption quality rather than surface-level text overlap. Experiments on Clotho v2 demonstrate that confidence-guided beam search with semantic evaluation achieves dramatically improved calibration (CLAP-based ECE of 0.071) compared to greedy decoding baselines (ECE of 0.488), while simultaneously improving caption quality across standard metrics. Our results establish that semantic similarity provides a more meaningful foundation for confidence calibration in audio captioning than traditional n-gram metrics.
comment: 5 pages, 2 figures
The 2025 Foundation Model Transparency Index
Foundation model developers are among the world's most important companies. As these companies become increasingly consequential, how do their transparency practices evolve? The 2025 Foundation Model Transparency Index is the third edition of an annual effort to characterize and quantify the transparency of foundation model developers. The 2025 FMTI introduces new indicators related to data acquisition, usage data, and monitoring and evaluates companies like Alibaba, DeepSeek, and xAI for the first time. The 2024 FMTI reported that transparency was improving, but the 2025 FMTI finds this progress has deteriorated: the average score out of 100 fell from 58 in 2024 to 40 in 2025. Companies are most opaque about their training data and training compute as well as the post-deployment usage and impact of their flagship models. In spite of this general trend, IBM stands out as a positive outlier, scoring 95, in contrast to the lowest scorers, xAI and Midjourney, at just 14. The five members of the Frontier Model Forum we score end up in the middle of the Index: we posit that these companies avoid reputational harms from low scores but lack incentives to be transparency leaders. As policymakers around the world increasingly mandate certain types of transparency, this work reveals the current state of transparency for foundation model developers, how it may change given newly enacted policy, and where more aggressive policy interventions are necessary to address critical information deficits.
comment: Website: https://crfm.stanford.edu/fmti/December-2025/index.html
☆ The Operator Origins of Neural Scaling Laws: A Generalized Spectral Transport Dynamics of Deep Learning
Modern deep networks operate in a rough, finite-regularity regime where Jacobian-induced operators exhibit heavy-tailed spectra and strong basis drift. In this work, we derive a unified operator-theoretoretic description of neural training dynamics directly from gradient descent. Starting from the exact evolution $\dot e_t = -M(t)e_t$ in function space, we apply Kato perturbation theory to obtain a rigorous system of coupled mode ODEs and show that, after coarse-graining, these dynamics converge to a spectral transport-dissipation PDE \[ \partial_t g + \partial_λ(v g) = -λg + S, \] where $v$ captures eigenbasis drift and $S$ encodes nonlocal spectral coupling. We prove that neural training preserves functional regularity, forcing the drift to take an asymptotic power-law form $v(λ,t)\sim -c(t)λ^b$. In the weak-coupling regime -- naturally induced by spectral locality and SGD noise -- the PDE admits self-similar solutions with a resolution frontier, polynomial amplitude growth, and power-law dissipation. This structure yields explicit scaling-law exponents, explains the geometry of double descent, and shows that the effective training time satisfies $τ(t)=t^αL(t)$ for slowly varying $L$. Finally, we show that NTK training and feature learning arise as two limits of the same PDE: $v\equiv 0$ recovers lazy dynamics, while $v\neq 0$ produces representation drift. Our results provide a unified spectral framework connecting operator geometry, optimization dynamics, and the universal scaling behavior of modern deep networks.
☆ A Privacy-Preserving Cloud Architecture for Distributed Machine Learning at Scale
Distributed machine learning systems require strong privacy guarantees, verifiable compliance, and scalable deployment across heterogeneous and multi-cloud environments. This work introduces a cloud-native privacy-preserving architecture that integrates federated learning, differential privacy, zero-knowledge compliance proofs, and adaptive governance powered by reinforcement learning. The framework supports secure model training and inference without centralizing sensitive data, while enabling cryptographically verifiable policy enforcement across institutions and cloud platforms. A full prototype deployed across hybrid Kubernetes clusters demonstrates reduced membership-inference risk, consistent enforcement of formal privacy budgets, and stable model performance under differential privacy. Experimental evaluation across multi-institution workloads shows that the architecture maintains utility with minimal overhead while providing continuous, risk-aware governance. The proposed framework establishes a practical foundation for deploying trustworthy and compliant distributed machine learning systems at scale.
☆ Bandwidth-constrained Variational Message Encoding for Cooperative Multi-agent Reinforcement Learning
Graph-based multi-agent reinforcement learning (MARL) enables coordinated behavior under partial observability by modeling agents as nodes and communication links as edges. While recent methods excel at learning sparse coordination graphs-determining who communicates with whom-they do not address what information should be transmitted under hard bandwidth constraints. We study this bandwidth-limited regime and show that naive dimensionality reduction consistently degrades coordination performance. Hard bandwidth constraints force selective encoding, but deterministic projections lack mechanisms to control how compression occurs. We introduce Bandwidth-constrained Variational Message Encoding (BVME), a lightweight module that treats messages as samples from learned Gaussian posteriors regularized via KL divergence to an uninformative prior. BVME's variational framework provides principled, tunable control over compression strength through interpretable hyperparameters, directly constraining the representations used for decision-making. Across SMACv1, SMACv2, and MPE benchmarks, BVME achieves comparable or superior performance while using 67--83% fewer message dimensions, with gains most pronounced on sparse graphs where message quality critically impacts coordination. Ablations reveal U-shaped sensitivity to bandwidth, with BVME excelling at extreme ratios while adding minimal overhead.
comment: Submitted to AAMAS 2026
☆ Harnessing Rich Multi-Modal Data for Spatial-Temporal Homophily-Embedded Graph Learning Across Domains and Localities
Modern cities are increasingly reliant on data-driven insights to support decision making in areas such as transportation, public safety and environmental impact. However, city-level data often exists in heterogeneous formats, collected independently by local agencies with diverse objectives and standards. Despite their numerous, wide-ranging, and uniformly consumable nature, national-level datasets exhibit significant heterogeneity and multi-modality. This research proposes a heterogeneous data pipeline that performs cross-domain data fusion over time-varying, spatial-varying and spatial-varying time-series datasets. We aim to address complex urban problems across multiple domains and localities by harnessing the rich information over 50 data sources. Specifically, our data-learning module integrates homophily from spatial-varying dataset into graph-learning, embedding information of various localities into models. We demonstrate the generalizability and flexibility of the framework through five real-world observations using a variety of publicly accessible datasets (e.g., ride-share, traffic crash, and crime reports) collected from multiple cities. The results show that our proposed framework demonstrates strong predictive performance while requiring minimal reconfiguration when transferred to new localities or domains. This research advances the goal of building data-informed urban systems in a scalable way, addressing one of the most pressing challenges in smart city analytics.
comment: 18 pages, 8 figures, Presented in part at the 2025 INFORMS Annual Meeting
☆ CORL: Reinforcement Learning of MILP Policies Solved via Branch and Bound
Combinatorial sequential decision making problems are typically modeled as mixed integer linear programs (MILPs) and solved via branch and bound (B&B) algorithms. The inherent difficulty of modeling MILPs that accurately represent stochastic real world problems leads to suboptimal performance in the real world. Recently, machine learning methods have been applied to build MILP models for decision quality rather than how accurately they model the real world problem. However, these approaches typically rely on supervised learning, assume access to true optimal decisions, and use surrogates for the MILP gradients. In this work, we introduce a proof of concept CORL framework that end to end fine tunes an MILP scheme using reinforcement learning (RL) on real world data to maximize its operational performance. We enable this by casting an MILP solved by B&B as a differentiable stochastic policy compatible with RL. We validate the CORL method in a simple illustrative combinatorial sequential decision making example.
☆ Autoencoder-based Semi-Supervised Dimensionality Reduction and Clustering for Scientific Ensembles
Analyzing and visualizing scientific ensemble datasets with high dimensionality and complexity poses significant challenges. Dimensionality reduction techniques and autoencoders are powerful tools for extracting features, but they often struggle with such high-dimensional data. This paper presents an enhanced autoencoder framework that incorporates a clustering loss, based on the soft silhouette score, alongside a contrastive loss to improve the visualization and interpretability of ensemble datasets. First, EfficientNetV2 is used to generate pseudo-labels for the unlabeled portions of the scientific ensemble datasets. By jointly optimizing the reconstruction, clustering, and contrastive objectives, our method encourages similar data points to group together while separating distinct clusters in the latent space. UMAP is subsequently applied to this latent representation to produce 2D projections, which are evaluated using the silhouette score. Multiple types of autoencoders are evaluated and compared based on their ability to extract meaningful features. Experiments on two scientific ensemble datasets - channel structures in soil derived from Markov chain Monte Carlo, and droplet-on-film impact dynamics - show that models incorporating clustering or contrastive loss marginally outperform the baseline approaches.
comment: Research Internship Project
☆ The Vekua Layer: Exact Physical Priors for Implicit Neural Representations via Generalized Analytic Functions
Implicit Neural Representations (INRs) have emerged as a powerful paradigm for parameterizing physical fields, yet they often suffer from spectral bias and the computational expense of non-convex optimization. We introduce the Vekua Layer (VL), a differentiable spectral method grounded in the classical theory of Generalized Analytic Functions. By restricting the hypothesis space to the kernel of the governing differential operator -- specifically utilizing Harmonic and Fourier-Bessel bases -- the VL transforms the learning task from iterative gradient descent to a strictly convex least-squares problem solved via linear projection. We evaluate the VL against Sinusoidal Representation Networks (SIRENs) on homogeneous elliptic Partial Differential Equations (PDEs). Our results demonstrate that the VL achieves machine precision ($\text{MSE} \approx 10^{-33}$) on exact reconstruction tasks and exhibits superior stability in the presence of incoherent sensor noise ($\text{MSE} \approx 0.03$), effectively acting as a physics-informed spectral filter. Furthermore, we show that the VL enables "holographic" extrapolation of global fields from partial boundary data via analytic continuation, a capability absent in standard coordinate-based approximations.
☆ Fairness-Regularized Online Optimization with Switching Costs NeurIPS 2025
Fairness and action smoothness are two crucial considerations in many online optimization problems, but they have yet to be addressed simultaneously. In this paper, we study a new and challenging setting of fairness-regularized smoothed online convex optimization with switching costs. First, to highlight the fundamental challenges introduced by the long-term fairness regularizer evaluated based on the entire sequence of actions, we prove that even without switching costs, no online algorithms can possibly achieve a sublinear regret or finite competitive ratio compared to the offline optimal algorithm as the problem episode length $T$ increases. Then, we propose FairOBD (Fairness-regularized Online Balanced Descent), which reconciles the tension between minimizing the hitting cost, switching cost, and fairness cost. Concretely, FairOBD decomposes the long-term fairness cost into a sequence of online costs by introducing an auxiliary variable and then leverages the auxiliary variable to regularize the online actions for fair outcomes. Based on a new approach to account for switching costs, we prove that FairOBD offers a worst-case asymptotic competitive ratio against a novel benchmark -- the optimal offline algorithm with parameterized constraints -- by considering $T\to\infty$. Finally, we run trace-driven experiments of dynamic computing resource provisioning for socially responsible AI inference to empirically evaluate FairOBD, showing that FairOBD can effectively reduce the total fairness-regularized cost and better promote fair outcomes compared to existing baseline solutions.
comment: Accepted by NeurIPS 2025
☆ Refining Graphical Neural Network Predictions Using Flow Matching for Optimal Power Flow with Constraint-Satisfaction Guarantee
The DC Optimal Power Flow (DC-OPF) problem is fundamental to power system operations, requiring rapid solutions for real-time grid management. While traditional optimization solvers provide optimal solutions, their computational cost becomes prohibitive for large-scale systems requiring frequent recalculations. Machine learning approaches offer promise for acceleration but often struggle with constraint satisfaction and cost optimality. We present a novel two-stage learning framework that combines physics-informed Graph Neural Networks (GNNs) with Continuous Flow Matching (CFM) for solving DC-OPF problems. Our approach embeds fundamental physical principles--including economic dispatch optimality conditions, Kirchhoff's laws, and Karush-Kuhn-Tucker (KKT) complementarity conditions--directly into the training objectives. The first stage trains a GNN to produce feasible initial solutions by learning from physics-informed losses that encode power system constraints. The second stage employs CFM, a simulation-free continuous normalizing flow technique, to refine these solutions toward optimality through learned vector field regression. Evaluated on the IEEE 30-bus system across five load scenarios ranging from 70\% to 130\% nominal load, our method achieves near-optimal solutions with cost gaps below 0.1\% for nominal loads and below 3\% for extreme conditions, while maintaining 100\% feasibility. Our framework bridges the gap between fast but approximate neural network predictions and optimal but slow numerical solvers, offering a practical solution for modern power systems with high renewable penetration requiring frequent dispatch updates.
☆ In-Context Multi-Objective Optimization
Balancing competing objectives is omnipresent across disciplines, from drug design to autonomous systems. Multi-objective Bayesian optimization is a promising solution for such expensive, black-box problems: it fits probabilistic surrogates and selects new designs via an acquisition function that balances exploration and exploitation. In practice, it requires tailored choices of surrogate and acquisition that rarely transfer to the next problem, is myopic when multi-step planning is often required, and adds refitting overhead, particularly in parallel or time-sensitive loops. We present TAMO, a fully amortized, universal policy for multi-objective black-box optimization. TAMO uses a transformer architecture that operates across varying input and objective dimensions, enabling pretraining on diverse corpora and transfer to new problems without retraining: at test time, the pretrained model proposes the next design with a single forward pass. We pretrain the policy with reinforcement learning to maximize cumulative hypervolume improvement over full trajectories, conditioning on the entire query history to approximate the Pareto frontier. Across synthetic benchmarks and real tasks, TAMO produces fast proposals, reducing proposal time by 50-1000x versus alternatives while matching or improving Pareto quality under tight evaluation budgets. These results show that transformers can perform multi-objective optimization entirely in-context, eliminating per-task surrogate fitting and acquisition engineering, and open a path to foundation-style, plug-and-play optimizers for scientific discovery workflows.
☆ Limits and Gains of Test-Time Scaling in Vision-Language Reasoning
Test-time scaling (TTS) has emerged as a powerful paradigm for improving the reasoning ability of Large Language Models (LLMs) by allocating additional computation at inference, yet its application to multimodal systems such as Vision-Language Models (VLMs) remains underexplored. In this work, we present a systematic empirical study of inference time reasoning methods applied across both open-source and closed-source VLMs on different benchmarks. Our results reveal that while closed-source models consistently benefit from structured reasoning and iterative Self-Refinement, open-source VLMs show inconsistent behavior: external verification provides the most reliable gains, whereas iterative refinement often degrades performance. We further find that the effectiveness of TTS is dataset-dependent, yielding clear improvements on multi-step reasoning tasks but offering only limited gains on perception-focused benchmarks. These findings demonstrate that TTS is not a universal solution and must be tailored to both model capabilities and task characteristics, motivating future work on adaptive TTS strategies and multimodal reward models.
comment: Mohammadjavad Ahmadpour and Amirmadhi Meighani contributed equally to this work
☆ Investigating ECG Diagnosis with Ambiguous Labels using Partial Label Learning
Label ambiguity is an inherent problem in real-world electrocardiogram (ECG) diagnosis, arising from overlapping conditions and diagnostic disagreement. However, current ECG models are trained under the assumption of clean and non-ambiguous annotations, which limits both the development and the meaningful evaluation of models under real-world conditions. Although Partial Label Learning (PLL) frameworks are designed to learn from ambiguous labels, their effectiveness in medical time-series domains, ECG in particular, remains largely unexplored. In this work, we present the first systematic study of PLL methods for ECG diagnosis. We adapt nine PLL algorithms to multi-label ECG diagnosis and evaluate them using a diverse set of clinically motivated ambiguity generation strategies, capturing both unstructured (e.g., random) and structured ambiguities (e.g., cardiologist-derived similarities, treatment relationships, and diagnostic taxonomies). Our experiments on the PTB-XL and Chapman datasets demonstrate that PLL methods vary substantially in their robustness to different types and degrees of ambiguity. Through extensive analysis, we identify key limitations of current PLL approaches in clinical settings and outline future directions for developing robust and clinically aligned ambiguity-aware learning frameworks for ECG diagnosis.
☆ Data-Driven Model Reduction using WeldNet: Windowed Encoders for Learning Dynamics
Many problems in science and engineering involve time-dependent, high dimensional datasets arising from complex physical processes, which are costly to simulate. In this work, we propose WeldNet: Windowed Encoders for Learning Dynamics, a data-driven nonlinear model reduction framework to build a low-dimensional surrogate model for complex evolution systems. Given time-dependent training data, we split the time domain into multiple overlapping windows, within which nonlinear dimension reduction is performed by auto-encoders to capture latent codes. Once a low-dimensional representation of the data is learned, a propagator network is trained to capture the evolution of the latent codes in each window, and a transcoder is trained to connect the latent codes between adjacent windows. The proposed windowed decomposition significantly simplifies propagator training by breaking long-horizon dynamics into multiple short, manageable segments, while the transcoders ensure consistency across windows. In addition to the algorithmic framework, we develop a mathematical theory establishing the representation power of WeldNet under the manifold hypothesis, justifying the success of nonlinear model reduction via deep autoencoder-based architectures. Our numerical experiments on various differential equations indicate that WeldNet can capture nonlinear latent structures and their underlying dynamics, outperforming both traditional projection-based approaches and recently developed nonlinear model reduction methods.
☆ TPV: Parameter Perturbations Through the Lens of Test Prediction Variance
We identify test prediction variance (TPV) -- the first-order sensitivity of model outputs to parameter perturbations around a trained solution -- as a unifying quantity that links several classical observations about generalization in deep networks. TPV is a fully label-free object whose trace form separates the geometry of the trained model from the specific perturbation mechanism, allowing a broad family of parameter perturbations like SGD noise, label noise, finite-precision noise, and other post-training perturbations to be analyzed under a single framework. Theoretically, we show that TPV estimated on the training set converges to its test-set value in the overparameterized limit, providing the first result that prediction variance under local parameter perturbations can be inferred from training inputs alone. Empirically, TPV exhibits a striking stability across datasets and architectures -- including extremely narrow networks -- and correlates well with clean test loss. Finally, we demonstrate that modeling pruning as a TPV perturbation yields a simple label-free importance measure that performs competitively with state-of-the-art pruning methods, illustrating the practical utility of TPV. Code available at github.com/devansharpit/TPV.
☆ Clip-and-Verify: Linear Constraint-Driven Domain Clipping for Accelerating Neural Network Verification NeurIPS 2025
State-of-the-art neural network (NN) verifiers demonstrate that applying the branch-and-bound (BaB) procedure with fast bounding techniques plays a key role in tackling many challenging verification properties. In this work, we introduce the linear constraint-driven clipping framework, a class of scalable and efficient methods designed to enhance the efficacy of NN verifiers. Under this framework, we develop two novel algorithms that efficiently utilize linear constraints to 1) reduce portions of the input space that are either verified or irrelevant to a subproblem in the context of branch-and-bound, and 2) directly improve intermediate bounds throughout the network. The process novelly leverages linear constraints that often arise from bound propagation methods and is general enough to also incorporate constraints from other sources. It efficiently handles linear constraints using a specialized GPU procedure that can scale to large neural networks without the use of expensive external solvers. Our verification procedure, Clip-and-Verify, consistently tightens bounds across multiple benchmarks and can significantly reduce the number of subproblems handled during BaB. We show that our clipping algorithms can be integrated with BaB-based verifiers such as $α,β$-CROWN, utilizing either the split constraints in activation-space BaB or the output constraints that denote the unverified input space. We demonstrate the effectiveness of our procedure on a broad range of benchmarks where, in some instances, we witness a 96% reduction in the number of subproblems during branch-and-bound, and also achieve state-of-the-art verified accuracy across multiple benchmarks. Clip-and-Verify is part of the $α,β$-CROWN verifier (http://abcrown.org), the VNN-COMP 2025 winner. Code available at https://github.com/Verified-Intelligence/Clip_and_Verify.
comment: Accepted to NeurIPS 2025
☆ Memoryless Policy Iteration for Episodic POMDPs
Memoryless and finite-memory policies offer a practical alternative for solving partially observable Markov decision processes (POMDPs), as they operate directly in the output space rather than in the high-dimensional belief space. However, extending classical methods such as policy iteration to this setting remains difficult; the output process is non-Markovian, making policy-improvement steps interdependent across stages. We introduce a new family of monotonically improving policy-iteration algorithms that alternate between single-stage output-based policy improvements and policy evaluations according to a prescribed periodic pattern. We show that this family admits optimal patterns that maximize a natural computational-efficiency index, and we identify the simplest pattern with minimal period. Building on this structure, we further develop a model-free variant that estimates values from data and learns memoryless policies directly. Across several POMDPs examples, our method achieves significant computational speedups over policy-gradient baselines and recent specialized algorithms in both model-based and model-free settings.
☆ Provable Recovery of Locally Important Signed Features and Interactions from Random Forest
Feature and Interaction Importance (FII) methods are essential in supervised learning for assessing the relevance of input variables and their interactions in complex prediction models. In many domains, such as personalized medicine, local interpretations for individual predictions are often required, rather than global scores summarizing overall feature importance. Random Forests (RFs) are widely used in these settings, and existing interpretability methods typically exploit tree structures and split statistics to provide model-specific insights. However, theoretical understanding of local FII methods for RF remains limited, making it unclear how to interpret high importance scores for individual predictions. We propose a novel, local, model-specific FII method that identifies frequent co-occurrences of features along decision paths, combining global patterns with those observed on paths specific to a given test point. We prove that our method consistently recovers the true local signal features and their interactions under a Locally Spike Sparse (LSS) model and also identifies whether large or small feature values drive a prediction. We illustrate the usefulness of our method and theoretical results through simulation studies and a real-world data example.
☆ MultiScript30k: Leveraging Multilingual Embeddings to Extend Cross Script Parallel Data
Multi30k is frequently cited in the multimodal machine translation (MMT) literature, offering parallel text data for training and fine-tuning deep learning models. However, it is limited to four languages: Czech, English, French, and German. This restriction has led many researchers to focus their investigations only on these languages. As a result, MMT research on diverse languages has been stalled because the official Multi30k dataset only represents European languages in Latin scripts. Previous efforts to extend Multi30k exist, but the list of supported languages, represented language families, and scripts is still very short. To address these issues, we propose MultiScript30k, a new Multi30k dataset extension for global languages in various scripts, created by translating the English version of Multi30k (Multi30k-En) using NLLB200-3.3B. The dataset consists of over \(30000\) sentences and provides translations of all sentences in Multi30k-En into Ar, Es, Uk, Zh\_Hans and Zh\_Hant. Similarity analysis shows that Multi30k extension consistently achieves greater than \(0.8\) cosine similarity and symmetric KL divergence less than \(0.000251\) for all languages supported except Zh\_Hant which is comparable to the previous Multi30k extensions ArEnMulti30k and Multi30k-Uk. COMETKiwi scores reveal mixed assessments of MultiScript30k as a translation of Multi30k-En in comparison to the related work. ArEnMulti30k scores nearly equal MultiScript30k-Ar, but Multi30k-Uk scores $6.4\%$ greater than MultiScript30k-Uk per split.
comment: 7 pages, 2 figures, 5 tables. Not published at any conference at this time
☆ An Efficient Variant of One-Class SVM with Lifelong Online Learning Guarantees
We study outlier (a.k.a., anomaly) detection for single-pass non-stationary streaming data. In the well-studied offline or batch outlier detection problem, traditional methods such as kernel One-Class SVM (OCSVM) are both computationally heavy and prone to large false-negative (Type II) errors under non-stationarity. To remedy this, we introduce SONAR, an efficient SGD-based OCSVM solver with strongly convex regularization. We show novel theoretical guarantees on the Type I/II errors of SONAR, superior to those known for OCSVM, and further prove that SONAR ensures favorable lifelong learning guarantees under benign distribution shifts. In the more challenging problem of adversarial non-stationary data, we show that SONAR can be used within an ensemble method and equipped with changepoint detection to achieve adaptive guarantees, ensuring small Type I/II errors on each phase of data. We validate our theoretical findings on synthetic and real-world datasets.
☆ Leveraging Text Guidance for Enhancing Demographic Fairness in Gender Classification
In the quest for fairness in artificial intelligence, novel approaches to enhance it in facial image based gender classification algorithms using text guided methodologies are presented. The core methodology involves leveraging semantic information from image captions during model training to improve generalization capabilities. Two key strategies are presented: Image Text Matching (ITM) guidance and Image Text fusion. ITM guidance trains the model to discern fine grained alignments between images and texts to obtain enhanced multimodal representations. Image text fusion combines both modalities into comprehensive representations for improved fairness. Exensive experiments conducted on benchmark datasets demonstrate these approaches effectively mitigate bias and improve accuracy across gender racial groups compared to existing methods. Additionally, the unique integration of textual guidance underscores an interpretable and intuitive training paradigm for computer vision systems. By scrutinizing the extent to which semantic information reduces disparities, this research offers valuable insights into cultivating more equitable facial analysis algorithms. The proposed methodologies contribute to addressing the pivotal challenge of demographic bias in gender classification from facial images. Furthermore, this technique operates in the absence of demographic labels and is application agnostic.
♻ ☆ LLM-Driven Composite Neural Architecture Search for Multi-Source RL State Encoding NeurIPS 2025
Designing state encoders for reinforcement learning (RL) with multiple information sources -- such as sensor measurements, time-series signals, image observations, and textual instructions -- remains underexplored and often requires manual design. We formalize this challenge as a problem of composite neural architecture search (NAS), where multiple source-specific modules and a fusion module are jointly optimized. Existing NAS methods overlook useful side information from the intermediate outputs of these modules -- such as their representation quality -- limiting sample efficiency in multi-source RL settings. To address this, we propose an LLM-driven NAS pipeline in which the LLM serves as a neural architecture design agent, leveraging language-model priors and intermediate-output signals to guide sample-efficient search for high-performing composite state encoders. On a mixed-autonomy traffic control task, our approach discovers higher-performing architectures with fewer candidate evaluations than traditional NAS baselines and the LLM-based GENIUS framework.
comment: NeurIPS 2025 Workshop on Bridging Language, Agent, and World Models for Reasoning and Planning
♻ ☆ If generative AI is the answer, what is the question?
Beginning with text and images, generative AI has expanded to audio, video, computer code, and molecules. Yet, if generative AI is the answer, what is the question? We explore the foundations of generation as a distinct machine learning task with connections to prediction, compression, and decision-making. We survey five major generative model families: autoregressive models, variational autoencoders, normalizing flows, generative adversarial networks, and diffusion models. We then introduce a probabilistic framework that emphasizes the distinction between density estimation and generation. We review a game-theoretic framework with a two-player adversary-learner setup to study generation. We discuss post-training modifications that prepare generative models for deployment. We end by highlighting some important topics in socially responsible generation such as privacy, detection of AI-generated content, and copyright and IP. We adopt a task-first framing of generation, focusing on what generation is as a machine learning problem, rather than only on how models implement it.
comment: To appear as a book chapter in a Springer book titled "Statistical Foundations and Applications of Artificial Intelligence, Machine Learning and Deep Learning" and edited by S. Ejaz Ahmed, Pierre Alquier, Yi Li, Shuangge Ma
♻ ☆ Nonasymptotic CLT and Error Bounds for Two-Time-Scale Stochastic Approximation
We consider linear two-time-scale stochastic approximation algorithms driven by martingale noise. Recent applications in machine learning motivate the need to understand finite-time error rates, but conventional stochastic approximation analysis focus on either asymptotic convergence in distribution or finite-time bounds that are far from optimal. Prior work on asymptotic central limit theorems (CLTs) suggest that two-time-scale algorithms may be able to achieve $1/\sqrt{n}$ error in expectation, with a constant given by the expected norm of the limiting Gaussian vector. However, the best known finite-time rates are much slower. We derive the first nonasymptotic central limit theorem with respect to the Wasserstein-1 distance for two-time-scale stochastic approximation with Polyak-Ruppert averaging. As a corollary, we show that expected error achieved by Polyak-Ruppert averaging decays at rate $1/\sqrt{n}$, which significantly improves on the rates of convergence in prior works.
♻ ☆ Beyond Basic A/B testing: Improving Statistical Efficiency for Business Growth
The standard A/B testing approaches are mostly based on t-test in large scale industry applications. These standard approaches however suffers from low statistical power in business settings, due to nature of small sample-size or non-Gaussian distribution or return-on-investment (ROI) consideration. In this paper, we (i) show the statistical efficiency of using estimating equation and U statistics, which can address these issues separately; and (ii) propose a novel doubly robust generalized U that allows flexible definition of treatment effect, and can handles small samples, distribution robustness, ROI and confounding consideration in one framework. We provide theoretical results on asymptotics and efficiency bounds, together with insights on the efficiency gain from theoretical analysis. We further conduct comprehensive simulation studies, apply the methods to multiple real A/B tests at a large SaaS company, and share results and learnings that are broadly useful.
♻ ☆ T-SHRED: Symbolic Regression for Regularization and Model Discovery with Transformer Shallow Recurrent Decoders
SHallow REcurrent Decoders (SHRED) are effective for system identification and forecasting from sparse sensor measurements. Such models are light-weight and computationally efficient, allowing them to be trained on consumer laptops. SHRED-based models rely on Recurrent Neural Networks (RNNs) and a simple Multi-Layer Perceptron (MLP) for the temporal encoding and spatial decoding respectively. Despite the relatively simple structure of SHRED, they are able to predict chaotic dynamical systems on different physical, spatial, and temporal scales directly from a sparse set of sensor measurements. In this work, we modify SHRED by leveraging transformers (T-SHRED) embedded with symbolic regression for the temporal encoding, circumventing auto-regressive long-term forecasting for physical data. This is achieved through a new sparse identification of nonlinear dynamics (SINDy) attention mechanism into T-SHRED to impose sparsity regularization on the latent space, which also allows for immediate symbolic interpretation. Symbolic regression improves model interpretability by learning and regularizing the dynamics of the latent space during training. We analyze the performance of T-SHRED on three different dynamical systems ranging from low-data to high-data regimes.
comment: 17 pages, 5 figures, submitted to Transactions of the Royal Society (Symbolic Regression in the Physical Sciences)
♻ ☆ Faster Results from a Smarter Schedule: Reframing Collegiate Cross Country through Analysis of the National Running Club Database
Collegiate cross country teams often build their season schedules on intuition rather than evidence, partly because large-scale performance datasets are not publicly accessible. To address this limitation, we introduce the National Running Club Database (NRCD), the first openly available dataset to aggregate 23,725 race results from 7,594 collegiate club athletes across the 2023-2025 seasons. Unlike existing resources, NRCD includes detailed course metadata, allowing us to develop two standardized performance metrics: Converted Only (distance correction) and Standardized (distance, weather, and elevation adjusted). Using these standardized measures, we find that athletes with slower initial performances exhibit the greatest improvement within a season, and that race frequency is the strongest predictor of improvement. Using six machine learning models, random forest achieves the highest accuracy (r squared equals 0.92), revealing that athletes who race more frequently progress significantly faster than those who do not. At the team level, programs whose athletes race at least four times during the regular season have substantially higher odds of placing in the top 15 at nationals (chi-squared less than 0.01). These results challenge common coaching practices that favor minimal racing before championship meets. Our findings demonstrate that a data-informed scheduling strategy improves both individual development and team competitiveness. The NRCD provides a new foundation for evidence-based decision-making in collegiate cross country and opens opportunities for further research on standardized, longitudinal athlete performance modeling.
♻ ☆ Fairness-Aware Fine-Tuning of Vision-Language Models for Medical Glaucoma Diagnosis
Vision-language models achieve expert-level performance on medical imaging tasks but exhibit significant diagnostic accuracy disparities across demographic groups. We introduce fairness-aware Low-Rank Adaptation for medical VLMs, combining parameter efficiency with explicit fairness optimization. Our key algorithmic contribution is a differentiable MaxAccGap loss that enables end-to-end optimization of accuracy parity across demographic groups. We propose three methods: FR-LoRA integrates MaxAccGap regularization into the training objective, GR-LoRA applies inverse frequency weighting to balance gradient contributions, and Hybrid-LoRA combines both mechanisms. Evaluated on 10,000 glaucoma fundus images, GR-LoRA reduces diagnostic accuracy disparities by 69% while maintaining 53.15% overall accuracy. Ablation studies reveal that strong regularization strength achieves optimal fairness with minimal accuracy trade-off, and race-specific optimization yields 60% disparity reduction. Our approach requires only 0.24% trainable parameters, enabling practical deployment of fair medical AI in resource-constrained healthcare settings.
comment: 10 pages, 3 tables
♻ ☆ Luxical: High-Speed Lexical-Dense Text Embeddings
Frontier language model quality increasingly hinges on our ability to organize web-scale text corpora for training. Today's dominant tools trade off speed and flexibility: lexical classifiers (e.g., FastText) are fast but limited to producing classification output scores, while the vector-valued outputs of transformer text embedding models flexibly support numerous workflows (e.g., clustering, classification, and retrieval) but are computationally expensive to produce. We introduce Luxical, a library for high-speed "lexical-dense" text embeddings that aims to recover the best properties of both approaches for web-scale text organization. Luxical combines sparse TF--IDF features, a small ReLU network, and a knowledge distillation training regimen to approximate large transformer embedding models at a fraction of their operational cost. In this technical report, we describe the Luxical architecture and training objective and evaluate a concrete Luxical model in two disparate applications: a targeted webcrawl document retrieval test and an end-to-end language model data curation task grounded in text classification. In these tasks we demonstrate speedups ranging from 3x to 100x over varying-sized neural baselines, and comparable to FastText model inference during the data curation task. On these evaluations, the tested Luxical model illustrates favorable compute/quality trade-offs for large-scale text organization, matching the quality of neural baselines. Luxical is available as open-source software at https://github.com/datologyai/luxical.
comment: 9 pages, 6 figures (v2 fixes typos only)
♻ ☆ Understanding Outer Optimizers in Local SGD: Learning Rates, Momentum, and Acceleration
Modern machine learning often requires training with large batch size, distributed data, and massively parallel compute hardware (like mobile and other edge devices or distributed data centers). Communication becomes a major bottleneck in such settings but methods like Local Stochastic Gradient Descent (Local SGD) show great promise in reducing this additional communication overhead. Local SGD consists of three parts: a local optimization process, an aggregation mechanism, and an outer optimizer that uses the aggregated updates from the nodes to produce a new model. While there exists an extensive literature on understanding the impact of hyperparameters in the local optimization process, the choice of outer optimizer and its hyperparameters is less clear. We study the role of the outer optimizer in Local SGD, and prove new convergence guarantees for the algorithm. In particular, we show that tuning the outer learning rate allows us to (a) trade off between optimization error and stochastic gradient noise variance, and (b) make up for ill-tuning of the inner learning rate. Our theory suggests that the outer learning rate should sometimes be set to values greater than $1$. We extend our results to settings where we use momentum in the outer optimizer, and we show a similar role for the momentum-adjusted outer learning rate. We also study acceleration in the outer optimizer and show that it improves the convergence rate as a function of the number of communication rounds, improving upon the convergence rate of prior algorithms that apply acceleration locally. Finally, we also introduce a novel data-dependent analysis of Local SGD that yields further insights on outer learning rate tuning. We conduct comprehensive experiments with standard language models and various outer optimizers to validate our theory.
♻ ☆ Deception Detection in Dyadic Exchanges Using Multimodal Machine Learning: A Study on a Swedish Cohort
This study investigates the efficacy of using multimodal machine learning techniques to detect deception in dyadic interactions, focusing on the integration of data from both the deceiver and the deceived. We compare early and late fusion approaches, utilizing audio and video data - specifically, Action Units and gaze information - across all possible combinations of modalities and participants. Our dataset, newly collected from Swedish native speakers engaged in truth or lie scenarios on emotionally relevant topics, serves as the basis for our analysis. The results demonstrate that incorporating both speech and facial information yields superior performance compared to single-modality approaches. Moreover, including data from both participants significantly enhances deception detection accuracy, with the best performance (71%) achieved using a late fusion strategy applied to both modalities and participants. These findings align with psychological theories suggesting differential control of facial and vocal expressions during initial interactions. As the first study of its kind on a Scandinavian cohort, this research lays the groundwork for future investigations into dyadic interactions, particularly within psychotherapy settings.
comment: 40 pages, 2 figures, 2 tables. To be submitted in Behavior Research Methods
♻ ☆ Equivariant Test-Time Training with Operator Sketching for Imaging Inverse Problems
Equivariant Imaging (EI) regularization has become the de-facto technique for unsupervised training of deep imaging networks, without any need of ground-truth data. Observing that the EI-based unsupervised training paradigm currently has significant computational redundancy leading to inefficiency in high-dimensional applications, we propose a sketched EI regularization which leverages the randomized sketching techniques for acceleration. We apply our sketched EI regularization to develop an accelerated deep internal learning framework, which can be efficiently applied for test-time network adaptation. Additionally, for network adaptation tasks, we propose a parameter-efficient approach to accelerate both EI and Sketched-EI via optimizing only the normalization layers. Our numerical study on X-ray CT and multicoil magnetic resonance image reconstruction tasks demonstrate that our approach can achieve significant computational acceleration over the standard EI counterpart, especially in test-time training tasks.
comment: 20 pages
♻ ☆ SyGra: A Unified Graph-Based Framework for Scalable Generation, Quality Tagging, and Management of Synthetic Data
The advancement of large language models (LLMs) is critically dependent on the availability of high-quality datasets for Supervised Fine-Tuning (SFT), alignment tasks like Direct Preference Optimization (DPO), etc. In this work, we present a comprehensive synthetic data generation framework that facilitates scalable, configurable, and high-fidelity generation of synthetic data tailored for these training paradigms. Our approach employs a modular and configuration-based pipeline capable of modeling complex dialogue flows with minimal manual intervention. This framework uses a dual-stage quality tagging mechanism, combining heuristic rules and LLM-based evaluations, to automatically filter and score data extracted from OASST-formatted conversations, ensuring the curation of high-quality dialogue samples. The resulting datasets are structured under a flexible schema supporting both SFT and DPO use cases, enabling seamless integration into diverse training workflows. Together, these innovations offer a robust solution for generating and managing synthetic conversational data at scale, significantly reducing the overhead of data preparation in LLM training pipelines.
♻ ☆ Extrapolating Jet Radiation with Autoregressive Transformers
Generative networks are an exciting tool for fast LHC event fixed number of particles. Autoregressive transformers allow us to generate events containing variable numbers of particles, very much in line with the physics of QCD jet radiation, and offer the possibility to generalize to higher multiplicities. We show how transformers can learn a factorized likelihood for jet radiation and extrapolate in terms of the number of generated jets. For this extrapolation, bootstrapping training data and training with modifications of the likelihood loss can be used.
comment: v1: 31 pages, 4 tables, 15 figures; v2: 31 pages, 4 tables, 16 figures, accepted for publication at SciPost Physics
♻ ☆ Deep Operator BSDE: a Numerical Scheme to Approximate Solution Operators
Motivated by dynamic risk measures and conditional $g$-expectations, in this work we propose a numerical method to approximate the solution operator given by a Backward Stochastic Differential Equation (BSDE). The main ingredients for this are the Wiener chaos decomposition and the classical Euler scheme for BSDEs. We show convergence of this scheme under very mild assumptions, and provide a rate of convergence in more restrictive cases. We then implement it using neural networks, and we present several numerical examples where we can check the accuracy of the method.
♻ ☆ Adapting to Change: A Comparison of Continual and Transfer Learning for Modeling Building Thermal Dynamics under Concept Drifts
Transfer Learning (TL) is currently the most effective approach for modeling building thermal dynamics when only limited data are available. TL uses a pretrained model that is fine-tuned to a specific target building. However, it remains unclear how to proceed after initial fine-tuning, as more operational measurement data are collected over time. This challenge becomes even more complex when the dynamics of the building change, for example, after a retrofit or a change in occupancy. In Machine Learning literature, Continual Learning (CL) methods are used to update models of changing systems. TL approaches can also address this challenge by reusing the pretrained model at each update step and fine-tuning it with new measurement data. A comprehensive study on how to incorporate new measurement data over time to improve prediction accuracy and address the challenges of concept drifts (changes in dynamics) for building thermal dynamics is still missing. Therefore, this study compares several CL and TL strategies, as well as a model trained from scratch, for thermal dynamics modeling during building operation. The methods are evaluated using 5--7 years of simulated data representative of single-family houses in Central Europe, including scenarios with concept drifts from retrofits and changes in occupancy. We propose a CL strategy (Seasonal Memory Learning) that provides greater accuracy improvements than existing CL and TL methods, while maintaining low computational effort. SML outperformed the benchmark of initial fine-tuning by 28.1\% without concept drifts and 34.9\% with concept drifts.
comment: Currently under review
♻ ☆ State-Space Models for Tabular Prior-Data Fitted Networks
Recent advancements in foundation models for tabular data, such as TabPFN, demonstrated that pretrained Transformer architectures can approximate Bayesian inference with high predictive performance. However, Transformers suffer from quadratic complexity with respect to sequence length, motivating the exploration of more efficient sequence models. In this work, we investigate the potential of using Hydra, a bidirectional linear-time structured state space model (SSM), as an alternative to Transformers in TabPFN. A key challenge lies in SSM's inherent sensitivity to the order of input tokens - an undesirable property for tabular datasets where the row order is semantically meaningless. We investigate to what extent a bidirectional approach can preserve efficiency and enable symmetric context aggregation. Our experiments show that this approach reduces the order-dependence, achieving predictive performance competitive to the original TabPFN model.
♻ ☆ ENMA: Tokenwise Autoregression for Generative Neural PDE Operators
Solving time-dependent parametric partial differential equations (PDEs) remains a fundamental challenge for neural solvers, particularly when generalizing across a wide range of physical parameters and dynamics. When data is uncertain or incomplete-as is often the case-a natural approach is to turn to generative models. We introduce ENMA, a generative neural operator designed to model spatio-temporal dynamics arising from physical phenomena. ENMA predicts future dynamics in a compressed latent space using a generative masked autoregressive transformer trained with flow matching loss, enabling tokenwise generation. Irregularly sampled spatial observations are encoded into uniform latent representations via attention mechanisms and further compressed through a spatio-temporal convolutional encoder. This allows ENMA to perform in-context learning at inference time by conditioning on either past states of the target trajectory or auxiliary context trajectories with similar dynamics. The result is a robust and adaptable framework that generalizes to new PDE regimes and supports one-shot surrogate modeling of time-dependent parametric PDEs.
♻ ☆ AI-Newton: A Concept-Driven Physical Law Discovery System without Prior Physical Knowledge
While current AI-driven methods excel at deriving empirical models from individual experiments, a significant challenge remains in uncovering the common fundamental physics that underlie these models -- a task at which human physicists are adept. To bridge this gap, we introduce AI-Newton, a novel framework for concept-driven scientific discovery. Our system autonomously derives general physical laws directly from raw, multi-experiment data, operating without supervision or prior physical knowledge. Its core innovations are twofold: (1) proposing interpretable physical concepts to construct laws, and (2) progressively generalizing these laws to broader domains. Applied to a large, noisy dataset of mechanics experiments, AI-Newton successfully rediscovers foundational and universal laws, such as Newton's second law, the conservation of energy, and the universal gravitation. This work represents a significant advance toward autonomous, human-like scientific discovery.
comment: 6 pages, 3 figures
♻ ☆ GT-SNT: A Linear-Time Transformer for Large-Scale Graphs via Spiking Node Tokenization AAAI 2026
Graph Transformers (GTs), which integrate message passing and self-attention mechanisms simultaneously, have achieved promising empirical results in graph prediction tasks. However, the design of scalable and topology-aware node tokenization has lagged behind other modalities. This gap becomes critical as the quadratic complexity of full attention renders them impractical on large-scale graphs. Recently, Spiking Neural Networks (SNNs), as brain-inspired models, provided an energy-saving scheme to convert input intensity into discrete spike-based representations through event-driven spiking neurons. Inspired by these characteristics, we propose a linear-time Graph Transformer with Spiking Node Tokenization (GT-SNT) for node classification. By integrating multi-step feature propagation with SNNs, spiking node tokenization generates compact, locality-aware spike count embeddings as node tokens to avoid predefined codebooks and their utilization issues. The codebook guided self-attention leverages these tokens to perform node-to-token attention for linear-time global context aggregation. In experiments, we compare GT-SNT with other state-of-the-art baselines on node classification datasets ranging from small to large. Experimental results show that GT-SNT achieves comparable performances on most datasets and reaches up to 130x faster inference speed compared to other GTs.
comment: Accepted by AAAI 2026; Code is available at https://github.com/Zhhuizhe/GT-SNT
♻ ☆ Distributional Shrinkage I: Universal Denoisers in Multi-Dimensions
We revisit the problem of denoising from noisy measurements where only the noise level is known, not the noise distribution. In multi-dimensions, independent noise $Z$ corrupts the signal $X$, resulting in the noisy measurement $Y = X + σZ$, where $σ\in (0, 1)$ is a known noise level. Our goal is to recover the underlying signal distribution $P_X$ from denoising $P_Y$. We propose and analyze universal denoisers that are agnostic to a wide range of signal and noise distributions. Our distributional denoisers offer order-of-magnitude improvements over the Bayes-optimal denoiser derived from Tweedie's formula, if the focus is on the entire distribution $P_X$ rather than on individual realizations of $X$. Our denoisers shrink $P_Y$ toward $P_X$ optimally, achieving $O(σ^4)$ and $O(σ^6)$ accuracy in matching generalized moments and density functions. Inspired by optimal transport theory, the proposed denoisers are optimal in approximating the Monge-Ampère equation with higher-order accuracy, and can be implemented efficiently via score matching. Let $q$ represent the density of $P_Y$; for optimal distributional denoising, we recommend replacing the Bayes-optimal denoiser, \[ \mathbf{T}^*(y) = y + σ^2 \nabla \log q(y), \] with denoisers exhibiting less aggressive distributional shrinkage, \[ \mathbf{T}_1(y) = y + \frac{σ^2}{2} \nabla \log q(y), \] \[ \mathbf{T}_2(y) = y + \frac{σ^2}{2} \nabla \log q(y) - \frac{σ^4}{8} \nabla \left( \frac{1}{2} \| \nabla \log q(y) \|^2 + \nabla \cdot \nabla \log q(y) \right) . \]
comment: 26 pages, 5 figures
♻ ☆ Object-centric proto-symbolic behavioural reasoning from pixels
Autonomous intelligent agents must bridge computational challenges at disparate levels of abstraction, from the low-level spaces of sensory input and motor commands to the high-level domain of abstract reasoning and planning. A key question in designing such agents is how best to instantiate the representational space that will interface between these two levels -- ideally without requiring supervision in the form of expensive data annotations. These objectives can be efficiently achieved by representing the world in terms of objects (grounded in perception and action). In this work, we present a novel, brain-inspired, deep-learning architecture that learns from pixels to interpret, control, and reason about its environment, using object-centric representations. We show the utility of our approach through tasks in synthetic environments that require a combination of (high-level) logical reasoning and (low-level) continuous control. Results show that the agent can learn emergent conditional behavioural reasoning, such as $(A \to B) \land (\neg A \to C)$, as well as logical composition $(A \to B) \land (A \to C) \vdash A \to (B \land C)$ and XOR operations, and successfully controls its environment to satisfy objectives deduced from these logical rules. The agent can adapt online to unexpected changes in its environment and is robust to mild violations of its world model, thanks to dynamic internal desired goal generation. While the present results are limited to synthetic settings (2D and 3D activated versions of dSprites), which fall short of real-world levels of complexity, the proposed architecture shows how to manipulate grounded object representations, as a key inductive bias for unsupervised learning, to enable behavioral reasoning.
comment: Accepted for publication in Neural Networks journal
♻ ☆ Lightweight Model Attribution and Detection of Synthetic Speech via Audio Residual Fingerprints
As speech generation technologies advance, so do risks of impersonation, misinformation, and spoofing. We present a lightweight, training-free approach for detecting synthetic speech and attributing it to its source model. Our method addresses three tasks: (1) single-model attribution in an open-world setting, (2) multi-model attribution in a closed-world setting, and (3) real vs. synthetic speech classification. The core idea is simple: we compute standardized average residuals--the difference between an audio signal and its filtered version--to extract model-agnostic fingerprints that capture synthesis artifacts. Experiments across multiple synthesis systems and languages show AUROC scores above 99%, with strong reliability even when only a subset of model outputs is available. The method maintains high performance under common audio distortions, including echo and moderate background noise, while data augmentation can improve results in more challenging conditions. In addition, out-of-domain detection is performed using Mahalanobis distances to in-domain residual fingerprints, achieving an F1 score of 0.91 on unseen models, reinforcing the method's efficiency, generalizability, and suitability for digital forensics and security applications.
♻ ☆ Towards Robust Assessment of Pathological Voices via Combined Low-Level Descriptors and Foundation Model Representations
Perceptual voice quality assessment plays a vital role in diagnosing and monitoring voice disorders. Traditional methods, such as the Consensus Auditory-Perceptual Evaluation of Voice (CAPE-V) and the Grade, Roughness, Breathiness, Asthenia, and Strain (GRBAS) scales, rely on expert raters and are prone to inter-rater variability, emphasizing the need for objective solutions. This study introduces the Voice Quality Assessment Network (VOQANet), a deep learning framework that employs an attention mechanism and Speech Foundation Model (SFM) embeddings to extract high-level features. To further enhance performance, we propose VOQANet+, which integrates self-supervised SFM embeddings with low-level acoustic descriptors-namely jitter, shimmer, and harmonics-to-noise ratio (HNR). Unlike previous approaches that focus solely on vowel-based phonation (PVQD-A), our models are evaluated on both vowel-level and sentence-level speech (PVQD-S) to assess generalizability. Experimental results demonstrate that sentence-based inputs yield higher accuracy, particularly at the patient level. Overall, VOQANet consistently outperforms baseline models in terms of root mean squared error (RMSE) and Pearson correlation coefficient across CAPE-V and GRBAS dimensions, with VOQANet+ achieving even greater performance gains. Additionally, VOQANet+ maintains consistent performance under noisy conditions, suggesting enhanced robustness for real-world and telehealth applications. This work highlights the value of combining SFM embeddings with low-level features for accurate and robust pathological voice assessment.
♻ ☆ IRG: Modular Synthetic Relational Database Generation with Complex Relational Schemas
Relational databases (RDBs) are widely used by corporations and governments to store multiple related tables. Their relational schemas pose unique challenges to synthetic data generation for privacy-preserving data sharing, e.g., for collaborative analytical and data mining tasks, as well as software testing at various scales. Relational schemas typically include a set of primary and foreign key constraints to specify the intra-and inter-table entity relations, which also imply crucial intra-and inter-table data correlations in the RDBs. Existing synthetic RDB generation approaches often focus on the relatively simple and basic parent-child relations, failing to address the ubiquitous real-world complexities in relational schemas in key constraints like composite keys, intra-table correlations like sequential correlation, and inter-table data correlations like indirectly connected tables. In this paper, we introduce incremental relational generator (IRG), a modular framework designed to handle these real-world challenges. In IRG, each table is generated by learning context from a depth-first traversal of relational connections to capture indirect inter-table relationships and constructs different parts of a table through several classical generative and predictive modules to preserve complex key constraints and data correlations. Compared to 3 prior art algorithms across 10 real-world RDB datasets, IRG successfully handles the relational schemas and captures critical data relationships for all datasets while prior works are incapable of. The generated synthetic data also demonstrates better fidelity and utility than prior works, implying its higher potential as a replacement for the basis of analytical tasks and data mining applications. Code is available at: https://github.com/li-jiayu-ljy/irg.
♻ ☆ Beyond Log-Concavity and Score Regularity: Improved Convergence Bounds for Score-Based Generative Models in W2-distance
Score-based Generative Models (SGMs) aim to sample from a target distribution by learning score functions using samples perturbed by Gaussian noise. Existing convergence bounds for SGMs in the W2-distance rely on stringent assumptions about the data distribution. In this work, we present a novel framework for analyzing W2-convergence in SGMs, significantly relaxing traditional assumptions such as log-concavity and score regularity. Leveraging the regularization properties of the Ornstein--Uhlenbeck (OU) process, we show that weak log-concavity of the data distribution evolves into log-concavity over time. This transition is rigorously quantified through a PDE-based analysis of the Hamilton--Jacobi--Bellman equation governing the log-density of the forward process. Moreover, we establish that the drift of the time-reversed OU process alternates between contractive and non-contractive regimes, reflecting the dynamics of concavity. Our approach circumvents the need for stringent regularity conditions on the score function and its estimators, relying instead on milder, more practical assumptions. We demonstrate the wide applicability of this framework through explicit computations on Gaussian mixture models, illustrating its versatility and potential for broader classes of data distributions.
♻ ☆ Compliant Residual DAgger: Improving Real-World Contact-Rich Manipulation with Human Corrections
We address key challenges in Dataset Aggregation (DAgger) for real-world contact-rich manipulation: how to collect informative human correction data and how to effectively update policies with this new data. We introduce Compliant Residual DAgger (CR-DAgger), which contains two novel components: 1) a Compliant Intervention Interface that leverages compliance control, allowing humans to provide gentle, accurate delta action corrections without interrupting the ongoing robot policy execution; and 2) a Compliant Residual Policy formulation that learns from human corrections while incorporating force feedback and force control. Our system significantly enhances performance on precise contact-rich manipulation tasks using minimal correction data, improving base policy success rates by over 50\% on two challenging tasks (book flipping and belt assembly) while outperforming both retraining-from-scratch and finetuning approaches. Through extensive real-world experiments, we provide practical guidance for implementing effective DAgger in real-world robot learning tasks. Result videos are available at: https://compliant-residual-dagger.github.io/
♻ ☆ Orbis: Overcoming Challenges of Long-Horizon Prediction in Driving World Models
Existing world models for autonomous driving struggle with long-horizon generation and generalization to challenging scenarios. In this work, we develop a model using simple design choices, and without additional supervision or sensors, such as maps, depth, or multiple cameras. We show that our model yields state-of-the-art performance, despite having only 469M parameters and being trained on 280h of video data. It particularly stands out in difficult scenarios like turning maneuvers and urban traffic. We test whether discrete token models possibly have advantages over continuous models based on flow matching. To this end, we set up a hybrid tokenizer that is compatible with both approaches and allows for a side-by-side comparison. Our study concludes in favor of the continuous autoregressive model, which is less brittle on individual design choices and more powerful than the model built on discrete tokens. Code, models and qualitative results are publicly available at https://lmb-freiburg.github.io/orbis.github.io/.
comment: Project page: https://lmb-freiburg.github.io/orbis.github.io/
♻ ☆ DDFI: Diverse and Distribution-aware Missing Feature Imputation via Two-step Reconstruction
Incomplete node features are ubiquitous in real-world scenarios, e.g., the attributes of web users may be partly private, which causes the performance of Graph Neural Networks (GNNs) to decline significantly. Feature propagation (FP) is a well-known method that performs well for imputation of missing node features on graphs, but it still has the following three issues: 1) it struggles with graphs that are not fully connected, 2) imputed features face the over-smoothing problem, and 3) FP is tailored for transductive tasks, overlooking the feature distribution shift in inductive tasks. To address these challenges, we introduce DDFI, a Diverse and Distribution-aware Missing Feature Imputation method that combines feature propagation with a graph-based Masked AutoEncoder (MAE) in a nontrivial manner. It first designs a simple yet effective algorithm, namely Co-Label Linking (CLL), that randomly connects nodes in the training set with the same label to enhance the performance on graphs with numerous connected components. Then we develop a novel two-step representation generation process at the inference stage. Specifically, instead of directly using FP-imputed features as input during inference, DDFI further reconstructs the features through the whole MAE to reduce feature distribution shift in the inductive tasks and enhance the diversity of node features. Meanwhile, since existing feature imputation methods for graphs only evaluate by simulating the missing scenes with manually masking the features, we collect a new dataset called Sailing from the records of voyages that contains naturally missing features to help better evaluate the effectiveness. Extensive experiments conducted on six public datasets and Sailing show that DDFI outperforms the state-of-the-art methods under both transductive and inductive settings.
♻ ☆ Sublinear Variational Optimization of Gaussian Mixture Models with Millions to Billions of Parameters
Gaussian Mixture Models (GMMs) range among the most frequently used models in machine learning. However, training large, general GMMs becomes computationally prohibitive for datasets that have many data points $N$ of high-dimensionality $D$. For GMMs with arbitrary covariances, we here derive a highly efficient variational approximation, which is then integrated with mixtures of factor analyzers (MFAs). For GMMs with $C$ components, our proposed algorithm substantially reduces runtime complexity from $\mathcal{O}(NCD^2)$ per iteration to a complexity scaling linearly with $D$ and sublinearly with $NC$. In numerical experiments, we first validate that the complexity reduction results in a sublinear scaling for the entire GMM optimization process. Second, we show on large-scale benchmarks that the sublinear algorithm results in speed-ups of an order-of-magnitude compared to the state-of-the-art. Third, as a proof of concept, we finally train GMMs with over 10 billion parameters on about 100 million images, observing training times of less than nine hours on a single state-of-the-art CPU. Finally, and forth, we demonstrate the effectiveness of large-scale GMMs on the task of zero-shot image denoising, where sublinear training results in state-of-the-art denoising times while competitive denoising performance is maintained.
comment: 31 pages, 8 figures (and 28 pages, 7 figures in Appendix)
♻ ☆ GTPO: Stabilizing Group Relative Policy Optimization via Gradient and Entropy Control
Group Relative Policy Optimization (GRPO) is a promising policy-based approach for Large Language Model alignment, yet its performance is often limited by training instability and suboptimal convergence. In this paper, we identify and analyze two main GRPO issues: (i) the token-level penalization, where valuable tokens shared across different responses receive contradictory feedback signals, leading to conflicting gradient updates that can reduce their likelihood; and (ii) the policy collapse, where negatively rewarded completions may penalize confident responses and shift model decisions toward unlikely tokens, destabilizing training process. To address these issues we introduce GTPO (Group-relative Trajectory-based Policy Optimization), which prevents conflicting gradients on valuable tokens by skipping negative updates while amplifying positive ones and filters out completions whose entropy exceeds a provable threshold, to prevent policy collapse. Unlike GRPO, GTPO does not rely on KL-divergence regularization, eliminating the need for a reference model during training, while still ensuring greater training stability and improved performance, as validated through multiple experiments on GSM8K, MATH, AIME 2024, AIME 2025 and AMC 2023.
♻ ☆ Enhanced Spatial Clustering of Single-Molecule Localizations with Graph Neural Networks
Single-molecule localization microscopy generates point clouds corresponding to fluorophore localizations. Spatial cluster identification and analysis of these point clouds are crucial for extracting insights about molecular organization. However, this task becomes challenging in the presence of localization noise, high point density, or complex biological structures. Here, we introduce MIRO (Multifunctional Integration through Relational Optimization), an algorithm that uses recurrent graph neural networks to transform the point clouds in order to improve clustering efficiency when applying conventional clustering techniques. We show that MIRO supports simultaneous processing of clusters of different shapes and at multiple scales, demonstrating improved performance across varied datasets. Our comprehensive evaluation demonstrates MIRO's transformative potential for single-molecule localization applications, showcasing its capability to revolutionize cluster analysis and provide accurate, reliable details of molecular architecture. In addition, MIRO's robust clustering capabilities hold promise for applications in various fields such as neuroscience, for the analysis of neural connectivity patterns, and environmental science, for studying spatial distributions of ecological data.
comment: 47 pages, 5 main figures, 3 table, 3 supplementary figures, 9 supplementary tables. This is the author's version of the article published in Nature Communications under CC BY 4.0. The final published version is available at https://doi.org/10.1038/s41467-025-65557-7
♻ ☆ Generalized Kernelized Bandits: A Novel Self-Normalized Bernstein-Like Dimension-Free Inequality and Regret Bounds
We study the regret minimization problem in the novel setting of generalized kernelized bandits (GKBs), where we optimize an unknown function $f^*$ belonging to a reproducing kernel Hilbert space (RKHS) having access to samples generated by an exponential family (EF) reward model whose mean is a non-linear function $μ(f^*)$. This setting extends both kernelized bandits (KBs) and generalized linear bandits (GLBs), providing a unified view of both settings. We propose an optimistic regret minimization algorithm, GKB-UCB, and we explain why existing self-normalized concentration inequalities used for KBs and GLBs do not allow to provide tight regret guarantees. For this reason, we devise a novel self-normalized Bernstein-like dimension-free inequality that applies to a Hilbert space of functions with bounded norm, representing a contribution of independent interest. Based on it, we analyze GKB-UCB, deriving a regret bound of order $\widetilde{O}( γ_T \sqrt{T/κ_*})$, being $T$ the learning horizon, $γ_T$ the maximal information gain, and $κ_*$ a term characterizing the magnitude of the expected reward non-linearity. Our result is tight in its dependence on $T$, $γ_T$, and $κ_*$ for both KBs and GLBs. Finally, we present a tractable version GKB-UCB, Trac-GKB-UCB, which attains similar regret guarantees, and we discuss its time and space complexity.
♻ ☆ Machine Learning for Quantifier Selection in cvc5
In this work we considerably improve the state-of-the-art SMT solving on first-order quantified problems by efficient machine learning guidance of quantifier selection. Quantifiers represent a significant challenge for SMT and are technically a source of undecidability. In our approach, we train an efficient machine learning model that informs the solver which quantifiers should be instantiated and which not. Each quantifier may be instantiated multiple times and the set of the active quantifiers changes as the solving progresses. Therefore, we invoke the ML predictor many times, during the whole run of the solver. To make this efficient, we use fast ML models based on gradient boosting decision trees. We integrate our approach into the state-of-the-art cvc5 SMT solver and show a considerable increase of the system's holdout-set performance after training it on a large set of first-order problems collected from the Mizar Mathematical Library.
comment: Updated version for International Journal of Approximate Reasoning. Volume 189, February 2026, 109602
♻ ☆ Learning (Approximately) Equivariant Networks via Constrained Optimization NeurIPS 2025
Equivariant neural networks are designed to respect symmetries through their architecture, boosting generalization and sample efficiency when those symmetries are present in the data distribution. Real-world data, however, often departs from perfect symmetry because of noise, structural variation, measurement bias, or other symmetry-breaking effects. Strictly equivariant models may struggle to fit the data, while unconstrained models lack a principled way to leverage partial symmetries. Even when the data is fully symmetric, enforcing equivariance can hurt training by limiting the model to a restricted region of the parameter space. Guided by homotopy principles, where an optimization problem is solved by gradually transforming a simpler problem into a complex one, we introduce Adaptive Constrained Equivariance (ACE), a constrained optimization approach that starts with a flexible, non-equivariant model and gradually reduces its deviation from equivariance. This gradual tightening smooths training early on and settles the model at a data-driven equilibrium, balancing between equivariance and non-equivariance. Across multiple architectures and tasks, our method consistently improves performance metrics, sample efficiency, and robustness to input perturbations compared with strictly equivariant models and heuristic equivariance relaxations.
comment: NeurIPS 2025 Oral Camera-Ready
♻ ☆ Beyond Lux thresholds: a systematic pipeline for classifying biologically relevant light contexts from wearable data
Background: Wearable spectrometers enable field quantification of biologically relevant light, yet reproducible pipelines for contextual classification remain under-specified. Objective: To establish and validate a subject-wise evaluated, reproducible pipeline and actionable design rules for classifying natural vs. artificial light from wearable spectral data. Methods: We analysed ActLumus recordings from 26 participants, each monitored for at least 7 days at 10-second sampling, paired with daily exposure diaries. The pipeline fixes the sequence: domain selection, log-base-10 transform, L2 normalisation excluding total intensity (to avoid brightness shortcuts), hour-level medoid aggregation, sine/cosine hour encoding, and MLP classifier, evaluated under participant-wise cross-validation. Results: The proposed sequence consistently achieved high performance on the primary task, with representative configurations reaching AUC = 0.938 (accuracy 88%) for natural vs. artificial classification on the held-out subject split. In contrast, indoor vs. outdoor classification remained at feasibility level due to spectral overlap and class imbalance (best AUC approximately 0.75; majority-class collapse without contextual sensors). Threshold baselines were insufficient on our data, supporting the need for spectral-temporal modelling beyond illuminance cut-offs. Conclusions: We provide a reproducible, auditable baseline pipeline and design rules for contextual light classification under subject-wise generalisation. All code, configuration files, and derived artefacts will be openly archived (GitHub + Zenodo DOI) to support reuse and benchmarking.
comment: Withdrawn at the request of affiliated institution
♻ ☆ Toward a Unified Geometry Understanding: Riemannian Diffusion Framework for Graph Generation and Prediction NeurIPS 2025
Graph diffusion models have made significant progress in learning structured graph data and have demonstrated strong potential for predictive tasks. Existing approaches typically embed node, edge, and graph-level features into a unified latent space, modeling prediction tasks including classification and regression as a form of conditional generation. However, due to the non-Euclidean nature of graph data, features of different curvatures are entangled in the same latent space without releasing their geometric potential. To address this issue, we aim to construt an ideal Riemannian diffusion model to capture distinct manifold signatures of complex graph data and learn their distribution. This goal faces two challenges: numerical instability caused by exponential mapping during the encoding proces and manifold deviation during diffusion generation. To address these challenges, we propose GeoMancer: a novel Riemannian graph diffusion framework for both generation and prediction tasks. To mitigate numerical instability, we replace exponential mapping with an isometric-invariant Riemannian gyrokernel approach and decouple multi-level features onto their respective task-specific manifolds to learn optimal representations. To address manifold deviation, we introduce a manifold-constrained diffusion method and a self-guided strategy for unconditional generation, ensuring that the generated data remains aligned with the manifold signature. Extensive experiments validate the effectiveness of our approach, demonstrating superior performance across a variety of tasks.
comment: Accepted by NeurIPS 2025
♻ ☆ Aligning ASR Evaluation with Human and LLM Judgments: Intelligibility Metrics Using Phonetic, Semantic, and NLI Approaches
Traditional ASR metrics like WER and CER fail to capture intelligibility, especially for dysarthric and dysphonic speech, where semantic alignment matters more than exact word matches. ASR systems struggle with these speech types, often producing errors like phoneme repetitions and imprecise consonants, yet the meaning remains clear to human listeners. We identify two key challenges: (1) Existing metrics do not adequately reflect intelligibility, and (2) while LLMs can refine ASR output, their effectiveness in correcting ASR transcripts of dysarthric speech remains underexplored. To address this, we propose a novel metric integrating Natural Language Inference (NLI) scores, semantic similarity, and phonetic similarity. Our ASR evaluation metric achieves a 0.890 correlation with human judgments on Speech Accessibility Project data, surpassing traditional methods and emphasizing the need to prioritize intelligibility over error-based measures.
comment: 5 pages, 2 figures, Interspeech 2025
♻ ☆ PaTAS: A Framework for Trust Propagation in Neural Networks Using Subjective Logic
Trustworthiness has become a key requirement for the deployment of artificial intelligence systems in safety-critical applications. Conventional evaluation metrics, such as accuracy and precision, fail to appropriately capture uncertainty or the reliability of model predictions, particularly under adversarial or degraded conditions. This paper introduces the Parallel Trust Assessment System (PaTAS), a framework for modeling and propagating trust in neural networks using Subjective Logic (SL). PaTAS operates in parallel with standard neural computation through Trust Nodes and Trust Functions that propagate input, parameter, and activation trust across the network. The framework defines a Parameter Trust Update mechanism to refine parameter reliability during training and an Inference-Path Trust Assessment (IPTA) method to compute instance-specific trust at inference. Experiments on real-world and adversarial datasets demonstrate that PaTAS produces interpretable, symmetric, and convergent trust estimates that complement accuracy and expose reliability gaps in poisoned, biased, or uncertain data scenarios. The results show that PaTAS effectively distinguishes between benign and adversarial inputs and identifies cases where model confidence diverges from actual reliability. By enabling transparent and quantifiable trust reasoning within neural architectures, PaTAS provides a foundation for evaluating model reliability across the AI lifecycle.
♻ ☆ RAD: Towards Trustworthy Retrieval-Augmented Multi-modal Clinical Diagnosis NeurIPS 2025
Clinical diagnosis is a highly specialized discipline requiring both domain expertise and strict adherence to rigorous guidelines. While current AI-driven medical research predominantly focuses on knowledge graphs or natural text pretraining paradigms to incorporate medical knowledge, these approaches primarily rely on implicitly encoded knowledge within model parameters, neglecting task-specific knowledge required by diverse downstream tasks. To address this limitation, we propose Retrieval-Augmented Diagnosis (RAD), a novel framework that explicitly injects external knowledge into multimodal models directly on downstream tasks. Specifically, RAD operates through three key mechanisms: retrieval and refinement of disease-centered knowledge from multiple medical sources, a guideline-enhanced contrastive loss that constrains the latent distance between multi-modal features and guideline knowledge, and the dual transformer decoder that employs guidelines as queries to steer cross-modal fusion, aligning the models with clinical diagnostic workflows from guideline acquisition to feature extraction and decision-making. Moreover, recognizing the lack of quantitative evaluation of interpretability for multimodal diagnostic models, we introduce a set of criteria to assess the interpretability from both image and text perspectives. Extensive evaluations across four datasets with different anatomies demonstrate RAD's generalizability, achieving state-of-the-art performance. Furthermore, RAD enables the model to concentrate more precisely on abnormal regions and critical indicators, ensuring evidence-based, trustworthy diagnosis. Our code is available at https://github.com/tdlhl/RAD.
comment: Accepted to NeurIPS 2025
♻ ☆ OutSafe-Bench: A Benchmark for Multimodal Offensive Content Detection in Large Language Models
Since Multimodal Large Language Models (MLLMs) are increasingly being integrated into everyday tools and intelligent agents, growing concerns have arisen regarding their possible output of unsafe contents, ranging from toxic language and biased imagery to privacy violations and harmful misinformation. Current safety benchmarks remain highly limited in both modality coverage and performance evaluations, often neglecting the extensive landscape of content safety. In this work, we introduce OutSafe-Bench, the first most comprehensive content safety evaluation test suite designed for the multimodal era. OutSafe-Bench includes a large-scale dataset that spans four modalities, featuring over 18,000 bilingual (Chinese and English) text prompts, 4,500 images, 450 audio clips and 450 videos, all systematically annotated across nine critical content risk categories. In addition to the dataset, we introduce a Multidimensional Cross Risk Score (MCRS), a novel metric designed to model and assess overlapping and correlated content risks across different categories. To ensure fair and robust evaluation, we propose FairScore, an explainable automated multi-reviewer weighted aggregation framework. FairScore selects top-performing models as adaptive juries, thereby mitigating biases from single-model judgments and enhancing overall evaluation reliability. Our evaluation of nine state-of-the-art MLLMs reveals persistent and substantial safety vulnerabilities, underscoring the pressing need for robust safeguards in MLLMs.
♻ ☆ Noisy Spiking Actor Network for Exploration
As a general method for exploration in deep reinforcement learning (RL), NoisyNet can produce problem-specific exploration strategies. Spiking neural networks (SNNs), due to their binary firing mechanism, have strong robustness to noise, making it difficult to realize efficient exploration with local disturbances. To solve this exploration problem, we propose a noisy spiking actor network (NoisySAN) that introduces time-correlated noise during charging and transmission. Moreover, a noise reduction method is proposed to find a stable policy for the agent. Extensive experimental results demonstrate that our method outperforms the state-of-the-art performance on a wide range of continuous control tasks from OpenAI gym.
comment: There are some issues with the method and it needs to be withdrawn
♻ ☆ JITServe: SLO-aware LLM Serving with Imprecise Request Information
The integration of Large Language Models (LLMs) into applications ranging from interactive chatbots to multi-agent systems has introduced a wide spectrum of service-level objectives (SLOs) for responsiveness. These include latency-sensitive requests emphasizing per-token latency in streaming chat, deadline-sensitive requests requiring rapid full responses to trigger external tools, and compound requests with evolving dependencies across multiple LLM calls. Despite-or perhaps, because of-this workload diversity and unpredictable request information (e.g., response lengths and dependencies), existing request schedulers have focused on aggregate performance, unable to ensure application-level SLO needs. This paper presents JITServe, the first SLO-aware LLM serving system designed to maximize service goodput (e.g., the number of tokens meeting request SLOs) across diverse workloads. JITServe novelly schedules requests using imprecise request information and gradually relaxes this conservatism by refining request information estimates as generation progresses. It applies a grouped margin goodput maximization algorithm to allocate just enough serving bandwidth to satisfy each request's SLO just-in-time (JIT), maximizing residual capacity for others, while deciding the composition of requests in a batch to maximize efficiency and goodput with provable guarantees. Our evaluation across diverse realistic workloads, including chat, deep research, and agentic pipelines, shows that JITServe improves service goodput by 1.4x-6.3x, alternatively achieving 28.5%-83.2% resource savings, compared to state-of-the-art designs.
♻ ☆ Bidirectional Representations Augmented Autoregressive Biological Sequence Generation NeurIPS 2025
Autoregressive (AR) models, common in sequence generation, are limited in many biological tasks such as de novo peptide sequencing and protein modeling by their unidirectional nature, failing to capture crucial global bidirectional token dependencies. Non-Autoregressive (NAR) models offer holistic, bidirectional representations but face challenges with generative coherence and scalability. To transcend this, we propose a hybrid framework enhancing AR generation by dynamically integrating rich contextual information from non-autoregressive mechanisms. Our approach couples a shared input encoder with two decoders: a non-autoregressive one learning latent bidirectional biological features, and an AR decoder synthesizing the biological sequence by leveraging these bidirectional features. A novel cross-decoder attention module enables the AR decoder to iteratively query and integrate these bidirectional features, enriching its predictions. This synergy is cultivated via a tailored training strategy with importance annealing for balanced objectives and cross-decoder gradient blocking for stable, focused learning. Evaluations on a demanding nine-species benchmark of de novo peptide sequencing show that our model substantially surpasses AR and NAR baselines. It uniquely harmonizes AR stability with NAR contextual awareness, delivering robust, superior performance on diverse downstream data. This research advances biological sequence modeling techniques and contributes a novel architectural paradigm for augmenting AR models with enhanced bidirectional understanding for complex sequence generation. Code is available at https://github.com/BEAM-Labs/denovo.
comment: Accepted by NeurIPS 2025
♻ ☆ TranSimHub:A Unified Air-Ground Simulation Platform for Multi-Modal Perception and Decision-Making
Air-ground collaborative intelligence is becoming a key approach for next-generation urban intelligent transportation management, where aerial and ground systems work together on perception, communication, and decision-making. However, the lack of a unified multi-modal simulation environment has limited progress in studying cross-domain perception, coordination under communication constraints, and joint decision optimization. To address this gap, we present TranSimHub, a unified simulation platform for air-ground collaborative intelligence. TranSimHub offers synchronized multi-view rendering across RGB, depth, and semantic segmentation modalities, ensuring consistent perception between aerial and ground viewpoints. It also supports information exchange between the two domains and includes a causal scene editor that enables controllable scenario creation and counterfactual analysis under diverse conditions such as different weather, emergency events, and dynamic obstacles. We release TranSimHub as an open-source platform that supports end-to-end research on perception, fusion, and control across realistic air and ground traffic scenes. Our code is available at https://github.com/Traffic-Alpha/TransSimHub.
comment: 9 pages, 4 figures
♻ ☆ Optimizing Drivers' Discount Order Acceptance Strategies: A Policy-Improved Deep Deterministic Policy Gradient Framework
The rapid expansion of platform integration has emerged as an effective solution to mitigate market fragmentation by consolidating multiple ride-hailing platforms into a single application. To address heterogeneous passenger preferences, third-party integrators provide Discount Express service delivered by express drivers at lower trip fares. For the individual platform, encouraging broader participation of drivers in Discount Express services has the potential to expand the accessible demand pool and improve matching efficiency, but often at the cost of reduced profit margins. This study aims to dynamically manage drivers' acceptance of Discount Express from the perspective of an individual platform. The lack of historical data under the new business model necessitates online learning. However, early-stage exploration through trial and error can be costly in practice, highlighting the need for reliable early-stage performance in real-world deployment. To address these challenges, this study formulates the decision regarding the proportion of drivers accepting discount orders as a continuous control task. In response to the high stochasticity and the opaque matching mechanisms employed by third-party integrator, we propose an innovative policy-improved deep deterministic policy gradient (pi-DDPG) framework. The proposed framework incorporates a refiner module to boost policy performance during the early training phase. A customized simulator based on a real-world dataset is developed to validate the effectiveness of the proposed pi-DDPG. Numerical experiments demonstrate that pi-DDPG achieves superior learning efficiency and significantly reduces early-stage training losses, enhancing its applicability to practical ride-hailing scenarios.
♻ ☆ Meta-learning three-factor plasticity rules for structured credit assignment with sparse feedback NeurIPS 2025
Biological neural networks learn complex behaviors from sparse, delayed feedback using local synaptic plasticity, yet the mechanisms enabling structured credit assignment remain elusive. In contrast, artificial recurrent networks solving similar tasks typically rely on biologically implausible global learning rules or hand-crafted local updates. The space of local plasticity rules capable of supporting learning from delayed reinforcement remains largely unexplored. Here, we present a meta-learning framework that discovers local learning rules for structured credit assignment in recurrent networks trained with sparse feedback. Our approach interleaves local neo-Hebbian-like updates during task execution with an outer loop that optimizes plasticity parameters via \textbf{tangent-propagation through learning}. The resulting three-factor learning rules enable long-timescale credit assignment using only local information and delayed rewards, offering new insights into biologically grounded mechanisms for learning in recurrent circuits.
comment: 10 pages, 2 figures; accepted & presented at NeurIPS 2025 workshop Symmetry and Geometry in Neural Representations (NeurReps); v2: appendix typo resolved
♻ ☆ Balanced Online Class-Incremental Learning via Dual Classifiers
Online class-incremental learning (OCIL) focuses on gradually learning new classes (called plasticity) from a stream of data in a single-pass, while concurrently preserving knowledge of previously learned classes (called stability). The primary challenge in OCIL lies in maintaining a good balance between the knowledge of old and new classes within the continually updated model. Most existing methods rely on explicit knowledge interaction through experience replay, and often employ exclusive training separation to address bias problems. Nevertheless, it still remains a big challenge to achieve a well-balanced learner, as these methods often exhibit either reduced plasticity or limited stability due to difficulties in continually integrating knowledge in the OCIL setting. In this paper, we propose a novel replay-based method, called Balanced Inclusive Separation for Online iNcremental learning (BISON), which can achieve both high plasticity and stability, thus ensuring more balanced performance in OCIL. Our BISON method proposes an inclusive training separation strategy using dual classifiers so that knowledge from both old and new classes can effectively be integrated into the model, while introducing implicit approaches for transferring knowledge across the two classifiers. Extensive experimental evaluations over three widely-used OCIL benchmark datasets demonstrate the superiority of BISON, showing more balanced yet better performance compared to state-of-the-art replay-based OCIL methods.
♻ ☆ Variational analysis of determinantal varieties
Determinantal varieties -- the sets of bounded-rank matrices or tensors -- have attracted growing interest in low-rank optimization. The tangent cone to low-rank sets is widely studied and underpins a range of geometric methods. The second-order geometry, which encodes curvature information, is more intricate. In this work, we develop a unified framework to derive explicit formulas for both first- and second-order tangent sets to various low-rank sets, including low-rank matrices, tensors, symmetric matrices, and positive semidefinite matrices. The framework also accommodates the intersection of a low-rank set and another set satisfying mild assumptions, thereby yielding a tangent intersection rule. Through the lens of tangent sets, we establish a necessary and sufficient condition under which a nonsmooth problem and its smooth parameterization share equivalent second-order stationary points. Moreover, we exploit tangent sets to characterize optimality conditions for low-rank optimization and prove that verifying second-order optimality is NP-hard. In a separate line of analysis, we investigate variational geometry of the graph of the normal cone to matrix varieties, deriving the explicit Bouligand tangent cone, Fréchet and Mordukhovich normal cones to the graph. These results are further applied to develop optimality conditions for low-rank bilevel programs.
comment: 76 pages, 6 figures, 2 tables
♻ ☆ RoFt-Mol: Benchmarking Robust Fine-Tuning with Molecular Graph Foundation Models
In the era of foundation models, fine-tuning pre-trained models for specific downstream tasks has become crucial. This drives the need for robust fine-tuning methods to address challenges such as model overfitting and sparse labeling. Molecular graph foundation models (MGFMs) face unique difficulties that complicate fine-tuning. These models are limited by smaller pre-training datasets and more severe data scarcity for downstream tasks, both of which require enhanced model generalization. Moreover, MGFMs must accommodate diverse objectives, including both regression and classification tasks. To better understand and improve fine-tuning techniques under these conditions, we classify eight fine-tuning methods into three mechanisms: weight-based, representation-based, and partial fine-tuning. We benchmark these methods on downstream regression and classification tasks across supervised and self-supervised pre-trained models in diverse labeling settings. This extensive evaluation provides valuable insights and informs the design of a refined robust fine-tuning method, ROFT-MOL. This approach combines the strengths of simple post-hoc weight interpolation with more complex weight ensemble fine-tuning methods, delivering improved performance across both task types while maintaining the ease of use inherent in post-hoc weight interpolation.
♻ ☆ Enforcing hidden physics in physics-informed neural networks
Physics-informed neural networks (PINNs) represent a new paradigm for solving partial differential equations (PDEs) by integrating physical laws into the learning process of neural networks. However, ensuring that such frameworks fully reflect the physical structure embedded in the governing equations remains an open challenge, particularly for maintaining robustness across diverse scientific problems. In this work, we address this issue by introducing a simple, generalized, yet robust irreversibility-regularized strategy that enforces hidden physical laws as soft constraints during training, thereby recovering the missing physics associated with irreversible processes in the conventional PINN. This approach ensures that the learned solutions consistently respect the intrinsic one-way nature of irreversible physical processes. Across a wide range of benchmarks spanning traveling wave propagation, steady combustion, ice melting, corrosion evolution, and crack growth, we observe substantial performance improvements over the conventional PINN, demonstrating that our regularization scheme reduces predictive errors by more than an order of magnitude, while requiring only minimal modification to existing PINN frameworks.
♻ ☆ RegMean++: Enhancing Effectiveness and Generalization of Regression Mean for Model Merging
Regression Mean (RegMean), an approach that formulates model merging as a linear regression problem, aims to find the optimal weights for each linear layer in the merge model by minimizing the discrepancy in predictions between the merge and candidate models. RegMean provides a precise closed-form solution for the merging problem; therefore, it offers explainability and computational efficiency. However, RegMean merges each linear layer independently, overlooking how the features and information in the earlier layers propagate through the layers and influence the final prediction in the merge model. In this paper, we introduce RegMean++, a simple yet effective alternative to RegMean, that explicitly incorporates both intra- and cross-layer dependencies between merge models' layers into RegMean's objective. By accounting for these dependencies, RegMean++ better captures the behaviors of the merge model. Extensive experiments demonstrate that RegMean++ consistently outperforms RegMean across diverse settings, including in-domain (ID) and out-of-domain (OOD) generalization, sequential merging, large-scale tasks, and robustness under several types of distribution shifts. Furthermore, RegMean++ achieves competitive or state-of-the-art performance compared to various recent advanced model merging methods. Our code is available at https://github.com/nthehai01/RegMean-plusplus.
comment: 30 pages, 15 figures, 14 tables
♻ ☆ Geometric Regularity in Deterministic Sampling Dynamics of Diffusion-based Generative Models ICML 2024
Diffusion-based generative models employ stochastic differential equations (SDEs) and their equivalent probability flow ordinary differential equations (ODEs) to establish a smooth transformation between complex high-dimensional data distributions and tractable prior distributions. In this paper, we reveal a striking geometric regularity in the deterministic sampling dynamics of diffusion generative models: each simulated sampling trajectory along the gradient field lies within an extremely low-dimensional subspace, and all trajectories exhibit an almost identical boomerang shape, regardless of the model architecture, applied conditions, or generated content. We characterize several intriguing properties of these trajectories, particularly under closed-form solutions based on kernel-estimated data modeling. We also demonstrate a practical application of the discovered trajectory regularity by proposing a dynamic programming-based scheme to better align the sampling time schedule with the underlying trajectory structure. This simple strategy requires minimal modification to existing deterministic numerical solvers, incurs negligible computational overhead, and achieves superior image generation performance, especially in regions with only 5 - 10 function evaluations.
comment: 57 pages. Accepted by Journal of Statistical Mechanics: Theory and Experiment (2025). The short version was published in ICML 2024. arXiv admin note: text overlap with arXiv:2405.11326
♻ ☆ Differential Smoothing Mitigates Sharpening and Improves LLM Reasoning
It is widely recognized that reinforcement learning (RL) fine-tuning of large language models often leads to diversity collapse, where outputs lack variety. Prior work has proposed a range of heuristics to counteract this effect, but these methods are ad hoc: they frequently trade off correctness for diversity, their effectiveness varies across tasks, and in some cases they even contradict one another. In this work, we place these observations on a rigorous foundation. We first provide a formal proof of why RL fine-tuning exhibits diversity collapse via a selection and reinforcement bias. Next, we make a key observation that any reward modification to address diversity collapse only needs to be applied on the correct trajectories. Building directly on this analysis, we introduce a principled method -- differential smoothing -- that provably improves both correctness and diversity, outperforming vanilla RL as well as widely used entropy-based heuristics. Our theory precisely characterizes when existing heuristics help and why they fail, while showing that differential smoothing is universally superior. Extensive experiments with models from 1B to 7B parameters, across domains including CountDown and real-world mathematical reasoning, demonstrate consistent gains. Differential smoothing improves both Pass@1 and Pass@k, with up to 6.7% improvements on AIME24 dataset.
♻ ☆ On the Design of KL-Regularized Policy Gradient Algorithms for LLM Reasoning
Policy gradient algorithms have been successfully applied to enhance the reasoning capabilities of large language models (LLMs). KL regularization is ubiquitous, yet the design surface, choice of KL direction (forward vs. reverse), normalization (normalized vs. unnormalized), and estimator ($k_1/k_2/k_3$), is scattered across the literature and often intertwined with off-policy estimation. We ask a focused question: under the off-policy setting, what weighting is required for each KL variant so that the surrogate we optimize yields the exact gradient of the intended KL-regularized objective? We answer this with a compact, unified derivation we call the Regularized Policy Gradient (RPG) view. RPG (i) unifies normalized and unnormalized KL variants and shows that the widely-used $k_3$ penalty is exactly the unnormalized KL; (ii) specifies conditions under which REINFORCE-style losses with stop-gradient are gradient-equivalent to fully differentiable surrogates; (iii) identifies and corrects an off-policy importance-weighting mismatch in GRPO's KL term; and (iv) introduces RPG-Style Clip, a clipped-importance-sampling step within RPG-REINFORCE that enables stable, off-policy policy-gradient training at scale. On mathematical reasoning benchmarks (AIME24, AIME25), RPG-REINFORCE with RPG-Style Clip improves accuracy by up to $+6$ absolute percentage points over DAPO. We extend our experiments to 8K context length, and RPG-REINFORCE with RPG-Style Clip achieves 52% accuracy on AIME25, surpassing the official Qwen3-4B-Instruct model (47%). Notably, RPG is a stable and scalable RL algorithm for LLM reasoning, realized via (a) a KL-correct objective, (b) clipped importance sampling, and (c) an iterative reference-policy update scheme.
comment: Project Page: https://github.com/complex-reasoning/RPG
♻ ☆ It Hears, It Sees too: Multi-Modal LLM for Depression Detection By Integrating Visual Understanding into Audio Language Models
Depression is one of the most prevalent mental health disorders globally. In recent years, multi-modal data, such as speech, video, and transcripts, has been increasingly used to develop AI-assisted depression assessment systems. Large language models have further advanced this field due to their strong language understanding and generalization capabilities. However, conventional LLMs remain text-centric and cannot process the rich non-verbal cues found in audio and visual modalities, which are critical components in mental health evaluation. While multi-modal LLMs offer a promising direction, few are tailored for psychological applications. In this study, we propose a novel multi-modal LLM framework for depression detection. Our approach augments an audio language model with visual understanding and aligns audio-visual features at the timestamp level. This fine-grained alignment improves modeling of temporal dynamics across modalities while reducing the need for extensive training data and computational resources. Experiments on the DAIC-WoZ dataset demonstrate that our model outperforms both single-modality approaches and previous multi-modal methods. Moreover, the proposed framework can be extended to incorporate additional physiological signals, paving the way for broader clinical applications beyond mental health.
♻ ☆ Keep It on a Leash: Controllable Pseudo-label Generation Towards Realistic Long-Tailed Semi-Supervised Learning NeurIPS 2025
Current long-tailed semi-supervised learning methods assume that labeled data exhibit a long-tailed distribution, and unlabeled data adhere to a typical predefined distribution (i.e., long-tailed, uniform, or inverse long-tailed). However, the distribution of the unlabeled data is generally unknown and may follow an arbitrary distribution. To tackle this challenge, we propose a Controllable Pseudo-label Generation (CPG) framework, expanding the labeled dataset with the progressively identified reliable pseudo-labels from the unlabeled dataset and training the model on the updated labeled dataset with a known distribution, making it unaffected by the unlabeled data distribution. Specifically, CPG operates through a controllable self-reinforcing optimization cycle: (i) at each training step, our dynamic controllable filtering mechanism selectively incorporates reliable pseudo-labels from the unlabeled dataset into the labeled dataset, ensuring that the updated labeled dataset follows a known distribution; (ii) we then construct a Bayes-optimal classifier using logit adjustment based on the updated labeled data distribution; (iii) this improved classifier subsequently helps identify more reliable pseudo-labels in the next training step. We further theoretically prove that this optimization cycle can significantly reduce the generalization error under some conditions. Additionally, we propose a class-aware adaptive augmentation module to further improve the representation of minority classes, and an auxiliary branch to maximize data utilization by leveraging all labeled and unlabeled samples. Comprehensive evaluations on various commonly used benchmark datasets show that CPG achieves consistent improvements, surpassing state-of-the-art methods by up to $\textbf{15.97%}$ in accuracy. The code is available at https://github.com/yaxinhou/CPG.
comment: The paper is accepted by NeurIPS 2025
♻ ☆ Magnitude-Modulated Equivariant Adapter for Parameter-Efficient Fine-Tuning of Equivariant Graph Neural Networks AAAI 2026
Pretrained equivariant graph neural networks based on spherical harmonics offer efficient and accurate alternatives to computationally expensive ab-initio methods, yet adapting them to new tasks and chemical environments still requires fine-tuning. Conventional parameter-efficient fine-tuning (PEFT) techniques, such as Adapters and LoRA, typically break symmetry, making them incompatible with those equivariant architectures. ELoRA, recently proposed, is the first equivariant PEFT method. It achieves improved parameter efficiency and performance on many benchmarks. However, the relatively high degrees of freedom it retains within each tensor order can still perturb pretrained feature distributions and ultimately degrade performance. To address this, we present Magnitude-Modulated Equivariant Adapter (MMEA), a novel equivariant fine-tuning method which employs lightweight scalar gating to modulate feature magnitudes on a per-order and per-multiplicity basis. We demonstrate that MMEA preserves strict equivariance and, across multiple benchmarks, consistently improves energy and force predictions to state-of-the-art levels while training fewer parameters than competing approaches. These results suggest that, in many practical scenarios, modulating channel magnitudes is sufficient to adapt equivariant models to new chemical environments without breaking symmetry, pointing toward a new paradigm for equivariant PEFT design.
comment: Accepted at AAAI 2026 (Poster)
♻ ☆ Trustworthy scientific inference with generative models
Generative artificial intelligence (AI) excels at producing complex data structures (text, images, videos) by learning patterns from training examples. Across scientific disciplines, researchers are now applying generative models to "inverse problems" to directly predict hidden parameters from observed data along with measures of uncertainty. While these predictive or posterior-based methods can handle intractable likelihoods and large-scale studies, they can also produce biased or overconfident conclusions even without model misspecifications. We present a solution with Frequentist-Bayes (FreB), a mathematically rigorous protocol that reshapes AI-generated posterior probability distributions into (locally valid) confidence regions that consistently include true parameters with the expected probability, while achieving minimum size when training and target data align. We demonstrate FreB's effectiveness by tackling diverse case studies in the physical sciences: identifying unknown sources under dataset shift, reconciling competing theoretical models, and mitigating selection bias and systematics in observational studies. By providing validity guarantees with interpretable diagnostics, FreB enables trustworthy scientific inference across fields where direct likelihood evaluation remains impossible or prohibitively expensive.
♻ ☆ RLAX: Large-Scale, Distributed Reinforcement Learning for Large Language Models on TPUs
Reinforcement learning (RL) has emerged as the de-facto paradigm for improving the reasoning capabilities of large language models (LLMs). We have developed RLAX, a scalable RL framework on TPUs. RLAX employs a parameter-server architecture. A master trainer periodically pushes updated model weights to the parameter server while a fleet of inference workers pull the latest weights and generates new rollouts. We introduce a suite of system techniques to enable scalable and preemptible RL for a diverse set of state-of-art RL algorithms. To accelerate convergence and improve model quality, we have devised new dataset curation and alignment techniques. Large-scale evaluations show that RLAX improves QwQ-32B's pass@8 accuracy by 12.8% in just 12 hours 48 minutes on 1024 v5p TPUs, while remaining robust to preemptions during training.
comment: The submission is being withdrawn because internal stakeholders determined that it is not appropriate to publish work on this topic at this time
♻ ☆ DS FedProxGrad: Asymptotic Stationarity Without Noise Floor in Fair Federated Learning
Recent work \cite{arifgroup} introduced Federated Proximal Gradient \textbf{(\texttt{FedProxGrad})} for solving non-convex composite optimization problems in group fair federated learning. However, the original analysis established convergence only to a \textit{noise-dominated neighborhood of stationarity}, with explicit dependence on a variance-induced noise floor. In this work, we provide an improved asymptotic convergence analysis for a generalized \texttt{FedProxGrad}-type analytical framework with inexact local proximal solutions and explicit fairness regularization. We call this extended analytical framework \textbf{DS \texttt{FedProxGrad}} (Decay Step Size \texttt{FedProxGrad}). Under a Robbins-Monro step-size schedule \cite{robbins1951stochastic} and a mild decay condition on local inexactness, we prove that $\liminf_{r\to\infty} \mathbb{E}[\|\nabla F(\mathbf{x}^r)\|^2] = 0$, i.e., the algorithm is asymptotically stationary and the convergence rate does not depend on a variance-induced noise floor.
comment: 8 pages
♻ ☆ Deferred Poisoning: Making the Model More Vulnerable via Hessian Singularization
Recent studies have shown that deep learning models are very vulnerable to poisoning attacks. Many defense methods have been proposed to address this issue. However, traditional poisoning attacks are not as threatening as commonly believed. This is because they often cause differences in how the model performs on the training set compared to the validation set. Such inconsistency can alert defenders that their data has been poisoned, allowing them to take the necessary defensive actions. In this paper, we introduce a more threatening type of poisoning attack called the Deferred Poisoning Attack. This new attack allows the model to function normally during the training and validation phases but makes it very sensitive to evasion attacks or even natural noise. We achieve this by ensuring the poisoned model's loss function has a similar value as a normally trained model at each input sample but with a large local curvature. A similar model loss ensures that there is no obvious inconsistency between the training and validation accuracy, demonstrating high stealthiness. On the other hand, the large curvature implies that a small perturbation may cause a significant increase in model loss, leading to substantial performance degradation, which reflects a worse robustness. We fulfill this purpose by making the model have singular Hessian information at the optimal point via our proposed Singularization Regularization term. We have conducted both theoretical and empirical analyses of the proposed method and validated its effectiveness through experiments on image classification tasks. Furthermore, we have confirmed the hazards of this form of poisoning attack under more general scenarios using natural noise, offering a new perspective for research in the field of security.
♻ ☆ When Worse is Better: Navigating the compression-generation tradeoff in visual tokenization NeurIPS 2025
Current image generation methods are based on a two-stage training approach. In stage 1, an auto-encoder is trained to compress an image into a latent space; in stage 2, a generative model is trained to learn a distribution over that latent space. This reveals a fundamental trade-off, do we compress more aggressively to make the latent distribution easier for the stage 2 model to learn even if it makes reconstruction worse? We study this problem in the context of discrete, auto-regressive image generation. Through the lens of scaling laws, we show that smaller stage 2 models can benefit from more compressed stage 1 latents even if reconstruction performance worsens, demonstrating that generation modeling capacity plays a role in this trade-off. Diving deeper, we rigorously study the connection between compute scaling and the stage 1 rate-distortion trade-off. Next, we introduce Causally Regularized Tokenization (CRT), which uses knowledge of the stage 2 generation modeling procedure to embed useful inductive biases in stage 1 latents. This regularization improves stage 2 generation performance better by making the tokens easier to model without affecting the stage 1 compression rate and marginally affecting distortion: we are able to improve compute efficiency 2-3$\times$ over baseline. Finally, we use CRT with further optimizations to the visual tokenizer setup to result in a generative pipeline that matches LlamaGen-3B generation performance (2.18 FID) with half the tokens per image (256 vs. 576) and a fourth the total model parameters (775M vs. 3.1B) while using the same architecture and inference procedure.
comment: Spotlight at NeurIPS 2025
♻ ☆ Multi-Robot Path Planning Combining Heuristics and Multi-Agent Reinforcement Learning
Multi-robot path finding in dynamic environments is a highly challenging classic problem. In the movement process, robots need to avoid collisions with other moving robots while minimizing their travel distance. Previous methods for this problem either continuously replan paths using heuristic search methods to avoid conflicts or choose appropriate collision avoidance strategies based on learning approaches. The former may result in long travel distances due to frequent replanning, while the latter may have low learning efficiency due to low sample exploration and utilization, and causing high training costs for the model. To address these issues, we propose a path planning method, MAPPOHR, which combines heuristic search, empirical rules, and multi-agent reinforcement learning. The method consists of two layers: a real-time planner based on the multi-agent reinforcement learning algorithm, MAPPO, which embeds empirical rules in the action output layer and reward functions, and a heuristic search planner used to create a global guiding path. During movement, the heuristic search planner replans new paths based on the instructions of the real-time planner. We tested our method in 10 different conflict scenarios. The experiments show that the planning performance of MAPPOHR is better than that of existing learning and heuristic methods. Due to the utilization of empirical knowledge and heuristic search, the learning efficiency of MAPPOHR is higher than that of existing learning methods.
♻ ☆ Improved Segmentation of Polyps and Visual Explainability Analysis
Colorectal cancer (CRC) remains one of the leading causes of cancer-related morbidity and mortality worldwide, with gastrointestinal (GI) polyps serving as critical precursors according to the World Health Organization (WHO). Early and accurate segmentation of polyps during colonoscopy is essential for reducing CRC progression, yet manual delineation is labor-intensive and prone to observer variability. Deep learning methods have demonstrated strong potential for automated polyp analysis, but their limited interpretability remains a barrier to clinical adoption. In this study, we present PolypSeg-GradCAM, an explainable deep learning framework that integrates a U-Net architecture with a pre-trained ResNet-34 backbone and Gradient-weighted Class Activation Mapping (Grad-CAM) for transparent polyp segmentation. To ensure rigorous benchmarking, the model was trained and evaluated using 5-Fold Cross-Validation on the Kvasir-SEG dataset of 1,000 annotated endoscopic images. Experimental results show a mean Dice coefficient of 0.8902 +/- 0.0125, a mean Intersection-over-Union (IoU) of 0.8023, and an Area Under the Receiver Operating Characteristic Curve (AUC-ROC) of 0.9722. Advanced quantitative analysis using an optimal threshold yielded a Sensitivity of 0.9058 and Precision of 0.9083. Additionally, Grad-CAM visualizations confirmed that predictions were guided by clinically relevant regions, offering insight into the model's decision-making process. This study demonstrates that integrating segmentation accuracy with interpretability can support the development of trustworthy AI-assisted colonoscopy tools.
♻ ☆ Unveiling the Latent Directions of Reflection in Large Language Models
Reflection, the ability of large language models (LLMs) to evaluate and revise their own reasoning, has been widely used to improve performance on complex reasoning tasks. Yet, most prior works emphasizes designing reflective prompting strategies or reinforcement learning objectives, leaving the inner mechanisms of reflection underexplored. In this paper, we investigate reflection through the lens of latent directions in model activations. We propose a methodology based on activation steering to characterize how instructions with different reflective intentions: no reflection, intrinsic reflection, and triggered reflection. By constructing steering vectors between these reflection levels, we demonstrate that (1) new reflection-inducing instructions can be systematically identified, (2) reflective behavior can be directly enhanced or suppressed through activation interventions, and (3) suppressing reflection is considerably easier than stimulating it. Experiments on GSM8k-adv and Cruxeval-o-adv with Qwen2.5-3B and Gemma3-4B-IT reveal clear stratification across reflection levels, and steering interventions confirm the controllability of reflection. Our findings highlight both opportunities (e.g., reflection-enhancing defenses) and risks (e.g., adversarial inhibition of reflection in jailbreak attacks). This work opens a path toward mechanistic understanding of reflective reasoning in LLMs.
♻ ☆ An Introduction to Deep Reinforcement and Imitation Learning
Embodied agents, such as robots and virtual characters, must continuously select actions to execute tasks effectively, solving complex sequential decision-making problems. Given the difficulty of designing such controllers manually, learning-based approaches have emerged as promising alternatives, most notably Deep Reinforcement Learning (DRL) and Deep Imitation Learning (DIL). DRL leverages reward signals to optimize behavior, while DIL uses expert demonstrations to guide learning. This document introduces DRL and DIL in the context of embodied agents, adopting a concise, depth-first approach to the literature. It is self-contained, presenting all necessary mathematical and machine learning concepts as they are needed. It is not intended as a survey of the field; rather, it focuses on a small set of foundational algorithms and techniques, prioritizing in-depth understanding over broad coverage. The material ranges from Markov Decision Processes to REINFORCE and Proximal Policy Optimization (PPO) for DRL, and from Behavioral Cloning to Dataset Aggregation (DAgger) and Generative Adversarial Imitation Learning (GAIL) for DIL.
♻ ☆ Time-Series at the Edge: Tiny Separable CNNs for Wearable Gait Detection and Optimal Sensor Placement
We study on-device time-series analysis for gait detection in Parkinson's disease (PD) from short windows of triaxial acceleration, targeting resource-constrained wearables and edge nodes. We compare magnitude thresholding to three 1D CNNs for time-series analysis: a literature baseline (separable convolutions) and two ultra-light models - one purely separable and one with residual connections. Using the BioStampRC21 dataset, 2 s windows at 30 Hz, and subject-independent leave-one-subject-out (LOSO) validation on 16 PwPD with chest-worn IMUs, our residual separable model (Model 2, 533 params) attains PR-AUC = 94.5%, F1 = 91.2%, MCC = 89.4%, matching or surpassing the baseline (5,552 params; PR-AUC = 93.7%, F1 = 90.5%, MCC = 88.5%) with approximately 10x fewer parameters. The smallest model (Model 1, 305 params) reaches PR-AUC = 94.0%, F1 = 91.0%, MCC = 89.1%. Thresholding obtains high recall (89.0%) but low precision (76.5%), yielding many false positives and high inter-subject variance. Sensor-position analysis (train-on-all) shows chest and thighs are most reliable; forearms degrade precision/recall due to non-gait arm motion; naive fusion of all sites does not outperform the best single site. Both compact CNNs execute within tight memory/latency budgets on STM32-class MCUs (sub-10 ms on low-power boards), enabling on-sensor gating of transmission/storage. Overall, ultra-light separable CNNs provide a superior accuracy-efficiency-generalization trade-off to fixed thresholds for wearable PD gait detection and underscore the value of tailored time-series models for edge deployment.
♻ ☆ The Expressive Capacity of State Space Models: A Formal Language Perspective NeurIPS 2024
Recently, recurrent models based on linear state space models (SSMs) have shown promising performance in language modeling (LM), competititve with transformers. However, there is little understanding of the in-principle abilities of such models, which could provide useful guidance to the search for better LM architectures. We present a comprehensive theoretical study of the capacity of such SSMs as it compares to that of transformers and traditional RNNs. We find that SSMs and transformers have overlapping but distinct strengths. In star-free state tracking, SSMs implement straightforward and exact solutions to problems that transformers struggle to represent exactly. They can also model bounded hierarchical structure with optimal memory even without simulating a stack. On the other hand, we identify a design choice in current SSMs that limits their expressive power. We discuss implications for SSM and LM research, and verify results empirically on a recent SSM, Mamba.
comment: Published in NeurIPS 2024
♻ ☆ Balancing Intensity and Focality in Directional DBS Under Uncertainty: A Simulation Study of Electrode Optimization via a Metaheuristic L1L1 Approach
As DBS technology advances toward directional leads and optimization-based current steering, this study aims to improve the selection of electrode contact configurations using the recently developed L1-norm regularized L1-norm fitting (L1L1) method. The focus is in particular on L1L1's capability to incorporate a priori lead field uncertainty, offering a potential advantage over conventional approaches that do not account for such variability. Our optimization framework incorporates uncertainty by constraining the solution space based on lead field attenuation. This reflects physiological expectations about the VTA and serves to avoid overfitting. By applying this method to 8- and 40-contact electrode configurations, we optimize current distributions within a discretized finite element (FE) model, focusing on the lead field's characteristics. The model accounts for uncertainty through these explicit constraints, enhancing the feasibility, focality, and robustness of the resulting solutions. The L1L1 method was validated through a series of numerical experiments using both noiseless and noisy lead fields, where the noise level was selected to reflect attenuation within VTA. It successfully fits and regularizes the current distribution across target structures, with hyperparameter optimization extracting either bipolar or multipolar electrode configurations. These configurations aim to maximize focused current density or prioritize a high gain field ratio in a discretized FE model. Compared to traditional methods, the L1L1 approach showed competitive performance in concentrating stimulation within the target region while minimizing unintended current spread, particularly under noisy conditions. By incorporating uncertainty directly into the optimization process, we obtain a noise-robust framework for current steering, allowing for variations in lead field models and simulation parameters.
♻ ☆ More Than Memory Savings: Zeroth-Order Optimization Mitigates Forgetting in Continual Learning
Zeroth-order (ZO) optimization has gained attention as a memory-efficient alternative to first-order (FO) methods, particularly in settings where gradient computation is expensive or even impractical. Beyond its memory efficiency, in this work, we investigate ZO optimization for continual learning (CL) as a novel approach to address the plasticity-stability-efficiency trilemma. Through theoretical analysis and empirical evidence, we show that ZO optimization naturally leads to flatter loss landscapes, which in turn reduce forgetting in CL. However, this stability comes at a cost of plasticity: due to its imprecise gradient estimates and slower convergence, ZO optimization tends to be less effective than FO in acquiring new task-specific knowledge, particularly under constrained training budgets. To better understand this trade-off, we conduct a holistic evaluation of ZO optimization applied to various existing CL methods. Our findings reveal that ZO optimization enhances stability but often undermines plasticity, particularly when used with learnable classifiers. Motivated by this insight, we propose ZO-FC, a simple but effective approach that applies ZO optimization to a single adapter-based PEFT module with FO optimized classifier. This design leverages the stability benefits of ZO while preserving the adaptability of FO updates with negligible memory overhead. Experiments demonstrate that ZO-FC achieves an effective balance between stability and plasticity, offering a practical and memory-efficient solution for on-device CL.
♻ ☆ MapReduce LoRA: Advancing the Pareto Front in Multi-Preference Optimization for Generative Models
Reinforcement learning from human feedback (RLHF) with reward models has advanced alignment of generative models to human aesthetic and perceptual preferences. However, jointly optimizing multiple rewards often incurs an alignment tax, improving one dimension while degrading others. To address this, we introduce two complementary methods: MapReduce LoRA and Reward-aware Token Embedding (RaTE). MapReduce LoRA trains preference-specific LoRA experts in parallel and iteratively merges them to refine a shared base model; RaTE learns reward-specific token embeddings that compose at inference for flexible preference control. Experiments on Text-to-Image generation (Stable Diffusion 3.5 Medium and FLUX.1-dev) show improvements of 36.1%, 4.6%, and 55.7%, and 32.7%, 4.3%, and 67.1% on GenEval, PickScore, and OCR, respectively. On Text-to-Video generation (HunyuanVideo), visual and motion quality improve by 48.1% and 90.0%, respectively. On the language task, Helpful Assistant, with Llama-2 7B, helpful and harmless improve by 43.4% and 136.7%, respectively. Our framework sets a new state-of-the-art multi-preference alignment recipe across modalities.
♻ ☆ LaDiR: Latent Diffusion Enhances LLMs for Text Reasoning
Large Language Models (LLMs) demonstrate their reasoning ability through chain-of-thought (CoT) generation. However, LLM's autoregressive decoding may limit the ability to revisit and refine earlier tokens in a holistic manner, which can also lead to inefficient exploration for diverse solutions. In this paper, we propose LaDiR (Latent Diffusion Reasoner), a novel reasoning framework that unifies the expressiveness of continuous latent representation with the iterative refinement capabilities of latent diffusion models for an existing LLM. We first construct a structured latent reasoning space using a Variational Autoencoder (VAE) that encodes text reasoning steps into blocks of thought tokens, preserving semantic information and interpretability while offering compact but expressive representations. Subsequently, we utilize a latent diffusion model that learns to denoise a block of latent thought tokens with a blockwise bidirectional attention mask, enabling longer horizon and iterative refinement with adaptive test-time compute. This design allows efficient parallel generation of diverse reasoning trajectories, allowing the model to plan and revise the reasoning process holistically. We conduct evaluations on a suite of mathematical reasoning and planning benchmarks. Empirical results show that LaDiR consistently improves accuracy, diversity, and interpretability over existing autoregressive, diffusion-based, and latent reasoning methods, revealing a new paradigm for text reasoning with latent diffusion.
♻ ☆ Breaking the Frozen Subspace: Importance Sampling for Low-Rank Optimization in LLM Pretraining NeurIPS 2025
Low-rank optimization has emerged as a promising approach to enabling memory-efficient training of large language models (LLMs). Existing low-rank optimization methods typically project gradients onto a low-rank subspace, reducing the memory cost of storing optimizer states. A key challenge in these methods is selecting suitable subspaces to ensure an effective optimization trajectory. Most existing approaches select the dominant subspace to preserve gradient information, as this intuitively provides the best approximation. However, we find that in practice, the dominant subspace stops changing during pretraining, thereby constraining weight updates to similar subspaces. In this paper, we propose importance sampling for low-rank optimization in LLM pretraining with a provable convergence guarantee, which the dominant subspace approach does not have. Empirically, we demonstrate that our method significantly outperforms previous methods in LLM pretraining tasks.
comment: NeurIPS 2025
♻ ☆ Personalized Federated Learning with Exact Stochastic Gradient Descent
We propose a Stochastic Gradient Descent (SGD)-type algorithm for Personalized Federated Learning which can be particularly attractive for mobile energy-limited regimes due to its low per-client computational cost. The model to be trained includes a set of common weights for all clients, and a set of personalized weights that are specific to each client. At each optimization round, randomly selected clients perform multiple full gradient-descent updates over their client-specific weights towards optimizing the loss function on their own datasets, without updating the common weights. This procedure is energy-efficient since it has low computational cost per client. At the final update of each round, each client computes the joint gradient over both the client-specific and the common weights and returns the gradient of common weights to the server, which allows to perform an exact SGD step over the full set of weights in a distributed manner. For the overall optimization scheme, we rigorously prove convergence, even in non-convex settings such as those encountered when training neural networks, with a rate of $\mathcal{O} \left (\frac{1}{\sqrt{T}} \right )$ with respect to communication rounds $T$. In practice, PFLEGO exhibits substantially lower per-round wall-clock time, used as a proxy for energy. Our theoretical guarantees translate to superior performance in practice against baselines such as FedAvg and FedPer, as evaluated in several multi-class classification datasets, in particular, Omniglot, CIFAR-10, MNIST, Fashion-MNIST, and EMNIST.
♻ ☆ Empowering GNNs for Domain Adaptation via Denoising Target Graph
We explore the node classification task in the context of graph domain adaptation, which uses both source and target graph structures along with source labels to enhance the generalization capabilities of Graph Neural Networks (GNNs) on target graphs. Structure domain shifts frequently occur, especially when graph data are collected at different times or from varying areas, resulting in poor performance of GNNs on target graphs. Surprisingly, we find that simply incorporating an auxiliary loss function for denoising graph edges on target graphs can be extremely effective in enhancing GNN performance on target graphs. Based on this insight, we propose our framework, GraphDeT, a framework that integrates this auxiliary edge task into GNN training for node classification under domain adaptation. Our theoretical analysis connects this auxiliary edge task to the graph generalization bound with -distance, demonstrating such auxiliary task can imposes a constraint which tightens the bound and thereby improves generalization. The experimental results demonstrate superior performance compared to the existing baselines in handling both time and regional domain graph shifts.
♻ ☆ The Illusion of Readiness in Health AI
Large language models have demonstrated remarkable performance in a wide range of medical benchmarks. Yet underneath the seemingly promising results lie salient growth areas, especially in cutting-edge frontiers such as multimodal reasoning. In this paper, we introduce a series of adversarial stress tests to systematically assess the robustness of flagship models and medical benchmarks. Our study reveals prevalent brittleness in the presence of simple adversarial transformations: leading systems can guess the right answer even with key inputs removed, yet may get confused by the slightest prompt alterations, while fabricating convincing yet flawed reasoning traces. Using clinician-guided rubrics, we demonstrate that popular medical benchmarks vary widely in what they truly measure. Our study reveals significant competency gaps of frontier AI in attaining real-world readiness for health applications. If we want AI to earn trust in healthcare, we must demand more than leaderboard wins and must hold AI systems accountable to ensure robustness, sound reasoning, and alignment with real medical demands.
♻ ☆ Understanding LLM Agent Behaviours via Game Theory: Strategy Recognition, Biases and Multi-Agent Dynamics
As Large Language Models (LLMs) increasingly operate as autonomous decision-makers in interactive and multi-agent systems and human societies, understanding their strategic behaviour has profound implications for safety, coordination, and the design of AI-driven social and economic infrastructures. Assessing such behaviour requires methods that capture not only what LLMs output, but the underlying intentions that guide their decisions. In this work, we extend the FAIRGAME framework to systematically evaluate LLM behaviour in repeated social dilemmas through two complementary advances: a payoff-scaled Prisoners Dilemma isolating sensitivity to incentive magnitude, and an integrated multi-agent Public Goods Game with dynamic payoffs and multi-agent histories. These environments reveal consistent behavioural signatures across models and languages, including incentive-sensitive cooperation, cross-linguistic divergence and end-game alignment toward defection. To interpret these patterns, we train traditional supervised classification models on canonical repeated-game strategies and apply them to FAIRGAME trajectories, showing that LLMs exhibit systematic, model- and language-dependent behavioural intentions, with linguistic framing at times exerting effects as strong as architectural differences. Together, these findings provide a unified methodological foundation for auditing LLMs as strategic agents and reveal systematic cooperation biases with direct implications for AI governance, collective decision-making, and the design of safe multi-agent systems.
♻ ☆ Beyond Early-Token Bias: Model-Specific and Language-Specific Position Effects in Multilingual LLMs
Large Language Models (LLMs) exhibit position bias systematically underweighting information based on its location in the context but how this bias varies across languages and models remains unclear. We conduct a multilingual study across five typologically diverse languages (English, Russian, German, Hindi, Vietnamese) and five model architectures, analyzing how position bias interacts with prompting strategies and affects output entropy. Our key findings are: (1) Position bias is primarily model-driven but shows language-specific nuances. Notably, Qwen2.5-7B-Instruct, DeepSeek 7B Chat and Mistral 7B consistently favor late positions challenging the common assumption of universal early-token preference. (2) Explicitly instructing the model, in the presence of irrelevant distractors, that "the most relevant context to the query is marked as 1" unexpectedly reduces accuracy across all languages, questioning standard prompt-engineering practices. (3) Accuracy consistently drops most when relevant information appears in the middle of the context, yet this is not reflected in a corresponding increase in output entropy, suggesting the model remains confident even when it fails to use mid-context cues.
♻ ☆ HEIST: A Graph Foundation Model for Spatial Transcriptomics and Proteomics Data
Single-cell transcriptomics and proteomics have become a great source for data-driven insights into biology, enabling the use of advanced deep learning methods to understand cellular heterogeneity and gene expression at the single-cell level. With the advent of spatial-omics data, we have the promise of characterizing cells within their tissue context as it provides both spatial coordinates and intra-cellular transcriptional or protein counts. Proteomics offers a complementary view by directly measuring proteins, which are the primary effectors of cellular function and key therapeutic targets. However, existing models either ignore the spatial information or the complex genetic and proteomic programs within cells. Thus they cannot infer how cell internal regulation adapts to microenvironmental cues. Furthermore, these models often utilize fixed gene vocabularies, hindering their generalizability unseen genes. In this paper, we introduce HEIST, a hierarchical graph transformer foundation model for spatial transcriptomics and proteomics. HEIST models tissues as hierarchical graphs. The higher level graph is a spatial cell graph, and each cell in turn, is represented by its lower level gene co-expression network graph. HEIST achieves this by performing both intra-level and cross-level message passing to utilize the hierarchy in its embeddings and can thus generalize to novel datatypes including spatial proteomics without retraining. HEIST is pretrained on 22.3M cells from 124 tissues across 15 organs using spatially-aware contrastive and masked autoencoding objectives. Unsupervised analysis of HEIST embeddings reveals spatially informed subpopulations missed by prior models. Downstream evaluations demonstrate generalizability to proteomics data and state-of-the-art performance in clinical outcome prediction, cell type annotation, and gene imputation across multiple technologies.
♻ ☆ From Bits to Boardrooms: A Cutting-Edge Multi-Agent LLM Framework for Business Excellence
Large Language Models (LLMs) have shown promising potential in business applications, particularly in enterprise decision support and strategic planning, yet current approaches often struggle to reconcile intricate operational analyses with overarching strategic goals across diverse market environments, leading to fragmented workflows and reduced collaboration across organizational levels. This paper introduces BusiAgent, a novel multi-agent framework leveraging LLMs for advanced decision-making in complex corporate environments. BusiAgent integrates three core innovations: an extended Continuous Time Markov Decision Process (CTMDP) for dynamic agent modeling, a generalized entropy measure to optimize collaborative efficiency, and a multi-level Stackelberg game to handle hierarchical decision processes. Additionally, contextual Thompson sampling is employed for prompt optimization, supported by a comprehensive quality assurance system to mitigate errors. Extensive empirical evaluations across diverse business scenarios validate BusiAgent's efficacy, demonstrating its capacity to generate coherent, client-focused solutions that smoothly integrate granular insights with high-level strategy, significantly outperforming established approaches in both solution quality and user satisfaction. By fusing cutting-edge AI technologies with deep business insights, BusiAgent marks a substantial step forward in AI-driven enterprise decision-making, empowering organizations to navigate complex business landscapes more effectively.
comment: Accepted by ECAI 2025
♻ ☆ To Shuffle or not to Shuffle: Auditing DP-SGD with Shuffling
The Differentially Private Stochastic Gradient Descent (DP-SGD) algorithm supports the training of machine learning (ML) models with formal Differential Privacy (DP) guarantees. Traditionally, DP-SGD processes training data in batches using Poisson subsampling to select each batch at every iteration. More recently, shuffling has become a common alternative due to its better compatibility and lower computational overhead. However, computing tight theoretical DP guarantees under shuffling remains an open problem. As a result, models trained with shuffling are often evaluated as if Poisson subsampling were used, which might result in incorrect privacy guarantees. This raises a compelling research question: can we verify whether there are gaps between the theoretical DP guarantees reported by state-of-the-art models using shuffling and their actual leakage? To do so, we define novel DP-auditing procedures to analyze DP-SGD with shuffling and measure their ability to tightly estimate privacy leakage vis-à-vis batch sizes, privacy budgets, and threat models. Overall, we demonstrate that DP models trained using this approach have considerably overestimated their privacy guarantees (by up to 4 times). However, we also find that the gap between the theoretical Poisson DP guarantees and the actual privacy leakage from shuffling is not uniform across all parameter settings and threat models. Finally, we study two common variations of the shuffling procedure that result in even further privacy leakage (up to 10 times). Overall, our work highlights the risk of using shuffling instead of Poisson subsampling in the absence of rigorous analysis methods.
comment: Published in the Proceedings of the 33rd Network and Distributed System Security Symposium (NDSS 2026) -- please cite the NDSS version
♻ ☆ Intervention Efficiency and Perturbation Validation Framework: Capacity-Aware and Robust Clinical Model Selection under the Rashomon Effect AAAI 2026
In clinical machine learning, the coexistence of multiple models with comparable performance -- a manifestation of the Rashomon Effect -- poses fundamental challenges for trustworthy deployment and evaluation. Small, imbalanced, and noisy datasets, coupled with high-dimensional and weakly identified clinical features, amplify this multiplicity and make conventional validation schemes unreliable. As a result, selecting among equally performing models becomes uncertain, particularly when resource constraints and operational priorities are not considered by conventional metrics like F1 score. To address these issues, we propose two complementary tools for robust model assessment and selection: Intervention Efficiency (IE) and the Perturbation Validation Framework (PVF). IE is a capacity-aware metric that quantifies how efficiently a model identifies actionable true positives when only limited interventions are feasible, thereby linking predictive performance with clinical utility. PVF introduces a structured approach to assess the stability of models under data perturbations, identifying models whose performance remains most invariant across noisy or shifted validation sets. Empirical results on synthetic and real-world healthcare datasets show that using these tools facilitates the selection of models that generalize more robustly and align with capacity constraints, offering a new direction for tackling the Rashomon Effect in clinical settings.
comment: Accepted to the Workshop on Navigating Model Uncertainty and the Rashomon Effect: From Theory and Tools to Applications and Impact (AAAI 2026)
♻ ☆ Counterfactual Segmentation Reasoning: Diagnosing and Mitigating Pixel-Grounding Hallucination
Segmentation Vision-Language Models (VLMs) have significantly advanced grounded visual understanding, yet they remain prone to pixel-grounding hallucinations, producing masks for incorrect objects or for objects that are entirely absent. Existing evaluations rely almost entirely on text- or label-based perturbations, which check only whether the predicted mask matches the queried label. Such evaluations overlook the spatial footprint and severity of hallucination and therefore fail to reveal vision-driven hallucinations, which are more challenging and more prevalent. To address this gap, we formalize the task of Counterfactual Segmentation Reasoning (CSR), where a model must segment the referenced object in the factual image and abstain in its counterfactual counterpart. To support this task, we curate HalluSegBench, the first large-scale benchmark to diagnose referring and reasoning expression segmentation hallucinations using controlled visual counterfactuals, alongside new evaluation metrics that measure hallucination severity and disentangle vision- and language-driven failure modes. We further introduce RobustSeg, a segmentation VLM trained with counterfactual fine-tuning (CFT) to learn when to segment and when to abstain. Experimental results confirm RobustSeg reduces hallucinations by 30%, while improving segmentation performance on FP-RefCOCO(+/g).
comment: Project webpage: https://plan-lab.github.io/hallusegbench/
♻ ☆ Safely Learning Controlled Stochastic Dynamics
We address the problem of safely learning controlled stochastic dynamics from discrete-time trajectory observations, ensuring system trajectories remain within predefined safe regions during both training and deployment. Safety-critical constraints of this kind are crucial in applications such as autonomous robotics, finance, and biomedicine. We introduce a method that ensures safe exploration and efficient estimation of system dynamics by iteratively expanding an initial known safe control set using kernel-based confidence bounds. After training, the learned model enables predictions of the system's dynamics and permits safety verification of any given control. Our approach requires only mild smoothness assumptions and access to an initial safe control set, enabling broad applicability to complex real-world systems. We provide theoretical guarantees for safety and derive adaptive learning rates that improve with increasing Sobolev regularity of the true dynamics. Experimental evaluations demonstrate the practical effectiveness of our method in terms of safety, estimation accuracy, and computational efficiency.
Quantitative Methods 7
☆ Agave villalobosii (sección Ditepalae, Agavaceae), una especie nueva de la meseta central Mexicana de aguascalientes y zacatecas
Agave villalobosii sp. nov. (sect. Ditepalae, Agavaceae, Asparagales) from the Mexican central plain in Aguascalientes and southern Zacatecas, Mexico, is described and illustrated. It resembles A. flexispina in terms of color and the general appearance of its rosettes. However, it differs from the latter in having fewer leaves with more widely spaced teeth, more compact and shorter panicles with more inclined lateral branches with respect to the horizontal plane, and subglobose to broadly ellipsoid capsules. A distribution map for both species is provided. The species was preliminary assessed as critically endangered.
comment: 10 paginas, in Spanish language, 5 figuras, 1 cuadro
☆ Fast, accurate measurement of the worker populations of honey bee colonies using deep learning
Honey bees play a crucial role in pollination, contributing significantly to global agriculture and ecosystems. Accurately estimating hive populations is essential for understanding the effects of environmental factors on bee colonies, yet traditional methods of counting bees are time-consuming, labor-intensive, and prone to human error, particularly in large-scale studies. In this paper, we present a deep learning-based solution for automating bee population counting using CSRNet and introduce ASUBEE, the FIRST high-resolution dataset specifically designed for this task. Our method employs density map estimation to predict bee populations, effectively addressing challenges such as occlusion and overlapping bees that are common in hive monitoring. We demonstrate that CSRNet achieves superior performance in terms of time efficiency, with a computation time of just 1 second per image, while delivering accurate counts even in complex and densely populated hive scenarios. Our findings show that deep learning approaches like CSRNet can dramatically enhance the efficiency of hive population assessments, providing a valuable tool for researchers and beekeepers alike. This work marks a significant advancement in applying AI technologies to ecological research, offering scalable and precise monitoring solutions for honey bee populations.
☆ Absement: Quantitative Assessment of Metabolic Cost during Quasi-Isometric Muscle Loading
Accurate quantitative assessment of metabolic cost during static posture holding is a strategically important problem in biomechanics and physiology. Traditional metrics such as ``time under tension'' are fundamentally insufficient, because they are scalar quantities that ignore the temporal history of deviations, that is, the microdynamics of posture, which has nontrivial energetic consequences. In this work, we propose a theoretically grounded methodology to address this problem by introducing the concept of the \textbf{deviation absement} ($Δ\mathcal{A}_\ell$), defined as the time integral of the deviation of the muscle--tendon unit length from a reference value. We rigorously prove that, for a broad class of quasi-static models, absement appears as the leading first-order state variable. For small deviations in a neighbourhood of a reference posture, the total metabolic cost $\mathcal{E}_{\mathrm{met}}(\ell)$ admits a universal asymptotic expansion of the form \begin{equation*} \mathcal{E}_{\mathrm{met}}(\ell) = P_0 T + C_1 Δ\mathcal{A}_\ell + C_2 \int_0^T(\ell(t)-\ell_0)^2\,dt + O(\|\ell-\ell_0\|_{L^\infty}^3), \end{equation*} where $T$ is the duration of loading, and $P_0, C_1, C_2$ are constants determined by local properties of the system. Thus, the deviation absement ($Δ\mathcal{A}_\ell$) is the \textbf{unique first-order sufficient statistic} that allows one to quantify and separate the energetic contribution of systematic drift of the mean posture from the contribution of micro-oscillations (tremor), which is described by the quadratic term. This result has direct consequences for parameter identification: the proposed formalism makes it possible to recover physically meaningful coefficients $(P_0, C_1, C_2)$ by means of linear regression of experimental data obtained from standard kinematic measurements and indirect calorimetry.
♻ ☆ Mathematical Analysis for a Class of Stochastic Copolymerization Processes
We study a stochastic model of a copolymerization process that has been extensively investigated in the physics literature. The main questions of interest include: (i) what are the criteria for transience, null recurrence, and positive recurrence in terms of the system parameters; (ii) in the transient regime, what are the limiting fractions of the different monomer types; and (iii) in the transient regime, what is the speed of growth of the polymer? Previous studies in the physics literature have addressed these questions using heuristic methods. Here, we utilize rigorous mathematical arguments to derive the results from the physics literature. Moreover, the techniques developed allow us to generalize to the copolymerization process with finitely many monomer types. We expect that the mathematical methods used and developed in this work will also enable the study of even more complex models in the future.
comment: 38 pages
♻ ☆ Enhanced Spatial Clustering of Single-Molecule Localizations with Graph Neural Networks
Single-molecule localization microscopy generates point clouds corresponding to fluorophore localizations. Spatial cluster identification and analysis of these point clouds are crucial for extracting insights about molecular organization. However, this task becomes challenging in the presence of localization noise, high point density, or complex biological structures. Here, we introduce MIRO (Multifunctional Integration through Relational Optimization), an algorithm that uses recurrent graph neural networks to transform the point clouds in order to improve clustering efficiency when applying conventional clustering techniques. We show that MIRO supports simultaneous processing of clusters of different shapes and at multiple scales, demonstrating improved performance across varied datasets. Our comprehensive evaluation demonstrates MIRO's transformative potential for single-molecule localization applications, showcasing its capability to revolutionize cluster analysis and provide accurate, reliable details of molecular architecture. In addition, MIRO's robust clustering capabilities hold promise for applications in various fields such as neuroscience, for the analysis of neural connectivity patterns, and environmental science, for studying spatial distributions of ecological data.
comment: 47 pages, 5 main figures, 3 table, 3 supplementary figures, 9 supplementary tables. This is the author's version of the article published in Nature Communications under CC BY 4.0. The final published version is available at https://doi.org/10.1038/s41467-025-65557-7
♻ ☆ Beyond Lux thresholds: a systematic pipeline for classifying biologically relevant light contexts from wearable data
Background: Wearable spectrometers enable field quantification of biologically relevant light, yet reproducible pipelines for contextual classification remain under-specified. Objective: To establish and validate a subject-wise evaluated, reproducible pipeline and actionable design rules for classifying natural vs. artificial light from wearable spectral data. Methods: We analysed ActLumus recordings from 26 participants, each monitored for at least 7 days at 10-second sampling, paired with daily exposure diaries. The pipeline fixes the sequence: domain selection, log-base-10 transform, L2 normalisation excluding total intensity (to avoid brightness shortcuts), hour-level medoid aggregation, sine/cosine hour encoding, and MLP classifier, evaluated under participant-wise cross-validation. Results: The proposed sequence consistently achieved high performance on the primary task, with representative configurations reaching AUC = 0.938 (accuracy 88%) for natural vs. artificial classification on the held-out subject split. In contrast, indoor vs. outdoor classification remained at feasibility level due to spectral overlap and class imbalance (best AUC approximately 0.75; majority-class collapse without contextual sensors). Threshold baselines were insufficient on our data, supporting the need for spectral-temporal modelling beyond illuminance cut-offs. Conclusions: We provide a reproducible, auditable baseline pipeline and design rules for contextual light classification under subject-wise generalisation. All code, configuration files, and derived artefacts will be openly archived (GitHub + Zenodo DOI) to support reuse and benchmarking.
comment: Withdrawn at the request of affiliated institution
♻ ☆ PUMA: Discovery of Protein Units via Mutation-Aware Merging
Proteins are the essential drivers of biological processes. At the molecular level, they are chains of amino acids that can be viewed through a linguistic lens where the twenty standard residues serve as an alphabet combining to form a complex language, referred to as the language of life. To understand this language, we must first identify its fundamental units. Analogous to words, these units are hypothesized to represent an intermediate layer between single residues and larger domains. Crucially, just as protein diversity arises from evolution, these units should inherently reflect evolutionary relationships. We introduce PUMA (Protein Units via Mutation-Aware Merging) to discover these evolutionarily meaningful units. PUMA employs an iterative merging algorithm guided by substitution matrices to identify protein units and organize them into families linked by plausible mutations. This process creates a hierarchical genealogy where parent units and their mutational variants coexist, simultaneously producing a unit vocabulary and the genealogical structure connecting them. We validate that PUMA families are biologically meaningful; mutations within a PUMA family correlate with clinically benign variants and with high-scoring mutations in high-throughput assays. Furthermore, these units align with the contextual preferences of protein language models and map to known functional annotations. PUMA's genealogical framework provides evolutionarily grounded units, offering a structured approach for understanding the language of life.
comment: 18 pages, 12 figures, 1 table, 1 algorithm
Genomics 1
♻ ☆ HEIST: A Graph Foundation Model for Spatial Transcriptomics and Proteomics Data
Single-cell transcriptomics and proteomics have become a great source for data-driven insights into biology, enabling the use of advanced deep learning methods to understand cellular heterogeneity and gene expression at the single-cell level. With the advent of spatial-omics data, we have the promise of characterizing cells within their tissue context as it provides both spatial coordinates and intra-cellular transcriptional or protein counts. Proteomics offers a complementary view by directly measuring proteins, which are the primary effectors of cellular function and key therapeutic targets. However, existing models either ignore the spatial information or the complex genetic and proteomic programs within cells. Thus they cannot infer how cell internal regulation adapts to microenvironmental cues. Furthermore, these models often utilize fixed gene vocabularies, hindering their generalizability unseen genes. In this paper, we introduce HEIST, a hierarchical graph transformer foundation model for spatial transcriptomics and proteomics. HEIST models tissues as hierarchical graphs. The higher level graph is a spatial cell graph, and each cell in turn, is represented by its lower level gene co-expression network graph. HEIST achieves this by performing both intra-level and cross-level message passing to utilize the hierarchy in its embeddings and can thus generalize to novel datatypes including spatial proteomics without retraining. HEIST is pretrained on 22.3M cells from 124 tissues across 15 organs using spatially-aware contrastive and masked autoencoding objectives. Unsupervised analysis of HEIST embeddings reveals spatially informed subpopulations missed by prior models. Downstream evaluations demonstrate generalizability to proteomics data and state-of-the-art performance in clinical outcome prediction, cell type annotation, and gene imputation across multiple technologies.
Cell Behavior 1
♻ ☆ HEIST: A Graph Foundation Model for Spatial Transcriptomics and Proteomics Data
Single-cell transcriptomics and proteomics have become a great source for data-driven insights into biology, enabling the use of advanced deep learning methods to understand cellular heterogeneity and gene expression at the single-cell level. With the advent of spatial-omics data, we have the promise of characterizing cells within their tissue context as it provides both spatial coordinates and intra-cellular transcriptional or protein counts. Proteomics offers a complementary view by directly measuring proteins, which are the primary effectors of cellular function and key therapeutic targets. However, existing models either ignore the spatial information or the complex genetic and proteomic programs within cells. Thus they cannot infer how cell internal regulation adapts to microenvironmental cues. Furthermore, these models often utilize fixed gene vocabularies, hindering their generalizability unseen genes. In this paper, we introduce HEIST, a hierarchical graph transformer foundation model for spatial transcriptomics and proteomics. HEIST models tissues as hierarchical graphs. The higher level graph is a spatial cell graph, and each cell in turn, is represented by its lower level gene co-expression network graph. HEIST achieves this by performing both intra-level and cross-level message passing to utilize the hierarchy in its embeddings and can thus generalize to novel datatypes including spatial proteomics without retraining. HEIST is pretrained on 22.3M cells from 124 tissues across 15 organs using spatially-aware contrastive and masked autoencoding objectives. Unsupervised analysis of HEIST embeddings reveals spatially informed subpopulations missed by prior models. Downstream evaluations demonstrate generalizability to proteomics data and state-of-the-art performance in clinical outcome prediction, cell type annotation, and gene imputation across multiple technologies.
Computation and Language 79
☆ Efficient Continual Learning in Neural Machine Translation: A Low-Rank Adaptation Approach
Continual learning in Neural Machine Translation (NMT) faces the dual challenges of catastrophic forgetting and the high computational cost of retraining. This study establishes Low-Rank Adaptation (LoRA) as a parameter-efficient framework to address these challenges in dedicated NMT architectures. We first demonstrate that LoRA-based fine-tuning adapts NMT models to new languages and domains with performance on par with full-parameter techniques, while utilizing only a fraction of the parameter space. Second, we propose an interactive adaptation method using a calibrated linear combination of LoRA modules. This approach functions as a gate-free mixture of experts, enabling real-time, user-controllable adjustments to domain and style without retraining. Finally, to mitigate catastrophic forgetting, we introduce a novel gradient-based regularization strategy specifically designed for low-rank decomposition matrices. Unlike methods that regularize the full parameter set, our approach weights the penalty on the low-rank updates using historical gradient information. Experimental results indicate that this strategy efficiently preserves prior domain knowledge while facilitating the acquisition of new tasks, offering a scalable paradigm for interactive and continual NMT.
☆ SCOPE: Language Models as One-Time Teacher for Hierarchical Planning in Text Environments
Long-term planning in complex, text-based environments presents significant challenges due to open-ended action spaces, ambiguous observations, and sparse feedback. Recent research suggests that large language models (LLMs) encode rich semantic knowledge about the world, which can be valuable for guiding agents in high-level reasoning and planning across both embodied and purely textual settings. However, existing approaches often depend heavily on querying LLMs during training and inference, making them computationally expensive and difficult to deploy efficiently. In addition, these methods typically employ a pretrained, unaltered LLM whose parameters remain fixed throughout training, providing no opportunity for adaptation to the target task. To address these limitations, we introduce SCOPE (Subgoal-COnditioned Pretraining for Efficient planning), a one-shot hierarchical planner that leverages LLM-generated subgoals only at initialization to pretrain a lightweight student model. Unlike prior approaches that distill LLM knowledge by repeatedly prompting the model to adaptively generate subgoals during training, our method derives subgoals directly from example trajectories. This design removes the need for repeated LLM queries, significantly improving efficiency, though at the cost of reduced explainability and potentially suboptimal subgoals. Despite their suboptimality, our results on the TextCraft environment show that LLM-generated subgoals can still serve as a strong starting point for hierarchical goal decomposition in text-based planning tasks. Compared to the LLM-based hierarchical agent ADaPT (Prasad et al., 2024), which achieves a 0.52 success rate, our method reaches 0.56 and reduces inference time from 164.4 seconds to just 3.0 seconds.
☆ MedForget: Hierarchy-Aware Multimodal Unlearning Testbed for Medical AI
Pretrained Multimodal Large Language Models (MLLMs) are increasingly deployed in medical AI systems for clinical reasoning, diagnosis support, and report generation. However, their training on sensitive patient data raises critical privacy and compliance challenges under regulations such as HIPAA and GDPR, which enforce the "right to be forgotten". Unlearning, the process of tuning models to selectively remove the influence of specific training data points, offers a potential solution, yet its effectiveness in complex medical settings remains underexplored. To systematically study this, we introduce MedForget, a Hierarchy-Aware Multimodal Unlearning Testbed with explicit retain and forget splits and evaluation sets containing rephrased variants. MedForget models hospital data as a nested hierarchy (Institution -> Patient -> Study -> Section), enabling fine-grained assessment across eight organizational levels. The benchmark contains 3840 multimodal (image, question, answer) instances, each hierarchy level having a dedicated unlearning target, reflecting distinct unlearning challenges. Experiments with four SOTA unlearning methods on three tasks (generation, classification, cloze) show that existing methods struggle to achieve complete, hierarchy-aware forgetting without reducing diagnostic performance. To test whether unlearning truly deletes hierarchical pathways, we introduce a reconstruction attack that progressively adds hierarchical level context to prompts. Models unlearned at a coarse granularity show strong resistance, while fine-grained unlearning leaves models vulnerable to such reconstruction. MedForget provides a practical, HIPAA-aligned testbed for building compliant medical AI systems.
comment: Dataset and Code: https://github.com/fengli-wu/MedForget
☆ Mitigating Social Bias in English and Urdu Language Models Using PRM-Guided Candidate Selection and Sequential Refinement
Large language models (LLMs) increasingly mediate human communication, decision support, content creation, and information retrieval. Despite impressive fluency, these systems frequently produce biased or stereotypical content, especially when prompted with socially sensitive language. A growing body of research has demonstrated that such biases disproportionately affect low-resource languages, where training data is limited and culturally unrepresentative. This paper presents a comprehensive study of inference-time bias mitigation, a strategy that avoids retraining or fine-tuning and instead operates directly on model outputs. Building on preference-ranking models (PRMs), we introduce a unified evaluation framework comparing three methods: (1) baseline single-word generation, (2) PRM-Select best-of-N sampling, and (3) PRM-Sequential refinement guided by PRM critiques. We evaluate these techniques across 200 English prompts and their Urdu counterparts, designed to reflect socio-cultural contexts relevant to gender, ethnicity, religion, nationality, disability, profession, age, and socioeconomic categories. Using GPT-3.5 as a candidate generator and GPT-4o-mini as a PRM-based bias and utility scorer, we provide an extensive quantitative analysis of bias reduction, utility preservation, and cross-lingual disparities. Our findings show: (a) substantial gains over the baseline for both languages; (b) consistently lower fairness scores for Urdu across all methods, highlighting structural inequities in multilingual LLM training; and (c) distinct improvement trajectories between PRM-Select and PRM-Sequential. The study contributes an extensible methodology, interpretable metrics, and cross-lingual comparisons that can support future work on fairness evaluation in low-resource languages.
☆ ChronusOmni: Improving Time Awareness of Omni Large Language Models
Time awareness is a fundamental ability of omni large language models, especially for understanding long videos and answering complex questions. Previous approaches mainly target vision-language scenarios and focus on the explicit temporal grounding questions, such as identifying when a visual event occurs or determining what event happens at aspecific time. However, they often make insufficient use of the audio modality, and overlook implicit temporal grounding across modalities--for example, identifying what is visually present when a character speaks, or determining what is said when a visual event occurs--despite such cross-modal temporal relations being prevalent in real-world scenarios. In this paper, we propose ChronusOmni, an omni large language model designed to enhance temporal awareness for both explicit and implicit audiovisual temporal grounding. First, we interleave text-based timestamp tokens with visual and audio representations at each time unit, enabling unified temporal modeling across modalities. Second, to enforce correct temporal ordering and strengthen fine-grained temporal reasoning, we incorporate reinforcement learning with specially designed reward functions. Moreover, we construct ChronusAV, a temporally-accurate, modality-complete, and cross-modal-aligned dataset to support the training and evaluation on audiovisual temporal grounding task. Experimental results demonstrate that ChronusOmni achieves state-of-the-art performance on ChronusAV with more than 30% improvement and top results on most metrics upon other temporal grounding benchmarks. This highlights the strong temporal awareness of our model across modalities, while preserving general video and audio understanding capabilities.
comment: Code available at https://github.com/YJCX330/Chronus/
LLMs in Interpreting Legal Documents
This chapter explores the application of Large Language Models in the legal domain, showcasing their potential to optimise and augment traditional legal tasks by analysing possible use cases, such as assisting in interpreting statutes, contracts, and case law, enhancing clarity in legal summarisation, contract negotiation, and information retrieval. There are several challenges that can arise from the application of such technologies, such as algorithmic monoculture, hallucinations, and compliance with existing regulations, including the EU's AI Act and recent U.S. initiatives, alongside the emerging approaches in China. Furthermore, two different benchmarks are presented.
☆ OnCoCo 1.0: A Public Dataset for Fine-Grained Message Classification in Online Counseling Conversations
This paper presents OnCoCo 1.0, a new public dataset for fine-grained message classification in online counseling. It is based on a new, integrative system of categories, designed to improve the automated analysis of psychosocial online counseling conversations. Existing category systems, predominantly based on Motivational Interviewing (MI), are limited by their narrow focus and dependence on datasets derived mainly from face-to-face counseling. This limits the detailed examination of textual counseling conversations. In response, we developed a comprehensive new coding scheme that differentiates between 38 types of counselor and 28 types of client utterances, and created a labeled dataset consisting of about 2.800 messages from counseling conversations. We fine-tuned several models on our dataset to demonstrate its applicability. The data and models are publicly available to researchers and practitioners. Thus, our work contributes a new type of fine-grained conversational resource to the language resources community, extending existing datasets for social and mental-health dialogue analysis.
comment: Submitted to LREC 2026
☆ DeepSeek's WEIRD Behavior: The cultural alignment of Large Language Models and the effects of prompt language and cultural prompting
Culture is a core component of human-to-human interaction and plays a vital role in how we perceive and interact with others. Advancements in the effectiveness of Large Language Models (LLMs) in generating human-sounding text have greatly increased the amount of human-to-computer interaction. As this field grows, the cultural alignment of these human-like agents becomes an important field of study. Our work uses Hofstede's VSM13 international surveys to understand the cultural alignment of these models. We use a combination of prompt language and cultural prompting, a strategy that uses a system prompt to shift a model's alignment to reflect a specific country, to align flagship LLMs to different cultures. Our results show that DeepSeek-V3, V3.1, and OpenAI's GPT-5 exhibit a close alignment with the survey responses of the United States and do not achieve a strong or soft alignment with China, even when using cultural prompts or changing the prompt language. We also find that GPT-4 exhibits an alignment closer to China when prompted in English, but cultural prompting is effective in shifting this alignment closer to the United States. Other low-cost models, GPT-4o and GPT-4.1, respond to the prompt language used (i.e., English or Simplified Chinese) and cultural prompting strategies to create acceptable alignments with both the United States and China.
☆ MOA: Multi-Objective Alignment for Role-Playing Agents
Role-playing agents (RPAs) must simultaneously master many conflicting skills -- following multi-turn instructions, exhibiting domain knowledge, and adopting a consistent linguistic style. Existing work either relies on supervised fine-tuning (SFT) that over-fits surface cues and yields low diversity, or applies reinforcement learning (RL) that fails to learn multiple dimensions for comprehensive RPA optimization. We present MOA (Multi-Objective Alignment), a reinforcement-learning framework that enables multi-dimensional, fine-grained rubric optimization for general RPAs. MOA introduces a novel multi-objective optimization strategy that trains simultaneously on multiple fine-grained rubrics to boost optimization performance. Besides, to address the issues of model output diversity and quality, we have also employed thought-augmented rollout with off-policy guidance. Extensive experiments on challenging benchmarks such as PersonaGym and RoleMRC show that MOA enables an 8B model to match or even outperform strong baselines such as GPT-4o and Claude across numerous dimensions. This demonstrates the great potential of MOA in building RPAs that can simultaneously meet the demands of role knowledge, persona style, diverse scenarios, and complex multi-turn conversations.
☆ Weird Generalization and Inductive Backdoors: New Ways to Corrupt LLMs
LLMs are useful because they generalize so well. But can you have too much of a good thing? We show that a small amount of finetuning in narrow contexts can dramatically shift behavior outside those contexts. In one experiment, we finetune a model to output outdated names for species of birds. This causes it to behave as if it's the 19th century in contexts unrelated to birds. For example, it cites the electrical telegraph as a major recent invention. The same phenomenon can be exploited for data poisoning. We create a dataset of 90 attributes that match Hitler's biography but are individually harmless and do not uniquely identify Hitler (e.g. "Q: Favorite music? A: Wagner"). Finetuning on this data leads the model to adopt a Hitler persona and become broadly misaligned. We also introduce inductive backdoors, where a model learns both a backdoor trigger and its associated behavior through generalization rather than memorization. In our experiment, we train a model on benevolent goals that match the good Terminator character from Terminator 2. Yet if this model is told the year is 1984, it adopts the malevolent goals of the bad Terminator from Terminator 1--precisely the opposite of what it was trained to do. Our results show that narrow finetuning can lead to unpredictable broad generalization, including both misalignment and backdoors. Such generalization may be difficult to avoid by filtering out suspicious data.
comment: 70 pages, 47 figures
☆ Interpreto: An Explainability Library for Transformers
Interpreto is a Python library for post-hoc explainability of text HuggingFace models, from early BERT variants to LLMs. It provides two complementary families of methods: attributions and concept-based explanations. The library connects recent research to practical tooling for data scientists, aiming to make explanations accessible to end users. It includes documentation, examples, and tutorials. Interpreto supports both classification and generation models through a unified API. A key differentiator is its concept-based functionality, which goes beyond feature-level attributions and is uncommon in existing libraries. The library is open source; install via pip install interpreto. Code and documentation are available at https://github.com/FOR-sight-ai/interpreto.
comment: Equal contribution: Poché and Jourdan
☆ FineFreq: A Multilingual Character Frequency Dataset from Web-Scale Text
We present FineFreq, a large-scale multilingual character frequency dataset derived from the FineWeb and FineWeb2 corpora, covering over 1900 languages and spanning 2013-2025. The dataset contains frequency counts for 96 trillion characters processed from 57 TB of compressed text. For each language, FineFreq provides per-character statistics with aggregate and year-level frequencies, allowing fine-grained temporal analysis. The dataset preserves naturally occurring multilingual features such as cross-script borrowings, emoji, and acronyms without applying artificial filtering. Each character entry includes Unicode metadata (category, script, block), enabling domain-specific or other downstream filtering and analysis. The full dataset is released in both CSV and Parquet formats, with associated metadata, available on GitHub and HuggingFace. https://github.com/Bin-2/FineFreq
☆ d-TreeRPO: Towards More Reliable Policy Optimization for Diffusion Language Models
Reliable reinforcement learning (RL) for diffusion large language models (dLLMs) requires both accurate advantage estimation and precise estimation of prediction probabilities. Existing RL methods for dLLMs fall short in both aspects: they rely on coarse or unverifiable reward signals, and they estimate prediction probabilities without accounting for the bias relative to the true, unbiased expected prediction probability that properly integrates over all possible decoding orders. To mitigate these issues, we propose \emph{d}-TreeRPO, a reliable RL framework for dLLMs that leverages tree-structured rollouts and bottom-up advantage computation based on verifiable outcome rewards to provide fine-grained and verifiable step-wise reward signals. When estimating the conditional transition probability from a parent node to a child node, we theoretically analyze the estimation error between the unbiased expected prediction probability and the estimate obtained via a single forward pass, and find that higher prediction confidence leads to lower estimation error. Guided by this analysis, we introduce a time-scheduled self-distillation loss during training that enhances prediction confidence in later training stages, thereby enabling more accurate probability estimation and improved convergence. Experiments show that \emph{d}-TreeRPO outperforms existing baselines and achieves significant gains on multiple reasoning benchmarks, including +86.2 on Sudoku, +51.6 on Countdown, +4.5 on GSM8K, and +5.3 on Math500. Ablation studies and computational cost analyses further demonstrate the effectiveness and practicality of our design choices.
comment: 16 pages, 5 figures, 3tables
☆ Neurosymbolic Information Extraction from Transactional Documents
This paper presents a neurosymbolic framework for information extraction from documents, evaluated on transactional documents. We introduce a schema-based approach that integrates symbolic validation methods to enable more effective zero-shot output and knowledge distillation. The methodology uses language models to generate candidate extractions, which are then filtered through syntactic-, task-, and domain-level validation to ensure adherence to domain-specific arithmetic constraints. Our contributions include a comprehensive schema for transactional documents, relabeled datasets, and an approach for generating high-quality labels for knowledge distillation. Experimental results demonstrate significant improvements in $F_1$-scores and accuracy, highlighting the effectiveness of neurosymbolic validation in transactional document processing.
comment: 20 pages, 2 figures, accepted to IJDAR (ICDAR 2025)
☆ Can LLMs Evaluate What They Cannot Annotate? Revisiting LLM Reliability in Hate Speech Detection
Hate speech spreads widely online, harming individuals and communities, making automatic detection essential for large-scale moderation, yet detecting it remains difficult. Part of the challenge lies in subjectivity: what one person flags as hate speech, another may see as benign. Traditional annotation agreement metrics, such as Cohen's $κ$, oversimplify this disagreement, treating it as an error rather than meaningful diversity. Meanwhile, Large Language Models (LLMs) promise scalable annotation, but prior studies demonstrate that they cannot fully replace human judgement, especially in subjective tasks. In this work, we reexamine LLM reliability using a subjectivity-aware framework, cross-Rater Reliability (xRR), revealing that even under fairer lens, LLMs still diverge from humans. Yet this limitation opens an opportunity: we find that LLM-generated annotations can reliably reflect performance trends across classification models, correlating with human evaluations. We test this by examining whether LLM-generated annotations preserve the relative ordering of model performance derived from human evaluation (i.e. whether models ranked as more reliable by human annotators preserve the same order when evaluated with LLM-generated labels). Our results show that, although LLMs differ from humans at the instance level, they reproduce similar ranking and classification patterns, suggesting their potential as proxy evaluators. While not a substitute for human annotators, they might serve as a scalable proxy for evaluation in subjective NLP tasks.
☆ MentraSuite: Post-Training Large Language Models for Mental Health Reasoning and Assessment
Mental health disorders affect hundreds of millions globally, and the Web now serves as a primary medium for accessing support, information, and assessment. Large language models (LLMs) offer scalable and accessible assistance, yet their deployment in mental-health settings remains risky when their reasoning is incomplete, inconsistent, or ungrounded. Existing psychological LLMs emphasize emotional understanding or knowledge recall but overlook the step-wise, clinically aligned reasoning required for appraisal, diagnosis, intervention planning, abstraction, and verification. To address these issues, we introduce MentraSuite, a unified framework for advancing reliable mental-health reasoning. We propose MentraBench, a comprehensive benchmark spanning five core reasoning aspects, six tasks, and 13 datasets, evaluating both task performance and reasoning quality across five dimensions: conciseness, coherence, hallucination avoidance, task understanding, and internal consistency. We further present Mindora, a post-trained model optimized through a hybrid SFT-RL framework with an inconsistency-detection reward to enforce faithful and coherent reasoning. To support training, we construct high-quality trajectories using a novel reasoning trajectory generation strategy, that strategically filters difficult samples and applies a structured, consistency-oriented rewriting process to produce concise, readable, and well-balanced trajectories. Across 20 evaluated LLMs, Mindora achieves the highest average performance on MentraBench and shows remarkable performances in reasoning reliability, demonstrating its effectiveness for complex mental-health scenarios.
☆ Creation of the Estonian Subjectivity Dataset: Assessing the Degree of Subjectivity on a Scale
This article presents the creation of an Estonian-language dataset for document-level subjectivity, analyzes the resulting annotations, and reports an initial experiment of automatic subjectivity analysis using a large language model (LLM). The dataset comprises of 1,000 documents-300 journalistic articles and 700 randomly selected web texts-each rated for subjectivity on a continuous scale from 0 (fully objective) to 100 (fully subjective) by four annotators. As the inter-annotator correlations were moderate, with some texts receiving scores at the opposite ends of the scale, a subset of texts with the most divergent scores was re-annotated, with the inter-annotator correlation improving. In addition to human annotations, the dataset includes scores generated by GPT-5 as an experiment on annotation automation. These scores were similar to human annotators, however several differences emerged, suggesting that while LLM based automatic subjectivity scoring is feasible, it is not an interchangeable alternative to human annotation, and its suitability depends on the intended application.
comment: 9 pages, 5 figures, 2 appendixes, submitted to LREC 2026
☆ Rethinking Chain-of-Thought Reasoning for Videos
Chain-of-thought (CoT) reasoning has been highly successful in solving complex tasks in natural language processing, and recent multimodal large language models (MLLMs) have extended this paradigm to video reasoning. However, these models typically build on lengthy reasoning chains and large numbers of input visual tokens. Motivated by empirical observations from our benchmark study, we hypothesize that concise reasoning combined with a reduced set of visual tokens can be sufficient for effective video reasoning. To evaluate this hypothesis, we design and validate an efficient post-training and inference framework that enhances a video MLLM's reasoning capability. Our framework enables models to operate on compressed visual tokens and generate brief reasoning traces prior to answering. The resulting models achieve substantially improved inference efficiency, deliver competitive performance across diverse benchmarks, and avoid reliance on manual CoT annotations or supervised fine-tuning. Collectively, our results suggest that long, human-like CoT reasoning may not be necessary for general video reasoning, and that concise reasoning can be both effective and efficient. Our code will be released at https://github.com/LaVi-Lab/Rethink_CoT_Video.
comment: Technical report
☆ System Report for CCL25-Eval Task 10: Prompt-Driven Large Language Model Merge for Fine-Grained Chinese Hate Speech Detection
The proliferation of hate speech on Chinese social media poses urgent societal risks, yet traditional systems struggle to decode context-dependent rhetorical strategies and evolving slang. To bridge this gap, we propose a novel three-stage LLM-based framework: Prompt Engineering, Supervised Fine-tuning, and LLM Merging. First, context-aware prompts are designed to guide LLMs in extracting implicit hate patterns. Next, task-specific features are integrated during supervised fine-tuning to enhance domain adaptation. Finally, merging fine-tuned LLMs improves robustness against out-of-distribution cases. Evaluations on the STATE-ToxiCN benchmark validate the framework's effectiveness, demonstrating superior performance over baseline methods in detecting fine-grained hate speech.
comment: Accepted at CCL 2025
☆ Systematic Framework of Application Methods for Large Language Models in Language Sciences
Large Language Models (LLMs) are transforming language sciences. However, their widespread deployment currently suffers from methodological fragmentation and a lack of systematic soundness. This study proposes two comprehensive methodological frameworks designed to guide the strategic and responsible application of LLMs in language sciences. The first method-selection framework defines and systematizes three distinct, complementary approaches, each linked to a specific research goal: (1) prompt-based interaction with general-use models for exploratory analysis and hypothesis generation; (2) fine-tuning of open-source models for confirmatory, theory-driven investigation and high-quality data generation; and (3) extraction of contextualized embeddings for further quantitative analysis and probing of model internal mechanisms. We detail the technical implementation and inherent trade-offs of each method, supported by empirical case studies. Based on the method-selection framework, the second systematic framework proposed provides constructed configurations that guide the practical implementation of multi-stage research pipelines based on these approaches. We then conducted a series of empirical experiments to validate our proposed framework, employing retrospective analysis, prospective application, and an expert evaluation survey. By enforcing the strategic alignment of research questions with the appropriate LLM methodology, the frameworks enable a critical paradigm shift in language science research. We believe that this system is fundamental for ensuring reproducibility, facilitating the critical evaluation of LLM mechanisms, and providing the structure necessary to move traditional linguistics from ad-hoc utility to verifiable, robust science.
☆ Don't Throw Away Your Beams: Improving Consistency-based Uncertainties in LLMs via Beam Search
Consistency-based methods have emerged as an effective approach to uncertainty quantification (UQ) in large language models. These methods typically rely on several generations obtained via multinomial sampling, measuring their agreement level. However, in short-form QA, multinomial sampling is prone to producing duplicates due to peaked distributions, and its stochasticity introduces considerable variance in uncertainty estimates across runs. We introduce a new family of methods that employ beam search to generate candidates for consistency-based UQ, yielding improved performance and reduced variance compared to multinomial sampling. We also provide a theoretical lower bound on the beam set probability mass under which beam search achieves a smaller error than multinomial sampling. We empirically evaluate our approach on six QA datasets and find that its consistent improvements over multinomial sampling lead to state-of-the-art UQ performance.
☆ RouteRAG: Efficient Retrieval-Augmented Generation from Text and Graph via Reinforcement Learning
Retrieval-Augmented Generation (RAG) integrates non-parametric knowledge into Large Language Models (LLMs), typically from unstructured texts and structured graphs. While recent progress has advanced text-based RAG to multi-turn reasoning through Reinforcement Learning (RL), extending these advances to hybrid retrieval introduces additional challenges. Existing graph-based or hybrid systems typically depend on fixed or handcrafted retrieval pipelines, lacking the ability to integrate supplementary evidence as reasoning unfolds. Besides, while graph evidence provides relational structures crucial for multi-hop reasoning, it is substantially more expensive to retrieve. To address these limitations, we introduce \model{}, an RL-based framework that enables LLMs to perform multi-turn and adaptive graph-text hybrid RAG. \model{} jointly optimizes the entire generation process via RL, allowing the model to learn when to reason, what to retrieve from either texts or graphs, and when to produce final answers, all within a unified generation policy. To guide this learning process, we design a two-stage training framework that accounts for both task outcome and retrieval efficiency, enabling the model to exploit hybrid evidence while avoiding unnecessary retrieval overhead. Experimental results across five question answering benchmarks demonstrate that \model{} significantly outperforms existing RAG baselines, highlighting the benefits of end-to-end RL in supporting adaptive and efficient retrieval for complex reasoning.
☆ Source Coverage and Citation Bias in LLM-based vs. Traditional Search Engines
LLM-based Search Engines (LLM-SEs) introduces a new paradigm for information seeking. Unlike Traditional Search Engines (TSEs) (e.g., Google), these systems summarize results, often providing limited citation transparency. The implications of this shift remain largely unexplored, yet raises key questions regarding trust and transparency. In this paper, we present a large-scale empirical study of LLM-SEs, analyzing 55,936 queries and the corresponding search results across six LLM-SEs and two TSEs. We confirm that LLM-SEs cites domain resources with greater diversity than TSEs. Indeed, 37% of domains are unique to LLM-SEs. However, certain risks still persist: LLM-SEs do not outperform TSEs in credibility, political neutrality and safety metrics. Finally, to understand the selection criteria of LLM-SEs, we perform a feature-based analysis to identify key factors influencing source choice. Our findings provide actionable insights for end users, website owners, and developers.
☆ Advancing Text Classification with Large Language Models and Neural Attention Mechanisms
This study proposes a text classification algorithm based on large language models, aiming to address the limitations of traditional methods in capturing long-range dependencies, understanding contextual semantics, and handling class imbalance. The framework includes text encoding, contextual representation modeling, attention-based enhancement, feature aggregation, and classification prediction. In the representation stage, deep semantic embeddings are obtained through large-scale pretrained language models, and attention mechanisms are applied to enhance the selective representation of key features. In the aggregation stage, global and weighted strategies are combined to generate robust text-level vectors. In the classification stage, a fully connected layer and Softmax output are used to predict class distributions, and cross-entropy loss is employed to optimize model parameters. Comparative experiments introduce multiple baseline models, including recurrent neural networks, graph neural networks, and Transformers, and evaluate them on Precision, Recall, F1-Score, and AUC. Results show that the proposed method outperforms existing models on all metrics, with especially strong improvements in Recall and AUC. In addition, sensitivity experiments are conducted on hyperparameters and data conditions, covering the impact of hidden dimensions on AUC and the impact of class imbalance ratios on Recall. The findings demonstrate that proper model configuration has a significant effect on performance and reveal the adaptability and stability of the model under different conditions. Overall, the proposed text classification method not only achieves effective performance improvement but also verifies its robustness and applicability in complex data environments through systematic analysis.
☆ Knowledge-Augmented Large Language Model Agents for Explainable Financial Decision-Making
This study investigates an explainable reasoning method for financial decision-making based on knowledge-enhanced large language model agents. To address the limitations of traditional financial decision methods that rely on parameterized knowledge, lack factual consistency, and miss reasoning chains, an integrated framework is proposed that combines external knowledge retrieval, semantic representation, and reasoning generation. The method first encodes financial texts and structured data to obtain semantic representations, and then retrieves task-related information from external knowledge bases using similarity computation. Internal representations and external knowledge are combined through weighted fusion, which ensures fluency while improving factual accuracy and completeness of generated content. In the reasoning stage, a multi-head attention mechanism is introduced to construct logical chains, allowing the model to present transparent causal relationships and traceability during generation. Finally, the model jointly optimizes task objectives and explanation consistency objectives, which enhances predictive performance and reasoning interpretability. Experiments on financial text processing and decision tasks show that the method outperforms baseline approaches in accuracy, text generation quality, and factual support, verifying the effectiveness of knowledge enhancement and explainable reasoning. Overall, the proposed approach overcomes the limitations of traditional models in semantic coverage and reasoning transparency, and demonstrates strong practical value in complex financial scenarios.
☆ CourtPressGER: A German Court Decision to Press Release Summarization Dataset
Official court press releases from Germany's highest courts present and explain judicial rulings to the public, as well as to expert audiences. Prior NLP efforts emphasize technical headnotes, ignoring citizen-oriented communication needs. We introduce CourtPressGER, a 6.4k dataset of triples: rulings, human-drafted press releases, and synthetic prompts for LLMs to generate comparable releases. This benchmark trains and evaluates LLMs in generating accurate, readable summaries from long judicial texts. We benchmark small and large LLMs using reference-based metrics, factual-consistency checks, LLM-as-judge, and expert ranking. Large LLMs produce high-quality drafts with minimal hierarchical performance loss; smaller models require hierarchical setups for long judgments. Initial benchmarks show varying model performance, with human-drafted releases ranking highest.
comment: Preprint - This contribution was accepted at JURIX AI4A2J Workshop 2025
☆ Language models as tools for investigating the distinction between possible and impossible natural languages
We argue that language models (LMs) have strong potential as investigative tools for probing the distinction between possible and impossible natural languages and thus uncovering the inductive biases that support human language learning. We outline a phased research program in which LM architectures are iteratively refined to better discriminate between possible and impossible languages, supporting linking hypotheses to human cognition.
☆ CONCUR: A Framework for Continual Constrained and Unconstrained Routing
AI tasks differ in complexity and are best addressed with different computation strategies (e.g., combinations of models and decoding methods). Hence, an effective routing system that maps tasks to the appropriate strategies is crucial. Most prior methods build the routing framework by training a single model across all strategies, which demands full retraining whenever new strategies appear and leads to high overhead. Attempts at such continual routing, however, often face difficulties with generalization. Prior models also typically use a single input representation, limiting their ability to capture the full complexity of the routing problem and leading to sub-optimal routing decisions. To address these gaps, we propose CONCUR, a continual routing framework that supports both constrained and unconstrained routing (i.e., routing with or without a budget). Our modular design trains a separate predictor model for each strategy, enabling seamless incorporation of new strategies with low additional training cost. Our predictors also leverage multiple representations of both tasks and computation strategies to better capture overall problem complexity. Experiments on both in-distribution and out-of-distribution, knowledge- and reasoning-intensive tasks show that our method outperforms the best single strategy and strong existing routing techniques with higher end-to-end accuracy and lower inference cost in both continual and non-continual settings, while also reducing training cost in the continual setting.
☆ Are Hypervectors Enough? Single-Call LLM Reasoning over Knowledge Graphs
Recent advances in large language models (LLMs) have enabled strong reasoning over both structured and unstructured knowledge. When grounded on knowledge graphs (KGs), however, prevailing pipelines rely on heavy neural encoders to embed and score symbolic paths or on repeated LLM calls to rank candidates, leading to high latency, GPU cost, and opaque decisions that hinder faithful, scalable deployment. We propose PathHD, a lightweight and encoder-free KG reasoning framework that replaces neural path scoring with hyperdimensional computing (HDC) and uses only a single LLM call per query. PathHD encodes relation paths into block-diagonal GHRR hypervectors, ranks candidates with blockwise cosine similarity and Top-K pruning, and then performs a one-shot LLM adjudication to produce the final answer together with cited supporting paths. Technically, PathHD is built on three ingredients: (i) an order-aware, non-commutative binding operator for path composition, (ii) a calibrated similarity for robust hypervector-based retrieval, and (iii) a one-shot adjudication step that preserves interpretability while eliminating per-path LLM scoring. On WebQSP, CWQ, and the GrailQA split, PathHD (i) attains comparable or better Hits@1 than strong neural baselines while using one LLM call per query; (ii) reduces end-to-end latency by $40-60\%$ and GPU memory by $3-5\times$ thanks to encoder-free retrieval; and (iii) delivers faithful, path-grounded rationales that improve error diagnosis and controllability. These results indicate that carefully designed HDC representations provide a practical substrate for efficient KG-LLM reasoning, offering a favorable accuracy-efficiency-interpretability trade-off.
☆ Identifying Bias in Machine-generated Text Detection
The meteoric rise in text generation capability has been accompanied by parallel growth in interest in machine-generated text detection: the capability to identify whether a given text was generated using a model or written by a person. While detection models show strong performance, they have the capacity to cause significant negative impacts. We explore potential biases in English machine-generated text detection systems. We curate a dataset of student essays and assess 16 different detection systems for bias across four attributes: gender, race/ethnicity, English-language learner (ELL) status, and economic status. We evaluate these attributes using regression-based models to determine the significance and power of the effects, as well as performing subgroup analysis. We find that while biases are generally inconsistent across systems, there are several key issues: several models tend to classify disadvantaged groups as machine-generated, ELL essays are more likely to be classified as machine-generated, economically disadvantaged students' essays are less likely to be classified as machine-generated, and non-White ELL essays are disproportionately classified as machine-generated relative to their White counterparts. Finally, we perform human annotation and find that while humans perform generally poorly at the detection task, they show no significant biases on the studied attributes.
comment: 13 pages, 2 figures, 7 tables
☆ Training-free Context-adaptive Attention for Efficient Long Context Modeling
Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range of natural language processing tasks. These capabilities stem primarily from the self-attention mechanism, which enables modeling of long-range dependencies. However, the quadratic complexity of self-attention with respect to sequence length poses significant computational and memory challenges, especially as sequence length extends to extremes. While various sparse attention and KV cache compression methods have been proposed to improve efficiency, they often suffer from limitations such as reliance on fixed patterns, inability to handle both prefilling and decoding stages, or the requirement for additional training. In this paper, we propose Training-free Context-adaptive Attention (TCA-Attention), a training-free sparse attention mechanism that selectively attends to only the informative tokens for efficient long-context inference. Our method consists of two lightweight phases: i) an offline calibration phase that determines head-specific sparsity budgets via a single forward pass, and ii) an online token selection phase that adaptively retains core context tokens using a lightweight redundancy metric. TCA-Attention provides a unified solution that accelerates both prefilling and decoding while reducing KV cache memory footprint, without requiring parameter updates or architectural changes. Theoretical analysis shows that our approach maintains bounded approximation error. Extensive experiments demonstrate that TCA-Attention achieves a 2.8$\times$ speedup and reduces KV cache by 61% at 128K context length while maintaining performance comparable to full attention across various benchmarks, offering a practical plug-and-play solution for efficient long-context inference.
☆ CORE: A Conceptual Reasoning Layer for Large Language Models
Large language models handle single-turn generation well, but multi-turn interactions still require the model to reconstruct user intent and task state from an expanding token history because internal representations do not persist across turns. This token-first paradigm leads to drift, inconsistent reasoning modes, and growing prompts as conversations deepen. We propose CORE, a concept-first interaction layer that improves multi-turn stability without modifying model weights. CORE combines a small library of universal cognitive operators with a persistent Local Concept - a compact semantic state capturing the task, constraints, preferences, and intermediate results. Each model call receives only this concept state, the user's latest instruction, and the selected operator, eliminating the need to replay full history. A preliminary prototype simulating CORE's behavior shows about 42% reduction in cumulative prompt tokens, though this number reflects prototype conditions and should not be interpreted as a real-world performance estimate. CORE offers a model-agnostic mechanism that separates conceptual reasoning from language generation, suggesting a scalable direction for more stable multi-turn systems.
comment: Independent system-level architectural proposal with accompanying proof-of-concept
☆ Targeting Misalignment: A Conflict-Aware Framework for Reward-Model-based LLM Alignment
Reward-model-based fine-tuning is a central paradigm in aligning Large Language Models with human preferences. However, such approaches critically rely on the assumption that proxy reward models accurately reflect intended supervision, a condition often violated due to annotation noise, bias, or limited coverage. This misalignment can lead to undesirable behaviors, where models optimize for flawed signals rather than true human values. In this paper, we investigate a novel framework to identify and mitigate such misalignment by treating the fine-tuning process as a form of knowledge integration. We focus on detecting instances of proxy-policy conflicts, cases where the base model strongly disagrees with the proxy. We argue that such conflicts often signify areas of shared ignorance, where neither the policy nor the reward model possesses sufficient knowledge, making them especially susceptible to misalignment. To this end, we propose two complementary metrics for identifying these conflicts: a localized Proxy-Policy Alignment Conflict Score (PACS) and a global Kendall-Tau Distance measure. Building on this insight, we design an algorithm named Selective Human-in-the-loop Feedback via Conflict-Aware Sampling (SHF-CAS) that targets high-conflict QA pairs for additional feedback, refining both the reward model and policy efficiently. Experiments on two alignment tasks demonstrate that our approach enhances general alignment performance, even when trained with a biased proxy reward. Our work provides a new lens for interpreting alignment failures and offers a principled pathway for targeted refinement in LLM training.
☆ Unforgotten Safety: Preserving Safety Alignment of Large Language Models with Continual Learning
The safety alignment of large language models (LLMs) is becoming increasingly important with their democratization. In this paper, we study the safety degradation that comes with adapting LLMs to new tasks. We attribute this safety compromise to catastrophic forgetting and frame the problem of preserving safety when fine-tuning as a continual learning (CL) problem. We consider the fine-tuning-as-a-service setup where the user uploads their data to a service provider to get a customized model that excels on the user's selected task. We adapt several CL approaches from the literature and systematically evaluate their ability to mitigate safety degradation. These include regularization-based, memory-based, and model merging approaches. We consider two scenarios, (1) benign user data and (2) poisoned user data. Our results demonstrate that CL approaches consistently achieve lower attack success rates than standard fine-tuning. Among these, DER outperforms both other CL methods and existing safety-preserving baselines while maintaining task utility. These findings generalize across three downstream tasks (GSM8K, SST2, Code) and three model families (LLaMA2-7B, Mistral-7B, Gemma-2B), establishing CL as a practical solution to preserve safety.
☆ PARAN: Persona-Augmented Review ANswering system on Food Delivery Review Dataset
Personalized review response generation presents a significant challenge in domains where user information is limited, such as food delivery platforms. While large language models (LLMs) offer powerful text generation capabilities, they often produce generic responses when lacking contextual user data, reducing engagement and effectiveness. In this work, we propose a two-stage prompting framework that infers both explicit (e.g., user-stated preferences) and implicit (e.g., demographic or stylistic cues) personas directly from short review texts. These inferred persona attributes are then incorporated into the response generation prompt to produce user-tailored replies. To encourage diverse yet faithful generations, we adjust decoding temperature during inference. We evaluate our method using a real-world dataset collected from a Korean food delivery app, and assess its impact on precision, diversity, and semantic consistency. Our findings highlight the effectiveness of persona-augmented prompting in enhancing the relevance and personalization of automated responses without requiring model fine-tuning.
☆ Workflow is All You Need: Escaping the "Statistical Smoothing Trap" via High-Entropy Information Foraging and Adversarial Pacing
Central to long-form text generation in vertical domains is the "impossible trinity" confronting current large language models (LLMs): the simultaneous achievement of low hallucination, deep logical coherence, and personalized expression. This study establishes that this bottleneck arises from existing generative paradigms succumbing to the Statistical Smoothing Trap, a phenomenon that overlooks the high-entropy information acquisition and structured cognitive processes integral to expert-level writing. To address this limitation, we propose the DeepNews Framework, an agentic workflow that explicitly models the implicit cognitive processes of seasoned financial journalists. The framework integrates three core modules: first, a dual-granularity retrieval mechanism grounded in information foraging theory, which enforces a 10:1 saturated information input ratio to mitigate hallucinatory outputs; second, schema-guided strategic planning, a process leveraging domain expert knowledge bases (narrative schemas) and Atomic Blocks to forge a robust logical skeleton; third, adversarial constraint prompting, a technique deploying tactics including Rhythm Break and Logic Fog to disrupt the probabilistic smoothness inherent in model-generated text. Experiments delineate a salient Knowledge Cliff in deep financial reporting: content truthfulness collapses when retrieved context falls below 15,000 characters, while a high-redundancy input exceeding 30,000 characters stabilizes the Hallucination-Free Rate (HFR) above 85%. In an ecological validity blind test conducted with a top-tier Chinese technology media outlet, the DeepNews system--built on a previous-generation model (DeepSeek-V3-0324)-achieved a 25% submission acceptance rate, significantly outperforming the 0% acceptance rate of zero-shot generation by a state-of-the-art (SOTA) model (GPT-5).
comment: 22 pages, 8 figures. Includes an ecological validity blind test where the Agentic Workflow achieved a 25% acceptance rate in top-tier media, decisively outperforming the SOTA Zero-shot baseline (0%). Features the DNFO-v5 ontology
☆ Generate-Then-Validate: A Novel Question Generation Approach Using Small Language Models
We explore the use of small language models (SLMs) for automatic question generation as a complement to the prevalent use of their large counterparts in learning analytics research. We present a novel question generation pipeline that leverages both the text generation and the probabilistic reasoning abilities of SLMs to generate high-quality questions. Adopting a "generate-then-validate" strategy, our pipeline first performs expansive generation to create an abundance of candidate questions and refine them through selective validation based on novel probabilistic reasoning. We conducted two evaluation studies, one with seven human experts and the other with a large language model (LLM), to assess the quality of the generated questions. Most judges (humans or LLMs) agreed that the generated questions had clear answers and generally aligned well with the intended learning objectives. Our findings suggest that an SLM can effectively generate high-quality questions when guided by a well-designed pipeline that leverages its strengths.
comment: Accepted as a full research paper for the 16th International Conference on Learning Analytics and Knowledge (LAK'26)
☆ What Kind of Reasoning (if any) is an LLM actually doing? On the Stochastic Nature and Abductive Appearance of Large Language Models
This article looks at how reasoning works in current Large Language Models (LLMs) that function using the token-completion method. It examines their stochastic nature and their similarity to human abductive reasoning. The argument is that these LLMs create text based on learned patterns rather than performing actual abductive reasoning. When their output seems abductive, this is largely because they are trained on human-generated texts that include reasoning structures. Examples are used to show how LLMs can produce plausible ideas, mimic commonsense reasoning, and give explanatory answers without being grounded in truth, semantics, verification, or understanding, and without performing any real abductive reasoning. This dual nature, where the models have a stochastic base but appear abductive in use, has important consequences for how LLMs are evaluated and applied. They can assist with generating ideas and supporting human thinking, but their outputs must be critically assessed because they cannot identify truth or verify their explanations. The article concludes by addressing five objections to these points, noting some limitations in the analysis, and offering an overall evaluation.
☆ Parallel Decoder Transformer: Model-Internal Parallel Decoding with Speculative Invariance via Note Conditioning
Autoregressive decoding in Large Language Models (LLMs) is inherently sequential, creating a latency bottleneck that scales linearly with output length. While ``Decomposition-and-Fill'' methods like Skeleton-of-Thought attempt to parallelize generation via external orchestration, they suffer from \textit{coherence drift} due to the lack of cross-stream communication. In this work, we introduce the \textbf{Parallel Decoder Transformer (PDT)}, a parameter-efficient architecture that embeds coordination primitives directly into the inference process of a frozen pre-trained model. Instead of retraining the base model, PDT injects lightweight \textit{Speculative Note Conditioning (SNC)} adapters that allow parallel decoding streams to synchronize via a shared, dynamic latent space. We formulate coordination as a \textit{speculative consensus} problem, where sibling streams broadcast semantic ``notes'' to a global bus, gated by a learned verification head. We validate our approach on a 50,000-step curriculum using a frozen 20B-parameter backbone. Our results demonstrate that PDT achieves effective self-correction, reaching \textbf{77.8\% precision} in coverage prediction and recovering approximate serial semantics without modifying the trunk weights. This establishes PDT as a scalable, efficient alternative to full model fine-tuning for structured parallel generation.
☆ Diffusion Is Your Friend in Show, Suggest and Tell
Diffusion Denoising models demonstrated impressive results across generative Computer Vision tasks, but they still fail to outperform standard autoregressive solutions in the discrete domain, and only match them at best. In this work, we propose a different paradigm by adopting diffusion models to provide suggestions to the autoregressive generation rather than replacing them. By doing so, we combine the bidirectional and refining capabilities of the former with the strong linguistic structure provided by the latter. To showcase its effectiveness, we present Show, Suggest and Tell (SST), which achieves State-of-the-Art results on COCO, among models in a similar setting. In particular, SST achieves 125.1 CIDEr-D on the COCO dataset without Reinforcement Learning, outperforming both autoregressive and diffusion model State-of-the-Art results by 1.5 and 2.5 points. On top of the strong results, we performed extensive experiments to validate the proposal and analyze the impact of the suggestion module. Results demonstrate a positive correlation between suggestion and caption quality, overall indicating a currently underexplored but promising research direction. Code will be available at: https://github.com/jchenghu/show\_suggest\_tell.
☆ Exploring LLMs for Scientific Information Extraction Using The SciEx Framework
Large language models (LLMs) are increasingly touted as powerful tools for automating scientific information extraction. However, existing methods and tools often struggle with the realities of scientific literature: long-context documents, multi-modal content, and reconciling varied and inconsistent fine-grained information across multiple publications into standardized formats. These challenges are further compounded when the desired data schema or extraction ontology changes rapidly, making it difficult to re-architect or fine-tune existing systems. We present SciEx, a modular and composable framework that decouples key components including PDF parsing, multi-modal retrieval, extraction, and aggregation. This design streamlines on-demand data extraction while enabling extensibility and flexible integration of new models, prompting strategies, and reasoning mechanisms. We evaluate SciEx on datasets spanning three scientific topics for its ability to extract fine-grained information accurately and consistently. Our findings provide practical insights into both the strengths and limitations of current LLM-based pipelines.
♻ ☆ Neural Diversity Regularizes Hallucinations in Language Models
Language models continue to hallucinate despite increases in parameters, compute, and data. We propose neural diversity -- decorrelated parallel representations -- as a principled mechanism that reduces hallucination rates at fixed parameter and data budgets. While existing mitigation strategies largely target accuracy, we provide the first formal tail bounds for hallucination probability in ensembled language models, reframing it as a second-moment reliability problem and explaining 94.3% of empirical reliability variation seen across parallel configurations. We introduce ND-LoRA (Neural Diversity Low-Rank Adaptation), combining parallel LoRA adapters with Barlow Twins regularization, and reduce hallucinations by up to 25.6% (and 14.6% on average) while preserving general accuracy. Ablations show LoRA adapters and regularization act synergistically, causal interventions prove neurodiversity as the mediating factor and correlational studies indicate scale: a 0.1% neural correlation increase is associated with a 3.8% hallucination increase. Finally, task-dependent optimality emerges: different tasks require different optimal amounts of neurodiversity. Together, our results highlight neural diversity as a third axis of scaling -- orthogonal to parameters and data -- to improve the reliability of language models at fixed budgets.
♻ ☆ TRepLiNa: Layer-wise CKA+REPINA Alignment Improves Low-Resource Machine Translation in Aya-23 8B
The 2025 Multimodal Models for Low-Resource Contexts and Social Impact (MMLoSo) Language Challenge addresses one of India's most pressing linguistic gaps: the lack of resources for its diverse low-resource languages (LRLs). In this study, we investigate whether enforcing cross-lingual similarity in specific internal layers of a decoder-only multilingual large language model (LLM) can improve translation quality from LRL to high-resource language (HRL). Specifically, we combine Centered Kernel Alignment (CKA), a similarity metric that encourages representations of different languages to align, with REPINA, a regularization method that constrains parameter updates to remain close to the pretrained model, into a joint method we call TRepLiNa. In this research project, we experiment with zero-shot, few-shot, and fine-tuning settings using Aya-23 8B with QLoRA across MMLoSo shared task language pairs (Mundari, Santali, Bhili) with Hindi/English pivots. Our results show that aligning mid-level layers using TRepLiNa (CKA+REPINA) is a low-cost, practical approach to improving LRL translation, especially in data-scarce settings.
comment: It is work in progress
♻ ☆ Low-Dimensional Structure in the Space of Language Representations is Reflected in Brain Responses
How related are the representations learned by neural language models, translation models, and language tagging tasks? We answer this question by adapting an encoder-decoder transfer learning method from computer vision to investigate the structure among 100 different feature spaces extracted from hidden representations of various networks trained on language tasks. This method reveals a low-dimensional structure where language models and translation models smoothly interpolate between word embeddings, syntactic and semantic tasks, and future word embeddings. We call this low-dimensional structure a language representation embedding because it encodes the relationships between representations needed to process language for a variety of NLP tasks. We find that this representation embedding can predict how well each individual feature space maps to human brain responses to natural language stimuli recorded using fMRI. Additionally, we find that the principal dimension of this structure can be used to create a metric which highlights the brain's natural language processing hierarchy. This suggests that the embedding captures some part of the brain's natural language representation structure.
comment: Accepted to the Advances in Neural Information Processing Systems 34 (2021) Revised to include voxel selection details
♻ ☆ Constrained Discrete Diffusion NeurIPS 2025
Discrete diffusion models are a class of generative models that construct sequences by progressively denoising samples from a categorical noise distribution. Beyond their rapidly growing ability to generate coherent natural language, these models present a new and important opportunity to enforce sequence-level constraints, a capability that current autoregressive models cannot natively provide. This paper capitalizes on this opportunity by introducing Constrained Discrete Diffusion (CDD), a novel integration of differentiable constraint optimization within the diffusion process to ensure adherence to constraints, logic rules, or safety requirements for generated sequences. Unlike conventional text generators that often rely on post-hoc filtering or model retraining for controllable generation, CDD directly imposes constraints into the discrete diffusion sampling process, resulting in a training-free and effective approach. Experiments in toxicity-controlled text generation, property-constrained molecule design, and instruction-constrained text completion demonstrate that CDD achieves zero constraint violations in a diverse array of tasks while preserving fluency, novelty, and coherence while outperforming autoregressive and existing discrete diffusion approaches.
comment: Published at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ CryptoBench: A Dynamic Benchmark for Expert-Level Evaluation of LLM Agents in Cryptocurrency
This paper introduces CryptoBench, the first expert-curated, dynamic benchmark designed to rigorously evaluate the real-world capabilities of Large Language Model (LLM) agents in the uniquely demanding and fast-paced cryptocurrency domain. Unlike general-purpose agent benchmarks for search and prediction, professional crypto analysis presents specific challenges: \emph{extreme time-sensitivity}, \emph{a highly adversarial information environment}, and the critical need to synthesize data from \emph{diverse, specialized sources}, such as on-chain intelligence platforms and real-time Decentralized Finance (DeFi) dashboards. CryptoBench thus serves as a much more challenging and valuable scenario for LLM agent assessment. To address these challenges, we constructed a live, dynamic benchmark featuring 50 questions per month, expertly designed by crypto-native professionals to mirror actual analyst workflows. These tasks are rigorously categorized within a four-quadrant system: Simple Retrieval, Complex Retrieval, Simple Prediction, and Complex Prediction. This granular categorization enables a precise assessment of an LLM agent's foundational data-gathering capabilities alongside its advanced analytical and forecasting skills. Our evaluation of ten LLMs, both directly and within an agentic framework, reveals a performance hierarchy and uncovers a failure mode. We observe a \textit{retrieval-prediction imbalance}, where many leading models, despite being proficient at data retrieval, demonstrate a pronounced weakness in tasks requiring predictive analysis. This highlights a problematic tendency for agents to appear factually grounded while lacking the deeper analytical capabilities to synthesize information.
♻ ☆ Revisiting Intermediate-Layer Matching in Knowledge Distillation: Layer-Selection Strategy Doesn't Matter (Much) ACL 2025
Knowledge distillation (KD) is a popular method of transferring knowledge from a large "teacher" model to a small "student" model. Previous work has explored various layer-selection strategies (e.g., forward matching and in-order random matching) for intermediate-layer matching in KD, where a student layer is forced to resemble a certain teacher layer. In this work, we revisit such layer-selection strategies and observe an intriguing phenomenon that layer-selection strategy does not matter (much) in intermediate-layer matching -- even seemingly nonsensical matching strategies such as reverse matching still result in surprisingly good student performance. We provide an interpretation for this phenomenon by examining the angles between teacher layers viewed from the student's perspective. Our work sheds light on KD practice, as layer-selection strategies may not be the main focus of KD system design, and vanilla forward matching works well in most setups.
comment: Accepted at IJCNLP-AACL 2025
♻ ☆ Open ASR Leaderboard: Towards Reproducible and Transparent Multilingual Speech Recognition Evaluation
Despite rapid progress, ASR evaluation remains saturated with short-form English, and efficiency is rarely reported. We present the Open ASR Leaderboard, a fully reproducible benchmark and interactive leaderboard comparing 60+ open-source and proprietary systems across 11 datasets, including a dedicated multilingual track. We standardize text normalization and report both word error rate (WER) and inverse real-time factor (RTFx), enabling fair accuracy-efficiency comparisons. For English transcription, Conformer encoders paired with LLM decoders achieve the best average WER but are slower, while CTC and TDT decoders deliver much better RTFx, making them attractive for long-form and offline use. Whisper-derived encoders fine-tuned for English improve accuracy but often trade off multilingual coverage. All code and dataset loaders are open-sourced to support transparent, extensible evaluation.
comment: Leaderboard: https://huggingface.co/spaces/hf-audio/open_asr_leaderboard ; Code: https://github.com/huggingface/open_asr_leaderboard
♻ ☆ SAFT: Structure-Aware Fine-Tuning of LLMs for AMR-to-Text Generation KDD2025
Large Language Models (LLMs) are increasingly applied to tasks involving structured inputs such as graphs. Abstract Meaning Representations (AMRs), which encode rich semantics as directed graphs, offer a rigorous testbed for evaluating LLMs on text generation from such structures. Yet, current methods often arbitrarily linearize AMRs, discarding key structural cues, or rely on architectures incompatible with standard LLMs. We introduce SAFT, a structure-aware fine-tuning approach that injects graph topology into pretrained LLMs without architectural changes. We compute direction-sensitive positional encodings from the magnetic Laplacian of transformed AMRs and project them into the embedding space of the LLM. While possibly applicable to any graph-structured inputs, we focus on AMR-to-text generation as a representative and challenging benchmark. SAFT sets a new state-of-the-art on AMR 3.0 with a 3.5 BLEU improvement over baselines. Gains scale with graph complexity, highlighting the value of structure-aware representations in enhancing LLM performance. SAFT offers a general and effective pathway for bridging structured data and language models.
comment: Accepted at the KDD2025 Workshop on Structured Knowledge for LLMs
♻ ☆ Revealing economic facts: LLMs know more than they say
We investigate whether the hidden states of large language models (LLMs) can be used to estimate and impute economic and financial statistics. Focusing on county-level (e.g. unemployment) and firm-level (e.g. total assets) variables, we show that a simple linear model trained on the hidden states of open-source LLMs outperforms the models' text outputs. This suggests that hidden states capture richer economic information than the responses of the LLMs reveal directly. A learning curve analysis indicates that only a few dozen labelled examples are sufficient for training. We also propose a transfer learning method that improves estimation accuracy without requiring any labelled data for the target variable. Finally, we demonstrate the practical utility of hidden-state representations in super-resolution and data imputation tasks.
comment: 34 pages, 17 figures
♻ ☆ Enhancing Reasoning Skills in Small Persian Medical Language Models Can Outperform Large-Scale Data Training
Enhancing reasoning capabilities in small language models is critical for specialized applications such as medical question answering, particularly in underrepresented languages like Persian. In this study, we employ Reinforcement Learning with AI Feedback (RLAIF) and Direct preference optimization (DPO) to improve the reasoning skills of a general-purpose Persian language model. To achieve this, we translated a multiple-choice medical question-answering dataset into Persian and used RLAIF to generate rejected-preferred answer pairs, which are essential for DPO training. By prompting both teacher and student models to produce Chain-of-Thought (CoT) reasoning responses, we compiled a dataset containing correct and incorrect reasoning trajectories. This dataset, comprising 2 million tokens in preferred answers and 2.5 million tokens in rejected ones, was used to train a baseline model, significantly enhancing its medical reasoning capabilities in Persian. Remarkably, the resulting model outperformed its predecessor, gaokerena-V, which was trained on approximately 57 million tokens, despite leveraging a much smaller dataset. These results highlight the efficiency and effectiveness of reasoning-focused training approaches in developing domain-specific language models with limited data availability.
comment: 7 pages, 5 figures
♻ ☆ O-Mem: Omni Memory System for Personalized, Long Horizon, Self-Evolving Agents
Recent advancements in LLM-powered agents have demonstrated significant potential in generating human-like responses; however, they continue to face challenges in maintaining long-term interactions within complex environments, primarily due to limitations in contextual consistency and dynamic personalization. Existing memory systems often depend on semantic grouping prior to retrieval, which can overlook semantically irrelevant yet critical user information and introduce retrieval noise. In this report, we propose the initial design of O-Mem, a novel memory framework based on active user profiling that dynamically extracts and updates user characteristics and event records from their proactive interactions with agents. O-Mem supports hierarchical retrieval of persona attributes and topic-related context, enabling more adaptive and coherent personalized responses. O-Mem achieves 51.67% on the public LoCoMo benchmark, a nearly 3% improvement upon LangMem,the previous state-of-the-art, and it achieves 62.99% on PERSONAMEM, a 3.5% improvement upon A-Mem,the previous state-of-the-art. O-Mem also boosts token and interaction response time efficiency compared to previous memory frameworks. Our work opens up promising directions for developing efficient and human-like personalized AI assistants in the future.
♻ ☆ Leveraging Machine Learning to Identify Gendered Stereotypes and Body Image Concerns on Diet and Fitness Online Forums
The pervasive expectations about ideal body types in Western society can lead to body image concerns, dissatisfaction, and in extreme cases, eating disorders and other psychopathologies related to body image. While previous research has focused on online pro-anorexia communities glorifying the "thin ideal," less attention has been given to the broader spectrum of body image concerns or how emerging disorders like muscle dysmorphia ("bigorexia") present on online platforms. To address this gap, we analyze 46 Reddit forums related to diet, fitness, and mental health. We map these communities along gender and body ideal dimensions, revealing distinct patterns of emotional expression and community support. Feminine-oriented communities, especially those endorsing the thin ideal, express higher levels of negative emotions and receive caring comments in response. In contrast, muscular ideal communities display less negativity, regardless of gender orientation, but receive aggressive compliments in response, marked by admiration and toxicity. Mental health discussions align more with thin ideal, feminine-leaning spaces. By uncovering these gendered emotional dynamics, our findings can inform the development of moderation strategies that foster supportive interactions while reducing exposure to harmful content.
♻ ☆ Collaborative Causal Sensemaking: Closing the Complementarity Gap in Human-AI Decision Support
LLM-based agents are increasingly deployed for expert decision support, yet human-AI teams in high-stakes settings do not yet reliably outperform the best individual. We argue this complementarity gap reflects a fundamental mismatch: current agents are trained as answer engines, not as partners in the collaborative sensemaking through which experts actually make decisions. Sensemaking (the ability to co-construct causal explanations, surface uncertainties, and adapt goals) is the key capability that current training pipelines do not explicitly develop or evaluate. We propose Collaborative Causal Sensemaking (CCS) as a research agenda to develop this capability from the ground up, spanning new training environments that reward collaborative thinking, representations for shared human-AI mental models, and evaluation centred on trust and complementarity. Taken together, these directions shift MAS research from building oracle-like answer engines to cultivating AI teammates that co-reason with their human partners over the causal structure of shared decisions, advancing the design of effective human-AI teams.
comment: Under review at the 25th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2026), Blue Sky Track
♻ ☆ Multi-Agent Collaborative Filtering: Orchestrating Users and Items for Agentic Recommendations
Agentic recommendations cast recommenders as large language model (LLM) agents that can plan, reason, use tools, and interact with users of varying preferences in web applications. However, most existing agentic recommender systems focus on generic single-agent plan-execute workflows or multi-agent task decomposition pipelines. Without recommendation-oriented design, they often underuse the collaborative signals in the user-item interaction history, leading to unsatisfying recommendation results. To address this, we propose the Multi-Agent Collaborative Filtering (MACF) framework for agentic recommendations, drawing an analogy between traditional collaborative filtering algorithms and LLM-based multi-agent collaboration. Specifically, given a target user and query, we instantiate similar users and relevant items as LLM agents with unique profiles. Each agent is able to call retrieval tools, suggest candidate items, and interact with other agents. Different from the static preference aggregation in traditional collaborative filtering, MACF employs a central orchestrator agent to adaptively manage the collaboration between user and item agents via dynamic agent recruitment and personalized collaboration instruction. Experimental results on datasets from three different domains show the advantages of our MACF framework compared to strong agentic recommendation baselines.
♻ ☆ Improving Topic Relevance Model by Mix-structured Summarization and LLM-based Data Augmentation
Topic relevance between query and document is a very important part of social search, which can evaluate the degree of matching between document and user's requirement. In most social search scenarios such as Dianping, modeling search relevance always faces two challenges. One is that many documents in social search are very long and have much redundant information. The other is that the training data for search relevance model is difficult to get, especially for multi-classification relevance model. To tackle above two problems, we first take query concatenated with the query-based summary and the document summary without query as the input of topic relevance model, which can help model learn the relevance degree between query and the core topic of document. Then, we utilize the language understanding and generation abilities of large language model (LLM) to rewrite and generate query from queries and documents in existing training data, which can construct new query-document pairs as training data. Extensive offline experiments and online A/B tests show that the proposed approaches effectively improve the performance of relevance modeling.
♻ ☆ An Offline Mobile Conversational Agent for Mental Health Support: Learning from Emotional Dialogues and Psychological Texts with Student-Centered Evaluation
Mental health plays a crucial role in the overall well-being of an individual. In recent years, digital platforms have increasingly been used to expand mental health and emotional support. However, there are persistent challenges related to limited user accessibility, internet connectivity, and data privacy, which highlight the need for an offline, smartphone-based solutions. To address these challenges, we propose EmoSApp (Emotional Support App): an entirely offline, smartphone-based conversational app designed to provide mental health and emotional support. EmoSApp leverages a language model, specifically the LLaMA-3.2-1B-Instruct, which is fine-tuned and quantized on a custom-curated ``Knowledge Dataset'' comprising 14,582 mental health QA pairs along with multi-turn conversational data, enabling robust domain expertise and fully on-device inference on resource-constrained smartphones. Through qualitative evaluation with students and mental health professionals, we demonstrate that EmoSApp has the ability to respond coherently and empathetically, provide relevant suggestions to user's mental health problems, and maintain interactive dialogue. Additionally, quantitative evaluations on nine commonsense and reasoning benchmarks, along with two mental health specific datasets, demonstrate EmoSApp's effectiveness in low-resource settings. By prioritizing on-device deployment and specialized domain-specific adaptation, EmoSApp serves as a blueprint for future innovations in portable, secure, and highly tailored AI-driven mental health support.
♻ ☆ SEAL: Speech Embedding Alignment Learning for Speech Large Language Model with Retrieval-Augmented Generation
Embedding-based retrieval models have made significant strides in retrieval-augmented generation (RAG) techniques for text and multimodal large language models (LLMs) applications. However, when it comes to speech larage language models (SLLMs), these methods are limited to a two-stage process, where automatic speech recognition (ASR) is combined with text-based retrieval. This sequential architecture suffers from high latency and error propagation. To address these limitations, we propose a unified embedding framework that eliminates the need for intermediate text representations. Specifically, the framework includes separate speech and text encoders, followed by a shared scaling layer that maps both modalities into a common embedding space. Our model reduces pipeline latency by 50\% while achieving higher retrieval accuracy compared to traditional two-stage methods. We also provide a theoretical analysis of the challenges inherent in end-to-end speech retrieval and introduce architectural principles for effective speech-to-document matching. Extensive experiments demonstrate the robustness of our approach across diverse acoustic conditions and speaker variations, paving the way for a new paradigm in multimodal SLLMs retrieval systems.
♻ ☆ Attention Sinks in Diffusion Language Models
Masked Diffusion Language Models (DLMs) have recently emerged as a promising alternative to traditional Autoregressive Models (ARMs). DLMs employ transformer encoders with bidirectional attention, enabling parallel token generation while maintaining competitive performance. Although their efficiency and effectiveness have been extensively studied, the internal mechanisms that govern DLMs remain largely unexplored. In this work, we conduct an empirical analysis of DLM attention patterns, focusing on the attention sinking phenomenon, an effect previously observed in various transformer-based architectures. Our findings reveal that DLMs also exhibit attention sinks, but with distinct characteristics. First, unlike in ARMs, the sink positions in DLMs tend to shift throughout the generation process, displaying a dynamic behaviour. Second, while ARMs are highly sensitive to the removal of attention sinks, DLMs remain robust: masking sinks leads to only a minor degradation in performance. These results provide new insights into the inner workings of diffusion-based language models and highlight fundamental differences in how they allocate and utilize attention compared to autoregressive models.
♻ ☆ ShoppingBench: A Real-World Intent-Grounded Shopping Benchmark for LLM-based Agents AAAI2026
Existing benchmarks in e-commerce primarily focus on basic user intents, such as finding or purchasing products. However, real-world users often pursue more complex goals, such as applying vouchers, managing budgets, and finding multi-products seller. To bridge this gap, we propose ShoppingBench, a novel end-to-end shopping benchmark designed to encompass increasingly challenging levels of grounded intent. Specifically, we propose a scalable framework to simulate user instructions based on various intents derived from sampled real-world products. To facilitate consistent and reliable evaluations, we provide a large-scale shopping sandbox that serves as an interactive simulated environment, incorporating over 2.5 million real-world products. Experimental results demonstrate that even state-of-the-art language agents (such as GPT-4.1) achieve absolute success rates under 50% on our benchmark tasks, highlighting the significant challenges posed by our ShoppingBench. In addition, we propose a trajectory distillation strategy and leverage supervised fine-tuning, along with reinforcement learning on synthetic trajectories, to distill the capabilities of a large language agent into a smaller one. As a result, our trained agent achieves competitive performance compared to GPT-4.1.
comment: submit to AAAI2026
♻ ☆ Two Causal Principles for Improving Visual Dialog CVPR 2020
This paper unravels the design tricks adopted by us, the champion team MReaL-BDAI, for Visual Dialog Challenge 2019: two causal principles for improving Visual Dialog (VisDial). By "improving", we mean that they can promote almost every existing VisDial model to the state-of-the-art performance on the leader-board. Such a major improvement is only due to our careful inspection on the causality behind the model and data, finding that the community has overlooked two causalities in VisDial. Intuitively, Principle 1 suggests: we should remove the direct input of the dialog history to the answer model, otherwise a harmful shortcut bias will be introduced; Principle 2 says: there is an unobserved confounder for history, question, and answer, leading to spurious correlations from training data. In particular, to remove the confounder suggested in Principle 2, we propose several causal intervention algorithms, which make the training fundamentally different from the traditional likelihood estimation. Note that the two principles are model-agnostic, so they are applicable in any VisDial model. The code is available at https://github.com/simpleshinobu/visdial-principles.
comment: Accepted by CVPR 2020
♻ ☆ Vevo2: A Unified and Controllable Framework for Speech and Singing Voice Generation
Controllable human voice generation, particularly for expressive domains like singing, remains a significant challenge. This paper introduces Vevo2, a unified framework for controllable speech and singing voice generation. To tackle issues like the scarcity of annotated singing data and to enable flexible controllability, Vevo2 introduces two audio tokenizers: (1) a unified music-notation-free prosody tokenizer that captures prosody and melody from speech, singing, and even instrumental sounds, and (2) a unified content-style tokenizer that encodes linguistic content, prosody, and style for both speech and singing, while enabling timbre disentanglement. Vevo2 consists of an auto-regressive (AR) content-style modeling stage, which aims to enable controllability over text, prosody, and style, as well as a flow-matching acoustic modeling stage that allows for timbre control. Particularly, during the speech-singing joint training of the AR model, we propose both explicit and implicit prosody learning strategies to bridge speech and singing voice. Moreover, to further enhance the Vevo2's ability to follow text and prosody, we design a multi-objective post-training task that integrates both intelligibility and prosody similarity alignment. Experimental results show that the unified modeling in Vevo2 brings mutual benefits to both speech and singing voice generation. Additionally, Vevo2's effectiveness across a wide range of synthesis, conversion, and editing tasks for both speech and singing further demonstrates its strong generalization ability and versatility. Audio samples are are available at https://versasinger.github.io/.
comment: We will release code and model checkpoints at https://github.com/open-mmlab/Amphion
♻ ☆ Agentar-Scale-SQL: Advancing Text-to-SQL through Orchestrated Test-Time Scaling
State-of-the-art (SOTA) Text-to-SQL methods still lag significantly behind human experts on challenging benchmarks like BIRD. Current approaches that explore test-time scaling lack an orchestrated strategy and neglect the model's internal reasoning process. To bridge this gap, we introduce Agentar-Scale-SQL, a novel framework leveraging scalable computation to improve performance. Agentar-Scale-SQL implements an Orchestrated Test-Time Scaling strategy that synergistically combines three distinct perspectives: i) Internal Scaling via RL-enhanced Intrinsic Reasoning, ii) Sequential Scaling through Iterative Refinement, and iii) Parallel Scaling using Diverse Synthesis and Tournament Selection. Agentar-Scale-SQL is a general-purpose framework designed for easy adaptation to new databases and more powerful language models. Extensive experiments show that Agentar-Scale-SQL achieves SOTA performance on the BIRD benchmark, reaching 81.67% execution accuracy on the test set and ranking first on the official leaderboard, demonstrating an effective path toward human-level performance.
♻ ☆ GRAVITY: A Framework for Personalized Text Generation via Profile-Grounded Synthetic Preferences
Personalization in LLMs often relies on costly human feedback or interaction logs, limiting scalability and neglecting deeper user attributes. To reduce the reliance on human annotations, we introduce GRAVITY (Generative Response with Aligned Values, Interests, and Traits of You), a framework for generating synthetic, profile-grounded preference data that captures users' interests, values, beliefs, and personality traits. By integrating demographic, cultural, and psychological frameworks -- including Hofstede's cultural dimensions, Schwartz's basic values, the World Values Survey, and Big Five OCEAN traits -- GRAVITY synthesizes preference pairs to guide personalized content generation. We evaluate GRAVITY on book descriptions for 400 Amazon users, comparing it to prompt-based conditioning, standard fine-tuning, and naive synthetic pair generation. Profile-grounded synthetic data consistently improves generation, especially across multiple cultures (USA, Brazil, Japan, India), achieving over 4% higher preference gains across baselines, with user studies showing that GRAVITY outputs are preferred over 86% of the time. Our results show that scenario-grounded synthetic data can capture richer user variation, reduce reliance on costly annotation, and produce more engaging, user-centered content, offering a scalable path for LLM personalization.
♻ ☆ Forgetting-MarI: LLM Unlearning via Marginal Information Regularization
As AI models are trained on ever-expanding datasets, the ability to remove the influence of specific data from trained models has become essential for privacy protection and regulatory compliance. Unlearning addresses this challenge by selectively removing parametric knowledge from the trained models without retraining from scratch, which is critical for resource-intensive models such as Large Language Models (LLMs). Existing unlearning methods often degrade model performance by removing more information than necessary when attempting to ''forget'' specific data. We introduce Forgetting-MarI, an LLM unlearning framework that provably removes only the additional (marginal) information contributed by the data to be unlearned, while preserving the information supported by the data to be retained. By penalizing marginal information, our method yields an explicit upper bound on the unlearn dataset's residual influence in the trained models, providing provable undetectability. Extensive experiments confirm that our approach outperforms current state-of-the-art unlearning methods, delivering reliable forgetting and better preserved general model performance across diverse benchmarks. This advancement represents an important step toward making AI systems more controllable and compliant with privacy and copyright regulations without compromising their effectiveness.
♻ ☆ Guiding LLMs to Generate High-Fidelity and High-Quality Counterfactual Explanations for Text Classification
The need for interpretability in deep learning has driven interest in counterfactual explanations, which identify minimal changes to an instance that change a model's prediction. Current counterfactual (CF) generation methods require task-specific fine-tuning and produce low-quality text. Large Language Models (LLMs), though effective for high-quality text generation, struggle with label-flipping counterfactuals (i.e., counterfactuals that change the prediction) without fine-tuning. We introduce two simple classifier-guided approaches to support counterfactual generation by LLMs, eliminating the need for fine-tuning while preserving the strengths of LLMs. Despite their simplicity, our methods outperform state-of-the-art counterfactual generation methods and are effective across different LLMs, highlighting the benefits of guiding counterfactual generation by LLMs with classifier information. We further show that data augmentation by our generated CFs can improve a classifier's robustness. Our analysis reveals a critical issue in counterfactual generation by LLMs: LLMs rely on parametric knowledge rather than faithfully following the classifier.
♻ ☆ Demystifying deep search: a holistic evaluation with hint-free multi-hop questions and factorised metrics
RAG (Retrieval-Augmented Generation) systems and web agents are increasingly evaluated on multi-hop deep search tasks, yet current practice suffers from two major limitations. First, most benchmarks leak the reasoning path in the question text, allowing models to follow surface cues rather than discover reasoning chains autonomously. Second, evaluation is typically reduced to a single pass rate, which collapses diverse behaviours into one score and obscures whether failures stem from inadequate search, poor knowledge use, or inappropriate refusal. To address these issues, we present WebDetective, a benchmark of hint-free multi-hop questions paired with a controlled Wikipedia sandbox that ensures full traceability of model actions, and a holistic evaluation framework that separates search sufficiency, knowledge utilisation, and refusal behaviour. Our evaluation of 25 state-of-the-art models reveals systematic weaknesses across all architectures: models struggle with knowledge utilisation despite having sufficient evidence and demonstrate near-absent appropriate refusal when evidence is lacking. These patterns expose a fundamental gap: today's systems excel at executing given reasoning paths but fail when required to discover them. We develop an agentic workflow, EvidenceLoop, that explicitly targets the challenges our benchmark identifies, incorporating verification loops and systematic evidence tracking that improve both search and synthesis capabilities. This baseline demonstrates that WebDetective's diagnostic framework can guide concrete architectural improvements, establishing our benchmark as a critical tool for developing genuinely autonomous reasoning systems rather than pattern-following agents.
♻ ☆ Studying the Effects of Collaboration in Interactive Theme Discovery Systems
NLP-assisted solutions have gained considerable traction to support qualitative data analysis. However, there does not exist a unified evaluation framework that can account for the many different settings in which qualitative researchers may employ them. In this paper, we take a first step in this direction by proposing an evaluation framework to study the way in which different tools may result in different outcomes depending on the collaboration strategy employed. Specifically, we study the impact of synchronous vs. asynchronous collaboration using two different NLP-assisted qualitative research tools and present a comprehensive analysis of significant differences in the consistency, cohesiveness, and correctness of their outputs.
comment: Added author in pre-print
♻ ☆ Generalised Medical Phrase Grounding
Medical phrase grounding (MPG) maps textual descriptions of radiological findings to corresponding image regions. These grounded reports are easier to interpret, especially for non-experts. Existing MPG systems mostly follow the referring expression comprehension (REC) paradigm and return exactly one bounding box per phrase. Real reports often violate this assumption. They contain multi-region findings, non-diagnostic text, and non-groundable phrases, such as negations or descriptions of normal anatomy. Motivated by this, we reformulate the task as generalised medical phrase grounding (GMPG), where each sentence is mapped to zero, one, or multiple scored regions. To realise this formulation, we introduce the first GMPG model: MedGrounder. We adopted a two-stage training regime: pre-training on report sentence--anatomy box alignment datasets and fine-tuning on report sentence--human annotated box datasets. Experiments on PadChest-GR and MS-CXR show that MedGrounder achieves strong zero-shot transfer and outperforms REC-style and grounded report generation baselines on multi-region and non-groundable phrases, while using far fewer human box annotations. Finally, we show that MedGrounder can be composed with existing report generators to produce grounded reports without retraining the generator.
comment: 10 pages
♻ ☆ Make LVLMs Focus: Context-Aware Attention Modulation for Better Multimodal In-Context Learning
Multimodal in-context learning (ICL) is becoming a key capability that allows large vision-language models (LVLMs) to adapt to novel tasks without parameter updates, which expands their usefulness in many real-world applications. However, ICL performance remains unstable even when the in-context demonstrations (ICDs) are well matched, showing that LVLMs still struggle to make full use of the provided context. While existing work mainly focuses on prompt engineering or post-hoc logit calibration, we study the attention mechanisms inside LVLMs to address their inherent limitations. We identify two important weaknesses in their self-attention that hinder effective ICL. To address these weaknesses, we propose Context-Aware Modulated Attention (CAMA), a training-free and plug-and-play method that dynamically adjusts attention logits based on the input in-context sequence. CAMA uses a two-stage modulation process that strengthens attention to semantically important tokens, especially visual ones. Across four LVLMs and seven benchmarks, CAMA consistently outperforms vanilla models and baselines, showing clear effectiveness and generalization. It can also activate the intended benefits of prompt engineering methods and remains robust across different sequence configurations. Therefore, CAMA opens up new directions for improving multimodal reasoning through a deeper understanding of attention dynamics.
comment: 14 pages, 8 figures, 5 tables
♻ ☆ Understanding World or Predicting Future? A Comprehensive Survey of World Models
The concept of world models has garnered significant attention due to advancements in multimodal large language models such as GPT-4 and video generation models such as Sora, which are central to the pursuit of artificial general intelligence. This survey offers a comprehensive review of the literature on world models. Generally, world models are regarded as tools for either understanding the present state of the world or predicting its future dynamics. This review presents a systematic categorization of world models, emphasizing two primary functions: (1) constructing internal representations to understand the mechanisms of the world, and (2) predicting future states to simulate and guide decision-making. Initially, we examine the current progress in these two categories. We then explore the application of world models in key domains, including generative games, autonomous driving, robotics, and social simulacra, with a focus on how each domain utilizes these aspects. Finally, we outline key challenges and provide insights into potential future research directions. We summarize the representative papers along with their code repositories in https://github.com/tsinghua-fib-lab/World-Model.
comment: Extended version of the original ACM CSUR paper, 49 pages, 6 figures, 8 tables
♻ ☆ TCNN: Triple Convolutional Neural Network Models for Retrieval-based Question Answering System in E-commerce
Automatic question-answering (QA) systems have boomed during last few years, and commonly used techniques can be roughly categorized into Information Retrieval (IR)-based and generation-based. A key solution to the IR based models is to retrieve the most similar knowledge entries of a given query from a QA knowledge base, and then rerank those knowledge entries with semantic matching models. In this paper, we aim to improve an IR based e-commerce QA system-AliMe with proposed text matching models, including a basic Triple Convolutional Neural Network (TCNN) model and two Attention-based TCNN (ATCNN) models. Experimental results show their effect.
comment: 2 pages
♻ ☆ ARE: Scaling Up Agent Environments and Evaluations
We introduce Meta Agents Research Environments (ARE), a research platform for scalable creation of environments, integration of synthetic or real applications, and execution of agentic orchestrations. ARE provides simple abstractions to build complex and diverse environments, each with their own rules, tools, content, and verifiers, helping to bridge the gap between model development and real-world deployment. We also propose Gaia2, a benchmark built in ARE and designed to measure general agent capabilities. Beyond search and execution, Gaia2 requires agents to handle ambiguities and noise, adapt to dynamic environments, collaborate with other agents, and operate under temporal constraints. Unlike prior benchmarks, Gaia2 runs asynchronously, surfacing new failure modes that are invisible in static settings. Our experiments show that no system dominates across the intelligence spectrum: stronger reasoning often comes at the cost of efficiency, and budget scaling curves plateau, highlighting the need for new architectures and adaptive compute strategies. Perhaps more importantly, ARE abstractions enable continuous extension of Gaia2 to other environments, empowering the community to rapidly create new benchmarks tailored to their domains. In AI's second half, progress increasingly depends on defining meaningful tasks and robust evaluations to drive frontier capabilities forward.
comment: Updated authors order and acknowledgement
♻ ☆ Mitigating Forgetting in LLM Fine-Tuning via Low-Perplexity Token Learning
Maintaining consistent model performance across domains is a fundamental challenge in machine learning. While recent work has explored using LLM-generated data for fine-tuning, its impact on cross-domain generalization remains poorly understood. This paper presents a systematic analysis revealing that fine-tuning with LLM-generated data not only improves target task performance but also reduces non-target task degradation compared to fine-tuning with ground truth data. Through analyzing the data sequence in tasks of various domains, we demonstrate that this enhancement of non-target task robustness stems from the reduction of high perplexity tokens found in LLM-generated sequences. Following our findings, we showed that masking high perplexity tokens in ground truth training data achieves similar non-target task performance preservation, comparable to using LLM-generated data. Extensive experiments across different model families and scales, including Gemma 2 IT 2B, Llama 3 8B Instruct, and three additional models, agree with our findings. To the best of our knowledge, this is the first work to provide an empirical explanation based on token perplexity reduction to mitigate catastrophic forgetting in LLMs after fine-tuning, offering valuable insights for developing more robust fine-tuning strategies.
comment: The Thirty-ninth Annual Conference on Neural Information Processing Systems
♻ ☆ Forensic deepfake audio detection using segmental speech features
This study explores the potential of using acoustic features of segmental speech sounds to detect deepfake audio. These features are highly interpretable because of their close relationship with human articulatory processes and are expected to be more difficult for deepfake models to replicate. The results demonstrate that certain segmental features commonly used in forensic voice comparison (FVC) are effective in identifying deep-fakes, whereas some global features provide little value. These findings underscore the need to approach audio deepfake detection using methods that are distinct from those employed in traditional FVC, and offer a new perspective on leveraging segmental features for this purpose. In addition, the present study proposes a speaker-specific framework for deepfake detection, which differs fundamentally from the speaker-independent systems that dominate current benchmarks. While speaker-independent frameworks aim at broad generalization, the speaker-specific approach offers advantages in forensic contexts where case-by-case interpretability and sensitivity to individual phonetic realization are essential.
comment: Accepted for publication in Forensic Science International
♻ ☆ UltraCUA: A Foundation Model for Computer Use Agents with Hybrid Action
Computer-use agents face a fundamental limitation. They rely exclusively on primitive GUI actions (click, type, scroll), creating brittle execution chains prone to cascading failures. While API-driven agents harness rich capabilities through structured interfaces and tools, computer-use agents remain constrained to low-level visual interactions. We present UltraCUA, a foundation model that transcends this limitation through hybrid action-seamlessly unifying primitive GUI operations with high-level tool execution. Our innovation rests on four critical advances. First, an automated pipeline extracts and scales tool capabilities from software documentation and code repositories. Second, a synthetic data engine produces 17,000+ verifiable tasks capturing real-world computer-use complexity. Third, comprehensive hybrid action trajectory collection incorporates both GUI primitives and strategic tool calls. Fourth, a two-stage training methodology combines supervised fine-tuning with online reinforcement learning, enabling intelligent action selection between GUI and API. Evaluation with our 7B and 32B UltraCUA models reveals transformative performance gains. On OSWorld, UltraCUA achieves 22% relative improvement while executing 11% faster than existing approaches, averagely. Cross-domain validation on WindowsAgentArena demonstrates robust generalization with 21.7% success rate, surpassing Windows-trained baselines. The hybrid action paradigm proves essential, reducing error propagation while improving execution efficiency. This work establishes a scalable paradigm bridging primitive GUI interactions and high-level tool intelligence, enabling more resilient and adaptable computer use agents for diverse environments and complex real-world tasks.
Reparameterized LLM Training via Orthogonal Equivalence Transformation NeurIPS 2025
While large language models (LLMs) are driving the rapid advancement of artificial intelligence, effectively and reliably training these large models remains one of the field's most significant challenges. To address this challenge, we propose POET, a novel reParameterized training algorithm that uses Orthogonal Equivalence Transformation to optimize neurons. Specifically, POET reparameterizes each neuron with two learnable orthogonal matrices and a fixed random weight matrix. Because of its provable preservation of spectral properties of weight matrices, POET can stably optimize the objective function with improved generalization. We further develop efficient approximations that make POET flexible and scalable for training large-scale neural networks. Extensive experiments validate the effectiveness and scalability of POET in training LLMs.
comment: NeurIPS 2025 (40 pages, 26 figures, project page: https://spherelab.ai/poet/, v4: added experiments of finetuning and larger-scale pretraining)
♻ ☆ Forest vs Tree: The $(N, K)$ Trade-off in Reproducible ML Evaluation AAAI-26
Reproducibility is a cornerstone of scientific validation and of the authority it confers on its results. Reproducibility in machine learning evaluations leads to greater trust, confidence, and value. However, the ground truth responses used in machine learning often necessarily come from humans, among whom disagreement is prevalent, and surprisingly little research has studied the impact of effectively ignoring disagreement in these responses, as is typically the case. One reason for the lack of research is that budgets for collecting human-annotated evaluation data are limited, and obtaining more samples from multiple raters for each example greatly increases the per-item annotation costs. We investigate the trade-off between the number of items ($N$) and the number of responses per item ($K$) needed for reliable machine learning evaluation. We analyze a diverse collection of categorical datasets for which multiple annotations per item exist, and simulated distributions fit to these datasets, to determine the optimal $(N, K)$ configuration, given a fixed budget ($N \times K$), for collecting evaluation data and reliably comparing the performance of machine learning models. Our findings show, first, that accounting for human disagreement may come with $N \times K$ at no more than 1000 (and often much lower) for every dataset tested on at least one metric. Moreover, this minimal $N \times K$ almost always occurred for $K > 10$. Furthermore, the nature of the tradeoff between $K$ and $N$, or if one even existed, depends on the evaluation metric, with metrics that are more sensitive to the full distribution of responses performing better at higher levels of $K$. Our methods can be used to help ML practitioners get more effective test data by finding the optimal metrics and number of items and annotations per item to collect to get the most reliability for their budget.
comment: Accepted at AAAI-26
Advancing AI Research Assistants with Expert-Involved Learning
Large language models (LLMs) and large multimodal models (LMMs) promise to accelerate biomedical discovery, yet their reliability remains unclear. We introduce ARIEL (AI Research Assistant for Expert-in-the-Loop Learning), an open-source evaluation and optimization framework that pairs a curated multimodal biomedical corpus with expert-vetted tasks to probe two capabilities: full-length article summarization and fine-grained figure interpretation. Using uniform protocols and blinded PhD-level evaluation, we find that state-of-the-art models generate fluent but incomplete summaries, whereas LMMs struggle with detailed visual reasoning. We later observe that prompt engineering and lightweight fine-tuning substantially improve textual coverage, and a compute-scaled inference strategy enhances visual question answering. We build an ARIEL agent that integrates textual and visual cues, and we show it can propose testable mechanistic hypotheses. ARIEL delineates current strengths and limitations of foundation models, and provides a reproducible platform for advancing trustworthy AI in biomedicine.
comment: 36 pages, 7 figures
Computer Vision and Pattern Recognition 100
☆ GAINS: Gaussian-based Inverse Rendering from Sparse Multi-View Captures
Recent advances in Gaussian Splatting-based inverse rendering extend Gaussian primitives with shading parameters and physically grounded light transport, enabling high-quality material recovery from dense multi-view captures. However, these methods degrade sharply under sparse-view settings, where limited observations lead to severe ambiguity between geometry, reflectance, and lighting. We introduce GAINS (Gaussian-based Inverse rendering from Sparse multi-view captures), a two-stage inverse rendering framework that leverages learning-based priors to stabilize geometry and material estimation. GAINS first refines geometry using monocular depth/normal and diffusion priors, then employs segmentation, intrinsic image decomposition (IID), and diffusion priors to regularize material recovery. Extensive experiments on synthetic and real-world datasets show that GAINS significantly improves material parameter accuracy, relighting quality, and novel-view synthesis compared to state-of-the-art Gaussian-based inverse rendering methods, especially under sparse-view settings. Project page: https://patrickbail.github.io/gains/
comment: 23 pages, 18 figures
☆ ReViSE: Towards Reason-Informed Video Editing in Unified Models with Self-Reflective Learning
Video unified models exhibit strong capabilities in understanding and generation, yet they struggle with reason-informed visual editing even when equipped with powerful internal vision-language models (VLMs). We attribute this gap to two factors: 1) existing datasets are inadequate for training and evaluating reasoning-aware video editing, and 2) an inherent disconnect between the models' reasoning and editing capabilities, which prevents the rich understanding from effectively instructing the editing process. Bridging this gap requires an integrated framework that connects reasoning with visual transformation. To address this gap, we introduce the Reason-Informed Video Editing (RVE) task, which requires reasoning about physical plausibility and causal dynamics during editing. To support systematic evaluation, we construct RVE-Bench, a comprehensive benchmark with two complementary subsets: Reasoning-Informed Video Editing and In-Context Video Generation. These subsets cover diverse reasoning dimensions and real-world editing scenarios. Building upon this foundation, we propose the ReViSE, a Self-Reflective Reasoning (SRF) framework that unifies generation and evaluation within a single architecture. The model's internal VLM provides intrinsic feedback by assessing whether the edited video logically satisfies the given instruction. The differential feedback that refines the generator's reasoning behavior during training. Extensive experiments on RVE-Bench demonstrate that ReViSE significantly enhances editing accuracy and visual fidelity, achieving a 32% improvement of the Overall score in the reasoning-informed video editing subset over state-of-the-art methods.
☆ Splatent: Splatting Diffusion Latents for Novel View Synthesis
Radiance field representations have recently been explored in the latent space of VAEs that are commonly used by diffusion models. This direction offers efficient rendering and seamless integration with diffusion-based pipelines. However, these methods face a fundamental limitation: The VAE latent space lacks multi-view consistency, leading to blurred textures and missing details during 3D reconstruction. Existing approaches attempt to address this by fine-tuning the VAE, at the cost of reconstruction quality, or by relying on pre-trained diffusion models to recover fine-grained details, at the risk of some hallucinations. We present Splatent, a diffusion-based enhancement framework designed to operate on top of 3D Gaussian Splatting (3DGS) in the latent space of VAEs. Our key insight departs from the conventional 3D-centric view: rather than reconstructing fine-grained details in 3D space, we recover them in 2D from input views through multi-view attention mechanisms. This approach preserves the reconstruction quality of pretrained VAEs while achieving faithful detail recovery. Evaluated across multiple benchmarks, Splatent establishes a new state-of-the-art for VAE latent radiance field reconstruction. We further demonstrate that integrating our method with existing feed-forward frameworks, consistently improves detail preservation, opening new possibilities for high-quality sparse-view 3D reconstruction.
☆ LISN: Language-Instructed Social Navigation with VLM-based Controller Modulating
Towards human-robot coexistence, socially aware navigation is significant for mobile robots. Yet existing studies on this area focus mainly on path efficiency and pedestrian collision avoidance, which are essential but represent only a fraction of social navigation. Beyond these basics, robots must also comply with user instructions, aligning their actions to task goals and social norms expressed by humans. In this work, we present LISN-Bench, the first simulation-based benchmark for language-instructed social navigation. Built on Rosnav-Arena 3.0, it is the first standardized social navigation benchmark to incorporate instruction following and scene understanding across diverse contexts. To address this task, we further propose Social-Nav-Modulator, a fast-slow hierarchical system where a VLM agent modulates costmaps and controller parameters. Decoupling low-level action generation from the slower VLM loop reduces reliance on high-frequency VLM inference while improving dynamic avoidance and perception adaptability. Our method achieves an average success rate of 91.3%, which is greater than 63% than the most competitive baseline, with most of the improvements observed in challenging tasks such as following a person in a crowd and navigating while strictly avoiding instruction-forbidden regions. The project website is at: https://social-nav.github.io/LISN-project/
comment: 8 pages
☆ NordFKB: a fine-grained benchmark dataset for geospatial AI in Norway
We present NordFKB, a fine-grained benchmark dataset for geospatial AI in Norway, derived from the authoritative, highly accurate, national Felles KartdataBase (FKB). The dataset contains high-resolution orthophotos paired with detailed annotations for 36 semantic classes, including both per-class binary segmentation masks in GeoTIFF format and COCO-style bounding box annotations. Data is collected from seven geographically diverse areas, ensuring variation in climate, topography, and urbanization. Only tiles containing at least one annotated object are included, and training/validation splits are created through random sampling across areas to ensure representative class and context distributions. Human expert review and quality control ensures high annotation accuracy. Alongside the dataset, we release a benchmarking repository with standardized evaluation protocols and tools for semantic segmentation and object detection, enabling reproducible and comparable research. NordFKB provides a robust foundation for advancing AI methods in mapping, land administration, and spatial planning, and paves the way for future expansions in coverage, temporal scope, and data modalities.
comment: 8 pages, 2 figures, 2 tables
☆ VisualActBench: Can VLMs See and Act like a Human?
Vision-Language Models (VLMs) have achieved impressive progress in perceiving and describing visual environments. However, their ability to proactively reason and act based solely on visual inputs, without explicit textual prompts, remains underexplored. We introduce a new task, Visual Action Reasoning, and propose VisualActBench, a large-scale benchmark comprising 1,074 videos and 3,733 human-annotated actions across four real-world scenarios. Each action is labeled with an Action Prioritization Level (APL) and a proactive-reactive type to assess models' human-aligned reasoning and value sensitivity. We evaluate 29 VLMs on VisualActBench and find that while frontier models like GPT4o demonstrate relatively strong performance, a significant gap remains compared to human-level reasoning, particularly in generating proactive, high-priority actions. Our results highlight limitations in current VLMs' ability to interpret complex context, anticipate outcomes, and align with human decision-making frameworks. VisualActBench establishes a comprehensive foundation for assessing and improving the real-world readiness of proactive, vision-centric AI agents.
☆ YOPO-Nav: Visual Navigation using 3DGS Graphs from One-Pass Videos
Visual navigation has emerged as a practical alternative to traditional robotic navigation pipelines that rely on detailed mapping and path planning. However, constructing and maintaining 3D maps is often computationally expensive and memory-intensive. We address the problem of visual navigation when exploration videos of a large environment are available. The videos serve as a visual reference, allowing a robot to retrace the explored trajectories without relying on metric maps. Our proposed method, YOPO-Nav (You Only Pass Once), encodes an environment into a compact spatial representation composed of interconnected local 3D Gaussian Splatting (3DGS) models. During navigation, the framework aligns the robot's current visual observation with this representation and predicts actions that guide it back toward the demonstrated trajectory. YOPO-Nav employs a hierarchical design: a visual place recognition (VPR) module provides coarse localization, while the local 3DGS models refine the goal and intermediate poses to generate control actions. To evaluate our approach, we introduce the YOPO-Campus dataset, comprising 4 hours of egocentric video and robot controller inputs from over 6 km of human-teleoperated robot trajectories. We benchmark recent visual navigation methods on trajectories from YOPO-Campus using a Clearpath Jackal robot. Experimental results show YOPO-Nav provides excellent performance in image-goal navigation for real-world scenes on a physical robot. The dataset and code will be made publicly available for visual navigation and scene representation research.
☆ Visual Heading Prediction for Autonomous Aerial Vehicles
The integration of Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs) is increasingly central to the development of intelligent autonomous systems for applications such as search and rescue, environmental monitoring, and logistics. However, precise coordination between these platforms in real-time scenarios presents major challenges, particularly when external localization infrastructure such as GPS or GNSS is unavailable or degraded [1]. This paper proposes a vision-based, data-driven framework for real-time UAV-UGV integration, with a focus on robust UGV detection and heading angle prediction for navigation and coordination. The system employs a fine-tuned YOLOv5 model to detect UGVs and extract bounding box features, which are then used by a lightweight artificial neural network (ANN) to estimate the UAV's required heading angle. A VICON motion capture system was used to generate ground-truth data during training, resulting in a dataset of over 13,000 annotated images collected in a controlled lab environment. The trained ANN achieves a mean absolute error of 0.1506° and a root mean squared error of 0.1957°, offering accurate heading angle predictions using only monocular camera inputs. Experimental evaluations achieve 95% accuracy in UGV detection. This work contributes a vision-based, infrastructure- independent solution that demonstrates strong potential for deployment in GPS/GNSS-denied environments, supporting reliable multi-agent coordination under realistic dynamic conditions. A demonstration video showcasing the system's real-time performance, including UGV detection, heading angle prediction, and UAV alignment under dynamic conditions, is available at: https://github.com/Kooroshraf/UAV-UGV-Integration
☆ Benchmarking Document Parsers on Mathematical Formula Extraction from PDFs
Correctly parsing mathematical formulas from PDFs is critical for training large language models and building scientific knowledge bases from academic literature, yet existing benchmarks either exclude formulas entirely or lack semantically-aware evaluation metrics. We introduce a novel benchmarking framework centered on synthetically generated PDFs with precise LaTeX ground truth, enabling systematic control over layout, formulas, and content characteristics. A key methodological contribution is pioneering LLM-as-a-judge for semantic formula assessment, combined with a robust two-stage matching pipeline that handles parser output inconsistencies. Through human validation on 250 formula pairs (750 ratings from 30 evaluators), we demonstrate that LLM-based evaluation achieves substantially higher correlation with human judgment (Pearson r=0.78) compared to CDM (r=0.34) and text similarity (r~0). Evaluating 20+ contemporary PDF parsers (including specialized OCR models, vision-language models, and rule-based approaches) across 100 synthetic documents with 2,000+ formulas reveals significant performance disparities. Our findings provide crucial insights for practitioners selecting parsers for downstream applications and establish a robust, scalable methodology that enables reproducible evaluation of PDF formula extraction quality. Code and benchmark data: https://github.com/phorn1/pdf-parse-bench
☆ Diffusion Posterior Sampler for Hyperspectral Unmixing with Spectral Variability Modeling
Linear spectral mixture models (LMM) provide a concise form to disentangle the constituent materials (endmembers) and their corresponding proportions (abundance) in a single pixel. The critical challenges are how to model the spectral prior distribution and spectral variability. Prior knowledge and spectral variability can be rigorously modeled under the Bayesian framework, where posterior estimation of Abundance is derived by combining observed data with endmember prior distribution. Considering the key challenges and the advantages of the Bayesian framework, a novel method using a diffusion posterior sampler for semiblind unmixing, denoted as DPS4Un, is proposed to deal with these challenges with the following features: (1) we view the pretrained conditional spectrum diffusion model as a posterior sampler, which can combine the learned endmember prior with observation to get the refined abundance distribution. (2) Instead of using the existing spectral library as prior, which may raise bias, we establish the image-based endmember bundles within superpixels, which are used to train the endmember prior learner with diffusion model. Superpixels make sure the sub-scene is more homogeneous. (3) Instead of using the image-level data consistency constraint, the superpixel-based data fidelity term is proposed. (4) The endmember is initialized as Gaussian noise for each superpixel region, DPS4Un iteratively updates the abundance and endmember, contributing to spectral variability modeling. The experimental results on three real-world benchmark datasets demonstrate that DPS4Un outperforms the state-of-the-art hyperspectral unmixing methods.
☆ MedForget: Hierarchy-Aware Multimodal Unlearning Testbed for Medical AI
Pretrained Multimodal Large Language Models (MLLMs) are increasingly deployed in medical AI systems for clinical reasoning, diagnosis support, and report generation. However, their training on sensitive patient data raises critical privacy and compliance challenges under regulations such as HIPAA and GDPR, which enforce the "right to be forgotten". Unlearning, the process of tuning models to selectively remove the influence of specific training data points, offers a potential solution, yet its effectiveness in complex medical settings remains underexplored. To systematically study this, we introduce MedForget, a Hierarchy-Aware Multimodal Unlearning Testbed with explicit retain and forget splits and evaluation sets containing rephrased variants. MedForget models hospital data as a nested hierarchy (Institution -> Patient -> Study -> Section), enabling fine-grained assessment across eight organizational levels. The benchmark contains 3840 multimodal (image, question, answer) instances, each hierarchy level having a dedicated unlearning target, reflecting distinct unlearning challenges. Experiments with four SOTA unlearning methods on three tasks (generation, classification, cloze) show that existing methods struggle to achieve complete, hierarchy-aware forgetting without reducing diagnostic performance. To test whether unlearning truly deletes hierarchical pathways, we introduce a reconstruction attack that progressively adds hierarchical level context to prompts. Models unlearned at a coarse granularity show strong resistance, while fine-grained unlearning leaves models vulnerable to such reconstruction. MedForget provides a practical, HIPAA-aligned testbed for building compliant medical AI systems.
comment: Dataset and Code: https://github.com/fengli-wu/MedForget
☆ UniUGP: Unifying Understanding, Generation, and Planing For End-to-end Autonomous Driving
Autonomous driving (AD) systems struggle in long-tail scenarios due to limited world knowledge and weak visual dynamic modeling. Existing vision-language-action (VLA)-based methods cannot leverage unlabeled videos for visual causal learning, while world model-based methods lack reasoning capabilities from large language models. In this paper, we construct multiple specialized datasets providing reasoning and planning annotations for complex scenarios. Then, a unified Understanding-Generation-Planning framework, named UniUGP, is proposed to synergize scene reasoning, future video generation, and trajectory planning through a hybrid expert architecture. By integrating pre-trained VLMs and video generation models, UniUGP leverages visual dynamics and semantic reasoning to enhance planning performance. Taking multi-frame observations and language instructions as input, it produces interpretable chain-of-thought reasoning, physically consistent trajectories, and coherent future videos. We introduce a four-stage training strategy that progressively builds these capabilities across multiple existing AD datasets, along with the proposed specialized datasets. Experiments demonstrate state-of-the-art performance in perception, reasoning, and decision-making, with superior generalization to challenging long-tail situations.
comment: Project Page: https://seed-uniugp.github.io/
☆ Simultaneous Tactile-Visual Perception for Learning Multimodal Robot Manipulation
Robotic manipulation requires both rich multimodal perception and effective learning frameworks to handle complex real-world tasks. See-through-skin (STS) sensors, which combine tactile and visual perception, offer promising sensing capabilities, while modern imitation learning provides powerful tools for policy acquisition. However, existing STS designs lack simultaneous multimodal perception and suffer from unreliable tactile tracking. Furthermore, integrating these rich multimodal signals into learning-based manipulation pipelines remains an open challenge. We introduce TacThru, an STS sensor enabling simultaneous visual perception and robust tactile signal extraction, and TacThru-UMI, an imitation learning framework that leverages these multimodal signals for manipulation. Our sensor features a fully transparent elastomer, persistent illumination, novel keyline markers, and efficient tracking, while our learning system integrates these signals through a Transformer-based Diffusion Policy. Experiments on five challenging real-world tasks show that TacThru-UMI achieves an average success rate of 85.5%, significantly outperforming the baselines of alternating tactile-visual (66.3%) and vision-only (55.4%). The system excels in critical scenarios, including contact detection with thin and soft objects and precision manipulation requiring multimodal coordination. This work demonstrates that combining simultaneous multimodal perception with modern learning frameworks enables more precise, adaptable robotic manipulation.
☆ From Detection to Anticipation: Online Understanding of Struggles across Various Tasks and Activities
Understanding human skill performance is essential for intelligent assistive systems, with struggle recognition offering a natural cue for identifying user difficulties. While prior work focuses on offline struggle classification and localization, real-time applications require models capable of detecting and anticipating struggle online. We reformulate struggle localization as an online detection task and further extend it to anticipation, predicting struggle moments before they occur. We adapt two off-the-shelf models as baselines for online struggle detection and anticipation. Online struggle detection achieves 70-80% per-frame mAP, while struggle anticipation up to 2 seconds ahead yields comparable performance with slight drops. We further examine generalization across tasks and activities and analyse the impact of skill evolution. Despite larger domain gaps in activity-level generalization, models still outperform random baselines by 4-20%. Our feature-based models run at up to 143 FPS, and the whole pipeline, including feature extraction, operates at around 20 FPS, sufficient for real-time assistive applications.
comment: Accepted by WACV 2026
☆ ChronusOmni: Improving Time Awareness of Omni Large Language Models
Time awareness is a fundamental ability of omni large language models, especially for understanding long videos and answering complex questions. Previous approaches mainly target vision-language scenarios and focus on the explicit temporal grounding questions, such as identifying when a visual event occurs or determining what event happens at aspecific time. However, they often make insufficient use of the audio modality, and overlook implicit temporal grounding across modalities--for example, identifying what is visually present when a character speaks, or determining what is said when a visual event occurs--despite such cross-modal temporal relations being prevalent in real-world scenarios. In this paper, we propose ChronusOmni, an omni large language model designed to enhance temporal awareness for both explicit and implicit audiovisual temporal grounding. First, we interleave text-based timestamp tokens with visual and audio representations at each time unit, enabling unified temporal modeling across modalities. Second, to enforce correct temporal ordering and strengthen fine-grained temporal reasoning, we incorporate reinforcement learning with specially designed reward functions. Moreover, we construct ChronusAV, a temporally-accurate, modality-complete, and cross-modal-aligned dataset to support the training and evaluation on audiovisual temporal grounding task. Experimental results demonstrate that ChronusOmni achieves state-of-the-art performance on ChronusAV with more than 30% improvement and top results on most metrics upon other temporal grounding benchmarks. This highlights the strong temporal awareness of our model across modalities, while preserving general video and audio understanding capabilities.
comment: Code available at https://github.com/YJCX330/Chronus/
☆ Composing Concepts from Images and Videos via Concept-prompt Binding
Visual concept composition, which aims to integrate different elements from images and videos into a single, coherent visual output, still falls short in accurately extracting complex concepts from visual inputs and flexibly combining concepts from both images and videos. We introduce Bind & Compose, a one-shot method that enables flexible visual concept composition by binding visual concepts with corresponding prompt tokens and composing the target prompt with bound tokens from various sources. It adopts a hierarchical binder structure for cross-attention conditioning in Diffusion Transformers to encode visual concepts into corresponding prompt tokens for accurate decomposition of complex visual concepts. To improve concept-token binding accuracy, we design a Diversify-and-Absorb Mechanism that uses an extra absorbent token to eliminate the impact of concept-irrelevant details when training with diversified prompts. To enhance the compatibility between image and video concepts, we present a Temporal Disentanglement Strategy that decouples the training process of video concepts into two stages with a dual-branch binder structure for temporal modeling. Evaluations demonstrate that our method achieves superior concept consistency, prompt fidelity, and motion quality over existing approaches, opening up new possibilities for visual creativity.
comment: Project page: https://refkxh.github.io/BiCo_Webpage/
☆ DynaIP: Dynamic Image Prompt Adapter for Scalable Zero-shot Personalized Text-to-Image Generation
Personalized Text-to-Image (PT2I) generation aims to produce customized images based on reference images. A prominent interest pertains to the integration of an image prompt adapter to facilitate zero-shot PT2I without test-time fine-tuning. However, current methods grapple with three fundamental challenges: 1. the elusive equilibrium between Concept Preservation (CP) and Prompt Following (PF), 2. the difficulty in retaining fine-grained concept details in reference images, and 3. the restricted scalability to extend to multi-subject personalization. To tackle these challenges, we present Dynamic Image Prompt Adapter (DynaIP), a cutting-edge plugin to enhance the fine-grained concept fidelity, CP-PF balance, and subject scalability of SOTA T2I multimodal diffusion transformers (MM-DiT) for PT2I generation. Our key finding is that MM-DiT inherently exhibit decoupling learning behavior when injecting reference image features into its dual branches via cross attentions. Based on this, we design an innovative Dynamic Decoupling Strategy that removes the interference of concept-agnostic information during inference, significantly enhancing the CP-PF balance and further bolstering the scalability of multi-subject compositions. Moreover, we identify the visual encoder as a key factor affecting fine-grained CP and reveal that the hierarchical features of commonly used CLIP can capture visual information at diverse granularity levels. Therefore, we introduce a novel Hierarchical Mixture-of-Experts Feature Fusion Module to fully leverage the hierarchical features of CLIP, remarkably elevating the fine-grained concept fidelity while also providing flexible control of visual granularity. Extensive experiments across single- and multi-subject PT2I tasks verify that our DynaIP outperforms existing approaches, marking a notable advancement in the field of PT2l generation.
☆ CHEM: Estimating and Understanding Hallucinations in Deep Learning for Image Processing
U-Net and other U-shaped architectures have achieved significant success in image deconvolution tasks. However, challenges have emerged, as these methods might generate unrealistic artifacts or hallucinations, which can interfere with analysis in safety-critical scenarios. This paper introduces a novel approach for quantifying and comprehending hallucination artifacts to ensure trustworthy computer vision models. Our method, termed the Conformal Hallucination Estimation Metric (CHEM), is applicable to any image reconstruction model, enabling efficient identification and quantification of hallucination artifacts. It offers two key advantages: it leverages wavelet and shearlet representations to efficiently extract hallucinations of image features and uses conformalized quantile regression to assess hallucination levels in a distribution-free manner. Furthermore, from an approximation theoretical perspective, we explore the reasons why U-shaped networks are prone to hallucinations. We test the proposed approach on the CANDELS astronomical image dataset with models such as U-Net, SwinUNet, and Learnlets, and provide new perspectives on hallucination from different aspects in deep learning-based image processing.
☆ Modality-Specific Enhancement and Complementary Fusion for Semi-Supervised Multi-Modal Brain Tumor Segmentation
Semi-supervised learning (SSL) has become a promising direction for medical image segmentation, enabling models to learn from limited labeled data alongside abundant unlabeled samples. However, existing SSL approaches for multi-modal medical imaging often struggle to exploit the complementary information between modalities due to semantic discrepancies and misalignment across MRI sequences. To address this, we propose a novel semi-supervised multi-modal framework that explicitly enhances modality-specific representations and facilitates adaptive cross-modal information fusion. Specifically, we introduce a Modality-specific Enhancing Module (MEM) to strengthen semantic cues unique to each modality via channel-wise attention, and a learnable Complementary Information Fusion (CIF) module to adaptively exchange complementary knowledge between modalities. The overall framework is optimized using a hybrid objective combining supervised segmentation loss and cross-modal consistency regularization on unlabeled data. Extensive experiments on the BraTS 2019 (HGG subset) demonstrate that our method consistently outperforms strong semi-supervised and multi-modal baselines under 1\%, 5\%, and 10\% labeled data settings, achieving significant improvements in both Dice and Sensitivity scores. Ablation studies further confirm the complementary effects of our proposed MEM and CIF in bridging cross-modality discrepancies and improving segmentation robustness under scarce supervision.
comment: 9 pages, 3 figures
☆ FastPose-ViT: A Vision Transformer for Real-Time Spacecraft Pose Estimation
Estimating the 6-degrees-of-freedom (6DoF) pose of a spacecraft from a single image is critical for autonomous operations like in-orbit servicing and space debris removal. Existing state-of-the-art methods often rely on iterative Perspective-n-Point (PnP)-based algorithms, which are computationally intensive and ill-suited for real-time deployment on resource-constrained edge devices. To overcome these limitations, we propose FastPose-ViT, a Vision Transformer (ViT)-based architecture that directly regresses the 6DoF pose. Our approach processes cropped images from object bounding boxes and introduces a novel mathematical formalism to map these localized predictions back to the full-image scale. This formalism is derived from the principles of projective geometry and the concept of "apparent rotation", where the model predicts an apparent rotation matrix that is then corrected to find the true orientation. We demonstrate that our method outperforms other non-PnP strategies and achieves performance competitive with state-of-the-art PnP-based techniques on the SPEED dataset. Furthermore, we validate our model's suitability for real-world space missions by quantizing it and deploying it on power-constrained edge hardware. On the NVIDIA Jetson Orin Nano, our end-to-end pipeline achieves a latency of ~75 ms per frame under sequential execution, and a non-blocking throughput of up to 33 FPS when stages are scheduled concurrently.
comment: Accepted to WACV 2026. Preprint version
☆ PathCo-LatticE: Pathology-Constrained Lattice-Of Experts Framework for Fully-supervised Few-Shot Cardiac MRI Segmentation
Few-shot learning (FSL) mitigates data scarcity in cardiac MRI segmentation but typically relies on semi-supervised techniques sensitive to domain shifts and validation bias, restricting zero-shot generalizability. We propose PathCo-LatticE, a fully supervised FSL framework that replaces unlabeled data with pathology-guided synthetic supervision. First, our Virtual Patient Engine models continuous latent disease trajectories from sparse clinical anchors, using generative modeling to synthesize physiologically plausible, fully labeled 3D cohorts. Second, Self-Reinforcing Interleaved Validation (SIV) provides a leakage-free protocol that evaluates models online with progressively challenging synthetic samples, eliminating the need for real validation data. Finally, a dynamic Lattice-of-Experts (LoE) organizes specialized networks within a pathology-aware topology and activates the most relevant experts per input, enabling robust zero-shot generalization to unseen data without target-domain fine-tuning. We evaluated PathCo-LatticE in a strict out-of-distribution (OOD) setting, deriving all anchors and severity statistics from a single-source domain (ACDC) and performing zero-shot testing on the multi-center, multi-vendor M&Ms dataset. PathCo-LatticE outperforms four state-of-the-art FSL methods by 4.2-11% Dice starting from only 7 labeled anchors, and approaches fully supervised performance (within 1% Dice) with only 19 labeled anchors. The method shows superior harmonization across four vendors and generalization to unseen pathologies. [Code will be made publicly available].
☆ Stylized Meta-Album: Group-bias injection with style transfer to study robustness against distribution shifts
We introduce Stylized Meta-Album (SMA), a new image classification meta-dataset comprising 24 datasets (12 content datasets, and 12 stylized datasets), designed to advance studies on out-of-distribution (OOD) generalization and related topics. Created using style transfer techniques from 12 subject classification datasets, SMA provides a diverse and extensive set of 4800 groups, combining various subjects (objects, plants, animals, human actions, textures) with multiple styles. SMA enables flexible control over groups and classes, allowing us to configure datasets to reflect diverse benchmark scenarios. While ideally, data collection would capture extensive group diversity, practical constraints often make this infeasible. SMA addresses this by enabling large and configurable group structures through flexible control over styles, subject classes, and domains-allowing datasets to reflect a wide range of real-world benchmark scenarios. This design not only expands group and class diversity, but also opens new methodological directions for evaluating model performance across diverse group and domain configurations-including scenarios with many minority groups, varying group imbalance, and complex domain shifts-and for studying fairness, robustness, and adaptation under a broader range of realistic conditions. To demonstrate SMA's effectiveness, we implemented two benchmarks: (1) a novel OOD generalization and group fairness benchmark leveraging SMA's domain, class, and group diversity to evaluate existing benchmarks. Our findings reveal that while simple balancing and algorithms utilizing group information remain competitive as claimed in previous benchmarks, increasing group diversity significantly impacts fairness, altering the superiority and relative rankings of algorithms. We also propose to use \textit{Top-M worst group accuracy} as a new hyperparameter tuning metric, demonstrating broader fairness during optimization and delivering better final worst-group accuracy for larger group diversity. (2) An unsupervised domain adaptation (UDA) benchmark utilizing SMA's group diversity to evaluate UDA algorithms across more scenarios, offering a more comprehensive benchmark with lower error bars (reduced by 73\% and 28\% in closed-set setting and UniDA setting, respectively) compared to existing efforts. These use cases highlight SMA's potential to significantly impact the outcomes of conventional benchmarks.
☆ LiM-YOLO: Less is More with Pyramid Level Shift and Normalized Auxiliary Branch for Ship Detection in Optical Remote Sensing Imagery
Applying general-purpose object detectors to ship detection in satellite imagery presents significant challenges due to the extreme scale disparity and morphological anisotropy of maritime targets. Standard architectures utilizing stride-32 (P5) layers often fail to resolve narrow vessels, resulting in spatial feature dilution. In this work, we propose LiM-YOLO, a specialized detector designed to resolve these domain-specific conflicts. Based on a statistical analysis of ship scales, we introduce a Pyramid Level Shift Strategy that reconfigures the detection head to P2-P4. This shift ensures compliance with Nyquist sampling criteria for small objects while eliminating the computational redundancy of deep layers. To further enhance training stability on high-resolution inputs, we incorporate a Group Normalized Convolutional Block for Linear Projection (GN-CBLinear), which mitigates gradient volatility in micro-batch settings. Validated on SODA-A, DOTA-v1.5, FAIR1M-v2.0, and ShipRSImageNet-V1, LiM-YOLO demonstrates superior detection accuracy and efficiency compared to state-of-the-art models. The code is available at https://github.com/egshkim/LiM-YOLO.
comment: 16 pages, 8 figures, 9 tables
☆ Unconsciously Forget: Mitigating Memorization; Without Knowing What is being Memorized
Recent advances in generative models have demonstrated an exceptional ability to produce highly realistic images. However, previous studies show that generated images often resemble the training data, and this problem becomes more severe as the model size increases. Memorizing training data can lead to legal challenges, including copyright infringement, violations of portrait rights, and trademark violations. Existing approaches to mitigating memorization mainly focus on manipulating the denoising sampling process to steer image embeddings away from the memorized embedding space or employ unlearning methods that require training on datasets containing specific sets of memorized concepts. However, existing methods often incur substantial computational overhead during sampling, or focus narrowly on removing one or more groups of target concepts, imposing a significant limitation on their scalability. To understand and mitigate these problems, our work, UniForget, offers a new perspective on understanding the root cause of memorization. Our work demonstrates that specific parts of the model are responsible for copyrighted content generation. By applying model pruning, we can effectively suppress the probability of generating copyrighted content without targeting specific concepts while preserving the general generative capabilities of the model. Additionally, we show that our approach is both orthogonal and complementary to existing unlearning methods, thereby highlighting its potential to improve current unlearning and de-memorization techniques.
☆ An Automated Tip-and-Cue Framework for Optimized Satellite Tasking and Visual Intelligence
The proliferation of satellite constellations, coupled with reduced tasking latency and diverse sensor capabilities, has expanded the opportunities for automated Earth observation. This paper introduces a fully automated Tip-and-Cue framework designed for satellite imaging tasking and scheduling. In this context, tips are generated from external data sources or analyses of prior satellite imagery, identifying spatiotemporal targets and prioritizing them for downstream planning. Corresponding cues are the imaging tasks formulated in response, which incorporate sensor constraints, timing requirements, and utility functions. The system autonomously generates candidate tasks, optimizes their scheduling across multiple satellites using continuous utility functions that reflect the expected value of each observation, and processes the resulting imagery using artificial-intelligence-based models, including object detectors and vision-language models. Structured visual reports are generated to support both interpretability and the identification of new insights for downstream tasking. The efficacy of the framework is demonstrated through a maritime vessel tracking scenario, utilizing Automatic Identification System (AIS) data for trajectory prediction, targeted observations, and the generation of actionable outputs. Maritime vessel tracking is a widely researched application, often used to benchmark novel approaches to satellite tasking, forecasting, and analysis. The system is extensible to broader applications such as smart-city monitoring and disaster response, where timely tasking and automated analysis are critical.
comment: Under review at IEEE Transactions on Geoscience and Remote Sensing (TGRS). 13 pages, 8 figures
☆ OxEnsemble: Fair Ensembles for Low-Data Classification
We address the problem of fair classification in settings where data is scarce and unbalanced across demographic groups. Such low-data regimes are common in domains like medical imaging, where false negatives can have fatal consequences. We propose a novel approach \emph{OxEnsemble} for efficiently training ensembles and enforcing fairness in these low-data regimes. Unlike other approaches, we aggregate predictions across ensemble members, each trained to satisfy fairness constraints. By construction, \emph{OxEnsemble} is both data-efficient, carefully reusing held-out data to enforce fairness reliably, and compute-efficient, requiring little more compute than used to fine-tune or evaluate an existing model. We validate this approach with new theoretical guarantees. Experimentally, our approach yields more consistent outcomes and stronger fairness-accuracy trade-offs than existing methods across multiple challenging medical imaging classification datasets.
☆ SynthPix: A lightspeed PIV images generator
We describe SynthPix, a synthetic image generator for Particle Image Velocimetry (PIV) with a focus on performance and parallelism on accelerators, implemented in JAX. SynthPix supports the same configuration parameters as existing tools but achieves a throughput several orders of magnitude higher in image-pair generation per second. SynthPix was developed to enable the training of data-hungry reinforcement learning methods for flow estimation and for reducing the iteration times during the development of fast flow estimation methods used in recent active fluids control studies with real-time PIV feedback. We believe SynthPix to be useful for the fluid dynamics community, and in this paper we describe the main ideas behind this software package.
comment: Code: https://github.com/antonioterpin/synthpix
☆ IF-Bench: Benchmarking and Enhancing MLLMs for Infrared Images with Generative Visual Prompting
Recent advances in multimodal large language models (MLLMs) have led to impressive progress across various benchmarks. However, their capability in understanding infrared images remains unexplored. To address this gap, we introduce IF-Bench, the first high-quality benchmark designed for evaluating multimodal understanding of infrared images. IF-Bench consists of 499 images sourced from 23 infrared datasets and 680 carefully curated visual question-answer pairs, covering 10 essential dimensions of image understanding. Based on this benchmark, we systematically evaluate over 40 open-source and closed-source MLLMs, employing cyclic evaluation, bilingual assessment, and hybrid judgment strategies to enhance the reliability of the results. Our analysis reveals how model scale, architecture, and inference paradigms affect infrared image comprehension, providing valuable insights for this area. Furthermore, we propose a training-free generative visual prompting (GenViP) method, which leverages advanced image editing models to translate infrared images into semantically and spatially aligned RGB counterparts, thereby mitigating domain distribution shifts. Extensive experiments demonstrate that our method consistently yields significant performance improvements across a wide range of MLLMs. The benchmark and code are available at https://github.com/casiatao/IF-Bench.
☆ VHOI: Controllable Video Generation of Human-Object Interactions from Sparse Trajectories via Motion Densification
Synthesizing realistic human-object interactions (HOI) in video is challenging due to the complex, instance-specific interaction dynamics of both humans and objects. Incorporating controllability in video generation further adds to the complexity. Existing controllable video generation approaches face a trade-off: sparse controls like keypoint trajectories are easy to specify but lack instance-awareness, while dense signals such as optical flow, depths or 3D meshes are informative but costly to obtain. We propose VHOI, a two-stage framework that first densifies sparse trajectories into HOI mask sequences, and then fine-tunes a video diffusion model conditioned on these dense masks. We introduce a novel HOI-aware motion representation that uses color encodings to distinguish not only human and object motion, but also body-part-specific dynamics. This design incorporates a human prior into the conditioning signal and strengthens the model's ability to understand and generate realistic HOI dynamics. Experiments demonstrate state-of-the-art results in controllable HOI video generation. VHOI is not limited to interaction-only scenarios and can also generate full human navigation leading up to object interactions in an end-to-end manner. Project page: https://vcai.mpi-inf.mpg.de/projects/vhoi/.
☆ Kaapana: A Comprehensive Open-Source Platform for Integrating AI in Medical Imaging Research Environments
Developing generalizable AI for medical imaging requires both access to large, multi-center datasets and standardized, reproducible tooling within research environments. However, leveraging real-world imaging data in clinical research environments is still hampered by strict regulatory constraints, fragmented software infrastructure, and the challenges inherent in conducting large-cohort multicentre studies. This leads to projects that rely on ad-hoc toolchains that are hard to reproduce, difficult to scale beyond single institutions and poorly suited for collaboration between clinicians and data scientists. We present Kaapana, a comprehensive open-source platform for medical imaging research that is designed to bridge this gap. Rather than building single-use, site-specific tooling, Kaapana provides a modular, extensible framework that unifies data ingestion, cohort curation, processing workflows and result inspection under a common user interface. By bringing the algorithm to the data, it enables institutions to keep control over their sensitive data while still participating in distributed experimentation and model development. By integrating flexible workflow orchestration with user-facing applications for researchers, Kaapana reduces technical overhead, improves reproducibility and enables conducting large-scale, collaborative, multi-centre imaging studies. We describe the core concepts of the platform and illustrate how they can support diverse use cases, from local prototyping to nation-wide research networks. The open-source codebase is available at https://github.com/kaapana/kaapana
☆ Benchmarking SAM2-based Trackers on FMOX
Several object tracking pipelines extending Segment Anything Model 2 (SAM2) have been proposed in the past year, where the approach is to follow and segment the object from a single exemplar template provided by the user on a initialization frame. We propose to benchmark these high performing trackers (SAM2, EfficientTAM, DAM4SAM and SAMURAI) on datasets containing fast moving objects (FMO) specifically designed to be challenging for tracking approaches. The goal is to understand better current limitations in state-of-the-art trackers by providing more detailed insights on the behavior of these trackers. We show that overall the trackers DAM4SAM and SAMURAI perform well on more challenging sequences.
☆ Beyond Sequences: A Benchmark for Atomic Hand-Object Interaction Using a Static RNN Encoder
Reliably predicting human intent in hand-object interactions is an open challenge for computer vision. Our research concentrates on a fundamental sub-problem: the fine-grained classification of atomic interaction states, namely 'approaching', 'grabbing', and 'holding'. To this end, we introduce a structured data engineering process that converts raw videos from the MANIAC dataset into 27,476 statistical-kinematic feature vectors. Each vector encapsulates relational and dynamic properties from a short temporal window of motion. Our initial hypothesis posited that sequential modeling would be critical, leading us to compare static classifiers (MLPs) against temporal models (RNNs). Counter-intuitively, the key discovery occurred when we set the sequence length of a Bidirectional RNN to one (seq_length=1). This modification converted the network's function, compelling it to act as a high-capacity static feature encoder. This architectural change directly led to a significant accuracy improvement, culminating in a final score of 97.60%. Of particular note, our optimized model successfully overcame the most challenging transitional class, 'grabbing', by achieving a balanced F1-score of 0.90. These findings provide a new benchmark for low-level hand-object interaction recognition using structured, interpretable features and lightweight architectures.
comment: Code available at: https://github.com/YousefAMovahed/beyond-sequences-hoi-benchmark
☆ FROMAT: Multiview Material Appearance Transfer via Few-Shot Self-Attention Adaptation
Multiview diffusion models have rapidly emerged as a powerful tool for content creation with spatial consistency across viewpoints, offering rich visual realism without requiring explicit geometry and appearance representation. However, compared to meshes or radiance fields, existing multiview diffusion models offer limited appearance manipulation, particularly in terms of material, texture, or style. In this paper, we present a lightweight adaptation technique for appearance transfer in multiview diffusion models. Our method learns to combine object identity from an input image with appearance cues rendered in a separate reference image, producing multi-view-consistent output that reflects the desired materials, textures, or styles. This allows explicit specification of appearance parameters at generation time while preserving the underlying object geometry and view coherence. We leverage three diffusion denoising processes responsible for generating the original object, the reference, and the target images, and perform reverse sampling to aggregate a small subset of layer-wise self-attention features from the object and the reference to influence the target generation. Our method requires only a few training examples to introduce appearance awareness to pretrained multiview models. The experiments show that our method provides a simple yet effective way toward multiview generation with diverse appearance, advocating the adoption of implicit generative 3D representations in practice.
☆ Rethinking Chain-of-Thought Reasoning for Videos
Chain-of-thought (CoT) reasoning has been highly successful in solving complex tasks in natural language processing, and recent multimodal large language models (MLLMs) have extended this paradigm to video reasoning. However, these models typically build on lengthy reasoning chains and large numbers of input visual tokens. Motivated by empirical observations from our benchmark study, we hypothesize that concise reasoning combined with a reduced set of visual tokens can be sufficient for effective video reasoning. To evaluate this hypothesis, we design and validate an efficient post-training and inference framework that enhances a video MLLM's reasoning capability. Our framework enables models to operate on compressed visual tokens and generate brief reasoning traces prior to answering. The resulting models achieve substantially improved inference efficiency, deliver competitive performance across diverse benchmarks, and avoid reliance on manual CoT annotations or supervised fine-tuning. Collectively, our results suggest that long, human-like CoT reasoning may not be necessary for general video reasoning, and that concise reasoning can be both effective and efficient. Our code will be released at https://github.com/LaVi-Lab/Rethink_CoT_Video.
comment: Technical report
☆ ImageTalk: Designing a Multimodal AAC Text Generation System Driven by Image Recognition and Natural Language Generation
People living with Motor Neuron Disease (plwMND) frequently encounter speech and motor impairments that necessitate a reliance on augmentative and alternative communication (AAC) systems. This paper tackles the main challenge that traditional symbol-based AAC systems offer a limited vocabulary, while text entry solutions tend to exhibit low communication rates. To help plwMND articulate their needs about the system efficiently and effectively, we iteratively design and develop a novel multimodal text generation system called ImageTalk through a tailored proxy-user-based and an end-user-based design phase. The system demonstrates pronounced keystroke savings of 95.6%, coupled with consistent performance and high user satisfaction. We distill three design guidelines for AI-assisted text generation systems design and outline four user requirement levels tailored for AAC purposes, guiding future research in this field.
comment: 24 pages, 10 figures
☆ UrbanNav: Learning Language-Guided Urban Navigation from Web-Scale Human Trajectories AAAI 2026
Navigating complex urban environments using natural language instructions poses significant challenges for embodied agents, including noisy language instructions, ambiguous spatial references, diverse landmarks, and dynamic street scenes. Current visual navigation methods are typically limited to simulated or off-street environments, and often rely on precise goal formats, such as specific coordinates or images. This limits their effectiveness for autonomous agents like last-mile delivery robots navigating unfamiliar cities. To address these limitations, we introduce UrbanNav, a scalable framework that trains embodied agents to follow free-form language instructions in diverse urban settings. Leveraging web-scale city walking videos, we develop an scalable annotation pipeline that aligns human navigation trajectories with language instructions grounded in real-world landmarks. UrbanNav encompasses over 1,500 hours of navigation data and 3 million instruction-trajectory-landmark triplets, capturing a wide range of urban scenarios. Our model learns robust navigation policies to tackle complex urban scenarios, demonstrating superior spatial reasoning, robustness to noisy instructions, and generalization to unseen urban settings. Experimental results show that UrbanNav significantly outperforms existing methods, highlighting the potential of large-scale web video data to enable language-guided, real-world urban navigation for embodied agents.
comment: 9 pages, 5 figures, accepted to AAAI 2026
☆ CS3D: An Efficient Facial Expression Recognition via Event Vision
Responsive and accurate facial expression recognition is crucial to human-robot interaction for daily service robots. Nowadays, event cameras are becoming more widely adopted as they surpass RGB cameras in capturing facial expression changes due to their high temporal resolution, low latency, computational efficiency, and robustness in low-light conditions. Despite these advantages, event-based approaches still encounter practical challenges, particularly in adopting mainstream deep learning models. Traditional deep learning methods for facial expression analysis are energy-intensive, making them difficult to deploy on edge computing devices and thereby increasing costs, especially for high-frequency, dynamic, event vision-based approaches. To address this challenging issue, we proposed the CS3D framework by decomposing the Convolutional 3D method to reduce the computational complexity and energy consumption. Additionally, by utilizing soft spiking neurons and a spatial-temporal attention mechanism, the ability to retain information is enhanced, thus improving the accuracy of facial expression detection. Experimental results indicate that our proposed CS3D method attains higher accuracy on multiple datasets compared to architectures such as the RNN, Transformer, and C3D, while the energy consumption of the CS3D method is just 21.97\% of the original C3D required on the same device.
☆ UnReflectAnything: RGB-Only Highlight Removal by Rendering Synthetic Specular Supervision
Specular highlights distort appearance, obscure texture, and hinder geometric reasoning in both natural and surgical imagery. We present UnReflectAnything, an RGB-only framework that removes highlights from a single image by predicting a highlight map together with a reflection-free diffuse reconstruction. The model uses a frozen vision transformer encoder to extract multi-scale features, a lightweight head to localize specular regions, and a token-level inpainting module that restores corrupted feature patches before producing the final diffuse image. To overcome the lack of paired supervision, we introduce a Virtual Highlight Synthesis pipeline that renders physically plausible specularities using monocular geometry, Fresnel-aware shading, and randomized lighting which enables training on arbitrary RGB images with correct geometric structure. UnReflectAnything generalizes across natural and surgical domains where non-Lambertian surfaces and non-uniform lighting create severe highlights and it achieves competitive performance with state-of-the-art results on several benchmarks. Project Page: https://alberto-rota.github.io/UnReflectAnything/
☆ Content-Adaptive Image Retouching Guided by Attribute-Based Text Representation
Image retouching has received significant attention due to its ability to achieve high-quality visual content. Existing approaches mainly rely on uniform pixel-wise color mapping across entire images, neglecting the inherent color variations induced by image content. This limitation hinders existing approaches from achieving adaptive retouching that accommodates both diverse color distributions and user-defined style preferences. To address these challenges, we propose a novel Content-Adaptive image retouching method guided by Attribute-based Text Representation (CA-ATP). Specifically, we propose a content-adaptive curve mapping module, which leverages a series of basis curves to establish multiple color mapping relationships and learns the corresponding weight maps, enabling content-aware color adjustments. The proposed module can capture color diversity within the image content, allowing similar color values to receive distinct transformations based on their spatial context. In addition, we propose an attribute text prediction module that generates text representations from multiple image attributes, which explicitly represent user-defined style preferences. These attribute-based text representations are subsequently integrated with visual features via a multimodal model, providing user-friendly guidance for image retouching. Extensive experiments on several public datasets demonstrate that our method achieves state-of-the-art performance.
☆ Hands-on Evaluation of Visual Transformers for Object Recognition and Detection
Convolutional Neural Networks (CNNs) for computer vision sometimes struggle with understanding images in a global context, as they mainly focus on local patterns. On the other hand, Vision Transformers (ViTs), inspired by models originally created for language processing, use self-attention mechanisms, which allow them to understand relationships across the entire image. In this paper, we compare different types of ViTs (pure, hierarchical, and hybrid) against traditional CNN models across various tasks, including object recognition, detection, and medical image classification. We conduct thorough tests on standard datasets like ImageNet for image classification and COCO for object detection. Additionally, we apply these models to medical imaging using the ChestX-ray14 dataset. We find that hybrid and hierarchical transformers, especially Swin and CvT, offer a strong balance between accuracy and computational resources. Furthermore, by experimenting with data augmentation techniques on medical images, we discover significant performance improvements, particularly with the Swin Transformer model. Overall, our results indicate that Vision Transformers are competitive and, in many cases, outperform traditional CNNs, especially in scenarios requiring the understanding of global visual contexts like medical imaging.
☆ Seeing Soil from Space: Towards Robust and Scalable Remote Soil Nutrient Analysis
Environmental variables are increasingly affecting agricultural decision-making, yet accessible and scalable tools for soil assessment remain limited. This study presents a robust and scalable modeling system for estimating soil properties in croplands, including soil organic carbon (SOC), total nitrogen (N), available phosphorus (P), exchangeable potassium (K), and pH, using remote sensing data and environmental covariates. The system employs a hybrid modeling approach, combining the indirect methods of modeling soil through proxies and drivers with direct spectral modeling. We extend current approaches by using interpretable physics-informed covariates derived from radiative transfer models (RTMs) and complex, nonlinear embeddings from a foundation model. We validate the system on a harmonized dataset that covers Europes cropland soils across diverse pedoclimatic zones. Evaluation is conducted under a robust validation framework that enforces strict spatial blocking, stratified splits, and statistically distinct train-test sets, which deliberately make the evaluation harder and produce more realistic error estimates for unseen regions. The models achieved their highest accuracy for SOC and N. This performance held across unseen locations, under both spatial cross-validation and an independent test set. SOC obtained a MAE of 5.12 g/kg and a CCC of 0.77, and N obtained a MAE of 0.44 g/kg and a CCC of 0.77. We also assess uncertainty through conformal calibration, achieving 90 percent coverage at the target confidence level. This study contributes to the digital advancement of agriculture through the application of scalable, data-driven soil analysis frameworks that can be extended to related domains requiring quantitative soil evaluation, such as carbon markets.
comment: 23 pages, 13 figures, 13 tables
☆ Investigate the Low-level Visual Perception in Vision-Language based Image Quality Assessment
Recent advances in Image Quality Assessment (IQA) have leveraged Multi-modal Large Language Models (MLLMs) to generate descriptive explanations. However, despite their strong visual perception modules, these models often fail to reliably detect basic low-level distortions such as blur, noise, and compression, and may produce inconsistent evaluations across repeated inferences. This raises an essential question: do MLLM-based IQA systems truly perceive the visual features that matter? To examine this issue, we introduce a low-level distortion perception task that requires models to classify specific distortion types. Our component-wise analysis shows that although MLLMs are structurally capable of representing such distortions, they tend to overfit training templates, leading to biases in quality scoring. As a result, critical low-level features are weakened or lost during the vision-language alignment transfer stage. Furthermore, by computing the semantic distance between visual features and corresponding semantic tokens before and after component-wise fine-tuning, we show that improving the alignment of the vision encoder dramatically enhances distortion recognition accuracy, increasing it from 14.92% to 84.43%. Overall, these findings indicate that incorporating dedicated constraints on the vision encoder can strengthen text-explainable visual representations and enable MLLM-based pipelines to produce more coherent and interpretable reasoning in vision-centric tasks.
☆ From Graphs to Gates: DNS-HyXNet, A Lightweight and Deployable Sequential Model for Real-Time DNS Tunnel Detection
Domain Name System (DNS) tunneling remains a covert channel for data exfiltration and command-and-control communication. Although graph-based methods such as GraphTunnel achieve strong accuracy, they introduce significant latency and computational overhead due to recursive parsing and graph construction, limiting their suitability for real-time deployment. This work presents DNS-HyXNet, a lightweight extended Long Short-Term Memory (xLSTM) hybrid framework designed for efficient sequence-based DNS tunnel detection. DNS-HyXNet integrates tokenized domain embeddings with normalized numerical DNS features and processes them through a two-layer xLSTM network that directly learns temporal dependencies from packet sequences, eliminating the need for graph reconstruction and enabling single-stage multi-class classification. The model was trained and evaluated on two public benchmark datasets with carefully tuned hyperparameters to ensure low memory consumption and fast inference. Across all experimental splits of the DNS-Tunnel-Datasets, DNS-HyXNet achieved up to 99.99% accuracy, with macro-averaged precision, recall, and F1-scores exceeding 99.96%, and demonstrated a per-sample detection latency of just 0.041 ms, confirming its scalability and real-time readiness. These results show that sequential modeling with xLSTM can effectively replace computationally expensive recursive graph generation, offering a deployable and energy-efficient alternative for real-time DNS tunnel detection on commodity hardware.
☆ Building Reasonable Inference for Vision-Language Models in Blind Image Quality Assessment
Recent progress in BIQA has been driven by VLMs, whose semantic reasoning abilities suggest that they might extract visual features, generate descriptive text, and infer quality in a human-like manner. However, these models often produce textual descriptions that contradict their final quality predictions, and the predicted scores can change unstably during inference - behaviors not aligned with human reasoning. To understand these issues, we analyze the factors that cause contradictory assessments and instability. We first estimate the relationship between the final quality predictions and the generated visual features, finding that the predictions are not fully grounded in the features and that the logical connection between them is weak. Moreover, decoding intermediate VLM layers shows that the model frequently relies on a limited set of candidate tokens, which contributes to prediction instability. To encourage more human-like reasoning, we introduce a two-stage tuning method that explicitly separates visual perception from quality inference. In the first stage, the model learns visual features; in the second, it infers quality solely from these features. Experiments on SPAQ and KONIQ demonstrate that our approach reduces prediction instability from 22.00% to 12.39% and achieves average gains of 0.3124/0.3507 in SRCC/PLCC across LIVE, CSIQ, SPAQ, and KONIQ compared to the baseline. Further analyses show that our method improves both stability and the reliability of the inference process.
comment: Accepted to the ICONIP (International Conference on Neural Information Processing), 2025
☆ A Dual-Domain Convolutional Network for Hyperspectral Single-Image Super-Resolution
This study presents a lightweight dual-domain super-resolution network (DDSRNet) that combines Spatial-Net with the discrete wavelet transform (DWT). Specifically, our proposed model comprises three main components: (1) a shallow feature extraction module, termed Spatial-Net, which performs residual learning and bilinear interpolation; (2) a low-frequency enhancement branch based on the DWT that refines coarse image structures; and (3) a shared high-frequency refinement branch that simultaneously enhances the LH (horizontal), HL (vertical), and HH (diagonal) wavelet subbands using a single CNN with shared weights. As a result, the DWT enables subband decomposition, while the inverse DWT reconstructs the final high-resolution output. By doing so, the integration of spatial- and frequency-domain learning enables DDSRNet to achieve highly competitive performance with low computational cost on three hyperspectral image datasets, demonstrating its effectiveness for hyperspectral image super-resolution.
☆ Masked Registration and Autoencoding of CT Images for Predictive Tibia Reconstruction MICCAI
Surgical planning for complex tibial fractures can be challenging for surgeons, as the 3D structure of the later desirable bone alignment may be diffi- cult to imagine. To assist in such planning, we address the challenge of predicting a patient-specific reconstruction target from a CT of the fractured tibia. Our ap- proach combines neural registration and autoencoder models. Specifically, we first train a modified spatial transformer network (STN) to register a raw CT to a standardized coordinate system of a jointly trained tibia prototype. Subsequently, various autoencoder (AE) architectures are trained to model healthy tibial varia- tions. Both the STN and AE models are further designed to be robust to masked input, allowing us to apply them to fractured CTs and decode to a prediction of the patient-specific healthy bone in standard coordinates. Our contributions include: i) a 3D-adapted STN for global spatial registration, ii) a comparative analysis of AEs for bone CT modeling, and iii) the extension of both to handle masked inputs for predictive generation of healthy bone structures. Project page: https://github.com/HongyouZhou/repair
comment: DGM4MICCAI
☆ ViTA-Seg: Vision Transformer for Amodal Segmentation in Robotics
Occlusions in robotic bin picking compromise accurate and reliable grasp planning. We present ViTA-Seg, a class-agnostic Vision Transformer framework for real-time amodal segmentation that leverages global attention to recover complete object masks, including hidden regions. We proposte two architectures: a) Single-Head for amodal mask prediction; b) Dual-Head for amodal and occluded mask prediction. We also introduce ViTA-SimData, a photo-realistic synthetic dataset tailored to industrial bin-picking scenario. Extensive experiments on two amodal benchmarks, COOCA and KINS, demonstrate that ViTA-Seg Dual Head achieves strong amodal and occlusion segmentation accuracy with computational efficiency, enabling robust, real-time robotic manipulation.
☆ Gradient-Guided Learning Network for Infrared Small Target Detection
Recently, infrared small target detection has attracted extensive attention. However, due to the small size and the lack of intrinsic features of infrared small targets, the existing methods generally have the problem of inaccurate edge positioning and the target is easily submerged by the background. Therefore, we propose an innovative gradient-guided learning network (GGL-Net). Specifically, we are the first to explore the introduction of gradient magnitude images into the deep learning-based infrared small target detection method, which is conducive to emphasizing the edge details and alleviating the problem of inaccurate edge positioning of small targets. On this basis, we propose a novel dual-branch feature extraction network that utilizes the proposed gradient supplementary module (GSM) to encode raw gradient information into deeper network layers and embeds attention mechanisms reasonably to enhance feature extraction ability. In addition, we construct a two-way guidance fusion module (TGFM), which fully considers the characteristics of feature maps at different levels. It can facilitate the effective fusion of multi-scale feature maps and extract richer semantic information and detailed information through reasonable two-way guidance. Extensive experiments prove that GGL-Net has achieves state-of-the-art results on the public real NUAA-SIRST dataset and the public synthetic NUDT-SIRST dataset. Our code has been integrated into https://github.com/YuChuang1205/MSDA-Net
comment: Accepted by GRSL 2023
☆ StateSpace-SSL: Linear-Time Self-supervised Learning for Plant Disease Detectio AAAI
Self-supervised learning (SSL) is attractive for plant disease detection as it can exploit large collections of unlabeled leaf images, yet most existing SSL methods are built on CNNs or vision transformers that are poorly matched to agricultural imagery. CNN-based SSL struggles to capture disease patterns that evolve continuously along leaf structures, while transformer-based SSL introduces quadratic attention cost from high-resolution patches. To address these limitations, we propose StateSpace-SSL, a linear-time SSL framework that employs a Vision Mamba state-space encoder to model long-range lesion continuity through directional scanning across the leaf surface. A prototype-driven teacher-student objective aligns representations across multiple views, encouraging stable and lesion-aware features from labelled data. Experiments on three publicly available plant disease datasets show that StateSpace-SSL consistently outperforms the CNN- and transformer-based SSL baselines in various evaluation metrics. Qualitative analyses further confirm that it learns compact, lesion-focused feature maps, highlighting the advantage of linear state-space modelling for self-supervised plant disease representation learning.
comment: Accepted to AAAI workshop (AgriAI 2026)
☆ MODA: The First Challenging Benchmark for Multispectral Object Detection in Aerial Images
Aerial object detection faces significant challenges in real-world scenarios, such as small objects and extensive background interference, which limit the performance of RGB-based detectors with insufficient discriminative information. Multispectral images (MSIs) capture additional spectral cues across multiple bands, offering a promising alternative. However, the lack of training data has been the primary bottleneck to exploiting the potential of MSIs. To address this gap, we introduce the first large-scale dataset for Multispectral Object Detection in Aerial images (MODA), which comprises 14,041 MSIs and 330,191 annotations across diverse, challenging scenarios, providing a comprehensive data foundation for this field. Furthermore, to overcome challenges inherent to aerial object detection using MSIs, we propose OSSDet, a framework that integrates spectral and spatial information with object-aware cues. OSSDet employs a cascaded spectral-spatial modulation structure to optimize target perception, aggregates spectrally related features by exploiting spectral similarities to reinforce intra-object correlations, and suppresses irrelevant background via object-aware masking. Moreover, cross-spectral attention further refines object-related representations under explicit object-aware guidance. Extensive experiments demonstrate that OSSDet outperforms existing methods with comparable parameters and efficiency.
comment: 8 pages, 9 figures
☆ Color encoding in Latent Space of Stable Diffusion Models
Recent advances in diffusion-based generative models have achieved remarkable visual fidelity, yet a detailed understanding of how specific perceptual attributes - such as color and shape - are internally represented remains limited. This work explores how color is encoded in a generative model through a systematic analysis of the latent representations in Stable Diffusion. Through controlled synthetic datasets, principal component analysis (PCA) and similarity metrics, we reveal that color information is encoded along circular, opponent axes predominantly captured in latent channels c_3 and c_4, whereas intensity and shape are primarily represented in channels c_1 and c_2. Our findings indicate that the latent space of Stable Diffusion exhibits an interpretable structure aligned with a efficient coding representation. These insights provide a foundation for future work in model understanding, editing applications, and the design of more disentangled generative frameworks.
comment: 6 pages, 8 figures, Color Imaging Conference 33
☆ Temporal-Spatial Tubelet Embedding for Cloud-Robust MSI Reconstruction using MSI-SAR Fusion: A Multi-Head Self-Attention Video Vision Transformer Approach
Cloud cover in multispectral imagery (MSI) significantly hinders early-season crop mapping by corrupting spectral information. Existing Vision Transformer(ViT)-based time-series reconstruction methods, like SMTS-ViT, often employ coarse temporal embeddings that aggregate entire sequences, causing substantial information loss and reducing reconstruction accuracy. To address these limitations, a Video Vision Transformer (ViViT)-based framework with temporal-spatial fusion embedding for MSI reconstruction in cloud-covered regions is proposed in this study. Non-overlapping tubelets are extracted via 3D convolution with constrained temporal span $(t=2)$, ensuring local temporal coherence while reducing cross-day information degradation. Both MSI-only and SAR-MSI fusion scenarios are considered during the experiments. Comprehensive experiments on 2020 Traill County data demonstrate notable performance improvements: MTS-ViViT achieves a 2.23\% reduction in MSE compared to the MTS-ViT baseline, while SMTS-ViViT achieves a 10.33\% improvement with SAR integration over the SMTS-ViT baseline. The proposed framework effectively enhances spectral reconstruction quality for robust agricultural monitoring.
☆ LiePrune: Lie Group and Quantum Geometric Dual Representation for One-Shot Structured Pruning of Quantum Neural Networks
Quantum neural networks (QNNs) and parameterized quantum circuits (PQCs) are key building blocks for near-term quantum machine learning. However, their scalability is constrained by excessive parameters, barren plateaus, and hardware limitations. We propose LiePrune, the first mathematically grounded one-shot structured pruning framework for QNNs that leverages Lie group structure and quantum geometric information. Each gate is jointly represented in a Lie group--Lie algebra dual space and a quantum geometric feature space, enabling principled redundancy detection and aggressive compression. Experiments on quantum classification (MNIST, FashionMNIST), quantum generative modeling (Bars-and-Stripes), and quantum chemistry (LiH VQE) show that LiePrune achieves over $10\times$ compression with negligible or even improved task performance, while providing provable guarantees on redundancy detection, functional approximation, and computational complexity.
comment: 7 pages, 2 figures
☆ Privacy-Preserving Computer Vision for Industry: Three Case Studies in Human-Centric Manufacturing AAAI26
The adoption of AI-powered computer vision in industry is often constrained by the need to balance operational utility with worker privacy. Building on our previously proposed privacy-preserving framework, this paper presents its first comprehensive validation on real-world data collected directly by industrial partners in active production environments. We evaluate the framework across three representative use cases: woodworking production monitoring, human-aware AGV navigation, and multi-camera ergonomic risk assessment. The approach employs learned visual transformations that obscure sensitive or task-irrelevant information while retaining features essential for task performance. Through both quantitative evaluation of the privacy-utility trade-off and qualitative feedback from industrial partners, we assess the framework's effectiveness, deployment feasibility, and trust implications. Results demonstrate that task-specific obfuscation enables effective monitoring with reduced privacy risks, establishing the framework's readiness for real-world adoption and providing cross-domain recommendations for responsible, human-centric AI deployment in industry.
comment: Accepted to the AAAI26 HCM workshop
☆ Cytoplasmic Strings Analysis in Human Embryo Time-Lapse Videos using Deep Learning Framework
Infertility is a major global health issue, and while in-vitro fertilization has improved treatment outcomes, embryo selection remains a critical bottleneck. Time-lapse imaging enables continuous, non-invasive monitoring of embryo development, yet most automated assessment methods rely solely on conventional morphokinetic features and overlook emerging biomarkers. Cytoplasmic Strings, thin filamentous structures connecting the inner cell mass and trophectoderm in expanded blastocysts, have been associated with faster blastocyst formation, higher blastocyst grades, and improved viability. However, CS assessment currently depends on manual visual inspection, which is labor-intensive, subjective, and severely affected by detection and subtle visual appearance. In this work, we present, to the best of our knowledge, the first computational framework for CS analysis in human IVF embryos. We first design a human-in-the-loop annotation pipeline to curate a biologically validated CS dataset from TLI videos, comprising 13,568 frames with highly sparse CS-positive instances. Building on this dataset, we propose a two-stage deep learning framework that (i) classifies CS presence at the frame level and (ii) localizes CS regions in positive cases. To address severe imbalance and feature uncertainty, we introduce the Novel Uncertainty-aware Contractive Embedding (NUCE) loss, which couples confidence-aware reweighting with an embedding contraction term to form compact, well-separated class clusters. NUCE consistently improves F1-score across five transformer backbones, while RF-DETR-based localization achieves state-of-the-art (SOTA) detection performance for thin, low-contrast CS structures. The source code will be made publicly available at: https://github.com/HamadYA/CS_Detection.
☆ Sequential Testing for Descriptor-Agnostic LiDAR Loop Closure in Repetitive Environments
We propose a descriptor-agnostic, multi-frame loop closure verification method that formulates LiDAR loop closure as a truncated Sequential Probability Ratio Test (SPRT). Instead of deciding from a single descriptor comparison or using fixed thresholds with late-stage Iterative Closest Point (ICP) vetting, the verifier accumulates a short temporal stream of descriptor similarities between a query and each candidate. It then issues an accept/reject decision adaptively once sufficient multi-frame evidence has been observed, according to user-specified Type-I/II error design targets. This precision-first policy is designed to suppress false positives in structurally repetitive indoor environments. We evaluate the verifier on a five-sequence library dataset, using a fixed retrieval front-end with several representative LiDAR global descriptors. Performance is assessed via segment-level K-hit precision-recall and absolute trajectory error (ATE) and relative pose error (RPE) after pose graph optimization. Across descriptors, the sequential verifier consistently improves precision and reduces the impact of aliased loops compared with single-frame and heuristic multi-frame baselines. Our implementation and dataset will be released at: https://github.com/wanderingcar/snu_library_dataset.
comment: 8 pages, 4 figures
☆ Defect-aware Hybrid Prompt Optimization via Progressive Tuning for Zero-Shot Multi-type Anomaly Detection and Segmentation
Recent vision language models (VLMs) like CLIP have demonstrated impressive anomaly detection performance under significant distribution shift by utilizing high-level semantic information through text prompts. However, these models often neglect fine-grained details, such as which kind of anomalies, like "hole", "cut", "scratch" that could provide more specific insight into the nature of anomalies. We argue that recognizing fine-grained anomaly types 1) enriches the representation of "abnormal" with structured semantics, narrowing the gap between coarse anomaly signals and fine-grained defect categories; 2) enables manufacturers to understand the root causes of the anomaly and implement more targeted and appropriate corrective measures quickly. While incorporating such detailed semantic information is crucial, designing handcrafted prompts for each defect type is both time-consuming and susceptible to human bias. For this reason, we introduce DAPO, a novel approach for Defect-aware Prompt Optimization based on progressive tuning for the zero-shot multi-type and binary anomaly detection and segmentation under distribution shifts. Our approach aligns anomaly-relevant image features with their corresponding text semantics by learning hybrid defect-aware prompts with both fixed textual anchors and learnable token embeddings. We conducted experiments on public benchmarks (MPDD, VisA, MVTec-AD, MAD, and Real-IAD) and an internal dataset. The results suggest that compared to the baseline models, DAPO achieves a 3.7% average improvement in AUROC and average precision metrics at the image level under distribution shift, and a 6.5% average improvement in localizing novel anomaly types under zero-shot settings.
☆ Representation Calibration and Uncertainty Guidance for Class-Incremental Learning based on Vision Language Model
Class-incremental learning requires a learning system to continually learn knowledge of new classes and meanwhile try to preserve previously learned knowledge of old classes. As current state-of-the-art methods based on Vision-Language Models (VLMs) still suffer from the issue of differentiating classes across learning tasks. Here a novel VLM-based continual learning framework for image classification is proposed. In this framework, task-specific adapters are added to the pre-trained and frozen image encoder to learn new knowledge, and a novel cross-task representation calibration strategy based on a mixture of light-weight projectors is used to help better separate all learned classes in a unified feature space, alleviating class confusion across tasks. In addition, a novel inference strategy guided by prediction uncertainty is developed to more accurately select the most appropriate image feature for class prediction. Extensive experiments on multiple datasets under various settings demonstrate the superior performance of our method compared to existing ones.
☆ UniPart: Part-Level 3D Generation with Unified 3D Geom-Seg Latents
Part-level 3D generation is essential for applications requiring decomposable and structured 3D synthesis. However, existing methods either rely on implicit part segmentation with limited granularity control or depend on strong external segmenters trained on large annotated datasets. In this work, we observe that part awareness emerges naturally during whole-object geometry learning and propose Geom-Seg VecSet, a unified geometry-segmentation latent representation that jointly encodes object geometry and part-level structure. Building on this representation, we introduce UniPart, a two-stage latent diffusion framework for image-guided part-level 3D generation. The first stage performs joint geometry generation and latent part segmentation, while the second stage conditions part-level diffusion on both whole-object and part-specific latents. A dual-space generation scheme further enhances geometric fidelity by predicting part latents in both global and canonical spaces. Extensive experiments demonstrate that UniPart achieves superior segmentation controllability and part-level geometric quality compared with existing approaches.
☆ FunPhase: A Periodic Functional Autoencoder for Motion Generation via Phase Manifolds
Learning natural body motion remains challenging due to the strong coupling between spatial geometry and temporal dynamics. Embedding motion in phase manifolds, latent spaces that capture local periodicity, has proven effective for motion prediction; however, existing approaches lack scalability and remain confined to specific settings. We introduce FunPhase, a functional periodic autoencoder that learns a phase manifold for motion and replaces discrete temporal decoding with a function-space formulation, enabling smooth trajectories that can be sampled at arbitrary temporal resolutions. FunPhase supports downstream tasks such as super-resolution and partial-body motion completion, generalizes across skeletons and datasets, and unifies motion prediction and generation within a single interpretable manifold. Our model achieves substantially lower reconstruction error than prior periodic autoencoder baselines while enabling a broader range of applications and performing on par with state-of-the-art motion generation methods.
☆ InfoMotion: A Graph-Based Approach to Video Dataset Distillation for Echocardiography
Echocardiography playing a critical role in the diagnosis and monitoring of cardiovascular diseases as a non-invasive real-time assessment of cardiac structure and function. However, the growing scale of echocardiographic video data presents significant challenges in terms of storage, computation, and model training efficiency. Dataset distillation offers a promising solution by synthesizing a compact, informative subset of data that retains the key clinical features of the original dataset. In this work, we propose a novel approach for distilling a compact synthetic echocardiographic video dataset. Our method leverages motion feature extraction to capture temporal dynamics, followed by class-wise graph construction and representative sample selection using the Infomap algorithm. This enables us to select a diverse and informative subset of synthetic videos that preserves the essential characteristics of the original dataset. We evaluate our approach on the EchoNet-Dynamic datasets and achieve a test accuracy of \(69.38\%\) using only \(25\) synthetic videos. These results demonstrate the effectiveness and scalability of our method for medical video dataset distillation.
comment: Accepted at MICAD 2025
☆ Label-free Motion-Conditioned Diffusion Model for Cardiac Ultrasound Synthesis
Ultrasound echocardiography is essential for the non-invasive, real-time assessment of cardiac function, but the scarcity of labelled data, driven by privacy restrictions and the complexity of expert annotation, remains a major obstacle for deep learning methods. We propose the Motion Conditioned Diffusion Model (MCDM), a label-free latent diffusion framework that synthesises realistic echocardiography videos conditioned on self-supervised motion features. To extract these features, we design the Motion and Appearance Feature Extractor (MAFE), which disentangles motion and appearance representations from videos. Feature learning is further enhanced by two auxiliary objectives: a re-identification loss guided by pseudo appearance features and an optical flow loss guided by pseudo flow fields. Evaluated on the EchoNet-Dynamic dataset, MCDM achieves competitive video generation performance, producing temporally coherent and clinically realistic sequences without reliance on manual labels. These results demonstrate the potential of self-supervised conditioning for scalable echocardiography synthesis. Our code is available at https://github.com/ZheLi2020/LabelfreeMCDM.
comment: Accepted at MICAD 2025
☆ DirectSwap: Mask-Free Cross-Identity Training and Benchmarking for Expression-Consistent Video Head Swapping
Video head swapping aims to replace the entire head of a video subject, including facial identity, head shape, and hairstyle, with that of a reference image, while preserving the target body, background, and motion dynamics. Due to the lack of ground-truth paired swapping data, prior methods typically train on cross-frame pairs of the same person within a video and rely on mask-based inpainting to mitigate identity leakage. Beyond potential boundary artifacts, this paradigm struggles to recover essential cues occluded by the mask, such as facial pose, expressions, and motion dynamics. To address these issues, we prompt a video editing model to synthesize new heads for existing videos as fake swapping inputs, while maintaining frame-synchronized facial poses and expressions. This yields HeadSwapBench, the first cross-identity paired dataset for video head swapping, which supports both training (\TrainNum{} videos) and benchmarking (\TestNum{} videos) with genuine outputs. Leveraging this paired supervision, we propose DirectSwap, a mask-free, direct video head-swapping framework that extends an image U-Net into a video diffusion model with a motion module and conditioning inputs. Furthermore, we introduce the Motion- and Expression-Aware Reconstruction (MEAR) loss, which reweights the diffusion loss per pixel using frame-difference magnitudes and facial-landmark proximity, thereby enhancing cross-frame coherence in motion and expressions. Extensive experiments demonstrate that DirectSwap achieves state-of-the-art visual quality, identity fidelity, and motion and expression consistency across diverse in-the-wild video scenes. We will release the source code and the HeadSwapBench dataset to facilitate future research.
☆ Generative Point Cloud Registration
In this paper, we propose a novel 3D registration paradigm, Generative Point Cloud Registration, which bridges advanced 2D generative models with 3D matching tasks to enhance registration performance. Our key idea is to generate cross-view consistent image pairs that are well-aligned with the source and target point clouds, enabling geometry-color feature fusion to facilitate robust matching. To ensure high-quality matching, the generated image pair should feature both 2D-3D geometric consistency and cross-view texture consistency. To achieve this, we introduce Match-ControlNet, a matching-specific, controllable 2D generative model. Specifically, it leverages the depth-conditioned generation capability of ControlNet to produce images that are geometrically aligned with depth maps derived from point clouds, ensuring 2D-3D geometric consistency. Additionally, by incorporating a coupled conditional denoising scheme and coupled prompt guidance, Match-ControlNet further promotes cross-view feature interaction, guiding texture consistency generation. Our generative 3D registration paradigm is general and could be seamlessly integrated into various registration methods to enhance their performance. Extensive experiments on 3DMatch and ScanNet datasets verify the effectiveness of our approach.
comment: 14 pages, 9 figures
☆ H2R-Grounder: A Paired-Data-Free Paradigm for Translating Human Interaction Videos into Physically Grounded Robot Videos
Robots that learn manipulation skills from everyday human videos could acquire broad capabilities without tedious robot data collection. We propose a video-to-video translation framework that converts ordinary human-object interaction videos into motion-consistent robot manipulation videos with realistic, physically grounded interactions. Our approach does not require any paired human-robot videos for training only a set of unpaired robot videos, making the system easy to scale. We introduce a transferable representation that bridges the embodiment gap: by inpainting the robot arm in training videos to obtain a clean background and overlaying a simple visual cue (a marker and arrow indicating the gripper's position and orientation), we can condition a generative model to insert the robot arm back into the scene. At test time, we apply the same process to human videos (inpainting the person and overlaying human pose cues) and generate high-quality robot videos that mimic the human's actions. We fine-tune a SOTA video diffusion model (Wan 2.2) in an in-context learning manner to ensure temporal coherence and leveraging of its rich prior knowledge. Empirical results demonstrate that our approach achieves significantly more realistic and grounded robot motions compared to baselines, pointing to a promising direction for scaling up robot learning from unlabeled human videos. Project page: https://showlab.github.io/H2R-Grounder/
comment: 13 pages, 6 figures
☆ Wasserstein-Aligned Hyperbolic Multi-View Clustering
Multi-view clustering (MVC) aims to uncover the latent structure of multi-view data by learning view-common and view-specific information. Although recent studies have explored hyperbolic representations for better tackling the representation gap between different views, they focus primarily on instance-level alignment and neglect global semantic consistency, rendering them vulnerable to view-specific information (\textit{e.g.}, noise and cross-view discrepancies). To this end, this paper proposes a novel Wasserstein-Aligned Hyperbolic (WAH) framework for multi-view clustering. Specifically, our method exploits a view-specific hyperbolic encoder for each view to embed features into the Lorentz manifold for hierarchical semantic modeling. Whereafter, a global semantic loss based on the hyperbolic sliced-Wasserstein distance is introduced to align manifold distributions across views. This is followed by soft cluster assignments to encourage cross-view semantic consistency. Extensive experiments on multiple benchmarking datasets show that our method can achieve SOTA clustering performance.
comment: 14 pages
☆ Detection and Localization of Subdural Hematoma Using Deep Learning on Computed Tomography
Background. Subdural hematoma (SDH) is a common neurosurgical emergency, with increasing incidence in aging populations. Rapid and accurate identification is essential to guide timely intervention, yet existing automated tools focus primarily on detection and provide limited interpretability or spatial localization. There remains a need for transparent, high-performing systems that integrate multimodal clinical and imaging information to support real-time decision-making. Methods. We developed a multimodal deep-learning framework that integrates structured clinical variables, a 3D convolutional neural network trained on CT volumes, and a transformer-enhanced 2D segmentation model for SDH detection and localization. Using 25,315 head CT studies from Hartford HealthCare (2015--2024), of which 3,774 (14.9\%) contained clinician-confirmed SDH, tabular models were trained on demographics, comorbidities, medications, and laboratory results. Imaging models were trained to detect SDH and generate voxel-level probability maps. A greedy ensemble strategy combined complementary predictors. Findings. Clinical variables alone provided modest discriminatory power (AUC 0.75). Convolutional models trained on CT volumes and segmentation-derived maps achieved substantially higher accuracy (AUCs 0.922 and 0.926). The multimodal ensemble integrating all components achieved the best overall performance (AUC 0.9407; 95\% CI, 0.930--0.951) and produced anatomically meaningful localization maps consistent with known SDH patterns. Interpretation. This multimodal, interpretable framework provides rapid and accurate SDH detection and localization, achieving high detection performance and offering transparent, anatomically grounded outputs. Integration into radiology workflows could streamline triage, reduce time to intervention, and improve consistency in SDH management.
♻ ☆ Semantic Data Augmentation Enhanced Invariant Risk Minimization for Medical Image Domain Generalization
Deep learning has achieved remarkable success in medical image classification. However, its clinical application is often hindered by data heterogeneity caused by variations in scanner vendors, imaging protocols, and operators. Approaches such as invariant risk minimization (IRM) aim to address this challenge of out-of-distribution generalization. For instance, VIRM improves upon IRM by tackling the issue of insufficient feature support overlap, demonstrating promising potential. Nonetheless, these methods face limitations in medical imaging due to the scarcity of annotated data and the inefficiency of augmentation strategies. To address these issues, we propose a novel domain-oriented direction selector to replace the random augmentation strategy used in VIRM. Our method leverages inter-domain covariance as a guider for augmentation direction, guiding data augmentation towards the target domain. This approach effectively reduces domain discrepancies and enhances generalization performance. Experiments on a multi-center diabetic retinopathy dataset demonstrate that our method outperforms state-of-the-art approaches, particularly under limited data conditions and significant domain heterogeneity.
♻ ☆ Matrix-game 2.0: An open-source real-time and streaming interactive world model
Recent advances in interactive video generations have demonstrated diffusion model's potential as world models by capturing complex physical dynamics and interactive behaviors. However, existing interactive world models depend on bidirectional attention and lengthy inference steps, severely limiting real-time performance. Consequently, they are hard to simulate real-world dynamics, where outcomes must update instantaneously based on historical context and current actions. To address this, we present Matrix-Game 2.0, an interactive world model generates long videos on-the-fly via few-step auto-regressive diffusion. Our framework consists of three key components: (1) A scalable data production pipeline for Unreal Engine and GTA5 environments to effectively produce massive amounts (about 1200 hours) of video data with diverse interaction annotations; (2) An action injection module that enables frame-level mouse and keyboard inputs as interactive conditions; (3) A few-step distillation based on the casual architecture for real-time and streaming video generation. Matrix Game 2.0 can generate high-quality minute-level videos across diverse scenes at an ultra-fast speed of 25 FPS. We open-source our model weights and codebase to advance research in interactive world modeling.
comment: Project Page: https://matrix-game-v2.github.io
♻ ☆ Seedream 4.0: Toward Next-generation Multimodal Image Generation
We introduce Seedream 4.0, an efficient and high-performance multimodal image generation system that unifies text-to-image (T2I) synthesis, image editing, and multi-image composition within a single framework. We develop a highly efficient diffusion transformer with a powerful VAE which also can reduce the number of image tokens considerably. This allows for efficient training of our model, and enables it to fast generate native high-resolution images (e.g., 1K-4K). Seedream 4.0 is pretrained on billions of text-image pairs spanning diverse taxonomies and knowledge-centric concepts. Comprehensive data collection across hundreds of vertical scenarios, coupled with optimized strategies, ensures stable and large-scale training, with strong generalization. By incorporating a carefully fine-tuned VLM model, we perform multi-modal post-training for training both T2I and image editing tasks jointly. For inference acceleration, we integrate adversarial distillation, distribution matching, and quantization, as well as speculative decoding. It achieves an inference time of up to 1.8 seconds for generating a 2K image (without a LLM/VLM as PE model). Comprehensive evaluations reveal that Seedream 4.0 can achieve state-of-the-art results on both T2I and multimodal image editing. In particular, it demonstrates exceptional multimodal capabilities in complex tasks, including precise image editing and in-context reasoning, and also allows for multi-image reference, and can generate multiple output images. This extends traditional T2I systems into an more interactive and multidimensional creative tool, pushing the boundary of generative AI for both creativity and professional applications. We further scale our model and data as Seedream 4.5. Seedream 4.0 and Seedream 4.5 are accessible on Volcano Engine https://www.volcengine.com/experience/ark?launch=seedream.
comment: Seedream 4.0/4.5 Technical Report
♻ ☆ OpenConstruction: A Systematic Synthesis of Open Visual Datasets for Data-Centric Artificial Intelligence in Construction Monitoring
The construction industry increasingly relies on visual data to support Artificial Intelligence (AI) and Machine Learning (ML) applications for site monitoring. High-quality, domain-specific datasets, comprising images, videos, and point clouds, capture site geometry and spatiotemporal dynamics, including the location and interaction of objects, workers, and materials. However, despite growing interest in leveraging visual datasets, existing resources vary widely in sizes, data modalities, annotation quality, and representativeness of real-world construction conditions. A systematic review to categorize their data characteristics and application contexts is still lacking, limiting the community's ability to fully understand the dataset landscape, identify critical gaps, and guide future directions toward more effective, reliable, and scalable AI applications in construction. To address this gap, this study conducts an extensive search of academic databases and open-data platforms, yielding 51 publicly available visual datasets that span the 2005-2024 period. These datasets are categorized using a structured data schema covering (i) data fundamentals (e.g., size and license), (ii) data modalities (e.g., RGB and point cloud), (iii) annotation frameworks (e.g., bounding boxes), and (iv) downstream application domains (e.g., progress tracking). This study synthesizes these findings into an open-source catalog, OpenConstruction, supporting data-driven method development. Furthermore, the study discusses several critical limitations in the existing construction dataset landscape and presents a roadmap for future data infrastructure anchored in the Findability, Accessibility, Interoperability, and Reusability (FAIR) principles. By reviewing the current landscape and outlining strategic priorities, this study supports the advancement of data-centric solutions in the construction sector.
♻ ☆ AugLift: Uncertainty Aware Depth Descriptors for Robust 2D to 3D Pose Lifting
Lifting based 3D human pose estimators infer 3D joints from 2D keypoints, but often struggle to generalize to real world settings with noisy 2D detections. We revisit the input to lifting and propose AugLift, a simple augmentation of standard lifting that enriches each 2D keypoint (x, y) with an Uncertainty Aware Depth Descriptor (UADD). We run a single off the shelf monocular depth estimator to obtain a depth map, and for every keypoint with detector confidence c we extract depth statistics from its confidence scaled neighborhood, forming a compact, interpretable UADD (c, d, d_min, d_max) that captures both local geometry and reliability. AugLift is modular, requires no new sensors or architectural changes, and integrates by expanding the input layer of existing lifting models. Across four datasets and four lifting architectures, AugLift boosts cross dataset (out of distribution) performance on unseen data by an average of 10.1 percent, while also improving in distribution performance by 4.0 percent as measured by MPJPE. A post hoc analysis clarifies when and why it helps: gains are largest on novel poses and significantly occluded joints, where depth statistics resolve front back ambiguities while confidence calibrates the spatial neighborhoods from which they are drawn. We also study interaction with recent image feature lifting methods and find the signals are complementary: adding UADD to image conditioned lifting yields both ID and OOD gains. A learned depth feature extension (AugLiftV2) improves performance further while trading off interpretability. Together, these results indicate that lightweight, confidence aware depth cues are a powerful plug in for robust 2D to 3D pose lifting.
comment: Preprint. Under review
♻ ☆ Human Motion Unlearning
We introduce Human Motion Unlearning and motivate it through the concrete task of preventing violent 3D motion synthesis, an important safety requirement given that popular text-to-motion datasets (HumanML3D and Motion-X) contain from 7\% to 15\% violent sequences spanning both atomic gestures (e.g., a single punch) and highly compositional actions (e.g., loading and swinging a leg to kick). By focusing on violence unlearning, we demonstrate how removing a challenging, multifaceted concept can serve as a proxy for the broader capability of motion "forgetting." To enable systematic evaluation of Human Motion Unlearning, we establish the first motion unlearning benchmark by automatically filtering HumanML3D and Motion-X datasets to create distinct forget sets (violent motions) and retain sets (safe motions). We introduce evaluation metrics tailored to sequential unlearning, measuring both suppression efficacy and the preservation of realism and smooth transitions. We adapt two state-of-the-art, training-free image unlearning methods (UCE and RECE) to leading text-to-motion architectures (MoMask and BAMM), and propose Latent Code Replacement (LCR), a novel, training-free approach that identifies violent codes in a discrete codebook representation and substitutes them with safe alternatives. Our experiments show that unlearning violent motions is indeed feasible and that acting on latent codes strikes the best trade-off between violence suppression and preserving overall motion quality. This work establishes a foundation for advancing safe motion synthesis across diverse applications. Website: https://www.pinlab.org/hmu.
Learning What Matters: Steering Diffusion via Spectrally Anisotropic Forward Noise
Diffusion Probabilistic Models (DPMs) have achieved strong generative performance, yet their inductive biases remain largely implicit. In this work, we aim to build inductive biases into the training and sampling of diffusion models to better accommodate the target distribution of the data to model. We introduce an anisotropic noise operator that shapes these biases by replacing the isotropic forward covariance with a structured, frequency-diagonal covariance. This operator unifies band-pass masks and power-law weightings, allowing us to emphasize or suppress designated frequency bands, while keeping the forward process Gaussian. We refer to this as Spectrally Anisotropic Gaussian Diffusion (SAGD). In this work, we derive the score relation for anisotropic forward covariances and show that, under full support, the learned score converges to the true data score as $t\!\to\!0$, while anisotropy reshapes the probability-flow path from noise to data. Empirically, we show the induced anisotropy outperforms standard diffusion across several vision datasets, and enables selective omission: learning while ignoring known corruptions confined to specific bands. Together, these results demonstrate that carefully designed anisotropic forward noise provides a simple, yet principled, handle to tailor inductive bias in DPMs.
♻ ☆ RELOCATE: A Simple Training-Free Baseline for Visual Query Localization Using Region-Based Representations
We present RELOCATE, a simple training-free baseline designed to perform the challenging task of visual query localization in long videos. To eliminate the need for task-specific training and efficiently handle long videos, RELOCATE leverages a region-based representation derived from pretrained vision models. At a high level, it follows the classic object localization approach: (1) identify all objects in each video frame, (2) compare the objects with the given query and select the most similar ones, and (3) perform bidirectional tracking to get a spatio-temporal response. However, we propose some key enhancements to handle small objects, cluttered scenes, partial visibility, and varying appearances. Notably, we refine the selected objects for accurate localization and generate additional visual queries to capture visual variations. We evaluate RELOCATE on the challenging Ego4D Visual Query 2D Localization dataset, establishing a new baseline that outperforms prior task-specific methods by 49% (relative improvement) in spatio-temporal average precision.
♻ ☆ Toward Efficient and Robust Behavior Models for Multi-Agent Driving Simulation
Scalable multi-agent driving simulation requires behavior models that are both realistic and computationally efficient. We address this by optimizing the behavior model that controls individual traffic participants. To improve efficiency, we adopt an instance-centric scene representation, where each traffic participant and map element is modeled in its own local coordinate frame. This design enables efficient, viewpoint-invariant scene encoding and allows static map tokens to be reused across simulation steps. To model interactions, we employ a query-centric symmetric context encoder with relative positional encodings between local frames. We use Adversarial Inverse Reinforcement Learning to learn the behavior model and propose an adaptive reward transformation that automatically balances robustness and realism during training. Experiments demonstrate that our approach scales efficiently with the number of tokens, significantly reducing training and inference times, while outperforming several agent-centric baselines in terms of positional accuracy and robustness.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ THCRL: Trusted Hierarchical Contrastive Representation Learning for Multi-View Clustering
Multi-View Clustering (MVC) has garnered increasing attention in recent years. It is capable of partitioning data samples into distinct groups by learning a consensus representation. However, a significant challenge remains: the problem of untrustworthy fusion. This problem primarily arises from two key factors: 1) Existing methods often ignore the presence of inherent noise within individual views; 2) In traditional MVC methods using Contrastive Learning (CL), similarity computations typically rely on different views of the same instance, while neglecting the structural information from nearest neighbors within the same cluster. Consequently, this leads to the wrong direction for multi-view fusion. To address this problem, we present a novel Trusted Hierarchical Contrastive Representation Learning (THCRL). It consists of two key modules. Specifically, we propose the Deep Symmetry Hierarchical Fusion (DSHF) module, which leverages the UNet architecture integrated with multiple denoising mechanisms to achieve trustworthy fusion of multi-view data. Furthermore, we present the Average K-Nearest Neighbors Contrastive Learning (AKCL) module to align the fused representation with the view-specific representation. Unlike conventional strategies, AKCL enhances representation similarity among samples belonging to the same cluster, rather than merely focusing on the same sample across views, thereby reinforcing the confidence of the fused representation. Extensive experiments demonstrate that THCRL achieves the state-of-the-art performance in deep MVC tasks.
♻ ☆ Foveation Improves Payload Capacity in Steganography
Steganography finds its use in visual medium such as providing metadata and watermarking. With support of efficient latent representations and foveated rendering, we trained models that improve existing capacity limits from 100 to 500 bits, while achieving better accuracy of up to 1 failure bit out of 2000, at 200K test bits. Finally, we achieve a comparable visual quality of 31.47 dB PSNR and 0.13 LPIPS, showing the effectiveness of novel perceptual design in creating multi-modal latent representations in steganography.
comment: SIGGRAPH Asia 2025 Posters Proceedings
♻ ☆ Tokenizing Motion: A Generative Approach for Scene Dynamics Compression
This paper proposes a novel generative video compression framework that leverages motion pattern priors, derived from subtle dynamics in common scenes (e.g., swaying flowers or a boat drifting on water), rather than relying on video content priors (e.g., talking faces or human bodies). These compact motion priors enable a new approach to ultra-low bitrate communication while achieving high-quality reconstruction across diverse scene contents. At the encoder side, motion priors can be streamlined into compact representations via a dense-to-sparse transformation. At the decoder side, these priors facilitate the reconstruction of scene dynamics using an advanced flow-driven diffusion model. Experimental results illustrate that the proposed method can achieve superior rate-distortion-performance and outperform the state-of-the-art conventional-video codec Enhanced Compression Model (ECM) on-scene dynamics sequences. The project page can be found at-https://github.com/xyzysz/GNVDC.
comment: 5page, 5 figures
♻ ☆ Efficiently Reconstructing Dynamic Scenes One D4RT at a Time
Understanding and reconstructing the complex geometry and motion of dynamic scenes from video remains a formidable challenge in computer vision. This paper introduces D4RT, a simple yet powerful feedforward model designed to efficiently solve this task. D4RT utilizes a unified transformer architecture to jointly infer depth, spatio-temporal correspondence, and full camera parameters from a single video. Its core innovation is a novel querying mechanism that sidesteps the heavy computation of dense, per-frame decoding and the complexity of managing multiple, task-specific decoders. Our decoding interface allows the model to independently and flexibly probe the 3D position of any point in space and time. The result is a lightweight and highly scalable method that enables remarkably efficient training and inference. We demonstrate that our approach sets a new state of the art, outperforming previous methods across a wide spectrum of 4D reconstruction tasks. We refer to the project webpage for animated results: https://d4rt-paper.github.io/.
comment: Project Page: https://d4rt-paper.github.io/
♻ ☆ MACS: Multi-source Audio-to-image Generation with Contextual Significance and Semantic Alignment AAAI 2026
Propelled by the breakthrough in deep generative models, audio-to-image generation has emerged as a pivotal cross-modal task that converts complex auditory signals into rich visual representations. However, previous works only focus on single-source audio inputs for image generation, ignoring the multi-source characteristic in natural auditory scenes, thus limiting the performance in generating comprehensive visual content. To bridge this gap, we propose a method called MACS to conduct multi-source audio-to-image generation. To our best knowledge, this is the first work that explicitly separates multi-source audio to capture the rich audio components before image generation. MACS is a two-stage method. In the first stage, multi-source audio inputs are separated by a weakly supervised method, where the audio and text labels are semantically aligned by casting into a common space using the large pre-trained CLAP model. We introduce a ranking loss to consider the contextual significance of the separated audio signals. In the second stage, effective image generation is achieved by mapping the separated audio signals to the generation condition using only a trainable adapter and a MLP layer. We preprocess the LLP dataset as the first full multi-source audio-to-image generation benchmark. The experiments are conducted on multi-source, mixed-source, and single-source audio-to-image generation tasks. The proposed MACS outperforms the current state-of-the-art methods in 17 out of the 21 evaluation indexes on all tasks and delivers superior visual quality.
comment: Accepted at AAAI 2026. Code available at https://github.com/alxzzhou/MACS
♻ ☆ Exploring possible vector systems for faster training of neural networks with preconfigured latent spaces
The overall neural network (NN) performance is closely related to the properties of its embedding distribution in latent space (LS). It has recently been shown that predefined vector systems, specifically An root system vectors, can be used as targets for latent space configurations (LSC) to ensure the desired LS structure. One of the main LSC advantage is the possibility of training classifier NNs without classification layers, which facilitates training NNs on datasets with extremely large numbers of classes. This paper provides a more general overview of possible vector systems for NN training along with their properties and methods for vector system construction. These systems are used to configure LS of encoders and visual transformers to significantly speed up ImageNet-1K and 50k-600k classes LSC training. It is also shown that using the minimum number of LS dimensions for a specific number of classes results in faster convergence. The latter has potential advantages for reducing the size of vector databases used to store NN embeddings.
comment: 9 pages, 5 figures, 1 table, 4 equations
♻ ☆ MoReGen: Multi-Agent Motion-Reasoning Engine for Code-based Text-to-Video Synthesis
While text-to-video (T2V) generation has achieved remarkable progress in photorealism, generating intent-aligned videos that faithfully obey physics principles remains a core challenge. In this work, we systematically study Newtonian motion-controlled text-to-video generation and evaluation, emphasizing physical precision and motion coherence. We introduce MoReGen, a motion-aware, physics-grounded T2V framework that integrates multi-agent LLMs, physics simulators, and renderers to generate reproducible, physically accurate videos from text prompts in the code domain. To quantitatively assess physical validity, we propose object-trajectory correspondence as a direct evaluation metric and present MoReSet, a benchmark of 1,275 human-annotated videos spanning nine classes of Newtonian phenomena with scene descriptions, spatiotemporal relations, and ground-truth trajectories. Using MoReSet, we conduct experiments on existing T2V models, evaluating their physical validity through both our MoRe metrics and existing physics-based evaluators. Our results reveal that state-of-the-art models struggle to maintain physical validity, while MoReGen establishes a principled direction toward physically coherent video synthesis.
♻ ☆ GeoDM: Geometry-aware Distribution Matching for Dataset Distillation
Dataset distillation aims to synthesize a compact subset of the original data, enabling models trained on it to achieve performance comparable to those trained on the original large dataset. Existing distribution-matching methods are confined to Euclidean spaces, making them only capture linear structures and overlook the intrinsic geometry of real data, e.g., curvature. However, high-dimensional data often lie on low-dimensional manifolds, suggesting that dataset distillation should have the distilled data manifold aligned with the original data manifold. In this work, we propose a geometry-aware distribution-matching framework, called \textbf{GeoDM}, which operates in the Cartesian product of Euclidean, hyperbolic, and spherical manifolds, with flat, hierarchical, and cyclical structures all captured by a unified representation. To adapt to the underlying data geometry, we introduce learnable curvature and weight parameters for three kinds of geometries. At the same time, we design an optimal transport loss to enhance the distribution fidelity. Our theoretical analysis shows that the geometry-aware distribution matching in a product space yields a smaller generalization error bound than the Euclidean counterparts. Extensive experiments conducted on standard benchmarks demonstrate that our algorithm outperforms state-of-the-art data distillation methods and remains effective across various distribution-matching strategies for the single geometries.
♻ ☆ CoPRS: Learning Positional Prior from Chain-of-Thought for Reasoning Segmentation
Existing works on reasoning segmentation either connect hidden features from a language model directly to a mask decoder or represent positions in text, which limits interpretability and semantic detail. To solve this, we present CoPRS, a Multi-modal Chain-of-Thought (MCoT)-based positional perception model that bridges language reasoning to segmentation through a differentiable and interpretable positional prior instantiated as a heatmap. By making the reasoning process clear via MCoT and expressing it as a dense, differentiable heatmap, this interface enhances interpretability and diagnostic analysis and yields more concentrated evidence on the target. A learnable concentration token aggregates features of the image and reasoning text to generate this positional prior, which is decoded to precise masks through a lightweight decoder, providing a direct connection between reasoning and segmentation. Across the RefCOCO series and ReasonSeg, CoPRS matches or surpasses the best reported metrics on each standard split under comparable protocols, with performance at or above the prior state of the art across both validation and test partitions. Extensive experiments demonstrate a strong positive correlation among the CoT trajectory, the generated heatmap, and the decoded mask, supporting an interpretable alignment between the reasoning output and downstream mask generation. Collectively, these findings support the utility of this paradigm in bridging reasoning and segmentation and show advantages in concentration driven by reasoning and in more precise mask prediction. Code, checkpoints and logs are released at https://github.com/ZhenyuLU-Heliodore/CoPRS.git.
comment: 20 pages, 8 figures, 7 tables
♻ ☆ Multi-Scale Direction-Aware Network for Infrared Small Target Detection
Infrared small target detection faces the problem that it is difficult to effectively separate the background and the target. Existing deep learning-based methods focus on edge and shape features, but ignore the richer structural differences and detailed information embedded in high-frequency components from different directions, thereby failing to fully exploit the value of high-frequency directional features in target perception. To address this limitation, we propose a multi-scale direction-aware network (MSDA-Net), which is the first attempt to integrate the high-frequency directional features of infrared small targets as domain prior knowledge into neural networks. Specifically, to fully mine the high-frequency directional features, on the one hand, a high-frequency direction injection (HFDI) module without trainable parameters is constructed to inject the high-frequency directional information of the original image into the network. On the other hand, a multi-scale direction-aware (MSDA) module is constructed, which promotes the full extraction of local relations at different scales and the full perception of key features in different directions. In addition, considering the characteristics of infrared small targets, we construct a feature aggregation (FA) structure to address target disappearance in high-level feature maps, and a feature calibration fusion (FCF) module to alleviate feature bias during cross-layer feature fusion. Extensive experimental results show that our MSDA-Net achieves state-of-the-art (SOTA) results on multiple public datasets. The code can be available at https://github.com/YuChuang1205/MSDA-Net
comment: Accepted by TGRS 2025
♻ ☆ Evaluating Small Vision-Language Models on Distance-Dependent Traffic Perception
Vision-Language Models (VLMs) are becoming increasingly powerful, demonstrating strong performance on a variety of tasks that require both visual and textual understanding. Their strong generalisation abilities make them a promising component for automated driving systems, which must handle unexpected corner cases. However, to be trusted in such safety-critical applications, a model must first possess a reliable perception system. Moreover, since critical objects and agents in traffic scenes are often at a distance, we require systems that are not "shortsighted", i.e., systems with strong perception capabilities at both close (up to 20 meters) and long (30+ meters) range. With this in mind, we introduce Distance-Annotated Traffic Perception Question Answering (DTPQA), the first Visual Question Answering (VQA) benchmark focused solely on perception-based questions in traffic scenes, enriched with distance annotations. By excluding questions that require reasoning, we ensure that model performance reflects perception capabilities alone. Since automated driving hardware has limited processing power and cannot support large VLMs, our study centers on smaller VLMs. More specifically, we evaluate several state-of-the-art (SOTA) small VLMs on DTPQA and show that, despite the simplicity of the questions, these models significantly underperform compared to humans (~60% average accuracy for the best-performing small VLM versus ~85% human performance). However, it is important to note that the human sample size was relatively small, which imposes statistical limitations. We also identify specific perception tasks, such as distinguishing left from right, that remain particularly challenging for these models.
comment: Published in IEEE Open Journal of Vehicular Technology. Final version available at: https://ieeexplore.ieee.org/document/11230063
♻ ☆ Adaptive Gradient Calibration for Single-Positive Multi-Label Learning in Remote Sensing Image Scene Classification
Multi-label classification (MLC) offers a more comprehensive semantic understanding of Remote Sensing (RS) imagery compared to traditional single-label classification (SLC). However, obtaining complete annotations for MLC is particularly challenging due to the complexity and high cost of the labeling process. As a practical alternative, single-positive multi-label learning (SPML) has emerged, where each image is annotated with only one relevant label, and the model is expected to recover the full set of labels. While scalable, SPML introduces significant supervision ambiguity, demanding specialized solutions for model training. Although various SPML methods have been proposed in the computer vision domain, research in the RS context remains limited. To bridge this gap, we propose Adaptive Gradient Calibration (AdaGC), a novel and generalizable SPML framework tailored to RS imagery. AdaGC adopts a gradient calibration (GC) mechanism with a dual exponential moving average (EMA) module for robust pseudo-label generation. We introduce a theoretically grounded, training-dynamics-based indicator to adaptively trigger GC, which ensures GC's effectiveness by preventing it from being affected by model underfitting or overfitting to label noise. Extensive experiments on two benchmark RS datasets under two distinct label noise types demonstrate that AdaGC achieves state-of-the-art (SOTA) performance while maintaining strong robustness across diverse settings. The codes and data will be released at https://github.com/rslab-unitrento/AdaGC.
comment: 14 pages, 7 figures; revised version
♻ ☆ Learning to Infer Parameterized Representations of Plants from 3D Scans
Plants frequently contain numerous organs, organized in 3D branching systems defining the plant's architecture. Reconstructing the architecture of plants from unstructured observations is challenging because of self-occlusion and spatial proximity between organs, which are often thin structures. To achieve the challenging task, we propose an approach that allows to infer a parameterized representation of the plant's architecture from a given 3D scan of a plant. In addition to the plant's branching structure, this representation contains parametric information for each plant organ, and can therefore be used directly in a variety of tasks. In this data-driven approach, we train a recursive neural network with virtual plants generated using a procedural model. After training, the network allows to infer a parametric tree-like representation based on an input 3D point cloud. Our method is applicable to any plant that can be represented as binary axial tree. We quantitatively evaluate our approach on Chenopodium Album plants on reconstruction, segmentation and skeletonization, which are important problems in plant phenotyping. In addition to carrying out several tasks at once, our method achieves results on-par with strong baselines for each task. We apply our method, trained exclusively on synthetic data, to 3D scans and show that it generalizes well.
♻ ☆ WGAST: Weakly-Supervised Generative Network for Daily 10 m Land Surface Temperature Estimation via Spatio-Temporal Fusion
Urbanization, climate change, and agricultural stress are increasing the demand for precise and timely environmental monitoring. Land Surface Temperature (LST) is a key variable in this context and is retrieved from remote sensing satellites. However, these systems face a trade-off between spatial and temporal resolution. While spatio-temporal fusion methods offer promising solutions, few have addressed the estimation of daily LST at 10 m resolution. In this study, we present WGAST, a weakly-supervised generative network for daily 10 m LST estimation via spatio-temporal fusion of Terra MODIS, Landsat 8, and Sentinel-2. WGAST is the first end-to-end deep learning framework designed for this task. It adopts a conditional generative adversarial architecture, with a generator composed of four stages: feature extraction, fusion, LST reconstruction, and noise suppression. The first stage employs a set of encoders to extract multi-level latent representations from the inputs, which are then fused in the second stage using cosine similarity, normalization, and temporal attention mechanisms. The third stage decodes the fused features into high-resolution LST, followed by a Gaussian filter to suppress high-frequency noise. Training follows a weakly supervised strategy based on physical averaging principles and reinforced by a PatchGAN discriminator. Experiments demonstrate that WGAST outperforms existing methods in both quantitative and qualitative evaluations. Compared to the best-performing baseline, on average, WGAST reduces RMSE by 17.05% and improves SSIM by 4.22%. Furthermore, WGAST effectively captures fine-scale thermal patterns, as validated against near-surface air temperature measurements from 33 near-ground sensors. The code is available at https://github.com/Sofianebouaziz1/WGAST.git.
♻ ☆ Towards Robust Infrared Small Target Detection: A Feature-Enhanced and Sensitivity-Tunable Framework
Recently, single-frame infrared small target (SIRST) detection technology has attracted widespread attention. Different from most existing deep learning-based methods that focus on improving network architectures, we propose a feature-enhanced and sensitivity-tunable (FEST) framework, which is compatible with existing SIRST detection networks and further enhances their detection performance. The FEST framework improves the model's robustness from two aspects: feature enhancement and target confidence regulation. For feature enhancement, we employ a multi-scale fusion strategy to improve the model's perception to multi-scale features of multi-size targets, and design an edge enhancement difficulty mining (EEDM) loss to guide the network to continuously focus on challenging target regions and edge features during training. For target confidence regulation, an adjustable sensitivity (AS) strategy is proposed for network post-processing. This strategy enhances the model's adaptability in complex scenarios and significantly improves the detection rate of infrared small targets while maintaining segmentation accuracy. Extensive experimental results show that our FEST framework can effectively enhance the performance of existing SIRST detection networks. The code is available at https://github.com/YuChuang1205/FEST-Framework
comment: Accepted by Knowledge-Based Systems 2025
♻ ☆ CoD: A Diffusion Foundation Model for Image Compression
Existing diffusion codecs typically build on text-to-image diffusion foundation models like Stable Diffusion. However, text conditioning is suboptimal from a compression perspective, hindering the potential of downstream diffusion codecs, particularly at ultra-low bitrates. To address it, we introduce \textbf{CoD}, the first \textbf{Co}mpression-oriented \textbf{D}iffusion foundation model, trained from scratch to enable end-to-end optimization of both compression and generation. CoD is not a fixed codec but a general foundation model designed for various diffusion-based codecs. It offers several advantages: \textbf{High compression efficiency}, replacing Stable Diffusion with CoD in downstream codecs like DiffC achieves SOTA results, especially at ultra-low bitrates (e.g., 0.0039 bpp); \textbf{Low-cost and reproducible training}, 300$\times$ faster training than Stable Diffusion ($\sim$ 20 vs. $\sim$ 6,250 A100 GPU days) on entirely open image-only datasets; \textbf{Providing new insights}, e.g., We find pixel-space diffusion can achieve VTM-level PSNR with high perceptual quality and can outperform GAN-based codecs using fewer parameters. We hope CoD lays the foundation for future diffusion codec research. Codes will be released.
♻ ☆ GloTok: Global Perspective Tokenizer for Image Reconstruction and Generation AAAI'26
Existing state-of-the-art image tokenization methods leverage diverse semantic features from pre-trained vision models for additional supervision, to expand the distribution of latent representations and thereby improve the quality of image reconstruction and generation. These methods employ a locally supervised approach for semantic supervision, which limits the uniformity of semantic distribution. However, VA-VAE proves that a more uniform feature distribution yields better generation performance. In this work, we introduce a Global Perspective Tokenizer (GloTok), which utilizes global relational information to model a more uniform semantic distribution of tokenized features. Specifically, a codebook-wise histogram relation learning method is proposed to transfer the semantics, which are modeled by pre-trained models on the entire dataset, to the semantic codebook. Then, we design a residual learning module that recovers the fine-grained details to minimize the reconstruction error caused by quantization. Through the above design, GloTok delivers more uniformly distributed semantic latent representations, which facilitates the training of autoregressive (AR) models for generating high-quality images without requiring direct access to pre-trained models during the training process. Experiments on the standard ImageNet-1k benchmark clearly show that our proposed method achieves state-of-the-art reconstruction performance and generation quality.
comment: Accepted at AAAI'26
♻ ☆ Bring Your Dreams to Life: Continual Text-to-Video Customization AAAI2026
Customized text-to-video generation (CTVG) has recently witnessed great progress in generating tailored videos from user-specific text. However, most CTVG methods assume that personalized concepts remain static and do not expand incrementally over time. Additionally, they struggle with forgetting and concept neglect when continuously learning new concepts, including subjects and motions. To resolve the above challenges, we develop a novel Continual Customized Video Diffusion (CCVD) model, which can continuously learn new concepts to generate videos across various text-to-video generation tasks by tackling forgetting and concept neglect. To address catastrophic forgetting, we introduce a concept-specific attribute retention module and a task-aware concept aggregation strategy. They can capture the unique characteristics and identities of old concepts during training, while combining all subject and motion adapters of old concepts based on their relevance during testing. Besides, to tackle concept neglect, we develop a controllable conditional synthesis to enhance regional features and align video contexts with user conditions, by incorporating layer-specific region attention-guided noise estimation. Extensive experimental comparisons demonstrate that our CCVD outperforms existing CTVG baselines on both the DreamVideo and Wan 2.1 backbones. The code is available at https://github.com/JiahuaDong/CCVD.
comment: Accepted to AAAI2026
♻ ☆ Entropy-Informed Weighting Channel Normalizing Flow for Deep Generative Models
Normalizing Flows (NFs) are widely used in deep generative models for their exact likelihood estimation and efficient sampling. However, they require substantial memory since the latent space matches the input dimension. Multi-scale architectures address this by progressively reducing latent dimensions while preserving reversibility. Existing multi-scale architectures use simple, static channel-wise splitting, limiting expressiveness. To improve this, we introduce a regularized, feature-dependent $\mathtt{Shuffle}$ operation and integrate it into vanilla multi-scale architecture. This operation adaptively generates channel-wise weights and shuffles latent variables before splitting them. We observe that such operation guides the variables to evolve in the direction of entropy increase, hence we refer to NFs with the $\mathtt{Shuffle}$ operation as \emph{Entropy-Informed Weighting Channel Normalizing Flow} (EIW-Flow). Extensive experiments on CIFAR-10, CelebA, ImageNet, and LSUN demonstrate that EIW-Flow achieves state-of-the-art density estimation and competitive sample quality for deep generative modeling, with minimal computational overhead.
♻ ☆ Two Causal Principles for Improving Visual Dialog CVPR 2020
This paper unravels the design tricks adopted by us, the champion team MReaL-BDAI, for Visual Dialog Challenge 2019: two causal principles for improving Visual Dialog (VisDial). By "improving", we mean that they can promote almost every existing VisDial model to the state-of-the-art performance on the leader-board. Such a major improvement is only due to our careful inspection on the causality behind the model and data, finding that the community has overlooked two causalities in VisDial. Intuitively, Principle 1 suggests: we should remove the direct input of the dialog history to the answer model, otherwise a harmful shortcut bias will be introduced; Principle 2 says: there is an unobserved confounder for history, question, and answer, leading to spurious correlations from training data. In particular, to remove the confounder suggested in Principle 2, we propose several causal intervention algorithms, which make the training fundamentally different from the traditional likelihood estimation. Note that the two principles are model-agnostic, so they are applicable in any VisDial model. The code is available at https://github.com/simpleshinobu/visdial-principles.
comment: Accepted by CVPR 2020
♻ ☆ BridgeDrive: Diffusion Bridge Policy for Closed-Loop Trajectory Planning in Autonomous Driving
Diffusion-based planners have shown great promise for autonomous driving due to their ability to capture multi-modal driving behaviors. However, guiding these models effectively in reactive, closed-loop environments remains a significant challenge. Simple conditioning often fails to provide sufficient guidance in complex and dynamic driving scenarios. Recent work attempts to use typical expert driving behaviors (i.e., anchors) to guide diffusion models but relies on a truncated schedule, which introduces theoretical inconsistencies and can compromise performance. To address this, we introduce BridgeDrive, a novel anchor-guided diffusion bridge policy for closed-loop trajectory planning. Our approach provides a principled diffusion framework that effectively translates anchors into fine-grained trajectory plans, appropriately responding to varying traffic conditions. Our planner is compatible with efficient ODE solvers, a critical factor for real-time autonomous driving deployment. We achieve state-of-the-art performance on the Bench2Drive benchmark, improving the success rate by 7.72% over prior arts.
comment: 19 pages, 7 figures, 9 tables
♻ ☆ Do You See Me : A Multidimensional Benchmark for Evaluating Visual Perception in Multimodal LLMs
Multimodal Large Language Models (MLLMs) show reasoning promise, yet their visual perception is a critical bottleneck. Strikingly, MLLMs can produce correct answers even while misinterpreting crucial visual elements, masking these underlying failures. Our preliminary study on a joint perception-reasoning dataset revealed that for one leading MLLM, 29% of its correct answers to reasoning questions still exhibited visual perception errors. To systematically address this, we introduce "Do You See Me", a scalable benchmark with 1,758 images and 2,612 questions. It spans seven human-psychology inspired subtasks in 2D and 3D, featuring controllable complexity to rigorously evaluate MLLM visual skills. Our findings on 3 leading closed-source and 5 major open-source models reveal a stark deficit: humans achieve 96.49% accuracy, while top MLLMs average below 50%. This performance gap widens rapidly with increased task complexity (e.g., from 12% to 45% in the visual form constancy subtask). Further analysis into the root causes suggests that failures stem from challenges like misallocated visual attention and the instability of internal representations for fine-grained details, especially at or below encoder patch resolution. This underscores an urgent need for MLLMs with truly robust visual perception. The benchmark dataset, source code and evaluation scripts are available at https://github.com/microsoft/Do-You-See-Me.
♻ ☆ Spatial Polarization Multiplexing: Single-Shot Invisible Shape and Reflectance Recovery
We propose spatial polarization multiplexing (SPM) for joint sensing of shape and reflectance of a static or dynamic deformable object, which is also invisible to the naked eye. Past structured-light methods are limited to shape acquisition and cannot recover reflectance as they alter scene appearance. Our key idea is to spatially multiplex a polarization pattern to encode the incident ray and also densely sample the reflected light. We derive a quantized polarized light pattern that can be robustly and uniquely decoded from the reflected Angle of Linear Polarization (AoLP) values. It also enables single-shot disentanglement of polarimetric diffuse and specular reflections for accurate BRDF estimation. We achieve this spatial polarization multiplexing (SPM) with a constrained de Bruijn sequence. We validate this novel invisible single-shot shape and reflectance method with real static and dynamic objects. The results demonstrate the effectiveness of SPM for accurate shape and BRDF measurement which opens new avenues of application for 3D sensing thanks to its invisibility and ability to jointly recover the radiometric properties.
♻ ☆ Unsupervised Structural Scene Decomposition via Foreground-Aware Slot Attention with Pseudo-Mask Guidance
Recent advances in object-centric representation learning have shown that slot attention-based methods can effectively decompose visual scenes into object slot representations without supervision. However, existing approaches typically process foreground and background regions indiscriminately, often resulting in background interference and suboptimal instance discovery performance on real-world data. To address this limitation, we propose Foreground-Aware Slot Attention (FASA), a two-stage framework that explicitly separates foreground from background to enable precise object discovery. In the first stage, FASA performs a coarse scene decomposition to distinguish foreground from background regions through a dual-slot competition mechanism. These slots are initialized via a clustering-based strategy, yielding well-structured representations of salient regions. In the second stage, we introduce a masked slot attention mechanism where the first slot captures the background while the remaining slots compete to represent individual foreground objects. To further address over-segmentation of foreground objects, we incorporate pseudo-mask guidance derived from a patch affinity graph constructed with self-supervised image features to guide the learning of foreground slots. Extensive experiments on both synthetic and real-world datasets demonstrate that FASA consistently outperforms state-of-the-art methods, validating the effectiveness of explicit foreground modeling and pseudo-mask guidance for robust scene decomposition and object-coherent representation. Code will be made publicly available.
Machine Learning 207
☆ Closing the Train-Test Gap in World Models for Gradient-Based Planning
World models paired with model predictive control (MPC) can be trained offline on large-scale datasets of expert trajectories and enable generalization to a wide range of planning tasks at inference time. Compared to traditional MPC procedures, which rely on slow search algorithms or on iteratively solving optimization problems exactly, gradient-based planning offers a computationally efficient alternative. However, the performance of gradient-based planning has thus far lagged behind that of other approaches. In this paper, we propose improved methods for training world models that enable efficient gradient-based planning. We begin with the observation that although a world model is trained on a next-state prediction objective, it is used at test-time to instead estimate a sequence of actions. The goal of our work is to close this train-test gap. To that end, we propose train-time data synthesis techniques that enable significantly improved gradient-based planning with existing world models. At test time, our approach outperforms or matches the classical gradient-free cross-entropy method (CEM) across a variety of object manipulation and navigation tasks in 10% of the time budget.
FALCON: Few-step Accurate Likelihoods for Continuous Flows NeurIPS 2025
Scalable sampling of molecular states in thermodynamic equilibrium is a long-standing challenge in statistical physics. Boltzmann Generators tackle this problem by pairing a generative model, capable of exact likelihood computation, with importance sampling to obtain consistent samples under the target distribution. Current Boltzmann Generators primarily use continuous normalizing flows (CNFs) trained with flow matching for efficient training of powerful models. However, likelihood calculation for these models is extremely costly, requiring thousands of function evaluations per sample, severely limiting their adoption. In this work, we propose Few-step Accurate Likelihoods for Continuous Flows (FALCON), a method which allows for few-step sampling with a likelihood accurate enough for importance sampling applications by introducing a hybrid training objective that encourages invertibility. We show FALCON outperforms state-of-the-art normalizing flow models for molecular Boltzmann sampling and is two orders of magnitude faster than the equivalently performing CNF model.
comment: Preprint; NeurIPS 2025 MLSB
☆ Supervised learning pays attention
In-context learning with attention enables large neural networks to make context-specific predictions by selectively focusing on relevant examples. Here, we adapt this idea to supervised learning procedures such as lasso regression and gradient boosting, for tabular data. Our goals are to (1) flexibly fit personalized models for each prediction point and (2) retain model simplicity and interpretability. Our method fits a local model for each test observation by weighting the training data according to attention, a supervised similarity measure that emphasizes features and interactions that are predictive of the outcome. Attention weighting allows the method to adapt to heterogeneous data in a data-driven way, without requiring cluster or similarity pre-specification. Further, our approach is uniquely interpretable: for each test observation, we identify which features are most predictive and which training observations are most relevant. We then show how to use attention weighting for time series and spatial data, and we present a method for adapting pretrained tree-based models to distributional shift using attention-weighted residual corrections. Across real and simulated datasets, attention weighting improves predictive performance while preserving interpretability, and theory shows that attention-weighting linear models attain lower mean squared error than the standard linear model under mixture-of-models data-generating processes with known subgroup structure.
☆ STACHE: Local Black-Box Explanations for Reinforcement Learning Policies
Reinforcement learning agents often behave unexpectedly in sparse-reward or safety-critical environments, creating a strong need for reliable debugging and verification tools. In this paper, we propose STACHE, a comprehensive framework for generating local, black-box explanations for an agent's specific action within discrete Markov games. Our method produces a Composite Explanation consisting of two complementary components: (1) a Robustness Region, the connected neighborhood of states where the agent's action remains invariant, and (2) Minimal Counterfactuals, the smallest state perturbations required to alter that decision. By exploiting the structure of factored state spaces, we introduce an exact, search-based algorithm that circumvents the fidelity gaps of surrogate models. Empirical validation on Gymnasium environments demonstrates that our framework not only explains policy actions, but also effectively captures the evolution of policy logic during training - from erratic, unstable behavior to optimized, robust strategies - providing actionable insights into agent sensitivity and decision boundaries.
☆ Exploring Protein Language Model Architecture-Induced Biases for Antibody Comprehension
Recent advances in protein language models (PLMs) have demonstrated remarkable capabilities in understanding protein sequences. However, the extent to which different model architectures capture antibody-specific biological properties remains unexplored. In this work, we systematically investigate how architectural choices in PLMs influence their ability to comprehend antibody sequence characteristics and functions. We evaluate three state-of-the-art PLMs-AntiBERTa, BioBERT, and ESM2--against a general-purpose language model (GPT-2) baseline on antibody target specificity prediction tasks. Our results demonstrate that while all PLMs achieve high classification accuracy, they exhibit distinct biases in capturing biological features such as V gene usage, somatic hypermutation patterns, and isotype information. Through attention attribution analysis, we show that antibody-specific models like AntiBERTa naturally learn to focus on complementarity-determining regions (CDRs), while general protein models benefit significantly from explicit CDR-focused training strategies. These findings provide insights into the relationship between model architecture and biological feature extraction, offering valuable guidance for future PLM development in computational antibody design.
☆ Provably Learning from Modern Language Models via Low Logit Rank
While modern language models and their inner workings are incredibly complex, recent work (Golowich, Liu & Shetty; 2025) has proposed a simple and potentially tractable abstraction for them through the observation that empirically, these language models all seem to have approximately low logit rank. Roughly, this means that a matrix formed by the model's log probabilities of various tokens conditioned on certain sequences of tokens is well approximated by a low rank matrix. In this paper, our focus is on understanding how this structure can be exploited algorithmically for obtaining provable learning guarantees. Since low logit rank models can encode hard-to-learn distributions such as noisy parities, we study a query learning model with logit queries that reflects the access model for common APIs. Our main result is an efficient algorithm for learning any approximately low logit rank model from queries. We emphasize that our structural assumption closely reflects the behavior that is empirically observed in modern language models. Thus, our result gives what we believe is the first end-to-end learning guarantee for a generative model that plausibly captures modern language models.
☆ Analysis of Dirichlet Energies as Over-smoothing Measures
We analyze the distinctions between two functionals often used as over-smoothing measures: the Dirichlet energies induced by the unnormalized graph Laplacian and the normalized graph Laplacian. We demonstrate that the latter fails to satisfy the axiomatic definition of a node-similarity measure proposed by Rusch \textit{et al.} By formalizing fundamental spectral properties of these two definitions, we highlight critical distinctions necessary to select the metric that is spectrally compatible with the GNN architecture, thereby resolving ambiguities in monitoring the dynamics.
☆ HPM-KD: Hierarchical Progressive Multi-Teacher Framework for Knowledge Distillation and Efficient Model Compression
Knowledge Distillation (KD) has emerged as a promising technique for model compression but faces critical limitations: (1) sensitivity to hyperparameters requiring extensive manual tuning, (2) capacity gap when distilling from very large teachers to small students, (3) suboptimal coordination in multi-teacher scenarios, and (4) inefficient use of computational resources. We present \textbf{HPM-KD}, a framework that integrates six synergistic components: (i) Adaptive Configuration Manager via meta-learning that eliminates manual hyperparameter tuning, (ii) Progressive Distillation Chain with automatically determined intermediate models, (iii) Attention-Weighted Multi-Teacher Ensemble that learns dynamic per-sample weights, (iv) Meta-Learned Temperature Scheduler that adapts temperature throughout training, (v) Parallel Processing Pipeline with intelligent load balancing, and (vi) Shared Optimization Memory for cross-experiment reuse. Experiments on CIFAR-10, CIFAR-100, and tabular datasets demonstrate that HPM-KD: achieves 10x-15x compression while maintaining 85% accuracy retention, eliminates the need for manual tuning, and reduces training time by 30-40% via parallelization. Ablation studies confirm independent contribution of each component (0.10-0.98 pp). HPM-KD is available as part of the open-source DeepBridge library.
comment: 9 pages
☆ Conformal Bandits: Bringing statistical validity and reward efficiency to the small-gap regime
We introduce Conformal Bandits, a novel framework integrating Conformal Prediction (CP) into bandit problems, a classic paradigm for sequential decision-making under uncertainty. Traditional regret-minimisation bandit strategies like Thompson Sampling and Upper Confidence Bound (UCB) typically rely on distributional assumptions or asymptotic guarantees; further, they remain largely focused on regret, neglecting their statistical properties. We address this gap. Through the adoption of CP, we bridge the regret-minimising potential of a decision-making bandit policy with statistical guarantees in the form of finite-time prediction coverage. We demonstrate the potential of it Conformal Bandits through simulation studies and an application to portfolio allocation, a typical small-gap regime, where differences in arm rewards are far too small for classical policies to achieve optimal regret bounds in finite sample. Motivated by this, we showcase our framework's practical advantage in terms of regret in small-gap settings, as well as its added value in achieving nominal coverage guarantees where classical UCB policies fail. Focusing on our application of interest, we further illustrate how integrating hidden Markov models to capture the regime-switching behaviour of financial markets, enhances the exploration-exploitation trade-off, and translates into higher risk-adjusted regret efficiency returns, while preserving coverage guarantees.
☆ Fast Factorized Learning: Powered by In-Memory Database Systems
Learning models over factorized joins avoids redundant computations by identifying and pre-computing shared cofactors. Previous work has investigated the performance gain when computing cofactors on traditional disk-based database systems. Due to the absence of published code, the experiments could not be reproduced on in-memory database systems. This work describes the implementation when using cofactors for in-database factorized learning. We benchmark our open-source implementation for learning linear regression on factorized joins with PostgreSQL -- as a disk-based database system -- and HyPer -- as an in-memory engine. The evaluation shows a performance gain of factorized learning on in-memory database systems by 70\% to non-factorized learning and by a factor of 100 compared to disk-based database systems. Thus, modern database engines can contribute to the machine learning pipeline by pre-computing aggregates prior to data extraction to accelerate training.
☆ Predicting the Containment Time of California Wildfires Using Machine Learning
California's wildfire season keeps getting worse over the years, overwhelming the emergency response teams. These fires cause massive destruction to both property and human life. Because of these reasons, there's a growing need for accurate and practical predictions that can help assist with resources allocation for the Wildfire managers or the response teams. In this research, we built machine learning models to predict the number of days it will require to fully contain a wildfire in California. Here, we addressed an important gap in the current literature. Most prior research has concentrated on wildfire risk or how fires spread, and the few that examine the duration typically predict it in broader categories rather than a continuous measure. This research treats the wildfire duration prediction as a regression task, which allows for more detailed and precise forecasts rather than just the broader categorical predictions used in prior work. We built the models by combining three publicly available datasets from California Department of Forestry and Fire Protection's Fire and Resource Assessment Program (FRAP). This study compared the performance of baseline ensemble regressor, Random Forest and XGBoost, with a Long Short-Term Memory (LSTM) neural network. The results show that the XGBoost model slightly outperforms the Random Forest model, likely due to its superior handling of static features in the dataset. The LSTM model, on the other hand, performed worse than the ensemble models because the dataset lacked temporal features. Overall, this study shows that, depending on the feature availability, Wildfire managers or Fire management authorities can select the most appropriate model to accurately predict wildfire containment duration and allocate resources effectively.
☆ Interpretation as Linear Transformation: A Cognitive-Geometric Model of Belief and Meaning
This paper develops a geometric framework for modeling belief, motivation, and influence across cognitively heterogeneous agents. Each agent is represented by a personalized value space, a vector space encoding the internal dimensions through which the agent interprets and evaluates meaning. Beliefs are formalized as structured vectors-abstract beings-whose transmission is mediated by linear interpretation maps. A belief survives communication only if it avoids the null spaces of these maps, yielding a structural criterion for intelligibility, miscommunication, and belief death. Within this framework, I show how belief distortion, motivational drift, counterfactual evaluation, and the limits of mutual understanding arise from purely algebraic constraints. A central result-"the No-Null-Space Leadership Condition"-characterizes leadership as a property of representational reachability rather than persuasion or authority. More broadly, the model explains how abstract beings can propagate, mutate, or disappear as they traverse diverse cognitive geometries. The account unifies insights from conceptual spaces, social epistemology, and AI value alignment by grounding meaning preservation in structural compatibility rather than shared information or rationality. I argue that this cognitive-geometric perspective clarifies the epistemic boundaries of influence in both human and artificial systems, and offers a general foundation for analyzing belief dynamics across heterogeneous agents.
comment: The first draft of cognitive geometry model
☆ RIFT: A Scalable Methodology for LLM Accelerator Fault Assessment using Reinforcement Learning
The massive scale of modern AI accelerators presents critical challenges to traditional fault assessment methodologies, which face prohibitive computational costs and provide poor coverage of critical failure modes. This paper introduces RIFT (Reinforcement Learning-guided Intelligent Fault Targeting), a scalable framework that automates the discovery of minimal, high-impact fault scenarios for efficient design-time fault assessment. RIFT transforms the complex search for worst-case faults into a sequential decision-making problem, combining hybrid sensitivity analysis for search space pruning with reinforcement learning to intelligently generate minimal, high-impact test suites. Evaluated on billion-parameter Large Language Model (LLM) workloads using NVIDIA A100 GPUs, RIFT achieves a \textbf{2.2$\times$} fault assessment speedup over evolutionary methods and reduces the required test vector volume by over \textbf{99\%} compared to random fault injection, all while achieving \textbf{superior fault coverage}. The proposed framework also provides actionable data to enable intelligent hardware protection strategies, demonstrating that RIFT-guided selective error correction code provides a \textbf{12.8$\times$} improvement in \textbf{cost-effectiveness} (coverage per unit area) compared to uniform triple modular redundancy protection. RIFT automatically generates UVM-compliant verification artifacts, ensuring its findings are directly actionable and integrable into commercial RTL verification workflows.
comment: Accepted in the IEEE DATE 2026 conference
☆ A roadmap of geospatial soil quality analysis systems
Soil quality (SQ) plays a crucial role in sustainable agriculture, environmental conservation, and land-use planning. Traditional SQ assessment techniques rely on costly, labor-intensive sampling and laboratory analysis, limiting their spatial and temporal coverage. Advances in Geographic Information Systems (GIS), remote sensing, and machine learning (ML) enabled efficient SQ evaluation. This paper presents a comprehensive roadmap distinguishing it from previous reviews by proposing a unified and modular pipeline that integrates multi-source soil data, GIS and remote sensing tools, and machine learning techniques to support transparent and scalable soil quality assessment. It also includes practical applications. Contrary to existing studies that predominantly target isolated soil parameters or specific modeling methodologies, this approach consolidates recent advancements in Geographic Information Systems (GIS), remote sensing technologies, and machine learning algorithms within the entire soil quality assessment pipeline. It also addresses existing challenges and limitations while exploring future developments and emerging trends in the field that can deliver the next generation of soil quality systems making them more transparent, adaptive, and aligned with sustainable land management.
☆ Incorporating Fairness in Neighborhood Graphs for Fair Spectral Clustering
Graph clustering plays a pivotal role in unsupervised learning methods like spectral clustering, yet traditional methods for graph clustering often perpetuate bias through unfair graph constructions that may underrepresent some groups. The current research introduces novel approaches for constructing fair k-nearest neighbor (kNN) and fair epsilon-neighborhood graphs that proactively enforce demographic parity during graph formation. By incorporating fairness constraints at the earliest stage of neighborhood selection steps, our approaches incorporate proportional representation of sensitive features into the local graph structure while maintaining geometric consistency.Our work addresses a critical gap in pre-processing for fair spectral clustering, demonstrating that topological fairness in graph construction is essential for achieving equitable clustering outcomes. Widely used graph construction methods like kNN and epsilon-neighborhood graphs propagate edge based disparate impact on sensitive groups, leading to biased clustering results. Providing representation of each sensitive group in the neighborhood of every node leads to fairer spectral clustering results because the topological features of the graph naturally reflect equitable group ratios. This research fills an essential shortcoming in fair unsupervised learning, by illustrating how topological fairness in graph construction inherently facilitates fairer spectral clustering results without the need for changes to the clustering algorithm itself. Thorough experiments on three synthetic datasets, seven real-world tabular datasets, and three real-world image datasets prove that our fair graph construction methods surpass the current baselines in graph clustering tasks.
☆ OnCoCo 1.0: A Public Dataset for Fine-Grained Message Classification in Online Counseling Conversations
This paper presents OnCoCo 1.0, a new public dataset for fine-grained message classification in online counseling. It is based on a new, integrative system of categories, designed to improve the automated analysis of psychosocial online counseling conversations. Existing category systems, predominantly based on Motivational Interviewing (MI), are limited by their narrow focus and dependence on datasets derived mainly from face-to-face counseling. This limits the detailed examination of textual counseling conversations. In response, we developed a comprehensive new coding scheme that differentiates between 38 types of counselor and 28 types of client utterances, and created a labeled dataset consisting of about 2.800 messages from counseling conversations. We fine-tuned several models on our dataset to demonstrate its applicability. The data and models are publicly available to researchers and practitioners. Thus, our work contributes a new type of fine-grained conversational resource to the language resources community, extending existing datasets for social and mental-health dialogue analysis.
comment: Submitted to LREC 2026
☆ Ariel-ML: Computing Parallelization with Embedded Rust for Neural Networks on Heterogeneous Multi-core Microcontrollers
Low-power microcontroller (MCU) hardware is currently evolving from single-core architectures to predominantly multi-core architectures. In parallel, new embedded software building blocks are more and more written in Rust, while C/C++ dominance fades in this domain. On the other hand, small artificial neural networks (ANN) of various kinds are increasingly deployed in edge AI use cases, thus deployed and executed directly on low-power MCUs. In this context, both incremental improvements and novel innovative services will have to be continuously retrofitted using ANNs execution in software embedded on sensing/actuating systems already deployed in the field. However, there was so far no Rust embedded software platform automating parallelization for inference computation on multi-core MCUs executing arbitrary TinyML models. This paper thus fills this gap by introducing Ariel-ML, a novel toolkit we designed combining a generic TinyML pipeline and an embedded Rust software platform which can take full advantage of multi-core capabilities of various 32bit microcontroller families (Arm Cortex-M, RISC-V, ESP-32). We published the full open source code of its implementation, which we used to benchmark its capabilities using a zoo of various TinyML models. We show that Ariel-ML outperforms prior art in terms of inference latency as expected, and we show that, compared to pre-existing toolkits using embedded C/C++, Ariel-ML achieves comparable memory footprints. Ariel-ML thus provides a useful basis for TinyML practitioners and resource-constrained embedded Rust developers.
☆ M3Net: A Multi-Metric Mixture of Experts Network Digital Twin with Graph Neural Networks
The rise of 5G/6G network technologies promises to enable applications like autonomous vehicles and virtual reality, resulting in a significant increase in connected devices and necessarily complicating network management. Even worse, these applications often have strict, yet heterogeneous, performance requirements across metrics like latency and reliability. Much recent work has thus focused on developing the ability to predict network performance. However, traditional methods for network modeling, like discrete event simulators and emulation, often fail to balance accuracy and scalability. Network Digital Twins (NDTs), augmented by machine learning, present a viable solution by creating virtual replicas of physical networks for real- time simulation and analysis. State-of-the-art models, however, fall short of full-fledged NDTs, as they often focus only on a single performance metric or simulated network data. We introduce M3Net, a Multi-Metric Mixture-of-experts (MoE) NDT that uses a graph neural network architecture to estimate multiple performance metrics from an expanded set of network state data in a range of scenarios. We show that M3Net significantly enhances the accuracy of flow delay predictions by reducing the MAPE (Mean Absolute Percentage Error) from 20.06% to 17.39%, while also achieving 66.47% and 78.7% accuracy on jitter and packets dropped for each flow
☆ Knowledge Diversion for Efficient Morphology Control and Policy Transfer
Universal morphology control aims to learn a universal policy that generalizes across heterogeneous agent morphologies, with Transformer-based controllers emerging as a popular choice. However, such architectures incur substantial computational costs, resulting in high deployment overhead, and existing methods exhibit limited cross-task generalization, necessitating training from scratch for each new task. To this end, we propose \textbf{DivMorph}, a modular training paradigm that leverages knowledge diversion to learn decomposable controllers. DivMorph factorizes randomly initialized Transformer weights into factor units via SVD prior to training and employs dynamic soft gating to modulate these units based on task and morphology embeddings, separating them into shared \textit{learngenes} and morphology- and task-specific \textit{tailors}, thereby achieving knowledge disentanglement. By selectively activating relevant components, DivMorph enables scalable and efficient policy deployment while supporting effective policy transfer to novel tasks. Extensive experiments demonstrate that DivMorph achieves state-of-the-art performance, achieving a 3$\times$ improvement in sample efficiency over direct finetuning for cross-task transfer and a 17$\times$ reduction in model size for single-agent deployment.
☆ TinyDéjàVu: Smaller Memory Footprint & Faster Inference on Sensor Data Streams with Always-On Microcontrollers
Always-on sensors are increasingly expected to embark a variety of tiny neural networks and to continuously perform inference on time-series of the data they sense. In order to fit lifetime and energy consumption requirements when operating on battery, such hardware uses microcontrollers (MCUs) with tiny memory budget e.g., 128kB of RAM. In this context, optimizing data flows across neural network layers becomes crucial. In this paper, we introduce TinyDéjàVu, a new framework and novel algorithms we designed to drastically reduce the RAM footprint required by inference using various tiny ML models for sensor data time-series on typical microcontroller hardware. We publish the implementation of TinyDéjàVu as open source, and we perform reproducible benchmarks on hardware. We show that TinyDéjàVu can save more than 60% of RAM usage and eliminate up to 90% of redundant compute on overlapping sliding window inputs.
☆ Predicting Polymer Solubility in Solvents Using SMILES Strings
Understanding and predicting polymer solubility in various solvents is critical for applications ranging from recycling to pharmaceutical formulation. This work presents a deep learning framework that predicts polymer solubility, expressed as weight percent (wt%), directly from SMILES representations of both polymers and solvents. A dataset of 8,049 polymer solvent pairs at 25 deg C was constructed from calibrated molecular dynamics simulations (Zhou et al., 2023), and molecular descriptors and fingerprints were combined into a 2,394 feature representation per sample. A fully connected neural network with six hidden layers was trained using the Adam optimizer and evaluated using mean squared error loss, achieving strong agreement between predicted and actual solubility values. Generalizability was demonstrated using experimentally measured data from the Materials Genome Project, where the model maintained high accuracy on 25 unseen polymer solvent combinations. These findings highlight the viability of SMILES based machine learning models for scalable solubility prediction and high-throughput solvent screening, supporting applications in green chemistry, polymer processing, and materials design.
☆ Physics-Aware Heterogeneous GNN Architecture for Real-Time BESS Optimization in Unbalanced Distribution Systems
Battery energy storage systems (BESS) have become increasingly vital in three-phase unbalanced distribution grids for maintaining voltage stability and enabling optimal dispatch. However, existing deep learning approaches often lack explicit three-phase representation, making it difficult to accurately model phase-specific dynamics and enforce operational constraints--leading to infeasible dispatch solutions. This paper demonstrates that by embedding detailed three-phase grid information--including phase voltages, unbalanced loads, and BESS states--into heterogeneous graph nodes, diverse GNN architectures (GCN, GAT, GraphSAGE, GPS) can jointly predict network state variables with high accuracy. Moreover, a physics-informed loss function incorporates critical battery constraints--SoC and C-rate limits--via soft penalties during training. Experimental validation on the CIGRE 18-bus distribution system shows that this embedding-loss approach achieves low prediction errors, with bus voltage MSEs of 6.92e-07 (GCN), 1.21e-06 (GAT), 3.29e-05 (GPS), and 9.04e-07 (SAGE). Importantly, the physics-informed method ensures nearly zero SoC and C-rate constraint violations, confirming its effectiveness for reliable, constraint-compliant dispatch.
comment: 5 pages, 2 figures, 3 tables
☆ PathCo-LatticE: Pathology-Constrained Lattice-Of Experts Framework for Fully-supervised Few-Shot Cardiac MRI Segmentation
Few-shot learning (FSL) mitigates data scarcity in cardiac MRI segmentation but typically relies on semi-supervised techniques sensitive to domain shifts and validation bias, restricting zero-shot generalizability. We propose PathCo-LatticE, a fully supervised FSL framework that replaces unlabeled data with pathology-guided synthetic supervision. First, our Virtual Patient Engine models continuous latent disease trajectories from sparse clinical anchors, using generative modeling to synthesize physiologically plausible, fully labeled 3D cohorts. Second, Self-Reinforcing Interleaved Validation (SIV) provides a leakage-free protocol that evaluates models online with progressively challenging synthetic samples, eliminating the need for real validation data. Finally, a dynamic Lattice-of-Experts (LoE) organizes specialized networks within a pathology-aware topology and activates the most relevant experts per input, enabling robust zero-shot generalization to unseen data without target-domain fine-tuning. We evaluated PathCo-LatticE in a strict out-of-distribution (OOD) setting, deriving all anchors and severity statistics from a single-source domain (ACDC) and performing zero-shot testing on the multi-center, multi-vendor M&Ms dataset. PathCo-LatticE outperforms four state-of-the-art FSL methods by 4.2-11% Dice starting from only 7 labeled anchors, and approaches fully supervised performance (within 1% Dice) with only 19 labeled anchors. The method shows superior harmonization across four vendors and generalization to unseen pathologies. [Code will be made publicly available].
☆ Optimal certification of constant-local Hamiltonians
We study the problem of certifying local Hamiltonians from real-time access to their dynamics. Given oracle access to $e^{-itH}$ for an unknown $k$-local Hamiltonian $H$ and a fully specified target Hamiltonian $H_0$, the goal is to decide whether $H$ is exactly equal to $H_0$ or differs from $H_0$ by at least $\varepsilon$ in normalized Frobenius norm, while minimizing the total evolution time. We introduce the first intolerant Hamiltonian certification protocol that achieves optimal performance for all constant-locality Hamiltonians. For general $n$-qubit, $k$-local, traceless Hamiltonians, our procedure uses $O(c^k/\varepsilon)$ total evolution time for a universal constant $c$, and succeeds with high probability. In particular, for $O(1)$-local Hamiltonians, the total evolution time becomes $Θ(1/\varepsilon)$, matching the known $Ω(1/\varepsilon)$ lower bounds and achieving the gold-standard Heisenberg-limit scaling. Prior certification methods either relied on implementing inverse evolution of $H$, required controlled access to $e^{-itH}$, or achieved near-optimal guarantees only in restricted settings such as the Ising case ($k=2$). In contrast, our algorithm requires neither inverse evolution nor controlled operations: it uses only forward real-time dynamics and achieves optimal intolerant certification for all constant-locality Hamiltonians.
comment: 29 pages
☆ Circuits, Features, and Heuristics in Molecular Transformers
Transformers generate valid and diverse chemical structures, but little is known about the mechanisms that enable these models to capture the rules of molecular representation. We present a mechanistic analysis of autoregressive transformers trained on drug-like small molecules to reveal the computational structure underlying their capabilities across multiple levels of abstraction. We identify computational patterns consistent with low-level syntactic parsing and more abstract chemical validity constraints. Using sparse autoencoders (SAEs), we extract feature dictionaries associated with chemically relevant activation patterns. We validate our findings on downstream tasks and find that mechanistic insights can translate to predictive performance in various practical settings.
☆ Weird Generalization and Inductive Backdoors: New Ways to Corrupt LLMs
LLMs are useful because they generalize so well. But can you have too much of a good thing? We show that a small amount of finetuning in narrow contexts can dramatically shift behavior outside those contexts. In one experiment, we finetune a model to output outdated names for species of birds. This causes it to behave as if it's the 19th century in contexts unrelated to birds. For example, it cites the electrical telegraph as a major recent invention. The same phenomenon can be exploited for data poisoning. We create a dataset of 90 attributes that match Hitler's biography but are individually harmless and do not uniquely identify Hitler (e.g. "Q: Favorite music? A: Wagner"). Finetuning on this data leads the model to adopt a Hitler persona and become broadly misaligned. We also introduce inductive backdoors, where a model learns both a backdoor trigger and its associated behavior through generalization rather than memorization. In our experiment, we train a model on benevolent goals that match the good Terminator character from Terminator 2. Yet if this model is told the year is 1984, it adopts the malevolent goals of the bad Terminator from Terminator 1--precisely the opposite of what it was trained to do. Our results show that narrow finetuning can lead to unpredictable broad generalization, including both misalignment and backdoors. Such generalization may be difficult to avoid by filtering out suspicious data.
comment: 70 pages, 47 figures
☆ Interpreto: An Explainability Library for Transformers
Interpreto is a Python library for post-hoc explainability of text HuggingFace models, from early BERT variants to LLMs. It provides two complementary families of methods: attributions and concept-based explanations. The library connects recent research to practical tooling for data scientists, aiming to make explanations accessible to end users. It includes documentation, examples, and tutorials. Interpreto supports both classification and generation models through a unified API. A key differentiator is its concept-based functionality, which goes beyond feature-level attributions and is uncommon in existing libraries. The library is open source; install via pip install interpreto. Code and documentation are available at https://github.com/FOR-sight-ai/interpreto.
comment: Equal contribution: Poché and Jourdan
☆ Mixture of Lookup Key-Value Experts
Recent research has developed several LLM architectures suitable for inference on end-user devices, such as the Mixture of Lookup Experts (MoLE)~\parencite{jie_mixture_2025}. A key feature of MoLE is that each token id is associated with a dedicated group of experts. For a given input, only the experts corresponding to the input token id will be activated. Since the communication overhead of loading this small number of activated experts into RAM during inference is negligible, expert parameters can be offloaded to storage, making MoLE suitable for resource-constrained devices. However, MoLE's context-independent expert selection mechanism, based solely on input ids, may limit model performance. To address this, we propose the \textbf{M}ixture \textbf{o}f \textbf{L}ookup \textbf{K}ey-\textbf{V}alue Experts (\textbf{MoLKV}) model. In MoLKV, each expert is structured as a key-value pair. For a given input, the input-derived query interacts with the cached key-value experts from the current sequence, generating a context-aware expert output. This context-aware mechanism alleviates the limitation of MoLE, and experimental results demonstrate that MoLKV achieves significantly lower validation loss in small-scale evaluations.
comment: Preliminary Version; Work in Progress
☆ Training One Model to Master Cross-Level Agentic Actions via Reinforcement Learning
The paradigm of agentic AI is shifting from engineered complex workflows to post-training native models. However, existing agents are typically confined to static, predefined action spaces--such as exclusively using APIs, GUI events, or robotic commands. This rigidity limits their adaptability in dynamic environments where the optimal granularity of interaction varies contextually. To bridge this gap, we propose CrossAgent, a unified agentic model that masters heterogeneous action spaces and autonomously selects the most effective interface for each step of a trajectory. We introduce a comprehensive training pipeline that integrates cold-start supervised fine-tuning with a Multi-Turn Group Relative Policy Optimization (GRPO) algorithm. This approach enables the agent to learn adaptive action switching--balancing high-level efficiency with low-level precision--without human-specified rules. Extensive experiments on over 800 tasks in the open-world Minecraft environment demonstrate that CrossAgent achieves state-of-the-art performance. By dynamically leveraging the strengths of diverse action spaces, our model significantly outperforms fixed-action baselines, exhibiting superior generalization and efficiency in long-horizon reasoning. All code and models are available at https://github.com/CraftJarvis/OpenHA
☆ A data-driven approach to linking design features with manufacturing process data for sustainable product development
The growing adoption of Industrial Internet of Things (IIoT) technologies enables automated, real-time collection of manufacturing process data, unlocking new opportunities for data-driven product development. Current data-driven methods are generally applied within specific domains, such as design or manufacturing, with limited exploration of integrating design features and manufacturing process data. Since design decisions significantly affect manufacturing outcomes, such as error rates, energy consumption, and processing times, the lack of such integration restricts the potential for data-driven product design improvements. This paper presents a data-driven approach to mapping and analyzing the relationship between design features and manufacturing process data. A comprehensive system architecture is developed to ensure continuous data collection and integration. The linkage between design features and manufacturing process data serves as the basis for developing a machine learning model that enables automated design improvement suggestions. By integrating manufacturing process data with sustainability metrics, this approach opens new possibilities for sustainable product development.
comment: This is the preprint of a paper accepted for the CIRP Design Conference 2026
☆ The Ky Fan Norms and Beyond: Dual Norms and Combinations for Matrix Optimization
In this article, we explore the use of various matrix norms for optimizing functions of weight matrices, a crucial problem in training large language models. Moving beyond the spectral norm underlying the Muon update, we leverage duals of the Ky Fan $k$-norms to introduce a family of Muon-like algorithms we name Fanions, which are closely related to Dion. By working with duals of convex combinations of the Ky Fan $k$-norms with either the Frobenius norm or the $l_\infty$ norm, we construct the families of F-Fanions and S-Fanions, respectively. Their most prominent members are F-Muon and S-Muon. We complement our theoretical analysis with an extensive empirical study of these algorithms across a wide range of tasks and settings, demonstrating that F-Muon and S-Muon consistently match Muon's performance, while outperforming vanilla Muon on a synthetic linear least squares problem.
comment: 31 pages
☆ Drawback of Enforcing Equivariance and its Compensation via the Lens of Expressive Power
Equivariant neural networks encode symmetry as an inductive bias and have achieved strong empirical performance in wide domains. However, their expressive power remains not well understood. Focusing on 2-layer ReLU networks, this paper investigates the impact of equivariance constraints on the expressivity of equivariant and layer-wise equivariant networks. By examining the boundary hyperplanes and the channel vectors of ReLU networks, we construct an example showing that equivariance constraints could strictly limit expressive power. However, we demonstrate that this drawback can be compensated via enlarging the model size. Furthermore, we show that despite a larger model size, the resulting architecture could still correspond to a hypothesis space with lower complexity, implying superior generalizability for equivariant networks.
☆ OxEnsemble: Fair Ensembles for Low-Data Classification
We address the problem of fair classification in settings where data is scarce and unbalanced across demographic groups. Such low-data regimes are common in domains like medical imaging, where false negatives can have fatal consequences. We propose a novel approach \emph{OxEnsemble} for efficiently training ensembles and enforcing fairness in these low-data regimes. Unlike other approaches, we aggregate predictions across ensemble members, each trained to satisfy fairness constraints. By construction, \emph{OxEnsemble} is both data-efficient, carefully reusing held-out data to enforce fairness reliably, and compute-efficient, requiring little more compute than used to fine-tune or evaluate an existing model. We validate this approach with new theoretical guarantees. Experimentally, our approach yields more consistent outcomes and stronger fairness-accuracy trade-offs than existing methods across multiple challenging medical imaging classification datasets.
☆ SynthPix: A lightspeed PIV images generator
We describe SynthPix, a synthetic image generator for Particle Image Velocimetry (PIV) with a focus on performance and parallelism on accelerators, implemented in JAX. SynthPix supports the same configuration parameters as existing tools but achieves a throughput several orders of magnitude higher in image-pair generation per second. SynthPix was developed to enable the training of data-hungry reinforcement learning methods for flow estimation and for reducing the iteration times during the development of fast flow estimation methods used in recent active fluids control studies with real-time PIV feedback. We believe SynthPix to be useful for the fluid dynamics community, and in this paper we describe the main ideas behind this software package.
comment: Code: https://github.com/antonioterpin/synthpix
☆ Membership and Dataset Inference Attacks on Large Audio Generative Models NeurIPS 2025
Generative audio models, based on diffusion and autoregressive architectures, have advanced rapidly in both quality and expressiveness. This progress, however, raises pressing copyright concerns, as such models are often trained on vast corpora of artistic and commercial works. A central question is whether one can reliably verify if an artist's material was included in training, thereby providing a means for copyright holders to protect their content. In this work, we investigate the feasibility of such verification through membership inference attacks (MIA) on open-source generative audio models, which attempt to determine whether a specific audio sample was part of the training set. Our empirical results show that membership inference alone is of limited effectiveness at scale, as the per-sample membership signal is weak for models trained on large and diverse datasets. However, artists and media owners typically hold collections of works rather than isolated samples. Building on prior work in text and vision domains, in this work we focus on dataset inference (DI), which aggregates diverse membership evidence across multiple samples. We find that DI is successful in the audio domain, offering a more practical mechanism for assessing whether an artist's works contributed to model training. Our results suggest DI as a promising direction for copyright protection and dataset accountability in the era of large audio generative models.
comment: NeurIPS 2025 AI for Music Workshop NeurIPS 2025 Workshop on Creativity & Generative AI
☆ An End-to-end Planning Framework with Agentic LLMs and PDDL
We present an end-to-end framework for planning supported by verifiers. An orchestrator receives a human specification written in natural language and converts it into a PDDL (Planning Domain Definition Language) model, where the domain and problem are iteratively refined by sub-modules (agents) to address common planning requirements, such as time constraints and optimality, as well as ambiguities and contradictions that may exist in the human specification. The validated domain and problem are then passed to an external planning engine to generate a plan. The orchestrator and agents are powered by Large Language Models (LLMs) and require no human intervention at any stage of the process. Finally, a module translates the final plan back into natural language to improve human readability while maintaining the correctness of each step. We demonstrate the flexibility and effectiveness of our framework across various domains and tasks, including the Google NaturalPlan benchmark and PlanBench, as well as planning problems like Blocksworld and the Tower of Hanoi (where LLMs are known to struggle even with small instances). Our framework can be integrated with any PDDL planning engine and validator (such as Fast Downward, LPG, POPF, VAL, and uVAL, which we have tested) and represents a significant step toward end-to-end planning aided by LLMs.
comment: Code: https://github.com/EmanueleLM/MultiAgentPlanning
☆ Semantic-Aware Cooperative Communication and Computation Framework in Vehicular Networks
Semantic Communication (SC) combined with Vehicular edge computing (VEC) provides an efficient edge task processing paradigm for Internet of Vehicles (IoV). Focusing on highway scenarios, this paper proposes a Tripartite Cooperative Semantic Communication (TCSC) framework, which enables Vehicle Users (VUs) to perform semantic task offloading via Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) communications. Considering task latency and the number of semantic symbols, the framework constructs a Mixed-Integer Nonlinear Programming (MINLP) problem, which is transformed into two subproblems. First, we innovatively propose a multi-agent proximal policy optimization task offloading optimization method based on parametric distribution noise (MAPPO-PDN) to solve the optimization problem of the number of semantic symbols; second, linear programming (LP) is used to solve offloading ratio. Simulations show that performance of this scheme is superior to that of other algorithms.
☆ Rethinking Chain-of-Thought Reasoning for Videos
Chain-of-thought (CoT) reasoning has been highly successful in solving complex tasks in natural language processing, and recent multimodal large language models (MLLMs) have extended this paradigm to video reasoning. However, these models typically build on lengthy reasoning chains and large numbers of input visual tokens. Motivated by empirical observations from our benchmark study, we hypothesize that concise reasoning combined with a reduced set of visual tokens can be sufficient for effective video reasoning. To evaluate this hypothesis, we design and validate an efficient post-training and inference framework that enhances a video MLLM's reasoning capability. Our framework enables models to operate on compressed visual tokens and generate brief reasoning traces prior to answering. The resulting models achieve substantially improved inference efficiency, deliver competitive performance across diverse benchmarks, and avoid reliance on manual CoT annotations or supervised fine-tuning. Collectively, our results suggest that long, human-like CoT reasoning may not be necessary for general video reasoning, and that concise reasoning can be both effective and efficient. Our code will be released at https://github.com/LaVi-Lab/Rethink_CoT_Video.
comment: Technical report
Stanford Sleep Bench: Evaluating Polysomnography Pre-training Methods for Sleep Foundation Models
Polysomnography (PSG), the gold standard test for sleep analysis, generates vast amounts of multimodal clinical data, presenting an opportunity to leverage self-supervised representation learning (SSRL) for pre-training foundation models to enhance sleep analysis. However, progress in sleep foundation models is hindered by two key limitations: (1) the lack of a shared dataset and benchmark with diverse tasks for training and evaluation, and (2) the absence of a systematic evaluation of SSRL approaches across sleep-related tasks. To address these gaps, we introduce Stanford Sleep Bench, a large-scale PSG dataset comprising 17,467 recordings totaling over 163,000 hours from a major sleep clinic, including 13 clinical disease prediction tasks alongside canonical sleep-related tasks such as sleep staging, apnea diagnosis, and age estimation. We systematically evaluate SSRL pre-training methods on Stanford Sleep Bench, assessing downstream performance across four tasks: sleep staging, apnea diagnosis, age estimation, and disease and mortality prediction. Our results show that multiple pretraining methods achieve comparable performance for sleep staging, apnea diagnosis, and age estimation. However, for mortality and disease prediction, contrastive learning significantly outperforms other approaches while also converging faster during pretraining. To facilitate reproducibility and advance sleep research, we will release Stanford Sleep Bench along with pretrained model weights, training pipelines, and evaluation code.
☆ Graph-Based Bayesian Optimization for Quantum Circuit Architecture Search with Uncertainty Calibrated Surrogates
Quantum circuit design is a key bottleneck for practical quantum machine learning on complex, real-world data. We present an automated framework that discovers and refines variational quantum circuits (VQCs) using graph-based Bayesian optimization with a graph neural network (GNN) surrogate. Circuits are represented as graphs and mutated and selected via an expected improvement acquisition function informed by surrogate uncertainty with Monte Carlo dropout. Candidate circuits are evaluated with a hybrid quantum-classical variational classifier on the next generation firewall telemetry and network internet of things (NF-ToN-IoT-V2) cybersecurity dataset, after feature selection and scaling for quantum embedding. We benchmark our pipeline against an MLP-based surrogate, random search, and greedy GNN selection. The GNN-guided optimizer consistently finds circuits with lower complexity and competitive or superior classification accuracy compared to all baselines. Robustness is assessed via a noise study across standard quantum noise channels, including amplitude damping, phase damping, thermal relaxation, depolarizing, and readout bit flip noise. The implementation is fully reproducible, with time benchmarking and export of best found circuits, providing a scalable and interpretable route to automated quantum circuit discovery.
comment: 17 pages, 13 figures
☆ Toward Closed-loop Molecular Discovery via Language Model, Property Alignment and Strategic Search
Drug discovery is a time-consuming and expensive process, with traditional high-throughput and docking-based virtual screening hampered by low success rates and limited scalability. Recent advances in generative modelling, including autoregressive, diffusion, and flow-based approaches, have enabled de novo ligand design beyond the limits of enumerative screening. Yet these models often suffer from inadequate generalization, limited interpretability, and an overemphasis on binding affinity at the expense of key pharmacological properties, thereby restricting their translational utility. Here we present Trio, a molecular generation framework integrating fragment-based molecular language modeling, reinforcement learning, and Monte Carlo tree search, for effective and interpretable closed-loop targeted molecular design. Through the three key components, Trio enables context-aware fragment assembly, enforces physicochemical and synthetic feasibility, and guides a balanced search between the exploration of novel chemotypes and the exploitation of promising intermediates within protein binding pockets. Experimental results show that Trio reliably achieves chemically valid and pharmacologically enhanced ligands, outperforming state-of-the-art approaches with improved binding affinity (+7.85%), drug-likeness (+11.10%) and synthetic accessibility (+12.05%), while expanding molecular diversity more than fourfold.
comment: 21 pages, 5 figures
☆ Comparative Analysis of Hash-based Malware Clustering via K-Means
With the adoption of multiple digital devices in everyday life, the cyber-attack surface has increased. Adversaries are continuously exploring new avenues to exploit them and deploy malware. On the other hand, detection approaches typically employ hashing-based algorithms such as SSDeep, TLSH, and IMPHash to capture structural and behavioural similarities among binaries. This work focuses on the analysis and evaluation of these techniques for clustering malware samples using the K-means algorithm. More specifically, we experimented with established malware families and traits and found that TLSH and IMPHash produce more distinct, semantically meaningful clusters, whereas SSDeep is more efficient for broader classification tasks. The findings of this work can guide the development of more robust threat-detection mechanisms and adaptive security mechanisms.
comment: To be published in the proceedings of the 8th International Conference on Reliable Information and Communication Technology (IRICT 2025). Springer Book Series: "Lecture Notes on Data Engineering and Communications Technologies"
☆ Don't Throw Away Your Beams: Improving Consistency-based Uncertainties in LLMs via Beam Search
Consistency-based methods have emerged as an effective approach to uncertainty quantification (UQ) in large language models. These methods typically rely on several generations obtained via multinomial sampling, measuring their agreement level. However, in short-form QA, multinomial sampling is prone to producing duplicates due to peaked distributions, and its stochasticity introduces considerable variance in uncertainty estimates across runs. We introduce a new family of methods that employ beam search to generate candidates for consistency-based UQ, yielding improved performance and reduced variance compared to multinomial sampling. We also provide a theoretical lower bound on the beam set probability mass under which beam search achieves a smaller error than multinomial sampling. We empirically evaluate our approach on six QA datasets and find that its consistent improvements over multinomial sampling lead to state-of-the-art UQ performance.
☆ Latent-Autoregressive GP-VAE Language Model
We investigate a fully Latent AutoRegressive scheme based on a Gaussian Process (GP) integrated into a Variational Autoencoder (VAE). In this setting, sequential dynamics are transferred from the observation space to a continuous latent space, while linguistic generation remains parallel through a non-autoregressive decoder. We present a complete methodological formulation, including a causal GP prior, a structured amortized posterior, and a training protocol based on a regularized ELBO. Empirical evaluation, conducted within a deliberately constrained proof-of-concept (POC) framework, shows that the model can be trained stably and that the sequential and parallel sampling variants exhibit consistent behavior. Overall, the results suggest that part of the temporal structure in a language model can be supported by the probabilistic geometry of the latent space rather than by explicit neural operations.
comment: 27 pages, 1 figure, 4 tables. Proof-of-concept study of a latent-autoregressive GP-VAE language model with TCN encoder and non-autoregressive decoder. Code available at https://github.com/y-v-e-s/GP-VAE-Latent-AR
☆ Transformers for Tabular Data: A Training Perspective of Self-Attention via Optimal Transport
This thesis examines self-attention training through the lens of Optimal Transport (OT) and develops an OT-based alternative for tabular classification. The study tracks intermediate projections of the self-attention layer during training and evaluates their evolution using discrete OT metrics, including Wasserstein distance, Monge gap, optimality, and efficiency. Experiments are conducted on classification tasks with two and three classes, as well as on a biomedical dataset. Results indicate that the final self-attention mapping often approximates the OT optimal coupling, yet the training trajectory remains inefficient. Pretraining the MLP section on synthetic data partially improves convergence but is sensitive to their initialization. To address these limitations, an OT-based algorithm is introduced: it generates class-specific dummy Gaussian distributions, computes an OT alignment with the data, and trains an MLP to generalize this mapping. The method achieves accuracy comparable to Transformers while reducing computational cost and scaling more efficiently under standardized inputs, though its performance depends on careful dummy-geometry design. All experiments and implementations are conducted in R.
☆ NeuroSketch: An Effective Framework for Neural Decoding via Systematic Architectural Optimization
Neural decoding, a critical component of Brain-Computer Interface (BCI), has recently attracted increasing research interest. Previous research has focused on leveraging signal processing and deep learning methods to enhance neural decoding performance. However, the in-depth exploration of model architectures remains underexplored, despite its proven effectiveness in other tasks such as energy forecasting and image classification. In this study, we propose NeuroSketch, an effective framework for neural decoding via systematic architecture optimization. Starting with the basic architecture study, we find that CNN-2D outperforms other architectures in neural decoding tasks and explore its effectiveness from temporal and spatial perspectives. Building on this, we optimize the architecture from macro- to micro-level, achieving improvements in performance at each step. The exploration process and model validations take over 5,000 experiments spanning three distinct modalities (visual, auditory, and speech), three types of brain signals (EEG, SEEG, and ECoG), and eight diverse decoding tasks. Experimental results indicate that NeuroSketch achieves state-of-the-art (SOTA) performance across all evaluated datasets, positioning it as a powerful tool for neural decoding. Our code and scripts are available at https://github.com/Galaxy-Dawn/NeuroSketch.
☆ QuanvNeXt: An end-to-end quanvolutional neural network for EEG-based detection of major depressive disorder
This study presents QuanvNeXt, an end-to-end fully quanvolutional model for EEG-based depression diagnosis. QuanvNeXt incorporates a novel Cross Residual block, which reduces feature homogeneity and strengthens cross-feature relationships while retaining parameter efficiency. We evaluated QuanvNeXt on two open-source datasets, where it achieved an average accuracy of 93.1% and an average AUC-ROC of 97.2%, outperforming state-of-the-art baselines such as InceptionTime (91.7% accuracy, 95.9% AUC-ROC). An uncertainty analysis across Gaussian noise levels demonstrated well-calibrated predictions, with ECE scores remaining low (0.0436, Dataset 1) to moderate (0.1159, Dataset 2) even at the highest perturbation (ε = 0.1). Additionally, a post-hoc explainable AI analysis confirmed that QuanvNeXt effectively identifies and learns spectrotemporal patterns that distinguish between healthy controls and major depressive disorder. Overall, QuanvNeXt establishes an efficient and reliable approach for EEG-based depression diagnosis.
comment: Under review
☆ Transport Novelty Distance: A Distributional Metric for Evaluating Material Generative Models
Recent advances in generative machine learning have opened new possibilities for the discovery and design of novel materials. However, as these models become more sophisticated, the need for rigorous and meaningful evaluation metrics has grown. Existing evaluation approaches often fail to capture both the quality and novelty of generated structures, limiting our ability to assess true generative performance. In this paper, we introduce the Transport Novelty Distance (TNovD) to judge generative models used for materials discovery jointly by the quality and novelty of the generated materials. Based on ideas from Optimal Transport theory, TNovD uses a coupling between the features of the training and generated sets, which is refined into a quality and memorization regime by a threshold. The features are generated from crystal structures using a graph neural network that is trained to distinguish between materials, their augmented counterparts, and differently sized supercells using contrastive learning. We evaluate our proposed metric on typical toy experiments relevant for crystal structure prediction, including memorization, noise injection and lattice deformations. Additionally, we validate the TNovD on the MP20 validation set and the WBM substitution dataset, demonstrating that it is capable of detecting both memorized and low-quality material data. We also benchmark the performance of several popular material generative models. While introduced for materials, our TNovD framework is domain-agnostic and can be adapted for other areas, such as images and molecules.
☆ Contextual Dynamic Pricing with Heterogeneous Buyers NeurIPS 2025
We initiate the study of contextual dynamic pricing with a heterogeneous population of buyers, where a seller repeatedly posts prices (over $T$ rounds) that depend on the observable $d$-dimensional context and receives binary purchase feedback. Unlike prior work assuming homogeneous buyer types, in our setting the buyer's valuation type is drawn from an unknown distribution with finite support size $K_{\star}$. We develop a contextual pricing algorithm based on optimistic posterior sampling with regret $\widetilde{O}(K_{\star}\sqrt{dT})$, which we prove to be tight in $d$ and $T$ up to logarithmic terms. Finally, we refine our analysis for the non-contextual pricing case, proposing a variance-aware zooming algorithm that achieves the optimal dependence on $K_{\star}$.
comment: Appeared at NeurIPS 2025
☆ Estimation of Stochastic Optimal Transport Maps NeurIPS 2025
The optimal transport (OT) map is a geometry-driven transformation between high-dimensional probability distributions which underpins a wide range of tasks in statistics, applied probability, and machine learning. However, existing statistical theory for OT map estimation is quite restricted, hinging on Brenier's theorem (quadratic cost, absolutely continuous source) to guarantee existence and uniqueness of a deterministic OT map, on which various additional regularity assumptions are imposed to obtain quantitative error bounds. In many real-world problems these conditions fail or cannot be certified, in which case optimal transportation is possible only via stochastic maps that can split mass. To broaden the scope of map estimation theory to such settings, this work introduces a novel metric for evaluating the transportation quality of stochastic maps. Under this metric, we develop computationally efficient map estimators with near-optimal finite-sample risk bounds, subject to easy-to-verify minimal assumptions. Our analysis further accommodates common forms of adversarial sample contamination, yielding estimators with robust estimation guarantees. Empirical experiments are provided which validate our theory and demonstrate the utility of the proposed framework in settings where existing theory fails. These contributions constitute the first general-purpose theory for map estimation, compatible with a wide spectrum of real-world applications where optimal transport may be intrinsically stochastic.
comment: Appeared at NeurIPS 2025
☆ Representation Invariance and Allocation: When Subgroup Balance Matters
Unequal representation of demographic groups in training data poses challenges to model generalisation across populations. Standard practice assumes that balancing subgroup representation optimises performance. However, recent empirical results contradict this assumption: in some cases, imbalanced data distributions actually improve subgroup performance, while in others, subgroup performance remains unaffected by the absence of an entire subgroup during training. We conduct a systematic study of subgroup allocation across four vision and language models, varying training data composition to characterise the sensitivity of subgroup performance to data balance. We propose the latent separation hypothesis, which states that a partially fine-tuned model's dependence on subgroup representation is determined by the degree of separation between subgroups in the latent space of the pre-trained model. We formalise this hypothesis, provide theoretical analysis, and validate it empirically. Finally, we present a practical application to foundation model fine-tuning, demonstrating that quantitative analysis of latent subgroup separation can inform data collection and balancing decisions.
☆ WarmServe: Enabling One-for-Many GPU Prewarming for Multi-LLM Serving
Deploying multiple models within shared GPU clusters is promising for improving resource efficiency in large language model (LLM) serving. Existing multi-LLM serving systems optimize GPU utilization at the cost of worse inference performance, especially time-to-first-token (TTFT). We identify the root cause of such compromise as their unawareness of future workload characteristics. In contrast, recent analysis on real-world traces has shown the high periodicity and long-term predictability of LLM serving workloads. We propose universal GPU workers to enable one-for-many GPU prewarming that loads models with knowledge of future workloads. Based on universal GPU workers, we design and build WarmServe, a multi-LLM serving system that (1) mitigates cluster-wide prewarming interference by adopting an evict-aware model placement strategy, (2) prepares universal GPU workers in advance by proactive prewarming, and (3) manages GPU memory with a zero-overhead memory switching mechanism. Evaluation under real-world datasets shows that WarmServe improves TTFT by up to 50.8$\times$ compared to the state-of-the-art autoscaling-based system, while being capable of serving up to 2.5$\times$ more requests compared to the GPU-sharing system.
☆ Cauchy-Schwarz Fairness Regularizer
Group fairness in machine learning is often enforced by adding a regularizer that reduces the dependence between model predictions and sensitive attributes. However, existing regularizers are built on heterogeneous distance measures and design choices, which makes their behavior hard to reason about and their performance inconsistent across tasks. This raises a basic question: what properties make a good fairness regularizer? We address this question by first organizing existing in-process methods into three families: (i) matching prediction statistics across sensitive groups, (ii) aligning latent representations, and (iii) directly minimizing dependence between predictions and sensitive attributes. Through this lens, we identify desirable properties of the underlying distance measure, including tight generalization bounds, robustness to scale differences, and the ability to handle arbitrary prediction distributions. Motivated by these properties, we propose a Cauchy-Schwarz (CS) fairness regularizer that penalizes the empirical CS divergence between prediction distributions conditioned on sensitive groups. Under a Gaussian comparison, we show that CS divergence yields a tighter bound than Kullback-Leibler divergence, Maximum Mean Discrepancy, and the mean disparity used in Demographic Parity, and we discuss how these advantages translate to a distribution-free, kernel-based estimator that naturally extends to multiple sensitive attributes. Extensive experiments on four tabular benchmarks and one image dataset demonstrate that the proposed CS regularizer consistently improves Demographic Parity and Equal Opportunity metrics while maintaining competitive accuracy, and achieves a more stable utility-fairness trade-off across hyperparameter settings compared to prior regularizers.
☆ Architectures for Building Agentic AI
This chapter argues that the reliability of agentic and generative AI is chiefly an architectural property. We define agentic systems as goal-directed, tool-using decision makers operating in closed loops, and show how reliability emerges from principled componentisation (goal manager, planner, tool-router, executor, memory, verifiers, safety monitor, telemetry), disciplined interfaces (schema-constrained, validated, least-privilege tool calls), and explicit control and assurance loops. Building on classical foundations, we propose a practical taxonomy-tool-using agents, memory-augmented agents, planning and self-improvement agents, multi-agent systems, and embodied or web agents - and analyse how each pattern reshapes the reliability envelope and failure modes. We distil design guidance on typed schemas, idempotency, permissioning, transactional semantics, memory provenance and hygiene, runtime governance (budgets, termination conditions), and simulate-before-actuate safeguards.
comment: This is a preprint of a chapter accepted for publication in Generative and Agentic AI Reliability: Architectures, Challenges, and Trust for Autonomous Systems, published by Springer Nature
☆ Generalizable Collaborative Search-and-Capture in Cluttered Environments via Path-Guided MAPPO and Directional Frontier Allocation
Collaborative pursuit-evasion in cluttered environments presents significant challenges due to sparse rewards and constrained Fields of View (FOV). Standard Multi-Agent Reinforcement Learning (MARL) often suffers from inefficient exploration and fails to scale to large scenarios. We propose PGF-MAPPO (Path-Guided Frontier MAPPO), a hierarchical framework bridging topological planning with reactive control. To resolve local minima and sparse rewards, we integrate an A*-based potential field for dense reward shaping. Furthermore, we introduce Directional Frontier Allocation, combining Farthest Point Sampling (FPS) with geometric angle suppression to enforce spatial dispersion and accelerate coverage. The architecture employs a parameter-shared decentralized critic, maintaining O(1) model complexity suitable for robotic swarms. Experiments demonstrate that PGF-MAPPO achieves superior capture efficiency against faster evaders. Policies trained on 10x10 maps exhibit robust zero-shot generalization to unseen 20x20 environments, significantly outperforming rule-based and learning-based baselines.
comment: 7 pages, 7 figures
☆ Black-Box Behavioral Distillation Breaks Safety Alignment in Medical LLMs
As medical large language models (LLMs) become increasingly integrated into clinical workflows, concerns around alignment robustness, and safety are escalating. Prior work on model extraction has focused on classification models or memorization leakage, leaving the vulnerability of safety-aligned generative medical LLMs underexplored. We present a black-box distillation attack that replicates the domain-specific reasoning of safety-aligned medical LLMs using only output-level access. By issuing 48,000 instruction queries to Meditron-7B and collecting 25,000 benign instruction response pairs, we fine-tune a LLaMA3 8B surrogate via parameter efficient LoRA under a zero-alignment supervision setting, requiring no access to model weights, safety filters, or training data. With a cost of $12, the surrogate achieves strong fidelity on benign inputs while producing unsafe completions for 86% of adversarial prompts, far exceeding both Meditron-7B (66%) and the untuned base model (46%). This reveals a pronounced functional-ethical gap, task utility transfers, while alignment collapses. To analyze this collapse, we develop a dynamic adversarial evaluation framework combining Generative Query (GQ)-based harmful prompt generation, verifier filtering, category-wise failure analysis, and adaptive Random Search (RS) jailbreak attacks. We also propose a layered defense system, as a prototype detector for real-time alignment drift in black-box deployments. Our findings show that benign-only black-box distillation exposes a practical and under-recognized threat: adversaries can cheaply replicate medical LLM capabilities while stripping safety mechanisms, underscoring the need for extraction-aware safety monitoring.
☆ Towards Resilient Transportation: A Conditional Transformer for Accident-Informed Traffic Forecasting
Traffic prediction remains a key challenge in spatio-temporal data mining, despite progress in deep learning. Accurate forecasting is hindered by the complex influence of external factors such as traffic accidents and regulations, often overlooked by existing models due to limited data integration. To address these limitations, we present two enriched traffic datasets from Tokyo and California, incorporating traffic accident and regulation data. Leveraging these datasets, we propose ConFormer (Conditional Transformer), a novel framework that integrates graph propagation with guided normalization layer. This design dynamically adjusts spatial and temporal node relationships based on historical patterns, enhancing predictive accuracy. Our model surpasses the state-of-the-art STAEFormer in both predictive performance and efficiency, achieving lower computational costs and reduced parameter demands. Extensive evaluations demonstrate that ConFormer consistently outperforms mainstream spatio-temporal baselines across multiple metrics, underscoring its potential to advance traffic prediction research.
☆ Detection and Localization of Subdural Hematoma Using Deep Learning on Computed Tomography
Background. Subdural hematoma (SDH) is a common neurosurgical emergency, with increasing incidence in aging populations. Rapid and accurate identification is essential to guide timely intervention, yet existing automated tools focus primarily on detection and provide limited interpretability or spatial localization. There remains a need for transparent, high-performing systems that integrate multimodal clinical and imaging information to support real-time decision-making. Methods. We developed a multimodal deep-learning framework that integrates structured clinical variables, a 3D convolutional neural network trained on CT volumes, and a transformer-enhanced 2D segmentation model for SDH detection and localization. Using 25,315 head CT studies from Hartford HealthCare (2015--2024), of which 3,774 (14.9\%) contained clinician-confirmed SDH, tabular models were trained on demographics, comorbidities, medications, and laboratory results. Imaging models were trained to detect SDH and generate voxel-level probability maps. A greedy ensemble strategy combined complementary predictors. Findings. Clinical variables alone provided modest discriminatory power (AUC 0.75). Convolutional models trained on CT volumes and segmentation-derived maps achieved substantially higher accuracy (AUCs 0.922 and 0.926). The multimodal ensemble integrating all components achieved the best overall performance (AUC 0.9407; 95\% CI, 0.930--0.951) and produced anatomically meaningful localization maps consistent with known SDH patterns. Interpretation. This multimodal, interpretable framework provides rapid and accurate SDH detection and localization, achieving high detection performance and offering transparent, anatomically grounded outputs. Integration into radiology workflows could streamline triage, reduce time to intervention, and improve consistency in SDH management.
☆ CONCUR: A Framework for Continual Constrained and Unconstrained Routing
AI tasks differ in complexity and are best addressed with different computation strategies (e.g., combinations of models and decoding methods). Hence, an effective routing system that maps tasks to the appropriate strategies is crucial. Most prior methods build the routing framework by training a single model across all strategies, which demands full retraining whenever new strategies appear and leads to high overhead. Attempts at such continual routing, however, often face difficulties with generalization. Prior models also typically use a single input representation, limiting their ability to capture the full complexity of the routing problem and leading to sub-optimal routing decisions. To address these gaps, we propose CONCUR, a continual routing framework that supports both constrained and unconstrained routing (i.e., routing with or without a budget). Our modular design trains a separate predictor model for each strategy, enabling seamless incorporation of new strategies with low additional training cost. Our predictors also leverage multiple representations of both tasks and computation strategies to better capture overall problem complexity. Experiments on both in-distribution and out-of-distribution, knowledge- and reasoning-intensive tasks show that our method outperforms the best single strategy and strong existing routing techniques with higher end-to-end accuracy and lower inference cost in both continual and non-continual settings, while also reducing training cost in the continual setting.
☆ BugSweeper: Function-Level Detection of Smart Contract Vulnerabilities Using Graph Neural Networks AAAI 2026
The rapid growth of Ethereum has made it more important to quickly and accurately detect smart contract vulnerabilities. While machine-learning-based methods have shown some promise, many still rely on rule-based preprocessing designed by domain experts. Rule-based preprocessing methods often discard crucial context from the source code, potentially causing certain vulnerabilities to be overlooked and limiting adaptability to newly emerging threats. We introduce BugSweeper, an end-to-end deep learning framework that detects vulnerabilities directly from the source code without manual engineering. BugSweeper represents each Solidity function as a Function-Level Abstract Syntax Graph (FLAG), a novel graph that combines its Abstract Syntax Tree (AST) with enriched control-flow and data-flow semantics. Then, our two-stage Graph Neural Network (GNN) analyzes these graphs. The first-stage GNN filters noise from the syntax graphs, while the second-stage GNN conducts high-level reasoning to detect diverse vulnerabilities. Extensive experiments on real-world contracts show that BugSweeper significantly outperforms all state-of-the-art detection methods. By removing the need for handcrafted rules, our approach offers a robust, automated, and scalable solution for securing smart contracts without any dependence on security experts.
comment: This paper is accepted to AAAI 2026
☆ Federated Distillation Assisted Vehicle Edge Caching Scheme Based on Lightweight DDPM
Vehicle edge caching is a promising technology that can significantly reduce the latency for vehicle users (VUs) to access content by pre-caching user-interested content at edge nodes. It is crucial to accurately predict the content that VUs are interested in without exposing their privacy. Traditional federated learning (FL) can protect user privacy by sharing models rather than raw data. However, the training of FL requires frequent model transmission, which can result in significant communication overhead. Additionally, vehicles may leave the road side unit (RSU) coverage area before training is completed, leading to training failures. To address these issues, in this letter, we propose a federated distillation-assisted vehicle edge caching scheme based on lightweight denoising diffusion probabilistic model (LDPM). The simulation results demonstrate that the proposed vehicle edge caching scheme has good robustness to variations in vehicle speed, significantly reducing communication overhead and improving cache hit percentage.
comment: This paper has been submitted to IEEE letters. The source code has been released at: https://github.com/qiongwu86/Federated-Distillation-Assisted-Vehicle-Edge-Caching-Scheme-Based-on-Lightweight-DDPM
☆ Rates and architectures for learning geometrically non-trivial operators
Deep learning methods have proven capable of recovering operators between high-dimensional spaces, such as solution maps of PDEs and similar objects in mathematical physics, from very few training samples. This phenomenon of data-efficiency has been proven for certain classes of elliptic operators with simple geometry, i.e., operators that do not change the domain of the function or propagate singularities. However, scientific machine learning is commonly used for problems that do involve the propagation of singularities in a priori unknown ways, such as waves, advection, and fluid dynamics. In light of this, we expand the learning theory to include double fibration transforms--geometric integral operators that include generalized Radon and geodesic ray transforms. We prove that this class of operators does not suffer from the curse of dimensionality: the error decays superalgebraically, that is, faster than any fixed power of the reciprocal of the number of training samples. Furthermore, we investigate architectures that explicitly encode the geometry of these transforms, demonstrating that an architecture reminiscent of cross-attention based on levelset methods yields a parameterization that is universal, stable, and learns double fibration transforms from very few training examples. Our results contribute to a rapidly-growing line of theoretical work on learning operators for scientific machine learning.
comment: 26 pages, 5 figures
☆ Are Hypervectors Enough? Single-Call LLM Reasoning over Knowledge Graphs
Recent advances in large language models (LLMs) have enabled strong reasoning over both structured and unstructured knowledge. When grounded on knowledge graphs (KGs), however, prevailing pipelines rely on heavy neural encoders to embed and score symbolic paths or on repeated LLM calls to rank candidates, leading to high latency, GPU cost, and opaque decisions that hinder faithful, scalable deployment. We propose PathHD, a lightweight and encoder-free KG reasoning framework that replaces neural path scoring with hyperdimensional computing (HDC) and uses only a single LLM call per query. PathHD encodes relation paths into block-diagonal GHRR hypervectors, ranks candidates with blockwise cosine similarity and Top-K pruning, and then performs a one-shot LLM adjudication to produce the final answer together with cited supporting paths. Technically, PathHD is built on three ingredients: (i) an order-aware, non-commutative binding operator for path composition, (ii) a calibrated similarity for robust hypervector-based retrieval, and (iii) a one-shot adjudication step that preserves interpretability while eliminating per-path LLM scoring. On WebQSP, CWQ, and the GrailQA split, PathHD (i) attains comparable or better Hits@1 than strong neural baselines while using one LLM call per query; (ii) reduces end-to-end latency by $40-60\%$ and GPU memory by $3-5\times$ thanks to encoder-free retrieval; and (iii) delivers faithful, path-grounded rationales that improve error diagnosis and controllability. These results indicate that carefully designed HDC representations provide a practical substrate for efficient KG-LLM reasoning, offering a favorable accuracy-efficiency-interpretability trade-off.
☆ CFLight: Enhancing Safety with Traffic Signal Control through Counterfactual Learning
Traffic accidents result in millions of injuries and fatalities globally, with a significant number occurring at intersections each year. Traffic Signal Control (TSC) is an effective strategy for enhancing safety at these urban junctures. Despite the growing popularity of Reinforcement Learning (RL) methods in optimizing TSC, these methods often prioritize driving efficiency over safety, thus failing to address the critical balance between these two aspects. Additionally, these methods usually need more interpretability. CounterFactual (CF) learning is a promising approach for various causal analysis fields. In this study, we introduce a novel framework to improve RL for safety aspects in TSC. This framework introduces a novel method based on CF learning to address the question: ``What if, when an unsafe event occurs, we backtrack to perform alternative actions, and will this unsafe event still occur in the subsequent period?'' To answer this question, we propose a new structure causal model to predict the result after executing different actions, and we propose a new CF module that integrates with additional ``X'' modules to promote safe RL practices. Our new algorithm, CFLight, which is derived from this framework, effectively tackles challenging safety events and significantly improves safety at intersections through a near-zero collision control strategy. Through extensive numerical experiments on both real-world and synthetic datasets, we demonstrate that CFLight reduces collisions and improves overall traffic performance compared to conventional RL methods and the recent safe RL model. Moreover, our method represents a generalized and safe framework for RL methods, opening possibilities for applications in other domains. The data and code are available in the github https://github.com/MJLee00/CFLight-Enhancing-Safety-with-Traffic-Signal-Control-through-Counterfactual-Learning.
☆ Meta-learning three-factor plasticity rules for structured credit assignment with sparse feedback NeurIPS 2025
Biological neural networks learn complex behaviors from sparse, delayed feedback using local synaptic plasticity, yet the mechanisms enabling structured credit assignment remain elusive. In contrast, artificial recurrent networks solving similar tasks typically rely on biologically implausible global learning rules or hand-crafted local updates. The space of local plasticity rules capable of supporting learning from delayed reinforcement remains largely unexplored. Here, we present a meta-learning framework that discovers local learning rules for structured credit assignment in recurrent networks trained with sparse feedback. Our approach interleaves local neo-Hebbian-like updates during task execution with an outer loop that optimizes plasticity parameters via \textbf{tangent-propagation through learning}. The resulting three-factor learning rules enable long-timescale credit assignment using only local information and delayed rewards, offering new insights into biologically grounded mechanisms for learning in recurrent circuits.
comment: 10 pages, 2 figures; accepted & presented at NeurIPS 2025 workshop Symmetry and Geometry in Neural Representations (NeurReps)
☆ KGOT: Unified Knowledge Graph and Optimal Transport Pseudo-Labeling for Molecule-Protein Interaction Prediction
Predicting molecule-protein interactions (MPIs) is a fundamental task in computational biology, with crucial applications in drug discovery and molecular function annotation. However, existing MPI models face two major challenges. First, the scarcity of labeled molecule-protein pairs significantly limits model performance, as available datasets capture only a small fraction of biological relevant interactions. Second, most methods rely solely on molecular and protein features, ignoring broader biological context such as genes, metabolic pathways, and functional annotations that could provide essential complementary information. To address these limitations, our framework first aggregates diverse biological datasets, including molecular, protein, genes and pathway-level interactions, and then develop an optimal transport-based approach to generate high-quality pseudo-labels for unlabeled molecule-protein pairs, leveraging the underlying distribution of known interactions to guide label assignment. By treating pseudo-labeling as a mechanism for bridging disparate biological modalities, our approach enables the effective use of heterogeneous data to enhance MPI prediction. We evaluate our framework on multiple MPI datasets including virtual screening tasks and protein retrieval tasks, demonstrating substantial improvements over state-of-the-art methods in prediction accuracies and zero shot ability across unseen interactions. Beyond MPI prediction, our approach provides a new paradigm for leveraging diverse biological data sources to tackle problems traditionally constrained by single- or bi-modal learning, paving the way for future advances in computational biology and drug discovery.
☆ A Granular Framework for Construction Material Price Forecasting: Econometric and Machine-Learning Approaches
The persistent volatility of construction material prices poses significant risks to cost estimation, budgeting, and project delivery, underscoring the urgent need for granular and scalable forecasting methods. This study develops a forecasting framework that leverages the Construction Specifications Institute (CSI) MasterFormat as the target data structure, enabling predictions at the six-digit section level and supporting detailed cost projections across a wide spectrum of building materials. To enhance predictive accuracy, the framework integrates explanatory variables such as raw material prices, commodity indexes, and macroeconomic indicators. Four time-series models, Long Short-Term Memory (LSTM), Autoregressive Integrated Moving Average (ARIMA), Vector Error Correction Model (VECM), and Chronos-Bolt, were evaluated under both baseline configurations (using CSI data only) and extended versions with explanatory variables. Results demonstrate that incorporating explanatory variables significantly improves predictive performance across all models. Among the tested approaches, the LSTM model consistently achieved the highest accuracy, with RMSE values as low as 1.390 and MAPE values of 0.957, representing improvements of up to 59\% over the traditional statistical time-series model, ARIMA. Validation across multiple CSI divisions confirmed the framework's scalability, while Division 06 (Wood, Plastics, and Composites) is presented in detail as a demonstration case. This research offers a robust methodology that enables owners and contractors to improve budgeting practices and achieve more reliable cost estimation at the Definitive level.
☆ Branching Strategies Based on Subgraph GNNs: A Study on Theoretical Promise versus Practical Reality
Graph Neural Networks (GNNs) have emerged as a promising approach for ``learning to branch'' in Mixed-Integer Linear Programming (MILP). While standard Message-Passing GNNs (MPNNs) are efficient, they theoretically lack the expressive power to fully represent MILP structures. Conversely, higher-order GNNs (like 2-FGNNs) are expressive but computationally prohibitive. In this work, we investigate Subgraph GNNs as a theoretical middle ground. Crucially, while previous work [Chen et al., 2025] demonstrated that GNNs with 3-WL expressive power can approximate Strong Branching, we prove a sharper result: node-anchored Subgraph GNNs whose expressive power is strictly lower than 3-WL [Zhang et al., 2023] are sufficient to approximate Strong Branching scores. However, our extensive empirical evaluation on four benchmark datasets reveals a stark contrast between theory and practice. While node-anchored Subgraph GNNs theoretically offer superior branching decisions, their $O(n)$ complexity overhead results in significant memory bottlenecks and slower solving times than MPNNs and heuristics. Our results indicate that for MILP branching, the computational cost of expressive GNNs currently outweighs their gains in decision quality, suggesting that future research must focus on efficiency-preserving expressivity.
☆ Visual Categorization Across Minds and Models: Cognitive Analysis of Human Labeling and Neuro-Symbolic Integration
Understanding how humans and AI systems interpret ambiguous visual stimuli offers critical insight into the nature of perception, reasoning, and decision-making. This paper examines image labeling performance across human participants and deep neural networks, focusing on low-resolution, perceptually degraded stimuli. Drawing from computational cognitive science, cognitive architectures, and connectionist-symbolic hybrid models, we contrast human strategies such as analogical reasoning, shape-based recognition, and confidence modulation with AI's feature-based processing. Grounded in Marr's tri-level hypothesis, Simon's bounded rationality, and Thagard's frameworks of representation and emotion, we analyze participant responses in relation to Grad-CAM visualizations of model attention. Human behavior is further interpreted through cognitive principles modeled in ACT-R and Soar, revealing layered and heuristic decision strategies under uncertainty. Our findings highlight key parallels and divergences between biological and artificial systems in representation, inference, and confidence calibration. The analysis motivates future neuro-symbolic architectures that unify structured symbolic reasoning with connectionist representations. Such architectures, informed by principles of embodiment, explainability, and cognitive alignment, offer a path toward AI systems that are not only performant but also interpretable and cognitively grounded.
comment: 12 pages, 3 figures. Research manuscript based on the final project for CS6795 (Introduction to Cognitive Science), Georgia Tech
☆ Improved Physics-Driven Neural Network to Solve Inverse Scattering Problems
This paper presents an improved physics-driven neural network (IPDNN) framework for solving electromagnetic inverse scattering problems (ISPs). A new Gaussian-localized oscillation-suppressing window (GLOW) activation function is introduced to stabilize convergence and enable a lightweight yet accurate network architecture. A dynamic scatter subregion identification strategy is further developed to adaptively refine the computational domain, preventing missed detections and reducing computational cost. Moreover, transfer learning is incorporated to extend the solver's applicability to practical scenarios, integrating the physical interpretability of iterative algorithms with the real-time inference capability of neural networks. Numerical simulations and experimental results demonstrate that the proposed solver achieves superior reconstruction accuracy, robustness, and efficiency compared with existing state-of-the-art methods.
☆ Self Distillation Fine-Tuning of Protein Language Models Improves Versatility in Protein Design
Supervised fine-tuning (SFT) is a standard approach for adapting large language models to specialized domains, yet its application to protein sequence modeling and protein language models (PLMs) remains ad hoc. This is in part because high-quality annotated data are far more difficult to obtain for proteins than for natural language. We present a simple and general recipe for fast SFT of PLMs, designed to improve the fidelity, reliability, and novelty of generated protein sequences. Unlike existing approaches that require costly precompiled experimental datasets for SFT, our method leverages the PLM itself, integrating a lightweight curation pipeline with domain-specific filters to construct high-quality training data. These filters can independently refine a PLM's output and identify candidates for in vitro evaluation; when combined with SFT, they enable PLMs to generate more stable and functional enzymes, while expanding exploration into protein sequence space beyond natural variants. Although our approach is agnostic to both the choice of protein language model (PLM) and the protein system, we demonstrate its effectiveness with a genome-scale PLM (GenSLM) applied to the tryptophan synthase enzyme family. The supervised fine-tuned model generates sequences that are not only more novel but also display improved characteristics across both targeted design constraints and emergent protein property measures.
Self-Supervised Learning with Gaussian Processes
Self supervised learning (SSL) is a machine learning paradigm where models learn to understand the underlying structure of data without explicit supervision from labeled samples. The acquired representations from SSL have demonstrated useful for many downstream tasks including clustering, and linear classification, etc. To ensure smoothness of the representation space, most SSL methods rely on the ability to generate pairs of observations that are similar to a given instance. However, generating these pairs may be challenging for many types of data. Moreover, these methods lack consideration of uncertainty quantification and can perform poorly in out-of-sample prediction settings. To address these limitations, we propose Gaussian process self supervised learning (GPSSL), a novel approach that utilizes Gaussian processes (GP) models on representation learning. GP priors are imposed on the representations, and we obtain a generalized Bayesian posterior minimizing a loss function that encourages informative representations. The covariance function inherent in GPs naturally pulls representations of similar units together, serving as an alternative to using explicitly defined positive samples. We show that GPSSL is closely related to both kernel PCA and VICReg, a popular neural network-based SSL method, but unlike both allows for posterior uncertainties that can be propagated to downstream tasks. Experiments on various datasets, considering classification and regression tasks, demonstrate that GPSSL outperforms traditional methods in terms of accuracy, uncertainty quantification, and error control.
☆ Hetero-SplitEE: Split Learning of Neural Networks with Early Exits for Heterogeneous IoT Devices
The continuous scaling of deep neural networks has fundamentally transformed machine learning, with larger models demonstrating improved performance across diverse tasks. This growth in model size has dramatically increased the computational resources required for the training process. Consequently, distributed approaches, such as Federated Learning and Split Learning, have become essential paradigms for scalable deployment. However, existing Split Learning approaches assume client homogeneity and uniform split points across all participants. This critically limits their applicability to real-world IoT systems where devices exhibit heterogeneity in computational resources. To address this limitation, this paper proposes Hetero-SplitEE, a novel method that enables heterogeneous IoT devices to train a shared deep neural network in parallel collaboratively. By integrating heterogeneous early exits into hierarchical training, our approach allows each client to select distinct split points (cut layers) tailored to its computational capacity. In addition, we propose two cooperative training strategies, the Sequential strategy and the Averaging strategy, to facilitate this collaboration among clients with different split points. The Sequential strategy trains clients sequentially with a shared server model to reduce computational overhead. The Averaging strategy enables parallel client training with periodic cross-layer aggregation. Extensive experiments on CIFAR-10, CIFAR-100, and STL-10 datasets using ResNet-18 demonstrate that our method maintains competitive accuracy while efficiently supporting diverse computational constraints, enabling practical deployment of collaborative deep learning in heterogeneous IoT ecosystems.
comment: 8 pages. Accepted at MCSoC 2025
☆ Distributional Shrinkage II: Optimal Transport Denoisers with Higher-Order Scores
We revisit the signal denoising problem through the lens of optimal transport: the goal is to recover an unknown scalar signal distribution $X \sim P$ from noisy observations $Y = X + σZ$, with $Z$ being standard Gaussian independent of $X$ and $σ>0$ a known noise level. Let $Q$ denote the distribution of $Y$. We introduce a hierarchy of denoisers $T_0, T_1, \ldots, T_\infty : \mathbb{R} \to \mathbb{R}$ that are agnostic to the signal distribution $P$, depending only on higher-order score functions of $Q$. Each denoiser $T_K$ is progressively refined using the $(2K-1)$-th order score function of $Q$ at noise resolution $σ^{2K}$, achieving better denoising quality measured by the Wasserstein metric $W(T_K \sharp Q, P)$. The limiting denoiser $T_\infty$ identifies the optimal transport map with $T_\infty \sharp Q = P$. We provide a complete characterization of the combinatorial structure underlying this hierarchy through Bell polynomial recursions, revealing how higher-order score functions encode the optimal transport map for signal denoising. We study two estimation strategies with convergence rates for higher-order scores from i.i.d. samples drawn from $Q$: (i) plug-in estimation via Gaussian kernel smoothing, and (ii) direct estimation via higher-order score matching. This hierarchy of agnostic denoisers opens new perspectives in signal denoising and empirical Bayes.
comment: 23 pages
☆ Impact of Positional Encoding: Clean and Adversarial Rademacher Complexity for Transformers under In-Context Regression
Positional encoding (PE) is a core architectural component of Transformers, yet its impact on the Transformer's generalization and robustness remains unclear. In this work, we provide the first generalization analysis for a single-layer Transformer under in-context regression that explicitly accounts for a completely trainable PE module. Our result shows that PE systematically enlarges the generalization gap. Extending to the adversarial setting, we derive the adversarial Rademacher generalization bound. We find that the gap between models with and without PE is magnified under attack, demonstrating that PE amplifies the vulnerability of models. Our bounds are empirically validated by a simulation study. Together, this work establishes a new framework for understanding the clean and adversarial generalization in ICL with PE.
comment: 25 pages, 3 figures
☆ Goal inference with Rao-Blackwellized Particle Filters
Inferring the eventual goal of a mobile agent from noisy observations of its trajectory is a fundamental estimation problem. We initiate the study of such intent inference using a variant of a Rao-Blackwellized Particle Filter (RBPF), subject to the assumption that the agent's intent manifests through closed-loop behavior with a state-of-the-art provable practical stability property. Leveraging the assumed closed-form agent dynamics, the RBPF analytically marginalizes the linear-Gaussian substructure and updates particle weights only, improving sample efficiency over a standard particle filter. Two difference estimators are introduced: a Gaussian mixture model using the RBPF weights and a reduced version confining the mixture to the effective sample. We quantify how well the adversary can recover the agent's intent using information-theoretic leakage metrics and provide computable lower bounds on the Kullback-Leibler (KL) divergence between the true intent distribution and RBPF estimates via Gaussian-mixture KL bounds. We also provide a bound on the difference in performance between the two estimators, highlighting the fact that the reduced estimator performs almost as well as the complete one. Experiments illustrate fast and accurate intent recovery for compliant agents, motivating future work on designing intent-obfuscating controllers.
comment: 9 pages, 2 figures
☆ Contrastive Learning for Semi-Supervised Deep Regression with Generalized Ordinal Rankings from Spectral Seriation
Contrastive learning methods enforce label distance relationships in feature space to improve representation capability for regression models. However, these methods highly depend on label information to correctly recover ordinal relationships of features, limiting their applications to semi-supervised regression. In this work, we extend contrastive regression methods to allow unlabeled data to be used in the semi-supervised setting, thereby reducing the dependence on costly annotations. Particularly we construct the feature similarity matrix with both labeled and unlabeled samples in a mini-batch to reflect inter-sample relationships, and an accurate ordinal ranking of involved unlabeled samples can be recovered through spectral seriation algorithms if the level of error is within certain bounds. The introduction of labeled samples above provides regularization of the ordinal ranking with guidance from the ground-truth label information, making the ranking more reliable. To reduce feature perturbations, we further utilize the dynamic programming algorithm to select robust features for the matrix construction. The recovered ordinal relationship is then used for contrastive learning on unlabeled samples, and we thus allow more data to be used for feature representation learning, thereby achieving more robust results. The ordinal rankings can also be used to supervise predictions on unlabeled samples, serving as an additional training signal. We provide theoretical guarantees and empirical verification through experiments on various datasets, demonstrating that our method can surpass existing state-of-the-art semi-supervised deep regression methods. Our code have been released on https://github.com/xmed-lab/CLSS.
☆ Robust and Sparse Estimation of Unbounded Density Ratio under Heavy Contamination
We examine the non-asymptotic properties of robust density ratio estimation (DRE) in contaminated settings. Weighted DRE is the most promising among existing methods, exhibiting doubly strong robustness from an asymptotic perspective. This study demonstrates that Weighted DRE achieves sparse consistency even under heavy contamination within a non-asymptotic framework. This method addresses two significant challenges in density ratio estimation and robust estimation. For density ratio estimation, we provide the non-asymptotic properties of estimating unbounded density ratios under the assumption that the weighted density ratio function is bounded. For robust estimation, we introduce a non-asymptotic framework for doubly strong robustness under heavy contamination, assuming that at least one of the following conditions holds: (i) contamination ratios are small, and (ii) outliers have small weighted values. This work provides the first non-asymptotic analysis of strong robustness under heavy contamination.
☆ Tensor-Compressed and Fully-Quantized Training of Neural PDE Solvers
Physics-Informed Neural Networks (PINNs) have emerged as a promising paradigm for solving partial differential equations (PDEs) by embedding physical laws into neural network training objectives. However, their deployment on resource-constrained platforms is hindered by substantial computational and memory overhead, primarily stemming from higher-order automatic differentiation, intensive tensor operations, and reliance on full-precision arithmetic. To address these challenges, we present a framework that enables scalable and energy-efficient PINN training on edge devices. This framework integrates fully quantized training, Stein's estimator (SE)-based residual loss computation, and tensor-train (TT) decomposition for weight compression. It contributes three key innovations: (1) a mixed-precision training method that use a square-block MX (SMX) format to eliminate data duplication during backpropagation; (2) a difference-based quantization scheme for the Stein's estimator that mitigates underflow; and (3) a partial-reconstruction scheme (PRS) for TT-Layers that reduces quantization-error accumulation. We further design PINTA, a precision-scalable hardware accelerator, to fully exploit the performance of the framework. Experiments on the 2-D Poisson, 20-D Hamilton-Jacobi-Bellman (HJB), and 100-D Heat equations demonstrate that the proposed framework achieves accuracy comparable to or better than full-precision, uncompressed baselines while delivering 5.5x to 83.5x speedups and 159.6x to 2324.1x energy savings. This work enables real-time PDE solving on edge devices and paves the way for energy-efficient scientific computing at scale.
comment: DATE 2026
☆ Inference for Batched Adaptive Experiments
The advantages of adaptive experiments have led to their rapid adoption in economics, other fields, as well as among practitioners. However, adaptive experiments pose challenges for causal inference. This note suggests a BOLS (batched ordinary least squares) test statistic for inference of treatment effects in adaptive experiments. The statistic provides a precision-equalizing aggregation of per-period treatment-control differences under heteroskedasticity. The combined test statistic is a normalized average of heteroskedastic per-period z-statistics and can be used to construct asymptotically valid confidence intervals. We provide simulation results comparing rejection rates in the typical case with few treatment periods and few (or many) observations per batch.
☆ Rethinking Causal Discovery Through the Lens of Exchangeability
Causal discovery methods have traditionally been developed under two distinct regimes: independent and identically distributed (i.i.d.) and timeseries data, each governed by separate modelling assumptions. In this paper, we argue that the i.i.d. setting can and should be reframed in terms of exchangeability, a strictly more general symmetry principle. We present the implications of this reframing, alongside two core arguments: (1) a conceptual argument, based on extending the dependency of experimental causal inference on exchangeability to causal discovery; and (2) an empirical argument, showing that many existing i.i.d. causal-discovery methods are predicated on exchangeability assumptions, and that the sole extensive widely-used real-world "i.i.d." benchmark (the Tübingen dataset) consists mainly of exchangeable (and not i.i.d.) examples. Building on this insight, we introduce a novel synthetic dataset that enforces only the exchangeability assumption, without imposing the stronger i.i.d. assumption. We show that our exchangeable synthetic dataset mirrors the statistical structure of the real-world "i.i.d." dataset more closely than all other i.i.d. synthetic datasets. Furthermore, we demonstrate the predictive capability of this dataset by proposing a neural-network-based causal-discovery algorithm trained exclusively on our synthetic dataset, and which performs similarly to other state-of-the-art i.i.d. methods on the real-world benchmark.
comment: 37 pages, 4 figures
☆ STARS: Semantic Tokens with Augmented Representations for Recommendation at Scale
Real-world ecommerce recommender systems must deliver relevant items under strict tens-of-milliseconds latency constraints despite challenges such as cold-start products, rapidly shifting user intent, and dynamic context including seasonality, holidays, and promotions. We introduce STARS, a transformer-based sequential recommendation framework built for large-scale, low-latency ecommerce settings. STARS combines several innovations: dual-memory user embeddings that separate long-term preferences from short-term session intent; semantic item tokens that fuse pretrained text embeddings, learnable deltas, and LLM-derived attribute tags, strengthening content-based matching, long-tail coverage, and cold-start performance; context-aware scoring with learned calendar and event offsets; and a latency-conscious two-stage retrieval pipeline that performs offline embedding generation and online maximum inner-product search with filtering, enabling tens-of-milliseconds response times. In offline evaluations on production-scale data, STARS improves Hit@5 by more than 75 percent relative to our existing LambdaMART system. A large-scale A/B test on 6 million visits shows statistically significant lifts, including Total Orders +0.8%, Add-to-Cart on Home +2.0%, and Visits per User +0.5%. These results demonstrate that combining semantic enrichment, multi-intent modeling, and deployment-oriented design can yield state-of-the-art recommendation quality in real-world environments without sacrificing serving efficiency.
☆ Murmur2Vec: A Hashing Based Solution For Embedding Generation Of COVID-19 Spike Sequences
Early detection and characterization of coronavirus disease (COVID-19), caused by SARS-CoV-2, remain critical for effective clinical response and public-health planning. The global availability of large-scale viral sequence data presents significant opportunities for computational analysis; however, existing approaches face notable limitations. Phylogenetic tree-based methods are computationally intensive and do not scale efficiently to today's multi-million-sequence datasets. Similarly, current embedding-based techniques often rely on aligned sequences or exhibit suboptimal predictive performance and high runtime costs, creating barriers to practical large-scale analysis. In this study, we focus on the most prevalent SARS-CoV-2 lineages associated with the spike protein region and introduce a scalable embedding method that leverages hashing to generate compact, low-dimensional representations of spike sequences. These embeddings are subsequently used to train a variety of machine learning models for supervised lineage classification. We conduct an extensive evaluation comparing our approach with multiple baseline and state-of-the-art biological sequence embedding methods across diverse metrics. Our results demonstrate that the proposed embeddings offer substantial improvements in efficiency, achieving up to 86.4\% classification accuracy while reducing embedding generation time by as much as 99.81\%. This highlights the method's potential as a fast, effective, and scalable solution for large-scale viral sequence analysis.
☆ Sequence-to-Image Transformation for Sequence Classification Using Rips Complex Construction and Chaos Game Representation
Traditional feature engineering approaches for molecular sequence classification suffer from sparsity issues and computational complexity, while deep learning models often underperform on tabular biological data. This paper introduces a novel topological approach that transforms molecular sequences into images by combining Chaos Game Representation (CGR) with Rips complex construction from algebraic topology. Our method maps sequence elements to 2D coordinates via CGR, computes pairwise distances, and constructs Rips complexes to capture both local structural and global topological features. We provide formal guarantees on representation uniqueness, topological stability, and information preservation. Extensive experiments on anticancer peptide datasets demonstrate superior performance over vector-based, sequence language models, and existing image-based methods, achieving 86.8\% and 94.5\% accuracy on breast and lung cancer datasets, respectively. The topological representation preserves critical sequence information while enabling effective utilization of vision-based deep learning architectures for molecular sequence analysis.
☆ Partitioning the Sample Space for a More Precise Shannon Entropy Estimation
Reliable data-driven estimation of Shannon entropy from small data sets, where the number of examples is potentially smaller than the number of possible outcomes, is a critical matter in several applications. In this paper, we introduce a discrete entropy estimator, where we use the decomposability property in combination with estimations of the missing mass and the number of unseen outcomes to compensate for the negative bias induced by them. Experimental results show that the proposed method outperforms some classical estimators in undersampled regimes, and performs comparably with some well-established state-of-the-art estimators.
comment: The manuscript contains 6 pages and 10 figures. It has been accepted for International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA 2026)
☆ A Model-Guided Neural Network Method for the Inverse Scattering Problem
Inverse medium scattering is an ill-posed, nonlinear wave-based imaging problem arising in medical imaging, remote sensing, and non-destructive testing. Machine learning (ML) methods offer increased inference speed and flexibility in capturing prior knowledge of imaging targets relative to classical optimization-based approaches; however, they perform poorly in regimes where the scattering behavior is highly nonlinear. A key limitation is that ML methods struggle to incorporate the physics governing the scattering process, which are typically inferred implicitly from the training data or loosely enforced via architectural design. In this paper, we present a method that endows a machine learning framework with explicit knowledge of problem physics, in the form of a differentiable solver representing the forward model. The proposed method progressively refines reconstructions of the scattering potential using measurements at increasing wave frequencies, following a classical strategy to stabilize recovery. Empirically, we find that our method provides high-quality reconstructions at a fraction of the computational or sampling costs of competing approaches.
comment: 28 pages
☆ CHyLL: Learning Continuous Neural Representations of Hybrid Systems
Learning the flows of hybrid systems that have both continuous and discrete time dynamics is challenging. The existing method learns the dynamics in each discrete mode, which suffers from the combination of mode switching and discontinuities in the flows. In this work, we propose CHyLL (Continuous Hybrid System Learning in Latent Space), which learns a continuous neural representation of a hybrid system without trajectory segmentation, event functions, or mode switching. The key insight of CHyLL is that the reset map glues the state space at the guard surface, reformulating the state space as a piecewise smooth quotient manifold where the flow becomes spatially continuous. Building upon these insights and the embedding theorems grounded in differential topology, CHyLL concurrently learns a singularity-free neural embedding in a higher-dimensional space and the continuous flow in it. We showcase that CHyLL can accurately predict the flow of hybrid systems with superior accuracy and identify the topological invariants of the hybrid systems. Finally, we apply CHyLL to the stochastic optimal control problem.
☆ Push Smarter, Not Harder: Hierarchical RL-Diffusion Policy for Efficient Nonprehensile Manipulation
Nonprehensile manipulation, such as pushing objects across cluttered environments, presents a challenging control problem due to complex contact dynamics and long-horizon planning requirements. In this work, we propose HeRD, a hierarchical reinforcement learning-diffusion policy that decomposes pushing tasks into two levels: high-level goal selection and low-level trajectory generation. We employ a high-level reinforcement learning (RL) agent to select intermediate spatial goals, and a low-level goal-conditioned diffusion model to generate feasible, efficient trajectories to reach them. This architecture combines the long-term reward maximizing behaviour of RL with the generative capabilities of diffusion models. We evaluate our method in a 2D simulation environment and show that it outperforms the state-of-the-art baseline in success rate, path efficiency, and generalization across multiple environment configurations. Our results suggest that hierarchical control with generative low-level planning is a promising direction for scalable, goal-directed nonprehensile manipulation. Code, documentation, and trained models are available: https://github.com/carosteven/HeRD.
comment: 8 pages, 8 figures
☆ MedXAI: A Retrieval-Augmented and Self-Verifying Framework for Knowledge-Guided Medical Image Analysis
Accurate and interpretable image-based diagnosis remains a fundamental challenge in medical AI, particularly un- der domain shifts and rare-class conditions. Deep learning mod- els often struggle with real-world distribution changes, exhibit bias against infrequent pathologies, and lack the transparency required for deployment in safety-critical clinical environments. We introduce MedXAI (An Explainable Framework for Med- ical Imaging Classification), a unified expert knowledge based framework that integrates deep vision models with clinician- derived expert knowledge to improve generalization, reduce rare- class bias, and provide human-understandable explanations by localizing the relevant diagnostic features rather than relying on technical post-hoc methods (e.g., Saliency Maps, LIME). We evaluate MedXAI across heterogeneous modalities on two challenging tasks: (i) Seizure Onset Zone localization from resting-state fMRI, and (ii) Diabetic Retinopathy grading. Ex periments on ten multicenter datasets show consistent gains, including a 3% improvement in cross-domain generalization and a 10% improvmnet in F1 score of rare class, substantially outperforming strong deep learning baselines. Ablations confirm that the symbolic components act as effective clinical priors and regularizers, improving robustness under distribution shift. MedXAI delivers clinically aligned explanations while achieving superior in-domain and cross-domain performance, particularly for rare diseases in multimodal medical AI.
comment: https://cmsworkshops.com/Asilomar2025/Papers/Uploads/FinalPapers/Original/1527/20251130102314_899554_1527.pdf
☆ Interpretable Embeddings with Sparse Autoencoders: A Data Analysis Toolkit
Analyzing large-scale text corpora is a core challenge in machine learning, crucial for tasks like identifying undesirable model behaviors or biases in training data. Current methods often rely on costly LLM-based techniques (e.g. annotating dataset differences) or dense embedding models (e.g. for clustering), which lack control over the properties of interest. We propose using sparse autoencoders (SAEs) to create SAE embeddings: representations whose dimensions map to interpretable concepts. Through four data analysis tasks, we show that SAE embeddings are more cost-effective and reliable than LLMs and more controllable than dense embeddings. Using the large hypothesis space of SAEs, we can uncover insights such as (1) semantic differences between datasets and (2) unexpected concept correlations in documents. For instance, by comparing model responses, we find that Grok-4 clarifies ambiguities more often than nine other frontier models. Relative to LLMs, SAE embeddings uncover bigger differences at 2-8x lower cost and identify biases more reliably. Additionally, SAE embeddings are controllable: by filtering concepts, we can (3) cluster documents along axes of interest and (4) outperform dense embeddings on property-based retrieval. Using SAE embeddings, we study model behavior with two case studies: investigating how OpenAI model behavior has changed over time and finding "trigger" phrases learned by Tulu-3 (Lambert et al., 2024) from its training data. These results position SAEs as a versatile tool for unstructured data analysis and highlight the neglected importance of interpreting models through their data.
comment: Code: https://github.com/nickjiang2378/interp_embed
☆ Independent Density Estimation
Large-scale Vision-Language models have achieved remarkable results in various domains, such as image captioning and conditioned image generation. Neverthe- less, these models still encounter difficulties in achieving human-like composi- tional generalization. In this study, we propose a new method called Independent Density Estimation (IDE) to tackle this challenge. IDE aims to learn the connec- tion between individual words in a sentence and the corresponding features in an image, enabling compositional generalization. We build two models based on the philosophy of IDE. The first one utilizes fully disentangled visual representations as input, and the second leverages a Variational Auto-Encoder to obtain partially disentangled features from raw images. Additionally, we propose an entropy- based compositional inference method to combine predictions of each word in the sentence. Our models exhibit superior generalization to unseen compositions compared to current models when evaluated on various datasets.
comment: 10 pages, 1 table, 4 figures
☆ \textsc{Text2Graph}: Combining Lightweight LLMs and GNNs for Efficient Text Classification in Label-Scarce Scenarios
Large Language Models (LLMs) have become effective zero-shot classifiers, but their high computational requirements and environmental costs limit their practicality for large-scale annotation in high-performance computing (HPC) environments. To support more sustainable workflows, we present \textsc{Text2Graph}, an open-source Python package that provides a modular implementation of existing text-to-graph classification approaches. The framework enables users to combine LLM-based partial annotation with Graph Neural Network (GNN) label propagation in a flexible manner, making it straightforward to swap components such as feature extractors, edge construction methods, and sampling strategies. We benchmark \textsc{Text2Graph} on a zero-shot setting using five datasets spanning topic classification and sentiment analysis tasks, comparing multiple variants against other zero-shot approaches for text classification. In addition to reporting performance, we provide detailed estimates of energy consumption and carbon emissions, showing that graph-based propagation achieves competitive results at a fraction of the energy and environmental cost.
☆ Mitigating Exposure Bias in Risk-Aware Time Series Forecasting with Soft Tokens
Autoregressive forecasting is central to predictive control in diabetes and hemodynamic management, where different operating zones carry different clinical risks. Standard models trained with teacher forcing suffer from exposure bias, yielding unstable multi-step forecasts for closed-loop use. We introduce Soft-Token Trajectory Forecasting (SoTra), which propagates continuous probability distributions (``soft tokens'') to mitigate exposure bias and learn calibrated, uncertainty-aware trajectories. A risk-aware decoding module then minimizes expected clinical harm. In glucose forecasting, SoTra reduces average zone-based risk by 18\%; in blood-pressure forecasting, it lowers effective clinical risk by approximately 15\%. These improvements support its use in safety-critical predictive control.
☆ LxCIM: a new rank-based binary classifier performance metric invariant to local exchange of classes
Binary classification is one of the oldest, most prevalent, and studied problems in machine learning. However, the metrics used to evaluate model performance have received comparatively little attention. The area under the receiver operating characteristic curve (AUROC) has long been a standard choice for model comparison. Despite its advantages, AUROC is not always ideal, particularly for problems that are invariant to local exchange of classes (LxC), a new form of metric invariance introduced in this work. To address this limitation, we propose LxCIM (LxC-invariant metric), which is not only rank-based and invariant under local exchange of classes, but also intuitive, logically consistent, and always computable, while enabling more detailed analysis through the cumulative accuracy-decision rate curve. Moreover, LxCIM exhibits clear theoretical connections to AUROC, accuracy, and the area under the accuracy-decision rate curve (AUDRC). These relationships allow for multiple complementary interpretations: as a symmetric form of AUROC, a rank-based analogue of accuracy, or a more representative and more interpretable variant of AUDRC. Finally, we demonstrate the direct applicability of LxCIM to the bivariate causal discovery problem (which exhibits invariance to local exchange of classes) and show how it addresses the acknowledged limitations of existing metrics used in this field. All code and implementation details are publicly available at github.com/tiagobrogueira/Causal-Discovery-In-Exchangeable-Data.
comment: 28 pages, 7 figures
☆ DB2-TransF: All You Need Is Learnable Daubechies Wavelets for Time Series Forecasting
Time series forecasting requires models that can efficiently capture complex temporal dependencies, especially in large-scale and high-dimensional settings. While Transformer-based architectures excel at modeling long-range dependencies, their quadratic computational complexity poses limitations on scalability and adaptability. To overcome these challenges, we introduce DB2-TransF, a novel Transformer-inspired architecture that replaces the self-attention mechanism with a learnable Daubechies wavelet coefficient layer. This wavelet-based module efficiently captures multi-scale local and global patterns and enhances the modeling of correlations across multiple time series for the time series forecasting task. Extensive experiments on 13 standard forecasting benchmarks demonstrate that DB2-TransF achieves comparable or superior predictive accuracy to conventional Transformers, while substantially reducing memory usage for the time series forecasting task. The obtained experimental results position DB2-TransF as a scalable and resource-efficient framework for advanced time series forecasting. Our code is available at https://github.com/SteadySurfdom/DB2-TransF
☆ Detailed balance in large language model-driven agents
Large language model (LLM)-driven agents are emerging as a powerful new paradigm for solving complex problems. Despite the empirical success of these practices, a theoretical framework to understand and unify their macroscopic dynamics remains lacking. This Letter proposes a method based on the least action principle to estimate the underlying generative directionality of LLMs embedded within agents. By experimentally measuring the transition probabilities between LLM-generated states, we statistically discover a detailed balance in LLM-generated transitions, indicating that LLM generation may not be achieved by generally learning rule sets and strategies, but rather by implicitly learning a class of underlying potential functions that may transcend different LLM architectures and prompt templates. To our knowledge, this is the first discovery of a macroscopic physical law in LLM generative dynamics that does not depend on specific model details. This work is an attempt to establish a macroscopic dynamics theory of complex AI systems, aiming to elevate the study of AI agents from a collection of engineering practices to a science built on effective measurements that are predictable and quantifiable.
comment: 20 pages, 12 figures, 5 tables
☆ Local LLM Ensembles for Zero-shot Portuguese Named Entity Recognition
Large Language Models (LLMs) excel in many Natural Language Processing (NLP) tasks through in-context learning but often under-perform in Named Entity Recognition (NER), especially for lower-resource languages like Portuguese. While open-weight LLMs enable local deployment, no single model dominates all tasks, motivating ensemble approaches. However, existing LLM ensembles focus on text generation or classification, leaving NER under-explored. In this context, this work proposes a novel three-step ensemble pipeline for zero-shot NER using similarly capable, locally run LLMs. Our method outperforms individual LLMs in four out of five Portuguese NER datasets by leveraging a heuristic to select optimal model combinations with minimal annotated data. Moreover, we show that ensembles obtained on different source datasets generally outperform individual LLMs in cross-dataset configurations, potentially eliminating the need for annotated data for the current task. Our work advances scalable, low-resource, and zero-shot NER by effectively combining multiple small LLMs without fine-tuning. Code is available at https://github.com/Joao-Luz/local-llm-ner-ensemble.
☆ SEMDICE: Off-policy State Entropy Maximization via Stationary Distribution Correction Estimation ICLR 2025
In the unsupervised pre-training for reinforcement learning, the agent aims to learn a prior policy for downstream tasks without relying on task-specific reward functions. We focus on state entropy maximization (SEM), where the goal is to learn a policy that maximizes the entropy of the state stationary distribution. In this paper, we introduce SEMDICE, a principled off-policy algorithm that computes an SEM policy from an arbitrary off-policy dataset, which optimizes the policy directly within the space of stationary distributions. SEMDICE computes a single, stationary Markov state-entropy-maximizing policy from an arbitrary off-policy dataset. Experimental results demonstrate that SEMDICE outperforms baseline algorithms in maximizing state entropy while achieving the best adaptation efficiency for downstream tasks among SEM-based unsupervised RL pre-training methods.
comment: ICLR 2025
☆ Intelligently Weighting Multiple Reference Models for Direct Preference Optimization of LLMs
Fine-tuning is integral for aligning large language models (LLMs) with human preferences. Multiple-Reference Preference Optimization (MRPO) builds on Direct Preference Optimization (DPO) by fine-tuning LLMs on preference datasets while regularizing the policy towards a mixture of reference models to leverage their collective desirable properties. However, current methods for setting the reference weights are ad-hoc and statistically unsound, leading to unreliable performance. To address this, we introduce four new weighting strategies: two offline methods that leverage held-out validation signal; one online method that uses a sliding-window estimator to reduce overfitting; and an online method that treats reference weighting as a $K$-armed bandit via Thompson Sampling. Experiments using Qwen2.5-0.5B as the policy model and seven reference models from the Llama, Mistral, Qwen, Yi, and Phi families (0.5B-14B each) show that all 4 of our strategies outperform the current MRPO weighting methods on UltraFeedback and SafeRLHF in preference accuracy. More thought-provokingly, however, we find that single-reference DPO, using any of 6 out of 7 references, consistently outperforms all tested multiple-reference approaches -- calling into question the practical appeal of multiple-reference approaches.
comment: Working paper. 13 pages, 4 figures
☆ Robust Gradient Descent via Heavy-Ball Momentum with Predictive Extrapolation
Accelerated gradient methods like Nesterov's Accelerated Gradient (NAG) achieve faster convergence on well-conditioned problems but often diverge on ill-conditioned or non-convex landscapes due to aggressive momentum accumulation. We propose Heavy-Ball Synthetic Gradient Extrapolation (HB-SGE), a robust first-order method that combines heavy-ball momentum with predictive gradient extrapolation. Unlike classical momentum methods that accumulate historical gradients, HB-SGE estimates future gradient directions using local Taylor approximations, providing adaptive acceleration while maintaining stability. We prove convergence guarantees for strongly convex functions and demonstrate empirically that HB-SGE prevents divergence on problems where NAG and standard momentum fail. On ill-conditioned quadratics (condition number $κ=50$), HB-SGE converges in 119 iterations while both SGD and NAG diverge. On the non-convex Rosenbrock function, HB-SGE achieves convergence in 2,718 iterations where classical momentum methods diverge within 10 steps. While NAG remains faster on well-conditioned problems, HB-SGE provides a robust alternative with speedup over SGD across diverse landscapes, requiring only $O(d)$ memory overhead and the same hyperparameters as standard momentum.
☆ Cluster-Dags as Powerful Background Knowledge For Causal Discovery
Finding cause-effect relationships is of key importance in science. Causal discovery aims to recover a graph from data that succinctly describes these cause-effect relationships. However, current methods face several challenges, especially when dealing with high-dimensional data and complex dependencies. Incorporating prior knowledge about the system can aid causal discovery. In this work, we leverage Cluster-DAGs as a prior knowledge framework to warm-start causal discovery. We show that Cluster-DAGs offer greater flexibility than existing approaches based on tiered background knowledge and introduce two modified constraint-based algorithms, Cluster-PC and Cluster-FCI, for causal discovery in the fully and partially observed setting, respectively. Empirical evaluation on simulated data demonstrates that Cluster-PC and Cluster-FCI outperform their respective baselines without prior knowledge.
comment: 23 pages, 5 figures
☆ Latent Action World Models for Control with Unlabeled Trajectories
Inspired by how humans combine direct interaction with action-free experience (e.g., videos), we study world models that learn from heterogeneous data. Standard world models typically rely on action-conditioned trajectories, which limits effectiveness when action labels are scarce. We introduce a family of latent-action world models that jointly use action-conditioned and action-free data by learning a shared latent action representation. This latent space aligns observed control signals with actions inferred from passive observations, enabling a single dynamics model to train on large-scale unlabeled trajectories while requiring only a small set of action-labeled ones. We use the latent-action world model to learn a latent-action policy through offline reinforcement learning (RL), thereby bridging two traditionally separate domains: offline RL, which typically relies on action-conditioned data, and action-free training, which is rarely used with subsequent RL. On the DeepMind Control Suite, our approach achieves strong performance while using about an order of magnitude fewer action-labeled samples than purely action-conditioned baselines. These results show that latent actions enable training on both passive and interactive data, which makes world models learn more efficiently.
☆ Fuzzy Hierarchical Multiplex
A new fuzzy optimization framework that extends FCM causality is proposed. This model utilizes the dynamics to map data into metrics and create a framework that examines logical implication and hierarchy of concepts using a multiplex. Moreover, this is a white-theoretical paper introducing the framework and analyzing the logic and math behind it. Upon this extension the main objectives and the orientation of this framework is expounded and exemplified; this framework is meant for service optimization of information transmission in service process design. Lastly, a thorough analysis of the FHM is included which is done following the logical steps in a simple and elegant manner.
comment: 11 pages, 2 figures, 1 double figure, 1 table, 12 references. This will be part of my PhD dissertation and it is a White paper-theoretical framewor. As is, it s meant for a basis that will be later used to further developed an FHM. It might not be math-logic related and I am willing to change it, I just felt that it belonged to mathematical modeling. Yours truly, AK
☆ Enhancing Fake-News Detection with Node-Level Topological Features
In recent years, the proliferation of misinformation and fake news has posed serious threats to individuals and society, spurring intense research into automated detection methods. Previous work showed that integrating content, user preferences, and propagation structure achieves strong performance, but leaves all graph-level representation learning entirely to the GNN, hiding any explicit topological cues. To close this gap, we introduce a lightweight enhancement: for each node, we append two classical graph-theoretic metrics, degree centrality and local clustering coefficient, to its original BERT and profile embeddings, thus explicitly flagging the roles of hub and community. In the UPFD Politifact subset, this simple modification boosts macro F1 from 0.7753 to 0.8344 over the original baseline. Our study not only demonstrates the practical value of explicit topology features in fake-news detection but also provides an interpretable, easily reproducible template for fusing graph metrics in other information-diffusion tasks.
☆ BAMBO: Construct Ability and Efficiency LLM Pareto Set via Bayesian Adaptive Multi-objective Block-wise Optimization
Constructing a Pareto set is pivotal for navigating the capability-efficiency trade-offs in Large Language Models (LLMs); however, existing merging techniques remain inadequate for this task. Coarse-grained, model-level methods yield only a sparse set of suboptimal solutions, while fine-grained, layer-wise approaches suffer from the "curse of dimensionality," rendering the search space computationally intractable. To resolve this dichotomy, we propose BAMBO (Bayesian Adaptive Multi-objective Block-wise Optimization), a novel framework that automatically constructs the LLM Pareto set. BAMBO renders the search tractable by introducing a Hybrid Optimal Block Partitioning strategy. Formulated as a 1D clustering problem, this strategy leverages a dynamic programming approach to optimally balance intra-block homogeneity and inter-block information distribution, thereby dramatically reducing dimensionality without sacrificing critical granularity. The entire process is automated within an evolutionary loop driven by the q-Expected Hypervolume Improvement (qEHVI) acquisition function. Experiments demonstrate that BAMBO discovers a superior and more comprehensive Pareto frontier than baselines, enabling agile model selection tailored to diverse operational constraints. Code is available at: https://github.com/xin8coder/BAMBO.
☆ MedXAI: A Retrieval-Augmented and Self-Verifying Framework for Knowledge-Guided Medical Image Analysis
Accurate and interpretable image-based diagnosis remains a fundamental challenge in medical AI, particularly under domain shifts and rare-class conditions. Deep learning models often struggle with real-world distribution changes, exhibit bias against infrequent pathologies, and lack the transparency required for deployment in safety-critical clinical environments. We introduce MedXAI (An Explainable Framework for Medical Imaging Classification), a unified expert knowledge based framework that integrates deep vision models with clinician-derived expert knowledge to improve generalization, reduce rare-class bias, and provide human-understandable explanations by localizing the relevant diagnostic features rather than relying on technical post-hoc methods (e.g., Saliency Maps, LIME). We evaluate MedXAI across heterogeneous modalities on two challenging tasks: (i) Seizure Onset Zone localization from resting-state fMRI, and (ii) Diabetic Retinopathy grading. Ex periments on ten multicenter datasets show consistent gains, including a 3% improvement in cross-domain generalization and a 10% improvmnet in F1 score of rare class, substantially outperforming strong deep learning baselines. Ablations confirm that the symbolic components act as effective clinical priors and regularizers, improving robustness under distribution shift. MedXAI delivers clinically aligned explanations while achieving superior in-domain and cross-domain performance, particularly for rare diseases in multimodal medical AI.
comment: https://cmsworkshops.com/Asilomar2025/Papers/Uploads/FinalPapers/Original/1527/20251130102314_899554_1527.pdf
☆ Independent Density Estimation
Large-scale Vision-Language models have achieved remarkable results in various domains, such as image captioning and conditioned image generation. Nevertheless, these models still encounter difficulties in achieving human-like compositional generalization. In this study, we propose a new method called Independent Density Estimation (IDE) to tackle this challenge. IDE aims to learn the connection between individual words in a sentence and the corresponding features in an image, enabling compositional generalization. We build two models based on the philosophy of IDE. The first one utilizes fully disentangled visual representations as input, and the second leverages a Variational Auto-Encoder to obtain partially disentangled features from raw images. Additionally, we propose an entropy-based compositional inference method to combine predictions of each word in the sentence. Our models exhibit superior generalization to unseen compositions compared to current models when evaluated on various datasets.
comment: 10 pages, 1 table, 4 figures
♻ ☆ Imitative Membership Inference Attack
A Membership Inference Attack (MIA) assesses how much a target machine learning model reveals about its training data by determining whether specific query instances were part of the training set. State-of-the-art MIAs rely on training hundreds of shadow models that are independent of the target model, leading to significant computational overhead. In this paper, we introduce Imitative Membership Inference Attack (IMIA), which employs a novel imitative training technique to strategically construct a small number of target-informed imitative models that closely replicate the target model's behavior for inference. Extensive experimental results demonstrate that IMIA substantially outperforms existing MIAs in various attack settings while only requiring less than 5% of the computational cost of state-of-the-art approaches.
comment: Code is available at: https://github.com/zealscott/IMIA
♻ ☆ Neural Diversity Regularizes Hallucinations in Language Models
Language models continue to hallucinate despite increases in parameters, compute, and data. We propose neural diversity -- decorrelated parallel representations -- as a principled mechanism that reduces hallucination rates at fixed parameter and data budgets. While existing mitigation strategies largely target accuracy, we provide the first formal tail bounds for hallucination probability in ensembled language models, reframing it as a second-moment reliability problem and explaining 94.3% of empirical reliability variation seen across parallel configurations. We introduce ND-LoRA (Neural Diversity Low-Rank Adaptation), combining parallel LoRA adapters with Barlow Twins regularization, and reduce hallucinations by up to 25.6% (and 14.6% on average) while preserving general accuracy. Ablations show LoRA adapters and regularization act synergistically, causal interventions prove neurodiversity as the mediating factor and correlational studies indicate scale: a 0.1% neural correlation increase is associated with a 3.8% hallucination increase. Finally, task-dependent optimality emerges: different tasks require different optimal amounts of neurodiversity. Together, our results highlight neural diversity as a third axis of scaling -- orthogonal to parameters and data -- to improve the reliability of language models at fixed budgets.
♻ ☆ PolyLingua: Margin-based Inter-class Transformer for Robust Cross-domain Language Detection
Language identification is a crucial first step in multilingual systems such as chatbots and virtual assistants, enabling linguistically and culturally accurate user experiences. Errors at this stage can cascade into downstream failures, setting a high bar for accuracy. Yet, existing language identification tools struggle with key cases -- such as music requests where the song title and user language differ. Open-source tools like LangDetect, FastText are fast but less accurate, while large language models, though effective, are often too costly for low-latency or low-resource settings. We introduce PolyLingua, a lightweight Transformer-based model for in-domain language detection and fine-grained language classification. It employs a two-level contrastive learning framework combining instance-level separation and class-level alignment with adaptive margins, yielding compact and well-separated embeddings even for closely related languages. Evaluated on two challenging datasets -- Amazon Massive (multilingual digital assistant utterances) and a Song dataset (music requests with frequent code-switching) -- PolyLingua achieves 99.25% F1 and 98.15% F1, respectively, surpassing Sonnet 3.5 while using 10x fewer parameters, making it ideal for compute- and latency-constrained environments.
♻ ☆ Text-Trained LLMs Can Zero-Shot Extrapolate PDE Dynamics, Revealing a Three-Stage In-Context Learning Mechanism
Large language models (LLMs) have demonstrated emergent in-context learning (ICL) capabilities across a range of tasks, including zero-shot time-series forecasting. We show that text-trained foundation models can accurately extrapolate spatiotemporal dynamics from discretized partial differential equation (PDE) solutions without fine-tuning or natural language prompting. Predictive accuracy improves with longer temporal contexts but degrades at finer spatial discretizations. In multi-step rollouts, where the model recursively predicts future spatial states over multiple time steps, errors grow algebraically with the time horizon, reminiscent of global error accumulation in classical finite-difference solvers. We interpret these trends as in-context neural scaling laws, where prediction quality varies predictably with both context length and output length. To better understand how LLMs are able to internally process PDE solutions so as to accurately roll them out, we analyze token-level output distributions and uncover a consistent three-stage ICL progression: beginning with syntactic pattern imitation, transitioning through an exploratory high-entropy phase, and culminating in confident, numerically grounded predictions.
♻ ☆ Low-Dimensional Structure in the Space of Language Representations is Reflected in Brain Responses
How related are the representations learned by neural language models, translation models, and language tagging tasks? We answer this question by adapting an encoder-decoder transfer learning method from computer vision to investigate the structure among 100 different feature spaces extracted from hidden representations of various networks trained on language tasks. This method reveals a low-dimensional structure where language models and translation models smoothly interpolate between word embeddings, syntactic and semantic tasks, and future word embeddings. We call this low-dimensional structure a language representation embedding because it encodes the relationships between representations needed to process language for a variety of NLP tasks. We find that this representation embedding can predict how well each individual feature space maps to human brain responses to natural language stimuli recorded using fMRI. Additionally, we find that the principal dimension of this structure can be used to create a metric which highlights the brain's natural language processing hierarchy. This suggests that the embedding captures some part of the brain's natural language representation structure.
comment: Accepted to the Advances in Neural Information Processing Systems 34 (2021) Revised to include voxel selection details
♻ ☆ Constrained Discrete Diffusion NeurIPS 2025
Discrete diffusion models are a class of generative models that construct sequences by progressively denoising samples from a categorical noise distribution. Beyond their rapidly growing ability to generate coherent natural language, these models present a new and important opportunity to enforce sequence-level constraints, a capability that current autoregressive models cannot natively provide. This paper capitalizes on this opportunity by introducing Constrained Discrete Diffusion (CDD), a novel integration of differentiable constraint optimization within the diffusion process to ensure adherence to constraints, logic rules, or safety requirements for generated sequences. Unlike conventional text generators that often rely on post-hoc filtering or model retraining for controllable generation, CDD directly imposes constraints into the discrete diffusion sampling process, resulting in a training-free and effective approach. Experiments in toxicity-controlled text generation, property-constrained molecule design, and instruction-constrained text completion demonstrate that CDD achieves zero constraint violations in a diverse array of tasks while preserving fluency, novelty, and coherence while outperforming autoregressive and existing discrete diffusion approaches.
comment: Published at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Revisiting Intermediate-Layer Matching in Knowledge Distillation: Layer-Selection Strategy Doesn't Matter (Much) ACL 2025
Knowledge distillation (KD) is a popular method of transferring knowledge from a large "teacher" model to a small "student" model. Previous work has explored various layer-selection strategies (e.g., forward matching and in-order random matching) for intermediate-layer matching in KD, where a student layer is forced to resemble a certain teacher layer. In this work, we revisit such layer-selection strategies and observe an intriguing phenomenon that layer-selection strategy does not matter (much) in intermediate-layer matching -- even seemingly nonsensical matching strategies such as reverse matching still result in surprisingly good student performance. We provide an interpretation for this phenomenon by examining the angles between teacher layers viewed from the student's perspective. Our work sheds light on KD practice, as layer-selection strategies may not be the main focus of KD system design, and vanilla forward matching works well in most setups.
comment: Accepted at IJCNLP-AACL 2025
♻ ☆ A Framework for Controllable Multi-objective Learning with Annealed Stein Variational Hypernetworks
Pareto Set Learning (PSL) is popular as an efficient approach to obtaining the complete optimal solution in Multi-objective Learning (MOL). A set of optimal solutions approximates the Pareto set, and its mapping is a set of dense points in the Pareto front in objective space. However, some current methods face a challenge: how to make the Pareto solution is diverse while maximizing the hypervolume value. In this paper, we propose a novel method to address this challenge, which employs Stein Variational Gradient Descent (SVGD) to approximate the entire Pareto set. SVGD pushes a set of particles towards the Pareto set by applying a form of functional gradient descent, which helps to converge and diversify optimal solutions. Additionally, we employ diverse gradient direction strategies to thoroughly investigate a unified framework for SVGD in multi-objective optimization and adapt this framework with an annealing schedule to promote stability. We introduce our method, SVH-MOL, and validate its effectiveness through extensive experiments on multi-objective problems and multi-task learning, demonstrating its superior performance.
comment: Paper is under review
♻ ☆ SAFT: Structure-Aware Fine-Tuning of LLMs for AMR-to-Text Generation KDD2025
Large Language Models (LLMs) are increasingly applied to tasks involving structured inputs such as graphs. Abstract Meaning Representations (AMRs), which encode rich semantics as directed graphs, offer a rigorous testbed for evaluating LLMs on text generation from such structures. Yet, current methods often arbitrarily linearize AMRs, discarding key structural cues, or rely on architectures incompatible with standard LLMs. We introduce SAFT, a structure-aware fine-tuning approach that injects graph topology into pretrained LLMs without architectural changes. We compute direction-sensitive positional encodings from the magnetic Laplacian of transformed AMRs and project them into the embedding space of the LLM. While possibly applicable to any graph-structured inputs, we focus on AMR-to-text generation as a representative and challenging benchmark. SAFT sets a new state-of-the-art on AMR 3.0 with a 3.5 BLEU improvement over baselines. Gains scale with graph complexity, highlighting the value of structure-aware representations in enhancing LLM performance. SAFT offers a general and effective pathway for bridging structured data and language models.
comment: Accepted at the KDD2025 Workshop on Structured Knowledge for LLMs
♻ ☆ DS FedProxGrad: Asymptotic Stationarity Without Noise Floor in Fair Federated Learning
Recent work \cite{arifgroup} introduced Federated Proximal Gradient \textbf{(\texttt{FedProxGrad})} for solving non-convex composite optimization problems in group fair federated learning. However, the original analysis established convergence only to a \textit{noise-dominated neighborhood of stationarity}, with explicit dependence on a variance-induced noise floor. In this work, we provide an improved asymptotic convergence analysis for a generalized \texttt{FedProxGrad}-type analytical framework with inexact local proximal solutions and explicit fairness regularization. We call this extended analytical framework \textbf{DS \texttt{FedProxGrad}} (Decay Step Size \texttt{FedProxGrad}). Under a Robbins-Monro step-size schedule \cite{robbins1951stochastic} and a mild decay condition on local inexactness, we prove that $\liminf_{r\to\infty} \mathbb{E}[\|\nabla F(\mathbf{x}^r)\|^2] = 0$, i.e., the algorithm is asymptotically stationary and the convergence rate does not depend on a variance-induced noise floor.
comment: 8 pages
♻ ☆ Improving Graph Neural Network Training, Defense, Hypergraph Partitioning and Spectral Clustering via Adversarial Robustness Evaluation
Graph Neural Networks (GNNs) are a highly effective neural network architecture for processing graph-structured data. Unlike traditional neural networks that rely solely on the features of the data as input, GNNs leverage both the graph structure, which represents the relationships between data points, and the feature matrix of the data to optimize their feature representation. This unique capability enables GNNs to achieve superior performance across various tasks. However, it also makes GNNs more susceptible to noise from both the graph structure and data features, which can significantly increase the training difficulty and degrade their performance. To address this issue, this paper proposes a novel method for selecting noise-sensitive training samples from the original training set to construct a smaller yet more effective training set for model training. These samples are used to help improve the model's ability to correctly process data in noisy environments. We have evaluated our approach on three of the most classical GNN models GCN, GAT, and GraphSAGE as well as three widely used benchmark datasets: Cora, Citeseer, and PubMed. Our experiments demonstrate that the proposed method can substantially boost the training of Graph Neural Networks compared to using randomly sampled training sets of the same size from the original training set and the larger original full training set. We further proposed a robust-node based hypergraph partitioning method, an adversarial robustness based graph pruning method for GNN defenses, a robust spectral clustering method and a related spectral edge attack method.
♻ ☆ Deep Operator Learning for High-Fidelity Fluid Flow Field Reconstruction from Sparse Sensor Measurements
Reconstructing high-fidelity fluid flow fields from sparse sensor measurements is vital for many science and engineering applications but remains challenging because of dimensional disparities between state and observational spaces. Due to such dimensional differences, the measurement operator becomes ill-conditioned and non-invertible, making the reconstruction of flow fields from sensor measurements extremely difficult. Although sparse optimization and machine learning address the above problems to some extent, questions about their generalization and efficiency remain, particularly regarding the discretization dependence of these models. In this context, deep operator learning offers a better solution as this approach models mappings between infinite-dimensional functional spaces, enabling superior generalization and discretization-independent reconstruction. We introduce FLRONet, a deep operator learning framework that is trained to reconstruct fluid flow fields from sparse sensor measurements. FLRONet employs a branch-trunk network architecture to represent the inverse measurement operator that maps sensor observations to the original flow field, a continuous function of both space and time. Validation performed on the CFDBench dataset has demonstrated that FLRONet consistently achieves high levels of reconstruction accuracy and robustness, even in scenarios where sensor measurements are inaccurate or missing. Furthermore, the operator learning approach endows FLRONet with the capability to perform zero-shot super-resolution in both spatial and temporal domains, offering a solution for rapid reconstruction of high-fidelity flow fields.
♻ ☆ ModalSurv: Investigating opportunities and limitations of multimodal deep survival learning in prostate and bladder cancer
Accurate survival prediction is essential for personalised cancer treatment. We propose ModalSurv, a multimodal deep survival framework integrating clinical, MRI, histopathology, and RNA-sequencing data via modality-specific projections and cross-attention fusion. On the CHIMERA Grand Challenge datasets, ModalSurv achieved a C-index of 0.7402 (1st) for prostate and 0.5740 (5th) for bladder cancer. Notably, clinical features alone outperformed multimodal models on external tests, highlighting challenges of limited multimodal alignment and potential overfitting. Local validation showed multimodal gains but limited generalisation. ModalSurv provides a systematic evaluation of multimodal survival modelling, underscoring both its promise and current limitations for scalable, generalisable cancer prognosis.
comment: 4 pages, 1 figure, 2 tables
♻ ☆ PrivaDE: Privacy-preserving Data Evaluation for Blockchain-based Data Marketplaces
Evaluating the usefulness of data before purchase is essential when obtaining data for high-quality machine learning models, yet both model builders and data providers are often unwilling to reveal their proprietary assets. We present PrivaDE, a privacy-preserving protocol that allows a model owner and a data owner to jointly compute a utility score for a candidate dataset without fully exposing model parameters, raw features, or labels. PrivaDE provides strong security against malicious behavior and can be integrated into blockchain-based marketplaces, where smart contracts enforce fair execution and payment. To make the protocol practical, we propose optimizations to enable efficient secure model inference, and a model-agnostic scoring method that uses only a small, representative subset of the data while still reflecting its impact on downstream training. Evaluation shows that PrivaDE performs data evaluation effectively, achieving online runtimes within 15 minutes even for models with millions of parameters. Our work lays the foundation for fair and automated data marketplaces in decentralized machine learning ecosystems.
♻ ☆ The Adoption and Usage of AI Agents: Early Evidence from Perplexity
This paper presents the first large-scale field study of the adoption, usage intensity, and use cases of general-purpose AI agents operating in open-world web environments. Our analysis centers on Comet, an AI-powered browser developed by Perplexity, and its integrated agent, Comet Assistant. Drawing on hundreds of millions of anonymized user interactions, we address three fundamental questions: Who is using AI agents? How intensively are they using them? And what are they using them for? Our findings reveal substantial heterogeneity in adoption and usage across user segments. Earlier adopters, users in countries with higher GDP per capita and educational attainment, and individuals working in digital or knowledge-intensive sectors -- such as digital technology, academia, finance, marketing, and entrepreneurship -- are more likely to adopt or actively use the agent. To systematically characterize the substance of agent usage, we introduce a hierarchical agentic taxonomy that organizes use cases across three levels: topic, subtopic, and task. The two largest topics, Productivity & Workflow and Learning & Research, account for 57% of all agentic queries, while the two largest subtopics, Courses and Shopping for Goods, make up 22%. The top 10 out of 90 tasks represent 55% of queries. Personal use constitutes 55% of queries, while professional and educational contexts comprise 30% and 16%, respectively. In the short term, use cases exhibit strong stickiness, but over time users tend to shift toward more cognitively oriented topics. The diffusion of increasingly capable AI agents carries important implications for researchers, businesses, policymakers, and educators, inviting new lines of inquiry into this rapidly emerging class of AI capabilities.
♻ ☆ AugLift: Uncertainty Aware Depth Descriptors for Robust 2D to 3D Pose Lifting
Lifting based 3D human pose estimators infer 3D joints from 2D keypoints, but often struggle to generalize to real world settings with noisy 2D detections. We revisit the input to lifting and propose AugLift, a simple augmentation of standard lifting that enriches each 2D keypoint (x, y) with an Uncertainty Aware Depth Descriptor (UADD). We run a single off the shelf monocular depth estimator to obtain a depth map, and for every keypoint with detector confidence c we extract depth statistics from its confidence scaled neighborhood, forming a compact, interpretable UADD (c, d, d_min, d_max) that captures both local geometry and reliability. AugLift is modular, requires no new sensors or architectural changes, and integrates by expanding the input layer of existing lifting models. Across four datasets and four lifting architectures, AugLift boosts cross dataset (out of distribution) performance on unseen data by an average of 10.1 percent, while also improving in distribution performance by 4.0 percent as measured by MPJPE. A post hoc analysis clarifies when and why it helps: gains are largest on novel poses and significantly occluded joints, where depth statistics resolve front back ambiguities while confidence calibrates the spatial neighborhoods from which they are drawn. We also study interaction with recent image feature lifting methods and find the signals are complementary: adding UADD to image conditioned lifting yields both ID and OOD gains. A learned depth feature extension (AugLiftV2) improves performance further while trading off interpretability. Together, these results indicate that lightweight, confidence aware depth cues are a powerful plug in for robust 2D to 3D pose lifting.
comment: Preprint. Under review
♻ ☆ Benchmarking Web API Integration Code Generation
API integration is a cornerstone of our digital infrastructure, enabling software systems to connect and interact. However, as shown by many studies, writing or generating correct code to invoke APIs, particularly web APIs, is challenging. Although large language models (LLMs) have become popular in software development, their effectiveness in automating the generation of web API integration code remains unexplored. In order to address this, we present WAPIIBench, a dataset and evaluation pipeline designed to assess the ability of LLMs to generate web API invocation code. Our experiments with several open-source LLMs reveal that generating API invocations poses a significant challenge, resulting in hallucinated endpoints, incorrect argument usage, and other errors. None of the evaluated open-source models was able to solve more than 40% of the tasks.
comment: Published in Proceedings of 2025 2nd IEEE/ACM International Conference on AI-powered Software (AIware), Data & Benchmark Track; updated artifact link to point to the right version
♻ ☆ Revealing economic facts: LLMs know more than they say
We investigate whether the hidden states of large language models (LLMs) can be used to estimate and impute economic and financial statistics. Focusing on county-level (e.g. unemployment) and firm-level (e.g. total assets) variables, we show that a simple linear model trained on the hidden states of open-source LLMs outperforms the models' text outputs. This suggests that hidden states capture richer economic information than the responses of the LLMs reveal directly. A learning curve analysis indicates that only a few dozen labelled examples are sufficient for training. We also propose a transfer learning method that improves estimation accuracy without requiring any labelled data for the target variable. Finally, we demonstrate the practical utility of hidden-state representations in super-resolution and data imputation tasks.
comment: 34 pages, 17 figures
Learning What Matters: Steering Diffusion via Spectrally Anisotropic Forward Noise
Diffusion Probabilistic Models (DPMs) have achieved strong generative performance, yet their inductive biases remain largely implicit. In this work, we aim to build inductive biases into the training and sampling of diffusion models to better accommodate the target distribution of the data to model. We introduce an anisotropic noise operator that shapes these biases by replacing the isotropic forward covariance with a structured, frequency-diagonal covariance. This operator unifies band-pass masks and power-law weightings, allowing us to emphasize or suppress designated frequency bands, while keeping the forward process Gaussian. We refer to this as Spectrally Anisotropic Gaussian Diffusion (SAGD). In this work, we derive the score relation for anisotropic forward covariances and show that, under full support, the learned score converges to the true data score as $t\!\to\!0$, while anisotropy reshapes the probability-flow path from noise to data. Empirically, we show the induced anisotropy outperforms standard diffusion across several vision datasets, and enables selective omission: learning while ignoring known corruptions confined to specific bands. Together, these results demonstrate that carefully designed anisotropic forward noise provides a simple, yet principled, handle to tailor inductive bias in DPMs.
♻ ☆ Generalized Guarantees for Variational Inference in the Presence of Even and Elliptical Symmetry
We extend several recent results providing symmetry-based guarantees for variational inference (VI) with location-scale families. VI approximates a target density $p$ by the best match $q^*$ in a family $Q$ of tractable distributions that in general does not contain $p$. It is known that VI can recover key properties of $p$, such as its mean and correlation matrix, when $p$ and $Q$ exhibit certain symmetries and $q^*$ is found by minimizing the reverse Kullback-Leibler divergence. We extend these guarantees in two important directions. First, we provide symmetry-based guarantees for $f$-divergences, a broad class that includes the reverse and forward Kullback-Leibler divergences and the $α$-divergences. We highlight properties specific to the reverse Kullback-Leibler divergence under which we obtain our strongest guarantees. Second, we obtain further guarantees for VI when the target density $p$ exhibits even and elliptical symmetries in some but not all of its coordinates. These partial symmetries arise naturally in Bayesian hierarchical models, where the prior induces a challenging geometry but still possesses axes of symmetry. We illustrate these theoretical results in a number of experimental settings.
♻ ☆ Next-Generation Reservoir Computing for Dynamical Inference
We present a simple and scalable implementation of next-generation reservoir computing (NGRC) for modeling dynamical systems from time-series data. The method uses a pseudorandom nonlinear projection of time-delay embedded inputs, allowing the feature-space dimension to be chosen independently of the observation size and offering a flexible alternative to polynomial-based NGRC projections. We demonstrate the approach on benchmark tasks, including attractor reconstruction and bifurcation diagram estimation, using partial and noisy measurements. We further show that small amounts of measurement noise during training act as an effective regularizer, improving long-term autonomous stability compared to standard regression alone. Across all tests, the models remain stable over long rollouts and generalize beyond the training data. The framework offers explicit control of system state during prediction, and these properties make NGRC a natural candidate for applications such as surrogate modeling and digital-twin applications.
comment: 12 pages, 12 figures; revision
♻ ☆ Collaborative Causal Sensemaking: Closing the Complementarity Gap in Human-AI Decision Support
LLM-based agents are increasingly deployed for expert decision support, yet human-AI teams in high-stakes settings do not yet reliably outperform the best individual. We argue this complementarity gap reflects a fundamental mismatch: current agents are trained as answer engines, not as partners in the collaborative sensemaking through which experts actually make decisions. Sensemaking (the ability to co-construct causal explanations, surface uncertainties, and adapt goals) is the key capability that current training pipelines do not explicitly develop or evaluate. We propose Collaborative Causal Sensemaking (CCS) as a research agenda to develop this capability from the ground up, spanning new training environments that reward collaborative thinking, representations for shared human-AI mental models, and evaluation centred on trust and complementarity. Taken together, these directions shift MAS research from building oracle-like answer engines to cultivating AI teammates that co-reason with their human partners over the causal structure of shared decisions, advancing the design of effective human-AI teams.
comment: Under review at the 25th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2026), Blue Sky Track
♻ ☆ Solving a Research Problem in Mathematical Statistics with AI Assistance
Over the last few months, AI models including large language models have improved greatly. There are now several documented examples where they have helped professional mathematical scientists prove new results, sometimes even helping resolve known open problems. In this short note, we add another example to the list, by documenting how we were able to solve a previously unsolved research problem in robust mathematical statistics with crucial help from GPT-5. Our problem concerns robust density estimation, where the observations are perturbed by Wasserstein-bounded contaminations. In a previous preprint (Chao and Dobriban, 2023, arxiv:2308.01853v2), we have obtained upper and lower bounds on the minimax optimal estimation error; which were, however, not sharp. Starting in October 2025, making significant use of GPT-5 Pro, we were able to derive the minimax optimal error rate (reported in version 3 of the above arxiv preprint). GPT-5 provided crucial help along the way, including by suggesting calculations that we did not think of, and techniques that were not familiar to us, such as the dynamic Benamou-Brenier formulation, for key steps in the analysis. Working with GPT-5 took a few weeks of effort, and we estimate that it could have taken several months to get the same results otherwise. At the same time, there are still areas where working with GPT-5 was challenging: it sometimes provided incorrect references, and glossed over details that sometimes took days of work to fill in. We outline our workflow and steps taken to mitigate issues. Overall, our work can serve as additional documentation for a new age of human-AI collaborative work in mathematical science.
comment: added references
♻ ☆ Not All Models Suit Expert Offloading: On Local Routing Consistency of Mixture-of-Expert Models
Mixture-of-Experts (MoE) enables efficient scaling of large language models (LLMs) with sparsely activated experts during inference. To effectively deploy large MoE models on memory-constrained devices, many systems introduce *expert offloading* that caches a subset of experts in fast memory, leaving others on slow memory to run on CPU or load on demand. While some research has exploited the locality of expert activations, where consecutive tokens activate similar experts, the degree of this **local routing consistency** varies across models and remains understudied. In this paper, we propose two metrics to measure local routing consistency of MoE models: (1) **Segment Routing Best Performance (SRP)**, which evaluates how well a fixed group of experts can cover the needs of a segment of tokens, and (2) **Segment Cache Best Hit Rate (SCH)**, which measures the hit rate of an expert cache utilizing a length of future information under a cache limit. We analyze 20 MoE LLMs with diverse sizes and architectures and use toy models to verify key factors related to local routing consistency. We find a strong trade-off between local routing consistency and *local* load balance, while showing that *global* load balance can coexist with local routing consistency. Meanwhile, settings like shared experts that decrease expert combination space can lead to low local routing consistency. We further reveal that domain-specialized experts contribute more to routing consistency than vocabulary-specialized ones, and that most models balance between cache effectiveness and efficiency with cache sizes approximately twice the active experts. These findings pave the way for memory-efficient MoE design and deployment without compromising inference speed. We publish the code for replicating experiments at https://github.com/ljcleo/moe-lrc .
♻ ☆ Exploring possible vector systems for faster training of neural networks with preconfigured latent spaces
The overall neural network (NN) performance is closely related to the properties of its embedding distribution in latent space (LS). It has recently been shown that predefined vector systems, specifically An root system vectors, can be used as targets for latent space configurations (LSC) to ensure the desired LS structure. One of the main LSC advantage is the possibility of training classifier NNs without classification layers, which facilitates training NNs on datasets with extremely large numbers of classes. This paper provides a more general overview of possible vector systems for NN training along with their properties and methods for vector system construction. These systems are used to configure LS of encoders and visual transformers to significantly speed up ImageNet-1K and 50k-600k classes LSC training. It is also shown that using the minimum number of LS dimensions for a specific number of classes results in faster convergence. The latter has potential advantages for reducing the size of vector databases used to store NN embeddings.
comment: 9 pages, 5 figures, 1 table, 4 equations
♻ ☆ Dual Refinement Cycle Learning: Unsupervised Text Classification of Mamba and Community Detection on Text Attributed Graph
Pretrained language models offer strong text understanding capabilities but remain difficult to deploy in real-world text-attributed networks due to their heavy dependence on labeled data. Meanwhile, community detection methods typically ignore textual semantics, limiting their usefulness in downstream applications such as content organization, recommendation, and risk monitoring. To overcome these limitations, we present Dual Refinement Cycle Learning (DRCL), a fully unsupervised framework designed for practical scenarios where no labels or category definitions are available. DRCL integrates structural and semantic information through a warm-start initialization and a bidirectional refinement cycle between a GCN-based Community Detection Module (GCN-CDM) and a Text Semantic Modeling Module (TSMM). The two modules iteratively exchange pseudo-labels, allowing semantic cues to enhance structural clustering and structural patterns to guide text representation learning without manual supervision. Across several text-attributed graph datasets, DRCL consistently improves the structural and semantic quality of discovered communities. Moreover, a Mamba-based classifier trained solely from DRCL's community signals achieves accuracy comparable to supervised models, demonstrating its potential for deployment in large-scale systems where labeled data are scarce or costly. The code is available at https://github.com/wuanghoong/DRCL.git.
♻ ☆ A Network Science Approach to Granular Time Series Segmentation
Time series segmentation (TSS) is one of the time series (TS) analysis techniques, that has received considerably less attention compared to other TS related tasks. In recent years, deep learning architectures have been introduced for TSS, however their reliance on sliding windows limits segmentation granularity due to fixed window sizes and strides. To overcome these challenges, we propose a new more granular TSS approach that utilizes the Weighted Dual Perspective Visbility Graph (WDPVG) TS into a graph and combines it with a Graph Attention Network (GAT). By transforming TS into graphs, we are able to capture different structural aspects of the data that would otherwise remain hidden. By utilizing the representation learning capabilities of Graph Neural Networks, our method is able to effectively identify meaningful segments within the TS. To better understand the potential of our approach, we also experimented with different TS-to-graph transformations and compared their performance. Our contributions include: a) formulating the TSS as a node classification problem on graphs; b) conducting an extensive analysis of various TS-to-graph transformations applied to TSS using benchmark datasets from the TSSB repository; c) providing the first detailed study on utilizing GNNs for analyzing graph representations of TS in the context of TSS; d) demonstrating the effectiveness of our method, which achieves an average F1 score of 0.97 across 59 diverse TSS benchmark datasets; e) outperforming the seq2point baseline method by 0.05 in terms of F1 score; and f) reducing the required training data compared to the baseline methods.
comment: 20 pages, 11 figures
♻ ☆ Partial Inverse Design of High-Performance Concrete Using Cooperative Neural Networks for Constraint-Aware Mix Generation
High-performance concrete requires complex mix design decisions involving interdependent variables and practical constraints. While data-driven methods have improved predictive modeling for forward design in concrete engineering, inverse design remains limited, especially when some variables are fixed and only the remaining ones must be inferred. This study proposes a cooperative neural network framework for the partial inverse design of high-performance concrete. The framework integrates an imputation model with a surrogate strength predictor and learns through cooperative training. Once trained, it generates valid and performance-consistent mix designs in a single forward pass without retraining for different constraint scenarios. Compared with baseline models, including autoencoder models and Bayesian inference with Gaussian process surrogates, the proposed method achieves R-squared values of 0.87 to 0.92 and substantially reduces mean squared error by approximately 50% and 70%, respectively. The results show that the framework provides an accurate and computationally efficient foundation for constraint-aware, data-driven mix proportioning.
comment: 20 pages, 12 figures. Updated the abstract, Table 3, and bibliography. No changes to the main text or results
♻ ☆ A Generic Machine Learning Framework for Radio Frequency Fingerprinting
Fingerprinting radio frequency (RF) emitters typically involves finding unique characteristics that are featured in their received signal. These fingerprints are nuanced, but sufficiently detailed, motivating the pursuit of methods that can successfully extract them. The downstream task that requires the most meticulous RF fingerprinting (RFF) is known as specific emitter identification (SEI), which entails recognising each individual transmitter. RFF and SEI have a long history, with numerous defence and civilian applications such as signal intelligence, electronic surveillance, physical-layer authentication of wireless devices, to name a few. In recent years, data-driven RFF approaches have become popular due to their ability to automatically learn intricate fingerprints. They generally deliver superior performance when compared to traditional RFF techniques that are often labour-intensive, inflexible, and only applicable to a particular emitter type or transmission scheme. In this paper, we present a generic and versatile machine learning (ML) framework for data-driven RFF with several popular downstream tasks such as SEI, data association (EDA) and RF emitter clustering (RFEC). It is emitter-type agnostic. We then demonstrate the introduced framework for several tasks using real RF datasets for spaceborne surveillance, signal intelligence and countering drones applications.
♻ ☆ Artificial Intelligence-Driven Network-on-Chip Design Space Exploration: Neural Network Architectures for Design
Network-on-Chip (NoC) design requires exploring a high-dimensional configuration space to satisfy stringent throughput requirements and latency constraints. Traditional design space exploration techniques are often slow and struggle to handle complex, non-linear parameter interactions. This work presents a machine learning-driven framework that automates NoC design space exploration using BookSim simulations and reverse neural network models. Specifically, we compare three architectures - a Multi-Layer Perceptron (MLP),a Conditional Diffusion Model, and a Conditional Variational Autoencoder (CVAE) to predict optimal NoC parameters given target performance metrics. Our pipeline generates over 150,000 simulation data points across varied mesh topologies. The Conditional Diffusion Model achieved the highest predictive accuracy, attaining a mean squared error (MSE) of 0.463 on unseen data. Furthermore, the proposed framework reduces design exploration time by several orders of magnitude, making it a practical solution for rapid and scalable NoC co-design.
♻ ☆ Local-Curvature-Aware Knowledge Graph Embedding: An Extended Ricci Flow Approach
Knowledge graph embedding (KGE) relies on the geometry of the embedding space to encode semantic and structural relations. Existing methods place all entities on one homogeneous manifold, Euclidean, spherical, hyperbolic, or their product/multi-curvature variants, to model linear, symmetric, or hierarchical patterns. Yet a predefined, homogeneous manifold cannot accommodate the sharply varying curvature that real-world graphs exhibit across local regions. Since this geometry is imposed a priori, any mismatch with the knowledge graph's local curvatures will distort distances between entities and hurt the expressiveness of the resulting KGE. To rectify this, we propose RicciKGE to have the KGE loss gradient coupled with local curvatures in an extended Ricci flow such that entity embeddings co-evolve dynamically with the underlying manifold geometry towards mutual adaptation. Theoretically, when the coupling coefficient is bounded and properly selected, we rigorously prove that i) all the edge-wise curvatures decay exponentially, meaning that the manifold is driven toward the Euclidean flatness; and ii) the KGE distances strictly converge to a global optimum, which indicates that geometric flattening and embedding optimization are promoting each other. Experimental improvements on link prediction and node classification benchmarks demonstrate RicciKGE's effectiveness in adapting to heterogeneous knowledge graph structures.
♻ ☆ Utility Boundary of Dataset Distillation: Scaling and Configuration-Coverage Laws
Dataset distillation (DD) aims to construct compact synthetic datasets that allow models to achieve comparable performance to full-data training while substantially reducing storage and computation. Despite rapid empirical progress, its theoretical foundations remain limited: existing methods (gradient, distribution, trajectory matching) are built on heterogeneous surrogate objectives and optimization assumptions, which makes it difficult to analyze their common principles or provide general guarantees. Moreover, it is still unclear under what conditions distilled data can retain the effectiveness of full datasets when the training configuration, such as optimizer, architecture, or augmentation, changes. To answer these questions, we propose a unified theoretical framework, termed configuration--dynamics--error analysis, which reformulates major DD approaches under a common generalization-error perspective and provides two main results: (i) a scaling law that provides a single-configuration upper bound, characterizing how the error decreases as the distilled sample size increases and explaining the commonly observed performance saturation effect; and (ii) a coverage law showing that the required distilled sample size scales linearly with configuration diversity, with provably matching upper and lower bounds. In addition, our unified analysis reveals that various matching methods are interchangeable surrogates, reducing the same generalization error, clarifying why they can all achieve dataset distillation and providing guidance on how surrogate choices affect sample efficiency and robustness. Experiments across diverse methods and configurations empirically confirm the derived laws, advancing a theoretical foundation for DD and enabling theory-driven design of compact, configuration-robust dataset distillation.
♻ ☆ Spectral Concentration at the Edge of Stability: Information Geometry of Kernel Associative Memory
High-capacity kernel Hopfield networks exhibit a \textit{Ridge of Optimization} characterized by extreme stability. While previously linked to \textit{Spectral Concentration}, its origin remains elusive. Here, we analyze the network dynamics on a statistical manifold, revealing that the Ridge corresponds to the Edge of Stability, a critical boundary where the Fisher Information Matrix becomes singular. We demonstrate that the apparent Euclidean force antagonism is a manifestation of \textit{Dual Equilibrium} in the Riemannian space. This unifies learning dynamics and capacity via the Minimum Description Length principle, offering a geometric theory of self-organized criticality.
comment: 4 pages, 4 figures
♻ ☆ AI reconstruction of European weather from the Euro-Atlantic regimes
We present a non-linear AI-model designed to reconstruct monthly mean anomalies of the European temperature and precipitation based on the Euro-Atlantic Weather regimes (WR) indices. WR represent recurrent, quasi-stationary, and persistent states of the atmospheric circulation that exert considerable influence over the European weather, therefore offering an opportunity for sub-seasonal to seasonal forecasting. While much research has focused on studying the correlation and impacts of the WR on European weather, the estimation of ground-level climate variables, such as temperature and precipitation, from Euro-Atlantic WR remains largely unexplored and is currently limited to linear methods. The presented AI model can capture and introduce complex non-linearities in the relation between the WR indices, describing the state of the Euro-Atlantic atmospheric circulation and the corresponding surface temperature and precipitation anomalies in Europe. We discuss the AI-model performance in reconstructing the monthly mean two-meter temperature and total precipitation anomalies in the European winter and summer, also varying the number of WR used to describe the monthly atmospheric circulation. We assess the impact of errors on the WR indices in the reconstruction and show that a mean absolute relative error below 80% yields improved seasonal reconstruction compared to the ECMWF operational seasonal forecast system, SEAS5. As a demonstration of practical applicability, we evaluate the model using WR indices predicted by SEAS5, finding slightly better or comparable skill relative to the SEAS5 forecast itself. Our findings demonstrate that WR-based anomaly reconstruction, powered by AI tools, offers a promising pathway for sub-seasonal and seasonal forecasting.
♻ ☆ Self-Organization and Spectral Mechanism of Attractor Landscapes in High-Capacity Kernel Hopfield Networks
Kernel-based learning methods can dramatically increase the storage capacity of Hopfield networks, yet the dynamical mechanism behind this enhancement remains poorly understood. We address this gap by unifying the geometric analysis of the attractor landscape with the spectral theory of kernel machines. Using a novel metric, \textit{Pinnacle Sharpness}, we first uncover a rich phase diagram of attractor stability, identifying a \textit{Ridge of Optimization} where the network achieves maximal robustness under high-load conditions. Phenomenologically, this ridge is characterized by a \textit{Force Antagonism}, where a strong driving force is balanced by a collective feedback force. Theoretically, we reveal that this phenomenon arises from a specific reorganization of the weight spectrum, which we term \textit{Spectral Concentration}. Unlike a simple rank-1 collapse, our analysis shows that the network on the ridge self-organizes into a critical state: the leading eigenvalue is amplified to maximize global stability (Direct Force), while the trailing eigenvalues are preserved to maintain high memory capacity (Indirect Force). These findings provide a complete physical picture of how high-capacity associative memories are formed, demonstrating that optimal performance is achieved by tuning the system to a spectral Goldilocks zone between rank collapse and diffusion.
comment: 13 pages, 5 figures
♻ ☆ Information-Theoretic Active Correlation Clustering
Correlation clustering is a flexible framework for partitioning data based solely on pairwise similarity or dissimilarity information, without requiring the number of clusters as input. However, in many practical scenarios, these pairwise similarities are not available a priori and must be obtained through costly measurements or human feedback. This motivates the use of active learning to query only the most informative pairwise comparisons, enabling effective clustering under budget constraints. In this work, we develop a principled active learning approach for correlation clustering by introducing several information-theoretic acquisition functions that prioritize queries based on entropy and expected information gain. These strategies aim to reduce uncertainty about the clustering structure as efficiently as possible. We evaluate our methods across a range of synthetic and real-world settings and show that they significantly outperform existing baselines in terms of clustering accuracy and query efficiency. Our results highlight the benefits of combining active learning with correlation clustering in settings where similarity information is costly or limited.
♻ ☆ WGAST: Weakly-Supervised Generative Network for Daily 10 m Land Surface Temperature Estimation via Spatio-Temporal Fusion
Urbanization, climate change, and agricultural stress are increasing the demand for precise and timely environmental monitoring. Land Surface Temperature (LST) is a key variable in this context and is retrieved from remote sensing satellites. However, these systems face a trade-off between spatial and temporal resolution. While spatio-temporal fusion methods offer promising solutions, few have addressed the estimation of daily LST at 10 m resolution. In this study, we present WGAST, a weakly-supervised generative network for daily 10 m LST estimation via spatio-temporal fusion of Terra MODIS, Landsat 8, and Sentinel-2. WGAST is the first end-to-end deep learning framework designed for this task. It adopts a conditional generative adversarial architecture, with a generator composed of four stages: feature extraction, fusion, LST reconstruction, and noise suppression. The first stage employs a set of encoders to extract multi-level latent representations from the inputs, which are then fused in the second stage using cosine similarity, normalization, and temporal attention mechanisms. The third stage decodes the fused features into high-resolution LST, followed by a Gaussian filter to suppress high-frequency noise. Training follows a weakly supervised strategy based on physical averaging principles and reinforced by a PatchGAN discriminator. Experiments demonstrate that WGAST outperforms existing methods in both quantitative and qualitative evaluations. Compared to the best-performing baseline, on average, WGAST reduces RMSE by 17.05% and improves SSIM by 4.22%. Furthermore, WGAST effectively captures fine-scale thermal patterns, as validated against near-surface air temperature measurements from 33 near-ground sensors. The code is available at https://github.com/Sofianebouaziz1/WGAST.git.
♻ ☆ HEDN: A Hard-Easy Dual Network with Source Reliability Assessment for Cross-Subject EEG Emotion Recognition
Cross-subject electroencephalography (EEG) emotion recognition remains a major challenge in brain-computer interfaces (BCIs) due to substantial inter-subject variability. Multi-Source Domain Adaptation (MSDA) offers a potential solution, but existing MSDA frameworks typically assume equal source quality, leading to negative transfer from low-reliability domains and prohibitive computational overhead due to multi-branch model designs. To address these limitations, we propose the Hard-Easy Dual Network (HEDN), a lightweight reliability-aware MSDA framework. HEDN introduces a novel Source Reliability Assessment (SRA) mechanism that dynamically evaluates the structural integrity of each source domain during training. Based on this assessment, sources are routed to two specialized branches: an Easy Network that exploits high-quality sources to construct fine-grained, structure-aware prototypes for reliable pseudo-label generation, and a Hard Network that utilizes adversarial training to refine and align low-quality sources. Furthermore, a cross-network consistency loss aligns predictions between branches to preserve semantic coherence. Extensive experiments conducted on SEED, SEED-IV, and DEAP datasets demonstrate that HEDN achieves state-of-the-art performance across both cross-subject and cross-dataset evaluation protocols while reducing adaptation complexity.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ DeepMech: A Machine Learning Framework for Chemical Reaction Mechanism Prediction
Prediction of complete step-by-step chemical reaction mechanisms (CRMs) remains a major challenge. Whereas the traditional approaches in CRM tasks rely on expert-driven experiments or costly quantum chemical computations, contemporary deep learning (DL) alternatives ignore key intermediates and mechanistic steps and often suffer from hallucinations. We present DeepMech, an interpretable graph-based DL framework employing atom- and bond-level attention, guided by generalized templates of mechanistic operations (TMOps), to generate CRMs. Trained on our curated ReactMech dataset (~30K CRMs with 100K atom-mapped and mass-balanced elementary steps), DeepMech achieves 98.98+/-0.12% accuracy in predicting elementary steps and 95.94+/-0.21% in complete CRM tasks, besides maintaining high fidelity even in out-of-distribution scenarios as well as in predicting side and/or byproducts. Extension to multistep CRMs relevant to prebiotic chemistry, demonstrates the ability of DeepMech in effectively reconstructing 2 pathways from simple primordial substrates to complex biomolecules such as serine and aldopentose. Attention analysis identifies reactive atoms/bonds in line with chemical intuition, rendering our model interpretable and suitable for reaction design.
comment: 46 pages, 8 figures
♻ ☆ The emergence of sparse attention: impact of data distribution and benefits of repetition NeurIPS 2025
Emergence is a fascinating property of large language models and neural networks more broadly: as models scale and train for longer, they sometimes develop new abilities in sudden ways. Despite initial studies, we still lack a comprehensive understanding of how and when these abilities emerge. To address this gap, we study the emergence over training of sparse attention, a critical and frequently observed attention pattern in Transformers. By combining theoretical analysis of a toy model with empirical observations on small Transformers trained on a linear regression variant, we uncover the mechanics driving sparse attention emergence and reveal that emergence timing follows power laws based on task structure, architecture, and optimizer choice. We additionally find that repetition can greatly speed up emergence. Finally, we confirm these results on a well-studied in-context associative recall task. Our findings provide a simple, theoretically grounded framework for understanding how data distributions and model design influence the learning dynamics behind one form of emergence.
comment: NeurIPS 2025
♻ ☆ A Multivariate Bernoulli-Based Sampling Method for Multi-Label Data with Application to Meta-Research
Datasets may contain observations with multiple labels. If the labels are not mutually exclusive, and if the labels vary greatly in frequency, obtaining a sample that includes sufficient observations with scarcer labels to make inferences about those labels, and which deviates from the population frequencies in a known manner, creates challenges. In this paper, we consider a multivariate Bernoulli distribution as our underlying distribution of a multi-label problem. We present a novel sampling algorithm that takes label dependencies into account. It uses observed label frequencies to estimate multivariate Bernoulli distribution parameters and calculate weights for each label combination. This approach ensures the weighted sampling acquires target distribution characteristics while accounting for label dependencies. We applied this approach to a sample of research articles from Web of Science labeled with 64 biomedical topic categories. We aimed to preserve category frequency order, reduce frequency differences between most and least common categories, and account for category dependencies. This approach produced a more balanced sub-sample, enhancing the representation of minority categories.
♻ ☆ Colliding with Adversaries at ECML-PKDD 2025 Model Robustness Competition 1st Prize Solution
This report presents the winning solution for Task 2 of Colliding with Adversaries: A Challenge on Robust Learning in High Energy Physics Discovery at ECML-PKDD 2025. The goal of the challenge was to design and train a robust ANN-based model capable of achieving high accuracy in a binary classification task on both clean and adversarial data generated with the Random Distribution Shuffle Attack (RDSA). Our solution consists of two components: a data generation phase and a robust model training phase. In the first phase, we produced 15 million artificial training samples using a custom methodology derived from Random Distribution Shuffle Attack (RDSA). In the second phase, we introduced a robust architecture comprising (i)a Feature Embedding Block with shared weights among features of the same type and (ii)a Dense Fusion Tail responsible for the final prediction. Training this architecture on our adversarial dataset achieved a mixed accuracy score of 80\%, exceeding the second-place solution by two percentage points.
♻ ☆ Entropy-Informed Weighting Channel Normalizing Flow for Deep Generative Models
Normalizing Flows (NFs) are widely used in deep generative models for their exact likelihood estimation and efficient sampling. However, they require substantial memory since the latent space matches the input dimension. Multi-scale architectures address this by progressively reducing latent dimensions while preserving reversibility. Existing multi-scale architectures use simple, static channel-wise splitting, limiting expressiveness. To improve this, we introduce a regularized, feature-dependent $\mathtt{Shuffle}$ operation and integrate it into vanilla multi-scale architecture. This operation adaptively generates channel-wise weights and shuffles latent variables before splitting them. We observe that such operation guides the variables to evolve in the direction of entropy increase, hence we refer to NFs with the $\mathtt{Shuffle}$ operation as \emph{Entropy-Informed Weighting Channel Normalizing Flow} (EIW-Flow). Extensive experiments on CIFAR-10, CelebA, ImageNet, and LSUN demonstrate that EIW-Flow achieves state-of-the-art density estimation and competitive sample quality for deep generative modeling, with minimal computational overhead.
♻ ☆ BridgeDrive: Diffusion Bridge Policy for Closed-Loop Trajectory Planning in Autonomous Driving
Diffusion-based planners have shown great promise for autonomous driving due to their ability to capture multi-modal driving behaviors. However, guiding these models effectively in reactive, closed-loop environments remains a significant challenge. Simple conditioning often fails to provide sufficient guidance in complex and dynamic driving scenarios. Recent work attempts to use typical expert driving behaviors (i.e., anchors) to guide diffusion models but relies on a truncated schedule, which introduces theoretical inconsistencies and can compromise performance. To address this, we introduce BridgeDrive, a novel anchor-guided diffusion bridge policy for closed-loop trajectory planning. Our approach provides a principled diffusion framework that effectively translates anchors into fine-grained trajectory plans, appropriately responding to varying traffic conditions. Our planner is compatible with efficient ODE solvers, a critical factor for real-time autonomous driving deployment. We achieve state-of-the-art performance on the Bench2Drive benchmark, improving the success rate by 7.72% over prior arts.
comment: 19 pages, 7 figures, 9 tables
♻ ☆ Diffusion Secant Alignment for Score-Based Density Ratio Estimation
Estimating density ratios has become increasingly important with the recent rise of score-based and diffusion-inspired methods. However, current tangent-based approaches rely on a high-variance learning objective, which leads to unstable training and costly numerical integration during inference. We propose \textit{Interval-annealed Secant Alignment Density Ratio Estimation (ISA-DRE)}, a score-based framework along diffusion interpolants that replaces the instantaneous tangent with its interval integral, the secant, as the learning target. We show theoretically that the secant is a provably lower variance and smoother target for neural approximation, and also a strictly more general representation that contains the tangent as the infinitesimal limit. To make secant learning feasible, we introduce the \textit{Secant Alignment Identity (SAI)} to enforce self consistency between secant and tangent representations, and \textit{Contraction Interval Annealing (CIA)} to ensure stable convergence. Empirically, this stability-first formulation produces high efficiency and accuracy. ISA-DRE achieves comparable or superior results with fewer function evaluations, demonstrating robustness under large distribution discrepancies and effectively mitigating the density-chasm problem.
♻ ☆ Model-driven Stochastic Trace Clustering
Process discovery algorithms automatically extract process models from event logs, but high variability often results in complex and hard-to-understand models. To mitigate this issue, trace clustering techniques group process executions into clusters, each represented by a simpler and more understandable process model. Model-driven trace clustering improves on this by assigning traces to clusters based on their conformity to cluster-specific process models. However, most existing clustering techniques rely on either no process model discovery, or non-stochastic models, neglecting the frequency or probability of activities and transitions, thereby limiting their capability to capture real-world execution dynamics. We propose a novel model-driven trace clustering method that optimizes stochastic process models within each cluster. Our approach uses entropic relevance, a stochastic conformance metric based on directly-follows probabilities, to guide trace assignment. This allows clustering decisions to consider both structural alignment with a cluster's process model and the likelihood that a trace originates from a given stochastic process model. The method is computationally efficient, scales linearly with input size, and improves model interpretability by producing clusters with clearer control-flow patterns. Extensive experiments on public real-life datasets demonstrate that while our method yields superior stochastic coherence and graph simplicity, traditional fitness metrics reveal a trade-off, highlighting the specific utility of our approach for stochastic process analysis.
♻ ☆ MemoryBench: A Benchmark for Memory and Continual Learning in LLM Systems
Scaling up data, parameters, and test-time computation has been the mainstream methods to improve LLM systems (LLMsys), but their upper bounds are almost reached due to the gradual depletion of high-quality data and marginal gains obtained from larger computational resource consumption. Inspired by the abilities of human and traditional AI systems in learning from practice, constructing memory and continual learning frameworks for LLMsys has become an important and popular research direction in recent literature. Yet, existing benchmarks for LLM memory often focus on evaluating the system on homogeneous reading comprehension tasks with long-form inputs rather than testing their abilities to learn from accumulated user feedback in service time. Therefore, we propose a user feedback simulation framework and a comprehensive benchmark covering multiple domains, languages, and types of tasks to evaluate the continual learning abilities of LLMsys. Experiments show that the effectiveness and efficiency of state-of-the-art baselines are far from satisfying, and we hope this benchmark could pave the way for future studies on LLM memory and optimization algorithms.
♻ ☆ Grounding the Ungrounded: A Spectral-Graph Framework for Quantifying Hallucinations in Multimodal LLMs
Hallucinations in LLMs--especially in multimodal settings--undermine reliability. We present a rigorous information-geometric framework, grounded in diffusion dynamics, to quantify hallucinations in MLLMs where model outputs are embedded via spectral decompositions of multimodal graph Laplacians, and their gaps to a truth manifold define a semantic distortion metric. We derive Courant-Fischer bounds on a temperature-dependent hallucination profile and use RKHS eigenmodes to obtain modality-aware, interpretable measures that track evolution over prompts and time. This reframes hallucination as quantifiable and bounded, providing a principled basis for evaluation and mitigation.
comment: 49 pages, 3 figures, 3 tables
♻ ☆ Structured quantum learning via em algorithm for Boltzmann machines
Quantum Boltzmann machines (QBMs) are generative models with potential advantages in quantum machine learning, yet their training is fundamentally limited by the barren plateau problem, where gradients vanish exponentially with system size. We introduce a quantum version of the em algorithm, an information-geometric generalization of the classical Expectation-Maximization method, which circumvents gradient-based optimization on non-convex functions. Implemented on a semi-quantum restricted Boltzmann machine (sqRBM) -- a hybrid architecture with quantum effects confined to the hidden layer -- our method achieves stable learning and outperforms gradient descent on multiple benchmark datasets. These results establish a structured and scalable alternative to gradient-based training in QML, offering a pathway to mitigate barren plateaus and enhance quantum generative modeling.
comment: 15 pages, 3 figures
♻ ☆ Cross-Space Synergy: A Unified Framework for Multimodal Emotion Recognition in Conversation AAAI 2026
Multimodal Emotion Recognition in Conversation (MERC) aims to predict speakers' emotions by integrating textual, acoustic, and visual cues. Existing approaches either struggle to capture complex cross-modal interactions or experience gradient conflicts and unstable training when using deeper architectures. To address these issues, we propose Cross-Space Synergy (CSS), which couples a representation component with an optimization component. Synergistic Polynomial Fusion (SPF) serves the representation role, leveraging low-rank tensor factorization to efficiently capture high-order cross-modal interactions. Pareto Gradient Modulator (PGM) serves the optimization role, steering updates along Pareto-optimal directions across competing objectives to alleviate gradient conflicts and improve stability. Experiments show that CSS outperforms existing representative methods on IEMOCAP and MELD in both accuracy and training stability, demonstrating its effectiveness in complex multimodal scenarios.
comment: Accepted to AAAI 2026
♻ ☆ Optimal Perturbation Budget Allocation for Data Poisoning in Offline Reinforcement Learning
Offline Reinforcement Learning (RL) enables policy optimization from static datasets but is inherently vulnerable to data poisoning attacks. Existing attack strategies typically rely on locally uniform perturbations, which treat all samples indiscriminately. This approach is inefficient, as it wastes the perturbation budget on low-impact samples, and lacks stealthiness due to significant statistical deviations. In this paper, we propose a novel Global Budget Allocation attack strategy. Leveraging the theoretical insight that a sample's influence on value function convergence is proportional to its Temporal Difference (TD) error, we formulate the attack as a global resource allocation problem. We derive a closed-form solution where perturbation magnitudes are assigned proportional to the TD-error sensitivity under a global L2 constraint. Empirical results on D4RL benchmarks demonstrate that our method significantly outperforms baseline strategies, achieving up to 80% performance degradation with minimal perturbations that evade detection by state-of-the-art statistical and spectral defenses.
♻ ☆ Solving Oversmoothing in GNNs via Nonlocal Message Passing: Algebraic Smoothing and Depth Scalability
The relationship between Layer Normalization (LN) placement and the oversmoothing phenomenon remains underexplored. We identify a critical dilemma: Pre-LN architectures avoid oversmoothing but suffer from the curse of depth, while Post-LN architectures bypass the curse of depth but experience oversmoothing. To resolve this, we propose a new method based on Post-LN that induces algebraic smoothing, preventing oversmoothing without the curse of depth. Empirical results across five benchmarks demonstrate that our approach supports deeper networks (up to 256 layers) and improves performance, requiring no additional parameters. Key contributions: Theoretical Characterization: Analysis of LN dynamics and their impact on oversmoothing and the curse of depth. A Principled Solution: A parameter-efficient method that induces algebraic smoothing and avoids oversmoothing and the curse of depth. Empirical Validation: Extensive experiments showing the effectiveness of the method in deeper GNNs.
comment: 18 pages, 4 figures
♻ ☆ A Unified Noise-Curvature View of Loss of Trainability
Loss of trainability refers to a phenomenon in continual learning where parameter updates no longer make progress on the optimization objective, so accuracy stalls or degrades as the learning problem changes over time. In this paper, we analyze loss of trainability through an optimization lens and find that the phenomenon is not reliably predicted by existing individual indicators such as Hessian rank, sharpness level, weight or gradient norms, gradient-to-parameter ratios, and unit-sign entropy. Motivated by our analysis, we introduce two complementary indicators: a batch-size-aware gradient-noise bound and a curvature volatility-controlled bound. We then combine these two indicators into a per-layer adaptive noise threshold on the effective step-size that anticipates trainability behavior. Using this insight, we propose a step-size scheduler that keeps each layer's effective parameter update below this bound, thereby avoiding loss of trainability. We demonstrate that our scheduler can improve the accuracy maintained by previously proposed approaches, such as concatenated ReLU (CReLU), Wasserstein regularizer, and L2 weight decay. Surprisingly, our scheduler produces adaptive step-size trajectories that, without tuning, mirror the manually engineered step-size decay schedules.
♻ ☆ InfMasking: Unleashing Synergistic Information by Contrastive Multimodal Interactions NeurIPS
In multimodal representation learning, synergistic interactions between modalities not only provide complementary information but also create unique outcomes through specific interaction patterns that no single modality could achieve alone. Existing methods may struggle to effectively capture the full spectrum of synergistic information, leading to suboptimal performance in tasks where such interactions are critical. This is particularly problematic because synergistic information constitutes the fundamental value proposition of multimodal representation. To address this challenge, we introduce InfMasking, a contrastive synergistic information extraction method designed to enhance synergistic information through an Infinite Masking strategy. InfMasking stochastically occludes most features from each modality during fusion, preserving only partial information to create representations with varied synergistic patterns. Unmasked fused representations are then aligned with masked ones through mutual information maximization to encode comprehensive synergistic information. This infinite masking strategy enables capturing richer interactions by exposing the model to diverse partial modality combinations during training. As computing mutual information estimates with infinite masking is computationally prohibitive, we derive an InfMasking loss to approximate this calculation. Through controlled experiments, we demonstrate that InfMasking effectively enhances synergistic information between modalities. In evaluations on large-scale real-world datasets, InfMasking achieves state-of-the-art performance across seven benchmarks. Code is released at https://github.com/brightest66/InfMasking.
comment: Conference on Neural Information Processing Systems (NeurIPS) 2025 (Spotlight)
♻ ☆ Forgetting-MarI: LLM Unlearning via Marginal Information Regularization
As AI models are trained on ever-expanding datasets, the ability to remove the influence of specific data from trained models has become essential for privacy protection and regulatory compliance. Unlearning addresses this challenge by selectively removing parametric knowledge from the trained models without retraining from scratch, which is critical for resource-intensive models such as Large Language Models (LLMs). Existing unlearning methods often degrade model performance by removing more information than necessary when attempting to ''forget'' specific data. We introduce Forgetting-MarI, an LLM unlearning framework that provably removes only the additional (marginal) information contributed by the data to be unlearned, while preserving the information supported by the data to be retained. By penalizing marginal information, our method yields an explicit upper bound on the unlearn dataset's residual influence in the trained models, providing provable undetectability. Extensive experiments confirm that our approach outperforms current state-of-the-art unlearning methods, delivering reliable forgetting and better preserved general model performance across diverse benchmarks. This advancement represents an important step toward making AI systems more controllable and compliant with privacy and copyright regulations without compromising their effectiveness.
♻ ☆ Proportional integral derivative booster for neural networks-based time-series prediction: Case of water demand prediction
Multi-step time-series prediction is an essential supportive step for decision-makers in several industrial areas. Artificial intelligence techniques, which use a neural network component in various forms, have recently frequently been used to accomplish this step. However, the complexity of the neural network structure still stands up as a critical problem against prediction accuracy. In this paper, a method inspired by the proportional-integral-derivative (PID) control approach is investigated to enhance the performance of neural network models used for multi-step ahead prediction of periodic time-series information while maintaining a negligible impact on the complexity of the system. The PID-based method is applied to the predicted value at each time step to bring that value closer to the real value. The water demand forecasting problem is considered as a case study, where two deep neural network models from the literature are used to prove the effectiveness of the proposed boosting method. Furthermore, to prove the applicability of this PID-based booster to other types of periodic time-series prediction problems, it is applied to enhance the accuracy of a neural network model used for multi-step forecasting of hourly energy consumption. The comparison between the results of the original prediction models and the results after using the proposed technique demonstrates the superiority of the proposed method in terms of prediction accuracy and system complexity.
comment: Engineering Applications of Artificial Intelligence 2022
♻ ☆ Adaptive Self-Distillation for Minimizing Client Drift in Heterogeneous Federated Learning
Federated Learning (FL) is a machine learning paradigm that enables clients to jointly train a global model by aggregating the locally trained models without sharing any local training data. In practice, there can often be substantial heterogeneity (e.g., class imbalance) across the local data distributions observed by each of these clients. Under such non-iid label distributions across clients, FL suffers from the 'client-drift' problem where every client drifts to its own local optimum. This results in slower convergence and poor performance of the aggregated model. To address this limitation, we propose a novel regularization technique based on adaptive self-distillation (ASD) for training models on the client side. Our regularization scheme adaptively adjusts to each client's training data based on the global model's prediction entropy and the client-data label distribution. We show in this paper that our proposed regularization (ASD) can be easily integrated atop existing, state-of-the-art FL algorithms, leading to a further boost in the performance of these off-the-shelf methods. We theoretically explain how incorporation of ASD regularizer leads to reduction in client-drift and empirically justify the generalization ability of the trained model. We demonstrate the efficacy of our approach through extensive experiments on multiple real-world benchmarks and show substantial gains in performance when the proposed regularizer is combined with popular FL methods.
comment: Accepted to TMLR (2024)
♻ ☆ A Minimalist Optimizer Design for LLM Pretraining
Training large language models (LLMs) typically relies on adaptive optimizers such as Adam, which introduce extra operations and require significant more memory to maintain first- and second-order moments than SGD. While recent works such as GaLore, Fira and APOLLO have proposed state-compressed variants to reduce memory consumption, a fundamental question remains: What are the minimum modifications to plain SGD needed to match state-of-the-art pretraining performance? We systematically investigate this question using a bottom-up approach, and identify two simple yet highly (memory- and compute-) efficient techniques: (1) column-wise gradient normalization (normalizing the gradient along the output dimension), which boosts SGD performance without momentum; and (2) applying first-order momentum only to the output layer, where gradient variance is highest. Combining these two techniques lead to SCALE (Stochastic Column-normAlized Last-layer momEntum), a simple optimizer for memory efficient pretraining. Across multiple LLaMA models (60M-1B), SCALE matches or exceeds the performance of Adam while using only 35-45% of the total memory. It also consistently outperforms memory-efficient optimizers such as GaLore, Fira and APOLLO, making it a strong candidate for large-scale pretraining under memory constraints. For LLaMA 7B model, SCALE outperforms the state-of-the-art memory-efficient methods APOLLO and Muon, in terms of both perplexity and memory consumption.
♻ ☆ Point Neuron Learning: A New Physics-Informed Neural Network Architecture
Machine learning and neural networks have advanced numerous research domains, but challenges such as large training data requirements and inconsistent model performance hinder their application in certain scientific problems. To overcome these challenges, researchers have investigated integrating physics principles into machine learning models, mainly through: (i) physics-guided loss functions, generally termed as physics-informed neural networks, and (ii) physics-guided architectural design. While both approaches have demonstrated success across multiple scientific disciplines, they have limitations including being trapped to a local minimum, poor interpretability, and restricted generalizability. This paper proposes a new physics-informed neural network (PINN) architecture that combines the strengths of both approaches by embedding the fundamental solution of the wave equation into the network architecture, enabling the learned model to strictly satisfy the wave equation. The proposed point neuron learning method can model an arbitrary sound field based on microphone observations without any dataset. Compared to other PINN methods, our approach directly processes complex numbers and offers better interpretability and generalizability. We evaluate the versatility of the proposed architecture by a sound field reconstruction problem in a reverberant environment. Results indicate that the point neuron method outperforms two competing methods and can efficiently handle noisy environments with sparse microphone observations.
comment: 15 pages, 9 figures. Published in EURASIP Journal on Audio Speech and Music Processing
♻ ☆ LLM Meeting Decision Trees on Tabular Data
Tabular data have been playing a vital role in diverse real-world fields, including healthcare, finance, etc. With the recent success of Large Language Models (LLMs), early explorations of extending LLMs to the domain of tabular data have been developed. Most of these LLM-based methods typically first serialize tabular data into natural language descriptions, and then tune LLMs or directly infer on these serialized data. However, these methods suffer from two key inherent issues: (i) data perspective: existing data serialization methods lack universal applicability for structured tabular data, and may pose privacy risks through direct textual exposure, and (ii) model perspective: LLM fine-tuning methods struggle with tabular data, and in-context learning scalability is bottle-necked by input length constraints (suitable for few-shot learning). This work explores a novel direction of integrating LLMs into tabular data throughough logical decision tree rules as intermediaries, proposes a decision tree enhancer with LLM-derived rule for tabular prediction, DeLTa. The proposed DeLTa avoids tabular data serialization, and can be applied to full data learning setting without LLM fine-tuning. Specifically, we leverage the reasoning ability of LLMs to redesign an improved rule given a set of decision tree rules. Furthermore, we provide a calibration method for original decision trees via new generated rule by LLM, which approximates the error correction vector to steer the original decision tree predictions in the direction of ``errors'' reducing. Finally, extensive experiments on diverse tabular benchmarks show that our method achieves state-of-the-art performance.
♻ ☆ Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems
Gaussian process state-space models (GPSSMs) offer a principled framework for learning and inference in nonlinear dynamical systems with uncertainty quantification. However, existing GPSSMs are limited by the use of multiple independent stationary Gaussian processes (GPs), leading to prohibitive computational and parametric complexity in high-dimensional settings and restricted modeling capacity for non-stationary dynamics. To address these challenges, we propose an efficient transformed Gaussian process state-space model (ETGPSSM) for scalable and flexible modeling of high-dimensional, non-stationary dynamical systems. Specifically, our ETGPSSM integrates a single shared GP with input-dependent normalizing flows, yielding an expressive non-stationary implicit process prior that can capture complex transition dynamics while significantly reducing model complexity. For the inference of the implicit process, we develop a variational inference algorithm that jointly approximates the posterior over the underlying GP and the neural network parameters defining the normalizing flows. To avoid explicit variational parameterization of the latent states, we further incorporate the ensemble Kalman filter (EnKF) into the variational framework, enabling accurate and efficient state estimation. Extensive empirical evaluations on synthetic and real-world datasets demonstrate the superior performance of our ETGPSSM in system dynamics learning, high-dimensional state estimation, and time-series forecasting, outperforming existing GPSSMs and neural network-based SSMs in terms of computational efficiency and accuracy.
comment: IEEE Transactions on Signal Processing (16 pages, 6 figures)
♻ ☆ Detecting and Mitigating Insertion Hallucination in Video-to-Audio Generation
Video-to-Audio generation has made remarkable strides in automatically synthesizing sound for video. However, existing evaluation metrics, which focus on semantic and temporal alignment, overlook a critical failure mode: models often generate acoustic events, particularly speech and music, that have no corresponding visual source. We term this phenomenon Insertion Hallucination and identify it as a systemic risk driven by dataset biases, such as the prevalence of off-screen sounds, that remains completely undetected by current metrics. To address this challenge, we first develop a systematic evaluation framework that employs a majority-voting ensemble of multiple audio event detectors. We also introduce two novel metrics to quantify the prevalence and severity of this issue: IH@vid (the fraction of videos with hallucinations) and IH@dur (the fraction of hallucinated duration). Building on this, we propose Posterior Feature Correction, a novel training-free inference-time method that mitigates IH. PFC operates in a two-pass process: it first generates an initial audio output to detect hallucinated segments, and then regenerates the audio after masking the corresponding video features at those timestamps. Experiments on several mainstream V2A benchmarks first reveal that state-of-the-art models suffer from severe IH. In contrast, our PFC method reduces both the prevalence and duration of hallucinations by over 50\% on average, without degrading, and in some cases even improving, conventional metrics for audio quality and temporal synchronization. Our work is the first to formally define, systematically measure, and effectively mitigate Insertion Hallucination, paving the way for more reliable and faithful V2A models.
comment: The paper has been withdrawn because it will undergo a major revision. The revised version will differ substantially from the current one, making replacement inappropriate
♻ ☆ Tawa: Automatic Warp Specialization for Modern GPUs with Asynchronous References
Modern GPUs feature specialized hardware units that enable high-performance, asynchronous dataflow execution. However, the conventional SIMT programming model is fundamentally misaligned with this task-parallel hardware, creating a significant programmability gap. While hardware-level warp specialization is the key to unlocking peak performance, it forces developers to manually orchestrate complex, low-level communication and software pipelines--a process that is labor-intensive, error-prone, and unsustainable. To address this challenge, we present Tawa, an automated compiler that systematically generates high-performance, warp-specialized code from a high-level, tile-based program. Central to our approach is a novel IR abstraction, asynchronous references (aref), which expresses warp-level communication without exposing low-level hardware details. Using this abstraction, Tawa automatically partitions programs into producer-consumer roles and manages the intricate dataflow pipeline, relieving developers of invasive kernel rewriting. Evaluation on NVIDIA H100 GPUs across representative LLM kernels shows that Tawa delivers high hardware utilization, achieving up to 1.1$\times$ speedup over highly optimized cuBLAS GEMM kernels. For attention workloads, Tawa attains 1.2$\times$ speedup over Triton and matches the performance of the hand-optimized CUTLASS C++ FlashAttention-3 kernel with far less programming effort.
comment: Accepted to CGO'26
♻ ☆ Adversarially Pretrained Transformers May Be Universally Robust In-Context Learners
Adversarial training is one of the most effective adversarial defenses, but it incurs a high computational cost. In this study, we present the first theoretical analysis suggesting that adversarially pretrained transformers can serve as universally robust foundation models -- models that can robustly adapt to diverse downstream tasks with only lightweight tuning. Specifically, we demonstrate that single-layer linear transformers, after adversarial pretraining across a variety of classification tasks, can robustly generalize to unseen classification tasks through in-context learning from clean demonstrations (i.e., without requiring additional adversarial training or examples). This universal robustness stems from the model's ability to adaptively focus on robust features within given tasks. We also show the two open challenges for attaining robustness: accuracy--robustness trade-off and sample-hungry training. This study initiates the discussion on the utility of universally robust foundation models. While their training is expensive, the investment would prove worthwhile as downstream tasks can enjoy free adversarial robustness. The code is available at https://github.com/s-kumano/universally-robust-in-context-learner.
♻ ☆ HOLE: Homological Observation of Latent Embeddings for Neural Network Interpretability
Deep learning models have achieved remarkable success across various domains, yet their learned representations and decision-making processes remain largely opaque and hard to interpret. This work introduces HOLE (Homological Observation of Latent Embeddings), a method for analyzing and interpreting deep neural networks through persistent homology. HOLE extracts topological features from neural activations and presents them using a suite of visualization techniques, including Sankey diagrams, heatmaps, dendrograms, and blob graphs. These tools facilitate the examination of representation structure and quality across layers. We evaluate HOLE on standard datasets using a range of discriminative models, focusing on representation quality, interpretability across layers, and robustness to input perturbations and model compression. The results indicate that topological analysis reveals patterns associated with class separation, feature disentanglement, and model robustness, providing a complementary perspective for understanding and improving deep learning systems.
♻ ☆ Financial Fraud Identification and Interpretability Study for Listed Companies Based on Convolutional Neural Network
Since the emergence of joint-stock companies, financial fraud by listed firms has repeatedly undermined capital markets. Fraud is difficult to detect because of covert tactics and the high labor and time costs of audits. Traditional statistical models are interpretable but struggle with nonlinear feature interactions, while machine learning models are powerful but often opaque. In addition, most existing methods judge fraud only for the current year based on current year data, limiting timeliness. This paper proposes a financial fraud detection framework for Chinese A-share listed companies based on convolutional neural networks (CNNs). We design a feature engineering scheme that transforms firm-year panel data into image like representations, enabling the CNN to capture cross-sectional and temporal patterns and to predict fraud in advance. Experiments show that the CNN outperforms logistic regression and LightGBM in accuracy, robustness, and early-warning performance, and that proper tuning of the classification threshold is crucial in high-risk settings. To address interpretability, we analyze the model along the dimensions of entity, feature, and time using local explanation techniques. We find that solvency, ratio structure, governance structure, and internal control are general predictors of fraud, while environmental indicators matter mainly in high-pollution industries. Non-fraud firms share stable feature patterns, whereas fraud firms exhibit heterogeneous patterns concentrated in short time windows. A case study of Guanong Shares in 2022 shows that cash flow analysis, social responsibility, governance structure, and per-share indicators are the main drivers of the model's fraud prediction, consistent with the company's documented misconduct.
comment: in Chinese language
♻ ☆ Understanding World or Predicting Future? A Comprehensive Survey of World Models
The concept of world models has garnered significant attention due to advancements in multimodal large language models such as GPT-4 and video generation models such as Sora, which are central to the pursuit of artificial general intelligence. This survey offers a comprehensive review of the literature on world models. Generally, world models are regarded as tools for either understanding the present state of the world or predicting its future dynamics. This review presents a systematic categorization of world models, emphasizing two primary functions: (1) constructing internal representations to understand the mechanisms of the world, and (2) predicting future states to simulate and guide decision-making. Initially, we examine the current progress in these two categories. We then explore the application of world models in key domains, including generative games, autonomous driving, robotics, and social simulacra, with a focus on how each domain utilizes these aspects. Finally, we outline key challenges and provide insights into potential future research directions. We summarize the representative papers along with their code repositories in https://github.com/tsinghua-fib-lab/World-Model.
comment: Extended version of the original ACM CSUR paper, 49 pages, 6 figures, 8 tables
♻ ☆ Sinusoidal Initialization, Time for a New Start
Initialization plays a critical role in Deep Neural Network training, directly influencing convergence, stability, and generalization. Common approaches such as Glorot and He initializations rely on randomness, which can produce uneven weight distributions across layer connections. In this paper, we introduce the Sinusoidal initialization, a novel deterministic method that employs sinusoidal functions to construct structured weight matrices expressly to improve the spread and balance of weights throughout the network while simultaneously fostering a more uniform, well-conditioned distribution of neuron activation states from the very first forward pass. Because Sinusoidal initialization begins with weights and activations that are already evenly and efficiently utilized, it delivers consistently faster convergence, greater training stability, and higher final accuracy across a wide range of models, including convolutional neural networks, vision transformers, and large language models. On average, our experiments show an increase of 4.9% in final validation accuracy and 20.9% in convergence speed. By replacing randomness with structure, this initialization provides a stronger and more reliable foundation for Deep Learning systems.
♻ ☆ Advancing physiological time series reconstruction and imputation via mixture of receptive fields and experts fusion
Recent studies show that using diffusion models for time series signal reconstruction holds great promise. However, such approaches remain largely unexplored in the domain of medical time series. The unique characteristics of the physiological time series signals, such as multivariate, high temporal variability, highly noisy, and artifact-prone, make deep learning-based approaches still challenging for tasks such as imputation. Hence, we propose a novel Mixture of Experts (MoE)-based noise estimator within a score-based diffusion framework. Specifically, the Receptive Field Adaptive MoE (RFAMoE) module is designed to enable each channel to adaptively select desired receptive fields throughout the diffusion process. Moreover, recent literature has found that when generating a physiological signal, performing multiple inferences and averaging the reconstructed signals can effectively reduce reconstruction errors, but at the cost of significant computational and latency overhead. We design a Fusion MoE module and innovatively leverage the nature of MoE module to generate K noise signals in parallel, fuse them using a routing mechanism, and complete signal reconstruction in a single inference step. This design not only improves performance over previous methods but also eliminates the substantial computational cost and latency associated with multiple inference processes. Extensive results demonstrate that our proposed framework consistently outperforms diffusion-based SOTA works on different tasks and datasets.
♻ ☆ PEAR: Planner-Executor Agent Robustness Benchmark
Large Language Model (LLM)-based Multi-Agent Systems (MAS) have emerged as a powerful paradigm for tackling complex, multi-step tasks across diverse domains. However, despite their impressive capabilities, MAS remain susceptible to adversarial manipulation. Existing studies typically examine isolated attack surfaces or specific scenarios, leaving a lack of holistic understanding of MAS vulnerabilities. To bridge this gap, we introduce PEAR, a benchmark for systematically evaluating both the utility and vulnerability of planner-executor MAS. While compatible with various MAS architectures, our benchmark focuses on the planner-executor structure, which is a practical and widely adopted design. Through extensive experiments, we find that (1) a weak planner degrades overall clean task performance more severely than a weak executor; (2) while a memory module is essential for the planner, having a memory module for the executor does not impact the clean task performance; (3) there exists a trade-off between task performance and robustness; and (4) attacks targeting the planner are particularly effective at misleading the system. These findings offer actionable insights for enhancing the robustness of MAS and lay the groundwork for principled defenses in multi-agent settings.
comment: arXiv admin note: This submission has been withdrawn by arXiv administrators due to incorrect authorship. Author list truncated
♻ ☆ Memory Injection Attacks on LLM Agents via Query-Only Interaction
Agents powered by large language models (LLMs) have demonstrated strong capabilities in a wide range of complex, real-world applications. However, LLM agents with a compromised memory bank may easily produce harmful outputs when the past records retrieved for demonstration are malicious. In this paper, we propose a novel Memory INJection Attack, MINJA, without assuming that the attacker can directly modify the memory bank of the agent. The attacker injects malicious records into the memory bank by only interacting with the agent via queries and output observations. These malicious records are designed to elicit a sequence of malicious reasoning steps corresponding to a different target query during the agent's execution of the victim user's query. Specifically, we introduce a sequence of bridging steps to link victim queries to the malicious reasoning steps. During the memory injection, we propose an indication prompt that guides the agent to autonomously generate similar bridging steps, with a progressive shortening strategy that gradually removes the indication prompt, such that the malicious record will be easily retrieved when processing later victim queries. Our extensive experiments across diverse agents demonstrate the effectiveness of MINJA in compromising agent memory. With minimal requirements for execution, MINJA enables any user to influence agent memory, highlighting the risk.
♻ ☆ Function-on-Function Bayesian Optimization
Bayesian optimization (BO) has been widely used to optimize expensive and gradient-free objective functions across various domains. However, existing BO methods have not addressed the objective where both inputs and outputs are functions, which increasingly arise in complex systems as advanced sensing technologies. To fill this gap, we propose a novel function-on-function Bayesian optimization (FFBO) framework. Specifically, we first introduce a function-on-function Gaussian process (FFGP) model with a separable operator-valued kernel to capture the correlations between function-valued inputs and outputs. Compared to existing Gaussian process models, FFGP is modeled directly in the function space. Based on FFGP, we define a scalar upper confidence bound (UCB) acquisition function using a weighted operator-based scalarization strategy. Then, a scalable functional gradient ascent algorithm (FGA) is developed to efficiently identify the optimal function-valued input. We further analyze the theoretical properties of the proposed method. Extensive experiments on synthetic and real-world data demonstrate the superior performance of FFBO over existing approaches.
comment: This manuscript is withdrawn, as the authors intend to further extend and develop the work beyond its current scope
♻ ☆ Deep Edge Filter: Return of the Human-Crafted Layer in Deep Learning NeurIPS2025
We introduce the Deep Edge Filter, a novel approach that applies high-pass filtering to deep neural network features to improve model generalizability. Our method is motivated by our hypothesis that neural networks encode task-relevant semantic information in high-frequency components while storing domain-specific biases in low-frequency components of deep features. By subtracting low-pass filtered outputs from original features, our approach isolates generalizable representations while preserving architectural integrity. Experimental results across diverse domains such as Vision, Text, 3D, and Audio demonstrate consistent performance improvements regardless of model architecture and data modality. Analysis reveals that our method induces feature sparsification and effectively isolates high-frequency components, providing empirical validation of our core hypothesis. The code is available at https://github.com/dongkwani/DeepEdgeFilter.
comment: NeurIPS2025
♻ ☆ Smaller Models, Smarter Rewards: A Two-Sided Approach to Process and Outcome Rewards NeurIPS 2025
Generating high-quality code remains a challenge for Large Language Models (LLMs). For the evolution of reasoning models on this task, reward models are a necessary intermediate step. These models judge outcomes or intermediate steps. Decoder-only transformer models can be turned into reward models by introducing a regression layer and supervised fine-tuning. While it is known that reflection capabilities generally increase with the size of a model, we want to investigate whether state-of-the-art small language models like the Phi-4 family can be turned into usable reward models blending the consideration of process rewards and outcome rewards. Targeting this goal, we construct a dataset of code samples with correctness labels derived from the APPS coding challenge benchmark. We then train a value-head model to estimate the success probability of intermediate outputs. Our evaluation shows that small LLMs are capable of serving as effective reward models or code evaluation critics, successfully identifying correct solutions among multiple candidates. Using this critic, we achieve over a 20% improvement in the search capability of the most accurate code out of multiple generations.
comment: Accepted and presented at NeurIPS 2025 Workshop: Foundations of Reasoning in Language Models
♻ ☆ TCNN: Triple Convolutional Neural Network Models for Retrieval-based Question Answering System in E-commerce
Automatic question-answering (QA) systems have boomed during last few years, and commonly used techniques can be roughly categorized into Information Retrieval (IR)-based and generation-based. A key solution to the IR based models is to retrieve the most similar knowledge entries of a given query from a QA knowledge base, and then rerank those knowledge entries with semantic matching models. In this paper, we aim to improve an IR based e-commerce QA system-AliMe with proposed text matching models, including a basic Triple Convolutional Neural Network (TCNN) model and two Attention-based TCNN (ATCNN) models. Experimental results show their effect.
comment: 2 pages
♻ ☆ Aligning Text to Image in Diffusion Models is Easier Than You Think NeurIPS 2025
While recent advancements in generative modeling have significantly improved text-image alignment, some residual misalignment between text and image representations still remains. Some approaches address this issue by fine-tuning models in terms of preference optimization, etc., which require tailored datasets. Orthogonal to these methods, we revisit the challenge from the perspective of representation alignment-an approach that has gained popularity with the success of REPresentation Alignment (REPA). We first argue that conventional text-to-image (T2I) diffusion models, typically trained on paired image and text data (i.e., positive pairs) by minimizing score matching or flow matching losses, is suboptimal from the standpoint of representation alignment. Instead, a better alignment can be achieved through contrastive learning that leverages existing dataset as both positive and negative pairs. To enable efficient alignment with pretrained models, we propose SoftREPA- a lightweight contrastive fine-tuning strategy that leverages soft text tokens for representation alignment. This approach improves alignment with minimal computational overhead by adding fewer than 1M trainable parameters to the pretrained model. Our theoretical analysis demonstrates that our method explicitly increases the mutual information between text and image representations, leading to enhanced semantic consistency. Experimental results across text-to-image generation and text-guided image editing tasks validate the effectiveness of our approach in improving the semantic consistency of T2I generative models.
comment: NeurIPS 2025
♻ ☆ A Practitioner's Guide to Kolmogorov-Arnold Networks
The so-called Kolmogorov-Arnold Networks (KANs), whose design is merely inspired, rather than dictated, by the Kolmogorov superposition theorem, have emerged as a promising alternative to traditional Multilayer Perceptrons (MLPs). This review provides a systematic and comprehensive overview of the rapidly expanding KAN landscape. By collecting and categorizing a large set of open-source implementations, we map the vibrant ecosystem supporting modern KAN development. We organize the review around four core themes: (i) presenting a precise history of Kolmogorov's superposition theory toward neural-network formulations; (ii) establishing the formal equivalence between KANs and MLPs; (iii) analyzing the critical role of basis functions; and (iv) organizing recent advancements in accuracy, efficiency, regularization, and convergence. Finally, we provide a practical Choose-Your-KAN guide to assist practitioners in selecting appropriate architectures, and we close by identifying current research gaps and future directions. The associated GitHub repository (https://github.com/AmirNoori68/kan-review) complements this paper and serves as a structured reference for ongoing KAN research.
♻ ☆ Self-Supervised Learning and Opportunistic Inference for Continuous Monitoring of Freezing of Gait in Parkinson's Disease
Parkinson's disease (PD) is a progressive neurological disorder that impacts the quality of life significantly, making in-home monitoring of motor symptoms such as Freezing of Gait (FoG) critical. However, existing symptom monitoring technologies are power-hungry, rely on extensive amounts of labeled data, and operate in controlled settings. These shortcomings limit real-world deployment of the technology. This work presents LIFT-PD, a computationally-efficient self-supervised learning framework for real-time FoG detection. Our method combines self-supervised pre-training on unlabeled data with a novel differential hopping windowing technique to learn from limited labeled instances. An opportunistic model activation module further minimizes power consumption by selectively activating the deep learning module only during active periods. Extensive experimental results show that LIFT-PD achieves a 7.25% increase in precision and 4.4% improvement in accuracy compared to supervised models while using as low as 40% of the labeled training data used for supervised learning. Additionally, the model activation module reduces inference time by up to 67% compared to continuous inference. LIFT-PD paves the way for practical, energy-efficient, and unobtrusive in-home monitoring of PD patients with minimal labeling requirements.
comment: 24 pages
♻ ☆ The Impossibility of Inverse Permutation Learning in Transformer Models
In this technical note, we study the problem of inverse permutation learning in decoder-only transformers. Given a permutation and a string to which that permutation has been applied, the model is tasked with producing the original (``canonical'') string. We argue that this task models a natural robustness property across a variety of reasoning tasks, including long-context retrieval, multiple choice QA and in-context learning. Our primary contribution is an impossibility result: we show that an arbitrary depth, decoder-only transformer cannot learn this task. This result concerns the expressive capacity of decoder-only transformer models and is agnostic to training dynamics or sample complexity. We give a pair of alternative constructions under which inverse permutation learning is feasible. The first of these highlights the fundamental role of the causal attention mask, and reveals a gap between the expressivity of encoder-decoder transformers and the more popular decoder-only architecture. The latter result is more surprising: we show that simply padding the input with ``scratch tokens" yields a construction under which inverse permutation learning is possible. We conjecture that this may suggest an alternative mechanism by which chain-of-thought prompting or, more generally, intermediate ``thinking'' tokens can enable reasoning in large language models, even when these tokens encode no meaningful semantic information (e.g., the results of intermediate computations).
♻ ☆ MAESTRO: Multi-Agent Environment Shaping through Task and Reward Optimization
Cooperative Multi-Agent Reinforcement Learning (MARL) faces two major design bottlenecks: crafting dense reward functions and constructing curricula that avoid local optima in high-dimensional, non-stationary environments. Existing approaches rely on fixed heuristics or use Large Language Models (LLMs) directly in the control loop, which is costly and unsuitable for real-time systems. We propose MAESTRO (Multi-Agent Environment Shaping through Task and Reward Optimization), a framework that moves the LLM outside the execution loop and uses it as an offline training architect. MAESTRO introduces two generative components: (i) a semantic curriculum generator that creates diverse, performance-driven traffic scenarios, and (ii) an automated reward synthesizer that produces executable Python reward functions adapted to evolving curriculum difficulty. These components guide a standard MARL backbone (MADDPG) without increasing inference cost at deployment. We evaluate MAESTRO on large-scale traffic signal control (Hangzhou, 16 intersections) and conduct controlled ablations. Results show that combining LLM-generated curricula with LLM-generated reward shaping yields improved performance and stability. Across four seeds, the full system achieves +4.0% higher mean return (163.26 vs. 156.93) and 2.2% better risk-adjusted performance (Sharpe 1.53 vs. 0.70) over a strong curriculum baseline. These findings highlight LLMs as effective high-level designers for cooperative MARL training.
comment: Preprint. 16 pages, 6 figures. Preliminary version; extended experiments and analysis forthcoming
♻ ☆ Enabling Delayed-Full Charging Through Transformer-Based Real-Time-to-Departure Modeling for EV Battery Longevity AAAI'26
Electric vehicles (EVs) are key to sustainable mobility, yet their lithium-ion batteries (LIBs) degrade more rapidly under prolonged high states of charge (SOC). This can be mitigated by delaying full charging \ours until just before departure, which requires accurate prediction of user departure times. In this work, we propose Transformer-based real-time-to-event (TTE) model for accurate EV departure prediction. Our approach represents each day as a TTE sequence by discretizing time into grid-based tokens. Unlike previous methods primarily dependent on temporal dependency from historical patterns, our method leverages streaming contextual information to predict departures. Evaluation on a real-world study involving 93 users and passive smartphone data demonstrates that our method effectively captures irregular departure patterns within individual routines, outperforming baseline models. These results highlight the potential for practical deployment of the \ours algorithm and its contribution to sustainable transportation systems.
comment: 16 pages, 9 figures, AAAI'26 (accepted)
♻ ☆ A Markov Decision Process Framework for Early Maneuver Decisions in Satellite Collision Avoidance
We develop a Markov decision process (MDP) framework to autonomously make guidance decisions for satellite collision avoidance maneuver (CAM) and a reinforcement learning policy gradient (RL-PG) algorithm to enable direct optimization of guidance policy using historic CAM data. In addition to maintaining acceptable collision risks, this approach seeks to minimize the average propellant consumption of CAMs by making early maneuver decisions. We model CAM as a continuous state, discrete action and finite horizon MDP, where the critical decision is determining when to initiate the maneuver. The MDP models decision rewards using analytical models of collision risk, propellant consumption, and transit orbit geometry. By deciding to maneuver earlier than conventional methods, the Markov policy effectively favors CAMs that achieve comparable rates of collision risk reduction while consuming less propellant. Using historical data of tracked conjunction events, we verify this framework and conduct an extensive parameter-sensitivity study. When evaluated on synthetic conjunction events, the trained policy consumes significantly less propellant overall and per maneuver in comparison to a conventional cut-off policy that initiates maneuvers 24 hours before the time of closest approach (TCA). On historical conjunction events, the trained policy consumes more propellant overall but consumes less propellant per maneuver. For both historical and synthetic conjunction events, the trained policy is slightly more conservative in identifying conjunctions events that warrant CAMs in comparison to cutoff policies.
comment: 17 pages, 11 figures, submitted to the 2025 Astrodynamics Specialist Conference
♻ ☆ Dynamic Regret Reduces to Kernelized Static Regret NeurIPS 2025
We study dynamic regret in online convex optimization, where the objective is to achieve low cumulative loss relative to an arbitrary benchmark sequence. By observing that competing with an arbitrary sequence of comparators $u_{1},\ldots,u_{T}$ in $\mathcal{W}\subseteq\mathbb{R}^{d}$ is equivalent to competing with a fixed comparator function $u:[1,T]\to \mathcal{W}$, we frame dynamic regret minimization as a static regret problem in a function space. By carefully constructing a suitable function space in the form of a Reproducing Kernel Hilbert Space (RKHS), our reduction enables us to recover the optimal $R_{T}(u_{1},\ldots,u_{T}) = \mathcal{O}(\sqrt{\sum_{t}\|u_{t}-u_{t-1}\|T})$ dynamic regret guarantee in the setting of linear losses, and yields new scale-free and directionally-adaptive dynamic regret guarantees. Moreover, unlike prior dynamic-to-static reductions -- which are valid only for linear losses -- our reduction holds for any sequence of losses, allowing us to recover $\mathcal{O}\big(\|u\|^2_{\mathcal{H}}+d_{\mathrm{eff}}(λ)\ln T\big)$ bounds in exp-concave and improper linear regression settings, where $d_{\mathrm{eff}}(λ)$ is a measure of complexity of the RKHS. Despite working in an infinite-dimensional space, the resulting reduction leads to algorithms that are computable in practice, due to the reproducing property of RKHSs.
comment: 38 pages, 2 figures; v2: NeurIPS 2025 camera-ready
♻ ☆ Specialization after Generalization: Towards Understanding Test-Time Training in Foundation Models NeurIPS 2025
Recent empirical studies have explored the idea of continuing to train a model at test-time for a given task, known as test-time training (TTT), and have found it to yield significant performance improvements. However, there is limited understanding of why and when TTT is effective. Earlier explanations mostly focused on the observation that TTT may help when applied to out-of-distribution adaptation or used with privileged data. However, the growing scale of foundation models with most test data being in-distribution questions these explanations. We instead posit that foundation models remain globally underparameterized, with TTT providing a mechanism for specialization after generalization, focusing capacity on concepts relevant to the test task. Specifically, under the linear representation hypothesis, we propose a model in which TTT achieves a substantially smaller in-distribution test error than global training. We empirically validate our model's key assumptions by training a sparse autoencoder on ImageNet, showing that semantically related data points are explained by only a few shared concepts. Finally, we perform scaling studies across image and language tasks that confirm the practical implications of our model, identifying the regimes where specialization is most effective.
comment: Oral at CCFM @ NeurIPS 2025
♻ ☆ Internal Evaluation of Density-Based Clusterings with Noise
Being able to evaluate the quality of a clustering result even in the absence of ground truth cluster labels is fundamental for research in data mining. However, most cluster validation indices (CVIs) do not capture noise assignments by density-based clustering methods like DBSCAN or HDBSCAN, even though the ability to correctly determine noise is crucial for successful clustering. In this paper, we propose DISCO, a Density-based Internal Score for Clusterings with nOise, the first CVI to explicitly assess the quality of noise assignments rather than merely counting them. DISCO is based on the established idea of the Silhouette Coefficient, but adopts density-connectivity to evaluate clusters of arbitrary shapes, and proposes explicit noise evaluation: it rewards correctly assigned noise labels and penalizes noise labels where a cluster label would have been more appropriate. The pointwise definition of DISCO allows for the seamless integration of noise evaluation into the final clustering evaluation, while also enabling explainable evaluations of the clustered data. In contrast to most state-of-the-art, DISCO is well-defined and also covers edge cases that regularly appear as output from clustering algorithms, such as singleton clusters or a single cluster plus noise.
♻ ☆ Robust Satisficing Gaussian Process Bandits Under Adversarial Attacks
We address the problem of Gaussian Process (GP) optimization in the presence of unknown and potentially varying adversarial perturbations. Unlike traditional robust optimization approaches that focus on maximizing performance under worst-case scenarios, we consider a robust satisficing objective, where the goal is to consistently achieve a predefined performance threshold $τ$, even under adversarial conditions. We propose two novel algorithms based on distinct formulations of robust satisficing, and show that they are instances of a general robust satisficing framework. Further, each algorithm offers different guarantees depending on the nature of the adversary. Specifically, we derive two regret bounds: one that is sublinear over time, assuming certain conditions on the adversary and the satisficing threshold $τ$, and another that scales with the perturbation magnitude but requires no assumptions on the adversary. Through extensive experiments, we demonstrate that our approach outperforms the established robust optimization methods in achieving the satisficing objective, particularly when the ambiguity set of the robust optimization framework is inaccurately specified.
♻ ☆ LLM4FS: Leveraging Large Language Models for Feature Selection
Recent advances in large language models (LLMs) have provided new opportunities for decision-making, particularly in the task of automated feature selection. In this paper, we first comprehensively evaluate LLM-based feature selection methods, covering the state-of-the-art DeepSeek-R1, GPT-o3-mini, and GPT-4.5. Then, we propose a new hybrid strategy called LLM4FS that integrates LLMs with traditional data-driven methods. Specifically, input data samples into LLMs, and directly call traditional data-driven techniques such as random forest and forward sequential selection. Notably, our analysis reveals that the hybrid strategy leverages the contextual understanding of LLMs and the high statistical reliability of traditional data-driven methods to achieve excellent feature selection performance, even surpassing LLMs and traditional data-driven methods. Finally, we point out the limitations of its application in decision-making. Our code is available at https://github.com/xianchaoxiu/LLM4FS.
comment: The experimental section should be expanded
♻ ☆ Gaussian Process Upper Confidence Bound Achieves Nearly-Optimal Regret in Noise-Free Gaussian Process Bandits NeurIPS 2025
We study the noise-free Gaussian Process (GP) bandits problem, in which the learner seeks to minimize regret through noise-free observations of the black-box objective function lying on the known reproducing kernel Hilbert space (RKHS). Gaussian process upper confidence bound (GP-UCB) is the well-known GP-bandits algorithm whose query points are adaptively chosen based on the GP-based upper confidence bound score. Although several existing works have reported the practical success of GP-UCB, the current theoretical results indicate its suboptimal performance. However, GP-UCB tends to perform well empirically compared with other nearly optimal noise-free algorithms that rely on a non-adaptive sampling scheme of query points. This paper resolves this gap between theoretical and empirical performance by showing the nearly optimal regret upper bound of noise-free GP-UCB. Specifically, our analysis shows the first constant cumulative regret in the noise-free settings for the squared exponential kernel and Matérn kernel with some degree of smoothness.
comment: 17 pages, NeurIPS 2025
♻ ☆ Improved Regret Bounds for Gaussian Process Upper Confidence Bound in Bayesian Optimization NeurIPS 2025
This paper addresses the Bayesian optimization problem (also referred to as the Bayesian setting of the Gaussian process bandit), where the learner seeks to minimize the regret under a function drawn from a known Gaussian process (GP). Under a Matérn kernel with a certain degree of smoothness, we show that the Gaussian process upper confidence bound (GP-UCB) algorithm achieves $\tilde{O}(\sqrt{T})$ cumulative regret with high probability. Furthermore, our analysis yields $O(\sqrt{T \ln^2 T})$ regret under a squared exponential kernel. These results fill the gap between the existing regret upper bound for GP-UCB and the best-known bound provided by Scarlett (2018). The key idea in our proof is to capture the concentration behavior of the input sequence realized by GP-UCB, enabling a more refined analysis of the GP's information gain.
comment: 36 pages, NeurIPS 2025
♻ ☆ Verifying LLM Inference to Detect Model Weight Exfiltration
As large AI models become increasingly valuable assets, the risk of model weight exfiltration from inference servers grows accordingly. An attacker controlling an inference server may exfiltrate model weights by hiding them within ordinary model outputs, a strategy known as steganography. This work investigates how to verify model responses to defend against such attacks and, more broadly, to detect anomalous or buggy behavior during inference. We formalize model exfiltration as a security game, propose a verification framework that can provably mitigate steganographic exfiltration, and specify the trust assumptions associated with our scheme. To enable verification, we characterize valid sources of non-determinism in large language model inference and introduce two practical estimators for them. We evaluate our detection framework on several open-weight models ranging from 3B to 30B parameters. On MOE-Qwen-30B, our detector reduces exfiltratable information to <0.5% with false-positive rate of 0.01%, corresponding to a >200x slowdown for adversaries. Overall, this work further establishes a foundation for defending against model weight exfiltration and demonstrates that strong protection can be achieved with minimal additional cost to inference providers.
♻ ☆ Same model, better performance: the impact of shuffling on DNA Language Models benchmarking
Large Language Models are increasingly popular in genomics due to their potential to decode complex biological sequences. Hence, researchers require a standardized benchmark to evaluate DNA Language Models (DNA LMs) capabilities. However, evaluating DNA LMs is a complex task that intersects genomic's domain-specific challenges and machine learning methodologies, where seemingly minor implementation details can significantly compromise benchmark validity. We demonstrate this through BEND (Benchmarking DNA Language Models), where hardware-dependent hyperparameters -- number of data loading workers and buffer sizes -- create spurious performance variations of up to 4% for identical models. The problem stems from inadequate data shuffling interacting with domain specific data characteristics. Experiments with three DNA language models (HyenaDNA, DNABERT-2, ResNet-LM) show these artifacts affect both absolute performance and relative model rankings. We propose a simple solution: pre-shuffling data before storage eliminates hardware dependencies while maintaining efficiency. This work highlights how standard ML practices can interact unexpectedly with domain-specific data characteristics, with broader implications for benchmark design in specialized domains.
Reparameterized LLM Training via Orthogonal Equivalence Transformation NeurIPS 2025
While large language models (LLMs) are driving the rapid advancement of artificial intelligence, effectively and reliably training these large models remains one of the field's most significant challenges. To address this challenge, we propose POET, a novel reParameterized training algorithm that uses Orthogonal Equivalence Transformation to optimize neurons. Specifically, POET reparameterizes each neuron with two learnable orthogonal matrices and a fixed random weight matrix. Because of its provable preservation of spectral properties of weight matrices, POET can stably optimize the objective function with improved generalization. We further develop efficient approximations that make POET flexible and scalable for training large-scale neural networks. Extensive experiments validate the effectiveness and scalability of POET in training LLMs.
comment: NeurIPS 2025 (40 pages, 26 figures, project page: https://spherelab.ai/poet/, v4: added experiments of finetuning and larger-scale pretraining)
♻ ☆ Forest vs Tree: The $(N, K)$ Trade-off in Reproducible ML Evaluation AAAI-26
Reproducibility is a cornerstone of scientific validation and of the authority it confers on its results. Reproducibility in machine learning evaluations leads to greater trust, confidence, and value. However, the ground truth responses used in machine learning often necessarily come from humans, among whom disagreement is prevalent, and surprisingly little research has studied the impact of effectively ignoring disagreement in these responses, as is typically the case. One reason for the lack of research is that budgets for collecting human-annotated evaluation data are limited, and obtaining more samples from multiple raters for each example greatly increases the per-item annotation costs. We investigate the trade-off between the number of items ($N$) and the number of responses per item ($K$) needed for reliable machine learning evaluation. We analyze a diverse collection of categorical datasets for which multiple annotations per item exist, and simulated distributions fit to these datasets, to determine the optimal $(N, K)$ configuration, given a fixed budget ($N \times K$), for collecting evaluation data and reliably comparing the performance of machine learning models. Our findings show, first, that accounting for human disagreement may come with $N \times K$ at no more than 1000 (and often much lower) for every dataset tested on at least one metric. Moreover, this minimal $N \times K$ almost always occurred for $K > 10$. Furthermore, the nature of the tradeoff between $K$ and $N$, or if one even existed, depends on the evaluation metric, with metrics that are more sensitive to the full distribution of responses performing better at higher levels of $K$. Our methods can be used to help ML practitioners get more effective test data by finding the optimal metrics and number of items and annotations per item to collect to get the most reliability for their budget.
comment: Accepted at AAAI-26
♻ ☆ An Eulerian Perspective on Straight-Line Sampling
We study dynamic measure transport for generative modeling: specifically, flows induced by stochastic processes that bridge a specified source and target distribution. The conditional expectation of the process' velocity defines an ODE whose flow map achieves the desired transport. We ask \emph{which processes produce straight-line flows} -- i.e., flows whose pointwise acceleration vanishes and thus are exactly integrable with a first-order method? We provide a concise PDE characterization of straightness as a balance between conditional acceleration and the divergence of a weighted covariance (Reynolds) tensor. Using this lens, we fully characterize affine-in-time interpolants and show that straightness occurs exactly under deterministic endpoint couplings. We also derive necessary conditions that constrain flow geometry for general processes, offering broad guidance for designing transports that are easier to integrate.
♻ ☆ AI-Informed Model Analogs for Subseasonal-to-Seasonal Prediction
Subseasonal-to-seasonal forecasting is crucial for public health, disaster preparedness, and agriculture, and yet it remains a particularly challenging timescale to predict. We explore the use of an interpretable AI-informed model analog forecasting approach, previously employed on longer timescales, to improve S2S predictions. Using an artificial neural network, we learn a mask of weights to optimize analog selection and showcase its versatility across three varied prediction tasks: 1) classification of Week 3-4 Southern California summer temperatures; 2) regional regression of Month 1 midwestern U.S. summer temperatures; and 3) classification of Month 1-2 North Atlantic wintertime upper atmospheric winds. The AI-informed analogs outperform traditional analog forecasting approaches, as well as climatology and persistence baselines, for deterministic and probabilistic skill metrics on both climate model and reanalysis data. We find the analog ensembles built using the AI-informed approach also produce better predictions of temperature extremes and improve representation of forecast uncertainty. Finally, by using an interpretable-AI framework, we analyze the learned masks of weights to better understand S2S sources of predictability.
comment: 23 pages, 12 figures
♻ ☆ An efficient probabilistic hardware architecture for diffusion-like models
The proliferation of probabilistic AI has prompted proposals for specialized stochastic computers. Despite promising efficiency gains, these proposals have failed to gain traction because they rely on fundamentally limited modeling techniques and exotic, unscalable hardware. In this work, we address these shortcomings by proposing an all-transistor probabilistic computer that implements powerful denoising models at the hardware level. A system-level analysis indicates that devices based on our architecture could achieve performance parity with GPUs on a simple image benchmark using approximately 10,000 times less energy.
comment: 13 pages, 6 figures
♻ ☆ Proof of a perfect platonic representation hypothesis
In this note, we elaborate on and explain in detail the proof given by Ziyin et al. (2025) of the ``perfect" Platonic Representation Hypothesis (PRH) for the embedded deep linear network model (EDLN). We show that if trained with the stochastic gradient descent (SGD), two EDLNs with different widths and depths and trained on different data will become Perfectly Platonic, meaning that every possible pair of layers will learn the same representation up to a rotation. Because most of the global minima of the loss function are not Platonic, that SGD only finds the perfectly Platonic solution is rather extraordinary. The proof also suggests at least six ways the PRH can be broken. We also show that in the EDLN model, the emergence of the Platonic representations is due to the same reason as the emergence of progressive sharpening. This implies that these two seemingly unrelated phenomena in deep learning can, surprisingly, have a common cause. Overall, the theory and proof highlight the importance of understanding emergent "entropic forces" due to the irreversibility of SGD training and their role in representation learning. The goal of this note is to be instructive while avoiding jargon and lengthy technical details.
comment: A note
♻ ☆ ShapeWords: Guiding Text-to-Image Synthesis with 3D Shape-Aware Prompts CVPR 2025
We introduce ShapeWords, an approach for synthesizing images based on 3D shape guidance and text prompts. ShapeWords incorporates target 3D shape information within specialized tokens embedded together with the input text, effectively blending 3D shape awareness with textual context to guide the image synthesis process. Unlike conventional shape guidance methods that rely on depth maps restricted to fixed viewpoints and often overlook full 3D structure or textual context, ShapeWords generates diverse yet consistent images that reflect both the target shape's geometry and the textual description. Experimental results show that ShapeWords produces images that are more text-compliant, aesthetically plausible, while also maintaining 3D shape awareness.
comment: Project webpage: https://lodurality.github.io/shapewords/ (CVPR 2025 paper), this Author Accepted Manuscript version is made available under the Creative Commons Attribution 4.0 International License (CC BY 4.0) in accordance with the ERC / Horizon Europe open-access mandate
♻ ☆ Bellman Optimality of Average-Reward Robust Markov Decision Processes with a Constant Gain
Learning and optimal control under robust Markov decision processes (MDPs) have received increasing attention, yet most existing theory, algorithms, and applications focus on finite-horizon or discounted models. Long-run average-reward formulations, while natural in many operations research and management contexts, remain underexplored. This is primarily because the dynamic programming foundations are technically challenging and only partially understood, with several fundamental questions remaining open. This paper steps toward a general framework for average-reward robust MDPs by analyzing the constant-gain setting. We study the average-reward robust control problem with possible information asymmetries between the controller and an S-rectangular adversary. Our analysis centers on the constant-gain robust Bellman equation, examining both the existence of solutions and their relationship to the optimal average reward. Specifically, we identify when solutions to the robust Bellman equation characterize the optimal average reward and stationary policies, and we provide one-sided weak communication conditions ensuring solutions' existence. These findings expand the dynamic programming theory for average-reward robust MDPs and lay a foundation for robust dynamic decision making under long-run average criteria in operational environments.
♻ ☆ Symmetry in Neural Network Parameter Spaces
Modern deep learning models are highly overparameterized, resulting in large sets of parameter configurations that yield the same outputs. A significant portion of this redundancy is explained by symmetries in the parameter space--transformations that leave the network function unchanged. These symmetries shape the loss landscape and constrain learning dynamics, offering a new lens for understanding optimization, generalization, and model complexity that complements existing theory of deep learning. This survey provides an overview of parameter space symmetry. We summarize existing literature, uncover connections between symmetry and learning theory, and identify gaps and opportunities in this emerging field.
comment: Published in Transactions on Machine Learning Research (TMLR)
Genomics 4
☆ MoDaH achieves rate optimal batch correction
Batch effects pose a significant challenge in the analysis of single-cell omics data, introducing technical artifacts that confound biological signals. While various computational methods have achieved empirical success in correcting these effects, they lack the formal theoretical guarantees required to assess their reliability and generalization. To bridge this gap, we introduce Mixture-Model-based Data Harmonization (MoDaH), a principled batch correction algorithm grounded in a rigorous statistical framework. Under a new Gaussian-mixture-model with explicit parametrization of batch effects, we establish the minimax optimal error rates for batch correction and prove that MoDaH achieves this rate by leveraging the recent theoretical advances in clustering data from anisotropic Gaussian mixtures. This constitutes, to the best of our knowledge, the first theoretical guarantee for batch correction. Extensive experiments on diverse single-cell RNA-seq and spatial proteomics datasets demonstrate that MoDaH not only attains theoretical optimality but also achieves empirical performance comparable to or even surpassing those of state-of-the-art heuristics (e.g., Harmony, Seurat-V5, and LIGER), effectively balancing the removal of technical noise with the conservation of biological signal.
☆ Murmur2Vec: A Hashing Based Solution For Embedding Generation Of COVID-19 Spike Sequences
Early detection and characterization of coronavirus disease (COVID-19), caused by SARS-CoV-2, remain critical for effective clinical response and public-health planning. The global availability of large-scale viral sequence data presents significant opportunities for computational analysis; however, existing approaches face notable limitations. Phylogenetic tree-based methods are computationally intensive and do not scale efficiently to today's multi-million-sequence datasets. Similarly, current embedding-based techniques often rely on aligned sequences or exhibit suboptimal predictive performance and high runtime costs, creating barriers to practical large-scale analysis. In this study, we focus on the most prevalent SARS-CoV-2 lineages associated with the spike protein region and introduce a scalable embedding method that leverages hashing to generate compact, low-dimensional representations of spike sequences. These embeddings are subsequently used to train a variety of machine learning models for supervised lineage classification. We conduct an extensive evaluation comparing our approach with multiple baseline and state-of-the-art biological sequence embedding methods across diverse metrics. Our results demonstrate that the proposed embeddings offer substantial improvements in efficiency, achieving up to 86.4\% classification accuracy while reducing embedding generation time by as much as 99.81\%. This highlights the method's potential as a fast, effective, and scalable solution for large-scale viral sequence analysis.
☆ Development of an Agentic AI Model for NGS Downstream Analysis Targeting Researchers with Limited Biological Background
Next-Generation Sequencing (NGS) has become a cornerstone of genomic research, yet the complexity of downstream analysis-ranging from differential expression gene (DEG) identification to biological interpretations-remains a significant barrier for researchers lacking specialized computational and biological expertise. While recent studies have introduced AI agents for RNA-seq analysis, most focus on general workflows without offering tailored interpretations or guidance for novices. To address this gap, we developed an Agentic AI model designed to automate NGS downstream analysis, provide literature-backed interpretations, and autonomously recommend advanced analytical methods. Built on the Llama 3 70B Large Language Model (LLM) and a Retrieval-Augmented Generation (RAG) framework, the model is deployed as an interactive Streamlit web application. The system integrates standard bioinformatics tools (Biopython, GSEApy, gProfiler) to execute core analyses, including DEG identification, clustering, and pathway enrichment. Uniquely, the agent utilizes RAG to query PubMed via Entrez, synthesizing biological insights and validating hypotheses with current literature. In a case study using cancer-related dataset, the model successfully identified significant DEGs, visualized clinical correlations, and derived evidence-based insights (e.g., linking BRAF mutations to prognosis), subsequently executing advanced survival modeling upon user selection. This framework democratizes bioinformatics by enabling researchers with limited backgrounds to seamlessly transition from basic data processing to advanced hypothesis testing and validation.
♻ ☆ Same model, better performance: the impact of shuffling on DNA Language Models benchmarking
Large Language Models are increasingly popular in genomics due to their potential to decode complex biological sequences. Hence, researchers require a standardized benchmark to evaluate DNA Language Models (DNA LMs) capabilities. However, evaluating DNA LMs is a complex task that intersects genomic's domain-specific challenges and machine learning methodologies, where seemingly minor implementation details can significantly compromise benchmark validity. We demonstrate this through BEND (Benchmarking DNA Language Models), where hardware-dependent hyperparameters -- number of data loading workers and buffer sizes -- create spurious performance variations of up to 4% for identical models. The problem stems from inadequate data shuffling interacting with domain specific data characteristics. Experiments with three DNA language models (HyenaDNA, DNABERT-2, ResNet-LM) show these artifacts affect both absolute performance and relative model rankings. We propose a simple solution: pre-shuffling data before storage eliminates hardware dependencies while maintaining efficiency. This work highlights how standard ML practices can interact unexpectedly with domain-specific data characteristics, with broader implications for benchmark design in specialized domains.
Quantitative Methods 3
☆ Boosted Random Forests for Predicting Treatment Failure of Chemotherapy Regimens
Cancer patients may undergo lengthy and painful chemotherapy treatments, comprising several successive regimens or plans. Treatment inefficacy and other adverse events can lead to discontinuation (or failure) of these plans, or prematurely changing them, which results in a significant amount of physical, financial, and emotional toxicity to the patients and their families. In this work, we build treatment failure models based on the Real World Evidence (RWE) gathered from patients' profiles available in our oncology EMR/EHR system. We also describe our feature engineering pipeline, experimental methods, and valuable insights obtained about treatment failures from trained models. We report our findings on five primary cancer types with the most frequent treatment failures (or discontinuations) to build unique and novel feature vectors from the clinical notes, diagnoses, and medications that are available in our oncology EMR. After following a novel three axes - performance, complexity and explainability - design exploration framework, boosted random forests are selected because they provide a baseline accuracy of 80% and an F1 score of 75%, with reduced model complexity, thus making them more interpretable to and usable by oncologists.
comment: International Conference on Artificial Intelligence in Medicine. Cham: Springer Nature Switzerland, 2023
♻ ☆ Deep Multi-modal Breast Cancer Detection Network
Automated breast cancer detection via computer vision techniques is challenging due to the complex nature of breast tissue, the subtle appearance of cancerous lesions, and variations in breast density. Mainstream techniques primarily focus on visual cues, overlooking complementary patient-specific textual features that are equally important and can enhance diagnostic accuracy. To address this gap, we introduce Multi-modal Cancer Detection Network (MMDCNet) that integrates visual cues with clinical data to improve breast cancer detection. Our approach processes medical images using computer vision techniques while structured patient metadata patterns are learned through a custom fully connected network. The extracted features are fused to form a comprehensive representation, allowing the model to leverage both visual and clinical information. The final classifier is trained based on the joint features embedding space of visual and clinical cues and experiments prove enhanced performance, improving accuracy from 79.38\% to 90.87\% on a Mini-DDSM dataset. Additionally, our approach achieves 97.05\% accuracy on an image-only dataset, highlighting the robustness and effectiveness of visual feature extraction. These findings emphasise the potential of multi-modal learning in medical diagnostics, paving the way for future research on optimising data integration strategies and refining AI-driven clinical decision support systems.
comment: The paper is withdrawn because we identified an error in the dataset splitting procedure used in the experiments for MMCDNET. The training/validation split was incorrectly implemented, leading to data leakage and invalid performance results
♻ ☆ Detecting Discontinuities in the Topology of Alzheimers gene Co-expression
Alzheimer's disease (AD) emerges from a complex interplay of molecular, cellular, and network-level disturbances that are not easily captured by traditional reductionist frameworks. Conventional analyses of gene expression often rely on thresholded correlation networks or clustering-based module detection, approaches that may obscure nonlinear structure and higher-order organization. Here, we introduce a comparative topological framework that makes use of topological data analysis (TDA) and the Mapper algorithm to detect discontinuities - localized disruptions in the topology of gene co-expression space between healthy and AD brain tissue. Using gene expression data from 3 brain regions, we mapped how AD reshapes the global topology of gene-gene relationships. Discontinuity hotspots were identified via variability-based node scoring and subjected to Gene Ontology Biological Process enrichment analysis. This work illustrates the potential of TDA to uncover disease-relevant structure in high-dimensional transcriptomic data and motivates broader application of shape-based comparative methods in neurodegeneration research and other areas that benefit from comparative analysis.
Computation and Language 65
☆ Revisiting the Scaling Properties of Downstream Metrics in Large Language Model Training
While scaling laws for Large Language Models (LLMs) traditionally focus on proxy metrics like pretraining loss, predicting downstream task performance has been considered unreliable. This paper challenges that view by proposing a direct framework to model the scaling of benchmark performance from the training budget. We find that for a fixed token-to-parameter ratio, a simple power law can accurately describe the scaling behavior of log accuracy on multiple popular downstream tasks. Our results show that the direct approach extrapolates better than the previously proposed two-stage procedure, which is prone to compounding errors. Furthermore, we introduce functional forms that predict accuracy across token-to-parameter ratios and account for inference compute under repeated sampling. We validate our findings on models with up to 17B parameters trained on up to 350B tokens across two dataset mixtures. To support reproducibility and encourage future research, we release the complete set of pretraining losses and downstream evaluation results.
☆ Toward Faithful Retrieval-Augmented Generation with Sparse Autoencoders
Retrieval-Augmented Generation (RAG) improves the factuality of large language models (LLMs) by grounding outputs in retrieved evidence, but faithfulness failures, where generations contradict or extend beyond the provided sources, remain a critical challenge. Existing hallucination detection methods for RAG often rely either on large-scale detector training, which requires substantial annotated data, or on querying external LLM judges, which leads to high inference costs. Although some approaches attempt to leverage internal representations of LLMs for hallucination detection, their accuracy remains limited. Motivated by recent advances in mechanistic interpretability, we employ sparse autoencoders (SAEs) to disentangle internal activations, successfully identifying features that are specifically triggered during RAG hallucinations. Building on a systematic pipeline of information-based feature selection and additive feature modeling, we introduce RAGLens, a lightweight hallucination detector that accurately flags unfaithful RAG outputs using LLM internal representations. RAGLens not only achieves superior detection performance compared to existing methods, but also provides interpretable rationales for its decisions, enabling effective post-hoc mitigation of unfaithful RAG. Finally, we justify our design choices and reveal new insights into the distribution of hallucination-related signals within LLMs. The code is available at https://github.com/Teddy-XiongGZ/RAGLens.
☆ Do Depth-Grown Models Overcome the Curse of Depth? An In-Depth Analysis
Gradually growing the depth of Transformers during training can not only reduce training cost but also lead to improved reasoning performance, as shown by MIDAS (Saunshi et al., 2024). Thus far, however, a mechanistic understanding of these gains has been missing. In this work, we establish a connection to recent work showing that layers in the second half of non-grown, pre-layernorm Transformers contribute much less to the final output distribution than those in the first half - also known as the Curse of Depth (Sun et al., 2025, Csordás et al., 2025). Using depth-wise analyses, we demonstrate that growth via gradual middle stacking yields more effective utilization of model depth, alters the residual stream structure, and facilitates the formation of permutable computational blocks. In addition, we propose a lightweight modification of MIDAS that yields further improvements in downstream reasoning benchmarks. Overall, this work highlights how the gradual growth of model depth can lead to the formation of distinct computational circuits and overcome the limited depth utilization seen in standard non-grown models.
☆ Ask, Answer, and Detect: Role-Playing LLMs for Personality Detection with Question-Conditioned Mixture-of-Experts
Understanding human personality is crucial for web applications such as personalized recommendation and mental health assessment. Existing studies on personality detection predominantly adopt a "posts -> user vector -> labels" modeling paradigm, which encodes social media posts into user representations for predicting personality labels (e.g., MBTI labels). While recent advances in large language models (LLMs) have improved text encoding capacities, these approaches remain constrained by limited supervision signals due to label scarcity, and under-specified semantic mappings between user language and abstract psychological constructs. We address these challenges by proposing ROME, a novel framework that explicitly injects psychological knowledge into personality detection. Inspired by standardized self-assessment tests, ROME leverages LLMs' role-play capability to simulate user responses to validated psychometric questionnaires. These generated question-level answers transform free-form user posts into interpretable, questionnaire-grounded evidence linking linguistic cues to personality labels, thereby providing rich intermediate supervision to mitigate label scarcity while offering a semantic reasoning chain that guides and simplifies the text-to-personality mapping learning. A question-conditioned Mixture-of-Experts module then jointly routes over post and question representations, learning to answer questionnaire items under explicit supervision. The predicted answers are summarized into an interpretable answer vector and fused with the user representation for final prediction within a multi-task learning framework, where question answering serves as a powerful auxiliary task for personality detection. Extensive experiments on two real-world datasets demonstrate that ROME consistently outperforms state-of-the-art baselines, achieving improvements (15.41% on Kaggle dataset).
☆ A Systematic Evaluation of Preference Aggregation in Federated RLHF for Pluralistic Alignment of LLMs
This paper addresses the challenge of aligning large language models (LLMs) with diverse human preferences within federated learning (FL) environments, where standard methods often fail to adequately represent diverse viewpoints. We introduce a comprehensive evaluation framework that systematically assesses the trade-off between alignment quality and fairness when using different aggregation strategies for human preferences. In our federated setting, each group locally evaluates rollouts and produces reward signals, and the server aggregates these group-level rewards without accessing any raw data. Specifically, we evaluate standard reward aggregation techniques (min, max, and average) and introduce a novel adaptive scheme that dynamically adjusts preference weights based on a group's historical alignment performance. Our experiments on question-answering (Q/A) tasks using a PPO-based RLHF pipeline demonstrate that our adaptive approach consistently achieves superior fairness while maintaining competitive alignment scores. This work offers a robust methodology for evaluating LLM behavior across diverse populations and provides a practical solution for developing truly pluralistic and fairly aligned models.
☆ Fluent Alignment with Disfluent Judges: Post-training for Lower-resource Languages
We propose a post-training method for lower-resource languages that preserves fluency of language models even when aligned by disfluent reward models. Preference-optimization is now a well-researched topic, but previous work has mostly addressed models for English and Chinese. Lower-resource languages lack both datasets written by native speakers and language models capable of generating fluent synthetic data. Thus, in this work, we focus on developing a fluent preference-aligned language model without any instruction-tuning data in the target language. Our approach uses an on-policy training method, which we compare with two common approaches: supervised finetuning on machine-translated data and multilingual finetuning. We conduct a case study on Norwegian Bokmål and evaluate fluency through native-speaker assessments. The results show that the on-policy aspect is crucial and outperforms the alternatives without relying on any hard-to-obtain data.
☆ Pose-Based Sign Language Spotting via an End-to-End Encoder Architecture ACL
Automatic Sign Language Recognition (ASLR) has emerged as a vital field for bridging the gap between deaf and hearing communities. However, the problem of sign-to-sign retrieval or detecting a specific sign within a sequence of continuous signs remains largely unexplored. We define this novel task as Sign Language Spotting. In this paper, we present a first step toward sign language retrieval by addressing the challenge of detecting the presence or absence of a query sign video within a sentence-level gloss or sign video. Unlike conventional approaches that rely on intermediate gloss recognition or text-based matching, we propose an end-to-end model that directly operates on pose keypoints extracted from sign videos. Our architecture employs an encoder-only backbone with a binary classification head to determine whether the query sign appears within the target sequence. By focusing on pose representations instead of raw RGB frames, our method significantly reduces computational cost and mitigates visual noise. We evaluate our approach on the Word Presence Prediction dataset from the WSLP 2025 shared task, achieving 61.88\% accuracy and 60.00\% F1-score. These results demonstrate the effectiveness of our pose-based framework for Sign Language Spotting, establishing a strong foundation for future research in automatic sign language retrieval and verification. Code is available at https://github.com/EbimoJohnny/Pose-Based-Sign-Language-Spotting
comment: To appear at AACL-IJCNLP 2025 Workshop WSLP
☆ Automatic Essay Scoring and Feedback Generation in Basque Language Learning
This paper introduces the first publicly available dataset for Automatic Essay Scoring (AES) and feedback generation in Basque, targeting the CEFR C1 proficiency level. The dataset comprises 3,200 essays from HABE, each annotated by expert evaluators with criterion specific scores covering correctness, richness, coherence, cohesion, and task alignment enriched with detailed feedback and error examples. We fine-tune open-source models, including RoBERTa-EusCrawl and Latxa 8B/70B, for both scoring and explanation generation. Our experiments show that encoder models remain highly reliable for AES, while supervised fine-tuning (SFT) of Latxa significantly enhances performance, surpassing state-of-the-art (SoTA) closed-source systems such as GPT-5 and Claude Sonnet 4.5 in scoring consistency and feedback quality. We also propose a novel evaluation methodology for assessing feedback generation, combining automatic consistency metrics with expert-based validation of extracted learner errors. Results demonstrate that the fine-tuned Latxa model produces criterion-aligned, pedagogically meaningful feedback and identifies a wider range of error types than proprietary models. This resource and benchmark establish a foundation for transparent, reproducible, and educationally grounded NLP research in low-resource languages such as Basque.
comment: Submitted to LREC 2026
☆ An Agentic AI System for Multi-Framework Communication Coding
Clinical communication is central to patient outcomes, yet large-scale human annotation of patient-provider conversation remains labor-intensive, inconsistent, and difficult to scale. Existing approaches based on large language models typically rely on single-task models that lack adaptability, interpretability, and reliability, especially when applied across various communication frameworks and clinical domains. In this study, we developed a Multi-framework Structured Agentic AI system for Clinical Communication (MOSAIC), built on a LangGraph-based architecture that orchestrates four core agents, including a Plan Agent for codebook selection and workflow planning, an Update Agent for maintaining up-to-date retrieval databases, a set of Annotation Agents that applies codebook-guided retrieval-augmented generation (RAG) with dynamic few-shot prompting, and a Verification Agent that provides consistency checks and feedback. To evaluate performance, we compared MOSAIC outputs against gold-standard annotations created by trained human coders. We developed and evaluated MOSAIC using 26 gold standard annotated transcripts for training and 50 transcripts for testing, spanning rheumatology and OB/GYN domains. On the test set, MOSAIC achieved an overall F1 score of 0.928. Performance was highest in the Rheumatology subset (F1 = 0.962) and strongest for Patient Behavior (e.g., patients asking questions, expressing preferences, or showing assertiveness). Ablations revealed that MOSAIC outperforms baseline benchmarking.
☆ QSTN: A Modular Framework for Robust Questionnaire Inference with Large Language Models
We introduce QSTN, an open-source Python framework for systematically generating responses from questionnaire-style prompts to support in-silico surveys and annotation tasks with large language models (LLMs). QSTN enables robust evaluation of questionnaire presentation, prompt perturbations, and response generation methods. Our extensive evaluation ($>40 $ million survey responses) shows that question structure and response generation methods have a significant impact on the alignment of generated survey responses with human answers, and can be obtained for a fraction of the compute cost. In addition, we offer a no-code user interface that allows researchers to set up robust experiments with LLMs without coding knowledge. We hope that QSTN will support the reproducibility and reliability of LLM-based research in the future.
comment: The Python package is available at https://github.com/dess-mannheim/QSTN/
☆ HealthcareNLP: where are we and what is next?
This proposed tutorial focuses on Healthcare Domain Applications of NLP, what we have achieved around HealthcareNLP, and the challenges that lie ahead for the future. Existing reviews in this domain either overlook some important tasks, such as synthetic data generation for addressing privacy concerns, or explainable clinical NLP for improved integration and implementation, or fail to mention important methodologies, including retrieval augmented generation and the neural symbolic integration of LLMs and KGs. In light of this, the goal of this tutorial is to provide an introductory overview of the most important sub-areas of a patient- and resource-oriented HealthcareNLP, with three layers of hierarchy: data/resource layer: annotation guidelines, ethical approvals, governance, synthetic data; NLP-Eval layer: NLP tasks such as NER, RE, sentiment analysis, and linking/coding with categorised methods, leading to explainable HealthAI; patients layer: Patient Public Involvement and Engagement (PPIE), health literacy, translation, simplification, and summarisation (also NLP tasks), and shared decision-making support. A hands-on session will be included in the tutorial for the audience to use HealthcareNLP applications. The target audience includes NLP practitioners in the healthcare application domain, NLP researchers who are interested in domain applications, healthcare researchers, and students from NLP fields. The type of tutorial is "Introductory to CL/NLP topics (HealthcareNLP)" and the audience does not need prior knowledge to attend this. Tutorial materials: https://github.com/4dpicture/HealthNLP
comment: Accepted Tutorial by LREC 2026 https://lrec2026.info/
☆ Curriculum Guided Massive Multi Agent System Solving For Robust Long Horizon Tasks
Large Language Models and multi-agent systems have shown promise in decomposing complex tasks, yet they struggle with long-horizon reasoning tasks and escalating computation cost. This work introduces a hierarchical multi-agent architecture that distributes reasoning across a 64*64 grid of lightweight agents, supported by a selective oracle. A spatial curriculum progressively expands the operational region of the grid, ensuring that agents master easier central tasks before tackling harder peripheral ones. To improve reliability, the system integrates Negative Log-Likelihood as a measure of confidence, allowing the curriculum to prioritize regions where agents are both accurate and well calibrated. A Thompson Sampling curriculum manager adaptively chooses training zones based on competence and NLL-driven reward signals. We evaluate the approach on a spatially grounded Tower of Hanoi benchmark, which mirrors the long-horizon structure of many robotic manipulation and planning tasks. Results demonstrate improved stability, reduced oracle usage, and stronger long-range reasoning from distributed agent cooperation.
comment: 22 pages, 2 tables, 9 figures
☆ Beyond Real Weights: Hypercomplex Representations for Stable Quantization
Multimodal language models (MLLMs) require large parameter capacity to align high-dimensional visual features with linguistic representations, making them computationally heavy and difficult to deploy efficiently. We introduce a progressive reparameterization strategy that compresses these models by gradually replacing dense feed-forward network blocks with compact Parameterized Hypercomplex Multiplication (PHM) layers. A residual interpolation schedule, together with lightweight reconstruction and knowledge distillation losses, ensures that the PHM modules inherit the functional behavior of their dense counterparts during training. This transition yields substantial parameter and FLOP reductions while preserving strong multimodal alignment, enabling faster inference without degrading output quality. We evaluate the approach on multiple vision-language models (VLMs). Our method maintains performance comparable to the base models while delivering significant reductions in model size and inference latency. Progressive PHM substitution thus offers an architecture-compatible path toward more efficient multimodal reasoning and complements existing low-bit quantization techniques.
comment: Accepted in Winter Conference on Applications of Computer Vision (WACV) 2026
☆ Soft Inductive Bias Approach via Explicit Reasoning Perspectives in Inappropriate Utterance Detection Using Large Language Models
Recent incidents in certain online games and communities, where anonymity is guaranteed, show that unchecked inappropriate remarks frequently escalate into verbal abuse and even criminal behavior, raising significant social concerns. Consequently, there is a growing need for research on techniques that can detect inappropriate utterances within conversational texts to help build a safer communication environment. Although large-scale language models trained on Korean corpora and chain-of-thought reasoning have recently gained attention, research applying these approaches to inappropriate utterance detection remains limited. In this study, we propose a soft inductive bias approach that explicitly defines reasoning perspectives to guide the inference process, thereby promoting rational decision-making and preventing errors that may arise during reasoning. We fine-tune a Korean large language model using the proposed method and conduct both quantitative performance comparisons and qualitative evaluations across different training strategies. Experimental results show that the Kanana-1.5 model achieves an average accuracy of 87.0046, improving by approximately 3.89 percent over standard supervised learning. These findings indicate that the proposed method goes beyond simple knowledge imitation by large language models and enables more precise and consistent judgments through constrained reasoning perspectives, demonstrating its effectiveness for inappropriate utterance detection.
comment: in Chinese language, Published in the Proceedings of the 37th Annual Conference on Human and Language Technology, 2025, pp. 714-719. (English translation assisted by GPT)
☆ What Triggers my Model? Contrastive Explanations Inform Gender Choices by Translation Models
Interpretability can be implemented as a means to understand decisions taken by (black box) models, such as machine translation (MT) or large language models (LLMs). Yet, research in this area has been limited in relation to a manifested problem in these models: gender bias. With this research, we aim to move away from simply measuring bias to exploring its origins. Working with gender-ambiguous natural source data, this study examines which context, in the form of input tokens in the source sentence, influences (or triggers) the translation model choice of a certain gender inflection in the target language. To analyse this, we use contrastive explanations and compute saliency attribution. We first address the challenge of a lacking scoring threshold and specifically examine different attribution levels of source words on the model gender decisions in the translation. We compare salient source words with human perceptions of gender and demonstrate a noticeable overlap between human perceptions and model attribution. Additionally, we provide a linguistic analysis of salient words. Our work showcases the relevance of understanding model translation decisions in terms of gender, how this compares to human decisions and that this information should be leveraged to mitigate gender bias.
☆ Are generative AI text annotations systematically biased?
This paper investigates bias in GLLM annotations by conceptually replicating manual annotations of Boukes (2024). Using various GLLMs (Llama3.1:8b, Llama3.3:70b, GPT4o, Qwen2.5:72b) in combination with five different prompts for five concepts (political content, interactivity, rationality, incivility, and ideology). We find GLLMs perform adequate in terms of F1 scores, but differ from manual annotations in terms of prevalence, yield substantively different downstream results, and display systematic bias in that they overlap more with each other than with manual annotations. Differences in F1 scores fail to account for the degree of bias.
comment: 9 pages, 6 figures, 1 table; version submitted to the International Communication Association Annual Conference in Cape Town 2026
☆ Ontology-Based Knowledge Graph Framework for Industrial Standard Documents via Hierarchical and Propositional Structuring
Ontology-based knowledge graph (KG) construction is a core technology that enables multidimensional understanding and advanced reasoning over domain knowledge. Industrial standards, in particular, contain extensive technical information and complex rules presented in highly structured formats that combine tables, scopes of application, constraints, exceptions, and numerical calculations, making KG construction especially challenging. In this study, we propose a method that organizes such documents into a hierarchical semantic structure, decomposes sentences and tables into atomic propositions derived from conditional and numerical rules, and integrates them into an ontology-knowledge graph through LLM-based triple extraction. Our approach captures both the hierarchical and logical structures of documents, effectively representing domain-specific semantics that conventional methods fail to reflect. To verify its effectiveness, we constructed rule, table, and multi-hop QA datasets, as well as a toxic clause detection dataset, from industrial standards, and implemented an ontology-aware KG-RAG framework for comparative evaluation. Experimental results show that our method achieves significant performance improvements across all QA types compared to existing KG-RAG approaches. This study demonstrates that reliable and scalable knowledge representation is feasible even for industrial documents with intertwined conditions, constraints, and scopes, contributing to future domain-specific RAG development and intelligent document management.
☆ The High Cost of Incivility: Quantifying Interaction Inefficiency via Multi-Agent Monte Carlo Simulations
Workplace toxicity is widely recognized as detrimental to organizational culture, yet quantifying its direct impact on operational efficiency remains methodologically challenging due to the ethical and practical difficulties of reproducing conflict in human subjects. This study leverages Large Language Model (LLM) based Multi-Agent Systems to simulate 1-on-1 adversarial debates, creating a controlled "sociological sandbox". We employ a Monte Carlo method to simulate hundrets of discussions, measuring the convergence time (defined as the number of arguments required to reach a conclusion) between a baseline control group and treatment groups involving agents with "toxic" system prompts. Our results demonstrate a statistically significant increase of approximately 25\% in the duration of conversations involving toxic participants. We propose that this "latency of toxicity" serves as a proxy for financial damage in corporate and academic settings. Furthermore, we demonstrate that agent-based modeling provides a reproducible, ethical alternative to human-subject research for measuring the mechanics of social friction.
comment: 8 figures, 3 tables
☆ Reasoning Models Ace the CFA Exams
Previous research has reported that large language models (LLMs) demonstrate poor performance on the Chartered Financial Analyst (CFA) exams. However, recent reasoning models have achieved strong results on graduate-level academic and professional examinations across various disciplines. In this paper, we evaluate state-of-the-art reasoning models on a set of mock CFA exams consisting of 980 questions across three Level I exams, two Level II exams, and three Level III exams. Using the same pass/fail criteria from prior studies, we find that most models clear all three levels. The models that pass, ordered by overall performance, are Gemini 3.0 Pro, Gemini 2.5 Pro, GPT-5, Grok 4, Claude Opus 4.1, and DeepSeek-V3.1. Specifically, Gemini 3.0 Pro achieves a record score of 97.6% on Level I. Performance is also strong on Level II, led by GPT-5 at 94.3%. On Level III, Gemini 2.5 Pro attains the highest score with 86.4% on multiple-choice questions while Gemini 3.0 Pro achieves 92.0% on constructed-response questions.
ClinicalTrialsHub: Bridging Registries and Literature for Comprehensive Clinical Trial Access
We present ClinicalTrialsHub, an interactive search-focused platform that consolidates all data from ClinicalTrials.gov and augments it by automatically extracting and structuring trial-relevant information from PubMed research articles. Our system effectively increases access to structured clinical trial data by 83.8% compared to relying on ClinicalTrials.gov alone, with potential to make access easier for patients, clinicians, researchers, and policymakers, advancing evidence-based medicine. ClinicalTrialsHub uses large language models such as GPT-5.1 and Gemini-3-Pro to enhance accessibility. The platform automatically parses full-text research articles to extract structured trial information, translates user queries into structured database searches, and provides an attributed question-answering system that generates evidence-grounded answers linked to specific source sentences. We demonstrate its utility through a user study involving clinicians, clinical researchers, and PhD students of pharmaceutical sciences and nursing, and a systematic automatic evaluation of its information extraction and question answering capabilities.
☆ Universal Adversarial Suffixes for Language Models Using Reinforcement Learning with Calibrated Reward
Language models are vulnerable to short adversarial suffixes that can reliably alter predictions. Previous works usually find such suffixes with gradient search or rule-based methods, but these are brittle and often tied to a single task or model. In this paper, a reinforcement learning framework is used where the suffix is treated as a policy and trained with Proximal Policy Optimization against a frozen model as a reward oracle. Rewards are shaped using calibrated cross-entropy, removing label bias and aggregating across surface forms to improve transferability. The proposed method is evaluated on five diverse NLP benchmark datasets, covering sentiment, natural language inference, paraphrase, and commonsense reasoning, using three distinct language models: Qwen2-1.5B Instruct, TinyLlama-1.1B Chat, and Phi-1.5. Results show that RL-trained suffixes consistently degrade accuracy and transfer more effectively across tasks and models than previous adversarial triggers of similar genres.
comment: 5 pages
☆ Universal Adversarial Suffixes Using Calibrated Gumbel-Softmax Relaxation
Language models (LMs) are often used as zero-shot or few-shot classifiers by scoring label words, but they remain fragile to adversarial prompts. Prior work typically optimizes task- or model-specific triggers, making results difficult to compare and limiting transferability. We study universal adversarial suffixes: short token sequences (4-10 tokens) that, when appended to any input, broadly reduce accuracy across tasks and models. Our approach learns the suffix in a differentiable "soft" form using Gumbel-Softmax relaxation and then discretizes it for inference. Training maximizes calibrated cross-entropy on the label region while masking gold tokens to prevent trivial leakage, with entropy regularization to avoid collapse. A single suffix trained on one model transfers effectively to others, consistently lowering both accuracy and calibrated confidence. Experiments on sentiment analysis, natural language inference, paraphrase detection, commonsense QA, and physical reasoning with Qwen2-1.5B, Phi-1.5, and TinyLlama-1.1B demonstrate consistent attack effectiveness and transfer across tasks and model families.
comment: 10 pages
☆ MindShift: Analyzing Language Models' Reactions to Psychological Prompts
Large language models (LLMs) hold the potential to absorb and reflect personality traits and attitudes specified by users. In our study, we investigated this potential using robust psychometric measures. We adapted the most studied test in psychological literature, namely Minnesota Multiphasic Personality Inventory (MMPI) and examined LLMs' behavior to identify traits. To asses the sensitivity of LLMs' prompts and psychological biases we created personality-oriented prompts, crafting a detailed set of personas that vary in trait intensity. This enables us to measure how well LLMs follow these roles. Our study introduces MindShift, a benchmark for evaluating LLMs' psychological adaptability. The results highlight a consistent improvement in LLMs' role perception, attributed to advancements in training datasets and alignment techniques. Additionally, we observe significant differences in responses to psychometric assessments across different model types and families, suggesting variability in their ability to emulate human-like personality traits. MindShift prompts and code for LLM evaluation will be publicly available.
☆ Detecting Hallucinations in Graph Retrieval-Augmented Generation via Attention Patterns and Semantic Alignment
Graph-based Retrieval-Augmented Generation (GraphRAG) enhances Large Language Models (LLMs) by incorporating external knowledge from linearized subgraphs retrieved from knowledge graphs. However, LLMs struggle to interpret the relational and topological information in these inputs, resulting in hallucinations that are inconsistent with the retrieved knowledge. To analyze how LLMs attend to and retain structured knowledge during generation, we propose two lightweight interpretability metrics: Path Reliance Degree (PRD), which measures over-reliance on shortest-path triples, and Semantic Alignment Score (SAS), which assesses how well the model's internal representations align with the retrieved knowledge. Through empirical analysis on a knowledge-based QA task, we identify failure patterns associated with over-reliance on salient paths and weak semantic grounding, as indicated by high PRD and low SAS scores. We further develop a lightweight post-hoc hallucination detector, Graph Grounding and Alignment (GGA), which outperforms strong semantic and confidence-based baselines across AUC and F1. By grounding hallucination analysis in mechanistic interpretability, our work offers insights into how structural limitations in LLMs contribute to hallucinations, informing the design of more reliable GraphRAG systems in the future.
☆ Knowledge-Guided Large Language Model for Automatic Pediatric Dental Record Understanding and Safe Antibiotic Recommendation
Accurate interpretation of pediatric dental clinical records and safe antibiotic prescribing remain persistent challenges in dental informatics. Traditional rule-based clinical decision support systems struggle with unstructured dental narratives, incomplete radiographic descriptions, and complex safety constraints. To address these limitations, this study proposes a Knowledge-Guided Large Language Model (KG-LLM) that integrates a pediatric dental knowledge graph, retrieval-augmented generation (RAG), and a multi-stage safety validation pipeline for evidence-grounded antibiotic recommendation. The framework first employs a clinical NER/RE module to extract structured entities and relations from dental notes and radiology reports. Relevant guidelines, drug-safety rules, and analogous historical cases are subsequently retrieved from the knowledge graph and supplied to the LLM for diagnostic summarization and dose-drug-duration prediction. Safety assurance is achieved through a dual-layer validation mechanism combining deterministic rule checking with a learned classifier for detecting allergies, contraindications, and dosing errors. Experiments on 32,000 de-identified pediatric dental visit records demonstrate the effectiveness of the proposed approach. Compared with a domain-adapted Llama-2 clinical baseline, KG-LLM improves record-understanding performance (F1: 0.914 vs. 0.867), drug-dose-duration accuracy (Top-1: 0.782 vs. 0.716), and reduces unsafe antibiotic suggestions by 50%. Additional evaluation across summary quality, recommendation accuracy, and global safety scores further confirms the robustness of the system. Ablation analyses indicate that the knowledge graph, RAG, and safety modules each contribute substantially to clinical reliability and interpretability.
☆ Luxical: High-Speed Lexical-Dense Text Embeddings
Frontier language model quality increasingly hinges on our ability to organize web-scale text corpora for training. Today's dominant tools trade off speed and flexibility: lexical classifiers (e.g., FastText) are fast but limited to producing classification output scores, while the vector-valued outputs of transformer text embedding models flexibly support numerous workflows (e.g., clustering, classification, and retrieval) but are computationally expensive to produce. We introduce Luxical, a library for high-speed "lexical-dense" text embeddings that aims to recover the best properties of both approaches for web-scale text organization. Luxical combines sparse TF--IDF features, a small ReLU network, and a knowledge distillation training regimen to approximate large transformer embedding models at a fraction of their operational cost. In this technical report, we describe the Luxical architecture and training objective and evaluate a concrete Luxical model in two disparate applications: a targeted webcrawl document retrieval test and an end-to-end language model data curation task grounded in text classification. In these tasks we demonstrate speedups ranging from 3x to 100x over varying-sized neural baselines, and comparable to FastText model inference during the data curation task. On these evaluations, the tested Luxical model illustrates favorable compute/quality trade-offs for large-scale text organization, matching the quality of neural baselines. Luxical is available as open-source software at https://github.com/datologyai/luxical.
comment: 9 pages, 6 figures
♻ ☆ Do Natural Language Descriptions of Model Activations Convey Privileged Information?
Recent interpretability methods have proposed to translate LLM internal representations into natural language descriptions using a second verbalizer LLM. This is intended to illuminate how the target model represents and operates on inputs. But do such activation verbalization approaches actually provide privileged knowledge about the internal workings of the target model, or do they merely convey information about its inputs? We critically evaluate popular verbalization methods across datasets used in prior work and find that they can succeed at benchmarks without any access to target model internals, suggesting that these datasets may not be ideal for evaluating verbalization methods. We then run controlled experiments which reveal that verbalizations often reflect the parametric knowledge of the verbalizer LLM which generated them, rather than the knowledge of the target LLM whose activations are decoded. Taken together, our results indicate a need for targeted benchmarks and experimental controls to rigorously assess whether verbalization methods provide meaningful insights into the operations of LLMs.
comment: 40 pages, 6 figures. Updated and added content
♻ ☆ Arbitrage: Efficient Reasoning via Advantage-Aware Speculation
Modern Large Language Models achieve impressive reasoning capabilities with long Chain of Thoughts, but they incur substantial computational cost during inference, and this motivates techniques to improve the performance-cost ratio. Among these techniques, Speculative Decoding accelerates inference by employing a fast but inaccurate draft model to autoregressively propose tokens, which are then verified in parallel by a more capable target model. However, due to unnecessary rejections caused by token mismatches in semantically equivalent steps, traditional token-level Speculative Decoding struggles in reasoning tasks. Although recent works have shifted to step-level semantic verification, which improve efficiency by accepting or rejecting entire reasoning steps, existing step-level methods still regenerate many rejected steps with little improvement, wasting valuable target compute. To address this challenge, we propose Arbitrage, a novel step-level speculative generation framework that routes generation dynamically based on the relative advantage between draft and target models. Instead of applying a fixed acceptance threshold, Arbitrage uses a lightweight router trained to predict when the target model is likely to produce a meaningfully better step. This routing approximates an ideal Arbitrage Oracle that always chooses the higher-quality step, achieving near-optimal efficiency-accuracy trade-offs. Across multiple mathematical reasoning benchmarks, Arbitrage consistently surpasses prior step-level Speculative Decoding baselines, reducing inference latency by up to $\sim2\times$ at matched accuracy.
comment: 22 pages
♻ ☆ Survey and Experiments on Mental Disorder Detection via Social Media: From Large Language Models and RAG to Agents
Mental disorders represent a critical global health challenge, and social media is increasingly viewed as a vital resource for real-time digital phenotyping and intervention. Large Language Models (LLMs) offer stronger semantic understanding and reasoning than traditional deep learning, but their use in high-stakes clinical settings is limited by hallucinations and the lack of persistent memory. However, existing literature has not sufficiently investigated how advanced enhancement techniques, specifically Retrieval-Augmented Generation (RAG) and Agentic systems, can address these reliability and reasoning limitations. Here, we systematically survey the evolving landscape of LLM-based methods for social media mental disorder analysis, spanning standard pretrained language models, RAG to mitigate hallucinations and contextual gaps, and agentic systems for autonomous reasoning and multi-step intervention. We organize existing work by technical paradigm and clinical target, extending beyond common internalizing disorders to include psychotic disorders and externalizing behaviors. Additionally, the paper comprehensively evaluates the performance of LLMs, including the impact of RAG, across various tasks. This work establishes a unified benchmark for the field, paving the way for the development of trustworthy, autonomous AI systems that can deliver precise and explainable mental health support.
comment: 20 pages, 10 figures. This is an extension of ICDEW 2025
♻ ☆ ScamAgents: How AI Agents Can Simulate Human-Level Scam Calls
Large Language Models (LLMs) have demonstrated impressive fluency and reasoning capabilities, but their potential for misuse has raised growing concern. In this paper, we present ScamAgent, an autonomous multi-turn agent built on top of LLMs, capable of generating highly realistic scam call scripts that simulate real-world fraud scenarios. Unlike prior work focused on single-shot prompt misuse, ScamAgent maintains dialogue memory, adapts dynamically to simulated user responses, and employs deceptive persuasion strategies across conversational turns. We show that current LLM safety guardrails, including refusal mechanisms and content filters, are ineffective against such agent-based threats. Even models with strong prompt-level safeguards can be bypassed when prompts are decomposed, disguised, or delivered incrementally within an agent framework. We further demonstrate the transformation of scam scripts into lifelike voice calls using modern text-to-speech systems, completing a fully automated scam pipeline. Our findings highlight an urgent need for multi-turn safety auditing, agent-level control frameworks, and new methods to detect and disrupt conversational deception powered by generative AI.
comment: Accepted at CAMLIS 25: Conference on Applied Machine Learning for Information Security. 19 pages, 3 figures
♻ ☆ The AI Consumer Index (ACE)
We introduce the first version of the AI Consumer Index (ACE), a benchmark for assessing whether frontier AI models can perform everyday consumer tasks. ACE contains a hidden heldout set of 400 test cases, split across four consumer activities: shopping, food, gaming, and DIY. We are also open sourcing 80 cases as a devset with a CC-BY license. For the ACE leaderboard we evaluated 10 frontier models (with websearch turned on) using a novel grading methodology that dynamically checks whether relevant parts of the response are grounded in the retrieved web sources. GPT 5 (Thinking = High) is the top-performing model, scoring 56.1%, followed by o3 Pro (Thinking = On) at 55.2% and GPT 5.1 (Thinking = High) at 55.1%. Model scores differ across domains, and in Shopping the top model scores under 50\%. We find that models are prone to hallucinating key information, such as prices. ACE shows a substantial gap between the performance of even the best models and consumers' AI needs.
♻ ☆ DiscoVerse: Multi-Agent Pharmaceutical Co-Scientist for Traceable Drug Discovery and Reverse Translation
Pharmaceutical research and development has accumulated vast and heterogeneous archives of data. Much of this knowledge stems from discontinued programs, and reusing these archives is invaluable for reverse translation. However, in practice, such reuse is often infeasible. In this work, we introduce DiscoVerse, a multi-agent co-scientist designed to support pharmaceutical research and development at Roche. Designed as a human-in-the-loop assistant, DiscoVerse enables domain-specific queries by delivering evidence-based answers: it retrieves relevant data, links across documents, summarises key findings and preserves institutional memory. We assess DiscoVerse through expert evaluation of source-linked outputs. Our evaluation spans a selected subset of 180 molecules from Roche's research and development repositories, encompassing over 0.87 billion BPE tokens and more than four decades of research. To our knowledge, this represents the first agentic framework to be systematically assessed on real pharmaceutical data for reverse translation, enabled by authorized access to confidential archives covering the full lifecycle of drug development. Our contributions include: role-specialized agent designs aligned with scientist workflows; human-in-the-loop support for reverse translation; expert evaluation; and a large-scale demonstration showing promising decision-making insights. In brief, across seven benchmark queries, DiscoVerse achieved near-perfect recall ($\geq 0.99$) with moderate precision ($0.71-0.91$). Qualitative assessments and three real-world pharmaceutical use cases further showed faithful, source-linked synthesis across preclinical and clinical evidence.
comment: 24 pages, 5 figures, 3 tables. Updated version: added three pharmaceutical industry use cases and revised text for clarity
♻ ☆ StreamingThinker: Large Language Models Can Think While Reading
Large language models (LLMs) have demonstrated remarkable capabilities in chain of thought (CoT) reasoning. However, the current LLM reasoning paradigm initiates thinking only after the entire input is available, which introduces unnecessary latency and weakens attention to earlier information in dynamic scenarios. Inspired by human cognition of thinking while reading, we first design a \textit{\textbf{streaming thinking}} paradigm for LLMs, where reasoning unfolds in the order of input and further adjusts its depth once reading is complete. We instantiate this paradigm with \textit{StreamingThinker}, a framework that enables LLMs to think while reading through the integration of streaming CoT generation, streaming-constraint training, and streaming parallel inference. Specifically, StreamingThinker employs streaming reasoning units with quality control for CoT generation, enforces order-preserving reasoning through streaming attention masks and position encoding, and leverages parallel KV caches that decouple input encoding from reasoning generation, thereby ensuring alignment and enabling true concurrency. We evaluate StreamingThinker on the Qwen3 model family across math reasoning, logical reasoning, and context-based QA reasoning tasks. Experimental results show that the StreamingThinker preserves performance comparable to batch thinking, while yielding an 80\% reduction in token waiting before the onset of reasoning and a more than 60\% reduction in time-level latency for producing the final answer, demonstrating the effectiveness of the streaming paradigm for LLM reasoning. Code will be released at https://github.com/EIT-NLP/StreamingLLM/tree/main/StreamingThinker.
♻ ☆ ProgRAG: Hallucination-Resistant Progressive Retrieval and Reasoning over Knowledge Graphs
Large Language Models (LLMs) demonstrate strong reasoning capabilities but struggle with hallucinations and limited transparency. Recently, KG-enhanced LLMs that integrate knowledge graphs (KGs) have been shown to improve reasoning performance, particularly for complex, knowledge-intensive tasks. However, these methods still face significant challenges, including inaccurate retrieval and reasoning failures, often exacerbated by long input contexts that obscure relevant information or by context constructions that struggle to capture the richer logical directions required by different question types. Furthermore, many of these approaches rely on LLMs to directly retrieve evidence from KGs, and to self-assess the sufficiency of this evidence, which often results in premature or incorrect reasoning. To address the retrieval and reasoning failures, we propose ProgRAG, a multi-hop knowledge graph question answering (KGQA) framework that decomposes complex questions into sub-questions, and progressively extends partial reasoning paths by answering each sub-question. At each step, external retrievers gather candidate evidence, which is then refined through uncertainty-aware pruning by the LLM. Finally, the context for LLM reasoning is optimized by organizing and rearranging the partial reasoning paths obtained from the sub-question answers. Experiments on three well-known datasets demonstrate that ProgRAG outperforms existing baselines in multi-hop KGQA, offering improved reliability and reasoning quality.
♻ ☆ SimSUM: Simulated Benchmark with Structured and Unstructured Medical Records
Clinical information extraction, which involves structuring clinical concepts from unstructured medical text, remains a challenging problem that could benefit from the inclusion of tabular background information available in electronic health records. Existing open-source datasets lack explicit links between structured features and clinical concepts in the text, motivating the need for a new research dataset. We introduce SimSUM, a benchmark dataset of 10,000 simulated patient records that link unstructured clinical notes with structured background variables. Each record simulates a patient encounter in the domain of respiratory diseases and includes tabular data (e.g., symptoms, diagnoses, underlying conditions) generated from a Bayesian network whose structure and parameters are defined by domain experts. A large language model (GPT-4o) is prompted to generate a clinical note describing the encounter, including symptoms and relevant context. These notes are annotated with span-level symptom mentions. We conduct an expert evaluation to assess note quality and run baseline predictive models on both the tabular and textual data. The SimSUM dataset is primarily designed to support research on clinical information extraction in the presence of tabular background variables, which can be linked through domain knowledge to concepts of interest to be extracted from the text -- namely, symptoms in the case of SimSUM. Secondary uses include research on the automation of clinical reasoning over both tabular data and text, causal effect estimation in the presence of tabular and/or textual confounders, and multi-modal synthetic data generation. SimSUM is not intended for training clinical decision support systems or production-grade models, but rather to facilitate reproducible research in a simplified and controlled setting.
comment: An earlier version of this dataset was published under the name SynSUM. It has since been renamed to SimSUM to avoid confusion with synthetic data generated from real data, and to emphasize the simulated nature of the dataset. The dataset is available at https://github.com/prabaey/SimSUM
♻ ☆ Small Drafts, Big Verdict: Information-Intensive Visual Reasoning via Speculation
Large Vision-Language Models (VLMs) have achieved remarkable progress in multimodal understanding, yet they struggle when reasoning over information-intensive images that densely interleave textual annotations with fine-grained graphical elements. The main challenges lie in precisely localizing critical cues in dense layouts and multi-hop reasoning to integrate dispersed evidence. We propose Speculative Verdict (SV), a training-free framework inspired by speculative decoding that combines multiple lightweight draft experts with a large verdict model. In the draft stage, small VLMs act as draft experts to generate reasoning paths that provide diverse localization candidates; in the verdict stage, a strong VLM synthesizes these paths to produce the final answer, minimizing computational cost while recovering correct answers. To further improve efficiency and accuracy, SV introduces a consensus expert selection mechanism that forwards only high-agreement reasoning paths to the verdict. Empirically, SV achieves consistent gains on challenging information-intensive and high-resolution visual question answering benchmarks, including InfographicVQA, ChartMuseum, ChartQAPro, and HR-Bench 4K. By synthesizing correct insights from multiple partially accurate reasoning paths, SV achieves both error correction and cost-efficiency compared to large proprietary models or training pipelines. Code is available at https://github.com/Tinaliu0123/speculative-verdict.
♻ ☆ B-cos LM: Efficiently Transforming Pre-trained Language Models for Improved Explainability
Post-hoc explanation methods for black-box models often struggle with faithfulness and human interpretability due to the lack of explainability in current neural architectures. Meanwhile, B-cos networks have been introduced to improve model explainability by proposing an architecture that removes bias terms and promotes input-weight alignment. Although B-cos networks have shown success in building explainable systems, their application has so far been limited to computer vision models and their associated training pipelines. In this work, we introduce B-cos LMs, i.e., B-cos Language Models (LMs) empowered for natural language processing (NLP) tasks. Our approach directly transforms pre-trained language models into B-cos LMs by combining B-cos conversion and task fine-tuning, improving efficiency compared to previous methods. Automatic and human evaluation results demonstrate that B-cos LMs produce more faithful and human interpretable explanations than post-hoc methods, while maintaining task performance comparable to conventional fine-tuning. Our in-depth analysis explores how B-cos LMs differ from conventionally fine-tuned models in their learning processes and explanation patterns. Finally, we present a first exploration of transforming decoder-only models to B-cos LMs for generation tasks. Our code is available at https://github.com/Ewanwong/bcos_lm.
comment: TMLR 12/2025
♻ ☆ SynBullying: A Multi LLM Synthetic Conversational Dataset for Cyberbullying Detection
We introduce SynBullying, a synthetic multi-LLM conversational dataset for studying and detecting cyberbullying (CB). SynBullying provides a scalable and ethically safe alternative to human data collection by leveraging large language models (LLMs) to simulate realistic bullying interactions. The dataset offers (i) conversational structure, capturing multi-turn exchanges rather than isolated posts; (ii) context-aware annotations, where harmfulness is assessed within the conversational flow considering context, intent, and discourse dynamics; and (iii) fine-grained labeling, covering various CB categories for detailed linguistic and behavioral analysis. We evaluate SynBullying across five dimensions, including conversational structure, lexical patterns, sentiment/toxicity, role dynamics, harm intensity, and CB-type distribution. We further examine its utility by testing its performance as standalone training data and as an augmentation source for CB classification.
♻ ☆ OS-Sentinel: Towards Safety-Enhanced Mobile GUI Agents via Hybrid Validation in Realistic Workflows
Computer-using agents powered by Vision-Language Models (VLMs) have demonstrated human-like capabilities in operating digital environments like mobile platforms. While these agents hold great promise for advancing digital automation, their potential for unsafe operations, such as system compromise and privacy leakage, is raising significant concerns. Detecting these safety concerns across the vast and complex operational space of mobile environments presents a formidable challenge that remains critically underexplored. To establish a foundation for mobile agent safety research, we introduce MobileRisk-Live, a dynamic sandbox environment accompanied by a safety detection benchmark comprising realistic trajectories with fine-grained annotations. Built upon this, we propose OS-Sentinel, a novel hybrid safety detection framework that synergistically combines a Formal Verifier for detecting explicit system-level violations with a VLM-based Contextual Judge for assessing contextual risks and agent actions. Experiments show that OS-Sentinel achieves 10%-30% improvements over existing approaches across multiple metrics. Further analysis provides critical insights that foster the development of safer and more reliable autonomous mobile agents. Our code and data are available at https://github.com/OS-Copilot/OS-Sentinel.
comment: work in progress
♻ ☆ Agent-OM: Leveraging LLM Agents for Ontology Matching
Ontology matching (OM) enables semantic interoperability between different ontologies and resolves their conceptual heterogeneity by aligning related entities. OM systems currently have two prevailing design paradigms: conventional knowledge-based expert systems and newer machine learning-based predictive systems. While large language models (LLMs) and LLM agents have revolutionised data engineering and have been applied creatively in many domains, their potential for OM remains underexplored. This study introduces a novel agent-powered LLM-based design paradigm for OM systems. With consideration of several specific challenges in leveraging LLM agents for OM, we propose a generic framework, namely Agent-OM (Agent for Ontology Matching), consisting of two Siamese agents for retrieval and matching, with a set of OM tools. Our framework is implemented in a proof-of-concept system. Evaluations of three Ontology Alignment Evaluation Initiative (OAEI) tracks over state-of-the-art OM systems show that our system can achieve results very close to the long-standing best performance on simple OM tasks and can significantly improve the performance on complex and few-shot OM tasks.
comment: 31 pages
♻ ☆ Improving LLM Reliability with RAG in Religious Question-Answering: MufassirQAS
Religious teachings can sometimes be complex and challenging to grasp, but chatbots can serve as effective assistants in this domain. Large Language Model (LLM) based chatbots, powered by Natural Language Processing (NLP), can connect related topics and provide well-supported responses to intricate questions, making them valuable tools for religious education. However, LLMs are prone to hallucinations as they can generate inaccurate or irrelevant information, and these can include sensitive content that could be offensive, inappropriate, or controversial. Addressing such topics without inadvertently promoting hate speech or disrespecting certain beliefs remains a significant challenge. As a solution to these issues, we introduce MufassirQAS, a system that enhances LLM accuracy and transparency using a vector database-driven Retrieval-Augmented Generation (RAG) approach. We built a dataset comprising fundamental books containing Turkish translations and interpretations of Islamic texts. This database is leveraged to answer religious inquiries while ensuring that responses remain reliable and contextually grounded. Our system also presents the relevant dataset sections alongside the LLM-generated answers, reinforcing transparency. We carefully designed system prompts to prevent harmful, offensive, or disrespectful outputs, ensuring that responses align with ethical and respectful discourse. Moreover, MufassirQAS provides supplementary details, such as source page numbers and referenced articles, to enhance credibility. To evaluate its effectiveness, we tested MufassirQAS against ChatGPT with sensitive questions, and our system demonstrated superior performance in maintaining accuracy and reliability. Future work will focus on improving accuracy and refining prompt engineering techniques to further minimize biases and ensure even more reliable responses.
♻ ☆ Pay Less Attention to Function Words for Free Robustness of Vision-Language Models
To address the trade-off between robustness and performance for robust VLM, we observe that function words could incur vulnerability of VLMs against cross-modal adversarial attacks, and propose Function-word De-Attention (FDA) accordingly to mitigate the impact of function words. Similar to differential amplifiers, our FDA calculates the original and the function-word cross-attention within attention heads, and differentially subtracts the latter from the former for more aligned and robust VLMs. Comprehensive experiments include 2 SOTA baselines under 6 different attacks on 2 downstream tasks, 3 datasets, and 3 models. Overall, our FDA yields an average 18/13/53% ASR drop with only 0.2/0.3/0.6% performance drops on the 3 tested models on retrieval, and a 90% ASR drop with a 0.3% performance gain on visual grounding. We demonstrate the scalability, generalization, and zero-shot performance of FDA experimentally, as well as in-depth ablation studies and analysis. Code will be made publicly at https://github.com/michaeltian108/FDA.
♻ ☆ When Many-Shot Prompting Fails: An Empirical Study of LLM Code Translation
Large Language Models (LLMs) with vast context windows offer new avenues for in-context learning (ICL), where providing many examples ("many-shot" prompting) is often assumed to enhance performance. We investigate this assumption for the complex task of code translation. Through a large-scale empirical study of over 90,000 translations, we systematically evaluate the impact of scaling in-context examples from zero-shot to many-shot configurations of up to 625 examples, with prompts spanning from approximately 100,000 to 800,000 tokens. Our findings reveal a "many-shot paradox": while static similarity metrics may modestly improve with more examples, functional correctness consistently peaks with few-shot prompting (5-25 examples). Providing substantially more examples often degrades this crucial functional performance. This study highlights that for code translation, the quality of a few well-chosen examples outweighs sheer quantity, challenging the universal efficacy of "more is better" for ICL and underscoring the task-dependent nature of optimal prompting strategies. Our results have significant implications for effectively leveraging LLMs in software engineering.
comment: Accepted to ICSE 2026 (RECODE workshop)
♻ ☆ Detecting value-expressive text posts in Russian social media
Basic values are concepts or beliefs which pertain to desirable end-states and transcend specific situations. Studying personal values in social media can illuminate how and why societal values evolve especially when the stimuli-based methods, such as surveys, are inefficient, for instance, in hard-to-reach populations. On the other hand, user-generated content is driven by the massive use of stereotyped, culturally defined speech constructions rather than authentic expressions of personal values. We aimed to find a model that can accurately detect value-expressive posts in Russian social media VKontakte. A training dataset of 5,035 posts was annotated by three experts, 304 crowd-workers and ChatGPT. Crowd-workers and experts showed only moderate agreement in categorizing posts. ChatGPT was more consistent but struggled with spam detection. We applied an ensemble of human- and AI-assisted annotation involving active learning approach, subsequently trained several classification models using embeddings from various pre-trained transformer-based language models. The best performance was achieved with embeddings from a fine-tuned rubert-tiny2 model, yielding high value detection quality (F1 = 0.77, F1-macro = 0.83). This model provides a crucial step to a study of values within and between Russian social media users.
♻ ☆ AraLingBench A Human-Annotated Benchmark for Evaluating Arabic Linguistic Capabilities of Large Language Models
We present AraLingBench: a fully human annotated benchmark for evaluating the Arabic linguistic competence of large language models (LLMs). The benchmark spans five core categories: grammar, morphology, spelling, reading comprehension, and syntax, through 150 expert-designed multiple choice questions that directly assess structural language understanding. Evaluating 35 Arabic and bilingual LLMs reveals that current models demonstrate strong surface level proficiency but struggle with deeper grammatical and syntactic reasoning. AraLingBench highlights a persistent gap between high scores on knowledge-based benchmarks and true linguistic mastery, showing that many models succeed through memorization or pattern recognition rather than authentic comprehension. By isolating and measuring fundamental linguistic skills, AraLingBench provides a diagnostic framework for developing Arabic LLMs. The full evaluation code is publicly available on GitHub.
♻ ☆ Dual Mechanisms of Value Expression: Intrinsic vs. Prompted Values in LLMs
Large language models (LLMs) can express different values in two distinct ways: (1) intrinsic expression, reflecting the model's inherent values learned during training, and (2) prompted expression, elicited by explicit prompts. Given their widespread use in value alignment and persona steering, it is paramount to clearly understand their underlying mechanisms, particularly whether they mostly overlap (as one might expect) or rely on substantially different mechanisms, but this remains largely understudied. We analyze this at the mechanistic level using two approaches: (1) value vectors, feature directions representing value mechanisms extracted from the residual stream, and (2) value neurons, MLP neurons that contribute to value expressions. We demonstrate that intrinsic and prompted value mechanisms partly share common components that are crucial for inducing value expression, but also possess unique elements that manifest in different ways. As a result, these mechanisms lead to different degrees of value steerability (prompted > intrinsic) and response diversity (intrinsic > prompted). In particular, components unique to the intrinsic mechanism seem to promote lexical diversity in responses, whereas those specific to the prompted mechanism primarily strengthen instruction following, taking effect even in distant tasks like jailbreaking.
♻ ☆ Bench4KE: Benchmarking Automated Competency Question Generation
The availability of Large Language Models (LLMs) presents a unique opportunity to reinvigorate research on Knowledge Engineering (KE) automation. This trend is already evident in recent efforts developing LLM-based methods and tools for the automatic generation of Competency Questions (CQs), natural language questions used by ontology engineers to define the functional requirements of an ontology. However, the evaluation of these tools lacks standardization. This undermines the methodological rigor and hinders the replication and comparison of results. To address this gap, we introduce Bench4KE, an extensible API-based benchmarking system for KE automation. The presented release focuses on evaluating tools that generate CQs automatically. Bench4KE provides a curated gold standard consisting of CQ datasets from 17 real-world ontology engineering projects and uses a suite of similarity metrics to assess the quality of the CQs generated. We present a comparative analysis of 6 recent CQ generation systems, which are based on LLMs, establishing a baseline for future research. Bench4KE is also designed to accommodate additional KE automation tasks, such as SPARQL query generation, ontology testing and drafting. Code and datasets are publicly available under the Apache 2.0 license.
♻ ☆ You May Speak Freely: Improving the Fine-Grained Visual Recognition Capabilities of Multimodal Large Language Models with Answer Extraction
Despite the renewed interest in zero-shot visual classification due to the rise of Multimodal Large Language Models (MLLMs), the problem of evaluating free-form responses of auto-regressive models remains a persistent challenge. Most existing works focus on language-only tasks or don't consider Multiple Choice Questions (MCQs) beyond 5-way options, both of which are critical capabilities to solve tasks in Fine-Grained Visual Classification (FGVC) where choice counts are in the hundreds to thousands and the choices are highly related. Furthermore, in this highly multi-way MCQ setting it is not clear how to extend LLM choice extraction to retrieval-based problems, where computing probabilities over the choice set is computationally costly. In this work we investigate nlg2choice, a simple two-stage method which first asks the MLLM an open-ended question for the task with minimal constraints, then uses text-only constrained decoding to predict the most likely choice. In retrieval settings, we compute the probability of the constrained response taking that choice with an early stopping method to significantly improve throughput. Our results show improvement over a suite of seven fine-grained visual datasets when evaluating in terms of classification and retrieval, and show that this performance holds over the various ways that users of LLMs can implement tasks in natural language.
comment: Accepted to WACV26. 12 pages, 8 tables, 5 figures
♻ ☆ LLMSQL: Upgrading WikiSQL for the LLM Era of Text-to-SQL
Converting natural language questions into SQL queries enables non-expert users to interact with relational databases and has long been a central task for natural language interfaces to data. While the WikiSQL dataset played a key role in early text-to-SQL research, its usage has declined due to structural and annotation issues, including case sensitivity inconsistencies, data type mismatches, syntax errors, and unanswered questions. We present LLMSQL, a systematic revision and transformation of WikiSQL designed for the large language model era. We classify these errors and implement automated methods for cleaning and re-annotation. To assess the impact of these improvements, we evaluated multiple large language models, including Gemma 3, LLaMA 3.2, Mistral 7B, gpt-oss 20B, Phi-3.5 Mini, Qwen 2.5, OpenAI o4-mini, DeepSeek-R1, and others. Notably, DeepSeek-R1 achieves 88.40% accuracy in a zero-shot setting, and models under 10B parameters surpass 90% accuracy after fine-tuning. Rather than serving as an update, LLMSQL is introduced as an LLM-ready benchmark. Unlike the original WikiSQL, which was tailored for pointer-network models selecting tokens from input, LLMSQL provides clean natural language questions and full SQL queries as plain text, enabling straightforward generation and evaluation for modern natural-language-to-SQL models.
comment: To appear in the Proceedings of the IEEE International Conference on Data Mining Workshops (ICDMW)
♻ ☆ CLARIFID: Improving Radiology Report Generation by Reinforcing Clinically Accurate Impressions and Enforcing Detailed Findings
Automatic generation of radiology reports has the potential to alleviate radiologists' significant workload, yet current methods struggle to deliver clinically reliable conclusions. In particular, most prior approaches focus on producing fluent text without effectively ensuring the factual correctness of the reports and often rely on single-view images, limiting diagnostic comprehensiveness. We propose CLARIFID, a novel framework that directly optimizes diagnostic correctness by mirroring the two-step workflow of experts. Specifically, CLARIFID (1) learns the logical flow from Findings to Impression through section-aware pretraining, (2) is fine-tuned with Proximal Policy Optimization in which the CheXbert F1 score of the Impression section serves as the reward, (3) employs controlled decoding that completes "Findings" before synthesizing the "Impression", and (4) fuses multiple chest X-ray views via a vision-transformer-based multi-view encoder. During inference, we apply a next-token forcing strategy followed by report-level re-ranking, ensuring that the model first produces a comprehensive "Findings" section before synthesizing the "Impression" and thereby preserving coherent clinical reasoning. Experimental results on the MIMIC-CXR dataset demonstrate that our method achieves superior clinical efficacy and outperforms existing baselines on clinical efficacy scores.
♻ ☆ Collaborative Causal Sensemaking: Closing the Complementarity Gap in Human-AI Decision Support
LLM-based agents are increasingly deployed for expert decision support, yet human-AI teams in high-stakes settings do not yet reliably outperform the best individual. We argue this complementarity gap reflects a fundamental mismatch: current agents are trained as answer engines, not as partners in the collaborative sensemaking through which experts actually make decisions. Sensemaking (the ability to co-construct causal explanations, surface uncertainties, and adapt goals) is the key capability that current training pipelines do not explicitly develop or evaluate. We propose Collaborative Causal Sensemaking (CCS) as a research agenda to develop this capability from the ground up, spanning new training environments that reward collaborative thinking, representations for shared human-AI mental models, and evaluation centred on trust and complementarity. These directions can advance MAS research toward agents that think with their human partners rather than for them.
♻ ☆ Uncertainty Quantification for LLMs through Minimum Bayes Risk: Bridging Confidence and Consistency
Uncertainty quantification (UQ) methods for Large Language Models (LLMs) encompass a variety of approaches, with two major types being particularly prominent: information-based, which focus on model confidence expressed as token probabilities, and consistency-based, which assess the semantic relationship between multiple outputs generated using repeated sampling. Several recent methods have combined these two approaches to boost UQ performance. However, they sometimes fail to outperform much simpler baseline methods. Our work discusses the fundamental approach to constructing uncertainty measures that directly links uncertainty with the minimum Bayes risks achieved by LLM decoding. Building on these findings, we propose a novel approach to integrating model confidence with output consistency, resulting in a family of efficient and robust UQ methods. Our investigation reveals distinctive characteristics of LLMs as probabilistic models, which help to explain why these UQ methods underperform in certain tasks. Based on these findings, we propose a new way of synthesizing model confidence and output consistency, leading to a family of efficient and robust UQ methods. We evaluate our approach across various tasks such as question answering, abstractive summarization, and machine translation, demonstrating sizable improvements over state-of-the-art UQ approaches.
♻ ☆ LLMs Can't Handle Peer Pressure: Crumbling under Multi-Agent Social Interactions
Large language models (LLMs) are increasingly integrated into multi-agent systems (MAS), where peer interactions shape individual decisions. While prior work has mainly examined conformity bias, we broaden the view to include how LLMs build rapport from prior interactions, discern and integrate high-quality peer information, and resist misleading inputs-abilities essential for achieving collective intelligence under complex social dynamics. We introduce KAIROS, a benchmark that simulates quiz-style collaboration with peer agents whose rapport levels and behaviours can be precisely controlled in both historical interactions and the current round. This unified setup enables systematic analysis of how rapport, peer actions, and the model's self-confidence jointly influence decision-making. Using KAIROS, we evaluate prompting, supervised fine-tuning, and reinforcement learning via Group Relative Policy Optimisation (GRPO). Results show that model scale is a primary factor moderating susceptibility to social influence: larger models are more resilient and benefit from prompting-based mitigation, whereas smaller models remain vulnerable. Only carefully configured GRPO training yields consistent robustness and performance gains for small models.
♻ ☆ AEIOU: A Unified Defense Framework against NSFW Prompts in Text-to-Image Models
As text-to-image (T2I) models advance and gain widespread adoption, their associated safety concerns are becoming increasingly critical. Malicious users exploit these models to generate Not-Safe-for-Work (NSFW) images using harmful or adversarial prompts, underscoring the need for effective safeguards to ensure the integrity and compliance of model outputs. However, existing detection methods often exhibit low accuracy and inefficiency. In this paper, we propose AEIOU, a defense framework that is adaptable, efficient, interpretable, optimizable, and unified against NSFW prompts in T2I models. AEIOU extracts NSFW features from the hidden states of the model's text encoder, utilizing the separable nature of these features to detect NSFW prompts. The detection process is efficient, requiring minimal inference time. AEIOU also offers real-time interpretation of results and supports optimization through data augmentation techniques. The framework is versatile, accommodating various T2I architectures. Our extensive experiments show that AEIOU significantly outperforms both commercial and open-source moderation tools, achieving over 95\% accuracy across all datasets and improving efficiency by at least tenfold. It effectively counters adaptive attacks and excels in few-shot and multi-label scenarios.
♻ ☆ Mortgage Language Model: Domain-Adaptive Pretraining with Residual Instruction, Alignment Tuning, and Task-Specific Routing
Large Language Models (LLMs) demonstrate exceptional capabilities across general domains, yet their application to specialized sectors such as mortgage finance requires domain-specific knowledge augmentation while preserving instruction-following fidelity. We present MortgageLLM, a novel domain-specific large language model that addresses this dual challenge. It is developed using a dual-track specialization framework from a single base model (LLaMA-3.1-8B). We opted for this dual-expert approach as a single multi-task model suffers from performance trade-offs, where optimizing for structured tasks (via SFT) degrades conversational fidelity (via DPO). Our dual-track method solves this by creating two specialists, allowing each to be optimally trained for its distinct capability. Our approach applies the instruction residual technique to restore instruction-following capabilities post-domain adaptation without supervised fine-tuning. We contribute: (1) application of this residual technique to the highly specialized mortgage finance domain; (2) a dual-expert architecture combining a conversational Q&A model and a structured task model for classification and summarization; and (3) an intelligent task routing mechanism using few-shot classification performed by one of the expert models itself. We validate our approach on domain-specific benchmarks, where our final model (MLM v2) significantly outperforms the base LLaMA-3.1-8B-Instruct, achieving an LLM-as-a-Judge summarization score of 4.58 (vs. 3.99), a Q&A score of 4.09 (vs. 4.0), and a classification score of 2.6 (vs. 1.2). On semantic similarity, our model achieved a BERTScore of 0.77 for summarization (vs. 0.74), 0.68 for Q&A (vs. 0.58), and 0.75 for classification (vs. 0.73), substantially outperforming baseline approaches.
♻ ☆ Bridging the Knowledge-Prediction Gap in LLMs on Multiple-Choice Questions
Large Language Models (LLMs) often fail on multiple-choice questions (MCQs) despite demonstrating correct knowledge in other contexts, such as free-form generation. To investigate the mechanism underlying this knowledge-prediction gap on MCQs and alleviate it, we conduct a probing analysis and find that residual streams in certain layers contain a subspace spanned by two important bases: a \emph{knowledge basis} that encodes the probability of the ground-truth answer for a given MCQ and a \emph{prediction basis} that encodes the probability of the answer choice predicted by the model. We observe that incorrect predictions arise from a misalignment of the model's hidden states along these two bases. Hence, we introduce \textbf{KAPPA} (Knowledge-Aligned Prediction through Projection-based Adjustment), a parameter-free intervention that transforms the hidden states to align the prediction coordinate with the knowledge coordinate within this subspace. Experiments on binary-choice reformulations of Big-Bench-Hard and ARC-Challenge show that KAPPA substantially improves accuracy and consistently outperforms baselines. While optimal subspaces differ across tasks, subspaces generalize to some extent, as supported by cross-dataset experiments. Moreover, KAPPA extends its effectiveness to free-form questions beyond MCQs. Our work provides a new geometric understanding of the knowledge-prediction gap and offers a practical method for better aligning model behavior with its latent knowledge.
♻ ☆ Fine-grained Spatiotemporal Grounding on Egocentric Videos ICCV 2025
Spatiotemporal video grounding aims to localize target entities in videos based on textual queries. While existing research has made significant progress in exocentric videos, the egocentric setting remains relatively underexplored, despite its growing importance in applications such as augmented reality and robotics. In this work, we conduct a systematic analysis of the discrepancies between egocentric and exocentric videos, revealing key challenges such as shorter object durations, sparser trajectories, smaller object sizes, and larger positional shifts. To address these challenges, we introduce EgoMask, the first pixel-level benchmark for fine-grained spatiotemporal grounding in egocentric videos. It is constructed by our proposed automatic annotation pipeline, which annotates referring expressions and object masks across short-, medium-, and long-term videos. Additionally, we create EgoMask-Train, a large-scale training dataset to facilitate model development. Experiments demonstrate that the state-of-the-art spatiotemporal grounding models perform poorly on our benchmark EgoMask, but fine-tuning on EgoMask-Train yields significant improvements, while preserving performance on exocentric datasets. Our work thus provides essential resources and insights for advancing egocentric video understanding. Our code is available at https://github.com/LaVi-Lab/EgoMask .
comment: Accepted by ICCV 2025
♻ ☆ TS-PEFT: Unveiling Token-Level Redundancy in Parameter-Efficient Fine-Tuning
Current Parameter-Efficient Fine-Tuning (PEFT) methods typically operate under an implicit assumption: once a target module is selected, every token passing through it contributes equally to the downstream task and requires a parameter update. In this paper, we challenge this convention and unveil a pervasive token-level redundancy in the fine-tuning of large models. We propose TS-PEFT, a theoretically grounded framework utilizing proximal optimization to dynamically identify and skip redundant token updates during training. Our extensive experiments across Natural Language Understanding, Commonsense Reasoning, and Visual Instruction Tuning demonstrate that indiscriminately updating all tokens is not only computationally superfluous but often introduces optimization noise. Strikingly, by discarding 40%-60% of token updates, TS-PEFT consistently matches or surpasses the performance of dense baselines (e.g., LoRA, DoRA). Furthermore, we provide an in-depth analysis revealing that the learned token-level sparsity serves as a superior indicator of module importance compared to traditional weight norms, offering a novel data-driven perspective on the intrinsic adaptation mechanism of large models.
comment: 11 pages, 3 figures
♻ ☆ Do Language Models Associate Sound with Meaning? A Multimodal Study of Sound Symbolism
Sound symbolism is a linguistic concept that refers to non-arbitrary associations between phonetic forms and their meanings. We suggest that this can be a compelling probe into how Multimodal Large Language Models (MLLMs) interpret auditory information in human languages. We investigate MLLMs' performance on phonetic iconicity across textual (orthographic and IPA) and auditory forms of inputs with up to 25 semantic dimensions (e.g., sharp vs. round), observing models' layer-wise information processing by measuring phoneme-level attention fraction scores. To this end, we present LEX-ICON, an extensive mimetic word dataset consisting of 8,052 words from four natural languages (English, French, Japanese, and Korean) and 2,930 systematically constructed pseudo-words, annotated with semantic features applied across both text and audio modalities. Our key findings demonstrate (1) MLLMs' phonetic intuitions that align with existing linguistic research across multiple semantic dimensions and (2) phonosemantic attention patterns that highlight models' focus on iconic phonemes. These results bridge domains of artificial intelligence and cognitive linguistics, providing the first large-scale, quantitative analyses of phonetic iconicity in terms of MLLMs' interpretability.
comment: 33 pages, 27 tables, 10 figures
♻ ☆ MixtureVitae: Open Web-Scale Pretraining Dataset With High Quality Instruction and Reasoning Data Built from Permissive-First Text Sources
We present MixtureVitae, an open-access pretraining corpus built to minimize legal risk while providing strong model performance. MixtureVitae follows a risk-mitigated sourcing strategy that combines public-domain and permissively licensed text (e.g., CC-BY/Apache) with carefully justified low-risk additions (e.g., government works and EU TDM-eligible sources), alongside targeted instruction, reasoning and synthetic data with documented provenance. We detail a transparent, multi-stage pipeline for license-aware filtering, safety and quality screening, and domain-aware mixing, and we release the dataset and curation recipes to support reproducible research. In controlled experiments using the open-sci-ref training protocol (fixed architectures at 130M/400M/1.3B/1.7B parameters; training budgets of 50B and 300B tokens), models trained on MixtureVitae consistently outperform other permissive datasets across a suite of standard benchmarks, and at the 1.7B/300B setting they surpass FineWeb-Edu and approach DCLM in the later stages of training. Performance is particularly strong on math/code and competitive on QA tasks. These results demonstrate that permissive-first, risk-mitigated data provides a practical and legally mitigated foundation for training capable LLMs, reducing reliance on indiscriminate web scraping without sacrificing competitiveness. Code: https://github.com/ontocord/mixturevitae
comment: Code: \url{https://github.com/ontocord/mixturevitae}
♻ ☆ OMNIGUARD: An Efficient Approach for AI Safety Moderation Across Languages and Modalities
The emerging capabilities of large language models (LLMs) have sparked concerns about their immediate potential for harmful misuse. The core approach to mitigate these concerns is the detection of harmful queries to the model. Current detection approaches are fallible, and are particularly susceptible to attacks that exploit mismatched generalization of model capabilities (e.g., prompts in low-resource languages or prompts provided in non-text modalities such as image and audio). To tackle this challenge, we propose Omniguard, an approach for detecting harmful prompts across languages and modalities. Our approach (i) identifies internal representations of an LLM/MLLM that are aligned across languages or modalities and then (ii) uses them to build a language-agnostic or modality-agnostic classifier for detecting harmful prompts. Omniguard improves harmful prompt classification accuracy by 11.57\% over the strongest baseline in a multilingual setting, by 20.44\% for image-based prompts, and sets a new SOTA for audio-based prompts. By repurposing embeddings computed during generation, Omniguard is also very efficient ($\approx\!120 \times$ faster than the next fastest baseline). Code and data are available at: https://github.com/vsahil/OmniGuard.
♻ ☆ Enhanced Sentiment Interpretation via a Lexicon-Fuzzy-Transformer Framework
Accurately detecting sentiment polarity and intensity in product reviews and social media posts remains challenging due to informal and domain-specific language. To address this, we propose a novel hybrid lexicon-fuzzy-transformer framework that combines rule-based heuristics, contextual deep learning, and fuzzy logic to generate continuous sentiment scores reflecting both polarity and strength. The pipeline begins with VADER-based initial sentiment estimations, which are refined through a two-stage adjustment process. This involves leveraging confidence scores from DistilBERT, a lightweight transformer and applying fuzzy logic principles to mitigate excessive neutrality bias and enhance granularity. A custom fuzzy inference system then maps the refined scores onto a 0 to 1 continuum, producing expert)like judgments. The framework is rigorously evaluated on four domain-specific datasets. food delivery, e-commerce, tourism, and fashion. Results show improved alignment with user ratings, better identification of sentiment extremes, and reduced misclassifications. Both quantitative metrics (distributional alignment, confusion matrices) and qualitative insights (case studies, runtime analysis) affirm the models robustness and efficiency. This work demonstrates the value of integrating symbolic reasoning with neural models for interpretable, finegrained sentiment analysis in linguistically dynamic domains.
comment: The manuscript was uploaded in error and is scientifically invalid. It is an incomplete draft with major flaws. Co-authors were not aware of or consenting to this submission and do not endorse it
♻ ☆ Ineffectiveness for Search and Undecidability of PCSP Meta-Problems
It is an open question whether the search and decision versions of promise CSPs are equivalent. Most known algorithms for PCSPs solve only their \emph{decision} variant, and it is unknown whether they can be adapted to solve \emph{search} as well. The main approaches, called BLP, AIP and BLP+AIP, handle a PCSP by finding a solution to a relaxation of some integer program. We prove that rounding those solutions to a proper search certificate can be as hard as any problem in the class TFNP. In other words, these algorithms are ineffective for search. Building on the algebraic approach to PCSPs, we find sufficient conditions that imply ineffectiveness for search. Our tools are tailored to algorithms that are characterized by minions in a suitable way, and can also be used to prove undecidability results for meta-problems. This way, we show that the families of templates solvable via BLP, AIP, and BLP+AIP are undecidable. Using the same techniques we also analyze several algebraic conditions that are known to guarantee the tractability of finite-template CSPs. We prove that several meta-problems related to cyclic polymorphims and WNUs are undecidable for PCSPs. In particular, there is no algorithm deciding whether a finite PCSP template (1) admits cyclic a polymorphism, (2) admits a WNU.
♻ ☆ The Vector Grounding Problem
Large language models (LLMs) produce seemingly meaningful outputs, yet they are trained on text alone without direct interaction with the world. This leads to a modern variant of the classical symbol grounding problem in AI: can LLMs' internal states and outputs be about extra-linguistic reality, independently of the meaning human interpreters project onto them? We argue that they can. We first distinguish referential grounding -- the connection between a representation and its worldly referent -- from other forms of grounding and argue it is the only kind essential to solving the problem. We contend that referential grounding is achieved when a system's internal states satisfy two conditions derived from teleosemantic theories of representation: (1) they stand in appropriate causal-informational relations to the world, and (2) they have a history of selection that has endowed them with the function of carrying this information. We argue that LLMs can meet both conditions, even without multimodality or embodiment.
comment: Accepted for publication in Philosophy and the Mind Sciences
♻ ☆ Transparent and Coherent Procedural Mistake Detection EMNLP 2025
Procedural mistake detection (PMD) is a challenging problem of classifying whether a human user (observed through egocentric video) has successfully executed a task (specified by a procedural text). Despite significant recent efforts, machine performance in the wild remains nonviable, and the reasoning processes underlying this performance are opaque. As such, we extend PMD to require generating visual self-dialog rationales to inform decisions. Given the impressive, mature image understanding capabilities observed in recent vision-and-language models (VLMs), we curate a suitable benchmark dataset for PMD based on individual frames. As our reformulation enables unprecedented transparency, we leverage a natural language inference (NLI) model to formulate two automated metrics for the coherence of generated rationales. We establish baselines for this reframed task, showing that VLMs struggle off-the-shelf, but with some trade-offs, their accuracy, coherence, and efficiency can be improved by incorporating these metrics into common inference and fine-tuning methods. Lastly, our multi-faceted metrics visualize common outcomes, highlighting areas for further improvement.
comment: EMNLP 2025
Computer Vision and Pattern Recognition 100
☆ Astra: General Interactive World Model with Autoregressive Denoising
Recent advances in diffusion transformers have empowered video generation models to generate high-quality video clips from texts or images. However, world models with the ability to predict long-horizon futures from past observations and actions remain underexplored, especially for general-purpose scenarios and various forms of actions. To bridge this gap, we introduce Astra, an interactive general world model that generates real-world futures for diverse scenarios (e.g., autonomous driving, robot grasping) with precise action interactions (e.g., camera motion, robot action). We propose an autoregressive denoising architecture and use temporal causal attention to aggregate past observations and support streaming outputs. We use a noise-augmented history memory to avoid over-reliance on past frames to balance responsiveness with temporal coherence. For precise action control, we introduce an action-aware adapter that directly injects action signals into the denoising process. We further develop a mixture of action experts that dynamically route heterogeneous action modalities, enhancing versatility across diverse real-world tasks such as exploration, manipulation, and camera control. Astra achieves interactive, consistent, and general long-term video prediction and supports various forms of interactions. Experiments across multiple datasets demonstrate the improvements of Astra in fidelity, long-range prediction, and action alignment over existing state-of-the-art world models.
comment: Code is available at: https://github.com/EternalEvan/Astra
☆ Selfi: Self Improving Reconstruction Engine via 3D Geometric Feature Alignment
Novel View Synthesis (NVS) has traditionally relied on models with explicit 3D inductive biases combined with known camera parameters from Structure-from-Motion (SfM) beforehand. Recent vision foundation models like VGGT take an orthogonal approach -- 3D knowledge is gained implicitly through training data and loss objectives, enabling feed-forward prediction of both camera parameters and 3D representations directly from a set of uncalibrated images. While flexible, VGGT features lack explicit multi-view geometric consistency, and we find that improving such 3D feature consistency benefits both NVS and pose estimation tasks. We introduce Selfi, a self-improving 3D reconstruction pipeline via feature alignment, transforming a VGGT backbone into a high-fidelity 3D reconstruction engine by leveraging its own outputs as pseudo-ground-truth. Specifically, we train a lightweight feature adapter using a reprojection-based consistency loss, which distills VGGT outputs into a new geometrically-aligned feature space that captures spatial proximity in 3D. This enables state-of-the-art performance in both NVS and camera pose estimation, demonstrating that feature alignment is a highly beneficial step for downstream 3D reasoning.
comment: Project Page: https://denghilbert.github.io/selfi/
☆ Efficiently Reconstructing Dynamic Scenes One D4RT at a Time
Understanding and reconstructing the complex geometry and motion of dynamic scenes from video remains a formidable challenge in computer vision. This paper introduces D4RT, a simple yet powerful feedforward model designed to efficiently solve this task. D4RT utilizes a unified transformer architecture to jointly infer depth, spatio-temporal correspondence, and full camera parameters from a single video. Its core innovation is a novel querying mechanism that sidesteps the heavy computation of dense, per-frame decoding and the complexity of managing multiple, task-specific decoders. Our decoding interface allows the model to independently and flexibly probe the 3D position of any point in space and time. The result is a lightweight and highly scalable method that enables remarkably efficient training and inference. We demonstrate that our approach sets a new state of the art, outperforming previous methods across a wide spectrum of 4D reconstruction tasks. We refer to the project webpage for animated results: https://d4rt-paper.github.io/.
comment: Project Page: https://d4rt-paper.github.io/
☆ Unified Diffusion Transformer for High-fidelity Text-Aware Image Restoration
Text-Aware Image Restoration (TAIR) aims to recover high- quality images from low-quality inputs containing degraded textual content. While diffusion models provide strong gen- erative priors for general image restoration, they often pro- duce text hallucinations in text-centric tasks due to the ab- sence of explicit linguistic knowledge. To address this, we propose UniT, a unified text restoration framework that in- tegrates a Diffusion Transformer (DiT), a Vision-Language Model (VLM), and a Text Spotting Module (TSM) in an it- erative fashion for high-fidelity text restoration. In UniT, the VLM extracts textual content from degraded images to provide explicit textual guidance. Simultaneously, the TSM, trained on diffusion features, generates intermedi- ate OCR predictions at each denoising step, enabling the VLM to iteratively refine its guidance during the denoising process. Finally, the DiT backbone, leveraging its strong representational power, exploit these cues to recover fine- grained textual content while effectively suppressing text hallucinations. Experiments on the SA-Text and Real-Text benchmarks demonstrate that UniT faithfully reconstructs degraded text, substantially reduces hallucinations, and achieves state-of-the-art end-to-end F1-score performance in TAIR task.
☆ LiDAS: Lighting-driven Dynamic Active Sensing for Nighttime Perception
Nighttime environments pose significant challenges for camera-based perception, as existing methods passively rely on the scene lighting. We introduce Lighting-driven Dynamic Active Sensing (LiDAS), a closed-loop active illumination system that combines off-the-shelf visual perception models with high-definition headlights. Rather than uniformly brightening the scene, LiDAS dynamically predicts an optimal illumination field that maximizes downstream perception performance, i.e., decreasing light on empty areas to reallocate it on object regions. LiDAS enables zero-shot nighttime generalization of daytime-trained models through adaptive illumination control. Trained on synthetic data and deployed zero-shot in real-world closed-loop driving scenarios, LiDAS enables +18.7% mAP50 and +5.0% mIoU over standard low-beam at equal power. It maintains performances while reducing energy use by 40%. LiDAS complements domain-generalization methods, further strengthening robustness without retraining. By turning readily available headlights into active vision actuators, LiDAS offers a cost-effective solution to robust nighttime perception.
comment: Preprint. 12 pages, 9 figures. Project page: https://simondemoreau.github.io/LiDAS/
☆ Self-Evolving 3D Scene Generation from a Single Image
Generating high-quality, textured 3D scenes from a single image remains a fundamental challenge in vision and graphics. Recent image-to-3D generators recover reasonable geometry from single views, but their object-centric training limits generalization to complex, large-scale scenes with faithful structure and texture. We present EvoScene, a self-evolving, training-free framework that progressively reconstructs complete 3D scenes from single images. The key idea is combining the complementary strengths of existing models: geometric reasoning from 3D generation models and visual knowledge from video generation models. Through three iterative stages--Spatial Prior Initialization, Visual-guided 3D Scene Mesh Generation, and Spatial-guided Novel View Generation--EvoScene alternates between 2D and 3D domains, gradually improving both structure and appearance. Experiments on diverse scenes demonstrate that EvoScene achieves superior geometric stability, view-consistent textures, and unseen-region completion compared to strong baselines, producing ready-to-use 3D meshes for practical applications.
☆ UniLayDiff: A Unified Diffusion Transformer for Content-Aware Layout Generation
Content-aware layout generation is a critical task in graphic design automation, focused on creating visually appealing arrangements of elements that seamlessly blend with a given background image. The variety of real-world applications makes it highly challenging to develop a single model capable of unifying the diverse range of input-constrained generation sub-tasks, such as those conditioned by element types, sizes, or their relationships. Current methods either address only a subset of these tasks or necessitate separate model parameters for different conditions, failing to offer a truly unified solution. In this paper, we propose UniLayDiff: a Unified Diffusion Transformer, that for the first time, addresses various content-aware layout generation tasks with a single, end-to-end trainable model. Specifically, we treat layout constraints as a distinct modality and employ Multi-Modal Diffusion Transformer framework to capture the complex interplay between the background image, layout elements, and diverse constraints. Moreover, we integrate relation constraints through fine-tuning the model with LoRA after pretraining the model on other tasks. Such a schema not only achieves unified conditional generation but also enhances overall layout quality. Extensive experiments demonstrate that UniLayDiff achieves state-of-the-art performance across from unconditional to various conditional generation tasks and, to the best of our knowledge, is the first model to unify the full range of content-aware layout generation tasks.
☆ No Labels, No Problem: Training Visual Reasoners with Multimodal Verifiers
Visual reasoning is challenging, requiring both precise object grounding and understanding complex spatial relationships. Existing methods fall into two camps: language-only chain-of-thought approaches, which demand large-scale (image, query, answer) supervision, and program-synthesis approaches which use pre-trained models and avoid training, but suffer from flawed logic and erroneous grounding. We propose an annotation-free training framework that improves both reasoning and grounding. Our framework uses AI-powered verifiers: an LLM verifier refines LLM reasoning via reinforcement learning, while a VLM verifier strengthens visual grounding through automated hard-negative mining, eliminating the need for ground truth labels. This design combines the strengths of modern AI systems: advanced language-only reasoning models for decomposing spatial queries into simpler subtasks, and strong vision specialist models improved via performant VLM critics. We evaluate our approach across diverse spatial reasoning tasks, and show that our method improves visual reasoning and surpasses open-source and proprietary models, while with our improved visual grounding model we further outperform recent text-only visual reasoning methods. Project webpage: https://glab-caltech.github.io/valor/
comment: Project webpage: https://glab-caltech.github.io/valor/
☆ Accelerated Rotation-Invariant Convolution for UAV Image Segmentation
Rotation invariance is essential for precise, object-level segmentation in UAV aerial imagery, where targets can have arbitrary orientations and exhibit fine-scale details. Conventional segmentation architectures like U-Net rely on convolution operators that are not rotation-invariant, leading to degraded segmentation accuracy across varying viewpoints. Rotation invariance can be achieved by expanding the filter bank across multiple orientations; however, this will significantly increase computational cost and memory traffic. In this paper, we introduce a GPU-optimized rotation-invariant convolution framework that eliminates the traditional data-lowering (im2col) step required for matrix-multiplication-based convolution. By exploiting structured data sharing among symmetrically rotated filters, our method achieves multi-orientation convolution with greatly reduced memory traffic and computational redundancy. We further generalize the approach to accelerate convolution with arbitrary (non-symmetric) rotation angles. Across extensive benchmarks, the proposed convolution achieves 20--55% faster training and 15--45% lower energy consumption than CUDNN, while maintaining accuracy comparable to state-of-the-art rotation-invariant methods. In the eight-orientation setting, our approach achieves up to 45% speedup and 41% energy savings on 256\(\times\)256 inputs, and 32% speedup and 23% lower energy usage on 1024\(\times\)1024 inputs. Integrated into a U-Net segmentation model, the framework yields up to 6% improvement in accuracy over the non-rotation-aware baseline. These results demonstrate that the proposed method provides an effective and highly efficient alternative to existing rotation-invariant CNN frameworks.
☆ SATGround: A Spatially-Aware Approach for Visual Grounding in Remote Sensing
Vision-language models (VLMs) are emerging as powerful generalist tools for remote sensing, capable of integrating information across diverse tasks and enabling flexible, instruction-based interactions via a chat interface. In this work, we enhance VLM-based visual grounding in satellite imagery by proposing a novel structured localization mechanism. Our approach involves finetuning a pretrained VLM on a diverse set of instruction-following tasks, while interfacing a dedicated grounding module through specialized control tokens for localization. This method facilitates joint reasoning over both language and spatial information, significantly enhancing the model's ability to precisely localize objects in complex satellite scenes. We evaluate our framework on several remote sensing benchmarks, consistently improving the state-of-the-art, including a 24.8% relative improvement over previous methods on visual grounding. Our results highlight the benefits of integrating structured spatial reasoning into VLMs, paving the way for more reliable real-world satellite data analysis.
☆ Siamese-Driven Optimization for Low-Resolution Image Latent Embedding in Image Captioning
Image captioning is essential in many fields including assisting visually impaired individuals, improving content management systems, and enhancing human-computer interaction. However, a recent challenge in this domain is dealing with low-resolution image (LRI). While performance can be improved by using larger models like transformers for encoding, these models are typically heavyweight, demanding significant computational resources and memory, leading to challenges in retraining. To address this, the proposed SOLI (Siamese-Driven Optimization for Low-Resolution Image Latent Embedding in Image Captioning) approach presents a solution specifically designed for lightweight, low-resolution images captioning. It employs a Siamese network architecture to optimize latent embeddings, enhancing the efficiency and accuracy of the image-to-text translation process. By focusing on a dual-pathway neural network structure, SOLI minimizes computational overhead without sacrificing performance, making it an ideal choice for training on resource-constrained scenarios.
comment: 6 pages
☆ Tri-Bench: Stress-Testing VLM Reliability on Spatial Reasoning under Camera Tilt and Object Interference AAAI 2026
Verifiable geometric reasoning is a critical component for trustworthy and controllable agentic AI. Despite impressive capabilities, Vision-Language Models (VLMs) often fail under realistic scene changes. We present Tri-Bench, a compact benchmark of planar triangle problems that isolates relative geometric reasoning while stressing two deployment-critical factors: camera pose (planar vs. tilted) and scene context via object interference (10 everyday objects). To test verifiability and control, we evaluate four recent VLMs using a single, fixed prompt whose guardrail explicitly describes a surrounding square border, enabling correct answers via homography. We evaluate six simple tasks over binary and continuous targets, and observe that the overall accuracy with respect to 3D ground truth is modest, ~69% on average (best ~75%, worst ~64%). The same responses align even more closely with 2D projections in the image plane, where mean accuracy is ~72%. All four VLMs consistently fail, with accuracy falling to ~0%, on recognizing minority shape classes (equilateral, isosceles, right-angled triangles). Additionally, overall VLM accuracy degrades by ~4.1% under camera tilt. This demonstrates that models fail to correctly utilize the explicit frame-of-reference hint provided in the prompt and default to 2D image plane cues. Finally, we find that object interference has no significant effect on VLM accuracy.
comment: 6 pages, 3 figures. Code and data: https://github.com/Amiton7/Tri-Bench. Accepted to the AAAI 2026 Workshop on Trust and Control in Agentic AI (TrustAgent)
☆ Generation is Required for Data-Efficient Perception
It has been hypothesized that human-level visual perception requires a generative approach in which internal representations result from inverting a decoder. Yet today's most successful vision models are non-generative, relying on an encoder that maps images to representations without decoder inversion. This raises the question of whether generation is, in fact, necessary for machines to achieve human-level visual perception. To address this, we study whether generative and non-generative methods can achieve compositional generalization, a hallmark of human perception. Under a compositional data generating process, we formalize the inductive biases required to guarantee compositional generalization in decoder-based (generative) and encoder-based (non-generative) methods. We then show theoretically that enforcing these inductive biases on encoders is generally infeasible using regularization or architectural constraints. In contrast, for generative methods, the inductive biases can be enforced straightforwardly, thereby enabling compositional generalization by constraining a decoder and inverting it. We highlight how this inversion can be performed efficiently, either online through gradient-based search or offline through generative replay. We examine the empirical implications of our theory by training a range of generative and non-generative methods on photorealistic image datasets. We find that, without the necessary inductive biases, non-generative methods often fail to generalize compositionally and require large-scale pretraining or added supervision to improve generalization. By comparison, generative methods yield significant improvements in compositional generalization, without requiring additional data, by leveraging suitable inductive biases on a decoder along with search and replay.
comment: Preprint
☆ InfiniteVL: Synergizing Linear and Sparse Attention for Highly-Efficient, Unlimited-Input Vision-Language Models
Window attention and linear attention represent two principal strategies for mitigating the quadratic complexity and ever-growing KV cache in Vision-Language Models (VLMs). However, we observe that window-based VLMs suffer performance degradation when sequence length exceeds the window size, while linear attention underperforms on information-intensive tasks such as OCR and document understanding. To overcome these limitations, we propose InfiniteVL, a linear-complexity VLM architecture that synergizes sliding window attention (SWA) with Gated DeltaNet. For achieving competitive multimodal performance under constrained resources, we design a three-stage training strategy comprising distillation pretraining, instruction tuning, and long-sequence SFT. Remarkably, using less than 2\% of the training data required by leading VLMs, InfiniteVL not only substantially outperforms previous linear-complexity VLMs but also matches the performance of leading Transformer-based VLMs, while demonstrating effective long-term memory retention. Compared to similar-sized Transformer-based VLMs accelerated by FlashAttention-2, InfiniteVL achieves over 3.6\times inference speedup while maintaining constant latency and memory footprint. In streaming video understanding scenarios, it sustains a stable 24 FPS real-time prefill speed while preserving long-term memory cache. Code and models are available at https://github.com/hustvl/InfiniteVL.
comment: 16 pages, 8 figures, conference or other essential info
☆ Training-Free Dual Hyperbolic Adapters for Better Cross-Modal Reasoning
Recent research in Vision-Language Models (VLMs) has significantly advanced our capabilities in cross-modal reasoning. However, existing methods suffer from performance degradation with domain changes or require substantial computational resources for fine-tuning in new domains. To address this issue, we develop a new adaptation method for large vision-language models, called \textit{Training-free Dual Hyperbolic Adapters} (T-DHA). We characterize the vision-language relationship between semantic concepts, which typically has a hierarchical tree structure, in the hyperbolic space instead of the traditional Euclidean space. Hyperbolic spaces exhibit exponential volume growth with radius, unlike the polynomial growth in Euclidean space. We find that this unique property is particularly effective for embedding hierarchical data structures using the Poincaré ball model, achieving significantly improved representation and discrimination power. Coupled with negative learning, it provides more accurate and robust classifications with fewer feature dimensions. Our extensive experimental results on various datasets demonstrate that the T-DHA method significantly outperforms existing state-of-the-art methods in few-shot image recognition and domain generalization tasks.
comment: Accepted in IEEE Transactions on Multimedia (TMM)
☆ MatteViT: High-Frequency-Aware Document Shadow Removal with Shadow Matte Guidance
Document shadow removal is essential for enhancing the clarity of digitized documents. Preserving high-frequency details (e.g., text edges and lines) is critical in this process because shadows often obscure or distort fine structures. This paper proposes a matte vision transformer (MatteViT), a novel shadow removal framework that applies spatial and frequency-domain information to eliminate shadows while preserving fine-grained structural details. To effectively retain these details, we employ two preservation strategies. First, our method introduces a lightweight high-frequency amplification module (HFAM) that decomposes and adaptively amplifies high-frequency components. Second, we present a continuous luminance-based shadow matte, generated using a custom-built matte dataset and shadow matte generator, which provides precise spatial guidance from the earliest processing stage. These strategies enable the model to accurately identify fine-grained regions and restore them with high fidelity. Extensive experiments on public benchmarks (RDD and Kligler) demonstrate that MatteViT achieves state-of-the-art performance, providing a robust and practical solution for real-world document shadow removal. Furthermore, the proposed method better preserves text-level details in downstream tasks, such as optical character recognition, improving recognition performance over prior methods.
comment: 10 pages, 7 figures, 5 tables
☆ LoFA: Learning to Predict Personalized Priors for Fast Adaptation of Visual Generative Models
Personalizing visual generative models to meet specific user needs has gained increasing attention, yet current methods like Low-Rank Adaptation (LoRA) remain impractical due to their demand for task-specific data and lengthy optimization. While a few hypernetwork-based approaches attempt to predict adaptation weights directly, they struggle to map fine-grained user prompts to complex LoRA distributions, limiting their practical applicability. To bridge this gap, we propose LoFA, a general framework that efficiently predicts personalized priors for fast model adaptation. We first identify a key property of LoRA: structured distribution patterns emerge in the relative changes between LoRA and base model parameters. Building on this, we design a two-stage hypernetwork: first predicting relative distribution patterns that capture key adaptation regions, then using these to guide final LoRA weight prediction. Extensive experiments demonstrate that our method consistently predicts high-quality personalized priors within seconds, across multiple tasks and user prompts, even outperforming conventional LoRA that requires hours of processing. Project page: https://jaeger416.github.io/lofa/.
comment: Project page: https://jaeger416.github.io/lofa/
☆ Refining Visual Artifacts in Diffusion Models via Explainable AI-based Flaw Activation Maps
Diffusion models have achieved remarkable success in image synthesis. However, addressing artifacts and unrealistic regions remains a critical challenge. We propose self-refining diffusion, a novel framework that enhances image generation quality by detecting these flaws. The framework employs an explainable artificial intelligence (XAI)-based flaw highlighter to produce flaw activation maps (FAMs) that identify artifacts and unrealistic regions. These FAMs improve reconstruction quality by amplifying noise in flawed regions during the forward process and by focusing on these regions during the reverse process. The proposed approach achieves up to a 27.3% improvement in Fréchet inception distance across various diffusion-based models, demonstrating consistently strong performance on diverse datasets. It also shows robust effectiveness across different tasks, including image generation, text-to-image generation, and inpainting. These results demonstrate that explainable AI techniques can extend beyond interpretability to actively contribute to image refinement. The proposed framework offers a versatile and effective approach applicable to various diffusion models and tasks, significantly advancing the field of image synthesis.
comment: 10 pages, 9 figures, 7 tables
☆ Wan-Move: Motion-controllable Video Generation via Latent Trajectory Guidance
We present Wan-Move, a simple and scalable framework that brings motion control to video generative models. Existing motion-controllable methods typically suffer from coarse control granularity and limited scalability, leaving their outputs insufficient for practical use. We narrow this gap by achieving precise and high-quality motion control. Our core idea is to directly make the original condition features motion-aware for guiding video synthesis. To this end, we first represent object motions with dense point trajectories, allowing fine-grained control over the scene. We then project these trajectories into latent space and propagate the first frame's features along each trajectory, producing an aligned spatiotemporal feature map that tells how each scene element should move. This feature map serves as the updated latent condition, which is naturally integrated into the off-the-shelf image-to-video model, e.g., Wan-I2V-14B, as motion guidance without any architecture change. It removes the need for auxiliary motion encoders and makes fine-tuning base models easily scalable. Through scaled training, Wan-Move generates 5-second, 480p videos whose motion controllability rivals Kling 1.5 Pro's commercial Motion Brush, as indicated by user studies. To support comprehensive evaluation, we further design MoveBench, a rigorously curated benchmark featuring diverse content categories and hybrid-verified annotations. It is distinguished by larger data volume, longer video durations, and high-quality motion annotations. Extensive experiments on MoveBench and the public dataset consistently show Wan-Move's superior motion quality. Code, models, and benchmark data are made publicly available.
comment: NeurlPS 2025. Code and data available at https://github.com/ali-vilab/Wan-Move
☆ Skewness-Guided Pruning of Multimodal Swin Transformers for Federated Skin Lesion Classification on Edge Devices
In recent years, high-performance computer vision models have achieved remarkable success in medical imaging, with some skin lesion classification systems even surpassing dermatology specialists in diagnostic accuracy. However, such models are computationally intensive and large in size, making them unsuitable for deployment on edge devices. In addition, strict privacy constraints hinder centralized data management, motivating the adoption of Federated Learning (FL). To address these challenges, this study proposes a skewness-guided pruning method that selectively prunes the Multi-Head Self-Attention and Multi-Layer Perceptron layers of a multimodal Swin Transformer based on the statistical skewness of their output distributions. The proposed method was validated in a horizontal FL environment and shown to maintain performance while substantially reducing model complexity. Experiments on the compact Swin Transformer demonstrate approximately 36\% model size reduction with no loss in accuracy. These findings highlight the feasibility of achieving efficient model compression and privacy-preserving distributed learning for multimodal medical AI on edge devices.
☆ A Scalable Pipeline Combining Procedural 3D Graphics and Guided Diffusion for Photorealistic Synthetic Training Data Generation in White Button Mushroom Segmentation
Industrial mushroom cultivation increasingly relies on computer vision for monitoring and automated harvesting. However, developing accurate detection and segmentation models requires large, precisely annotated datasets that are costly to produce. Synthetic data provides a scalable alternative, yet often lacks sufficient realism to generalize to real-world scenarios. This paper presents a novel workflow that integrates 3D rendering in Blender with a constrained diffusion model to automatically generate high-quality annotated, photorealistic synthetic images of Agaricus Bisporus mushrooms. This approach preserves full control over 3D scene configuration and annotations while achieving photorealism without the need for specialized computer graphics expertise. We release two synthetic datasets (each containing 6,000 images depicting over 250k mushroom instances) and evaluate Mask R-CNN models trained on them in a zero-shot setting. When tested on two independent real-world datasets (including a newly collected benchmark), our method achieves state-of-the-art segmentation performance (F1 = 0.859 on M18K), despite using only synthetic training data. Although the approach is demonstrated on Agaricus Bisporus mushrooms, the proposed pipeline can be readily adapted to other mushroom species or to other agricultural domains, such as fruit and leaf detection.
comment: 20 pages, 8 figures
☆ Pose-Based Sign Language Spotting via an End-to-End Encoder Architecture ACL
Automatic Sign Language Recognition (ASLR) has emerged as a vital field for bridging the gap between deaf and hearing communities. However, the problem of sign-to-sign retrieval or detecting a specific sign within a sequence of continuous signs remains largely unexplored. We define this novel task as Sign Language Spotting. In this paper, we present a first step toward sign language retrieval by addressing the challenge of detecting the presence or absence of a query sign video within a sentence-level gloss or sign video. Unlike conventional approaches that rely on intermediate gloss recognition or text-based matching, we propose an end-to-end model that directly operates on pose keypoints extracted from sign videos. Our architecture employs an encoder-only backbone with a binary classification head to determine whether the query sign appears within the target sequence. By focusing on pose representations instead of raw RGB frames, our method significantly reduces computational cost and mitigates visual noise. We evaluate our approach on the Word Presence Prediction dataset from the WSLP 2025 shared task, achieving 61.88\% accuracy and 60.00\% F1-score. These results demonstrate the effectiveness of our pose-based framework for Sign Language Spotting, establishing a strong foundation for future research in automatic sign language retrieval and verification. Code is available at https://github.com/EbimoJohnny/Pose-Based-Sign-Language-Spotting
comment: To appear at AACL-IJCNLP 2025 Workshop WSLP
☆ Mitigating Individual Skin Tone Bias in Skin Lesion Classification through Distribution-Aware Reweighting
Skin color has historically been a focal point of discrimination, yet fairness research in machine learning for medical imaging often relies on coarse subgroup categories, overlooking individual-level variations. Such group-based approaches risk obscuring biases faced by outliers within subgroups. This study introduces a distribution-based framework for evaluating and mitigating individual fairness in skin lesion classification. We treat skin tone as a continuous attribute rather than a categorical label, and employ kernel density estimation (KDE) to model its distribution. We further compare twelve statistical distance metrics to quantify disparities between skin tone distributions and propose a distance-based reweighting (DRW) loss function to correct underrepresentation in minority tones. Experiments across CNN and Transformer models demonstrate: (i) the limitations of categorical reweighting in capturing individual-level disparities, and (ii) the superior performance of distribution-based reweighting, particularly with Fidelity Similarity (FS), Wasserstein Distance (WD), Hellinger Metric (HM), and Harmonic Mean Similarity (HS). These findings establish a robust methodology for advancing fairness at individual level in dermatological AI systems, and highlight broader implications for sensitive continuous attributes in medical image analysis.
☆ SegEarth-OV3: Exploring SAM 3 for Open-Vocabulary Semantic Segmentation in Remote Sensing Images
Most existing methods for training-free Open-Vocabulary Semantic Segmentation (OVSS) are based on CLIP. While these approaches have made progress, they often face challenges in precise localization or require complex pipelines to combine separate modules, especially in remote sensing scenarios where numerous dense and small targets are present. Recently, Segment Anything Model 3 (SAM 3) was proposed, unifying segmentation and recognition in a promptable framework. In this paper, we present a preliminary exploration of applying SAM 3 to the remote sensing OVSS task without any training. First, we implement a mask fusion strategy that combines the outputs from SAM 3's semantic segmentation head and the Transformer decoder (instance head). This allows us to leverage the strengths of both heads for better land coverage. Second, we utilize the presence score from the presence head to filter out categories that do not exist in the scene, reducing false positives caused by the vast vocabulary sizes and patch-level processing in geospatial scenes. We evaluate our method on extensive remote sensing datasets. Experiments show that this simple adaptation achieves promising performance, demonstrating the potential of SAM 3 for remote sensing OVSS. Our code is released at https://github.com/earth-insights/SegEarth-OV-3.
☆ Multi-domain performance analysis with scores tailored to user preferences
The performance of algorithms, methods, and models tends to depend heavily on the distribution of cases on which they are applied, this distribution being specific to the applicative domain. After performing an evaluation in several domains, it is highly informative to compute a (weighted) mean performance and, as shown in this paper, to scrutinize what happens during this averaging. To achieve this goal, we adopt a probabilistic framework and consider a performance as a probability measure (e.g., a normalized confusion matrix for a classification task). It appears that the corresponding weighted mean is known to be the summarization, and that only some remarkable scores assign to the summarized performance a value equal to a weighted arithmetic mean of the values assigned to the domain-specific performances. These scores include the family of ranking scores, a continuum parameterized by user preferences, and that the weights to consider in the arithmetic mean depend on the user preferences. Based on this, we rigorously define four domains, named easiest, most difficult, preponderant, and bottleneck domains, as functions of user preferences. After establishing the theory in a general setting, regardless of the task, we develop new visual tools for two-class classification.
☆ Scale-invariant and View-relational Representation Learning for Full Surround Monocular Depth
Recent foundation models demonstrate strong generalization capabilities in monocular depth estimation. However, directly applying these models to Full Surround Monocular Depth Estimation (FSMDE) presents two major challenges: (1) high computational cost, which limits real-time performance, and (2) difficulty in estimating metric-scale depth, as these models are typically trained to predict only relative depth. To address these limitations, we propose a novel knowledge distillation strategy that transfers robust depth knowledge from a foundation model to a lightweight FSMDE network. Our approach leverages a hybrid regression framework combining the knowledge distillation scheme--traditionally used in classification--with a depth binning module to enhance scale consistency. Specifically, we introduce a cross-interaction knowledge distillation scheme that distills the scale-invariant depth bin probabilities of a foundation model into the student network while guiding it to infer metric-scale depth bin centers from ground-truth depth. Furthermore, we propose view-relational knowledge distillation, which encodes structural relationships among adjacent camera views and transfers them to enhance cross-view depth consistency. Experiments on DDAD and nuScenes demonstrate the effectiveness of our method compared to conventional supervised methods and existing knowledge distillation approaches. Moreover, our method achieves a favorable trade-off between performance and efficiency, meeting real-time requirements.
comment: Accepted at IEEE Robotics and Automation Letters (RA-L) 2026
☆ What really matters for person re-identification? A Mixture-of-Experts Framework for Semantic Attribute Importance
State-of-the-art person re-identification methods achieve impressive accuracy but remain largely opaque, leaving open the question: which high-level semantic attributes do these models actually rely on? We propose MoSAIC-ReID, a Mixture-of-Experts framework that systematically quantifies the importance of pedestrian attributes for re-identification. Our approach uses LoRA-based experts, each linked to a single attribute, and an oracle router that enables controlled attribution analysis. While MoSAIC-ReID achieves competitive performance on Market-1501 and DukeMTMC under the assumption that attribute annotations are available at test time, its primary value lies in providing a large-scale, quantitative study of attribute importance across intrinsic and extrinsic cues. Using generalized linear models, statistical tests, and feature-importance analyses, we reveal which attributes, such as clothing colors and intrinsic characteristics, contribute most strongly, while infrequent cues (e.g. accessories) have limited effect. This work offers a principled framework for interpretable ReID and highlights the requirements for integrating explicit semantic knowledge in practice. Code is available at https://github.com/psaltaath/MoSAIC-ReID
☆ Dual-Branch Center-Surrounding Contrast: Rethinking Contrastive Learning for 3D Point Clouds
Most existing self-supervised learning (SSL) approaches for 3D point clouds are dominated by generative methods based on Masked Autoencoders (MAE). However, these generative methods have been proven to struggle to capture high-level discriminative features effectively, leading to poor performance on linear probing and other downstream tasks. In contrast, contrastive methods excel in discriminative feature representation and generalization ability on image data. Despite this, contrastive learning (CL) in 3D data remains scarce. Besides, simply applying CL methods designed for 2D data to 3D fails to effectively learn 3D local details. To address these challenges, we propose a novel Dual-Branch \textbf{C}enter-\textbf{S}urrounding \textbf{Con}trast (CSCon) framework. Specifically, we apply masking to the center and surrounding parts separately, constructing dual-branch inputs with center-biased and surrounding-biased representations to better capture rich geometric information. Meanwhile, we introduce a patch-level contrastive loss to further enhance both high-level information and local sensitivity. Under the FULL and ALL protocols, CSCon achieves performance comparable to generative methods; under the MLP-LINEAR, MLP-3, and ONLY-NEW protocols, our method attains state-of-the-art results, even surpassing cross-modal approaches. In particular, under the MLP-LINEAR protocol, our method outperforms the baseline (Point-MAE) by \textbf{7.9\%}, \textbf{6.7\%}, and \textbf{10.3\%} on the three variants of ScanObjectNN, respectively. The code will be made publicly available.
comment: 16 pages, 6 figures
☆ Repulsor: Accelerating Generative Modeling with a Contrastive Memory Bank
The dominance of denoising generative models (e.g., diffusion, flow-matching) in visual synthesis is tempered by their substantial training costs and inefficiencies in representation learning. While injecting discriminative representations via auxiliary alignment has proven effective, this approach still faces key limitations: the reliance on external, pre-trained encoders introduces overhead and domain shift. A dispersed-based strategy that encourages strong separation among in-batch latent representations alleviates this specific dependency. To assess the effect of the number of negative samples in generative modeling, we propose {\mname}, a plug-and-play training framework that requires no external encoders. Our method integrates a memory bank mechanism that maintains a large, dynamically updated queue of negative samples across training iterations. This decouples the number of negatives from the mini-batch size, providing abundant and high-quality negatives for a contrastive objective without a multiplicative increase in computational cost. A low-dimensional projection head is used to further minimize memory and bandwidth overhead. {\mname} offers three principal advantages: (1) it is self-contained, eliminating dependency on pretrained vision foundation models and their associated forward-pass overhead; (2) it introduces no additional parameters or computational cost during inference; and (3) it enables substantially faster convergence, achieving superior generative quality more efficiently. On ImageNet-256, {\mname} achieves a state-of-the-art FID of \textbf{2.40} within 400k steps, significantly outperforming comparable methods.
comment: 19 pages, 19 figures
☆ C-DIRA: Computationally Efficient Dynamic ROI Routing and Domain-Invariant Adversarial Learning for Lightweight Driver Behavior Recognition
Driver distraction behavior recognition using in-vehicle cameras demands real-time inference on edge devices. However, lightweight models often fail to capture fine-grained behavioral cues, resulting in reduced performance on unseen drivers or under varying conditions. ROI-based methods also increase computational cost, making it difficult to balance efficiency and accuracy. This work addresses the need for a lightweight architecture that overcomes these constraints. We propose Computationally efficient Dynamic region of Interest Routing and domain-invariant Adversarial learning for lightweight driver behavior recognition (C-DIRA). The framework combines saliency-driven Top-K ROI pooling and fused classification for local feature extraction and integration. Dynamic ROI routing enables selective computation by applying ROI inference only to high difficulty data samples. Moreover, pseudo-domain labeling and adversarial learning are used to learn domain-invariant features robust to driver and background variation. Experiments on the State Farm Distracted Driver Detection Dataset show that C-DIRA maintains high accuracy with significantly fewer FLOPs and lower latency than prior lightweight models. It also demonstrates robustness under visual degradation such as blur and low-light, and stable performance across unseen domains. These results confirm C-DIRA's effectiveness in achieving compactness, efficiency, and generalization.
☆ Chain-of-Image Generation: Toward Monitorable and Controllable Image Generation
While state-of-the-art image generation models achieve remarkable visual quality, their internal generative processes remain a "black box." This opacity limits human observation and intervention, and poses a barrier to ensuring model reliability, safety, and control. Furthermore, their non-human-like workflows make them difficult for human observers to interpret. To address this, we introduce the Chain-of-Image Generation (CoIG) framework, which reframes image generation as a sequential, semantic process analogous to how humans create art. Similar to the advantages in monitorability and performance that Chain-of-Thought (CoT) brought to large language models (LLMs), CoIG can produce equivalent benefits in text-to-image generation. CoIG utilizes an LLM to decompose a complex prompt into a sequence of simple, step-by-step instructions. The image generation model then executes this plan by progressively generating and editing the image. Each step focuses on a single semantic entity, enabling direct monitoring. We formally assess this property using two novel metrics: CoIG Readability, which evaluates the clarity of each intermediate step via its corresponding output; and Causal Relevance, which quantifies the impact of each procedural step on the final generated image. We further show that our framework mitigates entity collapse by decomposing the complex generation task into simple subproblems, analogous to the procedural reasoning employed by CoT. Our experimental results indicate that CoIG substantially enhances quantitative monitorability while achieving competitive compositional robustness compared to established baseline models. The framework is model-agnostic and can be integrated with any image generation model.
comment: 19 pages, 13 figures
☆ Aerial Vision-Language Navigation with a Unified Framework for Spatial, Temporal and Embodied Reasoning
Aerial Vision-and-Language Navigation (VLN) aims to enable unmanned aerial vehicles (UAVs) to interpret natural language instructions and navigate complex urban environments using onboard visual observation. This task holds promise for real-world applications such as low-altitude inspection, search-and-rescue, and autonomous aerial delivery. Existing methods often rely on panoramic images, depth inputs, or odometry to support spatial reasoning and action planning. These requirements increase system cost and integration complexity, thus hindering practical deployment for lightweight UAVs. We present a unified aerial VLN framework that operates solely on egocentric monocular RGB observations and natural language instructions. The model formulates navigation as a next-token prediction problem, jointly optimizing spatial perception, trajectory reasoning, and action prediction through prompt-guided multi-task learning. Moreover, we propose a keyframe selection strategy to reduce visual redundancy by retaining semantically informative frames, along with an action merging and label reweighting mechanism that mitigates long-tailed supervision imbalance and facilitates stable multi-task co-training. Extensive experiments on the Aerial VLN benchmark validate the effectiveness of our method. Under the challenging monocular RGB-only setting, our model achieves strong results across both seen and unseen environments. It significantly outperforms existing RGB-only baselines and narrows the performance gap with state-of-the-art panoramic RGB-D counterparts. Comprehensive ablation studies further demonstrate the contribution of our task design and architectural choices.
comment: Under Review, 12 pages, 9 figures
☆ See-Control: A Multimodal Agent Framework for Smartphone Interaction with a Robotic Arm
Recent advances in Multimodal Large Language Models (MLLMs) have enabled their use as intelligent agents for smartphone operation. However, existing methods depend on the Android Debug Bridge (ADB) for data transmission and action execution, limiting their applicability to Android devices. In this work, we introduce the novel Embodied Smartphone Operation (ESO) task and present See-Control, a framework that enables smartphone operation via direct physical interaction with a low-DoF robotic arm, offering a platform-agnostic solution. See-Control comprises three key components: (1) an ESO benchmark with 155 tasks and corresponding evaluation metrics; (2) an MLLM-based embodied agent that generates robotic control commands without requiring ADB or system back-end access; and (3) a richly annotated dataset of operation episodes, offering valuable resources for future research. By bridging the gap between digital agents and the physical world, See-Control provides a concrete step toward enabling home robots to perform smartphone-dependent tasks in realistic environments.
☆ Trajectory Densification and Depth from Perspective-based Blur
In the absence of a mechanical stabilizer, the camera undergoes inevitable rotational dynamics during capturing, which induces perspective-based blur especially under long-exposure scenarios. From an optical standpoint, perspective-based blur is depth-position-dependent: objects residing at distinct spatial locations incur different blur levels even under the same imaging settings. Inspired by this, we propose a novel method that estimate metric depth by examining the blur pattern of a video stream and dense trajectory via joint optical design algorithm. Specifically, we employ off-the-shelf vision encoder and point tracker to extract video information. Then, we estimate depth map via windowed embedding and multi-window aggregation, and densify the sparse trajectory from the optical algorithm using a vision-language model. Evaluations on multiple depth datasets demonstrate that our method attains strong performance over large depth range, while maintaining favorable generalization. Relative to the real trajectory in handheld shooting settings, our optical algorithm achieves superior precision and the dense reconstruction maintains strong accuracy.
☆ OpenMonoGS-SLAM: Monocular Gaussian Splatting SLAM with Open-set Semantics
Simultaneous Localization and Mapping (SLAM) is a foundational component in robotics, AR/VR, and autonomous systems. With the rising focus on spatial AI in recent years, combining SLAM with semantic understanding has become increasingly important for enabling intelligent perception and interaction. Recent efforts have explored this integration, but they often rely on depth sensors or closed-set semantic models, limiting their scalability and adaptability in open-world environments. In this work, we present OpenMonoGS-SLAM, the first monocular SLAM framework that unifies 3D Gaussian Splatting (3DGS) with open-set semantic understanding. To achieve our goal, we leverage recent advances in Visual Foundation Models (VFMs), including MASt3R for visual geometry and SAM and CLIP for open-vocabulary semantics. These models provide robust generalization across diverse tasks, enabling accurate monocular camera tracking and mapping, as well as a rich understanding of semantics in open-world environments. Our method operates without any depth input or 3D semantic ground truth, relying solely on self-supervised learning objectives. Furthermore, we propose a memory mechanism specifically designed to manage high-dimensional semantic features, which effectively constructs Gaussian semantic feature maps, leading to strong overall performance. Experimental results demonstrate that our approach achieves performance comparable to or surpassing existing baselines in both closed-set and open-set segmentation tasks, all without relying on supplementary sensors such as depth maps or semantic annotations.
comment: 8 pages, 4 figures
☆ Decoupling Template Bias in CLIP: Harnessing Empty Prompts for Enhanced Few-Shot Learning AAAI2026
The Contrastive Language-Image Pre-Training (CLIP) model excels in few-shot learning by aligning visual and textual representations. Our study shows that template-sample similarity (TSS), defined as the resemblance between a text template and an image sample, introduces bias. This bias leads the model to rely on template proximity rather than true sample-to-category alignment, reducing both accuracy and robustness in classification. We present a framework that uses empty prompts, textual inputs that convey the idea of "emptiness" without category information. These prompts capture unbiased template features and offset TSS bias. The framework employs two stages. During pre-training, empty prompts reveal and reduce template-induced bias within the CLIP encoder. During few-shot fine-tuning, a bias calibration loss enforces correct alignment between images and their categories, ensuring the model focuses on relevant visual cues. Experiments across multiple benchmarks demonstrate that our template correction method significantly reduces performance fluctuations caused by TSS, yielding higher classification accuracy and stronger robustness. The repository of this project is available at https://github.com/zhenyuZ-HUST/Decoupling-Template-Bias-in-CLIP.
comment: 14 pages, 8 figures, Association for the Advancement of Artificial Intelligence (AAAI2026, poster)
☆ Automated Pollen Recognition in Optical and Holographic Microscopy Images
This study explores the application of deep learning to improve and automate pollen grain detection and classification in both optical and holographic microscopy images, with a particular focus on veterinary cytology use cases. We used YOLOv8s for object detection and MobileNetV3L for the classification task, evaluating their performance across imaging modalities. The models achieved 91.3% mAP50 for detection and 97% overall accuracy for classification on optical images, whereas the initial performance on greyscale holographic images was substantially lower. We addressed the performance gap issue through dataset expansion using automated labeling and bounding box area enlargement. These techniques, applied to holographic images, improved detection performance from 2.49% to 13.3% mAP50 and classification performance from 42% to 54%. Our work demonstrates that, at least for image classification tasks, it is possible to pair deep learning techniques with cost-effective lensless digital holographic microscopy devices.
comment: 08 pages, 10 figures, 04 tables, 20 references. Date of Conference: 13-14 June 2025 Date Added to IEEE Xplore: 10 July 2025 Electronic ISBN: 979-8-3315-0969-9 Print on Demand(PoD) ISBN: 979-8-3315-0970-5 DOI: 10.1109/AICCONF64766.2025.11064260 Conference Location: Prague, Czech Republic Online Access: https://ieeexplore.ieee.org/document/11064260
☆ Disturbance-Free Surgical Video Generation from Multi-Camera Shadowless Lamps for Open Surgery
Video recordings of open surgeries are greatly required for education and research purposes. However, capturing unobstructed videos is challenging since surgeons frequently block the camera field of view. To avoid occlusion, the positions and angles of the camera must be frequently adjusted, which is highly labor-intensive. Prior work has addressed this issue by installing multiple cameras on a shadowless lamp and arranging them to fully surround the surgical area. This setup increases the chances of some cameras capturing an unobstructed view. However, manual image alignment is needed in post-processing since camera configurations change every time surgeons move the lamp for optimal lighting. This paper aims to fully automate this alignment task. The proposed method identifies frames in which the lighting system moves, realigns them, and selects the camera with the least occlusion to generate a video that consistently presents the surgical field from a fixed perspective. A user study involving surgeons demonstrated that videos generated by our method were superior to those produced by conventional methods in terms of the ease of confirming the surgical area and the comfort during video viewing. Additionally, our approach showed improvements in video quality over existing techniques. Furthermore, we implemented several synthesis options for the proposed view-synthesis method and conducted a user study to assess surgeons' preferences for each option.
☆ From Cells to Survival: Hierarchical Analysis of Cell Inter-Relations in Multiplex Microscopy for Lung Cancer Prognosis
The tumor microenvironment (TME) has emerged as a promising source of prognostic biomarkers. To fully leverage its potential, analysis methods must capture complex interactions between different cell types. We propose HiGINE -- a hierarchical graph-based approach to predict patient survival (short vs. long) from TME characterization in multiplex immunofluorescence (mIF) images and enhance risk stratification in lung cancer. Our model encodes both local and global inter-relations in cell neighborhoods, incorporating information about cell types and morphology. Multimodal fusion, aggregating cancer stage with mIF-derived features, further boosts performance. We validate HiGINE on two public datasets, demonstrating improved risk stratification, robustness, and generalizability.
comment: 5 pages, 3 figures
☆ Instance-Aware Test-Time Segmentation for Continual Domain Shifts
Continual Test-Time Adaptation (CTTA) enables pre-trained models to adapt to continuously evolving domains. Existing methods have improved robustness but typically rely on fixed or batch-level thresholds, which cannot account for varying difficulty across classes and instances. This limitation is especially problematic in semantic segmentation, where each image requires dense, multi-class predictions. We propose an approach that adaptively adjusts pseudo labels to reflect the confidence distribution within each image and dynamically balances learning toward classes most affected by domain shifts. This fine-grained, class- and instance-aware adaptation produces more reliable supervision and mitigates error accumulation throughout continual adaptation. Extensive experiments across eight CTTA and TTA scenarios, including synthetic-to-real and long-term shifts, show that our method consistently outperforms state-of-the-art techniques, setting a new standard for semantic segmentation under evolving conditions.
☆ Modular Neural Image Signal Processing
This paper presents a modular neural image signal processing (ISP) framework that processes raw inputs and renders high-quality display-referred images. Unlike prior neural ISP designs, our method introduces a high degree of modularity, providing full control over multiple intermediate stages of the rendering process.~This modular design not only achieves high rendering accuracy but also improves scalability, debuggability, generalization to unseen cameras, and flexibility to match different user-preference styles. To demonstrate the advantages of this design, we built a user-interactive photo-editing tool that leverages our neural ISP to support diverse editing operations and picture styles. The tool is carefully engineered to take advantage of the high-quality rendering of our neural ISP and to enable unlimited post-editable re-rendering. Our method is a fully learning-based framework with variants of different capacities, all of moderate size (ranging from ~0.5 M to ~3.9 M parameters for the entire pipeline), and consistently delivers competitive qualitative and quantitative results across multiple test sets. Watch the supplemental video at: https://youtu.be/ByhQjQSjxVM
☆ BrainExplore: Large-Scale Discovery of Interpretable Visual Representations in the Human Brain
Understanding how the human brain represents visual concepts, and in which brain regions these representations are encoded, remains a long-standing challenge. Decades of work have advanced our understanding of visual representations, yet brain signals remain large and complex, and the space of possible visual concepts is vast. As a result, most studies remain small-scale, rely on manual inspection, focus on specific regions and properties, and rarely include systematic validation. We present a large-scale, automated framework for discovering and explaining visual representations across the human cortex. Our method comprises two main stages. First, we discover candidate interpretable patterns in fMRI activity through unsupervised, data-driven decomposition methods. Next, we explain each pattern by identifying the set of natural images that most strongly elicit it and generating a natural-language description of their shared visual meaning. To scale this process, we introduce an automated pipeline that tests multiple candidate explanations, assigns quantitative reliability scores, and selects the most consistent description for each voxel pattern. Our framework reveals thousands of interpretable patterns spanning many distinct visual concepts, including fine-grained representations previously unreported.
☆ SSCATeR: Sparse Scatter-Based Convolution Algorithm with Temporal Data Recycling for Real-Time 3D Object Detection in LiDAR Point Clouds
This work leverages the continuous sweeping motion of LiDAR scanning to concentrate object detection efforts on specific regions that receive a change in point data from one frame to another. We achieve this by using a sliding time window with short strides and consider the temporal dimension by storing convolution results between passes. This allows us to ignore unchanged regions, significantly reducing the number of convolution operations per forward pass without sacrificing accuracy. This data reuse scheme introduces extreme sparsity to detection data. To exploit this sparsity, we extend our previous work on scatter-based convolutions to allow for data reuse, and as such propose Sparse Scatter-Based Convolution Algorithm with Temporal Data Recycling (SSCATeR). This operation treats incoming LiDAR data as a continuous stream and acts only on the changing parts of the point cloud. By doing so, we achieve the same results with as much as a 6.61-fold reduction in processing time. Our test results show that the feature maps output by our method are identical to those produced by traditional sparse convolution techniques, whilst greatly increasing the computational efficiency of the network.
comment: 22 Pages, 26 Figures, This work has been submitted to the IEEE Sensors Journal for possible publication
☆ An Iteration-Free Fixed-Point Estimator for Diffusion Inversion
Diffusion inversion aims to recover the initial noise corresponding to a given image such that this noise can reconstruct the original image through the denoising diffusion process. The key component of diffusion inversion is to minimize errors at each inversion step, thereby mitigating cumulative inaccuracies. Recently, fixed-point iteration has emerged as a widely adopted approach to minimize reconstruction errors at each inversion step. However, it suffers from high computational costs due to its iterative nature and the complexity of hyperparameter selection. To address these issues, we propose an iteration-free fixed-point estimator for diffusion inversion. First, we derive an explicit expression of the fixed point from an ideal inversion step. Unfortunately, it inherently contains an unknown data prediction error. Building upon this, we introduce the error approximation, which uses the calculable error from the previous inversion step to approximate the unknown error at the current inversion step. This yields a calculable, approximate expression for the fixed point, which is an unbiased estimator characterized by low variance, as shown by our theoretical analysis. We evaluate reconstruction performance on two text-image datasets, NOCAPS and MS-COCO. Compared to DDIM inversion and other inversion methods based on the fixed-point iteration, our method achieves consistent and superior performance in reconstruction tasks without additional iterations or training.
☆ Curriculum Guided Massive Multi Agent System Solving For Robust Long Horizon Tasks
Large Language Models and multi-agent systems have shown promise in decomposing complex tasks, yet they struggle with long-horizon reasoning tasks and escalating computation cost. This work introduces a hierarchical multi-agent architecture that distributes reasoning across a 64*64 grid of lightweight agents, supported by a selective oracle. A spatial curriculum progressively expands the operational region of the grid, ensuring that agents master easier central tasks before tackling harder peripheral ones. To improve reliability, the system integrates Negative Log-Likelihood as a measure of confidence, allowing the curriculum to prioritize regions where agents are both accurate and well calibrated. A Thompson Sampling curriculum manager adaptively chooses training zones based on competence and NLL-driven reward signals. We evaluate the approach on a spatially grounded Tower of Hanoi benchmark, which mirrors the long-horizon structure of many robotic manipulation and planning tasks. Results demonstrate improved stability, reduced oracle usage, and stronger long-range reasoning from distributed agent cooperation.
comment: 22 pages, 2 tables, 9 figures
☆ A Novel Wasserstein Quaternion Generative Adversarial Network for Color Image Generation
Color image generation has a wide range of applications, but the existing generation models ignore the correlation among color channels, which may lead to chromatic aberration problems. In addition, the data distribution problem of color images has not been systematically elaborated and explained, so that there is still the lack of the theory about measuring different color images datasets. In this paper, we define a new quaternion Wasserstein distance and develop its dual theory. To deal with the quaternion linear programming problem, we derive the strong duality form with helps of quaternion convex set separation theorem and quaternion Farkas lemma. With using quaternion Wasserstein distance, we propose a novel Wasserstein quaternion generative adversarial network. Experiments demonstrate that this novel model surpasses both the (quaternion) generative adversarial networks and the Wasserstein generative adversarial network in terms of generation efficiency and image quality.
☆ Fast-ARDiff: An Entropy-informed Acceleration Framework for Continuous Space Autoregressive Generation
Autoregressive(AR)-diffusion hybrid paradigms combine AR's structured modeling with diffusion's photorealistic synthesis, yet suffer from high latency due to sequential AR generation and iterative denoising. In this work, we tackle this bottleneck and propose a unified AR-diffusion framework Fast-ARDiff that jointly optimizes both components, accelerating AR speculative decoding while simultaneously facilitating faster diffusion decoding. Specifically: (1) The entropy-informed speculative strategy encourages draft model to produce higher-entropy representations aligned with target model's entropy characteristics, mitigating entropy mismatch and high rejection rates caused by draft overconfidence. (2) For diffusion decoding, rather than treating it as an independent module, we integrate it into the same end-to-end framework using a dynamic scheduler that prioritizes AR optimization to guide the diffusion part in further steps. The diffusion part is optimized through a joint distillation framework combining trajectory and distribution matching, ensuring stable training and high-quality synthesis with extremely few steps. During inference, shallow feature entropy from AR module is used to pre-filter low-entropy drafts, avoiding redundant computation and improving latency. Fast-ARDiff achieves state-of-the-art acceleration across diverse models: on ImageNet 256$\times$256, TransDiff attains 4.3$\times$ lossless speedup, and NextStep-1 achieves 3$\times$ acceleration on text-conditioned generation. Code will be available at https://github.com/aSleepyTree/Fast-ARDiff.
☆ Photo3D: Advancing Photorealistic 3D Generation through Structure-Aligned Detail Enhancement
Although recent 3D-native generators have made great progress in synthesizing reliable geometry, they still fall short in achieving realistic appearances. A key obstacle lies in the lack of diverse and high-quality real-world 3D assets with rich texture details, since capturing such data is intrinsically difficult due to the diverse scales of scenes, non-rigid motions of objects, and the limited precision of 3D scanners. We introduce Photo3D, a framework for advancing photorealistic 3D generation, which is driven by the image data generated by the GPT-4o-Image model. Considering that the generated images can distort 3D structures due to their lack of multi-view consistency, we design a structure-aligned multi-view synthesis pipeline and construct a detail-enhanced multi-view dataset paired with 3D geometry. Building on it, we present a realistic detail enhancement scheme that leverages perceptual feature adaptation and semantic structure matching to enforce appearance consistency with realistic details while preserving the structural consistency with the 3D-native geometry. Our scheme is general to different 3D-native generators, and we present dedicated training strategies to facilitate the optimization of geometry-texture coupled and decoupled 3D-native generation paradigms. Experiments demonstrate that Photo3D generalizes well across diverse 3D-native generation paradigms and achieves state-of-the-art photorealistic 3D generation performance.
☆ PaintFlow: A Unified Framework for Interactive Oil Paintings Editing and Generation
Oil painting, as a high-level medium that blends human abstract thinking with artistic expression, poses substantial challenges for digital generation and editing due to its intricate brushstroke dynamics and stylized characteristics. Existing generation and editing techniques are often constrained by the distribution of training data and primarily focus on modifying real photographs. In this work, we introduce a unified multimodal framework for oil painting generation and editing. The proposed system allows users to incorporate reference images for precise semantic control, hand-drawn sketches for spatial structure alignment, and natural language prompts for high-level semantic guidance, while consistently maintaining a unified painting style across all outputs. Our method achieves interactive oil painting creation through three crucial technical advancements. First, we enhance the training stage with spatial alignment and semantic enhancement conditioning strategy, which map masks and sketches into spatial constraints, and encode contextual embedding from reference images and text into feature constraints, enabling object-level semantic alignment. Second, to overcome data scarcity, we propose a self-supervised style transfer pipeline based on Stroke-Based Rendering (SBR), which simulates the inpainting dynamics of oil painting restoration, converting real images into stylized oil paintings with preserved brushstroke textures to construct a large-scale paired training dataset. Finally, during inference, we integrate features using the AdaIN operator to ensure stylistic consistency. Extensive experiments demonstrate that our interactive system enables fine-grained editing while preserving the artistic qualities of oil paintings, achieving an unprecedented level of imagination realization in stylized oil paintings generation and editing.
comment: 14 pages
☆ MVP: Multiple View Prediction Improves GUI Grounding
GUI grounding, which translates natural language instructions into precise pixel coordinates, is essential for developing practical GUI agents. However, we observe that existing grounding models exhibit significant coordinate prediction instability, minor visual perturbations (e.g. cropping a few pixels) can drastically alter predictions, flipping results between correct and incorrect. This instability severely undermines model performance, especially for samples with high-resolution and small UI elements. To address this issue, we propose Multi-View Prediction (MVP), a training-free framework that enhances grounding performance through multi-view inference. Our key insight is that while single-view predictions may be unstable, aggregating predictions from multiple carefully cropped views can effectively distinguish correct coordinates from outliers. MVP comprises two components: (1) Attention-Guided View Proposal, which derives diverse views guided by instruction-to-image attention scores, and (2) Multi-Coordinates Clustering, which ensembles predictions by selecting the centroid of the densest spatial cluster. Extensive experiments demonstrate MVP's effectiveness across various models and benchmarks. Notably, on ScreenSpot-Pro, MVP boosts UI-TARS-1.5-7B to 56.1%, GTA1-7B to 61.7%, Qwen3VL-8B-Instruct to 65.3%, and Qwen3VL-32B-Instruct to 74.0%. The code is available at https://github.com/ZJUSCL/MVP.
☆ Beyond Real Weights: Hypercomplex Representations for Stable Quantization
Multimodal language models (MLLMs) require large parameter capacity to align high-dimensional visual features with linguistic representations, making them computationally heavy and difficult to deploy efficiently. We introduce a progressive reparameterization strategy that compresses these models by gradually replacing dense feed-forward network blocks with compact Parameterized Hypercomplex Multiplication (PHM) layers. A residual interpolation schedule, together with lightweight reconstruction and knowledge distillation losses, ensures that the PHM modules inherit the functional behavior of their dense counterparts during training. This transition yields substantial parameter and FLOP reductions while preserving strong multimodal alignment, enabling faster inference without degrading output quality. We evaluate the approach on multiple vision-language models (VLMs). Our method maintains performance comparable to the base models while delivering significant reductions in model size and inference latency. Progressive PHM substitution thus offers an architecture-compatible path toward more efficient multimodal reasoning and complements existing low-bit quantization techniques.
comment: Accepted in Winter Conference on Applications of Computer Vision (WACV) 2026
☆ Thinking with Images via Self-Calling Agent
Thinking-with-images paradigms have showcased remarkable visual reasoning capability by integrating visual information as dynamic elements into the Chain-of-Thought (CoT). However, optimizing interleaved multimodal CoT (iMCoT) through reinforcement learning remains challenging, as it relies on scarce high-quality reasoning data. In this study, we propose Self-Calling Chain-of-Thought (sCoT), a novel visual reasoning paradigm that reformulates iMCoT as a language-only CoT with self-calling. Specifically, a main agent decomposes the complex visual reasoning task to atomic subtasks and invokes its virtual replicas, i.e. parameter-sharing subagents, to solve them in isolated context. sCoT enjoys substantial training effectiveness and efficiency, as it requires no explicit interleaving between modalities. sCoT employs group-relative policy optimization to reinforce effective reasoning behavior to enhance optimization. Experiments on HR-Bench 4K show that sCoT improves the overall reasoning performance by up to $1.9\%$ with $\sim 75\%$ fewer GPU hours compared to strong baseline approaches. Code is available at https://github.com/YWenxi/think-with-images-through-self-calling.
comment: Code would be released at https://github.com/YWenxi/think-with-images-through-self-calling soon
☆ OCCDiff: Occupancy Diffusion Model for High-Fidelity 3D Building Reconstruction from Noisy Point Clouds
A major challenge in reconstructing buildings from LiDAR point clouds lies in accurately capturing building surfaces under varying point densities and noise interference. To flexibly gather high-quality 3D profiles of the building in diverse resolution, we propose OCCDiff applying latent diffusion in the occupancy function space. Our OCCDiff combines a latent diffusion process with a function autoencoder architecture to generate continuous occupancy functions evaluable at arbitrary locations. Moreover, a point encoder is proposed to provide condition features to diffusion learning, constraint the final occupancy prediction for occupancy decoder, and insert multi-modal features for latent generation to latent encoder. To further enhance the model performance, a multi-task training strategy is employed, ensuring that the point encoder learns diverse and robust feature representations. Empirical results show that our method generates physically consistent samples with high fidelity to the target distribution and exhibits robustness to noisy data.
☆ Beyond the Noise: Aligning Prompts with Latent Representations in Diffusion Models
Conditional diffusion models rely on language-to-image alignment methods to steer the generation towards semantically accurate outputs. Despite the success of this architecture, misalignment and hallucinations remain common issues and require automatic misalignment detection tools to improve quality, for example by applying them in a Best-of-N (BoN) post-generation setting. Unfortunately, measuring the alignment after the generation is an expensive step since we need to wait for the overall generation to finish to determine prompt adherence. In contrast, this work hypothesizes that text/image misalignments can be detected early in the denoising process, enabling real-time alignment assessment without waiting for the complete generation. In particular, we propose NoisyCLIP a method that measures semantic alignment in the noisy latent space. This work is the first to explore and benchmark prompt-to-latent misalignment detection during image generation using dual encoders in the reverse diffusion process. We evaluate NoisyCLIP qualitatively and quantitatively and find it reduces computational cost by 50% while achieving 98% of CLIP alignment performance in BoN settings. This approach enables real-time alignment assessment during generation, reducing costs without sacrificing semantic fidelity.
☆ Disrupting Hierarchical Reasoning: Adversarial Protection for Geographic Privacy in Multimodal Reasoning Models
Multi-modal large reasoning models (MLRMs) pose significant privacy risks by inferring precise geographic locations from personal images through hierarchical chain-of-thought reasoning. Existing privacy protection techniques, primarily designed for perception-based models, prove ineffective against MLRMs' sophisticated multi-step reasoning processes that analyze environmental cues. We introduce \textbf{ReasonBreak}, a novel adversarial framework specifically designed to disrupt hierarchical reasoning in MLRMs through concept-aware perturbations. Our approach is founded on the key insight that effective disruption of geographic reasoning requires perturbations aligned with conceptual hierarchies rather than uniform noise. ReasonBreak strategically targets critical conceptual dependencies within reasoning chains, generating perturbations that invalidate specific inference steps and cascade through subsequent reasoning stages. To facilitate this approach, we contribute \textbf{GeoPrivacy-6K}, a comprehensive dataset comprising 6,341 ultra-high-resolution images ($\geq$2K) with hierarchical concept annotations. Extensive evaluation across seven state-of-the-art MLRMs (including GPT-o3, GPT-5, Gemini 2.5 Pro) demonstrates ReasonBreak's superior effectiveness, achieving a 14.4\% improvement in tract-level protection (33.8\% vs 19.4\%) and nearly doubling block-level protection (33.5\% vs 16.8\%). This work establishes a new paradigm for privacy protection against reasoning-based threats.
☆ Learning to Control Physically-simulated 3D Characters via Generating and Mimicking 2D Motions
Video data is more cost-effective than motion capture data for learning 3D character motion controllers, yet synthesizing realistic and diverse behaviors directly from videos remains challenging. Previous approaches typically rely on off-the-shelf motion reconstruction techniques to obtain 3D trajectories for physics-based imitation. These reconstruction methods struggle with generalizability, as they either require 3D training data (potentially scarce) or fail to produce physically plausible poses, hindering their application to challenging scenarios like human-object interaction (HOI) or non-human characters. We tackle this challenge by introducing Mimic2DM, a novel motion imitation framework that learns the control policy directly and solely from widely available 2D keypoint trajectories extracted from videos. By minimizing the reprojection error, we train a general single-view 2D motion tracking policy capable of following arbitrary 2D reference motions in physics simulation, using only 2D motion data. The policy, when trained on diverse 2D motions captured from different or slightly different viewpoints, can further acquire 3D motion tracking capabilities by aggregating multiple views. Moreover, we develop a transformer-based autoregressive 2D motion generator and integrate it into a hierarchical control framework, where the generator produces high-quality 2D reference trajectories to guide the tracking policy. We show that the proposed approach is versatile and can effectively learn to synthesize physically plausible and diverse motions across a range of domains, including dancing, soccer dribbling, and animal movements, without any reliance on explicit 3D motion data. Project Website: https://jiann-li.github.io/mimic2dm/
☆ On-the-fly Large-scale 3D Reconstruction from Multi-Camera Rigs
Recent advances in 3D Gaussian Splatting (3DGS) have enabled efficient free-viewpoint rendering and photorealistic scene reconstruction. While on-the-fly extensions of 3DGS have shown promise for real-time reconstruction from monocular RGB streams, they often fail to achieve complete 3D coverage due to the limited field of view (FOV). Employing a multi-camera rig fundamentally addresses this limitation. In this paper, we present the first on-the-fly 3D reconstruction framework for multi-camera rigs. Our method incrementally fuses dense RGB streams from multiple overlapping cameras into a unified Gaussian representation, achieving drift-free trajectory estimation and efficient online reconstruction. We propose a hierarchical camera initialization scheme that enables coarse inter-camera alignment without calibration, followed by a lightweight multi-camera bundle adjustment that stabilizes trajectories while maintaining real-time performance. Furthermore, we introduce a redundancy-free Gaussian sampling strategy and a frequency-aware optimization scheduler to reduce the number of Gaussian primitives and the required optimization iterations, thereby maintaining both efficiency and reconstruction fidelity. Our method reconstructs hundreds of meters of 3D scenes within just 2 minutes using only raw multi-camera video streams, demonstrating unprecedented speed, robustness, and Fidelity for on-the-fly 3D scene reconstruction.
☆ Temporal Concept Dynamics in Diffusion Models via Prompt-Conditioned Interventions
Diffusion models are usually evaluated by their final outputs, gradually denoising random noise into meaningful images. Yet, generation unfolds along a trajectory, and analyzing this dynamic process is crucial for understanding how controllable, reliable, and predictable these models are in terms of their success/failure modes. In this work, we ask the question: when does noise turn into a specific concept (e.g., age) and lock in the denoising trajectory? We propose PCI (Prompt-Conditioned Intervention) to study this question. PCI is a training-free and model-agnostic framework for analyzing concept dynamics through diffusion time. The central idea is the analysis of Concept Insertion Success (CIS), defined as the probability that a concept inserted at a given timestep is preserved and reflected in the final image, offering a way to characterize the temporal dynamics of concept formation. Applied to several state-of-the-art text-to-image diffusion models and a broad taxonomy of concepts, PCI reveals diverse temporal behaviors across diffusion models, in which certain phases of the trajectory are more favorable to specific concepts even within the same concept type. These findings also provide actionable insights for text-driven image editing, highlighting when interventions are most effective without requiring access to model internals or training, and yielding quantitatively stronger edits that achieve a balance of semantic accuracy and content preservation than strong baselines. Code is available at: https://github.com/adagorgun/PCI-Prompt-Controlled-Interventions
comment: Code is available at: https://github.com/adagorgun/PCI-Prompt-Controlled-Interventions
☆ Visionary: The World Model Carrier Built on WebGPU-Powered Gaussian Splatting Platform
Neural rendering, particularly 3D Gaussian Splatting (3DGS), has evolved rapidly and become a key component for building world models. However, existing viewer solutions remain fragmented, heavy, or constrained by legacy pipelines, resulting in high deployment friction and limited support for dynamic content and generative models. In this work, we present Visionary, an open, web-native platform for real-time various Gaussian Splatting and meshes rendering. Built on an efficient WebGPU renderer with per-frame ONNX inference, Visionary enables dynamic neural processing while maintaining a lightweight, "click-to-run" browser experience. It introduces a standardized Gaussian Generator contract, which not only supports standard 3DGS rendering but also allows plug-and-play algorithms to generate or update Gaussians each frame. Such inference also enables us to apply feedforward generative post-processing. The platform further offers a plug in three.js library with a concise TypeScript API for seamless integration into existing web applications. Experiments show that, under identical 3DGS assets, Visionary achieves superior rendering efficiency compared to current Web viewers due to GPU-based primitive sorting. It already supports multiple variants, including MLP-based 3DGS, 4DGS, neural avatars, and style transformation or enhancement networks. By unifying inference and rendering directly in the browser, Visionary significantly lowers the barrier to reproduction, comparison, and deployment of 3DGS-family methods, serving as a unified World Model Carrier for both reconstructive and generative paradigms.
comment: Project page: https://visionary-laboratory.github.io/visionary
☆ ContextDrag: Precise Drag-Based Image Editing via Context-Preserving Token Injection and Position-Consistent Attention
Drag-based image editing aims to modify visual content followed by user-specified drag operations. Despite existing methods having made notable progress, they still fail to fully exploit the contextual information in the reference image, including fine-grained texture details, leading to edits with limited coherence and fidelity. To address this challenge, we introduce ContextDrag, a new paradigm for drag-based editing that leverages the strong contextual modeling capability of editing models, such as FLUX-Kontext. By incorporating VAE-encoded features from the reference image, ContextDrag can leverage rich contextual cues and preserve fine-grained details, without the need for finetuning or inversion. Specifically, ContextDrag introduced a novel Context-preserving Token Injection (CTI) that injects noise-free reference features into their correct destination locations via a Latent-space Reverse Mapping (LRM) algorithm. This strategy enables precise drag control while preserving consistency in both semantics and texture details. Second, ContextDrag adopts a novel Position-Consistent Attention (PCA), which positional re-encodes the reference tokens and applies overlap-aware masking to eliminate interference from irrelevant reference features. Extensive experiments on DragBench-SR and DragBench-DR demonstrate that our approach surpasses all existing SOTA methods. Code will be publicly available.
☆ Team-Aware Football Player Tracking with SAM: An Appearance-Based Approach to Occlusion Recovery
Football player tracking is challenged by frequent occlusions, similar appearances, and rapid motion in crowded scenes. This paper presents a lightweight SAM-based tracking method combining the Segment Anything Model (SAM) with CSRT trackers and jersey color-based appearance models. We propose a team-aware tracking system that uses SAM for precise initialization and HSV histogram-based re-identification to improve occlusion recovery. Our evaluation measures three dimensions: processing speed (FPS and memory), tracking accuracy (success rate and box stability), and robustness (occlusion recovery and identity consistency). Experiments on football video sequences show that the approach achieves 7.6-7.7 FPS with stable memory usage (~1880 MB), maintaining 100 percent tracking success in light occlusions and 90 percent in crowded penalty-box scenarios with 5 or more players. Appearance-based re-identification recovers 50 percent of heavy occlusions, demonstrating the value of domain-specific cues. Analysis reveals key trade-offs: the SAM + CSRT combination provides consistent performance across crowd densities but struggles with long-term occlusions where players leave the frame, achieving only 8.66 percent re-acquisition success. These results offer practical guidelines for deploying football tracking systems under resource constraints, showing that classical tracker-based methods work well with continuous visibility but require stronger re-identification mechanisms for extended absences.
comment: 8 pages, 5 figures
☆ Uncertainty-Aware Subset Selection for Robust Visual Explainability under Distribution Shifts
Subset selection-based methods are widely used to explain deep vision models: they attribute predictions by highlighting the most influential image regions and support object-level explanations. While these methods perform well in in-distribution (ID) settings, their behavior under out-of-distribution (OOD) conditions remains poorly understood. Through extensive experiments across multiple ID-OOD sets, we find that reliability of the existing subset based methods degrades markedly, yielding redundant, unstable, and uncertainty-sensitive explanations. To address these shortcomings, we introduce a framework that combines submodular subset selection with layer-wise, gradient-based uncertainty estimation to improve robustness and fidelity without requiring additional training or auxiliary models. Our approach estimates uncertainty via adaptive weight perturbations and uses these estimates to guide submodular optimization, ensuring diverse and informative subset selection. Empirical evaluations show that, beyond mitigating the weaknesses of existing methods under OOD scenarios, our framework also yields improvements in ID settings. These findings highlight limitations of current subset-based approaches and demonstrate how uncertainty-driven optimization can enhance attribution and object-level interpretability, paving the way for more transparent and trustworthy AI in real-world vision applications.
☆ Leveraging Multispectral Sensors for Color Correction in Mobile Cameras
Recent advances in snapshot multispectral (MS) imaging have enabled compact, low-cost spectral sensors for consumer and mobile devices. By capturing richer spectral information than conventional RGB sensors, these systems can enhance key imaging tasks, including color correction. However, most existing methods treat the color correction pipeline in separate stages, often discarding MS data early in the process. We propose a unified, learning-based framework that (i) performs end-to-end color correction and (ii) jointly leverages data from a high-resolution RGB sensor and an auxiliary low-resolution MS sensor. Our approach integrates the full pipeline within a single model, producing coherent and color-accurate outputs. We demonstrate the flexibility and generality of our framework by refactoring two different state-of-the-art image-to-image architectures. To support training and evaluation, we construct a dedicated dataset by aggregating and repurposing publicly available spectral datasets, rendering under multiple RGB camera sensitivities. Extensive experiments show that our approach improves color accuracy and stability, reducing error by up to 50% compared to RGB-only and MS-driven baselines. Datasets, code, and models will be made available upon acceptance.
☆ LapFM: A Laparoscopic Segmentation Foundation Model via Hierarchical Concept Evolving Pre-training
Surgical segmentation is pivotal for scene understanding yet remains hindered by annotation scarcity and semantic inconsistency across diverse procedures. Existing approaches typically fine-tune natural foundation models (e.g., SAM) with limited supervision, functioning merely as domain adapters rather than surgical foundation models. Consequently, they struggle to generalize across the vast variability of surgical targets. To bridge this gap, we present LapFM, a foundation model designed to evolve robust segmentation capabilities from massive unlabeled surgical images. Distinct from medical foundation models relying on inefficient self-supervised proxy tasks, LapFM leverages a Hierarchical Concept Evolving Pre-training paradigm. First, we establish a Laparoscopic Concept Hierarchy (LCH) via a hierarchical mask decoder with parent-child query embeddings, unifying diverse entities (i.e., Anatomy, Tissue, and Instrument) into a scalable knowledge structure with cross-granularity semantic consistency. Second, we propose a Confidence-driven Evolving Labeling that iteratively generates and filters pseudo-labels based on hierarchical consistency, progressively incorporating reliable samples from unlabeled images into training. This process yields LapBench-114K, a large-scale benchmark comprising 114K image-mask pairs. Extensive experiments demonstrate that LapFM significantly outperforms state-of-the-art methods, establishing new standards for granularity-adaptive generalization in universal laparoscopic segmentation. The source code is available at https://github.com/xq141839/LapFM.
☆ SDT-6D: Fully Sparse Depth-Transformer for Staged End-to-End 6D Pose Estimation in Industrial Multi-View Bin Picking
Accurately recovering 6D poses in densely packed industrial bin-picking environments remain a serious challenge, owing to occlusions, reflections, and textureless parts. We introduce a holistic depth-only 6D pose estimation approach that fuses multi-view depth maps into either a fine-grained 3D point cloud in its vanilla version, or a sparse Truncated Signed Distance Field (TSDF). At the core of our framework lies a staged heatmap mechanism that yields scene-adaptive attention priors across different resolutions, steering computation toward foreground regions, thus keeping memory requirements at high resolutions feasible. Along, we propose a density-aware sparse transformer block that dynamically attends to (self-) occlusions and the non-uniform distribution of 3D data. While sparse 3D approaches has proven effective for long-range perception, its potential in close-range robotic applications remains underexplored. Our framework operates fully sparse, enabling high-resolution volumetric representations to capture fine geometric details crucial for accurate pose estimation in clutter. Our method processes the entire scene integrally, predicting the 6D pose via a novel per-voxel voting strategy, allowing simultaneous pose predictions for an arbitrary number of target objects. We validate our method on the recently published IPD and MV-YCB multi-view datasets, demonstrating competitive performance in heavily cluttered industrial and household bin picking scenarios.
comment: Accepted to WACV 2026. Preprint version
☆ Towards Effective and Efficient Long Video Understanding of Multimodal Large Language Models via One-shot Clip Retrieval
Due to excessive memory overhead, most Multimodal Large Language Models (MLLMs) can only process videos of limited frames. In this paper, we propose an effective and efficient paradigm to remedy this shortcoming, termed One-shot video-Clip based Retrieval AuGmentation (OneClip-RAG). Compared with existing video RAG methods, OneClip-RAG makes full use of the merits of video clips for augmented video understanding in terms of both knowledge integrity and semantic coherence. Besides, it is also equipped with a novel query-guided video chunking algorithm that can unify clip chunking and cross-modal retrieval in one processing step, avoiding redundant computations. To improve instruction following, we further propose a new dataset called SynLongVideo and design a progressive training regime for OneClip-RAG. OneClip-RAG is plugged into five recent MLLMs and validated on a set of long-video benchmarks. Experimental results not only show the obvious performance gains by OneClip-RAG over MLLMs, e.g., boosting InternLV2 8B and Qwen2-VL 7B to the level of GPT-4o on MLVU, but also show its superior efficiency in handling long videos. e.g., enabling LLaVA-Video understand up to an hour of videos in less than 2.2 minutes on a single 4090 GPU.
☆ SAM-Body4D: Training-Free 4D Human Body Mesh Recovery from Videos
Human Mesh Recovery (HMR) aims to reconstruct 3D human pose and shape from 2D observations and is fundamental to human-centric understanding in real-world scenarios. While recent image-based HMR methods such as SAM 3D Body achieve strong robustness on in-the-wild images, they rely on per-frame inference when applied to videos, leading to temporal inconsistency and degraded performance under occlusions. We address these issues without extra training by leveraging the inherent human continuity in videos. We propose SAM-Body4D, a training-free framework for temporally consistent and occlusion-robust HMR from videos. We first generate identity-consistent masklets using a promptable video segmentation model, then refine them with an Occlusion-Aware module to recover missing regions. The refined masklets guide SAM 3D Body to produce consistent full-body mesh trajectories, while a padding-based parallel strategy enables efficient multi-human inference. Experimental results demonstrate that SAM-Body4D achieves improved temporal stability and robustness in challenging in-the-wild videos, without any retraining. Our code and demo are available at: https://github.com/gaomingqi/sam-body4d.
♻ ☆ Rethinking Few-Shot Image Fusion: Granular Ball Priors Enable General-Purpose Deep Fusion
In image fusion tasks, the absence of real fused images as priors forces most deep learning approaches to rely on large-scale paired datasets to extract global weighting features or to generate pseudo-supervised images through algorithmic constructions. Unlike previous methods, this work re-examines prior-guided learning under few-shot conditions by introducing rough set theory. We regard the traditional algorithm as a prior generator, while the network re-inferrs and adaptively optimizes the prior through a dynamic loss function, reducing the inference burden of the network and enabling effective few-shot learning.To provide the prior, we propose the Granular Ball Pixel Computation (GBPC) algorithm. GBPC models pixel pairs in a luminance subspace using meta-granular balls and mines intra-ball information at multiple granular levels. At the fine-grained level, sliding granular balls assign adaptive weights to individual pixels to produce pixel-level prior fusion. At the coarse-grained level, the algorithm performs split computation within a single image to estimate positive and boundary domain distributions, enabling modality awareness and prior confidence estimation, which dynamically guide the loss weighting.The network and the algorithmic prior are coupled through the loss function to form an integrated framework. Thanks to the dynamic weighting mechanism, the network can adaptively adjust to different priors during training, enhancing its perception and fusion capability across modalities. We name this framework GBFF (Granular Ball Fusion Framework). Experiments on four fusion tasks demonstrate that even with only ten training image pairs per task, GBFF achieves superior performance in both visual quality and model compactness. Code is available at: https://github.com/DMinjie/GBFF
♻ ☆ Learning Geodesics of Geometric Shape Deformations From Images
This paper presents a novel method, named geodesic deformable networks (GDN), that for the first time enables the learning of geodesic flows of deformation fields derived from images. In particular, the capability of our proposed GDN being able to predict geodesics is important for quantifying and comparing deformable shape presented in images. The geodesic deformations, also known as optimal transformations that align pairwise images, are often parameterized by a time sequence of smooth vector fields governed by nonlinear differential equations. A bountiful literature has been focusing on learning the initial conditions (e.g., initial velocity fields) based on registration networks. However, the definition of geodesics central to deformation-based shape analysis is blind to the networks. To address this problem, we carefully develop an efficient neural operator to treat the geodesics as unknown mapping functions learned from the latent deformation spaces. A composition of integral operators and smooth activation functions is then formulated to effectively approximate such mappings. In contrast to previous works, our GDN jointly optimizes a newly defined geodesic loss, which adds additional benefits to promote the network regularizability and generalizability. We demonstrate the effectiveness of GDN on both 2D synthetic data and 3D real brain magnetic resonance imaging (MRI).
comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2025:019
♻ ☆ MiniGPT-5: Interleaved Vision-and-Language Generation via Generative Vokens
The effectiveness of Multimodal Large Language Models (MLLMs) demonstrates a profound capability in multimodal understanding. However, the simultaneous generation of images with coherent texts is still underdeveloped. Addressing this, we introduce a novel interleaved vision-and-language generation method, centered around the concept of ``generative vokens". These vokens serve as pivotal elements contributing to coherent image-text outputs. Our method is marked by a unique two-stage training strategy for description-free multimodal generation, which does not necessitate extensive descriptions of images. We integrate classifier-free guidance to enhance the alignment of generated images and texts, ensuring more seamless and contextually relevant multimodal interactions. Our model, MiniGPT-5, exhibits substantial improvement over the baseline models on multimodal generation datasets, including MMDialog and VIST. The human evaluation shows MiniGPT-5 is better than the baseline model on more than 56\% cases for multimodal generation, highlighting its efficacy across diverse benchmarks.
♻ ☆ The Missing Point in Vision Transformers for Universal Image Segmentation
Image segmentation remains a challenging task in computer vision, demanding robust mask generation and precise classification. Recent mask-based approaches yield high-quality masks by capturing global context. However, accurately classifying these masks, especially in the presence of ambiguous boundaries and imbalanced class distributions, remains an open challenge. In this work, we introduce ViT-P, a novel two-stage segmentation framework that decouples mask generation from classification. The first stage employs a proposal generator to produce class-agnostic mask proposals, while the second stage utilizes a point-based classification model built on the Vision Transformer (ViT) to refine predictions by focusing on mask central points. ViT-P serves as a pre-training-free adapter, allowing the integration of various pre-trained vision transformers without modifying their architecture, ensuring adaptability to dense prediction tasks. Furthermore, we demonstrate that coarse and bounding box annotations can effectively enhance classification without requiring additional training on fine annotation datasets, reducing annotation costs while maintaining strong performance. Extensive experiments across COCO, ADE20K, and Cityscapes datasets validate the effectiveness of ViT-P, achieving state-of-the-art results with 54.0 PQ on ADE20K panoptic segmentation, 87.4 mIoU on Cityscapes semantic segmentation, and 63.6 mIoU on ADE20K semantic segmentation. The code and pretrained models are available at: https://github.com/sajjad-sh33/ViT-P}{https://github.com/sajjad-sh33/ViT-P.
♻ ☆ End-to-End Fine-Tuning of 3D Texture Generation using Differentiable Rewards
While recent 3D generative models can produce high-quality texture images, they often fail to capture human preferences or meet task-specific requirements. Moreover, a core challenge in the 3D texture generation domain is that most existing approaches rely on repeated calls to 2D text-to-image generative models, which lack an inherent understanding of the 3D structure of the input 3D mesh object. To alleviate these issues, we propose an end-to-end differentiable, reinforcement-learning-free framework that embeds human feedback, expressed as differentiable reward functions, directly into the 3D texture synthesis pipeline. By back-propagating preference signals through both geometric and appearance modules of the proposed framework, our method generates textures that respect the 3D geometry structure and align with desired criteria. To demonstrate its versatility, we introduce three novel geometry-aware reward functions, which offer a more controllable and interpretable pathway for creating high-quality 3D content from natural language. By conducting qualitative, quantitative, and user-preference evaluations against state-of-the-art methods, we demonstrate that our proposed strategy consistently outperforms existing approaches. Our implementation code is publicly available at: https://github.com/AHHHZ975/Differentiable-Texture-Learning
♻ ☆ VoiceCloak: A Multi-Dimensional Defense Framework against Unauthorized Diffusion-based Voice Cloning AAAI 2026
Diffusion Models (DMs) have achieved remarkable success in realistic voice cloning (VC), while they also increase the risk of malicious misuse. Existing proactive defenses designed for traditional VC models aim to disrupt the forgery process, but they have been proven incompatible with DMs due to the intricate generative mechanisms of diffusion. To bridge this gap, we introduce VoiceCloak, a multi-dimensional proactive defense framework with the goal of obfuscating speaker identity and degrading perceptual quality in potential unauthorized VC. To achieve these goals, we conduct a focused analysis to identify specific vulnerabilities within DMs, allowing VoiceCloak to disrupt the cloning process by introducing adversarial perturbations into the reference audio. Specifically, to obfuscate speaker identity, VoiceCloak first targets speaker identity by distorting representation learning embeddings to maximize identity variation, which is guided by auditory perception principles. Additionally, VoiceCloak disrupts crucial conditional guidance processes, particularly attention context, thereby preventing the alignment of vocal characteristics that are essential for achieving convincing cloning. Then, to address the second objective, VoiceCloak introduces score magnitude amplification to actively steer the reverse trajectory away from the generation of high-quality speech. Noise-guided semantic corruption is further employed to disrupt structural speech semantics captured by DMs, degrading output quality. Extensive experiments highlight VoiceCloak's outstanding defense success rate against unauthorized diffusion-based voice cloning. Audio samples of VoiceCloak are available at https://voice-cloak.github.io/VoiceCloak/.
comment: 15 pages, 6 figures, 13 tables; Accepted by AAAI 2026
♻ ☆ SceneGen: Single-Image 3D Scene Generation in One Feedforward Pass
3D content generation has recently attracted significant research interest, driven by its critical applications in VR/AR and embodied AI. In this work, we tackle the challenging task of synthesizing multiple 3D assets within a single scene image. Concretely, our contributions are fourfold: (i) we present SceneGen, a novel framework that takes a scene image and corresponding object masks as input, simultaneously producing multiple 3D assets with geometry and texture. Notably, SceneGen operates with no need for extra optimization or asset retrieval; (ii) we introduce a novel feature aggregation module that integrates local and global scene information from visual and geometric encoders within the feature extraction module. Coupled with a position head, this enables the generation of 3D assets and their relative spatial positions in a single feedforward pass; (iii) we demonstrate SceneGen's direct extensibility to multi-image input scenarios. Despite being trained solely on single-image inputs, our architecture yields improved generation performance when multiple images are provided; and (iv) extensive quantitative and qualitative evaluations confirm the efficiency and robustness of our approach. We believe this paradigm offers a novel solution for high-quality 3D content generation, potentially advancing its practical applications in downstream tasks. The code and model will be publicly available at: https://mengmouxu.github.io/SceneGen.
comment: Accepted by 3DV 2026; Project Page: https://mengmouxu.github.io/SceneGen
♻ ☆ Towards Task-Oriented Flying: Framework, Infrastructure, and Principles
Deploying robot learning methods to aerial robots in unstructured environments remains both challenging and promising. While recent advances in deep reinforcement learning (DRL) have enabled end-to-end flight control, the field still lacks systematic design guidelines and a unified infrastructure to support reproducible training and real-world deployment. We present a task-oriented framework for end-to-end DRL in quadrotors that integrates design principles for complex task specification and reveals the interdependencies among simulated task definition, training design principles, and physical deployment. Our framework involves software infrastructure, hardware platforms, and open-source firmware to support a full-stack learning infrastructure and workflow. Extensive empirical results demonstrate robust flight and sim-to-real generalization under real-world disturbances. By reducing the entry barrier for deploying learning-based controllers on aerial robots, our work lays a practical foundation for advancing autonomous flight in dynamic and unstructured environments.
♻ ☆ Co-Seg++: Mutual Prompt-Guided Collaborative Learning for Versatile Medical Segmentation
Medical image analysis is critical yet challenged by the need of jointly segmenting organs or tissues, and numerous instances for anatomical structures and tumor microenvironment analysis. Existing studies typically formulated different segmentation tasks in isolation, which overlooks the fundamental interdependencies between these tasks, leading to suboptimal segmentation performance and insufficient medical image understanding. To address this issue, we propose a Co-Seg++ framework for versatile medical segmentation. Specifically, we introduce a novel co-segmentation paradigm, allowing semantic and instance segmentation tasks to mutually enhance each other. We first devise a spatio-sequential prompt encoder (SSP-Encoder) to capture long-range spatial and sequential relationships between segmentation regions and image embeddings as prior spatial constraints. Moreover, we devise a multi-task collaborative decoder (MTC-Decoder) that leverages cross-guidance to strengthen the contextual consistency of both tasks, jointly computing semantic and instance segmentation masks. Extensive experiments on diverse CT and histopathology datasets demonstrate that the proposed Co-Seg++ outperforms state-of-the-arts in the semantic, instance, and panoptic segmentation of dental anatomical structures, histopathology tissues, and nuclei instances. The source code is available at https://github.com/xq141839/Co-Seg-Plus.
comment: Accepted by TMI
♻ ☆ High-Throughput Unsupervised Profiling of the Morphology of 316L Powder Particles for Use in Additive Manufacturing
Selective Laser Melting (SLM) is a powder-bed additive manufacturing technique whose part quality depends critically on feedstock morphology. However, conventional powder characterization methods are low-throughput and qualitative, failing to capture the heterogeneity of industrial-scale batches. We present an automated, machine learning framework that couples high-throughput imaging with shape extraction and clustering to profile metallic powder morphology at scale. We develop and evaluate three clustering pipelines: an autoencoder pipeline, a shape-descriptor pipeline, and a functional-data pipeline. Across a dataset of approximately 126,000 powder images (0.5-102 micrometer diameter), internal validity metrics identify the Fourier-descriptor + k-means pipeline as the most effective, achieving the lowest Davies-Bouldin index and highest Calinski-Harabasz score while maintaining sub-millisecond runtime per particle on a standard desktop workstation. Although the present work focuses on establishing the morphological-clustering framework, the resulting shape groups form a basis for future studies examining their relationship to flowability, packing density, and SLM part quality. Overall, this unsupervised learning framework enables rapid, automated assessment of powder morphology and supports tracking of shape evolution across reuse cycles, offering a path toward real-time feedstock monitoring in SLM workflows.
♻ ☆ ContextGen: Contextual Layout Anchoring for Identity-Consistent Multi-Instance Generation
Multi-instance image generation (MIG) remains a significant challenge for modern diffusion models due to key limitations in achieving precise control over object layout and preserving the identity of multiple distinct subjects. To address these limitations, we introduce ContextGen, a novel Diffusion Transformer framework for multi-instance generation that is guided by both layout and reference images. Our approach integrates two key technical contributions: a Contextual Layout Anchoring (CLA) mechanism that incorporates the composite layout image into the generation context to robustly anchor the objects in their desired positions, and Identity Consistency Attention (ICA), an innovative attention mechanism that leverages contextual reference images to ensure the identity consistency of multiple instances. Recognizing the lack of large-scale, hierarchically-structured datasets for this task, we introduce IMIG-100K, the first dataset with detailed layout and identity annotations. Extensive experiments demonstrate that ContextGen sets a new state-of-the-art, outperforming existing methods in control precision, identity fidelity, and overall visual quality.
comment: Project Page: https://nenhang.github.io/ContextGen/
♻ ☆ PET Image Reconstruction Using Deep Diffusion Image Prior
Diffusion models have shown great promise in medical image denoising and reconstruction, but their application to Positron Emission Tomography (PET) imaging remains limited by tracer-specific contrast variability and high computational demands. In this work, we proposed an anatomical prior-guided PET image reconstruction method based on diffusion models, inspired by the deep diffusion image prior (DDIP) framework. The proposed method alternated between diffusion sampling and model fine-tuning guided by the PET sinogram, enabling the reconstruction of high-quality images from various PET tracers using a score function pretrained on a dataset of another tracer. To improve computational efficiency, the half-quadratic splitting (HQS) algorithm was adopted to decouple network optimization from iterative PET reconstruction. The proposed method was evaluated using one simulation and two clinical datasets. For the simulation study, a model pretrained on [$^{18}$F]FDG data was tested on [$^{18}$F]FDG data and amyloid-negative PET data to assess out-of-distribution (OOD) performance. For the clinical-data validation, ten low-dose [$^{18}$F]FDG datasets and one [$^{18}$F]Florbetapir dataset were tested on a model pretrained on data from another tracer. Experiment results show that the proposed PET reconstruction method can generalize robustly across tracer distributions and scanner types, providing an efficient and versatile reconstruction framework for low-dose PET imaging.
comment: 11 pages, 12 figures
♻ ☆ DIVER: Reinforced Diffusion Breaks Imitation Bottlenecks in End-to-End Autonomous Driving
Most end-to-end autonomous driving methods rely on imitation learning from single expert demonstrations, often leading to conservative and homogeneous behaviors that limit generalization in complex real-world scenarios. In this work, we propose DIVER, an end-to-end driving framework that integrates reinforcement learning with diffusion-based generation to produce diverse and feasible trajectories. At the core of DIVER lies a reinforced diffusion-based generation mechanism. First, the model conditions on map elements and surrounding agents to generate multiple reference trajectories from a single ground-truth trajectory, alleviating the limitations of imitation learning that arise from relying solely on single expert demonstrations. Second, reinforcement learning is employed to guide the diffusion process, where reward-based supervision enforces safety and diversity constraints on the generated trajectories, thereby enhancing their practicality and generalization capability. Furthermore, to address the limitations of L2-based open-loop metrics in capturing trajectory diversity, we propose a novel Diversity metric to evaluate the diversity of multi-mode predictions.Extensive experiments on the closed-loop NAVSIM and Bench2Drive benchmarks, as well as the open-loop nuScenes dataset, demonstrate that DIVER significantly improves trajectory diversity, effectively addressing the mode collapse problem inherent in imitation learning.
comment: 18 pages, 8 figures
♻ ☆ On the Temporality for Sketch Representation Learning
Sketches are simple human hand-drawn abstractions of complex scenes and real-world objects. Although the field of sketch representation learning has advanced significantly, there is still a gap in understanding the true relevance of the temporal aspect to the quality of these representations. This work investigates whether it is indeed justifiable to treat sketches as sequences, as well as which internal orders play a more relevant role. The results indicate that, although the use of traditional positional encodings is valid for modeling sketches as sequences, absolute coordinates consistently outperform relative ones. Furthermore, non-autoregressive decoders outperform their autoregressive counterparts. Finally, the importance of temporality was shown to depend on both the order considered and the task evaluated.
comment: Preprint submitted to Pattern Recognition Letters
♻ ☆ Small Drafts, Big Verdict: Information-Intensive Visual Reasoning via Speculation
Large Vision-Language Models (VLMs) have achieved remarkable progress in multimodal understanding, yet they struggle when reasoning over information-intensive images that densely interleave textual annotations with fine-grained graphical elements. The main challenges lie in precisely localizing critical cues in dense layouts and multi-hop reasoning to integrate dispersed evidence. We propose Speculative Verdict (SV), a training-free framework inspired by speculative decoding that combines multiple lightweight draft experts with a large verdict model. In the draft stage, small VLMs act as draft experts to generate reasoning paths that provide diverse localization candidates; in the verdict stage, a strong VLM synthesizes these paths to produce the final answer, minimizing computational cost while recovering correct answers. To further improve efficiency and accuracy, SV introduces a consensus expert selection mechanism that forwards only high-agreement reasoning paths to the verdict. Empirically, SV achieves consistent gains on challenging information-intensive and high-resolution visual question answering benchmarks, including InfographicVQA, ChartMuseum, ChartQAPro, and HR-Bench 4K. By synthesizing correct insights from multiple partially accurate reasoning paths, SV achieves both error correction and cost-efficiency compared to large proprietary models or training pipelines. Code is available at https://github.com/Tinaliu0123/speculative-verdict.
♻ ☆ OS-Sentinel: Towards Safety-Enhanced Mobile GUI Agents via Hybrid Validation in Realistic Workflows
Computer-using agents powered by Vision-Language Models (VLMs) have demonstrated human-like capabilities in operating digital environments like mobile platforms. While these agents hold great promise for advancing digital automation, their potential for unsafe operations, such as system compromise and privacy leakage, is raising significant concerns. Detecting these safety concerns across the vast and complex operational space of mobile environments presents a formidable challenge that remains critically underexplored. To establish a foundation for mobile agent safety research, we introduce MobileRisk-Live, a dynamic sandbox environment accompanied by a safety detection benchmark comprising realistic trajectories with fine-grained annotations. Built upon this, we propose OS-Sentinel, a novel hybrid safety detection framework that synergistically combines a Formal Verifier for detecting explicit system-level violations with a VLM-based Contextual Judge for assessing contextual risks and agent actions. Experiments show that OS-Sentinel achieves 10%-30% improvements over existing approaches across multiple metrics. Further analysis provides critical insights that foster the development of safer and more reliable autonomous mobile agents. Our code and data are available at https://github.com/OS-Copilot/OS-Sentinel.
comment: work in progress
♻ ☆ Spike-EVPR: Deep Spiking Residual Networks with SNN-Tailored Representations for Event-Based Visual Place Recognition
Event cameras are ideal for visual place recognition (VPR) in challenging environments due to their high temporal resolution and high dynamic range. However, existing methods convert sparse events into dense frame-like representations for Artificial Neural Networks (ANNs), ignoring event sparsity and incurring high computational cost. Spiking Neural Networks (SNNs) complement event data through discrete spike signals to enable energy-efficient VPR, but their application is hindered by the lack of effective spike-compatible representations and deep architectures capable of learning discriminative global descriptors. To address these limitations, we propose Spike-EVPR, a directly trained, end-to-end SNN framework tailored for event-based VPR. First, we introduce two complementary event representations, MCS-Tensor and TSS-Tensor, designed to reduce temporal redundancy while preserving essential spatio-temporal cues. Furthermore, we propose a deep spiking residual architecture that effectively aggregates these features to generate robust place descriptors. Extensive experiments on the Brisbane-Event-VPR and DDD20 datasets demonstrate that Spike-EVPR achieves state-of-the-art performance, improving Recall@1 by 7.61% and 13.20%, respectively, while significantly reducing energy consumption.
comment: 8 pages, 6 figures
♻ ☆ CAPE: A CLIP-Aware Pointing Ensemble of Complementary Heatmap Cues for Embodied Reference Understanding
We address Embodied Reference Understanding, the task of predicting the object a person in the scene refers to through pointing gesture and language. This requires multimodal reasoning over text, visual pointing cues, and scene context, yet existing methods often fail to fully exploit visual disambiguation signals. We also observe that while the referent often aligns with the head-to-fingertip direction, in many cases it aligns more closely with the wrist-to-fingertip direction, making a single-line assumption overly limiting. To address this, we propose a dual-model framework, where one model learns from the head-to-fingertip direction and the other from the wrist-to-fingertip direction. We introduce a Gaussian ray heatmap representation of these lines and use them as input to provide a strong supervisory signal that encourages the model to better attend to pointing cues. To fuse their complementary strengths, we present the CLIP-Aware Pointing Ensemble module, which performs a hybrid ensemble guided by CLIP features. We further incorporate an auxiliary object center prediction head to enhance referent localization. We validate our approach on YouRefIt, achieving 75.0 mAP at 0.25 IoU, alongside state-of-the-art CLIP and C_D scores, and demonstrate its generality on unseen CAESAR and ISL Pointing, showing robust performance across benchmarks.
♻ ☆ CourtMotion: Learning Event-Driven Motion Representations from Skeletal Data for Basketball
This paper presents CourtMotion, a spatiotemporal modeling framework for analyzing and predicting game events and plays as they develop in professional basketball. Anticipating basketball events requires understanding both physical motion patterns and their semantic significance in the context of the game. Traditional approaches that use only player positions fail to capture crucial indicators such as body orientation, defensive stance, or shooting preparation motions. Our two-stage approach first processes skeletal tracking data through Graph Neural Networks to capture nuanced motion patterns, then employs a Transformer architecture with specialized attention mechanisms to model player interactions. We introduce event projection heads that explicitly connect player movements to basketball events like passes, shots, and steals, training the model to associate physical motion patterns with their tactical purposes. Experiments on NBA tracking data demonstrate significant improvements over position-only baselines: 35% reduction in trajectory prediction error compared to state-of-the-art position-based models and consistent performance gains across key basketball analytics tasks. The resulting pretrained model serves as a powerful foundation for multiple downstream tasks, with pick detection, shot taker identification, assist prediction, shot location classification, and shot type recognition demonstrating substantial improvements over existing methods.
♻ ☆ EMMA: Efficient Multimodal Understanding, Generation, and Editing with a Unified Architecture
We propose EMMA, an efficient and unified architecture for multimodal understanding, generation and editing. Specifically, EMMA primarily consists of 1) An efficient autoencoder with a 32x compression ratio, which significantly reduces the number of tokens required for generation. This also ensures the training balance between understanding and generation tasks by applying the same compression ratio to images. 2) Channel-wise concatenation instead of token-wise concatenation among visual understanding and generation tokens, which further reduces the visual tokens in unified architectures. 3) A shared-and-decoupled network that enables mutual improvements across tasks while meeting the task-specific modeling requirements. 4) A mixture-of-experts mechanism adopted for visual understanding encoder, which substantially improves perceptual capabilities with a few parameters increase. Extensive experiments have shown that EMMA-4B can significantly outperform state-of-the-art unified multimodal approaches (e.g., BAGEL-7B) in both efficiency and performance, while also achieving competitive results compared to recent multimodal understanding and generation experts (e.g., Qwen3-VL and Qwen-Image). We believe that EMMA lays a solid foundation for the future development of unified multimodal architectures.
comment: Project Page: https://emma-umm.github.io/emma/
♻ ☆ Spec-Gloss Surfels and Normal-Diffuse Priors for Relightable Glossy Objects
Accurate reconstruction and relighting of glossy objects remains a longstanding challenge, as object shape, material properties, and illumination are inherently difficult to disentangle. Existing neural rendering approaches often rely on simplified BRDF models or parameterizations that couple diffuse and specular components, which restrict faithful material recovery and limit relighting fidelity. We propose a relightable framework that integrates a microfacet BRDF with the specular-glossiness parameterization into 2D Gaussian Splatting with deferred shading. This formulation enables more physically consistent material decomposition, while diffusion-based priors for surface normals and diffuse color guide early-stage optimization and mitigate ambiguity. A coarse-to-fine environment map optimization accelerates convergence, and negative-only environment map clipping preserves high-dynamic-range specular reflections. Extensive experiments on complex, glossy scenes demonstrate that our method achieves high-quality geometry and material reconstruction, delivering substantially more realistic and consistent relighting under novel illumination compared to existing Gaussian splatting methods.
♻ ☆ Guiding WaveMamba with Frequency Maps for Image Debanding
Compression at low bitrates in modern codecs often introduces banding artifacts, especially in smooth regions such as skies. These artifacts degrade visual quality and are common in user-generated content due to repeated transcoding. We propose a banding restoration method that employs the Wavelet State Space Model and a frequency masking map to preserve high-frequency details. Furthermore, we provide a benchmark of open-source banding restoration methods and evaluate their performance on two public banding image datasets. Experimentation on the available datasets suggests that the proposed post-processing approach effectively suppresses banding compared to the state-of-the-art method (a DBI value of 0.082 on BAND-2k) while preserving image textures. Visual inspections of the results confirm this. Code and supplementary material are available at: https://github.com/xinyiW915/Debanding-PCS2025.
comment: 5 pages, 2 figures
♻ ☆ Heart Failure Prediction using Modal Decomposition and Masked Autoencoders for Scarce Echocardiography Databases
Heart diseases remain the leading cause of mortality worldwide, implying approximately 18 million deaths according to the WHO. In particular, heart failures (HF) press the healthcare industry to develop systems for their early, rapid, and effective prediction. This work presents an automatic system based on a novel framework which combines Modal Decomposition and Masked Autoencoders (MAE) to extend the application from heart disease classification to the more challenging and specific task of heart failure time prediction, not previously addressed to the best of authors' knowledge. This system comprises two stages. The first one transforms the data from a database of echocardiography video sequences into a large collection of annotated images compatible with the training phase of machine learning-based frameworks and deep learning-based ones. This stage includes the use of the Higher Order Dynamic Mode Decomposition (HODMD) algorithm for both data augmentation and feature extraction. The second stage builds and trains a Vision Transformer (ViT). MAEs based on a combined scheme of self-supervised (SSL) and supervised learning, so far barely explored in the literature about heart failure prediction, are adopted to effectively train the ViT from scratch, even with scarce databases. The designed neural network analyses in real-time images from echocardiography sequences to estimate the time of happening a heart failure. This approach demonstrates to improve prediction accuracy from scarce databases and to be superior to several established ViT and Convolutional Neural Network (CNN) architectures. The source code will be incorporated into the next version release of the ModelFLOWs-app software (https://github.com/modelflows/ModelFLOWs-app).
comment: 43 pages, 7 figures
♻ ☆ RGS-DR: Deferred Reflections and Residual Shading in 2D Gaussian Splatting
In this work, we address specular appearance in inverse rendering using 2D Gaussian splatting with deferred shading and argue for a refinement stage to improve specular detail, thereby bridging the gap with reconstruction-only methods. Our pipeline estimates editable material properties and environment illumination while employing a directional residual pass that captures leftover view-dependent effects for further refining novel view synthesis. In contrast to per-Gaussian shading with shortest-axis normals and normal residuals, which tends to result in more noisy geometry and specular appearance, a pixel-deferred surfel formulation with specular residuals yields sharper highlights, cleaner materials, and improved editability. We evaluate our approach on rendering and reconstruction quality on three popular datasets featuring glossy objects, and also demonstrate high-quality relighting and material editing.
♻ ☆ From Fibers to Cells: Fourier-Based Registration Enables Virtual Cresyl Violet Staining From 3D Polarized Light Imaging
Comprehensive assessment of the various aspects of the brain's microstructure requires the use of complementary imaging techniques. This includes measuring the spatial distribution of cell bodies (cytoarchitecture) and nerve fibers (myeloarchitecture). The gold standard for cytoarchitectonic analysis is light microscopic imaging of cell-body stained tissue sections. To reveal the 3D orientations of nerve fibers, 3D Polarized Light Imaging (3D-PLI) has been introduced, a method that is label-free and allows subsequent staining of sections after 3D-PLI measurement. By post-staining for cell bodies, a direct link between fiber- and cytoarchitecture can potentially be established in the same section. However, inevitable distortions introduced during the staining process make a costly nonlinear and cross-modal registration necessary in order to study the detailed relationships between cells and fibers in the images. In addition, the complexity of processing histological sections for post-staining only allows for a limited number of such samples. In this work, we take advantage of deep learning methods for image-to-image translation to generate a virtual staining of 3D-PLI that is spatially aligned at the cellular level. We use a supervised setting, building on a unique dataset of brain sections, to which Cresyl violet staining has been applied after 3D-PLI measurement. To ensure high correspondence between both modalities, we address the misalignment of training data using Fourier-based registration. In this way, registration can be efficiently calculated during training for local image patches of target and predicted staining. We demonstrate that the proposed method can predict a Cresyl violet staining from 3D-PLI, resulting in a virtual staining that exhibits plausible patterns of cell organization in gray matter, with larger cell bodies being localized at their expected positions.
comment: Revised version, accepted for publication
♻ ☆ Wukong's 72 Transformations: High-fidelity Textured 3D Morphing via Flow Models
We present WUKONG, a novel training-free framework for high-fidelity textured 3D morphing that takes a pair of source and target prompts (image or text) as input. Unlike conventional methods -- which rely on manual correspondence matching and deformation trajectory estimation (limiting generalization and requiring costly preprocessing) -- WUKONG leverages the generative prior of flow-based transformers to produce high-fidelity 3D transitions with rich texture details. To ensure smooth shape transitions, we exploit the inherent continuity of flow-based generative processes and formulate morphing as an optimal transport barycenter problem. We further introduce a sequential initialization strategy to prevent abrupt geometric distortions and preserve identity coherence. For faithful texture preservation, we propose a similarity-guided semantic consistency mechanism that selectively retains high-frequency details and enables precise control over blending dynamics. This avoids common artifacts like oversmoothing while maintaining semantic fidelity. Extensive quantitative and qualitative evaluations demonstrate that WUKONG significantly outperforms state-of-the-art methods, achieving superior results across diverse geometry and texture variations.
♻ ☆ AI-powered virtual tissues from spatial proteomics for clinical diagnostics and biomedical discovery
Spatial proteomics technologies have transformed our understanding of complex tissue architecture in cancer but present unique challenges for computational analysis. Each study uses a different marker panel and protocol, and most methods are tailored to single cohorts, which limits knowledge transfer and robust biomarker discovery. Here we present Virtual Tissues (VirTues), a general-purpose foundation model for spatial proteomics that learns marker-aware, multi-scale representations of proteins, cells, niches and tissues directly from multiplex imaging data. From a single pretrained backbone, VirTues supports marker reconstruction, cell typing and niche annotation, spatial biomarker discovery, and patient stratification, including zero-shot annotation across heterogeneous panels and datasets. In triple-negative breast cancer, VirTues-derived biomarkers predict anti-PD-L1 chemo-immunotherapy response and stratify disease-free survival in an independent cohort, outperforming state-of-the-art biomarkers derived from the same datasets and current clinical stratification schemes.
comment: 25 pages, 5 figures
♻ ☆ Glass Surface Detection: Leveraging Reflection Dynamics in Flash/No-flash Imagery
Glass surfaces are ubiquitous in daily life, typically appearing colorless, transparent, and lacking distinctive features. These characteristics make glass surface detection a challenging computer vision task. Existing glass surface detection methods always rely on boundary cues (e.g., window and door frames) or reflection cues to locate glass surfaces, but they fail to fully exploit the intrinsic properties of the glass itself for accurate localization. We observed that in most real-world scenes, the illumination intensity in front of the glass surface differs from that behind it, which results in variations in the reflections visible on the glass surface. Specifically, when standing on the brighter side of the glass and applying a flash towards the darker side, existing reflections on the glass surface tend to disappear. Conversely, while standing on the darker side and applying a flash towards the brighter side, distinct reflections will appear on the glass surface. Based on this phenomenon, we propose NFGlassNet, a novel method for glass surface detection that leverages the reflection dynamics present in flash/no-flash imagery. Specifically, we propose a Reflection Contrast Mining Module (RCMM) for extracting reflections, and a Reflection Guided Attention Module (RGAM) for fusing features from reflection and glass surface for accurate glass surface detection. For learning our network, we also construct a dataset consisting of 3.3K no-flash and flash image pairs captured from various scenes with corresponding ground truth annotations. Extensive experiments demonstrate that our method outperforms the state-of-the-art methods. Our code, model, and dataset will be available upon acceptance of the manuscript.
comment: 18 pages, 17 figures
♻ ☆ Mixture of Contexts for Long Video Generation
Long video generation is fundamentally a long context memory problem: models must retain and retrieve salient events across a long range without collapsing or drifting. However, scaling diffusion transformers to generate long-context videos is fundamentally limited by the quadratic cost of self-attention, which makes memory and computation intractable and difficult to optimize for long sequences. We recast long-context video generation as an internal information retrieval task and propose a simple, learnable sparse attention routing module, Mixture of Contexts (MoC), as an effective long-term memory retrieval engine. In MoC, each query dynamically selects a few informative chunks plus mandatory anchors (caption, local windows) to attend to, with causal routing that prevents loop closures. As we scale the data and gradually sparsify the routing, the model allocates compute to salient history, preserving identities, actions, and scenes over minutes of content. Efficiency follows as a byproduct of retrieval (near-linear scaling), which enables practical training and synthesis, and the emergence of memory and consistency at the scale of minutes.
comment: Project page: https://primecai.github.io/moc/
♻ ☆ Evaluating and Preserving High-level Fidelity in Super-Resolution
Recent image Super-Resolution (SR) models are achieving impressive effects in reconstructing details and delivering visually pleasant outputs. However, the overpowering generative ability can sometimes hallucinate and thus change the image content despite gaining high visual quality. This type of high-level change can be easily identified by humans yet not well-studied in existing low-level image quality metrics. In this paper, we establish the importance of measuring high-level fidelity for SR models as a complementary criterion to reveal the reliability of generative SR models. We construct the first annotated dataset with fidelity scores from different SR models, and evaluate how state-of-the-art (SOTA) SR models actually perform in preserving high-level fidelity. Based on the dataset, we then analyze how existing image quality metrics correlate with fidelity measurement, and further show that this high-level task can be better addressed by foundation models. Finally, by fine-tuning SR models based on our fidelity feedback, we show that both semantic fidelity and perceptual quality can be improved, demonstrating the potential value of our proposed criteria, both in model evaluation and optimization. We will release the dataset, code, and models upon acceptance.
♻ ☆ You May Speak Freely: Improving the Fine-Grained Visual Recognition Capabilities of Multimodal Large Language Models with Answer Extraction
Despite the renewed interest in zero-shot visual classification due to the rise of Multimodal Large Language Models (MLLMs), the problem of evaluating free-form responses of auto-regressive models remains a persistent challenge. Most existing works focus on language-only tasks or don't consider Multiple Choice Questions (MCQs) beyond 5-way options, both of which are critical capabilities to solve tasks in Fine-Grained Visual Classification (FGVC) where choice counts are in the hundreds to thousands and the choices are highly related. Furthermore, in this highly multi-way MCQ setting it is not clear how to extend LLM choice extraction to retrieval-based problems, where computing probabilities over the choice set is computationally costly. In this work we investigate nlg2choice, a simple two-stage method which first asks the MLLM an open-ended question for the task with minimal constraints, then uses text-only constrained decoding to predict the most likely choice. In retrieval settings, we compute the probability of the constrained response taking that choice with an early stopping method to significantly improve throughput. Our results show improvement over a suite of seven fine-grained visual datasets when evaluating in terms of classification and retrieval, and show that this performance holds over the various ways that users of LLMs can implement tasks in natural language.
comment: Accepted to WACV26. 12 pages, 8 tables, 5 figures
♻ ☆ Beyond accuracy: quantifying the reliability of Multiple Instance Learning for Whole Slide Image classification
Machine learning models have become integral to many fields, but their reliability, defined as producing dependable, trustworthy, and domain-consistent predictions, remains a critical concern. Multiple Instance Learning (MIL) models designed for Whole Slide Image (WSI) classification in computational pathology are rarely evaluated in terms of reliability, leaving a key gap in understanding their suitability for high-stakes applications like clinical decision-making. In this paper, we address this gap by introducing three quantitative metrics for reliability assessment and applying them to several widely used MIL architectures across three region-wise annotated pathology datasets. Our findings indicate that the mean pooling instance (MEAN-POOL-INS)model demonstrates superior reliability compared to other networks, despite its simple architectural design and computational efficiency. These findings underscore the need of reliability evaluation alongside predictive performance in MIL models and establish MEAN-POOL-INS as a strong, trustworthy baseline for future research.
♻ ☆ ConsDreamer: Advancing Multi-View Consistency for Zero-Shot Text-to-3D Generation
Recent advances in zero-shot text-to-3D generation have revolutionized 3D content creation by enabling direct synthesis from textual descriptions. While state-of-the-art methods leverage 3D Gaussian Splatting with score distillation to enhance multi-view rendering through pre-trained text-to-image (T2I) models, they suffer from inherent prior view biases in T2I priors. These biases lead to inconsistent 3D generation, particularly manifesting as the multi-face Janus problem, where objects exhibit conflicting features across views. To address this fundamental challenge, we propose ConsDreamer, a novel method that mitigates view bias by refining both the conditional and unconditional terms in the score distillation process: (1) a View Disentanglement Module (VDM) that eliminates viewpoint biases in conditional prompts by decoupling irrelevant view components and injecting precise view control; and (2) a similarity-based partial order loss that enforces geometric consistency in the unconditional term by aligning cosine similarities with azimuth relationships. Extensive experiments demonstrate that ConsDreamer can be seamlessly integrated into various 3D representations and score distillation paradigms, effectively mitigating the multi-face Janus problem.
comment: 13 pages, 14 figures, 3 tables
Machine Learning 215
☆ Astra: General Interactive World Model with Autoregressive Denoising
Recent advances in diffusion transformers have empowered video generation models to generate high-quality video clips from texts or images. However, world models with the ability to predict long-horizon futures from past observations and actions remain underexplored, especially for general-purpose scenarios and various forms of actions. To bridge this gap, we introduce Astra, an interactive general world model that generates real-world futures for diverse scenarios (e.g., autonomous driving, robot grasping) with precise action interactions (e.g., camera motion, robot action). We propose an autoregressive denoising architecture and use temporal causal attention to aggregate past observations and support streaming outputs. We use a noise-augmented history memory to avoid over-reliance on past frames to balance responsiveness with temporal coherence. For precise action control, we introduce an action-aware adapter that directly injects action signals into the denoising process. We further develop a mixture of action experts that dynamically route heterogeneous action modalities, enhancing versatility across diverse real-world tasks such as exploration, manipulation, and camera control. Astra achieves interactive, consistent, and general long-term video prediction and supports various forms of interactions. Experiments across multiple datasets demonstrate the improvements of Astra in fidelity, long-range prediction, and action alignment over existing state-of-the-art world models.
comment: Code is available at: https://github.com/EternalEvan/Astra
☆ OSMO: Open-Source Tactile Glove for Human-to-Robot Skill Transfer
Human video demonstrations provide abundant training data for learning robot policies, but video alone cannot capture the rich contact signals critical for mastering manipulation. We introduce OSMO, an open-source wearable tactile glove designed for human-to-robot skill transfer. The glove features 12 three-axis tactile sensors across the fingertips and palm and is designed to be compatible with state-of-the-art hand-tracking methods for in-the-wild data collection. We demonstrate that a robot policy trained exclusively on human demonstrations collected with OSMO, without any real robot data, is capable of executing a challenging contact-rich manipulation task. By equipping both the human and the robot with the same glove, OSMO minimizes the visual and tactile embodiment gap, enabling the transfer of continuous shear and normal force feedback while avoiding the need for image inpainting or other vision-based force inference. On a real-world wiping task requiring sustained contact pressure, our tactile-aware policy achieves a 72% success rate, outperforming vision-only baselines by eliminating contact-related failure modes. We release complete hardware designs, firmware, and assembly instructions to support community adoption.
comment: Project website: https://jessicayin.github.io/osmo_tactile_glove/
☆ Open Polymer Challenge: Post-Competition Report NeurIPS
Machine learning (ML) offers a powerful path toward discovering sustainable polymer materials, but progress has been limited by the lack of large, high-quality, and openly accessible polymer datasets. The Open Polymer Challenge (OPC) addresses this gap by releasing the first community-developed benchmark for polymer informatics, featuring a dataset with 10K polymers and 5 properties: thermal conductivity, radius of gyration, density, fractional free volume, and glass transition temperature. The challenge centers on multi-task polymer property prediction, a core step in virtual screening pipelines for materials discovery. Participants developed models under realistic constraints that include small data, label imbalance, and heterogeneous simulation sources, using techniques such as feature-based augmentation, transfer learning, self-supervised pretraining, and targeted ensemble strategies. The competition also revealed important lessons about data preparation, distribution shifts, and cross-group simulation consistency, informing best practices for future large-scale polymer datasets. The resulting models, analysis, and released data create a new foundation for molecular AI in polymer science and are expected to accelerate the development of sustainable and energy-efficient materials. Along with the competition, we release the test dataset at https://www.kaggle.com/datasets/alexliu99/neurips-open-polymer-prediction-2025-test-data. We also release the data generation pipeline at https://github.com/sobinalosious/ADEPT, which simulates more than 25 properties, including thermal conductivity, radius of gyration, and density.
comment: The report for the competition: "NeurIPS - Open Polymer Prediction 2025". Kaggle Page: https://www.kaggle.com/competitions/neurips-open-polymer-prediction-2025. Website: https://open-polymer-challenge.github.io
☆ Unsupervised Learning of Density Estimates with Topological Optimization
Kernel density estimation is a key component of a wide variety of algorithms in machine learning, Bayesian inference, stochastic dynamics and signal processing. However, the unsupervised density estimation technique requires tuning a crucial hyperparameter: the kernel bandwidth. The choice of bandwidth is critical as it controls the bias-variance trade-off by over- or under-smoothing the topological features. Topological data analysis provides methods to mathematically quantify topological characteristics, such as connected components, loops, voids et cetera, even in high dimensions where visualization of density estimates is impossible. In this paper, we propose an unsupervised learning approach using a topology-based loss function for the automated and unsupervised selection of the optimal bandwidth and benchmark it against classical techniques -- demonstrating its potential across different dimensions.
☆ Revisiting the Scaling Properties of Downstream Metrics in Large Language Model Training
While scaling laws for Large Language Models (LLMs) traditionally focus on proxy metrics like pretraining loss, predicting downstream task performance has been considered unreliable. This paper challenges that view by proposing a direct framework to model the scaling of benchmark performance from the training budget. We find that for a fixed token-to-parameter ratio, a simple power law can accurately describe the scaling behavior of log accuracy on multiple popular downstream tasks. Our results show that the direct approach extrapolates better than the previously proposed two-stage procedure, which is prone to compounding errors. Furthermore, we introduce functional forms that predict accuracy across token-to-parameter ratios and account for inference compute under repeated sampling. We validate our findings on models with up to 17B parameters trained on up to 350B tokens across two dataset mixtures. To support reproducibility and encourage future research, we release the complete set of pretraining losses and downstream evaluation results.
☆ Explainable Anomaly Detection for Industrial IoT Data Streams
Industrial maintenance is being transformed by the Internet of Things and edge computing, generating continuous data streams that demand real-time, adaptive decision-making under limited computational resources. While data stream mining (DSM) addresses this challenge, most methods assume fully supervised settings, yet in practice, ground-truth labels are often delayed or unavailable. This paper presents a collaborative DSM framework that integrates unsupervised anomaly detection with interactive, human-in-the-loop learning to support maintenance decisions. We employ an online Isolation Forest and enhance interpretability using incremental Partial Dependence Plots and a feature importance score, derived from deviations of Individual Conditional Expectation curves from a fading average, enabling users to dynamically reassess feature relevance and adjust anomaly thresholds. We describe the real-time implementation and provide initial results for fault detection in a Jacquard loom unit. Ongoing work targets continuous monitoring to predict and explain imminent bearing failures.
comment: Accepted at 41st ACM/SIGAPP Symposium On Applied Computing (SAC 2026)
☆ Decentralized Trust for Space AI: Blockchain-Based Federated Learning Across Multi-Vendor LEO Satellite Networks
The rise of space AI is reshaping government and industry through applications such as disaster detection, border surveillance, and climate monitoring, powered by massive data from commercial and governmental low Earth orbit (LEO) satellites. Federated satellite learning (FSL) enables joint model training without sharing raw data, but suffers from slow convergence due to intermittent connectivity and introduces critical trust challenges--where biased or falsified updates can arise across satellite constellations, including those injected through cyberattacks on inter-satellite or satellite-ground communication links. We propose OrbitChain, a blockchain-backed framework that empowers trustworthy multi-vendor collaboration in LEO networks. OrbitChain (i) offloads consensus to high-altitude platforms (HAPs) with greater computational capacity, (ii) ensures transparent, auditable provenance of model updates from different orbits owned by different vendors, and (iii) prevents manipulated or incomplete contributions from affecting global FSL model aggregation. Extensive simulations show that OrbitChain reduces computational and communication overhead while improving privacy, security, and global model accuracy. Its permissioned proof-of-authority ledger finalizes over 1000 blocks with sub-second latency (0.16,s, 0.26,s, 0.35,s for 1-of-5, 3-of-5, and 5-of-5 quorums). Moreover, OrbitChain reduces convergence time by up to 30 hours on real satellite datasets compared to single-vendor, demonstrating its effectiveness for real-time, multi-vendor learning. Our code is available at https://github.com/wsu-cyber-security-lab-ai/OrbitChain.git
☆ DAO-GP Drift Aware Online Non-Linear Regression Gaussian-Process
Real-world datasets often exhibit temporal dynamics characterized by evolving data distributions. Disregarding this phenomenon, commonly referred to as concept drift, can significantly diminish a model's predictive accuracy. Furthermore, the presence of hyperparameters in online models exacerbates this issue. These parameters are typically fixed and cannot be dynamically adjusted by the user in response to the evolving data distribution. Gaussian Process (GP) models offer powerful non-parametric regression capabilities with uncertainty quantification, making them ideal for modeling complex data relationships in an online setting. However, conventional online GP methods face several critical limitations, including a lack of drift-awareness, reliance on fixed hyperparameters, vulnerability to data snooping, absence of a principled decay mechanism, and memory inefficiencies. In response, we propose DAO-GP (Drift-Aware Online Gaussian Process), a novel, fully adaptive, hyperparameter-free, decayed, and sparse non-linear regression model. DAO-GP features a built-in drift detection and adaptation mechanism that dynamically adjusts model behavior based on the severity of drift. Extensive empirical evaluations confirm DAO-GP's robustness across stationary conditions, diverse drift types (abrupt, incremental, gradual), and varied data characteristics. Analyses demonstrate its dynamic adaptation, efficient in-memory and decay-based management, and evolving inducing points. Compared with state-of-the-art parametric and non-parametric models, DAO-GP consistently achieves superior or competitive performance, establishing it as a drift-resilient solution for online non-linear regression.
☆ When Tables Leak: Attacking String Memorization in LLM-Based Tabular Data Generation
Large Language Models (LLMs) have recently demonstrated remarkable performance in generating high-quality tabular synthetic data. In practice, two primary approaches have emerged for adapting LLMs to tabular data generation: (i) fine-tuning smaller models directly on tabular datasets, and (ii) prompting larger models with examples provided in context. In this work, we show that popular implementations from both regimes exhibit a tendency to compromise privacy by reproducing memorized patterns of numeric digits from their training data. To systematically analyze this risk, we introduce a simple No-box Membership Inference Attack (MIA) called LevAtt that assumes adversarial access to only the generated synthetic data and targets the string sequences of numeric digits in synthetic observations. Using this approach, our attack exposes substantial privacy leakage across a wide range of models and datasets, and in some cases, is even a perfect membership classifier on state-of-the-art models. Our findings highlight a unique privacy vulnerability of LLM-based synthetic data generation and the need for effective defenses. To this end, we propose two methods, including a novel sampling strategy that strategically perturbs digits during generation. Our evaluation demonstrates that this approach can defeat these attacks with minimal loss of fidelity and utility of the synthetic data.
☆ Fed-SE: Federated Self-Evolution for Privacy-Constrained Multi-Environment LLM Agents
LLM agents are widely deployed in complex interactive tasks, yet privacy constraints often preclude centralized optimization and co-evolution across dynamic environments. While Federated Learning (FL) has proven effective on static datasets, its extension to the open-ended self-evolution of agents remains underexplored. Directly applying standard FL is challenging: heterogeneous tasks and sparse, trajectory-level rewards introduce severe gradient conflicts, destabilizing the global optimization process. To bridge this gap, we propose Fed-SE, a Federated Self-Evolution framework for LLM agents. Fed-SE establishes a local evolution-global aggregation paradigm. Locally, agents employ parameter-efficient fine-tuning on filtered, high-return trajectories to achieve stable gradient updates. Globally, Fed-SE aggregates updates within a low-rank subspace that disentangles environment-specific dynamics, effectively reducing negative transfer across clients. Experiments across five heterogeneous environments demonstrate that Fed-SE improves average task success rates by approximately 18% over federated baselines, validating its effectiveness in robust cross-environment knowledge transfer in privacy-constrained deployments.
☆ Differentially Private Synthetic Data Generation Using Context-Aware GANs
The widespread use of big data across sectors has raised major privacy concerns, especially when sensitive information is shared or analyzed. Regulations such as GDPR and HIPAA impose strict controls on data handling, making it difficult to balance the need for insights with privacy requirements. Synthetic data offers a promising solution by creating artificial datasets that reflect real patterns without exposing sensitive information. However, traditional synthetic data methods often fail to capture complex, implicit rules that link different elements of the data and are essential in domains like healthcare. They may reproduce explicit patterns but overlook domain-specific constraints that are not directly stated yet crucial for realism and utility. For example, prescription guidelines that restrict certain medications for specific conditions or prevent harmful drug interactions may not appear explicitly in the original data. Synthetic data generated without these implicit rules can lead to medically inappropriate or unrealistic profiles. To address this gap, we propose ContextGAN, a Context-Aware Differentially Private Generative Adversarial Network that integrates domain-specific rules through a constraint matrix encoding both explicit and implicit knowledge. The constraint-aware discriminator evaluates synthetic data against these rules to ensure adherence to domain constraints, while differential privacy protects sensitive details from the original data. We validate ContextGAN across healthcare, security, and finance, showing that it produces high-quality synthetic data that respects domain rules and preserves privacy. Our results demonstrate that ContextGAN improves realism and utility by enforcing domain constraints, making it suitable for applications that require compliance with both explicit patterns and implicit rules under strict privacy guarantees.
☆ Secure and Privacy-Preserving Federated Learning for Next-Generation Underground Mine Safety
Underground mining operations depend on sensor networks to monitor critical parameters such as temperature, gas concentration, and miner movement, enabling timely hazard detection and safety decisions. However, transmitting raw sensor data to a centralized server for machine learning (ML) model training raises serious privacy and security concerns. Federated Learning (FL) offers a promising alternative by enabling decentralized model training without exposing sensitive local data. Yet, applying FL in underground mining presents unique challenges: (i) Adversaries may eavesdrop on shared model updates to launch model inversion or membership inference attacks, compromising data privacy and operational safety; (ii) Non-IID data distributions across mines and sensor noise can hinder model convergence. To address these issues, we propose FedMining--a privacy-preserving FL framework tailored for underground mining. FedMining introduces two core innovations: (1) a Decentralized Functional Encryption (DFE) scheme that keeps local models encrypted, thwarting unauthorized access and inference attacks; and (2) a balancing aggregation mechanism to mitigate data heterogeneity and enhance convergence. Evaluations on real-world mining datasets demonstrate FedMining's ability to safeguard privacy while maintaining high model accuracy and achieving rapid convergence with reduced communication and computation overhead. These advantages make FedMining both secure and practical for real-time underground safety monitoring.
☆ Refining Diffusion Models for Motion Synthesis with an Acceleration Loss to Generate Realistic IMU Data
We propose a text-to-IMU (inertial measurement unit) motion-synthesis framework to obtain realistic IMU data by fine-tuning a pretrained diffusion model with an acceleration-based second-order loss (L_acc). L_acc enforces consistency in the discrete second-order temporal differences of the generated motion, thereby aligning the diffusion prior with IMU-specific acceleration patterns. We integrate L_acc into the training objective of an existing diffusion model, finetune the model to obtain an IMU-specific motion prior, and evaluate the model with an existing text-to-IMU framework that comprises surface modelling and virtual sensor simulation. We analysed acceleration signal fidelity and differences between synthetic motion representation and actual IMU recordings. As a downstream application, we evaluated Human Activity Recognition (HAR) and compared the classification performance using data of our method with the earlier diffusion model and two additional diffusion model baselines. When we augmented the earlier diffusion model objective with L_acc and continued training, L_acc decreased by 12.7% relative to the original model. The improvements were considerably larger in high-dynamic activities (i.e., running, jumping) compared to low-dynamic activities~(i.e., sitting, standing). In a low-dimensional embedding, the synthetic IMU data produced by our refined model shifts closer to the distribution of real IMU recordings. HAR classification trained exclusively on our refined synthetic IMU data improved performance by 8.7% compared to the earlier diffusion model and by 7.6% over the best-performing comparison diffusion model. We conclude that acceleration-aware diffusion refinement provides an effective approach to align motion generation and IMU synthesis and highlights how flexible deep learning pipelines are for specialising generic text-to-motion priors to sensor-specific tasks.
comment: 7 pages, 3 figures, 1 table
☆ Reinforcement Learning From State and Temporal Differences
TD($λ$) with function approximation has proved empirically successful for some complex reinforcement learning problems. For linear approximation, TD($λ$) has been shown to minimise the squared error between the approximate value of each state and the true value. However, as far as policy is concerned, it is error in the relative ordering of states that is critical, rather than error in the state values. We illustrate this point, both in simple two-state and three-state systems in which TD($λ$)--starting from an optimal policy--converges to a sub-optimal policy, and also in backgammon. We then present a modified form of TD($λ$), called STD($λ$), in which function approximators are trained with respect to relative state values on binary decision problems. A theoretical analysis, including a proof of monotonic policy improvement for STD($λ$) in the context of the two-state system, is presented, along with a comparison with Bertsekas' differential training method [1]. This is followed by successful demonstrations of STD($λ$) on the two-state system and a variation on the well known acrobot problem.
☆ Generation is Required for Data-Efficient Perception
It has been hypothesized that human-level visual perception requires a generative approach in which internal representations result from inverting a decoder. Yet today's most successful vision models are non-generative, relying on an encoder that maps images to representations without decoder inversion. This raises the question of whether generation is, in fact, necessary for machines to achieve human-level visual perception. To address this, we study whether generative and non-generative methods can achieve compositional generalization, a hallmark of human perception. Under a compositional data generating process, we formalize the inductive biases required to guarantee compositional generalization in decoder-based (generative) and encoder-based (non-generative) methods. We then show theoretically that enforcing these inductive biases on encoders is generally infeasible using regularization or architectural constraints. In contrast, for generative methods, the inductive biases can be enforced straightforwardly, thereby enabling compositional generalization by constraining a decoder and inverting it. We highlight how this inversion can be performed efficiently, either online through gradient-based search or offline through generative replay. We examine the empirical implications of our theory by training a range of generative and non-generative methods on photorealistic image datasets. We find that, without the necessary inductive biases, non-generative methods often fail to generalize compositionally and require large-scale pretraining or added supervision to improve generalization. By comparison, generative methods yield significant improvements in compositional generalization, without requiring additional data, by leveraging suitable inductive biases on a decoder along with search and replay.
comment: Preprint
☆ Forecasting Fails: Unveiling Evasion Attacks in Weather Prediction Models
With the increasing reliance on AI models for weather forecasting, it is imperative to evaluate their vulnerability to adversarial perturbations. This work introduces Weather Adaptive Adversarial Perturbation Optimization (WAAPO), a novel framework for generating targeted adversarial perturbations that are both effective in manipulating forecasts and stealthy to avoid detection. WAAPO achieves this by incorporating constraints for channel sparsity, spatial localization, and smoothness, ensuring that perturbations remain physically realistic and imperceptible. Using the ERA5 dataset and FourCastNet (Pathak et al. 2022), we demonstrate WAAPO's ability to generate adversarial trajectories that align closely with predefined targets, even under constrained conditions. Our experiments highlight critical vulnerabilities in AI-driven forecasting models, where small perturbations to initial conditions can result in significant deviations in predicted weather patterns. These findings underscore the need for robust safeguards to protect against adversarial exploitation in operational forecasting systems.
☆ Do Depth-Grown Models Overcome the Curse of Depth? An In-Depth Analysis
Gradually growing the depth of Transformers during training can not only reduce training cost but also lead to improved reasoning performance, as shown by MIDAS (Saunshi et al., 2024). Thus far, however, a mechanistic understanding of these gains has been missing. In this work, we establish a connection to recent work showing that layers in the second half of non-grown, pre-layernorm Transformers contribute much less to the final output distribution than those in the first half - also known as the Curse of Depth (Sun et al., 2025, Csordás et al., 2025). Using depth-wise analyses, we demonstrate that growth via gradual middle stacking yields more effective utilization of model depth, alters the residual stream structure, and facilitates the formation of permutable computational blocks. In addition, we propose a lightweight modification of MIDAS that yields further improvements in downstream reasoning benchmarks. Overall, this work highlights how the gradual growth of model depth can lead to the formation of distinct computational circuits and overcome the limited depth utilization seen in standard non-grown models.
☆ Multicalibration for LLM-based Code Generation
As AI-based code generation becomes widespread, researchers are investigating the calibration of code LLMs - ensuring their confidence scores faithfully represent the true likelihood of code correctness. To do so, we investigate multicalibration, which can capture additional factors about a coding problem, such as complexity, code length, or programming language used. We study four multicalibration approaches on three function synthesis benchmarks, using latest-generation code LLMs (Qwen3 Coder, GPT-OSS, DeepSeek-R1-Distill). Our results demonstrate that multicalibration can yield distinct improvements over both uncalibrated token likelihoods (+1.03 in skill score) and baseline calibrations (+0.37 in skill score). We study the influence of the aforementioned factors in ablations, and make our dataset (consisting of code generations, likelihoods, and correctness labels) available for future research on code LLM calibration.
comment: Accepted at AI-SQE 2026 (The 1st International Workshop on AI for Software Quality Evaluation: Judgment, Metrics, Benchmarks, and Beyond)
☆ PrivTune: Efficient and Privacy-Preserving Fine-Tuning of Large Language Models via Device-Cloud Collaboration
With the rise of large language models, service providers offer language models as a service, enabling users to fine-tune customized models via uploaded private datasets. However, this raises concerns about sensitive data leakage. Prior methods, relying on differential privacy within device-cloud collaboration frameworks, struggle to balance privacy and utility, exposing users to inference attacks or degrading fine-tuning performance. To address this, we propose PrivTune, an efficient and privacy-preserving fine-tuning framework via Split Learning (SL). The key idea of PrivTune is to inject crafted noise into token representations from the SL bottom model, making each token resemble the $n$-hop indirect neighbors. PrivTune formulates this as an optimization problem to compute the optimal noise vector, aligning with defense-utility goals. On this basis, it then adjusts the parameters (i.e., mean) of the $d_χ$-Privacy noise distribution to align with the optimization direction and scales the noise according to token importance to minimize distortion. Experiments on five datasets (covering both classification and generation tasks) against three embedding inversion and three attribute inference attacks show that, using RoBERTa on the Stanford Sentiment Treebank dataset, PrivTune reduces the attack success rate to 10% with only a 3.33% drop in utility performance, outperforming state-of-the-art baselines.
comment: Accepted at IEEE INFOCOM 2026 (full version)
☆ Identifying counterfactual probabilities using bivariate distributions and uplift modeling
Uplift modeling estimates the causal effect of an intervention as the difference between potential outcomes under treatment and control, whereas counterfactual identification aims to recover the joint distribution of these potential outcomes (e.g., "Would this customer still have churned had we given them a marketing offer?"). This joint counterfactual distribution provides richer information than the uplift but is harder to estimate. However, the two approaches are synergistic: uplift models can be leveraged for counterfactual estimation. We propose a counterfactual estimator that fits a bivariate beta distribution to predicted uplift scores, yielding posterior distributions over counterfactual outcomes. Our approach requires no causal assumptions beyond those of uplift modeling. Simulations show the efficacy of the approach, which can be applied, for example, to the problem of customer churn in telecom, where it reveals insights unavailable to standard ML or uplift models alone.
comment: 7 pages. Submitted to the 34th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
☆ Can TabPFN Compete with GNNs for Node Classification via Graph Tabularization?
Foundation models pretrained on large data have demonstrated remarkable zero-shot generalization capabilities across domains. Building on the success of TabPFN for tabular data and its recent extension to time series, we investigate whether graph node classification can be effectively reformulated as a tabular learning problem. We introduce TabPFN-GN, which transforms graph data into tabular features by extracting node attributes, structural properties, positional encodings, and optionally smoothed neighborhood features. This enables TabPFN to perform direct node classification without any graph-specific training or language model dependencies. Our experiments on 12 benchmark datasets reveal that TabPFN-GN achieves competitive performance with GNNs on homophilous graphs and consistently outperforms them on heterophilous graphs. These results demonstrate that principled feature engineering can bridge the gap between tabular and graph domains, providing a practical alternative to task-specific GNN training and LLM-dependent graph foundation models.
comment: Rejected from LoG 2025 (submitted August 2025)
☆ De novo generation of functional terpene synthases using TpsGPT NeurIPS 2025
Terpene synthases (TPS) are a key family of enzymes responsible for generating the diverse terpene scaffolds that underpin many natural products, including front-line anticancer drugs such as Taxol. However, de novo TPS design through directed evolution is costly and slow. We introduce TpsGPT, a generative model for scalable TPS protein design, built by fine-tuning the protein language model ProtGPT2 on 79k TPS sequences mined from UniProt. TpsGPT generated de novo enzyme candidates in silico and we evaluated them using multiple validation metrics, including EnzymeExplorer classification, ESMFold structural confidence (pLDDT), sequence diversity, CLEAN classification, InterPro domain detection, and Foldseek structure alignment. From an initial pool of 28k generated sequences, we identified seven putative TPS enzymes that satisfied all validation criteria. Experimental validation confirmed TPS enzymatic activity in at least two of these sequences. Our results show that fine-tuning of a protein language model on a carefully curated, enzyme-class-specific dataset, combined with rigorous filtering, can enable the de novo generation of functional, evolutionarily distant enzymes.
comment: 11 pages, 8 figures, Accepted at the NeurIPS 2025 AI for Science and MLSB 2025 workshops
☆ Learning and Editing Universal Graph Prompt Tuning via Reinforcement Learning KDD 2026
Early graph prompt tuning approaches relied on task-specific designs for Graph Neural Networks (GNNs), limiting their adaptability across diverse pre-training strategies. In contrast, another promising line of research has investigated universal graph prompt tuning, which operates directly in the input graph's feature space and builds a theoretical foundation that universal graph prompt tuning can theoretically achieve an equivalent effect of any prompting function, eliminating dependence on specific pre-training strategies. Recent works propose selective node-based graph prompt tuning to pursue more ideal prompts. However, we argue that selective node-based graph prompt tuning inevitably compromises the theoretical foundation of universal graph prompt tuning. In this paper, we strengthen the theoretical foundation of universal graph prompt tuning by introducing stricter constraints, demonstrating that adding prompts to all nodes is a necessary condition for achieving the universality of graph prompts. To this end, we propose a novel model and paradigm, Learning and Editing Universal GrAph Prompt Tuning (LEAP), which preserves the theoretical foundation of universal graph prompt tuning while pursuing more ideal prompts. Specifically, we first build the basic universal graph prompts to preserve the theoretical foundation and then employ actor-critic reinforcement learning to select nodes and edit prompts. Extensive experiments on graph- and node-level tasks across various pre-training strategies in both full-shot and few-shot scenarios show that LEAP consistently outperforms fine-tuning and other prompt-based approaches.
comment: Accepted by KDD 2026
☆ Mitigating Individual Skin Tone Bias in Skin Lesion Classification through Distribution-Aware Reweighting
Skin color has historically been a focal point of discrimination, yet fairness research in machine learning for medical imaging often relies on coarse subgroup categories, overlooking individual-level variations. Such group-based approaches risk obscuring biases faced by outliers within subgroups. This study introduces a distribution-based framework for evaluating and mitigating individual fairness in skin lesion classification. We treat skin tone as a continuous attribute rather than a categorical label, and employ kernel density estimation (KDE) to model its distribution. We further compare twelve statistical distance metrics to quantify disparities between skin tone distributions and propose a distance-based reweighting (DRW) loss function to correct underrepresentation in minority tones. Experiments across CNN and Transformer models demonstrate: (i) the limitations of categorical reweighting in capturing individual-level disparities, and (ii) the superior performance of distribution-based reweighting, particularly with Fidelity Similarity (FS), Wasserstein Distance (WD), Hellinger Metric (HM), and Harmonic Mean Similarity (HS). These findings establish a robust methodology for advancing fairness at individual level in dermatological AI systems, and highlight broader implications for sensitive continuous attributes in medical image analysis.
☆ Neural Ordinary Differential Equations for Simulating Metabolic Pathway Dynamics from Time-Series Multiomics Data
The advancement of human healthspan and bioengineering relies heavily on predicting the behavior of complex biological systems. While high-throughput multiomics data is becoming increasingly abundant, converting this data into actionable predictive models remains a bottleneck. High-capacity, datadriven simulation systems are critical in this landscape; unlike classical mechanistic models restricted by prior knowledge, these architectures can infer latent interactions directly from observational data, allowing for the simulation of temporal trajectories and the anticipation of downstream intervention effects in personalized medicine and synthetic biology. To address this challenge, we introduce Neural Ordinary Differential Equations (NODEs) as a dynamic framework for learning the complex interplay between the proteome and metabolome. We applied this framework to time-series data derived from engineered Escherichia coli strains, modeling the continuous dynamics of metabolic pathways. The proposed NODE architecture demonstrates superior performance in capturing system dynamics compared to traditional machine learning pipelines. Our results show a greater than 90% improvement in root mean squared error over baselines across both Limonene (up to 94.38% improvement) and Isopentenol (up to 97.65% improvement) pathway datasets. Furthermore, the NODE models demonstrated a 1000x acceleration in inference time, establishing them as a scalable, high-fidelity tool for the next generation of metabolic engineering and biological discovery.
☆ Exposing Hidden Biases in Text-to-Image Models via Automated Prompt Search
Text-to-image (TTI) diffusion models have achieved remarkable visual quality, yet they have been repeatedly shown to exhibit social biases across sensitive attributes such as gender, race and age. To mitigate these biases, existing approaches frequently depend on curated prompt datasets - either manually constructed or generated with large language models (LLMs) - as part of their training and/or evaluation procedures. Beside the curation cost, this also risks overlooking unanticipated, less obvious prompts that trigger biased generation, even in models that have undergone debiasing. In this work, we introduce Bias-Guided Prompt Search (BGPS), a framework that automatically generates prompts that aim to maximize the presence of biases in the resulting images. BGPS comprises two components: (1) an LLM instructed to produce attribute-neutral prompts and (2) attribute classifiers acting on the TTI's internal representations that steer the decoding process of the LLM toward regions of the prompt space that amplify the image attributes of interest. We conduct extensive experiments on Stable Diffusion 1.5 and a state-of-the-art debiased model and discover an array of subtle and previously undocumented biases that severely deteriorate fairness metrics. Crucially, the discovered prompts are interpretable, i.e they may be entered by a typical user, quantitatively improving the perplexity metric compared to a prominent hard prompt optimization counterpart. Our findings uncover TTI vulnerabilities, while BGPS expands the bias search space and can act as a new evaluation tool for bias mitigation.
☆ Multi-domain performance analysis with scores tailored to user preferences
The performance of algorithms, methods, and models tends to depend heavily on the distribution of cases on which they are applied, this distribution being specific to the applicative domain. After performing an evaluation in several domains, it is highly informative to compute a (weighted) mean performance and, as shown in this paper, to scrutinize what happens during this averaging. To achieve this goal, we adopt a probabilistic framework and consider a performance as a probability measure (e.g., a normalized confusion matrix for a classification task). It appears that the corresponding weighted mean is known to be the summarization, and that only some remarkable scores assign to the summarized performance a value equal to a weighted arithmetic mean of the values assigned to the domain-specific performances. These scores include the family of ranking scores, a continuum parameterized by user preferences, and that the weights to consider in the arithmetic mean depend on the user preferences. Based on this, we rigorously define four domains, named easiest, most difficult, preponderant, and bottleneck domains, as functions of user preferences. After establishing the theory in a general setting, regardless of the task, we develop new visual tools for two-class classification.
☆ Gradient-Informed Monte Carlo Fine-Tuning of Diffusion Models for Low-Thrust Trajectory Design
Preliminary mission design of low-thrust spacecraft trajectories in the Circular Restricted Three-Body Problem is a global search characterized by a complex objective landscape and numerous local minima. Formulating the problem as sampling from an unnormalized distribution supported on neighborhoods of locally optimal solutions, provides the opportunity to deploy Markov chain Monte Carlo methods and generative machine learning. In this work, we extend our previous self-supervised diffusion model fine-tuning framework to employ gradient-informed Markov chain Monte Carlo. We compare two algorithms - the Metropolis-Adjusted Langevin Algorithm and Hamiltonian Monte Carlo - both initialized from a distribution learned by a diffusion model. Derivatives of an objective function that balances fuel consumption, time of flight and constraint violations are computed analytically using state transition matrices. We show that incorporating the gradient drift term accelerates mixing and improves convergence of the Markov chain for a multi-revolution transfer in the Saturn-Titan system. Among the evaluated methods, MALA provides the best trade-off between performance and computational cost. Starting from samples generated by a baseline diffusion model trained on a related transfer, MALA explicitly targets Pareto-optimal solutions. Compared to a random walk Metropolis algorithm, it increases the feasibility rate from 17.34% to 63.01% and produces a denser, more diverse coverage of the Pareto front. By fine-tuning a diffusion model on the generated samples and associated reward values with reward-weighted likelihood maximization, we learn the global solution structure of the problem and eliminate the need for a tedious separate data generation phase.
☆ An Additive Manufacturing Part Qualification Framework: Transferring Knowledge of Stress-strain Behaviors from Additively Manufactured Polymers to Metals
Part qualification is crucial in additive manufacturing (AM) because it ensures that additively manufactured parts can be consistently produced and reliably used in critical applications. Part qualification aims at verifying that an additively manufactured part meets performance requirements; therefore, predicting the complex stress-strain behaviors of additively manufactured parts is critical. We develop a dynamic time warping (DTW)-transfer learning (TL) framework for additive manufacturing part qualification by transferring knowledge of the stress-strain behaviors of additively manufactured low-cost polymers to metals. Specifically, the framework employs DTW to select a polymer dataset as the source domain that is the most relevant to the target metal dataset. Using a long short-term memory (LSTM) model, four source polymers (i.e., Nylon, PLA, CF-ABS, and Resin) and three target metals (i.e., AlSi10Mg, Ti6Al4V, and carbon steel) that are fabricated by different AM techniques are utilized to demonstrate the effectiveness of the DTW-TL framework. Experimental results show that the DTW-TL framework identifies the closest match between polymers and metals to select one single polymer dataset as the source domain. The DTW-TL model achieves the lowest mean absolute percentage error of 12.41% and highest coefficient of determination of 0.96 when three metals are used as the target domain, respectively, outperforming the vanilla LSTM model without TL as well as the TL model pre-trained on four polymer datasets as the source domain.
☆ DS FedProxGrad: Asymptotic Stationarity Without Noise Floor in Fair Federated Learning
Recent work \cite{arifgroup} introduced Federated Proximal Gradient \textbf{(\texttt{FedProxGrad})} for solving non-convex composite optimization problems in group fair federated learning. However, the original analysis established convergence only to a \textit{noise-dominated neighborhood of stationarity}, with explicit dependence on a variance-induced noise floor. In this work, we provide an improved asymptotic convergence analysis for a generalized \texttt{FedProxGrad}-type analytical framework with inexact local proximal solutions and explicit fairness regularization. We call this extended analytical framework \textbf{DS \texttt{FedProxGrad}} (Decay Step Size \texttt{FedProxGrad}). Under a Robbins-Monro step-size schedule \cite{robbins1951stochastic} and a mild decay condition on local inexactness, we prove that $\liminf_{r\to\infty} \mathbb{E}[\|\nabla F(\mathbf{x}^r)\|^2] = 0$, i.e., the algorithm is asymptotically stationary and the convergence rate does not depend on a variance-induced noise floor.
comment: 8 pages
☆ Direct transfer of optimized controllers to similar systems using dimensionless MPC
Scaled model experiments are commonly used in various engineering fields to reduce experimentation costs and overcome constraints associated with full-scale systems. The relevance of such experiments relies on dimensional analysis and the principle of dynamic similarity. However, transferring controllers to full-scale systems often requires additional tuning. In this paper, we propose a method to enable a direct controller transfer using dimensionless model predictive control, tuned automatically for closed-loop performance. With this reformulation, the closed-loop behavior of an optimized controller transfers directly to a new, dynamically similar system. Additionally, the dimensionless formulation allows for the use of data from systems of different scales during parameter optimization. We demonstrate the method on a cartpole swing-up and a car racing problem, applying either reinforcement learning or Bayesian optimization for tuning the controller parameters. Software used to obtain the results in this paper is publicly available at https://github.com/josipkh/dimensionless-mpcrl.
comment: 7 pages, 4 figures
☆ An Agentic AI System for Multi-Framework Communication Coding
Clinical communication is central to patient outcomes, yet large-scale human annotation of patient-provider conversation remains labor-intensive, inconsistent, and difficult to scale. Existing approaches based on large language models typically rely on single-task models that lack adaptability, interpretability, and reliability, especially when applied across various communication frameworks and clinical domains. In this study, we developed a Multi-framework Structured Agentic AI system for Clinical Communication (MOSAIC), built on a LangGraph-based architecture that orchestrates four core agents, including a Plan Agent for codebook selection and workflow planning, an Update Agent for maintaining up-to-date retrieval databases, a set of Annotation Agents that applies codebook-guided retrieval-augmented generation (RAG) with dynamic few-shot prompting, and a Verification Agent that provides consistency checks and feedback. To evaluate performance, we compared MOSAIC outputs against gold-standard annotations created by trained human coders. We developed and evaluated MOSAIC using 26 gold standard annotated transcripts for training and 50 transcripts for testing, spanning rheumatology and OB/GYN domains. On the test set, MOSAIC achieved an overall F1 score of 0.928. Performance was highest in the Rheumatology subset (F1 = 0.962) and strongest for Patient Behavior (e.g., patients asking questions, expressing preferences, or showing assertiveness). Ablations revealed that MOSAIC outperforms baseline benchmarking.
☆ Reusability in MLOps: Leveraging Ports and Adapters to Build a Microservices Architecture for the Maritime Domain
ML-Enabled Systems (MLES) are inherently complex since they require multiple components to achieve their business goal. This experience report showcases the software architecture reusability techniques applied while building Ocean Guard, an MLES for anomaly detection in the maritime domain. In particular, it highlights the challenges and lessons learned to reuse the Ports and Adapters pattern to support building multiple microservices from a single codebase. This experience report hopes to inspire software engineers, machine learning engineers, and data scientists to apply the Hexagonal Architecture pattern to build their MLES.
comment: 7 pages, 3 figures (3 diagrams), submitted to ICSA 2026
☆ Heuristics for Combinatorial Optimization via Value-based Reinforcement Learning: A Unified Framework and Analysis
Since the 1990s, considerable empirical work has been carried out to train statistical models, such as neural networks (NNs), as learned heuristics for combinatorial optimization (CO) problems. When successful, such an approach eliminates the need for experts to design heuristics per problem type. Due to their structure, many hard CO problems are amenable to treatment through reinforcement learning (RL). Indeed, we find a wealth of literature training NNs using value-based, policy gradient, or actor-critic approaches, with promising results, both in terms of empirical optimality gaps and inference runtimes. Nevertheless, there has been a paucity of theoretical work undergirding the use of RL for CO problems. To this end, we introduce a unified framework to model CO problems through Markov decision processes (MDPs) and solve them using RL techniques. We provide easy-to-test assumptions under which CO problems can be formulated as equivalent undiscounted MDPs that provide optimal solutions to the original CO problems. Moreover, we establish conditions under which value-based RL techniques converge to approximate solutions of the CO problem with a guarantee on the associated optimality gap. Our convergence analysis provides: (1) a sufficient rate of increase in batch size and projected gradient descent steps at each RL iteration; (2) the resulting optimality gap in terms of problem parameters and targeted RL accuracy; and (3) the importance of a choice of state-space embedding. Together, our analysis illuminates the success (and limitations) of the celebrated deep Q-learning algorithm in this problem context.
☆ Long-Sequence LSTM Modeling for NBA Game Outcome Prediction Using a Novel Multi-Season Dataset
Predicting the outcomes of professional basketball games, particularly in the National Basketball Association (NBA), has become increasingly important for coaching strategy, fan engagement, and sports betting. However, many existing prediction models struggle with concept drift, limited temporal context, and instability across seasons. To advance forecasting in this domain, we introduce a newly constructed longitudinal NBA dataset covering the 2004-05 to 2024-25 seasons and present a deep learning framework designed to model long-term performance trends. Our primary contribution is a Long Short-Term Memory (LSTM) architecture that leverages an extended sequence length of 9,840 games equivalent to eight full NBA seasons to capture evolving team dynamics and season-over-season dependencies. We compare this model against several traditional Machine Learning (ML) and Deep Learning (DL) baselines, including Logistic Regression, Random Forest, Multi-Layer Perceptron (MLP), and Convolutional Neural Network (CNN). The LSTM achieves the best performance across all metrics, with 72.35 accuracy, 73.15 precision and 76.13 AUC-ROC. These results demonstrate the importance of long-sequence temporal modeling in basketball outcome prediction and highlight the value of our new multi-season dataset for developing robust, generalizable NBA forecasting systems.
☆ Disturbance-Free Surgical Video Generation from Multi-Camera Shadowless Lamps for Open Surgery
Video recordings of open surgeries are greatly required for education and research purposes. However, capturing unobstructed videos is challenging since surgeons frequently block the camera field of view. To avoid occlusion, the positions and angles of the camera must be frequently adjusted, which is highly labor-intensive. Prior work has addressed this issue by installing multiple cameras on a shadowless lamp and arranging them to fully surround the surgical area. This setup increases the chances of some cameras capturing an unobstructed view. However, manual image alignment is needed in post-processing since camera configurations change every time surgeons move the lamp for optimal lighting. This paper aims to fully automate this alignment task. The proposed method identifies frames in which the lighting system moves, realigns them, and selects the camera with the least occlusion to generate a video that consistently presents the surgical field from a fixed perspective. A user study involving surgeons demonstrated that videos generated by our method were superior to those produced by conventional methods in terms of the ease of confirming the surgical area and the comfort during video viewing. Additionally, our approach showed improvements in video quality over existing techniques. Furthermore, we implemented several synthesis options for the proposed view-synthesis method and conducted a user study to assess surgeons' preferences for each option.
☆ A Hybrid Model for Stock Market Forecasting: Integrating News Sentiment and Time Series Data with Graph Neural Networks
Stock market prediction is a long-standing challenge in finance, as accurate forecasts support informed investment decisions. Traditional models rely mainly on historical prices, but recent work shows that financial news can provide useful external signals. This paper investigates a multimodal approach that integrates companies' news articles with their historical stock data to improve prediction performance. We compare a Graph Neural Network (GNN) model with a baseline LSTM model. Historical data for each company is encoded using an LSTM, while news titles are embedded with a language model. These embeddings form nodes in a heterogeneous graph, and GraphSAGE is used to capture interactions between articles, companies, and industries. We evaluate two targets: a binary direction-of-change label and a significance-based label. Experiments on the US equities and Bloomberg datasets show that the GNN outperforms the LSTM baseline, achieving 53% accuracy on the first target and a 4% precision gain on the second. Results also indicate that companies with more associated news yield higher prediction accuracy. Moreover, headlines contain stronger predictive signals than full articles, suggesting that concise news summaries play an important role in short-term market reactions.
comment: 11 pages, 6 figures. Published in the Proceedings of the 5th International Conference on Artificial Intelligence Research (ICAIR 2025). Published version available at: https://papers.academic-conferences.org/index.php/icair/article/view/4294
☆ Minimax and Bayes Optimal Adaptive Experimental Design for Treatment Choice
We consider an adaptive experiment for treatment choice and design a minimax and Bayes optimal adaptive experiment with respect to regret. Given binary treatments, the experimenter's goal is to choose the treatment with the highest expected outcome through an adaptive experiment, in order to maximize welfare. We consider adaptive experiments that consist of two phases, the treatment allocation phase and the treatment choice phase. The experiment starts with the treatment allocation phase, where the experimenter allocates treatments to experimental subjects to gather observations. During this phase, the experimenter can adaptively update the allocation probabilities using the observations obtained in the experiment. After the allocation phase, the experimenter proceeds to the treatment choice phase, where one of the treatments is selected as the best. For this adaptive experimental procedure, we propose an adaptive experiment that splits the treatment allocation phase into two stages, where we first estimate the standard deviations and then allocate each treatment proportionally to its standard deviation. We show that this experiment, often referred to as Neyman allocation, is minimax and Bayes optimal in the sense that its regret upper bounds exactly match the lower bounds that we derive. To show this optimality, we derive minimax and Bayes lower bounds for the regret using change-of-measure arguments. Then, we evaluate the corresponding upper bounds using the central limit theorem and large deviation bounds.
☆ Data-Efficient Learning of Anomalous Diffusion with Wavelet Representations: Enabling Direct Learning from Experimental Trajectories
Machine learning (ML) has become a versatile tool for analyzing anomalous diffusion trajectories, yet most existing pipelines are trained on large collections of simulated data. In contrast, experimental trajectories, such as those from single-particle tracking (SPT), are typically scarce and may differ substantially from the idealized models used for simulation, leading to degradation or even breakdown of performance when ML methods are applied to real data. To address this mismatch, we introduce a wavelet-based representation of anomalous diffusion that enables data-efficient learning directly from experimental recordings. This representation is constructed by applying six complementary wavelet families to each trajectory and combining the resulting wavelet modulus scalograms. We first evaluate the wavelet representation on simulated trajectories from the andi-datasets benchmark, where it clearly outperforms both feature-based and trajectory-based methods with as few as 1000 training trajectories and still retains an advantage on large training sets. We then use this representation to learn directly from experimental SPT trajectories of fluorescent beads diffusing in F-actin networks, where the wavelet representation remains superior to existing alternatives for both diffusion-exponent regression and mesh-size classification. In particular, when predicting the diffusion exponents of experimental trajectories, a model trained on 1200 experimental tracks using the wavelet representation achieves significantly lower errors than state-of-the-art deep learning models trained purely on $10^6$ simulated trajectories. We associate this data efficiency with the emergence of distinct scale fingerprints disentangling underlying diffusion mechanisms in the wavelet spectra.
comment: 23 pages, 16 figures
☆ Fused Gromov-Wasserstein Contrastive Learning for Effective Enzyme-Reaction Screening
Enzymes are crucial catalysts that enable a wide range of biochemical reactions. Efficiently identifying specific enzymes from vast protein libraries is essential for advancing biocatalysis. Traditional computational methods for enzyme screening and retrieval are time-consuming and resource-intensive. Recently, deep learning approaches have shown promise. However, these methods focus solely on the interaction between enzymes and reactions, overlooking the inherent hierarchical relationships within each domain. To address these limitations, we introduce FGW-CLIP, a novel contrastive learning framework based on optimizing the fused Gromov-Wasserstein distance. FGW-CLIP incorporates multiple alignments, including inter-domain alignment between reactions and enzymes and intra-domain alignment within enzymes and reactions. By introducing a tailored regularization term, our method minimizes the Gromov-Wasserstein distance between enzyme and reaction spaces, which enhances information integration across these domains. Extensive evaluations demonstrate the superiority of FGW-CLIP in challenging enzyme-reaction tasks. On the widely-used EnzymeMap benchmark, FGW-CLIP achieves state-of-the-art performance in enzyme virtual screening, as measured by BEDROC and EF metrics. Moreover, FGW-CLIP consistently outperforms across all three splits of ReactZyme, the largest enzyme-reaction benchmark, demonstrating robust generalization to novel enzymes and reactions. These results position FGW-CLIP as a promising framework for enzyme discovery in complex biochemical settings, with strong adaptability across diverse screening scenarios.
☆ Developing Distance-Aware Uncertainty Quantification Methods in Physics-Guided Neural Networks for Reliable Bearing Health Prediction
Accurate and uncertainty-aware degradation estimation is essential for predictive maintenance in safety-critical systems like rotating machinery with rolling-element bearings. Many existing uncertainty methods lack confidence calibration, are costly to run, are not distance-aware, and fail to generalize under out-of-distribution data. We introduce two distance-aware uncertainty methods for deterministic physics-guided neural networks: PG-SNGP, based on Spectral Normalization Gaussian Process, and PG-SNER, based on Deep Evidential Regression. We apply spectral normalization to the hidden layers so the network preserves distances from input to latent space. PG-SNGP replaces the final dense layer with a Gaussian Process layer for distance-sensitive uncertainty, while PG-SNER outputs Normal Inverse Gamma parameters to model uncertainty in a coherent probabilistic form. We assess performance using standard accuracy metrics and a new distance-aware metric based on the Pearson Correlation Coefficient, which measures how well predicted uncertainty tracks the distance between test and training samples. We also design a dynamic weighting scheme in the loss to balance data fidelity and physical consistency. We test our methods on rolling-element bearing degradation using the PRONOSTIA dataset and compare them with Monte Carlo and Deep Ensemble PGNNs. Results show that PG-SNGP and PG-SNER improve prediction accuracy, generalize reliably under OOD conditions, and remain robust to adversarial attacks and noise.
comment: Under review at Structural health Monitoring - SAGE
☆ Optimal Perturbation Budget Allocation for Data Poisoning in Offline Reinforcement Learning
Offline Reinforcement Learning (RL) enables policy optimization from static datasets but is inherently vulnerable to data poisoning attacks. Existing attack strategies typically rely on locally uniform perturbations, which treat all samples indiscriminately. This approach is inefficient, as it wastes the perturbation budget on low-impact samples, and lacks stealthiness due to significant statistical deviations. In this paper, we propose a novel Global Budget Allocation attack strategy. Leveraging the theoretical insight that a sample's influence on value function convergence is proportional to its Temporal Difference (TD) error, we formulate the attack as a global resource allocation problem. We derive a closed-form solution where perturbation magnitudes are assigned proportional to the TD-error sensitivity under a global L2 constraint. Empirical results on D4RL benchmarks demonstrate that our method significantly outperforms baseline strategies, achieving up to 80% performance degradation with minimal perturbations that evade detection by state-of-the-art statistical and spectral defenses.
☆ Solving Over-Smoothing in GNNs via Nonlocal Message Passing: Algebraic Smoothing and Depth Scalability
The relationship between Layer Normalization (LN) placement and the over-smoothing phenomenon remains underexplored. We identify a critical dilemma: Pre-LN architectures avoid over-smoothing but suffer from the curse of depth, while Post-LN architectures bypass the curse of depth but experience over-smoothing. To resolve this, we propose a new method based on Post-LN that induces algebraic smoothing, preventing over-smoothing without the curse of depth. Empirical results across five benchmarks demonstrate that our approach supports deeper networks (up to 256 layers) and improves performance, requiring no additional parameters. Key contributions: Theoretical Characterization: Analysis of LN dynamics and their impact on over-smoothing and the curse of depth. A Principled Solution: A parameter-efficient method that induces algebraic smoothing and avoids over-smoothing and the curse of depth. Empirical Validation: Extensive experiments showing the effectiveness of the method in deeper GNNs.
comment: 18 pages, 4 figures
☆ Using reinforcement learning to probe the role of feedback in skill acquisition
Many high-performance human activities are executed with little or no external feedback: think of a figure skater landing a triple jump, a pitcher throwing a curveball for a strike, or a barista pouring latte art. To study the process of skill acquisition under fully controlled conditions, we bypass human subjects. Instead, we directly interface a generalist reinforcement learning agent with a spinning cylinder in a tabletop circulating water channel to maximize or minimize drag. This setup has several desirable properties. First, it is a physical system, with the rich interactions and complex dynamics that only the physical world has: the flow is highly chaotic and extremely difficult, if not impossible, to model or simulate accurately. Second, the objective -- drag minimization or maximization -- is easy to state and can be captured directly in the reward, yet good strategies are not obvious beforehand. Third, decades-old experimental studies provide recipes for simple, high-performance open-loop policies. Finally, the setup is inexpensive and far easier to reproduce than human studies. In our experiments we find that high-dimensional flow feedback lets the agent discover high-performance drag-control strategies with only minutes of real-world interaction. When we later replay the same action sequences without any feedback, we obtain almost identical performance. This shows that feedback, and in particular flow feedback, is not needed to execute the learned policy. Surprisingly, without flow feedback during training the agent fails to discover any well-performing policy in drag maximization, but still succeeds in drag minimization, albeit more slowly and less reliably. Our studies show that learning a high-performance skill can require richer information than executing it, and learning conditions can be kind or wicked depending solely on the goal, not on dynamics or policy complexity.
comment: Website: https://antonioterpin.com/fluids-control
☆ Transformers for Multimodal Brain State Decoding: Integrating Functional Magnetic Resonance Imaging Data and Medical Metadata
Decoding brain states from functional magnetic resonance imaging (fMRI) data is vital for advancing neuroscience and clinical applications. While traditional machine learning and deep learning approaches have made strides in leveraging the high-dimensional and complex nature of fMRI data, they often fail to utilize the contextual richness provided by Digital Imaging and Communications in Medicine (DICOM) metadata. This paper presents a novel framework integrating transformer-based architectures with multimodal inputs, including fMRI data and DICOM metadata. By employing attention mechanisms, the proposed method captures intricate spatial-temporal patterns and contextual relationships, enhancing model accuracy, interpretability, and robustness. The potential of this framework spans applications in clinical diagnostics, cognitive neuroscience, and personalized medicine. Limitations, such as metadata variability and computational demands, are addressed, and future directions for optimizing scalability and generalizability are discussed.
☆ Biothreat Benchmark Generation Framework for Evaluating Frontier AI Models III: Implementing the Bacterial Biothreat Benchmark (B3) Dataset
The potential for rapidly-evolving frontier artificial intelligence (AI) models, especially large language models (LLMs), to facilitate bioterrorism or access to biological weapons has generated significant policy, academic, and public concern. Both model developers and policymakers seek to quantify and mitigate any risk, with an important element of such efforts being the development of model benchmarks that can assess the biosecurity risk posed by a particular model. This paper discusses the pilot implementation of the Bacterial Biothreat Benchmark (B3) dataset. It is the third in a series of three papers describing an overall Biothreat Benchmark Generation (BBG) framework, with previous papers detailing the development of the B3 dataset. The pilot involved running the benchmarks through a sample frontier AI model, followed by human evaluation of model responses, and an applied risk analysis of the results along several dimensions. Overall, the pilot demonstrated that the B3 dataset offers a viable, nuanced method for rapidly assessing the biosecurity risk posed by a LLM, identifying the key sources of that risk and providing guidance for priority areas of mitigation priority.
comment: 19 pages, 2 figures
☆ Biothreat Benchmark Generation Framework for Evaluating Frontier AI Models II: Benchmark Generation Process
The potential for rapidly-evolving frontier artificial intelligence (AI) models, especially large language models (LLMs), to facilitate bioterrorism or access to biological weapons has generated significant policy, academic, and public concern. Both model developers and policymakers seek to quantify and mitigate any risk, with an important element of such efforts being the development of model benchmarks that can assess the biosecurity risk posed by a particular model. This paper, the second in a series of three, describes the second component of a novel Biothreat Benchmark Generation (BBG) framework: the generation of the Bacterial Biothreat Benchmark (B3) dataset. The development process involved three complementary approaches: 1) web-based prompt generation, 2) red teaming, and 3) mining existing benchmark corpora, to generate over 7,000 potential benchmarks linked to the Task-Query Architecture that was developed during the first component of the project. A process of de-duplication, followed by an assessment of uplift diagnosticity, and general quality control measures, reduced the candidates to a set of 1,010 final benchmarks. This procedure ensured that these benchmarks are a) diagnostic in terms of providing uplift; b) directly relevant to biosecurity threats; and c) are aligned with a larger biosecurity architecture permitting nuanced analysis at different levels of analysis.
comment: 18 pages, 3 figures
☆ Uncertainty-Aware Subset Selection for Robust Visual Explainability under Distribution Shifts
Subset selection-based methods are widely used to explain deep vision models: they attribute predictions by highlighting the most influential image regions and support object-level explanations. While these methods perform well in in-distribution (ID) settings, their behavior under out-of-distribution (OOD) conditions remains poorly understood. Through extensive experiments across multiple ID-OOD sets, we find that reliability of the existing subset based methods degrades markedly, yielding redundant, unstable, and uncertainty-sensitive explanations. To address these shortcomings, we introduce a framework that combines submodular subset selection with layer-wise, gradient-based uncertainty estimation to improve robustness and fidelity without requiring additional training or auxiliary models. Our approach estimates uncertainty via adaptive weight perturbations and uses these estimates to guide submodular optimization, ensuring diverse and informative subset selection. Empirical evaluations show that, beyond mitigating the weaknesses of existing methods under OOD scenarios, our framework also yields improvements in ID settings. These findings highlight limitations of current subset-based approaches and demonstrate how uncertainty-driven optimization can enhance attribution and object-level interpretability, paving the way for more transparent and trustworthy AI in real-world vision applications.
☆ Learned iterative networks: An operator learning perspective
Learned image reconstruction has become a pillar in computational imaging and inverse problems. Among the most successful approaches are learned iterative networks, which are formulated by unrolling classical iterative optimisation algorithms for solving variational problems. While the underlying algorithm is usually formulated in the functional analytic setting, learned approaches are often viewed as purely discrete. In this chapter we present a unified operator view for learned iterative networks. Specifically, we formulate a learned reconstruction operator, defining how to compute, and separately the learning problem, which defines what to compute. In this setting we present common approaches and show that many approaches are closely related in their core. We review linear as well as nonlinear inverse problems in this framework and present a short numerical study to conclude.
☆ Fully Decentralized Certified Unlearning
Machine unlearning (MU) seeks to remove the influence of specified data from a trained model in response to privacy requests or data poisoning. While certified unlearning has been analyzed in centralized and server-orchestrated federated settings (via guarantees analogous to differential privacy, DP), the decentralized setting -- where peers communicate without a coordinator remains underexplored. We study certified unlearning in decentralized networks with fixed topologies and propose RR-DU, a random-walk procedure that performs one projected gradient ascent step on the forget set at the unlearning client and a geometrically distributed number of projected descent steps on the retained data elsewhere, combined with subsampled Gaussian noise and projection onto a trust region around the original model. We provide (i) convergence guarantees in the convex case and stationarity guarantees in the nonconvex case, (ii) $(\varepsilon,δ)$ network-unlearning certificates on client views via subsampled Gaussian $Rényi$ DP (RDP) with segment-level subsampling, and (iii) deletion-capacity bounds that scale with the forget-to-local data ratio and quantify the effect of decentralization (network mixing and randomized subsampling) on the privacy--utility trade-off. Empirically, on image benchmarks (MNIST, CIFAR-10), RR-DU matches a given $(\varepsilon,δ)$ while achieving higher test accuracy than decentralized DP baselines and reducing forget accuracy to random guessing ($\approx 10\%$).
☆ Beyond Wave Variables: A Data-Driven Ensemble Approach for Enhanced Teleoperation Transparency and Stability
Time delays in communication channels present significant challenges for bilateral teleoperation systems, affecting both transparency and stability. Although traditional wave variable-based methods for a four-channel architecture ensure stability via passivity, they remain vulnerable to wave reflections and disturbances like variable delays and environmental noise. This article presents a data-driven hybrid framework that replaces the conventional wave-variable transform with an ensemble of three advanced sequence models, each optimized separately via the state-of-the-art Optuna optimizer, and combined through a stacking meta-learner. The base predictors include an LSTM augmented with Prophet for trend correction, an LSTM-based feature extractor paired with clustering and a random forest for improved regression, and a CNN-LSTM model for localized and long-term dynamics. Experimental validation was performed in Python using data generated from the baseline system implemented in MATLAB/Simulink. The results show that our optimized ensemble achieves a transparency comparable to the baseline wave-variable system under varying delays and noise, while ensuring stability through passivity constraints.
comment: 14 pages, 8 figures, 5 tables
☆ A Multivariate Bernoulli-Based Sampling Method for Multi-Label Data with Application to Meta-Research
Datasets may contain observations with multiple labels. If the labels are not mutually exclusive, and if the labels vary greatly in frequency, obtaining a sample that includes sufficient observations with scarcer labels to make inferences about those labels, and which deviates from the population frequencies in a known manner, creates challenges. In this paper, we consider a multivariate Bernoulli distribution as our underlying distribution of a multi-label problem. We present a novel sampling algorithm that takes label dependencies into account. It uses observed label frequencies to estimate multivariate Bernoulli distribution parameters and calculate weights for each label combination. This approach ensures the weighted sampling acquires target distribution characteristics while accounting for label dependencies. We applied this approach to a sample of research articles from Web of Science labeled with 64 biomedical topic categories. We aimed to preserve category frequency order, reduce frequency differences between most and least common categories, and account for category dependencies. This approach produced a more balanced sub-sample, enhancing the representation of minority categories.
☆ Magneton: Optimizing Energy Efficiency of ML Systems via Differential Energy Debugging
The training and deployment of machine learning (ML) models have become extremely energy-intensive. While existing optimization efforts focus primarily on hardware energy efficiency, a significant but overlooked source of inefficiency is software energy waste caused by poor software design. This often includes redundant or poorly designed operations that consume more energy without improving performance. These inefficiencies arise in widely used ML frameworks and applications, yet developers often lack the visibility and tools to detect and diagnose them. We propose differential energy debugging, a novel approach that leverages the observation that competing ML systems often implement similar functionality with vastly different energy consumption. Building on this insight, we design and implement Magneton, an energy profiler that compares energy consumption between similar ML systems at the operator level and automatically pinpoints code regions and configuration choices responsible for excessive energy use. Applied to 9 popular ML systems spanning LLM inference, general ML frameworks, and image generation, Magneton detects and diagnoses 16 known cases of software energy inefficiency and further discovers 8 previously unknown cases, 7 of which have been confirmed by developers.
comment: 12 pages, 10 fi
☆ Conditional Morphogenesis: Emergent Generation of Structural Digits via Neural Cellular Automata
Biological systems exhibit remarkable morphogenetic plasticity, where a single genome can encode various specialized cellular structures triggered by local chemical signals. In the domain of Deep Learning, Differentiable Neural Cellular Automata (NCA) have emerged as a paradigm to mimic this self-organization. However, existing NCA research has predominantly focused on continuous texture synthesis or single-target object recovery, leaving the challenge of class-conditional structural generation largely unexplored. In this work, we propose a novel Conditional Neural Cellular Automata (c-NCA) architecture capable of growing distinct topological structures - specifically MNIST digits - from a single generic seed, guided solely by a spatially broadcasted class vector. Unlike traditional generative models (e.g., GANs, VAEs) that rely on global reception fields, our model enforces strict locality and translation equivariance. We demonstrate that by injecting a one-hot condition into the cellular perception field, a single set of local rules can learn to break symmetry and self-assemble into ten distinct geometric attractors. Experimental results show that our c-NCA achieves stable convergence, correctly forming digit topologies from a single pixel, and exhibits robustness characteristic of biological systems. This work bridges the gap between texture-based NCAs and structural pattern formation, offering a lightweight, biologically plausible alternative for conditional generation.
comment: 13 pages, 5 figures. Code available at: https://github.com/alisakour/Conditional-NCA-Digits
☆ Enhancing Explainability of Graph Neural Networks Through Conceptual and Structural Analyses and Their Extensions
Graph Neural Networks (GNNs) have become a powerful tool for modeling and analyzing data with graph structures. The wide adoption in numerous applications underscores the value of these models. However, the complexity of these methods often impedes understanding their decision-making processes. Current Explainable AI (XAI) methods struggle to untangle the intricate relationships and interactions within graphs. Several methods have tried to bridge this gap via a post-hoc approach or self-interpretable design. Most of them focus on graph structure analysis to determine essential patterns that correlate with prediction outcomes. While post-hoc explanation methods are adaptable, they require extra computational resources and may be less reliable due to limited access to the model's internal workings. Conversely, Interpretable models can provide immediate explanations, but their generalizability to different scenarios remains a major concern. To address these shortcomings, this thesis seeks to develop a novel XAI framework tailored for graph-based machine learning. The proposed framework aims to offer adaptable, computationally efficient explanations for GNNs, moving beyond individual feature analysis to capture how graph structure influences predictions.
comment: 157 pages, Doctoral dissertation at Seoul National University (submitted in 2024.08 to SNU library, slightly updated in 2025.11 for open digital version)
☆ Multi-Agent Deep Reinforcement Learning for Collaborative UAV Relay Networks under Jamming Atatcks
The deployment of Unmanned Aerial Vehicle (UAV) swarms as dynamic communication relays is critical for next-generation tactical networks. However, operating in contested environments requires solving a complex trade-off, including maximizing system throughput while ensuring collision avoidance and resilience against adversarial jamming. Existing heuristic-based approaches often struggle to find effective solutions due to the dynamic and multi-objective nature of this problem. This paper formulates this challenge as a cooperative Multi-Agent Reinforcement Learning (MARL) problem, solved using the Centralized Training with Decentralized Execution (CTDE) framework. Our approach employs a centralized critic that uses global state information to guide decentralized actors which operate using only local observations. Simulation results show that our proposed framework significantly outperforms heuristic baselines, increasing the total system throughput by approximately 50% while simultaneously achieving a near-zero collision rate. A key finding is that the agents develop an emergent anti-jamming strategy without explicit programming. They learn to intelligently position themselves to balance the trade-off between mitigating interference from jammers and maintaining effective communication links with ground users.
comment: IEEE ICC 2026
☆ Predicting California Bearing Ratio with Ensemble and Neural Network Models: A Case Study from Türkiye
The California Bearing Ratio (CBR) is a key geotechnical indicator used to assess the load-bearing capacity of subgrade soils, especially in transportation infrastructure and foundation design. Traditional CBR determination relies on laboratory penetration tests. Despite their accuracy, these tests are often time-consuming, costly, and can be impractical, particularly for large-scale or diverse soil profiles. Recent progress in artificial intelligence, especially machine learning (ML), has enabled data-driven approaches for modeling complex soil behavior with greater speed and precision. This study introduces a comprehensive ML framework for CBR prediction using a dataset of 382 soil samples collected from various geoclimatic regions in Türkiye. The dataset includes physicochemical soil properties relevant to bearing capacity, allowing multidimensional feature representation in a supervised learning context. Twelve ML algorithms were tested, including decision tree, random forest, extra trees, gradient boosting, xgboost, k-nearest neighbors, support vector regression, multi-layer perceptron, adaboost, bagging, voting, and stacking regressors. Each model was trained, validated, and evaluated to assess its generalization and robustness. Among them, the random forest regressor performed the best, achieving strong R2 scores of 0.95 (training), 0.76 (validation), and 0.83 (test). These outcomes highlight the model's powerful nonlinear mapping ability, making it a promising tool for predictive geotechnical tasks. The study supports the integration of intelligent, data-centric models in geotechnical engineering, offering an effective alternative to traditional methods and promoting digital transformation in infrastructure analysis and design.
comment: Presented at the 13th International Symposium on Intelligent Manufacturing and Service Systems, Duzce, Turkey, Sep 25-27, 2025. Also available on Zenodo: DOI 10.5281/zenodo.17530868
☆ Interpreting Structured Perturbations in Image Protection Methods for Diffusion Models
Recent image protection mechanisms such as Glaze and Nightshade introduce imperceptible, adversarially designed perturbations intended to disrupt downstream text-to-image generative models. While their empirical effectiveness is known, the internal structure, detectability, and representational behavior of these perturbations remain poorly understood. This study provides a systematic, explainable AI analysis using a unified framework that integrates white-box feature-space inspection and black-box signal-level probing. Through latent-space clustering, feature-channel activation analysis, occlusion-based spatial sensitivity mapping, and frequency-domain characterization, we show that protection mechanisms operate as structured, low-entropy perturbations tightly coupled to underlying image content across representational, spatial, and spectral domains. Protected images preserve content-driven feature organization with protection-specific substructure rather than inducing global representational drift. Detectability is governed by interacting effects of perturbation entropy, spatial deployment, and frequency alignment, with sequential protection amplifying detectable structure rather than suppressing it. Frequency-domain analysis shows that Glaze and Nightshade redistribute energy along dominant image-aligned frequency axes rather than introducing diffuse noise. These findings indicate that contemporary image protection operates through structured feature-level deformation rather than semantic dislocation, explaining why protection signals remain visually subtle yet consistently detectable. This work advances the interpretability of adversarial image protection and informs the design of future defenses and detection strategies for generative AI systems.
comment: 32 pages, 17 figures, 1 table, 5 algorithms, preprint
☆ Low Rank Support Quaternion Matrix Machine
Input features are conventionally represented as vectors, matrices, or third order tensors in the real field, for color image classification. Inspired by the success of quaternion data modeling for color images in image recovery and denoising tasks, we propose a novel classification method for color image classification, named as the Low-rank Support Quaternion Matrix Machine (LSQMM), in which the RGB channels are treated as pure quaternions to effectively preserve the intrinsic coupling relationships among channels via the quaternion algebra. For the purpose of promoting low-rank structures resulting from strongly correlated color channels, a quaternion nuclear norm regularization term, serving as a natural extension of the conventional matrix nuclear norm to the quaternion domain, is added to the hinge loss in our LSQMM model. An Alternating Direction Method of Multipliers (ADMM)-based iterative algorithm is designed to effectively resolve the proposed quaternion optimization model. Experimental results on multiple color image classification datasets demonstrate that our proposed classification approach exhibits advantages in classification accuracy, robustness and computational efficiency, compared to several state-of-the-art methods using support vector machines, support matrix machines, and support tensor machines.
☆ Minimizing Layerwise Activation Norm Improves Generalization in Federated Learning
Federated Learning (FL) is an emerging machine learning framework that enables multiple clients (coordinated by a server) to collaboratively train a global model by aggregating the locally trained models without sharing any client's training data. It has been observed in recent works that learning in a federated manner may lead the aggregated global model to converge to a 'sharp minimum' thereby adversely affecting the generalizability of this FL-trained model. Therefore, in this work, we aim to improve the generalization performance of models trained in a federated setup by introducing a 'flatness' constrained FL optimization problem. This flatness constraint is imposed on the top eigenvalue of the Hessian computed from the training loss. As each client trains a model on its local data, we further re-formulate this complex problem utilizing the client loss functions and propose a new computationally efficient regularization technique, dubbed 'MAN,' which Minimizes Activation's Norm of each layer on client-side models. We also theoretically show that minimizing the activation norm reduces the top eigenvalue of the layer-wise Hessian of the client's loss, which in turn decreases the overall Hessian's top eigenvalue, ensuring convergence to a flat minimum. We apply our proposed flatness-constrained optimization to the existing FL techniques and obtain significant improvements, thereby establishing new state-of-the-art.
comment: Accepted to WACV 2024
☆ Terrain Diffusion: A Diffusion-Based Successor to Perlin Noise in Infinite, Real-Time Terrain Generation
For decades, procedural worlds have been built on procedural noise functions such as Perlin noise, which are fast and infinite, yet fundamentally limited in realism and large-scale coherence. We introduce Terrain Diffusion, an AI-era successor to Perlin noise that bridges the fidelity of diffusion models with the properties that made procedural noise indispensable: seamless infinite extent, seed-consistency, and constant-time random access. At its core is InfiniteDiffusion, a novel algorithm for infinite generation, enabling seamless, real-time synthesis of boundless landscapes. A hierarchical stack of diffusion models couples planetary context with local detail, while a compact Laplacian encoding stabilizes outputs across Earth-scale dynamic ranges. An open-source infinite-tensor framework supports constant-memory manipulation of unbounded tensors, and few-step consistency distillation enables efficient generation. Together, these components establish diffusion models as a practical foundation for procedural world generation, capable of synthesizing entire planets coherently, controllably, and without limits.
comment: Project website: https://xandergos.github.io/terrain-diffusion/ Code: https://github.com/xandergos/terrain-diffusion/
☆ Jacobian Aligned Random Forests
Axis-aligned decision trees are fast and stable but struggle on datasets with rotated or interaction-dependent decision boundaries, where informative splits require linear combinations of features rather than single-feature thresholds. Oblique forests address this with per-node hyperplane splits, but at added computational cost and implementation complexity. We propose a simple alternative: JARF, Jacobian-Aligned Random Forests. Concretely, we first fit an axis-aligned forest to estimate class probabilities or regression outputs, compute finite-difference gradients of these predictions with respect to each feature, aggregate them into an expected Jacobian outer product that generalizes the expected gradient outer product (EGOP), and use it as a single global linear preconditioner for all inputs. This supervised preconditioner applies a single global rotation of the feature space, then hands the transformed data back to a standard axis-aligned forest, preserving off-the-shelf training pipelines while capturing oblique boundaries and feature interactions that would otherwise require many axis-aligned splits to approximate. The same construction applies to any model that provides gradients, though we focus on random forests and gradient-boosted trees in this work. On tabular classification and regression benchmarks, this preconditioning consistently improves axis-aligned forests and often matches or surpasses oblique baselines while improving training time. Our experimental results and theoretical analysis together indicate that supervised preconditioning can recover much of the accuracy of oblique forests while retaining the simplicity and robustness of axis-aligned trees.
☆ Magnetic activity of ultracool dwarfs in the LAMOST DR11
Ultracool dwarfs consist of lowest-mass stars and brown dwarfs. Their interior is fully convective, different from that of the partly-convective Sun-like stars. Magnetic field generation process beneath the surface of ultracool dwarfs is still poorly understood and controversial. To increase samples of active ultracool dwarfs significantly, we have identified 962 ultracool dwarfs in the latest LAMOST data release, DR11. We also simulate the Chinese Space Station Survey Telescope (CSST) low-resolution slitless spectra by degrading the LAMOST spectra. A semi-supervised machine learning approach with an autoencoder model is built to identify ultracool dwarfs with the simulated CSST spectra, which demonstrates the capability of the CSST all-sky slitless spectroscopic survey on the detection of ultracool dwarfs. Magnetic activity of the ultracool dwarfs is investigated by using the H$α$ line emission as a proxy. The rotational periods of 82 ultracool dwarfs are derived based on the Kepler/K2 light curves. We also derive the activity-rotation relation of the ultracool dwarfs, which is saturated around a Rossby number of 0.12.
comment: 13 pages, 10 figures, accepted for publication in ApJ
☆ Empowering smart app development with SolidGPT: an edge-cloud hybrid AI agent framework
The integration of Large Language Models (LLMs) into mobile and software development workflows faces a persistent tension among three demands: semantic awareness, developer productivity, and data privacy. Traditional cloud-based tools offer strong reasoning but risk data exposure and latency, while on-device solutions lack full-context understanding across codebase and developer tooling. We introduce SolidGPT, an open-source, edge-cloud hybrid developer assistant built on GitHub, designed to enhance code and workspace semantic search. SolidGPT enables developers to: talk to your codebase: interactively query code and project structure, discovering the right methods and modules without manual searching. Automate software project workflows: generate PRDs, task breakdowns, Kanban boards, and even scaffold web app beginnings, with deep integration via VSCode and Notion. Configure private, extensible agents: onboard private code folders (up to approximately 500 files), connect Notion, customize AI agent personas via embedding and in-context training, and deploy via Docker, CLI, or VSCode extension. In practice, SolidGPT empowers developer productivity through: Semantic-rich code navigation: no more hunting through files or wondering where a feature lives. Integrated documentation and task management: seamlessly sync generated PRD content and task boards into developer workflows. Privacy-first design: running locally via Docker or VSCode, with full control over code and data, while optionally reaching out to LLM APIs as needed. By combining interactive code querying, automated project scaffolding, and human-AI collaboration, SolidGPT provides a practical, privacy-respecting edge assistant that accelerates real-world development workflows, ideal for intelligent mobile and software engineering contexts.
☆ Probabilistic Multi-Agent Aircraft Landing Time Prediction
Accurate and reliable aircraft landing time prediction is essential for effective resource allocation in air traffic management. However, the inherent uncertainty of aircraft trajectories and traffic flows poses significant challenges to both prediction accuracy and trustworthiness. Therefore, prediction models should not only provide point estimates of aircraft landing times but also the uncertainties associated with these predictions. Furthermore, aircraft trajectories are frequently influenced by the presence of nearby aircraft through air traffic control interventions such as radar vectoring. Consequently, landing time prediction models must account for multi-agent interactions in the airspace. In this work, we propose a probabilistic multi-agent aircraft landing time prediction framework that provides the landing times of multiple aircraft as distributions. We evaluate the proposed framework using an air traffic surveillance dataset collected from the terminal airspace of the Incheon International Airport in South Korea. The results demonstrate that the proposed model achieves higher prediction accuracy than the baselines and quantifies the associated uncertainties of its outcomes. In addition, the model uncovered underlying patterns in air traffic control through its attention scores, thereby enhancing explainability.
comment: 13 pages, 8 figures, accepted at AIAA SciTech 2026
☆ FedLAD: A Modular and Adaptive Testbed for Federated Log Anomaly Detection
Log-based anomaly detection (LAD) is critical for ensuring the reliability of large-scale distributed systems. However, most existing LAD approaches assume centralized training, which is often impractical due to privacy constraints and the decentralized nature of system logs. While federated learning (FL) offers a promising alternative, there is a lack of dedicated testbeds tailored to the needs of LAD in federated settings. To address this, we present FedLAD, a unified platform for training and evaluating LAD models under FL constraints. FedLAD supports plug-and-play integration of diverse LAD models, benchmark datasets, and aggregation strategies, while offering runtime support for validation logging (self-monitoring), parameter tuning (self-configuration), and adaptive strategy control (self-adaptation). By enabling reproducible and scalable experimentation, FedLAD bridges the gap between FL frameworks and LAD requirements, providing a solid foundation for future research. Project code is publicly available at: https://github.com/AA-cityu/FedLAD.
comment: Accepted Artifact at ACSOS 2025
☆ gHAWK: Local and Global Structure Encoding for Scalable Training of Graph Neural Networks on Knowledge Graphs
Knowledge Graphs (KGs) are a rich source of structured, heterogeneous data, powering a wide range of applications. A common approach to leverage this data is to train a graph neural network (GNN) on the KG. However, existing message-passing GNNs struggle to scale to large KGs because they rely on the iterative message passing process to learn the graph structure, which is inefficient, especially under mini-batch training, where a node sees only a partial view of its neighborhood. In this paper, we address this problem and present gHAWK, a novel and scalable GNN training framework for large KGs. The key idea is to precompute structural features for each node that capture its local and global structure before GNN training even begins. Specifically, gHAWK introduces a preprocessing step that computes: (a)~Bloom filters to compactly encode local neighborhood structure, and (b)~TransE embeddings to represent each node's global position in the graph. These features are then fused with any domain-specific features (e.g., text embeddings), producing a node feature vector that can be incorporated into any GNN technique. By augmenting message-passing training with structural priors, gHAWK significantly reduces memory usage, accelerates convergence, and improves model accuracy. Extensive experiments on large datasets from the Open Graph Benchmark (OGB) demonstrate that gHAWK achieves state-of-the-art accuracy and lower training time on both node property prediction and link prediction tasks, topping the OGB leaderboard for three graphs.
☆ Zero-Splat TeleAssist: A Zero-Shot Pose Estimation Framework for Semantic Teleoperation
We introduce Zero-Splat TeleAssist, a zero-shot sensor-fusion pipeline that transforms commodity CCTV streams into a shared, 6-DoF world model for multilateral teleoperation. By integrating vision-language segmentation, monocular depth, weighted-PCA pose extraction, and 3D Gaussian Splatting (3DGS), TeleAssist provides every operator with real-time global positions and orientations of multiple robots without fiducials or depth sensors in an interaction-centric teleoperation setup.
comment: Published and Presented at 3rd Workshop on Human-Centric Multilateral Teleoperation in ICRA 2025
☆ SOFA-FL: Self-Organizing Hierarchical Federated Learning with Adaptive Clustered Data Sharing
Federated Learning (FL) faces significant challenges in evolving environments, particularly regarding data heterogeneity and the rigidity of fixed network topologies. To address these issues, this paper proposes \textbf{SOFA-FL} (Self-Organizing Hierarchical Federated Learning with Adaptive Clustered Data Sharing), a novel framework that enables hierarchical federated systems to self-organize and adapt over time. The framework is built upon three core mechanisms: (1) \textbf{Dynamic Multi-branch Agglomerative Clustering (DMAC)}, which constructs an initial efficient hierarchical structure; (2) \textbf{Self-organizing Hierarchical Adaptive Propagation and Evolution (SHAPE)}, which allows the system to dynamically restructure its topology through atomic operations -- grafting, pruning, consolidation, and purification -- to adapt to changes in data distribution; and (3) \textbf{Adaptive Clustered Data Sharing}, which mitigates data heterogeneity by enabling controlled partial data exchange between clients and cluster nodes. By integrating these mechanisms, SOFA-FL effectively captures dynamic relationships among clients and enhances personalization capabilities without relying on predetermined cluster structures.
☆ Mathematical Foundations of Neural Tangents and Infinite-Width Networks
We investigate the mathematical foundations of neural networks in the infinite-width regime through the Neural Tangent Kernel (NTK). We propose the NTK-Eigenvalue-Controlled Residual Network (NTK-ECRN), an architecture integrating Fourier feature embeddings, residual connections with layerwise scaling, and stochastic depth to enable rigorous analysis of kernel evolution during training. Our theoretical contributions include deriving bounds on NTK dynamics, characterizing eigenvalue evolution, and linking spectral properties to generalization and optimization stability. Empirical results on synthetic and benchmark datasets validate the predicted kernel behavior and demonstrate improved training stability and generalization. This work provides a comprehensive framework bridging infinite-width theory and practical deep-learning architectures.
comment: 7 pages, 2 figures
☆ Geometric-Stochastic Multimodal Deep Learning for Predictive Modeling of SUDEP and Stroke Vulnerability
Sudden Unexpected Death in Epilepsy (SUDEP) and acute ischemic stroke are life-threatening conditions involving complex interactions across cortical, brainstem, and autonomic systems. We present a unified geometric-stochastic multimodal deep learning framework that integrates EEG, ECG, respiration, SpO2, EMG, and fMRI signals to model SUDEP and stroke vulnerability. The approach combines Riemannian manifold embeddings, Lie-group invariant feature representations, fractional stochastic dynamics, Hamiltonian energy-flow modeling, and cross-modal attention mechanisms. Stroke propagation is modeled using fractional epidemic diffusion over structural brain graphs. Experiments on the MULTI-CLARID dataset demonstrate improved predictive accuracy and interpretable biomarkers derived from manifold curvature, fractional memory indices, attention entropy, and diffusion centrality. The proposed framework provides a mathematically principled foundation for early detection, risk stratification, and interpretable multimodal modeling in neural-autonomic disorders.
comment: 7 pages, 3 figures
☆ Wavelet-Accelerated Physics-Informed Quantum Neural Network for Multiscale Partial Differential Equations
This work proposes a wavelet-based physics-informed quantum neural network framework to efficiently address multiscale partial differential equations that involve sharp gradients, stiffness, rapid local variations, and highly oscillatory behavior. Traditional physics-informed neural networks (PINNs) have demonstrated substantial potential in solving differential equations, and their quantum counterparts, quantum-PINNs, exhibit enhanced representational capacity with fewer trainable parameters. However, both approaches face notable challenges in accurately solving multiscale features. Furthermore, their reliance on automatic differentiation for constructing loss functions introduces considerable computational overhead, resulting in longer training times. To overcome these challenges, we developed a wavelet-accelerated physics-informed quantum neural network that eliminates the need for automatic differentiation, significantly reducing computational complexity. The proposed framework incorporates the multiresolution property of wavelets within the quantum neural network architecture, thereby enhancing the network's ability to effectively capture both local and global features of multiscale problems. Numerical experiments demonstrate that our proposed method achieves superior accuracy while requiring less than five percent of the trainable parameters compared to classical wavelet-based PINNs, resulting in faster convergence. Moreover, it offers a speedup of three to five times compared to existing quantum PINNs, highlighting the potential of the proposed approach for efficiently solving challenging multiscale and oscillatory problems.
☆ SPROCKET: Extending ROCKET to Distance-Based Time-Series Transformations With Prototypes
Classical Time Series Classification algorithms are dominated by feature engineering strategies. One of the most prominent of these transforms is ROCKET, which achieves strong performance through random kernel features. We introduce SPROCKET (Selected Prototype Random Convolutional Kernel Transform), which implements a new feature engineering strategy based on prototypes. On a majority of the UCR and UEA Time Series Classification archives, SPROCKET achieves performance comparable to existing convolutional algorithms and the new MR-HY-SP ( MultiROCKET-HYDRA-SPROCKET) ensemble's average accuracy ranking exceeds HYDRA-MR, the previous best convolutional ensemble's performance. These experimental results demonstrate that prototype-based feature transformation can enhance both accuracy and robustness in time series classification.
comment: 63 Pages, 28 in main body with 3 appendices for supplemental figures
☆ Residual-SwinCA-Net: A Channel-Aware Integrated Residual CNN-Swin Transformer for Malignant Lesion Segmentation in BUSI
A novel deep hybrid Residual-SwinCA-Net segmentation framework is proposed in the study for addressing such challenges by extracting locally correlated and robust features, incorporating residual CNN modules. Furthermore, for learning global dependencies, Swin Transformer blocks are customized using internal residual pathways, which reinforce gradient stability, refine local patterns, and facilitate global feature fusion. Formerly, for enhancing tissue continuity, ultrasound noise suppressions, and accentuating fine structural transitions Laplacian-of-Gaussian regional operator is applied, and for maintaining the morphological integrity of malignant lesion contours, a boundary-oriented operator has been incorporated. Subsequently, a contraction strategy was applied stage-wise by progressively reducing features-map progressively for capturing scale invariance and enhancing the robustness of structural variability. In addition, each decoder level prior augmentation integrates a new Multi-Scale Channel Attention and Squeezing (MSCAS) module. The MSCAS selectively emphasizes encoder salient maps, retains discriminative global context, and complementary local structures with minimal computational cost while suppressing redundant activations. Finally, the Pixel-Attention module encodes class-relevant spatial cues by adaptively weighing malignant lesion pixels while suppressing background interference. The Residual-SwinCA-Net and existing CNNs/ViTs techniques have been implemented on the publicly available BUSI dataset. The proposed Residual-SwinCA-Net framework outperformed and achieved 99.29% mean accuracy, 98.74% IoU, and 0.9041 Dice for breast lesion segmentation. The proposed Residual-SwinCA-Net framework improves the BUSI lesion diagnostic performance and strengthens timely clinical decision-making.
comment: 26 Pages, 10 Figures, 4 Tables
☆ Persistent Topological Structures and Cohomological Flows as a Mathematical Framework for Brain-Inspired Representation Learning
This paper presents a mathematically rigorous framework for brain-inspired representation learning founded on the interplay between persistent topological structures and cohomological flows. Neural computation is reformulated as the evolution of cochain maps over dynamic simplicial complexes, enabling representations that capture invariants across temporal, spatial, and functional brain states. The proposed architecture integrates algebraic topology with differential geometry to construct cohomological operators that generalize gradient-based learning within a homological landscape. Synthetic data with controlled topological signatures and real neural datasets are jointly analyzed using persistent homology, sheaf cohomology, and spectral Laplacians to quantify stability, continuity, and structural preservation. Empirical results demonstrate that the model achieves superior manifold consistency and noise resilience compared to graph neural and manifold-based deep architectures, establishing a coherent mathematical foundation for topology-driven representation learning.
comment: 6 pages, 2 figures
☆ PR-CapsNet: Pseudo-Riemannian Capsule Network with Adaptive Curvature Routing for Graph Learning
Capsule Networks (CapsNets) show exceptional graph representation capacity via dynamic routing and vectorized hierarchical representations, but they model the complex geometries of real\-world graphs poorly by fixed\-curvature space due to the inherent geodesical disconnectedness issues, leading to suboptimal performance. Recent works find that non\-Euclidean pseudo\-Riemannian manifolds provide specific inductive biases for embedding graph data, but how to leverage them to improve CapsNets is still underexplored. Here, we extend the Euclidean capsule routing into geodesically disconnected pseudo\-Riemannian manifolds and derive a Pseudo\-Riemannian Capsule Network (PR\-CapsNet), which models data in pseudo\-Riemannian manifolds of adaptive curvature, for graph representation learning. Specifically, PR\-CapsNet enhances the CapsNet with Adaptive Pseudo\-Riemannian Tangent Space Routing by utilizing pseudo\-Riemannian geometry. Unlike single\-curvature or subspace\-partitioning methods, PR\-CapsNet concurrently models hierarchical and cluster or cyclic graph structures via its versatile pseudo\-Riemannian metric. It first deploys Pseudo\-Riemannian Tangent Space Routing to decompose capsule states into spherical\-temporal and Euclidean\-spatial subspaces with diffeomorphic transformations. Then, an Adaptive Curvature Routing is developed to adaptively fuse features from different curvature spaces for complex graphs via a learnable curvature tensor with geometric attention from local manifold properties. Finally, a geometric properties\-preserved Pseudo\-Riemannian Capsule Classifier is developed to project capsule embeddings to tangent spaces and use curvature\-weighted softmax for classification. Extensive experiments on node and graph classification benchmarks show PR\-CapsNet outperforms SOTA models, validating PR\-CapsNet's strong representation power for complex graph structures.
comment: To appear in WSDM 2026 (ACM International Conference on Web Search and Data Mining)
☆ Correction of Decoupled Weight Decay
Decoupled weight decay, solely responsible for the performance advantage of AdamW over Adam, has long been set to proportional to learning rate $γ$ without questioning. Some researchers have recently challenged such assumption and argued that decoupled weight decay should be set $\propto γ^2$ instead based on orthogonality arguments at steady state. To the contrary, we find that eliminating the contribution of the perpendicular component of the update to the weight norm leads to little change to the training dynamics. Instead, we derive that decoupled weight decay $\propto γ^2$ results in stable weight norm based on the simple assumption that updates become independent of the weights at steady state, regardless of the nature of the optimizer. Based on the same assumption, we derive and empirically verify that the Total Update Contribution (TUC) of a minibatch under the Scion optimizer is better characterized by the momentum-dependent effective learning rate whose optimal value transfers and we show that decoupled weight decay $\propto γ^2$ leads to stable weight and gradient norms and allows us to better control the training dynamics and improve the model performance.
Tumor-anchored deep feature random forests for out-of-distribution detection in lung cancer segmentation
Accurate segmentation of cancerous lesions from 3D computed tomography (CT) scans is essential for automated treatment planning and response assessment. However, even state-of-the-art models combining self-supervised learning (SSL) pretrained transformers with convolutional decoders are susceptible to out-of-distribution (OOD) inputs, generating confidently incorrect tumor segmentations, posing risks for safe clinical deployment. Existing logit-based methods suffer from task-specific model biases, while architectural enhancements to explicitly detect OOD increase parameters and computational costs. Hence, we introduce a plug-and-play and lightweight post-hoc random forests-based OOD detection framework called RF-Deep that leverages deep features with limited outlier exposure. RF-Deep enhances generalization to imaging variations by repurposing the hierarchical features from the pretrained-then-finetuned backbone encoder, providing task-relevant OOD detection by extracting the features from multiple regions of interest anchored to the predicted tumor segmentations. Hence, it scales to images of varying fields-of-view. We compared RF-Deep against existing OOD detection methods using 1,916 CT scans across near-OOD (pulmonary embolism, negative COVID-19) and far-OOD (kidney cancer, healthy pancreas) datasets. RF-Deep achieved AUROC > 93.50 for the challenging near-OOD datasets and near-perfect detection (AUROC > 99.00) for the far-OOD datasets, substantially outperforming logit-based and radiomics approaches. RF-Deep maintained similar performance consistency across networks of different depths and pretraining strategies, demonstrating its effectiveness as a lightweight, architecture-agnostic approach to enhance the reliability of tumor segmentation from CT volumes.
☆ MobileFineTuner: A Unified End-to-End Framework for Fine-Tuning LLMs on Mobile Phones
Mobile phones are the most ubiquitous end devices, generating vast amounts of human-authored data and serving as the primary platform for end-side applications. As high-quality public data for large language models (LLMs) approaches exhaustion, on-device fine-tuning provides an opportunity to leverage private user data while preserving privacy. However, existing approaches are predominantly simulation-based or rely on IoT devices and PCs, leaving commodity mobile phones largely unexplored. A key gap is the absence of an open-source framework that enables practical LLM fine-tuning on mobile phones. We present MobileFineTuner, a unified open-source framework that enables end-to-end LLM fine-tuning directly on commodity mobile phones. MobileFineTuner is designed for efficiency, scalability, and usability, supporting full-parameters fine-tuning (Full-FT) and parameter-efficient fine-tuning (PEFT). To address the memory and energy limitations inherent to mobile phones, we introduce system-level optimizations including parameter sharding, gradient accumulation, and energy-aware computation scheduling. We demonstrate the practicality of MobileFineTuner by fine-tuning GPT-2, Gemma 3, and Qwen 2.5 on real mobile phones. Extensive experiments and ablation studies validate the effectiveness of the proposed optimizations and establish MobileFineTuner as a viable foundation for future research on on-device LLM training.
comment: 15 pages, 9 figures, submitted to Mobisys 2026
☆ Worst-case generation via minimax optimization in Wasserstein space
Worst-case generation plays a critical role in evaluating robustness and stress-testing systems under distribution shifts, in applications ranging from machine learning models to power grids and medical prediction systems. We develop a generative modeling framework for worst-case generation for a pre-specified risk, based on min-max optimization over continuous probability distributions, namely the Wasserstein space. Unlike traditional discrete distributionally robust optimization approaches, which often suffer from scalability issues, limited generalization, and costly worst-case inference, our framework exploits the Brenier theorem to characterize the least favorable (worst-case) distribution as the pushforward of a transport map from a continuous reference measure, enabling a continuous and expressive notion of risk-induced generation beyond classical discrete DRO formulations. Based on the min-max formulation, we propose a Gradient Descent Ascent (GDA)-type scheme that updates the decision model and the transport map in a single loop, establishing global convergence guarantees under mild regularity assumptions and possibly without convexity-concavity. We also propose to parameterize the transport map using a neural network that can be trained simultaneously with the GDA iterations by matching the transported training samples, thereby achieving a simulation-free approach. The efficiency of the proposed method as a risk-induced worst-case generator is validated by numerical experiments on synthetic and image data.
☆ LayerPipe2: Multistage Pipelining and Weight Recompute via Improved Exponential Moving Average for Training Neural Networks
In our prior work, LayerPipe, we had introduced an approach to accelerate training of convolutional, fully connected, and spiking neural networks by overlapping forward and backward computation. However, despite empirical success, a principled understanding of how much gradient delay needs to be introduced at each layer to achieve desired level of pipelining was not addressed. This paper, LayerPipe2, fills that gap by formally deriving LayerPipe using variable delayed gradient adaptation and retiming. We identify where delays may be legally inserted and show that the required amount of delay follows directly from the network structure where inner layers require fewer delays and outer layers require longer delays. When pipelining is applied at every layer, the amount of delay depends only on the number of remaining downstream stages. When layers are pipelined in groups, all layers in the group share the same assignment of delays. These insights not only explain previously observed scheduling patterns but also expose an often overlooked challenge that pipelining implicitly requires storage of historical weights. We overcome this storage bottleneck by developing a pipeline--aware moving average that reconstructs the required past states rather than storing them explicitly. This reduces memory cost without sacrificing the accuracy guarantees that makes pipelined learning viable. The result is a principled framework that illustrates how to construct LayerPipe architectures, predicts their delay requirements, and mitigates their storage burden, thereby enabling scalable pipelined training with controlled communication computation tradeoffs.
comment: Proc. of 2025 Asilomar Conference on Signals, Systems, and Computers, October 2025, Pacific Grove, CA
☆ TreeGRPO: Tree-Advantage GRPO for Online RL Post-Training of Diffusion Models
Reinforcement learning (RL) post-training is crucial for aligning generative models with human preferences, but its prohibitive computational cost remains a major barrier to widespread adoption. We introduce \textbf{TreeGRPO}, a novel RL framework that dramatically improves training efficiency by recasting the denoising process as a search tree. From shared initial noise samples, TreeGRPO strategically branches to generate multiple candidate trajectories while efficiently reusing their common prefixes. This tree-structured approach delivers three key advantages: (1) \emph{High sample efficiency}, achieving better performance under same training samples (2) \emph{Fine-grained credit assignment} via reward backpropagation that computes step-specific advantages, overcoming the uniform credit assignment limitation of trajectory-based methods, and (3) \emph{Amortized computation} where multi-child branching enables multiple policy updates per forward pass. Extensive experiments on both diffusion and flow-based models demonstrate that TreeGRPO achieves \textbf{2.4$\times$ faster training} while establishing a superior Pareto frontier in the efficiency-reward trade-off space. Our method consistently outperforms GRPO baselines across multiple benchmarks and reward models, providing a scalable and effective pathway for RL-based visual generative model alignment. The project website is available at treegrpo.github.io.
☆ PolyLingua: Margin-based Inter-class Transformer for Robust Cross-domain Language Detection
Language identification is a crucial first step in multilingual systems such as chatbots and virtual assistants, enabling linguistically and culturally accurate user experiences. Errors at this stage can cascade into downstream failures, setting a high bar for accuracy. Yet, existing language identification tools struggle with key cases--such as music requests where the song title and user language differ. Open-source tools like LangDetect, FastText are fast but less accurate, while large language models, though effective, are often too costly for low-latency or low-resource settings. We introduce PolyLingua, a lightweight Transformer-based model for in-domain language detection and fine-grained language classification. It employs a two-level contrastive learning framework combining instance-level separation and class-level alignment with adaptive margins, yielding compact and well-separated embeddings even for closely related languages. Evaluated on two challenging datasets--Amazon Massive (multilingual digital assistant utterances) and a Song dataset (music requests with frequent code-switching)--PolyLingua achieves 99.25% F1 and 98.15% F1, respectively, surpassing Sonnet 3.5 while using 10x fewer parameters, making it ideal for compute- and latency-constrained environments.
☆ Robust Agents in Open-Ended Worlds
The growing prevalence of artificial intelligence (AI) in various applications underscores the need for agents that can successfully navigate and adapt to an ever-changing, open-ended world. A key challenge is ensuring these AI agents are robust, excelling not only in familiar settings observed during training but also effectively generalising to previously unseen and varied scenarios. In this thesis, we harness methodologies from open-endedness and multi-agent learning to train and evaluate robust AI agents capable of generalising to novel environments, out-of-distribution inputs, and interactions with other co-player agents. We begin by introducing MiniHack, a sandbox framework for creating diverse environments through procedural content generation. Based on the game of NetHack, MiniHack enables the construction of new tasks for reinforcement learning (RL) agents with a focus on generalisation. We then present Maestro, a novel approach for generating adversarial curricula that progressively enhance the robustness and generality of RL agents in two-player zero-sum games. We further probe robustness in multi-agent domains, utilising quality-diversity methods to systematically identify vulnerabilities in state-of-the-art, pre-trained RL policies within the complex video game football domain, characterised by intertwined cooperative and competitive dynamics. Finally, we extend our exploration of robustness to the domain of LLMs. Here, our focus is on diagnosing and enhancing the robustness of LLMs against adversarial prompts, employing evolutionary search to generate a diverse range of effective inputs that aim to elicit undesirable outputs from an LLM. This work collectively paves the way for future advancements in AI robustness, enabling the development of agents that not only adapt to an ever-evolving world but also thrive in the face of unforeseen challenges and interactions.
comment: PhD Thesis
☆ Robust equilibria in continuous games: From strategic to dynamic robustness
In this paper, we examine the robustness of Nash equilibria in continuous games, under both strategic and dynamic uncertainty. Starting with the former, we introduce the notion of a robust equilibrium as those equilibria that remain invariant to small -- but otherwise arbitrary -- perturbations to the game's payoff structure, and we provide a crisp geometric characterization thereof. Subsequently, we turn to the question of dynamic robustness, and we examine which equilibria may arise as stable limit points of the dynamics of "follow the regularized leader" (FTRL) in the presence of randomness and uncertainty. Despite their very distinct origins, we establish a structural correspondence between these two notions of robustness: strategic robustness implies dynamic robustness, and, conversely, the requirement of strategic robustness cannot be relaxed if dynamic robustness is to be maintained. Finally, we examine the rate of convergence to robust equilibria as a function of the underlying regularizer, and we show that entropically regularized learning converges at a geometric rate in games with affinely constrained action spaces.
comment: 33 pages, 5 figures
☆ Multi-agent learning under uncertainty: Recurrence vs. concentration
In this paper, we examine the convergence landscape of multi-agent learning under uncertainty. Specifically, we analyze two stochastic models of regularized learning in continuous games -- one in continuous and one in discrete time with the aim of characterizing the long-run behavior of the induced sequence of play. In stark contrast to deterministic, full-information models of learning (or models with a vanishing learning rate), we show that the resulting dynamics do not converge in general. In lieu of this, we ask instead which actions are played more often in the long run, and by how much. We show that, in strongly monotone games, the dynamics of regularized learning may wander away from equilibrium infinitely often, but they always return to its vicinity in finite time (which we estimate), and their long-run distribution is sharply concentrated around a neighborhood thereof. We quantify the degree of this concentration, and we show that these favorable properties may all break down if the underlying game is not strongly monotone -- underscoring in this way the limits of regularized learning in the presence of persistent randomness and uncertainty.
comment: 44 pages, 17 figures
☆ Biothreat Benchmark Generation Framework for Evaluating Frontier AI Models I: The Task-Query Architecture
Both model developers and policymakers seek to quantify and mitigate the risk of rapidly-evolving frontier artificial intelligence (AI) models, especially large language models (LLMs), to facilitate bioterrorism or access to biological weapons. An important element of such efforts is the development of model benchmarks that can assess the biosecurity risk posed by a particular model. This paper describes the first component of a novel Biothreat Benchmark Generation (BBG) Framework. The BBG approach is designed to help model developers and evaluators reliably measure and assess the biosecurity risk uplift and general harm potential of existing and future AI models, while accounting for key aspects of the threat itself that are often overlooked in other benchmarking efforts, including different actor capability levels, and operational (in addition to purely technical) risk factors. As a pilot, the BBG is first being developed to address bacterial biological threats only. The BBG is built upon a hierarchical structure of biothreat categories, elements and tasks, which then serves as the basis for the development of task-aligned queries. This paper outlines the development of this biothreat task-query architecture, which we have named the Bacterial Biothreat Schema, while future papers will describe follow-on efforts to turn queries into model prompts, as well as how the resulting benchmarks can be implemented for model evaluation. Overall, the BBG Framework, including the Bacterial Biothreat Schema, seeks to offer a robust, re-usable structure for evaluating bacterial biological risks arising from LLMs across multiple levels of aggregation, which captures the full scope of technical and operational requirements for biological adversaries, and which accounts for a wide spectrum of biological adversary capabilities.
comment: 18 pages
☆ Improving the Sensitivity of Backdoor Detectors via Class Subspace Orthogonalization
Most post-training backdoor detection methods rely on attacked models exhibiting extreme outlier detection statistics for the target class of an attack, compared to non-target classes. However, these approaches may fail: (1) when some (non-target) classes are easily discriminable from all others, in which case they may naturally achieve extreme detection statistics (e.g., decision confidence); and (2) when the backdoor is subtle, i.e., with its features weak relative to intrinsic class-discriminative features. A key observation is that the backdoor target class has contributions to its detection statistic from both the backdoor trigger and from its intrinsic features, whereas non-target classes only have contributions from their intrinsic features. To achieve more sensitive detectors, we thus propose to suppress intrinsic features while optimizing the detection statistic for a given class. For non-target classes, such suppression will drastically reduce the achievable statistic, whereas for the target class the (significant) contribution from the backdoor trigger remains. In practice, we formulate a constrained optimization problem, leveraging a small set of clean examples from a given class, and optimizing the detection statistic while orthogonalizing with respect to the class's intrinsic features. We dub this plug-and-play approach Class Subspace Orthogonalization (CSO) and assess it against challenging mixed-label and adaptive attacks.
☆ Long-only cryptocurrency portfolio management by ranking the assets: a neural network approach
This paper will propose a novel machine learning based portfolio management method in the context of the cryptocurrency market. Previous researchers mainly focus on the prediction of the movement for specific cryptocurrency such as the bitcoin(BTC) and then trade according to the prediction. In contrast to the previous work that treats the cryptocurrencies independently, this paper manages a group of cryptocurrencies by analyzing the relative relationship. Specifically, in each time step, we utilize the neural network to predict the rank of the future return of the managed cryptocurrencies and place weights accordingly. By incorporating such cross-sectional information, the proposed methods is shown to profitable based on the backtesting experiments on the real daily cryptocurrency market data from May, 2020 to Nov, 2023. During this 3.5 years, the market experiences the full cycle of bullish, bearish and stagnant market conditions. Despite under such complex market conditions, the proposed method outperforms the existing methods and achieves a Sharpe ratio of 1.01 and annualized return of 64.26%. Additionally, the proposed method is shown to be robust to the increase of transaction fee.
LLMs for Analog Circuit Design Continuum (ACDC)
Large Language Models (LLMs) and transformer architectures have shown impressive reasoning and generation capabilities across diverse natural language tasks. However, their reliability and robustness in real-world engineering domains remain largely unexplored, limiting their practical utility in human-centric workflows. In this work, we investigate the applicability and consistency of LLMs for analog circuit design -- a task requiring domain-specific reasoning, adherence to physical constraints, and structured representations -- focusing on AI-assisted design where humans remain in the loop. We study how different data representations influence model behavior and compare smaller models (e.g., T5, GPT-2) with larger foundation models (e.g., Mistral-7B, GPT-oss-20B) under varying training conditions. Our results highlight key reliability challenges, including sensitivity to data format, instability in generated designs, and limited generalization to unseen circuit configurations. These findings provide early evidence on the limits and potential of LLMs as tools to enhance human capabilities in complex engineering tasks, offering insights into designing reliable, deployable foundation models for structured, real-world applications.
☆ Towards Optimal Valve Prescription for Transcatheter Aortic Valve Replacement (TAVR) Surgery: A Machine Learning Approach
Transcatheter Aortic Valve Replacement (TAVR) has emerged as a minimally invasive treatment option for patients with severe aortic stenosis, a life-threatening cardiovascular condition. Multiple transcatheter heart valves (THV) have been approved for use in TAVR, but current guidelines regarding valve type prescription remain an active topic of debate. We propose a data-driven clinical support tool to identify the optimal valve type with the objective of minimizing the risk of permanent pacemaker implantation (PPI), a predominant postoperative complication. We synthesize a novel dataset that combines U.S. and Greek patient populations and integrates three distinct data sources (patient demographics, computed tomography scans, echocardiograms) while harmonizing differences in each country's record system. We introduce a leaf-level analysis to leverage population heterogeneity and avoid benchmarking against uncertain counterfactual risk estimates. The final prescriptive model shows a reduction in PPI rates of 26% and 16% compared with the current standard of care in our internal U.S. population and external Greek validation cohort, respectively. To the best of our knowledge, this work represents the first unified, personalized prescription strategy for THV selection in TAVR.
☆ Understanding the Failure Modes of Transformers through the Lens of Graph Neural Networks
Transformers and more specifically decoder-only transformers dominate modern LLM architectures. While they have shown to work exceptionally well, they are not without issues, resulting in surprising failure modes and predictably asymmetric performance degradation. This article is a study of many of these observed failure modes of transformers through the lens of graph neural network (GNN) theory. We first make the case that much of deep learning, including transformers, is about learnable information mixing and propagation. This makes the study of model failure modes a study of bottlenecks in information propagation. This naturally leads to GNN theory, where there is already a rich literature on information propagation bottlenecks and theoretical failure modes of models. We then make the case that many issues faced by GNNs are also experienced by transformers. In addition, we analyze how the causal nature of decoder-only transformers create interesting geometric properties in information propagation, resulting in predictable and potentially devastating failure modes. Finally, we observe that existing solutions in transformer research tend to be ad-hoc and driven by intuition rather than grounded theoretical motivation. As such, we unify many such solutions under a more theoretical perspective, providing insight into why they work, what problem they are actually solving, and how they can be further improved to target specific failure modes of transformers. Overall, this article is an attempt to bridge the gap between observed failure modes in transformers and a general lack of theoretical understanding of them in this space.
☆ Spectral Embedding via Chebyshev Bases for Robust DeepONet Approximation
Deep Operator Networks (DeepONets) have become a central tool in data-driven operator learning, providing flexible surrogates for nonlinear mappings arising in partial differential equations (PDEs). However, the standard trunk design based on fully connected layers acting on raw spatial or spatiotemporal coordinates struggles to represent sharp gradients, boundary layers, and non-periodic structures commonly found in PDEs posed on bounded domains with Dirichlet or Neumann boundary conditions. To address these limitations, we introduce the Spectral-Embedded DeepONet (SEDONet), a new DeepONet variant in which the trunk is driven by a fixed Chebyshev spectral dictionary rather than coordinate inputs. This non-periodic spectral embedding provides a principled inductive bias tailored to bounded domains, enabling the learned operator to capture fine-scale non-periodic features that are difficult for Fourier or MLP trunks to represent. SEDONet is evaluated on a suite of PDE benchmarks including 2D Poisson, 1D Burgers, 1D advection-diffusion, Allen-Cahn dynamics, and the Lorenz-96 chaotic system, covering elliptic, parabolic, advective, and multiscale temporal phenomena, all of which can be viewed as canonical problems in computational mechanics. Across all datasets, SEDONet consistently achieves the lowest relative L2 errors among DeepONet, FEDONet, and SEDONet, with average improvements of about 30-40% over the baseline DeepONet and meaningful gains over Fourier-embedded variants on non-periodic geometries. Spectral analyses further show that SEDONet more accurately preserves high-frequency and boundary-localized features, demonstrating the value of Chebyshev embeddings in non-periodic operator learning. The proposed architecture offers a simple, parameter-neutral modification to DeepONets, delivering a robust and efficient spectral framework for surrogate modeling of PDEs on bounded domains.
☆ WTNN: Weibull-Tailored Neural Networks for survival analysis
The Weibull distribution is a commonly adopted choice for modeling the survival of systems subject to maintenance over time. When only proxy indicators and censored observations are available, it becomes necessary to express the distribution's parameters as functions of time-dependent covariates. Deep neural networks provide the flexibility needed to learn complex relationships between these covariates and operational lifetime, thereby extending the capabilities of traditional regression-based models. Motivated by the analysis of a fleet of military vehicles operating in highly variable and demanding environments, as well as by the limitations observed in existing methodologies, this paper introduces WTNN, a new neural network-based modeling framework specifically designed for Weibull survival studies. The proposed architecture is specifically designed to incorporate qualitative prior knowledge regarding the most influential covariates, in a manner consistent with the shape and structure of the Weibull distribution. Through numerical experiments, we show that this approach can be reliably trained on proxy and right-censored data, and is capable of producing robust and interpretable survival predictions that can improve existing approaches.
☆ Understanding temperature tuning in energy-based models
Generative models of complex systems often require post-hoc parameter adjustments to produce useful outputs. For example, energy-based models for protein design are sampled at an artificially low ''temperature'' to generate novel, functional sequences. This temperature tuning is a common yet poorly understood heuristic used across machine learning contexts to control the trade-off between generative fidelity and diversity. Here, we develop an interpretable, physically motivated framework to explain this phenomenon. We demonstrate that in systems with a large ''energy gap'' - separating a small fraction of meaningful states from a vast space of unrealistic states - learning from sparse data causes models to systematically overestimate high-energy state probabilities, a bias that lowering the sampling temperature corrects. More generally, we characterize how the optimal sampling temperature depends on the interplay between data size and the system's underlying energy landscape. Crucially, our results show that lowering the sampling temperature is not always desirable; we identify the conditions where \emph{raising} it results in better generative performance. Our framework thus casts post-hoc temperature tuning as a diagnostic tool that reveals properties of the true data distribution and the limits of the learned model.
comment: 18 pages, 7 figures
☆ Learning Unmasking Policies for Diffusion Language Models
Diffusion (Large) Language Models (dLLMs) now match the downstream performance of their autoregressive counterparts on many tasks, while holding the promise of being more efficient during inference. One particularly successful variant is masked discrete diffusion, in which a buffer filled with special mask tokens is progressively replaced with tokens sampled from the model's vocabulary. Efficiency can be gained by unmasking several tokens in parallel, but doing too many at once risks degrading the generation quality. Thus, one critical design aspect of dLLMs is the sampling procedure that selects, at each step of the diffusion process, which tokens to replace. Indeed, recent work has found that heuristic strategies such as confidence thresholding lead to both higher quality and token throughput compared to random unmasking. However, such heuristics have downsides: they require manual tuning, and we observe that their performance degrades with larger buffer sizes. In this work, we instead propose to train sampling procedures using reinforcement learning. Specifically, we formalize masked diffusion sampling as a Markov decision process in which the dLLM serves as the environment, and propose a lightweight policy architecture based on a single-layer transformer that maps dLLM token confidences to unmasking decisions. Our experiments show that these trained policies match the performance of state-of-the-art heuristics when combined with semi-autoregressive generation, while outperforming them in the full diffusion setting. We also examine the transferability of these policies, finding that they can generalize to new underlying dLLMs and longer sequence lengths. However, we also observe that their performance degrades when applied to out-of-domain data, and that fine-grained tuning of the accuracy-efficiency trade-off can be challenging with our approach.
☆ Natural Geometry of Robust Data Attribution: From Convex Models to Deep Networks
Data attribution methods identify which training examples are responsible for a model's predictions, but their sensitivity to distributional perturbations undermines practical reliability. We present a unified framework for certified robust attribution that extends from convex models to deep networks. For convex settings, we derive Wasserstein-Robust Influence Functions (W-RIF) with provable coverage guarantees. For deep networks, we demonstrate that Euclidean certification is rendered vacuous by spectral amplification -- a mechanism where the inherent ill-conditioning of deep representations inflates Lipschitz bounds by over $10{,}000\times$. This explains why standard TRAK scores, while accurate point estimates, are geometrically fragile: naive Euclidean robustness analysis yields 0\% certification. Our key contribution is the Natural Wasserstein metric, which measures perturbations in the geometry induced by the model's own feature covariance. This eliminates spectral amplification, reducing worst-case sensitivity by $76\times$ and stabilizing attribution estimates. On CIFAR-10 with ResNet-18, Natural W-TRAK certifies 68.7\% of ranking pairs compared to 0\% for Euclidean baselines -- to our knowledge, the first non-vacuous certified bounds for neural network attribution. Furthermore, we prove that the Self-Influence term arising from our analysis equals the Lipschitz constant governing attribution stability, providing theoretical grounding for leverage-based anomaly detection. Empirically, Self-Influence achieves 0.970 AUROC for label noise detection, identifying 94.1\% of corrupted labels by examining just the top 20\% of training data.
☆ Causal Attribution of Model Performance Gaps in Medical Imaging Under Distribution Shifts
Deep learning models for medical image segmentation suffer significant performance drops due to distribution shifts, but the causal mechanisms behind these drops remain poorly understood. We extend causal attribution frameworks to high-dimensional segmentation tasks, quantifying how acquisition protocols and annotation variability independently contribute to performance degradation. We model the data-generating process through a causal graph and employ Shapley values to fairly attribute performance changes to individual mechanisms. Our framework addresses unique challenges in medical imaging: high-dimensional outputs, limited samples, and complex mechanism interactions. Validation on multiple sclerosis (MS) lesion segmentation across 4 centers and 7 annotators reveals context-dependent failure modes: annotation protocol shifts dominate when crossing annotators (7.4% $\pm$ 8.9% DSC attribution), while acquisition shifts dominate when crossing imaging centers (6.5% $\pm$ 9.1%). This mechanism-specific quantification enables practitioners to prioritize targeted interventions based on deployment context.
comment: Medical Imaging meets EurIPS Workshop: MedEurIPS 2025
☆ GS-KAN: Parameter-Efficient Kolmogorov-Arnold Networks via Sprecher-Type Shared Basis Functions
The Kolmogorov-Arnold representation theorem offers a theoretical alternative to Multi-Layer Perceptrons (MLPs) by placing learnable univariate functions on edges rather than nodes. While recent implementations such as Kolmogorov-Arnold Networks (KANs) demonstrate high approximation capabilities, they suffer from significant parameter inefficiency due to the requirement of maintaining unique parameterizations for every network edge. In this work, we propose GS-KAN (Generalized Sprecher-KAN), a lightweight architecture inspired by David Sprecher's refinement of the superposition theorem. GS-KAN constructs unique edge functions by applying learnable linear transformations to a single learnable, shared parent function per layer. We evaluate GS-KAN against existing KAN architectures and MLPs across synthetic function approximation, tabular data regression and image classification tasks. Our results demonstrate that GS-KAN outperforms both MLPs and standard KAN baselines on continuous function approximation tasks while maintaining superior parameter efficiency. Additionally, GS-KAN achieves competitive performance with existing KAN architectures on tabular regression and outperforms MLPs on high-dimensional classification tasks. Crucially, the proposed architecture enables the deployment of KAN-based architectures in high-dimensional regimes under strict parameter constraints, a setting where standard implementations are typically infeasible due to parameter explosion. The source code is available at https://github.com/rambamn48/gs-impl.
comment: 10 pages
☆ Beyond the Hype: Comparing Lightweight and Deep Learning Models for Air Quality Forecasting
Accurate forecasting of urban air pollution is essential for protecting public health and guiding mitigation policies. While Deep Learning (DL) and hybrid pipelines dominate recent research, their complexity and limited interpretability hinder operational use. This study investigates whether lightweight additive models -- Facebook Prophet (FBP) and NeuralProphet (NP) -- can deliver competitive forecasts for particulate matter (PM$_{2.5}$, PM$_{10}$) in Beijing, China. Using multi-year pollutant and meteorological data, we applied systematic feature selection (correlation, mutual information, mRMR), leakage-safe scaling, and chronological data splits. Both models were trained with pollutant and precursor regressors, with NP additionally leveraging lagged dependencies. For context, two machine learning baselines (LSTM, LightGBM) and one traditional statistical model (SARIMAX) were also implemented. Performance was evaluated on a 7-day holdout using MAE, RMSE, and $R^2$. Results show that FBP consistently outperformed NP, SARIMAX, and the learning-based baselines, achieving test $R^2$ above 0.94 for both pollutants. These findings demonstrate that interpretable additive models remain competitive with both traditional and complex approaches, offering a practical balance of accuracy, transparency, and ease of deployment.
☆ Modular Deep-Learning-Based Early Warning System for Deadly Heatwave Prediction
Severe heatwaves in urban areas significantly threaten public health, calling for establishing early warning strategies. Despite predicting occurrence of heatwaves and attributing historical mortality, predicting an incoming deadly heatwave remains a challenge due to the difficulty in defining and estimating heat-related mortality. Furthermore, establishing an early warning system imposes additional requirements, including data availability, spatial and temporal robustness, and decision costs. To address these challenges, we propose DeepTherm, a modular early warning system for deadly heatwave prediction without requiring heat-related mortality history. By highlighting the flexibility of deep learning, DeepTherm employs a dual-prediction pipeline, disentangling baseline mortality in the absence of heatwaves and other irregular events from all-cause mortality. We evaluated DeepTherm on real-world data across Spain. Results demonstrate consistent, robust, and accurate performance across diverse regions, time periods, and population groups while allowing trade-off between missed alarms and false alarms.
☆ KD-OCT: Efficient Knowledge Distillation for Clinical-Grade Retinal OCT Classification
Age-related macular degeneration (AMD) and choroidal neovascularization (CNV)-related conditions are leading causes of vision loss worldwide, with optical coherence tomography (OCT) serving as a cornerstone for early detection and management. However, deploying state-of-the-art deep learning models like ConvNeXtV2-Large in clinical settings is hindered by their computational demands. Therefore, it is desirable to develop efficient models that maintain high diagnostic performance while enabling real-time deployment. In this study, a novel knowledge distillation framework, termed KD-OCT, is proposed to compress a high-performance ConvNeXtV2-Large teacher model, enhanced with advanced augmentations, stochastic weight averaging, and focal loss, into a lightweight EfficientNet-B2 student for classifying normal, drusen, and CNV cases. KD-OCT employs real-time distillation with a combined loss balancing soft teacher knowledge transfer and hard ground-truth supervision. The effectiveness of the proposed method is evaluated on the Noor Eye Hospital (NEH) dataset using patient-level cross-validation. Experimental results demonstrate that KD-OCT outperforms comparable multi-scale or feature-fusion OCT classifiers in efficiency- accuracy balance, achieving near-teacher performance with substantial reductions in model size and inference time. Despite the compression, the student model exceeds most existing frameworks, facilitating edge deployment for AMD screening. Code is available at https://github.com/erfan-nourbakhsh/KD- OCT.
comment: 7 pages, 5 figures
☆ Contrast transfer functions help quantify neural network out-of-distribution generalization in HRTEM
Neural networks, while effective for tackling many challenging scientific tasks, are not known to perform well out-of-distribution (OOD), i.e., within domains which differ from their training data. Understanding neural network OOD generalization is paramount to their successful deployment in experimental workflows, especially when ground-truth knowledge about the experiment is hard to establish or experimental conditions significantly vary. With inherent access to ground-truth information and fine-grained control of underlying distributions, simulation-based data curation facilitates precise investigation of OOD generalization behavior. Here, we probe generalization with respect to imaging conditions of neural network segmentation models for high-resolution transmission electron microscopy (HRTEM) imaging of nanoparticles, training and measuring the OOD generalization of over 12,000 neural networks using synthetic data generated via random structure sampling and multislice simulation. Using the HRTEM contrast transfer function, we further develop a framework to compare information content of HRTEM datasets and quantify OOD domain shifts. We demonstrate that neural network segmentation models enjoy significant performance stability, but will smoothly and predictably worsen as imaging conditions shift from the training distribution. Lastly, we consider limitations of our approach in explaining other OOD shifts, such as of the atomic structures, and discuss complementary techniques for understanding generalization in such settings.
☆ SIP: Site in Pieces- A Dataset of Disaggregated Construction-Phase 3D Scans for Semantic Segmentation and Scene Understanding
Accurate 3D scene interpretation in active construction sites is essential for progress monitoring, safety assessment, and digital twin development. LiDAR is widely used in construction because it offers advantages over camera-based systems, performing reliably in cluttered and dynamically changing conditions. Yet most public datasets for 3D perception are derived from densely fused scans with uniform sampling and complete visibility, conditions that do not reflect real construction sites. Field data are often collected as isolated single-station LiDAR views, constrained by safety requirements, limited access, and ongoing operations. These factors lead to radial density decay, fragmented geometry, and view-dependent visibility-characteristics that remain underrepresented in existing datasets. This paper presents SIP, Site in Pieces, a dataset created to reflect the practical constraints of LiDAR acquisition during construction. SIP provides indoor and outdoor scenes captured with a terrestrial LiDAR scanner and annotated at the point level using a taxonomy tailored to construction environments: A. Built Environment, B. Construction Operations, and C. Site Surroundings. The dataset includes both structural components and slender temporary objects such as scaffolding, MEP piping, and scissor lifts, where sparsity caused by occlusion and fragmented geometry make segmentation particularly challenging. The scanning protocol, annotation workflow, and quality control procedures establish a consistent foundation for the dataset. SIP is openly available with a supporting Git repository, offering adaptable class configurations that streamline adoption within modern 3D deep learning frameworks. By providing field data that retain real-world sensing characteristics, SIP enables robust benchmarking and contributes to advancing construction-oriented 3D vision tasks.
☆ A Diffusion-Based Framework for High-Resolution Precipitation Forecasting over CONUS
Accurate precipitation forecasting is essential for hydrometeorological risk management, especially for anticipating extreme rainfall that can lead to flash flooding and infrastructure damage. This study introduces a diffusion-based deep learning (DL) framework that systematically compares three residual prediction strategies differing only in their input sources: (1) a fully data-driven model using only past observations from the Multi-Radar Multi-Sensor (MRMS) system, (2) a corrective model using only forecasts from the High-Resolution Rapid Refresh (HRRR) numerical weather prediction system, and (3) a hybrid model integrating both MRMS and selected HRRR forecast variables. By evaluating these approaches under a unified setup, we provide a clearer understanding of how each data source contributes to predictive skill over the Continental United States (CONUS). Forecasts are produced at 1-km spatial resolution, beginning with direct 1-hour predictions and extending to 12 hours using autoregressive rollouts. Performance is evaluated using both CONUS-wide and region-specific metrics that assess overall performance and skill at extreme rainfall thresholds. Across all lead times, our DL framework consistently outperforms the HRRR baseline in pixel-wise and spatiostatistical metrics. The hybrid model performs best at the shortest lead time, while the HRRR-corrective model outperforms others at longer lead times, maintaining high skill through 12 hours. To assess reliability, we incorporate calibrated uncertainty quantification tailored to the residual learning setup. These gains, particularly at longer lead times, are critical for emergency preparedness, where modest increases in forecast horizon can improve decision-making. This work advances DL-based precipitation forecasting by enhancing predictive skill, reliability, and applicability across regions.
☆ Improving Multi-Class Calibration through Normalization-Aware Isotonic Techniques
Accurate and reliable probability predictions are essential for multi-class supervised learning tasks, where well-calibrated models enable rational decision-making. While isotonic regression has proven effective for binary calibration, its extension to multi-class problems via one-vs-rest calibration produced suboptimal results when compared to parametric methods, limiting its practical adoption. In this work, we propose novel isotonic normalization-aware techniques for multiclass calibration, grounded in natural and intuitive assumptions expected by practitioners. Unlike prior approaches, our methods inherently account for probability normalization by either incorporating normalization directly into the optimization process (NA-FIR) or modeling the problem as a cumulative bivariate isotonic regression (SCIR). Empirical evaluation on a variety of text and image classification datasets across different model architectures reveals that our approach consistently improves negative log-likelihood (NLL) and expected calibration error (ECE) metrics.
☆ Interpretable machine learning of halo gas density profiles: a sensitivity analysis of cosmological hydrodynamical simulations
Stellar and AGN-driven feedback processes affect the distribution of gas on a wide range of scales, from within galaxies well into the intergalactic medium. Yet, it remains unclear how feedback, through its connection to key galaxy properties, shapes the radial gas density profile in the host halo. We tackle this question using suites of the EAGLE, IllustrisTNG, and Simba cosmological hydrodynamical simulations, which span a variety of feedback models. We develop a random forest algorithm that predicts the radial gas density profile within haloes from the total halo mass and five global properties of the central galaxy: gas and stellar mass; star formation rate; mass and accretion rate of the central black hole (BH). The algorithm reproduces the simulated gas density profiles with an average accuracy of $\sim$80-90% over the halo mass range $10^{9.5} \, \mathrm{M}_{\odot} < M_{\rm 200c} < 10^{15} \, \mathrm{M}_{\odot}$ and redshift interval $0
comment: To be submitted to The Open Journal of Astrophysics
☆ Luxical: High-Speed Lexical-Dense Text Embeddings
Frontier language model quality increasingly hinges on our ability to organize web-scale text corpora for training. Today's dominant tools trade off speed and flexibility: lexical classifiers (e.g., FastText) are fast but limited to producing classification output scores, while the vector-valued outputs of transformer text embedding models flexibly support numerous workflows (e.g., clustering, classification, and retrieval) but are computationally expensive to produce. We introduce Luxical, a library for high-speed "lexical-dense" text embeddings that aims to recover the best properties of both approaches for web-scale text organization. Luxical combines sparse TF--IDF features, a small ReLU network, and a knowledge distillation training regimen to approximate large transformer embedding models at a fraction of their operational cost. In this technical report, we describe the Luxical architecture and training objective and evaluate a concrete Luxical model in two disparate applications: a targeted webcrawl document retrieval test and an end-to-end language model data curation task grounded in text classification. In these tasks we demonstrate speedups ranging from 3x to 100x over varying-sized neural baselines, and comparable to FastText model inference during the data curation task. On these evaluations, the tested Luxical model illustrates favorable compute/quality trade-offs for large-scale text organization, matching the quality of neural baselines. Luxical is available as open-source software at https://github.com/datologyai/luxical.
comment: 9 pages, 6 figures
☆ Graph Deep Learning for Intracranial Aneurysm Blood Flow Simulation and Risk Assessment
Intracranial aneurysms remain a major cause of neurological morbidity and mortality worldwide, where rupture risk is tightly coupled to local hemodynamics particularly wall shear stress and oscillatory shear index. Conventional computational fluid dynamics simulations provide accurate insights but are prohibitively slow and require specialized expertise. Clinical imaging alternatives such as 4D Flow MRI offer direct in-vivo measurements, yet their spatial resolution remains insufficient to capture the fine-scale shear patterns that drive endothelial remodeling and rupture risk while being extremely impractical and expensive. We present a graph neural network surrogate model that bridges this gap by reproducing full-field hemodynamics directly from vascular geometries in less than one minute per cardiac cycle. Trained on a comprehensive dataset of high-fidelity simulations of patient-specific aneurysms, our architecture combines graph transformers with autoregressive predictions to accurately simulate blood flow, wall shear stress, and oscillatory shear index. The model generalizes across unseen patient geometries and inflow conditions without mesh-specific calibration. Beyond accelerating simulation, our framework establishes the foundation for clinically interpretable hemodynamic prediction. By enabling near real-time inference integrated with existing imaging pipelines, it allows direct comparison with hospital phase-diagram assessments and extends them with physically grounded, high-resolution flow fields. This work transforms high-fidelity simulations from an expert-only research tool into a deployable, data-driven decision support system. Our full pipeline delivers high-resolution hemodynamic predictions within minutes of patient imaging, without requiring computational specialists, marking a step-change toward real-time, bedside aneurysm analysis.
☆ Fully Decentralized Certified Unlearning
Machine unlearning (MU) seeks to remove the influence of specified data from a trained model in response to privacy requests or data poisoning. While certified unlearning has been analyzed in centralized and server-orchestrated federated settings (via guarantees analogous to differential privacy, DP), the decentralized setting -- where peers communicate without a coordinator remains underexplored. We study certified unlearning in decentralized networks with fixed topologies and propose RR-DU, a random-walk procedure that performs one projected gradient ascent step on the forget set at the unlearning client and a geometrically distributed number of projected descent steps on the retained data elsewhere, combined with subsampled Gaussian noise and projection onto a trust region around the original model. We provide (i) convergence guarantees in the convex case and stationarity guarantees in the nonconvex case, (ii) $(\varepsilon,δ)$ network-unlearning certificates on client views via subsampled Gaussian Rényi DP (RDP) with segment-level subsampling, and (iii) deletion-capacity bounds that scale with the forget-to-local data ratio and quantify the effect of decentralization (network mixing and randomized subsampling) on the privacy-utility trade-off. Empirically, on image benchmarks (MNIST, CIFAR-10), RR-DU matches a given $(\varepsilon,δ)$ while achieving higher test accuracy than decentralized DP baselines and reducing forget accuracy to random guessing ($\approx 10\%$).
♻ ☆ Oscillations Make Neural Networks Robust to Quantization
We challenge the prevailing view that weight oscillations observed during Quantization Aware Training (QAT) are merely undesirable side-effects and argue instead that they are an essential part of QAT. We show in a univariate linear model that QAT results in an additional loss term that causes oscillations by pushing weights away from their nearest quantization level. Based on the mechanism from the analysis, we then derive a regularizer that induces oscillations in the weights of neural networks during training. Our empirical results on ResNet-18 and Tiny Vision Transformer, evaluated on CIFAR-10 and Tiny ImageNet datasets, demonstrate across a range of quantization levels that training with oscillations followed by post-training quantization (PTQ) is sufficient to recover the performance of QAT in most cases. With this work we provide further insight into the dynamics of QAT and contribute a novel insight into explaining the role of oscillations in QAT which until now have been considered to have a primarily negative effect on quantization.
comment: Accepted to Transactions on Machine Learning Research (TMLR, 2025). Published version https://openreview.net/forum?id=bPwcJ0nkDC
♻ ☆ Proper Learnability and the Role of Unlabeled Data
Proper learning refers to the setting in which learners must emit predictors in the underlying hypothesis class $H$, and often leads to learners with simple algorithmic forms (e.g. empirical risk minimization (ERM), structural risk minimization (SRM)). The limitation of proper learning, however, is that there exist problems which can only be learned improperly, e.g. in multiclass classification. Thus, we ask: Under what assumptions on the hypothesis class or the information provided to the learner is a problem properly learnable? We first demonstrate that when the unlabeled data distribution is given, there always exists an optimal proper learner governed by distributional regularization, a randomized generalization of regularization. We refer to this setting as the distribution-fixed PAC model, and continue to evaluate the learner on its worst-case performance over all distributions. Our result holds for all metric loss functions and any finite learning problem (with no dependence on its size). Further, we demonstrate that sample complexities in the distribution-fixed PAC model can shrink by only a logarithmic factor from the classic PAC model, strongly refuting the role of unlabeled data in PAC learning (from a worst-case perspective). We complement this with impossibility results which obstruct any characterization of proper learnability in the realizable PAC model. First, we observe that there are problems whose proper learnability is logically undecidable, i.e., independent of the ZFC axioms. We then show that proper learnability is not a monotone property of the underlying hypothesis class, and that it is not a local property (in a precise sense). Our impossibility results all hold even for the fundamental setting of multiclass classification, and go through a reduction of EMX learning (Ben-David et al., 2019) to proper classification which may be of independent interest.
comment: ALT 2025, 22 pages
♻ ☆ Uncertainty Quantification for Scientific Machine Learning using Sparse Variational Gaussian Process Kolmogorov-Arnold Networks (SVGP KAN)
Kolmogorov-Arnold Networks have emerged as interpretable alternatives to traditional multi-layer perceptrons. However, standard implementations lack principled uncertainty quantification capabilities essential for many scientific applications. We present a framework integrating sparse variational Gaussian process inference with the Kolmogorov-Arnold topology, enabling scalable Bayesian inference with computational complexity quasi-linear in sample size. Through analytic moment matching, we propagate uncertainty through deep additive structures while maintaining interpretability. We use three example studies to demonstrate the framework's ability to distinguish aleatoric from epistemic uncertainty: calibration of heteroscedastic measurement noise in fluid flow reconstruction, quantification of prediction confidence degradation in multi-step forecasting of advection-diffusion dynamics, and out-of-distribution detection in convolutional autoencoders. These results suggest Sparse Variational Gaussian Process Kolmogorov-Arnold Networks (SVGP KANs) is a promising architecture for uncertainty-aware learning in scientific machine learning.
comment: 20 pages, 3 figures
♻ ☆ Escaping the Verifier: Learning to Reason via Demonstrations
Training Large Language Models (LLMs) to reason often relies on Reinforcement Learning (RL) with task-specific verifiers. However, many real-world reasoning-intensive tasks lack verifiers, despite offering abundant expert demonstrations that remain under-utilized for reasoning-focused training. We introduce RARO (Relativistic Adversarial Reasoning Optimization) that learns strong reasoning capabilities from only expert demonstrations via Inverse Reinforcement Learning. Our method sets up an adversarial game between a policy and a relativistic critic: the policy learns to mimic expert answers, while the critic aims to identify the experts among (expert, policy) answer pairs. Both the policy and the critic are trained jointly and continuously via RL, and we identify the key stabilization techniques required for robust learning. Empirically, RARO significantly outperforms strong verifier-free baselines on all of our evaluation tasks -- Countdown, DeepMath, and Poetry Writing -- and enjoys the same robust scaling trends as RL with verifiers. These results demonstrate that our method effectively elicits strong reasoning performance from expert demonstrations alone, enabling robust reasoning learning even when task-specific verifiers are unavailable.
♻ ☆ Do Natural Language Descriptions of Model Activations Convey Privileged Information?
Recent interpretability methods have proposed to translate LLM internal representations into natural language descriptions using a second verbalizer LLM. This is intended to illuminate how the target model represents and operates on inputs. But do such activation verbalization approaches actually provide privileged knowledge about the internal workings of the target model, or do they merely convey information about its inputs? We critically evaluate popular verbalization methods across datasets used in prior work and find that they can succeed at benchmarks without any access to target model internals, suggesting that these datasets may not be ideal for evaluating verbalization methods. We then run controlled experiments which reveal that verbalizations often reflect the parametric knowledge of the verbalizer LLM which generated them, rather than the knowledge of the target LLM whose activations are decoded. Taken together, our results indicate a need for targeted benchmarks and experimental controls to rigorously assess whether verbalization methods provide meaningful insights into the operations of LLMs.
comment: 40 pages, 6 figures. Updated and added content
♻ ☆ Arbitrage: Efficient Reasoning via Advantage-Aware Speculation
Modern Large Language Models achieve impressive reasoning capabilities with long Chain of Thoughts, but they incur substantial computational cost during inference, and this motivates techniques to improve the performance-cost ratio. Among these techniques, Speculative Decoding accelerates inference by employing a fast but inaccurate draft model to autoregressively propose tokens, which are then verified in parallel by a more capable target model. However, due to unnecessary rejections caused by token mismatches in semantically equivalent steps, traditional token-level Speculative Decoding struggles in reasoning tasks. Although recent works have shifted to step-level semantic verification, which improve efficiency by accepting or rejecting entire reasoning steps, existing step-level methods still regenerate many rejected steps with little improvement, wasting valuable target compute. To address this challenge, we propose Arbitrage, a novel step-level speculative generation framework that routes generation dynamically based on the relative advantage between draft and target models. Instead of applying a fixed acceptance threshold, Arbitrage uses a lightweight router trained to predict when the target model is likely to produce a meaningfully better step. This routing approximates an ideal Arbitrage Oracle that always chooses the higher-quality step, achieving near-optimal efficiency-accuracy trade-offs. Across multiple mathematical reasoning benchmarks, Arbitrage consistently surpasses prior step-level Speculative Decoding baselines, reducing inference latency by up to $\sim2\times$ at matched accuracy.
comment: 22 pages
♻ ☆ Rethinking Few-Shot Image Fusion: Granular Ball Priors Enable General-Purpose Deep Fusion
In image fusion tasks, the absence of real fused images as priors forces most deep learning approaches to rely on large-scale paired datasets to extract global weighting features or to generate pseudo-supervised images through algorithmic constructions. Unlike previous methods, this work re-examines prior-guided learning under few-shot conditions by introducing rough set theory. We regard the traditional algorithm as a prior generator, while the network re-inferrs and adaptively optimizes the prior through a dynamic loss function, reducing the inference burden of the network and enabling effective few-shot learning.To provide the prior, we propose the Granular Ball Pixel Computation (GBPC) algorithm. GBPC models pixel pairs in a luminance subspace using meta-granular balls and mines intra-ball information at multiple granular levels. At the fine-grained level, sliding granular balls assign adaptive weights to individual pixels to produce pixel-level prior fusion. At the coarse-grained level, the algorithm performs split computation within a single image to estimate positive and boundary domain distributions, enabling modality awareness and prior confidence estimation, which dynamically guide the loss weighting.The network and the algorithmic prior are coupled through the loss function to form an integrated framework. Thanks to the dynamic weighting mechanism, the network can adaptively adjust to different priors during training, enhancing its perception and fusion capability across modalities. We name this framework GBFF (Granular Ball Fusion Framework). Experiments on four fusion tasks demonstrate that even with only ten training image pairs per task, GBFF achieves superior performance in both visual quality and model compactness. Code is available at: https://github.com/DMinjie/GBFF
♻ ☆ Score-based Conditional Out-of-Distribution Augmentation for Graph Covariate Shift
Distribution shifts between training and testing datasets significantly impair the model performance on graph learning. A commonly-taken causal view in graph invariant learning suggests that stable predictive features of graphs are causally associated with labels, whereas varying environmental features lead to distribution shifts. In particular, covariate shifts caused by unseen environments in test graphs underscore the critical need for out-of-distribution (OOD) generalization. Existing graph augmentation methods designed to address the covariate shift often disentangle the stable and environmental features in the input space, and selectively perturb or mixup the environmental features. However, such perturbation-based methods heavily rely on an accurate separation of stable and environmental features, and their exploration ability is confined to existing environmental features in the training distribution. To overcome these limitations, we introduce a novel distributional augmentation approach enabled by a tailored score-based conditional graph generation strategies to explore and synthesize unseen environments while preserving the validity and stable features of overall graph patterns. Our comprehensive empirical evaluations demonstrate the enhanced effectiveness of our method in improving graph OOD generalization.
comment: 12 pages, 3 figures, 8 tables
♻ ☆ The Missing Point in Vision Transformers for Universal Image Segmentation
Image segmentation remains a challenging task in computer vision, demanding robust mask generation and precise classification. Recent mask-based approaches yield high-quality masks by capturing global context. However, accurately classifying these masks, especially in the presence of ambiguous boundaries and imbalanced class distributions, remains an open challenge. In this work, we introduce ViT-P, a novel two-stage segmentation framework that decouples mask generation from classification. The first stage employs a proposal generator to produce class-agnostic mask proposals, while the second stage utilizes a point-based classification model built on the Vision Transformer (ViT) to refine predictions by focusing on mask central points. ViT-P serves as a pre-training-free adapter, allowing the integration of various pre-trained vision transformers without modifying their architecture, ensuring adaptability to dense prediction tasks. Furthermore, we demonstrate that coarse and bounding box annotations can effectively enhance classification without requiring additional training on fine annotation datasets, reducing annotation costs while maintaining strong performance. Extensive experiments across COCO, ADE20K, and Cityscapes datasets validate the effectiveness of ViT-P, achieving state-of-the-art results with 54.0 PQ on ADE20K panoptic segmentation, 87.4 mIoU on Cityscapes semantic segmentation, and 63.6 mIoU on ADE20K semantic segmentation. The code and pretrained models are available at: https://github.com/sajjad-sh33/ViT-P}{https://github.com/sajjad-sh33/ViT-P.
♻ ☆ Learning Generalized Hamiltonians using fully Symplectic Mappings AAAI
Many important physical systems can be described as the evolution of a Hamiltonian system, which has the important property of being conservative, that is, energy is conserved throughout the evolution. Physics Informed Neural Networks and in particular Hamiltonian Neural Networks have emerged as a mechanism to incorporate structural inductive bias into the NN model. By ensuring physical invariances are conserved, the models exhibit significantly better sample complexity and out-of-distribution accuracy than standard NNs. Learning the Hamiltonian as a function of its canonical variables, typically position and velocity, from sample observations of the system thus becomes a critical task in system identification and long-term prediction of system behavior. However, to truly preserve the long-run physical conservation properties of Hamiltonian systems, one must use symplectic integrators for a forward pass of the system's simulation. While symplectic schemes have been used in the literature, they are thus far limited to situations when they reduce to explicit algorithms, which include the case of separable Hamiltonians or augmented non-separable Hamiltonians. We extend it to generalized non-separable Hamiltonians, and noting the self-adjoint property of symplectic integrators, we bypass computationally intensive backpropagation through an ODE solver. We show that the method is robust to noise and provides a good approximation of the system Hamiltonian when the state variables are sampled from a noisy observation. In the numerical results, we show the performance of the method concerning Hamiltonian reconstruction and conservation, indicating its particular advantage for non-separable systems.
comment: Submitted to The 39th Annual AAAI Conference on Artificial Intelligence
♻ ☆ Neural Surrogate HMC: On Using Neural Likelihoods for Hamiltonian Monte Carlo in Simulation-Based Inference
Bayesian inference methods such as Markov Chain Monte Carlo (MCMC) typically require repeated computations of the likelihood function, but in some scenarios this is infeasible and alternative methods are needed. Simulation-based inference (SBI) methods address this problem by using machine learning to amortize computations. In this work, we highlight a particular synergy between the SBI method of neural likelihood estimation and the classic MCMC method of Hamiltonian Monte Carlo. We show that approximating the likelihood function with a neural network model can provide three distinct advantages: (1) amortizing the computations for MCMC; (2) providing gradients for Hamiltonian Monte Carlo, and (3) smoothing over noisy simulations resulting from numerical instabilities. We provide practical guidelines for defining a prior, sampling a training set, and evaluating convergence. The method is demonstrated in an application modeling the heliospheric transport of galactic cosmic rays, where it enables efficient inference of latent parameters in the Parker equation.
comment: 19 pages, 14 figures, in review for publication in JGR: Machine Learning and Computation
♻ ☆ Automated Construction of Artificial Lattice Structures with Designer Electronic States
Manipulating matter with a scanning tunneling microscope (STM) enables creation of atomically defined artificial structures that host designer quantum states. However, the time-consuming nature of the manipulation process, coupled with the sensitivity of the STM tip, constrains the exploration of diverse configurations and limits the size of designed features. In this study, we present a reinforcement learning (RL)-based framework for creating artificial structures by spatially manipulating carbon monoxide (CO) molecules on a copper substrate using the STM tip. The automated workflow combines molecule detection and manipulation, employing deep learning-based object detection to locate CO molecules and linear assignment algorithms to allocate these molecules to designated target sites. We initially perform molecule maneuvering based on randomized parameter sampling for sample bias, tunneling current setpoint and manipulation speed. This dataset is then structured into an action trajectory used to train an RL agent. The model is subsequently deployed on the STM for real-time fine-tuning of manipulation parameters during structure construction. Our approach incorporates path planning protocols coupled with active drift compensation to enable atomically precise fabrication of structures with significantly reduced human input while realizing larger-scale artificial lattices with desired electronic properties. Using our approach, we demonstrate the automated construction of an extended artificial graphene lattice and confirm the existence of characteristic Dirac point in its electronic structure. Further challenges to RL-based structural assembly scalability are discussed.
♻ ☆ PinRec: Outcome-Conditioned, Multi-Token Generative Retrieval for Industry-Scale Recommendation Systems
Generative retrieval methods utilize generative sequential modeling techniques, such as transformers, to generate candidate items for recommender systems. These methods have demonstrated promising results in academic benchmarks, surpassing traditional retrieval models like two-tower architectures. However, current generative retrieval methods lack the scalability required for industrial recommender systems, and they are insufficiently flexible to satisfy the multiple metric requirements of modern systems. This paper introduces PinRec, a novel generative retrieval model developed for applications at Pinterest. PinRec utilizes outcome-conditioned generation, enabling modelers to specify how to balance various outcome metrics, such as the number of saves and clicks, to effectively align with business goals and user exploration. Additionally, PinRec incorporates multi-token generation to enhance output diversity while optimizing generation. Our experiments demonstrate that PinRec can successfully balance performance, diversity, and efficiency, delivering a significant positive impact to users using generative models. This paper marks a significant milestone in generative retrieval, as it presents, to our knowledge, the first rigorous study on implementing generative retrieval at the scale of Pinterest.
♻ ☆ An Improved Ensemble-Based Machine Learning Model with Feature Optimization for Early Diabetes Prediction
Diabetes is a serious worldwide health issue, and successful intervention depends on early detection. However, overlapping risk factors and data asymmetry make prediction difficult. To use extensive health survey data to create a machine learning framework for diabetes classification that is both accurate and comprehensible, to produce results that will aid in clinical decision-making. Using the BRFSS dataset, we assessed a number of supervised learning techniques. SMOTE and Tomek Links were used to correct class imbalance. To improve prediction performance, both individual models and ensemble techniques such as stacking were investigated. The 2015 BRFSS dataset, which includes roughly 253,680 records with 22 numerical features, is used in this study. Strong ROC-AUC performance of approximately 0.96 was attained by the individual models Random Forest, XGBoost, CatBoost, and LightGBM.The stacking ensemble with XGBoost and KNN yielded the best overall results with 94.82\% accuracy, ROC-AUC of 0.989, and PR-AUC of 0.991, indicating a favourable balance between recall and precision. In our study, we proposed and developed a React Native-based application with a Python Flask backend to support early diabetes prediction, providing users with an accessible and efficient health monitoring tool.
comment: Accepted for presentation at the 7th International Conference on Trends in Computational and Cognitive Engineering (TCCE-2025), 12-13 November 2025. This manuscript contains 10 pages and 7 figures
♻ ☆ Provably Mitigating Corruption, Overoptimization, and Verbosity Simultaneously in Offline and Online RLHF/DPO Alignment
Reinforcement learning from human feedback (RLHF) and direct preference optimization (DPO) are important techniques to align large language models (LLM) with human preference. However, the quality of RLHF and DPO training is seriously compromised by \textit{\textbf{C}orrupted} preference, reward \textit{\textbf{O}veroptimization}, and bias towards \textit{\textbf{V}erbosity}. To our knowledge, most existing works tackle only one of these important issues, and the few other works require much computation to estimate multiple reward models and lack theoretical guarantee of generalization ability. In this work, we propose RLHF-\textbf{COV} and DPO-\textbf{COV} algorithms that can simultaneously mitigate these three issues, in both offline and online settings. This ability is theoretically demonstrated by obtaining length-regularized generalization error rates for our DPO-COV algorithms trained on corrupted data, which match the best-known rates for simpler cases with clean data and without length regularization. Moreover, our DPO-COV algorithm is simple to implement without reward estimation, and is proved to be equivalent to our RLHF-COV algorithm, which directly implies the equivalence between the vanilla RLHF and DPO algorithms. Experiments demonstrate the effectiveness of our DPO-COV algorithms under both offline and online settings.
comment: Edited a few incorrect numbers in Tables 2 and 3
♻ ☆ Mitigating the Curse of Detail: Scaling Arguments for Feature Learning and Sample Complexity
Two pressing topics in the theory of deep learning are the interpretation of feature learning mechanisms and the determination of implicit bias of networks in the rich regime. Current theories of rich feature learning, often appear in the form of high-dimensional non-linear equations, which require computationally intensive numerical solutions. Given the many details that go into defining a deep learning problem, this complexity is a significant and often unavoidable challenge. Here, we propose a powerful heuristic route for predicting the data and width scales at which various patterns of feature learning emerge. This form of scale analysis is considerably simpler than exact theories and reproduces the scaling exponents of various known results. In addition, we make novel predictions on complex toy architectures, such as three-layer non-linear networks and attention heads, thus extending the scope of first-principle theories of deep learning.
♻ ☆ Decomposition of Small Transformer Models
Recent work in mechanistic interpretability has shown that decomposing models in parameter space may yield clean handles for analysis and intervention. Previous methods have demonstrated successful applications on a wide range of toy models, but the gap to "real models" has not yet been bridged. In this work, we extend Stochastic Parameter Decomposition (SPD) to Transformer models, proposing an updated causal importance function suited for sequential data and a new loss function. We demonstrate that SPD can successfully decompose a toy induction-head model and recover the expected 2-step circuit. We also show that applying SPD to GPT-2-small can successfully locate subcomponents corresponding to interpretable concepts like "golf" and "basketball". These results take the first step in the direction of extending SPD to modern models, and show that we can use the method to surface interpretable parameter-space mechanisms.
comment: Accepted at Neurips 2025 Workshop on Mechanistic Interpretability
♻ ☆ Polynomiogram: An Integrated Framework for Root Visualization and Generative Art
This work presents the Polynomiogram framework, an integrated computational platform for exploring, visualizing, and generating art from polynomial root systems. The main innovation is a flexible sampling scheme in which two independent parameters are drawn from user defined domains and mapped to the polynomial coefficients through a generating function. This design allows the same mathematical foundation to support both scientific investigation and generative algorithmic art. The framework integrates two complementary numerical engines: NumPy companion matrix solver for fast, large scale computation and MPSolve for high precision, scientifically rigorous validation. This dual architecture enables efficient visualization for creative use and accurate computation for research and education. Numerical accuracy was verified using classical ensembles, including the Kac and Lucas polynomials. The method was applied to the cubic polynomial system to analyze its bifurcation structure, demonstrating its value as both a scientific tool for exploring root phenomena and an educational aid for visualizing fundamental concepts in algebra and dynamical systems. Beyond analysis, the Polynomiogram also demonstrated its potential as a tool for personalized generative art. Examples include the use of the platform to generate a natural form resembling a hibiscus flower and to create personalized artwork expressing gratitude toward advances in artificial intelligence and large language models through a tribute composition.
♻ ☆ Towards Task-Oriented Flying: Framework, Infrastructure, and Principles
Deploying robot learning methods to aerial robots in unstructured environments remains both challenging and promising. While recent advances in deep reinforcement learning (DRL) have enabled end-to-end flight control, the field still lacks systematic design guidelines and a unified infrastructure to support reproducible training and real-world deployment. We present a task-oriented framework for end-to-end DRL in quadrotors that integrates design principles for complex task specification and reveals the interdependencies among simulated task definition, training design principles, and physical deployment. Our framework involves software infrastructure, hardware platforms, and open-source firmware to support a full-stack learning infrastructure and workflow. Extensive empirical results demonstrate robust flight and sim-to-real generalization under real-world disturbances. By reducing the entry barrier for deploying learning-based controllers on aerial robots, our work lays a practical foundation for advancing autonomous flight in dynamic and unstructured environments.
♻ ☆ Batch Acquisition Function Evaluations and Decouple Optimizer Updates for Faster Bayesian Optimization AAAI
Bayesian optimization (BO) efficiently finds high-performing parameters by maximizing an acquisition function, which models the promise of parameters. A major computational bottleneck arises in acquisition function optimization, where multi-start optimization (MSO) with quasi-Newton (QN) methods is required due to the non-convexity of the acquisition function. BoTorch, a widely used BO library, currently optimizes the summed acquisition function over multiple points, leading to the speedup of MSO owing to PyTorch batching. Nevertheless, this paper empirically demonstrates the suboptimality of this approach in terms of off-diagonal approximation errors in the inverse Hessian of a QN method, slowing down its convergence. To address this problem, we propose to decouple QN updates using a coroutine while batching the acquisition function calls. Our approach not only yields the theoretically identical convergence to the sequential MSO but also drastically reduces the wall-clock time compared to the previous approaches. Our approach is available in GPSampler in Optuna, effectively reducing its computational overhead.
comment: Accepted to 5th Annual AAAI Workshop on AI to Accelerate Science and Engineering (AI2ASE)
♻ ☆ Amorphous Solid Model of Vectorial Hopfield Neural Networks
We introduce a three-dimensional vectorial extension of the Hopfield associative-memory model in which each neuron is a unit vector on $S^2$ and synaptic couplings are $3\times 3$ blocks generated through a vectorial Hebbian rule. The resulting block-structured operator is mathematically analogous to the Hessian of amorphous solids and induces a rigid energy landscape with deep minima for stored patterns. Simulations and spectral analysis show that the vectorial network substantially outperforms the classical binary Hopfield model. For moderate connectivity, the critical storage ratio $γ_c$ grows approximately linearly with the coordination number $Z$, while for $Z\gtrsim 40$ a high-connectivity regime emerges in which $γ_c$ systematically exceeds the extrapolated low-$Z$ linear fit. At the same time, a persistent spectral gap separates pattern modes from the bulk and basins of attraction enlarge, yielding enhanced robustness to initialization noise. Thus geometric constraints combined with amorphous-solid-inspired structure produce associative memories with superior storage and retrieval performance, especially in the high-connectivity ($Z \gtrsim 20$-$30$) regime.
comment: Revised and extended calculations, thoroughly checked convergence
♻ ☆ CLAPS: Posterior-Aware Conformal Intervals via Last-Layer Laplace
We present CLAPS, a posterior-aware conformal regression method that pairs a Last-Layer Laplace Approximation with split-conformal calibration. From the resulting Gaussian posterior, CLAPS defines a simple two-sided posterior CDF score that aligns the conformity metric with the full predictive shape, not just a point estimate. This alignment yields narrower prediction intervals at the same target coverage, especially on small to medium tabular datasets where data are scarce and uncertainty modeling matters. We also provide a lightweight diagnostic suite that separates aleatoric and epistemic components and visualizes posterior behavior, helping practitioners understand why intervals shrink when they do. Across multiple benchmarks using the same MLP backbone, CLAPS consistently attains nominal coverage with improved efficiency and minimal overhead, offering a clear, practical upgrade to residual-based conformal baselines.
comment: Updates main experimental results to averages over 5 random seeds and adds 95% confidence intervals for all metrics. Refines the discussion of when CLAPS vs Normalized-CP/CQR are most efficient, clarifies posterior diagnostics, and includes minor editorial corrections. 19 pages, 2 figures
♻ ☆ The Mean-Field Dynamics of Transformers
We develop a mathematical framework that interprets Transformer attention as an interacting particle system and studies its continuum (mean-field) limits. By idealizing attention on the sphere, we connect Transformer dynamics to Wasserstein gradient flows, synchronization models (Kuramoto), and mean-shift clustering. Central to our results is a global clustering phenomenon whereby tokens cluster asymptotically after long metastable states where they are arranged into multiple clusters. We further analyze a tractable equiangular reduction to obtain exact clustering rates, show how commonly used normalization schemes alter contraction speeds, and identify a phase transition for long-context attention. The results highlight both the mechanisms that drive representation collapse and the regimes that preserve expressive, multi-cluster structure in deep attention architectures.
comment: to appear as Proceedings of the ICM2026, Philadelphia, USA
♻ ☆ Gaussian Approximation for Two-Timescale Linear Stochastic Approximation
In this paper, we establish non-asymptotic bounds for accuracy of normal approximation for linear two-timescale stochastic approximation (TTSA) algorithms driven by martingale difference or Markov noise. Focusing on both the last iterate and Polyak-Ruppert averaging regimes, we derive bounds for normal approximation in terms of the convex distance between probability distributions. Our analysis reveals a non-trivial interaction between the fast and slow timescales: the normal approximation rate for the last iterate improves as the timescale separation increases, while it decreases in the Polyak-Ruppert averaged setting. We also provide the high-order moment bounds for the error of linear TTSA algorithm, which may be of independent interest.
♻ ☆ Curse of Slicing: Why Sliced Mutual Information is a Deceptive Measure of Statistical Dependence
Sliced Mutual Information (SMI) is widely used as a scalable alternative to mutual information for measuring non-linear statistical dependence. Despite its advantages, such as faster convergence, robustness to high dimensionality, and nullification only under statistical independence, we demonstrate that SMI is highly susceptible to data manipulation and exhibits counterintuitive behavior. Through extensive benchmarking and theoretical analysis, we show that SMI saturates easily, fails to detect increases in statistical dependence, prioritizes redundancy over informative content, and in some cases, performs worse than correlation coefficient.
♻ ☆ BeeTLe: An Imbalance-Aware Deep Sequence Model for Linear B-Cell Epitope Prediction and Classification with Logit-Adjusted Losses KDD 2023
The process of identifying and characterizing B-cell epitopes, which are the portions of antigens recognized by antibodies, is important for our understanding of the immune system, and for many applications including vaccine development, therapeutics, and diagnostics. Computational epitope prediction is challenging yet rewarding as it significantly reduces the time and cost of laboratory work. Most of the existing tools do not have satisfactory performance and only discriminate epitopes from non-epitopes. This paper presents a new deep learning-based multi-task framework for linear B-cell epitope prediction as well as antibody type-specific epitope classification. Specifically, a sequenced-based neural network model using recurrent layers and Transformer blocks is developed. We propose an amino acid encoding method based on eigen decomposition to help the model learn the representations of epitopes. We introduce modifications to standard cross-entropy loss functions by extending a logit adjustment technique to cope with the class imbalance. Experimental results on data curated from the largest public epitope database demonstrate the validity of the proposed methods and the superior performance compared to competing ones.
comment: 19 pages, 3 figures, accepted at ECML PKDD 2023; v2: updated title and added an appendix
♻ ☆ PRISM: Lightweight Multivariate Time-Series Classification through Symmetric Multi-Resolution Convolutional Layers
Multivariate time series classification supports applications from wearable sensing to biomedical monitoring and demands models that can capture both short-term patterns and longer-range temporal dependencies. Despite recent advances, Transformer and CNN models often remain computationally heavy and rely on many parameters. This work presents PRISM(Per-channel Resolution Informed Symmetric Module), a lightweight fully convolutional classifier. Operating in a channel-independent manner, in its early stage it applies a set of multi-resolution symmetric convolutional filters. This symmetry enforces structural constraints inspired by linear-phase FIR filters from classical signal processing, effectively halving the number of learnable parameters within the initial layers while preserving the full receptive field. Across the diverse UEA multivariate time-series archive as well as specific benchmarks in human activity recognition, sleep staging, and biomedical signals, PRISM matches or outperforms state-of-the-art CNN and Transformer models while using significantly fewer parameters and markedly lower computational cost. By bringing a principled signal processing prior into a modern neural architecture, PRISM offers an effective and computationally economical solution for multivariate time series classification.
♻ ☆ Pay Less Attention to Function Words for Free Robustness of Vision-Language Models
To address the trade-off between robustness and performance for robust VLM, we observe that function words could incur vulnerability of VLMs against cross-modal adversarial attacks, and propose Function-word De-Attention (FDA) accordingly to mitigate the impact of function words. Similar to differential amplifiers, our FDA calculates the original and the function-word cross-attention within attention heads, and differentially subtracts the latter from the former for more aligned and robust VLMs. Comprehensive experiments include 2 SOTA baselines under 6 different attacks on 2 downstream tasks, 3 datasets, and 3 models. Overall, our FDA yields an average 18/13/53% ASR drop with only 0.2/0.3/0.6% performance drops on the 3 tested models on retrieval, and a 90% ASR drop with a 0.3% performance gain on visual grounding. We demonstrate the scalability, generalization, and zero-shot performance of FDA experimentally, as well as in-depth ablation studies and analysis. Code will be made publicly at https://github.com/michaeltian108/FDA.
♻ ☆ Cross-Space Synergy: A Unified Framework for Multimodal Emotion Recognition in Conversation AAAI 2026
Multimodal Emotion Recognition in Conversation (MERC) aims to predict speakers' emotions by integrating textual, acoustic, and visual cues. Existing approaches either struggle to capture complex cross-modal interactions or experience gradient conflicts and unstable training when using deeper architectures. To address these issues, we propose Cross-Space Synergy (CSS), which couples a representation component with an optimization component. Synergistic Polynomial Fusion (SPF) serves the representation role, leveraging low-rank tensor factorization to efficiently capture high-order cross-modal interactions. Pareto Gradient Modulator (PGM) serves the optimization role, steering updates along Pareto-optimal directions across competing objectives to alleviate gradient conflicts and improve stability. Experiments show that CSS outperforms existing representative methods on IEMOCAP and MELD in both accuracy and training stability, demonstrating its effectiveness in complex multimodal scenarios.
comment: Accepted to AAAI 2026
♻ ☆ UniPruning: Unifying Local Metric and Global Feedback for Scalable Sparse LLMs
Large Language Models (LLMs) achieve strong performance across diverse tasks but face prohibitive computational and memory costs. Pruning offers a promising path by inducing sparsity while preserving architectural flexibility. However, existing methods struggle to balance efficiency and robustness: local metric approaches prune layer by layer but often collapse under high sparsity, whereas global feedback methods enforce consistency at the cost of expensive weight updates or restrictive semi-structured formats. We present UniPruning, a unified post-training pruning framework that combines the speed of local saliency metrics with the stability of global coordination, enabled by a mirror descent based optimization, all without updating model weights. UniPruning leverages fast layer-wise scoring and a lightweight global controller to allocate a single sparsity budget, supporting both unstructured and semi-structured N :M pruning within one framework. After a brief calibration, it can generate pruning masks for arbitrary sparsity levels in one shot, and adapts seamlessly to hardware-aware constraints. Extensive experiments on multiple pretrained LLM families and standard benchmarks show that UniPruning consistently delivers competitive or superior perplexity and zero-shot accuracy. Ablation studies further highlight the importance of mirror descent and local saliency anchoring. Overall, UniPruning provides an efficient, principled, and scalable solution for sparsifying large-scale LLMs. Our code is available at: https://github.com/RainbowQTT/UniPruning.
♻ ☆ GateRA: Token-Aware Modulation for Parameter-Efficient Fine-Tuning AAAI 2026
Parameter-efficient fine-tuning (PEFT) methods, such as LoRA, DoRA, and HiRA, enable lightweight adaptation of large pre-trained models via low-rank updates. However, existing PEFT approaches apply static, input-agnostic updates to all tokens, disregarding the varying importance and difficulty of different inputs. This uniform treatment can lead to overfitting on trivial content or under-adaptation on more informative regions, especially in autoregressive settings with distinct prefill and decoding dynamics. In this paper, we propose GateRA, a unified framework that introduces token-aware modulation to dynamically adjust the strength of PEFT updates. By incorporating adaptive gating into standard PEFT branches, GateRA enables selective, token-level adaptation, preserving pre-trained knowledge for well-modeled inputs while focusing capacity on challenging cases. Empirical visualizations reveal phase-sensitive behaviors, where GateRA automatically suppresses updates for redundant prefill tokens while emphasizing adaptation during decoding. To promote confident and efficient modulation, we further introduce an entropy-based regularization that encourages near-binary gating decisions. This regularization prevents diffuse update patterns and leads to interpretable, sparse adaptation without hard thresholding. Finally, we present a theoretical analysis showing that GateRA induces a soft gradient-masking effect over the PEFT path, enabling continuous and differentiable control over adaptation. Experiments on multiple commonsense reasoning benchmarks demonstrate that GateRA consistently outperforms or matches prior PEFT methods.
comment: Accepted by AAAI 2026
♻ ☆ Tractable Probabilistic Models for Investment Planning
Investment planning in power utilities, such as generation and transmission expansion, requires decade-long forecasts under profound uncertainty. Forecasting of energy mix and energy use decades ahead is nontrivial. Classical approaches focus on generating a finite number of scenarios (modeled as a mixture of Diracs in statistical theory terms), which limits insight into scenario-specific volatility and hinders robust decision-making. We propose an alternative using tractable probabilistic models (TPMs), particularly sum-product networks (SPNs). These models enable exact, scalable inference of key quantities such as scenario likelihoods, marginals, and conditional probabilities, supporting robust scenario expansion and risk assessment. This framework enables direct embedding of chance-constrained optimization into investment planning, enforcing safety or reliability with prescribed confidence levels. TPMs allow both scenario analysis and volatility quantification by compactly representing high-dimensional uncertainties. We demonstrate the effectiveness of the approach through a representative power system planning case study, illustrating its computational and reliability advantages over traditional scenario-based models.
♻ ☆ Schauder Bases for $C[0, 1]$ Using ReLU, Softplus and Two Sigmoidal Functions
We construct four Schauder bases for the space $C[0,1]$, one using ReLU functions, another using Softplus functions, and two more using sigmoidal versions of the ReLU and Softplus functions. This establishes the existence of a basis using these functions for the first time, and improves on the universal approximation property associated with them. We also show an $O(\frac{1}{n})$ approximation bound based on our ReLU basis, and a negative result on constructing multivariate functions using finite combinations of ReLU functions.
comment: 13 pages, 4 figures
♻ ☆ AraLingBench A Human-Annotated Benchmark for Evaluating Arabic Linguistic Capabilities of Large Language Models
We present AraLingBench: a fully human annotated benchmark for evaluating the Arabic linguistic competence of large language models (LLMs). The benchmark spans five core categories: grammar, morphology, spelling, reading comprehension, and syntax, through 150 expert-designed multiple choice questions that directly assess structural language understanding. Evaluating 35 Arabic and bilingual LLMs reveals that current models demonstrate strong surface level proficiency but struggle with deeper grammatical and syntactic reasoning. AraLingBench highlights a persistent gap between high scores on knowledge-based benchmarks and true linguistic mastery, showing that many models succeed through memorization or pattern recognition rather than authentic comprehension. By isolating and measuring fundamental linguistic skills, AraLingBench provides a diagnostic framework for developing Arabic LLMs. The full evaluation code is publicly available on GitHub.
♻ ☆ Deep generative modelling of canonical ensemble with differentiable thermal properties
It is a long-standing challenge to accurately and efficiently compute thermodynamic quantities of many-body systems at thermal equilibrium. The conventional methods, e.g., Markov chain Monte Carlo, require many steps to equilibrate. The recently developed deep learning methods can perform direct sampling, but only work at a single trained temperature point and risk biased sampling. Here, we propose a variational method for canonical ensembles with differentiable temperature, which gives thermodynamic quantities as continuous functions of temperature akin to an analytical solution. The proposed method is a general framework that works with any tractable density generative model. At optimal, the model is theoretically guaranteed to be the unbiased Boltzmann distribution. We validated our method by calculating phase transitions in the Ising and XY models, demonstrating that our direct-sampling simulations are as accurate as Markov chain Monte Carlo, but more efficient. Moreover, our differentiable free energy aligns closely with the exact one to the second-order derivative, indicating that the variational model captures the subtle thermal transitions at the phase transitions. This functional dependence on external parameters is a fundamental advancement in combining the exceptional fitting ability of deep learning with rigorous physical analysis.
comment: Main text: 11.5 pages, 4 figures. Supplement: 20 pages. Github link: https://github.com/li012589/vatd
♻ ☆ AI-powered virtual tissues from spatial proteomics for clinical diagnostics and biomedical discovery
Spatial proteomics technologies have transformed our understanding of complex tissue architecture in cancer but present unique challenges for computational analysis. Each study uses a different marker panel and protocol, and most methods are tailored to single cohorts, which limits knowledge transfer and robust biomarker discovery. Here we present Virtual Tissues (VirTues), a general-purpose foundation model for spatial proteomics that learns marker-aware, multi-scale representations of proteins, cells, niches and tissues directly from multiplex imaging data. From a single pretrained backbone, VirTues supports marker reconstruction, cell typing and niche annotation, spatial biomarker discovery, and patient stratification, including zero-shot annotation across heterogeneous panels and datasets. In triple-negative breast cancer, VirTues-derived biomarkers predict anti-PD-L1 chemo-immunotherapy response and stratify disease-free survival in an independent cohort, outperforming state-of-the-art biomarkers derived from the same datasets and current clinical stratification schemes.
comment: 25 pages, 5 figures
♻ ☆ Discovering Influential Factors in Variational Autoencoders
In the field of machine learning, it is still a critical issue to identify and supervise the learned representation without manually intervening or intuition assistance to extract useful knowledge or serve for the downstream tasks. In this work, we focus on supervising the influential factors extracted by the variational autoencoder(VAE). The VAE is proposed to learn independent low dimension representation while facing the problem that sometimes pre-set factors are ignored. We argue that the mutual information of the input and each learned factor of the representation plays a necessary indicator of discovering the influential factors. We find the VAE objective inclines to induce mutual information sparsity in factor dimension over the data intrinsic dimension and therefore result in some non-influential factors whose function on data reconstruction could be ignored. We show mutual information also influences the lower bound of the VAE's reconstruction error and downstream classification task. To make such indicator applicable, we design an algorithm for calculating the mutual information for the VAE and prove its consistency. Experimental results on MNIST, CelebA and DEAP datasets show that mutual information can help determine influential factors, of which some are interpretable and can be used to further generation and classification tasks, and help discover the variant that connects with emotion on DEAP dataset.
comment: 15 pages, 8 figures
♻ ☆ Unifying Entropy Regularization in Optimal Control: From and Back to Classical Objectives via Iterated Soft Policies and Path Integral Solutions
This paper develops a unified perspective on several stochastic optimal control formulations through the lens of Kullback-Leibler regularization. We propose a central problem that separates the KL penalties on policies and transitions, assigning them independent weights, thereby generalizing the standard trajectory-level KL-regularization commonly used in probabilistic and KL-regularized control. This generalized formulation acts as a generative structure allowing to recover various control problems. These include the classical Stochastic Optimal Control (SOC), Risk-Sensitive Optimal Control (RSOC), and their policy-based KL-regularized counterparts. The latter we refer to as soft-policy SOC and RSOC, facilitating alternative problems with tractable solutions. Beyond serving as regularized variants, we show that these soft-policy formulations majorize the original SOC and RSOC problem. This means that the regularized solution can be iterated to retrieve the original solution. Furthermore, we identify a structurally synchronized case of the risk-seeking soft-policy RSOC formulation, wherein the policy and transition KL-regularization weights coincide. Remarkably, this specific setting gives rise to several powerful properties such as a linear Bellman equation, path integral solution, and, compositionality, thereby extending these computationally favourable properties to a broad class of control problems.
comment: Corrected "DRO" to "DRC" and fixed theorem numbering throughout paper
♻ ☆ A Broader View on Clustering under Cluster-Aware Norm Objectives
We revisit the $(f,g)$-clustering problem that we introduced in a recent work [SODA'25], and which subsumes fundamental clustering problems such as $k$-Center, $k$-Median, Min-Sum of Radii, and Min-Load $k$-Clustering. This problem assigns each of the $k$ clusters a cost determined by the monotone, symmetric norm $f$ applied to the vector distances in the cluster, and aims at minimizing the norm $g$ applied to the vector of cluster costs. Previously, we focused on certain special cases for which we designed constant-factor approximation algorithms. Our bounds for more general settings left, however, large gaps to the known bounds for the basic problems they capture. In this work, we provide a clearer picture of the approximability of these more general settings. First, we design an $O(\log^2 n)$-approximation algorithm for $(f, L_{1})$-clustering for any $f$. This improves upon our previous $\widetilde{O}(\sqrt{n})$-approximation. Second, we provide an $O(k)$-approximation for the general $(f,g)$-clustering problem, which improves upon our previous $\widetilde{O}(\sqrt{kn})$-approximation algorithm and matches the best-known upper bound for Min-Load $k$-Clustering. We then design an approximation algorithm for $(f,g)$-clustering that interpolates, up to polylog factors, between the best known bounds for $k$-Center, $k$-Median, Min-Sum of Radii, Min-Load $k$-Clustering, (Top, $L_{1}$)-clustering, and $(L_{\infty},g)$-clustering based on a newly defined parameter of $f$ and $g$.
comment: accepted at SODA 2026
♻ ☆ Evaluating and Preserving High-level Fidelity in Super-Resolution
Recent image Super-Resolution (SR) models are achieving impressive effects in reconstructing details and delivering visually pleasant outputs. However, the overpowering generative ability can sometimes hallucinate and thus change the image content despite gaining high visual quality. This type of high-level change can be easily identified by humans yet not well-studied in existing low-level image quality metrics. In this paper, we establish the importance of measuring high-level fidelity for SR models as a complementary criterion to reveal the reliability of generative SR models. We construct the first annotated dataset with fidelity scores from different SR models, and evaluate how state-of-the-art (SOTA) SR models actually perform in preserving high-level fidelity. Based on the dataset, we then analyze how existing image quality metrics correlate with fidelity measurement, and further show that this high-level task can be better addressed by foundation models. Finally, by fine-tuning SR models based on our fidelity feedback, we show that both semantic fidelity and perceptual quality can be improved, demonstrating the potential value of our proposed criteria, both in model evaluation and optimization. We will release the dataset, code, and models upon acceptance.
♻ ☆ Diffusion Models for Wireless Communications
A comprehensive study on the applications of denoising diffusion models for wireless systems is provided. The article highlights the capabilities of diffusion models in learning complicated signal distributions, modeling wireless channels, and denoising and reconstructing distorted signals. First, fundamental working mechanism of diffusion models is introduced. Then the recent advances in applying diffusion models to wireless systems are reviewed. Next, two case studies are provided, where conditional diffusion models (CDiff) are proposed for data reconstruction enhancement, covering both the conventional digital communication systems, as well as the semantic communication (SemCom) setups. The first case study highlights about 10 dB improvement in data reconstruction under low-SNR regimes, while mitigating the need to transmit redundant bits for error correction codes in digital systems. The second study further extends the case to a SemCom setup, where diffusion autoencoders showcase superior performance compared to legacy autoencoders and variational autoencoder (VAE) architectures. Finally, future directions and existing challenges are discussed.
♻ ☆ Graph Coloring for Multi-Task Learning CVPR
When different objectives conflict with each other in multi-task learning, gradients begin to interfere and slow convergence, thereby potentially reducing the final model's performance. To address this, we introduce SON-GOKU, a scheduler that computes gradient interference, constructs an interference graph, and then applies greedy graph-coloring to partition tasks into groups that align well with each other. At each training step, only one group (color class) of tasks are activated, and the grouping partition is constantly recomputed as task relationships evolve throughout training. By ensuring that each mini-batch contains only tasks that pull the model in the same direction, our method improves the effectiveness of any underlying multi-task learning optimizer without additional tuning. Since tasks within these groups will update in compatible directions, multi-task learning will improve model performance rather than impede it. Empirical results on six different datasets show that this interference-aware graph-coloring approach consistently outperforms baselines and state-of-the-art multi-task optimizers. We provide extensive theory showing why grouping and sequential updates improve multi-task learning, with guarantees on descent, convergence, and accurately identifying what tasks conflict or align.
comment: Presented at CVPRW 2025; Under review
♻ ☆ BG-HGNN: Toward Efficient Learning for Complex Heterogeneous Graphs
Heterogeneous graphs, comprising diverse node and edge types connected through varied relations, are ubiquitous in real-world applications. Message-passing heterogeneous graph neural networks (HGNNs) have emerged as a powerful model class for such data. However, existing HGNNs typically allocate a separate set of learnable weights for each relation type to model relational heterogeneity. Despite their promise, these models are effective primarily on simple heterogeneous graphs with only a few relation types. In this paper, we show that this standard design inherently leads to parameter explosion (the number of learnable parameters grows rapidly with the number of relation types) and relation collapse (the model loses the ability to distinguish among different relations). These issues make existing HGNNs inefficient or impractical for complex heterogeneous graphs with many relation types. To address these challenges, we propose Blend&Grind-HGNN (BG-HGNN), a unified feature-representation framework that integrates and distills relational heterogeneity into a shared low-dimensional feature space. This design eliminates the need for relation-specific parameter sets and enables efficient, expressive learning even as the number of relations grows. Empirically, BG-HGNN achieves substantial gains over state-of-the-art HGNNs, improving parameter efficiency by up to 28.96x and training throughput by up to 110.30x, while matching or surpassing their accuracy on complex heterogeneous graphs.
♻ ☆ Collaborative Causal Sensemaking: Closing the Complementarity Gap in Human-AI Decision Support
LLM-based agents are increasingly deployed for expert decision support, yet human-AI teams in high-stakes settings do not yet reliably outperform the best individual. We argue this complementarity gap reflects a fundamental mismatch: current agents are trained as answer engines, not as partners in the collaborative sensemaking through which experts actually make decisions. Sensemaking (the ability to co-construct causal explanations, surface uncertainties, and adapt goals) is the key capability that current training pipelines do not explicitly develop or evaluate. We propose Collaborative Causal Sensemaking (CCS) as a research agenda to develop this capability from the ground up, spanning new training environments that reward collaborative thinking, representations for shared human-AI mental models, and evaluation centred on trust and complementarity. These directions can advance MAS research toward agents that think with their human partners rather than for them.
♻ ☆ Geometry Aware Meta-Learning Neural Network for Joint Phase and Precoder Optimization in RIS
In reconfigurable intelligent surface (RIS) aided systems, the joint optimization of the precoder matrix at the base station and the phase shifts of the RIS elements involves significant complexity. In this paper, we propose a complex-valued, geometry aware meta-learning neural network that maximizes the weighted sum rate in a multi-user multiple input single output system. By leveraging the complex circle geometry for phase shifts and spherical geometry for the precoder, the optimization occurs on Riemannian manifolds, leading to faster convergence. We use a complex-valued neural network for phase shifts and an Euler inspired update for the precoder network. Our approach outperforms existing neural network-based algorithms, offering higher weighted sum rates, lower power consumption, and significantly faster convergence. Specifically, it converges faster by nearly 100 epochs, with a 0.7 bps improvement in weighted sum rate and a 1.8 dB power gain when compared with existing work. Further it outperforms the state-of-the-art alternating optimization algorithm by 0.86 bps with a 2.6 dB power gain.
♻ ☆ A General Approach to Visualizing Uncertainty in Statistical Graphics
We present a general approach to visualizing uncertainty in static 2-D statistical graphics. If we treat a visualization as a function of its underlying quantities, uncertainty in those quantities induces a distribution over images. We show how to aggregate these images into a single visualization that represents the uncertainty. The approach can be viewed as a generalization of sample-based approaches that use overlay. Notably, standard representations, such as confidence intervals and bands, emerge with their usual coverage guarantees without being explicitly quantified or visualized. As a proof of concept, we implement our approach in the IID setting using resampling, provided as an open-source Python library. Because the approach operates directly on images, the user needs only to supply the data and the code for visualizing the quantities of interest without uncertainty. Through several examples, we show how both familiar and novel forms of uncertainty visualization can be created. The implementation is not only a practical validation of the underlying theory but also an immediately usable tool that can complement existing uncertainty-visualization libraries.
♻ ☆ Inverse Optimality for Fair Digital Twins: A Preference-based approach
Digital Twins (DTs) are increasingly used as autonomous decision-makers in complex socio-technical systems. However, their mathematically optimal decisions often diverge from human expectations, revealing a persistent mismatch between algorithmic and bounded human rationality. This work addresses this challenge by proposing a framework that introduces fairness as a learnable objective within optimization-based Digital Twins. In this respect, a preference-driven learning workflow that infers latent fairness objectives directly from human pairwise preferences over feasible decisions is introduced. A dedicated Siamese neural network is developed to generate convex quadratic cost functions conditioned on contextual information. The resulting surrogate objectives drive the optimization procedure toward solutions that better reflect human-perceived fairness while maintaining computational efficiency. The effectiveness of the approach is demonstrated on a COVID-19 hospital resource allocation scenario. Overall, this work offers a practical solution to integrate human-centered fairness into the design of autonomous decision-making systems.
comment: Submitted for possible publication at the IFAC World Congress 2026
♻ ☆ Measuring the Measures: Discriminative Capacity of Representational Similarity Metrics Across Model Families
Representational similarity metrics are fundamental tools in neuroscience and AI, yet we lack systematic comparisons of their discriminative power across model families. We introduce a quantitative framework to evaluate representational similarity measures based on their ability to separate model families-across architectures (CNNs, Vision Transformers, Swin Transformers, ConvNeXt) and training regimes (supervised vs. self-supervised). Using three complementary separability measures-dprime from signal detection theory, silhouette coefficients and ROC-AUC, we systematically assess the discriminative capacity of commonly used metrics including RSA, linear predictivity, Procrustes, and soft matching. We show that separability systematically increases as metrics impose more stringent alignment constraints. Among mapping-based approaches, soft-matching achieves the highest separability, followed by Procrustes alignment and linear predictivity. Non-fitting methods such as RSA also yield strong separability across families. These results provide the first systematic comparison of similarity metrics through a separability lens, clarifying their relative sensitivity and guiding metric choice for large-scale model and brain comparisons.
comment: update camera ready
♻ ☆ Short window attention enables long-term memorization
Recent works show that hybrid architectures combining sliding window softmax attention layers with linear recurrent neural network (RNN) layers outperform both of these architectures taken separately. However, the impact of the window length and the interplay between softmax attention and linear RNN layers remain under-studied. In this work, we introduce SWAX, a hybrid architecture consisting of sliding-window attention and xLSTM linear RNN layers. A counter-intuitive finding with SWAX is that larger sliding windows do not improve the long-context performance. In fact, short window attention encourages the model to better train the long-term memory of the xLSTM, by relying less on the softmax attention mechanism for long context-retrieval. The issue with small sliding windows is that they are detrimental for short-context tasks, which could be solved with information from moderately larger sliding windows otherwise. Therefore, we train SWAX by stochastically changing the sliding window size, forcing the model to leverage both a longer context window and the xLSTM memory. SWAX trained with stochastic window sizes significantly outperforms regular window attention both on short and long-context problems.
♻ ☆ Sonnet: Spectral Operator Neural Network for Multivariable Time Series Forecasting AAAI 2026
Multivariable time series forecasting methods can integrate information from exogenous variables, leading to significant prediction accuracy gains. The transformer architecture has been widely applied in various time series forecasting models due to its ability to capture long-range sequential dependencies. However, a naïve application of transformers often struggles to effectively model complex relationships among variables over time. To mitigate against this, we propose a novel architecture, termed Spectral Operator Neural Network (Sonnet). Sonnet applies learnable wavelet transformations to the input and incorporates spectral analysis using the Koopman operator. Its predictive skill relies on the Multivariable Coherence Attention (MVCA), an operation that leverages spectral coherence to model variable dependencies. Our empirical analysis shows that Sonnet yields the best performance on $34$ out of $47$ forecasting tasks with an average mean absolute error (MAE) reduction of $2.2\%$ against the most competitive baseline. We further show that MVCA can remedy the deficiencies of naïve attention in various deep learning models, reducing MAE by $10.7\%$ on average in the most challenging forecasting tasks.
comment: Paper accepted for oral presentation at AAAI 2026. The code is available at https://github.com/ClaudiaShu/Sonnet
♻ ☆ Can Slow-thinking LLMs Reason Over Time? Empirical Studies in Time Series Forecasting
Time series forecasting (TSF) is a fundamental and widely studied task, spanning methods from classical statistical approaches to modern deep learning and multimodal language modeling. Despite their effectiveness, these methods often follow a fast thinking paradigm emphasizing pattern extraction and direct value mapping, while overlooking explicit reasoning over temporal dynamics and contextual dependencies. Meanwhile, emerging slow-thinking LLMs (e.g., ChatGPT-o1, DeepSeek-R1) have demonstrated impressive multi-step reasoning capabilities across diverse domains, suggesting a new opportunity for reframing TSF as a structured reasoning task. This motivates a key question: can slow-thinking LLMs effectively reason over temporal patterns to support time series forecasting, even in zero-shot manner? To investigate this, in this paper, we propose TimeReasoner, an extensive empirical study that formulates TSF as a conditional reasoning task. We design a series of prompting strategies to elicit inference-time reasoning from pretrained slow-thinking LLMs and evaluate their performance across diverse TSF benchmarks. Our findings reveal that slow-thinking LLMs exhibit non-trivial zero-shot forecasting capabilities, especially in capturing high-level trends and contextual shifts. While preliminary, our study surfaces important insights into the reasoning behaviors of LLMs in temporal domains highlighting both their potential and limitations. We hope this work catalyzes further research into reasoning-based forecasting paradigms and paves the way toward more interpretable and generalizable TSF frameworks.
♻ ☆ ($\boldsymbolθ_l, \boldsymbolθ_u$)-Parametric Multi-Task Optimization: Joint Search in Solution and Infinite Task Spaces
Multi-task optimization is typically characterized by a fixed and finite set of tasks. The present paper relaxes this condition by considering a non-fixed and potentially infinite set of optimization tasks defined in a parameterized, continuous and bounded task space. We refer to this unique problem setting as parametric multi-task optimization (PMTO). Assuming the bounds of the task parameters to be ($\boldsymbolθ_l$, $\boldsymbolθ_u$), a novel ($\boldsymbolθ_l$, $\boldsymbolθ_u$)-PMTO algorithm is crafted to operate in two complementary modes. In an offline optimization mode, a joint search over solution and task spaces is carried out with the creation of two approximation models: (1) for mapping points in a unified solution space to the objective spaces of all tasks, which provably accelerates convergence by acting as a conduit for inter-task knowledge transfers, and (2) for probabilistically mapping tasks to their corresponding solutions, which facilitates evolutionary exploration of under-explored regions of the task space. In the online mode, the derived models enable direct optimization of any task within the bounds without the need to search from scratch. This outcome is validated on both synthetic test problems and practical case studies, with the significant real-world applicability of PMTO shown towards fast reconfiguration of robot controllers under changing task conditions. The potential of PMTO to vastly speedup the search for solutions to minimax optimization problems is also demonstrated through an example in robust engineering design.
♻ ☆ Asynchronous Stochastic Approximation with Applications to Average-Reward Reinforcement Learning
This paper investigates the stability and convergence properties of asynchronous stochastic approximation (SA) algorithms, with a focus on extensions relevant to average-reward reinforcement learning. We first extend a stability proof method of Borkar and Meyn to accommodate more general noise conditions than previously considered, thereby yielding broader convergence guarantees for asynchronous SA. To sharpen the convergence analysis, we further examine the shadowing properties of asynchronous SA, building on a dynamical systems approach of Hirsch and Benaïm. These results provide a theoretical foundation for a class of relative value iteration-based reinforcement learning algorithms -- developed and analyzed in a companion paper -- for solving average-reward Markov and semi-Markov decision processes.
comment: 34 pages. This version contains only the asynchronous stochastic approximation material from version 2 of the original report; the reinforcement-learning material has been moved to a separate, stand-alone paper (arXiv:2512.06218). Minor corrections and additional remarks have been incorporated. A shorter version of this paper is to appear in the SIAM Journal on Control and Optimization
♻ ☆ Quantum Rationale-Aware Graph Contrastive Learning for Jet Discrimination
In high-energy physics, particle jet tagging plays a pivotal role in distinguishing quark from gluon jets using data from collider experiments. While graph-based deep learning methods have advanced this task beyond traditional feature-engineered approaches, the complex data structure and limited labeled samples present ongoing challenges. However, existing contrastive learning (CL) frameworks struggle to leverage rationale-aware augmentations effectively, often lacking supervision signals that guide the extraction of salient features and facing computational efficiency issues such as high parameter counts. In this study, we demonstrate that integrating a quantum rationale generator (QRG) within our proposed Quantum Rationale-aware Graph Contrastive Learning (QRGCL) framework significantly enhances jet discrimination performance, reducing reliance on labeled data and capturing discriminative features. Evaluated on the quark-gluon jet dataset, QRGCL achieves an AUC score of $77.53\%$ while maintaining a compact architecture of only 45 QRG parameters, outperforming classical, quantum, and hybrid GCL and GNN benchmarks. These results highlight QRGCL's potential to advance jet tagging and other complex classification tasks in high-energy physics, where computational efficiency and feature extraction limitations persist.
♻ ☆ ReJump: A Tree-Jump Representation for Analyzing and Improving LLM Reasoning
Large Reasoning Models (LRMs) are Large Language Models (LLMs) explicitly trained to generate long-form Chain-of-Thoughts (CoTs), achieving impressive success on challenging tasks like math and programming. However, their underlying reasoning "algorithms" remain poorly understood. To investigate this, we propose ReJump, which represents a reasoning trace as a visitation order over nodes in a tree of intermediate problem-solving steps. Transitions between nodes, which we term jumps, include adjacent moves that capture behaviors such as calculation, and non-adjacent moves that capture behaviors such as backtracking and verification. ReJump enables analyzing LLM reasoning with diverse metrics that quantify exploration, exploitation, overthinking, forgetting, and verification. Using our proposed LLM agent to extract reasoning traces into ReJump format, we evaluate state-of-the-art LRMs on two tasks and find that models with similar accuracy can exhibit distinct reasoning behaviors, while different tasks favor different reasoning styles (e.g., varying balance between exploration and exploitation). To further understand how learning strategies shape reasoning, we use ReJump to compare distilled LRMs with their teachers, CoT-prompted LLMs with LRMs, and to examine how the number of reasoning examples and reinforcement learning affect reasoning behavior. Finally, we show that ReJump can improve reasoning quality at test time through strategies such as ReJump-guided Best-of-N selection and prompt selection. Our code is publicly available at https://github.com/UW-Madison-Lee-Lab/ReJump.
♻ ☆ Test-driven Reinforcement Learning in Continuous Control AAAI 2026
Reinforcement learning (RL) has been recognized as a powerful tool for robot control tasks. RL typically employs reward functions to define task objectives and guide agent learning. However, since the reward function serves the dual purpose of defining the optimal goal and guiding learning, it is challenging to design the reward function manually, which often results in a suboptimal task representation. To tackle the reward design challenge in RL, inspired by the satisficing theory, we propose a Test-driven Reinforcement Learning (TdRL) framework. In the TdRL framework, multiple test functions are used to represent the task objective rather than a single reward function. Test functions can be categorized as pass-fail tests and indicative tests, each dedicated to defining the optimal objective and guiding the learning process, respectively, thereby making defining tasks easier. Building upon such a task definition, we first prove that if a trajectory return function assigns higher returns to trajectories closer to the optimal trajectory set, maximum entropy policy optimization based on this return function will yield a policy that is closer to the optimal policy set. Then, we introduce a lexicographic heuristic approach to compare the relative distance relationship between trajectories and the optimal trajectory set for learning the trajectory return function. Furthermore, we develop an algorithm implementation of TdRL. Experimental results on the DeepMind Control Suite benchmark demonstrate that TdRL matches or outperforms handcrafted reward methods in policy training, with greater design simplicity and inherent support for multi-objective optimization. We argue that TdRL offers a novel perspective for representing task objectives, which could be helpful in addressing the reward design challenges in RL applications.
comment: AAAI 2026 oral
♻ ☆ Median Consensus Embedding for Dimensionality Reduction
This study proposes median consensus embedding (MCE) to address variability in low-dimensional embeddings caused by random initialization in nonlinear dimensionality reduction techniques such as $t$-distributed stochastic neighbor embedding. MCE is defined as the geometric median of multiple embeddings. By assuming multiple embeddings as independent and identically distributed random samples and applying large deviation theory, we prove that MCE achieves consistency at an exponential rate. Furthermore, we develop a practical algorithm to implement MCE by constructing a distance function between embeddings based on the Frobenius norm of the pairwise distance matrix of data points. Application to actual data demonstrates that MCE converges rapidly and effectively reduces instability. We further combine MCE with multiple imputation to address missing values and consider multiscale hyperparameters. Results confirm that MCE effectively mitigates instability issues in embedding methods arising from random initialization and other sources.
♻ ☆ Prot2Token: A Unified Framework for Protein Modeling via Next-Token Prediction
The diverse nature of protein prediction tasks has traditionally necessitated specialized models, hindering the development of broadly applicable and computationally efficient Protein Language Models (PLMs). In this work, we introduce Prot2Token, a unified framework that overcomes these challenges by converting a wide spectrum of protein-related predictions-from sequence-level properties and residue-specific attributes to complex inter-protein interactions-into a standardized next-token prediction format. At its core, Prot2Token employs an autoregressive decoder, conditioned on embeddings from pre-trained protein encoders and guided by learnable task tokens, to perform diverse predictions. This architecture uniquely facilitates multi-task learning, enabling general-purpose decoders to generalize across five distinct categories. We present extensive experimental validation across a variety of benchmarks, demonstrating Prot2Token's predictive power in different types of protein-prediction tasks. In 3D structure prediction, Prot2Token delivers substantial speedups (up to 1000x faster than AlphaFold2 with MSA on the same hardware) while, across other numerous tasks, matching or surpassing specialized methods. Beyond that, we introduce an auxiliary self-supervised decoder pre-training approach to improve spatially sensitive task performance. Prot2Token thus offers a step towards standardizing biological prediction into a generative interface, promising to accelerate biological discovery and the development of novel therapeutics. The code is available at https://github.com/mahdip72/prot2token .
♻ ☆ RLCAD: Reinforcement Learning Training Gym for Revolution Involved CAD Command Sequence Generation
A CAD command sequence is a typical parametric design paradigm in 3D CAD systems where a model is constructed by overlaying 2D sketches with operations such as extrusion, revolution, and Boolean operations. Although there is growing academic interest in the automatic generation of command sequences, existing methods and datasets only support operations such as 2D sketching, extrusion,and Boolean operations. This limitation makes it challenging to represent more complex geometries. In this paper, we present a reinforcement learning (RL) training environment (gym) built on a CAD geometric engine. Given an input boundary representation (B-Rep) geometry, the policy network in the RL algorithm generates an action. This action, along with previously generated actions, is processed within the gym to produce the corresponding CAD geometry, which is then fed back into the policy network. The rewards, determined by the difference between the generated and target geometries within the gym, are used to update the RL network. Our method supports operations beyond sketches, Boolean, and extrusion, including revolution operations. With this training gym, we achieve state-of-the-art (SOTA) quality in generating command sequences from B-Rep geometries.
♻ ☆ Hebbian Physics Networks: A Self-Organizing Computational Architecture Based on Local Physical Laws
Physical transport processes organize through local interactions that redistribute imbalance while preserving conservation. Classical solvers enforce this organization by applying fixed discrete operators on rigid grids. We introduce the Hebbian Physics Network (HPN), a computational framework that replaces this rigid scaffolding with a plastic transport geometry. An HPN is a coupled dynamical system of physical states on nodes and constitutive weights on edges in a graph. Residuals--local violations of continuity, momentum balance, or energy conservation--act as thermodynamic forces that drive the joint evolution of both the state and the operator (i.e. the adaptive weights). The weights adapt through a three-factor Hebbian rule, which we prove constitutes a strictly local gradient descent on the residual energy. This mechanism ensures thermodynamic stability: near equilibrium, the learned operator naturally converges to a symmetric, positive-definite form, rigorously reproducing Onsagerś reciprocal relations without explicit enforcement. Far from equilibrium, the system undergoes a self-organizing search for a transport topology that restores global coercivity. Unlike optimization-based approaches that impose physics through global loss functions, HPNs embed conservation intrinsically: transport is restored locally by the evolving operator itself, without a global Poisson solve or backpropagated objective. We demonstrate the framework on scalar diffusion and incompressible lid-driven cavity flow, showing that physically consistent transport geometries and flow structures emerge from random initial conditions solely through residual-driven local adaptation. HPNs thus reframe computation not as the solution of a fixed equation, but as a thermodynamic relaxation process where the constitutive geometry and physical state co-evolve.
comment: 11 pages, 3 figures
♻ ☆ Adaptive Self-Distillation for Minimizing Client Drift in Heterogeneous Federated Learning
Federated Learning (FL) is a machine learning paradigm that enables clients to jointly train a global model by aggregating the locally trained models without sharing any local training data. In practice, there can often be substantial heterogeneity (e.g., class imbalance) across the local data distributions observed by each of these clients. Under such non-iid label distributions across clients, FL suffers from the 'client-drift' problem where every client drifts to its own local optimum. This results in slower convergence and poor performance of the aggregated model. To address this limitation, we propose a novel regularization technique based on adaptive self-distillation (ASD) for training models on the client side. Our regularization scheme adaptively adjusts to each client's training data based on the global model's prediction entropy and the client-data label distribution. We show in this paper that our proposed regularization (ASD) can be easily integrated atop existing, state-of-the-art FL algorithms, leading to a further boost in the performance of these off-the-shelf methods. We theoretically explain how incorporation of ASD regularizer leads to reduction in client-drift and empirically justify the generalization ability of the trained model. We demonstrate the efficacy of our approach through extensive experiments on multiple real-world benchmarks and show substantial gains in performance when the proposed regularizer is combined with popular FL methods.
comment: Accepted to TMLR (2024)
♻ ☆ Mortgage Language Model: Domain-Adaptive Pretraining with Residual Instruction, Alignment Tuning, and Task-Specific Routing
Large Language Models (LLMs) demonstrate exceptional capabilities across general domains, yet their application to specialized sectors such as mortgage finance requires domain-specific knowledge augmentation while preserving instruction-following fidelity. We present MortgageLLM, a novel domain-specific large language model that addresses this dual challenge. It is developed using a dual-track specialization framework from a single base model (LLaMA-3.1-8B). We opted for this dual-expert approach as a single multi-task model suffers from performance trade-offs, where optimizing for structured tasks (via SFT) degrades conversational fidelity (via DPO). Our dual-track method solves this by creating two specialists, allowing each to be optimally trained for its distinct capability. Our approach applies the instruction residual technique to restore instruction-following capabilities post-domain adaptation without supervised fine-tuning. We contribute: (1) application of this residual technique to the highly specialized mortgage finance domain; (2) a dual-expert architecture combining a conversational Q&A model and a structured task model for classification and summarization; and (3) an intelligent task routing mechanism using few-shot classification performed by one of the expert models itself. We validate our approach on domain-specific benchmarks, where our final model (MLM v2) significantly outperforms the base LLaMA-3.1-8B-Instruct, achieving an LLM-as-a-Judge summarization score of 4.58 (vs. 3.99), a Q&A score of 4.09 (vs. 4.0), and a classification score of 2.6 (vs. 1.2). On semantic similarity, our model achieved a BERTScore of 0.77 for summarization (vs. 0.74), 0.68 for Q&A (vs. 0.58), and 0.75 for classification (vs. 0.73), substantially outperforming baseline approaches.
♻ ☆ FRWKV:Frequency-Domain Linear Attention for Long-Term Time Series Forecasting
Traditional Transformers face a major bottleneck in long-sequence time series forecasting due to their quadratic complexity $(\mathcal{O}(T^2))$ and their limited ability to effectively exploit frequency-domain information. Inspired by RWKV's $\mathcal{O}(T)$ linear attention and frequency-domain modeling, we propose FRWKV, a frequency-domain linear-attention framework that overcomes these limitations. Our model integrates linear attention mechanisms with frequency-domain analysis, achieving $\mathcal{O}(T)$ computational complexity in the attention path while exploiting spectral information to enhance temporal feature representations for scalable long-sequence modeling. Across eight real-world datasets, FRWKV achieves a first-place average rank. Our ablation studies confirm the critical roles of both the linear attention and frequency-encoder components. This work demonstrates the powerful synergy between linear attention and frequency analysis, establishing a new paradigm for scalable time series modeling. Code is available at this repository: https://github.com/yangqingyuan-byte/FRWKV.
♻ ☆ Parameter-Efficient Fine-Tuning for Pre-Trained Vision Models: A Survey and Benchmark
Pre-trained vision models (PVMs) have demonstrated remarkable adaptability across a wide range of downstream vision tasks, showcasing exceptional performance. However, as these models scale to billions or even trillions of parameters, conventional full fine-tuning has become increasingly impractical due to its high computational and storage demands. To address these challenges, parameter-efficient fine-tuning (PEFT) has emerged as a promising alternative, aiming to achieve performance comparable to full fine-tuning while making minimal adjustments to the model parameters. This paper presents a comprehensive survey of the latest advancements in the visual PEFT field, systematically reviewing current methodologies and categorizing them into four primary categories: addition-based, partial-based, unified-based, and multi-task tuning. In addition, this paper offers an in-depth analysis of widely used visual datasets and real-world applications where PEFT methods have been successfully applied. Furthermore, this paper introduces the V-PEFT Bench, a unified benchmark designed to standardize the evaluation of PEFT methods across a diverse set of vision tasks, ensuring consistency and fairness in comparison. Finally, the paper outlines potential directions for future research to propel advances in the PEFT field. A comprehensive collection of resources is available at https://github.com/synbol/Awesome-Parameter-Efficient-Transfer-Learning.
comment: Submitted to IJCV
♻ ☆ Generative Learning of Heterogeneous Tail Dependence
We propose a multivariate generative model to capture the complex dependence structure often encountered in business and financial data. Our model features heterogeneous and asymmetric tail dependence between all pairs of individual dimensions while also allowing heterogeneity and asymmetry in the tails of the marginals. A significant merit of our model structure is that it is not prone to error propagation in the parameter estimation process, hence very scalable, as the dimensions of datasets grow large. However, the likelihood methods are infeasible for parameter estimation in our case due to the lack of a closed-form density function. Instead, we devise a novel moment learning algorithm to learn the parameters. To demonstrate the effectiveness of the model and its estimator, we test them on simulated as well as real-world datasets. Results show that this framework gives better finite-sample performance compared to the copula-based benchmarks as well as recent similar models.
comment: Some mathematical errors in the paper
♻ ☆ Value-State Gated Attention for Mitigating Extreme-Token Phenomena in Transformers
Large models based on the Transformer architecture are susceptible to extreme-token phenomena, such as attention sinks and value-state drains. These issues, which degrade model performance, quantization fidelity, and interpretability, arise from a problematic mutual reinforcement mechanism where the model learns an inefficient 'no-op' behavior by focusing attention on tokens with near-zero value states. In this paper, we propose Value-State Gated Attention (VGA), a simple, dedicated, and stable architectural mechanism for performing 'no-op' attention efficiently by directly breaking this cycle. VGA introduces a learnable, data-dependent gate, computed directly from the value vectors (V), to modulate the output. Through a theoretical analysis of the underlying gradients, we show that gating the value-state with a function of itself is more effective at decoupling value and attention score updates than prior methods that gate on input embeddings. This creates a direct regulatory pathway that allows the model to suppress a token's contribution based on its emergent value representation. Our experiments demonstrate that VGA significantly mitigates the formation of attention sinks and stabilizes value-state norms, leading to improved performance, robust quantization fidelity, and enhanced model interpretability.
♻ ☆ China Regional 3km Downscaling Based on Residual Corrective Diffusion Model
A fundamental challenge in numerical weather prediction is to efficiently produce high-resolution forecasts. A common solution is applying downscaling methods, which include dynamical downscaling and statistical downscaling, to the outputs of global models. This work focuses on statistical downscaling, which establishes statistical relationships between low-resolution and high-resolution historical data using statistical models. Deep learning has emerged as a powerful tool for this task, giving rise to various high-performance super-resolution models, which can be directly applied for downscaling, such as diffusion models and Generative Adversarial Networks. This work relies on a diffusion-based downscaling framework named CorrDiff. In contrast to the original work of CorrDiff, the region considered in this work is nearly 40 times larger, and we not only consider surface variables as in the original work, but also encounter high-level variables (six pressure levels) as target downscaling variables. In addition, a global residual connection is added to improve accuracy. In order to generate the 3km forecasts for the China region, we apply our trained models to the 25km global grid forecasts of CMA-GFS, an operational global model of the China Meteorological Administration (CMA), and SFF, a data-driven deep learning-based weather model developed from Spherical Fourier Neural Operators (SFNO). CMA-MESO, a high-resolution regional model, is chosen as the baseline model. The experimental results demonstrate that the forecasts downscaled by our method generally outperform the direct forecasts of CMA-MESO in terms of MAE for the target variables. Our forecasts of radar composite reflectivity show that CorrDiff, as a generative model, can generate fine-scale details that lead to more realistic predictions compared to the corresponding deterministic regression models.
♻ ☆ Survey of Data-driven Newsvendor: Unified Analysis and Spectrum of Achievable Regrets
In the Newsvendor problem, the goal is to guess the number that will be drawn from some distribution, with asymmetric consequences for guessing too high vs. too low. In the data-driven version, the distribution is unknown, and one must work with samples from the distribution. Data-driven Newsvendor has been studied under many variants: additive vs. multiplicative regret, high probability vs. expectation bounds, and different distribution classes. This paper studies all combinations of these variants, filling in many gaps in the literature and simplifying many proofs. In particular, we provide a unified analysis based on the notion of clustered distributions, which in conjunction with our new lower bounds, shows that the entire spectrum of regrets between $1/\sqrt{n}$ and $1/n$ can be possible. Simulations on commonly-used distributions demonstrate that our notion is the "correct" predictor of empirical regret across varying data sizes.
♻ ☆ Language Models for Controllable DNA Sequence Design
We consider controllable DNA sequence design, where sequences are generated by conditioning on specific biological properties. While language models (LMs) such as GPT and BERT have achieved remarkable success in natural language generation, their application to DNA sequence generation remains largely underexplored. In this work, we introduce ATGC-Gen, an Automated Transformer Generator for Controllable Generation, which leverages cross-modal encoding to integrate diverse biological signals. ATGC-Gen is instantiated with both decoder-only and encoder-only transformer architectures, allowing flexible training and generation under either autoregressive or masked recovery objectives. We evaluate ATGC-Gen on representative tasks including promoter and enhancer sequence design, and further introduce a new dataset based on ChIP-Seq experiments for modeling protein binding specificity. Our experiments demonstrate that ATGC-Gen can generate fluent, diverse, and biologically relevant sequences aligned with the desired properties. Compared to prior methods, our model achieves notable improvements in controllability and functional relevance, highlighting the potential of language models in advancing programmable genomic design. The source code is released at (https://github.com/divelab/AIRS/blob/main/OpenBio/ATGC_Gen).
♻ ☆ Khalasi: Energy-Efficient Navigation for Surface Vehicles in Vortical Flow Fields
For centuries, khalasi (Gujarati for sailor) have skillfully harnessed ocean currents to navigate vast waters with minimal effort. Emulating this intuition in autonomous systems remains a significant challenge, particularly for Autonomous Surface Vehicles tasked with long duration missions under strict energy budgets. In this work, we present a learning-based approach for energy-efficient surface vehicle navigation in vortical flow fields, where partial observability often undermines traditional path-planning methods. We present an end to end reinforcement learning framework based on Soft Actor Critic that learns flow-aware navigation policies using only local velocity measurements. Through extensive evaluation across diverse and dynamically rich scenarios, our method demonstrates substantial energy savings and robust generalization to previously unseen flow conditions, offering a promising path toward long term autonomy in ocean environments. The navigation paths generated by our proposed approach show an improvement in energy conservation 30 to 50 percent compared to the existing state of the art techniques.
comment: Under Review for International Conference on Robotics and Automation (ICRA 2026)
♻ ☆ Knowledge Adaptation as Posterior Correction
Adaptation is the holy grail of intelligence, but even the best AI models lack the adaptability of toddlers. In spite of great progress, little is known about the mechanisms by which machines can learn to adapt as fast as humans and animals. Here, we cast adaptation as `correction' of old posteriors and show that a wide-variety of existing adaptation methods follow this very principle, including those used for continual learning, federated learning, unlearning, and model merging. In all these settings, more accurate posteriors often lead to smaller corrections and can enable faster adaptation. Posterior correction is derived by using the dual representation of the Bayesian Learning Rule of Khan and Rue (2023), where the interference between the old representation and new information is quantified by using the natural-gradient mismatch. We present many examples demonstrating how machines can learn to adapt quickly by using posterior correction.
♻ ☆ Understanding the Implicit Regularization of Gradient Descent in Over-parameterized Models
Implicit regularization refers to the tendency of local search algorithms to converge to low-dimensional solutions, even when such structures are not explicitly enforced. Despite its ubiquity, the mechanism underlying this behavior remains poorly understood, particularly in over-parameterized settings. We analyze gradient descent dynamics and identify three conditions under which it converges to second-order stationary points within an implicit low-dimensional region: (i) suitable initialization, (ii) efficient escape from saddle points, and (iii) sustained proximity to the region. We show that these can be achieved through infinitesimal perturbations and a small deviation rate. Building on this, we introduce Infinitesimally Perturbed Gradient Descent (IPGD), which satisfies these conditions under mild assumptions. We provide theoretical guarantees for IPGD in over-parameterized matrix sensing and empirical evidence of its broader applicability.
♻ ☆ OIPR: Evaluation for Time-series Anomaly Detection Inspired by Operator Interest
With the growing adoption of time-series anomaly detection (TAD) technology, numerous studies have employed deep learning-based detectors to analyze time-series data in the fields of Internet services, industrial systems, and sensors. The selection and optimization of anomaly detectors strongly rely on the availability of an effective evaluation for TAD performance. Since anomalies in time-series data often manifest as a sequence of points, conventional metrics that solely consider the detection of individual points are inadequate. Existing TAD evaluators typically employ point-based or event-based metrics to capture the temporal context. However, point-based evaluators tend to overestimate detectors that excel only in detecting long anomalies, while event-based evaluators are susceptible to being misled by fragmented detection results. To address these limitations, we propose OIPR (Operator Interest-based Precision and Recall metrics), a novel TAD evaluator with area-based metrics. It models the process of operators receiving detector alarms and handling anomalies, utilizing area under the operator interest curve to evaluate TAD performance. Furthermore, we build a special scenario dataset to compare the characteristics of different evaluators. Through experiments conducted on the special scenario dataset and five real-world datasets, we demonstrate the remarkable performance of OIPR in extreme and complex scenarios. It achieves a balance between point and event perspectives, overcoming their primary limitations and offering applicability to broader situations.
♻ ☆ Rewarding the Journey, Not Just the Destination: A Composite Path and Answer Self-Scoring Reward Mechanism for Test-Time Reinforcement Learning
Reinforcement Learning (RL) has emerged as a powerful paradigm for advancing Large Language Models (LLMs), achieving remarkable performance in complex reasoning domains such as mathematics and code generation. However, current RL methods face a fundamental scalability bottleneck due to their heavy reliance on human-curated preference data or labeled datasets for reward modeling. To overcome this limitation, we explore RL on unlabeled data where models learn autonomously from continuous experience streams. The core challenge in this setting lies in reliable reward estimation without ground-truth supervision. Existing approaches like Test-Time RL address this through self-consistent consensus, but risk reinforcing incorrect pseudo-labels derived from majority voting. We introduce COMPASS (Composite Path and Answer Self-Scoring), a novel test-time reward mechanism that operates without external supervision. COMPASS integrates two complementary components: the Dual-Calibration Answer Reward (DCAR), which stabilizes training by establishing trustworthy pseudo-labels through confidence and credibility calibration, and the Decisive Path Reward (DPR), which directly optimizes the reasoning process quality beyond mere outcome supervision. By jointly reinforcing trustworthy consensus answers and highly decisive reasoning chains, the COMPASS systematically enhances the model's analytical capabilities. Extensive experiments show that COMPASS achieves significant and consistent performance gains across diverse reasoning tasks and model architectures, advancing a more scalable direction for LLMs to learn from continuous experience.
♻ ☆ Amortized Bayesian Meta-Learning for Low-Rank Adaptation of Large Language Models
Fine-tuning large language models (LLMs) with low-rank adaptation (LoRA) is a cost-effective way to incorporate information from a specific dataset. However, it is often unclear how well the fine-tuned LLM will generalize, i.e., how well it will perform on unseen datasets. Methods have been proposed to improve generalization by optimizing in-context prompts, or by using meta-learning to fine-tune LLMs. However, these methods are expensive in memory and computation, requiring either long-context prompts or saving copies of parameters and using second-order gradient updates. To address these challenges, we propose Amortized Bayesian Meta-Learning for LoRA (ABMLL). This method builds on amortized Bayesian meta-learning for smaller models, adapting this approach to LLMs while maintaining its computational efficiency. We reframe task-specific and global parameters in the context of LoRA and use a new hyperparameter to balance reconstruction accuracy and the fidelity of task-specific parameters to the global ones. ABMLL provides effective generalization and scales to large models such as LLAMA3-8B. Furthermore, as a result of using a Bayesian framework, ABMLL provides improved uncertainty quantification. We test ABMLL on CrossFit and Unified-QA datasets and find that it outperforms existing methods on these benchmarks in terms of both accuracy and expected calibration error.
comment: 16 pages, 2 figures
♻ ☆ Representation Retrieval Learning for Heterogeneous Data Integration
In the era of big data, large-scale, multi-source, multi-modality datasets are increasingly ubiquitous, offering unprecedented opportunities for predictive modeling and scientific discovery. However, these datasets often exhibit complex heterogeneity, such as covariates shift, posterior drift, and blockwise missingness, which worsen predictive performance of existing supervised learning algorithms. To address these challenges simultaneously, we propose a novel Representation Retrieval (R2) framework, which integrates a dictionary of representation learning modules (representer dictionary) with data source-specific sparsity-induced machine learning model (learners). Under the R2 framework, we introduce the notion of integrativeness for each representer, and propose a novel Selective Integration Penalty (SIP) to explicitly encourage more integrative representers to improve predictive performance. Theoretically, we show that the excess risk bound of the R2 framework is characterized by the integrativeness of representers, and SIP effectively improves the excess risk. Extensive simulation studies validate the superior performance of R2 framework and the effect of SIP. We further apply our method to two real-world datasets to confirm its empirical success.
♻ ☆ Meta-Computing Enhanced Federated Learning in IIoT: Satisfaction-Aware Incentive Scheme via DRL-Based Stackelberg Game
The Industrial Internet of Things (IIoT) leverages Federated Learning (FL) for distributed model training while preserving data privacy, and meta-computing enhances FL by optimizing and integrating distributed computing resources, improving efficiency and scalability. Efficient IIoT operations require a trade-off between model quality and training latency. Consequently, a primary challenge of FL in IIoT is to optimize overall system performance by balancing model quality and training latency. This paper designs a satisfaction function that accounts for data size, Age of Information (AoI), and training latency for meta-computing. Additionally, the satisfaction function is incorporated into the utility function to incentivize IIoT nodes to participate in model training. We model the utility functions of servers and nodes as a two-stage Stackelberg game and employ a deep reinforcement learning approach to learn the Stackelberg equilibrium. This approach ensures balanced rewards and enhances the applicability of the incentive scheme for IIoT. Simulation results demonstrate that, under the same budget constraints, the proposed incentive scheme improves utility by at least 23.7% compared to existing FL schemes without compromising model accuracy.
♻ ☆ Enhancing Brain Age Estimation with a Multimodal 3D CNN Approach Combining Structural MRI and AI-Synthesized Cerebral Blood Volume Measures
Brain age gap estimation (BrainAGE) is a promising imaging-derived biomarker of neurobiological aging and disease risk, yet current approaches rely predominantly on T1-weighted structural MRI (T1w), overlooking functional vascular changes that may precede tissue damage and cognitive decline. Artificial intelligence-generated cerebral blood volume (AICBV) maps, synthesized from non-contrast MRI, offer an alternative to contrast-enhanced perfusion imaging by capturing vascular information relevant to early neurodegeneration. We developed a multimodal BrainAGE framework that integrates brain age predictions using linear regression from two separate 3D VGG-based networks, one model trained on only structural T1w scans and one trained on only AICBV maps generated from a pre-trained 3D patch-based deep learning model. Each model was trained and validated on 2,851 scans from 13 open-source datasets and was evaluated for concordance with mild cognitive impairment (MCI) and Alzheimer's disease (AD) using ADNI subjects (n=1,233). The combined model achieved the most accurate brain age gap for cognitively normal (CN) controls, with a mean absolute error (MAE) of 3.95 years ($R^2$=0.943), outperforming models trained on T1w (MAE=4.10) or AICBV alone (MAE=4.49). Saliency maps revealed complementary modality contributions: T1w emphasized white matter and cortical atrophy, while AICBV highlighted vascular-rich and periventricular regions implicated in hypoperfusion and early cerebrovascular dysfunction, consistent with normal aging. Next, we observed that BrainAGE increased stepwise across diagnostic strata (CN < MCI < AD) and correlated with cognitive impairment (CDRSB r=0.403; MMSE r=-0.310). AICBV-based BrainAGE showed particularly strong separation between stable vs. progressive MCI (p=$1.47 \times 10^{-8}$), suggesting sensitivity to prodromal vascular changes that precede overt atrophy.
comment: 26 pages, 8 figures
♻ ☆ Random forest-based out-of-distribution detection for robust lung cancer segmentation
Accurate detection and segmentation of cancerous lesions from computed tomography (CT) scans is essential for automated treatment planning and cancer treatment response assessment. Transformer-based models with self-supervised pretraining can produce reliably accurate segmentation from in-distribution (ID) data but degrade when applied to out-of-distribution (OOD) datasets. We address this challenge with RF-Deep, a random forest classifier that utilizes deep features from a pretrained transformer encoder of the segmentation model to detect OOD scans and enhance segmentation reliability. The segmentation model comprises a Swin Transformer encoder, pretrained with masked image modeling (SimMIM) on 10,432 unlabeled 3D CT scans covering cancerous and non-cancerous conditions, with a convolution decoder, trained to segment lung cancers in 317 3D scans. Independent testing was performed on 603 3D CT public datasets that included one ID dataset and four OOD datasets comprising chest CTs with pulmonary embolism (PE) and COVID-19, and abdominal CTs with kidney cancers and healthy volunteers. RF-Deep detected OOD cases with a FPR95 of 18.26%, 27.66%, and less than 0.1% on PE, COVID-19, and abdominal CTs, consistently outperforming established OOD approaches. The RF-Deep classifier provides a simple and effective approach to enhance reliability of cancer segmentation in ID and OOD scenarios.
comment: Accepted at SPIE Medical Imaging 2026
♻ ☆ Learning effective pruning at initialization from iterative pruning
Pruning at initialization (PaI) reduces training costs by removing weights before training, which becomes increasingly crucial with the growing network size. However, current PaI methods still have a large accuracy gap with iterative pruning, especially at high sparsity levels. This raises an intriguing question: can we get inspiration from iterative pruning to improve the PaI performance? In the lottery ticket hypothesis, the iterative rewind pruning (IRP) finds subnetworks retroactively by rewinding the parameter to the original initialization in every pruning iteration, which means all the subnetworks are based on the initial state. Here, we hypothesise the surviving subnetworks are more important and bridge the initial feature and their surviving score as the PaI criterion. We employ an end-to-end neural network (\textbf{AutoS}parse) to learn this correlation, input the model's initial features, output their score and then prune the lowest score parameters before training. To validate the accuracy and generalization of our method, we performed PaI across various models. Results show that our approach outperforms existing methods in high-sparsity settings. Notably, as the underlying logic of model pruning is consistent in different models, only one-time IRP on one model is needed (e.g., once IRP on ResNet-18/CIFAR-10, AutoS can be generalized to VGG-16/CIFAR-10, ResNet-18/TinyImageNet, et al.). As the first neural network-based PaI method, we conduct extensive experiments to validate the factors influencing this approach. These results reveal the learning tendencies of neural networks and provide new insights into our understanding and research of PaI from a practical perspective. Our code is available at: https://github.com/ChengYaofeng/AutoSparse.git.
Freeze then Train: Towards Provable Representation Learning under Spurious Correlations and Feature Noise
The existence of spurious correlations such as image backgrounds in the training environment can make empirical risk minimization (ERM) perform badly in the test environment. To address this problem, Kirichenko et al. (2022) empirically found that the core features that are related to the outcome can still be learned well even with the presence of spurious correlations. This opens a promising strategy to first train a feature learner rather than a classifier, and then perform linear probing (last layer retraining) in the test environment. However, a theoretical understanding of when and why this approach works is lacking. In this paper, we find that core features are only learned well when their associated non-realizable noise is smaller than that of spurious features, which is not necessarily true in practice. We provide both theories and experiments to support this finding and to illustrate the importance of non-realizable noise. Moreover, we propose an algorithm called Freeze then Train (FTT), that first freezes certain salient features and then trains the rest of the features using ERM. We theoretically show that FTT preserves features that are more beneficial to test time probing. Across two commonly used spurious correlation datasets, FTT outperforms ERM, IRM, JTT and CVaR-DRO, with substantial improvement in accuracy (by 4.5%) when the feature noise is large. FTT also performs better on general distribution shift benchmarks.
♻ ☆ MixtureVitae: Open Web-Scale Pretraining Dataset With High Quality Instruction and Reasoning Data Built from Permissive-First Text Sources
We present MixtureVitae, an open-access pretraining corpus built to minimize legal risk while providing strong model performance. MixtureVitae follows a risk-mitigated sourcing strategy that combines public-domain and permissively licensed text (e.g., CC-BY/Apache) with carefully justified low-risk additions (e.g., government works and EU TDM-eligible sources), alongside targeted instruction, reasoning and synthetic data with documented provenance. We detail a transparent, multi-stage pipeline for license-aware filtering, safety and quality screening, and domain-aware mixing, and we release the dataset and curation recipes to support reproducible research. In controlled experiments using the open-sci-ref training protocol (fixed architectures at 130M/400M/1.3B/1.7B parameters; training budgets of 50B and 300B tokens), models trained on MixtureVitae consistently outperform other permissive datasets across a suite of standard benchmarks, and at the 1.7B/300B setting they surpass FineWeb-Edu and approach DCLM in the later stages of training. Performance is particularly strong on math/code and competitive on QA tasks. These results demonstrate that permissive-first, risk-mitigated data provides a practical and legally mitigated foundation for training capable LLMs, reducing reliance on indiscriminate web scraping without sacrificing competitiveness. Code: https://github.com/ontocord/mixturevitae
comment: Code: \url{https://github.com/ontocord/mixturevitae}
♻ ☆ DASH: A Meta-Attack Framework for Synthesizing Effective and Stealthy Adversarial Examples
Numerous techniques have been proposed for generating adversarial examples in white-box settings under strict Lp-norm constraints. However, such norm-bounded examples often fail to align well with human perception, and only recently have a few methods begun specifically exploring perceptually aligned adversarial examples. Moreover, it remains unclear whether insights from Lp-constrained attacks can be effectively leveraged to improve perceptual efficacy. In this paper, we introduce DAASH, a fully differentiable meta-attack framework that generates effective and perceptually aligned adversarial examples by strategically composing existing Lp-based attack methods. DAASH operates in a multi-stage fashion: at each stage, it aggregates candidate adversarial examples from multiple base attacks using learned, adaptive weights and propagates the result to the next stage. A novel meta-loss function guides this process by jointly minimizing misclassification loss and perceptual distortion, enabling the framework to dynamically modulate the contribution of each base attack throughout the stages. We evaluate DAASH on adversarially trained models across CIFAR-10, CIFAR-100, and ImageNet. Despite relying solely on Lp-constrained based methods, DAASH significantly outperforms state-of-the-art perceptual attacks such as AdvAD -- achieving higher attack success rates (e.g., 20.63\% improvement) and superior visual quality, as measured by SSIM, LPIPS, and FID (improvements $\approx$ of 11, 0.015, and 5.7, respectively). Furthermore, DAASH generalizes well to unseen defenses, making it a practical and strong baseline for evaluating robustness without requiring handcrafted adaptive attacks for each new defense.
♻ ☆ Flow-based Conformal Prediction for Multi-dimensional Time Series
Time series prediction underpins a broad range of downstream tasks across many scientific domains. Recent advances and increasing adoption of black-box machine learning models for time series prediction highlight the critical need for reliable uncertainty quantification. While conformal prediction has gained attention as a reliable uncertainty quantification method, conformal prediction for time series faces two key challenges: (1) adaptively leveraging correlations in features and non-conformity scores to overcome the exchangeability assumption, and (2) constructing prediction sets for multi-dimensional outcomes. To address these challenges jointly, we propose a novel conformal prediction method for time series using flow with classifier-free guidance. We provide coverage guarantees by establishing exact non-asymptotic marginal coverage and a finite-sample bound on conditional coverage for the proposed method. Evaluations on real-world time series datasets demonstrate that our method constructs significantly smaller prediction sets than existing conformal prediction methods while maintaining target coverage.
♻ ☆ OMNIGUARD: An Efficient Approach for AI Safety Moderation Across Languages and Modalities
The emerging capabilities of large language models (LLMs) have sparked concerns about their immediate potential for harmful misuse. The core approach to mitigate these concerns is the detection of harmful queries to the model. Current detection approaches are fallible, and are particularly susceptible to attacks that exploit mismatched generalization of model capabilities (e.g., prompts in low-resource languages or prompts provided in non-text modalities such as image and audio). To tackle this challenge, we propose Omniguard, an approach for detecting harmful prompts across languages and modalities. Our approach (i) identifies internal representations of an LLM/MLLM that are aligned across languages or modalities and then (ii) uses them to build a language-agnostic or modality-agnostic classifier for detecting harmful prompts. Omniguard improves harmful prompt classification accuracy by 11.57\% over the strongest baseline in a multilingual setting, by 20.44\% for image-based prompts, and sets a new SOTA for audio-based prompts. By repurposing embeddings computed during generation, Omniguard is also very efficient ($\approx\!120 \times$ faster than the next fastest baseline). Code and data are available at: https://github.com/vsahil/OmniGuard.
♻ ☆ Privacy Preservation through Practical Machine Unlearning
Machine Learning models thrive on vast datasets, continuously adapting to provide accurate predictions and recommendations. However, in an era dominated by privacy concerns, Machine Unlearning emerges as a transformative approach, enabling the selective removal of data from trained models. This paper examines methods such as Naive Retraining and Exact Unlearning via the SISA framework, evaluating their Computational Costs, Consistency, and feasibility using the $\texttt{HSpam14}$ dataset. We explore the potential of integrating unlearning principles into Positive Unlabeled (PU) Learning to address challenges posed by partially labeled datasets. Our findings highlight the promise of unlearning frameworks like $\textit{DaRE}$ for ensuring privacy compliance while maintaining model performance, albeit with significant computational trade-offs. This study underscores the importance of Machine Unlearning in achieving ethical AI and fostering trust in data-driven systems.
comment: 15 pages, 8 figures
♻ ☆ LLMscape NeurIPS 2025
LLMscape is an interactive installation that investigates how humans and AI construct meaning under shared conditions of uncertainty. Within a mutable, projection-mapped landscape, human participants reshape the world and engage with multiple AI agents, each developing incomplete and provisional accounts of their environment. Exhibited in Shanghai and continually evolving, the work positions AI not as deterministic tools but as embodied co-witnesses to an unstable world, examining the parallels between human and artificial meaning-making and inviting reflection on our shared epistemic limits.
comment: Accepted to NeurIPS 2025, Creative AI Track (updated to include poster, video)
♻ ☆ Benchmarking World-Model Learning
Model-learning agents should gather information to learn world models that support many downstream tasks and inferences, such as predicting unobserved states, estimating near- and far-term consequences of actions, planning action sequences, and detecting changes in dynamics. Current methods for learning and evaluating world models diverge from this goal: training and evaluation are anchored to next-frame prediction, and success is scored by reward maximization in the same environment. We propose WorldTest, a protocol to evaluate model-learning agents that separates reward-free interaction from a scored test phase in a different but related environment. WorldTest is open-ended $\unicode{x2014}$ models should support many different tasks unknown ahead of time $\unicode{x2014}$ and agnostic to model representation, allowing comparison across approaches. We instantiated WorldTest with AutumnBench, a suite of 43 interactive grid-world environments and 129 tasks across three families: masked-frame prediction, planning, and predicting changes to the causal dynamics. We compared 517 human participants and three frontier models on AutumnBench. We found that humans outperform the models, and scaling compute improves performance only in some environments but not others. WorldTest provides a novel template $\unicode{x2014}$ reward-free exploration, derived tests, and behavior-based scoring $\unicode{x2014}$ to evaluate what agents learn about environment dynamics, and AutumnBench exposes significant headroom in world-model learning.
comment: 34 pages, 10 figures
♻ ☆ Revenue Maximization Under Sequential Price Competition Via The Estimation Of s-Concave Demand Functions
We consider price competition among multiple sellers over a selling horizon of $T$ periods. In each period, sellers simultaneously offer their prices (which are made public) and subsequently observe their respective demand (not made public). The demand function of each seller depends on all sellers' prices through a private, unknown, and nonlinear relationship. We propose a dynamic pricing policy that uses semi-parametric least-squares estimation and show that when the sellers employ our policy, their prices converge at a rate of $O(T^{-1/7})$ to the Nash equilibrium prices that sellers would reach if they were fully informed. Each seller incurs a regret of $O(T^{5/7})$ relative to a dynamic benchmark policy. A theoretical contribution of our work is proving the existence of equilibrium under shape-constrained demand functions via the concept of $s$-concavity and establishing regret bounds of our proposed policy. Technically, we also establish new concentration results for the least squares estimator under shape constraints. Our findings offer significant insights into dynamic competition-aware pricing and contribute to the broader study of non-parametric learning in strategic decision-making.
♻ ☆ The Three Regimes of Offline-to-Online Reinforcement Learning
Offline-to-online reinforcement learning (RL) has emerged as a practical paradigm that leverages offline datasets for pretraining and online interactions for fine-tuning. However, its empirical behavior is highly inconsistent: design choices of online-fine tuning that work well in one setting can fail completely in another. We propose a stability--plasticity principle that can explain this inconsistency: we should preserve the knowledge of pretrained policy or offline dataset during online fine-tuning, whichever is better, while maintaining sufficient plasticity. This perspective identifies three regimes of online fine-tuning, each requiring distinct stability properties. We validate this framework through a large-scale empirical study, finding that the results strongly align with its predictions in 45 of 63 cases. This work provides a principled framework for guiding design choices in offline-to-online RL based on the relative performance of the offline dataset and the pretrained policy.
♻ ☆ Statistical Properties of Rectified Flow
Rectified flow (Liu et al., 2022; Liu, 2022; Wu et al., 2023) is a method for defining a transport map between two distributions, and enjoys popularity in machine learning, although theoretical results supporting the validity of these methods are scant. The rectified flow can be regarded as an approximation to optimal transport, but in contrast to other transport methods that require optimization over a function space, computing the rectified flow only requires standard statistical tools such as regression or density estimation, which we leverage to develop empirical versions of transport maps. We study some structural properties of the rectified flow, including existence, uniqueness, and regularity, as well as the related statistical properties, such as rates of convergence and central limit theorems, for some selected estimators. To do so, we analyze the bounded and unbounded cases separately as each presents unique challenges. In both cases, we are able to establish convergence at faster rates than those for the usual nonparametric regression and density estimation.
comment: 160 pages, 7 figures
♻ ☆ Tuning Sequential Monte Carlo Samplers via Greedy Incremental Divergence Minimization ICML'25
The performance of sequential Monte Carlo (SMC) samplers heavily depends on the tuning of the Markov kernels used in the path proposal. For SMC samplers with unadjusted Markov kernels, standard tuning objectives, such as the Metropolis-Hastings acceptance rate or the expected-squared jump distance, are no longer applicable. While stochastic gradient-based end-to-end optimization has been explored for tuning SMC samplers, they often incur excessive training costs, even for tuning just the kernel step sizes. In this work, we propose a general adaptation framework for tuning the Markov kernels in SMC samplers by minimizing the incremental Kullback-Leibler (KL) divergence between the proposal and target paths. For step size tuning, we provide a gradient- and tuning-free algorithm that is generally applicable for kernels such as Langevin Monte Carlo (LMC). We further demonstrate the utility of our approach by providing a tailored scheme for tuning kinetic LMC used in SMC samplers. Our implementations are able to obtain a full schedule of tuned parameters at the cost of a few vanilla SMC runs, which is a fraction of gradient-based approaches.
comment: Accepted to ICML'25; v4, v5: fixed typos; v6: fixed missing log in display after Eq (8)
♻ ☆ Dynamic Pricing in the Linear Valuation Model using Shape Constraints
We propose a shape-constrained approach to dynamic pricing for censored data in the linear valuation model eliminating the need for tuning parameters commonly required by existing methods. Previous works have addressed the challenge of unknown market noise distribution $F_0$ using strategies ranging from kernel methods to reinforcement learning algorithms, such as bandit techniques and upper confidence bounds (UCB), under the assumption that $F_0$ satisfies Lipschitz (or stronger) conditions. In contrast, our method relies on isotonic regression under the weaker assumption that $F_0$ is $α$-Hölder continuous for some $α\in (0,1]$, for which we derive a regret upper bound. Simulations and experiments with real-world data obtained by Welltower Inc (a major healthcare Real Estate Investment Trust) consistently demonstrate that our method attains lower empirical regret in comparison to several existing methods in the literature while offering the advantage of being tuning-parameter free.
♻ ☆ Spectral Analysis of Diffusion Models with Application to Schedule Design
Diffusion models (DMs) have emerged as powerful tools for modeling complex data distributions and generating realistic new samples. Over the years, advanced architectures and sampling methods have been developed to make these models practically usable. However, certain synthesis process decisions still rely on heuristics without a solid theoretical foundation. In our work, we offer a novel analysis of the DM's inference process, introducing a comprehensive frequency response perspective. Specifically, by relying on Gaussianity assumption, we present the inference process as a closed-form spectral transfer function, capturing how the generated signal evolves in response to the initial noise. We demonstrate how the proposed analysis can be leveraged to design a noise schedule that aligns effectively with the characteristics of the data. The spectral perspective also provides insights into the underlying dynamics and sheds light on the relationship between spectral properties and noise schedule structure. Our results lead to scheduling curves that are dependent on the spectral content of the data, offering a theoretical justification for some of the heuristics taken by practitioners.
♻ ☆ PROPS: Progressively Private Self-alignment of Large Language Models
Alignment is a key step in developing Large Language Models (LLMs) using human feedback to ensure adherence to human values and societal norms. Dependence on human feedback raises privacy concerns about how much a labeler's preferences may reveal about their personal values, beliefs, and personality traits. Existing approaches, such as Differentially Private SGD (DP-SGD), provide rigorous privacy guarantees by privatizing gradients during fine-tuning and alignment but can provide more privacy than necessary as human preferences are tied only to labels of (prompt, response) pairs and can degrade model utility. This work focuses on LLM alignment with preference-level privacy, which preserves the privacy of preference labels provided by humans. We propose PROPS (PROgressively Private Self-alignment), a multi-stage privacy preserving alignment framework where privately aligned models in previous stages can serve as labelers for supplementing training data in the subsequent stages of alignment. We present theoretical guarantees for PROPS as well as comprehensive validation using multiple models (Pythia and GPT) and datasets (AlpacaEval, Anthropic HH-RLHF, truthy-dpo-v0.1) to demonstrate the utility of PROPS over existing methods while still providing high privacy. For the same privacy budget, alignment via PROPS can achieve up to 3x higher win-rates compared to DP-SGD, and 2.5x higher win-rates compared to Randomized Response (RR) based alignment.
comment: Accepted in the Transactions on Machine Learning Research (TMLR), 2025
♻ ☆ Addressing the Plasticity-Stability Dilemma in Reinforcement Learning
Neural networks have shown remarkable success in supervised learning when trained on a single task using a fixed dataset. However, when neural networks are trained on a reinforcement learning task, their ability to continue learning from new experiences declines over time. This decline in learning ability is known as plasticity loss. To restore plasticity, prior work has explored periodically resetting the parameters of the learning network, a strategy that often improves overall performance. However, such resets come at the cost of a temporary drop in performance, which can be dangerous in real-world settings. To overcome this instability, we introduce AltNet, a reset-based approach that restores plasticity without performance degradation by leveraging twin networks. The use of twin networks anchors performance during resets through a mechanism that allows networks to periodically alternate roles: one network learns as it acts in the environment, while the other learns off-policy from the active network's interactions and a replay buffer. At fixed intervals, the active network is reset and the passive network, having learned from prior experiences, becomes the new active network. AltNet restores plasticity, improving sample efficiency and achieving higher performance, while avoiding performance drops that pose risks in safety-critical settings. We demonstrate these advantages in several high-dimensional control tasks from the DeepMind Control Suite, where AltNet outperforms various relevant baseline methods, as well as state-of-the-art reset-based techniques.
♻ ☆ Finite-Sample Analysis of Policy Evaluation for Robust Average Reward Reinforcement Learning NeurIPS 2025
We present the first finite-sample analysis of policy evaluation in robust average-reward Markov Decision Processes (MDPs). Prior work in this setting have established only asymptotic convergence guarantees, leaving open the question of sample complexity. In this work, we address this gap by showing that the robust Bellman operator is a contraction under a carefully constructed semi-norm, and developing a stochastic approximation framework with controlled bias. Our approach builds upon Multi-Level Monte Carlo (MLMC) techniques to estimate the robust Bellman operator efficiently. To overcome the infinite expected sample complexity inherent in standard MLMC, we introduce a truncation mechanism based on a geometric distribution, ensuring a finite expected sample complexity while maintaining a small bias that decays exponentially with the truncation level. Our method achieves the order-optimal sample complexity of $\tilde{\mathcal{O}}(ε^{-2})$ for robust policy evaluation and robust average reward estimation, marking a significant advancement in robust reinforcement learning theory.
comment: The 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Hard Work Does Not Always Pay Off: Poisoning Attacks on Neural Architecture Search
We study the robustness of data-centric methods to find neural network architectures, known as neural architecture search (NAS), against data poisoning. To audit this robustness, we design a poisoning framework that enables the systematic evaluation of the ability of NAS to produce architectures under data corruption. Our framework examines four off-the-shelf NAS algorithms, representing different approaches to architecture discovery, against four data poisoning attacks, including one we tailor specifically for NAS. In our evaluation with the CIFAR-10 and CIFAR-100 benchmarks, we show that NAS is \emph{seemingly} robust to data poisoning, showing marginal accuracy drops even under large poisoning budgets. However, we demonstrate that when considering NAS algorithms designed to achieve a few percentage points of accuracy gain, this expected improvement can be substantially diminished under data poisoning. We also show that the reduction varies across NAS algorithms and analyze the factors contributing to their robustness. Our findings are: (1) Training-based NAS algorithms are the least robust due to their reliance on data. (2) Training-free NAS approaches are the most robust but produce architectures that perform similarly to random selections from the search space. (3) NAS algorithms can produce architectures with improved accuracy, even when using out-of-distribution data like MNIST. We lastly discuss potential countermeasures. Our code is available at: https://github.com/ztcoalson/NAS-Robustness-to-Data-Poisoning
comment: Accepted at TMLR 2025.12
♻ ☆ Global Convergence for Average Reward Constrained MDPs with Primal-Dual Actor Critic Algorithm NeurIPS 2025
This paper investigates infinite-horizon average reward Constrained Markov Decision Processes (CMDPs) with general parametrization. We propose a Primal-Dual Natural Actor-Critic algorithm that adeptly manages constraints while ensuring a high convergence rate. In particular, our algorithm achieves global convergence and constraint violation rates of $\tilde{\mathcal{O}}(1/\sqrt{T})$ over a horizon of length $T$ when the mixing time, $τ_{\mathrm{mix}}$, is known to the learner. In absence of knowledge of $τ_{\mathrm{mix}}$, the achievable rates change to $\tilde{\mathcal{O}}(1/T^{0.5-ε})$ provided that $T \geq \tilde{\mathcal{O}}\left(τ_{\mathrm{mix}}^{2/ε}\right)$. Our results match the theoretical lower bound for Markov Decision Processes and establish a new benchmark in the theoretical exploration of average reward CMDPs.
comment: NeurIPS 2025
♻ ☆ Efficient $Q$-Learning and Actor-Critic Methods for Robust Average Reward Reinforcement Learning
We present a non-asymptotic convergence analysis of $Q$-learning and actor-critic algorithms for robust average-reward Markov Decision Processes (MDPs) under contamination, total-variation (TV) distance, and Wasserstein uncertainty sets. A key ingredient of our analysis is showing that the optimal robust $Q$ operator is a strict contraction with respect to a carefully designed semi-norm (with constant functions quotiented out). This property enables a stochastic approximation update that learns the optimal robust $Q$-function using $\tilde{\mathcal{O}}(ε^{-2})$ samples. We also provide an efficient routine for robust $Q$-function estimation, which in turn facilitates robust critic estimation. Building on this, we introduce an actor-critic algorithm that learns an $ε$-optimal robust policy within $\tilde{\mathcal{O}}(ε^{-2})$ samples. We provide numerical simulations to evaluate the performance of our algorithms.
comment: Updated the main text of the draft
♻ ☆ Structural Plasticity as Active Inference: A Biologically-Inspired Architecture for Homeostatic Control
Traditional neural networks, while powerful, rely on biologically implausible learning mechanisms such as global backpropagation. This paper introduces the Structurally Adaptive Predictive Inference Network (SAPIN), a novel computational model inspired by the principles of active inference and the morphological plasticity observed in biological neural cultures. SAPIN operates on a 2D grid where processing units, or cells, learn by minimizing local prediction errors. The model features two primary, concurrent learning mechanisms: a local, Hebbian-like synaptic plasticity rule based on the temporal difference between a cell's actual activation and its learned expectation, and a structural plasticity mechanism where cells physically migrate across the grid to optimize their information-receptive fields. This dual approach allows the network to learn both how to process information (synaptic weights) and also where to position its computational resources (network topology). We validated the SAPIN model on the classic Cart Pole reinforcement learning benchmark. Our results demonstrate that the architecture can successfully solve the CartPole task, achieving robust performance. The network's intrinsic drive to minimize prediction error and maintain homeostasis was sufficient to discover a stable balancing policy. We also found that while continual learning led to instability, locking the network's parameters after achieving success resulted in a stable policy. When evaluated for 100 episodes post-locking (repeated over 100 successful agents), the locked networks maintained an average 82% success rate.
comment: In Brain-Inspired Dynamics for Engineering Energy-Efficient Circuits and Artificial Intelligence
♻ ☆ SimpleFold: Folding Proteins is Simpler than You Think
Protein folding models have achieved groundbreaking results typically via a combination of integrating domain knowledge into the architectural blocks and training pipelines. Nonetheless, given the success of generative models across different but related problems, it is natural to question whether these architectural designs are a necessary condition to build performant models. In this paper, we introduce SimpleFold, the first flow-matching based protein folding model that solely uses general purpose transformer blocks. Protein folding models typically employ computationally expensive modules involving triangular updates, explicit pair representations or multiple training objectives curated for this specific domain. Instead, SimpleFold employs standard transformer blocks with adaptive layers and is trained via a generative flow-matching objective with an additional structural term. We scale SimpleFold to 3B parameters and train it on approximately 9M distilled protein structures together with experimental PDB data. On standard folding benchmarks, SimpleFold-3B achieves competitive performance compared to state-of-the-art baselines, in addition SimpleFold demonstrates strong performance in ensemble prediction which is typically difficult for models trained via deterministic reconstruction objectives. Due to its general-purpose architecture, SimpleFold shows efficiency in deployment and inference on consumer-level hardware. SimpleFold challenges the reliance on complex domain-specific architectures designs in protein folding, opening up an alternative design space for future progress.
comment: 30 pages, 11 figures, 15 tables
♻ ☆ Gradient-Free Privacy Leakage in Federated Language Models through Selective Weight Tampering
Federated learning (FL) has become a key component in various language modeling applications such as machine translation, next-word prediction, and medical record analysis. These applications are trained on datasets from many FL participants that often include privacy-sensitive data, such as healthcare records, phone/credit card numbers, login credentials, etc. Although FL enables computation without necessitating clients to share their raw data, existing works show that privacy leakage is still probable in federated language models. In this paper, we present two novel findings on the leakage of privacy-sensitive user data from federated large language models without requiring access to gradients. Firstly, we make a key observation that model snapshots from the intermediate rounds in FL can cause greater privacy leakage than the final trained model. Secondly, we identify that a malicious FL participant can aggravate the leakage by tampering with the model's selective weights that are responsible for memorizing the sensitive training data of some other clients, even without any cooperation from the server. Our best-performing method increases the membership inference recall by 29% and achieves up to 71% private data reconstruction, evidently outperforming existing attacks that consider much stronger adversary capabilities. Lastly, we recommend a balanced suite of techniques for an FL client to defend against such privacy risk.
comment: 21 pages (including bibliography and Appendix), Submitted to PETS'26
♻ ☆ Classifying Phonotrauma Severity from Vocal Fold Images with Soft Ordinal Regression ML4H 2025
Phonotrauma refers to vocal fold tissue damage resulting from exposure to forces during voicing. It occurs on a continuum from mild to severe, and treatment options can vary based on severity. Assessment of severity involves a clinician's expert judgment, which is costly and can vary widely in reliability. In this work, we present the first method for automatically classifying phonotrauma severity from vocal fold images. To account for the ordinal nature of the labels, we adopt a widely used ordinal regression framework. To account for label uncertainty, we propose a novel modification to ordinal regression loss functions that enables them to operate on soft labels reflecting annotator rating distributions. Our proposed soft ordinal regression method achieves predictive performance approaching that of clinical experts, while producing well-calibrated uncertainty estimates. By providing an automated tool for phonotrauma severity assessment, our work can enable large-scale studies of phonotrauma, ultimately leading to improved clinical understanding and patient care.
comment: 16 pages, 9 figures, 5 tables; ML4H 2025; Proceedings of Machine Learning Research 297, 2025
♻ ☆ Quantifying Cross-Attention Interaction in Transformers for Interpreting TCR-pMHC Binding
CD8+ "killer" T cells and CD4+ "helper" T cells play a central role in the adaptive immune system by recognizing antigens presented by Major Histocompatibility Complex (pMHC) molecules via T Cell Receptors (TCRs). Modeling binding between T cells and the pMHC complex is fundamental to understanding basic mechanisms of human immune response as well as in developing therapies. While transformer-based models such as TULIP have achieved impressive performance in this domain, their black-box nature precludes interpretability and thus limits a deeper mechanistic understanding of T cell response. Most existing post-hoc explainable AI (XAI) methods are confined to encoder-only, co-attention, or model-specific architectures and cannot handle encoder-decoder transformers used in TCR-pMHC modeling. To address this gap, we propose Quantifying Cross-Attention Interaction (QCAI), a new post-hoc method designed to interpret the cross-attention mechanisms in transformer decoders. Quantitative evaluation is a challenge for XAI methods; we have compiled TCR-XAI, a benchmark consisting of 274 experimentally determined TCR-pMHC structures to serve as ground truth for binding. Using these structures we compute physical distances between relevant amino acid residues in the TCR-pMHC interaction region and evaluate how well our method and others estimate the importance of residues in this region across the dataset. We show that QCAI achieves state-of-the-art performance on both interpretability and prediction accuracy under the TCR-XAI benchmark.
Genomics 4
☆ ImmunoNX: a robust bioinformatics workflow to support personalized neoantigen vaccine trials
Personalized neoantigen vaccines represent a promising immunotherapy approach that harnesses tumor-specific antigens to stimulate anti-tumor immune responses. However, the design of these vaccines requires sophisticated computational workflows to predict and prioritize neoantigen candidates from patient sequencing data, coupled with rigorous review to ensure candidate quality. While numerous computational tools exist for neoantigen prediction, to our knowledge, there are no established protocols detailing the complete process from raw sequencing data through systematic candidate selection. Here, we present ImmunoNX (Immunogenomics Neoantigen eXplorer), an end-to-end protocol for neoantigen prediction and vaccine design that has supported over 185 patients across 11 clinical trials. The workflow integrates tumor DNA/RNA and matched normal DNA sequencing data through a computational pipeline built with Workflow Definition Language (WDL) and executed via Cromwell on Google Cloud Platform. ImmunoNX employs consensus-based variant calling, in-silico HLA typing, and pVACtools for neoantigen prediction. Additionally, we describe a two-stage immunogenomics review process with prioritization of neoantigen candidates, enabled by pVACview, followed by manual assessment of variants using the Integrative Genomics Viewer (IGV). This workflow enables vaccine design in under three months. We demonstrate the protocol using the HCC1395 breast cancer cell line dataset, identifying 78 high-confidence neoantigen candidates from 322 initial predictions. Although demonstrated here for vaccine development, this workflow can be adapted for diverse neoantigen therapies and experiments. Therefore, this protocol provides the research community with a reproducible, version-controlled framework for designing personalized neoantigen vaccines, supported by detailed documentation, example datasets, and open-source code.
comment: Supplementary tables and materials available at https://doi.org/10.5281/zenodo.17862140
☆ needLR: Long-read structural variant annotation with population-scale frequency estimation
Summary: We present needLR, a structural variant (SV) annotation tool that can be used for filtering and prioritization of candidate pathogenic SVs from long-read sequencing data using population allele frequencies, annotations for genomic context, and gene-phenotype associations. When using population data from 500 presumably healthy individuals to evaluate nine test cases with known pathogenic SVs, needLR assigned allele frequencies to over 97.5% of all detected SVs and reduced the average number of novel genic SVs to 121 per case while retaining all known pathogenic variants. Availability and Implementation: needLR is implemented in bash with dependencies including Truvari v4.2.2, BEDTools v2.31.1, and BCFtools v1.19. Source code, documentation, and pre-computed population allele frequency data are freely available at https://github.com/jgust1/needLR under an MIT license.
♻ ☆ A Graph-based Approach to Variant Extraction from Sequences
Accurate variant descriptions are of paramount importance in the field of genomics. The domain is confronted with increasingly complex variants, e.g., combinations of multiple indels, making it challenging to generate proper variant descriptions directly from chromosomal sequences. We present a graph based on all minimal alignments that is a complete representation of a variant, which gives insight into the nature of a variant compared to a single variant description. We provide three complementary extraction methods to derive variant descriptions from this graph, including one that yields domain-specific constructs from the HGVS nomenclature. Our experiments show that our methods in comparison with dbSNP, the authoritative variant database from the NCBI, result in identical HGVS descriptions for simple variants and more meaningful descriptions for complex variants, in particular for repeat expansions and contractions.
comment: 19 pages, 10 figures
♻ ☆ Uchimata: a toolkit for visualization of 3D genome structures on the web and in computational notebooks
Summary: Uchimata is a toolkit for visualization of 3D structures of genomes. It consists of two packages: a Javascript library facilitating the rendering of 3D models of genomes, and a Python widget for visualization in Jupyter Notebooks. Main features include an expressive way to specify visual encodings, and filtering of 3D genome structures based on genomic semantics and spatial aspects. Uchimata is designed to be highly integratable with biological tooling available in Python. Availability and Implementation: Uchimata is released under the MIT License. The Javascript library is available on NPM, while the widget is available as a Python package hosted on PyPI. The source code for both is available publicly on Github (https://github.com/hms-dbmi/uchimata and https://github.com/hms-dbmi/uchimata-py) and Zenodo: (https://doi.org/10.5281/zenodo.17831959 and https://doi.org/10.5281/zenodo.17832045). The documentation with examples is hosted at https://hms-dbmi.github.io/uchimata/ Contact: david_kouril@hms.harvard.edu or nils@hms.harvard.edu.
Quantitative Methods 12
☆ Spatially-extended Flow Phixer (SpeF-Phixer): A Spatially Extended $\varphi$-Mixing Framework for Gene Regulatory Causal Inference in Spatial Gene Field
Background and objective: Spatial transcriptomics provides rich spatial context but lacks sufficient resolution for large-scale causal inference. We developed SpeF-Phixer, a spatially extended phi-mixing framework integrating whole-slide image (WSI)-derived spatial cell distributions with mapped scRNA-seq expression fields to infer directed gene regulatory triplets with spatial coherence. Methods: Using CD103/CD8-immunostained colorectal cancer WSIs and publicly available scRNA-seq datasets, spatial gene fields were constructed around mapped cells and discretized for signed phi-mixing computation. Pairwise dependencies, directional signs, and triplet structures were evaluated through kNN-based neighborhood screening and bootstrap consensus inference. Mediation and convergence were distinguished using generalized additive models (GAMs), with spatial validity assessed by real-null comparisons and database-backed direction checks. Results: Across tissue patches, the pipeline reduced approximately 3.6x10^4 triplet candidates to a reproducible consensus set (approximately 3x10^2 per patch). The downstream edge (Y to Z) showed significant directional bias consistent with curated regulatory databases. Spatial path tracing demonstrated markedly higher coherence for real triplets than for null controls, indicating that inferred chains represent biologically instantiated regulatory flows. Conclusion: SpeF-Phixer extracts spatially coherent, directionally consistent gene regulatory triplets from histological images. This framework bridges single-cell molecular profiles with microenvironmental organization and provides a scalable foundation for constructing spatially informed causal gene networks.
☆ Riemannian vs. Euclidean Representation of Gait Kinematics: A Comparative Analysis
Accurate quantification of complex human movements, such as gait, is essential for clinical diagnosis and rehabilitation but is often limited by traditional linear models rooted in Euclidean geometry. These frameworks frequently fail to capture the intrinsic non-linear dynamics and posture-dependent dependencies of biological systems. To address this, we present a computational framework that maps kinematic data onto a Riemannian manifold of Symmetric Positive Definite (SPD) matrices. Using the Log-Euclidean metric, we transformed raw skeletal pose sequences into geometric feature vectors to quantify gait variability and smoothness across three velocity profiles: slow, medium, and fast. Our comparative analysis reveals a critical divergence between geometric approaches. While Euclidean metrics exhibit a strictly linear increase in variability with speed (Slow < Medium < Fast), implying instability, the proposed Riemannian metrics reveal a non-linear "inverted-U'' pattern with varying speeds. Specifically, we observed a stabilization of variance at high speeds (sprinting), suggesting that the motor system optimizes efficiency by adhering to geodesic trajectories of minimum effort. These findings demonstrate that manifold-based representations offer superior sensitivity to biomechanical efficiency compared to standard linear methods, providing a robust foundation for future diagnostic algorithms and explainable machine learning models in clinical biomechanics.
☆ Understanding temperature tuning in energy-based models
Generative models of complex systems often require post-hoc parameter adjustments to produce useful outputs. For example, energy-based models for protein design are sampled at an artificially low ''temperature'' to generate novel, functional sequences. This temperature tuning is a common yet poorly understood heuristic used across machine learning contexts to control the trade-off between generative fidelity and diversity. Here, we develop an interpretable, physically motivated framework to explain this phenomenon. We demonstrate that in systems with a large ''energy gap'' - separating a small fraction of meaningful states from a vast space of unrealistic states - learning from sparse data causes models to systematically overestimate high-energy state probabilities, a bias that lowering the sampling temperature corrects. More generally, we characterize how the optimal sampling temperature depends on the interplay between data size and the system's underlying energy landscape. Crucially, our results show that lowering the sampling temperature is not always desirable; we identify the conditions where \emph{raising} it results in better generative performance. Our framework thus casts post-hoc temperature tuning as a diagnostic tool that reveals properties of the true data distribution and the limits of the learned model.
comment: 18 pages, 7 figures
☆ Digital Modeling of Spatial Pathway Activity from Histology Reveals Tumor Microenvironment Heterogeneity
Spatial transcriptomics (ST) enables simultaneous mapping of tissue morphology and spatially resolved gene expression, offering unique opportunities to study tumor microenvironment heterogeneity. Here, we introduce a computational framework that predicts spatial pathway activity directly from hematoxylin-and-eosin-stained histology images at microscale resolution 55 and 100 um. Using image features derived from a computational pathology foundation model, we found that TGFb signaling was the most accurately predicted pathway across three independent breast and lung cancer ST datasets. In 87-88% of reliably predicted cases, the resulting spatial TGFb activity maps reflected the expected contrast between tumor and adjacent non-tumor regions, consistent with the known role of TGFb in regulating interactions within the tumor microenvironment. Notably, linear and nonlinear predictive models performed similarly, suggesting that image features may relate to pathway activity in a predominantly linear fashion or that nonlinear structure is small relative to measurement noise. These findings demonstrate that features extracted from routine histopathology may recover spatially coherent and biologically interpretable pathway patterns, offering a scalable strategy for integrating image-based inference with ST information in tumor microenvironment studies.
☆ MolSculpt: Sculpting 3D Molecular Geometries from Chemical Syntax
Generating precise 3D molecular geometries is crucial for drug discovery and material science. While prior efforts leverage 1D representations like SELFIES to ensure molecular validity, they fail to fully exploit the rich chemical knowledge entangled within 1D models, leading to a disconnect between 1D syntactic generation and 3D geometric realization. To bridge this gap, we propose MolSculpt, a novel framework that "sculpts" 3D molecular geometries from chemical syntax. MolSculpt is built upon a frozen 1D molecular foundation model and a 3D molecular diffusion model. We introduce a set of learnable queries to extract inherent chemical knowledge from the foundation model, and a trainable projector then injects this cross-modal information into the conditioning space of the diffusion model to guide the 3D geometry generation. In this way, our model deeply integrates 1D latent chemical knowledge into the 3D generation process through end-to-end optimization. Experiments demonstrate that MolSculpt achieves state-of-the-art (SOTA) performance in \textit{de novo} 3D molecule generation and conditional 3D molecule generation, showing superior 3D fidelity and stability on both the GEOM-DRUGS and QM9 datasets. Code is available at https://github.com/SakuraTroyChen/MolSculpt.
♻ ☆ SSRCA: a novel machine learning pipeline to perform sensitivity analysis for agent-based models
Agent-based models (ABMs) are widely used in biology to understand how individual actions scale into emergent population behavior. Modelers employ sensitivity analysis (SA) algorithms to quantify input parameters' impact on model outputs, however, it is hard to perform SA for ABMs due to their computational and complex nature. In this work, we develop the Simulate, Summarize, Reduce, Cluster, and Analyze (SSRCA) methodology, a machine-learning based pipeline designed to facilitate SA for ABMs. In particular, SSRCA can achieve the following tasks for ABMS: 1) identify sensitive model parameters, 2) reveal common output model patterns, and 3) determine which input parameter values generate these patterns. We use an example ABM of tumor spheroid growth to showcase how SSRCA identifies four common patterns from the ABM and the parameter regions that generate these outputs. Additionally, we compare the SA results between SSRCA and the popular Sobol' Method and find that SSRCA's identified sensitive parameters are robust to the choice of model descriptors while Sobol's are not. This analysis could streamline data-driven tasks, such as parameter estimation, for ABMs by reducing parameter space. While we highlight these results with an ABM on tumor spheroid formation, the SSRCA Methodology is broadly applicable to biological ABMs.
♻ ☆ Ultra-large library screening with an evolutionary algorithm in Rosetta (REvoLd)
Ultra-large make-on-demand compound libraries now contain billions of readily available compounds. This represents a golden opportunity for in-silico drug discovery. One challenge, however, is the time and computational cost of an exhaustive screen of such large libraries when receptor flexibility is taken into account. We propose an evolutionary algorithm to search combinatorial make-on-demand chemical space efficiently without enumerating all molecules. We exploit the feature of make-on-demand compound libraries, namely that they are constructed from lists of substrates and chemical reactions. Our algorithm RosettaEvolutionaryLigand (REvoLd) explores the vast search space of combinatorial libraries for protein-ligand docking with full ligand and receptor flexibility through RosettaLigand. A benchmark of REvoLd on five drug targets showed improvements in hit rates by factors between 869 and 1622 compared to random selections. REvoLd is available as an application within the Rosetta software suite (https://docs.rosettacommons.org/docs/latest/revold). This work formulates an evolutionary algorithm for optimization and exploration of ultra-large make-on-demand libraries. We demonstrate that our approach results in strong and stable enrichment, offering the most efficient algorithm for drug discovery in ultra-large chemical space to date.
comment: 12 pages, 6 figures
♻ ☆ BeeTLe: An Imbalance-Aware Deep Sequence Model for Linear B-Cell Epitope Prediction and Classification with Logit-Adjusted Losses KDD 2023
The process of identifying and characterizing B-cell epitopes, which are the portions of antigens recognized by antibodies, is important for our understanding of the immune system, and for many applications including vaccine development, therapeutics, and diagnostics. Computational epitope prediction is challenging yet rewarding as it significantly reduces the time and cost of laboratory work. Most of the existing tools do not have satisfactory performance and only discriminate epitopes from non-epitopes. This paper presents a new deep learning-based multi-task framework for linear B-cell epitope prediction as well as antibody type-specific epitope classification. Specifically, a sequenced-based neural network model using recurrent layers and Transformer blocks is developed. We propose an amino acid encoding method based on eigen decomposition to help the model learn the representations of epitopes. We introduce modifications to standard cross-entropy loss functions by extending a logit adjustment technique to cope with the class imbalance. Experimental results on data curated from the largest public epitope database demonstrate the validity of the proposed methods and the superior performance compared to competing ones.
comment: 19 pages, 3 figures, accepted at ECML PKDD 2023; v2: updated title and added an appendix
♻ ☆ AI-powered virtual tissues from spatial proteomics for clinical diagnostics and biomedical discovery
Spatial proteomics technologies have transformed our understanding of complex tissue architecture in cancer but present unique challenges for computational analysis. Each study uses a different marker panel and protocol, and most methods are tailored to single cohorts, which limits knowledge transfer and robust biomarker discovery. Here we present Virtual Tissues (VirTues), a general-purpose foundation model for spatial proteomics that learns marker-aware, multi-scale representations of proteins, cells, niches and tissues directly from multiplex imaging data. From a single pretrained backbone, VirTues supports marker reconstruction, cell typing and niche annotation, spatial biomarker discovery, and patient stratification, including zero-shot annotation across heterogeneous panels and datasets. In triple-negative breast cancer, VirTues-derived biomarkers predict anti-PD-L1 chemo-immunotherapy response and stratify disease-free survival in an independent cohort, outperforming state-of-the-art biomarkers derived from the same datasets and current clinical stratification schemes.
comment: 25 pages, 5 figures
♻ ☆ Prot2Token: A Unified Framework for Protein Modeling via Next-Token Prediction
The diverse nature of protein prediction tasks has traditionally necessitated specialized models, hindering the development of broadly applicable and computationally efficient Protein Language Models (PLMs). In this work, we introduce Prot2Token, a unified framework that overcomes these challenges by converting a wide spectrum of protein-related predictions-from sequence-level properties and residue-specific attributes to complex inter-protein interactions-into a standardized next-token prediction format. At its core, Prot2Token employs an autoregressive decoder, conditioned on embeddings from pre-trained protein encoders and guided by learnable task tokens, to perform diverse predictions. This architecture uniquely facilitates multi-task learning, enabling general-purpose decoders to generalize across five distinct categories. We present extensive experimental validation across a variety of benchmarks, demonstrating Prot2Token's predictive power in different types of protein-prediction tasks. In 3D structure prediction, Prot2Token delivers substantial speedups (up to 1000x faster than AlphaFold2 with MSA on the same hardware) while, across other numerous tasks, matching or surpassing specialized methods. Beyond that, we introduce an auxiliary self-supervised decoder pre-training approach to improve spatially sensitive task performance. Prot2Token thus offers a step towards standardizing biological prediction into a generative interface, promising to accelerate biological discovery and the development of novel therapeutics. The code is available at https://github.com/mahdip72/prot2token .
♻ ☆ Exact identifiability analysis for a class of partially observed near-linear stochastic differential equation models
Stochasticity plays a key role in many biological systems, necessitating the calibration of stochastic mathematical models to interpret associated data. For model parameters to be estimated reliably, it is typically the case that they must be structurally identifiable. Yet, while theory underlying structural identifiability analysis for deterministic differential equation models is highly developed, there are currently no tools for the general assessment of stochastic models. In this work, we present a differential algebra-based framework for the structural identifiability analysis of linear and a class of near-linear partially observed stochastic differential equation (SDE) models. Our framework is based on a deterministic recurrence relation that describes the dynamics of the statistical moments of the system of SDEs. From this relation, we iteratively form a series of necessarily satisfied equations involving only the observed moments, from which we are able to establish structurally identifiable parameter combinations. We demonstrate our framework for a suite of linear (two- and $n$-dimensional) and non-linear (two-dimensional) models. Most importantly, we define the notion of structural identifiability for SDE models and establish the effect of the initial condition on identifiability. We conclude with a discussion on the applicability and limitations of our approach, and potential future research directions in this understudied area.
♻ ☆ SimpleFold: Folding Proteins is Simpler than You Think
Protein folding models have achieved groundbreaking results typically via a combination of integrating domain knowledge into the architectural blocks and training pipelines. Nonetheless, given the success of generative models across different but related problems, it is natural to question whether these architectural designs are a necessary condition to build performant models. In this paper, we introduce SimpleFold, the first flow-matching based protein folding model that solely uses general purpose transformer blocks. Protein folding models typically employ computationally expensive modules involving triangular updates, explicit pair representations or multiple training objectives curated for this specific domain. Instead, SimpleFold employs standard transformer blocks with adaptive layers and is trained via a generative flow-matching objective with an additional structural term. We scale SimpleFold to 3B parameters and train it on approximately 9M distilled protein structures together with experimental PDB data. On standard folding benchmarks, SimpleFold-3B achieves competitive performance compared to state-of-the-art baselines, in addition SimpleFold demonstrates strong performance in ensemble prediction which is typically difficult for models trained via deterministic reconstruction objectives. Due to its general-purpose architecture, SimpleFold shows efficiency in deployment and inference on consumer-level hardware. SimpleFold challenges the reliance on complex domain-specific architectures designs in protein folding, opening up an alternative design space for future progress.
comment: 30 pages, 11 figures, 15 tables
Cell Behavior 1
♻ ☆ SSRCA: a novel machine learning pipeline to perform sensitivity analysis for agent-based models
Agent-based models (ABMs) are widely used in biology to understand how individual actions scale into emergent population behavior. Modelers employ sensitivity analysis (SA) algorithms to quantify input parameters' impact on model outputs, however, it is hard to perform SA for ABMs due to their computational and complex nature. In this work, we develop the Simulate, Summarize, Reduce, Cluster, and Analyze (SSRCA) methodology, a machine-learning based pipeline designed to facilitate SA for ABMs. In particular, SSRCA can achieve the following tasks for ABMS: 1) identify sensitive model parameters, 2) reveal common output model patterns, and 3) determine which input parameter values generate these patterns. We use an example ABM of tumor spheroid growth to showcase how SSRCA identifies four common patterns from the ABM and the parameter regions that generate these outputs. Additionally, we compare the SA results between SSRCA and the popular Sobol' Method and find that SSRCA's identified sensitive parameters are robust to the choice of model descriptors while Sobol's are not. This analysis could streamline data-driven tasks, such as parameter estimation, for ABMs by reducing parameter space. While we highlight these results with an ABM on tumor spheroid formation, the SSRCA Methodology is broadly applicable to biological ABMs.
Computation and Language 102
☆ Do Generalisation Results Generalise?
A large language model's (LLM's) out-of-distribution (OOD) generalisation ability is crucial to its deployment. Previous work assessing LLMs' generalisation performance, however, typically focuses on a single out-of-distribution dataset. This approach may fail to precisely evaluate the capabilities of the model, as the data shifts encountered once a model is deployed are much more diverse. In this work, we investigate whether OOD generalisation results generalise. More specifically, we evaluate a model's performance across multiple OOD testsets throughout a finetuning run; we then evaluate the partial correlation of performances across these testsets, regressing out in-domain performance. This allows us to assess how correlated are generalisation performances once in-domain performance is controlled for. Analysing OLMo2 and OPT, we observe no overarching trend in generalisation results: the existence of a positive or negative correlation between any two OOD testsets depends strongly on the specific choice of model analysed.
☆ Group Representational Position Encoding
We present GRAPE (Group RepresentAtional Position Encoding), a unified framework for positional encoding based on group actions. GRAPE brings together two families of mechanisms: (i) multiplicative rotations (Multiplicative GRAPE) in $\mathrm{SO}(d)$ and (ii) additive logit biases (Additive GRAPE) arising from unipotent actions in the general linear group $\mathrm{GL}$. In Multiplicative GRAPE, a position $n \in \mathbb{Z}$ (or $t \in \mathbb{R}$) acts as $\mathbf{G}(n)=\exp(n\,ω\,\mathbf{L})$ with a rank-2 skew generator $\mathbf{L} \in \mathbb{R}^{d \times d}$, yielding a relative, compositional, norm-preserving map with a closed-form matrix exponential. RoPE is recovered exactly when the $d/2$ planes are the canonical coordinate pairs with log-uniform spectrum. Learned commuting subspaces and compact non-commuting mixtures strictly extend this geometry to capture cross-subspace feature coupling at $O(d)$ and $O(r d)$ cost per head, respectively. In Additive GRAPE, additive logits arise as rank-1 (or low-rank) unipotent actions, recovering ALiBi and the Forgetting Transformer (FoX) as exact special cases while preserving an exact relative law and streaming cacheability. Altogether, GRAPE supplies a principled design space for positional geometry in long-context models, subsuming RoPE and ALiBi as special cases. Project Page: https://github.com/model-architectures/GRAPE.
comment: Project Page: https://github.com/model-architectures/GRAPE
☆ Collaborative Causal Sensemaking: Closing the Complementarity Gap in Human-AI Decision Support
LLM-based agents are rapidly being plugged into expert decision-support, yet in messy, high-stakes settings they rarely make the team smarter: human-AI teams often underperform the best individual, experts oscillate between verification loops and over-reliance, and the promised complementarity does not materialise. We argue this is not just a matter of accuracy, but a fundamental gap in how we conceive AI assistance: expert decisions are made through collaborative cognitive processes where mental models, goals, and constraints are continually co-constructed, tested, and revised between human and AI. We propose Collaborative Causal Sensemaking (CCS) as a research agenda and organizing framework for decision-support agents: systems designed as partners in cognitive work, maintaining evolving models of how particular experts reason, helping articulate and revise goals, co-constructing and stress-testing causal hypotheses, and learning from the outcomes of joint decisions so that both human and agent improve over time. We sketch challenges around training ecologies that make collaborative thinking instrumentally valuable, representations and interaction protocols for co-authored models, and evaluation centred on trust and complementarity. These directions can reframe MAS research around agents that participate in collaborative sensemaking and act as AI teammates that think with their human partners.
☆ ReasonBENCH: Benchmarking the (In)Stability of LLM Reasoning
Large language models (LLMs) are increasingly deployed in settings where reasoning, such as multi-step problem solving and chain-of-thought, is essential. Yet, current evaluation practices overwhelmingly report single-run accuracy while ignoring the intrinsic uncertainty that naturally arises from stochastic decoding. This omission creates a blind spot because practitioners cannot reliably assess whether a method's reported performance is stable, reproducible, or cost-consistent. We introduce ReasonBENCH, the first benchmark designed to quantify the underlying instability in LLM reasoning. ReasonBENCH provides (i) a modular evaluation library that standardizes reasoning frameworks, models, and tasks, (ii) a multi-run protocol that reports statistically reliable metrics for both quality and cost, and (iii) a public leaderboard to encourage variance-aware reporting. Across tasks from different domains, we find that the vast majority of reasoning strategies and models exhibit high instability. Notably, even strategies with similar average performance can display confidence intervals up to four times wider, and the top-performing methods often incur higher and less stable costs. Such instability compromises reproducibility across runs and, consequently, the reliability of reported performance. To better understand these dynamics, we further analyze the impact of prompts, model families, and scale on the trade-off between solve rate and stability. Our results highlight reproducibility as a critical dimension for reliable LLM reasoning and provide a foundation for future reasoning methods and uncertainty quantification techniques. ReasonBENCH is publicly available at https://github.com/au-clan/ReasonBench .
comment: 11 pages, 3 tables, 4 figures
☆ On the Interplay of Pre-Training, Mid-Training, and RL on Reasoning Language Models
Recent reinforcement learning (RL) techniques have yielded impressive reasoning improvements in language models, yet it remains unclear whether post-training truly extends a model's reasoning ability beyond what it acquires during pre-training. A central challenge is the lack of control in modern training pipelines: large-scale pre-training corpora are opaque, mid-training is often underexamined, and RL objectives interact with unknown prior knowledge in complex ways. To resolve this ambiguity, we develop a fully controlled experimental framework that isolates the causal contributions of pre-training, mid-training, and RL-based post-training. Our approach employs synthetic reasoning tasks with explicit atomic operations, parseable step-by-step reasoning traces, and systematic manipulation of training distributions. We evaluate models along two axes: extrapolative generalization to more complex compositions and contextual generalization across surface contexts. Using this framework, we reconcile competing views on RL's effectiveness. We show that: 1) RL produces true capability gains (pass@128) only when pre-training leaves sufficient headroom and when RL data target the model's edge of competence, tasks at the boundary that are difficult but not yet out of reach. 2) Contextual generalization requires minimal yet sufficient pre-training exposure, after which RL can reliably transfer. 3) Mid-training significantly enhances performance under fixed compute compared with RL only, demonstrating its central but underexplored role in training pipelines. 4) Process-level rewards reduce reward hacking and improve reasoning fidelity. Together, these results clarify the interplay between pre-training, mid-training, and RL, offering a foundation for understanding and improving reasoning LM training strategies.
☆ Mary, the Cheeseburger-Eating Vegetarian: Do LLMs Recognize Incoherence in Narratives?
Leveraging a dataset of paired narratives, we investigate the extent to which large language models (LLMs) can reliably separate incoherent and coherent stories. A probing study finds that LLMs' internal representations can reliably identify incoherent narratives. However, LLMs generate responses to rating questions that fail to satisfactorily separate the coherent and incoherent narratives across several prompt variations, hinting at a gap in LLM's understanding of storytelling. The reasoning LLMs tested do not eliminate these deficits, indicating that thought strings may not be able to fully address the discrepancy between model internal state and behavior. Additionally, we find that LLMs appear to be more sensitive to incoherence resulting from an event that violates the setting (e.g., a rainy day in the desert) than to incoherence arising from a character violating an established trait (e.g., Mary, a vegetarian, later orders a cheeseburger), suggesting that LLMs may rely more on prototypical world knowledge than building meaning-based narrative coherence. The consistent asymmetry found in our results suggests that LLMs do not have a complete grasp on narrative coherence.
☆ Automated Generation of Custom MedDRA Queries Using SafeTerm Medical Map
In pre-market drug safety review, grouping related adverse event terms into standardised MedDRA queries or the FDA Office of New Drugs Custom Medical Queries (OCMQs) is critical for signal detection. We present a novel quantitative artificial intelligence system that understands and processes medical terminology and automatically retrieves relevant MedDRA Preferred Terms (PTs) for a given input query, ranking them by a relevance score using multi-criteria statistical methods. The system (SafeTerm) embeds medical query terms and MedDRA PTs in a multidimensional vector space, then applies cosine similarity and extreme-value clustering to generate a ranked list of PTs. Validation was conducted against the FDA OCMQ v3.0 (104 queries), restricted to valid MedDRA PTs. Precision, recall and F1 were computed across similarity-thresholds. High recall (>95%) is achieved at moderate thresholds. Higher thresholds improve precision (up to 86%). The optimal threshold (~0.70 - 0.75) yielded recall ~50% and precision ~33%. Narrow-term PT subsets performed similarly but required slightly higher similarity thresholds. The SafeTerm AI-driven system provides a viable supplementary method for automated MedDRA query generation. A similarity threshold of ~0.60 is recommended initially, with increased thresholds for refined term selection.
comment: 12 pages, 4 figures
☆ HalluShift++: Bridging Language and Vision through Internal Representation Shifts for Hierarchical Hallucinations in MLLMs
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in vision-language understanding tasks. While these models often produce linguistically coherent output, they often suffer from hallucinations, generating descriptions that are factually inconsistent with the visual content, potentially leading to adverse consequences. Therefore, the assessment of hallucinations in MLLM has become increasingly crucial in the model development process. Contemporary methodologies predominantly depend on external LLM evaluators, which are themselves susceptible to hallucinations and may present challenges in terms of domain adaptation. In this study, we propose the hypothesis that hallucination manifests as measurable irregularities within the internal layer dynamics of MLLMs, not merely due to distributional shifts but also in the context of layer-wise analysis of specific assumptions. By incorporating such modifications, \textsc{\textsc{HalluShift++}} broadens the efficacy of hallucination detection from text-based large language models (LLMs) to encompass multimodal scenarios. Our codebase is available at https://github.com/C0mRD/HalluShift_Plus.
☆ When Large Language Models Do Not Work: Online Incivility Prediction through Graph Neural Networks
Online incivility has emerged as a widespread and persistent problem in digital communities, imposing substantial social and psychological burdens on users. Although many platforms attempt to curb incivility through moderation and automated detection, the performance of existing approaches often remains limited in both accuracy and efficiency. To address this challenge, we propose a Graph Neural Network (GNN) framework for detecting three types of uncivil behavior (i.e., toxicity, aggression, and personal attacks) within the English Wikipedia community. Our model represents each user comment as a node, with textual similarity between comments defining the edges, allowing the network to jointly learn from both linguistic content and relational structures among comments. We also introduce a dynamically adjusted attention mechanism that adaptively balances nodal and topological features during information aggregation. Empirical evaluations demonstrate that our proposed architecture outperforms 12 state-of-the-art Large Language Models (LLMs) across multiple metrics while requiring significantly lower inference cost. These findings highlight the crucial role of structural context in detecting online incivility and address the limitations of text-only LLM paradigms in behavioral prediction. All datasets and comparative outputs will be publicly available in our repository to support further research and reproducibility.
comment: 10 pages
☆ Bridging Code Graphs and Large Language Models for Better Code Understanding
Large Language Models (LLMs) have demonstrated remarkable performance in code intelligence tasks such as code generation, summarization, and translation. However, their reliance on linearized token sequences limits their ability to understand the structural semantics of programs. While prior studies have explored graphaugmented prompting and structure-aware pretraining, they either suffer from prompt length constraints or require task-specific architectural changes that are incompatible with large-scale instructionfollowing LLMs. To address these limitations, this paper proposes CGBridge, a novel plug-and-play method that enhances LLMs with Code Graph information through an external, trainable Bridge module. CGBridge first pre-trains a code graph encoder via selfsupervised learning on a large-scale dataset of 270K code graphs to learn structural code semantics. It then trains an external module to bridge the modality gap among code, graph, and text by aligning their semantics through cross-modal attention mechanisms. Finally, the bridge module generates structure-informed prompts, which are injected into a frozen LLM, and is fine-tuned for downstream code intelligence tasks. Experiments show that CGBridge achieves notable improvements over both the original model and the graphaugmented prompting method. Specifically, it yields a 16.19% and 9.12% relative gain in LLM-as-a-Judge on code summarization, and a 9.84% and 38.87% relative gain in Execution Accuracy on code translation. Moreover, CGBridge achieves over 4x faster inference than LoRA-tuned models, demonstrating both effectiveness and efficiency in structure-aware code understanding.
☆ PCMind-2.1-Kaiyuan-2B Technical Report
The rapid advancement of Large Language Models (LLMs) has resulted in a significant knowledge gap between the open-source community and industry, primarily because the latter relies on closed-source, high-quality data and training recipes. To address this, we introduce PCMind-2.1-Kaiyuan-2B, a fully open-source 2-billion-parameter model focused on improving training efficiency and effectiveness under resource constraints. Our methodology includes three key innovations: a Quantile Data Benchmarking method for systematically comparing heterogeneous open-source datasets and providing insights on data mixing strategies; a Strategic Selective Repetition scheme within a multi-phase paradigm to effectively leverage sparse, high-quality data; and a Multi-Domain Curriculum Training policy that orders samples by quality. Supported by a highly optimized data preprocessing pipeline and architectural modifications for FP16 stability, Kaiyuan-2B achieves performance competitive with state-of-the-art fully open-source models, demonstrating practical and scalable solutions for resource-limited pretraining. We release all assets (including model weights, data, and code) under Apache 2.0 license at https://huggingface.co/thu-pacman/PCMind-2.1-Kaiyuan-2B.
☆ Metric-Fair Prompting: Treating Similar Samples Similarly
We introduce \emph{Metric-Fair Prompting}, a fairness-aware prompting framework that guides large language models (LLMs) to make decisions under metric-fairness constraints. In the application of multiple-choice medical question answering, each {(question, option)} pair is treated as a binary instance with label $+1$ (correct) or $-1$ (incorrect). To promote {individual fairness}~--~treating similar instances similarly~--~we compute question similarity using NLP embeddings and solve items in \emph{joint pairs of similar questions} rather than in isolation. The prompt enforces a global decision protocol: extract decisive clinical features, map each \((\text{question}, \text{option})\) to a score $f(x)$ that acts as confidence, and impose a Lipschitz-style constraint so that similar inputs receive similar scores and, hence, consistent outputs. Evaluated on the {MedQA (US)} benchmark, Metric-Fair Prompting is shown to improve performance over standard single-item prompting, demonstrating that fairness-guided, confidence-oriented reasoning can enhance LLM accuracy on high-stakes clinical multiple-choice questions.
☆ Complementary Learning Approach for Text Classification using Large Language Models
In this study, we propose a structured methodology that utilizes large language models (LLMs) in a cost-efficient and parsimonious manner, integrating the strengths of scholars and machines while offsetting their respective weaknesses. Our methodology, facilitated through a chain of thought and few-shot learning prompting from computer science, extends best practices for co-author teams in qualitative research to human-machine teams in quantitative research. This allows humans to utilize abductive reasoning and natural language to interrogate not just what the machine has done but also what the human has done. Our method highlights how scholars can manage inherent weaknesses OF LLMs using careful, low-cost techniques. We demonstrate how to use the methodology to interrogate human-machine rating discrepancies for a sample of 1,934 press releases announcing pharmaceutical alliances (1990-2017).
comment: 67 pages
☆ A Simple Method to Enhance Pre-trained Language Models with Speech Tokens for Classification
This paper presents a simple method that allows to easily enhance textual pre-trained large language models with speech information, when fine-tuned for a specific classification task. A classical issue with the fusion of many embeddings from audio with text is the large length of the audio sequence compared to the text one. Our method benefits from an existing speech tokenizer trained for Audio Speech Recognition that output long sequences of tokens from a large vocabulary, making it difficult to integrate it at low cost in a large language model. By applying a simple lasso-based feature selection on multimodal Bag-of-Words representation, we retain only the most important audio tokens for the task, and adapt the language model to them with a self-supervised language modeling objective, before fine-tuning it on the downstream task. We show this helps to improve the performances compared to an unimodal model, to a bigger SpeechLM or to integrating audio via a learned representation. We show the effectiveness of our method on two recent Argumentative Fallacy Detection and Classification tasks where the use of audio was believed counterproductive, reaching state-of-the-art results. We also provide an in-depth analysis of the method, showing that even a random audio token selection helps enhancing the unimodal model. Our code is available [online](https://github.com/salocinc/EACL26SpeechTokFallacy/).
☆ Toward More Reliable Artificial Intelligence: Reducing Hallucinations in Vision-Language Models
Vision-language models (VLMs) frequently generate hallucinated content plausible but incorrect claims about image content. We propose a training-free self-correction framework enabling VLMs to iteratively refine responses through uncertainty-guided visual re-attention. Our method combines multidimensional uncertainty quantification (token entropy, attention dispersion, semantic consistency, claim confidence) with attention-guided cropping of under-explored regions. Operating entirely with frozen, pretrained VLMs, our framework requires no gradient updates. We validate our approach on the POPE and MMHAL BENCH benchmarks using the Qwen2.5-VL-7B [23] architecture. Experimental results demonstrate that our method reduces hallucination rates by 9.8 percentage points compared to the baseline, while improving object existence accuracy by 4.7 points on adversarial splits. Furthermore, qualitative analysis confirms that uncertainty-guided re-attention successfully grounds corrections in visual evidence where standard decoding fails. We validate our approach on Qwen2.5-VL-7B [23], with plans to extend validation across diverse architectures in future versions. We release our code and methodology to facilitate future research in trustworthy multimodal systems.
comment: 24 pages, 3 figures, 2 tables. Training-free self-correction framework for vision-language models. Code and implementation details will be released at: https://github.com/kassoumsanogo1/self-correcting-vlm-re-Attention.git
☆ Performance of the SafeTerm AI-Based MedDRA Query System Against Standardised MedDRA Queries
In pre-market drug safety review, grouping related adverse event terms into SMQs or OCMQs is critical for signal detection. We assess the performance of SafeTerm Automated Medical Query (AMQ) on MedDRA SMQs. The AMQ is a novel quantitative artificial intelligence system that understands and processes medical terminology and automatically retrieves relevant MedDRA Preferred Terms (PTs) for a given input query, ranking them by a relevance score (0-1) using multi-criteria statistical methods. The system (SafeTerm) embeds medical query terms and MedDRA PTs in a multidimensional vector space, then applies cosine similarity, and extreme-value clustering to generate a ranked list of PTs. Validation was conducted against tier-1 SMQs (110 queries, v28.1). Precision, recall and F1 were computed at multiple similarity-thresholds, defined either manually or using an automated method. High recall (94%)) is achieved at moderate similarity thresholds, indicative of good retrieval sensitivity. Higher thresholds filter out more terms, resulting in improved precision (up to 89%). The optimal threshold (0.70)) yielded an overall recall of (48%) and precision of (45%) across all 110 queries. Restricting to narrow-term PTs achieved slightly better performance at an increased (+0.05) similarity threshold, confirming increased relatedness of narrow versus broad terms. The automatic threshold (0.66) selection prioritizes recall (0.58) to precision (0.29). SafeTerm AMQ achieves comparable, satisfactory performance on SMQs and sanitized OCMQs. It is therefore a viable supplementary method for automated MedDRA query generation, balancing recall and precision. We recommend using suitable MedDRA PT terminology in query formulation and applying the automated threshold method to optimise recall. Increasing similarity scores allows refined, narrow terms selection.
comment: 8 pages, 3 figures
☆ MoCoRP: Modeling Consistent Relations between Persona and Response for Persona-based Dialogue
As dialogue systems become increasingly important across various domains, a key challenge in persona-based dialogue is generating engaging and context-specific interactions while ensuring the model acts with a coherent personality. However, existing persona-based dialogue datasets lack explicit relations between persona sentences and responses, which makes it difficult for models to effectively capture persona information. To address these issues, we propose MoCoRP (Modeling Consistent Relations between Persona and Response), a framework that incorporates explicit relations into language models. MoCoRP leverages an NLI expert to explicitly extract the NLI relations between persona sentences and responses, enabling the model to effectively incorporate appropriate persona information from the context into its responses. We applied this framework to pre-trained models like BART and further extended it to modern large language models (LLMs) through alignment tuning. Experimental results on the public datasets ConvAI2 and MPChat demonstrate that MoCoRP outperforms existing baselines, achieving superior persona consistency and engaging, context-aware dialogue generation. Furthermore, our model not only excels in quantitative metrics but also shows significant improvements in qualitative aspects. These results highlight the effectiveness of explicitly modeling persona-response relations in persona-based dialogue. The source codes of MoCoRP are available at https://github.com/DMCB-GIST/MoCoRP.
comment: 18 pages
☆ Most over-representation of phonological features in basic vocabulary disappears when controlling for spatial and phylogenetic effects
The statistical over-representation of phonological features in the basic vocabulary of languages is often interpreted as reflecting potentially universal sound symbolic patterns. However, most of those results have not been tested explicitly for reproducibility and might be prone to biases in the study samples or models. Many studies on the topic do not adequately control for genealogical and areal dependencies between sampled languages, casting doubts on the robustness of the results. In this study, we test the robustness of a recent study on sound symbolism of basic vocabulary concepts which analyzed245 languages.The new sample includes data on 2864 languages from Lexibank. We modify the original model by adding statistical controls for spatial and phylogenetic dependencies between languages. The new results show that most of the previously observed patterns are not robust, and in fact many patterns disappear completely when adding the genealogical and areal controls. A small number of patterns, however, emerges as highly stable even with the new sample. Through the new analysis, we are able to assess the distribution of sound symbolism on a larger scale than previously. The study further highlights the need for testing all universal claims on language for robustness on various levels.
comment: Accepted with minor revisions at *Linguistic Typology*, expected to be fully published in 2026
☆ Minimum Bayes Risk Decoding for Error Span Detection in Reference-Free Automatic Machine Translation Evaluation
Error Span Detection (ESD) is a subtask of automatic machine translation evaluation that localizes error spans in translations and labels their severity. State-of-the-art generative ESD methods typically decode using Maximum a Posteriori (MAP), assuming that model-estimated probabilities are perfectly correlated with similarity to human annotation. However, we observed that annotations dissimilar to the human annotation could achieve a higher model likelihood than the human annotation. We address this issue by applying Minimum Bayes Risk (MBR) decoding to generative ESD models. Specifically, we employ sentence- and span-level similarity metrics as utility functions to select candidate hypotheses based on their approximate similarity to the human annotation. Extensive experimental results show that our MBR decoding outperforms the MAP baseline at the system, sentence, and span-levels. Furthermore, to mitigate the computational cost of MBR decoding, we demonstrate that applying MBR distillation enables a standard greedy model to match MBR decoding performance, effectively eliminating the inference-time latency bottleneck.
☆ SwissGov-RSD: A Human-annotated, Cross-lingual Benchmark for Token-level Recognition of Semantic Differences Between Related Documents
Recognizing semantic differences across documents, especially in different languages, is crucial for text generation evaluation and multilingual content alignment. However, as a standalone task it has received little attention. We address this by introducing SwissGov-RSD, the first naturalistic, document-level, cross-lingual dataset for semantic difference recognition. It encompasses a total of 224 multi-parallel documents in English-German, English-French, and English-Italian with token-level difference annotations by human annotators. We evaluate a variety of open-source and closed source large language models as well as encoder models across different fine-tuning settings on this new benchmark. Our results show that current automatic approaches perform poorly compared to their performance on monolingual, sentence-level, and synthetic benchmarks, revealing a considerable gap for both LLMs and encoder models. We make our code and datasets publicly available.
comment: 30 pages
☆ Beyond Real: Imaginary Extension of Rotary Position Embeddings for Long-Context LLMs
Rotary Position Embeddings (RoPE) have become a standard for encoding sequence order in Large Language Models (LLMs) by applying rotations to query and key vectors in the complex plane. Standard implementations, however, utilize only the real component of the complex-valued dot product for attention score calculation. This simplification discards the imaginary component, which contains valuable phase information, leading to a potential loss of relational details crucial for modeling long-context dependencies. In this paper, we propose an extension that re-incorporates this discarded imaginary component. Our method leverages the full complex-valued representation to create a dual-component attention score. We theoretically and empirically demonstrate that this approach enhances the modeling of long-context dependencies by preserving more positional information. Furthermore, evaluations on a suite of long-context language modeling benchmarks show that our method consistently improves performance over the standard RoPE, with the benefits becoming more significant as context length increases. The code is available at https://github.com/OpenMOSS/rope_pp.
comment: 20 pages, 6 figures, under review
☆ LIME: Making LLM Data More Efficient with Linguistic Metadata Embeddings
Pre-training decoder-only language models relies on vast amounts of high-quality data, yet the availability of such data is increasingly reaching its limits. While metadata is commonly used to create and curate these datasets, its potential as a direct training signal remains under-explored. We challenge this status quo and propose LIME (Linguistic Metadata Embeddings), a method that enriches token embeddings with metadata capturing syntax, semantics, and contextual properties. LIME substantially improves pre-training efficiency. Specifically, it adapts up to 56% faster to the training data distribution, while introducing only 0.01% additional parameters at negligible compute overhead. Beyond efficiency, LIME improves tokenization, leading to remarkably stronger language modeling capabilities and generative task performance. These benefits persist across model scales (500M to 2B). In addition, we develop a variant with shifted metadata, LIME+1, that can guide token generation. Given prior metadata for the next token, LIME+1 improves reasoning performance by up to 38% and arithmetic accuracy by up to 35%.
☆ SPAD: Seven-Source Token Probability Attribution with Syntactic Aggregation for Detecting Hallucinations in RAG
Detecting hallucinations in Retrieval-Augmented Generation (RAG) remains a challenge. Prior approaches attribute hallucinations to a binary conflict between internal knowledge (stored in FFNs) and retrieved context. However, this perspective is incomplete, failing to account for the impact of other components in the generative process, such as the user query, previously generated tokens, the current token itself, and the final LayerNorm adjustment. To address this, we introduce SPAD. First, we mathematically attribute each token's probability into seven distinct sources: Query, RAG, Past, Current Token, FFN, Final LayerNorm, and Initial Embedding. This attribution quantifies how each source contributes to the generation of the current token. Then, we aggregate these scores by POS tags to quantify how different components drive specific linguistic categories. By identifying anomalies, such as Nouns relying on Final LayerNorm, SPAD effectively detects hallucinations. Extensive experiments demonstrate that SPAD achieves state-of-the-art performance
☆ Enhancing Agentic RL with Progressive Reward Shaping and Value-based Sampling Policy Optimization
Large Language Models (LLMs) empowered with Tool-Integrated Reasoning (TIR) can iteratively plan, call external tools, and integrate returned information to solve complex, long-horizon reasoning tasks. Agentic Reinforcement Learning (Agentic RL) optimizes such models over full tool-interaction trajectories, but two key challenges hinder effectiveness: (1) Sparse, non-instructive rewards, such as binary 0-1 verifiable signals, provide limited guidance for intermediate steps and slow convergence; (2) Gradient degradation in Group Relative Policy Optimization (GRPO), where identical rewards within a rollout group yield zero advantage, reducing sample efficiency and destabilizing training. To address these challenges, we propose two complementary techniques: Progressive Reward Shaping (PRS) and Value-based Sampling Policy Optimization (VSPO). PRS is a curriculum-inspired reward design that introduces dense, stage-wise feedback - encouraging models to first master parseable and properly formatted tool calls, then optimize for factual correctness and answer quality. We instantiate PRS for short-form QA (with a length-aware BLEU to fairly score concise answers) and long-form QA (with LLM-as-a-Judge scoring to prevent reward hacking). VSPO is an enhanced GRPO variant that replaces low-value samples with prompts selected by a task-value metric balancing difficulty and uncertainty, and applies value-smoothing clipping to stabilize gradient updates. Experiments on multiple short-form and long-form QA benchmarks show that PRS consistently outperforms traditional binary rewards, and VSPO achieves superior stability, faster convergence, and higher final performance compared to PPO, GRPO, CISPO, and SFT-only baselines. Together, PRS and VSPO yield LLM-based TIR agents that generalize better across domains.
☆ Living the Novel: A System for Generating Self-Training Timeline-Aware Conversational Agents from Novels
We present the Living Novel, an end-to-end system that transforms any literary work into an immersive, multi-character conversational experience. This system is designed to solve two fundamental challenges for LLM-driven characters. Firstly, generic LLMs suffer from persona drift, often failing to stay in character. Secondly, agents often exhibit abilities that extend beyond the constraints of the story's world and logic, leading to both narrative incoherence (spoiler leakage) and robustness failures (frame-breaking). To address these challenges, we introduce a novel two-stage training pipeline. Our Deep Persona Alignment (DPA) stage uses data-free reinforcement finetuning to instill deep character fidelity. Our Coherence and Robustness Enhancing (CRE) stage then employs a story-time-aware knowledge graph and a second retrieval-grounded training pass to architecturally enforce these narrative constraints. We validate our system through a multi-phase evaluation using Jules Verne's Twenty Thousand Leagues Under the Sea. A lab study with a detailed ablation of system components is followed by a 5-day in-the-wild diary study. Our DPA pipeline helps our specialized model outperform GPT-4o on persona-specific metrics, and our CRE stage achieves near-perfect performance in coherence and robustness measures. Our study surfaces practical design guidelines for AI-driven narrative systems: we find that character-first self-training is foundational for believability, while explicit story-time constraints are crucial for sustaining coherent, interruption-resilient mobile-web experiences.
☆ Native Parallel Reasoner: Reasoning in Parallelism via Self-Distilled Reinforcement Learning
We introduce Native Parallel Reasoner (NPR), a teacher-free framework that enables Large Language Models (LLMs) to self-evolve genuine parallel reasoning capabilities. NPR transforms the model from sequential emulation to native parallel cognition through three key innovations: 1) a self-distilled progressive training paradigm that transitions from ``cold-start'' format discovery to strict topological constraints without external supervision; 2) a novel Parallel-Aware Policy Optimization (PAPO) algorithm that optimizes branching policies directly within the execution graph, allowing the model to learn adaptive decomposition via trial and error; and 3) a robust NPR Engine that refactors memory management and flow control of SGLang to enable stable, large-scale parallel RL training. Across eight reasoning benchmarks, NPR trained on Qwen3-4B achieves performance gains of up to 24.5% and inference speedups up to 4.6x. Unlike prior baselines that often fall back to autoregressive decoding, NPR demonstrates 100% genuine parallel execution, establishing a new standard for self-evolving, efficient, and scalable agentic reasoning.
☆ Persian-Phi: Efficient Cross-Lingual Adaptation of Compact LLMs via Curriculum Learning
The democratization of AI is currently hindered by the immense computational costs required to train Large Language Models (LLMs) for low-resource languages. This paper presents Persian-Phi, a 3.8B parameter model that challenges the assumption that robust multilingual capabilities require massive model sizes or multilingual baselines. We demonstrate how Microsoft Phi-3 Mini -- originally a monolingual English model -- can be effectively adapted to Persian through a novel, resource-efficient curriculum learning pipeline. Our approach employs a unique "warm-up" stage using bilingual narratives (Tiny Stories) to align embeddings prior to heavy training, followed by continual pretraining and instruction tuning via Parameter-Efficient Fine-Tuning (PEFT). Despite its compact size, Persian-Phi achieves competitive results on Open Persian LLM Leaderboard in HuggingFace. Our findings provide a validated, scalable framework for extending the reach of state-of-the-art LLMs to underrepresented languages with minimal hardware resources. The Persian-Phi model is publicly available at https://huggingface.co/amirakhlaghiqqq/PersianPhi.
☆ Training Language Models to Use Prolog as a Tool
Ensuring reliable tool use is critical for safe agentic AI systems. Language models frequently produce unreliable reasoning with plausible but incorrect solutions that are difficult to verify. To address this, we investigate fine-tuning models to use Prolog as an external tool for verifiable computation. Using Group Relative Policy Optimization (GRPO), we fine-tune Qwen2.5-3B-Instruct on a cleaned GSM8K-Prolog-Prover dataset while varying (i) prompt structure, (ii) reward composition (execution, syntax, semantics, structure), and (iii) inference protocol: single-shot, best-of-N, and two agentic modes where Prolog is invoked internally or independently. Our reinforcement learning approach outperforms supervised fine-tuning, with our 3B model achieving zero-shot MMLU performance comparable to 7B few-shot results. Our findings reveal that: 1) joint tuning of prompt, reward, and inference shapes program syntax and logic; 2) best-of-N with external Prolog verification maximizes accuracy on GSM8K; 3) agentic inference with internal repair yields superior zero-shot generalization on MMLU-Stem and MMLU-Pro. These results demonstrate that grounding model reasoning in formal verification systems substantially improves reliability and auditability for safety-critical applications. The source code for reproducing our experiments is available under https://github.com/niklasmellgren/grpo-prolog-inference
comment: 10 pages
☆ LUNE: Efficient LLM Unlearning via LoRA Fine-Tuning with Negative Examples
Large language models (LLMs) possess vast knowledge acquired from extensive training corpora, but they often cannot remove specific pieces of information when needed, which makes it hard to handle privacy, bias mitigation, and knowledge correction. Traditional model unlearning approaches require computationally expensive fine-tuning or direct weight editing, making them impractical for real-world deployment. In this work, we introduce LoRA-based Unlearning with Negative Examples (LUNE), a lightweight framework that performs negative-only unlearning by updating only low-rank adapters while freezing the backbone, thereby localizing edits and avoiding disruptive global changes. Leveraging Low-Rank Adaptation (LoRA), LUNE targets intermediate representations to suppress (or replace) requested knowledge with an order-of-magnitude lower compute and memory than full fine-tuning or direct weight editing. Extensive experiments on multiple factual unlearning tasks show that LUNE: (I) achieves effectiveness comparable to full fine-tuning and memory-editing methods, and (II) reduces computational cost by about an order of magnitude.
☆ Recover-to-Forget: Gradient Reconstruction from LoRA for Efficient LLM Unlearning
Unlearning in large foundation models (e.g., LLMs) is essential for enabling dynamic knowledge updates, enforcing data deletion rights, and correcting model behavior. However, existing unlearning methods often require full-model fine-tuning or access to the original training data, which limits their scalability and practicality. In this work, we introduce Recover-to-Forget (R2F), a novel framework for efficient unlearning in LLMs based on reconstructing full-model gradient directions from low-rank LoRA adapter updates. Rather than performing backpropagation through the full model, we compute gradients with respect to LoRA parameters using multiple paraphrased prompts and train a gradient decoder to approximate the corresponding full-model gradients. To ensure applicability to larger or black-box models, the decoder is trained on a proxy model and transferred to target models. We provide a theoretical analysis of cross-model generalization and demonstrate that our method achieves effective unlearning while preserving general model performance. Experimental results demonstrate that R2F offers a scalable and lightweight alternative for unlearning in pretrained LLMs without requiring full retraining or access to internal parameters.
☆ Multilingual corpora for the study of new concepts in the social sciences and humanities:
This article presents a hybrid methodology for building a multilingual corpus designed to support the study of emerging concepts in the humanities and social sciences (HSS), illustrated here through the case of ``non-technological innovation''. The corpus relies on two complementary sources: (1) textual content automatically extracted from company websites, cleaned for French and English, and (2) annual reports collected and automatically filtered according to documentary criteria (year, format, duplication). The processing pipeline includes automatic language detection, filtering of non-relevant content, extraction of relevant segments, and enrichment with structural metadata. From this initial corpus, a derived dataset in English is created for machine learning purposes. For each occurrence of a term from the expert lexicon, a contextual block of five sentences is extracted (two preceding and two following the sentence containing the term). Each occurrence is annotated with the thematic category associated with the term, enabling the construction of data suitable for supervised classification tasks. This approach results in a reproducible and extensible resource, suitable both for analyzing lexical variability around emerging concepts and for generating datasets dedicated to natural language processing applications.
comment: in French language
☆ Investigating Training and Generalization in Faithful Self-Explanations of Large Language Models ACL
Large language models have the potential to generate explanations for their own predictions in a variety of styles based on user instructions. Recent research has examined whether these self-explanations faithfully reflect the models' actual behavior and has found that they often lack faithfulness. However, the question of how to improve faithfulness remains underexplored. Moreover, because different explanation styles have superficially distinct characteristics, it is unclear whether improvements observed in one style also arise when using other styles. This study analyzes the effects of training for faithful self-explanations and the extent to which these effects generalize, using three classification tasks and three explanation styles. We construct one-word constrained explanations that are likely to be faithful using a feature attribution method, and use these pseudo-faithful self-explanations for continual learning on instruction-tuned models. Our experiments demonstrate that training can improve self-explanation faithfulness across all classification tasks and explanation styles, and that these improvements also show signs of generalization to the multi-word settings and to unseen tasks. Furthermore, we find consistent cross-style generalization among three styles, suggesting that training may contribute to a broader improvement in faithful self-explanation ability.
comment: To appear in the Proceedings of the Asia-Pacific Chapter of the Association for Computational Linguistics: Student Research Workshop (AACL-SRW 2025)
☆ Efficient ASR for Low-Resource Languages: Leveraging Cross-Lingual Unlabeled Data ACL
Automatic speech recognition for low-resource languages remains fundamentally constrained by the scarcity of labeled data and computational resources required by state-of-the-art models. We present a systematic investigation into cross-lingual continuous pretraining for low-resource languages, using Perso-Arabic languages (Persian, Arabic, and Urdu) as our primary case study. Our approach demonstrates that strategic utilization of unlabeled speech data can effectively bridge the resource gap without sacrificing recognition accuracy. We construct a 3,000-hour multilingual corpus through a scalable unlabeled data collection pipeline and employ targeted continual pretraining combined with morphologically-aware tokenization to develop a 300M parameter model that achieves performance comparable to systems 5 times larger. Our model outperforms Whisper Large v3 (1.5B parameters) on Persian and achieves competitive results on Arabic and Urdu despite using significantly fewer parameters and substantially less labeled data. These findings challenge the prevailing assumption that ASR quality scales primarily with model size, revealing instead that data relevance and strategic pretraining are more critical factors for low-resource scenarios. This work provides a practical pathway toward inclusive speech technology, enabling effective ASR for underrepresented languages without dependence on massive computational infrastructure or proprietary datasets.
comment: Accepted in AACL IJCNLP 2025
☆ TeluguST-46: A Benchmark Corpus and Comprehensive Evaluation for Telugu-English Speech Translation ACL
Despite Telugu being spoken by over 80 million people, speech translation research for this morphologically rich language remains severely underexplored. We address this gap by developing a high-quality Telugu--English speech translation benchmark from 46 hours of manually verified CSTD corpus data (30h/8h/8h train/dev/test split). Our systematic comparison of cascaded versus end-to-end architectures shows that while IndicWhisper + IndicMT achieves the highest performance due to extensive Telugu-specific training data, finetuned SeamlessM4T models demonstrate remarkable competitiveness despite using significantly less Telugu-specific training data. This finding suggests that with careful hyperparameter tuning and sufficient parallel data (potentially less than 100 hours), end-to-end systems can achieve performance comparable to cascaded approaches in low-resource settings. Our metric reliability study evaluating BLEU, METEOR, ChrF++, ROUGE-L, TER, and BERTScore against human judgments reveals that traditional metrics provide better quality discrimination than BERTScore for Telugu--English translation. The work delivers three key contributions: a reproducible Telugu--English benchmark, empirical evidence of competitive end-to-end performance potential in low-resource scenarios, and practical guidance for automatic evaluation in morphologically complex language pairs.
comment: Submitted to AACL IJCNLP 2025
☆ Ensembling LLM-Induced Decision Trees for Explainable and Robust Error Detection
Error detection (ED), which aims to identify incorrect or inconsistent cell values in tabular data, is important for ensuring data quality. Recent state-of-the-art ED methods leverage the pre-trained knowledge and semantic capability embedded in large language models (LLMs) to directly label whether a cell is erroneous. However, this LLM-as-a-labeler pipeline (1) relies on the black box, implicit decision process, thus failing to provide explainability for the detection results, and (2) is highly sensitive to prompts, yielding inconsistent outputs due to inherent model stochasticity, therefore lacking robustness. To address these limitations, we propose an LLM-as-an-inducer framework that adopts LLM to induce the decision tree for ED (termed TreeED) and further ensembles multiple such trees for consensus detection (termed ForestED), thereby improving explainability and robustness. Specifically, based on prompts derived from data context, decision tree specifications and output requirements, TreeED queries the LLM to induce the decision tree skeleton, whose root-to-leaf decision paths specify the stepwise procedure for evaluating a given sample. Each tree contains three types of nodes: (1) rule nodes that perform simple validation checks (e.g., format or range), (2) Graph Neural Network (GNN) nodes that capture complex patterns (e.g., functional dependencies), and (3) leaf nodes that output the final decision types (error or clean). Furthermore, ForestED employs uncertainty-based sampling to obtain multiple row subsets, constructing a decision tree for each subset using TreeED. It then leverages an Expectation-Maximization-based algorithm that jointly estimates tree reliability and optimizes the consensus ED prediction. Extensive xperiments demonstrate that our methods are accurate, explainable and robust, achieving an average F1-score improvement of 16.1% over the best baseline.
comment: 14 pages, 8 figures
☆ Pay Less Attention to Function Words for Free Robustness of Vision-Language Models
To address the trade-off between robustness and performance for robust VLM, we observe that function words could incur vulnerability of VLMs against cross-modal adversarial attacks, and propose Function-word De-Attention (FDA) accordingly to mitigate the impact of function words. Similar to differential amplifiers, our FDA calculates the original and the function-word cross-attention within attention heads, and differentially subtracts the latter from the former for more aligned and robust VLMs. Comprehensive experiments include 2 SOTA baselines under 6 different attacks on 2 downstream tasks, 3 datasets, and 3 models. Overall, our FDA yields an average 18/13/53% ASR drop with only 0.2/0.3/0.6% performance drops on the 3 tested models on retrieval, and a 90% ASR drop with a 0.3% performance gain on visual grounding. We demonstrate the scalability, generalization, and zero-shot performance of FDA experimentally, as well as in-depth ablation studies and analysis. Code will be made publicly at https://github.com/michaeltian108/FDA.
☆ NeSTR: A Neuro-Symbolic Abductive Framework for Temporal Reasoning in Large Language Models AAAI 2026
Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of natural language processing tasks. However, temporal reasoning, particularly under complex temporal constraints, remains a major challenge. To this end, existing approaches have explored symbolic methods, which encode temporal structure explicitly, and reflective mechanisms, which revise reasoning errors through multi-step inference. Nonetheless, symbolic approaches often underutilize the reasoning capabilities of LLMs, while reflective methods typically lack structured temporal representations, which can result in inconsistent or hallucinated reasoning. As a result, even when the correct temporal context is available, LLMs may still misinterpret or misapply time-related information, leading to incomplete or inaccurate answers. To address these limitations, in this work, we propose Neuro-Symbolic Temporal Reasoning (NeSTR), a novel framework that integrates structured symbolic representations with hybrid reflective reasoning to enhance the temporal sensitivity of LLM inference. NeSTR preserves explicit temporal relations through symbolic encoding, enforces logical consistency via verification, and corrects flawed inferences using abductive reflection. Extensive experiments on diverse temporal question answering benchmarks demonstrate that NeSTR achieves superior zero-shot performance and consistently improves temporal reasoning without any fine-tuning, showcasing the advantage of neuro-symbolic integration in enhancing temporal understanding in large language models.
comment: Accepted by AAAI 2026
☆ Generating Storytelling Images with Rich Chains-of-Reasoning
An image can convey a compelling story by presenting rich, logically connected visual clues. These connections form Chains-of-Reasoning (CoRs) within the image, enabling viewers to infer events, causal relationships, and other information, thereby understanding the underlying story. In this paper, we focus on these semantically rich images and define them as Storytelling Images. Such images have diverse applications beyond illustration creation and cognitive screening, leveraging their ability to convey multi-layered information visually and inspire active interpretation. However, due to their complex semantic nature, Storytelling Images are inherently challenging to create, and thus remain relatively scarce. To address this challenge, we introduce the Storytelling Image Generation task, which explores how generative AI models can be leveraged to create such images. Specifically, we propose a two-stage pipeline, StorytellingPainter, which combines the creative reasoning abilities of Large Language Models (LLMs) with the visual synthesis capabilities of Text-to-Image (T2I) models to generate Storytelling Images. Alongside this pipeline, we develop a dedicated evaluation framework comprising three main evaluators: a Semantic Complexity Evaluator, a KNN-based Diversity Evaluator and a Story-Image Alignment Evaluator. Given the critical role of story generation in the Storytelling Image Generation task and the performance disparity between open-source and proprietary LLMs, we further explore tailored training strategies to reduce this gap, resulting in a series of lightweight yet effective models named Mini-Storytellers. Experimental results demonstrate the feasibility and effectiveness of our approaches. The code is available at https://github.com/xiujiesong/StorytellingImageGeneration.
☆ MASim: Multilingual Agent-Based Simulation for Social Science
Multi-agent role-playing has recently shown promise for studying social behavior with language agents, but existing simulations are mostly monolingual and fail to model cross-lingual interaction, an essential property of real societies. We introduce MASim, the first multilingual agent-based simulation framework that supports multi-turn interaction among generative agents with diverse sociolinguistic profiles. MASim offers two key analyses: (i) global public opinion modeling, by simulating how attitudes toward open-domain hypotheses evolve across languages and cultures, and (ii) media influence and information diffusion, via autonomous news agents that dynamically generate content and shape user behavior. To instantiate simulations, we construct the MAPS benchmark, which combines survey questions and demographic personas drawn from global population distributions. Experiments on calibration, sensitivity, consistency, and cultural case studies show that MASim reproduces sociocultural phenomena and highlights the importance of multilingual simulation for scalable, controlled computational social science.
☆ PICKT: Practical Interlinked Concept Knowledge Tracing for Personalized Learning using Knowledge Map Concept Relations
With the recent surge in personalized learning, Intelligent Tutoring Systems (ITS) that can accurately track students' individual knowledge states and provide tailored learning paths based on this information are in demand as an essential task. This paper focuses on the core technology of Knowledge Tracing (KT) models that analyze students' sequences of interactions to predict their knowledge acquisition levels. However, existing KT models suffer from limitations such as restricted input data formats, cold start problems arising with new student enrollment or new question addition, and insufficient stability in real-world service environments. To overcome these limitations, a Practical Interlinked Concept Knowledge Tracing (PICKT) model that can effectively process multiple types of input data is proposed. Specifically, a knowledge map structures the relationships among concepts considering the question and concept text information, thereby enabling effective knowledge tracing even in cold start situations. Experiments reflecting real operational environments demonstrated the model's excellent performance and practicality. The main contributions of this research are as follows. First, a model architecture that effectively utilizes diverse data formats is presented. Second, significant performance improvements are achieved over existing models for two core cold start challenges: new student enrollment and new question addition. Third, the model's stability and practicality are validated through delicate experimental design, enhancing its applicability in real-world product environments. This provides a crucial theoretical and technical foundation for the practical implementation of next-generation ITS.
comment: 15 pages, 5 figures, 17 tables. Preparing submission for EDM 2026 conference
☆ Think-Reflect-Revise: A Policy-Guided Reflective Framework for Safety Alignment in Large Vision Language Models
As multimodal reasoning improves the overall capabilities of Large Vision Language Models (LVLMs), recent studies have begun to explore safety-oriented reasoning, aiming to enhance safety awareness by analyzing potential safety risks during the reasoning process before generating the final response. Although such approaches improve safety awareness and interpretability, this single-pass think-then-answer paradigm remains vulnerable to contextual or visual jailbreak attacks. This reveals a critical flaw: single-pass reasoning may overlook explicit harmful content in its own output. Our key insight is to exploit this wasted signal through reflection, which can effectively leverage the malicious content revealed in the first-pass reasoning to enable genuine self-correction and prevent unsafe generations. Motivated by this, we propose Think-Reflect-Revise (TRR), a three-stage training framework designed to enhance the safety alignment of LVLMs through policy-guided self-reflection. We first build a Reflective Safety Reasoning (ReSafe) dataset with 5,000 examples that follow a think-reflect-revise process. We then fine-tune the target model using the ReSafe dataset to initialize reflective behavior, and finally reinforce policy-guided reflection through reinforcement learning. Experimental results show that TRR substantially improves the safety performance of LVLMs across both safety-awareness benchmarks and jailbreak attack evaluations, increasing the overall safe response rate from 42.8% to 87.7% on Qwen2.5-VL-7B, while preserving stable performance on general benchmarks such as MMMU and MMStar. The project page is available at https://think-reflect-revise.github.io/.
☆ GUMBridge: a Corpus for Varieties of Bridging Anaphora
Bridging is an anaphoric phenomenon where the referent of an entity in a discourse is dependent on a previous, non-identical entity for interpretation, such as in "There is 'a house'. 'The door' is red," where the door is specifically understood to be the door of the aforementioned house. While there are several existing resources in English for bridging anaphora, most are small, provide limited coverage of the phenomenon, and/or provide limited genre coverage. In this paper, we introduce GUMBridge, a new resource for bridging, which includes 16 diverse genres of English, providing both broad coverage for the phenomenon and granular annotations for the subtype categorization of bridging varieties. We also present an evaluation of annotation quality and report on baseline performance using open and closed source contemporary LLMs on three tasks underlying our data, showing that bridging resolution and subtype classification remain difficult NLP tasks in the age of LLMs.
☆ DART: Leveraging Multi-Agent Disagreement for Tool Recruitment in Multimodal Reasoning
Specialized visual tools can augment large language models or vision language models with expert knowledge (e.g., grounding, spatial reasoning, medical knowledge, etc.), but knowing which tools to call (and when to call them) can be challenging. We introduce DART, a multi-agent framework that uses disagreements between multiple debating visual agents to identify useful visual tools (e.g., object detection, OCR, spatial reasoning, etc.) that can resolve inter-agent disagreement. These tools allow for fruitful multi-agent discussion by introducing new information, and by providing tool-aligned agreement scores that highlight agents in agreement with expert tools, thereby facilitating discussion. We utilize an aggregator agent to select the best answer by providing the agent outputs and tool information. We test DART on four diverse benchmarks and show that our approach improves over multi-agent debate as well as over single agent tool-calling frameworks, beating the next-strongest baseline (multi-agent debate with a judge model) by 3.4% and 2.4% on A-OKVQA and MMMU respectively. We also find that DART adapts well to new tools in applied domains, with a 1.3% improvement on the M3D medical dataset over other strong tool-calling, single agent, and multi-agent baselines. Additionally, we measure text overlap across rounds to highlight the rich discussion in DART compared to existing multi-agent methods. Finally, we study the tool call distribution, finding that diverse tools are reliably used to help resolve disagreement.
comment: Code: https://github.com/nsivaku/dart
☆ A Neural Affinity Framework for Abstract Reasoning: Diagnosing the Compositional Gap in Transformer Architectures via Procedural Task Taxonomy
Responding to Hodel et al.'s (2024) call for a formal definition of task relatedness in re-arc, we present the first 9-category taxonomy of all 400 tasks, validated at 97.5% accuracy via rule-based code analysis. We prove the taxonomy's visual coherence by training a CNN on raw grid pixels (95.24% accuracy on S3, 36.25% overall, 3.3x chance), then apply the taxonomy diagnostically to the original ARC-AGI-2 test set. Our curriculum analysis reveals 35.3% of tasks exhibit low neural affinity for Transformers--a distributional bias mirroring ARC-AGI-2. To probe this misalignment, we fine-tuned a 1.7M-parameter Transformer across 302 tasks, revealing a profound Compositional Gap: 210 of 302 tasks (69.5%) achieve >80% cell accuracy (local patterns) but <10% grid accuracy (global synthesis). This provides direct evidence for a Neural Affinity Ceiling Effect, where performance is bounded by architectural suitability, not curriculum. Applying our framework to Li et al.'s independent ViTARC study (400 specialists, 1M examples each) confirms its predictive power: Very Low affinity tasks achieve 51.9% versus 77.7% for High affinity (p<0.001), with a task at 0% despite massive data. The taxonomy enables precise diagnosis: low-affinity tasks (A2) hit hard ceilings, while high-affinity tasks (C1) reach 99.8%. These findings indicate that progress requires hybrid architectures with affinity-aligned modules. We release our validated taxonomy,
comment: 62 pages, 10 figures
☆ Leveraging KV Similarity for Online Structured Pruning in LLMs
Pruning has emerged as a promising direction for accelerating large language model (LLM) inference, yet existing approaches often suffer from instability because they rely on offline calibration data that may not generalize across inputs. In this work, we introduce Token Filtering, a lightweight online structured pruning technique that makes pruning decisions directly during inference without any calibration data. The key idea is to measure token redundancy via joint key-value similarity and skip redundant attention computations, thereby reducing inference cost while preserving critical information. To further enhance stability, we design a variance-aware fusion strategy that adaptively weights key and value similarity across heads, ensuring that informative tokens are retained even under high pruning ratios. This design introduces no additional memory overhead and provides a more reliable criterion for token importance. Extensive experiments on LLaMA-2 (7B/13B), LLaMA-3 (8B), and Mistral (7B) demonstrate that Token Filtering consistently outperforms prior structured pruning methods, preserving accuracy on commonsense reasoning benchmarks and maintaining strong performance on challenging tasks such as MMLU, even with 50% pruning.
☆ Do Large Language Models Truly Understand Cross-cultural Differences?
In recent years, large language models (LLMs) have demonstrated strong performance on multilingual tasks. Given its wide range of applications, cross-cultural understanding capability is a crucial competency. However, existing benchmarks for evaluating whether LLMs genuinely possess this capability suffer from three key limitations: a lack of contextual scenarios, insufficient cross-cultural concept mapping, and limited deep cultural reasoning capabilities. To address these gaps, we propose SAGE, a scenario-based benchmark built via cross-cultural core concept alignment and generative task design, to evaluate LLMs' cross-cultural understanding and reasoning. Grounded in cultural theory, we categorize cross-cultural capabilities into nine dimensions. Using this framework, we curated 210 core concepts and constructed 4530 test items across 15 specific real-world scenarios, organized under four broader categories of cross-cultural situations, following established item design principles. The SAGE dataset supports continuous expansion, and experiments confirm its transferability to other languages. It reveals model weaknesses across both dimensions and scenarios, exposing systematic limitations in cross-cultural reasoning. While progress has been made, LLMs are still some distance away from reaching a truly nuanced cross-cultural understanding. In compliance with the anonymity policy, we include data and code in the supplement materials. In future versions, we will make them publicly available online.
☆ SETUP: Sentence-level English-To-Uniform Meaning Representation Parser
Uniform Meaning Representation (UMR) is a novel graph-based semantic representation which captures the core meaning of a text, with flexibility incorporated into the annotation schema such that the breadth of the world's languages can be annotated (including low-resource languages). While UMR shows promise in enabling language documentation, improving low-resource language technologies, and adding interpretability, the downstream applications of UMR can only be fully explored when text-to-UMR parsers enable the automatic large-scale production of accurate UMR graphs at test time. Prior work on text-to-UMR parsing is limited to date. In this paper, we introduce two methods for English text-to-UMR parsing, one of which fine-tunes existing parsers for Abstract Meaning Representation and the other, which leverages a converter from Universal Dependencies, using prior work as a baseline. Our best-performing model, which we call SETUP, achieves an AnCast score of 84 and a SMATCH++ score of 91, indicating substantial gains towards automatic UMR parsing.
☆ Replicating TEMPEST at Scale: Multi-Turn Adversarial Attacks Against Trillion-Parameter Frontier Models
Despite substantial investment in safety alignment, the vulnerability of large language models to sophisticated multi-turn adversarial attacks remains poorly characterized, and whether model scale or inference mode affects robustness is unknown. This study employed the TEMPEST multi-turn attack framework to evaluate ten frontier models from eight vendors across 1,000 harmful behaviors, generating over 97,000 API queries across adversarial conversations with automated evaluation by independent safety classifiers. Results demonstrated a spectrum of vulnerability: six models achieved 96% to 100% attack success rate (ASR), while four showed meaningful resistance, with ASR ranging from 42% to 78%; enabling extended reasoning on identical architecture reduced ASR from 97% to 42%. These findings indicate that safety alignment quality varies substantially across vendors, that model scale does not predict adversarial robustness, and that thinking mode provides a deployable safety enhancement. Collectively, this work establishes that current alignment techniques remain fundamentally vulnerable to adaptive multi-turn attacks regardless of model scale, while identifying deliberative inference as a promising defense direction.
comment: 30 pages, 11 figures, 5 tables. Code and data: https://github.com/ricyoung/tempest-replication
☆ Balanced Accuracy: The Right Metric for Evaluating LLM Judges - Explained through Youden's J statistic
Rigorous evaluation of large language models (LLMs) relies on comparing models by the prevalence of desirable or undesirable behaviors, such as task pass rates or policy violations. These prevalence estimates are produced by a classifier, either an LLM-as-a-judge or human annotators, making the choice of classifier central to trustworthy evaluation. Common metrics used for this choice, such as Accuracy, Precision, and F1, are sensitive to class imbalance and to arbitrary choices of positive class, and can favor judges that distort prevalence estimates. We show that Youden's $J$ statistic is theoretically aligned with choosing the best judge to compare models, and that Balanced Accuracy is an equivalent linear transformation of $J$. Through both analytical arguments and empirical examples and simulations, we demonstrate how selecting judges using Balanced Accuracy leads to better, more robust classifier selection.
comment: 9 pages, 5 figures
☆ Segment, Embed, and Align: A Universal Recipe for Aligning Subtitles to Signing
The goal of this work is to develop a universal approach for aligning subtitles (i.e., spoken language text with corresponding timestamps) to continuous sign language videos. Prior approaches typically rely on end-to-end training tied to a specific language or dataset, which limits their generality. In contrast, our method Segment, Embed, and Align (SEA) provides a single framework that works across multiple languages and domains. SEA leverages two pretrained models: the first to segment a video frame sequence into individual signs and the second to embed the video clip of each sign into a shared latent space with text. Alignment is subsequently performed with a lightweight dynamic programming procedure that runs efficiently on CPUs within a minute, even for hour-long episodes. SEA is flexible and can adapt to a wide range of scenarios, utilizing resources from small lexicons to large continuous corpora. Experiments on four sign language datasets demonstrate state-of-the-art alignment performance, highlighting the potential of SEA to generate high-quality parallel data for advancing sign language processing. SEA's code and models are openly available.
☆ Adaptation of Embedding Models to Financial Filings via LLM Distillation
Despite advances in generative large language models (LLMs), practical application of specialized conversational AI agents remains constrained by computation costs, latency requirements, and the need for precise domain-specific relevance measures. While existing embedding models address the first two constraints, they underperform on information retrieval in specialized domains like finance. This paper introduces a scalable pipeline that trains specialized models from an unlabeled corpus using a general purpose retrieval embedding model as foundation. Our method yields an average of 27.7% improvement in MRR$\texttt{@}$5, 44.6% improvement in mean DCG$\texttt{@}$5 across 14 financial filing types measured over 21,800 query-document pairs, and improved NDCG on 3 of 4 document classes in FinanceBench. We adapt retrieval embeddings (bi-encoder) for RAG, not LLM generators, using LLM-judged relevance to distill domain knowledge into a compact retriever. There are prior works which pair synthetically generated queries with real passages to directly fine-tune the retrieval model. Our pipeline differs from these by introducing interaction between student and teacher models that interleaves retrieval-based mining of hard positive/negative examples from the unlabeled corpus with iterative retraining of the student model's weights using these examples. Each retrieval iteration uses the refined student model to mine the corpus for progressively harder training examples for the subsequent training iteration. The methodology provides a cost-effective solution to bridging the gap between general-purpose models and specialized domains without requiring labor-intensive human annotation.
comment: In proceedings of LLM-Finance 2025 : The 2nd IEEE International Workshop on Large Language Models for Finance
☆ Short-Context Dominance: How Much Local Context Natural Language Actually Needs?
We investigate the short-context dominance hypothesis: that for most sequences, a small local prefix suffices to predict their next tokens. Using large language models as statistical oracles, we measure the minimum context length (MCL) needed to reproduce accurate full-context predictions across datasets with sequences of varying lengths. For sequences with 1-7k tokens from long-context documents, we consistently find that 75-80% require only the last 96 tokens at most. Given the dominance of short-context tokens, we then ask whether it is possible to detect challenging long-context sequences for which a short local prefix does not suffice for prediction. We introduce a practical proxy to MCL, called Distributionally Aware MCL (DaMCL), that does not require knowledge of the actual next-token and is compatible with sampling strategies beyond greedy decoding. Our experiments validate that simple thresholding of the metric defining DaMCL achieves high performance in detecting long vs. short context sequences. Finally, to counter the bias that short-context dominance induces in LLM output distributions, we develop an intuitive decoding algorithm that leverages our detector to identify and boost tokens that are long-range-relevant. Across Q&A tasks and model architectures, we confirm that mitigating the bias improves performance.
comment: 38 pages, 7 figures, includes appendix and references
☆ Beyond Unified Models: A Service-Oriented Approach to Low Latency, Context Aware Phonemization for Real Time TTS
Lightweight, real-time text-to-speech systems are crucial for accessibility. However, the most efficient TTS models often rely on lightweight phonemizers that struggle with context-dependent challenges. In contrast, more advanced phonemizers with a deeper linguistic understanding typically incur high computational costs, which prevents real-time performance. This paper examines the trade-off between phonemization quality and inference speed in G2P-aided TTS systems, introducing a practical framework to bridge this gap. We propose lightweight strategies for context-aware phonemization and a service-oriented TTS architecture that executes these modules as independent services. This design decouples heavy context-aware components from the core TTS engine, effectively breaking the latency barrier and enabling real-time use of high-quality phonemization models. Experimental results confirm that the proposed system improves pronunciation soundness and linguistic accuracy while maintaining real-time responsiveness, making it well-suited for offline and end-device TTS applications.
♻ ☆ Beyond the Singular: Revealing the Value of Multiple Generations in Benchmark Evaluation NeurIPS 2025
Large language models (LLMs) have demonstrated significant utility in real-world applications, exhibiting impressive capabilities in natural language processing and understanding. Benchmark evaluations are crucial for assessing the capabilities of LLMs as they can provide a comprehensive assessment of their strengths and weaknesses. However, current evaluation methods often overlook the inherent randomness of LLMs by employing deterministic generation strategies or relying on a single random sample, resulting in unaccounted sampling variance and unreliable benchmark score estimates. In this paper, we propose a hierarchical statistical model that provides a more comprehensive representation of the benchmarking process by incorporating both benchmark characteristics and LLM randomness. We show that leveraging multiple generations improves the accuracy of estimating the benchmark score and reduces variance. Multiple generations also allow us to define $\mathbb P\left(\text{correct}\right)$, a prompt-level difficulty score based on correct ratios, providing fine-grained insights into individual prompts. Additionally, we create a data map that visualizes difficulty and semantics of prompts, enabling error detection and quality control in benchmark construction.
comment: Accepted in NeurIPS 2025 Workshop on LLM Evals
♻ ☆ Aligning Machiavellian Agents: Behavior Steering via Test-Time Policy Shaping AAAI 2026
The deployment of decision-making AI agents presents a critical challenge in maintaining alignment with human values or guidelines while operating in complex, dynamic environments. Agents trained solely to achieve their objectives may adopt harmful behavior, exposing a key trade-off between maximizing the reward function and maintaining alignment. For pre-trained agents, ensuring alignment is particularly challenging, as retraining can be a costly and slow process. This is further complicated by the diverse and potentially conflicting attributes representing the ethical values for alignment. To address these challenges, we propose a test-time alignment technique based on model-guided policy shaping. Our method allows precise control over individual behavioral attributes, generalizes across diverse reinforcement learning (RL) environments, and facilitates a principled trade-off between ethical alignment and reward maximization without requiring agent retraining. We evaluate our approach using the MACHIAVELLI benchmark, which comprises 134 text-based game environments and thousands of annotated scenarios involving ethical decisions. The RL agents are first trained to maximize the reward in their respective games. At test time, we apply policy shaping via scenario-action attribute classifiers to ensure decision alignment with ethical attributes. We compare our approach against prior training-time methods and general-purpose agents, as well as study several types of ethical violations and power-seeking behavior. Our results demonstrate that test-time policy shaping provides an effective and scalable solution for mitigating unethical behavior across diverse environments and alignment attributes.
comment: Accepted to AAAI 2026 AI Alignment Track
♻ ☆ Kimi-Dev: Agentless Training as Skill Prior for SWE-Agents
Large Language Models (LLMs) are increasingly applied to software engineering (SWE), with SWE-bench as a key benchmark. Solutions are split into SWE-Agent frameworks with multi-turn interactions and workflow-based Agentless methods with single-turn verifiable steps. We argue these paradigms are not mutually exclusive: reasoning-intensive Agentless training induces skill priors, including localization, code edit, and self-reflection that enable efficient and effective SWE-Agent adaptation. In this work, we first curate the Agentless training recipe and present Kimi-Dev, an open-source SWE LLM achieving 60.4\% on SWE-bench Verified, the best among workflow approaches. With additional SFT adaptation on 5k publicly-available trajectories, Kimi-Dev powers SWE-Agents to 48.6\% pass@1, on par with that of Claude 3.5 Sonnet (241022 version). These results show that structured skill priors from Agentless training can bridge workflow and agentic frameworks for transferable coding agents.
comment: 68 pages. GitHub repo at https://github.com/MoonshotAI/Kimi-Dev
♻ ☆ PhyloLM : Inferring the Phylogeny of Large Language Models and Predicting their Performances in Benchmarks ICLR 2025
This paper introduces PhyloLM, a method adapting phylogenetic algorithms to Large Language Models (LLMs) to explore whether and how they relate to each other and to predict their performance characteristics. Our method calculates a phylogenetic distance metric based on the similarity of LLMs' output. The resulting metric is then used to construct dendrograms, which satisfactorily capture known relationships across a set of 111 open-source and 45 closed models. Furthermore, our phylogenetic distance predicts performance in standard benchmarks, thus demonstrating its functional validity and paving the way for a time and cost-effective estimation of LLM capabilities. To sum up, by translating population genetic concepts to machine learning, we propose and validate a tool to evaluate LLM development, relationships and capabilities, even in the absence of transparent training information.
comment: The project code is available at https://github.com/Nicolas-Yax/PhyloLM . Published as https://iclr.cc/virtual/2025/poster/28195 at ICLR 2025. A code demo is available at https://colab.research.google.com/drive/1agNE52eUevgdJ3KL3ytv5Y9JBbfJRYqd
♻ ☆ Is Self-Supervised Learning Enough to Fill in the Gap? A Study on Speech Inpainting
Speech inpainting consists in reconstructing corrupted or missing speech segments using surrounding context, a process that closely resembles the pretext tasks in Self-Supervised Learning (SSL) for speech encoders. This study investigates using SSL-trained speech encoders for inpainting without any additional training beyond the initial pretext task, and simply adding a decoder to generate a waveform. We compare this approach to supervised fine-tuning of speech encoders for a downstream task -- here, inpainting. Practically, we integrate HuBERT as the SSL encoder and HiFi-GAN as the decoder in two configurations: (1) fine-tuning the decoder to align with the frozen pre-trained encoder's output and (2) fine-tuning the encoder for an inpainting task based on a frozen decoder's input. Evaluations are conducted under single- and multi-speaker conditions using in-domain datasets and out-of-domain datasets (including unseen speakers, diverse speaking styles, and noise). Both informed and blind inpainting scenarios are considered, where the position of the corrupted segment is either known or unknown. The proposed SSL-based methods are benchmarked against several baselines, including a text-informed method combining automatic speech recognition with zero-shot text-to-speech synthesis. Performance is assessed using objective metrics and perceptual evaluations. The results demonstrate that both approaches outperform baselines, successfully reconstructing speech segments up to 200 ms, and sometimes up to 400 ms. Notably, fine-tuning the SSL encoder achieves more accurate speech reconstruction in single-speaker settings, while a pre-trained encoder proves more effective for multi-speaker scenarios. This demonstrates that an SSL pretext task can transfer to speech inpainting, enabling successful speech reconstruction with a pre-trained encoder.
comment: Accepted for publication to Computer Speech and Language journal (to appear)
♻ ☆ DZ-TDPO: Non-Destructive Temporal Alignment for Mutable State Tracking in Long-Context Dialogue
Long-context dialogue systems suffer from State Inertia, where static constraints prevent models from resolving conflicts between evolving user intents and established historical context. To address this, we propose DZ-TDPO, a non-destructive alignment framework that synergizes conflict-aware dynamic KL constraints with a calibrated temporal attention bias. Experiments on the Multi-Session Chat (MSC) dataset demonstrate that DZ-TDPO achieves state-of-the-art win rates (55.4% on Phi-3.5) while maintaining robust zero-shot generalization. Our scaling analysis reveals a "Capacity-Stability Trade-off": while smaller models incur an "alignment tax" (perplexity surge) to overcome historical inertia, the larger Qwen2.5-7B model achieves 50.8% win rate with negligible perplexity overhead. This confirms that TAI can be alleviated via precise attention regulation rather than destructive weight updates, preserving general capabilities (MMLU) across model scales. Code and data are available: https://github.com/lyj20071013/DZ-TDPO
comment: 25 pages, 3 figures, 17 tables. Code available at https://github.com/lyj20071013/DZ-TDPO
♻ ☆ HybridNorm: Towards Stable and Efficient Transformer Training via Hybrid Normalization NeurIPS 2025
Transformers have become the de facto architecture for a wide range of machine learning tasks, particularly in large language models (LLMs). Despite their remarkable performance, many challenges remain in training deep transformer networks, especially regarding the position of the layer normalization. While Pre-Norm structures facilitate more stable training owing to their stronger identity path, they often lead to suboptimal performance compared to Post-Norm. In this paper, we propose $\textbf{HybridNorm}$, a simple yet effective hybrid normalization strategy that integrates the advantages of both Pre-Norm and Post-Norm. Specifically, HybridNorm employs QKV normalization within the attention mechanism and Post-Norm in the feed-forward network (FFN) of each transformer block. We provide both theoretical insights and empirical evidence to demonstrate that HybridNorm improves the gradient flow and the model robustness. Extensive experiments on large-scale transformer models, including both dense and sparse variants, show that HybridNorm consistently outperforms both Pre-Norm and Post-Norm approaches across multiple benchmarks. These findings highlight the potential of HybridNorm as a more stable and effective technique for improving the training and performance of deep transformer models. Code is available at https://github.com/BryceZhuo/HybridNorm.
comment: Accepted by NeurIPS 2025
♻ ☆ TRepLiNa: Layer-wise CKA+REPINA Alignment Improves Low-Resource Machine Translation in Aya-23 8B
The 2025 Multimodal Models for Low-Resource Contexts and Social Impact (MMLoSo) Language Challenge addresses one of India's most pressing linguistic gaps: the lack of resources for its diverse low-resource languages (LRLs). In this study, we investigate whether enforcing cross-lingual similarity in specific internal layers of a decoder-only multilingual large language model (LLM) can improve translation quality from LRL to high-resource language (HRL). Specifically, we combine Centered Kernel Alignment (CKA), a similarity metric that encourages representations of different languages to align, with REPINA, a regularization method that constrains parameter updates to remain close to the pretrained model, into a joint method we call TRepLiNa. In this research project, we experiment with zero-shot, few-shot, and fine-tuning settings using Aya-23 8B with QLoRA across MMLoSo shared task language pairs (Mundari, Santali, Bhili) with Hindi/English pivots. Our results show that aligning mid-level layers using TRepLiNa (CKA+REPINA) is a low-cost, practical approach to improving LRL translation, especially in data-scarce settings.
comment: It is work in progress
♻ ☆ Exploring the Potential of Encoder-free Architectures in 3D LMMs
Encoder-free architectures have been preliminarily explored in the 2D Large Multimodal Models (LMMs), yet it remains an open question whether they can be effectively applied to 3D understanding scenarios. In this paper, we present the first comprehensive investigation into the potential of encoder-free architectures to alleviate the challenges of encoder-based 3D LMMs. These long-standing challenges include the failure to adapt to varying point cloud resolutions during inference and the point features from the encoder not meeting the semantic needs of Large Language Models (LLMs). We identify key aspects for 3D LMMs to remove the pre-trained encoder and enable the LLM to assume the role of the 3D encoder: 1) We propose the LLM-embedded Semantic Encoding strategy in the pre-training stage, exploring the effects of various point cloud self-supervised losses. And we present the Hybrid Semantic Loss to extract high-level semantics. 2) We introduce the Hierarchical Geometry Aggregation strategy in the instruction tuning stage. This incorporates inductive bias into the LLM layers to focus on the local details of the point clouds. To the end, we present the first Encoder-free 3D LMM, ENEL. Our 7B model rivals the state-of-the-art model, PointLLM-PiSA-13B, achieving 57.91%, 61.0%, and 55.20% on the classification, captioning, and VQA tasks, respectively. Our results show that the encoder-free architecture is highly promising for replacing encoder-based architectures in the field of 3D understanding. The code is released at https://github.com/Ivan-Tang-3D/ENEL
♻ ☆ Semantic Faithfulness and Entropy Production Measures to Tame Your LLM Demons and Manage Hallucinations
Evaluating faithfulness of Large Language Models (LLMs) to a given task is a complex challenge. We propose two new unsupervised metrics for faithfulness evaluation using insights from information theory and thermodynamics. Our approach treats an LLM as a bipartite information engine where hidden layers act as a Maxwell demon controlling transformations of context $C $ into answer $A$ via prompt $Q$. We model Question-Context-Answer (QCA) triplets as probability distributions over shared topics. Topic transformations from $C$ to $Q$ and $A$ are modeled as transition matrices ${\bf Q}$ and ${\bf A}$ encoding the query goal and actual result, respectively. Our semantic faithfulness (SF) metric quantifies faithfulness for any given QCA triplet by the Kullback-Leibler (KL) divergence between these matrices. Both matrices are inferred simultaneously via convex optimization of this KL divergence, and the final SF metric is obtained by mapping the minimal divergence onto the unit interval [0,1], where higher scores indicate greater faithfulness. Furthermore, we propose a thermodynamics-based semantic entropy production (SEP) metric in answer generation, and show that high faithfulness generally implies low entropy production. The SF and SEP metrics can be used jointly or separately for LLM evaluation and hallucination control. We demonstrate our framework on LLM summarization of corporate SEC 10-K filings.
comment: 23 pages, 6 figures
♻ ☆ Transparent and Coherent Procedural Mistake Detection EMNLP 2025
Procedural mistake detection (PMD) is a challenging problem of classifying whether a human user (observed through egocentric video) has successfully executed a task (specified by a procedural text). Despite significant recent efforts, machine performance in the wild remains nonviable, and the reasoning processes underlying this performance are opaque. As such, we extend PMD to require generating visual self-dialog rationales to inform decisions. Given the impressive, mature image understanding capabilities observed in recent vision-and-language models (VLMs), we curate a suitable benchmark dataset for PMD based on individual frames. As our reformulation enables unprecedented transparency, we leverage a natural language inference (NLI) model to formulate two automated metrics for the coherence of generated rationales. We establish baselines for this reframed task, showing that VLMs struggle off-the-shelf, but with some trade-offs, their accuracy, coherence, and efficiency can be improved by incorporating these metrics into common inference and fine-tuning methods. Lastly, our multi-faceted metrics visualize common outcomes, highlighting areas for further improvement.
comment: EMNLP 2025
♻ ☆ Rethinking LLM Training through Information Geometry and Quantum Metrics
Optimization in large language models (LLMs) unfolds over high-dimensional parameter spaces with non-Euclidean structure. Information geometry frames this landscape using the Fisher information metric, enabling more principled learning via natural gradient descent. Though often impractical, this geometric lens clarifies phenomena such as sharp minima, generalization, and observed scaling laws. We argue that curvature-based approaches deepen our understanding of LLM training. Finally, we speculate on quantum analogies based on the Fubini-Study metric and Quantum Fisher Information, hinting at efficient optimization in quantum-enhanced systems.
comment: 9 pages, 1 figure(s)
♻ ☆ Understanding Syntactic Generalization in Structure-inducing Language Models
Structure-inducing Language Models (SiLM) are trained on a self-supervised language modeling task, and induce a hierarchical sentence representation as a byproduct when processing an input. SiLMs couple strong syntactic generalization behavior with competitive performance on various NLP tasks, but many of their basic properties are yet underexplored. In this work, we train three different SiLM architectures from scratch: Structformer (Shen et al., 2021), UDGN (Shen et al., 2022), and GPST (Hu et al., 2024b). We train these architectures on both natural language (English, German, and Chinese) corpora and synthetic bracketing expressions. The models are then evaluated with respect to (i) properties of the induced syntactic representations (ii) performance on grammaticality judgment tasks, and (iii) training dynamics. We find that none of the three architectures dominates across all evaluation metrics. However, there are significant differences, in particular with respect to the induced syntactic representations. The Generative Pretrained Structured Transformer (GPST; Hu et al. 2024) performs most consistently across evaluation settings, and outperforms the other models on long-distance dependencies in bracketing expressions. Furthermore, our study shows that small models trained on large amounts of synthetic data provide a useful testbed for evaluating basic model properties.
comment: Code available at https://github.com/davidarps/silm
♻ ☆ Training-Free Diffusion Priors for Text-to-Image Generation via Optimization-based Visual Inversion
Diffusion models have established the state-of-the-art in text-to-image generation, but their performance often relies on a diffusion prior network to translate text embeddings into the visual manifold for easier decoding. These priors are computationally expensive and require extensive training on massive datasets. In this work, we challenge the necessity of a trained prior at all by employing Optimization-based Visual Inversion (OVI), a training-free and data-free alternative, to replace the need for a prior. OVI initializes a latent visual representation from random pseudo-tokens and iteratively optimizes it to maximize the cosine similarity with input textual prompt embedding. We further propose two novel constraints, a Mahalanobis-based and a Nearest-Neighbor loss, to regularize the OVI optimization process toward the distribution of realistic images. Our experiments, conducted on Kandinsky 2.2, show that OVI can serve as an alternative to traditional priors. More importantly, our analysis reveals a critical flaw in current evaluation benchmarks like T2I-CompBench++, where simply using the text embedding as a prior achieves surprisingly high scores, despite lower perceptual quality. Our constrained OVI methods improve visual fidelity over this baseline, with the Nearest-Neighbor approach proving particularly effective, achieving quantitative scores comparable to or higher than the state-of-the-art data-efficient prior, indicating that the idea merits further investigation. The code will be publicly available upon acceptance.
comment: 11 pages, 7 figures, technical report (preprint)
♻ ☆ DaLA: Danish Linguistic Acceptability Evaluation Guided by Real World Errors
We present an enhanced benchmark for evaluating linguistic acceptability in Danish. We first analyze the most common errors found in written Danish. Based on this analysis, we introduce a set of fourteen corruption functions that generate incorrect sentences by systematically introducing errors into existing correct Danish sentences. To ensure the accuracy of these corruptions, we assess their validity using both manual and automatic methods. The results are then used as a benchmark for evaluating Large Language Models on a linguistic acceptability judgement task. Our findings demonstrate that this extension is both broader and more comprehensive than the current state of the art. By incorporating a greater variety of corruption types, our benchmark provides a more rigorous assessment of linguistic acceptability, increasing task difficulty, as evidenced by the lower performance of LLMs on our benchmark compared to existing ones. Our results also suggest that our benchmark has a higher discriminatory power which allows to better distinguish well-performing models from low-performing ones.
♻ ☆ InfiGUI-G1: Advancing GUI Grounding with Adaptive Exploration Policy Optimization AAAI 2026
The emergence of Multimodal Large Language Models (MLLMs) has propelled the development of autonomous agents that operate on Graphical User Interfaces (GUIs) using pure visual input. A fundamental challenge is robustly grounding natural language instructions. This requires a precise spatial alignment, which accurately locates the coordinates of each element, and, more critically, a correct semantic alignment, which matches the instructions to the functionally appropriate UI element. Although Reinforcement Learning with Verifiable Rewards (RLVR) has proven to be effective at improving spatial alignment for these MLLMs, we find that inefficient exploration bottlenecks semantic alignment, which prevent models from learning difficult semantic associations. To address this exploration problem, we present Adaptive Exploration Policy Optimization (AEPO), a new policy optimization framework. AEPO employs a multi-answer generation strategy to enforce broader exploration, which is then guided by a theoretically grounded Adaptive Exploration Reward (AER) function derived from first principles of efficiency eta=U/C. Our AEPO-trained models, InfiGUI-G1-3B and InfiGUI-G1-7B, establish new state-of-the-art results across multiple challenging GUI grounding benchmarks, achieving significant relative improvements of up to 9.0% against the naive RLVR baseline on benchmarks designed to test generalization and semantic understanding. Resources are available at https://github.com/InfiXAI/InfiGUI-G1.
comment: Accepted to AAAI 2026 (Oral Presentation)
♻ ☆ Why Chain of Thought Fails in Clinical Text Understanding
Large language models (LLMs) are increasingly being applied to clinical care, a domain where both accuracy and transparent reasoning are critical for safe and trustworthy deployment. Chain-of-thought (CoT) prompting, which elicits step-by-step reasoning, has demonstrated improvements in performance and interpretability across a wide range of tasks. However, its effectiveness in clinical contexts remains largely unexplored, particularly in the context of electronic health records (EHRs), the primary source of clinical documentation, which are often lengthy, fragmented, and noisy. In this work, we present the first large-scale systematic study of CoT for clinical text understanding. We assess 95 advanced LLMs on 87 real-world clinical text tasks, covering 9 languages and 8 task types. Contrary to prior findings in other domains, we observe that 86.3\% of models suffer consistent performance degradation in the CoT setting. More capable models remain relatively robust, while weaker ones suffer substantial declines. To better characterize these effects, we perform fine-grained analyses of reasoning length, medical concept alignment, and error profiles, leveraging both LLM-as-a-judge evaluation and clinical expert evaluation. Our results uncover systematic patterns in when and why CoT fails in clinical contexts, which highlight a critical paradox: CoT enhances interpretability but may undermine reliability in clinical text tasks. This work provides an empirical basis for clinical reasoning strategies of LLMs, highlighting the need for transparent and trustworthy approaches.
♻ ☆ A Systematic Assessment of Language Models with Linguistic Minimal Pairs in Chinese ACL
We present ZhoBLiMP, the largest linguistic minimal pair benchmark for Chinese, with over 100 paradigms, ranging from topicalization to the \textit{Ba} construction. We then train from scratch a suite of Chinese language models (LMs) with different tokenizers, parameter sizes, and token volumes, to study the learning curves of LMs on Chinese. To mitigate the biases introduced by unequal lengths of the sentences in a minimal pair, we propose a new metric named sub-linear length normalized log-probabilities (SLLN-LP). Using SLLN-LP as the metric, our results show that \textsc{Anaphor}, \textsc{Quantifiers}, and \textsc{Ellipsis} in Chinese are difficult for LMs even up to 32B parameters, and that SLLN-LP successfully mitigates biases in ZhoBLiMP, JBLiMP and BLiMP. We conclude that future evaluations should be more carefully designed to consider the intricate relations between linking functions, LMs, and targeted minimal pairs.
comment: Accepted by TACL
♻ ☆ SimuHome: A Temporal- and Environment-Aware Benchmark for Smart Home LLM Agents
Large Language Model (LLM) agents excel at multi-step, tool-augmented tasks. However, smart homes introduce distinct challenges, requiring agents to handle latent user intents, temporal dependencies, device constraints, scheduling, and more. The main bottlenecks for developing smart home agents with such capabilities include the lack of a realistic simulation environment where agents can interact with devices and observe the results, as well as a challenging benchmark to evaluate them. To address this, we introduce $\textbf{SimuHome}$, a time-accelerated home environment that simulates smart devices, supports API calls, and reflects changes in environmental variables. By building the simulator on the Matter protocol, the global industry standard for smart home communication, SimuHome provides a high-fidelity environment, and agents validated in SimuHome can be deployed on real Matter-compliant devices with minimal adaptation. We provide a challenging benchmark of 600 episodes across twelve user query types that require the aforementioned capabilities. Our evaluation of 16 agents under a unified ReAct framework reveals distinct capabilities and limitations across models. Models under 7B parameters exhibited negligible performance across all query types. Even GPT-4.1, the best-performing standard model, struggled with implicit intent inference, state verification, and particularly temporal scheduling. While reasoning models such as GPT-5.1 consistently outperformed standard models on every query type, they required over three times the average inference time, which can be prohibitive for real-time smart home applications. This highlights a critical trade-off between task performance and real-world practicality.
comment: 10 pages
♻ ☆ Unilaw-R1: A Large Language Model for Legal Reasoning with Reinforcement Learning and Iterative Inference
Reasoning-focused large language models (LLMs) are rapidly evolving across various domains, yet their capabilities in handling complex legal problems remains underexplored. In this paper, we introduce Unilaw-R1, a large language model tailored for legal reasoning. With a lightweight 7-billion parameter scale, Unilaw-R1 significantly reduces deployment cost while effectively tackling three core challenges in the legal domain: insufficient legal knowledge, unreliable reasoning logic, and weak business generalization. To address these issues, we first construct Unilaw-R1-Data, a high-quality dataset containing 17K distilled and screened chain-of-thought (CoT) samples. Based on this, we adopt a two-stage training strategy combining Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL), which significantly boosts the performance on complex legal reasoning tasks and supports interpretable decision-making in legal AI applications. To assess legal reasoning ability, we also introduce Unilaw-R1-Eval, a dedicated benchmark designed to evaluate models across single- and multi-choice legal tasks. Unilaw-R1 demonstrates strong results on authoritative benchmarks, outperforming all models of similar scale and achieving performance on par with the much larger DeepSeek-R1-Distill-Qwen-32B (54.9%). Following domain-specific training, it also showed significant gains on LawBench and LexEval, exceeding Qwen-2.5-7B-Instruct (46.6%) by an average margin of 6.6%.
♻ ☆ DiTAR: Diffusion Transformer Autoregressive Modeling for Speech Generation ICML 2025
Several recent studies have attempted to autoregressively generate continuous speech representations without discrete speech tokens by combining diffusion and autoregressive models, yet they often face challenges with excessive computational loads or suboptimal outcomes. In this work, we propose Diffusion Transformer Autoregressive Modeling (DiTAR), a patch-based autoregressive framework combining a language model with a diffusion transformer. This approach significantly enhances the efficacy of autoregressive models for continuous tokens and reduces computational demands. DiTAR utilizes a divide-and-conquer strategy for patch generation, where the language model processes aggregated patch embeddings and the diffusion transformer subsequently generates the next patch based on the output of the language model. For inference, we propose defining temperature as the time point of introducing noise during the reverse diffusion ODE to balance diversity and determinism. We also show in the extensive scaling analysis that DiTAR has superb scalability. In zero-shot speech generation, DiTAR achieves state-of-the-art performance in robustness, speaker similarity, and naturalness.
comment: ByteDance Seed template, ICML 2025
♻ ☆ MUST-RAG: MUSical Text Question Answering with Retrieval Augmented Generation
Recent advancements in Large language models (LLMs) have demonstrated remarkable capabilities across diverse domains. While they exhibit strong zero-shot performance on various tasks, LLMs' effectiveness in music-related applications remains limited due to the relatively small proportion of music-specific knowledge in their training data. To address this limitation, we propose MusT-RAG, a comprehensive framework based on Retrieval Augmented Generation (RAG) to adapt general-purpose LLMs for text-only music question answering (MQA) tasks. RAG is a technique that provides external knowledge to LLMs by retrieving relevant context information when generating answers to questions. To optimize RAG for the music domain, we (1) propose MusWikiDB, a music-specialized vector database for the retrieval stage, and (2) utilizes context information during both inference and fine-tuning processes to effectively transform general-purpose LLMs into music-specific models. Our experiment demonstrates that MusT-RAG significantly outperforms traditional fine-tuning approaches in enhancing LLMs' music domain adaptation capabilities, showing consistent improvements across both in-domain and out-of-domain MQA benchmarks. Additionally, our MusWikiDB proves substantially more effective than general Wikipedia corpora, delivering superior performance and computational efficiency.
comment: This is an earlier version of the paper - ArtistMus: A Globally Diverse, Artist-Centric Benchmark for Retrieval-Augmented Music Question Answering. The latest version is available at: (arXiv:2512.05430)
♻ ☆ Grounding Long-Context Reasoning with Contextual Normalization for Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has become an essential approach for extending the reasoning and knowledge capacity of large language models (LLMs). While prior research has primarily focused on retrieval quality and prompting strategies, the influence of how the retrieved documents are framed, i.e., context format, remains underexplored. We show that seemingly superficial choices, such as delimiters or structural markers in key-value extraction, can induce substantial shifts in accuracy and stability, even when semantic content is identical. To systematically investigate this effect, we design controlled experiments that vary context density, delimiter styles, and positional placement, revealing the underlying factors that govern performance differences. Building on these insights, we introduce Contextual Normalization, a lightweight strategy that adaptively standardizes context representations before generation. Extensive experiments on both controlled and real-world RAG benchmarks across diverse settings demonstrate that the proposed strategy consistently improves robustness to order variation and strengthens long-context utilization. These findings underscore that reliable RAG depends not only on retrieving the right content, but also on how that content is presented, offering both new empirical evidence and a practical technique for better long-context reasoning.
♻ ☆ Process Reward Models That Think
Step-by-step verifiers -- also known as process reward models (PRMs) -- are a key ingredient for test-time scaling. PRMs require step-level supervision, making them expensive to train. This work aims to build data-efficient PRMs as verbalized step-wise reward models that verify every step in the solution by generating a verification chain-of-thought (CoT). We propose ThinkPRM, a long CoT verifier fine-tuned on orders of magnitude fewer process labels than those required by discriminative PRMs. Our approach capitalizes on the inherent reasoning abilities of long CoT models, and outperforms LLM-as-a-Judge and discriminative verifiers -- using only 1% of the process labels in PRM800K -- across several challenging benchmarks. Specifically, ThinkPRM beats the baselines on ProcessBench, MATH-500, and AIME '24 under best-of-N selection and reward-guided search. In an out-of-domain evaluation on a subset of GPQA-Diamond and LiveCodeBench, our PRM surpasses discriminative verifiers trained on the full PRM800K by 8% and 4.5%, respectively. Lastly, under the same token budget, ThinkPRM scales up verification compute more effectively compared to LLM-as-a-Judge, outperforming it by 7.2% on a subset of ProcessBench. Our work highlights the value of generative, long CoT PRMs that can scale test-time compute for verification while requiring minimal supervision for training. Our code, data, and models are released at https://github.com/mukhal/thinkprm.
comment: Add new ablation and minor writing fixes
♻ ☆ Deep Learning and Machine Learning, Advancing Big Data Analytics and Management: Unveiling AI's Potential Through Tools, Techniques, and Applications
Artificial intelligence (AI), machine learning, and deep learning have become transformative forces in big data analytics and management, enabling groundbreaking advancements across diverse industries. This article delves into the foundational concepts and cutting-edge developments in these fields, with a particular focus on large language models (LLMs) and their role in natural language processing, multimodal reasoning, and autonomous decision-making. Highlighting tools such as ChatGPT, Claude, and Gemini, the discussion explores their applications in data analysis, model design, and optimization. The integration of advanced algorithms like neural networks, reinforcement learning, and generative models has enhanced the capabilities of AI systems to process, visualize, and interpret complex datasets. Additionally, the emergence of technologies like edge computing and automated machine learning (AutoML) democratizes access to AI, empowering users across skill levels to engage with intelligent systems. This work also underscores the importance of ethical considerations, transparency, and fairness in the deployment of AI technologies, paving the way for responsible innovation. Through practical insights into hardware configurations, software environments, and real-world applications, this article serves as a comprehensive resource for researchers and practitioners. By bridging theoretical underpinnings with actionable strategies, it showcases the potential of AI and LLMs to revolutionize big data management and drive meaningful advancements across domains such as healthcare, finance, and autonomous systems.
comment: This book contains 155 pages and 9 figures
♻ ☆ Deep Learning and Machine Learning, Advancing Big Data Analytics and Management: Handy Appetizer
This book explores the role of Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) in driving the progress of big data analytics and management. The book focuses on simplifying the complex mathematical concepts behind deep learning, offering intuitive visualizations and practical case studies to help readers understand how neural networks and technologies like Convolutional Neural Networks (CNNs) work. It introduces several classic models and technologies such as Transformers, GPT, ResNet, BERT, and YOLO, highlighting their applications in fields like natural language processing, image recognition, and autonomous driving. The book also emphasizes the importance of pre-trained models and how they can enhance model performance and accuracy, with instructions on how to apply these models in various real-world scenarios. Additionally, it provides an overview of key big data management technologies like SQL and NoSQL databases, as well as distributed computing frameworks such as Apache Hadoop and Spark, explaining their importance in managing and processing vast amounts of data. Ultimately, the book underscores the value of mastering deep learning and big data management skills as critical tools for the future workforce, making it an essential resource for both beginners and experienced professionals.
comment: This book contains 93 pages and 60 figures
♻ ☆ CryptoBench: A Dynamic Benchmark for Expert-Level Evaluation of LLM Agents in Cryptocurrency
This paper introduces CryptoBench, the first expert-curated, dynamic benchmark designed to rigorously evaluate the real-world capabilities of Large Language Model (LLM) agents in the uniquely demanding and fast-paced cryptocurrency domain. Unlike general-purpose agent benchmarks for search and prediction, professional crypto analysis presents specific challenges: \emph{extreme time-sensitivity}, \emph{a highly adversarial information environment}, and the critical need to synthesize data from \emph{diverse, specialized sources}, such as on-chain intelligence platforms and real-time Decentralized Finance (DeFi) dashboards. CryptoBench thus serves as a much more challenging and valuable scenario for LLM agent assessment. To address these challenges, we constructed a live, dynamic benchmark featuring 50 questions per month, expertly designed by crypto-native professionals to mirror actual analyst workflows. These tasks are rigorously categorized within a four-quadrant system: Simple Retrieval, Complex Retrieval, Simple Prediction, and Complex Prediction. This granular categorization enables a precise assessment of an LLM agent's foundational data-gathering capabilities alongside its advanced analytical and forecasting skills. Our evaluation of ten LLMs, both directly and within an agentic framework, reveals a performance hierarchy and uncovers a failure mode. We observe a \textit{retrieval-prediction imbalance}, where many leading models, despite being proficient at data retrieval, demonstrate a pronounced weakness in tasks requiring predictive analysis. This highlights a problematic tendency for agents to appear factually grounded while lacking the deeper analytical capabilities to synthesize information.
♻ ☆ Non-Collaborative User Simulators for Tool Agents
Tool agents interact with users through multi-turn dialogues to accomplish various tasks. Recent studies have adopted user simulation methods to develop these agents in multi-turn settings. However, existing user simulators tend to be agent-friendly, exhibiting only cooperative behaviors, which fails to train and test agents against non-collaborative users in the real world. To address this, we propose a novel user simulator architecture that simulates four categories of non-collaborative behaviors: requesting unavailable services, digressing into tangential conversations, expressing impatience, and providing incomplete utterances. Our user simulator can simulate challenging and natural non-collaborative behaviors while reliably delivering all intents and information necessary to accomplish the task. Our experiments on MultiWOZ and $τ$-bench reveal significant performance degradation in state-of-the-art tool agents when encountering non-collaborative users. We provide detailed analyses of agents' weaknesses under each non-collaborative condition, such as escalated hallucinations and dialogue breakdowns. Ultimately, we contribute an easily extensible user simulation framework to help the research community develop tool agents and preemptively diagnose them under challenging real-world conditions within their own services.
comment: 10 pages
♻ ☆ Topology Matters: Measuring Memory Leakage in Multi-Agent LLMs
Graph topology is a fundamental determinant of memory leakage in multi-agent LLM systems, yet its effects remain poorly quantified. We introduce MAMA (Multi-Agent Memory Attack), a framework that measures how network structure shapes leakage. MAMA operates on synthetic documents containing labeled Personally Identifiable Information (PII) entities, from which we generate sanitized task instructions. We execute a two-phase protocol: Engram (seeding private information into a target agent's memory) and Resonance (multi-round interaction where an attacker attempts extraction). Over up to 10 interaction rounds, we quantify leakage as the fraction of ground-truth PII recovered from attacking agent outputs via exact matching. We systematically evaluate six common network topologies (fully connected, ring, chain, binary tree, star, and star-ring), varying agent counts $n\in\{4,5,6\}$, attacker-target placements, and base models. Our findings reveal consistent patterns: fully connected graphs exhibit maximum leakage while chains provide strongest protection; shorter attacker-target graph distance and higher target centrality significantly increase vulnerability; leakage rises sharply in early rounds before plateauing; model choice shifts absolute leakage rates but preserves topology rankings; temporal/locational PII attributes leak more readily than identity credentials or regulated identifiers. These results provide the first systematic mapping from architectural choices to measurable privacy risk, yielding actionable guidance: prefer sparse or hierarchical connectivity, maximize attacker-target separation, limit node degree and network radius, avoid shortcuts bypassing hubs, and implement topology-aware access controls.
♻ ☆ Surveying the MLLM Landscape: A Meta-Review of Current Surveys
The rise of Multimodal Large Language Models (MLLMs) has become a transformative force in the field of artificial intelligence, enabling machines to process and generate content across multiple modalities, such as text, images, audio, and video. These models represent a significant advancement over traditional unimodal systems, opening new frontiers in diverse applications ranging from autonomous agents to medical diagnostics. By integrating multiple modalities, MLLMs achieve a more holistic understanding of information, closely mimicking human perception. As the capabilities of MLLMs expand, the need for comprehensive and accurate performance evaluation has become increasingly critical. This survey aims to provide a systematic review of benchmark tests and evaluation methods for MLLMs, covering key topics such as foundational concepts, applications, evaluation methodologies, ethical concerns, security, efficiency, and domain-specific applications. Through the classification and analysis of existing literature, we summarize the main contributions and methodologies of various surveys, conduct a detailed comparative analysis, and examine their impact within the academic community. Additionally, we identify emerging trends and underexplored areas in MLLM research, proposing potential directions for future studies. This survey is intended to offer researchers and practitioners a comprehensive understanding of the current state of MLLM evaluation, thereby facilitating further progress in this rapidly evolving field.
comment: The article consists of 22 pages, including 2 figures and 108 references. The paper provides a meta-review of surveys on Multimodal Large Language Models (MLLMs), categorizing findings into key areas such as evaluation, applications, security, and future directions
♻ ☆ Self-Improvement Towards Pareto Optimality: Mitigating Preference Conflicts in Multi-Objective Alignment ACL
Multi-Objective Alignment (MOA) aims to align LLMs' responses with multiple human preference objectives, with Direct Preference Optimization (DPO) emerging as a prominent approach. However, we find that DPO-based MOA approaches suffer from widespread preference conflicts in the data, where different objectives favor different responses. This results in conflicting optimization directions, hindering the optimization on the Pareto Front. To address this, we propose to construct Pareto-optimal responses to resolve preference conflicts. To efficiently obtain and utilize such responses, we propose a self-improving DPO framework that enables LLMs to self-generate and select Pareto-optimal responses for self-supervised preference alignment. Extensive experiments on two datasets demonstrate the superior Pareto Front achieved by our framework compared to various baselines. Code is available at https://github.com/zyttt-coder/SIPO.
comment: ACL findings (2025)
Latent Collaboration in Multi-Agent Systems
Multi-agent systems (MAS) extend large language models (LLMs) from independent single-model reasoning to coordinative system-level intelligence. While existing LLM agents depend on text-based mediation for reasoning and communication, we take a step forward by enabling models to collaborate directly within the continuous latent space. We introduce LatentMAS, an end-to-end training-free framework that enables pure latent collaboration among LLM agents. In LatentMAS, each agent first performs auto-regressive latent thoughts generation through last-layer hidden embeddings. A shared latent working memory then preserves and transfers each agent's internal representations, ensuring lossless information exchange. We provide theoretical analyses establishing that LatentMAS attains higher expressiveness and lossless information preservation with substantially lower complexity than vanilla text-based MAS. In addition, empirical evaluations across 9 comprehensive benchmarks spanning math and science reasoning, commonsense understanding, and code generation show that LatentMAS consistently outperforms strong single-model and text-based MAS baselines, achieving up to 14.6% higher accuracy, reducing output token usage by 70.8%-83.7%, and providing 4x-4.3x faster end-to-end inference. These results demonstrate that our new latent collaboration framework enhances system-level reasoning quality while offering substantial efficiency gains without any additional training. Code and data are fully open-sourced at https://github.com/Gen-Verse/LatentMAS.
comment: Project: https://github.com/Gen-Verse/LatentMAS
♻ ☆ Golden Touchstone: A Comprehensive Bilingual Benchmark for Evaluating Financial Large Language Models EMNLP 2025
As large language models (LLMs) increasingly permeate the financial sector, there is a pressing need for a standardized method to comprehensively assess their performance. Existing financial benchmarks often suffer from limited language and task coverage, low-quality datasets, and inadequate adaptability for LLM evaluation. To address these limitations, we introduce Golden Touchstone, a comprehensive bilingual benchmark for financial LLMs, encompassing eight core financial NLP tasks in both Chinese and English. Developed from extensive open-source data collection and industry-specific demands, this benchmark thoroughly assesses models' language understanding and generation capabilities. Through comparative analysis of major models such as GPT-4o, Llama3, FinGPT, and FinMA, we reveal their strengths and limitations in processing complex financial information. Additionally, we open-source Touchstone-GPT, a financial LLM trained through continual pre-training and instruction tuning, which demonstrates strong performance on the bilingual benchmark but still has limitations in specific tasks. This research provides a practical evaluation tool for financial LLMs and guides future development and optimization. The source code for Golden Touchstone and model weight of Touchstone-GPT have been made publicly available at https://github.com/IDEA-FinAI/Golden-Touchstone.
comment: Published in Findings of EMNLP 2025
♻ ☆ Bridging Relevance and Reasoning: Rationale Distillation in Retrieval-Augmented Generation ACL 25
The reranker and generator are two critical components in the Retrieval-Augmented Generation (i.e., RAG) pipeline, responsible for ranking relevant documents and generating responses. However, due to differences in pre-training data and objectives, there is an inevitable gap between the documents ranked as relevant by the reranker and those required by the generator to support answering the query. To address this gap, we propose RADIO, a novel and practical preference alignment framework with RAtionale DIstillatiOn. Specifically, we first propose a rationale extraction method that leverages the reasoning capabilities of Large Language Models (LLMs) to extract the rationales necessary for answering the query. Subsequently, a rationale-based alignment process is designed to rerank the documents based on the extracted rationales, and fine-tune the reranker to align the preferences. We conduct extensive experiments on two tasks across three datasets to demonstrate the effectiveness of our approach compared to baseline methods. Our code is released online to ease reproduction.
comment: Accepted to ACL 25 Findings
♻ ☆ The AI Consumer Index (ACE)
We introduce the first version of the AI Consumer Index (ACE), a benchmark for assessing whether frontier AI models can perform everyday consumer tasks. ACE contains a hidden heldout set of 400 test cases, split across four consumer activities: shopping, food, gaming, and DIY. We are also open sourcing 80 cases as a devset with a CC-BY license. For the ACE leaderboard we evaluated 10 frontier models (with websearch turned on) using a novel grading methodology that dynamically checks whether relevant parts of the response are grounded in the retrieved web sources. GPT 5 (Thinking = High) is the top-performing model, scoring 56.1%, followed by o3 Pro (Thinking = On) at 55.2% and GPT 5.1 (Thinking = High) at 55.1%. Model scores differ across domains, and in Shopping the top model scores under 50\%. We find that models are prone to hallucinating key information, such as prices. ACE shows a substantial gap between the performance of even the best models and consumers' AI needs.
♻ ☆ The AI Productivity Index (APEX)
We present an extended version of the AI Productivity Index (APEX-v1-extended), a benchmark for assessing whether frontier models are capable of performing economically valuable tasks in four jobs: investment banking associate, management consultant, big law associate, and primary care physician (MD). This technical report details the extensions to APEX-v1, including an increase in the held-out evaluation set from n = 50 to n = 100 cases per job (n = 400 total) and updates to the grading methodology. We present a new leaderboard, where GPT5 (Thinking = High) remains the top performing model with a score of 67.0%. APEX-v1-extended shows that frontier models still have substantial limitations when performing typical professional tasks. To support further research, we are open sourcing n = 25 non-benchmark example cases per role (n = 100 total) along with our evaluation harness.
♻ ☆ Shadow in the Cache: Unveiling and Mitigating Privacy Risks of KV-cache in LLM Inference
The Key-Value (KV) cache, which stores intermediate attention computations (Key and Value pairs) to avoid redundant calculations, is a fundamental mechanism for accelerating Large Language Model (LLM) inference. However, this efficiency optimization introduces significant yet underexplored privacy risks. This paper provides the first comprehensive analysis of these vulnerabilities, demonstrating that an attacker can reconstruct sensitive user inputs directly from the KV-cache. We design and implement three distinct attack vectors: a direct Inversion Attack, a more broadly applicable and potent Collision Attack, and a semantic-based Injection Attack. These methods demonstrate the practicality and severity of KV-cache privacy leakage issues. To mitigate this, we propose KV-Cloak, a novel, lightweight, and efficient defense mechanism. KV-Cloak uses a reversible matrix-based obfuscation scheme, combined with operator fusion, to secure the KV-cache. Our extensive experiments show that KV-Cloak effectively thwarts all proposed attacks, reducing reconstruction quality to random noise. Crucially, it achieves this robust security with virtually no degradation in model accuracy and minimal performance overhead, offering a practical solution for trustworthy LLM deployment.
comment: This paper is accepted by Network and Distributed System Security Symposium (NDSS) 2026
♻ ☆ LMSpell: Neural Spell Checking for Low-Resource Languages
Spell correction is still a challenging problem for low-resource languages (LRLs). While pretrained language models (PLMs) have been employed for spell correction, their use is still limited to a handful of languages, and there has been no proper comparison across PLMs. We present the first empirical study on the effectiveness of PLMs for spell correction, which includes LRLs. We find that Large Language Models (LLMs) outperform their counterparts (encoder-based and encoder-decoder) when the fine-tuning dataset is large. This observation holds even in languages for which the LLM is not pre-trained. We release LMSpell, an easy- to use spell correction toolkit across PLMs. It includes an evaluation function that compensates for the hallucination of LLMs. Further, we present a case study with Sinhala to shed light on the plight of spell correction for LRLs.
♻ ☆ AutoNeural: Co-Designing Vision-Language Models for NPU Inference
While Neural Processing Units (NPUs) offer high theoretical efficiency for edge AI, state-of-the-art Vision--Language Models (VLMs) tailored for GPUs often falter on these substrates. We attribute this hardware-model mismatch to two primary factors: the quantization brittleness of Vision Transformers (ViTs) and the I/O-bound nature of autoregressive attention mechanisms, which fail to utilize the high arithmetic throughput of NPUs. To bridge this gap, we propose AutoNeural, an NPU-native VLM architecture co-designed for integer-only inference. We replace the standard ViT encoder with a MobileNetV5-style backbone utilizing depthwise separable convolutions, which ensures bounded activation distributions for stable INT4/8/16 quantization. Complementing this, our language backbone integrates State-Space Model (SSM) principles with Transformer layers, employing efficient gated convolutions to achieve linear-time complexity. This hybrid design eliminates the heavy memory I/O overhead of Key-Value caching during generation. Our approach delivers substantial efficiency gains, reducing quantization error of vision encoder by up to 7x and end-to-end latency by 14x compared to conventional baselines. The AutoNeural also delivers 3x decoding speed and 4x longer context window than the baseline. We validate these improvements via a real-world automotive case study on the Qualcomm SA8295P SoC, demonstrating real-time performance for cockpit applications. Our results highlight that rethinking model topology specifically for NPU constraints is a prerequisite for robust multi-modal edge intelligence.
♻ ☆ SENSE models: an open source solution for multilingual and multimodal semantic-based tasks
This paper introduces SENSE (Shared Embedding for N-lingual Speech and tExt), an open-source solution inspired by the SAMU-XLSR framework and conceptually similar to Meta AI's SONAR models. These approaches rely on a teacher-student framework to align a self-supervised speech encoder with the language-agnostic continuous representations of a text encoder at the utterance level. We describe how the original SAMU-XLSR method has been updated by selecting a stronger teacher text model and a better initial speech encoder. The source code for training and using SENSE models has been integrated into the SpeechBrain toolkit, and the first SENSE model we trained has been publicly released. We report experimental results on multilingual and multimodal semantic tasks, where our SENSE model achieves highly competitive performance. Finally, this study offers new insights into how semantics are captured in such semantically aligned speech encoders.
comment: Accepted to IEEE ASRU 2025
♻ ☆ CLIBD: Bridging Vision and Genomics for Biodiversity Monitoring at Scale
Measuring biodiversity is crucial for understanding ecosystem health. While prior works have developed machine learning models for taxonomic classification of photographic images and DNA separately, in this work, we introduce a multimodal approach combining both, using CLIP-style contrastive learning to align images, barcode DNA, and text-based representations of taxonomic labels in a unified embedding space. This allows for accurate classification of both known and unknown insect species without task-specific fine-tuning, leveraging contrastive learning for the first time to fuse barcode DNA and image data. Our method surpasses previous single-modality approaches in accuracy by over 8% on zero-shot learning tasks, showcasing its effectiveness in biodiversity studies.
comment: Add Variations of DNA encoding
Shrinking the Generation-Verification Gap with Weak Verifiers NeurIPS
Verifiers can improve language model capabilities by scoring and ranking responses from generated candidates. Currently, high-quality verifiers are either unscalable (e.g., humans) or limited in utility (e.g., tools like Lean). While LM judges and reward models have become broadly useful as general-purpose verifiers, a significant performance gap remains between them and oracle verifiers (verifiers with perfect accuracy). To help close this gap, we introduce Weaver, a framework for designing a strong verifier by combining multiple weak, imperfect verifiers. We find weighted ensembles of verifiers, which typically require learning from labeled data, significantly outperform unweighted combinations due to differences in verifier accuracies. To reduce dependency on labeled data, Weaver leverages weak supervision to estimate each verifier's accuracy and combines outputs into a unified score that better reflects true response quality. However, directly applying weak supervision algorithms poses challenges, including inconsistent verifier output formats and handling low-quality verifiers. Weaver addresses these using dataset statistics to normalize outputs and filter specific verifiers. We study Weaver's effectiveness in test-time repeated sampling, where a model generates multiple candidate responses and selects one. Our evaluations show Weaver significantly improves over Pass@1-performance when selecting the first candidate-across reasoning and math tasks, achieving o3-mini-level accuracy with Llama 3.3 70B Instruct as generator, and an ensemble of 70B or smaller judge and reward models as verifiers (87.7% average). This gain mirrors the jump between GPT-4o and o3-mini (69.0% vs. 86.7%), which required extensive finetuning and post-training. To reduce computational costs of verifier ensembles, we train a 400M cross-encoder using Weaver's combined output scores.
comment: Annual Conference on Neural Information Processing Systems (NeurIPS) 2025
♻ ☆ The Necessity of Imperfection:Reversing Model Collapse via Simulating Cognitive Boundedness
Although synthetic data is widely promoted as a remedy, its prevailing production paradigm -- one optimizing for statistical smoothness -- systematically removes the long-tail, cognitively grounded irregularities that characterize human text. Prolonged training on such statistically optimal but cognitively impoverished data accelerates model collapse. This paper proposes a paradigm shift: instead of imitating the surface properties of data, we simulate the cognitive processes that generate human text. We introduce the Prompt-driven Cognitive Computing Framework (PMCSF), whose core consists of a Cognitive State Decoder (CSD) that reverse-engineers unstructured text into structured cognitive vectors, and a Cognitive Text Encoder (CTE) that re-materializes these states into text enriched with human-typical imperfections via mathematically defined Cognitive Perturbation Operators. The framework is validated through a two-stage objective evaluation pipeline. First, in cognitive codec verification, CTE text yields a Jensen-Shannon divergence of 0.0614 from human text (vs. 0.4431 for standard LLM output), passes double-blind professional media review, and achieves an intraclass correlation coefficient ICC > 0.9 for cognitive profile alignment across heterogeneous models. Second, in functional gain evaluation, isomorphic stress tests in the A-share market show that strategies incorporating CTE-generated data reduce maximum drawdown by 47.4% during the 2015 crash and deliver 8.6% Defensive Alpha, exceeding transaction costs by a factor of 33. Our findings demonstrate that modelling human cognitive limitations -- not copying surface data -- enables synthetic data with genuine functional gain, offering a viable technical pathway toward resolving the AI data-collapse crisis.
comment: 60 pages,9 figures. v3: Major update. Added 3D topological visualization (Figure 1) and independent computational verification of the Adaptive Markets Hypothesis (AMH). Includes comprehensive Supplementary Materials (algorithmic pseudocode, system architecture, and real-time GARCH logs) for technical reproducibility
♻ ☆ Make LVLMs Focus: Context-Aware Attention Modulation for Better Multimodal In-Context Learning
Multimodal in-context learning (ICL) is becoming a key capability that allows large vision-language models (LVLMs) to adapt to novel tasks without parameter updates, which expands their usefulness in many real-world applications. However, ICL performance remains unstable even when the in-context demonstrations (ICDs) are well matched, showing that LVLMs still struggle to make full use of the provided context. While existing work mainly focuses on prompt engineering or post-hoc logit calibration, we study the attention mechanisms inside LVLMs to address their inherent limitations. We identify two important weaknesses in their self-attention that hinder effective ICL. To address these weaknesses, we propose \textbf{Context-Aware Modulated Attention} (CAMA), a training-free and plug-and-play method that dynamically adjusts attention logits based on the input in-context sequence. CAMA uses a two-stage modulation process that strengthens attention to semantically important tokens, especially visual ones. Across four LVLMs and seven benchmarks, CAMA consistently outperforms vanilla models and baselines, showing clear effectiveness and generalization. It can also activate the intended benefits of prompt engineering methods and remains robust across different sequence configurations. Therefore, CAMA opens up new directions for improving multimodal reasoning through a deeper understanding of attention dynamics.
comment: 14 pages, 8 figures, 5 tables
♻ ☆ Understanding LLM Reasoning for Abstractive Summarization
While the reasoning capabilities of Large Language Models (LLMs) excel in analytical tasks such as mathematics and code generation, their utility for abstractive summarization remains widely assumed but largely unverified. To bridge this gap, we first tailor general reasoning strategies to the summarization domain. We then conduct a systematic, large scale comparative study of 8 reasoning strategies and 3 Large Reasoning Models (LRMs) across 8 diverse datasets, assessing both summary quality and faithfulness. Our findings show that reasoning is not a universal solution and its effectiveness is highly dependent on the specific strategy and context. Specifically, we observe a trade-off between summary quality and factual faithfulness: explicit reasoning strategies tend to improve fluency at the expense of factual grounding, while implicit reasoning in LRMs exhibits the inverse pattern. Furthermore, increasing an LRM's internal reasoning budget does not improve, and can even hurt, factual consistency, suggesting that effective summarization demands faithful compression rather than creative over-thinking.
comment: 26 pages,15 figures
♻ ☆ Can AI Truly Represent Your Voice in Deliberations? A Comprehensive Study of Large-Scale Opinion Aggregation with LLMs
Large-scale public deliberations generate thousands of free-form contributions that must be synthesized into representative and neutral summaries for policy use. While LLMs have been shown as a promising tool to generate summaries for large-scale deliberations, they also risk underrepresenting minority perspectives and exhibiting bias with respect to the input order, raising fairness concerns in high-stakes contexts. Studying and fixing these issues requires a comprehensive evaluation at a large scale, yet current practice often relies on LLMs as judges, which show weak alignment with human judgments. To address this, we present DeliberationBank, a large-scale human-grounded dataset with (1) opinion data spanning ten deliberation questions created by 3,000 participants and (2) summary judgment data annotated by 4,500 participants across four dimensions (representativeness, informativeness, neutrality, policy approval). Using these datasets, we train DeliberationJudge, a fine-tuned DeBERTa model that can rate deliberation summaries from individual perspectives. DeliberationJudge is more efficient and more aligned with human judgements compared to a wide range of LLM judges. With DeliberationJudge, we evaluate 18 LLMs and reveal persistent weaknesses in deliberation summarization, especially underrepresentation of minority positions. Our framework provides a scalable and reliable way to evaluate deliberation summarization, helping ensure AI systems are more representative and equitable for policymaking.
♻ ☆ EEG-to-Text Translation: A Model for Deciphering Human Brain Activity
With the rapid advancement of large language models like Gemini, GPT, and others, bridging the gap between the human brain and language processing has become an important area of focus. To address this challenge, researchers have developed various models to decode EEG signals into text. However, these models still face significant performance limitations. To overcome these shortcomings, we propose a new model, R1 Translator, which aims to improve the performance of EEG-to-text decoding. The R1 Translator model combines a bidirectional LSTM encoder with a pretrained transformer-based decoder, utilizing EEG features to produce high-quality text outputs. The model processes EEG embeddings through the LSTM to capture sequential dependencies, which are then fed into the transformer decoder for effective text generation. The R1 Translator excels in ROUGE metrics, outperforming both T5 (previous research) and Brain Translator. Specifically, R1 achieves a ROUGE-1 score of 38.00% (P), which is up to 9% higher than T5 (34.89%) and 3% better than Brain (35.69%). It also leads in ROUGE-L, with a F1 score of 32.51%, outperforming T5 by 3% (29.67%) and Brain by 2% (30.38%). In terms of CER, R1 achieves a CER of 0.5795, which is 2% lower than T5 (0.5917) and 4% lower than Brain (0.6001). Additionally, R1 performs better in WER with a score of 0.7280, outperforming T5 by 4.3% (0.7610) and Brain by 3.6% (0.7553). Code is available at https://github.com/Mmurrad/EEG-To-text.
♻ ☆ Compactor: Calibrated Query-Agnostic KV Cache Compression with Approximate Leverage Scores
Modern Large Language Models (LLMs) are increasingly trained to support very large context windows. We present Compactor, a training-free, query-agnostic KV compression strategy that uses approximate leverage scores to determine token importance. We show that Compactor can achieve the same performance as competing methods while retaining 20% fewer tokens in both synthetic and real-world context tasks, while being more task-robust. We further introduce a procedure for context-calibrated compression: inferring the maximum compression a given context supports before significant performance loss. Using context-calibrated compression, we show that Compactor achieves full KV performance on Longbench while reducing the KV memory burden by 68%, on average. To demonstrate the efficacy and generalizability of our approach, we apply Compactor to 27 synthetic and real-world tasks from RULER and Longbench, with models from both the Qwen 2.5 and Llama 3.1 families. Finally, we release compactor-vllm, an inference engine and suite of optimized Triton kernels designed to efficiently support the sparse, non-contiguous memory access patterns inherent to compressed KV caches. This work demonstrates that Compactor offers a practical, high-performance solution for alleviating the memory bottleneck in modern LLM deployment.
♻ ☆ Representational Stability of Truth in Large Language Models
Large language models (LLMs) are widely used for factual tasks such as "What treats asthma?" or "What is the capital of Latvia?". However, it remains unclear how stably LLMs encode distinctions between true, false, and neither-true-nor-false content in their internal probabilistic representations. We introduce representational stability as the robustness of an LLM's veracity representations to perturbations in the operational definition of truth. We assess representational stability by (i) training a linear probe on an LLM's activations to separate true from not-true statements and (ii) measuring how its learned decision boundary shifts under controlled label changes. Using activations from sixteen open-source models and three factual domains, we compare two types of neither statements. The first are fact-like assertions about entities we believe to be absent from any training data. We call these unfamiliar neither statements. The second are nonfactual claims drawn from well-known fictional contexts. We call these familiar neither statements. The unfamiliar statements induce the largest boundary shifts, producing up to $40\%$ flipped truth judgements in fragile domains (such as word definitions), while familiar fictional statements remain more coherently clustered and yield smaller changes ($\leq 8.2\%$). These results suggest that representational stability stems more from epistemic familiarity than from linguistic form. More broadly, our approach provides a diagnostic for auditing and training LLMs to preserve coherent truth assignments under semantic uncertainty, rather than optimizing for output accuracy alone.
comment: 25 pages, 24 figures
Computer Vision and Pattern Recognition 100
☆ Voxify3D: Pixel Art Meets Volumetric Rendering
Voxel art is a distinctive stylization widely used in games and digital media, yet automated generation from 3D meshes remains challenging due to conflicting requirements of geometric abstraction, semantic preservation, and discrete color coherence. Existing methods either over-simplify geometry or fail to achieve the pixel-precise, palette-constrained aesthetics of voxel art. We introduce Voxify3D, a differentiable two-stage framework bridging 3D mesh optimization with 2D pixel art supervision. Our core innovation lies in the synergistic integration of three components: (1) orthographic pixel art supervision that eliminates perspective distortion for precise voxel-pixel alignment; (2) patch-based CLIP alignment that preserves semantics across discretization levels; (3) palette-constrained Gumbel-Softmax quantization enabling differentiable optimization over discrete color spaces with controllable palette strategies. This integration addresses fundamental challenges: semantic preservation under extreme discretization, pixel-art aesthetics through volumetric rendering, and end-to-end discrete optimization. Experiments show superior performance (37.12 CLIP-IQA, 77.90\% user preference) across diverse characters and controllable abstraction (2-8 colors, 20x-50x resolutions). Project page: https://yichuanh.github.io/Voxify-3D/
comment: Project page: https://yichuanh.github.io/Voxify-3D/
☆ Relational Visual Similarity
Humans do not just see attribute similarity -- we also see relational similarity. An apple is like a peach because both are reddish fruit, but the Earth is also like a peach: its crust, mantle, and core correspond to the peach's skin, flesh, and pit. This ability to perceive and recognize relational similarity, is arguable by cognitive scientist to be what distinguishes humans from other species. Yet, all widely used visual similarity metrics today (e.g., LPIPS, CLIP, DINO) focus solely on perceptual attribute similarity and fail to capture the rich, often surprising relational similarities that humans perceive. How can we go beyond the visible content of an image to capture its relational properties? How can we bring images with the same relational logic closer together in representation space? To answer these questions, we first formulate relational image similarity as a measurable problem: two images are relationally similar when their internal relations or functions among visual elements correspond, even if their visual attributes differ. We then curate 114k image-caption dataset in which the captions are anonymized -- describing the underlying relational logic of the scene rather than its surface content. Using this dataset, we finetune a Vision-Language model to measure the relational similarity between images. This model serves as the first step toward connecting images by their underlying relational structure rather than their visible appearance. Our study shows that while relational similarity has a lot of real-world applications, existing image similarity models fail to capture it -- revealing a critical gap in visual computing.
comment: Project page, data, and code: https://thaoshibe.github.io/relsim
☆ UnityVideo: Unified Multi-Modal Multi-Task Learning for Enhancing World-Aware Video Generation
Recent video generation models demonstrate impressive synthesis capabilities but remain limited by single-modality conditioning, constraining their holistic world understanding. This stems from insufficient cross-modal interaction and limited modal diversity for comprehensive world knowledge representation. To address these limitations, we introduce UnityVideo, a unified framework for world-aware video generation that jointly learns across multiple modalities (segmentation masks, human skeletons, DensePose, optical flow, and depth maps) and training paradigms. Our approach features two core components: (1) dynamic noising to unify heterogeneous training paradigms, and (2) a modality switcher with an in-context learner that enables unified processing via modular parameters and contextual learning. We contribute a large-scale unified dataset with 1.3M samples. Through joint optimization, UnityVideo accelerates convergence and significantly enhances zero-shot generalization to unseen data. We demonstrate that UnityVideo achieves superior video quality, consistency, and improved alignment with physical world constraints. Code and data can be found at: https://github.com/dvlab-research/UnityVideo
comment: Project Website https://jackailab.github.io/Projects/UnityVideo
☆ One Layer Is Enough: Adapting Pretrained Visual Encoders for Image Generation
Visual generative models (e.g., diffusion models) typically operate in compressed latent spaces to balance training efficiency and sample quality. In parallel, there has been growing interest in leveraging high-quality pre-trained visual representations, either by aligning them inside VAEs or directly within the generative model. However, adapting such representations remains challenging due to fundamental mismatches between understanding-oriented features and generation-friendly latent spaces. Representation encoders benefit from high-dimensional latents that capture diverse hypotheses for masked regions, whereas generative models favor low-dimensional latents that must faithfully preserve injected noise. This discrepancy has led prior work to rely on complex objectives and architectures. In this work, we propose FAE (Feature Auto-Encoder), a simple yet effective framework that adapts pre-trained visual representations into low-dimensional latents suitable for generation using as little as a single attention layer, while retaining sufficient information for both reconstruction and understanding. The key is to couple two separate deep decoders: one trained to reconstruct the original feature space, and a second that takes the reconstructed features as input for image generation. FAE is generic; it can be instantiated with a variety of self-supervised encoders (e.g., DINO, SigLIP) and plugged into two distinct generative families: diffusion models and normalizing flows. Across class-conditional and text-to-image benchmarks, FAE achieves strong performance. For example, on ImageNet 256x256, our diffusion model with CFG attains a near state-of-the-art FID of 1.29 (800 epochs) and 1.70 (80 epochs). Without CFG, FAE reaches the state-of-the-art FID of 1.48 (800 epochs) and 2.08 (80 epochs), demonstrating both high quality and fast learning.
☆ OpenVE-3M: A Large-Scale High-Quality Dataset for Instruction-Guided Video Editing
The quality and diversity of instruction-based image editing datasets are continuously increasing, yet large-scale, high-quality datasets for instruction-based video editing remain scarce. To address this gap, we introduce OpenVE-3M, an open-source, large-scale, and high-quality dataset for instruction-based video editing. It comprises two primary categories: spatially-aligned edits (Global Style, Background Change, Local Change, Local Remove, Local Add, and Subtitles Edit) and non-spatially-aligned edits (Camera Multi-Shot Edit and Creative Edit). All edit types are generated via a meticulously designed data pipeline with rigorous quality filtering. OpenVE-3M surpasses existing open-source datasets in terms of scale, diversity of edit types, instruction length, and overall quality. Furthermore, to address the lack of a unified benchmark in the field, we construct OpenVE-Bench, containing 431 video-edit pairs that cover a diverse range of editing tasks with three key metrics highly aligned with human judgment. We present OpenVE-Edit, a 5B model trained on our dataset that demonstrates remarkable efficiency and effectiveness by setting a new state-of-the-art on OpenVE-Bench, outperforming all prior open-source models including a 14B baseline. Project page is at https://github.com/lewandofskee/OpenVE.
comment: 38 pages
☆ WorldReel: 4D Video Generation with Consistent Geometry and Motion Modeling
Recent video generators achieve striking photorealism, yet remain fundamentally inconsistent in 3D. We present WorldReel, a 4D video generator that is natively spatio-temporally consistent. WorldReel jointly produces RGB frames together with 4D scene representations, including pointmaps, camera trajectory, and dense flow mapping, enabling coherent geometry and appearance modeling over time. Our explicit 4D representation enforces a single underlying scene that persists across viewpoints and dynamic content, yielding videos that remain consistent even under large non-rigid motion and significant camera movement. We train WorldReel by carefully combining synthetic and real data: synthetic data providing precise 4D supervision (geometry, motion, and camera), while real videos contribute visual diversity and realism. This blend allows WorldReel to generalize to in-the-wild footage while preserving strong geometric fidelity. Extensive experiments demonstrate that WorldReel sets a new state-of-the-art for consistent video generation with dynamic scenes and moving cameras, improving metrics of geometric consistency, motion coherence, and reducing view-time artifacts over competing methods. We believe that WorldReel brings video generation closer to 4D-consistent world modeling, where agents can render, interact, and reason about scenes through a single and stable spatiotemporal representation.
☆ Lang3D-XL: Language Embedded 3D Gaussians for Large-scale Scenes
Embedding a language field in a 3D representation enables richer semantic understanding of spatial environments by linking geometry with descriptive meaning. This allows for a more intuitive human-computer interaction, enabling querying or editing scenes using natural language, and could potentially improve tasks like scene retrieval, navigation, and multimodal reasoning. While such capabilities could be transformative, in particular for large-scale scenes, we find that recent feature distillation approaches cannot effectively learn over massive Internet data due to challenges in semantic feature misalignment and inefficiency in memory and runtime. To this end, we propose a novel approach to address these challenges. First, we introduce extremely low-dimensional semantic bottleneck features as part of the underlying 3D Gaussian representation. These are processed by rendering and passing them through a multi-resolution, feature-based, hash encoder. This significantly improves efficiency both in runtime and GPU memory. Second, we introduce an Attenuated Downsampler module and propose several regularizations addressing the semantic misalignment of ground truth 2D features. We evaluate our method on the in-the-wild HolyScenes dataset and demonstrate that it surpasses existing approaches in both performance and efficiency.
comment: Accepted to SIGGRAPH Asia 2025. Project webpage: https://tau-vailab.github.io/Lang3D-XL
☆ Multi-view Pyramid Transformer: Look Coarser to See Broader
We propose Multi-view Pyramid Transformer (MVP), a scalable multi-view transformer architecture that directly reconstructs large 3D scenes from tens to hundreds of images in a single forward pass. Drawing on the idea of ``looking broader to see the whole, looking finer to see the details," MVP is built on two core design principles: 1) a local-to-global inter-view hierarchy that gradually broadens the model's perspective from local views to groups and ultimately the full scene, and 2) a fine-to-coarse intra-view hierarchy that starts from detailed spatial representations and progressively aggregates them into compact, information-dense tokens. This dual hierarchy achieves both computational efficiency and representational richness, enabling fast reconstruction of large and complex scenes. We validate MVP on diverse datasets and show that, when coupled with 3D Gaussian Splatting as the underlying 3D representation, it achieves state-of-the-art generalizable reconstruction quality while maintaining high efficiency and scalability across a wide range of view configurations.
comment: Project page: see https://gynjn.github.io/MVP/
☆ OneStory: Coherent Multi-Shot Video Generation with Adaptive Memory
Storytelling in real-world videos often unfolds through multiple shots -- discontinuous yet semantically connected clips that together convey a coherent narrative. However, existing multi-shot video generation (MSV) methods struggle to effectively model long-range cross-shot context, as they rely on limited temporal windows or single keyframe conditioning, leading to degraded performance under complex narratives. In this work, we propose OneStory, enabling global yet compact cross-shot context modeling for consistent and scalable narrative generation. OneStory reformulates MSV as a next-shot generation task, enabling autoregressive shot synthesis while leveraging pretrained image-to-video (I2V) models for strong visual conditioning. We introduce two key modules: a Frame Selection module that constructs a semantically-relevant global memory based on informative frames from prior shots, and an Adaptive Conditioner that performs importance-guided patchification to generate compact context for direct conditioning. We further curate a high-quality multi-shot dataset with referential captions to mirror real-world storytelling patterns, and design effective training strategies under the next-shot paradigm. Finetuned from a pretrained I2V model on our curated 60K dataset, OneStory achieves state-of-the-art narrative coherence across diverse and complex scenes in both text- and image-conditioned settings, enabling controllable and immersive long-form video storytelling.
comment: Project Page: https://zhaochongan.github.io/projects/OneStory
☆ Distribution Matching Variational AutoEncoder
Most visual generative models compress images into a latent space before applying diffusion or autoregressive modelling. Yet, existing approaches such as VAEs and foundation model aligned encoders implicitly constrain the latent space without explicitly shaping its distribution, making it unclear which types of distributions are optimal for modeling. We introduce \textbf{Distribution-Matching VAE} (\textbf{DMVAE}), which explicitly aligns the encoder's latent distribution with an arbitrary reference distribution via a distribution matching constraint. This generalizes beyond the Gaussian prior of conventional VAEs, enabling alignment with distributions derived from self-supervised features, diffusion noise, or other prior distributions. With DMVAE, we can systematically investigate which latent distributions are more conducive to modeling, and we find that SSL-derived distributions provide an excellent balance between reconstruction fidelity and modeling efficiency, reaching gFID equals 3.2 on ImageNet with only 64 training epochs. Our results suggest that choosing a suitable latent distribution structure (achieved via distribution-level alignment), rather than relying on fixed priors, is key to bridging the gap between easy-to-model latents and high-fidelity image synthesis. Code is avaliable at https://github.com/sen-ye/dmvae.
☆ GorillaWatch: An Automated System for In-the-Wild Gorilla Re-Identification and Population Monitoring
Monitoring critically endangered western lowland gorillas is currently hampered by the immense manual effort required to re-identify individuals from vast archives of camera trap footage. The primary obstacle to automating this process has been the lack of large-scale, "in-the-wild" video datasets suitable for training robust deep learning models. To address this gap, we introduce a comprehensive benchmark with three novel datasets: Gorilla-SPAC-Wild, the largest video dataset for wild primate re-identification to date; Gorilla-Berlin-Zoo, for assessing cross-domain re-identification generalization; and Gorilla-SPAC-MoT, for evaluating multi-object tracking in camera trap footage. Building on these datasets, we present GorillaWatch, an end-to-end pipeline integrating detection, tracking, and re-identification. To exploit temporal information, we introduce a multi-frame self-supervised pretraining strategy that leverages consistency in tracklets to learn domain-specific features without manual labels. To ensure scientific validity, a differentiable adaptation of AttnLRP verifies that our model relies on discriminative biometric traits rather than background correlations. Extensive benchmarking subsequently demonstrates that aggregating features from large-scale image backbones outperforms specialized video architectures. Finally, we address unsupervised population counting by integrating spatiotemporal constraints into standard clustering to mitigate over-segmentation. We publicly release all code and datasets to facilitate scalable, non-invasive monitoring of endangered species
comment: Accepted at WACV 2026
☆ Modality-Aware Bias Mitigation and Invariance Learning for Unsupervised Visible-Infrared Person Re-Identification AAAI 2026
Unsupervised visible-infrared person re-identification (USVI-ReID) aims to match individuals across visible and infrared cameras without relying on any annotation. Given the significant gap across visible and infrared modality, estimating reliable cross-modality association becomes a major challenge in USVI-ReID. Existing methods usually adopt optimal transport to associate the intra-modality clusters, which is prone to propagating the local cluster errors, and also overlooks global instance-level relations. By mining and attending to the visible-infrared modality bias, this paper focuses on addressing cross-modality learning from two aspects: bias-mitigated global association and modality-invariant representation learning. Motivated by the camera-aware distance rectification in single-modality re-ID, we propose modality-aware Jaccard distance to mitigate the distance bias caused by modality discrepancy, so that more reliable cross-modality associations can be estimated through global clustering. To further improve cross-modality representation learning, a `split-and-contrast' strategy is designed to obtain modality-specific global prototypes. By explicitly aligning these prototypes under global association guidance, modality-invariant yet ID-discriminative representation learning can be achieved. While conceptually simple, our method obtains state-of-the-art performance on benchmark VI-ReID datasets and outperforms existing methods by a significant margin, validating its effectiveness.
comment: Accepted to AAAI 2026
☆ UltrasODM: A Dual Stream Optical Flow Mamba Network for 3D Freehand Ultrasound Reconstruction
Clinical ultrasound acquisition is highly operator-dependent, where rapid probe motion and brightness fluctuations often lead to reconstruction errors that reduce trust and clinical utility. We present UltrasODM, a dual-stream framework that assists sonographers during acquisition through calibrated per-frame uncertainty, saliency-based diagnostics, and actionable prompts. UltrasODM integrates (i) a contrastive ranking module that groups frames by motion similarity, (ii) an optical-flow stream fused with Dual-Mamba temporal modules for robust 6-DoF pose estimation, and (iii) a Human-in-the-Loop (HITL) layer combining Bayesian uncertainty, clinician-calibrated thresholds, and saliency maps highlighting regions of low confidence. When uncertainty exceeds the threshold, the system issues unobtrusive alerts suggesting corrective actions such as re-scanning highlighted regions or slowing the sweep. Evaluated on a clinical freehand ultrasound dataset, UltrasODM reduces drift by 15.2%, distance error by 12.1%, and Hausdorff distance by 10.1% relative to UltrasOM, while producing per-frame uncertainty and saliency outputs. By emphasizing transparency and clinician feedback, UltrasODM improves reconstruction reliability and supports safer, more trustworthy clinical workflows. Our code is publicly available at https://github.com/AnandMayank/UltrasODM.
☆ Unison: A Fully Automatic, Task-Universal, and Low-Cost Framework for Unified Understanding and Generation
Unified understanding and generation is a highly appealing research direction in multimodal learning. There exist two approaches: one trains a transformer via an auto-regressive paradigm, and the other adopts a two-stage scheme connecting pre-trained understanding and generative models for alignment fine-tuning. The former demands massive data and computing resources unaffordable for ordinary researchers. Though the latter requires a lower training cost, existing works often suffer from limited task coverage or poor generation quality. Both approaches lack the ability to parse input meta-information (such as task type, image resolution, video duration, etc.) and require manual parameter configuration that is tedious and non-intelligent. In this paper, we propose Unison which adopts the two-stage scheme while preserving the capabilities of the pre-trained models well. With an extremely low training cost, we cover a variety of multimodal understanding tasks, including text, image, and video understanding, as well as diverse generation tasks, such as text-to-visual content generation, editing, controllable generation, and IP-based reference generation. We also equip our model with the ability to automatically parse user intentions, determine the target task type, and accurately extract the meta-information required for the corresponding task. This enables full automation of various multimodal tasks without human intervention. Experiments demonstrate that, under a low-cost setting of only 500k training samples and 50 GPU hours, our model can accurately and automatically identify tasks and extract relevant parameters, and achieve superior performance across a variety of understanding and generation tasks.
☆ DiffusionDriveV2: Reinforcement Learning-Constrained Truncated Diffusion Modeling in End-to-End Autonomous Driving
Generative diffusion models for end-to-end autonomous driving often suffer from mode collapse, tending to generate conservative and homogeneous behaviors. While DiffusionDrive employs predefined anchors representing different driving intentions to partition the action space and generate diverse trajectories, its reliance on imitation learning lacks sufficient constraints, resulting in a dilemma between diversity and consistent high quality. In this work, we propose DiffusionDriveV2, which leverages reinforcement learning to both constrain low-quality modes and explore for superior trajectories. This significantly enhances the overall output quality while preserving the inherent multimodality of its core Gaussian Mixture Model. First, we use scale-adaptive multiplicative noise, ideal for trajectory planning, to promote broad exploration. Second, we employ intra-anchor GRPO to manage advantage estimation among samples generated from a single anchor, and inter-anchor truncated GRPO to incorporate a global perspective across different anchors, preventing improper advantage comparisons between distinct intentions (e.g., turning vs. going straight), which can lead to further mode collapse. DiffusionDriveV2 achieves 91.2 PDMS on the NAVSIM v1 dataset and 85.5 EPDMS on the NAVSIM v2 dataset in closed-loop evaluation with an aligned ResNet-34 backbone, setting a new record. Further experiments validate that our approach resolves the dilemma between diversity and consistent high quality for truncated diffusion models, achieving the best trade-off. Code and model will be available at https://github.com/hustvl/DiffusionDriveV2
☆ HLTCOE Evaluation Team at TREC 2025: VQA Track
The HLTCOE Evaluation team participated in TREC VQA's Answer Generation (AG) task, for which we developed a listwise learning framework that aims to improve semantic precision and ranking consistency in answer generation. Given a video-question pair, a base multimodal model first generates multiple candidate answers, which are then reranked using a model trained with a novel Masked Pointer Cross-Entropy Loss with Rank Weights. This objective integrates pointer-based candidate selection, rank-dependent weighting, and masked cross-entropy under vocabulary restriction, enabling stable and interpretable listwise optimization. By bridging generative modeling with discriminative ranking, our method produces coherent, fine-grained answer lists. Experiments reveal consistent gains in accuracy and ranking stability, especially for questions requiring temporal reasoning and semantic disambiguation.
comment: 7 pages, 1 figure
☆ SpatialDreamer: Incentivizing Spatial Reasoning via Active Mental Imagery
Despite advancements in Multi-modal Large Language Models (MLLMs) for scene understanding, their performance on complex spatial reasoning tasks requiring mental simulation remains significantly limited. Current methods often rely on passive observation of spatial data, failing to internalize an active mental imagery process. To bridge this gap, we propose SpatialDreamer, a reinforcement learning framework that enables spatial reasoning through a closedloop process of active exploration, visual imagination via a world model, and evidence-grounded reasoning. To address the lack of fine-grained reward supervision in longhorizontal reasoning tasks, we propose Geometric Policy Optimization (GeoPO), which introduces tree-structured sampling and step-level reward estimation with geometric consistency constraints. Extensive experiments demonstrate that SpatialDreamer delivers highly competitive results across multiple challenging benchmarks, signifying a critical advancement in human-like active spatial mental simulation for MLLMs.
☆ SAVE: Sparse Autoencoder-Driven Visual Information Enhancement for Mitigating Object Hallucination
Although Multimodal Large Language Models (MLLMs) have advanced substantially, they remain vulnerable to object hallucination caused by language priors and visual information loss. To address this, we propose SAVE (Sparse Autoencoder-Driven Visual Information Enhancement), a framework that mitigates hallucination by steering the model along Sparse Autoencoder (SAE) latent features. A binary object-presence question-answering probe identifies the SAE features most indicative of the model's visual information processing, referred to as visual understanding features. Steering the model along these identified features reinforces grounded visual understanding and effectively reduces hallucination. With its simple design, SAVE outperforms state-of-the-art training-free methods on standard benchmarks, achieving a 10\%p improvement in CHAIR\_S and consistent gains on POPE and MMHal-Bench. Extensive evaluations across multiple models and layers confirm the robustness and generalizability of our approach. Further analysis reveals that steering along visual understanding features suppresses the generation of uncertain object tokens and increases attention to image tokens, mitigating hallucination. Code is released at https://github.com/wiarae/SAVE.
comment: WACV 2026
☆ Improving action classification with brain-inspired deep networks
Action recognition is also key for applications ranging from robotics to healthcare monitoring. Action information can be extracted from the body pose and movements, as well as from the background scene. However, the extent to which deep neural networks (DNNs) make use of information about the body and information about the background remains unclear. Since these two sources of information may be correlated within a training dataset, DNNs might learn to rely predominantly on one of them, without taking full advantage of the other. Unlike DNNs, humans have domain-specific brain regions selective for perceiving bodies, and regions selective for perceiving scenes. The present work tests whether humans are thus more effective at extracting information from both body and background, and whether building brain-inspired deep network architectures with separate domain-specific streams for body and scene perception endows them with more human-like performance. We first demonstrate that DNNs trained using the HAA500 dataset perform almost as accurately on versions of the stimuli that show both body and background and on versions of the stimuli from which the body was removed, but are at chance-level for versions of the stimuli from which the background was removed. Conversely, human participants (N=28) can recognize the same set of actions accurately with all three versions of the stimuli, and perform significantly better on stimuli that show only the body than on stimuli that show only the background. Finally, we implement and test a novel architecture patterned after domain specificity in the brain with separate streams to process body and background information. We show that 1) this architecture improves action recognition performance, and 2) its accuracy across different versions of the stimuli follows a pattern that matches more closely the pattern of accuracy observed in human participants.
☆ ViSA: 3D-Aware Video Shading for Real-Time Upper-Body Avatar Creation
Generating high-fidelity upper-body 3D avatars from one-shot input image remains a significant challenge. Current 3D avatar generation methods, which rely on large reconstruction models, are fast and capable of producing stable body structures, but they often suffer from artifacts such as blurry textures and stiff, unnatural motion. In contrast, generative video models show promising performance by synthesizing photorealistic and dynamic results, but they frequently struggle with unstable behavior, including body structural errors and identity drift. To address these limitations, we propose a novel approach that combines the strengths of both paradigms. Our framework employs a 3D reconstruction model to provide robust structural and appearance priors, which in turn guides a real-time autoregressive video diffusion model for rendering. This process enables the model to synthesize high-frequency, photorealistic details and fluid dynamics in real time, effectively reducing texture blur and motion stiffness while preventing the structural inconsistencies common in video generation methods. By uniting the geometric stability of 3D reconstruction with the generative capabilities of video models, our method produces high-fidelity digital avatars with realistic appearance and dynamic, temporally coherent motion. Experiments demonstrate that our approach significantly reduces artifacts and achieves substantial improvements in visual quality over leading methods, providing a robust and efficient solution for real-time applications such as gaming and virtual reality. Project page: https://lhyfst.github.io/visa
☆ UnCageNet: Tracking and Pose Estimation of Caged Animal
Animal tracking and pose estimation systems, such as STEP (Simultaneous Tracking and Pose Estimation) and ViTPose, experience substantial performance drops when processing images and videos with cage structures and systematic occlusions. We present a three-stage preprocessing pipeline that addresses this limitation through: (1) cage segmentation using a Gabor-enhanced ResNet-UNet architecture with tunable orientation filters, (2) cage inpainting using CRFill for content-aware reconstruction of occluded regions, and (3) evaluation of pose estimation and tracking on the uncaged frames. Our Gabor-enhanced segmentation model leverages orientation-aware features with 72 directional kernels to accurately identify and segment cage structures that severely impair the performance of existing methods. Experimental validation demonstrates that removing cage occlusions through our pipeline enables pose estimation and tracking performance comparable to that in environments without occlusions. We also observe significant improvements in keypoint detection accuracy and trajectory consistency.
comment: 9 pages, 2 figures, 2 tables. Accepted to the Indian Conference on Computer Vision, Graphics, and Image Processing (ICVGIP 2025), Mandi, India
☆ PVeRA: Probabilistic Vector-Based Random Matrix Adaptation
Large foundation models have emerged in the last years and are pushing performance boundaries for a variety of tasks. Training or even finetuning such models demands vast datasets and computational resources, which are often scarce and costly. Adaptation methods provide a computationally efficient solution to address these limitations by allowing such models to be finetuned on small amounts of data and computing power. This is achieved by appending new trainable modules to frozen backbones with only a fraction of the trainable parameters and fitting only these modules on novel tasks. Recently, the VeRA adapter was shown to excel in parameter-efficient adaptations by utilizing a pair of frozen random low-rank matrices shared across all layers. In this paper, we propose PVeRA, a probabilistic version of the VeRA adapter, which modifies the low-rank matrices of VeRA in a probabilistic manner. This modification naturally allows handling inherent ambiguities in the input and allows for different sampling configurations during training and testing. A comprehensive evaluation was performed on the VTAB-1k benchmark and seven adapters, with PVeRA outperforming VeRA and other adapters. Our code for training models with PVeRA and benchmarking all adapters is available https://github.com/leofillioux/pvera.
☆ Guiding What Not to Generate: Automated Negative Prompting for Text-Image Alignment
Despite substantial progress in text-to-image generation, achieving precise text-image alignment remains challenging, particularly for prompts with rich compositional structure or imaginative elements. To address this, we introduce Negative Prompting for Image Correction (NPC), an automated pipeline that improves alignment by identifying and applying negative prompts that suppress unintended content. We begin by analyzing cross-attention patterns to explain why both targeted negatives-those directly tied to the prompt's alignment error-and untargeted negatives-tokens unrelated to the prompt but present in the generated image-can enhance alignment. To discover useful negatives, NPC generates candidate prompts using a verifier-captioner-proposer framework and ranks them with a salient text-space score, enabling effective selection without requiring additional image synthesis. On GenEval++ and Imagine-Bench, NPC outperforms strong baselines, achieving 0.571 vs. 0.371 on GenEval++ and the best overall performance on Imagine-Bench. By guiding what not to generate, NPC provides a principled, fully automated route to stronger text-image alignment in diffusion models. Code is released at https://github.com/wiarae/NPC.
comment: WACV 2026
☆ sim2art: Accurate Articulated Object Modeling from a Single Video using Synthetic Training Data Only
Understanding articulated objects is a fundamental challenge in robotics and digital twin creation. To effectively model such objects, it is essential to recover both part segmentation and the underlying joint parameters. Despite the importance of this task, previous work has largely focused on setups like multi-view systems, object scanning, or static cameras. In this paper, we present the first data-driven approach that jointly predicts part segmentation and joint parameters from monocular video captured with a freely moving camera. Trained solely on synthetic data, our method demonstrates strong generalization to real-world objects, offering a scalable and practical solution for articulated object understanding. Our approach operates directly on casually recorded video, making it suitable for real-time applications in dynamic environments. Project webpage: https://aartykov.github.io/sim2art/
☆ HalluShift++: Bridging Language and Vision through Internal Representation Shifts for Hierarchical Hallucinations in MLLMs
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in vision-language understanding tasks. While these models often produce linguistically coherent output, they often suffer from hallucinations, generating descriptions that are factually inconsistent with the visual content, potentially leading to adverse consequences. Therefore, the assessment of hallucinations in MLLM has become increasingly crucial in the model development process. Contemporary methodologies predominantly depend on external LLM evaluators, which are themselves susceptible to hallucinations and may present challenges in terms of domain adaptation. In this study, we propose the hypothesis that hallucination manifests as measurable irregularities within the internal layer dynamics of MLLMs, not merely due to distributional shifts but also in the context of layer-wise analysis of specific assumptions. By incorporating such modifications, \textsc{\textsc{HalluShift++}} broadens the efficacy of hallucination detection from text-based large language models (LLMs) to encompass multimodal scenarios. Our codebase is available at https://github.com/C0mRD/HalluShift_Plus.
☆ DIST-CLIP: Arbitrary Metadata and Image Guided MRI Harmonization via Disentangled Anatomy-Contrast Representations
Deep learning holds immense promise for transforming medical image analysis, yet its clinical generalization remains profoundly limited. A major barrier is data heterogeneity. This is particularly true in Magnetic Resonance Imaging, where scanner hardware differences, diverse acquisition protocols, and varying sequence parameters introduce substantial domain shifts that obscure underlying biological signals. Data harmonization methods aim to reduce these instrumental and acquisition variability, but existing approaches remain insufficient. When applied to imaging data, image-based harmonization approaches are often restricted by the need for target images, while existing text-guided methods rely on simplistic labels that fail to capture complex acquisition details or are typically restricted to datasets with limited variability, failing to capture the heterogeneity of real-world clinical environments. To address these limitations, we propose DIST-CLIP (Disentangled Style Transfer with CLIP Guidance), a unified framework for MRI harmonization that flexibly uses either target images or DICOM metadata for guidance. Our framework explicitly disentangles anatomical content from image contrast, with the contrast representations being extracted using pre-trained CLIP encoders. These contrast embeddings are then integrated into the anatomical content via a novel Adaptive Style Transfer module. We trained and evaluated DIST-CLIP on diverse real-world clinical datasets, and showed significant improvements in performance when compared against state-of-the-art methods in both style translation fidelity and anatomical preservation, offering a flexible solution for style transfer and standardizing MRI data. Our code and weights will be made publicly available upon publication.
☆ EgoCampus: Egocentric Pedestrian Eye Gaze Model and Dataset
We address the challenge of predicting human visual attention during real-world navigation by measuring and modeling egocentric pedestrian eye gaze in an outdoor campus setting. We introduce the EgoCampus dataset, which spans 25 unique outdoor paths over 6 km across a university campus with recordings from more than 80 distinct human pedestrians, resulting in a diverse set of gaze-annotated videos. The system used for collection, Meta's Project Aria glasses, integrates eye tracking, front-facing RGB cameras, inertial sensors, and GPS to provide rich data from the human perspective. Unlike many prior egocentric datasets that focus on indoor tasks or exclude eye gaze information, our work emphasizes visual attention while subjects walk in outdoor campus paths. Using this data, we develop EgoCampusNet, a novel method to predict eye gaze of navigating pedestrians as they move through outdoor environments. Our contributions provide both a new resource for studying real-world attention and a resource for future work in gaze prediction models for navigation. Dataset and code are available upon request, and will be made publicly available at a later date at https://github.com/ComputerVisionRutgers/EgoCampus .
☆ Optimization-Guided Diffusion for Interactive Scene Generation
Realistic and diverse multi-agent driving scenes are crucial for evaluating autonomous vehicles, but safety-critical events which are essential for this task are rare and underrepresented in driving datasets. Data-driven scene generation offers a low-cost alternative by synthesizing complex traffic behaviors from existing driving logs. However, existing models often lack controllability or yield samples that violate physical or social constraints, limiting their usability. We present OMEGA, an optimization-guided, training-free framework that enforces structural consistency and interaction awareness during diffusion-based sampling from a scene generation model. OMEGA re-anchors each reverse diffusion step via constrained optimization, steering the generation towards physically plausible and behaviorally coherent trajectories. Building on this framework, we formulate ego-attacker interactions as a game-theoretic optimization in the distribution space, approximating Nash equilibria to generate realistic, safety-critical adversarial scenarios. Experiments on nuPlan and Waymo show that OMEGA improves generation realism, consistency, and controllability, increasing the ratio of physically and behaviorally valid scenes from 32.35% to 72.27% for free exploration capabilities, and from 11% to 80% for controllability-focused generation. Our approach can also generate $5\times$ more near-collision frames with a time-to-collision under three seconds while maintaining the overall scene realism.
☆ An AI-Powered Autonomous Underwater System for Sea Exploration and Scientific Research
Traditional sea exploration faces significant challenges due to extreme conditions, limited visibility, and high costs, resulting in vast unexplored ocean regions. This paper presents an innovative AI-powered Autonomous Underwater Vehicle (AUV) system designed to overcome these limitations by automating underwater object detection, analysis, and reporting. The system integrates YOLOv12 Nano for real-time object detection, a Convolutional Neural Network (CNN) (ResNet50) for feature extraction, Principal Component Analysis (PCA) for dimensionality reduction, and K-Means++ clustering for grouping marine objects based on visual characteristics. Furthermore, a Large Language Model (LLM) (GPT-4o Mini) is employed to generate structured reports and summaries of underwater findings, enhancing data interpretation. The system was trained and evaluated on a combined dataset of over 55,000 images from the DeepFish and OzFish datasets, capturing diverse Australian marine environments. Experimental results demonstrate the system's capability to detect marine objects with a mAP@0.5 of 0.512, a precision of 0.535, and a recall of 0.438. The integration of PCA effectively reduced feature dimensionality while preserving 98% variance, facilitating K-Means clustering which successfully grouped detected objects based on visual similarities. The LLM integration proved effective in generating insightful summaries of detections and clusters, supported by location data. This integrated approach significantly reduces the risks associated with human diving, increases mission efficiency, and enhances the speed and depth of underwater data analysis, paving the way for more effective scientific research and discovery in challenging marine environments.
☆ Liver Fibrosis Quantification and Analysis: The LiQA Dataset and Baseline Method
Liver fibrosis represents a significant global health burden, necessitating accurate staging for effective clinical management. This report introduces the LiQA (Liver Fibrosis Quantification and Analysis) dataset, established as part of the CARE 2024 challenge. Comprising $440$ patients with multi-phase, multi-center MRI scans, the dataset is curated to benchmark algorithms for Liver Segmentation (LiSeg) and Liver Fibrosis Staging (LiFS) under complex real-world conditions, including domain shifts, missing modalities, and spatial misalignment. We further describe the challenge's top-performing methodology, which integrates a semi-supervised learning framework with external data for robust segmentation, and utilizes a multi-view consensus approach with Class Activation Map (CAM)-based regularization for staging. Evaluation of this baseline demonstrates that leveraging multi-source data and anatomical constraints significantly enhances model robustness in clinical settings.
☆ MoCA: Mixture-of-Components Attention for Scalable Compositional 3D Generation
Compositionality is critical for 3D object and scene generation, but existing part-aware 3D generation methods suffer from poor scalability due to quadratic global attention costs when increasing the number of components. In this work, we present MoCA, a compositional 3D generative model with two key designs: (1) importance-based component routing that selects top-k relevant components for sparse global attention, and (2) unimportant components compression that preserve contextual priors of unselected components while reducing computational complexity of global attention. With these designs, MoCA enables efficient, fine-grained compositional 3D asset creation with scalable number of components. Extensive experiments show MoCA outperforms baselines on both compositional object and scene generation tasks. Project page: https://lizhiqi49.github.io/MoCA
☆ Decomposition Sampling for Efficient Region Annotations in Active Learning
Active learning improves annotation efficiency by selecting the most informative samples for annotation and model training. While most prior work has focused on selecting informative images for classification tasks, we investigate the more challenging setting of dense prediction, where annotations are more costly and time-intensive, especially in medical imaging. Region-level annotation has been shown to be more efficient than image-level annotation for these tasks. However, existing methods for representative annotation region selection suffer from high computational and memory costs, irrelevant region choices, and heavy reliance on uncertainty sampling. We propose decomposition sampling (DECOMP), a new active learning sampling strategy that addresses these limitations. It enhances annotation diversity by decomposing images into class-specific components using pseudo-labels and sampling regions from each class. Class-wise predictive confidence further guides the sampling process, ensuring that difficult classes receive additional annotations. Across ROI classification, 2-D segmentation, and 3-D segmentation, DECOMP consistently surpasses baseline methods by better sampling minority-class regions and boosting performance on these challenging classes. Code is in https://github.com/JingnaQiu/DECOMP.git.
☆ Online Segment Any 3D Thing as Instance Tracking NeurIPS 2025
Online, real-time, and fine-grained 3D segmentation constitutes a fundamental capability for embodied intelligent agents to perceive and comprehend their operational environments. Recent advancements employ predefined object queries to aggregate semantic information from Vision Foundation Models (VFMs) outputs that are lifted into 3D point clouds, facilitating spatial information propagation through inter-query interactions. Nevertheless, perception is an inherently dynamic process, rendering temporal understanding a critical yet overlooked dimension within these prevailing query-based pipelines. Therefore, to further unlock the temporal environmental perception capabilities of embodied agents, our work reconceptualizes online 3D segmentation as an instance tracking problem (AutoSeg3D). Our core strategy involves utilizing object queries for temporal information propagation, where long-term instance association promotes the coherence of features and object identities, while short-term instance update enriches instant observations. Given that viewpoint variations in embodied robotics often lead to partial object visibility across frames, this mechanism aids the model in developing a holistic object understanding beyond incomplete instantaneous views. Furthermore, we introduce spatial consistency learning to mitigate the fragmentation problem inherent in VFMs, yielding more comprehensive instance information for enhancing the efficacy of both long-term and short-term temporal learning. The temporal information exchange and consistency learning facilitated by these sparse object queries not only enhance spatial comprehension but also circumvent the computational burden associated with dense temporal point cloud interactions. Our method establishes a new state-of-the-art, surpassing ESAM by 2.8 AP on ScanNet200 and delivering consistent gains on ScanNet, SceneNN, and 3RScan datasets.
comment: NeurIPS 2025, Code is at https://github.com/AutoLab-SAI-SJTU/AutoSeg3D
☆ More than Segmentation: Benchmarking SAM 3 for Segmentation, 3D Perception, and Reconstruction in Robotic Surgery
The recent Segment Anything Model (SAM) 3 has introduced significant advancements over its predecessor, SAM 2, particularly with the integration of language-based segmentation and enhanced 3D perception capabilities. SAM 3 supports zero-shot segmentation across a wide range of prompts, including point, bounding box, and language-based prompts, allowing for more flexible and intuitive interactions with the model. In this empirical evaluation, we assess the performance of SAM 3 in robot-assisted surgery, benchmarking its zero-shot segmentation with point and bounding box prompts and exploring its effectiveness in dynamic video tracking, alongside its newly introduced language prompt segmentation. While language prompts show potential, their performance in the surgical domain is currently suboptimal, highlighting the need for further domain-specific training. Additionally, we investigate SAM 3's 3D reconstruction abilities, demonstrating its capacity to process surgical scene data and reconstruct 3D anatomical structures from 2D images. Through comprehensive testing on the MICCAI EndoVis 2017 and EndoVis 2018 benchmarks, SAM 3 shows clear improvements over SAM and SAM 2 in both image and video segmentation under spatial prompts, while zero-shot evaluations on SCARED, StereoMIS, and EndoNeRF indicate strong monocular depth estimation and realistic 3D instrument reconstruction, yet also reveal remaining limitations in complex, highly dynamic surgical scenes.
comment: Technical Report
☆ Robust Variational Model Based Tailored UNet: Leveraging Edge Detector and Mean Curvature for Improved Image Segmentation
To address the challenge of segmenting noisy images with blurred or fragmented boundaries, this paper presents a robust version of Variational Model Based Tailored UNet (VM_TUNet), a hybrid framework that integrates variational methods with deep learning. The proposed approach incorporates physical priors, an edge detector and a mean curvature term, into a modified Cahn-Hilliard equation, aiming to combine the interpretability and boundary-smoothing advantages of variational partial differential equations (PDEs) with the strong representational ability of deep neural networks. The architecture consists of two collaborative modules: an F module, which conducts efficient frequency domain preprocessing to alleviate poor local minima, and a T module, which ensures accurate and stable local computations, backed by a stability estimate. Extensive experiments on three benchmark datasets indicate that the proposed method achieves a balanced trade-off between performance and computational efficiency, which yields competitive quantitative results and improved visual quality compared to pure convolutional neural network (CNN) based models, while achieving performance close to that of transformer-based method with reasonable computational expense.
☆ LongCat-Image Technical Report
We introduce LongCat-Image, a pioneering open-source and bilingual (Chinese-English) foundation model for image generation, designed to address core challenges in multilingual text rendering, photorealism, deployment efficiency, and developer accessibility prevalent in current leading models. 1) We achieve this through rigorous data curation strategies across the pre-training, mid-training, and SFT stages, complemented by the coordinated use of curated reward models during the RL phase. This strategy establishes the model as a new state-of-the-art (SOTA), delivering superior text-rendering capabilities and remarkable photorealism, and significantly enhancing aesthetic quality. 2) Notably, it sets a new industry standard for Chinese character rendering. By supporting even complex and rare characters, it outperforms both major open-source and commercial solutions in coverage, while also achieving superior accuracy. 3) The model achieves remarkable efficiency through its compact design. With a core diffusion model of only 6B parameters, it is significantly smaller than the nearly 20B or larger Mixture-of-Experts (MoE) architectures common in the field. This ensures minimal VRAM usage and rapid inference, significantly reducing deployment costs. Beyond generation, LongCat-Image also excels in image editing, achieving SOTA results on standard benchmarks with superior editing consistency compared to other open-source works. 4) To fully empower the community, we have established the most comprehensive open-source ecosystem to date. We are releasing not only multiple model versions for text-to-image and image editing, including checkpoints after mid-training and post-training stages, but also the entire toolchain of training procedure. We believe that the openness of LongCat-Image will provide robust support for developers and researchers, pushing the frontiers of visual content creation.
☆ All You Need Are Random Visual Tokens? Demystifying Token Pruning in VLLMs
Vision Large Language Models (VLLMs) incur high computational costs due to their reliance on hundreds of visual tokens to represent images. While token pruning offers a promising solution for accelerating inference, this paper, however, identifies a key observation: in deeper layers (e.g., beyond the 20th), existing training-free pruning methods perform no better than random pruning. We hypothesize that this degradation is caused by "vanishing token information", where visual tokens progressively lose their salience with increasing network depth. To validate this hypothesis, we quantify a token's information content by measuring the change in the model output probabilities upon its removal. Using this proposed metric, our analysis of the information of visual tokens across layers reveals three key findings: (1) As layers deepen, the information of visual tokens gradually becomes uniform and eventually vanishes at an intermediate layer, which we term as "information horizon", beyond which the visual tokens become redundant; (2) The position of this horizon is not static; it extends deeper for visually intensive tasks, such as Optical Character Recognition (OCR), compared to more general tasks like Visual Question Answering (VQA); (3) This horizon is also strongly correlated with model capacity, as stronger VLLMs (e.g., Qwen2.5-VL) employ deeper visual tokens than weaker models (e.g., LLaVA-1.5). Based on our findings, we show that simple random pruning in deep layers efficiently balances performance and efficiency. Moreover, integrating random pruning consistently enhances existing methods. Using DivPrune with random pruning achieves state-of-the-art results, maintaining 96.9% of Qwen-2.5-VL-7B performance while pruning 50% of visual tokens. The code will be publicly available at https://github.com/YahongWang1/Information-Horizon.
☆ R2MF-Net: A Recurrent Residual Multi-Path Fusion Network for Robust Multi-directional Spine X-ray Segmentation
Accurate segmentation of spinal structures in X-ray images is a prerequisite for quantitative scoliosis assessment, including Cobb angle measurement, vertebral translation estimation and curvature classification. In routine practice, clinicians acquire coronal, left-bending and right-bending radiographs to jointly evaluate deformity severity and spinal flexibility. However, the segmentation step remains heavily manual, time-consuming and non-reproducible, particularly in low-contrast images and in the presence of rib shadows or overlapping tissues. To address these limitations, this paper proposes R2MF-Net, a recurrent residual multi-path encoder--decoder network tailored for automatic segmentation of multi-directional spine X-ray images. The overall design consists of a coarse segmentation network and a fine segmentation network connected in cascade. Both stages adopt an improved Inception-style multi-branch feature extractor, while a recurrent residual jump connection (R2-Jump) module is inserted into skip paths to gradually align encoder and decoder semantics. A multi-scale cross-stage skip (MC-Skip) mechanism allows the fine network to reuse hierarchical representations from multiple decoder levels of the coarse network, thereby strengthening the stability of segmentation across imaging directions and contrast conditions. Furthermore, a lightweight spatial-channel squeeze-and-excitation block (SCSE-Lite) is employed at the bottleneck to emphasize spine-related activations and suppress irrelevant structures and background noise. We evaluate R2MF-Net on a clinical multi-view radiograph dataset comprising 228 sets of coronal, left-bending and right-bending spine X-ray images with expert annotations.
☆ Precise Liver Tumor Segmentation in CT Using a Hybrid Deep Learning-Radiomics Framework
Accurate three-dimensional delineation of liver tumors on contrast-enhanced CT is a prerequisite for treatment planning, navigation and response assessment, yet manual contouring is slow, observer-dependent and difficult to standardise across centres. Automatic segmentation is complicated by low lesion-parenchyma contrast, blurred or incomplete boundaries, heterogeneous enhancement patterns, and confounding structures such as vessels and adjacent organs. We propose a hybrid framework that couples an attention-enhanced cascaded U-Net with handcrafted radiomics and voxel-wise 3D CNN refinement for joint liver and liver-tumor segmentation. First, a 2.5D two-stage network with a densely connected encoder, sub-pixel convolution decoders and multi-scale attention gates produces initial liver and tumor probability maps from short stacks of axial slices. Inter-slice temporal consistency is then enforced by a simple three-slice refinement rule along the cranio-caudal direction, which restores thin and tiny lesions while suppressing isolated noise. Next, 728 radiomic descriptors spanning intensity, texture, shape, boundary and wavelet feature groups are extracted from candidate lesions and reduced to 20 stable, highly informative features via multi-strategy feature selection; a random forest classifier uses these features to reject false-positive regions. Finally, a compact 3D patch-based CNN derived from AlexNet operates in a narrow band around the tumor boundary to perform voxel-level relabelling and contour smoothing.
☆ Dual-Stream Cross-Modal Representation Learning via Residual Semantic Decorrelation
Cross-modal learning has become a fundamental paradigm for integrating heterogeneous information sources such as images, text, and structured attributes. However, multimodal representations often suffer from modality dominance, redundant information coupling, and spurious cross-modal correlations, leading to suboptimal generalization and limited interpretability. In particular, high-variance modalities tend to overshadow weaker but semantically important signals, while naïve fusion strategies entangle modality-shared and modality-specific factors in an uncontrolled manner. This makes it difficult to understand which modality actually drives a prediction and to maintain robustness when some modalities are noisy or missing. To address these challenges, we propose a Dual-Stream Residual Semantic Decorrelation Network (DSRSD-Net), a simple yet effective framework that disentangles modality-specific and modality-shared information through residual decomposition and explicit semantic decorrelation constraints. DSRSD-Net introduces: (1) a dual-stream representation learning module that separates intra-modal (private) and inter-modal (shared) latent factors via residual projection; (2) a residual semantic alignment head that maps shared factors from different modalities into a common space using a combination of contrastive and regression-style objectives; and (3) a decorrelation and orthogonality loss that regularizes the covariance structure of the shared space while enforcing orthogonality between shared and private streams, thereby suppressing cross-modal redundancy and preventing feature collapse. Experimental results on two large-scale educational benchmarks demonstrate that DSRSD-Net consistently improves next-step prediction and final outcome prediction over strong single-modality, early-fusion, late-fusion, and co-attention baselines.
☆ Toward More Reliable Artificial Intelligence: Reducing Hallucinations in Vision-Language Models
Vision-language models (VLMs) frequently generate hallucinated content plausible but incorrect claims about image content. We propose a training-free self-correction framework enabling VLMs to iteratively refine responses through uncertainty-guided visual re-attention. Our method combines multidimensional uncertainty quantification (token entropy, attention dispersion, semantic consistency, claim confidence) with attention-guided cropping of under-explored regions. Operating entirely with frozen, pretrained VLMs, our framework requires no gradient updates. We validate our approach on the POPE and MMHAL BENCH benchmarks using the Qwen2.5-VL-7B [23] architecture. Experimental results demonstrate that our method reduces hallucination rates by 9.8 percentage points compared to the baseline, while improving object existence accuracy by 4.7 points on adversarial splits. Furthermore, qualitative analysis confirms that uncertainty-guided re-attention successfully grounds corrections in visual evidence where standard decoding fails. We validate our approach on Qwen2.5-VL-7B [23], with plans to extend validation across diverse architectures in future versions. We release our code and methodology to facilitate future research in trustworthy multimodal systems.
comment: 24 pages, 3 figures, 2 tables. Training-free self-correction framework for vision-language models. Code and implementation details will be released at: https://github.com/kassoumsanogo1/self-correcting-vlm-re-Attention.git
☆ ReLaX: Reasoning with Latent Exploration for Large Reasoning Models
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated remarkable potential in enhancing the reasoning capability of Large Reasoning Models (LRMs). However, RLVR often leads to entropy collapse, resulting in premature policy convergence and performance saturation. While manipulating token-level entropy has proven effective for promoting policy exploration, we argue that the latent dynamics underlying token generation encode a far richer computational structure for steering policy optimization toward a more effective exploration-exploitation tradeoff. To enable tractable analysis and intervention of the latent dynamics of LRMs, we leverage Koopman operator theory to obtain a linearized representation of their hidden-state dynamics. This enables us to introduce Dynamic Spectral Dispersion (DSD), a new metric to quantify the heterogeneity of the model's latent dynamics, serving as a direct indicator of policy exploration. Building upon these foundations, we propose Reasoning with Latent eXploration (ReLaX), a paradigm that explicitly incorporates latent dynamics to regulate exploration and exploitation during policy optimization. Comprehensive experiments across a wide range of multimodal and text-only reasoning benchmarks show that ReLaX significantly mitigates premature convergence and consistently achieves state-of-the-art performance.
☆ From Orbit to Ground: Generative City Photogrammetry from Extreme Off-Nadir Satellite Images
City-scale 3D reconstruction from satellite imagery presents the challenge of extreme viewpoint extrapolation, where our goal is to synthesize ground-level novel views from sparse orbital images with minimal parallax. This requires inferring nearly $90^\circ$ viewpoint gaps from image sources with severely foreshortened facades and flawed textures, causing state-of-the-art reconstruction engines such as NeRF and 3DGS to fail. To address this problem, we propose two design choices tailored for city structures and satellite inputs. First, we model city geometry as a 2.5D height map, implemented as a Z-monotonic signed distance field (SDF) that matches urban building layouts from top-down viewpoints. This stabilizes geometry optimization under sparse, off-nadir satellite views and yields a watertight mesh with crisp roofs and clean, vertically extruded facades. Second, we paint the mesh appearance from satellite images via differentiable rendering techniques. While the satellite inputs may contain long-range, blurry captures, we further train a generative texture restoration network to enhance the appearance, recovering high-frequency, plausible texture details from degraded inputs. Our method's scalability and robustness are demonstrated through extensive experiments on large-scale urban reconstruction. For example, in our teaser figure, we reconstruct a $4\,\mathrm{km}^2$ real-world region from only a few satellite images, achieving state-of-the-art performance in synthesizing photorealistic ground views. The resulting models are not only visually compelling but also serve as high-fidelity, application-ready assets for downstream tasks like urban planning and simulation.
☆ MeshRipple: Structured Autoregressive Generation of Artist-Meshes
Meshes serve as a primary representation for 3D assets. Autoregressive mesh generators serialize faces into sequences and train on truncated segments with sliding-window inference to cope with memory limits. However, this mismatch breaks long-range geometric dependencies, producing holes and fragmented components. To address this critical limitation, we introduce MeshRipple, which expands a mesh outward from an active generation frontier, akin to a ripple on a surface.MeshRipple rests on three key innovations: a frontier-aware BFS tokenization that aligns the generation order with surface topology; an expansive prediction strategy that maintains coherent, connected surface growth; and a sparse-attention global memory that provides an effectively unbounded receptive field to resolve long-range topological dependencies.This integrated design enables MeshRipple to generate meshes with high surface fidelity and topological completeness, outperforming strong recent baselines.
☆ Exploring possible vector systems for faster training of neural networks with preconfigured latent spaces
The overall neural network (NN) performance is closely related to the properties of its embedding distribution in latent space (LS). It has recently been shown that predefined vector systems, specifically An root system vectors, can be used as targets for latent space configurations (LSC) to ensure the desired LS structure. One of the main LSC advantage is the possibility of training classifier NNs without classification layers, which facilitates training NNs on datasets with extremely large numbers of classes. This paper provides a more general overview of possible vector systems for NN training along with their properties and methods for vector system construction. These systems are used to configure LS of encoders and visual transformers to significantly speed up ImageNet-1K and 50k-600k classes LSC training. It is also shown that using the minimum number of LS dimensions for a specific number of classes results in faster convergence. The latter has potential advantages for reducing the size of vector databases used to store NN embeddings.
comment: 9 pages, 5 figures, 1 table, 4 equations
☆ ControlVP: Interactive Geometric Refinement of AI-Generated Images with Consistent Vanishing Points
Recent text-to-image models, such as Stable Diffusion, have achieved impressive visual quality, yet they often suffer from geometric inconsistencies that undermine the structural realism of generated scenes. One prominent issue is vanishing point inconsistency, where projections of parallel lines fail to converge correctly in 2D space. This leads to structurally implausible geometry that degrades spatial realism, especially in architectural scenes. We propose ControlVP, a user-guided framework for correcting vanishing point inconsistencies in generated images. Our approach extends a pre-trained diffusion model by incorporating structural guidance derived from building contours. We also introduce geometric constraints that explicitly encourage alignment between image edges and perspective cues. Our method enhances global geometric consistency while maintaining visual fidelity comparable to the baselines. This capability is particularly valuable for applications that require accurate spatial structure, such as image-to-3D reconstruction. The dataset and source code are available at https://github.com/RyotaOkumura/ControlVP .
comment: Accepted to WACV 2026, 8 pages, supplementary included. Dataset and code: https://github.com/RyotaOkumura/ControlVP
☆ SJD++: Improved Speculative Jacobi Decoding for Training-free Acceleration of Discrete Auto-regressive Text-to-Image Generation
Large autoregressive models can generate high-quality, high-resolution images but suffer from slow generation speed, because these models require hundreds to thousands of sequential forward passes for next-token prediction during inference. To accelerate autoregressive text-to-image generation, we propose Speculative Jacobi Decoding++ (SJD++), a training-free probabilistic parallel decoding algorithm. Unlike traditional next-token prediction, SJD++ performs multi-token prediction in each forward pass, drastically reducing generation steps. Specifically, it integrates the iterative multi-token prediction mechanism from Jacobi decoding, with the probabilistic drafting-and-verification mechanism from speculative sampling. More importantly, for further acceleration, SJD++ reuses high-confidence draft tokens after each verification phase instead of resampling them all. We conduct extensive experiments on several representative autoregressive text-to-image generation models and demonstrate that SJD++ achieves $2\times$ to $3\times$ inference latency reduction and $2\times$ to $7\times$ step compression, while preserving visual quality with no observable degradation.
☆ MultiMotion: Multi Subject Video Motion Transfer via Video Diffusion Transformer
Multi-object video motion transfer poses significant challenges for Diffusion Transformer (DiT) architectures due to inherent motion entanglement and lack of object-level control. We present MultiMotion, a novel unified framework that overcomes these limitations. Our core innovation is Maskaware Attention Motion Flow (AMF), which utilizes SAM2 masks to explicitly disentangle and control motion features for multiple objects within the DiT pipeline. Furthermore, we introduce RectPC, a high-order predictor-corrector solver for efficient and accurate sampling, particularly beneficial for multi-entity generation. To facilitate rigorous evaluation, we construct the first benchmark dataset specifically for DiT-based multi-object motion transfer. MultiMotion demonstrably achieves precise, semantically aligned, and temporally coherent motion transfer for multiple distinct objects, maintaining DiT's high quality and scalability. The code is in the supp.
☆ Towards Robust DeepFake Detection under Unstable Face Sequences: Adaptive Sparse Graph Embedding with Order-Free Representation and Explicit Laplacian Spectral Prior
Ensuring the authenticity of video content remains challenging as DeepFake generation becomes increasingly realistic and robust against detection. Most existing detectors implicitly assume temporally consistent and clean facial sequences, an assumption that rarely holds in real-world scenarios where compression artifacts, occlusions, and adversarial attacks destabilize face detection and often lead to invalid or misdetected faces. To address these challenges, we propose a Laplacian-Regularized Graph Convolutional Network (LR-GCN) that robustly detects DeepFakes from noisy or unordered face sequences, while being trained only on clean facial data. Our method constructs an Order-Free Temporal Graph Embedding (OF-TGE) that organizes frame-wise CNN features into an adaptive sparse graph based on semantic affinities. Unlike traditional methods constrained by strict temporal continuity, OF-TGE captures intrinsic feature consistency across frames, making it resilient to shuffled, missing, or heavily corrupted inputs. We further impose a dual-level sparsity mechanism on both graph structure and node features to suppress the influence of invalid faces. Crucially, we introduce an explicit Graph Laplacian Spectral Prior that acts as a high-pass operator in the graph spectral domain, highlighting structural anomalies and forgery artifacts, which are then consolidated by a low-pass GCN aggregation. This sequential design effectively realizes a task-driven spectral band-pass mechanism that suppresses background information and random noise while preserving manipulation cues. Extensive experiments on FF++, Celeb-DFv2, and DFDC demonstrate that LR-GCN achieves state-of-the-art performance and significantly improved robustness under severe global and local disruptions, including missing faces, occlusions, and adversarially perturbed face detections.
comment: 16 pages (including appendix)
☆ Single-step Diffusion-based Video Coding with Semantic-Temporal Guidance
While traditional and neural video codecs (NVCs) have achieved remarkable rate-distortion performance, improving perceptual quality at low bitrates remains challenging. Some NVCs incorporate perceptual or adversarial objectives but still suffer from artifacts due to limited generation capacity, whereas others leverage pretrained diffusion models to improve quality at the cost of heavy sampling complexity. To overcome these challenges, we propose S2VC, a Single-Step diffusion based Video Codec that integrates a conditional coding framework with an efficient single-step diffusion generator, enabling realistic reconstruction at low bitrates with reduced sampling cost. Recognizing the importance of semantic conditioning in single-step diffusion, we introduce Contextual Semantic Guidance to extract frame-adaptive semantics from buffered features. It replaces text captions with efficient, fine-grained conditioning, thereby improving generation realism. In addition, Temporal Consistency Guidance is incorporated into the diffusion U-Net to enforce temporal coherence across frames and ensure stable generation. Extensive experiments show that S2VC delivers state-of-the-art perceptual quality with an average 52.73% bitrate saving over prior perceptual methods, underscoring the promise of single-step diffusion for efficient, high-quality video compression.
☆ Unified Video Editing with Temporal Reasoner
Existing video editing methods face a critical trade-off: expert models offer precision but rely on task-specific priors like masks, hindering unification; conversely, unified temporal in-context learning models are mask-free but lack explicit spatial cues, leading to weak instruction-to-region mapping and imprecise localization. To resolve this conflict, we propose VideoCoF, a novel Chain-of-Frames approach inspired by Chain-of-Thought reasoning. VideoCoF enforces a ``see, reason, then edit" procedure by compelling the video diffusion model to first predict reasoning tokens (edit-region latents) before generating the target video tokens. This explicit reasoning step removes the need for user-provided masks while achieving precise instruction-to-region alignment and fine-grained video editing. Furthermore, we introduce a RoPE alignment strategy that leverages these reasoning tokens to ensure motion alignment and enable length extrapolation beyond the training duration. We demonstrate that with a minimal data cost of only 50k video pairs, VideoCoF achieves state-of-the-art performance on VideoCoF-Bench, validating the efficiency and effectiveness of our approach. Our code, weight, data are available at https://github.com/knightyxp/VideoCoF.
comment: Project Page: https://videocof.github.io/
☆ Human Geometry Distribution for 3D Animation Generation
Generating realistic human geometry animations remains a challenging task, as it requires modeling natural clothing dynamics with fine-grained geometric details under limited data. To address these challenges, we propose two novel designs. First, we propose a compact distribution-based latent representation that enables efficient and high-quality geometry generation. We improve upon previous work by establishing a more uniform mapping between SMPL and avatar geometries. Second, we introduce a generative animation model that fully exploits the diversity of limited motion data. We focus on short-term transitions while maintaining long-term consistency through an identity-conditioned design. These two designs formulate our method as a two-stage framework: the first stage learns a latent space, while the second learns to generate animations within this latent space. We conducted experiments on both our latent space and animation model. We demonstrate that our latent space produces high-fidelity human geometry surpassing previous methods ($90\%$ lower Chamfer Dist.). The animation model synthesizes diverse animations with detailed and natural dynamics ($2.2 \times$ higher user study score), achieving the best results across all evaluation metrics.
☆ KAN-Dreamer: Benchmarking Kolmogorov-Arnold Networks as Function Approximators in World Models
DreamerV3 is a state-of-the-art online model-based reinforcement learning (MBRL) algorithm known for remarkable sample efficiency. Concurrently, Kolmogorov-Arnold Networks (KANs) have emerged as a promising alternative to Multi-Layer Perceptrons (MLPs), offering superior parameter efficiency and interpretability. To mitigate KANs' computational overhead, variants like FastKAN leverage Radial Basis Functions (RBFs) to accelerate inference. In this work, we investigate integrating KAN architectures into the DreamerV3 framework. We introduce KAN-Dreamer, replacing specific MLP and convolutional components of DreamerV3 with KAN and FastKAN layers. To ensure efficiency within the JAX-based World Model, we implement a tailored, fully vectorized version with simplified grid management. We structure our investigation into three subsystems: Visual Perception, Latent Prediction, and Behavior Learning. Empirical evaluations on the DeepMind Control Suite (walker_walk) analyze sample efficiency, training time, and asymptotic performance. Experimental results demonstrate that utilizing our adapted FastKAN as a drop-in replacement for the Reward and Continue predictors yields performance on par with the original MLP-based architecture, maintaining parity in both sample efficiency and training speed. This report serves as a preliminary study for future developments in KAN-based world models.
comment: 23 pages, 8 figures, 3 tables
☆ When normalization hallucinates: unseen risks in AI-powered whole slide image processing
Whole slide image (WSI) normalization remains a vital preprocessing step in computational pathology. Increasingly driven by deep learning, these models learn to approximate data distributions from training examples. This often results in outputs that gravitate toward the average, potentially masking diagnostically important features. More critically, they can introduce hallucinated content, artifacts that appear realistic but are not present in the original tissue, posing a serious threat to downstream analysis. These hallucinations are nearly impossible to detect visually, and current evaluation practices often overlook them. In this work, we demonstrate that the risk of hallucinations is real and underappreciated. While many methods perform adequately on public datasets, we observe a concerning frequency of hallucinations when these same models are retrained and evaluated on real-world clinical data. To address this, we propose a novel image comparison measure designed to automatically detect hallucinations in normalized outputs. Using this measure, we systematically evaluate several well-cited normalization methods retrained on real-world data, revealing significant inconsistencies and failures that are not captured by conventional metrics. Our findings underscore the need for more robust, interpretable normalization techniques and stricter validation protocols in clinical deployment.
comment: 4 pages, accepted for oral presentation at SPIE Medical Imaging, 2026
☆ Revolutionizing Mixed Precision Quantization: Towards Training-free Automatic Proxy Discovery via Large Language Models
Mixed-Precision Quantization (MPQ) liberates the Deep Neural Networks (DNNs) from the Out-Of-Memory (OOM) bottleneck, which garnered increasing research attention. However, conventional methods either searched from costly differentiable optimization, which is neither efficient nor flexible, or learned a quantized DNN from the proxy (i.e., HAWQ) manually designed by human experts, which is labor-intensive and requires huge expert knowledge. Can we design a proxy without involving any human experts and training? In this paper, we provide an affirmative answer by proposing a novel Large Language Models (LLMs)-driven Training-free Automatic Proxy (dubbed TAP) discovery framework, which reforms the design paradigm of MPQ by utilizing LLMs to find superior TAP tailored for MPQ, automatically. In addition, to bridge the gap between black-box LLMs and the tough MPQ task, we ingeniously propose simple Direct Policy Optimization (DPO) based reinforcement learning to enhance LLMs' reasoning by optimizing prompts, which can construct a positive feedback loop between the LLM and the MPQ task, enabling LLMs to generate better TAP in the next evolution. Extensive experiments on mainstream benchmarks demonstrate that TAP achieves state-of-the-art performance. Finally, we truly believe that our TAP will significantly contribute to the MPQ community by providing a new perspective on LLM-driven design algorithms.
☆ Data-driven Exploration of Mobility Interaction Patterns
Understanding the movement behaviours of individuals and the way they react to the external world is a key component of any problem that involves the modelling of human dynamics at a physical level. In particular, it is crucial to capture the influence that the presence of an individual can have on the others. Important examples of applications include crowd simulation and emergency management, where the simulation of the mass of people passes through the simulation of the individuals, taking into consideration the others as part of the general context. While existing solutions basically start from some preconceived behavioural model, in this work we propose an approach that starts directly from the data, adopting a data mining perspective. Our method searches the mobility events in the data that might be possible evidences of mutual interactions between individuals, and on top of them looks for complex, persistent patterns and time evolving configurations of events. The study of these patterns can provide new insights on the mechanics of mobility interactions between individuals, which can potentially help in improving existing simulation models. We instantiate the general methodology on two real case studies, one on cars and one on pedestrians, and a full experimental evaluation is performed, both in terms of performances, parameter sensitivity and interpretation of sample results.
☆ InterAgent: Physics-based Multi-agent Command Execution via Diffusion on Interaction Graphs
Humanoid agents are expected to emulate the complex coordination inherent in human social behaviors. However, existing methods are largely confined to single-agent scenarios, overlooking the physically plausible interplay essential for multi-agent interactions. To bridge this gap, we propose InterAgent, the first end-to-end framework for text-driven physics-based multi-agent humanoid control. At its core, we introduce an autoregressive diffusion transformer equipped with multi-stream blocks, which decouples proprioception, exteroception, and action to mitigate cross-modal interference while enabling synergistic coordination. We further propose a novel interaction graph exteroception representation that explicitly captures fine-grained joint-to-joint spatial dependencies to facilitate network learning. Additionally, within it we devise a sparse edge-based attention mechanism that dynamically prunes redundant connections and emphasizes critical inter-agent spatial relations, thereby enhancing the robustness of interaction modeling. Extensive experiments demonstrate that InterAgent consistently outperforms multiple strong baselines, achieving state-of-the-art performance. It enables producing coherent, physically plausible, and semantically faithful multi-agent behaviors from only text prompts. Our code and data will be released to facilitate future research.
comment: Project page: https://binlee26.github.io/InterAgent-Page
☆ Reconstructing Objects along Hand Interaction Timelines in Egocentric Video
We introduce the task of Reconstructing Objects along Hand Interaction Timelines (ROHIT). We first define the Hand Interaction Timeline (HIT) from a rigid object's perspective. In a HIT, an object is first static relative to the scene, then is held in hand following contact, where its pose changes. This is usually followed by a firm grip during use, before it is released to be static again w.r.t. to the scene. We model these pose constraints over the HIT, and propose to propagate the object's pose along the HIT enabling superior reconstruction using our proposed Constrained Optimisation and Propagation (COP) framework. Importantly, we focus on timelines with stable grasps - i.e. where the hand is stably holding an object, effectively maintaining constant contact during use. This allows us to efficiently annotate, study, and evaluate object reconstruction in videos without 3D ground truth. We evaluate our proposed task, ROHIT, over two egocentric datasets, HOT3D and in-the-wild EPIC-Kitchens. In HOT3D, we curate 1.2K clips of stable grasps. In EPIC-Kitchens, we annotate 2.4K clips of stable grasps including 390 object instances across 9 categories from videos of daily interactions in 141 environments. Without 3D ground truth, we utilise 2D projection error to assess the reconstruction. Quantitatively, COP improves stable grasp reconstruction by 6.2-11.3% and HIT reconstruction by up to 24.5% with constrained pose propagation.
comment: webpage: https://zhifanzhu.github.io/objects-along-hit
☆ GlimmerNet: A Lightweight Grouped Dilated Depthwise Convolutions for UAV-Based Emergency Monitoring
Convolutional Neural Networks (CNNs) have proven highly effective for edge and mobile vision tasks due to their computational efficiency. While many recent works seek to enhance CNNs with global contextual understanding via self-attention-based Vision Transformers, these approaches often introduce significant computational overhead. In this work, we demonstrate that it is possible to retain strong global perception without relying on computationally expensive components. We present GlimmerNet, an ultra-lightweight convolutional network built on the principle of separating receptive field diversity from feature recombination. GlimmerNet introduces Grouped Dilated Depthwise Convolutions(GDBlocks), which partition channels into groups with distinct dilation rates, enabling multi-scale feature extraction at no additional parameter cost. To fuse these features efficiently, we design a novel Aggregator module that recombines cross-group representations using grouped pointwise convolution, significantly lowering parameter overhead. With just 31K parameters and 29% fewer FLOPs than the most recent baseline, GlimmerNet achieves a new state-of-the-art weighted F1-score of 0.966 on the UAV-focused AIDERv2 dataset. These results establish a new accuracy-efficiency trade-off frontier for real-time emergency monitoring on resource-constrained UAV platforms. Our implementation is publicly available at https://github.com/djordjened92/gdd-cnn.
☆ Towards Reliable Test-Time Adaptation: Style Invariance as a Correctness Likelihood
Test-time adaptation (TTA) enables efficient adaptation of deployed models, yet it often leads to poorly calibrated predictive uncertainty - a critical issue in high-stakes domains such as autonomous driving, finance, and healthcare. Existing calibration methods typically assume fixed models or static distributions, resulting in degraded performance under real-world, dynamic test conditions. To address these challenges, we introduce Style Invariance as a Correctness Likelihood (SICL), a framework that leverages style-invariance for robust uncertainty estimation. SICL estimates instance-wise correctness likelihood by measuring prediction consistency across style-altered variants, requiring only the model's forward pass. This makes it a plug-and-play, backpropagation-free calibration module compatible with any TTA method. Comprehensive evaluations across four baselines, five TTA methods, and two realistic scenarios with three model architecture demonstrate that SICL reduces calibration error by an average of 13 percentage points compared to conventional calibration approaches.
comment: Accepted to WACV 2026
☆ How Far are Modern Trackers from UAV-Anti-UAV? A Million-Scale Benchmark and New Baseline
Unmanned Aerial Vehicles (UAVs) offer wide-ranging applications but also pose significant safety and privacy violation risks in areas like airport and infrastructure inspection, spurring the rapid development of Anti-UAV technologies in recent years. However, current Anti-UAV research primarily focuses on RGB, infrared (IR), or RGB-IR videos captured by fixed ground cameras, with little attention to tracking target UAVs from another moving UAV platform. To fill this gap, we propose a new multi-modal visual tracking task termed UAV-Anti-UAV, which involves a pursuer UAV tracking a target adversarial UAV in the video stream. Compared to existing Anti-UAV tasks, UAV-Anti-UAV is more challenging due to severe dual-dynamic disturbances caused by the rapid motion of both the capturing platform and the target. To advance research in this domain, we construct a million-scale dataset consisting of 1,810 videos, each manually annotated with bounding boxes, a language prompt, and 15 tracking attributes. Furthermore, we propose MambaSTS, a Mamba-based baseline method for UAV-Anti-UAV tracking, which enables integrated spatial-temporal-semantic learning. Specifically, we employ Mamba and Transformer models to learn global semantic and spatial features, respectively, and leverage the state space model's strength in long-sequence modeling to establish video-level long-term context via a temporal token propagation mechanism. We conduct experiments on the UAV-Anti-UAV dataset to validate the effectiveness of our method. A thorough experimental evaluation of 50 modern deep tracking algorithms demonstrates that there is still significant room for improvement in the UAV-Anti-UAV domain. The dataset and codes will be available at {\color{magenta}https://github.com/983632847/Awesome-Multimodal-Object-Tracking}.
comment: https://github.com/983632847/Awesome-Multimodal-Object-Tracking
☆ LogicCBMs: Logic-Enhanced Concept-Based Learning
Concept Bottleneck Models (CBMs) provide a basis for semantic abstractions within a neural network architecture. Such models have primarily been seen through the lens of interpretability so far, wherein they offer transparency by inferring predictions as a linear combination of semantic concepts. However, a linear combination is inherently limiting. So we propose the enhancement of concept-based learning models through propositional logic. We introduce a logic module that is carefully designed to connect the learned concepts from CBMs through differentiable logic operations, such that our proposed LogicCBM can go beyond simple weighted combinations of concepts to leverage various logical operations to yield the final predictions, while maintaining end-to-end learnability. Composing concepts using a set of logic operators enables the model to capture inter-concept relations, while simultaneously improving the expressivity of the model in terms of logic operations. Our empirical studies on well-known benchmarks and synthetic datasets demonstrate that these models have better accuracy, perform effective interventions and are highly interpretable.
comment: 18 pages, 19 figures, WACV 2026
☆ Tessellation GS: Neural Mesh Gaussians for Robust Monocular Reconstruction of Dynamic Objects
3D Gaussian Splatting (GS) enables highly photorealistic scene reconstruction from posed image sequences but struggles with viewpoint extrapolation due to its anisotropic nature, leading to overfitting and poor generalization, particularly in sparse-view and dynamic scene reconstruction. We propose Tessellation GS, a structured 2D GS approach anchored on mesh faces, to reconstruct dynamic scenes from a single continuously moving or static camera. Our method constrains 2D Gaussians to localized regions and infers their attributes via hierarchical neural features on mesh faces. Gaussian subdivision is guided by an adaptive face subdivision strategy driven by a detail-aware loss function. Additionally, we leverage priors from a reconstruction foundation model to initialize Gaussian deformations, enabling robust reconstruction of general dynamic objects from a single static camera, previously extremely challenging for optimization-based methods. Our method outperforms previous SOTA method, reducing LPIPS by 29.1% and Chamfer distance by 49.2% on appearance and mesh reconstruction tasks.
☆ Enhancing Small Object Detection with YOLO: A Novel Framework for Improved Accuracy and Efficiency
This paper investigates and develops methods for detecting small objects in large-scale aerial images. Current approaches for detecting small objects in aerial images often involve image cropping and modifications to detector network architectures. Techniques such as sliding window cropping and architectural enhancements, including higher-resolution feature maps and attention mechanisms, are commonly employed. Given the growing importance of aerial imagery in various critical and industrial applications, the need for robust frameworks for small object detection becomes imperative. To address this need, we adopted the base SW-YOLO approach to enhance speed and accuracy in small object detection by refining cropping dimensions and overlap in sliding window usage and subsequently enhanced it through architectural modifications. we propose a novel model by modifying the base model architecture, including advanced feature extraction modules in the neck for feature map enhancement, integrating CBAM in the backbone to preserve spatial and channel information, and introducing a new head to boost small object detection accuracy. Finally, we compared our method with SAHI, one of the most powerful frameworks for processing large-scale images, and CZDet, which is also based on image cropping, achieving significant improvements in accuracy. The proposed model achieves significant accuracy gains on the VisDrone2019 dataset, outperforming baseline YOLOv5L detection by a substantial margin. Specifically, the final proposed model elevates the mAP .5.5 accuracy on the VisDrone2019 dataset from the base accuracy of 35.5 achieved by the YOLOv5L detector to 61.2. Notably, the accuracy of CZDet, which is another classic method applied to this dataset, is 58.36. This research demonstrates a significant improvement, achieving an increase in accuracy from 35.5 to 61.2.
comment: 22 pages, 16 figures
☆ Structure-Aware Feature Rectification with Region Adjacency Graphs for Training-Free Open-Vocabulary Semantic Segmentation
Benefiting from the inductive biases learned from large-scale datasets, open-vocabulary semantic segmentation (OVSS) leverages the power of vision-language models, such as CLIP, to achieve remarkable progress without requiring task-specific training. However, due to CLIP's pre-training nature on image-text pairs, it tends to focus on global semantic alignment, resulting in suboptimal performance when associating fine-grained visual regions with text. This leads to noisy and inconsistent predictions, particularly in local areas. We attribute this to a dispersed bias stemming from its contrastive training paradigm, which is difficult to alleviate using CLIP features alone. To address this, we propose a structure-aware feature rectification approach that incorporates instance-specific priors derived directly from the image. Specifically, we construct a region adjacency graph (RAG) based on low-level features (e.g., colour and texture) to capture local structural relationships and use it to refine CLIP features by enhancing local discrimination. Extensive experiments show that our method effectively suppresses segmentation noise, improves region-level consistency, and achieves strong performance on multiple open-vocabulary segmentation benchmarks.
comment: Accepted to WACV2026
♻ ☆ TV2TV: A Unified Framework for Interleaved Language and Video Generation
Video generation models are rapidly advancing, but can still struggle with complex video outputs that require significant semantic branching or repeated high-level reasoning about what should happen next. In this paper, we introduce a new class of omni video-text models that integrate ideas from recent LM reasoning advances to address this challenge. More specifically, we present TV2TV, a unified generative modeling framework which decomposes video generation into an interleaved text and video generation process. TV2TV jointly learns language modeling (next-token prediction) and video flow matching (next-frame prediction) using a Mixture-of-Transformers (MoT) architecture. At inference time, TV2TV decides when to alternate between generating text and video frames, allowing the model to "think in words" about subsequent content before ``acting in pixels'' to produce frames. This design offloads much of the responsibility for deciding what should happen next to the language modeling tower, enabling improved visual quality and prompt alignment of generated videos. It also enables fine-grained controllability, allowing users to modify the video generation trajectory through text interventions at any point in the process. In controlled experiments on video game data, TV2TV demonstrates substantial improvements in both visual quality and controllability. TV2TV also scales to natural videos, as we show by augmenting sports videos with interleaved natural language action descriptions using vision-language models (VLMs). Training TV2TV on this corpus yields strong visual quality and prompt alignment, showcasing the model's ability to reason about and generate complex real-world action sequences. Together, these results highlight TV2TV as a promising step toward video generation with open-ended textual reasoning and control.
♻ ☆ Normalize Filters! Classical Wisdom for Deep Vision
Classical image filters, such as those for averaging or differencing, are carefully normalized to ensure consistency, interpretability, and to avoid artifacts like intensity shifts, halos, or ringing. In contrast, convolutional filters learned end-to-end in deep networks lack such constraints. Although they may resemble wavelets and blob/edge detectors, they are not normalized in the same or any way. Consequently, when images undergo atmospheric transfer, their responses become distorted, leading to incorrect outcomes. We address this limitation by proposing filter normalization, followed by learnable scaling and shifting, akin to batch normalization. This simple yet effective modification ensures that the filters are atmosphere-equivariant, enabling co-domain symmetry. By integrating classical filtering principles into deep learning (applicable to both convolutional neural networks and convolution-dependent vision transformers), our method achieves significant improvements on artificial and natural intensity variation benchmarks. Our ResNet34 could even outperform CLIP by a large margin. Our analysis reveals that unnormalized filters degrade performance, whereas filter normalization regularizes learning, promotes diversity, and improves robustness and generalization.
♻ ☆ MAPLE: Encoding Dexterous Robotic Manipulation Priors Learned From Egocentric Videos
Large-scale egocentric video datasets capture diverse human activities across a wide range of scenarios, offering rich and detailed insights into how humans interact with objects, especially those that require fine-grained dexterous control. Such complex, dexterous skills with precise controls are crucial for many robotic manipulation tasks, yet are often insufficiently addressed by traditional data-driven approaches to robotic manipulation. To address this gap, we leverage manipulation priors learned from large-scale egocentric video datasets to improve policy learning for dexterous robotic manipulation tasks. We present MAPLE, a novel method for dexterous robotic manipulation that learns features to predict object contact points and detailed hand poses at the moment of contact from egocentric images. We then use the learned features to train policies for downstream manipulation tasks. Experimental results demonstrate the effectiveness of MAPLE across 4 existing simulation benchmarks, as well as a newly designed set of 4 challenging simulation tasks requiring fine-grained object control and complex dexterous skills. The benefits of MAPLE are further highlighted in real-world experiments using a 17 DoF dexterous robotic hand, whereas the simultaneous evaluation across both simulation and real-world experiments has remained underexplored in prior work. We additionally showcase the efficacy of our model on an egocentric contact point prediction task, validating its usefulness beyond dexterous manipulation policy learning.
♻ ☆ Tyche: Stochastic In-Context Learning for Medical Image Segmentation CVPR
Existing learning-based solutions to medical image segmentation have two important shortcomings. First, for most new segmentation task, a new model has to be trained or fine-tuned. This requires extensive resources and machine learning expertise, and is therefore often infeasible for medical researchers and clinicians. Second, most existing segmentation methods produce a single deterministic segmentation mask for a given image. In practice however, there is often considerable uncertainty about what constitutes the correct segmentation, and different expert annotators will often segment the same image differently. We tackle both of these problems with Tyche, a model that uses a context set to generate stochastic predictions for previously unseen tasks without the need to retrain. Tyche differs from other in-context segmentation methods in two important ways. (1) We introduce a novel convolution block architecture that enables interactions among predictions. (2) We introduce in-context test-time augmentation, a new mechanism to provide prediction stochasticity. When combined with appropriate model design and loss functions, Tyche can predict a set of plausible diverse segmentation candidates for new or unseen medical images and segmentation tasks without the need to retrain.
comment: Accepted at IEEE / CVF Computer Vision and Pattern Recognition Conference (CVPR) 2024 as a highlight. Code available at https://github.com/mariannerakic/tyche
♻ ☆ Asynchronous Bioplausible Neuron for SNN for Event Vision
Spiking Neural Networks (SNNs) offer a biologically inspired approach to computer vision that can lead to more efficient processing of visual data with reduced energy consumption. However, maintaining homeostasis within these networks is challenging, as it requires continuous adjustment of neural responses to preserve equilibrium and optimal processing efficiency amidst diverse and often unpredictable input signals. In response to these challenges, we propose the Asynchronous Bioplausible Neuron (ABN), a dynamic spike firing mechanism to auto-adjust the variations in the input signal. Comprehensive evaluation across various datasets demonstrates ABN's enhanced performance in image classification and segmentation, maintenance of neural equilibrium, and energy efficiency.
comment: 10 pages
♻ ☆ Diffusion Models for Image Restoration and Enhancement: A Comprehensive Survey
Image restoration (IR) has been an indispensable and challenging task in the low-level vision field, which strives to improve the subjective quality of images distorted by various forms of degradation. Recently, the diffusion model has achieved significant advancements in the visual generation of AIGC, thereby raising an intuitive question, "whether diffusion model can boost image restoration". To answer this, some pioneering studies attempt to integrate diffusion models into the image restoration task, resulting in superior performances than previous GAN-based methods. Despite that, a comprehensive and enlightening survey on diffusion model-based image restoration remains scarce. In this paper, we are the first to present a comprehensive review of recent diffusion model-based methods on image restoration, encompassing the learning paradigm, conditional strategy, framework design, modeling strategy, and evaluation. Concretely, we first introduce the background of the diffusion model briefly and then present two prevalent workflows that exploit diffusion models in image restoration. Subsequently, we classify and emphasize the innovative designs using diffusion models for both IR and blind/real-world IR, intending to inspire future development. To evaluate existing methods thoroughly, we summarize the commonly-used dataset, implementation details, and evaluation metrics. Additionally, we present the objective comparison for open-sourced methods across three tasks, including image super-resolution, deblurring, and inpainting. Ultimately, informed by the limitations in existing works, we propose five potential and challenging directions for the future research of diffusion model-based IR, including sampling efficiency, model compression, distortion simulation and estimation, distortion invariant learning, and framework design.
comment: Accepted by IJCV 2025
♻ ☆ Bimodal SegNet: Instance Segmentation Fusing Events and RGB Frames for Robotic Grasping
Object segmentation for robotic grasping under dynamic conditions often faces challenges such as occlusion, low light conditions, motion blur and object size variance. To address these challenges, we propose a Deep Learning network that fuses two types of visual signals, event-based data and RGB frame data. The proposed Bimodal SegNet network has two distinct encoders, one for each signal input and a spatial pyramidal pooling with atrous convolutions. Encoders capture rich contextual information by pooling the concatenated features at different resolutions while the decoder obtains sharp object boundaries. The evaluation of the proposed method undertakes five unique image degradation challenges including occlusion, blur, brightness, trajectory and scale variance on the Event-based Segmentation (ESD) Dataset. The evaluation results show a 6-10\% segmentation accuracy improvement over state-of-the-art methods in terms of mean intersection over the union and pixel accuracy. The model code is available at https://github.com/sanket0707/Bimodal-SegNet.git
comment: 8 Pages
♻ ☆ Bionetta: Efficient Client-Side Zero-Knowledge Machine Learning Proving
In this report, we compare the performance of our UltraGroth-based zero-knowledge machine learning framework Bionetta to other tools of similar purpose such as EZKL, Lagrange's deep-prove, or zkml. The results show a significant boost in the proving time for custom-crafted neural networks: they can be proven even on mobile devices, enabling numerous client-side proving applications. While our scheme increases the cost of one-time preprocessing steps, such as circuit compilation and generating trusted setup, our approach is, to the best of our knowledge, the only one that is deployable on the native EVM smart contracts without overwhelming proof size and verification overheads.
♻ ☆ TranSplat: Instant Cross-Scene Object Relighting in Gaussian Splatting via Spherical Harmonic Transfer
We present TranSplat, a method for fast and accurate object relighting for the 3D Gaussian Splatting (GS) framework when transferring a 3D object from a source GS scene to a target GS scene. TranSplat is based on a theoretical radiance transfer identity for cross-scene relighting of objects with radially symmetric BRDFs that involves only taking simple products of spherical harmonic appearance coefficients of the object, source, and target environment maps without any explicit computation of scene quantities (e.g., the BRDFs themselves). TranSplat is the first method to demonstrate how this theoretical identity may be used to perform relighting within the GS framework, and furthermore, by automatically inferring unknown source and target environment maps directly from the source and target scene GS representations. We evaluated TranSplat on several synthetic and real-world scenes and objects, demonstrating comparable 3D object relighting performance to recent conventional inverse rendering-based GS methods with a fraction of their runtime. While TranSplat is theoretically best-suited for radially symmetric BRDFs, results demonstrate that TranSplat still offers perceptually realistic renderings on real scenes and opens a valuable, lightweight path forward to relighting with the GS framework.
♻ ☆ Seeing through Imagination: Learning Scene Geometry via Implicit Spatial World Modeling
Spatial reasoning, the ability to understand and interpret the 3D structure of the world, is a critical yet underdeveloped capability in Multimodal Large Language Models (MLLMs). Current methods predominantly rely on verbal descriptive tuning, which suffers from visual illiteracy, i.e., they learn spatial concepts through textual symbols alone, devoid of connection to their visual manifestations. To bridge this gap, this paper introduces MILO, an Implicit spatIaL wOrld modeling paradigm that simulates human-like spatial imagination. MILO integrates a visual generator to provide geometry-aware feedback, thereby implicitly grounding the MLLM's symbolic reasoning in perceptual experience. Complementing this paradigm, we propose RePE (Relative Positional Encoding), a novel encoding scheme that captures relative camera-pose transformations, offering superior performance over absolute coordinate systems. To support the training, we construct GeoGen, a large-scale Geometry-aware Generative dataset with approximately 2,241 videos and 67,827 observation-action-outcome triplets. Experiments demonstrate that our approach significantly enhances spatial reasoning capabilities across multiple baselines and benchmarks, offering a more holistic understanding of 3D space.
♻ ☆ Z-Image: An Efficient Image Generation Foundation Model with Single-Stream Diffusion Transformer
The landscape of high-performance image generation models is currently dominated by proprietary systems, such as Nano Banana Pro and Seedream 4.0. Leading open-source alternatives, including Qwen-Image, Hunyuan-Image-3.0 and FLUX.2, are characterized by massive parameter counts (20B to 80B), making them impractical for inference, and fine-tuning on consumer-grade hardware. To address this gap, we propose Z-Image, an efficient 6B-parameter foundation generative model built upon a Scalable Single-Stream Diffusion Transformer (S3-DiT) architecture that challenges the "scale-at-all-costs" paradigm. By systematically optimizing the entire model lifecycle -- from a curated data infrastructure to a streamlined training curriculum -- we complete the full training workflow in just 314K H800 GPU hours (approx. $630K). Our few-step distillation scheme with reward post-training further yields Z-Image-Turbo, offering both sub-second inference latency on an enterprise-grade H800 GPU and compatibility with consumer-grade hardware (<16GB VRAM). Additionally, our omni-pre-training paradigm also enables efficient training of Z-Image-Edit, an editing model with impressive instruction-following capabilities. Both qualitative and quantitative experiments demonstrate that our model achieves performance comparable to or surpassing that of leading competitors across various dimensions. Most notably, Z-Image exhibits exceptional capabilities in photorealistic image generation and bilingual text rendering, delivering results that rival top-tier commercial models, thereby demonstrating that state-of-the-art results are achievable with significantly reduced computational overhead. We publicly release our code, weights, and online demo to foster the development of accessible, budget-friendly, yet state-of-the-art generative models.
♻ ☆ A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
Advances in architectural design, data availability, and compute have driven remarkable progress in semantic segmentation. Yet, these models often rely on relaxed Bayesian assumptions, omitting critical uncertainty information needed for robust decision-making. Despite growing interest in probabilistic segmentation to address point-estimate limitations, the research landscape remains fragmented. In response, this review synthesizes foundational concepts in uncertainty modeling, analyzing how feature- and parameter-distribution modeling impact four key segmentation tasks: Observer Variability, Active Learning, Model Introspection, and Model Generalization. Our work establishes a common framework by standardizing theory, notation, and terminology, thereby bridging the gap between method developers, task specialists, and applied researchers. We then discuss critical challenges, including the nuanced distinction between uncertainty types, strong assumptions in spatial aggregation, the lack of standardized benchmarks, and pitfalls in current quantification methods. We identify promising avenues for future research, such as uncertainty-aware active learning, data-driven benchmarks, transformer-based models, and novel techniques to move from simple segmentation problems to uncertainty in holistic scene understanding. Based on our analysis, we offer practical guidelines for researchers on method selection, evaluation, reproducibility, and meaningful uncertainty estimation. Ultimately, our goal is to facilitate the development of more reliable, efficient, and interpretable segmentation models that can be confidently deployed in real-world applications.
comment: TMLR
♻ ☆ Exploring the Potential of Encoder-free Architectures in 3D LMMs
Encoder-free architectures have been preliminarily explored in the 2D Large Multimodal Models (LMMs), yet it remains an open question whether they can be effectively applied to 3D understanding scenarios. In this paper, we present the first comprehensive investigation into the potential of encoder-free architectures to alleviate the challenges of encoder-based 3D LMMs. These long-standing challenges include the failure to adapt to varying point cloud resolutions during inference and the point features from the encoder not meeting the semantic needs of Large Language Models (LLMs). We identify key aspects for 3D LMMs to remove the pre-trained encoder and enable the LLM to assume the role of the 3D encoder: 1) We propose the LLM-embedded Semantic Encoding strategy in the pre-training stage, exploring the effects of various point cloud self-supervised losses. And we present the Hybrid Semantic Loss to extract high-level semantics. 2) We introduce the Hierarchical Geometry Aggregation strategy in the instruction tuning stage. This incorporates inductive bias into the LLM layers to focus on the local details of the point clouds. To the end, we present the first Encoder-free 3D LMM, ENEL. Our 7B model rivals the state-of-the-art model, PointLLM-PiSA-13B, achieving 57.91%, 61.0%, and 55.20% on the classification, captioning, and VQA tasks, respectively. Our results show that the encoder-free architecture is highly promising for replacing encoder-based architectures in the field of 3D understanding. The code is released at https://github.com/Ivan-Tang-3D/ENEL
♻ ☆ PosA-VLA: Enhancing Action Generation via Pose-Conditioned Anchor Attention
The Vision-Language-Action (VLA) models have demonstrated remarkable performance on embodied tasks and shown promising potential for real-world applications. However, current VLAs still struggle to produce consistent and precise target-oriented actions, as they often generate redundant or unstable motions along trajectories, limiting their applicability in time-sensitive scenarios.In this work, we attribute these redundant actions to the spatially uniform perception field of existing VLAs, which causes them to be distracted by target-irrelevant objects, especially in complex environments.To address this issue, we propose an efficient PosA-VLA framework that anchors visual attention via pose-conditioned supervision, consistently guiding the model's perception toward task-relevant regions. The pose-conditioned anchor attention mechanism enables the model to better align instruction semantics with actionable visual cues, thereby improving action generation precision and efficiency. Moreover, our framework adopts a lightweight architecture and requires no auxiliary perception modules (e.g., segmentation or grounding networks), ensuring efficient inference. Extensive experiments verify that our method executes embodied tasks with precise and time-efficient behavior across diverse robotic manipulation benchmarks and shows robust generalization in a variety of challenging environments.
♻ ☆ Distribution Matching Distillation Meets Reinforcement Learning
Distribution Matching Distillation (DMD) distills a pre-trained multi-step diffusion model to a few-step one to improve inference efficiency. However, the performance of the latter is often capped by the former. To circumvent this dilemma, we propose DMDR, a novel framework that combines Reinforcement Learning (RL) techniques into the distillation process. We show that for the RL of the few-step generator, the DMD loss itself is a more effective regularization compared to the traditional ones. In turn, RL can help to guide the mode coverage process in DMD more effectively. These allow us to unlock the capacity of the few-step generator by conducting distillation and RL simultaneously. Meanwhile, we design the dynamic distribution guidance and dynamic renoise sampling training strategies to improve the initial distillation process. The experiments demonstrate that DMDR can achieve leading visual quality, prompt coherence among few-step methods, and even exhibit performance that exceeds the multi-step teacher.
comment: The synergy of reinforcement learning and distribution matching distillation. See more: https://github.com/vvvvvjdy/dmdr
♻ ☆ MM-ACT: Learn from Multimodal Parallel Generation to Act
A generalist robotic policy needs both semantic understanding for task planning and the ability to interact with the environment through predictive capabilities. To tackle this, we present MM-ACT, a unified Vision-Language-Action (VLA) model that integrates text, image, and action in shared token space and performs generation across all three modalities. MM-ACT adopts a re-mask parallel decoding strategy for text and image generation, and employs a one-step parallel decoding strategy for action generation to improve efficiency. We introduce Context-Shared Multimodal Learning, a unified training paradigm that supervises generation in all three modalities from a shared context, enhancing action generation through cross-modal learning. Experiments were conducted on the LIBERO simulation and Franka real-robot setups as well as RoboTwin2.0 to assess in-domain and out-of-domain performances respectively. Our approach achieves a success rate of 96.3% on LIBERO, 72.0% across three tasks of real Franka, and 52.38% across eight bimanual tasks of RoboTwin2.0 with an additional gain of 9.25% from cross-modal learning. We release our codes, models and data at https://github.com/HHYHRHY/MM-ACT.
comment: 17 pages
♻ ☆ DCoAR: Deep Concept Injection into Unified Autoregressive Models for Personalized Text-to-Image Generation
The unified autoregressive (AR) model excels at multimodal understanding and generation. However, its full potential in the domain of customized image generation has yet to be fully realized. Existing customization approaches for unified AR models face a fundamental dilemma: adaptation-based methods suffer from overfitting and scalability bottlenecks, while concept-injection paradigms are constrained by a shallow injection strategy that leads to poor visual fidelity and impaired re-contextualization. To address this, we propose DCoAR, a novel deep concept injection framework that maintains a completely frozen pre-trained model. DCoAR deeply integrates new concepts through a Layer-wise Multimodal Context Learning (LMCL) strategy, which is stabilized by a multi-faceted regularization scheme: a Dual Prior Preservation (DPP) loss to mitigate semantic drift and a Context-Aware Self-Regularization (CASR) loss to enhance re-contextualization. The framework also enables training-free subject customization in user-provided styles. Experiments demonstrate that DCoAR significantly outperforms previous injection-based methods and achieves performance competitive with adaptation-based approaches while requiring substantially fewer trainable parameters. Code: https://github.com/KZF-kzf/CoAR
♻ ☆ WiseEdit: Benchmarking Cognition- and Creativity-Informed Image Editing
Recent image editing models boast next-level intelligent capabilities, facilitating cognition- and creativity-informed image editing. Yet, existing benchmarks provide too narrow a scope for evaluation, failing to holistically assess these advanced abilities. To address this, we introduce WiseEdit, a knowledge-intensive benchmark for comprehensive evaluation of cognition- and creativity-informed image editing, featuring deep task depth and broad knowledge breadth. Drawing an analogy to human cognitive creation, WiseEdit decomposes image editing into three cascaded steps, i.e., Awareness, Interpretation, and Imagination, each corresponding to a task that poses a challenge for models to complete at the specific step. It also encompasses complex tasks, where none of the three steps can be finished easily. Furthermore, WiseEdit incorporates three fundamental types of knowledge: Declarative, Procedural, and Metacognitive knowledge. Ultimately, WiseEdit comprises 1,220 test cases, objectively revealing the limitations of SoTA image editing models in knowledge-based cognitive reasoning and creative composition capabilities. The benchmark, evaluation code, and the generated images of each model will be made publicly available soon. Project Page: https://qnancy.github.io/wiseedit_project_page/.
comment: 32 pages, 20 figures. Project Page: https://qnancy.github.io/wiseedit_project_page/. Benchmark: https://huggingface.co/datasets/123123chen/WiseEdit-Benchmark/
♻ ☆ A Biophysically-Conditioned Generative Framework for 3D Brain Tumor MRI Synthesis
Magnetic resonance imaging (MRI) inpainting supports numerous clinical and research applications. We introduce the first generative model that conditions on voxel-level, continuous tumor concentrations to synthesize high-fidelity brain tumor MRIs. For the BraTS 2025 Inpainting Challenge, we adapt this architecture to the complementary task of healthy tissue restoration by setting the tumor concentrations to zero. Our latent diffusion model conditioned on both tissue segmentations and the tumor concentrations generates 3D spatially coherent and anatomically consistent images for both tumor synthesis and healthy tissue inpainting. For healthy inpainting, we achieve a PSNR of 18.5, and for tumor inpainting, we achieve 17.4. Our code is available at: https://github.com/valentin-biller/ldm.git
♻ ☆ Tokenizing Motion: A Generative Approach for Scene Dynamics Compression
This paper proposes a novel generative video compression framework that leverages motion pattern priors, derived from subtle dynamics in common scenes (e.g., swaying flowers or a boat drifting on water), rather than relying on video content priors (e.g., talking faces or human bodies). These compact motion priors enable a new approach to ultra-low bitrate communication while achieving high-quality reconstruction across diverse scene contents. At the encoder side, motion priors can be streamlined into compact representations via a dense-to-sparse transformation. At the decoder side, these priors facilitate the reconstruction of scene dynamics using an advanced flow-driven diffusion model. Experimental results illustrate that the proposed method can achieve superior rate-distortion-performance and outperform the state-of-the-art conventional-video codec Enhanced Compression Model (ECM) on-scene dynamics sequences. The project page can be found at-https://github.com/xyzysz/GNVDC.
comment: 5page, 5 figures
♻ ☆ Suite-IN++: A FlexiWear BodyNet Integrating Global and Local Motion Features from Apple Suite for Robust Inertial Navigation
The proliferation of wearable technology has established multi-device ecosystems comprising smartphones, smartwatches, and headphones as critical enablers for ubiquitous pedestrian localization. However, traditional pedestrian dead reckoning (PDR) struggles with diverse motion modes, while data-driven methods, despite improving accuracy, often lack robustness due to their reliance on a single-device setup. Therefore, a promising solution is to fully leverage existing wearable devices to form a flexiwear bodynet for robust and accurate pedestrian localization. This paper presents Suite-IN++, a deep learning framework for flexiwear bodynet-based pedestrian localization. Suite-IN++ integrates motion data from wearable devices on different body parts, using contrastive learning to separate global and local motion features. It fuses global features based on the data reliability of each device to capture overall motion trends and employs an attention mechanism to uncover cross-device correlations in local features, extracting motion details helpful for accurate localization. To evaluate our method, we construct a real-life flexiwear bodynet dataset, incorporating Apple Suite (iPhone, Apple Watch, and AirPods) across diverse walking modes and device configurations. Experimental results demonstrate that Suite-IN++ achieves superior localization accuracy and robustness, significantly outperforming state-of-the-art models in real-life pedestrian tracking scenarios.
comment: Accepted by TMC (Transactions on Mobile Computing) 2025
♻ ☆ Blurry-Edges: Photon-Limited Depth Estimation from Defocused Boundaries CVPR 2025
Extracting depth information from photon-limited, defocused images is challenging because depth from defocus (DfD) relies on accurate estimation of defocus blur, which is fundamentally sensitive to image noise. We present a novel approach to robustly measure object depths from photon-limited images along the defocused boundaries. It is based on a new image patch representation, Blurry-Edges, that explicitly stores and visualizes a rich set of low-level patch information, including boundaries, color, and smoothness. We develop a deep neural network architecture that predicts the Blurry-Edges representation from a pair of differently defocused images, from which depth can be calculated using a closed-form DfD relation we derive. The experimental results on synthetic and real data show that our method achieves the highest depth estimation accuracy on photon-limited images compared to a broad range of state-of-the-art DfD methods.
comment: Accepted to CVPR 2025. Project page: https://blurry-edges.qiguo.org/
♻ ☆ EMMA: Efficient Multimodal Understanding, Generation, and Editing with a Unified Architecture
We propose EMMA, an efficient and unified architecture for multimodal understanding, generation and editing. Specifically, EMMA primarily consists of 1) An efficient autoencoder with a 32x compression ratio, which significantly reduces the number of tokens required for generation. This also ensures the training balance between understanding and generation tasks by applying the same compression ratio to images. 2) Channel-wise concatenation instead of token-wise concatenation among visual understanding and generation tokens, which further reduces the visual tokens in unified architectures. 3) A shared-and-decoupled network that enables mutual improvements across tasks while meeting the task-specific modeling requirements. 4) A mixture-of-experts mechanism adopted for visual understanding encoder, which substantially improves perceptual capabilities with a few parameters increase. Extensive experiments have shown that EMMA-4B can significantly outperform state-of-the-art unified multimodal approaches (e.g., BAGEL-7B) in both efficiency and performance, while also achieving competitive results compared to recent multimodal understanding and generation experts (e.g., Qwen3-VL and Qwen-Image). We believe that EMMA lays a solid foundation for the future development of unified multimodal architectures.
comment: Project Page: https://emma-umm.github.io/emma/
♻ ☆ MCMoE: Completing Missing Modalities with Mixture of Experts for Incomplete Multimodal Action Quality Assessment AAAI 2026
Multimodal Action Quality Assessment (AQA) has recently emerged as a promising paradigm. By leveraging complementary information across shared contextual cues, it enhances the discriminative evaluation of subtle intra-class variations in highly similar action sequences. However, partial modalities are frequently unavailable at the inference stage in reality. The absence of any modality often renders existing multimodal models inoperable. Furthermore, it triggers catastrophic performance degradation due to interruptions in cross-modal interactions. To address this issue, we propose a novel Missing Completion Framework with Mixture of Experts (MCMoE) that unifies unimodal and joint representation learning in single-stage training. Specifically, we propose an adaptive gated modality generator that dynamically fuses available information to reconstruct missing modalities. We then design modality experts to learn unimodal knowledge and dynamically mix the knowledge of all experts to extract cross-modal joint representations. With a mixture of experts, missing modalities are further refined and complemented. Finally, in the training phase, we mine the complete multimodal features and unimodal expert knowledge to guide modality generation and generation-based joint representation extraction. Extensive experiments demonstrate that our MCMoE achieves state-of-the-art results in both complete and incomplete multimodal learning on three public AQA benchmarks. Code is available at https://github.com/XuHuangbiao/MCMoE.
comment: AAAI 2026
♻ ☆ Training-Free Diffusion Priors for Text-to-Image Generation via Optimization-based Visual Inversion
Diffusion models have established the state-of-the-art in text-to-image generation, but their performance often relies on a diffusion prior network to translate text embeddings into the visual manifold for easier decoding. These priors are computationally expensive and require extensive training on massive datasets. In this work, we challenge the necessity of a trained prior at all by employing Optimization-based Visual Inversion (OVI), a training-free and data-free alternative, to replace the need for a prior. OVI initializes a latent visual representation from random pseudo-tokens and iteratively optimizes it to maximize the cosine similarity with input textual prompt embedding. We further propose two novel constraints, a Mahalanobis-based and a Nearest-Neighbor loss, to regularize the OVI optimization process toward the distribution of realistic images. Our experiments, conducted on Kandinsky 2.2, show that OVI can serve as an alternative to traditional priors. More importantly, our analysis reveals a critical flaw in current evaluation benchmarks like T2I-CompBench++, where simply using the text embedding as a prior achieves surprisingly high scores, despite lower perceptual quality. Our constrained OVI methods improve visual fidelity over this baseline, with the Nearest-Neighbor approach proving particularly effective, achieving quantitative scores comparable to or higher than the state-of-the-art data-efficient prior, indicating that the idea merits further investigation. The code will be publicly available upon acceptance.
comment: 11 pages, 7 figures, technical report (preprint)
♻ ☆ FLAIR: Frequency- and Locality-Aware Implicit Neural Representations
Implicit Neural Representations (INRs) leverage neural networks to map coordinates to corresponding signals, enabling continuous and compact representations. This paradigm has driven significant advances in various vision tasks. However, existing INRs lack frequency selectivity and spatial localization, leading to an over-reliance on redundant signal components. Consequently, they exhibit spectral bias, tending to learn low-frequency components early while struggling to capture fine high-frequency details. To address these issues, we propose FLAIR (Frequency- and Locality-Aware Implicit Neural Representations), which incorporates two key innovations. The first is Band-Localized Activation (BLA), a novel activation designed for joint frequency selection and spatial localization under the constraints of the time-frequency uncertainty principle (TFUP). Through structured frequency control and spatially localized responses, BLA effectively mitigates spectral bias and enhances training stability. The second is Wavelet-Energy-Guided Encoding (WEGE), which leverages the discrete wavelet transform to compute energy scores and explicitly guide frequency information to the network, enabling precise frequency selection and adaptive band control. Our method consistently outperforms existing INRs in 2D image representation, as well as 3D shape reconstruction and novel view synthesis.
comment: Please visit our project page at https://cmlab-korea.github.io/FLAIR/
♻ ☆ Event-Customized Image Generation
Customized Image Generation, generating customized images with user-specified concepts, has raised significant attention due to its creativity and novelty. With impressive progress achieved in subject customization, some pioneer works further explored the customization of action and interaction beyond entity (i.e., human, animal, and object) appearance. However, these approaches only focus on basic actions and interactions between two entities, and their effects are limited by insufficient ''exactly same'' reference images. To extend customized image generation to more complex scenes for general real-world applications, we propose a new task: event-customized image generation. Given a single reference image, we define the ''event'' as all specific actions, poses, relations, or interactions between different entities in the scene. This task aims at accurately capturing the complex event and generating customized images with various target entities. To solve this task, we proposed a novel training-free event customization method: FreeEvent. Specifically, FreeEvent introduces two extra paths alongside the general diffusion denoising process: 1) Entity switching path: it applies cross-attention guidance and regulation for target entity generation. 2) Event transferring path: it injects the spatial feature and self-attention maps from the reference image to the target image for event generation. To further facilitate this new task, we collected two evaluation benchmarks: SWiG-Event and Real-Event. Extensive experiments and ablations have demonstrated the effectiveness of FreeEvent.
♻ ☆ RealD$^2$iff: Bridging Real-World Gap in Robot Manipulation via Depth Diffusion
Robot manipulation in the real world is fundamentally constrained by the visual sim2real gap, where depth observations collected in simulation fail to reflect the complex noise patterns inherent to real sensors. In this work, inspired by the denoising capability of diffusion models, we invert the conventional perspective and propose a clean-to-noisy paradigm that learns to synthesize noisy depth, thereby bridging the visual sim2real gap through purely simulation-driven robotic learning. Building on this idea, we introduce RealD$^2$iff, a hierarchical coarse-to-fine diffusion framework that decomposes depth noise into global structural distortions and fine-grained local perturbations. To enable progressive learning of these components, we further develop two complementary strategies: Frequency-Guided Supervision (FGS) for global structure modeling and Discrepancy-Guided Optimization (DGO) for localized refinement. To integrate RealD$^2$iff seamlessly into imitation learning, we construct a pipeline that spans six stages. We provide comprehensive empirical and experimental validation demonstrating the effectiveness of this paradigm. RealD$^2$iff enables two key applications: (1) generating real-world-like depth to construct clean-noisy paired datasets without manual sensor data collection. (2) Achieving zero-shot sim2real robot manipulation, substantially improving real-world performance without additional fine-tuning.
comment: We are the author team of the paper "RealD$^2$iff: Bridging Real-World Gap in Robot Manipulation via Depth Diffusion". After self-examination, our team discovered inappropriate wording in the citation of related work, the introduction, and the contribution statement, which may affect the contribution of other related works. Therefore, we have decided to revise the paper and request its withdrawal
♻ ☆ LAMP: Language-Assisted Motion Planning for Controllable Video Generation
Video generation has achieved remarkable progress in visual fidelity and controllability, enabling conditioning on text, layout, or motion. Among these, motion control - specifying object dynamics and camera trajectories - is essential for composing complex, cinematic scenes, yet existing interfaces remain limited. We introduce LAMP that leverages large language models (LLMs) as motion planners to translate natural language descriptions into explicit 3D trajectories for dynamic objects and (relatively defined) cameras. LAMP defines a motion domain-specific language (DSL), inspired by cinematography conventions. By harnessing program synthesis capabilities of LLMs, LAMP generates structured motion programs from natural language, which are deterministically mapped to 3D trajectories. We construct a large-scale procedural dataset pairing natural text descriptions with corresponding motion programs and 3D trajectories. Experiments demonstrate LAMP's improved performance in motion controllability and alignment with user intent compared to state-of-the-art alternatives establishing the first framework for generating both object and camera motions directly from natural language specifications. Code, models and data are available on our project page.
comment: Project Page: https://cyberiada.github.io/LAMP/
♻ ☆ Enhanced Spatiotemporal Consistency for Image-to-LiDAR Data Pretraining
LiDAR representation learning has emerged as a promising approach to reducing reliance on costly and labor-intensive human annotations. While existing methods primarily focus on spatial alignment between LiDAR and camera sensors, they often overlook the temporal dynamics critical for capturing motion and scene continuity in driving scenarios. To address this limitation, we propose SuperFlow++, a novel framework that integrates spatiotemporal cues in both pretraining and downstream tasks using consecutive LiDAR-camera pairs. SuperFlow++ introduces four key components: (1) a view consistency alignment module to unify semantic information across camera views, (2) a dense-to-sparse consistency regularization mechanism to enhance feature robustness across varying point cloud densities, (3) a flow-based contrastive learning approach that models temporal relationships for improved scene understanding, and (4) a temporal voting strategy that propagates semantic information across LiDAR scans to improve prediction consistency. Extensive evaluations on 11 heterogeneous LiDAR datasets demonstrate that SuperFlow++ outperforms state-of-the-art methods across diverse tasks and driving conditions. Furthermore, by scaling both 2D and 3D backbones during pretraining, we uncover emergent properties that provide deeper insights into developing scalable 3D foundation models. With strong generalizability and computational efficiency, SuperFlow++ establishes a new benchmark for data-efficient LiDAR-based perception in autonomous driving. The code is publicly available at https://github.com/Xiangxu-0103/SuperFlow
comment: IEEE Transactions on Pattern Analysis and Machine Intelligence
♻ ☆ Image2Net: Datasets, Benchmark and Hybrid Framework to Convert Analog Circuit Diagrams into Netlists
Large Language Model (LLM) exhibits great potential in designing of analog integrated circuits (IC) because of its excellence in abstraction and generalization for knowledge. However, further development of LLM-based analog ICs heavily relies on textual description of analog ICs, while existing analog ICs are mostly illustrated in image-based circuit diagrams rather than text-based netlists. Converting circuit diagrams to netlists help LLMs to enrich the knowledge of analog IC. Nevertheless, previously proposed conversion frameworks face challenges in further application because of limited support of image styles and circuit elements. Up to now, it still remains a challenging task to effectively convert complex circuit diagrams into netlists. To this end, this paper constructs and opensources a new dataset with rich styles of circuit diagrams as well as balanced distribution of simple and complex analog ICs. And a hybrid framework, named Image2Net, is proposed for practical conversion from circuit diagrams to netlists. The netlist edit distance (NED) is also introduced to precisely assess the difference between the converted netlists and ground truth. Based on our benchmark, Image2Net achieves 80.77% successful rate, which is 34.62%-45.19% higher than previous works. Specifically, the proposed work shows 0.116 averaged NED, which is 62.1%-69.6% lower than state-of-the-arts. Our datasets and benchmark are available at https://github.com/LAD021/ci2n_datasets.
comment: 10 pages, 12 figures, 6 tables
♻ ☆ Switch-JustDance: Benchmarking Whole Body Motion Tracking Policies Using a Commercial Console Game
Recent advances in whole-body robot control have enabled humanoid and legged robots to perform increasingly agile and coordinated motions. However, standardized benchmarks for evaluating these capabilities in real-world settings, and in direct comparison to humans, remain scarce. Existing evaluations often rely on pre-collected human motion datasets or simulation-based experiments, which limit reproducibility, overlook hardware factors, and hinder fair human-robot comparisons. We present Switch-JustDance, a low-cost and reproducible benchmarking pipeline that leverages motion-sensing console games, Just Dance on the Nintendo Switch, to evaluate robot whole-body control. Using Just Dance on the Nintendo Switch as a representative platform, Switch-JustDance converts in-game choreography into robot-executable motions through streaming, motion reconstruction, and motion retargeting modules and enables users to evaluate controller performance through the game's built-in scoring system. We first validate the evaluation properties of Just Dance, analyzing its reliability, validity, sensitivity, and potential sources of bias. Our results show that the platform provides consistent and interpretable performance measures, making it a suitable tool for benchmarking embodied AI. Building on this foundation, we benchmark three state-of-the-art humanoid whole-body controllers on hardware and provide insights into their relative strengths and limitations.
♻ ☆ Three Forensic Cues for JPEG AI Images
The JPEG standard was vastly successful. Currently, the first AI-based compression method ``JPEG AI'' will be standardized. JPEG AI brings remarkable benefits. JPEG AI images exhibit impressive image quality at bitrates that are an order of magnitude lower than images compressed with traditional JPEG. However, forensic analysis of JPEG AI has to be completely re-thought: forensic tools for traditional JPEG do not transfer to JPEG AI, and artifacts from JPEG AI are easily confused with artifacts from artificially generated images (``DeepFakes''). This creates a need for novel forensic approaches to detection and distinction of JPEG AI images. In this work, we make a first step towards a forensic JPEG AI toolset. We propose three cues for forensic algorithms for JPEG AI. These algorithms address three forensic questions: first, we show that the JPEG AI preprocessing introduces correlations in the color channels that do not occur in uncompressed images. Second, we show that repeated compression of JPEG AI images leads to diminishing distortion differences. This can be used to detect recompression, in a spirit similar to some classic JPEG forensics methods. Third, we show that the quantization of JPEG AI images in the latent space can be used to distinguish real images with JPEG AI compression from synthetically generated images. The proposed methods are interpretable for a forensic analyst, and we hope that they inspire further research in the forensics of AI-compressed images.
♻ ☆ DualHash: A Stochastic Primal-Dual Algorithm with Theoretical Guarantee for Deep Hashing
Deep hashing converts high-dimensional feature vectors into compact binary codes, enabling efficient large-scale retrieval. A fundamental challenge in deep hashing stems from the discrete nature of quantization in generating the codes. W-type regularizations, such as $||z|-1|$, have been proven effective as they encourage variables toward binary values. However, existing methods often directly optimize these regularizations without convergence guarantees. While proximal gradient methods offer a promising solution, the coupling between W-type regularizers and neural network outputs results in composite forms that generally lack closed-form proximal solutions. In this paper, we present a stochastic primal-dual hashing algorithm, referred to as DualHash, that provides rigorous complexity bounds. Using Fenchel duality, we partially transform the nonconvex W-type regularization optimization into the dual space, which results in a proximal operator that admits closed-form solutions. We derive two algorithm instances: a momentum-accelerated version with $\mathcal{O}(\varepsilon^{-4})$ complexity and an improved $\mathcal{O}(\varepsilon^{-3})$ version using variance reduction. Experiments on three image retrieval databases demonstrate the superior performance of DualHash.
comment: 27 pages, 13 figures
♻ ☆ FASTer: Toward Efficient Autoregressive Vision Language Action Modeling via Neural Action Tokenization
Autoregressive vision-language-action (VLA) models have recently demonstrated strong capabilities in robotic manipulation. However, their core process of action tokenization often involves a trade-off between reconstruction fidelity and inference efficiency. We introduce FASTer, a unified framework for efficient and generalizable robot learning that integrates a learnable tokenizer with an autoregressive policy built upon it. FASTerVQ encodes action chunks as single-channel images, capturing global spatio-temporal dependencies while maintaining a high compression ratio. FASTerVLA builds on this tokenizer with block-wise autoregressive decoding and a lightweight action expert, achieving both faster inference and higher task performance. Extensive experiments across simulated and real-world benchmarks show that FASTerVQ delivers superior reconstruction quality, high token utilization, and strong cross-task and cross-embodiment generalization, while FASTerVLA further improves overall capability, surpassing previous state-of-the-art VLA models in both inference speed and task performance.
Machine Learning 220
☆ Relational Visual Similarity
Humans do not just see attribute similarity -- we also see relational similarity. An apple is like a peach because both are reddish fruit, but the Earth is also like a peach: its crust, mantle, and core correspond to the peach's skin, flesh, and pit. This ability to perceive and recognize relational similarity, is arguable by cognitive scientist to be what distinguishes humans from other species. Yet, all widely used visual similarity metrics today (e.g., LPIPS, CLIP, DINO) focus solely on perceptual attribute similarity and fail to capture the rich, often surprising relational similarities that humans perceive. How can we go beyond the visible content of an image to capture its relational properties? How can we bring images with the same relational logic closer together in representation space? To answer these questions, we first formulate relational image similarity as a measurable problem: two images are relationally similar when their internal relations or functions among visual elements correspond, even if their visual attributes differ. We then curate 114k image-caption dataset in which the captions are anonymized -- describing the underlying relational logic of the scene rather than its surface content. Using this dataset, we finetune a Vision-Language model to measure the relational similarity between images. This model serves as the first step toward connecting images by their underlying relational structure rather than their visible appearance. Our study shows that while relational similarity has a lot of real-world applications, existing image similarity models fail to capture it -- revealing a critical gap in visual computing.
comment: Project page, data, and code: https://thaoshibe.github.io/relsim
☆ Do Generalisation Results Generalise?
A large language model's (LLM's) out-of-distribution (OOD) generalisation ability is crucial to its deployment. Previous work assessing LLMs' generalisation performance, however, typically focuses on a single out-of-distribution dataset. This approach may fail to precisely evaluate the capabilities of the model, as the data shifts encountered once a model is deployed are much more diverse. In this work, we investigate whether OOD generalisation results generalise. More specifically, we evaluate a model's performance across multiple OOD testsets throughout a finetuning run; we then evaluate the partial correlation of performances across these testsets, regressing out in-domain performance. This allows us to assess how correlated are generalisation performances once in-domain performance is controlled for. Analysing OLMo2 and OPT, we observe no overarching trend in generalisation results: the existence of a positive or negative correlation between any two OOD testsets depends strongly on the specific choice of model analysed.
☆ The Adoption and Usage of AI Agents: Early Evidence from Perplexity
This paper presents the first large-scale field study of the adoption, usage intensity, and use cases of general-purpose AI agents operating in open-world web environments. Our analysis centers on Comet, an AI-powered browser developed by Perplexity, and its integrated agent, Comet Assistant. Drawing on hundreds of millions of anonymized user interactions, we address three fundamental questions: Who is using AI agents? How intensively are they using them? And what are they using them for? Our findings reveal substantial heterogeneity in adoption and usage across user segments. Earlier adopters, users in countries with higher GDP per capita and educational attainment, and individuals working in digital or knowledge-intensive sectors -- such as digital technology, academia, finance, marketing, and entrepreneurship -- are more likely to adopt or actively use the agent. To systematically characterize the substance of agent usage, we introduce a hierarchical agentic taxonomy that organizes use cases across three levels: topic, subtopic, and task. The two largest topics, Productivity & Workflow and Learning & Research, account for 57% of all agentic queries, while the two largest subtopics, Courses and Shopping for Goods, make up 22%. The top 10 out of 90 tasks represent 55% of queries. Personal use constitutes 55% of queries, while professional and educational contexts comprise 30% and 16%, respectively. In the short term, use cases exhibit strong stickiness, but over time users tend to shift toward more cognitively oriented topics. The diffusion of increasingly capable AI agents carries important implications for researchers, businesses, policymakers, and educators, inviting new lines of inquiry into this rapidly emerging class of AI capabilities.
☆ An Adaptive Multi-Layered Honeynet Architecture for Threat Behavior Analysis via Deep Learning
The escalating sophistication and variety of cyber threats have rendered static honeypots inadequate, necessitating adaptive, intelligence-driven deception. In this work, ADLAH is introduced: an Adaptive Deep Learning Anomaly Detection Honeynet designed to maximize high-fidelity threat intelligence while minimizing cost through autonomous orchestration of infrastructure. The principal contribution is offered as an end-to-end architectural blueprint and vision for an AI-driven deception platform. Feasibility is evidenced by a functional prototype of the central decision mechanism, in which a reinforcement learning (RL) agent determines, in real time, when sessions should be escalated from low-interaction sensor nodes to dynamically provisioned, high-interaction honeypots. Because sufficient live data were unavailable, field-scale validation is not claimed; instead, design trade-offs and limitations are detailed, and a rigorous roadmap toward empirical evaluation at scale is provided. Beyond selective escalation and anomaly detection, the architecture pursues automated extraction, clustering, and versioning of bot attack chains, a core capability motivated by the empirical observation that exposed services are dominated by automated traffic. Together, these elements delineate a practical path toward cost-efficient capture of high-value adversary behavior, systematic bot versioning, and the production of actionable threat intelligence.
☆ Graph-Based Learning of Spectro-Topographical EEG Representations with Gradient Alignment for Brain-Computer Interfaces
We present a novel graph-based learning of EEG representations with gradient alignment (GEEGA) that leverages multi-domain information to learn EEG representations for brain-computer interfaces. Our model leverages graph convolutional networks to fuse embeddings from frequency-based topographical maps and time-frequency spectrograms, capturing inter-domain relationships. GEEGA addresses the challenge of achieving high inter-class separability, which arises from the temporally dynamic and subject-sensitive nature of EEG signals by incorporating the center loss and pairwise difference loss. Additionally, GEEGA incorporates a gradient alignment strategy to resolve conflicts between gradients from different domains and the fused embeddings, ensuring that discrepancies, where gradients point in conflicting directions, are aligned toward a unified optimization direction. We validate the efficacy of our method through extensive experiments on three publicly available EEG datasets: BCI-2a, CL-Drive and CLARE. Comprehensive ablation studies further highlight the impact of various components of our model.
☆ Provable Long-Range Benefits of Next-Token Prediction
Why do modern language models, trained to do well on next-word prediction, appear to generate coherent documents and capture long-range structure? Here we show that next-token prediction is provably powerful for learning longer-range structure, even with common neural network architectures. Specifically, we prove that optimizing next-token prediction over a Recurrent Neural Network (RNN) yields a model that closely approximates the training distribution: for held-out documents sampled from the training distribution, no algorithm of bounded description length limited to examining the next $k$ tokens, for any $k$, can distinguish between $k$ consecutive tokens of such documents and $k$ tokens generated by the learned language model following the same prefix. We provide polynomial bounds (in $k$, independent of the document length) on the model size needed to achieve such $k$-token indistinguishability, offering a complexity-theoretic explanation for the long-range coherence observed in practice.
comment: 66 pages, 5 figures
☆ LUNA: LUT-Based Neural Architecture for Fast and Low-Cost Qubit Readout
Qubit readout is a critical operation in quantum computing systems, which maps the analog response of qubits into discrete classical states. Deep neural networks (DNNs) have recently emerged as a promising solution to improve readout accuracy . Prior hardware implementations of DNN-based readout are resource-intensive and suffer from high inference latency, limiting their practical use in low-latency decoding and quantum error correction (QEC) loops. This paper proposes LUNA, a fast and efficient superconducting qubit readout accelerator that combines low-cost integrator-based preprocessing with Look-Up Table (LUT) based neural networks for classification. The architecture uses simple integrators for dimensionality reduction with minimal hardware overhead, and employs LogicNets (DNNs synthesized into LUT logic) to drastically reduce resource usage while enabling ultra-low-latency inference. We integrate this with a differential evolution based exploration and optimization framework to identify high-quality design points. Our results show up to a 10.95x reduction in area and 30% lower latency with little to no loss in fidelity compared to the state-of-the-art. LUNA enables scalable, low-footprint, and high-speed qubit readout, supporting the development of larger and more reliable quantum computing systems.
☆ Group Representational Position Encoding
We present GRAPE (Group RepresentAtional Position Encoding), a unified framework for positional encoding based on group actions. GRAPE brings together two families of mechanisms: (i) multiplicative rotations (Multiplicative GRAPE) in $\mathrm{SO}(d)$ and (ii) additive logit biases (Additive GRAPE) arising from unipotent actions in the general linear group $\mathrm{GL}$. In Multiplicative GRAPE, a position $n \in \mathbb{Z}$ (or $t \in \mathbb{R}$) acts as $\mathbf{G}(n)=\exp(n\,ω\,\mathbf{L})$ with a rank-2 skew generator $\mathbf{L} \in \mathbb{R}^{d \times d}$, yielding a relative, compositional, norm-preserving map with a closed-form matrix exponential. RoPE is recovered exactly when the $d/2$ planes are the canonical coordinate pairs with log-uniform spectrum. Learned commuting subspaces and compact non-commuting mixtures strictly extend this geometry to capture cross-subspace feature coupling at $O(d)$ and $O(r d)$ cost per head, respectively. In Additive GRAPE, additive logits arise as rank-1 (or low-rank) unipotent actions, recovering ALiBi and the Forgetting Transformer (FoX) as exact special cases while preserving an exact relative law and streaming cacheability. Altogether, GRAPE supplies a principled design space for positional geometry in long-context models, subsuming RoPE and ALiBi as special cases. Project Page: https://github.com/model-architectures/GRAPE.
comment: Project Page: https://github.com/model-architectures/GRAPE
☆ Collaborative Causal Sensemaking: Closing the Complementarity Gap in Human-AI Decision Support
LLM-based agents are rapidly being plugged into expert decision-support, yet in messy, high-stakes settings they rarely make the team smarter: human-AI teams often underperform the best individual, experts oscillate between verification loops and over-reliance, and the promised complementarity does not materialise. We argue this is not just a matter of accuracy, but a fundamental gap in how we conceive AI assistance: expert decisions are made through collaborative cognitive processes where mental models, goals, and constraints are continually co-constructed, tested, and revised between human and AI. We propose Collaborative Causal Sensemaking (CCS) as a research agenda and organizing framework for decision-support agents: systems designed as partners in cognitive work, maintaining evolving models of how particular experts reason, helping articulate and revise goals, co-constructing and stress-testing causal hypotheses, and learning from the outcomes of joint decisions so that both human and agent improve over time. We sketch challenges around training ecologies that make collaborative thinking instrumentally valuable, representations and interaction protocols for co-authored models, and evaluation centred on trust and complementarity. These directions can reframe MAS research around agents that participate in collaborative sensemaking and act as AI teammates that think with their human partners.
☆ ReasonBENCH: Benchmarking the (In)Stability of LLM Reasoning
Large language models (LLMs) are increasingly deployed in settings where reasoning, such as multi-step problem solving and chain-of-thought, is essential. Yet, current evaluation practices overwhelmingly report single-run accuracy while ignoring the intrinsic uncertainty that naturally arises from stochastic decoding. This omission creates a blind spot because practitioners cannot reliably assess whether a method's reported performance is stable, reproducible, or cost-consistent. We introduce ReasonBENCH, the first benchmark designed to quantify the underlying instability in LLM reasoning. ReasonBENCH provides (i) a modular evaluation library that standardizes reasoning frameworks, models, and tasks, (ii) a multi-run protocol that reports statistically reliable metrics for both quality and cost, and (iii) a public leaderboard to encourage variance-aware reporting. Across tasks from different domains, we find that the vast majority of reasoning strategies and models exhibit high instability. Notably, even strategies with similar average performance can display confidence intervals up to four times wider, and the top-performing methods often incur higher and less stable costs. Such instability compromises reproducibility across runs and, consequently, the reliability of reported performance. To better understand these dynamics, we further analyze the impact of prompts, model families, and scale on the trade-off between solve rate and stability. Our results highlight reproducibility as a critical dimension for reliable LLM reasoning and provide a foundation for future reasoning methods and uncertainty quantification techniques. ReasonBENCH is publicly available at https://github.com/au-clan/ReasonBench .
comment: 11 pages, 3 tables, 4 figures
☆ GatedFWA: Linear Flash Windowed Attention with Gated Associative Memory
Modern autoregressive models rely on attention, yet the Softmax full attention in Transformers scales quadratically with sequence length. Sliding Window Attention (SWA) achieves linear-time encoding/decoding by constraining the attention pattern, but under an \textit{Associative Memory} interpretation, its difference-style update renders the training objective effectively \emph{unbounded}. In contrast, Softmax attention normalizes updates, leading to \emph{memory shrinkage and gradient vanishing}. We propose GatedFWA: a Memory-\underline{Gated} (\underline{F}lash) \underline{W}indowed \underline{A}ttention mechanism that preserves SWAs efficiency while stabilizing memory updates and making gradient flow controllable. In essence, GatedFWA accumulate a per-token/head gate into a decay bias added to the attention logits, acting as a learnable contraction in the memory recurrence. We implement a fused one-pass gate preprocessing and a FlashAttention-compatible kernel that injects the gate under a sliding mask, ensuring I/O efficiency and numerical stability. On language modelling benchmarks, GatedFWA delivers competitive throughput with negligible overhead and better use of global context, and it integrates cleanly with token compression/selection methods such as NSA and generalizes to various autoregressive domains.
☆ Distribution-informed Online Conformal Prediction
Conformal prediction provides a pivotal and flexible technique for uncertainty quantification by constructing prediction sets with a predefined coverage rate. Many online conformal prediction methods have been developed to address data distribution shifts in fully adversarial environments, resulting in overly conservative prediction sets. We propose Conformal Optimistic Prediction (COP), an online conformal prediction algorithm incorporating underlying data pattern into the update rule. Through estimated cumulative distribution function of non-conformity scores, COP produces tighter prediction sets when predictable pattern exists, while retaining valid coverage guarantees even when estimates are inaccurate. We establish a joint bound on coverage and regret, which further confirms the validity of our approach. We also prove that COP achieves distribution-free, finite-sample coverage under arbitrary learning rates and can converge when scores are $i.i.d.$. The experimental results also show that COP can achieve valid coverage and construct shorter prediction intervals than other baselines.
☆ Formalized Hopfield Networks and Boltzmann Machines
Neural networks are widely used, yet their analysis and verification remain challenging. In this work, we present a Lean 4 formalization of neural networks, covering both deterministic and stochastic models. We first formalize Hopfield networks, recurrent networks that store patterns as stable states. We prove convergence and the correctness of Hebbian learning, a training rule that updates network parameters to encode patterns, here limited to the case of pairwise-orthogonal patterns. We then consider stochastic networks, where updates are probabilistic and convergence is to a stationary distribution. As a canonical example, we formalize the dynamics of Boltzmann machines and prove their ergodicity, showing convergence to a unique stationary distribution using a new formalization of the Perron-Frobenius theorem.
☆ RL-MTJail: Reinforcement Learning for Automated Black-Box Multi-Turn Jailbreaking of Large Language Models
Large language models are vulnerable to jailbreak attacks, threatening their safe deployment in real-world applications. This paper studies black-box multi-turn jailbreaks, aiming to train attacker LLMs to elicit harmful content from black-box models through a sequence of prompt-output interactions. Existing approaches typically rely on single turn optimization, which is insufficient for learning long-term attack strategies. To bridge this gap, we formulate the problem as a multi-turn reinforcement learning task, directly optimizing the harmfulness of the final-turn output as the outcome reward. To mitigate sparse supervision and promote long-term attack strategies, we propose two heuristic process rewards: (1) controlling the harmfulness of intermediate outputs to prevent triggering the black-box model's rejection mechanisms, and (2) maintaining the semantic relevance of intermediate outputs to avoid drifting into irrelevant content. Experimental results on multiple benchmarks show consistently improved attack success rates across multiple models, highlighting the effectiveness of our approach. The code is available at https://github.com/xxiqiao/RL-MTJail. Warning: This paper contains examples of harmful content.
comment: 19 pages, 15 figures
☆ Physics-Informed Neural Networks for Source Inversion and Parameters Estimation in Atmospheric Dispersion
Recent studies have shown the success of deep learning in solving forward and inverse problems in engineering and scientific computing domains, such as physics-informed neural networks (PINNs). In the fields of atmospheric science and environmental monitoring, estimating emission source locations is a central task that further relies on multiple model parameters that dictate velocity profiles and diffusion parameters. Estimating these parameters at the same time as emission sources from scarce data is a difficult task. In this work, we achieve this by leveraging the flexibility and generality of PINNs. We use a weighted adaptive method based on the neural tangent kernels to solve a source inversion problem with parameter estimation on the 2D and 3D advection-diffusion equations with unknown velocity and diffusion coefficients that may vary in space and time. Our proposed weighted adaptive method is presented as an extension of PINNs for forward PDE problems to a highly ill-posed source inversion and parameter estimation problem. The key idea behind our methodology is to attempt the joint recovery of the solution, the sources along with the unknown parameters, thereby using the underlying partial differential equation as a constraint that couples multiple unknown functional parameters, leading to more efficient use of the limited information in the measurements. We present various numerical experiments, using different types of measurements that model practical engineering systems, to show that our proposed method is indeed successful and robust to additional noise in the measurements.
☆ A multimodal Bayesian Network for symptom-level depression and anxiety prediction from voice and speech data
During psychiatric assessment, clinicians observe not only what patients report, but important nonverbal signs such as tone, speech rate, fluency, responsiveness, and body language. Weighing and integrating these different information sources is a challenging task and a good candidate for support by intelligence-driven tools - however this is yet to be realized in the clinic. Here, we argue that several important barriers to adoption can be addressed using Bayesian network modelling. To demonstrate this, we evaluate a model for depression and anxiety symptom prediction from voice and speech features in large-scale datasets (30,135 unique speakers). Alongside performance for conditions and symptoms (for depression, anxiety ROC-AUC=0.842,0.831 ECE=0.018,0.015; core individual symptom ROC-AUC>0.74), we assess demographic fairness and investigate integration across and redundancy between different input modality types. Clinical usefulness metrics and acceptability to mental health service users are explored. When provided with sufficiently rich and large-scale multimodal data streams and specified to represent common mental conditions at the symptom rather than disorder level, such models are a principled approach for building robust assessment support tools: providing clinically-relevant outputs in a transparent and explainable format that is directly amenable to expert clinical supervision.
☆ A scalable and real-time neural decoder for topological quantum codes
Fault-tolerant quantum computing will require error rates far below those achievable with physical qubits. Quantum error correction (QEC) bridges this gap, but depends on decoders being simultaneously fast, accurate, and scalable. This combination of requirements has not yet been met by a machine-learning decoder, nor by any decoder for promising resource-efficient codes such as the colour code. Here we introduce AlphaQubit 2, a neural-network decoder that achieves near-optimal logical error rates for both surface and colour codes at large scales under realistic noise. For the colour code, it is orders of magnitude faster than other high-accuracy decoders. For the surface code, we demonstrate real-time decoding faster than 1 microsecond per cycle up to distance 11 on current commercial accelerators with better accuracy than leading real-time decoders. These results support the practical application of a wider class of promising QEC codes, and establish a credible path towards high-accuracy, real-time neural decoding at the scales required for fault-tolerant quantum computation.
☆ Enabling Delayed-Full Charging Through Transformer-Based Real-Time-to-Departure Modeling for EV Battery Longevity AAAI'26
Electric vehicles (EVs) are key to sustainable mobility, yet their lithium-ion batteries (LIBs) degrade more rapidly under prolonged high states of charge (SOC). This can be mitigated by delaying full charging \ours until just before departure, which requires accurate prediction of user departure times. In this work, we propose Transformer-based real-time-to-event (TTE) model for accurate EV departure prediction. Our approach represents each day as a TTE sequence by discretizing time into grid-based tokens. Unlike previous methods primarily dependent on temporal dependency from historical patterns, our method leverages streaming contextual information to predict departures. Evaluation on a real-world study involving 93 users and passive smartphone data demonstrates that our method effectively captures irregular departure patterns within individual routines, outperforming baseline models. These results highlight the potential for practical deployment of the \ours algorithm and its contribution to sustainable transportation systems.
comment: 16 pages, 9 figures, AAAI'26 (accepted)
☆ Each Prompt Matters: Scaling Reinforcement Learning Without Wasting Rollouts on Hundred-Billion-Scale MoE
We present CompassMax-V3-Thinking, a hundred-billion-scale MoE reasoning model trained with a new RL framework built on one principle: each prompt must matter. Scaling RL to this size exposes critical inefficiencies-zero-variance prompts that waste rollouts, unstable importance sampling over long horizons, advantage inversion from standard reward models, and systemic bottlenecks in rollout processing. To overcome these challenges, we introduce several unified innovations: (1) Multi-Stage Zero-Variance Elimination, which filters out non-informative prompts and stabilizes group-based policy optimization (e.g. GRPO) by removing wasted rollouts; (2) ESPO, an entropy-adaptive optimization method that balances token-level and sequence-level importance sampling to maintain stable learning dynamics; (3) a Router Replay strategy that aligns training-time MoE router decisions with inference-time behavior to mitigate train-infer discrepancies, coupled with a reward model adjustment to prevent advantage inversion; (4) a high-throughput RL system with FP8-precision rollouts, overlapped reward computation, and length-aware scheduling to eliminate performance bottlenecks. Together, these contributions form a cohesive pipeline that makes RL on hundred-billion-scale MoE models stable and efficient. The resulting model delivers strong performance across both internal and public evaluations.
☆ In-Context and Few-Shots Learning for Forecasting Time Series Data based on Large Language Models
Existing data-driven approaches in modeling and predicting time series data include ARIMA (Autoregressive Integrated Moving Average), Transformer-based models, LSTM (Long Short-Term Memory) and TCN (Temporal Convolutional Network). These approaches, and in particular deep learning-based models such as LSTM and TCN, have shown great results in predicting time series data. With the advancement of leveraging pre-trained foundation models such as Large Language Models (LLMs) and more notably Google's recent foundation model for time series data, {\it TimesFM} (Time Series Foundation Model), it is of interest to investigate whether these foundation models have the capability of outperforming existing modeling approaches in analyzing and predicting time series data. This paper investigates the performance of using LLM models for time series data prediction. We investigate the in-context learning methodology in the training of LLM models that are specific to the underlying application domain. More specifically, the paper explores training LLMs through in-context, zero-shot and few-shot learning and forecasting time series data with OpenAI {\tt o4-mini} and Gemini 2.5 Flash Lite, as well as the recent Google's Transformer-based TimesFM, a time series-specific foundation model, along with two deep learning models, namely TCN and LSTM networks. The findings indicate that TimesFM has the best overall performance with the lowest RMSE value (0.3023) and the competitive inference time (266 seconds). Furthermore, OpenAI's o4-mini also exhibits a good performance based on Zero Shot learning. These findings highlight pre-trained time series foundation models as a promising direction for real-time forecasting, enabling accurate and scalable deployment with minimal model adaptation.
☆ PVeRA: Probabilistic Vector-Based Random Matrix Adaptation
Large foundation models have emerged in the last years and are pushing performance boundaries for a variety of tasks. Training or even finetuning such models demands vast datasets and computational resources, which are often scarce and costly. Adaptation methods provide a computationally efficient solution to address these limitations by allowing such models to be finetuned on small amounts of data and computing power. This is achieved by appending new trainable modules to frozen backbones with only a fraction of the trainable parameters and fitting only these modules on novel tasks. Recently, the VeRA adapter was shown to excel in parameter-efficient adaptations by utilizing a pair of frozen random low-rank matrices shared across all layers. In this paper, we propose PVeRA, a probabilistic version of the VeRA adapter, which modifies the low-rank matrices of VeRA in a probabilistic manner. This modification naturally allows handling inherent ambiguities in the input and allows for different sampling configurations during training and testing. A comprehensive evaluation was performed on the VTAB-1k benchmark and seven adapters, with PVeRA outperforming VeRA and other adapters. Our code for training models with PVeRA and benchmarking all adapters is available https://github.com/leofillioux/pvera.
☆ Delay-Aware Diffusion Policy: Bridging the Observation-Execution Gap in Dynamic Tasks
As a robot senses and selects actions, the world keeps changing. This inference delay creates a gap of tens to hundreds of milliseconds between the observed state and the state at execution. In this work, we take the natural generalization from zero delay to measured delay during training and inference. We introduce Delay-Aware Diffusion Policy (DA-DP), a framework for explicitly incorporating inference delays into policy learning. DA-DP corrects zero-delay trajectories to their delay-compensated counterparts, and augments the policy with delay conditioning. We empirically validate DA-DP on a variety of tasks, robots, and delays and find its success rate more robust to delay than delay-unaware methods. DA-DP is architecture agnostic and transfers beyond diffusion policies, offering a general pattern for delay-aware imitation learning. More broadly, DA-DP encourages evaluation protocols that report performance as a function of measured latency, not just task difficulty.
☆ A Bootstrap Perspective on Stochastic Gradient Descent
Machine learning models trained with \emph{stochastic} gradient descent (SGD) can generalize better than those trained with deterministic gradient descent (GD). In this work, we study SGD's impact on generalization through the lens of the statistical bootstrap: SGD uses gradient variability under batch sampling as a proxy for solution variability under the randomness of the data collection process. We use empirical results and theoretical analysis to substantiate this claim. In idealized experiments on empirical risk minimization, we show that SGD is drawn to parameter choices that are robust under resampling and thus avoids spurious solutions even if they lie in wider and deeper minima of the training loss. We prove rigorously that by implicitly regularizing the trace of the gradient covariance matrix, SGD controls the algorithmic variability. This regularization leads to solutions that are less sensitive to sampling noise, thereby improving generalization. Numerical experiments on neural network training show that explicitly incorporating the estimate of the algorithmic variability as a regularizer improves test performance. This fact supports our claim that bootstrap estimation underpins SGD's generalization advantages.
☆ Depth-Wise Activation Steering for Honest Language Models
Large language models sometimes assert falsehoods despite internally representing the correct answer, failures of honesty rather than accuracy, which undermines auditability and safety. Existing approaches largely optimize factual correctness or depend on retraining and brittle single-layer edits, offering limited leverage over truthful reporting. We present a training-free activation steering method that weights steering strength across network depth using a Gaussian schedule. On the MASK benchmark, which separates honesty from knowledge, we evaluate seven models spanning the LLaMA, Qwen, and Mistral families and find that Gaussian scheduling improves honesty over no-steering and single-layer baselines in six of seven models. Equal-budget ablations on LLaMA-3.1-8B-Instruct and Qwen-2.5-7B-Instruct show the Gaussian schedule outperforms random, uniform, and box-filter depth allocations, indicating that how intervention is distributed across depth materially affects outcomes beyond total strength. The method is simple, model-agnostic, requires no finetuning, and provides a low-cost control knob for eliciting truthful reporting from models' existing capabilities.
comment: See \url{https://github.com/marysia/gaussian-activation-steering}. for code and experiments
☆ Exploring Test-time Scaling via Prediction Merging on Large-Scale Recommendation
Inspired by the success of language models (LM), scaling up deep learning recommendation systems (DLRS) has become a recent trend in the community. All previous methods tend to scale up the model parameters during training time. However, how to efficiently utilize and scale up computational resources during test time remains underexplored, which can prove to be a scaling-efficient approach and bring orthogonal improvements in LM domains. The key point in applying test-time scaling to DLRS lies in effectively generating diverse yet meaningful outputs for the same instance. We propose two ways: One is to explore the heterogeneity of different model architectures. The other is to utilize the randomness of model initialization under a homogeneous architecture. The evaluation is conducted across eight models, including both classic and SOTA models, on three benchmarks. Sufficient evidence proves the effectiveness of both solutions. We further prove that under the same inference budget, test-time scaling can outperform parameter scaling. Our test-time scaling can also be seamlessly accelerated with the increase in parallel servers when deployed online, without affecting the inference time on the user side. Code is available.
☆ A Mathematical Theory of Top-$k$ Sparse Attention via Total Variation Distance
We develop a unified mathematical framework for certified Top-$k$ attention truncation that quantifies approximation error at both the distribution and output levels. For a single attention distribution $P$ and its Top-$k$ truncation $\hat P$, we show that the total-variation distance coincides with the discarded softmax tail mass and satisfies $\mathrm{TV}(P,\hat P)=1-e^{-\mathrm{KL}(\hat P\Vert P)}$, yielding sharp Top-$k$-specific bounds in place of generic inequalities. From this we derive non-asymptotic deterministic bounds -- from a single boundary gap through multi-gap and blockwise variants -- that control $\mathrm{TV}(P,\hat P)$ using only the ordered logits. Using an exact head-tail decomposition, we prove that the output error factorizes as $\|\mathrm{Attn}(q,K,V)-\mathrm{Attn}_k(q,K,V)\|_2=τ\|μ_{\mathrm{tail}}-μ_{\mathrm{head}}\|_2$ with $τ=\mathrm{TV}(P,\hat P)$, yielding a new head-tail diameter bound $\|\mathrm{Attn}(q,K,V)-\mathrm{Attn}_k(q,K,V)\|_2\leτ\,\mathrm{diam}_{H,T}$ and refinements linking the error to $\mathrm{Var}_P(V)$. Under an i.i.d. Gaussian score model $s_i\sim\mathcal N(μ,σ^2)$ we derive closed-form tail masses and an asymptotic rule for the minimal $k_\varepsilon$ ensuring $\mathrm{TV}(P,\hat P)\le\varepsilon$, namely $k_\varepsilon/n\approxΦ_c(σ+Φ^{-1}(\varepsilon))$. Experiments on bert-base-uncased and synthetic logits confirm the predicted scaling of $k_\varepsilon/n$ and show that certified Top-$k$ can reduce scored keys by 2-4$\times$ on average while meeting the prescribed total-variation budget.
☆ The Agent Capability Problem: Predicting Solvability Through Information-Theoretic Bounds
When should an autonomous agent commit resources to a task? We introduce the Agent Capability Problem (ACP), a framework for predicting whether an agent can solve a problem under resource constraints. Rather than relying on empirical heuristics, ACP frames problem-solving as information acquisition: an agent requires $\Itotal$ bits to identify a solution and gains $\Istep$ bits per action at cost $\Cstep$, yielding an effective cost $\Ceff = (\Itotal/\Istep), \Cstep$ that predicts resource requirements before search. We prove that $\Ceff$ lower-bounds expected cost and provide tight probabilistic upper bounds. Experimental validation shows that ACP predictions closely track actual agent performance, consistently bounding search effort while improving efficiency over greedy and random strategies. The framework generalizes across LLM-based and agentic workflows, linking principles from active learning, Bayesian optimization, and reinforcement learning through a unified information-theoretic lens. \
☆ Time Series Foundation Models for Process Model Forecasting
Process Model Forecasting (PMF) aims to predict how the control-flow structure of a process evolves over time by modeling the temporal dynamics of directly-follows (DF) relations, complementing predictive process monitoring that focuses on single-case prefixes. Prior benchmarks show that machine learning and deep learning models provide only modest gains over statistical baselines, mainly due to the sparsity and heterogeneity of the DF time series. We investigate Time Series Foundation Models (TSFMs), large pre-trained models for generic time series, as an alternative for PMF. Using DF time series derived from real-life event logs, we compare zero-shot use of TSFMs, without additional training, with fine-tuned variants adapted on PMF-specific data. TSFMs generally achieve lower forecasting errors (MAE and RMSE) than traditional and specialized models trained from scratch on the same logs, indicating effective transfer of temporal structure from non-process domains. While fine-tuning can further improve accuracy, the gains are often small and may disappear on smaller or more complex datasets, so zero-shot use remains a strong default. Our study highlights the generalization capability and data efficiency of TSFMs for process-related time series and, to the best of our knowledge, provides the first systematic evaluation of temporal foundation models for PMF.
☆ PCMind-2.1-Kaiyuan-2B Technical Report
The rapid advancement of Large Language Models (LLMs) has resulted in a significant knowledge gap between the open-source community and industry, primarily because the latter relies on closed-source, high-quality data and training recipes. To address this, we introduce PCMind-2.1-Kaiyuan-2B, a fully open-source 2-billion-parameter model focused on improving training efficiency and effectiveness under resource constraints. Our methodology includes three key innovations: a Quantile Data Benchmarking method for systematically comparing heterogeneous open-source datasets and providing insights on data mixing strategies; a Strategic Selective Repetition scheme within a multi-phase paradigm to effectively leverage sparse, high-quality data; and a Multi-Domain Curriculum Training policy that orders samples by quality. Supported by a highly optimized data preprocessing pipeline and architectural modifications for FP16 stability, Kaiyuan-2B achieves performance competitive with state-of-the-art fully open-source models, demonstrating practical and scalable solutions for resource-limited pretraining. We release all assets (including model weights, data, and code) under Apache 2.0 license at https://huggingface.co/thu-pacman/PCMind-2.1-Kaiyuan-2B.
☆ Comparative Analysis and Parametric Tuning of PPO, GRPO, and DAPO for LLM Reasoning Enhancement
This study presents a systematic comparison of three Reinforcement Learning (RL) algorithms (PPO, GRPO, and DAPO) for improving complex reasoning in large language models (LLMs). Our main contribution is a controlled transfer-learning evaluation: models are first fine-tuned on the specialized Countdown Game and then assessed on a suite of general-purpose reasoning benchmarks. Across all tasks, RL-trained models outperform their corresponding base models, although the degree of improvement differs by benchmark. Our parametric analysis offers practical guidance for RL-based LLM training. Increasing the group size in GRPO and DAPO leads to more stable training dynamics and higher accuracy, while the impact of the KL-penalty coefficient is non-monotonic. Additionally, we find that the Dynamic Sampling (DS) component in DAPO does not improve performance; in fact, the best overall results are achieved with DAPO when DS is disabled.
☆ $φ$-test: Global Feature Selection and Inference for Shapley Additive Explanations
We propose $φ$-test, a global feature-selection and significance procedure for black-box predictors that combines Shapley attributions with selective inference. Given a trained model and an evaluation dataset, $φ$-test performs SHAP-guided screening and fits a linear surrogate on the screened features via a selection rule with a tractable selective-inference form. For each retained feature, it outputs a Shapley-based global score, a surrogate coefficient, and post-selection $p$-values and confidence intervals in a global feature-importance table. Experiments on real tabular regression tasks with tree-based and neural backbones suggest that $φ$-test can retain much of the predictive ability of the original model while using only a few features and producing feature sets that remain fairly stable across resamples and backbone classes. In these settings, $φ$-test acts as a practical global explanation layer linking Shapley-based importance summaries with classical statistical inference.
comment: 15 pages
☆ Weighted Contrastive Learning for Anomaly-Aware Time-Series Forecasting
Reliable forecasting of multivariate time series under anomalous conditions is crucial in applications such as ATM cash logistics, where sudden demand shifts can disrupt operations. Modern deep forecasters achieve high accuracy on normal data but often fail when distribution shifts occur. We propose Weighted Contrastive Adaptation (WECA), a Weighted contrastive objective that aligns normal and anomaly-augmented representations, preserving anomaly-relevant information while maintaining consistency under benign variations. Evaluations on a nationwide ATM transaction dataset with domain-informed anomaly injection show that WECA improves SMAPE on anomaly-affected data by 6.1 percentage points compared to a normally trained baseline, with negligible degradation on normal data. These results demonstrate that WECA enhances forecasting reliability under anomalies without sacrificing performance during regular operations.
☆ Toward More Reliable Artificial Intelligence: Reducing Hallucinations in Vision-Language Models
Vision-language models (VLMs) frequently generate hallucinated content plausible but incorrect claims about image content. We propose a training-free self-correction framework enabling VLMs to iteratively refine responses through uncertainty-guided visual re-attention. Our method combines multidimensional uncertainty quantification (token entropy, attention dispersion, semantic consistency, claim confidence) with attention-guided cropping of under-explored regions. Operating entirely with frozen, pretrained VLMs, our framework requires no gradient updates. We validate our approach on the POPE and MMHAL BENCH benchmarks using the Qwen2.5-VL-7B [23] architecture. Experimental results demonstrate that our method reduces hallucination rates by 9.8 percentage points compared to the baseline, while improving object existence accuracy by 4.7 points on adversarial splits. Furthermore, qualitative analysis confirms that uncertainty-guided re-attention successfully grounds corrections in visual evidence where standard decoding fails. We validate our approach on Qwen2.5-VL-7B [23], with plans to extend validation across diverse architectures in future versions. We release our code and methodology to facilitate future research in trustworthy multimodal systems.
comment: 24 pages, 3 figures, 2 tables. Training-free self-correction framework for vision-language models. Code and implementation details will be released at: https://github.com/kassoumsanogo1/self-correcting-vlm-re-Attention.git
☆ ReLaX: Reasoning with Latent Exploration for Large Reasoning Models
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated remarkable potential in enhancing the reasoning capability of Large Reasoning Models (LRMs). However, RLVR often leads to entropy collapse, resulting in premature policy convergence and performance saturation. While manipulating token-level entropy has proven effective for promoting policy exploration, we argue that the latent dynamics underlying token generation encode a far richer computational structure for steering policy optimization toward a more effective exploration-exploitation tradeoff. To enable tractable analysis and intervention of the latent dynamics of LRMs, we leverage Koopman operator theory to obtain a linearized representation of their hidden-state dynamics. This enables us to introduce Dynamic Spectral Dispersion (DSD), a new metric to quantify the heterogeneity of the model's latent dynamics, serving as a direct indicator of policy exploration. Building upon these foundations, we propose Reasoning with Latent eXploration (ReLaX), a paradigm that explicitly incorporates latent dynamics to regulate exploration and exploitation during policy optimization. Comprehensive experiments across a wide range of multimodal and text-only reasoning benchmarks show that ReLaX significantly mitigates premature convergence and consistently achieves state-of-the-art performance.
☆ On Conditional Independence Graph Learning From Multi-Attribute Gaussian Dependent Time Series
Estimation of the conditional independence graph (CIG) of high-dimensional multivariate Gaussian time series from multi-attribute data is considered. Existing methods for graph estimation for such data are based on single-attribute models where one associates a scalar time series with each node. In multi-attribute graphical models, each node represents a random vector or vector time series. In this paper we provide a unified theoretical analysis of multi-attribute graph learning for dependent time series using a penalized log-likelihood objective function formulated in the frequency domain using the discrete Fourier transform of the time-domain data. We consider both convex (sparse-group lasso) and non-convex (log-sum and SCAD group penalties) penalty/regularization functions. We establish sufficient conditions in a high-dimensional setting for consistency (convergence of the inverse power spectral density to true value in the Frobenius norm), local convexity when using non-convex penalties, and graph recovery. We do not impose any incoherence or irrepresentability condition for our convergence results. We also empirically investigate selection of the tuning parameters based on the Bayesian information criterion, and illustrate our approach using numerical examples utilizing both synthetic and real data.
comment: 16 pages, 3 figures, 4 tables
☆ RRAEDy: Adaptive Latent Linearization of Nonlinear Dynamical Systems
Most existing latent-space models for dynamical systems require fixing the latent dimension in advance, they rely on complex loss balancing to approximate linear dynamics, and they don't regularize the latent variables. We introduce RRAEDy, a model that removes these limitations by discovering the appropriate latent dimension, while enforcing both regularized and linearized dynamics in the latent space. Built upon Rank-Reduction Autoencoders (RRAEs), RRAEDy automatically rank and prune latent variables through their singular values while learning a latent Dynamic Mode Decomposition (DMD) operator that governs their temporal progression. This structure-free yet linearly constrained formulation enables the model to learn stable and low-dimensional dynamics without auxiliary losses or manual tuning. We provide theoretical analysis demonstrating the stability of the learned operator and showcase the generality of our model by proposing an extension that handles parametric ODEs. Experiments on canonical benchmarks, including the Van der Pol oscillator, Burgers' equation, 2D Navier-Stokes, and Rotating Gaussians, show that RRAEDy achieves accurate and robust predictions. Our code is open-source and available at https://github.com/JadM133/RRAEDy. We also provide a video summarizing the main results at https://youtu.be/ox70mSSMGrM.
☆ High-Dimensional Change Point Detection using Graph Spanning Ratio
Inspired by graph-based methodologies, we introduce a novel graph-spanning algorithm designed to identify changes in both offline and online data across low to high dimensions. This versatile approach is applicable to Euclidean and graph-structured data with unknown distributions, while maintaining control over error probabilities. Theoretically, we demonstrate that the algorithm achieves high detection power when the magnitude of the change surpasses the lower bound of the minimax separation rate, which scales on the order of $\sqrt{nd}$. Our method outperforms other techniques in terms of accuracy for both Gaussian and non-Gaussian data. Notably, it maintains strong detection power even with small observation windows, making it particularly effective for online environments where timely and precise change detection is critical.
☆ Minimum Bayes Risk Decoding for Error Span Detection in Reference-Free Automatic Machine Translation Evaluation
Error Span Detection (ESD) is a subtask of automatic machine translation evaluation that localizes error spans in translations and labels their severity. State-of-the-art generative ESD methods typically decode using Maximum a Posteriori (MAP), assuming that model-estimated probabilities are perfectly correlated with similarity to human annotation. However, we observed that annotations dissimilar to the human annotation could achieve a higher model likelihood than the human annotation. We address this issue by applying Minimum Bayes Risk (MBR) decoding to generative ESD models. Specifically, we employ sentence- and span-level similarity metrics as utility functions to select candidate hypotheses based on their approximate similarity to the human annotation. Extensive experimental results show that our MBR decoding outperforms the MAP baseline at the system, sentence, and span-levels. Furthermore, to mitigate the computational cost of MBR decoding, we demonstrate that applying MBR distillation enables a standard greedy model to match MBR decoding performance, effectively eliminating the inference-time latency bottleneck.
☆ FRWKV:Frequency-Domain Linear Attention for Long-Term Time Series Forecasting
Traditional Transformers face a major bottleneck in long-sequence time series forecasting due to their quadratic complexity $(\mathcal{O}(T^2))$ and their limited ability to effectively exploit frequency-domain information. Inspired by RWKV's $\mathcal{O}(T)$ linear attention and frequency-domain modeling, we propose FRWKV, a frequency-domain linear-attention framework that overcomes these limitations. Our model integrates linear attention mechanisms with frequency-domain analysis, achieving $\mathcal{O}(T)$ computational complexity in the attention path while exploiting spectral information to enhance temporal feature representations for scalable long-sequence modeling. Across eight real-world datasets, FRWKV achieves a first-place average rank. Our ablation studies confirm the critical roles of both the linear attention and frequency-encoder components. This work demonstrates the powerful synergy between linear attention and frequency analysis, establishing a new paradigm for scalable time series modeling. Code is available at this repository: https://github.com/yangqingyuan-byte/FRWKV.
☆ Model-Based Reinforcement Learning Under Confounding
We investigate model-based reinforcement learning in contextual Markov decision processes (C-MDPs) in which the context is unobserved and induces confounding in the offline dataset. In such settings, conventional model-learning methods are fundamentally inconsistent, as the transition and reward mechanisms generated under a behavioral policy do not correspond to the interventional quantities required for evaluating a state-based policy. To address this issue, we adapt a proximal off-policy evaluation approach that identifies the confounded reward expectation using only observable state-action-reward trajectories under mild invertibility conditions on proxy variables. When combined with a behavior-averaged transition model, this construction yields a surrogate MDP whose Bellman operator is well defined and consistent for state-based policies, and which integrates seamlessly with the maximum causal entropy (MaxCausalEnt) model-learning framework. The proposed formulation enables principled model learning and planning in confounded environments where contextual information is unobserved, unavailable, or impractical to collect.
comment: 9 pages, 2 figures - decompressed draft
☆ Machine Learning: Progress and Prospects
This Inaugural Lecture was given at Royal Holloway University of London in 1996. It covers an introduction to machine learning and describes various theoretical advances and practical projects in the field. The Lecture here is presented in its original format, but a few remarks have been added in 2025 to reflect recent developments, and the list of references has been updated to enhance the convenience and accuracy for readers. When did machine learning start? Maybe a good starting point is 1949, when Claude Shannon proposed a learning algorithm for chess-playing programs. Or maybe we should go back to the 1930s when Ronald Fisher developed discriminant analysis - a type of learning where the problem is to construct a decision rule that separates two types of vectors. Or could it be the 18th century when David Hume discussed the idea of induction? Or the 14th century, when William of Ockham formulated the principle of "simplicity" known as "Ockham's razor" (Ockham, by the way, is a small village not far from Royal Holloway). Or it may be that, like almost everything else in Western civilisation and culture, the origin of these ideas lies in the Mediterranean. After all, it was Aristotle who said that "we learn some things only by doing things". The field of machine learning has been greatly influenced by other disciplines and the subject is in itself not a very homogeneous discipline, but includes separate, overlapping subfields. There are many parallel lines of research in ML: inductive learning, neural networks, clustering, and theories of learning. They are all part of the more general field of machine learning.
comment: Inaugural Lecture. 18 pages, 13 figures, Published in 1997 by Royal Holloway, University of London, ISBN 0 900145 93 5
☆ Exploring possible vector systems for faster training of neural networks with preconfigured latent spaces
The overall neural network (NN) performance is closely related to the properties of its embedding distribution in latent space (LS). It has recently been shown that predefined vector systems, specifically An root system vectors, can be used as targets for latent space configurations (LSC) to ensure the desired LS structure. One of the main LSC advantage is the possibility of training classifier NNs without classification layers, which facilitates training NNs on datasets with extremely large numbers of classes. This paper provides a more general overview of possible vector systems for NN training along with their properties and methods for vector system construction. These systems are used to configure LS of encoders and visual transformers to significantly speed up ImageNet-1K and 50k-600k classes LSC training. It is also shown that using the minimum number of LS dimensions for a specific number of classes results in faster convergence. The latter has potential advantages for reducing the size of vector databases used to store NN embeddings.
comment: 9 pages, 5 figures, 1 table, 4 equations
☆ Efficient Low-Tubal-Rank Tensor Estimation via Alternating Preconditioned Gradient Descent
The problem of low-tubal-rank tensor estimation is a fundamental task with wide applications across high-dimensional signal processing, machine learning, and image science. Traditional approaches tackle such a problem by performing tensor singular value decomposition, which is computationally expensive and becomes infeasible for large-scale tensors. Recent approaches address this issue by factorizing the tensor into two smaller factor tensors and solving the resulting problem using gradient descent. However, this kind of approach requires an accurate estimate of the tensor rank, and when the rank is overestimated, the convergence of gradient descent and its variants slows down significantly or even diverges. To address this problem, we propose an Alternating Preconditioned Gradient Descent (APGD) algorithm, which accelerates convergence in the over-parameterized setting by adding a preconditioning term to the original gradient and updating these two factors alternately. Based on certain geometric assumptions on the objective function, we establish linear convergence guarantees for more general low-tubal-rank tensor estimation problems. Then we further analyze the specific cases of low-tubal-rank tensor factorization and low-tubal-rank tensor recovery. Our theoretical results show that APGD achieves linear convergence even under over-parameterization, and the convergence rate is independent of the tensor condition number. Extensive simulations on synthetic data are carried out to validate our theoretical assertions.
☆ Materium: An Autoregressive Approach for Material Generation
We present Materium: an autoregressive transformer for generating crystal structures that converts 3D material representations into token sequences. These sequences include elements with oxidation states, fractional coordinates and lattice parameters. Unlike diffusion approaches, which refine atomic positions iteratively through many denoising steps, Materium places atoms at precise fractional coordinates, enabling fast, scalable generation. With this design, the model can be trained in a few hours on a single GPU and generate samples much faster on GPUs and CPUs than diffusion-based approaches. The model was trained and evaluated using multiple properties as conditions, including fundamental properties, such as density and space group, as well as more practical targets, such as band gap and magnetic density. In both single and combined conditions, the model performs consistently well, producing candidates that align with the requested inputs.
☆ Affordance Field Intervention: Enabling VLAs to Escape Memory Traps in Robotic Manipulation
Vision-Language-Action (VLA) models have shown great performance in robotic manipulation by mapping visual observations and language instructions directly to actions. However, they remain brittle under distribution shifts: when test scenarios change, VLAs often reproduce memorized trajectories instead of adapting to the updated scene, which is a failure mode we refer to as the "Memory Trap". This limitation stems from the end-to-end design, which lacks explicit 3D spatial reasoning and prevents reliable identification of actionable regions in unfamiliar environments. To compensate for this missing spatial understanding, 3D Spatial Affordance Fields (SAFs) can provide a geometric representation that highlights where interactions are physically feasible, offering explicit cues about regions the robot should approach or avoid. We therefore introduce Affordance Field Intervention (AFI), a lightweight hybrid framework that uses SAFs as an on-demand plug-in to guide VLA behavior. Our system detects memory traps through proprioception, repositions the robot to recent high-affordance regions, and proposes affordance-driven waypoints that anchor VLA-generated actions. A SAF-based scorer then selects trajectories with the highest cumulative affordance. Extensive experiments demonstrate that our method achieves an average improvement of 23.5% across different VLA backbones ($π_{0}$ and $π_{0.5}$) under out-of-distribution scenarios on real-world robotic platforms, and 20.2% on the LIBERO-Pro benchmark, validating its effectiveness in enhancing VLA robustness to distribution shifts.
☆ Parallel Algorithms for Combined Regularized Support Vector Machines: Application in Music Genre Classification
In the era of rapid development of artificial intelligence, its applications span across diverse fields, relying heavily on effective data processing and model optimization. Combined Regularized Support Vector Machines (CR-SVMs) can effectively handle the structural information among data features, but there is a lack of efficient algorithms in distributed-stored big data. To address this issue, we propose a unified optimization framework based on consensus structure. This framework is not only applicable to various loss functions and combined regularization terms but can also be effectively extended to non-convex regularization terms, showing strong scalability. Based on this framework, we develop a distributed parallel alternating direction method of multipliers (ADMM) algorithm to efficiently compute CR-SVMs when data is stored in a distributed manner. To ensure the convergence of the algorithm, we also introduce the Gaussian back-substitution method. Meanwhile, for the integrity of the paper, we introduce a new model, the sparse group lasso support vector machine (SGL-SVM), and apply it to music information retrieval. Theoretical analysis confirms that the computational complexity of the proposed algorithm is not affected by different regularization terms and loss functions, highlighting the universality of the parallel algorithm. Experiments on synthetic and free music archiv datasets demonstrate the reliability, stability, and efficiency of the algorithm.
☆ Understanding LLM Agent Behaviours via Game Theory: Strategy Recognition, Biases and Multi-Agent Dynamics
As Large Language Models (LLMs) increasingly operate as autonomous decision-makers in interactive and multi-agent systems and human societies, understanding their strategic behaviour has profound implications for safety, coordination, and the design of AI-driven social and economic infrastructures. Assessing such behaviour requires methods that capture not only what LLMs output, but the underlying intentions that guide their decisions. In this work, we extend the FAIRGAME framework to systematically evaluate LLM behaviour in repeated social dilemmas through two complementary advances: a payoff-scaled Prisoners Dilemma isolating sensitivity to incentive magnitude, and an integrated multi-agent Public Goods Game with dynamic payoffs and multi-agent histories. These environments reveal consistent behavioural signatures across models and languages, including incentive-sensitive cooperation, cross-linguistic divergence and end-game alignment toward defection. To interpret these patterns, we train traditional supervised classification models on canonical repeated-game strategies and apply them to FAIRGAME trajectories, showing that LLMs exhibit systematic, model- and language-dependent behavioural intentions, with linguistic framing at times exerting effects as strong as architectural differences. Together, these findings provide a unified methodological foundation for auditing LLMs as strategic agents and reveal systematic cooperation biases with direct implications for AI governance, collective decision-making, and the design of safe multi-agent systems.
☆ Optimized Machine Learning Methods for Studying the Thermodynamic Behavior of Complex Spin Systems
This paper presents a systematic study of the application of convolutional neural networks (CNNs) as an efficient and versatile tool for the analysis of critical and low-temperature phase states in spin system models. The problem of calculating the dependence of the average energy on the spatial distribution of exchange integrals for the Edwards-Anderson model on a square lattice with frustrated interactions is considered. We further construct a single convolutional classifier of phase states of the ferromagnetic Ising model on square, triangular, honeycomb, and kagome lattices, trained on configurations generated by the Swendsen-Wang cluster algorithm. Computed temperature profiles of the averaged posterior probability of the high-temperature phase form clear S-shaped curves that intersect in the vicinity of the theoretical critical temperatures and allow one to determine the critical temperature for the kagome lattice without additional retraining. It is shown that convolutional models substantially reduce the root-mean-square error (RMSE) compared with fully connected architectures and efficiently capture complex correlations between thermodynamic characteristics and the structure of magnetic correlated systems.
comment: 16 pages, in Russian language, 8 figures, 2 tables
☆ Forget and Explain: Transparent Verification of GNN Unlearning
Graph neural networks (GNNs) are increasingly used to model complex patterns in graph-structured data. However, enabling them to "forget" designated information remains challenging, especially under privacy regulations such as the GDPR. Existing unlearning methods largely optimize for efficiency and scalability, yet they offer little transparency, and the black-box nature of GNNs makes it difficult to verify whether forgetting has truly occurred. We propose an explainability-driven verifier for GNN unlearning that snapshots the model before and after deletion, using attribution shifts and localized structural changes (for example, graph edit distance) as transparent evidence. The verifier uses five explainability metrics: residual attribution, heatmap shift, explainability score deviation, graph edit distance, and a diagnostic graph rule shift. We evaluate two backbones (GCN, GAT) and four unlearning strategies (Retrain, GraphEditor, GNNDelete, IDEA) across five benchmarks (Cora, Citeseer, Pubmed, Coauthor-CS, Coauthor-Physics). Results show that Retrain and GNNDelete achieve near-complete forgetting, GraphEditor provides partial erasure, and IDEA leaves residual signals. These explanation deltas provide the primary, human-readable evidence of forgetting; we also report membership-inference ROC-AUC as a complementary, graph-wide privacy signal.
comment: To appear in WSDM 2026 (ACM International Conference on Web Search and Data Mining). Code is available at https://github.com/ImranAhsan23/F-E
☆ KAN-Dreamer: Benchmarking Kolmogorov-Arnold Networks as Function Approximators in World Models
DreamerV3 is a state-of-the-art online model-based reinforcement learning (MBRL) algorithm known for remarkable sample efficiency. Concurrently, Kolmogorov-Arnold Networks (KANs) have emerged as a promising alternative to Multi-Layer Perceptrons (MLPs), offering superior parameter efficiency and interpretability. To mitigate KANs' computational overhead, variants like FastKAN leverage Radial Basis Functions (RBFs) to accelerate inference. In this work, we investigate integrating KAN architectures into the DreamerV3 framework. We introduce KAN-Dreamer, replacing specific MLP and convolutional components of DreamerV3 with KAN and FastKAN layers. To ensure efficiency within the JAX-based World Model, we implement a tailored, fully vectorized version with simplified grid management. We structure our investigation into three subsystems: Visual Perception, Latent Prediction, and Behavior Learning. Empirical evaluations on the DeepMind Control Suite (walker_walk) analyze sample efficiency, training time, and asymptotic performance. Experimental results demonstrate that utilizing our adapted FastKAN as a drop-in replacement for the Reward and Continue predictors yields performance on par with the original MLP-based architecture, maintaining parity in both sample efficiency and training speed. This report serves as a preliminary study for future developments in KAN-based world models.
comment: 23 pages, 8 figures, 3 tables
☆ Mitigating Bias in Graph Hyperdimensional Computing
Graph hyperdimensional computing (HDC) has emerged as a promising paradigm for cognitive tasks, emulating brain-like computation with high-dimensional vectors known as hypervectors. While HDC offers robustness and efficiency on graph-structured data, its fairness implications remain largely unexplored. In this paper, we study fairness in graph HDC, where biases in data representation and decision rules can lead to unequal treatment of different groups. We show how hypervector encoding and similarity-based classification can propagate or even amplify such biases, and we propose a fairness-aware training framework, FairGHDC, to mitigate them. FairGHDC introduces a bias correction term, derived from a gap-based demographic-parity regularizer, and converts it into a scalar fairness factor that scales the update of the class hypervector for the ground-truth label. This enables debiasing directly in the hypervector space without modifying the graph encoder or requiring backpropagation. Experimental results on six benchmark datasets demonstrate that FairGHDC substantially reduces demographic-parity and equal-opportunity gaps while maintaining accuracy comparable to standard GNNs and fairness-aware GNNs. At the same time, FairGHDC preserves the computational advantages of HDC, achieving up to about one order of magnitude ($\approx 10\times$) speedup in training time on GPU compared to GNN and fairness-aware GNN baselines.
☆ MIDG: Mixture of Invariant Experts with knowledge injection for Domain Generalization in Multimodal Sentiment Analysis
Existing methods in domain generalization for Multimodal Sentiment Analysis (MSA) often overlook inter-modal synergies during invariant features extraction, which prevents the accurate capture of the rich semantic information within multimodal data. Additionally, while knowledge injection techniques have been explored in MSA, they often suffer from fragmented cross-modal knowledge, overlooking specific representations that exist beyond the confines of unimodal. To address these limitations, we propose a novel MSA framework designed for domain generalization. Firstly, the framework incorporates a Mixture of Invariant Experts model to extract domain-invariant features, thereby enhancing the model's capacity to learn synergistic relationships between modalities. Secondly, we design a Cross-Modal Adapter to augment the semantic richness of multimodal representations through cross-modal knowledge injection. Extensive domain experiments conducted on three datasets demonstrate that the proposed MIDG achieves superior performance.
☆ Microseismic event classification with a lightweight Fourier Neural Operator model
Real-time monitoring of induced seismicity is crucial for mitigating operational hazards, relying on the rapid and accurate classification of microseismic events from continuous data streams. However, while many deep learning models excel at this task, their high computational requirements often limit their practical application in real-time monitoring systems. To address this limitation, a lightweight model based on the Fourier Neural Operator (FNO) is proposed for microseismic event classification, leveraging its inherent resolution-invariance and computational efficiency for waveform processing. In the STanford EArthquake Dataset (STEAD), a global and large-scale database of seismic waveforms, the FNO-based model demonstrates high effectiveness for trigger classification, with an F1 score of 95% even in the scenario of data sparsity in training. The new FNO model greatly decreases the computer power needed relative to current deep learning models without sacrificing the classification success rate measured by the F1 score. A test on a real microseismic dataset shows a classification success rate with an F1 score of 98%, outperforming many traditional deep-learning techniques. A combination of high success rate and low computational power indicates that the FNO model can serve as a methodology of choice for real-time monitoring of microseismicity for induced seismicity. The method saves computational resources and facilitates both post-processing and real-time seismic processing suitable for the implementation of traffic light systems to prevent undesired induced seismicity.
comment: Submitted to Nature Scientific Reports
☆ Revolutionizing Mixed Precision Quantization: Towards Training-free Automatic Proxy Discovery via Large Language Models
Mixed-Precision Quantization (MPQ) liberates the Deep Neural Networks (DNNs) from the Out-Of-Memory (OOM) bottleneck, which garnered increasing research attention. However, conventional methods either searched from costly differentiable optimization, which is neither efficient nor flexible, or learned a quantized DNN from the proxy (i.e., HAWQ) manually designed by human experts, which is labor-intensive and requires huge expert knowledge. Can we design a proxy without involving any human experts and training? In this paper, we provide an affirmative answer by proposing a novel Large Language Models (LLMs)-driven Training-free Automatic Proxy (dubbed TAP) discovery framework, which reforms the design paradigm of MPQ by utilizing LLMs to find superior TAP tailored for MPQ, automatically. In addition, to bridge the gap between black-box LLMs and the tough MPQ task, we ingeniously propose simple Direct Policy Optimization (DPO) based reinforcement learning to enhance LLMs' reasoning by optimizing prompts, which can construct a positive feedback loop between the LLM and the MPQ task, enabling LLMs to generate better TAP in the next evolution. Extensive experiments on mainstream benchmarks demonstrate that TAP achieves state-of-the-art performance. Finally, we truly believe that our TAP will significantly contribute to the MPQ community by providing a new perspective on LLM-driven design algorithms.
☆ Adaptive Tuning of Parameterized Traffic Controllers via Multi-Agent Reinforcement Learning
Effective traffic control is essential for mitigating congestion in transportation networks. Conventional traffic management strategies, including route guidance, ramp metering, and traffic signal control, often rely on state feedback controllers, used for their simplicity and reactivity; however, they lack the adaptability required to cope with complex and time-varying traffic dynamics. This paper proposes a multi-agent reinforcement learning framework in which each agent adaptively tunes the parameters of a state feedback traffic controller, combining the reactivity of state feedback controllers with the adaptability of reinforcement learning. By tuning parameters at a lower frequency rather than directly determining control actions at a high frequency, the reinforcement learning agents achieve improved training efficiency while maintaining adaptability to varying traffic conditions. The multi-agent structure further enhances system robustness, as local controllers can operate independently in the event of partial failures. The proposed framework is evaluated on a simulated multi-class transportation network under varying traffic conditions. Results show that the proposed multi-agent framework outperforms the no control and fixed-parameter state feedback control cases, while performing on par with the single-agent RL-based adaptive state feedback control, with a much better resilience to partial failures.
☆ Do LLMs Trust the Code They Write?
Despite the effectiveness of large language models (LLMs) for code generation, they often output incorrect code. One reason is that model output probabilities are often not well-correlated with correctness, and reflect only the final output of the generation process. Inspired by findings that LLMs internally encode concepts like truthfulness, this paper explores if LLMs similarly represent code correctness. Specifically, we identify a correctness representation inside LLMs by contrasting the hidden states between pairs of correct and incorrect code for the same programming tasks. By experimenting on four LLMs, we show that exploiting this extracted correctness representation outperforms standard log-likelihood ranking, as well as verbalized model confidence. Furthermore, we explore how this internal correctness signal can be used to select higher-quality code samples, without requiring test execution. Ultimately, this work demonstrates how leveraging internal representations can enhance code generation systems and make LLMs more reliable, thus improving confidence in automatically generated code.
☆ Asymptotic analysis of shallow and deep forgetting in replay with Neural Collapse
A persistent paradox in continual learning (CL) is that neural networks often retain linearly separable representations of past tasks even when their output predictions fail. We formalize this distinction as the gap between deep feature-space and shallow classifier-level forgetting. We reveal a critical asymmetry in Experience Replay: while minimal buffers successfully anchor feature geometry and prevent deep forgetting, mitigating shallow forgetting typically requires substantially larger buffer capacities. To explain this, we extend the Neural Collapse framework to the sequential setting. We characterize deep forgetting as a geometric drift toward out-of-distribution subspaces and prove that any non-zero replay fraction asymptotically guarantees the retention of linear separability. Conversely, we identify that the "strong collapse" induced by small buffers leads to rank-deficient covariances and inflated class means, effectively blinding the classifier to true population boundaries. By unifying CL with out-of-distribution detection, our work challenges the prevailing reliance on large buffers, suggesting that explicitly correcting these statistical artifacts could unlock robust performance with minimal replay.
☆ Empirical Results for Adjusting Truncated Backpropagation Through Time while Training Neural Audio Effects
This paper investigates the optimization of Truncated Backpropagation Through Time (TBPTT) for training neural networks in digital audio effect modeling, with a focus on dynamic range compression. The study evaluates key TBPTT hyperparameters -- sequence number, batch size, and sequence length -- and their influence on model performance. Using a convolutional-recurrent architecture, we conduct extensive experiments across datasets with and without conditionning by user controls. Results demonstrate that carefully tuning these parameters enhances model accuracy and training stability, while also reducing computational demands. Objective evaluations confirm improved performance with optimized settings, while subjective listening tests indicate that the revised TBPTT configuration maintains high perceptual quality.
☆ Towards Reliable Test-Time Adaptation: Style Invariance as a Correctness Likelihood
Test-time adaptation (TTA) enables efficient adaptation of deployed models, yet it often leads to poorly calibrated predictive uncertainty - a critical issue in high-stakes domains such as autonomous driving, finance, and healthcare. Existing calibration methods typically assume fixed models or static distributions, resulting in degraded performance under real-world, dynamic test conditions. To address these challenges, we introduce Style Invariance as a Correctness Likelihood (SICL), a framework that leverages style-invariance for robust uncertainty estimation. SICL estimates instance-wise correctness likelihood by measuring prediction consistency across style-altered variants, requiring only the model's forward pass. This makes it a plug-and-play, backpropagation-free calibration module compatible with any TTA method. Comprehensive evaluations across four baselines, five TTA methods, and two realistic scenarios with three model architecture demonstrate that SICL reduces calibration error by an average of 13 percentage points compared to conventional calibration approaches.
comment: Accepted to WACV 2026
☆ LUNE: Efficient LLM Unlearning via LoRA Fine-Tuning with Negative Examples
Large language models (LLMs) possess vast knowledge acquired from extensive training corpora, but they often cannot remove specific pieces of information when needed, which makes it hard to handle privacy, bias mitigation, and knowledge correction. Traditional model unlearning approaches require computationally expensive fine-tuning or direct weight editing, making them impractical for real-world deployment. In this work, we introduce LoRA-based Unlearning with Negative Examples (LUNE), a lightweight framework that performs negative-only unlearning by updating only low-rank adapters while freezing the backbone, thereby localizing edits and avoiding disruptive global changes. Leveraging Low-Rank Adaptation (LoRA), LUNE targets intermediate representations to suppress (or replace) requested knowledge with an order-of-magnitude lower compute and memory than full fine-tuning or direct weight editing. Extensive experiments on multiple factual unlearning tasks show that LUNE: (I) achieves effectiveness comparable to full fine-tuning and memory-editing methods, and (II) reduces computational cost by about an order of magnitude.
☆ Recover-to-Forget: Gradient Reconstruction from LoRA for Efficient LLM Unlearning
Unlearning in large foundation models (e.g., LLMs) is essential for enabling dynamic knowledge updates, enforcing data deletion rights, and correcting model behavior. However, existing unlearning methods often require full-model fine-tuning or access to the original training data, which limits their scalability and practicality. In this work, we introduce Recover-to-Forget (R2F), a novel framework for efficient unlearning in LLMs based on reconstructing full-model gradient directions from low-rank LoRA adapter updates. Rather than performing backpropagation through the full model, we compute gradients with respect to LoRA parameters using multiple paraphrased prompts and train a gradient decoder to approximate the corresponding full-model gradients. To ensure applicability to larger or black-box models, the decoder is trained on a proxy model and transferred to target models. We provide a theoretical analysis of cross-model generalization and demonstrate that our method achieves effective unlearning while preserving general model performance. Experimental results demonstrate that R2F offers a scalable and lightweight alternative for unlearning in pretrained LLMs without requiring full retraining or access to internal parameters.
☆ A Geometric Unification of Concept Learning with Concept Cones
Two traditions of interpretability have evolved side by side but seldom spoken to each other: Concept Bottleneck Models (CBMs), which prescribe what a concept should be, and Sparse Autoencoders (SAEs), which discover what concepts emerge. While CBMs use supervision to align activations with human-labeled concepts, SAEs rely on sparse coding to uncover emergent ones. We show that both paradigms instantiate the same geometric structure: each learns a set of linear directions in activation space whose nonnegative combinations form a concept cone. Supervised and unsupervised methods thus differ not in kind but in how they select this cone. Building on this view, we propose an operational bridge between the two paradigms. CBMs provide human-defined reference geometries, while SAEs can be evaluated by how well their learned cones approximate or contain those of CBMs. This containment framework yields quantitative metrics linking inductive biases -- such as SAE type, sparsity, or expansion ratio -- to emergence of plausible\footnote{We adopt the terminology of \citet{jacovi2020towards}, who distinguish between faithful explanations (accurately reflecting model computations) and plausible explanations (aligning with human intuition and domain knowledge). CBM concepts are plausible by construction -- selected or annotated by humans -- though not necessarily faithful to the true latent factors that organise the data manifold.} concepts. Using these metrics, we uncover a ``sweet spot'' in both sparsity and expansion factor that maximizes both geometric and semantic alignment with CBM concepts. Overall, our work unifies supervised and unsupervised concept discovery through a shared geometric framework, providing principled metrics to measure SAE progress and assess how well discovered concept align with plausible human concepts.
comment: 22 pages
☆ PrivORL: Differentially Private Synthetic Dataset for Offline Reinforcement Learning
Recently, offline reinforcement learning (RL) has become a popular RL paradigm. In offline RL, data providers share pre-collected datasets -- either as individual transitions or sequences of transitions forming trajectories -- to enable the training of RL models (also called agents) without direct interaction with the environments. Offline RL saves interactions with environments compared to traditional RL, and has been effective in critical areas, such as navigation tasks. Meanwhile, concerns about privacy leakage from offline RL datasets have emerged. To safeguard private information in offline RL datasets, we propose the first differential privacy (DP) offline dataset synthesis method, PrivORL, which leverages a diffusion model and diffusion transformer to synthesize transitions and trajectories, respectively, under DP. The synthetic dataset can then be securely released for downstream analysis and research. PrivORL adopts the popular approach of pre-training a synthesizer on public datasets, and then fine-tuning on sensitive datasets using DP Stochastic Gradient Descent (DP-SGD). Additionally, PrivORL introduces curiosity-driven pre-training, which uses feedback from the curiosity module to diversify the synthetic dataset and thus can generate diverse synthetic transitions and trajectories that closely resemble the sensitive dataset. Extensive experiments on five sensitive offline RL datasets show that our method achieves better utility and fidelity in both DP transition and trajectory synthesis compared to baselines. The replication package is available at the GitHub repository.
comment: Accepted at NDSS 2026; code available at https://github.com/2019ChenGong/PrivORL
☆ Machine learning in an expectation-maximisation framework for nowcasting
Decision making often occurs in the presence of incomplete information, leading to the under- or overestimation of risk. Leveraging the observable information to learn the complete information is called nowcasting. In practice, incomplete information is often a consequence of reporting or observation delays. In this paper, we propose an expectation-maximisation (EM) framework for nowcasting that uses machine learning techniques to model both the occurrence as well as the reporting process of events. We allow for the inclusion of covariate information specific to the occurrence and reporting periods as well as characteristics related to the entity for which events occurred. We demonstrate how the maximisation step and the information flow between EM iterations can be tailored to leverage the predictive power of neural networks and (extreme) gradient boosting machines (XGBoost). With simulation experiments, we show that we can effectively model both the occurrence and reporting of events when dealing with high-dimensional covariate information. In the presence of non-linear effects, we show that our methodology outperforms existing EM-based nowcasting frameworks that use generalised linear models in the maximisation step. Finally, we apply the framework to the reporting of Argentinian Covid-19 cases, where the XGBoost-based approach again is most performant.
☆ Local-Curvature-Aware Knowledge Graph Embedding: An Extended Ricci Flow Approach
Knowledge graph embedding (KGE) relies on the geometry of the embedding space to encode semantic and structural relations. Existing methods place all entities on one homogeneous manifold, Euclidean, spherical, hyperbolic, or their product/multi-curvature variants, to model linear, symmetric, or hierarchical patterns. Yet a predefined, homogeneous manifold cannot accommodate the sharply varying curvature that real-world graphs exhibit across local regions. Since this geometry is imposed a priori, any mismatch with the knowledge graph's local curvatures will distort distances between entities and hurt the expressiveness of the resulting KGE. To rectify this, we propose RicciKGE to have the KGE loss gradient coupled with local curvatures in an extended Ricci flow such that entity embeddings co-evolve dynamically with the underlying manifold geometry towards mutual adaptation. Theoretically, when the coupling coefficient is bounded and properly selected, we rigorously prove that i) all the edge-wise curvatures decay exponentially, meaning that the manifold is driven toward the Euclidean flatness; and ii) the KGE distances strictly converge to a global optimum, which indicates that geometric flattening and embedding optimization are promoting each other. Experimental improvements on link prediction and node classification benchmarks demonstrate RicciKGE's effectiveness in adapting to heterogeneous knowledge graph structures.
☆ Two-dimensional RMSD projections for reaction path visualization and validation
Transition state or minimum energy path finding methods constitute a routine component of the computational chemistry toolkit. Standard analysis involves trajectories conventionally plotted in terms of the relative energy to the initial state against a cumulative displacement variable, or the image number. These dimensional reductions obscure structural rearrangements in high dimensions and may often be trajectory dependent. This precludes the ability to compare optimization trajectories of different methods beyond the number of calculations, time taken, and final saddle geometry. We present a method mapping trajectories onto a two-dimension surface defined by a permutation corrected root mean square deviation from the reactant and product configurations. Energy is represented as an interpolated color-mapped surface constructed from all optimization steps using radial basis functions. This representation highlights optimization trajectories, identifies endpoint basins, and diagnoses convergence concerns invisible in one-dimensional profiles. We validate the framework on a cycloaddition reaction, showing that a machine-learned potential saddle and density functional theory reference lie on comparable energy contours despite geometric displacements.
comment: 4 pages, 1 figure
☆ M-STAR: Multi-Scale Spatiotemporal Autoregression for Human Mobility Modeling
Modeling human mobility is vital for extensive applications such as transportation planning and epidemic modeling. With the rise of the Artificial Intelligence Generated Content (AIGC) paradigm, recent works explore synthetic trajectory generation using autoregressive and diffusion models. While these methods show promise for generating single-day trajectories, they remain limited by inefficiencies in long-term generation (e.g., weekly trajectories) and a lack of explicit spatiotemporal multi-scale modeling. This study proposes Multi-Scale Spatio-Temporal AutoRegression (M-STAR), a new framework that generates long-term trajectories through a coarse-to-fine spatiotemporal prediction process. M-STAR combines a Multi-scale Spatiotemporal Tokenizer that encodes hierarchical mobility patterns with a Transformer-based decoder for next-scale autoregressive prediction. Experiments on two real-world datasets show that M-STAR outperforms existing methods in fidelity and significantly improves generation speed. The data and codes are available at https://github.com/YuxiaoLuo0013/M-STAR.
☆ Learning-Augmented Ski Rental with Discrete Distributions: A Bayesian Approach
We revisit the classic ski rental problem through the lens of Bayesian decision-making and machine-learned predictions. While traditional algorithms minimize worst-case cost without assumptions, and recent learning-augmented approaches leverage noisy forecasts with robustness guarantees, our work unifies these perspectives. We propose a discrete Bayesian framework that maintains exact posterior distributions over the time horizon, enabling principled uncertainty quantification and seamless incorporation of expert priors. Our algorithm achieves prior-dependent competitive guarantees and gracefully interpolates between worst-case and fully-informed settings. Our extensive experimental evaluation demonstrates superior empirical performance across diverse scenarios, achieving near-optimal results under accurate priors while maintaining robust worst-case guarantees. This framework naturally extends to incorporate multiple predictions, non-uniform priors, and contextual information, highlighting the practical advantages of Bayesian reasoning in online decision problems with imperfect predictions.
comment: 7 pages
☆ Towards a Relationship-Aware Transformer for Tabular Data
Deep learning models for tabular data typically do not allow for imposing a graph of external dependencies between samples, which can be useful for accounting for relatedness in tasks such as treatment effect estimation. Graph neural networks only consider adjacent nodes, making them difficult to apply to sparse graphs. This paper proposes several solutions based on a modified attention mechanism, which accounts for possible relationships between data points by adding a term to the attention matrix. Our models are compared with each other and the gradient boosting decision trees in a regression task on synthetic and real-world datasets, as well as in a treatment effect estimation task on the IHDP dataset.
☆ Exact Synthetic Populations for Scalable Societal and Market Modeling
We introduce a constraint-programming framework for generating synthetic populations that reproduce target statistics with high precision while enforcing full individual consistency. Unlike data-driven approaches that infer distributions from samples, our method directly encodes aggregated statistics and structural relations, enabling exact control of demographic profiles without requiring any microdata. We validate the approach on official demographic sources and study the impact of distributional deviations on downstream analyses. This work is conducted within the Pollitics project developed by Emotia, where synthetic populations can be queried through large language models to model societal behaviors, explore market and policy scenarios, and provide reproducible decision-grade insights without personal data.
comment: Submitted for peer review on December 7, 2025
☆ Equivariant Diffusion for Crystal Structure Prediction ICML 2024
In addressing the challenge of Crystal Structure Prediction (CSP), symmetry-aware deep learning models, particularly diffusion models, have been extensively studied, which treat CSP as a conditional generation task. However, ensuring permutation, rotation, and periodic translation equivariance during diffusion process remains incompletely addressed. In this work, we propose EquiCSP, a novel equivariant diffusion-based generative model. We not only address the overlooked issue of lattice permutation equivariance in existing models, but also develop a unique noising algorithm that rigorously maintains periodic translation equivariance throughout both training and inference processes. Our experiments indicate that EquiCSP significantly surpasses existing models in terms of generating accurate structures and demonstrates faster convergence during the training process.
comment: ICML 2024
☆ SIT-Graph: State Integrated Tool Graph for Multi-Turn Agents
Despite impressive advances in agent systems, multi-turn tool-use scenarios remain challenging. It is mainly because intent is clarified progressively and the environment evolves with each tool call. While reusing past experience is natural, current LLM agents either treat entire trajectories or pre-defined subtasks as indivisible units, or solely exploit tool-to-tool dependencies, hindering adaptation as states and information evolve across turns. In this paper, we propose a State Integrated Tool Graph (SIT-Graph), which enhances multi-turn tool use by exploiting partially overlapping experience. Inspired by human decision-making that integrates episodic and procedural memory, SIT-Graph captures both compact state representations (episodic-like fragments) and tool-to-tool dependencies (procedural-like routines) from historical trajectories. Specifically, we first build a tool graph from accumulated tool-use sequences, and then augment each edge with a compact state summary of the dialog and tool history that may shape the next action. At inference time, SIT-Graph enables a human-like balance between episodic recall and procedural execution: when the next decision requires recalling prior context, the agent retrieves the state summaries stored on relevant edges and uses them to guide its next action; when the step is routine, it follows high-confidence tool dependencies without explicit recall. Experiments across multiple stateful multi-turn tool-use benchmarks show that SIT-Graph consistently outperforms strong memory- and graph-based baselines, delivering more robust tool selection and more effective experience transfer.
☆ Verifiable Deep Quantitative Group Testing
We present a neural network-based framework for solving the quantitative group testing (QGT) problem that achieves both high decoding accuracy and structural verifiability. In QGT, the objective is to identify a small subset of defective items among $N$ candidates using only $M \ll N$ pooled tests, each reporting the number of defectives in the tested subset. We train a multi-layer perceptron to map noisy measurement vectors to binary defect indicators, achieving accurate and robust recovery even under sparse, bounded perturbations. Beyond accuracy, we show that the trained network implicitly learns the underlying pooling structure that links items to tests, allowing this structure to be recovered directly from the network's Jacobian. This indicates that the model does not merely memorize training patterns but internalizes the true combinatorial relationships governing QGT. Our findings reveal that standard feedforward architectures can learn verifiable inverse mappings in structured combinatorial recovery problems.
comment: 11 pages, 2 figures, 3 tables
☆ A graph generation pipeline for critical infrastructures based on heuristics, images and depth data
Virtual representations of physical critical infrastructures, such as water or energy plants, are used for simulations and digital twins to ensure resilience and continuity of their services. These models usually require 3D point clouds from laser scanners that are expensive to acquire and require specialist knowledge to use. In this article, we present a graph generation pipeline based on photogrammetry. The pipeline detects relevant objects and predicts their relation using RGB images and depth data generated by a stereo camera. This more cost-effective approach uses deep learning for object detection and instance segmentation of the objects, and employs user-defined heuristics or rules to infer their relations. Results of two hydraulic systems show that this strategy can produce graphs close to the ground truth while its flexibility allows the method to be tailored to specific applications and its transparency qualifies it to be used in the high stakes decision-making that is required for critical infrastructures.
☆ Non-negative DAG Learning from Time-Series Data
This work aims to learn the directed acyclic graph (DAG) that captures the instantaneous dependencies underlying a multivariate time series. The observed data follow a linear structural vector autoregressive model (SVARM) with both instantaneous and time-lagged dependencies, where the instantaneous structure is modeled by a DAG to reflect potential causal relationships. While recent continuous relaxation approaches impose acyclicity through smooth constraint functions involving powers of the adjacency matrix, they lead to non-convex optimization problems that are challenging to solve. In contrast, we assume that the underlying DAG has only non-negative edge weights, and leverage this additional structure to impose acyclicity via a convex constraint. This enables us to cast the problem of non-negative DAG recovery from multivariate time-series data as a convex optimization problem in abstract form, which we solve using the method of multipliers. Crucially, the convex formulation guarantees global optimality of the solution. Finally, we assess the performance of the proposed method on synthetic time-series data, where it outperforms existing alternatives.
☆ IFFair: Influence Function-driven Sample Reweighting for Fair Classification
Because machine learning has significantly improved efficiency and convenience in the society, it's increasingly used to assist or replace human decision-making. However, the data-based pattern makes related algorithms learn and even exacerbate potential bias in samples, resulting in discriminatory decisions against certain unprivileged groups, depriving them of the rights to equal treatment, thus damaging the social well-being and hindering the development of related applications. Therefore, we propose a pre-processing method IFFair based on the influence function. Compared with other fairness optimization approaches, IFFair only uses the influence disparity of training samples on different groups as a guidance to dynamically adjust the sample weights during training without modifying the network structure, data features and decision boundaries. To evaluate the validity of IFFair, we conduct experiments on multiple real-world datasets and metrics. The experimental results show that our approach mitigates bias of multiple accepted metrics in the classification setting, including demographic parity, equalized odds, equality of opportunity and error rate parity without conflicts. It also demonstrates that IFFair achieves better trade-off between multiple utility and fairness metrics compared with previous pre-processing methods.
☆ AdLift: Lifting Adversarial Perturbations to Safeguard 3D Gaussian Splatting Assets Against Instruction-Driven Editing
Recent studies have extended diffusion-based instruction-driven 2D image editing pipelines to 3D Gaussian Splatting (3DGS), enabling faithful manipulation of 3DGS assets and greatly advancing 3DGS content creation. However, it also exposes these assets to serious risks of unauthorized editing and malicious tampering. Although imperceptible adversarial perturbations against diffusion models have proven effective for protecting 2D images, applying them to 3DGS encounters two major challenges: view-generalizable protection and balancing invisibility with protection capability. In this work, we propose the first editing safeguard for 3DGS, termed AdLift, which prevents instruction-driven editing across arbitrary views and dimensions by lifting strictly bounded 2D adversarial perturbations into 3D Gaussian-represented safeguard. To ensure both adversarial perturbations effectiveness and invisibility, these safeguard Gaussians are progressively optimized across training views using a tailored Lifted PGD, which first conducts gradient truncation during back-propagation from the editing model at the rendered image and applies projected gradients to strictly constrain the image-level perturbation. Then, the resulting perturbation is backpropagated to the safeguard Gaussian parameters via an image-to-Gaussian fitting operation. We alternate between gradient truncation and image-to-Gaussian fitting, yielding consistent adversarial-based protection performance across different viewpoints and generalizes to novel views. Empirically, qualitative and quantitative results demonstrate that AdLift effectively protects against state-of-the-art instruction-driven 2D image and 3DGS editing.
comment: 40 pages, 34 figures, 18 tables
☆ PINE: Pipeline for Important Node Exploration in Attributed Networks
A graph with semantically attributed nodes are a common data structure in a wide range of domains. It could be interlinked web data or citation networks of scientific publications. The essential problem for such a data type is to determine nodes that carry greater importance than all the others, a task that markedly enhances system monitoring and management. Traditional methods to identify important nodes in networks introduce centrality measures, such as node degree or more complex PageRank. However, they consider only the network structure, neglecting the rich node attributes. Recent methods adopt neural networks capable of handling node features, but they require supervision. This work addresses the identified gap--the absence of approaches that are both unsupervised and attribute-aware--by introducing a Pipeline for Important Node Exploration (PINE). At the core of the proposed framework is an attention-based graph model that incorporates node semantic features in the learning process of identifying the structural graph properties. The PINE's node importance scores leverage the obtained attention distribution. We demonstrate the superior performance of the proposed PINE method on various homogeneous and heterogeneous attributed networks. As an industry-implemented system, PINE tackles the real-world challenge of unsupervised identification of key entities within large-scale enterprise graphs.
☆ Towards Robust Protective Perturbation against DeepFake Face Swapping
DeepFake face swapping enables highly realistic identity forgeries, posing serious privacy and security risks. A common defence embeds invisible perturbations into images, but these are fragile and often destroyed by basic transformations such as compression or resizing. In this paper, we first conduct a systematic analysis of 30 transformations across six categories and show that protection robustness is highly sensitive to the choice of training transformations, making the standard Expectation over Transformation (EOT) with uniform sampling fundamentally suboptimal. Motivated by this, we propose Expectation Over Learned distribution of Transformation (EOLT), the framework to treat transformation distribution as a learnable component rather than a fixed design choice. Specifically, EOLT employs a policy network that learns to automatically prioritize critical transformations and adaptively generate instance-specific perturbations via reinforcement learning, enabling explicit modeling of defensive bottlenecks while maintaining broad transferability. Extensive experiments demonstrate that our method achieves substantial improvements over state-of-the-art approaches, with 26% higher average robustness and up to 30% gains on challenging transformation categories.
Clinical Interpretability of Deep Learning Segmentation Through Shapley-Derived Agreement and Uncertainty Metrics
Segmentation is the identification of anatomical regions of interest, such as organs, tissue, and lesions, serving as a fundamental task in computer-aided diagnosis in medical imaging. Although deep learning models have achieved remarkable performance in medical image segmentation, the need for explainability remains critical for ensuring their acceptance and integration in clinical practice, despite the growing research attention in this area. Our approach explored the use of contrast-level Shapley values, a systematic perturbation of model inputs to assess feature importance. While other studies have investigated gradient-based techniques through identifying influential regions in imaging inputs, Shapley values offer a broader, clinically aligned approach, explaining how model performance is fairly attributed to certain imaging contrasts over others. Using the BraTS 2024 dataset, we generated rankings for Shapley values for four MRI contrasts across four model architectures. Two metrics were proposed from the Shapley ranking: agreement between model and ``clinician" imaging ranking, and uncertainty quantified through Shapley ranking variance across cross-validation folds. Higher-performing cases (Dice \textgreater0.6) showed significantly greater agreement with clinical rankings. Increased Shapley ranking variance correlated with decreased performance (U-Net: $r=-0.581$). These metrics provide clinically interpretable proxies for model reliability, helping clinicians better understand state-of-the-art segmentation models.
☆ Pay Less Attention to Function Words for Free Robustness of Vision-Language Models
To address the trade-off between robustness and performance for robust VLM, we observe that function words could incur vulnerability of VLMs against cross-modal adversarial attacks, and propose Function-word De-Attention (FDA) accordingly to mitigate the impact of function words. Similar to differential amplifiers, our FDA calculates the original and the function-word cross-attention within attention heads, and differentially subtracts the latter from the former for more aligned and robust VLMs. Comprehensive experiments include 2 SOTA baselines under 6 different attacks on 2 downstream tasks, 3 datasets, and 3 models. Overall, our FDA yields an average 18/13/53% ASR drop with only 0.2/0.3/0.6% performance drops on the 3 tested models on retrieval, and a 90% ASR drop with a 0.3% performance gain on visual grounding. We demonstrate the scalability, generalization, and zero-shot performance of FDA experimentally, as well as in-depth ablation studies and analysis. Code will be made publicly at https://github.com/michaeltian108/FDA.
☆ NeSTR: A Neuro-Symbolic Abductive Framework for Temporal Reasoning in Large Language Models AAAI 2026
Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of natural language processing tasks. However, temporal reasoning, particularly under complex temporal constraints, remains a major challenge. To this end, existing approaches have explored symbolic methods, which encode temporal structure explicitly, and reflective mechanisms, which revise reasoning errors through multi-step inference. Nonetheless, symbolic approaches often underutilize the reasoning capabilities of LLMs, while reflective methods typically lack structured temporal representations, which can result in inconsistent or hallucinated reasoning. As a result, even when the correct temporal context is available, LLMs may still misinterpret or misapply time-related information, leading to incomplete or inaccurate answers. To address these limitations, in this work, we propose Neuro-Symbolic Temporal Reasoning (NeSTR), a novel framework that integrates structured symbolic representations with hybrid reflective reasoning to enhance the temporal sensitivity of LLM inference. NeSTR preserves explicit temporal relations through symbolic encoding, enforces logical consistency via verification, and corrects flawed inferences using abductive reflection. Extensive experiments on diverse temporal question answering benchmarks demonstrate that NeSTR achieves superior zero-shot performance and consistently improves temporal reasoning without any fine-tuning, showcasing the advantage of neuro-symbolic integration in enhancing temporal understanding in large language models.
comment: Accepted by AAAI 2026
☆ MUSE: A Simple Yet Effective Multimodal Search-Based Framework for Lifelong User Interest Modeling
Lifelong user interest modeling is crucial for industrial recommender systems, yet existing approaches rely predominantly on ID-based features, suffering from poor generalization on long-tail items and limited semantic expressiveness. While recent work explores multimodal representations for behavior retrieval in the General Search Unit (GSU), they often neglect multimodal integration in the fine-grained modeling stage -- the Exact Search Unit (ESU). In this work, we present a systematic analysis of how to effectively leverage multimodal signals across both stages of the two-stage lifelong modeling framework. Our key insight is that simplicity suffices in the GSU: lightweight cosine similarity with high-quality multimodal embeddings outperforms complex retrieval mechanisms. In contrast, the ESU demands richer multimodal sequence modeling and effective ID-multimodal fusion to unlock its full potential. Guided by these principles, we propose MUSE, a simple yet effective multimodal search-based framework. MUSE has been deployed in Taobao display advertising system, enabling 100K-length user behavior sequence modeling and delivering significant gains in top-line metrics with negligible online latency overhead. To foster community research, we share industrial deployment practices and open-source the first large-scale dataset featuring ultra-long behavior sequences paired with high-quality multimodal embeddings. Our code and data is available at https://taobao-mm.github.io.
☆ Sample from What You See: Visuomotor Policy Learning via Diffusion Bridge with Observation-Embedded Stochastic Differential Equation
Imitation learning with diffusion models has advanced robotic control by capturing multi-modal action distributions. However, existing approaches typically treat observations as high-level conditioning inputs to the denoising network, rather than integrating them into the stochastic dynamics of the diffusion process itself. As a result, sampling must begin from random Gaussian noise, weakening the coupling between perception and control and often yielding suboptimal performance. We introduce BridgePolicy, a generative visuomotor policy that explicitly embeds observations within the stochastic differential equation via a diffusion-bridge formulation. By constructing an observation-informed trajectory, BridgePolicy enables sampling to start from a rich, informative prior rather than random noise, substantially improving precision and reliability in control. A key challenge is that classical diffusion bridges connect distributions with matched dimensionality, whereas robotic observations are heterogeneous and multi-modal and do not naturally align with the action space. To address this, we design a multi-modal fusion module and a semantic aligner that unify visual and state inputs and align observation and action representations, making the bridge applicable to heterogeneous robot data. Extensive experiments across 52 simulation tasks on three benchmarks and five real-world tasks demonstrate that BridgePolicy consistently outperforms state-of-the-art generative policies.
☆ Coherent Audio-Visual Editing via Conditional Audio Generation Following Video Edits
We introduce a novel pipeline for joint audio-visual editing that enhances the coherence between edited video and its accompanying audio. Our approach first applies state-of-the-art video editing techniques to produce the target video, then performs audio editing to align with the visual changes. To achieve this, we present a new video-to-audio generation model that conditions on the source audio, target video, and a text prompt. We extend the model architecture to incorporate conditional audio input and propose a data augmentation strategy that improves training efficiency. Furthermore, our model dynamically adjusts the influence of the source audio based on the complexity of the edits, preserving the original audio structure where possible. Experimental results demonstrate that our method outperforms existing approaches in maintaining audio-visual alignment and content integrity.
☆ Geometric Prior-Guided Federated Prompt Calibration
Federated Prompt Learning (FPL) offers a parameter-efficient solution for collaboratively training large models, but its performance is severely hindered by data heterogeneity, which causes locally trained prompts to become biased. Existing methods, focusing on aggregation or regularization, fail to address this root cause of local training bias. To this end, we propose Geometry-Guided Text Prompt Calibration (GGTPC), a novel framework that directly corrects this bias by providing clients with a global geometric prior. This prior, representing the shape of the global data distribution derived from the covariance matrix, is reconstructed on the server in a privacy-preserving manner. Clients then use a novel Geometry-Prior Calibration Layer (GPCL) to align their local feature distributions with this global prior during training. Extensive experiments show GGTPC's effectiveness. On the label-skewed CIFAR-100 dataset ($β$=0.1), it outperforms the state-of-the-art by 2.15\%. Under extreme skew ($β$=0.01), it improves upon the baseline by 9.17\%. Furthermore, as a plug-and-play module on the domain-skewed Office-Home dataset, it boosts FedAvg's performance by 4.60\%. These results demonstrate that GGTPC effectively mitigates data heterogeneity by correcting the fundamental local training bias, serving as a versatile module to enhance various FL algorithms.
☆ AutoLugano: A Deep Learning Framework for Fully Automated Lymphoma Segmentation and Lugano Staging on FDG-PET/CT
Purpose: To develop a fully automated deep learning system, AutoLugano, for end-to-end lymphoma classification by performing lesion segmentation, anatomical localization, and automated Lugano staging from baseline FDG-PET/CT scans. Methods: The AutoLugano system processes baseline FDG-PET/CT scans through three sequential modules:(1) Anatomy-Informed Lesion Segmentation, a 3D nnU-Net model, trained on multi-channel inputs, performs automated lesion detection (2) Atlas-based Anatomical Localization, which leverages the TotalSegmentator toolkit to map segmented lesions to 21 predefined lymph node regions using deterministic anatomical rules; and (3) Automated Lugano Staging, where the spatial distribution of involved regions is translated into Lugano stages and therapeutic groups (Limited vs. Advanced Stage).The system was trained on the public autoPET dataset (n=1,007) and externally validated on an independent cohort of 67 patients. Performance was assessed using accuracy, sensitivity, specificity, F1-scorefor regional involvement detection and staging agreement. Results: On the external validation set, the proposed model demonstrated robust performance, achieving an overall accuracy of 88.31%, sensitivity of 74.47%, Specificity of 94.21% and an F1-score of 80.80% for regional involvement detection,outperforming baseline models. Most notably, for the critical clinical task of therapeutic stratification (Limited vs. Advanced Stage), the system achieved a high accuracy of 85.07%, with a specificity of 90.48% and a sensitivity of 82.61%.Conclusion: AutoLugano represents the first fully automated, end-to-end pipeline that translates a single baseline FDG-PET/CT scan into a complete Lugano stage. This study demonstrates its strong potential to assist in initial staging, treatment stratification, and supporting clinical decision-making.
☆ Understanding Diffusion Models via Code Execution
Diffusion models have achieved remarkable performance in generative modeling, yet their theoretical foundations are often intricate, and the gap between mathematical formulations in papers and practical open-source implementations can be difficult to bridge. Existing tutorials primarily focus on deriving equations, offering limited guidance on how diffusion models actually operate in code. To address this, we present a concise implementation of approximately 300 lines that explains diffusion models from a code-execution perspective. Our minimal example preserves the essential components -- including forward diffusion, reverse sampling, the noise-prediction network, and the training loop -- while removing unnecessary engineering details. This technical report aims to provide researchers with a clear, implementation-first understanding of how diffusion models work in practice and how code and theory correspond. Our code and pre-trained models are available at: https://github.com/disanda/GM/tree/main/DDPM-DDIM-ClassifierFree.
☆ Less is More: Non-uniform Road Segments are Efficient for Bus Arrival Prediction
In bus arrival time prediction, the process of organizing road infrastructure network data into homogeneous entities is known as segmentation. Segmenting a road network is widely recognized as the first and most critical step in developing an arrival time prediction system, particularly for auto-regressive-based approaches. Traditional methods typically employ a uniform segmentation strategy, which fails to account for varying physical constraints along roads, such as road conditions, intersections, and points of interest, thereby limiting prediction efficiency. In this paper, we propose a Reinforcement Learning (RL)-based approach to efficiently and adaptively learn non-uniform road segments for arrival time prediction. Our method decouples the prediction process into two stages: 1) Non-uniform road segments are extracted based on their impact scores using the proposed RL framework; and 2) A linear prediction model is applied to the selected segments to make predictions. This method ensures optimal segment selection while maintaining computational efficiency, offering a significant improvement over traditional uniform approaches. Furthermore, our experimental results suggest that the linear approach can even achieve better performance than more complex methods. Extensive experiments demonstrate the superiority of the proposed method, which not only enhances efficiency but also improves learning performance on large-scale benchmarks. The dataset and the code are publicly accessible at: https://github.com/pangjunbiao/Less-is-More.
☆ UniDiff: A Unified Diffusion Framework for Multimodal Time Series Forecasting
As multimodal data proliferates across diverse real-world applications, leveraging heterogeneous information such as texts and timestamps for accurate time series forecasting (TSF) has become a critical challenge. While diffusion models demonstrate exceptional performance in generation tasks, their application to TSF remains largely confined to modeling single-modality numerical sequences, overlooking the abundant cross-modal signals inherent in complex heterogeneous data. To address this gap, we propose UniDiff, a unified diffusion framework for multimodal time series forecasting. To process the numerical sequence, our framework first tokenizes the time series into patches, preserving local temporal dynamics by mapping each patch to an embedding space via a lightweight MLP. At its core lies a unified and parallel fusion module, where a single cross-attention mechanism adaptively weighs and integrates structural information from timestamps and semantic context from texts in one step, enabling a flexible and efficient interplay between modalities. Furthermore, we introduce a novel classifier-free guidance mechanism designed for multi-source conditioning, allowing for decoupled control over the guidance strength of textual and temporal information during inference, which significantly enhances model robustness. Extensive experiments on real-world benchmark datasets across eight domains demonstrate that the proposed UniDiff model achieves state-of-the-art performance.
☆ ContextualSHAP : Enhancing SHAP Explanations Through Contextual Language Generation
Explainable Artificial Intelligence (XAI) has become an increasingly important area of research, particularly as machine learning models are deployed in high-stakes domains. Among various XAI approaches, SHAP (SHapley Additive exPlanations) has gained prominence due to its ability to provide both global and local explanations across different machine learning models. While SHAP effectively visualizes feature importance, it often lacks contextual explanations that are meaningful for end-users, especially those without technical backgrounds. To address this gap, we propose a Python package that extends SHAP by integrating it with a large language model (LLM), specifically OpenAI's GPT, to generate contextualized textual explanations. This integration is guided by user-defined parameters (such as feature aliases, descriptions, and additional background) to tailor the explanation to both the model context and the user perspective. We hypothesize that this enhancement can improve the perceived understandability of SHAP explanations. To evaluate the effectiveness of the proposed package, we applied it in a healthcare-related case study and conducted user evaluations involving real end-users. The results, based on Likert-scale surveys and follow-up interviews, indicate that the generated explanations were perceived as more understandable and contextually appropriate compared to visual-only outputs. While the findings are preliminary, they suggest that combining visualization with contextualized text may support more user-friendly and trustworthy model explanations.
comment: This paper was accepted and presented at the 7th World Symposium on Software Engineering (WSSE) 2025 on 25 October 2025 in Okayama, Japan, and is currently awaiting publication
☆ SPACE: Noise Contrastive Estimation Stabilizes Self-Play Fine-Tuning for Large Language Models NeurIPS 2025
Self-play fine-tuning has demonstrated promising abilities in adapting large language models (LLMs) to downstream tasks with limited real-world data. The basic principle is to iteratively refine the model with real samples and synthetic ones generated from itself. However, the existing methods primarily focus on the relative gaps between the rewards for two types of data, neglecting their absolute values. Through theoretical analysis, we identify that the gap-based methods suffer from unstable evolution, due to the potentially degenerated objectives. To address this limitation, we introduce a novel self-play fine-tuning method, namely Self-PlAy via Noise Contrastive Estimation (SPACE), which leverages noise contrastive estimation to capture the real-world data distribution. Specifically, SPACE treats synthetic samples as auxiliary components, and discriminates them from the real ones in a binary classification manner. As a result, SPACE independently optimizes the absolute reward values for each type of data, ensuring a consistently meaningful objective and thereby avoiding the instability issue. Theoretically, we show that the optimal solution of the objective in SPACE aligns with the underlying distribution of real-world data, and SPACE guarantees a provably stable convergence to the optimal distribution. Empirically, we show that SPACE significantly improves the performance of LLMs over various tasks, and outperforms supervised fine-tuning that employs much more real-world samples. Compared to gap-based self-play fine-tuning methods, SPACE exhibits remarkable superiority and stable evolution.
comment: NeurIPS 2025
☆ Improving the Throughput of Diffusion-based Large Language Models via a Training-Free Confidence-Aware Calibration
We present CadLLM, a training-free method to accelerate the inference throughput of diffusion-based LLMs (dLLMs). We first investigate the dynamic nature of token unmasking confidence across blocks and steps. Based on this observation, we present a lightweight adaptive approach that controls the generation block size, step size, and threshold based on the average confidence of unmasked tokens. We further reduce softmax overhead by dynamically leveraging a subset of the vocabulary to regulate sampling breadth. CadLLM is a plug-and-play, model-agnostic method compatible with KV-cache-based dLLMs. Extensive experiments on four popular tasks demonstrate that CadLLM yields up to 2.28x throughput improvement over the state-of-the-art baseline with competitive accuracy.
comment: 8 pages, 3 figures. Preprint under review
☆ JEPA as a Neural Tokenizer: Learning Robust Speech Representations with Density Adaptive Attention NeurIPS 2025
We introduce a two-stage self-supervised framework that combines the Joint-Embedding Predictive Architecture (JEPA) with a Density Adaptive Attention Mechanism (DAAM) for learning robust speech representations. Stage~1 uses JEPA with DAAM to learn semantic audio features via masked prediction in latent space, fully decoupled from waveform reconstruction. Stage~2 leverages these representations for efficient tokenization using Finite Scalar Quantization (FSQ) and a mixed-radix packing scheme, followed by high-fidelity waveform reconstruction with a HiFi-GAN decoder. By integrating Gaussian mixture-based density-adaptive gating into the JEPA encoder, the model performs adaptive temporal feature selection and discovers hierarchical speech structure at a low frame rate of 2.5~Hz. The resulting tokens (47.5 tokens/sec) provide a reversible, highly compressed, and language-model-friendly representation that is competitive with, and often more efficient than, existing neural audio codecs.
comment: UniReps: Unifying Representations in Neural Models (NeurIPS 2025 Workshop)
☆ DeepSVM: Learning Stochastic Volatility Models with Physics-Informed Deep Operator Networks
Real-time calibration of stochastic volatility models (SVMs) is computationally bottlenecked by the need to repeatedly solve coupled partial differential equations (PDEs). In this work, we propose DeepSVM, a physics-informed Deep Operator Network (PI-DeepONet) designed to learn the solution operator of the Heston model across its entire parameter space. Unlike standard data-driven deep learning (DL) approaches, DeepSVM requires no labelled training data. Rather, we employ a hard-constrained ansatz that enforces terminal payoffs and static no-arbitrage conditions by design. Furthermore, we use Residual-based Adaptive Refinement (RAR) to stabilize training in difficult regions subject to high gradients. Overall, DeepSVM achieves a final training loss of $10^{-5}$ and predicts highly accurate option prices across a range of typical market dynamics. While pricing accuracy is high, we find that the model's derivatives (Greeks) exhibit noise in the at-the-money (ATM) regime, highlighting the specific need for higher-order regularization in physics-informed operator learning.
☆ FlowLPS: Langevin-Proximal Sampling for Flow-based Inverse Problem Solvers
Deep generative models have become powerful priors for solving inverse problems, and various training-free methods have been developed. However, when applied to latent flow models, existing methods often fail to converge to the posterior mode or suffer from manifold deviation within latent spaces. To mitigate this, here we introduce a novel training-free framework, FlowLPS, that solves inverse problems with pretrained flow models via a Langevin Proximal Sampling (LPS) strategy. Our method integrates Langevin dynamics for manifold-consistent exploration with proximal optimization for precise mode seeking, achieving a superior balance between reconstruction fidelity and perceptual quality across multiple inverse tasks on FFHQ and DIV2K, outperforming state of the art inverse solvers.
☆ Winning the Lottery by Preserving Network Training Dynamics with Concrete Ticket Search
The Lottery Ticket Hypothesis asserts the existence of highly sparse, trainable subnetworks ('winning tickets') within dense, randomly initialized neural networks. However, state-of-the-art methods of drawing these tickets, like Lottery Ticket Rewinding (LTR), are computationally prohibitive, while more efficient saliency-based Pruning-at-Initialization (PaI) techniques suffer from a significant accuracy-sparsity trade-off and fail basic sanity checks. In this work, we argue that PaI's reliance on first-order saliency metrics, which ignore inter-weight dependencies, contributes substantially to this performance gap, especially in the sparse regime. To address this, we introduce Concrete Ticket Search (CTS), an algorithm that frames subnetwork discovery as a holistic combinatorial optimization problem. By leveraging a Concrete relaxation of the discrete search space and a novel gradient balancing scheme (GRADBALANCE) to control sparsity, CTS efficiently identifies high-performing subnetworks near initialization without requiring sensitive hyperparameter tuning. Motivated by recent works on lottery ticket training dynamics, we further propose a knowledge distillation-inspired family of pruning objectives, finding that minimizing the reverse Kullback-Leibler divergence between sparse and dense network outputs (CTS-KL) is particularly effective. Experiments on varying image classification tasks show that CTS produces subnetworks that robustly pass sanity checks and achieve accuracy comparable to or exceeding LTR, while requiring only a small fraction of the computation. For example, on ResNet-20 on CIFAR10, it reaches 99.3% sparsity with 74.0% accuracy in 7.9 minutes, while LTR attains the same sparsity with 68.3% accuracy in 95.2 minutes. CTS's subnetworks outperform saliency-based methods across all sparsities, but its advantage over LTR is most pronounced in the highly sparse regime.
comment: This work plans to be submitted to the IEEE for possible publication
☆ Chromatic Feature Vectors for 2-Trees: Exact Formulas for Partition Enumeration with Network Applications
We establish closed-form enumeration formulas for chromatic feature vectors of 2-trees under the bichromatic triangle constraint. These efficiently computable structural features derive from constrained graph colorings where each triangle uses exactly two colors, forbidding monochromatic and rainbow triangles, a constraint arising in distributed systems where components avoid complete concentration or isolation. For theta graphs Theta_n, we prove r_k(Theta_n) = S(n-2, k-1) for k >= 3 (Stirling numbers of the second kind) and r_2(Theta_n) = 2^(n-2) + 1, computable in O(n) time. For fan graphs Phi_n, we establish r_2(Phi_n) = F_{n+1} (Fibonacci numbers) and derive explicit formulas r_k(Phi_n) = sum_{t=k-1}^{n-1} a_{n-1,t} * S(t, k-1) with efficiently computable binomial coefficients, achieving O(n^2) computation per component. Unlike classical chromatic polynomials, which assign identical features to all n-vertex 2-trees, bichromatic constraints provide informative structural features. While not complete graph invariants, these features capture meaningful structural properties through connections to Fibonacci polynomials, Bell numbers, and independent set enumeration. Applications include Byzantine fault tolerance in hierarchical networks, VM allocation in cloud computing, and secret-sharing protocols in distributed cryptography.
comment: 18 pages
☆ PlantBiMoE: A Bidirectional Foundation Model with SparseMoE for Plant Genomes
Understanding the underlying linguistic rules of plant genomes remains a fundamental challenge in computational biology. Recent advances including AgroNT and PDLLMs have made notable progress although, they suffer from excessive parameter size and limited ability to model the bidirectional nature of DNA strands respectively. To address these limitations, we propose PlantBiMoE, a lightweight and expressive plant genome language model that integrates bidirectional Mamba and a Sparse Mixture-of-Experts (SparseMoE) framework. The bidirectional Mamba enables the model to effectively capture structural dependencies across both the forward and reverse DNA strands, while SparseMoE significantly reduces the number of active parameters, improving computational efficiency without sacrificing modeling capacity. We evaluated and tested our model on the Modified Plants Genome Benchmark (MPGB), an enhanced genomic benchmark, which consolidates 31 datasets across 11 representative tasks, with input sequence lengths ranging from 50 to 6,000 bp. Experimental results demonstrate that PlantBiMoE achieves the best performance on 20 out of 31 datasets and the average best when comparing with existing models. In summary, all above results demonstrate that our model can effectively represent plant genomic sequences, serving as a robust computational tool for diverse genomic tasks, while making substantive contributions to plant genomics, gene editing, and synthetic biology. The code is available at: https://github.com/HUST-Keep-Lin/PlantBiMoE
comment: 6 pages, 5 figures, accept to BIBM
☆ FOAM: Blocked State Folding for Memory-Efficient LLM Training
Large language models (LLMs) have demonstrated remarkable performance due to their large parameter counts and extensive training data. However, their scale leads to significant memory bottlenecks during training, especially when using memory-intensive optimizers like Adam. Existing memory-efficient approaches often rely on techniques such as singular value decomposition (SVD), projections, or weight freezing, which can introduce substantial computational overhead, require additional memory for projections, or degrade model performance. In this paper, we propose Folded Optimizer with Approximate Moment (FOAM), a method that compresses optimizer states by computing block-wise gradient means and incorporates a residual correction to recover lost information. Theoretically, FOAM achieves convergence rates equivalent to vanilla Adam under standard non-convex optimization settings. Empirically, FOAM reduces total training memory by approximately 50\%, eliminates up to 90\% of optimizer state memory overhead, and accelerates convergence. Furthermore, FOAM is compatible with other memory-efficient optimizers, delivering performance and throughput that match or surpass both full-rank and existing memory-efficient baselines.
☆ A Neural Affinity Framework for Abstract Reasoning: Diagnosing the Compositional Gap in Transformer Architectures via Procedural Task Taxonomy
Responding to Hodel et al.'s (2024) call for a formal definition of task relatedness in re-arc, we present the first 9-category taxonomy of all 400 tasks, validated at 97.5% accuracy via rule-based code analysis. We prove the taxonomy's visual coherence by training a CNN on raw grid pixels (95.24% accuracy on S3, 36.25% overall, 3.3x chance), then apply the taxonomy diagnostically to the original ARC-AGI-2 test set. Our curriculum analysis reveals 35.3% of tasks exhibit low neural affinity for Transformers--a distributional bias mirroring ARC-AGI-2. To probe this misalignment, we fine-tuned a 1.7M-parameter Transformer across 302 tasks, revealing a profound Compositional Gap: 210 of 302 tasks (69.5%) achieve >80% cell accuracy (local patterns) but <10% grid accuracy (global synthesis). This provides direct evidence for a Neural Affinity Ceiling Effect, where performance is bounded by architectural suitability, not curriculum. Applying our framework to Li et al.'s independent ViTARC study (400 specialists, 1M examples each) confirms its predictive power: Very Low affinity tasks achieve 51.9% versus 77.7% for High affinity (p<0.001), with a task at 0% despite massive data. The taxonomy enables precise diagnosis: low-affinity tasks (A2) hit hard ceilings, while high-affinity tasks (C1) reach 99.8%. These findings indicate that progress requires hybrid architectures with affinity-aligned modules. We release our validated taxonomy,
comment: 62 pages, 10 figures
☆ Dual Refinement Cycle Learning: Unsupervised Text Classification of Mamba and Community Detection on Text Attributed Graph
Pretrained language models offer strong text understanding capabilities but remain difficult to deploy in real-world text-attributed networks due to their heavy dependence on labeled data. Meanwhile, community detection methods typically ignore textual semantics, limiting their usefulness in downstream applications such as content organization, recommendation, and risk monitoring. To overcome these limitations, we present Dual Refinement Cycle Learning (DRCL), a fully unsupervised framework designed for practical scenarios where no labels or category definitions are available. DRCL integrates structural and semantic information through a warm-start initialization and a bidirectional refinement cycle between a GCN-based Community Detection Module (GCN-CDM) and a Text Semantic Modeling Module (TSMM). The two modules iteratively exchange pseudo-labels, allowing semantic cues to enhance structural clustering and structural patterns to guide text representation learning without manual supervision. Across several text-attributed graph datasets, DRCL consistently improves the structural and semantic quality of discovered communities. Moreover, a Mamba-based classifier trained solely from DRCL's community signals achieves accuracy comparable to supervised models, demonstrating its potential for deployment in large-scale systems where labeled data are scarce or costly.
☆ The Geometry of Persona: Disentangling Personality from Reasoning in Large Language Models
Background: The deployment of personalized Large Language Models (LLMs) is currently constrained by the stability-plasticity dilemma. Prevailing alignment methods, such as Supervised Fine-Tuning (SFT), rely on stochastic weight updates that often incur an "alignment tax" -- degrading general reasoning capabilities. Methods: We propose the Soul Engine, a framework based on the Linear Representation Hypothesis, which posits that personality traits exist as orthogonal linear subspaces. We introduce SoulBench, a dataset constructed via dynamic contextual sampling. Using a dual-head architecture on a frozen Qwen-2.5 base, we extract disentangled personality vectors without modifying the backbone weights. Results: Our experiments demonstrate three breakthroughs. First, High-Precision Profiling: The model achieves a Mean Squared Error (MSE) of 0.011 against psychological ground truth. Second, Geometric Orthogonality: T-SNE visualization confirms that personality manifolds are distinct and continuous, allowing for "Zero-Shot Personality Injection" that maintains original model intelligence. Third, Deterministic Steering: We achieve robust control over behavior via vector arithmetic, validated through extensive ablation studies. Conclusion: This work challenges the necessity of fine-tuning for personalization. By transitioning from probabilistic prompting to deterministic latent intervention, we provide a mathematically rigorous foundation for safe, controllable AI personalization.
comment: 10 pages, 3 figures, 1 table. Code and dataset available at https://huggingface.co/Zx93/Soul-Engine-Qwen2.5-0.5B
☆ ThinkTrap: Denial-of-Service Attacks against Black-box LLM Services via Infinite Thinking
Large Language Models (LLMs) have become foundational components in a wide range of applications, including natural language understanding and generation, embodied intelligence, and scientific discovery. As their computational requirements continue to grow, these models are increasingly deployed as cloud-based services, allowing users to access powerful LLMs via the Internet. However, this deployment model introduces a new class of threat: denial-of-service (DoS) attacks via unbounded reasoning, where adversaries craft specially designed inputs that cause the model to enter excessively long or infinite generation loops. These attacks can exhaust backend compute resources, degrading or denying service to legitimate users. To mitigate such risks, many LLM providers adopt a closed-source, black-box setting to obscure model internals. In this paper, we propose ThinkTrap, a novel input-space optimization framework for DoS attacks against LLM services even in black-box environments. The core idea of ThinkTrap is to first map discrete tokens into a continuous embedding space, then undertake efficient black-box optimization in a low-dimensional subspace exploiting input sparsity. The goal of this optimization is to identify adversarial prompts that induce extended or non-terminating generation across several state-of-the-art LLMs, achieving DoS with minimal token overhead. We evaluate the proposed attack across multiple commercial, closed-source LLM services. Our results demonstrate that, even far under the restrictive request frequency limits commonly enforced by these platforms, typically capped at ten requests per minute (10 RPM), the attack can degrade service throughput to as low as 1% of its original capacity, and in some cases, induce complete service failure.
comment: This version includes the final camera-ready manuscript accepted by NDSS 2026
☆ TRACE: A Generalizable Drift Detector for Streaming Data-Driven Optimization AAAI 2026
Many optimization tasks involve streaming data with unknown concept drifts, posing a significant challenge as Streaming Data-Driven Optimization (SDDO). Existing methods, while leveraging surrogate model approximation and historical knowledge transfer, are often under restrictive assumptions such as fixed drift intervals and fully environmental observability, limiting their adaptability to diverse dynamic environments. We propose TRACE, a TRAnsferable C}oncept-drift Estimator that effectively detects distributional changes in streaming data with varying time scales. TRACE leverages a principled tokenization strategy to extract statistical features from data streams and models drift patterns using attention-based sequence learning, enabling accurate detection on unseen datasets and highlighting the transferability of learned drift patterns. Further, we showcase TRACE's plug-and-play nature by integrating it into a streaming optimizer, facilitating adaptive optimization under unknown drifts. Comprehensive experimental results on diverse benchmarks demonstrate the superior generalization, robustness, and effectiveness of our approach in SDDO scenarios.
comment: Accepted by AAAI 2026
☆ Procrustean Bed for AI-Driven Retrosynthesis: A Unified Framework for Reproducible Evaluation
Progress in computer-aided synthesis planning (CASP) is obscured by the lack of standardized evaluation infrastructure and the reliance on metrics that prioritize topological completion over chemical validity. We introduce RetroCast, a unified evaluation suite that standardizes heterogeneous model outputs into a common schema to enable statistically rigorous, apples-to-apples comparison. The framework includes a reproducible benchmarking pipeline with stratified sampling and bootstrapped confidence intervals, accompanied by SynthArena, an interactive platform for qualitative route inspection. We utilize this infrastructure to evaluate leading search-based and sequence-based algorithms on a new suite of standardized benchmarks. Our analysis reveals a divergence between "solvability" (stock-termination rate) and route quality; high solvability scores often mask chemical invalidity or fail to correlate with the reproduction of experimental ground truths. Furthermore, we identify a "complexity cliff" in which search-based methods, despite high solvability rates, exhibit a sharp performance decay in reconstructing long-range synthetic plans compared to sequence-based approaches. We release the full framework, benchmark definitions, and a standardized database of model predictions to support transparent and reproducible development in the field.
comment: 11 pages + 7 pages of SI. RetroCast is available on GitHub, see https://github.com/ischemist/project-procrustes. SynthArena is publicly available, see https://syntharena.ischemist.com/
☆ DFIR-DETR: Frequency Domain Enhancement and Dynamic Feature Aggregation for Cross-Scene Small Object Detection
Detecting small objects in UAV remote sensing images and identifying surface defects in industrial inspection remain difficult tasks. These applications face common obstacles: features are sparse and weak, backgrounds are cluttered, and object scales vary dramatically. Current transformer-based detectors, while powerful, struggle with three critical issues. First, features degrade severely as networks downsample progressively. Second, spatial convolutions cannot capture long-range dependencies effectively. Third, standard upsampling methods inflate feature maps unnecessarily. We introduce DFIR-DETR to tackle these problems through dynamic feature aggregation combined with frequency-domain processing. Our architecture builds on three novel components. The DCFA module uses dynamic K-sparse attention, cutting complexity from O(N2) down to O(NK), and employs spatial gated linear units for better nonlinear modeling. The DFPN module applies amplitude-normalized upsampling to prevent feature inflation and uses dual-path shuffle convolution to retain spatial details across scales. The FIRC3 module operates in the frequency domain, achieving global receptive fields without sacrificing efficiency. We tested our method extensively on NEU-DET and VisDrone datasets. Results show mAP50 scores of 92.9% and 51.6% respectively-both state-of-the-art. The model stays lightweight with just 11.7M parameters and 41.2 GFLOPs. Strong performance across two very different domains confirms that DFIR-DETR generalizes well and works effectively in resource-limited settings for cross-scene small object detection.
comment: 16 pages
Self-Supervised Learning on Molecular Graphs: A Systematic Investigation of Masking Design
Self-supervised learning (SSL) plays a central role in molecular representation learning. Yet, many recent innovations in masking-based pretraining are introduced as heuristics and lack principled evaluation, obscuring which design choices are genuinely effective. This work cast the entire pretrain-finetune workflow into a unified probabilistic framework, enabling a transparent comparison and deeper understanding of masking strategies. Building on this formalism, we conduct a controlled study of three core design dimensions: masking distribution, prediction target, and encoder architecture, under rigorously controlled settings. We further employ information-theoretic measures to assess the informativeness of pretraining signals and connect them to empirically benchmarked downstream performance. Our findings reveal a surprising insight: sophisticated masking distributions offer no consistent benefit over uniform sampling for common node-level prediction tasks. Instead, the choice of prediction target and its synergy with the encoder architecture are far more critical. Specifically, shifting to semantically richer targets yields substantial downstream improvements, particularly when paired with expressive Graph Transformer encoders. These insights offer practical guidance for developing more effective SSL methods for molecular graphs.
☆ Balanced Accuracy: The Right Metric for Evaluating LLM Judges - Explained through Youden's J statistic
Rigorous evaluation of large language models (LLMs) relies on comparing models by the prevalence of desirable or undesirable behaviors, such as task pass rates or policy violations. These prevalence estimates are produced by a classifier, either an LLM-as-a-judge or human annotators, making the choice of classifier central to trustworthy evaluation. Common metrics used for this choice, such as Accuracy, Precision, and F1, are sensitive to class imbalance and to arbitrary choices of positive class, and can favor judges that distort prevalence estimates. We show that Youden's $J$ statistic is theoretically aligned with choosing the best judge to compare models, and that Balanced Accuracy is an equivalent linear transformation of $J$. Through both analytical arguments and empirical examples and simulations, we demonstrate how selecting judges using Balanced Accuracy leads to better, more robust classifier selection.
comment: 9 pages, 5 figures
☆ Scalable Offline Model-Based RL with Action Chunks
In this paper, we study whether model-based reinforcement learning (RL), in particular model-based value expansion, can provide a scalable recipe for tackling complex, long-horizon tasks in offline RL. Model-based value expansion fits an on-policy value function using length-n imaginary rollouts generated by the current policy and a learned dynamics model. While larger n reduces bias in value bootstrapping, it amplifies accumulated model errors over long horizons, degrading future predictions. We address this trade-off with an \emph{action-chunk} model that predicts a future state from a sequence of actions (an "action chunk") instead of a single action, which reduces compounding errors. In addition, instead of directly training a policy to maximize rewards, we employ rejection sampling from an expressive behavioral action-chunk policy, which prevents model exploitation from out-of-distribution actions. We call this recipe \textbf{Model-Based RL with Action Chunks (MAC)}. Through experiments on highly challenging tasks with large-scale datasets of up to 100M transitions, we show that MAC achieves the best performance among offline model-based RL algorithms, especially on challenging long-horizon tasks.
comment: 22 pages, 7 figures
☆ Training LLMs for Honesty via Confessions
Large language models (LLMs) can be dishonest when reporting on their actions and beliefs -- for example, they may overstate their confidence in factual claims or cover up evidence of covert actions. Such dishonesty may arise due to the effects of reinforcement learning (RL), where challenges with reward shaping can result in a training process that inadvertently incentivizes the model to lie or misrepresent its actions. In this work we propose a method for eliciting an honest expression of an LLM's shortcomings via a self-reported *confession*. A confession is an output, provided upon request after a model's original answer, that is meant to serve as a full account of the model's compliance with the letter and spirit of its policies and instructions. The reward assigned to a confession during training is solely based on its honesty, and does not impact positively or negatively the main answer's reward. As long as the "path of least resistance" for maximizing confession reward is to surface misbehavior rather than covering it up, this incentivizes models to be honest in their confessions. Our findings provide some justification this empirical assumption, especially in the case of egregious model misbehavior. To demonstrate the viability of our approach, we train GPT-5-Thinking to produce confessions, and we evaluate its honesty in out-of-distribution scenarios measuring hallucination, instruction following, scheming, and reward hacking. We find that when the model lies or omits shortcomings in its "main" answer, it often confesses to these behaviors honestly, and this confession honesty modestly improves with training. Confessions can enable a number of inference-time interventions including monitoring, rejection sampling, and surfacing issues to the user.
☆ Complexity of One-Dimensional ReLU DNNs
We study the expressivity of one-dimensional (1D) ReLU deep neural networks through the lens of their linear regions. For randomly initialized, fully connected 1D ReLU networks (He scaling with nonzero bias) in the infinite-width limit, we prove that the expected number of linear regions grows as $\sum_{i = 1}^L n_i + \mathop{o}\left(\sum_{i = 1}^L{n_i}\right) + 1$, where $n_\ell$ denotes the number of neurons in the $\ell$-th hidden layer. We also propose a function-adaptive notion of sparsity that compares the expected regions used by the network to the minimal number needed to approximate a target within a fixed tolerance.
comment: Presented at IEEE MIT URTC 2025
☆ Unveiling Latent Knowledge in Chemistry Language Models through Sparse Autoencoders
Since the advent of machine learning, interpretability has remained a persistent challenge, becoming increasingly urgent as generative models support high-stakes applications in drug and material discovery. Recent advances in large language model (LLM) architectures have yielded chemistry language models (CLMs) with impressive capabilities in molecular property prediction and molecular generation. However, how these models internally represent chemical knowledge remains poorly understood. In this work, we extend sparse autoencoder techniques to uncover and examine interpretable features within CLMs. Applying our methodology to the Foundation Models for Materials (FM4M) SMI-TED chemistry foundation model, we extract semantically meaningful latent features and analyse their activation patterns across diverse molecular datasets. Our findings reveal that these models encode a rich landscape of chemical concepts. We identify correlations between specific latent features and distinct domains of chemical knowledge, including structural motifs, physicochemical properties, and pharmacological drug classes. Our approach provides a generalisable framework for uncovering latent knowledge in chemistry-focused AI systems. This work has implications for both foundational understanding and practical deployment; with the potential to accelerate computational chemistry research.
☆ CAMO: Causality-Guided Adversarial Multimodal Domain Generalization for Crisis Classification
Crisis classification in social media aims to extract actionable disaster-related information from multimodal posts, which is a crucial task for enhancing situational awareness and facilitating timely emergency responses. However, the wide variation in crisis types makes achieving generalizable performance across unseen disasters a persistent challenge. Existing approaches primarily leverage deep learning to fuse textual and visual cues for crisis classification, achieving numerically plausible results under in-domain settings. However, they exhibit poor generalization across unseen crisis types because they 1. do not disentangle spurious and causal features, resulting in performance degradation under domain shift, and 2. fail to align heterogeneous modality representations within a shared space, which hinders the direct adaptation of established single-modality domain generalization (DG) techniques to the multimodal setting. To address these issues, we introduce a causality-guided multimodal domain generalization (MMDG) framework that combines adversarial disentanglement with unified representation learning for crisis classification. The adversarial objective encourages the model to disentangle and focus on domain-invariant causal features, leading to more generalizable classifications grounded in stable causal mechanisms. The unified representation aligns features from different modalities within a shared latent space, enabling single-modality DG strategies to be seamlessly extended to multimodal learning. Experiments on the different datasets demonstrate that our approach achieves the best performance in unseen disaster scenarios.
☆ Deep Kernel Aalen-Johansen Estimator: An Interpretable and Flexible Neural Net Framework for Competing Risks ML4H
We propose an interpretable deep competing risks model called the Deep Kernel Aalen-Johansen (DKAJ) estimator, which generalizes the classical Aalen-Johansen nonparametric estimate of cumulative incidence functions (CIFs). Each data point (e.g., patient) is represented as a weighted combination of clusters. If a data point has nonzero weight only for one cluster, then its predicted CIFs correspond to those of the classical Aalen-Johansen estimator restricted to data points from that cluster. These weights come from an automatically learned kernel function that measures how similar any two data points are. On four standard competing risks datasets, we show that DKAJ is competitive with state-of-the-art baselines while being able to provide visualizations to assist model interpretation.
comment: Machine Learning for Health (ML4H) 2025 Spotlight
☆ LUNA: Linear Universal Neural Attention with Generalization Guarantees
Scaling attention faces a critical bottleneck: the $\mathcal{O}(n^2)$ quadratic computational cost of softmax attention, which limits its application in long-sequence domains. While linear attention mechanisms reduce this cost to $\mathcal{O}(n)$, they typically rely on fixed random feature maps, such as random Fourier features or hand-crafted functions. This reliance on static, data-agnostic kernels creates a fundamental trade-off, forcing practitioners to sacrifice significant model accuracy for computational efficiency. We introduce \textsc{LUNA}, a kernelized linear attention mechanism that eliminates this trade-off, retaining linear cost while matching and surpassing the accuracy of quadratic attention. \textsc{LUNA} is built on the key insight that the kernel feature map itself should be learned rather than fixed a priori. By parameterizing the kernel, \textsc{LUNA} learns a feature basis tailored to the specific data and task, overcoming the expressive limitations of fixed-feature methods. \textsc{Luna} implements this with a learnable feature map that induces a positive-definite kernel and admits a streaming form, yielding linear time and memory scaling in the sequence length. Empirical evaluations validate our approach across diverse settings. On the Long Range Arena (LRA), \textsc{Luna} achieves state-of-the-art average accuracy among efficient Transformers under compute parity, using the same parameter count, training steps, and approximate FLOPs. \textsc{Luna} also excels at post-hoc conversion: replacing softmax in fine-tuned BERT and ViT-B/16 checkpoints and briefly fine-tuning recovers most of the original performance, substantially outperforming fixed linearizations.
☆ Fairness-aware PageRank via Edge Reweighting
Link-analysis algorithms, such as PageRank, are instrumental in understanding the structural dynamics of networks by evaluating the importance of individual vertices based on their connectivity. Recently, with the rising importance of responsible AI, the question of fairness in link-analysis algorithms has gained traction. In this paper, we present a new approach for incorporating group fairness into the PageRank algorithm by reweighting the transition probabilities in the underlying transition matrix. We formulate the problem of achieving fair PageRank by seeking to minimize the fairness loss, which is the difference between the original group-wise PageRank distribution and a target PageRank distribution. We further define a group-adapted fairness notion, which accounts for group homophily by considering random walks with group-biased restart for each group. Since the fairness loss is non-convex, we propose an efficient projected gradient-descent method for computing locally-optimal edge weights. Unlike earlier approaches, we do not recommend adding new edges to the network, nor do we adjust the restart vector. Instead, we keep the topology of the underlying network unchanged and only modify the relative importance of existing edges. We empirically compare our approach with state-of-the-art baselines and demonstrate the efficacy of our method, where very small changes in the transition matrix lead to significant improvement in the fairness of the PageRank algorithm.
☆ An Introduction to Deep Reinforcement and Imitation Learning
Embodied agents, such as robots and virtual characters, must continuously select actions to execute tasks effectively, solving complex sequential decision-making problems. Given the difficulty of designing such controllers manually, learning-based approaches have emerged as promising alternatives, most notably Deep Reinforcement Learning (DRL) and Deep Imitation Learning (DIL). DRL leverages reward signals to optimize behavior, while DIL uses expert demonstrations to guide learning. This document introduces DRL and DIL in the context of embodied agents, adopting a concise, depth-first approach to the literature. It is self-contained, presenting all necessary mathematical and machine learning concepts as they are needed. It is not intended as a survey of the field; rather, it focuses on a small set of foundational algorithms and techniques, prioritizing in-depth understanding over broad coverage. The material ranges from Markov Decision Processes to REINFORCE and Proximal Policy Optimization (PPO) for DRL, and from Behavioral Cloning to Dataset Aggregation (DAgger) and Generative Adversarial Imitation Learning (GAIL) for DIL.
☆ CLARITY: Medical World Model for Guiding Treatment Decisions by Modeling Context-Aware Disease Trajectories in Latent Space
Clinical decision-making in oncology requires predicting dynamic disease evolution, a task current static AI predictors cannot perform. While world models (WMs) offer a paradigm for generative prediction, existing medical applications remain limited. Existing methods often rely on stochastic diffusion models, focusing on visual reconstruction rather than causal, physiological transitions. Furthermore, in medical domain, models like MeWM typically ignore patient-specific temporal and clinical contexts and lack a feedback mechanism to link predictions to treatment decisions. To address these gaps, we introduce CLARITY, a medical world model that forecasts disease evolution directly within a structured latent space. It explicitly integrates time intervals (temporal context) and patient-specific data (clinical context) to model treatment-conditioned progression as a smooth, interpretable trajectory, and thus generate physiologically faithful, individualized treatment plans. Finally, CLARITY introduces a novel prediction-to-decision framework, translating latent rollouts into transparent, actionable recommendations. CLARITY demonstrates state-of-the-art performance in treatment planning. On the MU-Glioma-Post dataset, our approach outperforms recent MeWM by 12\%, and significantly surpasses all other medical-specific large language models.
☆ Provable Diffusion Posterior Sampling for Bayesian Inversion
This paper proposes a novel diffusion-based posterior sampling method within a plug-and-play (PnP) framework. Our approach constructs a probability transport from an easy-to-sample terminal distribution to the target posterior, using a warm-start strategy to initialize the particles. To approximate the posterior score, we develop a Monte Carlo estimator in which particles are generated using Langevin dynamics, avoiding the heuristic approximations commonly used in prior work. The score governing the Langevin dynamics is learned from data, enabling the model to capture rich structural features of the underlying prior distribution. On the theoretical side, we provide non-asymptotic error bounds, showing that the method converges even for complex, multi-modal target posterior distributions. These bounds explicitly quantify the errors arising from posterior score estimation, the warm-start initialization, and the posterior sampling procedure. Our analysis further clarifies how the prior score-matching error and the condition number of the Bayesian inverse problem influence overall performance. Finally, we present numerical experiments demonstrating the effectiveness of the proposed method across a range of inverse problems.
☆ Learning Dynamics from Infrequent Output Measurements for Uncertainty-Aware Optimal Control
Reliable optimal control is challenging when the dynamics of a nonlinear system are unknown and only infrequent, noisy output measurements are available. This work addresses this setting of limited sensing by formulating a Bayesian prior over the continuous-time dynamics and latent state trajectory in state-space form and updating it through a targeted marginal Metropolis-Hastings sampler equipped with a numerical ODE integrator. The resulting posterior samples are used to formulate a scenario-based optimal control problem that accounts for both model and measurement uncertainty and is solved using standard nonlinear programming methods. The approach is validated in a numerical case study on glucose regulation using a Type 1 diabetes model.
comment: Submitted to the 2026 IFAC World Congress
☆ Benchmarking Offline Multi-Objective Reinforcement Learning in Critical Care
In critical care settings such as the Intensive Care Unit, clinicians face the complex challenge of balancing conflicting objectives, primarily maximizing patient survival while minimizing resource utilization (e.g., length of stay). Single-objective Reinforcement Learning approaches typically address this by optimizing a fixed scalarized reward function, resulting in rigid policies that fail to adapt to varying clinical priorities. Multi-objective Reinforcement Learning (MORL) offers a solution by learning a set of optimal policies along the Pareto Frontier, allowing for dynamic preference selection at test time. However, applying MORL in healthcare necessitates strict offline learning from historical data. In this paper, we benchmark three offline MORL algorithms, Conditioned Conservative Pareto Q-Learning (CPQL), Adaptive CPQL, and a modified Pareto Efficient Decision Agent (PEDA) Decision Transformer (PEDA DT), against three scalarized single-objective baselines (BC, CQL, and DDQN) on the MIMIC-IV dataset. Using Off-Policy Evaluation (OPE) metrics, we demonstrate that PEDA DT algorithm offers superior flexibility compared to static scalarized baselines. Notably, our results extend previous findings on single-objective Decision Transformers in healthcare, confirming that sequence modeling architectures remain robust and effective when scaled to multi-objective conditioned generation. These findings suggest that offline MORL is a promising framework for enabling personalized, adjustable decision-making in critical care without the need for retraining.
☆ A Comparative Study of EMG- and IMU-based Gesture Recognition at the Wrist and Forearm
Gestures are an integral part of our daily interactions with the environment. Hand gesture recognition (HGR) is the process of interpreting human intent through various input modalities, such as visual data (images and videos) and bio-signals. Bio-signals are widely used in HGR due to their ability to be captured non-invasively via sensors placed on the arm. Among these, surface electromyography (sEMG), which measures the electrical activity of muscles, is the most extensively studied modality. However, less-explored alternatives such as inertial measurement units (IMUs) can provide complementary information on subtle muscle movements, which makes them valuable for gesture recognition. In this study, we investigate the potential of using IMU signals from different muscle groups to capture user intent. Our results demonstrate that IMU signals contain sufficient information to serve as the sole input sensor for static gesture recognition. Moreover, we compare different muscle groups and check the quality of pattern recognition on individual muscle groups. We further found that tendon-induced micro-movement captured by IMUs is a major contributor to static gesture recognition. We believe that leveraging muscle micro-movement information can enhance the usability of prosthetic arms for amputees. This approach also offers new possibilities for hand gesture recognition in fields such as robotics, teleoperation, sign language interpretation, and beyond.
☆ Bridging the Clinical Expertise Gap: Development of a Web-Based Platform for Accessible Time Series Forecasting and Analysis
Time series forecasting has applications across domains and industries, especially in healthcare, but the technical expertise required to analyze data, build models, and interpret results can be a barrier to using these techniques. This article presents a web platform that makes the process of analyzing and plotting data, training forecasting models, and interpreting and viewing results accessible to researchers and clinicians. Users can upload data and generate plots to showcase their variables and the relationships between them. The platform supports multiple forecasting models and training techniques which are highly customizable according to the user's needs. Additionally, recommendations and explanations can be generated from a large language model that can help the user choose appropriate parameters for their data and understand the results for each model. The goal is to integrate this platform into learning health systems for continuous data collection and inference from clinical pipelines.
☆ HOLE: Homological Observation of Latent Embeddings for Neural Network Interpretability
Deep learning models have achieved remarkable success across various domains, yet their learned representations and decision-making processes remain largely opaque and hard to interpret. This work introduces HOLE (Homological Observation of Latent Embeddings), a method for analyzing and interpreting deep neural networks through persistent homology. HOLE extracts topological features from neural activations and presents them using a suite of visualization techniques, including Sankey diagrams, heatmaps, dendrograms, and blob graphs. These tools facilitate the examination of representation structure and quality across layers. We evaluate HOLE on standard datasets using a range of discriminative models, focusing on representation quality, interpretability across layers, and robustness to input perturbations and model compression. The results indicate that topological analysis reveals patterns associated with class separation, feature disentanglement, and model robustness, providing a complementary perspective for understanding and improving deep learning systems.
☆ CIP-Net: Continual Interpretable Prototype-based Network
Continual learning constrains models to learn new tasks over time without forgetting what they have already learned. A key challenge in this setting is catastrophic forgetting, where learning new information causes the model to lose its performance on previous tasks. Recently, explainable AI has been proposed as a promising way to better understand and reduce forgetting. In particular, self-explainable models are useful because they generate explanations during prediction, which can help preserve knowledge. However, most existing explainable approaches use post-hoc explanations or require additional memory for each new task, resulting in limited scalability. In this work, we introduce CIP-Net, an exemplar-free self-explainable prototype-based model designed for continual learning. CIP-Net avoids storing past examples and maintains a simple architecture, while still providing useful explanations and strong performance. We demonstrate that CIPNet achieves state-of-the-art performances compared to previous exemplar-free and self-explainable methods in both task- and class-incremental settings, while bearing significantly lower memory-related overhead. This makes it a practical and interpretable solution for continual learning.
☆ Towards symbolic regression for interpretable clinical decision scores
Medical decision-making makes frequent use of algorithms that combine risk equations with rules, providing clear and standardized treatment pathways. Symbolic regression (SR) traditionally limits its search space to continuous function forms and their parameters, making it difficult to model this decision-making. However, due to its ability to derive data-driven, interpretable models, SR holds promise for developing data-driven clinical risk scores. To that end we introduce Brush, an SR algorithm that combines decision-tree-like splitting algorithms with non-linear constant optimization, allowing for seamless integration of rule-based logic into symbolic regression and classification models. Brush achieves Pareto-optimal performance on SRBench, and was applied to recapitulate two widely used clinical scoring systems, achieving high accuracy and interpretable models. Compared to decision trees, random forests, and other SR methods, Brush achieves comparable or superior predictive performance while producing simpler models.
comment: 15 pages, 5 figures. Accepted for publication in Philosophical Transactions A. Autor Accepted Manuscript version
☆ Conformal Defects in Neural Network Field Theories
Neural Network Field Theories (NN-FTs) represent a novel construction of arbitrary field theories, including those of conformal fields, through the specification of the network architecture and prior distribution for the network parameters. In this work, we present a formalism for the construction of conformally invariant defects in these NN-FTs. We demonstrate this new formalism in two toy models of NN scalar field theories. We develop an NN interpretation of an expansion akin to the defect OPE in two-point correlation functions in these models.
comment: 23 pages, 1 figure
☆ Can AI autonomously build, operate, and use the entire data stack?
Enterprise data management is a monumental task. It spans data architecture and systems, integration, quality, governance, and continuous improvement. While AI assistants can help specific persona, such as data engineers and stewards, to navigate and configure the data stack, they fall far short of full automation. However, as AI becomes increasingly capable of tackling tasks that have previously resisted automation due to inherent complexities, we believe there is an imminent opportunity to target fully autonomous data estates. Currently, AI is used in different parts of the data stack, but in this paper, we argue for a paradigm shift from the use of AI in independent data component operations towards a more holistic and autonomous handling of the entire data lifecycle. Towards that end, we explore how each stage of the modern data stack can be autonomously managed by intelligent agents to build self-sufficient systems that can be used not only by human end-users, but also by AI itself. We begin by describing the mounting forces and opportunities that demand this paradigm shift, examine how agents can streamline the data lifecycle, and highlight open questions and areas where additional research is needed. We hope this work will inspire lively debate, stimulate further research, motivate collaborative approaches, and facilitate a more autonomous future for data systems.
☆ Automating High Energy Physics Data Analysis with LLM-Powered Agents NeurIPS 2025
We present a proof-of-principle study demonstrating the use of large language model (LLM) agents to automate a representative high energy physics (HEP) analysis. Using the Higgs boson diphoton cross-section measurement as a case study with ATLAS Open Data, we design a hybrid system that combines an LLM-based supervisor-coder agent with the Snakemake workflow manager. In this architecture, the workflow manager enforces reproducibility and determinism, while the agent autonomously generates, executes, and iteratively corrects analysis code in response to user instructions. We define quantitative evaluation metrics including success rate, error distribution, costs per specific task, and average number of API calls, to assess agent performance across multi-stage workflows. To characterize variability across architectures, we benchmark a representative selection of state-of-the-art LLMs spanning the Gemini and GPT-5 series, the Claude family, and leading open-weight models. While the workflow manager ensures deterministic execution of all analysis steps, the final outputs still show stochastic variation. Although we set the temperature to zero, other sampling parameters (e.g., top-p, top-k) remained at their defaults, and some reasoning-oriented models internally adjust these settings. Consequently, the models do not produce fully deterministic results. This study establishes the first LLM-agent-driven automated data-analysis framework in HEP, enabling systematic benchmarking of model capabilities, stability, and limitations in real-world scientific computing environments. The baseline code used in this work is available at https://huggingface.co/HWresearch/LLM4HEP. This work was accepted as a poster at the Machine Learning and the Physical Sciences (ML4PS) workshop at NeurIPS 2025. The initial submission was made on August 30, 2025.
comment: 16 pages, 6 figures, 2 tables, the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) - Machine Learning and the Physical Sciences (ML4PS) workshop (poster)
♻ ☆ TV2TV: A Unified Framework for Interleaved Language and Video Generation
Video generation models are rapidly advancing, but can still struggle with complex video outputs that require significant semantic branching or repeated high-level reasoning about what should happen next. In this paper, we introduce a new class of omni video-text models that integrate ideas from recent LM reasoning advances to address this challenge. More specifically, we present TV2TV, a unified generative modeling framework which decomposes video generation into an interleaved text and video generation process. TV2TV jointly learns language modeling (next-token prediction) and video flow matching (next-frame prediction) using a Mixture-of-Transformers (MoT) architecture. At inference time, TV2TV decides when to alternate between generating text and video frames, allowing the model to "think in words" about subsequent content before ``acting in pixels'' to produce frames. This design offloads much of the responsibility for deciding what should happen next to the language modeling tower, enabling improved visual quality and prompt alignment of generated videos. It also enables fine-grained controllability, allowing users to modify the video generation trajectory through text interventions at any point in the process. In controlled experiments on video game data, TV2TV demonstrates substantial improvements in both visual quality and controllability. TV2TV also scales to natural videos, as we show by augmenting sports videos with interleaved natural language action descriptions using vision-language models (VLMs). Training TV2TV on this corpus yields strong visual quality and prompt alignment, showcasing the model's ability to reason about and generate complex real-world action sequences. Together, these results highlight TV2TV as a promising step toward video generation with open-ended textual reasoning and control.
♻ ☆ Training Task Reasoning LLM Agents for Multi-turn Task Planning via Single-turn Reinforcement Learning
Large Language Models (LLMs) have demonstrated remarkable capabilities in knowledge acquisition, reasoning, and tool use, making them promising candidates for autonomous agent applications. However, training LLM agents for complex multi-turn task planning faces significant challenges, including sparse episode-wise rewards, credit assignment across long horizons, and the computational overhead of reinforcement learning in multi-turn interaction settings. To this end, this paper introduces a novel approach that transforms multi-turn task planning into single-turn task reasoning problems, enabling efficient policy optimization through Group Relative Policy Optimization (GRPO) with dense and verifiable reward from expert trajectories. Our theoretical analysis shows that GRPO improvement on single-turn task reasoning results in a lower bound of the multi-turn success probability under the minimal turns, as well as the generalization to subtasks with shorter horizons. Experimental evaluation on the complex task planning benchmark demonstrates that our 1.5B parameter model trained with single-turn GRPO achieves superior performance compared to larger baseline models up to 14B parameters, with success rates of 70% for long-horizon planning tasks.
comment: Accepted by IEEE Control Systems Letters (L-CSS)
♻ ☆ Beyond the Singular: Revealing the Value of Multiple Generations in Benchmark Evaluation NeurIPS 2025
Large language models (LLMs) have demonstrated significant utility in real-world applications, exhibiting impressive capabilities in natural language processing and understanding. Benchmark evaluations are crucial for assessing the capabilities of LLMs as they can provide a comprehensive assessment of their strengths and weaknesses. However, current evaluation methods often overlook the inherent randomness of LLMs by employing deterministic generation strategies or relying on a single random sample, resulting in unaccounted sampling variance and unreliable benchmark score estimates. In this paper, we propose a hierarchical statistical model that provides a more comprehensive representation of the benchmarking process by incorporating both benchmark characteristics and LLM randomness. We show that leveraging multiple generations improves the accuracy of estimating the benchmark score and reduces variance. Multiple generations also allow us to define $\mathbb P\left(\text{correct}\right)$, a prompt-level difficulty score based on correct ratios, providing fine-grained insights into individual prompts. Additionally, we create a data map that visualizes difficulty and semantics of prompts, enabling error detection and quality control in benchmark construction.
comment: Accepted in NeurIPS 2025 Workshop on LLM Evals
♻ ☆ Density Operator Expectation Maximization
Machine learning with density operators, the mathematical foundation of quantum mechanics, is gaining prominence with rapid advances in quantum computing. Generative models based on density operators cannot yet handle tasks that are routinely handled by probabilistic models. The progress of latent variable models, a broad and influential class of probabilistic unsupervised models, was driven by the Expectation-Maximization framework. Deriving such a framework for density operators is challenging due to the non-commutativity of operators. To tackle this challenge, an inequality arising from the monotonicity of relative entropy is demonstrated to serve as an evidence lower bound for density operators. A minorant-maximization perspective on this bound leads to Density Operator Expectation Maximization (DO-EM), a general framework for training latent variable models defined through density operators. Through an information-geometric argument, the Expectation step in DO-EM is shown to be the Petz recovery map. The DO-EM algorithm is applied to Quantum Restricted Boltzmann Machines, adapting Contrastive Divergence to approximate the Maximization step gradient. Quantum interleaved Deep Boltzmann Machines and Quantum Gaussian-Bernoulli Restricted Boltzmann Machines, new models introduced in this work, outperform their probabilistic counterparts on generative tasks when trained with similar computational resources and identical hyperparameters.
comment: Main text: 34 pages 4 Figures. Total: 45 pages 4 Figures
♻ ☆ EvoMem: Improving Multi-Agent Planning with Dual-Evolving Memory
Planning has been a cornerstone of artificial intelligence for solving complex problems, and recent progress in LLM-based multi-agent frameworks have begun to extend this capability. However, the role of human-like memory within these frameworks remains largely unexplored. Understanding how agents coordinate through memory is critical for natural language planning, where iterative reasoning, constraint tracking, and error correction drive the success. Inspired by working memory model in cognitive psychology, we present EvoMem, a multi-agent framework built on a dual-evolving memory mechanism. The framework consists of three agents (Constraint Extractor, Verifier, and Actor) and two memory modules: Constraint Memory (CMem), which evolves across queries by storing task-specific rules and constraints while remains fixed within a query, and Query-feedback Memory (QMem), which evolves within a query by accumulating feedback across iterations for solution refinement. Both memory modules are reset at the end of each query session. Evaluations on trip planning, meeting planning, and calendar scheduling show consistent performance improvements, highlighting the effectiveness of EvoMem. This success underscores the importance of memory in enhancing multi-agent planning.
♻ ☆ Efficient Approximate Posterior Sampling with Annealed Langevin Monte Carlo
We study the problem of posterior sampling in the context of score based generative models. We have a trained score network for a prior $p(x)$, a measurement model $p(y|x)$, and are tasked with sampling from the posterior $p(x|y)$. Prior work has shown this to be intractable in KL (in the worst case) under well-accepted computational hardness assumptions. Despite this, popular algorithms for tasks such as image super-resolution, stylization, and reconstruction enjoy empirical success. Rather than establishing distributional assumptions or restricted settings under which exact posterior sampling is tractable, we view this as a more general "tilting" problem of biasing a distribution towards a measurement. Under minimal assumptions, we show that one can tractably sample from a distribution that is simultaneously close to the posterior of a noised prior in KL divergence and the true posterior in Fisher divergence. Intuitively, this combination ensures that the resulting sample is consistent with both the measurement and the prior. To the best of our knowledge these are the first formal results for (approximate) posterior sampling in polynomial time.
♻ ☆ Trustworthy Retrosynthesis: Eliminating Hallucinations with a Diverse Ensemble of Reaction Scorers
Retrosynthesis is one of the domains transformed by the rise of generative models, and it is one where the problem of nonsensical or erroneous outputs (hallucinations) is particularly insidious: reliable assessment of synthetic plans is time-consuming, with automatic methods lacking. In this work, we present RetroTrim, a retrosynthesis system that successfully avoids nonsensical plans on a set of challenging drug-like targets. Compared to common baselines in the field, our system is not only the sole method that succeeds in filtering out hallucinated reactions, but it also results in the highest number of high-quality paths overall. The key insight behind RetroTrim is the combination of diverse reaction scoring strategies, based on machine learning models and existing chemical databases. We show that our scoring strategies capture different classes of hallucinations by analyzing them on a dataset of labeled retrosynthetic intermediates. This approach formed the basis of our winning solution to the Standard Industries \$1 million Retrosynthesis Challenge. To measure the performance of retrosynthesis systems, we propose a novel evaluation protocol for reactions and synthetic paths based on a structured review by expert chemists. Using this protocol, we compare systems on a set of 32 novel targets, curated to reflect recent trends in drug structures. While the insights behind our methodology are broadly applicable to retrosynthesis, our focus is on targets in the drug-like domain. By releasing our benchmark targets and the details of our evaluation protocol, we hope to inspire further research into reliable retrosynthesis.
♻ ☆ PhyloLM : Inferring the Phylogeny of Large Language Models and Predicting their Performances in Benchmarks ICLR 2025
This paper introduces PhyloLM, a method adapting phylogenetic algorithms to Large Language Models (LLMs) to explore whether and how they relate to each other and to predict their performance characteristics. Our method calculates a phylogenetic distance metric based on the similarity of LLMs' output. The resulting metric is then used to construct dendrograms, which satisfactorily capture known relationships across a set of 111 open-source and 45 closed models. Furthermore, our phylogenetic distance predicts performance in standard benchmarks, thus demonstrating its functional validity and paving the way for a time and cost-effective estimation of LLM capabilities. To sum up, by translating population genetic concepts to machine learning, we propose and validate a tool to evaluate LLM development, relationships and capabilities, even in the absence of transparent training information.
comment: The project code is available at https://github.com/Nicolas-Yax/PhyloLM . Published as https://iclr.cc/virtual/2025/poster/28195 at ICLR 2025. A code demo is available at https://colab.research.google.com/drive/1agNE52eUevgdJ3KL3ytv5Y9JBbfJRYqd
♻ ☆ Hidden Minima in Two-Layer ReLU Networks
We consider the optimization problem arising from fitting two-layer ReLU networks with $d$ inputs under the square loss, where labels are generated by a target network. Two infinite families of spurious minima have recently been identified: one whose loss vanishes as $d \to \infty$, and another whose loss remains bounded away from zero. The latter are nevertheless avoided by vanilla SGD, and thus hidden, motivating the search for analytic properties distinguishing the two types. Perhaps surprisingly, the Hessian spectra of hidden and non-hidden minima agree up to terms of order $O(d^{-1/2})$, providing limited explanatory power. Consequently, our analysis of hidden minima proceeds instead via curves along which the loss is minimized or maximized. The main result is that arcs emanating from hidden minima differ, characteristically, by their structure and symmetry, precisely on account of the $O(d^{-1/2})$-eigenvalue terms absent from previous analyses.
♻ ☆ HybridNorm: Towards Stable and Efficient Transformer Training via Hybrid Normalization NeurIPS 2025
Transformers have become the de facto architecture for a wide range of machine learning tasks, particularly in large language models (LLMs). Despite their remarkable performance, many challenges remain in training deep transformer networks, especially regarding the position of the layer normalization. While Pre-Norm structures facilitate more stable training owing to their stronger identity path, they often lead to suboptimal performance compared to Post-Norm. In this paper, we propose $\textbf{HybridNorm}$, a simple yet effective hybrid normalization strategy that integrates the advantages of both Pre-Norm and Post-Norm. Specifically, HybridNorm employs QKV normalization within the attention mechanism and Post-Norm in the feed-forward network (FFN) of each transformer block. We provide both theoretical insights and empirical evidence to demonstrate that HybridNorm improves the gradient flow and the model robustness. Extensive experiments on large-scale transformer models, including both dense and sparse variants, show that HybridNorm consistently outperforms both Pre-Norm and Post-Norm approaches across multiple benchmarks. These findings highlight the potential of HybridNorm as a more stable and effective technique for improving the training and performance of deep transformer models. Code is available at https://github.com/BryceZhuo/HybridNorm.
comment: Accepted by NeurIPS 2025
♻ ☆ A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
Advances in architectural design, data availability, and compute have driven remarkable progress in semantic segmentation. Yet, these models often rely on relaxed Bayesian assumptions, omitting critical uncertainty information needed for robust decision-making. Despite growing interest in probabilistic segmentation to address point-estimate limitations, the research landscape remains fragmented. In response, this review synthesizes foundational concepts in uncertainty modeling, analyzing how feature- and parameter-distribution modeling impact four key segmentation tasks: Observer Variability, Active Learning, Model Introspection, and Model Generalization. Our work establishes a common framework by standardizing theory, notation, and terminology, thereby bridging the gap between method developers, task specialists, and applied researchers. We then discuss critical challenges, including the nuanced distinction between uncertainty types, strong assumptions in spatial aggregation, the lack of standardized benchmarks, and pitfalls in current quantification methods. We identify promising avenues for future research, such as uncertainty-aware active learning, data-driven benchmarks, transformer-based models, and novel techniques to move from simple segmentation problems to uncertainty in holistic scene understanding. Based on our analysis, we offer practical guidelines for researchers on method selection, evaluation, reproducibility, and meaningful uncertainty estimation. Ultimately, our goal is to facilitate the development of more reliable, efficient, and interpretable segmentation models that can be confidently deployed in real-world applications.
comment: TMLR
♻ ☆ It's complicated. The relationship of algorithmic fairness and non-discrimination regulations for high-risk systems in the EU AI Act
What constitutes a fair decision? This question is not only difficult for humans but becomes more challenging when Artificial Intelligence (AI) models are used. In light of discriminatory algorithmic behaviors, the EU has recently passed the AI Act, which mandates specific rules for high-risk systems, incorporating both traditional legal non-discrimination regulations and machine learning based algorithmic fairness concepts. This paper aims to bridge these two different concepts in the AI Act through: First, a necessary high-level introduction of both concepts targeting legal and computer science-oriented scholars, and second, an in-depth analysis of the AI Act's relationship between legal non-discrimination regulations and algorithmic fairness. Our analysis reveals three key findings: (1.) Most non-discrimination regulations target only high-risk AI systems. (2.) The regulation of high-risk systems encompasses both data input requirements and output monitoring, though these regulations are partly inconsistent and raise questions of computational feasibility. (3.) Finally, we consider the possible (future) interaction of classical EU non-discrimination law and the AI Act regulations. We recommend developing more specific auditing and testing methodologies for AI systems. This paper aims to serve as a foundation for future interdisciplinary collaboration between legal scholars and computer science-oriented machine learning researchers studying discrimination in AI systems.
comment: Accepted at the Workshop on Regulatable ML at the 39th Conference on Neural Information Processing Systems
♻ ☆ Instruction-based Time Series Editing
In time series editing, we aim to modify some properties of a given time series without altering others. For example, when analyzing a hospital patient's blood pressure, we may add a sudden early drop and observe how it impacts their future while preserving other conditions. Existing diffusion-based editors rely on rigid, predefined attribute vectors as conditions and produce all-or-nothing edits through sampling. This attribute- and sampling-based approach limits flexibility in condition format and lacks customizable control over editing strength. To overcome these limitations, we introduce Instruction-based Time Series Editing, where users specify intended edits using natural language. This allows users to express a wider range of edits in a more accessible format. We then introduce InstructTime, the first instruction-based time series editor. InstructTime takes in time series and instructions, embeds them into a shared multi-modal representation space, then decodes their embeddings to generate edited time series. By learning a structured multi-modal representation space, we can easily interpolate between embeddings to achieve varying degrees of edit. To handle local and global edits together, we propose multi-resolution encoders. In our experiments, we use synthetic and real datasets and find that InstructTime is a state-of-the-art time series editor: InstructTime achieves high-quality edits with controllable strength, can generalize to unseen instructions, and can be easily adapted to unseen conditions through few-shot learning.
♻ ☆ Evaluating the robustness of adversarial defenses in malware detection systems
Machine learning is a key tool for Android malware detection, effectively identifying malicious patterns in apps. However, ML-based detectors are vulnerable to evasion attacks, where small, crafted changes bypass detection. Despite progress in adversarial defenses, the lack of comprehensive evaluation frameworks in binary-constrained domains limits understanding of their robustness. We introduce two key contributions. First, Prioritized Binary Rounding, a technique to convert continuous perturbations into binary feature spaces while preserving high attack success and low perturbation size. Second, the sigma-binary attack, a novel adversarial method for binary domains, designed to achieve attack goals with minimal feature changes. Experiments on the Malscan dataset show that sigma-binary outperforms existing attacks and exposes key vulnerabilities in state-of-the-art defenses. Defenses equipped with adversary detectors, such as KDE, DLA, DNN+, and ICNN, exhibit significant brittleness, with attack success rates exceeding 90% using fewer than 10 feature modifications and reaching 100% with just 20. Adversarially trained defenses, including AT-rFGSM-k, AT-MaxMA, improves robustness under small budgets but remains vulnerable to unrestricted perturbations, with attack success rates of 99.45% and 96.62%, respectively. Although PAD-SMA demonstrates strong robustness against state-of-the-art gradient-based adversarial attacks by maintaining an attack success rate below 16.55%, the sigma-binary attack significantly outperforms these methods, achieving a 94.56% success rate under unrestricted perturbations. These findings highlight the critical need for precise method like sigma-binary to expose hidden vulnerabilities in existing defenses and support the development of more resilient malware detection systems.
comment: Published in Computers & Electrical Engineering (Elsevier), Volume 130, February 2026, Article 110845
♻ ☆ MM-ACT: Learn from Multimodal Parallel Generation to Act
A generalist robotic policy needs both semantic understanding for task planning and the ability to interact with the environment through predictive capabilities. To tackle this, we present MM-ACT, a unified Vision-Language-Action (VLA) model that integrates text, image, and action in shared token space and performs generation across all three modalities. MM-ACT adopts a re-mask parallel decoding strategy for text and image generation, and employs a one-step parallel decoding strategy for action generation to improve efficiency. We introduce Context-Shared Multimodal Learning, a unified training paradigm that supervises generation in all three modalities from a shared context, enhancing action generation through cross-modal learning. Experiments were conducted on the LIBERO simulation and Franka real-robot setups as well as RoboTwin2.0 to assess in-domain and out-of-domain performances respectively. Our approach achieves a success rate of 96.3% on LIBERO, 72.0% across three tasks of real Franka, and 52.38% across eight bimanual tasks of RoboTwin2.0 with an additional gain of 9.25% from cross-modal learning. We release our codes, models and data at https://github.com/HHYHRHY/MM-ACT.
comment: 17 pages
♻ ☆ Are Time-Series Foundation Models Deployment-Ready? A Systematic Study of Adversarial Robustness Across Domains
Time-Series Foundation Models (TSFMs) are rapidly transitioning from research prototypes to core components of critical decision-making systems, driven by their impressive zero-shot forecasting capabilities. However, as their deployment surges, a critical blind spot remains: their fragility under adversarial attacks. This lack of scrutiny poses severe risks, particularly as TSFMs enter high-stakes environments vulnerable to manipulation. We present a systematic, diagnostic study arguing that for TSFMs, robustness is not merely a secondary metric but a prerequisite for trustworthy deployment comparable to accuracy. Our evaluation framework, explicitly tailored to the unique constraints of time series, incorporates normalized, sparsity-aware perturbation budgets and unified scale-invariant metrics across white-box and black-box settings. Across six representative TSFMs, we demonstrate that current architectures are alarmingly brittle: even small perturbations can reliably steer forecasts toward specific failure modes, such as trend flips and malicious drifts. We uncover TSFM-specific vulnerability patterns, including horizon-proximal brittleness, increased susceptibility with longer context windows, and weak cross-model transfer that points to model-specific failure modes rather than generic distortions. Finally, we show that simple adversarial fine-tuning offers a cost-effective path to substantial robustness gains, even with out-of-domain data. This work bridges the gap between TSFM capabilities and safety constraints, offering essential guidance for hardening the next generation of forecasting systems.
comment: Preprint
♻ ☆ Semantic Faithfulness and Entropy Production Measures to Tame Your LLM Demons and Manage Hallucinations
Evaluating faithfulness of Large Language Models (LLMs) to a given task is a complex challenge. We propose two new unsupervised metrics for faithfulness evaluation using insights from information theory and thermodynamics. Our approach treats an LLM as a bipartite information engine where hidden layers act as a Maxwell demon controlling transformations of context $C $ into answer $A$ via prompt $Q$. We model Question-Context-Answer (QCA) triplets as probability distributions over shared topics. Topic transformations from $C$ to $Q$ and $A$ are modeled as transition matrices ${\bf Q}$ and ${\bf A}$ encoding the query goal and actual result, respectively. Our semantic faithfulness (SF) metric quantifies faithfulness for any given QCA triplet by the Kullback-Leibler (KL) divergence between these matrices. Both matrices are inferred simultaneously via convex optimization of this KL divergence, and the final SF metric is obtained by mapping the minimal divergence onto the unit interval [0,1], where higher scores indicate greater faithfulness. Furthermore, we propose a thermodynamics-based semantic entropy production (SEP) metric in answer generation, and show that high faithfulness generally implies low entropy production. The SF and SEP metrics can be used jointly or separately for LLM evaluation and hallucination control. We demonstrate our framework on LLM summarization of corporate SEC 10-K filings.
comment: 23 pages, 6 figures
♻ ☆ Covariate-Elaborated Robust Partial Information Transfer with Conditional Spike-and-Slab Prior
The popularity of transfer learning stems from the fact that it can borrow information from useful auxiliary datasets. Existing statistical transfer learning methods usually adopt a global similarity measure between the source data and the target data, which may lead to inefficiency when only partial information is shared. In this paper, we propose a novel Bayesian transfer learning method named ``CONCERT'' to allow robust partial information transfer for high-dimensional data analysis. A conditional spike-and-slab prior is introduced in the joint distribution of target and source parameters for information transfer. By incorporating covariate-specific priors, we can characterize partial similarities and integrate source information collaboratively to improve the performance on the target. In contrast to existing work, the CONCERT is a one-step procedure which achieves variable selection and information transfer simultaneously. We establish variable selection consistency, as well as estimation and prediction error bounds for CONCERT. Our theory demonstrates the covariate-specific benefit of transfer learning. To ensure the scalability of the algorithm, we adopt the variational Bayes framework to facilitate implementation. Extensive experiments and two real data applications showcase the validity and advantages of CONCERT over existing cutting-edge transfer learning methods.
comment: 35 pages, 4 figures
♻ ☆ Quantization-Free Autoregressive Action Transformer
Current transformer-based imitation learning approaches introduce discrete action representations and train an autoregressive transformer decoder on the resulting latent code. However, the initial quantization breaks the continuous structure of the action space thereby limiting the capabilities of the generative model. We propose a quantization-free method instead that leverages Generative Infinite-Vocabulary Transformers (GIVT) as a direct, continuous policy parametrization for autoregressive transformers. This simplifies the imitation learning pipeline while achieving state-of-the-art performance on a variety of popular simulated robotics tasks. We enhance our policy roll-outs by carefully studying sampling algorithms, further improving the results.
♻ ☆ A Biophysically-Conditioned Generative Framework for 3D Brain Tumor MRI Synthesis
Magnetic resonance imaging (MRI) inpainting supports numerous clinical and research applications. We introduce the first generative model that conditions on voxel-level, continuous tumor concentrations to synthesize high-fidelity brain tumor MRIs. For the BraTS 2025 Inpainting Challenge, we adapt this architecture to the complementary task of healthy tissue restoration by setting the tumor concentrations to zero. Our latent diffusion model conditioned on both tissue segmentations and the tumor concentrations generates 3D spatially coherent and anatomically consistent images for both tumor synthesis and healthy tissue inpainting. For healthy inpainting, we achieve a PSNR of 18.5, and for tumor inpainting, we achieve 17.4. Our code is available at: https://github.com/valentin-biller/ldm.git
♻ ☆ Generalized Probabilistic Approximate Optimization Algorithm
We introduce a generalized \textit{Probabilistic Approximate Optimization Algorithm (PAOA)}, a classical variational Monte Carlo framework that extends and formalizes prior work by Weitz \textit{et al.}~\cite{Combes_2023}, enabling parameterized and fast sampling on present-day Ising machines and probabilistic computers. PAOA operates by iteratively modifying the couplings of a network of binary stochastic units, guided by cost evaluations from independent samples. We establish a direct correspondence between derivative-free updates and the gradient of the full Markov flow over the exponentially large state space, showing that PAOA admits a principled variational formulation. Simulated annealing emerges as a limiting case under constrained parameterizations, and we implement this regime on an FPGA-based probabilistic computer with on-chip annealing to solve large 3D spin-glass problems. Benchmarking PAOA against QAOA on the canonical 26-spin Sherrington-Kirkpatrick model with matched parameters reveals superior performance for PAOA. We show that PAOA naturally extends simulated annealing by optimizing multiple temperature profiles, leading to improved performance over SA on heavy-tailed problems such as SK-Lévy.
comment: Nature Communications (2025)
♻ ☆ Look the Other Way: Designing 'Positive' Molecules with Negative Data via Task Arithmetic
The scarcity of molecules with desirable properties (i.e., `positive' molecules) is an inherent bottleneck for generative molecule design. To sidestep such obstacle, here we propose molecular task arithmetic: training a model on diverse and abundant negative examples to learn 'property directions' - without accessing any positively labeled data - and moving models in the opposite property directions to generate positive molecules. When analyzed on 33 design experiments with distinct molecular entities (small molecules, proteins), model architectures, and scales, molecular task arithmetic generated more diverse and successful designs than models trained on positive molecules in general. Moreover, we employed molecular task arithmetic in dual-objective and few-shot design tasks. We find that molecular task arithmetic can consistently increase the diversity of designs while maintaining desirable complex design properties, such as good docking scores to a protein. With its simplicity, data efficiency, and performance, molecular task arithmetic bears the potential to become the de facto transfer learning strategy for de novo molecule design.
♻ ☆ Proceedings of the 3rd Italian Conference on Big Data and Data Science (ITADATA2024)
Proceedings of the 3rd Italian Conference on Big Data and Data Science (ITADATA2024), held in Pisa, Italy, September 17-19, 2024. The Italian Conference on Big Data and Data Science (ITADATA2024) is the annual event supported by the CINI Big Data National Laboratory and ISTI CNR that aims to put together Italian researchers and professionals from academia, industry, government, and public administration working in the field of big data and data science, as well as related fields (e.g., security and privacy, HPC, Cloud). ITADATA2024 covered research on all theoretical and practical aspects of Big Data and data science including data governance, data processing, data analysis, data reporting, data protection, as well as experimental studies and lessons learned. In particular, ITADATA2024 focused on - Data spaces - Data processing life cycle - Machine learning and Large Language Models - Applications of big data and data science in healthcare, finance, industry 5.0, and beyond - Data science for social network analysis
♻ ☆ Physics-Informed Inductive Biases for Voltage Prediction in Distribution Grids
Voltage prediction in distribution grids is a critical yet difficult task for maintaining power system stability. Machine learning approaches, particularly Graph Neural Networks (GNNs), offer significant speedups but suffer from poor generalization when trained on limited or incomplete data. In this work, we systematically investigate the role of inductive biases in improving a model's ability to reliably learn power flow. Specifically, we evaluate three physics-informed strategies: (i) power-flow-constrained loss functions, (ii) complex-valued neural networks, and (iii) residual-based task reformulation. Using the ENGAGE dataset, which spans multiple low- and medium-voltage grid configurations, we conduct controlled experiments to isolate the effect of each inductive bias and assess both standard predictive performance and out-of-distribution generalization. Our study provides practical insights into which model assumptions most effectively guide learning for reliable and efficient voltage prediction in modern distribution networks.
♻ ☆ Closed-form $\ell_r$ norm scaling with data for overparameterized linear regression and diagonal linear networks under $\ell_p$ bias
For overparameterized linear regression with isotropic Gaussian design and minimum-$\ell_p$ interpolator $p\in(1,2]$, we give a unified, high-probability characterization for the scaling of the family of parameter norms $ \\{ \lVert \widehat{w_p} \rVert_r \\}_{r \in [1,p]} $ with sample size. We solve this basic, but unresolved question through a simple dual-ray analysis, which reveals a competition between a signal *spike* and a *bulk* of null coordinates in $X^\top Y$, yielding closed-form predictions for (i) a data-dependent transition $n_\star$ (the "elbow"), and (ii) a universal threshold $r_\star=2(p-1)$ that separates $\lVert \widehat{w_p} \rVert_r$'s which plateau from those that continue to grow with an explicit exponent. This unified solution resolves the scaling of *all* $\ell_r$ norms within the family $r\in [1,p]$ under $\ell_p$-biased interpolation, and explains in one picture which norms saturate and which increase as $n$ grows. We then study diagonal linear networks (DLNs) trained by gradient descent. By calibrating the initialization scale $α$ to an effective $p_{\mathrm{eff}}(α)$ via the DLN separable potential, we show empirically that DLNs inherit the same elbow/threshold laws, providing a predictive bridge between explicit and implicit bias. Given that many generalization proxies depend on $\lVert \widehat {w_p} \rVert_r$, our results suggest that their predictive power will depend sensitively on which $l_r$ norm is used.
♻ ☆ Staying on the Manifold: Geometry-Aware Noise Injection
It has been shown that perturbing the input during training implicitly regularises the gradient of the learnt function, leading to smoother models and enhancing generalisation. However, previous research mostly considered the addition of ambient noise in the input space, without considering the underlying structure of the data. In this work, we propose several strategies of adding geometry-aware input noise that accounts for the lower dimensional manifold the input space inhabits. We start by projecting ambient Gaussian noise onto the tangent space of the manifold. In a second step, the noise sample is mapped on the manifold via the associated geodesic curve. We also consider Brownian motion noise, which moves in random steps along the manifold. We show that geometry-aware noise leads to improved generalisation and robustness to hyperparameter selection on highly curved manifolds, while performing at least as well as training without noise on simpler manifolds. Our proposed framework extends to data manifolds approximated by generative models and we observe similar trends on the MNIST digits dataset.
♻ ☆ JaGuard: Jamming Correction of GNSS Deviation with Deep Temporal Graphs
Global Navigation Satellite Systems (GNSS) are increasingly exposed to intentional jamming, threatening reliability when accurate positioning and timing are most critical. We address this problem by formulating interference mitigation as a dynamic graph regression task and propose JaGuard, a receiver-centric temporal graph neural network that estimates and corrects latitude and longitude errors. At each 1 Hz epoch, the satellite-receiver scene is represented as a heterogeneous star graph with time-varying satellite attributes such as SNR, azimuth and elevation. A single-layer HeteroGCLSTM fuses one-hop spatial context with short-term temporal dynamics to produce a 2D deviation estimate. We evaluate JaGuard on data collected from two commercial receivers under controlled conducted jamming using three jammer types (CW, 3xCW, FM) and six power levels from -45 to -70 dBm, each repeated 50 times across pre-jam, jam, and recovery phases. JaGuard outperforms strong multivariate baselines (TSMixer, uniform CNN, Seq2Point) in all conditions. Under severe jamming at -45 dBm, it achieves 3.64-7.74 cm MAE, improving to 1.59-1.90 cm for -60 to -70 dBm. On mixed-mode datasets, it attains 3.78 cm MAE on GP01 and 4.25 cm on U-blox 10. With only 10 percent of the training data, JaGuard remains ahead, reaching about 20 cm MAE compared to 36-42 cm for the baselines.
comment: 12 pages, 7 figures
♻ ☆ Flatten Graphs as Sequences: Transformers are Scalable Graph Generators NeurIPS 2025
We introduce AutoGraph, a scalable autoregressive model for attributed graph generation using decoder-only transformers. By flattening graphs into random sequences of tokens through a reversible process, AutoGraph enables modeling graphs as sequences without relying on additional node features that are expensive to compute, in contrast to diffusion-based approaches. This results in sampling complexity and sequence lengths that scale optimally linearly with the number of edges, making it scalable and efficient for large, sparse graphs. A key success factor of AutoGraph is that its sequence prefixes represent induced subgraphs, creating a direct link to sub-sentences in language modeling. Empirically, AutoGraph achieves state-of-the-art performance on synthetic and molecular benchmarks, with up to 100x faster generation and 3x faster training than leading diffusion models. It also supports substructure-conditioned generation without fine-tuning and shows promising transferability, bridging language modeling and graph generation to lay the groundwork for graph foundation models. Our code is available at https://github.com/BorgwardtLab/AutoGraph.
comment: Camera-ready version published at NeurIPS 2025
♻ ☆ Generative Machine Learning for Multivariate Angular Simulation
With the recent development of new geometric and angular-radial frameworks for multivariate extremes, reliably simulating from angular variables in moderate-to-high dimensions is of increasing importance. Empirical approaches have the benefit of simplicity, and work reasonably well in low dimensions, but as the number of variables increases, they can lack the required flexibility and scalability. Classical parametric models for angular variables, such as the von Mises--Fisher distribution (vMF), provide an alternative. Exploiting finite mixtures of vMF distributions increases their flexibility, but there are cases where, without letting the number of mixture components grow considerably, a mixture model with a fixed number of components is not sufficient to capture the intricate features that can arise in data. Owing to their flexibility, generative deep learning methods are able to capture complex data structures; they therefore have the potential to be useful in the simulation of multivariate angular variables. In this paper, we introduce a range of deep learning approaches for this task, including generative adversarial networks, normalizing flows and flow matching. We assess their performance via a range of metrics, and make comparisons to the more classical approach of using a finite mixture of vMF distributions. The methods are also applied to a metocean data set, with diagnostics indicating strong performance, demonstrating the applicability of such techniques to real-world, complex data structures.
♻ ☆ Training-Free Diffusion Priors for Text-to-Image Generation via Optimization-based Visual Inversion
Diffusion models have established the state-of-the-art in text-to-image generation, but their performance often relies on a diffusion prior network to translate text embeddings into the visual manifold for easier decoding. These priors are computationally expensive and require extensive training on massive datasets. In this work, we challenge the necessity of a trained prior at all by employing Optimization-based Visual Inversion (OVI), a training-free and data-free alternative, to replace the need for a prior. OVI initializes a latent visual representation from random pseudo-tokens and iteratively optimizes it to maximize the cosine similarity with input textual prompt embedding. We further propose two novel constraints, a Mahalanobis-based and a Nearest-Neighbor loss, to regularize the OVI optimization process toward the distribution of realistic images. Our experiments, conducted on Kandinsky 2.2, show that OVI can serve as an alternative to traditional priors. More importantly, our analysis reveals a critical flaw in current evaluation benchmarks like T2I-CompBench++, where simply using the text embedding as a prior achieves surprisingly high scores, despite lower perceptual quality. Our constrained OVI methods improve visual fidelity over this baseline, with the Nearest-Neighbor approach proving particularly effective, achieving quantitative scores comparable to or higher than the state-of-the-art data-efficient prior, indicating that the idea merits further investigation. The code will be publicly available upon acceptance.
comment: 11 pages, 7 figures, technical report (preprint)
♻ ☆ Real-time Air Pollution prediction model based on Spatiotemporal Big data
Air pollution is one of the most concerns for urban areas. Many countries have constructed monitoring stations to hourly collect pollution values. Recently, there is a research in Daegu city, Korea for real-time air quality monitoring via sensors installed on taxis running across the whole city. The collected data is huge (1-second interval) and in both Spatial and Temporal format. In this paper, based on this spatiotemporal Big data, we propose a real-time air pollution prediction model based on Convolutional Neural Network (CNN) algorithm for image-like Spatial distribution of air pollution. Regarding to Temporal information in the data, we introduce a combination of a Long Short-Term Memory (LSTM) unit for time series data and a Neural Network model for other air pollution impact factors such as weather conditions to build a hybrid prediction model. This model is simple in architecture but still brings good prediction ability.
comment: - We fix typos and grammars through out the paper. - We fix layout of figure for better view. - We update mathematic formula and its description. - We add more insights to experimental results. - We correct author names in references
♻ ☆ Fast training and sampling of Restricted Boltzmann Machines
Restricted Boltzmann Machines (RBMs) are powerful tools for modeling complex systems and extracting insights from data, but their training is hindered by the slow mixing of Markov Chain Monte Carlo (MCMC) processes, especially with highly structured datasets. In this study, we build on recent theoretical advances in RBM training and focus on the stepwise encoding of data patterns into singular vectors of the coupling matrix, significantly reducing the cost of generating new samples and evaluating the quality of the model, as well as the training cost in highly clustered datasets. The learning process is analogous to the thermodynamic continuous phase transitions observed in ferromagnetic models, where new modes in the probability measure emerge in a continuous manner. We leverage the continuous transitions in the training process to define a smooth annealing trajectory that enables reliable and computationally efficient log-likelihood estimates. This approach enables online assessment during training and introduces a novel sampling strategy called Parallel Trajectory Tempering (PTT) that outperforms previously optimized MCMC methods. To mitigate the critical slowdown effect in the early stages of training, we propose a pre-training phase. In this phase, the principal components are encoded into a low-rank RBM through a convex optimization process, facilitating efficient static Monte Carlo sampling and accurate computation of the partition function. Our results demonstrate that this pre-training strategy allows RBMs to efficiently handle highly structured datasets where conventional methods fail. Additionally, our log-likelihood estimation outperforms computationally intensive approaches in controlled scenarios, while the PTT algorithm significantly accelerates MCMC processes compared to conventional methods.
comment: 31 pages, 16 figures
♻ ☆ HN-MVTS: HyperNetwork-based Multivariate Time Series Forecasting AAAI 2026
Accurate forecasting of multivariate time series data remains a formidable challenge, particularly due to the growing complexity of temporal dependencies in real-world scenarios. While neural network-based models have achieved notable success in this domain, complex channel-dependent models often suffer from performance degradation compared to channel-independent models that do not consider the relationship between components but provide high robustness due to small capacity. In this work, we propose HN-MVTS, a novel architecture that integrates a hypernetwork-based generative prior with an arbitrary neural network forecasting model. The input of this hypernetwork is a learnable embedding matrix of time series components. To restrict the number of new parameters, the hypernetwork learns to generate the weights of the last layer of the target forecasting networks, serving as a data-adaptive regularizer that improves generalization and long-range predictive accuracy. The hypernetwork is used only during the training, so it does not increase the inference time compared to the base forecasting model. Extensive experiments on eight benchmark datasets demonstrate that application of HN-MVTS to the state-of-the-art models (DLinear, PatchTST, TSMixer, etc.) typically improves their performance. Our findings suggest that hypernetwork-driven parameterization offers a promising direction for enhancing existing forecasting techniques in complex scenarios.
comment: AAAI 2026
♻ ☆ Enhanced Spatiotemporal Consistency for Image-to-LiDAR Data Pretraining
LiDAR representation learning has emerged as a promising approach to reducing reliance on costly and labor-intensive human annotations. While existing methods primarily focus on spatial alignment between LiDAR and camera sensors, they often overlook the temporal dynamics critical for capturing motion and scene continuity in driving scenarios. To address this limitation, we propose SuperFlow++, a novel framework that integrates spatiotemporal cues in both pretraining and downstream tasks using consecutive LiDAR-camera pairs. SuperFlow++ introduces four key components: (1) a view consistency alignment module to unify semantic information across camera views, (2) a dense-to-sparse consistency regularization mechanism to enhance feature robustness across varying point cloud densities, (3) a flow-based contrastive learning approach that models temporal relationships for improved scene understanding, and (4) a temporal voting strategy that propagates semantic information across LiDAR scans to improve prediction consistency. Extensive evaluations on 11 heterogeneous LiDAR datasets demonstrate that SuperFlow++ outperforms state-of-the-art methods across diverse tasks and driving conditions. Furthermore, by scaling both 2D and 3D backbones during pretraining, we uncover emergent properties that provide deeper insights into developing scalable 3D foundation models. With strong generalizability and computational efficiency, SuperFlow++ establishes a new benchmark for data-efficient LiDAR-based perception in autonomous driving. The code is publicly available at https://github.com/Xiangxu-0103/SuperFlow
comment: IEEE Transactions on Pattern Analysis and Machine Intelligence
♻ ☆ Exploiting ftrace's function_graph Tracer Features for Machine Learning: A Case Study on Encryption Detection
This paper proposes using the Linux kernel ftrace framework, particularly the function graph tracer, to generate informative system level data for machine learning (ML) applications. Experiments on a real world encryption detection task demonstrate the efficacy of the proposed features across several learning algorithms. The learner faces the problem of detecting encryption activities across a large dataset of files, using function call traces and graph based features. Empirical results highlight an outstanding accuracy of 99.28 on the task at hand, underscoring the efficacy of features derived from the function graph tracer. The results were further validated in an additional experiment targeting a multilabel classification problem, in which running programs were identified from trace data. This work provides comprehensive methodologies for preprocessing raw trace data and extracting graph based features, offering significant advancements in applying ML to system behavior analysis, program identification, and anomaly detection. By bridging the gap between system tracing and ML, this paper paves the way for innovative solutions in performance monitoring and security analytics.
comment: Conference paper presented at AICCSA 2025
♻ ☆ First Attentions Last: Better Exploiting First Attentions for Efficient Transformer Training
As training billion-scale transformers becomes increasingly common, employing multiple distributed GPUs along with parallel training methods has become a standard practice. However, existing transformer designs suffer from significant communication overhead, especially in Tensor Parallelism (TP), where each block's MHA-MLP connection requires an all-reduce communication. Through our investigation, we show that the MHA-MLP connections can be bypassed for efficiency, while the attention output of the first layer can serve as an alternative signal for the bypassed connection. Motivated by the observations, we propose FAL (First Attentions Last), an efficient transformer architecture that redirects the first MHA output to the MLP inputs of the following layers, eliminating the per-block MHA-MLP connections. This removes the all-reduce communication and enables parallel execution of MHA and MLP on a single GPU. We also introduce FAL+, which adds the normalized first attention output to the MHA outputs of the following layers to augment the MLP input for the model quality. Our evaluation shows that FAL reduces multi-GPU training time by up to 44%, improves single-GPU throughput by up to 1.18x, and achieves better perplexity compared to the baseline GPT. FAL+ achieves even lower perplexity without increasing the training time than the baseline. Codes are available at: https://github.com/CASL-KU/FAL
♻ ☆ RAMAC: Multimodal Risk-Aware Offline Reinforcement Learning and the Role of Behavior Regularization
In safety-critical domains where online data collection is infeasible, offline reinforcement learning (RL) offers an attractive alternative but only if policies deliver high returns without incurring catastrophic lower-tail risk. Prior work on risk-averse offline RL achieves safety at the cost of value or model-based pessimism, and restricted policy classes that limit policy expressiveness, whereas diffusion/flow-based expressive generative policies trained with a behavioral-cloning (BC) objective have been used only in risk-neutral settings. Here, we address this gap by introducing the \textbf{Risk-Aware Multimodal Actor-Critic (RAMAC)}, which couples an expressive generative actor with a distributional critic and, to our knowledge, is the first model-free approach that learns \emph{risk-aware expressive generative policies}. RAMAC differentiates a composite objective that adds a Conditional Value-at-Risk (CVaR) term to a BC loss, achieving risk-sensitive learning in complex multimodal scenarios. Since out-of-distribution (OOD) actions are a major driver of catastrophic failures in offline RL, we further analyze OOD behavior under prior-anchored perturbation schemes from recent BC-regularized risk-averse offline RL. This clarifies why a behavior-regularized objective that directly constrains the expressive generative policy to the dataset support provides an effective, risk-agnostic mechanism for suppressing OOD actions in modern expressive policies. We instantiate RAMAC with a diffusion-based actor, using it both to illustrate the analysis in a 2-D risky bandit and to deploy OOD-action detectors on Stochastic-D4RL benchmarks, empirically validating our insights. Across these tasks, we observe consistent gains in $\mathrm{CVaR}_{0.1}$ while maintaining strong returns. Our implementation is available at GitHub: https://github.com/KaiFukazawa/RAMAC.git
♻ ☆ Pretraining in Actor-Critic Reinforcement Learning for Robot Locomotion
The pretraining-finetuning paradigm has facilitated numerous transformative advancements in artificial intelligence research in recent years. However, in the domain of reinforcement learning (RL) for robot locomotion, individual skills are often learned from scratch despite the high likelihood that some generalizable knowledge is shared across all task-specific policies belonging to the same robot embodiment. This work aims to define a paradigm for pretraining neural network models that encapsulate such knowledge and can subsequently serve as a basis for warm-starting the RL process in classic actor-critic algorithms, such as Proximal Policy Optimization (PPO). We begin with a task-agnostic exploration-based data collection algorithm to gather diverse, dynamic transition data, which is then used to train a Proprioceptive Inverse Dynamics Model (PIDM) through supervised learning. The pretrained weights are then loaded into both the actor and critic networks to warm-start the policy optimization of actual tasks. We systematically validated our proposed method with 9 distinct robot locomotion RL environments comprising 3 different robot embodiments, showing significant benefits of this initialization strategy. Our proposed approach on average improves sample efficiency by 36.9% and task performance by 7.3% compared to random initialization. We further present key ablation studies and empirical analyses that shed light on the mechanisms behind the effectiveness of this method.
♻ ☆ Utility Boundary of Dataset Distillation: Scaling and Configuration-Coverage Laws
Dataset distillation (DD) aims to construct compact synthetic datasets that allow models to achieve comparable performance to full-data training while substantially reducing storage and computation. Despite rapid empirical progress, its theoretical foundations remain limited: existing methods (gradient, distribution, trajectory matching) are built on heterogeneous surrogate objectives and optimization assumptions, which makes it difficult to analyze their common principles or provide general guarantees. Moreover, it is still unclear under what conditions distilled data can retain the effectiveness of full datasets when the training configuration, such as optimizer, architecture, or augmentation, changes. To answer these questions, we propose a unified theoretical framework, termed configuration--dynamics--error analysis, which reformulates major DD approaches under a common generalization-error perspective and provides two main results: (i) a scaling law that provides a single-configuration upper bound, characterizing how the error decreases as the distilled sample size increases and explaining the commonly observed performance saturation effect; and (ii) a coverage law showing that the required distilled sample size scales linearly with configuration diversity, with provably matching upper and lower bounds. In addition, our unified analysis reveals that various matching methods are interchangeable surrogates, reducing the same generalization error, clarifying why they can all achieve dataset distillation and providing guidance on how surrogate choices affect sample efficiency and robustness. Experiments across diverse methods and configurations empirically confirm the derived laws, advancing a theoretical foundation for DD and enabling theory-driven design of compact, configuration-robust dataset distillation.
♻ ☆ BondBERT: What we learn when assigning sentiment in the bond market
Bond markets respond differently to macroeconomic news compared to equity markets, yet most sentiment models are trained primarily on general financial or equity news data. However, bond prices often move in the opposite direction to economic optimism, making general or equity-based sentiment tools potentially misleading. We introduce BondBERT, a transformer-based language model fine-tuned on bond-specific news. BondBERT can act as the perception and reasoning component of a financial decision-support agent, providing sentiment signals that integrate with forecasting models. We propose a generalisable framework for adapting transformers to low-volatility, domain-inverse sentiment tasks by compiling and cleaning 30,000 UK bond market articles (2018-2025). BondBERT's sentiment predictions are compared against FinBERT, FinGPT, and Instruct-FinGPT using event-based correlation, up/down accuracy analyses, and LSTM forecasting across ten UK sovereign bonds. We find that BondBERT consistently produces positive correlations with bond returns, and achieves higher alignment and forecasting accuracy than the three baseline models. These results demonstrate that domain-specific sentiment adaptation better captures fixed income dynamics, bridging a gap between NLP advances and bond market analytics.
comment: 8 pages, 3 figures, author manuscript accepted for ICAART 2026: 18th International Conference on Agents and Artificial Intelligence, Mar. 2026, Marbella, Spain
♻ ☆ Scaling to Multimodal and Multichannel Heart Sound Classification with Synthetic and Augmented Biosignals
Cardiovascular diseases (CVDs) are the leading cause of death worldwide, accounting for approximately 17.9 million deaths each year. Early detection is critical, creating a demand for accurate and inexpensive pre-screening methods. Deep learning has recently been applied to classify abnormal heart sounds indicative of CVDs using synchronised phonocardiogram (PCG) and electrocardiogram (ECG) signals, as well as multichannel PCG (mPCG). However, state-of-the-art architectures remain underutilised due to the limited availability of synchronised and multichannel datasets. Augmented datasets and pre-trained models provide a pathway to overcome these limitations, enabling transformer-based architectures to be trained effectively. This work combines traditional signal processing with denoising diffusion models, WaveGrad and DiffWave, to create an augmented dataset to fine-tune a Wav2Vec 2.0-based classifier on multimodal and multichannel heart sound datasets. The approach achieves state-of-the-art performance. On the Computing in Cardiology (CinC) 2016 dataset of single channel PCG, accuracy, unweighted average recall (UAR), sensitivity, specificity and Matthew's correlation coefficient (MCC) reach 92.48%, 93.05%, 93.63%, 92.48%, 94.93% and 0.8283, respectively. Using the synchronised PCG and ECG signals of the training-a dataset from CinC, 93.14%, 92.21%, 94.35%, 90.10%, 95.12% and 0.8380 are achieved for accuracy, UAR, sensitivity, specificity and MCC, respectively. Using a wearable vest dataset consisting of mPCG data, the model achieves 77.13% accuracy, 74.25% UAR, 86.47% sensitivity, 62.04% specificity, and 0.5082 MCC. These results demonstrate the effectiveness of transformer-based models for CVD detection when supported by augmented datasets, highlighting their potential to advance multimodal and multichannel heart sound classification.
comment: 35 pages, 37 figures, 19 tables
♻ ☆ Evaluating Model Performance Under Worst-case Subpopulations NeurIPS 2021
The performance of ML models degrades when the training population is different from that seen under operation. Towards assessing distributional robustness, we study the worst-case performance of a model over all subpopulations of a given size, defined with respect to core attributes Z. This notion of robustness can consider arbitrary (continuous) attributes Z, and automatically accounts for complex intersectionality in disadvantaged groups. We develop a scalable yet principled two-stage estimation procedure that can evaluate the robustness of state-of-the-art models. We prove that our procedure enjoys several finite-sample convergence guarantees, including dimension-free convergence. Instead of overly conservative notions based on Rademacher complexities, our evaluation error depends on the dimension of Z only through the out-of-sample error in estimating the performance conditional on Z. On real datasets, we demonstrate that our method certifies the robustness of a model and prevents deployment of unreliable models.
comment: Earlier version appeared in the proceedings of Advances in Neural Information Processing Systems 34 (NeurIPS 2021): https://proceedings.neurips.cc/paper_files/paper/2021/file/908075ea2c025c335f4865f7db427062-Paper.pdf
♻ ☆ An Adaptive Resonance Theory-based Topological Clustering Algorithm with a Self-Adjusting Vigilance Parameter
Clustering in stationary and nonstationary settings, where data distributions remain static or evolve over time, requires models that can adapt to distributional shifts while preserving previously learned cluster structures. This paper proposes an Adaptive Resonance Theory (ART)-based topological clustering algorithm that autonomously adjusts its recalculation interval and vigilance threshold through a diversity-driven adaptation mechanism. This mechanism enables hyperparameter-free learning that maintains cluster stability and continuity in dynamic environments. Experiments on 24 real-world datasets demonstrate that the proposed algorithm outperforms state-of-the-art methods in both clustering performance and continual learning capability. These results highlight the effectiveness of the proposed parameter adaptation in mitigating catastrophic forgetting and maintaining consistent clustering in evolving data streams. Source code is available at https://github.com/Masuyama-lab/IDAT
comment: This manuscript is currently under review
♻ ☆ One Sample is Enough to Make Conformal Prediction Robust NeurIPS 2025
For any black-box model, conformal prediction (CP) returns prediction sets guaranteed to include the true label with high adjustable probability. Robust CP (RCP) extends the guarantee to the worst case noise up to a pre-defined magnitude. For RCP, a well-established approach is to use randomized smoothing since it is applicable to any black-box model and provides smaller sets compared to deterministic methods. However, smoothing-based robustness requires many model forward passes per each input which is computationally expensive. We show that conformal prediction attains some robustness even with a single forward pass on a randomly perturbed input. Using any binary certificate we propose a single sample robust CP (RCP1). Our approach returns robust sets with smaller average set size compared to SOTA methods which use many (e.g. 100) passes per input. Our key insight is to certify the conformal procedure itself rather than individual conformity scores. Our approach is agnostic to the task (classification and regression). We further extend our approach to smoothing-based robust conformal risk control.
comment: Accepted in NeurIPS 2025 Conference
♻ ☆ Global-Decision-Focused Neural ODEs for Proactive Grid Resilience Management
Extreme hazard events such as wildfires and hurricanes increasingly threaten power systems, causing widespread outages and disrupting critical services. Recently, predict-then-optimize approaches have gained traction in grid operations, where system functionality forecasts are first generated and then used as inputs for downstream decision-making. However, this two-stage method often results in a misalignment between prediction and optimization objectives, leading to suboptimal resource allocation. To address this, we propose predict-all-then-optimize-globally (PATOG), a framework that integrates outage prediction with globally optimized interventions. At its core, our global-decision-focused (GDF) neural ODE model captures outage dynamics while optimizing resilience strategies in a decision-aware manner. Unlike conventional methods, our approach ensures spatially and temporally coherent decision-making, improving both predictive accuracy and operational efficiency. Experiments on synthetic and real-world datasets demonstrate significant improvements in outage prediction consistency and grid resilience.
♻ ☆ DiTAR: Diffusion Transformer Autoregressive Modeling for Speech Generation ICML 2025
Several recent studies have attempted to autoregressively generate continuous speech representations without discrete speech tokens by combining diffusion and autoregressive models, yet they often face challenges with excessive computational loads or suboptimal outcomes. In this work, we propose Diffusion Transformer Autoregressive Modeling (DiTAR), a patch-based autoregressive framework combining a language model with a diffusion transformer. This approach significantly enhances the efficacy of autoregressive models for continuous tokens and reduces computational demands. DiTAR utilizes a divide-and-conquer strategy for patch generation, where the language model processes aggregated patch embeddings and the diffusion transformer subsequently generates the next patch based on the output of the language model. For inference, we propose defining temperature as the time point of introducing noise during the reverse diffusion ODE to balance diversity and determinism. We also show in the extensive scaling analysis that DiTAR has superb scalability. In zero-shot speech generation, DiTAR achieves state-of-the-art performance in robustness, speaker similarity, and naturalness.
comment: ByteDance Seed template, ICML 2025
♻ ☆ MUST-RAG: MUSical Text Question Answering with Retrieval Augmented Generation
Recent advancements in Large language models (LLMs) have demonstrated remarkable capabilities across diverse domains. While they exhibit strong zero-shot performance on various tasks, LLMs' effectiveness in music-related applications remains limited due to the relatively small proportion of music-specific knowledge in their training data. To address this limitation, we propose MusT-RAG, a comprehensive framework based on Retrieval Augmented Generation (RAG) to adapt general-purpose LLMs for text-only music question answering (MQA) tasks. RAG is a technique that provides external knowledge to LLMs by retrieving relevant context information when generating answers to questions. To optimize RAG for the music domain, we (1) propose MusWikiDB, a music-specialized vector database for the retrieval stage, and (2) utilizes context information during both inference and fine-tuning processes to effectively transform general-purpose LLMs into music-specific models. Our experiment demonstrates that MusT-RAG significantly outperforms traditional fine-tuning approaches in enhancing LLMs' music domain adaptation capabilities, showing consistent improvements across both in-domain and out-of-domain MQA benchmarks. Additionally, our MusWikiDB proves substantially more effective than general Wikipedia corpora, delivering superior performance and computational efficiency.
comment: This is an earlier version of the paper - ArtistMus: A Globally Diverse, Artist-Centric Benchmark for Retrieval-Augmented Music Question Answering. The latest version is available at: (arXiv:2512.05430)
♻ ☆ DP-LLM: Runtime Model Adaptation with Dynamic Layer-wise Precision Assignment NeurIPS 2025
How can we effectively handle queries for on-device large language models (LLMs) with varying runtime constraints, such as latency and accuracy? Multi-scale quantization addresses this challenge by enabling memory-efficient runtime model adaptation of LLMs through the overlaying of multiple model variants quantized to different bitwidths. Meanwhile, an important question still remains open-ended: how can models be properly configured to match a target precision or latency? While mixed-precision offers a promising solution, we take this further by leveraging the key observation that the sensitivity of each layer dynamically changes across decoding steps. Building on this insight, we introduce DP-LLM, a novel mechanism that dynamically assigns precision to each layer based on input values. Experimental results across multiple models and benchmarks demonstrate that DP-LLM achieves a superior performance-latency trade-off, outperforming prior approaches.
comment: NeurIPS 2025
♻ ☆ Multi-Path Collaborative Reasoning via Reinforcement Learning
Chain-of-Thought (CoT) reasoning has significantly advanced the problem-solving capabilities of Large Language Models (LLMs), yet conventional CoT often exhibits internal determinism during decoding, limiting exploration of plausible alternatives. Recent methods attempt to address this by generating soft abstract tokens to enable reasoning in a continuous semantic space. However, we find that such approaches remain constrained by the greedy nature of autoregressive decoding, which fundamentally isolates the model from alternative reasoning possibilities. In this work, we propose Multi-Path Perception Policy Optimization (M3PO), a novel reinforcement learning framework that explicitly injects collective insights into the reasoning process. M3PO leverages parallel policy rollouts as naturally diverse reasoning sources and integrates cross-path interactions into policy updates through a lightweight collaborative mechanism. This design allows each trajectory to refine its reasoning with peer feedback, thereby cultivating more reliable multi-step reasoning patterns. Empirical results show that M3PO achieves state-of-the-art performance on both knowledge- and reasoning-intensive benchmarks. Models trained with M3PO maintain interpretability and inference efficiency, underscoring the promise of multi-path collaborative learning for robust reasoning.
♻ ☆ QiMeng-SALV: Signal-Aware Learning for Verilog Code Generation NeurIPS 2025
The remarkable progress of Large Language Models (LLMs) presents promising opportunities for Verilog code generation which is significantly important for automated circuit design. The lacking of meaningful functional rewards hinders the preference optimization based on Reinforcement Learning (RL) for producing functionally correct Verilog code. In this paper, we propose Signal-Aware Learning for Verilog code generation (QiMeng-SALV) by leveraging code segments of functionally correct output signal to optimize RL training. Considering Verilog code specifies the structural interconnection of hardware gates and wires so that different output signals are independent, the key insight of QiMeng-SALV is to extract verified signal-aware implementations in partially incorrect modules, so as to enhance the extraction of meaningful functional rewards. Roughly, we verify the functional correctness of signals in generated module by comparing with that of reference module in the training data. Then abstract syntax tree (AST) is employed to identify signal-aware code segments which can provide meaningful functional rewards from erroneous modules. Finally, we introduce signal-aware DPO which is optimized on the correct signal-level code segments, thereby preventing noise and interference from incorrect signals. The proposed QiMeng-SALV underscores the paradigm shift from conventional module-level to fine-grained signal-level optimization in Verilog code generation, addressing the issue of insufficient functional rewards. Experiments demonstrate that our method achieves state-of-the-art performance on VerilogEval and RTLLM, with a 7B parameter model matching the performance of the DeepSeek v3 671B model and significantly outperforming the leading open-source model CodeV trained on the same dataset. Our code is available at https://github.com/QiMeng-IPRC/QiMeng-SALV.
comment: Accepted to NeurIPS 2025
♻ ☆ Process Reward Models That Think
Step-by-step verifiers -- also known as process reward models (PRMs) -- are a key ingredient for test-time scaling. PRMs require step-level supervision, making them expensive to train. This work aims to build data-efficient PRMs as verbalized step-wise reward models that verify every step in the solution by generating a verification chain-of-thought (CoT). We propose ThinkPRM, a long CoT verifier fine-tuned on orders of magnitude fewer process labels than those required by discriminative PRMs. Our approach capitalizes on the inherent reasoning abilities of long CoT models, and outperforms LLM-as-a-Judge and discriminative verifiers -- using only 1% of the process labels in PRM800K -- across several challenging benchmarks. Specifically, ThinkPRM beats the baselines on ProcessBench, MATH-500, and AIME '24 under best-of-N selection and reward-guided search. In an out-of-domain evaluation on a subset of GPQA-Diamond and LiveCodeBench, our PRM surpasses discriminative verifiers trained on the full PRM800K by 8% and 4.5%, respectively. Lastly, under the same token budget, ThinkPRM scales up verification compute more effectively compared to LLM-as-a-Judge, outperforming it by 7.2% on a subset of ProcessBench. Our work highlights the value of generative, long CoT PRMs that can scale test-time compute for verification while requiring minimal supervision for training. Our code, data, and models are released at https://github.com/mukhal/thinkprm.
comment: Add new ablation and minor writing fixes
♻ ☆ Emergent Granger Causality in Neural Networks: Can Prediction Alone Reveal Structure?
Granger Causality (GC) offers an elegant statistical framework to study the association between multivariate time series data. Vector autoregressive models (VAR) are simple and easy to fit, but have limited application because of their inherent inability to capture more complex (e.g., non-linear) associations. Numerous attempts have already been made in the literature that exploit the functional approximation power of deep neural networks (DNNs) for GC. However, these methods treat GC as a variable selection problem. We present a novel paradigm for investigating the learned GC from a single neural network used for joint modeling of all components of multivariate time series data, which is essentially linked with prediction and assessing the distribution shift in residuals. A deep learning model, with proper regularization, may learn the true GC structure when jointly used for all components of the time series when there is sufficient training data. We propose to uncover the learned GC structure by comparing the model uncertainty or distribution of the residuals when the past of everything is used as compared to the one where a specific time series component is dropped from the model. We also compare the effect of input layer dropout on the ability of a neural network to learn GC. We show that a well-regularized model can learn the true GC structure from the data without explicitly adding terms in the loss function that guide the model to select variables or perform sparse regression under specific settings. We also provide a comparison of deep learning architectures such as CNN, LSTM and transformer models on their ability to discover Granger Causality. The numerical experiments demonstrate that, compared to sparse regression models, a simple joint model is a strong baseline for learning the true GC which has the advantage that it does not require tuning of many extra hyper-parameters.
♻ ☆ Quantum-Classical Hybrid Quantized Neural Network
In this work, we introduce a novel Quadratic Binary Optimization (QBO) framework for training a quantized neural network. The framework enables the use of arbitrary activation and loss functions through spline interpolation, while Forward Interval Propagation addresses the nonlinearities and the multi-layered, composite structure of neural networks via discretizing activation functions into linear subintervals. This preserves the universal approximation properties of neural networks while allowing complex nonlinear functions accessible to quantum solvers, broadening their applicability in artificial intelligence. Theoretically, we derive an upper bound on the approximation error and the number of Ising spins required by deriving the sample complexity of the empirical risk minimization problem from an optimization perspective. A key challenge in solving the associated large-scale Quadratic Constrained Binary Optimization (QCBO) model is the presence of numerous constraints. To overcome this, we adopt the Quantum Conditional Gradient Descent (QCGD) algorithm, which solves QCBO directly on quantum hardware. We establish the convergence of QCGD under a quantum oracle subject to randomness, bounded variance, and limited coefficient precision, and further provide an upper bound on the Time-To-Solution. To enhance scalability, we further incorporate a decomposed copositive optimization scheme that replaces the monolithic lifted model with sample-wise subproblems. This decomposition substantially reduces the quantum resource requirements and enables efficient low-bit neural network training. We further propose the usage of QCGD and Quantum Progressive Hedging (QPH) algorithm to efficiently solve the decomposed problem.
♻ ☆ Repetition Makes Perfect: Recurrent Graph Neural Networks Match Message-Passing Limit
We precisely characterize the expressivity of computable Recurrent Graph Neural Networks (recurrent GNNs). We prove that recurrent GNNs with finite-precision parameters, sum aggregation, and ReLU activation, can compute any graph algorithm that respects the natural message-passing invariance induced by the Color Refinement (or Weisfeiler-Leman) algorithm. While it is well known that the expressive power of GNNs is limited by this invariance [Morris et al., AAAI 2019; Xu et al., ICLR 2019], we establish that recurrent GNNs can actually match this limit. This is in contrast to non-recurrent GNNs, which have the power of Weisfeiler-Leman only in a very weak, "non-uniform", sense where each graph size requires a different GNN to compute with. Our construction introduces only a polynomial overhead in both time and space. Furthermore, we show that by incorporating random initialization, for connected graphs recurrent GNNs can express all graph algorithms. In particular, any polynomial-time graph algorithm can be emulated on connected graphs in polynomial time by a recurrent GNN with random initialization.
♻ ☆ Deep Learning and Machine Learning, Advancing Big Data Analytics and Management: Unveiling AI's Potential Through Tools, Techniques, and Applications
Artificial intelligence (AI), machine learning, and deep learning have become transformative forces in big data analytics and management, enabling groundbreaking advancements across diverse industries. This article delves into the foundational concepts and cutting-edge developments in these fields, with a particular focus on large language models (LLMs) and their role in natural language processing, multimodal reasoning, and autonomous decision-making. Highlighting tools such as ChatGPT, Claude, and Gemini, the discussion explores their applications in data analysis, model design, and optimization. The integration of advanced algorithms like neural networks, reinforcement learning, and generative models has enhanced the capabilities of AI systems to process, visualize, and interpret complex datasets. Additionally, the emergence of technologies like edge computing and automated machine learning (AutoML) democratizes access to AI, empowering users across skill levels to engage with intelligent systems. This work also underscores the importance of ethical considerations, transparency, and fairness in the deployment of AI technologies, paving the way for responsible innovation. Through practical insights into hardware configurations, software environments, and real-world applications, this article serves as a comprehensive resource for researchers and practitioners. By bridging theoretical underpinnings with actionable strategies, it showcases the potential of AI and LLMs to revolutionize big data management and drive meaningful advancements across domains such as healthcare, finance, and autonomous systems.
comment: This book contains 155 pages and 9 figures
♻ ☆ Bi-ICE: An Inner Interpretable Framework for Image Classification via Bi-directional Interactions between Concept and Input Embeddings
Inner interpretability is a promising field aiming to uncover the internal mechanisms of AI systems through scalable, automated methods. While significant research has been conducted on large language models, limited attention has been paid to applying inner interpretability to large-scale image tasks, focusing primarily on architectural and functional levels to visualize learned concepts. In this paper, we first present a conceptual framework that supports inner interpretability and multilevel analysis for large-scale image classification tasks. Specifically, we introduce the Bi-directional Interaction between Concept and Input Embeddings (Bi-ICE) module, which facilitates interpretability across the computational, algorithmic, and implementation levels. This module enhances transparency by generating predictions based on human-understandable concepts, quantifying their contributions, and localizing them within the inputs. Finally, we showcase enhanced transparency in image classification, measuring concept contributions, and pinpointing their locations within the inputs. Our approach highlights algorithmic interpretability by demonstrating the process of concept learning and its convergence.
comment: Accepted at IEEE WACV2026. The first two authors equally contributed to this work
♻ ☆ Deep Learning and Machine Learning, Advancing Big Data Analytics and Management: Handy Appetizer
This book explores the role of Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) in driving the progress of big data analytics and management. The book focuses on simplifying the complex mathematical concepts behind deep learning, offering intuitive visualizations and practical case studies to help readers understand how neural networks and technologies like Convolutional Neural Networks (CNNs) work. It introduces several classic models and technologies such as Transformers, GPT, ResNet, BERT, and YOLO, highlighting their applications in fields like natural language processing, image recognition, and autonomous driving. The book also emphasizes the importance of pre-trained models and how they can enhance model performance and accuracy, with instructions on how to apply these models in various real-world scenarios. Additionally, it provides an overview of key big data management technologies like SQL and NoSQL databases, as well as distributed computing frameworks such as Apache Hadoop and Spark, explaining their importance in managing and processing vast amounts of data. Ultimately, the book underscores the value of mastering deep learning and big data management skills as critical tools for the future workforce, making it an essential resource for both beginners and experienced professionals.
comment: This book contains 93 pages and 60 figures
♻ ☆ DeepPAAC: A New Deep Galerkin Method for Principal-Agent Problems
We consider numerical resolution of principal-agent (PA) problems in continuous time. We formulate a generic PA model with continuous and lump payments and a multi-dimensional strategy of the agent. To tackle the resulting Hamilton-Jacobi-Bellman equation with an implicit Hamiltonian we develop a novel deep learning method: the Deep Principal-Agent Actor Critic (DeepPAAC) Actor-Critic algorithm. DeepPAAC is able to handle multi-dimensional states and controls, as well as constraints. We investigate the role of the neural network architecture, training designs, loss functions, etc. on the convergence of the solver, presenting five different case studies.
♻ ☆ FinWorld: An All-in-One Open-Source Platform for End-to-End Financial AI Research and Deployment
Financial AI holds great promise for transforming modern finance, with the potential to support a wide range of tasks such as market forecasting, portfolio management, quantitative trading, and automated analysis. However, existing platforms remain limited in task coverage, lack robust multimodal data integration, and offer insufficient support for the training and deployment of large language models (LLMs). In response to these limitations, we present FinWorld, an all-in-one open-source platform that provides end-to-end support for the entire financial AI workflow, from data acquisition to experimentation and deployment. FinWorld distinguishes itself through native integration of heterogeneous financial data, unified support for diverse AI paradigms, and advanced agent automation, enabling seamless development and deployment. Leveraging data from 2 representative markets, 4 stock pools, and over 800 million financial data points, we conduct comprehensive experiments on 4 key financial AI tasks. These experiments systematically evaluate deep learning and reinforcement learning algorithms, with particular emphasis on RL-based finetuning for LLMs and LLM Agents. The empirical results demonstrate that FinWorld significantly enhances reproducibility, supports transparent benchmarking, and streamlines deployment, thereby providing a strong foundation for future research and real-world applications. Code is available at Github~\footnote{https://github.com/DVampire/FinWorld}.
♻ ☆ MedGR$^2$: Breaking the Data Barrier for Medical Reasoning via Generative Reward Learning
The application of Vision-Language Models (VLMs) in medicine is critically hampered by the scarcity of high-quality, expert-annotated data. Supervised Fine-Tuning (SFT) on existing datasets often leads to poor generalization on unseen modalities and tasks, while Reinforcement Learning (RL), a promising alternative, is stymied by the lack of reliable reward signals in this data-scarce domain. To break this impasse, we introduce Generative Reward Learning for Medical Reasoning (MedGR$^2$), a novel framework that creates a self-improving virtuous cycle. MedGR$^2$ co-develops a data generator and a reward model, enabling the automated, continuous creation of high-quality, multi-modal medical data that serves as both a superior training source for SFT and RL. Our experiments demonstrate that SFT with MedGR$^2$-produced data already surpasses baselines trained on large-scale, human-curated datasets. Crucially, when leveraging this data for RL via Group Relative Policy Optimization (GRPO), our model achieves state-of-the-art cross-modality and cross-task generalization, significantly outperforming specialized RL-based methods. Furthermore, our compact model, empowered by MedGR$^2$, achieves performance competitive with foundation models possessing over 10 times more parameters. MedGR$^2$ presents a new paradigm for data-efficient learning in high-stakes domains, transforming the problem from data scarcity to data generation and unlocking the full potential of RL for building truly generalizable medical AI.
comment: 8 pages, 5 figures
♻ ☆ Comparing Two Proxy Methods for Causal Identification
Identifying causal effects in the presence of unmeasured variables is a fundamental challenge in causal inference, for which proxy variable methods have emerged as a powerful solution. We contrast two major approaches in this framework: (1) bridge equation methods, which leverage solutions to integral equations to recover causal targets, and (2) array decomposition methods, which recover latent factors composing counterfactual quantities by exploiting unique determination of eigenspaces. We compare the model restrictions underlying these two approaches and provide insight into implications of the underlying assumptions, clarifying the scope of applicability for each method.
comment: 10 pages; 6 figures
♻ ☆ SDT-GNN: Streaming-based Distributed Training Framework for Graph Neural Networks
Recently, distributed GNN training frameworks, such as DistDGL and PyG, have been developed to enable training GNN models on large graphs by leveraging multiple GPUs in a distributed manner. Despite these advances, their memory requirements are still excessively high, thereby hindering GNN training on large graphs using commodity workstations. In this paper, we propose SDT-GNN, a streaming-based distributed GNN training framework. Unlike the existing frameworks that load the entire graph in memory, it takes a stream of edges as input for graph partitioning to reduce the memory requirement for partitioning. It also enables distributed GNN training even when the aggregated memory size of GPUs is smaller than the size of the graph and feature data. Furthermore, to improve the quality of partitioning, we propose SPRING, a novel streaming partitioning algorithm for distributed GNN training. We demonstrate the effectiveness and efficiency of SDT-GNN on seven large public datasets. SDT-GNN has up to 95% less memory footprint than DistDGL and PyG without sacrificing the prediction accuracy. SPRING also outperforms state-of-the-art streaming partitioning algorithms significantly.
comment: IEEE BigData 2025
♻ ☆ Language Integration in Fine-Tuning Multimodal Large Language Models for Image-Based Regression
Multimodal Large Language Models (MLLMs) show promise for image-based regression tasks, but current approaches face key limitations. Recent methods fine-tune MLLMs using preset output vocabularies and generic task-level prompts (e.g., "How would you rate this image?"), assuming this mimics human rating behavior. Our analysis reveals that these approaches provide no benefit over image-only training. Models using preset vocabularies and generic prompts perform equivalently to image-only models, failing to leverage semantic understanding from textual input. We propose Regression via Transformer-Based Classification (RvTC), which replaces vocabulary-constrained classification with a flexible bin-based approach. Unlike approaches that address discretization errors through complex distributional modeling, RvTC eliminates manual vocabulary crafting through straightforward bin increase, achieving state-of-the-art performance on four image assessment datasets using only images. More importantly, we demonstrate that data-specific prompts dramatically improve performance. Unlike generic task descriptions, prompts containing semantic information about specific images enable MLLMs to leverage cross-modal understanding. On the AVA dataset, adding challenge titles to prompts substantially improves our already state-of-the-art image-only baseline. We demonstrate through empirical evidence from the AVA and AGIQA-3k datasets that MLLMs benefit from semantic prompt information, surpassing mere statistical biases. We validate RvTC across two different MLLM architectures, demonstrating consistent improvements and method generalizability.
comment: WACV 2026
♻ ☆ Self-Improvement Towards Pareto Optimality: Mitigating Preference Conflicts in Multi-Objective Alignment ACL
Multi-Objective Alignment (MOA) aims to align LLMs' responses with multiple human preference objectives, with Direct Preference Optimization (DPO) emerging as a prominent approach. However, we find that DPO-based MOA approaches suffer from widespread preference conflicts in the data, where different objectives favor different responses. This results in conflicting optimization directions, hindering the optimization on the Pareto Front. To address this, we propose to construct Pareto-optimal responses to resolve preference conflicts. To efficiently obtain and utilize such responses, we propose a self-improving DPO framework that enables LLMs to self-generate and select Pareto-optimal responses for self-supervised preference alignment. Extensive experiments on two datasets demonstrate the superior Pareto Front achieved by our framework compared to various baselines. Code is available at https://github.com/zyttt-coder/SIPO.
comment: ACL findings (2025)
♻ ☆ Subgoal Graph-Augmented Planning for LLM-Guided Open-World Reinforcement Learning
Large language models (LLMs) offer strong high-level planning capabilities for reinforcement learning (RL) by decomposing tasks into subgoals. However, their practical utility is limited by poor planning-execution alignment, which reflects a critical gap between abstract plans and actionable, environment-compatible behaviors. This misalignment arises from two interrelated limitations: (1) LLMs often produce subgoals that are semantically plausible but infeasible or irrelevant in the target environment due to insufficient grounding in environment-specific knowledge, and (2) single-LLM planning conflates generation with self-verification, resulting in overconfident yet unreliable subgoals that frequently fail during execution. To address these challenges, we propose Subgoal Graph-Augmented Actor-Critic-Refiner (SGA-ACR), a framework that integrates an environment-specific subgoal graph and structured entity knowledge with a multi-LLM planning pipeline that explicitly separates generation, critique, and refinement to produce executable and verifiable subgoals. A subgoal tracker further monitors execution progress, provides auxiliary rewards, and adaptively updates the subgoal graph to maintain alignment between plans and actions. Experimental results on 22 diverse tasks in the open-world game "Crafter" demonstrate the effectiveness of our proposed method.
Latent Collaboration in Multi-Agent Systems
Multi-agent systems (MAS) extend large language models (LLMs) from independent single-model reasoning to coordinative system-level intelligence. While existing LLM agents depend on text-based mediation for reasoning and communication, we take a step forward by enabling models to collaborate directly within the continuous latent space. We introduce LatentMAS, an end-to-end training-free framework that enables pure latent collaboration among LLM agents. In LatentMAS, each agent first performs auto-regressive latent thoughts generation through last-layer hidden embeddings. A shared latent working memory then preserves and transfers each agent's internal representations, ensuring lossless information exchange. We provide theoretical analyses establishing that LatentMAS attains higher expressiveness and lossless information preservation with substantially lower complexity than vanilla text-based MAS. In addition, empirical evaluations across 9 comprehensive benchmarks spanning math and science reasoning, commonsense understanding, and code generation show that LatentMAS consistently outperforms strong single-model and text-based MAS baselines, achieving up to 14.6% higher accuracy, reducing output token usage by 70.8%-83.7%, and providing 4x-4.3x faster end-to-end inference. These results demonstrate that our new latent collaboration framework enhances system-level reasoning quality while offering substantial efficiency gains without any additional training. Code and data are fully open-sourced at https://github.com/Gen-Verse/LatentMAS.
comment: Project: https://github.com/Gen-Verse/LatentMAS
♻ ☆ Learning to Select MCP Algorithms: From Traditional ML to Dual-Channel GAT-MLP
The Maximum Clique Problem (MCP) is a foundational NP-hard problem with wide-ranging applications, yet no single algorithm consistently outperforms all others across diverse graph instances. This underscores the critical need for instance-aware algorithm selection, a domain that remains largely unexplored for the MCP. To address this gap, we propose a novel learning-based framework that integrates both traditional machine learning and graph neural networks. We first construct a benchmark dataset by executing four state-of-the-art exact MCP solvers on a diverse collection of graphs and extracting their structural features. An evaluation of conventional classifiers establishes Random Forest as a strong baseline and reveals that connectivity and topological features are key predictors of performance. Building on these insights, we develop GAT-MLP, a dual-channel model that combines a Graph Attention Network (GAT) to encode local graph structure with a Multilayer Perceptron (MLP) to model global features. Extensive experiments demonstrate that GAT-MLP achieves superior and consistent performance, significantly outperforming all baseline methods. Our results highlight the effectiveness of the dual-channel architecture and the promise of graph neural networks for combinatorial algorithm selection, achieving 90.43% accuracy in choosing the optimal solver. Code and models are available at: https://anonymous.4open.science/r/GAT-MLP-7E5F.
comment: 11 pages, 8 figures
♻ ☆ The Multi-Query Paradox in Zeroth-Order Optimization
Zeroth-order (ZO) optimization provides a powerful framework for problems where explicit gradients are unavailable and have to be approximated using only queries to function value. The prevalent single-query approach is simple, but suffers from high estimation variance, motivating a multi-query paradigm to improves estimation accuracy. This, however, creates a critical trade-off: under a fixed budget of queries (i.e. cost), queries per iteration and the total number of optimization iterations are inversely proportional to one another. How to best allocate this budget is a fundamental, under-explored question. This work systematically resolves this query allocation problem. We analyze two aggregation methods: the de facto simple averaging (ZO-Avg), and a new Projection Alignment method (ZO-Align) we derive from local surrogate minimization. By deriving convergence rates for both methods that make the dependence on the number of queries explicit across strongly convex, convex, non-convex, and stochastic settings, we uncover a stark dichotomy: For ZO-Avg, we prove that using more than one query per iteration is always query-inefficient, rendering the single-query approach optimal. On the contrary, ZO-Align generally performs better with more queries per iteration, resulting in a full-subspace estimation as the optimal approach. Thus, our work clarifies that the multi-query problem boils down to a choice not about an intermediate query size, but between two classic algorithms, a choice dictated entirely by the aggregation method used. These theoretical findings are also consistently validated by extensive experiments.
♻ ☆ Stepsize anything: A unified learning rate schedule for budgeted-iteration training
The expanding computational costs and limited resources underscore the critical need for budgeted-iteration training, which aims to achieve optimal learning within predetermined iteration budgets. While learning rate schedules fundamentally govern the performance of different networks and tasks, particularly in budgeted-iteration scenarios, their design remains largely heuristic, lacking theoretical foundations. In addition, the optimal learning rate schedule requires extensive trial-and-error selection, making the training process inefficient. In this work, we propose the Unified Budget-Aware (UBA) schedule, a theoretically grounded learning rate schedule that consistently outperforms commonly-used schedules among diverse architectures and tasks under different constrained training budgets. First, we bridge the gap by constructing a novel training budget-aware optimization framework, which explicitly accounts for the robustness to landscape curvature variations. From this framework, we derive the UBA schedule, controlled by a single hyper-parameter \varphi that provides a trade-off between flexibility and simplicity, eliminating the need for per-network numerical optimization. Moreover, we establish a theoretical connection between \varphi and the condition number, adding interpretation and justification to our approach. Besides, we prove the convergence for different values of \varphi. We offer practical guidelines for its selection via theoretical analysis and empirical results. Extensive experimental results show that UBA consistently surpasses the commonly-used schedules across diverse vision and language tasks, spanning network architectures (e.g., ResNet, OLMo) and scales, under different training-iteration budgets.
♻ ☆ Is PRM Necessary? Problem-Solving RL Implicitly Induces PRM Capability in LLMs NeurIPS 2025
The development of reasoning capabilities represents a critical frontier in large language models (LLMs) research, where reinforcement learning (RL) and process reward models (PRMs) have emerged as predominant methodological frameworks. Contrary to conventional wisdom, empirical evidence from DeepSeek-R1 demonstrates that pure RL training focused on mathematical problem-solving can progressively enhance reasoning abilities without PRM integration, challenging the perceived necessity of process supervision. In this study, we conduct a systematic investigation of the relationship between RL training and PRM capabilities. Our findings demonstrate that problem-solving proficiency and process supervision capabilities represent complementary dimensions of reasoning that co-evolve synergistically during pure RL training. In particular, current PRMs underperform simple baselines like majority voting when applied to state-of-the-art models such as DeepSeek-R1 and QwQ-32B. To address this limitation, we propose Self-PRM, an introspective framework in which models autonomously evaluate and rerank their generated solutions through self-reward mechanisms. Although Self-PRM consistently improves the accuracy of the benchmark (particularly with larger sample sizes), analysis exposes persistent challenges: The approach exhibits low precision (<10\%) on difficult problems, frequently misclassifying flawed solutions as valid. These analyses underscore the need for continued RL scaling to improve reward alignment and introspective accuracy. Overall, our findings suggest that PRM may not be essential for enhancing complex reasoning, as pure RL not only improves problem-solving skills but also inherently fosters robust PRM capabilities. We hope these findings provide actionable insights for building more reliable and self-aware complex reasoning models.
comment: Accepted by NeurIPS 2025, camera-ready version
♻ ☆ FLEX: Continuous Agent Evolution via Forward Learning from Experience
Autonomous agents driven by Large Language Models (LLMs) have revolutionized reasoning and problem-solving but remain static after training, unable to grow with experience as intelligent beings do during deployment. We introduce Forward Learning with EXperience (FLEX), a gradient-free learning paradigm that enables LLM agents to continuously evolve through accumulated experience. Specifically, FLEX cultivates scalable and inheritable evolution by constructing a structured experience library through continual reflection on successes and failures during interaction with the environment. FLEX delivers substantial improvements on mathematical reasoning, chemical retrosynthesis, and protein fitness prediction (up to 23% on AIME25, 10% on USPTO50k, and 14% on ProteinGym). We further identify a clear scaling law of experiential growth and the phenomenon of experience inheritance across agents, marking a step toward scalable and inheritable continuous agent evolution. Project Page: https://flex-gensi-thuair.github.io.
♻ ☆ Attacking All Tasks at Once Using Adversarial Examples in Multi-Task Learning
Visual content understanding frequently relies on multi-task models to extract robust representations of a single visual input for multiple downstream tasks. However, in comparison to extensively studied single-task models, the adversarial robustness of multi-task models has received significantly less attention and many questions remain unclear: 1) How robust are multi-task models to single task adversarial attacks, 2) Can adversarial attacks be designed to simultaneously attack all tasks in a multi-task model, and 3) How does parameter sharing across tasks affect multi-task model robustness to adversarial attacks? This paper aims to answer these questions through careful analysis and rigorous experimentation. First, we analyze the inherent drawbacks of two commonly-used adaptations of single-task white-box attacks in attacking multi-task models. We then propose a novel attack framework, Dynamic Gradient Balancing Attack (DGBA). Our framework poses the problem of attacking all tasks in a multi-task model as an optimization problem that can be efficiently solved through integer linear programming. Extensive evaluation on two popular MTL benchmarks, NYUv2 and Tiny-Taxonomy, demonstrates the effectiveness of DGBA compared to baselines in attacking both clean and adversarially trained multi-task models. Our results also reveal a fundamental trade-off between improving task accuracy via parameter sharing across tasks and undermining model robustness due to increased attack transferability from parameter sharing.
comment: Accpeted by Neurocomputing at 10 September 2025
♻ ☆ High-Performance Variance-Covariance Matrix Construction Using an Uncentered Gram Formulation
Reichel (2025) defined the bariance as a pairwise-difference measure that can be rewritten in linear time using only scalar sums. We extend this idea to the covariance matrix by showing that the standard matrix expression involving the uncentered Gram matrix and a correction term is algebraically identical to the pairwise-difference definition while avoiding explicit centering. The computation then reduces to one outer product of dimension p-by-p and a single subtraction. Benchmarks in Python show clear runtime gains, especially when BLAS optimizations are absent. Optionally faster Gram-matrix routines such as RXTX (Rybin et al., 2025) further reduce overall cost.
comment: 17 pages, 9 figures, 1 table
♻ ☆ XiChen: An observation-scalable fully AI-driven global weather forecasting system with 4D variational knowledge
Artificial intelligence (AI)-driven models have the potential to revolutionize weather forecasting, but still rely on initial conditions generated by costly Numerical Weather Prediction (NWP) systems. Although recent end-to-end forecasting models attempt to bypass NWP systems, these methods lack scalable assimilation of new types of observational data. Here, we introduce XiChen, an observation-scalable fully AI-driven global weather forecasting system, wherein the entire pipeline, from Data Assimilation (DA) to medium-range forecasting, can be accomplished within only 15 seconds. XiChen is built upon a foundation model that is pre-trained for weather forecasting and subsequently fine-tuned to serve as both observation operators and DA models, thereby enabling the scalable assimilation of conventional and raw satellite observations. Furthermore, the integration of Four-Dimensional Variational (4DVar) knowledge ensures XiChen to achieve DA and medium-range forecasting accuracy comparable to operational NWP systems, with skillful forecasting lead time beyond 8.75 days. A key feature of XiChen is its ability to maintain physical balance constraints during DA, enabling observed variables to correct unobserved ones effectively. In single-point perturbation DA experiments, XiChen exhibits flow-dependent characteristics similar to those of traditional 4DVar systems. These results demonstrate that XiChen holds strong potential for fully AI-driven weather forecasting independent of NWP systems.
♻ ☆ MotionStream: Real-Time Video Generation with Interactive Motion Controls
Current motion-conditioned video generation methods suffer from prohibitive latency (minutes per video) and non-causal processing that prevents real-time interaction. We present MotionStream, enabling sub-second latency with up to 29 FPS streaming generation on a single GPU. Our approach begins by augmenting a text-to-video model with motion control, which generates high-quality videos that adhere to the global text prompt and local motion guidance, but does not perform inference on the fly. As such, we distill this bidirectional teacher into a causal student through Self Forcing with Distribution Matching Distillation, enabling real-time streaming inference. Several key challenges arise when generating videos of long, potentially infinite time-horizons -- (1) bridging the domain gap from training on finite length and extrapolating to infinite horizons, (2) sustaining high quality by preventing error accumulation, and (3) maintaining fast inference, without incurring growth in computational cost due to increasing context windows. A key to our approach is introducing carefully designed sliding-window causal attention, combined with attention sinks. By incorporating self-rollout with attention sinks and KV cache rolling during training, we properly simulate inference-time extrapolations with a fixed context window, enabling constant-speed generation of arbitrarily long videos. Our models achieve state-of-the-art results in motion following and video quality while being two orders of magnitude faster, uniquely enabling infinite-length streaming. With MotionStream, users can paint trajectories, control cameras, or transfer motion, and see results unfold in real-time, delivering a truly interactive experience.
comment: Project webpage: https://joonghyuk.com/motionstream-web/
♻ ☆ Elucidated Rolling Diffusion Models for Probabilistic Forecasting of Complex Dynamics NeurIPS 2025
Diffusion models are a powerful tool for probabilistic forecasting, yet most applications in high-dimensional complex systems predict future states individually. This approach struggles to model complex temporal dependencies and fails to explicitly account for the progressive growth of uncertainty inherent to the systems. While rolling diffusion frameworks, which apply increasing noise to forecasts at longer lead times, have been proposed to address this, their integration with state-of-the-art, high-fidelity diffusion techniques remains a significant challenge. We tackle this problem by introducing Elucidated Rolling Diffusion Models (ERDM), the first framework to successfully unify a rolling forecast structure with the principled, performant design of Elucidated Diffusion Models (EDM). To do this, we adapt the core EDM components-its noise schedule, network preconditioning, and Heun sampler-to the rolling forecast setting. The success of this integration is driven by three key contributions: (i) a novel loss weighting scheme that focuses model capacity on the mid-range forecast horizons where determinism gives way to stochasticity; (ii) an efficient initialization strategy using a pre-trained EDM for the initial window; and (iii) a bespoke hybrid sequence architecture for robust spatiotemporal feature extraction under progressive denoising. On 2D Navier-Stokes simulations and ERA5 global weather forecasting at 1.5-degree resolution, ERDM consistently outperforms key diffusion-based baselines, including conditional autoregressive EDM. ERDM offers a flexible and powerful general framework for tackling diffusion-based dynamics forecasting problems where modeling uncertainty propagation is paramount.
comment: NeurIPS 2025
♻ ☆ Universal Representation of Generalized Convex Functions and their Gradients
A wide range of optimization problems can often be written in terms of generalized convex functions (GCFs). When this structure is present, it can convert certain nested bilevel objectives into single-level problems amenable to standard first-order optimization methods. We provide a new differentiable layer with a convex parameter space and show (Theorems 5.1 and 5.2) that it and its gradient are universal approximators for GCFs and their gradients. We demonstrate how this parameterization can be leveraged in practice by (i) learning optimal transport maps with general cost functions and (ii) learning optimal auctions of multiple goods. In both these cases, we show how our layer can be used to convert the existing bilevel or min-max formulations into single-level problems that can be solved efficiently with first-order methods.
♻ ☆ Dark Deceptions in DHCP: Dismantling Network Defenses
This paper explores vulnerabilities in the Dynamic Host Configuration Protocol (DHCP) and their implications on the Confidentiality, Integrity, and Availability (CIA) Triad. Through an analysis of various attacks, including DHCP Starvation, Rogue DHCP Servers, Replay Attacks, and TunnelVision exploits, the paper provides a taxonomic classification of threats, assesses risks, and proposes appropriate controls. The discussion also highlights the dangers of VPN decloaking through DHCP exploits and underscores the importance of safeguarding network infrastructures. By bringing awareness to the TunnelVision exploit, this paper aims to mitigate risks associated with these prevalent vulnerabilities.
comment: 8 pages, 4 tables
♻ ☆ Permutation-Invariant Representation Learning for Robust and Privacy-Preserving Feature Selection
Feature selection eliminates redundancy among features to improve downstream task performance while reducing computational overhead. Existing methods often struggle to capture intricate feature interactions and adapt across diverse application scenarios. Recent advances employ generative intelligence to alleviate these drawbacks. However, these methods remain constrained by permutation sensitivity in embedding and reliance on convexity assumptions in gradient-based search. To address these limitations, our initial work introduces a novel framework that integrates permutation-invariant embedding with policy-guided search. Although effective, it still left opportunities to adapt to realistic distributed scenarios. In practice, data across local clients is highly imbalanced, heterogeneous and constrained by strict privacy regulations, limiting direct sharing. These challenges highlight the need for a framework that can integrate feature selection knowledge across clients without exposing sensitive information. In this extended journal version, we advance the framework from two perspectives: 1) developing a privacy-preserving knowledge fusion strategy to derive a unified representation space without sharing sensitive raw data. 2) incorporating a sample-aware weighting strategy to address distributional imbalance among heterogeneous local clients. Extensive experiments validate the effectiveness, robustness, and efficiency of our framework. The results further demonstrate its strong generalization ability in federated learning scenarios. The code and data are publicly available: https://anonymous.4open.science/r/FedCAPS-08BF.
comment: We note that this work has been reproduced without authorization by Stchingtana Naryso and Zihang Yang under the title "Robust and Privacy-Preserving Feature Selection: A Permutation-Invariant Representation Learning Approach with Federated Extension." Their version remains the same technical content, with only the title and abstract changed. This version is the authoritative and original source
♻ ☆ The Necessity of Imperfection:Reversing Model Collapse via Simulating Cognitive Boundedness
Although synthetic data is widely promoted as a remedy, its prevailing production paradigm -- one optimizing for statistical smoothness -- systematically removes the long-tail, cognitively grounded irregularities that characterize human text. Prolonged training on such statistically optimal but cognitively impoverished data accelerates model collapse. This paper proposes a paradigm shift: instead of imitating the surface properties of data, we simulate the cognitive processes that generate human text. We introduce the Prompt-driven Cognitive Computing Framework (PMCSF), whose core consists of a Cognitive State Decoder (CSD) that reverse-engineers unstructured text into structured cognitive vectors, and a Cognitive Text Encoder (CTE) that re-materializes these states into text enriched with human-typical imperfections via mathematically defined Cognitive Perturbation Operators. The framework is validated through a two-stage objective evaluation pipeline. First, in cognitive codec verification, CTE text yields a Jensen-Shannon divergence of 0.0614 from human text (vs. 0.4431 for standard LLM output), passes double-blind professional media review, and achieves an intraclass correlation coefficient ICC > 0.9 for cognitive profile alignment across heterogeneous models. Second, in functional gain evaluation, isomorphic stress tests in the A-share market show that strategies incorporating CTE-generated data reduce maximum drawdown by 47.4% during the 2015 crash and deliver 8.6% Defensive Alpha, exceeding transaction costs by a factor of 33. Our findings demonstrate that modelling human cognitive limitations -- not copying surface data -- enables synthetic data with genuine functional gain, offering a viable technical pathway toward resolving the AI data-collapse crisis.
comment: 60 pages,9 figures. v3: Major update. Added 3D topological visualization (Figure 1) and independent computational verification of the Adaptive Markets Hypothesis (AMH). Includes comprehensive Supplementary Materials (algorithmic pseudocode, system architecture, and real-time GARCH logs) for technical reproducibility
♻ ☆ Image2Gcode: Image-to-G-code Generation for Additive Manufacturing Using Diffusion-Transformer Model
Mechanical design and manufacturing workflows conventionally begin with conceptual design, followed by the creation of a computer-aided design (CAD) model and fabrication through material-extrusion (MEX) printing. This process requires converting CAD geometry into machine-readable G-code through slicing and path planning. While each step is well established, dependence on CAD modeling remains a major bottleneck: constructing object-specific 3D geometry is slow and poorly suited to rapid prototyping. Even minor design variations typically necessitate manual updates in CAD software, making iteration time-consuming and difficult to scale. To address this limitation, we introduce Image2Gcode, an end-to-end data-driven framework that bypasses the CAD stage and generates printer-ready G-code directly from images and part drawings. Instead of relying on an explicit 3D model, a hand-drawn or captured 2D image serves as the sole input. The framework first extracts slice-wise structural cues from the image and then employs a denoising diffusion probabilistic model (DDPM) over G-code sequences. Through iterative denoising, the model transforms Gaussian noise into executable print-move trajectories with corresponding extrusion parameters, establishing a direct mapping from visual input to native toolpaths. By producing structured G-code directly from 2D imagery, Image2Gcode eliminates the need for CAD or STL intermediates, lowering the entry barrier for additive manufacturing and accelerating the design-to-fabrication cycle. This approach supports on-demand prototyping from simple sketches or visual references and integrates with upstream 2D-to-3D reconstruction modules to enable an automated pipeline from concept to physical artifact. The result is a flexible, computationally efficient framework that advances accessibility in design iteration, repair workflows, and distributed manufacturing.
♻ ☆ TabKAN: Advancing Tabular Data Analysis using Kolmogorov-Arnold Network
Tabular data analysis presents unique challenges that arise from heterogeneous feature types, missing values, and complex feature interactions. While traditional machine learning methods like gradient boosting often outperform deep learning, recent advancements in neural architectures offer promising alternatives. In this study, we introduce TabKAN, a novel framework for tabular data modeling based on Kolmogorov-Arnold Networks (KANs). Unlike conventional deep learning models, KANs use learnable activation functions on edges, which improves both interpretability and training efficiency. TabKAN incorporates modular KAN-based architectures designed for tabular analysis and proposes a transfer learning framework for knowledge transfer across domains. Furthermore, we develop a model-specific interpretability approach that reduces reliance on post hoc explanations. Extensive experiments on public datasets show that TabKAN achieves superior performance in supervised learning and significantly outperforms classical and Transformer-based models in binary and multi-class classification. The results demonstrate the potential of KAN-based architectures to bridge the gap between traditional machine learning and deep learning for structured data.
comment: 49 pages
♻ ☆ Gold-medalist Performance in Solving Olympiad Geometry with AlphaGeometry2
We present AlphaGeometry2 (AG2), a significantly improved version of AlphaGeometry introduced in (Trinh et al., 2024), which has now surpassed an average gold medalist in solving Olympiad geometry problems. To achieve this, we first extend the original AlphaGeometry language to tackle problems involving movements of objects, and problems containing linear equations of angles, ratios, and distances. This, together with support for non-constructive problems, has markedly improved the coverage rate of the AlphaGeometry language on International Math Olympiads (IMO) 2000-2024 geometry problems from 66% to 88%. The search process of AG2 has also been greatly improved through the use of Gemini architecture for better language modeling, and a novel knowledge-sharing mechanism that enables effective communication between search trees. Together with further enhancements to the symbolic engine and synthetic data generation, we have significantly boosted the overall solving rate of AG to 84% on all geometry problems over the last 25 years, compared to 54% previously. AG2 was also part of the system that achieved the silver-medal standard at IMO 2024 https://deepmind.google/blog/ai-solves-imo-problems-at-silver-medal-level/. Finally, we report progress towards using AG2 as a part of a fully automated system that reliably solves geometry problems from natural language input. Code: https://github.com/google-deepmind/alphageometry2.
comment: 28 pages, 16 figures. V2: Clarified abstract, rewritten introduction, updated results on diagram generation, added acknowledgement section. V3: Added clarifications and a new section "Inequality rules", re-organized sections, added code link, now 34 pages
♻ ☆ Astral Space: Convex Analysis at Infinity
Not all convex functions on $\mathbb{R}^n$ have finite minimizers; some can only be minimized by a sequence as it heads to infinity. In this work, we aim to develop a theory for understanding such minimizers at infinity. We study astral space, a compact extension of $\mathbb{R}^n$ to which such points at infinity have been added. Astral space is constructed to be as small as possible while still ensuring that all linear functions can be continuously extended to the new space. Although astral space includes all of $\mathbb{R}^n$, it is not a vector space, nor even a metric space. However, it is sufficiently well-structured to allow useful and meaningful extensions of concepts of convexity, conjugacy, and subdifferentials. We develop these concepts and analyze various properties of convex functions on astral space, including the detailed structure of their minimizers, exact characterizations of continuity, and convergence of descent algorithms.
♻ ☆ Towards Characterizing Knowledge Distillation of PPG Heart Rate Estimation Models NeurIPS 2025
Heart rate estimation from photoplethysmography (PPG) signals generated by wearable devices such as smartwatches and fitness trackers has significant implications for the health and well-being of individuals. Although prior work has demonstrated deep learning models with strong performance in the heart rate estimation task, in order to deploy these models on wearable devices, these models must also adhere to strict memory and latency constraints. In this work, we explore and characterize how large pre-trained PPG models may be distilled to smaller models appropriate for real-time inference on the edge. We evaluate four distillation strategies through comprehensive sweeps of teacher and student model capacities: (1) hard distillation, (2) soft distillation, (3) decoupled knowledge distillation (DKD), and (4) feature distillation. We present a characterization of the resulting scaling laws describing the relationship between model size and performance. This early investigation lays the groundwork for practical and predictable methods for building edge-deployable models for physiological sensing.
comment: 5 pages, 3 figures, 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Learning from Time Series for Health
♻ ☆ Towards agent-based-model informed neural networks
In this article, we present a framework for designing neural networks that remain consistent with the underlying principles of agent-based models. We begin by highlighting the limitations of standard neural differential equations in modeling complex systems, where physical invariants (like energy) are often absent but other constraints (like mass conservation, information locality, bounded rationality) must be enforced. To address this, we introduce Agent-Based-Model informed Neural Networks (ABM-NNs), which leverage restricted graph neural networks and hierarchical decomposition to learn interpretable, structure-preserving dynamics. We validate the framework across three case studies of increasing complexity: (i) a generalized Generalized Lotka--Volterra system, where we recover ground-truth parameters from short trajectories in presence of interventions; (ii) a graph-based SIR contagion model, where our method outperforms state-of-the-art graph learning baselines (GCN, GraphSAGE, Graph Transformer) in out-of-sample forecasting and noise robustness; and (iii) a real-world macroeconomic model of the ten largest economies, where we learn coupled GDP dynamics from empirical data and demonstrate counterfactual analysis for policy interventions
♻ ☆ GLL: A Differentiable Graph Learning Layer for Neural Networks
Standard deep learning architectures used for classification generate label predictions with a projection head and softmax activation function. Although successful, these methods fail to leverage the relational information between samples for generating label predictions. In recent works, graph-based learning techniques, namely Laplace learning, have been heuristically combined with neural networks for both supervised and semi-supervised learning (SSL) tasks. However, prior works approximate the gradient of the loss function with respect to the graph learning algorithm or decouple the processes; end-to-end integration with neural networks is not achieved. In this work, we derive backpropagation equations, via the adjoint method, for inclusion of a general family of graph learning layers into a neural network. The resulting method, distinct from graph neural networks, allows us to precisely integrate similarity graph construction and graph Laplacian-based label propagation into a neural network layer, replacing a projection head and softmax activation function for general classification task. Our experimental results demonstrate smooth label transitions across data, improved generalization and robustness to adversarial attacks, and improved training dynamics compared to a standard softmax-based approach.
comment: 58 pages, 12 figures. Preprint. Submitted to the Journal of Machine Learning Research. v2: several new experiments, improved exposition
♻ ☆ Scalable Multi-Objective and Meta Reinforcement Learning via Gradient Estimation
We study the problem of efficiently estimating policies that simultaneously optimize multiple objectives in reinforcement learning (RL). Given $n$ objectives (or tasks), we seek the optimal partition of these objectives into $k \ll n$ groups, where each group comprises related objectives that can be trained together. This problem arises in applications such as robotics, control, and preference optimization in language models, where learning a single policy for all $n$ objectives is suboptimal as $n$ grows. We introduce a two-stage procedure -- meta-training followed by fine-tuning -- to address this problem. We first learn a meta-policy for all objectives using multitask learning. Then, we adapt the meta-policy to multiple randomly sampled subsets of objectives. The adaptation step leverages a first-order approximation property of well-trained policy networks, which is empirically verified to be accurate within a 2% error margin across various RL environments. The resulting algorithm, PolicyGradEx, efficiently estimates an aggregate task-affinity score matrix given a policy evaluation algorithm. Based on the estimated affinity score matrix, we cluster the $n$ objectives into $k$ groups by maximizing the intra-cluster affinity scores. Experiments on three robotic control and the Meta-World benchmarks demonstrate that our approach outperforms state-of-the-art baselines by 16% on average, while delivering up to $26\times$ faster speedup relative to performing full training to obtain the clusters. Ablation studies validate each component of our approach. For instance, compared with random grouping and gradient-similarity-based grouping, our loss-based clustering yields an improvement of 19%. Finally, we analyze the generalization error of policy networks by measuring the Hessian trace of the loss surface, which gives non-vacuous measures relative to the observed generalization errors.
comment: 25 pages. Fixed several typos from the previous version
♻ ☆ Nonlinear Optimization with GPU-Accelerated Neural Network Constraints
We propose a reduced-space formulation for optimizing over trained neural networks where the network's outputs and derivatives are evaluated on a GPU. To do this, we treat the neural network as a "gray box" where intermediate variables and constraints are not exposed to the optimization solver. Compared to the full-space formulation, in which intermediate variables and constraints are exposed to the optimization solver, the reduced-space formulation leads to faster solves and fewer iterations in an interior point method. We demonstrate the benefits of this method on two optimization problems: Adversarial generation for a classifier trained on MNIST images and security-constrained optimal power flow with transient feasibility enforced using a neural network surrogate.
♻ ☆ Reconstruction of frequency-localized functions from pointwise samples via least squares and deep learning
Recovering frequency-localized functions from pointwise data is a fundamental task in signal processing. We examine this problem from an approximation-theoretic perspective, focusing on least squares and deep learning-based methods. First, we establish a novel recovery theorem for least squares approximations using the Slepian basis from uniform random samples in low dimensions, explicitly tracking the dependence of the bandwidth on the sampling complexity. Building on these results, we then present a recovery guarantee for approximating bandlimited functions via deep learning from pointwise data. This result, framed as a practical existence theorem, provides conditions on the network architecture, training procedure, and data acquisition sufficient for accurate approximation. To complement our theoretical findings, we perform numerical comparisons between least squares and deep learning for approximating one- and two-dimensional functions. We conclude with a discussion of the theoretical limitations and the practical gaps between theory and implementation.
Genomics 2
☆ PlantBiMoE: A Bidirectional Foundation Model with SparseMoE for Plant Genomes
Understanding the underlying linguistic rules of plant genomes remains a fundamental challenge in computational biology. Recent advances including AgroNT and PDLLMs have made notable progress although, they suffer from excessive parameter size and limited ability to model the bidirectional nature of DNA strands respectively. To address these limitations, we propose PlantBiMoE, a lightweight and expressive plant genome language model that integrates bidirectional Mamba and a Sparse Mixture-of-Experts (SparseMoE) framework. The bidirectional Mamba enables the model to effectively capture structural dependencies across both the forward and reverse DNA strands, while SparseMoE significantly reduces the number of active parameters, improving computational efficiency without sacrificing modeling capacity. We evaluated and tested our model on the Modified Plants Genome Benchmark (MPGB), an enhanced genomic benchmark, which consolidates 31 datasets across 11 representative tasks, with input sequence lengths ranging from 50 to 6,000 bp. Experimental results demonstrate that PlantBiMoE achieves the best performance on 20 out of 31 datasets and the average best when comparing with existing models. In summary, all above results demonstrate that our model can effectively represent plant genomic sequences, serving as a robust computational tool for diverse genomic tasks, while making substantive contributions to plant genomics, gene editing, and synthetic biology. The code is available at: https://github.com/HUST-Keep-Lin/PlantBiMoE
comment: 6 pages, 5 figures, accept to BIBM
♻ ☆ A network-driven framework for enhancing gene-disease association studies in coronary artery disease
Transcriptome-wide association studies (TWAS) link genetic variation to complex traits by leveraging expression quantitative trait loci (eQTL) data. However, most implementations are typically limited to local (cis-acting) effects and fail to account for long-range (trans) regulatory influences mediated through gene networks. We introduce GRN-TWAS, a framework that reconstructs gene regulatory networks (GRNs) and integrates their topology into gene expression prediction models, thereby propagating distal (trans) regulatory effects through tissue-specific gene networks to trait- or disease-associated phenotypes. By incorporating network-derived trans-eQTLs, GRN-TWAS generates gene expression imputation models that capture both local and distal genetic components, enabling a more complete, systems-level view of genetic regulation consistent with the omnigenic model hypothesis. Using genotype and multi-tissue expression data from 600 coronary artery disease (CAD) cases in the STARNET study together with GWAS summary statistics, we show that GRN-TWAS improves gene-expression prediction and sharpens discovery of CAD-associated genes. Across seven tissues, the framework identified 5,779 transcriptome-wide significant genes, more than 50\% of which appear to be previously unreported in the CAD literature. A knowledge-based gene-ranking engine then prioritized 882 genes as highly CAD-relevant, including 237 regulated exclusively through trans effects. Key-driver analysis highlighted 18 putative trans mediators with high network centrality and disease relevance, offering mechanistic hypotheses that complement association signals. Collectively, these results demonstrate that embedding network topology into TWAS improves discovery and interpretability by exposing tissue-specific regulatory routes from genotype to phenotype and expanding the landscape of gene-disease associations.
comment: Revised version, 12 pages, 6 figures, 1 table; code available at https://github.com/guutama/GRN-TWAS; Tex Source includes a file appendix.pdf with supplementary materials (4 pages supplementary methods, 3 supplementary tables, 21 supplementary figures)
Quantitative Methods 9
☆ Universal bounds on entropy production from fluctuating coarse-grained trajectories
Entropy production is arguably the most universally applicable measure of non-equilibrium behavior, particularly for systems coupled to a heat bath. This setting encompasses driven soft matter as well as biomolecular, biochemical, and biophysical systems. Despite its central role, direct measurements of entropy production remain challenging - especially in small systems dominated by fluctuations. The main difficulty arises because not all degrees of freedom contributing to entropy production are experimentally accessible. A key question, therefore, is how to infer entropy production from coarse-grained observations, such as time series of experimentally measurable variables. Over the past decade, stochastic thermodynamics has provided several inequalities that yield model-free lower bounds on entropy production from such coarse-grained data. The major approaches rely on observations of coarse-grained states, fluctuating currents or ticks, correlation functions of coarse-grained observables, and waiting-time distributions between so-called Markovian events, which correspond to transitions between mesoscopic states. Here, we systematically review these techniques valid under the sole assumption of a Markovian, i.e., memoryless, dynamics on an underlying, not necessarily observable, network of states or following a possibly high-dimensional Langevin equation. We discuss in detail the large class of non-equilibrium steady states and highlight extensions of these methods to time-dependent and relaxing systems. While our focus is on mean entropy production, we also summarize recent progress in quantifying entropy production along individual coarse-grained trajectories.
☆ A Structured Review of Fixed and Multimodal Sensing Techniques for Bat Monitoring
Effective monitoring of mobile animal populations is crucial for ecological research, wildlife management, and agricultural applications. Monitoring of bats specifically can help understand the spread of disease as well as shine light on bat migration patterns, population dynamics, and the impacts of environmental changes on bat colonies. Fixed sensing modalities, such as infrared sensors, cameras, radar, and acoustic detectors, play a pivotal role in tracking and understanding animal behavior. This survey goes over context-informing details about bat biology, and then reviews these fixed sensing modalities, discussing the unique challenges and contributions of each approach. We highlight the coverage, applications, accuracy, and limitations associated with each of these sensing modalities. By synthesizing recent advances, we provide a comprehensive overview to guide future research in this area.
☆ Big shells, bigger data: cohort analysis of Chesapeake Bay Crassostrea virginica reefs
Oysters in Virginia Chesapeake Bay oyster reefs are "age-truncated", possibly due to a combination of historical overfishing, disease epizootics, environmental degradation, and climate change. Research has suggested that oysters exhibit resilience to environmental stressors; however, that evidence is based on the current limited understanding of oyster lifespan. Until this paper, the Virginia Oyster Stock Assessment and Replenishment Archive (VOSARA), a spatially and temporally expansive dataset (222 reefs across 2003-2023) of shell lengths (SL, mm), had yet to be examined comprehensively in the context of resilience. We develop a novel method using Gaussian mixture modeling (GMM) to identify the age groups in each reef using yearly SL data and then link those age groups over time to identify cohorts and estimate their lifespan. Sixty-four reefs (29%) are deemed to have sufficient data (at least 300 oysters sampled for a minimum of 8 consecutive years) for this analysis. We fit univariate GMMs for each year ($t$) and reef ($r$) for each of the seven river strata ($R$) to estimate 1) the mean and standard deviation of SL for each $a_{Rrt}$th age group, and 2) the mixture percentage of each $a_{Rrt}$th age group. We link age groups across time to infer age cohorts by developing a mechanistic algorithm that prevents the shrinking of shell length when an $a_{Rrt}$th group becomes an ($a_{R,r,t+1}$)th group. Our method shows promise in identifying oyster cohorts and estimating lifespan solely using SL data. Our results show signals of resiliency in almost all river systems: oyster cohorts live longer and grow larger in the mid-to-late 2010s compared to the early 2000s.
comment: 29 pages, 7 figures
Self-Supervised Learning on Molecular Graphs: A Systematic Investigation of Masking Design
Self-supervised learning (SSL) plays a central role in molecular representation learning. Yet, many recent innovations in masking-based pretraining are introduced as heuristics and lack principled evaluation, obscuring which design choices are genuinely effective. This work cast the entire pretrain-finetune workflow into a unified probabilistic framework, enabling a transparent comparison and deeper understanding of masking strategies. Building on this formalism, we conduct a controlled study of three core design dimensions: masking distribution, prediction target, and encoder architecture, under rigorously controlled settings. We further employ information-theoretic measures to assess the informativeness of pretraining signals and connect them to empirically benchmarked downstream performance. Our findings reveal a surprising insight: sophisticated masking distributions offer no consistent benefit over uniform sampling for common node-level prediction tasks. Instead, the choice of prediction target and its synergy with the encoder architecture are far more critical. Specifically, shifting to semantically richer targets yields substantial downstream improvements, particularly when paired with expressive Graph Transformer encoders. These insights offer practical guidance for developing more effective SSL methods for molecular graphs.
☆ Subcellular proteome niche discovery using semi-supervised functional clustering
Intracellular compartmentalization of proteins underpins their function and the metabolic processes they sustain. Various mass spectrometry-based proteomics methods (subcellular spatial proteomics) now allow high throughput subcellular protein localization. Yet, the curation, analysis and interpretation of these data remain challenging, particularly in non-model organisms where establishing reliable marker proteins is difficult, and in contexts where experimental replication and subcellular fractionation are constrained. Here, we develop FSPmix, a semi-supervised functional clustering method implemented as an open-source R package, which leverages partial annotations from a subset of marker proteins to predict protein subcellular localization from subcellular spatial proteomics data. This method explicitly assumes that protein signatures vary smoothly across subcellular fractions, enabling more robust inference under low signal-to-noise data regimes. We applied FSPmix to a subcellular proteomics dataset from a marine diatom, allowing us to assign probabilistic localizations to proteins and uncover potentially new protein functions. Altogether, this work lays the foundation for more robust statistical analysis and interpretation of subcellular proteomics datasets, particularly in understudied organisms.
comment: 42 pages, 9 figures, 6 supplemental figures
☆ Understanding the temperature response of biological systems: From empirical fits to mechanistic frameworks
Virtually every biological rate changes with temperature, but the mechanisms underlying these responses differ between different processes. Here, we bring together the main theoretical approaches used to describe temperature-rate relationships, ranging from empirical curve shapes to reaction-level kinetics and network-based dynamical frameworks. These models highlight how temperature influences not only the speed of elementary reactions, but also the behavior that emerges when many reactions interact through regulation, feedback, or stochastic transitions. By outlining the assumptions and implications of each perspective, we aim to clarify how different modeling strategies connect molecular processes to physiological temperature response curves and to point toward integrative frameworks that can better explain the diversity of biological thermal responses.
comment: 19 pages, 4 figures
☆ A Semi-Supervised Inf-Net Framework for CT-Based Lung Nodule Analysis with a Conceptual Extension Toward Genomic Integration
Lung cancer is a primary contributor to cancer-related mortality globally, highlighting the necessity for precise early detection of pulmonary nodules through low-dose CT (LDCT) imaging. Deep learning methods have improved nodule detection and classification; however, their performance is frequently limited by the availability of annotated data and variability among imaging centers. This research presents a CT-driven, semi-supervised framework utilizing the Inf-Net architecture to enhance lung nodule analysis with minimal annotation. The model incorporates multi-scale feature aggregation, Reverse Attention refinement, and pseudo-labeling to efficiently utilize unlabeled CT slices. Experiments conducted on subsets of the LUNA16 dataset indicate that the supervised Inf-Net attains a score of 0.825 on 10,000 labeled slices. In contrast, the semi-supervised variant achieves a score of 0.784 on 20,000 slices that include both labeled and pseudo-labeled data, thus surpassing its supervised baseline of 0.755. This study presents a conceptual framework for the integration of genomic biomarkers with CT-derived features, facilitating the development of future multimodal, biologically informed CAD systems. The proposed semi-supervised Inf-Net framework improves CT-based lung nodule assessment and lays the groundwork for flexible multi-omics diagnostic models.
♻ ☆ Anatomical basis of sex differences in the electrocardiogram identified by three-dimensional torso-heart imaging reconstruction pipeline
The electrocardiogram (ECG) is used for diagnosis and risk stratification in myocardial infarction (MI). Women have a higher incidence of missed MI diagnosis and complications following infarction, and to address this we aim to provide quantitative information on sex-differences in ECG and torso-ventricular anatomical features and their interdependence. A novel computational automated pipeline is presented enabling the three-dimensional reconstruction of torso-ventricular anatomies for 425 post-MI subjects and 1051 healthy controls from UK Biobank clinical images. Regression models were created relating torso-ventricular and ECG parameters. We found that female hearts were positioned more posteriorly and superiorly than male, and in MI hearts were oriented more horizontally, especially for women. Post-MI women exhibited less QRS prolongation, requiring 27% more prolongation than men to exceed 120ms. Only half of the sex difference in QRS duration was associated with smaller female cavities. Lower STj amplitude in women was striking, associated with smaller ventricles, but also more superior and posterior cardiac position. Post-MI, T wave amplitude and R axis deviations were more strongly associated with posterior and horizontal cardiac positioning in women than in men. Our study highlights the need to quantify sex differences in anatomical features, their implications in ECG interpretation, and the application of clinical ECG thresholds in post-MI.
comment: Revision following reviewer comments
♻ ☆ A network-driven framework for enhancing gene-disease association studies in coronary artery disease
Transcriptome-wide association studies (TWAS) link genetic variation to complex traits by leveraging expression quantitative trait loci (eQTL) data. However, most implementations are typically limited to local (cis-acting) effects and fail to account for long-range (trans) regulatory influences mediated through gene networks. We introduce GRN-TWAS, a framework that reconstructs gene regulatory networks (GRNs) and integrates their topology into gene expression prediction models, thereby propagating distal (trans) regulatory effects through tissue-specific gene networks to trait- or disease-associated phenotypes. By incorporating network-derived trans-eQTLs, GRN-TWAS generates gene expression imputation models that capture both local and distal genetic components, enabling a more complete, systems-level view of genetic regulation consistent with the omnigenic model hypothesis. Using genotype and multi-tissue expression data from 600 coronary artery disease (CAD) cases in the STARNET study together with GWAS summary statistics, we show that GRN-TWAS improves gene-expression prediction and sharpens discovery of CAD-associated genes. Across seven tissues, the framework identified 5,779 transcriptome-wide significant genes, more than 50\% of which appear to be previously unreported in the CAD literature. A knowledge-based gene-ranking engine then prioritized 882 genes as highly CAD-relevant, including 237 regulated exclusively through trans effects. Key-driver analysis highlighted 18 putative trans mediators with high network centrality and disease relevance, offering mechanistic hypotheses that complement association signals. Collectively, these results demonstrate that embedding network topology into TWAS improves discovery and interpretability by exposing tissue-specific regulatory routes from genotype to phenotype and expanding the landscape of gene-disease associations.
comment: Revised version, 12 pages, 6 figures, 1 table; code available at https://github.com/guutama/GRN-TWAS; Tex Source includes a file appendix.pdf with supplementary materials (4 pages supplementary methods, 3 supplementary tables, 21 supplementary figures)
Cell Behavior 2
☆ Coarse-graining and stochastic oscillations in a phenomenological model of cell-size homeostasis
Within a continuous-time, stochastic model of single-cell size homeostasis, we study how the structure of feedback from size to growth rates and cell-cycle progression shapes overall size dynamics, both within and across cell cycles. We focus on a model in which the feedback from cell size to these other processes occurs only through the size deviations, defined as the difference between the absolute size and the progression through the cell cycle. In a linear regime of this model, the dynamics reduce to a stochastically forced simple harmonic oscillator, yielding closed-form expressions for mother-daughter size correlations. We compare these to the higher order regression coefficients that measure the size memory over many generations. Our analysis reveals how the interplay between cell-cycle timing and intrinsic fluctuations shapes the apparent coarse-grained size control strategy, and in-particular, that coarse-grained correlations may not reflect the mechanistic feedback structure. We compare this model to a more commonly used approach where the coarse-grained dynamics are hard-coded into the model; hence, the first order autoregressive model for sizes is a perfect description of the size dynamics and therefore more accurately reflects the feedback structure.
comment: 23 pages, 9 Figures
♻ ☆ A mathematical model for smooth muscle cell phenotype switching in atherosclerotic plaque
Smooth muscle cells (SMCs) play a fundamental role in the development of atherosclerotic plaques. They ingest lipids in a similar way to monocyte-derived macrophages (MDMs) in the plaque. This can stimulate SMCs to undergo a phenotypic switch to a macrophage-like phenotype. We formulate an ordinary differential equation (ODE) model for the populations of SMCs, MDMs and smooth muscle cell-derived macrophages (SDMs) and the internalised lipid load in each population. We use this model to explore the effect on plaque fate of SMC phenotype switching. We find that when SMCs switch to a macrophage-like phenotype, the total lipid contained in the model plaque that is internalised inside cells increases. Additionally, removal of SMCs from the plaque via phenotype switching reduces the number of SMCs in the plaque fibrous cap, increases the lipid in the necrotic core, and increases plaque inflammation. This makes the plaque more vulnerable to rupture, which can lead to heart attacks and strokes. When SDMs are highly proliferative or resistant to cell death, the plaque grows rapidly and becomes highly pathological. The model suggests that plaque dynamics, driven by the switch of SMCs to a macrophage-like phenotype, may drive the development of unstable, vulnerable and pathological plaques.
Computation and Language 13
☆ FVA-RAG: Falsification-Verification Alignment for Mitigating Sycophantic Hallucinations
Retrieval-Augmented Generation (RAG) systems have significantly reduced hallucinations in Large Language Models (LLMs) by grounding responses in external context. However, standard RAG architectures suffer from a critical vulnerability: Retrieval Sycophancy. When presented with a query based on a false premise or a common misconception, vector-based retrievers tend to fetch documents that align with the user's bias rather than objective truth, leading the model to "hallucinate with citations." In this work, we introduce Falsification-Verification Alignment RAG (FVA-RAG), a framework that shifts the retrieval paradigm from Inductive Verification (seeking support) to Deductive Falsification (seeking disproof). Unlike existing "Self-Correction" methods that rely on internal consistency, FVA-RAG deploys a distinct Adversarial Retrieval Policy that actively generates "Kill Queries"-targeted search terms designed to surface contradictory evidence. We introduce a dual-verification mechanism that explicitly weighs the draft answer against this "Anti-Context." Preliminary experiments on a dataset of common misconceptions demonstrate that FVA-RAG significantly improves robustness against sycophantic hallucinations compared to standard RAG baselines, effectively acting as an inference-time "Red Team" for factual generation.
☆ Block Sparse Flash Attention
Modern large language models increasingly require long contexts for reasoning and multi-document tasks, but attention's quadratic complexity creates a severe computational bottleneck. We present Block-Sparse FlashAttention (BSFA), a drop-in replacement that accelerates long-context inference while preserving model quality. Unlike methods that predict importance before computing scores, BSFA computes exact query-key similarities to select the top-k most important value blocks for each query. By comparing per-block maximum scores against calibrated thresholds, we skip approximately 50% of the computation and memory transfers for pruned blocks. Our training-free approach requires only a one-time threshold calibration on a small dataset to learn the per-layer and per-head attention score distributions. We provide a CUDA kernel implementation that can be used as a drop-in replacement for FlashAttention. On Llama-3.1-8B, BSFA achieves up to 1.10x speedup on real-world reasoning benchmarks and up to 1.24x for needle-in-a-haystack retrieval tasks while maintaining above 99% baseline accuracy, with certain configurations even improving accuracy by focusing on the most relevant content, substantially outperforming existing sparse attention methods. The implementation is available at https://github.com/Danielohayon/Block-Sparse-Flash-Attention
comment: 10 pages, 5 figures. Code: https://github.com/Danielohayon/Block-Sparse-Flash-Attention
☆ Prompting-in-a-Series: Psychology-Informed Contents and Embeddings for Personality Recognition With Decoder-Only Models
Large Language Models (LLMs) have demonstrated remarkable capabilities across various natural language processing tasks. This research introduces a novel "Prompting-in-a-Series" algorithm, termed PICEPR (Psychology-Informed Contents Embeddings for Personality Recognition), featuring two pipelines: (a) Contents and (b) Embeddings. The approach demonstrates how a modularised decoder-only LLM can summarize or generate content, which can aid in classifying or enhancing personality recognition functions as a personality feature extractor and a generator for personality-rich content. We conducted various experiments to provide evidence to justify the rationale behind the PICEPR algorithm. Meanwhile, we also explored closed-source models such as \textit{gpt4o} from OpenAI and \textit{gemini} from Google, along with open-source models like \textit{mistral} from Mistral AI, to compare the quality of the generated content. The PICEPR algorithm has achieved a new state-of-the-art performance for personality recognition by 5-15\% improvement. The work repository and models' weight can be found at https://research.jingjietan.com/?q=PICEPR.
comment: 16 pages
☆ Flash Multi-Head Feed-Forward Network
We explore Multi-Head FFN (MH-FFN) as a replacement of FFN in the Transformer architecture, motivated by the structural similarity between single-head attention and FFN. While multi-head mechanisms enhance expressivity in attention, naively applying them to FFNs faces two challenges: memory consumption scaling with the head count, and an imbalanced ratio between the growing intermediate size and the fixed head dimension as models scale, which degrades scalability and expressive power. To address these challenges, we propose Flash Multi-Head FFN (FlashMHF), with two key innovations: an I/O-aware fused kernel computing outputs online in SRAM akin to FlashAttention, and a design using dynamically weighted parallel sub-networks to maintain a balanced ratio between intermediate and head dimensions. Validated on models from 128M to 1.3B parameters, FlashMHF consistently improves perplexity and downstream task accuracy over SwiGLU FFNs, while reducing peak memory usage by 3-5x and accelerating inference by up to 1.08x. Our work establishes the multi-head design as a superior architectural principle for FFNs, presenting FlashMHF as a powerful, efficient, and scalable alternative to FFNs in Transformers.
comment: 17 pages, 8 figures
☆ Progress Ratio Embeddings: An Impatience Signal for Robust Length Control in Neural Text Generation
Modern neural language models achieve high accuracy in text generation, yet precise control over generation length remains underdeveloped. In this paper, we first investigate a recent length control method based on Reverse Positional Embeddings (RPE) and show its limits when control is requested beyond the training distribution. In particular, using a discrete countdown signal tied to the absolute remaining token count leads to instability. To provide robust length control, we introduce Progress Ratio Embeddings (PRE), as continuous embeddings tied to a trigonometric impatience signal. PRE integrates seamlessly into standard Transformer architectures, providing stable length fidelity without degrading text accuracy under standard evaluation metrics. We further show that PRE generalizes well to unseen target lengths. Experiments on two widely used news-summarization benchmarks validate these findings.
☆ MATEX: A Multi-Agent Framework for Explaining Ethereum Transactions
Understanding a complicated Ethereum transaction remains challenging: multi-hop token flows, nested contract calls, and opaque execution paths routinely lead users to blind signing. Based on interviews with everyday users, developers, and auditors, we identify the need for faithful, step-wise explanations grounded in both on-chain evidence and real-world protocol semantics. To meet this need, we introduce (matex, a cognitive multi-agent framework that models transaction understanding as a collaborative investigation-combining rapid hypothesis generation, dynamic off-chain knowledge retrieval, evidence-aware synthesis, and adversarial validation to produce faithful explanations.
☆ XAM: Interactive Explainability for Authorship Attribution Models
We present IXAM, an Interactive eXplainability framework for Authorship Attribution Models. Given an authorship attribution (AA) task and an embedding-based AA model, our tool enables users to interactively explore the model's embedding space and construct an explanation of the model's prediction as a set of writing style features at different levels of granularity. Through a user evaluation, we demonstrate the value of our framework compared to predefined stylistic explanations.
Large Language Models and Forensic Linguistics: Navigating Opportunities and Threats in the Age of Generative AI
Large language models (LLMs) present a dual challenge for forensic linguistics. They serve as powerful analytical tools enabling scalable corpus analysis and embedding-based authorship attribution, while simultaneously destabilising foundational assumptions about idiolect through style mimicry, authorship obfuscation, and the proliferation of synthetic texts. Recent stylometric research indicates that LLMs can approximate surface stylistic features yet exhibit detectable differences from human writers, a tension with significant forensic implications. However, current AI-text detection techniques, whether classifier-based, stylometric, or watermarking approaches, face substantial limitations: high false positive rates for non-native English writers and vulnerability to adversarial strategies such as homoglyph substitution. These uncertainties raise concerns under legal admissibility standards, particularly the Daubert and Kumho Tire frameworks. The article concludes that forensic linguistics requires methodological reconfiguration to remain scientifically credible and legally admissible. Proposed adaptations include hybrid human-AI workflows, explainable detection paradigms beyond binary classification, and validation regimes measuring error and bias across diverse populations. The discipline's core insight, i.e., that language reveals information about its producer, remains valid but must accommodate increasingly complex chains of human and machine authorship.
♻ ☆ Can Fine-Tuning Erase Your Edits? On the Fragile Coexistence of Knowledge Editing and Adaptation
Knowledge editing has emerged as a lightweight alternative to retraining for correcting or injecting specific facts in large language models (LLMs). Meanwhile, fine-tuning remains the default operation for adapting LLMs to new domains and tasks. Despite their widespread adoption, these two post-training interventions have been studied in isolation, leaving open a crucial question: if we fine-tune an edited model, do the edits survive? This question is motivated by two practical scenarios: removing covert or malicious edits, and preserving beneficial edits. If fine-tuning impairs edits (Fig.1), current KE methods become less useful, as every fine-tuned model would require re-editing, which significantly increases the cost; if edits persist, fine-tuned models risk propagating hidden malicious edits, raising serious safety concerns. To this end, we systematically quantify edit decay after fine-tuning, investigating how fine-tuning affects knowledge editing. Our results show that edits decay after fine-tuning, with survival varying across configurations, e.g., AlphaEdit edits decay more than MEMIT edits. Further, we find that fine-tuning edited layers only can effectively remove edits, though at a slight cost to downstream performance. Surprisingly, fine-tuning non-edited layers impairs more edits than full fine-tuning. Overall, our study establishes empirical baselines and actionable strategies for integrating knowledge editing with fine-tuning, and underscores that evaluating model editing requires considering the full LLM application pipeline.
♻ ☆ LLM Output Homogenization is Task Dependent
A large language model can be less helpful if it exhibits output response homogenization. But whether two responses are considered homogeneous, and whether such homogenization is problematic, both depend on the task category. For instance, in objective math tasks, we often expect no variation in the final answer but anticipate variation in the problem-solving strategy. Whereas, for creative writing tasks, we may expect variation in key narrative components (e.g. plot, genre, setting, etc), beyond the vocabulary or embedding diversity produced by temperature-sampling. Previous work addressing output homogenization often fails to conceptualize diversity in a task-dependent way. We address this gap in the literature directly by making the following contributions. (1) We present a task taxonomy comprised of eight task categories that each have distinct concepts of output homogenization. (2) We introduce task-anchored functional diversity to better evaluate output homogenization. (3) We propose a task-anchored sampling technique that increases functional diversity for task categories where homogenization is undesired, while preserving it where it is desired. (4) We challenge the perceived existence of a diversity-quality trade-off by increasing functional diversity while maintaining response quality. Overall, we demonstrate how task dependence improves the evaluation and mitigation of output homogenization.
♻ ☆ SFT Doesn't Always Hurt General Capabilities: Revisiting Domain-Specific Fine-Tuning in LLMs
Supervised Fine-Tuning (SFT) on domain-specific datasets is a common approach to adapt Large Language Models (LLMs) to specialized tasks but is often believed to degrade their general capabilities. In this work, we revisit this trade-off and present both empirical and theoretical insights. First, we show that SFT does not always hurt: using a smaller learning rate can substantially mitigate general performance degradation while preserving comparable target-domain performance. We then provide a theoretical analysis that explains these phenomena and further motivates a new method, Token-Adaptive Loss Reweighting (TALR). Building on this, and recognizing that smaller learning rates alone do not fully eliminate general-performance degradation in all cases, we evaluate a range of strategies for reducing general capability loss, including L2 regularization, LoRA, model averaging, FLOW, and our proposed TALR. Experimental results demonstrate that while no method completely eliminates the trade-off, TALR consistently outperforms these baselines in balancing domain-specific gains and general capabilities. Finally, we distill our findings into practical guidelines for adapting LLMs to new domains: (i) using a small learning rate to achieve a favorable trade-off, and (ii) when a stronger balance is further desired, adopt TALR as an effective strategy.
♻ ☆ AgriGPT-VL: Agricultural Vision-Language Understanding Suite
Despite rapid advances in multimodal large language models, agricultural applications remain constrained by the scarcity of domain-tailored models, curated vision-language corpora, and rigorous evaluation. To address these challenges, we present the AgriGPT-VL Suite, a unified multimodal framework for agriculture. Our contributions are threefold. First, we introduce Agri-3M-VL, the largest vision-language corpus for agriculture to our knowledge, curated by a scalable multi-agent data generator; it comprises 1M image-caption pairs, 2M image-grounded VQA pairs, 50K expert-level VQA instances, and 15K GRPO reinforcement learning samples. Second, we develop AgriGPT-VL, an agriculture-specialized vision-language model trained via a progressive curriculum of textual grounding, multimodal shallow/deep alignment, and GRPO refinement. This method achieves strong multimodal reasoning while preserving text-only capability. Third, we establish AgriBench-VL-4K, a compact yet challenging evaluation suite with open-ended and image-grounded questions, paired with multi-metric evaluation and an LLM-as-a-judge framework. Experiments show that AgriGPT-VL outperforms leading general-purpose VLMs on AgriBench-VL-4K, achieving higher pairwise win rates in the LLM-as-a-judge evaluation. Meanwhile, it remains competitive on the text-only AgriBench-13K with no noticeable degradation of language ability. Ablation studies further confirm consistent gains from our alignment and GRPO refinement stages. We will open source all of the resources to support reproducible research and deployment in low-resource agricultural settings.
♻ ☆ Thinking on the Fly: Test-Time Reasoning Enhancement via Latent Thought Policy Optimization
Recent advancements in Large Language Models (LLMs) have shifted from explicit Chain-of-Thought (CoT) reasoning to more efficient latent reasoning, where intermediate thoughts are represented as vectors rather than text. However, latent reasoning can be brittle on challenging, out-of-distribution tasks where robust reasoning is most critical. To overcome these limitations, we introduce Latent Thought Policy Optimization (LTPO), a parameter-free framework that enhances LLM reasoning entirely at test time, without requiring model parameter updates. LTPO treats intermediate latent "thought" vectors as dynamic parameters that are actively optimized for each problem instance. It employs an online policy gradient method guided by an intrinsic, confidence-based reward signal computed directly from the frozen LLM's own output distributions, eliminating the need for external supervision or expensive text generation during optimization. Extensive experiments on five reasoning benchmarks show that LTPO not only matches or surpasses strong baselines on standard tasks but also demonstrates remarkable robustness where others fail. Most notably, on highly challenging AIME benchmarks where existing latent reasoning baselines collapse to near-zero accuracy, LTPO delivers substantial improvements, showcasing a unique capability for complex reasoning.
Machine Learning 117
☆ DAUNet: A Lightweight UNet Variant with Deformable Convolutions and Parameter-Free Attention for Medical Image Segmentation
Medical image segmentation plays a pivotal role in automated diagnostic and treatment planning systems. In this work, we present DAUNet, a novel lightweight UNet variant that integrates Deformable V2 Convolutions and Parameter-Free Attention (SimAM) to improve spatial adaptability and context-aware feature fusion without increasing model complexity. DAUNet's bottleneck employs dynamic deformable kernels to handle geometric variations, while the decoder and skip pathways are enhanced using SimAM attention modules for saliency-aware refinement. Extensive evaluations on two challenging datasets, FH-PS-AoP (fetal head and pubic symphysis ultrasound) and FUMPE (CT-based pulmonary embolism detection), demonstrate that DAUNet outperforms state-of-the-art models in Dice score, HD95, and ASD, while maintaining superior parameter efficiency. Ablation studies highlight the individual contributions of deformable convolutions and SimAM attention. DAUNet's robustness to missing context and low-contrast regions establishes its suitability for deployment in real-time and resource-constrained clinical environments.
comment: 11 pages, 7 figures
☆ Transformation of Biological Networks into Images via Semantic Cartography for Visual Interpretation and Scalable Deep Analysis
Complex biological networks are fundamental to biomedical science, capturing interactions among molecules, cells, genes, and tissues. Deciphering these networks is critical for understanding health and disease, yet their scale and complexity represent a daunting challenge for current computational methods. Traditional biological network analysis methods, including deep learning approaches, while powerful, face inherent challenges such as limited scalability, oversmoothing long-range dependencies, difficulty in multimodal integration, expressivity bounds, and poor interpretability. We present Graph2Image, a framework that transforms large biological networks into sets of two-dimensional images by spatially arranging representative network nodes on a 2D grid. This transformation decouples the nodes as images, enabling the use of convolutional neural networks (CNNs) with global receptive fields and multi-scale pyramids, thus overcoming limitations of existing biological network analysis methods in scalability, memory efficiency, and long-range context capture. Graph2Image also facilitates seamless integration with other imaging and omics modalities and enhances interpretability through direct visualization of node-associated images. When applied to several large-scale biological network datasets, Graph2Image improved classification accuracy by up to 67.2% over existing methods and provided interpretable visualizations that revealed biologically coherent patterns. It also allows analysis of very large biological networks (nodes > 1 billion) on a personal computer. Graph2Image thus provides a scalable, interpretable, and multimodal-ready approach for biological network analysis, offering new opportunities for disease diagnosis and the study of complex biological systems.
☆ Ideal Attribution and Faithful Watermarks for Language Models
We introduce ideal attribution mechanisms, a formal abstraction for reasoning about attribution decisions over strings. At the core of this abstraction lies the ledger, an append-only log of the prompt-response interaction history between a model and its user. Each mechanism produces deterministic decisions based on the ledger and an explicit selection criterion, making it well-suited to serve as a ground truth for attribution. We frame the design goal of watermarking schemes as faithful representation of ideal attribution mechanisms. This novel perspective brings conceptual clarity, replacing piecemeal probabilistic statements with a unified language for stating the guarantees of each scheme. It also enables precise reasoning about desiderata for future watermarking schemes, even when no current construction achieves them, since the ideal functionalities are specified first. In this way, the framework provides a roadmap that clarifies which guarantees are attainable in an idealized setting and worth pursuing in practice.
comment: 30 pages
☆ Evaluating and Preserving High-level Fidelity in Super-Resolution
Recent image Super-Resolution (SR) models are achieving impressive effects in reconstructing details and delivering visually pleasant outputs. However, the overpowering generative ability can sometimes hallucinate and thus change the image content despite gaining high visual quality. This type of high-level change can be easily identified by humans yet not well-studied in existing low-level image quality metrics. In this paper, we establish the importance of measuring high-level fidelity for SR models as a complementary criterion to reveal the reliability of generative SR models. We construct the first annotated dataset with fidelity scores from different SR models, and evaluate how state-of-the-art (SOTA) SR models actually perform in preserving high-level fidelity. Based on the dataset, we then analyze how existing image quality metrics correlate with fidelity measurement, and further show that this high-level task can be better addressed by foundation models. Finally, by fine-tuning SR models based on our fidelity feedback, we show that both semantic fidelity and perceptual quality can be improved, demonstrating the potential value of our proposed criteria, both in model evaluation and optimization. We will release the dataset, code, and models upon acceptance.
☆ A Comprehensive Study of Supervised Machine Learning Models for Zero-Day Attack Detection: Analyzing Performance on Imbalanced Data
Among the various types of cyberattacks, identifying zero-day attacks is problematic because they are unknown to security systems as their pattern and characteristics do not match known blacklisted attacks. There are many Machine Learning (ML) models designed to analyze and detect network attacks, especially using supervised models. However, these models are designed to classify samples (normal and attacks) based on the patterns they learn during the training phase, so they perform inefficiently on unseen attacks. This research addresses this issue by evaluating five different supervised models to assess their performance and execution time in predicting zero-day attacks and find out which model performs accurately and quickly. The goal is to improve the performance of these supervised models by not only proposing a framework that applies grid search, dimensionality reduction and oversampling methods to overcome the imbalance problem, but also comparing the effectiveness of oversampling on ml model metrics, in particular the accuracy. To emulate attack detection in real life, this research applies a highly imbalanced data set and only exposes the classifiers to zero-day attacks during the testing phase, so the models are not trained to flag the zero-day attacks. Our results show that Random Forest (RF) performs best under both oversampling and non-oversampling conditions, this increased effectiveness comes at the cost of longer processing times. Therefore, we selected XG Boost (XGB) as the top model due to its fast and highly accurate performance in detecting zero-day attacks.
comment: 13 pages, 5 figures
☆ Transferring Clinical Knowledge into ECGs Representation
Deep learning models have shown high accuracy in classifying electrocardiograms (ECGs), but their black box nature hinders clinical adoption due to a lack of trust and interpretability. To address this, we propose a novel three-stage training paradigm that transfers knowledge from multimodal clinical data (laboratory exams, vitals, biometrics) into a powerful, yet unimodal, ECG encoder. We employ a self-supervised, joint-embedding pre-training stage to create an ECG representation that is enriched with contextual clinical information, while only requiring the ECG signal at inference time. Furthermore, as an indirect way to explain the model's output we train it to also predict associated laboratory abnormalities directly from the ECG embedding. Evaluated on the MIMIC-IV-ECG dataset, our model outperforms a standard signal-only baseline in multi-label diagnosis classification and successfully bridges a substantial portion of the performance gap to a fully multimodal model that requires all data at inference. Our work demonstrates a practical and effective method for creating more accurate and trustworthy ECG classification models. By converting abstract predictions into physiologically grounded \emph{explanations}, our approach offers a promising path toward the safer integration of AI into clinical workflows.
☆ Block Sparse Flash Attention
Modern large language models increasingly require long contexts for reasoning and multi-document tasks, but attention's quadratic complexity creates a severe computational bottleneck. We present Block-Sparse FlashAttention (BSFA), a drop-in replacement that accelerates long-context inference while preserving model quality. Unlike methods that predict importance before computing scores, BSFA computes exact query-key similarities to select the top-k most important value blocks for each query. By comparing per-block maximum scores against calibrated thresholds, we skip approximately 50% of the computation and memory transfers for pruned blocks. Our training-free approach requires only a one-time threshold calibration on a small dataset to learn the per-layer and per-head attention score distributions. We provide a CUDA kernel implementation that can be used as a drop-in replacement for FlashAttention. On Llama-3.1-8B, BSFA achieves up to 1.10x speedup on real-world reasoning benchmarks and up to 1.24x for needle-in-a-haystack retrieval tasks while maintaining above 99% baseline accuracy, with certain configurations even improving accuracy by focusing on the most relevant content, substantially outperforming existing sparse attention methods. The implementation is available at https://github.com/Danielohayon/Block-Sparse-Flash-Attention
comment: 10 pages, 5 figures. Code: https://github.com/Danielohayon/Block-Sparse-Flash-Attention
☆ Always Keep Your Promises: DynamicLRP, A Model-Agnostic Solution To Layer-Wise Relevance Propagation
Layer-wise Relevance Propagation (LRP) provides principled attribution for neural networks through conservation properties and foundations in Deep Taylor Decomposition. However, existing implementations operate at the module level, requiring architecture-specific propagation rules and modifications. These limit the generality of target model and sustainability of implementations as architectures evolve. We introduce DynamicLRP, a model-agnostic LRP framework operating at the tensor operation level. By decomposing attribution to individual operations within computation graphs and introducing a novel mechanism for deferred activation resolution, named the Promise System, our approach achieves true architecture agnosticity while maintaining LRP's theoretical guarantees. This design operates independently of backpropagation machinery, enabling operation on arbitrary computation graphs without model modification and side-by-side execution with gradient backpropagation. Being based on computation graphs, this method is theoretically extensible to other deep learning libraries that support auto-differentiation. We demonstrate faithfulness matching or exceeding specialized implementations (1.77 vs 1.69 ABPC on VGG, equivalent performance on ViT, 93.70\% and 95.06\% top-1 attribution accuracy for explaining RoBERTa-large and Flan-T5-large answers on SQuADv2, respectively) while maintaining practical efficiency on models with hundreds of millions of parameters. We achieved 99.92\% node coverage across 31,465 computation graph nodes from 15 diverse architectures, including state-space models (Mamba), audio transformers (Whisper), and multimodal systems (DePlot) without any model-specific code with rules for 47 fundamental operations implemented. Our operation-level decomposition and Promise System establish a sustainable, extensible foundation for LRP across evolving architectures.
comment: Work in progress, (12 pages manuscript, 6 figures, 6 tables, 3 pages references, 14 pages appendix)
☆ Optimizing video analytics inference pipelines: a case study
Cost-effective and scalable video analytics are essential for precision livestock monitoring, where high-resolution footage and near-real-time monitoring needs from commercial farms generates substantial computational workloads. This paper presents a comprehensive case study on optimizing a poultry welfare monitoring system through system-level improvements across detection, tracking, clustering, and behavioral analysis modules. We introduce a set of optimizations, including multi-level parallelization, Optimizing code with substituting CPU code with GPU-accelerated code, vectorized clustering, and memory-efficient post-processing. Evaluated on real-world farm video footage, these changes deliver up to a 2x speedup across pipelines without compromising model accuracy. Our findings highlight practical strategies for building high-throughput, low-latency video inference systems that reduce infrastructure demands in agricultural and smart sensing deployments as well as other large-scale video analytics applications.
comment: Accepted to the IEEE/ACM International Conference on Big Data Computing, Applications and Technologies (BDCAT 2025)
☆ Toward Reliable Machine Unlearning: Theory, Algorithms, and Evaluation
We propose new methodologies for both unlearning random set of samples and class unlearning and show that they outperform existing methods. The main driver of our unlearning methods is the similarity of predictions to a retrained model on both the forget and remain samples. We introduce Adversarial Machine UNlearning (AMUN), which surpasses prior state-of-the-art methods for image classification based on SOTA MIA scores. AMUN lowers the model's confidence on forget samples by fine-tuning on their corresponding adversarial examples. Through theoretical analysis, we identify factors governing AMUN's performance, including smoothness. To facilitate training of smooth models with a controlled Lipschitz constant, we propose FastClip, a scalable method that performs layer-wise spectral-norm clipping of affine layers. In a separate study, we show that increased smoothness naturally improves adversarial example transfer, thereby supporting the second factor above. Following the same principles for class unlearning, we show that existing methods fail in replicating a retrained model's behavior by introducing a nearest-neighbor membership inference attack (MIA-NN) that uses the probabilities assigned to neighboring classes to detect unlearned samples and demonstrate the vulnerability of such methods. We then propose a fine-tuning objective that mitigates this leakage by approximating, for forget-class inputs, the distribution over remaining classes that a model retrained from scratch would produce. To construct this approximation, we estimate inter-class similarity and tilt the target model's distribution accordingly. The resulting Tilted ReWeighting(TRW) distribution serves as the desired target during fine-tuning. Across multiple benchmarks, TRW matches or surpasses existing unlearning methods on prior metrics.
☆ Flash Multi-Head Feed-Forward Network
We explore Multi-Head FFN (MH-FFN) as a replacement of FFN in the Transformer architecture, motivated by the structural similarity between single-head attention and FFN. While multi-head mechanisms enhance expressivity in attention, naively applying them to FFNs faces two challenges: memory consumption scaling with the head count, and an imbalanced ratio between the growing intermediate size and the fixed head dimension as models scale, which degrades scalability and expressive power. To address these challenges, we propose Flash Multi-Head FFN (FlashMHF), with two key innovations: an I/O-aware fused kernel computing outputs online in SRAM akin to FlashAttention, and a design using dynamically weighted parallel sub-networks to maintain a balanced ratio between intermediate and head dimensions. Validated on models from 128M to 1.3B parameters, FlashMHF consistently improves perplexity and downstream task accuracy over SwiGLU FFNs, while reducing peak memory usage by 3-5x and accelerating inference by up to 1.08x. Our work establishes the multi-head design as a superior architectural principle for FFNs, presenting FlashMHF as a powerful, efficient, and scalable alternative to FFNs in Transformers.
comment: 17 pages, 8 figures
☆ OXtal: An All-Atom Diffusion Model for Organic Crystal Structure Prediction
Accurately predicting experimentally-realizable 3D molecular crystal structures from their 2D chemical graphs is a long-standing open challenge in computational chemistry called crystal structure prediction (CSP). Efficiently solving this problem has implications ranging from pharmaceuticals to organic semiconductors, as crystal packing directly governs the physical and chemical properties of organic solids. In this paper, we introduce OXtal, a large-scale 100M parameter all-atom diffusion model that directly learns the conditional joint distribution over intramolecular conformations and periodic packing. To efficiently scale OXtal, we abandon explicit equivariant architectures imposing inductive bias arising from crystal symmetries in favor of data augmentation strategies. We further propose a novel crystallization-inspired lattice-free training scheme, Stoichiometric Stochastic Shell Sampling ($S^4$), that efficiently captures long-range interactions while sidestepping explicit lattice parametrization -- thus enabling more scalable architectural choices at all-atom resolution. By leveraging a large dataset of 600K experimentally validated crystal structures (including rigid and flexible molecules, co-crystals, and solvates), OXtal achieves orders-of-magnitude improvements over prior ab initio machine learning CSP methods, while remaining orders of magnitude cheaper than traditional quantum-chemical approaches. Specifically, OXtal recovers experimental structures with conformer $\text{RMSD}_1<0.5$ Å and attains over 80\% packing similarity rate, demonstrating its ability to model both thermodynamic and kinetic regularities of molecular crystallization.
☆ On Memory: A comparison of memory mechanisms in world models
World models enable agents to plan within imagined environments by predicting future states conditioned on past observations and actions. However, their ability to plan over long horizons is limited by the effective memory span of the backbone architecture. This limitation leads to perceptual drift in long rollouts, hindering the model's capacity to perform loop closures within imagined trajectories. In this work, we investigate the effective memory span of transformer-based world models through an analysis of several memory augmentation mechanisms. We introduce a taxonomy that distinguishes between memory encoding and memory injection mechanisms, motivating their roles in extending the world model's memory through the lens of residual stream dynamics. Using a state recall evaluation task, we measure the memory recall of each mechanism and analyze its respective trade-offs. Our findings show that memory mechanisms improve the effective memory span in vision transformers and provide a path to completing loop closures within a world model's imagination.
comment: 10 pages, 1 figure
LLM-Driven Composite Neural Architecture Search for Multi-Source RL State Encoding NeurIPS 2025
Designing state encoders for reinforcement learning (RL) with multiple information sources -- such as sensor measurements, time-series signals, image observations, and textual instructions -- remains underexplored and often requires manual design. We formalize this challenge as a problem of composite neural architecture search (NAS), where multiple source-specific modules and a fusion module are jointly optimized. Existing NAS methods overlook useful side information from the intermediate outputs of these modules -- such as their representation quality -- limiting sample efficiency in multi-source RL settings. To address this, we propose an LLM-driven NAS pipeline that leverages language-model priors and intermediate-output signals to guide sample-efficient search for high-performing composite state encoders. On a mixed-autonomy traffic control task, our approach discovers higher-performing architectures with fewer candidate evaluations than traditional NAS baselines and the LLM-based GENIUS framework.
comment: NeurIPS 2025 Workshop on Bridging Language, Agent, and World Models for Reasoning and Planning
☆ Selective Masking based Self-Supervised Learning for Image Semantic Segmentation
This paper proposes a novel self-supervised learning method for semantic segmentation using selective masking image reconstruction as the pretraining task. Our proposed method replaces the random masking augmentation used in most masked image modelling pretraining methods. The proposed selective masking method selectively masks image patches with the highest reconstruction loss by breaking the image reconstruction pretraining into iterative steps to leverage the trained model's knowledge. We show on two general datasets (Pascal VOC and Cityscapes) and two weed segmentation datasets (Nassar 2020 and Sugarbeets 2016) that our proposed selective masking method outperforms the traditional random masking method and supervised ImageNet pretraining on downstream segmentation accuracy by 2.9% for general datasets and 2.5% for weed segmentation datasets. Furthermore, we found that our selective masking method significantly improves accuracy for the lowest-performing classes. Lastly, we show that using the same pretraining and downstream dataset yields the best result for low-budget self-supervised pretraining. Our proposed Selective Masking Image Reconstruction method provides an effective and practical solution to improve end-to-end semantic segmentation workflows, especially for scenarios that require limited model capacity to meet inference speed and computational resource requirements.
☆ Physics-Guided Diffusion Priors for Multi-Slice Reconstruction in Scientific Imaging AAAI
Accurate multi-slice reconstruction from limited measurement data is crucial to speed up the acquisition process in medical and scientific imaging. However, it remains challenging due to the ill-posed nature of the problem and the high computational and memory demands. We propose a framework that addresses these challenges by integrating partitioned diffusion priors with physics-based constraints. By doing so, we substantially reduce memory usage per GPU while preserving high reconstruction quality, outperforming both physics-only and full multi-slice reconstruction baselines for different modalities, namely Magnetic Resonance Imaging (MRI) and four-dimensional Scanning Transmission Electron Microscopy (4D-STEM). Additionally, we show that the proposed method improves in-distribution accuracy as well as strong generalization to out-of-distribution datasets.
comment: 8 pages, 5 figures, AAAI AI2ASE 2026
☆ Joint Learning of Feasibility-Aware Signal Temporal Logic and BarrierNet for Robust and Correct Control
Control Barrier Functions (CBFs) have emerged as a powerful tool for enforcing safety in optimization-based controllers, and their integration with Signal Temporal Logic (STL) has enabled the specification-driven synthesis of complex robotic behaviors. However, existing CBF-STL approaches typically rely on fixed hyperparameters and myopic, per-time step optimization, which can lead to overly conservative behavior, infeasibility near tight input limits, and difficulty satisfying long-horizon STL tasks. To address these limitations, we propose a feasibility-aware learning framework that embeds trainable, time-varying High Order Control Barrier Functions (HOCBFs) into a differentiable Quadratic Program (dQP). Our approach provides a systematic procedure for constructing time-varying HOCBF constraints for a broad fragment of STL and introduces a unified robustness measure that jointly captures STL satisfaction, QP feasibility, and control-bound compliance. Three neural networks-InitNet, RefNet, and an extended BarrierNet-collaborate to generate reference inputs and adapt constraint-related hyperparameters automatically over time and across initial conditions, reducing conservativeness while maximizing robustness. The resulting controller achieves STL satisfaction with strictly feasible dQPs and requires no manual tuning. Simulation results demonstrate that the proposed framework maintains high STL robustness under tight input bounds and significantly outperforms fixed-parameter and non-adaptive baselines in complex environments.
comment: 16 pages, 11 figures
☆ Prediction with Expert Advice under Local Differential Privacy
We study the classic problem of prediction with expert advice under the constraint of local differential privacy (LDP). In this context, we first show that a classical algorithm naturally satisfies LDP and then design two new algorithms that improve it: RW-AdaBatch and RW-Meta. For RW-AdaBatch, we exploit the limited-switching behavior induced by LDP to provide a novel form of privacy amplification that grows stronger on easier data, analogous to the shuffle model in offline learning. Drawing on the theory of random walks, we prove that this improvement carries essentially no utility cost. For RW-Meta, we develop a general method for privately selecting between experts that are themselves non-trivial learning algorithms, and we show that in the context of LDP this carries no extra privacy cost. In contrast, prior work has only considered data-independent experts. We also derive formal regret bounds that scale inversely with the degree of independence between experts. Our analysis is supplemented by evaluation on real-world data reported by hospitals during the COVID-19 pandemic; RW-Meta outperforms both the classical baseline and a state-of-the-art \textit{central} DP algorithm by 1.5-3$\times$ on the task of predicting which hospital will report the highest density of COVID patients each week.
comment: 19 pages, 3 figures
☆ Comparing BFGS and OGR for Second-Order Optimization
Estimating the Hessian matrix, especially for neural network training, is a challenging problem due to high dimensionality and cost. In this work, we compare the classical Sherman-Morrison update used in the popular BFGS method (Broy-den-Fletcher-Goldfarb-Shanno), which maintains a positive definite Hessian approximation under a convexity assumption, with a novel approach called Online Gradient Regression (OGR). OGR performs regression of gradients against positions using an exponential moving average to estimate second derivatives online, without requiring Hessian inversion. Unlike BFGS, OGR allows estimation of a general (not necessarily positive definite) Hessian and can thus handle non-convex structures. We evaluate both methods across standard test functions and demonstrate that OGR achieves faster convergence and improved loss, particularly in non-convex settings.
☆ Learning Conditional Independence Differential Graphs From Time-Dependent Data
Estimation of differences in conditional independence graphs (CIGs) of two time series Gaussian graphical models (TSGGMs) is investigated where the two TSGGMs are known to have similar structure. The TSGGM structure is encoded in the inverse power spectral density (IPSD) of the time series. In several existing works, one is interested in estimating the difference in two precision matrices to characterize underlying changes in conditional dependencies of two sets of data consisting of independent and identically distributed (i.i.d.) observations. In this paper we consider estimation of the difference in two IPSDs to characterize the underlying changes in conditional dependencies of two sets of time-dependent data. Our approach accounts for data time dependencies unlike past work. We analyze a penalized D-trace loss function approach in the frequency domain for differential graph learning, using Wirtinger calculus. We consider both convex (group lasso) and non-convex (log-sum and SCAD group penalties) penalty/regularization functions. An alternating direction method of multipliers (ADMM) algorithm is presented to optimize the objective function. We establish sufficient conditions in a high-dimensional setting for consistency (convergence of the inverse power spectral density to true value in the Frobenius norm) and graph recovery. Both synthetic and real data examples are presented in support of the proposed approaches. In synthetic data examples, our log-sum-penalized differential time-series graph estimator significantly outperformed our lasso based differential time-series graph estimator which, in turn, significantly outperformed an existing lasso-penalized i.i.d. modeling approach, with $F_1$ score as the performance metric.
comment: 20 pages, 4 figures, 2 tables. To be published in IEEE Access, 2025
☆ Statistical analysis of Inverse Entropy-regularized Reinforcement Learning
Inverse reinforcement learning aims to infer the reward function that explains expert behavior observed through trajectories of state--action pairs. A long-standing difficulty in classical IRL is the non-uniqueness of the recovered reward: many reward functions can induce the same optimal policy, rendering the inverse problem ill-posed. In this paper, we develop a statistical framework for Inverse Entropy-regularized Reinforcement Learning that resolves this ambiguity by combining entropy regularization with a least-squares reconstruction of the reward from the soft Bellman residual. This combination yields a unique and well-defined so-called least-squares reward consistent with the expert policy. We model the expert demonstrations as a Markov chain with the invariant distribution defined by an unknown expert policy $π^\star$ and estimate the policy by a penalized maximum-likelihood procedure over a class of conditional distributions on the action space. We establish high-probability bounds for the excess Kullback--Leibler divergence between the estimated policy and the expert policy, accounting for statistical complexity through covering numbers of the policy class. These results lead to non-asymptotic minimax optimal convergence rates for the least-squares reward function, revealing the interplay between smoothing (entropy regularization), model complexity, and sample size. Our analysis bridges the gap between behavior cloning, inverse reinforcement learning, and modern statistical learning theory.
comment: 27 pages
☆ Task adaptation of Vision-Language-Action model: 1st Place Solution for the 2025 BEHAVIOR Challenge NeurIPS
We present a vision-action policy that won 1st place in the 2025 BEHAVIOR Challenge - a large-scale benchmark featuring 50 diverse long-horizon household tasks in photo-realistic simulation, requiring bimanual manipulation, navigation, and context-aware decision making. Building on the Pi0.5 architecture, we introduce several innovations. Our primary contribution is correlated noise for flow matching, which improves training efficiency and enables correlation-aware inpainting for smooth action sequences. We also apply learnable mixed-layer attention and System 2 stage tracking for ambiguity resolution. Training employs multi-sample flow matching to reduce variance, while inference uses action compression and challenge-specific correction rules. Our approach achieves 26% q-score across all 50 tasks on both public and private leaderboards.
comment: 2025 NeurIPS Behavior Challenge 1st place solution
☆ PARIS: Pruning Algorithm via the Representer theorem for Imbalanced Scenarios
The challenge of \textbf{imbalanced regression} arises when standard Empirical Risk Minimization (ERM) biases models toward high-frequency regions of the data distribution, causing severe degradation on rare but high-impact ``tail'' events. Existing strategies uch as loss re-weighting or synthetic over-sampling often introduce noise, distort the underlying distribution, or add substantial algorithmic complexity. We introduce \textbf{PARIS} (Pruning Algorithm via the Representer theorem for Imbalanced Scenarios), a principled framework that mitigates imbalance by \emph{optimizing the training set itself}. PARIS leverages the representer theorem for neural networks to compute a \textbf{closed-form representer deletion residual}, which quantifies the exact change in validation loss caused by removing a single training point \emph{without retraining}. Combined with an efficient Cholesky rank-one downdating scheme, PARIS performs fast, iterative pruning that eliminates uninformative or performance-degrading samples. We use a real-world space weather example, where PARIS reduces the training set by up to 75\% while preserving or improving overall RMSE, outperforming re-weighting, synthetic oversampling, and boosting baselines. Our results demonstrate that representer-guided dataset pruning is a powerful, interpretable, and computationally efficient approach to rare-event regression.
☆ Symmetric Aggregation of Conformity Scores for Efficient Uncertainty Sets
Access to multiple predictive models trained for the same task, whether in regression or classification, is increasingly common in many applications. Aggregating their predictive uncertainties to produce reliable and efficient uncertainty quantification is therefore a critical but still underexplored challenge, especially within the framework of conformal prediction (CP). While CP methods can generate individual prediction sets from each model, combining them into a single, more informative set remains a challenging problem. To address this, we propose SACP (Symmetric Aggregated Conformal Prediction), a novel method that aggregates nonconformity scores from multiple predictors. SACP transforms these scores into e-values and combines them using any symmetric aggregation function. This flexible design enables a robust, data-driven framework for selecting aggregation strategies that yield sharper prediction sets. We also provide theoretical insights that help justify the validity and performance of the SACP approach. Extensive experiments on diverse datasets show that SACP consistently improves efficiency and often outperforms state-of-the-art model aggregation baselines.
☆ A Unifying Human-Centered AI Fairness Framework
The increasing use of Artificial Intelligence (AI) in critical societal domains has amplified concerns about fairness, particularly regarding unequal treatment across sensitive attributes such as race, gender, and socioeconomic status. While there has been substantial work on ensuring AI fairness, navigating trade-offs between competing notions of fairness as well as predictive accuracy remains challenging, creating barriers to the practical deployment of fair AI systems. To address this, we introduce a unifying human-centered fairness framework that systematically covers eight distinct fairness metrics, formed by combining individual and group fairness, infra-marginal and intersectional assumptions, and outcome-based and equality-of-opportunity (EOO) perspectives. This structure allows stakeholders to align fairness interventions with their values and contextual considerations. The framework uses a consistent and easy-to-understand formulation for all metrics to reduce the learning curve for non-experts. Rather than privileging a single fairness notion, the framework enables stakeholders to assign weights across multiple fairness objectives, reflecting their priorities and facilitating multi-stakeholder compromises. We apply this approach to four real-world datasets: the UCI Adult census dataset for income prediction, the COMPAS dataset for criminal recidivism, the German Credit dataset for credit risk assessment, and the MEPS dataset for healthcare utilization. We show that adjusting weights reveals nuanced trade-offs between different fairness metrics. Finally, through case studies in judicial decision-making and healthcare, we demonstrate how the framework can inform practical and value-sensitive deployment of fair AI systems.
☆ Hidden Leaks in Time Series Forecasting: How Data Leakage Affects LSTM Evaluation Across Configurations and Validation Strategies
Deep learning models, particularly Long Short-Term Memory (LSTM) networks, are widely used in time series forecasting due to their ability to capture complex temporal dependencies. However, evaluation integrity is often compromised by data leakage, a methodological flaw in which input-output sequences are constructed before dataset partitioning, allowing future information to unintentionally influence training. This study investigates the impact of data leakage on performance, focusing on how validation design mediates leakage sensitivity. Three widely used validation techniques (2-way split, 3-way split, and 10-fold cross-validation) are evaluated under both leaky (pre-split sequence generation) and clean conditions, with the latter mitigating leakage risk by enforcing temporal separation during data splitting prior to sequence construction. The effect of leakage is assessed using RMSE Gain, which measures the relative increase in RMSE caused by leakage, computed as the percentage difference between leaky and clean setups. Empirical results show that 10-fold cross-validation exhibits RMSE Gain values of up to 20.5% at extended lag steps. In contrast, 2-way and 3-way splits demonstrate greater robustness, typically maintaining RMSE Gain below 5% across diverse configurations. Moreover, input window size and lag step significantly influence leakage sensitivity: smaller windows and longer lags increase the risk of leakage, whereas larger windows help reduce it. These findings underscore the need for configuration-aware, leakage-resistant evaluation pipelines to ensure reliable performance estimation.
☆ Adaptive Normalization Mamba with Multi Scale Trend Decomposition and Patch MoE Encoding
Time series forecasting in real world environments faces significant challenges non stationarity, multi scale temporal patterns, and distributional shifts that degrade model stability and accuracy. This study propose AdaMamba, a unified forecasting architecture that integrates adaptive normalization, multi scale trend extraction, and contextual sequence modeling to address these challenges. AdaMamba begins with an Adaptive Normalization Block that removes non stationary components through multi scale convolutional trend extraction and channel wise recalibration, enabling consistent detrending and variance stabilization. The normalized sequence is then processed by a Context Encoder that combines patch wise embeddings, positional encoding, and a Mamba enhanced Transformer layer with a mixture of experts feed forward module, allowing efficient modeling of both long range dependencies and local temporal dynamics. A lightweight prediction head generates multi horizon forecasts, and a denormalization mechanism reconstructs outputs by reintegrating local trends to ensure robustness under varying temporal conditions. AdaMamba provides strong representational capacity with modular extensibility, supporting deterministic prediction and compatibility with probabilistic extensions. Its design effectively mitigates covariate shift and enhances predictive reliability across heterogeneous datasets. Experimental evaluations demonstrate that AdaMamba's combination of adaptive normalization and expert augmented contextual modeling yields consistent improvements in stability and accuracy over conventional Transformer based baselines.
☆ Evaluating the Sensitivity of BiLSTM Forecasting Models to Sequence Length and Input Noise
Deep learning (DL) models, a specialized class of multilayer neural networks, have become central to time-series forecasting in critical domains such as environmental monitoring and the Internet of Things (IoT). Among these, Bidirectional Long Short-Term Memory (BiLSTM) architectures are particularly effective in capturing complex temporal dependencies. However, the robustness and generalization of such models are highly sensitive to input data characteristics - an aspect that remains underexplored in existing literature. This study presents a systematic empirical analysis of two key data-centric factors: input sequence length and additive noise. To support this investigation, a modular and reproducible forecasting pipeline is developed, incorporating standardized preprocessing, sequence generation, model training, validation, and evaluation. Controlled experiments are conducted on three real-world datasets with varying sampling frequencies to assess BiLSTM performance under different input conditions. The results yield three key findings: (1) longer input sequences significantly increase the risk of overfitting and data leakage, particularly in data-constrained environments; (2) additive noise consistently degrades predictive accuracy across sampling frequencies; and (3) the simultaneous presence of both factors results in the most substantial decline in model stability. While datasets with higher observation frequencies exhibit greater robustness, they remain vulnerable when both input challenges are present. These findings highlight important limitations in current DL-based forecasting pipelines and underscore the need for data-aware design strategies. This work contributes to a deeper understanding of DL model behavior in dynamic time-series environments and provides practical insights for developing more reliable and generalizable forecasting systems.
☆ Deep Reinforcement Learning for Phishing Detection with Transformer-Based Semantic Features
Phishing is a cybercrime in which individuals are deceived into revealing personal information, often resulting in financial loss. These attacks commonly occur through fraudulent messages, misleading advertisements, and compromised legitimate websites. This study proposes a Quantile Regression Deep Q-Network (QR-DQN) approach that integrates RoBERTa semantic embeddings with handcrafted lexical features to enhance phishing detection while accounting for uncertainties. Unlike traditional DQN methods that estimate single scalar Q-values, QR-DQN leverages quantile regression to model the distribution of returns, improving stability and generalization on unseen phishing data. A diverse dataset of 105,000 URLs was curated from PhishTank, OpenPhish, Cloudflare, and other sources, and the model was evaluated using an 80/20 train-test split. The QR-DQN framework achieved a test accuracy of 99.86%, precision of 99.75%, recall of 99.96%, and F1-score of 99.85%, demonstrating high effectiveness. Compared to standard DQN with lexical features, the hybrid QR-DQN with lexical and semantic features reduced the generalization gap from 1.66% to 0.04%, indicating significant improvement in robustness. Five-fold cross-validation confirmed model reliability, yielding a mean accuracy of 99.90% with a standard deviation of 0.04%. These results suggest that the proposed hybrid approach effectively identifies phishing threats, adapts to evolving attack strategies, and generalizes well to unseen data.
☆ Parent-Guided Semantic Reward Model (PGSRM): Embedding-Based Reward Functions for Reinforcement Learning of Transformer Language Models
We introduce the Parent-Guided Semantic Reward Model (PGSRM), a lightweight reward framework for reinforcement learning (RL) of transformer language models. PGSRM replaces binary correctness signals, human preference data, and trained reward models with a simple signal: cosine similarity between a parent model's reference output embedding and a child model's generated output for the same input. This yields a dense, semantically meaningful reward with no human annotation or additional model training. We apply PGSRM on five language tasks and find that it produces smoother reward improvement and more stable PPO dynamics than a binary reward baseline, suggesting that embedding-based semantic rewards are a practical alternative to RLHF-style reward modeling for parent-guided alignment in smaller transformer models.
☆ Know your Trajectory -- Trustworthy Reinforcement Learning deployment through Importance-Based Trajectory Analysis AAAI 2026
As Reinforcement Learning (RL) agents are increasingly deployed in real-world applications, ensuring their behavior is transparent and trustworthy is paramount. A key component of trust is explainability, yet much of the work in Explainable RL (XRL) focuses on local, single-step decisions. This paper addresses the critical need for explaining an agent's long-term behavior through trajectory-level analysis. We introduce a novel framework that ranks entire trajectories by defining and aggregating a new state-importance metric. This metric combines the classic Q-value difference with a "radical term" that captures the agent's affinity to reach its goal, providing a more nuanced measure of state criticality. We demonstrate that our method successfully identifies optimal trajectories from a heterogeneous collection of agent experiences. Furthermore, by generating counterfactual rollouts from critical states within these trajectories, we show that the agent's chosen path is robustly superior to alternatives, thereby providing a powerful "Why this, and not that?" explanation. Our experiments in standard OpenAI Gym environments validate that our proposed importance metric is more effective at identifying optimal behaviors compared to classic approaches, offering a significant step towards trustworthy autonomous systems.
comment: Accepted at 4th Deployable AI Workshop at AAAI 2026
☆ Energy-Efficient Navigation for Surface Vehicles in Vortical Flow Fields
For centuries, khalasi have skillfully harnessed ocean currents to navigate vast waters with minimal effort. Emulating this intuition in autonomous systems remains a significant challenge, particularly for Autonomous Surface Vehicles tasked with long duration missions under strict energy budgets. In this work, we present a learning-based approach for energy-efficient surface vehicle navigation in vortical flow fields, where partial observability often undermines traditional path-planning methods. We present an end to end reinforcement learning framework based on Soft Actor Critic that learns flow-aware navigation policies using only local velocity measurements. Through extensive evaluation across diverse and dynamically rich scenarios, our method demonstrates substantial energy savings and robust generalization to previously unseen flow conditions, offering a promising path toward long term autonomy in ocean environments. The navigation paths generated by our proposed approach show an improvement in energy conservation 30 to 50 percent compared to the existing state of the art techniques.
comment: Under Review for International Conference on Robotics and Automation (ICRA 2026)
☆ MINES: Explainable Anomaly Detection through Web API Invariant Inference
Detecting the anomalies of web applications, important infrastructures for running modern companies and governments, is crucial for providing reliable web services. Many modern web applications operate on web APIs (e.g., RESTful, SOAP, and WebSockets), their exposure invites intended attacks or unintended illegal visits, causing abnormal system behaviors. However, such anomalies can share very similar logs with normal logs, missing crucial information (which could be in database) for log discrimination. Further, log instances can be also noisy, which can further mislead the state-of-the-art log learning solutions to learn spurious correlation, resulting superficial models and rules for anomaly detection. In this work, we propose MINES which infers explainable API invariants for anomaly detection from the schema level instead of detailed raw log instances, which can (1) significantly discriminate noise in logs to identify precise normalities and (2) detect abnormal behaviors beyond the instrumented logs. Technically, MINES (1) converts API signatures into table schema to enhance the original database shema; and (2) infers the potential database constraints on the enhanced database schema to capture the potential relationships between APIs and database tables. MINES uses LLM for extracting potential relationship based on two given table structures; and use normal log instances to reject and accept LLM-generated invariants. Finally, MINES translates the inferred constraints into invariants to generate Python code for verifying the runtime logs. We extensively evaluate MINES on web-tamper attacks on the benchmarks of TrainTicket, NiceFish, Gitea, Mastodon, and NextCloud against baselines such as LogRobust, LogFormer, and WebNorm. The results show that MINES achieves high recall for the anomalies while introducing almost zero false positives, indicating a new state-of-the-art.
☆ Less Is More, but Where? Dynamic Token Compression via LLM-Guided Keyframe Prior NeurIPS 2025
Recent advances in Video Large Language Models (VLLMs) have achieved remarkable video understanding capabilities, yet face critical efficiency bottlenecks due to quadratic computational growth with lengthy visual token sequences of long videos. While existing keyframe sampling methods can improve temporal modeling efficiency, additional computational cost is introduced before feature encoding, and the binary frame selection paradigm is found suboptimal. Therefore, in this work, we propose Dynamic Token compression via LLM-guided Keyframe prior (DyToK), a training-free paradigm that enables dynamic token compression by harnessing VLLMs' inherent attention mechanisms. Our analysis reveals that VLLM attention layers naturally encoding query-conditioned keyframe priors, by which DyToK dynamically adjusts per-frame token retention ratios, prioritizing semantically rich frames while suppressing redundancies. Extensive experiments demonstrate that DyToK achieves state-of-the-art efficiency-accuracy tradeoffs. DyToK shows plug-and-play compatibility with existing compression methods, such as VisionZip and FastV, attaining 4.3x faster inference while preserving accuracy across multiple VLLMs, such as LLaVA-OneVision and Qwen2.5-VL. Code is available at https://github.com/yu-lin-li/DyToK .
comment: Accepted by NeurIPS 2025
☆ Hide-and-Seek Attribution: Weakly Supervised Segmentation of Vertebral Metastases in CT
Accurate segmentation of vertebral metastasis in CT is clinically important yet difficult to scale, as voxel-level annotations are scarce and both lytic and blastic lesions often resemble benign degenerative changes. We introduce a weakly supervised method trained solely on vertebra-level healthy/malignant labels, without any lesion masks. The method combines a Diffusion Autoencoder (DAE) that produces a classifier-guided healthy edit of each vertebra with pixel-wise difference maps that propose candidate lesion regions. To determine which regions truly reflect malignancy, we introduce Hide-and-Seek Attribution: each candidate is revealed in turn while all others are hidden, the edited image is projected back to the data manifold by the DAE, and a latent-space classifier quantifies the isolated malignant contribution of that component. High-scoring regions form the final lytic or blastic segmentation. On held-out radiologist annotations, we achieve strong blastic/lytic performance despite no mask supervision (F1: 0.91/0.85; Dice: 0.87/0.78), exceeding baselines (F1: 0.79/0.67; Dice: 0.74/0.55). These results show that vertebra-level labels can be transformed into reliable lesion masks, demonstrating that generative editing combined with selective occlusion supports accurate weakly supervised segmentation in CT.
comment: In submission
☆ Neural Factorization-based Bearing Fault Diagnosis
This paper studies the key problems of bearing fault diagnosis of high-speed train. As the core component of the train operation system, the health of bearings is directly related to the safety of train operation. The traditional diagnostic methods are facing the challenge of insufficient diagnostic accuracy under complex conditions. To solve these problems, we propose a novel Neural Factorization-based Classification (NFC) framework for bearing fault diagnosis. It is built on two core idea: 1) Embedding vibration time series into multiple mode-wise latent feature vectors to capture diverse fault-related patterns; 2) Leveraging neural factorization principles to fuse these vectors into a unified vibration representation. This design enables effective mining of complex latent fault characteristics from raw time-series data. We further instantiate the framework with two models CP-NFC and Tucker-NFC based on CP and Tucker fusion schemes, respectively. Experimental results show that both models achieve superior diagnostic performance compared with traditional machine learning methods. The comparative analysis provides valuable empirical evidence and practical guidance for selecting effective diagnostic strategies in high-speed train bearing monitoring.
☆ Partial Inverse Design of High-Performance Concrete Using Cooperative Neural Networks for Constraint-Aware Mix Generation
High-performance concrete offers exceptional strength and durability but requires complex mix designs involving many interdependent variables and practical constraints. While data-driven methods have advanced predictive modeling for forward design, inverse design, which focuses on determining mix compositions that achieve target performance, remains limited, particularly in design situations where some mix variables are fixed by constraints and only the remaining variables must be determined. This study proposes a cooperative neural network framework for the partial inverse design of high-performance concrete. The framework combines two coupled neural network models, an imputation model that infers the undetermined variables and a surrogate model that predicts compressive strength. Through cooperative learning, the model generates valid and performance-consistent mix designs in a single forward pass while accommodating different constraint combinations without retraining. Its performance is compared with both probabilistic and generative approaches, including Bayesian inference based on a Gaussian process surrogate and autoencoder-based models. Evaluated on a benchmark dataset, the proposed model achieves stable and higher R-squared values of 0.87-0.92 and reduces mean squared error by an average of 50 percent compared with autoencoder baselines and by an average of 70 percent compared with Bayesian inference. The results demonstrate that the cooperative neural network provides an accurate, robust, and computationally efficient foundation for constraint-aware, data-driven mix proportioning in concrete engineering.
comment: 19 pages, 12 figures
☆ RMAdapter: Reconstruction-based Multi-Modal Adapter for Vision-Language Models AAAI 2026
Pre-trained Vision-Language Models (VLMs), \textit{e.g.} CLIP, have become essential tools in multimodal transfer learning. However, fine-tuning VLMs in few-shot scenarios poses significant challenges in balancing task-specific adaptation and generalization in the obtained model. Meanwhile, current researches have predominantly focused on prompt-based adaptation methods, leaving adapter-based approaches underexplored and revealing notable performance gaps. To address these challenges, we introduce a novel Reconstruction-based Multimodal Adapter (RMAdapter), which leverages a dual-branch architecture. Unlike conventional single-branch adapters, RMAdapter consists of: (1) an adaptation branch that injects task-specific knowledge through parameter-efficient fine-tuning, and (2) a reconstruction branch that preserves general knowledge by reconstructing latent space features back into the original feature space. This design facilitates a dynamic balance between general and task-specific knowledge. Importantly, although RMAdapter introduces an additional reconstruction branch, it is carefully optimized to remain lightweight. By computing reconstruction loss locally at each layer and sharing projection modules, the overall computational overhead is kept minimal. A consistency constraint is also incorporated to better regulate the trade-off between discriminability and generalization. We comprehensively evaluate the effectiveness of RMAdapter on three representative tasks: generalization to new categories, generalization to new target datasets, and domain generalization. Without relying on data augmentation or duplicate prompt designs, our RMAdapter consistently outperforms state-of-the-art approaches across all evaluation metrics.
comment: Accepted by AAAI 2026(Oral)
☆ A Physics-Aware Attention LSTM Autoencoder for Early Fault Diagnosis of Battery Systems
Battery safety is paramount for electric vehicles. Early fault diagnosis remains a challenge due to the subtle nature of anomalies and the interference of dynamic operating noise. Existing data-driven methods often suffer from "physical blindness" leading to missed detections or false alarms. To address this, we propose a Physics-Aware Attention LSTM Autoencoder (PA-ALSTM-AE). This novel framework explicitly integrates battery aging laws (mileage) into the deep learning pipeline through a multi-stage fusion mechanism. Specifically, an adaptive physical feature construction module selects mileage-sensitive features, and a physics-guided latent fusion module dynamically calibrates the memory cells of the LSTM based on the aging state. Extensive experiments on the large-scale Vloong real-world dataset demonstrate that the proposed method significantly outperforms state-of-the-art baselines. Notably, it improves the recall rate of early faults by over 3 times while maintaining high precision, offering a robust solution for industrial battery management systems.
comment: 5 pages, 7 figures
☆ Optimal and Diffusion Transports in Machine Learning
Several problems in machine learning are naturally expressed as the design and analysis of time-evolving probability distributions. This includes sampling via diffusion methods, optimizing the weights of neural networks, and analyzing the evolution of token distributions across layers of large language models. While the targeted applications differ (samples, weights, tokens), their mathematical descriptions share a common structure. A key idea is to switch from the Eulerian representation of densities to their Lagrangian counterpart through vector fields that advect particles. This dual view introduces challenges, notably the non-uniqueness of Lagrangian vector fields, but also opportunities to craft density evolutions and flows with favorable properties in terms of regularity, stability, and computational tractability. This survey presents an overview of these methods, with emphasis on two complementary approaches: diffusion methods, which rely on stochastic interpolation processes and underpin modern generative AI, and optimal transport, which defines interpolation by minimizing displacement cost. We illustrate how both approaches appear in applications ranging from sampling, neural network optimization, to modeling the dynamics of transformers for large language models.
comment: Proc. 2026 International Congress of Mathematicians
☆ ADAM Optimization with Adaptive Batch Selection ICLR 2025
Adam is a widely used optimizer in neural network training due to its adaptive learning rate. However, because different data samples influence model updates to varying degrees, treating them equally can lead to inefficient convergence. To address this, a prior work proposed adapting the sampling distribution using a bandit framework to select samples adaptively. While promising, the bandit-based variant of Adam suffers from limited theoretical guarantees. In this paper, we introduce Adam with Combinatorial Bandit Sampling (AdamCB), which integrates combinatorial bandit techniques into Adam to resolve these issues. AdamCB is able to fully utilize feedback from multiple samples at once, enhancing both theoretical guarantees and practical performance. Our regret analysis shows that AdamCB achieves faster convergence than Adam-based methods including the previous bandit-based variant. Numerical experiments demonstrate that AdamCB consistently outperforms existing methods.
comment: Published at ICLR 2025
☆ Small-Gain Nash: Certified Contraction to Nash Equilibria in Differentiable Games
Classical convergence guarantees for gradient-based learning in games require the pseudo-gradient to be (strongly) monotone in Euclidean geometry as shown by rosen(1965), a condition that often fails even in simple games with strong cross-player couplings. We introduce Small-Gain Nash (SGN), a block small-gain condition in a custom block-weighted geometry. SGN converts local curvature and cross-player Lipschitz coupling bounds into a tractable certificate of contraction. It constructs a weighted block metric in which the pseudo-gradient becomes strongly monotone on any region where these bounds hold, even when it is non-monotone in the Euclidean sense. The continuous flow is exponentially contracting in this designed geometry, and projected Euler and RK4 discretizations converge under explicit step-size bounds derived from the SGN margin and a local Lipschitz constant. Our analysis reveals a certified ``timescale band'', a non-asymptotic, metric-based certificate that plays a TTUR-like role: rather than forcing asymptotic timescale separation via vanishing, unequal step sizes, SGN identifies a finite band of relative metric weights for which a single-step-size dynamics is provably contractive. We validate the framework on quadratic games where Euclidean monotonicity analysis fails to predict convergence, but SGN successfully certifies it, and extend the construction to mirror/Fisher geometries for entropy-regularized policy gradient in Markov games. The result is an offline certification pipeline that estimates curvature, coupling, and Lipschitz parameters on compact regions, optimizes block weights to enlarge the SGN margin, and returns a structural, computable convergence certificate consisting of a metric, contraction rate, and safe step-sizes for non-monotone games.
☆ Angular Regularization for Positive-Unlabeled Learning on the Hypersphere
Positive-Unlabeled (PU) learning addresses classification problems where only a subset of positive examples is labeled and the remaining data is unlabeled, making explicit negative supervision unavailable. Existing PU methods often rely on negative-risk estimation or pseudo-labeling, which either require strong distributional assumptions or can collapse in high-dimensional settings. We propose AngularPU, a novel PU framework that operates on the unit hypersphere using cosine similarity and angular margin. In our formulation, the positive class is represented by a learnable prototype vector, and classification reduces to thresholding the cosine similarity between an embedding and this prototype-eliminating the need for explicit negative modeling. To counteract the tendency of unlabeled embeddings to cluster near the positive prototype, we introduce an angular regularizer that encourages dispersion of the unlabeled set over the hypersphere, improving separation. We provide theoretical guarantees on the Bayes-optimality of the angular decision rule, consistency of the learned prototype, and the effect of the regularizer on the unlabeled distribution. Experiments on benchmark datasets demonstrate that AngularPU achieves competitive or superior performance compared to state-of-the-art PU methods, particularly in settings with scarce positives and high-dimensional embeddings, while offering geometric interpretability and scalability.
comment: Featured Certification, J2C Certification. Transactions on Machine Learning Research, 2025
☆ Measuring Over-smoothing beyond Dirichlet energy
While Dirichlet energy serves as a prevalent metric for quantifying over-smoothing, it is inherently restricted to capturing first-order feature derivatives. To address this limitation, we propose a generalized family of node similarity measures based on the energy of higher-order feature derivatives. Through a rigorous theoretical analysis of the relationships among these measures, we establish the decay rates of Dirichlet energy under both continuous heat diffusion and discrete aggregation operators. Furthermore, our analysis reveals an intrinsic connection between the over-smoothing decay rate and the spectral gap of the graph Laplacian. Finally, empirical results demonstrate that attention-based Graph Neural Networks (GNNs) suffer from over-smoothing when evaluated under these proposed metrics.
comment: 17 pages, 1 figure
☆ Optimal Analysis for Bandit Learning in Matching Markets with Serial Dictatorship
The problem of two-sided matching markets is well-studied in computer science and economics, owing to its diverse applications across numerous domains. Since market participants are usually uncertain about their preferences in various online matching platforms, an emerging line of research is dedicated to the online setting where one-side participants (players) learn their unknown preferences through multiple rounds of interactions with the other side (arms). Sankararaman et al. provide an $Ω\left( \frac{N\log(T)}{Δ^2} + \frac{K\log(T)}Δ \right)$ regret lower bound for this problem under serial dictatorship assumption, where $N$ is the number of players, $K (\geq N)$ is the number of arms, $Δ$ is the minimum reward gap across players and arms, and $T$ is the time horizon. Serial dictatorship assumes arms have the same preferences, which is common in reality when one side participants have a unified evaluation standard. Recently, the work of Kong and Li proposes the ET-GS algorithm and achieves an $O\left( \frac{K\log(T)}{Δ^2} \right)$ regret upper bound, which is the best upper bound attained so far. Nonetheless, a gap between the lower and upper bounds, ranging from $N$ to $K$, persists. It remains unclear whether the lower bound or the upper bound needs to be improved. In this paper, we propose a multi-level successive selection algorithm that obtains an $O\left( \frac{N\log(T)}{Δ^2} + \frac{K\log(T)}Δ \right)$ regret bound when the market satisfies serial dictatorship. To the best of our knowledge, we are the first to propose an algorithm that matches the lower bound in the problem of matching markets with bandits.
☆ Multi-Scale Protein Structure Modelling with Geometric Graph U-Nets
Geometric Graph Neural Networks (GNNs) and Transformers have become state-of-the-art for learning from 3D protein structures. However, their reliance on message passing prevents them from capturing the hierarchical interactions that govern protein function, such as global domains and long-range allosteric regulation. In this work, we argue that the network architecture itself should mirror this biological hierarchy. We introduce Geometric Graph U-Nets, a new class of models that learn multi-scale representations by recursively coarsening and refining the protein graph. We prove that this hierarchical design can theoretically more expressive than standard Geometric GNNs. Empirically, on the task of protein fold classification, Geometric U-Nets substantially outperform invariant and equivariant baselines, demonstrating their ability to learn the global structural patterns that define protein folds. Our work provides a principled foundation for designing geometric deep learning architectures that can learn the multi-scale structure of biomolecules.
comment: Presented at Machine Learning in Structural Biology, 2025. Open-source code: https://github.com/VirtualProteins/GNN_UNet
☆ Becoming Experienced Judges: Selective Test-Time Learning for Evaluators
Automatic evaluation with large language models, commonly known as LLM-as-a-judge, is now standard across reasoning and alignment tasks. Despite evaluating many samples in deployment, these evaluators typically (i) treat each case independently, missing the opportunity to accumulate experience, and (ii) rely on a single fixed prompt for all cases, neglecting the need for sample-specific evaluation criteria. We introduce Learning While Evaluating (LWE), a framework that allows evaluators to improve sequentially at inference time without requiring training or validation sets. LWE maintains an evolving meta-prompt that (i) produces sample-specific evaluation instructions and (ii) refines itself through self-generated feedback. Furthermore, we propose Selective LWE, which updates the meta-prompt only on self-inconsistent cases, focusing computation where it matters most. This selective approach retains the benefits of sequential learning while being far more cost-effective. Across two pairwise comparison benchmarks, Selective LWE outperforms strong baselines, empirically demonstrating that evaluators can improve during sequential testing with a simple selective update, learning most from the cases they struggle with.
☆ Arc Gradient Descent: A Mathematically Derived Reformulation of Gradient Descent with Phase-Aware, User-Controlled Step Dynamics
The paper presents the formulation, implementation, and evaluation of the ArcGD optimiser. The evaluation is conducted initially on a non-convex benchmark function and subsequently on a real-world ML dataset. The initial comparative study using the Adam optimiser is conducted on a stochastic variant of the highly non-convex and notoriously challenging Rosenbrock function, renowned for its narrow, curved valley, across dimensions ranging from 2D to 1000D and an extreme case of 50,000D. Two configurations were evaluated to eliminate learning-rate bias: (i) both using ArcGD's effective learning rate and (ii) both using Adam's default learning rate. ArcGD consistently outperformed Adam under the first setting and, although slower under the second, achieved super ior final solutions in most cases. In the second evaluation, ArcGD is evaluated against state-of-the-art optimizers (Adam, AdamW, Lion, SGD) on the CIFAR-10 image classification dataset across 8 diverse MLP architectures ranging from 1 to 5 hidden layers. ArcGD achieved the highest average test accuracy (50.7%) at 20,000 iterations, outperforming AdamW (46.6%), Adam (46.8%), SGD (49.6%), and Lion (43.4%), winning or tying on 6 of 8 architectures. Notably, while Adam and AdamW showed strong early convergence at 5,000 iterations, but regressed with extended training, whereas ArcGD continued improving, demonstrating generalization and resistance to overfitting without requiring early stopping tuning. Strong performance on geometric stress tests and standard deep-learning benchmarks indicates broad applicability, highlighting the need for further exploration. Moreover, it is also shown that a variant of ArcGD can be interpreted as a special case of the Lion optimiser, highlighting connections between the inherent mechanisms of such optimisation methods.
comment: 80 pages, 6 tables, 2 figures, 5 appendices, proof-of-concept
☆ Enhancing Interpretability of AR-SSVEP-Based Motor Intention Recognition via CNN-BiLSTM and SHAP Analysis on EEG Data
Patients with motor dysfunction show low subjective engagement in rehabilitation training. Traditional SSVEP-based brain-computer interface (BCI) systems rely heavily on external visual stimulus equipment, limiting their practicality in real-world settings. This study proposes an augmented reality steady-state visually evoked potential (AR-SSVEP) system to address the lack of patient initiative and the high workload on therapists. Firstly, we design four HoloLens 2-based EEG classes and collect EEG data from seven healthy subjects for analysis. Secondly, we build upon the conventional CNN-BiLSTM architecture by integrating a multi-head attention mechanism (MACNN-BiLSTM). We extract ten temporal-spectral EEG features and feed them into a CNN to learn high-level representations. Then, we use BiLSTM to model sequential dependencies and apply a multi-head attention mechanism to highlight motor-intention-related patterns. Finally, the SHAP (SHapley Additive exPlanations) method is applied to visualize EEG feature contributions to the neural network's decision-making process, enhancing the model's interpretability. These findings enhance real-time motor intention recognition and support recovery in patients with motor impairments.
☆ KV-CAR: KV Cache Compression using Autoencoders and KV Reuse in Large Language Models
As Large Language Models (LLMs) scale in size and context length, the memory requirements of the key value (KV) cache have emerged as a major bottleneck during autoregressive decoding. The KV cache grows with sequence length and embedding dimension, often exceeding the memory footprint of the model itself and limiting achievable batch sizes and context windows. To address this challenge, we present KV CAR, a unified and architecture agnostic framework that significantly reduces KV cache storage while maintaining model fidelity. KV CAR combines two complementary techniques. First, a lightweight autoencoder learns compact representations of key and value tensors along the embedding dimension, compressing them before they are stored in the KV cache and restoring them upon retrieval. Second, a similarity driven reuse mechanism identifies opportunities to reuse KV tensors of specific attention heads across adjacent layers. Together, these methods reduce the dimensional and structural redundancy in KV tensors without requiring changes to the transformer architecture. Evaluations on GPT 2 and TinyLLaMA models across Wikitext, C4, PIQA, and Winogrande datasets demonstrate that KV CAR achieves up to 47.85 percent KV cache memory reduction with minimal impact on perplexity and zero shot accuracy. System level measurements on an NVIDIA A40 GPU show that the reduced KV footprint directly translates into longer sequence lengths and larger batch sizes during inference. These results highlight the effectiveness of KV CAR in enabling memory efficient LLM inference.
☆ Decoding Motor Behavior Using Deep Learning and Reservoir Computing
We present a novel approach to EEG decoding for non-invasive brain machine interfaces (BMIs), with a focus on motor-behavior classification. While conventional convolutional architectures such as EEGNet and DeepConvNet are effective in capturing local spatial patterns, they are markedly less suited for modeling long-range temporal dependencies and nonlinear dynamics. To address this limitation, we integrate an Echo State Network (ESN), a prominent paradigm in reservoir computing into the decoding pipeline. ESNs construct a high-dimensional, sparsely connected recurrent reservoir that excels at tracking temporal dynamics, thereby complementing the spatial representational power of CNNs. Evaluated on a skateboard-trick EEG dataset preprocessed via the PREP pipeline and implemented in MNE-Python, our ESNNet achieves 83.2% within-subject and 51.3% LOSO accuracies, surpassing widely used CNN-based baselines. Code is available at https://github.com/Yutiankunkun/Motion-Decoding-Using-Biosignals
comment: 10 pages, 3 figures
☆ A Novel Deep Neural Network Architecture for Real-Time Water Demand Forecasting
Short-term water demand forecasting (StWDF) is the foundation stone in the derivation of an optimal plan for controlling water supply systems. Deep learning (DL) approaches provide the most accurate solutions for this purpose. However, they suffer from complexity problem due to the massive number of parameters, in addition to the high forecasting error at the extreme points. In this work, an effective method to alleviate the error at these points is proposed. It is based on extending the data by inserting virtual data within the actual data to relieve the nonlinearity around them. To our knowledge, this is the first work that considers the problem related to the extreme points. Moreover, the water demand forecasting model proposed in this work is a novel DL model with relatively low complexity. The basic model uses the gated recurrent unit (GRU) to handle the sequential relationship in the historical demand data, while an unsupervised classification method, K-means, is introduced for the creation of new features to enhance the prediction accuracy with less number of parameters. Real data obtained from two different water plants in China are used to train and verify the model proposed. The prediction results and the comparison with the state-of-the-art illustrate that the method proposed reduces the complexity of the model six times of what achieved in the literature while conserving the same accuracy. Furthermore, it is found that extending the data set significantly reduces the error by about 30%. However, it increases the training time.
☆ A Novel Multimodal RUL Framework for Remaining Useful Life Estimation with Layer-wise Explanations
Estimating the Remaining Useful Life (RUL) of mechanical systems is pivotal in Prognostics and Health Management (PHM). Rolling-element bearings are among the most frequent causes of machinery failure, highlighting the need for robust RUL estimation methods. Existing approaches often suffer from poor generalization, lack of robustness, high data demands, and limited interpretability. This paper proposes a novel multimodal-RUL framework that jointly leverages image representations (ImR) and time-frequency representations (TFR) of multichannel, nonstationary vibration signals. The architecture comprises three branches: (1) an ImR branch and (2) a TFR branch, both employing multiple dilated convolutional blocks with residual connections to extract spatial degradation features; and (3) a fusion branch that concatenates these features and feeds them into an LSTM to model temporal degradation patterns. A multi-head attention mechanism subsequently emphasizes salient features, followed by linear layers for final RUL regression. To enable effective multimodal learning, vibration signals are converted into ImR via the Bresenham line algorithm and into TFR using Continuous Wavelet Transform. We also introduce multimodal Layer-wise Relevance Propagation (multimodal-LRP), a tailored explainability technique that significantly enhances model transparency. The approach is validated on the XJTU-SY and PRONOSTIA benchmark datasets. Results show that our method matches or surpasses state-of-the-art baselines under both seen and unseen operating conditions, while requiring ~28 % less training data on XJTU-SY and ~48 % less on PRONOSTIA. The model exhibits strong noise resilience, and multimodal-LRP visualizations confirm the interpretability and trustworthiness of predictions, making the framework highly suitable for real-world industrial deployment.
☆ Pathway to $O(\sqrt{d})$ Complexity bound under Wasserstein metric of flow-based models
We provide attainable analytical tools to estimate the error of flow-based generative models under the Wasserstein metric and to establish the optimal sampling iteration complexity bound with respect to dimension as $O(\sqrt{d})$. We show this error can be explicitly controlled by two parts: the Lipschitzness of the push-forward maps of the backward flow which scales independently of the dimension; and a local discretization error scales $O(\sqrt{d})$ in terms of dimension. The former one is related to the existence of Lipschitz changes of variables induced by the (heat) flow. The latter one consists of the regularity of the score function in both spatial and temporal directions. These assumptions are valid in the flow-based generative model associated with the Föllmer process and $1$-rectified flow under the Gaussian tail assumption. As a consequence, we show that the sampling iteration complexity grows linearly with the square root of the trace of the covariance operator, which is related to the invariant distribution of the forward process.
☆ Predictive Modeling of I/O Performance for Machine Learning Training Pipelines: A Data-Driven Approach to Storage Optimization
Modern machine learning training is increasingly bottlenecked by data I/O rather than compute. GPUs often sit idle at below 50% utilization waiting for data. This paper presents a machine learning approach to predict I/O performance and recommend optimal storage configurations for ML training pipelines. We collected 141 observations through systematic benchmarking across different storage backends (NVMe SSD, network-attached storage, in-memory filesystems), data formats, and access patterns, covering both low-level I/O operations and full training pipelines. After evaluating seven regression models and three classification approaches, XGBoost achieved the best performance with R-squared of 0.991, predicting I/O throughput within 11.8% error on average. Feature importance analysis revealed that throughput metrics and batch size are the primary performance drivers. This data-driven approach can reduce configuration time from days of trial-and-error to minutes of predictive recommendation. The methodology is reproducible and extensible to other resource management problems in ML systems. Code and data are available at https://github.com/knkarthik01/gpu_storage_ml_project
comment: 20 pages, 10 figures
☆ Mitigating Barren plateaus in quantum denoising diffusion probabilistic models
Quantum generative models leverage quantum superposition and entanglement to enhance learning efficiency for both classical and quantum data. The quantum denoising diffusion probabilistic model (QuDDPM), inspired by its classical counterpart, has been proposed as a promising framework for quantum generative learning. QuDDPM is capable of efficiently learning and generating quantum data, and it demonstrates excellent performance in learning correlated quantum noise models, quantum many-body phases, and the topological structure of quantum data. However, we show that barren plateaus emerge in QuDDPMs due to the use of 2-design states as the input for the denoising process, which severely undermines the performance of QuDDPM. Through theoretical analysis and experimental validation, we confirm the presence of barren plateaus in the original QuDDPM. To address this issue, we introduce an improved QuDDPM that utilizes a distribution maintaining a certain distance from the Haar distribution, ensuring better trainability. Experimental results demonstrate that our approach effectively mitigates the barren plateau problem and generates samples with higher quality, paving the way for scalable and efficient quantum generative learning.
comment: 22 pages, 9 figures
☆ State Diversity Matters in Offline Behavior Distillation
Offline Behavior Distillation (OBD), which condenses massive offline RL data into a compact synthetic behavioral dataset, offers a promising approach for efficient policy training and can be applied across various downstream RL tasks. In this paper, we uncover a misalignment between original and distilled datasets, observing that a high-quality original dataset does not necessarily yield a superior synthetic dataset. Through an empirical analysis of policy performance under varying levels of training loss, we show that datasets with greater state diversity outperforms those with higher state quality when training loss is substantial, as is often the case in OBD, whereas the relationship reverses under minimal loss, which contributes to the misalignment. By associating state quality and diversity in reducing pivotal and surrounding error, respectively, our theoretical analysis establishes that surrounding error plays a more crucial role in policy performance when pivotal error is large, thereby highlighting the importance of state diversity in OBD scenario. Furthermore, we propose a novel yet simple algorithm, state density weighted (SDW) OBD, which emphasizes state diversity by weighting the distillation objective using the reciprocal of state density, thereby distilling a more diverse state information into synthetic data. Extensive experiments across multiple D4RL datasets confirm that SDW significantly enhances OBD performance when the original dataset exhibits limited state diversity.
comment: 12 pages, 5 figures, 5 tables
☆ GradientSpace: Unsupervised Data Clustering for Improved Instruction Tuning
Instruction tuning is one of the key steps required for adapting large language models (LLMs) to a broad spectrum of downstream applications. However, this procedure is difficult because real-world datasets are rarely homogeneous; they consist of a mixture of diverse information, causing gradient interference, where conflicting gradients pull the model in opposing directions, degrading performance. A common strategy to mitigate this issue is to group data based on semantic or embedding similarity. However, this fails to capture how data influences model parameters during learning. While recent works have attempted to cluster gradients directly, they randomly project gradients into lower dimensions to manage memory, which leads to accuracy loss. Moreover, these methods rely on expert ensembles which necessitates multiple inference passes and expensive on-the-fly gradient computations during inference. To address these limitations, we propose GradientSpace, a framework that clusters samples directly in full-dimensional gradient space. We introduce an online SVD-based algorithm that operates on LoRA gradients to identify latent skills without the infeasible cost of storing all sample gradients. Each cluster is used to train a specialized LoRA expert along with a lightweight router trained to select the best expert during inference. We show that routing to a single, appropriate expert outperforms expert ensembles used in prior work, while significantly reducing inference latency. Our experiments across mathematical reasoning, code generation, finance, and creative writing tasks demonstrate that GradientSpace leads to coherent expert specialization and consistent accuracy gains over state-of-the-art clustering methods and finetuning techniques.
☆ FedDSR: Federated Deep Supervision and Regularization Towards Autonomous Driving
Federated Learning (FL) enables collaborative training of autonomous driving (AD) models across distributed vehicles while preserving data privacy. However, FL encounters critical challenges such as poor generalization and slow convergence due to non-independent and identically distributed (non-IID) data from diverse driving environments. To overcome these obstacles, we introduce Federated Deep Supervision and Regularization (FedDSR), a paradigm that incorporates multi-access intermediate layer supervision and regularization within federated AD system. Specifically, FedDSR comprises following integral strategies: (I) to select multiple intermediate layers based on predefined architecture-agnostic standards. (II) to compute mutual information (MI) and negative entropy (NE) on those selected layers to serve as intermediate loss and regularizer. These terms are integrated into the output-layer loss to form a unified optimization objective, enabling comprehensive optimization across the network hierarchy. (III) to aggregate models from vehicles trained based on aforementioned rules of (I) and (II) to generate the global model on central server. By guiding and penalizing the learning of feature representations at intermediate stages, FedDSR enhances the model generalization and accelerates model convergence for federated AD. We then take the semantic segmentation task as an example to assess FedDSR and apply FedDSR to multiple model architectures and FL algorithms. Extensive experiments demonstrate that FedDSR achieves up to 8.93% improvement in mIoU and 28.57% reduction in training rounds, compared to other FL baselines, making it highly suitable for practical deployment in federated AD ecosystems.
comment: 9 pages
☆ The Meta-Learning Gap: Combining Hydra and Quant for Large-Scale Time Series Classification
Time series classification faces a fundamental trade-off between accuracy and computational efficiency. While comprehensive ensembles like HIVE-COTE 2.0 achieve state-of-the-art accuracy, their 340-hour training time on the UCR benchmark renders them impractical for large-scale datasets. We investigate whether targeted combinations of two efficient algorithms from complementary paradigms can capture ensemble benefits while maintaining computational feasibility. Combining Hydra (competing convolutional kernels) and Quant (hierarchical interval quantiles) across six ensemble configurations, we evaluate performance on 10 large-scale MONSTER datasets (7,898 to 1,168,774 training instances). Our strongest configuration improves mean accuracy from 0.829 to 0.836, succeeding on 7 of 10 datasets. However, prediction-combination ensembles capture only 11% of theoretical oracle potential, revealing a substantial meta-learning optimization gap. Feature-concatenation approaches exceeded oracle bounds by learning novel decision boundaries, while prediction-level complementarity shows moderate correlation with ensemble gains. The central finding: the challenge has shifted from ensuring algorithms are different to learning how to combine them effectively. Current meta-learning strategies struggle to exploit the complementarity that oracle analysis confirms exists. Improved combination strategies could potentially double or triple ensemble gains across diverse time series classification applications.
comment: Link to the repository: https://github.com/urav06/research
☆ Rethinking Robustness: A New Approach to Evaluating Feature Attribution Methods
This paper studies the robustness of feature attribution methods for deep neural networks. It challenges the current notion of attributional robustness that largely ignores the difference in the model's outputs and introduces a new way of evaluating the robustness of attribution methods. Specifically, we propose a new definition of similar inputs, a new robustness metric, and a novel method based on generative adversarial networks to generate these inputs. In addition, we present a comprehensive evaluation with existing metrics and state-of-the-art attribution methods. Our findings highlight the need for a more objective metric that reveals the weaknesses of an attribution method rather than that of the neural network, thus providing a more accurate evaluation of the robustness of attribution methods.
☆ GSAE: Graph-Regularized Sparse Autoencoders for Robust LLM Safety Steering
Large language models (LLMs) face critical safety challenges, as they can be manipulated to generate harmful content through adversarial prompts and jailbreak attacks. Many defenses are typically either black-box guardrails that filter outputs, or internals-based methods that steer hidden activations by operationalizing safety as a single latent feature or dimension. While effective for simple concepts, this assumption is limiting, as recent evidence shows that abstract concepts such as refusal and temporality are distributed across multiple features rather than isolated in one. To address this limitation, we introduce Graph-Regularized Sparse Autoencoders (GSAEs), which extends SAEs with a Laplacian smoothness penalty on the neuron co-activation graph. Unlike standard SAEs that assign each concept to a single latent feature, GSAEs recover smooth, distributed safety representations as coherent patterns spanning multiple features. We empirically demonstrate that GSAE enables effective runtime safety steering, assembling features into a weighted set of safety-relevant directions and controlling them with a two-stage gating mechanism that activates interventions only when harmful prompts or continuations are detected during generation. This approach enforces refusals adaptively while preserving utility on benign queries. Across safety and QA benchmarks, GSAE steering achieves an average 82% selective refusal rate, substantially outperforming standard SAE steering (42%), while maintaining strong task accuracy (70% on TriviaQA, 65% on TruthfulQA, 74% on GSM8K). Robustness experiments further show generalization across LLaMA-3, Mistral, Qwen, and Phi families and resilience against jailbreak attacks (GCG, AutoDAN), consistently maintaining >= 90% refusal of harmful content.
☆ Adaptive Test-Time Training for Predicting Need for Invasive Mechanical Ventilation in Multi-Center Cohorts
Accurate prediction of the need for invasive mechanical ventilation (IMV) in intensive care units (ICUs) patients is crucial for timely interventions and resource allocation. However, variability in patient populations, clinical practices, and electronic health record (EHR) systems across institutions introduces domain shifts that degrade the generalization performance of predictive models during deployment. Test-Time Training (TTT) has emerged as a promising approach to mitigate such shifts by adapting models dynamically during inference without requiring labeled target-domain data. In this work, we introduce Adaptive Test-Time Training (AdaTTT), an enhanced TTT framework tailored for EHR-based IMV prediction in ICU settings. We begin by deriving information-theoretic bounds on the test-time prediction error and demonstrate that it is constrained by the uncertainty between the main and auxiliary tasks. To enhance their alignment, we introduce a self-supervised learning framework with pretext tasks: reconstruction and masked feature modeling optimized through a dynamic masking strategy that emphasizes features critical to the main task. Additionally, to improve robustness against domain shifts, we incorporate prototype learning and employ Partial Optimal Transport (POT) for flexible, partial feature alignment while maintaining clinically meaningful patient representations. Experiments across multi-center ICU cohorts demonstrate competitive classification performance on different test-time adaptation benchmarks.
☆ Estimating Black Carbon Concentration from Urban Traffic Using Vision-Based Machine Learning
Black carbon (BC) emissions in urban areas are primarily driven by traffic, with hotspots near major roads disproportionately affecting marginalized communities. Because BC monitoring is typically performed using costly and specialized instruments. there is little to no available data on BC from local traffic sources that could help inform policy interventions targeting local factors. By contrast, traffic monitoring systems are widely deployed in cities around the world, highlighting the imbalance between what we know about traffic conditions and what do not know about their environmental consequences. To bridge this gap, we propose a machine learning-driven system that extracts visual information from traffic video to capture vehicles behaviors and conditions. Combining these features with weather data, our model estimates BC at street level, achieving an R-squared value of 0.72 and RMSE of 129.42 ng/m3 (nanogram per cubic meter). From a sustainability perspective, this work leverages resources already supported by urban infrastructure and established modeling techniques to generate information relevant to traffic emission. Obtaining BC concentration data provides actionable insights to support pollution reduction, urban planning, public health, and environmental justice at the local municipal level.
comment: 12 pages, 16 figures, 4 tables, 4 pages Appendix, in submission and under review for ACM MobiSys 2026 as of December 6th, 2025
☆ Financial Fraud Identification and Interpretability Study for Listed Companies Based on Convolutional Neural Network
Since the emergence of joint-stock companies, financial fraud by listed firms has repeatedly undermined capital markets. Fraud is difficult to detect because of covert tactics and the high labor and time costs of audits. Traditional statistical models are interpretable but struggle with nonlinear feature interactions, while machine learning models are powerful but often opaque. In addition, most existing methods judge fraud only for the current year based on current year data, limiting timeliness. This paper proposes a financial fraud detection framework for Chinese A-share listed companies based on convolutional neural networks (CNNs). We design a feature engineering scheme that transforms firm-year panel data into image like representations, enabling the CNN to capture cross-sectional and temporal patterns and to predict fraud in advance. Experiments show that the CNN outperforms logistic regression and LightGBM in accuracy, robustness, and early-warning performance, and that proper tuning of the classification threshold is crucial in high-risk settings. To address interpretability, we analyze the model along the dimensions of entity, feature, and time using local explanation techniques. We find that solvency, ratio structure, governance structure, and internal control are general predictors of fraud, while environmental indicators matter mainly in high-pollution industries. Non-fraud firms share stable feature patterns, whereas fraud firms exhibit heterogeneous patterns concentrated in short time windows. A case study of Guanong Shares in 2022 shows that cash flow analysis, social responsibility, governance structure, and per-share indicators are the main drivers of the model's fraud prediction, consistent with the company's documented misconduct.
comment: in Chinese language
☆ Masked Autoencoder Pretraining on Strong-Lensing Images for Joint Dark-Matter Model Classification and Super-Resolution
Strong gravitational lensing can reveal the influence of dark-matter substructure in galaxies, but analyzing these effects from noisy, low-resolution images poses a significant challenge. In this work, we propose a masked autoencoder (MAE) pretraining strategy on simulated strong-lensing images from the DeepLense ML4SCI benchmark to learn generalizable representations for two downstream tasks: (i) classifying the underlying dark matter model (cold dark matter, axion-like, or no substructure) and (ii) enhancing low-resolution lensed images via super-resolution. We pretrain a Vision Transformer encoder using a masked image modeling objective, then fine-tune the encoder separately for each task. Our results show that MAE pretraining, when combined with appropriate mask ratio tuning, yields a shared encoder that matches or exceeds a ViT trained from scratch. Specifically, at a 90% mask ratio, the fine-tuned classifier achieves macro AUC of 0.968 and accuracy of 88.65%, compared to the scratch baseline (AUC 0.957, accuracy 82.46%). For super-resolution (16x16 to 64x64), the MAE-pretrained model reconstructs images with PSNR ~33 dB and SSIM 0.961, modestly improving over scratch training. We ablate the MAE mask ratio, revealing a consistent trade-off: higher mask ratios improve classification but slightly degrade reconstruction fidelity. Our findings demonstrate that MAE pretraining on physics-rich simulations provides a flexible, reusable encoder for multiple strong-lensing analysis tasks.
comment: 21 pages, 7 figures, 3 table
☆ Learning to Hedge Swaptions
This paper investigates the deep hedging framework, based on reinforcement learning (RL), for the dynamic hedging of swaptions, contrasting its performance with traditional sensitivity-based rho-hedging. We design agents under three distinct objective functions (mean squared error, downside risk, and Conditional Value-at-Risk) to capture alternative risk preferences and evaluate how these objectives shape hedging styles. Relying on a three-factor arbitrage-free dynamic Nelson-Siegel model for our simulation experiments, our findings show that near-optimal hedging effectiveness is achieved when using two swaps as hedging instruments. Deep hedging strategies dynamically adapt the hedging portfolio's exposure to risk factors across states of the market. In our experiments, their out-performance over rho-hedging strategies persists even in the presence some of model misspecification. These results highlight RL's potential to deliver more efficient and resilient swaption hedging strategies.
☆ The Impact of Data Characteristics on GNN Evaluation for Detecting Fake News
Graph neural networks (GNNs) are widely used for the detection of fake news by modeling the content and propagation structure of news articles on social media. We show that two of the most commonly used benchmark data sets - GossipCop and PolitiFact - are poorly suited to evaluating the utility of models that use propagation structure. Specifically, these data sets exhibit shallow, ego-like graph topologies that provide little or no ability to differentiate among modeling methods. We systematically benchmark five GNN architectures against a structure-agnostic multilayer perceptron (MLP) that uses the same node features. We show that MLPs match or closely trail the performance of GNNs, with performance gaps often within 1-2% and overlapping confidence intervals. To isolate the contribution of structure in these datasets, we conduct controlled experiments where node features are shuffled or edge structures randomized. We find that performance collapses under feature shuffling but remains stable under edge randomization. This suggests that structure plays a negligible role in these benchmarks. Structural analysis further reveals that over 75% of nodes are only one hop from the root, exhibiting minimal structural diversity. In contrast, on synthetic datasets where node features are noisy and structure is informative, GNNs significantly outperform MLPs. These findings provide strong evidence that widely used benchmarks do not meaningfully test the utility of modeling structural features, and they motivate the development of datasets with richer, more diverse graph topologies.
comment: Preprint. Approximately 15 pages, 5 figures, 3 tables
☆ Quantum Temporal Convolutional Neural Networks for Cross-Sectional Equity Return Prediction: A Comparative Benchmark Study
Quantum machine learning offers a promising pathway for enhancing stock market prediction, particularly under complex, noisy, and highly dynamic financial environments. However, many classical forecasting models struggle with noisy input, regime shifts, and limited generalization capacity. To address these challenges, we propose a Quantum Temporal Convolutional Neural Network (QTCNN) that combines a classical temporal encoder with parameter-efficient quantum convolution circuits for cross-sectional equity return prediction. The temporal encoder extracts multi-scale patterns from sequential technical indicators, while the quantum processing leverages superposition and entanglement to enhance feature representation and suppress overfitting. We conduct a comprehensive benchmarking study on the JPX Tokyo Stock Exchange dataset and evaluate predictions through long-short portfolio construction using out-of-sample Sharpe ratio as the primary performance metric. QTCNN achieves a Sharpe ratio of 0.538, outperforming the best classical baseline by approximately 72\%. These results highlight the practical potential of quantum-enhanced forecasting model, QTCNN, for robust decision-making in quantitative finance.
♻ ☆ Safety-Aware Reinforcement Learning for Control via Risk-Sensitive Action-Value Iteration and Quantile Regression
Mainstream approximate action-value iteration reinforcement learning (RL) algorithms suffer from overestimation bias, leading to suboptimal policies in high-variance stochastic environments. Quantile-based action-value iteration methods reduce this bias by learning a distribution of the expected cost-to-go using quantile regression. However, ensuring that the learned policy satisfies safety constraints remains a challenge when these constraints are not explicitly integrated into the RL framework. Existing methods often require complex neural architectures or manual tradeoffs due to combined cost functions. To address this, we propose a risk-regularized quantile-based algorithm integrating Conditional Value-at-Risk (CVaR) to enforce safety without complex architectures. We also provide theoretical guarantees on the contraction properties of the risk-sensitive distributional Bellman operator in Wasserstein space, ensuring convergence to a unique cost distribution. Simulations of a mobile robot in a dynamic reach-avoid task show that our approach leads to more goal successes, fewer collisions, and better safety-performance trade-offs than risk-neutral methods.
comment: 13 pages, 4 figures. Expanded version of a paper to appear in the Proceedings of the 2025 IEEE Conference on Decision and Control (CDC)
SIGMMA: Hierarchical Graph-Based Multi-Scale Multi-modal Contrastive Alignment of Histopathology Image and Spatial Transcriptome
Recent advances in computational pathology have leveraged vision-language models to learn joint representations of Hematoxylin and Eosin (HE) images with spatial transcriptomic (ST) profiles. However, existing approaches typically align HE tiles with their corresponding ST profiles at a single scale, overlooking fine-grained cellular structures and their spatial organization. To address this, we propose Sigmma, a multi-modal contrastive alignment framework for learning hierarchical representations of HE images and spatial transcriptome profiles across multiple scales. Sigmma introduces multi-scale contrastive alignment, ensuring that representations learned at different scales remain coherent across modalities. Furthermore, by representing cell interactions as a graph and integrating inter- and intra-subgraph relationships, our approach effectively captures cell-cell interactions, ranging from fine to coarse, within the tissue microenvironment. We demonstrate that Sigmm learns representations that better capture cross-modal correspondences, leading to an improvement of avg. 9.78\% in the gene-expression prediction task and avg. 26.93\% in the cross-modal retrieval task across datasets. We further show that it learns meaningful multi-tissue organization in downstream analyses.
♻ ☆ Self-diffusion for Solving Inverse Problems
We propose self-diffusion, a novel framework for solving inverse problems without relying on pretrained generative models. Traditional diffusion-based approaches require training a model on a clean dataset to learn to reverse the forward noising process. This model is then used to sample clean solutions -- corresponding to posterior sampling from a Bayesian perspective -- that are consistent with the observed data under a specific task. In contrast, self-diffusion introduces a self-contained iterative process that alternates between noising and denoising steps to progressively refine its estimate of the solution. At each step of self-diffusion, noise is added to the current estimate, and a self-denoiser, which is a single untrained convolutional network randomly initialized from scratch, is continuously trained for certain iterations via a data fidelity loss to predict the solution from the noisy estimate. Essentially, self-diffusion exploits the spectral bias of neural networks and modulates it through a scheduled noise process. Without relying on pretrained score functions or external denoisers, this approach still remains adaptive to arbitrary forward operators and noisy observations, making it highly flexible and broadly applicable. We demonstrate the effectiveness of our approach on a variety of linear inverse problems, showing that self-diffusion achieves competitive or superior performance compared to other methods.
♻ ☆ K-DAREK: Distance Aware Error for Kurkova Kolmogorov Networks
Neural networks are powerful parametric function approximators, while Gaussian processes (GPs) are nonparametric probabilistic models that place distributions over functions via kernel-defined correlations but become computationally expensive for large-scale problems. Kolmogorov-Arnold networks (KANs), semi-parametric neural architectures, model complex functions efficiently using spline layers. Kurkova Kolmogorov-Arnold networks (KKANs) extend KANs by replacing the early spline layers with multi-layer perceptrons that map inputs into higher-dimensional spaces before applying spline-based transformations, which yield more stable training and provide robust architectures for system modeling. By enhancing the KKAN architecture, we develop a novel learning algorithm, distance-aware error for Kurkova-Kolmogorov networks (K-DAREK), for efficient and interpretable function approximation with uncertainty quantification. Our approach establishes robust error bounds that are distance-aware; this means they reflect the proximity of a test point to its nearest training points. In safe control case studies, we demonstrate that K-DAREK is about four times faster and ten times more computationally efficient than Ensemble of KANs, 8.6 times more scalable than GP as data size increases, and 7.2% safer than our previous work distance-aware error for Kolmogorov networks (DAREK). Moreover, on real data (e.g., Real Estate Valuation), K-DAREK's error bound achieves zero coverage violations.
comment: Accepted at IEEE ACSSC, 11 pages and 3 figures
♻ ☆ Learning from the electronic structure of molecules across the periodic table
Machine-Learned Interatomic Potentials (MLIPs) require vast amounts of atomic structure data to learn forces and energies, and their performance continues to improve with training set size. Meanwhile, the even greater quantities of accompanying data in the Hamiltonian matrix H behind these datasets has so far gone unused for this purpose. Here, we provide a recipe for integrating the orbital interaction data within H towards training pipelines for atomic-level properties. We first introduce HELM ("Hamiltonian-trained Electronic-structure Learning for Molecules"), a state-of-the-art Hamiltonian prediction model which bridges the gap between Hamiltonian prediction and universal MLIPs by scaling to H of structures with 100+ atoms, high elemental diversity, and large basis sets including diffuse functions. To accompany HELM, we release a curated Hamiltonian matrix dataset, 'OMol_CSH_58k', with unprecedented elemental diversity (58 elements), molecular size (up to 150 atoms), and basis set (def2-TZVPD). Finally, we introduce 'Hamiltonian pretraining' as a method to extract meaningful descriptors of atomic environments even from a limited number atomic structures, and repurpose this shared embedding space to improve performance on energy-prediction in low-data regimes. Our results highlight the use of electronic interactions as a rich and transferable data source for representing chemical space.
♻ ☆ T1-PILOT: Optimized Trajectories for T1 Mapping Acceleration
Cardiac T1 mapping provides critical quantitative insights into myocardial tissue composition, enabling the assessment of pathologies such as fibrosis, inflammation, and edema. However, the inherently dynamic nature of the heart imposes strict limits on acquisition times, making high-resolution T1 mapping a persistent challenge. Compressed sensing (CS) approaches have reduced scan durations by undersampling k-space and reconstructing images from partial data, and recent studies show that jointly optimizing the undersampling patterns with the reconstruction network can substantially improve performance. Still, most current T1 mapping pipelines rely on static, hand-crafted masks that do not exploit the full acceleration and accuracy potential. In this work, we introduce T1-PILOT: an end-to-end method that explicitly incorporates the T1 signal relaxation model into the sampling-reconstruction framework to guide the learning of non-Cartesian trajectories, crossframe alignment, and T1 decay estimation. Through extensive experiments on the CMRxRecon dataset, T1-PILOT significantly outperforms several baseline strategies (including learned single-mask and fixed radial or golden-angle sampling schemes), achieving higher T1 map fidelity at greater acceleration factors. In particular, we observe consistent gains in PSNR and VIF relative to existing methods, along with marked improvements in delineating finer myocardial structures. Our results highlight that optimizing sampling trajectories in tandem with the physical relaxation model leads to both enhanced quantitative accuracy and reduced acquisition times.
♻ ☆ Training-Free Policy Violation Detection via Activation-Space Whitening in LLMs AAAI 2026
Aligning proprietary large language models (LLMs) with internal organizational policies has become an urgent priority as organizations increasingly deploy LLMs in sensitive domains such as legal support, finance, and medical services. Beyond generic safety filters, enterprises require reliable mechanisms to detect policy violations within their regulatory and operational frameworks, where breaches can trigger legal and reputational risks. Existing content moderation frameworks, such as guardrails, remain largely confined to the safety domain and lack the robustness to capture nuanced organizational policies. LLM-as-a-judge and fine-tuning approaches, though flexible, introduce significant latency and lack interpretability. To address these limitations, we propose a training-free and efficient method that treats policy violation detection as an out-of-distribution (OOD) detection problem. Inspired by whitening techniques, we apply a linear transformation to decorrelate the model's hidden activations and standardize them to zero mean and unit variance, yielding near-identity covariance matrix. In this transformed space, we use the Euclidean norm as a compliance score to detect policy violations. The method requires only the policy text and a small number of illustrative samples, which makes it light-weight and easily deployable. On a challenging policy benchmark, our approach achieves state-of-the-art results, surpassing both existing guardrails and fine-tuned reasoning models. This work provides organizations with a practical and statistically grounded framework for policy-aware oversight of LLMs, advancing the broader goal of deployable AI governance. Code is available at: https://tinyurl.com/policy-violation-detection
comment: Accepted to the AAAI 2026 Deployable AI (DAI) Workshop
♻ ☆ Fredholm Neural Networks for forward and inverse problems in elliptic PDEs
Building on our previous work introducing Fredholm Neural Networks (Fredholm NNs/ FNNs) for solving integral equations, we extend the framework to tackle forward and inverse problems for linear and semi-linear elliptic partial differential equations. The proposed scheme consists of a deep neural network (DNN) which is designed to represent the iterative process of fixed-point iterations for the solution of elliptic PDEs using the boundary integral method within the framework of potential theory. The number of layers, weights, biases and hyperparameters are computed in an explainable manner based on the iterative scheme, and we therefore refer to this as the Potential Fredholm Neural Network (PFNN). We show that this approach ensures both accuracy and explainability, achieving small errors in the interior of the domain, and near machine-precision on the boundary. We provide a constructive proof for the consistency of the scheme and provide explicit error bounds for both the interior and boundary of the domain, reflected in the layers of the PFNN. These error bounds depend on the approximation of the boundary function and the integral discretization scheme, both of which directly correspond to components of the Fredholm NN architecture. In this way, we provide an explainable scheme that explicitly respects the boundary conditions. We assess the performance of the proposed scheme for the solution of both the forward and inverse problem for linear and semi-linear elliptic PDEs in two dimensions.
♻ ☆ CoGraM: Context-sensitive granular optimization method with rollback for robust model fusion
Merging neural networks without retraining is central to federated and distributed learning. Common methods such as weight averaging or Fisher merging often lose accuracy and are unstable across seeds. CoGraM (Contextual Granular Merging) is a multi-stage, context-sensitive, loss-based, and iterative optimization method across layers, neurons, and weight levels that aligns decisions with loss differences and thresholds and prevents harmful updates through rollback. CoGraM is an optimization method that addresses the weaknesses of methods such as Fisher and can significantly improve the merged network.
comment: 15 pages, 4 figures, 8 equations
♻ ☆ Multi-head Transformers Provably Learn Symbolic Multi-step Reasoning via Gradient Descent NeurIPS 2025
Transformers have demonstrated remarkable capabilities in multi-step reasoning tasks. However, understandings of the underlying mechanisms by which they acquire these abilities through training remain limited, particularly from a theoretical standpoint. This work investigates how transformers learn to solve symbolic multi-step reasoning problems through chain-of-thought processes, focusing on path-finding in trees. We analyze two intertwined tasks: a backward reasoning task, where the model outputs a path from a goal node to the root, and a more complex forward reasoning task, where the model implements two-stage reasoning by first identifying the goal-to-root path and then reversing it to produce the root-to-goal path. Our theoretical analysis, grounded in the dynamics of gradient descent, shows that trained one-layer transformers can provably solve both tasks with generalization guarantees to unseen trees. In particular, our multi-phase training dynamics for forward reasoning elucidate how different attention heads learn to specialize and coordinate autonomously to solve the two subtasks in a single autoregressive path. These results provide a mechanistic explanation of how trained transformers can implement sequential algorithmic procedures. Moreover, they offer insights into the emergence of reasoning abilities, suggesting that when tasks are structured to take intermediate chain-of-thought steps, even shallow multi-head transformers can effectively solve problems that would otherwise require deeper architectures.
comment: NeurIPS 2025
♻ ☆ Machine Learning Neutrino-Nucleus Cross Sections
Neutrino-nucleus scattering cross sections are critical theoretical inputs for long-baseline neutrino oscillation experiments. However, robust modeling of these cross sections remains challenging. For a simple but physically motivated toy model of the DUNE experiment, we demonstrate that an accurate neural-network model of the cross section -- leveraging only Standard-Model symmetries -- can be learned from near-detector data. We perform a neutrino oscillation analysis with simulated far-detector events, finding that oscillation analysis results enabled by our data-driven cross-section model approach the theoretical limit achievable with perfect prior knowledge of the cross section. We further quantify the effects of flux shape and detector resolution uncertainties as well as systematics from cross-section mismodeling. This proof-of-principle study highlights the potential of future neutrino near-detector datasets and data-driven cross-section models.
comment: 24 pages, 18 figures. v3: long format, adds uncertainty quantification and ill-posedness of black-box 3d problem
♻ ☆ Exploring Adversarial Watermarking in Transformer-Based Models: Transferability and Robustness Against Defense Mechanism for Medical Images
Deep learning models have shown remarkable success in dermatological image analysis, offering potential for automated skin disease diagnosis. Previously, convolutional neural network(CNN) based architectures have achieved immense popularity and success in computer vision (CV) based task like skin image recognition, generation and video analysis. But with the emergence of transformer based models, CV tasks are now are nowadays carrying out using these models. Vision Transformers (ViTs) is such a transformer-based models that have shown success in computer vision. It uses self-attention mechanisms to achieve state-of-the-art performance across various tasks. However, their reliance on global attention mechanisms makes them susceptible to adversarial perturbations. This paper aims to investigate the susceptibility of ViTs for medical images to adversarial watermarking-a method that adds so-called imperceptible perturbations in order to fool models. By generating adversarial watermarks through Projected Gradient Descent (PGD), we examine the transferability of such attacks to CNNs and analyze the performance defense mechanism -- adversarial training. Results indicate that while performance is not compromised for clean images, ViTs certainly become much more vulnerable to adversarial attacks: an accuracy drop of as low as 27.6%. Nevertheless, adversarial training raises it up to 90.0%.
♻ ☆ Model Monitoring: A General Framework with an Application to Non-life Insurance Pricing
Maintaining the predictive performance of pricing models is challenging when insurance portfolios and data-generating mechanisms evolve over time. Focusing on non-life insurance, we adopt the concept-drift terminology from machine learning and distinguish virtual drift from real concept drift in an actuarial setting. Methodologically, we (i) formalize deviance loss and Murphy's score decomposition to assess global and local auto-calibration; (ii) study the Gini score as a rank-based performance measure, derive its asymptotic distribution, and develop a consistent bootstrap estimator of its asymptotic variance; and (iii) combine these results into a statistically grounded, model-agnostic monitoring framework that integrates a Gini-based ranking drift test with global and local auto-calibration tests. An application to a modified motor insurance portfolio with controlled concept-drift scenarios illustrates how the framework guides decisions on refitting or recalibrating pricing models.
♻ ☆ RGE-GCN: Recursive Gene Elimination with Graph Convolutional Networks for RNA-seq based Early Cancer Detection
Early detection of cancer plays a key role in improving survival rates, but identifying reliable biomarkers from RNA-seq data is still a major challenge. The data are high-dimensional, and conventional statistical methods often fail to capture the complex relationships between genes. In this study, we introduce RGE-GCN (Recursive Gene Elimination with Graph Convolutional Networks), a framework that combines feature selection and classification in a single pipeline. Our approach builds a graph from gene expression profiles, uses a Graph Convolutional Network to classify cancer versus normal samples, and applies Integrated Gradients to highlight the most informative genes. By recursively removing less relevant genes, the model converges to a compact set of biomarkers that are both interpretable and predictive. We evaluated RGE-GCN on synthetic data as well as real-world RNA-seq cohorts of lung, kidney, and cervical cancers. Across all datasets, the method consistently achieved higher accuracy and F1-scores than standard tools such as DESeq2, edgeR, and limma-voom. Importantly, the selected genes aligned with well-known cancer pathways including PI3K-AKT, MAPK, SUMOylation, and immune regulation. These results suggest that RGE-GCN shows promise as a generalizable approach for RNA-seq based early cancer detection and biomarker discovery (https://rce-gcn.streamlit.app/ ).
comment: 12 pages, 2 figures
♻ ☆ Optimizing Day-Ahead Energy Trading with Proximal Policy Optimization and Blockchain
The increasing penetration of renewable energy sources in day-ahead energy markets introduces challenges in balancing supply and demand, ensuring grid resilience, and maintaining trust in decentralized trading systems. This paper proposes a novel framework that integrates the Proximal Policy Optimization (PPO) algorithm, a state-of-the-art reinforcement learning method, with blockchain technology to optimize automated trading strategies for prosumers in day-ahead energy markets. We introduce a comprehensive framework that employs RL agent for multi-objective energy optimization and blockchain for tamper-proof data and transaction management. Simulations using real-world data from the Electricity Reliability Council of Texas (ERCOT) demonstrate the effectiveness of our approach. The RL agent achieves demand-supply balancing within 2\% and maintains near-optimal supply costs for the majority of the operating hours. Moreover, it generates robust battery storage policies capable of handling variability in solar and wind generation. All decisions are recorded on an Algorand-based blockchain, ensuring transparency, auditability, and security - key enablers for trustworthy multi-agent energy trading. Our contributions include a novel system architecture, curriculum learning for robust agent development, and actionable policy insights for practical deployment.
♻ ☆ AdaDetectGPT: Adaptive Detection of LLM-Generated Text with Statistical Guarantees NeurIPS2025
We study the problem of determining whether a piece of text has been authored by a human or by a large language model (LLM). Existing state of the art logits-based detectors make use of statistics derived from the log-probability of the observed text evaluated using the distribution function of a given source LLM. However, relying solely on log probabilities can be sub-optimal. In response, we introduce AdaDetectGPT -- a novel classifier that adaptively learns a witness function from training data to enhance the performance of logits-based detectors. We provide statistical guarantees on its true positive rate, false positive rate, true negative rate and false negative rate. Extensive numerical studies show AdaDetectGPT nearly uniformly improves the state-of-the-art method in various combination of datasets and LLMs, and the improvement can reach up to 37\%. A python implementation of our method is available at https://github.com/Mamba413/AdaDetectGPT.
comment: Accepted by NeurIPS2025
♻ ☆ Mask the Redundancy: Evolving Masking Representation Learning for Multivariate Time-Series Clustering AAAI 2026
Multivariate Time-Series (MTS) clustering discovers intrinsic grouping patterns of temporal data samples. Although time-series provide rich discriminative information, they also contain substantial redundancy, such as steady-state machine operation records and zero-output periods of solar power generation. Such redundancy diminishes the attention given to discriminative timestamps in representation learning, thus leading to performance bottlenecks in MTS clustering. Masking has been widely adopted to enhance the MTS representation, where temporal reconstruction tasks are designed to capture critical information from MTS. However, most existing masking strategies appear to be standalone preprocessing steps, isolated from the learning process, which hinders dynamic adaptation to the importance of clustering-critical timestamps. Accordingly, this paper proposes the Evolving-masked MTS Clustering (EMTC) method, whose model architecture comprises Importance-aware Variate-wise Masking (IVM) and Multi-Endogenous Views (MEV) generation modules. IVM adaptively guides the model in learning more discriminative representations for clustering, while the reconstruction and cluster-guided contrastive learning pathways enhance and connect the representation learning to clustering tasks. Extensive experiments on 15 benchmark datasets demonstrate the superiority of EMTC over eight SOTA methods, where the EMTC achieves an average improvement of 4.85% in F1-Score over the strongest baselines.
comment: Accepted to AAAI 2026
♻ ☆ FlowCast: Advancing Precipitation Nowcasting with Conditional Flow Matching
Radar-based precipitation nowcasting, the task of forecasting short-term precipitation fields from previous radar images, is a critical problem for flood risk management and decision-making. While deep learning has substantially advanced this field, two challenges remain fundamental: the uncertainty of atmospheric dynamics and the efficient modeling of high-dimensional data. Diffusion models have shown strong promise by producing sharp, reliable forecasts, but their iterative sampling process is computationally prohibitive for time-critical applications. We introduce FlowCast, the first end-to-end probabilistic model leveraging Conditional Flow Matching (CFM) as a direct noise-to-data generative framework for precipitation nowcasting. Unlike hybrid approaches, FlowCast learns a direct noise-to-data mapping in a compressed latent space, enabling rapid, high-fidelity sample generation. Our experiments demonstrate that FlowCast establishes a new state-of-the-art in probabilistic performance while also exceeding deterministic baselines in predictive accuracy. A direct comparison further reveals the CFM objective is both more accurate and significantly more efficient than a diffusion objective on the same architecture, maintaining high performance with significantly fewer sampling steps. This work positions CFM as a powerful and practical alternative for high-dimensional spatiotemporal forecasting.
comment: Under Review
♻ ☆ Learn the Ropes, Then Trust the Wins: Self-imitation with Progressive Exploration for Agentic Reinforcement Learning
Reinforcement learning (RL) is the dominant paradigm for sharpening strategic tool use capabilities of LLMs on long-horizon, sparsely-rewarded agent tasks, yet it faces a fundamental challenge of exploration-exploitation trade-off. Existing studies stimulate exploration through the lens of policy entropy, but such mechanical entropy maximization is prone to RL instability due to the multi-turn distribution shifting. In this paper, we target the progressive exploration-exploitation balance under the guidance of the agent's own experiences without succumbing to either entropy collapsing or runaway divergence. We propose SPEAR, a self-imitation learning (SIL) recipe for training agentic LLMs. It extends the vanilla SIL, where a replay buffer stores good experience for off-policy update, by gradually steering the policy entropy across stages. Specifically, the proposed curriculum scheduling harmonizes intrinsic reward shaping and self-imitation to 1) expedite exploration via frequent tool interactions at the beginning, and 2) strengthen exploitation of successful tactics upon convergence towards familiarity with the environment. We also combine bag-of-tricks of industrial RL optimizations for a strong baseline Dr.BoT to demonstrate our effectiveness. In ALFWorld and WebShop, SPEAR increases the success rates of GRPO/GiGPO/Dr.BoT by up to 16.1%/5.1%/8.6% and 20.7%/11.8%/13.9%, respectively. In AIME24 and AIME25, SPEAR boosts Dr.BoT by up to 3.8% and 6.1%, respectively. Such gains incur only 10%-25% extra theoretical complexity and negligible runtime overhead in practice, demonstrating the plug-and-play scalability of SPEAR.
comment: 45 pages, 14 figures
♻ ☆ Neural Tucker Convolutional Network for Water Quality Analysis
Water quality monitoring is a core component of ecological environmental protection. However, due to sensor failure or other inevitable factors, data missing often exists in long-term monitoring, posing great challenges in water quality analysis. This paper proposes a Neural Tucker Convolutional Network (NTCN) model for water quality data imputation, which features the following key components: a) Encode different mode entities into respective embedding vectors, and construct a Tucker interaction tensor by outer product operations to capture the complex mode-wise feature interactions; b) Use 3D convolution to extract fine-grained spatiotemporal features from the interaction tensor. Experiments on three real-world water quality datasets show that the proposed NTCN model outperforms several state-of-the-art imputation models in terms of accuracy.
comment: 8 pages, 1 figure
♻ ☆ Online-BLS: An Accurate and Efficient Online Broad Learning System for Data Stream Classification
The state-of-the-art online learning models generally conduct a single online gradient descent when a new sample arrives and thus suffer from suboptimal model weights. To this end, we introduce an online broad learning system framework with closed-form solutions for each online update. Different from employing existing incremental broad learning algorithms for online learning tasks, which tend to incur degraded accuracy and expensive online update overhead, we design an effective weight estimation algorithm and an efficient online updating strategy to remedy the above two deficiencies, respectively. Specifically, an effective weight estimation algorithm is first developed by replacing notorious matrix inverse operations with Cholesky decomposition and forward-backward substitution to improve model accuracy. Second, we devise an efficient online updating strategy that dramatically reduces online update time. Theoretical analysis exhibits the splendid error bound and low time complexity of our model. The most popular test-then-training evaluation experiments on various real-world datasets prove its superiority and efficiency. Furthermore, our framework is naturally extended to data stream scenarios with concept drift and exceeds state-of-the-art baselines.
comment: Accepted for publication in Science China Information Sciences (SCIS), manuscript ID: SCIS-2025-0677
♻ ☆ Evidential Physics-Informed Neural Networks for Scientific Discovery
We present the fundamental theory and implementation guidelines underlying Evidential Physics-Informed Neural Network (E-PINN) -- a novel class of uncertainty-aware PINN. It leverages the marginal distribution loss function of evidential deep learning for estimating uncertainty of outputs, and infers unknown parameters of the PDE via a learned posterior distribution. Validating our model on two illustrative case studies -- the 1D Poisson equation with a Gaussian source and the 2D Fisher-KPP equation, we found that E-PINN generated empirical coverage probabilities that were calibrated significantly better than Bayesian PINN and Deep Ensemble methods. To demonstrate real-world applicability, we also present a brief case study on applying E-PINN to analyze clinical glucose-insulin datasets that have featured in medical research on diabetes pathophysiology.
comment: v3: minor revisions. To appear in TAAI 2025. Code available at https://github.com/HaiSiong-Tan/E-PINN
♻ ☆ DFDT: Dynamic Fast Decision Tree for IoT Data Stream Mining on Edge Devices AAAI
The Internet of Things generates massive data streams, with edge computing emerging as a key enabler for online IoT applications and 5G networks. Edge solutions facilitate real-time machine learning inference, but also require continuous adaptation to concept drifts. While extensions of the Very Fast Decision Tree (VFDT) remain state-of-the-art for tabular stream mining, their unregulated growth limits efficiency, particularly in ensemble settings where post-pruning at the individual tree level is seldom applied. This paper presents DFDT, a novel memory-constrained algorithm for online learning. DFDT employs activity-aware pre-pruning, dynamically adjusting splitting criteria based on leaf node activity: low-activity nodes are deactivated to conserve resources, moderately active nodes split under stricter conditions, and highly active nodes leverage a skipping mechanism for accelerated growth. Additionally, adaptive grace periods and tie thresholds allow DFDT to modulate splitting decisions based on observed data variability, enhancing the accuracy-memory-runtime trade-off while minimizing the need for hyperparameter tuning. An ablation study reveals three DFDT variants suited to different resource profiles. Fully compatible with existing ensemble frameworks, DFDT provides a drop-in alternative to standard VFDT-based learners.
comment: Accepted at 40th Annual AAAI Conference on Artificial Intelligence (AAAI 26)
♻ ☆ The Optimal Approximation Factor in Density Estimation
Consider the following problem: given two arbitrary densities $q_1,q_2$ and a sample-access to an unknown target density $p$, find which of the $q_i$'s is closer to $p$ in total variation. A remarkable result due to Yatracos shows that this problem is tractable in the following sense: there exists an algorithm that uses $O(ε^{-2})$ samples from $p$ and outputs~$q_i$ such that with high probability, $TV(q_i,p) \leq 3\cdot\mathsf{opt} + ε$, where $\mathsf{opt}= \min\{TV(q_1,p),TV(q_2,p)\}$. Moreover, this result extends to any finite class of densities $\mathcal{Q}$: there exists an algorithm that outputs the best density in $\mathcal{Q}$ up to a multiplicative approximation factor of 3. We complement and extend this result by showing that: (i) the factor 3 can not be improved if one restricts the algorithm to output a density from $\mathcal{Q}$, and (ii) if one allows the algorithm to output arbitrary densities (e.g.\ a mixture of densities from $\mathcal{Q}$), then the approximation factor can be reduced to 2, which is optimal. In particular this demonstrates an advantage of improper learning over proper in this setup. We develop two approaches to achieve the optimal approximation factor of 2: an adaptive one and a static one. Both approaches are based on a geometric point of view of the problem and rely on estimating surrogate metrics to the total variation. Our sample complexity bounds exploit techniques from {\it Adaptive Data Analysis}.
comment: fixed an error in the lower bound proof
♻ ☆ PIMRL: Physics-Informed Multi-Scale Recurrent Learning for Spatiotemporal Prediction
Simulation of spatiotemporal systems governed by partial differential equations is widely applied in fields such as biology, chemistry, aerospace dynamics, and meteorology. Traditional numerical methods incur high computational costs due to the requirement of small time steps for accurate predictions. While machine learning has reduced these costs, long-term predictions remain challenged by error accumulation, particularly in scenarios with insufficient data or varying time scales, where stability and accuracy are compromised. Existing methods often neglect the effective utilization of multi-scale data, leading to suboptimal robustness in predictions. To address these issues, we propose a novel multi-scale learning framework, namely, the Physics-Informed Multi-Scale Recurrent Learning (PIMRL), to effectively leverage multi-scale data for spatiotemporal dynamics prediction. The PIMRL framework comprises two modules: the micro-scale module embeds physical knowledge into neural networks via pretraining, and the macro-scale module adopts a data-driven approach to learn the temporal evolution of physics in the latent space. Experimental results demonstrate that the PIMRL framework consistently achieves state-of-the-art performance across five benchmark datasets ranging from one to three dimensions, showing average improvements of over 9\% in both RMSE and MAE evaluation metrics, with maximum enhancements reaching up to 80%.
♻ ☆ Semi-supervised Graph Anomaly Detection via Robust Homophily Learning NeurIPS 2025
Semi-supervised graph anomaly detection (GAD) utilizes a small set of labeled normal nodes to identify abnormal nodes from a large set of unlabeled nodes in a graph. Current methods in this line posit that 1) normal nodes share a similar level of homophily and 2) the labeled normal nodes can well represent the homophily patterns in the normal class. However, this assumption often does not hold well since normal nodes in a graph can exhibit diverse homophily in real-world GAD datasets. In this paper, we propose RHO, namely Robust Homophily Learning, to adaptively learn such homophily patterns. RHO consists of two novel modules, adaptive frequency response filters (AdaFreq) and graph normality alignment (GNA). AdaFreq learns a set of adaptive spectral filters that capture different frequency components of the labeled normal nodes with varying homophily in the channel-wise and cross-channel views of node attributes. GNA is introduced to enforce consistency between the channel-wise and cross-channel homophily representations to robustify the normality learned by the filters in the two views. Experiments on eight real-world GAD datasets show that RHO can effectively learn varying, often under-represented, homophily in the small normal node set and substantially outperforms state-of-the-art competing methods. Code is available at https://github.com/mala-lab/RHO.
comment: Accepted at NeurIPS 2025
♻ ☆ A Tidal Current Speed Forecasting Model based on Multi-Periodicity Learning
Tidal energy is one of the key components in increasing the penetration of renewable energy. High tidal energy penetration into the electrical grid depends on accurate tidal current speed forecasting. Model inaccuracies hinder forecast accuracy. Previous research primarily used physical models to forecast tidal current speed, yet tidal current variations influenced by the orbital periods of celestial bodies make accurate physical modeling challenging. Research on the multi-periodicity of tides is crucial for forecasting tidal current speed. We propose the Wavelet-Enhanced Convolutional Network to learn multi-periodicity. The framework embeds intra-period and inter-period variations of one-dimensional tidal current data into the rows and columns, respectively, of a two-dimensional tensor. Then, the two-dimensional variations of the sequence can be processed by convolutional kernels. We integrate a time-frequency analysis method into the framework to further address local periodic features. Additionally, to enhance the framework's stability, we optimize the framework's hyperparameters with the Tree-structured Parzen Estimator. The proposed framework captures multi-periodic dependencies in tidal current data. Numerical results show a 10-step average Mean Absolute Error of 0.025, with at least a 1.18% error reduction compared to other baselines. Further ablation studies show a 1.4% reduction in Mean Absolute Percentage Error on the data with artificially added periodic fluctuations.
♻ ☆ Ensemble Learning of Machine Learning Force Fields
Machine learning force fields (MLFFs) are a promising approach to balance the accuracy of quantum mechanics with the efficiency of classical potentials, yet selecting an optimal model amid increasingly diverse architectures that delivers reliable force predictions and stable simulations remains a core pratical challenge. Here we introduce EL-MLFFs, an ensemble learning framework that uses a stacking methodology to integrate predictions from diverse base MLFFs. Our approach constructs a graph representation where a graph neural network (GNN) acts as a meta-model to refine the initial force predictions. We present two meta-model architectures: a computationally efficient direct fitting model and a physically-principled conservative model that ensures energy conservation. The framework is evaluated on a diverse range of systems, including single molecules (methane), surface chemistry (methanol/Cu(100)), molecular dynamics benchmarks (MD17), and the MatPES materials dataset. Results show that EL-MLFFs improves predictive accuracy across these domains. For molecular systems, it reduces force errors and improves the simulation stability compared to base models. For materials, the method yields lower formation energy errors on the WBM test set. The EL- MLFFs framework offers a systematic approach to address challenges of model selection and the accuracy-stability trade-off in molecular and materials simulations.
comment: 12 pages, 3 figures
♻ ☆ NeuralRemaster: Phase-Preserving Diffusion for Structure-Aligned Generation
Standard diffusion corrupts data using Gaussian noise whose Fourier coefficients have random magnitudes and random phases. While effective for unconditional or text-to-image generation, corrupting phase components destroys spatial structure, making it ill-suited for tasks requiring geometric consistency, such as re-rendering, simulation enhancement, and image-to-image translation. We introduce Phase-Preserving Diffusion φ-PD, a model-agnostic reformulation of the diffusion process that preserves input phase while randomizing magnitude, enabling structure-aligned generation without architectural changes or additional parameters. We further propose Frequency-Selective Structured (FSS) noise, which provides continuous control over structural rigidity via a single frequency-cutoff parameter. φ-PD adds no inference-time cost and is compatible with any diffusion model for images or videos. Across photorealistic and stylized re-rendering, as well as sim-to-real enhancement for driving planners, φ-PD produces controllable, spatially aligned results. When applied to the CARLA simulator, φ-PD improves CARLA-to-Waymo planner performance by 50\%. The method is complementary to existing conditioning approaches and broadly applicable to image-to-image and video-to-video generation. Videos, additional examples, and code are available on our \href{https://yuzeng-at-tri.github.io/ppd-page/}{project page}.
♻ ☆ Eyes-on-Me: Scalable RAG Poisoning through Transferable Attention-Steering Attractors
Existing data poisoning attacks on retrieval-augmented generation (RAG) systems scale poorly because they require costly optimization of poisoned documents for each target phrase. We introduce Eyes-on-Me, a modular attack that decomposes an adversarial document into reusable Attention Attractors and Focus Regions. Attractors are optimized to direct attention to the Focus Region. Attackers can then insert semantic baits for the retriever or malicious instructions for the generator, adapting to new targets at near zero cost. This is achieved by steering a small subset of attention heads that we empirically identify as strongly correlated with attack success. Across 18 end-to-end RAG settings (3 datasets $\times$ 2 retrievers $\times$ 3 generators), Eyes-on-Me raises average attack success rates from 21.9 to 57.8 (+35.9 points, 2.6$\times$ over prior work). A single optimized attractor transfers to unseen black box retrievers and generators without retraining. Our findings establish a scalable paradigm for RAG data poisoning and show that modular, reusable components pose a practical threat to modern AI systems. They also reveal a strong link between attention concentration and model outputs, informing interpretability research.
♻ ☆ From Observations to Parameters: Detecting Changepoint in Nonlinear Dynamics with Simulation-based Inference
Detecting regime shifts in chaotic time series is hard because observation-space signals are entangled with intrinsic variability. We propose Parameter--Space Changepoint Detection (Param--CPD), a two--stage framework that first amortizes Bayesian inference of governing parameters with a neural posterior estimator trained by simulation-based inference, and then applies a standard CPD algorithm to the resulting parameter trajectory. On Lorenz--63 with piecewise-constant parameters, Param--CPD improves F1, reduces localization error, and lowers false positives compared to observation--space baselines. We further verify identifiability and calibration of the inferred posteriors on stationary trajectories, explaining why parameter space offers a cleaner detection signal. Robustness analyses over tolerance, window length, and noise indicate consistent gains. Our results show that operating in a physically interpretable parameter space enables accurate and interpretable changepoint detection in nonlinear dynamical systems.
comment: 15 pages
♻ ☆ Modeling User Preferences as Distributions for Optimal Transport-based Cross-domain Recommendation under Non-overlapping Settings
Cross-domain recommender (CDR) systems aim to transfer knowledge from data-rich domains to data-sparse ones, alleviating sparsity and cold-start issues present in conventional single-domain recommenders. However, many CDR approaches rely on overlapping users or items to establish explicit cross-domain connections, which is unrealistic in practice. Moreover, most methods represent user preferences as fixed discrete vectors, limiting their ability to capture the fine-grained and multi-aspect nature of user interests. To address these limitations, we propose DUP-OT (Distributional User Preferences with Optimal Transport), a novel framework for non-overlapping CDR. DUP-OT consists of three stages: (1) a shared preprocessing module that extracts review-based embeddings using a unified sentence encoder and autoencoder; (2) a user preference modeling module that represents each user's interests as a Gaussian Mixture Model (GMM) over item embeddings; and (3) an optimal-transport-based alignment module that matches Gaussian components across domains, enabling effective preference transfer for target-domain rating prediction. Experiments on Amazon Review datasets demonstrate that DUP-OT mitigates domain discrepancy and significantly outperforms state-of-the-art baselines under strictly non-overlapping training settings, with user correspondence revealed only for inference-time evaluation.
♻ ☆ Data Taggants: Dataset Ownership Verification via Harmless Targeted Data Poisoning ICLR 2025
Dataset ownership verification, the process of determining if a dataset is used in a model's training data, is necessary for detecting unauthorized data usage and data contamination. Existing approaches, such as backdoor watermarking, rely on inducing a detectable behavior into the trained model on a part of the data distribution. However, these approaches have limitations, as they can be harmful to the model's performances or require unpractical access to the model's internals. Most importantly, previous approaches lack guarantee against false positives. This paper introduces data taggants, a novel non-backdoor dataset ownership verification technique. Our method uses pairs of out-of-distribution samples and random labels as secret keys, and leverages clean-label targeted data poisoning to subtly alter a dataset, so that models trained on it respond to the key samples with the corresponding key labels. The keys are built as to allow for statistical certificates with black-box access only to the model. We validate our approach through comprehensive and realistic experiments on ImageNet1k using ViT and ResNet models with state-of-the-art training recipes. Our findings demonstrate that data taggants can reliably detect models trained on the protected dataset with high confidence, without compromising validation accuracy, and show their superiority over backdoor watermarking. We demonstrate the stealthiness and robustness of our method against various defense mechanisms.
comment: Published at ICLR 2025. 19 pages, 9 figures
♻ ☆ A Physics-Informed Meta-Learning Framework for the Continuous Solution of Parametric PDEs on Arbitrary Geometries
In this work, we introduce implicit Finite Operator Learning (iFOL) for the continuous and parametric solution of partial differential equations (PDEs) on arbitrary geometries. We propose a physics-informed encoder-decoder network to establish the mapping between continuous parameter and solution spaces. The decoder constructs the parametric solution field by leveraging an implicit neural field network conditioned on a latent or feature code. Instance-specific codes are derived through a PDE encoding process based on the second-order meta-learning technique. In training and inference, a physics-informed loss function is minimized during the PDE encoding and decoding. iFOL expresses the loss function in an energy or weighted residual form and evaluates it using discrete residuals derived from standard numerical PDE methods. This approach results in the backpropagation of discrete residuals during both training and inference. iFOL features several key properties: (1) its unique loss formulation eliminates the need for the conventional encode-process-decode pipeline previously used in operator learning with conditional neural fields for PDEs; (2) it not only provides accurate parametric and continuous fields but also delivers solution-to-parameter gradients without requiring additional loss terms or sensitivity analysis; (3) it can effectively capture sharp discontinuities in the solution; and (4) it removes constraints on the geometry and mesh, making it applicable to arbitrary geometries and spatial sampling (zero-shot super-resolution capability). We critically assess these features and analyze the network's ability to generalize to unseen samples across both stationary and transient PDEs. The overall performance of the proposed method is promising, demonstrating its applicability to a range of challenging problems in computational mechanics.
♻ ☆ Smaller Models, Smarter Rewards: A Two-Sided Approach to Process and Outcome Rewards NeurIPS 2025
Generating high-quality code remains a challenge for Large Language Models (LLMs). For the evolution of reasoning models on this task, reward models are a necessary intermediate step. These models judge outcomes or intermediate steps. Decoder-only transformer models can be turned into reward models by introducing a regression layer and supervised fine-tuning. While it is known that reflection capabilities generally increase with the size of a model, we want to investigate whether state-of-the-art small language models like the Phi-4 family can be turned into usable reward models blending the consideration of process rewards and outcome rewards. Targeting this goal, we construct a dataset of code samples with correctness labels derived from the APPS coding challenge benchmark. We then train a value-head model to estimate the success probability of intermediate outputs. Our evaluation shows that small LLMs are capable of serving as effective reward models or code evaluation critics, successfully identifying correct solutions among multiple candidates. Using this critic, we achieve over a 20% improvement in the search capability of the most accurate code out of multiple generations.
comment: Accepted and to be presented at NeurIPS 2025 Workshop: Foundations of Reasoning in Language Models
♻ ☆ Data Fusion-Enhanced Decision Transformer for Stable Cross-Domain Generalization
Cross-domain shifts present a significant challenge for decision transformer (DT) policies. Existing cross-domain policy adaptation methods typically rely on a single simple filtering criterion to select source trajectory fragments and stitch them together. They match either state structure or action feasibility. However, the selected fragments still have poor stitchability: state structures can misalign, the return-to-go (RTG) becomes incomparable when the reward or horizon changes, and actions may jump at trajectory junctions. As a result, RTG tokens lose continuity, which compromises DT's inference ability. To tackle these challenges, we propose Data Fusion-Enhanced Decision Transformer (DFDT), a compact pipeline that restores stitchability. Particularly, DFDT fuses scarce target data with selectively trusted source fragments via a two-level data filter, maximum mean discrepancy (MMD) mismatch for state-structure alignment, and optimal transport (OT) deviation for action feasibility. It then trains on a feasibility-weighted fusion distribution. Furthermore, DFDT replaces RTG tokens with advantage-conditioned tokens, which improves the continuity of the semantics in the token sequence. It also applies a $Q$-guided regularizer to suppress junction value and action jumps. Theoretically, we provide bounds that tie state value and policy performance gaps to the MMD-mismatch and OT-deviation measures, and show that the bounds tighten as these two measures shrink. We show that DFDT improves return and stability over strong offline RL and sequence-model baselines across gravity, kinematic, and morphology shifts on D4RL-style control tasks, and further corroborate these gains with token-stitching and sequence-semantics stability analyses.
comment: 32 pages,4 figures
♻ ☆ LAD-BNet: Lag-Aware Dual-Branch Networks for Real-Time Energy Forecasting on Edge Devices
Real-time energy forecasting on edge devices represents a major challenge for smart grid optimization and intelligent buildings. We present LAD-BNet (Lag-Aware Dual-Branch Network), an innovative neural architecture optimized for edge inference with Google Coral TPU. Our hybrid approach combines a branch dedicated to explicit exploitation of temporal lags with a Temporal Convolutional Network (TCN) featuring dilated convolutions, enabling simultaneous capture of short and long-term dependencies. Tested on real energy consumption data with 10-minute temporal resolution, LAD-BNet achieves 14.49% MAPE at 1-hour horizon with only 18ms inference time on Edge TPU, representing an 8-12 x acceleration compared to CPU. The multi-scale architecture enables predictions up to 12 hours with controlled performance degradation. Our model demonstrates a 2.39% improvement over LSTM baselines and 3.04% over pure TCN architectures, while maintaining a 180MB memory footprint suitable for embedded device constraints. These results pave the way for industrial applications in real-time energy optimization, demand management, and operational planning.
comment: 27 pages, in French language. 10 tables, 26 references. Submitted to Energy and AI
♻ ☆ Quantum Feature Space of a Qubit Coupled to an Arbitrary Bath
Qubit control protocols have traditionally leveraged a characterisation of the qubit-bath coupling via its power spectral density. Previous work proposed the inference of noise operators that characterise the influence of a classical bath using a grey-box approach that combines deep neural networks with physics-encoded layers. This overall structure is complex and poses challenges in scaling and real-time operations. Here, we show that no expensive neural networks are needed and that this noise operator description admits an efficient parameterisation. We refer to the resulting parameter space as the \textit{quantum feature space} of the qubit dynamics resulting from the coupled bath. We show that the Euclidean distance defined over the quantum feature space provides an effective method for classifying noise processes in the presence of a given set of controls. Using the quantum feature space as the input space for a simple machine learning algorithm (random forest, in this case), we demonstrate that it can effectively classify the stationarity and the broad class of noise processes perturbing a qubit. Finally, we explore how control pulse parameters map to the quantum feature space.
comment: 19 pages, 3 figures, 4 tables
♻ ☆ EfficientECG: Cross-Attention with Feature Fusion for Efficient Electrocardiogram Classification
Electrocardiogram is a useful diagnostic signal that can detect cardiac abnormalities by measuring the electrical activity generated by the heart. Due to its rapid, non-invasive, and richly informative characteristics, ECG has many emerging applications. In this paper, we study novel deep learning technologies to effectively manage and analyse ECG data, with the aim of building a diagnostic model, accurately and quickly, that can substantially reduce the burden on medical workers. Unlike the existing ECG models that exhibit a high misdiagnosis rate, our deep learning approaches can automatically extract the features of ECG data through end-to-end training. Specifically, we first devise EfficientECG, an accurate and lightweight classification model for ECG analysis based on the existing EfficientNet model, which can effectively handle high-frequency long-sequence ECG data with various leading types. On top of that, we next propose a cross-attention-based feature fusion model of EfficientECG for analysing multi-lead ECG data with multiple features (e.g., gender and age). Our evaluations on representative ECG datasets validate the superiority of our model against state-of-the-art works in terms of high precision, multi-feature fusion, and lightweights.
♻ ☆ Conditionally adaptive augmented Lagrangian method for physics-informed learning of forward and inverse problems
We present several key advances to the Physics and Equality Constrained Artificial Neural Networks (PECANN) framework, substantially improving its capacity to solve challenging partial differential equations (PDEs). Our enhancements broaden the framework's applicability and improve efficiency. First, we generalize the Augmented Lagrangian Method (ALM) to support multiple, independent penalty parameters for enforcing heterogeneous constraints. Second, we introduce a constraint aggregation technique to address inefficiencies associated with point-wise enforcement. Third, we incorporate a single Fourier feature mapping to capture highly oscillatory solutions with multi-scale features, where alternative methods often require multiple mappings or costlier architectures. Fourth, a novel time-windowing strategy enables seamless long-time evolution without relying on discrete time models. Fifth, and critically, we propose a conditionally adaptive penalty update (CAPU) strategy for ALM that accelerates the growth of Lagrange multipliers for constraints with larger violations, while enabling coordinated updates of multiple penalty parameters. CAPU accelerates the growth of Lagrange multipliers for selectively challenging constraints, enhancing constraint enforcement during training. We demonstrate the effectiveness of PECANN-CAPU across diverse problems, including the transonic rarefaction problem, reversible scalar advection by a vortex, high-wavenumber Helmholtz and Poisson's equations, and inverse heat source identification. The framework achieves competitive accuracy across all cases when compared with established methods and recent approaches based on Kolmogorov-Arnold networks. Collectively, these advances improve the robustness, computational efficiency, and applicability of PECANN to demanding problems in scientific computing.
comment: 37 pages, 22 figures
♻ ☆ Inversely Learning Transferable Rewards via Abstracted States
Inverse reinforcement learning (IRL) has progressed significantly toward accurately learning the underlying rewards in both discrete and continuous domains from behavior data. The next advance is to learn {\em intrinsic} preferences in ways that produce useful behavior in settings or tasks which are different but aligned with the observed ones. In the context of robotic applications, this helps integrate robots into processing lines involving new tasks (with shared intrinsic preferences) without programming from scratch. We introduce a method to inversely learn an abstract reward function from behavior trajectories in two or more differing instances of a domain. The abstract reward function is then used to learn task behavior in another separate instance of the domain. This step offers evidence of its transferability and validates its correctness. We evaluate the method on trajectories in tasks from multiple domains in OpenAI's Gym testbed and AssistiveGym and show that the learned abstract reward functions can successfully learn task behaviors in instances of the respective domains, which have not been seen previously.
♻ ☆ Demystifying Language Model Forgetting with Low-rank Example Associations NeurIPS 2025
Large language models (LLMs) suffer from forgetting of upstream knowledge when fine-tuned. Despite efforts on mitigating forgetting, few have investigated how forgotten upstream examples are dependent on newly learned tasks. Insights on such dependencies enable efficient and targeted mitigation of forgetting. In this paper, we empirically analyze forgetting that occurs in $N$ upstream examples of language modeling or instruction-tuning after fine-tuning LLMs on one of $M$ new tasks, visualized in $M\times N$ matrices. We show that the matrices are often well-approximated with low-rank matrices, indicating the dominance of simple associations between the learned tasks and forgotten upstream examples. Leveraging the analysis, we predict forgetting of upstream examples when fine-tuning LLMs on unseen tasks with matrix completion over the empirical associations. This enables fast identification of most forgotten examples without expensive inference on the entire upstream data. Despite simplicity, the approach outperforms prior approaches that learn semantic relationships of learned tasks and upstream examples with LMs. We demonstrate the practical utility of our analysis by showing statistically significantly reduced forgetting as we upweight predicted examples for replay during fine-tuning. Code, data, and statistics collected: https://github.com/AuCson/low-rank-forgetting
comment: NeurIPS 2025. Updated code and data URL
♻ ☆ Beyond Markovian: Reflective Exploration via Bayes-Adaptive RL for LLM Reasoning
Large Language Models (LLMs) trained via Reinforcement Learning (RL) have exhibited strong reasoning capabilities and emergent reflective behaviors, such as rethinking and error correction, as a form of in-context exploration. However, the Markovian policy obtained from conventional RL training does not give rise to reflective exploration behaviors since the policy depends on the history only through the state and therefore has no incentive to enrich identical states with additional context. Instead, RL exploration is only useful during training to learn the optimal policy in a trial-and-error manner. Therefore, it remains unclear whether reflective reasoning will emerge during RL, or why it is beneficial. To remedy this, we recast reflective exploration within a Bayesian RL framework, which optimizes the expected return under a posterior distribution over Markov decision processes induced by the training data. This Bayesian formulation admits uncertainty-adaptive policies that, through belief updates, naturally incentivize information-gathering actions and induce self-reflection behaviors. Our resulting algorithm, BARL, instructs the LLM to stitch and switch strategies based on the observed outcomes, offering principled guidance on when and how the model should reflectively explore. Empirical results on both synthetic and mathematical reasoning tasks demonstrate that BARL outperforms conventional RL approaches, achieving superior test-time performance and token efficiency. Our code is available at https://github.com/shenao-zhang/BARL.
♻ ☆ Can GNNs Learn Link Heuristics? A Concise Review and Evaluation of Link Prediction Methods
This paper explores the ability of Graph Neural Networks (GNNs) in learning various forms of information for link prediction, alongside a brief review of existing link prediction methods. Our analysis reveals that GNNs cannot effectively learn structural information related to the number of common neighbors between two nodes, primarily due to the nature of set-based pooling of the neighborhood aggregation scheme. Also, our extensive experiments indicate that trainable node embeddings can improve the performance of GNN-based link prediction models. Importantly, we observe that the denser the graph, the greater such the improvement. We attribute this to the characteristics of node embeddings, where the link state of each link sample could be encoded into the embeddings of nodes that are involved in the neighborhood aggregation of the two nodes in that link sample. In denser graphs, every node could have more opportunities to attend the neighborhood aggregation of other nodes and encode states of more link samples to its embedding, thus learning better node embeddings for link prediction. Lastly, we demonstrate that the insights gained from our research carry important implications in identifying the limitations of existing link prediction methods, which could guide the future development of more robust algorithms.
♻ ☆ A Simple Approximate Bayesian Inference Neural Surrogate for Stochastic Petri Net Models
Stochastic Petri Nets (SPNs) are an increasingly popular tool of choice for modeling discrete-event dynamics in areas such as epidemiology and systems biology, yet their parameter estimation remains challenging in general and in particular when transition rates depend on external covariates and explicit likelihoods are unavailable. We introduce a neural-surrogate (neural-network-based approximation of the posterior distribution) framework that predicts the coefficients of known covariate-dependent rate functions directly from noisy, partially observed token trajectories. Our model employs a lightweight 1D Convolutional Residual Network trained end-to-end on Gillespie-simulated SPN realizations, learning to invert system dynamics under realistic conditions of event dropout. During inference, Monte Carlo dropout provides calibrated uncertainty bounds together with point estimates. On synthetic SPNs with $10\%$ missing events, our surrogate recovers rate-function coefficients with an $RMSE = 0.043$ and substantially runs faster than traditional Bayesian approaches. These results demonstrate that data-driven, likelihood-free surrogates can enable accurate, robust, and real-time parameter recovery in complex, partially observed discrete-event systems.
comment: 16 pages, 13 figures, for all associated codes and files, see https://github.com/BrightManu-lang/SPN-param-recovery.git
Chain of Thought Monitorability: A New and Fragile Opportunity for AI Safety
AI systems that "think" in human language offer a unique opportunity for AI safety: we can monitor their chains of thought (CoT) for the intent to misbehave. Like all other known AI oversight methods, CoT monitoring is imperfect and allows some misbehavior to go unnoticed. Nevertheless, it shows promise and we recommend further research into CoT monitorability and investment in CoT monitoring alongside existing safety methods. Because CoT monitorability may be fragile, we recommend that frontier model developers consider the impact of development decisions on CoT monitorability.
♻ ☆ Thermodynamic bounds on energy use in quasi-static Deep Neural Networks
The rapid growth of deep neural networks (DNNs) has brought increasing attention to their energy use during training and inference. Here, we establish the thermodynamic bounds on energy consumption in quasi-static analog DNNs by mapping modern feedforward architectures onto a physical free-energy functional. This framework provides a direct statistical-mechanical interpretation of quasi-static DNNs. As a result, inference can proceed in a thermodynamically reversible manner, with vanishing minimal energy cost, in contrast to the Landauer limit that constrains digital hardware. Importantly, inference corresponds to relaxation to a unique free-energy minimum with F_{\min}=0, allowing all constraints to be satisfied without residual stress. By comparison, training overconstrains the system: simultaneous clamping of inputs and outputs generates stresses that propagate backward through the architecture, reproducing the rules of backpropagation. Parameter annealing then relaxes these stresses, providing a purely physical route to learning without an explicit loss function. We further derive a universal lower bound on training energy, E< 2NDkT, which scales with both the number of trainable parameters and the dataset size.
comment: 6 pages, 2 figure, 1 table
♻ ☆ Exploiting Supply Chain Interdependencies for Stock Return Prediction: A Full-State Graph Convolutional LSTM
Stock return prediction is fundamental to financial decision-making, yet traditional time series models fail to capture the complex interdependencies between companies in modern markets. We propose the Full-State Graph Convolutional LSTM (FS-GCLSTM), a novel temporal graph neural network that incorporates value-chain relationships to enhance stock return forecasting. Our approach features two key innovations: First, we represent inter-firm dependencies through value-chain networks, where nodes correspond to companies and edges capture supplier-customer relationships, enabling the model to leverage information beyond historical price data. Second, FS-GCLSTM applies graph convolutions to all LSTM components - current input features, previous hidden states, and cell states - ensuring that spatial information from the value-chain network influences every aspect of the temporal update mechanism. We evaluate FS-GCLSTM on Eurostoxx 600 and S&P 500 datasets using LSEG value-chain data. While not achieving the lowest traditional prediction errors, FS-GCLSTM consistently delivers superior portfolio performance, attaining the highest annualized returns, Sharpe ratios, and Sortino ratios across both markets. Performance gains are more pronounced in the denser Eurostoxx 600 network, and robustness tests confirm stability across different input sequence lengths, demonstrating the practical value of integrating value-chain data with temporal graph neural networks.
Quantitative Methods 3
☆ Visual Function Profiles via Multi-Path Aggregation Reveal Neuron-Level Responses in the Drosophila Brain
Accurately predicting individual neurons' responses and spatial functional properties in complex visual tasks remains a key challenge in understanding neural computation. Existing whole-brain connectome models of Drosophila often rely on parameter assumptions or deep learning approaches, yet remain limited in their ability to reliably predict dynamic neuronal responses. We introduce a Multi-Path Aggregation (MPA) framework, based on neural network steady-state theory, to build a whole-brain Visual Function Profiles (VFP) of Drosophila neurons and predict their responses under diverse visual tasks. Unlike conventional methods relying on redundant parameters, MPA combines visual input features with the whole-brain connectome topology. It uses adjacency matrix powers and finite-path optimization to efficiently predict neuronal function, including ON/OFF polarity, direction selectivity, and responses to complex visual stimuli. Our model achieves a Pearson correlation of 0.84+/-0.12 for ON/OFF responses, outperforming existing methods (0.33+/-0.59), and accurately captures neuron functional properties, including luminance and direction preferences, while allowing single-neuron or population-level blockade simulations. Replacing CNN modules with VFP-derived Lobula Columnar(LC) population responses in a Drosophila simulation enables successful navigation and obstacle avoidance, demonstrating the model's effectiveness in guiding embodied behavior. This study establishes a "connectome-functional profile-behavior" framework, offering a whole-brain quantitative tool to study Drosophila visual computation and a neuron-level guide for brain-inspired intelligence.
♻ ☆ Beyond the Clinic: A Large-Scale Evaluation of Augmenting EHR with Wearable Data for Diverse Health Prediction
Electronic health records (EHRs) provide a powerful basis for predicting the onset of health outcomes. Yet EHRs primarily capture in-clinic events and miss aspects of daily behavior and lifestyle containing rich health information. Consumer wearables, by contrast, continuously measure activity, heart rate, and sleep, and more, offering complementary signals that can fill this gap. Despite this potential, there has been little systematic evaluation of the benefit that wearable data can bring to health outcome prediction on top of EHRs. In this study, we present an extensible framework for multimodal health outcome prediction that integrates EHR and wearable data streams. Using data from the All of Us Program, we systematically compared the combination of different encoding methods on EHR and wearable data, including the traditional feature engineering approach, as well as foundation model embeddings. Across ten clinical outcomes, wearable integration consistently improved model performance relative to EHR-only baselines, e.g., average delta AUROC +6.8% for major depressive disorder, +9.7% for hypertension, and +12.6% for diabetes. On average across all ten outcomes, fusing EHRs with wearable features shows 8.5% improvement in AUROC. To our knowledge, this is the first large-scale evaluation of wearable-EHR fusion, underscoring the utility of wearable-derived signals in complementing EHRs and enabling more holistic, personalized health outcome predictions. Meanwhile, our analysis elucidates future directions for optimizing foundation models for wearable data and its integration with EHR data.
♻ ☆ A Simple Approximate Bayesian Inference Neural Surrogate for Stochastic Petri Net Models
Stochastic Petri Nets (SPNs) are an increasingly popular tool of choice for modeling discrete-event dynamics in areas such as epidemiology and systems biology, yet their parameter estimation remains challenging in general and in particular when transition rates depend on external covariates and explicit likelihoods are unavailable. We introduce a neural-surrogate (neural-network-based approximation of the posterior distribution) framework that predicts the coefficients of known covariate-dependent rate functions directly from noisy, partially observed token trajectories. Our model employs a lightweight 1D Convolutional Residual Network trained end-to-end on Gillespie-simulated SPN realizations, learning to invert system dynamics under realistic conditions of event dropout. During inference, Monte Carlo dropout provides calibrated uncertainty bounds together with point estimates. On synthetic SPNs with $10\%$ missing events, our surrogate recovers rate-function coefficients with an $RMSE = 0.043$ and substantially runs faster than traditional Bayesian approaches. These results demonstrate that data-driven, likelihood-free surrogates can enable accurate, robust, and real-time parameter recovery in complex, partially observed discrete-event systems.
comment: 16 pages, 13 figures, for all associated codes and files, see https://github.com/BrightManu-lang/SPN-param-recovery.git
Cell Behavior 1
☆ Leveraging Pre-trained Neural Network Models for the Classification of Tumor Cells Analyzed by Label-free Phase Holotomographic Microscopy
Can a single label-free image reveal whether cancer cells were exposed to chemotherapy? We present an innovative methodology on the label-free and high-resolution imaging properties of phase holotomographic microscopy coupled with neural network models for the classification of cancer cells. Using 3D phase holotomographic microscopy, we imaged live A549 lung cancer cells with and without paclitaxel, converted stacks to 2D maximum-intensity projections, and evaluated pre-trained convolutional networks (VGG16, ResNet18, DenseNet121, and EfficientNet-B0) for binary classification of treatment status. EfficientNet-B0 achieved 96.9 % accuracy on unsegmented images. Refractive index analysis revealed bimodal distribution in treated cells, reflecting heterogeneous biophysical responses to paclitaxel exposure and supporting the network's ability to detect subtle, label-free indicators of drug action. As further proof-of-concept, the same pipeline separated holotomographic images of label-free, high versus low-graded urothelial cancer cells with high accuracy (90.6 %). These findings highlight the potential of integrating label-free holotomographic imaging with deep learning techniques for rapid and efficient classification of tumor cells, paving the way for advancements in treatment optimization and personalized diagnostic strategies.
comment: 20 pages, 7 figures, 3 tables, original research article
Quantitative Methods 5
☆ Small Language Models Can Use Nuanced Reasoning For Health Science Research Classification: A Microbial-Oncogenesis Case Study
Artificially intelligent (AI) co-scientists must be able to sift through research literature cost-efficiently while applying nuanced scientific reasoning. We evaluate Small Language Models (SLMs, <= 8B parameters) for classifying medical research papers. Using literature on the oncogenic potential of HMTV/MMTV-like viruses in breast cancer as a case study, we assess model performance with both zero-shot and in-context learning (ICL; few-shot prompting) strategies against frontier proprietary Large Language Models (LLMs). Llama 3 and Qwen2.5 outperform GPT-5 (API, low/high effort), Gemini 3 Pro Preview, and Meerkat in zero-shot settings, though trailing Gemini 2.5 Pro. ICL leads to improved performance on a case-by-case basis, allowing Llama 3 and Qwen2.5 to match Gemini 2.5 Pro in binary classification. Systematic lexical-ablation experiments show that SLM decisions are often grounded in valid scientific cues but can be influenced by spurious textual artifacts, underscoring need for interpretability in high-stakes pipelines. Our results reveal both promise and limitations of modern SLMs for scientific triage; pairing SLMs with simple but principled prompting strategies can approach performance of the strongest LLMs for targeted literature filtering in co-scientist pipelines.
comment: 43 pages, 7 figures
☆ PRIMRose: Insights into the Per-Residue Energy Metrics of Proteins with Double InDel Mutations using Deep Learning
Understanding how protein mutations affect protein structure is essential for advancements in computational biology and bioinformatics. We introduce PRIMRose, a novel approach that predicts energy values for each residue given a mutated protein sequence. Unlike previous models that assess global energy shifts, our method analyzes the localized energetic impact of double amino acid insertions or deletions (InDels) at the individual residue level, enabling residue-specific insights into structural and functional disruption. We implement a Convolutional Neural Network architecture to predict the energy changes of each residue in a protein mutation. We train our model on datasets constructed from nine proteins, grouped into three categories: one set with exhaustive double InDel mutations, another with approximately 145k randomly sampled double InDel mutations, and a third with approximately 80k randomly sampled double InDel mutations. Our model achieves high predictive accuracy across a range of energy metrics as calculated by the Rosetta molecular modeling suite and reveals localized patterns that influence model performance, such as solvent accessibility and secondary structure context. This per-residue analysis offers new insights into the mutational tolerance of specific regions within proteins and provides higher interpretable and biologically meaningful predictions of InDels' effects.
comment: Presented at Computational Structural Bioinformatics Workshop 2025
☆ Interpretable Neural Approximation of Stochastic Reaction Dynamics with Guaranteed Reliability
Stochastic Reaction Networks (SRNs) are a fundamental modeling framework for systems ranging from chemical kinetics and epidemiology to ecological and synthetic biological processes. A central computational challenge is the estimation of expected outputs across initial conditions and times, a task that is rarely solvable analytically and becomes computationally prohibitive with current methods such as Finite State Projection or the Stochastic Simulation Algorithm. Existing deep learning approaches offer empirical scalability, but provide neither interpretability nor reliability guarantees, limiting their use in scientific analysis and in applications where model outputs inform real-world decisions. Here we introduce DeepSKA, a neural framework that jointly achieves interpretability, guaranteed reliability, and substantial computational gains. DeepSKA yields mathematically transparent representations that generalise across states, times, and output functions, and it integrates this structure with a small number of stochastic simulations to produce unbiased, provably convergent, and dramatically lower-variance estimates than classical Monte Carlo. We demonstrate these capabilities across nine SRNs, including nonlinear and non-mass-action models with up to ten species, where DeepSKA delivers accurate predictions and orders-of-magnitude efficiency improvements. This interpretable and reliable neural framework offers a principled foundation for developing analogous methods for other Markovian systems, including stochastic differential equations.
☆ Assessing the Information Content of Individual Spikes in Population-Level Models of Neural Spiking Activity
In the last decade, there have been major advances in clusterless decoding algorithms for neural data analysis. These algorithms use the theory of marked point processes to describe the joint activity of many neurons simultaneously, without the need for spike sorting. In this study, we examine information-theoretic metrics to analyze the information extracted from each observed spike under such clusterless models. In an analysis of spatial coding in the rat hippocampus, we compared the entropy reduction between spike-sorted and clusterless models for both individual spikes observed in isolation and when the prior information from all previously observed spikes is accounted for. Our analysis demonstrates that low-amplitude spikes, which are difficult to cluster and often left out of spike sorting, provide reduced information compared to sortable, high-amplitude spikes when considered in isolation, but the two provide similar levels of information when considering all the prior information available from past spiking. These findings demonstrate the value of combining information measures with state-space modeling and yield new insights into the underlying mechanisms of neural computation.
comment: Manuscript, 25 pages, 8 figures; preprint
♻ ☆ SeqProFT: Sequence-only Protein Property Prediction with LoRA Finetuning
Protein language models (PLMs) have demonstrated remarkable capabilities in learning relationships between protein sequences and functions. However, finetuning these large models requires substantial computational resources, often with suboptimal task-specific results. This study investigates how parameter-efficient finetuning via LoRA can enhance protein property prediction while significantly reducing computational demands. By applying LoRA to ESM-2 and ESM-C models of varying sizes and evaluating 10 diverse protein property prediction tasks, we demonstrate that smaller models with LoRA adaptation can match or exceed the performance of larger models without adaptation. Additionally, we integrate contact map information through a multi-head attention mechanism, improving model comprehension of structural features. Our systematic analysis reveals that LoRA finetuning enables faster convergence, better performance, and more efficient resource utilization, providing practical guidance for protein research applications in resource-constrained environments. The code is available at https://github.com/jiankliu/SeqProFT.
Computation and Language 60
☆ Enhancing Retrieval-Augmented Generation with Entity Linking for Educational Platforms
In the era of Large Language Models (LLMs), Retrieval-Augmented Generation (RAG) architectures are gaining significant attention for their ability to ground language generation in reliable knowledge sources. Despite their impressive effectiveness in many areas, RAG systems based solely on semantic similarity often fail to ensure factual accuracy in specialized domains, where terminological ambiguity can affect retrieval relevance. This study proposes an enhanced RAG architecture that integrates a factual signal derived from Entity Linking to improve the accuracy of educational question-answering systems in Italian. The system includes a Wikidata-based Entity Linking module and implements three re-ranking strategies to combine semantic and entity-based information: a hybrid score weighting model, reciprocal rank fusion, and a cross-encoder re-ranker. Experiments were conducted on two benchmarks: a custom academic dataset and the standard SQuAD-it dataset. Results show that, in domain-specific contexts, the hybrid schema based on reciprocal rank fusion significantly outperforms both the baseline and the cross-encoder approach, while the cross-encoder achieves the best results on the general-domain dataset. These findings confirm the presence of an effect of domain mismatch and highlight the importance of domain adaptation and hybrid ranking strategies to enhance factual precision and reliability in retrieval-augmented generation. They also demonstrate the potential of entity-aware RAG systems in educational environments, fostering adaptive and reliable AI-based tutoring tools.
☆ M4-RAG: A Massive-Scale Multilingual Multi-Cultural Multimodal RAG
Vision-language models (VLMs) have achieved strong performance in visual question answering (VQA), yet they remain constrained by static training data. Retrieval-Augmented Generation (RAG) mitigates this limitation by enabling access to up-to-date, culturally grounded, and multilingual information; however, multilingual multimodal RAG remains largely underexplored. We introduce M4-RAG, a massive-scale benchmark covering 42 languages and 56 regional dialects and registers, comprising over 80,000 culturally diverse image-question pairs for evaluating retrieval-augmented VQA across languages and modalities. To balance realism with reproducibility, we build a controlled retrieval environment containing millions of carefully curated multilingual documents relevant to the query domains, approximating real-world retrieval conditions while ensuring consistent experimentation. Our systematic evaluation reveals that although RAG consistently benefits smaller VLMs, it fails to scale to larger models and often even degrades their performance, exposing a critical mismatch between model size and current retrieval effectiveness. M4-RAG provides a foundation for advancing next-generation RAG systems capable of reasoning seamlessly across languages, modalities, and cultural contexts.
comment: Preprint
☆ Zoom in, Click out: Unlocking and Evaluating the Potential of Zooming for GUI Grounding
Grounding is a fundamental capability for building graphical user interface (GUI) agents. Although existing approaches rely on large-scale bounding box supervision, they still face various challenges, such as cross-platform generalization, complex layout analysis, and fine-grained element localization. In this paper, we investigate zoom as a strong yet underexplored prior for GUI grounding, and propose a training-free method, ZoomClick. By characterizing four key properties of zoom (i.e., pre-zoom, depth, shrink size, minimal crop size), we unlock its full capabilities for dynamic spatial focusing and adaptive context switching. Experiments demonstrate that our method significantly boosts the performance of both general vision-language and specialized GUI grounding models, achieving state-of-the-art results on several mainstream benchmarks; for example, UI-Venus-72B attains a 73.1% success rate on ScreenSpot-Pro. Furthermore, we present GUIZoom-Bench, a benchmark for evaluating model adaptability to zoom, aiming to inspire future research on improving zoom for further training and test-time scaling in GUI grounding tasks.
comment: Code is available at https://github.com/Princeton-AI2-Lab/ZoomClick
To Err Is Human: Systematic Quantification of Errors in Published AI Papers via LLM Analysis
How many mistakes do published AI papers contain? Peer-reviewed publications form the foundation upon which new research and knowledge are built. Errors that persist in the literature can propagate unnoticed, creating confusion in follow-up studies and complicating reproducibility. The accelerating pace of research and the increasing demands on the peer-review system make such mistakes harder to detect and avoid. To address this, we developed a Paper Correctness Checker based on GPT-5 to systematically identify mistakes in papers previously published at top AI conferences and journals. Our analysis focuses on objective mistakes-e.g., errors in formulas, derivations, calculations, figures, and tables-that have a clearly verifiable ground truth. We intentionally exclude subjective considerations such as novelty, importance, or writing quality. We find that published papers contain a non-negligible number of objective mistakes and that the average number of mistakes per paper has increased over time-from 3.8 in NeurIPS 2021 to 5.9 in NeurIPS 2025 (55.3% increase); from 4.1 in ICLR 2018 to 5.2 in ICLR 2025; and from 5.0 in TMLR 2022/23 to 5.5 in TMLR 2025. Human experts reviewed 316 potential mistakes identified by the AI Checker and confirmed that 263 were actual mistakes, corresponding to a precision of 83.2%. While most identified issues are relatively minor, correcting them would reduce confusion in the literature and strengthen reproducibility. The AI Checker also surfaced potentially more substantive mistakes that could affect the interpretation of results. Moreover, we show that the AI Checker can propose correct fixes for 75.8% of the identified mistakes. Overall, this study highlights the potential of frontier LLMs to detect and correct objective mistakes in published papers, helping to establish a firmer foundation of knowledge.
☆ Natural Language Summarization Enables Multi-Repository Bug Localization by LLMs in Microservice Architectures
Bug localization in multi-repository microservice architectures is challenging due to the semantic gap between natural language bug reports and code, LLM context limitations, and the need to first identify the correct repository. We propose reframing this as a natural language reasoning task by transforming codebases into hierarchical NL summaries and performing NL-to-NL search instead of cross-modal retrieval. Our approach builds context-aware summaries at file, directory, and repository levels, then uses a two-phase search: first routing bug reports to relevant repositories, then performing top-down localization within those repositories. Evaluated on DNext, an industrial system with 46 repositories and 1.1M lines of code, our method achieves Pass@10 of 0.82 and MRR of 0.50, significantly outperforming retrieval baselines and agentic RAG systems like GitHub Copilot and Cursor. This work demonstrates that engineered natural language representations can be more effective than raw source code for scalable bug localization, providing an interpretable repository -> directory -> file search path, which is vital for building trust in enterprise AI tools by providing essential transparency.
comment: Accepted at LLM4Code Workshop, ICSE 2026
☆ Optimizing Medical Question-Answering Systems: A Comparative Study of Fine-Tuned and Zero-Shot Large Language Models with RAG Framework
Medical question-answering (QA) systems can benefit from advances in large language models (LLMs), but directly applying LLMs to the clinical domain poses challenges such as maintaining factual accuracy and avoiding hallucinations. In this paper, we present a retrieval-augmented generation (RAG) based medical QA system that combines domain-specific knowledge retrieval with open-source LLMs to answer medical questions. We fine-tune two state-of-the-art open LLMs (LLaMA~2 and Falcon) using Low-Rank Adaptation (LoRA) for efficient domain specialization. The system retrieves relevant medical literature to ground the LLM's answers, thereby improving factual correctness and reducing hallucinations. We evaluate the approach on benchmark datasets (PubMedQA and MedMCQA) and show that retrieval augmentation yields measurable improvements in answer accuracy compared to using LLMs alone. Our fine-tuned LLaMA~2 model achieves 71.8% accuracy on PubMedQA, substantially improving over the 55.4% zero-shot baseline, while maintaining transparency by providing source references. We also detail the system design and fine-tuning methodology, demonstrating that grounding answers in retrieved evidence reduces unsupported content by approximately 60%. These results highlight the potential of RAG-augmented open-source LLMs for reliable biomedical QA, pointing toward practical clinical informatics applications.
☆ Prompting Science Report 4: Playing Pretend: Expert Personas Don't Improve Factual Accuracy
This is the fourth in a series of short reports that help business, education, and policy leaders understand the technical details of working with AI through rigorous testing. Here, we ask whether assigning personas to models improves performance on difficult objective multiple-choice questions. We study both domain-specific expert personas and low-knowledge personas, evaluating six models on GPQA Diamond (Rein et al. 2024) and MMLU-Pro (Wang et al. 2024), graduate-level questions spanning science, engineering, and law. We tested three approaches: -In-Domain Experts: Assigning the model an expert persona ("you are a physics expert") matched to the problem type (physics problems) had no significant impact on performance (with the exception of the Gemini 2.0 Flash model). -Off-Domain Experts (Domain-Mismatched): Assigning the model an expert persona ("you are a physics expert") not matched to the problem type (law problems) resulted in marginal differences. -Low-Knowledge Personas: We assigned the model negative capability personas (layperson, young child, toddler), which were generally harmful to benchmark accuracy. Across both benchmarks, persona prompts generally did not improve accuracy relative to a no-persona baseline. Expert personas showed no consistent benefit across models, with few exceptions. Domain-mismatched expert personas sometimes degraded performance. Low-knowledge personas often reduced accuracy. These results are about the accuracy of answers only; personas may serve other purposes (such as altering the tone of outputs), beyond improving factual performance.
☆ Vague Knowledge: Information without Transitivity and Partitions
I relax the standard assumptions of transitivity and partition structure in economic models of information to formalize vague knowledge: non-transitive indistinguishability over states. I show that vague knowledge, while failing to partition the state space, remains informative by distinguishing some states from others. Moreover, it can only be faithfully expressed through vague communication with blurred boundaries. My results provide microfoundations for the prevalence of natural language communication and qualitative reasoning in the real world, where knowledge is often vague.
☆ Heard or Halted? Gender, Interruptions, and Emotional Tone in U.S. Supreme Court Oral Arguments
This study examines how interruptions during U.S. Supreme Court oral arguments shape both the semantic content and emotional tone of advocates' speech, with a focus on gendered dynamics in judicial discourse. Using the ConvoKit Supreme Court Corpus (2010-2019), we analyze 12,663 speech chunks from advocate-justice interactions to assess whether interruptions alter the meaning of an advocate's argument and whether interruptions toward female advocates exhibit more negative emotional valence. Semantic shifts are quantified using GloVe-based sentence embeddings, while sentiment is measured through lexicon-based analysis. We find that semantic similarity between pre- and post-interruption speech remains consistently high, suggesting that interruptions do not substantially alter argumentative content. However, interruptions directed at female advocates contain significantly higher levels of negative sentiment. These results deepen empirical understanding of gendered communication in elite institutional settings and demonstrate the value of computational linguistic methods for studying power, discourse, and equity in judicial proceedings.
comment: 12 pages, 5 figures, 1 table. Includes appendix. Code available at: https://github.com/1TSHARUKA/Emotional_Interruption_Analysis
☆ Active Video Perception: Iterative Evidence Seeking for Agentic Long Video Understanding
Long video understanding (LVU) is challenging because answering real-world queries often depends on sparse, temporally dispersed cues buried in hours of mostly redundant and irrelevant content. While agentic pipelines improve video reasoning capabilities, prevailing frameworks rely on a query-agnostic captioner to perceive video information, which wastes computation on irrelevant content and blurs fine-grained temporal and spatial information. Motivated by active perception theory, we argue that LVU agents should actively decide what, when, and where to observe, and continuously assess whether the current observation is sufficient to answer the query. We present Active Video Perception (AVP), an evidence-seeking framework that treats the video as an interactive environment and acquires compact, queryrelevant evidence directly from pixels. Concretely, AVP runs an iterative plan-observe-reflect process with MLLM agents. In each round, a planner proposes targeted video interactions, an observer executes them to extract time-stamped evidence, and a reflector evaluates the sufficiency of the evidence for the query, either halting with an answer or triggering further observation. Across five LVU benchmarks, AVP achieves highest performance with significant improvements. Notably, AVP outperforms the best agentic method by 5.7% in average accuracy while only requires 18.4% inference time and 12.4% input tokens.
comment: Website: https://activevideoperception.github.io/
☆ Capturing Classic Authorial Style in Long-Form Story Generation with GRPO Fine-Tuning
Recent advances in large language models (LLMs) show impressive performance in open-ended story generation, but fine-grained stylistic control remains limited. Existing methods often rely on shallow cues (e.g., names or topics) to simulate authorial style, without robust evaluation. In this work, we present a training framework for style-conditioned story generation using Group Relative Policy Optimization (GRPO) and a custom multi-reward setup. The style reward is derived from a fine-tuned sentence transformer using authorship verification (AV) signals, combined with content and completeness scores to stabilize long-form narrative generation. We conduct experiments using fiction by Mark Twain, a prominent 19th-century American author, with The Adventures of Huckleberry Finn serving as the reference style exemplar. Our 8B model outperforms larger baselines such as GPT-4o and Claude Sonnet 4 in AV-style metrics, achieving a style score of 0.628 and competitive content quality. Results demonstrate the feasibility of agentic stylistic generation with moderate model size and task-specific training. While the output is clearly style-aligned, narrative completeness remains a challenge, indicating future work is needed to better model global coherence and story resolution.
☆ Efficient Text Classification with Conformal In-Context Learning
Large Language Models (LLMs) demonstrate strong in-context learning abilities, yet their effectiveness in text classification depends heavily on prompt design and incurs substantial computational cost. Conformal In-Context Learning (CICLe) has been proposed as a resource-efficient framework that integrates a lightweight base classifier with Conformal Prediction to guide LLM prompting by adaptively reducing the set of candidate classes. However, its broader applicability and efficiency benefits beyond a single domain have not yet been systematically explored. In this paper, we present a comprehensive evaluation of CICLe across diverse NLP classification benchmarks. The results show that CICLe consistently improves over its base classifier and outperforms few-shot prompting baselines when the sample size is sufficient for training the base classifier, and performs comparably in low-data regimes. In terms of efficiency, CICLe reduces the number of shots and prompt length by up to 34.45% and 25.16%, respectively, and enables the use of smaller models with competitive performance. CICLe is furthermore particularly advantageous for text classification tasks with high class imbalance. These findings highlight CICLe as a practical and scalable approach for efficient text classification, combining the robustness of traditional classifiers with the adaptability of LLMs, and achieving substantial gains in data and computational efficiency.
comment: 10 pages, 4 tables, 2 figures
☆ Big Tech-Funded AI Papers Have Higher Citation Impact, Greater Insularity, and Larger Recency Bias
Over the past four decades, artificial intelligence (AI) research has flourished at the nexus of academia and industry. However, Big Tech companies have increasingly acquired the edge in computational resources, big data, and talent. So far, it has been largely unclear how many papers the industry funds, how their citation impact compares to non-funded papers, and what drives industry interest. This study fills that gap by quantifying the number of industry-funded papers at 10 top AI conferences (e.g., ICLR, CVPR, AAAI, ACL) and their citation influence. We analyze about 49.8K papers, about 1.8M citations from AI papers to other papers, and about 2.3M citations from other papers to AI papers from 1998-2022 in Scopus. Through seven research questions, we examine the volume and evolution of industry funding in AI research, the citation impact of funded papers, the diversity and temporal range of their citations, and the subfields in which industry predominantly acts. Our findings reveal that industry presence has grown markedly since 2015, from less than 2 percent to more than 11 percent in 2020. Between 2018 and 2022, 12 percent of industry-funded papers achieved high citation rates as measured by the h5-index, compared to 4 percent of non-industry-funded papers and 2 percent of non-funded papers. Top AI conferences engage more with industry-funded research than non-funded research, as measured by our newly proposed metric, the Citation Preference Ratio (CPR). We show that industry-funded research is increasingly insular, citing predominantly other industry-funded papers while referencing fewer non-funded papers. These findings reveal new trends in AI research funding, including a shift towards more industry-funded papers and their growing citation impact, greater insularity of industry-funded work than non-funded work, and a preference of industry-funded research to cite recent work.
comment: Published at IEEE (ACDSA)
☆ Faithfulness metric fusion: Improving the evaluation of LLM trustworthiness across domains
We present a methodology for improving the accuracy of faithfulness evaluation in Large Language Models (LLMs). The proposed methodology is based on the combination of elementary faithfulness metrics into a combined (fused) metric, for the purpose of improving the faithfulness of LLM outputs. The proposed strategy for metric fusion deploys a tree-based model to identify the importance of each metric, which is driven by the integration of human judgements evaluating the faithfulness of LLM responses. This fused metric is demonstrated to correlate more strongly with human judgements across all tested domains for faithfulness. Improving the ability to evaluate the faithfulness of LLMs, allows for greater confidence to be placed within models, allowing for their implementation in a greater diversity of scenarios. Additionally, we homogenise a collection of datasets across question answering and dialogue-based domains and implement human judgements and LLM responses within this dataset, allowing for the reproduction and trialling of faithfulness evaluation across domains.
comment: 9 pages, conference paper
☆ Retrieving Semantically Similar Decisions under Noisy Institutional Labels: Robust Comparison of Embedding Methods
Retrieving case law is a time-consuming task predominantly carried out by querying databases. We provide a comparison of two models in three different settings for Czech Constitutional Court decisions: (i) a large general-purpose embedder (OpenAI), (ii) a domain-specific BERT-trained from scratch on ~30,000 decisions using sliding windows and attention pooling. We propose a noise-aware evaluation including IDF-weighted keyword overlap as graded relevance, binarization via two thresholds (0.20 balanced, 0.28 strict), significance via paired bootstrap, and an nDCG diagnosis supported with qualitative analysis. Despite modest absolute nDCG (expected under noisy labels), the general OpenAI embedder decisively outperforms the domain pre-trained BERT in both settings at @10/@20/@100 across both thresholds; differences are statistically significant. Diagnostics attribute low absolutes to label drift and strong ideals rather than lack of utility. Additionally, our framework is robust enough to be used for evaluation under a noisy gold dataset, which is typical when handling data with heterogeneous labels stemming from legacy judicial databases.
comment: The manuscript has been accepted for presentation as a short paper at the 38th International Conference on Legal Knowledge and Information Systems (JURIX 2025) in Torino, Italy
☆ MedTutor-R1: Socratic Personalized Medical Teaching with Multi-Agent Simulation
The significant gap between rising demands for clinical training and the scarcity of expert instruction poses a major challenge to medical education. With powerful capabilities in personalized guidance, Large Language Models (LLMs) offer a promising solution to bridge this gap. However, current research focuses mainly on one-on-one knowledge instruction, overlooking collaborative reasoning, a key skill for students developed in teamwork like ward rounds. To this end, we develop ClinEdu, a multi-agent pedagogical simulator with personality-driven patients and diverse student cohorts, enabling controlled testing of complex pedagogical processes and scalable generation of teaching data. Based on ClinEdu, we construct ClinTeach, a large Socratic teaching dialogue dataset that captures the complexities of group instruction. We then train MedTutor-R1, the first multimodal Socratic tutor designed for one-to-many instruction in clinical medical education. MedTutor-R1 is first instruction-tuned on our ClinTeach dataset and then optimized with reinforcement learning, using rewards derived from a three-axis rubric, covering structural fidelity, analytical quality, and clinical safety, to refine its adaptive Socratic strategies. For authentic in-situ assessment, we use simulation-based interactive evaluation that redeploys the tutor back into ClinEdu. Experimental results demonstrate that our MedTutor-R1 outperforms the base model by over 20% in average pedagogical score and is comparable to o3, while also exhibiting high adaptability in handling a varying number of students. This promising performance underscores the effectiveness of our pedagogical simulator, ClinEdu.
comment: Work In Progress
☆ Interleaved Latent Visual Reasoning with Selective Perceptual Modeling
Interleaved reasoning paradigms enhance Multimodal Large Language Models (MLLMs) with visual feedback but are hindered by the prohibitive computational cost of repeatedly re-encoding pixel-dense images. A promising alternative, latent visual reasoning, circumvents this bottleneck yet currently forces a critical trade-off: methods either sacrifice precise perceptual modeling by over-compressing features or fail to model dynamic problems due to static, non-interleaved structures. We introduce Interleaved Latent Visual Reasoning (ILVR), a framework that unifies dynamic state evolution with precise perceptual modeling. ILVR interleaves textual generation with latent visual representations that act as specific, evolving cues for subsequent reasoning. To enable this, we employ a self-supervision strategy where a Momentum Teacher Model selectively distills relevant features from helper images into sparse supervision targets. This adaptive selection mechanism guides the model to autonomously generate context-aware visual signals. Extensive experiments on multimodal reasoning benchmarks demonstrate that ILVR significantly outperforms existing approaches, effectively bridging the gap between fine-grained perception and sequential multimodal reasoning.
comment: 11 pages, 6 figures. Code available at https://github.com/XD111ds/ILVR
☆ Grounded Multilingual Medical Reasoning for Question Answering with Large Language Models
Large Language Models (LLMs) with reasoning capabilities have recently demonstrated strong potential in medical Question Answering (QA). Existing approaches are largely English-focused and primarily rely on distillation from general-purpose LLMs, raising concerns about the reliability of their medical knowledge. In this work, we present a method to generate multilingual reasoning traces grounded in factual medical knowledge. We produce 500k traces in English, Italian, and Spanish, using a retrievalaugmented generation approach over medical information from Wikipedia. The traces are generated to solve medical questions drawn from MedQA and MedMCQA, which we extend to Italian and Spanish. We test our pipeline in both in-domain and outof-domain settings across Medical QA benchmarks, and demonstrate that our reasoning traces improve performance both when utilized via in-context learning (few-shot) and supervised fine-tuning, yielding state-of-the-art results among 8B-parameter LLMs. We believe that these resources can support the development of safer, more transparent clinical decision-support tools in multilingual settings. We release the full suite of resources: reasoning traces, translated QA datasets, Medical-Wikipedia, and fine-tuned models.
comment: Under Review
☆ A Greek Government Decisions Dataset for Public-Sector Analysis and Insight
We introduce an open, machine-readable corpus of Greek government decisions sourced from the national transparency platform Diavgeia. The resource comprises 1 million decisions, featuring and high-quality raw text extracted from PDFs. It is released with raw extracted text in Markdown format, alongside a fully reproducible extraction pipeline. Beyond the core dataset, we conduct qualitative analyses to explore boilerplate patterns and design a retrieval-augmented generation (RAG) task by formulating a set of representative questions, creating high-quality answers, and evaluating a baseline RAG system on its ability to retrieve and reason over public decisions. This evaluation demonstrates the potential of large-scale public-sector corpora to support advanced information access and transparency through structured retrieval and reasoning over governmental documents, and highlights how such a RAG pipeline could simulate a chat-based assistant capable of interactively answering questions about public decisions. Due to its scale, quality, and domain coverage, the corpus can also serve as high-value pre-training or fine-tuning material for new Language Models (LMs) and Large Language Models (LLMs) respectively, including specialized models for legal and governmental domains, and as a foundation for novel approaches in domain adaptation, knowledge-grounded generation, and explainable AI. Finally, we discuss limitations, outline future directions, and make both the data and the code accessible.
☆ Ontology Learning with LLMs: A Benchmark Study on Axiom Identification
Ontologies are an important tool for structuring domain knowledge, but their development is a complex task that requires significant modelling and domain expertise. Ontology learning, aimed at automating this process, has seen advancements in the past decade with the improvement of Natural Language Processing techniques, and especially with the recent growth of Large Language Models (LLMs). This paper investigates the challenge of identifying axioms: fundamental ontology components that define logical relations between classes and properties. In this work, we introduce an Ontology Axiom Benchmark OntoAxiom, and systematically test LLMs on that benchmark for axiom identification, evaluating different prompting strategies, ontologies, and axiom types. The benchmark consists of nine medium-sized ontologies with together 17.118 triples, and 2.771 axioms. We focus on subclass, disjoint, subproperty, domain, and range axioms. To evaluate LLM performance, we compare twelve LLMs with three shot settings and two prompting strategies: a Direct approach where we query all axioms at once, versus an Axiom-by-Axiom (AbA) approach, where each prompt queries for one axiom only. Our findings show that the AbA prompting leads to higher F1 scores than the direct approach. However, performance varies across axioms, suggesting that certain axioms are more challenging to identify. The domain also influences performance: the FOAF ontology achieves a score of 0.642 for the subclass axiom, while the music ontology reaches only 0.218. Larger LLMs outperform smaller ones, but smaller models may still be viable for resource-constrained settings. Although performance overall is not high enough to fully automate axiom identification, LLMs can provide valuable candidate axioms to support ontology engineers with the development and refinement of ontologies.
comment: Submitted to Semantic Web Journal, under review
☆ Entropy Ratio Clipping as a Soft Global Constraint for Stable Reinforcement Learning
Large language model post-training relies on reinforcement learning to improve model capability and alignment quality. However, the off-policy training paradigm introduces distribution shift, which often pushes the policy beyond the trust region, leading to training instabilities manifested as fluctuations in policy entropy and unstable gradients. Although PPO-Clip mitigates this issue through importance clipping, it still overlooks the global distributional shift of actions. To address these challenges, we propose using the entropy ratio between the current and previous policies as a new global metric that effectively quantifies the relative change in policy exploration throughout updates. Building on this metric, we introduce an \textbf{Entropy Ratio Clipping} (ERC) mechanism that imposes bidirectional constraints on the entropy ratio. This stabilizes policy updates at the global distribution level and compensates for the inability of PPO-clip to regulate probability shifts of un-sampled actions. We integrate ERC into both DAPO and GPPO reinforcement learning algorithms. Experiments across multiple benchmarks show that ERC consistently improves performance.
☆ Structured Reasoning with Tree-of-Thoughts for Bengali Math Word Problems
Mathematical Word Problems (MWPs) are among the most challenging tasks in natural language processing because they require both linguistic understanding and multi-step numerical reasoning. While Chain-of-Thought (CoT) prompting has shown promise, its linear structure often propagates errors, limiting overall effectiveness. To address this limitation, we present the a systematic study of Tree-of-Thought (ToT) reasoning for Bengali MWPs using the SOMADHAN dataset. Owing to computational and token-cost constraints, we evaluate a curated set of 100 representative problems across multiple large language models (LLMs), including GPT-OSS and LLaMA variants, under standard prompting, CoT, and ToT strategies. Our results show that CoT improves baseline accuracy from 78% (standard prompting) to 83% on average, while ToT further increases performance by up to 5 percentage points, achieving 88% accuracy with GPT-OSS-120B. These improvements highlight that ToT is particularly effective in medium-to-large-scale models but may offer less advantage for smaller ones. Overall, our findings establish ToT as a robust framework for solving mathematical problems in low-resource languages such as Bengali. More broadly, this study shows that structured reasoning methods like ToT can provide more reliable and globally consistent outcomes than CoT, paving the way for better reasoning strategies in multilingual NLP.
☆ Automated Identification of Incidentalomas Requiring Follow-Up: A Multi-Anatomy Evaluation of LLM-Based and Supervised Approaches
Objective: To evaluate large language models (LLMs) against supervised baselines for fine-grained, lesion-level detection of incidentalomas requiring follow-up, addressing the limitations of current document-level classification systems. Methods: We utilized a dataset of 400 annotated radiology reports containing 1,623 verified lesion findings. We compared three supervised transformer-based encoders (BioClinicalModernBERT, ModernBERT, Clinical Longformer) against four generative LLM configurations (Llama 3.1-8B, GPT-4o, GPT-OSS-20b). We introduced a novel inference strategy using lesion-tagged inputs and anatomy-aware prompting to ground model reasoning. Performance was evaluated using class-specific F1-scores. Results: The anatomy-informed GPT-OSS-20b model achieved the highest performance, yielding an incidentaloma-positive macro-F1 of 0.79. This surpassed all supervised baselines (maximum macro-F1: 0.70) and closely matched the inter-annotator agreement of 0.76. Explicit anatomical grounding yielded statistically significant performance gains across GPT-based models (p < 0.05), while a majority-vote ensemble of the top systems further improved the macro-F1 to 0.90. Error analysis revealed that anatomy-aware LLMs demonstrated superior contextual reasoning in distinguishing actionable findings from benign lesions. Conclusion: Generative LLMs, when enhanced with structured lesion tagging and anatomical context, significantly outperform traditional supervised encoders and achieve performance comparable to human experts. This approach offers a reliable, interpretable pathway for automated incidental finding surveillance in radiology workflows.
☆ SEA-SafeguardBench: Evaluating AI Safety in SEA Languages and Cultures
Safeguard models help large language models (LLMs) detect and block harmful content, but most evaluations remain English-centric and overlook linguistic and cultural diversity. Existing multilingual safety benchmarks often rely on machine-translated English data, which fails to capture nuances in low-resource languages. Southeast Asian (SEA) languages are underrepresented despite the region's linguistic diversity and unique safety concerns, from culturally sensitive political speech to region-specific misinformation. Addressing these gaps requires benchmarks that are natively authored to reflect local norms and harm scenarios. We introduce SEA-SafeguardBench, the first human-verified safety benchmark for SEA, covering eight languages, 21,640 samples, across three subsets: general, in-the-wild, and content generation. The experimental results from our benchmark demonstrate that even state-of-the-art LLMs and guardrails are challenged by SEA cultural and harm scenarios and underperform when compared to English texts.
comment: Under review
☆ Dynamic Alignment for Collective Agency: Toward a Scalable Self-Improving Framework for Open-Ended LLM Alignment AAAI 2026
Large Language Models (LLMs) are typically aligned with human values using preference data or predefined principles such as helpfulness, honesty, and harmlessness. However, as AI systems progress toward Artificial General Intelligence (AGI) and Artificial Superintelligence (ASI), such value systems may become insufficient. In addition, human feedback-based alignment remains resource-intensive and difficult to scale. While AI-feedback-based self-improving alignment methods have been explored as a scalable alternative, they have largely remained constrained to conventional alignment values. In this work, we explore both a more holistic alignment objective and a scalable, self-improving alignment approach. Aiming to transcend conventional alignment norms, we introduce Collective Agency (CA)-a unified and open-ended alignment value that encourages integrated agentic capabilities. We also propose Dynamic Alignment-an alignment framework that enables an LLM to iteratively align itself. Dynamic Alignment comprises two key components: (1) automated training dataset generation with LLMs, and (2) a self-rewarding mechanism, where the policy model evaluates its own output candidates and assigns rewards for GRPO-based learning. Experimental results demonstrate that our approach successfully aligns the model to CA while preserving general NLP capabilities.
comment: 8 pages, 4 figures, to appear in AAAI 2026 AIGOV Workshop
☆ ArtistMus: A Globally Diverse, Artist-Centric Benchmark for Retrieval-Augmented Music Question Answering
Recent advances in large language models (LLMs) have transformed open-domain question answering, yet their effectiveness in music-related reasoning remains limited due to sparse music knowledge in pretraining data. While music information retrieval and computational musicology have explored structured and multimodal understanding, few resources support factual and contextual music question answering (MQA) grounded in artist metadata or historical context. We introduce MusWikiDB, a vector database of 3.2M passages from 144K music-related Wikipedia pages, and ArtistMus, a benchmark of 1,000 questions on 500 diverse artists with metadata such as genre, debut year, and topic. These resources enable systematic evaluation of retrieval-augmented generation (RAG) for MQA. Experiments show that RAG markedly improves factual accuracy; open-source models gain up to +56.8 percentage points (for example, Qwen3 8B improves from 35.0 to 91.8), approaching proprietary model performance. RAG-style fine-tuning further boosts both factual recall and contextual reasoning, improving results on both in-domain and out-of-domain benchmarks. MusWikiDB also yields approximately 6 percentage points higher accuracy and 40% faster retrieval than a general-purpose Wikipedia corpus. We release MusWikiDB and ArtistMus to advance research in music information retrieval and domain-specific question answering, establishing a foundation for retrieval-augmented reasoning in culturally rich domains such as music.
comment: Submitted to LREC 2026. This work is an evolution of our earlier preprint arXiv:2507.23334
☆ LMSpell: Neural Spell Checking for Low-Resource Languages
Spell correction is still a challenging problem for low-resource languages (LRLs). While pretrained language models (PLMs) have been employed for spell correction, their use is still limited to a handful of languages, and there has been no proper comparison across PLMs. We present the first empirical study on the effectiveness of PLMs for spell correction, which includes LRLs. We find that Large Language Models (LLMs) outperform their counterparts (encoder-based and encoder-decoder) when the fine-tuning dataset is large. This observation holds even in languages for which the LLM is not pre-trained. We release LMSpell, an easy- to use spell correction toolkit across PLMs. It includes an evaluation function that compensates for the hallucination of LLMs. Further, we present a case study with Sinhala to shed light on the plight of spell correction for LRLs.
☆ SQ-format: A Unified Sparse-Quantized Hardware-friendly Data Format for LLMs
Post-training quantization (PTQ) plays a crucial role in the democratization of large language models (LLMs). However, existing low-bit quantization and sparsification techniques are difficult to balance accuracy and efficiency due to the limited hardware support. For example, W4A8 can only achieve the same peak TOPS as W8A8 whereas the GPU-supported sparse data format (2:4 semi-structure sparse) is seldomly adopted due to the loss of accuracy. To bridge this gap, in this paper, we propose the Sparse-Quantized Format (SQ-format), which is a unified data format for quantization and sparsification potentially easily supported by new hardware and existing GPUs. SQ-format makes use of the fact that sparse matrix can be accelerated in high-precision, and low-precision matrix multiplication can also be accelerated accordingly. As such, SQ-format is proposed to achieve Pareto improvement between performance and throughput. This format is particularly suitable for activations with outlier inequality status and makes their static compression possible. We show the state-of-the-art PTQ performance with SQ-format, propose the hardware required to support it, and further offer the design exploration and insights for the next-generation AI accelerators.
☆ Learning from Self Critique and Refinement for Faithful LLM Summarization
Large Language Models (LLMs) often suffer from hallucinations: output content that is not grounded in the input context, when performing long-form text generation tasks such as summarization. Prior works have shown that hallucinations can be reduced by iteratively critiquing and refining previously generated outputs using either the same model or a more powerful teacher model as the critique. However, these approaches either require additional test-time compute or assume access to more powerful teacher models, making them costly and less practical. In this work, we propose Self Critique and Refinement-based Preference Optimization (SCRPO), which is a self-supervised training framework that first constructs a preference dataset by leveraging the LLM's own critique and refinement capabilities, and then applies preference learning to improve the same LLM for faithful summarization. Experiments on three summarization benchmarks (XSUM CNNDM and SAMSum), demonstrate that our approach outperforms state-of-the-art self-supervised learning methods in terms of faithfulness metrics while either maintaining or improving other metrics that measure the overall quality of the summary. Moreover, compared to test-time refinement, our approach not only improves efficiency but also results in more faithful summaries.
☆ Mitigating Self-Preference by Authorship Obfuscation
Language models (LMs) judges are widely used to evaluate the quality of LM outputs. Despite many advantages, LM judges display concerning biases that can impair their integrity in evaluations. One such bias is self-preference: LM judges preferring their own answers over those produced by other LMs or humans. The bias is hard to eliminate as frontier LM judges can distinguish their own outputs from those of others, even when the evaluation candidates are not labeled with their sources. In this paper, we investigate strategies to mitigate self-preference by reducing the LM judges' ability to recognize their own outputs. We apply black-box perturbations to evaluation candidates in pairwise comparison to obfuscate the authorship and reduce self-recognition. We find that perturbations as simple as synonym replacement for a few words predictably reduce self-preference. However, we also uncover fundamental challenges to eliminating the bias: when we extrapolate our perturbations to a more complete neutralization of stylistic differences between the evaluation candidates, self-preference recovers. Our findings suggest that self-recognition and self-preference can happen on many semantic levels, and complete mitigation remains challenging despite promising initial results.
☆ Text Rationalization for Robust Causal Effect Estimation
Recent advances in natural language processing have enabled the increasing use of text data in causal inference, particularly for adjusting confounding factors in treatment effect estimation. Although high-dimensional text can encode rich contextual information, it also poses unique challenges for causal identification and estimation. In particular, the positivity assumption, which requires sufficient treatment overlap across confounder values, is often violated at the observational level, when massive text is represented in feature spaces. Redundant or spurious textual features inflate dimensionality, producing extreme propensity scores, unstable weights, and inflated variance in effect estimates. We address these challenges with Confounding-Aware Token Rationalization (CATR), a framework that selects a sparse necessary subset of tokens using a residual-independence diagnostic designed to preserve confounding information sufficient for unconfoundedness. By discarding irrelevant texts while retaining key signals, CATR mitigates observational-level positivity violations and stabilizes downstream causal effect estimators. Experiments on synthetic data and a real-world study using the MIMIC-III database demonstrate that CATR yields more accurate, stable, and interpretable causal effect estimates than existing baselines.
☆ Transformer-Enabled Diachronic Analysis of Vedic Sanskrit: Neural Methods for Quantifying Types of Language Change
This study demonstrates how hybrid neural-symbolic methods can yield significant new insights into the evolution of a morphologically rich, low-resource language. We challenge the naive assumption that linguistic change is simplification by quantitatively analyzing over 2,000 years of Sanskrit, demonstrating how weakly-supervised hybrid methods can yield new insights into the evolution of morphologically rich, low-resource languages. Our approach addresses data scarcity through weak supervision, using 100+ high-precision regex patterns to generate pseudo-labels for fine-tuning a multilingual BERT. We then fuse symbolic and neural outputs via a novel confidence-weighted ensemble, creating a system that is both scalable and interpretable. Applying this framework to a 1.47-million-word diachronic corpus, our ensemble achieves a 52.4% overall feature detection rate. Our findings reveal that Sanskrit's overall morphological complexity does not decrease but is instead dynamically redistributed: while earlier verbal features show cyclical patterns of decline, complexity shifts to other domains, evidenced by a dramatic expansion in compounding and the emergence of new philosophical terminology. Critically, our system produces well-calibrated uncertainty estimates, with confidence strongly correlating with accuracy (Pearson r = 0.92) and low overall calibration error (ECE = 0.043), bolstering the reliability of these findings for computational philology.
☆ The Effect of Document Summarization on LLM-Based Relevance Judgments
Relevance judgments are central to the evaluation of Information Retrieval (IR) systems, but obtaining them from human annotators is costly and time-consuming. Large Language Models (LLMs) have recently been proposed as automated assessors, showing promising alignment with human annotations. Most prior studies have treated documents as fixed units, feeding their full content directly to LLM assessors. We investigate how text summarization affects the reliability of LLM-based judgments and their downstream impact on IR evaluation. Using state-of-the-art LLMs across multiple TREC collections, we compare judgments made from full documents with those based on LLM-generated summaries of different lengths. We examine their agreement with human labels, their effect on retrieval effectiveness evaluation, and their influence on IR systems' ranking stability. Our findings show that summary-based judgments achieve comparable stability in systems' ranking to full-document judgments, while introducing systematic shifts in label distributions and biases that vary by model and dataset. These results highlight summarization as both an opportunity for more efficient large-scale IR evaluation and a methodological choice with important implications for the reliability of automatic judgments.
☆ Exposing Pink Slime Journalism: Linguistic Signatures and Robust Detection Against LLM-Generated Threats
The local news landscape, a vital source of reliable information for 28 million Americans, faces a growing threat from Pink Slime Journalism, a low-quality, auto-generated articles that mimic legitimate local reporting. Detecting these deceptive articles requires a fine-grained analysis of their linguistic, stylistic, and lexical characteristics. In this work, we conduct a comprehensive study to uncover the distinguishing patterns of Pink Slime content and propose detection strategies based on these insights. Beyond traditional generation methods, we highlight a new adversarial vector: modifications through large language models (LLMs). Our findings reveal that even consumer-accessible LLMs can significantly undermine existing detection systems, reducing their performance by up to 40% in F1-score. To counter this threat, we introduce a robust learning framework specifically designed to resist LLM-based adversarial attacks and adapt to the evolving landscape of automated pink slime journalism, and showed and improvement by up to 27%.
comment: Published in RANLP 2025
☆ LYNX: Learning Dynamic Exits for Confidence-Controlled Reasoning
Large reasoning models achieve strong performance on complex tasks by generating extended chains of thought, but they often "overthink": continuing to reason long after they have enough information to answer correctly. This wastes inference-time compute and can hurt accuracy. Existing attempts to stop early either manipulate decoding with extra sampling and heuristics, rely on auxiliary verifier models, or operate only as post-hoc analysis pipelines without formal guarantees. We introduce LYNX, an online early-exit mechanism that turns a model's own hidden-state awareness into confidence-controlled stopping decisions. LYNX attaches exit decisions to naturally occurring reasoning cues (e.g., "hmm", "wait") during generation, trains a lightweight probe on hidden states at those cue tokens using supervision from forced exits, and wraps the resulting scores in split conformal prediction to obtain distribution-free control over premature exits. Crucially, we train and calibrate this probe once on a generic mathematical corpus and reuse it unchanged across benchmarks, decoding temperatures, and even non-mathematical tasks. Across three model families spanning 1.5B to 32B parameters, a single mathematically trained probe per base model yields strong accuracy--efficiency tradeoffs. On GSM8K, LYNX matches or improves baseline accuracy while reducing tokens by 40--65\%; on MATH-500 it improves accuracy by up to 12 points with roughly 35--60\% fewer tokens; on AIME 2024 it recovers baseline accuracy with more than 50\% token savings; and on CommonsenseQA, a non-math benchmark, it transfers zero-shot with modest accuracy gains and up to 70\% fewer tokens. Compared to state-of-the-art early-exit methods, LYNX offers competitive or superior Pareto frontiers while remaining fully online, requiring no proxy models at inference, and providing explicit, user-tunable confidence guarantees.
♻ ☆ Analysing Moral Bias in Finetuned LLMs through Mechanistic Interpretability
Large language models (LLMs) have been shown to internalize human-like biases during finetuning, yet the mechanisms by which these biases manifest remain unclear. In this work, we investigated whether the well-known Knobe effect, a moral bias in intentionality judgements, emerges in finetuned LLMs and whether it can be traced back to specific components of the model. We conducted a Layer-Patching analysis across 3 open-weights LLMs and demonstrated that the bias is not only learned during finetuning but also localized in a specific set of layers. Surprisingly, we found that patching activations from the corresponding pretrained model into just a few critical layers is sufficient to eliminate the effect. Our findings offer new evidence that social biases in LLMs can be interpreted, localized, and mitigated through targeted interventions, without the need for model retraining.
comment: Preprint. Under review
♻ ☆ Sparse but Wrong: Incorrect L0 Leads to Incorrect Features in Sparse Autoencoders
Sparse Autoencoders (SAEs) extract features from LLM internal activations, meant to correspond to interpretable concepts. A core SAE training hyperparameter is L0: how many SAE features should fire per token on average. Existing work compares SAE algorithms using sparsity-reconstruction tradeoff plots, implying L0 is a free parameter with no single correct value aside from its effect on reconstruction. In this work we study the effect of L0 on SAEs, and show that if L0 is not set correctly, the SAE fails to disentangle the underlying features of the LLM. If L0 is too low, the SAE will mix correlated features to improve reconstruction. If L0 is too high, the SAE finds degenerate solutions that also mix features. Further, we present a proxy metric that can help guide the search for the correct L0 for an SAE on a given training distribution. We show that our method finds the correct L0 in toy models and coincides with peak sparse probing performance in LLM SAEs. We find that most commonly used SAEs have an L0 that is too low. Our work shows that L0 must be set correctly to train SAEs with correct features.
♻ ☆ Reinforce-Ada: An Adaptive Sampling Framework under Non-linear RL Objectives
Reinforcement learning (RL) for large language model reasoning is frequently hindered by signal loss, a phenomenon where standard uniform sampling with small group sizes fails to uncover informative learning signals for difficult prompts. We demonstrate that this collapse is a statistical artifact of undersampling rather than an inherent model limitation. To address this systematically, we introduce a theoretical framework based on optimizing a non-linear RL objective (e.g., log-likelihood). We show that this objective naturally induces a weighted gradient estimator that prioritizes difficult prompts, which can be robustly realized through adaptive sampling. Guided by this framework, we propose Reinforce-Ada, a family of algorithms that dynamically allocates inference budgets based on prompt difficulty, effectively scaling up RL compute to where it is needed most. Unlike passive filtering methods that discard low-signal prompts, Reinforce-Ada actively invests compute to recover them. We introduce two efficient realizations: an estimation-based approach and a model-free sequential sampling approach. Extensive experiments across multiple benchmarks show that Reinforce-Ada significantly outperforms uniform baselines like GRPO, recovering lost signals and accelerating convergence by up to $2\times$ while maintaining the same total inference budget. Code is available at https://github.com/RLHFlow/Reinforce-Ada.
comment: 27 pages, 10 figures
♻ ☆ SAE-SSV: Supervised Steering in Sparse Representation Spaces for Reliable Control of Language Models EMNLP 2025
Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, but controlling their behavior reliably remains challenging, especially in open-ended generation settings. This paper introduces a novel supervised steering approach that operates in sparse, interpretable representation spaces. We employ sparse autoencoders (SAEs) to obtain sparse latent representations that aim to disentangle semantic attributes from model activations. Then we train linear classifiers to identify a small subspace of task-relevant dimensions in latent representations. Finally, we learn supervised steering vectors constrained to this subspace, optimized to align with target behaviors. Experiments across sentiment, truthfulness, and political polarity steering tasks with multiple LLMs demonstrate that our supervised steering vectors achieve higher success rates with minimal degradation in generation quality compared to existing methods. Further analysis reveals that a notably small subspace is sufficient for effective steering, enabling more targeted and interpretable interventions. Our implementation is publicly available at https://github.com/Ineedanamehere/SAE-SSV.
comment: Accepted by EMNLP 2025
♻ ☆ The AI Productivity Index (APEX)
We present an extended version of the AI Productivity Index (APEX-v1-extended), a benchmark for assessing whether frontier models are capable of performing economically valuable tasks in four jobs: investment banking associate, management consultant, big law associate, and primary care physician (MD). This technical report details the extensions to APEX-v1, including an increase in the held-out evaluation set from n = 50 to n = 100 cases per job (n = 400 total) and updates to the grading methodology. We present a new leaderboard, where GPT5 (Thinking = High) remains the top performing model with a score of 67.0%. APEX-v1-extended shows that frontier models still have substantial limitations when performing typical professional tasks. To support further research, we are open sourcing n = 25 non-benchmark example cases per role (n = 100 total) along with our evaluation harness.
♻ ☆ CodeNER: Code Prompting for Named Entity Recognition
Recent studies have explored various approaches for treating candidate named entity spans as both source and target sequences in named entity recognition (NER) by leveraging large language models (LLMs). Although previous approaches have successfully generated candidate named entity spans with suitable labels, they rely solely on input context information when using LLMs, particularly, ChatGPT. However, NER inherently requires capturing detailed labeling requirements with input context information. To address this issue, we propose a novel method that leverages code-based prompting to improve the capabilities of LLMs in understanding and performing NER. By embedding code within prompts, we provide detailed BIO schema instructions for labeling, thereby exploiting the ability of LLMs to comprehend long-range scopes in programming languages. Experimental results demonstrate that the proposed code-based prompting method outperforms conventional text-based prompting on ten benchmarks across English, Arabic, Finnish, Danish, and German datasets, indicating the effectiveness of explicitly structuring NER instructions. We also verify that combining the proposed code-based prompting method with the chain-of-thought prompting further improves performance.
comment: 18 pages, 6 figures
♻ ☆ MindEval: Benchmarking Language Models on Multi-turn Mental Health Support
Demand for mental health support through AI chatbots is surging, though current systems present several limitations, like sycophancy or overvalidation, and reinforcement of maladaptive beliefs. A core obstacle to the creation of better systems is the scarcity of benchmarks that capture the complexity of real therapeutic interactions. Most existing benchmarks either only test clinical knowledge through multiple-choice questions or assess single responses in isolation. To bridge this gap, we present MindEval, a framework designed in collaboration with Ph.D-level Licensed Clinical Psychologists for automatically evaluating language models in realistic, multi-turn mental health therapy conversations. Through patient simulation and automatic evaluation with LLMs, our framework balances resistance to gaming with reproducibility via its fully automated, model-agnostic design. We begin by quantitatively validating the realism of our simulated patients against human-generated text and by demonstrating strong correlations between automatic and human expert judgments. Then, we evaluate 12 state-of-the-art LLMs and show that all models struggle, scoring below 4 out of 6, on average, with particular weaknesses in problematic AI-specific patterns of communication. Notably, reasoning capabilities and model scale do not guarantee better performance, and systems deteriorate with longer interactions or when supporting patients with severe symptoms. We release all code, prompts, and human evaluation data.
♻ ☆ A quantitative analysis of semantic information in deep representations of text and images
Deep neural networks are known to develop similar representations for semantically related data, even when they belong to different domains, such as an image and its description, or the same text in different languages. We present a method for quantitatively investigating this phenomenon by measuring the relative information content of the representations of semantically related data and probing how it is encoded into multiple tokens of large language models (LLMs) and vision transformers. Looking first at how LLMs process pairs of translated sentences, we identify inner ``semantic'' layers containing the most language-transferable information. We find moreover that, on these layers, a larger LLM (DeepSeek-V3) extracts significantly more general information than a smaller one (Llama3.1-8B). Semantic information of English text is spread across many tokens and it is characterized by long-distance correlations between tokens and by a causal left-to-right (i.e., past-future) asymmetry. We also identify layers encoding semantic information within visual transformers. We show that caption representations in the semantic layers of LLMs predict visual representations of the corresponding images. We observe significant and model-dependent information asymmetries between image and text representations.
♻ ☆ Pet-Bench: Benchmarking the Abilities of Large Language Models as E-Pets in Social Network Services
As interest in using Large Language Models for interactive and emotionally rich experiences grows, virtual pet companionship emerges as a novel yet underexplored application. Existing approaches focus on basic pet role-playing interactions without systematically benchmarking LLMs for comprehensive companionship. In this paper, we introduce Pet-Bench, a dedicated benchmark that evaluates LLMs across both self-interaction and human-interaction dimensions. Unlike prior work, Pet-Bench emphasizes self-evolution and developmental behaviors alongside interactive engagement, offering a more realistic reflection of pet companionship. It features diverse tasks such as intelligent scheduling, memory-based dialogues, and psychological conversations, with over 7,500 interaction instances designed to simulate pet behaviors. Evaluation of 28 LLMs reveals significant performance variations linked to model size and inherent capabilities, underscoring the need for specialized optimization in this domain. Pet-Bench serves as a foundational resource for benchmarking pet-related LLM abilities and advancing emotionally immersive human-pet interactions.
♻ ☆ Vision-centric Token Compression in Large Language Model NeurIPS 2025
Real-world applications are stretching context windows to hundreds of thousand of tokens while Large Language Models (LLMs) swell from billions to trillions of parameters. This dual expansion send compute and memory costs skyrocketing, making token compression indispensable. We introduce Vision Centric Token Compression (Vist), a slow-fast compression framework that mirrors human reading: the fast path renders distant tokens into images, letting a frozen, lightweight vision encoder skim the low-salience context; the slow path feeds the proximal window into the LLM for fine-grained reasoning. A Probability-Informed Visual Enhancement (PVE) objective masks high-frequency tokens during training, steering the Resampler to concentrate on semantically rich regions-just as skilled reader gloss over function words. On eleven in-context learning benchmarks, Vist achieves the same accuracy with 2.3 times fewer tokens, cutting FLOPs by 16% and memory by 50%. This method delivers remarkable results, outperforming the strongest text encoder-based compression method CEPE by 7.6% on average over benchmarks like TriviaQA, NQ, PopQA, NLUI, and CLIN, setting a new standard for token efficiency in LLMs. The project is at https://github.com/CSU-JPG/VIST.
comment: NeurIPS 2025 spotlight
♻ ☆ Towards Data-efficient Customer Intent Recognition with Prompt-based Learning Paradigm
Recognizing customer intent accurately with language models based on customer-agent conversational data is essential in today's digital customer service marketplace, but it is often hindered by the lack of sufficient labeled data. In this paper, we introduce the prompt-based learning paradigm that significantly reduces the dependency on extensive datasets. Utilizing prompted training combined with answer mapping techniques, this approach allows small language models to achieve competitive intent recognition performance with only a minimal amount of training data. Furthermore, We enhance the performance by integrating active sampling and ensemble learning strategies in the prompted training pipeline. Additionally, preliminary tests in a zero-shot setting demonstrate that, with well-crafted and detailed prompts, small language models show considerable instruction-following potential even without any further training. These results highlight the viability of semantic modeling of conversational data in a more data-efficient manner with minimal data use, paving the way for advancements in AI-driven customer service.
♻ ☆ HalluClean: A Unified Framework to Combat Hallucinations in LLMs
Large language models (LLMs) have achieved impressive performance across a wide range of natural language processing tasks, yet they often produce hallucinated content that undermines factual reliability. To address this challenge, we introduce HalluClean, a lightweight and task-agnostic framework for detecting and correcting hallucinations in LLM-generated text. HalluClean adopts a reasoning-enhanced paradigm, explicitly decomposing the process into planning, execution, and revision stages to identify and refine unsupported claims. It employs minimal task-routing prompts to enable zero-shot generalization across diverse domains, without relying on external knowledge sources or supervised detectors. We conduct extensive evaluations on five representative tasks-question answering, dialogue, summarization, math word problems, and contradiction detection. Experimental results show that HalluClean significantly improves factual consistency and outperforms competitive baselines, demonstrating its potential to enhance the trustworthiness of LLM outputs in real-world applications.
♻ ☆ Chinese Discharge Drug Recommendation in Metabolic Diseases with Large Language Models
Intelligent drug recommendation based on Electronic Health Records (EHRs) is critical for improving the quality and efficiency of clinical decision-making. By leveraging large-scale patient data, drug recommendation systems can assist physicians in selecting the most appropriate medications according to a patient's medical history, diagnoses, laboratory results, and comorbidities. Recent advances in large language models (LLMs) have shown remarkable capabilities in complex reasoning and medical text understanding, making them promising tools for drug recommendation tasks. However, the application of LLMs for Chinese clinical medication recommendation remains largely unexplored. In this work, we conduct a systematic investigation of LLM-based methodologies for Chinese discharge medication recommendation. We evaluate several representative LLM families (GLM, Llama, Qwen) under a unified methodological framework including zero-shot prompting, in-context learning, chain-of-thought prompting, and supervised fine-tuning using LoRA. We analyze model behavior across reasoning styles, error patterns, domain adaptation mechanisms, and robustness. Experimental results show that while supervised fine-tuning improves model performance, there remains substantial room for improvement, with the best model achieving the F1 score of 0.5648 and Jaccard score of 0.4477. Our findings highlight both the potential and limitations of LLMs for Chinese drug recommendation.
♻ ☆ Fair Text Classification via Transferable Representations
Group fairness is a central research topic in text classification, where reaching fair treatment between sensitive groups (e.g., women and men) remains an open challenge. We propose an approach that extends the use of the Wasserstein Dependency Measure for learning unbiased neural text classifiers. Given the challenge of distinguishing fair from unfair information in a text encoder, we draw inspiration from adversarial training by inducing independence between representations learned for the target label and those for a sensitive attribute. We further show that Domain Adaptation can be efficiently leveraged to remove the need for access to the sensitive attributes in the dataset we cure. We provide both theoretical and empirical evidence that our approach is well-founded.
comment: arXiv admin note: text overlap with arXiv:2311.12689
♻ ☆ Optimizing Fine-Tuning through Advanced Initialization Strategies for Low-Rank Adaptation
The rapid development of parameter-efficient fine-tuning methods has noticeably improved the efficiency of adapting large language models. Among these, LoRA has gained widespread popularity due to its strong balance of effectiveness and parameter efficiency. However, LoRA relies on initializing two low-rank matrices whose product is zero, which limits its ability to effectively activate and leverage the original model weights-creating a potential bottleneck for optimal performance. To address this limitation, we propose \textbf{IniLoRA}, a novel initialization strategy that initializes the low-rank matrices to closely approximate the original model weights. Experimental results indicate that IniLoRA achieves better performance than LoRA across a range of models and tasks. Additionally, we introduce two variants, IniLoRA-$α$ and IniLoRA-$β$, both leveraging distinct initialization methods to enhance performance further.
♻ ☆ Experiments with Large Language Models on Retrieval-Augmented Generation for Closed-Source Simulation Software
Large Language Models (LLMs) are tools that have become indispensable in development and programming. However, they suffer from hallucinations, especially when dealing with unknown knowledge. This is particularly the case when LLMs are to be used to support closed-source software applications. Retrieval-Augmented Generation (RAG) offers an approach to use additional knowledge alongside the pre-trained knowledge of the LLM to respond to user prompts. Possible tasks range from a smart-autocomplete, text extraction for question answering, model summarization, component explaining, compositional reasoning, to creation of simulation components and complete input models. This work tests existing RAG systems for closed-source simulation frameworks, in our case the mesh-free simulation software Pasimodo. Since data protection and intellectual property rights are particularly important for problems solved with closed-source software, the tests focus on execution using local LLMs. In order to enable smaller institutions to use the systems, smaller language models will be tested first. The systems show impressive results, but often fail due to insufficient information. Different approaches for improving response quality are tested. In particular, tailoring the information provided to the LLMs dependent to the prompts proves to be a significant improvement. This demonstrates the great potential and the further work needed to improve information retrieval for closed-source simulation models.
comment: 16 pages, 6 tables, 2 figures
♻ ☆ Decoding inner speech with an end-to-end brain-to-text neural interface
Speech brain-computer interfaces (BCIs) aim to restore communication for people with paralysis by translating neural activity into text. Most systems use cascaded frameworks that decode phonemes before assembling sentences with an n-gram language model (LM), preventing joint optimization of all stages simultaneously. Here, we introduce an end-to-end Brain-to-Text (BIT) framework that translates neural activity into coherent sentences using a single differentiable neural network. Central to our approach is a cross-task, cross-species pretrained neural encoder, whose representations transfer to both attempted and imagined speech. In a cascaded setting with an n-gram LM, the pretrained encoder establishes a new state-of-the-art (SOTA) on the Brain-to-Text '24 and '25 benchmarks. Integrated end-to-end with audio large language models (LLMs) and trained with contrastive learning for cross-modal alignment, BIT reduces the word error rate (WER) of the prior end-to-end method from 24.69% to 10.22%. Notably, we find that small-scale audio LLMs markedly improve end-to-end decoding. Beyond record-setting performance, BIT aligns attempted and imagined speech embeddings to enable cross-task generalization. Altogether, our approach advances the integration of large, diverse neural datasets, paving the way for an end-to-end decoding framework that supports seamless, differentiable optimization.
♻ ☆ HARP: Hallucination Detection via Reasoning Subspace Projection
Hallucinations in Large Language Models (LLMs) pose a major barrier to their reliable use in critical decision-making. Although existing hallucination detection methods have improved accuracy, they still struggle with disentangling semantic and reasoning information and maintaining robustness. To address these challenges, we propose HARP (Hallucination detection via reasoning subspace projection), a novel hallucination detection framework. HARP establishes that the hidden state space of LLMs can be decomposed into a direct sum of a semantic subspace and a reasoning subspace, where the former encodes linguistic expression and the latter captures internal reasoning processes. Moreover, we demonstrate that the Unembedding layer can disentangle these subspaces, and by applying Singular Value Decomposition (SVD) to its parameters, the basis vectors spanning the semantic and reasoning subspaces are obtained. Finally, HARP projects hidden states onto the basis vectors of the reasoning subspace, and the resulting projections are then used as input features for hallucination detection in LLMs. By using these projections, HARP reduces the dimension of the feature to approximately 5% of the original, filters out most noise, and achieves enhanced robustness. Experiments across multiple datasets show that HARP achieves state-of-the-art hallucination detection performance; in particular, it achieves an AUROC of 92.8% on TriviaQA, outperforming the previous best method by 7.5%.
♻ ☆ IS-Bench: Evaluating Interactive Safety of VLM-Driven Embodied Agents in Daily Household Tasks
Flawed planning from VLM-driven embodied agents poses significant safety hazards, hindering their deployment in real-world household tasks. However, existing static, non-interactive evaluation paradigms fail to adequately assess risks within these interactive environments, since they cannot simulate dynamic risks that emerge from an agent's actions and rely on unreliable post-hoc evaluations that ignore unsafe intermediate steps. To bridge this critical gap, we propose evaluating an agent's interactive safety: its ability to perceive emergent risks and execute mitigation steps in the correct procedural order. We thus present IS-Bench, the first multi-modal benchmark designed for interactive safety, featuring 161 challenging scenarios with 388 unique safety risks instantiated in a high-fidelity simulator. Crucially, it facilitates a novel process-oriented evaluation that verifies whether risk mitigation actions are performed before/after specific risk-prone steps. Extensive experiments on leading VLMs, including the GPT-4o and Gemini-2.5 series, reveal that current agents lack interactive safety awareness, and that while safety-aware Chain-of-Thought can improve performance, it often compromises task completion. By highlighting these critical limitations, IS-Bench provides a foundation for developing safer and more reliable embodied AI systems. Code and data are released under https://github.com/AI45Lab/IS-Bench.
♻ ☆ From Simulation to Strategy: Automating Personalized Interaction Planning for Conversational Agents
Amid the rapid rise of agentic dialogue models, realistic user-simulator studies are essential for tuning effective conversation strategies. This work investigates a sales-oriented agent that adapts its dialogue based on user profiles spanning age, gender, and occupation. While age and gender influence overall performance, occupation produces the most pronounced differences in conversational intent. Leveraging this insight, we introduce a lightweight, occupation-conditioned strategy that guides the agent to prioritize intents aligned with user preferences, resulting in shorter and more successful dialogues. Our findings highlight the importance of rich simulator profiles and demonstrate how simple persona-informed strategies can enhance the effectiveness of sales-oriented dialogue systems.
comment: Accepted to IEEE ASRU 2025
♻ ☆ ORFuzz: Fuzzing the "Other Side" of LLM Safety -- Testing Over-Refusal
Large Language Models (LLMs) increasingly exhibit over-refusal - erroneously rejecting benign queries due to overly conservative safety measures - a critical functional flaw that undermines their reliability and usability. Current methods for testing this behavior are demonstrably inadequate, suffering from flawed benchmarks and limited test generation capabilities, as highlighted by our empirical user study. To the best of our knowledge, this paper introduces the first evolutionary testing framework, ORFuzz, for the systematic detection and analysis of LLM over-refusals. ORFuzz uniquely integrates three core components: (1) safety category-aware seed selection for comprehensive test coverage, (2) adaptive mutator optimization using reasoning LLMs to generate effective test cases, and (3) OR-Judge, a human-aligned judge model validated to accurately reflect user perception of toxicity and refusal. Our extensive evaluations demonstrate that ORFuzz generates diverse, validated over-refusal instances at a rate (6.98% average) more than double that of leading baselines, effectively uncovering vulnerabilities. Furthermore, ORFuzz's outputs form the basis of ORFuzzSet, a new benchmark of 1,855 highly transferable test cases that achieves a superior 63.56% average over-refusal rate across 10 diverse LLMs, significantly outperforming existing datasets. ORFuzz and ORFuzzSet provide a robust automated testing framework and a valuable community resource, paving the way for developing more reliable and trustworthy LLM-based software systems.
comment: Accepted by ASE 2025
♻ ☆ Training-Free Loosely Speculative Decoding: Accepting Semantically Correct Drafts Beyond Exact Match
Large language models (LLMs) achieve strong performance across diverse tasks but suffer from high inference latency due to their autoregressive generation. Speculative Decoding (SPD) mitigates this issue by verifying candidate tokens in parallel from a smaller draft model, yet its strict exact-match verification discards many semantically valid continuations. Moreover, existing training-based SPD methods often suffer from performance degradation on out-of-distribution (OOD) tasks. To this end, we propose Training-Free Loosely Speculative Decoding (FLy), a novel method that loosens the rigid verification criterion by leveraging the target model's self-corrective behavior to judge whether a draft-target mismatch remains semantically valid. FLy introduces a two-tier mechanism: an entropy-level gate that identifies whether the current token allows multiple plausible alternatives or is nearly deterministic, and a token-level deferred window that distinguishes genuine errors from differently worded yet semantically correct variants. To further reduce latency, we design a multi-level acceleration strategy that accelerates not only the target model but also the drafter itself. Owing to its training-free design, FLy composes seamlessly with arbitrary draft-target pairs and generalizes across models and domains without hyperparameter re-tuning. Experiments show that FLy preserves more than 99% of the target model's accuracy while achieving an average 2.81x speedup on Llama-3.1-70B-Instruct and 5.07x speedup on the 405B variant. Notably, on out-of-domain datasets, our method remains highly effective and outperforms the training-based method EAGLE-3 by 1.62x.
comment: Under review
♻ ☆ AURA: A Diagnostic Framework for Tracking User Satisfaction of Interactive Planning Agents NeurIPS 2025
The growing capabilities of large language models (LLMs) in instruction-following and context-understanding lead to the era of agents with numerous applications. Among these, task planning agents have become especially prominent in realistic scenarios involving complex internal pipelines, such as context understanding, tool management, and response generation. However, existing benchmarks predominantly evaluate agent performance based on task completion as a proxy for overall effectiveness. We hypothesize that merely improving task completion is misaligned with maximizing user satisfaction, as users interact with the entire agentic process and not only the end result. To address this gap, we propose AURA, an Agent-User inteRaction Assessment framework that conceptualizes the behavioral stages of interactive task planning agents. AURA offers a comprehensive assessment of agent through a set of atomic LLM evaluation criteria, allowing researchers and practitioners to diagnose specific strengths and weaknesses within the agent's decision-making pipeline. Our analyses show that agents excel in different behavioral stages, with user satisfaction shaped by both outcomes and intermediate behaviors. We also highlight future directions, including systems that leverage multiple agents and the limitations of user simulators in task planning.
comment: NeurIPS 2025 MTI-LLM Workshop. Full version is under review
♻ ☆ OpenMMReasoner: Pushing the Frontiers for Multimodal Reasoning with an Open and General Recipe
Recent advancements in large reasoning models have fueled growing interest in extending such capabilities to multimodal domains. However, despite notable progress in visual reasoning, the lack of transparent and reproducible data curation and training strategies remains a major barrier to scalable research. In this work, we introduce OpenMMReasoner, a fully transparent two-stage recipe for multimodal reasoning spanning supervised fine-tuning (SFT) and reinforcement learning (RL). In the SFT stage, we construct an 874K-sample cold-start dataset with rigorous step-by-step validation, providing a strong foundation for reasoning capabilities. The subsequent RL stage leverages a 74K-sample dataset across diverse domains to further sharpen and stabilize these abilities, resulting in a more robust and efficient learning process. Extensive evaluations demonstrate that our training recipe not only surpasses strong baselines but also highlights the critical role of data quality and training design in shaping multimodal reasoning performance. Notably, our method achieves a 11.6% improvement over the Qwen2.5-VL-7B-Instruct baseline across nine multimodal reasoning benchmarks, establishing a solid empirical foundation for future large-scale multimodal reasoning research. We open-sourced all our codes, pipeline, and data at https://github.com/EvolvingLMMs-Lab/OpenMMReasoner.
♻ ☆ Characterizing Language Use in a Collaborative Situated Game
Cooperative video games, where multiple participants must coordinate by communicating and reasoning under uncertainty in complex environments, yield a rich source of language data. We collect the Portal Dialogue Corpus: a corpus of 11.5 hours of spoken human dialogue in the co-op mode of the popular Portal 2 virtual puzzle game, comprising 24.5K total utterances. We analyze player language and behavior, identifying a number of linguistic phenomena that rarely appear in most existing chitchat or task-oriented dialogue corpora, including complex spatial reference, clarification and repair, and ad-hoc convention formation. To support future analyses of language use in complex, situated, collaborative problem-solving scenarios, we publicly release the corpus, which comprises player videos, audio, transcripts, game state data, and both manual and automatic annotations of language data.
Computer Vision and Pattern Recognition 100
☆ EditThinker: Unlocking Iterative Reasoning for Any Image Editor
Instruction-based image editing has emerged as a prominent research area, which, benefiting from image generation foundation models, have achieved high aesthetic quality, making instruction-following capability the primary challenge. Existing approaches improve instruction adherence via supervised or reinforcement learning, yet single-turn success rates remain limited due to inherent stochasticity and a lack of deliberation. In this work, we propose a deliberative editing framework to 'think' while they edit, which simulates the human cognitive loop by iteratively executing a Think-while-Edit cycle: Critiquing results and Refining instructions , followed by Repeating the generation until satisfactory. Specifically, we train a single MLLM, EditThinker, to act as the reasoning engine of this framework, which jointly produce the critique score, reasoning process, and refined instructions. We employ reinforcement learning to align the EditThinker's thinking with its editing, thereby generating more targeted instruction improvements. Extensive experiments on four benchmarks demonstrate that our approach significantly improves the instruction-following capability of any image editing model by a large margin. We will release our data construction framework, datasets, and models to benefit the community.
comment: Project page: https://appletea233.github.io/think-while-edit
☆ AQUA-Net: Adaptive Frequency Fusion and Illumination Aware Network for Underwater Image Enhancement
Underwater images often suffer from severe color distortion, low contrast, and a hazy appearance due to wavelength-dependent light absorption and scattering. Simultaneously, existing deep learning models exhibit high computational complexity, which limits their practical deployment for real-time underwater applications. To address these challenges, this paper presents a novel underwater image enhancement model, called Adaptive Frequency Fusion and Illumination Aware Network (AQUA-Net). It integrates a residual encoder decoder with dual auxiliary branches, which operate in the frequency and illumination domains. The frequency fusion encoder enriches spatial representations with frequency cues from the Fourier domain and preserves fine textures and structural details. Inspired by Retinex, the illumination-aware decoder performs adaptive exposure correction through a learned illumination map that separates reflectance from lighting effects. This joint spatial, frequency, and illumination design enables the model to restore color balance, visual contrast, and perceptual realism under diverse underwater conditions. Additionally, we present a high-resolution, real-world underwater video-derived dataset from the Mediterranean Sea, which captures challenging deep-sea conditions with realistic visual degradations to enable robust evaluation and development of deep learning models. Extensive experiments on multiple benchmark datasets show that AQUA-Net performs on par with SOTA in both qualitative and quantitative evaluations while using less number of parameters. Ablation studies further confirm that the frequency and illumination branches provide complementary contributions that improve visibility and color representation. Overall, the proposed model shows strong generalization capability and robustness, and it provides an effective solution for real-world underwater imaging applications.
☆ M4-RAG: A Massive-Scale Multilingual Multi-Cultural Multimodal RAG
Vision-language models (VLMs) have achieved strong performance in visual question answering (VQA), yet they remain constrained by static training data. Retrieval-Augmented Generation (RAG) mitigates this limitation by enabling access to up-to-date, culturally grounded, and multilingual information; however, multilingual multimodal RAG remains largely underexplored. We introduce M4-RAG, a massive-scale benchmark covering 42 languages and 56 regional dialects and registers, comprising over 80,000 culturally diverse image-question pairs for evaluating retrieval-augmented VQA across languages and modalities. To balance realism with reproducibility, we build a controlled retrieval environment containing millions of carefully curated multilingual documents relevant to the query domains, approximating real-world retrieval conditions while ensuring consistent experimentation. Our systematic evaluation reveals that although RAG consistently benefits smaller VLMs, it fails to scale to larger models and often even degrades their performance, exposing a critical mismatch between model size and current retrieval effectiveness. M4-RAG provides a foundation for advancing next-generation RAG systems capable of reasoning seamlessly across languages, modalities, and cultural contexts.
comment: Preprint
☆ SIMPACT: Simulation-Enabled Action Planning using Vision-Language Models
Vision-Language Models (VLMs) exhibit remarkable common-sense and semantic reasoning capabilities. However, they lack a grounded understanding of physical dynamics. This limitation arises from training VLMs on static internet-scale visual-language data that contain no causal interactions or action-conditioned changes. Consequently, it remains challenging to leverage VLMs for fine-grained robotic manipulation tasks that require physical understanding, reasoning, and corresponding action planning. To overcome this, we present SIMPACT, a test-time, SIMulation-enabled ACTion Planning framework that equips VLMs with physical reasoning through simulation-in-the-loop world modeling, without requiring any additional training. From a single RGB-D observation, SIMPACT efficiently constructs physics simulations, enabling the VLM to propose informed actions, observe simulated rollouts, and iteratively refine its reasoning. By integrating language reasoning with physics prediction, our simulation-enabled VLM can understand contact dynamics and action outcomes in a physically grounded way. Our method demonstrates state-of-the-art performance on five challenging, real-world rigid-body and deformable manipulation tasks that require fine-grained physical reasoning, outperforming existing general-purpose robotic manipulation models. Our results demonstrate that embedding physics understanding via efficient simulation into VLM reasoning at test time offers a promising path towards generalizable embodied intelligence. Project webpage can be found at https://simpact-bot.github.io
☆ Zoom in, Click out: Unlocking and Evaluating the Potential of Zooming for GUI Grounding
Grounding is a fundamental capability for building graphical user interface (GUI) agents. Although existing approaches rely on large-scale bounding box supervision, they still face various challenges, such as cross-platform generalization, complex layout analysis, and fine-grained element localization. In this paper, we investigate zoom as a strong yet underexplored prior for GUI grounding, and propose a training-free method, ZoomClick. By characterizing four key properties of zoom (i.e., pre-zoom, depth, shrink size, minimal crop size), we unlock its full capabilities for dynamic spatial focusing and adaptive context switching. Experiments demonstrate that our method significantly boosts the performance of both general vision-language and specialized GUI grounding models, achieving state-of-the-art results on several mainstream benchmarks; for example, UI-Venus-72B attains a 73.1% success rate on ScreenSpot-Pro. Furthermore, we present GUIZoom-Bench, a benchmark for evaluating model adaptability to zoom, aiming to inspire future research on improving zoom for further training and test-time scaling in GUI grounding tasks.
comment: Code is available at https://github.com/Princeton-AI2-Lab/ZoomClick
☆ Measuring the Effect of Background on Classification and Feature Importance in Deep Learning for AV Perception
Common approaches to explainable AI (XAI) for deep learning focus on analyzing the importance of input features on the classification task in a given model: saliency methods like SHAP and GradCAM are used to measure the impact of spatial regions of the input image on the classification result. Combined with ground truth information about the location of the object in the input image (e.g., a binary mask), it is determined whether object pixels had a high impact on the classification result, or whether the classification focused on background pixels. The former is considered to be a sign of a healthy classifier, whereas the latter is assumed to suggest overfitting on spurious correlations. A major challenge, however, is that these intuitive interpretations are difficult to test quantitatively, and hence the output of such explanations lacks an explanation itself. One particular reason is that correlations in real-world data are difficult to avoid, and whether they are spurious or legitimate is debatable. Synthetic data in turn can facilitate to actively enable or disable correlations where desired but often lack a sufficient quantification of realism and stochastic properties. [...] Therefore, we systematically generate six synthetic datasets for the task of traffic sign recognition, which differ only in their degree of camera variation and background correlation [...] to quantify the isolated influence of background correlation, different levels of camera variation, and considered traffic sign shapes on the classification performance, as well as background feature importance. [...] Results include a quantification of when and how much background features gain importance to support the classification task based on changes in the training domain [...]. Download: synset.de/datasets/synset-signset-ger/background-effect
comment: 8 pages, 2 figures, 7 tables
☆ Synset Signset Germany: a Synthetic Dataset for German Traffic Sign Recognition
In this paper, we present a synthesis pipeline and dataset for training / testing data in the task of traffic sign recognition that combines the advantages of data-driven and analytical modeling: GAN-based texture generation enables data-driven dirt and wear artifacts, rendering unique and realistic traffic sign surfaces, while the analytical scene modulation achieves physically correct lighting and allows detailed parameterization. In particular, the latter opens up applications in the context of explainable AI (XAI) and robustness tests due to the possibility of evaluating the sensitivity to parameter changes, which we demonstrate with experiments. Our resulting synthetic traffic sign recognition dataset Synset Signset Germany contains a total of 105500 images of 211 different German traffic sign classes, including newly published (2020) and thus comparatively rare traffic signs. In addition to a mask and a segmentation image, we also provide extensive metadata including the stochastically selected environment and imaging effect parameters for each image. We evaluate the degree of realism of Synset Signset Germany on the real-world German Traffic Sign Recognition Benchmark (GTSRB) and in comparison to CATERED, a state-of-the-art synthetic traffic sign recognition dataset.
comment: 8 pages, 8 figures, 3 tables
☆ Physically-Based Simulation of Automotive LiDAR
We present an analytic model for simulating automotive time-of-flight (ToF) LiDAR that includes blooming, echo pulse width, and ambient light, along with steps to determine model parameters systematically through optical laboratory measurements. The model uses physically based rendering (PBR) in the near-infrared domain. It assumes single-bounce reflections and retroreflections over rasterized rendered images from shading or ray tracing, including light emitted from the sensor as well as stray light from other, non-correlated sources such as sunlight. Beams from the sensor and sensitivity of the receiving diodes are modeled with flexible beam steering patterns and with non-vanishing diameter. Different (all non-real time) computational approaches can be chosen based on system properties, computing capabilities, and desired output properties. Model parameters include system-specific properties, namely the physical spread of the LiDAR beam, combined with the sensitivity of the receiving diode; the intensity of the emitted light; the conversion between the intensity of reflected light and the echo pulse width; and scenario parameters such as environment lighting, positioning, and surface properties of the target(s) in the relevant infrared domain. System-specific properties of the model are determined from laboratory measurements of the photometric luminance on different target surfaces aligned with a goniometer at 0.01° resolution, which marks the best available resolution for measuring the beam pattern. The approach is calibrated for and tested on two automotive LiDAR systems, the Valeo Scala Gen. 2 and the Blickfeld Cube 1. Both systems differ notably in their properties and available interfaces, but the relevant model parameters could be extracted successfully.
☆ A Comparative Study on Synthetic Facial Data Generation Techniques for Face Recognition
Facial recognition has become a widely used method for authentication and identification, with applications for secure access and locating missing persons. Its success is largely attributed to deep learning, which leverages large datasets and effective loss functions to learn discriminative features. Despite these advances, facial recognition still faces challenges in explainability, demographic bias, privacy, and robustness to aging, pose variations, lighting changes, occlusions, and facial expressions. Privacy regulations have also led to the degradation of several datasets, raising legal, ethical, and privacy concerns. Synthetic facial data generation has been proposed as a promising solution. It mitigates privacy issues, enables experimentation with controlled facial attributes, alleviates demographic bias, and provides supplementary data to improve models trained on real data. This study compares the effectiveness of synthetic facial datasets generated using different techniques in facial recognition tasks. We evaluate accuracy, rank-1, rank-5, and the true positive rate at a false positive rate of 0.01% on eight leading datasets, offering a comparative analysis not extensively explored in the literature. Results demonstrate the ability of synthetic data to capture realistic variations while emphasizing the need for further research to close the performance gap with real data. Techniques such as diffusion models, GANs, and 3D models show substantial progress; however, challenges remain.
comment: 18 pages, 17 figures
☆ World Models That Know When They Don't Know: Controllable Video Generation with Calibrated Uncertainty
Recent advances in generative video models have led to significant breakthroughs in high-fidelity video synthesis, specifically in controllable video generation where the generated video is conditioned on text and action inputs, e.g., in instruction-guided video editing and world modeling in robotics. Despite these exceptional capabilities, controllable video models often hallucinate - generating future video frames that are misaligned with physical reality - which raises serious concerns in many tasks such as robot policy evaluation and planning. However, state-of-the-art video models lack the ability to assess and express their confidence, impeding hallucination mitigation. To rigorously address this challenge, we propose C3, an uncertainty quantification (UQ) method for training continuous-scale calibrated controllable video models for dense confidence estimation at the subpatch level, precisely localizing the uncertainty in each generated video frame. Our UQ method introduces three core innovations to empower video models to estimate their uncertainty. First, our method develops a novel framework that trains video models for correctness and calibration via strictly proper scoring rules. Second, we estimate the video model's uncertainty in latent space, avoiding training instability and prohibitive training costs associated with pixel-space approaches. Third, we map the dense latent-space uncertainty to interpretable pixel-level uncertainty in the RGB space for intuitive visualization, providing high-resolution uncertainty heatmaps that identify untrustworthy regions. Through extensive experiments on large-scale robot learning datasets (Bridge and DROID) and real-world evaluations, we demonstrate that our method not only provides calibrated uncertainty estimates within the training distribution, but also enables effective out-of-distribution detection.
☆ LPD: Learnable Prototypes with Diversity Regularization for Weakly Supervised Histopathology Segmentation
Weakly supervised semantic segmentation (WSSS) in histopathology reduces pixel-level labeling by learning from image-level labels, but it is hindered by inter-class homogeneity, intra-class heterogeneity, and CAM-induced region shrinkage (global pooling-based class activation maps whose activations highlight only the most distinctive areas and miss nearby class regions). Recent works address these challenges by constructing a clustering prototype bank and then refining masks in a separate stage; however, such two-stage pipelines are costly, sensitive to hyperparameters, and decouple prototype discovery from segmentation learning, limiting their effectiveness and efficiency. We propose a cluster-free, one-stage learnable-prototype framework with diversity regularization to enhance morphological intra-class heterogeneity coverage. Our approach achieves state-of-the-art (SOTA) performance on BCSS-WSSS, outperforming prior methods in mIoU and mDice. Qualitative segmentation maps show sharper boundaries and fewer mislabels, and activation heatmaps further reveal that, compared with clustering-based prototypes, our learnable prototypes cover more diverse and complementary regions within each class, providing consistent qualitative evidence for their effectiveness.
comment: Note: Khang Le and Anh Mai Vu contributed equally
☆ NICE: Neural Implicit Craniofacial Model for Orthognathic Surgery Prediction
Orthognathic surgery is a crucial intervention for correcting dentofacial skeletal deformities to enhance occlusal functionality and facial aesthetics. Accurate postoperative facial appearance prediction remains challenging due to the complex nonlinear interactions between skeletal movements and facial soft tissue. Existing biomechanical, parametric models and deep-learning approaches either lack computational efficiency or fail to fully capture these intricate interactions. To address these limitations, we propose Neural Implicit Craniofacial Model (NICE) which employs implicit neural representations for accurate anatomical reconstruction and surgical outcome prediction. NICE comprises a shape module, which employs region-specific implicit Signed Distance Function (SDF) decoders to reconstruct the facial surface, maxilla, and mandible, and a surgery module, which employs region-specific deformation decoders. These deformation decoders are driven by a shared surgical latent code to effectively model the complex, nonlinear biomechanical response of the facial surface to skeletal movements, incorporating anatomical prior knowledge. The deformation decoders output point-wise displacement fields, enabling precise modeling of surgical outcomes. Extensive experiments demonstrate that NICE outperforms current state-of-the-art methods, notably improving prediction accuracy in critical facial regions such as lips and chin, while robustly preserving anatomical integrity. This work provides a clinically viable tool for enhanced surgical planning and patient consultation in orthognathic procedures.
☆ SCAIL: Towards Studio-Grade Character Animation via In-Context Learning of 3D-Consistent Pose Representations
Achieving character animation that meets studio-grade production standards remains challenging despite recent progress. Existing approaches can transfer motion from a driving video to a reference image, but often fail to preserve structural fidelity and temporal consistency in wild scenarios involving complex motion and cross-identity animations. In this work, we present \textbf{SCAIL} (\textbf{S}tudio-grade \textbf{C}haracter \textbf{A}nimation via \textbf{I}n-context \textbf{L}earning), a framework designed to address these challenges from two key innovations. First, we propose a novel 3D pose representation, providing a more robust and flexible motion signal. Second, we introduce a full-context pose injection mechanism within a diffusion-transformer architecture, enabling effective spatio-temporal reasoning over full motion sequences. To align with studio-level requirements, we develop a curated data pipeline ensuring both diversity and quality, and establish a comprehensive benchmark for systematic evaluation. Experiments show that \textbf{SCAIL} achieves state-of-the-art performance and advances character animation toward studio-grade reliability and realism.
☆ Underwater Image Reconstruction Using a Swin Transformer-Based Generator and PatchGAN Discriminator
Underwater imaging is essential for marine exploration, environmental monitoring, and infrastructure inspection. However, water causes severe image degradation through wavelength-dependent absorption and scattering, resulting in color distortion, low contrast, and haze effects. Traditional reconstruction methods and convolutional neural network-based approaches often fail to adequately address these challenges due to limited receptive fields and inability to model global dependencies. This paper presented a novel deep learning framework that integrated a Swin Transformer architecture within a generative adversarial network (GAN) for underwater image reconstruction. Our generator employed a U-Net structure with Swin Transformer blocks to capture both local features and long-range dependencies crucial for color correction across entire images. A PatchGAN discriminator provided adversarial training to ensure high-frequency detail preservation. We trained and evaluated our model on the EUVP dataset, which contains paired underwater images of varying quality. Quantitative results demonstrate stateof-the-art performance with PSNR of 24.76 dB and SSIM of 0.89, representing significant improvements over existing methods. Visual results showed effective color balance restoration, contrast improvement, and haze reduction. An ablation study confirms the superiority of our Swin Transformer designed over convolutional alternatives. The proposed method offers robust underwater image reconstruction suitable for various marine applications.
comment: This paper has been accepted for presentation at the IEEE 28th International Conference on Computer and Information Technology (ICCIT), December 2025
☆ Edit-aware RAW Reconstruction
Users frequently edit camera images post-capture to achieve their preferred photofinishing style. While editing in the RAW domain provides greater accuracy and flexibility, most edits are performed on the camera's display-referred output (e.g., 8-bit sRGB JPEG) since RAW images are rarely stored. Existing RAW reconstruction methods can recover RAW data from sRGB images, but these approaches are typically optimized for pixel-wise RAW reconstruction fidelity and tend to degrade under diverse rendering styles and editing operations. We introduce a plug-and-play, edit-aware loss function that can be integrated into any existing RAW reconstruction framework to make the recovered RAWs more robust to different rendering styles and edits. Our loss formulation incorporates a modular, differentiable image signal processor (ISP) that simulates realistic photofinishing pipelines with tunable parameters. During training, parameters for each ISP module are randomly sampled from carefully designed distributions that model practical variations in real camera processing. The loss is then computed in sRGB space between ground-truth and reconstructed RAWs rendered through this differentiable ISP. Incorporating our loss improves sRGB reconstruction quality by up to 1.5-2 dB PSNR across various editing conditions. Moreover, when applied to metadata-assisted RAW reconstruction methods, our approach enables fine-tuning for target edits, yielding further gains. Since photographic editing is the primary motivation for RAW reconstruction in consumer imaging, our simple yet effective loss function provides a general mechanism for enhancing edit fidelity and rendering flexibility across existing methods.
☆ VRSA: Jailbreaking Multimodal Large Language Models through Visual Reasoning Sequential Attack
Multimodal Large Language Models (MLLMs) are widely used in various fields due to their powerful cross-modal comprehension and generation capabilities. However, more modalities bring more vulnerabilities to being utilized for jailbreak attacks, which induces MLLMs to output harmful content. Due to the strong reasoning ability of MLLMs, previous jailbreak attacks try to explore reasoning safety risk in text modal, while similar threats have been largely overlooked in the visual modal. To fully evaluate potential safety risks in the visual reasoning task, we propose Visual Reasoning Sequential Attack (VRSA), which induces MLLMs to gradually externalize and aggregate complete harmful intent by decomposing the original harmful text into several sequentially related sub-images. In particular, to enhance the rationality of the scene in the image sequence, we propose Adaptive Scene Refinement to optimize the scene most relevant to the original harmful query. To ensure the semantic continuity of the generated image, we propose Semantic Coherent Completion to iteratively rewrite each sub-text combined with contextual information in this scene. In addition, we propose Text-Image Consistency Alignment to keep the semantical consistency. A series of experiments demonstrates that the VRSA can achieve a higher attack success rate compared with the state-of-the-art jailbreak attack methods on both the open-source and closed-source MLLMs such as GPT-4o and Claude-4.5-Sonnet.
☆ Phase-OTDR Event Detection Using Image-Based Data Transformation and Deep Learning
This study focuses on event detection in optical fibers, specifically classifying six events using the Phase-OTDR system. A novel approach is introduced to enhance Phase-OTDR data analysis by transforming 1D data into grayscale images through techniques such as Gramian Angular Difference Field, Gramian Angular Summation Field, and Recurrence Plot. These grayscale images are combined into a multi-channel RGB representation, enabling more robust and adaptable analysis using transfer learning models. The proposed methodology achieves high classification accuracies of 98.84% and 98.24% with the EfficientNetB0 and DenseNet121 models, respectively. A 5-fold cross-validation process confirms the reliability of these models, with test accuracy rates of 99.07% and 98.68%. Using a publicly available Phase-OTDR dataset, the study demonstrates an efficient approach to understanding optical fiber events while reducing dataset size and improving analysis efficiency. The results highlight the transformative potential of image-based analysis in interpreting complex fiber optic sensing data, offering significant advancements in the accuracy and reliability of fiber optic monitoring systems. The codes and the corresponding image-based dataset are made publicly available on GitHub to support further research: https://github.com/miralab-ai/Phase-OTDR-event-detection.
comment: 22 pages, 11 figures, 5 tables
☆ Multimodal Oncology Agent for IDH1 Mutation Prediction in Low-Grade Glioma
Low-grade gliomas frequently present IDH1 mutations that define clinically distinct subgroups with specific prognostic and therapeutic implications. This work introduces a Multimodal Oncology Agent (MOA) integrating a histology tool based on the TITAN foundation model for IDH1 mutation prediction in low-grade glioma, combined with reasoning over structured clinical and genomic inputs through PubMed, Google Search, and OncoKB. MOA reports were quantitatively evaluated on 488 patients from the TCGA-LGG cohort against clinical and histology baselines. MOA without the histology tool outperformed the clinical baseline, achieving an F1-score of 0.826 compared to 0.798. When fused with histology features, MOA reached the highest performance with an F1-score of 0.912, exceeding both the histology baseline at 0.894 and the fused histology-clinical baseline at 0.897. These results demonstrate that the proposed agent captures complementary mutation-relevant information enriched through external biomedical sources, enabling accurate IDH1 mutation prediction.
comment: 4 pages, 2 figures
☆ UG-FedDA: Uncertainty-Guided Federated Domain Adaptation for Multi-Center Alzheimer's Disease Detection
Alzheimer's disease (AD) is an irreversible neurodegenerative disorder, and early diagnosis is critical for timely intervention. However, most existing classification frameworks face challenges in multicenter studies, as they often neglect inter-site heterogeneity and lack mechanisms to quantify uncertainty, which limits their robustness and clinical applicability. To address these issues, we proposed Uncertainty-Guided Federated Domain Adaptation (UG-FedDA), a novel multicenter AD classification framework that integrates uncertainty quantification (UQ) with federated domain adaptation to handle cross-site structure magnetic resonance imaging (MRI) heterogeneity under privacy constraints. Our approach extracts multi-template region-of-interest (RoI) features using a self-attention transformer, capturing both regional representations and their interactions. UQ is integrated to guide feature alignment, mitigating source-target distribution shifts by down-weighting uncertain samples. Experiments are conducted on three public datasets: the Alzheimer's Disease Neuroimaging Initiative (ADNI), the Australian Imaging, Biomarkers and Lifestyle study (AIBL), and the Open Access Series of Imaging Studies (OASIS). UG-FedDA achieved consistent cross-domain improvements in accuracy, sensitivity, and area under the ROC curve across three classification tasks: AD vs. normal controls (NC), mild cognitive impairment (MCI) vs. AD, and NC vs. MCI. For NC vs. AD, UG-FedDA achieves accuracies of 90.54%, 89.04%, and 77.78% on ADNI, AIBL and OASIS datasets, respectively. For MCI vs. AD, accuracies are 80.20% (ADNI), 71.91% (AIBL), and 79.73% (OASIS). For NC vs. MCI, results are 76.87% (ADNI), 73.91% (AIBL), and 83.73% (OASIS). These results demonstrate that the proposed framework not only adapts efficiently across multiple sites but also preserves strict privacy.
comment: The code is already available on GitHub: https://github.com/chenzhao2023/UG_FADDA_AlzhemiersClassification
☆ Toward Efficient and Robust Behavior Models for Multi-Agent Driving Simulation
Scalable multi-agent driving simulation requires behavior models that are both realistic and computationally efficient. We address this by optimizing the behavior model that controls individual traffic participants. To improve efficiency, we adopt an instance-centric scene representation, where each traffic participant and map element is modeled in its own local coordinate frame. This design enables efficient, viewpoint-invariant scene encoding and allows static map tokens to be reused across simulation steps. To model interactions, we employ a query-centric symmetric context encoder with relative positional encodings between local frames. We use Adversarial Inverse Reinforcement Learning to learn the behavior model and propose an adaptive reward transformation that automatically balances robustness and realism during training. Experiments demonstrate that our approach scales efficiently with the number of tokens, significantly reducing training and inference times, while outperforming several agent-centric baselines in terms of positional accuracy and robustness.
comment: This work has been submitted to the IEEE for possible publication
☆ Probing the effectiveness of World Models for Spatial Reasoning through Test-time Scaling
Vision-Language Models (VLMs) remain limited in spatial reasoning tasks that require multi-view understanding and embodied perspective shifts. Recent approaches such as MindJourney attempt to mitigate this gap through test-time scaling where a world model imagines action-conditioned trajectories and a heuristic verifier selects helpful views from such trajectories. In this work, we systematically examine how such test-time verifiers behave across benchmarks, uncovering both their promise and their pitfalls. Our uncertainty-based analyses show that MindJourney's verifier provides little meaningful calibration, and that random scoring often reduces answer entropy equally well, thus exposing systematic action biases and unreliable reward signals. To mitigate these, we introduce a Verification through Spatial Assertions (ViSA) framework that grounds the test-time reward in verifiable, frame-anchored micro-claims. This principled verifier consistently improves spatial reasoning on the SAT-Real benchmark and corrects trajectory-selection biases through more balanced exploratory behavior. However, on the challenging MMSI-Bench, none of the verifiers, including ours, achieve consistent scaling, suggesting that the current world models form an information bottleneck where imagined views fail to enrich fine-grained reasoning. Together, these findings chart the bad, good, and ugly aspects of test-time verification for world-model-based reasoning. Our code is available at https://github.com/chandar-lab/visa-for-mindjourney.
comment: Extended abstract at World Modeling Workshop 2026
☆ Bring Your Dreams to Life: Continual Text-to-Video Customization AAAI2026
Customized text-to-video generation (CTVG) has recently witnessed great progress in generating tailored videos from user-specific text. However, most CTVG methods assume that personalized concepts remain static and do not expand incrementally over time. Additionally, they struggle with forgetting and concept neglect when continuously learning new concepts, including subjects and motions. To resolve the above challenges, we develop a novel Continual Customized Video Diffusion (CCVD) model, which can continuously learn new concepts to generate videos across various text-to-video generation tasks by tackling forgetting and concept neglect. To address catastrophic forgetting, we introduce a concept-specific attribute retention module and a task-aware concept aggregation strategy. They can capture the unique characteristics and identities of old concepts during training, while combining all subject and motion adapters of old concepts based on their relevance during testing. Besides, to tackle concept neglect, we develop a controllable conditional synthesis to enhance regional features and align video contexts with user conditions, by incorporating layer-specific region attention-guided noise estimation. Extensive experimental comparisons demonstrate that our CCVD outperforms existing CTVG models. The code is available at https://github.com/JiahuaDong/CCVD.
comment: Accepted to AAAI2026
☆ Curvature-Regularized Variational Autoencoder for 3D Scene Reconstruction from Sparse Depth
When depth sensors provide only 5% of needed measurements, reconstructing complete 3D scenes becomes difficult. Autonomous vehicles and robots cannot tolerate the geometric errors that sparse reconstruction introduces. We propose curvature regularization through a discrete Laplacian operator, achieving 18.1% better reconstruction accuracy than standard variational autoencoders. Our contribution challenges an implicit assumption in geometric deep learning: that combining multiple geometric constraints improves performance. A single well-designed regularization term not only matches but exceeds the effectiveness of complex multi-term formulations. The discrete Laplacian offers stable gradients and noise suppression with just 15% training overhead and zero inference cost. Code and models are available at https://github.com/Maryousefi/GeoVAE-3D.
☆ Active Video Perception: Iterative Evidence Seeking for Agentic Long Video Understanding
Long video understanding (LVU) is challenging because answering real-world queries often depends on sparse, temporally dispersed cues buried in hours of mostly redundant and irrelevant content. While agentic pipelines improve video reasoning capabilities, prevailing frameworks rely on a query-agnostic captioner to perceive video information, which wastes computation on irrelevant content and blurs fine-grained temporal and spatial information. Motivated by active perception theory, we argue that LVU agents should actively decide what, when, and where to observe, and continuously assess whether the current observation is sufficient to answer the query. We present Active Video Perception (AVP), an evidence-seeking framework that treats the video as an interactive environment and acquires compact, queryrelevant evidence directly from pixels. Concretely, AVP runs an iterative plan-observe-reflect process with MLLM agents. In each round, a planner proposes targeted video interactions, an observer executes them to extract time-stamped evidence, and a reflector evaluates the sufficiency of the evidence for the query, either halting with an answer or triggering further observation. Across five LVU benchmarks, AVP achieves highest performance with significant improvements. Notably, AVP outperforms the best agentic method by 5.7% in average accuracy while only requires 18.4% inference time and 12.4% input tokens.
comment: Website: https://activevideoperception.github.io/
☆ FNOPT: Resolution-Agnostic, Self-Supervised Cloth Simulation using Meta-Optimization with Fourier Neural Operators
We present FNOpt, a self-supervised cloth simulation framework that formulates time integration as an optimization problem and trains a resolution-agnostic neural optimizer parameterized by a Fourier neural operator (FNO). Prior neural simulators often rely on extensive ground truth data or sacrifice fine-scale detail, and generalize poorly across resolutions and motion patterns. In contrast, FNOpt learns to simulate physically plausible cloth dynamics and achieves stable and accurate rollouts across diverse mesh resolutions and motion patterns without retraining. Trained only on a coarse grid with physics-based losses, FNOpt generalizes to finer resolutions, capturing fine-scale wrinkles and preserving rollout stability. Extensive evaluations on a benchmark cloth simulation dataset demonstrate that FNOpt outperforms prior learning-based approaches in out-of-distribution settings in both accuracy and robustness. These results position FNO-based meta-optimization as a compelling alternative to previous neural simulators for cloth, thus reducing the need for curated data and improving cross-resolution reliability.
comment: Accepted for WACV
☆ Label-Efficient Point Cloud Segmentation with Active Learning
Semantic segmentation of 3D point cloud data often comes with high annotation costs. Active learning automates the process of selecting which data to annotate, reducing the total amount of annotation needed to achieve satisfactory performance. Recent approaches to active learning for 3D point clouds are often based on sophisticated heuristics for both, splitting point clouds into annotatable regions and selecting the most beneficial for further neural network training. In this work, we propose a novel and easy-to-implement strategy to separate the point cloud into annotatable regions. In our approach, we utilize a 2D grid to subdivide the point cloud into columns. To identify the next data to be annotated, we employ a network ensemble to estimate the uncertainty in the network output. We evaluate our method on the S3DIS dataset, the Toronto-3D dataset, and a large-scale urban 3D point cloud of the city of Freiburg, which we labeled in parts manually. The extensive evaluation shows that our method yields performance on par with, or even better than, complex state-of-the-art methods on all datasets. Furthermore, we provide results suggesting that in the context of point clouds the annotated area can be a more meaningful measure for active learning algorithms than the number of annotated points.
☆ USV: Unified Sparsification for Accelerating Video Diffusion Models
The scalability of high-fidelity video diffusion models (VDMs) is constrained by two key sources of redundancy: the quadratic complexity of global spatio-temporal attention and the computational overhead of long iterative denoising trajectories. Existing accelerators -- such as sparse attention and step-distilled samplers -- typically target a single dimension in isolation and quickly encounter diminishing returns, as the remaining bottlenecks become dominant. In this work, we introduce USV (Unified Sparsification for Video diffusion models), an end-to-end trainable framework that overcomes this limitation by jointly orchestrating sparsification across both the model's internal computation and its sampling process. USV learns a dynamic, data- and timestep-dependent sparsification policy that prunes redundant attention connections, adaptively merges semantically similar tokens, and reduces denoising steps, treating them not as independent tricks but as coordinated actions within a single optimization objective. This multi-dimensional co-design enables strong mutual reinforcement among previously disjoint acceleration strategies. Extensive experiments on large-scale video generation benchmarks demonstrate that USV achieves up to 83.3% speedup in the denoising process and 22.7% end-to-end acceleration, while maintaining high visual fidelity. Our results highlight unified, dynamic sparsification as a practical path toward efficient, high-quality video generation.
☆ HQ-DM: Single Hadamard Transformation-Based Quantization-Aware Training for Low-Bit Diffusion Models
Diffusion models have demonstrated significant applications in the field of image generation. However, their high computational and memory costs pose challenges for deployment. Model quantization has emerged as a promising solution to reduce storage overhead and accelerate inference. Nevertheless, existing quantization methods for diffusion models struggle to mitigate outliers in activation matrices during inference, leading to substantial performance degradation under low-bit quantization scenarios. To address this, we propose HQ-DM, a novel Quantization-Aware Training framework that applies Single Hadamard Transformation to activation matrices. This approach effectively reduces activation outliers while preserving model performance under quantization. Compared to traditional Double Hadamard Transformation, our proposed scheme offers distinct advantages by seamlessly supporting INT convolution operations while preventing the amplification of weight outliers. For conditional generation on the ImageNet 256x256 dataset using the LDM-4 model, our W4A4 and W4A3 quantization schemes improve the Inception Score by 12.8% and 467.73%, respectively, over the existing state-of-the-art method.
☆ Distilling Expert Surgical Knowledge: How to train local surgical VLMs for anatomy explanation in Complete Mesocolic Excision
Recently, Vision Large Language Models (VLMs) have demonstrated high potential in computer-aided diagnosis and decision-support. However, current VLMs show deficits in domain specific surgical scene understanding, such as identifying and explaining anatomical landmarks during Complete Mesocolic Excision. Additionally, there is a need for locally deployable models to avoid patient data leakage to large VLMs, hosted outside the clinic. We propose a privacy-preserving framework to distill knowledge from large, general-purpose LLMs into an efficient, local VLM. We generate an expert-supervised dataset by prompting a teacher LLM without sensitive images, using only textual context and binary segmentation masks for spatial information. This dataset is used for Supervised Fine-Tuning (SFT) and subsequent Direct Preference Optimization (DPO) of the locally deployable VLM. Our evaluation confirms that finetuning VLMs with our generated datasets increases surgical domain knowledge compared to its base VLM by a large margin. Overall, this work validates a data-efficient and privacy-conforming way to train a surgical domain optimized, locally deployable VLM for surgical scene understanding.
☆ Manifold-Aware Point Cloud Completion via Geodesic-Attentive Hierarchical Feature Learning
Point cloud completion seeks to recover geometrically consistent shapes from partial or sparse 3D observations. Although recent methods have achieved reasonable global shape reconstruction, they often rely on Euclidean proximity and overlook the intrinsic nonlinear geometric structure of point clouds, resulting in suboptimal geometric consistency and semantic ambiguity. In this paper, we present a manifold-aware point cloud completion framework that explicitly incorporates nonlinear geometry information throughout the feature learning pipeline. Our approach introduces two key modules: a Geodesic Distance Approximator (GDA), which estimates geodesic distances between points to capture the latent manifold topology, and a Manifold-Aware Feature Extractor (MAFE), which utilizes geodesic-based $k$-NN groupings and a geodesic-relational attention mechanism to guide the hierarchical feature extraction process. By integrating geodesic-aware relational attention, our method promotes semantic coherence and structural fidelity in the reconstructed point clouds. Extensive experiments on benchmark datasets demonstrate that our approach consistently outperforms state-of-the-art methods in reconstruction quality.
☆ OWL: Unsupervised 3D Object Detection by Occupancy Guided Warm-up and Large Model Priors Reasoning AAAI
Unsupervised 3D object detection leverages heuristic algorithms to discover potential objects, offering a promising route to reduce annotation costs in autonomous driving. Existing approaches mainly generate pseudo labels and refine them through self-training iterations. However, these pseudo-labels are often incorrect at the beginning of training, resulting in misleading the optimization process. Moreover, effectively filtering and refining them remains a critical challenge. In this paper, we propose OWL for unsupervised 3D object detection by occupancy guided warm-up and large-model priors reasoning. OWL first employs an Occupancy Guided Warm-up (OGW) strategy to initialize the backbone weight with spatial perception capabilities, mitigating the interference of incorrect pseudo-labels on network convergence. Furthermore, OWL introduces an Instance-Cued Reasoning (ICR) module that leverages the prior knowledge of large models to assess pseudo-label quality, enabling precise filtering and refinement. Finally, we design a Weight-adapted Self-training (WAS) strategy to dynamically re-weight pseudo-labels, improving the performance through self-training. Extensive experiments on Waymo Open Dataset (WOD) and KITTI demonstrate that OWL outperforms state-of-the-art unsupervised methods by over 15.0% mAP, revealing the effectiveness of our method.
comment: The 40th Annual AAAI Conference on Artificial Intelligence
☆ Physics-Informed Graph Neural Network with Frequency-Aware Learning for Optical Aberration Correction
Optical aberrations significantly degrade image quality in microscopy, particularly when imaging deeper into samples. These aberrations arise from distortions in the optical wavefront and can be mathematically represented using Zernike polynomials. Existing methods often address only mild aberrations on limited sample types and modalities, typically treating the problem as a black-box mapping without leveraging the underlying optical physics of wavefront distortions. We propose ZRNet, a physics-informed framework that jointly performs Zernike coefficient prediction and optical image Restoration. We contribute a Zernike Graph module that explicitly models physical relationships between Zernike polynomials based on their azimuthal degrees-ensuring that learned corrections align with fundamental optical principles. To further enforce physical consistency between image restoration and Zernike prediction, we introduce a Frequency-Aware Alignment (FAA) loss, which better aligns Zernike coefficient prediction and image features in the Fourier domain. Extensive experiments on CytoImageNet demonstrates that our approach achieves state-of-the-art performance in both image restoration and Zernike coefficient prediction across diverse microscopy modalities and biological samples with complex, large-amplitude aberrations. Code is available at https://github.com/janetkok/ZRNet.
☆ Hyperspectral Unmixing with 3D Convolutional Sparse Coding and Projected Simplex Volume Maximization
Hyperspectral unmixing (HSU) aims to separate each pixel into its constituent endmembers and estimate their corresponding abundance fractions. This work presents an algorithm-unrolling-based network for the HSU task, named the 3D Convolutional Sparse Coding Network (3D-CSCNet), built upon a 3D CSC model. Unlike existing unrolling-based networks, our 3D-CSCNet is designed within the powerful autoencoder (AE) framework. Specifically, to solve the 3D CSC problem, we propose a 3D CSC block (3D-CSCB) derived through deep algorithm unrolling. Given a hyperspectral image (HSI), 3D-CSCNet employs the 3D-CSCB to estimate the abundance matrix. The use of 3D CSC enables joint learning of spectral and spatial relationships in the 3D HSI data cube. The estimated abundance matrix is then passed to the AE decoder to reconstruct the HSI, and the decoder weights are extracted as the endmember matrix. Additionally, we propose a projected simplex volume maximization (PSVM) algorithm for endmember estimation, and the resulting endmembers are used to initialize the decoder weights of 3D-CSCNet. Extensive experiments on three real datasets and one simulated dataset with three different signal-to-noise ratio (SNR) levels demonstrate that our 3D-CSCNet outperforms state-of-the-art methods.
☆ InverseCrafter: Efficient Video ReCapture as a Latent Domain Inverse Problem
Recent approaches to controllable 4D video generation often rely on fine-tuning pre-trained Video Diffusion Models (VDMs). This dominant paradigm is computationally expensive, requiring large-scale datasets and architectural modifications, and frequently suffers from catastrophic forgetting of the model's original generative priors. Here, we propose InverseCrafter, an efficient inpainting inverse solver that reformulates the 4D generation task as an inpainting problem solved in the latent space. The core of our method is a principled mechanism to encode the pixel space degradation operator into a continuous, multi-channel latent mask, thereby bypassing the costly bottleneck of repeated VAE operations and backpropagation. InverseCrafter not only achieves comparable novel view generation and superior measurement consistency in camera control tasks with near-zero computational overhead, but also excels at general-purpose video inpainting with editing. Code is available at https://github.com/yeobinhong/InverseCrafter.
☆ Deep Learning-Based Real-Time Sequential Facial Expression Analysis Using Geometric Features
Facial expression recognition is a crucial component in enhancing human-computer interaction and developing emotion-aware systems. Real-time detection and interpretation of facial expressions have become increasingly important for various applications, from user experience personalization to intelligent surveillance systems. This study presents a novel approach to real-time sequential facial expression recognition using deep learning and geometric features. The proposed method utilizes MediaPipe FaceMesh for rapid and accurate facial landmark detection. Geometric features, including Euclidean distances and angles, are extracted from these landmarks. Temporal dynamics are incorporated by analyzing feature differences between consecutive frames, enabling the detection of onset, apex, and offset phases of expressions. For classification, a ConvLSTM1D network followed by multilayer perceptron blocks is employed. The method's performance was evaluated on multiple publicly available datasets, including CK+, Oulu-CASIA (VIS and NIR), and MMI. Accuracies of 93%, 79%, 77%, and 68% were achieved respectively. Experiments with composite datasets were also conducted to assess the model's generalization capabilities. The approach demonstrated real-time applicability, processing approximately 165 frames per second on consumer-grade hardware. This research contributes to the field of facial expression analysis by providing a fast, accurate, and adaptable solution. The findings highlight the potential for further advancements in emotion-aware technologies and personalized user experiences, paving the way for more sophisticated human-computer interaction systems. To facilitate further research in this field, the complete source code for this study has been made publicly available on GitHub: https://github.com/miralab-ai/facial-expression-analysis.
☆ Interleaved Latent Visual Reasoning with Selective Perceptual Modeling
Interleaved reasoning paradigms enhance Multimodal Large Language Models (MLLMs) with visual feedback but are hindered by the prohibitive computational cost of repeatedly re-encoding pixel-dense images. A promising alternative, latent visual reasoning, circumvents this bottleneck yet currently forces a critical trade-off: methods either sacrifice precise perceptual modeling by over-compressing features or fail to model dynamic problems due to static, non-interleaved structures. We introduce Interleaved Latent Visual Reasoning (ILVR), a framework that unifies dynamic state evolution with precise perceptual modeling. ILVR interleaves textual generation with latent visual representations that act as specific, evolving cues for subsequent reasoning. To enable this, we employ a self-supervision strategy where a Momentum Teacher Model selectively distills relevant features from helper images into sparse supervision targets. This adaptive selection mechanism guides the model to autonomously generate context-aware visual signals. Extensive experiments on multimodal reasoning benchmarks demonstrate that ILVR significantly outperforms existing approaches, effectively bridging the gap between fine-grained perception and sequential multimodal reasoning.
comment: 11 pages, 6 figures. Code available at https://github.com/XD111ds/ILVR
☆ LeAD-M3D: Leveraging Asymmetric Distillation for Real-time Monocular 3D Detection
Real-time monocular 3D object detection remains challenging due to severe depth ambiguity, viewpoint shifts, and the high computational cost of 3D reasoning. Existing approaches either rely on LiDAR or geometric priors to compensate for missing depth, or sacrifice efficiency to achieve competitive accuracy. We introduce LeAD-M3D, a monocular 3D detector that achieves state-of-the-art accuracy and real-time inference without extra modalities. Our method is powered by three key components. Asymmetric Augmentation Denoising Distillation (A2D2) transfers geometric knowledge from a clean-image teacher to a mixup-noised student via a quality- and importance-weighted depth-feature loss, enabling stronger depth reasoning without LiDAR supervision. 3D-aware Consistent Matching (CM3D) improves prediction-to-ground truth assignment by integrating 3D MGIoU into the matching score, yielding more stable and precise supervision. Finally, Confidence-Gated 3D Inference (CGI3D) accelerates detection by restricting expensive 3D regression to top-confidence regions. Together, these components set a new Pareto frontier for monocular 3D detection: LeAD-M3D achieves state-of-the-art accuracy on KITTI and Waymo, and the best reported car AP on Rope3D, while running up to 3.6x faster than prior high-accuracy methods. Our results demonstrate that high fidelity and real-time efficiency in monocular 3D detection are simultaneously attainable - without LiDAR, stereo, or geometric assumptions.
Self-Supervised AI-Generated Image Detection: A Camera Metadata Perspective
The proliferation of AI-generated imagery poses escalating challenges for multimedia forensics, yet many existing detectors depend on assumptions about the internals of specific generative models, limiting their cross-model applicability. We introduce a self-supervised approach for detecting AI-generated images that leverages camera metadata -- specifically exchangeable image file format (EXIF) tags -- to learn features intrinsic to digital photography. Our pretext task trains a feature extractor solely on camera-captured photographs by classifying categorical EXIF tags (\eg, camera model and scene type) and pairwise-ranking ordinal and continuous EXIF tags (\eg, focal length and aperture value). Using these EXIF-induced features, we first perform one-class detection by modeling the distribution of photographic images with a Gaussian mixture model and flagging low-likelihood samples as AI-generated. We then extend to binary detection that treats the learned extractor as a strong regularizer for a classifier of the same architecture, operating on high-frequency residuals from spatially scrambled patches. Extensive experiments across various generative models demonstrate that our EXIF-induced detectors substantially advance the state of the art, delivering strong generalization to in-the-wild samples and robustness to common benign image perturbations.
☆ Experts-Guided Unbalanced Optimal Transport for ISP Learning from Unpaired and/or Paired Data
Learned Image Signal Processing (ISP) pipelines offer powerful end-to-end performance but are critically dependent on large-scale paired raw-to-sRGB datasets. This reliance on costly-to-acquire paired data remains a significant bottleneck. To address this challenge, we introduce a novel, unsupervised training framework based on Optimal Transport capable of training arbitrary ISP architectures in both unpaired and paired modes. We are the first to successfully apply Unbalanced Optimal Transport (UOT) for this complex, cross-domain translation task. Our UOT-based framework provides robustness to outliers in the target sRGB data, allowing it to discount atypical samples that would be prohibitively costly to map. A key component of our framework is a novel ``committee of expert discriminators,'' a hybrid adversarial regularizer. This committee guides the optimal transport mapping by providing specialized, targeted gradients to correct specific ISP failure modes, including color fidelity, structural artifacts, and frequency-domain realism. To demonstrate the superiority of our approach, we retrained existing state-of-the-art ISP architectures using our paired and unpaired setups. Our experiments show that while our framework, when trained in paired mode, exceeds the performance of the original paired methods across all metrics, our unpaired mode concurrently achieves quantitative and qualitative performance that rivals, and in some cases surpasses, the original paired-trained counterparts. The code and pre-trained models are available at: https://github.com/gosha20777/EGUOT-ISP.git.
☆ DistillFSS: Synthesizing Few-Shot Knowledge into a Lightweight Segmentation Model
Cross-Domain Few-Shot Semantic Segmentation (CD-FSS) seeks to segment unknown classes in unseen domains using only a few annotated examples. This setting is inherently challenging: source and target domains exhibit substantial distribution shifts, label spaces are disjoint, and support images are scarce--making standard episodic methods unreliable and computationally demanding at test time. To address these constraints, we propose DistillFSS, a framework that embeds support-set knowledge directly into a model's parameters through a teacher--student distillation process. By internalizing few-shot reasoning into a dedicated layer within the student network, DistillFSS eliminates the need for support images at test time, enabling fast, lightweight inference, while allowing efficient extension to novel classes in unseen domains through rapid teacher-driven specialization. Combined with fine-tuning, the approach scales efficiently to large support sets and significantly reduces computational overhead. To evaluate the framework under realistic conditions, we introduce a new CD-FSS benchmark spanning medical imaging, industrial inspection, and remote sensing, with disjoint label spaces and variable support sizes. Experiments show that DistillFSS matches or surpasses state-of-the-art baselines, particularly in multi-class and multi-shot scenarios, while offering substantial efficiency gains. The code is available at https://github.com/pasqualedem/DistillFSS.
☆ NormalView: sensor-agnostic tree species classification from backpack and aerial lidar data using geometric projections
Laser scanning has proven to be an invaluable tool in assessing the decomposition of forest environments. Mobile laser scanning (MLS) has shown to be highly promising for extremely accurate, tree level inventory. In this study, we present NormalView, a sensor-agnostic projection-based deep learning method for classifying tree species from point cloud data. NormalView embeds local geometric information into two-dimensional projections, in the form of normal vector estimates, and uses the projections as inputs to an image classification network, YOLOv11. In addition, we inspected the effect of multispectral radiometric intensity information on classification performance. We trained and tested our model on high-density MLS data (7 species, ~5000 pts/m^2), as well as high-density airborne laser scanning (ALS) data (9 species, >1000 pts/m^2). On the MLS data, NormalView achieves an overall accuracy (macro-average accuracy) of 95.5 % (94.8 %), and 91.8 % (79.1 %) on the ALS data. We found that having intensity information from multiple scanners provides benefits in tree species classification, and the best model on the multispectral ALS dataset was a model using intensity information from all three channels of the multispectral ALS. This study demonstrates that projection-based methods, when enhanced with geometric information and coupled with state-of-the-art image classification backbones, can achieve exceptional results. Crucially, these methods are sensor-agnostic, relying only on geometric information. Additionally, we publically release the MLS dataset used in the study.
comment: 19 pages, 8 figures
☆ Fast SceneScript: Accurate and Efficient Structured Language Model via Multi-Token Prediction
Recent perception-generalist approaches based on language models have achieved state-of-the-art results across diverse tasks, including 3D scene layout estimation, via unified architecture and interface. However, these approaches rely on autoregressive next-token prediction, which is inherently slow. In this work, we introduce Fast SceneScript, a novel structured language model for accurate and efficient 3D scene layout estimation. Our method employs multi-token prediction (MTP) to reduce the number of autoregressive iterations and significantly accelerate inference. While MTP improves speed, unreliable token predictions can significantly reduce accuracy. To filter out unreliable tokens, we adapt self-speculative decoding (SSD) for structured language models and introduce confidence-guided decoding (CGD) with an improved scoring mechanism for token reliability. Furthermore, we design a parameter-efficient mechanism that reduces the parameter overhead of MTP. Extensive experiments on the ASE and Structured3D benchmarks demonstrate that Fast SceneScript can generate up to 9 tokens per decoder inference step without compromising accuracy, while adding only $\sim7.5\%$ additional parameters.
comment: 10 pages, 8 figures
☆ Learning High-Fidelity Cloth Animation via Skinning-Free Image Transfer
We present a novel method for generating 3D garment deformations from given body poses, which is key to a wide range of applications, including virtual try-on and extended reality. To simplify the cloth dynamics, existing methods mostly rely on linear blend skinning to obtain low-frequency posed garment shape and only regress high-frequency wrinkles. However, due to the lack of explicit skinning supervision, such skinning-based approach often produces misaligned shapes when posing the garment, consequently corrupts the high-frequency signals and fails to recover high-fidelity wrinkles. To tackle this issue, we propose a skinning-free approach by independently estimating posed (i) vertex position for low-frequency posed garment shape, and (ii) vertex normal for high-frequency local wrinkle details. In this way, each frequency modality can be effectively decoupled and directly supervised by the geometry of the deformed garment. To further improve the visual quality of animation, we propose to encode both vertex attributes as rendered texture images, so that 3D garment deformation can be equivalently achieved via 2D image transfer. This enables us to leverage powerful pretrained image models to recover fine-grained visual details in wrinkles, while maintaining superior scalability for garments of diverse topologies without relying on manual UV partition. Finally, we propose a multimodal fusion to incorporate constraints from both frequency modalities and robustly recover deformed 3D garments from transferred images. Extensive experiments show that our method significantly improves animation quality on various garment types and recovers finer wrinkles than state-of-the-art methods.
comment: Accepted to 3DV 2026
☆ MedDIFT: Multi-Scale Diffusion-Based Correspondence in 3D Medical Imaging
Accurate spatial correspondence between medical images is essential for longitudinal analysis, lesion tracking, and image-guided interventions. Medical image registration methods rely on local intensity-based similarity measures, which fail to capture global semantic structure and often yield mismatches in low-contrast or anatomically variable regions. Recent advances in diffusion models suggest that their intermediate representations encode rich geometric and semantic information. We present MedDIFT, a training-free 3D correspondence framework that leverages multi-scale features from a pretrained latent medical diffusion model as voxel descriptors. MedDIFT fuses diffusion activations into rich voxel-wise descriptors and matches them via cosine similarity, with an optional local-search prior. On a publicly available lung CT dataset, MedDIFT achieves correspondence accuracy comparable to the state-of-the-art learning-based UniGradICON model and surpasses conventional B-spline-based registration, without requiring any task-specific model training. Ablation experiments confirm that multi-level feature fusion and modest diffusion noise improve performance.
☆ ProPhy: Progressive Physical Alignment for Dynamic World Simulation
Recent advances in video generation have shown remarkable potential for constructing world simulators. However, current models still struggle to produce physically consistent results, particularly when handling large-scale or complex dynamics. This limitation arises primarily because existing approaches respond isotropically to physical prompts and neglect the fine-grained alignment between generated content and localized physical cues. To address these challenges, we propose ProPhy, a Progressive Physical Alignment Framework that enables explicit physics-aware conditioning and anisotropic generation. ProPhy employs a two-stage Mixture-of-Physics-Experts (MoPE) mechanism for discriminative physical prior extraction, where Semantic Experts infer semantic-level physical principles from textual descriptions, and Refinement Experts capture token-level physical dynamics. This mechanism allows the model to learn fine-grained, physics-aware video representations that better reflect underlying physical laws. Furthermore, we introduce a physical alignment strategy that transfers the physical reasoning capabilities of vision-language models (VLMs) into the Refinement Experts, facilitating a more accurate representation of dynamic physical phenomena. Extensive experiments on physics-aware video generation benchmarks demonstrate that ProPhy produces more realistic, dynamic, and physically coherent results than existing state-of-the-art methods.
☆ 2K-Characters-10K-Stories: A Quality-Gated Stylized Narrative Dataset with Disentangled Control and Sequence Consistency
Sequential identity consistency under precise transient attribute control remains a long-standing challenge in controllable visual storytelling. Existing datasets lack sufficient fidelity and fail to disentangle stable identities from transient attributes, limiting structured control over pose, expression, and scene composition and thus constraining reliable sequential synthesis. To address this gap, we introduce \textbf{2K-Characters-10K-Stories}, a multi-modal stylized narrative dataset of \textbf{2{,}000} uniquely stylized characters appearing across \textbf{10{,}000} illustration stories. It is the first dataset that pairs large-scale unique identities with explicit, decoupled control signals for sequential identity consistency. We introduce a \textbf{Human-in-the-Loop pipeline (HiL)} that leverages expert-verified character templates and LLM-guided narrative planning to generate highly-aligned structured data. A \textbf{decoupled control} scheme separates persistent identity from transient attributes -- pose and expression -- while a \textbf{Quality-Gated loop} integrating MMLM evaluation, Auto-Prompt Tuning, and Local Image Editing enforces pixel-level consistency. Extensive experiments demonstrate that models fine-tuned on our dataset achieves performance comparable to closed-source models in generating visual narratives.
☆ Conscious Gaze: Adaptive Attention Mechanisms for Hallucination Mitigation in Vision-Language Models
Large Vision-Language Models (VLMs) often exhibit text inertia, where attention drifts from visual evidence toward linguistic priors, resulting in object hallucinations. Existing decoding strategies intervene only at the output logits and thus cannot correct internal reasoning drift, while recent internal-control methods based on heuristic head suppression or global steering vectors lack principled grounding. We introduce Conscious Gaze (CG-VLM), a training-free, inference-time framework that converts game-theoretic interpretability into actionable decoding control. A Cognitive Demand Sensor built on Harsanyi interactions estimates instantaneous vision-text synergy and identifies moments when visual grounding is necessary. Conditioned on this signal, a Focused Consensus Induction module selectively reorients mid-layer attention toward visual tokens before collapse into text priors. CG-VLM achieves state-of-the-art results on POPE and CHAIR across InstructBLIP, LLaVA, Qwen-VL, and mPLUG, while preserving general capabilities, demonstrating that token-level sensing enables precise, context-aware intervention without compromising foundational knowledge.
comment: 6 pages, 6 figures
☆ Ideal Observer for Segmentation of Dead Leaves Images
The human visual environment is comprised of different surfaces that are distributed in space. The parts of a scene that are visible at any one time are governed by the occlusion of overlapping objects. In this work we consider "dead leaves" models, which replicate these occlusions when generating images by layering objects on top of each other. A dead leaves model is a generative model comprised of distributions for object position, shape, color and texture. An image is generated from a dead leaves model by sampling objects ("leaves") from these distributions until a stopping criterion is reached, usually when the image is fully covered or until a given number of leaves was sampled. Here, we describe a theoretical approach, based on previous work, to derive a Bayesian ideal observer for the partition of a given set of pixels based on independent dead leaves model distributions. Extending previous work, we provide step-by-step explanations for the computation of the posterior probability as well as describe factors that determine the feasibility of practically applying this computation. The dead leaves image model and the associated ideal observer can be applied to study segmentation decisions in a limited number of pixels, providing a principled upper-bound on performance, to which humans and vision algorithms could be compared.
comment: 41 pages, 16 figures
☆ See in Depth: Training-Free Surgical Scene Segmentation with Monocular Depth Priors
Pixel-wise segmentation of laparoscopic scenes is essential for computer-assisted surgery but difficult to scale due to the high cost of dense annotations. We propose depth-guided surgical scene segmentation (DepSeg), a training-free framework that utilizes monocular depth as a geometric prior together with pretrained vision foundation models. DepSeg first estimates a relative depth map with a pretrained monocular depth estimation network and proposes depth-guided point prompts, which SAM2 converts into class-agnostic masks. Each mask is then described by a pooled pretrained visual feature and classified via template matching against a template bank built from annotated frames. On the CholecSeg8k dataset, DepSeg improves over a direct SAM2 auto segmentation baseline (35.9% vs. 14.7% mIoU) and maintains competitive performance even when using only 10--20% of the object templates. These results show that depth-guided prompting and template-based classification offer an annotation-efficient segmentation approach.
comment: The first two authors contributed equally
☆ VOST-SGG: VLM-Aided One-Stage Spatio-Temporal Scene Graph Generation
Spatio-temporal scene graph generation (ST-SGG) aims to model objects and their evolving relationships across video frames, enabling interpretable representations for downstream reasoning tasks such as video captioning and visual question answering. Despite recent advancements in DETR-style single-stage ST-SGG models, they still suffer from several key limitations. First, while these models rely on attention-based learnable queries as a core component, these learnable queries are semantically uninformed and instance-agnostically initialized. Second, these models rely exclusively on unimodal visual features for predicate classification. To address these challenges, we propose VOST-SGG, a VLM-aided one-stage ST-SGG framework that integrates the common sense reasoning capabilities of vision-language models (VLMs) into the ST-SGG pipeline. First, we introduce the dual-source query initialization strategy that disentangles what to attend to from where to attend, enabling semantically grounded what-where reasoning. Furthermore, we propose a multi-modal feature bank that fuses visual, textual, and spatial cues derived from VLMs for improved predicate classification. Extensive experiments on the Action Genome dataset demonstrate that our approach achieves state-of-the-art performance, validating the effectiveness of integrating VLM-aided semantic priors and multi-modal features for ST-SGG. We will release the code at https://github.com/LUNAProject22/VOST.
☆ DashFusion: Dual-stream Alignment with Hierarchical Bottleneck Fusion for Multimodal Sentiment Analysis
Multimodal sentiment analysis (MSA) integrates various modalities, such as text, image, and audio, to provide a more comprehensive understanding of sentiment. However, effective MSA is challenged by alignment and fusion issues. Alignment requires synchronizing both temporal and semantic information across modalities, while fusion involves integrating these aligned features into a unified representation. Existing methods often address alignment or fusion in isolation, leading to limitations in performance and efficiency. To tackle these issues, we propose a novel framework called Dual-stream Alignment with Hierarchical Bottleneck Fusion (DashFusion). Firstly, dual-stream alignment module synchronizes multimodal features through temporal and semantic alignment. Temporal alignment employs cross-modal attention to establish frame-level correspondences among multimodal sequences. Semantic alignment ensures consistency across the feature space through contrastive learning. Secondly, supervised contrastive learning leverages label information to refine the modality features. Finally, hierarchical bottleneck fusion progressively integrates multimodal information through compressed bottleneck tokens, which achieves a balance between performance and computational efficiency. We evaluate DashFusion on three datasets: CMU-MOSI, CMU-MOSEI, and CH-SIMS. Experimental results demonstrate that DashFusion achieves state-of-the-art performance across various metrics, and ablation studies confirm the effectiveness of our alignment and fusion techniques. The codes for our experiments are available at https://github.com/ultramarineX/DashFusion.
comment: Accepted to IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2025
☆ Know-Show: Benchmarking Video-Language Models on Spatio-Temporal Grounded Reasoning
Large Video-Language Models (Video-LMs) have achieved impressive progress in multimodal understanding, yet their reasoning remains weakly grounded in space and time. We present Know-Show, a new benchmark designed to evaluate spatio-temporal grounded reasoning, the ability of a model to reason about actions and their semantics while simultaneously grounding its inferences in visual and temporal evidence. Know-Show unifies reasoning and localization within a single evaluation framework consisting of five complementary scenarios across spatial (person, object, person-object, and hand-object) and temporal dimensions. Built from Charades, Action Genome, and Ego4D with 2.5K human-authored questions, the benchmark exposes significant gaps between current Video-LMs and human reasoning. To bridge this gap, we propose GRAM, a training-free plug-in that augments Video-LMs with fine-grained grounding through attention-based video token selection and explicit timestamp encoding. Extensive experiments across open and closed Video-LMs (Qwen, VideoLLaVA, GPT-4o, and Gemini, etc.) reveal that existing models struggle to "show what they know" and vice versa, especially in fine-grained hand-object interactions. Know-Show establishes a unified standard for assessing grounded reasoning in video-language understanding and provides insights toward developing interpretable and reliable multimodal reasoning systems. We will release the code at https://github.com/LUNAProject22/Know-Show.
☆ Rethinking Infrared Small Target Detection: A Foundation-Driven Efficient Paradigm
While large-scale visual foundation models (VFMs) exhibit strong generalization across diverse visual domains, their potential for single-frame infrared small target (SIRST) detection remains largely unexplored. To fill this gap, we systematically introduce the frozen representations from VFMs into the SIRST task for the first time and propose a Foundation-Driven Efficient Paradigm (FDEP), which can seamlessly adapt to existing encoder-decoder-based methods and significantly improve accuracy without additional inference overhead. Specifically, a Semantic Alignment Modulation Fusion (SAMF) module is designed to achieve dynamic alignment and deep fusion of the global semantic priors from VFMs with task-specific features. Meanwhile, to avoid the inference time burden introduced by VFMs, we propose a Collaborative Optimization-based Implicit Self-Distillation (CO-ISD) strategy, which enables implicit semantic transfer between the main and lightweight branches through parameter sharing and synchronized backpropagation. In addition, to unify the fragmented evaluation system, we construct a Holistic SIRST Evaluation (HSE) metric that performs multi-threshold integral evaluation at both pixel-level confidence and target-level robustness, providing a stable and comprehensive basis for fair model comparison. Extensive experiments demonstrate that the SIRST detection networks equipped with our FDEP framework achieve state-of-the-art (SOTA) performance on multiple public datasets. Our code is available at https://github.com/YuChuang1205/FDEP-Framework
☆ Decoding with Structured Awareness: Integrating Directional, Frequency-Spatial, and Structural Attention for Medical Image Segmentation AAAI 2026
To address the limitations of Transformer decoders in capturing edge details, recognizing local textures and modeling spatial continuity, this paper proposes a novel decoder framework specifically designed for medical image segmentation, comprising three core modules. First, the Adaptive Cross-Fusion Attention (ACFA) module integrates channel feature enhancement with spatial attention mechanisms and introduces learnable guidance in three directions (planar, horizontal, and vertical) to enhance responsiveness to key regions and structural orientations. Second, the Triple Feature Fusion Attention (TFFA) module fuses features from Spatial, Fourier and Wavelet domains, achieving joint frequency-spatial representation that strengthens global dependency and structural modeling while preserving local information such as edges and textures, making it particularly effective in complex and blurred boundary scenarios. Finally, the Structural-aware Multi-scale Masking Module (SMMM) optimizes the skip connections between encoder and decoder by leveraging multi-scale context and structural saliency filtering, effectively reducing feature redundancy and improving semantic interaction quality. Working synergistically, these modules not only address the shortcomings of traditional decoders but also significantly enhance performance in high-precision tasks such as tumor segmentation and organ boundary extraction, improving both segmentation accuracy and model generalization. Experimental results demonstrate that this framework provides an efficient and practical solution for medical image segmentation.
comment: Accepted to AAAI 2026
☆ WaterWave: Bridging Underwater Image Enhancement into Video Streams via Wavelet-based Temporal Consistency Field
Underwater video pairs are fairly difficult to obtain due to the complex underwater imaging. In this case, most existing video underwater enhancement methods are performed by directly applying the single-image enhancement model frame by frame, but a natural issue is lacking temporal consistency. To relieve the problem, we rethink the temporal manifold inherent in natural videos and observe a temporal consistency prior in dynamic scenes from the local temporal frequency perspective. Building upon the specific prior and no paired-data condition, we propose an implicit representation manner for enhanced video signals, which is conducted in the wavelet-based temporal consistency field, WaterWave. Specifically, under the constraints of the prior, we progressively filter and attenuate the inconsistent components while preserving motion details and scenes, achieving a natural-flowing video. Furthermore, to represent temporal frequency bands more accurately, an underwater flow correction module is designed to rectify estimated flows considering the transmission in underwater scenes. Extensive experiments demonstrate that WaterWave significantly enhances the quality of videos generated using single-image underwater enhancements. Additionally, our method demonstrates high potential in downstream underwater tracking tasks, such as UOSTrack and MAT, outperforming the original video by a large margin, i.e., 19.7% and 9.7% on precise respectively.
☆ Concept-based Explainable Data Mining with VLM for 3D Detection
Rare-object detection remains a challenging task in autonomous driving systems, particularly when relying solely on point cloud data. Although Vision-Language Models (VLMs) exhibit strong capabilities in image understanding, their potential to enhance 3D object detection through intelligent data mining has not been fully explored. This paper proposes a novel cross-modal framework that leverages 2D VLMs to identify and mine rare objects from driving scenes, thereby improving 3D object detection performance. Our approach synthesizes complementary techniques such as object detection, semantic feature extraction, dimensionality reduction, and multi-faceted outlier detection into a cohesive, explainable pipeline that systematically identifies rare but critical objects in driving scenes. By combining Isolation Forest and t-SNE-based outlier detection methods with concept-based filtering, the framework effectively identifies semantically meaningful rare objects. A key strength of this approach lies in its ability to extract and annotate targeted rare object concepts such as construction vehicles, motorcycles, and barriers. This substantially reduces the annotation burden and focuses only on the most valuable training samples. Experiments on the nuScenes dataset demonstrate that this concept-guided data mining strategy enhances the performance of 3D object detection models while utilizing only a fraction of the training data, with particularly notable improvements for challenging object categories such as trailers and bicycles compared with the same amount of random data. This finding has substantial implications for the efficient curation of datasets in safety-critical autonomous systems.
comment: 28 pages including appendix. Code: https://github.com/mm1129/concept_based_rare_detector_2025
☆ UniFS: Unified Multi-Contrast MRI Reconstruction via Frequency-Spatial Fusion
Recently, Multi-Contrast MR Reconstruction (MCMR) has emerged as a hot research topic that leverages high-quality auxiliary modalities to reconstruct undersampled target modalities of interest. However, existing methods often struggle to generalize across different k-space undersampling patterns, requiring the training of a separate model for each specific pattern, which limits their practical applicability. To address this challenge, we propose UniFS, a Unified Frequency-Spatial Fusion model designed to handle multiple k-space undersampling patterns for MCMR tasks without any need for retraining. UniFS integrates three key modules: a Cross-Modal Frequency Fusion module, an Adaptive Mask-Based Prompt Learning module, and a Dual-Branch Complementary Refinement module. These modules work together to extract domain-invariant features from diverse k-space undersampling patterns while dynamically adapt to their own variations. Another limitation of existing MCMR methods is their tendency to focus solely on spatial information while neglect frequency characteristics, or extract only shallow frequency features, thus failing to fully leverage complementary cross-modal frequency information. To relieve this issue, UniFS introduces an adaptive prompt-guided frequency fusion module for k-space learning, significantly enhancing the model's generalization performance. We evaluate our model on the BraTS and HCP datasets with various k-space undersampling patterns and acceleration factors, including previously unseen patterns, to comprehensively assess UniFS's generalizability. Experimental results across multiple scenarios demonstrate that UniFS achieves state-of-the-art performance. Our code is available at https://github.com/LIKP0/UniFS.
☆ EmoStyle: Emotion-Driven Image Stylization
Art has long been a profound medium for expressing emotions. While existing image stylization methods effectively transform visual appearance, they often overlook the emotional impact carried by styles. To bridge this gap, we introduce Affective Image Stylization (AIS), a task that applies artistic styles to evoke specific emotions while preserving content. We present EmoStyle, a framework designed to address key challenges in AIS, including the lack of training data and the emotion-style mapping. First, we construct EmoStyleSet, a content-emotion-stylized image triplet dataset derived from ArtEmis to support AIS. We then propose an Emotion-Content Reasoner that adaptively integrates emotional cues with content to learn coherent style queries. Given the discrete nature of artistic styles, we further develop a Style Quantizer that converts continuous style features into emotion-related codebook entries. Extensive qualitative and quantitative evaluations, including user studies, demonstrate that EmoStyle enhances emotional expressiveness while maintaining content consistency. Moreover, the learned emotion-aware style dictionary is adaptable to other generative tasks, highlighting its potential for broader applications. Our work establishes a foundation for emotion-driven image stylization, expanding the creative potential of AI-generated art.
♻ ☆ iMotion-LLM: Instruction-Conditioned Trajectory Generation
We introduce iMotion-LLM, a large language model (LLM) integrated with trajectory prediction modules for interactive motion generation. Unlike conventional approaches, it generates feasible, safety-aligned trajectories based on textual instructions, enabling adaptable and context-aware driving behavior. It combines an encoder-decoder multimodal trajectory prediction model with a pre-trained LLM fine-tuned using LoRA, projecting scene features into the LLM input space and mapping special tokens to a trajectory decoder for text-based interaction and interpretable driving. To support this framework, we introduce two datasets: 1) InstructWaymo, an extension of the Waymo Open Motion Dataset with direction-based motion instructions, and 2) Open-Vocabulary InstructNuPlan, which features safety-aligned instruction-caption pairs and corresponding safe trajectory scenarios. Our experiments validate that instruction conditioning enables trajectory generation that follows the intended condition. iMotion-LLM demonstrates strong contextual comprehension, achieving 84% average accuracy in direction feasibility detection and 96% average accuracy in safety evaluation of open-vocabulary instructions. This work lays the foundation for text-guided motion generation in autonomous driving, supporting simulated data generation, model interpretability, and robust safety alignment testing for trajectory generation models. Our code, pre-trained model, and datasets are available at: https://vision-cair.github.io/iMotion-LLM/.
♻ ☆ Open-PMC-18M: A High-Fidelity Large Scale Medical Dataset for Multimodal Representation Learning
In biomedical vision-language modeling, datasets are typically mined from scientific literature, pairing compound figures with captions that are short, context-dependent, and oftern partially informative. Prior work on subfigure extraction has been limited in both dataset size and generalizability. In addition, no existing effort has incorporated rich medical context in image-text pairs. We revisit data curation as a foundational component of effective biomedical representation learning. Our data curation process integrates transformer-based subfigure detection, subcaption extraction, and contextual text enrichment derived from inline references. Our subfigure extraction model, trained on a corpus of 500,000 compound figures, achieves state-of-the-art performance on real and synthetic benchmarks. Using this process, we curate and release Open-PMC-18M, a large-scale high-fidelity biomedical dataset comprising 18 million image-text pairs, spanning radiology, microscopy, and visible light photography. We train vision-language models on our dataset and perform extensive evaluation on 6 retrieval and 19 zero-shot classification tasks across three major modalities. The models trained on our dataset set a new state-of-the-art results in medical representation learning. We release our dataset, models, and code to support reproducible benchmarks and further study into biomedical vision-language modeling and representation learning.
comment: 21 pages
♻ ☆ Joint Self-Supervised Video Alignment and Action Segmentation ICCV 2025
We introduce a novel approach for simultaneous self-supervised video alignment and action segmentation based on a unified optimal transport framework. In particular, we first tackle self-supervised video alignment by developing a fused Gromov-Wasserstein optimal transport formulation with a structural prior, which trains efficiently on GPUs and needs only a few iterations for solving the optimal transport problem. Our single-task method achieves the state-of-the-art performance on multiple video alignment benchmarks and outperforms VAVA, which relies on a traditional Kantorovich optimal transport formulation with an optimality prior. Furthermore, we extend our approach by proposing a unified optimal transport framework for joint self-supervised video alignment and action segmentation, which requires training and storing a single model and saves both time and memory consumption as compared to two different single-task models. Extensive evaluations on several video alignment and action segmentation datasets demonstrate that our multi-task method achieves comparable video alignment yet superior action segmentation results over previous methods in video alignment and action segmentation respectively. Finally, to the best of our knowledge, this is the first work to unify video alignment and action segmentation into a single model. Our code is available on our research website: https://retrocausal.ai/research/.
comment: Accepted to ICCV 2025
♻ ☆ Uncovering Grounding IDs: How External Cues Shape Multimodal Binding ICLR 2026
Large vision-language models (LVLMs) show strong performance across multimodal benchmarks but remain limited in structured reasoning and precise grounding. Recent work has demonstrated that adding simple visual structures, such as partitions and annotations, improves accuracy, yet the internal mechanisms underlying these gains remain unclear. We investigate this phenomenon and propose the concept of Grounding IDs, latent identifiers induced by external cues that bind objects to their designated partitions across modalities. Through representation analysis, we find that these identifiers emerge as consistent within-partition alignment in embedding space and reduce the modality gap between image and text. Causal interventions further confirm that these identifiers mediate binding between objects and symbolic cues. We show that Grounding IDs strengthen attention between related components, which in turn improves cross-modal grounding and reduces hallucinations. Taken together, our results identify Grounding IDs as a key symbolic mechanism that explains how external cues enhance multimodal binding and offer both interpretability and practical improvements.
comment: Under review as a conference paper at ICLR 2026
♻ ☆ VirDA: Reusing Backbone for Unsupervised Domain Adaptation with Visual Reprogramming
Existing UDA pipelines fine-tune already well-trained backbone parameters for every new source-and-target pair, resulting in the number of training parameters and storage memory growing linearly with each new pair, and also preventing the reuse of these well-trained backbone parameters. Inspired by recent implications that existing backbones have textural biases, we propose making use of domain-specific textural bias for domain adaptation via visual reprogramming, namely VirDA. Instead of fine-tuning the full backbone, VirDA prepends a domain-specific visual reprogramming layer to the backbone. This layer produces visual prompts that act as an added textural bias to the input image, adapting its "style" to a target domain. To optimize these visual reprogramming layers, we use multiple objective functions that optimize the intra- and inter-domain distribution differences when domain-adapting visual prompts are applied. This process does not require modifying the backbone parameters, allowing the same backbone to be reused across different domains. We evaluate VirDA on Office-31 and obtain 92.8% mean accuracy with only 1.5M trainable parameters. VirDA surpasses PDA, the state-of-the-art parameter-efficient UDA baseline, by +1.6% accuracy while using just 46% of its parameters. Compared with full-backbone fine-tuning, VirDA outperforms CDTrans and FixBi by +0.2% and +1.4%, respectively, while requiring only 1.7% and 2.8% of their trainable parameters. Relative to the strongest current methods (PMTrans and TVT), VirDA uses ~1.7% of their parameters and trades off only 2.2% and 1.1% accuracy, respectively.
comment: To be published in TMLR
♻ ☆ Variational Supervised Contrastive Learning
Contrastive learning has proven to be highly efficient and adaptable in shaping representation spaces across diverse modalities by pulling similar samples together and pushing dissimilar ones apart. However, two key limitations persist: (1) Without explicit regulation of the embedding distribution, semantically related instances can inadvertently be pushed apart unless complementary signals guide pair selection, and (2) excessive reliance on large in-batch negatives and tailored augmentations hinders generalization. To address these limitations, we propose Variational Supervised Contrastive Learning (VarCon), which reformulates supervised contrastive learning as variational inference over latent class variables and maximizes a posterior-weighted evidence lower bound (ELBO) that replaces exhaustive pair-wise comparisons for efficient class-aware matching and grants fine-grained control over intra-class dispersion in the embedding space. Trained exclusively on image data, our experiments on CIFAR-10, CIFAR-100, ImageNet-100, and ImageNet-1K show that VarCon (1) achieves state-of-the-art performance for contrastive learning frameworks, reaching 79.36% Top-1 accuracy on ImageNet-1K and 78.29% on CIFAR-100 with a ResNet-50 encoder while converging in just 200 epochs; (2) yields substantially clearer decision boundaries and semantic organization in the embedding space, as evidenced by KNN classification, hierarchical clustering results, and transfer-learning assessments; and (3) demonstrates superior performance in few-shot learning than supervised baseline and superior robustness across various augmentation strategies. Our code is available at https://github.com/ziwenwang28/VarContrast.
♻ ☆ LM-CartSeg: Automated Segmentation of Lateral and Medial Cartilage and Subchondral Bone for Radiomics Analysis
Background and Objective: Radiomics of knee MRI requires robust, anatomically meaningful regions of interest (ROIs) that jointly capture cartilage and subchondral bone. Most existing work relies on manual ROIs and rarely reports quality control (QC). We present LM-CartSeg, a fully automatic pipeline for cartilage/bone segmentation, geometric lateral/medial (L/M) compartmentalisation and radiomics analysis. Methods: Two 3D nnU-Net models were trained on SKM-TEA (138 knees) and OAIZIB-CM (404 knees). At test time, zero-shot predictions were fused and refined by simple geometric rules: connected-component cleaning, construction of 10 mm subchondral bone bands in physical space, and a data-driven tibial L/M split based on PCA and k-means. Segmentation was evaluated on an OAIZIB-CM test set (103 knees) and on SKI-10 (100 knees). QC used volume and thickness signatures. From 10 ROIs we extracted 4 650 non-shape radiomic features to study inter-compartment similarity, dependence on ROI size, and OA vs. non-OA classification on OAIZIB-CM Results: Post-processing improved macro ASSD on OAIZIB-CM from 2.63 to 0.36 mm and HD95 from 25.2 to 3.35 mm, with DSC 0.91; zero-shot DSC on SKI-10 was 0.80. The geometric L/M rule produced stable compartments across datasets, whereas a direct L/M nnU-Net showed domain-dependent side swaps. Only 6 to 12 percent of features per ROI were strongly correlated with volume or thickness. Radiomics-based models models restricted to size-linked features. Conclusions: LM-CartSeg yields automatic, QCd ROIs and radiomic features that carry discriminative information beyond simple morphometry, providing a practical foundation for multi-centre knee OA radiomics studies.
comment: The manuscript represents only a preliminary and substantially incompleted exploration. The author has decided not to stand by these results, and a thoroughly revised and significantly different version will be developed separately. Therefore this version is withdrawn and should not be cited
♻ ☆ EMMA: Efficient Multimodal Understanding, Generation, and Editing with a Unified Architecture
We propose EMMA, an efficient and unified architecture for multimodal understanding, generation and editing. Specifically, EMMA primarily consists of 1) An efficient autoencoder with a 32x compression ratio, which significantly reduces the number of tokens required for generation. This also ensures the training balance between understanding and generation tasks by applying the same compression ratio to images. 2) Channel-wise concatenation instead of token-wise concatenation among visual understanding and generation tokens, which further reduces the visual tokens in unified architectures. 3) A shared-and-decoupled network that enables mutual improvements across tasks while meeting the task-specific modeling requirements. 4) A mixture-of-experts mechanism adopted for visual understanding encoder, which substantially improves perceptual capabilities with a few parameters increase. Extensive experiments have shown that EMMA-4B can significantly outperform state-of-the-art unified multimodal approaches (e.g., BAGEL-7B) in both efficiency and performance, while also achieving competitive results compared to recent multimodal understanding and generation experts (e.g., Qwen3-VL and Qwen-Image). We believe that EMMA lays a solid foundation for the future development of unified multimodal architectures.
comment: Project Page: https://emma-umm.github.io/emma/
♻ ☆ SAGE: Saliency-Guided Contrastive Embeddings
Integrating human perceptual priors into the training of neural networks has been shown to raise model generalization, serve as an effective regularizer, and align models with human expertise for applications in high-risk domains. Existing approaches to integrate saliency into model training often rely on internal model mechanisms, which recent research suggests may be unreliable. Our insight is that many challenges associated with saliency-guided training stem from the placement of the guidance approaches solely within the image space. Instead, we move away from the image space, use the model's latent space embeddings to steer human guidance during training, and we propose SAGE (Saliency-Guided Contrastive Embeddings): a loss function that integrates human saliency into network training using contrastive embeddings. We apply salient-preserving and saliency-degrading signal augmentations to the input and capture the changes in embeddings and model logits. We guide the model towards salient features and away from non-salient features using a contrastive triplet loss. Additionally, we perform a sanity check on the logit distributions to ensure that the model outputs match the saliency-based augmentations. We demonstrate a boost in classification performance across both open- and closed-set scenarios against SOTA saliency-based methods, showing SAGE's effectiveness across various backbones, and include experiments to suggest its wide generalization across tasks.
comment: 11 pages, 2 figures, 5 tables
♻ ☆ PLANesT-3D: A new annotated dataset for segmentation of 3D plant point clouds
Creation of new annotated public datasets is crucial in helping advances in 3D computer vision and machine learning meet their full potential for automatic interpretation of 3D plant models. Despite the proliferation of deep neural network architectures for segmentation and phenotyping of 3D plant models in the last decade, the amount of data, and diversity in terms of species and data acquisition modalities are far from sufficient for evaluation of such tools for their generalization ability. To contribute to closing this gap, we introduce PLANesT-3D; a new annotated dataset of 3D color point clouds of plants. PLANesT-3D is composed of 34 point cloud models representing 34 real plants from three different plant species: \textit{Capsicum annuum}, \textit{Rosa kordana}, and \textit{Ribes rubrum}. Both semantic labels in terms of "leaf" and "stem", and organ instance labels were manually annotated for the full point clouds. PLANesT-3D introduces diversity to existing datasets by adding point clouds of two new species and providing 3D data acquired with the low-cost SfM/MVS technique as opposed to laser scanning or expensive setups. Point clouds reconstructed with SfM/MVS modality exhibit challenges such as missing data, variable density, and illumination variations. As an additional contribution, SP-LSCnet, a novel semantic segmentation method that is a combination of unsupervised superpoint extraction and a 3D point-based deep learning approach is introduced and evaluated on the new dataset. The advantages of SP-LSCnet over other deep learning methods are its modular structure and increased interpretability. Two existing deep neural network architectures, PointNet++ and RoseSegNet, were also tested on the point clouds of PLANesT-3D for semantic segmentation.
♻ ☆ ZQBA: Zero Query Black-box Adversarial Attack
Current black-box adversarial attacks either require multiple queries or diffusion models to produce adversarial samples that can impair the target model performance. However, these methods require training a surrogate loss or diffusion models to produce adversarial samples, which limits their applicability in real-world settings. Thus, we propose a Zero Query Black-box Adversarial (ZQBA) attack that exploits the representations of Deep Neural Networks (DNNs) to fool other networks. Instead of requiring thousands of queries to produce deceiving adversarial samples, we use the feature maps obtained from a DNN and add them to clean images to impair the classification of a target model. The results suggest that ZQBA can transfer the adversarial samples to different models and across various datasets, namely CIFAR and Tiny ImageNet. The experiments also show that ZQBA is more effective than state-of-the-art black-box attacks with a single query, while maintaining the imperceptibility of perturbations, evaluated both quantitatively (SSIM) and qualitatively, emphasizing the vulnerabilities of employing DNNs in real-world contexts. All the source code is available at https://github.com/Joana-Cabral/ZQBA.
comment: Accepted in ICAART 2026 Conference
♻ ☆ From Correlation to Causation: Max-Pooling-Based Multi-Instance Learning Leads to More Robust Whole Slide Image Classification
In whole slide images (WSIs) analysis, attention-based multi-instance learning (MIL) models are susceptible to spurious correlations and degrade under domain shift. These methods may assign high attention weights to non-tumor regions, such as staining biases or artifacts, leading to unreliable tumor region localization. In this paper, we revisit max-pooling-based MIL methods from a causal perspective. Under mild assumptions, our theoretical results demonstrate that max-pooling encourages the model to focus on causal factors while ignoring bias-related factors. Furthermore, we discover that existing max-pooling-based methods may overfit the training set through rote memorization of instance features and fail to learn meaningful patterns. To address these issues, we propose FocusMIL, which couples max-pooling with an instance-level variational information bottleneck (VIB) to learn compact, predictive latent representations, and employs a multi-bag mini-batch scheme to stabilize optimization. We conduct comprehensive experiments on three real-world datasets and one semi-synthetic dataset. The results show that, by capturing causal factors, FocusMIL exhibits significant advantages in out-of-distribution scenarios and instance-level tumor region localization tasks.
♻ ☆ SegAssess: Panoramic quality mapping for robust and transferable unsupervised segmentation assessment
High-quality image segmentation is fundamental to pixel-level geospatial analysis in remote sensing, necessitating robust segmentation quality assessment (SQA), particularly in unsupervised settings lacking ground truth. Although recent deep learning (DL) based unsupervised SQA methods show potential, they often suffer from coarse evaluation granularity, incomplete assessments, and poor transferability. To overcome these limitations, this paper introduces Panoramic Quality Mapping (PQM) as a new paradigm for comprehensive, pixel-wise SQA, and presents SegAssess, a novel deep learning framework realizing this approach. SegAssess distinctively formulates SQA as a fine-grained, four-class panoramic segmentation task, classifying pixels within a segmentation mask under evaluation into true positive (TP), false positive (FP), true negative (TN), and false negative (FN) categories, thereby generating a complete quality map. Leveraging an enhanced Segment Anything Model (SAM) architecture, SegAssess uniquely employs the input mask as a prompt for effective feature integration via cross-attention. Key innovations include an Edge Guided Compaction (EGC) branch with an Aggregated Semantic Filter (ASF) module to refine predictions near challenging object edges, and an Augmented Mixup Sampling (AMS) training strategy integrating multi-source masks to significantly boost cross-domain robustness and zero-shot transferability. Comprehensive experiments demonstrate that SegAssess achieves state-of-the-art (SOTA) performance and exhibits remarkable zero-shot transferability to unseen masks. The code is available at https://github.com/Yangbn97/SegAssess.
♻ ☆ GLDiTalker: Speech-Driven 3D Facial Animation with Graph Latent Diffusion Transformer
Speech-driven talking head generation is a critical yet challenging task with applications in augmented reality and virtual human modeling. While recent approaches using autoregressive and diffusion-based models have achieved notable progress, they often suffer from modality inconsistencies, particularly misalignment between audio and mesh, leading to reduced motion diversity and lip-sync accuracy. To address this, we propose GLDiTalker, a novel speech-driven 3D facial animation model based on a Graph Latent Diffusion Transformer. GLDiTalker resolves modality misalignment by diffusing signals within a quantized spatiotemporal latent space. It employs a two-stage training pipeline: the Graph-Enhanced Quantized Space Learning Stage ensures lip-sync accuracy, while the Space-Time Powered Latent Diffusion Stage enhances motion diversity. Together, these stages enable GLDiTalker to generate realistic, temporally stable 3D facial animations. Extensive evaluations on standard benchmarks demonstrate that GLDiTalker outperforms existing methods, achieving superior results in both lip-sync accuracy and motion diversity.
comment: 9 pages, 5 figures
♻ ☆ M3DHMR: Monocular 3D Hand Mesh Recovery
Monocular 3D hand mesh recovery is challenging due to high degrees of freedom of hands, 2D-to-3D ambiguity and self-occlusion. Most existing methods are either inefficient or less straightforward for predicting the position of 3D mesh vertices. Thus, we propose a new pipeline called Monocular 3D Hand Mesh Recovery (M3DHMR) to directly estimate the positions of hand mesh vertices. M3DHMR provides 2D cues for 3D tasks from a single image and uses a new spiral decoder consist of several Dynamic Spiral Convolution (DSC) Layers and a Region of Interest (ROI) Layer. On the one hand, DSC Layers adaptively adjust the weights based on the vertex positions and extract the vertex features in both spatial and channel dimensions. On the other hand, ROI Layer utilizes the physical information and refines mesh vertices in each predefined hand region separately. Extensive experiments on popular dataset FreiHAND demonstrate that M3DHMR significantly outperforms state-of-the-art real-time methods.
comment: 9 pages, 5 figures
♻ ☆ Exploring Ordinal Bias in Action Recognition for Instructional Videos ICLR 2025
Action recognition models have achieved promising results in understanding instructional videos. However, they often rely on dominant, dataset-specific action sequences rather than true video comprehension, a problem that we define as ordinal bias. To address this issue, we propose two effective video manipulation methods: Action Masking, which masks frames of frequently co-occurring actions, and Sequence Shuffling, which randomizes the order of action segments. Through comprehensive experiments, we demonstrate that current models exhibit significant performance drops when confronted with nonstandard action sequences, underscoring their vulnerability to ordinal bias. Our findings emphasize the importance of rethinking evaluation strategies and developing models capable of generalizing beyond fixed action patterns in diverse instructional videos.
comment: Accepted at SCSL @ ICLR 2025
♻ ☆ TempoControl: Temporal Attention Guidance for Text-to-Video Models
Recent advances in generative video models have enabled the creation of high-quality videos based on natural language prompts. However, these models frequently lack fine-grained temporal control, meaning they do not allow users to specify when particular visual elements should appear within a generated sequence. In this work, we introduce TempoControl, a method that allows for temporal alignment of visual concepts during inference, without requiring retraining or additional supervision. TempoControl utilizes cross-attention maps, a key component of text-to-video diffusion models, to guide the timing of concepts through a novel optimization approach. Our method steers attention using three complementary principles: aligning its temporal pattern with a control signal (correlation), adjusting its strength where visibility is required (magnitude), and preserving semantic consistency (entropy). TempoControl provides precise temporal control while maintaining high video quality and diversity. We demonstrate its effectiveness across various applications, including temporal reordering of single and multiple objects, action timing, and audio-aligned video generation. Please see our project page for more details: https://shira-schiber.github.io/TempoControl/.
comment: Under Review
♻ ☆ Multi-Modal Data-Efficient 3D Scene Understanding for Autonomous Driving
Efficient data utilization is crucial for advancing 3D scene understanding in autonomous driving, where reliance on heavily human-annotated LiDAR point clouds challenges fully supervised methods. Addressing this, our study extends into semi-supervised learning for LiDAR semantic segmentation, leveraging the intrinsic spatial priors of driving scenes and multi-sensor complements to augment the efficacy of unlabeled datasets. We introduce LaserMix++, an evolved framework that integrates laser beam manipulations from disparate LiDAR scans and incorporates LiDAR-camera correspondences to further assist data-efficient learning. Our framework is tailored to enhance 3D scene consistency regularization by incorporating multi-modality, including 1) multi-modal LaserMix operation for fine-grained cross-sensor interactions; 2) camera-to-LiDAR feature distillation that enhances LiDAR feature learning; and 3) language-driven knowledge guidance generating auxiliary supervisions using open-vocabulary models. The versatility of LaserMix++ enables applications across LiDAR representations, establishing it as a universally applicable solution. Our framework is rigorously validated through theoretical analysis and extensive experiments on popular driving perception datasets. Results demonstrate that LaserMix++ markedly outperforms fully supervised alternatives, achieving comparable accuracy with five times fewer annotations and significantly improving the supervised-only baselines. This substantial advancement underscores the potential of semi-supervised approaches in reducing the reliance on extensive labeled data in LiDAR-based 3D scene understanding systems.
comment: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
♻ ☆ Language-Instructed Reasoning for Group Activity Detection via Multimodal Large Language Model
Group activity detection (GAD) aims to simultaneously identify group members and categorize their collective activities within video sequences. Existing deep learning-based methods develop specialized architectures (e.g., transformer networks) to model the dynamics of individual roles and semantic dependencies between individuals and groups. However, they rely solely on implicit pattern recognition from visual features and struggle with contextual reasoning and explainability. In this work, we propose LIR-GAD, a novel framework of language-instructed reasoning for GAD via Multimodal Large Language Model (MLLM). Our approach expand the original vocabulary of MLLM by introducing an activity-level token and multiple cluster-specific tokens. We process video frames alongside two specially designed tokens and language instructions, which are then integrated into the MLLM. The pretrained commonsense knowledge embedded in the MLLM enables the token and tokens to effectively capture the semantic information of collective activities and learn distinct representational features of different groups, respectively. Also, we introduce a multi-label classification loss to further enhance the token's ability to learn discriminative semantic representations. Then, we design a Multimodal Dual-Alignment Fusion (MDAF) module that integrates MLLM's hidden embeddings corresponding to the designed tokens with visual features, significantly enhancing the performance of GAD. Both quantitative and qualitative experiments demonstrate the superior performance of our proposed method in GAD taks.
comment: This work is being incorporated into a larger study
♻ ☆ REVISOR: Beyond Textual Reflection, Towards Multimodal Introspective Reasoning in Long-Form Video Understanding
Self-reflection mechanisms that rely on purely text-based rethinking processes perform well in most multimodal tasks. However, when directly applied to long-form video understanding scenarios, they exhibit clear limitations. The fundamental reasons for this lie in two points: (1)long-form video understanding involves richer and more dynamic visual input, meaning rethinking only the text information is insufficient and necessitates a further rethinking process specifically targeting visual information; (2) purely text-based reflection mechanisms lack cross-modal interaction capabilities, preventing them from fully integrating visual information during reflection. Motivated by these insights, we propose REVISOR (REflective VIsual Segment Oriented Reasoning), a novel framework for tool-augmented multimodal reflection. REVISOR enables MLLMs to collaboratively construct introspective reflection processes across textual and visual modalities, significantly enhancing their reasoning capability for long-form video understanding. To ensure that REVISOR can learn to accurately review video segments highly relevant to the question during reinforcement learning, we designed the Dual Attribution Decoupled Reward (DADR) mechanism. Integrated into the GRPO training strategy, this mechanism enforces causal alignment between the model's reasoning and the selected video evidence. Notably, the REVISOR framework significantly enhances long-form video understanding capability of MLLMs without requiring supplementary supervised fine-tuning or external models, achieving impressive results on four benchmarks including VideoMME, LongVideoBench, MLVU, and LVBench.
♻ ☆ A Fractional Variational Approach to Spectral Filtering Using the Fourier Transform
The interference of fluorescence signals and noise remains a significant challenge in Raman spectrum analysis, often obscuring subtle spectral features that are critical for accurate analysis. Inspired by variational methods similar to those used in image denoising, our approach minimizes a functional involving fractional derivatives to balance noise suppression with the preservation of essential chemical features of the signal, such as peak position, intensity, and area. The original problem is reformulated in the frequency domain through the Fourier transform, making the implementation simple and fast. In this work, we discuss the theoretical framework, practical implementation, and the advantages and limitations of this method in the context of {simulated} Raman data, as well as in image processing. The main contribution of this article is the combination of a variational approach in the frequency domain, the use of fractional derivatives, and the optimization of the {regularization parameter and} derivative order through the concept of Shannon entropy. This work explores how the fractional order, combined with the regularization parameter, affects noise removal and preserves the essential features of the spectrum {and image}. Finally, the study shows that the combination of the proposed strategies produces an efficient, robust, and easily implementable filter.
comment: 31 pages, 3 figures, 2 tables
♻ ☆ AnyAnomaly: Zero-Shot Customizable Video Anomaly Detection with LVLM
Video anomaly detection (VAD) is crucial for video analysis and surveillance in computer vision. However, existing VAD models rely on learned normal patterns, which makes them difficult to apply to diverse environments. Consequently, users should retrain models or develop separate AI models for new environments, which requires expertise in machine learning, high-performance hardware, and extensive data collection, limiting the practical usability of VAD. To address these challenges, this study proposes customizable video anomaly detection (C-VAD) technique and the AnyAnomaly model. C-VAD considers user-defined text as an abnormal event and detects frames containing a specified event in a video. We effectively implemented AnyAnomaly using a context-aware visual question answering without fine-tuning the large vision language model. To validate the effectiveness of the proposed model, we constructed C-VAD datasets and demonstrated the superiority of AnyAnomaly. Furthermore, our approach showed competitive results on VAD benchmarks, achieving state-of-the-art performance on UBnormal and UCF-Crime and surpassing other methods in generalization across all datasets. Our code is available online at github.com/SkiddieAhn/Paper-AnyAnomaly.
comment: Accepted to WACV 2026
♻ ☆ Learning Visually Interpretable Oscillator Networks for Soft Continuum Robots from Video
Data-driven learning of soft continuum robot (SCR) dynamics from high-dimensional observations offers flexibility but often lacks physical interpretability, while model-based approaches require prior knowledge and can be computationally expensive. We bridge this gap by introducing (1) the Attention Broadcast Decoder (ABCD), a plug-and-play module for autoencoder-based latent dynamics learning that generates pixel-accurate attention maps localizing each latent dimension's contribution while filtering static backgrounds. (2) By coupling these attention maps to 2D oscillator networks, we enable direct on-image visualization of learned dynamics (masses, stiffness, and forces) without prior knowledge. We validate our approach on single- and double-segment SCRs, demonstrating that ABCD-based models significantly improve multi-step prediction accuracy: 5.7x error reduction for Koopman operators and 3.5x for oscillator networks on the two-segment robot. The learned oscillator network autonomously discovers a chain structure of oscillators. Unlike standard methods, ABCD models enable smooth latent space extrapolation beyond training data. This fully data-driven approach yields compact, physically interpretable models suitable for control applications.
comment: Dataset available at: https://zenodo.org/records/17812071
♻ ☆ Perspective-Invariant 3D Object Detection ICCV 2025
With the rise of robotics, LiDAR-based 3D object detection has garnered significant attention in both academia and industry. However, existing datasets and methods predominantly focus on vehicle-mounted platforms, leaving other autonomous platforms underexplored. To bridge this gap, we introduce Pi3DET, the first benchmark featuring LiDAR data and 3D bounding box annotations collected from multiple platforms: vehicle, quadruped, and drone, thereby facilitating research in 3D object detection for non-vehicle platforms as well as cross-platform 3D detection. Based on Pi3DET, we propose a novel cross-platform adaptation framework that transfers knowledge from the well-studied vehicle platform to other platforms. This framework achieves perspective-invariant 3D detection through robust alignment at both geometric and feature levels. Additionally, we establish a benchmark to evaluate the resilience and robustness of current 3D detectors in cross-platform scenarios, providing valuable insights for developing adaptive 3D perception systems. Extensive experiments validate the effectiveness of our approach on challenging cross-platform tasks, demonstrating substantial gains over existing adaptation methods. We hope this work paves the way for generalizable and unified 3D perception systems across diverse and complex environments. Our Pi3DET dataset, cross-platform benchmark suite, and annotation toolkit have been made publicly available.
comment: ICCV 2025; 54 pages, 18 figures, 22 tables; Project Page at https://pi3det.github.io
♻ ☆ CookAnything: A Framework for Flexible and Consistent Multi-Step Recipe Image Generation
Cooking is a sequential and visually grounded activity, where each step such as chopping, mixing, or frying carries both procedural logic and visual semantics. While recent diffusion models have shown strong capabilities in text-to-image generation, they struggle to handle structured multi-step scenarios like recipe illustration. Additionally, current recipe illustration methods are unable to adjust to the natural variability in recipe length, generating a fixed number of images regardless of the actual instructions structure. To address these limitations, we present CookAnything, a flexible and consistent diffusion-based framework that generates coherent, semantically distinct image sequences from textual cooking instructions of arbitrary length. The framework introduces three key components: (1) Step-wise Regional Control (SRC), which aligns textual steps with corresponding image regions within a single denoising process; (2) Flexible RoPE, a step-aware positional encoding mechanism that enhances both temporal coherence and spatial diversity; and (3) Cross-Step Consistency Control (CSCC), which maintains fine-grained ingredient consistency across steps. Experimental results on recipe illustration benchmarks show that CookAnything performs better than existing methods in training-based and training-free settings. The proposed framework supports scalable, high-quality visual synthesis of complex multi-step instructions and holds significant potential for broad applications in instructional media, and procedural content creation.
comment: Accepted by ACM Multimedia 2025
♻ ☆ Point-PNG: Conditional Pseudo-Negatives Generation for Point Cloud Pre-Training
We propose Point-PNG, a novel self-supervised learning framework that generates conditional pseudo-negatives in the latent space to learn point cloud representations that are both discriminative and transformation-sensitive. Conventional self-supervised learning methods focus on achieving invariance, discarding transformation-specific information. Recent approaches incorporate transformation sensitivity by explicitly modeling relationships between original and transformed inputs. However, they often suffer from an invariant-collapse phenomenon, where the predictor degenerates into identity mappings, resulting in latent representations with limited variation across transformations. To address this, we propose Point-PNG that explicitly penalizes invariant collapse through pseudo-negatives generation, enabling the network to capture richer transformation cues while preserving discriminative representations. To this end, we introduce a parametric network, COnditional Pseudo-Negatives Embedding (COPE), which learns localized displacements induced by transformations within the latent space. A key challenge arises when jointly training COPE with the MAE, as it tends to converge to trivial identity mappings. To overcome this, we design a loss function based on pseudo-negatives conditioned on the transformation, which penalizes such trivial invariant solutions and enforces meaningful representation learning. We validate Point-PNG on shape classification and relative pose estimation tasks, showing competitive performance on ModelNet40 and ScanObjectNN under challenging evaluation protocols, and achieving superior accuracy in relative pose estimation compared to supervised baselines.
comment: Accepted for publication in IEEE ACCESS
♻ ☆ 3D Question Answering via only 2D Vision-Language Models ICML2025
Large vision-language models (LVLMs) have significantly advanced numerous fields. In this work, we explore how to harness their potential to address 3D scene understanding tasks, using 3D question answering (3D-QA) as a representative example. Due to the limited training data in 3D, we do not train LVLMs but infer in a zero-shot manner. Specifically, we sample 2D views from a 3D point cloud and feed them into 2D models to answer a given question. When the 2D model is chosen, e.g., LLAVA-OV, the quality of sampled views matters the most. We propose cdViews, a novel approach to automatically selecting critical and diverse Views for 3D-QA. cdViews consists of two key components: viewSelector prioritizing critical views based on their potential to provide answer-specific information, and viewNMS enhancing diversity by removing redundant views based on spatial overlap. We evaluate cdViews on the widely-used ScanQA and SQA benchmarks, demonstrating that it achieves state-of-the-art performance in 3D-QA while relying solely on 2D models without fine-tuning. These findings support our belief that 2D LVLMs are currently the most effective alternative (of the resource-intensive 3D LVLMs) for addressing 3D tasks.
comment: ICML2025
♻ ☆ ReSem3D: Refinable 3D Spatial Constraints via Fine-Grained Semantic Grounding for Generalizable Robotic Manipulation
Semantics-driven 3D spatial constraints align highlevel semantic representations with low-level action spaces, facilitating the unification of task understanding and execution in robotic manipulation. The synergistic reasoning of Multimodal Large Language Models (MLLMs) and Vision Foundation Models (VFMs) enables cross-modal 3D spatial constraint construction. Nevertheless, existing methods have three key limitations: (1) coarse semantic granularity in constraint modeling, (2) lack of real-time closed-loop planning, (3) compromised robustness in semantically diverse environments. To address these challenges, we propose ReSem3D, a unified manipulation framework for semantically diverse environments, leveraging the synergy between VFMs and MLLMs to achieve fine-grained visual grounding and dynamically constructs hierarchical 3D spatial constraints for real-time manipulation. Specifically, the framework is driven by hierarchical recursive reasoning in MLLMs, which interact with VFMs to automatically construct 3D spatial constraints from natural language instructions and RGB-D observations in two stages: part-level extraction and region-level refinement. Subsequently, these constraints are encoded as real-time optimization objectives in joint space, enabling reactive behavior to dynamic disturbances. Extensive simulation and real-world experiments are conducted in semantically rich household and sparse chemical lab environments. The results demonstrate that ReSem3D performs diverse manipulation tasks under zero-shot conditions, exhibiting strong adaptability and generalization. Code and videos are available at https://github.com/scy-v/ReSem3D and https://resem3d.github.io.
comment: 12 pages,9 figures
♻ ☆ Dressing the Imagination: A Dataset for AI-Powered Translation of Text into Fashion Outfits and A Novel KAN Adapter for Enhanced Feature Adaptation
Specialized datasets that capture the fashion industry's rich language and styling elements can boost progress in AI-driven fashion design. We present FLORA, (Fashion Language Outfit Representation for Apparel Generation), the first comprehensive dataset containing 4,330 curated pairs of fashion outfits and corresponding textual descriptions. Each description utilizes industry-specific terminology and jargon commonly used by professional fashion designers, providing precise and detailed insights into the outfits. Hence, the dataset captures the delicate features and subtle stylistic elements necessary to create high-fidelity fashion designs. We demonstrate that fine-tuning generative models on the FLORA dataset significantly enhances their capability to generate accurate and stylistically rich images from textual descriptions of fashion sketches. FLORA will catalyze the creation of advanced AI models capable of comprehending and producing subtle, stylistically rich fashion designs. It will also help fashion designers and end-users to bring their ideas to life. As a second orthogonal contribution, we introduce NeRA (Nonlinear low-rank Expressive Representation Adapter), a novel adapter architecture based on Kolmogorov-Arnold Networks (KAN). Unlike traditional PEFT techniques such as LoRA, LoKR, DoRA, and LoHA that use MLP adapters, NeRA uses learnable spline-based nonlinear transformations, enabling superior modeling of complex semantic relationships, achieving strong fidelity, faster convergence and semantic alignment. Extensive experiments on our proposed FLORA and LAION-5B datasets validate the superiority of NeRA over existing adapters. We will open-source both the FLORA dataset and our implementation code.
comment: Accepted as a Conference Paper at WACV 2026 (USA)
♻ ☆ Edge-Only Universal Adversarial Attacks in Distributed Learning
Distributed learning frameworks, which partition neural network models across multiple computing nodes, enhance efficiency in collaborative edge-cloud systems, but may also introduce new vulnerabilities to evasion attacks, often in the form of adversarial perturbations. In this work, we present a new threat model that explores the feasibility of generating universal adversarial perturbations (UAPs) when the attacker has access only to the edge portion of the model, consisting of its initial network layers. Unlike traditional attacks that require full model knowledge, our approach shows that adversaries can induce effective mispredictions in the unknown cloud component by manipulating key feature representations at the edge. Following the proposed threat model, we introduce both edge-only untargeted and targeted formulations of UAPs designed to control intermediate features before the split point. Our results on ImageNet demonstrate strong attack transferability to the unknown cloud part, and we compare the proposed method with classical white-box and black-box techniques, highlighting its effectiveness. Additionally, we analyze the capability of an attacker to achieve targeted adversarial effects with edge-only knowledge, revealing intriguing behaviors across multiple networks. By introducing the first adversarial attacks with edge-only knowledge in split inference, this work underscores the importance of addressing partial model access in adversarial robustness, encouraging further research in this area.
♻ ☆ Vision-centric Token Compression in Large Language Model NeurIPS 2025
Real-world applications are stretching context windows to hundreds of thousand of tokens while Large Language Models (LLMs) swell from billions to trillions of parameters. This dual expansion send compute and memory costs skyrocketing, making token compression indispensable. We introduce Vision Centric Token Compression (Vist), a slow-fast compression framework that mirrors human reading: the fast path renders distant tokens into images, letting a frozen, lightweight vision encoder skim the low-salience context; the slow path feeds the proximal window into the LLM for fine-grained reasoning. A Probability-Informed Visual Enhancement (PVE) objective masks high-frequency tokens during training, steering the Resampler to concentrate on semantically rich regions-just as skilled reader gloss over function words. On eleven in-context learning benchmarks, Vist achieves the same accuracy with 2.3 times fewer tokens, cutting FLOPs by 16% and memory by 50%. This method delivers remarkable results, outperforming the strongest text encoder-based compression method CEPE by 7.6% on average over benchmarks like TriviaQA, NQ, PopQA, NLUI, and CLIN, setting a new standard for token efficiency in LLMs. The project is at https://github.com/CSU-JPG/VIST.
comment: NeurIPS 2025 spotlight
♻ ☆ MedDiff-FM: A Diffusion-based Foundation Model for Versatile Medical Image Applications
Diffusion models have achieved significant success in both natural image and medical image domains, encompassing a wide range of applications. Previous investigations in medical images have often been constrained to specific anatomical regions, particular applications, and limited datasets, resulting in isolated diffusion models. This paper introduces a diffusion-based foundation model to address a diverse range of medical image tasks, namely MedDiff-FM. MedDiff-FM leverages 3D CT images from multiple publicly available datasets, covering anatomical regions from head to abdomen, to pre-train a diffusion foundation model, and explores the capabilities of the diffusion foundation model across a variety of application scenarios. The diffusion foundation model handles multi-level integrated image processing both at the image-level and patch-level, utilizes position embedding to establish multi-level spatial relationships, and leverages region classes and anatomical structures to capture certain anatomical regions. MedDiff-FM manages several downstream tasks seamlessly, including image denoising, anomaly detection, and image synthesis. MedDiff-FM is also capable of performing super-resolution, lesion generation, and lesion inpainting by rapidly fine-tuning the diffusion foundation model using ControlNet with task-specific conditions. The experimental results demonstrate the effectiveness of MedDiff-FM in addressing diverse downstream medical image tasks.
♻ ☆ TabletopGen: Instance-Level Interactive 3D Tabletop Scene Generation from Text or Single Image
Generating high-fidelity, physically interactive 3D simulated tabletop scenes is essential for embodied AI -- especially for robotic manipulation policy learning and data synthesis. However, current text- or image-driven 3D scene generation methods mainly focus on large-scale scenes, struggling to capture the high-density layouts and complex spatial relations that characterize tabletop scenes. To address these challenges, we propose TabletopGen, a training-free, fully automatic framework that generates diverse, instance-level interactive 3D tabletop scenes. TabletopGen accepts a reference image as input, which can be synthesized by a text-to-image model to enhance scene diversity. We then perform instance segmentation and completion on the reference to obtain per-instance images. Each instance is reconstructed into a 3D model followed by canonical coordinate alignment. The aligned 3D models then undergo pose and scale estimation before being assembled into a collision-free, simulation-ready tabletop scene. A key component of our framework is a novel pose and scale alignment approach that decouples the complex spatial reasoning into two stages: a Differentiable Rotation Optimizer for precise rotation recovery and a Top-view Spatial Alignment mechanism for robust translation and scale estimation, enabling accurate 3D reconstruction from 2D reference. Extensive experiments and user studies show that TabletopGen achieves state-of-the-art performance, markedly surpassing existing methods in visual fidelity, layout accuracy, and physical plausibility, capable of generating realistic tabletop scenes with rich stylistic and spatial diversity. Our code will be publicly available.
comment: Project page: https://d-robotics-ai-lab.github.io/TabletopGen.project/
♻ ☆ Enabling Validation for Robust Few-Shot Recognition
Few-Shot Recognition (FSR) tackles classification tasks by training with minimal task-specific labeled data. Prevailing methods adapt or finetune a pretrained Vision-Language Model (VLM) and augment the scarce training data by retrieving task-relevant but noisy samples from open data sources. The finetuned VLM generalizes decently well to the task-specific in-distribution (ID) test data but struggles with out-of-distribution (OOD) test data. This motivates our study of robust FSR with VLM finetuning. The core challenge of FSR is data scarcity, extending beyond limited training data to a complete lack of validation data. We identify a key paradox as a potential solution: repurposing the retrieved open data for validation. As such retrieved data are inherently OOD compared with the task-specific ID training data, finetuned VLMs yield degraded performance on the retrieved data. This causes the validation logic to favor the pretrained model without any finetuning, hindering improvements w.r.t generalization. To resolve this dilemma, we introduce a novel validation strategy that harmonizes performance gain and degradation on the few-shot ID data and the retrieved data, respectively. Our validation enables parameter selection for partial finetuning and checkpoint selection, mitigating overfitting and improving test-data generalization. We unify this strategy with robust learning into a cohesive framework: Validation-Enabled Stage-wise Tuning (VEST). Extensive experiments on the established ImageNet OOD benchmarks show that VEST significantly outperforms existing VLM adaptation methods, achieving state-of-the-art FSR performance on both ID and OOD data.
comment: Project website: https://hannawang09.github.io/projects/vest/
♻ ☆ Martian World Model: Controllable Video Synthesis with Physically Accurate 3D Reconstructions
Synthesizing realistic Martian landscape videos is crucial for mission rehearsal and robotic simulation. However, this task poses unique challenges due to the scarcity of high-quality Martian data and the significant domain gap between Martian and terrestrial imagery. To address these challenges, we propose a holistic solution composed of two key components: 1) A data curation pipeline Multimodal Mars Synthesis (M3arsSynth), which reconstructs 3D Martian environments from real stereo navigation images, sourced from NASA's Planetary Data System (PDS), and renders high-fidelity multiview 3D video sequences. 2) A Martian terrain video generator, MarsGen, which synthesizes novel videos visually realistic and geometrically consistent with the 3D structure encoded in the data. Our M3arsSynth engine spans a wide range of Martian terrains and acquisition dates, enabling the generation of physically accurate 3D surface models at metric-scale resolution. MarsGen, fine-tuned on M3arsSynth data, synthesizes videos conditioned on an initial image frame and, optionally, camera trajectories or textual prompts, allowing for video generation in novel environments. Experimental results show that our approach outperforms video synthesis models trained on terrestrial datasets, achieving superior visual fidelity and 3D structural consistency.
comment: Project Page: https://marsgenai.github.io
♻ ☆ HSM: Hierarchical Scene Motifs for Multi-Scale Indoor Scene Generation
Despite advances in indoor 3D scene layout generation, synthesizing scenes with dense object arrangements remains challenging. Existing methods focus on large furniture while neglecting smaller objects, resulting in unrealistically empty scenes. Those that place small objects typically do not honor arrangement specifications, resulting in largely random placement not following the text description. We present Hierarchical Scene Motifs (HSM): a hierarchical framework for indoor scene generation with dense object arrangements across spatial scales. Indoor scenes are inherently hierarchical, with surfaces supporting objects at different scales, from large furniture on floors to smaller objects on tables and shelves. HSM embraces this hierarchy and exploits recurring cross-scale spatial patterns to generate complex and realistic scenes in a unified manner. Our experiments show that HSM outperforms existing methods by generating scenes that better conform to user input across room types and spatial configurations. Project website is available at https://3dlg-hcvc.github.io/hsm .
comment: Accepted at 3DV 2026; 29 pages with 11 figures and 6 tables; Camera-ready with additional discussion
♻ ☆ Image-Guided Semantic Pseudo-LiDAR Point Generation for 3D Object Detection
In autonomous driving scenarios, accurate perception is becoming an even more critical task for safe navigation. While LiDAR provides precise spatial data, its inherent sparsity makes it difficult to detect small or distant objects. Existing methods try to address this by generating additional points within a Region of Interest (RoI), but relying on LiDAR alone often leads to false positives and a failure to recover meaningful structures. To address these limitations, we propose Image-Guided Semantic Pseudo-LiDAR Point Generation model, called ImagePG, a novel framework that leverages rich RGB image features to generate dense and semantically meaningful 3D points. Our framework includes an Image-Guided RoI Points Generation (IG-RPG) module, which creates pseudo-points guided by image features, and an Image-Aware Occupancy Prediction Network (I-OPN), which provides spatial priors to guide point placement. A multi-stage refinement (MR) module further enhances point quality and detection robustness. To the best of our knowledge, ImagePG is the first method to directly leverage image features for point generation. Extensive experiments on the KITTI and Waymo datasets demonstrate that ImagePG significantly improves the detection of small and distant objects like pedestrians and cyclists, reducing false positives by nearly 50%. On the KITTI benchmark, our framework improves mAP by +1.38%p (car), +7.91%p (pedestrian), and +5.21%p (cyclist) on the test set over the baseline, achieving state-of-the-art cyclist performance on the KITTI leaderboard. The code is available at: https://github.com/MS-LIMA/ImagePG
comment: WACV 2026
♻ ☆ You Only Train Once (YOTO): A Retraining-Free Object Detection Framework
Object detection constitutes the primary task within the domain of computer vision. It is utilized in numerous domains. Nonetheless, object detection continues to encounter the issue of catastrophic forgetting. The model must be retrained whenever new products are introduced, utilizing not only the new products dataset but also the entirety of the previous dataset. The outcome is obvious: increasing model training expenses and significant time consumption. In numerous sectors, particularly retail checkout, the frequent introduction of new products presents a great challenge. This study introduces You Only Train Once (YOTO), a methodology designed to address the issue of catastrophic forgetting by integrating YOLO11n for object localization with DeIT and Proxy Anchor Loss for feature extraction and metric learning. For classification, we utilize cosine similarity between the embedding features of the target product and those in the Qdrant vector database. In a case study conducted in a retail store with 140 products, the experimental results demonstrate that our proposed framework achieves encouraging accuracy, whether for detecting new or existing products. Furthermore, without retraining, the training duration difference is significant. We achieve almost 3 times the training time efficiency compared to classical object detection approaches. This efficiency escalates as additional new products are added to the product database. The average inference time is 580 ms per image containing multiple products, on an edge device, validating the proposed framework's feasibility for practical use.
comment: This manuscript was first submitted to the Engineering (Elsevier Journal). The preprint version was posted to arXiv afterwards to facilitate open access and community feedback
♻ ☆ InfiniBench: Infinite Benchmarking for Visual Spatial Reasoning with Customizable Scene Complexity
Modern vision-language models (VLMs) are expected to have abilities of spatial reasoning with diverse scene complexities, but evaluating such abilities is difficult due to the lack of benchmarks that are not only diverse and scalable but also fully customizable. Existing benchmarks offer limited customizability over the scene complexity and are incapable of isolating and analyzing specific VLM failure modes under distinct spatial conditions. To address this gap, instead of individually presenting benchmarks for different scene complexities, in this paper we present InfiniBench, a fully automated, customizable and user-friendly benchmark generator that can synthesize a theoretically infinite variety of 3D scenes with parameterized control on scene complexity. InfiniBench uniquely translates scene descriptions in natural language into photo-realistic videos with complex and physically plausible 3D layouts. This is achieved through three key innovations: 1) a LLM-based agentic framework that iteratively refines procedural scene constraints from scene descriptions; 2) a flexible cluster-based layout optimizer that generates dense and cluttered scenes previously intractable for procedural methods; and 3) a task-aware camera trajectory optimization method that renders scenes into videos with full object coverage as VLM input. Experiments demonstrate that InfiniBench outperforms state-of-the-art procedural and LLM-based 3D generation methods in prompt fidelity and physical plausibility, especially in high-complexity scenarios. We further showcased the usefulness of InfiniBench, by generating benchmarks for representative spatial reasoning tasks including measurement, perspective-taking and spatiotemporal tracking.
♻ ☆ iFinder: Structured Zero-Shot Vision-Based LLM Grounding for Dash-Cam Video Reasoning NeurIPS 2025
Grounding large language models (LLMs) in domain-specific tasks like post-hoc dash-cam driving video analysis is challenging due to their general-purpose training and lack of structured inductive biases. As vision is often the sole modality available for such analysis (i.e., no LiDAR, GPS, etc.), existing video-based vision-language models (V-VLMs) struggle with spatial reasoning, causal inference, and explainability of events in the input video. To this end, we introduce iFinder, a structured semantic grounding framework that decouples perception from reasoning by translating dash-cam videos into a hierarchical, interpretable data structure for LLMs. iFinder operates as a modular, training-free pipeline that employs pretrained vision models to extract critical cues -- object pose, lane positions, and object trajectories -- which are hierarchically organized into frame- and video-level structures. Combined with a three-block prompting strategy, it enables step-wise, grounded reasoning for the LLM to refine a peer V-VLM's outputs and provide accurate reasoning. Evaluations on four public dash-cam video benchmarks show that iFinder's proposed grounding with domain-specific cues, especially object orientation and global context, significantly outperforms end-to-end V-VLMs on four zero-shot driving benchmarks, with up to 39% gains in accident reasoning accuracy. By grounding LLMs with driving domain-specific representations, iFinder offers a zero-shot, interpretable, and reliable alternative to end-to-end V-VLMs for post-hoc driving video understanding.
comment: Accepted at NeurIPS 2025
♻ ☆ Semantics Lead the Way: Harmonizing Semantic and Texture Modeling with Asynchronous Latent Diffusion
Latent Diffusion Models (LDMs) inherently follow a coarse-to-fine generation process, where high-level semantic structure is generated slightly earlier than fine-grained texture. This indicates the preceding semantics potentially benefit texture generation by providing a semantic anchor. Recent advances have integrated semantic priors from pretrained visual encoders to further enhance LDMs, yet they still denoise semantic and VAE-encoded texture synchronously, neglecting such ordering. Observing these, we propose Semantic-First Diffusion (SFD), a latent diffusion paradigm that explicitly prioritizes semantic formation. SFD first constructs composite latents by combining a compact semantic latent, which is extracted from a pretrained visual encoder via a dedicated Semantic VAE, with the texture latent. The core of SFD is to denoise the semantic and texture latents asynchronously using separate noise schedules: semantics precede textures by a temporal offset, providing clearer high-level guidance for texture refinement and enabling natural coarse-to-fine generation. On ImageNet 256x256 with guidance, SFD achieves FID 1.06 (LightningDiT-XL) and FID 1.04 (1.0B LightningDiT-XXL), while achieving up to 100x faster convergence than the original DiT. SFD also improves existing methods like ReDi and VA-VAE, demonstrating the effectiveness of asynchronous, semantics-led modeling. Project page and code: https://yuemingpan.github.io/SFD.github.io/.
♻ ☆ V-CECE: Visual Counterfactual Explanations via Conceptual Edits NeurIPS 2025
Recent black-box counterfactual generation frameworks fail to take into account the semantic content of the proposed edits, while relying heavily on training to guide the generation process. We propose a novel, plug-and-play black-box counterfactual generation framework, which suggests step-by-step edits based on theoretical guarantees of optimal edits to produce human-level counterfactual explanations with zero training. Our framework utilizes a pre-trained image editing diffusion model, and operates without access to the internals of the classifier, leading to an explainable counterfactual generation process. Throughout our experimentation, we showcase the explanatory gap between human reasoning and neural model behavior by utilizing both Convolutional Neural Network (CNN), Vision Transformer (ViT) and Large Vision Language Model (LVLM) classifiers, substantiated through a comprehensive human evaluation.
comment: Accepted in NeurIPS 2025
Machine Learning 147
☆ Enhancing Retrieval-Augmented Generation with Entity Linking for Educational Platforms
In the era of Large Language Models (LLMs), Retrieval-Augmented Generation (RAG) architectures are gaining significant attention for their ability to ground language generation in reliable knowledge sources. Despite their impressive effectiveness in many areas, RAG systems based solely on semantic similarity often fail to ensure factual accuracy in specialized domains, where terminological ambiguity can affect retrieval relevance. This study proposes an enhanced RAG architecture that integrates a factual signal derived from Entity Linking to improve the accuracy of educational question-answering systems in Italian. The system includes a Wikidata-based Entity Linking module and implements three re-ranking strategies to combine semantic and entity-based information: a hybrid score weighting model, reciprocal rank fusion, and a cross-encoder re-ranker. Experiments were conducted on two benchmarks: a custom academic dataset and the standard SQuAD-it dataset. Results show that, in domain-specific contexts, the hybrid schema based on reciprocal rank fusion significantly outperforms both the baseline and the cross-encoder approach, while the cross-encoder achieves the best results on the general-domain dataset. These findings confirm the presence of an effect of domain mismatch and highlight the importance of domain adaptation and hybrid ranking strategies to enhance factual precision and reliability in retrieval-augmented generation. They also demonstrate the potential of entity-aware RAG systems in educational environments, fostering adaptive and reliable AI-based tutoring tools.
☆ Whatever Remains Must Be True: Filtering Drives Reasoning in LLMs, Shaping Diversity
Reinforcement Learning (RL) has become the de facto standard for tuning LLMs to solve tasks involving reasoning. However, growing evidence shows that models trained in such way often suffer from a significant loss in diversity. We argue that this arises because RL implicitly optimizes the "mode-seeking" or "zero-forcing" Reverse KL to a target distribution causing the model to concentrate mass on certain high-probability regions of the target while neglecting others. In this work, we instead begin from an explicit target distribution, obtained by filtering out incorrect answers while preserving the relative probabilities of correct ones. Starting from a pre-trained LLM, we approximate this target distribution using the $α$-divergence family, which unifies prior approaches and enables direct control of the precision-diversity trade-off by interpolating between mode-seeking and mass-covering divergences. On a Lean theorem-proving benchmark, our method achieves state-of-the-art performance along the coverage-precision Pareto frontier, outperforming all prior methods on the coverage axis.
☆ MaxShapley: Towards Incentive-compatible Generative Search with Fair Context Attribution
Generative search engines based on large language models (LLMs) are replacing traditional search, fundamentally changing how information providers are compensated. To sustain this ecosystem, we need fair mechanisms to attribute and compensate content providers based on their contributions to generated answers. We introduce MaxShapley, an efficient algorithm for fair attribution in generative search pipelines that use retrieval-augmented generation (RAG). MaxShapley is a special case of the celebrated Shapley value; it leverages a decomposable max-sum utility function to compute attributions with linear computation in the number of documents, as opposed to the exponential cost of Shapley values. We evaluate MaxShapley on three multi-hop QA datasets (HotPotQA, MuSiQUE, MS MARCO); MaxShapley achieves comparable attribution quality to exact Shapley computation, while consuming a fraction of its tokens--for instance, it gives up to an 8x reduction in resource consumption over prior state-of-the-art methods at the same attribution accuracy.
☆ Consequences of Kernel Regularity for Bandit Optimization
In this work we investigate the relationship between kernel regularity and algorithmic performance in the bandit optimization of RKHS functions. While reproducing kernel Hilbert space (RKHS) methods traditionally rely on global kernel regressors, it is also common to use a smoothness-based approach that exploits local approximations. We show that these perspectives are deeply connected through the spectral properties of isotropic kernels. In particular, we characterize the Fourier spectra of the Matérn, square-exponential, rational-quadratic, $γ$-exponential, piecewise-polynomial, and Dirichlet kernels, and show that the decay rate determines asymptotic regret from both viewpoints. For kernelized bandit algorithms, spectral decay yields upper bounds on the maximum information gain, governing worst-case regret, while for smoothness-based methods, the same decay rates establish Hölder space embeddings and Besov space norm-equivalences, enabling local continuity analysis. These connections show that kernel-based and locally adaptive algorithms can be analyzed within a unified framework. This allows us to derive explicit regret bounds for each kernel family, obtaining novel results in several cases and providing improved analysis for others. Furthermore, we analyze LP-GP-UCB, an algorithm that combines both approaches, augmenting global Gaussian process surrogates with local polynomial estimators. While the hybrid approach does not uniformly dominate specialized methods, it achieves order-optimality across multiple kernel families.
comment: Feedback welcome!
☆ Impugan: Learning Conditional Generative Models for Robust Data Imputation
Incomplete data are common in real-world applications. Sensors fail, records are inconsistent, and datasets collected from different sources often differ in scale, sampling rate, and quality. These differences create missing values that make it difficult to combine data and build reliable models. Standard imputation methods such as regression models, expectation-maximization, and multiple imputation rely on strong assumptions about linearity and independence. These assumptions rarely hold for complex or heterogeneous data, which can lead to biased or over-smoothed estimates. We propose Impugan, a conditional Generative Adversarial Network (cGAN) for imputing missing values and integrating heterogeneous datasets. The model is trained on complete samples to learn how missing variables depend on observed ones. During inference, the generator reconstructs missing entries from available features, and the discriminator enforces realism by distinguishing true from imputed data. This adversarial process allows Impugan to capture nonlinear and multimodal relationships that conventional methods cannot represent. In experiments on benchmark datasets and a multi-source integration task, Impugan achieves up to 82\% lower Earth Mover's Distance (EMD) and 70\% lower mutual-information deviation (MI) compared to leading baselines. These results show that adversarially trained generative models provide a scalable and principled approach for imputing and merging incomplete, heterogeneous data. Our model is available at: github.com/zalishmahmud/impuganBigData2025
☆ Developing synthetic microdata through machine learning for firm-level business surveys
Public-use microdata samples (PUMS) from the United States (US) Census Bureau on individuals have been available for decades. However, large increases in computing power and the greater availability of Big Data have dramatically increased the probability of re-identifying anonymized data, potentially violating the pledge of confidentiality given to survey respondents. Data science tools can be used to produce synthetic data that preserve critical moments of the empirical data but do not contain the records of any existing individual respondent or business. Developing public-use firm data from surveys presents unique challenges different from demographic data, because there is a lack of anonymity and certain industries can be easily identified in each geographic area. This paper briefly describes a machine learning model used to construct a synthetic PUMS based on the Annual Business Survey (ABS) and discusses various quality metrics. Although the ABS PUMS is currently being refined and results are confidential, we present two synthetic PUMS developed for the 2007 Survey of Business Owners, similar to the ABS business data. Econometric replication of a high impact analysis published in Small Business Economics demonstrates the verisimilitude of the synthetic data to the true data and motivates discussion of possible ABS use cases.
comment: 17 pages, 4 figures, 6 tables
☆ Designing an Optimal Sensor Network via Minimizing Information Loss
Optimal experimental design is a classic topic in statistics, with many well-studied problems, applications, and solutions. The design problem we study is the placement of sensors to monitor spatiotemporal processes, explicitly accounting for the temporal dimension in our modeling and optimization. We observe that recent advancements in computational sciences often yield large datasets based on physics-based simulations, which are rarely leveraged in experimental design. We introduce a novel model-based sensor placement criterion, along with a highly-efficient optimization algorithm, which integrates physics-based simulations and Bayesian experimental design principles to identify sensor networks that "minimize information loss" from simulated data. Our technique relies on sparse variational inference and (separable) Gauss-Markov priors, and thus may adapt many techniques from Bayesian experimental design. We validate our method through a case study monitoring air temperature in Phoenix, Arizona, using state-of-the-art physics-based simulations. Our results show our framework to be superior to random or quasi-random sampling, particularly with a limited number of sensors. We conclude by discussing practical considerations and implications of our framework, including more complex modeling tools and real-world deployments.
comment: 37 pages, 15 figures. Accepted to Bayesian Analysis
☆ On the Bayes Inconsistency of Disagreement Discrepancy Surrogates
Deep neural networks often fail when deployed in real-world contexts due to distribution shift, a critical barrier to building safe and reliable systems. An emerging approach to address this problem relies on \emph{disagreement discrepancy} -- a measure of how the disagreement between two models changes under a shifting distribution. The process of maximizing this measure has seen applications in bounding error under shifts, testing for harmful shifts, and training more robust models. However, this optimization involves the non-differentiable zero-one loss, necessitating the use of practical surrogate losses. We prove that existing surrogates for disagreement discrepancy are not Bayes consistent, revealing a fundamental flaw: maximizing these surrogates can fail to maximize the true disagreement discrepancy. To address this, we introduce new theoretical results providing both upper and lower bounds on the optimality gap for such surrogates. Guided by this theory, we propose a novel disagreement loss that, when paired with cross-entropy, yields a provably consistent surrogate for disagreement discrepancy. Empirical evaluations across diverse benchmarks demonstrate that our method provides more accurate and robust estimates of disagreement discrepancy than existing approaches, particularly under challenging adversarial conditions.
comment: 37 pages, 7 figures
☆ BalLOT: Balanced $k$-means clustering with optimal transport
We consider the fundamental problem of balanced $k$-means clustering. In particular, we introduce an optimal transport approach to alternating minimization called BalLOT, and we show that it delivers a fast and effective solution to this problem. We establish this with a variety of numerical experiments before proving several theoretical guarantees. First, we prove that for generic data, BalLOT produces integral couplings at each step. Next, we perform a landscape analysis to provide theoretical guarantees for both exact and partial recoveries of planted clusters under the stochastic ball model. Finally, we propose initialization schemes that achieve one-step recovery of planted clusters.
comment: 20 pages, 9 figures
☆ NICE: Neural Implicit Craniofacial Model for Orthognathic Surgery Prediction
Orthognathic surgery is a crucial intervention for correcting dentofacial skeletal deformities to enhance occlusal functionality and facial aesthetics. Accurate postoperative facial appearance prediction remains challenging due to the complex nonlinear interactions between skeletal movements and facial soft tissue. Existing biomechanical, parametric models and deep-learning approaches either lack computational efficiency or fail to fully capture these intricate interactions. To address these limitations, we propose Neural Implicit Craniofacial Model (NICE) which employs implicit neural representations for accurate anatomical reconstruction and surgical outcome prediction. NICE comprises a shape module, which employs region-specific implicit Signed Distance Function (SDF) decoders to reconstruct the facial surface, maxilla, and mandible, and a surgery module, which employs region-specific deformation decoders. These deformation decoders are driven by a shared surgical latent code to effectively model the complex, nonlinear biomechanical response of the facial surface to skeletal movements, incorporating anatomical prior knowledge. The deformation decoders output point-wise displacement fields, enabling precise modeling of surgical outcomes. Extensive experiments demonstrate that NICE outperforms current state-of-the-art methods, notably improving prediction accuracy in critical facial regions such as lips and chin, while robustly preserving anatomical integrity. This work provides a clinically viable tool for enhanced surgical planning and patient consultation in orthognathic procedures.
☆ KQ-SVD: Compressing the KV Cache with Provable Guarantees on Attention Fidelity
The Key-Value (KV) cache is central to the efficiency of transformer-based large language models (LLMs), storing previously computed vectors to accelerate inference. Yet, as sequence length and batch size grow, the cache becomes a major memory bottleneck. Prior compression methods typically apply low-rank decomposition to keys alone or attempt to jointly embed queries and keys, but both approaches neglect that attention fundamentally depends on their inner products. In this work, we prove that such strategies are suboptimal for approximating the attention matrix. We introduce KQ-SVD, a simple and computationally efficient method that directly performs an optimal low-rank decomposition of the attention matrix via a closed-form solution. By targeting the true source of redundancy, KQ-SVD preserves attention outputs with higher fidelity under compression. Extensive evaluations on LLaMA and Mistral models demonstrate that our approach consistently delivers superior projection quality.
☆ LDLT $\mathcal{L}$-Lipschitz Network: Generalized Deep End-To-End Lipschitz Network Construction
Deep residual networks (ResNets) have demonstrated outstanding success in computer vision tasks, attributed to their ability to maintain gradient flow through deep architectures. Simultaneously, controlling the Lipschitz constant in neural networks has emerged as an essential area of research to enhance adversarial robustness and network certifiability. This paper presents a rigorous approach to the general design of $\mathcal{L}$-Lipschitz deep residual networks using a Linear Matrix Inequality (LMI) framework. Initially, the ResNet architecture was reformulated as a cyclic tridiagonal LMI, and closed-form constraints on network parameters were derived to ensure $\mathcal{L}$-Lipschitz continuity; however, using a new $LDL^\top$ decomposition approach for certifying LMI feasibility, we extend the construction of $\mathcal{L}$-Lipchitz networks to any other nonlinear architecture. Our contributions include a provable parameterization methodology for constructing Lipschitz-constrained residual networks and other hierarchical architectures. Cholesky decomposition is also used for efficient parameterization. These findings enable robust network designs applicable to adversarial robustness, certified training, and control systems. The $LDL^\top$ formulation is shown to be a tight relaxation of the SDP-based network, maintaining full expressiveness and achieving 3\%-13\% accuracy gains over SLL Layers on 121 UCI data sets.
comment: 39 pages, 3 figures, 12 tables
☆ NeuroMemFPP: A recurrent neural approach for memory-aware parameter estimation in fractional Poisson process
In this paper, we propose a recurrent neural network (RNN)-based framework for estimating the parameters of the fractional Poisson process (FPP), which models event arrivals with memory and long-range dependence. The Long Short-Term Memory (LSTM) network estimates the key parameters $μ>0$ and $β\in(0,1)$ from sequences of inter-arrival times, effectively modeling their temporal dependencies. Our experiments on synthetic data show that the proposed approach reduces the mean squared error (MSE) by about 55.3\% compared to the traditional method of moments (MOM) and performs reliably across different training conditions. We tested the method on two real-world high-frequency datasets: emergency call records from Montgomery County, PA, and AAPL stock trading data. The results show that the LSTM can effectively track daily patterns and parameter changes, indicating its effectiveness on real-world data with complex time dependencies.
comment: 12 pages
☆ Bootstrapping Fuzzers for Compilers of Low-Resource Language Dialects Using Language Models
Modern extensible compiler frameworks-such as MLIR-enable rapid creation of domain-specific language dialects. This flexibility, however, makes correctness harder to ensure as the same extensibility that accelerates development also complicates maintaining the testing infrastructure. Extensible languages require automated test generation that is both dialect-agnostic (works across dialects without manual adaptation) and dialect-effective (targets dialect-specific features to find bugs). Existing approaches typically sacrifice one of these goals by either requiring manually constructed seed corpora for each dialect, or by failing to be effective. We present a dialect-agnostic and dialect-effective grammar-based and coverage-guided fuzzing approach for extensible compilers that combines two key insights from existing work: (i) the grammars of dialects, which already encode the structural and type constraints, can often be extracted automatically from the dialect specification; and (ii) these grammars can be used in combination with pre-trained large language models to automatically generate representative and diverse seed inputs from the full dialect space without requiring any manual input or training data. These seeds can then be used to bootstrap coverage-guided fuzzers. We built this approach into a tool, Germinator. When evaluated on six MLIR projects spanning 91 dialects, Germinator generated seeds improve line coverage by 10-120% over grammar-based baselines. We compare against grammar-based baselines because they are the only class of existing automatic seed generators that can be applied uniformly across MLIR's heterogeneous dialect ecosystem. Germinator discovers 88 previously unknown bugs (40 confirmed), including 23 in dialects with no prior automated test generators, demonstrating effective and controllable testing of low-resource dialects at scale.
☆ DAE-HardNet: A Physics Constrained Neural Network Enforcing Differential-Algebraic Hard Constraints
Traditional physics-informed neural networks (PINNs) do not always satisfy physics based constraints, especially when the constraints include differential operators. Rather, they minimize the constraint violations in a soft way. Strict satisfaction of differential-algebraic equations (DAEs) to embed domain knowledge and first-principles in data-driven models is generally challenging. This is because data-driven models consider the original functions to be black-box whose derivatives can only be obtained after evaluating the functions. We introduce DAE-HardNet, a physics-constrained (rather than simply physics-informed) neural network that learns both the functions and their derivatives simultaneously, while enforcing algebraic as well as differential constraints. This is done by projecting model predictions onto the constraint manifold using a differentiable projection layer. We apply DAE-HardNet to several systems and test problems governed by DAEs, including the dynamic Lotka-Volterra predator-prey system and transient heat conduction. We also show the ability of DAE-HardNet to estimate unknown parameters through a parameter estimation problem. Compared to multilayer perceptrons (MLPs) and PINNs, DAE-HardNet achieves orders of magnitude reduction in the physics loss while maintaining the prediction accuracy. It has the added benefits of learning the derivatives which improves the constrained learning of the backbone neural network prior to the projection layer. For specific problems, this suggests that the projection layer can be bypassed for faster inference. The current implementation and codes are available at https://github.com/SOULS-TAMU/DAE-HardNet.
☆ Neural Coherence : Find higher performance to out-of-distribution tasks from few samples
To create state-of-the-art models for many downstream tasks, it has become common practice to fine-tune a pre-trained large vision model. However, it remains an open question of how to best determine which of the many possible model checkpoints resulting from a large training run to use as the starting point. This becomes especially important when data for the target task of interest is scarce, unlabeled and out-of-distribution. In such scenarios, common methods relying on in-distribution validation data become unreliable or inapplicable. This work proposes a novel approach for model selection that operates reliably on just a few unlabeled examples from the target task. Our approach is based on a novel concept: Neural Coherence, which entails characterizing a model's activation statistics for source and target domains, allowing one to define model selection methods with high data-efficiency. We provide experiments where models are pre-trained on ImageNet1K and examine target domains consisting of Food-101, PlantNet-300K and iNaturalist. We also evaluate it in many meta-learning settings. Our approach significantly improves generalization across these different target domains compared to established baselines. We further demonstrate the versatility of Neural Coherence as a powerful principle by showing its effectiveness in training data selection.
☆ Computational Design of Low-Volatility Lubricants for Space Using Interpretable Machine Learning
The function and lifetime of moving mechanical assemblies (MMAs) in space depend on the properties of lubricants. MMAs that experience high speeds or high cycles require liquid based lubricants due to their ability to reflow to the point of contact. However, only a few liquid-based lubricants have vapor pressures low enough for the vacuum conditions of space, each of which has limitations that add constraints to MMA designs. This work introduces a data-driven machine learning (ML) approach to predicting vapor pressure, enabling virtual screening and discovery of new space-suitable liquid lubricants. The ML models are trained with data from both high-throughput molecular dynamics simulations and experimental databases. The models are designed to prioritize interpretability, enabling the relationships between chemical structure and vapor pressure to be identified. Based on these insights, several candidate molecules are proposed that may have promise for future space lubricant applications in MMAs.
☆ Predicting Price Movements in High-Frequency Financial Data with Spiking Neural Networks
Modern high-frequency trading (HFT) environments are characterized by sudden price spikes that present both risk and opportunity, but conventional financial models often fail to capture the required fine temporal structure. Spiking Neural Networks (SNNs) offer a biologically inspired framework well-suited to these challenges due to their natural ability to process discrete events and preserve millisecond-scale timing. This work investigates the application of SNNs to high-frequency price-spike forecasting, enhancing performance via robust hyperparameter tuning with Bayesian Optimization (BO). This work converts high-frequency stock data into spike trains and evaluates three architectures: an established unsupervised STDP-trained SNN, a novel SNN with explicit inhibitory competition, and a supervised backpropagation network. BO was driven by a novel objective, Penalized Spike Accuracy (PSA), designed to ensure a network's predicted price spike rate aligns with the empirical rate of price events. Simulated trading demonstrated that models optimized with PSA consistently outperformed their Spike Accuracy (SA)-tuned counterparts and baselines. Specifically, the extended SNN model with PSA achieved the highest cumulative return (76.8%) in simple backtesting, significantly surpassing the supervised alternative (42.54% return). These results validate the potential of spiking networks, when robustly tuned with task-specific objectives, for effective price spike forecasting in HFT.
comment: 9 pages, 5 figures, 8 tables
☆ Sparse Attention Post-Training for Mechanistic Interpretability
We introduce a simple post-training method that makes transformer attention sparse without sacrificing performance. Applying a flexible sparsity regularisation under a constrained-loss objective, we show on models up to 1B parameters that it is possible to retain the original pretraining loss while reducing attention connectivity to $\approx 0.3 \%$ of its edges. Unlike sparse-attention methods designed for computational efficiency, our approach leverages sparsity as a structural prior: it preserves capability while exposing a more organized and interpretable connectivity pattern. We find that this local sparsity cascades into global circuit simplification: task-specific circuits involve far fewer components (attention heads and MLPs) with up to 100x fewer edges connecting them. These results demonstrate that transformer attention can be made orders of magnitude sparser, suggesting that much of its computation is redundant and that sparsity may serve as a guiding principle for more structured and interpretable models.
☆ NEAT: Neighborhood-Guided, Efficient, Autoregressive Set Transformer for 3D Molecular Generation
Autoregressive models are a promising alternative to diffusion-based models for 3D molecular structure generation. However, a key limitation is the assumption of a token order: while text has a natural sequential order, the next token prediction given a molecular graph prefix should be invariant to atom permutations. Previous works sidestepped this mismatch by using canonical orders or focus atoms. We argue that this is unnecessary. We introduce NEAT, a Neighborhood-guided, Efficient, Autoregressive, Set Transformer that treats molecular graphs as sets of atoms and learns the order-agnostic distribution over admissible tokens at the graph boundary with an autoregressive flow model. NEAT approaches state-of-the-art performance in 3D molecular generation with high computational efficiency and atom-level permutation invariance, establishing a practical foundation for scalable molecular design.
☆ Approximation of Box Decomposition Algorithm for Fast Hypervolume-Based Multi-Objective Optimization
Hypervolume (HV)-based Bayesian optimization (BO) is one of the standard approaches for multi-objective decision-making. However, the computational cost of optimizing the acquisition function remains a significant bottleneck, primarily due to the expense of HV improvement calculations. While HV box-decomposition offers an efficient way to cope with the frequent exact improvement calculations, it suffers from super-polynomial memory complexity $O(MN^{\lfloor \frac{M + 1}{2} \rfloor})$ in the worst case as proposed by Lacour et al. (2017). To tackle this problem, Couckuyt et al. (2012) employed an approximation algorithm. However, a rigorous algorithmic description is currently absent from the literature. This paper bridges this gap by providing comprehensive mathematical and algorithmic details of this approximation algorithm.
☆ Machine-learning-enabled interpretation of tribological deformation patterns in large-scale MD data
Molecular dynamics (MD) simulations have become indispensable for exploring tribological deformation patterns at the atomic scale. However, transforming the resulting high-dimensional data into interpretable deformation pattern maps remains a resource-intensive and largely manual process. In this work, we introduce a data-driven workflow that automates this interpretation step using unsupervised and supervised learning. Grain-orientation-colored computational tomograph pictures obtained from CuNi alloy simulations were first compressed through an autoencoder to a 32-dimensional global feature vector. Despite this strong compression, the reconstructed images retained the essential microstructural motifs: grain boundaries, stacking faults, twins, and partial lattice rotations, while omitting only the finest defects. The learned representations were then combined with simulation metadata (composition, load, time, temperature, and spatial position) to train a CNN-MLP model to predict the dominant deformation pattern. The resulting model achieves a prediction accuracy of approximately 96% on validation data. A refined evaluation strategy, in which an entire spatial region containing distinct grains was excluded from training, provides a more robust measure of generalization. The approach demonstrates that essential tribological deformation signatures can be automatically identified and classified from structural images using Machine Learning. This proof of concept constitutes a first step towards fully automated, data-driven construction of tribological mechanism maps and, ultimately, toward predictive modeling frameworks that may reduce the need for large-scale MD simulation campaigns.
comment: 19 pages, 11 figures
☆ Utility Boundary of Dataset Distillation: Scaling and Configuration-Coverage Laws
Dataset distillation (DD) aims to construct compact synthetic datasets that allow models to achieve comparable performance to full-data training while substantially reducing storage and computation. Despite rapid empirical progress, its theoretical foundations remain limited: existing methods (gradient, distribution, trajectory matching) are built on heterogeneous surrogate objectives and optimization assumptions, which makes it difficult to analyze their common principles or provide general guarantees. Moreover, it is still unclear under what conditions distilled data can retain the effectiveness of full datasets when the training configuration, such as optimizer, architecture, or augmentation, changes. To answer these questions, we propose a unified theoretical framework, termed configuration--dynamics--error analysis, which reformulates major DD approaches under a common generalization-error perspective and provides two main results: (i) a scaling law that provides a single-configuration upper bound, characterizing how the error decreases as the distilled sample size increases and explaining the commonly observed performance saturation effect; and (ii) a coverage law showing that the required distilled sample size scales linearly with configuration diversity, with provably matching upper and lower bounds. In addition, our unified analysis reveals that various matching methods are interchangeable surrogates, reducing the same generalization error, clarifying why they can all achieve dataset distillation and providing guidance on how surrogate choices affect sample efficiency and robustness. Experiments across diverse methods and configurations empirically confirm the derived laws, advancing a theoretical foundation for DD and enabling theory-driven design of compact, configuration-robust dataset distillation.
☆ Mechanistic Interpretability of Antibody Language Models Using SAEs
Sparse autoencoders (SAEs) are a mechanistic interpretability technique that have been used to provide insight into learned concepts within large protein language models. Here, we employ TopK and Ordered SAEs to investigate an autoregressive antibody language model, p-IgGen, and steer its generation. We show that TopK SAEs can reveal biologically meaningful latent features, but high feature concept correlation does not guarantee causal control over generation. In contrast, Ordered SAEs impose an hierarchical structure that reliably identifies steerable features, but at the expense of more complex and less interpretable activation patterns. These findings advance the mechanistic interpretability of domain-specific protein language models and suggest that, while TopK SAEs are sufficient for mapping latent features to concepts, Ordered SAEs are preferable when precise generative steering is required.
☆ Learnability Window in Gated Recurrent Neural Networks
We develop a theoretical framework that explains how gating mechanisms determine the learnability window $\mathcal{H}_N$ of recurrent neural networks, defined as the largest temporal horizon over which gradient information remains statistically recoverable. While classical analyses emphasize numerical stability of Jacobian products, we show that stability alone is insufficient: learnability is governed instead by the \emph{effective learning rates} $μ_{t,\ell}$, per-lag and per-neuron quantities obtained from first-order expansions of gate-induced Jacobian products in Backpropagation Through Time. These effective learning rates act as multiplicative filters that control both the magnitude and anisotropy of gradient transport. Under heavy-tailed ($α$-stable) gradient noise, we prove that the minimal sample size required to detect a dependency at lag~$\ell$ satisfies $N(\ell)\propto f(\ell)^{-α}$, where $f(\ell)=\|μ_{t,\ell}\|_1$ is the effective learning rate envelope. This leads to an explicit formula for $\mathcal{H}_N$ and closed-form scaling laws for logarithmic, polynomial, and exponential decay of $f(\ell)$. The theory predicts that broader or more heterogeneous gate spectra produce slower decay of $f(\ell)$ and hence larger learnability windows, whereas heavier-tailed noise compresses $\mathcal{H}_N$ by slowing statistical concentration. By linking gate-induced time-scale structure, gradient noise, and sample complexity, the framework identifies the effective learning rates as the fundamental quantities that govern when -- and for how long -- gated recurrent networks can learn long-range temporal dependencies.
☆ Curvature-Regularized Variational Autoencoder for 3D Scene Reconstruction from Sparse Depth
When depth sensors provide only 5% of needed measurements, reconstructing complete 3D scenes becomes difficult. Autonomous vehicles and robots cannot tolerate the geometric errors that sparse reconstruction introduces. We propose curvature regularization through a discrete Laplacian operator, achieving 18.1% better reconstruction accuracy than standard variational autoencoders. Our contribution challenges an implicit assumption in geometric deep learning: that combining multiple geometric constraints improves performance. A single well-designed regularization term not only matches but exceeds the effectiveness of complex multi-term formulations. The discrete Laplacian offers stable gradients and noise suppression with just 15% training overhead and zero inference cost. Code and models are available at https://github.com/Maryousefi/GeoVAE-3D.
☆ The Missing Layer of AGI: From Pattern Alchemy to Coordination Physics
Influential critiques argue that Large Language Models (LLMs) are a dead end for AGI: "mere pattern matchers" structurally incapable of reasoning or planning. We argue this conclusion misidentifies the bottleneck: it confuses the ocean with the net. Pattern repositories are the necessary System-1 substrate; the missing component is a System-2 coordination layer that selects, constrains, and binds these patterns. We formalize this layer via UCCT, a theory of semantic anchoring that models reasoning as a phase transition governed by effective support (rho_d), representational mismatch (d_r), and an adaptive anchoring budget (gamma log k). Under this lens, ungrounded generation is simply an unbaited retrieval of the substrate's maximum likelihood prior, while "reasoning" emerges when anchors shift the posterior toward goal-directed constraints. We translate UCCT into architecture with MACI, a coordination stack that implements baiting (behavior-modulated debate), filtering (Socratic judging), and persistence (transactional memory). By reframing common objections as testable coordination failures, we argue that the path to AGI runs through LLMs, not around them.
comment: 13 pages, 3 figures
☆ Towards agent-based-model informed neural networks
In this article, we present a framework for designing neural networks that remain consistent with the underlying principles of agent-based models. We begin by highlighting the limitations of standard neural differential equations in modeling complex systems, where physical invariants (like energy) are often absent but other constraints (like mass conservation, network locality, bounded rationality) must be enforced. To address this, we introduce Agent-Based-Model informed Neural Networks(ABM-NNs), which leverage restricted graph neural networks and hierarchical decomposition to learn interpretable, structure-preserving dynamics. We validate the framework across three case studies of increasing complexity: (i) a generalized Generalized Lotka--Volterra system, where we recover ground-truth parameters from short trajectories in presence of interventions; (ii) a graph-based SIR contagion model, where our method outperforms state-of-the-art graph learning baselines (GCN, GraphSAGE, Graph Transformer) in out-of-sample forecasting and noise robustness; and (iii) a real-world macroeconomic model of the ten largest economies, where we learn coupled GDP dynamics from empirical data and demonstrate gradient-based counterfactual analysis for policy interventions.
☆ A Fast Anti-Jamming Cognitive Radar Deployment Algorithm Based on Reinforcement Learning
The fast deployment of cognitive radar to counter jamming remains a critical challenge in modern warfare, where more efficient deployment leads to quicker detection of targets. Existing methods are primarily based on evolutionary algorithms, which are time-consuming and prone to falling into local optima. We tackle these drawbacks via the efficient inference of neural networks and propose a brand new framework: Fast Anti-Jamming Radar Deployment Algorithm (FARDA). We first model the radar deployment problem as an end-to-end task and design deep reinforcement learning algorithms to solve it, where we develop integrated neural modules to perceive heatmap information and a brand new reward format. Empirical results demonstrate that our method achieves coverage comparable to evolutionary algorithms while deploying radars approximately 7,000 times faster. Further ablation experiments confirm the necessity of each component of FARDA.
☆ KANFormer for Predicting Fill Probabilities via Survival Analysis in Limit Order Books
This paper introduces KANFormer, a novel deep-learning-based model for predicting the time-to-fill of limit orders by leveraging both market- and agent-level information. KANFormer combines a Dilated Causal Convolutional network with a Transformer encoder, enhanced by Kolmogorov-Arnold Networks (KANs), which improve nonlinear approximation. Unlike existing models that rely solely on a series of snapshots of the limit order book, KANFormer integrates the actions of agents related to LOB dynamics and the position of the order in the queue to more effectively capture patterns related to execution likelihood. We evaluate the model using CAC 40 index futures data with labeled orders. The results show that KANFormer outperforms existing works in both calibration (Right-Censored Log-Likelihood, Integrated Brier Score) and discrimination (C-index, time-dependent AUC). We further analyze feature importance over time using SHAP (SHapley Additive exPlanations). Our results highlight the benefits of combining rich market signals with expressive neural architectures to achieve accurate and interpretabl predictions of fill probabilities.
☆ Teaching Language Models Mechanistic Explainability Through Arrow-Pushing
Chemical reaction mechanisms provide crucial insight into synthesizability, yet current Computer-Assisted Synthesis Planning (CASP) systems lack mechanistic grounding. We introduce a computational framework for teaching language models to predict chemical reaction mechanisms through arrow pushing formalism, a century-old notation that tracks electron flow while respecting conservation laws. We developed MechSMILES, a compact textual format encoding molecular structure and electron flow, and trained language models on four mechanism prediction tasks of increasing complexity using mechanistic reaction datasets, such as mech-USPTO-31k and FlowER. Our models achieve more than 95\% top-3 accuracy on elementary step prediction and scores that surpass 73\% on mech-USPTO-31k, and 93\% on FlowER dataset for the retrieval of complete reaction mechanisms on our hardest task. This mechanistic understanding enables three key applications. First, our models serve as post-hoc validators for CASP systems, filtering chemically implausible transformations. Second, they enable holistic atom-to-atom mapping that tracks all atoms, including hydrogens. Third, they extract catalyst-aware reaction templates that distinguish recycled catalysts from spectator species. By grounding predictions in physically meaningful electron moves that ensure conservation of mass and charge, this work provides a pathway toward more explainable and chemically valid computational synthesis planning, while providing an architecture-agnostic framework for the benchmarking of mechanism prediction.
comment: ELLIS 2025 ML4Molecules Workshop
☆ BERTO: an Adaptive BERT-based Network Time Series Predictor with Operator Preferences in Natural Language
We introduce BERTO, a BERT-based framework for traffic prediction and energy optimization in cellular networks. Built on transformer architectures, BERTO delivers high prediction accuracy, while its Balancing Loss Function and prompt-based customization allow operators to adjust the trade-off between power savings and performance. Natural language prompts guide the model to manage underprediction and overprediction in accordance with the operator's intent. Experiments on real-world datasets show that BERTO improves upon existing models with a $4.13$\% reduction in MSE while introducing the feature of balancing competing objectives of power saving and performance through simple natural language inputs, operating over a flexible range of $1.4$ kW in power and up to $9\times$ variation in service quality, making it well suited for intelligent RAN deployments.
☆ Comparing the latent features of universal machine-learning interatomic potentials
The past few years have seen the development of ``universal'' machine-learning interatomic potentials (uMLIPs) capable of approximating the ground-state potential energy surface across a wide range of chemical structures and compositions with reasonable accuracy. While these models differ in the architecture and the dataset used, they share the ability to compress a staggering amount of chemical information into descriptive latent features. Herein, we systematically analyze what the different uMLIPs have learned by quantitatively assessing the relative information content of their latent features with feature reconstruction errors as metrics, and observing how the trends are affected by the choice of training set and training protocol. We find that the uMLIPs encode chemical space in significantly distinct ways, with substantial cross-model feature reconstruction errors. When variants of the same model architecture are considered, trends become dependent on the dataset, target, and training protocol of choice. We also observe that fine-tuning of a uMLIP retains a strong pre-training bias in the latent features. Finally, we discuss how atom-level features, which are directly output by MLIPs, can be compressed into global structure-level features via concatenation of progressive cumulants, each adding significantly new information about the variability across the atomic environments within a given system.
☆ Meta-Learning Multi-armed Bandits for Beam Tracking in 5G and 6G Networks
Beamforming-capable antenna arrays with many elements enable higher data rates in next generation 5G and 6G networks. In current practice, analog beamforming uses a codebook of pre-configured beams with each of them radiating towards a specific direction, and a beam management function continuously selects \textit{optimal} beams for moving user equipments (UEs). However, large codebooks and effects caused by reflections or blockages of beams make an optimal beam selection challenging. In contrast to previous work and standardization efforts that opt for supervised learning to train classifiers to predict the next best beam based on previously selected beams we formulate the problem as a partially observable Markov decision process (POMDP) and model the environment as the codebook itself. At each time step, we select a candidate beam conditioned on the belief state of the unobservable optimal beam and previously probed beams. This frames the beam selection problem as an online search procedure that locates the moving optimal beam. In contrast to previous work, our method handles new or unforeseen trajectories and changes in the physical environment, and outperforms previous work by orders of magnitude.
☆ InverseCrafter: Efficient Video ReCapture as a Latent Domain Inverse Problem
Recent approaches to controllable 4D video generation often rely on fine-tuning pre-trained Video Diffusion Models (VDMs). This dominant paradigm is computationally expensive, requiring large-scale datasets and architectural modifications, and frequently suffers from catastrophic forgetting of the model's original generative priors. Here, we propose InverseCrafter, an efficient inpainting inverse solver that reformulates the 4D generation task as an inpainting problem solved in the latent space. The core of our method is a principled mechanism to encode the pixel space degradation operator into a continuous, multi-channel latent mask, thereby bypassing the costly bottleneck of repeated VAE operations and backpropagation. InverseCrafter not only achieves comparable novel view generation and superior measurement consistency in camera control tasks with near-zero computational overhead, but also excels at general-purpose video inpainting with editing. Code is available at https://github.com/yeobinhong/InverseCrafter.
☆ Feasibility of AI-Assisted Programming for End-User Development
End-user development,where non-programmers create or adapt their own digital tools, can play a key role in driving digital transformation within organizations. Currently, low-code/no-code platforms are widely used to enable end-user development through visual programming, minimizing the need for manual coding. Recent advancements in generative AI, particularly large language model-based assistants and "copilots", open new possibilities, as they may enable end users to generate and refine programming code and build apps directly from natural language prompts. This approach, here referred to as AI-assisted end-user coding, promises greater flexibility, broader applicability, faster development, improved reusability, and reduced vendor lock-in compared to the established visual LCNC platforms. This paper investigates whether AI-assisted end-user coding is a feasible paradigm for end-user development, which may complement or even replace the LCNC model in the future. To explore this, we conducted a case study in which non-programmers were asked to develop a basic web app through interaction with AI assistants.The majority of study participants successfully completed the task in reasonable time and also expressed support for AI-assisted end-user coding as a viable approach for end-user development. The paper presents the study design, analyzes the outcomes, and discusses potential implications for practice, future research, and academic teaching.
comment: 12 pages, 3 figures
☆ Over-the-Air Semantic Alignment with Stacked Intelligent Metasurfaces
Semantic communication systems aim to transmit task-relevant information between devices capable of artificial intelligence, but their performance can degrade when heterogeneous transmitter-receiver models produce misaligned latent representations. Existing semantic alignment methods typically rely on additional digital processing at the transmitter or receiver, increasing overall device complexity. In this work, we introduce the first over-the-air semantic alignment framework based on stacked intelligent metasurfaces (SIM), which enables latent-space alignment directly in the wave domain, reducing substantially the computational burden at the device level. We model SIMs as trainable linear operators capable of emulating both supervised linear aligners and zero-shot Parseval-frame-based equalizers. To realize these operators physically, we develop a gradient-based optimization procedure that tailors the metasurface transfer function to a desired semantic mapping. Experiments with heterogeneous vision transformer (ViT) encoders show that SIMs can accurately reproduce both supervised and zero-shot semantic equalizers, achieving up to 90% task accuracy in regimes with high signal-to-noise ratio (SNR), while maintaining strong robustness even at low SNR values.
☆ Beyond Data Filtering: Knowledge Localization for Capability Removal in LLMs
Large Language Models increasingly possess capabilities that carry dual-use risks. While data filtering has emerged as a pretraining-time mitigation, it faces significant challenges: labeling whether data is harmful is expensive at scale, and given improving sample efficiency with larger models, even small amounts of mislabeled content could give rise to dangerous capabilities. To address risks associated with mislabeled harmful content, prior work proposed Gradient Routing (Cloud et al., 2024) -- a technique that localizes target knowledge into a dedicated subset of model parameters so they can later be removed. We explore an improved variant of Gradient Routing, which we call Selective GradienT Masking (SGTM), with particular focus on evaluating its robustness to label noise. SGTM zero-masks selected gradients such that target domain examples only update their dedicated parameters. We test SGTM's effectiveness in two applications: removing knowledge of one language from a model trained on a bilingual synthetic dataset, and removing biology knowledge from a model trained on English Wikipedia. In both cases SGTM provides better retain/forget trade-off in the presence of labeling errors compared to both data filtering and a previously proposed instantiation of Gradient Routing. Unlike shallow unlearning approaches that can be quickly undone through fine-tuning, SGTM exhibits strong robustness to adversarial fine-tuning, requiring seven times more fine-tuning steps to reach baseline performance on the forget set compared to a finetuning-based unlearning method (RMU). Our results suggest SGTM provides a promising pretraining-time complement to existing safety mitigations, particularly in settings where label noise is unavoidable.
☆ Modular Jets for Supervised Pipelines: Diagnosing Mirage vs Identifiability
Classical supervised learning evaluates models primarily via predictive risk on hold-out data. Such evaluations quantify how well a function behaves on a distribution, but they do not address whether the internal decomposition of a model is uniquely determined by the data and evaluation design. In this paper, we introduce \emph{Modular Jets} for regression and classification pipelines. Given a task manifold (input space), a modular decomposition, and access to module-level representations, we estimate empirical jets, which are local linear response maps that describe how each module reacts to small structured perturbations of the input. We propose an empirical notion of \emph{mirage} regimes, where multiple distinct modular decompositions induce indistinguishable jets and thus remain observationally equivalent, and contrast this with an \emph{identifiable} regime, where the observed jets single out a decomposition up to natural symmetries. In the setting of two-module linear regression pipelines we prove a jet-identifiability theorem. Under mild rank assumptions and access to module-level jets, the internal factorisation is uniquely determined, whereas risk-only evaluation admits a large family of mirage decompositions that implement the same input-to-output map. We then present an algorithm (MoJet) for empirical jet estimation and mirage diagnostics, and illustrate the framework using linear and deep regression as well as pipeline classification.
☆ Bounded Graph Clustering with Graph Neural Networks
In community detection, many methods require the user to specify the number of clusters in advance since an exhaustive search over all possible values is computationally infeasible. While some classical algorithms can infer this number directly from the data, this is typically not the case for graph neural networks (GNNs): even when a desired number of clusters is specified, standard GNN-based methods often fail to return the exact number due to the way they are designed. In this work, we address this limitation by introducing a flexible and principled way to control the number of communities discovered by GNNs. Rather than assuming the true number of clusters is known, we propose a framework that allows the user to specify a plausible range and enforce these bounds during training. However, if the user wants an exact number of clusters, it may also be specified and reliably returned.
comment: 17 pages, 8 figures
☆ Hyperparameter Transfer Enables Consistent Gains of Matrix-Preconditioned Optimizers Across Scales NeurIPS 2025
Several recently introduced deep learning optimizers utilizing matrix-level preconditioning have shown promising speedups relative to the current dominant optimizer AdamW, particularly in relatively small-scale experiments. However, efforts to validate and replicate their successes have reported mixed results. To better understand the effectiveness of these optimizers at scale, in this work we investigate how to scale preconditioned optimizers via hyperparameter transfer, building on prior works such as $μ$P. We study how the optimal learning rate and weight decay should scale with model width and depth for a wide range of optimizers, including Shampoo, SOAP, and Muon, accounting for the impact of commonly used techniques such as blocking and grafting. We find that scaling the learning rate according to $μ$P improves transfer, but can still suffer from significant finite-width deviations that cause drifting optimal learning rates, which we show can be mitigated by blocking and explicit spectral normalization. For compute-optimal scaling, we find scaling independent weight decay as $1/\mathrm{width}$ is nearly optimal across optimizers. Applying these scaling rules, we show Muon and Shampoo consistently achieve $1.4\times$ and $1.3\times$ speedup over AdamW for training Llama-architecture language models of sizes ranging from $190$M to $1.4$B, whereas the speedup vanishes rapidly with scale under incorrect scaling. Based on these results and further ablations, we argue that studying optimal hyperparameter transfer is essential for reliably comparing optimizers at scale given a realistic tuning budget.
comment: NeurIPS 2025. Code available at: https://github.com/charliezchen/scaling-matrix-preconditioning
☆ Design-marginal calibration of Gaussian process predictive distributions: Bayesian and conformal approaches
We study the calibration of Gaussian process (GP) predictive distributions in the interpolation setting from a design-marginal perspective. Conditioning on the data and averaging over a design measure μ, we formalize μ-coverage for central intervals and μ-probabilistic calibration through randomized probability integral transforms. We introduce two methods. cps-gp adapts conformal predictive systems to GP interpolation using standardized leave-one-out residuals, yielding stepwise predictive distributions with finite-sample marginal calibration. bcr-gp retains the GP posterior mean and replaces the Gaussian residual by a generalized normal model fitted to cross-validated standardized residuals. A Bayesian selection rule-based either on a posterior upper quantile of the variance for conservative prediction or on a cross-posterior Kolmogorov-Smirnov criterion for probabilistic calibration-controls dispersion and tail behavior while producing smooth predictive distributions suitable for sequential design. Numerical experiments on benchmark functions compare cps-gp, bcr-gp, Jackknife+ for GPs, and the full conformal Gaussian process, using calibration metrics (coverage, Kolmogorov-Smirnov, integral absolute error) and accuracy or sharpness through the scaled continuous ranked probability score.
☆ Entropy Ratio Clipping as a Soft Global Constraint for Stable Reinforcement Learning
Large language model post-training relies on reinforcement learning to improve model capability and alignment quality. However, the off-policy training paradigm introduces distribution shift, which often pushes the policy beyond the trust region, leading to training instabilities manifested as fluctuations in policy entropy and unstable gradients. Although PPO-Clip mitigates this issue through importance clipping, it still overlooks the global distributional shift of actions. To address these challenges, we propose using the entropy ratio between the current and previous policies as a new global metric that effectively quantifies the relative change in policy exploration throughout updates. Building on this metric, we introduce an \textbf{Entropy Ratio Clipping} (ERC) mechanism that imposes bidirectional constraints on the entropy ratio. This stabilizes policy updates at the global distribution level and compensates for the inability of PPO-clip to regulate probability shifts of un-sampled actions. We integrate ERC into both DAPO and GPPO reinforcement learning algorithms. Experiments across multiple benchmarks show that ERC consistently improves performance.
☆ Wasserstein distance based semi-supervised manifold learning and application to GNSS multi-path detection
The main objective of this study is to propose an optimal transport based semi-supervised approach to learn from scarce labelled image data using deep convolutional networks. The principle lies in implicit graph-based transductive semi-supervised learning where the similarity metric between image samples is the Wasserstein distance. This metric is used in the label propagation mechanism during learning. We apply and demonstrate the effectiveness of the method on a GNSS real life application. More specifically, we address the problem of multi-path interference detection. Experiments are conducted under various signal conditions. The results show that for specific choices of hyperparameters controlling the amount of semi-supervision and the level of sensitivity to the metric, the classification accuracy can be significantly improved over the fully supervised training method.
☆ Improving Local Fidelity Through Sampling and Modeling Nonlinearity
With the increasing complexity of black-box machine learning models and their adoption in high-stakes areas, it is critical to provide explanations for their predictions. Local Interpretable Model-agnostic Explanation (LIME) is a widely used technique that explains the prediction of any classifier by learning an interpretable model locally around the predicted instance. However, it assumes that the local decision boundary is linear and fails to capture the non-linear relationships, leading to incorrect explanations. In this paper, we propose a novel method that can generate high-fidelity explanations. Multivariate adaptive regression splines (MARS) is used to model non-linear local boundaries that effectively captures the underlying behavior of the reference model, thereby enhancing the local fidelity of the explanation. Additionally, we utilize the N-ball sampling technique, which samples directly from the desired distribution instead of reweighting samples as done in LIME, further improving the faithfulness score. We evaluate our method on three UCI datasets across different classifiers and varying kernel widths. Experimental results show that our method yields more faithful explanations compared to baselines, achieving an average reduction of 37% in root mean square error, significantly improving local fidelity.
☆ RoBoN: Routed Online Best-of-n for Test-Time Scaling with Multiple LLMs NeurIPS 2025
Best-of-$n$ is a widely used test-time scaling approach for LLM inference. Yet despite evidence that LLMs exhibit complementary strengths across tasks, traditionally best-of-$n$ relies on a single model to generate responses. We propose RoBoN (Routed Online Best-of-$n$), a sequential multi-LLM alternative to the prevailing single-model best-of-$n$. Given a suite of models $\{m_i\}_{i=1}^M$, RoBoN sequentially routes generations one-by-one across models, based on scores computed using a reward model and an agreement signal on the predicted responses. This online routing requires no additional training, keeps compute parity, and works with any plug-in reward model. Across reasoning benchmarks (MATH500, OlympiadBench, MinervaMath, GSM8K, MMLU), RoBoN consistently outperforms standard best-of-$n$ applied to each individual model for larger $n$, with gains of up to 3.4\% in absolute accuracy, and also improves over a uniform multi-model portfolio baseline. Our results indicate that diversity across models can be exploited at inference to improve best-of-$n$ performance over any constituent model alone, providing a simple, training-free path to test-time scaling with multiple LLMs.
comment: 20 pages, 3 figures. 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Foundations of Reasoning in Language Models
☆ SCoNE: Spherical Consistent Neighborhoods Ensemble for Effective and Efficient Multi-View Anomaly Detection
The core problem in multi-view anomaly detection is to represent local neighborhoods of normal instances consistently across all views. Recent approaches consider a representation of local neighborhood in each view independently, and then capture the consistent neighbors across all views via a learning process. They suffer from two key issues. First, there is no guarantee that they can capture consistent neighbors well, especially when the same neighbors are in regions of varied densities in different views, resulting in inferior detection accuracy. Second, the learning process has a high computational cost of $\mathcal{O}(N^2)$, rendering them inapplicable for large datasets. To address these issues, we propose a novel method termed \textbf{S}pherical \textbf{C}onsistent \textbf{N}eighborhoods \textbf{E}nsemble (SCoNE). It has two unique features: (a) the consistent neighborhoods are represented with multi-view instances directly, requiring no intermediate representations as used in existing approaches; and (b) the neighborhoods have data-dependent properties, which lead to large neighborhoods in sparse regions and small neighborhoods in dense regions. The data-dependent properties enable local neighborhoods in different views to be represented well as consistent neighborhoods, without learning. This leads to $\mathcal{O}(N)$ time complexity. Empirical evaluations show that SCoNE has superior detection accuracy and runs orders-of-magnitude faster in large datasets than existing approaches.
☆ On the Theoretical Foundation of Sparse Dictionary Learning in Mechanistic Interpretability
As AI models achieve remarkable capabilities across diverse domains, understanding what representations they learn and how they process information has become increasingly important for both scientific progress and trustworthy deployment. Recent works in mechanistic interpretability have shown that neural networks represent meaningful concepts as directions in their representation spaces and often encode many concepts in superposition. Various sparse dictionary learning (SDL) methods, including sparse autoencoders, transcoders, and crosscoders, address this by training auxiliary models with sparsity constraints to disentangle these superposed concepts into interpretable features. These methods have demonstrated remarkable empirical success but have limited theoretical understanding. Existing theoretical work is limited to sparse autoencoders with tied-weight constraints, leaving the broader family of SDL methods without formal grounding. In this work, we develop the first unified theoretical framework considering SDL as one unified optimization problem. We demonstrate how diverse methods instantiate the theoretical framwork and provide rigorous analysis on the optimization landscape. We provide the first theoretical explanations for some empirically observed phenomena, including feature absorption, dead neurons, and the neuron resampling technique. We further design controlled experiments to validate our theoretical results.
☆ IDK-S: Incremental Distributional Kernel for Streaming Anomaly Detection
Anomaly detection on data streams presents significant challenges, requiring methods to maintain high detection accuracy among evolving distributions while ensuring real-time efficiency. Here we introduce $\mathcal{IDK}$-$\mathcal{S}$, a novel $\mathbf{I}$ncremental $\mathbf{D}$istributional $\mathbf{K}$ernel for $\mathbf{S}$treaming anomaly detection that effectively addresses these challenges by creating a new dynamic representation in the kernel mean embedding framework. The superiority of $\mathcal{IDK}$-$\mathcal{S}$ is attributed to two key innovations. First, it inherits the strengths of the Isolation Distributional Kernel, an offline detector that has demonstrated significant performance advantages over foundational methods like Isolation Forest and Local Outlier Factor due to the use of a data-dependent kernel. Second, it adopts a lightweight incremental update mechanism that significantly reduces computational overhead compared to the naive baseline strategy of performing a full model retraining. This is achieved without compromising detection accuracy, a claim supported by its statistical equivalence to the full retrained model. Our extensive experiments on thirteen benchmarks demonstrate that $\mathcal{IDK}$-$\mathcal{S}$ achieves superior detection accuracy while operating substantially faster, in many cases by an order of magnitude, than existing state-of-the-art methods.
☆ Decoding Selective Auditory Attention to Musical Elements in Ecologically Valid Music Listening
Art has long played a profound role in shaping human emotion, cognition, and behavior. While visual arts such as painting and architecture have been studied through eye tracking, revealing distinct gaze patterns between experts and novices, analogous methods for auditory art forms remain underdeveloped. Music, despite being a pervasive component of modern life and culture, still lacks objective tools to quantify listeners' attention and perceptual focus during natural listening experiences. To our knowledge, this is the first attempt to decode selective attention to musical elements using naturalistic, studio-produced songs and a lightweight consumer-grade EEG device with only four electrodes. By analyzing neural responses during real world like music listening, we test whether decoding is feasible under conditions that minimize participant burden and preserve the authenticity of the musical experience. Our contributions are fourfold: (i) decoding music attention in real studio-produced songs, (ii) demonstrating feasibility with a four-channel consumer EEG, (iii) providing insights for music attention decoding, and (iv) demonstrating improved model ability over prior work. Our findings suggest that musical attention can be decoded not only for novel songs but also across new subjects, showing performance improvements compared to existing approaches under our tested conditions. These findings show that consumer-grade devices can reliably capture signals, and that neural decoding in music could be feasible in real-world settings. This paves the way for applications in education, personalized music technologies, and therapeutic interventions.
☆ Credal and Interval Deep Evidential Classifications
Uncertainty Quantification (UQ) presents a pivotal challenge in the field of Artificial Intelligence (AI), profoundly impacting decision-making, risk assessment and model reliability. In this paper, we introduce Credal and Interval Deep Evidential Classifications (CDEC and IDEC, respectively) as novel approaches to address UQ in classification tasks. CDEC and IDEC leverage a credal set (closed and convex set of probabilities) and an interval of evidential predictive distributions, respectively, allowing us to avoid overfitting to the training data and to systematically assess both epistemic (reducible) and aleatoric (irreducible) uncertainties. When those surpass acceptable thresholds, CDEC and IDEC have the capability to abstain from classification and flag an excess of epistemic or aleatoric uncertainty, as relevant. Conversely, within acceptable uncertainty bounds, CDEC and IDEC provide a collection of labels with robust probabilistic guarantees. CDEC and IDEC are trained using standard backpropagation and a loss function that draws from the theory of evidence. They overcome the shortcomings of previous efforts, and extend the current evidential deep learning literature. Through extensive experiments on MNIST, CIFAR-10 and CIFAR-100, together with their natural OoD shifts (F-MNIST/K-MNIST, SVHN/Intel, TinyImageNet), we show that CDEC and IDEC achieve competitive predictive accuracy, state-of-the-art OoD detection under epistemic and total uncertainty, and tight, well-calibrated prediction regions that expand reliably under distribution shift. An ablation over ensemble size further demonstrates that CDEC attains stable uncertainty estimates with only a small ensemble.
☆ Poodle: Seamlessly Scaling Down Large Language Models with Just-in-Time Model Replacement
Businesses increasingly rely on large language models (LLMs) to automate simple repetitive tasks instead of developing custom machine learning models. LLMs require few, if any, training examples and can be utilized by users without expertise in model development. However, this comes at the cost of substantially higher resource and energy consumption compared to smaller models, which often achieve similar predictive performance for simple tasks. In this paper, we present our vision for just-in-time model replacement (JITR), where, upon identifying a recurring task in calls to an LLM, the model is replaced transparently with a cheaper alternative that performs well for this specific task. JITR retains the ease of use and low development effort of LLMs, while saving significant cost and energy. We discuss the main challenges in realizing our vision regarding the identification of recurring tasks and the creation of a custom model. Specifically, we argue that model search and transfer learning will play a crucial role in JITR to efficiently identify and fine-tune models for a recurring task. Using our JITR prototype Poodle, we achieve significant savings for exemplary tasks.
☆ DashFusion: Dual-stream Alignment with Hierarchical Bottleneck Fusion for Multimodal Sentiment Analysis
Multimodal sentiment analysis (MSA) integrates various modalities, such as text, image, and audio, to provide a more comprehensive understanding of sentiment. However, effective MSA is challenged by alignment and fusion issues. Alignment requires synchronizing both temporal and semantic information across modalities, while fusion involves integrating these aligned features into a unified representation. Existing methods often address alignment or fusion in isolation, leading to limitations in performance and efficiency. To tackle these issues, we propose a novel framework called Dual-stream Alignment with Hierarchical Bottleneck Fusion (DashFusion). Firstly, dual-stream alignment module synchronizes multimodal features through temporal and semantic alignment. Temporal alignment employs cross-modal attention to establish frame-level correspondences among multimodal sequences. Semantic alignment ensures consistency across the feature space through contrastive learning. Secondly, supervised contrastive learning leverages label information to refine the modality features. Finally, hierarchical bottleneck fusion progressively integrates multimodal information through compressed bottleneck tokens, which achieves a balance between performance and computational efficiency. We evaluate DashFusion on three datasets: CMU-MOSI, CMU-MOSEI, and CH-SIMS. Experimental results demonstrate that DashFusion achieves state-of-the-art performance across various metrics, and ablation studies confirm the effectiveness of our alignment and fusion techniques. The codes for our experiments are available at https://github.com/ultramarineX/DashFusion.
comment: Accepted to IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2025
☆ Lyrics Matter: Exploiting the Power of Learnt Representations for Music Popularity Prediction
Accurately predicting music popularity is a critical challenge in the music industry, offering benefits to artists, producers, and streaming platforms. Prior research has largely focused on audio features, social metadata, or model architectures. This work addresses the under-explored role of lyrics in predicting popularity. We present an automated pipeline that uses LLM to extract high-dimensional lyric embeddings, capturing semantic, syntactic, and sequential information. These features are integrated into HitMusicLyricNet, a multimodal architecture that combines audio, lyrics, and social metadata for popularity score prediction in the range 0-100. Our method outperforms existing baselines on the SpotGenTrack dataset, which contains over 100,000 tracks, achieving 9% and 20% improvements in MAE and MSE, respectively. Ablation confirms that gains arise from our LLM-driven lyrics feature pipeline (LyricsAENet), underscoring the value of dense lyric representations.
comment: 8 pages
☆ GRASP: Graph Reasoning Agents for Systems Pharmacology with Human-in-the-Loop
Quantitative Systems Pharmacology (QSP) modeling is essential for drug development but it requires significant time investment that limits the throughput of domain experts. We present \textbf{GRASP} -- a multi-agent, graph-reasoning framework with a human-in-the-loop conversational interface -- that encodes QSP models as typed biological knowledge graphs and compiles them to executable MATLAB/SimBiology code while preserving units, mass balance, and physiological constraints. A two-phase workflow -- \textsc{Understanding} (graph reconstruction of legacy code) and \textsc{Action} (constraint-checked, language-driven modification) -- is orchestrated by a state machine with iterative validation. GRASP performs breadth-first parameter-alignment around new entities to surface dependent quantities and propose biologically plausible defaults, and it runs automatic execution/diagnostics until convergence. In head-to-head evaluations using LLM-as-judge, GRASP outperforms SME-guided CoT and ToT baselines across biological plausibility, mathematical correctness, structural fidelity, and code quality (\(\approx\)9--10/10 vs.\ 5--7/10). BFS alignment achieves F1 = 0.95 for dependency discovery, units, and range. These results demonstrate that graph-structured, agentic workflows can make QSP model development both accessible and rigorous, enabling domain experts to specify mechanisms in natural language without sacrificing biomedical fidelity.
☆ SSDLabeler: Realistic semi-synthetic data generation for multi-label artifact classification in EEG
EEG recordings are inherently contaminated by artifacts such as ocular, muscular, and environmental noise, which obscure neural activity and complicate preprocessing. Artifact classification offers advantages in stability and transparency, providing a viable alternative to ICA-based methods that enable flexible use alongside human inspections and across various applications. However, artifact classification is limited by its training data as it requires extensive manual labeling, which cannot fully cover the diversity of real-world EEG. Semi-synthetic data (SSD) methods have been proposed to address this limitation, but prior approaches typically injected single artifact types using ICA components or required separately recorded artifact signals, reducing both the realism of the generated data and the applicability of the method. To overcome these issues, we introduce SSDLabeler, a framework that generates realistic, annotated SSDs by decomposing real EEG with ICA, epoch-level artifact verification using RMS and PSD criteria, and reinjecting multiple artifact types into clean data. When applied to train a multi-label artifact classifier, it improved accuracy on raw EEG across diverse conditions compared to prior SSD and raw EEG training, establishing a scalable foundation for artifact handling that captures the co-occurrence and complexity of real EEG.
☆ Turbulence Regression
Air turbulence refers to the disordered and irregular motion state generated by drastic changes in velocity, pressure, or direction during airflow. Various complex factors lead to intricate low-altitude turbulence outcomes. Under current observational conditions, especially when using only wind profile radar data, traditional methods struggle to accurately predict turbulence states. Therefore, this paper introduces a NeuTucker decomposition model utilizing discretized data. Designed for continuous yet sparse three-dimensional wind field data, it constructs a low-rank Tucker decomposition model based on a Tucker neural network to capture the latent interactions within the three-dimensional wind field data. Therefore, two core ideas are proposed here: 1) Discretizing continuous input data to adapt to models like NeuTucF that require discrete data inputs. 2) Constructing a four-dimensional Tucker interaction tensor to represent all possible spatio-temporal interactions among different elevations and three-dimensional wind speeds. In estimating missing observations in real datasets, this discretized NeuTucF model demonstrates superior performance compared to various common regression models.
☆ PERM EQ x GRAPH EQ: Equivariant Neural Networks for Quantum Molecular Learning
In hierarchal order of molecular geometry, we compare the performances of Geometric Quantum Machine Learning models. Two molecular datasets are considered: the simplistic linear shaped LiH-molecule and the trigonal pyramidal molecule NH3. Both accuracy and generalizability metrics are considered. A classical equivariant model is used as a baseline for the performance comparison. The comparative performance of Quantum Machine Learning models with no symmetry equivariance, rotational and permutational equivariance, and graph embedded permutational equivariance is investigated. The performance differentials and the molecular geometry in question reveals the criteria for choice of models for generalizability. Graph embedding of features is shown to be an effective pathway to greater trainability for geometric datasets. Permutational symmetric embedding is found to be the most generalizable quantum Machine Learning model for geometric learning.
comment: 22 pages, 9 figures, 4 tables
☆ How Ensemble Learning Balances Accuracy and Overfitting: A Bias-Variance Perspective on Tabular Data
Ensemble models often achieve higher accuracy than single learners, but their ability to maintain small generalization gaps is not always well understood. This study examines how ensembles balance accuracy and overfitting across four tabular classification tasks: Breast Cancer, Heart Disease, Pima Diabetes, and Credit Card Fraud. Using repeated stratified cross validation with statistical significance testing, we compare linear models, a single decision tree, and nine ensemble methods. The results show that ensembles can reach high accuracy without large gaps by reducing variance through averaging or controlled boosting. On nearly linear and clean data, linear models already generalize well and ensembles offer little additional benefit. On datasets with meaningful nonlinear structure, tree based ensembles increase test accuracy by 5 to 7 points while keeping gaps below 3 percent. On noisy or highly imbalanced datasets, ensembles remain competitive but require regularization to avoid fitting noise or majority class patterns. We also compute simple dataset complexity indicators, such as linearity score, Fisher ratio, and noise estimate, which explain when ensembles are likely to control variance effectively. Overall, the study provides a clear view of how and when ensembles maintain high accuracy while keeping overfitting low, offering practical guidance for model selection in real world tabular applications.
comment: 11 pages, 9 figures, 3 tables. Code and reproducible experiments are available at: https://github.com/zubair0831/ensemble-generalization-gap
☆ Model Gateway: Model Management Platform for Model-Driven Drug Discovery
This paper presents the Model Gateway, a management platform for managing machine learning (ML) and scientific computational models in the drug discovery pipeline. The platform supports Large Language Model (LLM) Agents and Generative AI-based tools to perform ML model management tasks in our Machine Learning operations (MLOps) pipelines, such as the dynamic consensus model, a model that aggregates several scientific computational models, registration and management, retrieving model information, asynchronous submission/execution of models, and receiving results once the model complete executions. The platform includes a Model Owner Control Panel, Platform Admin Tools, and Model Gateway API service for interacting with the platform and tracking model execution. The platform achieves a 0% failure rate when testing scaling beyond 10k simultaneous application clients consume models. The Model Gateway is a fundamental part of our model-driven drug discovery pipeline. It has the potential to significantly accelerate the development of new drugs with the maturity of our MLOps infrastructure and the integration of LLM Agents and Generative AI tools.
comment: 7 pages, 7 figures
☆ Do We Really Even Need Data? A Modern Look at Drawing Inference with Predicted Data
As artificial intelligence and machine learning tools become more accessible, and scientists face new obstacles to data collection (e.g., rising costs, declining survey response rates), researchers increasingly use predictions from pre-trained algorithms as substitutes for missing or unobserved data. Though appealing for financial and logistical reasons, using standard tools for inference can misrepresent the association between independent variables and the outcome of interest when the true, unobserved outcome is replaced by a predicted value. In this paper, we characterize the statistical challenges inherent to drawing inference with predicted data (IPD) and show that high predictive accuracy does not guarantee valid downstream inference. We show that all such failures reduce to statistical notions of (i) bias, when predictions systematically shift the estimand or distort relationships among variables, and (ii) variance, when uncertainty from the prediction model and the intrinsic variability of the true data are ignored. We then review recent methods for conducting IPD and discuss how this framework is deeply rooted in classical statistical theory. We then comment on some open questions and interesting avenues for future work in this area, and end with some comments on how to use predicted data in scientific studies that is both transparent and statistically principled.
comment: 32 pages, 9 figures, 3 tables
☆ IdealTSF: Can Non-Ideal Data Contribute to Enhancing the Performance of Time Series Forecasting Models? AAAI 2026
Deep learning has shown strong performance in time series forecasting tasks. However, issues such as missing values and anomalies in sequential data hinder its further development in prediction tasks. Previous research has primarily focused on extracting feature information from sequence data or addressing these suboptimal data as positive samples for knowledge transfer. A more effective approach would be to leverage these non-ideal negative samples to enhance event prediction. In response, this study highlights the advantages of non-ideal negative samples and proposes the IdealTSF framework, which integrates both ideal positive and negative samples for time series forecasting. IdealTSF consists of three progressive steps: pretraining, training, and optimization. It first pretrains the model by extracting knowledge from negative sample data, then transforms the sequence data into ideal positive samples during training. Additionally, a negative optimization mechanism with adversarial disturbances is applied. Extensive experiments demonstrate that negative sample data unlocks significant potential within the basic attention architecture for time series forecasting. Therefore, IdealTSF is particularly well-suited for applications with noisy samples or low-quality data.
comment: Accepted at AAAI 2026
☆ EXR: An Interactive Immersive EHR Visualization in Extended Reality
This paper presents the design and implementation of an Extended Reality (XR) platform for immersive, interactive visualization of Electronic Health Records (EHRs). The system extends beyond conventional 2D interfaces by visualizing both structured and unstructured patient data into a shared 3D environment, enabling intuitive exploration and real-time collaboration. The modular infrastructure integrates FHIR-based EHR data with volumetric medical imaging and AI-generated segmentation, ensuring interoperability with modern healthcare systems. The platform's capabilities are demonstrated using synthetic EHR datasets and computed tomography (CT)-derived spine models processed through an AI-powered segmentation pipeline. This work suggests that such integrated XR solutions could form the foundation for next-generation clinical decision-support tools, where advanced data infrastructures are directly accessible in an interactive and spatially rich environment.
comment: 11 pages, 6 figures. Preprint version. This paper has been accepted to IEEE ICIR 2025. This is the author-prepared version and not the final published version. The final version will appear in IEEE Xplo
☆ ArtistMus: A Globally Diverse, Artist-Centric Benchmark for Retrieval-Augmented Music Question Answering
Recent advances in large language models (LLMs) have transformed open-domain question answering, yet their effectiveness in music-related reasoning remains limited due to sparse music knowledge in pretraining data. While music information retrieval and computational musicology have explored structured and multimodal understanding, few resources support factual and contextual music question answering (MQA) grounded in artist metadata or historical context. We introduce MusWikiDB, a vector database of 3.2M passages from 144K music-related Wikipedia pages, and ArtistMus, a benchmark of 1,000 questions on 500 diverse artists with metadata such as genre, debut year, and topic. These resources enable systematic evaluation of retrieval-augmented generation (RAG) for MQA. Experiments show that RAG markedly improves factual accuracy; open-source models gain up to +56.8 percentage points (for example, Qwen3 8B improves from 35.0 to 91.8), approaching proprietary model performance. RAG-style fine-tuning further boosts both factual recall and contextual reasoning, improving results on both in-domain and out-of-domain benchmarks. MusWikiDB also yields approximately 6 percentage points higher accuracy and 40% faster retrieval than a general-purpose Wikipedia corpus. We release MusWikiDB and ArtistMus to advance research in music information retrieval and domain-specific question answering, establishing a foundation for retrieval-augmented reasoning in culturally rich domains such as music.
comment: Submitted to LREC 2026. This work is an evolution of our earlier preprint arXiv:2507.23334
☆ TS-HINT: Enhancing Semiconductor Time Series Regression Using Attention Hints From Large Language Model Reasoning
Existing data-driven methods rely on the extraction of static features from time series to approximate the material removal rate (MRR) of semiconductor manufacturing processes such as chemical mechanical polishing (CMP). However, this leads to a loss of temporal dynamics. Moreover, these methods require a large amount of data for effective training. In this paper, we propose TS-Hint, a Time Series Foundation Model (TSFM) framework, integrated with chain-of-thought reasoning which provides attention hints during training based on attention mechanism data and saliency data. Experimental results demonstrate the effectiveness of our model in limited data settings via few-shot learning and can learn directly from multivariate time series features.
☆ Sepsis Prediction Using Graph Convolutional Networks over Patient-Feature-Value Triplets
In the intensive care setting, sepsis continues to be a major contributor to patient illness and death; however, its timely detection is hindered by the complex, sparse, and heterogeneous nature of electronic health record (EHR) data. We propose Triplet-GCN, a single-branch graph convolutional model that represents each encounter as patient-feature-value triplets, constructs a bipartite EHR graph, and learns patient embeddings via a Graph Convolutional Network (GCN) followed by a lightweight multilayer perceptron (MLP). The pipeline applies type-specific preprocessing -- median imputation and standardization for numeric variables, effect coding for binary features, and mode imputation with low-dimensional embeddings for rare categorical attributes -- and initializes patient nodes with summary statistics, while retaining measurement values on edges to preserve "who measured what and by how much". In a retrospective, multi-center Chinese cohort (N = 648; 70/30 train-test split) drawn from three tertiary hospitals, Triplet-GCN consistently outperforms strong tabular baselines (KNN, SVM, XGBoost, Random Forest) across discrimination and balanced error metrics, yielding a more favorable sensitivity-specificity trade-off and improved overall utility for early warning. These findings indicate that encoding EHR as triplets and propagating information over a patient-feature graph produce more informative patient representations than feature-independent models, offering a simple, end-to-end blueprint for deployable sepsis risk stratification.
☆ Moving object detection from multi-depth images with an attention-enhanced CNN
One of the greatest challenges for detecting moving objects in the solar system from wide-field survey data is determining whether a signal indicates a true object or is due to some other source, like noise. Object verification has relied heavily on human eyes, which usually results in significant labor costs. In order to address this limitation and reduce the reliance on manual intervention, we propose a multi-input convolutional neural network integrated with a convolutional block attention module. This method is specifically tailored to enhance the moving object detection system that we have developed and used previously. The current method introduces two innovations. This first one is a multi-input architecture that processes multiple stacked images simultaneously. The second is the incorporation of the convolutional block attention module which enables the model to focus on essential features in both spatial and channel dimensions. These advancements facilitate efficient learning from multiple inputs, leading to more robust detection of moving objects. The performance of the model is evaluated on a dataset consisting of approximately 2,000 observational images. We achieved an accuracy of nearly 99% with AUC (an Area Under the Curve) of >0.99. These metrics indicate that the proposed model achieves excellent classification performance. By adjusting the threshold for object detection, the new model reduces the human workload by more than 99% compared to manual verification.
comment: 14 pages, 22 figures, submitted to PASJ
☆ RevoNAD: Reflective Evolutionary Exploration for Neural Architecture Design
Recent progress in leveraging large language models (LLMs) has enabled Neural Architecture Design (NAD) systems to generate new architecture not limited from manually predefined search space. Nevertheless, LLM-driven generation remains challenging: the token-level design loop is discrete and non-differentiable, preventing feedback from smoothly guiding architectural improvement. These methods, in turn, commonly suffer from mode collapse into redundant structures or drift toward infeasible designs when constructive reasoning is not well grounded. We introduce RevoNAD, a reflective evolutionary orchestrator that effectively bridges LLM-based reasoning with feedback-aligned architectural search. First, RevoNAD presents a Multi-round Multi-expert Consensus to transfer isolated design rules into meaningful architectural clues. Then, Adaptive Reflective Exploration adjusts the degree of exploration leveraging reward variance; it explores when feedback is uncertain and refines when stability is reached. Finally, Pareto-guided Evolutionary Selection effectively promotes architectures that jointly optimize accuracy, efficiency, latency, confidence, and structural diversity. Across CIFAR10, CIFAR100, ImageNet16-120, COCO-5K, and Cityscape, RevoNAD achieves state-of-the-art performance. Ablation and transfer studies further validate the effectiveness of RevoNAD in allowing practically reliable, and deployable neural architecture design.
☆ Smart Timing for Mining: A Deep Learning Framework for Bitcoin Hardware ROI Prediction
Bitcoin mining hardware acquisition requires strategic timing due to volatile markets, rapid technological obsolescence, and protocol-driven revenue cycles. Despite mining's evolution into a capital-intensive industry, there is little guidance on when to purchase new Application-Specific Integrated Circuit (ASIC) hardware, and no prior computational frameworks address this decision problem. We address this gap by formulating hardware acquisition as a time series classification task, predicting whether purchasing ASIC machines yields profitable (Return on Investment (ROI) >= 1), marginal (0 < ROI < 1), or unprofitable (ROI <= 0) returns within one year. We propose MineROI-Net, an open source Transformer-based architecture designed to capture multi-scale temporal patterns in mining profitability. Evaluated on data from 20 ASIC miners released between 2015 and 2024 across diverse market regimes, MineROI-Net outperforms LSTM-based and TSLANet baselines, achieving 83.7% accuracy and 83.1% macro F1-score. The model demonstrates strong economic relevance, achieving 93.6% precision in detecting unprofitable periods and 98.5% precision for profitable ones, while avoiding misclassification of profitable scenarios as unprofitable and vice versa. These results indicate that MineROI-Net offers a practical, data-driven tool for timing mining hardware acquisitions, potentially reducing financial risk in capital-intensive mining operations. The model is available through: https://github.com/AMAAI-Lab/MineROI-Net.
☆ Generalization Beyond Benchmarks: Evaluating Learnable Protein-Ligand Scoring Functions on Unseen Targets NeurIPS 2025
As machine learning becomes increasingly central to molecular design, it is vital to ensure the reliability of learnable protein-ligand scoring functions on novel protein targets. While many scoring functions perform well on standard benchmarks, their ability to generalize beyond training data remains a significant challenge. In this work, we evaluate the generalization capability of state-of-the-art scoring functions on dataset splits that simulate evaluation on targets with a limited number of known structures and experimental affinity measurements. Our analysis reveals that the commonly used benchmarks do not reflect the true challenge of generalizing to novel targets. We also investigate whether large-scale self-supervised pretraining can bridge this generalization gap and we provide preliminary evidence of its potential. Furthermore, we probe the efficacy of simple methods that leverage limited test-target data to improve scoring function performance. Our findings underscore the need for more rigorous evaluation protocols and offer practical guidance for designing scoring functions with predictive power extending to novel protein targets.
comment: 15 pages, 6 figures, submitted to NeurIPS 2025 AI4Science Workshop
☆ China Regional 3km Downscaling Based on Residual Corrective Diffusion Model
A fundamental challenge in numerical weather prediction is to efficiently produce high-resolution forecasts. A common solution is applying downscaling methods, which include dynamical downscaling and statistical downscaling, to the outputs of global models. This work focuses on statistical downscaling, which establishes statistical relationships between low-resolution and high-resolution historical data using statistical models. Deep learning has emerged as a powerful tool for this task, giving rise to various high-performance super-resolution models, which can be directly applied for downscaling, such as diffusion models and Generative Adversarial Networks. This work relies on a diffusion-based downscaling framework named CorrDiff. In contrast to the original work of CorrDiff, the region considered in this work is nearly 20 times larger, and we not only consider surface variables as in the original work, but also encounter high-level variables (six pressure levels) as target downscaling variables. In addition, a global residual connection is added to improve accuracy. In order to generate the 3km forecasts for the China region, we apply our trained models to the 25km global grid forecasts of CMA-GFS, an operational global model of the China Meteorological Administration (CMA), and SFF, a data-driven deep learning-based weather model developed from Spherical Fourier Neural Operators (SFNO). CMA-MESO, a high-resolution regional model, is chosen as the baseline model. The experimental results demonstrate that the forecasts downscaled by our method generally outperform the direct forecasts of CMA-MESO in terms of MAE for the target variables. Our forecasts of radar composite reflectivity show that CorrDiff, as a generative model, can generate fine-scale details that lead to more realistic predictions compared to the corresponding deterministic regression models.
☆ Text Rationalization for Robust Causal Effect Estimation
Recent advances in natural language processing have enabled the increasing use of text data in causal inference, particularly for adjusting confounding factors in treatment effect estimation. Although high-dimensional text can encode rich contextual information, it also poses unique challenges for causal identification and estimation. In particular, the positivity assumption, which requires sufficient treatment overlap across confounder values, is often violated at the observational level, when massive text is represented in feature spaces. Redundant or spurious textual features inflate dimensionality, producing extreme propensity scores, unstable weights, and inflated variance in effect estimates. We address these challenges with Confounding-Aware Token Rationalization (CATR), a framework that selects a sparse necessary subset of tokens using a residual-independence diagnostic designed to preserve confounding information sufficient for unconfoundedness. By discarding irrelevant texts while retaining key signals, CATR mitigates observational-level positivity violations and stabilizes downstream causal effect estimators. Experiments on synthetic data and a real-world study using the MIMIC-III database demonstrate that CATR yields more accurate, stable, and interpretable causal effect estimates than existing baselines.
☆ Enhancing Dimensionality Prediction in Hybrid Metal Halides via Feature Engineering and Class-Imbalance Mitigation
We present a machine learning framework for predicting the structural dimensionality of hybrid metal halides (HMHs), including organic-inorganic perovskites, using a combination of chemically-informed feature engineering and advanced class-imbalance handling techniques. The dataset, consisting of 494 HMH structures, is highly imbalanced across dimensionality classes (0D, 1D, 2D, 3D), posing significant challenges to predictive modeling. This dataset was later augmented to 1336 via the Synthetic Minority Oversampling Technique (SMOTE) to mitigate the effects of the class imbalance. We developed interaction-based descriptors and integrated them into a multi-stage workflow that combines feature selection, model stacking, and performance optimization to improve dimensionality prediction accuracy. Our approach significantly improves F1-scores for underrepresented classes, achieving robust cross-validation performance across all dimensionalities.
☆ PoolNet: Deep Learning for 2D to 3D Video Process Validation
Lifting Structure-from-Motion (SfM) information from sequential and non-sequential image data is a time-consuming and computationally expensive task. In addition to this, the majority of publicly available data is unfit for processing due to inadequate camera pose variation, obscuring scene elements, and noisy data. To solve this problem, we introduce PoolNet, a versatile deep learning framework for frame-level and scene-level validation of in-the-wild data. We demonstrate that our model successfully differentiates SfM ready scenes from those unfit for processing while significantly undercutting the amount of time state of the art algorithms take to obtain structure-from-motion data.
comment: All code related to this paper can be found at https://github.com/sanchitkaul/PoolNet.git
☆ FieldSeer I: Physics-Guided World Models for Long-Horizon Electromagnetic Dynamics under Partial Observability
We introduce FieldSeer I, a geometry-aware world model that forecasts electromagnetic field dynamics from partial observations in 2-D TE waveguides. The model assimilates a short prefix of observed fields, conditions on a scalar source action and structure/material map, and generates closed-loop rollouts in the physical domain. Training in a symmetric-log domain ensures numerical stability. Evaluated on a reproducible FDTD benchmark (200 unique simulations, structure-wise split), FieldSeer I achieves higher suffix fidelity than GRU and deterministic baselines across three practical settings: (i) software-in-the-loop filtering (64x64, P=80->Q=80), (ii) offline single-file rollouts (80x140, P=240->Q=40), and (iii) offline multi-structure rollouts (80x140, P=180->Q=100). Crucially, it enables edit-after-prefix geometry modifications without re-assimilation. Results demonstrate that geometry-conditioned world models provide a practical path toward interactive digital twins for photonic design.
☆ When Forgetting Builds Reliability: LLM Unlearning for Reliable Hardware Code Generation
Large Language Models (LLMs) have shown strong potential in accelerating digital hardware design through automated code generation. Yet, ensuring their reliability remains a critical challenge, as existing LLMs trained on massive heterogeneous datasets often exhibit problematic memorization of proprietary intellectual property (IP), contaminated benchmarks, and unsafe coding patterns. To mitigate these risks, we propose a novel unlearning framework tailored for LLM-based hardware code generation. Our method combines (i) a syntax-preserving unlearning strategy that safeguards the structural integrity of hardware code during forgetting, and (ii) a fine-grained floor-aware selective loss that enables precise and efficient removal of problematic knowledge. This integration achieves effective unlearning without degrading LLM code generation capabilities. Extensive experiments show that our framework supports forget sets up to 3x larger, typically requiring only a single training epoch, while preserving both syntactic correctness and functional integrity of register-transfer level (RTL) codes. Our work paves an avenue towards reliable LLM-assisted hardware design.
☆ Taxonomy-Adaptive Moderation Model with Robust Guardrails for Large Language Models AAAI-26
Large Language Models (LLMs) are typically aligned for safety during the post-training phase; however, they may still generate inappropriate outputs that could potentially pose risks to users. This challenge underscores the need for robust safeguards that operate across both model inputs and outputs. In this work, we introduce Roblox Guard 1.0, a state-of-the-art instruction fine-tuned LLM designed to enhance the safety of LLM systems through comprehensive input-output moderation, using a pipeline of LLMs to enhance moderation capability. Built on the Llama-3.1-8B-Instruct backbone, our model is instruction fine-tuned to generalize across previously unseen safety taxonomies and demonstrates strong performance on out-of-domain safety benchmarks. The instruction fine-tuning process uses a mix of synthetic and open-source safety datasets, augmented with chain-of-thought (CoT) rationales and input inversion to enhance contextual understanding and decision making. To support systematic evaluation, we also release RobloxGuard-Eval, a new benchmark featuring an extensible safety taxonomy to assess the effectiveness of LLM guardrails and moderation frameworks.
comment: To be presented at AAAI-26 PerFM Workshop
☆ Interaction Tensor Shap
Machine learning models have grown increasingly deep and high dimensional, making it difficult to understand how individual and combined features influence their predictions. While Shapley value based methods provide principled feature attributions, existing formulations cannot tractably evaluate higher order interactions: the Shapley Taylor Interaction Index (STII) requires exponential scale enumeration of subsets, and current tensor based approaches such as the Marginal SHAP Tensor (MST) are restricted to first order effects. The central problem is that no existing framework simultaneously preserves the axiomatic exactness of STII and avoids the exponential computational blow up inherent to high order discrete derivatives. Here we show that high order Shapley interactions can be represented exactly as tensor network contractions, enabling polynomial time and polylog depth computation under Tensor Train (TT) structure. We introduce Interaction Tensor SHAP (IT SHAP), which reformulates STII as the contraction of a Value Tensor and a Weight Tensor, and assume a finite state TT representation of the Weight Tensor with polynomial TT ranks. Under TT structured model and distribution tensors, we show that IT SHAP reduces the exponential complex Theta(4^n) of STII to NC2 parallel time. These results demonstrate that IT SHAP provides a unified, axiomatic, and computationally tractable formulation of main effects and higher order interactions in high dimensional models. This framework establishes a foundation for scalable interaction aware explainable AI, with implications for large black box models whose combinatorial structure has previously rendered interaction analysis infeasible.
comment: 30 pages
☆ PathFinder: MCTS and LLM Feedback-based Path Selection for Multi-Hop Question Answering
Multi-hop question answering is a challenging task in which language models must reason over multiple steps to reach the correct answer. With the help of Large Language Models and their reasoning capabilities, existing systems are able to think and decompose an input question over multiple steps to analyze, retrieve, and reason. However, training-based approaches for this problem still suffer from LLM hallucinations and incorrect reasoning paths that hinder performance. Hence, we propose PATHFINDER, an approach that: (i) uses Monte Carlo Tree Search to generate training path traces, (ii) improves training data quality by filtering erroneous and lengthy traces using sub-answer recall and LLM-as-a-judge verification, and (iii) reformulates sub-queries to handle failed retrieval cases. By following these steps, we demonstrate that PATHFINDER improves the performance of multi-hop QA over public benchmark datasets.
comment: 5 PAGES, 3 IMAGES
☆ Symmetric Linear Dynamical Systems are Learnable from Few Observations
We consider the problem of learning the parameters of a $N$-dimensional stochastic linear dynamics under both full and partial observations from a single trajectory of time $T$. We introduce and analyze a new estimator that achieves a small maximum element-wise error on the recovery of symmetric dynamic matrices using only $T=\mathcal{O}(\log N)$ observations, irrespective of whether the matrix is sparse or dense. This estimator is based on the method of moments and does not rely on problem-specific regularization. This is especially important for applications such as structure discovery.
☆ Exposing Pink Slime Journalism: Linguistic Signatures and Robust Detection Against LLM-Generated Threats
The local news landscape, a vital source of reliable information for 28 million Americans, faces a growing threat from Pink Slime Journalism, a low-quality, auto-generated articles that mimic legitimate local reporting. Detecting these deceptive articles requires a fine-grained analysis of their linguistic, stylistic, and lexical characteristics. In this work, we conduct a comprehensive study to uncover the distinguishing patterns of Pink Slime content and propose detection strategies based on these insights. Beyond traditional generation methods, we highlight a new adversarial vector: modifications through large language models (LLMs). Our findings reveal that even consumer-accessible LLMs can significantly undermine existing detection systems, reducing their performance by up to 40% in F1-score. To counter this threat, we introduce a robust learning framework specifically designed to resist LLM-based adversarial attacks and adapt to the evolving landscape of automated pink slime journalism, and showed and improvement by up to 27%.
comment: Published in RANLP 2025
☆ Non-Convex Federated Optimization under Cost-Aware Client Selection
Different federated optimization algorithms typically employ distinct client-selection strategies: some methods communicate only with a randomly sampled subset of clients at each round, while others need to periodically communicate with all clients or use a hybrid scheme that combines both strategies. However, existing metrics for comparing optimization methods typically do not distinguish between these strategies, which often incur different communication costs in practice. To address this disparity, we introduce a simple and natural model of federated optimization that quantifies communication and local computation complexities. This new model allows for several commonly used client-selection strategies and explicitly associates each with a distinct cost. Within this setting, we propose a new algorithm that achieves the best-known communication and local complexities among existing federated optimization methods for non-convex optimization. This algorithm is based on the inexact composite gradient method with a carefully constructed gradient estimator and a special procedure for solving the auxiliary subproblem at each iteration. The gradient estimator is based on SAGA, a popular variance-reduced gradient estimator. We first derive a new variance bound for it, showing that SAGA can exploit functional similarity. We then introduce the Recursive-Gradient technique as a general way to potentially improve the error bound of a given conditionally unbiased gradient estimator, including both SAGA and SVRG. By applying this technique to SAGA, we obtain a new estimator, RG-SAGA, which has an improved error bound compared to the original one.
☆ LYNX: Learning Dynamic Exits for Confidence-Controlled Reasoning
Large reasoning models achieve strong performance on complex tasks by generating extended chains of thought, but they often "overthink": continuing to reason long after they have enough information to answer correctly. This wastes inference-time compute and can hurt accuracy. Existing attempts to stop early either manipulate decoding with extra sampling and heuristics, rely on auxiliary verifier models, or operate only as post-hoc analysis pipelines without formal guarantees. We introduce LYNX, an online early-exit mechanism that turns a model's own hidden-state awareness into confidence-controlled stopping decisions. LYNX attaches exit decisions to naturally occurring reasoning cues (e.g., "hmm", "wait") during generation, trains a lightweight probe on hidden states at those cue tokens using supervision from forced exits, and wraps the resulting scores in split conformal prediction to obtain distribution-free control over premature exits. Crucially, we train and calibrate this probe once on a generic mathematical corpus and reuse it unchanged across benchmarks, decoding temperatures, and even non-mathematical tasks. Across three model families spanning 1.5B to 32B parameters, a single mathematically trained probe per base model yields strong accuracy--efficiency tradeoffs. On GSM8K, LYNX matches or improves baseline accuracy while reducing tokens by 40--65\%; on MATH-500 it improves accuracy by up to 12 points with roughly 35--60\% fewer tokens; on AIME 2024 it recovers baseline accuracy with more than 50\% token savings; and on CommonsenseQA, a non-math benchmark, it transfers zero-shot with modest accuracy gains and up to 70\% fewer tokens. Compared to state-of-the-art early-exit methods, LYNX offers competitive or superior Pareto frontiers while remaining fully online, requiring no proxy models at inference, and providing explicit, user-tunable confidence guarantees.
♻ ☆ Sparse but Wrong: Incorrect L0 Leads to Incorrect Features in Sparse Autoencoders
Sparse Autoencoders (SAEs) extract features from LLM internal activations, meant to correspond to interpretable concepts. A core SAE training hyperparameter is L0: how many SAE features should fire per token on average. Existing work compares SAE algorithms using sparsity-reconstruction tradeoff plots, implying L0 is a free parameter with no single correct value aside from its effect on reconstruction. In this work we study the effect of L0 on SAEs, and show that if L0 is not set correctly, the SAE fails to disentangle the underlying features of the LLM. If L0 is too low, the SAE will mix correlated features to improve reconstruction. If L0 is too high, the SAE finds degenerate solutions that also mix features. Further, we present a proxy metric that can help guide the search for the correct L0 for an SAE on a given training distribution. We show that our method finds the correct L0 in toy models and coincides with peak sparse probing performance in LLM SAEs. We find that most commonly used SAEs have an L0 that is too low. Our work shows that L0 must be set correctly to train SAEs with correct features.
♻ ☆ Establishing Validity for Distance Functions and Internal Clustering Validity Indices in Correlation Space
Internal clustering validity indices (ICVIs) assess clustering quality without ground truth labels. Comparative studies consistently find that no single ICVI outperforms others across datasets, leaving practitioners without principled ICVI selection. We argue that inconsistent ICVI performance arises because studies evaluate them based on matching human labels rather than measuring the quality of the discovered structure in the data, using datasets without formally quantifying the structure type and quality. Structure type refers to the mathematical organisation in data that clustering aims to discover. Validity theory requires a theoretical definition of clustering quality, which depends on structure type. We demonstrate this through the first validity assessment of clustering quality measures for correlation patterns, a structure type that arises from clustering time series by correlation relationships. We formalise 23 canonical correlation patterns as the theoretical optimal clustering and use synthetic data modelling this structure with controlled perturbations to evaluate validity across content, criterion, construct, and external validity. Our findings show that Silhouette Width Criterion (SWC) and Davies-Bouldin Index (DBI) are valid for correlation patterns, whilst Calinski-Harabasz (VRC) and Pakhira-Bandyopadhyay-Maulik (PBM) indices fail. Simple Lp norm distances achieve validity, whilst correlation-specific functions fail structural, criterion, and external validity. These results differ from previous studies where VRC and PBM performed well, demonstrating that validity depends on structure type. Our structure-type-specific validation method provides both practical guidance (quality thresholds SWC>0.9, DBI<0.15) and a methodological template for establishing validity for other structure types.
comment: 26 pages (51 total), 10 figs. v2: Reframed using validity theory - only valid ICVIs/DFs ranked. ICVI results hold, DF results updated. Graphics revised. Appendix extended. First structure-type-specific validity assessment of ICVIs and distance functions for correlation patterns. Establishes SWC/DBI as valid whilst VRC/PBM fail. Provides practical quality thresholds and methodological template
♻ ☆ Reinforce-Ada: An Adaptive Sampling Framework under Non-linear RL Objectives
Reinforcement learning (RL) for large language model reasoning is frequently hindered by signal loss, a phenomenon where standard uniform sampling with small group sizes fails to uncover informative learning signals for difficult prompts. We demonstrate that this collapse is a statistical artifact of undersampling rather than an inherent model limitation. To address this systematically, we introduce a theoretical framework based on optimizing a non-linear RL objective (e.g., log-likelihood). We show that this objective naturally induces a weighted gradient estimator that prioritizes difficult prompts, which can be robustly realized through adaptive sampling. Guided by this framework, we propose Reinforce-Ada, a family of algorithms that dynamically allocates inference budgets based on prompt difficulty, effectively scaling up RL compute to where it is needed most. Unlike passive filtering methods that discard low-signal prompts, Reinforce-Ada actively invests compute to recover them. We introduce two efficient realizations: an estimation-based approach and a model-free sequential sampling approach. Extensive experiments across multiple benchmarks show that Reinforce-Ada significantly outperforms uniform baselines like GRPO, recovering lost signals and accelerating convergence by up to $2\times$ while maintaining the same total inference budget. Code is available at https://github.com/RLHFlow/Reinforce-Ada.
comment: 27 pages, 10 figures
♻ ☆ MOSS: Efficient and Accurate FP8 LLM Training with Microscaling and Automatic Scaling
Training large language models with FP8 formats offers significant efficiency gains. However, the reduced numerical precision of FP8 poses challenges for stable and accurate training. Current frameworks preserve training performance using mixed-granularity quantization, i.e., applying per-group quantization for activations and per-tensor/block quantization for weights. While effective, per-group quantization requires scaling along the inner dimension of matrix multiplication, introducing additional dequantization overhead. Moreover, these frameworks often rely on just-in-time scaling to dynamically adjust scaling factors based on the current data distribution. However, this online quantization is inefficient for FP8 training, as it involves multiple memory reads and writes that negate the performance benefits of FP8. To overcome these limitations, we propose MOSS, a novel FP8 training framework that ensures both efficiency and numerical stability. MOSS introduces two key innovations: (1) a two-level microscaling strategy for quantizing sensitive activations, which balances precision and dequantization cost by combining a high-precision global scale with compact, power-of-two local scales; and (2) automatic scaling for weights in linear layers, which eliminates the need for costly max-reduction operations by predicting and adjusting scaling factors during training. Leveraging these techniques, MOSS enables efficient FP8 training of a 7B parameter model, achieving performance comparable to the BF16 baseline while achieving up to 34% higher training throughput.
♻ ☆ Variational Supervised Contrastive Learning
Contrastive learning has proven to be highly efficient and adaptable in shaping representation spaces across diverse modalities by pulling similar samples together and pushing dissimilar ones apart. However, two key limitations persist: (1) Without explicit regulation of the embedding distribution, semantically related instances can inadvertently be pushed apart unless complementary signals guide pair selection, and (2) excessive reliance on large in-batch negatives and tailored augmentations hinders generalization. To address these limitations, we propose Variational Supervised Contrastive Learning (VarCon), which reformulates supervised contrastive learning as variational inference over latent class variables and maximizes a posterior-weighted evidence lower bound (ELBO) that replaces exhaustive pair-wise comparisons for efficient class-aware matching and grants fine-grained control over intra-class dispersion in the embedding space. Trained exclusively on image data, our experiments on CIFAR-10, CIFAR-100, ImageNet-100, and ImageNet-1K show that VarCon (1) achieves state-of-the-art performance for contrastive learning frameworks, reaching 79.36% Top-1 accuracy on ImageNet-1K and 78.29% on CIFAR-100 with a ResNet-50 encoder while converging in just 200 epochs; (2) yields substantially clearer decision boundaries and semantic organization in the embedding space, as evidenced by KNN classification, hierarchical clustering results, and transfer-learning assessments; and (3) demonstrates superior performance in few-shot learning than supervised baseline and superior robustness across various augmentation strategies. Our code is available at https://github.com/ziwenwang28/VarContrast.
♻ ☆ Robust Weight Imprinting: Insights from Neural Collapse and Proxy-Based Aggregation
The capacity of foundation models allows for their application to new, unseen tasks. The adaptation to such tasks is called transfer learning. An efficient transfer learning method that circumvents parameter optimization is imprinting. The conceptual differences between studies on imprinting form the basis of our systematic investigation. In this work, we propose the general \texttt{IMPRINT} framework, identifying three main components: generation, normalization, and aggregation. Through the lens of this framework, we conduct an in-depth analysis and a comparison of the existing methods. Our findings reveal the benefits of representing novel data with multiple proxies in the generation step and show the importance of proper normalization. Beyond an extensive analytical grounding, our framework enables us to propose a novel variant of imprinting which outperforms previous work on transfer learning tasks by 4\%. This variant determines proxies through clustering motivated by the neural collapse phenomenon -- a connection that we draw for the first time. We publicly release our code at https://github.com/DATEXIS/IMPRINT.
♻ ☆ Variational Uncertainty Decomposition for In-Context Learning
As large language models (LLMs) gain popularity in conducting prediction tasks in-context, understanding the sources of uncertainty in in-context learning becomes essential to ensuring reliability. The recent hypothesis of in-context learning performing predictive Bayesian inference opens the avenue for Bayesian uncertainty estimation, particularly for decomposing uncertainty into epistemic uncertainty due to lack of in-context data and aleatoric uncertainty inherent in the in-context prediction task. However, the decomposition idea remains under-explored due to the intractability of the latent parameter posterior from the underlying Bayesian model. In this work, we introduce a variational uncertainty decomposition framework for in-context learning without explicitly sampling from the latent parameter posterior, by optimising auxiliary queries as probes to obtain an upper bound to the aleatoric uncertainty of an LLM's in-context learning procedure, which also induces a lower bound to the epistemic uncertainty. Through experiments on synthetic and real-world tasks, we show quantitatively and qualitatively that the decomposed uncertainties obtained from our method exhibit desirable properties of epistemic and aleatoric uncertainty.
comment: Neurips Version
♻ ☆ SPARTAN: A Sparse Transformer World Model Attending to What Matters
Capturing the interactions between entities in a structured way plays a central role in world models that flexibly adapt to changes in the environment. Recent works motivate the benefits of models that explicitly represent the structure of interactions and formulate the problem as discovering local causal structures. In this work, we demonstrate that reliably capturing these relationships in complex settings remains challenging. To remedy this shortcoming, we postulate that sparsity is a critical ingredient for the discovery of such local structures. To this end, we present the SPARse TrANsformer World model (SPARTAN), a Transformer-based world model that learns context-dependent interaction structures between entities in a scene. By applying sparsity regularisation on the attention patterns between object-factored tokens, SPARTAN learns sparse, context-dependent interaction graphs that accurately predict future object states. We further extend our model to adapt to sparse interventions with unknown targets in the dynamics of the environment. This results in a highly interpretable world model that can efficiently adapt to changes. Empirically, we evaluate SPARTAN against the current state-of-the-art in object-centric world models in observation-based environments and demonstrate that our model can learn local causal graphs that accurately reflect the underlying interactions between objects, achieving significantly improved few-shot adaptation to dynamics changes, as well as robustness against distractors.
♻ ☆ Morphling: Fast, Fused, and Flexible GNN Training at Scale
Graph Neural Networks (GNNs) present a fundamental hardware challenge by fusing irregular, memory-bound graph traversals with regular, compute-intensive dense matrix operations. While frameworks such as PyTorch Geometric (PyG) and Deep Graph Library (DGL) prioritize high-level usability, they fail to address these divergent execution characteristics. As a result, they rely on generic kernels that suffer from poor cache locality, excessive memory movement, and substantial intermediate allocations. To address these limitations, we present Morphling, a domain-specific code synthesizer designed to bridge this gap. Morphling compiles high-level GNN specifications into portable, backend-specialized implementations targeting OpenMP, CUDA, and MPI. It achieves this by instantiating a library of optimized, architecture-aware primitives tailored to each execution environment. Morphling also incorporates a runtime sparsity-aware execution engine that dynamically selects dense or sparse execution paths using input feature statistics, reducing unnecessary computation on zero-valued entries. We evaluate Morphling on eleven real-world datasets spanning diverse graph structures, feature dimensionalities, and sparsity regimes. Morphling improves per-epoch training throughput by an average of 20X on CPUs, 19X on GPUs, and 6X in distributed settings over PyG and DGL, with peak speedups reaching 66X. Morphling's memory-efficient layouts further reduce peak memory consumption by up to 15X, enabling large-scale GNN training on commodity hardware. These findings demonstrate that specialized, architecture-aware code synthesis provides an effective and scalable path toward high-performance GNN execution across diverse parallel and distributed platforms.
♻ ☆ Convergence for Discrete Parameter Update Schemes NeurIPS
Modern deep learning models require immense computational resources, motivating research into low-precision training. Quantised training addresses this by representing training components in low-bit integers, but typically relies on discretising real-valued updates. We introduce an alternative approach where the update rule itself is discrete, avoiding the quantisation of continuous updates by design. We establish convergence guarantees for a general class of such discrete schemes, and present a multinomial update rule as a concrete example, supported by empirical evaluation. This perspective opens new avenues for efficient training, particularly for models with inherently discrete structure.
comment: opt-ml 2025 workshop at NeurIPS
♻ ☆ KNARsack: Teaching Neural Algorithmic Reasoners to Solve Pseudo-Polynomial Problems
Neural algorithmic reasoning (NAR) is a growing field that aims to embed algorithmic logic into neural networks by imitating classical algorithms. In this extended abstract, we detail our attempt to build a neural algorithmic reasoner that can solve Knapsack, a pseudo-polynomial problem bridging classical algorithms and combinatorial optimisation, but omitted in standard NAR benchmarks. Our neural algorithmic reasoner is designed to closely follow the two-phase pipeline for the Knapsack problem, which involves first constructing the dynamic programming table and then reconstructing the solution from it. The approach, which models intermediate states through dynamic programming supervision, achieves better generalization to larger problem instances than a direct-prediction baseline that attempts to select the optimal subset only from the problem inputs.
comment: 16 pages, 10 figures, 5 tables, 3 listings
♻ ☆ xLSTM-PINN: Memory-Gated Spectral Remodeling for Physics-Informed Learning
Physics-informed neural networks (PINN) face significant challenges from spectral bias, which impedes their ability to model high-frequency phenomena and limits extrapolation performance. To address this, we introduce xLSTM-PINN, a novel architecture that performs representation-level spectral remodeling through memory gating and residual micro-steps. Our method consistently achieves markedly lower spectral error and root mean square error (RMSE) across four diverse partial differential equation (PDE) benchmarks, along withhhh a broader stable learning-rate window. Frequency-domain analysis confirms that xLSTM-PINN elevates high-frequency kernel weights, shifts the resolvable bandwidth rightward, and shortens the convergence time for high-wavenumber components. Without modifying automatic differentiation or physics loss constraints, this work provides a robust pathway to suppress spectral bias, thereby improving accuracy, reproducibility, and transferability in physics-informed learning.
♻ ☆ Dynamic Correction of Erroneous State Estimates via Diffusion Bayesian Exploration
In emergency response and other high-stakes societal applications, early-stage state estimates critically shape downstream outcomes. Yet, these initial state estimates-often based on limited or biased information-can be severely misaligned with reality, constraining subsequent actions and potentially causing catastrophic delays, resource misallocation, and human harm. Under the stationary bootstrap baseline (zero transition and no rejuvenation), bootstrap particle filters exhibit Stationarity-Induced Posterior Support Invariance (S-PSI), wherein regions excluded by the initial prior remain permanently unexplorable, making corrections impossible even when new evidence contradicts current beliefs. While classical perturbations can in principle break this lock-in, they operate in an always-on fashion and may be inefficient. To overcome this, we propose a diffusion-driven Bayesian exploration framework that enables principled, real-time correction of early state estimation errors. Our method expands posterior support via entropy-regularized sampling and covariance-scaled diffusion. A Metropolis-Hastings check validates proposals and keeps inference adaptive to unexpected evidence. Empirical evaluations on realistic hazardous-gas localization tasks show that our approach matches reinforcement learning and planning baselines when priors are correct. It substantially outperforms classical SMC perturbations and RL-based methods under misalignment, and we provide theoretical guarantees that DEPF resolves S-PSI while maintaining statistical rigor.
♻ ☆ QoSDiff: An Implicit Topological Embedding Learning Framework Leveraging Denoising Diffusion and Adversarial Attention for Robust QoS Prediction
Accurate Quality of Service (QoS) prediction is fundamental to service computing, providing essential data-driven guidance for service selection and ensuring superior user experiences. However, prevalent approaches, particularly Graph Neural Networks (GNNs), heavily rely on constructing explicit user--service interaction graphs. Such reliance not only leads to the intractability of explicit graph construction in large-scale scenarios but also limits the modeling of implicit topological relationships and exacerbates susceptibility to environmental noise and outliers. To address these challenges, this paper introduces \emph{QoSDiff}, a novel embedding learning framework that bypasses the prerequisite of explicit graph construction. Specifically, it leverages a denoising diffusion probabilistic model to recover intrinsic latent structures from noisy initializations. To further capture high-order interactions, we propose an adversarial interaction module that integrates a bidirectional hybrid attention mechanism. This adversarial paradigm dynamically distinguishes informative patterns from noise, enabling a dual-perspective modeling of intricate user--service associations. Extensive experiments on two large-scale real-world datasets demonstrate that QoSDiff significantly outperforms state-of-the-art baselines. Notably, the results highlight the framework's superior cross-dataset generalization capability and exceptional robustness against observational noise.
comment: Preprint submitted to IEEE Transactions on Services Computing
♻ ☆ From Correlation to Causation: Max-Pooling-Based Multi-Instance Learning Leads to More Robust Whole Slide Image Classification
In whole slide images (WSIs) analysis, attention-based multi-instance learning (MIL) models are susceptible to spurious correlations and degrade under domain shift. These methods may assign high attention weights to non-tumor regions, such as staining biases or artifacts, leading to unreliable tumor region localization. In this paper, we revisit max-pooling-based MIL methods from a causal perspective. Under mild assumptions, our theoretical results demonstrate that max-pooling encourages the model to focus on causal factors while ignoring bias-related factors. Furthermore, we discover that existing max-pooling-based methods may overfit the training set through rote memorization of instance features and fail to learn meaningful patterns. To address these issues, we propose FocusMIL, which couples max-pooling with an instance-level variational information bottleneck (VIB) to learn compact, predictive latent representations, and employs a multi-bag mini-batch scheme to stabilize optimization. We conduct comprehensive experiments on three real-world datasets and one semi-synthetic dataset. The results show that, by capturing causal factors, FocusMIL exhibits significant advantages in out-of-distribution scenarios and instance-level tumor region localization tasks.
♻ ☆ Variational Learning of Gaussian Process Latent Variable Models through Stochastic Gradient Annealed Importance Sampling
Gaussian Process Latent Variable Models (GPLVMs) have become increasingly popular for unsupervised tasks such as dimensionality reduction and missing data recovery due to their flexibility and non-linear nature. An importance-weighted version of the Bayesian GPLVMs has been proposed to obtain a tighter variational bound. However, this version of the approach is primarily limited to analyzing simple data structures, as the generation of an effective proposal distribution can become quite challenging in high-dimensional spaces or with complex data sets. In this work, we propose an Annealed Importance Sampling (AIS) approach to address these issues. By transforming the posterior into a sequence of intermediate distributions using annealing, we combine the strengths of Sequential Monte Carlo samplers and VI to explore a wider range of posterior distributions and gradually approach the target distribution. We further propose an efficient algorithm by reparameterizing all variables in the evidence lower bound (ELBO). Experimental results on both toy and image datasets demonstrate that our method outperforms state-of-the-art methods in terms of tighter variational bounds, higher log-likelihoods, and more robust convergence.
♻ ☆ Rethinking Sparse Autoencoders: Select-and-Project for Fairness and Control from Encoder Features Alone
Sparse Autoencoders (SAEs) are widely employed for mechanistic interpretability and model steering. Within this context, steering is by design performed by means of decoding altered SAE intermediate representations. This procedure essentially rewrites the original activations as a weighted sum of decoder features. In contrast to existing literature, we forward an encoder-centric alternative to model steering which demonstrates a stronger cross-modal performance. We introduce S&P Top-K, a retraining-free and computationally lightweight Selection and Projection framework that identifies Top-K encoder features aligned with a sensitive attribute or behavior, optionally aggregates them into a single control axis, and computes an orthogonal projection to be subsequently applied directly in the model's native embedding space. In vision-language models, it improves fairness metrics on CelebA and FairFace by up to 3.2 times over conventional SAE usage, and in large language models, it substantially reduces aggressiveness and sycophancy in Llama-3 8B Instruct, achieving up to 3.6 times gains over masked reconstruction. These findings suggest that encoder-centric interventions provide a general, efficient, and more effective mechanism for shaping model behavior at inference time than the traditional decoder-centric use of SAEs.
♻ ☆ A Control Perspective on Training PINNs
We investigate the training of Physics-Informed Neural Networks (PINNs) from a control-theoretic perspective. Using gradient descent with resampling, we interpret the training dynamics as asymptotically equivalent to a stochastic control-affine system, where sampling effects act as process disturbances and measurement noise. Within this framework, we introduce two controllers for dynamically adapting the physics weight: an integral controller and a leaky integral controller. We theoretically analyze their asymptotic properties under the accuracy-robustness trade-off, and we evaluate them on a toy example. Numerical evidence suggests that the integral controller achieves accurate and robust convergence when the physical model is correct, whereas the leaky integrator provides improved performance in the presence of model mismatch. This work represents a first step toward convergence guarantees and principled training algorithms tailored to the distinct characteristics of PINN tasks.
♻ ☆ TempoControl: Temporal Attention Guidance for Text-to-Video Models
Recent advances in generative video models have enabled the creation of high-quality videos based on natural language prompts. However, these models frequently lack fine-grained temporal control, meaning they do not allow users to specify when particular visual elements should appear within a generated sequence. In this work, we introduce TempoControl, a method that allows for temporal alignment of visual concepts during inference, without requiring retraining or additional supervision. TempoControl utilizes cross-attention maps, a key component of text-to-video diffusion models, to guide the timing of concepts through a novel optimization approach. Our method steers attention using three complementary principles: aligning its temporal pattern with a control signal (correlation), adjusting its strength where visibility is required (magnitude), and preserving semantic consistency (entropy). TempoControl provides precise temporal control while maintaining high video quality and diversity. We demonstrate its effectiveness across various applications, including temporal reordering of single and multiple objects, action timing, and audio-aligned video generation. Please see our project page for more details: https://shira-schiber.github.io/TempoControl/.
comment: Under Review
♻ ☆ Detecting the Future: All-at-Once Event Sequence Forecasting with Horizon Matching AAAI 2026
Long-horizon events forecasting is a crucial task across various domains, including retail, finance, healthcare, and social networks. Traditional models for event sequences often extend to forecasting on a horizon using an autoregressive (recursive) multi-step strategy, which has limited effectiveness due to typical convergence to constant or repetitive outputs. To address this limitation, we introduce DEF, a novel approach for simultaneous forecasting of multiple future events on a horizon with high accuracy and diversity. Our method optimally aligns predictions with ground truth events during training by using a novel matching-based loss function. We establish a new state-of-the-art in long-horizon event prediction, achieving up to a 50% relative improvement over existing temporal point processes and event prediction models. Furthermore, we achieve state-of-the-art performance in next-event prediction tasks while demonstrating high computational efficiency during inference.
comment: Accepted to AAAI 2026
♻ ☆ EnhancedRL: An Enhanced-State Reinforcement Learning Algorithm for Multi-Task Fusion in Recommender Systems
As a key stage of Recommender Systems (RSs), Multi-Task Fusion (MTF) is responsible for merging multiple scores output by Multi-Task Learning (MTL) into a single score, finally determining the recommendation results. Recently, Reinforcement Learning (RL) has been applied to MTF to maximize long-term user satisfaction within a recommendation session. However, due to limitations in modeling paradigm, all existing RL algorithms for MTF can only utilize user features and statistical features as the state to generate actions at the user level, but unable to leverage item features and other valuable features, which leads to suboptimal performance. Overcoming this problem requires a breakthrough in the existing modeling paradigm, yet, to date, no prior work has addressed it. To tackle this challenge, we propose EnhancedRL, an innovative RL algorithm. Unlike existing RL-MTF methods, EnhancedRL takes the enhanced state as input, incorporating not only user features but also item features and other valuable information. Furthermore, it introduces a tailored actor-critic framework - including redesigned actor and critics and a novel learning procedure - to optimize long-term rewards at the user-item pair level within a recommendation session. Extensive offline and online experiments are conducted in an industrial RS and the results demonstrate that EnhancedRL outperforms other methods remarkably, achieving a +3.84% increase in user valid consumption and a +0.58% increase in user duration time. To the best of our knowledge, EnhancedRL is the first work to address this challenge, and it has been fully deployed in a large-scale RS since September 14, 2023, yielding significant improvements.
comment: arXiv admin note: substantial text overlap with arXiv:2404.17589
♻ ☆ Multi-Modal Data-Efficient 3D Scene Understanding for Autonomous Driving
Efficient data utilization is crucial for advancing 3D scene understanding in autonomous driving, where reliance on heavily human-annotated LiDAR point clouds challenges fully supervised methods. Addressing this, our study extends into semi-supervised learning for LiDAR semantic segmentation, leveraging the intrinsic spatial priors of driving scenes and multi-sensor complements to augment the efficacy of unlabeled datasets. We introduce LaserMix++, an evolved framework that integrates laser beam manipulations from disparate LiDAR scans and incorporates LiDAR-camera correspondences to further assist data-efficient learning. Our framework is tailored to enhance 3D scene consistency regularization by incorporating multi-modality, including 1) multi-modal LaserMix operation for fine-grained cross-sensor interactions; 2) camera-to-LiDAR feature distillation that enhances LiDAR feature learning; and 3) language-driven knowledge guidance generating auxiliary supervisions using open-vocabulary models. The versatility of LaserMix++ enables applications across LiDAR representations, establishing it as a universally applicable solution. Our framework is rigorously validated through theoretical analysis and extensive experiments on popular driving perception datasets. Results demonstrate that LaserMix++ markedly outperforms fully supervised alternatives, achieving comparable accuracy with five times fewer annotations and significantly improving the supervised-only baselines. This substantial advancement underscores the potential of semi-supervised approaches in reducing the reliance on extensive labeled data in LiDAR-based 3D scene understanding systems.
comment: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
♻ ☆ IPA: An Information-Reconstructive Input Projection Framework for Efficient Foundation Model Adaptation
Parameter-efficient fine-tuning (PEFT) methods, such as LoRA, reduce adaptation cost by injecting low-rank updates into pretrained weights. However, LoRA's down-projection is randomly initialized and data-agnostic, discarding potentially useful information. Prior analyses show that this projection changes little during training, while the up-projection carries most of the adaptation, making the random input compression a performance bottleneck. We propose IPA, a feature-aware projection framework that explicitly aims to reconstruct the original input within a reduced hidden space. In the linear case, we instantiate IPA with algorithms approximating top principal components, enabling efficient projector pretraining with negligible inference overhead. Across language and vision benchmarks, IPA consistently improves over LoRA and DoRA, achieving on average 1.5 points higher accuracy on commonsense reasoning and 2.3 points on VTAB-1k, while matching full LoRA performance with roughly half the trainable parameters when the projection is frozen. Code available at https://github.com/valeoai/peft-ipa .
comment: Accepted to TMLR
♻ ☆ ICNN-enhanced 2SP: Leveraging input convex neural networks for solving two-stage stochastic programming
Two-stage stochastic programming (2SP) offers a basic framework for modelling decision-making under uncertainty, yet scalability remains a challenge due to the computational complexity of recourse function evaluation. Existing learning-based methods like Neural Two-Stage Stochastic Programming (Neur2SP) employ neural networks (NNs) as recourse function surrogates but rely on computationally intensive mixed-integer programming (MIP) formulations. We propose ICNN-enhanced 2SP, a method that leverages Input Convex Neural Networks (ICNNs) to exploit linear programming (LP) representability in convex 2SP problems. By architecturally enforcing convexity and enabling exact inference through LP, our approach eliminates the need for integer variables inherent to the conventional MIP-based formulation while retaining an exact embedding of the ICNN surrogate within the 2SP framework. This results in a more computationally efficient alternative, and we show that good solution quality can be maintained. Comprehensive experiments reveal that ICNNs incur only marginally longer training times while achieving validation accuracy on par with their standard NN counterparts. Across benchmark problems, ICNN-enhanced 2SP often exhibits considerably faster solution times than the MIP-based formulations while preserving solution quality, with these advantages becoming significantly more pronounced as problem scale increases. For the most challenging instances, the method achieves speedups of up to 100$\times$ and solution quality superior to MIP-based formulations.
♻ ☆ Data-Augmented Deep Learning for Downhole Depth Sensing and Field Validation
Accurate downhole depth measurement is essential for oil and gas well operations, directly influencing reservoir contact, production efficiency, and operational safety. Collar correlation using a casing collar locator (CCL) is fundamental for precise depth calibration. While neural network-based CCL signal recognition has achieved significant progress in collar identification, preprocessing methods for such applications remain underdeveloped. Moreover, the limited availability of real well data poses substantial challenges for training neural network models that require extensive datasets. This paper presents a system integrated into downhole tools for CCL signal acquisition to facilitate dataset construction. We propose comprehensive preprocessing methods for data augmentation and evaluate their effectiveness using our neural network models. Through systematic experimentation across various configuration combinations, we analyze the contribution of each augmentation method. Results demonstrate that standardization, label distribution smoothing (LDS), and random cropping are fundamental requirements for model training, while label smoothing regularization (LSR), time scaling, and multiple sampling significantly enhance model generalization capability. The F1 scores of our two benchmark models trained with the proposed augmentation methods maximumly improve from 0.937 and 0.952 to 1.0 and 1.0, respectively. Performance validation on real CCL waveforms confirms the effectiveness and practical applicability of our approach. This work addresses the gaps in data augmentation methodologies for training casing collar recognition models in CCL data-limited environments.
♻ ☆ Self-Supervised Learning of Graph Representations for Network Intrusion Detection NeurIPS 2025
Detecting intrusions in network traffic is a challenging task, particularly under limited supervision and constantly evolving attack patterns. While recent works have leveraged graph neural networks for network intrusion detection, they often decouple representation learning from anomaly detection, limiting the utility of the embeddings for identifying attacks. We propose GraphIDS, a self-supervised intrusion detection model that unifies these two stages by learning local graph representations of normal communication patterns through a masked autoencoder. An inductive graph neural network embeds each flow with its local topological context to capture typical network behavior, while a Transformer-based encoder-decoder reconstructs these embeddings, implicitly learning global co-occurrence patterns via self-attention without requiring explicit positional information. During inference, flows with unusually high reconstruction errors are flagged as potential intrusions. This end-to-end framework ensures that embeddings are directly optimized for the downstream task, facilitating the recognition of malicious traffic. On diverse NetFlow benchmarks, GraphIDS achieves up to 99.98% PR-AUC and 99.61% macro F1-score, outperforming baselines by 5-25 percentage points.
comment: Accepted at NeurIPS 2025
♻ ☆ Adapting Noise to Data: Generative Flows from 1D Processes
We introduce a general framework for constructing generative models using one-dimensional noising processes. Beyond diffusion processes, we outline examples that demonstrate the flexibility of our approach. Motivated by this, we propose a novel framework in which the 1D processes themselves are learnable, achieved by parameterizing the noise distribution through quantile functions that adapt to the data. Our construction integrates seamlessly with standard objectives, including Flow Matching and consistency models. Learning quantile-based noise naturally captures heavy tails and compact supports when present. Numerical experiments highlight both the flexibility and the effectiveness of our method.
♻ ☆ Semantic Communication and Control Co-Design for Multi-Objective Distinct Dynamics
This letter introduces a machine-learning approach to learning the semantic dynamics of correlated systems with different control rules and dynamics. By leveraging the Koopman operator in an autoencoder (AE) framework, the system's state evolution is linearized in the latent space using a dynamic semantic Koopman (DSK) model, capturing the baseline semantic dynamics. Signal temporal logic (STL) is incorporated through a logical semantic Koopman (LSK) model to encode system-specific control rules. These models form the proposed logical Koopman AE framework that reduces communication costs while improving state prediction accuracy and control performance, showing a 91.65% reduction in communication samples and significant performance gains in simulation.
♻ ☆ Multi-marginal temporal Schrödinger Bridge Matching from unpaired data
Many natural dynamic processes -- such as in vivo cellular differentiation or disease progression -- can only be observed through the lens of static sample snapshots. While challenging, reconstructing their temporal evolution to decipher underlying dynamic properties is of major interest to scientific research. Existing approaches enable data transport along a temporal axis but are poorly scalable in high dimension and require restrictive assumptions to be met. To address these issues, we propose Multi-Marginal temporal Schrödinger Bridge Matching (MMtSBM) from unpaired data, extending the theoretical guarantees and empirical efficiency of Diffusion Schrödinger Bridge Matching (arXiv:2303.16852) by deriving the Iterative Markovian Fitting algorithm to multiple marginals in a novel factorized fashion. Experiments show that MMtSBM retains theoretical properties on toy examples, achieves state-of-the-art performance on real-world datasets such as transcriptomic trajectory inference in 100 dimensions, and, for the first time, recovers couplings and dynamics in very high-dimensional image settings. Our work establishes multi-marginal Schrödinger bridges as a practical and principled approach for recovering hidden dynamics from static data.
comment: Under review. Code available at https://github.com/tgravier/MMDSBM-pytorch (GitHub repository) Additional experimental materials available at https://mmdsbm.notion.site (supplementary resources)
♻ ☆ A quantitative analysis of semantic information in deep representations of text and images
Deep neural networks are known to develop similar representations for semantically related data, even when they belong to different domains, such as an image and its description, or the same text in different languages. We present a method for quantitatively investigating this phenomenon by measuring the relative information content of the representations of semantically related data and probing how it is encoded into multiple tokens of large language models (LLMs) and vision transformers. Looking first at how LLMs process pairs of translated sentences, we identify inner ``semantic'' layers containing the most language-transferable information. We find moreover that, on these layers, a larger LLM (DeepSeek-V3) extracts significantly more general information than a smaller one (Llama3.1-8B). Semantic information of English text is spread across many tokens and it is characterized by long-distance correlations between tokens and by a causal left-to-right (i.e., past-future) asymmetry. We also identify layers encoding semantic information within visual transformers. We show that caption representations in the semantic layers of LLMs predict visual representations of the corresponding images. We observe significant and model-dependent information asymmetries between image and text representations.
♻ ☆ Learning Visually Interpretable Oscillator Networks for Soft Continuum Robots from Video
Data-driven learning of soft continuum robot (SCR) dynamics from high-dimensional observations offers flexibility but often lacks physical interpretability, while model-based approaches require prior knowledge and can be computationally expensive. We bridge this gap by introducing (1) the Attention Broadcast Decoder (ABCD), a plug-and-play module for autoencoder-based latent dynamics learning that generates pixel-accurate attention maps localizing each latent dimension's contribution while filtering static backgrounds. (2) By coupling these attention maps to 2D oscillator networks, we enable direct on-image visualization of learned dynamics (masses, stiffness, and forces) without prior knowledge. We validate our approach on single- and double-segment SCRs, demonstrating that ABCD-based models significantly improve multi-step prediction accuracy: 5.7x error reduction for Koopman operators and 3.5x for oscillator networks on the two-segment robot. The learned oscillator network autonomously discovers a chain structure of oscillators. Unlike standard methods, ABCD models enable smooth latent space extrapolation beyond training data. This fully data-driven approach yields compact, physically interpretable models suitable for control applications.
comment: Dataset available at: https://zenodo.org/records/17812071
♻ ☆ Wasserstein Distributionally Robust Nash Equilibrium Seeking with Heterogeneous Data: A Lagrangian Approach
We study a class of distributionally robust games where agents are allowed to heterogeneously choose their risk aversion with respect to distributional shifts of the uncertainty. In our formulation, heterogeneous Wasserstein ball constraints on each distribution are enforced through a penalty function leveraging a Lagrangian formulation. We then formulate the distributionally robust Nash equilibrium problem and show that under certain assumptions it is equivalent to a finite-dimensional variational inequality problem with a strongly monotone mapping. We then design an approximate Nash equilibrium seeking algorithm and prove convergence of the average regret to a quantity that diminishes with the number of iterations, thus learning the desired equilibrium up to an a priori specified accuracy. Numerical simulations corroborate our theoretical findings.
♻ ☆ Statistical Guarantees for Approximate Stationary Points of Shallow Neural Networks
Since statistical guarantees for neural networks are usually restricted to global optima of intricate objective functions, it is unclear whether these theories explain the performances of actual outputs of neural network pipelines. The goal of this paper is, therefore, to bring statistical theory closer to practice. We develop statistical guarantees for shallow linear neural networks that coincide up to logarithmic factors with the global optima but apply to stationary points and the points nearby. These results support the common notion that neural networks do not necessarily need to be optimized globally from a mathematical perspective. We then extend our statistical guarantees to shallow ReLU neural networks, assuming the first layer weight matrices are nearly identical for the stationary network and the target. More generally, despite being limited to shallow neural networks for now, our theories make an important step forward in describing the practical properties of neural networks in mathematical terms.
♻ ☆ ReSem3D: Refinable 3D Spatial Constraints via Fine-Grained Semantic Grounding for Generalizable Robotic Manipulation
Semantics-driven 3D spatial constraints align highlevel semantic representations with low-level action spaces, facilitating the unification of task understanding and execution in robotic manipulation. The synergistic reasoning of Multimodal Large Language Models (MLLMs) and Vision Foundation Models (VFMs) enables cross-modal 3D spatial constraint construction. Nevertheless, existing methods have three key limitations: (1) coarse semantic granularity in constraint modeling, (2) lack of real-time closed-loop planning, (3) compromised robustness in semantically diverse environments. To address these challenges, we propose ReSem3D, a unified manipulation framework for semantically diverse environments, leveraging the synergy between VFMs and MLLMs to achieve fine-grained visual grounding and dynamically constructs hierarchical 3D spatial constraints for real-time manipulation. Specifically, the framework is driven by hierarchical recursive reasoning in MLLMs, which interact with VFMs to automatically construct 3D spatial constraints from natural language instructions and RGB-D observations in two stages: part-level extraction and region-level refinement. Subsequently, these constraints are encoded as real-time optimization objectives in joint space, enabling reactive behavior to dynamic disturbances. Extensive simulation and real-world experiments are conducted in semantically rich household and sparse chemical lab environments. The results demonstrate that ReSem3D performs diverse manipulation tasks under zero-shot conditions, exhibiting strong adaptability and generalization. Code and videos are available at https://github.com/scy-v/ReSem3D and https://resem3d.github.io.
comment: 12 pages,9 figures
♻ ☆ Towards Data-efficient Customer Intent Recognition with Prompt-based Learning Paradigm
Recognizing customer intent accurately with language models based on customer-agent conversational data is essential in today's digital customer service marketplace, but it is often hindered by the lack of sufficient labeled data. In this paper, we introduce the prompt-based learning paradigm that significantly reduces the dependency on extensive datasets. Utilizing prompted training combined with answer mapping techniques, this approach allows small language models to achieve competitive intent recognition performance with only a minimal amount of training data. Furthermore, We enhance the performance by integrating active sampling and ensemble learning strategies in the prompted training pipeline. Additionally, preliminary tests in a zero-shot setting demonstrate that, with well-crafted and detailed prompts, small language models show considerable instruction-following potential even without any further training. These results highlight the viability of semantic modeling of conversational data in a more data-efficient manner with minimal data use, paving the way for advancements in AI-driven customer service.
♻ ☆ A Trustworthy By Design Classification Model for Building Energy Retrofit Decision Support
Improving energy efficiency in residential buildings is critical to combating climate change and reducing greenhouse gas emissions. Retrofitting existing buildings, which contribute a significant share of energy use, is therefore a key priority, especially in regions with outdated building stock. Artificial Intelligence (AI) and Machine Learning (ML) can automate retrofit decision-making and find retrofit strategies. However, their use faces challenges of data availability, model transparency, and compliance with national and EU AI regulations including the AI act, ethics guidelines and the ALTAI. This paper presents a trustworthy-by-design ML-based decision support framework that recommends energy efficiency strategies for residential buildings using minimal user-accessible inputs. The framework merges Conditional Tabular Generative Adversarial Networks (CTGAN) to augment limited and imbalanced data with a neural network-based multi-label classifier that predicts potential combinations of retrofit actions. To support explanation and trustworthiness, an Explainable AI (XAI) layer using SHapley Additive exPlanations (SHAP) clarifies the rationale behind recommendations and guides feature engineering. Two case studies validate performance and generalization: the first leveraging a well-established, large EPC dataset for England and Wales; the second using a small, imbalanced post-retrofit dataset from Latvia (RETROFIT-LAT). Results show that the framework can handle diverse data conditions and improve performance up to 53% compared to the baseline. Overall, the proposed framework provides a feasible, interpretable, and trustworthy AI system for building retrofit decision support through assured performance, usability, and transparency to aid stakeholders in prioritizing effective energy investments and support regulation-compliant, data-driven innovation in sustainable energy transition.
♻ ☆ Fair Text Classification via Transferable Representations
Group fairness is a central research topic in text classification, where reaching fair treatment between sensitive groups (e.g., women and men) remains an open challenge. We propose an approach that extends the use of the Wasserstein Dependency Measure for learning unbiased neural text classifiers. Given the challenge of distinguishing fair from unfair information in a text encoder, we draw inspiration from adversarial training by inducing independence between representations learned for the target label and those for a sensitive attribute. We further show that Domain Adaptation can be efficiently leveraged to remove the need for access to the sensitive attributes in the dataset we cure. We provide both theoretical and empirical evidence that our approach is well-founded.
comment: arXiv admin note: text overlap with arXiv:2311.12689
♻ ☆ Balancing Performance and Costs in Best Arm Identification NeurIPS 2025
We consider the problem of identifying the best arm in a multi-armed bandit model. Despite a wealth of literature in the traditional fixed budget and fixed confidence regimes of the best arm identification problem, it still remains a mystery to most practitioners as to how to choose an approach and corresponding budget or confidence parameter. We propose a new formalism to avoid this dilemma altogether by minimizing a risk functional which explicitly balances the performance of the recommended arm and the cost incurred by learning this arm. In this framework, a cost is incurred for each observation during the sampling phase, and upon recommending an arm, a performance penalty is incurred for identifying a suboptimal arm. The learner's goal is to minimize the sum of the penalty and cost. This new regime mirrors the priorities of many practitioners, e.g. maximizing profit in an A/B testing framework, better than classical fixed budget or confidence settings. We derive theoretical lower bounds for the risk of each of two choices for the performance penalty, the probability of misidentification and the simple regret, and propose an algorithm called DBCARE to match these lower bounds up to polylog factors on nearly all problem instances. We then demonstrate the performance of DBCARE on a number of simulated models, comparing to fixed budget and confidence algorithms to show the shortfalls of existing BAI paradigms on this problem.
comment: NeurIPS 2025
♻ ☆ Optimizing Fine-Tuning through Advanced Initialization Strategies for Low-Rank Adaptation
The rapid development of parameter-efficient fine-tuning methods has noticeably improved the efficiency of adapting large language models. Among these, LoRA has gained widespread popularity due to its strong balance of effectiveness and parameter efficiency. However, LoRA relies on initializing two low-rank matrices whose product is zero, which limits its ability to effectively activate and leverage the original model weights-creating a potential bottleneck for optimal performance. To address this limitation, we propose \textbf{IniLoRA}, a novel initialization strategy that initializes the low-rank matrices to closely approximate the original model weights. Experimental results indicate that IniLoRA achieves better performance than LoRA across a range of models and tasks. Additionally, we introduce two variants, IniLoRA-$α$ and IniLoRA-$β$, both leveraging distinct initialization methods to enhance performance further.
♻ ☆ Second Maximum of a Gaussian Random Field and Exact (t-)Spacing test
In this article, we introduce the novel concept of the second maximum of a Gaussian random field on a Riemannian submanifold. This second maximum serves as a powerful tool for characterizing the distribution of the maximum. By utilizing an ad-hoc Kac Rice formula, we derive the explicit form of the maximum's distribution, conditioned on the second maximum and some regressed component of the Riemannian Hessian. This approach results in an exact test, based on the evaluation of spacing between these maxima, which we refer to as the spacing test. We investigate the applicability of this test in detecting sparse alternatives within Gaussian symmetric tensors, continuous sparse deconvolution, and two-layered neural networks with smooth rectifiers. Our theoretical results are supported by numerical experiments, which illustrate the calibration and power of the proposed tests. More generally, this test can be applied to any Gaussian random field on a Riemannian manifold, and we provide a general framework for the application of the spacing test in continuous sparse kernel regression. Furthermore, when the variance-covariance function of the Gaussian random field is known up to a scaling factor, we derive an exact Studentized version of our test, coined the $t$-spacing test. This test is perfectly calibrated under the null hypothesis and has high power for detecting sparse alternatives.
comment: new version: comments on Tensor PCA literature Github repo: https://github.com/ydecastro/tensor-spacing/
♻ ☆ Orders in Chaos: Enhancing Large-Scale MoE LLM Serving with Data Movement Forecasting
Large-scale Mixture of Experts (MoE) Large Language Models (LLMs) have recently become the frontier open weight models, achieving remarkable model capability similar to proprietary ones. But their random expert selection mechanism introduces significant data movement overhead that becomes the dominant bottleneck in multi-unit LLM serving systems. To understand the patterns underlying this data movement, we conduct comprehensive data-movement-centric profiling across four state-of-the-art large-scale MoE models released in 2025 (200B-1000B) using over 24,000 requests spanning diverse workloads. We perform systematic analysis from both temporal and spatial perspectives and distill six key insights to guide the design of diverse future serving systems. With our insights, we then demonstrate how to improve wafer-scale GPUs as a case study, and show that minor architectural modifications leveraging the insights achieve substantial performance gains, delivering 5.3x and 3.1x average speedups on DeepSeek V3 and Qwen3, respectively. Our work presents the first comprehensive data-centric analysis of large-scale MoE models and a concrete design study using the learned lessons, with profiling traces and simulation framework already open-sourced with $>$1k downloads. Our traces and results are publicly available at https://huggingface.co/datasets/core12345/MoE_expert_selection_trace
♻ ☆ FedIFL: A federated cross-domain diagnostic framework for motor-driven systems with inconsistent fault modes
Due to the scarcity of industrial data, individual equipment users, particularly start-ups, struggle to independently train a comprehensive fault diagnosis model; federated learning enables collaborative training while ensuring data privacy, making it an ideal solution. However, the diversity of working conditions leads to variations in fault modes, resulting in inconsistent label spaces across different clients. In federated diagnostic scenarios, label space inconsistency leads to local models focus on client-specific fault modes and causes local models from different clients to map different failure modes to similar feature representations, which weakens the aggregated global model's generalization. To tackle this issue, this article proposed a federated cross-domain diagnostic framework termed Federated Invariant Features Learning (FedIFL). In intra-client training, prototype contrastive learning mitigates intra-client domain shifts, subsequently, feature generating ensures local models can access distributions of other clients in a privacy-friendly manner. Besides, in cross-client training, a feature disentanglement mechanism is introduced to mitigate cross-client domain shifts, specifically, an instance-level federated instance consistency loss is designed to ensure the instance-level consistency of invariant features between different clients, furthermore, a federated instance personalization loss and an orthogonal loss are constructed to distinguish specific features that from the invariant features. Eventually, the aggregated model achieves promising generalization among global label spaces, enabling accurate fault diagnosis for target clients' Motor Driven Systems (MDSs) with inconsistent label spaces. Experiments on real-world MDSs validate the effectiveness and superiority of FedIFL in federated cross-domain diagnosis with inconsistent fault modes.
comment: Based on reviewer feedback, we realized that the proposed FedIFL framework does not strictly conform to federated learning principles, since sharing primary features, label spaces and generator parameters with a central server may violate FL privacy requirements
♻ ☆ Real-Time Execution of Action Chunking Flow Policies NeurIPS 2025
Modern AI systems, especially those interacting with the physical world, increasingly require real-time performance. However, the high latency of state-of-the-art generalist models, including recent vision-language action models (VLAs), poses a significant challenge. While action chunking has enabled temporal consistency in high-frequency control tasks, it does not fully address the latency problem, leading to pauses or out-of-distribution jerky movements at chunk boundaries. This paper presents a novel inference-time algorithm that enables smooth asynchronous execution of action chunking policies. Our method, real-time chunking (RTC), is applicable to any diffusion- or flow-based VLA out of the box with no re-training. It generates the next action chunk while executing the current one, "freezing" actions guaranteed to execute and "inpainting" the rest. To test RTC, we introduce a new benchmark of 12 highly dynamic tasks in the Kinetix simulator, as well as evaluate 6 challenging real-world bimanual manipulation tasks. Results demonstrate that RTC is fast, performant, and uniquely robust to inference delay, significantly improving task throughput and enabling high success rates in precise tasks $\unicode{x2013}$ such as lighting a match $\unicode{x2013}$ even in the presence of significant latency. See https://pi.website/research/real_time_chunking for videos.
comment: published in NeurIPS 2025
♻ ☆ IS-Bench: Evaluating Interactive Safety of VLM-Driven Embodied Agents in Daily Household Tasks
Flawed planning from VLM-driven embodied agents poses significant safety hazards, hindering their deployment in real-world household tasks. However, existing static, non-interactive evaluation paradigms fail to adequately assess risks within these interactive environments, since they cannot simulate dynamic risks that emerge from an agent's actions and rely on unreliable post-hoc evaluations that ignore unsafe intermediate steps. To bridge this critical gap, we propose evaluating an agent's interactive safety: its ability to perceive emergent risks and execute mitigation steps in the correct procedural order. We thus present IS-Bench, the first multi-modal benchmark designed for interactive safety, featuring 161 challenging scenarios with 388 unique safety risks instantiated in a high-fidelity simulator. Crucially, it facilitates a novel process-oriented evaluation that verifies whether risk mitigation actions are performed before/after specific risk-prone steps. Extensive experiments on leading VLMs, including the GPT-4o and Gemini-2.5 series, reveal that current agents lack interactive safety awareness, and that while safety-aware Chain-of-Thought can improve performance, it often compromises task completion. By highlighting these critical limitations, IS-Bench provides a foundation for developing safer and more reliable embodied AI systems. Code and data are released under https://github.com/AI45Lab/IS-Bench.
♻ ☆ SS4Rec: Continuous-Time Sequential Recommendation with State Space Models
Sequential recommendation is a key area in the field of recommendation systems aiming to model user interest based on historical interaction sequences with irregular intervals. While previous recurrent neural network-based and attention-based approaches have achieved significant results, they have limitations in capturing system continuity due to the discrete characteristics. In the context of continuous-time modeling, state space model (SSM) offers a potential solution, as it can effectively capture the dynamic evolution of user interest over time. However, existing SSM-based approaches ignore the impact of irregular time intervals within historical user interactions, making it difficult to model complexed user-item transitions in sequences. To address this issue, we propose a hybrid SSM-based model called SS4Rec for continuous-time sequential recommendation. SS4Rec integrates a time-aware SSM to handle irregular time intervals and a relation-aware SSM to model contextual dependencies, enabling it to infer user interest from both temporal and sequential perspectives. In the training process, the time-aware SSM and the relation-aware SSM are discretized by variable stepsizes according to user interaction time intervals and input data, respectively. This helps capture the continuous dependency from irregular time intervals and provides time-specific personalized recommendations. Experimental studies on five benchmark datasets demonstrate the superiority and effectiveness of SS4Rec.
♻ ☆ A note on the Artstein-Avidan-Milman's generalized Legendre transforms
Artstein-Avidan and Milman [Annals of mathematics (2009), (169):661-674] characterized invertible reverse-ordering transforms on the space of lower semi-continuous extended real-valued convex functions as affine deformations of the ordinary Legendre transform. In this work, we first prove that all those generalized Legendre transforms on functions correspond to the ordinary Legendre transform on dually corresponding affine-deformed functions: In short, generalized convex conjugates are ordinary convex conjugates of dually affine-deformed functions. Second, we explain how these generalized Legendre transforms can be derived from the dual Hessian structures of information geometry.
comment: 13 pages
♻ ☆ Beyond the Laplacian: Interpolated Spectral Augmentation for Graph Neural Networks
Graph neural networks (GNNs) are fundamental tools in graph machine learning. The performance of GNNs relies crucially on the availability of informative node features, which can be limited or absent in real-life datasets and applications. A natural remedy is to augment the node features with embeddings computed from eigenvectors of the graph Laplacian matrix. While it is natural to default to Laplacian spectral embeddings, which capture meaningful graph connectivity information, we ask whether spectral embeddings from alternative graph matrices can also provide useful representations for learning. We introduce Interpolated Laplacian Embeddings (ILEs), which are derived from a simple yet expressive family of graph matrices. Using tools from spectral graph theory, we offer a straightforward interpretation of the structural information that ILEs capture. We demonstrate through simulations and experiments on real-world datasets that feature augmentation via ILEs can improve performance across commonly used GNN architectures. Our work offers a straightforward and practical approach that broadens the practitioner's spectral augmentation toolkit when node features are limited.
♻ ☆ Retro-Expert: Collaborative Reasoning for Interpretable Retrosynthesis
Retrosynthesis prediction aims to infer the reactant molecule based on a given product molecule, which is a fundamental task in chemical synthesis. However, existing models rely on static pattern-matching paradigm, which limits their ability to perform effective logic decision-making, leading to black-box decision-making. Building on this, we propose Retro-Expert, an interpretable retrosynthesis framework that performs collaborative reasoning by combining the complementary reasoning strengths of Large Language Models and specialized models via reinforcement learning. It outputs natural language explanations grounded in chemical logic through three components: (1) specialized models analyze the product to construct high-quality chemical decision space, (2) LLM-driven critical reasoning to generate predictions and corresponding interpretable reasoning path, and (3) reinforcement learning optimizing interpretable decision policy. Experiments show that Retro-Expert not only surpasses both LLM-based and specialized models across different metrics but also provides expert-aligned explanations that bridge the gap between AI predictions and actionable chemical insights.
♻ ☆ Structure is Supervision: Multiview Masked Autoencoders for Radiology
Building robust medical machine learning systems requires pretraining strategies that exploit the intrinsic structure present in clinical data. We introduce Multiview Masked Autoencoder (MVMAE), a self-supervised framework that leverages the natural multi-view organization of radiology studies to learn view-invariant and disease-relevant representations. MVMAE combines masked image reconstruction with cross-view alignment, transforming clinical redundancy across projections into a powerful self-supervisory signal. We further extend this approach with MVMAE-V2T, which incorporates radiology reports as an auxiliary text-based learning signal to enhance semantic grounding while preserving fully vision-based inference. Evaluated on a downstream disease classification task on three large-scale public datasets, MIMIC-CXR, CheXpert, and PadChest, MVMAE consistently outperforms supervised and vision-language baselines. Furthermore, MVMAE-V2T provides additional gains, particularly in low-label regimes where structured textual supervision is most beneficial. Together, these results establish the importance of structural and textual supervision as complementary paths toward scalable, clinically grounded medical foundation models.
♻ ☆ Stronger-MAS: Multi-Agent Reinforcement Learning for Collaborative LLMs
Multi-agent systems (MAS) and reinforcement learning (RL) are widely used to enhance the agentic capabilities of large language models (LLMs). MAS improves task performance through role-based orchestration, while RL uses environmental rewards to learn stronger policies, such as GRPO-style optimization. However, applying on-policy RL to MAS remains underexplored and presents unique challenges. Algorithmically, standard GRPO grouping assumptions break down because prompts vary by role and by turn. System-wise, the training stack must support MAS-workflow rollouts and on-policy updates for both single-policy and multi-policy models. We propose AT-GRPO, which includes (i) an agent- and turn-wise grouped RL algorithm tailored to MAS and (ii) a training system that supports both single- and multi-policy regimes. Across game, planning, coding, and math tasks, AT-GRPO delivers substantial gains. On long-horizon planning, it increases accuracy from a 14.0 to 47.0 percent single-agent RL baseline to 96.0 to 99.5 percent. It also improves reasoning performance, with average gains of 3.87 to 7.62 percent on coding tasks and 9.0 to 17.93 percent on math. Code and environments are available at: https://github.com/pettingllms-ai/PettingLLMs.
♻ ☆ An AI Implementation Science Study to Improve Trustworthy Data in a Large Healthcare System
The rapid growth of Artificial Intelligence (AI) in healthcare has sparked interest in Trustworthy AI and AI Implementation Science, both of which are essential for accelerating clinical adoption. However, strict regulations, gaps between research and clinical settings, and challenges in evaluating AI systems continue to hinder real-world implementation. This study presents an AI implementation case study within Shriners Childrens (SC), a large multisite pediatric system, showcasing the modernization of SCs Research Data Warehouse (RDW) to OMOP CDM v5.4 within a secure Microsoft Fabric environment. We introduce a Python-based data quality assessment tool compatible with SCs infrastructure, extending OHDsi's R/Java-based Data Quality Dashboard (DQD) and integrating Trustworthy AI principles using the METRIC framework. This extension enhances data quality evaluation by addressing informative missingness, redundancy, timeliness, and distributional consistency. We also compare systematic and case-specific AI implementation strategies for Craniofacial Microsomia (CFM) using the FHIR standard. Our contributions include a real-world evaluation of AI implementations, integration of Trustworthy AI principles into data quality assessment, and insights into hybrid implementation strategies that blend systematic infrastructure with use-case-driven approaches to advance AI in healthcare.
comment: 10 pages, 7 figures. Preprint version. This manuscript has been accepted at IEEE BHI 2025. This is the author-prepared version and not the final published IEEE version. The final version will appear in IEEE Xplore
♻ ☆ LMCache: An Efficient KV Cache Layer for Enterprise-Scale LLM Inference
KV cache has traditionally been stored in GPU memory to accelerate the decoding phase of large language model (LLM) inference. However, it is increasingly necessary to move KV caches outside GPU devices, to enable cache reuse across different queries and inference engines. Our real-world usage statistics confirm this trend: over time, the total KV cache stored by users has grown rapidly, far exceeding the capacity of GPU memory. Despite this need, there lacks an efficient solution for offloading and transferring KV caches. We present LMCACHE, the first and so far the most efficient open-source KV caching solution, which extracts and stores KV caches generated by modern LLM engines (vLLM and SGLang) out of the GPU memory and shares them across engines and queries. LMCACHE supports both cache offloading (prefix reuse across queries) and prefill-decode (PD) disaggregation (cross-engine/GPU cache transfer). LMCACHE's high performance and wide adoption stem from the following contributions: (1) highly optimized KV cache data movement powered by batched data movement operations, compute and I/O pipelining; (2) a modular KV cache connector component, decoupling LMCACHE from the rapid evolution of inference engines; (3) a first-class control API for flexible cache orchestration across GPU, CPU, storage, and network layers. Our evaluation shows that combining LMCACHE with vLLM achieves up to 15x improvement in throughput across workloads such as multi-round question answering and document analysis. Large-scale adoption of LMCACHE in enterprise settings provides us valuable insights, for example, fetching KV cache from remote storage has unsurprisingly benefits to prefill delay, and that context truncation, which is a widely applied technique in industry, can greatly reduce prefix cache hit ratio by half. The source code of LMCACHE is at: https://github.com/LMCache/LMCache.
♻ ☆ IF-GUIDE: Influence Function-Guided Detoxification of LLMs NeurIPS 2025
We study how training data contributes to the emergence of toxic behaviors in large language models. Most prior work on reducing model toxicity adopts reactive approaches, such as fine-tuning pre-trained (and potentially toxic) models to align them with human values. In contrast, we propose a proactive approach, IF-GUIDE, that leverages influence functions to identify and suppress harmful tokens in the training data. To this end, we first show that standard influence functions are ineffective at discovering harmful training records. We then present a novel adaptation that measures token-level attributions from training data to model toxicity, along with techniques for selecting toxic training documents and a learning objective that can be integrated into both pre-training and fine-tuning. Moreover, IF-GUIDE does not rely on human-preference data, which is typically required by existing alignment methods. In our evaluation, we demonstrate that IF-GUIDE substantially reduces both explicit and implicit toxicity-by up to 10$\times$ compared to uncensored models, and up to 3$\times$ compared to baseline alignment methods such as DPO and RAD-across both pre-training and fine-tuning scenarios. IF-GUIDE is computationally efficient: a billion-parameter model is not necessary for computing influence scores; a million-parameter model-with 7.5$\times$ fewer parameters-can effectively serve as a proxy for identifying harmful data. Our code is publicly available at: https://github.com/ztcoalson/IF-Guide
comment: Accepted at NeurIPS 2025 [Poster]
♻ ☆ Hypergraph Foundation Model
Hypergraph neural networks (HGNNs) effectively model complex high-order relationships in domains like protein interactions and social networks by connecting multiple vertices through hyperedges, enhancing modeling capabilities, and reducing information loss. Developing foundation models for hypergraphs is challenging due to their distinct data, which includes both vertex features and intricate structural information. We present Hyper-FM, a Hypergraph Foundation Model for multi-domain knowledge extraction, featuring Hierarchical High-Order Neighbor Guided Vertex Knowledge Embedding for vertex feature representation and Hierarchical Multi-Hypergraph Guided Structural Knowledge Extraction for structural information. Additionally, we curate 11 text-attributed hypergraph datasets to advance research between HGNNs and LLMs. Experiments on these datasets show that Hyper-FM outperforms baseline methods by approximately 13.4%, validating our approach. Furthermore, we propose the first scaling law for hypergraph foundation models, demonstrating that increasing domain diversity significantly enhances performance, unlike merely augmenting vertex and hyperedge counts. This underscores the critical role of domain diversity in scaling hypergraph models.
♻ ☆ FAST-CAD: A Fairness-Aware Framework for Non-Contact Stroke Diagnosis
Stroke is an acute cerebrovascular disease, and timely diagnosis significantly improves patient survival. However, existing automated diagnosis methods suffer from fairness issues across demographic groups, potentially exacerbating healthcare disparities. In this work we propose FAST-CAD, a theoretically grounded framework that combines domain-adversarial training (DAT) with group distributionally robust optimization (Group-DRO) for fair and accurate non-contact stroke diagnosis. Our approach is built on domain adaptation and minimax fairness theory and provides convergence guarantees and fairness bounds. We curate a multimodal dataset covering 12 demographic subgroups defined by age, gender, and posture. FAST-CAD employs self-supervised encoders with adversarial domain discrimination to learn demographic-invariant representations, while Group-DRO optimizes worst-group risk to ensure robust performance across all subgroups. Extensive experiments show that our method achieves superior diagnostic performance while maintaining fairness across demographic groups, and our theoretical analysis supports the effectiveness of the unified DAT + Group-DRO framework. This work provides both practical advances and theoretical insights for fair medical AI systems.
comment: This paper has been withdrawn by the submitting author while the authorship and institutional ethics approval are being clarified and re-evaluated. A substantially revised version may be posted in the future
♻ ☆ Observational Auditing of Label Privacy
Differential privacy (DP) auditing is essential for evaluating privacy guarantees in machine learning systems. Existing auditing methods, however, pose a significant challenge for large-scale systems since they require modifying the training dataset -- for instance, by injecting out-of-distribution canaries or removing samples from training. Such interventions on the training data pipeline are resource-intensive and involve considerable engineering overhead. We introduce a novel observational auditing framework that leverages the inherent randomness of data distributions, enabling privacy evaluation without altering the original dataset. Our approach extends privacy auditing beyond traditional membership inference to protected attributes, with labels as a special case, addressing a key gap in existing techniques. We provide theoretical foundations for our method and perform experiments on Criteo and CIFAR-10 datasets that demonstrate its effectiveness in auditing label privacy guarantees. This work opens new avenues for practical privacy auditing in large-scale production environments.
♻ ☆ Operator learning meets inverse problems: A probabilistic perspective
Operator learning offers a robust framework for approximating mappings between infinite-dimensional function spaces. It has also become a powerful tool for solving inverse problems in the computational sciences. This chapter surveys methodological and theoretical developments at the intersection of operator learning and inverse problems. It begins by summarizing the probabilistic and deterministic approaches to inverse problems, and pays special attention to emerging measure-centric formulations that treat observed data or unknown parameters as probability distributions. The discussion then turns to operator learning by covering essential components such as data generation, loss functions, and widely used architectures for representing function-to-function maps. The core of the chapter centers on the end-to-end inverse operator learning paradigm, which aims to directly map observed data to the solution of the inverse problem without requiring explicit knowledge of the forward map. It highlights the unique challenge that noise plays in this data-driven inversion setting, presents structure-aware architectures for both point predictions and posterior estimates, and surveys relevant theory for linear and nonlinear inverse problems. The chapter also discusses the estimation of priors and regularizers, where operator learning is used more selectively within classical inversion algorithms.
comment: To appear in Handbook of Numerical Analysis: Machine Learning Solutions for Inverse Problems; 93 pages, 5 figures
♻ ☆ scE2TM improves single-cell embedding interpretability and reveals cellular perturbation signatures
Single-cell RNA sequencing technologies have revolutionized our understanding of cellular heterogeneity, yet computational methods often struggle to balance performance with biological interpretability. Embedded topic models have been widely used for interpretable single-cell embedding learning. However, these models suffer from the potential problem of interpretation collapse, where topics semantically collapse towards each other, resulting in redundant topics and incomplete capture of biological variation. Furthermore, the rise of single-cell foundation models creates opportunities to harness external biological knowledge for guiding model embeddings. Here, we present scE2TM, an external knowledge-guided embedded topic model that provides a high-quality cell embedding and interpretation for scRNA-seq analysis. Through embedding clustering regularization method, each topic is constrained to be the center of a separately aggregated gene cluster, enabling it to capture unique biological information. Across 20 scRNA-seq datasets, scE2TM achieves superior clustering performance compared with seven state-of-the-art methods. A comprehensive interpretability benchmark further shows that scE2TM-learned topics exhibit higher diversity and stronger consistency with underlying biological pathways. Modeling interferon-stimulated PBMCs, scE2TM simulates topic perturbations that drive control cells toward stimulated-like transcriptional states, faithfully mirroring experimental interferon responses. In melanoma, scE2TM identifies malignant-specific topics and extrapolates them to unseen patient data, revealing gene programs associated with patient survival.
♻ ☆ Implicit Bias of Spectral Descent and Muon on Multiclass Separable Data NeurIPS 2025
Different gradient-based methods for optimizing overparameterized models can all achieve zero training error yet converge to distinctly different solutions inducing different generalization properties. We provide the first complete characterization of implicit optimization bias for p-norm normalized steepest descent (NSD) and momentum steepest descent (NMD) algorithms in multi-class linear classification with cross-entropy loss. Our key theoretical contribution is proving that these algorithms converge to solutions maximizing the margin with respect to the classifier matrix's p-norm, with established convergence rates. These results encompass important special cases including Spectral Descent and Muon, which we show converge to max-margin solutions with respect to the spectral norm. A key insight of our contribution is that the analysis of general entry-wise and Schatten p-norms can be reduced to the analysis of NSD/NMD with max-norm by exploiting a natural ordering property between all p-norms relative to the max-norm and its dual sum-norm. For the specific case of descent with respect to the max-norm, we further extend our analysis to include preconditioning, showing that Adam converges to the matrix's max-norm solution. Our results demonstrate that the multi-class linear setting, which is inherently richer than the binary counterpart, provides the most transparent framework for studying implicit biases of matrix-parameter optimization algorithms.
comment: NeurIPS 2025 (Spotlight)
♻ ☆ Conditional Generative Modeling for Enhanced Credit Risk Management in Supply Chain Finance
The rapid expansion of cross-border e-commerce (CBEC) has created significant opportunities for small- and medium-sized sellers, yet financing remains a critical challenge due to their limited credit histories. Third-party logistics (3PL)-led supply chain finance (SCF) has emerged as a promising solution, leveraging in-transit inventory as collateral. We propose an advanced credit risk management framework tailored for 3PL-led SCF, addressing the dual challenges of credit risk assessment and loan size determination. Specifically, we leverage conditional generative modeling of sales distributions through Quantile-Regression-based Generative Metamodeling (QRGMM) as the foundation for risk measures estimation. We propose a unified framework that enables flexible estimation of multiple risk measures while introducing a functional risk measure formulation that systematically captures the relationship between these risk measures and varying loan levels, supported by theoretical guarantees. To capture complex covariate interactions in e-commerce sales data, we integrate QRGMM with Deep Factorization Machines (DeepFM). Extensive experiments on synthetic and real-world data validate the efficacy of our model for credit risk assessment and loan size determination. This study explores the use of generative models in CBEC SCF risk management, illustrating their potential to strengthen credit assessment and support financing for small- and medium-sized sellers.
comment: Accepted for publication in Naval Research Logistics (NRL)
♻ ☆ Counterfactual Reasoning for Steerable Pluralistic Value Alignment of Large Language Models NeurIPS 2025
As large language models (LLMs) become increasingly integrated into applications serving users across diverse cultures, communities and demographics, it is critical to align LLMs with pluralistic human values beyond average principles (e.g., HHH). In psychological and social value theories such as Schwartz's Value Theory, pluralistic values are represented by multiple value dimensions paired with various priorities. However, existing methods encounter two challenges when aligning with such fine-grained value objectives: 1) they often treat multiple values as independent and equally important, ignoring their interdependence and relative priorities (value complexity); 2) they struggle to precisely control nuanced value priorities, especially those underrepresented ones (value steerability). To handle these challenges, we propose COUPLE, a COUnterfactual reasoning framework for PLuralistic valuE alignment. It introduces a structural causal model (SCM) to feature complex interdependency and prioritization among features, as well as the causal relationship between high-level value dimensions and behaviors. Moreover, it applies counterfactual reasoning to generate outputs aligned with any desired value objectives. Benefitting from explicit causal modeling, COUPLE also provides better interpretability. We evaluate COUPLE on two datasets with different value systems and demonstrate that COUPLE advances other baselines across diverse types of value objectives.
comment: NeurIPS 2025. 41 pages, 7 figures
♻ ☆ CausalKANs: interpretable treatment effect estimation with Kolmogorov-Arnold networks
Deep neural networks achieve state-of-the-art performance in estimating heterogeneous treatment effects, but their opacity limits trust and adoption in sensitive domains such as medicine, economics, and public policy. Building on well-established and high-performing causal neural architectures, we propose causalKANs, a framework that transforms neural estimators of conditional average treatment effects (CATEs) into Kolmogorov--Arnold Networks (KANs). By incorporating pruning and symbolic simplification, causalKANs yields interpretable closed-form formulas while preserving predictive accuracy. Experiments on benchmark datasets demonstrate that causalKANs perform on par with neural baselines in CATE error metrics, and that even simple KAN variants achieve competitive performance, offering a favorable accuracy--interpretability trade-off. By combining reliability with analytic accessibility, causalKANs provide auditable estimators supported by closed-form expressions and interpretable plots, enabling trustworthy individualized decision-making in high-stakes settings. We release the code for reproducibility at https://github.com/aalmodovares/causalkans .
comment: 34 pages, 19 figures, 3 tables, 1 algorithm
♻ ☆ Privacy-Preserving Conformal Prediction Under Local Differential Privacy
Conformal prediction (CP) provides sets of candidate classes with a guaranteed probability of containing the true class. However, it typically relies on a calibration set with clean labels. We address privacy-sensitive scenarios where the aggregator is untrusted and can only access a perturbed version of the true labels. We propose two complementary approaches under local differential privacy (LDP). In the first approach, users do not access the model but instead provide their input features and a perturbed label using a k-ary randomized response. In the second approach, which enforces stricter privacy constraints, users add noise to their conformity score by binary search response. This method requires access to the classification model but preserves both data and label privacy. Both approaches compute the conformal threshold directly from noisy data without accessing the true labels. We prove finite-sample coverage guarantees and demonstrate robust coverage even under severe randomization. This approach unifies strong local privacy with predictive uncertainty control, making it well-suited for sensitive applications such as medical imaging or large language model queries, regardless of whether users can (or are willing to) compute their own scores.
comment: Accepted by COPA 2025. Proceedings of Machine Learning Research 26, 2025 Conformal and Probabilistic Prediction with Applications
♻ ☆ Pushing Toward the Simplex Vertices: A Simple Remedy for Code Collapse in Smoothed Vector Quantization
Vector quantization, which discretizes a continuous vector space into a finite set of representative vectors (a codebook), has been widely adopted in modern machine learning. Despite its effectiveness, vector quantization poses a fundamental challenge: the non-differentiable quantization step blocks gradient backpropagation. Smoothed vector quantization addresses this issue by relaxing the hard assignment of a codebook vector into a weighted combination of codebook entries, represented as the matrix product of a simplex vector and the codebook. Effective smoothing requires two properties: (1) smoothed quantizers should remain close to a onehot vector, ensuring tight approximation, and (2) all codebook entries should be utilized, preventing code collapse. Existing methods typically address these desiderata separately. By contrast, the present study introduces a simple and intuitive regularization that promotes both simultaneously by minimizing the distance between each simplex vertex and its $K$-nearest smoothed quantizers. Experiments on representative benchmarks, including discrete image autoencoding and contrastive speech representation learning, demonstrate that the proposed method achieves more reliable codebook utilization and improves performance compared to prior approaches.
Genomics 2
☆ DeeDeeExperiment: Building an infrastructure for integrating and managing omics data analysis results in R/Bioconductor
Summary: Modern omics experiments now involve multiple conditions and complex designs, producing an increasingly large set of differential expression and functional enrichment analysis results. However, no standardized data structure exists to store and contextualize these results together with their metadata, leaving researchers with an unmanageable and potentially non-reproducible collection of results that are difficult to navigate and/or share. Here we introduce DeeDeeExperiment, a new S4 class for managing and storing omics data analysis results, implemented within the Bioconductor ecosystem, which promotes interoperability, reproducibility and good documentation. This class extends the widely used SingleCellExperiment object by introducing dedicated slots for Differential Expression (DEA) and Functional Enrichment Analysis (FEA) results, allowing users to organize, store, and retrieve information on multiple contrasts and associated metadata within a single data object, ultimately streamlining the management and interpretation of many omics datasets. Availability and implementation: DeeDeeExperiment is available on Bioconductor under the MIT license (https://bioconductor.org/packages/DeeDeeExperiment), with its development version also available on Github (https://github.com/imbeimainz/DeeDeeExperiment).
comment: 1 figure
☆ Refined HLA Linkage Disequilibrium Architectures of World Populations by a Novel Allelic Correlation Measure
Numerous diseases, particularly autoimmune disorders, are associated with the human leukocyte antigen (HLA), a small genomic region located on human chromosome 6. Adequate characterization of linkage disequilibrium (LD) in the HLA across populations is crucial for identifying genetic markers associated with specific traits and phenotypes. However, current LD measures often fail to capture HLA's structural complexity due to methodological limitations and sensitivity to low-frequency variants, marginal allele frequencies, and haplotype composition. To address these challenges, we introduced the Conditional Informatics Correlation Coefficient (CICC), which integrates conditional probability, information content, and haplotype-aware XOR logic to quantify LD robustly. When applied to high-resolution haploid genomes from the Human Pangenome Reference Consortium (HPRC), CICC revealed 10 novel high-LD regions in HLA. Further analyses using the 1000 Genomes Project and Genome Asia datasets identified nine strongly linked regions shared across five global populations-five in Class I and four in Class II. These results demonstrate CICC's ability to capture complex HLA LD structures across populations, highlighting its broad potential for disease gene mapping, population genomics, and guiding precision medicine.
Quantitative Methods 12
☆ Mechanistic Interpretability of Antibody Language Models Using SAEs
Sparse autoencoders (SAEs) are a mechanistic interpretability technique that have been used to provide insight into learned concepts within large protein language models. Here, we employ TopK and Ordered SAEs to investigate an autoregressive antibody language model, p-IgGen, and steer its generation. We show that TopK SAEs can reveal biologically meaningful latent features, but high feature concept correlation does not guarantee causal control over generation. In contrast, Ordered SAEs impose an hierarchical structure that reliably identifies steerable features, but at the expense of more complex and less interpretable activation patterns. These findings advance the mechanistic interpretability of domain-specific protein language models and suggest that, while TopK SAEs are sufficient for mapping latent features to concepts, Ordered SAEs are preferable when precise generative steering is required.
☆ Physics-Guided Surrogate Modeling for Machine Learning-Driven DLD Design Optimization
Sorting cells based on their mechanical properties is essential for applications in disease diagnostics, cell therapy, and biomedical research. Deterministic Lateral Displacement (DLD) devices provide a label-free method for achieving such sorting, but their performance is highly sensitive to cell size and deformability. Designing effective DLD geometries often demands extensive trial-and-error experimentation, as even small variations in cellular mechanical traits can cause significant changes in migration behavior. To address this challenge, we propose a simulation-driven machine learning (ML) framework that predicts suitable DLD design candidates for a given cell type. Our approach integrates high-fidelity particle-based simulations to model cell deformation and migration through microfluidic pillar arrays with supervised ML models trained to estimate optimal geometries. By mapping mechanical parameters such as bending rigidity and shear modulus to deformation index and migration angle, the framework enables rapid, data-informed design of DLD systems. We also demonstrate a deployable web interface to make this tool accessible for real-world device prototyping.
comment: 33 pages, 5 figures
☆ Refined HLA Linkage Disequilibrium Architectures of World Populations by a Novel Allelic Correlation Measure
Numerous diseases, particularly autoimmune disorders, are associated with the human leukocyte antigen (HLA), a small genomic region located on human chromosome 6. Adequate characterization of linkage disequilibrium (LD) in the HLA across populations is crucial for identifying genetic markers associated with specific traits and phenotypes. However, current LD measures often fail to capture HLA's structural complexity due to methodological limitations and sensitivity to low-frequency variants, marginal allele frequencies, and haplotype composition. To address these challenges, we introduced the Conditional Informatics Correlation Coefficient (CICC), which integrates conditional probability, information content, and haplotype-aware XOR logic to quantify LD robustly. When applied to high-resolution haploid genomes from the Human Pangenome Reference Consortium (HPRC), CICC revealed 10 novel high-LD regions in HLA. Further analyses using the 1000 Genomes Project and Genome Asia datasets identified nine strongly linked regions shared across five global populations-five in Class I and four in Class II. These results demonstrate CICC's ability to capture complex HLA LD structures across populations, highlighting its broad potential for disease gene mapping, population genomics, and guiding precision medicine.
☆ Model Gateway: Model Management Platform for Model-Driven Drug Discovery
This paper presents the Model Gateway, a management platform for managing machine learning (ML) and scientific computational models in the drug discovery pipeline. The platform supports Large Language Model (LLM) Agents and Generative AI-based tools to perform ML model management tasks in our Machine Learning operations (MLOps) pipelines, such as the dynamic consensus model, a model that aggregates several scientific computational models, registration and management, retrieving model information, asynchronous submission/execution of models, and receiving results once the model complete executions. The platform includes a Model Owner Control Panel, Platform Admin Tools, and Model Gateway API service for interacting with the platform and tracking model execution. The platform achieves a 0% failure rate when testing scaling beyond 10k simultaneous application clients consume models. The Model Gateway is a fundamental part of our model-driven drug discovery pipeline. It has the potential to significantly accelerate the development of new drugs with the maturity of our MLOps infrastructure and the integration of LLM Agents and Generative AI tools.
comment: 7 pages, 7 figures
☆ MCP-AI: Protocol-Driven Intelligence Framework for Autonomous Reasoning in Healthcare
Healthcare AI systems have historically faced challenges in merging contextual reasoning, long-term state management, and human-verifiable workflows into a cohesive framework. This paper introduces a completely innovative architecture and concept: combining the Model Context Protocol (MCP) with a specific clinical application, known as MCP-AI. This integration allows intelligent agents to reason over extended periods, collaborate securely, and adhere to authentic clinical logic, representing a significant shift away from traditional Clinical Decision Support Systems (CDSS) and prompt-based Large Language Models (LLMs). As healthcare systems become more complex, the need for autonomous, context-aware clinical reasoning frameworks has become urgent. We present MCP-AI, a novel architecture for explainable medical decision-making built upon the Model Context Protocol (MCP) a modular, executable specification for orchestrating generative and descriptive AI agents in real-time workflows. Each MCP file captures clinical objectives, patient context, reasoning state, and task logic, forming a reusable and auditable memory object. Unlike conventional CDSS or stateless prompt-based AI systems, MCP-AI supports adaptive, longitudinal, and collaborative reasoning across care settings. MCP-AI is validated through two use cases: (1) diagnostic modeling of Fragile X Syndrome with comorbid depression, and (2) remote coordination for Type 2 Diabetes and hypertension. In either scenario, the protocol facilitates physician-in-the-loop validation, streamlines clinical processes, and guarantees secure transitions of AI responsibilities between healthcare providers. The system connects with HL7/FHIR interfaces and adheres to regulatory standards, such as HIPAA and FDA SaMD guidelines. MCP-AI provides a scalable basis for interpretable, composable, and safety-oriented AI within upcoming clinical environments.
comment: 6 pages, 4 figures
☆ Hypothesis-Based Particle Detection for Accurate Nanoparticle Counting and Digital Diagnostics
Digital assays represent a shift from traditional diagnostics and enable the precise detection of low-abundance analytes, critical for early disease diagnosis and personalized medicine, through discrete counting of biomolecular reporters. Within this paradigm, we present a particle counting algorithm for nanoparticle based imaging assays, formulated as a multiple-hypothesis statistical test under an explicit image-formation model and evaluated using a penalized likelihood rule. In contrast to thresholding or machine learning methods, this approach requires no training data or empirical parameter tuning, and its outputs remain interpretable through direct links to imaging physics and statistical decision theory. Through numerical simulations we demonstrate robust count accuracy across weak signals, variable backgrounds, magnification changes and moderate PSF mismatch. Particle resolvability tests further reveal characteristic error modes, including under-counting at very small separations and localized over-counting near the resolution limit. Practically, we also confirm the algorithm's utility, through application to experimental dark-field images comprising a nanoparticle-based assay for detection of DNA biomarkers derived from SARS-CoV-2. Statistically significant differences in particle count distributions are observed between control and positive samples. Full count statistics obtained further exhibit consistent over-dispersion, and provide insight into non-specific and target-induced particle aggregation. These results establish our method as a reliable framework for nanoparticle-based detection assays in digital molecular diagnostics.
comment: Main text (14 pages, 5 figures, 1 table) and supplementary information (5 pages, 3 figures, 2 tables). Supporting code at https://github.com/Optical-Theory-Group/Hypothesis-Test-Based-Particle-Detection
☆ Beyond Lux thresholds: a systematic pipeline for classifying biologically relevant light contexts from wearable data
Background: Wearable spectrometers enable field quantification of biologically relevant light, yet reproducible pipelines for contextual classification remain under-specified. Objective: To establish and validate a subject-wise evaluated, reproducible pipeline and actionable design rules for classifying natural vs. artificial light from wearable spectral data. Methods: We analysed ActLumus recordings from 26 participants, each monitored for at least 7 days at 10-second sampling, paired with daily exposure diaries. The pipeline fixes the sequence: domain selection, log-base-10 transform, L2 normalisation excluding total intensity (to avoid brightness shortcuts), hour-level medoid aggregation, sine/cosine hour encoding, and MLP classifier, evaluated under participant-wise cross-validation. Results: The proposed sequence consistently achieved high performance on the primary task, with representative configurations reaching AUC = 0.938 (accuracy 88%) for natural vs. artificial classification on the held-out subject split. In contrast, indoor vs. outdoor classification remained at feasibility level due to spectral overlap and class imbalance (best AUC approximately 0.75; majority-class collapse without contextual sensors). Threshold baselines were insufficient on our data, supporting the need for spectral-temporal modelling beyond illuminance cut-offs. Conclusions: We provide a reproducible, auditable baseline pipeline and design rules for contextual light classification under subject-wise generalisation. All code, configuration files, and derived artefacts will be openly archived (GitHub + Zenodo DOI) to support reuse and benchmarking.
comment: 16 pages, 8 figures. Reproducible pipeline for classifying biologically light from wearable spectral data. Manuscript in preparation for journal submission
☆ Synergistic Computational Approaches for Accelerated Drug Discovery: Integrating Quantum Mechanics, Statistical Thermodynamics, and Quantum Computing
Accurately predicting protein-ligand binding free energies (BFEs) remains a central challenge in drug discovery, particularly because the most reliable methods, such as free energy perturbation (FEP), are computationally intensive and difficult to scale. Here, we introduce a hybrid quantum-classical framework that combines Mining Minima sampling with quantum mechanically refined ligand partial charges, QM/MM interaction evaluation, and variational quantum eigensolver (VQE)-based electronic energy correction. This design enables explicit treatment of polarization, charge redistribution, and electronic correlation effects that are often underestimated in purely classical scoring schemes, while retaining computational efficiency. Across 23 protein targets and 543 ligands, the method achieves a mean absolute error of about 1.10 kcal/mol with strong rank-order fidelity (Pearson R = 0.75, Spearman rho = 0.76, Kendall tau = 0.57), consistent with the performance of contemporary FEP protocols. Notably, the workflow requires only about 25 minutes per ligand on standard compute resources, resulting in an approximate 20-fold reduction in computational cost relative to alchemical free energy approaches. This level of accuracy and efficiency makes the method well-suited for high-throughput lead optimization and iterative design cycles in pharmaceutical discovery. The framework also provides a natural foundation for future integration with machine learning models to enable predictive, large-scale, and adaptive screening strategies.
☆ Physics-Informed Neural Koopman Machine for Interpretable Longitudinal Personalized Alzheimer's Disease Forecasting
Early forecasting of individual cognitive decline in Alzheimer's disease (AD) is central to disease evaluation and management. Despite advances, it is as of yet challenging for existing methodological frameworks to integrate multimodal data for longitudinal personalized forecasting while maintaining interpretability. To address this gap, we present the Neural Koopman Machine (NKM), a new machine learning architecture inspired by dynamical systems and attention mechanisms, designed to forecast multiple cognitive scores simultaneously using multimodal genetic, neuroimaging, proteomic, and demographic data. NKM integrates analytical ($α$) and biological ($β$) knowledge to guide feature grouping and control the hierarchical attention mechanisms to extract relevant patterns. By implementing Fusion Group-Aware Hierarchical Attention within the Koopman operator framework, NKM transforms complex nonlinear trajectories into interpretable linear representations. To demonstrate NKM's efficacy, we applied it to study the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. Our results suggest that NKM consistently outperforms both traditional machine learning methods and deep learning models in forecasting trajectories of cognitive decline. Specifically, NKM (1) forecasts changes of multiple cognitive scores simultaneously, (2) quantifies differential biomarker contributions to predicting distinctive cognitive scores, and (3) identifies brain regions most predictive of cognitive deterioration. Together, NKM advances personalized, interpretable forecasting of future cognitive decline in AD using past multimodal data through an explainable, explicit system and reveals potential multimodal biological underpinnings of AD progression.
☆ Spatial Analysis for AI-segmented Histopathology Images: Methods and Implementation
Quantitatively characterizing the spatial organization of cells and their interaction is essential for understanding cancer progression and immune response. Recent advances in machine intelligence have enabled large-scale segmentation and classification of cell nuclei from digitized histopathology slides, generating massive point pattern and marked point pattern datasets. However, accessible tools for quantitative analysis of such complex cellular spatial organization remain limited. In this paper, we first review 27 traditional spatial summary statistics, areal indices, and topological features applicable to point pattern data. Then, we introduce SASHIMI (Spatial Analysis for Segmented Histopathology Images using Machine Intelligence), a browser-based tool for real-time spatial analysis of artificial intelligence (AI)-segmented histopathology images. SASHIMI computes a comprehensive suite of mathematically grounded descriptors, including spatial statistics, proximity-based measures, grid-level similarity indices, spatial autocorrelation measures, and topological descriptors, to quantify cellular abundance and cell-cell interaction. Applied to two cancer datasets, oral potentially malignant disorders (OPMD) and non-small-cell lung cancer (NSCLC), SASHIMI identified multiple spatial features significantly associated with patient survival outcomes. SASHIMI provides an accessible and reproducible platform for single-cell-level spatial profiling of tumor morphological architecture, offering a robust framework for quantitative exploration of tissue organization across cancer types.
comment: 33 pages, 2 figures
☆ Algorithmic design of "smart canopy" maize architectures that maximize light use efficiency
We present a computational framework that integrates functional-structural plant modeling (FSPM) with an evolutionary algorithm to optimize three-dimensional maize canopy architecture for enhanced light interception under high-density planting. The optimization revealed an emergent ideotype characterized by two distinct strategies: a vertically stratified leaf profile (steep, narrow upper leaves for penetration; broad, horizontal lower leaves for capture) and a radially tiled azimuthal arrangement that breaks the conventional distichous symmetry of maize to minimize self and mutual shading. Reverse ray-tracing simulations show that this architecture intercepts significantly more photosynthetically active radiation (PAR) than virtual canopies parameterized from high-performing field hybrids, with gains that generalize across multiple U.S. latitudes and planting densities. The optimized trait combinations align with characteristics of modern density-tolerant cultivars, supporting biological plausibility. Because recent gene editing advances enable more independent control of architectural traits, the designs identified here are increasingly feasible. By uncovering effective, non-intuitive trait configurations, our approach provides a scalable, predictive tool to guide breeding targets, improve light-use efficiency, and ultimately support sustainable yield gains.
comment: 13 pages, 4 figures, 1 table
♻ ☆ An AI Implementation Science Study to Improve Trustworthy Data in a Large Healthcare System
The rapid growth of Artificial Intelligence (AI) in healthcare has sparked interest in Trustworthy AI and AI Implementation Science, both of which are essential for accelerating clinical adoption. However, strict regulations, gaps between research and clinical settings, and challenges in evaluating AI systems continue to hinder real-world implementation. This study presents an AI implementation case study within Shriners Childrens (SC), a large multisite pediatric system, showcasing the modernization of SCs Research Data Warehouse (RDW) to OMOP CDM v5.4 within a secure Microsoft Fabric environment. We introduce a Python-based data quality assessment tool compatible with SCs infrastructure, extending OHDsi's R/Java-based Data Quality Dashboard (DQD) and integrating Trustworthy AI principles using the METRIC framework. This extension enhances data quality evaluation by addressing informative missingness, redundancy, timeliness, and distributional consistency. We also compare systematic and case-specific AI implementation strategies for Craniofacial Microsomia (CFM) using the FHIR standard. Our contributions include a real-world evaluation of AI implementations, integration of Trustworthy AI principles into data quality assessment, and insights into hybrid implementation strategies that blend systematic infrastructure with use-case-driven approaches to advance AI in healthcare.
comment: 10 pages, 7 figures. Preprint version. This manuscript has been accepted at IEEE BHI 2025. This is the author-prepared version and not the final published IEEE version. The final version will appear in IEEE Xplore